(QQUANTUM MECHANICS
IN CHEMISTRY

GEORGE C. SCHATZ
MARK A. RATNER

Northwestern University

DOVER PUBLICATIONS, INC.
Mineola, New York



To Margaret and Nancy

Copyright

Copyright © 1993 and 2002 by George C. Schatz and Mark A. Ratner
All rights reserved.

Bibliographical Note

This Dover edition, first published in 2002, is a slightly corrected, unabridged
republication of the work originally published in 1993 by Prentice-Hall,
Englewood Cliffs, New Jersey. A new Appendix C, “Solutions to Problems,” has
been specially prepared by the authors for this edition. .

Library of Congress Cataloging-in-Publication Data

Schatz, George C., 1949—
Quantum mechanics in chemistry / George C. Schatz and Mark A.

Ratner.—Dover ed.

p. cm.
Originally published: Englewood Cliffs, N.J. : Prentice Hall, ¢1993.
Includes bibliographical references and index.

ISBN 0-486-42003-5 (pbk.)
1. Quantum chemistry. 2. Quantum theory. I. Ratner, Mark A., 1942-
II. Title.

QD462 .833 2001

541.2'8—dc21
2001047374

Manufactured in the United States by Courier Corporation
42003504
www.doverpublications.com



Contents

{ Preface xvii

1 Review of Basic Concepts in Quantum Mechanics |

1.1 Fundamental Definitions 1
1.2 Eigenvalues and Eigenfunctions 3

1.3 Approximate Methods 5

1.3.1 Time-Independent Perturbation Theory 5
1.3.2 Variational Theory 6

_ 1.4 Raising and Lowering Operators 7

1.4.1 Harmonic Oscillator 7
1.4.2 Angular Momentum Operators 9

1.5 Two-Body Problems 11

1.5.1 Relative-Motion Schrédinger Equation 11
1.5.2 Hydrogen Atom 12

1.6 Electronic Structure of Atoms and Molecules 13

1.6.1 Many-Electron Hamiltonian; Born—-Oppenheimer
Approximation 13

vii




1.6.2 Pauli Principle; Hartree—Fock Theory 15
1.6.3 LCAO-MO-SCF 17
1.6.4 Electronic Structure Methods 18

Bibliography for Chapter 1 18

Problems for Chapter 1 19

2 Symmetry Considerations: Point Groups and Electronic

Structure 21

2.1 Group Theory for Point Groups 21

2.1.1 Symmetry Operations 22

2.1.2 Representations 22

2.1.3 Similarity Transformations 23
2.1.4 Irreducible Representations 23
2.1.5 Character Tables 24

2.1.6 Direct (or Tensor) Products 25
2.1.7 Clebsch—Gordan Series 26

2.2 Applications of Group Theory to Quantum
Mechanics 27
2.2.1 Symmetry-Adapted Linear Combinations 27
2.2.2 Constructions of SALCs 28
2.2.3 Hiickel Theory Applications 30

2.2.4 Shortcuts 33
2.2.5 Energy Eigenvalues 34

2.3 Symmetry Properties of Many-Electron
Wavefunctions 36

2.3.1 Many-Electron Configurations and Terms 36
2.3.2 Application to C;H3 36

2.3.3 Incorporation of the Pauli Principle 37

2.34 Optical Spectrum: Dipole Selection Rules 39

Bibliography for Chapter 2 40
Problems for Chapter 2 40

viii Contents

3 Symmetry Considerations: Continuous Groups and
Rotations 43

3.1

Introduction 43

3.2 Continuous Groups; The Electronic Structure of Linear

Molecules 43

3.2.1 Two-Dimensional Rotation Group 43
3.2.2 Cy, Group 45

3.2.3 D.;, Group 45

3.2.4 Simple Example: O, 46

3.3 Three-Dimensional Rotation Group; Angular Momentum

Addition 50

3.3.1 Angular Momentum Addition; Clebsch—~Gordan
Coefficients 50

3.3.2 Properties of Clebsch—~Gordan Coefficients 51

3.3.3 Worked Examples 53

3.3.4 3+ and Higher Symbols 54

Bibliography for Chapter 3 55

Problems for Chapter 3 55

4 Time-Dependent Quantum Mechanics 57

4.1

4.2

4.3

4.4

introduction 57

Time-Dependent Schrédinger Equation: Basis-Set
Solution 57

Time-Dependent Perturbation Theory 59

4.3.1 First-Order Time-Dependent Perturbation Theory 59

4.3.2 Example: Collision-Induced Excitation of a Diatomic
Molecule 59

4.3.3 Second-Order Perturbation Theory 63

4.3.4 Simplifications and Extensions to Higher Order 63

4.3.5 Time-Ordering Operators 64

Representations in Quantum Mechanics 65

4.4.1 Schrodinger Representation 66
4.4.2 Heisenberg Representation 67
4.4.3 Interaction Representation 69

Contents



4.5 Transition Probabilities per Unit Time 70

4.5.1 Perturbation Theory for a Constant Interaction
Potential 70 )

4.5.2 Fermi’s Golden Rule 72

4.5.3 State-to-State Form of Fermi’s Golden Rule 73

4.5.4 Treatment of Periodic Interactions 75

Bibliography for Chapter 4 74

Problems for Chapter 4 75

S Interaction of Radiation with Matter 78

5.1 Introduction 78

5.2 Electromagnetic Fields 78

5.2.1 Vector Potentials and Wave Equations 78
5.2.2 Plane Waves 80

5.2.3 Energy and Photon Number Density 81
5.3 Interaction between Matter and Field 82

5.3.1 Classical Theory 82
5.3.2 Derivation of Classical Hamiltonian 82

5.3.3 Quantum Hamiltonian for a Particle in an Electromagnetic

Field 83

5.4 Absorption and Emission of Light 86

5.4.1 Application of Fermi's Golden Rule 86

5.4.2 Dipole Approximation 87

5.4.3 Photon Density of States 88

5.4.4 Emission Rate 88

5.4.5 Absorption Rate 90

5.4.6 Einstein A and B Coefficients 90

5.4.7 Oscillator Strengths 92

5.4.8 Electric Quadrupole, Magnetic Dipole Mechanisms 92
5.4.9 Molecular Transitions: Franck—-Condon Factors 95

5.5 Light Scattering 99

5.5.1 Qualitative Description of Light Scattering 99

5.5.2 Simplification of Electric Dipole Interaction 99

5.5.3 Interaction between Field and Induced Dipole;
Two-Photon Process 100

5.5.4 Raman Scattering 102

5.5.5 Evaluation of ay,,: Kramers—Heisenberg Formula 104

X Contents

Bibliography for Chapter 5 108

Problems for Chapter 5 108

6 Occupation Number Representations 111

6.1

6.2

6.3

6.4

6.5

6.6

Introduction 111

Occupation Number Representation for Harmonic
Molecular Vibrations and Quantized Radiation
Fields 112

6.2.1 Single Harmonic Oscillator 112

6.2.2 Normal Modes 113

6.2.3 Quantized Radiation Fields 115

6.2.4 Coupling of Radiation to Matter Using Second
Quantization 117

6.2.5 Applications of Fermi's Golden Rule 118

Occupation Number Representations for Electrons 119

6.3.1 Fermion Creation and Destruction Operators 119

6.3.2 Slater Determinants and Electron Creation Operators 121

6.3.3 Manipulation of Fermion Operators; Commutators and
Anticommutators 125

6.3.4 Arbitrary Electronic Operators in the Occupation Number
Representation 126

Fermion Field Operators and Second Quantization 132
Molecular Electronic Structure: Model Hamiltonians and

Occupation Number Representations 135

6.5.1 Model Hamiltonians: Basis Set and Matrix Elements 135

6.5.2 Noninteracting Electrons: Hiickel, Extended Hiickel, and
" Free-Electron Models 137

6.5.3 Molecular Orbitals for Noninteracting Electrons 139

Treatment of Interacting Electrons 142

6.6.1 Model Hamiltonians 142

6.6.2 Self-Consistent Field (SCF) Solution 145

6.6.3 Example: SCF Solution for the Two-Center, Two-Orbital
Problem 147

Bibliography for Chapter 6 148

Problems for Chapter 6 149

Contents

xi



7T Quantum Scattering Theory 153

7.1

Introduction 153

7.2 One-Dimensional Scattering 154

7.2.1 Introduction 154

7.2.2 Wavepackets in One Dimension 155

7.2.3 Wavepackets for the Complete Scattering Problem 157
7.2.4 Fluxes and Probabilities 158

7.2.5 Time-Independent Approach to Scattering 159

7.2.6 Scattering Matrix 161

7.2.7 Green's Functions for Scattering 163

7.2.8 Born Approximation 166

7.3 Semiclassical Theory 167

7.3.1 WKB Approximation 167
7.3.2 Semiclassical Wavepackets 173

7.4 Scattering in Three Dimensions 175

Bibliography for Chapter 7 178

Problems for Chapter 7 179

8 Theories of Reaction Rates 182

8.1

8.2

8.3
8.4

8.5

8.6

8.7

8.8

xii

introduction 182

Rate Constants for Bimolecular Reactions: Cumulative.
Reaction Probabilities 182

Transition-State Theory 184
RRKM Theory 185

Formal Expression for Rates in Terms of Flux
Operators 186

Additional Expressions for Rate Constant 189
Flux—Flux Autocorrelation Functions 192

Evaluation of Propagator Matrix Elements Using Path
Integrals 194

Contents

10

Bibliography for Chapter 8 197

Problems for Chapter 8 197

9 Time-Dependent Approach to Spectroscopy: Electronic,
Vibrational, and Rotational Spectra 199

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

introduction 199
Thermal Averages and Imaginary Time Propagation 200
Electronic Spectra from Time Correlation Functions 201

Electronic Spectra: Time Development of the
Correlation Functions 202

Optical Spectra with Narrow-Line or Wide-Line
Excitations: Time-Dependent Picture 209

Vibrational Spectra: Correlation Function Approach 214

Rotational, Raman, and Magnetic Resonance
Spectra 220

Motional Narrowing and Stochastic Motion 225
Bibliography for Chapter 9 227

Problems for Chapter 9 227

Correlation Functions and Dynamical Processes:

Nonadiabatic Intramolecular Electron Transfer 231

10.1

10.2

10.3

10.4

Introduction 231
Electron Transfer: Some Generalities 232
Molecutlar Crystal Model 237

Rate Processes with Vibronic Coupling: Canonical
Transformations and Franck—Condon Factors 240

Contents

xiii



10.5

10.6

10.7

Steepest-Descents Evaluation of Franck—Condon
Behavior: Energy Sharing 247

Solvent Contributions to Electron Transfer Rates 251
Electron Transfer Reactions: Qualitative Remarks 253
Bibliography for Chapter 10 256

Problems for Chapter 10 256

11 Density Matrices 262

11.1

11.2

1.3

11.4

Xiv

Introduction 262

Density Operators and Density Matrices: Definitions and
Averages 263

11.2.1 Wavefunctions and the Pure State Density Operator 263
11.2.2 Density Operators for Mixed States 264

Representations and Equations of Motion 266

Example: Spin- Particles 267

11.4.1 Representation of Density Matrix Using Pauli Spin
Matrices 269
11.4.2 Crude Description of Dephasing in Two-Site Systems 269

Reduced Density Matrices 272

11.5.1 Reduced Density Matrices and Electronic Structure 273
11.5.2 Hartree-Fock Density Matrices; Natural Orbitals 275

Reduced Density Matrices for Dynamical Statistical
Systems 277

11.6.1 Reduced Density Matrices for Subsystems 278

11.6.2 Zero-Order Density Matrix: Equilibrium 281

11.6.3 First-Order Expressions for the Density Matrix: Linear
Response Theory 281

11.6.4 Second-Order Response and the Density Matrix: Redfield
Equations and Relaxation Processes 284

11.6.5 Example: Relaxation and Dephasing in a Simple Spin
System 289

11.6.6 Second-Order Corrections to the Density: Application to
Molecular Nonlinear Optics 295

Contents

11.7 Higher-Order Corrections to the Density Matrix: Pulsed
Spectroscopy 298

11.7.1 Spins: Rotations and Angular Momentum 299

11.7.2 Rotating Frame Transformation 300

11.7.3 Simple Pulse Experiment: Carr-Purcell Spin Echo for
Uncoupled Spins 301

11.7.4 Average Hamiltonian Theory for Multiple-Pulse NMR 304

Bibliography for Chapter 11 310

Problems for Chapter 11 311
Appendix A: Dirac Delta Function 315
Appendix B: Laplace Tranforms 317
Appendix C: Solutions to Problems 319

Index 355

Contents

Xv



Preface

This book is intended as a follow-up to the many introductory quantum
chemistry texts used in teaching graduate and advanced undergraduate
students. It is the result of our many years of teaching at Northwestern
University, in courses taken by hundreds of students. Like many univer-
sities, we have a one-term introductory quantum chemistry course taken
by graduate and advanced undergraduate students, for which several ex-
cellent introductory texts exist. This is followed by an additional term (or
sometimes two) in which more advanced topics are considered.

We have always been frustrated by the lack of texts that treat many
of the advanced topics, so over the years we developed an extensive set
of lecture notes to remedy the problem, and the present book evolved
from those notes. There are a large number of physics-oriented texts that
cover many of the topics we consider, but the absence of chemical, solid-
state, and materials applications has always been a problem for our stu-
dents. One advanced topic, advanced methods for describing the elec-
tronic structure of molecules (i.e., beyond Hartree—Fock), is covered in
depth in a few textbooks, so this topic is not dealt with directly in this
text. Instead, we emphasize areas of dynamics, of symmetry, and of
formalism in quantum mechanics that contain essential tools for both
experimental and theoretical students working in a wide variety of subdis-
ciplines of chemistry and materials science. In addition, many of the
topics in this book are relevant to the interests of students in certain areas
of physics, biology, and engineering. One venerable but unfortunately
outdated text that provided much inspiration for our text is Quantum
Chemistry by Eyring, Walter, and Kimball (1944).

Our choice of topics has several themes, which can roughly be
grouped as follows: symmetry and rotations in quantum mechanics, time-

xvii



dependent quantum mechanics and its applications to spectroscopy, colli-
sions and rate processes, occupation number representations of quantum
mechanics, and the use of correlation functions and density matrices in
guantum mechanics. After an introductory chapter that reviews basic
concepts from introductory quantum mechanics, our second and third
chapters focus on symmetry and rotations. Chapter 2 is partially a review
of elementary concepts associated with point groups and is partially a
consideration of the symmetry properties of many-electron wavefunc-
tions. In Chapter 3 we consider the two- and three-dimensional rotation
groups as they apply to electronic structure, and examine the related topic
of angular momentum addition. In Chapter 4 we introduce the basic for-
malism of time-dependent quantum mechanics with an emphasis on time-
dependent perturbation theory and Fermi’s golden rule, and in Chapter 5
provide applications of this formalism to the interaction of radiation and
matter (light absorption, emission, scattering). In Chapter 6 we introduce
occupation number representations, including applications to both quan-
tized radiation fields and electronic structure; it is lengthy and detailed,
because the material is relatively new to most scientists. In Chapter 7 we
present an introduction to scattering theory, especially as it applies to
chemical problems. These concepts are then used in Chapter 8 to develop
basic theories of chemical reaction rates. Along the way we discover that
rates can be obtained from correlation functions, and in Chapters 9 and 10
the subject of correlation functions is extended in many other directions
with an emphasis on spectroscopy and on theories of electron transfer.
Finally, in Chapter 11 we combine many of topics of the previous chap-
ters to describe electronic structure, optical and magnetic resonance
spectroscopy, and condensed phase dynamics using density matrices.

The ordering of these chapters follows largely from our own need to
divide the material covered between two courses that are taken by stu-
dents with different interests. Chapters 1 to 6 cover one course that is
taken by a fairly broad spectrum of students from all areas of chemistry.
These chapters emphasize topics in symmetry, spectroscopy, and elec-
tronic structure that find widespread application, and in addition intro-
duce elements in the formalism of quantum mechanics that have become
part of the ‘‘language’” of chemistry. Chapters 7 to 11 cover topics that
are of more specific interest to physical chemists and materials scientists,
with an emphasis on dynamical processes. There are several subthemes
that make the pairs of chapters 4 and 5,7 and 8, 9 and 10, and 6 and 11
closely connected, so these four chapter pairs could easily be presented in
any order, and one could also omit pairs according to the needs of the
students taking the material. Chapters 8, 9, 10, and 11 go beyond a
straightforward consideration of quantum-mechanical methods: Statisti-
cal considerations are important in all four, and all point strongly toward
forefront areas of current research.

With each chapter we include problems that we have used in our

xviii Preface

courses, designed to illustrate further applications of the theory as it is
d.eveloped. Many of these problems extend our development in direc-
tions that represent important areas of modern research,. while others
provide classic examples that illustrate important physical effects. Some
of the problems are quite lengthy and challenging.

An attempt is made throughout the book to be concise and to make
the formal development useful to chemists and materials scientists. The
relatively informal wording in parts of the book reflects the pedagogic
nature of much of the material. Extensive discussions of interpretation,
as well as digressions to deal with special cases and pedagogic asides,
haYe been held to a minimum in an attempt to produce a useful and
::attlonal guide to quantum mechanics for chemists and materials scien-
ists. ’

The development of this book would have been very difficult without
the assistance of an unusually talented typist, Jan Goranson. We are
extremely indebted to her for the countless hours of careful, painstaking
effort needed to get all the formulas right. A change in word-processing
software halfway through development of the manuscript required that
most equations be typed twice. Despite this, Jan persevered, and the
result is a testimony to her efforts.

We should also acknowledge Dan Joraanstad, Diana Farrell, and
Lynne Breitfeller of Prentice Hall for their encouragement during this
long project. In addition, a large number of graduate students at North-
western have used portions of this book in their courses, and they have
made countless suggestions for the improvement of both text and prob-
lems. We have further benefitted from the suggestions of B. Whalley and
N. Snider, both of whom carefully read the text, from Stacy Ratner’s
careful proofreading, and from Daniel Ratner’s and Matt Todd’s exem-
plary work with the figures. The presentation of the occupation number
formalism for electrons is based on ideas presented by Jan Linderberg.
Finally, the patience, inspiration, and encouragement of our wives, Mar-
garet and Nancy, have been crucial to the book since its inception.

George Schatz / Mark Ratner
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1.1

1

Review of Basic Concepts
in Quantum Mechanics

Fundamental Definitions

Our starting point is the set of basic rules or postulates by which quantum
mechanics is developed. The reader who is interested in the historical or
philosophical underpinnings of these rules should refer to a large number
of excellent texts that cover this material. In the quantum description of
the motions of particles, one describes the system using a wavefunction.
¥. ¥ depends on the coordinates xj, x2, . . . , xp of all the particles and
on time ¢. (Here we consider motion of N indistinguishable particles in
one dimension.) The physical significance of ¥ is determined by the fol-
lowing fundamental definition:

Wy, x2, . .., xN, OF dxp dxy - - - dxy
= probability of finding a
particle between x; and (1.1
xj + dxy, and a particle
between x; and x; + dxp, . . . at time ¢



The time evolution of ¥ for a system governed by a Hamiltonian H is
determined by the Schrodinger equation:

iﬁ%’- = HY (1.2)

where # is Planck’s constant divided by 2.

The operator H in Eq. (1.2) as well as any other quantum operator
with a classical analog can be constructed by writing down the corre-
sponding classical mechanical dynamical variable in terms of cartesian
coordinates (x) and momenta (p) and making the replacements:

Classical variable Quantum operator
X x

., 0
Px —ih %

Generalizations of this procedure to noncartesian coordinates and to com-
plicated dynamical variables follow straightforwardly. The rewriting of
the classical hamiltonian in quantal form occasionally requires symmetri-
zation to ensure linearity and hermiticity. Sometimes we will put a ‘‘hat”’
on quantum operators, as in £, to distinguish them from other symbols.

The quantum operator corresponding to any dynamical variable must
be a linear hermitian operator. A linear operator G satisfies

G(C¥ + Gy = C1GY¥Y + G,

for any wavefunctions ¥ and ¥, and any constants C;and C3. Ahermi-
tian operator G satisfies

[ 6o dr = [ oGy dr (1.3)

where @ and ¥ are any ‘‘well-behaved’” functions (i.e., functions that are
twice differentiable and for which [ ¥*¥ dr is finite). In Eq. (1.3), d7
stands for the appropriate integration volume element. Often we will use
the so-called bracket notation, whereby Eq. (1.3) becomes

(V|GD) = (G¥|®) (1.4)

For a system governed by a wavefunction ¥, one can determine the
average or expectation value of any dynamical variable by evaluating

(¥IGI¥)
(%)
The denominator in Eq. (1.5) is called the normalization integral and is

often required to be unity. From Egs. (1.4) and (1.5) one can easily show
that hermitian operators always have real expectation values.

G) = (1.5)
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1.2

Eigenvalues and Eigenfunctions

If the hamiltonian H is time independent, the Schrédinger equation can be
separated into coordinate- and time-dependent parts. (In Chapter 4 we
discuss the case where H depends on time.) Writing

Ca XN 1) = Uy, X2, ., XN)X(D) (1.6)
one can separate variables in Eq. (1.2) to get

W(x1, x2, .

., dx 4

it i Ex (L.7)
and

Hy = Ey (1.8)
where E is a separation constant. Equation (1.7) is easily solved to give

X = e—iEt/ﬁ (1'9)

Equation (1.8) is known as the time-independent Schrédinger equation,
and its solution gives a time-independent wavefunction. Note that the
probability density [¥|? is the same as |¢|? and is stationary in this case.

Equation (1.8) is an example of an eigenfunction/eigenvalue equation
which generally has the form

Gy = gy (1.10)

where G is any operator and g is a number. A wavefunction that satisfies
Eq. (1.10) is known as an eigenfunction of the operator G, and g is its
eigenvalue.

If we evaluate Eq. (1.5) for G = H and use Eqgs. (1.6), (1.8), and (1.9),
we find that

(H)=E (1.11)

This implies that the separation constant E is just the expectation value
corresponding to the energy of the system. Equation (1.8) tells us that E
is the eigenvalue of the operator H, and Eq. (1.11) tells us that expectation
values calculated using eigenfunctions are the corresponding eigenvalues.

1t is often useful to ask when a wavefunction can be an eigenfunction
simultaneously of two operators, such as G and H. To answer this we
form the product (GH — HG)y. If  is an eigenfunction of G with eigen-
value g, and of H with eigenvalue E, then

(GH — HGY = (¢E — Egiy = 0

Sec. 1.2 | Eigenvalues and Eigenfunctions 3



If this is required to be true for all eigenfunctions of G and H, we must
have

GH - HG=[G,H]=0 (1.12)

The symbol [G, H] is an abbreviation for the left-hand side of Eq. (1.12)
and is called a commutator. Equation (1.12) implies that operators must
commute if they are to have simultaneous eigenfunctions. Note that the
converse of this statement does not always work: that is, just because two
operators commute does not guarantee that an eigenfunction of one will
be an eigenfunction of the other. However, if two operators commute it is
always possible to find simultaneous eigenfunctions. Animportant exam-
ple of two operators that do not commute is x and p (for which [x, p] =
it). Clearly, the uncertainty principle would be violated if these operators
had simultaneous eigenvalues.

Now consider two eigenfunctions of the operator H. Call them ¢
and 7, and let the corresponding eigenvalues be Ej and E;. Then since H-
is hermitian,

(W|H) — (Hyil) = 0 (1.13)
But this quantity also equals (E; — Ej) (i |2), which implies that either

E;—E =0 (1.14a)

or

Wily2) = 0 (1.14b)

These equations say that for any two eigenfunctions of H (or, indeed, of
any other hermitian operator), either Ey and E; are degenerate [Eq.
(1.14a)] or the eigenfunctions must be orthogonal [Eq. (1.14b)]. Degener-
ate eigenfunctions can also be constructed to be orthogonal, but this is
required. Eigenfunctions that satisfy Eq. (1.14b) and are normalized are
not said to be orthonormal.

Another property of eigenfunctions of the hamiltonian is complete-
ness. This means that any well-behaved function | f) can be represented
as an expansion in a set of eigenfunctions that is defined in the same
coordinate region and which satisfies the same boundary conditions. If
the eigenfunctions are labeled |n) and they are orthonormal, the expansion
is

If) =2 cpln) (1.15)

with ¢, = (n| ).
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1.3

Approximate Methods

1.3.1 Time-Independent Perturbation Theory

Often one needs to solve the time-independent Schrédinger equation for a
problem that is too difficult or inconvenient to do exactly. One situation
where accurate approximate solutions can be developed is when the ham-
iltonian H can be written as the sum of a zeroth-order hamiltonian Hy, for
which exact solutions exist, plus a time-independent perturbation V
which is in some sense small. Let us write this as

H=Hy+\V (1.16)

where A is a parameter (that will be set to one at the end) that keeps track
of the order of the perturbation. Let us denote the eigenfunctions of Hy
by ¢2 and the corresponding eigenvalues as E® (implying that Hy¢) =
E%¢9.

To develop approximate solutions to the full Schrodinger equation,
we use the expansion

Yn = 3% + AoV + 229D + . .. (1.172)
for the wavefunction, and the corresponding expansion
E,=E%+ \EQD + N2EQD + - .. (1.17b)

for the energy. Substituting Eqgs. (1.16) and (1.17) into Hy,, = E,{i, and
equating like powers of A leads to

Ho¢% = E0¢9 (zeroth order) (1.18)
Vel + HopD = EQV@Y + EOD  (first order) (1.19)

‘ N .
Vol + Hypl) = k}‘a EWgL—R [jth order (j = 1)] (1.20)

Equation (1.18) is satisfied by assumption. To solve Eq. (1.19), we ex-
pand ¢£‘1) in terms of the complete set of zeroth-order states

¢ = > el (1.21)

where C,; is a coefficient, and without loss of generality we assume that
(¢°|¢(1)) = (. Substitution of Eq. (1.21) into (1.19), followed by multipli-
cation by d)* and integration, then leads to (for k = n)

ED = (¢9|v|e%) (1.22)

Sec. 1.3 | Approximate Methods 5



and (for k # n) o
(@2IVIen)
E{ - E)

One can similarly develop expressions for higher-order terms in both
the energy and wavefunction. For example,

cl = (k # n) (1.23)

01v]pIxaRlVIed)
E(z) - <¢’n| k k n 1.24
" g ES - EY (1.249
and
D=3 VinVii = Viun i) % n) (1.25)

i (EY — E9YES - EY

Here we have introduced the Kronecker delta function (i.e., 8, = 1 for
k= n, = 0for k ¥ n).

Static perturbation theory is very widely used in chemistry, since so
many physical situations (particularly, spectroscopic ones) consist of an
unperturbed hamiltonian and a small perturbation; in the case of spectro-
scopy, the smallness of the perturbation generally arises from the weak-
ness of laboratory fields compared to intramolecular Coulomb potential
fields.

1.3.2 Variational Theory

Another approach to determining approximate solutions to the Schro-
dinger equation is to use the variational theorem. This states that for any
well-behaved function ¢, the following inequality holds:

(G|HS) _
== F
(ley ~7°
where Ej is the exact ground-state energy.

To prove this, we expand ¢ in terms of the exact eigenfunctions of H,
which we denote s, (with energies E,):

. (1.26)

¢ =2 Cnlbn 1.27)
If we rewrite Eq. (1.26) as
(p|Hp) — Eg{dld) = 0 (1.28)
and substitute in Eq. (1.27), we can reduce this to
Y (E.-EC=0 (1.29)

6 Ch. 1 | Review of Basic Concepts in Quantum Mechanics

1.4

Since E, — Egis necessarily nonnegative, the ineqiality in Eq. (1 .29) must
hold and the theorem is proved.

The most common applications of variational theory in chemistry
involve ¢ written as an expansion in a set of functions with coefficients
that are to be optimized so as to minimize the left-hand side of Eq. (1.26).
If we use the symbol B, to denote these basis functions, the expansion
would be

¢ =2, CpB, (1.30)

Substitution of Eq. (1.30) into (1.26), and minimization with respect to
each coefficient Cy, leads to the equations
> (H - EQ)B,C, =0 (1.31)

Multiplying Eq. (1.31) by B} and integrating, we obtain the linear alge-
braic equations

> (Hin = EoSin)Cn = 0 (1.32)
where
Hy, = (By|H|By) (1.33)
is a hamiltonian matrix element, and
Skn = (Bi|Bn) (1.34)

is an overlap matrix element.
The nontrivial solutions to Eq. (1.32) are generated by solving the
secular equation ‘
H - ES| =0 (1.35)

where H and § stand for matrices whose elements are given by Egs. (1.33)
and (1.34), respectively.

Raising and Lowering Operators

1.4.1 Harmonic Oscillator

The hamiltonian for a mass m moving in one dimension subject to a
harmonic potential is

Sec. 1.4 | Raising and Lowering Operators 7



1 5 1,2
=—p°+ s kx (1.36)
H=3,p"73
where k is the force constant. To determine the eigenvalues and eigen-
functions associated with H, it is convenient to rewrite H in terms of

operators b and b*, which we define by

mo 1/2 ( ip )
o= (5) (o (372)
12 :
+ _ (me ( _1> ,
b (2h> T e (1.37b)

where w = (lc/m)”2 is the classical oscillator 'angular frequency. If E.qu.

(1.37) are inverted to determine x and p and the results substituted into
Eq. (1.36), one obtains

H = lha(bb® + bTh) (1.38a)

= ok b + 1) (1.38b)

The second form here [Eq. (1.38b)] can be derived from the first b}/
invoking the important commutation relation (which may readily be veri-
fied):

b, b1 =1 (1.39)

The form of Eq. (1.38b) implies that eigenfunctions of H must also be
eigenfunctions of bTb. Let us use the notation

b*biN) = AA) (1.40)
for the eigenfunctions of b*b, where \ is both a number (the eigenvalue)

and a label (of the eigenfunction). From Eq. (1.39) one can now easily
show that

bTb(BTINY) = b + BB = (A + DTN (1.41)

which implies that 5*|A) is an eigenfunction of b* b with an eigenvalue of
A + 1. This means that b* acts on |A) to raise the value of the eigenvalue
by one. Similarly, from

bTbbA) = (bb* — DbA) = (A = DbIN) (1.42)

we infer that b lowers A by one. There is, however, a lower limit to the
value A. This can be inferred from the fact that (b b)), which from Eq.
(1.40) is just A, is inherently nonnegative, as it is the absolute square qf
b|\). To avoid making it possible to apply b so many times to |\) .that it
produces a state with a negative eigenvalue, we terminate the series by
choosing one of the eigenvalues A to have the value zero. The eigenfunc-
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tion corresponding to A = 0 would then satisfy (0] 5[0) = 0, which
implies that

bj0) = 0 : (1.43)

Since the eigenvalues above A = 0 can differ from A = 0 by at most an
integer, it is convenient to define an integer quantum number n that is
identical to the eigenvalue A. This implies that b*b|n) = n|n), or that

Hln) = Aw(b™b + Hln) = ho(n + H|n) (1.44)
Consideration of the expectation value (n|b™ b|n) can also be used to show
that
bln) = Valn = 1) : (1.452)
and by similar reasoning,
bty =Vrn+1|n+ 1) (1.45b)

The specific functional form of the ground-state eigenfunction is deter-
mined by solving Eq. (1.43) as a first-order differential equation with the
operator form of Eq. (1.37a). The result is [0) = N exp(—mox2/24).
Higher eigenfunctions then follow from Eq. (1.45), which can be iterated
to give |n) = (6H)"0)/(n})2.

1.4.2 Angular Momentum Operators

Raising and lowering operators are also of great use in determining eigen-
functions of the angular momentum operators i. These operators are de-
fined in terms of the coordinate # and momentum p via i = # X p. An
important property of the components [, [, and I, thus defined is that
they do not commute. Instead, they satisfy

e, ) = ikl,  (and cyclically) (1.46)

The operator [2 = [2 + 73 + 12 does commute with Iy, [, and [, so it is
possible to find simultaneous eigenfunctions of i2 and one of the other
operators. The latter is conventionally chosen to be fz. The eigenfunc-
tions of [2 and [; are labeled |Im), where

Rlimy = 820 + 1)|im) (1.47a)
[ \lmy = &m|im) (1.47b)

and / and m are the quantum numbers associated with the magnitude and
projection of the angular momentum, respectively. (Note that we use the
symbol { for both the operator and the eigenvalue; therefore, we use the
“‘hat’ notation to clarify.)

Sec. 1.4 | Raising and Lowering Operators 9



Raising and lowering operators [+ are defined by

I. = L = il . (1.48)
From Eq. (1.46) one can show that [[;, [.] = *&l., so it follows that
[+ |lm) = h(m £ D)is|m) (1.49)

This means that [, raises m by unity and [_ lowers it by unity.

The proportionality constant in the relation [+ |im) = constant |lm + 1)
can be determined by evaluating (Im|{_I|Im), as this is just the square
of this constant. Using Eq. (1.46), one can show that I i.,. =j2— 12 - ﬁiz,
so from Egs. (1.47) it follows that ‘‘constant’” = £[I({ + 1) — m(m + 1)]”2
(where we have chosen the constant to be real and positive). This implies
that

[ojimy = &0 + 1) — m(m + DI2|m + 1) (1.50a)
and one can similarly use the operator [, 1 to show that
I_lm) = &01Q + 1) = mem = DI2)im - 1) (1.50b)

Since the square roots in Egs. (1.50) must have real values ((lm|f_i+|lm)
must be positive or zero, as it is an absolute square), the allowed range of
mis from —! to +I. For m to vary in integer steps between these limits, 2/
must be an integer, which means that ! can be either an integer (( = 0, 1,
2,...) or ahalf-integer (! = %, %, .. .).

An important special case of half-integer angular momentum is the
spin angular momentum s of the electron, for which s = 4. Since there are
only two possible values (=) of the projection quantum number my, the
eigenfunctions |s, m,) are given the special symbols |a) and |B), where
lay = |4 §) and |B) = [§ —%). Note that the analogs of Eqgs. (1.50) in this
case are

§4la) =0 §41B) = Hla) (1.500)
s-ly=4lB @y =0 (1.50d)

In the case where [ is an integer, the wavefunctions |Im) are known as
the spherical harmonics, and they are often labeled by the symbol Yj,,.
Explicit expressions for the spherical harmonics in spherical coordinates
are found in many textbooks (see the Bibliography). For the special case
I = 1, the spherical harmonics are related to the angular parts of the
cartesian coordinates x, y, z via

§°‘ (=Y + Yi-p) (1.50e)
§°< Iy + Y- (1.50f)
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1.5

2avyg (1.50g)

These formulas determine the angular parts of the well-known p orbitals
(Px; Py, py) of the hydrogen atom.

Two-Body Problems

'1.5.1 Relative-Motion Schrédinger Equation

Two problems in chemistry where the motions of two interacting
“bodies’’ are important are the hydrogen atom (where the ‘‘bodies’’ are
the electron and proton) and the diatomic molecule (where the ‘‘bodies’
are the two nuclei). In either case the hamiltonian is

H—P'%+P%+V (1.51
T 2my  2mp S

where my and mp are the masses of bodies A and B, P4 and Pp, are the
momenta, and V is the potential. If V depends only on the distance r
between A and B, it is convenient to transform to new coordinates r and
R, where r is the relative coordinate

r=R4 — Rp (1.52)
and R is the center-of-mass coordinate

myR4 + mpRp

R = ma T mp (1.53)
Transforming Eq. (1.51) to these coordinates gives
P}y P2
H = M + ﬁ + V(r) (1.54)

where M = my + mp, u = mympl/(my + mp) and Pg and P, are the
momenta corresponding to R and r, respectively. The first term in Eq.
(1.54) represents the motion of the center of mass, and since V does not
depend on R, this motion is simply that of a free particle. We will ignore
this in what follows.

The second and third terms in Eq. (1.54) describe relative motion.
As long as V depends only on the scalar distance r between A and B, the
relative-motion Schrodinger equation may be separated in polar coordi-
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nates. Defining these coordinates to be r, 8, and ¢, the relative-motion
Schrédinger equation is

ﬁ2(132 1[1 3 1 az]) } _
{ 2u raT2’+ 51n9605n0—-+s1n206¢2 TViy=Ey
(1.55)

The operator in square brackets in this expression is proportional to the /2
operator in Section 1.4.2, so ¢i(r, 6, ¢) may be written

Y(r, 6, &) = x(r)|im) (1.56)
where |Im) is the angular momentum eigenfunction (spherical harmonic).

Substituting Eq. (1.56) into Eq. (1.55), we obtain the following radial
Schrédinger equation:

{ #21 d2 BAC+ D

2072 + V(r)} x = Ex 1.57)

2p.rdr

This equation can be further simplified by introducing a wavefunction ¢
via
¢ =rx (1.58)

Substituting this into Eq. (1.57) gives a radial equation that looks like the
one-dimensional Schrédinger equation

2
( ;‘# ;2 +V ff(r)> ¢ = Ed (1.59)

where the effective potential Vg is given as the sum of the real potential
V plus the centrifugal potential

AU+ 1)

Vet = V + 2012

(1.60)

The only difference between Eq. (1.59) and a one-dimensional Schro-
dinger equation is in the range of r (0 to « in three dimensions, — to « in
one dimension).

For small-amplitude diatomic vibrational motions, Veg can be Taylor
expanded about the equilibrium geometry (r = r,.). If this expansion is
truncated at the quadratic term and the displacement coordinate x = r —
r is introduced, one recovers the harmonic oscillator hamiltonian [Eq.

(1.36)].
1.5.2 Hydrogen Atom

For the special case of a hydrogen-like atom, the potential V is just the
Coulomb potential —Ze?/r, where Z is the atomic number. (Here we use
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1.6

cgs units, as this is the most commonly used system in the chemical
community. To convert this to SI units, replace e2 by e%/4nmey, where g
is the permittivity of free space. See the inside cover of this book for
values of e, g, and other fundamental constants.) The reduced mass u is
nearly equal to the electron mass m,, so the approximation s = m, can be
made. Equation (1.59) can then be solved analytically to give the hydro-
genic radial wavefunctions

&) = Ru(r) = (ZZ’)I ¢~ Zrinap 21 (-Zﬁ) (1.61)

nay. nagy
where
%2
a0 = (1.62)
4z3n — 1 - 1)!]1/2
= 1.
Nu [n"*ag[(n TP (163

and LZIJrl is an associated Laguerre polynomial. The quantum numbers
mthlscasehavethevaiuesl= 0,1,...,n—l,andn=1,2,...,»
Energy eigenvalues for the hydrogen atom are given by
Z2 ¢

En= =22 g

(1.64)

where ag was defined in Eq. (1.62).

Electronic Structure of Atoms and Molecules

1.6.1 Many-Electron Hamiltonian;
Born-Oppenheimer Approximation

It is convenient at this point to switch to the use of atomic units (¢ = £ =
me = 1). Derived constants in this system of units include the unit length
ag [Eq. (1.62)], known as the bohr and the unit energy Ej, [the constant
ez/ao in Eq. (1.64)] known as the hartree; 1 bohr = 0.529177 A, 1
hartree = 27.2114 eV. Conversion factors for different energy units are
listed on the inside cover.

The complete nonrelativistic hamiltonian of an arbitrary free mole-
cule is

H=Tn+ T, + Veny+ Voo + VN (1.65)
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where Ty = Kkinetic energy of the nuclei
T, = kinetic energy of the electrons
Ven = electron-nuclear attractive Coulomb potential
Vee = electron—electron repulsive Coulomb potential
Vnn = nuclear—nuclear repulsive Coulomb potential

If we used the index « to label the N nuclei and i to label the n electrons,
then the explicit form of each term in Eq. (1.65) is (in atomic units)

In =2 551 (1.662)
. p2
P.
T,=) 3 (1.66b)
N =n Z
Ven= -2, —:1- (1.66¢)
n n 1
Vee =2, >, -~ (1.66d)
i j<i Tij
N N Z Z
Van =2 3 FE (1.66¢)
« p<a faB

The electron~nuclear wavefunction will be denoted by ¥(r, R), where r
stands for the collection of all electron coordinates and R stands for the
collection of all nuclear coordinates. The Schrédinger equation is

HY = WV¥ (1.67)

where W is the total electron-nuclear energy.

For most chemical applications it is a good approximation to assume
that the Schrodinger equation can be parametrically separated into a
product of electronic and nuclear parts. This approximation, called the

Born-Oppenheimer approximation, leads to factorization of the wave-
function ¥ as follows:

¥(r, R) = ¢(r; R)x(R) (1.68)

where ¢ is a wavefunction associated with solving the electronic part of
the Schrédinger equation for fixed nuclear coordinates, and X is a wave-
function associated with nuclear motion. The electronic Schrédinger

equation includes all the terms in Eq. (1.65) that depend on electronic
coordinates and is given by

(Te + Von + Vel = Eq(R)y (1.69)

14 Ch. 1| Review of Basic Concepts in Quantum Mechanics

where the energy Eg) (as well as ) is a parametric function of the nuclear
coordinates R. If Eq. (1.68) is substituted into Eq. (1.67) and Eq. (1.69) is
applied, we obtain

(In + VNN + Ee)bx = Wi (1.70)

The Born—-Oppenheimer approximation now consists of neglecting the R
dependence of ¥ so that Tyx = ¢Tyx. This allows us to cancel  from
both sides of Eq. (1.70), giving us

(Ty + V)x = Wy (1.71)
where
V=VNN + Eg : (1.72)

is the electronic potential energy surface that governs nuclear motion.

Corrections to the Born—-Oppenheimer approximation arise from the
nuclear dependence of the electronic wavefunction ¢. Terms of the type
(| Tn|yP) are often added to the electronic energy E.; these so-called
diagonal adiabatic corrections improve the energy of the electronic wave-
function. These can be understood from Eq. (1.22) as the lowest-order
perturbation corrections, treating the kinetic energy of the nuclei as a
perturbation on the ground-state electronic energy., More important cor-
rections for many types of applications arise when Kinetic energy coupling
between two or more different electronic states leads to transitions from
one state to another while nuclei move. This situation is addressed in
Problem 3 of Chapter 4 and throughout Chapter 10.

1.6.2 Pauli Principle; Hartree-Fock Theory

The Pauli principle requires that the electronic wavefunction ¢ be anti-
symmetric with respect to the interchange of any two electrons. One
general way to ensure that this happens is to write the wavefunction as a
Slater determinant of spin orbitals. Each spin orbital is the product of a
spatial orbital § and a spin function « or 8, and the general form of the
Slater determinant for a closed-shell atom or molecule containing » elec-
trons is

Si(Da; $1 (DB S2(Day  S2(1By
$1ay §1AB2 2Dy 52(2)B2

¥ = (n)~1? L an
S$1B3a3 513)B83 52B)az  523)B3 :
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In this equation we assume that each spatial orbital S; is doubly occupied,
so that its product with both « and 8 spin functions appears. Also, if the
S;’s are all orthonormal, the normalization factor is given by the prefac-
tor. Generalizations of Eq. (1.73) to molecules with open shells are
straightforward but will not be considered.

If we apply variational theory to the determination of the optimum
spatial orbitals S; in Eq. (1.73), the following one-electron Schrédinger
equation [known as Hartree~-Fock (HF) or self-consistent field (SCF)
equation] may be derived:

fiSi = &;5; (1.74)
where f; (the Fock operator) is
1 N Z n/2
fi= =5 V2= 2%+ 3 20;3) — Kj()] (1.75)
2 ! a=1 Ria j=1

g; in Eq. (1.74) is the one-electron energy eigenvalue. The Fock operator
in Eq. (1.75) includes exact kinetic energy and electron—nuclear attraction
terms plus two approximate electron—electron repulsion terms, the Cou-
lomb and exchange operators. These are defined in terms of their action
on the orbital S; as follows:

T0)S; = (8] ,—IJ 15))S; (1.76)
K;()S; = (Sj' %‘j lS,‘}Sj 1.77)

where the integration variable is the coordinate r; associated with electron
J. Note that the solution to Eq. (1.74) must be accomplished self-consis-
tently, as the Coulomb and exchange operators in f; depend on the orbit-
als that one is seeking. Note also from (1.77) that the exchange operator,
unlike the Coulomb operator, is nonlocal in space.

The total electronic energy E,j associated with the Slater determinant
(1.73) using orbitals that satisfy Eq. (1.74) is given by

nl/2 nl2 nl2

Eq=22 e -2 2 Jij- K (1.78)
i=1 i
where J;; is the Coulomb integral:
1
Jij = (S:i(1)S;(2)| ™ 1S:(1)S;(2)) (1.79)

and Kj; is the exchange integral:

Kij = (Si(1)S;(2)] ;}; 18:(2)8;(1)) (1.80)
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1.6.3 LCAO-MO-SCF

A standard method for solving the Hartree—Fock (SCF) equation for mol-
ecules involves expanding each molecular orbital (MO) S; as a linear
combination of atomic orbitals (LCAQO), with the expansion coefficients
to be variationally optimized. Thus we write

Si=2 CiuB, (1.81)
m

where B, is an atomic orbital. In most molecular electronic structure
calculations, the B,’s are chosen to be gaussian functions (or sums of
gaussians), as this facilitates multicenter two-electron integral evaluation,
but for the present discussion the functional form and number of B,’sis
irrelevant.

Since Eq. (1.81) is the same kind of expansion as Eq. (1.30), the
application of variational theory leads to the same result, namely a secular
equation to determine the optimized energies. In the present case this
secular equation is

It — es| = 0 (1.82)

Here s is an overlap matrix involving the AO basis functions (i.e., s, =
(Bu|By) = (u|v)) and f is the matrix representation of the Fock operator:

f=h+2J-K (1.83)

In (1.83), h includes the one-electron terms in f:

1 Z
b = (ul =3 VE = 2 2= ) (1.84)

and J and K are Coulomb and exchange integrals given by

Jov =3 3 CpCiolu N 7= [o @A) (1.85)
Kuv = 20 2 CpCio(n(DNQ) ;—1; o) (1.86)

Note that the Coulomb and exchange integrals depend on the molecular
orbital coefficients C, which are known only after the secular equation
(1.82) is solved. Evidently, an iterative solution is required, starting with
an initial set of coefficients that is usually obtained from an approximate
molecular orbital method.
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1.6.4 Electronic Structure Methods

Molecular orbital methods that solve Eq. (1.82) .using integrals that are
calculated accurately are called ab initio methods, while methods that
parametrize the integrals are known as semiempirical methods. In ab
initio methods the only approximations made are in the LCAO expansion
(1.81) and in using a single Slater determinant to represent the wavefunc-
tion. If the LCAO expansion is converged then the Hartree—Fock equa-
tions are being solved exactly (the so-called Hartree-~Fock limit). This
still can give electronic wavefunctions that are substantially in error due
to the neglect of electron correlation effects in the single-determinant
wavefunction. There are a number of methods that go beyond Hartree—

Hanna, M. W., Quantum Mechanics in Chemistry (Benjamin-Cummings,
Menlo Park, Calif., 1981).

Hehre, W., L. Radom, P. v. R. Schleyer, and . A. Pople, Ab Initio Molecu-
lar Orbital Theory (Wiley, New York, 1986).

Karplus, M., and R. N. Porter, Atoms and Molecules (W. A. Benjamin, New
York, 1970).

Kauzmann, W., Quantum Chemistry (Academic Press, New York, 1957).

Levine, I. N., Quantum Chemistry, 4th Ed. (Prentice Hall, Englewood
Cliffs, N.J., 1991).

Lowe, J. P., Quantum Chemistry (Academic Press, New York, 1978).

McQuarrie, D. A., Quantum Chemistry (University Science Books, Mill
Valley, Calif., 1983).

Pilar, F. L., Elementary Quantum Chemistry, 2nd Ed. (McGraw-Hill, New

Fock, including perturbation theory methods and variational methods. York, 1990).
For example, one variational method, configuration interaction, uses an
expansion in Slater determinants Dy:

PROBLEMS FOR CHAPTER 1
¥ = 2 ADy
k

(1.87)

1. Which of the following operators are hermitian?
where the expansion coefficients A are to be optimized. Since this ex-

.. . . . (a) * (complex conjugate operator)
pansion is like (1.30), variational theory applied to (1.69) leads to a secular

equation (b) ix /3y
(©) x+ialax
Hey — ES| =0 (1.88) @ et + o
where the electronic hamiltonian and overlap matrices now involve the ©) x dldx x

full many-electron determinantal wavefunctions.

. . . . e . .. 2. Consider a particle in the one-dimensional box pictured in Fig. 1.1, having a
Further (%etalls associated 'w1th. both ab initio and semiempirical step of height Vy inside it, starting at a point x = L/2.
molecular orbital methods are given in Chapter 6.
BIBLIOGRAPHY FOR CHAPTER 1
The material in this chapter is covered in more detail in a large number of text- L2 *t—L/2
books on quantum chemistry. Among them are: ——_IT_—

Atkins, P. W., Molecular Quantum Mechanics, 2nd Ed. (Oxford University
Press, New York, 1983).

Dykstra, C. E., Quantum Chemistry and Molecular Spectroscopy (Prentice
Hall, Englewood Cliffs, N.J., 1992).

Flurry, R. L., Jr., Quantum Chemistry (Prentice Hall, Englewood Cliffs,
N.J., 1983).

Flygare, W. H., Molecular Structure and Dynamics (Prentice Hall, Engle-
wood Cliffs, N.J., 1978).

Hameka, H. F., Quantum Mechanics (Wiley, New York, 1981).

Figure 1.1. One-dimensional box with step in right half.

(a) Consider energies of less than Vy. What are the general solutions to the
Schrodinger equation for 0 < x < L/2 and L/2 < x < L, which have {(x) = 0 at
x=0andx = L?

(b) What boundary conditions should be applied to the wavefunctions at x =
$L? Derive a formula that determines the energy eigenvalues in terms of
known constants such as m, L, and Vj.
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(c) Suppose that Vj is small compared to the zero-point energy. Show that the
exact expression for the ground-state energy reduces to that derived from first-
order perturbation theory.

(d) Suppose that Vj is very large compared to the zero-point energy. Show
that the ground-state energy and wavefunction reduce to those for a box of
width L/2.

. If |p,), |py), and |p,) are the usual p orbitals, what are each of the following?

@) (psllz|py)
®) (leLt]Py)
©) {pellylpx)
(d) (lelxlpy)
(©) (pellxlpx)

2 .
. Use the variational trial function (r, 6, ¢) = Y1o(8, d)re” " to estimate the

hydrogen atom total energy. For what state does this energy provide an upper
bound? What is the error in the estimate?

. Consider a diatomic molecule, approximated as a rigid rotor, in a static electric

field F that points in the z direction. In this case the rotor hamiltonian gets
modified to
12
H= 57 + Fd cos 6

where d is the dipole moment of the rotor.

(a) Assuming that the Fd cos 6 term is small, use first-order perturbation
theory to determine how much the ground-state energy changes as a result of
interaction with the field.

(b) Now consider the variational trial function ¢ = Yy + A Yy, where Mis a
parameter. What is the optimum A and the resulting energy for the ground
state?

. Consider the HO molecule in its ground vibrational state.

(a) Write down the hamiltonian governing vibrational motions using raising
and lowering operators, one for each vibrational mode. Assume that the po-
tential is harmonic.

(b) What are the ground-state energy and wavefunction associated with the
hamiltonian in part (a)?

(c) If we add the cubic anharmonicity V = Cy2,0, Q% to the hamiltonian, what
excited vibrational states mix with the ground state according to second-order
perturbation theory?

. Use the molecular orbital computer program GAUSSIAN (or an equivalent

program) to study a triatomic molecule of your choice. Start with a HF/STO-
3G calculation, optimizing the geometry, and then determine the vibrational
frequencies. Draw a rough picture of the highest occupied and lowest unoccu-
pied molecular orbitals (HOMO and LUMO).
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2.1

Symmetry Considerations: Point
Groups and Electronic Structure

Group Theory for Point Groups

The complete hamiltonian of a molecule [Eq. (1.65)] is usually invariant to
several different kinds of symmetry operations. The most generally appli-
cable symmetry operations are permutation of the coordinates of identical
particles (either electrons or nuclei) and inversion of the coordinates of all
particles through a coordinate origin (i.e., x = —x,y— —y, z— —zforall
coordinates). Inthe Born-Oppenheimer approximation, one is interested
in the symmetry properties of the electronic hamiltonian H [H = T, +
Ven + Ve from Eq. (1.69)] for fixed nuclear positions. In this case H is
invariant with respect to the symmetry operations that interrelate equiva-
lent nuclei in a rigid molecule, such as reflection planes and rotations
about specified axes. Except for linear molecules (which are considered
in Chapter 3), the possible symmetry operations for a rigid molecule are
always finite in number, and the collection of all such operations for a
given molecule forms a group that is known as a point group.

In this chapter we consider the consequences of point group symme-
try for the electronic wavefunctions of molecules. Symmetry plays an
important role in providing labels for electronic wavefunctions, and a
particular emphasis of this chapter is on determining these symmetry
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labels for molecular orbitals and for the complete many-electron wave-
functions. Since symmetry applies equally well to very accurate and very
approximate electronic wavefunctions, we use the latter in this chapter to
keep the description as simple as possible.

2.1.1 Symmetry Operations

We begin by reviewing briefly some of the basic elements of group theory
as applied to the point groups. Possible symmetry elements include:

E: identity operation

C,: n-fold rotation (by an angle 27/n)

o: symmetry plane reflection

S, n-fold improper rotation (C, followed by o perpendicular to rota-
tion axis)

i: inversion

Exercise: Prove that S2 = C2, 5" = o (n 0dd), $” = E (n even) and
s)=i

If all of the symmetry elements of a given molecule are considered
collectively, it is not difficult to show that they form a group. Specifi-
cally, this means that (1) any products of two symmetry elements are also
elements of the group, (2) that there is always an identity symmetry ele-
ment, (3) that every element has an inverse, and (4) that multiplication of
symmetry elements is associative [A(BC) = (AB)C].

2.1.2 Representations

For any symmetry group, it is always possible to find sets of matrices
which multiply in the same way that the group elements do. That is, if
AB = C for three group elements, then M4 Mp = M for the matrices M
corresponding to A, B, and C. We say then that these matrices form a
representation of the group. For symmetry groups of molecules (point
groups), an easy way to generate a representation is to consider the
changes in the three cartesian coordinates x, y, z of a point brought about
by the symmetry operations. In general, after such an operation, the
point (x, y, z) is transformed to a new location (x', y’, z), and the relation
between the two can be represented using a matrix. For the identity
operation, for example, we have

x' 1 0 0\/x
y =101 0]y 2.1
7' 0 0 1/\z
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so that the identity matrix forms a representation of E. Similarly, a C,
operation about the z axis would be represented by

cos 2w/n  sin2w/n O
~sin 2w/n cos 2mw/n O 2.2)
0 0 1

2.1.3 Similarity Transformations

Once we have a matrix representation of a group, it is not difficult to
generate other representations via similarity transformations. For exam-
ple, if Q is any nonsingular matrix and A; is a matrix representing element
i of a group, then B; = 0~ 'A;Q also forms a matrix representation of the
group; this operation is called a similarity transformation of A;.

Two important examples of similarity transformations are found
when:

1. Qis an element of the {A;} group representation, and the B; obtained is
also an element of the {A;} representation. In this case we say that B;
and its counterpart A; both belong to the same class.

2. For some Q we obtain B;’s that are all block diagonal in the same sense
(looking like

x;p o xp 0
x1 xp 0
0 0 X33

for example). In this case, each of the blocks forms a representation,
and we say that the representation is reducible. If a representation
cannot be reduced further, we say that it is irreducible.

2.1.4 Irreducible Representations

Let us now consider the properties of the irreducible representations of a
group. Let I';(R);,, be the (m, n)th matrix element of the ith irreducible
representation of the group for the operation R. We also let & be the order
of the group (the number of operations therein) and /; be the dimension of
the ith irreducible representation. We also define the character (or trace)
xi(R) of a given irreducible representation i for a given operation R via

XiR) = 2 Ti(R)n 2.3)

Characters have a number of useful properties, one of which is that char-
acters are independent of a similarity transformation (easily proved),
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from which it follows that characters of elements in the same class are
identical.

One of the most useful properties of the irreducible representation is
that the elements of the matrices therein, considered as a function of the
group operations R, form a set of 4 mutually orthogonal vectors. Thisis a
statement of the ‘‘great orthogonality theorem’ (G.O.T.) (the proof of
which is given in the book by Eyring, Walter, and Kimball). Mathemati-
cally stated, we have

h
; TiR)pn TRy = Vi 818 mm' Snn' 2.4

Immediate consequences of this theorem are (1) that 3; l,2 = h, (2)
SR xi(R)x}"(R) = h8;j, and (3) that the number of irreducible representa-
tions equals the number of classes.

2.1.5 Character Tables

Armed with this theorem it is possible to determine most of the character-
istics of the irreducible representations of point groups. In particular, the
possible characters x;(R) associated with each representation matrix can
be determined. For a one-dimensional irreducible representation, these
characters are of course identical to the matrices themselves, so the
G.0.T. can be used to determine uniquely the one-dimensional represen-
tations. For multidimensional irreducible representations, the represen-
tation matrices are not unique (new ones can always be developed using
similarity transformations), and the characters do not uniquely determine
these representations. The characters are, however, invariant'to a simi-
larity transformation, and are useful for other purposes, as discussed
below (Section 2.2.2). -

The character tables for the point groups of molecules have been
tabulated in many places (such as in Cotton; see the Bibliography) and we
will not study them in depth. Let us illustrate the basic idea of character
table construction by a simple example, the HyO molecule. Referring to
Fig. 2.1, we see that the symmetry elements associated with H,O at
equilibrium are E, C, (about z), oy(xz), and o,(yz). (The v refers to a
vertical symmetry plane which contains the n-fold axis.) These four ele-
ments make up that C,, symmetry group (in Schoenflies notation). It is
not difficult to show that none of these symmetry elements belong to the
same class, which implies that there are four classes, hence four irreduc-
ible representations. The constraint 2;/ ,2 = h can then be used to argue
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Figure 2.1. Coordinate system used for H,0.
that all representations are one-dimensional (1 + 1 + 1 + | = 4). From

this, Table 2.1 can immediately be constructed.

Table 2.1
Character Table for C;, Point Group

E C, oy(x2) ou(¥2)

1 i i
1 -1 -1
-1 i -1
-1 -1 1

2
~
—

Note that the symbols in the left-hand column are the so-called Mulliken
symbols. They describe certain characteristics of each irreducible repre-
sentation as follows:

1. A and B are used for one-dimensional representations, while E and T
(or F) are used for two- and three-dimensional representations.

2. A is used for representations that are symmetric with respect to the C,
operations, while B is used for antisymmetric representations.

3. The subscripts 1 and 2 refer to representations that are either symmet-
ric or antisymmetric with respect to o, or a C, perpendicular to the
main n-fold axis.

4. The superscripts ' or " refer to representations that are symmetric or
antisymmetric with respect to oy, (reflection through a mirror plane
that is perpendicular to the n-fold axis).

5. The subscripts g or u refer to representations that are symmetric or
antisymmetric with respect to i (inversion).

Note that a representation having all characters equal to 1 is found
for all groups and is called the totally symmetric representation.

2.1.6 Direct (or Tensor) Products

Earlier we noted that a representation of any symmetry group could be
generated by considering the effect of the symmetry operations on the
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three cartesian coordinates (x, y, z). We would now like to consider what
representation is generated when direct products of (x, y, z) are used as
basis functions (such as x2, y2, 72, xy, yz, xz), and how the representation
thus generated is related to the one involving (x, y, 2).

Let us introduce the notation x; = x, x, = y, X3 = z, and so on, so that
the transformation associated with the operator R can be written as

xj = Rx; = 2 Aj(R)x; (2.5)
J

Then the transformation associated with direct products such as x;x;

would be

Rxixj = xixj = 3, AwR)xk 2 AjR)x = 3, Ayjxir) (2.6)

Evidently, the forms of Egs. (2.5) and (2.6) are identical provided that we
consider the indices ij and &l as collective labels in the direct product
vector space. Thus Cj; 1(R) = Ay (R)A;(R) is a kind of supermatrix that
forms a new representation of the symmetry group.

An important relation between the direct product representation and
the representations that make it up is provided by considering the charac-
ter of C:

XCR) = 3 Cyj = 2 Audjj = xa(R)xa(R) @.7)
i ]

Equation (2.7) shows that the character of the C representation is simply

the product of the characters of the representations that make it up (in this

case, Az).

2.1.7 Clebsch—Gordan Series

Often it is of interest to decompose a representation into irreducible rep-
resentations. This is equivalent to block diagonalizing the matrices that
define the representation, but it can be done with considerably less effort
than that. It should be apparent that the characters associated with the
reducible representation should equal the sums of the characters of the
blocks into which it can be decomposed. Thus

X(R) = 3 aixi(R) 2.8)
where g; is an integer coefficient that indicates how many times the irre-
ducible representation i is contained in the reducible representation.
Equation (2.8) is sometimes called the Clebsch-Gordan series. Multiply-
ing Eq. (2.8) by x}“(R), summing over R, and invoking consequence (2) to
the G.O.T., we find that
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2.2

4=3 2 XfRXER) 2.9)

which provides a direct method for determining the coefficient a; (and
thereby decomposing the representation).

A direct consequence of Eqs. (2.7) and (2.9) is that the representation
of the direct product C of two representations (say, A and B) will contain
the totally symmetric representation only if A and B have at least one
irreducible representation in common. To prove this, let’s calculate the
coefficient atg corresponding to the totally symmetric representation,

ats = 3 S xcR) = § 3 taR)xa(®) .10
If A and B are themselves irreducible, the G.O.T. indicates that arg =
84B, which proves the theorem. If A and B are reducible, one must insert
Eq. (2.8) for x4 and xg. It then follows that atg will vanish unless A and
B have an irreducible representation in common. (Note we have assumed

here that the x’s are real. This is usually true, but if it is not, an analogous
statement can still be made.)

Applications of Group Theory to Quantum Mechanics

2.2.1 Symmetry-Adapted Linear Combinations

The utility of group theory in electronic structure calculations arises from
the fact that molecular electronic wave functions can always be con-
structed to belong to irreducible representations. This is because (1) if R
is a symmetry element of a molecule, R must commute with the electronic
hamiltonian H of that molecule, and (2) simultaneous eigenfunctions of
two operators may be constructed if those operators commute [as proved
in the discussion of Eq. (1.12)].

We learned in Chapter 1 that solutions to the electronic Schrodinger
equation are often constructed by diagonalizing the matrix representation
of the secular equation

|H—-ES|=0 (2.11)

In this equation the elements of H and S are (¢;| H|d;) and (¢;|@;), respec-
tively, where ¢; is a basis function. If the ¢;’s are constructed to belong to
irreducible representations, [H, R] = 0 implies that the secular equation
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will automatically be block diagonalized. This is because the irreducible
representation of the integrand in Hy; and S;; must be totally symmetric if
the resulting integral is to be nonzero (otherwise, the integrand will be an
odd function of at least one variable). From our previous discussions we
found that the representation of I'(Sj)—namely, I'(¢;) X I'(¢;)—would
be totally symmetric only if ¢; and ¢; shared irreducible representations.
Since that will not be the case if ¢; and ¢; belong to different irreducible
representations, §; must be block diagonal. Hy; is also block diagonal
because H is totally symmetric, so the representation generated by ¢; X
H X ¢;is the same as that of ¢; X ¢;. Thus computational effort in solving
the Schrédinger equation can be reduced considerably if we use symme-
try-adapted linear combinations (SALCs) in setting it up.

2.2.2 Construction of SALCs

A very systematic method for constructing SALCs is to develop a projec-
tion operator, which will ‘‘project out’’ a function belonging to a specified
irreducible representation when operating on an arbitrary function. To
see how the projection operator is developed, let’s first suppose that
d;’;(t = 1...1l;)is a SALC belonging to the ith irreducible representation
and the rth component. By definition of what we mean by irreducible
representation, it must then follow that

Rl = D Ti(R)s ¢ 2.12)

Now consider what happens when we multiply this equation by I'*(R )
and sum over R:

S TRk, = S S 7 ReTiRE, @13
Interchanging the two sums and invoking the G.O.T., we get

SRR = 5 0 7 dybuetr = 7 Sy @19

\/_

Defining the operator P/ s’ as

o~

Py = 4 SRR 2.15)

we find that Eq. (2.14) becomes
Plhodl = ¢l.5;8, (2.16)

That is, P’,,S: operates on (;b, to give zero unless { = jand ¢ = ¢, in which
case ¢ is obtained. For the special case t' = s, we get
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ttd’z ¢ /881 .17

Now consider an arbitrary function ¢. Although it will not in general
be a symmetry-adapted linear combination, it may be decomposed into
such functions using a Clebsch~Gordan series expression

¢ =2 aud, (2.18)
Applying P{:,: to ¢, we get
Pird = 2 auPhed] = 3 aubldydu = ajvd]

that is, out of the arbitrary function ¢, P’, ¢ has pro_;ected the symmetry
eigenfunction ¢J Note that if we had applied P, twice to ¢, we get the
same result as applymg it once (i.e., P}, is zdempotent) It is then clear
that (P’, ) = Pl,, which is sufficient to define P, as a projection
operator. .

Note that once we have generated a d)’,', the other components of the
Jjth irreducible representation may be generated by using P%:

Phybh = & @.19)
As an example of the use of a projection operator, consider the function
¢ = xz + yz in Cy, symmetry. Using the same coordinates and character
tables as in Fig. 2.1 and Table 2.1 (Section 2.1.5), and realizing that for
one-dimensional irreducible representations, the I'’s are identical to the
characters, we find that the projector for the B irreducible representation
is

§R: Xi(R)R = 7 [E — C2 + ay(x2) — ap(y2)]  (2.20)

Applying this to ¢, we find that

PBg = 3 (E = Cy + 0,(xd) =~ 0y

1
=3 (z+yz—(—xz-y2) +xz2—yz — (—xz + y2)) = xz (2.21)

Similarly, PB:p = yz and PAi¢p = PAxp = 0. Thus we are guaranteed that
xz is a SALC of the Cy, group, and simple inspection verifies that this is
correct. Note that PAig = 0. So ¢ is not sufficiently ‘‘arbitrary’’ to gen-
erate SALCs belonging to all irreducible representations.

For representations having ; > 1, construction of P}, requires
knowledge of the I';(R), 4, which are not always available. An alternative
is to form a projection operator in terms of characters, although we must
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be forewarned that this does not provide all the desired dﬂ;r's. The char-
acter projection operator is defined as

. ; I;
Pl=3 P, = ﬁ > 2 TR R
=

R

or
iU xR @.22)
R

Obviously, when we apply PJ to ¢ for j corresponding to a multidimen-
sional representation, we get only one component of the ch ’s. As will be
demonstrated later, the other components can usually be obtained by
auxiliary arguments.

2.2.3 Hiickel Theory Applications

Let's now demonstrate the use of all of the group theory we have learned
so far in applications to electronic structure problems by considering an
application to the cyclopropenyl cation (Fig. 2.2), which has D3;, symme-
try. Table 2.2 presents the character table. Let us number the symmetry
operations according to Fig. 2.3 and assume that the molecule lies in the
(x, y) plane.

In ordinary Hiickel theory, we associate a p, orbital with each carbon
atom and then take linear combinations of these orbitals to form MOs.
The secular equation is given by Eq. (2.11), where

a ifu=v
Hy =18 if u, v adjacent (2.23)
0 otherwise .

3

c® 2 ol o

3
1 2
3 5O
1 2 Cs,

Figure 2.2, Cyclopropenyl Figure 2.3. Symmetry opera-
cation. tions for cyclopropenyl cat-

ion.
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Table 2.2
Character Table for D3, Point Group

D3y E 2C3 3C, o) 283 3oy
' 1 1 1 1 1 xt 4yt 22
A} 1 - 1 1 -1 | R,
E |2 - 0 2 -1 0 | (x,y x—y% xy
H 1 -1 -1 -1
A} 1 1 -1 -1 -1 1 |z
E" 2 -1 0 -2 1 0 (Re, Ry)  xz,y2

For C3H3+ , this becomes

a—E B B
B a—E B =0 (2.24)
B B oa-E
This is only a 3 X 3 determinant, which is not difficult to evaluate explic-
itly. However, we can use group theory to simplify this, and although this
is of minor consequence here, for larger molecules the reduction in effort
can be substantial.

To use group theory to simplify, we must first determine the irreduc-
ible representations spanned by the AOs. To do this, we can construct
3 X 3 matrices analogous to those developed in Section 2.1.2. A simple
set of rules for determining characters that may be derived from these
matrices are:

1. If orbital is unchanged after applying symmetry operation, count +1
per orbital to the character.

2. If orbital changes sign, count —1.

3. If orbital changes location, count 0.

Applying these to the cyclopropenyl cation, we get, for the reducible
representation,

D3y, | E 203 3G o, 28 3o,
3

r | 0 -1 -3 0 1

Now determine a; = (1/h) Zg xi{(R)x(R):
ag; = %3 = 13) = 3(1) + 3(D] =0 } These indicate that

wavefunctions cannot
ag; = 4{3 — 13)=1 = 3 + 1AD1 = 0] poo” o retry
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au=HB-3+3-3)=0

ag' =0

"=3%3+3+3+3)=
ag; = ) } These indicate that T' = A} + E” (2.25)
ag" = —112(6 + 6) ==

To construct SALCs, we first illustrate the laborious method based
on projection operators. Previously, we had demonstrated that

2 X(R)R (2.26)
is a projection operator for the jth irreducible representation. Applying
this to j = A3, we find that
PA = #E+C3+C}-cP - cP - cP

~op— 83— 83+l + 0@+ oD @27
This can be applied to any of the three p, orbitals to generate a SALC
having A; symmetry. Applying it to ¢; gives us
PAig; = da(dy + b2 + b3 + Gp + 3 + b2 + &
tdrtdytd+ b3+ b)) =M+ d2t+ b3) (2.28)
Similarly,
PE'¢,

%Q2¢; — ¢ — b3 + 261 — ¢2 — B3)
321 — ¢2 — #3) (2.29)

To generate the other component of the E” representation, we take advan-
tage of Eq. (2.12), which tells us that application of any group operation
into one component of an irreducible representation generates linear com-
binations of all such components. If we normalize and require-all compo-
nents to be orthogonal, the remaining components can be pro.lected out.
Starting with

o = 7 ¢y — ¢ — ¢3)  (normalized) (2.30)
we find that
cl) = L 24y - 5 - o) @31
V6
The overlap of this with o E" is
o) 3 1

Eulcaw%?»—m(-z 24 ) == == -3

32  Ch. 2| Point Groups and Electronic Structure

so after subtracting this overlap from Eq. (2.31), we find that

o+ ol “\’/2‘:7(¢2“¢3) SENEX 5

Upon normalization, this second component is

vil = 7 (2 — ¢3) (2.39)
and Eq. (2.31) reduces to
1 V3
Cid = — v + @ 2.39)

2.2.4 Shortcuts

Before proceeding further, it is useful to describe a much easier method
for generating SALCs which is applicable to many systems. This in-
volves using the C, subgroup of D,, to classify the irreducible representa-
tions. This can be used because the o, operation is already a symmetry
operation of the p orbitals. C, is easier to work with because all the
irreducible representations are one-dimensional. The character table for
C3 is shown in Table 2.3.

Table 2.3

Character Table for
C3 Point Group

C3IE ¢y ¢}

A 1 1 1

1 3 e*
E e¥ £
where g = 273,
3(e + &*) = cos 120° = —4,
e — &* . . V3
T = sin 120° = T

Note that the second and third representations are collectively labeled E
even though they are one-dimensional.
Applying the rules for characters, we find
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from which, by inspection,

'=A+E (2.36)
Note that the correlation between representations in C3 and D3y is

G D3y,

A A3

E E’

Whenever such a correlation cannot be established, another subgroup
must be used. Since all the representations are one-dimensional, the gen-
eration of SALCs is easy. Almost by inspection (after normalization)

Ya = \/- (¢1 + 2 + ¢3) (2.37)
o = -\}-3- (b1 + e*y + ob3) 2.38)
P = \/%- (b1 + ey + £%63) (2.39)

Obviously, ¥4 and Y4y are the same, but the Yg’s are not. Instead, they
are linear combinations of one another:

y = “" \;—w‘z’ . (.40)

y@ = \II‘E? — y@ 2.41)

2.2.5 Energy Eigenvalues

In the following, we use the SALCs:

Uy = Pay = —\/-—' (61 + 2 + ¢3) (2.42)

Uy =y = 7 Qb1 — é2 ~ $3) (2.43)

34 Ch. 2 | Point Groups and Electronic Structure

¥ =y = 7 (d2 — ¢3) (2.44)

To apply Hiickel theory, we can automatically separé.te out the 43
subblock of the hamiltonian from the E” block.

A% The secular equation is just 1 X 1:

(1l H 1) — E@lgr) = 0 (2.45)
with (¢ |H|y1) = @ + 28, so this immediately gives
E=a+28 (2.46)

E’. Here the secular equation is 2 X 2:

WolHln) ~ E  WolHls) | _

WilHl)  (wslHlgs) - @47
with
(Yol Hlpp) = (6 — 68) = a — B (2.48)
Ws|Hlys) = $Q2a - 28 =a — B (2.49)
and
(WnlHs) = 0 = (Y3|H|y2) (2.50)
Thus the secular equation is
“’g'E a_g_E=o @.51)
which gives
E = a ~ B (twice) (2.52)

Note that the secular equation for the E” block, (2.51), is diagonal, even
though this is not required by symmetry. However, the eigenvalues of
the E symmetry block will always be degenerate. Note also that since
these SALCs diagonalize the secular equation, they are by themselves the
eigenfunctions of the Schrédinger equation. This is not generally true.

Assuming that 8 < 0, we can generate the energy-level diagram in
Fig. 2.4, with the two electrons occupying the a; in the ground state. Note
that in accordance with standard notation, we have used lowercase Mulli-
ken symbols to label the one-electron orbitals in this diagram.

e" a-B

a; o+28

Figure 2.4. Energy-level diagram for cyclopropenyl cation.
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2.3

Symmetry Properties of Many-Electron Wavefunctions

2.3.1 Many-Electron Configurations and Terms

Up to this point, only the one-electron orbital symmetries have been
considered. Now in general the many-electron wavefunction for a given
electron configuration can be written in terms of Slater determinants of
the one-electron orbitals. These determinants involve products of orbit-
als, and if the orbitals are SALCs, the representations generated by the
Slater determinant are determined by the direct product of the representa-
tions of the orbitals. In addition, simple models such as Hiickel can be
used to determine many-electron symmetries from the one-electron sym-
metries, as the symmetry properties of wavefunctions can be rigorously
correct even for highly approximate wavefunctions.

2.3.2 Application to C3H3

For C3HJ, we have a ground configuration (ag)z. The representation
generated by this is determined by applying the symmetry operations to
the many-electron wavefunction, which in this case is just a Slater deter-
minant. Since the Slater determinant involves a product of orbitals, the
representation involves a direct product of the representations of the
individual orbitals. For the ground state, this is a3 X a3 = A]. Thus the
ground term is !A’ [uppercase Mulliken symbols are used to label many-
electron states, with the spin multiplicity (singlet in this case) given as a
superscript]. Quite generally, the representation associated with a totally
filled shell is the totally symmetric one. ’

For the first excited configuration (a%)l(e”)l, we find that a3 X " =
E’'. Here there is the possibility of either singlet or triplets. Since the
electrons are in orbitals with different energies, there is no problem with
the Pauli principle, and we get E’ and 3E’ as the allowed terms.

Now consider the configuration (¢”)?. Since there are two MOs, we
can imagine several ways to arrange the electrons, but not all are consis-
tent with the Pauli principle. Symmetry alone tells us that

¢ X e" = A+ Ay + E' (2.53)
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2.3.3 Incorporation of the Pauli Principle

An important question concerning Eq. (2.53) is: Which terms are singlets
and which triplets? For the simple case of two electrons, the Slater deter-
minant wavefunction can be written as a product of space and spin parts.
This is not true for more than two electrons, but the two-electron result is
important, so we will work it through in detail.

For this simple special case, then, we need to construct wavefunc-
tions associated with A{, A), and E’ terms, then see which are symmetric
and which antisymmetric with respect to interchange of spatial coordi-
nates. Then the symmetric ones must be singlet, and the antisymmetric
ones triplet to obey the Pauli principle. '

To construct wavefunctions we can use projection operators. As
before, it is easiest to use the C3 group, although Aj and A) are not
distinguished thereby. Let

1.
X1 = V3 (d1 + b2 + ¢3) (2.59)
1
X2= 7% (1 + e%dy + &d3) (2.55)
1
X3=175 (¢1 + ed2 + &%¢h3) (2.56)
Then
Cix1 = xi (2.57)
1
Cixz = Y (2 + %3 + &) = ex2 (2.58)
Cixs = e*x3 (2.59)

Now consider the following two-electron spatial wavefunctions
[these are all that can be imagined for (e”)2]:

1) = x2(Dx2(2) (2.60)
2) = x3()x3(2) (2.61)
13} = x2(D)x3(2) (2.62)
[4) = x3(1)x2(2) (2.63)

The characters generated from these are given by Table 2.4.
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Table 2.4

Characters for (¢")®
Configurations of

C3H3

E C3 C%
y {1 e* €
[2) 1 € e*
13) 1 1 1
|4) 1 1

Evidently, |1) and |2) form an E symmetry set, while |3) and |4) belong to A
symmetry.

Since |1) and |2) are both symmetric spatially with respect to inter-
change of the two electrons, we immediately conclude that the E symme-
try term must be singlet ({E"). For the A symmetry terms we must differ-
entiate A] from A%. This is done most easily by determining symmetry

with respect to crf,1 Since ag,l)xl = X1, Gf,l)xz = X3, crg”xg = x2, we have

aP3) = |4) (2.64)

Thus neither |3) nor |4) belongs to an irreducible representation of
D3y, although both are of A symmetry for C3. It is easy to see that the
following linear combinations of {3) and [4) generate the desired D3y, irre-
ducible representations (projection operators could be used if this were
not obvious):

1

I5) = 7 (3) + [4) (2.65)
S WP )

l6) = 75 (3 - 14» (2.66)

Clearly, |5) is symmetric with respect to o, and hence must be A] while |6)
is A5. Furthermore, |5) is symmetric with respect to interchange of 1 and
2 and hence is singlet, while |6) is antisymmetric spatially and hence is
triplet.

Overall, then, the allowed terms are ‘A’l, 3A§, and !E'. These terms
are all degenerate when electron repulsion is neglected, but when it is
included, the degeneracy is removed. A generalization of Hund’s rules
that would be applicable to this case would be that:

1. The highest spin-multiplicity term has the lowest energy.

2. The highest spatial degeneracy term for a given multiplicity has the
lowest energy.
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The expected ordering is given in Fig. 2.5.

IA'I

g

3A‘2

Figure 2.5. Energy-level diagram for (e'z')2 terms of C3H3+ .

2.3.4 Optical Spectrum: Dipole Selection Rules

In Chapter S we show that the probability of one-photon absorption or
emission between states / and f for the electronic dipole mechanism is
given by

I | [ Witer ¥y def? 2.67)

where u is the dipole operator (er for a one-electron transition) and e is
the light polarization vector. There are many other mechanisms by which
a transition can gain intensity, and these lead to different selection rules,
but for now we consider just the simplest mechanism, the electronic
dipole mechanism,

Now if our ¥; and ¥¢ belong to irreducible representations, we can
determine if I is zero for a given polarization by examining the direct
product for ¥; X (e-r) X ¥y, This can be simplified usually by first
determining ¥; X ¥y, then decomposing and using the character table to
see if some irreducible representation of ¥; X ¥ris the same as that of
(e-r).

Applying this to the ground-to-first excited-state transition in C3H; ,
we note that since ¥; is A}, we need only compare the excited-state
representations with those of x, y, or z.

Since E' is (x, y), we conclude that A]— E’ is dipole allowed. Since
the dipole matrix element is zero for terms of different spin symmetry,
only singlet — singlet or triplet — triplet transitions are allowed. So the
lowest allowed transition is predicted to be

lAi__> lE:

Question: What terms from the (¢")? coﬁﬁguration are optically con-
nected to the ground state?
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(a) Apply the extended Hiickel method to structures I, II, and III, making the
Hiickel-like assumptions:

a L=v

H,, =48 w adjacent to v
0 otherwise
Spy =8

v

Obtain orbital energies and wavefunctions. Determine the ground-state elec-
tron configuration and many-electron symmetry and spin multiplicity.

(b) Now use symmetry to determine the correlation of the electronic orbitals
as one progresses along the reaction coordinate. Draw a correlation diagram
(energy level versus reaction coordinate). Show that this reaction is Wood-
ward-Hoffmann forbidden (meaning that the ground state of the reagents cor-
relates to an excited state of the products).

. Consider the square planar complex PtCl%" (with Pt in a d® configuration).

Let’s describe o bonding between metal and ligands using extended Hiickel.
The AO basis consists of p orbitals on each Cl~ directed toward the Pt, and the

The Hiickel model of electronic structure is discussed in Cotton and in most of the d orbitals on Pt. Assume that the only nonzero Hiickel parameters are:

texts mentioned in the Bibliography for Chapter 1. lHI) = ap (independent of /)
(pilH|p;) = a¢y  (independent of i)
(pilH|d;) = By

Choose B; = 0 for j = dyy, dy,, and dy;. For the remainder, use the values in

PROBLEMS FOR CHAPTER 2

1. Apply Hiickel theory to the p, orbitals in cyclopentadienyl (assumed to be

planar and symmetrical).

(a) What is the symmetry group?

(b) Give the secular equation using AOs.

(c) Find the irreducible representations spanned by the orbitals.
(d) Construct SALCs.

(¢) Find the one-electron energies and wavefunctions.

(f) What are the many-electron symmetry and spin multiplicity of the ground
state?

(g) What is the total electronic energy?
. Consider the 2 + 2 addition reaction
H, + D, » 2HD

Imagine the following reaction path:

the following table:

i= 1 2 3 4
j=d? Ba Ba Ba Ba
J=da-y | Bp -Bs B —Bs

Assume that ap; > ag) and |Bp| > |84l

(a) What is the symmetry group?

(b) Give the secular equation using AOs.

(c) Find the irreducible representations spanned by the orbitals.
(d) Construct SALCs.

(e) Find the one-electron energies.

o D H--D H—D (f) Which orbitals are occupied in the ground state?
| + IB - H D - H+ N (g) What is the lowest-energy optically allowed transition?
o : (II) I 4. Consider an application of extended Hiickel theory to the H3 molecule, using

where the symmetry changes from Dy, to Dy, to Day.

Ch. 2 | Point Groups and Electronic Structure

the 1s orbitals on each nucleus as a basis set. Let’s imagine that we do not
know the geometry of this molecule, so we will vary it to minimize the total

Problems for Chapter 2 41
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electronic energy. To do this, assume that the bend angle 6 defined below is a
variable to be determined, and that the hamiltonian matrix elements are as

follows:
(i|H|i) = a i=1,2,3

(1H|2) = (2{H]3) = B

H,
/ 6\
H, H;
(118 = 26 (1 - sin g)

(a) Construct SALCs and evaluate the one-electron energies for this basis.

(b) What energy levels do the electrons occupy? What is the total electronic
energy? Considering the range 60° < 9 < 180°, for which value of § is the total
energy minimized? If one considers the ion H;* , what is the total energy, and
how does this energy vary with 6?

(c) Construct the molecular orbitals for arbitrary 6.

(d) Show how the symmetry labels of the orbitals correlate with 6 between 8 =
180 and 60° (i.e., show how the linear molecule, isosceles, and equilateral
triangle geometry point group labels interrelate).

(e) What are the many-electron term symbols for 8 = 60° for Hs, H3+ ,and Hy'?

Ch. 2 | Point Groups and Electronic Structure

3.1

Symmetry Considerations:
Continuous Groups
and Rotations

Introduction

There is a tremendous amount of literature on continuous groups, most of
which is not used outside of physics and mathematics. Texts such as
Hamermesh, Tinkham, Wigner, and others should be consulted for a
more complete description. Here we describe some of the simplest chem-
ically relevant continuous groups, and we also consider the closely re-
lated topic of angular momentum addition.

Continuous Groups; Electronic Structure
of Linear Molecules

3.2.1 Two-Dimensional Rotation Group
The two-dimensional rotation group arises when considering the symme-

try group of linear molecules like CO. Clearly, one element of symmetry
of this molecule involves rotation about the molecular axis by an arbitrary

43



angle ¢. We label this rotation as C(¢). Now justas (C,)", m=1,...,
n generates an n-dimensional abelian (multiplication is commutative)
point group, the set C(¢), ¢ = [0, 2] generates.an infinite-dimensional
abelian continuous group. ¢ in this case is a continuous parameter that
labels the group elements.

Since the group is abelian, the representations of it are one-dimen-
sional (only one-dimensional matrices commute in general). Further-
more, they must transform as

C(91)C(¢2) = Cldy + ¢7) @.1
since rotations about a single axis are additive. In other words, the
matrices (or equivalently characters) of any representation must satisfy

x(¢1 + ¢2) = x(d)x(d2) (3.2)

with x(0) = 1 as the identity character.
It is easy to verify that the function

x(¢) = e™m® (3.3)
satisfies the foregoing requirements. Now since x(¢ + 27) = x(¢), the
parameter m is constrained to be an integer (m = 0, =1, =2, ...). With

these characters, the character table in Table 3.1 is constructed for the
group [labeled C., or O(2)]. This group is often called the two-dimen-
sional rotation group. Note that ¢ is the azimuthal part of the spheri-
cal harmonic Y, , so x(¢) is an eigenfunction of /,, the angular momen-
tum projection along the z axis, with eigenvalue m#. The Mulliken sym-
bols in this case (3, I1, A, etc.) are the uppercase Greek analogs of S, P,
D, F, and so on.

Now we ask, what is the analog of the great orthogonality theorem?

Table 3.1

Character Table for Two-
Dimensional Rotation
Group

m | C= E  C(¢)

0 3 1 1

1 { 1 el
-1 | eio

2 1 e2id
-2 a { 1 e~ 2%
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Well, with a little intuition we can imagine that 3z x,?“(R)x,-(R) = hd;
becomes

f: dg e~imbeim's < 2ns (3.4)

where the factor 27 is sometimes called the group ‘‘volume.”

Decomposing a reducible representation is very much analogous to
the situation for point groups. If x(¢) is the character for some represen-
tation, the Clebsch—-Gordan series in this case is

x(d) = 2, ame™®
m 3.5)

with

1 2w -
am =5 |7 do e~imbx(¢) (3.6)
This of course is identical with the usual Fouri.er seyies. In addition, for a
direct product representation such as x = eiMmdeimé e obtain ay, =
8m,m,+m,» Which defines a kind of Clebsch—Gordan coefficient for this

group.

3.2.2 Cyy Group

For linear molecules such as CO, there is actually an additional symmetry
element, namely o, (for each ¢). Adding this to the C, group gives a
group labeled Cxy. In this group the C(¢) and C(—¢) elements are re-
lated to each other by the similarity transformation o ,C(¢)co, = C(—¢).
Thus C(¢) and C(—¢) belong to the same class, and representations may
be two-dimensional. One can easily verify that the matrices

Table 3.2

Character Table for C.,,
Group

Co | E 204

3t 1 1 1
3" 1 1 -1
I 2 2cos ¢ 0
A 2 2 cos 2¢ 0
(] 2 2 cos 3¢ 0
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im¢
C(¢) = [eo e-?m¢] and a,,=((; (1)) 3.7

form a representation of the group for m # 0. For m = 0, we get two one-
dimensional representations, depending on the sign of the character for o,
(labeled 3* and 37). The character table is given in Table 3.2.

3.2.3 Dyj Group

Molecules such as Oy, CO;, and so on, also have a symmetry plane oy,
perpendicular to the molecular axis. If this symmetry element is added to
the Cu, group operations, one gets the Dy, group. Note that ;,C(¢) =
S(¢), so one can use S(¢) instead of o, to label the group elements, and
customarily, this is done. [Note that S2#) = o and S(w) = i.] The
presence of the i operation gives the irreducible representations a definite
inversion symmetry (splitting all the C, representations into u and g).
Table 3.3 shows the character table.

3.2.4 Simple Example: O,

Now consider simple independent electron MO theory for homonuclear
diatomics using the coordinates defined in Fig. 3.1. Labeling the nuclei
“1”” and *‘2,” the following orbital combinations can be constructed be-
longing to the indicated irreducible representations:

Table 3.3
Character Table for D, Group

Deopy E 2C(¢) oy i 28(¢) e
;|11 1 1 1 1

g 1 1 -1 1 1 -1
DM 1 1 1 -1 -1 -1
D3 I B | -1 -1 -1 1
II, 2 2cos¢ 0 2 —2cos¢ 0
I, 2 2cos ¢ 0 -2 2cos ¢ 0
A, 2 2cos2¢ 0 2 2 cos 2¢ 0
Ay, 2 2cos2¢ 0 -2 ~2¢cos 2¢ 0
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Figure 3.1. Coordinate system used to locate orbitals for homo-
nuclear diatomic molecules.

Is; + 1sp = lsoy

1s; — 1sp = lsoy,

251 + 25y = 250,

251 — 257 = 250,

2p;, — 215, = 2poyg

2p;, + 2pg, = 2poy

20x1,1 t 2Pxy,y, = 2Py

20xy,y, = Wxpy, = 2P

For O, a typical energy-level diagram is given in Fig. 3.2,

To determine the terms generated by this configuration we decom-
pose the direct product representation 2pmg X 2pm,. (The closed shells

are totally symmetric and need not be considered.) The resulting product
of characters gives

Deopy I E 2C(d) oy i 25(¢) (&)
r |4 4cos¢ O 4 4dcosle O

2po,

— —— 2pm,
—t— —H— 2,
—H— 2po,

—H— 250,
—H—2s0,

—H— 150,

—H— 15,

Figure 3.2, Energy-level diagram for O, indicating electron
occupations for the ground state.
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This can be decomposed by inspection if we use the identity cos? ¢ =
3(1 + cos 2¢). From Table 3.3 we see that
T=A,+35 +35

The possible spin states are singlet or triplet, but because both unpaired
electrons are in degenerate orbitals, the Pauli principle restricts which
spatial states are associated with which spin states. '

To see what the allowed combinations are, let's examine the spatial
states of the electrons for the different terms. Since the symbols Z, A,
and so on, tell us about the projection of the electronic orbital angular
momentum of the electrons about the z axis, it is convenient to use one-
electron eigenfunctions of that angular momentum operator. Such eigen-
functions are given by

Ty = 2pmWgx = i2pmgy = 2px * i2py, — 2pr, = i2py,) (3.8)

Recalling from Chapter 1 that the combination of orbitals py + ipy * Y}+1,
we see that the 7+ functions are eigenfunctions of I, with eigenvalues =1
in units of #. Now consider the two-electron combinations that we can
build up from ms. Clearly, the following products are possible:
m+ (V4 (2), - (D7), 7+ ()7m_(2), and m— ()74 (2). The first two com-
binations correspond to my = my = +lor —land M =m; + my = *2,
and hence are components of the A, representation. We can quickly
verify this by finding the 2 X 2 matrix representation generated using the
basis

(77+(1)7T+(2))
7 (Dm-(Q2)

For example, C(¢) changes ¢ to ¢1 + ¢ and likewise for ¢, so that
C()ym+ (D74 (2) = ¥ (1)m4(2). Overall, then,

(D)) _ (¥ 0_>w+(1>n+(2) :
¢ (wi(l)«r-(z))‘( 0 o2 (m(l)w_m) (3-9)

The character is 2 cos 2¢. Similarly,

o (n+(1)1-r+(2)) _ (w—(l)ﬂ—(z)) _ (? 1>(ﬂ+(1)”+(2)) (3.10)

m-(Wmr-@))  \mi(Hme@)  \1 O\7(D7-(2)
(rom) = 6 Ueon ) o
so(T OO - () S e
o) - (i)
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One can easily verify that the characters generated by this representation
are the same as A,. Since both 74 (1)7+(2) and w_(1)7 - (2) are symmetric
with respect to interchange of electrons 1 and 2, the only possible spin
state is singlet. Thus 'Ag is one allowed term of O;.

Similarly, one can show that both the 7y (1)7-(2) and 7_(1)7+(2)
wavefunctions generate 3, representations, although neither function itself
belongs to a single irreducible representation. There are two ways to
generate functions that do belong. One is to reduce the two-dimensional
representation generated by

(‘n'+(1)'ﬂ’—(2)>
m-(1)r4+(2)

(it leads to 2; + 37, as expected), then find the desired SALCs. The
other is to recognize that the SALCs thus formed must be either symmet-
ric or antisymmetric with respect to interchange of the two electrons, and
that the only two obvious linear combinations are

Yy = me(m-(Q) + 7-()m1(2) (3.14
Yo = m(N7-(2) ~ 7-()7+(2) (3.15)
These are indeed the desired SALCs, and by applying o, onto each, we
find that o4 = Y4(3) symmetry) and o = ~¢_(Z; symmetry).

Since ;. is symmetric with respect to interchange of 1 and 2, we conclude
that 37 must be singlet. Similarly, 3 must be triplet.

Overall, then, the allowed terms generated by the ground configura-
tion of O, are lAg , 32;, and 12;. The observed ordering of these levels is
shown in Fig. 3.3. It can be shown that transitions between the first two
excited levels and the ground level are both spin and orbitally forbidden.
This makes 1Ag and 12; metastable, and enables their use as reactive
intermediates.

1zg+
0.66 eV
— Ag
0.98 eV
—_—1 32g~

Figure 3.3. Energy levels generated from the ground configuration of O,.
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3.3

Three-Dimensional Rotation Group; Angular
Momentum Addition

3.3.1 Angular Momentum Addition; Clebsch-Gordan
Coefficients

Clebsch—Gordan coefficients arise in reducing the direct product repre-
sentation of two electrons in atomic orbitals. We will not consider the
group-theoretical properties of atomic orbitals extensively here, but suf-
fice it to say that these orbitals form irreducible representations for the
group of rotations in three dimensions [the so-called three-dimensional
rotation group O(3)]. The spherical harmonics Y},,(6, ¢) are basis func-
tions for the irreducible representations, with the /, m indices labeling
these representations.

For many-electron atoms, just as for many-electron molecules, one
often wants to construct electronic states belonging to specific irreducible
representations by combining products of atomic orbitals for each elec-
tron. For molecules this can be done by inspection (or by constructing a
fairly simple projection operator, as was done in Chapter 2). For atoms, it
is more complicated (though conceptually the same), as we now discuss.

Consider, for example, a two-electron atom, having electrons with
orbital quantum numbers /;m; and lym,. For a given Iy, l;, we can deter-
mine the allowed many-electron term symbols by the vector addition

L=hL+1Lh (3.16)
L,=l;+ by ’ (3.17)
M=m;+ my , (3.18)

This leads to the allowed L values,

L=h+h,hi+h—-1,...,|§1 - 3.19)
Now if we examine the commutation properties of the operators Ly, L
L, generated using Eq. (3.16), we find that they are identical to those for
the corresponding /; and I/, operators (see Section 1.4.2). This implies
that the eigenfunctions of L? and L, behave much like spherical harmon-
ics:

Lypp = 82L(L + DyLy (3.20)

Lyyim = BMyLy (3.21)
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In addition, since [I%, L2] = (13, L2] = (13, L] = [13, L,] = 0, the y3/’s
can be constructed as eigenfunctions of l%, l % Now we ask, how are the
yLp's related to Y, and Yp,,,,? This is analogous to decomposing a
direct product representation, and we write

VIR @) = 3, ¥y, @) Yoy () limy | LMY (3.22)

mymy

where the coefficient {(/{m1lym]LM) is called a Clebsch-Gordan (CG) or
vector coupling coefficient. Using the orthonormality of the Y's, we eas-
ily show that

(ymlymo| LMY = (Yiym, Yiymy| Y143 (3.23)

Our notation for the CG coefficients is identical to Zare. Other notations
in common use are:

(limilpma|LM) = {mimy|LM) (Schiff)
= (l |lzm1m2|LM ) (Davydov)
= (ihLM|ljlmymy)  (Baym)

3.3.2 Properties of the Clebsch—-Gordan Coefficients

Explicit values for all the CG coefficients can be determined using the
following six properties:

1. Angular momentum conservation constraints
(a) If we apply L, = Ij; + I, to Eq. (3.22) we find that
Myl =3 Yimy Yimp(my + mp)Xlymihmo|LM)  (3.24)

mymy

Substituting Eq. (3.22) for y in this equation and rearranging, we
find that

> (hmibyma| LMYM = my — m) Yy, Yiym, =0 (3.29)
mymy
For this equation to be satisfied, we must either have () = 0or M =
my + my. Thus all the ()’s for which the conservation rule M = m; +
my does not hold are zero.

(b) One can similarly show (by applying Ly = l{+ + h+) that () =0
unless || —hisL=s]+h.

2. Orthogonality constraints. If welchoose th? YLiz's to be orthonormal,

the integral of the product of yj/ % % and i glves [using Eq. (3.22)]

SLLdpm = 2y (himibmo|L'M Y (lymilymy|LM)  (3.26)

mymy

il
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Regarding the ( )’s as square matrices with row indices mymy and
column indices LM, that is,

(lymybymay| LM) = (O, (3.27)
one can rewrite Eq. 3.26 as
ctc=1 (3.28)

which shows that the C’s are unitary. Since the C’s may also be cho-
sen to be real (see property 5 below), it follows that C is orthogonal.
Since the C’s are square matrices, we can rewrite Eq. (3.28) as

cct =1 (3.29)
or
LZM (limylmo| LM milpmb|LMY* = 8y midmoms ~ (3.30)

. Inverse of Eq. (3.22). Multiplying Eq. (3.22) by {lymlamy|LM)*, sum-

ming over LM and using Eq. (3.30), one can derive the inverse of Eq.
(3.22):

Vi Yomy = 2, (imylyma| LMY*y1%, (3.31)

. Recursion relations. Applying the operator L+ = lj= + L+ to Eq.

(3.22), we get

Loyl = VO ¥ 1) = MM = Dyh%.,

= > VLU + D) = mng £ 1) Y21 Yim,

mymy

+ Vi + 1) = my(my £ 1) Yiym, Yimy=1 Klymilama| LM)
(3.32)

s

Now multiply this by Y} .Y}, and integrate. Using the definition in

Eq. (3.23) and the usual orthogonality relations among spherical har-
monics, we easily find the following recursion relations:

VLWL + 1) = MM £ 1) (ymilmy]LM % 1)

={VIL{, ¥ 1) = mi(m F 1) (ymy F 1hmy|LM)

+ Vi + 1) = my(my = 1) (lymilamy = 1|LM)} (3.33)

These are very useful for relating CG coefficients having different
M, my, and m; values, as will be apparent in an example given below.

. Phase convention. The phase of yllffﬁ, is arbitrary, but it is customarily

chosen such that
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hom=lL,b,m=L- LIL,M =L)=real =0
Only the phase for these specific choices of m;, mj, and M need be
chosen arbitrarily. The recursion relations determine the rest.

6. Symmetry relations. Using the recursion and other formulas, the fol-
lowing very useful symmetry relations may be derived:

(himylama| LMY = (= )" =Lyt my [ LM) (3.34)
_ 2L + 1

= (DT S (Ml — mallimy) - (3.39)

= (=)L) — myly - my|L ~ M) (3.36)

3.3.3 Worked Examples

(a) Evaluation forly = 1,1, =0. Clearly, L=1and M = m; = 1,0, and
—1 are the only possible combinations that satisfy angular momentum
conservation in this case. This implies that Eq. (3.22) is

Y% = (1my00[1M) Y, Yoo

and using orthogonality, we infer that [(1M00|1M)] = 1. The phase con-
vention then tells us that (1100[11) = +1, and the lower recursion relation
(3.33) that (1000|10) = (1100|11) = 1. Finally, the third symmetry relation
[Eq. (3.36)] tells us that (1 —100{1 —1) =1,

(b) Evaluation forly = 1,1l = 1, L = 2. Consider first the case M =
2. Equation (3.22), coupled with angular momentum conservation, tells
us that

yi = (111122) v, ¥y,
Using the phase convention, together with orthogonality, we find that
111122y = 1
To determine the CG coefficients for M = 1, we next use the lower
recursion relation to show that

V6 = 2 (1011[21) = V2 (1111]22)

or
{1011f21) = 1
V2
By symmetry, we then find that
1
111021) = —=
(111021) 5
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For M = 0, again apply the lower recursion relation to obtain

V6 — 0 (1010{20) = V2 — 0(111021) + V2 — 0(1011{21)
So that

(1010[20) = \/LE
Using the recursion relation again, we find that
1
111 = 1j20) = —
(a1 - 1p0) = ==
(1 — 111]20) = L
V6
The remaining coefficients for M = —1, —2 can be obtained by using the

third symmetry relation. Table 3.4 summarizes all these results. Note
that the resulting C matrix is orthogonal.

3.3.4 3-j and Higher Symbols
Another commonly used representation of the CG coefficients is provided
by 3-j symbols. These are defined by

L L B _(=Dhhhm _
(”ll my In3)_ \/—71‘3__'_—1‘01'"112"12“3 m3)

3-j symbols are useful because the symmetry properties of the CG coeffi-

3.37)

Table 3.4
Clebsch—-Gordan Coefficients for )y = L =1, L = 2
M

m m | 2 1 0 -1 -2
1 111 o 0 0 0
1 oo V2 o 0 0
0 1{o0o 1VZ o 0 0
0 0ofo o 2V6 0 0
1 -1{0 o0 Ve 0 0

-1 1o o Ve 0 0
0 -1!0 0 0 vz 0

-1 00 o 0 W2 0

-1 -1]0 o0 0 0 1
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cients are more transparent when expressed in terms of them. In particu-
lar, the relations in (3.22) and (3.23) become

@ (11 1) 13) =Qunless my + my+ my=10
my my my lh—hlsh=sh+h

) ( W L L ) is unchanged by an even permutation of
my mp m3/ columns

© ( h L & ) is multiplied by (—1)1*2+5 under an odd
m; my m3/ permutation of columns

One can also couple together three, four, or more angular momenta to
obtain combined total angular momentum eigenstates. This leads to the
use of more complicated vector coupling coefficients, such as 6-j and 9-j
symbols, which will not be considered here (see the Bibliography).
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- PROBLEMS FOR CHAPTER 3

1. Consider the metal-metal bond in a compound
L L

AN /
M—M —_—> 2

L/i J_,\L
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(a) Ignoring the ligands for the moment, the M—M part of the molecule looks
like a homonuclear diatomic. What combinations of the d-orbitals on each
M will generate orbitals of o, 7, and 8 symmetry? Assuming the energy
ordering 8 > w > o for bonding orbitals and o > 7 > & for antibonding
orbitals, what many electron terms (including spin) are generated when
each metal atom is d*#?

(b) Suppose that the ligands reduce the overall symmetry of the molecule to
D3y,. To what irreducible representations of this group do the generated
orbitals in part (a) belong?

(a) Calculate all the ({ymlymy]LM) forly =L =L = 1.

(b) Use the results of part (a) to show that the L = 1 term arising from the ( p)?
configuration of an atom must be a spin triplet (i.e., 3p).

If (1011]21) = 1/V/2, what is (1 — 122|11)? (Hint: Use recursion and symmetry
formulas to relate these two coefficients.)

Write down the ground and first excited molecular orbital configurations of the
N, molecule. You should find two possible excited configurations, depending
on whether the 2pa, energy is above or below 2pm,. Please include both
possibilities. What terms arise from these configurations? What are the spin
multiplicities of these terms? Which terms are connected by electric dipole
transitions to the ground state?

. The addition of three angular momenta (/;, />, and k) is accomplished by first

coupling any two (say, /i, l1) to generate states labeled by L;2, M), and then
adding that to the third (/3) to form states labeled by the total angular momen-
tum L and projection M. Consider what happens when three electrons, each
with spin s of }, are treated (so that s; = s, = s3 = §). Find the wavefunctions
(expressed in terms of a, B) associated with § =3and M =, 4, -4, —3. (Note:
You will need to determine Clebsch~Gordan coefficients for states with half-
integral angular momenta. The formulas of this chapter can be applied to the
half-integer case just as with the integer case.)
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4

Time-Dependent
Quantum Mechanics

4.2

Introduction

Up to this point, we have considered only the stationary (time-indepen-
dent) solutions to the Schradinger equation. However, much if not most
of chemistry is concerned with how these solutions evolve in time. Im-
portant examples include (1) the response of an atom or molecule to
electromagnetic radiation (light absorption, emission, scattering), (2) col-
lisions between atoms and molecules (chemical reactions, energy trans-
fer), and (3) intramolecular energy transfer processes (intramolecular
electron transfer, radiationless transitions). This chapter presents the ba-
sic theory needed to describe these and other processes.

Time-Dependent Schrddinger Equation:
Basis-Set Solution

In all or nearly all time-dependent problems, we can consider that initially
the system is prepared in some stationary state, a time-dependent interac-
tion is turned on and the state can undergo change. At a later time the
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interaction is turned off and a measurement of the final state is made.
Letting Hy be the time-independent initial hamiltonian, and V(g, ) be the
interaction potential (or hamiltonian), the time evolution of the system is
determined by the time-dependent Schrodinger equation,

5 0 , ¢
w DD g+ Vg, a0 = B D @D
This is a partial differential equation in terms of the coordinates g and
time ¢. Normally, it is not at all easy to solve exactly, but often approxi-
mate solutions can be obtained which are quite accurate.

Suppose that the stationary states prior to turning on V(q, t) are
denoted as ¢,(q) (n = 1, 2, . . .). These satisfy Hyp, = E ¢, and have a
time-dependent part e ‘En/A We will assume that at the initial time
(taken as t = 0), the system is in state ¢y, [i.e., (g, 0) = ¢,,(¢g)]. Since in
general the ¢,,’s form a complete set, one can expand ¥(q, ¢) for t > 0 in
terms of them:

Wg, 1) = 3 ca(O)pn(gle”Ent/h 4.2)
n
where the c,’s are coefficients. To determine the c,(¢)’s for ¢t > 0, we
substitute Eq. (4.2) into Eq. (4.1), obtaining

L oY o .
it 3% = if ; [c,, - %E,,c,,] bn(q)e Entlh
= Y ca(t)(Hy + V(g, 1))ppe Entlh

= > ca(tNEp + V(q, t))pye Ent/h (4.3)

where ¢, = dc,/dt. Notice that the terms containing E, cancel in this -

equation. Multiplying by gb,’f(q) and integrating, we find .
it D, cne Bt ny = 3 eTEntlhe (1) (k| Vn) (4.4)

Since (k|n) = 8,, and defining (k|V(q, t)|n) = Vi,(¢), this equation
becomes

iheg = >, e EENRG (1YY, (1) (4.5)

Now define wy, = (E;x — E,)/%, and we obtain the following coupled
ordinary differential equations for c.(¢):

&t) = 5 3 etV (0)cy(0) “.6)
These, together with the boundary condition ci(t = 0) = 8,,, uniquely
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define an exact solution to the Schrédinger equation equivalent to solving
Eq. (4.1). The form of Eq. (4.6) is, however, more amenable to numerical
or approximate solution. Indeed, if the number of states known to be
coupled in a given problem is small, and the frequency difference wy, and
matrix elements Vy,(#) are known, it is not difficult to solve Eq. (4.6)
exactly on a computer. Unfortunately, it is rare that all of this informa-
tion is available, and for this reason, the development of approximate
analytic solutions is very useful.

Time-Dependent Perturbation Theory

4.3.1 First-Order Time-Dependent Perturbation Theory

Suppose that the interaction Vy, is small enough so that the change in
cn(t) is small. Then, to a first approximation, c¢,(t) in the right-hand side
of Eq. (4.6) is unchanged from its initial value &8,,,, and Eq. (4.6) is given
by

) = = 3 Vin(ne ot @)
This is trivially integrated to give
A1) = eyt = 0) = 3 [! dt' Vign()en” 4.8)
where ¢ (t = 0) = 8.
Now from Eq. (4.2) we note that the projection of i onto ¢y(q) is
(rly) = cke"E"’/ % The absolute square of this gives the probability P,

of finding the system in state & at time ¢. Thus, for & # m, we have, to first
order,

1 {q AL
P) = X0 = 5 ! ! dt Vigntaryei s’ 4.9)
4.3.2 Example: Collision-Induced Excitation of a
Diatomic Molecule
Consider the atom-diatom collision system defined by Fig. 4.1. Often we

are interested in calculating the probability that a molecule will change its
internal state (vibrational, rotational, electronic, etc.) as a result of the
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Figure 4.1, Coordinates used to describe the collision of an
atom A with a diatomic molecule BC.

collision. This is very difficult to do exactly, but can be adequately ap-
proximated in some cases by assuming that the motion of A relative to BC
can be obtained from a straight-line classical trajectory. This assumption
is good for excitation that is determined by trajectories that have large
impact parameters b.

In this case, the time dependence of the separation R between the
atom and the diatomic center of mass is given by R(¢) = Vx2 + y2 and
y = b, x = vgt, where vy is the initial velocity. Note that we consider ¢ =
—oo jnitially and ¢ = +« at end. This means that the lower limit of the
integral in Eq. (4.9) should be —,

The physically measurable quantity is the probability Py evaluated at
t = + since this defines the transition probability resulting from the
collisional interaction after the collision is over. From Eq. (4.9) we see
that this probability is

o
Pyt =) = ;:—2 ! [t Vign(tetesn (4.10)

which has the form of a Fourier transform of the interaction potential.
Now assume that the interaction potential V is given by V(R, r) =

e"BRZU(r) (where B is a steepness parameter and U is some function of

the molecular coordinates r). Then the time dependence of V is given by

2

VIR, ) = e ROy ) (4.11)
which has a gaussian dependence on time, with a width that depends
inversely on the velocity vg. In view of the Fourier relationship in Eq.
(4.10), if the collision is slow, the lower frequency (i.e., lower wg,)V — R

(vibration to rotation) in the diatomic BC and T — R (translation to
rotation) transitions will be favored while if the energy is high, the higher
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frequency V— T and V — E (vibration to electronic) transitions become

;inore probable. Evaluating Vy,, for the assumed interaction potential, we
nd that

1 —aap? | = — 2.2]2
Py = =5 [Umle 72" ’ [ dr eionnt ¢=pobr? @.12)
Using the result that
= v —5f2 T _ 2
f., dr el = \/;e v (4.13)
we find that
1 2 wr
Py = 75 |Upl?e 285 exp (- —km) T
72 Ui p( 23v2> o 419

Converting from initial velocity vy to initial relative translational energy

b;:) using Ey = ép.vo, where u is the translational reduced mass, we find
that

- 2
e" 5 exp ( 265, ) [Ukml? @.15)

When plotted as a function of Ej (Fig. 4.2), we see that P, — 0 as Ey—-0
and «, and that P; peaks when

aPy 1 1w} 2
-—-—-=0=const _.__+._M_I'_L _M
aEg ( E} Ep 4BE(2,) o ( 413130) @16

Py ——zzﬁ

which leads to

W
Eo = E2%m 4[;"" 4.17)
e=MEq
Pk "‘llEo
Ey

Figure 4.2. Dependence of transition probability Py on collision
energy Ep. The constant A is defined in Eq. 4.15.
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Thus for a given wy,,, the Ey required to give maximum Py increases with
increasing w (heavier particles are less efficient at energy transfer), and
decreasing 8 (flatter potentials are less efficient). Notice also that P
decreases with increasing b (as physically makes sense), and that Py is
proportional to | Uy |*.

The actual physical observable in a collision process is called the
cross section oy, and for inelastic collisions it is related to P by integra-
tion over impact parameters

- fo Pu(b)b db

N 2
- 2 AT 1 _opp? MOk
2 [ | Uk ZBhZE exp (- 4BE)bdb

T 2
= %zﬁ | Ukml? EE exp (— %-;’—E"—';‘-) (4.18)

One can also calculate the rate constant for the m — k transition.
This is done by multiplying o by vg, then averaging the result over a
Boltzmann distribution of relative translational energies. Since avg[A] is
the number of molecules of A that cause the m — k transition in BC per
unit time for a specific velocity vy, the total rate for all BC’s is

diB 31’""" = —owo[AlIBC] (4.19)

The coefficient oxvg in this expression is the rate constant k. After aver-
aging over a Boltzmann distribution of relative velocities, we find that

p? 2 (=1 —Eyr i
ke = 35 |Uknl? [[ 5 54T exp (- 4BE)dE0 420

where Q is the translational partition function. This 1ntegral cannot be

done exactly but by applying a saddle-point method (which is described in
detail in Section 10.5), an approximation can be developed.

Consider the argument of the exponential in the integral [(Eo/kT) +

(wk,,,u)/(4BEo)] This minimizes (and hence the exponential peaks) at

[((uk,,,/.l,kT)/4B]”2 and thus we can approximate this argument by

the first two nonvanishing terms in the Taylor series expansion about E{; :

(- (D)) 2 )" 2 ()"

The resulting integral is

- \/;"rzlukmlz I-"w%mk v w%ml-" "
kmsk = =7 amakT ( 4 ) ©XP (‘ ( [skT> ) “4.22)

62 Ch. 4 | Time-Dependent Quantum Mechanics

where we have used

- (ukT)m
Q= \om
Notice here that the dominant temperature dependence of k.. is
expl—const|wgy,|#2/T"2). This means that plots of In k) versus
1/TY2 should be linear. In reality, realistic potentials are exponential
rather than gaussian, and for that case, the same treatment gives k ~
exp(—const/T'3). Also, k increases with decreasing energy gap |mels
with decreasing u, and increasing 8. All of these results are qualitatively
correct and are much more general than this limited model would suggest.

4.3.3 Second-Order Perturbation Theory

Now let’s substitute cﬁ,l)(t) into the right-hand side of the coupled equa-
tions [Eq. (4.6)] to get an improved (second-order) estimate of c(z).

) . ) , o
d—fjj— = ';li 2 €t (D[ 8m — %J’; dt' Vyp(t')e' ')
= —ﬁ— e"‘”""‘Vk 0+ ( ) Z e’“k"’an(t)f dr’ V(e
(4.23)

This is easily integrated to give

PO = o + j oty (1) dt’

—\? t o et n (Y o~ it
+ ("{) 2 fO dr’ e'®kn an(t)jo dt" Vi, (1) e'nm (4.24)

Notice here how the first two terms are just cs‘l)(t) The third term is then
the second-order contribution to c?) and involves matrix elements of the
initial and final states with an intermediate state n. Thus even if Vj,,, =0
(i.e., the transition is forbidden in first order), the second-order coefficient
may still be nonzero since there may be intermediate states » for which
Vin and V,,,,, are nonzero.

4.3.4 Simplifications and Extensions to Higher Order
Let’s now proceed to generalize this second-order expression to get the

Nth-order coefficient ¢™M(#). To do this, we need to introduce a more
compact notation. First note that
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eimk,,!vkn(t) - eiEkt/ﬁ(klV(t)ln>e"iE,,t/ﬁ - (kteiH()t/ﬁV(t)e—iH()!/ﬁln) (4.25)

Here we define the exponential of an operator through its Taylor series
expansion:

—F {
e~ H |y = 3 (117! ( Ifoz) In)
1

=3yt (2 ) |y = Bty (426)
!

Now define
V[(t) = eiHot/ﬁV(t)e"-iHot/ﬁ 4.27)

We will have more to say about the meaning of V(z), but for now, simply
regard it as an abbreviation.
In this notation, our expression for c{X(r) becomes

P = (klm) + 37 [, de Vi)l
—i\? t t
+ (_ﬁl) > j‘, dr fo ar' (k| V)| nXn|Vi(¢H|m)
= (k| {l - % f; dr' vi(t')

+ (—71)2 fo’ dt’ L, dr' Vi) 2, in><n|V1(t”)} lmy  (4.28)

Now what is =, |n)(n|? Well clearly if the ¢,,’s form a complete set, we
can expand any function in terms of them, and |f) = =, |n)n|f). This

implies that 2, |n)(n| = 1. With this, we can easily see how to generalize '

D) to cfe):
[ [t —\? [+ 4
Ny = (k] {1 -3 [Lar vieey + ('?fl) [Lar [ ar viayvie

X0

[ [ ar [ ar vigeywviewien + - -} my
(4.29)

4.3.5 Time-Ordering Operators

A formally exact solution for cz(t) can now be developed by introducing
the Dyson chronological time-ordering operator P, defined by
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A)B(R) H>n
B)A() n<n
P is an operator that acts on the operators A and B to order them so that

the earliest time is to the right. The utility of this operator becomes
apparent when we operate on the following expression:

PA(t))B(ty) = { (4.30)

P ( [ ar V,(x'))2 = [Lar [ ar PVieyVie

1 t
= [Lar [ ar vieyvien + [Lar [ ar vy
(4.31)

Referring to Fig. 4.3, we note that the first integral on the right-hand side
covers region I, while the second covers region 11,

Now the second integral can be rewritten as f§ d#’ f{’ d', and upon
interchanging ¢ and ¢", it becomes equal to the first. Therefore,

Pl fo' dr' Vi) =2 f; dr’ fo' dr" Vit Vit 4.32)

In a similar way one can show that

P[ L: ar’ Via)"* = ni J; dr f; ar .- fo'l dat" Vi(t'y - - - Vit

(4.33)
With this result, one can easily show that
o _ o 1 [:_i PR ]'
O = WP X 5|5 [Lar vier| im)
-~
= (k[P exp {—ﬁ— [ ar v,(t')} m) 4.34)

0 t t

Figure 4.3. Time integration boundaries for Eq. (4.31).
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4.4

where the time-ordered exponential is defined by its Taylor series repre-
sentation. This expression for cj(¢) is a formally exact solution to the
Schrodinger equation. Computationally, it is not very useful, for its exact
evaluation requires evaluating its series expansion. It is, however, a use-
ful starting point for approximate evaluations, and also a number of for-
mal properties of certain solutions to the time-dependent Schrodinger
equation can be developed in terms of it.

Representations in Quantum Mechanics

4.4.1 Schridinger Representation

At this point it is useful to introduce some new notation concerning the
representation of time-dependent processes. Up to now our description
has used the so-called Schrddinger representation, in which the time
evolution of a system is described in terms of a time-dependent wavefunc-
tion Y5(g, t). This is obtained by solving the time-dependent Schrédinger
equation

/]
i —g’;@ = Hyg (4.35)

and for H independent of time, the solution is

bs(q, ) = e~ Hyg(q, 0) (4.36)

(Proof of this is obtained by differentiating the series representation of '

e iHY f‘.) For time-dependent H, we have [from (4.34)]
Us(@, 0 = 2 e ElMn)c, (o)

il

o~ iHat/h 2 |n)(n|P exp [-;l—l L: dt' Vl(t’)][m)

= emiothp exp [ 2L [ ar vi)| wsta. 0 @3)

The replacement of |m) by di5(g, 0) follows from our assumptions of
Section 4.1.2 concerning the choice of initial state.
Often, one rewrites these formal solutions as

¥slg, 1) = Unys(q, 0) (4.38)

66 Ch. 4 | Time-Dependent Quantum Mechanics

where U is called the propagator or time evolution operator. For time-
independent H, U(¢) = exp[—iHt/#].

In the Schrédinger representation one determines physical observ-
ables by taking the expectation value of the operator Ag corresponding to
the observable. This expectation value is defined by

(A) = (Ys(q, DlAs|vs(q, 1) (4.39)

and the Schrodinger operator Ag is obtained using the postulates of quan-
tum mechanics. Note that if Ag is time independent (as often occurs), the
time dependence of (A) is determined by the time dependence of Y.

4.4.2 Heisenberg Representation

Now let’s introduce another way to describe things, known as the Heisen-
berg representation. In this, a time-independent wavefunction Yy is in-
troduced which is ys at ¢t = 0 [i.e., Yy = ¢5(0)]. Expectation values are
invariant to this change of representation, so we get

(A(D) = Ws(D|Aslps (1) = (U(ts(0)|As|U(t)ys(0)
= WalUT(AsUMWE) = WalAnlvn) (4.40)
In this equation we have substituted from Eq. (4.38) and its adjoint. The
last line indicates that an equation for (A) identical in form to Eq. (4.39)

but expressed in the Heisenberg representation can be obtained provided
that we define the Heisenberg operator as

Ag(t) — UT(HAsU() (4.41)
For a time-independent hamiltonian, this can be rewritten as
Ag(t) = eth/feAse—in/ﬁ (4.42)
From (4.42) it is immediately obvious that
Hy = Hg (4.43)

With these definitions, we can now redo much of quantum mechanics
using time-dependent operators Ag(#) rather than time-dependent wave-
functions.

An equation for the time evolution of Ag(?) can be obtained simply

by differentiating Eq. (4.41):

dAy dU" +, dU + dAs

@t - d AsU+UA5~a-t—+U -'a—t-'U (4.44)

Now dU/dt can be obtained by substituting Eq. (4.38) into the Schro-
dinger equation:
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ih %(tf ¥s(0) = HUYs(0)

or
L, dU _
it T = HU (4.45)
Using this in Eq. (4.44) and defining
SAy _ .+ dAs
a U g U
we find that
dAH _ I+ _iyta 94y
T —ﬁU HAgU ﬁU AsHU + o
or
dAg _ i Ay
&t & [Hy, Agl + T (4.46)

This is the Heisenberg equation of motion, an equation that pos-
sesses a profound analogy to the classical mechanical Hamilton's equa-
tion (when expressed in terms of Poisson brackets), and which occupies a
position in the Heisenberg representation that is equally important as the
Schrédinger equation in the Schrodinger representation. In this equation
the third term appears only if the Schrodinger operators are explicit func-
tions of time.

Let us now consider an example to illustrate solving the Heisenberg
equation. Consider the motion of a free particle in one dimension. Since
Hg = P§/2m is time independent, we can immediately assert that Hg =

Hyg = P%,/Zm. Also, since [Pg, Xs] = =—if is time independent,-
[Py, Xyl = —ih. Substituting Py for Ay in Eq. (4.46), we find that
dPy _
w7ale 0 4.47)

which implies that Py = constant = Pg.
The analogous equation for Xy gives

dXy _ Py _
T om constant (4.48)
which implies that

XH:%;+XH(t=0)=%t+Xs (4.49)

From this it follows that
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xan =24 (xoy (4.50)

which means that a quantum free-particle wavepacket on the average
moves like its classical counterpart.

4.4.3 Interaction Representation

Whenever a partitioning of the hamiltonian of the type H = Hy + V(?)
occurs, it is useful to work in a representation that combines certain
aspects of both the Schrodinger and Heisenberg representations. In this
so-called interaction representation, the wavefunction is defined via

Yr(t) = eHotlhyg(r) 4.51)

so that Y would be Y if V(¢) = 0. The interaction representation Schro-
dinger equation is derived by differentiating Eq. (4.51) and substituting
Eq. (4.35). This leads to .

o 0 ; i
i _;’TI = —Hopy + eiHotlhppy (4.52)

Substituting H = Hy + V and using the inverse of Eq. (4.51), we find that

ih 9(;”7’ = eiHalhy(y)e=iHotlhy, 4.53)
which can be reduced to
i 9;-’3 = Vi) 4.54)

where V; was defined in Eq. (4.27). Note that V;(r) plays the role of an
effective hamiltonian in this representation. From our previous exact for-
mal solution for Yg(t), we can immediately write the formal solution for

Yr:
w=Pexp |3 [ Vi) ar] s @55

To define operators in the interaction representation, we simply require
that expectation values have the same form as in the Schrédinger or
Heisenberg representations. Thus

(A) = (WslAslys) = (WrleHothage=Hultlyy = (yilAfly)  (4.56)
where
A= eiHot/ﬁAse—iHot/ﬁ (4.57)
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4.5

An equation of motion for A; analogous to the Heisenberg equation is
easily generated and is given as follows:
dA(e) _ i

i 94y
= 7 WHo, A1) + — (4.58)

Transition Probabilities per Unit Time

Up to this point, we have left the time dependence of V() arbitrary. If,
however, V(z) is either a constant or a periodic function (after being
turned on), then some additional development is possible, leading to sim-
plified expressions for transition rates. Since this often happens in chemi-
cal problems, we now consider it in detail.

4.5.1 Perturbation Theory for a Constant
Interaction Potential

Consider first the case where V = constant. We assume that V is turned
onat ¢ = 0, then off at ¢ = 7, and we would like to determine the probabil-
ity of transition to a final state that is not the same as the initial state. An
example where such a situation occurs in nature is radiationless transi-
tions. In that case, light absorption to an electronically excited state
(which is then coupled by nonadiabatic or spin-orbit coupling to another
state) initiates the interaction. This coupling is not an explicit function of
time (it depends on the coordinates of the nuclei), so it can be thought of
as being constant in applying time-dependent perturbation theory.

If we use first-order perturbation theory to calculate c(f) for t = =,

we find from Eq. (4.8) (for k + m)
~i (7 o
k= J; dt’ Vigpe'@mt (4.59)

where V,, is the interaction potential. Since Vy,, = constant, this can be
integrated to give
—i eiwk,,,f -1 eiwk,,{r -1

k= 2 Vin S = Vi
k % km iOkm km ﬁwkm

(4.60)
The probability of being in state & is thus

[(E; — En)ri24)
[(Ex — Em)/2?

4.61)

2 COS WpyT 5 Sin
= |V,
(Fwsm) | km|

2 -
P;‘n = !ckl2 = inmlz
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E E,

m

Figure 4.4. E; dependence of P}/|Vin|*.

If we assume that IVkml2 is a slowly varying function of k, the k depen-
dence of Py is determined by the term which follows it in Eq. (4.61).
Figure 4.4 shows how this varies with E;. Note that for large enough
7 [r = @wh)/E;] a sharply peaked function is obtained, with the height of
the peak growing as 72/#% and width decreasing as 2##i/r. The approxi-
mate area of the peak is

L]

2h

T

2

T
i

I

which grows linearly with 7. In addition, note that we have equal proba-
bility for upward and downward transitions.

Considering the radiationless transitions example again, this result
indicates that a time 7 after the initial electronic excitation, transitions to
the second state have generated a distribution of those states such as is
pictured in Fig. 4.5. Notice that the energy width (or energy uncertainty)

Distribution in state at time T

Excited state
————t——— —————-
hw
. Vibrationally excited
— levels of ground
Ground state (or other) state

Figure 4.5. Schematic diagram of the state distribution at time r
induced via radiationless transition from a photoexcited state.
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of the distribution after a time 7 is AE = [(2w#)/7] so that r AE = 27wk > £,
in accord with the usual uncertainty principle.

4.5.2 Fermi’s Golden Rule

Now suppose (1) that the final states are so closely spaced in energy that
they form a near continuum with density of states p(Ey) (the density of
states is the number of states per unit energy); (2) that we are only inter-
ested in the long-time behavior of the system (i.e., 7 >> [2@h)/(Ey — E ;)]
for typical k); (3) that V,, and p(E;) have a weak dependence on &; and
(4) that first-order perturbation theory is still valid under these assump-
tions. Then the total probability of transition is

2 Sin?((Ey, — E,)r/24)
(Ex — Em)2P

Pr= ; Pl = ; {Vim (4.62a)

Now replace the sum by an integral and change the integration variable
from state index to energy as follows:

- i
~ [ ak Ve SZFE = [ d pEOIVin? T

~ 2 [ sin“(Ey — E,))r/2h
PEm)| Vil f Ex = —E,Va (4.62b)

The last integral is just 2#7/f, s0 we get

2wt
Pr ==~ PEViml?

Thus in this limit, the total probability of a transition is a linear function of

time, and we can usefully define a rate of transition via

Pr_2
=L = 2 p(En| Vil (4.63)

wr =
This is called Fermi’s golden rule and it represents a very useful result of
time-dependent perturbation theory for many problems. In fact there are
usually very few problems for which the assumptions above are not satis-
fied when light absorption and emission are concerned. For intramolecu-
lar dynamics and molecular collisions, usually, assumption 4 is not satis-
fied, so one needs to go to a higher-order theory. This still leads to
an expression like Eq. (4.63), but the matrix element |Vj,,[? is replaced
by a more complicated matrix element, examples of which will be given
later.
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4.5.3 State-to-State Form of Fermi’s Golden Rule

An alternative form of Fermi's golden rule (the ‘‘state-to-state’’ form)
arises in considering the behavior of P}’ in the same limit as discussed
above. In particular, note that

sinX(E; — E,y2h _ P¥

FE = Em) = =1p —F 28~ AVl

has the property that

" FaE = %’1 (4.64)
while F(0) — « for » — «, Thus for large enough 7, F looks like a big
spike, as indicated in Fig. 4.6. This is quite similar to the behavior of a

delta function (see Appendix A). The latter satisfies

5(0) = «
[ 8 dx =1
From this it follows that
lim F(E — Ep) = 27" S(Ey — Ep) (4.65)

Thus, starting from P}, the following expression for the state-to-state
rate can be given:

m
2
Wi = lim £& = =L 8B, = Ep)| Vi (4.66)

oo T

The 8(Ex — E,;) expresses the result that in the r — = limit, only transi-

F(E,-E,)

b

0 E,~E

m

Figure 4.6. Appearance of F(Ey — E,,) for large 7.
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tions which obey energy conservation can be caused by a secular (time-
independent) interaction. Note that

) |
[ pEWim dEk = T Vienp(En)

as should be the case.

4.5.4 Treatment of Periodic Interactions

The generalization of the golden rule to the treatment of periodic interac-
tions is quite simple. Supposing that V(z) = Ue*@! (where U is indepen-
dent of time but can be a function of coordinate and momentum opera-
tors), the equation analogous to Eq. (4.59) is

ei(wk,,,tw)'r -1
T kM ok = ©)
This is the same as Eq. (4.60) but with V replaced by U and wy,, by wg, +
. Thus the derivation of the golden rule works the same way except that
Ey = E,, is replaced by Ey — E,, + fiw. Evidently, then, the peak in P}’
will occur at E; = E,, ¥ fiw and Fermi’s rule becomes

ct) = 2 [ dt' Uzl = (4.67)

2
wr = 5 Ukl p(Em ¥ ) (4.68)

and
2
Wi = 5 |Uinl?8(Bk = En % ) 4.69)

Note that e T#? causes transitions for which the final energy Ey is E,, — fiw
(which would happen in the emission of light), while e~%? leads to E; =
E,, + fo (characteristic of absorption). In the next chapter we examinq'
the application of this form of Fermi’s golden rule to the interaction of
radiation and matter. The function U, which has so far been left as arbi-

trary, will then become a specific function that is determined by this
interaction.
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PROBLEMS FOR CHAPTER 4

1. Consider the collision of an ion such as H* with H,. At large separations R
between the ion and molecule (where the straight-line trajectory model is
accurate), the ion-molecule interaction potential has the general form

2
V(R, 6) = R—‘j [Vo + V2Ps(cos )]

where

+2 - 26—
=9‘."_§_ﬁ£ VZ:?‘L.}& P2(c089)=3c°8201

Vo
In this formula, e is the electronic charge, and ajand o are the parallel and
perpendicular static polarizabilities of the H, molecule. Since V(R, 6) depends
on orientation angle 8 between R and the diatomic axis r, the ion-molecule
coupling will cause rotational excitation and deexcitation of Hj.

(a) Assuming the straight-line trajectory approximation, derive an expression
for the transition probability from
Hyv=0,j=0,m=0 to Hyv=0j=2m=0, =1, £2).

Evaluate this probability explicitly for b = 2, 10, 50 A, and Ey = 10 eV using
o =1.0 A3and @; = 0.63 A%. Since the rotational spacing is small, you can
assume when evaluating the transition probability that wi, = 0.

(b) To integrate the result of part (a) over impact parameters to get a cross
section, it is necessary to truncate the integration at a minimum impact param-
eter by. bg corresponds to the ‘‘radius™ of H; and represents the distance of

Problems for Chapter 4 75



~
.

w
.

76

closest z_;pproach between H, and H* in a head-on collision. Assuming that

by = 2 A, what are the cross sections for the above-mentioned transitions at
10 eV?

Consider the time evolution of the spin state of an electron in a magnetic field.
Let the unperturbed hamiltonian be the Zeeman hamiltonian (with static mag-
netic field By taken in the z direction): Hy = yByS,, where v is the gyromag-
netic ratio and S is the usual spin operator. Let the coupling hamiltonian be a
time-varying Zeeman interaction in the x direction, V = yB, S, cos wt, where
B, is the perturbing magnetic field and w is the frequency.

(a) If the electron is initially (+ = 0) in state «, what is the probability of ending
up in state 8 as a function of time? Take w = yBy, and use first-order perturba-
tion theory.

(b) How does the answer to part (a) change when second-order perturbation
theory is used?

(c) Now let’s solve the time-dependent Schrodinger equation exactly for the
same problem. To do this, first write down the coupled equations for the
coefficients C, and Cg associated with the states « and S, respectively. Now
take the limit w = yBy in these equations. Carefully consider the time depen-
dence of each term and neglect all terms that vary as e*2i%t in the resulting
differential equations. Show that the solutions are the same as those obtained
from perturbation theory (taking @ = yBy) in the limit of small B;.

Consider a collision between two atoms in which two electronic potential
curves cross to cause a change of state (as in Na + I — Nat + I7). To a first
approximation, the transition probability may be calculated by first-order per-
turbation theory, with the motions of the nuclei treated classically.

(a) Suppose that the interaction matrix element V}; between the two states 1
and 2 is a constant independent of time, while the energies E; and E; of each
state are linear functions of time (i.e., E| = a;¢ and E; = ayt, where o and a3
are constants), (Here ¢ = 0 is taken as the moment when the two curves
intersect.) What is the time dependence of each state in the absence of V?

What is the perturbation theory expression for the transition probability Py -

between states 1 and 2? [Hint: Eq. (4.9) has to be rederived for the case where
the zero-order energies are time dependent.] Also, the following integral will
prove useful.

- 5 - i
J sin x“ dx = ] cos x2 dx = (-)
0 0 8
(b) One way to rationalize the linear dependence of E; — E; on time is to
assume that the nuclei move with a constant velocity v in the vicinity of the
crossing point. Show that under these circumstances Pj, is identical in the
limit of small V|, with the Landau—-Zener expression for the transition proba-
bility,

Pp=1-e2m
where y = sz/hvlsl — s7| and sy — s3 is the difference between the slopes of

the potential curves at their point of intersection.
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4. (a) Solve Heisenberg’s equations of motion for the time evolution of the rais-

5

ing and lowering operators b{j and by for a harmonic oscillator. Assume that
the hamiltonian
2
Pl a0
m + 3 mwx

has been simplified using P = p/(hom)?, 0 = x(mw/t)"2, H = hl/fe into

H = %(zﬂ + 0%
so that

b+=Q_-iP
Vi va

(b) Show that

Ox(t) = Q cos wt + P sin wt
where Q and P are the Schrodinger operators defined in part (a).

Two spin-4 particles S; and S interact in the absence of a magnetic field via a
coupling V = AS;-S;, where \ is constant. If the spin quantum numbers are
my =4, my = —}att = 0, what is the probability of m; = —4, m, = } at time ¢?
Use first-order perturbation theory.
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5.1

S

Interaction of Radiation
with Matter

5.2

Introduction

This chapter begins with a brief review of the properties of classical
electromagnetic fields. The rest of the chapter concerns the interaction of
these fields with matter. Throughout we consider that the fields are clas-
sical functions of coordinates and time while the matter is quantum me-
chanical. This semiclassical treatment is not strictly correct, for in reality
both field and matter are quantum mechanical-—as we discuss in Chapter
6. The major defect of this treatment is the omission of*spontaneous

emission, but as we shall see, it is not difficult to include it in an ad hoc "

manner.

Electromagnetic Fields

5.2.1 Vector Potentials and Wave Equations
To get started, we have to know how to describe an electromagnetic field

mathematically, and how particles interact with electromagnetic fields.
Our first goal will be to determine the electric field E and the magnetic
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field B (i.e., the magnetic induction—ro¢ H) for an electromagnetic wave
moving in free space. To be rigorously correct, we should start from
Maxwell’s equations (partial differential equations which determine E and
B), but here we use a simpler description.

First, let’s express E and B in terms of scalar and vector potentials.

From electrostatics we have E = —V¢, where ¢ is the scalar potential. If
the field is time dependent, however, this must be generalized to
10A
E = ~V¢_ZE 5.1
and
B=VxA (5.2)

where A is called the vecror potential and V x A denotes the curl of A and
is defined via

i j Kk
VX A= |d/ox d/dy aloz
Ay A, A,

Note that because A is a vector function, each component of A can
separately depend on x, y, and z.

A major reason for introducing these potentials is that they reduce
the number of field components needed to define the electromagnetic
wave from 6 (the components of E and B) to 4 (¢ and the components of
A). Also, two of the four Maxwell equations are solved automatically by
determining E and B from ¢ and A, and the other two equations can then
be used to determine ¢ and A (see below). These equations do not,
however, determine ¢ and A uniquely. Instead, one must impose addi-
tional conditions to define them. Called choosing a gauge, this arises
because the transformations ¢ — ¢ + f(1); A — A + Vg(r) for arbitrary
f(¢) and g(r) do not alter the physical observables E and B. Although the
choice of gauge is arbitrary, a customary choice will be used here, the
Coulomb gauge. In this we simply choose V - A = 0. As we shall see,
this one additional constraint will define ¢ and A uniquely to within an
additive constant.

From Maxwell’s equations, one can derive the following equations
for ¢ and A for an electromagnetic wave moving through empty space:

Vi =0 (Laplace’s equation) (5.3
20 _ 1o (3d) . 1 d%A
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Since space is isotropic, with no charges, the only allowable solution to
Eq. (5.3) is ¢ = constant, so Eq. (5.4) becomes

1 3%A ‘
2A = g
VA = 553 (5.5)

which is known as the classical wave equation.

5.2.2 Plane Waves

It is not difficult to show that Eq. (5.5) is solved by any function of k- r —
wt since V3f(k'r — o) = k%" and
azf "
Cz Yy i _2'f
Thus as long as k% = w?/c?, fis a solution. The actual choice of f depends
on the imposition of boundary conditions, and for our purposes, it is

convenient to choose fto describe a freely propagating plane wave. Thus
we take

A(r, 1) = Ap(e®ToD 4 pmilker=o) (5.6

It is not difficult to show that the Eq. (5.6) represents a plane wave moving in

the k direction with wavelength 2m/|k|, while the corresponding formula with

— ot replaced by +wt gives a wave moving in the —k direction. Applying the
gauge condition V « A = 0 to Eq. (5.6), we find that

V-A = —-2k-Aj sink'r —wf) =0 5.7

This can equal zero everywhere only if Aj and k are perpendicular. Since
there are two vectors which can be simultaneously perpendicular to k and
to each other it follows that there are two possible polarizations of light.

If we let € be a unit vector that points in the direction of Ay (the direction

of polarization), then £-k = 0. If we define |Aj| = 3A¢, then
A(r, t) = Age cos(k'r — wt) (5.8)

which is an expression for the vector potential that will be used exten-
sively below. Note that the choice for the phase of A (i.e., replacing
k'r — wt by k'r — wt + constant) is arbitrary. It will not influence our
results.

Given the expression above for A it is easy to derive expressions for
E and B as follows:

1A -w .
E=- E—é_t_ = —C—Aob‘ sin(k.r — wt) 5.9)
B=VxA=—-Ayk X ¢g)sink-r — wt) (5.10)
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Figure 5.1. E, A, and B fields for a plane-polarized electromag-
netic wave.

;)ne can now depict the mutually perpendicular E and B fields as shown in
ig. 5.1.

5.2.3 Energy and Photon Number Density

The quantity A is related to the energy density in the field. Classically,
this is a continuous quantity, but if-the field were quantized, we would
find that the number of photons N at any frequency w must be integral.
The relation between energy density and photon number is determined by
imagining that our field is contained in a volume V and that the time-
averaged energy E associated with this field equals Niw, where % is the
energy per photon. Then

E = Nhw = j d’r energy density (5.11)

where the bar refers to a time average, and the energy density is related to
E and B via the expression

2 2
energy density = ES_;& (5.12)

Substituting for E and B from above, we find that

Niow = j d3r (2:)’"_')_1 J'Zn/m th%_j_B_Z

0 87

2 2,2
_ 3 2_ 2mlw () . < w A
= jd r(zw) . dt v sin2(kr ~ wt) = V—S—;Eg (5.13)
To obtain this, we have used the relations |k x &[> = w?/c? and

sin?(k-r — of) = %
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5.3

From this it follows that

Ag = 2¢ (2’:{,1\’)”2 : (5.14)

which relates Ag to the number of photons per unit volume (N/V).

Interaction between Matter and Field

5.3.1 Classical Theory

Classically, if a particle with charge e interacts with an electromagnetic
field, that particle experiences a force F given by

va)
c

F=e (E + (5.15)
The development of a hamiltonian that reproduces this force when substi-
tuted into Hamilton’s equations is rather difficult. Here we just give the
result, which is

- L(p-ca)

=5. P~ A (5.16)
Thus the vector potential A field does not act like an ordinary potential,
but rather, it changes the effective momentum of the charged particle.
The next section shows that these formulas are consistent.

5.3.2 Derivation of Classical Hamiltonian

From classical mechanics it can be shown that the equations of motion for
the coordinate and momentum are related to the hamiltonian via Hamil-
ton’s equations as follows (we consider the x coordinate here):

. —-oH
Px = "3.'x— (517&)
;= 94 (5.17b)
opx
Using Eq. (5.16), these equations become
. e e 0A
Px",%(l"z“) .2 (5.18a)
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i= ,—L— (px - EAX) (5.18b)

Then
o . e -
mx:Fx:'Px‘;Ax
_e( _e gé__e_dAx_e(. dA  dA,
mc(p cA) x ¢ dt ¢ 'E_T) (3.19)
Since
dAy Ay | 0A, . | A, .  0A,.
dt et T YTy VT ¢ (5.20)
we get
e[.dA . JA dA
F=_[_X 2y _Z]
Tl e TV T
_e[Ay | . 0A, | . 0A. . .0A,
e[at”ax*ywﬂ‘az—]
€ 0A, e[.(&Ay aA) <8A A
=——xy 85 (2 08k | . (947 044
co ¢ ox oy MR 61)] (.21)
or

'F=—E———+§[vx(VxA)]=e[E+%VXB] (5.22)

5.3.3 Quantum Hamiltonian for a Particle in an
Electromagnetic Field

Now let’s convert H to its quantum counterpart. This is trivially done by
replacing p by —iAV, yielding

H=:- [—'hv - 3A]2
5 | Y~ (5.23)

If the charged particle also experiences a static potential Vs (such as
would happen for electrons in a molecule, for example), this potential is
simply added to H. Thus we have

He-Egiy e gaawys L -
2m s T e . )+WA'A—H0+V

(5.24)

where Hj is the hamiltonian in the absence of the field and V is the
matter—field interaction hamiltonian:
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ike &2
= — (V- . ——A. 25
2mc(v A+ A V)+2mCZAA (5.25)
This is the desired V{(z) for use in studying light absorption and emission,
but before we consider such applications, let us first make a few general-
izations and simplifications with it.

1. First, for the case of the interaction with many charged particles (a
molecule, for instance), V becomes
. 2
ihe; €;
Ve S (B (v, A + AT + iy AG)-AG)] (529

In other words, we simply sum the interaction over the particles, tak-
ing into account the charge e; and mass m; of each particle. For a
molecule undergoing electronic excitation, we can often ignore the
sum over nuclei, since their interactions with a field are much smaller,
due to the 1/m; term in the sum.

2. The first term in V can be rewritten as

V-A+ A-V=2A-V (5.27)

since (V-Ay) = (V-A) + (A- V)Y = (A-V)y by virtue of the gauge
condition V-A = 0. Thus we can write

2
e e
V= —%(A-p) * chzA.A (5.28)

3. Finally, for many applications, it is a very good approximation to
neglect the (€?/2mc®)A - A term. This is known as the weak-field ap-
proximation, but in fact it applies to fields that we might think of as
being quite strong.

The following estimate will indicate that only for extremely large -

fields does the A% term approach the A «p term in magnitude. Consider
the ratio

2|p

e

- 14l
(roughly the ratio of these two terms). We would like to determine how
big a field is needed to make this ratio equal to unity. Consider an electron

in a ground-state hydrogen atom. We can estimate p using the Bohr model
as follows. For circular orbits the angular momentum is

l=H#=pr (5.29)

which implies that p = #/r = #/ay. Also, using (5.14) and assuming that the
energy E is related to photon number N by E = Nhw,
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2rhioN\ 12 2wE \12
A =3 = | —— = v
Ag = 2c ( o2V ¢ ((ﬁw) V) (5.30)
So if the ratio 2|p|/(e/c)|A| is to equal unity, then
| = 2 2h/ag hw 5.31)
e, e 2mE N2~ 2B\ .
cA g ((hw) V) €do (T

Now imagine that we have a laser beam with a given power per unit area
P/A. Then

P_El_E _E

A A AtV _ .32
where ¢ is time. Thus

P_Ec_ c (@)2

AV 27 l\eq (5.33)

Substituting, we find that (taking fiw = 13.6 eV, the energy needed to
ionize the hydrogen atom)

P _3x100 cm/s( 13.6 X 1.6022 x 10" erg |2
A 27 4.8 X 10~1% esu x 0.529 x 1078 cm)

=35 x 10858 _ 6 W_
=35 %108 e =35 x 106 (5.34)

This is an enormous laser flux that can be achieved only with very short
pulse lasers.

It should also be noted that this same calculation tells us the strength
of the electron kinetic energy relative to the (e/mc)A - p term; that is,

This indicates that the coupling of matter to electromagnetic fields is
tyPically very weak, and hence that perturbation theory is quite appro-
priate.

An alternative way to the same conclusion is simply to notice that the
atomic unit of field gradient is just (hartree)/(bohr)(electron charge),
which is 27.21 V/0.529 x 1078 cm ~ 10° V/em. Physically, this is the
field gradient at the position of the first Bohr orbit of the H atom. This is
far higher than ordinary laboratory electrostatic or magnetostatic field
gradients, and much higher than those afforded by ordinary flashlamps or
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lasers. For such experiments, then, the weak field approximation is
wholly appropriate. Very intense laser fields can approach or even ex-
ceed 10° V/cm; for such situations, the weak-field approximation will fail.

Absorption and Emission of Light

5.4.1 Application of Fermi’s Golden Rule

We now wish to examine the molecular transitions that can be induced in
first order by the (¢/mc)A -p interaction. Rewriting, we have

V=- ;j—CA'P = - ;:"EA() cos(k'r — whe p
= z;rn%Ao(ei(k-r—wl) + e—i(lpr——wt))s,p = U(k)e-iwt + U(-'k)eiwt(5.35)

The last line is in a form that enables us to use Fermi’s golden rule for
periodic interactions (Chapter 4) to calculate the rate of transitigns in-
duced by V. We noted previously (Section 4.5.4) that for V = Ue™™“!, the
rate expression is

2
Wim = % |Ukm[* 8(Ex = Epy * fiw)

Thus the Ue'®’ term causes E; = E,, — fiw and hence leads to stimulated
emission, while the Ue ™'’ term causes E; = E,, + #w and hence stimu-

lated absorption (or just absorption). An electromagnetic field can there- -

fore cause transitions in both directions. Note also that the delta function
ensures that only states having E; = E,, = fw can be reached; that is,
energy must be conserved.

Using Eq. (5.35), the total rates of emission and absorption are given

by
27 2
Wabs(m = k) = == |Um®)|"p(Epy + fiw) (5.36)
277 2
Wem(m — k) = W | Ui —K)|*p(E;py ~ o) (5.37)
where v
eAg iker
Upn(k) = — Tme (k|e™®Te-p|m) (5.38)
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5.4.2 Dipole Approximation

The expression for Uy, can be considerably simplified by noting that for
visible light, ¢™®T ~ 1 for those r’s considered in the matrix elements.
This is because the range of r’s is typically molecular dimensions (10 to
100 A), while k = 27/\ is much smaller [i.e., for r = 50 and A = 5000 A,
kr = (2mw/5000)50 = 27/100 = 0.06]. This is the long-wavelength approxi-
mation, and although it is not perfect, it does describe the most intense
optical transitions.
Introducing this approximation into Uy,,, we find that
eAg

Upm = = 5, (k|e-p|m) : (5.39)

Now let’s rewrite this expression. First note that for any single-particle
hamiltonian Hy,

im
P = 7 [Hp, 1]
Proof: In one dimension, this easily follows from the expression

. 2 .
mipm 4 _p -
P [2m”] 5 [p,rl=0p

Substituting into (5.39), we find that

__ gAoim - Zledo
Utm = = e 7, & KlLHo, ¥llm) = 550
The second expression follows from Hg|m) = E,,|m). In addition, E; ~

E,, = hwyy = *ho for resonant transitions; thus

(Ex = E) (Kle-x|m) (5.40)

Ui = *’;CAO we-(k|r|m) (5.41)

Now er is just the dipole operator for a single electron. Thus
e(k[rjm) = dipole matrix element (5.42a)

For many electrons, this generalizes to

wim = (k'S xjm) (5.42b)
Thus we can write
T FIA
Uk = =5, & Bt (5:43)

Since Uy,, is proportional to my,,, this expression is called the electric
dipole approximation for Uy,,.
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5.4.3 Photon Density of States

To complete the evaluation, we need to determine the density of states.
Now typically we would need to consider both photon and matter states.
However, if we consider emission and absorption between discrete states
of molecules, the matter states need not be summed over. Rather, just a
sum over photon states need be done. Since the same photon states
appear in both emission and absorption, the same density will do for
both. To calculate the photon density, imagine that the field is in a cube
of length L, with V = L3. Let dN be the number of states between N and
N + dN. For a one-dimensional box, if I, labels the states, then dN =
dl,. But in three dimensions, :

dN = dl, dl, dl, (5.44)

For a particle in a three-dimensional box, each set of x, y, and z state
labels is determined by applying periodic boundary conditions: e** =

ekex+L) o that kL = 20w, I, = 0, =1, = 2, . ... Thus
' L
dly = 5= dky (5.45)
and
L3
dN = (3) dk, dk, dk, (5.46)

Now transform this to polar coordinates, converting dky dky dk, into k2 dk
dQ, where () is the angle specifying the orientation of k. Since k& = w/c,
we have

V 1 ,
= —— dQ = p(E) dE 5.47
dN G 3 do p(E) (5.47) -
Then the density of states is simply dN/dE, and we have
V ?de
p(E) = Gny 3 dE (5.48)
and since E = ho,
2
V
p(E) = Gl F dQ (5.49)

5.4.4 Emission Rate
With this result we can now write down an explicit expression for the rate

of emission (now considered to be the differential rate into the solid angle
dQ) as follows:
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2
dwem(m = K) = 2% |Ugnf? p(Ery ~ )

_ 2m Ajo’ 2 Vet
% a2 €kl Goep 7 90 (5.50)

Substituting for Ay from Eq. (5.14), we find that

Ne?
dwem(m — k) = Py & pml? (5.51)

'I:he pol.ar angles 6 and ¢ contained in d) here represent the angles of
the stimulating field wave vector relative to a molecule fixed frame, which
we define such that py,, is along the z axis (see Fig. 5.2). Since ¢ is

perpendicular to k, € py, = | pip] sin 6 (assuming, for simplicity, that e,
k, and py,, are coplanar). Thus

dWem(m — k) No? 3 .o
a0 = Smnc3 #ml” sin® 6 (5.52)

which means that the efficiency of stimulated emission varies as the sin2
of the angle between the photon beam direction and | gy, 2. Also, dw/d()
is proportional to N (i.e., intensity varies linearly in the photon energy or
intensity). This implies that when N — 0, the rate vanishes. This means
that an atom in an excited state cannot emit if there is no stimulating
external field.

In reality, this is not the case, as spontaneous emission can also
occur. It turns out that we can account for the influence of spontaneous
emission in an ad hoc way by replacing N by N + 1 in emission but not
absorption. (See Section 6.2.5 for the correct treatment.) The 1 factor
gives us a residual emission that occurs in the absence of a stimulating
field and is called spontaneous emission. We will include this factor in
what follows so that all expressions are correct.

Figure 5.2. Orientation of k and ¢ relative to coordinate system
where z axis is along py,,.
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Integrating dw/dQ) over all angles gives the total rate as follows:

3
wem(m = ) = 55 (N + 1) (2) [pmen? (5.53)

Notice how this emission rate is proportional to ||, the square of the
dipole matrix element.

For spontaneous emission (N = 0), the sum of wey, (m — k) over all
possible final states (i.e., those with an energy lower than E,,) gives the
total radiative decay rate—just the inverse of the radiative lifetime 7p,q.
Thus

1 4 (lownl\’ | 2
—_ — (1%kml 5.54
Trad £‘<ZE,,, 3ﬁ ( ¢ ) !ﬂ-km[ ( )

5.4.5 Absorption Rate

The rate expression for absorption of light under the assumption of this
treatment is the same as for emission, since |Uyy,|? is the same in the
dipole approximation and the density of field states at a given frequency
has nothing to do with whether it is emission or absorption. Thus

4 (o)}

Wabs(m — k) = N W (;) | e ? (5.55)
where in this case, we do not replace N by N + 1 since there is no
spontaneous absorption. Note that if a sum over matter states had been
included, the rate expressions for absorption and emission would in gen-
eral be different, as the density of final matter states is different.

5.4.6 Einstein A and B Coefficients

A commonly used procedure for representing absorption and emission
rates involves the use of the Einstein A and B coefficients. These repre-
sent the transition rates in such a way that the field-dependent effects
(proportional to N) are separated from the field-independent effects.
Specifically, for stimulated absorption and emission, the Einstein B coeffi-
cient for the m — k transition is defined via

Wstim(m — k) = B(m — k)p (5.56)

where p is the total energy in the field per unit volume between frequen-
cies v and v + dv (the so-called ‘‘radiation field density”). p is the field
energy density appropriate to a field inside a blackbody cavity and is
given by
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2

Nt
B 2 o(E) dE (5.57)

where p is the density of states defined earlier. In other words, we take
the density of states, multiply by the energy per state (Nfw), then by 2 (to
sum over the two possible polarizations for each state), then divide by the
volume (so that 5 is the energy per unit volume per unit frequency).
Substituting for p(E) from (5.49), we find that

W) dv =

No® dE

_ 2
ply) = ——(211-5-)3 D dQ) (5.58)

In this expression, we are only interested in the angle-integrated field
density, so we take [ d) = 4. Since dE/dv = h = 21k, we find that

- 2No?
Pw) = =<1 (5.59)

Thus, from our expression for w,,,(m — k), and the definition of B(m—
k), we have

4N (w\? 2
3 (8) Il 5, ,
Bim—= b = == = 352 | ttn (5.60)
T3

which shpws us that B(m — k) is simply proportional to | a2
Note that if we consider the B coefficients for the m — k and k—>m
processes, we find that since |pgm|? = |pmil?,

B(m — k) = B(k — m) (5.61)

Thus the rates of absorption and stimulated emission between the two
states are the same.

For spontaneous emission, the A coefficient is simply defined to be

Wspont(m — k) = A(m — k) (5.62)
so that
4 3
Am— k) = o (.‘;_’) |2 (5.63)

From this it follows that
A1) _ 2% (o)
Bm— k) 7 \c

That.is, the ratio of spontaneous to stimulated emission varies as the cube
of the emitted photon frequency. This means that spontaneous emission

(5.64)
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is more important in the ultraviolet (UV) region than in the infrared (IR).
Of course, the relative rates depend on p, but for typically encountered
light sources, one often finds that spontaneous emission dominates the
emission process in the UV and above, while stimulated emission domi-
nates in the far infrared and below, with both processes commonly seen in
between.

It is interesting to note that Einstein actually worked out the relation
between A and B in 1917, long before the quantum theory was developed
that could derive this from first principles. Rather, he used Planck’s radi-
ation law together with simple arguments based on microscopic revers-
ibility to derive this.

5.4.7 Oscillator Strengths

Another way to represent emission rates is in terms of oscillator strengths
Sim- These are defined as

2
fiom = 573 | i (5.65)

where m is the electron mass. fi,, is a dimensionless quantity that would
be unity for a harmonically bound electron. f},, thus measures the inten-
sity of a transition relative to this harmonic model.

From Egs. (5.60) and (5.65) it is easy to see that

fim ’—iﬂ? B(m — k) (5.66)

5.4.8 Electric Quadrupole, Magnetic Dipole Mechanisms

Recall that in developing our expression for the rate of absorption and
emission of light we made the long-wavelength approximation of replac-
ing ¢®T by 1. This gave us an expression involving an electric dipole
matrix element for the transition rate, and transitions for which this is
nonzero are called electric-dipole-allowed transitions. Often, even when
this matrix element is zero, weak transitions are still seen. Although
there are a number of reasons why this might occur, one often encoun-
tered reason is that the terms neglected in the long-wavelength approxi-
mation may be contributing. To see what is possible, let’s expand ¢ in
a Taylor series and keep the ik-r term.

e®r = 1 +iker+ - (5.67)
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Recall that the transition rate expression involves the matrix element
Uim, and in this case it is given by

eAQ

Utm = ~kI522 (1 + deneplm) (5.68)

Assuming that the electric dipole matrix element is zero, we have
_ . er
Ugm = —i e (k|(k-r)(e-p)|m) (5.69)

Now

k-r)(e-p) = -;- [(k-r)(e-p) - (er)k-p)] + 5 2 [(k r(e'p) + (er)k-p)]
(5.70)

Using the identity
(a-c)(b-d) — (b-c)a-d) = (a X b):(¢c X d) 5.71)

in the first bracket in this expression, we get
1 1
k-r)(e'p) = 3 (k x g)(r x p) + 3 [(k-r)(e-p) + (e1)(k-p)] (5.72)

Considering just the first term on the right-hand side of this expression,
we notice that it contains the orbital angular momentum L = r X p of the
electron being considered. Thus the matrix element of the first term is

‘z"n’:" (3) & x &-kiLim) =

where M = ¢/(2mc)L is the magnetic dipole moment operator for the
electron. To show this, note that for a Bohr model atom, the magnetic
moment equals the area enclosed by an orbit times the current associated
with that orbit, divided by c.

—"’ﬂ me (kX o)-(kIMm)  (5.73)

M=2ai=tar)(e2) (5.74)
Since mvr = L and o = v/r,
M=z—L (5.75)
Then
Uk = 22 (k X #) - My (5.76)

which is the magnetic dipole contribution to the rate.
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Now let’s evaluate the second term from above. Writing down the
vector dot products in terms of components, we have

2 (enep) + (enep] = 3 3 (kirigip) + &jrkip)
1

= % > kigj(ripj + ripi) (5.77)
:

Now p; = (im)/h [Hy, riland rip; = pir;i + [r;, pil=pjri+ ihd;. Thus the
second term is

1 1.
3 2 kigilpjri + rjpil + 5 ih. 2 kig;d (5.78)
i [

The last term in this expression is simply
1

2

iﬁZk,-a,-=%ihk-s=0

since k and € are perpendicular. Thus we get

1 im 1
3 2 k,'Sj[pjr,' + rjp,-] = %3 2 k,-sj[HOrjr; — rjHgr; + riHor; — rjr,-Ho]
i i

= 5% > kigjLHo, rjri] (5.79)
u

and omitting the magnetic dipole term, we have

—ieAg im
2mc 24

Ukm = >, kigj{k|[Ho, rjrilim) (5.80)
-

The matrix element in the sum can then be evaluated to be

f hw ) -
>, eikI(Ex = Em)rjrilmyk; = —(:lz(m 2> &i(Qum)jiki = ‘—"‘“elfm & Qkm -k
i ]

-
(5.81)

where
(Qrm)yj = (k|(er;)erj)|m) (5.82)

is the (i, /)th matrix element of the electric quadrupole moment tensor.
Thus

Agwy,
Uim = "'g—c_éﬂ € Qpm-k (5.83)

Combining this electric quadrupole term with the magnetic dipole term,
we have
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Ui = —29 (1 x &) My + 2091 o 0 (5.84)
) 2 4ce

This expression can now be substituted into the rate formula for emission
and absorption. Often one finds that selection rules make one or the other
of the two terms therein be zero. For example, M behaves like rotations
about x, y, or z in its symmetry properties, and thus belongs to the same
irreducible representation as Ry, R, and R,. Q. on the other hand,
depends on the products x2, xy, y?, and so on. Both of these terms can in
general generate selection rules different from the electric dipole result
and can therefore give nonzero transition probabilities even when the
transition is electric dipole forbidden. In these cases the transition is said
to be magnetic dipole allowed or electric quadrupole allowed, respec-
tively.

5.4.9 Molecular Transitions: Franck—Condon Factors

For electronic transitions in molecules, one needs to consider both the
electronic and nuclear degrees of freedom in evaluating the dipole (or
quadrupole) matrix elements. Thus if we consider the dipole matrix ele-
ment py.,, the states k& and m refer to combined electronic plus nuclear
states. If the Born~Oppenheimer approximation is invoked, we write
these states as products:

Uk = Xk aNIBr(ge; an) (5.85)

and similarly for state m. Here g, represents the electronic coordinates
and gy the nuclear coordinates. ¢ is the electronic wavefunction for
state k and ka the nuclear wavefunction for nuclear quantum numbers
vg. The dipole matrix element in this notation is

Biom = Bk = | dan [ dae xE Sumx? S (5.86)

Yin
where u is the dipole operator appropriate for the system of interest. By
rearranging this expression, we can write

k
By ,my,, = f dqn kaMkm(QN)X:r:" (5.87)

where we have defined the electronic matrix element My, (not to be
confused with the magnetic dipole matrix element of Section 5.4.8) as

Mim(gn) = f dge ilge; GNIBDm(de; aN) (5.88)

Note that if the Born-Oppenheimer approximation is accurate, the ¢’s
must be slowly varying functions of gu, and one could argue that this
would imply that My, is also slowly varying (admittedly, with less rigor).
If so, then My, can be expanded about some gy which we call ay.
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Preferably, g3 is the point of maximum nuclear overlap, but often the
equilibrium position in the mth or kth state is used. In either case we have

oMy,
agN
Keeping only the constant term, we find that

Bimom = Minla) | xExm, dan (5.90)

The nuclear overlap integral is called the Franck—-Condon overlap. This
provides an easily evaluated expression for determining the relative final-
state probabilities (i.e., the intensity as a function of v,). The electronic
matrix element is needed to get absolute probabilities, but often only the
relative ones are needed. Note that in the evaluation of the Franck-
Condon overlap integral, symmetry may not be useful since the symme-
tries of the molecule in electronic states m and k need not be the same. If
the symmetry groups are the same, the states v and v, must belong to the
same irreducible representation if the integral is to be nonzero.

For diatomics, the dependence of the overlap on v, can easily be
determined graphically using the electronic potential energy curves. Fig-
ure 5.3 shows a typical situation, in which the excited-state equilibrium
geometry is located at larger internuclear distances than the ground

Mim(gn) = Mim(ay) + lsan —gf) + -+ (5.89)

Vi

Energy

im>

r

Figure 5.3. Electronic potential energy curves for two states in
a diatomic molecule.
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Intensity

HHM

F.‘igure 5.4. Vibrational bands determined by overlap of vibra-
tional wavefunctions for the potential curves in Fig. 5.3.

state. For moderately displaced minima, evaluation of the Franck—Con-
don overlap leads to the vibrational distribution depicted in Fig. 5.4. Of
course, each line here should really be a band, since there will be many
rotational transitions of similar energy for a given vibrational transition.
Often, there is appreciable overlap between an initial bound state and a
final dissociative continuum state, in which case a portion of the band
spectrum will be continuous. Figure 5.5 shows the net result of adding
rotational lines and a vibrational continuum to the spectrum.

Intensity

ho

Figure 5.5. Portion of an electronic spectrum, showing
smoothed-out vibrational bands and a dissociative continuum.
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The presence of centrifugal or ot'her .barners in thfanet)t(:;l::ciiss;astieg ;la;ir}
lead to predissociation, as illustrated in Flg_. 5.6, \{vhc.el;'e; T e
cant probability of transition to a qua51b0u1'1<.i vibr ettty b propor.
results in broadened lines. Note that .th'e. transition prot s ponble
tional to the square of the overlap of initial and final lsta Zs\;en et
that a specific transition may have a nearly zero overlap, cven hoen 1L e
symmetry allowed. In such cases we say that the trans lon 18 ranee
Condon forbidden. This typically oceurs when the tvl\;o ;ran(:k_condon
have very different equilibrium ge(.)metrles.. 'lndeed, ; e e v
overlap integral typica(lily co;stramset:;r;::l::;etcc: gi(:., el:-lethat -~ m;Clei
change in nuclear coor inat.e » as on . ven that ihe Tace!

i ime to move during the time scale of the e ectr
haveli'l ttt}lxz tequilibrium dipole matrix element Mkm(q‘}v) is ?;2, t(;t;t;n(tzz
dMy/dgn term in the expansion of Myu,(q) is nonzero.
first non-Condon term) is

— Kk (gn = m 5.91)
Py mvy, = a;v;km Itﬁv f dgn ka(qN an)x U (
’ N

i i states
Note that if the equilibrium positions and frequencn.es of t‘r]lle :n fzid (l:cnfunc-
are identical and the vibrational states are har{nor;]lc o.sg:l ?oonal (gluantum
i i i ires a change in the vibrati :
tions, this matrix element require : . ational quancun

is gi rise to vibronic transitions,

number to be nonzero. This gives . o
change in both the electronic and nuclear states occurs. Equatl.ct)lnogeral)l
can also cause vibronic transitions, but it cannot cause changes i

vibrational state symmetry, whereas Eq. (5.91) can.

Energy

r

Figure 5.6. Potential curves and wavefunctions associated with
a predissociative final state.
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Light Scattering

5.5.1 Qualitative Description of Light Scattering

We now turn our attention to the scattering of electromagnetic radiation
by atoms and molecules. First consider the phenomenology of the light-
scattering process. If an electric ﬁqld E interacts with any atom or mole-

cule, it induces a dipole moment ™ in it which is related to E to a first
approximation via '

pind = oE (5.92)
where a is the polarizability tensor (a3 X 3 matrix). For very large fields,
there will also be terms proportional to £2 that will be important, but we
will defer discussion of these to Problem 4 and Chapter 11.

If Eis an oscillatpry function of ¢ (such as in an electromagnetic
field), then so will be pind, Classically, oscillating dipoles act as antennas
and radiate. This radiated light is what we think of as scattered light.

Now a in general depends on the molecular coordinates gy [i.e.,
a = a(gy)], and to the approximation that the displacements from equilib-
rium g3 are small, it can be expanded:

J
qn) = algy) + ﬁ (Gn ~ q¥) + - - - (5.93)

The first term is the rigid molecule polarizability, which does not depend
on time. Upon multiplying by E(¢), we get a u that oscillates at the same
frequency as E. The radiation emitted by m will thus be at the same
frequency w. This js called Rayleigh scattering. The da/dgy X (gny ~
g¥) term classically oscillates at a vibrational frequency w,, so when it
multiplies E(z), we get a u that oscillates with a mixture of the two
frequencies w + wy. The scattered light at frequency o — wy is called

Stokes—Raman scattering, and that at ¢ + wy is called anti-Stokes—
Raman scattering.

5.5.2 Simplification of Electric Dipole Interaction

To geta time-dependent quantum description of light scattering we need
to be able to write down an interaction potential between u and the
electromagnetic field E. To simplify this analysis, we now show that for
any dipole g, in the long-wavelength approximation the interaction is of
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the form —u-E. We demonstrate this by showing that it works for ab-
sorption and emission. In the long-wavelength limit, we have, from Eq.
(5.9, "

E= "“;A" e sink'r — wf) ~ %9 € sin w? (5.94)
So if
—- —_ 2"_4_9 —- _‘9_4_9 iwt _ —~iwt
Vi) = —p-E = pre——sin ot = uezl.c(e e '
= Ue—i(ut + U*e+iw{ , (5.95)
where
U= (L_e)_wA_O (5.96)
2ic

the £, m matrix element of U is

- @4
Uim = 2ic €* im (5.97)
which is identical to the Uy, obtained from the (e/mc)A -p interaction
[Eq. (5.43)]. Thus as a shortcut to the dipole approximation we can use a
— i+ E interaction rather than the more laborious (e/mc)A - p.

5.5.3 Interaction between Field and Induced Dipole;
Two-Photon Process

Now we consider the interaction potential between two fields E,(#) and

E,(t) due to their mutual interaction with a molecule. This will lead to a
description of several two-photon processes, of which scattering is one
example. Suppose that these two fields have frequencies w and ', and in
the long-wavelength approximation are given by

E, = f‘—‘c’-“i £ sin wt (5.982)
E, = ﬂ’ci &' sin w't (5.98b)

Then if the field E, interacts with a molecule to induce a dipole pind =
a+E,, the interaction of this dipole with the field E, is

V(1) = —Eu(0) pi™ = —E () a-Ey (1) (5.99)
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Substituting and multiplying, we get

V(t) = __wAO @ AO (e'a-€) EI; (eimf _ e—iwl) % zll (eiw'_f _ e“im'l‘)
- _‘119;(4_ w_';_‘{(') (6 - )@+ 4 gmitarta)t
_ ei(w—w')t - e—i(w—w')t)
— U(ei(w+w’)t + e—i(w+w')t _ ei(w—w’)l _ e—i(w—a)')t) (5.100)
where
_lwAgw'Ay :
U= i p (&' €) (5.101)

The transitions that are induced by the time-dependent interaction are as

follows:

1. e H0*o cayses absorption of one photon of frequency w and one of
frequency w'. This is two-photon absorption, a coherent process
whose rate is not the same as the rate of sequential absorption of two
photons by a molecule.

Notice that both orderings depicted in Fig. 5.7 of the two photons
are possible. Generally, both orderings will contribute to the absorp-
tion rate, although occasionally (say, when a real intermediate state at
one of thé photon energies exists) the amplitude for one process can
dominate over the other. This will become more apparent after an
expression for « is developed.

2. ef@*9) causes two-photon emission, as in Fig. 5.8.

causes the emission of a photon of frequency » and absorp-

tion of one at frequency w’. Suppose that @’ > w. Then the two possi-

ble transition schemes are as depicted in Fig. 5.9. For either scheme,
the net effect is called Stokes—Raman scattering. If |m) is the ground

3. ei(a)—w')t

k> —1 k>
fhw fw'
AND

hw' fw

Im>

— lm>

Figure 5.7. Two-photon absorption.
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m> — T lm>

fiw hw’

AND

Ao’ hw

k> — k>

Figure 5.8. Two-photon emission.

state of a molecule, typically the first process pictured in Fig. 5.9
contributes predominantly to the Raman amplitude.

4. e~ f@=®)M cayses emission of #w’ and absorption of fw. For o' > w,
we get the transitions in Fig. 5.10. This corresponds to anti-Stokes—
Raman scattering.

We see then that the types of processes caused by two fields interact-
ing with an atom or molecule are all two-photon processes. For three
fields, we would get three-photon processes, and so on. We also would
get three-photon processes from two fields provided that one couples
nonlinearly to the molecule [i.e., adding terms dependent on E2 E3, and
so on, to Eq. (5.92)].

5.5.4 Raman Scattering

Now let’s calculate the rate of Stokes—Raman scattering. The appropri-
ate interaction term is :

k>

lm>

Figure 5.9. Stokes—Raman scattering.
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Im>

lk>

Figure 5.10. Anti-Stokes—Raman scattering.

V() = Uellw—wt (5.102)

and since this is in a form to which Fermi’s rule is immediately applicable
we get ,

27 2r 1 w?Ad w?Af?
Wim 3 plUkm| =3 P 16 &2 v 'E -ak,,,-£]2 (5.103)

Substituting
_ 20AN\ "
Ao = 2¢ (%37) (5.14)
we get
w _2m 2aAN 2aAN' )
km = 3P =7 w'—v—w|s O €] (5.104)

At tl}is point we can correct for spontaneous emission, much as we did
previously by replacing N by N + 1 for the emitted field E,,. This gives

_ . (2mh\E
Wim. = prw (T) N'(N + I)lE"akm°£!2 (5.105)

It is customary to express Raman intensities in terms of cross sections.

The differential cross section do is defined as

- rate of scattering into solid angle dQ)
incident photon flux in beam being absorbed - 106)

The fate of scattering into dQ is just Wim €valuated using the emitted field
density of states:

_ v
P = Gmep

d} (5.107)

(&,
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The incident photon flux is simply the number of photons per unit time per
unit area that cross a given point. If our volume V consists of a photon
beam of area A and length L, then in a time ¢ = L/c the number of photons
crossing is simply the number of photons in V. Recalling that the number
in the absorbing beam is N’, we see that

number per unit area per unit time = Z(—]{'/_c) = % (5.108)
Thus
b= 38 s S (5 O D !
= ﬂi“iicw |&" - og - €2 dO (5.109)
so that the differential cross section is
Z—S: (N + 1)32—4“’—'|a'-ak,,,-a|2 (5.110)
For Rayleigh scattering, o' = w and
Z—g=(N+ 1)%)218"akm~£|2 (5.111)

Note that if ay, has weak frequency dependence (which is often the
case), then do/d() is proportional to w®, which explains why the sky is
blue (blue light scatters more effectively than red). Also, if &’ = &, we call
the scattering polarized, whereas if €' 1 &, it is depolarized.

5.5.5 Evaluation of ayy: Kramers—Heisenberg Formula

Previously, we had defined a via p.i"d = a+E. Thatis, a is the proportion-
ality constant between the applied field E and the induced dipole moment
pind, p,i“d is calculated by determining the expectation value of the dipole
operator between molecular wavefunctions which have been perturbed by
the applied field E. Thus '

Biem(®) = (GO (1)) (5.112)

but it should be apparent that g, (f) will include contributions from both
the permanent dipole moment and the induced one. In fact, if there is no
applied field, then ¢, (f) = d),,,e"E"f‘/ % and we get

Pam(t) = ekl (5.113)
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where py,, is the usual dipole matrix element we use in Fermi's golden
rule. For a general y,,(t), we expect to get

pan(t) = kiU + i)
ind

where pfoi™ is the usual dipole matrix element and ujj}; is the induced
one, from which we can get ay,,. To get ,,,(#) and yi(¢) we use first-order
perturbation theory:

W = 2 che Elhg,  j=km (5.114)
with
j i 1 iwgit’ '
ch=by -3 [L drretent v, (5.115)

For the interaction of a single field with matter, we have previously seen
that

V() = Ue @' + Urel®! (5.96)
where
wA
Ukm = EFO & im (5.97)

in the long-wavelength approximation. Then for j = k, m, we have

; ’ it i Lo
el = 8y = 3 [ A UyeT " + Ut yelonit

e—i(w—w,u')l -1 e+i(w+w,,j)f -1

U o) } (5.116)

i
¥~ [U"j —i(w — wpy)
Substituting this into the expressions for y,,, and iy, we get

U(t) = e~ Emtlhg é S e~iEntlhg, [U,,m(e"(w—wnm)t -

—i(w ~ Wym)
(ei(w+w,,,,,)t - 1)]

(o + wym)

+ Ul

- e_,'Em,/ﬁ {¢ + l Z d) [U,,m(e“'wt — el(umnl)
S " W~ Wpm

% iwt _ iwmpmpt
_ Utm(e™ — e )]} (5.117)

o+ oyy

Now at this point we notice that part of the perturbation-induced change
in the wavefunction oscillates at frequéncy w and part at frequency wy,,.
Only the first part is of interest here since that will be in phase with E(z).
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The second part will be out of phase and cannot effectively cause transi-
tions. Neglecting it is sometimes called the rotating wave approximation.
This leads us to
~iwt

U = e o iEmtlh: {¢ 4= Zd’n[ nm€ U;klmeiw']} (5.118a)

W = Wpm T e+to

by = o~ iER {¢k + %2”: b, [M UnAe'“"]} (5.118b)

W= Wy Wt W

Now let’s evaluate py,(?), to first order in U:

U,.e —iwt U eiwl
= l®kmt { perm | - [ nm _Ynm ]
e (1) P 2 <k|”'! n) Onm © + Oy
iwt —iwt
Unke
F 3 |25 45)
Z<n“‘| ® — Wpk w + wuk
= ei"”"”’{ perm _ 2 [I"knuﬁm _ ﬂnmuﬁk]
Fim ﬁ ~ Lo+ gy @ — Ok
+ e ! 2 {l‘annm _ I‘nmUnk]}
3 W= Wy Wt o
- ei‘”"'"'{ ”anrm md} . (5.119)
where
[.tmd wA() i { iwt 2 [ BinMim anl‘ﬁk]
km = 2ic £ ~lw+ gy © — wpk

—iwt MinMnm Hnmink ]} .
+e 2 [w i | R (5.120)

Note that the dot product in Eq. (5.120) involves the second dipole matrix
element in each term.
Now we want to reexpress this in the form p."‘d = am* E, where

E= “’TA" € sin wt (5.121)

To do this, consider the (i, /)th component of the (k,m)th matrix element
of the first set of square brackets in Eq. (5.120). Taking 4, to be hermi-
tian, and defining

k i i j
(s = h§{< | il nYm | il ) (nlulm>(k|u,ln>} 5.122)

w+w,,m ® ~ Wpk

Eq. (5.120) becomes

ind _

P = 2lc {e""’akm's —e"

ok - g} (5.123)
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e k>
im>
ho' ho
In>
Figure 5.11. Transitions associated with w = —wpy.

Since « is hermitian, oy, = agm, S0 We can write

pitd = o, “’TA" € sin wf = ayy - E (5.124)
Thus Eq. (5.122) is the famous Kramers—Heisenberg dispersion relation.

Note that it consists of two terms, one of which would be resonant if
® = —wpy, and the other if ® = w,y. The first term corresponds to an
intermediate state with energy E,, = E,, — iiw and comes from the diagram
depicted in Fig. 5.11. The second involves a state with energy E, = E; +
fiw and involves the diagram in Fig. 5.12. Thus we see that there are two
contributions to the Raman amplitude, corresponding to the two possible
orderings of the photon absorption and emission.

The Rayleigh intensity corresponds to a,,,,, and from the expression
above we find that

1
=3 2 Hmnbinm 7 s (5.125)
n nm

Note that because of the infinite sum in Egs. (5.122) and (5.125), the
expressions for a,,,, and ay,, can be inconvenient in actual calculations of
scattered intensities. One alternative that is useful for zero-frequency
polarizabilities is to do a finite field calculation wherein « is obtained by
evaluating the following expression (numerically evaluated by finite dif-
ference):

In>

ho ho

k>

im>

Figure 5.12, Transitions associated with o = wp.
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013

(amm)y = oE; an

where (H) is the expectation value of the molecular hamiltonian, includ-
ing the molecule-field interaction.

et 27 T o, ) ,
fo r dr fo do fo Sin 6 do e~ %"y cos @ 70 = 327k

(5.126) agi(ag? + k'%y3

Once you have do/dQ), you can determine o by straightforward integration
over scattering angles.] Evaluate o at iw = 20 €V, and show how ¢ varies
with E’,

4. When high-intensity radiation interacts with matter, the induced dipole ™ is

related to the field E,, by an expression
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PROBLEMS FOR CHAPTER 5

1. What is the radiative lifetime of the hydrogen atom in the 2p, state? The

answer is roughly 1079 s.

. (a) What is the density of states of a free particle (e.g., an elegtron)? The
derivation works the same way as for photons except that the relation between
energy and wave vector is E = #%k2/2m.

(b) What is the density of states of a harmonic oscillator?

. What is the total cross section o for photoionization of a ground-state hydro-
gen atom using 20-eV photons? To solve this problem, first derive an expres-
sion for the differential cross section do/d(} for absorption of light by a ground-
state hydrogen atom. The differential cross section i§ simply t.he rate of
absorption divided by the flux of incident photons. This flux is JUS(.NpC/V
where p is the density of photon states. In determining the rate expression, the
relevant state density should be taken to be the product of photon and electron
state densities. (For the latter, see Problem 2.) After ionization, thp electron
is a free particle, with wavefunction ¢ = exp(ik’-r)/V'2, where k' is the I?,nal
electron wavevector. k' is related to the electron translational energy via E' =
#2k'2/2m, where E’ is related to the initial energy (20 eV) by energy conserva-
tion. What is E’ for the fiw = 20 eV? [Hint: After you have gotten to the point
of writing down an expression for the differential cross section, there is a nasty
integral to work out. The following formula will help:
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/J.i"d=aEm+,3Ei+‘yE2)+"'

which includes terms that depend noulinearly on E,,. The first nonlinear term
is proportional to the hyperpolarizability 8. Allowing the induced dipole mo-
ment from this term to interact with another radiation field E, leads to the
interaction

Viat = —E,B-EJ

(a) Using the semiclassical theory of radiation and the long-wavelength ap-
proximation, find the term in Vint that causes Stokes—hyper-Raman scattering
(i.e., absorption of two w photons, emission of one ' photon with w' < 2w).

(b) What other transitions does Vint cause?

(c) Develop an expression for the rate of hyper-Raman scattering. How does
da/df) depend on w and o’ if 8 is frequency independent?

5. Consider that an electron is harmonically bound to a molecule. This means

that the electronic hamiltonian is

2
P I
Hy=— 4 = mwix?
0% 2m T 2%
where x is the electronic coordinate and wy is the frequency of oscillation of the
electron. The electronic wavefunctions in this case are simply harmonic oscil-
lator states, and the energy levels are E, = Awg(n + 4), where n is the elec-
tronic quantum number.
Show that the Rayleigh polarizability for this system is
‘ o= eXm
m(z) - w?

6. Consider the (¢%/2mc?) A? term in the interaction of radiation and matter. In

the long-wavelength approximation and for the vector potential A defined in
the text, what types of spectroscopic processes can this term induce (i.e., one-
or two-photon emission, Raman scattering, etc.)?

7. For a molecule with D, symmetry in both the initial and final electronic states,

if the initial state belongs to the A} irreducible representation and the final to
A3, to what irreducible representations must the vibrational coordinate aN
belong to make the non-Condon term nonzero?

8. (a) Apply extended Hiickel theory to the linear H; molecule (D« symmetry).

Assume that the Hiickel rules apply in determining hamiltonian matrix ele-
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ments and overlaps. Determine energy levels and symmetries of the lowest
three states.

(b) What is the lowest-energy transition that is electric dipole allowed? Elec-
tric quadrupole allowed? Magnetic dipole allowed?

. Using the identity
{[x, H], x} = 2xHx — Hx? — x?H

and assuming that the potential is independent of momentum, prove that
2m
K2 z (Ex - Es)lxsklz =
k

Here x5 = (s|x|k). Similar expressions hold for the y- and z-coordinate matrix
elements. Then replacing x by the dipole operator for N electrons, u = eZ;r;,
and substituting the definition of oscillator strengths, prove the Thomas-

Reiche-Kuhn sum rule,
2 f}(s =
%

Note that the result is independent of s—what does that mean?
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Occupation Number
Representations

Introduction

In Chapter 2 we discussed symmetry aspects of molecular electronic
structure. One very important concept underlying our discussion there
was that of a basis set. Although such operators as H, x, p, and so on, are
defined as functions of coordinates and derivatives, the discussion of
molecular electronic structure with which most chemists are familiar i in-
volves discussion not in arbitrary spatial terms, but in basis sets. Thus
organic chemists talk familiarly of 2p= orbitals on carbon atoms in aro-
matic molecules, silicon chemists discuss pm-dm bonding, transition
metal chemists invoke dw—pm back donation, and materials scientists are
interested in electron trapping in narrowband semiconductors. It is there-
fore convenient to develop a theoretical description of electronic struc-
ture that can directly describe the electronic wavefunctions and states in
terms of basis sets. A convenient language for doing this involves the use
of the occupation-number representation, sometimes called second quan-
tization. This method exhibits some Very convenient properties:

L. It greatly simplifies notation for observables and wavefunctions, as
well as certain manipulations.
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6.2

5. It automatically handles antisymmetry (Pauli principle) requirements
in the treatment of electronic structure problems.

3. It conveniently describes processes such as photoionization or elec-
tron capture, in which the actual number of electrons changes.

4. Tt can be used to describe boson systems such as photons or vibra-
tional quanta as well as fermion (electron) systems.

5. It can easily be used in the study of time-dependent problems, espe-
cially in the Heisenberg representation. :

6. Most important, it facilitates visualizing and thinking about the behav-
ior of vibrations, phonons, and electrons in solids and in molecules.

All of these advantages come from one simple idea: We replace ab-
stract operators with their basis-set representations. These, in turn, are
described in terms of occupation numbers (filled, partly full, or empty
orbitals). Before discussing occupation number methods for electrons
(fermions), it is useful to consider the simpler situation of vibrational
normal modes and quantized radiation fields that use occupation number
representations appropriate for bosons.

Occupation Number Representations for Harmonic
Molecular Vibrations and Quantized Radiation Fields

6.2.1 Single Harmonic Oscillator

The occupation number representation was developed by Dirac to de-
scribe the harmonic oscillator. His presentation is reviewed in Section
1.4.1, and a key feature for the present discussion is that it involves
defining raising and lowering operators b™ and b (also known as creation
and annihilation operators) such that for an eigenstate |n), b*|n) is propor-
tional to |n + 1) while bjn) is proportional to |n — 1). In addition, the
operator b*b defines what we call a number operator, whose eigenvalues
specify the number of quanta in each eigenstate G.e., b¥bjn) = njn)).

The utility of using raising and lowering operators to solve harmonic
oscillator problems may be illustrated by considering the mixing of states
that arises from the cubic anharmonic coupling term

1d3Vv]

Vanh = 6ddle™ 6.1)

By solving Egs (1.37a,b) for x in terms of b and b*, that is,
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x = (i_)“‘ (b + b+
e ) (6.2)
one can rewrite (6.1) as
v 1dv 2
anh = g;,;;(m) (b + by (6.3)

The evaluation of matrix ele
: : ments of V,,, can now b i
plished using the relations (1.45a,b), leadairrllg to ? readly accom-

Ly %\
(m|Vanpln) = = ( > + L &y A "
- (m|(b + b*)|n) = = ( )
§ d\2pw) e = ¢ 2 2w

8mn+3l(n + V(n + 2)(n + 3)]12
+ dmnr13(n + 1P
+ 8y 1302

+ 8 u-3l(n)(n — 1)(n - 2)]"2} 6.4)

so that this perturbation can add or subtract one or three quanta
6.2.2 Normal Modes

F . .
d:r le):itomlc rpolecule.s, or for solids, the vibrational modes can be
scribed approximately in terms of normal coordinates. Within this de-

Scrlptlon, the harﬂlltonlan for the mOleCUlC, Wlthout tr anslation Oor rota-
. 1 . .
> l L1 al I

2
4 1
PEL N
§qj ™ + 5 kg3 (6.5)
::; tperft;ct analogy tf’ (1.36). The sum runs over 3N — 6 internal coordi-
hes (3N - S for !mear species) where N is the number of atoms, and
an| a';r}xllomc term_s in the potential have been neglected. ’
o ,: :;:}rlnor?lc 1hamlltonian (6.5) is separable, so that the total energy
¢ single-mode energies and the wavefunction j
_ : tion is a product of
single-mode wavefunctions. Quantizati b p .
: oc . tion may now be i
fining raising and lowering operators b; and b, " roduced by de
4t

bo= = 1(E22) " 5, +
AR ARV il (662
] b= {(Eee)” - }
Vi T T =P (660
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and assuming the commutation relations
lbg byl = 8y (6.6¢)
[bq; bq’] =0 (6.6d)

The hamiltonian (6.5) then becomes
H =73 (bgby + Hho, (6.6€)
q

The commutation relations (6.6¢c,d) are particularly important: They hold
for particles obeying Bose-Einstein statistics (photons or deuterons, as
well as vibrations) as long as the states are orthogonal. The eigenstates
and energies can be written

E(ny, ng, n3, .. ) = 3 (ng + Hhawg (6.72)
q

_ D)oo )
T (mlnlngl o2

+yn,
=187 1000 . )
. (ngh)

Just as for the single harmonic oscillator, any operator that can be
written as a function of the pgand x, variables can equivalently be written
in terms of the bq,b; . For example, intramolecular vibrational energy
transfer can be so described. The Taylor expansion of the overall, multi-
mode vibrational potential will include so-called diagonal cubic anhar-
monicities such as that in (6.1) and off-diagonal anharmonicities, such as

[ningny - - -)
(6.7b)

V(3) - l 1V
273 axq ax% rq=rg

X l.x% (6- 8a)

This can be reexpressed as
VR = AQGT + b)(63 + by (6.8b)

where the constant A%’ includes the derivative of (6.8a) and the constants
from Egs. (6.6a,b). Then using golden rule arguments, to lowest order the
only vibrational energy exchange mediated by V(132) will involve the two
processes (njny—ny + 1,ny = 2), (mny— ny — 1, ny + 2), since the others
permitted by (6.8b) cannot conserve vibrational energy; even these terms
will give a small contribution unless modes 1 and 2 have a 2 : 1 resonance.
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6.2.3 Quantized Radiation Fields

An important application of occupation number representations for bos-
ons is the quantization of electromagnetic fields. Up to now we have
considered these fields to be classical and described by a vector potential
A(r, 7). This A is obtained by solving the wave equation
1 3%A
VA = 257 (6.9)
subject to certain boundary and gauge conditions.

To quantize the field, it is convenient to expand A in terms of cavity
modes. The cavity boundary conditions limit the allowed frequencies to a
discrete set, much like what occurs in a violin string. Under these cir-
cumstances it is convenient to expand A in terms of cavity states as
follows:

Alr, 1) = \/5-3- ¢ 2 Qi (i () (6.10)

where w;, (r) is a spatial cavity state for mode ! and polarization o, gy, is
the time-dependent amplitude associated with that state, and (47/ V)'/ 20is
a normalization factor that will prove convenient later.

Equations determining both w, and gy, can be obtained from the
wave equation by substituting A therein and separating variables. This
gives us

Vi, + Fup =0 ©.11)
C

d2

-Td‘t”" + Wl = 0 6.12)

The types of solutions we are interested in are free-wave solutions where
(1) = g™ (6.13)

Here ¢, is the polarization vector, so that k&, = 0. That u, satisfies
the wave equation is easily verified provided that we set Kt = w}c?,
Normalization of u,, is given by

[ w0 wp ) P = Voys,, 6.14

Note also that g,¢ %7 is also a solution to Eq. (6.11). In the present
treatment we always write ¢*'" and include both positive and negative
k;’s by expanding the sum to consider +/ and —/ (letting k; = —k_)).
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Now consider the classical hamiltonian [Eq. (5.12)]:
H= 8—17; J(ER + |BP) d* (6.15)

Substituting Egs. (5.1) and (5.2), this becomes

"—1' —!-(a—A—)z 2] 3
H=g2 V[(;Z 7)) T (VX AP dT (6.16)

and upon substituting Eq. (6.10) we get

1 ..
H = v ’0;‘?, Qiocql'c’ J.v u;:r ‘g d’r

) 6.17)

+ 2C‘_‘/— lm;cr’ qicqdl'c’ j (V X u[a,)*-(v X u[,o_,) d3l'

Now invoke orthonormality in the first integral. In the second, use the
fact that if u,, = elaeik"', then V X uw;, = ik; X wy,, and
(V X wg)* «(V X upg) = (ky X we)* «(kp X upgr) (6.18)
From the identity
AXB)-CxD)=A-OB-D)~-A-DB-C (6.19
we can convert Eq. (6.18) into
(k) X wig ) (ky X wpg) = Krkp)ujrupe) — Gk wpg)Ken),)  (6.20)
Now integrate over all space. The second term in (6.20) integrates to zero

because k;u;, = 0 from the gauge condition. Using the orthonormality
conditions for different u;,’s, we get

lw . 1
H=§’EQ%U+§CZIZq12ak12

| 6.21)
= 2 ’2 ("IIZLT + wIZQI2o')

This is just the sum of a set of uncoupled harmonic oscillator hamiltonians
Hiz = % ("]120' + m%‘]lzo-)-

The equivalence between the classical electromagnetic and harmonic
oscillator hamiltonians can be used to convert to the corresponding quan-
tum hamiltonian very easily. Simply define b4, b[f, as used previously
[Eq. (6.6a) but without mass factors]:

1 \
big = \/_Tw, (w1 gie + ipio) (6.22a)
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1 .
biy = Vore, (wiq1e — ipig) (6.22b)

In this case,

h +
o = \ g, Glo T bio) (6.23a)
. . fiwy +
Plo = dig = 1 T (bla - b[g') (6.23b)
Then postulate that the usual boson commutation relations are obeyed:
(o bilo'] = 811850 ' (6.24)
[bigs bro] = [big, big] = 0 (6.25)

Then the hamiltonian operator for the field is

H= 12 hwfblybiy + 3) (6.26)

and Ay, = bf{,bh, is the number operator for the number of photons in the
(lo)th mode. The states of the field are thus

Y= ]nla-, Mgy « o vy gy o« . ) (6.27)
with the usual boson constraint ny, = 0.

6.2.4 Coupling of Radiation to Matter Using
Second Quantization

As we learned previously, the coupling of the radiation field to matter can
be described by the interaction

V@) = ;;—i Ap (6.28)

Ip this case, A(r, 1) is given by Eq. (6.10). Substituting the second quan-
tized expression for g [Eq. (6.23a)], we get

47 h .
AW ) =\ ¢ 3\ 3 G + bgege™  (6.29)

Recall (Chapter 4, Problem 4) that the Heisenberg operators b,‘;(t) and
b[_(,_(t) for a harmonic oscillator are given by bf;(t) = ei“"bf{, and by, (f) =
ey, Substituting these into the expression for A, and changing [ —
-1l in the bf{,(t) term (which replaces k; by —k;, but leaves g5, w;, bi
unchanged), we get
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A, )= ng_ﬁcf ikrr=) |+ ~ikpr—ap)
’ = VooV (bla'e R )% (6.30)
For a given mode lo, this expression is nearly the same as the classical
expression we developed [Eqgs. (5.8) and (5.14)]. The only difference is
that here the field operators b and b/’; appear in place of VVN. Substitu-
tion of this expression for A(r, 1) into V(¢) gives us our matter-field inter-
action. Note that it operates on both matter and field states. Note also
that as we have it, the interaction is expressed in a hybrid representation
which is Schrodinger in the matter and Heisenberg in the field. If ex-
pressed entirely in the Schrédinger representation, we get (for a given lo)

—e |2mhc?
mc wV

(bioe™™ + b e~ikrryg p) 6.31)

The complete matter-field hamiltonian is given by

H = gmolecule 4 pfield | (6.32)

and the unperturbed states are products of matter and field states.
U = [m)lnj -+ g - - ) (6.33a)
Uk = [k)nj - - njy - - ) (6.33b)

6.2.5 Application of Fermi’s Golden Rule

Starting with the general rate expression

2
Wi = 5 p(E)| Vign 2 (6.34)
we see that the allowed first-order transitions involve the matrix elements
(f+ - njy - - -I(kl(b,(,ei""' + bltre_"k"')(ela “pmn; - - Alg * * *)
(6.35)

As far as the field is concerned, the nonzero matrix elements will occur
for (1) the b, term if e = nje — 1 and (2) the b,'f, termif nje = nig + 1. All
occupation numbers in modes other than lo- are unchanged. Obviously,
the first term corresponds to absorption and the second emission. These
are just the same results as were obtained previously from the semiclassi-
cal theory.

Let’s evaluate the emission rate. Clearly, (), + 1|b}|n =

T e ¥, ( lo I la-l Io)

2w e? 2mhi .
Wim = 57 PEn) 13 o (i + Dl(kle=ker(erg - plm)? (6.36)
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and in the long-wavelength approximation, using p — imayr, we get

2
e 2
Wi = 2mp <5 —w; m?w}(ng + Dikles - rjm)?

= 2mp 2#('11; + 1)

“)[1310' ‘ “km‘z (6.37)

Substituting in Eq. (5.49) for p and replacing wy,, by dwy,, (see discussion
in Section 5.4.4), we get

(1 + D’
Wim = I;whcr“ €10+ ptim|* dQ (6.38)

This is the same as was obtained in the semiclassical theory [Eq. (5.51)]
except that the factor ny, +.1 has appeared naturally rather than in an ad
hoc fashion. This leads to spontaneous emission, which can be thought of
as arising from the interaction of matter with the “‘vacuum fluctuations’’
of the electromagnetic field,

Occupation Number Representations for Electrons

6.3.1 Fermion Creation and Destruction Operators

The occupation number representation that we have just.discussed ap-
plies in situations where the number of excitations in a given oscillator is
unlimited; that is, the eigenvalues # of the number operator b*b can be
any nonnegative integer. There is a fundamental symmetry to such exci-
tations. They obey Bose-Einstein statistics, are called bosons, and their
creation and annihilation operators obey the commutation relations
(6.6¢c,d). We can rewrite the latter as

babg = byb, (6.392)

or, taking adjoints,
byby =blb} (6.39b)
and interpret this as meaning that the order in which the excitations are
created or destroyed is irrelevant; this is equivalent to the statement of
the Pauli principle for integer-spin systems in the form that the overall
wavefunction must be symmetric upon interchange of the coordinates of
any two bosons.
This insight is highly suggestive. For particles such as electrons (or
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positrons or muons) that have half-integer spin, the Pauli principle re-
quires that the wavefunction be antisymmetric (change sign) upon inter-
change of the coordinates of any two particles. . Following (6.39a), this
would imply that we can define creation and destruction operators a;‘f and
ay for electrons in states k and &', and that they must satisfy the antisym-
metry requirement

agap = —aya (6.40a)
or, defining the anticommutator as [x, y], = xy + X,
[ag, ag’ly =0 (6.40b)

By comparison with (6.6¢,d) we also write the two other general fermion
anticommutation relations as

laf, afls = 0 (6.40¢)
[ak, a/-:r]+ = Skk' (6.40d)

The result (6.40c) follows directly from (6.40b), while (6.40d) follows by
analogy with (6.6c). Additional insight into how these operators work
comes from considering the situation & = &’. Then (6.40c) implies that

afaf =0 (6.41a)

This is in accord with the Pauli principle statement that no two fermions
can occupy the same state; the operator product a,': a,}+ results in the
creation of two electrons in state &, which is not permitted, so that the
effect of such an operator on any function yields zero.

Analogously, (6.40d) implies that

aaf|m) + af aglny) = Iny) (6.41b)

where we take the arbitrary function |n;) as an eigenfunction of the fer-
mion number operator a; a,. Rewriting, we have

aaglm) = (1 - afap)lng) = (1 - nilng) (6.41¢)
The number ny can clearly be equal to zero, in which case
aga; |0y = |0) (6.41d)
or, from (6.41c),
ag a;l0) = 0 (6.41¢)

We can also take n; = 1, in which case

aaf|l) =0 (6.41f)
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or
af a1y = |1) (6.41g)

The interpretation of these results is straightforward: The number
ny of electrons permitted in level £ is either zero or 1. If level & is already
occupied, trying to create another electron in this level yields zero [from
(6.41f)]. On the other hand, if the state is unoccupied, trying to annihilate
an electron yields zero [Eq. (6.41e)]; this last property also holds for
bosons, as Eq. (1.43) shows. Thus the eigenvalues of a,ﬁr ay are zero and
I: trying to create a state with n; = 2 produces instead a zero {Eq.
(6.41f)]. Thus the operators a; and a,f truly are fermion destruction and
creation operators, They remove and introduce electrons into levels la-
beled by k, and their product, a,“:ak, is a hermitian number operator
whose eigenvalues, zero and unity, are the possible numbers of electrons
in level %.

It was possible in the case of harmonic oscillators, using Eq. (6.6a),
to express any observable operator such as momentum, kinetic energy,
dipole moment, or hamiltonian using the set of by and b;. Similarly, it is
possible, for electronic systems, to define any hermitian operator, in a
given basis set, in the occupation number representation once its form in
terms of the dynamical variables p; and x; is known. Even operators
such as spin projection, which have no simple classical analog, can be
written straightforwardly in terms of the ai and afi. Moreover, as dis-
cussed in Section 6.1, expressing the operators in occupation number
representation facilitates dynamical calculations, discussion of interac-
tions, model construction and interpretation, and direct use of basis-set
methods. In Section 6.3.3 we consider general electronic operators, but
first the generalization to multielectron systems will be discussed.

6.3.2 Slater Determinants and Electron Creation Operators

The most straightforward scheme, without use of the occupation number
representation, for assuring that electronic wavefunctions are antisym-
metric is to write them as Slater determinants or linear combinations of
such determinants. In the discussion following Eq. (6.40), it was pointed
out that use of the q;, a,f, operators automatically assured that antisym-
metry is present. This implies a relationship between this occupation
number representation and Slater determinants, and in this subsection
that relationship will be delineated.

We take {¢y,} as a set of mutually orthonormal basis spin orbitals
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wi'th space index & and spin projection u (p = *4, corresponding to a or 8
spin). Then a Slater determinant

$1a(1) 18(1) (1) - - dnp(l)
$12(2) 615(2) ot oap(2)

y=@Nyiz . o (6.42a)
$1a(2N) $18Q2NY . L éng(2N)

represents a closed-shell state in which the N orbitals ¢, ¢2,...,dyare

each doubly occupied. The €xpansion of the determinant in fact includes
(2N)! terms. We can also denote this state rather clumsily, as

¥ = lialiglyglagls, - - - INalNgON+1a0N+1g - - +)  (6.42D)

in which the 1I’s and 0’s are the occupation numbers for the basis spin

orbi'tals. The 0’s are really not necessary, since only the occupied orbitals

are important. The Slater determinant wavefunction is entirely specified

once we define the basis orbitals $ky and their occupation numbers,
The wavefunction Y of (6.42b) can be written

V= ajaaiga,ats - - - af,ablvacy
= I1 aeaislvac) (6.42¢)
=I1 IT af,vac) (6.42d)
k=1 “=a,8 “ . '

where |vac) denotes a vacuum state, with no electrons present. Just as
Pauli antisymmetry s guaranteed from the property of antisymmetry un-
derl exchange of the rows of determinant (6.42a » S0 it is guaranteed by the
antisymmetry property (6.40b) of the fermion creation operators appear-

ing in (6.42c). Thus one can make Slater determinants by the product
operator of (6.42d).

Consider the operation

al:lllak[.l,l e n, .> = {(:I)Va[#akﬂa,'&l e Okﬂ. . .) nk;l, =1
e ak#ak“ PPN Okp. . ) ”ky. =0
- {(_l)v";ﬂ' C Ok ) Phy = 1
0 n = 0
={l...nk“...> ”’(ﬂ.=1
0 Ngy = 0
(6.43)
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where the ket |- « - Mgy * * +) is a Slater determinant with ng, = 0or 1
electrons in the spin orbital ¢k - (Thefactorv = 3 j<k 1jis a phase factor
arising from antisymmetry.) Then (6.43) shows that this ket is an eigen-
state of the orbital number operator a,f,‘t(,z,quL with eigenvalue 0 or 1, corre-
sponding to ¢y, either empty or occupied. Similarly, the ket (6.42d) is an
eigenfunction of the total number operator 3 K2y a,f#a k> With eigenvalue
2N.

Now consider excited configurations. To be specific, we take the
Hiickel model for ethylene and assume the two 2p7r basis functions to be
orthogonal. Then there are two 7 electrons, and the molecular orbitals
are

b = —\}—i W+ u) ¢ = —\—'5 - uy) (6.44)

where u; and u, are pm basis functions on the left and right carbons,
respectively. The ground-state molecular orbital wavefunction is

1 |é1a(1) ¢ip(1)

1, (&)1 =
VA1) = 5 1@ 150

= aj,ajz|vac) (6.45b)

In the Dy point group, the MOs ¢1 and ¢, transform like a, and bg,
respectively. The singly excited configurations with m; = 0 can be writ-
ten

(6.45a)

l/l(l) = a;aala . ‘l’(g)(lAlg) l,,(2) = a;ﬁalﬁ . ‘I‘(g)(lA]g) (6.46a)
while the doubly excited configuration is just :
¥ = 404, = af,a,035a, av8a,,) (6.46b)

If we choose to include interactions'among the = electrons [as is done in
the PPP model of Section (6.5.4)], the single determinant of (6.45a) is no
longer an eigenfunction but, rather, an approximate (the Hartree-Fock)
ground-state solution. A more accurate solution (indeed, a complete one
within this basis set) is offered by the configuration interaction function

vl A1) = @A, + Cu(ay,) (6.47)

with C, and C; coefficients to be determined using the variational princi-
ple, subject to the normalization condition ci+ Cg, = 1. Note that the
single determinants are eigenfunctions of the orbital occupation numbers

ai’.,ealﬁ‘p(g)(lAlg) = llf(g)('Alg)
03,050 D (A1) = yO(1A,,) (6.48a)
aitx“Zaw(g)(]Alg) =0
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but that the multideterminant configuration interaction wavefunction is
not

a3, 0 (A1) = C @A) (6.48b)

We have just seen that while single Slater determinants are eigen-
functions of the spin-orbital number operators, linear combinations of
Slater determinants used to form CI wavefunctions lose this eigenfunction
property. One can calculate the expectation values giving the population
of a given orbital in a CI function. Thus we find, for the ethylene example
just discussed,

((l’(g)(lAlg)ia/aak#N’(g)(lAlg)> = 5&1 (6.49a)
WO Ar)lad,a, [0 Arg) = 8uCh + 8aC;  (6.49b)

Thus the excited (antibonding) orbital ¢,, which is unoccupied in the
molecular orbital ground state $(& (14, g) is partially full in the CI state,
while some electronic occupation has disappeared from the ¢; orbital,
which was full in the MO state.

This behavior is characteristic: In many fermion systems, including
the many-electron states of atoms, molecules, and solids, one can always
define a best independent particle, or Hartree-Fock, state. This single-
determinant state has a weli-defined Fermi energy &g, such that all orbit-
als with orbital energy below ef are full and all those with orbital energy
above e are empty. When correlation effects arising from interelectronic
repulsions are included, the single-determinant state is generalized to a
multideterminant, CI, state. In this case there is still discontinuity in
occupation at the Fermi energy, with orbitals with energy levels below ep
having higher partial occupation than orbitals above eF, but occupation in
both sets of orbitals (the ones below gf are called hole levels in solids,
those above e are called particle levels) can now be partial.

Since use of the occupation number representation assures antisym-
metry automatically, explicit use of determinant notation or antisymme-
trization operators is not necessary when wavefunctions are expressed in
terms such as (6.42d), (6.45), and (6.46), while operators are also written
in terms of creation and destruction operators. For boson (harmonic os-
cillator) systems, the operators can be constructed directly using the
equivalence of Eq. (6.2). For electrons, the construction involves the
idea of basis-set representations.
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6.3.3 Manipulation of Fermion Operators; Commutators and
Anticommutators

The anticommutation relations of Eq. (6.40) define, formally, the behavior
of electron operators {ay, a;:} for orthogonal orbitals ¢ and ¢y, In gen-
eral, and especially in connection with use of the Heisenberg representa-
tion, it is important to evaluate products and commutators involving the
ar and af. Note that since a and a;, respectively, create or destroy one
electr'on, any operator product ai“a}L - -afaa, - a, that does not
contain the same number of a* operators and a operators will not con-
serve the number of electrons. Such non-number-conserving operators
are of importance in several condensed-phase phenomena, including su-
perconductivity, and in particular atomic and molecular processes such as
Auger spectroscopy and photoemission. For the most part, however, the
operators with which we will be concerned contain equal numbers of a
and a™ factors, and conserve electron number.

We consider, then, the commutator [X, Y], where X and Y contain
My, My=1,2,3,...ao0ra" operators, respectively.

A. My=My=1:

lak, ail = aa; — ajay = —ajay — ajay
_ (6.50a)
= —2ajay
lag, a1 = araff - aff ax = 6y — af ap) — af a; 6.50b
=8y — 2a,+ak (6.500)
laf, af' ] = —2a a}f (6.50c)

Result (6.50a) follows from replacing aza; by —ajay, according to the
fundamental relationship (6.40b). Similarly, (6.40c) and (6.40d) produce
the last two results. We note that when My = My = 1, commutation
results in a new operator that is a product.

B. My=1,My=2:
lak, ajam] = akaiam — ajamag = alamag — qama; = 0 (6.50d)
+ - +
lay, af a,] = aaj a,, — af a0, = &y — aff apa,, — af aa; = Sya,

(6.50¢)

il

+F 4o+ _ 4o
lag, afag] = ayaf a,, — a ajap = Gy — af ap)a), — af alay

Bkim = 0 G — amar) — af amay = Syan, = 8 a
(6.50f)
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+ + 4+ + +
[ak N a?’am] = ak a[ am - a[ amak

= —a} Gy — amap) — af aai = —8yuaj’ (6.50g)
C. My=2My=2: "
lafaj, atail=0 (6.50h)
lafa;, atail = §,afa) - Smaj a;, (6.50i)
D. My=1,My=4
laf . af amana,] = af apma,p, = aj 47,85 (6.505)

E. My=2,My=4&

laia;, atata a,} = &,afa a,a, — d,afaa,a
k@l “mBn “plyg Im%k “n “p“q In%k “m“p“q (6.50k)

+ Skpa,“;a:,'aqa, - Skqa;a:apa,
A convenient rule of thumb for evaluating these commutators in all
cases except My = My = 1 is as follows: Starting with the first a or a’ to
the left of the commutator comma, move the a or a™ past each term (a or
a™) on the right of the comma. If an a* moves past an a* or an a past an
a, change the sign. If an g; moves pastana j+ or an a,-+ past an g, change
sign, and the move contributes a §;; to the commutator. When the first a
or a* from the left of the comma has moved past all the operators to the
right, start with the next operator to the left. Continue until all operators
have been moved past the comma. This seems clumsy at first, but is in
fact much faster than actually evaluating the commutators. The reader is
urged to try to reproduce (6.50d)-(6.50k) using this rule. These commuta-
tors will be of real importance in the study of electronic structure and
dynamics.

6.3.4 Arbitrary Electronic Operators in the Occupation
Number Representation ’

The electronic operators a; and af were introduced in terms of a basis
function ¢;. Operators such as the number operator a[ a, or the operator
af a; that moves an electron from basis function / to basis function k are
defined in terms of their effects on basis functions. Indeed, the occupa-
tion number formalism permits rewriting of an arbitrary operator acting in
momentum and coordinate space in terms of its equivalent behavior in a
basis set. In this subsection the rules for writing electronic operators in
the occupation number formalism will be stated.

We first consider operators such as momentum or Kinetic energy or
displacement, which do have classical analogs, that is, that can be written
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Su?h operators are generally of two types: One-electron operators can be
written

6= 2 6; : (6.52a)

where the index i numbers the electrons in the system, another class of
operators can be written

T=3T1; (6.52b)

i<j

where i and j are electron-counting indices. Examples of the type (6.52a)
called one-electron operators, include dipole moment, kinetic energy’
momentum, and angular momentum. By far the most important operator

of type (6.52b) is interelectronic interaction i i
on in the potential,
Coulomb potential P such as the

Voo =S €
Coul % 1] (6.52¢)

Onle-electron and two-electron operators are represented quite differ-
ently.

(;onsider first one-electron operators (6.52a). Since all exact wave-
functions of the electronic system can always be written in the CI form as

an arbitrary linear combination of single Slater determinants, if we can
show that

(D116|Dy) = (Dy|0'|Dy) (6.53)

for f;lrbitrary Slater determinants D; and D,, the operators 8 and @' are
equivalent in the set of orbitals defining the Slater determinants.

Consiqer first the very simple case of one-electron wavefunctions.
We then wish to show that

(000 1500 - - - 6]000 - - - 1,00 - - -)
= (000 1,00 - - - [9']000 - - - 1,00 - - ) (6.54)
The form for any one-electron operator is
g = ;, Ouai a (6.55)
where

Ok = (b (D)6 (g, Pl (i) (6.56)

ﬁnd i abels the electron. Substituting (6.55) into the left side of (6.54), we
ave ’

Z“ (000 1500 - - “|aif @|000 - - - 1,00 - - Yoy = D 8,,6,401 = 0,
ki
(6.57a)
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Similarly, the right side of (6.54) becomes

(000 1,00 - - '|9’|000 L0000 = (s (D10'(qi piler(D) = 8
' (6.57b)

where the last identification follows from (6.56). Comparing (_6.57b) with
(6.57a) shows that the form (6.55) is correct, at least for matrix elements
between one-electron states. In fact, (6.55) is entirely general, though the
proof is a bit messy. [See P. A. M. Dirac, The Principles of Quantum
Mechanics, 4th Ed. (Clarendon Press, Oxford, 1958), p. 250,_ 251.]
An arbitrary two-particle operator is similarly expressed in the occu-
pation number formalism as ’
T = ajafaya, kn|T'|Im) (6.58a)
kimn
where the indices run over spin orbitals. When T" is spin independent, as
it is for the most important two-particle operator of Eq. (6.52¢), then T
becomes
T=2 2  a},a}amay, knlT'|im) (6.58b)

kimn py=%1/2
with the matrix element defined by analogy as
(kn|T"|Im) = (br(1) b (DI T2l d1(2)dm (2)) (6.58¢)

The forms (6.55) and (6.58b) for, respectively, one- afnd‘two-particle
operators are quite general. Note that they contain no indices that fie-
scribe the actual enumerated electrons, in contrast to the configuration

f (6.52).
Spac?l'fmf?ni):t ((sbvio)us and important example of an operator with bot'h
one and two-electron parts is the Coulomb hamiltonian for the ele'ctromc
structure of an atom or molecule, in the Born-Oppenheimer limit.. The
hamiltonian is, then,

H=H +H (6.59a)
H=3 A 3 Zye (6.59b)
! ¥ 2m, T a tia

with the ith electron at position r; and the ath nucleus having charge Z,,.
The two-electron Coulomb repulsion is
2 2
e 1 e
=) —==) — (6.59¢)
i i%’u ZZjl'i—fﬂ

Then the overall hamiltonian, in the occupation number representation,
becomes
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I3

1
H= ,2 2 by amy + 5 3, “2 oy Gl Ay Gy, Sknllm)  (6.59d)
m  u pv kimn

Here w1 and v are spin projector labels, taking the values =4, while &, {, m,
n are spatial orbital indices that run over the set of orbitals involved in the
basis. If, for instance, klmn label atomic orbitals, then (6.59d) is in the
atomic orbital representation. Alternatively, klmn could be molecular or-

bitals or symmetry orbitals or floating basis functions; in all such cases,
the matrix elements

2 2
= Pl N Zat
him = ($(1)| 2, E - [ (1)) (6.60a)
2
(kn|lm) = (pp(1)u(1)| % |61 (2)) (6.60Db)

are well defined, and in each case the form (6.59d) is a correct expression
of H in the selected set of orbitals.

Since both the one-electron part (first sum) and the two-electron part
(second sum) of (6.59d) contain equal numbers of a* and ¢ operators, the
total number of electrons is conserved. Note also that both of the terms
in (6.59d) conserve the total M s quantum number, this hamiltonian, like
(6.59a~c), is coulombic and contains no spin-orbit couplings.

Exercise: Show explicitly that the number operator for up-spin elec-
trons, 2;atha;, commutes with A of (6.59). From the Heisenberg relation-
ship, this means that the number of up-spin electrons is constant.

The interpretation of (6.59d) is both important and straightforward.
Unlike arbitrary space-dependent operators such as p2/2m, the Coulomb
hamiltonian of (6.59d) acts only within a set of basis states; this set is
defined by the space orbital set {¢} or, equivalently, by the spin-orbital
set {¢;,}. Once these orbitals are defiried, and once values are selected
for the matrix elements Ay, and (kn|im), the specification of H is fixed.
This corresponds to a matrix representation of the full hamiltonian opera-
tor in the fixed basis {#1.} and is not necessarily identical to the standard
expression for H(p, g), which is not restricted to a given basis. For exam-
ple, for the C;H, molecule, one can write many basis-set hamiltonians of
the form (6.59d). If the {¢;} set is restricted to the two 2pr orbitals, and all

two-electron integrals are set to zero, the Hiickel model is recovered, in
the form

H=3% . Giuaiy + 3 Blaifuay, + afuan) (6.61)
wo =, ©
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Another model hamiltonian, a single-zeta or minimum-basis ab initio
model, chooses {¢} to consist of 14 basis functions (1s on H, 1s, 2s,2pon
C), and takes exactly the form (6.59d) with the sums over k,l, m,n
running from 1 to 14, and the matrix elements evaluated according to
(6.60). Note that this model is specified only if the actual forms of the
basis functions are given; for example, if Slater-type orbitals are used, the
exact form, including numerical values for the screening exponents, must
be given for (6.60) to be evaluated. If, as is more common in actual
electron structure studies, {¢g} is described in terms of expansions in
gaussian-type basis functions, the contraction coefficients and gaussian
exponents must be defined.

The definition and use of different model hamiltonians for electronic
structure are discussed in Section 6.5. The form of (6.59¢c), however,
suggests a general interpretation. One-electron operators, the first term
of (6.59d), move an electron from ¢, to ¢y, while two-electron operators,
the second term, move two electrons from (¢ > On) 10 (ks ¢). Thus the
action of operators like H can be directly understood, when the occupa-
tion number formalism is used. This is particularly helpful in situations in
which the hamiltonian does not have a classical analog (i.e., in which
classical mechanics does not suggest a form for H(p, q))-

A common example of this situation is offered by electron spin.
There are classical analogies to the spin of the electron, but its anomalous
magnetic moment and the Pauli principle, as well as Dirac’s derivation of
spin properties from the relativistic quantum mechanics of single-particle
systems, all suggest that spin is a quantum phenomenon without a precise
classical analog. Nevertheless, the occupation number formalism permits
the discussion and computation of spin properties just as it does for dy-
namical systems with classical analogs. For example, consider a single
electron. One can then define {a,, a;} operators, with u, v = +1 defining
the spin component. Such operators as aﬁa,,,, which counts the number
of spin-u electrons, are then clearly defined. A particular set of four

operators
a;aa + ag ag = 1
%
5 (agap + afad) = Sx
(6.62)
i,
3 (~Dlagag - agaa) = Sy

h
5 (@ga, — afap) = S
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can be defined, with (e, B) denoting m, = +4, —} as usual. Then the three
operators (Sy, Sy, ;) have the interesting properties

2o B ‘
S2=S3=s1=T () (6.63a)
[Sy, Sy] = kS, (6.63b)
[Sx, Sy]+ =0 (6.63¢)

Property (6.63b) means that the three § operators correspond to the ele-

Iy
2sy=a=( ) 6.64)
%Sz:az: ((I) —01)

Wthh are deﬁnec! in terms of their actions on the basis vectors (%). Once
again the verbal interpretation of (6.62) in terms of counting and flipping

spi .
;l)ms makes .the occupation number representation attractive; for exam-
ple, o, describes the net spin polarization.

i -Ex;rc:se: Consider the 2P1. 12, 2Py terms of potassium, and write the

pin-orbit operator I:'Iso = {l'sin terms of {ay,, ajt}, where k = (1,0, 1)

are tlslf: three m; orbital angular momentum levels. -
ince all operators corresponding to observables must be hermitian

operators involving {a, a*} have hermiti j
\ > rmitian conjugates. i
results for matrices, we define pugates. Tollowing the

[6:621" = 6367 (6.65)
for any two operators 6 '
1and 8. Th ta;
o s o n 2 us the operators aj, iy, (afy + ai),
), irac + afa;s) are all hermitian, in that 87 = @.

Similarly, the Pauli operators of (6.62) are hermitian. Note that since the

operators aj} or a;, are not hermiti
: L ermitian, they are not observable
same is true of the boson operators b; and b_q) * (and the
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6.4

Fermion Field Operators and Second Quantization

We have introduced the electron creation and destruction operators af,
a, by analogy with the harmonic oscillator operators bt and b; the orbit-
als, or basis functions ¢, are well-defined spatial structures. An alterna-
tive way to introduce these operators involves the theory of quantized
fields. In this picture, one defines field operators y(r) for all values of the
coordinate r; these field operators operate on a Hilbert space, in which
any vector is a state of the quantized field. Since the field itself, rather
than the energies or actions or angular momenta, is quantized, this
method is often referred to as second quantization. For most molecular
or solid-state problems of interest, operators are most conveniently used
in the occupation number representation, as discussed in Section 6.3.
However, the occupation number scheme can be derived, formally, from
the quantized field. For this reason, occupation number representation is
very often called “second quantization” in the literature, and indeed we
will also use this term. Quite apart from this issue of nomenclature, the
quantized field description is a very general approach; we will use it here
as an alternative method for deriving the occupation number representa-
tion.

For simplicity, then, consider a set of spinless fermions, such as
electrons (spin can be added subsequently). The field operators are de-

fined by the anticommutation relations
[y, paHl+ =0 .
W, v als =0 (6.66)
W@, $+aE)ls =8 — 1) ‘

with 8@ — r') the Dirac & function of Appendix A. The one- and two-
electron operators are then conveniently defined as

g = J’ dr ¢ ()0mY(r)
(6.67a)

T= j dr [ dr'y @0t )T ©UENO

NS 1 e

where 6(r) and T(r, t’) are the operators in (p, q) space. For example, the
number operator and Kinetic energy are just
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Nop = [ dr y*@tr)

KEqp = [ dr (%’?) )

while the Coulomb interaction is

(6.67b)

2

_1 ,
Veou =5 | dr [ di' 9H w0 o v 669)

As in Section 6.3,

[Nop: KEop] =9
[Nopa Veoul = 0

so that both kinetic and i
otential i

so that p energy operators conserve particle
+ . .

cauerg}fﬁ::f :lf (pt'(r),t‘n,h(r) 1; precisely equivalent to the use of the often

antization’’ form 6(p, q) for operators; i i i

ond quantization introduces n ’ i e o oo 36

0 new physics, no new pheno it i

. ’ m ’
merell\%/ a convenient, powerful, mnemonic notation. P s
ow suppose that we choose to expand the field operators ¥(r) in

terms Of a set Of Olthonorﬂ]al Sl le’e ectro wave i Vv
g l n a functlons ¢J(T)- [

() = 2 ¢j(r)a;

(6.69a)
v = 3 ¢t@af
The operators a,~+ , and a; must then satisfy
[a,-+ R aj+]+ =0
la;, a4 =0 (6.69b)

' fa, a1+ = &
1sfe thhf;flgl oper?tor anticommutation relations (6.66) are to hold. Thus we
e anticommutation relations (6.40) for creati .
. d destructi
operators follow from (6.66) for the field ) lf)ﬂ " -
. operators. Similarly, the f
(6.55) and (6.58) for one- and tw Tom (6.6,
. - o-electron operators follow from (6
. : .67).
We have discussed spinless field operators. One can generali(ze th)e

consideration by writing yr,(r) t
‘ . .(r) to denote a field o i i
nent w, in which case (6.66) becomes perator with spin compo-

[Wu(®), Y701+ = 8,8 — 1') (6.70)

o ‘Two sngmﬁc_ant points should be raised here that are generally omit-
in presentations of second quantization. The first is that the sum in
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(6.69) is not necessarily over a complete basis set {¢;}. If the basis is
complete, the operators (6.55) and (6.58) are precisely equivalent to. the
operators (6.67a). In nearly all chemical situations, however (exceptions
occur for spin systems), the basis is not complete, and in that sense the
hamiltonian of (6.59d) represents a finite basis approximation to the exact
Coulomb hamiltonian of (6.59a). In general, larger basis sets will mak.e
(6.59d) closer, in some sense, to (6.59a), but only for a complete seF is
equivalence exact. Thus, in general, any form (6.59d) represent§ a finite-
basis model system for the true hamiltonian. As stressed in Section 6.4.4,
these model systems are defined by fixing the basis sets {¢;} and the
matrix elements of (6.59d), but even for the same full hamiltonian (6.59a),
different choices of basis set correspond to different models, whose calcu-
lated properties will differ. For example, the calculated dipole rl?oment
for the HF molecule will differ with different basis sets, and thus different
model hamiltonians are used, even though the Born-Oppenheimer elec-
tronic hamiltonian
(eh s w_ > (—"’—2— + —9"—2) + > il (6.71)
H=p. 9 = 7, Z i 7 2yl el T 2 gl

(with |r;r|, rig], and |r;], respectively, the distances between electron i
and the F nucleus, between electron i and the proton, and between elec-
trons i and j) is unchanged. .

The second point is that the basis functions {¢;} in terms of which th_e
field operators are expanded are not necessarily orthogonal. If there is
finite overlap, so that

[ dr o1 = s 6.7

with the overlap matrix element S; not necessarily equal to 8, it is
consistent with (6.66) to set .

{ai, af]+ = Sj (6.73)

as a generalization of (6.40d). In many applications of second-quantiza-
tion, or occupation number formalism, in chemistry one chooses to o'rtho-
gonalize the set of basis functions {¢;} so that (6.40) can be used, but if the
set is in fact not orthonormal, (6.73) should be used instead.
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Molecular Electronic Structure: Model Hamiltonians
and Occupation Number Representations

Once a hamiltonian is constructed for any physical situation, the eigen-
values and eigenfunctions can, in principle, be obtained. A central issue
in chemistry is the description of the electronic structure of a molecule; in
the usual case in which vibronic interactions can be neglected, this means
solving the electronic Schrédinger equation

He(q; OWel(q; Q) = Ea(QWel(q; Q) (6.74)

where g and Q label all the electronic and nuclear coordinates, respec-
tively, and the electronic wavefunction yiei(q; Q) and energy E.(Q) each
depend parametrically on nuclear positions, The electronic hamiltonian
Hg(g; Q) contains Coulomb interactions, electronic Kinetic energy, and
whatever other terms (spin interactions, external fields, spin-orbit cou-
pling) may be appropriate. In this section we construct a number of
model hamiltonians for molecular electronic structures, and discuss their
properties and solutions.

It is important to distinguish between an electronic structure model
hamiltonian and the (approximate or exact) solution to that model. For
any given physical problem, such as the electron paramagnetic resonance
(EPR) spectrum of naphthalide anion or the nonlinear optical response of
p-nitroaniline or the dipole moment of CO, a particular model hamiltonian
may contain enough of the full electronic structure to describe the desired
response property, but the solution to that model may be quite demand-
ing. In the next two subsections we describe the models themselves, and
in the following subsections methods of solution will be described.

6.5.1 Model Hamiltonians: Basis Sets and Matrix Elements

The general form for the electronic hamiltonian, with Coulomb interac-
tions, was given in Section 6.3 as
1

H = 2 12 h[,,,af{,amo + 5

where the indices kimn label the orbital basis functions. The first term
arises from the one-electron terms, electronic kinetic energy and nuclear
attraction. The second term is due to interelectronic repulsion.

If the matrix elements hy,, and (kn|lm) are evaluated properly, by

> 2 (knllm)ag,aibamptns 6719

kimn op
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performing the appropriate three- and six-dimensional integrals, the re-
sulting hamiltonian is referred to as an ab initio model. It corresponds to
a matrix representation of the electronic structure problem in the orbital
basis set selected. As this basis set becomes larger, the representation
(6.75) becomes a closer and closer description of the Coulomb electronic
hamiltonian (6.59a). The ab initio model for any given molecule requires
specification of the nuclear configuration Q for which the electronic struc-
ture is to be determined, and of the basis set. To specify the basis, one
requires both the number and type of basis functions {to fix the summation
range of (6.75)] and the mathematical (analytic or numerical) form of the
basis functions (to compute the matrix elements). For example, an ab
initio model for the ground state of H,O might involve a minimum-basis
description in terms of Slater-type orbital (STO) basis functions, so that k,
I, m, n would run from 1 to 7, with ¢ and ¢, the two 1s STOs on the two
H atoms, and ¢3 to ¢7 the 1s, 2s, 2py, 2py, and 2p, STOs on O. There
would then be 49 matrix elements Ay, and 2401 elements (kn|im), not all of
which are independent.

Other ab initio model hamiltonians can be defined for the same mole-
cule at the same geometry. For instance, a split-valence Slater basis for
H,0 would include, besides the seven orbitals of the minimal basis, two
more s-type functions on the two protons, plus one additional s and three
additional p's on the O, giving a total of 13 functions, and leading to 169
hy,, integrals and 26,561 (kn|Im), not all of which, again, are independent.
Alternatively, an STO-3G basis can be defined, in which case there are
only seven terms in the sums of Eq. (6.75), but each basis function is itself
the sum of three simple primitive gaussian orbitals. The coefficients in
this sum are not varied, but are fixed once and for all when the basis set is
selected; the notation STO-3G means that a valence Slater-type orbital is
approximated by a fixed linear combination of three gaussian functions.

It is useful to consider some of the terms entering into this ab initio
model. For example, the term h33a3+#a3,,, describes the energy of elec-
trons with spin u in basis orbital 3; it is the equivalent of the Hiickel «
term for this orbital. Similarly, (33|33) agaa;Baggaga describes the repul-
sion integral between an up-spin and a down-spin electron, both present
in the third basis orbital, while hgaj,as, is the energy contribution from
moving an up-spin electron from basis orbital 2 to 4.

In these ab initio models, the number of two-electron integrals
(kn|Im) is proportional to the fourth power of the number of basis orbit-
als. It is clear,therefore, that such models become computationally very
demanding for molecules containing more than, say, 100 electrons. This
fact, coupled with important intuitive concepts about the separation of
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valence and core electrons, the approximate separability of sigma and pi
electrons, and the different importance of Coulomb and exchange interac-
tions, has led to the development of methods for defining other types of
simplified model hamiltonians. Such models are nearly always semiem-
pirical. When used in the context of electronic structure theories, this
term means that in contrast with ab initio models, the sums in (6.75) run
only over a selected set of (usually valence) orbitals, and the matrix
elements Ay, and (kn|lm) are evaluated not necessarily by performing
integrals but, often, by fitting their values to experiment or to other theo-
retical values. Such semiempirical model hamiltonians are of great utility
in chemistry and in the study of solids, especially for describing spectra or
bonding or response behavior. In the remainder of this section we discuss
such models and the most common method of solving the Schrédinger
equation for noninteracting electrons.

6.5.2 Noninteracting Electrons: Hiickel, Extended Hiickel,
and Free-Electron Models

The simplest model descriptions of molecular electronic structure ignore
interelectronic repulsions altogether. Such models, called one-electron
models, are of real importance in solid-state problems and in chemistry.
Often, one speaks of these models (and indeed, of semiempirical models
in general) as ‘‘neglecting’’ particular terms in the hamiltonian. It is,
perhaps, both more precise and more intuitive to say that these models
assume particular choices both for the basis set [i.e., for the terms in the
summations of Eq. (6.75)] and for the values of the matrix elements.
Different choices define different models. The notion of neglecting cer-
tain integrals [and the associated operators in (6.75)] is a deep-seated and
traditional one in chemistry, and indeed some of the model hamiltonians
to be discussed below have names in which the word ‘‘neglect’” occurs.

The Hiickel model hamiltonian, used for w-electron hydrocarbons
and heterocycles, is one of the oldest semiempirical electronic structure
models. In this model, the sum over basis functions is limited to one p-
basis orbital on each carbon or heterocycle atom. All two-electron inte-
grals (kn|lm) are set to zero. Then the hamiltonian can be written

Ny
Hpyek = 'J2=I ;ﬁ hija;—,ajo. (6.76)

with N, equal to the number of 7-basis orbitals. These orbitals are taken
as orthonormal, so that the anticommutation relations (6.40) hold, and the
matrix elements h; are set to
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o i=]j
hj =3B i, j neighbors 6.77)
0 else :

We discuss this hamiltonian, and the relation to molecular orbitals, more
extensively in the next subsection.

The idea of using one-electron models actually predates modern
quantum mechanics; Sommerfeld used free-electron ideas to discuss
properties of metals. The free-electron molecular orbital model (FEMO)
is often useful as a guide to the electronic properties of such strongly
delocalized species as planar aromatic hydrocarbons or metal clusters. In
this model hamiltonian, all interelectronic repulsions are set equal to
zero. The basis functions u; are taken as the eigenstates of a particle-in-a-
box hamiltonian, for a box (in one, two, or three dimensions) chosen to
enclose the molecule. Then the model hamiltonian becomes

Nn
Hremo = 2 2, %4j5%a (6.78)
o=a.B j=

where aT, creates an electron of spin o in the jth orbital, which is just the
jth eigenstate of the relevant particle-in-a-box problem, with eigen-
value g;.

At first glance, the FEMO model appears to be even simpler than the
Hiickel model in that no terms of the sort a,?:,aja(i # J), called off-diagonal
terms, ever occur. The total energy, computed as the expectation value
of the hamiltonian, is just

Erpmo = (H).= 2 & 2 (@js0j0) (6.792)
=3 2 g  (6.79b)

with njo = (af[,aj‘,) the number of electrons of spin o occupying the jth
FEMO. Thus, as is expected for noninteracting electrons, the total en-
ergy is the sum of the energies for all the electrons. The FEMO model is
written in the simple form (6.78), directly in terms of eigenstates, because
the basis functions u; are, in the FEMO case, not localized atomic func-
tions but delocalized solutions to the particle-in-a-box hamiltonian. We
shall see in the next subsection that the Hiickel hamiltonian can be rewrit-
ten in terms of delocalized one-electron eigenfunctions and that, when
this is done, the form is the same as (6.78).

The very simple and intuitive form of the Hiickel expression can be
extended in several ways. One of the simplest is to use different 8 values
for different bond lengths; this is the idea behind the Sandorfy C model.
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An extremely useful model hamiltonian is the extended Hiickel model

developed and widely applied by H i
e form e (6760 pp y Hoffmann. Here one writes exactly the

Ng
H = o+
EXHUC w;ﬁ:ﬁ IJZ=I hjatajq (6.80)

g‘:sliss l:)agl‘ltlt;miar; e;(tends the Hiickel concept in three ways: First, the
rbital set {¥;} includes all N, i i : :
' { B valence atomic orbital h
considered; second, the atoms " eriodio chart
; R can be any atom from th iodi
rather than only carbon or h s o
: eterocycles, as in the Hii
r ! | , e Hiickel model; and
! Vn;ll,a thc; t;as1s funcuons {u;} are taken to be Slater-type orbitals, and the
mOdelp Eegra s Sj =.<u,-|uj)'are calculated in the extended Hiickel
» Whereas the basis functions were taken to be orthonormal in the

ordinary Hiickel hamiltoni .
would be onian. Thus the extended Hiickel model for LiH

Hexnuc = V;ﬁ {onaf, a1, + ayja3,az,
(6.81)
X + Bu,Li(af a2 + af,a14)}
whe i
o I;ea Z (11 a:z: ;2 zstf'lc‘:érespfctwely, the s atomic Slater-type orbital (STO)
. ) on Li. The parameters « and i
pirically in terms of ionization i : it e,
et potentials, electron affinities, and the 15-2s
- T::t o(;l'e-electron model hamiltonians that we have written can all be
low;g ngofltr;l te:rrtlslof energy terms of type Bq-af{,aj(,, corresponding to a
e total energy by allowing electron moti
. . . otion between the i
:fe(i tjth b'asm funcFlons,.and terms like aa;;a,-a., giving the energy of ::
(6 731)-0;11“\; :11.1ehbaS1s ;)frzltal u;. The clearest and simplest form iS one like
.78), ich no off-diagonal terms appear, and th
( ' s ¢ total energy can b
( n
nterpreted, as in (6.79), as the sum of one-electron energies. Tii modee;

( d ) ]

6.5.3 Molecular Orbitals for Noninteracting Electrons

?Vlr (())tur previous treatment' of the Hiickel model in Section 2.2, we first

wre tc;,l : nrr;atnx repre;e;tatxon of the hamiltonian in an atomic orl;ital basis
eexpressed the hamiltonian in a dia i

: gonal matrix, represented in

terms of molecular orbitals. This same scheme can be used for any one

electron model hamiltonian
, and we shall do so no i i
number representation. . tein the occupation
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To be very explicit, the Hiickel hamiltonian for 1,3-butadiene would
be written

4

- + + + +

H= ZB {a 21 aiy8ic + B[alo-azo' + ay,dia + ay,a30
o=a, i=

(6.82)
+ +
+ 43,420 + a3,a40 t (110.(130-]}

This hamiltonian is written in the representation of p—m basis functions;
as such, it is not diagonal (i.e., terms such as Ba;'aa‘k, which would appear
off the diagonal in a matrix representation of this hamiltonian, do not
vanish). We wish, in general, to rewrite the hamiltonian in diagonal
form. To do so, we define a new set of orbitals as (with u; a local p—=
basis function)

Ny
Uy = 2, OAjlj 6.83)
j=1

with arbitrary coefficients c);; the ¢ are molecular orbitals, and this
expansion represents the usual LCAO-MO form. We wish to find the
expansion coefficients c;j and the MO energies &).

To do so, we use the fact that the MOs are eigenstates of the one-
electron hamiltonian H, and write

His, = e\ (6.84)
Then we express the MO as a one-electron function
) = ay[vac) (6.85)

with |vac) the vacuum state containing no electrons, and with the spin
index u suppressed for clarity. Using the hamiltonian form of (6.76), we
find, from (6.85),

> hyaj ajay |vac) = £xay vac) (6.86)
3
Now we define the creation operator for the MO 5, by [in analogy to
(6.83)]
at = 2 ctear (6.87)
with Greek subscripts (A, v) labeling MOs and Latin subscripts labeling

AOs. For real MOs, the complex conjugate can be ignored. Then (6.84)

becomes

> (2 hjai aj — sk) c\kap [vac) = 0 (6.88)
=

k
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3

Now we take the matrix element with the occupied one-electron atomic
basis function (a; |[vac))* = (vac|a;:

; ((vacl % ajaf ajaf [vacyey hyj — (vac[a,a,:“[vac)cxkso =0 (6.89)

Now using the identity a,|vac) = 0 and the anticommutation relations
(6.40), we have

2 (2 dkdirhijeak — Slkchkf’)\) =0
Y (6.90)
> (b — exdderk = 0

k
The result (6.90) is recognized as the secular equation set for determi-
nation of MO coefficients c)x and energies &); these are determined,

respectively, as the eigenfunctions and eigenvalues of the AO-repre-
sented hamiltonian matrix A;.

Now we write the hamiltonian in MO representation, following the
general rule (6.55) as

H= ; (\|H|v)ay a, 6.91)

which becomes, using (6.83),
H= ; % chkcul(kIHlba;av = 2 Z (; hklc)\k> c,,la{a,, (6.92)
v Av y

which, using the secular equation (6.90), is (since Ay = hy)
H = 2, Z ; SIkEN CAKCHAN By = 2, € ; CaCokay @y (6.93)
v Av

Finally, using the orthonormality of the eigenvectors 2y cxxCrx = Spp, We
have

H=2 edyata, =2, eafay (6.94)

Av

or, reinserting the spin sum,

Ny
H= > > ea,an (6.95)

o=a,f A=1

The hamiltonian expressed in the MO basis set i, is diagonal, and the
total energy is again the sum of molecular orbital energies:

Ne
Ep =(H) = 2,3 21 (a¥ argder = D, D, eflag (6.96)
= o A

o=a,

. _ + . .
with nye = (ayga,y) electrons of spin o in the A MO. In the situation
where no interelectronic interactions are included, so that the model ham-
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6.6

iltonian in the arbitrary initial basis looks like (6.76) or (6.80), construc-
tion of the molecular orbitals simply requires finding the diagonal (MO)
form (6.95) by solving the secular equation (6.90). Note that the sum in
(6.95) runs over Np functions, since there will be as many MOs as there
were AO basis functions. Note also that the forms (6.76) or (6.80) in the
AO representation and (6.95) in the MO representation correspond to the
same model hamiltonian but that, clearly, the MO model is more easily
interpreted.

For complete clarity, we write explicitly that for the Hiickel model of
butadiene, the hamiltonian in MO representation, corresponding to (6.82)
in the AO representation, is

4
H= > > )y 6.97)

o=a.8 A=]
withe; = a + 1.6188, &y = a + 0.6188, 83 = a — 0.6188, 84 = @ — 1.6188.
One-electron model hamiltonians, like Hiickel, FEMO, and extended
Hiickel, have the great advantage that they can be diagonalized by simple
solution of the secular equation (6.90) (or its generalization with the AO
overlap Sy replacing the Kronecker delta 8y for nonorthonormal AOs),
and that the resulting MO form (6.95) is simply the sum of independent
one-electron energies. These simplifications arise because the original
model did not include interelectronic repulsion—it is actually an indepen-
dent-electron rather than a many-electron model. More general models
are necessary for realistic quantitative descriptions of most properties
(bonding energy, electronic spectra, ionization energies, polarizability,
potential surfaces). Such interacting-electron models include the ab initio
models described in Section 6.4.1, and semiempirical many-electron

models.

Treatment of Interacting Electrons

6.6.1 Model Hamiltonians
When electron interactions are included in the electronic structure model
hamiltonian, it is necessary to define the basis functions labeled klmn in

the second term of Eq. (6.75), as well as the matrix elements

2
Gty = [ & dry wOuy(1) £ w @) (6.982)
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E

For ab initio studies, once the basis is defined, the matrix elements are
also, simply by evaluating the six-dimensional integral in Eq. (6.98a).
Semiempirical methods, on the other hand, generally choose values for
these integrals in some approximate way, often using experimental com-

parison to a standard set of molecules to fix the parameters in the model
hamiltonian.

Note that we can rewrite Eq. (6.98a) as

s 2
k) = [dr, [ draluyDu Ol @u@ = (6.980)

.where the brackets are introduced to demonstrate that, formally, the
integrand contains components of overlap integrands, u;u; for one elec-
tron and u;uy for the other. With the assumption that

ui(Dui(1) = 8ul1) (6.99)
the second term in (6.75) becomes

1
3 ,Z,, % ajahap,ar, Gl jk)diS

1
= E,Z,, % a;{,aJ;ajpa,-,, il i)
! (6.100)
=3 E > (il i) a,-“;at-o.a;,ajp

ij op
-3 3 3 Gili af
322 itlii) a; a;,

The forms in (6.100) include only repuision of an electron density in basis
function i by an electron density in basis function j. Note that when the
expectation value of this hamiltonian is evaluated with any wavefunction,
the result for the electron repulsion energy is independent of the spin
character of that wavefunction.

The assumption of Eq. (6.99) is often called complete neglect of
differential overlap (CNDO). The differential overlap referred to is the
basis function products u;u; or uiuy, which are set equal to zero if the
two basis functions in the product are not identical. Two very common
semiempirical molecular orbital model hamiltonians use the assumption
(6.99). If the basis set {y;} includes all valence Slater-type orbitals, the
model is called CNDQ; it or its variants are often used for calculations of
molecular properties such as geometry, charge distribution, or optical
properties.

Alternatively, if the basis set {u;} is restricted to one 2p basis func-
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tion on each carbon or heteroatom center in a 7r-electron system but (6.99)
is still assumed, the resulting model is generally called, after its devel-
opers, the PPP (Pariser—Parr-Pople) model. It-is very useful for such
mr-electron properties as electron densities, optical and nonlinear optical
spectra, and m-bonding descriptions.

If we make the further assumption that

w(Du(Du;Quj(2) = du(1)ui(2) (6.101)

in (6.98b), as well as the Hiickel-like assumption that h; vanishes unless
i = joriis adjacent to j, the resulting electronic structure model

H=373 hijatain + 2 > tjahas + 2' Uaiy aiqafaiy  (6.102a)
o i [ ) i

is obtained, with U; = (ii|ii). If, finally, the sites are all assumed equiva-
lent, so that #;; = ¢ for all (i, j) that are neighbors, U; = U for all sites, and
h;; = ¢ for all sites, we find that

H=¢ > atai, +t 2' 2 af{,ajo. +UD a,T"T a,-Ta,-n a;| (6.102b)
T o i o i

The first term is just eN, where N is the total number of electrons; this is a
constant, and by choosing & = 0 as the energy origin, it vanishes. The
prime on the second term in (6.102) indicates that the sum is restricted to
neighbors. The hamiltonian (6.102b) is the simplest one that includes
electron repulsion; such repulsion is limited to that between opposite spin
electrons on the same site. This is often referred to as the Hubbard hamil-
tonian. Although it has not been widely used in molecular electronic
structure problems, it is very popular in such solid-state problems as
conductivity in molecular metals and magnetism in narrowband (small
t/U) materials.

We have already noted that the CNDO assumption (6.99) produces
electronic structure model hamiltonians (PPP, CNDQ, Hubbard) that do
not distinguish among different spin multiplets because no exchange inte-
grals are retained. This can be changed if the assumption

wi(Dui(1) = 8, ,ui(ui(1) (6.103)

isused. Here 8¢, ;is defined to be zero unless the basis functions «; and u;
are on the same atomic center. The approximation (6.103), implemented
in a valence-only minimum basis of Slater-type orbitals, defines the so-
called INDO (intermediate neglect of differential overlap) model hamilto-
nian, which is simply
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_ 1
H = ; % h(/'ai;ajc + 3 E Z yyalfra,'aaj?;ajb

ae i

: ., .
+5 ;;, Z‘ ,2/ (illjk)ag, alt axpao (6.104)
The orbital sums run over the valence Slater basis, v; is a semiempirically
determined Coulomb repulsion integral between electron densities on
sites 7, j and the sums in the last term are restricted to the condition that u;
and y are different basis functions on the same atom, as are uy and u;.
The CNDO model hamiltonian differs only in that it omits the last term.
This term includes exchange integrals of the type, say, (xy|yx), and is
important if multiplet analysis is to be undertaken, as well as for magnetic
problems and excited-state studies.

Unlike the Hiickel models, in which the eigenstates and energies can
be found trivially by diagonalizing the matrix representation of the hamil-
tonian, the model hamiltonians with any inclusion of electron repulsion
(Hubbard, PPP, CNDO, ab initio) are true many-body hamiltonians,
whose eigenfunctions and eigenvalues can be found only approximately
for most problems. The most standard and important approximate solu-
tion, and the usual starting point for improved approximate solutions, is
the self-consistent field (SCF) approximation.

6.6.2 Self-Consistent Field (SCF) Solution

The self-consistent field scheme for electronic structure calculations was
first put forward by Hartree and by Fock for atoms. Its generalization to
deal with LCAO-MO problems in molecules, by Roothaan and Hall in
1951, really began the era of molecular orbital calculations.

The idea of self-consistent field, or mean field, calculations is a com-
mon one in physics. The essential physical idea is to replace the exact
dynamics or energetics of a particle or mode by its evolution in a field
averaged over all the other particles or modes.

There are many derivations of the Hartree~Fock equations. A par-
ticularly simple and elegant one can be given by approximating the time
evolution of the fermion operators a and a*. That is, since we know from
the Heisenberg equation that

., da
i —E = (ag,, H] (6.105)

a physically reasonable approximation is to write

., da
i = = 2 fau, (6.106)
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Combining these last two equations, we find that
(agu, H1 = 2 fl0up (6.107)

or, multiplying first from the right then from the left and adding, we get
(g}, lagu, HNl4) = 2 f, (ag, auul+) =fh - (6.108)

where the brackets indicate an average over the ground state. Here we
have assumed that the orbitals {¢,} form an orthonormalhsetl; C omera

The operator whose elements are f,s. is often called t e ;)c e:n o
tor. It is a hermitian operator whose eigenvalues are .orllallta _lc::ni fn h;
Using the general form (6.75) for the molecular electronic hami

an orthonormal basis, we can find f;; as
4 = (ay,, lag,, HIL) = ~(lag,, [H, ag, 10 (6.1092)

- ~{e [33 o]}
(o [3 33 wnlimatyamg e 2] +)

kI mn op

b+ 3 {S mlstalyane) = ilsmXaisany)}  (6:1090)
im o

Exercise: Derive (6.109b) from (6.109a). To do so, remember that
kn|lm) = (nk|lm) = (Im|nk). ‘ ‘
( lIf the state over which one averages in (6.109b) is of closed-shell
type, then

(a;;a,,,a) = (a,}’;amﬁ)
and then (6.109b) becomes .
F= gy + D, Qst|lm) — (sm|IKay, dmy) (6.110)
im

The structure of the Fock matrix elements in‘ (6.110) is of interest.bil;hl:

one-electron term is just the one-electron matrix element between otr nld:: :

¢ and ¢,. In noninteracting electron models such ias F]:E.MO lgr e.x ; nded

Hiickel, then, the Fock operator is simply the hamllton}an. tc:r in ract

ing electrons, the operator i depend_s on the or.bltals t! .roug e
(a'; Q) AVETAZR. Thus the orbitals, w\\\.c\\ are t\\e_ e}gexl\li\mc\\:ttl\tsial e
Fo‘::k operator, determine that ;);::ra:lortltselfi:c’)l“:ll\:sslcs: 1: ;;;so ey

i d (SCF) aspect of the Hartree— : : The

t?:cnt?\l:e:r:eiilee;eciron %amri)ltonian £t depends on its own eigenfunctions.
Ordinarily, then, the equations
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W= ot (6.111a)
D (A = e, S,k =0 . (6.111b)

define molecular orbitals. The eigenvalues of the Fock matrix #: are the

one-electron energy eigenvalues, and the eigenvalues are the molecular
orbitals. The matrix defined by

Vot = @18y} = ; S (6.112)

is often called the charge and bond order matrix, since its diagonal and
off-diagonal values relate, in simple one-electron theory, to electron den-
sity on a site and to bond orders between sites, respectively. This matrix
is computed iteratively in the solution to the SCF equations (6.111).
From knowledge of the f%, one finds the wavefunctions Y, which are
then used to find y%, and then [from (6.110)] to redefine ff:,. The HF
equations (6.111) are the generalization of the independent-particle equa-
tions (6.90) that take interelectronic repulsion into account in an averaged
way.

The one-electron orbital energies, from (6.110), consist of three
parts. The first, due to &, is just the kinetic energy and nuclear attrac-
tion. The terms proportional to (st|lm) and to (sm|lt) are, respectively,
the Coulomb and exchange contributions. Note that, from (6.109b), the
Coulomb repulsion felt by one orbital comes from other electrons of both
spins, while the exchange is due only to electrons of the same spin. This
is because the exchange arises from the Pauli principle, which requires
spatial antisymmetry only between electrons of the same spin. The SCF

analysis can be used for any model hamiltonian, either ab initio or
semiempirical. '

6.6.3 Example: SCF Solution for the Two-Center,
Two-Orbital Problem

The classic problem for discussion of chemical binding is H,, using a
minimum basis of one 1s orbital on each center. To simplify the descrip-
tion, we assume orthogonality of the basis set, so that

(uiluj) = 8  i,j=1,2 (6.113a)
la,ails =8 i,j=1,2 (6.113b)

then in the atomic orbital representation, we have
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fir = iy + 3 @iy} 1) = (1| m))
fr2 = b + 3 (@l Y2 |22) = (12|2m)) 6.114)
fi2 = Fo1 = b2 + 3 {aluam, N2Im|12) = (2] tm)

The molecular orbitals are, from simple symmetry considerations,

b = % @1 = b2) (6.115)

and in this representation the ground MO state is
+ o+
¥MO = a+ga+qlvac)
+ 4+
= H(algala + azpaza) + (ajgaze + azgara)livac) (6.116)

which is an equal admixture of covalent aJrgd ionic strugtures‘ One can
then show by direct substitution that (aypazy) = (ajpa1,) = % and
(af#a_},,) =0, (a:t“aw) = 1, Then the Fock operator matrix is

_ (hys F (+H]++) 0 6.117
r= ( 0 ho— + 2A—~|++) = (—+|+—)) ©.117)
where hyy = hyy + hjp, h—— = hy; — hja, and the one-electron energy

level of the ground state is
6p = hyy + hyy + %{zmm) + 8Q1|11) + 4(12]12) + 211[22)}

(6.118)

(we have used (11{11) = (22|22) and (11]12) = (22]21)). The total energy
in this state is

Eior = (MO H|YMO) = 2h4 4 + (++]|++) 6.119)
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PROBLEMS FOR CHAPTER 6

»

1. Evaluate
(a) (Olaiyajval‘c'—ualtl 0)
(b) (0| bubjbi,bis|0)

where the a’s and b’s are the usual fermion and boson operators. The result
should not contain operators.

Use the occupation number representation for electromagnetic fields to derive
an expression for two-photon spontaneous emission. Assume that the interac-
tion is

&2
V(@) = meZ Awl' 'Aw!
where l and I specify two modes of the field. Ignore other modes. As part of

the solution, specify:

(a) The vector potentials Ay and Ay, and the interaction V in the occupation
number representation.

(b) The relevant matrix element Vim for emission of the photons at frequencies
w) and wp .

(¢) An expression for the differential rate of emission into solid angles ¢ and
aqy’.
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3. Prove the result (6.73) from (6.66), (6.72), and (6.69a). [Hint: Start from

5

(6.69a) by multiplying from the left by d;,’f(r) and integrating to find a representa-
tion for a;.}

. Consider the PPP z-electron model for ethylene. In the atomic basis set con-

sisting of a simple p—m orbital on each site, the hamiltonian is

H=H, + H,
+ +
Hy=p8 2 (ayuaz, + azuayy)
“
2, 2 + +
H=33 21 Zl YijQininQjyjy
wov oi=ly=

(a) Consider the operator ny, = a:“ak“, where k = 1, 2. Show that n,, com-
mutes with H>. If 8 = 0and y;; = 22, v12 = 21, show that the ground state of
the system has an energy v (provided that yj3 < y11).

(b) Now consider nx, = a;“atu, where ax, = 2"”2(a,“ + ay,). Show that
ng, commutes with Hj. If H, = 0, what is the ground-state energy of the
system?

(c) One way to write the Hartree-Fock hamiltonian for ethylene is

2

2
HF = H + S35 yilnidni) + milnid — (ri i)
woov

i=1 j=

Assuming that (n;,) = (nj) = 3, show that HHYF is diagonal if expressed in terms
of .+, so that the molecular orbitals of the Hiickel problem are also molecular
orbitals of the HF problem.

Consider the problem of mixed valency in a metal complex such as asRu-pyz—
Ruag' 3 , with a = NH; and pyz = pyrazine. Neglecting interelectronic repul-
sion, we can write a very simple two-site model hamiltonian (the Frohlich
hamiltonian) as

H = He + Hpyc
2
P, 1
2Mw)\'?
He = B(a]"az + a;al) + gﬁm(a;’az - a;'al)X (T)

where X is the nuclear displacement and M, k, 8, », and g are nuclear reduced
mass, force constant, tunneling integral, frequency [w = (/M )¥2], and dimen-
sionless coupling strength, respectively. The displacement X actually is a dis-
tortion, equal, for instance, to the difference of the Ru—a distances on the left
and right Ru’s.

The Born-Oppenheimer potential surface is defined by

VBo(X) = Vuc(X) + (Wl Hell¥)

for any electron state .
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7

(a) Compute the Fock operator matrix elements for the electrons. The Fock
matrix is a 2 X 2, with

f;_] = ([[ai, H]y aj+l+)
but now the elements depend on X.

(b) Find the two electronic eigenvalues from (a). Add these to Vpyj to find the
total BO potential curves Vpo(X). There will be two of these. Plot the curves
for the specific parameters

B =-0.02eV

o = 500 cm™!

g=1
M = 10,000m,
How do these curves change when 8 = —2.0 eV?

(c) Suppose that in the mixed-valent Ru c+omp16x we take af as creating an
electron in the d,, orbital on the left, and a; analogously on the right. Assume
that at time zero, the electronic configuration is Rufl-Ru!!, so that

it = 0) = a; 0)

Using the Franck—Condon idea, calculate the electronic excitation energy for
the parameters of part (b). This transition is normally called the intervalence
transfer band.

. Consider the minimum-basis H, molecule as discussed in Section 6.6.3.

(a) From simple group theory considerations, show that if one constructs the
CI matrix, the a+paia|vac) state will interact only with the doubly excited
singlet (afﬁafa|vac).

(b) Show that the energy difference between the singlet state

1 + 4+ + o+
ll‘:ing = ﬁ (a+qa-g + a_aa+ﬁ)|vac)

and the triplet state
‘l’rrip = “\1/-_2 (aiaatﬂ - atocaiﬂ)“/ac)
is 2K, where
K= {(—+|+-)
is the exchange integral in the MO approximation.

Consider an open-shell excited beryllium atom Be (1s% 25 2p). Assume that the
p electron is present in the p, orbital.

(a) Write the singlet and triplet states (m; = 0) of this open-shell configura-
tion. Do this first in terms of Slater determinants, then in terms of the occupa-
tion number formalism with operators {a;4, @pa, @sg, apg} and their adjoints.

(b) Evaluate the singlet and triplet energies assuming four different model
hamiltonians: (1) extended Hiickel, (2) CNDO, (3) INDO, and (4) ab initio,
minimum Slater basis. For each model, evaluate the energy difference be-
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tween singlet and triplet. Comment on the relative appropriateness of these
model hamiltonians for magnetic problems.

8. Consider, as a model for the 7 electrons of propene, a PPP-type hamiltonian,
with different one-electron parameters on the two sites. Then

+ - + - + +
H = 2 lajpai ey + az,az,07 + Bajuaz, + Baz,ayp,l
"

+ Fnpynyy + nypnyy) + Tnyp + nyy)ngy + nyy)

(a) Using the fact that for mg = 0, nyp + nyp = ny + ny| = 1, rewrite the
hamiltonian as a Hubbard model, with y = y; = vy, as functions of y and T".

(b) Now choose the origin of energy as the one-electron energy on site 1, thus
expressing the entire hamiltonian in terms of the parameters, y, 8, @ = @3 —
.

(c) Now assuming that 8 = —3.0eV,y =3.0eV, a; — aj = 1.0 eV, compute
the Hiickel orbital energies and total energy (remember that E = (y|H|¢)/
Wl

(d) Now construct the 2 X 2 Fock operator matrix for « spin (the one for 8 spin
is the same). By actual iteration, find the Hartree-Fock orbital energies. Also
find the ground-state (binding) and first-excited-state energy.

(e) Find the Hartree-Fock total energy. Compare to the total energy calcu-
lated using the Hiickel wavefunction. Does the result make sense in view of
the variational principle?

(f) Qualitatively, does the effect of the Hubbard y term (minimizing polarity)
explain the difference between Hiickel and Hartree—~Fock bonding orbital en-
ergies?

(g) Using the localized set of two-electron functions {|1a18), [2a28), |10:28),
[2«1B)} as a complete basis, evaluate the total energy of the four m; = 0
levels. Solve the quartic numerically. [Use the same parameter values as in
part (¢).]
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Quantum Scattering Theory

Introduction

In quantum scattering theory one is interested in collisions involving at-
oms, molecules, other species, and even solids. Such collisions can pro-
duce many possible results, ranging from elastic scattering to reaction and
fragmentation. Scattering theory can also be used to describe many dy-
namical processes within solids, such as collisions of collective wave
motions (such as phonons) with impurities, or the motions of an ejected
photoelectron as it escapes from a crystal. While the basic formalism of
quantum scattering theory can be found in a variety of physics-oriented
textbooks, many chemical and materials applications require special ad-
aptation of the theory. For example, in problems such as gas—surface
collisions and tunneling reactions in liquids and solids, angular momen-
tum conservation is not important (or does not apply) and angularly re-
solved scattering information is not available. As a result, the theory of
scattering in one dimension is more useful than in typical particle scatter-
ing problems. Thus we will begin our development by considering one-
dimensional scattering. Another issue of importance to chemical prob-
lems is the short deBroglie wavelength usually associated with molecular
motion. This makes it important to consider semiclassical approxima-
tions, so we will discuss this later in this chapter. Finally, because most
chemical problems involve initial states that are selected from a Boltz-
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7.2

mann distribution, it is ‘very important to develop theories. where ther-
mally averaged results are obtained directly. This is the subject of Chap-

ter 8.

One-Dimensional Scattering

7.2.1 Introduction

The problem that we want to solve in this section is defined by the simple
one-dimensional hamiltonian

2
=P a.n
H= . + V(x)

where V(x) is a potential such as that pictured in Fig. 7.1. Note tha_t_t t;le
potential is flat for x — =, with V(x = —x) = 0 and V(Jf—-> +o0) = d?.
Examples where this type of potential are relevant include one-di-
mensional models of electron, proton, or hydrogen atoxp transfer re:i\c-
tions, tunneling of electrons at interfaces, and the scattering of molecules
olecules or from surfaces. '
fmmT(;:: ‘:)rhr;sical question that we wish to answer is: What is the ;lr)ot_)':
bility P that a particle incident with an energy E from'the left a}t X o
will end up moving to the right at x — +. The classical solution to

problem is straightforward, namely

V(x)

Figure 7.1. Potential associated with the scattering of a particle
in one dimension.
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1. P(E) = 0if V(x) = E for any x.
2. P(E) = 1if V(x) < E for all x.

The quantum solution to this problem is much more difficult, for a number
of reasons: First, we need to learn how to define what we mean by a
particle moving in a given direction when V(x) is constant; second, we
need to determine how much of the particle is moving in any specified
direction at any desired location; and third, we need to be able to solve
the Schrédinger equation for the potential V(x).

7.2.2 Wavepackets in One Dimension

Consider the case of a free particle for which V(x) = 0. In this case the
time-dependent Schrédinger equation is

, oV #2 2y
if T > ax—z (7.2)

and if we go through the usual procedure for separating the time and
spatial parts of this equation, we can readily show that one possible
solution is

Yilx, t) = ¢~ Etihikx (7.3)
where
23
= S (7.49)

is the particle’s energy and %k is its linear momentum. Note that both
energy and momentum of the particle are exactly specified in this solu-
tion. As might be expected from the uncertainty principle, the location of
the particle is completely undetermined.

To localize the particle, it is necessary to superimpose wavefunctions
¥, with different momenta k. A very general way to do this is to con-
struct a wavepacket, defined through the integral

Voplt, 1) = [~ dk COWtx, 1) = [7. dk cere —tiirm g 5,

where C(k) is a function that tells us how much of each momentum %k is
contained in the wavepacket. If the particle is to move with roughly a
constant velocity, C(k) must be peaked at some k that we take to be ko.
One function that accomplishes this is the gaussian

2 l — 2
C) = 527 exp [—“—“ 4 "0)} (1.6)
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where a measures the width of the packet. If we substitute this into Eq.
(7.5), the result is

~1/4 Rt \1-12
Wyplx, 1) =7 [a(l + maz)]

5 7.7
(x — hkot/m) . iht ]
_—— —— + ikgx —
8 exp[ 221 + ifitlma®) 2ma?
The absolute square of this wavefunction is
Vypl? = w"’za-‘[l + = 4]
oo ma 71.8)

(x — hikotlm)? ]
a1 + #222im?a®)
Figure 7.2 shows a plot of |¥,,,/* as a function of x, and it should be

apparent that this is a gaussian function that peaks a% x = hkpt/m, moving
to the right with a momentum #ikg. The width of this peak is

A= a[(ln 2)(1 + %)]112 7.9

which starts out at A = a(ln 2)"2 at t = 0 and increases linearly with time
for large ¢. This spreading of the wavepacket reflects the different mo-
mentum components present and it is a natural consequence of tlfe uncer-
tainty principle. Note that the wavefunction in Eq. (7.7) still satisfies the
Schrédinger equation [Eq. (7.2)]. ' '

One can show that the expectation value of the hamiltonian operator
for the wavepacket in Eq. (7.7) is

X exp[-

0 012

Figure 7.2. |¥,,,|? from Eq. (7.8).
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The first term is what one would expect to get classically for a particle of
momentum 7k, and it is much bigger than the second term provided that
koa >> 1. Since the deBroglie wavelength \ is 2m/kg, this condition is
equivalent to the statement that the size of the wavepacket be much larger
than the wavelength.

It is also notable that the spreading of the wavepacket can be ne-
glected for times ¢ such that # << ma?/#. In this time interval the center of
the wavepacket will have moved a distance (kga)a. Under the conditions
noted above for which kpa >> 1, this distance will be many times larger
than the width of the packet.

7.2.3 Wavepackets for the Complete Scattering Problem

The generalization of the treatment of the preceding section to the deter-
mination of a wavepacket for the hamiltonian in Eq. (7.1) is accomplished
by writing the solution as follows:

Wople, 1) = [ dk Clyx)e Bt (7.1)

where ¢, is the solution of the time-independent Schrédinger equation

Hiy = Epy (7.12)

for an energy E;. By substituting Eq. (7.11) into the time-dependent
Schrédinger equation one can readily show that W, is a general solution.

However, in contrast to bound-state problems, here we also have to
make sure that ¥,,, satisfies the desired boundary conditions initially and
finally. Part of this we already know how to handle, since we have al-
ready demonstrated in Eqs. (7.3), (7.5), and (7.7) that use of Y = e* and
a gaussian C(k) gives a gaussian wavepacket that moves with momentum
fikp. This is the behavior that we are after initially ( — —) in the limit of
X —> —,

At the end of the collision (t — +%) we expect to see part of the
wavepacket moving to the right for x — o (the transmitted part), and part
of it moving to the left for x — —o (the reflected part). Both this and the
t — —o boundary condition can be satisfied by requiring that

Upx) = kX + Remikx (7.13a)
= 1ok (7.13b)

X = +x
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where R and T are unknown coefficients that we will discuss later and
k=[2m(E - Vo)iﬁZ]” 2is the wavevector in the flat region of the potential
for x — o (the right asymptotic region). :

To prove that Eq. (7.13) gives a wavepacket that satisfies the desired
boundary conditions, we note that substitution of Eq. (7.13a) into Eq.
(7.11) gives us two wavepackets which roughly speaking are given by

\Pwp ~ e—(x—hkot/m)2;‘2a2 + Re—(x+ﬁkor/m)2/2a2 (7.143.)
In the ¢ — —o limit, only the first term, representing a packet moving to
the right, has a peak in the x — — region (the left asymptotic region).
The second term peaks in the right asymptotic region but this is irrele-
vant, as Eq. (7.14a) does not apply there. Thus in the left asymptotic
region the second term is negligible and all we have is a packet moving to
the right. For ¢ — +o, Eq. (7.14a) still applies, but now it is the second
term that peaks in the left asymptotic region, and this packet moves to the
left.
Now substitute Eq. (7.13b) into Eq. (7.11). Ignoring various unimport-
ant terms, we get

‘I,wp ~ Te—(x—ﬁkot/m)z/Zaz (7.14b)
X +%

This formula represents a packet moving to the right centered at x =
kotlm. For t — —oo, this is negligible in the right asymptotic region, so
the wavefunction is zero there, while for ¢t — +, this packet is large for
x — +oo, just as wanted.

7.2.4 Fluxes and Probabilities

Now let us use the wavepackets just discussed to extract the physically
measurable information about our problem, namely the probabilities of
reflection and transmission. As long as the wavepackets do not spread
much during the collision, these probabilities are given by the general
definition:

|total flux outgoing for process of interest| (7.15)

probability = total flux incident]

where the flux is the number of particles per unit time that cross a given
point (that cross a given surface in three dimensions), and the total flux is
the spatial integral of the instantaneous flux. Classically, the flux is just
pu, where p is the density of particles (particles per unit length in one
dimension) and v is the velocity of the particles. In quantum mechanics,
the flux I is defined as
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I = Re[¥*u¥] (7.16)
h . . _ -k . . .
where v is the velocity operator (v = 35 Inone 