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N̂ = â†â number operator

N̂k = â†
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Ô , Ô ′, Ô ′′ generic operators, generic observables

ÔH observable in the Heisenberg picture
Ô I observable in the Dirac picture
ÔS observable in the Schrödinger picture
ÔA apparatus’ pointer
ÔS observable of the object system
ÔND non-demolition observable∣∣∣Ô } super-ket (or S-ket)

pk classical generalized momentum component
p̂ = ( p̂x , p̂y , p̂z) three-dimensional momentum operator

p̂x one-dimensional momentum operator
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ˆ̇px time derivative of p̂x

p̂r = −ı h̄ 1
r
∂
∂r r radial part of the momentum operator

P(α,α∗) P-function
P̂j projection onto the state | j〉 or

∣∣b j
〉

P path predictability
P̂ path predicability operator

℘ j or ℘( j) probability of the event j
℘k (D) = ℘ (D|Hk) probability density function that the particular

set D of data is observed when the system is
actually in state k

℘
(
H j |Hk

) = Tr
(
ρ̂k ÊH j

)
conditional probability that one chooses the
hypothesis H j when Hk is true

qk classical generalized position component
Q charge density
Q(α,α∗) = 1

π
〈α|ρ̂|α〉 Q-function

Q quantum algebra
(Q field of rational numbers
r spherical coordinate
r · r′ scalar product between vectors r and r′
rk k-th eigenvalue of a density matrix

r0 = h̄2

me2 Bohr’s radius
r̂ = (x̂ , ŷ, ẑ) three-dimensional position operator
R reflection coefficient
R(r ) radial part of the eigenfunctions of l̂z in

speherical coordinates
R,R′ reference frames
R reservoir
IR field of real numbers
�(z) = z+z∗

2 real part of a complex quantity z
R̂, R̂(β,φ, θ ) rotation operator, generator of rotations
R̂Ô resolvent of the operator Ô
R̂ j =∑N

k=1 ℘
A
k C jk ρ̂k risk operator for the j-th hypothesis

| R〉 initial state of the reservoir
s spin quantum number
ŝ = (ŝx , ŝy , ŝz) = Ŝ/h̄ spin vector operator
ŝ± = ŝx ± ı ŝy raising and lowering spin operators
S action
S generic quantum system
S entropy
Ŝ = (Ŝx , Ŝy , Ŝz) spin observable
t time
t̂ time operator
| t〉 eigenket of the time operator
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T transmission coefficient
T temperature, classical kinetic energy
T̂ kinetic energy operator
T̂ time reversal operator
ˆ̂T , T generic transformation
u(ν, T ) energy density
uk(r) = e

L
3
2

eık·r k-th mode function of the electromagnetic field

U scalar potential
Û unitary operator

ÛBS beam splitting unitary operator
ÛPBS polarization beam-splitting unitary operator
ÛCNOT unitary controlled-not operator
Û f Boolean unitary transformation
ÛF Fourier unitary transformation
ÛH unitary Hadamard operator
Ûp(v) unitary momentum translation
ÛP permutation operator
ÛR(φ) rotation operator
ÛR space-reflection operator
Ût time translation unitary operator
Ûx (a) one-dimensional space translation unitary

operator
Ûr(a) three-dimensional space translation unitary

operator
Ûθ unitary rotation operator
Ûφ unitary phase operator

ÛSA
τ = e

− ı
h̄

τ∫
0

dt ĤSA(t)
unitary operator coupling system and apparatus
for time interval τ

ÛSA,E
t = e−

ı
h̄ t ĤSA,E unitary operator which couples the environment

E to the system and apparatus S +A at time t
˜̂U antiunitary operator
˜̂UT time reversal

Û generic transformation that can be either unitary
or antiunitary

|v〉 state of vertical polarization
|vn〉 element of a discrete basis
V potential energy

Ve scalar potential of the electromagnetic field

Vc(r ) = h̄2l(l+1)
2mr2 centrifugal-barrier potential energy

Vc classical potential energy
V̂ potential energy operator
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V volume
V generic vector
V visibility of interference, generic vectorial space
V̂ visibility of interference operator
wk k-th probability weight
|wn〉 element of a discrete basis vector

W (α,α∗) =
1
π2

∫
d2αe−ηα∗+η∗αχW (η, η∗)

Wigner function

x first Cartesian axis, coordinate
| x〉 eigenket of x̂
x̂ one-dimensional position operator
ˆ̇x time derivative of x̂
X̂1 = 1√

2

(
â† + â

)
quadrature

X̂2 = ı√
2

(
â† − â

)
quadrature

X set
y second Cartesian axis, coordinate
Ylm(θ ,φ) spherical harmonics
z third Cartesian axis, coordinate
Z atomic number

Z (β) = Tr
(

e−β Ĥ
)

partition function

Z parameter space
ZZ field of integer numbers

Greek letters

α angle, (complex) number

|α〉 = e−
|α|2

2
∑∞

n=0
αn√

n!
|n〉 coherent state

β angle, (complex) number, thermodynamic
variable = (kBT )−1

|β〉 coherent state
γ damping constant
� Euler gamma function
� phase space
�̂k reservoir operator
δ jk Kronecker symbol
δ(x) Dirac delta function

� = ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 Laplacian

�ψ uncertainty in the state |ψ〉
ε small quantity
ε jkn Levi–Civita tensor
ε coupling constant

ε0 =
(

ω

2ε0h̄l3

) 1
2 |d · e| vacuum Rabi frequency
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εn = ε0
√

n + 1 Rabi frequency
εSA coupling between object system and apparatus
εSM coupling between object system and meter

ζ arbitrary variable, arbitrary (wave) function
ζS , ζA number of possible configurations of bosons and

fermions, respectively
η arbitrary variable, arbitrary (wave) function
η̂ arbitrary (continuous) observable
|η〉 eigenkets of η̂
θ angle, spherical coordinate
ϑ generic amplitude

ϑ̂k(m) =
〈
m
∣∣∣Ût

∣∣∣ k〉 amplitude operator connecting a
premeasurement (|k〉 ), a unitary evolution (Ût ),
and a measurement (|m〉 )

�lm(θ ) theta component of the spherical harmonics
�(θ ) part of the spherical harmonics depending on the

polar coordinate θ

�̂, ˆ̂� arbitrary transformation (superoperator)
ι constant, parameter
| ι〉 internal state of a system
κ parameter
λ wavelength
λc = h/mc Compton wavelength of the electron
λT = h̄√

2mkBT
thermal wavelength

� = μB Bext constant used in the Paschen–Bach effect
�̂ j Lindblad operator
μ classically magnetic dipole momentum
μ̂

l
= eh̄

2m l̂ orbital magnetic momentum of a massive
particle

μ̂s = Q eh̄
2m ŝ spin magnetic momentum

μB = eh̄
2m Bohr magneton

μ0 magnetic permeability
ν frequency
ξ random variable, variable
ξ (r ) = R(r )r change of variable for the radial part of the wave

function
ξ̂ arbitrary (continuous) observable
|ξ 〉 eigenkets of ξ̂
�(x) Heaviside step function
 ̂ parity operator
ρ (classical) probability density
ρ̂ density matrix (pure state)
ˆ̂̇
ρ time-evolved density matrix
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ˆ̃ρ mixed density matrix
ρ̂ f density matrix for the final state of a system
ρ̂i density matrix for the initial state of a system
!̂ j reduced density matrix of the j-th subsystem
ρ̂SA density matrix of the system plus apparatus
ρ̂SAE density matrix of the system plus apparatus plus

environment

σ 2
x =

〈
x̂2
〉− 〈x̂ 〉2 variance of x̂

σx standard deviation (square root of the variance)
of x̂

σ 2
p =

〈
p̂2

x

〉− 〈 p̂x
〉2 variance of p̂x

σp standard deviation (square root of the variance)
of p̂x

σ̂+ = |e 〉 〈g | raising operator
σ̂− = |g 〉 〈e | lowering operator
σ̂ = (σ̂x , σ̂y , σ̂z) Pauli (two-dimensional) spin matrices
ς (s) wave component of the spin
|ς〉 ket of the object system
τ time interval, interaction time between two or

more systems

τd � γ−1
(
λT
�x

)2
decoherence time

φ angle, spherical coordinate
φ̂ angle operator
|φ〉 eigenket of the angle operator
|ϕ〉 ,

∣∣ϕ′〉 state vectors
ϕ(ξ ) eigenfunctions of the observable with

eigenvector |ξ 〉
ϕk(x) plane waves
ϕk(r) spherical waves
ϕp(x) momentum eigenfunctions in the position

representation
ϕx0 (x) position eigenfunctions in the position

representation
ϕ̃p0 (px ) momentum eigenfunctions in the momentum

representation
ϕ̃x (px ) position eigenfunctions in the momentum

representation
ϕξ (x) scalar product 〈x | ξ 〉
ϕη(ξ ) scalar product 〈ξ | η〉

% flux of electric current
%M magnetic flux

|%〉 generic ket for compound systems
χξ (η) = ∫ dF(x)eıηx classical characteristic function of a random

variable ξ
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χ (η, η∗) =
e|η|2

∫
d2αeηα

∗−αη∗Q(α,α∗)
characteristic function

χW (η, η∗) = e− 1
2 |η|2χ (η, η∗) Wigner characteristic function

|ψ〉 ,
∣∣ψ ′〉 state vectors

|ψ(t)〉 time-evolved or time-dependent state vector∣∣ψE

〉
Eigenket of energy corresponding to eigenvalue
E (in the continuous case)

|&F 〉 quantum state of the electromagnetic field
|ψn〉 n-th stationary state
|ψ〉H state vector in the Heisenberg picture
|ψ〉 I state vector in the Dirac picture
|ψ〉S state vector in the Schrödinger picture

ψ(x),ψ(r) wave functions in the position representation
ψ(η),ψ(ξ ) wave functions of two arbitrary continuous

observables, η and ξ , respectively
ψ̃(px ), ψ̃(p) Fourier transform of the wave functions
ψ(r, s) wave function with a spinor component
ψ(r , θ ,φ) eigenfunctions of l̂z in spherical coordinates
ψp(x),ψp(r),ψk(x),ψk(r) momentum eigenfunctions in the position

representation
ψE (x) energy eigenfucntion in the position

representation
ψS ,ψA symmetric and antisymmetric wavefucntions,

respectively
|&〉 ket of a compund system
|&〉SA ket describing an objects system plus apparatus

compound system
|&〉SM ket describing an objects system plus meter

compound system
|&〉SAE ket describing an objects system plus apparatus

plus environment compound system
&(x),&(r) wave function of a compound system
ω = 2πν angular frequency
ωB = eB

m electron cyclotron frequency
ω jk ratio between energy levels Ek − E j and h̄
' space

Other Symbols

∇ Nabla operator
〈· | · ·〉 scalar product
〈 j1, j2, m1, m2 | j , m〉 Clebsch–Gordan coefficient
| ·〉 〈· | external product
〈·〉 mean value
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Tr(Ô) trace of the operator Ô
⊗ direct product
⊕ direct sum
∀ for all . . .
∃ there is at least one . . . such that
a ∈ X the element a pertains to the set X
X ⊂ Y X is a proper subset of Y
a �⇒ b a is sufficient condition of b
∨ inclusive disjunction (OR)
∧ conjunction (AND)
a �→ b a maps to b
→ tends to . . .
|0〉 , |1〉 arbitrary basis for a two-level system, qubits
|1〉 , |2〉 , |3〉 , |4〉 set of eigenstates of a path observable
|0〉 = |0, 0, 0〉 vacuum state
|↑〉 , |↓〉 arbitrary basis for a two-level system,

eigenstates of the spin observable (in the
z-direction)

|↔〉 state of horizontal polarization
| 〉 state of vertical polarization
|↗〉 state of 45◦ polarization
|↖〉 state of 135◦ polarization
|*〉 c , |+〉 c living- and dead-cat states, respectively
[·, ··]− = [·, ··] commutator
[·, ··]+ anticommutator
{·, ··} Poisson brackets
∂t = ∂

∂t partial derivatives
∂ j = ∂

∂ j , with j = x , y, z
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CH Clauser and Horne
CHSH Clauser, Horne, Shimony, and Holt
Cor. corollary
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Def. definition
EPR Einstein, Podoloski, and Rosen
EPRB Einstein, Podoloski, Rosen, and Bohm
Fig. figure
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Pr. principle
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SGM Stern–Gerlach magnet
SPDC spontaneous parametric down conversion
SQUID superconducting quantum interference device
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Th. theorem
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Introduction

Why yet another book on quantum mechanics? Quantum mechanics was born in the first
quarter of the twentieth century and has received an enormous number of theoretical and
experimental confirmations over the years. It is considered to be the fundamental physical
paradigm, and has a wide range of applications, from cosmology to chemistry, and from
biology to information sciences. It is one of the greatest intellectual achievements of the
past century. As an effect of its invention, the very concept of physical reality was changed,
and “observation,” “measurement,” “prediction,” and “state of the system” acquired a new
and deeper meaning.

Probability was not unknown in physics: it was introduced by Boltzmann in order to
control the behavior of a system with a very large number of particles. It was the missing
concept in order to understand the thermodynamics of macroscopic bodies, but the struc-
ture of the physical laws remained still deterministic. The introduction of probability was
needed as a consequence of our lack of knowledge of the initial conditions of the sys-
tem and of our inability to solve an enormous number of coupled non-linear differential
equations.

In quantum mechanics, the tune is different: if we have 106 radioactive atoms no intrinsic
unknown variables decide which of them will decay first. What we observe experimentally
seems to be an irreducible random process. The original explanation of this phenomenon in
quantum mechanics was rather unexpected. All atoms have the same probability of having
decayed: only when we observe the system do we select which atoms have decayed in the
past. In spite of the fact that this solution seems to be in contrast with common sense, it
is the only possible one in the framework of the conventional interpretation of quantum
mechanics. Heisenberg, de Broglie, Pauli, Dirac, and many others invented a formalism
that was able to explain and predict the experimental data and this formalism led, beyond
the very intention of the men who constructed it, to this conceptual revolution. Then, the
old problem of the relations among the observer and the observed object, discussed for
centuries by philosophers, had a unexpected evolution and now it must be seen from a
new, completely different perspective.

Once established, quantum mechanics became a wonderful and extremely powerful
tool. The properties of the different materials, the whole chemistry, became for the first
time objects that could be predicted from the theory and not only phenomenological rules
deduced from experiments. The technological discovery that shaped the second half of last
century, the transistor (i.e. the basis of all the modern electronics and computers) could not
have been invented without a deep command of quantum mechanics.

The advances of recent years have not only concentrated on the problems of interpreta-
tion that could be (wrongly) dismissed as metaphysical by some people, considering them
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to be beyond experimental tests. In the last 30 years, the whole complex of problems con-
nected to quantum mechanics and the meaning of measurements started to be studied from
a new perspective. Real, not only Gedanken experiments began to be done on some of
the most elusive properties of quantum mechanics, i.e. the existence of correlations among
spatially separated systems that could not be explained using the traditional concept of
probability. The precise quantum mechanical meaning of measurements started to be ana-
lyzed in a more refined way (e.g. quantum non-demolition measurements were introduced)
and various concepts from statistical mechanics and other fields of physics began to be
used.

This is not only an academic or philosophical problem. The possibility of construct-
ing a quantum computer, which would improve the speed of present day computers by an
incredible factor, is deeply rooted in these achievements. It is now clear that a quantum
computer can solve problems, which on conventional computers take a time exploding
as exponent of some parameter (e.g. the factorization into primes of a number of length
N ), in a time which is only a polynomial in N . The technical problems to be over-
come in constructing a quantum computer are not easy to solve, but this result has a
high conceptual status, telling us how deeply quantum mechanics differs from classical
mechanics. Another quantum-information puzzling phenomenon, i.e. teleportation, has
been recently proved experimentally to exist and it is a very active area of experimental
research.

The arguments above explain why this new situation imposes the necessity to treat this
field in a new way. The idea of writing this book came to one of us in 2000; it has taken
more than eight years to accomplish this challenge.

Outl ine

The book is divided into four parts:

I Basic features of quantum mechanics
Part I deals with the basic framework of the theory and the reasons for its birth. Fur-
thermore, starting from the fundamental principles, it explains the nature of quantum
observables and states, and presents the dynamics of quantum systems and its main
examples.

II More advanced topics
In Part II we introduce angular momentum, spin, identical particles, and symmetries.
Moreover, we give a special emphasis to the quantum theory of measurement.

III Matter and light
We devote Part III to some of the most important applications of quantum theory:
approximation methods and perturbation theory, the hydrogen atom, simple molecules,
and quantum optics.

IV Quantum information: state and correlations
Finally, we deal with the most recent topics: the quantum theory of open systems, state
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measurement, quantum correlations and non-locality, and quantum information and
computation.

In this book there is material for four one-semester courses. It may also serve as a guide
for short courses or tutorials on specific and more advanced topics.

Methodology

(1) In our exposition we have tried to follow a “logical” order, starting from the
principles of classical mechanics, the need of quantum mechanics with its fun-
damental assumptions (superposition, complementarity, and uncertainty principles).
Then, we present the main features of observables and states, before going for-
ward to the dynamics and to more sophisticated stuff, applications, and special
areas.

(2) We have made an effort to use a pedagogical style. In particular:
(i) We prove or let the reader prove (through problems that are solved on the book’s

website) practically all our results: we try to lead the reader to reach them step by
step from previous ones.

(ii) We have made the choice to present Dirac algebra and operatorial formalism from
the very beginning, instead of starting with the wave-function formalism. The lat-
ter is obtained naturally as a particular representation of the former. This approach
has the advantage that we are not obliged to repeat the fundamental mathematical
tools of the theory.

(iii) We present our main principles and results in a pragmatic way, trying to intro-
duce new concepts on the basis of experimental evidence, rather than in an
axiomatic way, which may result cumbersome for readers who are learning
quantum mechanics.

(iv) We have made an effort to pay particular attention to cross-references in order to
help the (inexpert) reader to quickly find the necessary background and related
problems.

(3) We have taken into account some of the most recent developments at theoretical and
experimental level, as well as with respect to technological applications: quantum
optics, quantum information, quantum non-locality, state measurement, etc.

(4) We believe that measurement theory constitutes a fundamental part of quan-
tum mechanics. As a consequence we have devoted an entire chapter to this
issue.

(5) When necessary, we have emphasized interpretational as well as historical issues, such
as complementarity, measurement, nature of quantum states, and so on.

(6) We propose to the reader a large number of problems (more than 300), and the less
trivial ones (about half of them) are solved in a pedagogical way.

(7) From time to time, we have chosen to treat special topics in “boxes.”
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Apparatus

Besides a large number of cross-references, we also list the following tools:

(1) The book contains 200 figures among drawings, photographs, and graphs, distributed
in all chapters (a sample of color figures can be found on the book’s website). We
consider this graphic support a very important aspect of our exposition. In this context,
figure captions are particularly accurate and often self-contained.

(2) The book contains an extensive bibliography (almost 600 entries, most of which are
quoted in the text) and a “Further reading” section at the end of each chapter. Name
of authors in italics in citations refer to books, those in roman text refer to journals,
papers, and other publications.

(3) The book contains full, accurate, and comprehensive indices (table of contents, subject
index, author index, list of figures, list of tables, list of abbreviations, list of symbols,
list of boxes, list of theorems, definitions, and so on) together with a summary of the
main concepts at the end of each chapter.

Readers

This book is addressed to people who want to learn quantum mechanics or deepen their
knowledge of the subject. The requirement for understanding the book is a knowledge of
calculus, vectorial analysis, operator algebra, and classical mechanics.

The book is primarily intended for third- and fourth-year undergraduate students in
physics. However, it may also be used for other curricula (such as mathematics, engineer-
ing, chemistry, computer sciences, etc.). Furthermore, it may well be used as a reference
book for graduate students, researchers, and practitioners, who want a rapid access to spe-
cific topics. To this purpose the extensive indices and lists are of great help. It may even
serve as an introduction to specific areas (quantum optics, entanglement, quantum informa-
tion, measurement theory) for experienced professionals from different fields of physics.
Finally, the book may prove useful for scientists of other disciplines who want to learn
something about quantum mechanics.
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BASIC FEATURES OF
QUANTUM MECHANICS





1
From classical mechanics to

quantum mechanics

In this chapter we shall first summarize some conceptual and formal features of classical
mechanics (Sec. 1.1). Modern physics started with the works of Galileo Galilei and Isaac
Newton from which classical mechanics, one of the most beautiful and solid intellectual
buildings of the human history, came out. The architecture of classical mechanics was
developed between the end of the eighteenth century and the second half of the nineteenth
century, and its present form is largely due to Lagrange, Jacobi, and Hamilton. As we shall
see in this chapter, classical mechanics is built upon the requirement of determinism, a
rather complex assumption which is far from being obvious. In Sec. 1.2 we shall present
the two main conceptual features of quantum mechanics on the basis of an ideal inter-
ferometry experiment: the superposition principle and the principle of complementarity.
In Sec. 1.3 a first formal treatment of quantum-mechanical states is developed: quantum
states are represented by vectors in a space that turns out to be a Hilbert space. In Sec. 1.4
the significance of probability for quantum mechanics is explained briefly: we will show
that probability is not just an ingredient of quantum mechanics, but is rather an intrin-
sic feature of the theory. Furthermore, we shall see that quantum probability is not ruled
by Kolmogorov axioms of classical probability. Finally, we discuss the main evidences
which have historically revealed the necessity of a departure from classical mechanics.
Our task then is to briefly present the principles upon which quantum mechanics is built
(in Secs. 1.2–1.4) and to summarize in Sec. 1.5 the main evidences for this new mechanics.

1.1 Review of the foundations of classical mechanics

Classical mechanics is founded upon several principles and postulates, sometimes
only implicitly assumed. In the following we summarize and critically review such
assumptions.1

First of all, in classical mechanics a principle of perfect determination is assumed: all
properties of a physical system S are perfectly determined at any time. Here, we define a
physical system as an object or a collection of objects (somehow interrelated) that can be
(directly or indirectly) experienced through human senses, and a property as the value that
can be assigned to a physical variable or observable describing S. Perfectly determined
means then that each (observable) variable describing S has at all times a definite value.

1 See [Auletta 2004].
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Some of these properties will have a value that is a real number, e.g. the position of a
particle, others an integer value, e.g. the number of particles that constitute a compound
system.

It is also assumed that all properties can be in principle perfectly known, e.g. they can be
perfectly measured. In other terms, the measurement errors can be – at least in principle –
always reduced below an arbitrarily small quantity. This is not in contrast with the everyday
experimental evidence that any measurement is affected by a finite resolution. Hence, this
assumption can be called the postulate of reduction to zero of the measurement error. We
should emphasize that this postulate is not a direct consequence of the principle of perfect
determination because we could imagine the case of a system that is objectively determined
but cannot be perfectly known.

Moreover, the variables associated to a system S are in general supposed to be contin-
uous, e.g. given two arbitrary values of a physical variable, all intermediate possible real
values are also allowed. This assumption is known as the principle of continuity.

At this point we can state the first consequence of the three assumptions above: If the
state of a system S is perfectly determined at a certain time t0 and its dynamical variables
are continuous and known, then, knowing also the conditions (i.e. the forces that act on the
system), it should be possible (at least in principle) to predict with certainty (i.e. with prob-
ability equal to one) the future evolution of S for all times t > t0. This in turn means that
the future of a classical system is unique. Similarly, since the classical equations of motion
(as we shall see below) are invariant under time reversal (the operation which transforms t
into−t) also the past behavior of the system for all times t < t0 is perfectly determined and
knowable once its present state is known. Such a consequence is usually called determin-
ism. Determinism is implemented by assuming that the system satisfies a set of first-order
differential equations of the form

d

dt
S = F[S(t)], (1.1)

where S is a vector describing the state of the system. It is also assumed that these equations
(called equations of motion) have one and only one solution, and this situation is usual if
the functional transformation F is not too nasty.

Another very important principle, implicitly assumed since the early days of classical
mechanics but brought into the scientific debate only in the 1930s, is the principle of sepa-
rability: given two non-interacting physical systems S1 and S2, all their physical properties
are separately determined. Stated in other terms, the outcome of a measurement on S1

cannot depend on a measurement performed on S2.
We are now in the position to define what a state in classical mechanics is. Let us first

consider for the sake of simplicity a particle moving in one dimension. Its initial state is
well defined by the position x0 and momentum p0 of the particle at time t0. The knowledge
of the equations of motion of the particle would then allow us to infer the position x(t) and
the momentum p(t) of the particle at all times t .

It is straightforward to generalize this definition to systems with n degrees of freedom.
For such a system we distinguish a coordinate configuration space {q1, q2, . . . , qn} ∈ IRn

and a momentum configuration space {p1, p2, . . . , pn} ∈ IRn, where the q j ’s ( j = 1, . . . , n)
are the generalized coordinates and the p j ’s ( j = 1, . . . , n) the generalized momenta. On
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the other hand, the phase space � is the set {q1, q2, . . . , qn ; p1, p2, . . . , pn} ∈ IR2n. The
state of a system with n degrees of freedom is then represented by a point in the 2n-
dimensional phase space �.

Let us consider what happens by making use of the Lagrangian approach. Here, the
equations of motion can be derived from the knowledge of a Lagrangian function. Given
a generalized coordinate q j , we define its canonically conjugate variable or generalized
momentum p j as the quantity

p j = ∂

∂q̇ j
L(q1, . . . , qn ; q̇1, . . . , q̇n), (1.2)

where the q̇k are the generalized velocities. In the simplest case (position-independent
kinetic energy and velocity-independent potential) we have

L(q1, . . . , qn , q̇1, . . . : q̇n) = T (q̇1, . . . , q̇n) − V (q1, . . . , qn), (1.3)

where L is the Lagrangian function and T and V are the kinetic and potential energy,
respectively. The kinetic energy is a function of the generalized velocities q̇ j ( j = 1, . . . , n)
and may also be written as

T =
∑

j

p2
j

2m j
, (1.4)

i.e. as a function of the generalized momenta p j ( j = 1, . . . , n), where m j is the mass
associated with the j-th degree of freedom.

In an alternative approach, a classical system is defined by the function

H = T (p1, p2, . . . , pn) + V (q1, q2, . . . , qn), (1.5)

which is known as the Hamiltonian or the energy function, simply given by the sum
of kinetic and potential energy. Differently from the Lagrangian function, H is directly
observable because it represents the energy of the system. The relationship between
Lagrangian and Hamiltonian functions is given by

H =
∑

j

q̇ j p j − L(q1, . . . , qn , q̇1, . . . : q̇n) (1.6)

in conjunction with (1.2).
For the sake of simplicity we have assumed that the Lagrangian and the Hamiltonian

functions are not explicitly time-dependent. The coordinate qk and momentum pk , together
with their time derivatives q̇k , ṗk , are linked – through the Hamiltonian – by the Hamilton
canonical equations of motion

q̇k = ∂H

∂pk
, ṗk = −∂H

∂qk
, (1.7)

which can also be written in terms of the Poisson brackets as

q̇k = {qk , H}, ṗk = {pk , H}. (1.8)
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The Poisson brackets for two arbitrary functions f and g are defined as

{ f , g} =
∑

j

(
∂ f

∂q j

∂g

∂p j
− ∂ f

∂p j

∂g

∂q j

)
, (1.9)

and have the following properties:

{ f , g}=−{g, f }, (1.10a)

{ f , C}= 0, (1.10b)

{C f + C ′g, h}=C{ f , h} + C ′{g, h}, (1.10c)

0={ f , {g, h}} + {g, {h, f }} + {h, { f , g}}, (1.10d)
∂

∂t
{ f , g}=

{
∂ f

∂t
, g

}
+
{

f ,
∂g

∂t

}
, (1.10e)

where C , C ′ are constants and h is a third function. Equation (1.10d) is known as the Jacobi
identity. The advantage of this notation is that, for any function f of q and p, we can write

d

dt
f = { f , H} . (1.11)

It is easy to see that Newton’s second law can be derived from Hamilton’s equations. In
fact, from Eq. (1.8) we have

q̇k ={qk , H} = pk

mk
, (1.12a)

ṗk ={pk , H} = − ∂V

∂qk
. (1.12b)

From Eq. (1.12a) one obtains pk = mkq̇k (the definition of generalized momentum),
which, substituted into Eq. (1.12b), gives

mkq̈k = − ∂V

∂qk
. (1.13)

Since Fk = −∂V/∂qk is the generalized force relative to the k-th degree of freedom,
Eq. (1.13) can be regarded as Newton’s second law. As a consequence, Newton’s second
law can be written in terms of a first-order differential equation (as anticipated above).
However, in this case we need both the knowledge of position and of momentum for
describing a system.

In classical mechanics the equations of motion may also be determined by imposing that
the action

S =
t2∫

t1

dtL(q1, . . . , qn , q̇1, . . . , q̇n) (1.14)

has an extreme value. This is known as the Principle of least action or Maupertuis–
Hamilton principle.

The application of this principle yields the Lagrange equations

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0, (1.15)
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which, as Hamilton equations, are equivalent to Newton’s second law. In fact, we have

∂L

∂q̇k
= mkq̇k and

∂L

∂q j
= − ∂V

∂qk
, (1.16)

from which it again follows that

d

dt
(mkq̇k) = − ∂V

∂qk
. (1.17)

For this reason, the Lagrange and Hamilton equations are equivalent. The main difference
is that the former is a system of n second-order equations in the generalized coordi-
nates, whereas Hamilton equations constitute a system of 2n first-order equations in the
generalized coordinates qk and momenta pk .

From the discussion above it turns out that any state in classical mechanics can be repre-
sented by a point in the phase space, i.e. it is fully determined given the values of position
and momentum (see also Subsec. 2.3.3) – when these values cannot be determined with
arbitrary precision we have to turn to probabilities. As a consequence, in a probabilistic
approach the system is described by a distribution of points in the phase space, whose
density ρ at a certain point (q1, . . . , qn ; p1, . . . , pn) measures the probability of finding the
system in the state defined by that point. It follows that ρ is a real and positive quantity for
which ∫

dnq
∫

dn pρ(q1, . . . , qn ; p1, . . . , pn) = 1, (1.18)

i.e. the probability of finding the system in the entire phase space � is equal to one. The
density ρ allows us to calculate, at any given time, the mean value of any given physical
quantity F , i.e. of a function F(q1, . . . , qn ; p1, . . . , pn) of the canonical variables thanks to
the relation

F̄({q}, {p}) =
∫

dnq
∫

dn pρ({q}, {p}))F({q}, {p})), (1.19)

where {q} and {p}) stand for (q1, . . . , qn) and (p1, . . . , pn), respectively.
The dynamics of a statistical ensemble of classical systems is subjected to the Liouville

equation (or continuity equation). Let us denote with ρ(q, p; t) the density of representative
points that at time t are contained in the infinitesimal volume element dn p dnq in � around
q and p. Then it is possible to show that we have

dρ

dt
= {ρ, H} + ∂ρ

∂t
= 0 (1.20)

or

∂ρ

∂t
= {H , ρ}. (1.21)
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ρ (t)

ρ (t0)

q

p

�Figure 1.1 Graphical representation of the Liouville theorem. The area that defines the density of
representative points must remain the same even if its shape may change with time.

Then, the Liouville theorem states that the density of representative points in the phase
space � is constant (see Fig. 1.1).

From what we have seen above, we can finally define the basic feature of a state that
we would have in any mechanics: it is the collection of all the properties of a system
that can be simultaneously known – an issue that will be discussed extensively later (see
also Sec. 15.5). In classical mechanics, for the principle of perfect determination, such a
collection is also complete. This means that, according to this principle, a definite value is
assigned to every physically sensible variable. In quantum mechanics, as we shall see in
the following, this is not the case.

1.2 An interferometry experiment
and its consequences

In this section we aim to draw, with the help of an ideal experimental setup, a series of
consequences that will allow us to introduce some basic features of quantum mechanics.
To some extent, this setup will become the guiding tool for many of the discussions that will
follow in the present and next chapters. This experimental setup is essentially an optical
interferometer. We therefore wish to discuss first the basic features of the photon – the
quantum of light.

1.2.1 The quantum of l ight and the photoelectr ic effect

The hypothesis of the existence of the quantum of light was introduced by Albert Einstein
in 1905 starting from Planck’s solution to the black-body problem. In this way, he was
able to explain the photoelectric effect, i.e. the emission of electrons by a metal surface
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�Figure 1.2 (a) Schematic representation of the experimental setup for detecting the photoelectric effect. The
two layers L, whose potential difference with respect to the metal surface M may be changed
through the potentiometer P, collect the electrons emitted by M, which in turn is illuminated by
the incident light. The resulting electric current is measured by the amperometer A. The
maximum kinetic energy of the emitted electrons is measured by the (inverted) potential V0

necessary to make the current vanish. This quantity turns out to be independent of the intensity
of the incident light. (b) The experimental results are shown in terms of the behavior of V0 as a
function of the frequency ν of the incident light.

when it is illuminated by light.2 In fact, in classical physics light is treated as a wave
and as such it is delocalized. It turns out that this classical picture is unable to account
for the photoelectric effect: for a wave, a very long period of time would be needed in
order to deliver the energy required for an atom to emit an electron. However, it is experi-
mentally known that the effect is almost instantaneous. This is understandable only if one
admits that light is made up of localized energy packets. If we denote by Te the kinetic
energy of the emitted electron and by U its binding energy (i.e. the minimum energy
which is required to extract the electron from the metal), then they are related to the energy
of the photon responsible for the photoelectric effect by the following expression (see
Fig. 1.2):

E = Te +U . (1.22)

According to Einstein’s proposal, there is a relation between the energy of the photon and
the frequency ν of the electromagnetic radiation that is given by

E = hν, (1.23)

where

h = 6.626069 × 10−34J s (1.24)

is the Planck constant. First, it is important to note that this phenomenon has a thresh-
old: for photons with frequencies smaller than ν0 = U/h, the photoelectric effect is not

2 See [Einstein 1905]. For a historical reconstruction see [Mehra/Rechenberg 1982–2001, I, 72–83]. Actually the
term “photon” is due to G. N. Lewis [Lewis 1926].
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observed at all, no matter how great the intensity of the light beam. However, above thresh-
old the number of emitted electrons is proportional to the intensity of radiation. Second, the
kinetic energy of the outgoing electrons is proportional to the frequency of the electromag-
netic radiation. This relationship is surprising because classically the energy of a wave is
proportional to the intensity, i.e. to the square of its amplitude and does not depend on the
frequency.

It results then that the energy of photons occurs in quantized amounts. The quantization
of energy (of the matter) was proposed for the first time by Planck in 1900 as a solution
to the black-body radiation problem (as we shall see in Subsec. 1.5.1). This assumption
is traditionally known as the quantum postulate and, after Einstein’s contribution, can be
reformulated as: the energy of an electromagnetic radiation with frequency ν can only
assume discrete values, i.e.

E = nhν, (1.25)

where n = 1, 2, . . .. As we shall see in Subsec. 1.5.4 and in Ch. 11, this assumption was
also applied by Niels Bohr to the atomic model.

Being the (energy) quantum of light, the photon can be absorbed and emitted by single
atoms. As a consequence, photons can be detected by certain apparata (called photodetec-
tors) in well defined positions exactly as it happens for particles. It is worth mentioning
that in optimal conditions a single photoreceptor (rod) of a human eye is able to detect
a single photon3 and therefore to function as a photodetector (even though with a small
efficiency).4

1.2.2 The Mach–Zender interferometer

Let us now describe an experiment from which some basic aspects of quantum mechanics
can be inferred. The set up is shown in Fig. 1.3 and is known as a Mach–Zender interfer-
ometer. Let us first describe it using classical optics. It essentially consists of two beam
splitters, i.e. two half-silvered mirrors which partly reflect and partly transmit an input
light beam, two mirrors, and two photodetectors. A light beam coming from the source is
split by the first beam splitter into the upper and lower paths. These are reflected at the
mirrors and recombined at the second beam splitter before the photodetectors D1 and D2,
which we assume to be ideal, i.e. with 100% efficiency. In the upper path a phase shifter is
inserted in order to create a relative phase difference φ between the two component light
beams. A phase shift which is a multiple of 2π brings the situation back to the original
one, while a phase shift φ = π corresponds to the complete out-of-phase situation. At BS2
the two beams interfere and such interference may be destructive (φ = π ) or constructive

3 See [Hubel 1988].
4 Since photons travel at a relativistic speed, one may be surprised that they are introduced in a textbook about

non-relativistic quantum mechanics. However, for our purposes, photons are very useful tools and we do not
need to consider their relativistic nature.
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�Figure 1.3 Schematic setup of the Mach–Zender interferometer (lateral-downward view). The source beam
coming from the laser is split at the first beam splitter BS1. After reflections at the two mirrors M1
and M2, the upper and lower paths are recombined at the second beam splitter BS2 and then
detected at the photodetectors D1 and D2. PS denotes a phase shifter which causes a relative
shift φ of the upper beam.

(φ = 0). For example, destructive interference at D2 means that the observed intensity at
such photodetector is equal to zero (dark output). This in turn means that D1 will certainly
click (constructive interference). The transmission and reflection coefficients T and R of
the beam splitters can vary between 0 and 1, with R2 + T2 = 1. When T = R = 1/

√
2, we

have a symmetric (or a 50%–50%) beam splitter. All the devices present in this setup are
linear, i.e. such that the output is proportional to the input.

Up to now the description is purely classical, and the light has wave-like properties –
for instance, a phase. Therefore, having already considered the photoelectric effect, we see
that light may display both wave-like and corpuscular features. We face here a new and
surprising situation that appears even paradoxical from a classical viewpoint. In the next
subsections we shall try to shed some “light” on this state of affairs and draw the necessary
consequences.

�Box 1.1 Interferometry

Interferometry is a widely used technique for detecting “waves” of different nature. There
are many different forms of interferometry depending on the nature of the “objects” to be
detected and on the configurations of the mirrors. One of the first interferometers was that
of Michelson and Morley who used it to demonstrate the invariance of the speed of light
(see Fig. 1.4). The Michelson–Morley experiment was performed in 1887 at what is now Case
Western Reserve University, and is considered to be the first strong evidence against the
theory of a luminiferous aether. Figure 1.5 shows an interferometer for photons that is useful
for indirectly detecting gravitational waves.
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�Figure 1.4 The Michelson–Morley interferometer. A single source of monochromatic light is sent through a
half-silvered mirror that is used to split it into two beams travelling at right angles to one another
(top view). After leaving the splitter, the beams travel out to the ends of long arms where they
are reflected back into the middle on small mirrors. They are then recombined on the far side of
the splitter in an eyepiece, producing a pattern of constructive and destructive interference based
on the length of the arms. Any slight change in the amount of time the beams spent in transit
would then be observed as a shift in the positions of the interference fringes. If the aether were
stationary relative to the sun, then the Earth’s motion would produce a shift of about 0.04 fringes.

1.2.3 First consequence: superposit ion principle

Let us now imagine what happens when a single photon at a time (i.e. the time interval
between the arrival of two successive photons is much larger than the time resolution of
the detector) is sent through the Mach–Zender interferometer. The number of photons per
second can easily be calculated by knowing the intensity of light and the energy of the
photons. It is an experimental fact that at each time a single photon is detected either at D1
or at D2, and never at both detectors. However, after N # 1 runs, which are required in
order to obtain a good statistics, we experimentally observe that the detector D1 will click
N (1 − cosφ)/2 times and detector D2 N (1 + cosφ)/2 times.5 Again, if φ = π , D2 does
not click. Repeating the same experiment for a large number of times with different values
of φ, we would obtain the plots shown in Fig. 1.6. This behavior is typical of an interference
phenomenon. Since at most one photon at a time is present within the apparatus, then one
can speak of self-interference of the photon.6

Self-interference has been experimentally verified for the first time by Pfleegor and
Mandel.7 Successively, further confirmations have come, among many others, from the
experiments performed by Grangier, Roger, and Aspect8 and by Franson and Potocki.9

5 For a formal derivation of these formulas in term of probabilities see Subsec. 2.3.4.
6 This concept was introduced for the first time by Dirac [Dirac 1930, 9].
7 See [Pfleegor/Mandel 1967].
8 See [Grangier et al. 1986a, Grangier et al. 1986b].
9 See [Franson/Potocki 1988].
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�Figure 1.5 A Michelson–Morley-type interferometer for detecting gravitational waves (top view). Three
masses hang by wires from the overhead supports at the corner and ends of the interferometer.
When the first crest of a gravitational wave enters the laboratory, its tidal forces (gravitational
forces producing stretching along the direction of a falling body and squeezing along the
orthogonal direction) should stretch the masses apart along the L1 arm while squeezing them
together along L2. When the wave’s first crest has passed and its first trough arrives, the
directions of stretch and squeeze will be changed. By monitoring the difference L1 − L2, one may
look for gravitational waves. This is provided by a laser beam which shines onto a symmetric BS
on the corner mass. The two outgoing beams go down the two arms and bounce off mirrors at the
end of the arms and then return to the BS. The beams will be combined and split so that one part
of each beam goes back to the laser and another part goes toward the photodetector. When no
gravitational wave is present, the contributions from the two beams interfere in such a way that
all the light goes back to the laser. See also [Thorne 1994, 383–85].

N N2

0 π/2 π 3π/2 2π

N/2

0

φ

N1

�Figure 1.6 The two curves show the statistical results of photon counting at detectors D1 and D2. N1 and N2

denote the number of photons counted at detectors D1 and D2, respectively. It should be noted
that, for each value of φ, N1(φ) + N2(φ) = N.

In Fig. 1.7 we report the experimental results obtained by Grangier, Roger and Aspect
which confirm the expectations of Fig. 1.6.

Self-interference forces us to admit that the photon is not localized in either of the two
arms. Now, let us suppose that we remove BS1. Then, the photon will certainly travel along
the lower path (it is fully transmitted). We can label the “state” of the photon in such a case
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�Figure 1.7 Results of the experiment performed by Grangier, Roger, and Aspect. As before, N1 and N2 denote
the number of photons counted at detectors D1 and D2, respectively, as functions of the phase
shift φ. Adapted from [Grangier et al. 1986b].

by the symbol |ψl〉 , where the subscript l denotes the lower path. On the other hand, if
BS1 is replaced by a 100% reflecting mirror, the photon will take with certainty the upper
path and its state may then be denoted in this case by the symbol |ψu〉 , where the subscript
u refers to the upper path. As a consequence, when the partial reflecting mirror BS1 is put
in its place, we are led to the conclusion that the state of the photon should be a combina-
tion (a superposition) of both the states |ψl〉 and |ψu〉 associated with the two arms of the
interferometer. Therefore, we state in general terms the first theoretical suggestion of our
ideal experiment:

Principle 1.1 (Superposition principle) If a quantum system S can be in either of two
states, then it can also be in any linear combination (superposition) of them.

In the example above, the state |ψ〉 of the photon after BS1 can be expressed as the
superposition

|ψ〉 = cu |ψu〉 + cl |ψl〉 , (1.26)

where cu and cl are some coefficients whose meaning will be explained below. Equa-
tion (1.26) represents the fact that it is not possible to assign a well-defined path to the
photon: the state is a combination of the contribution of the two paths, i.e. it is delocalized.
We should emphasize that this state of affairs is a clear violation of the classical principle
of perfect determination (see Sec. 1.1) according to which the photon should be either in
the upper path or in the lower path. In other words, Eq. (1.26) – describing a superposi-
tion of states – cannot be interpreted as a classical superposition of waves. In fact, in the
latter case the components of the superposition would be two spatial waves, whereas in
the case of Eq. (1.26) the components |ψl〉 and |ψu〉 represent possible states of the same
system. Therefore, the wave-like properties of the photon discussed in Subsec. 1.2.2 cannot
be taken in a classical sense.

We finally stress that the superposition principle is not just a consequence of our
ignorance of the path actually taken by the photon, as we shall see in the following
subsection.
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1.2.4 Second consequence: complementarity principle

It is clear from the preceding analysis that, for φ = 0 (π ), detector D1 (D2) will never
click. This dark output may even be used in order to detect the presence of an obstacle in
one of the two paths without directly interacting with it. Let us place an object in the lower
arm of the interferometer and set φ = 0. Then the presence of this object will prevent the
interference and allow, at least with some probability different from zero, that the photon
will actually be detected at D1. This phenomenon is known as interaction-free measure-
ment and shall be analyzed in greater details in Sec. 9.6. Turning the argument around, we
can state that a detection event in D1 tells us with certainty that an object is in the lower
arm and that the photon has taken the upper arm to the detector, i.e. it was localized in
one of the two arms. It should be noted that in some cases the photon is not detected at
all because it is absorbed by the object. Still in those cases when detector D1 clicks, we
have learned about the position of the object without directly interacting with it, something
which classically would be evidently not possible.10 As we wrote above, it is evident that
interference cannot be a manifestation of subjective ignorance. If this were the case, its
presence or absence would not allow us to acquire objective information.

A second consequence of the experiments discussed above is that every time the photon
is localized (i.e. we know with certainty that it has taken either the upper or the lower arm),
interference is actually destroyed since it is a direct consequence of the superposition of
|ψu〉 and |ψl〉 . In other words, we cannot acquire information about the path actually taken
by the photon without disturbing the detected interference and consequently change the
state of the photon itself. This consequence can be generalized by the following principle:

Principle 1.2 (Complementarity principle) Complete knowledge of the path is not
compatible with the presence of interference.

Principle 1.2 states that the knowledge of the path is complementary to the interference.
It should be stressed, however, that the term “path” does not necessarily refer to the spa-
tial path, and in the following chapters we shall consider several and different instances
of this concept. Moreover, complementarity is here expressed in such a way that it does
not necessarily imply a sharp yes/no alternative. As we shall see (in Subsec. 2.3.4), it
rather consists of a trade-off between the partial gain of information and partial interfer-
ence. In other words, an increase in the knowledge of the path occurs at the “expense”
of the interference and vice versa, so that full localization (particle-like behavior) and full
interference (“superposition-affected” or wave-like behavior) are only limiting cases of a
continuous range of behaviors. Therefore, quantum systems can neither be considered as
classical particles, nor as classical waves.

10 This has far-reaching consequences, if one thinks that the 1971 Nobel prizewinner in physics, Dennis Gabor,
supported the wrong idea that one cannot acquire information about an object system if at least one photon
does not interact with it [Kwiat et al. 1996].
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�Figure 1.8 Oscillation of electric (E, in grey) and magnetic (B, in black) fields associated with
electromagnetic waves.

The complementarity principle was first formulated by Niels Bohr at the Como Confer-
ence in 1927 and communicated to a large audience in an article in Nature [Bohr 1928].11

Bohr intended it as a generalization of what was at that time known as the uncertainty prin-
ciple. As we shall see (in Sec. 2.3), the uncertainty relation is another main point of depar-
ture from classical mechanics to the extent in which it states that it is impossible to jointly
know with arbitrary precision a pair of conjugate variables, as for example x and px are.

1.3 State as vector

In the previous section we have seen that the state in quantum mechanics has “strange”
characteristics, namely it violates at least the classical principle of perfect determination.
We shall now consider an important property of light – polarization – as a tool for analyzing
some further features of the quantum state.

1.3.1 Polar izat ion states

Just as classical light can be, photons can be (linearly, circularly, or elliptically) polarized.12

Classically, light polarization refers to the direction of oscillation of the electric (or mag-
netic) field associated to the electromagnetic wave (see Fig. 1.8). Normal light (e.g. that
from a light bulb) is unpolarized, i.e. the electric field oscillates in all possible directions
orthogonal to the propagation direction (see Fig. 1.9). However, if we insert a polarizing
filter P1 on the light path, i.e. a filter which only allows the transmission of light polarized
along a certain direction a, say vertical, we may produce a beam of polarized light but with

11 For a historical reconstruction see [Mehra/Rechenberg 1982–2001, VI, 163–99].
12 See [Jackson 1962, 273–78].
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�Figure 1.9 The light from a bulb is unpolarized – the electric field oscillates in all possible directions. After it
passes through the vertical polarizing filter P1, only the vertically polarized component survives.
A second filter (P2), with an orientation b which makes an angle θ with the orientation a of P1
(here vertical) may be inserted.

a lower intensity than that before the filter. In fact, some photons will pass and some will
not. We may then assign a state of vertical polarization |v〉 to each photon that has passed.
Similarly, if P1 were rotated 90◦ about its axis, as output we would have photons in the
state of horizontal polarization |h〉 . The superposition principle implies that we should
interpret |v〉 and |h〉 as vectors in a linear vector space V .13 In fact, if |v〉 and |h〉 are
represented by two vectors in V , then also cv |v〉 + ch |h〉 (where cv , ch are some coeffi-
cients) will be in V . Since the polarization directions lie in a plane, the vector space V has
dimension 2. Therefore |v〉 and |h〉 can be thought of as an orthogonal basis in V , and, as
we shall see later, any photon polarization state can be written as a linear combination of
them, as in Eq. (1.26). State vectors, i.e. vectors as representative of quantum states, were
first introduced by Dirac [Dirac 1926a].14

1.3.2 Projectors and Hilbert space

Suppose now that we insert a second polarizing filter P2 with a different polarization axis
b which makes an angle θ with the orientation a of P1 (see again Fig. 1.9). We know from
classical physics that the transmitted beam will be polarized along the b direction and its
intensity will be I2 = I1 cos2 θ , where I1 is the intensity of the beam after P1. If a and b
are orthogonal directions, i.e. θ = π/2, obviously I2 = 0.

Let us now observe what happens when we send single photons one at a time through
the apparatus. As we said above, after P1 we only have photons polarized along a. Since
the photon cannot be divided, the observer will see that – even though all the photons are
in the same state – some photons will pass through P2 and some will not. We see here
that we can only speak of a certain probability that a particular photon will pass through
the apparatus. In fact, if we repeat the experiment many times and for different values of
the angle θ , we shall be able to reconstruct the probability that a photon polarized along a

13 A complete list of properties of linear vector spaces can be found in a good handbook about linear spaces, for
instance in [Byron/Fuller 1969–70, Ch. 3]. For a rigorous treatment of the problem see also Subsec. 8.4.3.

14 See also [Mehra/Rechenberg 1982–2001, IV, 141–47].
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�Figure 1.10 Decomposition of an arbitrary vector |a〉 . The pair
∣∣b

〉
and

∣∣b⊥
〉

form an orthonormal basis in
the polarization vector space V.

passes through P2, which is given by ℘(θ ) = cos2 θ . Quantum mechanics has to account
for such an experimental result. In general terms, let us denote by |a〉 the state vector
corresponding to a photon polarized along direction a and similarly |b〉 for b. As it is clear
from Fig. 1.10, |a〉 can be decomposed as

|a〉 = cos θ |b〉 + sin θ |b⊥〉, (1.27)

where |b⊥〉 is the vector orthogonal to |b〉 (representing a photon in a state with a polariza-
tion orthogonal to the b direction). The space of states is here just a two-dimensional vector
space, as previously suggested. Then, after P2 the state of the photon will be |b〉 with prob-
ability ℘(θ ), whereas with probability sin2 θ = 1 − ℘(θ ) the photon will be absorbed by
P2. In other words, the state of the photon which has passed P2 is projected onto |b〉 . Math-
ematically, the operator which performs such projection is called a projector and describes
the selection performed by the filter P2.15 The projector can be written as16

P̂b = |b〉 〈b |. (1.28)

This way of writing projectors is justified by the fact that it is possible to associate to any
vector |b〉 ∈ V a vector 〈b | which, if complex numbers are introduced, belongs to the
isomorphic space V∗. Following Dirac17 we call the |b〉 vector ket and the 〈b | vector bra:
if |b〉 is a column vector, 〈b | is the corresponding complex conjugate row vector. This
terminology expresses the fact that the scalar product of two arbitrary vectors |c〉 and |d〉 ,
which is often written as (d , c), can be written as 〈d | c〉 (bra–ket or bracket), where the
two adjacent vertical lines have been contracted for brevity.

Then, by inspecting Fig. 1.10, we may rewrite Eq. (1.27) as

|a〉 = cos θ

(
1
0

)
+ sin θ

(
0
1

)
=
(

cos θ
sin θ

)
. (1.29)

15 Projectors were first introduced in quantum mechanics by von Neumann [von Neumann 1932,
von Neumann 1955].

16 We shall always write operators with a hat to distinguish them from usual numbers, also called classical
numbers or c-numbers.

17 See [Dirac 1930, 18].
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Let us now generalize the previous example and consider the ket |b〉 as a vector pertaining
to the n-dimensional vector space Vn , as

|b〉 =

⎛⎜⎜⎝
c1

c2

. . .

cn

⎞⎟⎟⎠, (1.30)

where c1, c2, . . . , cn are numbers: they turn out to be the coefficients of the expansion of
|b〉 on the orthonormal set {| j〉 } in the n-dimensional vector space Vn . This expansion
(which is a superposition) can be written as

|b〉 =
n∑

j=1

c j | j〉. (1.31)

We recall that a set of vectors is called orthonormal if and only if (iff):

• the scalar product between two different vectors in the set is equal to zero;
• the norm of each vector in the set is equal to one.

Moreover, any complet set of n vectors in a n-dimensional vector space is called a basis.
The bra corresponding to |b〉 is 〈b |:

〈b | = ( c∗1 c∗2 . . . c∗n
)
, (1.32)

where c∗1, c∗2, . . . , c∗n are the complex conjugates of the coefficients above.18

As we have said, the projector (1.28) is an operator, which in the finite n-dimensional
case of our example, is mathematically expressed by the n × n matrix given by the row–
times–column product

P̂b =

⎛⎜⎜⎝
c1

c2

. . .

cn

⎞⎟⎟⎠( c∗1 c∗2 . . . c∗n
)

=

⎡⎢⎢⎢⎢⎣
|c1|2 c1c∗2 . . . c1c∗n
c2c∗1 |c2|2 . . . c2c∗n
. . . . . . . . . . . .

cnc∗1 cnc∗2 . . . |cn|2

⎤⎥⎥⎥⎥⎦. (1.33)

Let us now consider some properties of kets and bras. The multiplication of kets and
bras by a scalar, i.e. the multiplication of all components by the same number, is a linear
operation, i.e.

α (|b〉 + |c〉 )=α |b〉 + α |c〉 , (1.34a)

α ( 〈b | + 〈c |)=α 〈b | + α 〈c |, (1.34b)

18 There are several reasons why it is necessary to introduce complex numbers (pertaining to (C) in quantum
mechanics. Let us mention here that, in order to account for interference, the coefficients in the superposition
(1.26) need to be complex numbers.
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where α is any (in general complex) number. Given the one-to-one correspondence
between bra and ket vectors, one also has that the bra corresponding to the ket |b〉 + ∣∣b′〉
is 〈b | + 〈

b′
∣∣, while the bra corresponding to α |b〉 is α∗ 〈b |, where α∗ is the complex

conjugate of α. It should be stressed that the ket |a〉 and the bra 〈b | are of different nature
(they belong to different spaces) and therefore cannot be added to each other.

Let us consider two (ket) vectors |a〉 and |b〉 and again the orthonormal basis {| j〉 } in
an n-dimensional space Vn . The kets |a〉 and |b〉 can both be expanded in the same basis
(see also Eq. (1.31))

|a〉 =
n∑

j=1

c′j | j〉 and |b〉 =
n∑

j=1

c j | j〉, (1.35)

where the c′j ’s and c j ’s ∈ (C. Then, the scalar product 〈b | a〉 can be defined as

〈b | a〉 = ( c∗1 c∗2 . . . c∗n
)⎛⎜⎜⎝

c′1
c′2
. . .

c′n

⎞⎟⎟⎠
= c∗1c′1 + c∗2c′2 + . . .+ c∗nc′n

=
n∑

j=1

c∗j c′j . (1.36)

The following properties of the scalar product follow from the above definition:

( 〈b | + 〈c |) |a〉 = 〈b | a〉 + 〈c | a〉, (1.37a)

〈a | (|b〉 + |c〉 ) = 〈a | b〉 + 〈a | c〉, (1.37b)

〈b | (α |a〉 ) = α 〈b | a〉, (1.37c)

(α 〈b |) |a〉 = α 〈b | a〉, (1.37d)

〈b | a〉 = 〈a | b〉∗, (1.37e)

〈a | a〉 = 0 iff |a〉 = 0. (1.37f)

The definition and properties of the scalar product also allows us to introduce in a natural
way the norm of a vector through the relation

‖ a ‖= (〈a | a〉) 1
2 . (1.38)

Summarizing, the following operations are allowed:

| ·〉 + | ·〉 (sum of kets), (1.39a)

〈· | + 〈· | (sum of bras), (1.39b)

〈· | ·〉 (scalar product), (1.39c)

| ·〉 〈· | (external product), (1.39d)

whereas, as we have said above, the sum of a bra and a ket 〈· | + | ·〉 is not. Finally, we
recall that the expression | ·〉 〈· | always denotes an operator.
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A linear vector space endowed with a scalar product and which is complete and separable
(having a countable dense subset, as it happens for the Euclidean space IRn) is called a
Hilbert space and is symbolized by H.19 Hilbert spaces are the natural framework for state
vectors in quantum mechanics and can have a finite or infinite dimension. In the following,
bras and kets describe state vectors in a Hilbert space, whereas, as we have seen, vectors
in a configuration space are symbolized by bold letters. In a Hilbert space H it is always
possible to find a complete orthonormal set of vectors, that is, an orthonormal basis on H.

Let us now discuss the properties of projectors. Since in our example the projector (1.28)
describes the projection onto the state |b〉 of the photon which has passed P2, then, if we
let the projector P̂b act on the state |b〉 , we should obtain the state |b〉 again, i.e.

P̂b |b〉 = |b〉 〈b | b〉 = |b〉, (1.40)

since 〈b | b〉 = 1. It is also evident that such a projector has value 1 when a photon has
actually passed P2 (i.e. has positively passed the test represented by P2, which means a
“yes”) and value 0 when a photon has been absorbed (i.e. has not passed the test represented
by P2, which means a “no”). Then, projectors in a bidimensional space have a binary form
and can be understood as propositions expressing a physical state of affairs (“the photon
has passed P2”) that can be evaluated as true (1) or false (0).

Being {| j〉 } an orthonormal basis in an n-dimensional Hilbert space, the corresponding
projectors have the following properties:∑

j

P̂j =
∑

j

| j〉 〈 j | = Î , (1.41a)

P̂j P̂k = | j〉 〈 j | k〉 〈k | = δ jk P̂k , (1.41b)

where in Eq. (1.41a) the sum is extended over all possible j’s, Î is the identity operator,
and in Eq. (1.41b) δ jk is the Kronecker symbol:

δ jk = 0, ∀ j 	= k and δ j j = 1. (1.42)

Property (1.41a) expresses the fact that a projection over the entire space does not affect the
state (is not a selection). Property (1.41b) expresses the fact that the product of mutually
exclusive selections is zero, and P̂2

j = P̂j (idempotency) (see Prob. 1.6).
It should be emphasized that projectors (and obviously any linear combination of pro-

jectors) are linear operators. A generic operator Ô acting on a Hilbert space is said to be
linear when

Ô (α |a〉 + β |b〉 ) = αÔ |a〉 + β Ô |b〉, (1.43)

for all vectors |a〉 and |b〉 , where α and β are (complex) numbers. It can be shown (see
Prob. 1.8) that any operator Ô that is a linear combination of projectors maps H into H,
that is if a vector |a〉 ∈ H, then also Ô |a〉 ∈ H. Projectors are only a first example of
operators that act on quantum mechanical states. In the next chapter we shall see other
kinds of operators.

19 See [Halmos 1951, 16–17]. For a rigorous treatment see also Subsec. 8.4.3.
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Let us now turn back again to the polarization state example (1.27). We are now in the
position to see how the projector P̂b defined by Eq. (1.28) acts on the state (1.27)

P̂b |a〉 = |b〉 〈b | (cos θ |b〉 + sin θ |b⊥〉 )
= cos θ |b〉 〈b | b〉 + sin θ |b〉 〈b | b⊥〉
= cos θ |b〉, (1.44)

since 〈b | b〉 = 1 and 〈b | b⊥〉 = 0. In fact, {|b〉 , |b⊥〉} is an orthonormal basis on the
polarization Hilbert space of dimension 2. The vector cos θ |b〉 has the same direction of
vector |b〉 but a smaller length (its norm is equal to | cos θ | < 1) (see Fig. 1.10). However,
in quantum mechanics vectors with the same direction and different lengths are taken to
describe the same state. In other words, the same state is represented by the equivalence
class of all vectors that can be constructed from one another by multiplication times a
(complex) number. This is justified by the fact that quantum state vectors are usually taken
to be normalized (meaning, as we shall see in the next subsection, that global phase factors
have no relevance).

The reduction of the norm of the state vector after the application of P̂b describes the
fact that only a fraction cos2 θ of the photons in state |a〉 has passed the test represented by
P2. We also emphasize that the resulting state vector P̂b |a〉 should not be regarded as the
state of the photon after interaction with the filter, while the information about the chance
that the photon is absorbed by the filter is coded in the normalization of the state vector.

From Fig. 1.10 it is evident that cos θ = 〈b | a〉 and sin θ = 〈b⊥ | a〉. In other words,
Eq. (1.27) may be rewritten as

|a〉 = 〈b | a〉 |b〉 + 〈b⊥ | a〉 |b⊥〉
= |b〉 〈b | a〉 + |b⊥〉 〈b⊥ | a〉
=
(

P̂b + P̂b⊥
)
|a〉, (1.45)

which is in agreement with Eq. (1.41a). We have made use of the fact that

〈b | a〉 |b〉 = |b〉 〈b | a〉 and 〈b⊥ | a〉 |b⊥〉 = |b⊥〉 〈b⊥ | a〉, (1.46)

since the scalar products 〈b | a〉 and 〈b⊥ | a〉 are c-numbers. We are able now to show in
a pictorial way the superposition principle. Take again Eq. (1.27). It is evident that, by
varying θ , |a〉 will span all the range from |b〉 (when θ = 0◦) to |b⊥〉 (when θ = 90◦)
(see Fig. 1.10). In other words, if a system can be in a state |b〉 and in a state |b⊥〉 , it
can be in any linear combination of |b〉 and |b⊥〉 , where any possible superposition |a〉 is
determined by the coefficients cb = cos θ = 〈b | a〉 and cb⊥ = sin θ = 〈b⊥ | a〉.

1.3.3 Poincaré sphere representation of quantum states

It is very interesting to note that there exists a useful graphic representation, known as the
Poincaré sphere, of a generic quantum state of a two-level system. A two-level system is a
system that possesses two orthogonal states, generally denoted by |↑〉 and |↓〉 .

In general terms, the quantum state of a two-level system may be written as

|ψ〉 = a |↑〉 + b |↓〉 . (1.47)
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Given |↑〉 and |↓〉 , therefore, the state |ψ〉 is completely defined by a set of two complex
coefficients a = |a|eıα and b = |b|eıβ , i.e. by four real parameters. However, for normal-
ization reasons (see Sec. 1.4) we must have |a|2 + |b|2 = 1, which reduces the number of
linearly independent real parameters to 3. Moreover, the immaterial global phase factor of
any quantum state allows us to reduce this number to 2. We shall return to this point,20

but, intuitively speaking, only relative phase factors between different components of a
superposition are relevant since they determine the interference behavior of the system
(see Subsec. 1.2.3). Then, we may write |ψ〉 as

|ψ〉 = eıα
(
|a| |↑〉 + |b|eı(β−α) |↓〉

)
, (1.48)

which, up to the global phase α, reduces to

|ψ〉 = |a| |↑〉 + |b|eı(β−α) |↓〉 . (1.49)

Now, without any loss of generality, we may define

|a| = cos
θ

2
, |b| = sin

θ

2
, β − α = φ, (1.50)

so that Eq. (1.47) can be finally rewritten as

|ψ〉 = cos
θ

2
|↑〉 + eıφ sin

θ

2
|↓〉 , (1.51)

which may be considered as a generalization of Eq. (1.27). It is now clear that, in order to
completely define |ψ〉 , it is sufficient to know the values of the two angles θ and φ, with
0 ≤ θ ≤ π and 0 ≤ φ < 2π . These, in turn, may be interpreted as the polar and azimuthal
angles, respectively, of the spherical coordinates {r , θ ,φ}. We may therefore make a one-
to-one correspondence between points on a spherical surface and quantum states of a two-
level system. In particular, given the normalization condition, we have that r = 1. The
correspondence between quantum states and points on the spherical surface of unit radius
is schematically illustrated in Fig. 1.11. In the polarization framework21 (where |↑〉 and
|↓〉 are replaced by |v〉 and |h〉 , respectively), states of the type (1.51) may be considered
as states of elliptical polarization.

For example, the vector pointing to the north pole (θ = 0) will represent the state |↑〉
while the vector pointing to the south pole (θ = π ) the state |↓〉 . On the other hand, all
vectors lying on the equatorial plane (where θ = π/2) represent all states of symmetric
superposition of the basis states (states of circular or linear polarization) of the type∣∣ψsym

〉 = 1√
2

(|↑〉 + eıφ |↓〉), (1.52)

for any φ ∈ [0, 2π ].

20 See the discussion at the end of Subsec. 2.1.3.
21 Originally, Poincaré introduced the homonimous sphere for representing polarization [Poincaré 1892].
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�Figure 1.11 Poincaré sphere representation of states of a two-level quantum system. The state |ψ〉 is
represented by a vector having an angle θ with the polar axis (here z) and a projection onto the
x–y plane which forms an angle φ with the x-axis. The orthogonal state |ψ⊥〉 is represented as
the point of the surface of the sphere that is diametrically opposed to |ψ〉 and is defined by the
angles θ ′ = π − θ and φ′ = φ + π . The states |ψ〉 and |ψ⊥〉 are on two parallels at the same
angular distance to their respective poles.

1.4 Quantum probabil ity

In the polarization example of the previous section we have introduced the probability of
some events. After the polarizing filter P1 (see Fig. 1.9) all photons have been prepared in
the same state, namely |a〉 . It can then appear quite strange, from a classical point of view,
to find that they behave in different ways (some will pass P2 and some will be absorbed).
This is a common state of affairs in quantum mechanics. A further evidence of this situation
can be found, for instance, in the phenomenon of radioactive decay. Let us consider a piece
of radioactive material. If at time t0 we have N0 non-decayed atoms, then at a successive
time t the number of undecayed atoms will be Nt = N0e−ιt , where ι is a constant that is
characteristic of the particular material. However, it is not possible to predict which atom
will decay at which time, even though all the atoms can be thought of as being in the same
state. To the best of our knowledge, there is no experiment that can be performed in order
to predict which atom will decay next and at what time. We can only speak of a certain
probability that a particular atom will decay in a given time interval. As we shall see,
the use of probability in quantum mechanics is not a consequence of subjective ignorance
that could be reduced by some improvement of knowledge. Instead, it should be taken
as an irreducible property of quantum systems. Thus, in contrast to classical mechanics,
quantum mechanics has an intrinsically probabilistic character.

At this point, one might also think that quantum mechanics faces the same situation as
thermodynamics does. However, the statistical character of thermodynamics is due to the
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large number of particles (atoms or molecules) present in a macroscopic piece of (fluid or
solid) matter: it is due to the fact that it is practically (for our human means, technically)
impossible to measure the position and the momentum of an ensemble of particles whose
number is of the same order of Avogadro number NA = 6.02 × 1023. Instead, in quantum
mechanics, the probabilistic character is intrinsic to the behavior of each single particle.

We have seen that the coefficients of the two “alternatives” (photon passing through P2 in
state |b〉 and absorbed photon in state |b⊥〉) in Eq. (1.27) are cos θ and sin θ , respectively.
On the other hand, from the previous section we also know that the probabilities of the
corresponding events are cos2 θ and sin2 θ . Then, we see that there is a clear relationship
between those coefficients and these probabilities:22 these are the square of the coefficients.
We may conclude that the coefficients cos θ and sin θ in Eq. (1.27) can be interpreted as
probability amplitudes of the alternatives associated to the corresponding state vectors. By
probability amplitude we mean prima facie a quantity whose square gives the probability
of the associated events.

In general, however, the coefficients preceding kets and bras are complex numbers
whereas probabilities must be real and non-negative numbers in the interval [0, 1]. In the
general case, therefore, in order to obtain the probability of a certain event, one has to
compute the square modulus of the amplitude associated to the corresponding measure-
ment outcome. For instance, if the probability amplitudes for the photon in the state |a〉
to pass P2 or to be absorbed are 〈b | a〉 and 〈b⊥ | a〉 [see Eq. (1.45)], respectively, then the
corresponding probabilities are | 〈b | a〉 |2 and | 〈b⊥ | a〉 |2. It is also evident that

| 〈b | a〉 |2 + | 〈b⊥ | a〉 |2 = 1. (1.53)

This amounts to the requirement that the sum of the probabilities of all disjoint events
of a given set is equal to one (this is the well-known Kolmogorov’s probability axiom).
This is connected to the problem of normalization of the states in quantum mechanics
(Subsec. 2.2.1). States that satisfy a condition of the type (1.53) are said to be normalized
(see Prob. 1.10).

It is also important to note a further difference between probabilities in classical and
quantum mechanics. To display these differences in a most effective way, let us go back to
the Mach–Zender experiment that we have treated in Subsec. 1.2.2. From the discussion
in Subsec. 1.2.3 we can deduce that the probabilities for a single photon to be detected at
detectors D1 and D2 are

℘u+l (D1) = (1 − cosφ)

2
and ℘u+l (D2) = (1 + cosφ)

2
, (1.54)

respectively. As we have seen, this result is due to interference between two “alternatives”:
photon taking the upper path and photon taking the lower path. This justifies the notation
above where the subscript u + l means that the photon can take both paths. If we block
the lower path by inserting a screen S between BS1 and M2 (see Fig. 1.12), then it is clear
that the photon will be absorbed by the screen with probability 1/2. With probability 1/2,

22 As pointed out by Born in [Born 1926, Born 1927a, Born 1927b]. For a history see
[Mehra/Rechenberg 1982–2001, VI, 36–55].
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�Figure 1.12 Mach–Zender interferometer with the lower path blocked by the screen S.

instead, the photon will take the upper path and will be reflected by M1. At the sym-
metric beam splitter BS2 it will have a 50% chance of going to detector D1 and a 50%
chance of going to detector D2. The overall probabilities for a photon impinging on BS1
to be detected at D1 or D2 will be therefore ℘u(D1) = 1/4 and ℘u(D2) = 1/4, respec-
tively. A similar analysis can be performed in the case where we insert the screen S in the
upper path between BS1 and M1: again the probabilities for detection at D1 or D2 will
be ℘l (D1) = ℘l (D2) = 1/4. We immediately see that the probability for detection at, say,
detector D1 when both paths are open is in general not equal to the sum of the probabilities
of being detected at D1 after taking the two paths separately, i.e.

℘u+l (D1) 	= ℘u(D1) + ℘l (D1), (1.55)

except in the cases φ = π/2 and φ = 3π/2. This is due to the fact that, when both paths
are open, the state of the photon after BS1 is not a mere addition of the two alternatives
but rather a quantum superposition of them. This contradicts the basic structure of classical
probability. In classical probability theory,23 given two events A and B, we have that

℘(A + B) ≤ ℘(A) + ℘(B). (1.56)

In the example of Fig. 1.12 this inequality is violated for all values of φ 	= {π/2, 3π/2}
either for D1 or for D2.

Let us compare this result with that obtained in the case where the experimental setup
shown in Fig. 1.12 is replaced by its classical analogue. In this classical device, pho-
tons are replaced by bullets and the beam splitters by random mechanisms that send
each bullet in one of the two paths, with equal probability over many runs. Then, if
both paths are open, the probability of detection at both D1 and D2 is equal to 0.5, i.e.
℘u+l (D1) = ℘u+l (D2) = 1/2. On the other hand, if one of the two paths is blocked,
we have ℘u(D1) = ℘u(D2) = ℘l (D1) = ℘l (D2) = 1/4. It clearly results that, in this

23 See [Gnedenko 1969, 48–49].
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classical example, Eq. (1.55) becomes an equality and therefore the requirement (1.56)
is obviously satisfied.

The result (1.55) is strictly related to the fact that quantum probabilities are calculated as
square moduli of the corresponding amplitudes and that, therefore, in quantum mechanics
amplitudes and not the corresponding probabilities sum linearly. In particular, when more
than one “alternative” (or “path”) lead to the same measurement outcome, one has first to
sum the amplitudes corresponding to the different “alternatives” and then to calculate its
square modulus in order to obtain the probability of that measurement outcome.

1.5 The historical need of a new mechanics

In this section we wish to enumerate and briefly discuss the major problems that physicists
had to face at the end of the nineteenth and the beginning of the twentieth centuries. As
we shall see, there was at that time a number of experimental facts which simply could
not be explained in the framework of classical physics. These experimental facts are the
playground in which quantum mechanics was built.

1.5.1 The black-body radiat ion problem

We have seen in Subsec. 1.2.1 that Einstein’s interpretation of the photoelectric effect
forces us to assume that electromagnetic radiation is made out of quanta of energy hν
called photons.

Einstein took his starting point from Max Planck’s work of 1900. The problem faced
by Planck was the emission of a black body. Let us consider a hollow body with internal
surface at constant and uniform temperature T . Electromagnetic waves are produced from
the different elements dS of the internal surface S. These waves are also absorbed by the
different surface elements dS. One might expect that this mutual energy exchange between
all dS reach an equilibrium. Experimentally, this is exactly what happens. However, clas-
sical physics is not able to correctly predict the spectral properties of the black body. The
spectrum of the black-body radiation is given by the function f (ν) such that f (ν)dν rep-
resents the energy of the electromagnetic field contained in the unit volume at a frequency
between ν and ν + dν. Then,

f (ν) = ∂u(ν, T )

∂ν
, (1.57)

where u(ν, T ) is the energy density at temperature T and frequency ν. Computing the
energy density by using the classical energy equipartition law, yields the well-known
Rayleigh–Jeans formula

f (ν) = 8π

c3
kBT ν2, (1.58)

where kB = 1.3807 × 10−23J/K is the so-called Boltzmann constant, c is the speed of
light, and kBT is the equipartition energy associated to each oscillator of frequency ν. This
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�Figure 1.13 Black-body radiation intensity corresponding to the formula of Rayleigh–Jeans (1), Planck (2),
and Wien (3). Adapted from [Bialynicki-B. et al. 1992, 7].

formula does not agree well with experimental data, and, above all, paradoxically predicts
an infinite total intensity Ic of the emitted radiation

Ic = c

4

∞∫
0

dν f (ν) = 2π

c2
kBT

∞∫
0

dνν2 = ∞. (1.59)

This situation is called ultraviolet catastrophe and is illustrated in Fig. 1.13. This is what
goes under the name of the black-body radiation problem.

Planck proposed to consider the black-body internal surface as a collection of N linear
harmonic resonators.24 If

SN
B = kB lnwE (1.60)

represents the Boltzmann entropy of the total system, and EN its total energy, then
the quantity wE comes to represent here the number of different ways in which EN

may be distributed among the resonators. On the contrary, Planck treated [Planck 1900a,
Planck 1900b] EN as consisting of a finite number nε of discrete energy elements ε, each
of them having a definite value for each frequency ν

EN = nεε(ν). (1.61)

If we indicate by Ē the average energy of the oscillators, we have

nε
N

= Ē

ε
, (1.62)

and, after some calculations (see Prob. 1.11), the entropy takes the final form

SN
B = kB N

[(
1 + Ē

ε

)
ln

(
1 + Ē

ε

)
− Ē

ε
ln

Ē

ε

]
. (1.63)

24 A more complete historical reconstruction of what follows can be found in several books [Jammer 1966,
7–16] [Kuhn 1978, 97–110] [Mehra/Rechenberg 1982–2001, I, 24–59].
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�Figure 1.14 Planck’s radiation curves in logarithmic scale for the increasing temperatures of liquid nitrogen,
melting ice, boiling water, melting aluminium, and the solar surface. Adapted
from [Bialynicki-B. et al. 1992, 8].

Since
∂SN

B

∂U
= 1

T
, (1.64)

where the internal energy U = N Ē , then (see Fig. 1.14 and Prob. 1.12)

Ē = ε

eε/kBT − 1
, (1.65)

where ε = hν (see Subsec. 1.2.1). This formula agrees very well with experimental data.
By making use of the classical equations of motion it can be proved that the average of the
black body can be obtained. By substituting the rhs of Eq. (1.65) in place of kBT in the
Rayleigh–Jeans formula (1.58) and by making use of the notation β = (kBT )−1, we finally
obtain the correct expression for the spectrum

f (ν) = 8πν3

c3

h

ehνβ − 1
. (1.66)

As we see in Fig. 1.13, the Rayleigh–Jeans formula is correct at small frequencies but
diverges at larger frequencies, whereas the Planck formula (1.66) reaches a maximum and
then decreases as ν goes to infinity.

Before ending this subsection, a historical remark is in order. It is worth emphasizing
that in Planck’s view matter can be modelled as a collection of resonators, and in this sense
its energy is quantized, although Planck never assumed that the energy of the oscillators is
actually a multiple of ε.25 He only pointed out that, as far as the computation of entropy
is concerned, the quantization hypothesis gives the correct results. Moreover, according to
Planck, the formula ε = hν only applies to matter quantization and is not at all a mani-
festation of light quantization. In later papers Planck made clear that the energy could be
emitted by resonators in a quantized form, but is still absorbed in a continuous way.

25 See [Parisi 2005b].
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�Figure 1.15 Schematic representation of the Compton effect. Here γi is the incident photon, impinging with
momentum hνi/c on the electron located at the origin and initially at rest. The photon scattered
at an angle θ and with momentum hνs/c is represented by γs, while the final electron with
momentum mv at an angle φ is indicated as ef.

1.5.2 Photoelectr ic and Compton effects

We have already seen (in Subsec. 1.2.1) that the photoelectric effect can be correctly inter-
preted if one admits that light is made of energy quanta. This was the first evidence of
the quantization of the electromagnetic field. A further confirmation of the quantization of
electromagnetic radiation was found by Arthur Compton, who investigated the scattering
of x-rays after their collision with electrons [Compton 1923].26 The wavelength of scat-
tered x-rays λs was slightly longer than that of incident x-rays λi – this is the essence of
the Compton effect. The change of wavelength is a function of the angle θ (see Fig. 1.15)
at which the scattered radiation is observed according to the formula

�λ = 2λc sin2 θ

2
, (1.67)

where �λ = λs − λi and

λc = h

mc
= 2.42 × 10−12m (1.68)

is the so-called Compton wavelength of the electron. This discontinuous change cannot
be explained in terms of the classical electromagnetic theory of light. On the contrary,
it may be accounted for by assuming that photons of incident energy Ei = hνi and
incident momentum pi = h/λi collide with the electrons of the target (which may be
supposed to be at rest) and are successively deflected with reduced energy Es = hνs

and reduced momentum ps = h/λs . This collision may be thought of as a two-step

26 For a historical reconstruction see [Mehra/Rechenberg 1982–2001, I, 520–32].
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process: an absorption of the photon by the electron followed by the successive emis-
sion of a photon of different energy. As a consequence, there is a transfer of energy
�E = Ei − Es and of momentum �p = pi − ps to the electron so that the energy and
momentum conservation laws are satisfied for the total system (photon + electron) in each
collision.

Following Fig. 1.15 we have that

hνi

c
= hνs

c
cos θ + mv cosφ, (1.69a)

hνs

c
sin θ =mv sinφ (1.69b)

express momentum conservation along the x- and y-axes, respectively, while

hνs + 1

2
mv2 = hνi (1.70)

expresses energy conservation during the scattering process. From Eqs. (1.69)–(1.70) one
obtains Eq. (1.67) (see Prob. 1.13).

It is worth mentioning that measuring the Compton wavelength of the electron yields
the value of Planck constant h. when the speed of light and the mass of electron are
known.

We would like to end this subsection with a historical remark. Einstein’s interpretation
of the photoelectric effect involving the corpuscular nature of light had not completely
convinced the scientific community about the quantization of the electromagnetic field. In
this respect, the Compton effect, where energy and momentum are conserved in each single
collision, played the role of a definitive experimental evidence of radiation quantization and
convinced even the most skeptical physicists.

1.5.3 Specific heat

At the beginning of the nineteenth century it was already known that the specific heat
per mole of monatomic, diatomic, and multiatomic ideal gases is given by 3

2 R, 5
2 R, 3R,

respectively, where R = NAkB and NA is the Avogadro number. There is no explanation
of this fact in the framework of classical physics, because the number of degrees of freedom
of a molecule with N atoms is equal to 3N . According to the classical equipartition law,
each degree of freedom should contribute kBT to the internal energy (and R to the specific
heat per mole). Then, from the values given above, it looks like some degrees of freedom
did not enter in the partition of energy.

In the case of solids, assuming small vibrations of the N atoms around their equilibrium
positions, the classical energy equipartition law ensures that the internal energy U is equal
to 3NkBT , or 3RT per mole. Therefore, the specific heat per mole for all solids should be
given by

cv =
(
∂U

∂T

)
V
= 3R, (1.71)
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�Figure 1.16 (a) Dulong–Petit’s (full horizontal line cv = 3R), Einstein’s (dashed line), and Debye’s (dot-dashed
line) predictions for the specific heat of solids: all converge to the same limit cv = 3R for large
temperatures. (b) Same as (a) but magnified around the origin (at low temperatures): Einstein’s
curve decreases exponentially as T → 0, whereas Debye’s curve correctly predicts the T3

behavior.

which is known as the Dulong–Petit law. Classical physics then predicts a specific heat
which is constant at all temperatures, a fact which agrees well with experimental data
at high temperatures. For low temperatures, however, it is experimentally found that the
specific heat goes to zero as soon as T → 0 (see Fig. 1.16). Also this behavior is totally
incomprehensible in the classical context.

In 1906 Einstein27 tried to solve this problem by assuming that the average energy of the
oscillating (non-interacting) atoms is given by Planck’s Eq. (1.65) so that the total internal
energy may be written as

U = 3Nhν

ehνβ − 1
, (1.72)

from which he derived the specific heat per mole as

cv = 3R (hνβ)2 e
hν

kBT(
ehνβ − 1

)2 . (1.73)

According to this equation, cv decreases with T at low temperatures but is equal to 3R
at high temperature. However, Eq. (1.73) decays exponentially for T → 0, which is faster
than the observed behavior. In the 1912 Debye showed that the correct behavior of the
specific heat can be recovered both at small and at large temperatures when one takes
into account the simultaneous oscillation of interacting atoms (see Fig. 1.16), and uses
information about the sound velocity. The computation of the energy of the block radiation
and of the internal energy of the solid can be done in a parallel way.

1.5.4 Atomic spectra and stabi l i ty of atoms

It has been known since the second half of the nineteenth century that the spectrum of
the electromagnetic radiation emitted by diluted gases is not a continuous function of the

27 For a historical reconstruction see [Mehra/Rechenberg 1982–2001, I, 113–44].
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�Figure 1.17 Lyman series for ionized helium. Adapted from [White 1934, 32].

wavelength. Instead, the intensity of the emitted radiation is a collection of sharp peaks
which are located at wavelengths characteristic of the different elements in the periodic
table. Moreover, no radiation is emitted at wavelengths in between peaks – an example of
such a spectrum is shown in Fig. 1.17. This fact is difficult to understand in the frame-
work of classical physics, since it would mean that electrons orbit around the nucleus with
selected frequencies, and tends to force us to admit that electrons in an atom possess dis-
crete “stationary” energy levels. We shall deal with atomic models in Ch. 11. It is worth
mentioning that a similar phenomenon (i.e. the presence of spectral lines) shows up also in
the case of absorption spectra.

Furthermore, it was known from the very beginning that Rutherford’s planetary atom-
model (1911) was affected by the great problem of instability. In fact, due to the centripetal
acceleration, a negatively charged particle (the electron) revolving around a positively
charged nucleus should continuously radiate energy and rapidly fall, following a spiral tra-
jectory, onto the nucleus. Bohr searched for a solution to the stability problem in extending
Planck’s postulate. He then postulated that, for an atomic system, there exists a discrete
set of permissible (stationary) stable orbits characterized by energy values E1, E2, . . ., and
that these are governed by the ordinary laws of classical mechanics [Bohr 1913, 874].28

As long as the electron remains in one of these orbits, no energy is radiated. The energy
of stationary states can be obtained from the quantization rule and the mechanical equilib-
rium condition (that the electromagnetic force is equal to the centripetal force), and, for the
hydrogen atom, is given by the formula

En = −2π2me4

h2n2
. (1.74)

The energy is emitted (or absorbed) during the transition from one stationary state to the
other in a discontinuous way – an electron is said to jump from one level to the other – so
that the amount of energy emitted (absorbed) is quantized in accordance with Planck’s Law
(1.25) and Sommerfeld’s hypothesis.29 For arbitrary transition from the level k to the level
j (k > j), we have that the angular frequency (the frequency ν times 2π ) of the emitted
radiation (the so-called Bohr frequency) is given by

28 For a historical reconstruction see [Mehra/Rechenberg 1982–2001, I, 155–257].
29 See [Sommerfeld 1912].
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ωk j = −�Ekj

h̄
, (1.75)

where

�Ekj = E j − Ek (1.76)

and

h̄ = h

2π
= 1.054571 × 10−34 J s. (1.77)

The opposite transition (from a level j to a level k with higher energy) is possible only in
the presence of absorption of the same quantized amount of energy Ek − E j . It is worth
mentioning that Bohr’s solution did not really solve the problem of atomic instability: he
was not able to show why some orbits are stationary, because he still assumed that the
electron’s trajectories were classical. We shall return later on this problem (see Ch. 11).
In spite of this weakness, Bohr’s contribution opened the way to the understanding of the
periodic table of elements and of chemical bonds.

1.5.5 Electron diffract ion

The phenomena of black-body radiation, of Compton, and of photoelectric effects sug-
gest that light – traditionally understood in wave–like terms – may have particle-like
features. Conversely, in the 1920s, matter – which traditionally was understood in
particle-like terms – was shown to have wave-like properties. Davisson and Germer
[Davisson/Germer 1927] performed an experiment in which a beam of electrons was
diffracted by a crystal. They observed a regular diffraction figure only at certain incidence
angles – exactly as happens for light.30 This result was an experimental confirmation of de
Broglie’s hypothesis that matter can be treated as a wave. In fact in 1924–25 de Broglie
[de Broglie 1924, de Broglie 1925]31 had already stated that to a particle of momentum p
can be associated a wavelength λ given by

λ = h

p
. (1.78)

Since λ = 2πk−1, where k is the propagation vector, it is possible to rewrite Eq. (1.78) as
p = h̄k. As a consequence, we are led to the conclusion that, according to the complemen-
tarity principle (see Subsec. 1.2.4), both light and matter have wave-like and particle-like
features.

30 More recently, wave-like effects of atoms have also been observed, such as a shift in phase during interaction
with a surface [Perreault/Cronin 2005].

31 For a history of de Broglie’s contribution see [Mehra/Rechenberg 1982–2001, I, 595–604].
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�Figure 1.18 The Stern–Gerlach experiment. A typical explanation states that due to the magnetic field an
initial polarization n is changed into “spin-up” (+z) or “spin-down” (−z), relative to the main
field direction B0 (of an inhomogeneous magnetic field) if the particle is found in the upper or
lower part of the deflected beam, respectively.

1.5.6 Intr insic magnetic momentum

We owe the discovery of the intrinsic magnetic momentum of microentities to a series of
experiments carried out by Stern and Gerlach and Uhlenbeck and Goudsmit.32 In these
experiments, a beam of identically prepared silver atoms is sent through a magnetic field
oriented in such a way that the gradient of the field is constant and perpendicular to the
beam axis. The emerging silver atoms are captured by a screen whose plane is perpendic-
ular to the initial beam axis (see Fig. 1.18). The result shows that the atoms accumulate in
two separate “spots.” This is another aspect of quantization, leading to the conclusion that
the atoms have an intrinsic angular momentum – the spin – that can assume only discrete
values. We shall treat the quantum mechanical theory of angular momentum in Ch. 6.

1.5.7 Final considerat ions

The path taken by quantum mechanics from its first appearance (1900) to a precise for-
mulation of the theory (1925–27) was very long and difficult. In the first 20 years of the
twentieth century the majority of physicists still believed that classical mechanics would
have been able – sooner or later – to explain the “quantum anomalies” as effects of some
forces acting at a microlevel. Gradually, however, it became clear that it was not possi-
ble to eliminate these anomalies and that they were not completely compatible with the
classical framework. This growing awareness of the inadequacy of classical physics did
not result in a new satisfactory formulation until in 1925–27 Heisenberg with his matrix
mechanics and Schrödinger with his wave mechanics were able to by the foundations of a
new theory that was thereafter called quantum mechanics33 [see Chs. 2–3]. Later, it was

32 See [Gerlach/Stern 1922a, Gerlach/Stern 1922b, Gerlach/Stern 1922c] [Uhlenbeck/Goudsmit 1925,
Uhlenbeck/Goudsmit 1926]. For a historical reconstruction of the Stern–Gerlach experiment
see [Mehra/Rechenberg 1982–2001, I, 422–45] and for a history of the theory of the spin see
[Mehra/Rechenberg 1982–2001, I, 684–709].

33 See [Heisenberg 1925, Heisenberg 1927] and [Schrödinger 1926].
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proved34 that Heisenberg’s and Schrödinger’s formulations are just two different represen-
tation of the same theory. As we shall see, this new mechanics has some homologies with
classical mechanics. Notwithstanding, there are also many important differences both at
technical and conceptual levels.

One of the most difficult tasks was the interpretation of this new formalism. As we shall
see some questions remained open for many years (for instance, the measurement problem
(see Ch. 9)). However, already in 1927–28 Bohr was able to provide a general framework,
founded on the complementarity principle, which, although needing integrations and cor-
rections, still provides a good structure for an understanding of the theory. This framework
is known as the Copenhagen interpretation.

In the remaining chapters of parts I and II, we shall study Heisenberg’s and Schrödin-
ger ’s contributions and see how they can be understood as two different representations
of quantum theory. We shall also show the necessary corrections to be introduced into the
Copenhagen interpretation.

Summary

In this chapter we have briefly reviewed classical mechanics and compared it with quantum
mechanics. We may summarize the main results as follows:

• Quantum mechanical states are represented by vectors in a (complex) Hilbert space.
• If two states are allowed, every linear combination of them is also allowed (superpo-

sition principle), with the consequence that quantum mechanics violates the principle
of perfect determination (and therefore determinism of properties, which characterizes
classical mechanics).

• There is a fundamental (and smooth) complementarity between particle-like behavior
and wave-like behavior (the complementarity principle).

• As a consequence of these two principles, the use of probability in quantum mechanics
is not due to subjective ignorance but is an intrinsic feature of the theory concerning indi-
vidual systems (and this is a further evidence of the violation of determinism, because
in the general case only probabilistic predictions about properties are possible).

• The structure of quantum probability is deeply different from that of classical probability
theory, in the sense that it is not ruled by Kolmogorov axioms and is rooted in the concept
of the probability amplitude.

• Finally, we have collected the most important historical experimental evidence for the
departure from classical mechanics: black-body radiation, Compton and photoelectric
effects, atomic spectra, specific heat, quantization of atomic levels, electron diffraction,
and spin.

34 The proof was first sketched by Pauli and then built into a new mathematical framework by von Neumann
in [von Neumann 1927a, von Neumann 1927b, von Neumann 1927c, von Neumann 1929].
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�Figure 1.19 Momentum conservation in the Compton effect.

Problems

1.1 Assume that the principle of perfect determination fails. Does then determinism fail
as well?

1.2 Assume that the principle of continuity fails. Does then determinism fail as well?
1.3 Making use of one of the properties (1.10), show that we have { f , f } = 0.
1.4 Show that, if f and g are two constants of motion (i.e. { f , H} = {g, H} = 0)

then also their Poisson bracket { f , g} is a constant of motion – for the quantum-
mechanical counterpart of this problem see also Prob. 3.17.

1.5 Consider the polarization of a photon in the state

|↗〉 = 1√
2
(|v〉 + |h〉 ) . (1.79)

What is the probability℘(45◦) that the photon will pass a filter oriented at 45◦ relative
to the horizontal axis? And the probability ℘(135◦)?

1.6 Prove Eq. (1.41b).
1.7 Take an orthonormal basis {| j〉 }, 1 ≤ j ≤ n on a Hilbert space of dimension n.

Compute the result of the action of the projector P̂k = |k〉 〈k | on a state |ψ〉 =∑n
j=1 c j | j〉 , where the c j ’s are arbitrary complex numbers with

∑n
j=1

∣∣c j
∣∣2 = 1.

1.8 Taking advantage of Prob. 1.7, prove that, for any H, if |a〉 ∈ H, also Ô ∈ H, where
Ô is a linear combination of projectors acting on H.

1.9 Compute the norm of the result of Prob. 1.7. Is this norm larger or smaller than one?
Why? Explain the physical meaning of this result.

1.10 Prove that for any vector |ξ 〉 	= 0, it is true that 〈ξ | ξ 〉 = 1.
1.11 Derive Eq. (1.63).
1.12 Starting from the expression (1.63) of the entropy of the black body and taking into

account Eq. (1.64), derive Eq. (1.65).
1.13 Derive Eq. (1.67) from energy and momentum conservation in the Compton effect

(Eqs. (1.69)–(1.70)).

(Hint: Take advantage of the scheme in Fig. 1.19 to rewrite momentum conservation
in a single equation, not involving the angle φ. Also take into account the fact that
νi � νs .)
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2 Quantum observables and states

In this chapter we shall mainly present the basic formalism that was initially developed by
Heisenberg,1 also known as matrix mechanics (see Subsec. 1.5.7). We will first introduce
in Sec. 2.1 the concept of quantum observables. Then, the problem of discrete and contin-
uous spectra will be discussed and the basic non-commutability of quantum-mechanical
observables will be deduced. While in Sec. 2.1 we discuss observables on a general formal
level, in Sec. 2.2 some basic quantum-mechanical observables will be defined, and then
different representations discussed and commutation relations derived. In Sec. 2.3 a basic
uncertainty relation is derived. In the same section the relationship between uncertainty,
superposition, and complementarity will be discussed. Finally, in Sec. 2.4 complete sub-
sets of commuting observables will be shown to be Boolean subalgebras pertaining to a
quantum algebra which is not Boolean.

2.1 Basic features of quantum observables

This section is devoted to a general and formal exposition of quantum observables. In
Subsec. 2.1.1 we shall learn how one can mathematically represent quantum observables
as Hermitian operators. In Subsec. 2.1.2 we shall see how to change a basis, while in
Subsec. 2.1.3 we shall find the relationship between eigenvalues of the observables and
probabilities and learn how to calculate mean values. In Subsec. 2.1.4 we shall deal with
an operator diagonalization. Finally, in Subsec. 2.1.5, the basic non-commutability of
quantum observables will be presented by means of an example.

2.1.1 Variables and operators

The lesson we have learnt from the experimental evidences reported in Sec. 1.5 is that – in
both the cases of light and matter – energy may have a discrete spectrum. This has impor-
tant consequences in the definition of physical quantities in quantum mechanics. In fact,
in classical mechanics physical quantities are represented by real variables and functions
of real variables. For example, the coordinates qk’s and momenta pk’s in Sec. 1.1 are real
variables, whereas the Hamiltonian H , which represents the energy, is a real function of

1 See [Heisenberg 1925, Heisenberg 1927].
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|ψ> |h>
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�Figure 2.1 Schematic representation of a polarization beam splitter (PBS). An incoming photon from the left
in an arbitrary polarization state |ψ〉 is split by the PBS in such a way that either the photon is
found in the lower path with horizontal polarization or in the upper path with vertical
polarization. Of course, the state of the photon after the PBS is a quantum superposition of the
two alternatives.

the qk’s and of the pk’s. In all these cases, classical variables are continuous. On the other
hand, quantum mechanics has to face a situation where physical quantities may have a
continuous spectrum, a discrete spectrum, or a combination of both. Mathematically, real
variables are not a natural tool for a mechanics facing such a situation. On the other hand,
as we shall see later, the spectrum of operators on an infinite-dimensional Hilbert space
may have both a continous and a discreate component. Inspired by this consideration, we
propose the following principle:

Principle 2.1 (Quantization principle) Observables in quantum mechanics are repre-
sented by operators on a Hilbert space.

In order to find an adequate representation of quantum observables in terms of opera-
tors, let us first consider the discrete case and turn back to the example of polarization
already discussed in Secs. 1.3 and 1.4. Suppose that we want to measure the polariza-
tion of a system. This can be effected, for instance, with the help of a polarization beam
splitter (PBS), which is a particular type of beam splitter that separates photons with ver-
tical and horizontal polarization (see Fig. 2.1). This device is particularly interesting as
it somehow “combines” the two experimental setups proposed in the previous chapter:
the Mach–Zender interferometer (see Fig. 1.3) and the polarization-filter experiment (see
Fig. 1.9). Since we can only obtain either vertical or horizontal polarization as outcome,
we may make use of the two projectors associated to the two polarization vectors |v〉
and |h〉 , i.e. P̂v and P̂h , respectively. In other words, independently of what the state
before the measurement was (in general a superposition of |v〉 and |h〉 ), the projectors
P̂v and P̂h describe the two situations where the measured photon can be found as a result
of the measurement. A similar situation would have been obtained if, instead of P̂v and
P̂h , we had considered the polarization along the 45◦ and 135◦ orientations. In this case,
we would have used an alternative set of projectors, e.g. P̂45, P̂135, describing again the
two possible states in which the system can be found after measurement. As in any kind
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of measurement, the possible outcomes may be represented as ticks on a reading scale and
may be represented by real numbers. Therefore, we may associate to each projector a real
number which is the observed outcome itself. In other words, in the discrete case, we can
understand the reading scale as a partition of the space of the possible outcome values.
Suppose for the sake of simplicity that, for the example chosen here, the two mutually
exclusive results have values +1,−1, so that, when measuring, if the photon is detected
in the upper path (vertical polarization) the outcome is +1, whereas if the photon is found
in the lower path (horizontal polarization) the outcome is −1. The “polarization observ-
able”2 can be intuitively conceived as a combination of these two possible outcomes, i.e.
something like (+1)P̂v + (−1)P̂h . In other words, the polarization observable is defined as
a combination of its possible values and of the associated projectors. Since a linear com-
bination of operators is itself an operator, we see that a quantum mechanical observable is,
in the general case,3 an operator. In our example we can write the polarization observable
as ÔP = (+1)P̂v + (−1)P̂h . Therefore, quantum mechanical observables can be repre-
sented by operators which act on the state vectors belonging to the Hilbert space H of
a given system. We may generalize the previous result to any discrete spectrum (either
finite- or infinite-dimensional) by stating that a generic quantum observable Ô can be
written as

Ô =
∑

j

o j P̂j , (2.1)

where the o j ’s are the eigenvalues4 of Ô , the
∣∣o j
〉
’s its eigenvectors, and the P̂j =∣∣o j

〉 〈
o j
∣∣’s the corresponding projectors. The sum is extended over all the possible mea-

surement outcomes. The set of all eigenvalues is called spectrum of the observable and
Eq. (2.1) is called the spectral representation of the operator Ô . Since Ô is a sum of linear
operators (see Eq. (1.43)), therefore it is itself a linear operator.

From Eq. (2.1) it immediately follows that

Ô |ok〉 =
∑

j

o j P̂j |ok〉

=
∑

j

o j
∣∣o j
〉 〈

o j | ok
〉 =∑

j

o j
∣∣o j
〉
δ jk

= ok |ok〉. (2.2)

The relation Ô |ok〉 = ok |ok〉 can be regarded as the eigenvalue equation of the observ-
able Ô .5 The eigenvectors |ok〉 ’s associated to the eigenvalues ok’s in Eq. (2.2) are also

2 We shall call any physical quantity in quantum mechanics an observable.
3 We shall consider some problems of this generalization in Sec. 3.9.
4 See [Byron/Fuller 1969–70, 120–21].
5 Strictly speaking, one should distinguish between the observable, which is a physical quantity, and the

associated operator, which is a mathematical entity. But, for brevity, we will often write “the observable Ô .”
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called the eigenkets (i.e. the eigenstates) of the observable Ô . As an example, consider the
action of the polarization observable ÔP on the horizontal-polarization state |h〉 , i.e.

ÔP |h〉 = (+1 |v 〉 〈v | − 1 |h 〉 〈h |) |h〉
= + |v〉 〈v | h〉 − |h〉 〈h | h〉
= −|h〉. (2.3)

Since quantum-mechanical observables are represented by operators, the possible values
of an observable are the eigenvalues of the corresponding operator. However, not all math-
ematical operators are suitable for representing observables. In fact, since the values of
an observable have to represent physical quantities and therefore must be real, the oper-
ator associated to a quantum observable must be a Hermitian operator.6 An operator Ô
is said to be Hermitian or self-adjoint when Ô = Ô†, where Ô† = (Ô∗)T is the trans-
posed conjugate or adjoint of Ô (see Box 2.1), and the transposed matrix ÔT is obtained
by interchanging rows and columns of the matrix Ô . In other words, for any vectors
|ϕ〉, |ψ〉, 〈

ϕ

∣∣∣Ô∣∣∣ψ〉 = (〈ψ ∣∣∣Ô†
∣∣∣ϕ〉)∗ , (2.4)

where
〈
ϕ

∣∣∣Ô∣∣∣ψ〉 must be interpreted as the scalar product between the bra 〈ϕ | and the ket

Ô|ψ〉, resulting from the action of the operator Ô onto the ket |ψ〉 .7 This result can be
summarized by the following theorem:

Theorem 2.1 (Hermitian operators) Any quantum mechanical observable can be rep-
resented by a Hermitian operator.

We also note that projectors are observables, since an arbitrary vector |ψ〉 can be put in
the form of a sum of eigenvectors of an arbitrary projector P̂ , i.e.

|ψ〉 = P̂|ψ〉 + ( Î − P̂)|ψ〉. (2.5)

In fact, P̂|ψ〉 is the eigenket of P̂ corresponding to the eigenvalue +1, since one has (see
also Eq. (1.41b)) P̂(P̂|ψ〉 ) = P̂|ψ〉 . Instead, the vector ( Î − P̂)|ψ〉 is the eigenvector of
P̂ with the eigenvalue 0, i.e.

P̂( Î − P̂)|ψ〉 = (P̂ − P̂2)|ψ〉 = 0. (2.6)

6 This is a consequence of a theorem which states that the eigenvalues of an operator are real if and only if (iff)
it is Hermitian [Byron/Fuller 1969–70, 154].

7 In the real and finite case self-adjoint operators are represented by symmetric matrices.
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�Box 2.1 Hermitian and bounded operators

Strictly speaking, our definition of a Hermitian operator is valid only in the case of a finite-
dimensional Hilbert space. If the dimension is infinite, there may be problems with the
definition above if the operator is not bounded. An operator Ô on a Hilbert space H is
said to be bounded if there exists a real constant C such that, for any non-zero vector
|ψ〉 ∈ H, we have 〈

ψ

∣∣∣Ô†
Ô
∣∣∣ψ〉

〈ψ | ψ〉 ≤ C2. (2.7)

The lowest possible value of C is the norm of the operator Ô.
If the operator is not bounded there are some vectors |ψ〉 in H such that Ô|ψ〉 is not

defined (it is formally infinite). In this case the operator is defined only in a dense subspace of
the Hilbert space H. Then, the definition of the adjoint or Hermitian conjugate of Ô becomes
more subtle. Indeed, in some cases the operator is symmetric, i.e.〈

ϕ | Ôψ
〉
=
〈
Ôϕ | ψ

〉
, (2.8)

where |ϕ〉 , |ψ〉 are vectors in the Hilbert space such that
∣∣∣ Ôψ〉 and

∣∣∣ Ôϕ〉 are finite. If we

define the operator Ô
†

by the relation〈
ϕ | Ôψ

〉
=
〈
Ô

†
ϕ | ψ

〉
, (2.9)

symmetry implies that Ô and Ô
†

do coincide if both vectors belong to the domain of the

operator Ô. However, the operator Ô
†

may have a larger domain. Often, a symmetric non-
bounded operator that is naturally defined in a given subspace of H may be extended in a
non-unique way to a larger subspace so that it becomes Hermitian; in other words, there may
be many self-adjoint extensions of the symmetric operator Ô.

Generally speaking, the study of self-adjoint extensions of operators is a rather com-
plex subject in functional analysis – the interested reader may refer to [Fano 1971, 279–86,
330–54]. However, there is a simple theorem that states that, if the symmetric observable
Ô is bounded from below, there is a natural self-adjoint extension and one can forget all
problems concerning the uniqueness of self-adjoint extensions.

Therefore, Eq. (2.5) reduces to

P̂|ψ〉 = (+1)|ψ〉 . (2.10)

Stated in simple terms, any projector is Hermitian. In the finite-dimensional case we can
state the following fundamental spectral theorem:

Theorem 2.2 (Finite-dimensional spectrum) The eigenvectors {∣∣o j
〉 } of any Hermi-

tian operator Ô on H span the Hilbert space and can be chosen to be an orthonormal
basis for H.
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�Box 2.2 Example of a Hermitian operator

Going back to the example of the photon polarization observable ÔP (see p. 45), we may
write the state vectors |v〉 and

∣∣h〉 , corresponding to vertical and horizontal polarization,
respectively, as (see also Eq. (1.29))

|v〉 =
(

1
0

)
,
∣∣h〉 = ( 0

1

)
(2.11)

in the two-dimensional polarization Hilbert space HP. It follows that〈
v | h

〉 = 〈h | v〉 = 0, 〈v | v〉 = 〈h | h
〉 = 1, (2.12)

i.e. the vectors |v〉 and
∣∣h〉 form an orthonormal basis on HP. Then, the projectors associated

to |v〉 and
∣∣h〉 can be written as

P̂v = |v〉 〈v | =
(

1
0

)(
1 0

)
=
[

1 0
0 0

]
, (2.13a)

P̂h =
∣∣h〉 〈h ∣∣ = ( 0

1

)(
0 1

)
=
[

0 0
0 1

]
, (2.13b)

from which it easily follows that P̂v + P̂h = Î. As a consequence, the polarization observable
can be constructed as

ÔP = (+1) P̂v + (−1) P̂h

=
[

1 0
0 0

]
−
[

0 0
0 1

]

=
[

1 0
0 −1

]
. (2.14)

From Eq. (2.14) it easily follows that ÔP = Ô
†
P, i.e. that ÔP is a Hermitian operator. Need-

less to say, the number of linearly independent projectors in a spectral representation of an
observable (see Eq. (2.1)) must be equal to the dimension of the Hilbert space of the system.

In fact, if the eigenvalues of Ô are all distinct, then its eigenvectors are orthonormal and
indeed form an orthonormal basis on H, as is well known from linear algebra. But it can
also be that different eigenvectors correspond to the same eigenvalue. In this case such
eigenvalue is said to be degenerate. When one (or more) eigenvalue is degenerate with
multiplicity k, it is always possible to find, in the k-dimensional subspace of H spanned by
the eigenvectors corresponding to the degenerate eigenvalue, k linearly independent (but
not necessarily orthogonal) eigenvectors8 (see also Subsec. 3.1.4).

8 Then, one can apply the Gram–Schmidt orthonormalization procedure to find a complete orthonormal set –
see [Byron/Fuller 1969–70, 159–60].
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Let us consider a generic state |ψ〉 of a system S. Following Th. 2.2, |ψ〉 can be
expanded in the basis

{∣∣o j
〉 }

(see also Eqs. (1.35)), i.e.

|ψ〉 =
∑

j

c j
∣∣o j
〉
, (2.15)

where ck = 〈ok | ψ〉 are complex numbers which represent probability amplitudes (see
Sec. 1.4). In fact, multiplying both sides of Eq. (2.15) by 〈ok | from the left, we have

〈ok | ψ〉 =
∑

j

c j
〈
ok | o j

〉 =∑
j

c jδ jk = ck . (2.16)

Note that an arbitrary observable Ô can always be expanded as

Ô =
∑

j

∣∣b j
〉 〈

b j
∣∣ Ô =

∑
j ,n

∣∣b j
〉 〈

b j
∣∣ Ô |bn〉 〈bn |, (2.17)

where (see Eq. (1.41a)) ∑
j

∣∣b j
〉 〈

b j
∣∣ = Î , (2.18)

and {|bk〉 } is an orthonormal basis on the Hilbert space H of the system. From Eq. (2.17)
it is clear that, if one knows all the matrix elements

O jn =
〈
b j
∣∣ Ô |bn〉 (2.19)

of Ô on a given basis, then Ô is fully determined.
Needless to say, given an arbitrary state vector |ψ〉 , it is always possible to construct

a Hermitian operator Ô which has |ψ〉 among its eigenvectors (actually, there are several
Hermitian operators having |ψ〉 among their eigenvectors). In fact, we can take, e.g., Ô =
|ψ〉 〈ψ |, which is a projector and also a Hermitian operator. In this case |ψ〉 would be an
eigenvector of Ô with eigenvalue 1.

We have said that the spectrum of an observable can be continuous, discrete, or a com-
bination of both. We have already examined in the previous subsection the discrete case.
Now, what happens if we have a continuous observable such as the position? In this case
we have an infinite-dimensional Hilbert space.9 In an infinite-dimensional Hilbert space
we can use an equation of the type of Eq. (2.1) only for compact operators. In a more
general case we should use the continuous counterpart of Eq. (2.1). This is the content of
the spectral theorem, which may summarized as follows:10 for any Hermitian operator Ô
there always exists a spectral representation given by

Ô =
∫

do o P̂(o), (2.20)

where P̂(o) = |o〉 〈o |. In this representation an arbitrary ket |ψ〉 ∈ H may be expanded as
(see also Eq. (2.15))

9 Also for discrete spectra one can have infinite-dimensional Hilbert spaces. For example – as we shall see in
Sec. 4.4 – the energy of a simple harmonic oscillator has a discrete (though infinite) number of eigenvalues.

10 A formal proof can be found in specialized textbooks [Prugovec̆ki 1971, 250–51] [Holevo 1982, 52–64].
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|ψ〉 =
∫

do c(o) |o〉, (2.21)

where c(o) = 〈o | ψ〉 is a (complex) function of the eigenvalues o of the observable Ô .
Similarly to the the discrete case (see Eqs. (1.41)), the continuous projectors have the

properties ∫
doP̂(o)=

∫
do |o〉 〈o | = Î , (2.22a)

P̂(o)P̂(o′)= δ(o − o′)P̂(o), (2.22b)

where δ(x) is the Dirac delta function, which has the following properties:

δ(x)= 0, ∀x 	= 0 , (2.23a)
+∞∫
−∞

dxδ(x)= 1 , (2.23b)

+∞∫
−∞

dxδ(x) f (x)= f (0), [The integral is defined iff f (x)

is a continuous function in x = 0], (2.23c)

δ(ax)= 1

|a|δ(x), (2.23d)

δ
[

f (x)
]= N∑

j=1

1

| f ′(x j )|δ(x − x j ), [x j are the zeroes of f (x)]. (2.23e)

Actually, the Dirac δ-function is not a proper function. Rather, it is a more complex object,
namely a distribution. For our practical purposes, however, it may be considered as a
function.

In the following subsections we shall discuss some properties of observables, limit-
ing ourselves to the discrete case. We shall return to the discussion of the properties of
continuous observables before introducing momentum and position operators (in Sec. 2.2).

2.1.2 Change of basis

It is interesting to note that a generic state vector can be expanded in different bases. It is
then natural to ask what is the relation between the representations of the state vector in the
two different bases. To answer this question, let us go back once again to our polarization
example (see Sec. 1.3). In this case, a generic state vector |ψ〉 can be expanded in the basis
{|h〉 , |v〉 } as

|ψ〉 = ch |h〉 + cv |v〉, (2.24)

where

ch = 〈h | ψ〉 and cv = 〈v | ψ〉. (2.25)
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However, the vector |ψ〉 can be also expanded in a different polarization basis
{|b〉 , |b⊥〉} as

|ψ〉 = cb |b〉 + cb⊥ |b⊥〉, (2.26)

where

cb = 〈b | ψ〉 and cb⊥ = 〈b⊥ | ψ〉. (2.27)

Moreover, |b〉 and |b⊥〉 may be in turn expanded in the basis {|h〉 , |v〉 } (see Th. 2.2:
p. 47) as

|b〉 = 〈h | b〉 |h〉 + 〈v | b〉 |v〉, (2.28a)

|b⊥〉 = 〈h | b⊥〉 |h〉 + 〈v | b⊥〉 |v〉, (2.28b)

where we have taken advantage of the usual relation

|h〉 〈h | + |v〉 〈v | = Î . (2.29)

Using Eqs. (2.28), Eq. (2.26) may be rewritten as

|ψ〉 = cb (〈h | b〉 |h〉 + 〈v | b〉 |v〉 )+ cb⊥ (〈h | b⊥〉 |h〉 + 〈v | b⊥〉 |v〉 )
= (cb 〈h | b〉 + cb⊥ 〈h | b⊥〉

) |h〉 + (cb 〈v | b〉 + cb⊥ 〈v | b⊥〉
) |v〉. (2.30)

The last expression has to be equal to the rhs of Eq. (2.24), i.e.

ch =〈h | b〉 cb + 〈h | b⊥〉 cb⊥ , (2.31a)

cv =〈v | b〉 cb + 〈v | b⊥〉 cb⊥ , (2.31b)

which is the desired relation between the sets of coefficients {ch , cv} and {cb, cb⊥}.
In matrix notation, Eqs. (2.31) may be cast in the more compact form(

ch

cv

)
= Û

(
cb

cb⊥

)
, (2.32)

where (see Prob. 2.2)

Û =
[ 〈h | b〉 〈h | b⊥〉
〈v | b〉 〈v | b⊥〉

]
. (2.33)

The matrix Û is unitary (see Box 2.3), i.e. (see also Prob. 2.3)

ÛÛ † = Û †Û = Î (2.34)

or Û−1 = Û †.

�Box 2.3 Unitary operators

Unitary operators are a special class of the normal operators, i.e. of the operators Ô which

commute with their adjoint: ÔÔ
† = Ô

†
Ô. It is interesting to note that any linear operator

Ô may be decomposed as Ô = Ô
′
+ ı Ô

′′
, where Ô

′
and Ô

′′
are Hermitian operators (see

Prob. 2.4). In this respect, we may establish an analogy between linear operators and
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complex numbers, where the two Hermitian operators Ô
′

and Ô
′′

play the “role” of the real
and imaginary parts of a complex number. Now, the necessary and sufficient condition for Ô

to be normal is that Ô
′′
Ô
′
= Ô

′
Ô
′′

[Halmos 1951, 42–43]. Unitary operators have to fulfill the
further condition (see Prob. 2.5) (

Ô
′)2

+
(

Ô
′′)2

= Î, (2.35)

which corresponds to the condition for a complex number z = x +ıy to have modulus 1, i.e.
x2 + y2 = 1. This analogy justifies the use of the term “unitary.”

Notice also that unitary operators are not necessarily Hermitian. In fact, for a normal oper-

ator Ô = Ô
′
+ ı Ô

′′
to be Hermitian, the additional condition Ô

′′
= 0 is required. Furthermore,

if Ô is also unitary, it must satisfy Ô = Ô
′

with (see Prob. 2.6)

Ô
′
=
(

Ô
′)†

and
(

Ô
′)2

= Î. (2.36)

|b>

|h>

|v>
|ψ>

φ

|b⊥>

�Figure 2.2 Change of basis. The basis
{∣∣b

〉
,
∣∣b⊥

〉 }
is obtained from the original basis

{∣∣h
〉
, |v〉}

by a
counterclockwise rotation of 45◦.

As we shall see, the unitary character is a distinctive feature of several basic quantum
transformations and, depending on the context, it may be expressed in operatorial terms,
time reversibility or spatial invariance. In general, it is a signature of the existence of a
symmetry (see Ch. 8).

We can choose, as a particular instance of |b〉 and |b⊥〉, the polarization vectors at 45◦
and 135◦, respectively, which means that the angle φ between |b〉 and |h〉 and between
|b⊥〉 and |v〉 is 45◦ (see Fig. 2.2). Then, the matrix Û is given by

Û = 1√
2

[
1 −1
1 1

]
, (2.37)

which is a particular instance of the rotation matrix for a two-dimensional system

Û (φ) =
[

cosφ − sinφ
sinφ cosφ

]
, (2.38)
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for φ = π/4. In other words, in the finite-dimensional case a change of basis can be repre-
sented by a rotation of the axes in the Hilbert space. As we shall see in Ch. 8, any unitary
operator describes a kind of rotation.

It is possible to generalize the derivation above to any state vector |ψ〉. Let us expand it
in terms of an orthonormal basis {|bk〉 } as

|ψ〉 =
∑

j

cb j

∣∣b j
〉
, (2.39)

with some complex coefficients cbk = 〈bk | ψ〉. We may always choose to expand the state
vector |ψ〉 in a different orthonormal basis {|ak〉 }. In this case, we have

|ψ〉 =
∑

n

can |an〉, (2.40)

where cak = 〈ak | ψ〉. It is therefore interesting to look for the relationship between
the sets of coefficients {cbk } and {cak }. For this purpose, we may insert the expression∑

n |an〉 〈an | = Î (see Eq. (1.41a)) into Eq. (2.39), so as to obtain

|ψ〉 =
∑
n, j

cb j |an〉
〈
an | b j

〉
=
∑
n, j

Un, j cb j |an〉, (2.41)

with the matrix elements Un, j =
〈
an | b j

〉
. Since the rhs of Eqs. (2.40) and (2.41) have to

be identical due to the uniqueness of the expansion in terms of an orthonormal basis, we
must conclude that

cak =
∑

j

Uk, j cb j , (2.42)

which is the desired relation. If we interpret the sets of coefficients {cb j } and {ca j } as
column vectors cb and ca , respectively, we can write Eq. (2.42) in matrix form as

ca = Ûcb, (2.43)

or ⎛⎜⎜⎝
ca1

ca2

. . .

can

⎞⎟⎟⎠ =

⎡⎢⎢⎣
〈a1 | b1〉 〈a1 | b2〉 . . . 〈a1 | bn〉
〈a2 | b1〉 〈a2 | b2〉 . . . 〈a2 | bn〉
. . . . . . . . . . . .

〈an | b1〉 〈an | b2〉 . . . 〈an | bn〉

⎤⎥⎥⎦
⎛⎜⎜⎝

cb1

cb2

. . .

cbn

⎞⎟⎟⎠. (2.44)

It should now appear evident at this point that superposition (see p. 18) is basis-dependent:
a state vector which appears to be a superposition in a certain basis (relatively to an observ-
able) may well not be such in a different basis (relatively to a different observable). For
instance the vectors |v〉 and |h〉 in Eq. (2.11) are an eigenbasis of the observable (2.14).
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It is not very difficult to translate change of basis in a continuous “language.” Let us
consider a generic state vector |ψ〉 that can be expanded as

|ψ〉 =
∫

dξc(ξ ) |ξ 〉. (2.45)

The vector |ψ〉 could also have been expanded in another basis, say {|η〉 } as follows:

|ψ〉 =
∫

dηc′(η) |η〉

=
∫

dηc′(η)
∫

dξ |ξ 〉 〈ξ | η〉

=
∫ ∫

dηdξc′(η) 〈ξ | η〉 |ξ 〉, (2.46)

from which we find the desired relation

c(ξ ) =
∫

dη 〈ξ | η〉 c′(η). (2.47)

We prove in the following three important properties of the change of basis (for the
discrete case).

• First, it is easy to show that the matrix Û in Eq. (2.42) is unitary.

Proof

We have that (
Un, j

)∗ = 〈b j | an
〉

and
(

U †
)

n, j
= 〈bn | a j

〉
. (2.48)

Then we have that(
UU †

)
n, j

=
∑

k

Un, k

(
U †
)

k, j
=
∑

k

〈an | bk〉
〈
bk | a j

〉 = 〈an | a j
〉 = δnj , (2.49)

which means that ÛÛ † = Î .
Similarly, we have(

U †U
)

n, j
=
∑

k

(
U †
)

n,k
Uk, j =

∑
k

〈bn | ak〉
〈
ak | b j

〉 = δnj . (2.50)

Q.E.D

• Second, the unitary transformation that instantiates a change of basis preserves the
scalar product between two arbitrary kets |ψ〉 and

∣∣ψ ′〉 . This result may appear
evident since the scalar product should be independent from the basis chosen to com-
pute it. Nevertheless, as we shall see later (in Subsec. 3.5.1 and Ch. 8; see also
Eqs. (1.35)–(1.36)), scalar-product conservation is an important property of unitary
transformations.
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Proof

Let us decompose the two kets |ψ〉 and
∣∣ψ ′〉 into the two basis {|bk〉 } and {|ak〉 }:

|ψ〉 =
∑

j

cb j

∣∣b j
〉

,
∣∣ψ ′〉 =∑

j

c′b j

∣∣b j
〉
, (2.51a)

|ψ〉 =
∑

j

ca j

∣∣a j
〉

,
∣∣ψ ′〉 =∑

j

c′a j

∣∣a j
〉
. (2.51b)

The scalar product of the two vectors in the basis {|bk〉 } is easily calculated:〈
ψ ′ | ψ 〉 =∑

k, j

〈
bk | b j

〉
c
′∗
bk

cb j =
∑

j

c
′∗
b j

cb j , (2.52)

since
〈
bk | b j

〉 = δk j . Next, we calculate the same scalar product in the {|ak〉 } basis and
finally show that it is the same as Eq. (2.52):〈

ψ ′ | ψ 〉 =∑
k, j

c
′∗
ak

ca j

〈
ak | a j

〉 =∑
j

c
′∗
a j

ca j . (2.53)

But ca j =
∑

n U j ,ncb j (see Eq. (2.42)) and, analogously, c
′∗
a j
=∑n U∗

j ,nc
′∗
bn

=∑
n c

′∗
bn

U †
n, j . Substituting these expressions into Eq. (2.53), we obtain〈

ψ ′ | ψ 〉 =∑
j

∑
n

c
′∗
bn

U †
n, j

∑
k

U j , kcbk

=
∑
n,k

c
′∗
bn

⎛⎝∑
j

U †
n, jU j , k

⎞⎠ cbk =
∑

k

c
′∗
bk

cbk , (2.54)

since ∑
j

U †
n, jU j , k =

(
U †U

)
n, k

= În, k = δn, k . (2.55)

Q.E.D

• Finally, it can be shown that the trace of an operator does not change under change of
basis. With trace of an operator we intend here the sum of the diagonal elements of the
corresponding matrix, i.e.

Tr(Ô) =
∑

j

〈
b j
∣∣ Ô

∣∣b j
〉
, (2.56)

where, as usual, {|bk〉 } is an orthonormal basis on the Hilbert space of the system.

Proof

Let us first write the trace of Ô in the basis {|ak〉 }, i.e. Tr(Ô) =∑ j

〈
a j
∣∣ Ô

∣∣a j
〉
. Now

the trace of Ô in the basis {|bk〉 } can be written as
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Tr(Ô) =
∑
j ,n,k

〈
b j | an

〉 〈an | Ô |ak〉
〈
ak | b j

〉
=
∑
j ,n,k

〈
ak | b j

〉 〈
b j | an

〉 〈an | Ô |ak〉

=
∑
n,k

〈ak | an〉 〈an | Ô |ak〉 =
∑

k

〈ak | Ô |ak〉, (2.57)

where
∑

j

〈
b j | b j

〉 =∑n 〈an | an〉 = Î .

Q.E.D

2.1.3 Values of observables

So far we have discussed a few basic properties of quantum observables. It is now natural
to ask what the “effect” of the action of an observable on a state vector is. One might
think that the action on a given system’s state of the operator Ô corresponding to a generic
observable describes the “effect” of a measurement of that observable on the system. This
is not the case. In fact, if we have an arbitrary polarization state |b〉 (see Subsec. 2.1.1),
the action of the polarization observable

ÔP = (+1) |v 〉 〈v | + (−1) |h 〉 〈h | (2.58)

does not produce a state corresponding to any measured outcome. In other words

ÔP |b〉 	= (+1) |v〉 and ÔP |b〉 	= (−1)|h〉, (2.59)

in general, since |b〉 may well be a superposition state of the form

|b〉 = cv |v〉 + ch |h〉 . (2.60)

In this case, we clearly have

ÔP |b〉 = ÔP (cv |v〉 + ch |h〉 )
= (|v 〉 〈v | − |h 〉 〈h |) (cv |v〉 + ch |h〉 )
= cv |v 〉 〈v | v〉 − ch |h 〉 〈h | h〉 = cv |v〉 − ch |h〉, (2.61)

which shows that an observable induces a “transformation” on a given state that in general
does not yield one of its eigenvectors as output. The only exception is when the initial state
is already an eigenvector of the observable (see Eq. (2.3)).

Quantum measurement theory is a complex aspect of quantum mechanics and will be the
object of later examination (in Ch. 9). For the time being, let us say that the measurement
process requires that the object system interact at least with an apparatus and should lead
to a “change” in the state of the object system from the initial state (which may be a super-
position relatively to the measured observable) to a final state described by the eigenvector
corresponding to the measured eigenvalue – this “change” is the heart of the measurement
problem in quantum mechanics. Then, when actually performing a measurement of a given
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observable Ô , we must obtain as outcome one of the possible values (eigenvalues) of Ô .11

In particular, it is not possible to find intermediate values between eigenvalues. Since the
measured outcome is certainly one of the possible eigenvalues of Ô and since we have
seen (in Sec. 1.4) that quantum probabilities must be expressed as square moduli of some
amplitudes, we can then postulate what follows.12

Principle 2.2 (Statistical algorithm) Given that a quantum system is completely defined
by a vector |ψ〉 (Eq. (2.15)), the probability of having a determinate measurement result –
an eigenvalue ok of the measured observable Ô – is given by

℘(ok ,ψ) = |ck |2, (2.62)

where the complex coefficient ck is the amplitude ck = 〈ok | ψ〉, and the eigenvector |ok〉
of Ô corresponds to the eigenvalue ok.

This algorithm is of particular relevance because it provides the general mathematical con-
nection between the coefficients of the expansion of the system state onto a given basis
and the probabilities of the corresponding outcomes of a measurement process. It is also
evident that we must have ∑

j

|c j |2 = 1 (2.63)

in Eqs. (2.15) and (2.62). It is then evident that c j ∈ l(2), where l(2) is the space of succes-
sions for which the sum of square moduli is finite. This condition reflects, on one hand,
the normalization of the state vectors (see also Eq. (2.108)), and, on the other hand, the
requirement that the sum of the probabilities of all disjoint events of a given set is equal to
one, i.e. Kolmogorov’s probability axiom (see p. 29).

It is straightforward to extend the statistical algorithm to the continuous spectrum case,
where we recall that Eq. (2.15) may be rewritten as (see Eq. (2.21))

|ψ〉 =
∫

do c(o) |o〉, (2.64)

where the coefficient c(o) = 〈o | ψ〉 is a continuous function of the eigenvalue o and the
|o〉 are the eigenkets of the observable Ô , i.e.

Ô |o〉 = o |o〉. (2.65)

11 This provides a first evidence that the state vector cannot be measured with a single measurement. This subject
will be discussed extensively in Ch. 15.

12 See [Born 1926].
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As a consequence, Eq. (2.62) translates into

℘(o,ψ) = |c(o)|2 (2.66)

where ℘(o,ψ)do has here to be interpreted as the probability that the eigenvalue be in the
interval (o, o + do). In the continuous case, the normalization condition (2.63) translates
into ∫

do |c(o)|2 = 1. (2.67)

It may well happen that an observable Ô presents simultaneously a continuous and a dis-
crete spectrum. For instance, let us assume that the discrete spectrum ranges between −∞
and õ, above which value the spectrum becomes continuous up to +∞. Then, if

P̂D =
∑

j

∣∣o j 〉
〈
o j
∣∣ and P̂C =

+∞∫
õ

do |o 〉 〈o | , (2.68)

where the sum is extended over the discrete eigenvalues, we must also have

P̂C + P̂D = Î . (2.69)

Principle 2.2 provides the connection quantum theory and experimental measurement
statistics. In other words, if we perform a large number of observations, we expect that
the statistics of different possible outcomes will tend to their corresponding probabilities
as the number of measurement runs grows. Principle 2.2 also allows us to define the useful

concept of the mean or expectation value
〈
Ô
〉
ψ

of an observable Ô on a certain state |ψ〉 .

We start from the usual definition of mean value for a probability distribution.
Classically, the expectation value of a random variable ξ is defined as13

ξ =
∫

dx x ℘(x), (2.70)

where ℘(x) is called the probability density function and is such that ℘(x)dx is the proba-
bility that the random variable ξ takes on a value in the interval (x , x + dξ ). Equation (2.70)
is valid when the probability distribution is continuous and the integral∫

dx |x |℘(x) (2.71)

exists. In the most general case, the expectation value of the random variable ξ may be
expressed in terms of the distribution function

F(x) = ℘(ξ < x), (2.72)

13 See [Gnedenko 1969, 125–32, 165–86, 219, 227] [Gudder 1988, 30].
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which gives the probability that ξ will take on a value less than x , i.e.

ξ̄ =
∫

xdF(x). (2.73)

For the continuous case we then have

F(x) =
x∫

−∞
dz℘(z). (2.74)

Another useful concept is that of characteristic function. The characteristic function of a
classical random variable ξ is defined as the expectation of the random variable eıηξ , where
η stands for a real parameter. If F(x) is the distribution function of ξ (see Eq. (2.72)), the
characteristic function is given by

χξ (η) =
∫

dF(x)eıηx . (2.75)

A distribution function is uniquely determined by its characteristic function. If x is a point
of continuity of F(x), then

F(x) = 1

2π
lim

y−→−∞ lim
c−→∞

+c∫
−c

dη
e−ıηy − e−ıηx

ıη
χξ (η), (2.76)

where the limit in y is evaluated with respect to any set of points y that are points of
continuity for the function F(x). The n-th derivative of the characteristic function, calcu-
lated at η = 0 gives – apart from a multiplicative factor – the n-th moment of the random
variable

χ
(n)
ξ (0) = ın ξ̄n , (2.77)

so that the first derivative is the expectation value of ξ times the imaginary unity, the second
derivative gives the opposite of the second moment of ξ , and so on.

Let us now come back to our original problem of defining the expectation values of a
quantum observable. In order to calculate the mean value of an observable Ô , we write
the analogy of Eq. (2.70) making use of the quantum probability density ℘(o j ,ψ). For the
discrete case, we expand the definition in several steps as〈

Ô
〉
ψ
=
∑

j

℘( j ,ψ)o j =
∑

j

|c j |2o j =
∑

j

c∗j c j o j

=
∑

j

〈
o j |ψ〉 〈ψ | o j

〉
o j =

∑
j

o j

〈
o j

∣∣∣P̂ψ ∣∣∣ o j

〉
=
∑

j

〈o j |ψ〉 〈ψ | Ô
∣∣o j
〉

=
∑

j

〈ψ | Ô
∣∣o j
〉 〈

o j | ψ
〉

=
〈
ψ

∣∣∣Ô∣∣∣ψ〉, (2.78)
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where P̂ψ = |ψ〉 〈ψ |, and we have made use of the eigenvalue equation Ô |ok〉 = ok |ok〉
(Eq. (2.2)) and of the property

∑
j

∣∣o j
〉 〈

o j
∣∣ = Î (Eq. (1.41a)). Since the eigenvalues of a

Hermitian operator are real, the expectation value of an observable in any state |ψ〉 must
also be real.

�Box 2.4 Example of mean value

Let us again consider the example of the polarization observable ÔP and its eigenbasis given
in Box 2.2 (p. 48). Then, the mean value of ÔP on the state

∣∣b〉 = cv |v〉 + ch
∣∣h〉 is〈

b
∣∣∣ÔP

∣∣∣ b
〉
=
(
〈v | c∗v +

〈
h
∣∣ c∗h
)

Ô
(
cv |v〉 + ch

∣∣h〉 )
=
[
c∗v
(

1 0
)
+ c∗h

(
0 1

)][ 1 0
0 −1

][
cv

(
1
0

)
+ ch

(
0
1

)]

=
(

c∗v c∗h
)( cv

−ch

)
= |cv |2 − |ch|2. (2.79)

It should be stressed that all the relevant physical quantities are related to expressions of
the type of Eq. (2.78), i.e. to the mean value of some operator. In fact, we have:14

Theorem 2.3 (Observables’ equality) Two observables Ô and Ô ′ are equal if and
only if

〈ψ | Ô|ψ〉 = 〈ψ | Ô ′|ψ〉 , ∀|ψ〉 . (2.80)

The proof is immediate. One can also see that any global phase factor eıφ which might per-
tain to a state vector |ψ〉 cancels out when calculating the mean value of an observable onto
|ψ〉 . This means that the relevant physical quantities do not depend on the global phase fac-
tor of the state vector, which is therefore irrelevant (see p. 26). On the other hand, relative
phase factors between different components of a superposition state are physically relevant
since they determine the interference behavior of the corresponding quantum system (see
Subsec. 1.2.3).

2.1.4 Diagonal izat ion of operators

Finding the eigenvalues of a observable Ô on a finite Hilbert space is equivalent to diag-
onalizing the matrix corresponding to the operator Ô . In quantum mechanics it is often
useful to put an operator in a diagonal form since then its diagonal elements are its

14 See [Messiah 1958, 633–36].
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eigenvalues and therefore the possible outcomes of a measurement process. The procedure
with which one may diagonalize a matrix corresponds to the solution of the characteristic
polynomial pertaining to the matrix. It is well known15 that, if the o j ’s are the eigenvalues
of Ô corresponding to the eigenvectors

∣∣o j
〉
’s, the matrix whose columns are given by the

eigenvectors is a diagonalizing matrix for Ô . Then, in the non-degenerate case, the n × n
matrix Û formed by the eigenvectors will be the diagonalizing matrix for Ô . This means
that, if ok

j =
〈
bk | o j

〉
is the k-th component of the eigenvector

∣∣o j
〉

in a certain basis {|bk〉 }
such that ∣∣o j

〉 =∑
k

ok
j |bk〉, (2.81)

the diagonalizing matrix Û will be written as

Û =

⎡⎢⎢⎢⎢⎣
o1

1 o1
2 · · · o1

n

o2
1 o2

2 · · · o2
n

· · · · · · · · · · · ·
on

1 on
2 · · · on

n

⎤⎥⎥⎥⎥⎦, (2.82)

i.e. U jk = ok
j . It is easy to see that the matrix Û is unitary. In fact, since the

∣∣o j
〉

are
(orthonormal) eigenvectors, then∑

n

(on
k )∗on

j =
〈
ok | o j

〉 = δk j . (2.83)

On the other hand,

(U †U )k j =
∑

n

(U †)knUnj =
∑

k

U∗
nkUnj =

∑
n

(on
k )∗on

j = δk j , (2.84)

where use has been made of Eqs. (2.82)–(2.83) and which proves that Û is unitary.

2.1.5 Non-commutabi l i ty

Let us now come back to our polarization example (see Sec. 1.3). We have supposed a
polarization filter P1 with direction a and have inserted another polarizing filter P2 with
a polarization axis b which makes an angle θ with the orientation a of P1. Suppose now
that directions a and b are orthogonal. We have already seen that in this case there is
no output light after P2. The question is: what happens if, between the two orthogonal
polarizing filters, we now insert a third filter P3 (see Fig. 2.3) with a polarization axis c
at an angle φ 	= 0,π/2 relative to the first polarization axis? The final observed intensity
(after P2) is I2 = I1 cos2 φ cos2(θ − φ) = I1 cos2 φ sin2 φ, which, for φ 	= 0, π/2, is not
zero. On the other hand, after the beam has passed the first filter, the component parallel
to b must be zero. This is difficult to understand intuitively, because it appears that the
addition of the intermediate filter P3 should not increase the output intensity. The only way

15 See [Byron/Fuller 1969–70, 123].
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P1 P2

a

bI1

(a)

P3

c

I1 cos2φsin2φ

P1 P2

a

bI1

(b) 

a

c

φ

�Figure 2.3 (a) An initial (unpolarized) light beam passes the filter P1 with polarization direction a (here
supposed to be vertical). After P1, the light is polarized (with a reduced intensity I1) along a.
Then, no photon can pass the filter P2 whose polarization direction b is orthogonal to a. (b) If we
insert a third polarization filter P3 between P1 and P2 with a polarization direction c at an angle
φ �= 0,π/2 relative to a, then the final output intensity will be I2 = I1 cos2 φ sin2

φ.

to overcome this difficulty is to admit that after P3 the state of the photon is described by a
superposition (see Subsec. 1.2.3) of the two states corresponding to a polarization parallel
to a and parallel to b, respectively.

If we invert the order of P2 and P3 the output intensity must be clearly zero since, as we
know, in this case it must already be zero after P2. Here we see that the order of such filters
is crucial for determining what the output is. We know from the previous chapter that the
action of a filter can be interpreted as an operation on the state of the photon during its
travel along the apparatus. Generalizing this simple result, we may state that in quantum
mechanics different operations may not commute – i.e. the order of the operations deter-
mines the possible outcome. In other words, the fundamental difference between classical
and quantum-mechanical physical quantities (see also Subsec. 2.1.1) is that the former
are mathematically represented by classical numbers (c-numbers), and therefore commute,
whereas the latter are represented by quantum numbers (q-numbers), i.e. operators, and do
not necessarily commute.
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If we indicate with P̂2 the projection performed by the filter P2, and with P̂3 the
operation performed by the filter P3, then we can formulate the above statement as

P̂2 P̂3 − P̂3 P̂2 =
[

P̂2, P̂3

]
− 	= 0, (2.85)

where the expression [
Ô , Ô ′]

− = Ô Ô ′ − Ô ′ Ô (2.86)

is called the commutator of the operators Ô , Ô ′. In the rest of the book we shall omit the
minus sign in [·, ·]− for the sake of simplifying notation. Let us briefly prove Eq. (2.85).

Proof

Suppose that filter P1 selects states of vertical polarization and P2 states of horizontal
polarization described by the vectors (2.11). The projectors associated to P1 and P2 can be
described as P̂1 = P̂v and P̂2 = P̂h , where P̂v and P̂h are given by Eqs. (2.13a). It is then
evident that the successive operations performed by P1 and P2 give a zero output

P̂1 P̂2 =
[

1 0
0 0

] [
0 0
0 1

]
=
[

0 0
0 0

]
= 0; (2.87a)

P̂2 P̂1 =
[

0 0
0 1

] [
1 0
0 0

]
=
[

0 0
0 0

]
= 0, (2.87b)

from which it follows that P̂1 and P̂2 trivially commute, i.e. [P̂1, P̂2] = 0. On the other
hand, the state selected by P̂3 can be described by the superposition

|c〉 = cosφ |v〉 + sinφ|h〉. (2.88)

Then, P̂3 = |c〉 〈c | is

P̂3 =
(

cos2 φ |v〉 〈v | + cosφ sinφ |v 〉 〈h | + sinφ cosφ |h 〉 〈v | + sin2 φ |h〉 〈h |
)

=
[

cos2 φ cosφ sinφ
sinφ cosφ sin2 φ

]
. (2.89)

Therefore, we can now prove the result (2.85) as follows:

[
P̂2, P̂3

]
=
[

0 0

0 1

][
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

]
−
[

cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

][
0 0

0 1

]

=
[

0 0

sinφ cosφ sin2 φ

]
−
[

0 sinφ cosφ

0 sin2 φ

]

=
[

0 sinφ cosφ

− sinφ cosφ 0

]
	= 0 . (2.90)

Q.E.D
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�Box 2.5 Commutation and product of Hermitian operators

Note that, although projectors are Hermitian operators, their product is not necessarily a
Hermitian operator [Halmos 1951, 41–42]. The necessary and sufficient condition for this is
precisely that the two projectors (or, in more general terms, the two Hermitian operators)
commute. In fact, if

Ô1 = Ô
†
1 and Ô2 = Ô

†
2, (2.91)

we have (
Ô1Ô2

)† = Ô
†
2Ô

†
1 = Ô2Ô1, (2.92)

but this does not necessarily imply that we also have

Ô2Ô1 = Ô1Ô2. (2.93)

It should be noted that non-commuting operations are not specific to quantum mechanics.
In fact, it is well known that rotations in the three-dimensional space in general do not
commute. For instance, a π/2 rotation about the z-axis followed by a π/2 rotation about
the y-axis is not equivalent to a π/2 rotation about the y-axis followed by a π/2 rotation
about the z-axis (see Fig. 2.4).

What we have seen teaches us that the operators representing quantum-mechanical
observables in general do not commute. The concept of non-commutability was first intro-
duced in quantum theory by Heisenberg and formally refined by Born and Jordan and
Heisenberg himself, and it is often taken to represent the very birth of quantum mechan-
ics.16 Later (see Subsec. 2.2.7), we shall discuss the commutation relations between
concrete quantum mechanical observables. Here we only want to establish some gen-
eral properties of commutators. The most fundamental among these properties are the
following17 (notice the analogy with the properties of Poisson brackets (1.10); see also
Sec. 3.7):

• Commutators are antisymmetric, i.e.[
Ô , Ô ′] = −

[
Ô ′, Ô

]
. (2.94)

• Commutators are bilinear, that is, given two (complex) scalars α and β, we have[
αÔ + β Ô ′, Ô ′′] = α [Ô , Ô ′′]+ β [Ô ′, Ô ′′]. (2.95)

• Commutators (as well as classical Poisson brackets) satisfy the Jacobi identity, i.e. (see
Prob. 2.11) [

Ô ,
[

Ô ′, Ô ′′]]+ [Ô ′,
[

Ô ′′, Ô
]]
+
[

Ô ′′,
[

Ô , Ô ′]] = 0. (2.96)

16 See [Heisenberg 1925] [Born/Jordan 1925] [Born et al. 1926]. For a history of Heisenberg’s contribution
see [Mehra/Rechenberg 1982–2001, II, 261–312]. For a historical reconstruction of the matrix – mechanics
formulation see the third volume of [Mehra/Rechenberg 1982–2001].

17 See [Weyl 1936, 260].
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Ω
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�Figure 2.4 Two sequences of two rotations of a book (A is on the first cover while 
 is on the last cover) are
shown. In the first sequence, i.e. (a)–(b)–(c), a rotation about the z-axis has been first applied,
followed by a rotation about the y-axis. In the second sequence, i.e. (a)–(b′)–(c′), the rotation
about the y-axis follows the rotation about the z-axis. All rotations are of 90◦ and anticlockwise.
Since the two final configurations (c) and (c′) are different, rotations in the three-dimensional
space in general do not commute.

In addition, it is possible to verify that commutators also satisfy the following properties:

• Any operator Ô commutes with itself, that is[
Ô , Ô

]
= 0. (2.97)

• Any operator Ô commutes with any other operator that is only a function of Ô (see
Prob. 2.12) [

Ô , f
(

Ô
)]

= 0. (2.98)
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• Given three operators Ô , Ô ′ and Ô ′′, we have (see Prob. 2.13)[
Ô Ô ′, Ô ′′] = [Ô , Ô ′′] Ô ′ + Ô

[
Ô ′, Ô ′′] . (2.99)

We finally note that, given three observables Ô , Ô ′ and Ô ′′, for which
[

Ô , Ô ′
]
= 0 and[

Ô , Ô ′′
]
= 0, it is not necessarily true that

[
Ô ′, Ô ′′

]
= 0 (see Prob. 2.14).

We have seen (Th. 2.2: p. 47) that the eigenvectors of a Hermitian operator constitute
a basis on the underlying Hilbert space. What is then the relationship between this funda-
mental property and commutability? This question is answered by the following important
theorem:

Theorem 2.4 (Commuting observables) Two observables Ô and Ô ′ commute if and
only if they admit a common basis of eigenvectors.

Proof

First we prove that, if the observables Ô and Ô ′ admit a common basis of eigenvectors,
then they commute. The hypothesis can be stated as follows:

Ô |bk〉 = ok |bk〉 , Ô ′ |bk〉 = o′k |bk〉, (2.100)

where {|bk〉 } is the common basis. Then, we have

Ô Ô ′ |bk〉 = Ôo′k |bk〉 = o′k Ô |bk〉 = o′kok |bk〉; (2.101a)

Ô ′ Ô |bk〉 = Ô ′ok |bk〉 = ok Ô ′ |bk〉 = oko′k |bk〉. (2.101b)

Since o′k and ok are c-numbers, and Eqs. (2.101) hold for any k, it is evident that Ô and Ô ′
commute.

Now we prove that, if the observables Ô and Ô ′ commute, then they admit a common
basis of eigenvectors. In fact, if {|ak〉 } is a certain basis on the Hilbert space, we have(

O O ′)
jk =

〈
a j
∣∣ Ô Ô ′ |ak〉 =

∑
n

〈
a j
∣∣ Ô |an〉 〈an | Ô ′ |ak〉 =

∑
n

Ôkn Ô ′
nj . (2.102)

Assuming now that {|ak〉 } is a basis of eigenkets of Ô , or Ô |ak〉 = ok |ak〉 , we can rewrite
Eq. (2.102) as follows:(

O O ′)
jk =

∑
n

〈
a j
∣∣ Ô |an〉 〈an | Ô ′ |ak〉 =

∑
n

onδ jn O ′
nk = o j O ′

jk . (2.103a)

Inverting the order of the operators, we have instead(
O ′O

)
jk =

∑
n

〈
a j
∣∣ Ô ′ |an〉 〈an | Ô |ak〉 =

∑
n

O ′
jnokδnk = ok O ′

jk . (2.103b)

Now, since [Ô , Ô ′] = 0, then we must have (o j − ok)O ′
jk = 0. This condition is trivially

satisfied for j = k. If, for j 	= k, we had o j 	= ok (the non-degenerate case), we would have
already proved the result. In fact, in such a case we would have O

′
jk = 0 for j 	= k, i.e.
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O ′
jk = O ′

j jδ jk . Then, the operator Ô
′
would be diagonal in the basis of the eigenvectors of

Ô . In general, however, there can be several eigenvectors for the same eigenvalue (degen-
eracy of the eigenvalues) (see Th. 2.2, p. 47, and comments). In this case we could have
o j = ok even if j 	= k. In this circumstance, if we take a certain degenerate eigenvalue, we
may consider the subspace spanned by the eigenvectors which pertain to that eigenvalue. In
this subspace Ô ′ can be diagonalized because it is Hermitian and also Ô = ok Î (where Î is
the identity in this subspace). Then, even in this case Ô and Ô ′ can be jointly diagonalized
and therefore share a common basis of eigenvectors.

Q.E.D

As a consequence of Th. 2.4, the following corollary can be proved:

Corollary 2.1 (Simultaneous measurability) The necessary and sufficient condition for
two observables Ô and Ô ′ to be simultaneously measurable with arbitrary precision is
that they commute.

Proof

In fact, if Ô and Ô ′ commute, then we have a common eigenbasis {|ok〉 } such that

Ô |ok〉 = ok |ok〉, (2.104a)

Ô ′ |ok〉 = o′k |ok〉. (2.104b)

This means that there is a common basis in which both observables are perfectly deter-
mined. In other words, for each state |ok〉 of the basis, the observable Ô , if measured,
gives with certainty the eigenvalue ok as outcome and the observable Ô ′, if measured,
gives with certainty the eigenvalue o′k as outcome.

Q.E.D

As an immediate consequence of Cor. 2.1 we may state that non-commuting observ-
ables cannot be simultaneously measurable with arbitrary precision. In general, therefore,
given the set of observables of a physical system S, it will be possible to divide them
into separate subsets of reciprocally commuting observables. These are called complete
sets and represent the maximum number of properties of S that can be jointly known (see
also Subsec. 2.2.7). We see here that, while in classical mechanics it is possible to know
jointly all the properties of a system, in quantum mechanics by a complete description
we mean the knowledge of all the observables in certain complete (but not necessarily
disjoint) sets.

As we shall see in the following, the non-commutability between quantum mechanical
observables has extraordinary implications in the very foundations of the theory and in the
corresponding interpretation of its physical reality (see e.g. Subsec. 2.3.3).
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2.2 Wave function and basic observables

In this section we shall apply (and develop) the formalism of the previous section to
concrete quantum observables. After having introduced the concept of wave function
(Subsec. 2.2.1), we will discuss the difficult problem of normalization (Subsec. 2.2.2).
In Subsec. 2.2.3 we introduce the position operator whereas in Subsec. 2.2.4 we introduce
the momentum observable. In Subsec. 2.2.5 we analyze the relationship between position
and momentum representations. In Subsec. 2.2.6 the energy observable is shortly intro-
duced – further developments can be found in Ch. 3. Finally, in Subsec. 2.2.7, the basic
commutation relation between position and momentum is deduced.

2.2.1 Wave funct ion

So far we have discussed examples of quantum systems in terms of photons and their
polarization. However, quantum mechanics has to apply to a generic microscopic system
as well. In particular, it should enable us to deal with a particle (or an ensemble of par-
ticles) moving in a configuration space. In order to investigate the quantum mechanical
behavior of such a system we need to introduce the position observable r̂ = (x̂ , ŷ, ẑ). For
the sake of simplicity let us first treat the one-dimensional case. Let us denote the eigenvec-
tors of the position operator x̂ by | x〉 . Since x̂ is a continuous operator, we have to use the
generalization given at the end of Subsec. 2.1.1. Given a generic state vector |ψ〉 , we may
try to expand this vector in terms of the position eigenvectors, and make use of the identity
(see Eq. (2.22a)) ∫

dx | x〉 〈x | = Î (2.105)

in order to obtain (see Eq. (2.21))

|ψ〉 =
∫

dx | x〉 〈x | ψ〉

=
∫

dxψ(x) | x〉, (2.106)

so that we may interpret the scalar product (see also Eq. (2.16))

〈x | ψ〉 = ψ(x) (2.107)

as the continuous probability amplitude of finding the particle in the interval (x , x + dx),
will be the probability of finding the particle between x and x + dx , and ℘(x) = |ψ(x)|2
will be the corresponding probability density (see Pr. 2.2: p. 57, and also Sec. 1.4). We
then expect that the probability of finding the particle anywhere in the whole configuration
space be equal to one; that is (see Eq. (2.67))
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+∞∫
−∞

dx |ψ(x)|2 =
+∞∫
−∞

dxψ∗(x)ψ(x) = 1. (2.108)

This is also called the normalization condition and the function ψ(x) is called the wave
function of the particle.

Notice that, since a normalized state vector is defined up to a phase factor (see p. 60),
for the wave function a global phase factor is irrelevant.

From what we have seen above, it turns out that there is an obvious relation between
the bracket Dirac notation and integrals of products of wave functions in the configura-
tion space: they both represent scalar products. Since the integral (2.108) may be written
as
∫

dxψ∗(x)ψ(x), it can be also expanded as the scalar product (ψ(x),ψ(x)). More

specifically, let us consider two state vectors |ψ〉 and
∣∣∣ψ ′〉

. These may be also repre-

sented by the corresponding wave functions ψ(x) = 〈x | ψ〉 and ψ
′
(x) =

〈
x | ψ ′〉

. It is

then straightforward to write

〈
ψ | ψ ′〉 = +∞∫

−∞
dx 〈ψ | x〉

〈
x | ψ ′〉

=
+∞∫
−∞

dxψ∗(x)ψ
′
(x). (2.109)

It may happen that a wave function is not normalized, so that we have

+∞∫
−∞

dx |ψ(x)|2 = N , (2.110)

where N is finite and different from 1. Then, in order to normalize the wave function ψ(x)
it is sufficient to consider a wave function ψnorm(x) such that

ψnorm(x) = 1√
N
ψ(x). (2.111)

Note that the eigenfuctions of the continuous spectrum are not normalizable. In the next
subsection we shall investigate this problem.

2.2.2 Normalizat ion

Let us consider a one-dimensional observable ξ̂ with a continuous spectrum. The state
vector of the particle can be expanded as (see Eqs. (1.35) and (2.21))

|ψ〉 =
∫

dξc(ξ ) |ξ 〉, (2.112)

where the vectors |ξ 〉 are the eigenkets of the observable ξ̂ and |c(ξ )|2 dξ represent the
probability that the value of ξ̂ can be found in the interval (ξ , ξ + dξ ). We can then write
the following identity:
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dξ |c(ξ )|2 =
∫

dx |ψ(x)|2 . (2.113)

Substituting ψ∗(x) = 〈ψ | x〉 as expanded in Eq. (2.112) into the rhs of Eq. (2.113), we
obtain ∫

dξc∗(ξ )c(ξ ) =
∫

dξc∗(ξ )

[∫
dxψ(x)ϕ∗ξ (x)

]
, (2.114)

where ϕξ (x) = 〈x | ξ 〉, which yields

c(ξ ) = 〈ξ | ψ〉 =
∫

dxψ(x)ϕ∗ξ (x). (2.115)

Back-substituting ψ(x) = 〈x | ψ〉 as expanded in Eq. (2.112) into Eq. (2.115), we obtain

c(ξ ) =
∫

dξ
′
c
(
ξ
′) [∫

dxϕξ ′ (x)ϕ∗ξ (x)

]
, (2.116)

from which we must conclude that (see Eqs. (2.23))∫
dxϕξ ′ (x)ϕ∗ξ (x) = δ(ξ − ξ ′ ). (2.117)

In other words, the eigenfunctions of an observable with a continuous spectrum are not
normalizable.

Summing up, concerning normalization we have three possible cases:

• The wave function is normalized: ∫
dx |ψ(x)|2 = 1. (2.118)

• The wave function is not normalized but is normalizable:∫
dx |ψ(x)|2 = N 	= 1, |N | <∞. (2.119)

• The wave function is not normalizable:∫
dx |ψ(x)|2 = ∞. (2.120)

In the latter case, |ψ(x)|2 dx cannot represent the probability of finding the particle in the
interval (x , x + dx). However, the ratio

℘(x ′)
℘(x ′′)

=
∣∣ψ(x ′)

∣∣2
|ψ(x ′′)|2 (2.121)

still determines the relative probabilities pertaining to two different values x ′ and x ′′ of the
position.

2.2.3 Posit ion operator

The wave function ψ(x), viewed as a function of the position x̂ , is a particular representa-
tion of the state vector |ψ〉 . In this representation the operator x̂ takes a very simple form.
The eigenvectors | x〉 ’s of x̂ represent state vectors for which the position has a determined
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Table 2.1 Different cases and ways of expressing the basic quantum formalism

Discrete case Continuous case

Dirac algebra Wave-function Dirac algebra Wave-function

|ψ〉 =∑ j c j
∣∣ϕ j

〉
ψ(x) =∑ j c jϕ j (x) |ψ〉 =∫

dξ | ξ〉 〈ξ | ψ〉
ψ(x) =∫

dξc(ξ )ϕξ (x)
c j =

〈
ϕ j | ψ

〉
c j =

∫
dxϕ∗j (x)ψ(x) c(ξ ) = 〈ξ | ψ〉 c(ξ ) =∫

dxϕ∗ξ (x)ψ(x)

Ô =∑ j o j P̂j ξ̂ = ∫ dξ P̂(ξ )

value, i.e. the eigenvalue x associated to | x〉 . In other words, the eigenvalue equation (see
also Eq. (2.2)) of the observable x̂ may be written as

x̂ | x〉 = x | x〉. (2.122)

Writing the Hermitian conjugate of Eq. (2.122)

〈x | x̂ = 〈x | x , (2.123)

where the eigenvalues x are obviously real (see Th. 2.1), and taking the scalar product with
a generic state vector |ψ〉 , we obtain

x̂ψ(x) = xψ(x), (2.124)

which means that the one-dimensional position operator x̂ in the position representation
acts both on its eigenvector | x〉 and on the wave function ψ(x) simply as a multiplication
by the scalar x . This may be seen equally well by using the concept of mean value (see
Eq. (2.78)). Let us write

〈
x̂
〉
ψ
= 〈ψ ∣∣x̂∣∣ψ 〉 = +∞∫

−∞
dx 〈ψ | x〉 〈x ∣∣x̂∣∣ψ 〉, (2.125)

since integration over the set of projectors | x〉 〈x | yields the identity (see Eq. (2.22a)). On
the other hand, given the meaning of |ψ(x)|2, we may also write (see Eq. (2.78))

〈x〉ψ =
+∞∫
−∞

dxx |ψ(x)|2 =
+∞∫
−∞

dxψ∗(x)ψ(x)x =
+∞∫
−∞

dx 〈ψ | x〉 〈x | ψ〉 x . (2.126)

Comparing the rhs of Eqs. (2.125) and (2.126), we find〈
ψ
∣∣x̂∣∣ψ 〉 = x 〈ψ | ψ〉, (2.127)

which is equivalent to Eq. (2.124).
Finally, it is convenient to determine the eigenfunction ϕx0 (x) = 〈x | x0〉, where the posi-

tion operator takes on the determined value x0. To this end, we first note that, for any x , we
have (see Eqs. (2.122) and (2.124))

x̂ϕx0 (x) = xϕx0 (x) = x0ϕx0 (x). (2.128)
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The second equality of Eq. (2.128) is automatically satisfied for x = x0. For x 	= x0 the
equality is satisfied only if ϕx0 (x) = 0. Therefore, it follows that

ϕx0 (x) = δ(x − x0). (2.129)

2.2.4 Momentum operator

The aim of the present and of the next two subsections is to introduce two additional
physical quantities in quantum mechanics: momentum and energy. In order to accomplish
this task, we need a link with classical mechanics where energy and momentum were
first defined in a natural way. This link is provided by the correspondence principle, first
formulated in [Bohr 1920], which may be stated as follows:18

Principle 2.3 (Correspondence principle) The quantum-mechanical physical quantities
should tend to the classical-mechanical counterparts in the macroscopic limit.

With macroscopic limit we mean a physical scale where the action (1.14) is much larger
than Planck’s constant. In this situation h (see Subsec. 1.2.1 and Sec. 1.5), is negligible and
quantum effects (such as superposition, interference, etc.) are very small. For this reason,
sometimes – though in a improper way – the classical limit is referred to as the physical
situation in which h → 0. This limit should not frighten the reader. Although h is a constant
and as such cannot change, the limit should be understood as expressing the relative weight
of this quantity with respect to the system’s action.

In classical mechanics, momentum is defined as the quantity which is conserved under
global spatial translations or, alternatively, as the generator of spatial translations. Let
us then consider a system of N one-dimensional particles described by the wave func-
tion ψ(x1, x2, . . . , xN ). A rigid translation by a quantity a of this system will change
ψ(x1, x2, . . . , xN ) into

ψ(x1 + a, x2 + a, . . . , xN + a) = ψ(x1, x2, . . . , xN )

+
N∑

j=0

a
∂

∂x j
ψ +

N∑
j=0

a2

2

∂2

∂x2
j

ψ + · · · +
N∑

j=0

1

n!

(
a
∂

∂x j

)n

ψ + · · ·

=
⎡⎣1 +

N∑
j=0

a
∂

∂x j
+

N∑
j=0

1

2

(
a
∂

∂x j

)2

+ · · · +
N∑

j=0

1

n!

(
a
∂

∂x j

)n

+ · · ·
⎤⎦

× ψ(x1, x2, . . . , xN )

= Ûaψ(x1, x2, . . . , xN ). (2.130)

18 For a historical reconstruction see [Mehra/Rechenberg 1982–2001, I, 246–57].
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The unitary operator Ûa [see Eq. (2.34], translating the wave function of the system of an
amount a, can be generalized to Ûx for any displacement x , which is called translation
operator, and can then be written as

Ûx = eıaĜT . (2.131)

As a consequence, the generator ĜT of the spatial displacements can be identified as

ĜT = −ı
∑

j

∂

∂x j
, (2.132)

and thus −ı
∑

j ∂/∂x j must represent, up to a constant factor, the total quantum-
mechanical momentum operator of the N -particle system (see also Subsec. 3.5.4). For
a single particle in one dimension we have

p̂x = −ı
∂

∂x
(2.133)

up to a constant factor. For dimensional reasons, and following the correspondence princi-
ple, we take this constant to be h̄ = h/2π . In the three-dimensional case, the momentum
operator is then given by

p̂ = −ı h̄∇. (2.134)

Once we have determined the form of the momentum operator, it is necessary to find its
eigenfunctions. In other words, we have to solve the eigenvalue equation

p̂xϕp(x) = pxϕp(x) (2.135)

for the unknown functions ϕp(x) = 〈x | px 〉 in the position representation, where the
| px 〉 ’s are the one-dimensional eigenkets of the momentum. This amounts to solving the
differential equation

∂

∂x
ϕp(x) = ı

h̄
pxϕp(x), (2.136)

which has been obtained upon substitution of

p̂x = −ı h̄
∂

∂x
(2.137)

into Eq. (2.135). The solutions of Eq. (2.136) can be immediately written as

ϕp(x) = Ce
ı
h̄ px x , (2.138)

where C is some integration constant.
It is convenient to express the momentum p̂x in terms of the wave or propagation vector

kx = 2π

λ
. (2.139)
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The link between these two quantities comes from the de Broglie relationship (1.78), from
which it can easily be derived that

p̂x = h

λ
= h̄kx . (2.140)

In terms of the wave vector the momentum eigenfunctions (2.138) may be written as

ϕk(x) = Ceıkx x . (2.141)

These eigenfunctions are often called plane waves.
It can easily be seen that these functions, being the eigenfunctions of an observable with

a continuous spectrum, are not normalizable (see Subsec. 2.2.2). In fact,

+∞∫
−∞

dx |ϕk(x)|2 =

⎧⎪⎪⎨⎪⎪⎩
0 for kx 	= 0
+∞∫
−∞

|C |2dx = ∞ for kx = 0
. (2.142)

As we have seen, the only function which satisfies the normalization requirements of
Eq. (2.142) is the Dirac delta function. The orthonormality condition for the momentum
eigenfunctions will then be given by

+∞∫
−∞

dxϕ∗k (x)ϕk′ (x) = |C |2
+∞∫
−∞

dxeı(k
′
x−kx )x = 2π |C |2 δ(k ′x − kx ), (2.143)

where we have made use of the formula19

1

2π

+∞∫
−∞

dxeıαx = δ(α). (2.144)

Therefore the constant C of Eq. (2.138) or Eq. (2.141) may be taken as equal to (2π )− 1
2

and the momentum eigenfunctions can be finally written as

ϕk(x) = 1√
2π

eıkx x (2.145)

or

ϕp(x) = 1√
2π

e
ı
h̄ px x . (2.146)

In the three-dimensional case it is straightforward to generalize the result (2.145) into

ϕk(r) = 1√
8π3

eık·r, (2.147)

where k = (kx , ky , kz), and which, in contrast to Eq. (2.141), are called spherical waves.

19 See [Byron/Fuller 1969–70, 246–53].
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2.2.5 Momentum representation

So far we have worked in the position representation. As we have said, this means that the
wave function ψ is considered as a function of the position x (or r in the three-dimensional
case). As we have seen in the previous subsection, in this representation the momentum acts
on ψ(x) as a differential operator, whereas the position observable is simply a multiplica-
tion operator. However, we may as well consider a different representation according to
which the state vector |ψ〉 is projected onto the eigenbra 〈px | of the momentum operator,
i.e. ψ̃(px ) = 〈px | ψ〉 can be viewed as the wave function in the momentum representation.
We have used the superscript tilde in order to emphasize that the functional dependence of
ψ̃ on px is in general obviously different from the functional dependence of ψ on x .20 In
the momentum representation it is obviously the momentum that acts as a multiplication
operator, that is

p̂x ψ̃(px ) = px ψ̃(px ). (2.148)

What is the connection between the momentum and the position representations of the
wave function? In order to answer this question, we note that any wave function ψ(x) =
〈x | ψ〉 may be rewritten as

ψ(x) =
∫

dpx 〈x | px 〉 〈px | ψ〉, (2.149)

where we have taken advantage of the fact that integration over the set of projectors
| px 〉 〈px | gives the identity operator (see Eq. (2.22a)). Now we recall that 〈x | px 〉 =
ϕp(x) is the momentum eigenfunction in the position representation and 〈px | ψ〉 =
ψ̃(px ), so that, making use of Eq. (2.146), Eq. (2.149) becomes

ψ(x) =
∫

dpxϕp(x)ψ̃(px ) = 1√
2π

∫
dpx e

ı
h̄ px x

ψ̃(px ). (2.150a)

Equation (2.150a) shows that the inverse Fourier transform21 of the wave function in the
momentum representation gives the wave function in the position representation. There-
fore, by inverting Eq. (2.150a), one obtains that the wave function in the momentum
representation

ψ̃(px ) = 1√
2π

∫
dxe−

ı
h̄ px x

ψ(x) (2.150b)

20 It is a historical contingency depending on the development of quantum mechanics that, when the first wave
function was introduced, it was written ψ(x). If it had been written ψx (x), one would have written ψp(px )
for indicating the wave function of the momentum in the momentum representation. Since it did not happen,
we are obliged to choose forms like ψ̃(px ) in order to indicate both the different dependence and the different
representation.

21 See [Byron/Fuller 1969–70, 246–53].
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is simply given by the Fourier transform of the corresponding wave function in the posi-
tion representation. Using Dirac formalism (as in Eq. (2.149)), Eq. (2.150b) may be also
written as

ψ̃(px ) = 〈px | ψ〉 =
∫

dx 〈px | x〉 〈x | ψ〉 =
∫

dx 〈px | x〉ψ(x). (2.151)

Then, changing the representation corresponds to projecting the state vector |ψ〉 onto dif-
ferent basis eigenvectors: position eigenvectors in the case of position representation and
momentum eigenvectors for momentum representation.

It can be shown (see Prob. 2.17) that, if ψ(x) is normalized, i.e.

if

+∞∫
−∞

dx |ψ(x)|2 = 1, then also

+∞∫
−∞

dpx |ψ̃(px )|2 = 1. (2.152)

This is called the Bessel–Parseval relationship.
We have seen that the momentum acts as a differential operator in the position rep-

resentation. Conversely, one may ask what is the form of the position observable in the
momentum representation. It can be proved that (see Prob. 2.18)

x̂ψ̃(px ) = ı h̄
∂

∂px
ψ̃(px ). (2.153)

We should emphasize that writing a wave function in different representations is a special
instance of the change of basis (see Subsec. 2.1.2), and in particular it corresponds to a
change from the | x〉 to the | px 〉 basis and vice versa. In Subsec. 2.1.2 we have mainly
considered the problem of a change of basis in the discrete case. Let us now address this
problem under general terms in the continuous case. Any state vector |ψ〉 can be expanded
in an arbitrary orthonormal basis {|ξ 〉 } – given by the eigenvectors of a continuous one-
dimensional observable ξ̂ – as (see Eq. (2.112))

|ψ〉 =
∫

dξ |ξ 〉 〈ξ | ψ〉 =
∫

dξψξ (ξ ) |ξ 〉 . (2.154a)

Similarly, the state vector |ψ〉 can be expanded in a different basis {|η〉 } – given by the
eigenvectors of another one-dimensional observable η̂, not necessarily conjugate to ξ̂ – as
(see also Eq. (2.46))

|ψ〉 =
∫

dη |η〉 〈η | ψ〉 =
∫

dηψη(η) |η〉, (2.154b)

where the functionsψ(η) andψξ (ξ ) take the role of continuous coefficients in two different
expansions of |ψ〉 (see Subsec. 2.2.2).

The relation between ψ(η) and ψξ (ξ ) is easily derived as

ψξ (ξ ) = 〈ξ | ψ〉 =
∫

dη 〈ξ | η〉 〈η | ψ〉

=
∫

dηϕη(ξ )ψ(η)

= Û (η, ξ )ψ(η), (2.155)
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where ϕη(ξ ) = 〈ξ | η〉 are the eigenfunctions of the observable η̂ in the ξ -representation.
In the following we show that the transformation

ψ(η) −→ ψξ (ξ ) = Û (η, ξ )ψ(η) (2.156)

conserves the scalar product and is therefore unitary (see p. 54 and also Ch. 8).22 In fact,
let us take two generic wave functions ψ(η) and ψ ′(η) in the η–representation, with the
scalar product (

ψ ,ψ ′) = ∫ dηψ∗(η)ψ ′(η). (2.157)

The application of the U -transformation on ψ(η) and ψ ′(η) gives straightforwardly

Û (η, ξ )ψ(η)=
∫

dηϕη(ξ )ψ(η), (2.158a)

Û (η, ξ )ψ ′(η)=
∫

dηϕη(ξ )ψ ′(η), (2.158b)

whose scalar product yields(
Ûψ , Ûψ ′) = ∫ dξ

[∫
dηϕ∗η (ξ )ψ∗(η)

] [∫
dη′ϕη′ (ξ )ψ ′(η′)

]
=
∫

dηη′ψ∗(η)ψ ′(η′)
∫

dξϕ∗η (ξ )ϕη′(ξ ). (2.159)

Now, we know that ϕη′ (ξ ) = 〈ξ | η′〉 and ϕη(ξ ) = 〈ξ | η〉, and therefore∫
dξϕ∗η (ξ )ϕη′(ξ ) =

∫
dξ 〈η | ξ 〉 〈ξ | η′〉

= 〈η | η′〉 = δ(η − η′). (2.160)

Substituting this result into Eq. (2.159), we obtain(
Ûψ , Ûψ ′) = ∫ dηη′ψ∗(η)ψ ′(η′)δ(η − η′)

=
∫

dηψ∗(η)ψ ′(η)

= (ψ ,ψ ′). (2.161)

It is worth noticing that in the special case of position x̂ and momentum p̂x – i.e. in gen-
eral, of conjugate observables – the unitary transformation Û is represented by the Fourier
transform ÛF , so that we have

ψ̃(px ) = ÛFψ(x), ψ(x) = Û †
F ψ̃(px ), (2.162)

where

ÛF f (x) = 1√
2π

∫
dxe−

ı
h̄ px x f (x) , Û †

F g(px ) = 1√
2π

∫
dpx e

ı
h̄ px x g(px ). (2.163)

22 See also [Fano 1971, 75].
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The main difference with respect to the discrete case treated in Subsec. 2.1.2 is that here,
in the continuous and therefore infinite-dimensional case, we cannot express this unitary
operation by means of a matrix.

2.2.6 Energy

As we have already seen in Sec. 1.1, a classical system is well defined by its energy, in the
sense that the knowledge of the Hamiltonian function H allows us to derive the equations
of motion. The Hamiltonian is given by the sum of the kinetic energy T and the potential
energy V . In quantum mechanics this should hold true as well (see Pr. 2.3: p. 72). How-
ever, following Th. 2.1 (p. 46) we know that the energy must also be represented by a
Hermitian operator. Classical mechanics helps us in determining such an operator. In fact
in order to “quantize” the Hamiltonian it is sufficient first to replace in the classical for-
mula H = T + V the corresponding expressions in terms of momentum and position and
finally to consider these physical quantities as operators. Thus, one immediately obtains an
expression of the Hermitian operator Ĥ , called the Hamiltonian operator in terms of the
operators x̂ and p̂x which we have discussed in the previous subsections.

For instance, in the case of a one-dimensional particle subject to the potential energy
V (x) one has

Ĥ = T̂ + V̂ = p̂2
x

2m
+ V (x̂), (2.164)

where m is the mass of the particle. As we know from Subsecs. 2.2.1–2.2.4, in the position
representation – in which we shall usually work if not otherwise stated – the position oper-
ator acts as a simple multiplication, whereas the momentum acts as a differential operator.
In such a representation, therefore, we shall write

Ĥ = − h̄2

2m

∂2

∂x2
+ V (x). (2.165)

We have already seen that, as particular instances of the general formula (2.2), there are a
position eigenvalue equation (2.122) and a momentum eigenvalue equation (2.135). Also
for the energy it is possible to write an eigenvalue equation

ĤÊ
∣∣ψE

〉 = E
∣∣ψE

〉
, (2.166)

where
∣∣ψE

〉
are the eigenkets of the energy and the E’s the corresponding eigenvalues.

For reasons which shall become clear in Ch. 3, the states
∣∣ψE

〉
in Eq. (2.166) are called

stationary states. In the same chapter we shall see that the energy plays a fundamental role
in the dynamics of a quantum system.

It is clear from Eqs. (2.165) and (2.166) that the eigenfunctions and eigenvalues of the
energy will depend on the potential V and therefore on the particular kind of system we
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are facing. In the simplest case of a unidimensional free particle, the eigenvalue equation
of the energy in the position representation becomes

ĤψE (x) = − h̄2

2m

∂2

∂x2
ψE (x) = E pψE (x), (2.167)

where E p is the eigenvalue of the energy corresponding to the momentum p. Eq. (2.167)
may be rewritten as

ψ ′′
E

(x) = −2m E p

h̄2
ψE (x), (2.168)

where ψ ′′
E

(x) is the second derivative of ψE (x) with respect to x . Its general solution is
given by

ψE (x) = C1eıkx + C2e−ıkx , (2.169)

where C1 and C2 are integration constants and k = √2m E p/h̄. Therefore, in the case of
a free particle, the energy eigenfunctions have a form similar to that of the momentum
eigenfunctions (2.141).23 This fact is not surprising. Indeed, in this case, we have Ĥ =
p̂2

x/2m and, as a consequence, p̂x commutes with Ĥ (see Eq. (2.98)), or [Ĥ , p̂x ] = 0. One
can easily deduce from the classical expression of the energy of a free particle,

E p = p2
x

2m
, (2.170)

that k = √p2/h̄. The only difference between momentum and energy eigenfunctions, in
the case of a one-dimensional free particle, is that we may distinguish the case of a particle
moving from the left to the right (eıkx with momentum px = h̄k) from the case of a particle
moving from the right to the left (e−ıkx with momentum −px = −h̄k). In both cases,
however, the particle has the same energy E = p2

x/2m.

2.2.7 Commutation relat ions for posit ion
and momentum

So far we have seen that in general quantum mechanical observables may not commute.
It is interesting to consider the case of momentum and position operators which we have
discussed in the previous subsections. Our aim then is to compute the commutator

[x̂ , p̂x ] = x̂ p̂x − p̂x x̂ . (2.171)

To this end we apply such a commutator to an arbitrary wave function ψ(x):

[x̂ , p̂x ]ψ(x) = x

(
−ı h̄

∂

∂x

)
ψ(x) + ı h̄

∂

∂x
[xψ(x)]

= −ı h̄xψ ′(x) + ı h̄ψ(x) + ı h̄xψ ′(x)

= ı h̄ψ(x), (2.172)

23 Being the energy of a free particle a continuous observable, its eigenfunctions are not normalizable (see
Subsec. 2.2.2).
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where use has been made of Eqs. (2.124) and (2.133). Since the wave function ψ(x) in
Eq. (2.172) must hold for arbitrary wavefunctions ψ(x), we may write

[
x̂ , p̂x

] = ı h̄ Î . (2.173a)

Similar expressions can be derived (see Prob. 2.21) in the same way for the other
components of momentum and position[

ŷ, p̂y
] = [ẑ, p̂z

] = ı h̄ Î . (2.173b)

On the other hand, we have [
x̂ , p̂y

] = [x̂ , p̂z
] = 0,[

ŷ, p̂x
] = [ŷ, p̂z

] = 0,[
ẑ, p̂x

] = [ẑ, p̂y
] = 0, (2.173c)

as one can immediately verify by applying a similar procedure as in Eq. (2.172) to the
corresponding commutators.

Equations (2.173) can be unified through the relation[
r̂ j , p̂k

] = ı h̄δ jk , (2.174)

where j , k = (x , y, z) and r̂x = x̂ , r̂y = ŷ, vz = ẑ.
It is then clear that x̂ and p̂x (as well as ŷ and p̂y or ẑ and p̂z) cannot have a common

basis of eigenvectors (see Th. 2.4). As a consequence they are not simultaneously measur-
able with arbitrary precision (see Cor. 2.1). In this case we shall say that x̂ and p̂x (as well
as ŷ and p̂y or ẑ and p̂z) are incompatible observables. This feature characterizes the state
in quantum mechanics and distinguishes it radically from the classical state. On the other
hand, a component of the position along a certain axis can be determined with arbitrary
precision simultaneously with the component of the momentum along any of the two other
axes.

We can now go back to the definition of complete sets (see p. 67). For a one-dimensional
particle (a single degree of freedom), for instance, we only have two independent
observables, the position x̂ and the momentum p̂x , since any

�Box 2.6 Wave packet

In the classical limit, matter waves (see Subsec. 1.5.5) become classical particles, that is we
suppose that the wave be confined in a sufficiently small region to be approximated as a
point-like entity.

In the one-dimensional case, the simplest type of wave is a plane and monochromatic
wave

ψ(x,t) = eı(kx -ωt). (2.175)
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In the classical approximation, we should relate k to px. To this end, as we have said, we
should associate to the particle a wave confined in a small region. Although Eq. (2.175)
does not have this character, we may write a superposition of waves with neighboring wave
vectors, namely a wave packet, such that

&(x,t) =
∫

dkA(k)eı(kx−ωt), (2.176)

where A(k) is a function that has support in a small region of extension �k around a given
value k0 of k. For the sake of simplicity we take A(k) to be real. If the factor eı(kx−ωt)

oscillates many times in this region, the integral will be negligible. On the contrary, values of
&(x, t) that are significantly different from zero are obtained when the phase kx − ωt stays
approximately constant in that region, i.e. when∣∣∣∣ d

dk

(
kx − ωt

)∣∣∣∣ ·�k < 1. (2.177)

This means that the wave packet&(x,t) is mainly confined in a spatial region of width (�k)−1

around the center

x0 = t · dω
dk

. (2.178)

From Eq. (2.178) it is clear that the center of the wave packet moves with constant velocity

vg = dω
dk

, (2.179)

which is called group velocity. This has to be contrasted to the phase velocity

vφ = ωk , (2.180)

which corresponds to the velocity of propagation of the plane wave (Eq. (2.175)). When
taking the classical limit, it is the group velocity and not the phase velocity that should be
considered as the the particle velocity

v = dE
dp

= p
m

. (2.181)

other observable (e.g. the Hamiltonian Ĥ ) can be understood as a function of x̂ and p̂x .
It is then evident that complete sets are given by {x̂} and { p̂x }. For the three-dimensional
case the problem is a little more complicated. We have here three components for the
momentum and three for the position. In order to build a complete set we have to write
a triple of observables with the prescription that any of its elements must commute with
the other two and there is no additional element that commutes with all elements of the
triple. Any element of the triple must be taken from one of the following pairs (each one
composed of mutually exclusive elements) {x̂ , p̂x }, {ŷ, p̂y}, and {ẑ, p̂z}. We have then eight
possible complete sets

{x̂ , ŷ, ẑ}, {x̂ , p̂y , p̂z}, {x̂ , p̂y , ẑ}, {x̂ , ŷ, p̂z},
{ p̂x , p̂y , p̂z}, { p̂x , ŷ, ẑ}, { p̂x , ŷ, p̂z}, { p̂x , p̂y , ẑ}. (2.182)
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It is also evident that every quantum observable commutes with the identity operator Î
(whose mention is therefore omitted in the above sets).

2.3 Uncertainty relation

In Subsec. 2.1.1 we have formulated a basic principle of quantum theory: the quantization
principle. Now, we derive the uncertainty relation between position and momentum, which
is a direct consequence of the operatorial character of the quantum observables. In fact,
we have already seen (in Subsec. 2.2.7) that two quantum-mechanical observables may
not commute and that in such case they are not simultaneously measurable with arbitrary
precision. As a consequence, the observables of the system can be divided into complete
subsets of commuting observables (see Subsec. 2.2.7). The uncertainty relation is then the
quantitative formulation of the impossibility of simultaneously measuring a pair of non-
commuting observables. In Subsec. 2.3.1 we derive the uncertainty relation for the pair
(x̂ , p̂x ), while in Subsec. 2.3.2 we generalize the uncertainty relation to any pair of observ-
ables. In Subsec. 2.3.3 we analyze the consequences of the uncertainty relation on the
phase space representation for quantum mechanical systems. Finally, in Subsec. 2.3.4 we
briefly discuss the relationship between the uncertainty relation and the complementarity
and superposition principles.

2.3.1 Derivat ion of the uncertainty relat ion

The uncertainty relation, derived for the first time by Heisenberg,24 formally defines the
minimum value of the product of the uncertainties of two canonically conjugate variables
(see Sec. 1.1). In the following we shall derive the uncertainty relation in the case of
position and momentum for the one-dimensional case.25

Let us take a normalized wave function ψ(x) for which both the position and momentum
mean values (see Eq. (2.78)) are zero, i.e.〈

x̂
〉
ψ
= 〈ψ | x̂ |ψ〉 = 0 and

〈
p̂x
〉
ψ
= 〈ψ | p̂x |ψ〉 = 0. (2.183)

The normalization condition excludes the case of eigenfunctions of position and momen-
tum (see Subsec. 2.2.2). However, this does not represent a loss of generality, as we shall
see below.

24 See [Heisenberg 1927]. For a history see [Mehra/Rechenberg 1982–2001, VI, 130–63].
25 On this point we follow the formulation of Landau [Landau/Lifshitz 1976b] who in turn follows the derivations

by Pauli [Pauli 1980, 21] and Weyl [Weyl 1950, 77, 393–94]. We proceed in this way for pedagogical reasons
even though – from a formal standpoint – we could have started from the commutation relations, derived the
result of the next subsection, and finally introduced the uncertainty relation between position and momentum
as a special application of this general result. For the same reasons in the present subsection we make use of
the wave-function formalism introduced previously.
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We define now the uncertainties

�ψ x =
〈(

x̂ − 〈x̂ 〉
ψ

)2
〉 1

2

ψ

=
[
〈ψ | (x̂ − 〈ψ ∣∣x̂∣∣ψ 〉)2 |ψ〉] 1

2
, (2.184a)

�ψ px =
〈(

p̂x −
〈
p̂x
〉
ψ

)2
〉 1

2

ψ

=
[
〈ψ | ( p̂x −

〈
ψ
∣∣ p̂x
∣∣ψ 〉)2 |ψ〉] 1

2
, (2.184b)

as the standard deviations, i.e. the square roots of the variances (or dispersions) of the
position and momentum operators x̂ , p̂x , calculated on the state |ψ〉 , which we assume
here to be finite.26 For any wave function ψ(x), we must have

+∞∫
−∞

dx

∣∣∣∣axψ(x) + dψ(x)

dx

∣∣∣∣2 ≥ 0, (2.185)

where a is an arbitrary real constant. The square modulus inside the integral in Eq. (2.185)
is explicitly equal to

a2x2|ψ(x)|2 + ax

(
ψ(x)

dψ∗(x)

dx
+ ψ∗(x)

dψ(x)

dx

)
+ dψ(x)

dx

dψ∗(x)

dx
. (2.186)

Now the integration of the first term in Eq. (2.186) gives

a2

+∞∫
−∞

dxx2|ψ(x)|2 = a2 (�ψ x
)2 . (2.187a)

Integrating by parts the second term in Eq. (2.186) yields

a

+∞∫
−∞

dx

(
ψ(x)

dψ∗(x)

dx
+ ψ∗(x)

dψ(x)

dx

)
x = a

+∞∫
−∞

dx
d|ψ(x)|2

dx
x

= ax |ψ(x)|2
∣∣∣+∞−∞ − a

+∞∫
−∞

dx |ψ(x)|2

= −a

+∞∫
−∞

dx |ψ(x)|2 = −a, (2.187b)

where we have made use of the fact that

lim
x→±∞ x |ψ(x)|2 = 0, (2.187c)

due to the normalization ofψ(x).27 Finally, integrating by parts the last term in Eq. (2.186),
we have

26 This definition is not completely free of problems [Hilgevoord/Uffink 1983, Hilgevoord/Uffink 1988]. How-
ever, for our needs, it works.

27 The condition
∫+∞
−∞ dx |ψ(x)|2 = 1 implies that, for sufficiently well-behaved functions, |ψ(x)|2 tends to zero

for x →±∞ more rapidly than 1/x , from which the consequence (2.187c) follows.
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+∞∫
−∞

dx
dψ(x)

dx

dψ∗(x)

dx
= ψ∗(x)

dψ(x)

dx

∣∣∣∣+∞−∞ −
+∞∫
−∞

dxψ∗(x)
d2ψ(x)

dx2

= h̄−2

+∞∫
−∞

dxψ∗(x) p̂2
xψ(x)

= h̄−2 (�ψ px
)2 , (2.187d)

where we have taken advantage of the fact that

lim
x→±∞ψ

∗(x)
dψ(x)

dx
= 0, (2.187e)

because
〈
p̂x
〉
ψ
= 0, and

d

dx
= ı

h̄
p̂x . (2.187f)

Therefore, Eq. (2.185) may be rewritten as

a2 (�ψ x
)2 − a + h̄−2 (�ψ px

)2 ≥ 0. (2.188)

In order to satisfy this condition, the discriminant of the quadratic expression in the lhs of
Eq. (2.188) should be negative, i.e.

1 − 4h̄−2 (�ψ x
)2 (
�ψ px

)2 ≤ 0, (2.189)

or

�x�px ≥ h̄

2
, (2.190)

where we have dropped any reference to the state |ψ〉 because this relation holds for
any quantum state. Equation (2.190) represents the uncertainty relation for position and
momentum.28 Needless to say, similar expressions hold for the y and z components. More-
over, as we shall see (in Secs. 3.8, 6.5, 13.3, and Subsec. 13.4.2), analogous uncertainty
relations can be written also for other pairs of conjugate observables. The value h̄/2 repre-
sents then the maximum attainable certainty, i.e. the minimum uncertainty product allowed
by the uncertainty relations, a value that can be attained under special physical circum-
stances, a fact that has a particular relevance in the case of the harmonic oscillator (see
Sec. 4.4 and Prob. 4.20). The relation (2.190) states that when one tries to reduce the
uncertainty of one of the two conjugate observables, then necessarily the uncertainty of the
other increases. The argument we have used to derive Eq. (2.190) started from the assump-
tion that ψ(x) is a normalized wave function. As we have said, this excludes explicitly

28 This relation is also called the “Heisenberg inequality.” From a historical point of view, this relation has been
considered as a founding principle of quantum mechanics, known as the “uncertainty principle.” In some
textbooks this principle is introduced as such, whereas we have chosen to derive the uncertainty relation from
basic principles.
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�Figure 2.5 Probability distributions of (a) position and (b) momentum for a momentum eigenfunction.

the eigenfunctions of momentum and position. However, it is possible to have an infinitely
precise determination of one of the two observables, say the momentum (�ψ px = 0). In
this case, the wave function of the system would be given by Eq. (2.146), i.e.

ψ(x) = ϕp(x) = 1√
2π

e
ı
h̄ p′x x . (2.191)

The Fourier transform of Eq. (2.191) is

ψ̃(px ) = 1

2π

+∞∫
−∞

e
ı
h̄ xp′x e−

ı
h̄ xpx

= 1

2π

+∞∫
−∞

e−
ı
h̄ x(px−p′x ), (2.192)

so that the probability distribution of momentum is (see Prob. 2.22)

℘(px ) =
∣∣∣ψ̃(px )

∣∣∣2 = δ2(px − p′x ). (2.193)

The square modulus of the wave function (2.191) is |ψ(x)|2 = (2π )−1: the probability dis-
tribution of the position is uniform, which means that all position values are equiprobable,
i.e. �ψ x = ∞ (see Fig. 2.5).

Similarly, if one takes an eigenfunction of the position observable (with eigenvalue x0),
i.e. ψ(x) = δ(x − x0), one has (see Prob. 2.16)

ψ̃(px ) = ϕ̃x0 (px ) = 1√
2π

e−
ı
h̄ px xc0 , (2.194)

and all values of momentum are equally probable (see Fig. 2.6).
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�Figure 2.6 Probability distributions of (a) position and (b) momentum for a position eigenfunction.

2.3.2 General ized uncertainty relat ion

The result of Subsec. 2.3.1 is valid for any pair of canonically conjugate observables, and
can be generalized to two arbitrary observables (not necessarily conjugate) Ô and Ô ′.29 In
other words, as we shall see below, it is possible to write an uncertainty relation for any pair
of non-commuting observables. Given an arbitrary state vector |ψ〉 on which, without loss
of generality,30 Ô and Ô ′ have zero expectation values (i.e. 〈ψ | Ô|ψ〉 = 〈ψ | Ô ′|ψ〉 =
0), let us consider the vectors

|ϕ〉 = Ô|ψ〉 and
∣∣ϕ′〉 = Ô ′|ψ〉. (2.195)

The Cauchy–Schwarz inequality31 ensures that∣∣〈ϕ | ϕ′〉∣∣ ≤ (〈ϕ | ϕ〉) 1
2
(〈
ϕ′ | ϕ′〉) 1

2 . (2.196)

Substituting the definitions of |ϕ〉 and
∣∣ϕ′〉 into Eq. (2.196), we obtain

| 〈ψ | Ô Ô ′|ψ〉 | ≤
(
〈ψ | Ô2|ψ〉

) 1
2
(
〈ψ | Ô ′2|ψ〉

) 1
2

, (2.197a)

since operators Ô and Ô ′ are Hermitian. Interchanging the role of |ϕ〉 and
∣∣ϕ′〉 , we also

have

| 〈ψ | Ô ′ Ô|ψ〉 | ≤
(
〈ψ | Ô2|ψ〉

) 1
2
(
〈ψ | Ô ′2|ψ〉

) 1
2

. (2.197b)

29 The derivation of the following result is in [Robertson 1929]. Robertson follows Weyl’s derivation of uncer-
tainty relations [Weyl 1950, 77, 393–94] and therefore applies a general and abstract mathematical formalism.
Our own derivation, however, is based on state vectors rather than on wavefunctions and is slightly different.

30 If
〈
Ô
〉
ψ
= a 	= 0, then one may always redefine Ô as Ô ′′ = Ô − a, so that

〈
Ô ′′〉

ψ
= 0.

31 See [Byron/Fuller 1969–70, 148].
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It is well known that, for any complex numbers a and b and a real positive number c, we
have that |a| ≤ c and |b| ≤ c imply |a − b| ≤ 2c.32 Since the rhs of Eqs. (2.197) is real
and positive (see comments following Eq. (2.78)), we also have

| 〈ψ | Ô Ô ′|ψ〉 − 〈ψ | Ô ′ Ô|ψ〉 | ≤ 2
(
〈ψ | Ô2|ψ〉

) 1
2
(
〈ψ | Ô ′2|ψ〉

) 1
2

. (2.198)

From Eq. (2.198) it easily follows that

| 〈ψ |
[

Ô , Ô ′] |ψ〉 | ≤ 2�ψO ·�ψO ′, (2.199)

where by �ψO we mean, as usual, the standard deviation of the values of the observable
Ô in the state |ψ〉 . This finally gives

(
�ψO

) · (�ψO ′) ≥ 1

2

∣∣∣〈ψ ∣∣∣[Ô , Ô ′]∣∣∣ψ〉∣∣∣ . (2.200)

This result is particularly interesting because it shows that the uncertainty relation is a
direct consequence of the non-commutability between quantum observables. Moreover, it
is a general result which deals with any pair of arbitrary observables (not necessarily con-
jugate). We know that conjugate observables do not commute. In this case an uncertainty
relation of the type of Eq. (2.190) can be derived from Eq. (2.200). On the other hand, for
commuting observables there is no limit (at least in principle) on the precision of simul-
taneous measurements. However, there are observables which do not commute but neither
are conjugate. In this case, Eq. (2.200) generates an uncertainty relation which is “less
strict” than that for conjugate observables since the quantity in the rhs of Eq. (2.200) is the
absolute value of the mean of the commutator of the two observables.33 This expectation
value can therefore assume different values depending on the “degree of commutativ-
ity.” Such a situation is related to the concept of smooth complementarity which we have
already introduced in Subsec. 1.2.4 and which we will discuss in greater detail in the next
subsections.

As an example of application of the central result of Eq. (2.200), we may derive the
already known result (2.190). In this case we have [x̂ , p̂x ] = ı h̄ Î and 〈ψ | [x̂ , p̂x

] |ψ〉 = ı h̄
for any state |ψ〉 . Substituting this result in Eq. (2.200) immediately provides the desired
uncertainty relation (2.190).

2.3.3 Quantum state and quantum phase space

We have seen (in Sec. 1.3 and Subsec. 2.2.1) that the state vector |ψ〉 (or the correspond-
ing wave function ψ(x)) describes the state of a quantum-mechanical system. We want to

32 The triangular inequality ensures indeed that |a ± b| ≤ |a| + |b| ≤ 2c.
33 It is worth emphasizing that, even for two non-commuting observables, the rhs of Eq. (2.200) may be zero

when the commutator between these two observables is not a number but an operator whose mean value on
the state under consideration is zero.
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�Figure 2.7 (a) Time evolution of a classical degree of freedom in phase space: at any time t, the state of
the system is described by a point. (b) Graphical representation of a state in the
quantum-mechanical phase space. According to the uncertainty relation, a single degree of
freedom should be represented by an elliptical spot whose minimal area π(�x/2) · (�px/2) is
h/16.

stress here that the vector |ψ〉 (as well as the wave function in any possible representation)
contains the whole information that we may in principle acquire about the system, i.e. it
represents a complete description of the state of the system. As we know, however, the
knowledge of |ψ〉 does not allow us to predict with certainty the result of the measure-
ment of any observable. The best we can do is to calculate the probability distribution
of the outcomes of a given measurement or experiment (see Pr. 2.2: p. 57). While classi-
cal mechanics is ruled by the principle of perfect determination and therefore a classical
state is characterized by the collection of all its physical properties (see Subsec. 1.1), the
quantum-mechanical state is intrinsically probabilistic (see Sec. 1.4) and affected by uncer-
tainty, i.e. not all observables can be completely determined at the same time. This finds
expression in the fact that quantum observables can be cast into separate complete sets
(see Subsec. 2.1.5 and 2.2.7). In other terms, there are probabilistic features in quantum
mechanics that are not expression of subjective ignorance, but rather of the intrinsic nature
of microscopic systems.

The concept of quantum state has profound implications in the phase-space representa-
tion of a system. A classical-state representation in phase space is necessarily pointlike. In
fact, due to the principle of perfect determination, momentum and position may both have
a perfectly determined value, and, as a consequence, the state of a classical system can be
represented by a point in the phase space. If one considers the time evolution of the system,
then this point will trace a well-defined trajectory in the phase space in the form of a curve
(see Fig. 2.7(a)).

On the contrary, due to the uncertainty relation (which is a consequence of the
non-commutability between observables that are at least conjugate), a phase-space repre-
sentation for a quantum system at a given instant cannot be pointlike: Such a representation
must reflect the fact that the uncertainties in position and momentum are both finite and that
their product cannot be smaller than h̄/2. Therefore, we may depict this circumstance by an



89 2.3 Uncertainty relat ion
�

x x
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(a) (b)

�Figure 2.8 Inverse proportionality between momentum and position uncertainties. When the position is
accurately determined, the momentum becomes highly uncertain (a), and vice versa (b), since
the product �x�px has to remain equal to or larger than h̄/2.

elliptical spot in the phase space whose horizontal and vertical dimensions are equal to the
position and momentum uncertainties, respectively, and whose minimal area is h/16 (see
Fig. 2.7(b)). Moreover, any improvement in the determination of momentum will be paid
in terms of a proportional increase in uncertainty for position and vice versa (see Fig. 2.8).

This has important methodological and philosophical consequences. In fact, since we
cannot have simultaneously perfect determination of two conjugate observables, if we wish
to know with great accuracy one of the two, then we are obliged to choose between posi-
tion and momentum. In any case, it is clear that quantum mechanics forces us to consider
knowledge as a matter of choice rather than of a mirror image of a datum.34 This also has
a relevance for the measurement problem (see Ch. 9). In this sense the uncertainty relation
is not only the quantum-mechanical counterpart of the principle of perfect determination
but also of the principle of perfect knowledge (see Sec. 1.1).

Another consequence of this situation is that trajectories do not exist in quantum
mechanics (see also Subsec. 1.2.3). This is true both in the phase space (for what we have
said above) and in the configuration space. In fact, if one could define a trajectory, say, of a
one-dimensional particle, i.e. a curve x(t), then it would also be possible to determine the
velocity and therefore the momentum of the particle, violating the uncertainty relations. At
first sight, this might apparently contradict what is observed in experiments with Wilson
chambers (and similar particle detectors) where particle’s tracks are recorded as a series of
bubbles.35 However, this is not the case, since what is observed in these devices is not a
true trajectory: the size of the bubbles and the momentum uncertainty taken simultaneously
do not violate the uncertainty relation (Eq. (2.190)).

2.3.4 Superposit ion, uncertainty, and complementarity

What is the relationship between the uncertainty relation and the basic principles of
quantum mechanics? As we have seen, the uncertainty relation is a consequence of the

34 On this point see [Weyl 1950, 76].
35 See [Segrè 1964, Ch. 2].
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�Figure 2.9 Smooth complementarity between wave and particle shown by an interferometry experiment.

quantization principle (p. 44). Notice that the superposition principle is a positive state-
ment – it enriches the space of states of a physical system – whereas the uncertainty relation
is rather limiting: it imposes constraints on the maximal amount of knowledge that one can
in principle extract from a system, and therefore on its measurability. For this reason, the
relationship between measurement and uncertainty relation should not be understood in
the sense that these constraints on the knowledge are caused by some form of perturba-
tion. On the contrary, it is the uncertainty relation itself that poses constraints on what a
measurement can perform, independently from the type of measurement one performs and
therefore also from the perturbation it causes.36

The complementarity principle (Subsec. 1.2.4) deserves a deeper discussion. As a matter
of fact, not only the uncertainty principle but also the complementarity principle concerns
the interpretation of the quantum-mechanical entities, i.e. the ontological nature of the
entities the theory refers to, and provides a bridge between dynamics and measurements,
as we shall see in Ch. 9. The concepts of particle and wave are of classical origin and
represent the two extreme cases of a spectrum of behaviors of quantum systems. In classical
mechanics, the sharp distinction between these two concepts is justified by the fact that
matter and waves are considered and treated in completely different ways. On the contrary,
according to quantum mechanics, matter and waves are two sides of the same coin. To
address this point in finer detail, let us discuss again the ideal experiment of Subsec. 1.2.2.
Let us write the initial state as | i〉 , which represents a photon impinging on BS1 from
the left (see Fig. 2.9). We assume that BS1 has real transmission (T) and reflection (R)
coefficients that may be changed, still satisfying the relation R2 + T2 = 1. After BS1 the
state will be

| i〉 �→ T |1〉 + ıR|2〉, (2.201)

36 This statement will show all its richness and importance in the light of the discussions about the interaction-free
measurement (see Subsec. 1.2.4 and Sec. 9.6) and the quantum non-demolition measurement (see Sec. 9.11).
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where the imaginary factor ı in front of the second term is due to reflection. After the
mirrors M1 and M2 the state becomes

ıT |1〉 − R |2〉 . (2.202)

After the phase shifter PS the second term acquires a phase factor eıφ :

ıT |1〉 − Reıφ |2〉 . (2.203)

When the system passes the symmetric beam splitter BS2, we have the transformations

|1〉 �→ 1√
2
(ı |3〉 + |4〉 ) and |2〉 �→ 1√

2
(|3〉 + ı |4〉 ), (2.204)

so that the final state | f 〉 may be described by the superposition

| f 〉 = − 1√
2

(
T + Reıφ) |3〉 + ı√

2

(
T − Reıφ) |4〉 . (2.205)

The final probabilities to detect the photon at detectors D3 and D4 are given by the square
moduli of the amplitudes of the states |3〉 and |4〉, respectively:

℘3 = 1

2
+ TR cosφ, ℘4 = 1

2
− TR cosφ. (2.206)

As it should be, we have that ℘3 + ℘4 = 1. We now see that if the transmission coefficient
is T = 0, 1 (and correspondingly R = 1, 0), then we have a perfectly determined path (if
T = 0 the photon will always take the path 2, whereas if T = 1 the photon will always
take the path 1) and the interference term in ℘3 and ℘4 vanishes: in this case we have
℘3 = ℘4 = 1/2. On the contrary, if R2 = T2 = 1/2, then we have maximal interference
and also maximal indetermination of the path, since in this case the photon has equal
probability to take path 1 and path 2. However, when 1/2 < T2 < 1 or 0 < T2 < 1/2, we
have a range of possibilities where partial path information and partial interference are
simultaneously present.

This state of affairs can be quantitatively formulated as a relationship between the vis-
ibility V of interference and the predictability P of the path.37 In fact if one repeats the
same experiment a large number of times and for different values of φ, one will obtain pic-
tures similar to Fig. 1.6, where the profile may be viewed as the light intensity I detected
at detectors D3 and D4. Such intensities will then be proportional to the probabilities of
detecting the photons at D3 and D4, respectively. The interference visibility V may then be
defined by

V = Imax − Imin

Imax + Imin
= 2TR. (2.207)

Similarly, the path predictability P may be seen as the probability of correctly predicting
the path taken by the photon. It is clear that P will be equal to zero for a symmetric beam

37 This analysis was performed by Greenberger and Yasin [Greenberger/Yasin 1988] on the basis of a paper by
Wootters and Zurek [Wootters/Zurek 1979]. A first experimental evidence of smooth complementarity can be
found in [Badurek et al. 1983]. See also [Mittelstaedt et al. 1987] [Englert 1996].
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splitter BS1 while it will be equal to one for T = 0, 1. If we limit ourselves to the range
1/2 < T < 1, then we may define P as

P = T2 − R2

T2 + R2
= T2 − R2. (2.208)

It is easy to see that we have

V2 + P2 = 1, (2.209)

which is known as Greenberger–Yasin equality. This means that, besides the two lim-
iting cases P = 1,V = 0 (i.e. particle-like behavior), and P = 0,V = 1 (i.e. wave-like
behavior), all possible intermediate values are also allowed. If we take the Poincaré-sphere
representation of (two-level) quantum states, the two possible paths (1 and 2, given by
T = 1 and T = 0, respectively), can be represented as north and south poles of the sphere
(see Fig. 1.11: p. 28), respectively, whereas the equator represents all states of maximal
interference and therefore of highest visibility, which are distinguished from one another
by the phase difference φ. Given a certain angle φ, all points but the extremes (i.e. for
all 1/2 < T2 < 1) of the arc joining the north pole (where θ = 0) with the point on
the equator (where θ = π/2) characterized by φ represent states which are intermediate
between a wave-like and a corpuscular behavior. All points but the extremes (i.e. for all
0 < T2 < 1/2) on the arc joining the same point on the equator and the south pole (where
θ = π ), again represent intermediate states between a wave-like and a corpuscular behavior
with the same phase φ. Summing up, for θ = 0 we have P = 1 and V = 0, for θ = π/2, we
have P = 0 and V = 1, and finally for θ = π we have P = −1 and V = 0. This suggests
that we may take

P = cos θ , V = sin θ . (2.210)

The result (2.209) is the essence of what we have called smooth wave–particle complemen-
tarity (see also the conclusions of Subsec. 2.3.2). In other words, the complementarity prin-
ciple states that quantum–mechanical entities display any possible intermediate behavior
between these two extreme forms (particle-like and wave-like).

It is worth emphasizing that one might be tempted to consider the complementarity
principle as a consequence of the uncertainty relation. As a matter of fact, a lively debate on
this issue developed during the 1990s within the scientific community (see Subsec. 9.5.2.)
The output of such a debate would seem to establish the foundational character of the
complementarity principle.

2.4 Quantum algebra and quantum logic

The quantum-mechanical formalism we have introduced so far poses serious questions
concerning the algebraic structure of the theory. In classical mechanics we can build propo-
sitions about the world that are true or false. These propositions are statements about the
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�Figure 2.10 Illustration of the distributive law a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). The three sets a, b, and c
represent propositions.

properties of the physical system under consideration, that is, about the values of observ-
ables (see Sec. 1.1). It is possible to perform several operations on these propositions, that
is, we can establish different relations among them. For instance, we can add these propo-
sitions, and this corresponds to the logical addition, that is to the inclusive disjunction OR,
or we can multiply propositions, which corresponds to the conjuction AND. Once defined
such operations, they constitute, together with the atomic propositions, a propositional
algebra.38

This algebra is called a Boolean algebra, and it is an algebra for which distributivity
yields, which is, as we shall see, strictly related with commutativity. Distributivity consists
in the relationships39

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), (2.211a)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c), (2.211b)

which are valid for any elements a, b, c of the algebra and where ∧ and ∨ are the symbols
for conjunction (AND) and inclusive disjunction (OR), respectively. The conjunction of
two propositions is defined as true if and only if both propositions are true, while the
inclusive disjunction is defined as true if and only if at least one of the two propositions is
true. An example of Eq. (2.211a) is given by Fig. 2.10. The elements of a Boolean alegbra,
i.e. propositions, have a formal analogy with projectors, as far as they are idem potent.

That quantum mechanics violates distributivity can be seen by the following example.
Consider the usual Mach–Zender setup shown in Fig. 2.9. Suppose that the state of the
photon is in a superposition of path |1〉 and path |2〉 before BS2. Then, the proposition a,
“The photon is in a superposition state of |1〉 and |2〉 ,” may be represented by the dis-
junction of two propositions, say a′ (“The photon takes path 1”) and a′′ (“The photon
takes the path 2”). Now, the proposition a can be true even if the system is neither in path
1 nor in path 2. Furthermore, suppose that the relative phase φ is tuned in such a way

38 On the abstract concept of algebra see also Subsecs. 8.4.3 and 8.4.4.
39 See [Bocheński 1970], especially part II, about Boolean algebras.
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�Figure 2.11 Experimental arrangement in order to show that one can generate the two Boolean sub-algebras
{1, 0, DA, DB} and {1, 0, D

′
A, D

′
B} by considering the two mutual exclusive arrangements given by

DA and DB and by D
′
A and D

′
B, respectively. {1, 0, DA, D

′
A, DB, D

′
B} is instead a non-Boolean algebra.

that |4〉 is a dark output of the interferometer – detector D4 never clicks. In this case the
proposition b

b = a ∧ c = (a′ ∨ a′′
) ∧ c (2.212)

amounts to the assertion that c = “The detector D3 clicks” is true. In fact, there are only
three possibilities: the photon takes path 1, the photon takes path 2, or the photon takes
both paths 1 and 2. In each of these three cases, the proposition a = a′ ∨ a′′ is true. On the
other hand, the proposition d ,

d = (a′ ∧ c
) ∨ (a′′ ∧ c

)
, (2.213)

means something different, namely that we have two possibilities, that the photon passes
through path 1 and detector D3 clicks or that the photon passes through path 2 and detector
D3 clicks. These propositions are in general both false, so that d is also false: if the photon
had already a determined path before BS2, it would be split at BS2 and would have a non-
zero probability to be detected by D4 – so that D4 could not be considered a dark output.
This means that in quantum mechanics we are forced to write(

a′ ∨ a′′
) ∧ c 	= (a′ ∧ c

) ∨ (a′′ ∧ c
)
, (2.214)

and to reject classical distributivity. Now, there is a close relationship between commutabil-
ity and distributivity.40

In other words, a quantum algebra is not Boolean in itself but can be decomposed in
Boolean subalgebras, and any subalgebra is the counterpart – on an algebraic level – of
a complete set of observables (see p. 67). Let us analyze this point in greater detail by
means of an example.41 Take the arrangement shown in Fig. 2.11, which represents a
Mach–Zender interferometer (see Subsec. 1.2.2), where only one photon at the time is

40 See [Beltrametti/Cassinelli 1981, 126–27].
41 See [Quadt 1989, 1030].



95 2.4 Quantum algebra and quantum logic
�

. .

1

0

. .DA DB

DA DA DB´ DB

DA´ DB´

1

0

. .

1

0
(a) (b)

(c) (d)

�Figure 2.12 Hasse diagrams of several Boolean and non-Boolean algebras. A Boolean algebra is a collection
of sets that includes the sets 1, 0, the complement of any set, the intersections of all pairs of sets
and the sums of all pairs of sets. (a) Hasse diagram of the Boolean subalgebra {1, 0, DA, DB}.
(b) Hasse diagram of the Boolean subalgebra {1, 0, D

′
A, D

′
B}. (c) Non-Boolean algebra

{1, 0, DA, DB}, D
′
A, D

′
B}. It is easy to see that the subalgebras {1, 0, DA, DB} and {1, 0, D

′
A, D

′
B} are

Boolean but the algebra {1, 0, DA, DB}, D
′
A, D

′
B} is not. In (d) the Hasse diagram of a Boolean

algebra with four elements is shown.

sent through the apparatus. We have two possible alternative (mutually exclusive) settings:
either we choose to measure the path of the photon by placing the detectors at positions
DA and DB or we choose to detect the interference by placing the detectors at positions
D
′
A and D

′
B (after the second beam splitter). It is clear that in both settings one and only

one of the two detectors will click in absence of losses – which we do not consider here.
Then the two settings are incompatible and generate two Boolean subalgebras given by
the elements {1, 0, DA, DB} and {1, 0, D

′
A, D

′
B}, respectively, where 1, 0 are the identity (the

sum or disjunction of all elements) and the null element (the intersection or conjunction
of all elements) of the set, respectively. The element Dj ( j = A, B) corresponds to the
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proposition “Detector Dj has clicked.” However, the total algebra is not Boolean.42 The
two subalgebras and the total algebra may be graphically depicted as Hasse diagrams (see
Fig. 2.12). A Hasse diagram is a graphical representation of a partially ordered set (or
POSet), which is ordered by a relation ≤, with an implied upward orientation. A point
is drawn for each element of the set and line segments are drawn between these points
according to the following two rules:

• If a < b in the Poset then the point corresponding to a appears lower in the drawing then
the point corresponding to b.

• The line segment between the points corresponding to any two elements a and b of the
poset is included in the drawing if and only if a covers b or b covers a.

Summary

In this chapter we have developed the basic formalism of quantum observables and
different representations of quantum states. We may summarize the main results as follows:

• Quantum-mechanical observables can have a continuous spectrum, a discrete one or
a combination of both, and therefore cannot be represented by variables, as in classical
mechanics, but must be represented by operators, as stated by the quantization principle.

• These operators must be Hermitian, since possible measurement results are represented
by the eigenvalues of the operator and a physical quantity must always take on real
values.

• Quantum mechanical observables do not necessarily commute. In this case they do not
share a common eigenbasis, with the consequence that it is possible to introduce dif-
ferent representations (e.g. position and momentum representations) associated to the
relative observable.

• Due to non-commutability there are intrinsic limitations on the maximal amount of infor-
mation one can extract from a system. This is the content of the uncertainty relation and
has the consequence of limiting the quantum mechanical states which are allowed.

• We have examined the relationships between superposition, uncertainty, and com-
plementarity. While the superposition and complementarity principles increase the
spectrum of the possible states relative to classical mechanics and are fundamental
principles of quantum mechanics, uncertainty relations pose constraints on the possible
measurements and are consequence of the quantization principle.

• The elements (states) of the quantum phase space cannot be pointlike as the classical
one is, but must be rather represented by spots whose minimal area is given by the
uncertainty relation between position and momentum.

• Another consequence of non-commutability is that one can partition the set of observ-
ables of a physical system into subsets of commuting observables. These subsets
represent Boolean sub-algebras, while distributivity is not valid on the whole quantum
algebra.

42 See also the discussion of quantum probability in Sec. 1.4.
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Problems

2.1 Given an arbitrary state vector |ψ〉 , it is always possible to construct a Hermi-
tian operator Ô which has |ψ〉 among its eigenvectors (see p. 49). Show that
Ô = |ψ〉 〈ψ | is not the only Hermitian operator whose eigenvectors contain |ψ〉 .

2.2 Prove that Eq. (2.32) reduces to an identity when replacing the coefficients by the
explicit forms given by Eqs. (2.25) and (2.27).

2.3 Prove that the matrix Û of Eq. (2.33) is unitary.
2.4 Show that any linear operator Ô can be decomposed as Ô = Ô

′ + ı Ô
′′
, where Ô

′

and Ô
′′

are Hermitian operators.
2.5 Show that the necessary and sufficient conditions for an operator to be unitary is that

it is normal and satisfies condition (2.35).
2.6 Consider a generic two-dimensional matrix

Ô =
[

a b

c d

]
.

Prove that in order for it to be unitary and Hermitian, it has to be of the form

Ô =
[

a b

b∗ −a

]
,

where a is real.
2.7 Calculate the expectation value in Box 2.4 by making use of the properties of ÔP

and of the scalar product without employing the explicit matricial form.
2.8 Eq. (2.1) has been introduced in a heuristic way, as a generalization of an intuitive

result. Prove it in a rigorous way.
2.9 Take the 2 × 2 matrix

Ô =
[

0 −ı

ı 0

]
.

(a) Find its eigenvalues and eigenvectors.
(b) Derive the diagonalizing matrix of Ô and its diagonal form.

2.10 Consider a system of three polarization filters as in Subsec. 2.1.5 (see Fig. 2.3) with
φ = π/6 and θ = π/3. If N is the number of photons passing filter P1, how many
photons will pass on average through the entire apparatus?

2.11 Verify Eq. (2.96).
2.12 Prove Eq. (2.98).

(Hint: Take the Taylor expansion of f (Ô) in powers of Ô .)
2.13 Prove Eq. (2.99).

2.14 Prove that, given three observables Ô , Ô ′, and Ô ′′, for which
[

Ô , Ô ′
]
= 0 and[

Ô , Ô ′′
]
= 0, then it is not necessarily true that

[
Ô ′, Ô ′′

]
= 0.

(Hint: Take Ô as the identity operator Î .)
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2.15 Derive the momentum eigenfunctions in the momentum representation.
(Hint: There are two independent ways to derive this result. Either one closely fol-
lows the derivation of the position eigenfunction in the position representation (see
Subsec. 2.2.1), or one applies Eq. (2.150b) with ψ(x) = ϕp(x) (see Eq. (2.146)). It is
instructive to verify that these two methods lead to the same result.)

2.16 Derive the position eigenfunctions in the momentum representation.
(Hint: See Prob. 2.15.)

2.17 Prove that, if ψ(x) is normalized, i.e. if
∫ +∞
−∞ dx |ψ(x)|2 = 1, then also∫ +∞

−∞ dx |ψ̃(px )|2 = 1.
2.18 Prove Eq. (2.153).

(Hint: Calculate the expectation value of the position operator in the momentum
representation and take advantage of the Fourier transform.)

2.19 Prove that

P̂(x) | px 〉 = 1√
2π

e
ı
h̄ px x | x〉, (2.215)

where P̂(x) projects onto the position eigenvector | x〉 .
2.20 Prove the result (2.173a) in the momentum representation.
2.21 Derive Eqs. (2.173b) and (2.173c).
2.22 Prove that

∫ +∞
−∞ dxδ2(x) = +∞.

2.23 Prove that [x̂ , p̂2
x ] = 2ı h̄ p̂x .

2.24 Consider a one-dimensional free particle in an eigenstate of the momentum operator
with eigenvalue p0. Derive the uncertainty relation between its energy and its position
following Eq. (2.200).
(Hint: Take advantage of the result of Prob. 2.23.)

2.25 Generalize the result of Prob. 2.23 to [x̂ , p̂n
x ] = nı h̄ p̂n−1

x .
2.26 Prove that to [ p̂x , f (x̂)] = −ı h̄ f ′(x̂).
2.27 Derive the commutation relation [x̂ , f ( p̂x )] = ı h̄ f ′( p̂x ), where f ( p̂x ) is an arbi-

trary function of the momentum operator and f ′( p̂x ) is its first derivative made with
respect to p̂x .
(Hint: Write the Taylor expansion of f ( p̂x ) and use the result of Prob. 2.25.)

2.28 Calculate the probabilities ℘3 and ℘4 of Subsec. 2.3.4 for a symmetric beam splitter
and verify that they are equal to the corresponding probabilities of Subsec. 1.2.3.

2.29 Verify Eq. (1.55) by explicitly calculating the involved amplitudes and probabilities.
(Hint: See the formalism used in Subsec. 2.3.4.)

2.30 Compute the state (2.205) in the case R = 0, T = 1 and denote it by | f0〉 . Repeat
the same procedure with R = 1, T = 0, and denote the resulting state by | f1〉 .
Show that, for R = T = 1/

√
2 the resulting state

∣∣ f1/2
〉

may be expressed as a lin-
ear superposition of | f0〉 and | f1〉 . Make a comparison with the Poincaré sphere
formalism.

2.31 Starting from the example of Sec. 2.4, in which it is shown that we may have(
a′ ∨ a′′

) ∧ c true but
(
a′ ∧ c

) ∨ (a′′ ∧ c
)

false, show that we may have ¬(a′ ∧ a′′)
true even if neither a′ nor a′′ is false.
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3 Quantum dynamics

In the first two chapters we have examined the basic principles – superposition (p. 18),
complementarity (p. 19), quantization (p. 44), statistical algorithm (p. 57), and correspon-
dence (p. 72) (see also Subsec. 2.3.4) – and the basic entities, observables and states, of
quantum mechanics, as well as the main differences with respect to classical mechan-
ics. While what we have discussed so far is rather a static picture of observables and
states, in this chapter we shall deal with quantum dynamics, i.e. with the time evolution of
quantum-mechanical systems.

Historically, after Bohr had provided a quantized description of the atom (see Sub-
sec. 1.5.4), Einstein showed the quantized nature of photons (see Subsec. 1.2.1), and de
Broglie hypothized the wave-like nature of matter (see Subsec. 1.5.5), the first building
block of quantum mechanics was provided by the commutation relations, proposed by
Heisenberg in 1925,1 whose consequence is represented by the uncertainty relation (see
Subsec. 2.2.7 and Sec. 2.3). This was the subject of the previous chapters. The dynamical
part of the theory was proposed by Schrödinger in 1926,2 and is known as the Schrödinger
equation. It is also known as wave mechanics (see Subsec. 1.5.7). In this chapter we shall
show that Heisenberg’s and Schrödinger’s formulations are only two different aspects of
the same theory. We shall also come back to this point in Sec. 8.1.1. Here, first we shall
derive the fundamental equation which rules quantum dynamics (Sec. 3.1), and, in Sec. 3.2,
we shall summarize the main properties of the Schrödinger equation. Moreover, in Sec. 3.3,
we shall show that the Schrödinger equation is invariant under Galilei transformations. In
Sec. 3.4 we shall discuss a first example of the Schrödinger equation (a one-dimensional
particle in a box). Then in Sec. 3.5, we shall introduce the unitary transformations in a gen-
eral form, and in Sec. 3.6 the Heisenberg and the Dirac pictures, which are representations
of the quantum evolution equivalent to the Schrödinger picture. In Sec. 3.7 the fundamen-
tal Ehrenfest theorem will be presented, while in Sec. 3.8 we shall derive the uncertainty
relation between energy and time. Finally, in Sec. 3.9 we shall discuss the difficult prob-
lem of finding a self-adjoint operatorial representation of time and present some possible
solutions.

1 See [Heisenberg 1925].
2 See [Schrödinger 1926].
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3.1 The Schrödinger equation

In this section we derive the Schrödinger equation (Subsec 3.1.1). Then, we briefly return
to the difference between classical and quantum mechanics concerning determinism
(Subsec. 3.1.2). In Subsec. 3.1.3 we shall learn how to represent the time evolution of
an arbitrary initial state in the basis of energy eigenvectors (the stationary states). Finally,
in Subsec. 3.1.4 we shall briefly discuss the problem of degenerate eigenvalues.

3.1.1 Derivat ion of the Schrödinger equation

We have already seen (in Subsec. 2.3.3) that the state vector (or the wave function) con-
tains complete information about the state of a quantum system at a given time. We now
need to determine how the system (and therefore its state) evolves with time. In classical
mechanics, the knowledge of position and momentum of a particle (i.e. the knowledge of
its state) allows, together with the knowledge of the forces which act on the particle, the
univocal determination of position and momentum of the particle at any future (and past)
time through Newton’s second law (see Sec. 1.1).

In order to build the equation which gives the time evolution of a quantum state, it is
useful to take into account the requirements imposed by the mathematical formalism and
the conceptual aspects developed in the previous chapters. Let us assume that the equation
is deterministic. First, the evolution equation must only contain the first time derivative of
the state vector (see Eq. (1.1)). If it were not so, then the knowledge of the state at the
initial time t0 would not be sufficient for determining its evolution at future times, since
the solution of a n-th order differential equation requires the knowledge of the first n − 1
derivatives at time t0. This would contradict the assumption that the state vector contains
complete information about the state of a quantum system. On the most general grounds,
we can therefore write the evolution equation as

∂

∂t
|ψ〉 = Ô |ψ〉, (3.1)

where Ô must be a linear operator to be determined.3 This requirement directly fol-
lows from the superposition principle (see p. 18) and the consequent linearity of quantum
mechanics. In other words, the evolution equation has to be linear and homogeneous.

Moreover, the operator Ô in Eq. (3.1) must evidently represent the generator of
time translations or, equivalently, the quantity which is conserved under time translations.
We know from classical mechanics that such a quantity is represented by the energy, or
the Hamiltonian function of the system. Therefore, following the correspondence principle
(see Subsec. 2.2.4) we take the operator Ô to be a function of the Hamiltonian operator Ĥ
only and rewrite Eq. (3.1) as

3 For the time being we limit ourselves to the case in which the operators Ô does not explicitly depend on time.
We shall consider time dependency in Secs. 10.3 and 14.2.
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∂

∂t
|ψ〉 = f

(
Ĥ
)
|ψ〉. (3.2)

Moreover, in the case of a composite system made of two subsystems with Hamiltonians
Ĥ1 and Ĥ2, respectively, the generator of time translations must satisfy

f
(

Ĥ
)
= f

(
Ĥ1

)
+ f

(
Ĥ2

)
, (3.3)

in order to respect the linearity requirement. Since we must have Ĥ = Ĥ1 + Ĥ2, the only
possibility is that

Ô = f
(

Ĥ
)
= aĤ , (3.4)

where a is a (complex) constant to be determined. In order to determine a, we take advan-
tage of the fact that 〈ψ | ψ〉 = 1 for any state |ψ〉 and therefore also at any time (see p. 26).
As a consequence, the norm of the state must be conserved and

∂

∂t
〈ψ | ψ〉 = ∂ 〈ψ |

∂t
|ψ〉 + 〈ψ | ∂ |ψ〉

∂t
= 0. (3.5)

Substituting Eq. (3.2) and its Hermitian conjugate

∂

∂t
〈ψ | = 〈ψ | a∗ Ĥ , (3.6)

into Eq. (3.5) and using Eq. (3.4), we obtain

〈ψ |
(

a∗ Ĥ + aĤ
)
|ψ〉 = 0, (3.7)

since Ĥ = Ĥ †, the Hamiltonian being a Hermitian operator. In order for Eq. (3.7) to be
valid for any state |ψ〉 , we must have a∗ = −a, or, in other words, a must be a pure imag-
inary number. Such a quantity (see Eq. (3.2)) has the dimension of the inverse action and,
therefore, its inverse, for convenience and in agreement with the correspondence principle,
can be expressed as 1/a = ı h̄. The quantum-mechanical evolution equation then takes the
final form

ı h̄
∂

∂t
|ψ〉 = Ĥ |ψ〉, (3.8)

which is known as the Schrödinger equation.4

If the equations of motion of the system explicitly depend on time, then the Hamiltonian
operator Ĥ in Eq. (3.8) will also depend on time. In general, as we have seen in Sub-
sec. 2.2.6, the Hamiltonian Ĥ will be given by the sum of the kinetic and potential energy
operators, Ĥ = T̂ + V̂ .

For a one-dimensional particle and in the position representation, one may rewrite
Eq. (3.8) as a partial differential equation for the wave function (see Subsec. 2.2.1,
Eq. (2.165), and Prob. 3.1)

4 See [Schrödinger 1926]. For a historical reconstruction of Schrödinger’s great contribution see
[Mehra/Rechenberg 1982–2001, V, 404–576].
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ı h̄
∂ψ(x , t)

∂t
=
[

p̂2
x

2m
+ V (x , t)

]
ψ(x , t), (3.9)

where V (x , t) is the (in general time-dependent) potential energy. Using the definition
p̂x = −ı h̄(∂/∂x) of the momentum operator in the position representation (see Sub-
sec. 2.2.4), we obtain

ı h̄
∂ψ(x , t)

∂t
=
[
− h̄2

2m

∂2

∂x2
+ V (x , t)

]
ψ(x , t). (3.10)

In particular, the Schrödinger equation for a free particle (when V (x , t) = 0) in the position
representation can be written as5

∂ψ(x , t)

∂t
= ı h̄

2m

∂2ψ(x , t)

∂x2
. (3.11)

For an initial wave function represented by a plane wave ψ(t0) ∝ eıkx , which is also an
energy eigenfunction (see Subsec. 2.2.6), the time-dependent wave function may then be
written as

ψ(t) ∝ eı(kx−ωk t), (3.12)

where

ωk = E

h̄
= h̄

k2

2m
. (3.13)

It is also useful to write the Schrödinger equation in the position representation for the
three-dimensional case

ı h̄
∂ψ(r, t)

∂t
=
[
− h̄2

2m
�+ V (r, t)

]
ψ(r, t), (3.14)

where

� = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(3.15)

is the Laplacian in Cartesian coordinates.

3.1.2 Determinism and probabi l ism

From Eq. (3.8) it is clear that, consistently with our assumptions, given a certain Hamil-
tonian operator, any initial state vector |ψ(t0)〉 will evolve in a deterministic way. This
means that the knowledge of the state vector at an initial time t0 and of the Hamiltonian
allows the univocal determination of the state at any future (and past) times. However, this
is deeply different from what happens in classical mechanics (see Sec. 1.1, and in particu-
lar Eq. (1.1)). There, the deterministic evolution concerns all the properties of the system,

5 Note that Eq. (3.11) is formally identical to a classical diffusion equation.
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i.e. at any time t the value of every observable (and therefore the state itself) is perfectly
determined.

In quantum mechanics, on the contrary, the state has an intrinsically probabilistic nature
(see Subsec. 2.3.3). This does not mean, however, that it is ontologically defective: it is
exactly as determined as it should be, given the superposition principle and uncertainty
relations (see Sec. 2.3). On the other hand, as we have said, the wave function (or the
corresponding state vector) expresses it completely, so that any attempt at improving the
knowledge of the state beyond the quantum formalism has failed (see Sec. 16.3).

The Schrödinger equation concerns the deterministic evolution of a probability ampli-
tude and this circumstance affects the probability distributions of observables, too. In fact,
after a certain time evolution there will still be a certain probability for an observable to
assume a given value (see Pr. 2.2: p. 57). In conclusion, even though the fundamental evolu-
tion equation is deterministic, the structure of the theory remains intrinsically probabilistic
(see also Sec. 1.4).

3.1.3 Stat ionary states

In the case where the potential does not explictly depend on time,6 the formal solution of
the Schrödinger equation is easily obtained by integration of Eq. (3.8), and is given by

|ψ(t)〉 = e−
ı
h̄ Ĥ t |ψ(0)〉, (3.16)

where |ψ(0)〉 is the state vector at time t0 = 0. In general, however, it is not trivial to deter-

mine the action of the (unitary) operator e−
ı
h̄ Ĥ t onto the state vector |ψ(0)〉 . It appears now

clear that the eigenvectors and eigenvalues of Ĥ play a central role in the determination of
the time evolution of a quantum system. In fact, let us assume that the initial state vector
of the system be an eigenstate of the Hamiltonian operator, i.e.

Ĥ |ψ(0)〉 = E |ψ(0)〉, (3.17)

where E is the corresponding eigenvalue of Ĥ (see Eq. (2.166)). Then, the action of the

operator e−
ı
h̄ Ĥ t onto the state vector |ψ(0)〉 becomes trivial (a multiplication by the phase

factor e−
ı
h̄ Et ) and the state vector at time t can be simply written as

|ψ(t)〉 = e−
ı
h̄ Et |ψ(0)〉 . (3.18)

As a consequence, an energy eigenstate does not evolve with time since a phase factor is
irrelevant for the determination of a state (see end of Subsec. 2.1.3).

In the general case, when the initial state |ψ(0)〉 is not an energy eigenstate, things get a
bit harder. There is, however, a general procedure which may be employed in order to find

6 In general, the solution of the Schrödinger equation with a time-dependent Hamiltonian is a complex problem.
In certain cases the problem can be addressed by making use of some approximation methods, for instance
assuming that the potential changes very slowly in time (see Sec. 10.3).
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the time-evolved state vector |ψ(t)〉 . First, one has to solve the eigenvalue equation for the
Hamiltonian (see Subsec. 2.2.6). For a discrete spectrum, one has

Ĥ |ψn〉 = En |ψn〉, (3.19)

where the eigenvectors |ψn〉 are called the stationary states and the En are the correspond-
ing eigenvalues, namely the energy levels of the system. Second, one has to expand the
initial state vector |ψ(0)〉 onto the basis {|ψn〉 }, i.e. to determine the complex coefficients
c(0)

n such that (see Subsec. 2.1.2)

|ψ(0)〉 =
∑

n

c(0)
n |ψn〉. (3.20)

Finally, one is able to explicitly evaluate the rhs of Eq. (3.16) as

|ψ(t)〉 =
∑

n

e−
ı
h̄ Ent c(0)

n |ψn〉 , (3.21)

which represents the time evolution of any initial state given its expansion in the basis of
energy eigenvectors.

In the case of a continuous spectrum, the sums in Eqs. (3.19)–(3.21) have to be replaced
by the corresponding integration signs. Therefore, Eq. (3.19) becomes

Ĥ
∣∣ψE

〉 = E
∣∣ψE

〉
, (3.22)

while the expansion (3.20) can be written as

|ψ(0)〉 =
∫

d E c(0)(E)
∣∣ψE

〉
. (3.23)

As a consequence, the time evolution of any initial state |ψ(0)〉 for the continuous case
can be formulated as

|ψ(t)〉 =
∫

d E c(0)(E)e−
ı
h̄ Et ∣∣ψE

〉
. (3.24)

It is evident from the procedure above that the solution of the energy eigenvalue equation
is a necessary step for the determination of the time evolution of any system. Therefore,
Eq. (3.19) or Eq. (3.22) is often called the stationary Schrödinger equation, while Eq. (3.8)
is called the time-dependent Schrödinger equation.

We also note that the time-dependent Schrödinger equation for the wave function ψ(x , t)
is the wave function at time t (see Eq. (3.9)) can be formally solved in analogy with
Eq. (3.16) as

ψ(x , t) = e
ı
h̄ Ĥ t
ψ(x , 0). (3.25)

As for Eq. (3.21), also in this case the actual solution requires an expansion of ψ(x , 0) in
terms of the eigenfunctions ψn(x) = 〈x | ψn〉 of Ĥ , and reads
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ψ(x , t) =
∑

n

e−
ı
h̄ Ent c(0)

n ψn(x). (3.26)

Note that, since the integral
∫ +∞
−∞ dx |ψ(x , t)|2 does not depend on time, a normalized wave

function will remain normalized (see Prob. 3.5).
We have already seen that the energy spectrum of a system is given by the set of all

possible energy eigenvalues and that stationary states correspond to these eigenvalues. In
particular, if the Hamiltonian is bounded from below (as in physically interesting cases)
(see Box 2.1), there is a state corresponding to the minimum eigenvalue that is called
ground state, as, for example, the lowest energy level of one electron in an atom (see
Ch. 11). As we know, such a spectrum can be continuous, discrete, or a combination
of both these possibilities (see Subsecs. 1.5.4 and 2.1.1). This is in close relationship
with the normalization of the wave function describing the system. In fact, eigenfunc-
tions corresponding to discrete eigenvalues are normalizable, whereas eigenfunctions
corresponding to continuous eigenvalues are not (see Subsec. 2.2.2). In the former case∫

dx |ψn(x)|2 <∞ (see Eq. (2.108)), which means that ψn(x) tends to zero sufficiently
fast for x →±∞ so that the integral converges. As a consequence, the probability of find-
ing the particle at large distances goes rapidly to zero. This kind of states are called bound
states. Instead, if we consider a non-normalized wave function, i.e. corresponding to an
eigenvalue belonging to the continuous spectrum, we have that

∫
dx |ψn(x)|2 = ∞, which

means that the system extends to infinity and the stationary states are called unbound. In
this case, the eigenfunctions may not vanish at infinity. For instance, when x →∞, their
absolute value may oscillate indefinitely. Wave functions of this type are useful for col-
lision problems. It may also happen, of course, that the eigenfunctions tend to zero not
sufficiently fast as x goes to infinity.

3.1.4 Degenerate eigenvalues

It is interesting to note that energy eigenvalues can be degenerate (see Th. 2.2: p. 47 and
comments, and also the proof of Th. 2.4: p. 66), i.e. it can be the case that two or more
eigenvectors (or eigenfunctions) share the same eigenvalue. This has a relevant physical
meaning.

We may establish a necessary and sufficient condition in order to have energy degener-
acy. Suppose that the observable Ô commutes with the Hamiltonian and is not the identity
operator, i.e. [Ĥ , Ô] = 0, and that Ô is not a function of Ĥ only. Then,

Ĥ Ô
∣∣ψ j

〉 = Ô Ĥ
∣∣ψ j

〉 = E j Ô
∣∣ψ j

〉
, (3.27)

which shows that the ket Ô
∣∣ψ j

〉
is an eigenket of Ĥ with eigenvalue E j just as

∣∣ψ j
〉

is.

Moreover, the ket Ô
∣∣ψ j

〉
cannot be proportional to

∣∣ψ j
〉
, i.e. it cannot be written in the

form Ô
∣∣ψ j

〉 = f (E j )
∣∣ψ j

〉
, where f (E j ) is a function of the j-th energy eigenvalue. In

fact, if this were the case, Ô would be equal to f (Ĥ ), which would contradict one of the
assumptions.
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Let us now prove the equivalence in the other sense, that is, that degeneracy implies
commutativity. If we have degeneracy, we may always partition the whole Hilbert space H
into subspaces H1,H2, . . ., in each of which the energy eigenvalue is constant, i.e.

H = H1 ⊕H2 ⊕ · · · , (3.28)

where the symbol ⊕ denotes the direct sum. This is technically true only if the spectrum
is discrete. In the case of a continuous spectrum, a similar formula holds, but it is more
complex. Then,

Ĥ |ϕ〉 = Ek |ϕ〉, (3.29)

where |ϕ〉 ∈ Hk . This means that the Hamiltonian Ĥk in each subspace Hk is a multiple
of the identity. Here, Ĥk is the block of Ĥ pertaining to Hk , i.e.

Ĥk =

⎡⎢⎢⎢⎣
Ek 0 0 · · ·
0 Ek 0 · · ·

. . .

0 · · · · · · Ek

⎤⎥⎥⎥⎦, (3.30)

where the dimension of Hk is equal to the degree of degeneracy of the eigenvalue Ek . We
can then build an Hermitian operator

Ô = Ô1 ⊗ Ô2 ⊗ · · · , (3.31)

where ⊗ denotes the direct product between operators belonging to different subspaces of
the total Hilbert space, and Ôk is an arbitrary operator that takes a vector on Hk into a
vector of Hk , and obviously commutes with Ĥk . This implies that [Ô , Ĥ ] = 0.

3.2 Properties of the Schrödinger equation

Before going into the details of the solution of the (stationary and time-dependent)
Schrödinger equation, it is very useful to look for fundamental properties of the solutions
to these equations which can be derived a priori at an abstract mathematical level.7

3.2.1 Regular ity

For what concerns continuity it is possible to state the following properties of the wave
function ψ(r) (we refer here to the Schrödinger equation in the form (3.14)):

(i) ψ(r) has to be single-valued and continuous. It is single-valued because there can-
not be two different probability amplitudes for the same position, and it must be
continuous because the Schrödinger equation (3.14) requires it to be differentiable.

7 In this section we somewhat follow the arguments by Landau and Lifshitz [Landau/Lifshitz 1976b, §§ 18 and
21]. See also [Messiah 1958, 98–114].
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(ii) For the same reasons the continuity of ψ(r) and of its first derivatives must hold
true even when V (r) is discontinuous but finite. On the contrary, if in some regions
V (r) = ∞, then, while ψ(r) must still be continuous, its first derivatives need not
necessarily be so (see Sec. 3.4 and Subsec. 4.2.2).

(iii) Since a particle cannot penetrate an infinite potential wall, it is clear that, in the open
regions where V (r) = ∞, ψ(r) has to be equal to zero. Therefore, for continuity, we
must have ψ(r) = 0 at the border of such regions. However, in this case, the deriva-
tives will be discontinuous. When the potentially is infinite only in one point (i.e.
a δ-function), the wave function need not vanish at this point but it still has to be
continuous. Again, the first derivative of the wave function at this point need not be
continuous. On the contrary, in the regions where V (r) <∞ then ψ(r) cannot be
identically zero. As we shall see (in Sec. 4.3), this means that a quantum particle
may have a non-vanishing probability amplitude to be found in a classically forbid-
den region. In other words, we may have ψ(r) 	= 0 in regions where the energy E
of the particle is smaller than the potential energy V . Unlike classical mechanics, in
quantum mechanics this is not a contradiction.

(iv) For any dimension, the wave function of the ground state never vanishes (where we
have assumed the absence of a magnetic field, i.e. that the Schrödinger equation is
real (see Subsec. 11.3.3 and Sec. 11.4)).

3.2.2 Energy eigenvalues

Concerning the energy eigenvalues we have the following three properties of the Schrödin-
ger equation :

(i) Since the Hamiltonian is given by the sum of the kinetic and potential energies, we

have, also for the mean values, 〈E〉 =
〈
Ĥ
〉
=
〈
T̂
〉
+
〈
V̂
〉
. Now, the kinetic energy is

always positive and therefore 〈T̂ 〉 > 0. When the potential energy has a minimum

value Vmin, it is clear that
〈
V̂
〉
≥ Vmin and

〈
Ĥ
〉
> Vmin. Since this has to hold true for

any state, also any energy eigenvalue has to be larger than Vmin, i.e.

〈En〉 > Vmin. (3.32)

(ii) If V → 0 for r →∞,8 then the negative eigenvalues of the energy are discrete and
therefore the corresponding eigenstates are bound states (see Subsec. 3.1.3), while
the positive eigenvalues correspond to the continuous spectrum (infinite motion).
This is so because at large distances the potential energy is negligible and therefore
the motion is almost free: a free motion, however, can only correspond to positive
eigenvalues. In particular, if the potential energy is positive everywhere and tends
to zero at the infinity (as in Fig. 3.1), then the discrete spectrum is absent and the
only possible motion of the particle is infinite. In fact, in this case, we must have

8 It is always possible to define V → 0 for r →∞ when the force vanishes sufficiently fast at infinity.
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V(r)

r

�Figure 3.1 Positive potential vanishing at infinity.

En > 0 (see Eq. (3.32)), and we have already established that for positive energies
the spectrum has to be continuous.

(iii) If V (∞) = ∞, then the whole spectrum is discrete.
(iv) The Schrödinger equation for the wave functions of the stationary states (i.e. the

energy eigenfunctions), in the absence of a magnetic field (which is not an external
potential), does not contain complex terms, and therefore its solutions may be chosen
to be real. For non-degenerate eigenvalues of the spectrum, this is straightforward,
since any eigenfunction and its complex conjugate must both satisfy the same equa-
tion, and may differ at most by an irrelevant phase factor. In the case of degenerate
energy eigenvalues, the corresponding eigenfunctions may be complex. However, by
suitably choosing appropriate linear combinations of them, it is always possible to
establish a set of real eigenfunctions.

3.2.3 One-dimensional case

For the one-dimensional case we can establish the following additional properties (we refer
here to the Schrödinger equation in the form (3.10)):

(i) In a discrete spectrum there are no degenerate eigenvalues (let us for semplicity con-
sider the case where V (x) <∞). In fact, let us assume thatψ1 andψ2 be two different
eigenfunctions corresponding to the same energy eigenvalue E . They both have to
satisfy the Schrödinger equation (see Subsec. 3.1.4)

ψ ′′(x) = 2m(V − E)

h̄2
ψ(x), (3.33)

where ψ ′′(x) denotes the second derivative of ψ(x) with respect to x . Therefore we
have

ψ ′′
1

ψ1
= 2m(V − E)

h̄2
= ψ

′′
2

ψ2
, (3.34)

from which it follows that ψ ′′
1ψ2 − ψ ′′

2ψ1 = 0. Integrating this relation we obtain
ψ ′

1ψ2 − ψ ′
2ψ1 = C , where C is a constant. Since ψ1 and ψ2 tend to zero for x →∞,

the constant C must be zero and therefore ψ ′
1/ψ1 = ψ ′

2/ψ2. Integrating this relation
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�Figure 3.2 Potential function tending to finite values as x → ±∞.

once more, we conclude that ψ1 = C ′ψ2, where C ′ is again a constant. Therefore
ψ1 and ψ2 are not linearly independent. We should emphasize that this is not true
in larger dimensions. In fact, in this case there exist non-trivial observables which
commute with the Hamiltonian, and therefore there is degeneracy (see Subsec. 3.1.4).

(ii) For the wave functions of the discrete spectrum it is possible to state the following
theorem, which we shall not prove: the eigenfunction ψn(x) corresponding to the
(n + 1)-th energy eigenvalue En vanishes n times for finite values of x (see the
examples in Secs. 3.4, 4.1, and 4.4).

(iii) Let us assume that, for x →±∞, the potential energy V (x) tends to finite values
(as in Fig. 3.2(a) and (b)). We take V (+∞) = 0, V (−∞) = V0, and assume V0 > 0.
The presence of the discrete spectrum is possible only for values of the energy that
do not allow the particle to escape to infinity, which is the energy has to be negative.
Moreover, the energy has also to be larger than the minimum value of V (x), i.e. the
potential energy must have at least one minimum with Vmin < 0 (as in Fig. 3.2(b)).
In the range V0 > E > 0 the spectrum is continuous and the motion of the particle is
infinite, since it can escape to arbitrary large positive x values. This is why the spec-
trum in the case of Fig. 3.2(a) is only continuous. For V0 > E > 0 all eigenvalues are
also not degenerate – in order to prove this, it is possible to apply the same proof as
that discussed in the context of discrete spectrum of property (i), since here both func-
tions ψ1 and ψ2 vanish for x →±∞. Finally, for E > V0, the spectrum is continuous
and the motion of the particle is infinite in both directions (x →±∞).

(iv) If V (x) is even, then the wave functions ψ(x) of the stationary states are either even
or odd. In fact, if we have V (x) = V (−x), the Schrödinger equation does not change
under the transformation x →−x , and if ψ(x) is a solution of the Schrödinger equa-
tion, also ψ(−x) is a solution which has to coincide with ψ(x) up to a constant factor,
that is ψ(x) = Cψ(−x). Changing sign once more we obtain ψ(x) = C2ψ(x), hence
C = ±1, which proves the result (see also Prob. 3.6). This property may be extended
to the three-dimensional case.

(v) For a potential well of the type shown in Fig. 3.3 (when we have V (x) ≤ V (∞),∀x
and V (x) < V (∞) for some x), there exists a bound state independently of the height
of the well.
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�Figure 3.3 Potential well.

3.3 Schrödinger equation and Gali lei
transformations

A further property of the Schrödinger equation concerns its behavior under relativistic
transformations. In general terms, a relativity theory tells us how physical quantities are
transformed under change of the inertial reference frame.9 Necessarily, the overall physical
picture must not depend on the reference frame. As a consequence, any mechanics must be
invariant with respect to the underlying relativity theory. For instance, Galilean relativity is
the relativity attached to classical mechanics, whereas special relativity underlies quantum
field theory.10 Here we are dealing with microscopic phenomena, however, which occur
at a speed much smaller than the speed of light. Therefore, our non-relativistic quantum
mechanics has to be invariant under Galilei transformations. In the following we shall test
whether the Schrödinger equation is invariant and how the wave function changes under
these transformations. For the sake of simplicity we shall restrict ourselves to the free
motion of a particle in the three-dimensional case.

Let us take two reference frames R and R′ such that R′ moves with respect to R with
constant velocity V. We assume that at time t = 0 the origins of the two frames coincide,
i.e. O = O ′. The relation between the space–time coordinates in R and R′ may then be
written as

r= r′ + Vt , (3.35a)

t = t ′, (3.35b)

where the vectors r and r′ represent the position of a point particle P in R and R′, respec-
tively (see Fig. 3.4). Eqs. (3.35) are known as Galilei transformations. As a consequence

9 Einstein’s general relativity theory – which is not a subject of this book – also includes gravitation and
therefore accelerated frames. See [Hartle 2003].

10 Again, quantum field theory goes beyond the scope of this book. The interested reader is referred to specialized
handbooks, for instance to [Mandl/Shaw 1984].
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�Figure 3.4 Relationship between two different inertial reference frames R and R′ under Galilei
transformations. R′ is in motion with respect to R with constant velocity V.

of Eqs. (3.35), the quantities which characterize the free motion of the particle (i.e.
momentum and energy) transform according to the relations

p= p′ + mV, (3.36a)

E = E ′ + V · p′ + mV2

2
, (3.36b)

where m is the mass of the particle. In order to find the relation between the wave functions
written in the two inertial reference frames R and R′, we need to derive the transformation
rule for the plane-wave form of the wave function. In other words, the wave function in the
frames R and R′ can be written as (see Subsecs. 2.2.4 and 3.1.3, and Prob. 3.3)

ψ(r, t)= e
ı
h̄ (p·r− Et), (3.37a)

ψ
′
(r′, t ′)= e

ı
h̄ (p′·r′ − E ′t ′), (3.37b)

up to a normalization factor. Substituting the relations (3.35) and (3.36) into Eq. (3.37b)
yields

ψ
′
(r′, t ′)= exp

{
ı

h̄

[
(p − mV) · (r − Vt) −

(
E − V · p′ − mV2

2

)
t

]}
= e

ı
h̄ (p·r− Et)e

ı
h̄ ( 1

2 mV2t −mV·r). (3.38a)

Using Eq. (3.37a) we finally have

ψ(r, t) = ψ ′
(r − Vt , t)e

ı
h̄ (mV·r− 1

2 mV2t)x , (3.39)

which is the transformation rule we were looking for. Since the exponential in the rhs of
Eq. (3.39) is just a phase factor which does not contain the relevant quantities of the free
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a x

V(x)

�Figure 3.5 Schematic representation of the potential V(x) for a particle in a box. The particle is confined
in the segment (0, a) by the presence of the two infinitely high potential walls at x = 0 and
x = a, as described in Eq. (3.40). The left and right walls extend to x → −∞ and to
x → +∞, respectively.

motion of the particle, we can state that the Schrödinger equation is invariant under Galilei
transformations.

It should be noted that we have performed this calculation for the case of a plane
wave. A generic wave function, however, can always be expanded into a series or inte-
gral of plane waves and, therefore, the general result may easily be derived from Eq. (3.39)
(see Prob. 3.7). Moreover, in the case of a system of particles, the exponent in the rhs of
Eq. (3.39) should evidently contain a sum over all the particles.

3.4 One-dimensional free partic le in a box

As a first example of a quantum-mechanical system, let us consider a simple model: a one-
dimensional free particle constrained between infinite potential walls located at x = 0 and
x = a (see Fig. 3.5) so that we have

V (x) =
{ +∞ if x > a or x < 0

0 if 0 ≤ x ≤ a
. (3.40)

Therefore, for 0 ≤ x ≤ a, the particle is free and the Schrödinger equation in the position
representation can be written as

− h̄2

2m

∂2

∂x2
ψ(x) = Eψ(x). (3.41)

Since the particle cannot penetrate into infinite walls, it is clear that ψ(x) = 0 for x > a
or x < 0 and, for continuity, we must have ψ(0) = ψ(a) = 0.11 Equation (3.41) may be
rewritten as

11 See Property iii) in Subsec. 3.2.1. Moreover, it will be evident in the following that in this case (i.e. when the
potential walls are infinitely high) the first derivative of the wave function is not continuous. For the reason of
this behavior see the discussion at the end of Sec. 4.1 (p. 144).
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ψ ′′(x) = −k2ψ(x), (3.42)

where

k =
√

2m E

h̄
. (3.43)

The general solution of Eq. (3.42) may be written in the form

ψ(x) = N sin(kx + φ), (3.44)

where N is a (in general complex) normalization constant and φ a phase which has to be
determined. Since

ψ(0) = N sinφ = 0, (3.45a)

we have φ = 0. Moreover,

ψ(a) = N sin(ka) = 0 (3.45b)

implies that12 ka = nπ (n = 1, 2, . . .), i.e.

k = kn = nπ

a
. (3.46)

This means that the possible values of k are discrete, or quantized. This in turn has the
consequence that also the energy levels have to be discrete. Given Eq. (3.43), the energy
levels turn out to be

E = En = π2h̄2

2ma2
n2. (3.47)

A schematic drawing of the energy levels (3.47) is given in Fig. 3.6. The corresponding
eigenfunctions may then be written as

ψn(x) = N sin
(nπ

a
x
)

. (3.48)

In order to determine the coefficient N , we may take advantage of the fact that, being the
spectrum discrete, the ψn(x) must be normalized, i.e.

a∫
0

|ψn(x)|2 = 1. (3.49)

From this it follows that |N |2a/2 = 1. Since an overall phase factor is irrelevant from the
point of view of the wave function (see Subsec. 2.2.1), we are allowed to take a real value
of N , i.e. (see Prob. 3.9)

N =
√

2

a
, (3.50)

and can finally write the energy eigenfunctions as

ψn(x) =
√

2

a
sin
(nπ

a
x
)

. (3.51)

12 Note that we cannot have n = 0 because in this case ψ would identically be zero.
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�Figure 3.6 Schematic diagram of the first five energy levels for a one-dimensional particle of mass m
confined in a box of dimension a.

x

ψn(x)

0 a

√2/a
–– –

�Figure 3.7 First three energy eigenfunctions for a one-dimensional particle confined in a box of
dimension a: ψ1(x) is shown in solid line, ψ2(x) in dashed line, and ψ3(x) in dot–dashed
line. It is interesting to note that the n-th eigenfunction has n − 1 nodes inside the interval
(0, a) (see property (ii) in Subsec. 3.2.3). Moreover, in each of the n intervals between two
successive eigenvalues there is a node of the (n + 1)-th eigenfunction (and of all the
following ones). This is rather a general property of the one-dimensional Schrödinger
equation.

The first three of such eigenfunctions are displayed in Fig. 3.7.
It is interesting to note that the state with E = 0 is not allowed. In fact, if this were

not the case, we would also have px = 0, which in turn would mean that the particle is at
rest. This is not possible, however, in quantum mechanics, since it would imply an obvious
violation of the uncertainty relation (�x = �px = 0). On the other hand, if E > 0, then
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there is an ambiguity in the sign of px , which may point rightward or leftward (see the
discussion at the end of Subsec. 2.2.6: p. 79). This implies that

�px � 2px = 2h̄k = 2h̄
nπ

a
, (3.52)

and, since �x � a (the particle is spread over the allowed region (0, a)), we have

�x�px � 2π h̄n = nh. (3.53)

Even for the state of minimal uncertainty – the ground state (n = 1) – we would then
have

�x�px � h >
h̄

2
. (3.54)

Furthermore, it should be noted that the density of the energy levels (3.47) increases with
m and a. This means that, when m and a are large (which is the case for macroscopic
objects), the quantum levels become approximately continuous.

At this point we are in the position to apply the general procedure of Subsec. 3.1.3
and find the time evolution of any initial wave function ψ(x , 0) of a particle in a box. In
fact, we only have to expand ψ(x , 0) into a series of the energy eigenfunctions ψn(x) (see
Eq. (3.51)), i.e.

ψ(x , 0) =
∑

n

cn(0)ψn(x), (3.55)

where ∑
n

|cn(0)|2 = 1 (3.56)

for normalization reasons. Then, according to Eqs. (3.25) and (3.26), we finally
have

ψ(x , t) = e−
ı
h̄ Ĥ t
ψ(x , 0)

=
∑

n

cn(0)e−
ı
h̄ En t

ψn(x)

=
∑

n

cn(t)ψn(x)

=
√

2

a

∑
n

cn(0)e
−ı π

2 h̄
2ma2 n2t

sin
(nπ

a
x
)

, (3.57)

where

cn(t) = cn(0)e
−ı π

2 h̄
2ma2 n2t

. (3.58)
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�Box 3.1 Cyclic property of the trace

This is a crucial property that we shall use on several occasions throughout the book. It states
that, in the case of the product of n operators (or square matrices), we have

Tr
[
Ô1 · Ô2 · · · Ôn

]
= Tr

[
Ôn Ô1 · Ô2 · · · Ôn−1

]
. (3.59)

For square matrices of finite dimensions it is straightforward to prove Eq. (3.59). In particular,
we prove that it is true for n = 2, i.e.

Tr
[
ÔÔ

′] = Tr
[
Ô
′
Ô
]

. (3.60)

In fact, we have

Tr
[
ÔÔ

′] =∑
n

∑
j

OnjO
′
jn, (3.61)

since (ÔÔ
′
)ik =

∑
j OijO

′
jk, and

Tr
[
Ô
′
Ô
]
=
∑

n

∑
j

O
′
njOjn

=
∑

n

∑
j

O
′
jnOnj

= Tr
[
ÔÔ

′]
, (3.62)

where we have interchanged the role of the indices n and j. This result means that the trace of
any commutator is zero in the finite case. However, this does not hold true in the case of infi-
nite dimensions, where restrictive conditions on the trace must be considered. By induction,
it is trivial to generalize to the case of the product of n operators and obtain Eq. (3.59).

3.5 Unitary transformations

3.5.1 General propert ies of unitary operators

We have seen in Subsec. 3.1.1 how the state of a quantum-mechanical system at times
t > t0 is related to the initial state at t = t0. In particular, following Eq. (3.16), we may
write

|ψ(t)〉 = e−
ı
h̄ Ĥ (t−t0) |ψ(t0)〉 = Ût−t0 |ψ(t0)〉 . (3.63)

Therefore, the states at times t and t0 are connected by a class of transformations induced
by the Hamiltonian operator Ĥ ,

|ψ〉 �→ e−
ı
h̄ Ĥ t |ψ〉, (3.64)

and these transformations are of the form Û = eıaÔ , where a is a real constant and Ô a
Hermitian operator. They are unitary transformations. We have already met them in the
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last chapter, and, as we know (see Eq. (2.34)), a unitary transformation is characterized by
the property that ÛÛ † = Û †Û = Î .

Now, we wish to show that unitary transformations possess some important properties,
which can be summarized as follows:

• First, unitary transformations preserve the scalar product between state vectors (see Sub-
secs. 2.1.2 and 2.2.5). This can be easily shown as follows. Let us take two state vectors
|ψ〉 and |ϕ〉 and a unitary transformation Û such that∣∣ψ ′〉 = Û |ψ〉 and

∣∣ϕ′〉 = Û |ϕ〉 . (3.65)

Then, we have 〈
ψ ′ | ϕ′〉 = 〈ψ ∣∣∣Û †Û

∣∣∣ϕ〉 = 〈ψ | ϕ〉. (3.66)

• Second, unitary transformations preserve the trace of an operator. We recall that any
normal operator can be written as (see Eq. (2.1) and Box 2.3: p. 51)

Ô =
∑

j

o j
∣∣o j
〉 〈

o j
∣∣ , (3.67)

for some basis {∣∣o j
〉 } and where the numbers o j are not necessarily real. From this it

immediately follows that any transformation Û on an operator Ô (see also Subsec. 8.1.1)
will act as

Ô �→ ÔU =
∑

j

o j Û |o〉 〈o | j Û† = Û ÔÛ†. (3.68)

As a consequence, we have

Tr
(

ÔU

)
= Tr

(
Û ÔÛ †

)
= Tr

(
Û †Û Ô

)
= Tr

(
Ô
)

, (3.69)

where we have made use of the cyclic property of the trace (see Box 3.1).
• Finally, unitary transformations may play the same role of canonical transformations

in classical mechanics, since they leave the canonical commutation relations (we call
the commutation relations between observables corresponding to canonically conju-
gate variables canonical commutation relations) invariant as – in classical mechanics –
canonical transformations leave Poisson brackets invariant (see Sec. 1.1, as well as also
Sec. 3.7 and Ch. 8). In fact, let

q̂ ′ = Û q̂Û † and p̂′ = Û p̂Û † (3.70)

be unitary transformations of the canonical observables q̂ and p̂. Then,[
q̂ ′, p̂′

] = Û q̂Û †Û p̂Û † − Û p̂Û †Û q̂Û †

= Û q̂ p̂Û † − Û p̂q̂Û †

= Û
[
q̂, p̂

]
Û †

= ı h̄ Î . (3.71)
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�Figure 3.8 (a) Scheme of input–output formalism. (b) Beam Splitters as unitary operators.

3.5.2 Beam spl itters as unitary transformations

In this book we have largely made use of beam-splitting as a tool for introducing new
concepts. We wish now to show that the transformations induced by beam splitters are
unitary transformations. Let us consider the example represented in Fig. 3.8. In Fig. 3.8(a)
we consider a photon in the initial state

|1〉 =
(

1
0

)
. (3.72)

It is clear that, after the point P , the state will still be |1〉 . The same is if the incoming
photon is |2〉 , given by

|2〉 =
(

0
1

)
. (3.73)

Also in this case, the state will be the same after the geometrical point P . Consider now a
symmetric beam splitter, as in Fig. 3.8(b). It is clear that in this case we should have the
transformations

|1〉 �→ 1√
2
(|1〉 + ı |2〉 ) , |2〉 �→ 1√

2
(ı |1〉 + |2〉 ) . (3.74)

For this reason, we may write the action of a fifty–fifty beam splitter as

ÛBS = 1√
2

[
1 ı
ı 1

]
. (3.75)

It is not difficult to see that this is a unitary transformation. Its transposed conjugate is
given by

Û †
BS =

1√
2

[
1 −ı
−ı 1

]
. (3.76)
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We then have

ÛBSÛ †
BS =

1

2

[
2 0
0 2

]
=
[

1 0
0 1

]
, (3.77a)

Û †
BSÛBS = 1

2

[
2 0
0 2

]
=
[

1 0
0 1

]
. (3.77b)

Transformation (3.75) may be generalized to an asymmetric beam splitter (see Prob. 3.12).
A slightly more complex example is represented by the polarization beam splitter (PBS)
(see Fig. 2.1). In this case, we have another degree of freedom, namely polarization. The
distinctive feature of a PBS is, e.g., that it reflects incoming photons of vertical polarization
and transmits those of horizontal polarization, independently from the incoming path. As
a consequence, there are four possibilities for the incoming and outgoing vectors, that is,
the four-dimensional system’s Hilbert space is spanned by the four kets

|1,↔〉 =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠ , |1, 〉 =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠, (3.78a)

|2,↔〉 =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠ , |2, 〉 =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠. (3.78b)

The effect of the PBS can be represented by the following transformations on the basis
vectors

|1,↔〉 �→ |1,↔〉 , |1, 〉 �→ ı |2, 〉 , (3.79a)

|2,↔〉 �→ |2,↔〉 , |2, 〉 �→ |1, 〉 . (3.79b)

These transformations can be expressed by the 4 × 4 matrix

ÛPBS =

⎡⎢⎢⎣
1 0 0 0
0 0 0 ı
0 0 1 0
0 ı 0 0

⎤⎥⎥⎦, (3.80)

whose transposed conjugate is

Û †
PBS =

⎡⎢⎢⎣
1 0 0 0
0 0 0 −ı
0 0 1 0
0 −ı 0 0

⎤⎥⎥⎦ . (3.81)

It is straightforward to verify that

ÛPBSÛ †
PBS = Û †

PBSÛPBS = Î , (3.82)

and that therefore ÛPBS is unitary.
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3.5.3 Time translat ions

As we have seen, the time translation operator (see Eq. (3.16))

Ût = e−
ı
h̄ Ĥ (t−t0) (3.83)

is the operator which describes the transformation from the state vector (or the wave func-
tion) at time t0 to the state vector (or the wave function) at time t . The inverse of the unitary
transformation Ût describes a backward time translation. So, for example (for t0 = 0),

|ψ(0)〉 = Û−1
t |ψ(t)〉 = Û−t |ψ(t)〉 . (3.84)

Since Û−1
t = Û †

t , we also have

Û †
t = Û−t , (3.85)

which shows the forward–backward time symmetry in quantum mechanics. This implies
that the Schrödinger equation is invariant under time-reversal transformations if, together
with the substitution t �→ −t , one also applies the replacement |ψ〉 �→ 〈ψ |. In fact, taking
the Hermitian conjugate of Eq. (3.8) one has

ı h̄
∂

∂(−t)
〈ψ | = 〈ψ | Ĥ . (3.86)

We have shown (see Subsec. 2.1.1, in particular Eq. (2.16)) that scalar products between
state vectors represent probability amplitudes. For example, the expression 〈ψ | Ût |ϕ〉 is
the probability amplitude that, given an initial state |ϕ〉 , measures how close it evolves
unitarily to a final state |ψ〉 at time t . If we take the complex conjugate of this expression
we obtain (

〈ψ | Ût |ϕ〉
)∗ = 〈ϕ | Û−t |ψ〉 . (3.87)

The rhs of Eq. (3.87) represents the probability amplitude that a final state |ψ〉 (at time t)
evolves unitarily backwards to an initial state |ϕ〉 (at time t0 = 0). In this context, we see
that kets may be thought of as input states, whereas bras as output states of a certain physi-
cal evolution or process. In particular, the expression 〈ψ | Ût |ψ〉 may be understood as the
probability amplitude that an initial state |ψ〉 remains unaltered after the unitary evolution
for a time t and its square modulus is sometimes called the autocorrelation function.

From what we have seen above, given the Hamiltonian Ĥ of a quantum-mechanical
system and its initial state vector |ψ(0)〉 , the unitary operator Ût allows us to determine the
state vector at subsequent times t . However, in Subsecs. 2.1.1 and 2.1.3 we stated that
the measurement of any observable always gives as an outcome one (and only one) of
the eigenvalues of the associated operator with a certain probability. This seems to be in
contradiction with the unitary evolution of Eq. (3.63). Once again, this is the so-called
measurement problem in quantum mechanics, as no unitary evolution will ever be able to
account for an abrupt change of the state vector from an arbitrary superposition to one of
its components (see Probs. 3.13 and 3.14). Of course, given a certain superposition state, it
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is always possible to build an unitary operator that brings it to one of its components – an
example for this has been given in the previous subsection with the (polarization) beam-
splitter unitary transformations. However, this assumes that one already knows a priori
which superposition the system is in, i.e. that one already knows the initial state. In other
words, there is no way to find a unitary transformation which provides the observer with
the information that represents the final outcome of the measurement process (as it will be
shown in Subsecs. 15.2.2 and 15.3.2).

We can also approach this problem from a slightly different point of view. As we have
shown in Subsec. 2.1.2, finite-dimensional unitary transformations can be represented by
rotations of a given state vector (in the Hilbert space of the system) by a certain angle (e.g.
the BS unitary transformations considered in the previous subsection are by an angle of
90◦). Now, given a certain superposition state, it is always possible to bring it to coincide
with one of its components with a suitable rotation by a given angle, but it is impossible
to bring any state vector to coincide with a certain component with a rotation by the same
angle (that is with the same unitary transformation).

As we shall see in Ch. 9, the above apparent contradiction can be approached by con-
sidering the non-unitary evolution represented by a measurement as a process occurring in
a subsystem which is part of a larger system whose evolution is nevertheless unitary.

3.5.4 Stone theorem

The fact that a unitary transformation can be cast into the form Û = eıaÔ is rather general.
Let us consider following theorem:

Theorem 3.1 (Stone) Given a family Û (a) of unitary operators, where a ≥ 0 is a real
parameter, satisfying the semigroup property (see Subsec. 8.4.2)

Û (a)Û (a′) = Û (a + a′), (3.88)

then it is possible to write

Û = eıaÔ , (3.89)

where Ô is a Hermitian operator.

The Stone theorem ensures the existence of a Hermitian infinitesimal generator for an
Abelian group of unitary transformations. We have explicitly derived the unitary operator
Ûx for spatial translations (see Eq. (2.130)), which can be considered a specific instance
of Eq. (3.89), where the momentum operator is identified as the generator of spatial
translations, a point which will be the subject of Ch. 8.

We have already seen some further examples of unitary transformations when we
have dealt with the matrix Û occurring in the change of basis (see Subsec. 2.1.2; see
also Subsec. 2.2.5) and with the diagonalization of an operator (in Subsec. 2.1.4). Other
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examples of unitary transformations have been given by the beam splitter and polarization
beam splitter transformations, and the time translations, as we have seen in the previous
subsections.

It is also interesting to observe that any unitary operation on a two-level system
corresponds to a rotation of the Poincaré sphere (see Subsec. 1.3.3).

3.5.5 Green’s funct ion

The elements of the time-translation unitary matrix can be written as〈
k
∣∣∣e− ı

h̄ Ĥ (t−t0)
∣∣∣ j
〉
= ıG( j , t0; k, t), (3.90)

where | j〉 and |k〉 are some state vectors. The functions G are called Green’s functions. In
order to appreciate their importance, let us start from Eq. (3.63), that is

∣∣ψ(t ′)
〉 = e−

ı
h̄ Ĥ (t ′−t) |ψ(t)〉 , (3.91)

which relates the state vector at time t ′ to the state vector at time t . If we multiply both

sides of Eq. (3.91) times
〈
r
′ ∣∣∣ from the left and make use of the resolution of the identity in

the form Î = ∫ dr |r〉 〈r |, we obtain

ψ(r′, t ′) = ı
∫

drG(r′, t ′; r, t)ψ(r, t), (3.92)

where we have made use of the tridimensional version of expression (2.107). Equa-
tion (3.92) represents an instance of Huygens’ principle: if the wave function ψ(r, t) is
known at a time t , it may be found at any later time t ′ by assuming that each point r at time
t is a source of waves which propagate outward from r. The strength of the wave ampli-
tude arriving at point r′ at time t ′ from the point r will be proportional to the original wave
amplitude ψ(r, t) and the constant of proportionality is given by ıG(r′, t ′; r, t). Morevoer,
Eq. (3.92) is a consequence of the first-order character of the Schrödinger equation and of
its linearity: the knowledge of ψ(r, t) for all values of r and one particular t is enough to
determine ψ(r′, t ′) for all values of r′ and any (subsequent or previous) time t ′, and the
relation between the two wave functions is linear.

Green’s functions are related to the resolvent of the Hamiltonian through the fact that
the latter is the Fourier transform of the relative unitary operator, i.e.

R̂Ĥ (η) = ı

+∞∫
0

dτe−ητ e−
ı
h̄ Ĥτ , (3.93)
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�Figure 3.9 The projector Pj as the residue of the closed contour fj in the complex plane eta enclosing the
point Ej.

where τ = t ′ − t . If Ô is a linear operator in the Hilbert space H, the resolvent R̂Ô (η) is
the operator-valued function13

R̂Ô (η) = (Ô − η)−1. (3.94)

The function is defined for all complex values of η for which (Ô − η)−1 exists. Coming
back to the case of the Hamiltonian, and making use of the projectors P̂j on the j-th’s
eigenvalues of Ĥ , we have

R̂Ĥ (η)P̂j = P̂j

E j − η . (3.95)

This allows us to interpret the projectors Pj as the residues of the closed contour f j in the
complex plane eta enclosing the point E j located on the real axis of the complex plane
(see Fig. 3.9), that is,

P̂j = 1

2π ı

∮
f j

dηR̂Ĥ (η), (3.96)

or, for the continuous part of the spectrum,

P̂(� j) = 1

2π ı

∮
f (� j)

dηR̂Ĥ (η), (3.97)

where the projectors P̂(� j) project on a small interval around the continuous eigenvalue
E j . In the case of a free particle (Ĥ0 = p̂2/2m = h̄2k2/2m), the Hamiltonian has a pure
continuous spectrum in the interval [0,+∞) and for this reason its resolvent

R̂H0 (η) = 1

Ĥ0 − η
(3.98)

13 For the problem of the spectrum of Ô and of the values of η, see [Prugovec̆ki 1971, 475, 520–21]
[Taylor/Lay 1958, 264–65].
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is defined for all values of η that are not in the spectrum, and is a bounded operator (see
Eq. (2.7)) defined on the entire Hilbert space whenever �(η) < 0 or 
(η) 	= 0, i.e. when
the argument of η is within the open interval (0, 2π). Using Green’s functions, we can then
write the evolution of a free particle in space and time in the form14

ψ(r′, t ′) = ı
∫

drG0(r′, t ′; r, t)ψ(r, t), (3.99)

for t ′ > t and for all values of 0 < η < 2π . G0 is called the free Green’s function and its
explicit expression is

G0(r′, t ′; r, t) = −ı

[
m

2π ı h̄(t ′ − t)

] 3
2

e
ım|r′−r|2
2h̄(t ′−t) . (3.100)

3.6 Different pictures

So far we have treated the operators associated with quantum-mechanical observables as
time–independent quantities. Only the state vectors evolve according to the Schrödinger
equation. For instance, the expectation value (see Eq. (2.78)) 〈ψ | Ô |ψ〉 depends on time
only because |ψ〉 is a function of time. This way of looking at the time evolution is called
the Schrödinger picture. However, it is not the only way of dealing with time evolution. In
the present section we shall look at two additional pictures, the Heisenberg and the Dirac
pictures. Needless to say, the physical quantities (probabilities, expectation values, etc.)
will not depend on the picture chosen to represent time evolution of physical systems.

3.6.1 Heisenberg picture

In the Heisenberg picture the time dependence is completely transferred from the state
vector to the observable. Let us consider the expectation value of an arbitrary observable
Ô in the Schrödinger picture, which can be written as

S 〈ψ(t) | ÔS |ψ(t)〉S, (3.101)

where the subscript S for the states and the superscript S for the observables denote the
Schrödinger picture, and ÔS does not explicitly depend on time. Using Eq. (3.63), this
expectation value may be written as

S 〈ψ(t) | ÔS |ψ(t)〉S = S 〈ψ(0) | Û †
t ÔSÛt |ψ(0)〉S = H 〈ψ | ÔH(t) |ψ〉H, (3.102)

where

14 Further details regarding the subject of this subsection can be found in [Bjorken/Drell 1964, 78–89]
[Prugovec̆ki 1971, 520–42].
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|ψ〉H = |ψ(0)〉S (3.103a)

is the state vector in the Heisenberg picture and

ÔH(t) = Û †
t ÔSÛt (3.103b)

is the time-dependent observable in the Heisenberg picture. It should also be empha-
sized that, according to Eqs. (3.103), the transformation from the Schrödinger picture to
the Heisenberg picture is unitary and therefore leaves matrix elements and commutation
relations invariant. From Eq. (3.103b) it follows that (see Prob. 3.15)

ĤH = ĤS = Ĥ . (3.104)

To find the equation of motion for the observable, let us consider the time derivative of
Eq. (3.102). We have

d

dt

(
S 〈ψ(0) | Û †

t ÔSÛt |ψ(0)〉S

)
= S 〈ψ(0) |

(
ı

h̄
ĤÛ †

t ÔSÛt − ı

h̄
Û †

t ÔSÛt Ĥ + Û †
t
∂ ÔS

∂t
Ût

)
|ψ(0)〉S

= H 〈ψ |
(

ı

h̄
[Ĥ , ÔH] + ∂

∂t
ÔH(t)

)
|ψ〉H , (3.105)

where use has been made of Eqs. (3.103) and of the definition (2.86). The term ∂ ÔS/∂t
will be different from zero only when ÔS explicitly depends on time. Since the expectation
value of an observable cannot depend on the chosen picture, the rhs of Eq. (3.105) must be
equal to

d

dt H 〈ψ | ÔH(t) |ψ〉H (3.106)

for any state vector |ψ〉 . Therefore,

ı h̄
d

dt
ÔH(t) = ı h̄

∂

∂t
ÔH(t) +

[
ÔH(t), Ĥ

]
. (3.107)

Equation (3.107) could also have been derived by direct differentiation of Eq. (3.103b) (see
Prob. 3.16).

If the operator Ô does not depend explicitly on time in the Schrödinger picture,15 then
the first term of the rhs of Eq. (3.107) will be dropped, yielding

ı h̄
d

dt
ÔH(t) =

[
ÔH(t), Ĥ

]
. (3.108)

15 An explicitly time-dependent operator corresponds to a quantity which is classically time-dependent.
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Equation (3.108) is known as the Heisenberg equation and is the counterpart of the
Schrödinger equation in the Heisenberg picture. From Eq. (3.108) we also learn the impor-
tant fact that an observable which does not explicitly depend on time and which commutes
with the Hamiltonian is a conserved quantity or a constant of motion, as happens in the
classical case (see Prob. 1.4).

Most importantly, Eq. (3.108) resembles very closely the classical canonical equations
of motion (1.8). In fact, Eq. (3.108) can be obtained from Eqs. (1.8) with the substitution

{·, ··} −→ 1

ı h̄
[·, ··]. (3.109)

This may be considered as a formal rule when passing from classical mechanics to quan-
tum mechanics. For instance, if the Poisson bracket between a classical variable and the
Hamiltonian is zero, this variable is a conserved quantity. For this reason, the Heisenberg
evolution is formally similar to the classical time evolution. In fact, in classical mechanics
there is no analogue of the Schrödinger evolution, or more precisely, this coincides with the
“Heisenberg” evolution, since the state itself is just a collection of properties and therefore
is itself an observable (see Sec. 1.1 and Subsec. 2.3.3).

Equations (3.107)–(3.108) may be also rewritten in terms of the expectation values as
follows:

ı h̄
d

dt

〈
ÔH(t)

〉
= ı h̄

〈
∂

∂t
ÔH(t)

〉
+
〈[

ÔH(t), Ĥ
]〉

, (3.110)

where the analogue of Eq. (3.108) is obtained when the first term of the rhs of Eq. (3.110)
is zero.

3.6.2 Dirac picture

The Dirac or interaction picture is very useful when the Hamiltonian can be split into a free
part Ĥ0 and an interaction part ĤI, i.e.

Ĥ = Ĥ0 + ĤI, (3.111)

where, in general, both [Ĥ , Ĥ0] and [Ĥ , ĤI] are different from zero and Ĥ0 does not
explicitly depend on time.

In the interaction picture the time evolution is partly shared by both the state vector and
the observable. In fact, we define

|ψ(t)〉 I = Û †
H0,t |ψ(t)〉S, (3.112)

where Û †
H0,t = e

ı
h̄ Ĥ0t . In order to establish the corresponding transformation for the

observables, we need to write the expectation value of an arbitrary observable Ô , as we
have done in the case of the Heisenberg picture. This time we have

S 〈ψ(t) | ÔS |ψ(t)〉S = I 〈ψ(t) | Û †
H0,t ÔSÛH0,t |ψ(t)〉 I = I 〈ψ(t) | Ô I(t) |ψ(t)〉 I , (3.113)
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so that the observable in the interaction picture is related to the corresponding observable
in the Schrödinger picture by the unitary transformation

Ô I(t) = Û †
H0,t ÔSÛH0,t . (3.114)

The first consequence of Eq. (3.114) is that the free part of the Hamiltonian is invariant
under the transformation to the interaction picture, i.e.

Ĥ I
0 = ĤS

0 = Ĥ0, (3.115)

while

ĤH
0 = Û †

t Ĥ0Ût (3.116)

is in general different from Ĥ I
0. By differentiating Eq. (3.112) one obtains the evolution

equation for the state in the Dirac picture (see Prob. 3.19)

ı h̄
d

dt
|ψ(t)〉 I = Ĥ I

I (t) |ψ(t)〉 I, (3.117)

where

Ĥ I
I (t) = e

ı
h̄ Ĥ0t ĤIe

− ı
h̄ Ĥ0t . (3.118)

Similarly, differentiating Eq. (3.114), one obtains the equation of motion for the observable
in the Dirac picture (see Prob. 3.20)

ı h̄
d

dt
Ô I(t) = ı h̄

∂

∂t
Ô I(t) + [Ô I(t), Ĥ0], (3.119)

where

∂

∂t
Ô I(t) = Û †

H0,t

(
∂

∂t
ÔS
)

ÛH0,t . (3.120)

We should finally emphasize that the transformations to the Heisenberg or the Dirac pic-
tures teach us that neither state vectors nor observables have a predominant role in the
structure of the theory: it is possible to shift the time dependence from one to the other
simply by applying a unitary transformation. As we have seen, the quantities which must
remain invariant under these transformations are the matrix elements which represent
probability amplitudes and therefore are the essential physical content of the theory.
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3.7 Time derivatives and the Ehrenfest theorem

We have seen (Subsecs. 1.2.3 and 2.3.3) that true trajectories cannot be defined in quan-
tum mechanics. This is so because a physical quantity which has a well-defined value at
a certain time will not necessarily be determined at a subsequent time. As a consequence,
we cannot define the time derivative of an observable in the way we are used to in classical

mechanics. The most natural way to define the time derivative ˆ̇O of a quantum-mechanical

observable Ô in the Schrödinger picture is to assume that its expectation value
〈 ˆ̇O〉 is equal

to the time derivative of the expectation value of Ô , i.e.

S 〈ψ | ˆ̇OS |ψ〉S =
d

dt

(
S 〈ψ | ÔS |ψ〉S

)
. (3.121)

Obviosuly, since we are dealing with this problem in the Schrödinger picture, the observ-

able ˆ̇O does not evolve. The rhs of Eq. (3.121) may be easily computed by using
Eq. (3.8) and its Hermitian conjugate, and gives

d

dt

(
S 〈ψ | ÔS |ψ〉S

)
= S 〈ψ |

(
ı

h̄
Ĥ ÔS − ı

h̄
ÔS Ĥ + ∂

∂t
ÔS
)
|ψ〉S

= S 〈ψ |
(

ı

h̄
[Ĥ , ÔS] + ∂

∂t
ÔS
)
|ψ〉S. (3.122)

Since we have assumed that the lhs of Eq. (3.122) has to be equal to S 〈ψ | ˆ̇OS |ψ〉S for
any state vector |ψ〉S, we finally obtain

ı h̄ ˆ̇OS = ı h̄
∂

∂t
ÔS + [ÔS, Ĥ ]. (3.123)

Eq. (3.123) is very similar to Eq. (3.107) but has a rather different meaning: apart from
the ı h̄ factor, the lhs of Eq. (3.107) represents the time derivative of the operator Ô in the
Heisenberg picture, whereas the lhs of Eq. (3.123) is the operator corresponding to the time
derivative of the observable Ô in the Schrödinger picture.

Let us now consider the case ÔS = p̂x in Eq. (3.123). Then we have

ˆ̇px = 1

ı h̄

[
p̂x , Ĥ

]
, (3.124)

since p̂x does not explicitly depend on time. Apart from the factor ı h̄, Eq. (3.124) is for-
mally similar to the corresponding classical equation (1.8) if one replaces the classical
Poisson brackets (1.9) with the quantum commutator (see Subsec. 2.1.5 and Eq. (3.109)).
Moreover, if we apply the commutator [ p̂x , Ĥ ] to a generic wave function ψ(x), we
obtain [

p̂x , Ĥ
]
ψ(x) = −ı h̄

(
∂

∂x
Ĥψ(x) − Ĥ

∂

∂x
ψ(x)

)
= −ı h̄

∂ Ĥ

∂x
ψ(x), (3.125)
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where we have made use of Eq. (2.134) for the one-dimensional case. It follows that

ˆ̇px = −∂ Ĥ

∂x
. (3.126)

In a similar way, starting from

ˆ̇x = 1

ı h̄

[
x̂ , Ĥ

]
, (3.127)

we arrive at (see Prob. 3.21)

ˆ̇x = ∂ Ĥ

∂px
. (3.128)

Both Eqs. (3.126) and (3.128) resemble the second Hamilton equation of motion (1.7), with
the crucial difference that momentum and position are operators in quantum mechanics
and numbers in classical mechanics. Eqs. (3.126) and (3.128) are the content of what is
called the Ehrenfest theorem. The difference between quantum and classical mechanics
is manifest by the following considerations. The analogy with classical mechanics should
not be taken so extensively as to believe that the quantum–mechanical expectation values
follow classical equations of motion. In fact, if this were the case, we should have〈 ˆ̇px

〉
= − ∂

∂x
Ĥ
(〈

x̂
〉
,
〈
p̂x
〉)

. (3.129)

On the other hand, from Eq. (3.126) we have〈 ˆ̇px

〉
= −

〈
∂

∂x
Ĥ
(
x̂ , p̂x

)〉
, (3.130)

which has not the same meaning of Eq. (3.129). Eqs. (3.129) and (3.130) would coincide
only in the case when ∂ Ĥ/∂x is linear in x̂ and p̂x , i.e. it is of the form ax̂ + b p̂x + c,
where a, b and c are constants and for which the function of the expectation values is equal
to the expectation value of the function. This condition is fulfilled by potential energies
which are polynomials of at most second degree in the position x̂ , as it is the case for the
free particle and the harmonic oscillator [see Secs. 3.4 and Sec. 4.4].

3.8 Energy–time uncertainty relation

Time in ordinary non-relativistic quantum mechanics – as in classical mechanics [see also
Box 4.1: p. 152] – is essentially an external parameter, measured by classical clocks, by
means of which we “label” the dynamics of a system. The Schrödinger equation in its
current form only makes sense if we assume that space–time is “non-dynamical,” i.e. it is
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not affected by the quantum–mechanical evolution of the system under study.16 In other
words, together with the three-dimensional ordinary space, time constitutes the “fixed”
background which quantum mechanics is built on.

When considering the relationship between time and energy, we find a certain analogy
with the position–momentum relationship. In fact, as momentum is the physical quantity
that is conserved under space translation (momentum is the generator of the group of spatial
translations) (see Subsec. 2.2.4), energy is the physical quantity that is conserved under
time translations (and for this reason it is the generator of the group of time translations)
(see Subsec. 3.5.3). It is then natural to expect that the position–momentum uncertainty
relation has a counterpart in a time–energy uncertainty relation. As we shall see, it is indeed
possible to write a sort of time–energy uncertainty relation, but its physical meaning has to
be taken with extreme care.

Let us start with the simple example of the one-dimensional plane wave. The momentum
of a plane wave is essentially a wave number (see Eq. (2.140)) and the position–momentum
uncertainty relation basically describes the fact that one cannot localize a plane wave that
intrinsically extends over the whole space. Analogously, energy is basically a frequency
(see Eq. (1.25)) and therefore cannot be localized in time. As a consequence, the classical-
wave Fourier relation �t�ν > (2π )−1 would directly translate into

�E�t > h̄. (3.131)

Superposing a large number of one-dimensional plane waves one obtains a wave packet
of, say, width �x and group velocity vg (see Box 2.6: p. 80). As a consequence, the exact
time at which the wave packet crosses a certain point is defined with an uncertainty

�t � �x

vg
. (3.132)

On the other hand, the wave packet has an energy uncertainty �E due to its spread in
momentum space

�E � ∂E

∂px
�px = vg�px . (3.133)

The two previous equations yield

�t�E � �x�px . (3.134)

By using the momentum–position uncertainty relation, we derive

�E�t ≥ h̄

2
, (3.135)

which limits the product of the spread �E of the energy spectrum of the wave packet and
the accuracy �t of the prediction of the time of passage at a given point.

16 This is different from what happens in general relativity theory, which assumes that the evolution of the
system and the structure of the space–time are self-consistently correlated and where the dynamical equations
determine both the structure of space–time and how the system evolves.
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However, There are several features which make Eq. (3.135) profoundly different from
Eq. (2.190):

�Box 3.2 Einstein’s box

At the sixth Solvay Conference in 1930, Einstein proposed a device consisting of a box with a
hole in one of its sides and a shutter moved by means of a clock inside the box [Bohr 1949,
224–28]. If in its initial state the box contains a certain amount of radiation and the clock
is set to open the shutter after a chosen short interval of time, it could be achieved that
a single photon is released through the hole at a moment which is known as exactly
as desired. Moreover, if we weigh the box before and after this event, we could mea-
sure the energy of the photon as exactly as we want, against the time–energy uncertainty
relation.

Bohr’s reply (see Fig. 3.10) was that any determination of the position of the balance’s
pointer is given with an accuracy �x, which will involve an uncertainty �px in the control
of box’ momentum according to Eq. (2.190). This uncertainty must be smaller than the total
momentum which, during the whole interval δt of the balancing procedure, can be imparted
by the gravitational field to a body with mass �m, i.e.

�px < δt · g ·�m, (3.136)

where g is the gravity constant. The greater the accuracy of the reading x of the pointer,
the longer must the balancing interval δt be if a given accuracy �m of the weight is to be
obtained. But according to the general relativity theory, when a clock is displaced in the
direction of the gravitational force by an amount �x, its rate will change in such a way that
its reading in δt will differ by an amount �t given by

�t
δt

= 1

c2
g�x. (3.137)

By substituting the value of δt given by Eq. (3.137) into Eq. (3.136) we obtain

�px <
c2�t�m
�x

. (3.138)

Finally, by applying Eq. (2.190) again with the equality sign, we obtain

�t >
h̄

c2�m
. (3.139)

This, together with Einstein’s formula

E = mc2, (3.140)

gives Eq. (3.131). We note that Bohr’s argument – different to some of Bohr’s formulations
of complementarity [Bohr 1948] – is based upon a quantum-mechanical interpretation of the
pointer, which is suitable because a device measuring a single photon must obey quantum
laws (see Ch. 9).



133 3.8 Energy–t ime uncertainty relat ion
�

�Figure 3.10 A graphical representation of the apparatus proposed in the Einstein–Bohr debate to test
Eq. (3.135). Adapted from [Bohr 1949, 227]. See Box 3.2.

• First, time is not an observable of the system in ordinary quantum mechanics. Therefore,
we cannot introduce in a naı̈ve way a time operator (see Sec. 3.9), and Eqs. (2.184)
cannot be directly translated into a definition of �t .

• Second, the position–momentum uncertainty relation expresses the fact that a valid state
in quantum mechanics cannot display simultaneously certain values of�x and�px that
violate Eq. (2.190). On the contrary, the energy of a system can be determined with
arbitrary precision at any time.

• Finally, in Eq. (2.190) we consider two simultaneous measurements of position and
momentum, whereas in Eq. (3.135) we consider the energy and the time of passage at a
given point. In other words, the two uncertainty relations express two different and, in a
certain sense, incompatible viewpoints.

Another way of looking at the problem of energy and time uncertainties is to derive
the uncertainty relations by considering a generic observable Ô of the quantum system.
According to Eq. (2.200), the uncertainty relation between the observable Ô and the
energy is
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�ψ E
) · (�ψO

) ≥ 1

2

∣∣∣〈ψ ∣∣∣[Ĥ , Ô
]∣∣∣ψ〉∣∣∣ . (3.141)

On the other hand, making use of Eq. (3.108) and the reduced form of Eq. (3.110), the

mean value of the commutator
[

Ô(t), Ĥ
]

is related to the rate of change of the mean value

of Ô by 〈
ψ

∣∣∣[Ô(t), Ĥ
]∣∣∣ψ〉 = ı h̄

d

dt

〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉 , (3.142)

where the evolution is in the Heisenberg picture but we have dropped the superscript H for
the sake of notation. We may then combine Eqs. (3.141) and (3.142), obtaining(

�ψ E
) · (�ψO

) ≥ h̄

2

∣∣∣∣ı d

dt

〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉∣∣∣∣ . (3.143)

Dividing both sides of Eq. (3.143) by the absolute value of the rate of change of〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉, we obtain

(
�ψ E

) · (
�ψO

)∣∣∣ d
dt

〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉∣∣∣ ≥ h̄

2
. (3.144)

However, the time �ψ t required for
〈
ψ

∣∣∣Ô∣∣∣ψ〉 to change from its initial value (at a given

time t = t0) by a small positive amount �ψO , neglecting higher-order terms in the Taylor
expansion of Ô(t), is given by

�ψ t =
(
�ψO

)
d
dt

〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉

∣∣∣∣∣∣
t=t0

, (3.145)

where
d

dt

〈
ψ

∣∣∣Ô(t)
∣∣∣ψ〉 > 0, (3.146)

which leads to Eq. (3.135). In this case, the uncertainty relation between time and energy
connects the energy uncertainty to a time interval that is characteristic of the system’s rate
of change.

An important application of Eq. (3.135) is the lifetime-width relation for unstable sys-
tems (radioactive nuclei, excited states of atoms, unstable elementary particles, etc.), i.e.
systems which are not stationary and do not correspond to a well-defined value of the
energy but rather to an energy spectrum with a certain spread �E , called the level width.
The mean lifetime τ of the stable (or metastable) state here plays the role of the character-
istic time considered above: One must wait (on average) for a time of order τ to observe
an appreciable change in the properties of the system. As a consequence,

τ�E � h̄. (3.147)

Sometimes, Eq. (3.135) is interpreted in the context of energy measurements in general.
In this case, the accuracy �E of the energy measurement is connected with the time �t
required for the measurement itself.
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Finally, an alternative approach to the problem is to consider the time as a proper dynam-
ical observable of the system. In this case, we should provide an operatorial expression for
time. Even though it is not straightforward to give a general formulation for a time oper-
ator, specific derivations are viable. In the next section we shall consider the so-called
time-of-arrival operator.

3.9 Towards a time operator

Von Neumann17 assumed that every observable can be represented by a self-adjoint oper-
ator (see Th. 2.1: p. 46). Though this must be correct in principle, the enterprise to build a
valid operational representation of a given physical quantity may be very difficult in prac-
tice, as we shall see in this section. For instance, Wigner18 showed that it is very difficult to
find univocal quantum-mechanical counterparts to some simple classical expressions such
as xpx or x2 p2

x . This is obviously due to the non-commutability of position and momentum
in quantum mechanics, which makes these expressions not self-adjoint operators.

As we have already mentioned, in quantum mechanics time can be considered from two
points of view: as an external ordering parameter, for example representing the measur-
ing time as indicated by an apparatus that is external to the measured system; and as an
observable of the system itself, in particular as a variable which depends on the initial state
of the system and on its dynamical evolution. In this section we are interested in the second
interpretation.

A condition that one may reasonably impose on a time operator t̂ is〈
ψ(t1)

∣∣t̂∣∣ψ(t1)
〉− 〈ψ(t2)

∣∣t̂∣∣ψ(t2)
〉 = t1 − t2, (3.148)

for any |ψ(t1)〉 , |ψ(t2)〉 . However, Pauli19 showed that it is impossible to find a time oper-
ator t̂ such as to satisfy a commutation relation of the form [t̂ , Ĥ ] = −ı h̄, where time and
energy are conjugate observables. In fact, this would conflict with the requirement that
energy is bounded from below, i.e. the Hamiltonian operator does not possess a continuous
spectrum from −∞ to +∞ (see Box 2.1: p. 47) – it must be so if we want a ground state
of energy. Pauli’s argument can be formulated as follows. Let

∣∣ψE

〉
be an eigenstate of the

Hamiltonian Ĥ , such that

Ĥ
∣∣ψE

〉 = E
∣∣ψE

〉
. (3.149)

Then, we also have (see Prob. 3.22)

Ĥeıαt̂
∣∣ψE

〉 = (E − αh̄) eıαt̂
∣∣ψE

〉
, (3.150)

17 See [von Neumann 1932, 163–71] [von Neumann 1955, 324–25].
18 See [Wigner 1952].
19 See [Pauli 1980, 63]. See also [Paul 1962] [Engelmann/Fick 1959, Fick/Engelmann 1963a,

Fick/Engelmann 1963b].
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where α is an arbitrary constant. As a consequence, also eıαt̂
∣∣ψE

〉
is an eigenstate of the

energy with eigenvalue E − αh̄, and the spectrum of Ĥ cannot be bounded if [t̂ , Ĥ ] = −ı h̄
must hold.

A possible solution of this problem is to consider specific formulations of a time oper-
ator. One of these is known as time-of-arrival operator.20 In this case we consider the
time-of-arrival of a particle at a detector in a fixed position X , a trade-off between an
observable property of the system and an operational procedure on the system.

If we try to find a spectral decomposition of t̂ according to Eq. (2.20), we encounter an
immediate difficulty: for an arbitrary self-adjoint operator Ô we have

+∞∫
−∞

doP̂(o) = Î , (3.151)

while we have no reason for thinking that the same is valid for a “time” operator. In fact, it is
not true that any state of a given system is certainly detected at some time, that is, we cannot
impose as a property of the system that it will be detected at some time. Then, the spectral
family P̂(t) is incomplete and we should say that P̂t̂ only projects into the subspace HD –
of the original Hilbert space H of the system – formed by the states detected at some time
at position X of a given detector. If we try to define P̂(t) on the entire state space, we
cannot distinguish between the initial state of the system (when it cannot be detected), i.e.
when P̂(t = 0), and the states in the space HD′ that are never detected (indeed the former
and the latter are all annihilated by t̂).

Let us now consider a classical non-relativistic free particle in one dimension. The time-
of-arrival of a particle with initial position x0 and initial momentum p0

x , detected at position
X can be written

t(X ) = m(X − x0)

p0
x

(3.152)

as a time–space inversion of the classical equation of motion

x(t ; x0, p0
x ) = p0

x

m
t + x0. (3.153)

Note that, except for the problem at p0
x = 0, the particle is always detected. In the

Heisenberg picture for a quantum system we may write Eq. (3.152) as

t̂(X ) = m(X − x̂0)

p̂0
x

, (3.154)

which is of course problematic because x̂0 and p̂0
x do not commute. In order to cure the

problem, we try to construct a symmetric ordering for the operator in Eq. (3.154) in the
following manner:

t̂(X ) = m X

p̂0
x
− m

1√
p̂0

x

x̂0
1√
p̂0

x

, (3.155)

20 See [Grot et al. 1996]. The idea of a time-of-arrival operator was originally developed by Allcock
[Allcock 1969].
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or

t̂(X ) = −ı
m

h̄

1√
kx

d

dkx

1√
kx

+ m

h̄

X

kx
, (3.156)

where
√

kx = ı
√|kx | for k < 0. Note that the 1-parameter family of operators t̂(X ) can be

generated unitarily via translations of the form

t̂(X ) = eıkx X t̂(0)e−ıkx X , (3.157)

where e−ıkx X is the space counterpart of Ût (see Subsecs. 3.5.3 and 3.5.4).
Therefore, without loss of generality, it suffices to study the operator t̂(0) with the detec-

tor placed at the origin (X = 0). Hence from now on we drop the explicit X -dependence
of t̂ and write

t̂ = −ı
m

h̄

1√
kx

d

dkx

1√
kx

, (3.158)

where the time-of-arrival operator should satisfy the condition

t̂ |t〉 = t |t〉, (3.159)

and the | t〉 ’s are the eigenkets of t̂ , so that, in the momentum representation, the eigenvalue
equation for t̂ becomes

t̂ 〈kx | t〉 =
[
−ı

m

h̄

1√
kx

d

dkx

1√
kx

]
〈kx | t〉 = t 〈kx | t〉. (3.160)

The biggest difficulty with such a time operator is that we have a singularity at the point
kx = 0. We may circumvent this singularity by means of a family of real bounded con-
tinuous odd functions fε(k) which approach 1/kx pointwise, where ε is a small positive
number. In this way we can overcome the problem of the singularity and construct a self-
adjoint time-operator as a sequence of operators which are not themselves self-adjoint. We
may choose

fε(kx ) = 1

kx
for |kx | > ε, (3.161a)

fε(kx ) = ε−2kx for |kx | < ε. (3.161b)

The “regulated” time-of-arrival operator becomes

t̂ε = −ı
m

h̄

√
fε(kx )

d

dkx

√
fε(kx ). (3.162)

It is possible to show21 that the following commutation relation between time and energy
holds:

[
t̂ε , Ĥ

]
= −ı h̄( Î − gε(kx )), (3.163)

21 See the original article for details.
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where

gε(kx ) = 1 − kx fε(k). (3.164)

The function gε(kx ) vanishes for |kx | > ε, and in the small interval where it has support, it
is bounded by 1, if we choose fε(kx ) as in Eqs. (3.161). For a particle in the state |ψ〉 the
resulting energy–time uncertainty relation is

(�tε)
2 (�E)2 ≥ h̄2

4
(1 − 〈ψ |gε(kx )|ψ〉)2 , (3.165)

which implies that, for sufficiently small ε and for all states with support away from the
origin, we have �tε�E ≥ h̄/2, in accordance with Eq. (3.135).

Summary

In this chapter we have developed the basic features of quantum dynamics. We may
summarize the main results as follows:

• The quantum dynamical evolution equation is the Schrödinger equation, which is a first-
order differential equation whose solution provides the state vector at any time t when
the Hamiltonian Ĥ and the state vector at t = 0 are known.

• In order to solve the Schrödinger equation it is first necessary to find the stationary
states, i.e. the eigenstates of the Hamiltonian operator, and then expand the initial state
in terms of the stationary states.

• The Schrödinger equation is invariant under Galilei transformations.
• As a first example we have solved the quantum dynamics of a one-dimensional particle

in a box, i.e. we have found the energy eigenstates and the corresponding eigenvalues.
• The evolution determined by the Schrödinger equation is unitary. This guarantees the

reversibility of elementary quantum dynamics.
• Time evolution in quantum mechanics can be represented in different pictures. However,

physical quantities, such as probabilities, expectation values, etc., will not depend on the
chosen picture. If we keep the observables fixed and let the states evolve, we have the
Schrödinger picture; if we keep the states fixed and let the observables evolve, we have
the Heisenberg picture; and, finally, if we split the Hamiltonian into a free part and an
interaction part, and therefore let both observables and states evolve, we obtain the Dirac
picture. Transformations from one picture to the other are unitary.

• The Ehrenfest theorem shows that there is a formal analogy between the classical and
quantum-mechanical equations of motion.

• The uncertainty relation between energy and time has been derived.
• A self-adjoint representation of time – as a dynamical variable that is intrinsic to the

system – has been presented.
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Problems

3.1 Derive Eq. (3.9) from Eq. (3.8).
(Hint: Multiply both sides of Eq. (3.8) by 〈x | from the left and show that

〈x | Ĥ |ψ〉 = Ĥ 〈x | ψ〉. For the last step write Ĥ = p̂2
x

2m + V (x̂) and expand |ψ〉
into the eigenvectors | px 〉 of p̂x (see Subsecs. 2.2.4–2.2.5).)

3.2 Prove that if |ψ〉 and
∣∣∣ψ ′〉

are solutions of the same Schrödinger equation, also

c |ψ〉 + c
′ ∣∣∣ψ ′〉

is a solution, where c and c
′

are arbitrary complex coefficients with

|c|2 + ∣∣c′∣∣2 = 1.
3.3 Find the stationary states for a free one-dimensional particle.
3.4 Write Eqs. (3.20) and (3.21) in terms of the wave function in the momentum

representation.
3.5 Show that an initial normalized wave function will stay normalized under time

evolution.
(Hint: Take advantage of Eq. (3.26).)

3.6 Prove that the wave function describing the ground state for a one-dimensional
particle is even when the potential V (x) is even.
(Hint: Take advantage of the continuity of the wave function and of properties (ii)
and (iv) of the one-dimensional motion in Subsec. 3.2.3.)

3.7 Solve the time-dependent Schrödinger equation for a one-dimensional free particle
whose state at time t = 0 is described by the wave function ψ(x , 0) = ∫ dk c(k)eıkx ,
where 2π

∫
dk|c(k)|2 = 1.

3.8 Consider a traveling-wave solution ψ(x , t) = Ce
ı
h̄ (px x−Et) of the free-particle one-

dimensional Schrödinger equation (3.11) and its transformed ψ ′(x ′, t ′) under Galilei
transformations x = x ′ + V t and t = t ′. Show thatψ ′(x ′, t ′) satisfies the correspond-
ing Schrödinger equation for the primed variables. This result ensures the invariance
of the Schrödinger equation under Galilei transformations.

3.9 Compute the normalization constant N = √
2/a for the energy eigenfunctions of a

particle in a box of dimension a (see Sec. 3.4).
3.10 Compute the uncertainty product for a particle in a box (see Sec. 3.4) when its wave

function is a generic energy eigenfunction and verify that the position–momentum
uncertainty relation is satisfied.

(Hint: Start from �px =
(〈

p̂2
x

〉− 〈 p̂x
〉2) 1

2
and �x =

(〈
x̂2
〉− 〈x̂ 〉2) 1

2
, and calculate

explicitly the relevant mean values.)
3.11 Find the energy eigenfunctions and eigenvalues for a particle confined in a three-

dimensional box, i.e. for a potential

V (x , y, z) =
{

0 0 < x < a, 0 < y < b, 0 < z < c,
∞ otherwise.

(Hint: Use the three-dimensional generalization of the stationary Schrödinger equa-
tion (3.41) and take advantage of the fact that the Hamiltonian may be written as
Ĥ = Ĥ1(x) + Ĥ2(y) + Ĥ3(z).)
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3.12 Write the generic transformation for an asymmetric beam splitter, with reflection
coefficient R and transmission coefficient T.

3.13 Given an initial superposition |ψ〉 =∑ j c j
∣∣ψ j

〉
of energy eigenstates

∣∣ψ j
〉

(with

c j 	= 0 for at least two values of j) such that Ĥ
∣∣ψ j

〉 = E j
∣∣ψ j

〉
, show that under

unitary time evolution Ût = e−
ı
h̄ Ĥ t , |ψ〉 cannot evolve to a component |ψk〉 .

3.14 Generalize the previous proof to any superposition and any unitary operator. In other
words, prove that no unitary transformation Û exists that can change any (arbitrary)
superposition state |&〉 =∑ j c j

∣∣ψ j
〉

(with c j 	= 0 for at least two values of j and
〈ψk | ψl〉 = δlk) into one of its components.

3.15 Prove Eq. (3.104).
3.16 Derive Eq. (3.107) by differentiating Eq. (3.103b).
3.17 Show that, if Ô and Ô ′ are two constants of motion (i.e. [Ô , Ĥ ] = [Ô ′, Ĥ ] = 0),

then their commutator [Ô , Ô ′] is also a constant of motion (see also Prob. 1.4).
3.18 Show that if Ô and Ô ′ are two observables such that [ÔS, (Ô

′
)S] = C , then one also

has that [ÔH, (Ô
′
)H] is equal to the same constant C .

3.19 Derive Eq. (3.117).
3.20 Derive Eq. (3.119).
3.21 Derive Eq. (3.128).

(Hint: Start from Eq. (3.127) and make use of the result of Prob. 2.27.)
3.22 Prove that, given the commutator [t̂ , Ĥ ] = −ı h̄, we have

Ĥeıαt̂
∣∣ψE

〉 = (E − αh̄) eıαt̂
∣∣ψE

〉
,

where
∣∣ψE

〉
is an eigenstate of Ĥ with eigenvalue E .

(Hint: Use the result of Prob. 2.25.)

Further reading

Energy–time uncertainty relation

Bohr, Niels, Discussion with Einstein on epistemological problems in atomic physics, in
Albert Einstein. Philosopher-Scientist, A. Schilpp (ed.), La Salle, IL: Open Court, 1949;
3rd edn. 1988, pp. 201–41.

Time operator

Grot, N., Rovelli, C., and Tate, R. S., Time-of-arrival in quantum mechanics. Physical
Review, A54 (1996), 4676–90.



4 Examples of quantum dynamics

In this chapter we shall discuss some elementary examples of quantum dynamics. In
Sec. 4.1 we shall go back to the problem of a particle in a box, this time with finite potential
wells. In Sec. 4.2 we shall analyze the effects of a potential barrier on a moving particle.
In Sec. 4.3 we shall consider another quantum effect which has no analogue in the clas-
sical domain: a quantum particle can tunnel in a classically forbidden region. In Sec. 4.4
perhaps the most important dynamical typology (with a wide range of applications) is con-
sidered: the harmonic oscillator. Finally, in Sec. 4.5 several types of elementary fields are
considered.

4.1 Finite potential wells

In Sec. 3.4 we have considered what is perhaps the simplest example of quantum dynamics,
that is a free particle moving in a box with infinite potential walls. Consider the motion of,
say, a one-dimensional particle in a rectangular potential well with finite steps. In Fig. 4.1
we show two of such potentials, symmetric in (a) and asymmetric in (b).

Let us consider the case pictured in Fig. 4.1(a) and indicate with V0 the energy of the
potential well. We may therefore distinguish three regions on the x-axis: region I (x < 0),
where the potential energy is equal to V0; region II (0 ≤ x ≤ a), where the particle is
free; and region III (x > a), where the potential energy is again equal to V0. From the
discussion in Sec. 3.2 it is straightforward to conclude that the energy eigenvalues will
have a lower bound, that is E > Vmin = 0. Moreover, for a particle’s energy E > V0 we
shall have unbounded motion and therefore unbound states, corresponding to a continuous
spectrum. For the discrete spectrum (0 < En < V0), we may write the Schrödinger equa-
tion separately for the three regions. For region II, we shall have

ψ ′′(x) + k2ψ(x) = 0, (4.1a)

while, for regions I and III,

ψ ′′(x) − k′2ψ(x) = 0, (4.1b)

where

k =
√

2m E

h̄
and k′ =

√
2m(V0 − E)

h̄
. (4.2)
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�Figure 4.1 Schematic drawing of symmetric (a) and asymmetric (b) one-dimensional potential wells.

are > 0. The general solution of Eqs. (4.1) will be of the form⎧⎪⎨⎪⎩
ψI(x) = NIek′x x < 0,
ψII(x) = NII sin(kx + φ) 0 ≤ x ≤ a,
ψIII(x) = NIIIe−k′x x > a.

(4.3)

The sign of the exponents in ψI(x) and ψIII(x) is dictated by the fact that ψ has to tend to
zero when x →±∞. We now have to impose that ψ(x) and its derivative ψ ′(x) be contin-
uous and single-valued on the whole line. This gives four conditions for the continuity of
ψ and ψ ′ at x = 0 and x = a, i.e.⎧⎪⎪⎨⎪⎪⎩

ψI(0) = ψII(0),
ψ ′

I (0) = ψ ′
II(0),

ψII(a) = ψIII(a),
ψ ′

II(a) = ψ ′
III(a),

(4.4)

which, using Eqs. (4.3), translate into⎧⎪⎪⎨⎪⎪⎩
NI = NII sinφ,
NIk′ = NIIk cosφ,
NII sin(ka + φ) = NIIIe−k′a ,
NIIk cos(ka + φ) = −NIIIk′e−k′a .

(4.5)

These equations give the two conditions

tanφ = k

k′
and tan(ka + φ) = − k

k′
, (4.6)

or

φ = −ka − arctan
k

k′
+ nπ

kh̄√
2mV0

and φ = arctan
k

k′
, (4.7)

where n is a positive integer and φ must be determined to be within a multiple of π . In
order to address this arbitrariness, we force φ to lie within the interval (−π/2,+π/2).
The requirements in Eqs. (4.7) are satisfied if and only if the rhss are equal. This can be
achieved only for certain discrete values kn of k, satisfying

nπ − ka = 2 arctan
k

k′
, (4.8)
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k

y

kmax

nπ

(n – 1)π

y = ka
y = nπ – 2 arctan (k/k¢)

kmin

�Figure 4.2 We can find a solution of Eq. (4.8) for a given value of n if and only if the line y = ka crosses the
curve y = nπ − 2 arctan(k/k′). If the line y = ka crosses several curves (each with a different
value of n), then there are several discrete eigenvalues.

where the arctan function has values in the interval [0,π/2]. In order to find a solution,
we observe that arctan(k/k′) = 0 when k = kmin = 0 (i.e. E = 0), and arctan(k/k′) = π/2
when k = kmax = √

2mV0/h̄ (i.e. E = V0). The situation is depicted in Fig. 4.2. The curve
y = nπ − 2 arctan(k/k′) and the line y = ka will intersect once if and only if

kmaxa ≥ (n − 1)π , (4.9)

that is √
2mV0

h̄
a ≥ (n − 1)π . (4.10)

The roots kn of Eq. (4.8) determine the energy eigenvalues En = h̄2k2
n/2m. It is also clear

that these eigenvalues will be arranged in increasing order of n, until the line y = ka ceases
to cross the above-mentioned curve. The number of energy eigenvalues is therefore finite.
The normalization condition (see Eq. (2.108))∫ +∞

−∞
dx |ψ(x)|2 = 1, (4.11)

together with Eqs. (4.5), would allow us to determine the parameters NI , NII , NIII ,
and φ in Eqs. (4.3). We omit the straightforward algebra for the sake of space and only
mention that Eq. (4.11) should be written as∫ +∞

−∞
dx |ψ(x)|2 =

∫ 0

−∞
dx |ψI(x)|2 +

∫ a

0
dx |ψII(x)|2 +

∫ +∞

a
dx |ψIII(x)|2 . (4.12)

The first three eigenfunctions and the corresponding probability densities are shown in
Fig. 4.3. We would like to stress that the present situation has a further point of departure
from the classical analogue, with respect to the particle in a box (with infinite potential
walls): besides energy quantization, the wave function has a support even in regions I and
III. This means that there is non-zero probability of finding the quantum particle in these
classically forbidden regions (see property (iii) of Subsec. 3.2.1). Here, we see an example
of a genuine quantum phenomenon, namely tunnelling, which will be further discussed in
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�Figure 4.3 (a) Wave functions and (b) probability densities for the first three eigenfunctions for the
symmetric finite-well potential.

Sec. 4.3. It should also be noted that, as anticipated in Subsec. 3.2.3, the number of nodes
of the eigenfunction corresponding to the n-th eigenvalue En is equal to n − 1.

A final comment concerning the continuity of ψ(x) and its spatial derivatives is in order
here. The time-independent Schrödinger equation

− h̄

2m
ψ ′′(x) + V (x)ψ(x) = Eψ(x) (4.13)

contains ψ(x) and its second derivative. Moreover,

ψ ′(x) =
∫ x

b
dx ′ψ ′′(x ′). (4.14)

If the potential energy V (x) is stepwise continuous, then from Eq. (4.13) also ψ ′′(x) must
be stepwise continuous and, from Eq. (4.14), ψ ′(x) turns out to be continuous (see also
Fig. 4.4). However, this argument does not hold if the height of the potential step is infi-
nite. This explains why, despite what we have done in the present section, in Sec. 3.4 we
did not impose the continuity of ψ ′(x) at x = 0 and x = a. The discussion above can be
summarized by saying that for a one-dimensional particle, if the potential energy V (x) is
stepwise continuous, with finite jumps, then also ψ ′′(x) is stepwise continuous, whereas
ψ ′(x) and ψ(x) are continuous.
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ψ ″ (x)

xx0

ψ ′ (x)

xx0

(a) (b)

�Figure 4.4 An enlargement of the first two derivatives of a wave function near the discontinuity x = x0. If a
wave function ψ(x) has its second derivative ψ ′′(x) stepwise continuous, its first derivative ψ ′(x)
(and the wave function itself) must be continuous.

4.2 Potential barrier

Let us consider the generic case of an incoming one-dimensional particle (coming, say,
from −∞ and moving rightwards) which encounters some kind of potential barrier.

In this context, it is useful to introduce the concept of quantum current and current
density. For this purpose, let us recall the three-dimensional time-dependent Schrödinger
equation in the coordinate representation (Eq. (3.14))

ı h̄
∂

∂t
ψ(r, t) = Ĥψ(r, t), (4.15)

and its complex conjugate

− ı h̄
∂

∂t
ψ∗(r, t) = Ĥψ∗(r, t), (4.16)

and consider the expression

ı h̄
∂

∂t

∫
V

dVρ(r, t) =
∫

V
dV

(
ψ∗(r, t)Ĥψ(r, t) − Ĥψ∗(r, t)ψ(r, t)

)
, (4.17)

where ρ(r, t) = ψ∗(r, t)ψ(r, t) = |ψ(r, t)|2 and ρ(r, t)dV is the probability of finding
the particle in the infinitesimal volume dV (see also Eq. (2.108)), and where V is any
finite region of the three-dimensional configuration space. To work out Eq. (4.17), we may
take advantage of the fact that the Hamiltonian Ĥ is made of two parts, the kinetic energy
and the potential energy. In the position representation the former is represented by the
Laplacian �, whereas the latter is a multiplicative factor. This last part acts in the same
way on ψ(r, t) and ψ∗(r, t) and disappears in the difference, so that

ı h̄
∂

∂t

∫
V

dVρ(r, t) = − h̄2

2m

∫
V

dV
[
ψ∗(r, t)�ψ(r, t) − (�ψ∗(r, t)

)
ψ(r, t)

]
= − h̄2

2m

∫
V

dV∇ · [ψ∗(r, t)∇ψ(r, t) − (∇ψ∗(r, t)
)
ψ(r, t)

]
. (4.18)
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Rearranging the terms, we arrive at∫
V

dV
{
∂

∂t
ρ(r, t) + h̄

2ım
∇ · [ψ∗(r, t)∇ψ(r, t) − (∇ψ∗(r, t)

)
ψ(r, t)

]} = 0, (4.19)

where the quantity

J = h̄

2ım

[
ψ∗(r, t)∇ψ(r, t) − (∇ψ∗(r, t)

)
ψ(r, t)

]
(4.20)

is the density of probability current. Since Eq. (4.19) must hold for any finite integration
region V, it follows that the integrand has to be zero, i.e.

∂

∂t
ρ(r, t) +∇ · J = 0. (4.21)

The validity of this eqation could be directly checked by computing explicitly all the terms
and verifing that they cancel. Equation (4.21) is the quantum continuity equation (see also
Eq. (1.21)) and expresses the local conservation of probability. It is formally identical (and
has a similar meaning) to the electrical current continuity equation, where ρ becomes the
charge density and J the electrical current density.1

Two things should be noted in connection with Eq. (4.20). First, J is a real quantity since
it may also be written as

J = �
(
ψ∗(r, t)

h̄

ım
∇ψ(r, t)

)
. (4.22)

Second, the quantity (h̄/ım)∇ is nothing but the operator v̂ = p̂/m, so that Eq. (4.22) is
fully analogous to the definition J = ρv of the classical electrical current density.

4.2.1 Finite potential barr ier

Let us now consider the case of a finite potential barrier, schematically depicted in Fig. 4.5.
We may represent the incoming particle as a wave packet (see Box 2.6: p. 80), However,
for the sake of simplicity we consider here a simple plane-wave component of the wave
packet. For E > V0 and at −∞ and +∞, the wave function has to be of the form e±ıkx

(see Sec. 4.1). It is interesting to apply the previously developed formalism of probability
current density to this case. Crudely speaking, we have an incoming current that hits a
potential barrier. The outcome of this dynamical process will be an outgoing current (mov-
ing towards +∞) plus a reflected current (moving back to the left). This phenomenon
is strictly quantum-mechanical. In fact, classically an incoming particle would be either
transmitted or reflected by a potential barrier, depending on whether its energy is greater
than V0 or not. As we shall see, quantum-mechanically the particle is partially transmitted

1 See [Jackson 1962, 2, 168–69].
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V (x)

x

V0

�Figure 4.5 A wave packet entering from the left encounters a potential barrier with height V0. For a
splendid one-dimensional and interactive simulation of a wave packet impinging on a rectangular
barrier (but a simulation of the two-slit experiment is also possible), with different tuning
possibilities, see the web page www.ph.biu.ac.il/rapaport/java-apps/quant1d.html. For the
two-dimensional case see also www.ph.biu.ac.il/rapaport/java-apps/quant2d.html.

and partially reflected. Obviously, when considering a wave packet, this happens for any
component wave of the packet. Let us take a generic wave function

ψ(x) = N+eıkx , (4.23)

where N+ is some (complex) normalization factor, and compute the current density

J = h̄

2mı

[
ıkψ(x)ψ∗(x) + ıkψ∗(x)ψ(x)

] = h̄k

m
|N+|2. (4.24)

In particular, we may take

ψ(x →+∞)=N+eık1x , (4.25a)

ψ(x →−∞)=N ′
+eık2x +N−e−ık2x , (4.25b)

where in the last equation the term eık2x describes the particle moving to the right and
e−ık2x describes the particle reflected at the potential barrier. N ′

+ and N− are again two
normalization factors, and without any loss of generality we may take N ′

+ = 1. Moreover
(see Sec. 4.1), we also have

k1 = 1

h̄

√
2m(E − V0), k2 = 1

h̄

√
2m E . (4.26)

Given the definition of J , it is possible to define a transmission coefficient T2 and a
reflection coefficient R2 that represent the probability of transmission and reflection,
respectively2

T2 = JT

JI
, R2 = JR

JI
, (4.27)

2 Usually, in the literature these are called T and R, respectively. Here, we adopt a slightly different convention
for the sake of the uniformity with other contexts (see, for instance, Subsec. 2.3.4).
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�Figure 4.6 Schematic drawing of the closed surface to compute used the flux of J: n1 and n2 are two versors.
Transmitted and reflected currents contribute positively to the flux, whereas the incident current
contributes negatively.

where JI is the incident current density, JT is the transmitted current density and finally JR

is the reflected current density. Recalling Eq. (4.24), we have

JI = h̄k2

m
, JT = h̄k1

m
|N+|2 , JR = h̄k2

m
|N−|2 , (4.28)

and therefore

T2 = k1

k2
|N+|2 , R2 = |N−|2 . (4.29)

Since the sum of the reflected and transmitted current densities should be equal to the
incident current density, it is then clear that

T2 + R2 = 1 and |N−|2 = 1 − k1

k2
|N+|2 . (4.30)

This result can also be derived from the continuity equation (4.21). In fact, we are consid-
ering a stationary situation, i.e. a situation where ∂ρ/∂t = 0 and therefore ∇ · J = 0. For
the Stokes theorem, this means that the flux of J through any closed surface must vanish.
In particular, we may consider the infinite “surface” shown in Fig. 4.6 and compute the
total flux of J through the surface. Then, we have

− k2 + |N−|2 k2 + |N+|2 k21 = 0. (4.31)

On dividing all terms by k1, we obtain T2 + R2 = 1.

4.2.2 δ -shaped potential barr ier

The particular cases of square barriers are considered in Probs. 4.3 and 4.4. A very special
example is represented by a δ-function-like potential barrier (see Fig. 4.7), i.e.

V (x) = Cδ(x), with C > 0. (4.32)

The peculiarity of this example lies in the fact that the barrier is both infitely high and
infinitesimally wide. We may then divide the entire line into two different regions, I (x < 0)
and II (x > 0). In both regions the potential energy V (x) is zero, and therefore we may
write the wave function of the particle as

ψ(x) =
{
ψI(x) x ≤ 0,
ψII(x) x ≥ 0,

(4.33)
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�Figure 4.7 Potential barrier given by a delta function δ(x) times a constant C > 0.

with

ψI(x)= eıkx + A1e−ıkx , (4.34a)

ψII(x)= A2eıkx , (4.34b)

where the energy of the incoming particle is given by

E = h̄2

2m
k2. (4.35)

The Schrödinger equation takes the form

− h̄2

2m
ψ

′′
(x) + Cδ(x)ψ(x) = Eψ(x). (4.36)

Rewriting the constant C as

C = h̄2

2m
η, (4.37)

Eq. (4.36) takes the simpler form

ψ
′′
(x) =

[
ηδ(x) − k2

]
ψ(x). (4.38)

Integrating Eq. (4.38) once gives

ψ
′
(x) =

x∫
−∞

dy
[
ηδ(y) − k2

]
ψ(y). (4.39)

However, we know that (see Eq. (2.23c))

b∫
a

dyδ(y − y0) f (y) =
{

f (y0) if y0 ∈ (a, b),
0 otherwise,

(4.40)

and therefore

ψ
′
I (0)=−k2

0∫
−∞

dyψ(y), (4.41a)

ψ
′
II(0)=−k2

0∫
−∞

dyψ(y) + ηψ(0). (4.41b)
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Equations (4.41) tell us that the δ-shaped potential induces a finite discontinuity at x = 0
in the first derivative of the wave function. As a consequence, the continuity equations for
the wave function and its first derivative at x = 0 in this case read

ψII(0)=ψI(0), (4.42a)

ψ
′
II(0) − ψ ′

I (0)= ηψ(0). (4.42b)

Recalling Eqs. (4.34), Eqs. (4.42) translate into{
A2 = 1 + A1,

ık (A2 + A1 − 1) = ηA2,
(4.43)

that represents a linear system of two equations for the two unknowns A1 and A2, whose
solution is given by

A1 = η

2ık − η and A2 = 2ık

2ık − η . (4.44)

Finally, it is possible to compute the transmission and reflection probabilities, that is,

T2 = |A2|2 = 4k2

4k2 + η2
, (4.45a)

R2 = |A1|2 = η2

4k2 + η2
. (4.45b)

These probabilities teach us that, for any finite η, 0 < T2 < 1. For η = 0, we obviously
have R = 0 and T = 1.

4.3 Tunneling

In Sec. 3.4 we have seen that the energy eigenfunctions of a particle in a box vanish out-
side the interval (0, a). This is due to the fact that the potential walls at x = 0 and x = a
have infinite height and their width is not infinitesimal. In other words, as in classical
mechanics, the particle is not able to penetrate the infinite potential barrier. However, the
situation changes dramatically in the cases considered in Sec. 4.1 and in Subsec. 4.2.2.
When the potential well is finite even for particle energies which are smaller than V0

(discrete spectrum) (see Fig. 4.1(a)), or when the width of the infinite potential barrier
is infinitesimal (see Fig. 4.7), there is a finite probability that the particle is found out-
side the classically allowed region. In the first case, the particle may be found outside the
region II (0 ≤ x ≤ a) (see Property (iii) of Subsec. 3.2.1). This is indicated by the fact that
the wave function extends into the regions I (x < 0) and III (x > a), as seen in Eqs. (4.3)
and in Fig. 4.3, even though they decrease exponentially outside region II. In the second
case, the incoming particle is both partially trasmitted into region II and partially reflected
back into region I. This phenomenon does not have a classical counterpart and is known
as tunneling or tunnel effect. These expressions reflect the fact that a particle with energy
E < V0 has a finite chance to penetrate (to “tunnel”) into the potential walls, entering the
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�Figure 4.8 Classical turning points and quantum tunneling. (a) Classically, the motion is limited by the
turning points x1 and x2, i.e. it may occur either in the region x < x1 or in the region x > x2. In
other words, the classical particle coming from the left cannot penetrate the potential barrier
beyond x1. (b) In the quantum-mechanical case, the particle may penetrate the barrier beyond x1

and even re-emerge beyond x2. In the figure, the real part of the wave function is qualitatively
shown.

classically forbidden regions. This phenomenon is symmetric to that considered in Sub-
sec. 4.2.1, where a particle with E > V0, which would be classically transmitted through
the barrier, quantum-mechanically is partially reflected. Tunneling is a consequence of the
very structure of quantum mechanics. In fact, in classical mechanics a particle cannot enter
a forbidden region (it has to be reflected at the turning points) because otherwise its kinetic
energy would become negative, which is clearly impossible.

In order to calculate the tunneling probability, one has to sum the contributions given
by the integrals of the square modulus of the wave function in every classically forbidden
region. In the example given in Sec. 4.1, for instance, for E < V0 the tunneling probability
would be given by

℘T =
∫ 0

−∞
dx |ψI(x)|2 +

∫ +∞

a
dx |ψIII(x)|2 . (4.46)

There is, however, a different situation where tunneling plays an important role. Let us
consider the case depicted in Fig. 4.8(a): a particle with energy E0 incoming from the
left encounters a bell-shaped potential V (x). Classically, the particle would be reflected
at the turning point x = x1 and could not enter the forbidden region x > x1. Quantum-
mechanically, instead, in the regions where x →±∞, the wave function must be a plane
wave of the type eıkx , while inside the classically forbidden region it will decrease expo-
nentially. This situation is qualitatively shown in Fig. 4.8(b), which clearly displays the
fact that a quantum particle can penetrate (with an exponentially decreasing probability)
from the left into the right region.

A remarkable example of the tunneling phenomenon is represented by the emission of
the α-particles by radioactive nuclei. α-particles are nuclei of helium (with two protons and
two neutrons) and their potential energy inside the parent nucleus is schematically drawn in
Fig. 4.9. This potential comes about as a result of the 1/r repulsive Coulomb potential (for
large r ) and the short-range nuclear attractive potential (for small r ). Normally, α-particles
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�Figure 4.9 Tunneling of α-particles. (a) Repulsive Coulomb potential between the protons in the nucleus. (b)
Short-range attractive nuclear (strong-force) potential. (c) The resulting potential for α-particles is
given by the combination of (a) and (b). The origin represents the center of the nucleus and r the
distance of the α-particles from this center. Denoting with E0 the energy of the α-particle, r1 and
r2 are the classical turning points. The potential V(r) has a maximum for r1 < r < r2 and then
decreases as r → ∞.

have an energy E0 smaller than the maximum of this potential and therefore, classically,
could not be able to escape the region 0 < r < r1. As a matter of fact, they are emitted
and enter the region r > r2 with a positive kinetic energy in agreement with the genuinely
quantum tunneling effect. Note that the tunnel effect may be very small and the mean life
extraordinarily long.

�Box 4.1 Relativity and tunneling time

In quantum mechanics there are in principle no limitations on the possible speed of quantum
systems. This is a consequence of the fact that quantum mechanics is built on the background
of classical mechanics (see Pr. 2.3: p. 72) and in the framework of Galilean relativity (see
Sec. 3.3), for which there is no invariant velocity and hence no upper limit of speed. This has
raised the question of whether there are any situations in which there is actually a violation
of relativity. Tunneling seems to represent such a situation [Chiao/Steinberg 1997] because
the phase velocity, i.e. the velocity vφ = ω/k (see Box 2.6: p. 80), at which the zero-crossing
of the carrier wave would move, and the group velocity dω/dk could be superluminal. In
fact, this effect is not in contradiction with Einstein causality if we take into account the fact
that the outgoing wave is always a fraction of the input wave. In other words, the tunneling
probability is usually much smaller than one, so that the present effect cannot be used to
actually transmit a signal at superluminal speed [Stenner et al. 2003].

�Box 4.2 Scanning tunneling microscopy

In 1981, Gerd Binnig and Heinrich Rohrer invented a new type of imaging technique, the
scanning tunneling microscope (STM). For this, they received the Nobel Prize for physics in
1986. It is nowadays a widespread surface science technique owing its popularity to the
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wide range of possible applications, and the ability to obtain a direct real-space image of
conducting surfaces. Its most most important feature is the high spatial resolution of the
order of 10−11 m, which allows users to scan and even to manipulate individual atoms (see
Fig. 4.10).

This technique does not make use of any lenses, light, or electron sources. Rather, it is
the tunneling effect which provides its physical foundation. In order to obtain an image of a
surface, a small voltage is applied between a sharp metallic tip and the investigated surface,
which are separated by a vacuum barrier. If the thickness of the potential barrier is of the
order of a few atomic diameters, electrons are able to tunnel through it and a current will
flow. This electric current depends exponentially on the barrier thickness. Hence, by scanning
the tip over the surface at a constant current or barrier thickness, the record of the vertical tip
motion will reflect the surface structure. The adoption of this technique opened the way to a
large family of instruments generally known as “scanning probe microscopes.”

�Figure 4.10 STM image of the regular arrangement of carbon atoms at the surface of graphite. The spatial
extension of the region is 1 nm. Image adapted from the web page
www.manep.ch/en/technological-challenges/spm.html.
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�Figure 4.11 Potential and energy levels (see Eq. (4.61)) of the harmonic oscillator. The action of the creation
and annihilation operators (see Subsec. 4.4.2) is illustrated by the arrows.

4.4 Harmonic osci l lator

Up to now we have solved some simple dynamical problems in quantum mechanics:
The free particle, the particle in a box, and that of a one-dimensional particle subjected
to several types of potential barriers and wells. The next simplest problem is the har-
monic oscillator. In the one-dimensional case, this is a particle subjected to small linear
oscillations and, as we shall see, will serve as a guidance tool for the solution of more
complicated problems.3 In fact, we shall find applications of the solutions and the methods
discussed here to the problems of quantum measurement (in Ch. 9) and of quantization of
the electromagnetic field (in Ch. 13).

The potential energy of a harmonic oscillator is given by V (x) = 1
2 mω2x2 (see

Fig. 4.11), where m is the mass and

ω = 2πν (4.47)

is the angular frequency of the oscillator. Therefore, the quantum Hamiltonian we have to
solve has the form

Ĥ = p̂2
x

2m
+ 1

2
mω2 x̂2 = − h̄2

2m

∂2

∂x2
+ 1

2
mω2x2, (4.48)

from which we derive the Schrödinger equation for the one-dimensional harmonic
oscillator

3 The harmonic oscillator has always been considered as the simplest non-trivial problem and the basic model
for any mechanical paradigm. We remember that, at the very beginning of classical physics, Galileo Galilei
found (1583) a law that described the isochronous character of small oscillations of a simple pendulum:

τ = 2π
√

l
g ,

where τ is the period of the small oscillation, l is the length of the pendulum, and g is the acceleration due to
gravity.
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ψ ′′(x) + 2m

h̄2

(
E − 1

2
mω2x2

)
ψ(x) = 0. (4.49)

From a qualitative point of view, we may already say that the probability of finding the
particle at x →±∞ must tend to zero, since lim

x→±∞ V (x) = ∞ (see property (iii) of Sub-

sec. 3.2.1). The harmonic oscillator spectrum will then be similar to that of a particle in a
box (see Sec. 3.4 and Fig. 3.6) and we expect that also in this case the spectrum will be
discrete with no degenerate levels (see property (iii) of Subsec. 3.2.2 and property (i) of
Subsec. 3.2.3).

Given the importance of this system and the fact that it represents an ideal example of
how quantum mechanics works in practice, in the following subsections we shall solve the
linear oscillator according to two different methods.

4.4.1 Heisenberg’s solut ion

First, we shall discuss the solution given by Werner Heisenberg in 1925 in the context of
matrix mechanics [Heisenberg 1925] (see also Subsec. 1.5.7). We start from Eq. (4.48) and
work in the Heisenberg picture (see Subsec. 3.6.1), choosing a basis {|n〉 } in which Ĥ is
diagonal (an eigenbasis of Ĥ ):

Ĥ |n〉 = En |n〉 , (4.50)

where the energy eigenvalue En corresponds to the eigenvector |n〉 , i.e.

En = Hnn =
〈
n
∣∣∣Ĥ ∣∣∣ n〉 , (4.51)

since, as we know, 〈m | n〉 = δnm for every energy eigenvectors |m〉 , |n〉 . In order to solve
the equations of motion, we preliminarily compute the matrix elements Ȯnm of the time
derivative of a generic operator Ô given its matrix elements Onm . If Ô does not explicitly
depend on time, from Eq. (3.108)

d

dt
Ô(t) = 1

ı h̄
[Ô(t), Ĥ ], (4.52)

we have

Ȯnm =
〈
n
∣∣∣ ˆ̇O∣∣∣m〉 = 〈n ∣∣∣∣ 1

ı h̄
[Ô(t), Ĥ ]

∣∣∣∣m〉 = 1

ı h̄

〈
n
∣∣∣(Ô Ĥ − Ĥ Ô

)∣∣∣m〉
= 1

ı h̄
(Em − En)

〈
n
∣∣∣Ô∣∣∣m〉 = ı

En − Em

h̄
Onm

= ıωnm Onm , (4.53)

where we have made use of Eq. (4.50) and where the ωnm are Bohr’s quantized angular
frequencies, given by (see Eq. (1.76))

ωnm = En − Em

h̄
. (4.54)
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Our first aim is now to find the energy levels of the harmonic oscillator. To reach our goal,
let us consider the quantum counterpart of the Hamilton equations (3.126) and (3.128),
which, as we have seen, hold at an operatorial level, i.e.

ˆ̇x = ∂ Ĥ

∂p
= p̂x

m
and ˆ̇px = −∂ Ĥ

∂x
= −mω2 x̂ . (4.55a)

From Eqs. (4.55) we obtain

ˆ̈x + ω2 x̂ = 0. (4.56)

Heisenberg suggested that this relation must hold for every matrix element, that is( ˆ̈x + ω2 x̂
)

nk
= ˆ̈xnk + ω2 x̂nk = 0, (4.57)

where

xnk =
〈
n
∣∣x̂∣∣ k〉 = ∫ dx 〈n | x〉 x 〈x | k〉

=
∫

dxψ∗
n (x)xψk(x). (4.58)

The function ψ j (x) = 〈x | j〉 is the eigenfunction corresponding to the eigenvalue E j . In
order to obtain the matrix elements of ˆ̈x we should differentiate Eq. (4.53) once again
with respect to time, which yields

ẍnm = −ω2
nm xnm . (4.59)

We may then rewrite Eq. (4.57) as(
ω2 − ω2

nk

)
xnk = 0. (4.60)

It is clear that the operator x̂ cannot have all the matrix elements equal to zero. From
Eq. (4.60), xnk can be different from zero only when the quantity ω2 − ω2

nk is equal to
zero, i.e. when ωnk = ±ω, or, using Eq. (4.54), when

En − Ek = ±h̄ω. (4.61)

Eq. (4.61) teaches us that the energy levels of a harmonic oscillator are equally spaced (see
Fig. 4.11). Equation (4.61) also allows us to order the levels in terms of growing energy
values, i.e. E j+1 − E j = h̄ω for any value of j > 0.

Since Ĥ is real, without loss of generality we may choose a real set of eigenfunctions
ψn(x) = 〈x | n〉 = ψ∗

n (x) (see Eq. (4.48) and property (iv) of Subsec. 3.2.2). Moreover, Ĥ
is a positive definite operator, i.e.

Hnn =
〈
n
∣∣∣Ĥ ∣∣∣ n〉 = ∫ dxψ∗

n (x)Ĥψn(x) =
∫

dxψn(x)Ĥψn(x) > 0. (4.62)

This can be shown by the following argument. Since the potential energy V (x) > 0, to
prove Eq. (4.62) we only have to ascertain that 1/2m

〈
n
∣∣ p̂2

x

∣∣ n〉 > 0. We then have〈
n
∣∣∣ p̂2

x

∣∣∣ n〉 = [ 〈n | p̂x
] [

p̂x |n〉
] = [ 〈n | p̂†

x

] [
p̂x |n〉

] ≥ 0, (4.63)

where we have made use of the fact that p̂x is Hermitian. The fact that Ĥ is positive definite
tells us that there is a minimum value for E , which can be taken for n = 0 (see Fig. 4.11).
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Going back to Eq. (4.60), we may conclude that xnk 	= 0 only if k = n − 1 or k = n + 1.
Loosely speaking, only neighboring levels “talk” to each other. Moreover, we observe that
xnk (given by Eq. (4.58)) is real, because we have chosen a real eigenbasis and x̂ is a
real operator. On the other hand, x̂ is also Hermitian, and, as a consequence, it must be
symmetric too, i.e. xnk = xkn . We are now in a position to calculate all the non-zero matrix
elements of x̂ , i.e. xn,n−1 and xn,n+1. For this purpose we may exploit the Heisenberg
commutation relation (2.173a) to arrive at

x̂ ˆ̇x − ˆ̇x x̂ = ı
h̄

m
Î , (4.64)

or ∑
l

(xnl ẋlk − ẋnl xlk) = ı
h̄

m
δnk , (4.65)

which implies ∑
l

(xnl ẋln − ẋnl xln) = ı
h̄

m
. (4.66)

Using Eq. (4.53), we may write Eq. (4.66) as∑
l

(xnlωln xln − ωnl xnl xln) = h̄

m
, (4.67)

where ω is an antisymmetric matrix since (from Eq. (4.54)) ωnm = −ωmn . Hence,
2
∑

l x2
nlωln = h̄/m. Since l can only take the values l = n − 1 or l = n + 1, we finally

obtain

x2
n,n−1ωn−1,n + x2

n,n+1ωn+1,n = h̄

2m
. (4.68)

Furthermore, ωn+1,n = ω and ωn−1,n = −ω, so that we may start with n = 0 and construct
the matrix element

x01 =
√

h̄

2mω
. (4.69)

From the knowledge of x01 and proceeding recursively for growing values of n, we find
the general relation (see Prob. 4.6)

xn,n+1 =
√

(n + 1)h̄

2mω
, (4.70)

which permits to find all the desired matrix elements of the position operator. The knowl-
edge of the matrix elements of x̂ allows to find the matrix elements of all the other relevant
operators (e.g. p̂x = m ˆ̇x , Ĥ , etc.). In particular,

En = Hnn = 1

2
m
(

ẋ2
)

nn
+ 1

2
mω2

(
x2
)

nn

= 1

2
m
∑

l

ẋnl ẋln + 1

2
mω2

∑
l

xnl xln

= −1

2
m
∑

l

ωnlωln xnl xln + 1

2
mω2

∑
l

xnl xln , (4.71)
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where we have used ẋnl = ıωnl xnl (see Eq. (4.53)). Since xnl is symmetric and ωnl

antisymmetric, we have

En = 1

2
m
∑

l

(
ω2

nl x
2
nl + ω2x2

nl

)
= 1

2
m
(
ω2xn,n+1 + ω2xn,n−1 + ω2xn,n+1 + ω2xn,n−1

)
= mω2

(
x2

n,n+1 + x2
n,n−1

)
= mω2

(
(n + 1)h̄

2mω
+ nh̄

2mω

)
=
(

n + 1

2

)
h̄ω, (4.72)

where we have made use of Eqs. (4.70) and (4.54). Thus we have found the energy eigen-
values of the harmonic oscillator. We immediately see that they have the desired properties:
they are equally spaced (the energy difference between neighboring levels being h̄ω)
and labelled according to growing values of energy. The minimum energy eigenvalue is
attained for n = 0, and we have E0 = (1/2)h̄ω, which is called the zero-point energy (see
Fig. 4.11). From the discussion above, it appears clear that the quantity h̄ω may be inter-
preted as an energy quantum for a harmonic oscillator of frequency ω (see also Eq. (1.22)):
the oscillator may “jump” from a level j to a level k only when an energy | j − k|h̄ω is
either absorbed ( j < k) or emitted ( j > k).

Now that we have found the energy eigenvalues, the harmonic oscillator problem is
solved. In fact, the knowledge of the matrix elements xnm(t) and ẋnm(t) allows us to cal-
culate any physical quantity at any time. In the next subsection, however, we shall see a
different type of solution of the harmonic oscillator problem, in which, in addition to the
eigenvalues, we shall also determine the eigenfunctions.

4.4.2 Algebraic solut ion

It is very interesting and instructive to realize that the harmonic oscillator problem can
be solved by exploiting the Heisenberg commutation relations only. To see how this is
possible, let us introduce the operators

â=
√

m

2h̄ω

(
ωx̂ + ı ˆ̇x

)
, (4.73a)

â† =
√

m

2h̄ω

(
ωx̂ − ı ˆ̇x

)
, (4.73b)

which are called annihilation (lowering) and creation (raising) operators, respectively. It
should be emphasized that these operators are not Hermitian – one is the Hermitian con-
jugate or adjoint (see p. 46) of the other – and therefore are not observables (see Th. 2.1:
p. 46). They possess the important property (see Prob. 4.9)

[
â, â†

]
= Î . (4.74)



159 4.4 Harmonic osc i l lator
�

The reason for their names lies in the way they act on the energy eigenstates. In particular,
we have

a†
nk =

〈
n
∣∣∣â†
∣∣∣ k〉 = √ m

2h̄ω
[ωxnk − ı (ıωnk xnk)] =

√
m

2h̄ω
(ω + ωnk) xnk . (4.75)

We already know that xnk is different from zero only when k = n ± 1. However, for k =
n + 1, ωn,n+1 = −ω and therefore a†

n,n+1 = 0. The only non-zero matrix element of â† is

then a†
n,n−1, for which we have (see Eq. (4.70))

ωn,n−1 = ω and xn,n−1 =
√

nh̄

2mω
. (4.76)

It follows that

a†
nk = δk,n−1

√
n. (4.77a)

Similarly, we have

ank = δk,n+1
√

n + 1. (4.77b)

Let us consider the product operator

â†â = m

2h̄ω

(
ωx̂ − ı ˆ̇x

) (
ωx̂ + ı ˆ̇x

)
= m

2h̄ω

(
ω2 x̂2 + ıω

m

[
x̂ , p̂x

]+ p̂2
x

)
= 1

h̄ω

(
1

2
mω2 x̂2 + p̂2

x

2m

)
− 1

2
, (4.78)

where we have made use of the commutation relation (2.173a). The term in brackets in
Eq. (4.78) is just the harmonic-oscillator Hamiltonian (4.48). Therefore, we can write

Ĥ = h̄ω

(
â†â + 1

2

)
, (4.79)

or, in terms of matrix elements,

Hnn = h̄ω

[(
a†a

)
nn
+ 1

2

]
, (4.80)

where (
a†a

)
nn
=
∑

k

a†
nkakn = a†

n,n−1an−1,n = n. (4.81)

Therefore, in the energy representation the operator N̂ = â†â is diagonal and its n-th
diagonal term is just equal to n. This is the reason why it is called the number operator, i.e.

N̂ |n〉 = n |n〉 , (4.82)
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which may be considered as the eigenvalue equation of the number operator. On the other
hand, we have

â |n〉 =
∑

m

|m〉 〈m ∣∣â∣∣ n〉 =∑
m

amn |m〉 . (4.83)

In the last summation the only term which contributes to the sum is the term for which
m = n − 1, i.e.

â |n〉 = an−1,n |n − 1〉 = √
n |n − 1〉 . (4.84)

A similar expression may be found for â† |n〉 , so that we have

â |n〉 = √
n |n − 1〉 , â† |n〉 = √

n + 1 |n + 1〉 . (4.85)

Equations (4.85) explain why â and â† are called annihilation (lowering) and creation
(raising) operators, respectively. We may then interpret the set of the harmonic oscillators
eigenvectors as a ladder which we may climb through â† and descend through â. In matri-
cial form, the explicit expressions for the number, annihilation, and creation operators are
given by

N̂ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦, (4.86a)

â=

⎡⎢⎢⎢⎢⎢⎣
0

√
1 0 0 · · ·

0 0
√

2 0 · · ·
0 0 0

√
3 · · ·

0 0 0 · · · · · ·
· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦, (4.86b)

â† =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

· · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎥⎥⎦, (4.86c)

where the only non-zero elements of the annihilation and creation operators are located
immediately above and below the principal diagonal, respectively. The minimum allowed
value for n is zero (see p. 156) and therefore we must have

â |0〉 = 0, or
(
ωx̂ + ı ˆ̇x

)
|0〉 = 0. (4.87)

In the coordinate representation, where ψn(x) = 〈x | n〉, this translates into(
ωx̂ + ı p̂x

m

)
ψ0(x) = 0. (4.88)
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Using the differential form of the operator p̂x in the x-representation (see Subsec. 2.2.4),
we obtain

∂

∂x
ψ0(x) = −mω

h̄
xψ0(x), (4.89)

whose solution is

ψ0(x) = N e
−mω

2h̄ x2

, (4.90)

where N is a normalization constant which can be determined by imposing the condition
(see Prob. 4.14)

∫
dx |ψ0(x)|2 = 1. Finally, we obtain (see Prob. 4.15)

ψ0(x) =
(

mω
π h̄

) 1
4

e−
mω
2h̄ x2

. (4.91)

This is the lowest harmonic oscillator energy eigenfunction. However, the energy pertain-
ing to ψ0(x) is different from zero, since we have taken as zero of the energy scale the
minimum value of the potential energy. In fact, from Eq. (4.79) we obtain

E0 = 1

2
h̄ω, (4.92)

the zero-point energy (see p. 158). Equation (4.91) tells us that the wave function for the
ground state of the harmonic oscillator is a pure Gaussian for which (see Subsec. 2.3.1
and also Prob. 4.20) the uncertainty relation is “saturated,” i.e. we have � p̂x�x̂ = h̄/2.
This is a peculiar feature of Gaussian wave functions in general, and of the ground state of
the harmonic oscillator in particular, and is the reason why such a ground state is called a
coherent state.4 Coherent states have exactly the property in some contexts of minimizing
the uncertainty product and will be treated in much greater detail in Ch. 13.

Now, we have to determine all the other eigenfunctions for n > 0. The simplest way to
do it is by reiterating application of operator â† (following the second Eq. (4.85)). We start
from ψ0(x) and obtain ψ1(x) as

ψ1(x) = â†
ψ0(x). (4.93)

In general, we may find ψn(x) if we know ψn−1(x) thanks to the relation

ψn(x) = 1√
n

â†
ψn−1(x) =

√
m

2h̄nω

(
ωx − h̄

m

∂

∂x

)
ψn−1(x), (4.94)

where we have made use of Eq. (4.73b) and of the second Eq. (4.85). It is convenient to
introduce the new variable

ξ =
√

mω

h̄
x , (4.95)

4 The origin of this name lies in the fact that the harmonic oscillator dynamics (see next subsection) preserves
the shape and the widths of the coherent-state wave function in position and in momentum representations. In
other words, an initial coherent state remains coherent at any subsequent time. For an explicit evidence of this
statement see Prob. 13.23.
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(a) (b)

ψ (ξ) ψ (ξ)

ξ ξ

�Figure 4.12 Eigenfunctions for the one-dimensional harmonic oscillator. (a) Eigenfunctions for n = 0 (solid
line), n = 1 (dashed line), and n = 2 (dot–dashed line). (b) Eigenfunctions for n = 3 (solid line)
and n = 4 (dashed line).

so that we have

ψn(ξ ) = 1√
2n

(
ξ − ∂

∂ξ

)
ψn−1(ξ ) = − 1√

2n
e
ξ2

2
∂

∂ξ

[
e−

ξ2

2 ψn−1(ξ )

]
. (4.96)

It is easy to verify that the solution of Eq. (4.96) is given by (see Fig. 4.12)

ψn(ξ ) = N e−
ξ2

2

2
n
2
√

n!
Hn(ξ ), (4.97)

where N is the normalization constant (see again Prob. 4.14) and Hn is the n-th Hermite
polynomial (see Prob. 4.16), defined by

Hn(ζ ) = (−1)n eζ
2 dn

dζ n
e−ζ 2

. (4.98)

As ψn(ξ ) are eigenfunctions of an Hermitian operator, they also satisfy the orthonormality
and completeness conditions,5 i.e.

+∞∫
−∞

dξψ∗
n (ξ )ψk(ξ )= δnk , (4.99a)

∞∑
n=0

ψ∗
n (ξ )ψn(ξ ′)= δ(ξ − ξ ′). (4.99b)

It is most interesting to note that theψn(ξ ), as the Hermite polynomials (see Prob. 4.16), are
either even (when n is even) or odd (when n is odd). This happens because the Hamiltonian
is invariant under parity transformation x �→ −x . In fact, given Eq. (4.48), we have

Ĥψn(x) = Enψn(x) and Ĥψn(−x) = Enψn(−x). (4.100)

5 See [Gradstein/Ryshik 1981] [Abramowitz/Stegun 1964].
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�Box 4.3 Example of harmonic oscillator’s dynamics

To settle the ideas, let us consider a specific example: a one-dimensional harmonic oscillator
of mass m and angular frequency ω can be found – at time t0 = 0 – to have the energy E1 =
(3/2)h̄ω with probability ℘1 = 3/4 or the energy E2 = (5/2)h̄ω with probability ℘2 = 1/4.
We also know that, initially, the mean value of the position is zero while the mean value
of the momentum is positive. We will find the state vector

∣∣ψ(t)
〉

from which all “future”
information about the system can be extracted. We then have∣∣ψ(0)

〉 = c(0)
1 |1〉 + c(0)

2 |2〉 , (4.101)

where |c(0)
1 |2 = ℘1 and |c(0)

2 |2 = ℘2. We may write c
(0)
1 = !1eıθ1 and c(0)

2 = !2eıθ2 , where
!1 =

√
3/2 and !2 = 1/2. Let us now compute the mean value of x̂ in the state

∣∣ψ(0)
〉
:

〈x̂〉0 =
〈
ψ(0)

∣∣x̂∣∣ψ(0)
〉

= !2
1x11 + !1!2eı(θ2−θ1)x12 + !1!2eı(θ1−θ2)x21 + !2

2x22. (4.102)

Recalling Eq. (4.70) and x11 = x22 = 0, we obtain

〈x̂〉0 = !1!2eı(θ2−θ1)
√

h̄

mω
+ !1!2eı(θ1−θ2)

√
h̄

mω

= 2!1!2

√
h̄

mω
cos (θ2 − θ1). (4.103)

Since 〈x̂〉0 = 0, Eq. (4.103) implies that cos (θ2 − θ1) = 0. We compute now the mean value
of p̂x in

∣∣ψ(0)
〉
:

〈p̂x〉0 =
〈
ψ(0)

∣∣p̂x
∣∣ψ(0)

〉
= m!2

1 ẋ11 + m!1!2eı(θ2−θ1)ẋ12 + m!1!2eı(θ1−θ2)ẋ21 + m!2
2 ẋ22. (4.104)

Recalling again Eq. (4.70) and using ẋn,n+1 = −ıωxn,n+1 (see Eq. (4.53)), we obtain

〈p̂x〉0 = −ıωm!1!2x12

(
eı(θ2−θ1) − eı(θ1−θ2)

)
= 2!1!2

√
h̄ωm sin (θ2 − θ1). (4.105)

Since 〈p̂x〉0 > 0, Eq. (4.105) implies that sin (θ2 − θ1) > 0. The only way to combine
cos (θ2 − θ1) = 0 and sin (θ2 − θ1) > 0 is that θ2 − θ1 = π/2 or θ2 = θ1 + π/2. Collecting
all these results, the initial state vector is completely defined by

∣∣ψ(0)
〉 = eıθ1

2

(√
3 |1〉 + ı |2〉

)
, (4.106)

and therefore ∣∣ψ(t)
〉 = eıθ1

2

(√
3e− 3

2 ıωt |1〉 + ıe− 5
2 ıωt |2〉

)
. (4.107)
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It should be noted that the phase factor eıθ1 in Eqs. (4.106)–(4.107) is a global phase factor
and is irrelevant. Equation (4.107) determines completely the state of the system at time t
and from it all the relevant physical quantities may be calculated. In particular, we have (see
Prob. 4.18)

〈x̂〉t =
√

3
2

√
h̄

mω
sinωt, 〈p̂x〉t =

√
3

2

√
mh̄ω cosωt. (4.108)

This means that

ψn(x) = Cψn(−x), (4.109)

where C is a constant. Since the ψn(x) are normalized, then |C | = 1 and, due to the
reality of ψn(x), C = ±1 (see property (iv) of Subsec. 3.2.3). Then, the eigenfunctions
must be either even or odd. It is also interesting to recognize that the number of zeros
of these eigenfunctions grows with n (see again Prob. 4.16). In particular, ψn(x) has n
zeros.

The same happens with the eigenfunctions for a particle in a box (see Sec. 3.4 and,
in particular, Fig. 3.7), where ψn(x) has n − 1 zeros in the interval (0, a). This is a gen-
eral property of the one-dimensional Schrödinger equation: the n-th excited eigenfunction
vanishes n times (see property (ii) of Subsec. 3.2.3).

4.4.3 Dynamics

We have seen in Subsec. 3.1.3 that the solution of the time-independent Schrödinger
equation is a necessary and fundamental step towards the determination of the dynam-
ics of a quantum system: given an initial state vector |ψ(0)〉 at t0 = 0, we may easily
find the time-evolved state vector |ψ(t)〉 . Since in the case of the harmonic oscillator the
energy spectrum is discrete, the general procedure consists of expanding |ψ(0)〉 into a
(finite or infinite) sum of harmonic-oscillator energy eigenvectors (see Eqs. (3.20), (4.50),
and (4.82)), i.e.

|ψ(0)〉 =
∑

n

c(0)
n |n〉 , (4.110)

with complex c(0)
n = 〈n | ψ(0)〉. Once that the Schrödinger equation has been solved, this

is often a straightforward step. Then, the time-evolved state vector is simply given by (see
Eq. (3.21))

|ψ(t)〉 = e−
ı
h̄ Ĥ t |ψ(0)〉 =

∑
n

c(t)
n |n〉 , (4.111)

where c(t)
n = e−

ı
h̄ Ent c(0)

n . For a specific example of dynamics see Box 4.3.
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V (x)

x

�Figure 4.13 Potential energy corresponding to a particle in a uniform field. The slope of the linear potential is
determined by the strength of the field (mg in the gravitational case and eE in the electric one).
The curve shows the wave function proportional to A(−ζ ).

4.5 Quantum partic les in simple fields

So far we have discussed a number of “simple” quantum problems, i.e. of Hamiltonians
whose Schrödinger equation can be solved. In the present section, we shall deal with the
dynamics of a quantum particle subjected to an external field. For the sake of simplicity,
we shall consider three elementary examples: the uniform field, the triangular well, and the
static electromagnetic field. More sophisticated cases will be examined in Subsec. 6.2.2 and
in Part III.

4.5.1 Uniform field

Let us consider the motion of a one-dimensional particle subjected to a constant force F ,
as for example a mass m in a constant gravitational field (F = −mg, where g is the gravity
acceleration), or a charge e in a uniform electric field (F = −eE, E being the electric field).
The potential energy (see Fig. 4.13) will then be given by

V (x) = −F(x) + C , (4.112)

where the constant C may be taken equal to zero by imposing the condition V (0) = 0.
From the examination in Sec. 3.2, it is evident that the motion is infinite for x →−∞ (and
finite for x →+∞), and the spectrum is continuous and covers all energy eigenvalues
from −∞ to +∞. The Schrödinger equation reads

h̄2

2m

∂2

∂x2
ψ(x) + (E + x F) ψ(x) = 0. (4.113)
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It is useful to introduce the change of variable6

ζ (x) =
(

x + E

F

)(
2m F

h̄2

) 1
3

, (4.114)

in terms of which the Schrödinger equation simply reads as

ψ ′′ (ζ )+ ζψ (ζ ) = 0, (4.115)

where the dependence on energy is disappeared. This equation can be solved by using
the Laplace method, and the solution, for an arbitrary energy value and apart from a
normalization constant, is given by

ψ (ζ ) ∝ A(−ζ ), (4.116)

where A(ζ ) is the Airy function7

A(ζ ) = 1

π

+∞∫
0

du cos

(
uζ + u3

3

)
. (4.117)

As expected from the discussion above, and as it is shown in Fig. 4.13, the ψ(ζ ) function
oscillates for (large) negative values of x and exponentially tends to zero for x →+∞.

The normalization constant may be obtained by imposing on the eigenfunctions ψ(ζ )
the normalization condition (see Subsec. 2.2.2)

+∞∫
−∞

dxψ [ζ (x)]ψ
[
ζ
′
(x)
]
= δ(E

′ − E), (4.118)

where

ζ (x) =
(

x + E ′

F

)(
2m F

h̄2

) 1
3

. (4.119)

4.5.2 Tr iangular wel l

An interesting variation of the uniform-field case is the so-called triangular-well potential.
Here, besides the constant force for x > 0 that pushes toward negative x’s, we have an
infinite wall at x = 0 (see Fig. 4.14). Its classical counterpart is the simple problem of a
non dissipative ball of mass m bouncing – under the effect of a constant gravitational field
g – on a completely elastic and infinitely heavy wall. Alternatively, it may be viewed as a
particle of charge e in a constant electric field E with an infinite barrier at x = 0. In the
quantum case, the motion is bounded and the spectrum is discrete for an arbitrary value
of the energy. As we have learnt in Sec. 3.4, the wave function will be identically zero for
x ≤ 0. For x > 0, the Schrödinger equation reads

6 See [Landau/Lifshitz 1976b, Sec. 24].
7 In this case, given the extension of the derivation, which is out of the scope of this book, we limit our exposition

to the solution and for its derivation we refer the reader to [Landau/Lifshitz 1976b]. Note, in particular, that the
Airy function may be expressed in terms of a Bessel function of order 1/3. See also [Gradstein/Ryshik 1981].
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x

V (x)

�Figure 4.14 Schematic drawing of a triangular well constituted by a potential V(x) and an infinite wall at
x = 0.

−
(

h̄2

2m

∂2

∂x2
+ x F

)
ψ(x) = Enψ(x), (4.120)

where F is negative and, in the two examples we have discussed, is equal to −mg or −eE.
As in the previous subsection, the change of variable

ζ =
(

x + En

F

)(
2m F

h̄2

) 1
3

(4.121)

leads to

ψ ′′ (ζ )+ ζψ (ζ ) = 0, (4.122)

whose solution

ψ (ζ ) = NA (−ζ ) (4.123)

is again given by the Airy function, and N is a normalization constant. In this case,
however, since ψ(x) needs to vanish for x = 0, the discrete eigenvalues must satisfy the
condition

En = −
(

F2h̄2

2m

) 1
3

an , (4.124)

where the an are the zeroes of the Airy function, approximately given by8

an = −
[

3π

2

(
n − 1

4

)] 2
3

, n = 1, 2, 3, . . . . (4.125)

Accordingly, the energy eigenvalues may be written as

En �
(

F2h̄2

2m

) 1
3 [3π

2

(
n − 1

4

)] 2
3

, n = 1, 2, 3, . . . . (4.126)

8 See [Gradstein/Ryshik 1981].
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Finally, it is interesting to note that a similar model, where the infinite wall is assumed to
oscillate around x = 0, has been introduced by Enrico Fermi in 1949 in order to explain
the acceleration of cosmic rays with the presence of varying magnetic fields, and is known
as the Fermi accelerator model.9

4.5.3 Stat ic electromagnetic field

In this subsection we shall derive the Hamiltonian which describes the interaction of a
particle with charge e with a static electromagnetic field. In Subsec. 6.3.4 we shall study
the motion of a quantum particle subject to a homogenous magnetic field. A more complete
account of the dynamics of the electromagnetic field and its interaction with atoms will be
given in Chs. 11 (Sec. 11.3) and 13 (see in particular Secs. 13.1 and 13.7).

In the non-relativistic limit, the classical equations of motion for a charged particle in an
electromagnetic field are given in terms of the Lorentz force

dp
dt

= e
(

E + p
mc

× B
)

, (4.127)

where

E = −∇U − ∂

∂t
A and B = ∇ × A (4.128)

are the electric and magnetic fields, respectively, U is the scalar potential, and A is the
vector potential.10 It is interesting to notice that, whereas in the classical case the vector and
scalar potentials have no direct physical significance and represent instead mathematical
tools, in quantum mechanics they manifest themselves in typical physical effects (see also
Sec. 13.8).

Equation (4.127) can be derived from the classical Lagrangian

L = 1

2
mṙ2 + e

(
1

c
ṙ · A − U

)
. (4.129)

To this purpose, we can make use of the Lagrange equations (1.15) (see Prob. 4.22).
Let us now derive the classical expression for the Hamiltonian. In order to obtain this

result we can use the formula (see Eq. (1.6))

H =
∑

j

q̇ j
∂L

∂q̇ j
− L = ṙ

∂L

∂ ṙ
− L, (4.130)

which yields

H = p
m

(
p + e

c
A
)
− 1

2m
p2 − e

c
A

p
m
+ eU

= 1

2m
p2 + eU

= 1

2m

(
P − e

c
A
)2 + eU, (4.131)

9 See [Fermi 1949] [Saif et al. 1998].
10 The central issue of the Gauge transformations will be discussed in Ch. 13.
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where

P = ∂L

∂ ṙ
= p + e

c
A (4.132)

is the generalized momentum conjugate to r. As usual, in order to obtain the quantum
expression for the Hamiltonian, we replace the generalized momentum by the operator
p̂ = −ı h̄∇, so that11

Ĥ = 1

2m

(
p̂ − e

c
A
)2 + eU. (4.133)

Then, the Schrödinger equation for a charged particle in a static electromagnetic field may
be written as

ı h̄
∂

∂t
ψ(r, t) = 1

2m

[
p̂ − e

c
A(r, t)

]2
ψ(r, t) + eU(r, t)ψ(r, t), (4.134)

which can also be reformulated as

ı h̄
∂

∂t
ψ(r, t) =

[
p̂2

2m
− e

2mc

(
p̂ · A + A · p̂

)+ e2

2mc2
A2 + eU

]
ψ(r, t)

=
[
− h̄2

2m
�+ eı h̄

2mc
∇ · A + eı h̄

mc
A ·∇ + e2

2mc2
A2 + eU

]
ψ(r, t).

(4.135)

In the last expression we have taken into account the fact that p̂ and A do not commute,
and their commutator is given by (see Prob. 2.26)[

p̂, A
] = p̂ · A − A · p̂ = −ı h̄∇ · A. (4.136)

Summary

In this chapter we have applied the methods previously presented to some simple examples
of quantum dynamics:

• We have discussed the behavior of a one-dimensional particle in a rectangular potential
well with finite steps. This has introduced us to a novel quantum effect: the presence of
the particle in regions that are classically forbidden.

• We have examined the quantum motion in the presence of a potential barrier, where
we have introduced transmission and reflection probabilities and a quantum continuity

11 Here and throughout this book we make use of the Gauss cgs system of units.
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equation. Even when the potential barrier is higher than the energy of the incoming
particle, this is able to pass the classical turning point.

• The examples above have led us to consider the genuinely quantum phenomenon
of tunneling: a quantum particle can penetrate (i.e. “tunnel”) into regions that are
classically forbidden. This effect may be seen as a consequence of the uncertainty
relation: when the particle is very localized, the momentum and energy uncertainty
(spread) allows it to overcome a potential barrier that is higher than its kinetic
energy.

• We have analyzed the (one-dimensional) harmonic oscillator that may be considered
as a guidance tool for the solution of more complex problems. In particular, we have
introduced two different methods of solving this problem: the Heisenberg and the alge-
braic methods. We have found that the spectrum of the harmonic oscillator is discrete
and that energy levels are equally spaced. With the help of a specific example, we
have also presented the dynamics of a quantum particle subject to a harmonic-oscillator
potential.

• Finally, we have introduced some examples of a particle in simple fields. In particu-
lar, we have introduced the uniform field, the triangular-well potential, and the static
electromagnetic field.

Problems

4.1 Find the energy levels and eigenfunctions for a particle in a rectangular potential, i.e.
for the three-dimensional motion in a potential V (r) which is zero for 0 < x < a,
0 < y < b, 0 < z < c and infinity outside this region.
(Hint: In the Schrödinger equation it is possible to write E = Ex + Ey + Ez and, cor-
respondingly, ψ(r) = ψ(x)ψ(y)ψ(z). In other words, the three-dimensional problem
is separable into three one-dimensional problems.)

4.2 Find the energy eigenstates and eigenvalues of the discrete spectrum for the problem
of a one-dimensional particle in an asymmetric potential well (see Fig 4.1(b)) and
check that the solution reduces to that obtained in Sec. 4.1 when V1 = V2 = V0.
(Hint: Proceed as in Sec. 4.1 and define k = √

2m E/h̄, k1 = √
2m(V1 − E)/h̄, and

k2 = √
2m(V2 − E)/h̄.)

4.3 Consider a one-dimensional particle of energy E which moves from left to right and
encounters the potential barrier depicted in Fig. 4.15 with V0 < E .
(a) Find the coefficients N+ and N− of the wave function

ψ(x > 0) = ψ> (x)=N+eık1x ,

ψ(x < 0) = ψ< (x)= eık2x +N−e−ık2x .

(b) Given that the ratio E/V0 = 16/15, what is the value of the ratio T2/R2 between
the transmission and the reflection probabilities?
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x

V (x)

V0

E

�Figure 4.15 A quantum particle with energy E encounters a potential step of height V0 < E.

x

V (x)

V0

a

I II III

�Figure 4.16 The rectangular potential barrier with finite width a. The potential profile determines the regions
I, II, and III.

4.4 Consider the rectangular potential barrier with finite width a as in Fig. 4.16. Calculate
the transmission coefficient of a particle moving from left to right.

4.5 Obtain result (4.53) in the Schrödinger picture.

(Hint: Observe that an eigenstate |n〉 of the energy evolves as |n(t)〉 = eı En t
h̄ |n〉 .)

4.6 Prove Eq. (4.70).
4.7 Prove that the mean value of the position operator in any of the energy eigenstates of

the harmonic oscillator (Ĥ = p̂2
x

2m + 1
2 mω2 x̂2) is equal to zero.

4.8 Prove that for a general one-dimensional potential and the eigenstates of the discrete
spectrum, one has

〈
n
∣∣ p̂x
∣∣ n〉 = 0.

4.9 Prove the commutation relation (4.74).
4.10 Compute the product operator ââ† (see Eqs. (4.73)) in terms of x̂ and ˆ̇x . Then, write

the harmonic-oscillator Hamiltonian in terms of ââ† and in terms of both ââ† and
â†â.
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4.11 Prove the commutation relations [â, N̂ ] = â and [â†, N̂ ] = −â†.
4.12 Prove that [â, (â†)2] = 2â† and [â2, â†] = 2â and that we have, in general,

[â, (â†)n] = n(â†)n−1 and [ân , â†] = nân−1. (4.137)

4.13 Prove the relation |n〉 =
(

â†
)n

√
n!

|0〉 .

4.14 Determine the normalization constant N of the ground-state wave function of the
harmonic oscillator.

4.15 Check that the ground-state wave function of the harmonic oscillator ψ0(x)
(Eq. (4.91)) satisfies the time-independent Schrödinger equation for the harmonic
oscillator, i.e.

− h̄2

2m

∂2

∂x2
ψ(x) +

(
1

2
mω2x2 − E

)
ψ(x) = 0. (4.138)

4.16 The Hermite polynomials are defined by the relation

Hn(ζ ) = (−1)n eζ
2 dn

dζ n
e−ζ 2

for any integer n ≥ 0.
(i) Write the first six Hermite polynomials.

(ii) Verify that Hn(ζ ) is a polynomial of degree n in ζ which has n zeros and that is
even (odd) when n is even (odd).

(iii) Verify that Hermite polynomials satisfy the recursion relations

d

dζ
Hn(ζ ) = 2nHn−1(ζ ),

2ζHn(ζ ) = Hn+1(ζ ) + 2nHn−1(ζ ),(
2ζ − d

dζ

)
Hn(ζ ) = Hn+1(ζ ),

where the third equation is a consequence of the first two. On the other hand,
the third equation and one of the first two imply together the other one.

(iv) Verify that the Hermite polynomials satisfy the differential equation(
d2

dζ 2
− 2ζ

d

dζ
+ 2n

)
Hn(ζ ) = 0.

4.17 Solve in a direct way the Schrödinger equation (4.49) for the one-dimensional
harmonic oscillator.
(Hint: First, change variable to ξ = x

√
mω
h̄ . Second, make the ansatz

ψ(ξ ) = e−
ξ2

2 ϕ(ξ ).

Finally, use property (iv) of Prob. 4.16 to solve the resulting differential equation.)
4.18 Compute 〈x̂〉t and 〈 p̂x 〉t in Eqs. (4.108).
4.19 Make a comparison between the mean values of x̂2 and p̂2

x for a harmonic oscillator
in the classical and in the quantum case. Comment the results in the light of Ehrenfest
theorem (see Sec. 3.7).
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4.20 Use the results of Prob. 4.19 to prove that the uncertainty relation between position
and momentum for a harmonic oscillator in the state |n〉 may be written as

�x�px =
(

n + 1

2

)
h̄.

4.21 Show that any initial quantum state evolving under the harmonic oscillator Hamilto-
nian with frequency ω acquires, after a period τ = 2π/ω, a phase equal to −π .

4.22 Derive Eq. (4.127) from the Lagrangian (4.129) by making use of the Lagrange
equations (1.15).
(Hint: Notice that the total differential

dA
dt

= ∂A
∂t

+ (v ·∇) A (4.139)

has two parts, the variation (∂A/∂t)dt of the vector potential as a function of time
at a given point, and the variation obtained by moving from a location in space to
another one at an infinitesimal distance dr, given by (v ·∇) A.)



5 Density matrix

The density matrix is a very useful tool that enlarges the concept of state from a vector in
a Hilbert space to a true operator from which all properties of a quantum system can be
extracted. This generalization is particularly relevant because it allows compound systems
to be treated in a natural way, especially when dealing with specific properties of one
subsystem. For this reason, as we shall see in Secs. 9.4 and 14.2, it plays a central role in
the dynamics of open systems (non-unitary evolutions).

In this chapter we shall first deal with the formalism of the density matrix (Sec. 5.1).
Then, we shall apply this formalism to calculations for expectation values and outcomes of
a measurement (Sec. 5.2) and present the time evolution of the density matrix for different
pictures (Sec. 5.3). In Sec. 5.4 we shall discuss the relationship between classical and
quantum statistics. In Sec. 5.5 the fundamental concept of entanglement will be examined.
In addition, we shall learn how to trace out a subsystem and briefly consider the Schmidt
decomposition. Finally, in Sec. 5.6, we shall give a useful representation of pure and mixed
states.

5.1 Basic formalism

From Sec. 1.3 and Subsec. 2.3.3 we know that the state vector |ψ〉 contains the maximal
information about a quantum system. Associated to any state vector |ψ〉 , it is always pos-
sible to define the projector P̂ψ = |ψ〉 〈ψ | (see Eq. (1.28)). We now introduce the density
matrix or density operator of the system, denoted by the symbol ρ̂. This operator is a gen-
eralization of the projector P̂ψ . Here we limit ourselves to the discrete case. Let us first
discuss the case where the system admit a wave-function description, i.e. where ρ̂ = P̂ψ .
Then, for a normalized |ψ〉 , ρ̂ possesses the important properties (see also Eq. (1.41b) and
Prob. 5.1)

ρ̂
2 = ρ̂, (5.1a)

Tr(ρ̂) = 1, (5.1b)
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where we recall that Tr(Ô) =∑ j

〈
b j
∣∣ Ô

∣∣b j
〉

is the trace of the operator Ô and {b j } an
orthonormal basis (see Eqs. (2.56)–(2.57)) on the Hilbert space of the system. We remark
that, if a density operator ρ̂ is not normalized, i.e. Tr(ρ̂) 	= 1, but finite, we can always
normalize it as follows (see also Eq. (2.111)):

ρ̂
′ = ρ̂

Tr
(
ρ̂
) . (5.2)

Obviously, there are also cases in which the density matrix is not normalizable (see Sub-
sec. 2.2.2 and Prob. 5.2). We also note that, if the density operator can be expressed as a
single projector, we shall have Tr(ρ̂2) = 1.

Let us consider the example of the polarization state

|ψ〉 = ch |h〉 + cv |v〉 (5.3)

of a photon, where (as in Sec. 1.3, Box 2.2, and Subsec. 2.1.3) |h〉 and |v〉 are states of hor-
izontal and vertical polarization, and |ch |2 + |cv|2 = 1. The density matrix corresponding
to such a state can be written as

ρ̂ = |ψ〉 〈ψ |
= |ch |2 |h〉 〈h | + |cv|2 |v〉 〈v | + chc∗v |h〉 〈v | + c∗hcv |v〉 〈h |. (5.4)

Equation (5.4) may be easily generalized to a form that is valid for any density matrix.
If {| j〉 } is an orthonormal basis on the Hilbert space of the system, we may exploit the
resolution of identity

∑
j | j〉 〈 j | = Î (

∑
k |k〉 〈k | = Î ) to obtain (see also Eq. (2.17))

ρ̂ =
∑

j

∑
k

| j〉 〈 j | ρ̂ |k〉 〈k |

=
∑
j ,k

ρ jk | j 〉 〈k |, (5.5)

where 〈 j | k〉 = δ jk , and ρ jk =
〈
j
∣∣ρ̂∣∣ k〉 are the matrix elements of ρ̂.

In matrix form, where the eigenstates of the two-dimensional polarization Hilbert space
are defined as (see Eqs. (2.11))

|h〉 =
(

1
0

)
, |v〉 =

(
0
1

)
, (5.6)

Equation (5.4) may be cast in the form

ρ̂ =
(

ch

cv

) (
c∗h c∗v

) = [ |ch |2 chc∗v
c∗hcv |cv|2

]
. (5.7)

Now, Eqs. (5.4) and (5.7) describe an ensemble of (say, N ) photons which are all in the
same state |ψ〉 . In other words, any subensemble of the original ensemble will be described
by the same density matrix ρ̂. For reasons which are evident from Eq. (5.7), the first and
second terms in Eq. (5.4) are called the diagonal terms, whereas the third and fourth terms
in Eq. (5.4) are called the off-diagonal terms of the density matrix ρ̂. Note that the diagonal
elements of ρ̂ are the square moduli of the coefficients of the basis vectors |h〉 , |v〉 , and,
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since we know that we must have |ch |2 + |cv|2 = 1, we see here the reason of property
(5.1b): this property expresses the conservation of norm or of probability.

We may also consider the case of a classical statistical ensemble of N photons in which
a fraction Nh/N = |ch |2 of the photons is in the state |h〉 of horizontal polarization and
a fraction Nv/N = |cv|2 (with Nh + Nv = 1) is in the state |v〉 of vertical polarization.
Such an ensemble will be necessarily described by a density operator of the type

ˆ̃ρ = |ch |2 |h〉 〈h | + |cv|2 |v〉 〈v | =
[ |ch |2 0

0 |cv|2
]

, (5.8)

where the off-diagonal terms are not present. Equation (5.8) may be rewritten as

ˆ̃ρ = |ch |2 P̂h + |cv|2 P̂v (5.9)

where, as usual, P̂h = |h〉 〈h | and P̂v = |v〉 〈v |. Density operators of the form (5.8) do
not satisfy Eq. (5.1a) if ch and cv are both different from zero, even though they still satisfy
Eq. (5.1b). On the contrary, we have (see also Prob. 5.3)

Tr( ˆ̃ρ2) < Tr( ˆ̃ρ) = 1. (5.10)

This implies that ˆ̃ρ2 	= ˆ̃ρ. We may summarize the situation we have presented so far by
dividing all possible states (represented by density matrices) into two major classes: pure
states ρ̂, which satisfy Eqs. (5.1), and mixtures ˆ̃ρ, which satisfy Eq. (5.10). It is also clear
that the state of a “classical object”1 will always belong to the second class. For instance,
the statistical mixture describing the state of a classical dice before the outcome of the
throw is read can be written as ˆ̃ρ = (1/6)

∑6
j=1 | j〉 〈 j |.

In the example above, as long as one measures the polarization in the basis {|h〉 , |v〉 },
it is not possible to detect a difference between ρ̂ and ˆ̃ρ: The probabilities ℘(h) and ℘(v)
of detecting horizontal and vertical polarization, respectively, are in both cases equal to
|ch |2 and |cv|2. However, the differences between ρ̂ and ˆ̃ρ come about when one decides
to measure the polarization in a rotated basis, for example in the basis {|↗〉 , |↖〉}, where
(see Subsec. 2.1.2 and Eq. (1.79))

|↗〉 = 1√
2
(|h〉 + |v〉 ), (5.11a)

|↖〉 = 1√
2
(|h〉 − |v〉 ). (5.11b)

From Eqs. (5.11) one obtains

|h〉 = 1√
2
(|↗〉 + |↖〉 ), (5.12a)

|v〉 = 1√
2
(|↗〉 − |↖〉 ), (5.12b)

1 By a “classical object” we mean here a macroscopic object that follows the laws of classical mechanics.
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which, when substituted in Eq. (5.3), yield the state vector in the basis rotated by 45◦

|ψ〉 = ch + cv√
2

|↗〉 + ch − cv√
2

|↖〉 (5.13)

corresponding to a density matrix

ρ̂↖↗ = 1

2

[ |ch + cv|2 (ch + cv) (c∗h − c∗v)
(c∗h + c∗v) (ch − cv) |ch − cv|2

]
. (5.14)

On the other hand, the density matrix ˆ̃ρ, according to the transformation (5.12), changes
into

ˆ̃ρ↖↗ = |ch |2
[

1√
2
(|↗〉 + |↖〉 )

] [
1√
2
( 〈↗| + 〈↖|)

]
+ |cv|2

[
1√
2
(|↗〉 − |↖〉 )

] [
1√
2
( 〈↗| − 〈↖|)

]
= |ch |2 + |cv|2

2
|↗〉 〈↗| + |ch |2 + |cv|2

2
|↖〉 〈↖|

+ |ch |2 − |cv|2
2

(|↗〉 〈↖| + |↖〉 〈↗|), (5.15)

so that the probabilities of detecting polarization along the 45◦ and 135◦ directions,
respectively, are given by

℘′(45◦) = ℘′(135◦) = |ch |2 + |cv|2
2

. (5.16)

These values strongly differ from the values (see Prob. 5.5)

℘(45◦)= |ch + cv|2
2

, (5.17a)

℘(135◦)= |ch − cv|2
2

, (5.17b)

which are obtained from the density matrix (5.14). For this reason, the off-diagonal terms
of a density matrix (see e.g. Eq. (5.7)) are often called quantum coherences because they
are responsible for the interference effects typical of quantum mechanics that are absent in
classical dynamics.

5.2 Expectation values and measurement outcomes

The concept of expectation value of an observable (see Subsec. 2.1.3) allows us to give a
general definition of the density matrix, that is,

〈
Ô
〉
ρ̂
= Tr

(
ρ̂ Ô

)
. (5.18)
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In the case of a pure state, Eq. (5.18) becomes (see Eq. (2.78))〈
Ô
〉
ψ
=
∑

j

〈
o j

∣∣∣ρ̂ Ô
∣∣∣ o j

〉
=
∑

j

〈o j |ψ〉 〈ψ | Ô
∣∣o j
〉
. (5.19)

However, when the system is in a mixed state, the rhs of Eq. (5.19) loses its meaning and
we take Eq. (5.18) as the definition of the density operator ρ̂.2 In fact, if the density operator
is defined by

ˆ̃ρ =
∑

j

w j
∣∣ψ j

〉 〈
ψ j
∣∣, (5.20)

where {∣∣ψ j
〉 } is an orthonormal basis on the Hilbert space, then Eq. (5.18) becomes〈

Ô
〉
ˆ̃ρ = Tr

( ˆ̃ρ Ô
)
=
∑

j

w j

〈
ψ j

∣∣∣Ô∣∣∣ψ j

〉
. (5.21)

In Subsec. 1.3.2 we have defined – on a rather mathematical level – the scalar product
〈ϕ | ψ〉 of two state vectors |ψ〉 and |ϕ〉 . However, we know that scalar products give
probability amplitudes (see Sec. 1.4) and we have seen that these probability amplitudes
are coefficients of some basis vectors (see Subsecs. 2.1.1–2.1.3 and Sec. 2.2). Then, from
a physical point of view, 〈ϕ | ψ〉 tells us how much the two vectors |ψ〉 and |ϕ〉 overlap.
When |ψ〉 and |ϕ〉 are orthogonal, 〈ϕ | ψ〉 = 0, while, when |ψ〉 = |ϕ〉 , 〈ϕ | ψ〉 = 1. If
|ϕ〉 is an eigenvector of an observable Ô such that

Ô |ϕ〉 = o |ϕ〉 , (5.22)

then | 〈ϕ | ψ〉 |2 gives the probability to obtain the outcome o when measuring the
observable Ô on the state |ψ〉 . In terms of the density matrix, this probability may be
rewritten as

| 〈ϕ | ψ〉 |2 = 〈ϕ | ψ〉 〈ψ | ϕ〉 = 〈ϕ | ρ̂ |ϕ〉 , (5.23)

or

| 〈ϕ | ψ〉 |2 = Tr
(
ρ̂ P̂ϕ

)
, (5.24)

where P̂ϕ = |ϕ〉 〈ϕ | is the projector associated to the state |ϕ〉 .
Finally, since any density matrix can be written in the form

ρ̂ =
∑

j

w j P̂j , (5.25)

where the P̂j ’s are projectors, it is always possible to find an eigenbasis of ρ̂. Since from
Eq. (5.23) it is evident that

〈
ϕ
∣∣ρ̂∣∣ϕ〉 ≥ 0, the weights w j must be non-negative, and we

2 The general validity of formula (5.18) for calculating quantum probabilities for systems of dimensions>2 was
proved, on a rather abstract mathematical level, in [Gleason 1957]. On this point see also Sec. 16.4.
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also have
∑

j w j = 1. Since the weights wk are non-negative, the density operator must be

Hermitian and positive.3

If {|bk〉 } is an orthonormal basis of eigenvectors of ρ̂, we can write

ρ̂ |bk〉 = rk |bk〉 . (5.26)

We also see here a further evidence that the state (in this case the density operator) of
a quantum system cannot be determined through a single measurement: by the measure-
ment of a certain observable, we only obtain one of its eigenvalues and not its probability
distribution in the initial state.

Let us consider this problem from a slightly different point of view. The density matrix
in Eq. (5.26) is either a pure state or a mixture. Since {|bk〉 } is an eigenbasis of ρ̂, if ρ̂ is a
pure state, rk may be either 1 or 0, i.e. rk = 1 for a single value k = j , when

∣∣b j
〉

is the state
vector such that ρ̂ = ∣∣b j

〉 〈
b j
∣∣, and 0 in all other cases (see Prob. 5.6). However, measuring

the projector P̂j =
∣∣b j
〉 〈

b j
∣∣ (as any other projector) does not determine the state, since

it corresponds to a test through which we ask the system if it is in the state
∣∣b j
〉

(or if
at least it has a non-zero overlap with the state

∣∣b j
〉
). If ρ̂ is a mixture, the measurement

of a projector will again give only partial information about the system’s state. Stated in
different terms, we may ask a quantum system if it is in a given state among an orthogonal
set (and the system will answer “yes” or “not”), but we cannot ask in what state the system
is in, which would imply the ability to discriminate between non-orthogonal states. We
shall deal with the fundamental problem of state measurement in quantum mechanics in
Ch. 15.

5.3 Time evolution and density matrix

We wish now to deal with the time evolution of the density operator. Since for a state
|ψ(t)〉 the density matrix can be written as ρ̂(t) = |ψ(t)〉 〈ψ(t) |, it is also clear that, for a
pure state under unitary evolution, we have

ˆ̇ρ = Ĥ

ı h̄
|ψ(t)〉 〈ψ(t) | + |ψ(t)〉 〈ψ(t) | Ĥ

−ı h̄
= ı

h̄

(
ρ̂ Ĥ − Ĥ ρ̂

)
= ı

h̄
[ρ̂, Ĥ ], (5.27)

or

ı h̄ ˆ̇ρ = [Ĥ , ρ̂], (5.28)

3 This statement is certainly true in principle. In practice, however, this Hermitian operator may be arbitrarily
complex (as some combination of other operators) and needs not coincide with any simple, directly accessible,
physical quantity.
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which is formally similar to Eq. (3.107) but with inverted sign. This expression is known
as the von Neumann equation. It tells us that pure states evolve into pure states under
Schrödinger evolution. As we shall see (in Chs. 9 and 14), Eq. (5.28) needs to be corrected
in presence of dissipative processes, when the time evolution is no longer unitary.

It is useful to note that, as for the state vector, the time evolution of the density matrix can
be represented both in the Schrödinger and Heisenberg pictures. In fact, since |ψ(t)〉S =
Ût |ψ(0)〉S, we have

ρ̂S(t) = Ût |ψ〉H 〈ψ |H Û †
t = Ût ρ̂HÛ †

t , (5.29a)

or

ρ̂H = Û †
t ρ̂SÛt = ρ̂S(0). (5.29b)

It should be noted, however, that, contrarily to usual observables, the density operator in
the Heisenberg picture does not depend on time.

Finally, in the Dirac picture, we have from Eq. (3.112)

ρ̂I(t) = Û †
H0,t ρ̂S(t)ÛH0,t . (5.30)

5.4 Statist ical properties of quantum mechanics

In the two previous sections, the introduction of the density operator has allowed us to
point out two important statistical features of quantum mechanics:

(i) From the knowledge of the density operator it is possible to compute the mean value
of any observable; and

(ii) the density operator itself evolves according to the von Neumann equation.

Here we want to emphasize the remarkable analogy between classical and quantum statis-
tics, i.e. between the classical phase space density ρ (see Sec. 1.1) and the quantum density
operator ρ̂. In fact, Eq. (5.18) is the quantum counterpart of the classical equation (1.19),
and Eq. (5.28) is the quantum analogue of the classical Liouville equation (see Eq. (1.21)).
The central point that we can learn from this parallelism is that one may turn the fundamen-
tal equations of classical mechanics into those of quantum theory by replacing variables
by operators, Poisson brackets by commutators up to the multiplicative factor ı h̄ accord-
ing to the rule (3.109), and integrating over the phase space by the trace. This is another
formulation of the correspondence principle (see p. 72) and is very useful when trying to
generalize the classical statistical mechanics in the quantum context. A complete deriva-
tion, which is outside the scope of this book,4 shows that the thermodynamic functions of
a quantum system are derived from the partition function

4 See [Huang 1963, 171–91] [Kittel 1958].
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Z (β) = Tr
(
ρ̂
) = Tr

(
e−β Ĥ

)
, (5.31)

as in classical mechanics, where β = (kBT )−1, T the temperature of the system, and kB is
the Boltzmann constant. In particular, for the energy and the entropy we have

E =
〈
Ĥ
〉
= − ∂

∂β
ln Z , (5.32a)

SVN = kB

(
ln Z − β ∂

∂β
ln Z

)
, (5.32b)

respectively. From the correspondence principle, it is possible to obtain a more general
expression for the entropy of a system, which is proportional to the mean value of the
operator ln ρ̂, i.e.

SVN = −kBTr
(
ρ̂ ln ρ̂

)
, (5.33)

which is known as the von Neumann entropy and is the quantum analogue of the Boltzmann
(see Eq. (1.60)) or Shannon entropy.5

Given the above definition of entropy, the equilibrium quantum state can be determined
by maximizing the entropy for a given energy expectation value. The result describes the
state of a quantum system in thermodynamic equilibrium at temperature T , that is,6

ρ̂ = N e
− Ĥ

kBT , (5.34)

N being a normalization constant such that Tr(ρ̂) = 1.

5.5 Compound systems

As in classical mechanics, also quantum systems may be part of a larger closed system. As
we shall see in Chs. 9 and 13, this has important consequences in quantum dynamics that
makes it profoundly different from classical dynamics. In classical physics, the knowledge
of the properties of composite systems implies the determination of the properties of the
subsystems. In quantum mechanics, however, there may be cases in which even though the
wave function of the composite system is known, the subsystems do not admit a description
in terms of an independent wave function, such that the compound state be a mere product
of the states of the subsystems. In such cases, where the total wave function is not factoriz-
able, the concept of density matrix is crucial for a proper description of these subsystems.

5.5.1 Entanglement

When one deals with systems that consist of two or more subsystems, quantum mechanics
has some extremely puzzling features if observed from a classical point of view. Let us

5 This will be the subject of Sec. 17.1.
6 See [Gardiner 1991, 36–37].
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illustrate this with the help of an example. We consider the polarization state of a pair of
photons. The Hilbert space H of the total system will be the direct sum H1 ⊕H2 of the
two-dimensional Hilbert spaces of the two particles, and {|h〉 1 , |v〉 1} and {|h〉 2 , |v〉 2} the
two basis for photon 1 and photon 2, respectively. A complete basis for the total system of
the two photons will then be given by the direct product

{|h〉 1 ⊗ |v〉 2} = {|h〉 1 ⊗ |h〉 2 , |h〉 1 ⊗ |v〉 2 , |v〉 1 ⊗ |h〉 2 , |v〉 1 ⊗ |v〉 2} , (5.35)

which is obtained by performing the product of each basis element of H1 times each basis
element of H2. For instance, the polarization state of the two photons could be described
by |h〉 1 ⊗ |h〉 2, which would mean that both photons are horizontally polarized, as well
as by any other of the four combinations above. However, as we know, a state vector can
consist of an arbitrary superposition of the basis vectors. In particular, we may think of
formally writing the state vector of the two photons as a symmetric superposition of the
second and third element of the basis (5.35), i.e.

|&〉 12 = 1√
2
(|h〉 1 ⊗ |v〉 2 + |v〉 1 ⊗ |h〉 2), (5.36)

where 1/
√

2 is an appropriate normalization factor. This is a perfectly legitimate state
vector in quantum mechanics: since |h〉 1 ⊗ |v〉 2 and |v〉 1 ⊗ |h〉 2 are two possible states
for the polarization of two photons, according to the superposition principle (p. 18) a linear
combination of them is also an allowed state. How can we interpret such a state? It is clearly
a superposition state of a particular type. In each of the terms in the rhs of Eq. (5.36) the
two photons are in orthogonal states. For example, if we measure the polarization of photon
1 and find it to be horizontal, we know with certainty that the polarization of photon 2 will
be vertical, and vice versa. However, it is impossible to assign a certain state either to
photon 1 or to photon 2. In other words, we cannot write the state |&〉 12 of Eq. (5.36) in
the factorized form

|&〉 12 = |ψ〉 1 ⊗ |ϕ〉 2 , (5.37)

which can be considered as a definition of a state that is not entangled. This would be the
case, for instance, when we had the two-photon system in the state |h〉 1 ⊗ |h〉 2, or in the
state (see Prob. 5.7)

|&〉 12 = 1

2
(|h〉 1 ⊗ |h〉 2 + |h〉 1 ⊗ |v〉 2 + |v〉 1 ⊗ |h〉 2 + |v〉 1 ⊗ |v〉 2). (5.38)

Generalizing the above argument in the context of the density-matrix formalism, we can
say that any state ρ̂ is separable if it can be written as

ρ̂ =
∑

j

w j ρ̂
( j)
1 ⊗ ρ̂( j)

2 , (5.39)

where w j ≥ 0 and
∑

j w j = 1. Equation (5.39) reflects the fact that a separable state can
be prepared by two distant observers who receive instructions from a common source.
On the contrary, we say that the photons in a state of the type (5.36) are entangled. This
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means that the two photons (through their polarization degree of freedom) constitute an
inseparable whole and cannot be treated as separate systems.

Summarizing the above discussion, we can state the following definition:

Definition 5.1 (Entanglement) Two systems S1 and S2 are said to be entangled with
respect to a certain degree of freedom if their total state |&〉 12, relative to that degree of
freedom, cannot be written in a factorized form as a product |ψ〉 1 ⊗ |ϕ〉 2.

In other words, an entangled state is a state of a composite system whose subsystems are
not probabilistically independent. While the superposition character of a state vector is
basis-dependent, it should be understood that Def. 5.1 has to hold in any basis, i.e. a truly
entangled state cannot be factorized in any basis (see also Subsec. 6.4.3). It should also be
stressed that, while entanglement and non-factorizability of the state vector are equivalent
concepts, entanglement implies superposition, i.e. a superposition state is not necessar-
ily entangled. As we have seen, it is a natural consequence of the linearity of quantum
mechanics.7 In Ch. 16 we shall examine the extreme consequences of entanglement and
show how it can be physically generated, while in Ch. 17 we shall introduce a measure of
entanglement.

5.5.2 Part ial trace

The concept of density matrix is particularly useful when one deals with systems which
consist of two or more subsystems. In the previous section we have learnt that it is not
possible to assign proper state vectors to entangled subsystems. However, using the con-
cept of density matrix, it is possible to partly overcome this difficulty. Let us go back to
the example of the polarization-entangled state of a pair of photons (see Eq. (5.36)). The
density matrix associated to such a (pure) state can be written as

ρ̂12 = |&〉 12 〈& | = 1

2
(|h〉 1 〈h | ⊗ |v〉 2 〈v | + |v〉 1 〈v | ⊗ |h〉 2 〈h |

+ |h〉 1 〈v | ⊗ |v〉 2 〈h | + |v〉 1 〈h | ⊗ |h〉 2 〈v |). (5.40)

Is it possible to write the density matrix for, say, photon 1 irrespectively of photon 2? To
answer this question, we may average ρ̂12 over all possible states of polarization of photon
2, that is, we may perform the trace of the density matrix (5.40) with respect to photon 2:

!̂1 = Tr2
(
ρ̂12
) = ∑

j = h,v
2 〈 j | ρ̂12 | j〉 2 =

1

2
(|h〉 1 〈h | + |v〉 1 〈v |). (5.41a)

This expression is called the reduced density matrix of photon 1 and represents the maxi-
mum information which is available about photon 1 alone, irrespective of the polarization
of photon 2. In a similar way,

7 The linearity of quantum mechanics comes from the superposition principle (see p. 18) and manifests itself in
the linear nature of the Schrödinger equation.
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!̂2 = Tr1
(
ρ̂12
) = ∑

j = h,v
1 〈 j | ρ̂12 | j〉 1 =

1

2
(|h〉 2 〈h | + |v〉 2 〈v |). (5.41b)

It is evident that Eqs. (5.41) are both mixed density matrices and describe ensembles of
photons, half of which have horizontal polarization and the other half vertical polarization.
Equations (5.41) express the fact that, when measuring the polarization of one of the two
photons, there is 50% probability of obtaining either of the possible results. As we shall see
in Ch. 9, this formalism is particularly useful when dealing with the measurement problem.

The mixed character of !̂1 and !̂2 is precisely due to the entangled character of ρ̂12. Con-
versely, it should be noted that a partial trace performed over a non-entangled composite
state of two subsystems gives rise to a pure state density matrix (see Probs. 5.9 and 5.10).

Let us now consider a more complicated example. Let the compound state of two two-
level subsystems be described by the ket

|&〉 = c00 |0〉 1 |0〉 2 + c01 |0〉 1 |1〉 2 + c10 |1〉 1 |0〉 2 + c11 |1〉 1 |1〉 2 (5.42)

=
1∑

j ,k = 0

c jk | j〉 ⊗ |k〉 . (5.43)

The corresponding density operator may be written as

ρ̂ = |&〉 〈& | =
0,1∑

j ,k,l,m

c jkc∗lm | j 〉 〈l | ⊗ |k 〉 〈m |, (5.44)

which in matrix form reads

ρ̂12 =

⎡⎢⎢⎢⎢⎣
|c00|2 c00c∗01 c00c∗10 c00c∗11

c∗00c01 |c01|2 c01c∗10 c01c∗11

c∗00c10 c∗01c10 |c10|2 c10c∗11

c∗00c11 c∗01c11 c∗10c11 |c11|2

⎤⎥⎥⎥⎥⎦. (5.45)

The reduced density matrix !̂1 obtained from ρ̂12 by tracing out the second subsystem, is

Tr2
(
ρ̂12
) =∑

n

〈
n
∣∣ρ̂12

∣∣ n〉
=

∑
j ,k,l,m,n

c jkc∗lm | j 〉 〈l | ⊗ 〈n | k〉 〈m | n〉

=
∑

j ,k,l,m,n

c jkc∗lm | j 〉 〈l | δnkδmn

=
∑
j ,l,n

c jkc∗lm | j 〉 〈l | , (5.46)

which in matrix form reads (see also Prob. 5.11)

!̂1 =
[ |c00|2 + |c01|2 c00c∗10 + c01c∗11

c∗00c10 + c∗01c11 |c10|2 + |c11|2
]

. (5.47)



185 5.5 Compound systems
�

From Eq. (5.47) it is clear that the four elements of !̂1 are simply given by the sum of
the diagonal elements of each of the four blocks in which ρ̂12 can be cast according to
Eq. (5.45).

5.5.3 Schmidt decomposit ion

Let us consider a composite system made of two finite subsystems with the same dimension
N , in the state

|&〉 =
N∑

j ,k=1

C jk
∣∣a j
〉 |bk〉 , (5.48)

where
〈
ak | a j

〉 = 〈bk | b j
〉 = δ jk . It is interesting to note that it is always possible8 to

convert the double sum into a single sum, i.e.

|&〉 =
N∑

n=1

cn |vn〉 |wn〉 (5.49)

by means of the unitary transformations

|vn〉 =
∑

j

Unj
∣∣a j
〉

, |wn〉 =
∑

k

U
′
nk |bk〉 , (5.50)

where

C jk =
∑

n

U T
nj DnnU

′
nk , (5.51)

U T
nj = U jn , and cn = Dnn . This is called Schmidt decomposition, and the number of non-

zero coefficients cn’s is called the Schmidt number. The c2
n are the singular values of the

matrix Ĉ , i.e. the non-vanishing eigenvalues of the Hermitian matrices ĈĈ† and Ĉ†Ĉ ,
whose set of eigenvectors are {|vn〉 } and {|wn〉 }, respectively (see Prob. 5.12). If {∣∣a j

〉 } and
{|bk〉 } are two orthonormal bases for the two distinct Hilbert spaces, then, for the unitarity
of the transformations Û and Û ′, {|vn〉 } and {|wn〉 } are also two othornormal bases for the
respective spaces. It is interesting to observe9 that a (pure) state |&〉 of a composite system
is a product state if and only if (iff) it has a Schmidt number 1. Moreover, it is a product
state iff the corresponding reduced density matrices of the two subsystems are pure (see
Prob. 5.13).

It is possible to extend the above proof to the case of two systems with different
dimensions and state the following theorem:

Theorem 5.1 (Schmidt decomposition) For any pure state |&〉 12 of a composite system
S12 it is always possible to find orthonormal sets of vectors {| j〉 1} for system S1 and {| j〉 2}
for system S2 such that

8 See [Schmidt 1907] [Peres 1995].
9 See [Nielsen/Chuang 2000, 110].
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|&〉 12 =
∑

j

c j | j〉 1 | j〉 2 , (5.52)

where c j are non-negative real numbers with
∑

j c2
j = 1.

If, {∣∣a j
〉 } and {|bk〉 } are two orthonormal bases for two distinct Hilbert spaces with

different dimensions, then {| j〉 1} and {| j〉 2} are are two, possibly incomplete, sets of
orthonormal vectors for these two spaces. It should be stressed that Schmidt decompo-
sition must not be understood as a way of reducing the total Hilbert space. As a matter of
fact, the involved transformations are not universal but rather depend on the coefficients
considered and, therefore, are state-dependent (see also Subsec. 3.5.3).

In the previous subsection we have said that a partial trace of a pure density matrix may
yield a mixture. Here we show how, starting with a mixed state, we may write down a
compound pure state of which the “initial” mixed state is a reduced state. Suppose, for
instance, that we have a system S in a mixed state

ˆ̃ρS =
∑

n

wn |an〉 〈an |, (5.53)

where wn ≥ 0 (and wn 	= 0 for k ≥ 2 values of n), and {|an〉 } is a basis for the Hilbert
space HS of S. Now it is always possible to find a larger system S + S ′ (provided that S ′
has at least k independent vectors, with k ≥ 2) such that the state vector of the total system
S + S ′ is of the form (5.49), i.e.

|&〉S+S ′ =
∑

n

√
wn |an〉 |bn〉 , (5.54)

where {|bn〉 } is a basis for the Hilbert space HS ′ of S ′. It can be easily shown that, by
tracing out S ′,

TrS ′
(|&〉S+S ′ 〈& |) =∑

mn

√
wmwn |am 〉 〈an |Tr (|bm 〉 〈bn |)

=
∑
mn

√
wmwn |am 〉 〈an | δmn

= ˆ̃ρS , (5.55)

we exactly recover the state (5.53). In other words, we have first considered the Hilbert
space HS of a system S in a mixed state. Then, we have considered a second system
S ′ with a Hilbert space HS ′ and built a compound system of these two in a larger Hilbert
space HS+S ′ = HS ⊕HS ′ , which is described by a pure state. Finally, we have traced out
the system S ′. This shows that a mixed state of a certain system can always be obtained as
a partial trace of a pure state of a larger system.
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�Figure 5.1 Representation of pure and mixed states on a sphere.

5.6 Pure- and mixed-state representation

It is always possible to write a density matrix as a linear combination of the density matri-
ces corresponding to pure states. In particular, for a two-level system we can write a density
operator ρ̂ in the convex form (see also Eq. (5.25))

ρ̂ = wρ̂1 + (1 − w)ρ̂2, (5.56)

where ρ̂1 and ρ̂2 are two appropriate and different pure states and 0 ≤ w ≤ 1 is some
weight. If the state described by Eq. (5.56) is pure, w = 1 or w = 0. Otherwise, it rep-
resents a mixture. Hence, in the space of states the set of pure states, which may be
represented by projection operators, is not convex. It should then be clear, as we have said
in Sec. 5.1, that the formalism of density operators is a generalization of the formalism of
projectors and state vectors. In the case of pure states, this representation perfectly corre-
sponds to the Poincaré sphere representation introduced in Subsec. 1.3.3. Indeed, we may
build a sphere of the density operators and see that any state | j〉 on the Poincaré sphere
corresponds to a projector P̂j = | j〉 〈 j | on the sphere of density operators. We may repre-
sent any pure state (w = 0 or w = 1) as a point on the surface of a sphere and any mixture
(0 < w < 1) as a point lying in the interior of the sphere.10 Supposing that Eq. (5.56) rep-
resents a mixture ˆ̃ρ, ρ̂1 and ρ̂2 are two pure states in which ρ̂ is decomposed. In Fig. 5.1
they are taken to be orthogonal (they are opposite points on a diameter passing through ˆ̃ρ).
However, the decomposition of a mixture is not unique. In fact, we can take any other line

10 See [Poincaré 1902, 89–90].
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(not necessarily a diameter) passing through ˆ̃ρ – in Fig. 5.1 the decomposition in terms of
ρ̂3 and ρ̂4 is shown. It is clear that in this case ρ̂3 and ρ̂4 are not orthogonal.

Since Tr (ρ̂2) = 1 for a pure state and Tr (ρ̂2) < 1 for a mixed state (see Sec. 5.1), a
good measure of the purity of a state is represented by

M = Tr
(
ρ̂

2
)

. (5.57)

It is clear that states inside the sphere of density operators will have M < 1, while on the
surface M = 1. Let us consider the center ˆ̃ρc of the sphere. As any other mixed state, this
state has an infinite number of possible representations. If we take the vertical diameter,
we have

ˆ̃ρc = 1

2
(|↑ 〉 〈↑ | + |↓ 〉 〈↓ |), (5.58)

where |↑〉 〈↑ | and |↓〉 〈↓ | represent here the north and south poles of the sphere,
respectively. Therefore, the matrix form of ˆ̃ρc in the basis {|↑〉, |↓〉 } will be given by

ˆ̃ρc = 1

2

[
1 0
0 1

]
= 1

2
Î , (5.59)

and

ˆ̃ρ2
c =

1

4

[
1 0
0 1

]
= 1

4
Î , (5.60)

which yields M = 1/2, and this corresponds to the minimum value of Tr (ρ̂2) for a
bidimensional system.

Going to higher Hilbert-space dimensions, it is straightforward to generalize the
previous result so as to obtain

M(n)
c = 1

n
, (5.61)

where n is the dimension of the space, and we can see that the purity of a completely mixed
and equally weighted n-dimensional density matrix (of a center) is simply the inverse of
the number of possible levels (see Prob. 5.14). It is also clear that for n →∞, M(n)

c → 0.

Summary

In this chapter we have developed the basic features of the density matrix. We may
summarize the main results as follows:

• The concept of density matrix has led us to classify quantum-mechanical states into pure
states, which can be represented as projectors, and mixed states.

• Quantum-mechanical statistics present some specific features.
• Multiparticle systems can present the feature of entanglement, which describes a situa-

tion where two or more (not necessarily interacting) systems, for what concerns their
physical properties, are not separable but have to be considered as a whole.
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Problems

5.1 Prove Eqs. (5.1) for pure states.
5.2 Show that the density matrix corresponding to a non–normalizable wave function

(see Eq. (2.117)) is not normalizable, i.e. Tr (ρ̂) = ∞.
5.3 Show that the mixed density matrix ˆ̃ρ of Eq. (5.8) satisfies Eq. (5.10) if both ch and

cv are different from zero.
5.4 Prove that pure states evolve into pure states under unitary time evolution.

(Hint: For the property (5.1b) use the cyclic property of the trace (see Box 3.1)).
5.5 The fact that the probabilities (5.16) differ from probabilities (5.17) suggests an

important conclusion about the relation between density matrices (5.14) and (5.15).
5.6 Consider the state |ψ〉 = (1/

√
2) (|v〉 + |h〉 ) on the two-dimensional polarization

Hilbert space. Write the corresponding density matrix ρ̂ = |ψ〉 〈ψ | and show that it
can be written as a projector, and find the eigenvalues and eigenvectors of ρ̂. What
are the main differences between this density matrix and

ρ̂
′ =

[ 1
2 0
0 1

2

]
?

5.7 Prove that the state of Eq. (5.38) may be written as a direct product |&〉 12 = |ψ〉 1 ⊗
|ϕ〉 2.

5.8 Prove that the state of the form (5.36), that is,

|&〉 12 = chv |h〉 1 |v〉 2 + cvh |v〉 1 |h〉 2 ,

where |chv|2 + |cvh |2 = 1 and both coefficients are non-zero, cannot be written as a
product state

∣∣& ′〉
12 = |ψ〉 1 ⊗ |ϕ〉 2, with

|ψ〉 1 = cv |v〉 1 + ch |h〉 1,

|ϕ〉 2 = c′v |v〉 2 + c′h |h〉 2.

5.9 Consider again the state vector |&〉 12 of Eq. (5.38) describing the polarization of two
photons. Show that the reduced density matrices !̂1 = Tr2 (ρ̂12), and !̂2 = Tr1 (ρ̂12)
describe pure states, where ρ̂12 = |&〉 12 〈& |.

5.10 Generalize the result of Prob. 5.9 and prove that the reduced density matrix obtained
starting from a non-entangled pure state describes a pure state.

5.11 Compute the reduced density matrix !̂2 of the matrix (5.45).
5.12 Consider two systems, 1 and 2, with bases {|0〉, |1〉 }1 and {|0〉, |1〉 }2, respectively,

where

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
.
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Let us assume that the compound system is in the entangled state

|&〉 = 1√
2
(|0〉 1 |1〉 2 + |1〉 1 |0〉 2)

=
1∑

j ,k=0

C jk | j〉 1 |k〉 2 .

Apply the Schmidt decomposition in order to
• find the eigenvalues of the matrices ĈĈ† and Ĉ†Ĉ ;
• choose the states |vn〉 and |wn〉 of Eq. (5.49);
• determine the unitary transformations Û and Û ′ of Eqs. (5.50);
• verify that the relation (5.51) holds.

5.13 Prove that
• a (pure) state |&〉 of a composite system is a product state if and only if (iff) it has

a Schmidt number 1,
• it is a product state iff the corresponding reduced density matrices of the two

subsystems are pure.
(Hint: The first part is straightforward. For the second part, take advantage of the
solutions of Prob. 5.10.)

5.14 Prove Eq. (5.61).

Further reading

Density matrix

Fano, Ugo, Description of states in quantum mechanics by density matrix and operator
techniques. Review of Modern Physics, 29 (1957), 74–93.

Entanglement

Clifton, R., Butterfield, J., and Halvorson, H. (eds.), Quantum Entanglement: Selected
Papers, Oxford: Oxford University Press, 2004.
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6 Angular momentum and spin

Up to now we have laid the foundations and the basic principles of quantum mechanics and
have considered some examples of quantum dynamics. In this chapter we go back to the
problem of the definition of quantum observables and the search for their eigenvalues and
eigenfunctions. In particular, we discuss here angular momentum (in Sec. 6.1), some spe-
cial examples (in Sec. 6.2), and spin (in Sec. 6.3). In Sec. 6.4 we discuss some examples of
composition of angular momenta pertaining to different particles and total angular momen-
tum. Finally, in Sec. 6.5 we analyze the uncertainty relations between angular momentum
and angle, and present an operational representation of the angle observable.

6.1 Orbital angular momentum

When moving from one-dimensional problems to higher dimensions, rotations come into
play. These have taken a central scientific role since the beginning of human culture, when
the most ancient civilizations began a systematic observation of celestial bodies and their
recurrent motion. However, also in this case the passage from classical to quantum physics
introduces additional questions that are the subject of this section.

6.1.1 General features

Classically, the orbital angular momentum of a point particle is defined as the vector
product

L = r × p, (6.1)

where r is the position and p the linear momentum with respect to a certain Cartesian
reference frame Oxyz (see Fig. 6.1). It should be noted that the angular momentum is an
axial vector (or pseudovector), i.e. a quantity that transforms like a vector under a proper
rotation, but gains an additional sign flip under an improper rotation (a transformation that
can be expressed as an inversion followed by a proper rotation). The conceptual opposite
of a pseudovector is a (true) vector or a polar vector. Further examples of axial vectors
are represented by magnetic field and torque. In general, quantities resulting from vector
products are axial vectors.
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�Figure 6.1 A classical particle with mass m, velocity v, and position r with respect to a certain reference
frame Oxyz has an angular momentum L = r × p = mr × v.

Making use of the correspondence principle (see p. 72), we can define the orbital angu-
lar momentum in the same way also in quantum mechanics, but by taking into account
the commutation relations (2.173). Then, in the coordinate representation, we have the
following three equations for the orbital angular momentum (see Eq. (2.134))

L̂ x = ŷ p̂z − ẑ p̂y = −ı h̄

(
y
∂

∂z
− z

∂

∂y

)
, (6.2a)

L̂ y = ẑ p̂x − x̂ p̂z = −ı h̄

(
z
∂

∂x
− x

∂

∂z

)
, (6.2b)

L̂ z = x̂ p̂y − ŷ p̂x = −ı h̄

(
x
∂

∂y
− y

∂

∂x

)
, (6.2c)

or, in more compact form,

L̂ j = ε jknr̂k p̂n , (6.3)

where j , k, n are indices which may assume the values 1, 2, 3, r̂1 = x̂ , r̂2 = ŷ, and
r̂3 = ẑ, and similarly L̂1 = L̂ x , L̂2 = L̂ y , and L̂3 = L̂ z . The symbol ε refers to the Levi–
Civita tensor, which is antisymmetric (it changes sign by exchange of two indices), is zero
when two indices are equal, and ε123 = 1 (see Fig. 6.2). In Eq. (6.3) and in the following
of this chapter, a summation over repeated indices is understood.

The first important aspect to note in Eqs. (6.2) and (6.3) is that different components of
the angular momentum do not commute. In fact, the commutation relations for the first two
components can be calculated as follows:[

L̂ x , L̂ y

]
= [ŷ p̂z − ẑ p̂y , ẑ p̂x − x̂ p̂z

]
= [ŷ p̂z , ẑ p̂x

]+ [ẑ p̂y , x̂ p̂z
]

= ŷ
[

p̂z , ẑ
]

p̂x + p̂y
[
ẑ, p̂z

]
x̂

= ı h̄
(
x̂ p̂y − ŷ p̂x

)
= ı h̄ L̂ z , (6.4)
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�Figure 6.2 Pictorial representation of the Levi–Civita tensor. A cube is segmented into 27 boxes, according to
the values (1, 2, or 3) of the indices j, k, n. Each box then represents one component of the
tensor. Only the values of the visible boxes are shown. Of the 27 components of the Levi–Civita
tensor only six (those for which the indices are different from each other) are different from zero:
they can have the values +1 or -1 depending on whether the sequence of the indices can be
obtained from the sequence 123 with an even or an odd number of permutations, respectively.

where we have made use of property (2.95), of the commutation relation
[
ẑ, p̂z

] = ı h̄ [see
Eq. (2.173b)], and of Eq. (6.2c). Proceeding in a similar manner, we can calculate the other
commutation relations (see Prob. 6.1). The corresponding results are[

L̂ x , L̂ y

]
= ı h̄ L̂ z ,

[
L̂ y , L̂ z

]
= ı h̄ L̂ x ,

[
L̂ z , L̂ x

]
= ı h̄ L̂ y , (6.5)

which can be written in the more compact form

[
L̂ j , L̂k

]
= ı h̄ε jkn L̂n . (6.6)

In other words, the three components of the angular momentum are not simultaneously
measurable (see Cor. 2.1: p. 67). As we shall see below, this is due to the fact that L̂
generates the group of rotations. A second important feature of the angular momentum is
that any of its components commutes with its square (see Prob. 6.2), i.e.

[
L̂ j , L̂

2] = 0, (6.7)
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with j = x , y, z. This result tells us that it is possible to measure simultaneously L̂
2

and
one (and only one) of the components L̂ j . This is again a consequence of the fact that L̂

is the generator of the rotation group ( L̂
2

is a scalar for the rotations). We shall investigate
the relation between rotation invariance and properties of the angular momentum in the
next subsection.

Finally, in the context of quantum–classical physics correspondence, where the Poisson
brackets are replaced by commutators (see Sec. 3.7), notice that, classically, two compo-
nents of L cannot simultaneously be canonical momenta. On the contrary, the modulus
of L and any of the L j components can simultaneously be canonical momenta. This
shows once again that quantum commutation relations have a certain analogy in classical
mechanics.

6.1.2 Rotations and angular momentum

We have already seen how it is possible to introduce the linear momentum p̂ as the invariant
for space translations (or, equivalently, the generator of spatial translations) (see Sub-
sec. 2.2.4 and also Subsec. 8.2.1) and the total energy (the Hamiltonian Ĥ ) as the invariant
for time translations (or, equivalently, the generator of time translations) (see Subsecs. 3.1.1
and 3.5.3).

Let us now discuss the two consequences drawn at the end of the previous subsection
with more details. We consider now how a generic ket |ψ〉 is modified by the action of the
unitary rotation operator (see Subsec. 3.5.4), that is,

Ûθ = e
ı
h̄ θn· L̂ = eıθn·l̂, (6.8)

which describes a rotation by an angle θ about the direction given by the versor n, and
where

l̂ = L̂
h̄
= r̂ × k̂, (6.9)

k̂ = p̂/h̄ = −ı∇ being the propagation vector (see Eq. (2.140)). Without loss of generality
we may consider infinitesimal rotations, i.e. rotations by an angle δθ → 0. In such a case,
Taylor-expanding the unitary operator (6.8) to the first order, we have

Ûδθ � 1 + ıδθn · l̂ = 1 + ıδθ R̂, (6.10)

where R̂ = n · l̂ is called the generator of the rotation. The unitary operator (6.8) induces,
on a generic operator Ô , the transformation (see Eq. (3.68))

Ô �→ Ô ′ = Ûδθ ÔÛ †
δθ =

(
1 + ıδθ R̂

)
Ô
(

1 − ıδθ R̂
)

= Ô + δÔ , (6.11)

where, to the first order in δθ ,
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δÔ � ıδθ
[

R̂, Ô
]

. (6.12)

As a consequence, if Ô is a scalar for rotations, it has to commute with the generator R̂
of the rotation, which is the projection of L̂ along the direction n. In such a case, δÔ = 0.

This then is the reason why any component of L̂ commutes with L̂
2
, R̂2, and p̂2, all of

which are scalars for the rotations.
Let us write the explicit form of the generator of rotations. In the general three-

dimensional case (see Eq. (2.38) for the two-dimensional case), the matrix which describes
a rotation about the axes x , y, z (by the Euler angles β,φ, and θ , respectively) is1

R̂(β,φ, θ ) =
⎡⎢⎣ cosβ cosφ cos θ − sinβ sin θ sinβ cosφ cos θ + cosβ sin θ − sinφ cos θ

− cosβ cosφ sin θ − sinβ cos θ − sinβ cosφ sin θ + cosβ cos θ sinφ sin θ
cosβ sinφ sinβ sinφ cosφ

⎤⎥⎦. (6.13)

Let us now consider a specific rotation by an angle θ about the z-axis. The rotation matrix
is (see Prob. 6.3)

R̂(θ ) =
⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦. (6.14)

Then, any vector v ≡ (vx , vy , vz) is transformed by the rotation (6.14) of an angle δθ into
a vector v′ ≡ (v′x , v′y , v′z) such that (v′ = v − δv)

v′x = cos δθvx + sin δθvy , (6.15a)

v′y =− sin δθvx + cos δθvy , (6.15b)

v′z = vz . (6.15c)

Since v′x � vx + δθvy and v′y � −δθvx + vy , we obtain

δvx = −δθvy , δvy = δθvx , δvz = 0. (6.16)

Comparing Eq. (6.16) with Eq. (6.12), we arrive at[
l̂z , vx

]
= ıvy ,

[
l̂z , vy

]
= −ıvx ,

[
l̂z , vz

]
= 0. (6.17)

Since this is true of any vector, we have e.g. (see Prob. 6.4)[
L̂ z , x̂

]
= ı h̄ ŷ and

[
L̂ z , p̂x

]
= ı h̄ p̂y . (6.18)

1 See [Byron/Fuller 1969–70, 11].
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6.1.3 Eigenvalues of the angular momentum

We wish now to find the eigenvalues and eigenfunctions of l̂. For this purpose, we have to
choose a complete set (see comments to Cor. 2.1: p. 67) of angular momentum observables.
This is not trivial in the present case since, as we have seen, in contrast to the case of
position and momentum, different components of the angular momentum do not commute
with each other. We have then to choose a pair of commuting observables we wish to
jointly diagonalize. Let us select e.g. l̂2 and l̂z (see Eq. (6.7)). First, we note that we must
have l̂2 − l̂2

z = l̂2
x + l̂2

y ≥ 0 (see Prob. 6.6). Let us choose for our Hilbert space basis a set

of states
∣∣ l, ml

〉
that have definite values of l̂2 and l̂z . In this context, the ket

∣∣ l, ml

〉
is an

eigenket of both l̂2 and l̂z , where ml is the eigenvalue of l̂z , and, as we shall see below, it is
also connected to the eigenvalue of l̂2. Then, we have〈

l, ml

∣∣∣l̂2 − l̂2
z

∣∣∣ l, ml

〉
=
〈
l, ml

∣∣∣l̂2
x + l̂2

y

∣∣∣ l, ml

〉
≥ 0. (6.19)

This means that the eigenvalues of l̂2
z cannot exceed the eigenvalues of l̂2, i.e. once the

eigenvalue of l̂2 is fixed, l̂2
z is bounded2. Let us indicate by l the maximal eigenvalue of l̂z ,

that is

− l ≤ ml ≤ l, (6.20)

where l is called the azimuthal quantum number, while ml , representing the eigenvalue of
l̂z , is called the magnetic quantum number, so that we can write

l̂z
∣∣ l, ml

〉 = ml

∣∣ l, ml

〉
. (6.21)

In order to investigate the algebra of angular momentum3 it is convenient to introduce
raising and lowering operators (see also Subsec. 4.4.2)

l̂± = l̂x ± ı l̂y , (6.22)

which satisfy

l̂− = l̂†
+ (6.23)

and the commutation relations (see Prob. 6.7)[
l̂z , l̂±

]
= ±l̂±,

[
l̂+, l̂−

]
= 2l̂z ,

[
l̂2, l̂±

]
= 0. (6.24)

Let us now consider the action of l̂z on the state vector l̂+
∣∣ l, ml

〉
l̂z l̂+

∣∣ l, ml

〉 = (l̂+l̂z +
[
l̂z , l̂+

]) ∣∣ l, ml

〉
= ml̂+

∣∣ l, ml

〉 + l̂+
∣∣ l, ml

〉
= (ml + 1)l̂+

∣∣ l, ml

〉
. (6.25)

2 Of course, this holds true also in the classical case, where the length of the projection of a vector along a certain
direction cannot exceed the length of the original vector.

3 On the abstract concept of algebra see also Subsecs. 8.4.3 and 8.4.4.
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Table 6.1 Ordering of the “ascending” and “descending” angular momentum eigenstates
and corresponding eigenvalues of l̂z

“Ascending” eigenstates “Descending” eigenstates Eigenvalue of l̂z

l̂2l+ | l,−l〉 ∝ | l, l〉 | l, l〉 l

l̂2l−1+ | l,−l〉 ∝ | l, l − 1〉 l̂− | l, l〉 ∝ | l, l − 1〉 l − 1
· · · l̂2− | l, l〉 ∝ l̂− | l, l − 1〉

∝ | l, l − 2〉 l − 2
· · · · · · · · ·
l̂2+ | l,−l〉 ∝ l̂+ | l,−l + 1〉
∝ | l,−l + 2〉 · · · −l + 2

l̂+ | l,−l〉 ∝ | l,−l + 1〉 l̂2l−1− | l, l〉 ∝ | l,−l + 1〉 −l + 1
| l,−l〉 l̂2l− | l, l〉 ∝ | l,−l〉 −l

Therefore, l̂+
∣∣ l, ml

〉
is an eigenvector of l̂z with eigenvalue m + 1. Then,

l̂+
∣∣ l, ml

〉 ∝ ∣∣ l, ml + 1
〉

. (6.26a)

Proceeding in the same way for the state vector l̂−
∣∣ l, ml

〉
, we obtain

l̂−
∣∣ l, ml

〉 ∝ ∣∣ l, ml − 1
〉

. (6.26b)

Now, recalling that l is the maximal eigenvalue of l̂z and that −l is the minimal eigenvalue
of l̂z , we also must have that l̂+ | l, l〉 = 0 and l̂− | l,−l〉 = 0. It is then possible to order the
angular momentum eigenstates in descending order of the eigenvalue of l̂z , as in Tab. 6.1.
Then, for any value of l, we have 2l + 1 possible states and, since 2l + 1 must be an integer,
l should consequently be either integer or half-integer.

In order to find the eigenvalues of l̂2, consider that

l̂−l̂+ =
(

l̂x − ı l̂y

) (
l̂x + ı l̂y

)
= l̂2

x + l̂2
y + ı

[
l̂x , l̂y

]
= l̂2 − l̂2

z − l̂z , (6.27)

from which it follows that

0 = l̂−l̂+ | l, l〉 =
(

l̂2 − l̂2
z − l̂z

)
| l, l〉 , (6.28)

which implies [
l̂2 − l(l + 1)

]
| l, l〉 = 0, (6.29)

or

l̂2 | l, l〉 = l(l + 1) | l, l〉 , (6.30)

which means that the eigenvalue of l̂2 is l(l + 1). It is straightforward to generalize
Eq. (6.30) to obtain (see Prob. 6.9)
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x

z

y

r

O

P

φ

θ

polar axis

�Figure 6.3 Relationship between rectangular (Cartesian) coordinates (x, y, z) and spherical coordinates
(r,φ, θ) of a point P in the three-dimensional space, where r is the distance from the origin, φ is
the azimuthal angle (from the x-axis, with 0 ≤ φ < 2π), and θ the polar angle (from the z-axis,
with 0 ≤ θ ≤ π).

l̂2
∣∣ l, ml

〉 = l(l + 1)
∣∣ l, ml

〉
. (6.31)

This is a peculiarity of quantum mechanics, in that the eigenvalue of the square of l̂ is not
the square of the eigenvalue of l̂. As we see from Eq. (6.27), it is a direct consequence of
the fact that the angular momentum’s components (in particular l̂x and l̂y) do not commute
with each other. Indeed, if they did commute, the last term in brackets in Eq. (6.28) would
vanish and the eigenvalue of l̂2 would be equal to l2.

6.1.4 Eigenfunct ions of the angular momentum

We have just built an abstract algebra of the angular momentum operator.4 on the basis
of commutation relations, i.e. the general features of the angular momentum’s eigenvalues
and eigenkets. For this algebra only half-integer values of l are suitable. However, there are
also further constraints which do not depend on this algebra. In particular, we must impose
that the wave functions be probability amplitudes and therefore they must be single-valued.
Due to the rotational invariance, it is better to use the spherical coordinates (see Fig. 6.3)

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ , (6.32)

4 See again Subsec. 8.4.4.
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whose inverse transformations are given by

r =
√

x2 + y2 + z2, φ = arctan
y

x
, θ = arctan

√
x2 + y2

z
. (6.33)

Then, we have (see Eq. (6.2c))

−ı h̄
∂

∂φ
= −ı h̄

(
∂x

∂φ

∂

∂x
+ ∂y

∂φ

∂

∂y

)
= −ı h̄

(
−ŷ

∂

∂x
+ x̂

∂

∂y

)
= L̂ z . (6.34)

This is a consequence of the fact that L̂ z generates the rotations about z, i.e. the translations
in φ. Let us denote by ψ(r , θ ,φ) the angular momentum eigenfunctions. This means that
ψ(r , θ ,φ) must be simultaneously eigenfunctions of l̂z and l̂2. In particular, we have

l̂zψ(r , θ ,φ) = −ı
∂

∂φ
ψ(r , θ ,φ) = mlψ(r , θ ,φ). (6.35)

Therefore, the eigenfunction of l̂z corresponding to the eigenvalue ml must be proportional
to eıml φ and we may write

ψ(r , θ ,φ) = f (r , θ )
eıml φ√

2π
. (6.36)

If we make a rotation of 2π about the z-axis (φ �→ φ + 2π ), we will obviously return to the
initial position. Then, we must also have the same value of the wave function ψ(r , θ ,φ),
and, as a consequence, ml is an integer. Given that l is the maximum value of ml , l also
must be an integer (and so also −l). Moreover, in a superposition of the wave functions

ψ = f eıml φ and ψ ′ = f ′eım′
l
φ , only relative phases are relevant (see Subsec. 2.1.3) so that

in the expression

f eıml φ + f ′eım′
l
φ = eıml φ

(
f + f ′eı(m′

l
−ml )φ

)
(6.37)

only the difference m′
l
− ml is relevant, and therefore must be an integer – also the value

l = 0 must exist.5 Then, all the values of l must be integers. As we shall see in Sec. 6.3,
this is not true for the spin angular momentum, because it is an internal degree of freedom
that does not depend on the coordinates.

Let us now introduce the notation

Fm(φ) = eıml φ√
2π

. (6.38)

5 In this case we have that ψ is a function of r only, and this represents a situation of spherical symmetry, as we
shall see in the next section.
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Then (see Eq. (2.145)),

2π∫
0

dφF∗m(φ)Fm′ (φ) = 1

2π

2π∫
0

dφeı(m′
l
−ml )φ = δml m′

l
, (6.39)

i.e. the functions Fm(φ) are orthonormal. We wish now to find the matrix elements of l̂±.
Let us first calculate the mean value of the operator l̂−l̂+. We have〈

l, ml

∣∣∣l̂−l̂+
∣∣∣ l, ml

〉
=

l∑
j=−l

〈
l, ml

∣∣∣l̂−∣∣∣ l, j
〉 〈

l, j
∣∣∣l̂+∣∣∣ l, ml

〉
. (6.40)

Since

l̂− | l, j〉 ∝ | l, j − 1〉 and l̂+
∣∣ l, ml

〉 ∝ ∣∣ l, ml + 1
〉
, (6.41)

and the eigenvectors of l̂z with different values of ml must be orthonormal, the only term
of the sum (6.40) that is different from zero is for j = ml + 1, that is〈

l, ml

∣∣∣l̂−l̂+
∣∣∣ l, ml

〉
=
〈
l, ml

∣∣∣l̂−∣∣∣ l, ml + 1
〉 〈

l, ml + 1
∣∣∣l̂+∣∣∣ l, ml

〉
. (6.42)

Taking into account Eq. (6.27), we also have〈
l, ml

∣∣∣l̂−l̂+
∣∣∣ l, ml

〉
=
〈
l, ml

∣∣∣l̂2 − l̂z(l̂z + 1)
∣∣∣ l, ml

〉
. (6.43)

Since l̂− = l̂†
+, from Eqs. (6.21), (6.31), and (6.42)–(6.43), it follows that∣∣∣〈l, ml + 1

∣∣∣l̂+∣∣∣ l, ml

〉∣∣∣2 = l(l + 1) − ml (ml + 1), (6.44)

which in turn implies〈
l, ml + 1

∣∣∣l̂+∣∣∣ l, ml

〉
= √l(l + 1) − ml (ml + 1). (6.45)

Then, it easily follows that

l̂+
∣∣ l, ml

〉 = √l(l + 1) − ml (ml + 1)
∣∣ l, ml + 1

〉
. (6.46a)

By using the substitution l̂+ = l̂†
− in Eq. (6.42), we also obtain

l̂−
∣∣ l, ml

〉 = √l(l + 1) − ml (ml − 1)
∣∣ l, ml − 1

〉
. (6.46b)

From the previous results we also have that

l̂−l̂+
∣∣ l, ml

〉 = (l − ml )(l + ml + 1)
∣∣ l, ml

〉
, (6.47a)

l̂+l̂−
∣∣ l, ml

〉 = (l + ml )(l − ml + 1)
∣∣ l, ml

〉
. (6.47b)
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In order to make some concrete examples, in the following we shall analyze the two
simplest cases l = 0 and l = 1. The case l = 0 is trivial: we have only one (spherically
symmetric) eigenstate, |0, 0〉 , i.e.

l̂ |0, 0〉 = 0. (6.48)

For l = 1, we have ml = −1, 0,+1, and therefore the relevant operators are represented by
3 × 3 matrices. In particular, it is easy to derive (see Prob. 6.10)

l̂z =
⎡⎣ 1 0 0

0 0 0
0 0 −1

⎤⎦, l̂+ =
⎡⎣ 0

√
2 0

0 0
√

2
0 0 0

⎤⎦, l̂− =
⎡⎣ 0 0 0√

2 0 0
0

√
2 0

⎤⎦, (6.49)

where we have defined the basis vectors as

|1, 1〉 =
⎛⎝ 1

0
0

⎞⎠ , |1, 0〉 =
⎛⎝ 0

1
0

⎞⎠ , |1,−1〉 =
⎛⎝ 0

0
1

⎞⎠. (6.50)

The matrices corresponding to l̂x and l̂y can be calculated in terms of l̂+ and l̂−. The matrix
l̂x is given by

l̂x = l̂+ + l̂−
2

= 1

2

⎡⎣ 0
√

2 0√
2 0

√
2

0
√

2 0

⎤⎦, (6.51a)

whereas l̂y is given by

l̂y = l̂+ − l̂−
2ı

= 1

2ı

⎡⎣ 0
√

2 0
−√2 0

√
2

0 −√2 0

⎤⎦ . (6.51b)

As we have already done for l̂z = −ı∂/∂φ (see Eq. (6.35)), it is useful to express l̂+ and
l̂− in spherical coordinates. We start from the definitions of l̂x and l̂y (see Eqs. (6.2a) and
(6.2b)), and we have then to express the partial derivatives with respect to x , y, and z in
terms of the spherical coordinates (6.33) (see Prob. 6.11). We find

∂

∂x
= ∂r
∂x

∂

∂r
+ ∂φ
∂x

∂

∂φ
+ ∂θ
∂x

∂

∂θ

= sin θ cosφ
∂

∂r
− 1

r

sinφ

sin θ

∂

∂φ
+ 1

r
cos θ cosφ

∂

∂θ
, (6.52a)

∂

∂y
= ∂r
∂y

∂

∂r
+ ∂φ
∂y

∂

∂φ
+ ∂θ
∂y

∂

∂θ

= sin θ sinφ
∂

∂r
+ 1

r

cosφ

sin θ

∂

∂φ
+ 1

r
cos θ sinφ

∂

∂θ
, (6.52b)

∂

∂z
= ∂r
∂z

∂

∂r
+ ∂φ
∂z

∂

∂φ
+ ∂θ
∂z

∂

∂θ

= cos θ
∂

∂r
− 1

r
sin θ

∂

∂θ
. (6.52c)
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Back-substituting these expressions into Eqs. (6.2), we obtain

l̂x = ı

(
sinφ

∂

∂θ
+ cosφ cot θ

∂

∂φ

)
, (6.53a)

l̂y =−ı

(
cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
, (6.53b)

from which we can easily build l̂±, i.e.

l̂+ = eıφ
(
∂

∂θ
+ ı cot θ

∂

∂φ

)
, (6.54a)

l̂− = e−ıφ
(
∂

∂θ
− ı cot θ

∂

∂φ

)
. (6.54b)

Similarly, for l̂2 we have from Eqs. (6.34) and (6.53)

l̂2 = l̂2
x + l̂2

y + l̂2
z

= − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
, (6.55)

from which we see that l̂2 is essentially the angular part of the Laplacian in spherical
coordinates (see Prob. 6.12). Therefore,

l̂2ψ(r , θ ,φ) = l(l + 1)ψ(r , θ ,φ) (6.56)

is similar to the Laplace equation and its solutions were already found by Laplace. In
other words, we may assume that the total eigenfunctions ψ(r ,φ, θ ) are a product of two
functions, one depending on r alone, and the other on φ and θ , i.e.

ψ(r , θ ,φ) = R(r )Y (φ, θ ). (6.57)

Given the eigenvalue equations (6.21) and (6.31), the functions Y (φ, θ ) must depend on the
angular momentum quantum numbers l and m. We may therefore label such functions by
these indices, so that, since both l̂2 and l̂z do not depend on r (see Eqs. (6.34) and (6.55)),
we have

l̂2Ylm(φ, θ )= l(l + 1)Ylm(φ, θ ), (6.58a)

l̂zYlm(φ, θ )=ml Ylm(φ, θ ). (6.58b)

These functions have to be normalized according to∫
d'Y ∗

l ′m′ (φ, θ )Ylm(φ, θ ) = δll ′δmm′ , (6.59)

where d' = sin θdθdφ is the element of solid angle. The functions Ylm(φ, θ ) that ver-
ify these conditions are the so-called spherical harmonics.6 Since we already know the
eigenfunctions of l̂z (see Eq. (6.36)), by making use of the definition (6.38) we have

6 See [Byron/Fuller 1969–70, 253–61].
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Ylm(φ, θ ) = Fm(φ)�lm(θ ) = eıml φ√
2π
�lm(θ ), (6.60)

and (see Tab. 6.1)

• l̂+Yll (φ, θ ) = 0;
• l̂−Ylm(φ, θ ) ∝ Yl,m−1(φ, θ ).

From the first condition, we have (see Eq. (6.54a))(
∂

∂θ
+ ı cot θ

∂

∂φ

)
eılφ�ll (θ ) = 0, (6.61)

that is

eılφ
(
∂

∂θ
− l cot θ

)
�ll (θ ) = 0, (6.62)

which implies
∂

∂θ
�ll (θ ) = l cot θ�ll (θ ), (6.63)

whose solution is �ll (θ ) = N (sin θ )l (see Prob. 6.13). Now, the constant N can be
obtained from the normalization condition (see Prob. 6.14), so that we finally have7

�ll (θ ) = (−ı)l

2l l!

√
(2l + 1)!

2
(sin θ )l . (6.64)

In general, the functions �lm(θ ) are solutions of the Legendre’s associated equation,8 i.e.
Legendre associated polynomials. The most general form of the Ylm functions is therefore

Ylm(φ, θ ) = eıml φ√
2π

(−ı)l

√
(2l + 1)(l + ml )!

2(l − ml )!

1

2l l!

1

(sin θ )ml

dl−ml

d cos θ l−ml
(sin θ)2l ,

(6.65)

where the expressions

dl−ml

d cos θ l−ml
(sin θ )2l (6.66)

are (up to a constant factor) the Legendre polynomials (as functions of sin θ and cos θ ). We
explicitly calculate the first ones. For l = ml = 0, we have

Y0,0(φ, θ ) = 1√
4π

. (6.67)

7 The factor (−ı)l in Eq. (6.64) corresponds to a phase choice that has been made for convenience.
8 See [Byron/Fuller 1969–70, 260].
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�Figure 6.4 Pictorial representation of s- and p-states. s represents a spherically symmetric state and the
circle corresponds to a contour of constant probability density (the grey scale is used here only for
pictorial purposes). For px, py, pz a contour of constant probability density will be a pair of closed
surfaces. Note that in Eqs. (6.67), (6.70), and (6.71) we have not considered the radial part (see
Eq. (6.57)).

For l = 1, we have

Y1,0(φ, θ )= ı

√
3

4π
cos θ , (6.68a)

Y1,±1(φ, θ )=±ı

√
3

8π
e±ıφ sin θ , (6.68b)

and, for l = 2,

Y2,0(φ, θ )=−
√

5

16π

(
3 cos2 θ − 1

)
, (6.69a)

Y2,±1(φ, θ )=±
√

15

8π
e±ıφ sin θ cos θ , (6.69b)

Y2,±2(φ, θ )=±
√

15

32π
e±2ıφ sin2 θ . (6.69c)

States for l = 0 are called s-states.9 The symbol s stands for sharp: at the very beginning
of atomic spectroscopy, this term was used to indicate the spectral lines that did not show
the presence of further sub-lines. As we have said, they are spherically symmetric (see
Fig. 6.4 and also 11.6). For states of l = 1, it may be convenient to write the spherical
harmonics (6.68a) as Y1,0(φ, θ ) = ı

√
3/4π z/r . For the (6.68b), it may be convenient to

take the combination (Y1,1 ± Y1,−1)/
√

2, so that we have the three states√
3

4π

x

r
,

√
3

4π

y

r
,

√
3

4π

z

r
, (6.70)

which are called p-states (p standing here for principal). The first two p-states are states
with zero angular momentum around the x-and y-axes, respectively. They are analogous
to the three components of a polar vector: they are zero in the central plane perpendicular
to the axes, positive on one side of the plane, and negative on the other. States with l = 2
are called d-states (d stands for diffusive) and the (not normalized) five cubic harmonics
can be chosen to have symmetry of the type

9 See [Harrison 2000, 34–36].
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�Figure 6.5 Rigid rotator model. Two point-like masses m1 and m2 are connected by a rigid light bar of
length r0. C is the center of mass of the system, and r1 and r2 are the distances of the two masses
from the center of mass.

xy

r2
,

yz

r2
,

zx

r2
,

z2 − r2

r2
,

x2 − y2

r2
. (6.71)

In general, the correspondence between the name of the wave and the angular momentum
is given by

waves s p d f g h
l 0 1 2 3 4 5

. (6.72)

6.2 Special examples

In this section, we shall provide some first applications of the previous formalism: the
rigid rotator (Subsec. 6.2.1), the central potential (Subsec. 6.2.2), the particle in a con-
stant magnetic field (Subsec. 6.2.3), and the harmonic oscillator in several dimensions
(Subsec. 6.2.4).

6.2.1 Rigid rotator

Let us consider the motion of two point-like masses m1 and m2 rigidly connected by an
infinitely thin massless bar (see Fig. 6.5). The center of mass of the rotator is located at
distances r1 and r2 from masses m1 and m2, respectively, where

r1 = m2

m1 + m2
r0, r2 = m1

m1 + m2
r0. (6.73)

As any rigid object in the three-dimensional physical space, the rotator has six degrees of
freedom: the three translational degrees of freedom of the center-of-mass motion and the
three rotational degrees of freedom about the center of mass, represented, e.g., by the three
Euler angles (see Subsec. 6.1.2). If, for the time being, we forget about the “trivial” center-
of-mass translations, we are left with the remaining degrees of freedom described by the
dynamical variables and their conjugate angular momenta.

The classical energy of a rigid rotator is given by its usual kinetic component

T = 1

2
Iω2, (6.74)
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where I is the moment of inertia of the system about the rotation axis and ω is the angular
frequency (see Eq. (4.47)). Since the angular momentum of the system is given by

L = Iω, (6.75)

Eq. (6.74) may be rewritten as

T = L2

2I
. (6.76)

The moment of inertia of the rotator about the rotation axis, i.e.

I = m1r2
1 + m2r2

2 , (6.77)

may be also expressed as

I = mr2
0 , (6.78)

where

m = m1m2

m1 + m2
(6.79)

is the reduced mass. The quantum counterpart of Eq. (6.76) directly gives the Hamiltonian

Ĥ = L̂2

2I
, (6.80)

whose eigenfunctions are given by the spherical harmonics (6.65) and whose eigenvalues
are equal to (see Eq. (6.58a) and Fig. 6.6)

El = h̄2

2I
l(l + 1). (6.81)

We stress the fact that these eigenvalues should be referred to as the total angular momen-
tum (which also includes the spin). Since, however, we are not considering the spin here,
we limit ourselves to the orbital momentum component, developing a full formalism in
other parts of the book (see Sec. 12.3). The transitions between adjacent levels involve
emission (absorbtion) of radiation quanta of frequency (see Eqs. (1.75) and (1.76), and
also Prob. 6.15)

νl,l+1 =
�El,l+1

h
= 2B(l + 1), (6.82)

where

B = h

8π2I
(6.83)

is a rotational constant.

6.2.2 Central potential

In this subsection we wish to establish the most general features of the motion of a quantum
particle subjected to a central potential, which is strictly connected with the matter we have
dealt with in the previous section. As we shall see below, in this case the angular part of
the energy eigenfunctions coincides with the spherical harmonics. Moreover, due to the
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�Figure 6.6 (a) Energy levels for a rigid rotator as a function of the angular-momentum eigenvalue l. The
arrows show the transitions between adjacent levels. (b) The frequency spectrum of the rotator is
a set of equidistant lines. The rotational constant B is defined in Eq. (6.83).

central symmetry of the problem, and the consequent rotational invariance, changing the
direction of the orbital angular momentum does not change the energy of the particle.

Let us consider the general Hamiltonian

Ĥ = − h̄2

2m
�+ V (r ), (6.84)

where the potential V (r ) does not depend on θ or φ. Since the Hamiltonian Ĥ is spherically
symmetric, it commutes with each of the components of the angular momentum, and, as a
consequence, also with l̂2. Moreover, l̂z commutes with l̂2 (see Eq. (6.7)), so that Ĥ , l̂2 and
l̂z represent a complete set of simultaneously measurable observables (see Subsecs. 2.1.5
and 2.2.7; see also Prob. 6.16). In other words, simultaneous eigenfunctions of l̂2 and l̂z are
in this case also eigenfunctions of the Hamiltonian. We may then write (as in Eq. (6.57))
the eigenfunctions of the Hamiltonian as

ψ(r) = R(r )Ylm(φ, θ ), (6.85)

where Ylm(φ, θ ) are just the spherical harmonics (6.65), so that the problem reduces to that
of finding the radial wave function R(r ) (0 ≤ r <∞). Recalling Eqs. (6.84), (6.255) (see
Prob. 6.12), and (6.58a), the Schrödinger equation

Ĥψ(r) = Eψ(r) (6.86)
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may be rewritten as

[
− h̄2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+ h̄2l(l + 1)

2mr2
+ V (r ) − E

]
R(r ) = 0. (6.87)

If we introduce the operator corresponding to the radial component of the momentum

p̂r = −ı h̄
1

r

∂

∂r
r = −ı

(
∂

∂r
+ 1

r

)
, (6.88)

the Hamiltonian Ĥ may be rewritten in the form

Ĥ = 1

2m

(
p̂2

r +
h̄2 l̂2

r2

)
+ V (r ), (6.89)

which is identical to the classical Hamiltonian in the spherical coordinates.10

We now introduce the substitution R(r ) = ξ (r )/r , so that we have

1

r2

∂

∂r

(
r2 ∂

∂r

)
ξ

r
= 1

r2

∂

∂r

(
rξ ′ − ξ)

= ξ
′′

r
, (6.90)

where

ξ ′(r ) = d

dr
ξ (r ) = ∂

∂r
ξ (r ). (6.91)

Therefore, Eq. (6.87) reduces finally to

− h̄2

2m
ξ ′′ +

[
h̄2l(l + 1)

2mr2
+ V (r ) − E

]
ξ = 0, (6.92)

which is identical to the one-dimensional Schrödinger equation (see, e.g., Eq. (3.10)) apart
from the additive term

Vc(r ) = h̄2l(l + 1)

2mr2
, (6.93)

which plays the role of a “centrifugal barrier.” Using the normalization condition of the
spherical harmonics (6.59), the three-dimensional normalization condition for the wave
functions (see Eq. (2.108)) ∫

d3rψ∗(r)ψ(r) = 1 (6.94)

becomes
∞∫

0

drR∗(r )R(r )r2 = 1, (6.95)

10 See [Goldstein 1950, Secs. 9.4 and 9.7].
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or also
∞∫

0

drξ∗(r )ξ (r ) = 1. (6.96)

If l = 0, the centrifugal-barrier term vanishes. In this case we say that the system is in an
s-wave (see Fig. 6.4). Therefore, for s-waves, the central-potential Schrödinger equation
reduces to a one-dimensional problem with the same potential – with the extra condition
that ξ = 0 at the origin (otherwise R(r ) would diverge). Clearly, it is possible to reformulate
the problem in terms of a new variable x (−∞ < x < +∞) by means of the potential
transformation

V (x) =
{

V (r ) + h̄2l(l + 1)(2mr2)−1 for x = r > 0,
∞ for x < 0,

(6.97)

that is, for x < 0, we have an infinite potential barrier. For this reason, the wave function
must vanish for x ≤ 0 – see property (iii) of the Schrödinger equation in Subsec. 3.2.1.
Neglecting the zero at the origin, the ground-state wave function ξ (r ) has no zeros (see
property (iv) of Subsec. 3.2.1), the first excited state just one, and so on (see property (ii)
of Subsec. 3.2.3). The number n of non-trivial zeros of the wave function is called the
radial quantum number. Therefore, a complete three-dimensional eigenfunction may be
labelled by the three quantum numbers n, l, ml .

Let us now consider the case in which

lim
r→∞ r2V (r ) = 0, (6.98)

Then, for small r , the centrifugal term dominates, and the behavior of the wave function is
ruled by

ξ (r → 0) � ra . (6.99)

In fact, taking the limit of Eq. (6.92) for r → 0, we obtain

l(l + 1) − a(a − 1) = 0, (6.100)

which is satisfied for a = l + 1 and for a = −l. The latter, however, is not a good solution
because the wave function would not vanish at the origin. Therefore, we have

ξ (r → 0) � rl+1, R(r → 0) � rl . (6.101)

6.2.3 Part ic le in constant magnetic field

Let us consider the three-dimensional motion of a (spinless) quantum particle of mass m
and charge e embedded in a constant magnetic field B directed along the z-axis.11 In the

11 For a treatment of this problem, taking into account the spin degree of freedom, see Subsec. 6.3.4.
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�Figure 6.7 Change of variables from the Cartesian reference frame (x,y,z) to the cylindrical coordinates
(r,φ, z).

absence of an electric field (E = 0), from Eqs. (4.128) we may assume that the scalar
potential vanishes (U = 0) and that the vector potential is given by12

A = B

2
ŷ ı − B

2
x̂j + 0k, (6.102)

where B is the intensity of the magnetic field. Recalling Eq. (4.133), the total Hamiltonian
of the particle can be written in the form

Ĥ = 1

2m

[(
p̂x + eB

2c
ŷ

)
ı +

(
p̂y − eB

2c
x̂

)
j + p̂z k

]2

= p̂2
z

2m
+ 1

2m

(
p̂2

x + p̂2
y

)
− eh̄ B

2mc
l̂z + e2 B2

8mc2

(
x̂2 + ŷ2

)
. (6.103)

The observables p̂z , l̂z , and

Ĥr = 1

2m

(
p̂2

x + p̂2
y

)
− eh̄ B

2mc
l̂z + e2 B2

8mc2

(
x̂2 + ŷ2

)
, (6.104)

which is the “planar” part of the Hamiltonian, constitute a complete set of commuting
constants of motion (see Subsec. 3.6.1 and Prob. 6.17). In order to find the energy levels of
the quantum particle in the homogeneous magnetic field, we must solve the Schrödinger
equation

Ĥψ(r ,φ, z) = Eψ(r ,φ, z), (6.105)

where we have moved to cylindrical coordinates r ,φ, z (see Fig. 6.7), such that

x = r cosφ, y = r sinφ, z = z. (6.106)

12 Notice that the expression (6.102) of the vector potential satisfies the Coulomb-gauge condition ∇ · A = 0
[see Eq. (13.7)].
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Given the presence in Eq. (6.103) of the term

p̂2
z

2m
, (6.107)

which is proportional to ∂2/∂z2, and of the term

− eh̄ B

2m
l̂z , (6.108)

which is proportional to ∂/∂φ, it is natural to make the ansatz

ψ(r ,φ, z) = e
ı
h̄ pz zeıml φϕ(r ), (6.109)

which allows the problem to be separated. If we replace Eq. (6.109) into Eq. (6.105),
then we are left with a simple harmonic oscillator equation (in the variable r ) for the
function ϕ(r ), with frequency ω = eB/m. It turns out that the constant of motion p̂z may
assume any value from −∞ to +∞, whereas l̂z may take the values ml = 0,±1,±2, . . ..
Furthermore, the third constant of motion Ĥr has harmonic-oscillator-type eigenvalues

(2n + 1)
eh̄ B

2mc
. (6.110)

In conclusion, the total energy eigenvalues of the particle are given by

En = h̄2k2
z

2m
+ (2n + 1)

eh̄ B

2mc
. (6.111)

6.2.4 Harmonic osci l lator in several dimensions

It is possible to consider a particle subjected to a harmonic-oscillator potential (see
Sec. 4.4) in k-dimensions, with k > 1. When the frequencies of the harmonic oscillator
are the same in all directions, the problem is isotropic. In this case, the total Hamiltonian is

Ĥ =
k∑

j=1

Ĥ j , (6.112)

Ĥ j being the Hamiltonian of the j-th dimension of the harmonic oscillator

Ĥ j =
p̂2

j

2m
+ 1

2
mω2r̂2

j , (6.113)

where r̂ j is the j-th component of the position observable r̂. Therefore, this problem is
separable and the total Hilbert space is the direct sum of the Hilbert spaces of the k one-
dimensional harmonic oscillators. In the following, we shall consider the three-dimensional
case and let the reader solve the two-dimensional one (see Prob. 6.19).13

13 For a general treatment of the k-dimensional isotropic harmonic oscillator see [Messiah 1958, 451–54].
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When k = 3, we have

Ĥ = p̂2

2m
+ 1

2m
ω2r̂2

= 1

2m

[(
p̂2

x + m2ω2 x̂2
)
+
(

p̂2
y + m2ω2 ŷ2

)
+
(

p̂2
z + m2ω2 ẑ2

)]
. (6.114)

A complete orthonormal set of eigenvectors of this Hamiltonian will be given by∣∣nx , ny , nz
〉 = |nx 〉 ⊗

∣∣ny
〉 ⊗ |nz〉 , (6.115)

where each of the nx , ny , nz is a positive integer or zero. In fact, we have (see Eqs. (4.50)
and (4.72))

Ĥx |nx 〉 =
(

nx + 1

2

)
h̄ω |nx 〉 , (6.116a)

Ĥy
∣∣ny

〉 =(ny + 1

2

)
h̄ω
∣∣ny

〉
, (6.116b)

Ĥz |nz〉 =
(

nz + 1

2

)
h̄ω |nz〉 , (6.116c)

so that

Ĥ
∣∣nx , ny , nz

〉 = (n + 3

2

)
h̄ω
∣∣nx , ny , nz

〉
. (6.117)

where

n = nx + ny + nz . (6.118)

In other words, the total energy eigenvalue

En =
(

n + 3

2

)
h̄ω (6.119)

depends only on the sum of the component eigenvalues. This means that for any given value
of n there are several possible combinations of values for the three components nx , ny , nz .
In the general case, this number is given by

d = (n + k − 1) !

n! (k − 1) !
, (6.120)

i.e. the number of possible ways of casting n indistinguishable objects into k boxes (see
also Eq. (7.22)), which may also be seen as the degree of degeneracy of the eigenvalue En

(see Th. 2.2: p. 47, and Subsec. 3.1.4). In the case k = 3 this number reduces to (n + 2)
(n + 1)/2.

We shall denote the vacuum (ground) state by

|0〉 = |0, 0, 0〉 , (6.121)

as the state where there are no energy quanta (see p. 158). The energy eigenvalues, the
eigenvectors, and the total number of energy quanta for the ground state and the first
few excited states are reported in Tab. 6.2. Figure 6.8 shows a schematic drawing of the
populated energy levels as a function of the energy and angular momentum eigenvalues.
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Table 6.2 Eigenvalues, number of energy quanta, eigenvectors, degree of degeneracy, and
orbital quantum number for the three-dimensional harmonic oscillator

E n Eigenvectors d l

3
2 h̄ω 0 |0〉 = |0, 0, 0〉 1 0
5
2 h̄ω 1 |0, 0, 1〉 , |0, 1, 0〉 , |1, 0, 0〉 3 1
7
2 h̄ω 2 |0, 1, 1〉 , |1, 0, 1〉 , |1, 1, 0〉 , 6 0, 2

|0, 0, 2〉 , |0, 2, 0〉 , |2, 0, 0〉
9
2 h̄ω 3 |1, 1, 1〉 , |2, 1, 0〉 , |2, 0, 1〉 , |0, 2, 1〉 , |1, 2, 0〉 , 10 1, 3

|0, 1, 2〉 , |1, 0, 2〉 , |3, 0, 0〉 , |0, 3, 0〉 , |0, 0, 3〉
· · · · · · · · · · · · · · ·

E

l = 0

n = 1

n = 2

l = 1 l = 2 l

n = 0

l = 3

n = 3

�Figure 6.8 A schematic representation of the first few energy-levels of the three-dimensional harmonic
oscillator with respect to n and l.

As in the one-dimensional case (see Eqs. (4.73)), it is convenient at this point to
introduce the annihilation operators

âx =
√

m

2h̄ω

(
ωx̂ + ı

p̂x

m

)
, (6.122a)

ây =
√

m

2h̄ω

(
ω ŷ + ı

p̂y

m

)
, (6.122b)

âz =
√

m

2h̄ω

(
ωẑ + ı

p̂z

m

)
, (6.122c)

and the corresponding creation operators â†
x , â†

y , â†
z , which satisfy the commutation rela-

tions (see also Eq. (4.74)) [
â j , â†

l

]
= δ jl , (6.123a)[

â j , âl
]= [â†

j , â†
l

]
= 0. (6.123b)
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Using these definitions, we may straightforwardly write

âx |0〉 = ây |0〉 = âz |0〉 = 0. (6.124)

Moreover (see also Prob. 4.13),

∣∣nx , ny , nz
〉 =

(
â†

x

)nx
(

â†
y

)ny
(

â†
z

)nz√
nx ! ny! nz!

|0〉 . (6.125)

A complete set of commuting observables is obviously represented by the operators{
N̂x = â†

x âx , N̂y = â†
yây , N̂z = â†

z âz

}
, (6.126)

each of which may be interpreted as the number of quanta in the mode x , y, and z, respec-
tively. The corresponding basis is exactly {∣∣nx , ny , nz

〉 }. In a similar way, we may define
the observable corresponding to the total number of quanta as

N̂ = N̂x + N̂y + N̂z , (6.127)

in terms of which the total Hamiltonian (6.114) may be written as

Ĥ =
(

N̂ + 3

2

)
h̄ω. (6.128)

In order to further investigate the degeneracy of the energy eigenvalues, it is convenient to
introduce the angular momentum L̂ = r̂ × p̂. Just as {N̂x , N̂y , N̂z}, also{

Ĥ , L̂2, L̂ z

}
(6.129)

represents a complete set of commuting observables (see Subsec. 6.2.2). Their eigenvec-
tors are labelled by the corresponding quantum numbers n, l, ml , whose eigenvalues are
given by (

n + 3

2

)
h̄ω, l (l + 1) h̄2, ml h̄. (6.130)

The kets
∣∣n, l, ml

〉
constitute a complete set of eigenvectors of the Hamiltonian and

therefore are orthonormal as well: they may obtained from
∣∣nx , ny , nz

〉
by a unitary

transformation, i.e. a change of basis (see Subsec. 2.1.2).
Let us now make some general considerations about the degeneracy of the energy eigen-

values (see again Tab. 6.2, especially the last column, and Subsec. 3.1.4). In order to have
energy degeneracy, there must be a conserved quantity in addition to energy. Indeed, if
there are degeneracies, the Hamiltonian, restricted to the space of the degenerate eigen-
vectors, will be a multiple of the identity, and therefore any operator in that space would
commute with it. A very interesting case is when the conserved quantity exists classically.
In systems with a central potential, the angular momentum is conserved and states with
non-zero angular momentum form a multiplet that are degenerate in energy. That is, a state
with angular momentum l belongs to a multiplet where there are 2l + 1 states. More com-
plex cases are possible if there are additional conserved observables. For a two-dimensional
rotation, for instance, when there is an additional constant of motion, the classical orbits
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of the finite motion must be closed (e.g. ellipses, as in the Kepler problem), as opposed to
open orbits in absence of conservation.

In the case of the quantum harmonic oscillator, we may explain the degeneracy of the
energy eigenvalues with the fact that, beyond the conservation of the angular momentum
and the energy, we also have conservation of the quantity Ĥ j − Ĥk , where j and k may
take the values x , y, z and j 	= k. We expect that this operator does not change the energy
of the system. For instance, the wave functions corresponding to the three vectors

|2, 0, 0〉 , |0, 2, 0〉 , |0, 0, 2〉 (6.131)

which apart from a common factor proportional to e−kr2
, are equal to the Hermite

polynomial of degree two in x , y, z, respectively (see Eq. (4.97)). In other words, we have

〈r | (|2, 0, 0〉 + |0, 2, 0〉 + |0, 0, 2〉 ) = 〈r | η〉 ∝
(

x2 + y2 + z2 + C
)

e−kr2
, (6.132)

where C is a constant, and |r〉 = | x〉 | y〉 | z〉 . This wave function is spherically symmetric,
and therefore the state vector |η〉 has l = 0: it is the first radial excitation in an s-wave (see
Subsec. 6.1.4). Moreover,

1

h̄ω

(
Ĥx − Ĥy

)
|η〉 = 2 (|2, 0, 0〉 − |0, 2, 0〉 ), (6.133)

which corresponds to the angular momentum l = 2. In other terms, the observable
Ĥx − Ĥy (and similar combinations) is a tensor and allows a transformation from the
eigenvectors of a given l to the eigenvectors corresponding to l = ±2.

Another example is given by the classical treatment of the Coulomb potential, where the
additional conserved quantity is represented by the so-called Runge–Lenz vector14

A = 1

m
p × L − e2 r

|r | . (6.134)

The detailed computation shows that in this case the existence of this conserved quantity
implies that the first radially excited s-state is degenerate with the first l = 1 state.

6.3 Spin

6.3.1 Spin as an intr insic and quantum-mechanical
degree of freedom

We have already encountered (in Subsec. 1.5.6) the spin as a new quantization feature of
quantum systems. The existence of an intrinsic magnetic momentum for the electron was
first proposed by Uhlenbeck and Goudsmit, because the spectrum of the hydrogen atom
presents levels which, for l > 0, are split into doublets (see Fig. 6.9). They postulated
that, for the electron, this intrinsic momentum be equal to h̄/2. This hypothesis is able to
explain the experimental results previously obtained by Stern and Gerlach: they had used a

14 See [Landau/Lifshitz 1976a, §15].
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l = 0

n = 1

n = 2

n = 3

l = 1 l = 2 l

n

�Figure 6.9 A schematic representation of the first few levels in the spectrum of a hydrogen atom, where n
denotes the principal quantum number (see also Sec. 11.2). The levels corresponding to l > 0 are
split in doublets.

r + drr

O

+ e

–e .
E(r)

E(r + dr) 

d

dr

�Figure 6.10 An electric dipole with charges +e and −e in an electric field gradient. The distance between the
opposite charges is denoted by dr, and d = edr is the electric dipole momentum.

beam of silver atoms in a magnetic field to show that the atoms behave as magnetic dipoles
subjected to the magnetic field gradient in the same way electric dipoles do when subjected
to an electric field gradient.15 In the latter case (see Fig. 6.10), if dr is small compared to
the variation length of the electric field, the resulting classical force acting on the dipole
would be given by

Fe = e [E(r + dr) − E(r)] = (d ·∇)E(r), (6.135a)

where E(r) is the electric field at position r, −e is the electron charge, and d = edr is the
electric dipole momentum. In the magnetic case, we have, similarly,

Fm = (μ ·∇)B, (6.135b)

where B is the magnetic field and μ is the magnetic dipole momentum. If the gradient is
along the z-axis, Eq. (6.135b) reduces to Fm = μz∂zB.

15 For the classical treatment see [Jackson 1962, 37–38, 61].
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The fact that the spin gives rise to an intrinsic magnetic momentum is an indication
that we should consider spin as an intrinsic angular momentum. When we developed the
angular momentum algebra (see Subsec. 6.1.3), we observed that the value l of the orbital
angular momentum could in principle assume half–integer values (see Tab. 6.1 and com-
ments). This possibility is ruled out for the orbital angular momentum because – for the
wave function to be single-valued – it can only assume integer values (see Eqs. (6.36)–
(6.37) and comments). However, this possibility is allowed for the spin, since it is an
internal variable which has nothing to do with position. Moreover, the experiments tell
us that the electron spin indeed assumes values which are half-integer multiples of h̄. As a
matter of fact, the two spots found on the screen by Stern and Gerlach (see Fig. 1.18) cor-
respond to the two possible values of the spin, h̄/2 and −h̄/2. It is also possible to perform
similar experiments for nuclei, but, given that the mass of the proton is about 2000 times
that of the electron, its contribution to the magnetic momentum is irrelevant relative to that
of the electron – indeed we have

μp � 1

2000
μe, (6.136)

where μp and μe are the magnetic momenta of proton and electron, respectively. If we
want to introduce the spin as a new quantum observable, we have to define it as an operator
(see Subsec. 2.1.1). Since it is an intrinsic angular momentum, the spin operator

Ŝ = h̄ŝ, (6.137)

where ŝ is a vector whose components are matrices that will be determined later, will obey
the general properties of the angular momentum algebra (see Subsec. 6.1.1), i.e.[

ŝ j , ŝk
] = ıε jkn ŝn , (6.138a)[

ŝ j , l̂k
]
= 0,

[
ŝ j , r̂k

] = 0,
[
ŝ j , p̂k

] = 0. (6.138b)

It is important to emphasize that in the classical limit – i.e. when h̄ → 0 (see Pr. 2.3:
p. 72) – the orbital angular momentum maps onto its classical counterpart, whereas for the
spin we have s → 0 and, as expected, it has no classical analogue.

As in the case of the orbital angular momentum – where a complete set of operators
is given by l̂2 and one of the projections of l̂, e.g. l̂z – also in this context, besides the
spin value s = 1/2, 1, 3/2, . . ., we have to include into our description the eigenvalues of
the projection of the spin along a certain direction. For convenience, we again choose the
z orientation. This means that we have to take into account a new quantum number –
determined by the projection of the spin along the z direction – which we call ms , the
spin magnetic quantum number. For example, in the case s = 1/2, ms may take the values
±1/2. Generalizing, a spin-matrix is of rank (2s + 1), i.e. (analogously to the 2l + 1 values
of ml ) there are always 2s + 1 possible values of ms for a particle of spin number s.

Therefore, in general terms, the description of the state of a particle should account both
for the probability amplitudes of the different positions in space (in terms of the three
continuous variables x , y, z), and also for the probability of the different spin values. As a
consequence, the wave function has to account for the spin degree of freedom. To this end,
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the “usual” wave function has to be multiplied by a spin part, which, in the case of spin
1/2, has two components in order to account for the two possible values of the spin. The
resulting function is called spinor and will be indicated by

ψ(r, s) =
(
ψ↑(r)
ψ↓(r)

)
, (6.139)

where ↑ denotes the spin value +1/2 and ↓ the spin value −1/2. In other words, ψ↑(r)
is the eigenfunction of the spin projection along z with eigenvalue +1/2 and ψ↓(r) the
eigenfunction corresponding to the eigenvalue −1/2. The spinor represents an ensemble
of coordinate functions which correspond to different values of ŝz . Therefore,∫

'

dV|ψsz (r)|2 (6.140)

represents the probability that the particle be found in a volume ' with a particular value
of the spin, depending upon whether ms = +1/2 or ms = −1/2. The probability that the
particle be in a volume element dV with any spin value is in turn

dV

+ 1
2∑

sz=− 1
2

|ψsz (r)|2. (6.141)

The normalization condition (2.108) will necessarily translate into

∫
dV

+ 1
2∑

sz=− 1
2

|ψsz (r)|2 = 1, (6.142)

where the volume integration has to be understood over the whole space.

6.3.2 Spin matr ices

Derivat ion for the bidimensional case

Consider again the case of the electron, for which the spin has experimentally been found
to be 1/2. Since we have two possible values, and consequently the spinor wave functions
have two components, the spin-1/2 matrices must be 2 × 2 matrices. Denoting again the
two basis spin wave-functions by ψ↑(r) and ψ↓(r), the total spinor wave-function can be
expressed as

ψ(r, s) = ψ↑(r) + ψ↓(r) = ψ(r)

(
1
0

)
+ ψ(r)

(
0
1

)
. (6.143)

Therefore, {(
1
0

)
,

(
0
1

)}
(6.144)
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represents a spin eigenbasis in the case s = 1/2. In Dirac notation,

|↑〉 z =
(

1
0

)
, |↓〉 z =

(
0
1

)
, (6.145)

and

ψ(r, s) = 〈r | ψ〉 (|↑〉 z + |↓〉 z
)
. (6.146)

Since we know that

ŝz |↑〉 z =
1

2

(
1
0

)
, ŝz |↓〉 z = −1

2

(
0
1

)
, (6.147)

then it follows that

ŝz =
[

1 0
0 −1

]
. (6.148)

Let us now define raising and lowering spin operators ŝ+ and ŝ− (see Eq. (6.22)),
respectively. Then, we have

ŝ± = ŝx ± ı ŝy . (6.149)

Proceeding as in the case of the orbital angular momentum, we have[
ŝz , ŝ±

] = ±ŝ±, (6.150)

where we have made use of Eq. (6.138a). From this result, it follows that

ŝz ŝ+ |↓〉 = 1

2
ŝ+ |↓〉 , (6.151a)

where we have made use of the basis (6.144), and which in turn means that the ket ŝ+ |↓〉
is the eigenvector of ŝz with eigenvalue +1/2, i.e.

ŝ+ |↓〉 = |↑〉 . (6.151b)

Similarly,

ŝz ŝ− |↑〉 = −1

2
ŝ− |↑〉 , (6.151c)

from which it follows that

ŝ− |↑〉 = |↓〉 . (6.151d)

On the other hand, for obvious reasons, we also have

ŝ+ |↑〉 = 0, ŝ− |↓〉 = 0, (6.151e)

because one cannot further raise the vector |↑〉 , nor further lower the vector |↓〉 . Then, we
can deduce the explicit expression for the raising and lowering spin operators, which are
given by

ŝ+ =
[

0 1
0 0

]
and ŝ− =

[
0 0
1 0

]
, (6.152)



222 Angular momentum and spin
�

so that, since

ŝx = ŝ+ + ŝ−
2

and ŝy = ŝ+ − ŝ−
2ı

, (6.153)

we can explicitly derive the two expressions for the x and y components, which, together
with ŝz , give the spin–1/2 operators as

ŝx =
[

0 1
2

1
2 0

]
= 1

2
σ̂x , ŝy =

[
0 − ı

2
ı
2 0

]
= 1

2
σ̂y , ŝz =

[ 1
2 0
0 − 1

2

]
= 1

2
σ̂z .

(6.154)

The zero-trace matrices σ̂x , σ̂y , and σ̂z are known as Pauli spin matrices.16 It is easy to
derive their commutation relations (see Prob. 6.20)

[
σ̂ j , σ̂k

] = 2ıε jkn σ̂n . (6.155)

Moreover, it is straightforward to verify that

σ̂ 2
x = σ̂ 2

y = σ̂ 2
z = Î . (6.156)

Another important property of the Pauli matrices is that they anticommute (see
Prob. 6.21), i.e. [

σ̂ j , σ̂k
]
+ = 2 Î δ jk . (6.157)

Finally, it is not difficult to prove (see Prob. 6.22) that the eigenvectors and eigenvalues of
σ̂x and σ̂y are given by the following equations:

σ̂x |↑〉 x = |↑〉 x , σ̂x |↓〉 x = − |↓〉 x , (6.158a)

σ̂y |↑〉 y = |↑〉 y , σ̂y |↓〉 y = − |↓〉 y , (6.158b)

where

|↑〉 x =
1√
2

(|↑〉 z + |↓〉 z
)
, |↓〉 x =

1√
2

(|↑〉 z − |↓〉 z
)
, (6.159a)

|↑〉 y =
1√
2

(|↑〉 z + ı |↓〉 z
)
, |↓〉 y =

1√
2

(|↑〉 z − ı |↓〉 z
)
. (6.159b)

It is worth emphasizing that Pauli matrices are simultaneously Hermitian and unitary (see
Prob. 6.24). It is very interesting to note that the Pauli matrices, together with the 2 × 2
identity, form an operatorial basis for spin-1/2 Hilbert space: any operator in the spinors
space can be written as a combination of σ̂x , σ̂y , σ̂z , and Î as

16 See [Pauli 1927, 614].
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z

y

x

SFBS BM
M1

M2

�Figure 6.11 Schematic setup for the realization of spin superposition. The arrows indicate incoming spin-up
particles along the z direction and outgoing particles with spin typically in the xy-plane (here in
the x direction). The beam, incoming from the left, is initially split into two beams. Then, a spin
flipper (SF) changes the spin up into spin down. Finally, after the two mirrors, the two beams are
recombined by the beam merger (BM). In the actual experimental
setup [Summhammer et al. 1983] this is realized through single-crystal neutron interferometry.

Ô = α Î + β · σ̂ =
[
α + βz βx − ıβy

βx + ıβy α − βz

]
, (6.160)

where σ̂ = (σ̂x , σ̂y , σ̂z) and, if Ô is real, also α and β must be real. Finally, the Pauli
matrices represent the lowest-dimensional realization of infinitesimal rotations in three-
dimensional space (see also Sec. 17.5).

An ideal experiment

Let us now consider the experiment shown in Fig. 6.11. The initial state of the particle may
be described by (see Eq. (6.145))

ψ(r, s) = ψ0(x , y, z) |↑〉 z . (6.161)

After the initial beam splitter the state becomes

ψ
′
(r, s) = ψ1(x , y, z) |↑〉 z + ψ2(x , y, z) |↑〉 z , (6.162)

and, after the spin flipper in path 1, changes into

ψ
′′
(r, s) = ψ1(x , y, z) |↓〉 z + ψ2(x , y, z) |↑〉 z . (6.163)

The effect of the beam merger is to recombine the two sub-beams so that we finally obtain

ψ
′′′

(r, s) = ψ3(x , y, z)
(|↓〉 z + |↑〉 z

) = ψ3(x , y, z)
√

2 |↑〉 x . (6.164)

The aforementioned experiment bears an interesting relationship to the interferometry
experiment introduced in Sec. 1.2 and developed further throughout the book (see also
Subsec. 2.1.1 and 3.5.2). As in that experiment, in fact, we have here a beam (neutrons
rather than photons) that is essentially subjected to three operations: splitting, phase shift-
ing (spin flipping), and beam merging. These two experiments are so linked to each other
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that they effectively may be understood as two different realizations of the same ideal
experiment.

Other dimensions

Up to now we have considered the case s = 1/2. It is clear that the wave function for spin
zero (s = 0) has only one component (ms = 0), therefore σ̂zψ = 0. This is just the case
where spin is absent.

For s = 1 we have three possible values ms = −1, 0,+1, and the spin matrices are the
following (see Prob. 6.26):

ŝx = 1√
2

⎡⎣ 0 1 0
1 0 1
0 1 0

⎤⎦, (6.165a)

ŝy = 1√
2

⎡⎣ 0 ı 0
−ı 0 ı
0 −ı 0

⎤⎦, (6.165b)

ŝz = 1√
2

⎡⎣ −1 0 0
0 0 0
0 0 1

⎤⎦. (6.165c)

6.3.3 Spin and magnetic field

Let us go back to Eq. (6.103), describing the Hamiltonian of a particle of charge e and mass
m in a constant magnetic field directed along the z-axis. For an electron in an atom, the last
term is negligibly small since x̂2 + ŷ2 is of the order of 10−20 m2. The third term, instead,
is proportional to B · l̂, and, from the correspondence principle (see p. 72), describes the
interaction between the magnetic field B and the magnetic momentum

μ̂
l
= eh̄

2mc
l̂ (6.166)

of a (spinless) charged massive particle having orbital angular momentum l̂.17 Such a
magnetic momentum is simply proportional to the orbital angular momentum. The quantity

μB = eh̄

2mc
(6.167)

is called the Bohr magneton.
The argument above, together with the discussion of Subsec. 6.3.1, suggests that to each

angular momentum corresponds a magnetic momentum. Moreover, their ratio is called the

17 The classical interaction (potential) energy between a magnetic momentum μ and a magnetic field B is given
by E = −μ · B [Jackson 1962, 186]. Traditionally, one used to distinguish between the magnetic field H and
the magnetic induction B = μ0H, where μ0 is the magnetic permeability. Modern approaches consider B as
the basic quantity, sometimes called the magnetic field. We follow this convention.
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gyromagnetic ratio. This is indeed the central theory of the Stern and Gerlach experiment as
well as Uhlenbeck’s hypothesis about the electron’s spin. In the presence of spin, therefore,
we are forced to assume a further interaction term in the Hamiltonian, of the type

Ĥs = −μ̂s · B̂, (6.168)

where

μ̂s = g
eh̄

2mc
ŝ (6.169)

is the spin magnetic momentum. The factor g depends on the specific particle under
consideration. For example, in the case of the electron, experiments tell us that ge =
−2.0023193 � −2. Similar experiments may also be carried out for nucleons, yielding
gp = 5.5856947 for protons and gn = −3.8260855 for neutrons. Eq. (6.169) is the expla-
nation of Eq. (6.136). We finally comment that the values of the g-factors above can be
predicted only with the help of the relativistic extension of quantum mechanics.18

6.3.4 Quantum motion in a homogeneous magnetic field

Let us consider the motion of a quantum particle subject to a homogeneous magnetic field.
In Subsec. 4.5.3 we have already derived the Hamiltonian (4.133) and the Schrödinger
equation (4.135) for a spinless particle in a static electromagnetic field, and in Subsec. 6.2.3
we have already considered a constant magentic field but without taking into account the
spin degree of freedom. In the present case, we have to add the magnetic term (6.168) and
neglect the electrostatic term eU in Eq. (4.135). Moreover, instead of condition (6.102), it
is convenient to choose the vector potential of the homogeneous field in the form

Ax = −By, Ay = Az = 0, (6.170)

and

B = Bk. (6.171)

The Hamiltonian has then the form (see Eqs. (6.169) and (6.103))

Ĥ = 1

2m

(
p̂x + e

c
By
)2 + p̂2

y

2m
+ p̂2

z

2m
− μ̃ŝz B, (6.172)

where

μ̃ = g
eh̄

2mc
. (6.173)

The spin operator ŝz does commute with the Hamiltonian (since the other components of
the spin are absent). This means that the projection of the spin onto the z-axis is conserved,
and therefore we can substitute to ŝz its eigenvalue sz . As a consequence the spinorial
character of the wave function becomes immaterial, and we can limit ourselves to the
consideration of its dependence on the spatial coordinates. The Schrödinger equation may
then be written as

18 See [Mandl/Shaw 1984, 200–203, 231–34].
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1

2m

(
p̂x + e

c
By
)2 + p̂2

y

2m
+ p̂2

z

2m
− μ̃sz B

]
ψ(r) = Eψ(r). (6.174)

Since the Hamiltonian does not contain the operators x̂ and ẑ, it also commutes with the
components p̂x and p̂z of the momentum, that is, these components are also conserved (see
Eq. (3.108) and comments). It is then natural to make the ansatz (see Eq. (2.146))

ψ(r) = e
ı
h̄ (px x+pz z)

ϕ(y), (6.175)

where px and pz may take on any value from −∞ to +∞. Moreover, the z component
of the generalized momentum (4.132) P̂z coincides with the corresponding component of
the ordinary momentum p̂z , because Az = 0. As a consequence, it is often said that the
motion along the direction of the field is not quantized. By substituting Eq. (6.175) into
Eq. (6.174), we obtain a Schrödinger equation for ϕ(y) (see Prob. 6.27)

ϕ′′(y) + 2m

h̄2

[(
E + μ̃sz B − p2

z

2m

)
− m

2
ω2

B
(y − y0)

2

]
ϕ(y) = 0, (6.176)

where

ωB =
eB

mc
and y0 = − c

eB
px . (6.177)

Equation (6.176) is the Schrödinger equation (4.49) for a harmonic oscillator with
frequency ωB . This means that the quantity

E + μ̃sz B − p2
z

2m
(6.178)

that plays the role of the energy of the oscillator in Eq. (6.176) can only assume the discrete
values (n + 1/2)h̄ωB , with n = 0, 1, 2, . . .. Therefore, we are finally able to write

E =
(

n + 1

2

)
h̄ωB − μ̃sz B + p2

z

2m
. (6.179)

The first term represents the discrete energy eigenvalues corresponding to the motion
onto the plane orthogonal to the field, which are called Landau levels (see also
Probs. 6.28 and 6.29).

It should be noted that the energy levels are degenerate with continuous multiplicity,
because Eq. (6.179) does not contain the continuous variable px . In the case of the electron,
there is an extra degeneration, since the energy levels are identical for states with quantum
numbers n and sz = 1/2, as well as n + 1 and sz = −1/2.

6.4 Composit ion of angular momenta and
total angular momentum

In classical mechanics, the composition of angular momenta of different systems simply
reduces to the sum of the corresponding vectors. In quantum mechanics, instead, given
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ml2

ml1

ml = ml1 + ml2

z

l

l2

l1

�Figure 6.12 Landé semiclassical vectorial model for angular momentum. Given two angular momenta l̂1 and
l̂2, with projections along the z-axis equal to, respectively, ml1

and ml2
, the resulting angular

momentum gives rise to a projection along the z-axis equal to ml = ml1
+ ml2

. See

also [White 1934, 154–55].

the particular features of the angular momentum algebra and the existence of the spin
as an intrinsic angular momentum, we have to find a rule that will allow us to compose
different angular momenta in agreement with the algebra itself (see Fig. 6.12). In other
words, we want to answer the following question: given two particles, each endowed with
its own angular momentum, what can we say about the angular momentum of the system?
In particular, our objective will be to find eigenvalues and eigenvectors of the resulting
angular momentum given the eigenvalues and eigenvectors of the angular momenta of
the subsystems. In order to reach our result, we first consider two independent orbital
angular momenta (in Subsec. 6.4.1), then we use these results to establish the general
properties of the total angular momentum (orbital + spin) of a particle (in Subsec. 6.4.2).
In Subsec. 6.4.3 we consider the composition of two spin angular momenta, whereas in
Subsec. 6.4.4 we conclude by considering the change of basis in the context of the angular
momentum algebra.

6.4.1 Independent orbital angular momenta

Let us suppose we have two particles (S1 and S2) that have independent angular momenta,

i.e.
[
l̂1, l̂2

]
= 0. The resulting orbital angular momentum is l̂1,2 = l̂1 + l̂2, so that we have

[
l̂ j , l̂k

]
=
[
l̂1 j + l̂2 j , l̂1k + l̂2k

]
= ıε jknl̂n , (6.180)
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�Figure 6.13 Graphical representation of the distribution of eigenvalues of the z component of the angular
momenta of two independent particles (see text). Diagonal lines are lines of constant l̂z (the z
component of the resulting angular momentum). For instance, the circled dot represents the state
|+1, −1〉 1 |2, −1〉 2.

since [
l̂1 j , l̂1k

]
= ıε jknl̂1n ,

[
l̂2 j , l̂2k

]
= ıε jknl̂2n , (6.181)

where the indices j , k, and n label any of the orientations x , y, and z. It is clear that we can
diagonalize the angular momenta of the two particles simultaneously. In other words, we
have (

l̂1,2

)2 ∣∣∣ l1,2, ml1,2

〉
= l1,2

(
l1,2 + 1

) ∣∣∣ l1,2, ml1,2

〉
, (6.182)

l̂1,2z

∣∣∣ l1,2, ml1,2

〉
= ml1,2

∣∣∣ l1,2, ml1,2

〉
. (6.183)

Therefore, an obvious basis for the product space would be given by{∣∣∣ l1, ml1
; l2, ml2

〉}
=
{∣∣∣ l1, ml1

〉
⊗
∣∣∣ l2, ml2

〉}
. (6.184)

For example, in the case l1 = 1 and l2 = 2 we would have 15 possible basis kets. However,
if we are interested in the resulting angular momentum, a complete set of operators is
represented by l̂21,2, l̂z , l̂21, l̂22 (l̂z = l̂1,2z = l̂1z + l̂2z ), while l̂1z , l̂2z are not compatible with

this basis in particular with l̂21,2 (see Prob. 6.30). Moreover, if the system Hamiltonian has

to be invariant under rotation, it must commute with l̂2 and l̂z , but it does not necessarily
commute with l̂21 and l̂22.

Suppose again that l1 = 1 and l2 = 2. Then, l can only assume the values l = 1, 2, 3.
That this is the case can be understood with the help of Fig. 6.13, which represents the 15
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possible combinations for ml1
and ml2

. The fact that max(lz) = 3 tells us that there must
exist a value l = 3, which actually is a multiplet with seven states. If we move to the next
diagonal line (lz = 2), we see that there are two instances that give rise to this situation: one
is the value ml = 2 coming from the previous multiplet and the other is the value ml = 2
coming from a new multiplet (l = 2) with five states. Moving on to the next diagonal
line (lz = 1), we have now three instances with the value ml = 1: one coming from the
multiplet with l = 3, the second coming from the multiplet l = 2, and the third coming
from a new multiplet (l = 1) with three states. Proceeding in this way, we realize that
there are no other new multiplets, so that we can arrange the 15 states into three different
multiplets: l = 3 (seven states), l = 2 (five states), and l = 1 (three states). In general, for
any fixed ml there are several possible combinations of ml1

and ml2
:(

l̂1z + l̂2z

) ∣∣∣ l1, ml1

〉
⊗
∣∣∣ l2, ml2

〉
=
(

ml1
+ ml2

) ∣∣∣ l1, ml1

〉
⊗
∣∣∣ l2, ml2

〉
. (6.185)

The results shown in Fig. 6.13, for l2 > l1 can be generalized as follows:19

n(lz) =
⎧⎨⎩

0 if |lz| > l1 + l2
l1 + l2 + 1 − |lz| if l1 + l2 ≥ |lz | ≥ |l1 − l2|

2l1 + 1 if |l1 − l2| ≥ |lz| ≥ 0
, (6.186)

where n(lz) is the number of points situated on the diagonal lz = ml1
+ ml2

.
To sum up, we can state the following theorem:

Theorem 6.1 (Addition of angular momenta) When summing the angular momenta of
moduli l1 and l2, we obtain angular momenta l such that

|l1 − l2| ≤ l ≤ l1 + l2, (6.187)

all of them interspaced by a unity. To any value l correspond 2l + 1 eigenvectors
∣∣ l, ml

〉
of

the resulting angular momentum.

6.4.2 Total angular momentum

As we have seen, besides the orbital angular momentum, in quantum mechanics we also
have an intrinsic and genuinely quantum spin angular momentum. Therefore, we can speak
of a total angular momentum Ĵ = h̄ĵ which is the sum of the orbital angular momentum L̂
and of the spin angular momentum Ŝ

Ĵ = L̂ + Ŝ. (6.188)

19 See [Messiah 1958, 557].
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Ĵ is the generator of rotations and has the same commutation relations as Ŝ and L̂, that are

[
Ĵk , Ĵn

]
= ı h̄εknr Ĵr . (6.189)

To make some examples, the explicit matrices of the total angular momentum when j =
1/2, l = 0, and s = j , are given by

Ĵx = 1

2
h̄

[
0 1
1 0

]
, Ĵy = 1

2
h̄

[
0 −ı
ı 0

]
,

Ĵz = 1

2
h̄

[
1 0
0 −1

]
, Ĵ2 = 3

4
h̄2
[

1 0
0 1

]
, (6.190)

which, apart from a constant factor, are the Pauli matrices. When j = 1, l = 0, and s = j ,
we have

Ĵx = h̄√
2

⎡⎣ 0 1 0
1 0 1
0 1 0

⎤⎦, Ĵy = h̄√
2

⎡⎣ 0 ı 0
−ı 0 ı
0 −ı 0

⎤⎦,

Ĵz = h̄

⎡⎣ −1 0 0
0 0 0
0 0 1

⎤⎦, Ĵ2 = 2h̄2

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦. (6.191)

When l = 1 and s = 1/2, we have two possible cases:

• j = l − s = 1/2, which reduces to the first case considered above;
• and j = l + s = 3/2, for which we have

Ĵx = 1

2
h̄

⎡⎢⎢⎣
0

√
3 0 0√

3 0 2 0
0 2 0

√
3

0 0
√

3 0

⎤⎥⎥⎦ , Ĵy = 1

2
h̄

⎡⎢⎢⎣
0 −ı

√
3 0 0

ı
√

3 0 −2ı 0
0 −2ı 0 −ı

√
3

0 0 ı
√

3 0

⎤⎥⎥⎦ ,

Ĵz = 1

2
h̄

⎡⎢⎢⎣
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎤⎥⎥⎦ , Ĵ2 = 15

4
h̄2

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (6.192)

6.4.3 Singlet and tr iplet states

Following Th. 6.1, if we add the angular momenta of two spin-1/2 particles, we may obtain
for the total system spin number s either 1 or 0. In the former case (s = 1), we shall have
a multiplet with three possible values of ms (ms = −1, 0,+1), i.e. a triplet, whereas in the
latter case (s = 0), we shall obtain a singlet (a state with antiparallel spins and total spin
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zero). Taking as quantum numbers the total spin s and its z component, we may write the
triplet states as (see also Prob. 6.31)

| s = 1, ms = 1〉 12z
=
∣∣∣∣ s1 = 1

2
, ms1 =

1

2

〉
1

∣∣∣∣ s2 = 1

2
, ms2 =

1

2

〉
2

= |↑〉 1z
|↑〉 2z

, (6.193a)

| s = 1, ms = −1〉 12z
=
∣∣∣∣ 1

2
,−1

2

〉
1

∣∣∣∣ 1

2
,−1

2

〉
2
= |↓〉 1z

|↓〉 2z
, (6.193b)

| s = 1, ms = 0〉 12z =
1√
2

(∣∣∣∣ 1

2
,

1

2

〉
1

∣∣∣∣ 1

2
,−1

2

〉
2
+
∣∣∣∣ 1

2
,−1

2

〉
1

∣∣∣∣ 1

2
,

1

2

〉
2

)
= 1√

2

(|↑〉 1z
|↓〉 2z

+ |↓〉 1z
|↑〉 2z

)
, (6.193c)

and the singlet state as

| s = 0, ms = 0〉 12z =
1√
2

(∣∣∣∣ 1

2
,

1

2

〉
1

∣∣∣∣ 1

2
,−1

2

〉
2
−
∣∣∣∣ 1

2
,−1

2

〉
1

∣∣∣∣ 1

2
,

1

2

〉
2

)
= 1√

2

(|↑〉 1z
|↓〉 2z

− |↓〉 1z
|↑〉 2z

)
. (6.194)

The triplet states (6.193) are symmetric (i.e. they do not change by interchanging the two
particles), whereas the singlet state (6.194) is completely antisymmetric (see also Ch. 7).

As it is shown in Prob. 6.32, the singlet state (6.194) assumes the same form when
written in the other basis {|↑〉 x , |↓〉 x } or {|↑〉 y , |↓〉 y} for particles 1 and 2. Explicitly, we
have

|0, 0〉 12x =
eıπ

√
2

(|↑〉 1x
|↓〉 2x

− |↓〉 1x
| 〉 2x

)
, (6.195a)

|0, 0〉 12y
= eıπ/2

√
2

(
|↑〉 1y

|↓〉 2y
− |↓〉 1y

| 〉 2y

)
. (6.195b)

Equations (6.195) tell us that the singlet state, just because it corresponds to a zero-total
angular momentum state, is invariant under rotations (see Subsec. 6.1.2).

Another very important property of the singlet state is worthy of mention here. Let us
consider an ideal experiment in which we decide to measure the spin projection of the
two particles along a certain direction (say the z-direction) on the state (6.194). Using the
notation

|&0〉 = | s = 0, ms = 0〉 12z
, (6.196)

and considering the eigenvalue equation

σ̂kz |&0〉 = skz |&0〉 , (6.197)

we immediately see that if the result of the measurement gives the eigenvalue s1z = 1/2 for
particle 1, then we must also have the eigenvalue s2z = −1/2 for particle 2. Conversely, if
the result of the measurement gives the eigenvalue s1z = −1/2 for particle 1, then we must
have s2z = 1/2 for particle 2. In other words, the singlet state is an entangled state (see
Subsec. 5.5.1) and cannot be factorized. It is therefore interesting to note that this property
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holds true also in both the x- and y-basis. As we shall see in Ch. 16, this type of state plays
a crucial role in the understanding of entanglement and correlations in quantum mechanics.

6.4.4 Clebsch–Gordan coeffic ients

Suppose again that we have two particles with angular momenta ĵ1 and ĵ2. Obviously, we
have

[
ĵ1, ĵ2

] = 0, where ĵ = ĵ1 + ĵ2 is the total angular momentum, with ĵz = ĵ1z + ĵ2z

and ĵ2 = ĵ
2
1 + ĵ2

2 + 2ĵ1 · ĵ2. We have already seen (see Subsec. 6.4.1) that we may define
two different bases for the total Hilbert space, given by the tensor product of the Hilbert
spaces of the two subsystems. We may choose:

• either the product eigenvectors of ĵ1, ĵ1z and ĵ2, ĵ2z , i.e.∣∣∣ j1, m j1

〉
⊗
∣∣∣ j2, m j2

〉
=
∣∣∣ j1, j2, m j1

, m j2

〉
, (6.198)

• or, since
[
ĵ

2, ĵ2
1

]
=
[
ĵ

2, ĵ2
2

]
= 0, the eigenvectors∣∣ j1, j2; j , m j

〉
, (6.199)

which characterize the total system.
In other words, both sets of operators form a complete set of commuting observables.

The unitary transformation from one basis to the other is given by (see Subsec. 2.1.2)∣∣ j1, j2; j , m j

〉 = ∑
m j1

,m j2

∣∣∣ j1, j2, m j1
, m j2

〉 〈
j1, j2, m j1

, m j2

∣∣∣ j1, j2; j , m j

〉
, (6.200)

where the coefficients of this expansion〈
j1, j2, m j1

, m j2
| j1, j2; j , m j

〉
(6.201)

are called the Clebsch–Gordan coefficients. A more compact notation is

〈 j1, j2, m1, m2 | j , m〉, (6.202)

where in the present subsection m1 = m j1
, m2 = m j2

, and m = m j . These amplitudes
have a purely geometrical character and only depend on the angular momenta and their
orientation and not upon the physical nature of the dynamical variables of particles 1 and
2 from which the angular momenta are constructed.

Many properties of the Clebsch–Gordan coefficients follow from their definition. In
order for 〈 j1, j2, m1, m2 | j , m〉 to be different from zero, we must have m1 + m2 =
m and | j1 − j2| ≤ j ≤ j1 + j2 (see Th. 6.1). Since they are coefficients of a unitary
transformation, they must obey the orthonormality relations∑

m1,m2

〈 j1, j2, m1, m2 | j , m〉 〈 j1, j2, m1, m2 | j ′, m′〉 = δ j j ′δmm′ , (6.203a)

∑
j ,m

〈 j1, j2, m1, m2 | j , m〉 〈 j1, j2, m1′ , m2′ | j , m〉 = δm1m1′ δm2m2′ . (6.203b)
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Table 6.3 Values of j and m and the corresponding number of possible
states in the case of the addition of angular momenta j1 = j2 = 1

j m Number of possible states

2 −2 ≤ m ≤ +2 5
1 −1 ≤ m ≤ +1 3
0 0 1
Total number of states 9

In the following we establish a general procedure that can be exploited in order to deter-
mine the Clebsch–Gordan coefficients. The successive example will help to make the
matter clear.

In the simplest case ( j = j1 + j2 and m = j) we can determine the Clebsch–Gordan
coefficients directly. We first notice that

| j1, j2, j1 + j2, j1 + j2〉 = | j1, j2, j1, j2〉 , (6.204)

because the double sum in Eq. (6.200) actually reduces to a single instance. Then, by
repeated application of ĵ− = ĵ1− + ĵ2− to both sides of Eq. (6.204), we build all the
| j1, j2; j = j1 + j2, m〉 (with m = − j ,− j + 1, . . . , j − 1, j) corresponding to j = j1 +
j2. We successively build all the vectors of the series j = j1 + j2 − 1, that is, all the kets
| j1, j2; j = j1 + j2 − 1, m〉 beginning with that corresponding to m = j , unambiguously
defined by the conditions of reality and positivity, and by its property of being orthog-
onal to | j1, j2, j1 + j2, j1 + j2 − 1〉 . We finally form all other kets | j1, j2; j , m〉 , where
| j1 − j2| ≤ j ≤ j1 + j2 − 2 and − j ≤ m ≤ + j , by repeated application of ĵ−. Proceed-
ing in this way, it is possible to determine all the basis vectors and the corresponding
Clebsch–Gordan coefficients.

Example
In order to understand how the above procedure works in practice, let us consider the
case j1 = j2 = 1, for which 0 ≤ j ≤ 2. In this case the possible states are summarized in
Tab. 6.3.

Case j = 2

• j = 2, m = 2. In this case, making use of Eq. (6.202), Eq. (6.200) simply reduces to

|1, 1; 2, 2〉 = 〈1, 1, 1, 1 | 2, 2〉 |1, 1, 1, 1〉 , (6.205)

since the only state that can contribute to |1, 1; 2, 2〉 is |1, 1, 1, 1〉 . The corresponding
Clebsch–Gordan coefficient is then given by

〈1, 1, 1, 1 | 2, 2〉 = 1. (6.206)
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• j = 2, m = −2. The solution here is

|1, 1; 2,−2〉 = 〈1, 1,−1,−1 | 2,−2〉 |1, 1,−1,−1〉 . (6.207)

As before, the Clebsch–Gordan coefficient may be written as

〈1, 1,−1,−1 | 2,−2〉 = 1. (6.208)

In order to find the other coefficients we take advantage of the properties of the raising
and lowering angular momentum operators (see Eqs. (6.46))

ĵ± | j1, j2; j , m〉 = √( j ± m + 1) ( j ∓ m) | j1, j2; j , m ± 1〉
=
∑

m1,m2

〈 j1, j2, m1, m2 | j , m〉 | j1, j2, m1, m2〉 , (6.209a)

and(
ĵ1± + ĵ2±

) | j1, j2, m1, m2〉 =
√
( j1 ± m1 + 1) ( j1 ∓ m1) | j1 j2, m1 ± 1, m2〉
+√( j2 ± m2 + 1) ( j2 ∓ m2) | j1, j2, m1, m2 ± 1〉 .

(6.209b)

• j = 2, m = 1. We must then have −1 ≤ m1 ≤ +1, −1 ≤ m2 ≤ +1, and, therefore,
either (m1, m2) = (1, 0) or (m1, m2) = (0, 1), which implies

|1, 1; 2, 1〉 = 〈1, 1, 1, 0 | 2, 1〉 |1, 1, 1, 0〉 + 〈1, 1, 0, 1 | 2, 1〉 |1, 1, 0, 1〉 . (6.210)

In order to find the coefficients, we apply ĵ− to both sides of (see Eqs. (6.205)– (6.206))

|1, 1; 2, 2〉 = |1, 1, 1, 1〉 , (6.211)

and write

2 |1, 1; 2, 1〉 = √
2 |1, 1, 0, 1〉 + √

2 |1, 1, 1, 0〉 , (6.212)

from which it follows that

〈1, 1, 1, 0 | 2, 1〉 = 1√
2

, 〈1, 1, 0, 1 | 2, 1〉 = 1√
2
. (6.213)

• j = 2, m = 0. In this case, the possible values of the pair m1, m2 are (+1,−1), (0, 0),
and (−1,+1). Therefore, we have

|1, 1; 2, 0〉 = 〈1, 1, 1,−1 | 2, 0〉 |1, 1, 1,−1〉
+ 〈1, 1, 0, 0 | 2, 0〉 |1, 1, 0, 0〉 + 〈1, 1,−1, 1 | 2, 0〉 |1, 1,−1, 1〉. (6.214)

Applying ĵ− to both sides of Eq. (6.212), we obtain

√
6 |1, 1; 2, 0〉 = 1√

2

(√
2 |1, 1, 0, 0〉 + √

2 |1, 1, 1,−1〉

+√
2 |1, 1,−1, 1〉 + √

2 |1, 1, 0, 0〉
)

. (6.215)
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Therefore, the corresponding Clebsch–Gordan coefficients are

〈1, 1, 0, 0 | 2, 0〉=
√

2

3
, (6.216a)

〈1, 1, 1,−1 | 2, 0〉= 1√
6

, (6.216b)

〈1, 1,−1, 1 | 2, 0〉= 1√
6

. (6.216c)

• j = 2, m = −1. In this case, the possible values of m1, m2 are (0,−1) and (−1, 0). We
further apply ĵ− to both sides of Eq. (6.215) and obtain

√
6 |1, 1; 2,−1〉 = 1√

6

[√
2 |1, 1, 0,−1〉 + √

2 |1, 1,−1, 0〉

+ 2
(√

2 |1, 1,−1, 0〉 + √
2 |1, 1, 0,−1〉

)]
, (6.217)

from which it follows that

|1, 1; 2,−1〉 = 1√
2
|1, 1, 0,−1〉 + 1√

2
|1, 1,−1, 0〉 . (6.218)

In conclusion, the Clebsch–Gordan coefficients are

〈1, 1, 0,−1 | 2,−1〉= 1√
2

, (6.219a)

〈1, 1,−1, 0 | 2,−1〉= 1√
2

. (6.219b)

Case j = 1

• j = 1, m = −1. Again, the possible values of m1, m2 are (0,−1) and (−1, 0).

|1, 1; 1,−1〉 = 〈1, 1, 0,−1 | 1,−1〉 |1, 1, 0,−1〉
+ 〈1, 1,−1, 0 | 1,−1〉 |1, 1,−1, 0〉

= α |1, 1, 0,−1〉 + β |1, 1,−1, 0〉 , (6.220)

with α,β ∈ �. This time we cannot take advantage of ĵ−, and in order to find the
coefficients we may use the orthonormalization conditions

〈1, 1; 1,−1 | 1, 1; 1,−1〉 = 1, 〈1, 1; 2,−1 | 1, 1; 1,−1〉 = 0. (6.221)

The conditions (6.221), together with Eq. (6.218) imply that

α2 + β2 = 1,
1√
2
α + 1√

2
β = 0, (6.222)

since[
〈1, 1, 0,−1 | 1√

2
+ 〈1, 1,−1, 0 | 1√

2

]
[α |1, 1, 0,−1〉 + β |1, 1,−1, 0〉 ] = 0.

(6.223)
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From (6.222), we have α = −β and therefore

〈1, 1, 0,−1 | 1,−1〉= 1√
2

, (6.224a)

〈1, 1,−1, 0 | 1,−1〉=− 1√
2

. (6.224b)

In order to find the other coefficients for the remaining values of m, we make use of the
formulae (6.209) and repeatedly apply ĵ+ to both sides of Eq. (6.220), which can now
be rewritten as

|1, 1; 1,−1〉 = 1√
2
|1, 1, 0,−1〉 − 1√

2
|1, 1,−1, 0〉 . (6.225)

• j = 1, m = 0. The possible values of m1, m2 are (−1, 1), (0, 0), and (1,−1). First, we
follow the above procedure:

√
2 |1, 1; 1, 0〉 = 1√

2

[√
2 |1, 1, 1,−1〉 + √

2 |1, 1, 0, 0〉

−
(√

2 |1, 1, 0, 0〉 + √
2 |1, 1,−1, 1〉

)]
. (6.226)

Then,

|1, 1; 1, 0〉 = 1√
2

[|1, 1, 1,−1〉 − |1, 1. − 1, 1〉 ]. (6.227)

Therefore, Clebsch–Gordan coefficients are equal to

〈1, 1, 1,−1 | 1, 0〉= 1√
2

, (6.228a)

〈1, 1, 0, 0 | 1, 0〉= 0, (6.228b)

〈1, 1,−1, 1 | 1, 0〉=− 1√
2

. (6.228c)

• j = 1, m = 1. Here the possible values of m1, m2 are (1, 0) and (0, 1). We further apply
the raising angular momentum operator to |1, 1; 1, 0〉 and obtain

√
2 |1, 1; 1, 1〉 = 1√

2

(√
2 |1, 11, 0〉 − √

2 |1, 1, 0, 1〉
)

, (6.229)

from which the Clebsch–Gordan coefficients may be derived:

〈1, 1, 1, 0 | 1, 1〉= 1√
2

, (6.230a)

〈1, 1, 0, 1 | 1, 1〉=− 1√
2

. (6.230b)

Case j = 0

• j = 0, m = 0. The possible values of m1, m2 are (1,−1), (0, 0), and (−1, 1):

|1, 1; 0, 0〉 = 〈1, 1, 1,−1 | 0, 0〉 |1, 1, 1,−1〉 + 〈1, 1, 0, 0 | 0, 0〉 |1, 1, 0, 0〉
+ 〈1, 1,−1, 1 | 0, 0〉 |1, 1,−1, 1〉 . (6.231)
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As in the case j = 1, m = −1, we have to resort to the orthonormalization conditions

〈1, 1; 0, 0 | 1, 1; 0, 0〉 = 1, 〈1, 1; 1, 0 | 1, 1; 0, 0〉 = 0, 〈1, 1; 2, 0 | 1, 1; 0, 0〉 = 0.
(6.232)

Denoting 〈1, 1, 1,−1 | 0, 0〉 = α, 〈1, 1; 0, 0 | 0, 0〉 = β, and 〈1, 1,−1, 1 | 0, 0〉 = γ , all
real, from the orthonormalization conditions and Eqs. (6.215) and (6.227), we have the
following system of three equations:⎧⎪⎨⎪⎩

α2 + β2 + γ 2 = 1,
α√
2
− γ√

2
= 0,

α√
6
+ 2 β√

6
+ γ√

6
= 0.

(6.233)

Then, the Clebsch–Gordan coefficients are

〈1, 1, 1,−1 | 0, 0〉= 1√
3

, (6.234a)

〈1, 1, 0, 0 | 0, 0〉=− 1√
3

, (6.234b)

〈1, 1,−1, 1 | 0, 0〉= 1√
3

. (6.234c)

General izat ion

It is possible to write a general formula for the Clebsch–Gordan coefficients:20

〈 j1, j2, m1, m2 | j , m〉 = (−1) j1− j2+m
√

2 j + 1

(
j1 j2 j

m1 m2 −m

)
, (6.235)

where (
j1 j2 j3

m1 m2 m3

)
=
√
( j1 + j2 − j3) ! ( j1 − j2 + j3) ! (− j1 + j2 + j3) !

( j1 + j2 + j3 + 1) !

×√( j1 + m1) ! ( j1 − m1) ! ( j2 + m2) ! ( j2 − m2) ! ( j3 + m3) ! ( j3 − m3) !

×
∑
z∈N

(−1)z+ j1− j2−m3

z! ( j1 + j2 − j3 − z) ! ( j1 − m1 − z) ! ( j2 + m2 − z) !

× 1

( j3 − j2 + m1 + z) ! ( j3 − j1 − m2 + z) !
(6.236)

are the so-called 3 j-symbols, originally calculated by Wigner. In principle, the sum in
Eq. (6.236) is infinite. However, since j1, j2 and j3 are finite numbers, the sum is truncated
due to the fact that the factorial of a negative number in the term ( j1 + j2 − j3 − z) ! is
infinite.

It is useful to cast the Clebsch–Gordan coefficients into tables. We give in the following
such tables for three cases. When j1 = j2 = 1/2, we have the results shown in Tab. 6.4
(the empty spaces can be considered as filled by zeros). When j1 = 1 and j2 = 1/2, the
results are shown in Tab. 6.5. Finally, for j1 = j2 = 1 (the example explicitly examined
above), the results are summarized in Tab. 6.6.

20 See [Edmonds 1957, 42–50], and in particular formulae (3.6.11) and (3.7.3).
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Table 6.4 Clebsch–Gordan coefficients resulting from the composition
of angular momenta j1 = j2 = 1/2

j = 1 j = 1 j = 0 j = 1
m = 1 m = 0 m = 0 m = −1

m1 = 1
2 , m2 = 1

2 1

m1 = 1
2 , m2 = − 1

2
1√
2

1√
2

m1 = − 1
2 , m2 = 1

2
1√
2

− 1√
2

m1 = − 1
2 , m2 = − 1

2 1

Table 6.5 Clebsch–Gordan coefficients resulting from the composition of angular
momenta j1 = 1 and j2 = 1/2

j = 3
2 j = 3

2 j = 1
2 j = 3

2 j = 1
2 j = 3

2

m = 3
2 m = 1

2 m = 1
2 m = − 1

2 m = − 1
2 m = − 3

2

m1 = 1, m2 = 1
2 1

m1 = 1, m2 = − 1
2

1√
3

√
2
3

m1 = 0, m2 = 1
2

√
2
3 − 1√

3

m1 = 0, m2 = − 1
2

√
2
3

1√
3

m1 = −1, m2 = 1
2

1√
3

−
√

2
3

m1 = −1, m2 = − 1
2 1

Table 6.6 Clebsch–Gordan coefficients resulting from the composition of angular
momenta j1 = j2 = 1

2 2 1 2 1 0 2 1 2
2 1 1 0 0 0 −1 −1 −2

1,1 1
1,0 1√

2
1√
2

0,1 1√
2

− 1√
2

1,−1 1√
6

1√
2

1√
3

0,0
√

2
3 0 − 1√

3

−1,1 1√
6

− 1√
2

1√
3

0,−1 1√
2

1√
2

−1,0 1√
2

– 1√
2

−1,−1 1
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6.5 Angular momentum and angle

We have found (Eq. (6.34)) that the z component of the orbital angular momentum can be
expressed as the differential operator L̂ z = −ı h̄∂/∂φ, φ being the azimuthal angle. The
latter relation is formally similar to (see Eq. (2.134))

p̂x = −ı h̄
∂

∂x
. (6.237)

Taking into account that in classical mechanics angular momentum and angle are conju-
gate variables, one would then be tempted to consider L̂ z and φ as quantum-mechanical
conjugate observables, just as we do for x̂ and p̂x . In this respect, one would like to write
an uncertainty relation similar to Eq. (2.190), i.e.

�φ�Lz ≥ h̄

2
. (6.238)

However, a close inspection of Eq. (6.238) shows that it cannot be correct. In fact, the
maximum value of �φ is certainly smaller than π , if one considers the interval −π <
φ ≤ π (see Prob. 6.33), so that, when �Lz decreases, Eq. (6.238) cannot be satisfied. The
reason why this happens is that the operator corresponding to −ı h̄∂/∂φ is not self-adjoint
(see Subsec. 2.1.1).

Let us consider the function

f (η) =
+π∫
−π

dφψ∗(φ + η)φ2ψ(φ + η). (6.239)

One sees that (�φ)2 is the minimum value of f (η) (see Prob. 6.34). Using the Schwartz
inequality as in the derivation of the uncertainty relation between position and momentum
(see Subsec. 2.3.2), one obtains

(�Lz)2 f (η) ≥ 1

4
h̄2[1 − 2πψ∗(η + π )ψ(η + π )]2. (6.240)

From this it follows that21

�Lz
�φ

1 − 3(�φ)2/π2
≥ 0.15h̄. (6.241)

The factor 0.15 is due to the particular derivation, but with a more general one it can be
replaced by 1/2. Notice that here the angle is not represented by an operator, but it is not
always trivial to build a Hermitian operator representing a quantum observable (see also
Sec. 3.9). In the following, we will show how it is possible to define a Hermitian angle
operator.22

As recalled above (see Eq. (6.34)), L̂ z can be represented as a differential operator on
the function space L2([0, 2π), dφ), i.e.

21 See [Judge 1963].
22 See [Lévy-Leblond 1976] [Carruthers/Nieto 1968] [Busch et al. 1995, 73–74].
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L̂ zF′(φ) = −ı h̄
∂

∂φ
F′(φ). (6.242)

The spectrum of L̂ z is the set ZZ of integers, and the eigenfunctions Fm(φ) corresponding
to the eigenvectors |ml 〉 of L̂ z are given by (see Eqs. (6.38), and (2.135) and comments)

Fm(φ) = 〈φ | ml

〉 = eıml φ , ml ∈ ZZ, (6.243)

with F′m(φ) = √
2πFm(φ), and where the eigenvectors |φ〉 of the angle operator are

|φ〉 = 1√
2π

+∞∑
ml=−∞

〈
ml | φ

〉 ∣∣ml

〉 = (2π )−
1
2

+∞∑
ml=−∞

e−ıml φ |ml 〉. (6.244)

Let us introduce an additive unitary shift operator

Ûk |ml 〉 = |ml + k〉, (6.245)

where (see Th. 3.1: p. 122, and Eq. (8.30))

Ûk = eıkφ̂ . (6.246)

Given the spectral decomposition

Î =
∫

dφ |φ〉 〈φ | = (2π)−1
∑
k,ml

∫
dφ
∣∣ml

〉 〈
ml | φ

〉 〈φ | k〉 〈k |

= (2π )−1
∑
k,ml

∫
dφeı(k−ml )φ |ml 〉〈k|, (6.247)

we can define the following self-adjoint angle operator (see Eq. (2.20)):

φ̂ =
2π∫

0

dφ φ |φ〉 〈φ | = π Î +
∑

ml 	=k

1

ı(k − ml )
|ml 〉〈k|, (6.248)

where φ are its eigenvalues.
Concerning the commutation relations, we notice that, since the range of φ is finite, the

angle observable, in the φ representation, should be taken in quantum mechanics as the
multiplication, not by φ (that goes from −∞ to +∞), but rather by23

Y (φ) = φ − 2π
∞∑

n=0

�[φ − (2n + 1)π ] + 2π
∞∑

n=0

�[−φ − (2n + 1)π ], (6.249)

where � is the Heaviside step function, given by

�(x) =
{

1 if x ≥ 0
0 if x < 0

. (6.250)

23 See [Judge/Lewis 1963].
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p-p 3p-3p
φ

Y(φ)

�Figure 6.14 The step function Y(φ) representing the angle observable (see Eq. (6.249)) in the φ
representation and in the range [−π ,π].

In other words (see Fig. 6.14), Y (φ) is just φ(mod 2π ) in the range [−π ,π ]. From
Eq. (6.249), [

L̂ z , Y (φ)
]
= −ı h̄

[
1 − 2π

∑
δ{φ − (2n + 1)π}

]
(6.251)

follows, which represents the commutation relation between L̂ z and Y (φ) in the Y (φ) rep-
resentation. We emphasize that Eq. (6.251) is simply given by ı h̄{Lz , Y (φ)}, where {, }
are the classical Poisson brackets (see Sec. 3.7). In terms of the commutator (6.251), by
calculating the expectation value of the commutator on the state ψ(φ) = 〈φ | ψ〉, which is
normalized in a 2π interval, and making use of the generalized uncertainty relation (2.200),
it is possible to derive a more satisfying uncertainty relation between angular momentum
and angle, that is,24

�ψ(φ)Lz�ψ(φ)φ ≥ h̄

2

[
1 − 2℘(π )

]
, (6.252)

where ℘(π ) = |ψ(π )|2 is the probability density for finding the system at the angle π .

Summary

In this chapter we have discussed the total angular momentum, which is the sum of the
orbital angular momentum and the spin.

• We have first introduced the orbital angular momentum following its classical definition
and proposed an abstract algebra based on the commutation relations. Here, the main

24 See [Pegg et al. 2005] for a review.
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feature is that different components of the angular momentum do not commute with
each other, whereas the square of the angular momentum does with each of these com-
ponents. Then, we have shown that the angular momentum is the generator of the group
of rotations, and calculated its eigenvalues and eigenfunctions.

• Taking advantage of the angular-momentum formalism, we have considered a couple of
special potentials: the central potential and the constant magnetic field.

• We have analyzed the harmonic-oscillator problem in several dimensions, where the
degeneracy of energy eigenvalues plays an important role.

• We have also introduced the spin degree of freedom, i.e. the intrinsic magnetic
momentum of a particle. This physical quantity has no classical analogue.

• The composition of different angular momenta has been discussed. The explicit formal-
ism for spin triplet and singlet states has also been presented. In particular, the singlet
state is an example of entangled state that has a wide range of applications.

• We have derived the explicit form of the Clebsch–Gordan coefficients. They represent
probability amplitudes that allow us to move from the representation of the eigenvec-
tors of the component angular momenta to the representation of the eigenvectors of the
angular momentum resulting from their composition.

• Finally, we have considered the problem of defining an uncertainty relation between
angular momentum and angle, and have presented an operational representation of the
angle observable.

Problems

6.1 Calculate the commutation relations between the y and z components and between
the z and x components of the orbital angular momentum (see Eq. (6.6)).

6.2 Prove Eq. (6.7).
(Hint: Write L̂2 as L̂2

x + L̂2
y + L̂2

z and make use of Eq. (6.6).)
6.3 Write the matrices which describe rotations of an angle θ about the axes x and y.
6.4 Taking advantage of the explicit expression of L̂ z , derive Eqs. (6.18).

6.5 Derive the commutation relations
[
l̂ j , l̂k

]
= ıε jknl̂n .

6.6 Prove that l̂2 − l̂2
z = l̂2

x + l̂2
y ≥ 0.

6.7 Prove the relevant commmutation relations pertaining to the angular momentum
raising and lowering operator l̂±, which are summarized in Eq. (6.24).

6.8 Derive the commutation relations[
l̂x , l̂±

]
= ∓l̂z ,

[
l̂y , l̂±

]
= −ı l̂z . (6.253)

6.9 Prove the eigenvalue equation (6.31): l̂2
∣∣ l, ml

〉 = l(l + 1)
∣∣ l, ml

〉
.

6.10 Derive the matrices (6.49).
(Hint: Make use of Eqs. (6.21), (6.46a), and (6.46b).
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6.11 Compute the Jacobian matrix

∂(r ,φ, θ )

∂(x , y, z)
=
⎡⎢⎣

∂r
∂x

∂r
∂y

∂r
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

∂θ
∂x

∂θ
∂y

∂θ
∂z

⎤⎥⎦ . (6.254)

6.12 Compute the Laplacian in spherical coordinates and show that

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
− l̂2

r2
. (6.255)

6.13 Verify that �ll = N (sin θ)l is a solution of the differential equation (6.63).
6.14 Find the normalization constant N and derive Eq. (6.64).
6.15 Prove Eq. (6.82).
6.16 Prove that a spherically symmetric Hamiltonian commutes with each component of

the angular momentum and with L̂2.
6.17 Prove that l̂z commutes with Ĥr given by Eq. (6.104).
6.18 In the case l = 1, compute explictly the matrices l̂x l̂y and l̂y l̂x and verify that[

l̂x , l̂y

]
= ı l̂z .

6.19 Following the guide of Subsec. 6.2.4 solve the two-dimensional harmonic oscillator.
6.20 Derive the commutation relations for the Pauli spin matrices.
6.21 Prove Eq. (6.157).
6.22 Calculate the eigenkets and eigenvalues of σ̂x and σ̂y in the basis {|↑〉 z , |↓〉 z} in

order to prove Eqs. (6.158) and (6.159).
6.23 Calculate the Pauli matrices as sums of projectors, by using the basis {|↑〉 z , |↓〉 z}.
6.24 Prove that the Pauli matrices are Hermitian and unitary.
6.25 A known example of the fact that any operator in the spinor’s space can be written as

a combination of σ̂x , σ̂y , σ̂z , and Î , is represented by the operator(
σ̂ · f

) (
σ̂ · f′

) = (f · f′
)

Î + ı σ̂
(
f × f′

)
,

where f, f′ are vectors. Prove this result.
6.26 Deduce the matrices (6.165).

(Hint: Follow the general lines of the derivation of Pauli spin matrices.)
6.27 Derive Eq. (6.176).
6.28 Find the Landau levels for the electron.
6.29 Find the eigenfunction ϕn(y) corresponding to the energy levels (6.179).
6.30 Prove, for the case discussed in Subsec. 6.4.1, first that l̂21,2, l̂z , l̂21, and l̂22 commute

with each other, and then that l̂1z , l̂2z are not compatible with l̂21,2.
6.31 Compute the total spin and its component along z for the states (6.193) and (6.194).
6.32 Take advantage of Eqs. (6.159) and perform a change of basis into Eq. (6.194) in

order to derive Eqs. (6.195).
6.33 Prove that the maximum uncertainty value of �φ is π/

√
3.

(Hint: Assume that the uniform distribution of angles φ between 0 and 2π maximizes
the angle uncertainty.)

6.34 Prove that the minimum value of f (η) in Eq. (6.239) is equal to (�φ)2.
6.35 Apply Robertson’s formula (2.200) in order to calculate the uncertainty relations

between different components of the total angular momentum.
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Further reading

Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton: Princeton
University Press, 1957, 1960, 1985.

Wigner, Eugene P., Group Theory, New York: Academic, 1959.



7 Identical particles

In classical physics, the question whether there are subsets of identical particles is not par-
ticularly interesting. After all, whether the particles are identical or not, we can always
track each of them at any time. As we shall see, in quantum mechanics identical parti-
cles are indistinguishable because we cannot track trajectories, and this fact induces some
important symmetry properties on the total wave function describing the system of par-
ticles under consideration. Generally speaking, a symmetry is an effect of an invariance,
that is, the system does not change if one effects certain transformations (see Ch. 8). In this
case, the system is not modified under exchange of two identical particles. Moreover, such
a symmetry yields a most interesting connection between spin and statistics.

After a short introduction to the significance of statistics in quantum mechanics (in
Sec. 7.1), we define the permutation operator and discuss the symmetry properties of the
wave function of N identical particles (Sec. 7.2). In Sec. 7.3 we show that quantum parti-
cles, differently from classical particles (that obey the Maxwell–Boltzmann statistics), may
be subject to two different statistics, namely the Fermi–Dirac statistics for fermions and the
Bose–Einstein statistics for bosons. In Sec. 7.4 we treat the so-called exchange interaction
and, finally, in Sec. 7.5 we consider some applications of the two statistics.

7.1 Statist ics and quantum mechanics

Identical particles are those particles whose Hamiltonian is symmetric under exchange of
one particle with the other. Of course, they must bear identical intrinsic properties (mass,
charge, spin, etc.). In classical mechanics, given the forces acting on a system, once we
have assigned r and p to all particles at a certain time, their trajectories are determined (see
Sec. 1.1 and Subsec. 2.3.3) and therefore we are able to “follow” each particle at any future
time: the particles are distinguishable, at least in principle. Instead, in quantum mechanics
there is no trajectory (see Subsec. 2.3.3 again) and for this reason we are not able to track
identical particles separately: in this case we are forced to conclude that the particles are
indistinguishable. This fact has also the consequence that several “classical” configura-
tions may correspond to the same quantum state. Therefore, in this respect, the number of
possible independent states is smaller in quantum mechanics than in classical mechanics.
Hence, statistics has in quantum mechanics a fundamental theoretical importance.

In order to put this matter on a more concrete ground, let us consider the following
example (see Fig. 7.1), inspired by an experiment performed by Mandel and co-workers
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NL1

NL2M1

M2

BM

Ds

Di

counter

counter

coincidence

s1

s2

i1

i2

i1

BS

�Figure 7.1 Interferometric example of indistinguishability. An initial (pump) beam is split by a beam splitter
(BS) and the resulting beams enter two non-linear crystals of LiIO3 (NL1 and NL2). From NL1 a
signal photon (s1) and an idler photon (i1) emerge: the i-photon passes through NL2 and will be
aligned with the second idler (i2), which is emitted by NL2 together with the second signal
photon (s2). The two s-photons are combined by the beam merger (BM) and the outgoing beam
falls on detector Ds, whereas the two idler photons fall on detector Di. The two detectors are
connected to a coincidence counter.

(see also Subsec. 9.5.1). We make use here of a quantum-optical phenomenon, called para-
metric down-conversion: a photon passes through a non-linear crystal,1 which absorbs the
original photon and correspondingly emits two photons, conventionally called idler photon
(i-photon) and signal photon (s-photon). It is evident that momentum and energy must be
conserved in this process, and this is also the reason for the name “down-conversion”: a
photon of frequency ν – and energy hν (see Subsec. 1.2.1) – is converted into two photons
of smaller frequencies νi and νs (and energies hνi and hνs), respectively, with ν = νi + νs .
It is interesting to contrast parametric down-conversion with beam splitting: in parametric
down-conversion two photons leave a non-linear crystal when one enters, whilst in beam
splitting the same number of photons goes in and out, which is why it is a linear and
unitary transformation (see Subsec. 3.5.2). The two i-photons represented in Fig. 7.1 fall
on the same detector in the same state. For this reason, a coincidence counting cannot
discriminate between the case in which the s-photon and i1 are detected and the case in
which the s-photon and i2 are detected. This results into interference fringes (obtained
from the various displacements of the beam merger BM) that are absent when the idler
photon i1 is blocked by a filter placed between NL1 and NL2. Such an interference phe-
nomenon is only understandable if one admits that the two photons i1 and i2 are physically
indistinguishable.

1 The word non-linear simply means here that the output state cannot be described as the action of a linear
operator on the input state.
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7.2 Wave function and symmetry

Suppose we define the wave function of two identical particles as &(ξ1, ξ2) =
&(r1, r2, s1z , s2z ), where ξ j = (r j , s jz ), j = 1, 2, and s jz describes the j–th’s z component
of the spin degree of freedom. Let us introduce the permutation operator ÛP that, in the
case of two particles, acts as follows:

ÛP&(ξ1, ξ2) = &(ξ2, ξ1), (7.1)

where all coordinates of the particles are exchanged. However, as we have already empha-
sized, the wave functions &(ξ1, ξ2) and &(ξ2, ξ1) cannot be in general different. Therefore
(see Subsec. 2.1.3), they may vary at most for a global phase factor eıφ , and we must have

&(ξ2, ξ1) = eıφ&(ξ1, ξ2). (7.2)

If we exchange the two particles once more, we must have

Û 2
P&(ξ1, ξ2) = &(ξ1, ξ2), (7.3)

and as a consequence Û 2
P = Î .2 According to Eqs. (7.1)–(7.2) we have

Û 2
P&(ξ1, ξ2) = e2ıφ&(ξ1, ξ2), (7.4)

so that, taking into account Eq. (7.3), we may argue that e2ıφ = 1 and eıφ = ±1.3 From
the previous equations, we can conclude that

&(ξ2, ξ1) = ±&(ξ1, ξ2). (7.5)

In other words, the wave functions of a system of two identical particles are either sym-
metric or antisymmetric with respect to the exchange of the particles. It is also clear that
the possible wave functions of a certain two-particle system must be either all symmetric
or all antisymmetric. In fact, if we consider the superposition of two wave functions, one
symmetric (ψS) and the other antisymmetric (ψA), i.e.

& = αψS + βψA, (7.6)

the resulting wave function has no definite parity relatively to the permutation operation,
because

ÛP (αψS + βψA) = αψS − βψA, (7.7)

which is neither symmetric nor antisymmetric. This can be generalized to N particles as
follows:

2 It should be noted that this is strictly true only up to a phase factor, that is, after two successive permutations,
the system may not return exactly to the same wave function. We shall discuss this point more extensively in
Sec. 13.8. We notice here that ÛP is not a representation of the group of permutations.

3 States with eıφ 	= ±1 can be realized in two dimensions: they are relevant for condensed matter physics and
are called anyons.
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Principle 7.1 (Symmetrization) The dynamical states of a system of N identical par-
ticles are necessarily either all symmetrical or all antisymmetric with respect to the
exchange of any two particles.

Since the Hamiltonian is symmetric relative to two-particle exchange, this symmetry must
be conserved in time and, as a consequence, for any time evolution we have

ÛP
∣∣ψS/A(t)

〉 = ÛPÛt−t0

∣∣ψS/A(t0)
〉 = Ût−t0ÛP

∣∣ψS/A(t0)
〉
, (7.8)

and therefore [
ÛP , Ût−t0

]
= 0. (7.9)

The property Û 2
P = Î is not general, but depends on the fact that we have chosen the

example of two particles: two successive exchanges of two particles do not change the
initial situation (state). In a general N -particles framework, the permutation operator is still
unitary. In fact, let us consider an orthonormal basis for a system of N identical particles. It
is clear that a permutation acting on a basis vector will transform it into a different vector in
the same basis. Therefore, permutations must represent a bijective correspondence between
vectors on the original orthonormal basis. This in turn means that the permutation operators
are unitary, i.e.

ÛPÛ †
P = Û †

PÛP = Î . (7.10)

Permutations have also the group property4 that the action of two successive permutations
Û ′

P and Û ′′
P correspond to a single permutation ÛP = Û ′′

PÛ ′
P .

Consider now the cases of the permutation of two and three particles among N particles.
In the case of two-particle permutation among N particles, we can write

Û 12
P

∣∣∣r(1)
α r(2)

β · · · r(N )
ω

〉
=
∣∣∣r(1)
β r(2)

α · · · r(N )
ω

〉
, (7.11)

where, for the sake of simplicity, we have chosen the eigenkets∣∣∣r(1)
α r(2)

β · · · r(N )
ω

〉
=
∣∣∣r(1)
α

〉
⊗
∣∣∣r(2)
β

〉
⊗ · · · ⊗

∣∣∣r(N )
ω

〉
(7.12)

of the position operators r̂(1), r̂(2), . . . , r̂(N ).
In the case of the permutation of three particles, for example the cyclic permutation

Û 123
P

∣∣∣r(1)
α r(2)

β r(3)
γ

〉
=
∣∣∣r(1)
γ r(2)

α r(3)
β

〉
, (7.13)

we have

Û 123
P |&〉 =

∑
αβγ

Û 123
P

∣∣∣r(1)
α r(2)

β r(3)
γ

〉 〈
r(1)
α r(2)

β r(3)
γ | &

〉
=
∑
αβγ

∣∣∣r(1)
γ r(2)

α r(3)
β

〉 〈
r(1)
α r(2)

β r(3)
γ | &

〉
, (7.14)

4 See Sec. 8.4.
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where |&〉 is a generic three-particle state vector. Renaming the summation indices, we
obtain

Û 123
P =

∑
αβγ

∣∣∣r(1)
α r(2)

β r(3)
γ

〉 〈
r(1)
β r(2)

γ r(3)
α

∣∣∣ . (7.15)

7.3 Spin and statist ics

7.3.1 The two stat ist ics

What we have said up to now is true of every type of particle. However, following the
above distinction between symmetric and antisymmetric wave functions, particles can be
cast into two main groups according to their spin:

• Bosons, so called after the name of the Indian physicist Satyendranath Bose.5 Their wave
function is symmetric and they have integer spin.

• Fermions, so called after the name of the Italian physicist Enrico Fermi.6 Their wave
function is antisymmetric and they have half-integer spin.

The connection between spin and statistics is put forward by relativistic arguments and
will not be proved here.7 Notice, however, that Fermi and Bose formulated their theories
in terms of the occupation number, i.e. the number of particles which may occupy the
same energetic level. The reformulation of this problem in terms of antisymmetric and
symmetric wave functions is due to Dirac.8

Examples of bosons are represented by photons, π mesons, gluons, and W and Z parti-
cles, and examples of fermions are represented by electrons, protons, neutrons, quarks, and
leptons (see Tab. 7.1). On the elementary-particle level, we may say that matter is made up
of fermions while forces are intermediated by bosons.

The previous properties can be summarized by the following theorem:

Theorem 7.1 (Spin and statistics) Particles with integer spin follow Bose–Einstein
statistics (symmetric wave function), while particles with half-integer spin follow Fermi–
Dirac statistics (antisymmetric wave function).

Compound particles can be either bosons or fermions depending on the number of consti-
tuting fermions. Following the law of composition of angular momenta (see Eq. (6.187)),

5 See [Bose 1924]. For a history of the problem see [Mehra/Rechenberg 1982–2001, I, 554–78].
6 See [Fermi 1926a, Fermi 1926b].
7 See [Streater/Wightman 1978].
8 See [Dirac 1926b].
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Table 7.1 The table of elementary particles, fermions (subdivided in leptons and quarks) and
bosons. Fermions are the elementary constituents of matter. There are three generations of

fermions: the electron and its neutrino, and the quarks down and up; the muon and its
neutrino, and the quarks strange and charmed; the particle τ and its neutrino, and the quarks

bottom and top. Protons and neutrons, for reasons explained below, are also fermions. The
bosons represent the carrier of forces and are represented by the photons for electromagnetic

force, by W and Z bosons for weak force, and by the (eight) gluons for strong force (called
“color” force, i.e. bounds between quarks). The electron, muon, and τ particles have all charge
−1. All neutrinos have charge 0. Quarks u, c, t have charge 2/3 while quarks d, s, b have charge
−1/3. Finally, all bosons have charge 0. Antiparticles, when different from their respective

particle, have the same masses and spin, but the charge is opposite in sign

Elementary particles

Fermions Bosons

Leptons Quarks

e, νe u, d γ

μ, νμ c, s Z0, W−, W+
τ , ντ t , b gluons

if this number is even, the resulting particle is a boson, if it is odd, the resulting particle
is a fermion. For instance, neutrons and protons are fermions because both are composed
of three quarks, whereas the hydrogen atom is composed of two fermions, i.e. an electron
plus a proton, which makes a boson. Similarly, nuclei may also be bosons or fermions
depending on the number of neutrons and protons.

�Box 7.1 Rasetti’s discovery

In this context, a remarkable example is the historical development of the nuclear theory
of the atom. At the end of 1920s, in order to explain the atomic and mass numbers of the
different atoms, the hypothesis was that some electrons could also be present in the nucleus.
According to this hypothesis, for example, the 14N nucleus would be made of 14 protons and
7 electrons, i.e. 21 fermions. However, Franco Rasetti (1901–2001), by observing the Raman
spectrum of 14N2 molecules, established that it was a boson. The problem was solved in
1932 when James Chadwick (1891–1974) discovered the neutron: the 14N nucleus was then
found to be made of 7 protons and 7 neutrons, i.e. 14 fermions. Incidentally, we note that
the hypothetical presence of electrons in the nucleus would suffer serious drawbacks on the
basis of the uncertainty relation: in order to confine an electron inside a region of the order
of the typical dimension of the nucleus (10−15 m), the electron itself would need to possess
a huge kinetic energy and this in turn would mean a huge binding potential energy, which is
difficult to account for.
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As an example of application of the two statistics, let us consider two identical particles
in a box with infinite walls (see Sec. 3.4). If the two populated energy levels are En1 En2

(n1 	= n2), in the case of bosons the total wave function is

&S(ξ1, ξ2) = 1√
2

[
ψn1 (ξ1)ψn2 (ξ2) + ψn1 (ξ2)ψn2 (ξ1)

]
, (7.16a)

while in the case of fermions is given by

&A(ξ1, ξ2) = 1√
2

[
ψn1 (ξ1)ψn2 (ξ2) − ψn1 (ξ2)ψn2 (ξ1)

]
, (7.16b)

where 1/
√

2 is a normalization factor.

7.3.2 Fermions

Fermions9 obey the Fermi–Dirac statistics (antisymmetry of the wave function and half-
integer spin). Therefore, the wave function of N fermions changes sign each time two
particles are interchanged. On the other hand, the permutation of N particles may always
be decomposed into a certain number of pairwise exchanges. In general, therefore, we
shall have

&(ξ1, ξ2, . . . , ξN ) = (−1)l&(ξl1 , ξl2 , . . . , ξlN
), (7.17)

where ξl1 , ξl2 , . . . , ξl N is a permutation of ξ1, ξ2, . . . , ξN and l is the rank of such
permutation.

In the example of Eq. (7.16b), we see that, putting n1 = n2 we would obtain an identical
zero. This result is an expression of the Pauli exclusion principle,10 which states that

Principle 7.2 (Pauli exclusion principle) Two fermions cannot occupy the same individ-
ual state.

This means, for example, that two electrons with the same spin cannot occupy the same
energy level of an atom. Hence, suppose that we have k possible states in which we want
to distribute N fermions (N ≤ k). Then, the number ζA of possible ways of distributing
N fermions on k states is given by the so-called combination without repetition, i.e. by
the ratio between the number of possible dispositions11 k! /(k − n)! and the number N !
of the possible permutations of the N particles. In other words, ζA would coincide with
the number of possible dispositions only if the symmetrization principle did not apply: the
combinations without repetition are those dispositions that are considered different only

9 See [Huang 1963, 241–76] for a treatment of the Fermi gas.
10 See [Pauli 1925]. For a historical reconstruction of this point see [Mehra/Rechenberg 1982–2001, I, 422–45].
11 Dispositions are distinguished if we either have a different numerical distribution or a different order of the

elements.
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Table 7.2 The four possible distributions of three fermions in four states. Dots
represent fermions while the symbol ∅ represents unoccupied states

Distribution State 1 State 2 State 3 State 4

I · · · ∅
II · ∅ · ·
III · · ∅ ·
IV · · · ∅

if the numerical distribution is different, that is, the number of ways one can choose N
among k objects. In formulae we have

ζA = k!

N ! (k − N )!
=
(

k
N

)
. (7.18)

For example, suppose that we wish to cast three fermions in four states. Then, we have four
possible arrangements described in Tab. 7.2.

There is a simple way to represent antisymmetric wave functions in the case of non-
interacting fermions. For instance, a simple inspection of Eq. (7.16b) shows that it can be
rewritten in the form

&(ξ1, ξ2) = 1√
2

∣∣∣∣ ψn1 (ξ1) ψn1 (ξ2)
ψn2 (ξ1) ψn2 (ξ2)

∣∣∣∣. (7.19)

This representation can be generalized to N particles:

&(ξ1, ξ2, . . . , ξN ) = 1√
N !

∑
perm.

(−1)lψln1
(ξ1) . . . ψlnN

(ξN )

= 1√
N !

∣∣∣∣∣∣∣∣
ψn1 (ξ1) ψn1 (ξ2) . . . ψn1 (ξN )
ψn2 (ξ1) ψn2 (ξ2) . . . ψn2 (ξN )
. . . . . . . . . . . .

ψnN (ξ1) ψnN (ξ2) . . . ψnN (ξN )

∣∣∣∣∣∣∣∣, (7.20)

where the determinant is called the Slater determinant: an exchange of two particles means
an exchange of two columns in the determinant, which accounts for the resulting change
of sign. It is easy to see that, if we have n j = nk for certain j 	= k, i.e. if two particles are
in the same state, then two rows are equal and, as a consequence, the Slater determinant is
zero. This is a mathematical representation of Pauli exclusion principle.

Notice that the table of elements can be explained by the Pauli exclusion principle,
since, by adding an electron to a given element, we obtain the next element in Mendeleev’s
periodic table.
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(a)

(b)

(c)

(d)

�Figure 7.2 Example illustrating the method used for counting the number of possible configurations of N = 3
bosons in k = 2 states. In this case we have only one partition (the separation between the
two states) and the desired number is obtained by moving this wall from left to right (from
(a) to (d)). The resulting configurations are summarized in Tab. 7.3.

7.3.3 Bosons

Bosons12 obey the Bose–Einstein statistics (symmetry of the wave function and integer
spin). In this case, Eq. (7.17) translates into

ψ(ξ1, ξ2, . . . , ξN ) = ψ(ξl1 , ξl2 , . . . , ξl N ), (7.21)

so that, in general, the symmetric wave function of a system of N bosons will be given by
the sum of all possible terms of the type (7.21). Suppose again we wish to cast N particles
into k possible states. Unlike fermions, bosons do not undergo the constraint imposed
by the Pauli exclusion principle (see Pr. 7.2). For this reason, any number of bosons can
occupy any state, and in this case the number of possible configurations is given by the
so-called combinations with repetition.13 The number of configurations can be obtained
by considering the following argument. The total number N of particles can be partitioned
in different ways among the k available states. In each distinct configuration, it is as if we
would insert k − 1 ideal walls (the separations between the states) in between the particles.
As a consequence, the number of possible configurations is given by the number of ways
in which we can choose k − 1 elements among N + k − 1 (see Fig. 7.2).

12 See [Huang 1963, 278–302] for a treatment of the Bose gas.
13 In this case, obviously, N is not limited by k.
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Table 7.3 The four possible configurations of three bosons in two
different states. Dots represent bosons while the symbol ∅

represents unoccupied states

Configuration State 1 State 2

I · · · ∅
II ∅ · · ·
III · ··
IV ·· ·

In conclusion, the number ζS of possible ways of distributing N bosons among k states
is given by the combinations without repetition of k − 1 objects among N + k − 1 (see
also the solution of Prob. 1.11 and Eq. (6.120)), that is,

ζS =
(

k + N − 1
k − 1

)
. (7.22)

In conclusion, in the case of both bosons and fermions the individuality of the particles is
of no relevance: only the number of particles that occupy a certain state is important.

7.4 Exchange interaction

The exchange interaction is another important effect of quantum statistics and more gen-
erally of the symmetry properties of the wave function. Consider a Hamiltonian which
is independent of the spin and two identical bosons with spin zero. The wave function
of this system can be written as &(r1, r2). Suppose that the particles are subject to a
central force (see Subsec. 11.2.1) so that & can be decomposed into a radial part and a
spherical-harmonics part (see Subsec. 6.1.4), i.e.

&(r1, r2) = R(|r1 − r2|)Ylm(θ ,φ). (7.23)

Exchanging the two particles is equivalent to inverting the vector r1 − r2 (i.e. changing its
sign). With such an inversion, the spherical harmonics undergo the transformation

Ylm → (−1)lYlm . (7.24)

However, we know that the wave function must be symmetric under bosonic exchange
and therefore only even l’s are admitted. This is a constraint that was not present in the
Hamiltonian and that we must therefore add from the outside on the basis of statical
arguments.

In the case of fermions of spin-1/2, and with the spin-independent Hamiltonian, the
complete wave function (taking into account both the spatial and spin degree of freedom)
will be given by
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%(r1, r2; s1, s2) = &(r1, r2)ς (s1, s2) = R(|r1 − r2|)Ylm(θ ,φ)ς (s1, s2). (7.25)

Since the total wave function must be antisymmetric with respect to a fermionic exchange,
we have two possible cases: either spin symmetric and position antisymmetric (l’s odd) or
spin antisymmetric and position symmetric (l’s even).

In conclusion, what we call exchange interaction are the constraints imposed by the
statistics on the possible dynamical states of bosons and fermions. Due to its nature, the
exchange interaction plays an important role in the physics of chemical bonds.

An interesting consequence of both Fermi–Dirac and Bose–Einstein statistics is the dif-
ferent behavior of bosons and fermions in a Coulomb potential V (r ) ∼ 1/r . The energy of
N bosons turns out to be proportional to N 4/3 so that, when N →∞, the energy density
E/N grows indefinitely. In the case of N fermions, however, their energy is proportional
to N , so that, for N →∞, the energy density E/N remains constant.

7.5 Two recent applications

7.5.1 Bose–Einstein condensate

A macroscopic Bose gas, i.e. a system made of a very large number of bosons, behaves at
room temperature following the laws of classical statistical mechanics, i.e. the Boltzmann
statistics. In fact, the uncertainty relation establishes that to any boson a wave packet (see
Box 2.6) may be assigned, which has a dimension of the order of the thermal wavelength
λT , given by (see Prob. 7.6)

λT =
√

h̄2

2kBmT
, (7.26)

where, as usual, T is the temperature, m the mass of the boson, and kB the Boltzmann
constant. At room temperature, this wavelength is much smaller than the mean distance
between the bosons, and the gas is typically disordered. However, when a dilute gas is
cooled, the wavelength increases until a critical point where it is of the order of the mean
distance between the bosons. When the temperature falls below near 100 µK, all the bosons
occupy the same state (a phase transition that can be compared to the transition from inco-
herent light to a coherent laser). It is interesting to note that this is a major example of a
macroscopic system that follows quantum-mechanical predictions and shows that quantum
effects are not necessarily lost on a macroscopic scale.

Bose condensates may be realized in different forms. We briefly report here some
realizations. In 1995 the realization of a Bose–Einstein condensate was obtained in two
laboratories in the USA, one at the JILA (Joint Institute for Laboratory Astrophysics) in
Boulder, Colorado, by the group of Carl E. Wieman and Eric A. Cornell,14 and the other
at the MIT (Massachusetts Institute of Technology) in Boston, by the team of Wolfgang

14 [Anderson et al. 1995].
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Ketterle.15 This cooling can be obtained by a laser cooling technique (in which the bosons
are slowed down) followed by an “evaporation” technique: the bosons are magnetically
isolated from the environment and, by using a radio frequency field in resonance with the
energy difference between “up” and “down” atoms, the atoms with greater energy are lost,
so that the temperature decreases. The achievement of Bose–Einstein condensation is one
of the greatest successes of quantum statistics: in fact, this result had been already predicted
by Einstein. Also the degeneracy of a Fermi–Bose mixture has been obtained16 following
the original proposal by Bose.

A stunning experiment was done recently,17 showing that, when two independent Bose–
Einstein condensates are prepared in two traps, with a spatial separation of a fraction of
millimeter, and a coherent light pulse is stored in one of the two, a wave packet trav-
els through this condensate, successively reaching and traversing also the second one.
Once this happens, it is possible to regenerate the initial light pulse, which would not have
been possible without the presence of the second condensate. The only way to understand
this result is that the two condensates are quantum indistinguishable systems, and that the
ground state function (before or after the pulse is gone) would have a component in both
traps simultaneously.

7.5.2 Quantum dot

A striking example of the validity of the Pauli exclusion principle is represented by the
so-called quantum dots or artificial atoms.18 It is possible to confine a cloud of electrons to
a bidimensional surface by squeezing it between two layers of insulating material. Succes-
sively, one must generate a field able to electrostatically attract the electrons onto a given
point. We obtain then a “zero”-dimensional cloud of electrons (in the sense that the elec-
trons are not free to move along any of the three Cartesian space directions). This cloud
may vary from few electrons to some hundreds. While in the natural atom the potential
well is hyperbolic (i.e. V (r) ∼ 1/r) in the case of the quantum dot the form of the potential
well is elliptic (see Fig. 7.3). Moreover, while the dimension of the natural atom is of the
order of 0.1 nanometers, that of the artificial atom is of the order of 10–100 nanometers.
In the quantum dot, the electrons are naturally placed in atomic levels following the Pauli
exclusion principle even if there is no nucleus. It is quite possible that there will be many
applications of quantum dots for electronic microcircuitry. Indeed, they can be understood
as wells where electrons may be stocked. Furthermore, electronic lines bind several quan-
tum dots: when an electron is needed from one well to another, a manipulation of the
potentials or a laser may extract it from a given quantum dot.

15 See [Townsend et al. 1997]. The 2001 Nobel prize in physics was awarded to Eric A. Cornell, Wolfgang
Ketterle and Carl E. Wieman for the achievement of Bose–Einstein condensation in dilute gases of alkali
atoms, and for early fundamental studies of the properties of the condensates.

16 See [Vichi et al. 1998].
17 See [Ginsberg et al. 2007] [Fleischhauer 2007].
18 See [Kastner 1993].
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�Figure 7.3 Potential wells of a natural atom (a) and of a quantum dot (b). While the potential well of a
natural atom is hyperbolic, the potential well of a quantum dot is either elliptic or parabolic.

Summary

• In this chapter we have introduced the unitary permutation operator: any permutation can
be decomposed in a product of pairwise exchanges. Together with the fact that identical
particles are indistinguishable in quantum mechanics, this has led us to the definition of
the two fundamental statistics of quantum mechanics.

• The Fermi–Dirac statistics, for particles with half-integer spin and antisymmetric wave
function under permutation, is characterized by the fact that two fermions cannot share
the same state (Pauli exclusion principle).

• Bosons, particles with integer spin, are subject to the Bose–Einstein statistics, i.e. have
symmetric wave function under permutation (by interchanging two bosons we obtain
exactly the same state). Here any number of particles may occupy the same state.

• The exchange interaction is a truly quantum effect, due to the additional constraints
imposed by statistics on the particles’ interaction.

• Finally, we have discussed some major examples illustrating the quantum behavior
of fermions and bosons: The experimental realization of Bose–Einstein condensation
obtained by laser-cooling technics in dilute gases of alkaline atoms, and the confine-
ment of electrons in artificial atoms that respect the Pauli exclusion principle, known as
quantum dots.

Problems

7.1 Consider Eqs. (7.14)–(7.15). Write the analogue of Eq. (7.14) in terms of the wave
function

&(r(1)
α r(2)

β r(3)
γ ) =

〈
r(1)
α r(2)

β r(3)
γ | &

〉
. (7.27)

7.2 Write the explicit form of the permutation operator for four particles among N
particles.
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7.3 Calculate the number of possible configurations of five identical fermions distributed
among four states.

7.4 Prove that, when there are two possible states (k = 2), Eq. (7.22) reduces to ζS =
N + 1.

7.5 The nitrogen nucleus is a boson or a fermion? Why?
7.6 Justify Eq. (7.26) on the basis of arguments connected with the uncertainty relation.

Further reading
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Princeton: Princeton University Press, 2000.



8 Symmetries and conservation laws

A symmetry is an equivalence of different physical situations, and is therefore strictly
associated with the concept of invariance. One of the main aims of physics is the search
in nature for symmetries and, therefore, for observables that are invariant under certain
classes of transformation. In this context, it becomes particularly interesting to look for
the conditions under which a certain symmetry is eventually broken. We have already
discussed some symmetries of quantum mechanics: time translations (Ch. 3), space trans-
lations (Ch. 2) and rotations (Ch. 6). Another example of invariance is represented by the
indistinguishability of identical particles, which we discussed in the previous chapter.

Symmetries are induced by physical transformations that generate some invariant prop-
erties (see Sec. 8.1). In Sec. 8.2, the continuous transformations induced by rotations and
space translations are analyzed, whereas in Sec. 8.3, space reflection and time reversal
(discrete symmetries) are discussed. As we shall see in the next chapter, time reversibility
is lost in the measurement process. The rigorous mathematical framework of a theory of
transformations and of their invariance is called group theory (the subject of Sec. 8.4).

8.1 Quantum transformations and symmetries

8.1.1 Act ive and passive transformations

We have seen that time evolution may be represented either in the Schrödinger picture
(state vectors evolve and observables are kept constant) or in the Heisenberg picture (states
vectors remain constant and observables evolve) (see Subsec. 3.6.1 and Sec. 5.3). Similarly,
all quantum transformations may be classified in transformations of the state vector (active
transformations) and transformations of the observables (passive transformations). Any
active transformation Û on an arbitrary ket |ψ〉 may be written as Û |ψ〉 = |ψ ′ 〉. In other
words, in the case of active transformations we consider the physical situation in the same
reference frame by moving the vector representing the state.

A passive transformation may be understood as a change of the coordinate axes since it
corresponds to a “view” of the (original) state in a new reference frame (from the “point
of view” of a new observable). In other words, it is as if we had changed the basis of
the system and therefore rotated the axes (see Subsec. 2.1.2). The relationship between
active and passive transformations may be seen in Fig. 8.1. An example of passive and
active transformations is given in Box 8.1.
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|x2′>

|x1′>

|x2>

|x1>

|ψ >|ψ′>

θ

�Figure 8.1 Passive and active transformations. A transformation may be considered from two
viewpoints, as an active transformation, where the state vector |ψ〉 is changed into the

state vector
∣∣∣ψ ′ 〉

; and as a passive transformation, where the reference frame is changed

from the basis vectors |x1〉 , |x2〉 (where |ψ〉 = cos θ |x1〉 + sin θ |x2〉 and θ is the angle

between the directions of |ψ〉 and |x1〉 ) to the vectors
∣∣∣x

′
1

〉
,
∣∣∣x

′
2

〉
(where |ψ〉 in the new

basis is equivalent to
∣∣∣ψ ′ 〉

in the old basis).

Let us now face the problem of quantum symmetries on the most general grounds. Sup-
pose we have a system which has been prepared in some way in the state |ψ〉 . Consider a
certain transformation that changes the state |ψ〉 into∣∣ψ ′〉 = Û |ψ〉 . (8.1)

Similarly, for a state |ϕ〉 , we shall have∣∣∣ϕ ′〉 = Û |ϕ〉 . (8.2)

�Box 8.1 Example of passive and active transformations

Let us consider the example of beam splitting (see Subsec. 3.5.2). We may write the initial
state as

|ψ〉 = |1〉 . (8.3)

A beam splitter induces the active transformation

|1〉 �→ ÛBS |ψ〉 =
∣∣∣ψ ′ 〉

= 1√
2
(|1〉 + ı |2〉 ). (8.4)
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The previous transformation induces a change of basis (passive transformation) which is the
inverse with respect to Eq. (8.4), i.e.∣∣∣1′ 〉 = 1√

2
(|1〉 − ı |2〉 ),

∣∣∣2′ 〉 = 1√
2
(−ı |1〉 + |2〉 ). (8.5)

This means that it is equivalent to consider that |ψ〉 has been transformed into
∣∣∣ψ ′ 〉

or that
the state has remained |ψ〉 and we have performed the change of basis (8.5) (see Prob. 8.1).
In fact, let us consider the observable of path distinguishability (see Subsec. 2.3.4)

P̂ = |1 〉 〈1 | − |2 〉 〈2 | =
[

1 0
0 −1

]
. (8.6)

We have (see Eq. (8.13) and Prob. 8.2)〈
ψ
′ ∣∣∣P̂ ∣∣∣ψ ′ 〉 = 〈ψ ∣∣∣P̂ ′ ∣∣∣ψ〉 = 0, (8.7)

where

P̂ ′ =
∣∣∣1′ 〉 〈1′ ∣∣∣− ∣∣∣2′ 〉 〈2′ ∣∣∣ , (8.8)

where |1′ 〉 and |2′ 〉 are given by Eq. (8.5). The result (8.7) can be understood if we
consider that |ψ〉 and |ψ ′ 〉 are states of maximal interference relative to the bases of
the observables P̂ ′

(whose eigenstates are |1′ 〉 and |2′ 〉) and P̂ (whose eigenstates are
|1〉 and |2〉 ), respectively. In other words, |ψ〉 and |ψ ′ 〉 may be considered as eigen-
kets of two visibility-of-interference-fringes observables V̂ and V̂ ′

, respectively (see again
Subsec. 2.3.4).

The scalar product 〈ψ | ϕ〉 gives the probability amplitude that a measurement performed
on |ψ〉 give |ϕ〉 as outcome (see Sec. 5.2). As we know, what one can actually measure
is the square modulus |〈ψ | ϕ〉|2 of the probability amplitude, i.e. the probability. It is
clear that if the system must be invariant under the transformation Û , this probability must
be the same independently of whether we compute (measure) it on the states |ψ〉 and

|ϕ〉 or on
∣∣∣ψ ′〉

and
∣∣∣ϕ ′〉 . We may therefore conclude that the system has a symmetry

whenever

∣∣∣〈ψ ′ | ϕ ′
〉∣∣∣2 = |〈ψ | ϕ〉|2 . (8.9)

This condition imposes severe constraints on the transformation operator Û . In particular,
we have only two possibilities:〈

ψ
′ | ϕ ′

〉
=
〈
ψ

∣∣∣Û†Û
∣∣∣ϕ〉 = 〈ψ | ϕ〉, (8.10a)〈

ψ
′ | ϕ ′

〉
=
〈
ψ

∣∣∣Û†Û
∣∣∣ϕ〉 = 〈ϕ | ψ〉. (8.10b)
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In the first case, Û must be a unitary operator (see the first property in Subsec. 3.5.1)
whereas in the case of Eq. (8.10b) it must be represented by an anti unitary operator. An

antiunitary transformation ˜̂U is defined by the following properties:1〈 ˜̂Uϕ | ˜̂Uψ〉=〈ψ | ϕ〉, (8.11a)

˜̂U [|ψ〉 + |ϕ〉 ]= ˜̂U |ψ〉 + ˜̂U |ϕ〉 , (8.11b)
˜̂Uc |ψ〉 = c∗ ˜̂U |ψ〉 . (8.11c)

Summarizing, all quantum symmetries are ruled by Wigner’s theorem:

Theorem 8.1 (Wigner) A symmetry, i.e. a mapping that transforms the vectors |ψ〉 and
|ϕ〉 into Û |ψ〉 and Û |ϕ〉, respectively, and that preserves the square modulus of the inner
product

|〈Ûψ |Ûϕ〉|2 = |〈ψ |ϕ〉|2, (8.12)

is either linear and unitary or antilinear and antiunitary.

In other words, if between the vectors of the Hilbert space H there exists a one-to-one
correspondence Û which is defined up to an arbitrary constant and which conserves the
square modulus of the scalar product, then the arbitrary phases can be chosen so as to
make Û either unitary and linear or antiunitary and antilinear. Note that the canonical com-
mutation relations between observables are conserved in the transformation if Û is linear
and are replaced by their complex conjugate if Û is antilinear (see Prob. 8.5).

Continuous symmetries must contain the identity transformation as a limiting case,
and therefore are represented by unitary transformations. On the other hand, discrete
symmetries do not need to be unitary, and condition (8.10b) is allowed.

In order to determine the action of a passive continuous transformation on a generic
observable Ô , let us consider the mean value of Ô with respect to the transformed state
|ψ ′ 〉 (see also Subsec. 3.5.1). This mean value must be equal to the mean value of the
transformed observable Ô

′
with respect to the original state vector |ψ〉 , i.e.〈

ψ
′ ∣∣∣Ô∣∣∣ψ ′〉 = 〈ψ ∣∣∣Ô ′ ∣∣∣ψ〉. (8.13)

Our aim here is to determine the relationship between Ô and Ô
′

in terms of the unitary
transformation Û . We have〈

ψ
′ ∣∣∣Ô∣∣∣ψ ′〉 = 〈ψ ∣∣∣Û † ÔÛ

∣∣∣ψ〉 = 〈ψ ∣∣∣Ô ′ ∣∣∣ψ〉, (8.14)

from which it follows that

1 If an operator satisfies the properties (8.11b) and (8.11c) is called antilinear.



263 8.1 Quantum transformations and symmetr ies
�

Ô
′ = Û † ÔÛ = Û−1 Ô

(
Û−1

)†
. (8.15)

In other words, an active unitary transformation Û on a state vector |ψ〉 is completely
equivalent to (and therefore indistinguishable from) a passive transformation made on the
observables in which the reference frame is rotated according to Û−1.

8.1.2 Noether’s theorem

If a system has a symmetry under a certain transformation (for example, under rota-
tions or translations), its Hamiltonian must be invariant under the same transformation,
and this property is conserved in time (see for instance Subsec. 6.2.3). In this case, the
symmetry is called exact or conserved. Under this circumstance, the Hamiltonian must
commute with the infinitesimal generator of this symmetry, i.e. the generator must be
a constant of motion (see Subsec. 6.1.2). Therefore, to any symmetry of a system (i.e.
to any invariance of the Hamiltonian with respect to a certain transformation) corre-
sponds a constant of motion. This fact directly follows from the Heisenberg equation of
motion (3.108)

ı h̄
d

dt
Ô =

[
Ô , Ĥ

]
(8.16)

for an observable Ô(t) (where for the sake of notation we have dropped the superscript
H) that does not explicitly depend on time. Using Stone’s theorem (see p. 122), any

unitary and continuous transformation may be written as Û (α) = eıαĜ , where Ĝ = Ĝ†

is a Hermitian operator and represents the generator of the transformation, and α is a
continuous parameter. For an infinitesimal transformation, to the first order in δα, Û is
given by

Û (δα) = 1 + ı Ĝδα + O(δα2). (8.17)

If an operator ξ̂ is transformed into ξ̂ + δξ̂ by the transformation (8.17), we have, again to
the first order,

ξ̂ + δξ̂ = Û ξ̂Û † =
(

1 + ıδαĜ
)
ξ̂
(

1 − ıδαĜ
)

� ξ̂ + ıδα
(

Ĝ ξ̂ − ξ̂ Ĝ
)

, (8.18)

and

δξ̂ = ıδα
[
Ĝ, ξ̂

]
. (8.19)

As we have said above, if our system is invariant under this transformation, also the Hamil-
tonian must be invariant. This means that, replacing ξ̂ by Ĥ , δ Ĥ must be zero and therefore[
Ĝ, Ĥ

]
= 0. In conclusion, according to Heisenberg equation, Ĝ is a constant of motion
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(see Prob. 8.4). This result is also known as Noether’s theorem, due to Emmy Noether, and
may be formulated as follows:

Theorem 8.2 (Noether) Every parameter of a continuous and exact symmetry has a cor-
responding constant of motion given by the observable that represents the generator of the
corresponding transformation.

8.2 Continuous symmetries

If the transformation U is continuous (which implies a continuous symmetry), it must also
be unitary, because it must include transformations that are arbitrarily close to the identity,
which is unitary (see Prob. 8.6). On the other hand, discrete symmetries may be either
unitary or antiunitary.

It is interesting to note that the transformations in space, time and of angle we have
considered in previous chapters and that are induced by dynamical observables – by
momentum, i.e. translational symmetry (see Subsec. 2.2.4), by energy, i.e. time symmetry
(see Sec. 3.5), and by angular momentum, i.e. rotational symmetry (see Subsec. 6.1.2) –
are linear and therefore are also continuous and unitary (see also Subsec. 3.5.4). Among
the continuous symmetries, the roto-translations (rotations combined with translations) are
said to constitute the Euclidean group (see Sec. 8.4).

8.2.1 Space translat ions and momentum transformations

Consider a three-dimensional particle with position r̂, momentum p̂, and spin ŝ. If we
apply the most simple space translation, i.e. a one-dimensional displacement by a distance
a along the x-axis, the nine fundamental variables (the components of r̂, p̂, and ŝ) are
invariant, with the exception of x , which goes over into x − a: if we have the eigenvalue
equation (2.122), that is,

x̂ | x〉 = x | x〉 (8.20)

for an arbitrary eigenstate ketx , and denote by Ûx (a) the unitary transformation such that

Ûx (a)x̂Û †
x (a) | x〉 = (x − a) | x〉 , (8.21)

we may infer

Ûx (a)x̂Û †
x (a) = x − a. (8.22)

The Hermitian generator Ĝx therefore obeys the commutation relations

[Ĝx , x̂] = −ı , [Ĝx , ŷ] = . . . = [Ĝx , p̂x ] = . . . = [Ĝx , ŝz] = 0, (8.23)
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which imply (see Eq. (2.173a))

Ĝx = p̂x

h̄
+ k0, (8.24)

where k0 is an arbitrary constant that can be put equal to zero. The finite-transformation
operator Ûx (a) can be then chosen to be (see Subsec. 2.2.4)

Ûx (a) = e−
ı
h̄ p̂x a . (8.25)

As a consequence, the three-dimensional translation transformation can be therefore
written as

Ûr(a) = Û (ax , ay , az)

= e−
ı
h̄ p̂x ax e−

ı
h̄ p̂yay e−

ı
h̄ p̂zaz

= e−
ı
h̄ p̂·a. (8.26)

In a similar way, it can be shown that three-dimensional momentum translations by a
vectorial amount v are described by the unitary transformation

Ûp(v) = e
ı
h̄ v·r̂ (8.27)

Both space and momentum translation transformations form a group that is isomorphic to
the respective translation group, i.e.

Û (ξ )Û (η) = Û (η)Û (ξ ) = Û (ξ + η), (8.28)

where ξ and η are two parameters.

8.2.2 Time translat ions

The case of time translations is formally similar to that of spatial translations, where the
momentum is replaced by the Hamiltonian Ĥ and the distance a is replaced by the time t .
This kind of transformation has been extensively treated in Subsecs. 3.1.1 and 3.5.3.

8.2.3 Rotations

A rotation R of an angle φ about an axis n = (nx , ny , nz) in a Cartesian frame is given by
(see Subsec. 6.1.2)

R̂ = Î − ıφ
∑

k

nk ŝk , (8.29)

where ŝk , k = x , y, z are the spin matrices for three dimensions (see Eqs. (6.165)).
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The corresponding unitary transformation is given by

ÛR(φ) = e−ıφ·Ĵ, (8.30)

where Ĵ is the total angular momentum.

8.3 Discrete symmetries

As we have seen, discrete symmetries may be either unitary or antiunitary. Discrete
symmetries also give rise to constants of motion. This time, however, these will not be
represented by the infinitesimal generators (which do not exist!) but directly by the trans-
formation operators. In the following we shall briefly discuss three major examples of these
transformations.

8.3.1 Space reflect ion

The group of reflections with respect to a point is constituted by the reflection operator ÛR
and the identity operator Î . In fact, obviously, Û 2

R = Î . In the transformation induced by

R̂, the polar vectors r and p change sign while the axial vectors r × p and s are invariant.
Since r and p simultaneously change sign, the transformation conserves the commutation
relations of the orbital variables. It also conserves those involving the spin, that is,

ÛRr̂Û †
R = −r̂, ÛRp̂Û †

R = −p̂, ÛRL̂Û †
R = L̂, ÛRŝÛ †

R = ŝ. (8.31)

Therefore, the reflection operator will act on a wave function as

ÛRψ(r) = ψ(−r). (8.32)

We take ÛR is taken to be unitary.2

8.3.2 Time reversal

Time reversal is the transformation t →−t , i.e. it changes the direction of time. Unlike
space reflections, time reversal is an antiunitary mapping. In fact, consider the unitary
evolution

|ψ(t2)〉 = Ût2−t1 |ψ(t1)〉 . (8.33)

2 Abstractly, both space reflection and time reversal could be taken as well as unitary or antiunitary transforma-
tions. The fact that space reflection is assumed to be unitary and time reversal to be antiunitary stems from
relativistic considerations [Bjorken/Drell 1964, 24–25, 71–75] [Bjorken/Drell 1965, 118–23].
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If the dynamical properties of the system are invariant under time reversal, then there is a
mapping

|ψ(t)〉 �→ ˜̂UT |ψ(t)〉 =
∣∣∣ψT (t)

〉
(8.34)

such that the same unitary operator which transforms |ψ(t1)〉 into |ψ(t2)〉 , also transforms∣∣ψT (t2)
〉

into
∣∣ψT (t1)

〉 ∣∣∣ψT (t1)
〉
= Ût2−t1

∣∣∣ψT (t2)
〉
. (8.35)

For the properties of the scalar product and of both unitary and antiunitary (see Eq. (8.11a))
transformations, we have〈

ψ(t2) | ψT (t1)
〉
=
〈
Ût1−t2ψ(t2) | Ût1−t2ψ

T (t1)
〉

. (8.36)

Moreover, using Eqs. (8.33)–(8.35), we may write Eq. (8.36) as〈
ψ(t2) | ψT (t1)

〉
=
〈
ψ(t1) | ψT (t2)

〉
, (8.37)

i.e. time reversal is an antiunitary transformation.
The reversibility of the solutions of the Schrödinger equation with respect to time is due

to the invariance of the Hamiltonian when p is changed into −p (see also Subsec. 2.2.6).
We have time reversal invariance whenever r and p transform into r and −p, respectively.

In accordance with the fact that ˜̂UT is antiunitary, it changes the sign of the canonical
commutation relations. Since L = r × p, it also changes the sign of the orbital angular

momentum and of the spin. Therefore, we also have ˜̂UT Ĵ ˜̂U †
T = −Ĵ, and consequently the

time reversal operator commutes with the generator of rotations.

8.3.3 Charge conjugation

Charge conjugation is a symmetry that interchanges particles and antiparticles. For exam-
ple, electrons and positrons, protons and antiprotons, quarks and antiquarks. It is unitary
and antisymmetric. This symmetry plays a major role in quantum field theory (i.e. the rela-
tivistic extension of quantum mechanics) and will not be discussed here in detail. We limit
ourselves to note that a fundamental theorem of quantum field theory (the so-called CPT
theorem) establishes that, even though charge conjugation, parity, and time reversal may
be not individually conserved, their product is universally conserved.

8.4 A brief introduction to group theory

8.4.1 Definit ion of groups

A very important idea in modern mathematics is that it is possible and convenient to study
quite general algebraic structures that are characterized by a small number of properties,
without specifying the system one is considering. In the past, the object of study was
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always represented by concrete mathematical structures (e.g. real numbers, complex num-
bers, matrices). In this modern abstract approach it is possible to derive in one shot the
properties of all structures that share certain general features, even though these structures
may be quite diverse. Of course, the properties that are peculiar to a given structure cannot
be derived in this way.

Although the number of characterizing properties is small, a certain number of theorems
can be derived. This approach has the advantage that many concrete and quite different
realizations belong to the same algebraic structure, so that one avoids the repetition of the
same proof in different contexts and, at the same time, it becomes possible to grasp the
origin of the various properties.3

A very common algebraic structure is the group. A set of elements forms a group if, for
any elements a and b pertaining to the group, there is a binary operation, i.e. a function
with two arguments, such that the result, say c, of this operation is also an element of the
set, and this operation satisfies the following properties:4

• Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c or a + (b + c) = (a + b) + c, where a, b, and c
are elements of the group.

• Existence of a neutral element (denoted by the identity 1 if we use the multiplicative
notation, by 0 if we use the additive notation) such that a ∗ 1 = 1 ∗ a = a (a + 0 =
0 + a = a).

• Existence of the inverse (opposite): For each element a there is an inverse a−1 (in the
additive notation the opposite −a) such that a ∗ a−1 = a−1 ∗ a = 1 (a − a = 0),

Sometimes one uses shortcuts in the notation: a ∗ b−1 is written as a/b. In the additive
notation a + (−b) is written as a − b.5

The group is defined by giving the set of elements and the binary operation, satisfying
the previous three properties. In the case of a group having a finite number of elements
N , i.e. a finite group, the binary operation can be defined by giving the multiplication
(addition) table, i.e. by specifying for each pair of elements (a and b) the value of the
product (sum). In this case the table contains N 2 elements. For N > 1, not all of the N N 2

different multiplication tables are consistent with the definition of a group (see Prob. 8.7).
The simplest example of group contains only one element, the neutral element. Here the

multiplication (addition) table is trivial: 1 ∗ 1 = 1 (0 + 0 = 0). Other examples of groups
are as follows (see Prob. 8.8):

1. The N complex N -th roots of the identity, where the group operation is the standard
multiplication. The group is denoted by ZZN.

2. The integer numbers, where the group operation is the standard addition. The group is
denoted by ZZ.

3. The real numbers (denoted by IR), or the rational numbers (denoted by (Q), where the
group operation is the standard addition.

3 A similar philosophy is behind generic programming with templates in C++ [Plauger et al. 2000].
4 The symbol used for this binary operation may be represented – according to the circumstances and to the

tradition – by “∗” or “+,” multiplicative and additive notation, respectively.
5 The first minus is the unary minus, the second one is the binary minus, which are two different concepts, as

should be well known to programmers.
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4. The positive real numbers, (denoted by IR+) or the positive rational numbers (denoted
by (Q+), where the group operation is the standard multiplication.

5. The n × n matrices with real elements, with non-zero determinant, where the group
operation is the standard matrix multiplication.

The real numbers, with the standard multiplication, do not form a group because the
number 0 does not have an inverse.

The fact that both the usual arithmetic addition and multiplication are the operations
associated to well-known groups explains why the additive and multiplicative notations
are used, although the additive notation is typically used when the group is commutative
(or Abelian), i.e. when the operation satisfies the fourth property:

• Commutativity: a ∗ b = b ∗ a (a + b = b + a).

8.4.2 Some important concepts

It is very useful to introduce the concept of isomorphism of two groups: we say that two
groups A (with binary operation ∗) and B (with binary operation ·) are isomorphic if
there exist two invertible functions, f (a) ( where a ∈ A) and g(b) (where b ∈ B) that
bring the elements of A in B ( f (a) ∈ B) and the elements of B in A (g(b) ∈ A), respec-
tively, such that f (g(b)) = b and g( f (a)) = a. In other words, there must be a biunivocal
correspondence among the elements of A and B that preserves the group operation

f (a1) · f (a2) = f (a1 ∗ a2). (8.38)

A noticeable example of isomorphism is provided by the groups C. and D. of the previous
section, where the functions f and g are respectively exp and ln. The reader can readily
check the correctness if this statement using the relation

exp(a1) ∗ exp(a2) = exp(a1 + a2). (8.39)

Two isomorphic groups may be considered as different instances of the same mathematical
object: the same abstract elements are named in a different way in each instance.

Another very important concept is the representation of a group: a set R is a represen-
tation of the group G if the binary operation g ◦ r (g and r being respectively elements of
G and of R) indicating the application of a group element to a representation element is
defined and satisfies the associative property

(a ∗ b) ◦ r = a ∗ (b ◦ r ). (8.40)

We must also have that 1 ◦ r = r . Obviously, a group is a representation of itself.
For example, N -dimensional vectors form a representation of the N × N dimensional
matrices.

If R1 and R2 are two representations of the group G, we can define their sum R =
R1 ⊕ R2 i.e. all the pairs of elements such that the first element is in R1 and the second
element is in R2, with

g ◦ (r1, r2) = (g ◦ r1, g ◦ r2). (8.41)
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The representations that cannot be written as the sum of two representations, are called
irreducible.

If only the neutral element of the group has the property that g ◦ r = r for all r , we say
that the representation is faithful. If we know how a group acts on a faithful representation,
we can trace back the group operation. Therefore, a group may be defined by the way it
acts on a faithful representation.

For example, the representation of the group of the N × N -dimensional matrices (MN ,
where the group operation is the standard matrix multiplication) given by the set of N -
dimensional vectors is a faithful representation. Let us consider another representation of
the group MN , i.e. the set of real numbers IR, where the action of an element m of MN on
an element r of IR is given by

m ◦ r = det(m)r . (8.42)

For N > 1, the representation is not faithful: all matrices m with determinant equal to 1
satisfy the relation m ◦ r = det(m)r = r .

Sometimes, the representation of a group may have a dimension much higher than the
group itself. If we consider the group of rotations on a plane, the set of all the two-
dimensional geometric objects form a representation of the group, which is reducible.
Even irreducible representations may have a dimension much higher than that of the
group they represent. For example, we can consider the group O(3) of rotations in three
dimensions, composed by all three-dimensional orthogonal matrices, i.e. real matrices
such that ∑

b=1,3

Aa,b Bb,c = δa,c. (8.43)

In this case, the spin degree of freedom of the wave function of a spin-l particle provides a
representation of the group O(3) (see Subsec. 6.3.2).

We could also consider tensors with l indices, where the rotations act on each index, e.g.
in the case l = 3 we have

(R ∗ t)a,b,c =
∑

d,e, f=1,3

Ra,d Rb,e Rc, f td,e, f . (8.44)

For l = 1 we recover the usual vectors. For l > 1 the tensors form a representation of the
rotation group that is not reducible. Reducible representations are provided for example by
symmetric tensors, i.e. tensors that are invariant under permutations of the indices and that
also satisfy the properties of being traceless, i.e. for l = 3∑

a=1,3

ta,a,b =
∑

a=1,3

ta,b,a =
∑

a=1,3

tb,a,a = 0. (8.45)

It may be interesting to note that these tensorial representations are isomorphic to the rep-
resentations constructed with the spin degrees of freedom of a spin-l particle. However, a
proof of this fact would take us very far from the main subject of this book.

As we have seen, the group is a very general concept that permeates the whole mathe-
matics. Advanced group theory implies the introduction of many classifications and many
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extra concepts. We mention here only a few, mainly to let the reader become acquainted
with the usual terminology:

• A group is finite if it contains a finite number of elements.
• Given two groups F and G, we define their direct product as the group whose elements

are the pairs of elements of F and G such that

{ f1, g1} ⊗ { f2, g2} = { f1 ∗ f2, g1 · g2}. (8.46)

• Given two groups R and T , such that R is a representation of T , we define a semi-direct
product as the group whose elements are the pairs of elements of R and T such that

{r1, t1} ◦ {r2, t2} = {r1 ∗ r2, t2 · (r2 ∗ t1)} (8.47)

In this case we have to check by an explicit computation that we have actually con-
structed a group.

A well-known example is the case where the group R is that of the rotations in a d-
dimensional space and the group T that of the translations in a d-dimensional space.
Both groups admit as faithful representation the set of d-dimensional vectors. By apply-
ing first a translation and then a rotation to a vector we can define an element of the
roto-translation group. A roto-translation applied to a vector v gives∑

b=1,d

ra,b(tb + vb) = r ∗ (t + v) . (8.48)

It is evident that translations can be represented as vectors, and therefore the latter are
a representation of the rotations. We have defined a roto-translation as a translation
followed by a rotation on d-dimensional vectors. The roto-translation group is the semi-
direct product of the rotations and translations. It is not a direct product: indeed if we
apply two roto-translations to a generic vector, we find out that

{r1, t1} ∗ {r2, t2} = {r1 ∗ r2, t2 + r2 ∗ t1}, (8.49)

which is the formula for the semi-direct product where we have used additive notation
for translations (the translations constitute a commutative group).

• A group that is not the direct product of two groups is simple.
• A group that is not the semi-direct product of two groups is semi-simple.

In the case of semigroups only a small part of the requirements for having a group
are satisfied: the identity may not exist and, if it exists, the elements may not have an
inverse. Non-negative real (or integer) numbers form a semigroup with respect to the
addition.

The prototype of a semigroup is provided by the positive real numbers, where the group
operation is the addition. This semigroup is isomorphic to the semigroup of real num-
bers greater than 1, where the group operation is the multiplication. This example may be
generalized: all operators of the form (see Subsec. 3.5.4)

e−Ôt (8.50)

acting on an Hilbert space form a semigroup in the space of bounded operators (see
Box 2.1) for positive t , if the spectrum of Ô is bounded from below.
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Conversely, any semigroup of operators that depend only on one parameter (S(t)) which
is defined for t ≥ 0, which is isomorphic to the previously introduced semigroup, i.e. S(t) ∗
S(u) = S(t + u), can be written in the form (8.50) if S(0) = 1.

8.4.3 Rings, fields, vector spaces, and algebras

Rings are also very common algebraic structures, but they are more complex than groups.
There are two operations: one is addition, denoted by “+,” that forms a commutative group,
the other is multiplication, denoted by “∗,” that nearly forms a group – the only require-
ment missing is that some elements (among them the null element of the additive group,
usually denoted by a zero) do not have an inverse. The two operations must also satisfy the
distributive law

a ∗ (b + c) = a ∗ b + a ∗ c. (8.51)

If we add the requirement that the only element which does not have an inverse is the
neutral element of the addition, we obtain a field. According to the recent notation, the
multiplication must be commutative. Non-commutative fields are called skew fields (or
divisions rings). In any case, the set of n × n matrices does not form a field (for n > 1),
because all matrices with zero determinant are not invertible.

The most familiar example of a field is the set (Q of the rational number. If we introduce a
topology over the rationals and take the topological closure, we obtain the real numbers if
we use the usual topology (if a different topology is used, different results are obtained, e.g.
the p-adic numbers). Another example of a field is provided by the complex numbers (C.

A commutative group V is called a vector space over a field S if we can define on
it the multiplication by the elements of the field S (the elements of S are usually called
the scalars). Therefore, in order to define a vector space, we need to consider both the
commutative group V and the field S. The following conditions must be satisfied:6

• s ∗ (v1 + v2) = s ∗ v1 + s ∗ v2;
• (s1 + s2) ∗ v = s1 ∗ v + s2 ∗ v;
• if 1 is the identity of the field, 1 ∗ v = v.

Real and complex Hilbert spaces are vector spaces over the fields of real and complex
numbers, respectively. The previous definition of vector space is quite general and covers
both the finite- and infinite-dimensional cases.

In the same way that commutative groups are promoted to vector spaces by introducing
the extra multiplication by elements of an external field, the same operation promote rings
to algebras.

The space of all operators over an Hilbert space is the standard example of an alge-
bra (over the real or over the complex numbers, depending if the Hilbert space is real or
complex, respectively).

6 In the following relations s stands for scalars, i.e. elements of the field, and v stands for vectors, i.e. elements
of the commutative group.
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8.4.4 Finite-dimensional L ie groups and algebras

The general theory of Lie groups is rather complex; here we shall not present a precise
definition of a Lie group but shall only give some examples and some definitions, mainly
for the finite-dimensional case, i.e. when the group is a finite-dimensional manifold. In fact,
generally Lie groups contain an infinite number of elements. They are also topological
spaces in the sense that there is a topology and we can define the concept of limit and
neighborhood.

Examples of Lie groups are as follows:

• Real numbers.
• The real numbers in the interval [0, 1], where the sum is performed modulo one.
• The rotations in a finite-dimensional space of dimension d, usually denoted by O(d).
• Generalized rotations in a finite-dimensional space of dimension d that preserve a metric

ga,b, i.e. ∑
c=1,d

Ra,c Rc,b = ga,b. (8.52)

It is particularly interesting to introduce the case of the simple metric

ga,b = δa,b fa , (8.53)

where fa = 1 for a ≤ d1 and fa = −1 otherwise. This group is usually called
O(d1, d2), where d1 + d2 = 1. The group O(3, 1) is particularly interesting in physics
and especially in relativity: it is the so-called Lorentz group, i.e. the group of those
transformations that leave invariant the Minkowsky metric.

• Any subgroup (that is not a finite group) of the previously defined groups (this definition
covers many interesting cases).

Let us consider connected Lie groups, that is, those groups that are topologically connected
(i.e. there is a continuous path connecting any two arbitrary elements of the groups). In con-
nected Lie groups all elements can be reached by a finite number of products of elements
belonging to the neighborhood of the origin, so that the structure of the group near the
origin is crucial.

In the case of a finite-dimensional Lie group, a small neighborhood of the identity is
topologically isomorphic to a neighborhood of the origin in an n-dimensional space: in
other words all elements sufficiently near to the identity can be written in a unique way as
g(v) where v is a n-dimensional vector and g(0) = 1. We say that n is the dimension of the
group.

Let us consider a simple example, the orthogonal matrices in a three-dimensional space,
usually denoted by O(3), i.e. the group of rotations in three dimensions. The determinant
of an orthogonal matrix can be ±1 and matrices with determinant equal to −1 cannot be
transformed continuously to matrices with determinant equal to +1, so the group O(3) must
have at least two connected components (it actually has two connected components).

If a rotation r is near to the identity, we can write it in an unique way as

r = em or m = log(r ), (8.54)
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if m is a matrix that is near to the origin. The matrix m is antisymmetric. The set M of
matrices m belongs to an algebra (the Lie algebra of the group): a matrix m of M can be
written as

m =
∑

i=1,3

Rivi (8.55)

where the R are the generators of the group; the generators can be chosen as L̂ x , L̂ y , L̂ z

(see Subsec. 6.1.2 and Sec. 8.2).
The reader should notice that, for matrices far from the identity, we cannot continue to

associate to a group element an element of the algebra in an unique and continuous way.
For example, two-dimensional rotations can be characterized by the rotation angle θ : the
Lie algebra is just given by the real, but the group is given by the angles in the interval
[−π ,π ]. Moreover there are different groups that have the same algebras (e.g. the first two
examples of Lie groups).

Similar constructions can be done for all Lie groups. In the general case the Lie algebra
is non-Abelian. One can prove that

Ti Tk − Tk Ti =
∑

l

Ci ,k,l Tl , (8.56)

where the structure constants (C) contain important information on the nature of the Lie
algebra and the Tj are generators of generic transformations.

It should be clear that the same group may be represented in many ways: for example
the three-dimensional rotation group may act on the space of a traceless symmetric tensor
(a five-dimensional space) and in this case the elements of the group are represented as
five-dimensional matrices. The explicit form of the generators changes, but the structure
constants remain the same.

All finite-dimensional Lie algebra may be classified and the list is relatively simple.
The classification of Lie groups is more complex, since the Lie algebras give information
only on the component connected to the origin; to specify the Lie group we need more
information, e.g. the number of connected components and about the group transformation
from one component to another component.

There are quadratic forms in the generators (at least one) that commute with all elements
of the algebra: they are called Casimir operators and they play an important role in the
classification of irreducible representation. Indeed, for each irreducible representation R
we have that

C ∗ r = A ∗ r (8.57)

where the number A does not depend on the element r . For example in the case of the O(3)
group the only Casimir is

C = L̂2
x + L̂2

y + L̂2
z (8.58)

and the values of A are l(l + 1), l being the spin (angular momentum) of the representation.
Lie groups are very important in physics as far as continuous symmetries are associ-

ated to Lie groups. Moreover, in the Hamiltonian formalism, the Noether theorem (see
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Subsec. 8.1.2) tells us that there are conserved quantities associated to the correspond-
ing generators of the Lie algebra. As we have seen, this classical Noether theorem can be
extended to the quantum case. In both classical and in quantum mechanics, energy conser-
vation is related to the time invariance of the physical laws in the same way that momentum
conservation is related to translational invariance.

Summary

In this chapter we have discussed quantum-mechanical symmetries and groups:

• First, we have seen that the transformations induced by the Schrödinger picture cor-
respond to an active transformation (i.e. to the rotation of the state vector in a given
representation), whereas the transformations induced by the Heisenberg picture can be
seen as a passive transformation (a rotation of the reference frame by keeping the state
vector fixed).

• Since the probability of measurement outcomes must be conserved under a symme-
try transformation, there are two possible types of such transformations, unitary and
antiunitary (Wigner’s theorem). Continuous transformations have to be unitary, whereas
discrete ones may be either unitary or antiunitary.

• We have examined the relationship between symmetries and conservation laws and
seen that to any symmetry of the system corresponds a constant of motion (Noether’s
theorem).

• We have considered rotations and space–time translations as instances of continuous
transformation.

• We have considered space reflection and time reversal as examples of discrete transfor-
mation: space reflection is unitary whereas time reflection is antiunitary.

• Finally, a short summary of group theory has been given: in quantum mechanics
symmetries may be mathematically formulated in terms of groups.

Problems

8.1 Consider the example presented in Box 8.1. Show that the state |1〉 , expressed in the

basis
{∣∣∣1′〉 ,

∣∣∣2′〉} and given by (8.5), may be written as

|1〉 = 1√
2

(∣∣∣1′〉 + ı
∣∣∣2′〉),

i.e. with the same expansion coefficients as
∣∣∣ψ ′〉

in the basis {|1〉 , |2〉 }.
8.2 Prove Eq. (8.7).
8.3 We have said (in Subsec. 3.5.4) that unitary transformations may be represented

as rotations on the Poincaré sphere. Making use of the expansion presented in
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Subsec. 1.3.3, show what rotation has to be done when passing from the which-
path representation to the visibility-of-interference representation in the example
considered in Box 8.1.

8.4 Show that a transformation Û gives rise to an exact symmetry only if Û is a constant
of motion.

8.5 Given a canonical commutation relation[
Ô , Ô

′] = ı h̄,

prove that it is invariant under unitary transformation of observables Ô and Ô ′.
8.6 Prove that a continuous symmetry must be necessarily represented by a unitary

transformation.
8.7 Justify why, given a group with N elements, there are N N 2

multiplication (addition)
tables, and prove that not all of them can be associated to a group.

8.8 Verify that all examples described as 1, 2, 3, 4, and 5 in Subsec. 8.4.1 satisfy the group
properties.

Further reading
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Cambridge University Press, 1997.
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Berlin: Springer, 1989, 1994.
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9
The measurement problem in quantum

mechanics

In most textbooks, measurement does not receive the full attention it deserves and some-
times is even not treated at all, apart a brief and cryptic mention of the “reduction of
the wave packet.” However, in the last decades, the situation has profoundly changed
and it is time to consider measurement a fundamental part of quantum mechanics,
even, to a certain extent, an important generalization of the traditional theory (see also
Chs. 14–15).

This chapter consists of three major parts. In the first block (Secs. 9.1–9.4) we develop
the main physical features of the measurement process: the heart of the argument is here
represented by the aspects related to the interpretation. In the second part (Secs. 9.5–9.8)
we discuss several special (and partly interdependent) topics of measurement: the heart
here is represented by experimental aspects. In the third part (Secs. 9.9–9.12) we deal
with the measurement process on a more formal plane, making use, in particular, of the
generalization represented by the concepts of effect and positive operator valued measure
(POVM).

As we have said, the measurement problem is one of the most fundamental issues in the
conceptual structure of quantum mechanics (as described in Sec. 9.1) and has a long history
that will be examined in Sec. 9.2. In this context, the existence of apparently paradoxical
quantum states comes about: the so-called Schrödinger cat states (see Sec. 9.3). Among
the several approaches that have been proposed, one possible way out of this paradox is
provided by the decoherence approach (see Sec. 9.4).

In Sec. 9.5 we show that measurement consists of two aspects: the destruction of the
interference and the acquisition of information, and it is shown that only the latter is
irreversible. In Sec. 9.6 we return on interaction-free measurements, while in Sec. 9.7
a puzzling feature of the theory is shown: the apparent possibility of manipulating the
past (delayed choice). Another “strange” feature of the theory is discussed in Sec. 9.8: the
quantum Zeno effect.

In Sec. 9.9 the subject of conditional measurements and postselection is presented.
A very interesting and relatively new development is represented by the possibility of
performing unsharp measurements (the subject of Sec. 9.10). In Sec. 9.11 the quantum non-
demolition measurement is presented. Finally, some important statistical issues of quantum
measurement are treated in Sec. 9.12.
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9.1 Statement of the problem

When measuring, we expect the result of our measurement to be a determined value (see
Subsecs. 2.1.1, 2.1.3, and 3.5.3). This is what actually happens when an experimenter
records the value of an observable. On the other hand (see Pr. 2.2: p. 57), we know that
a possible result of a measurement is an eigenvalue of the measured observable Ô , and
we also know that this eigenvalue, say ok , is strictly associated with the corresponding
eigenvector, say |ok〉, since to obtain a given eigenvalue as outcome means that the system
is in the state represented by the corresponding eigenvector.

In this context, it is important to distinguish between preparation and measurement. In
a preparation we submit the system to a number of constraints that select a certain output
state. For instance, the filter P1 introduced in Subsec. 1.3.1 represents a preparation of the
incoming photons in a vertical polarization state. In such a process, a number of the incom-
ing systems is discarded (those not satisfying the selection requirement). A measurement,
on the other hand, is a process through which we ask the system about the value of a cer-
tain observable (the measurement outcome). Obviously, the answer of the system is not
controllable by the experimenter. In other words, a preparation is determinative, while a
measurement is interrogative. As we shall see below, the preparation of the object system
on which measurement is performed is, in general, a preliminary step of measurement.

Suppose now that the state before measuring is (or has been prepared in) a superposition
relative to Ô , i.e.

|ψ〉 =
∑

j

c j
∣∣o j
〉
. (9.1)

Successively, assume that, as a result of the measurement, we obtain the component |ok〉
of the initial state: now, there is no way to obtain this result from any superposition state
(that is, a superposition that contains also other components but |ok〉) by means of a unitary
evolution (see Probs. 3.13 and 3.14), though, as we know (see Sec. 3.5), time evolution in
quantum mechanics is unitary. This is the essence of the measurement problem: how can
we reconcile the ordinary (unitary) quantum-mechanical time evolution with the experi-
mental evidence of measurement? A conflict of this type (between a general theoretical
framework and some experimental evidences) is very common in science – see, for exam-
ple, Planck’s problem (in Subsec. 1.5.1) – and it is the very source of scientific research
because it pushes us to seek for other and more general hypotheses beyond the existing
theories.1

Let us now reformulate the problem in terms of the density matrix formalism. The
density matrix corresponding to the initial pure state (9.1) can be written as

ρ̂ = |ψ〉 〈ψ | =
∑

j

|c j |2|o j 〉〈o j | +
∑
j 	=k

c j c
∗
k |o j 〉〈ok |. (9.2)

The two sums on the rhs of Eq. (9.2) represent the diagonal and off-diagonal (coherent)
parts, respectively (see Sec. 5.1). It is clear that, in order to obtain a determined outcome

1 This is the essence of abduction: see footnote 8, p. 573.
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(i.e. an eigenvalue of the measured observable corresponding to a given eigenstate), the
latter sum has to vanish after the measurement: in this case, we must obtain a classical sta-
tistical mixture. This means that not all forms of mixtures are adequate in order to describe
a measurement. The necessary condition for obtaining a determined result when measuring
is that the apparatus A that performs the measurement on the object system S can extract
information from S (it can tell what the value is of the observable we are measuring).
This is in turn possible only if the state of the object system is a mixture of eigenstates
of the measured observable. An example is represented by the statistical mixture describ-
ing the state of a classical dice before the outcome of the throw is read. Summarizing, after
the measurement we must obtain a mixture of the type

ˆ̃ρ =
∑

j

|c j |2|o j 〉〈o j |. (9.3)

Again, also in this formalism, there is no unitary evolution that can account for the trans-
formation from the state before the measurement, represented by Eq. (9.2), to the state after
the measurement, represented by Eq. (9.3) (see Prob. 9.1). We can rewrite the change from
Eq. (9.2) to Eq. (9.3) in the form of the requirement

ρ̂ � ∑
j

P̂j ρ̂ P̂j (9.4)

for the different eigenvalues o j of the measured observable Ô , and where P̂j =
∣∣o j 〉

〈
o j
∣∣

are the projectors on the different eigenstates of Ô . This expression is known as Lüders
mixture.2 It is a mathematical formulation of what is commonly known as projection pos-
tulate. We recall that the trace of the state does not change with this operation and therefore
normalization is preserved.

Let us consider the example of a two-level system, and suppose, for the sake of
simplicity, that

|ψ〉 = c↓| ↓〉 + c↑| ↑〉, (9.5)

where | ↓〉 and | ↑〉 are the eigenkets of the measured observable Ô and form an
orthonormal basis on the two-dimensional Hilbert space HS of the system. Then, it is
straightforward to obtain∑

j=↓,↑
P̂j ρ̂ P̂j = | ↓〉〈↓ | (c↓| ↓〉 + c↑| ↑〉

) (〈↓ |c∗↓ + 〈↑ |c∗↑
)
| ↓〉〈↓ |

+ | ↑〉〈↑ | (c↓| ↓〉 + c↑| ↑〉
) (〈↓ |c∗↓ + 〈↑ |c∗↑

)
| ↑〉〈↑ |

= |c↓|2| ↓〉〈↓ | + |c↑|2| ↑〉〈↑ | = |c↓|2 P̂↓ + |c↑|2 P̂↑
= ˆ̃ρ↑,↓ , (9.6)

2 See [Lüders 1951].
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ρ̂
ρ

∼
^

↑P
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↓

↓
|c  |2

Î{
{|c  |2

↑

�Figure 9.1 Geometric representation of a measurement on the sphere of density matrices. The eigenstates of
the measured observable, described by the two projectors P̂↓ and P̂↑, are here represented as the
south and north poles, respectively. Suppose that the input (prepared) state ρ̂ is represented by
an arbitrary point on the surface. Then, it suffices to draw the orthogonal line from this point to
the unitary diameter passing through the points P̂↓ and P̂↑. This will individuate the mixture ˆ̃ρ
and divide this diameter into two parts, whose lengths correspond to |c↓|2 and |c↑|2, respectively.

where we have taken into account that, due to orthonormality,

〈↓ | ↑〉 = 〈↑ | ↓〉 = 0 and 〈↓ | ↓〉 = 〈↑ | ↑〉 = 1. (9.7)

We can represent this situation on the sphere of the density matrices (see Fig. 9.1 and
Sec. 5.6).

In order to examine more exactly what happens when measuring, we need to introduce
the concept of apparatus in the context of quantum measurement. Strictly speaking, the
apparatus A can be divided into a little measuring device, also called a meter, which inter-
acts directly with S, an amplifier, and a pointer on a graduated scale. The role of the meter
is that of establishing a correlation between the system and the apparatus, while the role
of the amplifier is that of transforming a “microscopic input” (which is a consequence of
the interaction between the system and the meter) into a macroscopic output, i.e. the result
that can be read by an observer. In the most simple case, the possible outcomes may be
represented as ticks on a reading scale (see Subsec. 2.1.1). In the discrete case, we can
understand the reading scale as a partition of the space of the possible outcome values.
The pointer is some device that can move along this reading scale by associating a given
number to a certain outcome result.

Let us now write a quantum-mechanical definition of the apparatus A in terms of an
arbitrary eigenbasis

{∣∣a j
〉 }

of the pointer observable ÔA in its Hilbert space HA, i.e. of
the observable describing the position of a pointer on a discrete scale (any eigenvalue a j

associated to an eigenket
∣∣a j
〉

can be understood as a value on this scale). Then, we shall
write the generic state of the apparatus as
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|A〉 =
∑

j

ca j

∣∣a j
〉

. (9.8)

In order to distinguish the pointer observable from the measured observable of the object
system S, let us write ÔS for the latter. If the apparatus functions properly, we expect that,
having obtained an eigenvalue ok of ÔS , the apparatus A will register a corresponding
value ak . In other words, the apparatus and the object system must be coupled in such a
way that there is a one-to-one correspondence between values ok of the observable ÔS
and the values ak that A registers. One of the most important points to be emphasized
here is that the interaction between S and A should (and can) be described as a quantum-
mechanical interaction. In general, there will be a unitary operator describing the evolution
during the interaction time τ , i.e.

ÛSA
τ = e

− ı
h̄

τ∫
0

dt ĤSA(t)
, (9.9)

where ĤSA is the system-apparatus interaction Hamiltonian. A simple form of this
Hamiltonian can be expressed as

ĤSA(t) = εSA (t)ÔA ⊗ ÔS , (9.10)

where εSA is a coupling function. Suppose that we start with an initial state at t0 = 0 when
apparatus and system are uncoupled, i.e.

|&SA(0)〉 = |ψ(0)〉 ⊗ |A(0)〉 . (9.11)

We have3

ÔS ÔA |&SA(0)〉 =
∑

j

c j ÔS
∣∣o j
〉

ÔA |a0〉 , (9.12)

because the states
∣∣o j
〉

and |a0〉 belong to different Hilbert spaces and are initially uncor-
related, and where |a0〉 = |A(0)〉 is the initial state (at rest) of the pointer observable,
which, for the sake of simplicity, we have assumed to be an eigenstate of the pointer. Then,
it is clear that, at the end of the interaction between S and A, we would like to have

|&SA(τ )〉 ≡ ÛSA
τ |ψ(0)〉 |a0〉

=
∑

j

c j e
ıφ j
∣∣o j
〉 ∣∣a j

〉
, (9.13)

where eıφ j is a phase factor. In fact, state (9.13) displays a perfect correlation between
system and apparatus states.

In order to exemplify how such a correlation may be achieved, we can choose a simple
model: we consider here only the meter M instead of the whole apparatus A, and assume
that both the system S and the meter M are represented by two-level systems. Then, we
consider only the interaction between S and M. In particular, we choose the operator σ̂Sz
for the observable of S and σ̂Mx for the observable of the meter (see the matrices (6.154)).

3 In the following, for the sake of notation, we shall generally omit the direct product (⊗) sign between the states
(or operators) belonging to different Hilbert states.
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The system S is initially prepared in a superposition of the two eigenstates of σ̂Sz , which
are the spin-up and the spin-down state, respectively, given by

|↑〉S =
(

1
0

)
|↓〉S =

(
0
1

)
. (9.14)

The meter is initially in the z spin-down state, |↓〉M, so that if, after the interaction, the
system is in |↓〉S , the state of M remains unchanged. Otherwise, it will become |↑〉M.
The interaction Hamiltonian (9.10) can then be explicitly written as

ĤSM = εSM

(
1 + σ̂Sz

)
σ̂Mx . (9.15)

The first step we need to make in order to calculate the action of the unitary operator
ÛSM
τ on the initial state |&(0)〉SM, is to diagonalize the matrix ĤSM. The operator σ̂Sz

is already diagonal with respect to the basis states (9.14). In fact, we have (see Prob. 9.2)

σ̂Sz |↑〉S = |↑〉S and σ̂Sz |↓〉S = − |↓〉S . (9.16)

On the other hand, the two eigenvalues of σ̂Mx are ±1 and the eigenkets are given by

|↑〉Mx = 1√
2

(
1
1

)
and |↓〉Mx = 1√

2

(
1
−1

)
, (9.17)

respectively. In terms of the z spin-up and spin-down states, these eigenkets are

|↑〉Mx = 1√
2
(|↑〉M + |↓〉M), |↓〉Mx = 1√

2
(|↑〉M − |↓〉M). (9.18)

Now, in order to find the time evolution of the quantum state of the compound system, we
only need to write its initial state in terms of the eigenkets (9.14) and (9.17) of ĤSM

|&(τ )〉SM = ÛSM
τ |&(0)〉SM

= e−
ı
h̄ τεSM

(
1+σ̂Sz

)
σ̂Mx

[(
c↑ |↑〉S + c↓ |↓〉S

) |↓〉M]
. (9.19)

As we know from Subsec. 2.2.6, the action of the Hamiltonian onto its eigenkets simply
returns the corresponding eigenvalues. Therefore, since

|↓〉M = 1√
2

(
|↑〉Mx − |↓〉Mx

)
, (9.20)

we have

|&(τ )〉SM = 1√
2

(
c↑e−

2ı
h̄ τεSM |↑〉S |↑〉Mx + c↓ |↓〉S |↑〉Mx

− c↑e+
2ı
h̄ τεSM |↑〉S |↓〉Mx − c↓ |↓〉S |↓〉Mx

)
, (9.21)



283 9.1 Statement of the problem
�

0 t

ε(0) = πh
4τ

ε(t)

τ

�Figure 9.2 Two ways of tuning the coupling function εSM (t) for entangling the system and the meter:
in the solid line, the interaction is tuned on at t = 0 and off at t = τ , i.e. εSM (t) = εSM (0)
[�(t) −�(τ )], where �(x) is the Heaviside step function (see Eq. (6.250)). Alternatively, one
might imagine switching the interaction on and off in a smooth manner, as in the dashed line,
in order to reach an equivalent result.

where the exponential e−
ı
h̄ τεSM

(
1+σ̂Sz

)
σ̂Mx is 1 when the eigenvalue of σ̂Sz is −1, i.e. for

the state |↓〉S . Substituting expressions (9.18) into Eq. (9.21), we obtain

|&(τ )〉SM = 1√
2

(
−c↑

2ı√
2

sin
2τεSM

h̄
|↑〉S |↑〉M +√

2c↓ |↓〉S |↓〉M

+ c↑
2ı√

2
cos

2τεSM
h̄

|↑〉S |↓〉M
)

. (9.22)

Choosing now

2τεSM
h̄

= π
2

, or τ = π h̄

4εSM
, (9.23)

i.e. by fine-tuning the interaction time, we finally obtain

|&(τ )〉SM = +c↓ |↓〉S |↓〉M − ıc↑ |↑〉S |↑〉M , (9.24)

which is the required coupling between the system and the meter. In other words, we
are assuming that the interaction is switched on at t = 0 and off at t = τ . Alternatively,
one might envisage a situation where the interaction is smoothly turned on and off (see
Fig. 9.2). This formalism can be easily translated in the density-matrix formalism above
(see Prob. 9.4).

Generalizing again, we see, in conclusion, that the stunning result we have obtained
is that, if the initial state of S is prepared as a superposition relatively to the measured
observable ÔS , then the resulting total state of S +A is entangled (see Subsec. 5.5.1).
The “intermediate” state (9.24) between the initial state of the form (9.19) and the final
state after the measurement, which we express here as the mixture

ˆ̃ρSM = ∣∣c↓∣∣2 |↓〉S 〈↓ | ⊗ |↓〉M 〈↓ | + ∣∣c↑∣∣2 |↑〉S 〈↑ | ⊗ |↑〉M 〈↑ | , (9.25)
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may be considered a first step of the measurement process, called premeasurement, where
the correlation between system and apparatus is provided (see also the general form (9.13)).
We should keep distinct the preparation, where some selection of a given state occurs,
and the premeasurement, which is not selective as far as we expect that the interrogative
selection is provided by the successive step of measurement. In other words, due to pre-
measurement, the superposition state of S seems to “affect” the apparatus, too: the price
we have to pay in order to fulfil the requirement of the one-to-one correlation is a joint state
that does not seem to instantiate a determined result, and where even the apparatus does
not behave in a classical manner, as we normally expect from an apparatus. This situation
should be explained. Before we begin to discuss this problem, it is convenient to take a
look at the different proposals that have been made in order to overcome this difficulty.
As a matter of fact, one can learn a lot from a critical examination of the history of these
proposals.

9.2 A brief history of the problem

9.2.1 Project ion postulate

Bohr and the supporters of the Copenhagen interpretation (see Subsec. 1.5.7) gave no clue
on how to frame the measurement problem in terms of the quantum-mechanical formal-
ism. This is due to the fact that Bohr thought that quantum theory can only be accounted
for in terms of classical, macroscopic experience: Bohr4 argued that the account of all
evidence in quantum mechanics must be expressed in classical terms, since all terms, by
which we perceive and experience, have an unambiguous meaning only in the frame of
macroscopic ordinary experience, the only one that can unambiguously be called “expe-
rience.” When we translate this approach to the terminology of the measurement theory,
Bohr’s requirement can be expressed as postulating the necessity of a classical apparatus.

However, Bohr’s position appears untenable if taken literally. Indeed, it can be shown
that the pointer cannot be classical. Assume, on the contrary, that the pointer observ-

able ÔA is classical. Then, in the unitary measurement coupling ÛSA
τ = eı ĤSAτ , ĤSA

commutes with ÔA. In fact, any quantum observable has to commute with any classical
variable (c-number). Therefore, ÔA also commutes with ÛSA and it must follow that the
probability distribution of ÔA is completely independent from the measured observable.
In other words, the apparatus remains uncoupled from the object system. In fact, we have〈

ÔA
〉
τ
= 〈&SA(τ )|ÔA|&SA(τ )〉

= 〈&SA(0)|
(

ÛSA
τ

)†
ÔAÛSA

τ |&SA(0)〉

4 See [Bohr 1948, 327] [Bohr 1949, 209–210].
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= 〈&SA(0)|
(

ÛSA
τ

)†
ÛSA
τ ÔA|&SA(0)〉

= 〈&SA(0)|ÔA|&SA(0)〉. (9.26)

Such a result is incompatible with measurement unless ÔS is trivial (i.e. constant). There-
fore, we have to include the apparatus (or some part of it) in the quantum description of
the measurement.

Another fundamental issue in this context is whether the state of the system changes
during the interaction with the apparatus. For this reason, in 1927 Pauli distinguished two
types of measurement: of first and of second kind.5 We have a measurement of the first kind
when the probability distribution of the (unknown) values of the measured observable does
not change with the measurement. Otherwise, i.e. when the measurement process changes
the probability distribution of the measured observable, we have a measurement of the
second kind. The necessary and sufficient condition of a measurement of the first kind of
an observable ÔS , where a value o j represented by P̂j is obtained, is that P̂j commutes
with the state ρ̂S in which the system is before measuring.

Von Neumann was the first to try to formalize the problem of measurement
[von Neumann 1932]. He assumed that there are basically two types of evolution in quan-
tum mechanics. The first is the usual unitary evolution, while the other is represented by
measurement, which presents the following features: it is a discontinuous, non-causal,
instantaneous, non-unitary, and irreversible change of state. Von Neumann called this
abrupt change reduction of the wave packet (a passage from a superposition to one of
its components). Then, von Neumann postulated that, if the observable ÔS is measured
on a system S in an arbitrary state |ψ〉, then the latter is projected after the measurement
onto one of the basis vectors |o j 〉 of the representation in which ÔS is diagonal, i.e. in an
eigenstate of ÔS for which the probability is |〈o j |ψ〉|2. This has been known as the pro-
jection postulate, and is formally expressed by the requirement (9.4). Since it seemed to
him that there was no possibility of accounting for this abrupt change in terms of the quan-
tum formalism, von Neumann introduced the observer’s consciousness in order to justify
it, and said that “the measurement or the related process of the subjective perception is a
new entity relative to the physical environment and is not reducible to the latter. Indeed,
subjective perception leads us to the intellectual inner life of the individual, which is extra-
observational by its very nature” [von Neumann 1955, 418]. It seems rather strange that a
physical measurement is here considered to be equivalent to a subjective perception that
von Neumann conceived as an extra-observational phenomenon. It is true that von Neu-
mann defended a form of psycho-physical parallelism, but it seems not to be completely
compatible with this explanation.6 In fact, there is a fundamental ambiguity in von Neu-
mann’s formulation, and there are three possible ways of resolving the conflict between his
theory of measurement and psychophysical parallelism. If the only reality is the physical
one (or if psychological reality reflects or can be led to reflect physical reality), then one

5 See [Pauli 1980, 75].
6 The psycho-physical parallelism is the hypothesis that the mind and the physical world are parallel processes

without causal relationship between each other. Generally, it is believed that the mind represents the physical
reality. Von Neumann also attributed psychophysical parallelism to Bohr, which is surely a mistake.
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should account for the reduction in terms of a form of illusion in the observer’s mind. Only
by this price, can one maintain the parallelism. Another possibility is that the reduction is
real, and then no different reality can exist, if one does not wish to run into contradiction.
Therefore, the mind should be somehow capable of acting on the physical world. In this
case no parallelism is tenable. Finally, the reduction “happens” in the mind and there is no
relationship between “mental” and “material” realities.7

9.2.2 The stat ist ical interpretat ions

It should be mentioned that Einstein was one of the strongest opponents to the quantum
theory in its mature form (see also Sec. 16.1), i.e. as a theory based on the superposition
and quantization principles (see Subsecs. 1.2.3 and 2.1.1). His interpretation can be synthe-
sized as follows [Einstein 1949, 671–72]: the wave function (or the state vector) provides
a description of certain statistical properties of an ensemble of systems, but is not a com-
plete description of an individual system, a description which, according to him, should be
in principle possible. In other words, Einstein believed in the possibility of building a more
fundamental and deterministic theory that could stand in the same relationship to quantum
mechanics as classical mechanics stands to statistical mechanics, and could therefore show
that the probabilistic features of quantum theory (see Sec. 1.4 and Subsec. 3.1.2) are not
fundamental. Following this interpretation, the problem of measurement does not exist at
all since the apparent abrupt change from a superposition to an eigenstate of the measured
observable amounts to the selection of a single system among a statistical ensemble of sys-
tems (see Sec. 5.1). Later, proponents of a statistical interpretation of quantum mechanics8

admitted that no sound reduction of quantum mechanics to a deterministic theory was pos-
sible. We have already seen that in the last 20 years experiments on individual quantum
systems have become accessible (see the experiment of Aspect et al. in Subsec. 1.2.3).
This is clearly a confutation of the statistical interpretation. On the other hand, we shall
see (in Sec. 16.3) that also the reduction of quantum mechanics to a classically (local)
deterministic theory is not possible.

Two further approaches have originated from the statistical interpretation. One is the
thermodynamic approach.9 The central idea of Daneri et al. is to understand measure-
ment as a type of “ergodic amplification” when a macroscopic apparatus is considered.
But Jauch, Wigner, and Yanase,10 inspired by the work of Renninger,11 showed that, in
the case of interaction-free measurements (see Subsec. 1.2.4 and also Sec. 9.6), no ampli-
fication occurs. So that, even if this model can be applied in specific situations, it does not
work as a general account of measurement.

7 On these problems see [Tarozzi 1996]. Later developments of von Neumann’s position (the so-called
“Wigner’s friend paradox”) can be found in [Wigner 1961], where the same ambiguity remains.

8 See for example [Blokhintsev 1965, Blokhintsev 1976, Ballentine 1970].
9 See [van Hove 1955, van Hove 1957, van Hove 1959, Daneri et al. 1962] .

10 See [Jauch et al. 1967].
11 See [Renninger 1960].
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The other statistical approach is the many world interpretation (MWI), originally due
to Everett12 and further developed by DeWitt.13 The fundamental idea is that, during a
measurement, the wave function is never reduced but any component is instantiated in
a different world (or is relative to a different observer), so that the “multiversal” wave
function remains a superposition. Everett’s approach has strongly contributed to pointing
out the necessity to write the state vector representing the apparatus as a function of the
state vector representing the object system. Though this approach has found wide interest,
it suffers from problem of basis degeneracy.14 In fact, suppose that we have the transition

|ψ〉|A(0)〉 �→
∑

j

c j |o j 〉|a j 〉, (9.27)

where one could say, following the MWI, that we have “measured” the observable ÔS
whose spectral decomposition is ÔS =∑ j o j |o j 〉〈o j |. However, we can also choose
another basis (see Subsec. 2.1.2) and write∑

j

c j |o j 〉|a j 〉 =
∑

k

|a′k〉
∑

j

c j
〈
a′k | a j

〉 ∣∣o j
〉

=
∑

k

|a′k〉|o′k〉, (9.28)

where we have

|a j 〉 =
∑

k

〈
a′k | a j

〉 |a′k〉, (9.29)

while

|o′k〉 =
∑

j

c j
〈
a′k | a j

〉 ∣∣o j
〉

(9.30)

are the relative states of the system with respect to the apparatus’ states. The conclusion we
may draw from Eq. (9.28) is that A contains not only information about the observable ÔS
but also about other observables Ô ′

S =∑k o′k |o′k〉〈o′k |, even if in general
[

ÔS , Ô ′
S

]
	= 0

(see Cor. 2.1: p. 67). Hence, in order to respect the uncertainty relations, we are forced
to admit that, when measured, the system is in a state whose components are diagonal-
ized only relatively to one observable, and we are forced to understand with measurement
the process by which we obtain a determined result. On the other hand, the MWI allows
the possibility that the same system can be measured relatively to two non-commuting
observables. In other words, we have a problem shift: the MWI tried to answer von Neu-
mann’s problem by supposing that any value is somehow instantiated (in a different world
or for a different mind), but in so doing it proposed a situation in which also any observ-
able is in principle measured. This leads eventually to an ambiguity in the very concept of
measurement by mixing the concepts of measurement and premeasurement.

12 See [Everett 1957].
13 See [DeWitt 1970].
14 As shown in [Zurek 1981, 1516].
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A further development of Everett’s (and in part of Wigner’s) approach is provided by
Lockwood.15 The main idea is that any component of a superposition state of the object
system is correlated not only with a possible apparatus’ state but also with a component of
the observer’s mind, in reality a multimind (called Mind). Therefore, when we observe a
particular result, our mind is only perspectively connected with a special “Everett branch,”
but, in turn, our perspective is only a component of the Mind. In other words, in addition
to a temporal dimension, the Mind has a “coherent dimension” where all its possible states
are displayed. In the same way that we cannot have an access to our future states, our
mind cannot have access to the other Mind’s components that are correlated with different
components of the apparatus and the object system.

An important problem of all the “multibranch” interpretations is that it is very difficult
to explain the fact that in general different components of a superposition have different
probabilities to be observed, given that all components are realized (in different worlds or
in different components of the Mind): as a consequence, all states should be equiprobable.
One might object that the probability distributions are true only in a given world (or for a
given mind), and so are different among different worlds or Mind’s components. However,
in general these probability distributions are assumed to be ad hoc.

Another very interesting approach is called decoherence and consists of the loss of
coherence between the components of a superposition in terms of the action of an external
environment on the coupling between system and apparatus. Due to the importance of this
approach, we shall discuss it separately (in Sec. 9.4).

A position somehow related to the MWI and to decoherence is that of the consis-
tent and decohering histories. Taking inspiration from Griffiths,16 Gell-Man and Hartle
developed a model of decohering histories.17 A history is a particular sequence {P̂} =
{P̂1(t1), P̂2(t2), . . . P̂n(tn)} of events (represented by projectors), which are in general
alternative to at least another sequence {P̂ ′} = {P̂ ′

1(t1), P̂ ′
2(t2), . . .}.

A complete fine-grained history is specified by giving the values of a complete set of
operators at all times. One history is a coarse-graining of another one if the set {P̂} of
the first consists of elements that are sums of the elements of the set {P̂ ′}. The completely
coarse grained history is the unitary operator. The reciprocal relationships of coarse and
fine graining histories constitute only a partial ordering of sets of alternative histories. For
more details see Box 9.1.

�Box 9.1 Decohering histories

Let us now discuss in a little bit more detail the decohering histories approach. The formalism
is based on an application of Feynman’s path integrals – we shall present this formal-
ism in Sec. 10.8. We introduce this concept here only to the minimal extent necessary for
understanding the decohering history approach. We specify the amplitude for a completely

15 See [Lockwood 1996a].
16 See [Griffiths 1984]. See also [Omnès 1988, Omnès 1989, Omnès 1990].
17 See [Gell-Mann/Hartle 1990, Gell-Mann/Hartle 1993].
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fine-grained history in a particular basis of generalized one-dimensional coordinates x̂j(t), say
all fundamental field variables at all points in space. This amplitude is proportional to (see
Eq. (10.181))

ϑ[x̂j(t)] ∝ e
ı
h̄ S[x̂j(t)], (9.31)

where S is the action.
We suppose that at least some pairs of histories, which lead to a common final event, do

not present interference terms, i.e. they are not in superposition (see Fig. 9.3). We express
this formally by introducing a decoherence functional D. D is a complex functional on any
pair of histories in a given set of alternative histories (for example the set of all histories with
a common final state) and, for two histories, can have the form

D[x̂′j(t), x̂j(t)] = δ
(

x̂ ′
j(tf) − x̂j(t f )

)
exp

[
ı(S[x̂′j(t)] − S[x̂j(t)])

h̄

]
ρ̂U

i (x̂′j(tj), x̂j(tj)), (9.32)

where ρ̂U
i is the initial density matrix of the universe in the x̂j representation. The deco-

herence functional for coarse-grained histories is obtained from Eq. (9.32) according to the
superposition principle by summing over all terms which are not specified by the coarse
graining (see Fig. 9.3)

D
(

[�(2)], [�(1)]
)
=
∫

[�2]
δx̂ ′

∫
[�1]

δx̂δ
(

x̂ ′
j(tf) − x̂j(tf)

)
× exp

[
ı(S[x̂′j(t)] − S[x̂j(t)])

h̄

]
ρ̂U

i (x̂ ′
j(tj), x̂j(tj)), (9.33)

where the integrations are performed over all possible trajectories that are allowed in the
interval range

(
�(1) or �(2)

)
of a given history. This approach is very interesting, but its

weakness seems to be the fact that one applies the concept of decoherence to the whole
universe, whereas, as we shall see, it is physically reasonable to treat it in terms of the action
of a large environment on a small object system.

9.2.3 Ad-hoc approaches

Other approaches, for example that followed by Ghirardi, Rimini, and Weber,18 have
tried to correct the formalism of quantum mechanics by introducing additional parameters
modifying the Schrödinger equation in order to account for the localization (or determina-
tion) when macroscopic bodies are involved. In 1982 Barchielli, Lanz, and Prosperi19 had
already proposed a dynamical equation of the form

d

dt
ρ̂(t) = − ı

h̄

(
[Ĥ , ρ̂(t)] − η

4
[x̂ , [x̂ , ρ̂(t)]]

)
, (9.34)

18 See [Ghirardi et al. 1986].
19 See [Barchielli et al. 1982] .
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�Figure 9.3 Decohering histories. Here two histories, �(1) and �(2) are shown, leading to a common final

event P̂xf . We have considered the set of ranges
{
�

(1)
k

}
of values of x̂j at times tk, k = 1, . . . , n.

A set of alternatives at any time tk consists of ranges �(1)
k ,�(2)

k ,�(3)
k , . . . ,�μk , which exhaust the

possible values of xj as μ ranges of all integers. An individual history is specified by a particular

�
(μ)
k at particular times tk, k = 1, . . . , n. We write [�(μ)] = (�(μ)

1 , . . . ,�(μ)
n ) to indicate a

particular history.

which can be considered a type of master equation – we shall discuss of master equations
in Sec. 14.2: we limit ourselves here to the main points that can explain the nature of this
approach. Equation (9.34) is similar to the Schrödinger or von Neumann equation (5.28)
plus an additional term on the rhs. This term could account for the “localization” of a
density operator, whose evolution would be otherwise unitary: it is composed of a local-
ization parameter η times a double commutator. Ghirardi, Rimini, and Weber considered,
in particular, an N -particle compound system and rewrote Eq. (9.34) as

d

dt
ρ̂ = − ı

h̄
[Ĥ , ρ̂] −

N∑
j=1

η j
(
ρ̂ − T j [ρ̂ j ]

)
, (9.35)

where ρ̂, ρ̂ j are the density operators for the total system and for the j-th particle,
respectively, η j is the frequency of the process undergone by the j-th element, and the
transformation T j acts as follows:

T j [ρ̂ j ] =
√
ζ

π

+∞∫
−∞

dx e−
ζ
2 (x̂ j−x)2

ρ̂e−
ζ
2 (x̂ j−x)2

, (9.36)

where ζ is a localization constant. The authors suggested attributing the following values
to the introduced constants:

η� 10−16 sec−1, (9.37a)
1

ζ
� 10−5 cm. (9.37b)

Condition (9.37a) means that the localization happens spontaneously every 108–109 years
for a single particle. A detailed computation shows that the localization time-rate is shorter
the larger is the system. On the other hand, the value of 1/ζ is much larger than the
length of a de Broglie wave typical for a particle. This means that both constants are
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very important only for many-particle systems or for systems with wavelength larger
than 10−5 cm. Therefore, they leave almost unaffected the microscopic world of quantum
mechanics, but allow a description of how macro-objects may be localized and “reduced.”

In conclusion, we wish to point out that the weakest point of these approaches is that
they have an ad hoc nature since they introduce quantities that are not physically observed.

9.2.4 Conclusion

This short review does not cover all proposals that have been made in order to solve the
measurement problem before 1980.20 The important point is that up to the beginning of
the 1980s there was still no clear solution. This can account for the diffusion of Feynman’s
dictum that nobody understands quantum theory but everybody uses it. As a picture of
the situation, it seems appropriate. As a methodology, it is certainly not adequate. It is
clear that, facing problems of knowledge, one should in the first instance find a hypothesis
that can work. However, once such a hypothesis has been found, the scientific enterprise
consists in finding out why or at least how it works. It is clear that we shall find, in the best
case, a hypothesis that will eventually be accepted because it works. But, in posing that
question, we have enlarged the field of our enquiry, and this represents a true progress of
knowledge. As a matter of fact, in the 1980s something new began. However, before we
discuss what is believed by a large part of the scientific community to be the solution of
the measurement problem – the decoherence approach – it is necessary first to understand
a major issue of measurement and, in general, of the relationship between microscopic and
macroscopic physics. This problem was originally formulated by Schrödinger and is the
subject of the next section.

9.3 Schrödinger cats

9.3.1 Histor ical introduct ion

Schrödinger was among the first physicists to understand the conceptual difficulties posed
by quantum mechanics. In 1935, in a series of papers that later became milestones in
the development of this theory [Schrödinger 1935], he discussed, in particular, some far-
reaching consequences of the superposition principle and of entanglement. He considered
some “absurd” macroscopical situations that could arise if quantum mechanics was to be
taken as a universally applicable theory. This is expressed paradigmatically by the so-called
Schrödinger’s cat paradox. The original Gedankenexperiment is the following. A cat is in
a box together with a very small quantity of radioactive material (see Fig. 9.4) – the decay
probability is, say, one atom per hour. The decayed atom would activate a Geiger counter

20 The reader interested in other approaches and also in a more detailed investigation of the problem is referred
to [Auletta 2000], and references therein.
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observer

alpha decay

Geiger counter
cat

�Figure 9.4 Pictorial representation of the Schrödinger’s cat thought-experiment. Adapted from
www.lassp.cornell.edu/ardlouis/dissipative/cat.gif.

which is connected through a relay to a hammer that may break an ampulla, thus releas-
ing some poison. Now, according to the probabilistic character of the radioactive decay
(see Sec. 1.4), after some time the wave function describing the system should represent a
superposition of living cat and dead cat (see also Eq. (9.13)). But this seems impossible,
since nobody has ever observed such a situation at the macroscopic level. On the other
hand, we may assume that a measurement, in our case the opening of the box to see the
cat, will univocally determine the state of the cat (either alive or dead), thus eliminating the
superposition – according to the projection postulate. If so, we ascribe an enormous and
perhaps unjustified power to the observation, that is, the power to realize ex novo a very
special physical situation: the so-called wave function reduction or collapse.

From a formal viewpoint, let us write as |d〉 a and |u〉 a the eigenstates corresponding to
the decayed and undecayed atoms, respectively. Similarly, |*〉 c and |+〉 c shall represent
a living and a dead cat, respectively. Then, after some time, say half an hour, the state of
the system “atom + cat” shall be described by the entangled superposition state

|&〉 = 1√
2
(|u〉 a |*〉 c + |d〉 a |+〉 c). (9.38)

It should be noted that the state (9.38) is quite paradoxical, and, in particular, two important
facts have to be noted: first, due to the correlation between the system and cat states, the
superposition character of the atomic state has been mapped onto the compound system.
Second, it is an entangled state between a microscopic system (the atom) a macroscopic
one (the cat). As a consequence, a measurement of the state of either system would
immediately transfer the information onto the other (see also Ch. 16 and Sec. 9.1).
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�Figure 9.5 Experimental realization of a Schrödinger cat with a trapped ion. The figure shows the evolution
of the position–space atomic wave packet entangled with the internal (ground and excited) states
| ↓〉 and | ↑〉 during the creation of a Schrödinger cat state. The wave packets are snapshots in
time, taken when the atom is in the harmonic trap potential (represented by the parabolas). The
area of the wave packets is proportional to the probability of finding the atom in the given
internal state. (a) The initial wave packet corresponds to the quantum ground state of motion
after laser-cooling. (b) The wave packet is split after a π/2 laser pulse (see also Subsec. 14.5.2).
(c) The | ↑〉 wave packet is excited to a coherent state (see p. 161 and also Subsec. 13.4.2) by the
force F provided by a displacement laser beam. Note that F acts only on | ↑〉, hence entangling
the internal and the motional degrees of freedom. (d) The | ↑〉 and | ↓〉 wave packets are
interchanged following a π–pulse. (e) The | ↑〉 wave packet is excited to a coherent state by the
displacement-beam force −F, which is out of phase with respect to the force in (c). The state in
(e) corresponds to a Schrödinger cat state. Adapted from [Monroe et al. 1996, 1133].

9.3.2 Experimental real izat ions

It is evident that the existence (or non-existence) of Schrödinger cat states changes dramat-
ically the reciprocal relationship between the macroscopic and the microscopic world. In
particular, the difficulty lies in the answer to the following question: where is the border
between the two worlds? To answer this question, several investigations and experiments
have been carried out, exploring the intermediate region between the two limits, that of the
so-called mesoscopic phenomena. For example, a Schrödinger cat-like state of the electro-
magnetic field involving an average number of 3.3 photons has been realized in Paris by the
group of S. Haroche.21 A similar state, but involving the motion of the center of mass of a
beryllium ion, had been previously observed in the experiment performed by D. Wineland
and co-workers22 (see Fig. 9.5). In this case, states of the form

|&〉 = 1√
2
(|↑〉 |α〉 + |↓〉 |−α〉 ) (9.39)

are produced, where |↑〉 and |↓〉 are the internal degrees of freedom, and |α〉 and |−α〉
(when |α| is large) are macroscopically distinguishable coherent states of the center-of-
mass motion of the ion (see also Box 14.1). In this situation, the internal degree of freedom
plays the role of the microscopic system, whereas the center-of-mass motion plays the
role of the macroscopic one. It is interesting to note that these two different degrees of
freedom, though pertaining to the same physical system (the ion), are written in a form

21 See [Brune et al. 1996]. We shall return on this experiment in Subsec. 14.5.2.
22 See [Monroe et al. 1996]. By further refining this technique, Wineland’s team has also produced a six-atom

Schrödinger cat state [Leibfried et al. 2005].
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�Figure 9.6 (a) The inner (grey) ring is a SQUID with two Josephson junctions J1 and J2. The flux can be
detected using the outer ring, which is another SQUID working as a magnetometer when injected
with a bias current i. (b) Schematic representation of the double well potential of the SQUID as a
function of the flux in the symmetric case.

that is completely analogous to an entanglement of two different subsystems – compare
Eq. (9.39) with Eq. (9.38). As a matter of fact, they pertain to two different Hilbert spaces,
and this justifies the above formalism.

Another realization of conceptually similar experiments involves Superconducting
QUantum Interference Devices, or SQUIDs: these are extremely sensitive magnetic flux-
to-voltage transducers.23 The SQUID is among the most sensitive detectors that can be
used in biomagnetic applications (magnetoencephalography) and magnetocardiography.
Other practical applications are geomagnetism, nondestructive testing, radio frequency
amplification and the measurement of fundamental constants. It is not our aim here to
enter into the details of the theory of superconductivity: we shall rather limit ourselves to
show how this device can be used to produce Schrödinger cats.

The basic element of a SQUID is a superconducting ring24 containing one (radio-
frequency SQUID) or more (direct-current SQUID) Josephson junctions25 (see
Fig. 9.6(a)). A Josephson junction consists essentially of two superconductors weakly cou-
pled through a thin non-superconducting material. The SQUID has unique electrical and
magnetic properties: when a small magnetic field is applied to the superconducting loop,
a persistent current is induced. Such a current may flow clockwise or counterclockwise,
in order to either reduce or enhance the applied flux, thus approaching an integer number
of superconducting flux quanta%0 = h/2e = 2.067833636 × 10−15 Wb. The dynamics of

23 On this device see [Tinkham 1996].
24 See [Leggett 1989].
25 See [Josephson 1962].
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the SQUID is driven by the difference between the flux % that goes through the loop and
the external flux %ext applied to the loop, and can be described by the one-dimensional
potential energy

V (%) = C

(
%−%ext

%0

)2

+ C ′ cos

(
2π
%

%0

)
, (9.40)

where C and C ′ are constants which depend on the physical parameters of the device
(inductance of the ring, capacitance, and critical current of the junction). When %ext =
%0/2, the potential is symmetric and is schematically depicted in Fig. 9.6(b) together with
the first few energy levels. The lower levels are confined in either the left or the right well
and represent the “classical” states, i.e. states for which the current flows either clockwise
or counterclockwise. Quantum-mechanically, however, the system may tunnel from the left
to the right well or vice versa through the central barrier (see Sec. 4.3). Moreover, states
which are superpositions of left and right states, that is, states of the type

|ψ〉 = 1√
2
(|α〉 ± |β〉 ), (9.41)

can be viewed as Schrödinger cat states. We stress here that Eq. (9.41) is slightly different
from Eq. (9.38) in that it represents a superposition relative to a single degree of freedom
and not an entangled state. As we have said, truly speaking, Schrödinger cat states are
given by entangled states in which one of the degrees of freedom is macroscopic and the
two involved components are macroscopically distinguishable, as in Eqs. (9.38) and (9.39).
However, even states of the form (9.41) can be conceptually considered as belonging to the
Schrödinger cat family, provideed that the components be macroscopically distinguishable.

States of the kind of Eq. (9.41) have been created and detected by two experimental
groups using slightly different setups.26 In these experiments, the SQUID dynamics is
driven by the motion of approximately 109 electron pairs. Moreover, the states |α〉 and
|β〉 in the superposition (9.41) differ by an amount of magnetic flux which corresponds to
a current of a few µA that can be then considered a macroscopic quantity. Both these points
make the SQUID one of the ideal candidates for probing macroscopic quantum effects at
the border of classical and quantum physics.27

A very interesting representation is provided in Fig. 9.7, where the Wigner function –
a quasi-probability distribution corresponding to a density matrix of a system – is shown
(see also Subsec. 13.5.4).

9.3.3 Schrödinger cats and the macroscopic world

We do not observe Schrödinger cats in our everyday experience due to the fact that the
effects of Schrödinger cat states are difficult to detect, but it is also true that these effects

26 See [Friedman et al. 2000] [van der Wal et al. 2000].
27 There also are further techniques for producing Schrödinger cats, for instance by taking advantage of photon-

number states [Ourjoumtsev et al. 2007]. The advantage of this technique is that is that it allows for the
generation of arbitrarily large squeezed Schrödinger cats [see also Subsec. 13.4.3].
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�Figure 9.7 (a) Wigner function of an initial Schrödinger cat state of the form |ψ〉 = N−(|α〉 − |−α〉 ), N−
being a normalization constant and |α|2 = 3.3. The two central bumps represent the interference
terms of the corresponding density matrix. The state under consideration is fragile and sensitive
to dissipation, and needs care to be preserved (here represented by an appropriate feedback
action). (b) Wigner function of (top) the same state after 13 feedback cycles and (bottom) after
one relaxation time in the absence of feedback. In the last case the off-diagonal terms tend to
disappear. (c) Wigner function of (top) the same state after 25 feedback cycles and (bottom) after
two relaxation times in the absence of feedback. Summing up, in absence of feedback, the
Wigner function becomes quickly positive definite and takes a classical aspect, corresponding, in
(b), bottom, to a mixed density operator, and, in (c), bottom, assuming almost the form
describing a single measurement outcome, while, in the presence of feedback ((b) and (c), top),
the quantum aspects of the state remain well visible. Adapted from [Fortunato et al. 1999b].

have been detected under special circumstances, as we have seen. This forces us to consider
such states, rather than as an absurd consequence of quantum-mechanical formalism, as
observable features of mesoscopic systems at present level of technological possibilities.
This opens the way to the observation of similar effects in the macroscopic domain. In this
context, one should consider that quantum mechanics is already used successfully for the
interpretation of a number of macroscopic coherent phenomena (superconductivity, Bose–
Einstein condensation (see Subsec. 7.5.1), superfluidity, etc.). More recently, entanglement
has been shown to exist in the insulating magnetic salt LiHoxY1−xF4.28

Therefore, one of the lessons we learn from these experiments is that we are able to
progressively move the border between micro and macro. This is in contrast to Bohr’s idea
that there is a sharp border line between the two worlds.29 This situation is very similar
to the one we encountered in Subsec. 2.3.4 in the context of wave-particle duality: in both
cases there is a smooth transition between two extreme behaviors.

28 See [Ghosh et al. 2003] [Vedral 2003].
29 An evidence of this is the role ascribed from Bohr to the measuring apparatus (see Subsec. 9.2.1).
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9.4 Decoherence

In the 1970s and 1980s there was growing evidence that, when a quantum system is cou-
pled to a large reservoir, dephasing arises, i.e. the system loses coherence: the off-diagonal
terms of the density matrix (9.2) tend quickly to zero. The dephasing models gave the
hint in considering the environment as a possible source of solution of the measurement
problem. In fact, environment can be considered as the largest reservoir at our disposal,30

and can be defined as a large system which is permanently coupled to any microsystem
and is not controllable by the observer. In other words, we are assuming that any quan-
tum system is truly an open system and that part of the initial information contained in
the system is lost in the environment, so that we are not able to extract it. For a more
general and detailed account of the interaction between a system and its environment, see
Sec. 14.2.

9.4.1 Zurek’s model

Instead of considering the act of measurement as a mere interaction between the appara-
tus A and the object system S, Zurek explicitly introduced31 the environment E as a third
player that is always present when measuring, assuming therefore that quantum systems
are essentially open to the environment. The concepts of environment and open quan-
tum systems had been known for many years,32 but this was the first time these had been
applied to the measurement process. This is to a certain extent the opposite of what hap-
pens in classical mechanics where it is assumed that physical systems can be considered,
at least in principle, as isolated. Zurek’s fundamental idea is that, when considering the
measurement process, we first write the state vector for S +A+ E , |&SAE 〉 and let S, E ,
and E interact. Then, we perform a partial trace and obtain the reduced density matrix of
S +A only. In this way, while the total system S +A+ E still remains entangled and is
subjected to a unitary evolution according to the Schrödinger equation, the reduced sys-
tem S +A is a mixture relatively to the “point of view” of the apparatus (see Secs. 5.5
and 9.1).

The measurement process can be schematically divided into two distinct steps followed
by the partial trace which completes the process. The initial state (at time t = 0) is for
the sake of simplicity a factorized state of S, E , and A. Then, at time t = t1, due to the
interaction between S and A, these become entangled (we have a premeasurement). In
the time interval t1 ≤ t ≤ t2, also the environment entangles with S and A. At time t2 the
interaction is switched off. Formally,

30 Zeh was the first to introduce this important idea [Zeh 1970].
31 See [Zurek 1981, Zurek 1982].
32 Due especially to Louisell’s work. For a summary see [Louisell 1973].
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|&SAE (0)〉 = |ψ〉|a0〉|E(0)〉 (9.42a)

�→ |&SAE (t = t1)〉 =
⎡⎣∑

j

c j (|o j 〉|a j 〉)
⎤⎦ |E(t1)〉 (9.42b)

�→ |&SAE (t ≥ t2)〉 =
∑

j

c j |o j 〉|a j 〉|e j 〉, (9.42c)

where {|e j } is some basis for the environment. Transformation (9.42b) has provided the
connection between A and S and is described by the unitary operator (9.9). This is a
premeasurement because it does not yet represent the desired result. Instead, transforma-
tion (9.42c) shows the action of the environment, and can be described by another unitary
operator which couples E to S +A, i.e.

ÛSA,E
t = e−

ı
h̄ t ĤSA,E (9.43)

for t1 < t < t2.
Now we can trace out the environment by writing the corresponding reduced density

matrix (see Subsec. 5.5.2):

ˆ̃!SA = TrE
(
ρ̂SAE

)
= TrE [|&SAE (τ )〉〈&SAE (τ )|]
=
∑

j

|c j |2|a j 〉〈a j | ⊗ |o j 〉〈o j |. (9.44)

Equation (9.44) has been obtained under the simplified hypothesis (9.42c). The physi-
cal meaning of this tracing out is then the following: the information contained in the
off-diagonal elements of the coupled system S +A is not destroyed but downloaded
in the environment (see also Sec. 17.3). However, from the point of view of the appa-
ratus, it is inaccessible and is for this reason completely lost (it would be accessible
only under the hypothesis that we can exactly reconstruct the state of the whole system
S +A+ E). Since the quantum coherences are lost (see the end of Sec. 5.1), this interpre-
tation of measurement is known as decoherence. Strictly speaking, the correlation between
S, E , and A may be not perfect. As a matter of fact, the environment is a huge complex
of systems that can be more or less interrelated and in which random fluctuations are also
present. Then, a perfect correlation between S and E can be taken as an ideal limit. As a
result, one would obtain a reduced density matrix in which the off-diagonal terms are sup-
pressed but not completely eliminated. In other words, during the measurement, they tend
very quickly to zero. Hence, we never obtain a perfect diagonalization of the density matrix
describing the object system relatively to the measured observable33 (see also Sec. 9.10).

33 Zurek, in his original articles, invokes environment-induced superselection rules, which imply an abrupt
change, but this requirement seems to be not necessary.
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This phenomenon helps us to better understand the mechanism of the transition from the
quantum to the classical (see Subsec. 9.3.3 and also Sec. 10.5). The most important point
to be focussed on is the physical action of the environment on S and A. The environment
makes all information about the premeasured system unavailable with only one exception:
the pointer of the apparatus will contain the information about the observables which com-
mute with the interaction Hamiltonian ĤSA. In such a case these particular observables
will not be disturbed.

The fact that only observables commuting with the interaction Hamiltonian ĤSA
are actually measured, is an important consequence of the uniqueness of triorthogonal
decomposition. In fact, the relevant point here is not the obvious circumstance that the off-
diagonal terms of the density matrix vanish in some basis,34 but that the basis in which
an approximate diagonalization occurs does not depend on the initial conditions (see also
Subsec. 3.5.3). As we have seen (in Subsec. 9.2.2), a total system composed of two sub-
systems can be decomposed into different basis corresponding to different observables
(basis degeneracy). This is, however, not true for triorthogonal decomposition.35 In fact,
for three or more subsystems, there is only one possible basis that turns out to be the basis
with respect to which the measured observable ÔS is diagonal. In order to prove such
statement, let us assume the following lemma:36

Lemma 9.1 (Elby–Bub) Let {|a j 〉} and {|b j 〉} be linearly independent sets of vectors,
respectively in the Hilbert spaces H1,H2 for two generic systems S1,S2. Let {|b′j 〉} be

a linearly independent set of vectors that differs non-trivially37 from {|b j 〉}. If |&〉 =∑
j c j |a j 〉 ⊗ |b j 〉, then |&〉 =∑ j c′j |a′j 〉 ⊗ |b′j 〉 only if at least one of the {|a′j 〉} vectors is

a linear combination of (at least two) {|a j 〉} vectors.

We use now Lemma 9.1 to prove per contradictionem the uniqueness of triorthogonal
decomposition.

Proof

Take a vector |&〉 =∑ j c j |a j 〉 ⊗ |b j 〉 ⊗ |e j 〉, where {|a j 〉}, {|b j 〉}, {|e j 〉} are orthogonal
sets of vectors respectively in the Hilbert spaces H1,H2,H3 for three generic systems
S1,S2,S3, respectively. Then, we claim that, even if some of the |c j |’s are equal, no alter-
native orthogonal sets {|a′j 〉}, {|b′j 〉}, {|e′j 〉} exist such that |&〉 =∑ j c′j |a′j 〉 ⊗ |b′j 〉 ⊗ |e′j 〉,
unless each alternative set of vectors differs only trivially from the set it replaces.

34 Since the density matrix is an Hermitian operator, there is always a basis in which its off-diagonal terms are
exactly zero (see Prob. 9.3).

35 As proved in [Elby/Bub 1994].
36 See the original article [Elby/Bub 1994] for the proof of the lemma.
37 “Trivially different” qualifies states that differ only for a multiplicative phase factor (see also the end of

Subsec. 2.1.3).
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Assume, without loss of generality, that {|e j 〉} differs not trivially from {|e′j 〉}, and let
us write |&〉 =∑ j c j |w j 〉 ⊗ |e j 〉, where |w j 〉 = |a j 〉 ⊗ |b j 〉. Now, suppose that |&〉 =∑

j c′j |w′j 〉 ⊗ |e′j 〉, where |w′j 〉 = |a′j 〉 ⊗ |b′j 〉. Then, it is clear that we cannot rewrite the
factorized state |a′j 〉 ⊗ |b′j 〉 as an entangled state (see Subsec. 5.5.1).

But, according to lemma 9.1, since |&〉 =∑ j c j |w j 〉 ⊗ |e j 〉 and since {|e j 〉} differs not

trivially from {|e′j 〉}, then we have |&〉 =∑ j c′j |w′j 〉 ⊗ |e′j 〉 only if |w′k〉 =
∑

j c(k)
j |w j 〉,

where at least two of the c(k)
j ’s are non-zero. But since |w j 〉 = |a j 〉 ⊗ |b j 〉, it follows that

|w′k〉 is an entangled state, i.e. |w′k〉 =
∑

j c(k)
j |a j 〉 ⊗ |b j 〉, which is in contradiction with

the fact that |w′k〉 was not entangled.

Q.E.D

The uniqueness of triorthogonal decomposition is a very important point. In fact, while the
tracing out is only relative to the system and the apparatus, the uniqueness of the triorthog-
onal decomposition introduces an objective character in the measurement theory that can
account for irreversibility. However, the transition from the quantum to the classical world
cannot have an unphysical sharp border line. This requirement is satisfied by the fact that,
when measuring, we have no complete elimination of the off-diagonal terms of a density
matrix.38 Then, as already shown in the Schrödinger cat experiments, there are good rea-
sons to suppose that there is a tiny tail of quantum “noise” also in our macroscopic world.

9.4.2 Scul ly, Shea, and McCul len’s model

One of the earliest attempts to explain the transition from a pure state density matrix as
in Eq. (9.2) to a reduced density matrix (9.3) induced by a measurement process is due to
Scully, Shea, and McCullen.39 Their model, which we are going to illustrate below, even
though simple and perhaps not completely realistic, had the historical merit of giving a new
direction and new emphasis toward the solution of the measurement problem, a field dom-
inated from 1932 up to the end of the 1970s by the standard von Neumann’s interpretation
(see Subsec. 9.2.1). Scully and co-workers showed that a reduction to a mixed state can
occur by making a partial trace on the degrees of freedom of the apparatus (represented in
their model by an atom) and that we obtain a mixture even if we do not actively extract any
information. In other words, “reduction” occurs with the sole presence of the detector and
without necessarily reading the measurement outcome. This is in strong contrast to von
Neumann’s hypothesis that requires the presence of an observer and the occurrence of the
act of observation.

Consider the arrangement shown in Fig. 9.8. We begin with a fermionic wave packet
(see Box 2.6: p. 80) in the state |ϕ〉 of spin–1/2 molecules in a superposition state of

38 A series of experiments lead by H. Rauch shows that, even when there is no interference in the configuration
space, interference effects are not lost in the momentum space [Rauch 2000].

39 See [Scully et al. 1978].
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�Figure 9.8 Schematic representation of the experiment proposed by Scully and co-workers. A spin–1/2
molecule in the state |ϕ〉 moves from the left to the right along the +y direction. The initial spin
superposition is split in the region II into components

∣∣ψ↑
〉 | ↑〉 and

∣∣ψ↓
〉 | ↓〉 , and then merged

again in the region IV. A (not well-localized) atom is placed in the region III so that, with the
passage of the molecule, it can undergo a transition from the initial ground state to the excited
state.

spin-up and spin-down along the z direction. This wave packet moves in the +y direction
(region I), and is then passed (region II) through a magnet with field B and gradient ∂zB
in the z direction (see Sec. 6.3). As a result, the beam is split (region III) into a spatial
component with spin up (|ψ↑〉) and another one with spin down (|ψ↓〉). The two partial
beams are then merged (region IV) by applying an opposite magnetic gradient. In region
V the state will be the same as in absence of magnetic field, except for the inevitable
spreading of the wave packet.

The initial state of the molecule (spin plus spatial degree of freedom) is given by

|ϕ(0)〉 = 1√
2

(|ψ↑(0)〉 |↑〉 z + |ψ↓(0)〉 |↓〉 z
)
, (9.45)

where |ψ↑(0)〉 = |ψ↓(0)〉 = |ψ(0)〉 represents the initial (spatial) wave packet, and

|↑〉 z =
(

1
0

)
, |↓〉 z =

(
0
1

)
(9.46)

denote the eigenstates of the spin along the z direction.
We imagine two alternatives:

• In the described experiment the final density matrix ρ̂m of the molecule, within the limits
of a perfect overlap between |ψ↑〉 and |ψ↓〉, will be (see Prob. 9.5)

ρ̂m(t) = |ϕ(t)〉 〈ϕ(t) | = |ψ(t) 〉 〈ψ(t) |
[

1 1
1 1

]
, (9.47)

where |ψ(t)〉 = |ψ↑(t)〉 = |ψ↓(t)〉.
• Let us now insert a meter represented by a two-level atom placed along the path of the

molecules. Such an atom may be found in the ground state |g〉a or in the (metastable)
excited state |e〉a . With the introduction of the meter, our Hilbert space enlarges in such
a way that, leaving aside for the time being the spatial degree of freedom, the new basis
states will be given by the direct product of the meter states times the spin states of the
molecule
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|e〉 a ⊗ |↑〉 z =

⎛⎜⎜⎝
1
0
0
0

⎞⎟⎟⎠, |e〉 a ⊗ |↓〉 z =

⎛⎜⎜⎝
0
1
0
0

⎞⎟⎟⎠,

|g〉 a ⊗ |↑〉 z =

⎛⎜⎜⎝
0
0
1
0

⎞⎟⎟⎠, |g〉 a ⊗ |↓〉 z =

⎛⎜⎜⎝
0
0
0
1

⎞⎟⎟⎠. (9.48)

Let us suppose that the atom and the molecule interact via a certain interaction Hamil-
tonian. Skipping the details of this interaction,40 it suffices here to imagine that this
interaction occurs only when the molecule is in contact with the atom and that entangles
the atomic and the molecular states. In particular, it is assumed that the meter is affected
by, but does not influence, the state of the system. Moreover, such an interaction allows
for transitions |g〉 a � |e〉 a and vice versa.

Starting with a ground-state atom, the total state (molecular spatial degree of freedom
+ molecular spin degree of freedom + atomic excitation) after region II but before
interaction with the atom will be given by

|&(0)〉 = |g〉 a ⊗
(|ψ↑(0)〉 |↑〉 z + |ψ↓(0)〉 |↓〉 z

)
= 1√

2

⎛⎜⎜⎝
0
0∣∣ψ↑(0)

〉∣∣ψ↓(0)
〉
⎞⎟⎟⎠, (9.49)

where we have taken again t = 0 for the sake of simplicity. At later times, due to the
atom–molecule interaction, there will be a finite probability that the meter be in its
excited state, i.e.

|&(t)〉 = 1√
2

(
α
∣∣ψ↑(t)

〉 |e〉 a |↑〉 z + β
∣∣ψ↓(t)

〉 |e〉 a |↓〉 z

+γ ∣∣ψ↑(t)
〉 |g〉 a |↑〉 z + δ

∣∣ψ↓(t)
〉 |g〉 a |↓〉 z

)
= 1√

2

[∣∣ψ↑(t)
〉 (
α |e〉 a + γ |g〉 a

) |↑〉 z +
∣∣ψ↓(t)

〉 (
β |e〉 a + δ |g〉 a

) |↓〉 z
]

= 1√
2

⎛⎜⎜⎝
α
∣∣ψ↑(t)

〉
β
∣∣ψ↓(t)

〉
γ
∣∣ψ↑(t)

〉
δ
∣∣ψ↓(t)

〉
⎞⎟⎟⎠. (9.50)

Due to the conservation of the probability, we must have |α|2 + |γ |2 = 1 and |β|2 +
|δ|2 = 1. As we see from Eq. (9.50), when α and β are both non-vanishing, the meter

40 For a complete treatment see the original article [Scully et al. 1978].
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is triggered by both paths of the apparatus. The final density matrix of the compound
system, constructed on the basis of Eq. (9.50) will be

ρ̂am =

⎡⎢⎢⎣
|α|2 ∣∣ψ↑〉 〈ψ↑ ∣∣ αβ∗

∣∣ψ↑ 〉 〈ψ↓ ∣∣ αγ ∗
∣∣ψ↑〉 〈ψ↑ ∣∣ αδ∗

∣∣ψ↑ 〉 〈ψ↓ ∣∣
α∗β

∣∣ψ↓ 〉 〈ψ↑ ∣∣ |β|2 ∣∣ψ↓〉 〈ψ↓ ∣∣ γ ∗β
∣∣ψ↓ 〉 〈ψ↑ ∣∣ δ∗β

∣∣ψ↓〉 〈ψ↓ ∣∣
α∗γ

∣∣ψ↑〉 〈ψ↑ ∣∣ β∗γ
∣∣ψ↑ 〉 〈ψ↓ ∣∣ |γ |2 ∣∣ψ↑〉 〈ψ↑ ∣∣ δ∗γ

∣∣ψ↑ 〉 〈ψ↓ ∣∣
α∗δ

∣∣ψ↓ 〉 〈ψ↑ ∣∣ β∗δ
∣∣ψ↓〉 〈ψ↓ ∣∣ γ ∗δ

∣∣ψ↓ 〉 〈ψ↓ ∣∣ |δ|2 ∣∣ψ↓〉 〈ψ↓ ∣∣
⎤⎥⎥⎦,

(9.51)

where, for the sake of simplicity, we have not indicated the time dependence. When α =
β = 0 (γ = δ = 1), we have a free evolution of the system and no interaction with the
meter. A “good” meter will jump to the excited state when the molecule is in the upper
path (spin-up) and not when the molecule is in the lower path (spin-down). Therefore,
in order to have a perfect correlation, we should have α � δ � 1 and β � γ � 0.

Suppose that, after the region V, the molecule beam passes through a Stern–Gerlach
magnet, with the field gradient oriented in the x direction:

B = ı̂ Bx (x , y). (9.52)

This device will split the beam into two packets moving along the directions +x and −x .
In absence of the detector (Eq. (9.47)), the probability densities for the beam to be

deflected in the +x or −x direction are given by

℘+x (r)=〈r|x 〈↑ | ρ̂m |↑〉 x |r〉 =
1

2
(1 1)

[
1 1
1 1

](
1
1

)
|ψ(r)|2

= 2|ψ(r)|2, (9.53a)

℘−x (r)=〈r|x 〈↓ | ρ̂m |↓〉 x |r〉 =
1

2
(1 −1)

[
1 1
1 1

](
1
−1

)
|ψ(r)|2

= 0, (9.53b)

where (see Eqs. (6.159a))

|↑〉 x =
1√
2

(|↑〉 z + |↓〉 z
)
, |↓〉 x =

1√
2

(|↑〉 z − |↓〉 z
)
, (9.54)

and ∫
dr|ψ(r)|2 = 1

2
. (9.55)

Hence no particles would be found in the −x direction if a detector was to be placed. This
is the effect of a constructive interference in the +x region and of a destructive interference
in the −x region (see Subsecs. 1.2.2 and 2.3.4).

Now we ask the same question when the “atomic detector” is present (see Eq. (9.51)).
Assuming that we are not able to “read” the detector, we look for probabilities ℘±x (r)
irrespective of the state of the detector. These may be calculated into two steps. First, by
performing a partial trace on the atom we derive the reduced density matrix of the molecule
alone, i.e.

ˆ̃ρm = Tra
(
ρ̂am

) = a
〈
e
∣∣ρ̂am

∣∣ e〉a + a
〈
g
∣∣ρ̂am

∣∣ g
〉
a . (9.56)
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Second, we compute the probabilities

℘+x (r)=〈r|x 〈↑ | ˆ̃ρm |↑〉 x |r〉, (9.57a)

℘−x (r)=〈r|x 〈↓ | ˆ̃ρm |↓〉 x |r〉, (9.57b)

where, by choosing suitable values of the parameters α,β, γ , and δ, the reduced density
matrix of the molecule (see Eqs. (5.41)) takes the form

ˆ̃ρm =
[

1 0
0 1

]
|ψ〉 〈ψ |. (9.58)

From Eq. (9.58) we now calculate the probabilities

℘+x (r) = 1
2 (1 1)

[
1 0
0 1

](
1
1

)
|ψ(r)|2 = |ψ(r)|2, (9.59a)

℘−x (r) = 1
2 (1 −1)

[
1 0
0 1

](
1
−1

)
|ψ(r)|2 = |ψ(r)|2. (9.59b)

Hence, in the presence of a “detector” we have a 50% probability of finding the particle
in the +x direction and a 50% probability of finding the particle in the −x direction.
This means that the sole presence of the atom, together with the ignorance of its final
state, formally expressed by the partial trace (9.58), suffices to destroy the constructive and
destructive interference that had led to probabilities (9.53).

This is very strong evidence of the fact that in quantum mechanics not only is it impor-
tant which operation is actually performed, but also which operation may be in principle
performed. This is in contrast with a generalized thermodynamical solution to the mea-
surement problem (see Subsec. 9.2.2). We shall discuss this point more extensively below
(in Sec. 9.5).

9.4.3 Cini ’s model

The important work by Cini41 has the merit of presenting another interesting model that
shows how the action of large systems can cause a transition from a pure state to a mixture
onto a microscopic object. The main idea here is that the apparatus A is constituted of
a large number of particles. For this reason, no explicit use of the environment is made.
In this sense this model is independent from Zurek’s one, but has the advantage of show-
ing, in a simple way, that after the interaction the system–apparatus density matrix ρ̂AS
is indistinguishable from a mixture formed by the different states representing the possi-
ble outcomes of the measurement, each one consisting of the particle in a given state plus
the apparatus in the corresponding macroscopically definite state. As we shall see, it is the
macroscopic distance between the different states of the measuring device that leads to this
equivalence, justified by the very small magnitude of the interference terms.

41 See [Cini 1983]. See also [Cini et al. 1979].
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Cini’s aim is to make a specific model of a certain kind of counters, i.e. devices which
record the presence or the passage of a particle. We assume the object system S to be a
two-level quantum system in the initial state

|S〉 = c+| ↑〉 + c−| ↓〉, (9.60)

where {| ↑〉, | ↓〉} is a basis in the two-dimensional Hilbert space of S. The apparatus A
is composed of N bosons, each with the same (symmetric) spatial wave function and an
internal degree of freedom represented by two possible states: the ground state |a0〉 and the
excited state |a1〉. The system–apparatus interaction Hamiltonian is assumed to be

ĤSA(â) = 1

2
ε′SA(1 + σ̂z)

(
â†

0 â1 + â0â†
1

)
, (9.61)

where σ̂z is the third Pauli spin matrix (see Eq. (6.154)), ε′SA is the coupling constant, and

â†
0 , â0, â†

1 , â1 are creation and annihilation operators (see Subsec. 4.4.2 and also Sec. 13.1)
on |a0〉, |a1〉, respectively, satisfying

[â†
0, â†

1] = [â0, â1] = 0. (9.62)

It should be noted that this choice of the interaction Hamiltonian implies that only one of
the two independent states of S (|↑〉 ) is capable of interacting with the counter’s parti-
cles, the other one (|↓〉 ) being isolated and, therefore, stationary. This is what Cini means
by “polarized counter,” namely a counter that selects between the different values of the
measured observable.

A given state of the counter will be defined through the number n of particles in the
ground state |a0〉. Hence, N − n will be the number of particles in the excited state |a1〉. A
generic state of the apparatus is defined by (see Prob. 4.13)

|n〉 = |n, N − n〉 = 1√
n!

1√
(N − n)!

(
â†

0

)n (
â†

1

)N−n |0〉, (9.63)

where |0〉 is the vacuum state of the apparatus, i.e. the state with no particle. When the
initial state of A is the neutral state n = N , the time necessary to excite the first particle
will be of the order (see Prob. 9.6)

τ0 �
h̄

ε′SA
√

N
. (9.64)

However, from a physical viewpoint, τ0 should be approximately independent of the
number of particles, leading us to redefine the coupling constant as

ε′SA = εSA√
N

. (9.65)

Starting with an uncorrelated initial state of S +A defined by

|&SA(t0)〉 = |S〉 ⊗ |N 〉, (9.66)

where |S〉 is given by Eq. (9.60), we have

|&SA(t)〉 = e−
ı
h̄ ĤSAt |&SA(t0)〉. (9.67)
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Cini shows that one can rewrite this equation as (see Prob. 9.7)

|&SA(t)〉 = c+| ↑〉
[

N∑
n=0

ân(t)|n〉
]
+ c−| ↓〉|N 〉, (9.68)

where

ân(t) = ı N−n
√

N !√
n!
√

(N − n)!

[
cos

(
εSA t

h̄
√

N

)]n [
sin

(
εSA t

h̄
√

N

)]N−n

. (9.69)

Considering the superposition
∑N

n=0 ân(t)|n〉 in Eq. (9.68), the probability ℘n of finding n
particles in the ground state at time t is given by

℘n(t) =
(

N
n

)
p(t)n p′(t)N−n , (9.70)

where

p(t) = cos2
(
εSA t

h̄
√

N

)
and p′(t) = 1 − p(t) = sin2 εSA t

h̄
√

N
. (9.71)

Equation (9.70) represents a binomial distribution, and, for large N , is sharply peaked
around its maximum. Defining

〈n(t)〉 = N p(t), (9.72)

we can immediately obtain

℘〈n〉 =
N !

〈n〉! (N − 〈n〉)!
( 〈n〉

N

)〈n〉 (N − 〈n〉
N

)N−〈n〉
, (9.73)

which yields (see Prob. 9.8)

℘〈n〉 � 1. (9.74)

This shows that the probability of finding n 	= 〈n(t)〉 is small. In conclusion, in the limit of
very large values of N , one can approximately write Eq. (9.68) in the form

|&SA(t)〉 = c+ |〈n(t)〉〉 | ↑〉 + c−|N 〉| ↓〉. (9.75)

This simple model raises several important remarks:

• The two components of Eq. (9.75) pertaining to the apparatus are macroscopically distin-
guishable [see Sec. 9.3]. This means that a suitable interaction has realized a one-to-one
correlation between the states of the microsystem and those of the measuring device.
That is just what one would expect from an ideal instrument. It should be emphasized
that this result has been obtained precisely due to the large number of particles consti-
tuting the apparatus, in contrast to the examples of Sec. 9.1 or Subsec. 9.4.2, where the
meter is a microsystem.

• Equation (9.75) does not correspond to a mixed state but rather to an entangled
system–apparatus state. However, the macroscopic “distance” between the apparatus’
components makes the resulting interference (off-diagonal) terms negligibly small.
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In this respect, even though a reduction process has not occurred, a sort of collapse
comes out from the ordinary laws of quantum mechanics, without adding hypotheses ad
hoc (see for instance Subsec. 9.2.3).

• The correlation between the microsystem and the apparatus occurs at times of the order
of h̄/εSA that, again in the limit of a very large N , are much smaller than the time
required for a complete excitation of the counter, of the order of h̄

√
N/εSA .

9.4.4 Decoherence time

The problem of the time scale at which decoherence phenomena occur is of central impor-
tance. Indeed, the Zurek’s approach relies on the fact that the decoherence time is inversely
proportional to the number of involved particles. This problem has been explicitly formal-
ized by Zurek, but already Caldeira and Leggett, though in the context of a specific model,
had proposed the introduction of such a parameter.42 In the case of a spatial superposi-
tion of two Gaussian wave functions, Zurek proposed the definition of a decoherence time
parameter τd as

τd � γ−1
(
λT

�x

)2

, (9.76)

where γ is the relaxation rate, i.e. the coupling constant of the system–environment inter-
action,43 �x is the separation between the two Gaussian peaks, and λT is the thermal de
Broglie wavelength (see Eq. (7.26))

λT = h̄√
2mkBT

. (9.77)

This model assumes high temperatures (the environment is therefore often represented by
a heath bath). As a matter of fact, the result (9.76) has been explicitly derived for a particle
moving in one dimension, subject to a harmonic oscillator potential, linearly interacting
with an environment described by a large number of harmonic oscillators (a reservoir or a
bath).44

It is interesting to emphasize that in such a model the “macroscopic” size of the (ini-
tial) superposition state is given by the separation parameter �x : the more the Gaussian
peaks are far apart (the more macroscopic the superposition state is), the smaller the deco-
herence time. As a consequence, “microscopic” superposition states are little affected by
decoherence, whereas “macroscopic” ones decohere on a very fast time scale.

42 See [Zurek 1986] [Caldeira/Leggett 1985].
43 As we shall see in Sec. 14.2.
44 See [Paz et al. 1993, 490–94] and also [Brune et al. 1992, 5205].
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9.4.5 Final considerat ions about decoherence

At the end of this section it is fair to ask ourselves the following question: is decoherence
a good solution of the measurement problem? We must immediately say that decoherence
is a solution that does not present contradictions with experience. We cannot exclude that
there will be other more general and satisfying solutions. More than this: we cannot state
that all the other approaches that have been presented in Sec. 9.2 have to be discarded.
However, the decoherence solution has certainly some advantages with respect to other
proposals that have been advanced. First, it is a solution of the measurement problem that
does not introduce elements which are external to the domain of quantum mechanics. It is
worth emphasizing here that it is a fundamental methodological principle to try to account
for phenomena in the frame of the discipline where they are studied (this is not the case,
for example, for von Neumann’s solution). Second, up to now it has proved to be in good
agreement with experimental results, in particular concerning the decoherence time (see
for instance Subsec. 14.5.2).

From a philosophical viewpoint, it is clear that, in quantum mechanics, a measurement is
ultimately an act of decision, i.e. we choose – by introducing a particular coupling between
the system and the apparatus (see Eq. (9.10)) – to measure a particular observable (see
Subsec. 2.3.3) and the environment “helps” us in diagonalizing or quasi-diagonalizing the
density matrix of the system relatively to it. This operational feature of the theory gives
the quantum theory of measurement a deeper meaning than to the role assigned to the
measurement process in classical mechanics. According to the latter, in fact, measurement
is considered as a registration of already given data.

This act of decision does not necessarily imply a form of subjectivism. Spontaneous
“measurements” are also thought to exist in nature: it suffices that at least two systems
that are open to the environment interact in order to spontaneously obtain a determination
relatively to an observable.45 In other words, measurement is only a particular case of a
larger class of dynamical interactions (as we shall see in Sec. 14.2).

9.5 Reversibi l i ty/irreversibi l i ty

In Sec. 9.1 we have distinguished between premeasurement and measurement. Moreover,
in the previous section, we have seen some example of decoherence in which a microscopic
meter interacts with an object system and a tracing out is performed (as in Subsec. 9.4.2), or
an object system interacts with a macroscopic apparatus (and different possible outcomes
become distinguishable) even if no explicit tracing out is performed (as in Subsec. 9.4.3). It
is therefore convenient to split also the strict measurement act into two steps, and, therefore,
apart from the initial preparation of the object system, to distinguish between:

• premeasurement, which consists in entangling an object system with an apparatus that
now we in general assume to be a macroscopic device;

45 See [Joos/Zeh 1985].
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�Figure 9.9 Schematic representation of Mandel’s experiment. An initial photon beam is split by a beam
splitter (BS) and the resulting beams, after being deflected by the mirror M1, travel toward two
non-linear crystals of LiIO3 (NL1 and NL2). From NL1 a signal photon (s1) and an idler photon (i1)
emerge: the i-photon passes through NL2 and will be aligned with the second idler (i2), which is
emitted by NL2 together with the second signal photon (s2). The two s-photons are combined by
the mirror M2 and the beam merger (BM), and the outgoing beam falls on detector Ds, whereas
the two idler photons fall on detector Di. BM may be vertically displaced. A neutral density filter
(NDF) is inserted between NL1 and NL2. In the case where the transmittivity of the NDF is 100%,
when examining the coincidences we cannot distinguish between the two idler and signal photon
pairs from either NL1 or NL2: this is the so-called fourth-order interference (see Sec. 13.6). When
the transmittivity of the NDF is 0, then i1 is blocked and a coincidence can only result from the
signal and idler photon pair emitted by NL2. Here there is no ambiguity and no interference. For
values of transmittivity between 0 and 1 we have intermediate possibilities (see also
Subsec. 2.3.4).

• the first measurement step consisting in washing out of interference, which is in general
obtained by some tracing out; and

• the actual acquiring (and eventual storing) of information, which is obtained through
some form of detection.

The first step of measurement is reversible and requires no actual interaction between the
system and the apparatus, as we shall see now, while the information acquiring is neces-
sarily irreversible. We present now some interesting experimental contexts that can throw
light on this distinction.

9.5.1 Mandel, Wang and Zou’s experiment

This distinction can be seen at work by the following experiment, performed by Wang,
Zou, and Mandel.46 Two non-linear crystals give rise to two spontaneous parametric down-
conversions (see Fig. 9.9; see also Sec. 7.1). When the transmittivity |T|2 of the neutral

46 See [Wang et al. 1991b].
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�Figure 9.10 (a) The results of measuring the coincidence rate of detectors Ds and Di for various displacements
of BM are here shown. The solid line represents the best-fitting sinusoidal function of the
expected periodicity. Error bars show the statistical uncertainty. (b) Measured visibility V of the
interference (see Subsec. 2.3.4) registered by the coincidence counting rate of detectors Ds and Di
for various filter transmittivity |T|2. (c) Measured signal photon counting rate of the sole detector
Ds as a function of BM displacement. Curve A: filter transmittivity |T|2 = 0.91; curve B: |T|2 = 0.
Adapted from [Wang et al. 1991b].

density filter is 100%, one cannot distinguish between pairs |s1〉, |i1〉 and |s2〉, |i2〉: this
reflects itself into the presence of interference fringes in the coincidence rate of detection
at Di and Ds , obtained for different vertical displacements of BM (see Fig. 9.10(a)). On
the contrary, when |T|2 = 0, no interference is visible (see Fig. 9.10(b)). It is particularly
interesting to note that the counting rate registered by Ds alone suffices to exhibit inter-
ference (second order interference) when |T|2 > 0 (see Fig. 9.10(c)), because Ds cannot
distinguish if the s-photon comes from NL1 or from NL2. Here, it is less obvious why
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blocking i1 washes out the interference: since the down-conversions in both NL1 and NL2
are spontaneous, detector Ds should not be able to distinguish whether the s-photon comes
from NL1 or NL2. Why, then, do the results show no interference for |T|2 = 0? It is clear
that this phenomenon cannot be caused by some disturbance of the signal photons. The
sole in principle distinguishability of the two “paths” giving rise to the interference (signal
photon coming from NL1 or from NL2) suffices to destroy the latter (see also Sec. 9.6). As
a matter of fact, if i1 is blocked, we could use the information from detector Di to establish
whether the s-photon comes from NL1 (no coincidence) or from NL2 (coincidence). In
this respect, it looks like the state vector describes not only what is actually known but also
what is in principle knowable (see Subsec. 2.3.3) – we shall come back to the meaning of
the state in quantum mechanics in Ch. 15. In conclusion, the state vector has “registered”
the destruction of the interference even if nobody has actually and irreversibly acquired
this information.

9.5.2 Quantum eraser

In the following conceptual experiment we present a variant of the complementarity
between wave-like and corpuscular behaviors (see also Subsec. 1.2.4 and 2.3.4). This
experiment was first proposed by Scully, Englert, and Walther.47 Since then, the so-
called quantum eraser has been experimentally realized, even though with different
setups.48

In the original proposal, we have an atomic beam which goes through two slits of wall I
(see Fig. 9.11); behind this wall there is a further series of slits which are used as collima-
tors to define two atomic beams that reach the narrow slits of wall II where the interference
originates. Between wall I and wall II and after the collimators the atomic beams are
orthogonally intersected by an intense source of light, for instance by a LASER (Light
Amplification by Stimulated Emission of Radiation) beam,49 which brings the internal
state |ι〉 of the two-level atoms from an unexcited (ground) state |g〉 into an excited state
|e〉. Thereafter, each of the two beams passes through a microcavity.50 Finally, they fall on
a screen. The atomic source is adjusted in such a way that there is at most one atom at a
time in the apparatus.

In the interference region, the wave function describing the center-of-mass motion of
the atoms is the superposition of the two terms referring to slit 1 and slit 2 (r indicates the
center-of-mass coordinate), so that the total (center-of-mass plus internal) wave function is
given by

&(r) = 1√
2

[ψ1(r) + ψ2(r)] |ι〉, (9.78)

47 See [Scully et al. 1991].
48 See e.g. [Herzog et al. 1995] .
49 See Box. 13.1: p. 494.
50 See Sec. 13.7.
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�Figure 9.11 Scully, Englert, and Walther’s proposed experiment. A set of slits (after the wall I) collimates two
atomic beams that pass through the narrow slits (wall II) where the interference pattern
originates. This setup is supplemented by two high-quality microcavities and a laser beam to
provide which-path information. (a) Quantum erasure configuration in which electro-optic
shutters separate microwave photons in the two cavities from the thin-film semiconductor (the
central detector wall) which absorbs microwave photons and acts as a photodetector. In the
absence of the laser beam, there is no possibility of obtaining which-path information and we
have interference on the screen (solid line). Instead, introducing the laser beam, we may acquire
which-path information and the interference is destroyed (dashed line). (b) The shutters are
open. The probability density of the particles on the screen depends upon whether a photocount
is observed in the detector wall (“yes”) or not (“no”), demonstrating that the correlation
between the event on the screen and the eraser photocount is necessary to retrieve the
interference pattern.

and the probability density of particles falling on the screen at the point r = r0 will be
given by

℘(r0) = 1

2

[
|ψ1(r0)|2 + |ψ2(r0)|2 + ψ∗

1 (r0)ψ2(r0) + ψ∗
2 (r0)ψ1(r0)

]
〈ι|ι〉. (9.79)

The cavity frequency is tuned in resonance with the energy difference between the excited
and ground states of the atoms. The velocity of the atoms may be selected in such a way
that, after being prepared in an excited state by the laser beam, on passing through either
one of the cavities each atom will emit a microwave photon (which stays in the cavity) and
leave which-path information. After the atom has passed through the cavity it is again in
force-free space and its momentum keeps the initial value.

Passing through the cavities and making the transition from |e〉 to |g〉, the state of the
global system (atomic beam plus cavity) is given by

&(r) = 1√
2

[ψ1(r)|1102〉 + ψ2(r)|0112〉] |g〉, (9.80)

where |1102〉 denotes the state in which there is one photon in cavity 1 and none in cavity 2.
In contrast to Eq. (9.79), the probability density on the screen is now
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�Box 9.2 Recoil-free which path detectors?

The assumption that which path detectors are recoil-free has been questioned by Storey and
co-workers [Storey et al. 1994]. They pointed out that the which-path determination would
not be possible without a double momentum transfer between detector and photon (when
a photon is emitted and then reabsorbed from the opposite direction), whose magnitude is
in the limits of the uncertainty relation between position and momentum. However, Scully
and co-workers [Englert et al. 1995] showed the correctness of their results that have also
been experimentally confirmed (see Subsec. 2.3.4 and also Sec. 9.7). Therefore, there is no
significant change in the spatial wave function of the atoms. It is only the correlation between
the center-of-mass wave function and the photon’s degrees of freedom in the cavities that is
responsible for the loss of interference.

℘(r0) = 1

2

[|ψ1(r0)|2 + |ψ2(r0)|2 + ψ∗
1 (r0)ψ2(r0)〈1102|0112〉

+ ψ∗
2 (r0)ψ1(r0)〈0112|1102〉

]〈g|g〉. (9.81)

Since the two cavity state vectors |1102〉 |0112〉 are orthogonal to each other, the interfer-
ence terms vanish in Eq. (9.81) and diffraction fringes are washed out, so that Eq. (9.81)
reduces to

℘(r0) = 1

2

[
|ψ1(r0)|2 + |ψ2(r0)|2

]
. (9.82)

It should be noted that the which path detectors are recoil-free (see Box 9.2).
Let us now separate the detectors in the cavity by a shutter–detector combination, so

that, when the shutters are closed, the photons are forced to remain either in the upper or
in the lower cavity. However, if the shutters are opened, light will be allowed to interact
with the photodetector wall and in this way the radiation will be absorbed and the memory
of the passage erased (such an operation is called quantum erasure). After the erasure, will
we again obtain the interference fringes which were eliminated before? The answer is yes,
so that interference effects can be restored by manipulating the which path detectors long
after the atoms have passed and before reaching the final (detection) wall.

This result can be formally expressed as follows. Let us include the photodetector
walls into the description. These are initially in the ground state |g〉D, so that Eq. (9.80)
modifies to

&(r) = 1√
2

[ψ1(r)|1102〉 + ψ2(r)|0112〉] |g〉A|g〉D. (9.83)

After absorbing the photon, the photodetector passes to an excited state |e〉D. If we
introduce symmetric and antisymmetric atomic states

ψ±(r) = 1√
2

[ψ1(r) ± ψ2(r)], (9.84)
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together with symmetric and antisymmetric states of the radiation fields contained in the
cavities

|±〉 = 1√
2

[|1102〉 ± |0112〉], (9.85)

we can rewrite Eq. (9.83) as

&(r) = 1√
2

[
ψ+(r)|+〉 + ψ−(r)|−〉] |g〉A|g〉D. (9.86)

The action of the quantum eraser on the system is to change Eq. (9.86) into

& ′(r) = 1√
2

[
ψ+(r)|0102〉|e〉D + ψ−(r)|−〉|g〉D

] |g〉A. (9.87)

The reason is that the interaction Hamiltonian between radiation and photodetectors only
depends on symmetric combinations of radiation variables so that the antisymmetric state
remains unchanged.

Now, as long as the final state of the photodetector is unknown, the atomic probability
density at the screen is

℘(r0) = TrA,F ,D
[
& ′∗(r0)& ′(r0)

]
(9.88)

= 1

2

[
ψ∗+(r0)ψ+(r0) + ψ∗−(r0)ψ−(r0)

] = 1

2

[
ψ∗

1 (r0)ψ1(r0) + ψ∗
2 (r0)ψ2(r0)

]
,

where the trace has been performed on the atomic, field, and detector degrees of freedom.
Clearly, Eq. (9.88) does not show any interference terms. However, if we compute the
probability density for finding both the photodetector excited and the atom at r0 on the
screen, we have

℘eD
(r0) = TrA,F

[|e〉D 〈e |& ′∗(r0)& ′(r0)
]

= |ψ+(r0)|2 = 1

2

[
|ψ1(r0)|2 + |ψ2(r0)|2

]
+� [ψ∗

1 (r0)ψ2(r0)
]
, (9.89)

which exhibits the same interference term as Eq. (9.79). In similar way, the probability of
finding both the photodetector in the ground state and the atom at r0 on the screen is

℘gD
(r0) = TrA,F

[|g〉D 〈g |& ′∗(r0)& ′(r0)
]

= |ψ−(r0)|2 = 1

2

[
|ψ1(r0)|2 + |ψ2(r0)|2

]
−� [ψ∗

1 (r0)ψ2(r0)
]
, (9.90)

giving rise to the dashed antifringes indicated in Fig. 9.11(b).
The discussion of the above conceptual experiment naturally leads us to ask the

following questions:

• Do we want to know whether we registered a “slit 1” atom or a “slit 2” atom.
• Are we interested in ascertaining one of the two situations, i.e. having the microwave-

photon sensor either excited (|e〉D) or not (|g〉D)?

We cannot answer both questions at the same time. In other words, we either know the atom
path without using the eraser and hence without knowing anything about the photodetector
and its state (first alternative), or we desire to know the latter (second alternative) and
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we must reproduce the interference by losing all information about the particles’ path.
In the former case the absence of interference (Eqs. (9.82) and (9.88)) is due to the sum
of probabilities (9.89) and (9.90). It is important not to forget that the photon is a quantum
object: when the shutters are opened, the two cavities become a single larger one. Now, the
photon’s wave is a combination of the two partial waves, such that either the two waves
reinforce each other (constructive interference) and the photosensory detects the photon,
or they mutually extinguish each other, with the consequence that the photosensory detects
no photon (destructive interference). In other words, there is only a 50% probability of
detecting the photon.

From this conceptual experiment, there are two lessons to be drawn: (1) the washing out
of the interference is reversible if we do not actually acquire and/or store information; (2)
when measuring, one cannot consider the object system as separate from the context of the
experiment being performed.51

The above examination, in particular the discussion presented in Box 9.2, supports
the statement that the complementarity principle is genuinely a fundamental principle
of quantum mechanics and not a mere consequence of the uncertainty relation (see also
Subsec. 2.3.4).

9.6 Interaction-free measurement

We have already briefly discussed an example of interaction-free measurement (in Sub-
sec. 1.2.4). Let us now deal with this matter more extensively. M. Renninger was the first
to propose an experiment in which one can measure some properties of a system without
interacting with it.52 He called this type of measurements negative-result measurements,
even though today the term interaction-free measurements is more commonly used.

A more recent experimental proposal is based on the use of a Mach–Zehnder interfer-
ometer53 (see Fig. 9.12). The beam splitters BS1 and BS2 are symmetric, and, after BS2,
if the phase difference φ is zero, detector D3 detects all photons (due to constructive inter-
ference) while D4 is the dark-output (due to destructive interference). At any time, there
is at most one photon in the interferometer. We are testing whether an object O is located
along the upper path 2. Let us suppose that O is actually present in path 2. Then, there are
three possible outcomes of the experiment:

• no detector clicks;
• D3 clicks;
• D4 clicks.

In the first case (with probability 1/2) the photon has been absorbed by the object. In the
second case (with probability 1/4) the photon reaches D3 (it could have also reached it if the
object were not present, with probability 1). The third case may occur with probability 1/4.

51 See [Bohr 1935b, Bohr 1948, Bohr 1949].
52 See [Renninger 1960]. We have already quoted his pioneering article in showing the impossibility of

generalizing a thermodynamic model of measurement (see Subsec. 9.2.2).
53 See [Elitzur/Vaidman 1993, 988–91] .
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�Figure 9.12 An interaction-free measurement setup proposed by Elitzur and Vaidman. If the relative phase
φ = 0, detector D4 clicks only if one of the arms is blocked by the object O.

If one performs the test and detector D4 clicks, one may be informed that the object is
located in the upper path without having interacted with it. In order to investigate the
quantum-mechanical roots of this conclusions, let the evolution of the system in absence
of the object be described as follows (see also Subsec. 2.3.4)

|i〉 BS1�→ 1√
2
(|1〉 + ı |2〉) M1,M2�→ 1√

2
(ı |1〉 − |2〉)

BS2�→ 1

2
ı (ı |3〉 + |4〉)− 1

2
(|3〉 + ı |4〉) = −|3〉, (9.91)

where | i〉 is the initial state (an incoming photon entering the interferometer from the left),
|1〉 , . . . , |4〉 are the state vectors of the photon associated to the corresponding paths as
indicated in Fig. 9.12. As usual, upon reflection the state vector acquires an imaginary
factor. Then, the photon leaves the interferometer moving to the right, and it is detected by
D3. If the object O is present the evolution is described by

|i〉 BS1�→ 1√
2
(|1〉 + ı |2〉) O�→ 1√

2
(|1〉 + ı |a〉)

M1,M2�→ 1√
2
(ı |1〉 + ı |a〉) BS2�→ 1

2
(ı |4〉 − |3〉)+ ı√

2
|a〉, (9.92)

where |a〉 represents the state of the photon when it is absorbed by the object. From
Eq. (9.92) we have the three possible outcomes described before: absorption by the object,
detection by D3, or detection by D4, with probabilities of 1/2, 1/4, and 1/4, respectively.
As we have said, with probability 1/4, we can detect the presence of an object without
interacting with it.

One may ask whether it is possible to enhance the probability to test the presence of
some object without interacting with it. The answer is yes, since one can envisage54 an
apparatus consisting of a series of N interferometers, with N large (see Fig. 9.13(a)). The
reflectivity |R|2 of each of the N BSs is chosen to be cos2(π/2N ) and the relative phases
between corresponding paths in the upper and lower halves to be zero. The result is that the

54 See [Kwiat et al. 1995a].
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�Figure 9.13 (a) The principle of coherently repeated interrogation. (a) A single photon incident from the
lower left gradually transfers to the upper right half of the system. After N stages, where N
depends on the BS reflectivities, the photon will certainly exit via the upper port of the last BS.
(b) Introduction of detectors prevents the interference. At each stage the state is projected back
into the bottom half of the system if the respective detector does not fire. After all stages there is
a good chance that the photon now exits via the lower port of the last BS, indicating the presence
of the detectors.

amplitude of the photon undergoes a gradual transfer from the lower to the upper halves of
the interferometers.

After all N stages, the photon will certainly leave by the upper exit (see Prob. 9.9).
Now, we insert a series of detectors (which together represent here the “obstacle”) in the
upper half of the apparatus which prevent the interference (see Fig. 9.13.(b)). At each beam
splitter, there is a small chance that the photon takes the upper path and triggers a detector,
and a large probability cos2(π/2N ) � 1 − π2/4N 2 that it continues to travel on the lower
path. The non-firing of each detector projects the state onto the lower half. The probability
that the photon will be found in the lower exit after N stages is then

℘ =
[
cos2

( π
2N

)]N �
[

1 −
( π

2N

)2
]N

. (9.93)

This represents the probability of “success,” i.e. the probability that we are able to detect
the presence of the obstacle without interacting with it. The probability that the photon
will be absorbed by the object is very low and is given by 1 − ℘. To summarize, there are
three possible outcomes: the photon leaves the apparatus by the upper path, and we may
infer with certainty that the object is absent; the photon leaves the apparatus in the lower
part, and we may infer with certainty that the object is present; finally, no photon leaves the
apparatus, and this means that the photon has been absorbed by the object. However, as we
have seen, the probability of the third outcome may be made arbitrarily small as N grows.
Hence, it is clear that, as the number of stages becomes very large, we may approach an
efficiency (probability of success) arbitrarily close to 1 (see Fig. 9.14).

The expanded version shown in Fig. 9.13 may be “compressed” into a single device by
making use of two identical “cavities” weakly coupled by a highly reflective beam splitter
(see Fig. 9.15). At time t = 0 a photon is inserted in the left cavity (for timing purposes,
it is important that the length of the photon wave be shorter than the cavity length for the
duration of the experiment). For a beam splitter of reflectivity |R|2 = cos2(π/2N ) and in
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�Figure 9.14 Probability of success in repeated interaction-free measurements as a function of the number N of
stages: the efficiency rapidly tends to 1 as N grows.
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�Figure 9.15 Interaction-free measurement with two cavities. N represents here the number of cycles and will
depend on the reflectivity of the coupling beam splitter.

absence of any absorber the photon will certainly be located in the right cavity at time
tN = N × (round-trip time), due to interference effects. For this reason, if a detector is
inserted in the left cavity at time tN , it would not fire. However, if there is an object in the
right cavity, the photon wave function is at each cycle projected back onto the left cavity,
giving rise to a (close to 1) probability of detecting the photon in the left side.

It is interesting to comment on some interpretational issues pertaining to interaction-free
measurement. The interaction-free measurement is due to an instantaneous “reduction”
of the superposition of both paths in the interferometer due to the simple presence of
an obstacle. As a consequence of this reduction, the photon is now localized. Hence,
interaction-free measurements pertain to the same class of experiments as those with
“reductions” with the sole presence of the detector (see Subsec. 9.4.2 and Mandel and
co-workers’s experiment reported in Subsec. 9.5.1). In the latter case, for instance, it is the
mere possibility of obtaining which-path information that destroys the interference while
no actual measurements need to be made. Stated in other terms, it is the non-local character
of a single photon that allows us to infer the presence of an object even though a posteriori
we may conclude that the photon has taken a given path.

There is another possible interpretation of the above results. This interpretation was
anticipated by de Broglie55 and successively developed by Vigier, Selleri, Tarozzi, Croca,
and their co-workers.56 The main idea is that both wave and particles have full physical

55 See [de Broglie 1956]. It is not our intention here to discuss de Broglie’s interpretation of quantum mechanics,
an issue that goes far beyond the scope of this book – however, see also Subsec. 16.3.2. We shall limit ourselves
to the examination of a specific consequence that, in the scientific community, has raised much attention in
the 1980s–1990s.

56 See [Croca 1987] [Garuccio et al. 1982] [Hardy 1992] [Selleri 1969, Selleri 1982] [Tarozzi 1985].
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�Figure 9.16 Schematic representation of Mandel’s experiment on empty waves. The essential setup is the
same as in Fig. 9.9. The main difference is that, in the place of a neutral density filter, we have
now a second beam splitter (BS2), whose output beams travel toward the second non-linear
crystal (NL2) and toward the third detector (D3). Now, if detector D3 clicks, from the point of view
of the empty wave theory an empty wave (i1) should fall on D1 and still induce coherence
between s1 and s2. Experimental results showed no coherence in this case, which supports the
interpretation of quantum waves as probability amplitudes.

reality. While almost all energy-momentum is associated with the particle, a small fraction
is smeared on the wave. However, even if we cannot measure physical quantities of a wave
without particle (the so-called empty wave), we could notwithstanding detect some funda-
mental effects of the wave on the probability distribution. In particular, interference effects
could be sensibly different if an empty wave is present or not. The empty wave hypothesis
could account for the superposition produced in an interferometer in this way: the particle
is always localized in a pathway but in the other pathway an empty wave travels such that
at the second beam splitter its interference effects with the photon manifest themselves.
Returning to the interaction-free measurement, this could then be explained by assuming
that an obstacle prevents the empty wave from traveling and for this reason there are no
longer interference effects at the second beam splitter. This would be clearly a classical
explanation. Such hypothesis was tested by Mandel and co-workers, who showed that the
hypothesis of an empty wave is inconsistent with experimental results. The apparatus used
by Mandel and co-workers is a modification of that presented in Sec. 9.5 and is shown in
Fig. 9.16.57

57 See [Zou et al. 1992]. In this experimental setup it is supposed that a non-null empty wave may go through
the second non-linear crystal. In another, more complicated, experimental set up [Wang et al. 1991a] there is
no necessity of this assumption.
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quasar lenticular galaxy Earth

�Figure 9.17 Depiction of Wheeler’s experiment. A far away quasar sends a light beam to us. Before arriving to
the Earth, the light encounters on its route a lenticular galaxy. In this case the light can take two
different paths. However, whether it actually takes the two paths or if it follows a single path
seems to be decided by the measurement performed on Earth millions of years later.

The technical consequences of interaction-free measurements can be very far-reaching:
more recently, this effect has been used to obtain images of objects without illuminating
them (interaction-free imaging). In order to obtain such a result, it suffices to work with
beams rather than with single photons and to associate to each photon a “pixel” of the
image.58

9.7 Delayed-choice experiments

In what follows we discuss an important issue of quantum theory, proposed for the first
time by Wheeler in 1978. This issue can be better illustrated using a cosmological example
[Wheeler 1983, 190–99]. Let us consider a quasar (QUAsi-StellAR radio source), whose
light, before reaching the Earth, encounters a lenticular galaxy. As is well known, such a
galaxy can act as a gravitational lens, such that the light can take two simultaneous paths
(see Fig. 9.17). The problem is the following: we can choose here on Earth either to observe
an interference phenomenon (wave-like behavior), hence merging the light from both paths
and detecting the outgoing beams, or to detect the light on a determinate path (corpuscular
behavior). At a first sight, it is as if we could decide here and now a certain (wave-like or
corpuscular) behavior about an event which seems to have already happened millions of
years ago (see also Sec. 2.4). How can we solve this problem?

If we want to solve the problem without introducing retrocausation,59 the only rea-
sonable possibility is that the assumption “the event has already occurred” is false. Even
classically, we can only speak of past events if we are able somehow to interact with their
present effects. In other terms, what we call “past” (the light of million years ago) is actu-
ally only a present thing, i.e. the light, not of million years ago, but the light which we detect
now, that is, the light that, in order to arrive to us, has traveled all the way (and all the time)
to us. Therefore, by performing the quoted experiment, we are not at all acting on the past,
but only on the effects which past events have transmitted to our present. Summarizing, we
cannot deal with the past without interacting with its effects on the present, and, whenever
we do that, we are also free to choose the form to receive them, i.e. to interrogate them.

58 See [Kwiat et al. 1996] [A. White et al. 1998].
59 See [Wheeler 1978, 41] [Wheeler 1983, 183–84].
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�Figure 9.18 Interferometry experiment for testing delayed choice. The set up is essentially a Mach–Zender
interferometer in which the two detectors may be switched from positions DA, DB (which-path
detectors) to positions D

′
A, D

′
B (interference detectors). This decision will be taken after the photon

has already passed through BS1.

From a quantum-mechanical perspective, we can push ourselves even further, and say
that, in the specific example of the quasar, no event has occurred at all. In fact, we are
allowed to say that an event has occurred only when there is a physical trace such as a
detection (see Sec. 9.5). The delayed choice shows on a chronological scale the funda-
mental quantum result that we cannot speak (not even on the level of the definition) of
a phenomenon without interacting with it in some way. Using Wheeler’s words, we can
state that “no elementary phenomenon is a phenomenon until it is a registered (observed)
phenomenon.”

Walther and co-workers [Hellmuth et al. 1986] have realized an interferometry exper-
iment in order to verify the delayed-choice framework following, in a slightly different
version, Wheeler’s original proposal (see Fig. 9.18; see also Fig. 2.11). In a Mach–Zender
like set up, the detectors may be switched from positions DA, DB to positions D

′
A, D

′
B and

vice versa. This may be done after the beam has already passed the first beam splitter.
In the arrangement DA, DB we detect the path of the photon, whereas in the arrangement
D
′
A, D

′
B we detect the interference (see Subsec. 2.3.4). Comparing the results obtained

in the second case with an “ordinary” interferometry experiment, no differences have
been detected: we are totally free to perform delayed-choice experiments without altering
quantum predictions.

The above discussion on delayed-choice experiments teaches us a general lesson: There
are time intervals – in the case shown in Fig. 9.18, the time interval in which the pho-
ton travels from BS1 to the detectors – where we cannot assume that an event happened,
whereas, after this interval, an event may have occurred – the photon has been registered.
We are then forced to admit that there must also be a reality before an event has been reg-
istered, since events can only come out of some form of reality. Therefore, reality cannot
be made only of a collections of events. This suggests to interpret reality as a dynamical
interplay between local events and non-local behaviors (or correlations) that are described
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�Box 9.3 Complementarity

In the paper published in 1928, which founded the Copenhagen interpretation (see Sub-
secs. 1.2.4 and 1.5.7), Bohr thought of the complementarity principle in terms of a sharp
yes/no alternative between wave-like and corpuscular behaviors and interpreted this com-
plementarity as between the quantum “superposed” dynamics – ruled by the Schrödinger
equation (see Ch. 3) – and localizations in space and time induced by measurement. We
have already said that complementarity cannot be seen as a sharp yes/no alternative (see
Subsec. 2.3.4). As we have seen in the present chapter, there is no sharp boundary between
measurement and other quantum dynamical processes, so that also the latter point of Bohr’s
interpretation is not fully correct. This reformulation of the complementarity principle allows
also a reconciliation between the apparently antithetic aspects of the theory, i.e. the unitary
time-evolutions and the acquisition of information during a measurement, as it was supposed
by von Neumann (see Subsec. 9.2.1).

by the wave function of a (multiparticle) system60 (see Chs. 15 and 16). Local events and
non-local behaviors can be taken to be complementary (see Box 9.3). Moreover, quantum
systems are necessarily open to the environment, i.e. they can never be completely isolated.
In this respect, measurement is a special case of a more general class of interactions (see
Secs. 9.4–9.5, and also Ch. 14).

Finally, note that “quantum eraser” experiments (see Subsec. 9.5.2) have some relation-
ship with the “delayed choice.” In fact, it has been proposed and successively realized61 to
consider the quantum eraser as a stronger form of delayed choice to the extent that one can
postpone the decision to read or to erase some information (typically a “which-path” infor-
mation) until after detection. Only, the quantum eraser has more to do with the reversible
behavior of the (quantum) detector, and in this sense it is partly related to a different aspect
of the theory.

9.8 Quantum Zeno effect

In this chapter we have already analyzed several puzzling features of quantum mea-
surement. Another “strange” effect, which a measurement may give rise to in quantum
mechanics, is the so-called quantum Zeno effect,62 which was introduced by Misra and

60 See [Auletta 2003] [Auletta 2006].
61 See [Herzog et al. 1995] . For the realization see [Kim et al. 2000].
62 This name has been taken from the famous Greek philosopher Zeno of Elea (490 BC–425 BC), who proposed

several “paradoxes” about motion aiming to show that any apparently moving object should in reality be
“frozen” in its position. For instance, an arrow can never reach its target because the distance the arrow
should cover can be divided into infinite space intervals (for example progressively dividing by two the initial
interval). Since each small segment requires a finite time, it should take an infinite time for the arrow to
reach the target. Of course, Zeno supposed the infinite divisibility of space but not of time. Moreover, ancient
philosophers did not know the concept of infinitesimal quantities.
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Sudarshan63 even if some antecedents had already been developed earlier. In a few words,
the Zeno effect is the inhibition of spontaneous or induced transitions between quantum
states by frequent measurements, so that a system remains in its initial state throughout a
given time interval.64

It should be emphasized that inhibition of spontaneous transitions – such as the decay
of an unstable state, originally proposed by Misra and Sudarshan – are very difficult to
realize experimentally. In order to illustrate the main features of the quantum Zeno effect,
we start with a simple model:65 we suppose that a certain observable Ô of a system S is
being monitored continuously and that the initial state of S is the n-th eigenstate |ψn〉 of
Ô . We may treat the continuous measurements as a limiting case of discrete measurements
separated by small time intervals τ . As we know from Ch. 3, between two measurements
(in the interval τ ) the evolution of S is governed by the Schrödinger equation (see also
Sec. 14.4). This evolution will cause S – with some probability – to make a transition from
the eigenstate |ψn〉 to some other one. The first interval begins at t = 0, and for sufficiently
small times τ we may expand the Schrödinger equation into a power series, obtaining, just
before the first measurement,

|ψ(τ )〉 �
⎡⎣1 + Ĥτ

ı h̄
+ 1

2

(
Ĥτ

ı h̄

)2

+ · · ·
⎤⎦ |ψn〉 , (9.94)

where Ĥ is the Hamiltonian of the system S. The probability that S will still be in the n-th
eigenstate (that no transition occurred) is clearly given by

℘nn = |〈ψn | ψ(τ )〉|2 �
∣∣∣∣1 + τ

ı h̄

〈
ψn

∣∣∣Ĥ ∣∣∣ψn

〉
− τ 2

2h̄2

〈
ψn

∣∣∣Ĥ2
∣∣∣ψn

〉∣∣∣∣2
� 1 − τ

2

h̄2

[〈
ψn

∣∣∣Ĥ2
∣∣∣ψn

〉
−
〈
ψn

∣∣∣Ĥ ∣∣∣ψn

〉2]
, (9.95)

up to second order in τ . Since the quantity in square brackets in the rhs of Eq. (9.95) is the
variance of the energy in the initial state |ψn〉 (see Subsec. 2.3.1), we can rewrite it in the
form

℘nn = 1 − τ
2

h̄2
(�En)2. (9.96)

We may repeat the same procedure k times, each step consisting of a free evolution during
the time-interval τ plus an instantaneous measurement of Ô: the probability that, at the
end, S is still in the initial eigenstate is the k-th power of the expression (9.96):

℘nn(kτ ) = ℘k
nn(τ ) =

[
1 − τ

2

h̄2
(�En)2

]k

, (9.97)

63 See [Misra/Sudarshan 1977].
64 The so-called watchdog effect is a particular case of the quantum Zeno effect. It is the suppression of the

response of a quantum object when the energy of the system is monitored continuously.
65 See [Braginsky/Khalili 1992, 95–104].
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�Figure 9.19 Simple optical version of the Zeno effect. (a) A series of polarization rotators (R1, R2, . . . , R6) is
used to rotate the polarization of the input photon from horizontal to vertical. All light is then
absorbed by the horizontal polarization filter P and nothing is observed in the final detector D.
(b) When a series of horizontal polarizers (P1, P2, . . . , P6) is interspersed between the rotators,
the light is projected back into a state of horizontal polarization at every stage, resulting in the
detection of light by the final detector D. If the number of stages is equal to five, more than 50%
of the input light will be transmitted. In particular, for the case shown (N = 6), the chance of
transmission is very nearly twice the chance of absorption.

where kτ is the total time for the k steps. The continuous limit for τ → 0 (but keeping the
total measurement time kτ fixed) is given by66

lim
τ→0

℘nn(kτ ) → exp

[
−kτ 2

h̄2
(�En)2

]
, (9.98)

for small τ . Finally, in the limit of vanishing τ , the probability that no transition occurs
becomes

℘nn(kτ ) = 1. (9.99)

In other words, S is “frozen” in the initial state |ψn〉 . In conclusion, when any observ-
able with discrete spectrum is continuously monitored with infinite accuracy, the system is
“forced” to remain in the initial state.

More recently,67 a combination of the interaction–free device (see Sec. 9.6) with that of
a Zeno experiment has been proposed. If a photon with horizontal polarization enters the
device shown in Fig. 9.19(a) from the left, its polarization is gradually rotated to vertical
by the sequence of polarization rotators. As a consequence no light can pass the hori-
zontal polarizer P and be detected. However, if we insert a series of horizontal polarizers
in between the rotators, the state will be “back projected” each time to the initial state
of horizontal polarization and, with a certain probability, will be detected by the final
detector.

66 Since
lim

n →∞ (
1 + x

n
)n = ex .

67 See [Kwiat et al. 1995b] and also [Kwiat et al. 1996].
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9.9 Conditional measurements or postselection

As we have seen (eq. (5.18)), we may express expectation values of an observable Ô in

terms of a trace of the form Tr
(
ρ̂ Ô

)
, where ρ̂ represents the state of a physical system.

The probability of obtaining the event described by the projector P̂j given the state ρ̂ can
be written as

℘
(

P̂j |ρ̂
)
= Tr

(
ρ̂ P̂j

)
. (9.100)

Suppose now that, given the state ρ̂, the quantum event (detection) P̂j actually occurs. Now

it is easy to show (see Prob. 9.10) that, if Tr
(
ρ̂ P̂j

)
	= 0 (i.e. if the probability of the event

P̂j is non-zero),

ρ̂ j =
P̂j ρ̂ P̂j

Tr
(
ρ̂ P̂j

) (9.101)

is again a density operator and represents, according to von Neumann, the conditional state
given that the event P̂j has occurred (see also Eq. (5.2)). Then, the conditional probability
of another event P̂k once P̂j has occurred is given by

℘(P̂k |ρ̂ j ) = Tr
(
ρ̂ j P̂k

)
=

Tr
(
ρ̂ P̂j P̂k P̂j

)
Tr
(
ρ̂ P̂j

) , (9.102)

and is known as the von Neumann formula.
It is often useful to take advantage of projective measurements (measurements that sat-

isfy the projection postulate) to “guide” the evolution of a quantum system. This procedure
is known as conditional measurement,68 and will be illustrated in the following. Consider
a system S in an initial state |ψS (0)〉 interacting with a second system S ′

in an initial state∣∣ψS ′ (0)
〉
. After their interaction for a time τ , the combined (entangled) state of the total

system will be given by ∣∣&SS ′ (τ )
〉 = e−

ı
h̄ τ Ĥ |ψS (0)〉 ⊗ ∣∣ψS ′ (0)

〉
, (9.103)

where Ĥ is the Hamiltonian of the total system. Suppose that we now make a measurement
on an observable Ô of the system S ′

which gives the result o. It follows that the conditional
state of S after the measurement will be given by∣∣∣ψC

S (τ )
〉
= 1∣∣∣∣〈o | &SS ′ (τ )

〉∣∣∣∣ 〈o | &SS ′ (τ )
〉
, (9.104)

where ‖ 〈o|&SS ′ (τ )〉 ‖= ℘(o) is precisely the probability that the measurement on S ′
gives

the result o. It is then clear that, if this probability is different from zero, by carefully
“choosing” the result o of the measurement, we may select a predetermined final state of S.
Of course, we cannot decide a priori the result of the measurement, but we know that there

68 This approach has been suggested by [Sherman/Kurizki 1992]. See also the “quantum state engineering”
proposed by [Vogel et al. 1993].
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�Box 9.4 Example of postselection

In order to better understand how postselection works, we further illustrate it by means of
a simple example. Consider a two-level system S with basis states {|a〉 ,

∣∣b〉 } and another
two-level system S ′

with basis states {| c〉 ,
∣∣d〉 }. Suppose also that the initial state of S is∣∣ψS(0)

〉 = |a〉 and that the initial state of S ′
is
∣∣∣ψS′ (0)

〉
= | c〉 . If the total Hamiltonian Ĥ

is such that the entangled combined state at time τ is∣∣∣&SS′ (τ )
〉
= 1√

2

(|a〉 ⊗ | c〉 + ∣∣b〉 ⊗ ∣∣d〉 ), (9.105)

then, when performing a measurement on S ′
, the probability of obtaining the state

∣∣d〉 is
1/2 and the postselected state

∣∣b〉 is given by∣∣∣ψC
S(τ )

〉
= 1∣∣∣∣∣∣〈d | &SS′ (τ )

〉∣∣∣∣∣∣
〈
d | &SS′ (τ )

〉
= ∣∣b〉 . (9.106)

In other words, in this way we have guided the evolution of S from the initial state |a〉 to
the final state

∣∣b〉 with probability 1/2, thanks to the selective measurement made on the
ancillary system S ′

.

is a certain finite probability that the desired outcome will be obtained. Then, if we want to
guide the evolution of the system S from |ψS (0)〉 to a certain final state

∣∣ψC
S (τ )

〉
, we may

repeat the procedure above over and over, until we obtain the measurement that will give
the desired result. This will happen with probability℘(o) and therefore the procedure above
will have to be repeated – on average – a number of times of the order of (℘(o))−1 before
the desired goal is reached. Each run for which the measurement gives a result different
from the one that is desired has to be discarded. Therefore, the price one has to pay for
using this scheme in order to guide the evolution of S is the probability of success, which
by necessity is less than the unity. This procedure is also known as postselection (because
we select a posteriori the result of the measurement) or selective measurement and has
to be contrasted to the non-selective measurement, where, even though a measurement
is equally performed on S ′

, the postselection is not made. From the discussion above, it
appears natural to consider postselection as a sort of preparation (see Subsec. 1.3.1 and
conclusions of Sec. 9.1).

Finally, we note that the generalization of Eq. (9.104) to non-pure states is simply
given by

ρ̂
C
S (τ ) = 1

℘
TrS ′

[
ρ̂SS ′ (τ ) |o〉 〈o |], (9.107)

where ρ̂SS ′ (τ ) is the evolved density operator of the compound system, ρ̂C
S (τ ) is the

density operator of S alone after the conditional measurement, and

℘ = TrS
{
TrS ′

[
ρ̂SS ′ (τ ) |o〉 〈o |]} (9.108)

is the success probability of the conditional measurement.
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�Box 9.5 Example of operation

In order to explain the concept of operation in simple terms, let us consider the example
of the polarization filter introduced in Subsec. 1.3.1 and further developed in Subsec. 2.1.5.
Suppose we have a photon described by an initial state vector∣∣ψi

〉 = cos θ
∣∣h〉 + sin θ |v〉 , (9.109)

where
∣∣h〉 and |v〉 are the usual horizontal and vertical polarization states, respectively. The

density operator corresponding to the state
∣∣ψi
〉

is

ρ̂ i = cos2 θ
∣∣h〉 〈h ∣∣+ sin2 θ |v〉 〈v | + sin θ cos θ

(∣∣h 〉 〈v ∣∣+ ∣∣v 〉 〈h ∣∣). (9.110)

The photon impinges on a vertical polarization filter. The test T in this case is represented by

T
(
ρ̂ i
) = |v〉 〈v | ρ̂ i |v〉 〈v | = P̂vρ̂ iP̂v. (9.111)

In fact, there are two possible outcomes of this “experiment”: either the photon is absorbed
(i.e. it does not pass the test) or it emerges from the filter (i.e. it passes the test) in the
state ρ̂f = |v〉 〈v | – if we are interested only in the final states that pass the test, we have
performed a selective operation. This result also follows from direct application of Eq (9.114)
(see Prob. 9.11).

9.10 Posit ive operator valued measure

The traditional (von Neumann’s) formal treatment of measurement makes use of projec-
tors (and of the projection postulate) (see Secs. 9.1–9.2). In other words, any observable
that can be represented by an operator on the Hilbert space of the system under consid-
eration is expanded in terms of complete (see Eq. (1.41a)) and orthogonal operators (see
Eq. (1.41b)), i.e. of projectors. Measurements represented by a set of projectors are there-
fore called orthogonal. However, as we have seen, measurements defined by projectors
generate a discontinuous change in the evolution of the state. If a measurement did not per-
turb the system to be measured, it could in principle be repeated over and over in order to
improve at each subsequent measurement the knowledge of the state of the system (i.e. the
information that can be extracted from the system). However, repeated orthogonal mea-
surements do not improve our knowledge of the measured observable, simply because
subsequent orthogonal measurements can only deterministically repeat the result of the
first (see Eq. (1.40)).

These arguments suggest that it would be suitable to define measurements not directly
associated to traditional observables. In this new framework, measurements associated to a
projector could be considered as an ideal limiting case of a more general class of measure-
ments for which the orthogonality condition is abandoned. We then introduce (1) a wider
class of operations than is allowed by the traditional von Neumann theory (Subsec. 9.10.1),
(2) a new class of non-orthogonal operators that replace projectors (Subsec. 9.10.2), and
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(3) a new kind of observables which can be expanded in terms of these non-orthogonal
operators rather than in terms of projectors (Subsec. 9.10.3).

9.10.1 Operations

In order to generalize our definition of measurement, it is convenient to introduce the con-
cept of operation, first from a mathematical standpoint. It represents a useful generalization
of the class of quantum transformations. An operation is defined as follows:69

Definition 9.1 (Operation) An operation T is a positive linear mapping from a state
space into another (possibly itself), which satisfies the following requirement:

0 ≤ Tr(T ρ̂) ≤ Tr(ρ̂) (9.112)

and the norm ‖ T ‖ is defined as = Sup
{
Tr
[
T (ρ̂)

]}
for each ρ̂ ∈ H, where H is the

Hilbert state space.

We symbolize the operation T on ρ̂ by T (ρ̂). We may think of T as a “test” which is
undergone by the system in the state ρ̂. Then, the probability of the transmission of a state
ρ̂ by an operation T (i.e. the probability that the system state passes the test) is

Tr
[
T
(
ρ̂
)]

. (9.113)

In this context, the output or final state, upon transmission, is taken to be (see Sec. 9.9)

ρ̂ f = T
(
ρ̂i
)

Tr
[
T
(
ρ̂i
)] , (9.114)

where ρ̂i is the initial state.
Following the discussion in Sec. 9.9, we may distinguish70 between non-selective

and selective operations (preparations): when we are interested in the transformations
performed by an apparatus, we speak of non-selective operations (depending on the equiv-
alence class of the initial state only). In other words, by keeping the apparatus fixed and by
varying the initial state, we obtain all possible state transformations induced by the appara-
tus. We speak, instead, of selective operations, if we are interested in a given subset of the
possible final states, satisfying a certain requirement. For this reason, a selective operation
may be considered a preparation.

Then, we are able to give an operational definition of state: since different preparation
procedures may be statistically equivalent (they yield the same statistics for all possible

69 See [Davies 1976, 17–18].
70 See [Kraus 1983, 13–17, 39–40, 71].
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measurements), the state corresponds to an equivalence class of preparations. In other
words, two states are said to be equivalent if they reproduce the same statistics and there-
fore cannot be experimentally distinguished (see Subsec. 9.10.3). Given the nature of
quantum theory, and especially the non-commutativity and the uncertainty principle, this
is the most suitable definition of a state. On the other hand, it is also possible to give an
operational definition of observable: since different experimental coupling procedures may
select the same observable, the observable is an equivalence class of premeasurements.

However, according to the discussion of Subsec. 8.1.1, there must exist some sort
of equivalence between the application of an operation to the system’s state or to a
given observable of the system. This equivalence is formally expressed by the following
theorem:71

Theorem 9.1 (Kraus) For an operation T there exist operators ϑ̂k (where k is an integer
in a finite or infinite set K ) on the Hilbert space satisfying∑

k∈K

ϑ̂
†
k ϑ̂k = Î , (9.115)

such that, for a given system’s observable Ô and an arbitrary state ρ̂, the operations T
and T ∗ are given by (see also Eq. (9.4))

T
(
ρ̂
)=∑

k∈K

ϑ̂k ρ̂ϑ̂
†
k , (9.116a)

T ∗ (Ô
)
=
∑
k∈K

ϑ̂
†
k Ôϑ̂k, (9.116b)

respectively, and where (see Prob. 9.12)

Tr
[
T
(
ρ̂
)

Ô
]
= Tr

[
ρ̂T ∗ (Ô

)]
. (9.117)

The operation described by Th. 9.1 is not necessarily unitary, i.e. in general it is not pos-
sible to write down the previous formulae with only a single operator ϑ , and can be used to
describe active and passive transformations (see again Subsec. 8.1.1). Indeed, Eqs. (9.116)
describe the same dynamics from two different perspectives: the operation (9.116a) per-
formed by T corresponds to the generalization of Schrödinger picture, while the operation
(9.116b) performed by T ∗ corresponds to the generalization of the Heisenberg picture. In
the next subsection we shall see how the operators ϑ̂†

k and ϑ̂k can be interpreted. Inciden-

tally, we note that the action of the operators ϑ̂†
k and ϑ̂k in Eqs. (9.116) shows a formal

similarity with the action of the “environment” operators in the master equation formalism
(see Sec. 14.2). As we shall see this is not fortuitous.

71 See [Kraus 1983, 42].
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9.10.2 System, apparatus, and the back act ion

As we have said, we may understand the traditional (von Neumann) exact measurement as a
limiting case of a wider class of measurements: we renounce the condition of orthogonality,
which characterizes projectors, but not that of completeness.72 To this purpose, we make
use of a new type of operator called effect.73 Effects describe the most general form of
measurement, and, in particular, they provide a definition of a measurement apparatus that
performs a realistic – and, as a consequence, necessarily approximate – measurement of
a certain observable. Limiting ourselves for the time being to the one-dimensional case,
let us consider the conditional probability ℘(xm |xS ) that the measuring device registers
the measurement outcome xm when the observable x̂ is actually in the eigenstate | xS〉
with value xS , that is, when our apparatus has not precisely registered the exact value of
the measured observable. If ρ̂i represents the initial state of the system, we express the
probability of obtaining a result xm by means of these conditional probabilities as

℘(xm) =
+∞∫
−∞

dxS℘(xm |xS )℘(xS ), (9.118)

where

℘(xS ) = 〈xS |ρ̂i |xS〉 (9.119)

is the initial state’s a priori probability distribution for the values of x̂ . Equation (9.118) is
a form of Bayes’ rule (see also Eq. (9.170)). Probability (9.118) can be rewritten, in a form
similar to the standard Eq. (5.18), as74

℘(xm) = Tr
[

Ê(xm)ρ̂i

]
, (9.120)

where the effects Ê(xm) are given by

Ê(xm) =
+∞∫
−∞

dxS℘(xm |xS )|xS〉〈xS |, (9.121)

which expresses the relationship between projectors P̂(xS ) = | xS〉 〈xS | and effects Ê(xm)
and can be therefore considered a clarifying expression and a first approximation to the
meaning of effects. They are considered here as weighted averages of projectors, with
weights given by the probabilities ℘(xm |xS ) that describe the approximate behavior of
the measuring apparatus. For the sake of simplicity, in this context we limit ourselves to
consider the probabilities ℘(xm |xS ) as the apparatus’ properties. We shall return to this

72 Due to the necessity of a proper normalization of the output state, any measurement must satisfy the
completeness condition (see Eq. (9.114)).

73 See [Braginsky/Khalili 1992, 33–37].
74 See [Busch 2003].
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point in Subsec. 9.11.1, where we shall explore the quantum nature of these probabilities,
and in Sec. 14.3, where a generalization of this formalism will be provided.

Now, by analogy with Eq. (9.101), we write the density operator describing the output
state of S after the whole measurement process in the form

ρ̂ f (xm) = 1

℘(xm)
ϑ̂(xm)ρ̂i ϑ̂

†(xm), (9.122)

where the operator ϑ̂(xm) (whose form is to be determined) can be called an amplitude
operator and completely describes the whole measurement process. From Eq. (9.120) and
the normalization condition Tr[ρ̂ f (xm)] = 1, it follows that (see Prob. 9.13)

ϑ̂†(xm)ϑ̂(xm) = Ê(xm). (9.123)

Using the polar decomposition of an operator,75 ϑ̂(xm) can be represented as

ϑ̂(xm) = Ût (xm)Ê
1
2 (xm), (9.124)

where Ût (xm) is a unitary evolution operator whose form depends on the measurement and
where

Ê
1
2 (xm) =

+∞∫
−∞

dxS
[
℘(xm |xS )

] 1
2 |xS〉〈xS | (9.125)

is uniquely determined by the apparatus’ conditional probability ℘(xm |xS ) and commutes
with x̂ . Therefore, when we consider a single output state, according to Eq. (9.116a) we
can write the whole measurement process as

ρ̂ f (xm) = 1

℘(xm)
ϑ̂(xm)ρ̂i ϑ̂

†(xm)

= 1

℘(xm)
Ût (xm)Ê

1
2 (xm)ρ̂i Ê

1
2 (xm)Û †

t (xm). (9.126)

Therefore, measurement can be formally viewed as a two-component process consisting in
the unitary transformation

ρ̂ f (xm) = Ût (xm)ρ̂
′
Û †

t (xm), (9.127a)

which is a premeasurement, and the reduction

ρ̂
′
(xm) = 1

℘(xm)
Ê

1
2 (xm)ρ̂i (xm)Ê

1
2 (xm). (9.127b)

75 It is so called in analogy with the decomposition of a complex number λ as λ = eıφ |λ|, where |eıφ | = 1
[Taylor/Lay 1958, 379].
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The matrix ρ̂′ is a density matrix again determined by the measurement process. Thus,
as we have illustrated in Sec. 9.5, there are two aspects of the measurement: the unitary
transformation, which is reversible; and information acquiring, which is irreversible. For
the time being, this decomposition of the measurement process is purely formal. In the next
section we shall learn more about the physical mechanism that generates such a situation.
The step (9.127b) leaves the measured value of the observable unchanged, that is, we have
(see Prob. 9.14)

+∞∫
−∞

dxm℘(xm)
〈
xS
∣∣∣ρ̂ ′ (xm)

∣∣∣ xS
〉
= 〈xS ∣∣ρ̂i

∣∣ xS
〉
, (9.128)

since the operator Ê
1
2 (xm) commutes with x̂ . In general, a measurement will cause a

perturbation of the state of the object system induced by the apparatus, which is called
back action.76 The back action is caused only by the unitary evolution of the form
(9.127a), while the reduction is completely determined by transition probabilities of the
form ℘(xm |xS ), which is the informational content which we can extract from a measure-
ment. In other words, the unitary transformation does not change the entropy of S and
therefore cannot produce any new information. However, as results from Eqs. (9.120)–
(9.121), the strength of the perturbation depends on the information which we can obtain
in a measurement process, i.e. from ℘(xm |xS ). As we shall see with further details in the
following, this formalism provides the definitive solution of the measurement problem that
we have discussed from the beginning of the present chapter.

Summarizing the above discussion, an effect is to a certain extent an analog of a projector
but with important differences. In fact, effects respect the completeness condition (see
Eq. (1.41a)), i.e. for a set of effects {Ê j }, we have∑

j

Ê j = Î . (9.129)

However, while projectors have only 0 and 1 as eigenvalues and, as a consequence, for
any set of projectors {P̂n}, P̂j P̂k = δ jk P̂k (see Subsec. 1.3.2), effects in the set {Ên} may
be unsharp, that is, we may have Ê j Êk 	= δ jk Êk .77 Also effects which represent combi-
nations of projectors pertaining to the same set (i.e. which project on one of the vectors
of a certain orthonormal basis on the Hilbert space of the system) commute, so that, for
instance, we have [

Ê j , Êk

]
= 0. (9.130)

Moreover, we can say that projectors are orthogonal extremes of the convex set of
effects.

76 A recent experimental evidence of quantum back action has been provided, even at a macroscopic
level, as an effect of a superconducting transistor (the measuring device) on a nanomechanical resonator
[Naik et al. 2006]. See also [Roukes 2006].

77 See [Busch et al. 1991, 10] .
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9.10.3 Unsharp observables

In the previous subsection we have made an important but still rather specific step towards
a generalization of the concept of observables. Indeed, up to now we have considered a set
of effects that commute. However, effects are also a very important tool for widening the
concept of measurement in order to comprehend the joint measurement of non-commuting
observables. We can distinguish between sharp properties (the values of an observable),
which are defined by projectors, and unsharp properties, which are defined by effects. We
may also distinguish between sharp observables, defined by projector valued measures
(PVMs), and unsharp observables defined by positive operator valued measures (POVMs):
PVMs may be considered as a combination of projectors, whereas POVMs may be seen as
combinations of effects that do not necessarily commute. In other words, PVMs are reso-
lutions of the identity in terms of orthogonal projectors, whereas POVMs are resolutions
of the identity in terms of non-orthogonal and in general non-commuting effects.

Unsharpness must not be confused with subjective ignorance: it rather expresses the
objective uncertainty intrinsic in the joint measurement of non-commuting (incompatible)
observable. For example, in the case of the Mach–Zender interferometer described in Sub-
sec. 2.3.4, it is possible to construct intermediate situations between a perfect determination
of the path of a particle and perfect visibility of the interference pattern. This intermediate
situation is an unsharp feature.

One of the main goals of POVMs is that they allow a coherent quantum-mechanical
description of joint measurement of non-commuting observables. While PVMs just tell us
that it is not possible to perform ideal joint measurements of non-commuting observables,
POVMs allow us to proceed a step further: it is possible to perform non-ideal measure-
ments of incompatible observables – which justifies our formulation of complementarity
principle in terms of a smooth relation.

Let us consider a simple example.78 Consider the experimental arrangement shown in
Fig. 9.20. While BS1 and BS2 are symmetric, the beam splitter BS3 has a transmission
parameter

√
η (see Prob. 9.15). We may distinguish between three possible cases:

• η = 1. In this case, the outcome probabilities are given by (Prob. 9.16)

℘k = ℘(Dk) = Tr
[

P̂V
k ρ̂
]
=
〈
P̂V

k

〉
ψ

, for k = 1, 2 (9.131)

and

℘3 = ℘(D3) = 0, (9.132)

where

P̂V
2 =

[
cos2 φ

2 − ı
2 sinφ

ı
2 sinφ sin2 φ

2

]
, P̂V

1 = Î − P̂V
2 , (9.133)

and

|ψ〉 = |1〉 (9.134)

78 See [de Muynck et al. 1991] [Martens/De Muynck 1990].



334 The measurement problem in quantum mechanics
�

LASER

BS1 M2

M1

BS2

D1

D2

D3

PS

φ
|1>

|2>

BS3

�Figure 9.20 Example of POVMs by means of an interferometry experiment. A single-photon state enters from
the left a Mach–Zender interferometer with phase shift φ. In the right arm of the interferometer
an additional beam splitter BS3 is inserted, with transmission parameter

√
η. Three detectors are

placed at three outputs of the interferometer.

is the initial state of the photon, whose corresponding density matrix is ρ̂ = |ψ〉 〈ψ |.
In this case, the projectors (9.133) project into the eigenstates of the interference or
superposition observable, which can then be written as

V̂ = P̂V
1 − P̂V

2 . (9.135)

• η = 0. In this case we can clearly distinguish an upper and lower path, where we have
(see Prob. 9.17)

℘u = ℘1 + ℘2 =
〈
P̂P

u

〉
ψ

, ℘d = ℘3 =
〈
P̂P

d

〉
ψ

, (9.136)

where

P̂P
d = 1

2

[
1 1
1 1

]
, P̂P

u = Î − P̂P
d . (9.137)

Then, these projectors represent a resolution of the path observable

P̂ = P̂P
u − P̂P

d . (9.138)

Here, we obviously have a typical classical probability according to a projection-like (or
von Neumann’s) reduction.

• In all cases where 0 < η < 1 we have a POVM. In this case the probabilities are given
by (see Prob. 9.18)

℘ j = Tr
[

Ê j ρ̂
]
=
〈
Ê j

〉
ψ

, for j = 1, 2, 3, (9.139)
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where (see Prob. 9.19)

Ê1 = 1

2

[
P̂P

d + η P̂P
u −√

η
(

P̂V
2 − P̂V

1

)]
, (9.140a)

Ê2 = 1

2

[
P̂P

d + η P̂P
u +√

η
(

P̂V
2 − P̂V

1

)]
, (9.140b)

Ê3 = (1 − η) P̂P
u . (9.140c)

Therefore, the POVM observable may be written as

ÔPOV = o1 Ê1 + o2 Ê2 + o3 Ê3. (9.141)

As we shall see in Sec. 15.4, due to the possibility of jointly measuring non-commuting
observables, it is possible to establish an important connection between POVM and
quantum-state reconstruction.

9.11 Quantum non-demolit ion measurements

A quantum non-demolition (QND) measurement is a measurement in which an appara-
tus extracts information only on the observable to be measured and transfers the whole
back action onto the canonical conjugate observable. In other words, the observable to
be measured remains unperturbed, while the canonically conjugate one is perturbed pre-
cisely to the minimal extent allowed by the uncertainty relations. In order to examine
the properties of a QND measurement, we need to introduce first the concept of indirect
measurement.

9.11.1 Indirect measurement

We can use the distinction between the two aspects of measurement (introduced in Sub-
sec. 9.10.2) to present the concept of indirect measurement, which we contrast to the
standard direct measurement.79 The latter form of measurement is an interaction between
a quantum system S and a macroscopic apparatus A, while the indirect measurement is
characterized by two separate steps: first, S interacts with another quantum system SP, the
quantum probe, whose initial state has been accurately prepared on purpose in advance.
This is an intermediate system with which the object system S interacts, and from which
the apparatus A extracts information about S. During the first step there is no reduction at
all, and the evolution is completely unitary, resulting in a correlation between S and SP. In
other words, the system and the probe become entangled (see Sec. 9.1). The second step
consists of a direct measurement of some chosen observable of SP: the state of the probe
(and therefore, due to the entanglement, also of the object system) is reduced and the infor-
mation acquired. As we shall see below, the indirect measurement is a necessary but not
sufficient element of a quantum non-demolition (QND) measurement.

79 See [Braginsky/Khalili 1992, 40–49].
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Let us now introduce two conditions referring to the two steps defined above:

• The reduction, i.e. the second step of measurement should begin only when the unitary
evolution, i.e. the first step has already finished.

• The second step should not contribute significantly to the total error of the measurement.

If these conditions are satisfied, we can infer the magnitudes of the error in the measure-
ment and therefore of the perturbation (back action) of S from an analysis of the first step
only, i.e. of the unitary evolution, because the only source of error is due to the intrinsic
uncertainties of the initial state of SP.

We can describe the indirect measurement in a formal way as follows. Let the first step
be represented by the transformation

ρ̂Si ρ̂
SP �→ Ût ρ̂

S
i ρ̂

SPÛ †
t , (9.142)

where ρ̂Si ρ̂
SP is the total density matrix of the system S + SP, and Ût is the coupling

unitary-evolution operator. The corresponding state of SP alone, after the interaction, is
given by the reduced density matrix (see Subsec. 5.5.2)

ˆ̃ρSP = TrS
(

Ût ρ̂
S
i ρ̂

SPÛ †
t

)
. (9.143)

Suppose that we want to measure the observable x̂ on S. Thanks to the entanglement, it
is possible to achieve a one-to-one correspondence between the observable x̂ of S and a
carefully chosen observable of SP, say p̂x . We can then perform a “direct” measurement of
p̂x on SP. Since this measurement contributes negligibly to the experiment’s overall error,
we can idealize it as arbitrarily accurate. Then, we can infer from the value of p̂x on SP

the value xm of the observable x̂ on S. Because of the one-to-one correspondence we can
use x̂ as a substitute for p̂x and hence use xm not only as the inferred value of x̂ but also
as the result of a measurement on SP itself, that is, the associated eigenstate of the probe
can be denoted by | xm〉 . Just before the second step of the measurement, the probability
distribution of the measured value xm will be simply given by

℘(xm) = TrSP

[
P̂xm

ˆ̃ρSP
]
= TrSP

[
|xm〉〈xm |TrS (Ût ρ̂

S
i ρ̂

SPÛ †
t )
]
, (9.144)

which, using the linearity and the cyclic property of the trace (see Box 3.1), can be rewritten
as (see Eq. (9.120))

℘(xm) = TrS
[

Ê(xm)ρ̂Si
]
, (9.145)

where

Ê(xm) = TrSP

[
Û †

t |xm〉〈xm |Ût ρ̂
SP
]
. (9.146)

The back action of the entire two-step measurement on S is embodied in the final state of
the object system, which we have supposed to have the form (9.122), as we shall prove in
the following. In fact, the above considerations imply that such a normalized final state be

ρ̂Sf (xm) = 1

℘(xm)
〈xm |Ût ρ̂

S
i ρ̂

SPÛ †
t |xm〉. (9.147)
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If we express the initial state of SP as (see also Eq. (5.25))

ρ̂SP =
∑

k

wk |ψk〉〈ψk |, (9.148)

where |ψk〉 〈ψk | are some projectors on the probe’s Hilbert space, and, by substituting this
expression into Eq. (9.147), we obtain

ρ̂Sf (xm) = 1

℘(xm)

∑
k

wk ϑ̂k(xm)ρ̂Si ϑ̂
†
k (xm), (9.149)

where

ϑ̂k(xm) = 〈xm |Ût |ψk〉. (9.150)

Differently from Eq. (3.87), Eq. (9.150) does not contain a probability amplitude because
it is a unitary operator that represents the coupling of the probe and the system, whereas
the ket and the bra belong to the probe’s Hilbert space only. As a result, it represents an
amplitude operator. As we have said, this amplitude operator describes all steps of the
measurement of a given observable: premeasurement (|ψk〉), i.e. preparation of the initial
state of the probe; unitary evolution of the probe together with the object system (Ût );
and reduction of the probe (〈xm |), and gives therefore the “probability amplitude” for the
quantum probe to have evolved from the initial state |ψk〉 to the final state |xm〉, if the
interaction with S is given by Ût . Eq. (9.149) shows that the final state of the object system
is a mixture of states of the type (9.122) with weighting factors wk . Therefore, the final
state (9.149) has additional uncertainties relative to the state (9.122), which derive from
the fact that we allowed SP to begin in the mixed state (9.148) and not in a pure one. These
additional uncertainties are of classical origin as they are relative to the uncertainties in the
initial state of the probe.

9.11.2 QND measurement

The conclusions drawn from Subsecs. 9.10.2 and 9.11.1 allow us to discuss the QND mea-
surement. The central ingredient that makes the QND procedure80 realizable is just the
two-step measurement process described previously. It is then clear that some features of
the indirect measurement also characterize the QND measurement. In general, we may say
that, in a QND measurement, the system S interacts only with a probe SP, and the inter-
action between S and SP is such that SP is influenced only by one observable, or a set of
observables, that are not affected by the back action of SP on S. More precisely, the sys-
tem’s observables which influence the probe must all commute with each other – i.e. they
should belong to the same complete set of observables (see end of Subsec. 2.1.5).

80 See [Braginsky/Khalili 1992, 55–67].
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Moreover, a QND measurement can be performed only on observables that are con-
served during the object’s free evolution, i.e. on constants of motion (see Subsec. 3.6.1): in
the absence of external forces, the observable is conserved both during the measurement
(because the back action is transferred to the canonically conjugate observable only) and
during the unitary evolution between consecutive measurements (because it is an integral
of motion).81

The above considerations imply that a QND measurement does not add any perturbation
to the observable to be measured, so that the uncertainty of the measured observable after
the measurement is only a consequence of the a priori uncertainty of its value.

Then, the observable ÔND associated to a QND measurement must satisfy the following
two requirements:82

• At any time it must commute with itself at a different time,

[
ÔND(t), ÔND(t ′)

]
= 0, t ′ 	= t . (9.151a)

• It must commute with the time-displacement unitary operator Ût

(
Û †

t ÔNDÛt − ÔND

)
|ψ〉 = 0, (9.151b)

where |ψ〉 is the probe’s initial state and the expression within the brackets is the
Heisenberg-picture change in ÔND produced by the interaction between S and SP. Equa-
tion (9.151b) represents a necessary and sufficient condition of a QND observable.83

We can therefore say that a QND measurement is characterized by the repeatability, so that
the first measurement – which determines the values for all subsequent QND ones – is a
preparation of S in the desired state, and the others are the determination of the value. As a
consequence, a QND measurement is a measurement of the first kind – but, obviously, not
necessarily vice versa. Formally,

ÔND(tk) = fk

[
ÔND(t0)

]
, (9.152)

81 One of the most interesting applications of QND-like measurement schemes is represented by the detection
of gravitational waves. See [Braginsky et al. 1980, 751–52] [Unruh 1979] [Thorne et al. 1978]. Moreover, the
first quantum-optical experimental verifications of the validity of this measurement scheme were realized in
the mid 1980s.

82 See also [Caves et al. 1980, 364].
83 Equivalently, we could express the first condition by stating that a QND observable commutes with all its time

derivatives.
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where tk is some arbitrary time after the initial t0 (the time of the first measurement), and fk

is some real-valued function. Note that condition (9.152) implies condition (9.151a) (see
Prob. 2.12). The generalization of Eq. (9.152) to continuous measurements is given by

ÔND(t) = f
[

ÔND(t0); t , t0
]
, (9.153)

which defines a continuous QND observable, while, if an observable satisfies Eq. (9.152)
only at selected discrete times, it is called a stroboscopic QND observable. Examples of the
last one are the position and the momentum of a harmonic oscillator (due to the periodicity
of the evolution). The simplest way to satisfy Eq. (9.153) is to choose an observable which
is conserved in the absence of interactions.

On the other hand, condition (9.151b) is certainly satisfied if the expression between
brackets vanishes, i.e. if ÔND returns to its initial value after the measurement.84 In
this case, we may simply write the necessary and sufficient condition for a QND
measurement as [

ÔND, Ût

]
|ψ〉 = 0. (9.154)

The previous condition requires the form of Ût to be known. Due to the practical difficulty
in determining Ût , the evolution operator of the coupled system, one can alternatively
choose a necessary but not sufficient criterion for a QND observable: that the measured
observable be an integral of motion for the total system S + SP, i.e. that it remains constant
during the interaction,

ı h̄
∂ ÔND

∂t
+
[

ÔND, Ĥ
]
= 0, (9.155)

where Ĥ is the total Hamiltonian of the compound system (see also Eq. (3.107)). Equa-
tion (9.155), in the case that ÔND has no explicit time-dependence, reduces to the
condition [

ÔND, ĤSPS
]
= 0, (9.156)

where ĤSPS is the interaction Hamiltonian between S and SP. Equation (9.156) is a more
severe condition than (9.154), because, if it is satisfied, the measurement is a QND mea-
surement for any time interval of the interaction between the systems and for any probe’s
initial state. If the measured observable is an integral of the free motion of S, then it also
satisfies

ı h̄
∂ ÔND

∂t
+
[

ÔND, ĤS
]
= 0. (9.157)

From this equation and the obvious
[

ÔND, ĤSP

]
= 0 we obtain Eq. (9.156).

84 Rigorously speaking, Eq. (9.151b) is satisfied also if the initial state of the probe is an eigenstate with null
eigenvalue of the operator given by the difference in brackets. However, this possibility has unpractical
consequences and will not be discussed here.
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9.11.3 No measurement without a measurement

We have seen that a QND measurement does not add any perturbation to the measured
observable. This means that the standard deviation of the probability distribution of the
measured observable is not altered by a QND measurement. One might think that the
entire probability distribution of the measured observable is not altered by a QND mea-
surement. If this were the case, then repeated QND measurements of the same observable
could increase the amount of information which we can extract from the system. We shall
see (in Subsec. 15.2.2) that, due to unitarity, repeated (even QND) measurements on a
single system cannot increase the observers’ knowledge. In this subsection we show that,
in agreement with the general theory of quantum measurement, if a QND measurement
performed on a system S does not alter the probability density of the measured observ-
able, then the measurement process does not provide any information about the measured
observable itself .85

Let us start from the definition of the amplitude operator given by Eq. (9.150)

ϑ̂(xm , x̂S ) = 〈xm |Ût (x̂m , x̂S )|ψm〉, (9.158)

where x̂m is the measured observable of the probe (meter), xm is its measured value, x̂S
is the (QND) observable of the system S, and |ψm〉 is the initial state of the meter. In
Eq. (9.158) we have explicitly introduced the dependence of the amplitude operator, which
completely describes the measurement, on x̂S through the unitary operator Ût .

The QND condition for a back-action-evading measurement then means that x̂S and ϑ̂
share the same eigenstates:

ϑ̂(x̂S , xm) | xS〉 =ϑ(xm , xS ) | xS〉 , (9.159a)

ϑ̂†(x̂S , xm) | xS〉 =ϑ∗(xS , xm) | xS〉 . (9.159b)

After a measurement on the meter which gives the result xm , the system is therefore
described by the density matrix (9.122)

ρ̂ f (xm) = 1

℘(xm)
ϑ̂(xS , xm)ρ̂i ϑ̂

†(xS , xm), (9.160)

where ℘(xm) is given by Eqs. (9.118) and (9.120) and may be rewritten as

℘(xm) = TrS
[
ϑ̂(x̂S , xm)ρ̂i ϑ̂

†(x̂S , xm)
]

=
∫

dxS
〈
xS
∣∣∣ϑ̂(x̂S , xm)ρ̂i ϑ̂

†(x̂S , xm)
∣∣∣ xS

〉
. (9.161)

Now, the probability density of the measured observable after the measurement is given by

℘ f (xS ) = 〈xS ∣∣ρ̂ f (xm)
∣∣ xS

〉
= 1

℘(xm)

〈
xS
∣∣∣ϑ̂(x̂S , xm)ρ̂i ϑ̂

†(x̂S , xm)
∣∣∣ xS

〉
. (9.162)

85 This subsection has been suggested by section 7 of [Fortunato et al. 1999a]. See also [Alter/Yamamoto 1998].
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Applying the QND conditions (9.159) we obtain

℘ f (xS ) = 1

℘(xm)
|ϑ(xS , xm)|2 ℘(xS ), (9.163)

where ℘(xS ) is the initial state’s a priori probability distribution of x̂S , given by
Eq. (9.119).

If we require that the probability density (9.163) does not change due to the measurement
process, i.e. ℘ f (xS ) = ℘(xS ), then

|ϑ(xS , xm)|2 = ℘(xm) (9.164)

must hold. However,℘(xm) is not a function of xS (the eigenvalues of the measured observ-
able) and therefore also the eigenvalues ϑ(xS , xm) of ϑ̂(x̂S , xm) are independent of xS .
Since the operator ϑ̂ must completely describe the measurement process, if its eigenvalues
are independent of the eigenvalues of x̂S , the measurement obviously gives no information
about x̂S , unless the initial state is an eigenstate of the measured observable.

9.12 Decision and estimation theory

9.12.1 Classical decis ion theory

First, we expose some elementary notions of the classical decision theory.86 We call a strat-
egy a decision procedure aiming to choose among several hypotheses. It is supposed that
only one of these hypotheses is true. If such a strategy involves a random element, then we
may define a probability ℘H j

(D) that the hypothesis H j ( j = 1, 2, . . . , N ) is chosen among
the N alternative hypotheses when the set D = {D1, D2, . . . , Dn} of data is observed. The
hypothesis H j here means that the observed system is supposed to be in a certain state j .
The quantity ℘k (D) = ℘ (D|Hk) represents the probability density function that the par-
ticular set D of data is observed when the system is actually in state k (which is precisely
the state that verifies the hypothesis Hk), and is also known as the likelihood function. The
hypothesis Hk is true with a priori probability ℘A

k . Then, the probability that the hypothesis
H j is chosen, when the hypothesis Hk is true (thus allowing for the possibility of making
an error if j is different from k), is given by

℘
(
H j |Hk

) = ∫
IRn

d D ℘H j
(D) ℘k (D), (9.165)

where IRn is the n-dimensional space of the data. Equation (9.165) embodies an interest-
ing refinement of the classical measurement theory (as it was presented in Sec. 1.1 when
dealing with the postulate of the reduction to zero of the measurement error), in that it
explicitly allows the treatment of errors (here represented by wrong decisions). In fact,
if the hypothesis H j is false, then also the consequent decision will be possibly wrong:
making a wrong decision has a cost. Accordingly, we define C jk as the cost incurred by

86 See [Helstrom 1976, 8–10].
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choosing hypothesis H j when the hypothesis Hk is true – in other words, the numbers C jk

assign relative weights to the different possible errors and correct decisions. Of course, the
decision procedure has to be repeated many times, and the aim of statistical decision the-
ory is precisely to minimize the average cost of the procedure. As Hk is true with a priori
probability ℘A

k , the average cost of the strategy is

〈C〉 =
N∑

j=1

N∑
k=1

℘A
k C jk℘

(
H j |Hk

)
. (9.166)

Defining for each (potentially chosen) H j a risk function as follows:

R j (D) =
N∑

k=1

℘A
k C jk℘k(D), (9.167)

and taking into account the expression (9.165), we may write the average cost as

〈C〉 =
∫

IRn
d D

N∑
j=1

R j (D)℘H j
(D). (9.168)

The central problem of decision theory is the following: we seek the N functions ℘H j (D)
that satisfy general probability conditions and make the average cost as small as possible.
The solution to this minimization problem (see Prob. 9.21) is given by the posterior risks
RP

j (D) of the hypothesis in view of the data observed, which are proportional to the risk
functions R j (D), i.e.

RP
j (D) =

N∑
i=1

C ji℘
P (Hi |D) = R j (D)

℘(D)
, (9.169)

where

℘P (Hi |D) = ℘A
i
℘i (D)

℘(D)
(9.170)

is the a posteriori probability of hypothesis Hi (given the set D of observed data), while

℘(D) =
N∑

k=1

℘A
k ℘k(D) (9.171)

is the overall joint probability density function of the data. Equation (9.170) is Bayes’
rule, while the formula (9.171) is the formula for the total probability.87 We stress that the
expression (9.170) gives the probability that the hypothesis Hi is true given the data D,
whereas the expression ℘H j

(D) represents the probability that the hypothesis H j is chosen
when the data D are observed.

It can be shown that the best strategy is the one that chooses the hypothesis for which
the posterior risk is minimal. This choice does not necessarily coincide with the choice of

87 See [Gnedenko 1969, 56–58].
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the hypothesis for which the posterior probability (9.170) is greatest, as was first proposed
by Bayes.88 This last strategy comes from the choice of costs, either

Ci j = 1 for i 	= j , Cii = 0 ; (9.172a)

or

Ci j = 0 for i 	= j , Cii = −1. (9.172b)

We can arrive at similar results by considering the continuous case.89

In order to give a feeling about what kind of problems the classical decision theory
presented above is able to handle, consider the following example. In a radar system, the
time delay between the transmission of a pulse and the reception of the corresponding echo
is proportional to the distance to the target. In order to determine it, a radar receiver must
estimate the time-of-arrival τ of the signal s(t − τ ) from the voltage v(t) appearing at the
terminals of its antenna during some observation intervals (0, t ′). Because of the presence
of the noise, the arrival time τ cannot be estimated with perfect accuracy. The question is
then how to design a receiver to estimate τ with minimal error. The different information-
bearing parameters of a signal (its amplitude, frequency, and so on) are to be estimated as
accurately as possible by the receiver.

As we shall see in the next subsection, the formalism developed here is susceptible to a
natural quantum generalization.

9.12.2 Quantum decis ion theory

In the quantum case,90 the hypothesis H j is represented by the assumption that the system
is in the state ρ̂ j .91 We may associate to each hypothesis H j an effect ÊH j , which we may
call the detection operator, i.e. a non-negative definite Hermitian operator which satisfies
the condition

∑
j ÊH j = Î (see Eq. (9.129)), i.e. the quantum analogue of the classical

completeness of the set of the hypotheses. The set of effects is determined by the condi-
tional probability that one chooses the hypothesis H j when Hk is true, i.e. (see Eqs. (9.100)
and (9.120))

℘
(
H j |Hk

) = Tr
(
ρ̂k ÊH j

)
, (9.173)

which is the quantum analogue of Eq. (9.165). In general, as we have seen in Sec. 9.10,
the detection operators ÊH j are not represented by projectors. For example, a strategy that
merely guesses a hypothesis out of the N available ones, choosing an arbitrary one with
probability N−1, without performing an actual measurement, is described by the POVM

ÊH j = N−1 Î , j = 1, 2, . . . , N . (9.174)

88 See [Bayes 1763].
89 See [Helstrom 1976, 25–31].
90 See [Helstrom 1976, 90–100].
91 We recall the substantial difference between the classical and the quantum state (see Subsecs. 2.3.3 and 3.1.2).
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The system is in the state ρ̂k with an a priori probability ℘A
k . Then, the average cost of the

decision strategy is given by (see Eq. (9.166))

〈C〉 =
N∑

j=1

N∑
k=1

℘A
k C jkTr

(
ρ̂k ÊH j

)
= Tr

⎛⎝ N∑
j=1

R̂ j ÊH j

⎞⎠, (9.175)

where the Hermitian detection risk operator R̂ j is defined by (see Eq. (9.167))

R̂ j =
N∑

k=1

℘A
k C jk ρ̂k . (9.176)

Let us define a Hermitian operator L̂ – which is the quantum analogue of the function L
(see the solution to the Prob. 9.21) – as

L̂ =
N∑

j=1

ÊH j R̂ j =
N∑

j=1

R̂ j ÊH j , (9.177)

since L̂, ÊH j , and R̂ j are all Hermitian operators. Then, it can be proved that the
requirement of a cost-minimizing strategy is fulfilled by the conditions(

R̂ j − L̂
)

ÊH j = 0, (9.178a)

R̂ j − L̂≥ 0 (9.178b)

for j = 1, . . . , N . It can be seen that the role of L̂ is that of a Lagrangian multiplier, and
we call it the Lagrange operator. Hence, from Eqs. (9.175) and (9.177), and taking into
account the conditions (9.178), the minimum Bayes cost is

〈C〉min = Tr
(

L̂
)

. (9.179)

Moreover, the difference between the cost incurred by using another POVM {Ê ′
H j
} (see

Eq. (9.175)) and the cost arising from the optimal strategy (Eq. (9.179)) is given by

〈C〉 − 〈C〉min = Tr

⎡⎣ N∑
j=1

(
R̂ j − L̂

)
Ê
′
H j

⎤⎦, (9.180)

since the set {Ê ′
H j
} satisfies the completeness conditions. Equation (9.180), given the

validity of Eq. (9.178b), implies

〈C〉 − 〈C〉min ≥ 0. (9.181)

The optimum POVMs form a convex set (see Eq. (5.56)), i.e. if {Ê ′
H j
} and {Ê ′′

H j
} are two

optimum POVMs, then all POVMs of the form

ÊH j = w Ê ′
H j
+ (1 − w)Ê ′′

H j
, ∀ÊH j and for 0 < w < 1, (9.182)

are also optimal. Indeed, the corresponding Lagrange operator is

L̂w = wL̂′ + (1 − w)L̂′′, (9.183)



345 9.12 Decis ion and est imation theory
�

by means of which, for any j , we may rewrite Eq. (9.178b) in the form

R̂ j − L̂w = w(R̂ j − L̂′) + (w − 1)(R̂ j − L̂′′) ≥ 0. (9.184)

The Lagrange operator can be eliminated from the optimization Eqs. (9.178) by writing
them in the form92

ÊH j (R̂k − R̂ j )ÊHk = 0 (9.185)

for all pairs j , k.
We now wish to analyze specifically the case of pure states. Let us consider a system in a

pure state |ψk〉 under each hypothesis Hk (k = 1, 2, . . . , N ). In other words we are assum-
ing ρ̂k = |ψk〉 〈ψk |. The optimum POVM can be confined in an N -dimensional subspace
HN (spanned by the N vectors |ψk〉) of the Hilbert space HS of the system. We proceed
in two steps: first, we verify that each component outside HN does not contribute to the
decision probability ℘(H j |Hk); and second, we try to find a solution to the optimization
equation (9.185). In order to verify the first statement, let P̂N project arbitrary vectors
belonging to HS onto HN and write the POVM according to the identity

ÊH j = P̂N ÊH j P̂N +
(

Î − P̂N

)
ÊH j P̂N + P̂N ÊH j

(
Î − P̂N

)
+
(

Î − P̂N

)
ÊH j

(
Î − P̂N

)
.

(9.186)

Combining Eq. (9.173) with Eq. (9.186), we obtain

℘(H j |Hk) = Tr
(
ρ̂k ÊH j

)
=
〈
ψk

∣∣∣ÊH j

∣∣∣ψk

〉
= Tr

(
ρ̂k Ê ′

H j

)
, (9.187)

where

Ê ′
H j

= P̂N ÊH j P̂N , (9.188)

since ( Î − P̂N )|ψk〉 = 0. As a consequence, the optimum POVM can be taken as the
generalized resolution of the identity

N∑
j=1

Ê ′
H j
+
(

Î − P̂N

)
= Î , (9.189)

and, since the term ( Î − P̂N ) has no effect on the subspace HN , we can drop it and confine
ourselves to subspace HN .

Now we pass to the second step of our procedure and try to find a solution of the
optimization equation (9.185) by means of the projectors

ÊH j = P̂H j = |ϕ j 〉〈ϕ j |, (9.190)

which project onto N orthonormal vectors |ϕ j 〉 spanning HN , called measurement states.
Then, Eq. (9.185) (where the effects may be replaced by projectors) will be satisfied for all
pairs j , k, such that 〈

ϕk

∣∣∣(R̂ j − R̂k

)∣∣∣ϕ j

〉
= 0, (9.191a)

92 See derivation in [Holevo 1973a].
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or (see Eq. (9.176))

N∑
i=1

℘A
i

(
C ji − Cki

) 〈ϕk |ψi 〉〈ψi |ϕ j 〉 = 0, (9.191b)

which provides N (N − 1)/2 equations for the N 2 unknown amplitudes

ϑi j =
〈
ϕi | ψ j

〉
. (9.192)

These are the components of the N state vectors |ψ j 〉 along the axes |ϕi 〉 of HN . The
inequality (9.178b) imposes the requirement that the matrices M̂ (i), whose elements are
given by

M (i)
mn =

N∑
j=1

℘A
j

(
Ci j − Cmj

)
ϑmjϑ

∗
nj , (9.193)

be non-negative definite so that the Bayes cost can be at a true minimum. The special cost
function (9.172b)

Ci j = −δi j (9.194)

corresponds to minimizing the average probability of error ℘e = 〈C〉 + 1. Then,
Eq. (9.191b) reduces to the equality

℘A
mϑkmϑ

∗
mm = ℘A

k ϑkkϑ
∗
mk , (9.195)

and the minimum attainable error probability is then given by

℘e
min = 1 −

N∑
j=1

℘A
j |ϑ j j |2. (9.196)

For this cost function and for N linearly independent states |ψ j 〉 the optimum POVM is
indeed a PVM. However, if the states are not linearly independent, the N vectors |ψ j 〉 span
a subspace of HS of dimension smaller than N and this subspace cannot accommodate
N different orthogonal projectors of type (9.190). As a consequence, the optimum POVM
cannot be a PVM.

9.12.3 Est imate of the wave funct ion

Quantum estimation theory deals with the estimation of a number N of parameters
(ζ1, ζ2, . . . , ζn) = ζ of a certain density operator ρ̂(ζ ).93 The observational strategy for
estimating the parameters {ζk} is a POVM. The resulting estimates {ζ ′k} are random vari-
ables, and the probability that they lie in a value regionϒ of the parameter space Z is given
by (see Eq. (9.173))

℘(ζ ′ ∈ ϒ |ζ ) = Tr
[
ρ̂(ζ )Ê(ϒ)

]
, (9.197)

93 See [Helstrom 1976, 235–43]. See also [Holevo 1982, 106, 169–74].
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where we assume that the effects for finite regions can be formed as integrals of
infinitesimal operators, i.e.

Ê(ϒ) =
∫
ϒ

dζ ′ Ê(ζ ′). (9.198)

The joint conditional probability density function ℘(ζ ′|ζ ) is then given by

℘(ζ ′|ζ ) = Tr
[
ρ̂(ζ )Ê(ζ ′)

]
. (9.199)

The main aim of quantum estimation theory is therefore to find the best POVM Ê(ϒ)
suitable for estimating the desired parameters of a certain density operator. This goal can
be attained by carrying over the same calculations as in Subsec. 9.12.2 to the continuum
case (the discrete data are replaced by continuous random variables). As we have said, the
optimum estimator will in general be a POVM. The maximum likelihood estimator can be
found by solving the optimization equations (9.178), which here translate into[

R̂(ζ ′) − L̂(ζ ′)
]

d Ê(ζ ′)= 0, (9.200a)

R̂(ζ ′) − L̂(ζ ′)≥ 0, (9.200b)

where the Hermitian risk operator is given by

R̂(ζ ′) =
∫
Z

dζ℘A(ζ )C(ζ ′, ζ )ρ̂(ζ ), (9.201)

and the Lagrange operator is

L̂(ζ ′) =
∫
Z

d Ê(ζ ′)R̂(ζ ′). (9.202)

In terms of R̂(ζ ′) the average cost is simply (see Eq. (9.179))

〈C〉 = Tr

(∫
Z

d Ê(ζ ′)R̂(ζ ′)
)
= Tr

[
L̂(ζ ′)

]
. (9.203)

A specific problem of great interest is the estimate of the wave function (see also Ch. 15).
A wave function can be estimated, provided that the corresponding state vector |ψ〉 is
known to lie in a Hilbert space of finite dimensions, and a residual uncertainty is accepted.
Let us select an orthonormal basis {|bk〉} and consider an estimate of the complex vector
c = (c1, c2, . . . , cn) that defines the “true” state vector through the relation

|ψ〉 =
n∑

k=1

ck |bk〉. (9.204)

The n complex numbers ck = ckx + ıcky are parameters of the density opera-
tor ρ̂ = |ψ〉 〈ψ |. Because the vector |ψ〉 must have unit length, the point c =
(c1x , c1y , . . . , cnx , cny ) must lie on a (2n − 1)-dimensional hypersphere S2n of radius 1 (for
a two-dimensional system the Poincaré sphere is a possible representation). However, only
2n − 2 of the coordinates are relevant. For instance, in the bidimensional case, we have two
coefficients (c1 and c2), and, since |c1|2 = 1 − |c2|2 and a global phase factor is irrelevant,
we may set, say, c1 as real in such a way that it suffices the modulus and the phase of c2 to
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determine the density operator. Suppose now that we want to estimate |ψ〉 by means of a
state vector ∣∣∣ψ ′〉 = n∑

k=1

c
′
k |bk〉 . (9.205)

Nothing being known in advance about the state of the system, we are forced to assume
that the point c may be anywhere on the hypersurface, and we may assign to our estimating
point c′ an a priori probability density function ℘A(c′) that must satisfy∫

dc′℘A(c′) = 1. (9.206)

It follows that this probability density must be a constant equal to the inverse of the area
A2n of the hypersurface, i.e.

℘A(c′) = 1

2
�(n)π−n , (9.207)

where � is the Euler Gamma function.94 The maximum likelihood estimator is the POVM

d Ê(c′) = n A−1
2n |ψ

′ 〉〈ψ ′ |dS

= n A−1
2n

n∑
k=1

n∑
j=1

c
′
k(c

′
j )
∗|bk〉〈b j |dS, (9.208)

where dS is the area element of the sphere, which satisfies the requirement (see Prob. 9.24)∫
S2n

d Ê(c′) = Î . (9.209)

The Lagrange operator defined by Eqs. (9.177) and (9.202) is

L̂ = n A−2
2n

∫
S2n

d S|ψ ′ 〉〈ψ ′ | = A−1
2n Î , (9.210)

so that

R̂ j (c) − L̂ = A−1
2n

[
Î − ρ̂

]
. (9.211)

The operator on the lhs of Eq. (9.211) turns out to be non-negative definite as required
by Eqs. (9.178b) and (9.200b) (see Prob. 9.25). The joint conditional probability density
function of the estimate c′ is therefore

℘(c′|c) = n A−2
2n |〈ψ ′|ψ〉|2, (9.212)

and is independent of the basis vectors {|bk〉}. It is also independent of the phase of the
estimate |ψ ′〉: such a phase is not statistically significant in agreement with the fact that the
phase of a state vector is physically meaningless (see end of Subsec. 2.1.3). We can there-
fore consider the ket (9.205) to be an estimate of the state vector |ψ〉. The absolute value
η = |〈ψ ′|ψ〉| measures how close the estimated |ψ ′〉 lies to the true |ψ〉 (it is equal to 1 if

94 See [Gradstein/Ryshik 1981, 8.3].



349 Summary
�

0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

η

℘(η)

℘0(η)

�Figure 9.21 Plot of the probability density functions ℘(η) (solid line) and ℘0(η) (dashed line) (Eqs. (9.213)
and (9.214)) for n = 4: The peak of ℘(η) is always closer to 1 than the corresponding peak
of ℘0(η).

the estimate is exact). The relevance of this procedure can be appreciated by considering
the following argument. The conditional probability density function of η is given by95

℘(η) = 2n(n − 1)η3(1 − η2)n−2. (9.213)

If one had chosen the point c′ at random on the unit hypersphere S2n , the probability density
function of η would be equal to

℘0(η) = 2(n − 1)η(1 − η2)n−2. (9.214)

As it is shown in Fig. 9.21, the peak of the probability (9.213) is closer to 1 than the
probability calculated by choosing c′ at random.96

Summary

• In this chapter we have discussed one of the most important and puzzling aspects of
quantum mechanics: measurement. First, we have shown what the problem consists of
in the fact that the measurement process appears to be ruled by a non-unitary and non-
reversible dynamics, in contrast to the “ordinary” quantum dynamics. Different positions
and interpretations have been historically developed in order to solve this problem.

• A Gedankenexperiment proposed by Schrödinger in 1935 has become an experimental
reality in recent years: the so-called Schrödinger cat. It is the possibility of building

95 See [Helstrom 1976, 292–93].
96 By a similar procedure it is possible to provide an estimate of the position, the angle of rotation, and the

time-of-arrival (see [Helstrom 1976, 239–80].
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mesoscopic (and perhaps in the future also macroscopic) objects that shows the fun-
damental quantum feature of entanglement. This implies that there is no sharp break
between the micro- and macroworlds, as was initially proposed by the supporters of the
Copenhagen interpretation.

• In the decoherence approach to the measurement problem, instead of considering only
the interaction between a measurement apparatus and an object system, one also takes
into account the action of the environment, which, by “absorbing” the off-diagonal ele-
ments of the density matrix describing the object system, allows the diagonalization of
the matrix in the eigenbasis of the measured observable – via the formal mechanism
of the partial trace. Decoherence presupposes no sharp break between the measure-
ment process and the unitary dynamics of quantum theory. It is an interpretation that
is consistent with the theory, that does not need ad hoc assumptions and is also able
to make predictions that have been experimentally confirmed (e.g. the decoherence
time).

• Through some interesting experiments (for instance using the so-called quantum eraser)
it has been shown that the measurement act consists of two parts: the washing out of
interference and the acquisition of information. Only the latter is irreversible. The con-
clusion is that the state vector describes not only what is actually known but what is in
principle knowable.

• We have formulated in more rigorous terms the interaction-free measurement, previ-
ously treated in Ch. 1.

• Delayed-choice experiments seem to imply that one may retroact on the past. In fact, it
has been shown that we never have to deal with the past but only with the present effects
of past events. According to quantum mechanics, reality consists not only of events
but also of non-local interdependencies and that there is a complementary dynamical
relationship between these two features.

• Another surprising feature is represented by the quantum Zeno effect, i.e. the possibility
of freezing the state of a system by continuously monitoring one of its observables with
a discrete spectrum.

• Thanks to its nature, the measurement of quantum systems may also be exploited as
a tool to “guide” their evolution: selective or conditional measurements have been
contrasted to non-selective ones.

• An important and relatively recent development is represent by POVMs that allow the
possibility to measure unsharp observables. While PVMs are combinations of pro-
jectors, POVMs are combinations of effects – resolutions of identity that satisfy the
completeness condition but are non-orthogonal and in general do not commute with
each other.

• Quantum non-demolition measurements allow the possibility of transfering the pertur-
bation due to measurement to an observable that is canonically conjugate to the one we
want to measure.

• Finally, we have dealt with decision and estimation theory, whose aim – given a certain
set of experimental data – is to find the lowest-cost strategy able to choose among several
hypotheses and to guess an unknown parameter. In the quantum case, the best strategy
is in general provided by a POVM.
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Problems

9.1 Prove that, starting with the pure state ρ̂, after an unitary evolution, we again obtain
a pure state.

9.2 Diagonalize the interaction Hamiltonian (9.15).
9.3 Prove that there always exists a basis in which the off-diagonal terms of a density

matrix are exactly zero.
9.4 Formalize the example of Sec. 9.1 in density-matrix terms.
9.5 Derive explicitly Eq. (9.47).

9.6 Compute the matrix element 〈↑ |
〈
N
∣∣∣ĤSA

∣∣∣ N − 1
〉
|↑〉 , where ĤSA is given by

Eq. (9.61) in order to derive Eq. (9.64).
9.7 Making use of the definitions

b̂0 = 1√
2

(
â1 + â0

)
and b̂1 = 1√

2

(
â1 − â0

)
, (9.215)

(i) diagonalize the Hamiltonian (9.61);
(ii) derive Eq. (9.68).

9.8 Making use of the Stirling approximation (see the solution of Prob. 1.11), derive the
result (9.74).

9.9 By making use of the general transformations induced by the beam splitters, prove
the result shown in Fig. 9.13(a) with |R|2 = cos2(π/2N ).

9.10 Prove that, if ρ̂ is an initial state and Tr
(
ρ̂ P̂j

)
	= 0, also

ρ̂ j =
P̂j ρ̂ P̂j

Tr
(
ρ̂ P̂j

)
is a density operator.

9.11 Use Eq. (9.114) to calculate the final state ρ̂ f in the polarization example of Box 9.5.
9.12 Prove Eq. (9.117).
9.13 Derive Eq. (9.123).
9.14 Prove Eq. (9.128).
9.15 Consider the arrangement of Fig. 9.20. Given the input single-photon state

|1〉 =
(

1
0

)
,

compute the output state (just before any detection takes place) and determine the
detection probabilities at the three detectors D1, D2, and D3, for arbitrary values of
the phase shift φ and of the transmission parameter

√
η of BS3. In particular, consider

the limiting cases η = 0, 1.
9.16 Calculate the probabilities (9.131), that is when η = 1, by making use of the mean

value of the projectors occurring therein, and show that they are identical to the results
obtained by solving the previous problem.
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�Figure 9.22 Beam splitters BS1 and BS2 are symmetric, while BS3 and BS4 have transmission parameters η
and 1 − η, respectively. The two phase shifters produce phase shifts φ and φ′.

9.17 Calculate the probabilities (9.136), that is, when η = 0, by making use of the mean
value of the projectors occurring therein, and show that they are identical to the results
obtained by solving Prob. 9.15.

9.18 Find the explicit expressions for the effects (9.140). Then, compute probabilities
(9.139) by making use of the mean value of these effects, and show that they are
identical to the results obtained by solving Prob. 9.15.

9.19 Verify that the effects defined by Eqs. (9.140) fulfill the completeness requirement
but do not commute with one another.

9.20 Describe the POVM performed by the arrangement shown in Fig. 9.22.
9.21 Solve the minimization problem of Subsec. 9.12.1: find the N functions ℘H j

(D) that
render the lhs of Eq. (9.168) a minimum.

9.22 Rewrite the classical decision theory of Subsec. 9.12.1 in terms of discrete data D as
random variables.
(Hint: In the discrete case the probability density functions ℘k(D) have to be
replaced by ℘(D|Hk), i.e. by the probabilities of getting the data in the N hypothe-
ses. Correspondingly, integrations over the continuous space must be replaced by
summation.)
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9.23 Rewrite the optimization equation (9.178a) in the case of binary decisions, i.e. when
there are only two hypothesis, H0 and H1.

9.24 Show that the integral of Eq. (9.208) is equal to the identity operator.
9.25 Prove that the operator R̂ j (c) − L̂ in the lhs of Eq. (9.211) is non-negative definite.
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10 Perturbations and approximation methods

In this chapter, we present some fundamental issues about approximation methods that
are often used when a quantum-mechanical system is perturbed and about the relationship
between classical and quantum mechanics. In Sec. 10.1 we introduce the stationary pertur-
bation theory, while Sec. 10.2 is devoted to time-dependent perturbations. In Sec. 10.3 we
briefly examine the adiabatic theorem. In Sec. 10.4 we introduce the variation method, an
approximation method that is not based on perturbation theory. In Sec. 10.5 we discuss the
classical limit of the quantum-mechanical equations, whereas in Sec. 10.6 we deal with the
semiclassical approximation, in particular the WKB method. On the basis of the previous
approximation methods in Sec. 10.7 we present scattering theory. Finally, in Sec. 10.8 we
treat a method that has a wide range of applications: the path-integral method.

10.1 Stationary perturbation theory

Perturbation theory is a rather general approximation method that may be applied when a
small additional force (the perturbation) acts on a system (the unperturbed system), whose
quantum dynamics is fully known. If the disturbance is small, it modifies both the energy
levels and the stationary states. This allows us to make an expansion in power series of a
perturbation parameter, which is assumed to be small. Perturbation theory may be applied
both to the case where the additional force is time-independent (in which case a station-
ary treatment suffices – the subject of the present section) as well as to the case where
it explicitly depends on time.1 In the former case we consider the perturbation as caus-
ing a modification of the states of the motion of the unperturbed system. In the latter, the
perturbed system makes transitions from one state to another under the influence of the
perturbation. In Sec. 10.2 we treat the dynamics of perturbed systems. Though this can
be applied to both time-dependent and time-independent perturbations, the former case is
obviously far more interesting. Given the fact that the number of quantum systems that are
explicitly solvable is relatively small – free particle (Secs. 3.4 and 4.1), harmonic oscilla-
tor (Sec. 4.4), linear potentials (Subsec. 4.5.1) – we emphasize that quantum perturbation
theory has a wide range of applications.

1 See [Dirac 1930, 167–75].
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10.1.1 Non-degenerate case

Stationary perturbation theory aims to find the changes in the discrete energy levels and
eigenstates of a system when a small disturbance is applied. Our procedure is to split the
total Hamiltonian into unperturbed and perturbated parts, according to the Dirac picture
(see Subsec. 3.6.2), so that we have

Ĥ = Ĥ0 + ζ Ĥ
′
, Ĥ0 |ψn〉 = E (0)

n |ψn〉 , Ĥ |ϕn〉 = En |ϕn〉 , (10.1)

where Ĥ0 is the Hamiltonian of the unperturbed system, |ψn〉 its eigenstates [see Sub-
sec. 3.1.3], E (0)

n their corresponding energy levels, and ζ a real and positive parameter
such that Ĥ is a well-defined Hamiltonian (see Subsec. 10.5.1). We assume that we
are able to solve the unperturbed stationary Schrödinger equation and find {|ψn〉 } and
{E (0)

n }, while our goal is to find the perturbed states {|ϕn〉 } and their corresponding energy
eigenvalues {En}.

For the time being, we also assume that all eigenvalues are different (non-degenerate
case). In the next subsection we shall consider the degenerate case. In many situations, we
can expand the perturbed eigenvalues as a Taylor power series in ζ (around ζ = 0), such
that the zero, first, etc., powers of ζ correspond to the zero, first, etc., orders of the pertur-
bation. If ζ is a small parameter and the energy distances between the discrete unperturbed
states are large compared to the energy-level modifications induced by the perturbation,
we can rely on the fact that higher orders (i.e. terms with higher powers of ζ ) of the pertur-
bation expansion will be negligible. The existence of all the involved derivatives at ζ = 0
does not imply that the function En(ζ ) is analytic. If this is not the case, the Taylor series
is not convergent but is asymptotic, i.e.

N∑
k=0

ζ k E (k)
n − En(ζ ) = O

(
ζ N+1

)
. (10.2)

Since the unperturbed eigenstates form an orthonormal basis on the system’s Hilbert space,
we may expand the eigenstates of the total Hamiltonian in terms of the eigenstates

∣∣ψ j
〉

of Ĥ0:

|ϕn〉 =
∑

j

cn, j
∣∣ψ j

〉
. (10.3)

Now, we may explicitly write the Taylor-series expansion of the coefficients cn, j and of
the eigenvalues En as functions of ζ around ζ = 0, i.e.

cn, j = c(0)
n, j + ζc(1)

n, j + ζ 2c(2)
n, j + · · · , (10.4a)

En = E (0)
n + ζ E (1)

n + ζ 2 E (2)
n + · · · . (10.4b)

Back-substituting the expansion (10.4a) into Eq. (10.3), we obtain

|ϕn〉 =
∑

j

c(0)
n, j

∣∣ψ j
〉 + ζ∑

j

c(1)
n, j

∣∣ψ j
〉 + ζ 2

∑
j

c(2)
n, j

∣∣ψ j
〉 + · · · . (10.5)
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In the limit ζ → 0 the lhs of Eq. (10.5) becomes |ψn〉 , which in turn implies that c(0)
n, j =

δn, j in the first term of the rhs of the same equation. We can then write

|ϕn〉 =
∣∣∣ϕ(0)

n

〉
+ ζ

∣∣∣ϕ(1)
n

〉
+ ζ 2

∣∣∣ϕ(2)
n

〉
+ · · · , (10.6)

where ∣∣∣ϕ(0)
n

〉
= |ψn〉 , (10.7a)∣∣∣ϕ(k)

n

〉
=
∑

j

c(k)
n, j

∣∣∣ϕ(0)
j

〉
. (10.7b)

Equation (10.6) is the Taylor expansion of the perturbed eigenkets in a power series of ζ .
Using the expansion (10.6) in the perturbed stationary Schrödinger equation, we obtain(
Ĥ0 + ζ Ĥ ′) (∣∣∣ϕ(0)

n

〉
+ ζ

∣∣∣ϕ(1)
n

〉
+ ζ 2

∣∣∣ϕ(2)
n

〉
+ · · ·

)
=
(

E (0)
n + ζ E (1)

n + ζ 2 E (2)
n · · ·

) (∣∣∣ϕ(0)
n

〉
+ ζ

∣∣∣ϕ(1)
n

〉
+ ζ 2

∣∣∣ϕ(2)
n

〉
+ · · ·

)
. (10.8)

Since Eq. (10.8) must be valid for any (small) value of ζ , we can equate the coefficients of
equal power of ζ on both sides so as to derive the infinite system of equations(

E (0)
n − Ĥ0

) ∣∣∣ϕ(0)
n

〉
= 0, (10.9a)(

E (0)
n − Ĥ0

) ∣∣∣ϕ(1)
n

〉
+ E (1)

n

∣∣∣ϕ(0)
n

〉
= Ĥ

′ ∣∣∣ϕ(0)
n

〉
, (10.9b)(

E (0)
n − Ĥ0

) ∣∣∣ϕ(2)
n

〉
+ E (1)

n

∣∣∣ϕ(1)
n

〉
+ E (2)

n

∣∣∣ϕ(0)
n

〉
= Ĥ

′ ∣∣∣ϕ(1)
n

〉
, (10.9c)

· · · = · · · ,(
E (0)

n − Ĥ0

) ∣∣∣ϕ(m)
n

〉
+ E (1)

n

∣∣∣ϕ(m−1)
n

〉
+ · · · + E (m)

n

∣∣∣ϕ(0)
n

〉
= Ĥ

′ ∣∣∣ϕ(m−1)
n

〉
.

(10.9d)

As expected, Eq. (10.9a) simply tells us that
∣∣∣ϕ(0)

n

〉
is an eigenket of Ĥ0 with eigenvalue

E (0)
n . Moreover, if we add a component η

∣∣∣ϕ(0)
n

〉
, η being an arbitrary parameter, to any

of the
∣∣∣ϕ( j)

n

〉
in each of the first terms of Eqs. (10.9), these terms – taking into account

Eq. (10.9a) – are left unchanged. In order to simplify the calculation we can choose the
arbitrary term in such a way that higher-order corrections are orthogonal to the unperturbed
eigenket, i.e. 〈

ϕ(0)
n | ϕ( j)

n

〉
= 0, ∀ j > 0. (10.10)

In other words, this implies that the sum in the rhs of Eq. (10.7b) has to be performed
on ∀ j 	= n, Using this property and the fact that the eigenvalue E (0)

n of the unperturbed

Hamiltonian is non-degenerate, we can multiply each term of Eq. (10.9d) by
〈
ϕ

(0)
n

∣∣∣ from

the left so as to obtain the general expression

E (m)
n =

〈
ϕ(0)

n

∣∣∣Ĥ ′ ∣∣∣ϕ(m−1)
n

〉
, (10.11)

for any m > 0, which shows that the calculation of any En to a given order in ζ requires
the knowledge of the eigenkets of Ĥ ′ to the next lower order.
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Therefore, from Eq. (10.11) we immediately obtain that the first-order correction to the
energy eigenvalues (m = 1) is given by

E (1)
n =

〈
ϕ(0)

n

∣∣∣Ĥ ′ ∣∣∣ϕ(0)
n

〉
=
〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψn

〉
= H

′
nn , (10.12)

which is the expectation value of the perturbing energy Ĥ
′

on the corresponding unper-
turbed state |ψn〉 . In other words, the energy change in the first order is equal to the
diagonal element of the perturbation Hamiltonian on the unperturbed eigenstate.

We may now proceed to calculate the first-order correction
∣∣∣ϕ(1)

n

〉
of the eigenket of the

perturbed Hamiltonian. From Eq. (10.7b), we have∣∣∣ϕ(1)
n

〉
=
∑
j 	=n

c(1)
n, j

∣∣ψ j
〉
, (10.13)

and reduce the problem to that of computing the coefficients c(1)
n, j for j 	= n. Substituting

Eq. (10.13) into Eq. (10.9b) and rearranging the terms, we obtain∑
j 	=n

c(1)
n, j

(
E (0)

n − E (0)
j

) ∣∣ψ j
〉 = (Ĥ

′ − E (1)
n

)
|ψn〉 . (10.14)

Multiplying both sides of Eq. (10.14) from the left by 〈ψk | (k 	= n), we obtain

c(1)
n,k =

〈
ψk

∣∣∣Ĥ ′ ∣∣∣ψn

〉
E (0)

n − E (0)
k

, (10.15)

which gives immediately the eigenket of the perturbed Hamiltonian to the first order. More-
over, Eq. (10.15) also determines the range of validity of the perturbation expansion. In
fact, in order for the ζc(1)

n,k to be small, we must have

ζ
〈
ψk

∣∣∣Ĥ ′ ∣∣∣ψn

〉
/ E (0)

n − E (0)
k , (10.16)

which is the formal expression of the condition we anticipated at the beginning of this
subsection: the energy differences between the discrete unperturbed states have to be large
relative to the energy changes induced by the perturbation.

The previous result allows us to calculate the second-order correction (m = 2) to the
energy eigenvalues. Inserting Eq. (10.15) and (10.13) into Eq. (10.11), we obtain

E (2)
n =

∑
j 	=n

c(1)
n, j

〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψ j

〉
=
∑
j 	=n

〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψ j

〉 〈
ψ j

∣∣∣Ĥ ′ ∣∣∣ψn

〉
E (0)

n − E (0)
j

, (10.17)
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from which we obtain

E (2)
n =

∑
j 	=n

∣∣∣〈ψn

∣∣∣Ĥ ′ ∣∣∣ψ j

〉∣∣∣2
E (0)

n − E (0)
j

. (10.18)

In order to calculate the eigenkets
∣∣∣ϕ(2)

n

〉
of the perturbed Hamiltonian, let us again expand∣∣∣ϕ(2)

n

〉
in terms of

∣∣ψ j
〉

(see Eq. (10.7b)):∣∣∣ϕ(2)
n

〉
=
∑
j 	=n

c(2)
n, j

∣∣ψ j
〉
. (10.19)

Once again, we substitute Eqs. (10.19), (10.13), and (10.7a) into Eq. (10.9c), to obtain∑
j 	=n

c(2)
n, j

(
E (0)

n − Ĥ0

) ∣∣ψ j
〉 +∑

j 	=n

c(1)
n, j E (1)

n

∣∣ψ j
〉 + E (2)

n |ψn〉 =
∑
j 	=n

c(1)
n, j Ĥ

′ ∣∣ψ j
〉

.

(10.20)
Proceeding in the same way, starting from Eq. (10.14), we have (k 	= n)

c(2)
n,k =

∑
j 	=n

〈
ψk

∣∣∣Ĥ ′ ∣∣∣ψ j

〉 〈
ψ j

∣∣∣Ĥ ′ ∣∣∣ψn

〉
(

E (0)
n − E (0)

k

) (
E (0)

n − E (0)
j

) −
〈
ψk

∣∣∣Ĥ ′ ∣∣∣ψn

〉 〈
ψn

∣∣∣Ĥ ′ ∣∣∣ψn

〉
(

E (0)
n − E (0)

k

)2
, (10.21)

which immediately provides the explicit expression for the correction
∣∣∣ϕ(2)

n

〉
of the eigenket

of the perturbed Hamiltonian to the second order.
Summarizing these results, we may write the energy eigenvalues and eigenstates of the

perturbed Hamiltonian to the second-order in ζ as

En = E (0)
n + ζH

′
nn + ζ 2

∑
j 	=n

∣∣∣H ′
nj

∣∣∣2
E (0)

n − E (0)
j

+ O
(
ζ 3
)

, (10.22a)

|ϕn〉 = |ψn〉 + ζ
∑
j 	=n

[
H

′
jn

E (0)
n − E (0)

j

(
1 − ζ H

′
nn

E (0)
n − E (0)

j

)

+ ζ
∑
k 	=n

H
′
jk H

′
kn(

E (0)
n − E (0)

k

) (
E (0)

n − E (0)
j

)
⎤⎦ ∣∣ψ j

〉
. (10.22b)

We recall that |ϕn〉 is not normalized, so an extra computation must be performed in order
to obtain the normalization factor (see Subsec. 2.2.2).
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10.1.2 Degenerate case

So far, we have assumed that the eigenvalues corresponding to the unperturbed eigenstates∣∣∣ϕ(0)
n

〉
= |ψn〉 are non-degenerate. Suppose now that there are two states |ψl〉 and

∣∣ψq
〉

(with l 	= q) that have the same unperturbed energy eigenvalue, i.e. E (0)
l = E (0)

q = E (0).
As we know (see Subsec. 3.1.4), in this case {|ψl〉 ,

∣∣ψq
〉 } is just a pair among the infinite

possible pairs that span the two-dimensional subspace pertaining to the doubly degenerate
energy eigenvalue E (0). We limit ourselves here to the case of doubly degenerate levels,
but the generalization to higher-order degeneracies is straightforward.

The main difficulty arises in Eq. (10.15), where the denominator vanishes. Unless we

simultaneously have2
〈
ψl

∣∣∣Ĥ ′ ∣∣∣ψq

〉
= 0, the coefficient c(1)

q,l is not defined, and the proce-

dure described in the previous subsection cannot be valid. Moreover if we choose the basis
of the unperturbed Hamiltonian in such a way that the perturbed Hamiltonian is diagonal
in the space of degenerate eigenvalues, still no problems arise and the previous equations
can be used without modifications.

Among all possible linear combinations of |ψl〉 and
∣∣ψq

〉
, let us introduce the particular

superposition ∣∣∣ϕ(0)
〉
= dl |ψl〉 + dq

∣∣ψq
〉
, (10.23)

which removes the degeneracy in the first order. In order to reach this goal, we rewrite
Eq. (10.9b) as (

E (0) − Ĥ0

) ∣∣∣ϕ(1)
〉
=
(

Ĥ
′ − E (1)

) (
dl |ψl〉 + dq

∣∣ψq
〉 )

, (10.24)

where we have dropped the index n because we are implicitly referring to the subspace
spanned by {|ψl〉 ,

∣∣ψq
〉 }. Then, we take the inner product of this equation with 〈ψl | and〈

ψq
∣∣. We then find the following linear and homogeneous system of equations in dl and dq :(〈

ψl

∣∣∣Ĥ ′ ∣∣∣ψl

〉
− E (1)

)
dl +

〈
ψl

∣∣∣Ĥ ′ ∣∣∣ψq

〉
dq = 0, (10.25a)〈

ψq

∣∣∣Ĥ ′ ∣∣∣ψl

〉
dl +

(〈
ψq

∣∣∣Ĥ ′ ∣∣∣ψq

〉
− E (1)

)
dq = 0. (10.25b)

This system of equations in dl and dq can be solved if and only if the determinant of the
coefficients vanishes, i.e. ∣∣∣∣∣ H ′

ll − E (1) H ′
lq

H ′
ql H ′

qq − E (1)

∣∣∣∣∣ = 0. (10.26)

This a quadratic equation for E (1), whose solutions are given by

E (1) = 1

2

[
H ′

ll + H ′
qq ±

√(
H ′

ll − H ′
qq

)2 + 4|H ′
ql |2
]

. (10.27)

2 If
〈
ψl

∣∣∣Ĥ ′ ∣∣∣ψq

〉
= 0, i.e. the perturbing Hamiltonian is zero in the subspace of the degenerate eigenvalues, there

are no problems, because the numerator cancels with the zero in the denominator of Eq. (10.15), and we can
just neglect these terms. If the Hamiltonian restricted to this subspace is proportional to the identity, we can just
shift the Hamiltonian by adding an appropriate constant.
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Since the diagonal matrix elements of Ĥ
′

are real, both values of E (1) are also real. They
are equal if and only if

H ′
ll = H ′

qq and H ′
ql = 0. (10.28)

In this case we say that the degeneracy has not been removed in the first order (see
Prob. 10.1). However, if at least one of the requirements (10.28) is not satisfied, then the
values of E(1) are distinct and each can be used for computing dl and dq from Eqs. (10.25)
and obtaining the desired pair of linear combinations of |ψl〉 and

∣∣ψq
〉
.

In order to find the first-order correction
∣∣ϕ(1)

〉
to
∣∣ϕ(0)

〉
, we make use of the expansion∣∣∣ϕ(1)

〉
=
∑

j

c(1)
j

∣∣∣ϕ(0)
j

〉
, (10.29)

and multiply from the left Eq. (10.24) by 〈ψk |, where k 	= l, q, so as to obtain

c(1)
k = H ′

kldl + H ′
kqdq(

E (0) − E (0)
k

) , (10.30)

which gives the desired c(1)
k for all k 	= l, q. We may impose c(1)

l = c(1)
q = 0 so as to satisfy

the requirement (10.10), i.e.
〈
ϕ(0) | ϕ(1)

〉 = 0. This computation may be then carried on to
higher order by following the methodology of the non-degenerate case.

10.1.3 Perturbation of an osci l lator

We may consider the example of the Hamiltonian

Ĥ = 1

2

(
p̂2

x

m
+ mω2 x̂2

)
+ ζ x̂4, (10.31)

where

H0 = 1

2

(
p̂2

x

m
+ mω2 x̂2

)
(10.32)

is the simple harmonic-oscillator Hamiltonian (see Sec. 4.4), and ζH ′ = ζ x̂4 is a small
anharmonic perturbation. A simple computation (see Eq. (4.72) and Prob. 10.2) shows
that

E (0)
n = h̄ω

(
n + 1

2

)
, (10.33a)

〈
n
∣∣∣x̂4
∣∣∣ n〉=( h̄

2mω

)2

(6n2 + 6n + 3). (10.33b)

This result implies that (see Eq. (10.12))

En = h̄ω

(
n + 1

2

)
+ ζ

(
h̄

2mω

)2 (
6n2 + 6n + 3

)
+ O(ζ 2). (10.34)
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(a) (b)
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�Figure 10.1 Stark effect. (a) The energy spectrum in an atom in absence of an external field is constituted by
a series of delta functions centered at the energy eigenvalues of unperturbed Hamiltonian. (b)
The perturbation induced by a small external electric field causes the delta function to become
Breit–Wigner distributions.

The only matrix elements we need for the calculation of the first-order perturbed
eigenstates of the anharmonic oscillator are (see Eq. (10.15) and again Prob. 10.2)〈

n
∣∣∣x̂4
∣∣∣ n + 2

〉
=
(

h̄

2mω

)2

(4n + 6)
√

(n + 1)(n + 2), (10.35a)

〈
n
∣∣∣x̂4
∣∣∣ n + 4

〉
=
(

h̄

2mω

)2√
(n + 1)(n + 2)(n + 3)(n + 4). (10.35b)

In conclusion, we may now compute

c(1)
n,m =

〈
n
∣∣x̂4
∣∣m〉

h̄ω(m − n)
, (10.36)

whose only surviving terms are those for which we have

m = {n − 4, n − 2, n + 2, n + 4}. (10.37)

The higher-order terms of the perturbation expansion can be computed in a similar way as
explained in detail in Subsec. 10.1.1.

10.1.4 Stark effect for a r igid rotator

In this subsection we shall deal with a type of problem that occurs in the study of the
polarization of diatomic molecules in an electric field.3 We can consider two limiting cases:
when there is no field and the electronic energy levels are represented by delta functions
and when the external field is so strong that no energy level survives. The Stark effect is
the situation in between these two extreme cases, when the energy levels, perturbed by the
external field, begin to broaden (see Fig. 10.1). The density of the states in this case is
given by a Breit–Wigner distribution,4 which may be written as

ρbw(E) =
∑

j

1

2π

� j

(E − E j )2 + (� j/2
)2 , (10.38)

3 This effect is strictly connected with the Paschen–Bach and Zeeman effects (see Sec. 11.3) that arise when an
atom is subject to a static magnetic field.

4 See [Breit/Wigner 1936].
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where � j is the width of the j-th energy level. In the limit � j → 0 we obviously obtain
a series of δ-functions . If the electric field is not very large, the � j are negligible and the
only effect of the electric field is a shift in the energy levels. Here, we limit ourselves to
computing only the effect for a small electric field.

Let us suppose, for the sake of simplicity, that the system may be treated as a rigid
rotator (see Subsec. 6.2.1). The rigid rotator represents, e.g., the motion of the nuclei in
a diatomic molecule,5 and its only degrees of freedom are the angular variables (θ ,φ). If
L̂ is the rotator’s angular momentum and I = mr2

0 its moment of inertia (see Eq. (6.78)),
where m is the reduced mass and r0 the mutual distance of the nuclei, the Hamiltonian, in
the absence of electric field, is given by (see Eq. (6.80))

Ĥ0 = L̂
2

2I
. (10.39)

Its eigenfunctions are represented by the spherical harmonics Ylm(φ, θ ) and the corre-
sponding eigenvectors are, as usually, | l, m〉 (see Subsec. 6.1.4). The corresponding energy
eigenvalues depend only on l, so that we may write

Ĥ0 | l, m〉 = E (0)
l | l, m〉 , E (0)

l = h̄2

2I
l (l + 1). (10.40)

In the presence of an uniform electric field E, directed along the z-axis, the Hamiltonian
contains the additional term

Ĥ
′ = −E d cos θ , (10.41)

where d is the electric dipole moment of the rotator. In the {| l, m〉 } representation nearly
all of the matrix elements of Ĥ

′
vanish. In order to have〈

l1, m1

∣∣∣Ĥ ′ ∣∣∣ l2, m2

〉
	= 0, (10.42)

we must have

m1 = m2, l1 = l2 ± 1. (10.43)

When these conditions are fulfilled, we can deduce the matrix elements from the following
formula:

〈l, m |cos θ | l − 1, m〉 = 〈l − 1, m |cos θ | l, m〉 =
(

l2 − m2

4l2 − 1

) 1
2

. (10.44)

Except for the level l = 0, all of the unperturbed levels are degenerate. However, both Ĥ0

and Ĥ = Ĥ0 + Ĥ
′
commute with L̂ z and therefore one can separately solve the eigenvalue

problem for Ĥ in each of the subspaces Hm of a given eigenvalue m of L̂ z . In each of these
subspaces, the spectrum of Ĥ0 is non-degenerate, and〈

l, m
∣∣∣Ĥ ′ ∣∣∣ l, m

〉
= 0. (10.45)

5 See Ch. 12 for a treatment of diatomic molecules.
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Thus, the first-order correction to the energy levels vanishes. The second-order correction
(see Eq. (10.18)) reduces to the two terms corresponding to l ± 1, i.e.

E (2)
lm = 2I (E d)2

h̄2

∑
l ′ 	=l

| 〈l, m |cos θ | l ′, m
〉 |2

l(l + 1) − l ′(l ′ + 1)
(10.46)

= 2I (E d)2

h̄2

[ | 〈l, m |cos θ | l + 1, m〉 |2
l(l + 1) − (l + 1)(l + 2)

+ | 〈l, m |cos θ | l − 1, m〉 |2
l(l + 1) − l(l − 1)

]
.

Calculation of the rhs by means of Eq. (10.44) gives the final result:

E (2)
lm = (E d)2

E (0)
l

l(l + 1) − 3m2

2(2l − 1)(2l + 3)
, (10.47)

which also yields the right condition of applicability of a perturbation theory, namely

E d / E (0)
l . (10.48)

10.2 Time-dependent perturbation theory

When we wish to treat the dynamics of a perturbed system, we must make use of the
time-dependent Schrödinger equation (3.8). As we have said, this assumes particular rele-
vance when the perturbation is time-dependent. In other words, we assume the perturbation
Hamiltonian Ĥ

′
depends on time. Our aim is to approximate the perturbed state vectors

computing the “stationary” state vectors as linear superpositions of the eigenstates of the
unperturbed system. As we have said we work with

ı h̄
∂

∂t
|ϕ〉 = Ĥ |ϕ〉 , (10.49)

with the same notation as in Eq. (10.1). As we know, the time evolution of the unperturbed
eigenstates (see Eqs. (3.18) and (3.21)) is given by

|ψn(t)〉 = e−ı t E(0)
n
h̄ |ψn〉 . (10.50)

We now expand |ϕ〉 in terms of the |ψn(t)〉 ’s, with time-dependent expansion coefficients

|ϕ(t)〉 =
∑

j

c j (t)
∣∣ψ j

〉
e−

ı
h̄ E (0)

j t ,
∑

j

∣∣c j (t)
∣∣2 = 1. (10.51)

Substitution of Eq. (10.51) in Eq. (10.49) gives∑
j

ı h̄ċ j
∣∣ψ j

〉
e−

ı
h̄ E (0)

j t +
∑

j

c j E (0)
j

∣∣ψ j
〉

e−
ı
h̄ E (0)

j t =
∑

j

c j

[
Ĥ0 + ζ Ĥ

′
(t)
] ∣∣ψ j

〉
e−

ı
h̄ E (0)

j t ,

(10.52)

where we have assumed that Ĥ
′
(t) and c j (t) commute: this is correct under the hypothesis

that Ĥ
′
(t) does not contain time derivatives. We replace Ĥ0

∣∣ψ j
〉

by E (0)
j

∣∣ψ j
〉

on the rhs
and multiply on the left by 〈ψk |, so as to obtain
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ı h̄ċke−
ı
h̄ E (0)

k t =
∑

j

c j e
− ı

h̄ E (0)
j t
〈
ψk

∣∣∣ζ Ĥ
′
(t)
∣∣∣ψ j

〉
. (10.53)

Making use of the Bohr frequency ωk j = (E (0)
k − E (0)

j )/h̄ (see Eq. (1.75)), we obtain

ċk = 1

ı h̄

∑
j

〈
ψk

∣∣∣ζ Ĥ
′
(t)
∣∣∣ψ j

〉
c j e

ıωk j t . (10.54)

The quantities

H
′
k j (t) =

〈
ψk

∣∣∣ζ Ĥ
′
(t)
∣∣∣ψ j

〉
eıωk j t (10.55)

are the matrix elements of the perturbation, which explicitly depend on time. The group of
Eqs. (10.54) for all k is equivalent to the Schrödinger equation (10.49). Therefore, solving
Eq. (10.54) – i.e. finding the time-dependent coefficients c j (t) – is equivalent to solving
the original time-dependent Schrödinger equation. As in the previous section, we express
the coefficient ck(t) as a formal Taylor expansion around ζ = 0

ck = c(0)
k + ζc(1)

k + ζ 2c(2)
k + · · · . (10.56)

As usual, we have assumed that all the quantities have finite derivatives at ζ = 0. Then, we
substitute the expansion (10.56) in Eq. (10.54), we equate the coefficients of equal power
of ζ , and obtain the set of equations

ċ(s+1)
k = 1

ı h̄

∑
j

Ĥ
′
k j (t)c

(s)
j , (10.57)

where ċ(0)
k = 0. We shall assume that all but one c(0)

k are zero, so that the system is initially
in a definite unperturbed energy eigenstate, let us say it is l. Integration of the first-order
equation gives

c(1)
k (t) = 1

ı h̄

t∫
−∞

dt ′H ′
kl (t

′). (10.58)

Equation (10.58) takes a particularly simple form if the perturbation Ĥ
′
(t) depends har-

monically on time except for being turned on at a certain time t0 = 0 and off at a later time
t∞. Integrating Eq. (10.58) by parts, we obtain

c(1)
k (t) = − 1

h̄ωkl

〈
ψk

∣∣∣Ĥ ′
(t ′)
∣∣∣ψl

〉
eıωkl t ′

∣∣∣∣t−∞ +
t∫

−∞
dt ′ e

ıωkl t ′

h̄ωkl

∂

∂t ′
〈
ψk

∣∣∣Ĥ ′
(t ′)
∣∣∣ψl

〉
.

(10.59)
The first term disappears in the lower limit whereas in the upper limit it coincides with the
coefficients

H
′
kl (t)

E (0)
l − E (0)

k

. (10.60)
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If the perturbation acts for a finite range of time, the probability of transition from the state
l to a state k after the perturbation has been switched off (t > t∞) is given by the square
modulus of the second term:

℘(l → k) = 1

h̄2ω2
kl

∣∣∣∣∣∣
+∞∫
−∞

dt ′eıωkl t ′
∣∣∣∣∣∣
2

∂

∂t ′
〈
ψk

∣∣∣Ĥ ′
(t ′)
∣∣∣ψl

〉
. (10.61)

Let us now assume that the perturbation has a harmonic time dependence, i.e.

H
′
kl (t) = 2

〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
eıωkl t sinωt , (10.62)

where
〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
is independent of time and ω is positive. Substitution of Eq. (10.62)

into Eq. (10.58) gives for the first-order amplitude at any time t ≥ t∞ (see Prob. 10.3)

c(1)
k (t ≥ t∞) = −

〈
ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉
ı h̄

[
eı(ωkl+ω)t∞ − 1

ωkl + ω − eı(ωkm−ω)t∞ − 1

ωkl − ω
]

. (10.63)

Equation (10.63) shows that the amplitude is bigger when the denominator of one or the
other of the two terms is near zero.

Let us consider the situation in which the initial state |ψl〉 is a discrete bound state
and the final state |ψk〉 is one of a continuous set of dissociated states. Then, Ek > El and
only the second term of Eq. (10.63) need to be considered. The first-order probability of
finding the system in the state k after the perturbation is removed is (see Prob. 10.4)

℘(l → k) = |c(1)
k (t ≥ t∞)|2 =

4
∣∣∣〈ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉∣∣∣2 sin2 1
2 (ωkl − ω) t∞

h̄2 (ωkl − ω)2
. (10.64)

The transition probability per unit time is given by integrating Eq. (10.64) over all energy
levels k of the continuous set and dividing by t∞, i.e.

℘trans = 1

t∞

∫
d Ek |c(1)

k (t ≥ t∞)|2ρ(k), (10.65)

where ρ(k)d Ek is the number of final states with energies between Ek and Ek + d Ek and
ρ(k) is the energy density of the final states. Substitution of Eq. (10.64) into Eq. (10.65)
yields

℘trans = 2π

h̄
ρ(k)

∣∣∣〈ψk

∣∣∣Ĥ ′
i

∣∣∣ψl

〉∣∣∣2 , (10.66)

where we have made use of the equality

+∞∫
−∞

dx
sin2 x

x2
= π . (10.67)

Equation (10.66) is often called the Fermi golden rule and tells us that in the presence of a
weak resonant perturbation the population of the k-th state grows linearly with time.

In conclusion, let us consider Eq. (3.21) again. We see that, when the Hamiltonian
is time-independent, the initial state evolves with time in such a way that the probabil-
ities of the different energy eigenvalues are conserved, since the initial coefficients of
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the eigenstates of the Hamiltonian in the expansion are only multiplied by phase factors,
and therefore only the relative phase is modified. This remains obviously true also in the
case considered in the previous section. Instead, when the perturbation depends on time,
the eigenstates of the perturbed Hamiltonian themselves are time-dependent and therefore
the above probabilities are not conserved. This in turn means that, by the effect of the per-
turbation, the systems undergoes a progressive shift in the distribution of its components
in the initial superposition.

10.3 Adiabatic theorem

As we have seen, it is very difficult in general to solve the Schrödinger equation with
an explicitly time-dependent potential. In Sec. 3.1.3 we have solved the Schrödinger
equation in the time-independent case. In the previous section we have presented an
approximation method that allows us to deal with weak time-dependent perturbation. In
this section we discuss the problem of the time evolution of a system with a Hamiltonian
that explicitly depends on time but changes slowly – i.e. adiabatically.

Let us consider a Hamiltonian that is dependent on a parameter ζ (t) that may be seen as
a vector and that describes a closed loop in the parameter space.6 It is then clear that, due
to the time dependence of the parameter ζ , the Hamiltonian itself is time-dependent. The
Schrödinger equation of the system may be written as

ı h̄
d

dt
|ψ(t)〉 = Ĥ

[
ζ (t)

] |ψ(t)〉, (10.68)

and the eigenvalue equation of the Hamiltonian is

Ĥ
[
ζ (t)

] ∣∣n [ζ (t)
]〉 = En

[
ζ (t)

] ∣∣n [ζ (t)
]〉

, (10.69)

where
∣∣n [ζ (t)

]〉
is an instantaneous eigenstate of the Hamiltonian. Consider now an

arbitrary initial state |ψ(t0 = 0)〉 and expand it as

|ψ(t0)〉 =
∑

n

ψn(t0)
∣∣n [ζ (t0)

]〉
, (10.70)

where ψn = 〈n | ψ〉. We shall now try to describe the time evolution of this state. Suppose
that we may write

|ψ(t)〉 =
∑

n

ψn(t)e−ıφ(d)
n (t)

∣∣n [ζ (t)
]〉

, (10.71)

where

φ(d)
n (t) = 1

h̄

t∫
0

dt ′En
[
ζ (t ′)

]
(10.72)

6 See [Schleich 2001, 172–74].
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is the dynamical phase for a time-dependent system.7 Equation (10.72) may be also
written as

d

dt
φ(d)

n (t) = 1

h̄
En
[
ζ (t)

]
. (10.73)

By performing the time derivative of Eq. (10.71),

ı h̄
d

dt
|ψ(t)〉 = ı h̄

∑
n

e−ıφ(d)
n

{[(
d

dt
ψn

)
+ ψn

(
−ı

d

dt
φ(d)

n

)]
|n〉 + ψn

(
d

dt
|n〉
)}

,

(10.74)

where, for the sake of notation, the argument ζ (t) has been suppressed, and, by taking into
account Eq. (10.73), we obtain

ı h̄
d

dt
|ψ(t)〉 = ı h̄

∑
n

e−ıφ(d)
n

[(
d

dt
ψn

)
|n〉 + ψn

(
d

dt
|n〉
)]

+
∑

n

Enψne−ıφ(d)
n |n〉 .

(10.75)

Considering the rhs of Eq. (10.68) and, by taking into account Eqs. (10.69) and (10.71),
yields

Ĥ
[
ζ (t)

] |ψ(t)〉 =
∑

n

Enψne−ıφ(d)
n |n〉 . (10.76)

Equating the rhs of Eqs. (10.75) and (10.76), we have∑
n

e−ıφ(d)
n

[(
d

dt
ψn

)
|n〉 + ψn

(
d

dt
|n〉
)]

= 0. (10.77)

Projecting onto the m-th energy eigenstate and assuming the orthonormality condition of
the eigenstates of the Hamiltonian, we obtain

d

dt
ψm = −

〈
m

∣∣∣∣ d

dt

∣∣∣∣m〉ψm −
∑
n 	=m

e−ı(φ(d)
n −φ(d)

m )
〈
m

∣∣∣∣ d

dt

∣∣∣∣ n〉ψn , (10.78)

which obviously shows that different energy eigenstates are coupled with each other: even
if the system begins in an initial state given by a single energy eigenstate, all the other
energy eigenstates come into play due to the natural time-dependent Schrödinger evolution.
Three factors determine the transition probability from the n-th to the m-th level:

• the matrix element Mm,n(t) = 〈m ∣∣ d
dt

∣∣ n〉;
• the phase difference φ(d)

n − φ(d)
m ;

• the initial probability amplitude ψn of the n-th level.

Let us rewrite Eq. (10.78), indicating explicit time dependence and expanding the differ-
entiation with respect to time as a scalar product between the gradient with respect to the
vector parameter ζ and the time derivative of the parameter. Then, we obtain

Mm,n =
〈
m
[
ζ (t)

] ∣∣∣∣ d

dt

∣∣∣∣ n [ζ (t)
]〉 = 〈m [ζ (t)

] ∣∣∇ζ

∣∣ n [ζ (t)
]〉 d

dt
ζ (t), (10.79)

7 This is just the obvious generalization of the phase factor Ent/h̄, which we have in the case of the time-
independent Hamiltonian (see Eq. (3.21)).
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which shows that the size of Mm,n is proportional to the rate of change of ζ . Provided that
this rate is small compared to the time scales involved, the coupling due to Mm,n is also
small. Moreover, each of the terms in the sum in the rhs of Eq. (10.78) has a phase factor
which is given by the time-dependent differences φ(d)

n − φ(d)
m , whose oscillations contribute

to make the coupling small. The adiabatic theorem then states that a system initially in the
energy eigenstate

∣∣ j
[
ζ (t0)

]〉
remains in the same instantaneous (and slowly evolving in

time) energy eigenstate, provided that the change in ζ (t) is adiabatic – however, as we
shall see in Sec. 13.8, it also acquires a geometric phase factor.

10.4 The variational method

Generally speaking, the variational method, also called the method of Ritz, can be used
for the approximate determination of the ground-state of the energy of a system when the
perturbation method is inapplicable. If an arbitrary ket |ϕ〉 is expanded as

|ϕ〉 =
∑

n

cn |ψn〉 , (10.80)

in the energy eigenkets |ψn〉 that form a complete orthonormal set, the expectation value of
the Hamiltonian Ĥ (where Ĥ |ψn〉 = E |ψn〉 ) on the state described by the wave function
ϕ(r) = 〈r | ϕ〉 is given by〈

Ĥ
〉
ϕ
=
∫

drϕ∗(r)Ĥϕ(r) =
∑

n

E |cn|2, (10.81)

where the integration is extended over the entire range of all the coordinates of the system.
For convenience, it is assumed that the energy eigenvalues are discrete in Eqs. (10.80)
and (10.81). As we know, this can be accomplished by enclosing the system in a box (see
Sec. 3.4).

A useful inequality may be derived from Eq. (10.81) by replacing each eigenvalue E in
the summation on the rhs by the lowest energy eigenvalue E0, i.e. the energy of the ground
state, so that 〈

Ĥ
〉
ϕ
≥ E0

∑
n

|cn|2. (10.82)

Since
∑

n |cn|2 = 1 for a normalized ket, then we also have

E0 ≤
∫

drϕ∗(r)Ĥϕ(r). (10.83)

The variational method consists in evaluating the integral on the rhs of Eq. (10.83) with
a trial ket |ϕ〉 that depends on a “small” number of parameters, and by varying these
parameters until the expectation value of the energy reaches its minimum. The result is
an upper limit for the ground-state energy of the system. Notice that, if ϕ(r) = ψ0(r) +
εδψ(r), with small ε, then ∫

drϕ∗(r)Ĥϕ(r) = E0 + O(ε2). (10.84)
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This means that, with the variational method, the estimate of the wave function is
inaccurate at order ε while that of the energy is inaccurate at the order ε2.

A similar procedure may be applied to the estimate of the other eigenvalues En , with
En−1 < En < En+1. In this case, besides the extremum condition on the integral∫

drψ∗n (r)Ĥψn(r), (10.85)

and the normalization condition ∫
drψ∗n (r)ψn(r) = 1, (10.86)

we also have the orthogonality condition∫
drψ∗n (r)ψm(r) = 0, (10.87)

where m = 0, 1, . . . , n − 1.

10.5 Classical l imit

As we have seen (Pr. 2.3: p. 72), the classical world may be understood in some sense as
a limit of the quantum world when the physical systems become larger and larger, i.e. ,
formally, when h̄ → 0. This is equivalent to taking the high-energy limit. In this section
we shall see some consequences of this limit and try to give a physical and formal meaning
to the transition from the quantum to the classical domain.

10.5.1 Lieb’s theorem

Let us limit the following examination to the one-dimensional classical case, being the
trivial generalization. Classically, in absence of dissipation, the time derivative of the posi-
tion is given by ẋ = px/m, while the time derivative of the momentum can be written as
a function of x , i.e. ṗx = f (x) (see Sec. 1.1, and in particular Eqs. (1.7)). Since position
and momentum variables classically commute, the second and third time derivatives of the
position variable may be written as (see Prob. 10.5)

ẍ = f (x)

m
and

...
x= ḟ (x)

m
= px

m2
· f ′(x), (10.88)

respectively, where f ′(x) = d f (x)/dx . In the quantum case, however, the third time
derivative is given by (see Prob. 10.6)

.̂..
x = 1

2m2

[
p̂x f ′(x̂) + f ′(x̂) p̂x

]
. (10.89)

This result coincides with the classical one in the limit h̄ → 0, because in this limit the
observables commute. Let us come back on the problem of the relationship between classi-
cal Poisson brackets and quantum commutators. As we know (see Eq. (3.109) and remarks
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to Eq. (3.124)), in the classical limit – apart from a constant factor – commutators have to
be replaced by the corresponding Poisson brackets. In general, there are strong similarities
between the classical Poisson brackets and the quantum commutators provided that the
Heisenberg commutation relations are valid. For instance,

{x , px } = 1,
[
x̂ , p̂x

] = ı h̄. (10.90)

The previous equations can be generalized to (see Eq. (1.9) and Probs. 2.26–2.27)

{ f (x), px } = f ′(x),
[

f (x̂), p̂x
] = ı h̄ f ′(x̂) (10.91a)

{x , g(px )} = g′(px ),
[
x̂ , g( p̂x )

] = ı h̄g′( p̂x ), (10.91b)

where f and g are some functions. We recall here that the similarity between Poisson
brackets and commutators also covers more formal aspects: for instance, both obey the
Jacobi identity (see Eq. (2.96)). Notwithstanding, the correspondence between the classical
and quantum formalism is not always so specular. For example, we have

{ f (x), p2
x } = 2px f ′(x),

[
f (x̂), p̂2

x

]
= ı h̄

[
p̂x f ′(x̂) + f ′(x̂) p̂x

]
. (10.92)

In general, for two observables ξ̂ and η̂, we may write

[
ξ̂ , η̂

]
= ı h̄{ξ , η} + O(h̄2). (10.93)

Therefore, we recover the classical case only if we neglect terms of order higher than h̄.
Let us suppose that at time t0 the quantum system is represented by a wave packet (see

Box 2.6) – in the state ψ(x) – centered around a given value (
〈
x̂
〉 = x(t0)) of the position

and of the momentum (
〈
p̂x
〉 = p(t0)) such that

�ψ x = O(h̄1/2), �ψ px = O(h̄1/2). (10.94)

This wave packet will evolve in such way that, neglecting all the terms of order higher
than h̄,

〈
x̂
〉
t = x(t) and

〈
p̂x
〉
t = p(t) satisfy the classical equations of motion (see final

discussion in Sec. 3.7), and the variances of the position and momentum always go to zero
when h̄ goes to zero. This conclusion appears to be natural because, formally, if we neglect
the higher-order terms in the commutators, the operators do satisfy the classical equations
of motion.

The previous discussion might suggest that it is always possible to perform the classical
limit. As a matter of fact, this statement needs some specification, first for the different
nature of the objects involved in classical and in quantum mechanics, second because, in
the quantum case, if the Hamiltonian is well-defined, the quantum dynamics is also well-
defined at all times, while a classically determined dynamics does not always exist: the
passage to the classical limit is in general only possible if the classical counterpart is well
defined. This is the content of Lieb’s theorem,8 which states that this passage is possible

8 See [Lieb 1973].



374 Perturbat ions and approximation methods
�

only with the exception of “pathological cases.” For instance, Lieb’s theorem tells us that
the previous formal development is actually correct.

On the other hand, as an example of “pathological system,” let us consider the
Hamiltonian

H = ap2
x + bx4, (10.95)

with a > 0, b < 0. When the energy of the particle is zero, we have p2
x = −(b/a)x4. In

this case, we also have

m
dx

dt
= ±

√
−b

a
, (10.96)

from which it follows that

dx

x2
= ± 1

m

√
−b

a
dt . (10.97)

Integrating the previous equation from t0 to t , we obtain

1

x(t0)
− 1

x(t)
= ± 1

m

√
−b

a
(t − t0). (10.98)

As a consequence, the system goes to infinity in a finite time: if t∞ is the time for which
x(t∞) = ∞,

t∞ = t0 + m

√
− a

b

x(t0)
. (10.99)

Classically, three possibilities arise: (1) the system is lost at infinity; (2) it bounces back; (3)
it disappears at +∞ and comes out from −∞. Since the equations of motion do not allow
us to decide which of these different possibilities must occur, the dynamics of the system,
when passing the critical point t∞ (which depends on the initial position), is classically not
wholly determined. Therefore, the statement “the quantum evolution goes to the classical
one” does not make sense as far as the classical evolution is not uniquely defined.

It is interesting to note that, for the example chosen, the Hamiltonian is also not
unambiguously defined quantum-mechanically. In fact, it is not bounded from below (see
Box 2.1) and it is not well-defined as a Hermitian operator, i.e. its definition as a Hermitian
operator is not unique. Therefore, in this particular case, we could properly say that only
when t < t∞ can the quantum system tend to its classical counterpart in the limit h̄ → 0.
However, in order to define the time evolution at any time, which is also much smaller than
t∞, in the quantum case we must make some choices on the behavior of the wave function
at x = ±∞. In the quantum case, the resolution of the ambiguity is a must at any time
because the probability of arriving at infinity is always different from zero, although very
small for short times.

10.5.2 Amplitudes and action

Given the above limitation, we may now discuss the case when the passage at the limit
h̄ → 0 is possible. Here, we can safely assume that the classical dynamics is well-defined.
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The probability for a quantum system S that is in an initial state x(t0) at time t0 to be
found in a position x(t) at time t is |〈x(t) | x(t0)〉|2 and its relative amplitude is given by
the Green’s function9 (see Subsec. 3.5.5)

G(x(t0), x(t); t0, t) = 〈x(t) | x(t0)〉 = e
ı
h̄ S(x(t0),x(t);t0,t), (10.100)

where the function S(x(t0), x(t); t0, t) will be defined below. Equation (10.100) is also a
solution of the Schrödinger equation with respect to both variables x , t , which in the one-
dimensional case is

− ı h̄
d

dt0
〈x(t) | x(t0)〉 =

∫
dx ′(t0)

〈
x(t) | x ′(t0)

〉 〈
x ′(t0)

∣∣∣Ĥt0

∣∣∣ x(t0)
〉

. (10.101)

One can prove that in the limit in which h̄ → 0 (see again Pr. 2.3: p. 72) the func-
tion S(x(t0), x(t); t0, t) will coincide with the classical action evaluated along the classical
trajectory going from x(t0) to x(t) (see Eq. (1.14)). Then we have that

− ∂S

∂t0
= H c (x(t0), px (t0)), (10.102)

where

px (t0) = − ∂S

∂x(t0)
. (10.103)

and H c is the Hamiltonian of the corresponding classical system, which is formally iden-
tical to the above quantum Hamiltonian. To obtain the quantum analogue of the classical
Lagrangian, we must consider an infinitesimal time interval t = t0 + δt . We obtain then
〈x(t0 + δt) | x(t0)〉 as the analogue of e

ı
h̄ L(t0)δt . In this case, one should consider L(t0) as

a function of the coordinate x at time t0 + δt and of the coordinate x(t0) at time t0 rather
than as a function of position and momentum, as is usually assumed. Finally, the quantum
amplitude 〈x(t) | x(t0)〉 may be written in the limit of a small h̄ as

〈x(t) | x(t0)〉 = e
ı
h̄

∫ t
t0

dt ′L(t ′) = e
ı
h̄ S(x(t0),x(t);t0,t). (10.104)

10.5.3 Hamilton–Jacobi equation

We consider now the case of a three-dimensional particle subject to a potential energy
V (r). Let us write a wave function describing the state of this particle as

ψ(r) = ϑ(r)e
ı
h̄ φ(r), (10.105)

where ϑ and φ are the amplitude and the phase of ψ(r), respectively. Back-substituting
Eq. (10.105) into the time-dependent Schrödinger equation (3.14) and separating the real
and the imaginary parts, we obtain the equations (see Prob. 10.7)

∂φ

∂t
+ (∇φ)

2

2m
+ V = h̄2

2m

�ϑ

ϑ
, (10.106a)

m
∂ϑ

∂t
+ (∇ϑ ·∇φ)+ 1

2
ϑ�φ = 0, (10.106b)

9 See [Dirac 1930, 125–30].
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where ∇ is the nabla operator and � the Laplacian. As we have already emphasized, the
classical limit consists in taking the limit h̄ → 0. Equation (10.106a) then becomes

∂φ

∂t
+ (∇φ)

2

2m
+ V = 0, (10.107)

which is the Hamilton–Jacobi equation, where the phase φ has to be interpreted as the
classical action and therefore coincides with the function S introduced in the previous
subsection.

In the classical limit, ψ describes a flux of non-interacting classical particles of mass
m (i.e. a statistical mixture), which are subject to the potential energy V (r). The density
and the current density of this fluid at each point of space are at all times equal to the
probability density ρ and the probability current density J of the quantum particle at that
point (see Sec. 4.2). This can be shown as follows: multiplying both sides of Eq. (10.106b)
by 2ϑ/m, we obtain

∂

∂t
ϑ2 +∇

(
ϑ2 ∇φ

m

)
= 0, (10.108)

which is the continuity equation (4.21) for the probability density

ρ(r) = ϑ2(r), (10.109a)

and the current density

J(r) = ϑ2(r)
∇φ(r)

m
. (10.109b)

Since the continuity equation of this fluid is satisfied, to make the analogy complete it is
sufficient to show that the velocity field

v = J
ρ
= ∇φ

m
(10.110)

of this fluid actually follows the law of motion of the classical fluid. Taking into account
Eq. (10.110), Eq. (10.107) may be rewritten as

∂φ

∂t
+ mv2

2
+ V = 0. (10.111)

Taking the gradient of both sides of Eq. (10.111), we obtain[
∂

∂t
+ (v ·∇)

]
mv +∇V = 0, (10.112)

from which we conclude that the particles of the fluid obey the classical equation of motion.

10.5.4 Spreading of the wave packets

A wave packet (see Box 2.6) may be considered the analogue of a classical particle if its
“position” and “momentum” follow the laws of classical mechanics and if the dimension of
the packet is sufficiently small at all times (see also Subsec. 10.5.1). The two requirements
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are clearly connected, as the Ehrenfest theorem shows (see Sec. 3.7). The importance of
the second requirement is emphasized by the argument that follows. Let

Ĥ = p̂2
x

2m
+ V (x̂) (10.113)

be the Hamiltonian of this one-dimensional packet. In the classical limit, the packet
represents a particle whose position and momentum are

xc = 〈x̂ 〉 , pc
x =

〈
p̂x
〉
, (10.114)

respectively. If the classical approximation is justified, the energy in the classical limit

Ec =
〈
p̂x
〉2

2m
+ V (

〈
x̂
〉
), (10.115)

which does not necessarily coincide with
〈
Ĥ
〉
, is constant in time and so is also the differ-

ence
〈
Ĥ
〉
− Ec. Since the extension of the wave packet should remain confined to a small

interval, we can replace the operator V (x̂) and its first derivative V ′(x̂) by their Taylor
expansion about

〈
x̂
〉
,

V (x̂)= Vc +
(
x̂ − 〈x̂ 〉) V ′

c +
1

2

(
x̂ − 〈x̂ 〉)2 V ′′

c + · · · , (10.116a)

V ′(x̂)= V ′
c +

(
x̂ − 〈x̂ 〉) V ′′

c + 1

2

(
x̂ − 〈x̂ 〉)2 V ′′′

c + · · · , (10.116b)

where the expressions Vc, V ′
c , . . . indicate the values assumed by the potential–energy func-

tion V and its derivatives V ′, V ′′, . . . at the point x̂ = 〈x̂ 〉. Taking the average values of
Eqs. (10.116), we obtain

〈V 〉= Vc + 1

2
σ 2

x V ′′
c + · · · , (10.117a)〈

V ′〉= V ′
c +

1

2
σ 2

x V ′′′
c + · · · . (10.117b)

where σ 2
x = 〈x̂2

〉− 〈x̂ 〉2 is the square deviation of x̂ from its mean (see Subsec. 2.3.1).
Ehrenfest theorem provides us with the equations10

d

dt

〈
x̂
〉= 〈

p̂x
〉

m
, (10.118a)

d

dt

〈
p̂x
〉=−

〈
V̂ ′〉, (10.118b)

which coincide with the classical equations of motion if the rhs of Eq. (10.118b) is replaced
by the first term in the rhs of Eq. (10.117b). In order for this approximation to be exact,
the third and higher derivatives of V (x̂) should be zero. This is the case when the potential
energy is a polynomial of at most second degree in x̂ , as it is the case for the harmonic
oscillator and the free particle (see Secs. 3.4 and 4.4). Alternatively, the approximation

10 These equations are easily derived by simply taking the expectation values of both sides of Eqs. (3.126)
and (3.128).
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may still be reasonably valid when V (x̂) varies slowly enough over the extension of the
wave packet, so that V ′′′(x̂) is small.

It can be shown (see Prob. 10.8) that a free-particle wave packet undergoes uniform
rectilinear motion in which

〈
x̂
〉

moves with velocity
〈
p̂x
〉
/m. Moreover, the momentum

square deviation σ 2
p =

〈
p̂2

x

〉− 〈 p̂x
〉2 remains constant, while

σ 2
x (t) = σ 2

x (t0) + σ̇ 2
x (t0)(t − t0) + σ

2
p(t0)

m2
(t − t0)2. (10.119)

This means that σ 2
x grows indefinitely with time, causing the so-called spreading of the

wave packet. As a consequence, a free quantum wave packet can be considered the ana-
logue of a classical particle only for small times, such that the second and the third terms
in Eq. (10.119) remain negligibly small.

As a matter of fact, the wave packet undergoes such a spreading in almost all the cases.
A special exception is represented by the harmonic oscillator potential for which the wave
packet does not spread at all (see Subsecs. 4.4.2 and 13.4.2, as well as Probs. 10.9 and
13.23).

10.6 Semiclassical l imit and WKB approximation

10.6.1 Semiclassical l imit

Here we shall introduce some general considerations about the classical limit before deal-
ing with the WKB approximation. Let us consider the trace of the Green’s function G (see
again Subsec. 3.5.5) times some observable Ô

Tr
(

ÔG
)
= gO (E) = lim

ε→0

∑
j

〈
j
∣∣∣Ô∣∣∣ j

〉
E − E j + ıε

, (10.120)

where {| j〉 } is an eigenbasis of the Hamiltonian. Taking the imaginary part of expression
(10.120) we obtain

ρO (E) = − 1

π
Im (gO (E))

=
∑

j

〈
j
∣∣∣Ô∣∣∣ j

〉
δ
(
E − E j

)
. (10.121)

The function ρO (E) has poles at the quantum eigenvalues with residues given by the matrix
elements of Ô . When the observable Ô is the identity, the expression above reduces to

ρ(E) =
∑

j

δ(E − E j ), (10.122)

and it expresses the density of energy levels of the system, i.e. the number of energy
eigenvectors per unit interval of energy.
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The number of energy levels with energy smaller than a certain value E is then
given by11

N (E) =
∫ E

−∞
d E ′ρ(E ′). (10.123)

The semiclassical limit is given when E →∞. Then, in this case we have

N (E) � N sc(E) = 1

h3

∫
dpdrδ

(
E − H c(r, p)

)
, (10.124)

where H c(r, p) is the classical Hamiltonian, and the integral is done in the region where
the integrand is positive. The corrections of this limit are given by the formula

N (E) = N sc(E) + O
(

h̄2V
′′)+ · · · , (10.125)

where the dots represent oscillating terms vanishing at high energy. Therefore, in the mean
we have N (E) − N sc(E) � 0. In other words, while in the quantum case we have a step-
wise profile of the energy, in the semiclassical limit we have a continuous function that
goes up and down the classical curve of energy and therefore presents itself as a continuous
oscillation around the classical curve.

10.6.2 WKB approximation

The method that constitutes the subject of this and the following subsections is known
as Wentzel–Kramer–Brillouin or, in short, the WKB approximation.12 It is very useful for
dealing, for example, with a fundamental problem of the motion in one-dimensional case
and provides a derivation of the Bohr–Sommerfeld quantization rules: in quantum mechan-
ics, as we have said (in Subsec. 1.5.4), the Bohr–Sommerfeld quantization rule occupies
an intermediate status between classical mechanics and quantum mechanics. The WKB
method is an approximate treatment of the Schrödinger equation that can be used to derive
the quantization rule.

As it is well known, the classical orbit of a one-dimensional harmonic oscillator is a
circle in the phase space. When we perform the Fourier transform and the inverse Fourier
transform from the position to the momentum representation and vice versa a problem
arises: the points where the circle intersects the x-axis are turning points where the oscil-
lator inverts its motion in the position representation, and the same occurs for the points
where the circle intersects the px -axis in the momentum representation. From the modern
point of view, the WKB method consists of making use of the usual Schrödinger equation
in the x representation of the turning points and by performing explicit computations at the
turning points only.

The method, in its simplest form, consists of introducing an expansion of the phase and
amplitude of the wave function in powers of h̄ and neglecting terms of order higher than
h̄. In this way, one can replace the Schrödinger equation in some regions of the space by

11 See [Balian/Bloch 1971].
12 See [Wentzel 1926] [Kramers 1926] [Brillouin 1926]. For a complete but very technical treatment see also

[Maslow 1994].
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its classical limit. However, this approximation may also be applied in regions where the
classical limit is meaningless.

For the sake of simplicity, we shall consider the one-dimensional case. This is suffi-
cient for deriving the Bohr–Sommerfeld quantization rule for the radial part of the wave
functions. Let ψ(x) be the wave function satisfying the stationary Schrödinger equation

ψ
′′
(x) + 2m

h̄2
[E − V (x)]ψ(x) = 0. (10.126)

Writing

ψ = e
ıη
h̄ , η = φ + h̄

ı
lnϑ , (10.127)

where ϑ and φ are the phase and amplitude of the wave function, respectively (see
Eq. (10.105)), one obtains the system of equations (see Eqs. (10.106))

φ′2 − 2m (E − V )= h̄2ϑ
′′

ϑ
, (10.128a)

2ϑ
′
φ
′ + ϑφ ′′ = 0. (10.128b)

By integrating the continuity equation (10.128b), one obtains

ϑ = C
(
φ
′)− 1

2
, (10.129)

where C is a constant. Substituting this expression into Eq. (10.128a), one has

φ′2 = 2m (E − V )+ h̄2

⎡⎣3

4

(
φ
′′

φ
′

)2

− 1

2

φ
′′′

φ
′

⎤⎦. (10.130)

This third-order differential equation is equivalent to the initial Schrödinger equation. By
imposing that φ (as well as ϑ) be a even function of h̄, we may expand φ in a power series
of h̄2

φ = φ0 + h̄2φ1 + · · · , (10.131)

substitute this expansion into Eq. (10.130), and keep only the zero-order terms

φ′2 � φ ′20 = 2m [E − V (x)]. (10.132)

The integration of Eq. (10.132) is straightforward. One may distinguish between two cases:
when E > V (x) and when E < V (x).

• In the first case, we define the wavelength (see Eq. (1.78))

λ(x) = h̄√
2m [E − V (x)]

, (10.133)

which is inversely proportional to the classical momentum as a function of the position.
Equation (10.132) is satisfied if φ

′ � ±h̄/λ. The WKB solution is a linear combination
of oscillating functions

ψ(x) = α√λ cos

(∫
dx

1

λ
+ β

)
, (10.134)

where, for the time being, α and β are arbitrary constants.
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�Figure 10.2 WKB approximation: forbidden regions outside a potential well.

• In the second case, i.e. when E < V (x) (the region forbidden to classical particles), we
may write

λq (x) = h̄√
2m [V (x) − E]

. (10.135)

Equation (10.132) is satisfied if φ
′ � ±ı h̄/λq . The WKB solution is a linear combina-

tion of real exponentials

ψ = (λ)
1
2

[
γ exp

(
+
∫

dx
1

λ

)
+ δ exp

(
−
∫

dx
1

λ

)]
, (10.136)

where γ and δ are arbitrary constants. In the case of a parabolic potential well there
are only two forbidden regions (the non-forbidden region is connected), and only one of
the two coefficients of the exponential is different from zero, following the situation in
which the system is in the classical forbidden region (x > x2 or x < x1) that lies either
to the right or left of the allowed region (see Fig. 10.2).

As one would expect, for non-zero h̄ the function λ is regular. It is also for non-zero h̄
that this approximation breaks down near the turning points, i.e. those points for which
E = V (x).

10.6.3 Turning points

We have seen that the WKB approximation works everywhere but in the vicinity of the
points for which E = V (x). These are the turning points of the classical motion, i.e. points
where the velocity of the particle vanishes and changes sign (see Sec. 4.3). Mathematically,
the WKB approximation consists of replacing the Schrödinger equation

ψ
′′ + ψ

λ2
= 0, (10.137)

by

ψ
′′ +

(
1

λ2
− 1√

λ

(√
λ
)′′)

ψ = 0 (10.138)
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�Figure 10.3 Schematic drawing of a one-dimensional potential well. Given the energy E of the particle, the
turning points x1 and x2 divide the x-line into three regions: regions I and III are the classically
forbidden ones.

both in the regions where E > V (x) and where E < V (x). Equation (10.138) has a second-
order singularity of the type (x − a)−2 at each point x = a, where E = V (x).

Let us suppose that we have E > V (x) or E < V (x) according to whether x > a or
x < a. Making a careful analysis of the Schrödinger equation near the turning points (usu-
ally one uses an explicit solution that can be written in terms of the Airy function: indeed
near the turning points in the generic case the potential can be approximated by a linear
one), one finds that the general solution will be a linear combination of two solutions ψ1

and ψ2, whose asymptotic forms are

for x / a : for x # a :

ψ1 � λ
1
2
q exp

⎛⎝+ a∫
x

dx
1

λq

⎞⎠, ψ1 � −λ 1
2 sin

⎛⎝ x∫
a

dx
1

λ
− π

4

⎞⎠, (10.139a)

ψ2 � 1

2
λ

1
2
q exp

⎛⎝− a∫
x

dx
1

λq

⎞⎠, ψ2 � λ 1
2 cos

⎛⎝ x∫
a

dx
1

λ
− π

4

⎞⎠. (10.139b)

This result may be derived by assuming that the potential is linear near the turning points.
The same result could be obtained through less explicit computation by studying the
solution of the Schrödinger equation in the complex plane.

10.6.4 Energy levels of a potential wel l

As an application we consider the potential well of Fig. 10.3 and calculate the energy levels
of the discrete spectrum. For a given energy E there are two turning points x1 and x2 of the
classical motion, which divide the x-axis into three regions. We look for the WKB solution
that decreases exponentially in regions I and III, namely
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ψI = 1

2
Cλ

1
2
q exp

⎛⎝− x1∫
x

dx
1

λq

⎞⎠ for x / x1, (10.140a)

ψIII = 1

2
C

′
λ

1
2
q exp

(
−
∫ x

x2

dx
1

λq

)
for x # x2, (10.140b)

where C and C
′

are adjustable constants. In accordance with Eqs. (10.139b), these
functions are continued into region II (where x1 / x / x2) by the functions

ψ
(x1)
II (x)=Cλ

1
2 cos

⎛⎝− x∫
x1

dx
1

λ
− π

4

⎞⎠, (10.141a)

ψ
(x2)
II (x)=C

′
λ

1
2 cos

⎛⎝− x2∫
x

dx
1

λ
− π

4

⎞⎠, (10.141b)

respectively. We have ψ (x1)
II (x) = ψ (x2)

II (x) if

x2∫
x1

dx
1

λ
=
(

n + 1

2

)
π , (10.142)

where we have taken into account the expression (10.133).
The previous is valid in the one-dimensional case. In fact, the WKB method is suitable

also for all completely integrable systems in higher dimensions. In this case, one is able to
derive the Bohr–Sommerfeld quantization equation in the form∮

dq j dp j = 2π h̄(n j + δ j ), (10.143)

where j goes from 1 to the number of dimensions of the system and q, p are appropriate
generalized canonical position and momentum variables. Now, as the case may be, δ j may
assume several values, i.e. 0, 1/2, 1/4, 3/4. The value of δ j depends on the topology of
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phase space. For example, for the angular case δ j = 0. As a further example of application
of the WKB method, one may consider (see Prob. 10.10) the calculation of the transmission
probability through the potential barrier depicted in Fig. 10.4.

10.7 Scattering theory

In scattering theory we are interested in understanding what happens when a particle col-
lides with other particles. Here, we shall discuss the simplest possible case: the scattering of
a particle on a fixed potential, which for simplicity we suppose to have spherical symmetry.

In classical mechanics, we can compute the scattering angle as a function of the impact
parameter b, i.e. the minimum distance that the unperturbed trajectory would have from
the origin (the scattering center). In the quantum case things are more difficult as there is
no unique trajectory.

We could take two different approaches:

• We can study the evolution of a wave packet – localized both in the position and momen-
tum space – that is approaching the origin. We can compute the asymptotic form of the
wave function at large times after scattering. It is clear that in this case we have to
consider a time-dependent phenomenon.

• We can study what happens in a stationary regime. We have a constant flux of incoming
particles localized in momentum space, but delocalized in position space (a plane wave):
some of them are scattered by the potential and form a constant flux of outgoing par-
ticles. In this case, we need to study the solution of the time-independent Schrödinger
equation.

The second approach has the advantage of being more directly related to a typical exper-
imental situation: experiments are usually done using highly collimated (in momentum
space) beams of particles and the resolution in position space is quite poor on the scale of
the potential (the two resolutions usually differ by many orders of magnitude).

10.7.1 Plane-wave approach

Let us assume that the incoming beam moves with momentum k in the z direction (in units
where h̄ = 1) and that the scattering potential has radial symmetry. The stationary wave
function corresponding to this situation in absence of the potential would be given by (see
Eq. (2.141))

ϕk(x) = eikz z . (10.144)

We impose that, in presence of the potential, the solution of the time-independent
Schrödinger equation at distance far away from the origin is of the form

ψ(x) = eıkz z + eıkr rϑ(θ )

r
+ O(r−3), (10.145)
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where r is the distance from the origin and θ is the usual polar angle. The second (and new)
term in the previous equation corresponds to the scattered wave. It is easy to check that,
at large distances r , the previous form of the wave function, with an appropriate choice of
the terms O(r−3), is a solution of the free Schrödinger equation of a particle of mass m
corresponding to the energy k2/(2m).

It is interesting to compute the flux (%(θ )d') of particles outgoing from a sphere of a
large radius R in an infinitesimal angular region d'. This is given by the flux of the current
density J defined in Subsec. 4.2.1. Generally speaking we find that

%(θ ) = %in(θ ) +%out (θ ) +%I (θ ). (10.146)

The first term corresponds to the unperturbed incoming particles and is given by

%in(θ ) = v R2 cos θ , (10.147)

where the velocity v is given by k/m. It corresponds to a constant flux in the z direction:
it is proportional to R2 and changes sign in the same way as cos θ . Indeed, particles enter
from below. The second term corresponds to the outgoing wave and is given by

%out (θ ) = v|ϑ(θ )|2. (10.148)

There is no R2 term because the term proportional to the surface is compensated by the
term r−1 in Eq. (10.145).

The ratio between the scattered flux (as function of θ ) and the incoming flux per unit
area is called the differential scattering cross section and it has (in the same way as the total
cross section defined below) the dimension of a squared length. The differential scattering
cross section is then given by

σ (θ ) = |ϑ(θ )|2. (10.149)

The total cross section is given by

σ = 2π
∫

dθ sin(θ )σ (θ ) = 2π
∫

dθ sin(θ )|ϑ(θ )|2. (10.150)

Up to now we have neglected the interference term %I (θ ). When θ 	= 0, one finds that the
interference between the two terms in Eq. (10.145) oscillates with R and disappears if we
average over R, thus not contributing to %I (θ ). On the other hand, at θ = 0 (r = z), the
two terms have the same phase, so that the interference term becomes relevant. Therefore,
the interference term must be of the form

%I (θ )d' = Bδ(θ )dθ . (10.151)

As far as the total flux of particles entering the sphere is equal to zero, we must have that the
interference term is proportional to the number of particles missing in the forward direc-
tion, because they have been scattered. We thus find that the conservation of the current
implies that

B = −vσ . (10.152)
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A detailed computation13 gives

m B = −4π 
(ϑ(0)), (10.153)

which implies the so-called optical theorem


(ϑ(0)) = k

4π
σ . (10.154)

It is interesting to introduce the partial-wave scattering amplitude defined by

ϑ(θ ) = 1

2ik

∑
l=0,∞

(2l + 1)ϑl�ll (cos θ ), (10.155)

where �ll (cos θ ) are Legendre polynomials of order l (see Eq. (6.64)). The previous
relation can be inverted; in this case, one gets

ϑl = 2ik
∫

dθ sin(θ )�ll (cos θ )ϑ(θ ). (10.156)

By imposing the conservation of the current in a more complex situation – when the incom-
ing waves are a combination of plane waves – one arrives at a more detailed prediction for
the partial-wave scattering amplitude. Indeed, one finds14 that the partial wave amplitude
ϑl must be of the form

ϑl = e2ıδl − 1

2ik
, (10.157)

where δl is called the phase shift (the factor 2 in the exponent in the definition of the phase
shift is a convention). This equation implies the relation

k|ϑl |2 = 1 − cos(2iδl )

2ik
= 
(ϑl ). (10.158)

The previous relations are also called unitary relations, because conservation of the current
is related to the conservation of probability and, therefore, to the unitarity of the time-
evolution operator.

10.7.2 Perturbation theory

It is interesting to compute the scattering amplitude in the context of perturbation theory
(Sec. 10.1). To this end we consider a scattering potential energy equal to ζ V (r) and write

ψ(r) = ψ0(r) + ζψ1(r) + ζ 2ψ2(r) + · · · , (10.159)

where

ψ0(r) = eikz z . (10.160)

13 The interested reader can find the explicit calculation in [Landau/Lifshitz 1976b, Ch. 17].
14 See again [Landau/Lifshitz 1976b, Ch. 17] for details.
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In order to compute the coefficients of the perturbation expansion, it may be convenient to
write the Schrödinger equation in momentum space

p2

2m
ψ̃(p) + ζ

∫
dp′Ṽ (p − p′)ψ̃(p′) = Eψ̃(p), (10.161)

where

Ṽ (p) = (2π)− 3
2

∫
dre−ıp·rV (r), (10.162)

or

G̃(p)−1ψ̃(p) + ζ
∫

dp′Ṽ (p − p′)ψ̃(p′) = 0, (10.163)

where

G̃(p) =
(

p2

2m
− E

)−1

, (10.164)

and E = k2/(2m). By taking advantage of the expansion (10.159) in momentum space

ψ̃(p) = ψ̃0(p) + ζ ψ̃1(p) + ζ 2ψ̃2(p) + · · · , (10.165)

with

ψ̃0(p) = δ(p − k), (10.166)

where k is the vector with components (0, 0, k), we may insert this expansion to the first
order into Eq. (10.163) so as to obtain

ψ̃1(p) = −G̃(p)
∫

dp′Ṽ (p − p′)δ(p′ − k) = −G̃(p)Ṽ (p − k). (10.167)

A similar expression is obtained for ψ̃2(p) (with one more integration).
However the previous approach presents two drawbacks:

• The quantity G̃(p) has a singularity in momentum space, and consequently its Fourier
transform is ambiguous. In a nutshell, G̃(p) is not well-defined.

• We would like ψ̃1(p) to contain only outgoing waves and no incoming waves.

Fortunately, we find ourselves in the happy situation where the two problems can be solved
together. We redefine G̃(p) as

G̃(p) = lim
ε→0+

(
p2

2m
− E − iε

)−1

. (10.168)

Now, for ε 	= 0 everything is well-defined. The limit ε → 0+ is not divergent because the
singularity is integrable but it differs from the limit ε → 0−.

A simple computation shows that in position space this function is given by

G(r) = C

r
eikr , (10.169)

where C = m/(2π ). Indeed, the inverse Fourier transform of 1/(p2 + μ2) is given by

e−μr

4πr
, (10.170)
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�Box 10.1 Remarks on the Fourier transform

We start by computing the Fourier transform f̃(p) of f(r) = e−μr/r. Because of rotational
invariance we have that f̃(p) is a function of |p| only. We can thus compute it when p points
in the z direction without loss of generality. We have that

f̃(p) = (2π)− 3
2

∫
dre−ıpz e−μrr

= (2π)− 1
2

1∫
−1

d cos θ

∞∫
0

drr2e−ıpr cos θ e−μr

r

= (2π)− 1
2 (−ıp)−1

∞∫
0

dr(e−ıpr − eıpr)e−μr

= (2π)− 1
2 (−ıp)−1

(
1

ıp + μ + 1
ıp − μ

)
=
√

2
π

1

p2 + μ2
. (10.171)

Conversely, we can look at the inverse Fourier transform:

(2π)− 3
2

∫
dpeıpz z

√
2
π

1

p2
x + p2

y + p2
z + μ2

= 1
4π

∫
dpxdpy

e
−|z|

√
p2

x+p2
y+μ2√

p2
x + p2

y + μ2

= 1
2

∫ +∞
0

dp2 e−|z|
√

p2+μ2√
p2 + μ2

, (10.172)

where the first integral has been done by deforming the integration path in the complex pz

variable and picking the contribution of one of the two poles at ±ı
√

p2
x + p2

y + μ2 depending
on the sign of z. The last integral can be done exactly. However, it is more instructive to
consider the asymptotic limit for large |z|. In this case, the integral is dominated by the
maximum at p2 = 0 and can be written as

1
2μ

+∞∫
0

dp2e
−|z|

(
μ+ p2

2μ

)
= e−μ|z|

|z| . (10.173)

as can be seen by doing the integrals using polar coordinates. Consequently

ψ1(r) = − m

2π

∫
dr′eık·r′V (r′)G(|r − r′|). (10.174)

We thus find thatψ1(r) is a superposition of outgoing waves with an amplitude proportional
to V (r). As far as the potential goes to zero at infinity, at large distances all these waves
can be considered as outgoing from the origin.

The computation of the scattering amplitude ϑ(θ ) could also be done directly by writing
Eq. (10.145) in momentum space. It is clear that the behavior at infinity of the wave func-
tion is connected to the singularity of its Fourier transform in momentum space. It can be
shown that the equivalent of Eq. (10.145) in momentum space is

ψ̃(p) = δ(p − k) + πϑ(θ (p))

E(p)
, (10.175)



389 10.8 Path integrals
�

where

k2 cos(θ (p)) = k · p. (10.176)

Indeed, the proof of Eq. (10.175) can be done by applying a procedure based on the guide-
lines shown in Box 10.1. One computes the inverse Fourier transform of Eq. (10.175) in
two steps:

1. Compute the integral over the momentum parallel to r by picking the residuum of the
pole, which is dominant at large distances r .

2. Integrate over the transverse momenta using the method of the point of maximum: one
finds that the maximum is located at zero transverse momenta as in the previous case.

The function θ (p) matters only near the singularity where p2 = k2; different definitions
would give identical results if they coincide for p2 = k2. By comparing the previous
formulae we find that

ϑ(θ ) = − m

2π
Ṽ (p(θ )), (10.177)

where p(θ ) is a vector whose squared length is given by

p(θ )2 = k2
(

(1 − cos θ )2 + sin(θ )2
)
= (2k sin(θ/2))2. (10.178)

We finally find for the differential cross section that

σ (θ ) = m2

4π2h̄4
|Ṽ (p((θ ))|2, (10.179)

where we have written the result in the usual physical units. This formula is called the Born
approximation, because it was derived by Born in 1926.15

We notice that, if the Fourier transform of V (r) is finite, the differential cross section is
also non-singular at θ = 0 and the total cross section is finite. This is in contrast with the
classical case, where, if the potential has non-compact support, no matter how fast it goes
to zero at infinity, both the forward differential cross section σ (0) and the total cross section
σ are infinite. In quantum mechanics, the total cross section is convergent for all potentials
going to zero as a power of 1/r , when the power is greater than one. In the case of the
Coulomb potential, for which the power is exactly equal to one, the total cross section is
only logarithmically divergent.

10.8 Path integrals

In classical mechanics, a system follows a trajectory in phase space that is determined
by imposing the least-action condition (see Eq. (1.14)). In other words, among all possi-
ble trajectories that connect the initial state to the final state, a classical system chooses
precisely the one that minimizes the action S. The situation is pretty much different in
quantum mechanics, where a principle of least action does not exist. The path-integral

15 See [Born 1926].
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�Figure 10.5 A pictorial representation of a few possible paths in one-dimensional configuration space. All the
(infinite) possible paths connecting the initial position i to the final f contribute to the probability
amplitude of moving from i to f.

method provides an interesting view-point that allows us to interpret quantum probabilities
as a certain sum or integral over all possible paths of the system (see Subsec. 10.8.1).
The importance of this method has been emphasized by a wide range of applications,
particularly those involving perturbation theory (see Subsec. 10.8.2).

10.8.1 General features

Let us consider the transition of a quantum system from a certain initial point i of the con-
figuration space to a certain final point f . As we know, each possible trajectory contributes
with a different phase to the total probability amplitude of the transition i → f . More pre-
cisely, the probability ℘( f , i) is the absolute square of the Green’s function G( f , i) (see
Subsec. 3.5.5).16 The total probability amplitude may then be interpreted as the sum of the
contributions ϑ[x(t)] of each possible path connecting i and f in the configuration space17

(see Fig. 10.5). In the one-dimensional case, the Green’s function may be written as

G( f , i) =
∑
ϑ [x(t)], (10.180)

where i = (xi , ti ) and f = (x f , t f ), and the sum is taken of all possible paths. On the most
general grounds, each path from i to f has equal probability, and therefore contributes by
an equal amount to the total probability amplitude. However, the contribution ϑ[x(t)] of
each path has a phase proportional to the action S (see Subsec.10.5.2)

ϑ[x(t)] = Ce
ı
h̄ S[x(t)], (10.181)

16 Note that the definition of the Green’s functions introduced here is slightly different from that of Subsec. 3.5.5.
Here, we have omitted the imaginary unity factor. This has obviously no consequence on the the absolute
square of the Green’s functions, even though it yields a slightly different form of Eq. (3.92).

17 [Feynman 1948]. Exposition in [Feynman/Hibbs 1965, 28–37].
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�Figure 10.6 The integral of a continuous function, i.e. the area under the curve may be approximated by the
product l times the sum of the ordinates. This approximation approaches the correct value as
l → 0.

where C is a constant. The number of paths is certainly infinite, with a high order of infinity.
Therefore, it is natural to ask how to assign the correct measure to the space of these paths.
To answer this question, consider the properties of the Riemann integral. The area A under
a curve g(x j ) is proportional to the sum of all its ordinates. Let us take a subset of these
ordinates, e.g. those spaced at equal intervals (see Fig. 10.6),

l = xn − x0

n
. (10.182)

Then, through summation over the finite set of points x j , we obtain

A ∝
n−1∑
j=0

g(x j ). (10.183)

We may now define A as the limit of this sum. It is possible to pass to the limit in a
smooth way by taking continuously smaller and smaller values of l (i.e. by increasing n).
However, in this way every the sum will depend on n and, in order to obtain the limit,
we must specify some normalization factor which should depend on l. For the Riemann
integral this normalization factor is l itself, since each of the rectangles in Fig. 10.6 has
area lg(x j ). Therefore, the limit exists and we may write18

A = lim
l→0

⎡⎣l
n−1∑
j=0

g(x j )

⎤⎦ =
xn∫

x0

dxg(x). (10.184)

We can follow an analogous procedure in defining the sum over all paths. Again, we choose
a subset of the paths (see Fig. 10.7). For this purpose, we divide the independent time
variable into steps of width ε. At each time t j we select some point x j (from the starting
point xi to arrival point x f ). We then build a path by connecting all positions that have been

18 Here the limit l → 0 is equivalent to the limit n →∞.
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xxi xj xj + 1 xf

ti
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tf ε

�Figure 10.7 The sum over paths is defined as a limit, in which at first the path is specified by the coordinates
at a large number of times separated by very small intervals ε. The sum over the paths is then an
integral over all possible values of these intermediate coordinates. Then, in order to achieve the
correct measure, the limit is taken for ε → 0.

found, that is, by connecting all the points (x j , t j ) by straight lines. Given that we have n
time intervals of length ε, i.e. nε = t f − ti , we may define a sum over all paths by taking
a multiple integral over all possible values of x j at each node:

G(xn , tn ; x0, t0) �
∫ ∫

· · ·
∫

dx1dx2 · · · dxn−1ϑ[x(t)], (10.185)

where t0 = ti , tn = t f and x0 = xi , xn = x f . Of course, there is no need to integrate over x0

and xn , because these points are known and fixed. In the general case it is very difficult to
compute the correct normalization factor. However, in all cases where the action is derived
by integrating the Lagrangian

L(ẋ , x , t) = m

2
ẋ2 − V (x , t), (10.186)

it is possible to prove (see, e.g., Prob. 10.11) that the normalization factor is given by N−n ,
where

N =
(

2π ı h̄ε

m

) 1
2

. (10.187)

With this factor the limit exists and it produces the correct value of the Green’s function
G( f , i). Hence, we can write

G(xn , tn ; x0, t0) = lim
ε−→0

1

N

∫ ∫
· · ·
∫

dx1

N
dx2

N · · · dxn−1

N e
ı
h̄ S( f ,i), (10.188)
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where

S( f , i) =
tn∫

t0

dtL(ẋ , x , t), (10.189)

and the integral is done using a trajectory x(t) that is piecewise linear and passes through
the points (x j , t j ).

The action S for each trajectory is given by

S = ε
∑

j

[(
x j − x j−1

)2
2ε2

m

]
−

1∫
0

duV
[
(1 − u)x j + ux j−1

]
, (10.190)

where u parametrizes the trajectory between x j−1 and x j . Assuming the trajectory to be
continuous, when ε goes to zero the difference x j − x j−1 also does, and the action remains
finite. In this case, neglecting terms that vanish when ε goes to 0, the integral in the previous
formula may be approximated by V (x j ) or, equivalently, by (1/2)

(
V (x j ) + V (x j−1)

)
.

This is not the only way to define a subset of all paths between i and f . For practical
purposes, we might possibly need other formulations. Nevertheless, the concept of the sum
(or integration) over all paths is rather general. Independently from the method we use for
defining the integral, it is usually written in the following notation:

G( f , i) =
f∫

i

d[x(t)]e
ı
h̄ S( f ,i), (10.191)

and is called the path integral, with the meaning given to it by expression (10.188).
Suppose now that we have two events in succession (say, a particle moving first from xi

at time ti to xc at time tc, and then to x f at time t f ), such that S( f , i) = S( f , c) + S(c, i),
where c = (xc, tc). The action is an integral in time and the Lagrangian does not depend on
derivatives higher than the velocity. Making use of Eq. (10.191) we can write

G(xn , tn ; x0, t0) =
∫

d[x(t)]e
ı
h̄ S( f ,c)+ ı

h̄ S(c,i). (10.192)

It is possible to split any path into two parts (see Fig. 10.8), so that we can write

G(xn , tn ; x0, t0) =
∫

dxc

f∫
c

d[x(t)]e
ı
h̄ S( f ,c)G(xc, tc; x0, t0), (10.193)

where the integration is now performed not only over all possible paths from c to f , but also
over the variable central point xc. Then, we carry out the integration over paths between x0

and an arbitrary xc and between xc and xn , i.e.

G(xn , tn ; x0, t0) =
∫

dxcG(xn , tn ; xc, tc)G(xc, tc; x0, t0). (10.194)
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�Figure 10.8 Two possible paths from i to f both passing through the same central point c.

This result can be summarized as follows: all alternative paths going from i to f can be
labelled by specifying the position xc through which they pass at time tc. Then, the integral
over the paths, or the kernel G(xn , tn ; x0, t0) for a particle going from the point i to the point
f can be computed according to the following rules:

• The kernel from i to f is the sum over all possible values of c of the amplitudes for the
particle to go from i to f passing through c.

• The probability amplitude for a particle to go from i to c and then to f is given by the
product of the kernel from i to c times the kernel from c to f .

Equation (10.194) can be proved independently from the path integral formalism and it is a
direct consequence of the superposition principle. In fact, let us write an arbitrary eigenket
of the position operator x̂ at time t as | x , t〉 and an arbitrary eigenket of the position
operator at time t ′ as

∣∣ x ′, t ′
〉
. In this case, the Green’s function is simply given by the scalar

product G(x , t ; x ′, t ′) = 〈x ′, t ′ | x , t
〉
. Now, for any time tc such that t < tc < t ′ we also

have ∫
dxcG(x , t ; xc, tc)G(xc, tc; x ′, t ′) =

∫
dxc

〈
x ′, t ′ | xc, tc

〉 〈xc, tc | x , t〉
= G(x , t ; x ′, t ′). (10.195)

where we have made use of the identity

Î =
∫

dxc | xc, tc〉 〈xc, tc |. (10.196)

It is natural to ask, at this stage, whether the path-integral formulation of quantum mechan-
ics is equivalent to the more traditional formalism, i.e. the Schrödinger picture (see
Sec. 3.1). For this purpose, we must relate a path integral at one time to its value an
infinitesimal time later, obtaining a differential equation for the path integral, and show
that it is identical to the Schrödinger equation (see Prob. 10.11).
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It is interesting to study the classical limit of the path integral approach, represented by
the limit for the action being much larger than h. As we know, in classical mechanics only
one trajectory exists, precisely the one that minimizes the action. In the classical limit,
the phase S/h̄ is very large. Therefore, small changes on the classical scale in the path
will produce large variations in the phase contributions, making it a rapidly oscillating
function. As a consequence, the total contribution resulting from the paths that are far
from the classical path will add to zero. Instead, in the vicinity of the classical path –
where the action is at a minimum – small variations in the path itself give rise to no change
in the action in the first order, and the paths in that region will be in phase and give rise to
a non-zero net contribution. In conclusion, in the classical limit the only path that needs to
be considered is precisely the classical one.

To summarize, the path-integral method is a very powerful instrument for calculating
probability amplitudes for evolutions between different experimental results – the events
“i” and “ f ” in Eqs. (10.192)–(10.194) – because in between there are no “paths” in the
classical sense.

10.8.2 The perturbation expansion revis ited

Let us consider a one-dimensional particle moving in a potential V (x , t).19 The kernel for
the motion between two points i and f is (see Eq. (10.191))

GV ( f , i) =
f∫

i

d[x(t)]e
ı
h̄

∫ t f
ti

dt
[m

2 ẋ2−V (x ,t)
]
, (10.197)

where the subscript V refers to the potential V (x , t), whereas we shall use G0 to indi-
cate the kernel for the motion of a free particle (see Prob. 10.12). If the potential is
at most quadratic in x (as it happens, e.g., for the harmonic oscillator), the kernel can
be determined exactly, since the resulting calculations only involve Gaussian integrals.
In the general case, if the potential varies sufficiently slowly, one may make use of the
semiclassical approximation. The following method may be used when the potential is
small and therefore can be treated as a small perturbation contribution to the free-particle
evolution.

If the time integral of the potential along a path is small relative to h̄, then the part of the
exponential of Eq. (10.197) which depends upon the potential may be expanded as follows:

e−
ı
h̄

∫ t f
ti

dtV (x ,t) = 1 − ı

h̄

t f∫
ti

dtV (x , t) + 1

2!

(
ı

h̄

)2

⎡⎢⎣ t f∫
ti

dtV (x , t)

⎤⎥⎦
2

+ · · · , (10.198)

19 See [Feynman/Hibbs 1965, 120–29].
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which is defined along any path x(t). Substituting the expression (10.198) into Eq. (10.197)
yields

GV ( f , i) = G0( f , i) + G1( f , i) + G2( f , i) + · · · , (10.199)

where

G0( f , i) =
f∫

i

d[x(t)]e
ı
h̄

∫ t f
ti

dt m
2 ẋ2

, (10.200a)

G1( f , i) = − ı

h̄

f∫
i

d[x(t)]e
ı
h̄

∫ t f
ti

dt m
2 ẋ2

t f∫
ti

dt ′V (x(t ′), t ′) (10.200b)

G2( f , i) = − 1

2h̄2

f∫
i

d[x(t)]e
ı
h̄

∫ t f
ti

dt m
2 ẋ2

t f∫
ti

dt ′V [x(t ′), t ′]

×
t f∫

ti

dt ′′V [x(st ′′), t ′′], (10.200c)

. . . . . . . . . .

We wish now to evaluate the term G1( f , i). For this purpose, we exchange the order of
integration over the time variable t ′ and the path x(t), writing

G1( f , i) = − ı

h̄

f∫
i

dt ′g(t ′), (10.201)

where

g(t ′) =
f∫

i

d[x(t)]e
ı
h̄

∫ t f
ti

dt m
2 ẋ2

V [x(t ′), t ′]. (10.202)

The path integral g(t ′) is the sum over all paths of the amplitude of the free particle, each
path being weighted by the potential V [x(t ′), t ′] evaluated at time t ′. Before and after
time t ′ the paths involved in g(t ′) are the paths of an ordinary free particle. Using the
same procedure that has led to Eq. (10.194), we cut each path in a part before and a part
after t = t ′. Therefore, the sum over all paths may be written as G0( f , x ′)G0(x ′, i), where
x ′ = x(t ′). Then, we have

g(t ′) =
+∞∫
−∞

dx ′G0( f , x ′)V
(
x ′, t ′

)
G0(x ′, i), (10.203)

and, by substituting this expression into Eq. (10.201), we obtain

G1( f , i) = − ı

h̄

f∫
i

dt ′
+∞∫
−∞

dx ′G0( f , x ′)V
(
x ′, t ′

)
G0(x ′, i). (10.204)
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�Figure 10.9 Pictorial representation of the motion of a particle from i to f through a region under the action
of a potential V(x, t). (a) A free particle is not scattered at all and is described by the kernel
G0(f, i). (b) A single scattering event occurs in the shaded region, and the kernel is here G1(f, i).
(c) Two scattering events occur, and the kernel is G2(f, i). The total amplitude for the motion is
given by Eq. (10.199).

Equations (10.199) and (10.204) suggest an interesting interpretation of the process that
describes the transition form i to f . We may think at the effect of the potential on the
particle as a scattering process. Accordingly, we may interpret the kernels G j ( f , i) ( j =
0, 1, 2, . . .) in the following terms:

• The particle may not be scattered at all, as described by G0( f , i).
• The particle may be scattered once, as described by G1( f , i).
• The particle may be scattered twice, and this is described by the kernel G2( f , i), and so

on (see Fig. 10.9).

The final amplitude G( f , i) is then a sum of all the kernels describing all these possibilities.
For example, in the case of G1( f , i), for each possible scattering point x ′, the amplitude is
given by

G0( f , x ′)
[
− ı

h̄
dt ′dx ′V (x ′, t ′)

]
G0(x ′, i). (10.205)

The kernel G1( f , i) is then obtained by summing up all these alternatives, i.e. by integrating
over x ′ and t ′ (see Eq. (10.204)).

The kernel for a two-scattering process may be easily written as

G2( f , i) =
(
− ı

h̄

)2 ∫ ∫
dx ′dt ′

∫ ∫
dx ′′dt ′′G0( f , x ′)V (x ′, t ′)G0(x ′, x ′′)V (x ′′, t ′′)

× G0(x ′′, i). (10.206)

Summing up, the total amplitude for the motion from i to f is obtained as

GV ( f , i) = G0( f , i) − ı

h̄

∫ ∫
dx ′dt ′G0( f , x ′)V (x ′, t ′)G0(x ′, i)

− 1

h̄2

∫ ∫
dx ′dt ′

∫ ∫
dx ′′dt ′′G0( f , x ′)V (x ′, t ′)G0(x ′, x ′′)V (x ′′, t ′′)G0(x ′′, i)

+ · · · . (10.207)
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This equation is called the Born expansion for the amplitude. It involves a series of
terms: at the n-th order, we have n scattering points. The motion before the first scatter-
ing point, after the last scattering point, and between two consecutive scattering points
is free. It can be shown that Eq. (10.207) is equivalent to the perturbation expansion
(10.6). We show that this is the case up to the first-order approximation. To this pur-
pose, we note that the evolution described by Eq. (10.207) is unitary, so that it may be
written 〈

f
∣∣∣eı Ent

∣∣∣ i〉 . (10.208)

Summary

In this chapter we have dealt with some methods and problems concerning approximations
and perturbations. In particular:

• We have introduced the stationary perturbation theory, in which a small time-
independent perturbation is applied to a system, whose unperturbed dynamics is known.
In this case, by making use of a Taylor-series expansion in power series of the small per-
turbation parameter we can find the perturbed energy eigenvalues and the coefficients
of the perturbed eigenstates in terms of the unperturbed ones. Both the non-degenerate
and the degenerate cases have been discussed. Two examples of application have also
been presented: the perturbation of an oscillator and the Stark (electric) effect for a rigid
rotator.

• We have also presented the time-dependent perturbation theory, where the perturbation
explicitly depends on time. In this case, we must take into account the time-dependent
Schrödinger equation. Here, the perturbed system undergoes a true modification of the
probabilities of the perturbed energy eigenvalues.

• The adiabatic theorem deals with the problem of the time evolution of a system with a
Hamiltonian that explicitly depends on time but changes slowly.

• Scattering theory has been summarized and the important concept of cross section has
been introduced.

• We have also discussed the problem of the classical limit. In most cases is possible to
interpret the classical world as an emergence from quantum physics when the Planck
constant becomes very small relative to the system’s action. However, it is not true
that, whenever a quantum dynamics is well described, a classical dynamics also exists
(Lieb’s theorem). Several related problems have been presented, namely the concept
of classical action, the Hamilton–Jacobi equation, and the spreading of wave packets.
Moreover, the semiclassical limit and in particular the WKB approximation have been
presented.

• An important and widely used technique for dealing with a vast class of prob-
lems is known as the path integral method. We have also shown that it is
possible to deal with perturbation theory by making use of this method (Born
expansion).
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Problems

10.1 Develop the second-order approximation, when the degeneracy is not removed in
the first order.

10.2 Compute the mean value
〈
n
∣∣x̂4
∣∣ n〉 and use it to generalize the result to

〈
n
∣∣x̂4
∣∣m〉.

10.3 Derive Eq. (10.63).
10.4 Derive Eq. (10.64).
10.5 Show that for a one-dimensional classical system we have ẍ = f (x)/m and

...
x=

px/m2 · f ′(x).
10.6 Derive Eq. (10.89).
10.7 Follow the procedure described in Subsec. 10.5.3 to derive Eqs. (10.106).
10.8 Show that for a free particle the wave packet spreads according to the

law (10.119).
10.9 Find the time evolution of the mean values

〈
x̂
〉

and
〈
p̂x
〉

and of the square devia-
tions σ 2

x and σ 2
p in the case of a one-dimensional harmonic oscillator. What is the

condition for σ 2
x and σ 2

p to remain constant?
10.10 Using the WKB approximation, compute the transition probabilities for the wave

packet of energy E impinging from the left on the potential barrier represented in
Fig. 10.4.

10.11 Show that, for a one-dimensional particle, it is possible to derive the Schrödinger
equation from the path-integral formalism.

10.12 Prove that the kernel for a one-dimensional free particle is given by

G0( f , i) =
[

2π ı h̄
(
t f − ti

)
m

]− 1
2

e
ım(x f −xi )2

2h̄(t f −ti ) . (10.209)

(Hint: Start from Eq. (10.200a) and divide the time interval t f − ti into n small
intervals of duration ε. Then, the kernel is represented by a set of Gaussian integrals.
Since the integral of a Gaussian is again a Gaussian, it is possible to carry out the
integrations one after the other and, finally, take the limit ε → 0.)

Further reading
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1964.
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11 Hydrogen and helium atoms

11.1 Introduction

As is well known, the concept of the atom appears for the first time as a hypothesis about
the structure of matter by Democritus (c. 460 BC–c. 370 BC). Democritus also proposed a
rudimentary mechanics: Atoms moved in straight lines and through their collisions bodies
were formed and destroyed. It is also interesting to recall that later Epicurus (341 BC–
270 BC) and Lucretius (c. 94 BC–c. 49 BC) introduced a random, reasonless, deviation
(clinamen) from the straight line in order to account for the contingency of our world.
Though atomism remained a speculative theory for more than 2000 years, in modern ages
it was still alive among many scientists and philosophers (Newton, Locke, Spinoza, etc.).

At the beginning of the nineteenth century John Dalton (1766–1844) introduced the con-
cept of the atom in a scientific framework in order to explain some chemical phenomena.
He was one of the earliest scientists to work on the structure of matter. He supposed that
atoms were the smallest units of an element that enter into chemical combinations, and
that a chemical element was composed entirely of one type of atom. Then, compounds
contain atoms of two or more different elements, where the relative number of atoms of
each element in a particular compound is always the same. Experimentally, he observed
that, for each gram of hydrogen found in water there were always 8 grams of oxygen. Thus,
he concluded that, in every pure substance, the same elements are in the same proportions.
This observation is known as the law of constant composition. Moreover, it was possible
to assign a mass to each given element in such a way that the ratio of different atoms in an
element was a rational number (e.g. in water for each atom of oxygen there were two atoms
of hydrogen). However, the most important of Dalton’s assumptions was that atoms do not
change their identities (neither the number nor the type of atoms change) in chemical reac-
tions, which simply change the way the atoms are joined together. As a consequence, he
also showed that there was no change in mass during a chemical reaction. This is called
the law of conservation of mass.

A further step in transforming the atomic theory into a scientific hypothesis was the
introduction in 1869 by D. I. Mendeleev (1834–1907) of the table of the elements that was
later completed by himself. The table showed considerable predictive power in anticipating
the discovery of some chemicals. At first, the table was taken as a numerical extravagance.
The discovery of new elements that filled the gaps in the table forced scientists to take more
seriously the hypothesis of atoms as elementary particles, whose combination allowed for
the existence of the different elements in a specific way.
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However, atoms only began to be considered to be real after the discovery of Brownian
motion, the disordered motion of small particles suspended in a fluid or gaseous solution.1

It is well known that Albert Einstein (1905) succeeded in formalizing the problem. Once
the experimental measurements of Jean Perrin (1908) confirmed the theory (his results also
led to a better estimation of Avogadro’s number) and Robert Millikan (1910) succeeded in
measuring the elementary electric charge, as well as the first trajectories of elementary par-
ticles were observed in the Wilson chamber (1912), atomic theory began to be an integral
part of modern physics.

The first hypothesis about the structure of the atom was formulated in 1902 by J. J.
Thompson, who suggested that the neutral atom was formed of a positively charged homo-
geneous sphere, within which the electrons were suspended in such a number and such
a way as to give rise to a zero total charge. In 1911, Geiger and Marsden performed
an experiment involving the scattering of alpha particles (see the end of Sec. 4.3) by
a thin metal film that falsified Thompson’s model by showing that most of the alpha
particles passed through the film undeflected, whereas the few that were scattered under-
went large deflection. If the positive charge (and the mass) of the atom were distributed
uniformly within its volume, we would observe a large number of deflections at small
angles. Therefore, Ernest Rutherford inferred that the positive charge of the atom and
nearly all of its mass was in a tiny region, the nucleus, whose radius we now know
to be of the order of 10−15 m, while the radius of the entire atom was known to be
the order of 10−10 m. It was the strong electrostatic repulsion between the nucleus and
the alpha particles that caused the large deflections. According to Rutherford’s model the
number of electrons was equal to the atomic number Z : they orbited circularly around
the nucleus. This model presented two main problems: first, since an accelerating elec-
tric charge, according to Larmor’s law,2 emits electromagnetic radiation, the electrons
should progressively lose energy and fall, with a spiral trajectory, into the nucleus. The
second problem was related to its inability to explain the existence of line spectra (see
Subsec. 1.5.4).

A further step toward the quantum-mechanical model of the atom was made in 1913
when Bohr introduced the hypothesis of the quantization of atomic levels, extending and
generalizing Planck’s quantization rule to the hydrogen atom (see also Subsec. 1.5.1). We
know now that Bohr’s result only represents a partial solution of the problem,3 whose
completion can be obtained from the quantum-mechanical approach to the dynamics of the
electrons. We shall see in this chapter the use of the Schrödinger equation in modern atomic
theory.

After having introduced the general problem of the motion of quantum systems in the
presence of a central potential, we shall introduce the theory of the hydrogen atom (in
Sec. 11.2). In Sec. 11.3 we shall examine the problem of the atom in a magnetic field, while
in Sec. 11.4 we shall introduce some relativistic corrections. However, in the present book
we do not consider full relativistic effects as such and limit our exposition to approximation

1 See [Parisi 2005a].
2 See [Jackson 1962].
3 The reason why Bohr’s model has to be considered an ad hoc hypothesis lies in the fact that there is no

explanation concerning the stability of the discrete stationary electronic levels.
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methods. In Sec. 11.5 we shall make use of different approximation methods for treating
the theory of the helium atom. Finally, in Sec. 11.6 we shall consider the Thomas–Fermi
and Hartree–Fock methods for dealing with the multi-electron problem.

11.2 Quantum theory of the hydrogen atom

Generally speaking, an atomic system is represented by a heavy central nucleus made by
Z protons and a certain number of neutrons (see Box 7.1). Z is a positive integer number
and is called the atomic number. Indicating with N the number of neutrons, the sum

A = Z + N (11.1)

is called mass number, because, as we shall see, the mass of the neutron is approximately
equal to the mass of the proton, which in turn is almost 2000 times the mass of the electron
(see also Subsec. 6.3.1). On the other hand, the charge of the proton is, apart from the sign,
approximately equal to that of the electron. Combining these facts, we may conclude that
the atom is an analogue of the solar system with the nucleus replacing the Sun and the
planets represented by the electrons. There is, however, a certain number of differences
that need to be emphasized:

• The atom is a microscopic system, and therefore quantum effects not only cannot be
neglected but even determine the nature of the system. As a consequence, electrons do
not follow classical trajectories.

• The force that binds the solar system is the gravitational interaction. In an atomic sys-
tem gravitation is negligible, and the relevant interaction is represented by the Coulomb
force.

• While in the solar system, different planets may have considerable differences of mass,
the electrons’ mass is the same.

In order for the atom to be electrically neutral, it must have the same number of electrons
and neutrons. Otherwise, we have positive or negative ions.

In what follows we shall be mainly concerned with the hydrogen atom, since it undoubt-
edly the simplest atomic system, in that its nucleus is made of a proton (without neutrons)
and there is only one electron. For this reason, it can be considered a prototype of the two–
body Kepler problem. The helium atom is the next simplest problem, since it involves two
electrons.

11.2.1 The quantum Kepler problem

The classical Kepler problem deals with the gravitational force among celestial bodies
in the solar system.4 As is well known from classical mechanics, when the number of

4 See [Goldstein 1950, Ch. 3].
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interacting bodies is equal to or larger than three, there is no close-form solution of the set
of differential equations describing this physical situation. In order to solve such a problem,
Kepler treated the bodies as point masses and reduced the problem to a set of equations
describing one-to-one interactions. An equivalent treatment is also useful for dealing with
the description of the hydrogen atom. On an abstract plane, let us first consider the case of
two particles (say a and b) that interact with a conservative force, i.e. whose Hamiltonian
is given by

Ĥ = (p̂a)2

2ma
+ (p̂b)2

2mb
+ V (r̂ ), (11.2)

where r̂ = r̂a − r̂b. Note that in this case V does not depend on the angular coordinates
θ and φ. We may therefore apply the same considerations we have made in Subsec. 6.2.2
about central potentials. As in the classical case, we move to the center-of-mass reference
frame and write

R̂ = ma r̂a + mbr̂b

M
, (11.3)

where M = ma + mb. We now show that, given the expressions

P̂ = M ˆ̇R and p̂ = m ˆ̇r, (11.4)

where

m = mamb

M
(11.5)

is the system reduced mass, the Hamiltonian of the system can be written as

Ĥ = P̂
2

2M
+ p̂2

2m
+ V (r̂ ) = Ĥ0 + ĤI, (11.6)

where Ĥ0 = P̂
2
/2M . Since

P̂ = ma ˆ̇ra + mb ˆ̇rb = p̂a + p̂b, (11.7)

we have

P̂
2

2M
+ p̂2

2m
= 1

2M

[
(p̂a)2 + (p̂b)2 + 2p̂a p̂b

]
+ m

2

[
(ˆ̇ra)2 + (ˆ̇rb)2 − 2ˆ̇ra ˆ̇rb

]
, (11.8)

from which the result (11.6) follows (see Prob. 11.1).
It is possible to prove that P̂ , R̂ and p̂, r̂ are two pairs of conjugate variables classically

(see Prob. 11.2) and quantum-mechanically, and the variables of the first pair commute with

those of the second pair. For the quantum case, it is clear that
[
r̂ a

j , p̂a
k

]
= ı h̄δ jk , where r̂ a

j

and p̂a
k are the j-th component of position and the k-th component of momentum of the

first particle, respectively, and the same relations hold for the second particle. Moreover,[
R̂ j , P̂k

]
=
[ma

M
r̂a

j +
mb

M
r̂b

j , p̂a
k + p̂b

k

]
=
(ma

M
+ mb

M

)
ı h̄δ jk = ı h̄δ jk , (11.9)
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which is the desired result for the first pair of observables. For the second pair, we have[
r̂ j , p̂k

] = [r̂ a
j − r̂ b

j ,
m

ma
p̂a

k −
m

mb
p̂b

k

]
=
(

m

ma
+ m

mb

)
ı h̄δ jk = ı h̄δ jk , (11.10)

which is again the result we wished to have. In a similar way, one can show that the
observables of the first pair commute with the observables of the second pair, i.e. (see
Prob. 11.3) [

R̂ j , p̂k

]
=
[
r̂ j , P̂k

]
=
[
r̂ j , R̂k

]
=
[

p̂ j , P̂k

]
= 0. (11.11)

We have divided the Hamiltonian into two parts (Eq. (11.6)), so that, if the total wave
function is of the form

ψ(ra , rb) = %(R) · ϕ(r), (11.12)

and is an eigenfunction of the total Hamiltonian, we have

Ĥψ(ra , rb) =
(

Ĥ0 + ĤI

)
%(R)ϕ(r)

= (ER + Er )%(R)ϕ(r) = Eψ(ra , rb), (11.13a)

with

Ĥ0%(R) = ER%(R), (11.13b)

ĤIϕ(r) = Erϕ(r). (11.13c)

Equation (11.13b) represents the trivial eigenvalue equation for a free particle, and we will
focus our attention on Eq. (11.13c), which, with the substitution made in Eq. (6.85), i.e.

ϕ(r) = R(r )Ylm(φ, θ ), (11.14)

can also be written as (see Eq. (6.87) and Prob. 6.12)[
− h̄2

2mr2

∂

∂r

(
r2 ∂

∂r

)
+ h̄2 l̂2

2mr2
+ V (r ) − Er

]
R(r ) = 0. (11.15)

Equation (11.14) is justified by the spherical symmetry of the problem, and the Ylm(φ, θ )
are the spherical harmonics (6.65) (see Fig. 11.1).

11.2.2 The radial Schrödinger equation

When we deal with hydrogenoid atoms,5 the potential energy has the form

V (r ) = − Ze2

r
, (11.16)

5 Examples of hydrogenoid atoms are He+, Li++, Be+++, . . ..
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�Figure 11.1 Electron coordinates in the atomic system. A negative electron is in motion around a positively
charged nucleus. Even though it is not possible to define a quantum-mechanical trajectory of
the electron, its position is individuated by the three spherical coordinates r,φ, θ : r represents
the distance from the nucleus (see Fig. 6.3), and, via the energy eigenvalue, is associated with
the principal quantum number n (see Fig. 6.9), φ is the azimuthal angle, and θ the polar angle
(see Subsec. 6.1.3). Each (spin–1/2) electron may have a projection of the spin along the z-axis
equal to +h̄/2 or −h̄/2 (see Sec. 6.3).

which represents the electrostatic interaction between a nucleus with charge Ze and only
one electron with charge −e, where

e = 1.602 176 53 × 10−19C, (11.17)

C being the Coulomb charge unit. Then, Eq. (11.15) (see Eq. (6.92)) can be rewritten as

ξ ′′ + 2m

h̄2

[
Er − h̄2

2m

l(l + 1)

r2
+ Ze2

r

]
ξ = 0, (11.18)

where

R(r ) = ξ (r )

r
. (11.19)

Figure 11.2 shows that the total potential resulting from the sum of the attractive Coulomb
potential and the repulsive centrifugal term has a well shape (see Prob. 11.4).

Before looking for the solution of Eq. (11.18), we wish to introduce a general remark.
We have here three natural constants, h̄, e, and m, where

1

m
= 1

me
+ 1

mn
, (11.20)

and me is the electron mass; mn is the nucleus mass, which is approximately equal to Z m p;
and m p is the mass of the proton, which is about 1840 me.6 Therefore, to an excellent

6 The mass of a “free” proton and a “free” neutron is 1.672 621 58 × 10−27 kg and 1.674 927 16 × 10−27 kg,
respectively. The sum amounts to 3.347 548 74 × 10−27 kg. However, the mass of a “free” deuteron is only
3.343 583 09 × 10−27 kg. The difference is −0.003 965 65 × 10−27 kg. This problem is called “mass defect.”
The reason is that the binding of the proton and neutron to form the deuteron releases a certain amount of
energy which is equivalent to the mass defect.
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r

V(r)

E < 0

bound states

centrifugal potential

coulomb potential

�Figure 11.2 Resulting potential in the hydrogen atom (see also Fig. 4.9). The sum of the centrifugal potential
h̄2 l(l+1)

2mr2 and of the Coulomb potential −Ze2/r gives rise to the final well-shaped resulting
potential. The negative-energy bound states are also schematically shown.

approximation (see Prob. 11.5), the reduced mass m is equal to the electron mass. With
these constants we can build the quantities

r0 = h̄2

me2
= 0.529 177 208 59(36) × 10−10 m, E0 = me4

h̄2
= 27.2 eV, (11.21)

where r0 is called Bohr’s radius, and has an uncertainty of 0.000 000 000 36 × 10−10 m.
It is interesting to note that with the same constants it is also possible to define Bohr’s
magneton or the characteristic unity of magnetic momenta (see also Eq. (6.167)), i.e.

μB = eh̄

2mc
. (11.22)

Let us now come back to the Schrödinger equation (11.18) in the case where Z = 1
(hydrogen atom). It is possible to write (see also Prob. 11.6)

r2
0

d2

dr2
ξ = d2

dr̃2
ξ , (11.23a)[

d2

dr̃2
+ 2

r̃
− l(l + 1)

r̃2
+ 2Ẽ

]
ξ (r̃ ) = 0, (11.23b)

where

r̃ = r

r0
and Ẽ = E

E0
. (11.24)

Consider the change of variable

n2 = − 1

2Ẽ
. (11.25)
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�Box 11.1 Confluent hypergeometric functions

A confluent hypergeometric function has the general form [Gradstein/Ryshik 1981, 9.210,
9.216]

F (α; γ ; z) = 1 + α
γ

z
1!
+ α(α + 1)
γ (γ + 1)

z2

2!
+ α(α + 1)(α + 2)
γ (γ + 1)(γ + 2)

z3

3!

+ · · · , (11.26)

where z is the (complex) variable and α and γ are two complex parameters. F (α; γ ; z) is the
solution of the differential equation

z
d2

dz2
f(z) + (γ − z)

d
dz

f(z) − αf(z) = 0, (11.27)

and its asymptotic behavior for |z| → ∞ is given by

F (α; γ ; z)→ e−ıπα �(γ )
�(γ − α)

z−α + �(γ )
�(α)

ez zα−γ , (11.28)

where � is the Euler gamma function [Gradstein/Ryshik 1981, 8.3]. Equation (11.28) is
not valid for α = −n, with n = 0, 1, 2, . . ., in which case F becomes a polynomial of
degree n in z. An important property of F is represented by Kummer’s transformation
[Gradstein/Ryshik 1981, 9.212]

F (α; γ ; z) = ezF (γ − α; γ ;−z) . (11.29)

The asymptotic behavior of the solution of Eq. (11.23b) for r̃ →∞ and for r̃ → 0 suggests
the ansatz7

ξ (r̃ ) = r̃ l+1e−
r̃
n W (r̃ ). (11.30)

Let us use the relations

∂

∂ r̃
ξ (r̃ ) =

(
l + 1

r̃
− 1

n
+ W ′

W

)
r̃ l+1e−

r̃
n W , (11.31a)

∂2

∂ r̃2
ξ (r̃ ) =

[
− l + 1

r̃2
+ W ′′

W
−
(
W ′)2
W 2

+
(

l + 1

r̃
− 1

n
+ W ′

W

)2
]

r̃ l+1e−
r̃
n W ,

(11.31b)

in order to derive (see Prob. 11.7)

[
r̃ W ′′ + 2

(
1 + l − r̃

n

)
W ′ + 2

n − l − 1

n
W

]
ξ (r̃ ) = 0, (11.32)

where the derivatives of W (r̃ ) are taken with respect to r̃ . With the change of variable

η = 2r̃

|n| , (11.33)

7 Some textbooks incorrectly infer the form of the solution from the asymptotic behavior of Eq. (11.23b). We
choose here to follow a more general approach (see [Loinger 2003]).
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we may distinguish two cases:

• n > 0, i.e. n = |n|;
• n < 0, i.e. n = −|n|.
We shall show in the following that the two cases lead to the same result.

In the first case (n = |n|), we obtain

ηW ′′(η) + [2(l + 1) − η] W ′(η) + (|n| − l − 1)W (η) = 0, (11.34)

where the derivatives of W (η) are now taken with respect to η. The solution of
Eq. (11.34) is

W (η) = F (−|n| + l + 1; 2l + 2; η) , (11.35)

where F (α; γ ; z) is the confluent hypergeometric function (see Box 11.1), that is, a
function of the form

F (−|n| + l + 1; 2l + 2; η) = 1 + (−n + l + 1)

(2l + 2)

η

1!

+ (−n + l + 1)[(−n + l + 1) + 1]

(2l + 2)[(2l + 2) + 1]

η2

2!

+ (−n + l + 1)[(−n + l + 1) + 1][(−n + l + 1) + 2]

(2l + 2)[(2l + 2) + 1][(2l + 2) + 2]

η3

3!
+ · · · . (11.36)

This in turn justifies our ansatz. Then, in the limit r̃ →∞ (η→∞), taking into account
the expression (11.28), from Eq. (11.30) we have

ξ (r̃ ) = r̃ l+1e−
r̃
|n| F (−|n| + l + 1; 2l + 2; η)→ g(r̃ )e

r̃
|n| , (11.37)

where we recall substitution (11.33), and g(r̃ ) � r̃ .
In the second case (n = −|n|), we obtain the differential equation

ηW ′′ + [2(l + 1) + η] W ′ + (|n| + l + 1)W = 0, (11.38)

whose solution is (see Prob. 11.8)

W (η) = F (|n| + l + 1; 2l + 2;−η) , (11.39)

where F is again the confluent hypergeometric function with the form

F (|n| + l + 1; 2l + 2;−η) = 1 + (n + l + 1)

(2l + 2)

−η
1!

+ (n + l + 1)[(n + l + 1) + 1]

(2l + 2)[(2l + 2) + 1]

(−η)2

2!

+ (n + l + 1)[(n + l + 1) + 1][(n + l + 1) + 2]

(2l + 2)[(2l + 2) + 1][(2l + 2) + 2]

(−η)3

3!
+ · · · . (11.40)

We make use now of Kummer’s transformation

F (|n| + l + 1; 2l + 2;−η) = e−ηF (−|n| + l + 1; 2l + 2; η) , (11.41)
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and, for r̃ →∞ (η→∞), we obtain

ξ (r̃ ) = r̃ l+1e
r̃
|n| F (|n| + l + 1; 2l + 2;−η)

= r̃ l+1e
r̃
|n| e−

2r̃
|n| F (−|n| + l + 1; 2l + 2; η)→ g(r̃ )e

r̃
|n| . (11.42)

Equation (11.42), as expected, proves that the two cases (n < 0 and n > 0) lead to the
same result. Since there is dependence on the sign of E (negative for bound states), but not
on the sign of n, from now on we may take n > 0. From the expansion (11.36) we learn
that W (η) bears the general form

W (η) =
∞∑
j=0

c jη
j , (11.43)

where

c j+1 = j + l + 1 − n

( j + 1)
[

j + 2(l + 1)
]c j . (11.44)

The first three terms are given by

c0 = 1, c1 = (l + 1 − n)

2(l + 1)
, c2 = (l + 2) − n

2(2l + 3)
c1. (11.45)

11.2.3 Eigenvalues and eigenfunct ions

Let us have a closer look at Eqs. (11.43) and (11.44). We have here two possibilities:

• One of the c j , say ck , is zero and consequently all other c j with j > k are also zero, and
W (η) is a polynomial.

• Otherwise, using the fact that

c j+1

c j
→ 1

j
, (11.46)

for j →∞, we would have c j � 1/( j − 1)!, and consequently also

W (η) =
∞∑
j=0

c jη
j ∝ ηeη. (11.47)

This second possibility implies that W (η) is not a polynomial and grows as eη for η→∞.
This alternative must be discarded, and we must therefore require that the series (11.43) or
(11.36) be truncated at a certain value j = k. In order for this to happen, it is necessary that

n = l + 1 + k, (11.48)

where k must be a non-negative integer. In other words, the radial wave function contains
only a finite number of terms.Since l is an integer number, also n must be an integer num-
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�Figure 11.3 The Grotrian scheme: a schematic representation of the populated energy levels as a function of
the two quantum numbers n and l. The arrow shows the transition from the n = 2, l = 0 state to
the n = 1, l = 0 state, with emission of a photon of energy �E = 3E0/8.

ber. For each integer value of n, the corresponding value of energy, given the definitions
(11.24), is then given by

En = E0 Ẽ = − 1

2n2
E0, (11.49)

where n = 1, 2, . . .. It is then clear that the energy levels of the bound states become more
and more dense as n goes to infinity, i.e. as the energy approaches the limit E = 0 (see
Fig. 11.3). The number n is also called the principal quantum number. The energy levels
with the same value of l may be grouped together. In this way one may build the Lymann
(l = 0), Balmer (l = 1), Paschen (l = 2), Blackett (l = 3), and Pfund (l = 4) series (see
also the end of Subsec. 6.1.4). The number of eigenstates for each given value of n is equal
to n2 (see Prob. 11.9). As we have seen, the energy, for a given n, does not depend on
l. This may look bizarre, as l appears in the Hamiltonian. Such an l-degeneracy is only
accidental.8 As we shall see in the following, relativistic corrections may remove such a
degeneracy.

The ground state n = 1 (l = 0) is obviously stable. However, transitions from upper
levels to lower ones involve the emission of photons with energy equal to the difference
between the energies of the these levels. For example, the transition from the n = 2, l = 0
state to the n = 1, l = 0 state involves the emission of a photon of energy:

�E = − E0

8
−
(
− E0

2

)
= 3

8
E0. (11.50)

8 It occurs only for the Coulomb potential proportional to 1/r . For instance, a different degeneracy is present in
the case of the three-dimensional harmonic oscillator (see Subsec. 6.2.4).
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Rnl

r̃

�Figure 11.4 Schematic plot of the first few radial eigenfunctions of the hydrogenoid atom: R10 (solid line),
R20 (dashed line), R21 (dotted line), R30 (dot–dashed line), R31 (dot–dot–dashed line), and R32

(dot–dash–dashed line).

For completeness in the following we present explicit expressions for the first few functions
Rnl (see Fig. 11.4 and Prob. 11.10):

R10(r̃ ) ∝ e−r̃ , (11.51a)

R20(r̃ ) ∝ e−
r̃
2

(
1 − r̃

2

)
, (11.51b)

R21(r̃ ) ∝ r̃ e−
r̃
2 , (11.51c)

R30(r̃ ) ∝ e−
r̃
3

(
1 − η + 1

6
η2
)
= e−

r̃
3

(
1 − 2

3
r̃ + 2

27
r̃2
)

, (11.51d)

R31(r̃ ) ∝ η

(
1 − 1

4
η

)
e−

η
2 = 2

3
r̃

(
1 − 1

6
r̃

)
e−

r̃
3 , (11.51e)

R32(r̃ ) ∝ η2e−
η
2 = 4

9
r̃2e−

r̃
3 . (11.51f)

As expected (see property (ii) of Subsec. 3.2.3), R10 has no zeros, R20 has one zero (for
r = 2r0), R30 has two zeros, and so on. In order to find the correct normalization factors
for the radial wave functions Rnl (r ), one has to impose the condition (see Prob. 11.11)

+∞∫
0

dr |Rnl (r )|2 r2 = 1. (11.52)

It is particularly interesting to study the radial probability density for the electron, since it
may give an idea on at what distance from the nucleus the probability of finding the electron
is maximal (see Fig. 11.5). Such a probability density (see Prob. 11.12) is given by

℘nl (r̃ ) = |Rnl (r )|2 r2. (11.53)

11.2.4 Total eigenfunct ions and hydrogenoid atoms

Recalling the definition of the total eigenfunction ϕ(r) (Eq. (11.14)), we may now use the
result for the radial wave function, which is given by Eqs. (11.19), (11.30), (11.43), and
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�Figure 11.5 Schematic plot of the radial probability densities ℘nl(r̃) = ∣∣Rnl(r̃)
∣∣2 r̃2 for the first few radial

eigenfunctions of the hydrogenoid atom (same convention as in Fig. 11.4).

(11.44), and Eq. (6.65) for the spherical harmonics in order to build the explicit form of

ϕnlm(r , θ ,φ) = Rnl (r )Ylm(θ ,φ). (11.54)

In the case of hydrogenoid atoms, the zero-angular momentum total eigenfunctions
ϕnlm(r , θ ,φ) for n = 1, 2, 3, are (see Probs. 11.14 and 11.15)

ϕ100(r) = 1√
π

(
Z

r0

) 3
2

e
− Zr

r0 , (11.55a)

ϕ200(r) = 1

4
√

2π

(
Z

r0

) 3
2
(

2 − Zr

r0

)
e
− Zr

2r0 , (11.55b)

ϕ300(r) = 1

81
√

3π

(
Z

r0

) 3
2
(

27 − 18
Zr

r0
+ 2Z2r2

r2
0

)
e
− Zr

3r0 . (11.55c)

11.3 Atom and magnetic field

As is natural to expect, the presence of a constant and homogenous magnetic field modifies
the energy levels of an electron in an atomic system and may be considered as a pertur-
bation. This effect is basically due the magnetic interaction between the external magnetic
field and the intrinsic magnetic momentum of the electron. As we shall see, depending on
the strength of the magnetic field, it is possible to distinguish between two regimes that cor-
respond to two different effects: the Paschen–Bach effect (Subsec. 11.3.2) and the Zeeman
effect (Subsec. 11.3.3).

Before entering into the detailed investigation of the effects produced by a magnetic
field, it is necessary to consider another type of interaction that is always present in an
atom (when l 	= 0) and goes under the name of the spin–orbit interaction. As we shall see
in the next section, this interaction has a relativistic nature.
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�Figure 11.6 Pictorial representation (density plot) of the spatial probability density corresponding to the
wave functions of an electron in a hydrogen atom possessing definite values of energy (increasing
downward: n = 1, 2, 3, . . .) and of angular momentum (increasing across: s, p, d, . . .). Brighter
areas correspond to higher probability density for a position measurement. Adapted from the
web page www.physicsdaily.com/physics/Quantum_mechanics.

11.3.1 Spin–orbit interact ion

We recall that Uhlenbeck and Goudsmit pointed out that certain spectroscopical lines, if
observed with high precision (with a relative accuracy of the order of 10−5), turn out to
be doublets instead of single lines (see Fig. 6.9).9 They made the hypothesis that this was
due to the presence of a magnetic momentum intrinsic to the electron, i.e. the spin (see
Sec. 6.3).

Let us consider the reference frame where the electron is at rest. The proton’s motion
induces a current that generates a magnetic field which interacts with the electron. The
electrostatic interaction between electron and proton is represented by the potential defined
in Eq. (11.16), which corresponds to the electric field10

E = Ze

r3
r. (11.56)

9 See [Uhlenbeck/Goudsmit 1925, Uhlenbeck/Goudsmit 1926].
10 We consider here electric and magnetic fields in unquantized form (and for this reason we have omitted the

operatorial expression in the first few equations). The quantization of electromagnetic fields will be the subject
of Ch. 13.
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On the other hand, the “proton current” generates a magnetic field determined by (see
Eq. (6.168))

Bp = E × v
c
= Ze

cr3
r × v = Ze

mec

1

r3
L = Bp k, (11.57)

where me is the electron mass, L its angular momentum, and k is the z-axis versor. Since
the electron has an intrinsic magnetic momentum

μs = 1

2

e

mec
S, (11.58)

there will be an interaction potential energy (see Subsec. 6.3.3) that in the nucleus reference
frame11 has the form

V = −μs · Bp = Ze2

2m2
ec2r3

L · S = 1

2

Zαh̄

m2
ec

L · S
r3

, (11.59)

where

α = e2

h̄c
� 137−1 (11.60)

is the fine-structure constant. Due to the smallness of the fine-structure constant, such a
spin–orbit interaction may be treated as a weak perturbation. However, this perturbation is
sufficient to render l and ml as “bad” quantum numbers. The new good quantum numbers
are then j and m j (see Sec. 6.4). In fact, in the quantized framework, from Eq. (6.188)
we obtain

Ĵ 2 = L̂2 + Ŝ2 + 2L̂ · Ŝ, (11.61)

and

L̂ · Ŝ = 1

2

(
Ĵ 2 − L̂2 − Ŝ2

)
. (11.62)

In order to find the first-order perturbational correction to the energy level (see Eq. (10.12)),
we have to compute the mean value〈

ϕ
(0)
nlm |V |ϕ(0)

nlm

〉
= Ze2

2m2
ec2

〈
L̂ · Ŝ

〉
ang,spin

〈
1

r3

〉
rad

, (11.63)

where 〈·〉ang,spin denotes the mean value on the angular and spin variables, and〈
1

r3

〉
rad

= Z3

r3
0 n3l

(
l + 1

2

)
(l + 1)

. (11.64)

In conclusion, the first-order correction to the energy level is given by

E (1)
nlm = Z4αe6

2ch̄5n3l
(

l + 1
2

)
(l + 1)

〈
L̂ · Ŝ

〉
ang,spin

= κ
〈
l̂ · ŝ
〉
ang,spin

, (11.65)

11 See also [Jackson 1962, 546].
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where

κ = Z4αe6me

2ch̄3n3l
(

l + 1
2

)
(l + 1)

= Z4α4mec2

2n3l
(

l + 1
2

)
(l + 1)

, (11.66)

and

〈
l̂ · ŝ
〉
ang,spin

= 1

2

[
j( j + 1) − l(l + 1) − s(s + 1)

]
. (11.67)

Since ŝ = 1/2, we shall necessarily have j = l ± 1/2 in Eq. (11.67). From Eq. (11.66) we
expect the spin–orbit interaction to decrease as 1/n3 and 1/ l3, so that the doublets reduce
their separations as n and l increase (see Fig. 6.9 and Prob. 11.16).

Let us now go back to the problem of the behavior of an atom in an external homo-
geneous magnetic field Bext. Taking into account both the magnetic momenta induced by
the orbital angular momentum and spin (see Eqs. (6.166) and (6.169)), and the spin–orbit
interaction (Eq. (11.59)), the total Hamiltonian will be given by

Ĥ = ĤA − eh̄

2mec

(
l̂ + 2ŝ

)
· Bext − f (r ) l̂ · ŝ, (11.68)

where ĤA is the ordinary atomic Hamiltonian (11.2), and

f (r ) = Ze2h̄2

2m2
ec2r3

. (11.69)

It should be noted that

κ = 〈 f (r )〉rad . (11.70)

To find the solution of the general problem with Hamiltonian (11.68) is impossi-
ble. However, a perturbational approach (see Sec. 10.1) is viable in specific situa-
tions. In particular, Eq. (11.68) shows that we are in the presence of two pertur-
bational terms in the Hamiltonian. We have necessarily to ask which of the two
is the more relevant. If the magnetic term due to the external field is much larger
than the spin–orbit interaction, the coupling between the orbital magnetic momentum
and the spin magnetic momentum is negligible. In this case, l̂ and ŝ turn out to be
decoupled, and ml and ms are again “good” quantum numbers. We denote this sit-
uation as the Paschen–Bach effect. In the opposite case, l̂ and ŝ are coupled, and
the good quantum numbers are represented by j and m j , giving rise to the Zeeman
effect.

It should be noted that this distinction, given the strength Bext of the magnetic field,
depends on the excitation level of the atom: increasing n, the spin–orbit interaction
decreases, and the highly excited levels (large n) feel the Paschen–Bach effect, whereas
levels with small n feel the Zeeman effect.
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�Figure 11.7 Landé semiclassical vectorial model for the Paschen–Bach effect. In order to compute the
contribution of the spin–orbit correction, the spin and orbital angular momentum vectors can be
thought of as precessing about the external magnetic field directed along the z-axis. As a
consequence, only the time averaged components of l̂ and ŝ (directed along the z-axis) contribute
to the scalar product in the third term of Eq. (11.71).

11.3.2 Paschen–Bach effect

Since the third term in Eq. (11.68) is negligible with respect to the second, we are allowed
to separate the Hamiltonian according to the Dirac picture

Ĥ = ĤA − eh̄

2mec
Bext

(
l̂z + 2ŝz

)
− f (r ) l̂ · ŝ = Ĥ0 + ĤI , (11.71)

where

Ĥ0 = ĤA − eh̄

2mec
Bext

(
l̂z + 2ŝz

)
, (11.72)

and

ĤI = − f (r ) l̂ · ŝ. (11.73)

We have assumed that the external magnetic field is along the z direction, i.e.

Bext = Bextk. (11.74)

The eigenfunctions of ĤA are also eigenfunctions of l̂z and sz . As a consequence, the
solution of the eigenvalue equation for Ĥ0 is straightforward, i.e.

Ĥ0ϕnlml ms =
[

ĤA − eh̄

2mec
Bext

(
l̂z + 2ŝz

)]
ϕnlml ms

=
[

E (0)
nl − μB Bext

(
ml + 2ms

)]
ϕnlml ms , (11.75)

where E (0)
nl is the unperturbed atomic energy level. We have now to add the spin–orbit

perturbation. To this aim, we compute the first-order perturbational correction – given by
ĤI – to the energy level, i.e. we have to calculate the mean value of − f (r ) l̂ · ŝ on the
unperturbed states of the atom. In order to perform this calculation, we take advantage of
the so-called (semiclassical) Landé’s vectorial model (see Figs. 6.12 and 11.7): the spin
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�Figure 11.8 Diagram of the energy corrections to the s and p levels due to the Paschen–Bach effect. In the
case of the s level, l = 0 and therefore there is no spin–orbit correction. However, the correction
due to the external magnetic field gives rise to the doublet (0, 1/2), (0, −1/2), where the first
number is m

l and the second one is ms. The two components of the doublet are here separated
by 2�. As for the p level (ml = −1, 0, 1, ms = −1/2, 1/2), there are five possibilities given by the
five possible results of ml + 2ms. Apart from the (0, 1/2) and (0, −1/2) sublevels, for which the

spin–orbit correction κ l̂ · ŝ is obviously zero, the sublevels are further corrected by the spin–orbit
perturbation. The levels (1, −1/2) and (−1, 1/2) are degenerate, since both the magnetic and the
spin–orbit corrections contribute exactly to the same extent.

and orbital angular momentum vectors can be thought of as precessing about the external
magnetic field vector. Then, only l̂z and ŝz contribute to the scalar product, so that the
final result for the correction is simply given by κml ms . To summarize, to first-order in the
perturbation expansion, the energy eigenvalues in the case of the Paschen–Bach effect are
given by

E (0)
nl + E (1)

nlml ms
= E (0)

nl +
(
ml + 2ms

)
�+ κml ms , (11.76)

where � = μB Bext is sometimes called the Lorentz parameter. In Fig. 11.8 we sketch a
diagram of the s and p energy levels of a hydrogen atom with emphasis on the magnetic
and spin–orbit corrections to the unperturbed energies (see Prob. 11.17).
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�Figure 11.9 Schematic diagram of the spectroscopical lines resulting from the allowed transitions A, B, C, D, E,
F of Fig. 11.8. Here ν0 is the central frequency, i.e. the frequency of the unperturbed s ↔ p
transition, �̃ = �/h, and κ̃ = κ/h.

It is also evident from Fig. 11.8 that the s ↔ p transition is profoundly affected by
the magnetic and spin–orbit perturbations, even though not all the – virtually – possible
transitions are actually allowed. In the electric-dipole approximation,12 one may establish
some rules that limit the permitted transitions. These are called selection rules, and in the
present case are

�l = ±1, �ml = 0,±1, �ms = 0. (11.77)

The first selection rule implies that transitions within the levels s and p are not allowed,
whereas the second states that a photon emission or absorption may change the magnetic
quantum number by at most 1. The third rule is justified by the fact that a photon exchange
cannot invert the spin. In Fig. 11.9 we show the spectroscopical lines that stem from the
allowed transitions depicted by vertical arrows in Fig. 11.8 (see Prob. 11.18).

11.3.3 Zeeman effect

Let us now go back to Eq. (11.68) and consider the case in which the magnetic field is
weak, i.e. the second (magnetic field) term is much smaller than the third (spin–orbit)
one.13 In this case, the “good” quantum numbers are represented by {n, l, j , m j }, and the
total Hamiltonian, according to the Dirac Picture, may be separated into

Ĥ = Ĥ0 + ĤI , (11.78)

12 For the classical treatment see [Jackson 1962, Chs. 4–5]. See also Sec. 13.7 for the general quantum treatment
of the interaction between atom and electromagnetic field.

13 For the history of the anomalous Zeeman effect see [Mehra/Rechenberg 1982–2001, I, 445–85].
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�Figure 11.10 Semiclassical Landé vectorial model for the Zeeman effect. The orbital magnetic momentum μ
l

(see Eq. (6.166)) is opposite to l, whereas the spin magnetic momentum μs (see Eq. (6.169)) is
opposite to s. The total magnetic momentum μtot = μ

l
+ μs, due to the different gyromagnetic

ratio (see p. 225) in the two cases, is not parallel to j. The relevant quantity for our purposes is
then represented by μj, i.e. the projection of μtot along the direction of j.

where

Ĥ0 = ĤA − f (r ) l̂ · ŝ, (11.79)

and

ĤI = − eh̄

2mec
Bext

(
l̂z + 2ŝz

)
. (11.80)

In order to find the energy shift due to the magnetic perturbation, we have to evaluate the
mean value

E (1)
nl jm j

=
〈
ϕnl jm j

∣∣∣ĤI

∣∣∣ϕnl jm j

〉
. (11.81)

To accomplish this task, we again resort to the Landé vectorial model (see Fig. 11.10). It
turns out that the total magnetic momentum μtot, due to the different gyromagnetic ratio
(see p. 225) of μ

l
and μs , is not parallel to j.

Since the spin–orbit interaction is much larger than the magnetic one, the time scale
of the “magnetic” dynamics is much larger than the corresponding spin–orbit interaction
time scale. As a consequence, due to time averaging, the contribution to Eq. (11.81) of the
component of μtot orthogonal to j vanishes. The relevant quantity for our purposes is then
represented by μ j , i.e. the projection of μtot along the direction of j. In order to calculate
μ j , we start from
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μ j = μl cos θ + μs cosφ = eh̄

2mec
(l cos θ + 2s cosφ) , (11.82)

where θ is the angle between l and j, and φ is the angle between s and j. Making use of the
Carnot theorem in the form

s2 = l2 + j2 − 2l j cos θ , (11.83)

and

l2 = s2 + j2 − 2s j cosφ, (11.84)

we obtain

l cos θ = j2 + l2 − s2

2 j
and s cosφ = j2 + s2 − l2

2 j
. (11.85)

Substituting Eqs. (11.85) into Eq. (11.82), we get

μ j = eh̄

2mec

(
j2 + l2 − s2

2 j
+ 2

j2 + s2 − l2

2 j

)
= eh̄

2mec
gL j , (11.86)

where

gL = 1 + j2 + s2 − l2

2 j2
= 1 + j( j + 1) + s(s + 1) − l(l + 1)

2 j( j + 1)
(11.87)

is the Landé g factor. Such a factor should be equal to 2 from a relativistic viewpoint (and
equal to 1 from a classical viewpoint). As a matter of fact, it turns out to be different from
2 (as well as from 1). This is the reason why this effect is sometimes called anomalous
Zeeman effect.

We are now in the position to evaluate the energy shift (11.81), and write

E (1)
nl jm j

= μB BextgL m j = �gL m j , (11.88)

where � = μB Bext is the already introduced Lorentz parameter. In Fig. 11.11 we draw
the modifications due to the spin–orbit interaction and the Zeeman effect to the s and p
levels (see Prob. 11.19), whereas in Fig. 11.12 we schematically depict the spectroscopical
lines resulting from the transitions illustrated in the previous figure (see Prob. 11.20). In
the Zeeman effect we have further selection rules some:

• If the spectroscopical light is observed orthogonal to Bext:

�m j = ±1 (for light polarized orthogonally to Bext), (11.89a)

�m j = 0 (for light polarized parallel to Bext). (11.89b)

• If the spectroscopical light is observed parallel to Bext:

�m j = ±1 (for light circularly polarized), (11.90a)

�m j = 0 (is not allowed). (11.90b)
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ten possible transitions among the levels are denoted by the capital letters A, B, C, . . ., J.

ν0

κ
2
_̃κ̃

Λ̃3
2_ Λ̃3

2__ Λ̃3
4_ Λ̃3

2_ Λ̃3
2_ Λ̃3

2_ Λ̃3
2_ Λ̃3

2_

H A I J D G E C F B

ν

�Figure 11.12 Schematic diagram of the spectroscopical lines resulting from the allowed transitions A, B, C, . . .,
J of Fig. 11.11. Here ν0 is the frequency of the unperturbed s ↔ p transition, �̃ = �/h, and
κ̃ = κ/h.



423 11.4 Relat iv ist ic correct ions
�

It should be noted that, as the strength of the external magnetic field increases, the Lorentz
parameter � grows linearly up to the point where two levels (the levels 2 P3/2,−3/2 and
2 P1/2,1/2 in Fig. 11.11) overlap: this intermediate situation cannot be dealt with in pertur-
bation theory. However, for magnetic field strengths much larger than this critical value,
we fall back into the framework determined by the Paschen–Bach effect.

Finally, it is interesting to emphasize that the magnetic field completely removes the
degeneracy with respect to the angular momentum direction, which is opposite to what
happens in the electric case – the Stark effect (see Subsec. 10.1.4).14

11.4 Relativist ic corrections

In Sec. 11.2 we have neglected relativistic effects. For a full treatment of relativistic effects
one should use the relativistic extension of the Schrödinger equation, i.e. the Dirac equa-
tion. However, this goes beyond the aim of this book. First-approximation relativistic
corrections may be obtained by using simple heuristic arguments as shown in the present
section.

Beside the spin–orbit interaction, which should also be considered to be of relativistic
nature, relativistic corrections to the hydrogen atom derive from two further effects:

• Relativistically, the kinetic energy presents the form

T̂ � mec2

√
1 + p̂2

m2
ec2

− mec2. (11.91)

Since
√

1 + x � 1 + 1

2
x − 1

8
x2 + O(x3) , (11.92)

then, for small momenta, we obtain the expansion

T̂ = p̂2

2me
− 1

8

p̂4

m3
ec2

= T̂nr +�T̂ , (11.93)

where T̂nr is the non-relativistic expression for the kinetic energy.
• Suppose that we wish to measure the electron position with great precision. Then, we

must make use of high energy and this produces electron–positron couples. For position
uncertainties,

�x � h̄

mec
, (11.94)

14 This is due to the fact that the magnetic field is an axial vector, i.e. it changes sign upon reflection on a plane
that contains its direction, while the electric field is a polar vector (see Subsec. 6.1.1).
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we must take into account the creation of virtual positron–electron pairs, since such an
uncertainty is of the order of the Compton wavelength (1.68), where relativistic cor-
rections become large. A detailed computation is needed to take care of this effect.
However, in the non-relativistic limit we can treat this effect as a perturbation and con-
sider, instead of the potential energy V (r), a perturbed potential energy V (r + δr), where
δr is the shift due to the uncertainty (11.94). The uncertainty in the electron’s position is
called Zitterbewegung, whereby the electron does not move smoothly but instead under-
goes extremely rapid small-scale fluctuations, causing the electron to see a smeared-out
Coulomb potential of the nucleus. The correction will then be given by

V (r + δr) − V (r) =
∑

j={x ,y,z}
∂ j V (r)δr j + 1

2

∑
j ,k={x ,y,z}

∂ j∂k V (r)δr jδrk

+ O(δr3)

� C�V δr2, (11.95)

where C is a numeric constant and the first-order terms as well as the second-order cross
terms vanish in the averaging over δr. From this we derive

ĤDarwin � h̄2

8m2
ec2
�V = eh̄2

8m2
ec2

∇ · E = π h̄3αZ

2m2
ec
δ3(r), (11.96)

where we have made use of Gauss, law

∇ · E = 4πQ(r), (11.97)

where Q(r) is the cubic charge density. For a point-like nucleus of charge Ze, we have

Q(r) = Zeδ3(r). (11.98)

The Hamiltonian (11.96) is called the Darwin term, from the English physicist Charles
Galton Darwin (1887–1962).

Since these corrections to the kinetic and potential energies are small, we can use first-
order perturbation theory. In what follows we consider the joint action of both corrections,
and try to estimate their relevance. First, we wish to calculate the mean value of p̂4/8m3c2.
Then, we have that

p̂2 |ϕ0〉 = 2me

(
E (0)

n + Ze2

r

)
|ϕ0〉 , (11.99)

where |ϕ0〉 is the unperturbed eigenket of the Hamiltonian, so that

〈
p̂4
〉
ϕ0
=
〈
ϕ0

∣∣∣p̂2p̂2
∣∣∣ϕ0

〉
= 4m2

e

〈(
E (0)

n + Ze2

r

)2〉
ϕ0

= 4m2
e

[
(E (0)

n )2 + 2E (0)
n 〈V 〉ϕ0

+
〈
V 2
〉
ϕ0

]
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= 4m2
e

⎡⎣(E (0)
n )2 + 2E (0)

n Ze2

r0n2
+ Z2e4

r2
0 n3

(
l + 1

2

)
⎤⎦ . (11.100)

From this calculation one obtains

− 1

8

〈
p̂4
〉

m3
ec2

= − (E (0)
n )2

2mec2

(
4n

l + 1
2

− 3

)
. (11.101)

As for the second correction, i.e. the Darwin term (11.96), for hydrogenoid atoms we have〈
ĤDarwin

〉
= π Zαh̄3

2m2
ec

|ϕnlm(0)|2. (11.102)

The condition ϕnlm(0) 	= 0 is equivalent to l = 0 (see Eqs. (11.55a) and (11.51)) (and there-
fore also m = 0). As a consequence, the Darwin correction will never be present together
with the spin–orbit contribution. Since

|ϕn00(0)|2 = 1

π

(
Ze2me

h̄n

)3

, (11.103)

then we have 〈
ĤDarwin

〉
= 1

2
mec2

(
Zα

n

)4

nδl0. (11.104)

Now we must include the spin–orbit contribution (see Eqs. (11.65) and (11.66)) and com-
bine it with the other two relativistic correction terms. To this purpose we must distinguish
three cases:

• When l = 0, we only have the kinetic and Darwin corrections, and, making use of the
explicit expression (11.49) for the energy eigenvalues, which for hydrogenoid atoms are

En = − Z2e4me

2n2h̄2
, (11.105)

we have

mec2
(

Zα

n

)4 (3

8
− n + n

2

)
= −mec2

(
Zα

n

)4 n

2

(
1

j + 1
2

− 3

4n

)
, (11.106)

because for l = 0, j = 1/2.
• When we consider the case in which l = j − 1/2, i.e. when the Darwin term is zero and

the spin–orbit correction contributes, we obtain again

− mec2
(

Zα

n

)4 n

2

(
1

j + 1
2

− 3

4n

)
= −7, 2 × 104eV

Z4

n3

(
1

j + 1
2

− 3

4n

)
, (11.107)

where we have also give the explicit expression of the sum of the contributes.
• The same result holds also for l = j + 1/2.
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This means that we always obtain the same correction either by adding the Darwin and
the kinetic corrections or by summing the spin–orbit (in both cases l = j ± 1/2) and the
kinetic terms. For the ground state of the hydrogen (Z = 1, n = 1), the correction is �
10−3 eV and though very small it is easily detectable with spectroscopy.

There are also other relativistic aspects in the hydrogen atom that – as we have said –
are beyond the scope of this book; we recall that some of them are due to quantum effects
such as vacuum fluctuations: the most famous being the Lamb shift.15

11.5 Helium atom

The atomic Schrödinger equation can be solved only in its simplest case: the hydrogenoid
atoms. In all other cases, one has to resort to approximation methods. In this section we
consider the helium atom, with two electrons and Z = 2. For larger Z we have ionized
atoms.16 The Hamiltonian of the helium atom may be written as

Ĥ = p̂2
1

2me
− Ze2

r1
+ p̂2

2

2me
− Ze2

r2
+ e2

r12
, (11.108)

where r1, r2 are the distances from the nucleus of the two electrons, and r12 is the distance
between the electrons. We wish to study the first levels and in particular the ground state.
In order to calculate the energy of the ground state, we have two methods: a perturbational
approach and a variational procedure, which will be the subject of the next two subsections.

11.5.1 Perturbation method

Let us first rewrite Eq. (11.108) as

Ĥ = Ĥ0 + ĤI , (11.109)

where Ĥ0 = Ĥ1 + Ĥ2, and

Ĥ1 = p̂2
1

2me
− Ze2

r1
and Ĥ2 = p̂2

2

2me
− Ze2

r2
, (11.110)

while ĤI = e2/r12. The first method consists considering the term ĤI as a perturbation.
Clearly, this is not a good approximation if Z is small, since, in this case, ĤI is not much
smaller than the two other Coulombian terms.

We consider first the case where ĤI is neglected (zeroth order). In this case, the
Hamiltonian is fully separable and the ground state is described by ϕ100(r1)ϕ100(r2).

15 For a relativistic treatment of these problems see [Bjorken/Drell 1964, 52–60].
16 Examples of helioid atoms are Li+, Be++, . . ..



427 11.5 Hel ium atom
�

As a consequence, the ground state energy will be the sum of the eigenvalues: E (0)
1 =

E1
100 + E2

100, with (see Eq. (11.105) for n = 1)

E1
100 = E2

100 = −mec2

2
(Zα)2 . (11.111)

For the sake of simplicity, we move to atomic units,17 i.e. (see also Eq. (11.60))

r0 = h̄2

mee2
= 1,E0 = mec2α2 = 1, me = 1. (11.112)

Therefore,

E (0)
1 = −

(
Z2

2
+ Z2

2

)
= −Z2, (11.113)

which for the helium atom is −4. Then, in this approximation, the binding energy in the
ground state of the helium atom is eight times the corresponding one in the hydrogen
atom, i.e.

E (0)
1 = 8 · 13.6 eV � −109 eV. (11.114)

The first excited level is degenerate because we can get it by combining ϕ100ϕ200 and
ϕ100ϕ21m . As a consequence, its energy in the zeroth approximation is given by

E (0)
2 = E1

100 + E2
21m = −

(
Z2

2
+ Z2

8

)
= −5

8
Z2 = −5 · 13.6 � −68 eV. (11.115)

Within the same approximation it is also possible to compute the limiting energy El , above
which the spectrum becomes a mix of a continuous and a discrete part. To this aim, it is
sufficient to take the limit n →∞ for one of the two electrons (say, electron 2), obtaining

E (0)
l = E1

1 + E2∞ = − Z2

2
= −2 � −54.3 eV. (11.116)

In order to get a more precise estimation of the ground-state energy, we move to the first-
order perturbation analysis, and insert the repulsive Coulombian correction, i.e.

E (1)
1 = 1 〈ϕ100 | 2 〈ϕ100 | 1

r12
|ϕ100〉 1 |ϕ100〉 2

=
∫

dr1dr2 |ϕ100(r1)|2 1

r12
|ϕ100(r2)|2 , (11.117)

with (see Eq. (11.55a))

ϕ100(r) = 1√
π

Z
3
2 e−Zr . (11.118)

After a direct computation (see Prob. 11.22), we finally obtain

E (1)
1 = 5

8
Z . (11.119)

17 This corresponds to the change of variables (11.21). On a practical side, the passage to atomic units may
be formally effected by choosing e = 1, me = 1, h̄ = 1. Replacing e2 by Ze2, the atomic units become the
so-called Coulombian units (see Prob. 11.21).
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We find that, for Z = 2, E (1)
1 � −34 eV; this first-order perturbational result translates into

a variation of the ground state from level −109 eV to level −75 eV.

11.5.2 Variat ional method

A second approach involves the variational method (see Sec. 10.4). In this context, one
must compute the expected value of the Hamiltonian on a “smart” wave function with a
special choice of parameters. At the zeroth order we have

ϕHe (r1, r2) = ϕ100(r1)ϕ100(r2) = Z3

π
e−Z (r1+r2). (11.120)

Since one of the electrons is shielded from the proton by the other electron, we substitute

Z with Z̃ and seek to find the Z̃ which minimizes
〈
Ĥ
〉

(see Eq. (11.108)). Given that, for

the ground state,

ϕHe(r1, r2) = Z̃3

π
e−Z̃ (r1+r2), (11.121)

we have (see Eqs. (11.110) and (11.116))

Ĥ1(Z̃ )
∣∣ϕHe

〉 = ( p̂2
1

2
− Z̃

r1

) ∣∣ϕHe

〉 = Z̃2

2

∣∣ϕHe

〉
, (11.122)

from which we obtain〈
Ĥ1(Z̃ )

〉
ϕHe

=
∫

dr1

∫
dr2ϕHe (r1, r2)

(
p̂2

1

2
− Z̃

r1

)
ϕHe(r1, r2)

= −
∫

dr1

∫
dr2ϕHe (r1, r2)

Z̃2

2
ϕHe(r1, r2). (11.123)

It follows that 〈
p̂2

1

2

〉
ϕHe

= − Z̃2

2
+ Z̃

〈
1

r1

〉
. (11.124)

For the hydrogen atom we have found (see Prob. 11.13)〈
1

r

〉
= 1

r0

1

n2
, (11.125)

with r0 = h̄2/me Ze2. In atomic units we derive〈
1

r

〉
= Z

n2
, (11.126)

and, coming back to the helium atom, for n = 1, we have〈
p̂2

1

2

〉
ϕHe

= Z̃2

2
. (11.127)
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Table 11.1 The table of the ground-state energy of the first few helioid
atoms calculated according to the perturbation and variational methods and

compared with their experimental determination

Element Z (E (0)
1 )pert (E (0)

1 + E (1)
1 )pert Evar

1 E
exp
1

He 2 −109 −75 −77.7 −78.6
Li+ 3 −245 −194 −196.7 −197.1
Be++ 4 −435 −367 −369.7 −370

Therefore, 〈
p̂2

1

2
+ p̂2

2

2

〉
ϕHe

= Z̃2. (11.128)

On the other hand, for the potential energy of the interaction-free Hamiltonian Ĥ0 (see
Eqs. (11.110)), we obtain 〈

− Z

r1
− Z

r2

〉
ϕHe

= −2Z Z̃ , (11.129)

where we have again made use of Eq. (11.126) with Z̃ in place of Z . Finally, since (see
Eq. (11.117)) 〈

− 1

r12

〉
ϕHe

= 5

8
Z̃ , (11.130)

we also have 〈
Ĥ
〉
ϕHe

= Z̃2 − 2Z Z̃ + 5

8
Z̃ . (11.131)

Minimizing relatively to Z̃ , i.e. imposing

∂
〈
Ĥ
〉
ϕHe

∂ Z̃
= 2Z̃ − 2

(
Z − 5

16

)
= 0, (11.132)

we finally obtain

Z̃ = Z − 5

16
, (11.133)

and therefore 〈
Ĥ
〉
ϕHe

= −
(

Z − 5

16

)2

, (11.134)

which for the ground-state energy yields −77.5 eV. We can summarize the results of this
section in Table 11.1, which shows how the accuracy of the estimation of the ground-state
energy of the first few helioid atoms increases as we move from zeroth-order perturbation
theory to first-order perturbation theory to end up with the variational method.
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11.5.3 The spin component

It should be noted that the Hamiltonian (11.108) does not depend on the spin. However, the
two electrons are identical particles (fermions) and the exchange interaction (see Sec. 7.4)
comes into play. In other words, one has to multiply all the wave functions considered in
this section by the spin component. For the ground state of the helium atom we shall have

&g(r1, r2; s) = Z̃3

π
e−Z̃ (r1+r2)ς (s), (11.135)

and, since the spatial wave function is symmetric under the exchange of the two electrons,
the spin wave function ς (s) must be antisymmetric, in order for the total wave function
&g of the two fermions to be antisymmetric. As a consequence, ς (s) must be the wave
function of a singlet state (see Subsec. 6.4.3) and the ground state of helium has always
spin zero.

As for the wave function of the first excited level, in place of the simple product

ϕ100(r1) ϕ200(r2), (11.136)

we shall have

1√
2

[ϕ100(r1) ϕ200(r2)±ϕ100(r2) ϕ200(r1)] ς (s), (11.137)

and, instead of the product

ϕ100(r1) ϕ21m(r2), (11.138)

we must write

1

2
√

2
[ϕ100(r1) ϕ21m(r2)±ϕ100(r2) ϕ21m(r1)] ς (s), (11.139)

where this time ς (s) can be either symmetric (triplet state together with the minus sign in
the spatial part of the wave function) or antisymmetric (singlet state with the plus sign for
the spatial part of the wave function). The spin-zero helium atom is called para-helium,
whereas the spin-one is called ortho-helium.18

Going to the estimation of the energy of the levels, one has to evaluate expectation values
of the type 〈

&

∣∣∣∣ 1

r12

∣∣∣∣&〉 , (11.140)

which, due to the forms (11.137) and (11.139), give rise to several spin-dependent terms:
This is the effect of the exchange interaction that makes the energy eigenvalues depend on
the spin even though the original Hamiltonian did not.

18 This nomenclature is also used for all the two-fermion systems, such as, e.g., the electron-positron pair, called
positronium.
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11.6 Many-electron effects

The analytic solution of the Schrödinger equation is only possible in rather fortunate cases.
In the one-dimensional case numerical techniques can be used with very high precision
and it is relative easy to obtain results with 10 significant decimal digits. However, this is
not so simple when we increase the number of dimensions. If we introduce a lattice of step
a in a box of size l in D dimensions, the number N of points of the lattice is given by

N =
(

l

a

)D

. (11.141)

This could still be managed in three dimensions also with non-spherically symmetric (but
not too rough) potentials: 108 points can be used on a PC. Using our analytic command of
elliptic differential equations, many efficient techniques may be found to extrapolate to the
limit where a → 0 and l →∞. Unfortunately, for a system with N particles we have

N =
(

l

a

)N D

, (11.142)

and, as soon as N > 2, the number of points becomes overwhelmingly too large.
A brute force discretization method therefore fails in studying the properties of many-

particle states; people in the past have developed many smart tools in order to overcome
these difficulties. While in the N →∞ limit, in certain cases, thermodynamic argu-
ments may be used to simplify the computations, a very interesting and difficult problem
is provided by atoms and moleculae, where N may be rather large (but also not too
large).

On the top of this problem we have to deal with the statistics. Boson statistics is usually
benign, but Fermi statistics (which is the relevant one for atoms) makes everything more
difficult. There are many negative effects of Fermi statistics:

• The wave function may be not positive; integrals of non-positive functions are notori-
ously difficult to be computed numerically.

• For the same token, the path-integral representation of the Green functions (or of the par-
tition function) of many fermions is not positive definite and this adds extra difficulties
to the already difficult method of path integrals.

• The Pauli exclusion principle implies that, roughly speaking, different fermions occupy
different regions of phase space: Therefore, when the number of fermions is high, we
have to explore simultaneously a quite large region of phase space, e.g. both the region
of large and small momenta.

11.6.1 Variat ional methods

A natural approach is provided by the variational method, which, as we have seen, gives
very good results for the helium atom. In the most powerful version of the method one
can use the following theorem: the ground state of a certain Hamiltionian has an energy
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eigenvalue that is greater than or equal to the eigenvalue of the ground state of the same
Hamiltonian restricted to a subspace of the original space.

Therefore, we can consider a set of n vectors |ψk〉. If we are able to compute the
following quantities

ϑ j ,k = 〈ψ j |ψk〉 , Hj ,k = 〈ψ j |Ĥ |ψk〉 , (11.143)

the evaluation of the ground state of the Hamiltonian, restricted to the space spanned by
the n vectors |ψk〉, involves only n-dimensional algebra and is relatively easy.

In this way, we can use as variational parameters the form of all the n vectors |ψk〉 and
we have a quite large variational space. In some cases the quantities in Eq. (11.143) can be
evaluated numerically and very good precision results are obtained.

However, the variational method needs a good starting point, and this stresses the impor-
tance of approximation methods. This problem will be studied in the rest of this sction for
the fermionic case, neglecting for simplicity the complications due to spin.

11.6.2 The Hartree–Fock equation

The simplest way to write a wave function of N fermions is to use the Slater determi-
nant (see Eq. (7.20)) in terms of N orthogonal wave functions. The Hartree–Fock method
consists in combining the variational approach of the previous section with the Slater deter-
minant. We shall see how this construction may be applied to the case of Z electrons in
an atom of charge Z , neglecting the spins (or equivalently assuming that they have all the
same spin).

The Hamiltonian of our problem is given by

Ĥ =
Z∑

k=1

⎛⎝ p̂2
k

2m
− Ze2

rk
+ 1

2

Z∑
j=1

′ e2

r j ,k

⎞⎠, (11.144)

where the primed sum indicates that the sum has to be taken for i 	= k, and Z is both
the charge of the nucleus and the number of electrons: we are indeed considering neutral
atoms.

Our aim is to compute the expectation of Ĥ in the state |&〉 formed by the Slater deter-
minant of Z vectors |ψk〉. We preliminary note that if f (x) is a function of one variable we
have that

〈&| f (x1)|&〉 = 1

Z

Z∑
j=1

∫
dxψ∗

j (x) f (x)ψ j (x) ,

〈&|
Z∑

j=1

f (x j )|&〉 =
Z∑

j=1

∫
dxψ∗

j (x) f (x)ψ j (x) . (11.145)
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In the case of a function of two variables f (x , y) we have that

〈&|
Z∑

j ,k=1

′ f (x j , xk)|&〉 =
Z∑

j ,k=1

′
∫

dx
∫

dy f (x , y)
[
ψ∗j (x)ψ j (x)ψ∗

k (x)ψk(x)

− ψ∗
k (x)ψ j (x)ψ∗

j (x)ψk(x)
]

. (11.146)

We notice that in the case of non-interacting fermions, where the total Hamiltonian is
the sum of single fermion Hamiltonians, if the |ψk〉 is an eigenvector of the single
fermion Hamiltonian with eigenvalue Ek , then the state |&〉 is an eigenvector of the total
Hamiltonian Ĥ with energy

E =
Z∑

k=1

Ek . (11.147)

If we apply the previous formulae to our Hamiltonian we get〈
&

∣∣∣Ĥ ∣∣∣&〉 = Z∑
j=1

∫
dxψ∗

j (x)

(
p2

2m
− Ze2

r

)
ψ j (x)

+ e2

2

Z∑
j ,k=1

′
∫

dx
∫

dy
ψ∗

j (x) ψ j (x) ψ∗
k (x) ψk(x) − ψ∗

k (x) ψ j (x) ψ∗
j (x) ψk(x)

|x − y| .

(11.148)

The task now is to minimize the previous expression with respect to the number Z of the
functions that enter into the definition of |&〉 .

This is a rather complex task. Explicit equations can be written, but finding the solution
of these equations numerically leads to elaborate numerical computations. A sequence
of approximations can be made in order to bring the problem to a more manageable
formulation and also to a physical insight of the computation.

The first approximation that, as we shall see below, is physically motivated, consists
introducing an effective potential energy V (x) and assuming that all the wave functions
ψk(x) satisfy the equation(

− h̄2

2m
�+ V (x)

)
ψk(x) = Ekψk(x), (11.149)

with the same potential energy V (x). In this way we restrict the set of variational func-
tions, and the ground state energy that we find may be larger than the one obtained without
this restriction. The advantage is that we have only one function V (x) that has to be
computed by minimization (instead of Z functions, as in the original case); this leads
to a strong simpification. Moreover, if we consider only spherically symmetric effective
potentials, the complexity of the computation significantly decreases, because, for central
potential, the numerical computation of the eigenfunctions can be performed in a very
effective way. In other words, the mathematical problem is reduced to that of a functional
minimization with only a one-dimensional function, namely, the effective radial potential
energy V (r ).
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If we neglect the exchange term, i.e. the last term in the double integral in Eq. (11.148)
(namely the one proportional to ψ∗

k (x)ψ j (x)ψ∗
j (x)ψk(x)), we find that the potential energy

V (x) that minimizes the energy must satisfy the self-consistent equation

V (x) = − Ze2

r
+ e2

∫
dy

ρ(y)

|x − y| , (11.150)

where

ρ(x) =
Z∑

k=1

|ψk(x)|2 . (11.151)

Under this form the numerical computations are quite easy and can be done with high
accuracy.

Similar computations can be done for molecules. However, radial symmetry cannot be
used any longer. Sometimes, especially if high accuracy is not needed and qualitative
results are sufficient, the computation can be done by considering the atoms as separate
entities and treating the interaction among the atoms as a perturbation with the exception
of the most external orbitals.

11.6.3 The Thomas–Fermi approximation

The first and simplest approximation that gives many of the characteristics of the
atoms, and especially the overall dependence on Z , neglecting the oscillations of the
periodic table, is the Thomas–Fermi approximation.19 It is based on the semiclassical
approximation (10.124).

Let us first study what happens to Z non-interacting fermions subject to the Hamiltonian

Ĥtot =
Z∑

k=1

(
p̂2

k

2m
− V (xk)

)
=

Z∑
k=1

Ĥ (pk , xk) . (11.152)

In order to simplify the formulae and to stress the basic principles let us present the com-
putations in units where h = 1, 2m = 1 and e = 1. In the semiclassical approximation, we
find that the energy of the ground state is given by

E =
∫

H<EF

dpdx H (p, x), (11.153)

where EF is known as the Fermi level of energy. The density of fermions in the point x ,
i.e. ρ(x), is given, in the same approximation, by

ρ(x) =
∫

H<EF

dp. (11.154)

The total number of fermions is Z , and this implies that∫
dxρ(x) = Z . (11.155)

19 See [Thomas 1927] [Fermi 1928].
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In this case we find

ρ(x) =
∫

p2<EF−V (x)
dp = V�(x)3/2 (11.156)

where V = 4/3π (the volume of the unit sphere in three dimensions) and

�(x) = V (x) − EF . (11.157)

The total energy can be written as

E = V
∫

dx

(
3

5
�(x)5/2 + V (x)�(x)3/2

)
=
∫

dx

(
3

5
V−2/3ρ(x)5/3 + V (x)ρ(x)

)
. (11.158)

The first term is the kinetic energy and the second is the potential term.
We would like to stress the following point. If we consider the energy as a functional of

ρ and we look for its stationary point, with the constraint given by Eq. (11.155), we find
the equation

δE[ρ]

δρ(x)
≡ V−2/3ρ(x)2/3 = λ , (11.159)

where λ is a Lagrange multiplier that is needed to implement the constraint given by
Eq. (11.155). With the identification of EF with λ we recover Eq. (11.156).

Therefore we can say that the energy of Z fermions can be found using the variational
principle where we have to minimize the expression (11.158).

The Thomas–Fermi equation can be derived in a similar way. We obtain for the free
energy functional

ET F [ρ] =
∫

dx

(
3

5
V−2/3ρ(x)5/3 − Zρ(x)

r

)
+ 1

2

∫ ∫
dxdy

ρ(x)ρ(y)

|x − y| . (11.160)

The variation of the previous functional leads to the equation

V−2/3ρ(x)2/3 = −V (x) ≡ Zρ(x)

r
+
∫

dy
ρ(y)

|x − y| , (11.161)

where we have set EF = 0 in such a way that the charge density ρ(x) extends up to infinity.
By applying the Laplacian to the previous equation, we get

V−2/3�ρ(x)2/3 = 4π (−Zδ(x) + ρ(x)) , (11.162)

which is the Thomas–Fermi equation.20

By introducing the function

ω(x) = ρ(Z1/3x) , (11.163)

the previous equation becomes independent from Z and we get

V−2/3�ω(x)2/3 = −4π (δ(x) + ω(x)) . (11.164)

20 The Thomas–Fermi Equation is sometimes written for the function φ(x) ≡ V−2/3ρ(x)2/3.
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A detailed study of the previous equation shows that there is a unique solution that goes to
zero at infinity as x−3 and satisfies the normalization condition∫

dxω(x) = 1, (11.165)

which is equivalent to
∫

dxρ(x) = Z .
The possibility of arriving to a Z -independent equation implies the scaling of many

quantities as function of Z . In particular, the radius (R) scales as Z−1/3 and the total bind-
ing energy (E) as Z7/3. If we use the numerical solution of the Thomas–Fermi equation
and go back to the standard units,21 we get

R = h̄2

me2 Z1/3
= Z−1/3 0.53 × 10−11 m , E = Z7/3 20.8 eV . (11.166)

This scaling is correct, however the numerical prefactors are typically wrong by about 30%.
Indeed, the repulsive correlation among the electrons (i.e. the exchange interactions) –
which is neglected here – makes the atom larger and less bound.

This is the first example of the local density functional approach where one writes
more precise and accurate forms for the functional E[ρ]. In this way one arrives to more
accurate versions of the equations (11.149), where the exchange energy is taken into
account with high precision. There are many books22 and reviews on the local density
functional approach (and also public-domain computer codes): the whole subject is quite
active.

Summary

• First, we have shown how to apply to the hydrogen atom Kepler’s solution for the
problem of many interacting bodies, i.e. by only considering one-to-one interactions.

• The previous treatment has provided us with a radial Schrödinger equation that,
with suitable variable changes, can be solved leading us to find the eigenvalues En =
−(1/n2)E0 and the first total eigenfunctions.

• We have then studied the behavior of the atom in a magnetic field, by distinguishing
the case in which the field is strong and the spin–orbit interaction can be treated as a
small perturbation (Paschen–Bach effect), and the case when the external magnetic field
is weak and can be treated as a perturbation (Zeeman effect).

• Apart form the spin–orbit interaction, two further relativistic corrections have been
considered: the kinetic-energy term and the Darwin term. When the spin–orbit term
is absent, the Darwin term is present and vice versa. However, we have shown that
summation of one of the two with the kinetic-energy term gives the same result.

21 See [Landau/Lifshitz 1976b].
22 See [Fiolhais et al. 2003].
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• We have then treated the helium atom, whose Schrödinger equation can be solved only
by making use of approximation methods. We have in particular shown that perturbation
and variational methods lead to similar results.

• Finally, we have considered multielectron effects, by making use of the Hartree–Fock
method and of the Thomas–Fermi approximation.

Problems

11.1 Derive Eq. (11.6) from Eq. (11.2) and Eq. (11.8).
11.2 For the example of Subsec. 11.2.1, show that P , R and p, r are two pairs of

classically conjugate variables.
11.3 Prove the commutators (11.11).
11.4 Study the behavior of the function

y(x) = a

x2
− b

x
,

with a, b > 0 and for x > 0.
11.5 Compute the relative deviation of the reduced mass from the electron mass in the

case of the hydrogen atom.
11.6 Derive Eq. (11.23b).
11.7 Derive Eq. (11.32).
11.8 Prove the result (11.39).
11.9 Prove that the degree of degeneracy of the n-th energy eigenvalue of the hydrogen

atom is equal to n2.
11.10 Using Eqs. (11.43), (11.44), and (11.48), find the first radial wave functions of the

hydrogen atom for n = 1, n = 2, n = 3.
11.11 Find the correct normalization factors for the radial wave functions listed in

Eqs. (11.51).
11.12 Find the radial probability densities corresponding to the radial wave functions

listed in Eqs. (11.51).
11.13 Compute the mean value of (r/r0) j for j = 2, 1,−1,−2,−3 for the first eigenfunc-

tions of an electron in a hydrogen atom.
11.14 Check the correctness of the normalization of Eqs. (11.55a).
11.15 Compute the eigenfunctions ϕ210, ϕ21,±1, ϕ310, ϕ31,±1, ϕ320, ϕ32,±1, and ϕ32,±2 for

a hydrogenoid atom.
11.16 Compute the energy-level corrections due to the spin–orbit interaction for the levels

s, p, d , and f in the case of the hydrogen atom. Use the results of this calculation to
draw a more refined version of Fig. 6.9.

11.17 Compute the energy-level corrections due to the Paschen–Bach effect (included in
the spin–orbit term) for the levels s and p, which are necessary to draw Fig. 11.8.
(Hint: First determine the magnetic correction as a function of ml and ms . Then,
find the further spin–orbit modification, again as a function of ml and ms .)
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11.18 Use the selection rules (11.77) to find the six allowed transitions among the levels
depicted in Fig. 11.8. Compute the frequencies of the resulting transitions depicted
in Fig. 11.9.

11.19 Compute the energy-level corrections due to the Zeeman effect (included the spin–
orbit term) for the levels s and p, which are necessary to draw Fig. 11.11.
(Hint: First determine the spin–orbit correction (see Subsec. 11.3.1). Then, find the
further magnetic modification due to the external field as a function of m j and gL .)

11.20 Use the selection rules (11.89a) to find the ten allowed transitions among the levels
depicted in Fig. 11.12. Compute the frequencies of the resulting transitions depicted
in Fig. 11.11.

11.21 From the definition of atomic units (11.112) deduce the corresponding units for the
fundamental physical quantities of length, mass, time, and electronic charge.

11.22 Derive the result (11.119).

Further reading

Atkins, P. and Friedman, R., Molecular Quantum Mechanics, Oxford: Oxford University
Press, 4th edn., 2005.

Brandsen, B. C. J., Physics of Atoms and Molecules, London: Longman, 1983.
Fiolhais, C. Nogueira, F., and Marques, M. (eds.), A Primer in Density Functional Theory,

Berlin: Springer, 2003.
Slater, John C., Quantum Theory of Matter, New York: McGraw-Hill, 1951.
White, Harvey E., Introduction to Atomic Spectra, New York: McGraw-Hill, 1934.



12 Hydrogen molecular ion

In this chapter we move from the atomic to the molecular problem, i.e. we try to understand
how quantum mechanics, besides explaining the structure and stability of a single atom,
is able to account for the existence and the dynamics of molecules, the smallest building
blocks of matter that determine and maintain the chemical properties of macroscopic sub-
stances. Molecular quantum physics is the field that deals with these types of problems and
constitutes one of the most beautiful and successful applications of the basic principles of
quantum mechanics. It is also of enormous relevance, because it lays the foundations of a
consistent theory of condensed matter.

Our aim here is only to present the basic framework of molecular physics and to give a
flavor of its power. A systematic treatment of the subject would go far beyond the scope of
this book. In order to reach this goal, we take as our reference molecule the H+

2 hydrogen
molecular ion, which has the advantage of being simple enough to allow exact calculations.
While it embodies all the main ingredients of any molecule, it avoids the difficulties due to
multielectronic effects (see Sec. 11.6).

In Sec. 12.1 we present the H+
2 molecule. In Sec. 12.2 we discuss the powerful Born–

Oppenheimer approximation that allows us to deal with molecules with an arbitrary
number of nuclei and electrons, a problem that would be otherwise unsolvable. In Sec. 12.3
we come back to the diatomic molecule for examining the three main aspects of the phys-
ical problem: the translational, the rotational, and the vibrational degrees of freedom. In
Sec. 12.4 we present the Morse potential, which allows us to go beyond the harmonic
approximation when considering the internuclear potential of diatomic molecules. Finally,
in Sec. 12.5, we present two approximation methods useful for dealing with the molecu-
lar states, the linear combination of atomic orbitals (LCAO) and the valence bond method
(VBM).

12.1 The molecular problem

The H+
2 molecule consists of a single electron that moves within the field generated by two

protons situated at relative fixed positions. As we shall see, the solution to this problem may
be obtained thanks to a separation of variables. This separation may be effected within the
framework of the so-called spheroidal (or elliptical) coordinates (see Fig. 12.1), where

λ = ra + rb

rab
and μ = ra − rb

rab
, (12.1)

with 1 ≤ λ ≤ +∞ and −1 ≤ μ ≤ +1.
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ra
rb

r0a b

λ = constantμ = constant

�Figure 12.1 Spheroidal coordinates for the H+
2 ion. The two hydrogen nuclei (i.e. the two protons) a, b are

located at distance rab at the foci of the ellipses (λ = constant) and hyperbolas (μ = constant). The
electron is located at distances ra and rb from the nuclei a and b, respectively. Besides λ and μ,
the third coordinate is given by the rotation angle φ about the nuclear axis ab.

The Schrödinger equation for an electron in the field of two fixed protons in atomic units
is given by

−
(∇2

2
+ 1

ra
+ 1

rb

)
ψ = Eψ , (12.2)

where the Laplacian operator in spheroidal coordinates may be written as

� = 4

r2
ab(λ2 − μ2)

[
∂

∂λ

(
λ2 − 1

) ∂
∂λ

+ ∂

∂μ

(
1 − μ2

) ∂
∂μ

]
+ 1

r2
ab(λ2 − 1)(1 − μ2)

∂2

∂φ2
.

(12.3)
Making the ansatz

ψ(λ,μ,φ) = �(λ)M(μ)eıUφ , (12.4)

Equation (12.2) can be changed into the set of two equations (see Prob. 12.1)

d

dλ

[(
λ2 − 1

) d�

dλ

]
+
(

Er2
ab

2
λ2 + 2rabλ− U2

λ2 − 1

)
�= 0, (12.5a)

d

dμ

[(
1 − μ2

) d M

dμ

]
+
(

Er2
ab

2
μ2 − U2

1 − μ2

)
M = 0. (12.5b)

12.2 Born–Oppenheimer approximation

Let us consider for the time being the molecular problem in the most general terms, i.e. Ne

electrons moving in the field generated by Nn nuclei. We denote by rn
k and pn

k , respec-
tively, the position and momentum of the k-th nucleus with charge Zke and mass mk
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(k = 1, . . . , Nn), relative to the origin of the frame of reference. Similarly, the position
and momentum of the j-th electron are denoted by re

j and pe
j , respectively ( j = 1, . . . Ne),

again relative to the origin of the frame of reference. The total energy of the system will be
given by

Ĥ = T̂n + T̂e + V̂n + V̂e + V̂ne, (12.6)

where the first two terms are the kinetic energies of the nuclei and electrons, respec-
tively, i.e.

T̂n =
Nn∑

k=1

(p̂n
k )2

2mk
, (12.7a)

T̂e = 1

2me

Ne∑
j=1

(p̂e
j )

2, (12.7b)

and the three potential-energy terms are given by

V̂n =
Nn∑

k<l=1

(Zke) (Zle)∣∣rn
k − rn

l

∣∣ , (12.8a)

V̂e =
Ne∑

i< j=1

e2∣∣∣re
i − re

j

∣∣∣ , (12.8b)

V̂ne =
Ne∑
j=1

Nn∑
k=1

Zk (e) (−e)∣∣∣re
j − rn

k

∣∣∣ . (12.8c)

The Born–Oppenheimer approximation separates the nuclear motion from the electronic
one. In fact, we expect the electron dynamics to be much faster than the nuclear motion.
As a consequence, we try to solve the molecular problem by first considering a “frozen”
configuration of the nuclei, which induces a certain potential on each electron. Changing
the nuclear configuration, we assume that the electrons will rearrange themselves almost
instantaneously. Then, we shall look for solutions of the Schrödinger equation

Ĥ&(re
a , . . . , re

j ; rn
a , . . . , rn

k ) = E&(re
a , . . . , re

j ; rn
a , . . . , rn

k ) (12.9)

where the electronic states are defined in a parametric way relative to a given distribution of
the nuclei, as we shall see in a moment. For example, in the case of a diatomic molecule, the
parameter chosen is the distance between the nuclei. The solution of the general problem
is given by the product

&({re
j }; {rn

k }) = ψ({rn
k })ϕrn

k
({re

j }), (12.10)

where ψ({rn
k }) is the nuclear wave function. The electronic wave function ϕrn

k
({re

j })
depends parametrically on the parameter set {rn

k }, and may be taken as a solution of the
Schrödinger equation

Ĥeϕrn
k
({re

j }) = Eeϕrn
k
({re

j }), (12.11)
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for a given nuclear configuration, where

Ĥe = T̂e + V̂e + V̂ne. (12.12)

Taking into account the above considerations, we may rewrite the lhs of the Schrödinger
equation (12.9) as (see Prob. 12.2)

Ĥ&({rn
k }; {re

j }) =
[
−

Nn∑
k=1

h̄2

2mk
∇2

k + V̂n({rn
k }) + Ĥe

]
ψ({rn

k })ϕrn
k
({re

j })

= ϕrn
k
({re

j })
[
−

Nn∑
k=1

h̄2

2mk
∇2

k + V̂n({rn
k }) + Ee

]
ψ({rn

k }) (12.13)

−
Nn∑

k=1

h̄2

2mk

[
ψ({rn

k })∇2
kϕrn

k
({re

j }) + 2∇kψ({rn
k })∇kϕrn

k
({re

j })
]

,

where

∇2
k =

∂2

∂(xn
k )2

+ ∂2

∂(yn
k )2

+ ∂2

∂(zn
k )2

. (12.14)

In Eq. (12.13) the two terms in the last square brackets may be neglected for reasons that
are summarized in the following. In fact, the electronic wave function ϕrn

k
({re

j }) may be
thought of as a function of the difference re

j − rn
k . As a consequence, denoting by(

∇′
j

)2 = ∂2

∂(xe
j )

2
+ ∂2

∂(ye
j )

2
+ ∂2

∂(ze
j )

2
(12.15)

the Laplacian relative to the electronic coordinates, we have

∇2
kϕrn

k
({re

j }) �
(
∇′

j

)2
ϕrn

k
({re

j }), (12.16)

from which it follows that the term

h̄2

2mk
∇2

kϕrn
k
({re

j }) (12.17)

in Eq. (12.13) is of the order of me/mk times the kinetic energy of one electron. Moreover
(see comments to Eq. (11.20)),

me

mk
≤ 1

1840
. (12.18)

For the same reasons,

∇kϕrn
k
({re

j }) = −∇′
jϕrn

k
({re

j }), (12.19)

and we also have

h̄∇kψ � p̂n
k and h̄∇kϕrn

k
� p̂e

j , (12.20)

where, for the sake of notation, we have dropped dependencies, from which it follows that

h̄2

mk
∇kψ∇kϕrn

k
� 1

mk
p̂n

k p̂e
j /

(p̂e
j )

2

2me
, (12.21)
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because, apart from (12.18), as we have said the dynamics of the electrons is much faster
than that of the nuclei and therefore pn

k / pe
j . The last term in the rhs of Eq. (12.21) is

of the order of the kinetic energy of one electron, and this finally justifies neglecting those
two terms.

With these approximations, we may rewrite Eq. (12.9) as a Schrödinger equation for the
nuclear wave function, i.e. (see Prob. 12.3)[

−
Nn∑

k=1

h̄2

2mk
∇2

k + V̂n({rn
k }) + Ee({rn

k })
]
ψ({rn

k }) = Eψ({rn
k }), (12.22)

where E is the total energy, and the electron energy eigenvalue (parametrically dependent
on the position of the nuclei) Ee({rn

k }), which appears in Eq. (12.11), may be considered
as a correction to the nuclear potential energy V̂n({rn

k }), giving rise to the total potential
energy

V̂ ({rn
k }) = V̂n({rn

k }) + Ee({rn
k }). (12.23)

In other words, the electrons with their motion generate a diffuse charge distribution that
alters the nuclear Coulomb repulsion term V̂n . As a matter of fact, in the absence of elec-
trons, the positively charged nuclei would repel each other, and no molecule could be built:
the shield generated by the electron cloud binds the otherwise repelling nuclei – the essence
of the chemical bond.

This framework that separates the nuclear motion from the electronic dynamics is pre-
cisely the essence of the Born–Oppenheimer approximation.1 Such a method requires that
one first solves the electronic Schrödinger equation (12.11) for any given possible con-
figuration of the nuclei, finding the eigenvalues Ee as a function of the nuclear positions
{rn

k }. Then, one uses these results in order to solve the Schrödinger equation (12.22) for the
nuclei, with the potential energy (12.23).

12.3 Vibrational and rotational degrees of freedom

In the previous section we have laid the foundations of the quantum-mechanical treatment
of the molecular problem in its general form. We now go back to the more specific case of a
diatomic molecule, with particular reference to the H+

2 molecular ion. As a guiding model
for this analysis we take the rigid rotator model (see Subsec. 6.2.1). A diatomic molecule
has three types of collective motion:

1. Translation of the center of mass of the molecule, which practically coincides with the
center of mass of the nuclei. This motion gives rise to a continuous spectrum charac-
teristic of the motion of a free particle. This motion can be neglected if we work in a
reference system in which the center of mass is at rest.

1 This approximation is sometimes called adiabatic approximation (see also Sec. 10.3), because it separates the
fast electronic motion from the slow nuclear dynamics.
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2. Rotation of the molecule about an axis passing through the center of mass. The pure
rotational motion is obtained if the two nuclei stay at a fixed distance rab (see Figs. 6.5
and 12.1). The rotational spectrum of the molecule is given by Eqs. (6.81)–(6.82) (see
Fig. 6.6).

3. Vibration along the axis connecting the two nuclei. If the two nuclei must stay at a fixed
distance, the potential energy must have a minimum at r = rab. Under the harmonic
approximation, the internuclear distance may oscillate around the equilibrium point rab,
giving rise to vibrational energy levels and spectra.

Let us rewrite Eq. (12.22) for the case of a diatomic molecule, made up of atoms a and b,[
− h̄2

2ma
∇2

a −
h̄2

2mb
∇2

b + V̂n(rn
a , rn

b) + Ee(rn
a , rn

b)

]
ψ(rn

a , rn
b) = Eψ(rn

a , rn
b). (12.24)

Assuming that the nuclei are almost at rest relative to each other, and taking into account
Eq. (12.23), the total potential energy will have the form

V̂ (rn
a , rn

b) = V̂ (rn
b − rn

a) = V̂ (rab). (12.25)

Defining the position of the center of mass as

rc = marn
a + mbrn

b

ma + mb
, (12.26)

and taking into account Eqs. (12.24)–(12.25), we apply the change of variables

{rn
a , rn

b} → {rc, rab} (12.27)

in order to derive the Hamiltonian (see Prob. 12.4)

Ĥ = − h̄2

2(ma + mb)
∇2

c −
h̄2

2m
∇2

0 + V̂ (rab), (12.28)

where m is the reduced mass and

∇2
c =

∂2

∂x2
c
+ ∂2

∂y2
c
+ ∂2

∂z2
c

, (12.29a)

∇2
0 =

∂2

∂x2
0

+ ∂2

∂y2
0

+ ∂2

∂z2
0

, (12.29b)

being rc = (xc, yc, zc) and rab = (x0, y0, z0).
In the Schrödinger equation (12.24), with the transformed Hamiltonian (12.28), we have

separated the center-of-mass motion from the relative motion of the nuclei. This suggests
the ansatz

ψ(rn
a , rn

b) = ζ (rc)η(rab). (12.30)

Equation (12.28) will then give rise to the two Schrödinger equations (see Prob. 12.6)

− h̄2

2(ma + mb)
∇2

cζ (rc) = Ecζ (rc), (12.31a)[
− h̄2

2m
∇2

0 + V̂ (rab)

]
η(rab) = E0η(rab), (12.31b)
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where Ec is the energy eigenvalue of the center-of-mass degree of freedom and E0 means
in this context the energy eigenvalue pertaining to the relative motion. Equation (12.31a)
represents, as we have said, a free-particle Schrödinger equation. Its solution will be a
spherical wave of the form (see Eq. (2.147))

ζ (rc) ∝ eık·rc , (12.32)

describing the translational motion. The corresponding eigenvalues will be given by

Ec = h̄2k2

2(ma + mb)
. (12.33)

The solution of the second equation gives the rotational part of the motion. Since the poten-
tial V̂ (rab) only depends on the distance between the two nuclei, we are in presence of a
central potential (see Subsec. 6.2.2), i.e.

V̂ (rab) = V̂ (rab), (12.34)

and it is then convenient to translate this equation into spherical coordinates, where the
angular part of the wave function η(rab) will be given by spherical harmonics. The solution
of the relative-motion equation therefore has the form (see Eq. (6.57))

η(rab) = R(rab)Y (φ, θ ), (12.35)

where we recall that R(rab) is the radial wave function. The spherical harmonics Y j (φ, θ )
have eigenvalues (see Eq. (6.81))

E j = h̄2

2I
j( j + 1), (12.36)

where I = mr̄2
ab is the moment of inertia (see also Eq. (6.78)) of the two nuclei, r̄ab being

the equilibrium distance between the two nuclei. Obviously, the eigenvalues of ĵ2 and ĵz
are given by j( j + 1) and m j (see Eqs. (6.58)), respectively.

For the solution of the radial wave function R(rab), we first recall that

|rab − r̄ab| / r̄ab, (12.37)

that is, the two nuclei will oscillate around the equilibrium position. This allows a Taylor
series expansion of the total potential energy V̂ (rab) about r̄ab, i.e.

V̂ (rab) � V̂ (r̄ab) + a

2

∂2V̂ (rab)

∂r2
ab

∣∣∣∣∣
rab=r̄ab

· (rab − r̄ab)
2 + · · · , (12.38)

where the first-order term is missing because r̄ab is an equilibrium point,

∂ V̂ (rab)

∂rab

∣∣∣∣∣
rab=r̄ab

= 0. (12.39)

Up to the second order (see Fig. 12.2), the solutions will be of the harmonic-oscillator type,
that is,

V̂ (rab) � −D + κ
2
(rab − r̄ab)

2 , (12.40)
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�Figure 12.2 Diagram of the potential energy V̂(rab) (solid line) of the nuclear motion of a diatomic molecule
(see Eqs. (12.25), (12.38), and (12.40)). For rab � r̄ab, the Coulomb repulsion prevents the nuclei
from getting close to each other, whereas for rab → ∞ the molecule dissociates, D being the
dissociation energy. The dashed line represents the harmonic approximation κ(rab − r̄ab)2/2 that
is valid in the vicinity of the classical equilibrium point r̄ab (harmonic region). In this region the
vibrational energy levels (n = 0, n = 1, n = 2, . . .) are harmonic and therefore equidistant.

where D = −V̂ (r̄ab) is the dissociation energy, or the energy needed to move the two
nuclei to an infinite distance from each other. If we neglect the centrifugal term (6.93),
making use of a rigid-rotator approximation, then we can write the radial Schrödinger
equation as[

− h̄2

2m

∂2

∂r2
ab

+ 1

2
κ (rab − r̄ab)

2 − D

]
%(rab) = Evib%(rab), (12.41)

which – apart from the constant term D – is the harmonic-oscillator equation (4.49), whose
solutions will be given by the Hermite polynomials (4.98) with energy levels

Evib
n = −D +

(
n + 1

2

)
h̄ω0, (12.42)

where

ω0 =
√
κ

m
. (12.43)

Therefore, the total energy, relative to the nuclear part, is given by

E = Ec + E0 = Ec + E j + Evib
n

= h̄2k2

2(ma + mb)
+ h̄2

2I
j( j + 1) − D +

(
n + 1

2

)
h̄ω0. (12.44)

It is useful to go back to the meaning of the Born–Oppenheimer approximation. Given
a certain electronic state, the form of Ee(rn

a , rn
b) in Eq. (12.24) is fixed, and Eq. (12.44)
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�Figure 12.3 (a) First vibrational and rotational levels of two electronic states I and II (whose shapes are
represented in (b)) in a diatomic molecule. The long horizontal lines depict the vibrational levels
(n = 0, n = 1, n = 2, . . .). To each vibrational level is associated a rotational band (short
horizontal lines), whose eigenvalues are given by Eq. (12.36). The transitions between sublevels
are regulated by the selection rules: �n = ±1,�j = ±1. For example, the transition from the
level n + 1, j + 1 to the level n, j (represented by the double-headed arrow) will involve the
emission of a photon of frequency (1.75), which, by making use of Eq. (12.44), gives
ν = ω0/2π + 2B(j + 1), where B is the rotational constant defined by Eq. (6.83) (see Prob. 12.7).
It should be noted that, due to the different curvature of the energy profiles around the minima,
different electronic states have different vibrational frequencies. Moreover, due to the different
values of r̄ab and thus of the moment of inertia, also the separations between the rotational
levels may be significantly different.

follows. Changing the electronic state will change the form of the potential V̂ (rab) given
by Eq. (12.25) and thus the harmonic constant κ . As a consequence, there will be several
electronic states, the lowest of which is the ground state. Each electronic state will possess
many vibrational levels. In turn, every vibrational level will display rotational bands. This
situation is schematically depicted in Fig. 12.3.

However, Eq. (12.44) is not the end of the story. As a matter of fact we have
neglected two small effects: the anharmonicity of the potential V̂ (rab) and the centrifugal-
barrier term. Adding these two effects, however, will only introduce two small additional
perturbations in Eq. (12.44) and the physical picture will not be substantially modified.

12.4 The Morse potential

P. M. Morse2 introduced a very interesting analytic form of the potential energy V̂ (rab) that
represents a good approximation for the actual energy obtained from the stable molecular
states of diatomic molecules. A further advantage of the Morse potential is that it leads to

2 [Morse 1929].
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a vibrational Schrödinger equation that is susceptible of an exact solution. The form of the
Morse potential is (see Prob. 12.8)

V̂ (rab) = D
[
e−2a(rab−r̄ab) − 2e−a(rab−r̄ab)

]
, (12.45)

where D is again the dissociation energy, r̄ab is the equilibrium internuclear distance, and
a is a constant that, as we shall see, is related to the vibrational frequency.

If, for the time being, we ignore the rotation degree of freedom and concentrate upon
the vibrational Schrödinger equation, under the hypothesis (12.45), we may first observe
that the problem is equivalent to that of a central field with l = 0. Taking into account
Eqs. (12.31b), (12.35), and (6.92), the vibrational Schrödinger equation for the product

ξ (rab) = R(rab)rab (12.46)

may be written as

− d2

dr2
ab

ξ + 2m

h̄2

(
Evib − De−2arab + 2De−arab

)
ξ = 0, (12.47)

where we have also performed a suitable (ideal) translation so as to put r̄ab = rab.
With a change of variable

r̃ = 2
√

2m D

ah̄
e−arab , (12.48)

we obtain the Schrödinger equation (see Prob. 12.9)

a2r̃2 d2

dr̃2
ξ + a2r̃

d

dr̃
ξ +

(
2m

h̄2
Evib − a2

4
r̃2 +√

2m D
a

h̄
r̃

)
ξ = 0. (12.49)

We now substitute the notation3

k̃ =
√−2m Evib

ah̄
, n =

√
2m D

ah̄
−
(

k̃ + 1

2

)
, (12.50)

so as to obtain (see Prob. 12.10)

ξ ′′ + 1

r̃
ξ ′ +

(
− k̃2

r̃2
− 1

4
+ n + k̃ + 1

2

r̃

)
ξ = 0. (12.51)

The asymptotic behavior of the solution of Eq. (12.51) for r̃ →∞ and for r̃ → 0 suggests
the ansatz (see also Eq. (11.30))

ξ (r̃ ) = r̃ k̃ e−
r̃
2 W (r̃ ), (12.52)

which in turn leads to the following equation for W (r̃ ):

r̃ W ′′ +
(

2k̃ + 1 − r̃
)

W ′ + nW = 0. (12.53)

We may now proceed in a similar way as we have done in Sec. 11.2, finding the
hypergeometric function

W (r̃ ) = F(−n, 2k̃ + 1, r̃ ) (12.54)

3 Since we are looking for the discrete spectrum, we may assume Evib < 0.
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as the solution to our problem. This solution is obtained for non-negative integers n, and
the energy levels are given by (see Prob. 12.11)

Evib
n = −D

[
1 −

(
n + 1

2

)
ah̄√
2m D

]2

, (12.55)

up to the maximum value of n for which

n <

√
2m D

ah̄
− 1

2
. (12.56)

On the other hand, when

2
√

2m D < ah̄, (12.57)

the discrete spectrum does not exist. The energy levels (12.55) should be compared with
the eigenvalues (12.42) obtained in the harmonic approximation (see Prob. 12.12).

12.5 Chemical bonds and further approximations

As we have seen, in general it is not possible to find the exact solution (i.e. the exact
energy eigenvalues and eigenfunctions) for the Schrödinger equation of a molecule. In this
section, we shall describe the most popular methods used for the estimate of the elec-
tronic states in the diatomic molecules: the linear combination of atomic orbitals (LCAO)
and the valence bond method (VBM). Although their starting points are slightly different,
both these methods are approximate and their goal is to find the best estimate of the exact
solution.

12.5.1 LCAO

The LCAO method assumes that the wave function of a set of atoms in a molecule can be
appropriately dealt with as a linear combination of the original atomic wave functions with
certain weights that have to be determined. In other words, according to this method the
original wave functions are only slightly modified due to the formation of the molecule. In
order to find the best estimate, one has then to apply a variational method (see Sec. 10.4 and
Subsec. 11.5.2) and obtain the value of the parameters (the weights of the superposition)
that minimize the energy.

Let us consider two atoms, say a and b, whose electronic states are described by the
wave functions ψa and ψb, respectively. We then make the ansatz that the electronic state
of the a–b molecule may be expressed as the superposition

& = caψa + cbψb, (12.58)

or

& = ψa + bψb, (12.59)
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f (E)

E

Ea Eb

�Figure 12.4 Schematic diagram of the function f(E) (see Eq. (12.65)). The zeros of f(E) represent the LCAO
solutions for the energy of the molecule a − b.

where b = cb/ca (with ca 	= 0). In the latter case, if ψa and ψb are normalized, the result-
ing wave function & is not normalized. Denoting by Ĥ the total Hamiltonian of the
molecule, we have the Schrödinger equation

Ĥ& = E&, (12.60)

or

Ĥψa + bĤψb = Eψa + bEψb. (12.61)

Multiplying both sides first by ψ∗a and then by ψ∗
b and integrating, we obtain the set of two

equations

Haa − E + b(Hab − E Sab)= 0, (12.62a)

Hab − E Sab + b(Hbb − E)= 0, (12.62b)

where

Hab =
∫

dVψ∗a Ĥψb = β (12.63)

is the so-called resonance integral, and

Sab =
∫

dVψ∗aψb = S, (12.64)

with 0 ≤ S ≤ 1, is the so-called overlapping integral. By eliminating b, we obtain

(Ea − E) (Eb − E)− (β − E S)2 = f (E) = 0, (12.65)

where

Ea = Haa =
∫

dVψ∗a Ĥψa , (12.66a)

Eb = Hbb =
∫

dVψ∗b Ĥψb (12.66b)

should not be confused with the energy eigenvalues of the atoms a and b, respectively.
Equation (12.65) is an implicit quadratic equation for E , given Ea , Eb, β, and S. The
function f (E) is schematically depicted in Fig. 12.4, and its zeros represent the LCAO
approximate solutions to the molecular energy.
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E0

E–

E+

E– – E0

E0 – E+

�Figure 12.5 LCAO energy solutions for the H+
2 molecular ion. Only the symmetric �+ state gives rise to a

stable molecule with energy eigenvalue E+. The antisymmetric state �−, on the other hand, with
energy eigenvalue E− is unstable.

In the case of the H+
2 molecule, we have (see Fig. 12.1, and Eqs. (12.8a), (12.22)–

(12.23))

Ĥ = − h̄2

2m
∇2 − e2

ra
− e2

rb
+ e2

rab
. (12.67)

Since the molecule is homonuclear, we have |b|2 = 1, or b = ±1, which implies a
symmetric and an antisymmetric wave function

&+ =ψa + ψb, (12.68a)

&− =ψa − ψb, (12.68b)

with

Ea = Eb = Eo, (12.69)

from which it follows that, in the case of &+, Eqs. (12.62) become

(E0 − E+) + β − E+S= 0, (12.70a)

β − E+S + (E0 − E+)= 0, (12.70b)

which lead to

E+ = E0 + β
1 + S

. (12.71a)

Analogously, we have

E− = E0 − β
1 − S

. (12.71b)

The corresponding wave functions are given by

ψa(r )=Cae
− r

r0 (12.72a)

ψb(r )=Cbe
− (r−rab )

r0 , (12.72b)

where Ca and Cb are constants and r0 is the Bohr’s radius of the hydrogen atom (11.21). In
the LCAO approximation, therefore, two energy levels for the molecule are possible, and
are separated by an energy gap E− − E+ (see Fig. 12.5).

In Fig. 12.6 we show the graph of &+ and &− as a function of rab. As expected, only
&+ has a minimum for rab � 2r0, with E � −0.56e2/r0. The excitation from the state&+
to the state &− is already sufficient to break the molecule.
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rab/r0

E(e2/r0)

–0.56

1 2 3

�Figure 12.6 Graphic representation of the symmetric (solid line) and antisymmetric (dashed line) states of
the ground level of the H+

2 molecule.

Similar considerations can be developed for the case of other homonuclear diatomic
molecules, in particular for the hydrogen molecule H2. In the general case of heteronuclear
diatomic molecules, it will be b 	= ±1, but, apart from this, similar calculations can be
carried out as in Eqs. (12.58)–(12.71b), with Ea 	= Eb.

12.5.2 VBM

The valence bond method is under certain respects similar to the LCAO approximation.
Nevertheless, it attempts to obtain the molecular wave function as a product – rather than a
linear combination – of the original atomic wave function. While in the LCAO method we
first build the molecular states that are successively filled with the existing electrons, the
VBM makes use of the bonds between decoupled electrons, ignoring the internal electronic
levels (complete shells).

Differently from other sections of the present chapter, we need here to consider the case
of the hydrogen molecule H2. The reason is that the VBM works with bonds, i.e. with
molecules presenting at least two electrons. We start with the product wave function

&(1, 2) = ψa(1)ψb(2), (12.73)

where 1 and 2 denote the two electrons. By applying the usual optimization procedure (see
Subsec. 12.5.1), we would arrive at a dissociation energy of about 0.25 eV, that should be
compared with the experimental value of about 4.8 eV. This approximation is therefore
very bad. However, one should not be surprised of such a discrepancy, because the wave
function (12.73) is not symmetrized. A more clever ansatz is given by

&±
cov(1, 2) = ψa(1)ψb(2) ± ψa(2)ψb(1), (12.74)

which is sometimes called the covalent wave function:&+
cov yields a dissociation energy of

3.15 eV. The approximation can be further improved by accepting a small probability of an
ionic wave function

&±
ion(1, 2) = ψa(1)ψa(2) ± ψb(1)ψb(2), (12.75)
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i.e. by writing the total wave function as

&(1, 2) = &±
cov(1, 2) + α&±

ion(1, 2), (12.76)

where α should be calculated using the variational method. In the case of the hydrogen
molecule, it turns out that α = 0.25, i.e. the weight of the ionic bond is about 25%. With
this improvement, we arrive at a value for the dissociation energy of about 4.1 eV. Other
small improvements may be obtained if one accepts a certain polarization of the atomic
orbitals due to the electrons. Moreover, with these simple procedures it is also possible
to foresee the existence (or the non-existence) of some diatomic molecules, such as He2

or Li2.
As with the LCAO method, in the case of heteronuclear molecules, besides what we

have seen above, one should also consider having a certain weight in front of the product
wave function terms. An interesting example is given by the fluoride hydrogen HF, where
α = 0.5, due to the fact that fluorine is very electronegative.

Summary

• In this chapter we have first introduced a formalism for the simplest molecule – namely
the molecular ion H+

2 – making use of spheroidal coordinates.
• Next, we introduced the Born–Oppenheimer approximation in order to solve the molec-

ular problem in the most general terms. Here, we made use of the fact that the electronic
dynamics is much faster than the nuclear one, so that the nuclei may be treated as
essentially static.

• We also presented the analysis of diatomic molecules by separating the vibrational,
rotational, and translational degrees of freedom.

• We have also introduced the Morse potential approximation, which turns out to be a very
good description for the vibrational motion of diatomic molecules.

• Finally, we have presented two further approximations, the linear combination of atomic
orbitals (LCAO) and the valence bond method (VBM). These tools are very useful when
dealing with more complex molecules.

Problems

12.1 Make use of the ansatz (12.4) and of the explicit expression (12.3) for the Laplacian
in order to derive Eqs. (12.5) from the Schrödinger equation (12.2).

12.2 Justify Eq. (12.13).
12.3 Derive Eq. (12.22).
12.4 Starting from Eq. (12.24) and applying the change of variables (12.27), derive

Eq. (12.28).
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12.5 Consider the Schrödinger equation Ĥψ(ra , rb) = Eψ(ra , rb), with Ĥ = ĤA + ĤB ,
and the ansatz ψ(ra , rb) = ϕa(ra)ϕb(rb). Show that such Schrödinger equation is
separable into two Schrödinger equations for ϕa(ra) and ϕb(rb).

12.6 Make use of the ansatz (12.30) into the Schrödinger equation (12.24), with the trans-
formed Hamiltonian (12.28), in order to separate the center-of-mass motion from the
relative motion of the nuclei (Eqs. (12.31a)).

12.7 Build the complete roto-vibrational spectrum of transitions between rotational
sublevels belonging to adjacent vibrational excitations.

12.8 Study the function (12.45) representing the Morse potential. Find its extrema and
draw its graph.

12.9 Perform the change of variable (12.48) and derive Eq. (12.49).
12.10 Derive Eq. (12.51).
12.11 Derive the eigenvalues (12.55).
12.12 What is the main difference between the eigenvalues (12.55) and (12.42)? Compare

the two expressions and make a link between the vibrational frequency ω0 and the
constant a.

Further reading

Atkins, P. and Friedman, R., Molecular Quantum Mechanics, Oxford: Oxford University
Press, 4th edn., 2005.

Brandsen, B. C. J., Physics of Atoms and Molecules, London: Longman, 1983.
Bohm, Arno, Quantum Mechanics: Foundations and Applications, New York: Springer,

1st edn., 1979; 2nd edn., 198; 3rd edn., 1993.
Harrison, Walter A., Applied Quantum Mechanics, Singapore: World Scientific, 2000.
Herzberg, Gerhard, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic

Molecules, New York: Van Nostrand Reinhold, 1950.
McWeeny, Roy (Ed.), Coulson’s Valence, Oxford: Oxford University Press, 3rd edn., 1979.
Slater, John C., Quantum Theory of Matter, New York: McGraw-Hill, 1951.
White, Harvey E., Introduction to Atomic Spectra, New York: McGraw-Hill, 1934.



13 Quantum optics

The behavior of light and its interaction with matter is certainly one of the most inter-
esting phenomena of physics. It has puzzled thinkers and scientists in ancient Greece
(Archimedes) and through the Middle Ages, at least since the times of Robert Grosseteste
(1168–1235), right up to the theories of Galileo Galilei and Isaac Newton.1 The classical
electromagnetic theory of light (see Tab. 13.1) was beautifully established in the second
half of the nineteenth century with the Maxwell equations.2 Quantum optics is nothing
other than the quantum theory of light. It finds its roots in Planck’s discovery (1900) that
the assumption of energy quantization for a harmonic oscillator allowed us to solve the
black-body problem (see Subsec. 1.5.1). The successive early steps that led to the quanti-
zation of the electromagnetic field include Einstein’s explanation of the photoelectric effect
with the introduction of the quantum of light (see Subsec. 1.2.1) and the interpretation of
atomic spectra (see Subsec. 1.5.4).

Quantum optics is usually not covered by conventional textbooks on quantum mechan-
ics. We include its discussion here for two main reasons: first, because it is a fundamental
and advanced application of the basic framework of quantum mechanics, and, second,
because in the last 30 years quantum optics has played (and is still playing) a major role in
the advancement and understanding of quantum mechanics.

The main aim of this chapter is then to present the quantum properties of light and of its
interaction with matter. We shall mainly focus on linear quantum optics and also include
a short account of non-linear phenomena (such as parametric down-conversion). We start
in Sec. 13.1 by illustrating how the classical equations of the electromagnetic field can be
quantized, leading to the concept of the photon and to its genuinely quantum properties.
In Sec. 13.2 we study the thermodynamic equilibrium of the radiation field. In Sec. 13.3
we derive the phase–number uncertainty relation. In Sec. 13.4 we consider three funda-
mentally quantum states of light: fock, coherent, and squeezed states. In Sec. 13.5 we
present the main phase-space quasi-probability distributions: the Q-function, the charac-
teristic function, the P-function, and the Wigner function, which enable us to illustrate
the formalism of phase-space quantum optics. In Sec. 13.6 we discuss both first- and
second-order coherence and an interesting optical detection technique, namely homodyne
detection. In Sec. 13.7 we introduce the formalism of atom–cavity interaction, while, in
Sec. 13.8, we finally discuss the geometric phase and the Aharonov–Bohm effect. Finally,
in Sec. 13.9 we analyze the Casimir effect.

1 [Newton 1704].
2 [Maxwell 1873].
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13.1 Quantization of the electromagnetic field

13.1.1 Classical equations of the electromagnetic field

The most natural and convenient way to describe how the electromagnetic field can be
quantized is to start from the classical Maxwell’s equations, which in free space and in
absence of sources read as

∇ · B = 0, (13.1a)

∇ × E = − ∂
∂t

B, (13.1b)

∇ · E = 0, (13.1c)

∇ × B = 1

c2

∂

∂t
E, (13.1d)

where B is the magnetic field (see footnote 17, p. 224), E is the electric field,

c = 1√
ε0μ0

(13.2)

is the vacuum speed of light, and ε0 and μ0 are the vacuum electric permittivity and mag-
netic permeability, respectively. These equations could be written in a shorter and more
compact way using the relativistic formalism of quadrivectors, but we omit these consider-
ations in this textbook. As it is well known from classical electrodynamics, the properties
of the electromagnetic field can be extracted from the vector potential A and the scalar
potential U. In fact, E and B can be calculated from A and U thanks to the relations (see
Eqs. (4.128))

E=−∇U − ∂

∂t
A, (13.3a)

B=∇ × A. (13.3b)

Making use of the A–U representation, Eqs. (13.1a) and (13.1b) are automatically satisfied,
whereas Eqs. (13.1c) and (13.1d) become

∇ ·
(
−∇U − ∂

∂t
A
)
= 0, (13.4a)

∇ × (∇ × A)= 1

c2

∂

∂t

(
−∇U − ∂

∂t
A
)

. (13.4b)

This change of representation from the fields to the potentials presents a difficulty, since
different scalar and vector potentials may lead to the same fields. In particular, since for
any scalar function f (r, t),

∇ × (∇ f ) = 0, (13.5)

the combined gauge transformations

A→A +∇ f , (13.6a)

U→U − ∂

∂t
f (13.6b)
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do not alter the values of E and B. Since the latter represent the measurable properties of
the electromagnetic field, different potentials that lead to the same fields would describe
the same physical situation. Then, if wish to translate Eqs. (13.1c) and (13.1d) in a univocal
way, we have to add an extra constraint to Eqs. (13.3). For our purposes, it is convenient to
adopt the so-called Coulomb or radiation gauge, for which

∇ · A = 0. (13.7)

Moreover, the scalar potential is a function of the spatial charge distribution and, in the
case where there are no sources, can be eliminated from the problem with the choice

U = 0. (13.8)

Then, Eq. (13.3a) becomes

E = − ∂
∂t

A, (13.9)

and Eq. (13.1c) is automatically satisfied. On the other hand, Eq. (13.4b) finally reads (see
Prob. 13.2)

∇2A (r, t) = 1

c2

∂2

∂t2
A (r, t). (13.10)

Equation (13.10) shows the important result that the vector potential satisfies the classi-
cal wave equation. It is known that the classical solution of Eq. (13.10) is given by the
expansion

A = 1

2π

∫
dkdωeıωt eık·rδ(k2 − c2ω2), (13.11)

where, as usual, k is the wave propagation vector and ω is the angular frequency. Note that
we have expressed the vector potential as an integral ranging on two components that show
a spatial and a temporal dependency, respectively.

13.1.2 Quantum modes of the field

In order to accomplish the quantization of the electromagnetic field, it is now required
that we replace the classical vector potential A by a quantum-mechanical operator Â.3 In
analogy with the classical case, we then expand the vector potential operator in a Fourier
series as

Â(r, t) =
∑

k

ck

[
âkuk(r)e−ıωkt + â†

ku∗k(r)eıωkt
]
, (13.12)

3 It is clear that we cannot make use here of all the tools needed to perform a proper quantization of the electro-
magnetic field. Indeed, this should be done in a relativistic setting, writing the Maxwell equation in Hamiltonain
form, contolling that the procedure does not depend on the gauge, and, if we work in the Coulomb gauge,
quantizing a system with these constraints. Here, we follow the heuristic shortcut of assuming that, in radiation
gauge, the quantum electromagnetic field satisfies the same equations of the classical field.



459 13.1 Quant izat ion of the electromagnet ic fie ld
�

where the ck’s are constants to be determined, the dimensionless amplitudes âk, â†
k are

now quantum-mechanical operators (to be interpreted below), and uk(r) is a discrete set of
orthogonal mode functions that, due to Eqs. (13.10) and (13.7), have to satisfy(

∇2 + ω
2
k

c2

)
uk(r) =

(
∇2 + k2

)
uk(r)= 0, (13.13a)

∇ · uk(r)= 0, (13.13b)

where we have made use of the fact that ωk = c|k|. If, for simplicity, we choose to quantize
the free field inside a cube of side l (the so-called cavity or electromagnetic resonator) with
periodic boundary conditions, the wave (propagation) vector k has components

kx = 2πnx

l
, ky = 2πny

l
, kz = 2πnz

l
, (13.14)

where nx , ny , and nz are integers. Notice that in many applications, l will tend to infinity.
Moreover, the mode functions may be expressed as plane waves, i.e.

uk(r) = e

l
3
2

eık·r, (13.15)

and the polarization vector e must satisfy the condition e · k = 0 as a consequence of the
gauge condition (13.13b). This implies, as expected, that e is always orthogonal to the
propagation direction, and therefore the polarization vector has two independent directions.
In other words, this confirms the transverse nature of the electromagnetic waves: the space
where e · k = 0 is two-dimensional, so we have the unit polarization vectors eλ (λ = 1, 2),
for which

k · eλ= 0, (13.16a)

eλ · e
λ
′ = δ

λλ
′ . (13.16b)

Then, taking into account Eqs. (13.16), we rewrite the mode functions as

uk,λ(r) = eλ

l
3
2

eık·r, (13.17)

as well as the operator Â

Â(r, t) =
∑
k,λ

ck

[
âk,λuk,λ(r)e−ıωkt + â†

k,λu
∗
k,λ(r)eıωkt

]
. (13.18)

A complete calculation shows that the normalization factors have to be written as (see
Prob. 13.3)

ck =
√

h̄

2ωkε0
. (13.19)
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E
e2

e1

k

^

B̂

�Figure 13.1 The three principal directions of the electromagnetic field. We assume that e1 is parallel to the x
direction, e2 is parallel to the y direction, and k is in the z direction. The electric and magnetic
fields oscillate along orthogonal directions.

Equation (13.18) together with Eqs. (13.9) and (13.3b) allows us to express the electric and
magnetic fields as (see Prob. 13.4)

Ê(r, t)= ı
∑
k,λ

(
h̄ωk

2ε0

) 1
2 [

âk,λuk,λ(r)e−ıωkt − â†
k,λu

∗
k,λ(r)eıωkt

]
, (13.20a)

B̂(r, t)= ı
∑
k,λ

(
h̄k

2cl3ε0

) 1
2 [

âk,λe
ı(k·r−ωkt) − â†

k,λe
−ı(k·r−ωkt)

]
bλ, (13.20b)

where

bλ = k × eλ (13.21)

is a unit vector whose direction is orthogonal both to k and to eλ, in agreement with the
fact that electric and magnetic fields oscillate along orthogonal directions, both remaining
orthogonal to the wave vector (see Figs. 1.8 and 13.1).

13.1.3 Quantizat ion of the field

In classical electrodynamics, E(r, t) and B(r, t) are real vectors and, as we have said, they
represent the measurable properties of the electromagnetic field. Their quantum counter-
parts, as expected, become Hermitian operators. As we have said, quantization requires
that âk and â†

k be interpreted as quantum-mechanical operators. In order to correctly iden-
tify them, we resort to the classical expression of the energy for the electromagnetic field
in a resonator, that is,4

H = 1

2

∫
l3

dr
(
ε0E2 + B2

μ0

)
. (13.22)

4 [Jackson 1962, 237].
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Substituting the expressions (13.20), we finally obtain (see Prob. 13.5)

Ĥ =
∑
k,λ

h̄ωk

(
â†

k,λâk,λ + 1

2

)
, (13.23)

which shows (see Eq. (4.79)) that, if we interpret âk,λ and â†
k,λ as the annihilation and

creation operators, the Hamiltonian of the electromagnetic field describes a system of
independent harmonic oscillators (see Sec. 4.4). Quantizing the electromagnetic field then
amounts to quantizing each of the harmonic oscillators, one for each mode of the field and
polarization direction. As a consequence, field quantization is accomplished by interpret-
ing âk,λ and â†

k,λ as the annihilation and creation operators of the k-th field mode with
polarization direction λ, respectively. In particular, they obey the commutation relations

[
âk,λ, âj,λ′

] = [â†
k,λ, â†

j,λ′
]
= 0,

[
âk,λ, â†

j,λ′
]
= δkjδλλ′ . (13.24)

As we know from Subsec. 4.4.2, the creation (annihilation) operator â†
k,λ (âk,λ) applied

to a state of definite energy “adds” (“removes”) a quantum of energy h̄ωk to (from) the
mode k, λ of the cavity field. These energy quanta need to be interpreted as light quanta
or photons (see Subsecs. 1.2.1 and 1.5.2), whose wave vector is precisely k. The number
of photons in each mode of the cavity is given by the eigenvalue nk,λ of the corresponding
number operator

N̂k,λ = â†
k,λâk,λ. (13.25)

In order to specify the total field in the cavity, it is then necessary to indicate the number
of photons (or occupation number) for each mode. A generic state of the total field can be
written as ∣∣nk1 , nk2 , nk3 , . . .

〉 = ∣∣nk1

〉 ⊗ ∣∣nk2

〉 ⊗ ∣∣nk3

〉 ⊗ · · · , (13.26)

where, for the sake of simplicity, we have omitted the λ dependence, and the equality sign
is a consequence of the fact that different cavity modes are independent. This also means
that, for instance,

â†
k j

∣∣nk1 , nk2 , nk3 , . . . , nk j , . . .
〉 = √nk j + 1

∣∣nk1 , nk2 , nk3 , . . . , nk j + 1, . . .
〉

, (13.27)

i.e. an operator pertaining to a certain mode k affects only the photons in that particular
mode. Finally, we note that the total energy of a cavity field in the state (13.26), that is,

| {nk}〉 =
∣∣nk1

〉 ⊗ ∣∣nk2

〉 ⊗ ∣∣nk3

〉 ⊗ · · · , (13.28)

is given by

E =
∑

k

h̄ωk

(
nk + 1

2

)
. (13.29)
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It should be noted from Eq. (13.29) that, even in the case when no excitations are present
(i.e. when no photon is present in each of the modes k), the total energy does not vanish.
In fact, the energy of this state, called the vacuum state, is

E0 = h̄

2

∑
k

ωk, (13.30)

and, since the sum is infinite and there is no upper bound for the allowed frequencies ωk,
it is also infinite. This energy is called the zero-point energy and constitutes a puzzling
feature of quantum electrodynamics (see Sec. 13.9). However, if we neglect gravity, this
feature does not create particular difficulties for calculations aimed at comparing theoret-
ical results with experiments: practical experiments are only sensitive to changes in the
total energy of the electromagnetic field, for which, of course, the zero-point energy can-
cels out. As a matter of fact, from a practical perspective, the zero-point energy represents
a conceptual difficulty in quantum field theory but will not affect the results of the present
chapter.5

13.2 Thermodynamic equil ibrium of the radiation field

In the previous section, we have identified the quantized electromagnetic field with an
ensemble of harmonic oscillators. In order to study the properties of the field in thermo-
dynamic equilibrium, we then need to investigate the equilibrium properties of a single
quantized harmonic oscillator, using the results of Sec. 5.4. In particular, Eq. (5.34) may
be easily evaluated for a harmonic oscillator in the basis where Ĥ is diagonal. The elements
of the density operator in this case are simply given by

ρnm = 〈n ∣∣ρ̂∣∣m〉 = e−βh̄ω(n+1/2)

Z (β)
δnm , (13.31)

where Z (β) is the canonical partition function and β = (kBT )−1. Equation (13.31) tells us
that the equilibrium density operator ρ̂ is diagonal in the energy (and number) represen-
tation. As expected, the thermodynamical equilibrium makes the off-diagonal elements in
the energy representation vanish (see Sec. 9.4). In other words, the state at the equilibrium
is a statistical mixture. In order to investigate its properties, let us first compute the partition
function Z (β) (see Eq. (5.31) and Prob. 13.6)

Z (β) = Tr
(

e−β Ĥ
)
= e− 1

2βh̄ω

1 − e−βh̄ω
. (13.32)

Using Eq. (5.32a), we may derive the mean energy (see Prob. 13.7)

〈E〉 = 1

2
h̄ω + h̄ω

eβh̄ω − 1
, (13.33a)

5 See [Mandl/Shaw 1984].
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which, apart from the additive constant (1/2)h̄ω is precisely Planck’s formula (1.66) for the
average energy of a quantized harmonic oscillator, a result which confirms and strengthens
our correspondence, established in the previous section, between the modes of the electro-
magnetic fields and harmonic oscillators. In a similar way (see part (b) of Prob. 13.7), we
may calculate the mean occupation number as

〈
N̂
〉
=

∞∑
n=0

nρnn =
(

eβh̄ω − 1
)−1

. (13.33b)

The last two results allow us to study the behavior of the oscillator in the low- and high-
temperature limits. In particular, for T → 0 we easily find

〈E〉 → 1

2
h̄ω,

〈
N̂
〉
→ 0, (13.34)

which may be interpreted by saying that in the low-temperature limit all the oscillators will
be in the ground state with a probability close to 1.

On the other hand, for T →∞, we have

〈E〉 ≈ kBT ,
〈
N̂
〉
≈ kBT

h̄ω
, (13.35)

which show that the mean energy approaches the value predicted by the classical Maxwell–
Boltzmann distribution. As a consequence, the mean occupation is the average energy
available divided by the energy of a quantum.

The above limits are a clear signature of the Bose–Einstein distribution (see Sub-
sec. 7.3.3). If we have many oscillators (as it is the case for the quantized radiation field),
the total distribution may be written by multiplying many terms of the type (13.32), one
for each mode of the field. This result comes about straightforwardly when substituting
Eq. (13.23) into Eq. (13.32).

13.3 Phase–number uncertainty relation

In classical electrodynamics, it is usual to separate the complex fields into a product of
a real amplitude and a phase factor in Fourier space (see Eq. (10.105)). If we want to
proceed in a similar way for the quantized field, we need to write the operators â and â† in
Eqs. (13.18) and (13.20) as a product of amplitude and phase operators. As we shall see,
however, the introduction of the concepts of phase and of phase operator into the quantum-
mechanical description of the field is not free from obstacles and difficulties. First of all,
such a decomposition is not unique, which leaves a certain freedom in the definition of a
phase operator. Nevertheless, any good candidate as phase operator should obviously be
an Hermitian operator and give the correct phase properties of the classical fields in the
classical limit.
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As an attempt, following the suggestion of Eqs. (4.85), let us consider the phase operator
êıφ defined by the relation6

â =
(

N̂ + 1
) 1

2
êıφ , (13.36a)

whose Hermitian conjugate reads as

â† = ê−ıφ
(

N̂ + 1
) 1

2
. (13.36b)

From Eqs. (13.36) we may derive

êıφ =
(

N̂ + 1
)− 1

2
â, (13.37a)

ê−ıφ = â†
(

N̂ + 1
)− 1

2
, (13.37b)

which yield

êıφ ê−ıφ = Î . (13.38)

It should be noted, however, that the product ê−ıφ êıφ is not equal to the unity operator (see
Prob. 13.8). Therefore, the previous expressions should not be considered as exponentials
of a phase operator (see Th. 3.1: p. 122). This is the reason why the operator symbol refers
to the entire expression rather than to φ. The action of the exponential phase operator on the
basis states |n〉 can easily be determined using Eqs. (4.85) and (13.37) in order to obtain
(see Prob. 13.9)

êıφ |n〉 =
{ |n − 1〉 if n 	= 0

0 if n = 0
, (13.39a)

ê−ıφ |n〉 = |n + 1〉 . (13.39b)

It can be shown that the two exponential phase operators are not Hermitian (see
Prob. 13.11), and therefore cannot describe observable properties of the electromagnetic
field. Nevertheless, they can be used to define another pair of operators (see Prob. 13.12)

ĉosφ= 1

2

(
êıφ + ê−ıφ

)
, (13.40a)

ŝinφ= 1

2ı

(
êıφ − ê−ıφ

)
, (13.40b)

whose non-vanishing matrix elements are (see again Prob. 13.11)

〈n − 1 |ĉosφ| n〉= 〈n |ĉosφ| n − 1〉 = 1

2
, (13.41a)〈

n − 1
∣∣ŝinφ

∣∣ n〉 = 1

2ı
,
〈
n
∣∣ŝinφ

∣∣ n − 1
〉 = − 1

2ı
, (13.41b)

which show that the operators ĉosφ and ŝinφ are Hermitian. Therefore, it is suitable to
adopt them as representing the observable phase properties of the electromagnetic field.

6 See [Susskind/Glogower 1964].
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It can also be shown (see Prob. 13.13) that the operators ĉosφ and ŝinφ do not commute
with the number operator, i.e.[

N̂ , ĉosφ
]
= ı ŝinφ,

[
N̂ , ŝinφ

]
= −ı ĉosφ. (13.42)

This fact is a peculiar feature of the quantized electromagnetic field, and suggests that
number and phase – similarly to position and momentum for a quantum particle – are
two “incompatible” properties of the electromagnetic field: they cannot be simultaneously
measured with arbitrary precision (see Subsec. 2.2.7). Rigorously speaking, it is possible
to derive a set of number–phase uncertainty relations similar to the uncertainty relation
between position and momentum. In fact, applying Eq. (2.200) to the above considered
operators and making use of Eqs. (13.42) yields7

�N̂� ˆcosφ ≥ 1

2

∣∣〈ŝinφ
〉∣∣ , �N̂�ŝinφ ≥ 1

2
|〈ĉosφ〉|. (13.43)

It should be noted that the latter two uncertainty relations do not suffer the problem pointed
out (in Subsec. 6.5) in the context of angular momentum. In fact, when �N̂ = 0, the rhs
of Eqs. (13.43) also vanishes (see Prob. 13.14).

13.4 Special states of the electromagnetic field

As we have already pointed out (in Subsec. 13.1.3), each mode of the electromagnetic field
may be characterized by the occupation number. In general, however, the quantum state of
a field mode can be represented as an expansion in terms of occupation numbers, i.e.

|&F 〉 =
∑

n

cn |n〉 , (13.44)

cn being complex numbers satisfying
∑

n |cn|2 = 1. Among all possible states, in the
following we discuss three special classes:

• Fock (number) states.8 These are precisely the states we referred to in Subsec. 13.1.3,
i.e. eigenstates of the energy and of the number operator. For these states the number of
photons is perfectly determined and the phase is completely unknown according to the
uncertainty relations (13.43).

• Coherent states, which are eigenstates of the annihilation operator â and are minimum-
uncertainty states.9 As we shall see, these are the states most similar to classical states,
i.e. to points in phase space. The origin of their name comes from the fact that an initially

7 See [Louisell 1963].
8 See [Fock 1932].
9 See [Glauber 1963a, Glauber 1963b, Glauber 1963c].
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coherent state of an oscillator remains coherent at all later times and retains its minimum-
uncertainty character at all times, with its center moving in phase space along trajectories
predicted by classical mechanics.10

• Squeezed states. This is the most general class of minimum-uncertainty states. In this
respect, they represent a generalization of the coherent state to the case where the uncer-
tainty product is not symmetric. Since they have no classical analogue, they constitute
a genuine quantum feature of the radiation field and are very useful, for instance, for
quantum noise reduction in communication.

13.4.1 Fock states

As we have seen, Fock states are states with definite energy of the radiation field (see
also Subsec. 13.1.3). We have already mentioned the phase–number uncertainty properties
(see Prob. 13.14). From a less formal and more physical viewpoint, an important property
of a Fock state concerns the electric field. In fact, for a single-mode field, we have (see
Eq. (13.20a))

〈
n
∣∣∣Ê∣∣∣ n〉 = ı

(
h̄ω

2ε0

) 1
2 〈

n
∣∣∣âu(r)e−ıωt − â†u∗(r)eıωt

∣∣∣ n〉 = 0, (13.45)

that is, the expectation value of the electric field vanishes. On the other hand,〈
n
∣∣∣Ê2
∣∣∣ n〉 = h̄ω

2ε0

〈
n
∣∣∣ââ† + â†â

∣∣∣ n〉 |u(r)|2 = h̄ω

ε0l3

(
n + 1

2

)
, (13.46)

where we have made use of the fact that
〈
n
∣∣â2
∣∣ n〉 = 〈n ∣∣∣(â†)2

∣∣∣ n〉 = 0 and of Eq. (13.15).

Equation (13.46) shows that the fluctuations in the electric field are given by

�nÊ =
√〈

Ê2
〉
n
−
〈
Ê
〉2
n
=
[

h̄ω

ε0l3

(
n + 1

2

)] 1
2

, (13.47)

even though
〈
Ê
〉
n
= 0. It is especially interesting to note that such fluctuations are present

even in the case n = 0, i.e. in the vacuum state. Such vacuum fluctuations have many
interesting consequences and provide explanations for several physical phenomena, among
which spontaneous emission (see Subsec. 13.7.5) and the Lamb shift.

13.4.2 Coherent states

In Subsec. 4.4.2 we have introduced the concept of coherent state of the harmonic oscil-
lator, defined as a state which minimizes the uncertainty product �x̂� p̂x and which does
not spread under the harmonic oscillator potential. Thus, the first example of a coherent

10 See [Glauber 1966].
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state is the ground state of the harmonic oscillator, which in the language of quantum elec-
trodynamics is the vacuum state. The vacuum is an eigenstate of the annihilation operator
with eigenvalue 0,

â |0〉 = 0 |0〉 = 0. (13.48)

Equation (13.48) suggests the existence of a class of states |α〉 that are eigenstates of the
annihilation operator, i.e. are defined by the relation

â |α〉 = α |α〉 , (13.49a)

where α = 〈â〉
α

. It is also evident that we must have

〈α |α∗ = 〈α | â†. (13.49b)

In order to obtain an explicit expression of a coherent state we write it as an expansion in
terms of Fock states, i.e.

|α〉 =
∑

n

|n〉 〈n | α〉 , (13.50)

where the amplitudes 〈n | α〉 are the coefficients of this expansion. Multiplying
Eq. (13.49a) by 〈n | from the left, we obtain

〈n | α〉 =
〈
n
∣∣â∣∣α〉
α

=
√

n + 1

α
〈n + 1 | α〉 . (13.51)

Using the adjoint of (see Prob. 4.13)

|n〉 =
(

â†
)n

√
n!

|0〉 , (13.52)

i.e.

〈n + 1 | = 〈0 | ân+1

√
(n + 1)!

, (13.53)

yields

〈n | α〉 =
〈
0
∣∣ân+1

∣∣α〉
α
√

n!
= αn

√
n!
〈0 | α〉 . (13.54)

Substituting Eq. (13.54) into Eq. (13.50), we obtain

|α〉 =
∑

n

〈0 | α〉 α
n

√
n!
|n〉 . (13.55)

By imposing the normalization condition for coherent states,

1 = 〈α | α〉 =
∑
n,m

| 〈0 | α〉 |2α
n(α∗)m

√
n! m!

〈m | n〉

= | 〈0 | α〉 |2
∑

n

|α|2n

n!

= | 〈0 | α〉 |2e|α|2 , (13.56)
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and choosing the arbitrary phase of 〈0 | α〉 equal to zero, we obtain

〈0 | α〉 = e−
1
2 |α|2 , (13.57)

which, substituted into Eq. (13.55), yields

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉. (13.58)

Equation (13.58) shows that coherent states display a Poisson-like distribution of photons.
In fact, the probability of finding n photons is given by

℘(n) = | 〈n | α〉 |2 = e−|α|2 |α|
2n

n!
, (13.59)

which is a Poisson distribution of the photon number with (see Prob. 13.16)

〈n〉=
〈
N̂
〉
α
= |α|2, (13.60a)

�αn=
√〈

N̂ 2
〉
α
−
〈
N̂
〉2
α
= |α|. (13.60b)

In order to investigate the properties of coherent states it is convenient to introduce the
so-called quadrature operators,11 defined by

X̂1 = 1√
2

(
â† + â

)
, X̂2 = ı√

2

(
â† − â

)
. (13.61)

These operators may be viewed as the dimensionless electric and magnetic fields of a
single mode (see Eqs. (13.20)). In the context of a one-dimensional particle subjected to a
harmonic-oscillator potential, X̂1 and X̂2 represent the dimensionless position and momen-
tum operators, respectively (see Eqs. (4.73) and Prob. 13.17). It trivially follows that the
quadratures obey the commutation relation[

X̂1, X̂2

]
= ı Î . (13.62)

From Eqs. (13.62) and (2.200), we obtain the quadrature uncertainty relation

�X̂1�X̂2 ≥ 1

2
. (13.63)

It is possible to show that the necessary (see Prob. 13.18) and sufficient condition for a
state |β〉 to be coherent is

�β X̂1 = �β X̂2 = 1√
2

, (13.64)

11 See [Yuen 1976].
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�Figure 13.2 Pictorial representation of the coherent states and of the action of the displacement operator.
Here the phase space is represented by the quadrature operators. Since

〈
α

∣∣â∣∣α〉 = α and

〈α | â† |α〉 = α∗, it follows that for the vacuum state
〈
X̂1

〉
0

=
〈
X̂2

〉
0

= 0. Moreover,

�0X̂1 = �0X̂2 = 1/
√

2, and so the vacuum state may be schematically depicted as a circle of
radius 1/2

√
2 centered around the origin. Similarly, any coherent state may be represented by a

circle of radius 1/2
√

2 centered around the point α = αx + ıα y in the complex plane
(X̂1, X̂2) ≡ (�(α), �(α)). Therefore, the action of the displacement operator D̂(α) may be
interpreted as that of displacing the vacuum state from the origin to the point α = (αx,αy) in the
complex plane, as shown by the arrow.

i.e. coherent states are minimum-uncertainty states for which the quadratures are equally
uncertain. Equation (13.64) may be seen as a third definition of coherent state.

Coherent states may also be viewed as the result of the action of a suitable operator
on the vacuum state, which is the zero-amplitude coherent state. Making use again of the
result of Eq. (13.52) in Eq. (13.58), we obtain

|α〉 = e−
|α|2

2
∑ αn

(
â†
)n

n!
|0〉. (13.65)

Since â |0〉 = 0, Eq. (13.65) may be rewritten as

|α〉 = e−
1
2 |α|2eαâ†

e−α∗â |0〉. (13.66)

The Baker–Hausdorff theorem (see Prob. 13.20) allows us to write the previous equation as

|α〉 = eαâ†−α∗â |0〉 = D̂(α) |0〉, (13.67)

where

D̂(α) = eαâ†−α∗â (13.68)

is known as the displacement operator. Equation (13.67) shows that an arbitrary coherent
state can be “generated” by displacing the vacuum state (see Fig. 13.2). It is easy to prove
that this operator is unitary (see Prob. 13.21).
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It is easy to show that the scalar product of two coherent states |α〉 and |β〉 is given by
(see Prob. 13.22)

〈α|β〉 = eα
∗β− 1

2 |α|2− 1
2 |β|2 , (13.69)

which shows that two coherent states are never actually orthogonal to each other. However,
since

| 〈α | β〉 |2 = e−|α−β|2 , (13.70)

if α and β are significantly different from each other,12 i.e. |α − β| # 1, then the two
states are almost orthogonal. The last result is an indication of the fact that coherent states
are overcomplete, i.e. they can be used as a basis for the whole Hilbert space and are also
normalized, but notwithstanding they are not an orthogonal basis. In other words, any state
may be expanded in terms of coherent states but this decomposition is not unique. The
completeness relation for coherent states is given by

1

π

∫
d2α |α〉 〈α | = Î , (13.71)

where d2α = dαx dαy and the integral is over the whole complex plane. Equation (13.71)
allows us to expand an arbitrary state in term of coherent states (see Prob. 13.24).

Concerning the phase properties, it is possible to show13 that for large mean numbers of
photons (|α|2 # 1) the phase uncertainty of a coherent state |α〉 is given by

�ĉosφ = sin θ

2|α| , (13.72)

where θ is the phase of the coherent excitation, i.e. θ = argα.14 Making use of Eq.
(13.60b) we arrive at the phase–number uncertainty relation for large-amplitude coherent
states:

�N̂�ĉosφ = 1

2
sin θ . (13.73)

Equations (13.60) and (13.72) show that, for large mean photon number, the coherent state
turns out to be better defined for what concerns both amplitude and phase. As a matter
of fact, both the photon number fractional uncertainty (�n/ < n >) and the phase uncer-
tainty behave as |α|−1. This is one of the reasons why large-amplitude coherent states are
considered to be a good approximation of classical states (see Fig. 13.3).

13.4.3 Squeezed states

Similarly to coherent states, squeezed states are also minimum uncertainty states for the
quadratures X̂1 and X̂2. They are more general, however, since their minimum uncertainty
condition

12 In the representation of Fig. 13.2 this would correspond to the case where the distance between the centers of
the two coherent states |α〉 and |β〉 is much larger than their diameter.

13 For a proof of the following result see [Loudon 1973, 148–50].
14 Sometimes it is convenient to write α = |α|eıθ .
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�Figure 13.3 Phase-number uncertainty properties of coherent states. As the amplitude of the coherent state
increases (|β| > |α| in the figure), it becomes better defined, both concerning the phase (�φ)
and the number of photons (�n/ < n >).

�X̂1�X̂2 = 1

2
(13.74)

does not require that �X̂1 and �X̂2 be equal: squeezed states are those states for which
Eq. (13.74) is satisfied in spite of the fact that Eq. (13.64) is not satisfied. For this reason, we
can conceive the coherent state as a limiting case of the squeezed states when�X̂1 = �X̂2.
As a consequence, the phase space uncertainties of a squeezed state will be represented by
an ellipse instead of a circle as in Fig. 13.4.

A squeezed state |α, ξ 〉 may be generated from the vacuum state as

|α, ξ 〉 = D̂(α)Ŝ(ξ ) |0〉 , (13.75)

where D̂(α) is the displacement operator (13.68), Ŝ(ξ ) is the squeeze operator, defined as

Ŝ(ξ ) = e
1
2 (ξ∗â2−ξ (â†)2), (13.76)

and the complex number

ξ = reıχ (13.77)

is the squeezing parameter. In other words, a squeezed state may be generated by first
“squeezing” the vacuum along the direction at the angle χ/2 (or χ/2 + π/2) and then
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�Figure 13.4 Phase convention for squeezed states. The phase of the coherent excitation is given by θ while
the direction of squeezing is set by the parameter χ/2. In the rotated frame (Ŷ1, Ŷ2) the
uncertainty �Ŷ1 and �Ŷ2 assume the simple form (13.81).

displacing the resulting squeezed vacuum state by α along the direction at the angle θ (see
Fig. 13.5).15 It can be immediately verified that

Ŝ(−ξ ) = Ŝ†(ξ ) = Ŝ−1(ξ ). (13.78)

As for a coherent state, the mean values of the annihilation and creation operators for a
squeezed state are given by〈

â
〉
α,ξ =

〈
α, ξ

∣∣â∣∣α, ξ
〉 = α,

〈
â†
〉
α,ξ

=
〈
α, ξ

∣∣∣â†
∣∣∣α, ξ

〉
= α∗. (13.79)

In order to compute the quadrature uncertainties it is convenient to work in the rotated
frame (Ŷ1, Ŷ2) (see Fig. 13.4). Let us define the rotated quadratures Ŷ1 and Ŷ2 as(

Ŷ1 + ı Ŷ2

)
eı θ2 = X̂1 + ı X̂2 =

√
2â. (13.80)

In terms of these operators, we have (see Prob. 13.26)

�α,ξ Ŷ1 = 1√
2

e−r , (13.81a)

�α,ξ Ŷ2 = 1√
2

er , (13.81b)

�α,ξ Ŷ1�α,ξ Ŷ2 = 1

2
. (13.81c)

These equations show that r determines the amount of squeezing (and therefore is often
called the squeezing factor), while χ determines the direction of squeezing. In certain
contexts, one may talk about amplitude- and phase-squeezed states, depending on the
quadrature that is squeezed (see Fig. 13.6).

15 It should be noted that the operators D̂(α) and Ŝ(ξ ) do not commute with each other. Therefore, the state
| α̃, ξ〉 = Ŝ(ξ )D̂(α) |0〉 is different from the state of Eq. (13.75) but is still a squeezed state.
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�Figure 13.5 Generation of a squeezed state from the vacuum state |0〉 . Starting from a vacuum state (a) we
may first “squeeze” it through the squeeze operator in the phase space along the direction at the
angle χ/2, obtaining the squeezed state |0, ξ〉 (b). Second, we displace it by α through the
displacement operator along the direction at the angle θ , obtaining the state |α, ξ〉 (c).
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�Figure 13.6 Phase-space of amplitude- and phase-squeezed states. (a) The quadrature carrying the coherent
excitation is squeezed. This case corresponds to �(α) = 0 and χ = π . (b) The quadrature out of
phase with the coherent excitation is squeezed. This case corresponds to �(α) = 0 and χ = π .
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Finally, as regards the mean and variances of the number operator for a squeezed state,
we have (see again Prob. 13.26)〈

N̂
〉
α,ξ

= |α|2 + sinh2 r , (13.82a)(
�N̂

)2

α,ξ
= ∣∣α cosh r − α∗eıχ sinh r

∣∣2 + 2 cosh2 r sinh2 r . (13.82b)

In particular, Eq. (13.82a) shows the remarkable result that the mean number of photons in
the squeezed vacuum state is larger (and in principle can even be much larger) than zero.

13.5 Quasi-probabil ity distr ibutions

Here we consider some phase-space methods which have widespread application in quan-
tum optics. As we have seen (in Subsec. 2.3.3), quantum mechanics cannot be represented
in a straightforward way in phase space as classical mechanics does. The greatest prob-
lem stems from the commutation relations, which seem to forbid a simultaneous perfect
representation of momentum and position. In particular, it is not possible to define the
joint probability that position and momentum (or, in the quantum optics language, the
two quadrature operators) take on certain specified values. However, as we shall see, it is
possible to build some very useful representations of quantum mechanical states in phase
space.16 The price that we must pay if we wish to avoid the use of negative probabilities
is some “smoothing” of the phase-space distributions. In the following we introduce sev-
eral quasi-probability distributions: the Q-function, the P-function, the Wigner function,
and the characteristic function.17 Even though, as we shall see, these have different prop-
erties, they may be seen as equivalent representations of the quantum state of a system. In
other words, there is a one-to-one correspondence between each of these quasi-probability
distributions and the density operator of the system.

Historically, the Wigner function was the first to be formulated. However, for the sake
of simplicity we shall start with the Q-function.

13.5.1 Q-funct ion

The Q-function18 is essentially a coherent-state representation of a given state described
by the density operator ρ̂. It is defined as

Q(α,α∗) = 1

π
〈α|ρ̂|α〉, (13.83)

16 In the following we shall specifically consider states of the quantized radiation field, but the same formalism
can be translated to a generic quantum state.

17 See [Cahill/Glauber 1969] [Hillery et al. 1984] for a review.
18 It was introduced by Husimi [Husimi 1937].
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�Figure 13.7 (a) Representation of the Q-function of a coherent state |α〉 = |2〉 . As it may be seen from
Eq. (13.84), it is a bidimensional Gaussian centered at the point α0 = (2, 0) in the complex plane
(�(α), �(α)). (b) Representation of the Q-function of a number state |n〉 with n = 4, i.e. with the
number of photons equal to the mean number of photons in the coherent state (a). Its annular
shape shows the phase-invariance of the number state. (c) Q-function representation of a
squeezed state |α, ξ〉 with α = 2 and ξ = 0.8. For the analytic treatment of the Q-representation
of a squeezed state see [Scully/Zubairy 1997] [Walls/Milburn 1994].

which represents the expectation value of the density matrix on a coherent state |α〉, and is
always real and positive. The simplest example of a Q-function is when the density matrix
ρ̂ = |α0〉 〈α0 | describes a coherent state. In fact, Eq. (13.83) for a coherent state |α0〉 gives
(see Eq. (13.70))

Q(α,α∗) = 1

π
e−|α−α0|2 , (13.84)

which is represented in Fig. 13.7(a). The normalization of the density operator ensures the
normalization of the Q-function. In fact,

1 = Tr
(
ρ̂
) = Tr

(
1

π

∫
d2α |α〉 〈α | ρ̂

)
= 1

π

∫
d2α

〈
α
∣∣ρ̂∣∣α〉 , (13.85)

from which it follows that ∫
d2αQ(α,α∗) = 1. (13.86)

A similar procedure shows that〈
âr
(

â†
)s〉 ≡ Tr

[
âr
(

â†
)s
ρ̂
]
= Tr

[
1

π

∫
d2αâr |α〉 〈α | (â†)s ρ̂

]
= 1

π

∫
d2ααrα∗s 〈α ∣∣ρ̂∣∣α〉

=
∫

d2ααr (α∗)s Q(α,α∗), (13.87)
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i.e. the antinormally ordered quantum moments are given by simple moments of the Q-
function.19

Though the Q-function behaves as a probability function (i.e. it is always positive and
its integral is equal to one), not all positive normalizable Q-functions correspond to pos-
itive definite normalizable density operators, that is, it is a quasi-probability. The concept
of -probability takes its roots in the fact that all the phase-space functions introduced in the
present section may be seen as quantum counterparts to classical distribution functions.
However, the quantum phase-space functions do not always express “bona fide” probabil-
ities and in certain cases (as happens for the Wigner function) they may also have negative
values, and this explains the term quasi-.

We note that the Q-function is also a bounded function (see Prob. 13.27), i.e.

Q(α,α∗) ≤ 1

π
. (13.88)

Making use of Eq. (13.58) we may write the Q-function in terms of an absolutely
convergent power series in α and α∗ as follows:

Q(α,α∗) = e−αα∗
∑
n,m

〈
n
∣∣ρ̂∣∣m〉

π
√

n! m!
αm (α∗)n . (13.89)

The double power series is absolutely convergent20 since e−αα∗ has an absolutely
convergent power series and because (see Prob. 13.28)

| 〈n ∣∣ρ̂∣∣m〉 | ≤ 1. (13.90)

In fact, the product of two absolutely convergent series is also absolutely convergent. Let
us write the power series (13.89) in the form

Q(α,α∗) =
∑
n,m

Qn,mα
m (α∗)n , (13.91)

then an alternative expression for the density operator ρ̂ in terms of the Q-function is
represented by

ρ̂ = π
∑
n,m

Qn,m

(
â†
)n

âm . (13.92)

In fact, Eqs. (13.49) show that
〈
α
∣∣ρ̂∣∣α〉 /π , with ρ̂ given by the previous expression, is

identical to the power series (13.91). As a second example, it is immediate to write the
Q-function of a number state as (see Fig. 13.7(b))

19 A product of the creation and annihilation operators is said to be normally ordered when all the annihilation
operators appear to the right of the creation operators. On the other hand, it is said to be antinormally ordered
when all the annihilation operators appear to the left of the creation operators.

20 For the definition of absolutely convergent series see [Apostol 1969, I, ch. 10].
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Q(α,α∗) = 1

π
| 〈α | n〉 |2 = 1

π
e−|α|2 |α|

2n

n!
. (13.93)

Finally, the Q-function of a squeezed state is presented for comparison in Fig. 13.7(c).

13.5.2 Character ist ic funct ion

We can write the quantum characteristic function for the electromagnetic field (see
Eq. (2.75)) as

χ (η, η∗) = Tr
[
ρ̂eηâ†

e−η∗â
]
. (13.94)

This function is particularly useful because it helps to establish a relationship between
different quantum-optical phase-space representations. As in classical mechanics (see
Eq. (2.77)), the normally ordered moments are given by the derivatives of the characteristic
function at η = η∗ = 0, that is,〈(

â†
)r

âs
〉
= (−)s ∂r+s

∂rη∂sη∗
χ (η, η∗)

∣∣∣∣
η=η∗=0

, (13.95)

where
∂

∂η
η∗ = ∂

∂η∗
η = 0, (13.96)

which shows that η and η∗ must be considered as two independent variables. Making use
of the completeness condition (13.71) of the coherent states and of the Baker–Hausdorff
theorem (see Prob. 13.20), we find

χ (η, η∗) = Tr

[
1

π

∫
d2αρ̂e|η|2 e−η∗â |α〉 〈α | eηâ†

]
, (13.97)

from which it follows that the characteristic function is related to the Q-function by the
relationship

χ (η, η∗) = e|η|2
∫

d2αeηα
∗−αη∗Q(α,α∗), (13.98)

i.e. the characteristic function is a two-variable Fourier transform of the Q-function. One
can also define an antinormally ordered characteristic function, that is,

χA(η, η∗) = Tr[ρ̂e−η∗âeηâ†
]. (13.99)

The characteristic function for the coherent state ρ̂ = |β〉 〈β | is given by (see Prob. 13.29)

χ (η, η∗) = eηβ
∗−βη∗ , (13.100)
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while the characteristic function for the number state ρ̂ = |n〉 〈n | is given by

χ (η, η∗) =
n∑

m=0

n!

(m! )2(n − m)!
(−|η|2)m . (13.101)

13.5.3 P-funct ion

The P-function21 is a kind of coherent-state expansion of the density operator ρ̂. In other
words, let us assume that the density operator may be written in the form

ρ̂ =
∫

d2αP(α,α∗)|α〉〈α|, (13.102)

then P(α,α∗) is the so-called Glauber–Sudarshan representation of ρ̂. Since we have

1 = Tr
(
ρ̂
) = ∫ d2αP(α,α∗)

∑
n

〈n | α〉 〈α | n〉 =
∫

d2αP(α,α∗) 〈α | α〉, (13.103)

it follows that ∫
d2αP(α,α∗) = 1, (13.104)

which is the normalization condition for the P-function. Using this expression and making
use of the cyclic property of the trace, it is easy to calculate that〈(

â†
)r

âs
〉
= Tr

[(
â†
)r

âs ρ̂
]
= Tr

[
âs ρ̂

(
â†
)r]

=
∫

d2αP(α,α∗)
∑

n

〈
n
∣∣âs
∣∣α〉 〈α | (â†

)r |n〉 , (13.105)

from which, using Eqs. (13.49), we deduce〈(
â†
)r

âs
〉
=
∫

d2α
(
α∗
)r
αsP(α,α∗), (13.106)

i.e. the P-function straightforwardly gives the normally ordered quantum moments. Using
Eqs. (13.94) and (13.102), we may immediately write the relationship between the
P-function and the characteristic function as

χ (η, η∗) =
∫

d2αeηα
∗−αη∗P(α,α∗), (13.107)

21 This representation was independently introduced by Glauber [Glauber 1963b] and Sudarshan
[Sudarshan 1963].
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which shows that the characteristic function is the Fourier transform of the P-function. By
Fourier transforming expressions (13.107) and (13.98) we obtain the direct relationship
between the P- and Q-functions:

Q(α,α∗) = 1

π

∫
d2βe−|α−β|2 P(β,β∗). (13.108)

The P-representation may present in practice some difficulties. In fact, the P-function may
correspond to a characteristic function which does not have an ordinary Fourier transform.
For example, for a coherent state ρ̂ = |β〉 〈β | we have

P(α,α∗) = δ(2)(α − β). (13.109)

It may even happen that the P-function is given by derivatives of δ functions. For a Fock
state ρ̂ = |n〉 〈n |, for instance, we have

P(α,α∗) = 1

n!
e|α|2

(
∂2

∂α∂α∗

)n

δ(2)(α). (13.110)

13.5.4 Wigner funct ion

The Wigner distribution function22 may be written as the Fourier transform of the Wigner
characteristic function χW (η, η∗)

W (α,α∗) = 1

π2

∫
d2αe−ηα∗+η∗αχW (η, η∗), (13.111)

where (see also Eq. (13.99))

χW (η, η∗) = Tr
[
ρ̂eηâ†−η∗â

]
= e

1
2 |η|2χA(η, η∗) = e−

1
2 |η|2χ (η, η∗). (13.112)

It is also interesting to express the Wigner function in terms of position and momentum,23

which is given by

W (x , px ) = 1

πh

∫
�

dx ′〈x + x ′|ρ̂|x − x ′〉e2ı px x ′
h . (13.113)

If the W-function is integrated with respect to p̂x , it gives the correct probability distribu-
tion (marginal distribution) of x̂ and vice versa (see Prob. 13.30). However, the W-function
can also assume negative values, which is a signature of the fact that it is not a true
probability distribution.

The relationship between W-function and P-function is given by

W (α) = 2

π

∫
d2βe−2|β−α|2 P(β,β∗). (13.114)

22 It is actually, from a historical view point, the first quasi-probability and was introduced in [Wigner 1932]. For
an extensive exposition see [Dragoman 1998].

23 This was the original Wigner’s formulation.
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�Figure 13.8 (a) Representation of the W-function of a coherent state |α〉 = |2〉 . As it may be seen from
Eq. (13.115), it is a bidimensional Gaussian centered at the point α0 = (2, 0) in the complex plane
(�(α),�(α)). (b) Representation of the W-function of a number state |n〉 with n = 4, i.e. with the
number of photons equal to the mean number of photons in the coherent state (a). Its annular
shape shows the phase-invariance of the number state. Note that there are regions where the
function becomes negative. (c) W-function representation of a squeezed state |α, ξ〉 with α = 2
and ξ = 0.8. Note also that the three figures do not have the same z-scale. It is interesting to
observe the main differences between the Q-function and the W-function (see Fig. 13.7): the
latter, in the representation of the number state, shows negative values and oscillations that are
absent in the former.

That is, the W-function is a Gaussian convolution of the P-function, just like the Q-
function – but with a different Gaussian weight (see Eq. (13.108)). In other terms, the
Q-function is a less detailed average (it is smoother) than the W-function (because of the
factor 2 in the exponential), and hence, unlike the W-function, it is never negative. For this
reason, the W-function is a better candidate than the Q-function for distinguishing the true
quantum features of a certain state, without presenting the difficulties of definition typical
of the P-function.

Let us now consider two examples (see Fig. 13.8). First, the Wigner function for a
coherent state |α0〉 . Using Eqs. (13.100), (13.112), and (13.111), we have

W (α,α∗) = 2

π
e−2|α−α0|2 . (13.115)

The second example is the W-function for a number state |n〉 , which may be written as
(see Prob. 13.31)

W (α,α∗) = (−1)n 1

2π
e−2|α|2 Ln

(
4|α|2

)
, (13.116)

where Ln(x) is the Laguerre polynomial of degree n.
In conclusion, the different phase-space representations have advantages and limitations.

Since we have studied the tranformations from a representation to the other, their use can be
chosen depending on practical reasons determined by the specific necessity of the problem
under consideration.
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13.6 Quantum-optical coherence

13.6.1 First- and second-order coherence

When we have a single mode of the field, Eq. (13.20a) may be written as

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t), (13.117)

where

Ê(+)(r, t)= ı

(
h̄ω

2ε0

) 1
2

eı(k·r−ωt)â, (13.118a)

Ê(−)(r, t)=−ı

(
h̄ω

2ε0

) 1
2

e−ı(k·r−ωt)â†, (13.118b)

where, for the sake of simplicity, we have taken l = 1. These expressions show that a
coherent state is also an eigenstate of the positive component of the field (13.118a), that is
(see Eq. (13.49a)),

Ê(+) |α〉 = E (+) |α〉 , (13.119)

where

E (+) = ı

(
h̄ω

2ε0

) 1
2

eı(k·r−ωt)α (13.120)

is the eigenvalue of the field operator Ê(+), as well as the bra 〈α | is the eigenstate of the
negative component (see Eq. (13.49b)), that is,

〈α | Ê(−) = 〈α | E (−), (13.121)

where similarly

E (−) = −ı

(
h̄ω

2ε0

) 1
2

e−ı(k·r−ωt)α∗. (13.122)

Now, let us calculate the mean value of the product of the field operators (13.118) on the
coherent state |α〉 , i.e.〈

α

∣∣∣Ê(−)Ê(+)
∣∣∣α〉 = h̄ω

2ε0

〈
α

∣∣∣â†â
∣∣∣α〉 = h̄ω

2ε0

〈
N̂
〉
α
= h̄ω

2ε0
|α|2 , (13.123)

which shows that, for a coherent state, such a mean value is proportional to the intensity of
light. By performing a similar calculation with field operators for two different space–time
points

Ê(−)(r1, t1)= Ê(−)
1 = −ı

(
h̄ω

2ε0

) 1
2

e−ı(k·r1−ωt1)â, (13.124a)

Ê(+)(r2, t2)= Ê(+)
2 = ı

(
h̄ω

2ε0

) 1
2

eı(k·r2−ωt2)â†, (13.124b)
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we obtain

G(1)
12 =

〈
α

∣∣∣Ê(−)
1 Ê(+)

2

∣∣∣α〉 = h̄ω

2ε0

〈
N̂
〉
α

eık·(r2−r1)eıω(t1−t2). (13.125)

This is the typical interference that is produced in basic interferometry experiments, where
differences in paths and even time delays are produced. The function G(1) is called first-
order coherence, as in classical wave interferometry. In a similar way we may define the
second-order interference function as the mean value of the product of the two intensities
taken at the two space–time points,24 i.e.

G(2)
12 =

〈
α

∣∣∣Ê(−)
1 Ê(+)

1 Ê(−)
2 Ê(+)

2

∣∣∣α〉 = 〈α ∣∣∣Ê(−)
1 Ê(−)

2 Ê(+)
2 Ê(+)

1

∣∣∣α〉, (13.126)

where we have made use of the fact that operators taken in two different space–time points
commute. If we move from a single-mode field to the general case of a multimode field
(see Eq. (13.20a)), we must rewrite Eq. (13.118a) as

Ê(+)(r, t) = ı
∑
k,λ

(
h̄ωk

2ε0

) 1
2

eı(k·r−ωkt)âk,λ(t), (13.127)

and similarly for the negative field operator. Since the photons of each mode are nonin-
teracting, the state for the multimode field can be written as the product of states for each
mode (see Eqs. (13.26)–(13.28)), i.e.,

|α〉 = ∣∣αk1,λ
〉 ∣∣αk2,λ

〉
. . . = ∣∣ {αk j ,λ}

〉
. (13.128)

Using this formalism, we may write the first-order correlation function for the multimode
field as

G(1) =
〈
{αk j ,λ}

∣∣∣Ê(−)
1 Ê(+)

2

∣∣∣ {αk j ,λ}
〉

, (13.129)

and similarly for G(2). Detailed calculations25 show that thermal light from a single source
may exhibit first-order coherence – this is the common interference effect of a Young’s
double slit experiment. However, it can never be second-order coherent. Thermal light is
random, Gaussian (i.e. chaotic) light coming from an incoherent source (for instance, a
light bulb). It may be described as a mixture of coherent states |α〉 , where the probability
of finding a particular state |α〉 is given by the Gaussian distribution

℘(α) = 1

πn
e−

|α|2
n . (13.130)

Perfect laser (i.e. coherent-state) light, on the other hand, exhibits both first-order and
second-order coherence.

24 Second-order interference plays a crucial role, for instance, in the Hanbury Brown and Twiss experiment,
where the intensity of a plane wave is measured by photodetectors at two different space–time points. One
of the two outputs is delayed by a small time, and the two intensities are multiplied together and averaged.
See [Hanbury Brown/Twiss 1956, Hanbury Brown/Twiss 1958] [Lewenstein 2007].

25 See [Loudon 1973] [Goldin 1982].
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�Figure 13.9 Scheme of homodyne detection in the balanced configuration. The input mode â is mixed to a
strong local oscillator âL thanks to a beam splitter, whose output ports are directly detected
by the photodetectors D1 and D2. The resulting photocurrents are then subtracted each other, so
that the final signal is proportional to the difference between the number of photons in mode d̂1

and mode d̂2.

13.6.2 Homodyne detect ion

In simple one-dimensional systems, one often faces the problem of measuring the position
or the momentum of a particle (see Sec. 2.3). As we know, in the case of the harmonic
oscillator (see Sec. 4.4), these operators are linear combinations of the creation and annihi-
lation operators, and correspond to the quadrature operators (see Eq. (13.61)). It is natural
to ask how one can measure these quadrature operators in a quantum-optical system. The
answer to this question comes from the so-called homodyne detection. As we shall see,
this technique plays a crucial role in quantum-state measurement (see Ch. 15).

In a typical quantum-optical homodyne detection scheme, the input light signal (a single
mode of the electromagnetic field) is “superposed” to a strong local oscillator field thanks
to a lossless beam splitter, whose transmission and reflection coefficients are given by T
and R, respectively. The light emerging from the two output modes of the beam splitter
is then measured by two distinct photodetectors D1 and D2 (see Fig. 13.9). If we denote
by â and âL the annihilation operators of the input mode and of the local oscillator mode,
respectively, the annihilation operators of the output modes (d̂1 and d̂2) are then given by
the transformation (

d̂1

d̂2

)
=
[

R T
T R

](
âL

â

)
, (13.131)

where the unitarity of the coupling matrix is ensured by the relations

|R|2 + |T|2 = 1 and T∗R + R∗T = 0. (13.132)
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The second condition is satisfied if

arg R − arg T = π
2

. (13.133)

In the balanced homodyne detection, the reflection and transmission coefficients satisfy

|R| = |T| = 2− 1
2 , and the output signal is given by the difference of the photocurrents

of the two detectors. In this configuration (see again Fig. 13.9), the measured signal is
represented by the operator

d̂†
1 d̂1 − d̂†

2 d̂2 = ı
(

â†âL − â†
L â
)

, (13.134)

i.e. the difference between the measured number of photons in mode d̂1 and mode d̂2. Its
expectation value is given by (see Prob. 13.32)〈

N̂12

〉
=
〈
d̂†

1 d̂1 − d̂†
2 d̂2

〉
= 2|αL |

〈
X̂θ
〉
, (13.135)

where αL is the coherent amplitude of the local oscillator (assumed to be in a coherent
state), and

X̂θ = X̂†
θ =

1√
2

(
â†eıθ + âe−ıθ

)
(13.136)

is the quadrature operator at angle (see Eqs. (13.61) and (13.80))

θ = arg R − arg T + φL = π
2
+ φL , (13.137)

φL being the phase of αL . It results from Eq. (13.135) that the balanced configuration
has allowed us to remove the contributions due to the local oscillator and to the signal
only. If we assume that the intensity of the local oscillator is much stronger than that of
the input signal, and we take into account the quantum efficiency η of the photodetectors,
the final expression for the expectation value of the photocounts in the balanced homodyne
detection is given by 〈

N̂12

〉
= 2η|αL |

〈
X̂θ
〉

, (13.138)

which shows that the output signal is proportional to the mean value of the operator X̂θ ,
i.e. that homodyne detection is indeed an effective way to measure a quadrature operator.
Moreover, the balanced configuration has a great advantage because it completely removes
the noise contribution of the local oscillator.

13.7 Atom–field interaction

The interaction of an atom with an electromagnetic field is one of the richest and most
important phenomena in optical physics. Such interaction bears a lot of interesting physical
consequences, some of which will be discussed in the following sections and chapters.

In the present section, we start from the general quantum theory of atom–field interac-
tion, but our aim and focus is the treatment of the simplest case: the interaction between a
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single mode of the quantized electromagnetic field in a cavity and a single two-level atom,
which is described by the so-called Jaynes–Cummings model.26

13.7.1 The interact ion between the electromagnetic field
and an atom

Let us first begin with some general considerations. In order to give the quantized treatment
of the interaction, it would be necessary to quantize the electron field of the atom. This,
however, goes far beyond the scope of this book and we shall limit ourselves to a non-
relativistic treatment. The Hamiltonian which describes the interaction of a radiation field
and an atom is given by

Ĥ = 1

2m

(
p̂ − e

c
Â(r)

)2 + eU(r) + ĤF , (13.139)

where p̂ is the electron’s momentum, r its position, Â is the vector potential of the exter-
nal field, U is the Coloumb interaction term, and ĤF is the Hamiltonian of a free field,
which has the form (13.22) or (13.23). The justification of the first term of the Hamil-
tonian (13.139) is given by the fact that it provides the correct equations of motion (see
Eq. (4.133)).27

The Hamiltonian (13.139) can be simplified with the help of the so-called electric-dipole
approximation.28 This approximation consists of the assumption that the spatial behavior
of the mode function of the vector field varies more slowly than the electronic wave func-
tion. In the optical region (see Tab. 13.1), for instance, this is justified by the fact that the
wavelength of the photon (of the order of 10−7 m) is much larger than the dimension of
the atom (of the order of 10−10 m). As a consequence, the vector potential (and also the
electric field) does not change appreciably within the size of the atom. Then, Â(r) in the
previous equation may be replaced by Â(R), where R is the center-of-mass position. A
detailed analysis29 shows that Eq. (13.139) may be written as

Ĥ = ĤF + ĤA + ĤI, (13.140)

where

ĤA = p̂2

2m
+ eU(r) (13.141)

is the Hamiltonian of the free atom,

ĤI = −er̂ · Ê (13.142)

is the interaction Hamiltonian, and Ê is the electric radiation field. Equation (13.140) can
be justified by the following argument. The first term in Eq. (13.139) gives rise to three
different components: the term proportional to p̂2, which, together with the Coloumb term,

26 See [Cummings 1965] [Jaynes/Cummings 1963].
27 See, e.g. [Mandl/Shaw 1984, 17].
28 For the classical treatment of the multipole-field expansion see [Jackson 1962, Ch. 16].
29 See [Schleich 2001, pp. 382–402].



486 Quantum optics
�

constitutes the Hamiltonian ĤA of the matter (of the free atom); the term proportional
to Â2, which is usually small and can be neglected; and finally the term proportional to
p̂ · Â.30 This last term is particularly important when one considers transition amplitudes
between different states of the atom and the field which involve the emission or absorbtion
of one photon. In this case, one has to expand the vector potential according to Eqs. (13.18)
and (13.15) and, following the electric-dipole approximation, replace the exponential func-
tions eık·r by 1. As we have said, the p̂ · Â term is equivalent to ĤI, defined in Eq. (13.142).

In the following, we explicitly limit ourselves to a two-level atom,31 but the results can
be generalized to the multilevel case, and adopt the center-of-mass reference frame.32 In
order to make explicit ĤA and the interaction term ĤI in the full Hamiltonian (13.140), we
have to introduce quantized atomic levels. If |g〉 and |e〉 denote the ground and excited
levels of the atom, respectively, the operators

σ̂+ = |e 〉 〈g | , σ̂− = |g 〉 〈e | (13.143)

may be considered as atomic raising and lowering operators.33 In other words, they satisfy
the relations (see Prob. 13.33)

σ̂+|e〉 = 0, σ̂+|g〉 = |e〉, (13.144a)

σ̂−|e〉 = |g〉, σ̂−|g〉 = 0, (13.144b)

σ̂+ = 1

2

(
σ̂x + ı σ̂y

)
, σ̂− = 1

2

(
σ̂x − ı σ̂y

)
, (13.144c)

and the following commutation relations:[
σ̂+, σ̂−

] = σ̂z ,
[
σ̂±, σ̂z

] = ∓2σ̂±,
[
σ̂+, σ̂−

]
+ = Î , (13.145)

where σ̂x , σ̂y , and σ̂z are the Pauli spin matrices defined by Eqs. (6.154).
In terms of these pseudo-spin atomic operators, the free Hamiltonian of the atom can be

derived from the eigenvalue equations

ĤA |g〉 = Eg |g〉 , ĤA |e〉 = Ee |e〉, (13.146)

where Eg and Ee are the energies of the ground and excited levels, respectively. Then, we
have

ĤA = Eg |g〉 〈g | + Ee |e〉 〈e | , (13.147)

which may be rewritten as

ĤA = 1

2

(
Eg + Ee

)+ 1

2
h̄ωAσ̂z , (13.148)

where

ωA = Ee − Eg

h̄
(13.149)

30 Note that in the radiation gauge, where ∇ · A = 0 (see Eq. (13.7)), the term Â · p̂ may be replaced by p̂ · Â.
31 Two-level atoms clearly do not exist in nature, but physical situations can be created by optical pumping such

that only two levels are effectively involved.
32 See, e.g., [Scully/Zubairy 1997].
33 These operators coincide with the spin-1/2 operators introduced in Eq. (6.151). This coincidence displays the

analogy between a two-level atom and a spin-1/2 particle in a magnetic field.
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is the “frequency” of the atomic transition (see Eq. (1.75)) and we have made use of the
identities

|e〉 〈e | + |g〉 〈g | = Î and |e〉 〈e | − |g〉 〈g | = σ̂z . (13.150)

Finally, we have now to evaluate the interaction term ĤI in the Hamiltonian (13.140). Let us
consider a single mode of the cavity with frequencyω. In the electric-dipole approximation,
the electric field may be evaluated at the origin (i.e. at the position of the nucleus or of the
center of mass) and, taking into account the expansion (13.20a), for a single mode in the
Schrödinger picture (where the observables do not evolve and therefore the exponentials
e±ıωt are not present) it may be written as

Ê = ı

(
h̄ω

2εol3

) 1
2

e
(

â − â†
)

, (13.151)

where, for the sake of simplicity, e denotes the linear polarization vector, and the expo-
nentials e±ık·r vanish at the origin. Let us concentrate our attention on the atom’s position
operator r̂, according to the expression for the interaction Hamiltonian (13.142). Since the
atomic potential energy – the Coulomb term in Eq. (13.141) – is even (with respect to x ,
y, and z), the wave functions of the energy eigenstates are either even or odd (see property
(iv) in Subsec. 3.2.3). As a consequence, the diagonal elements of the position operator
vanish. On the other hand, the off-diagonal elements of the dipole operator

d̂ = er̂ (13.152)

may be written as

d= e
〈
e
∣∣r̂∣∣ g

〉
, (13.153a)

d∗ = e
〈
g
∣∣r̂∣∣ e〉 . (13.153b)

Therefore, the dipole operator takes the form

er̂ = d |e 〉 〈g | + d∗ |g 〉 〈e | = dσ̂+ + d∗σ̂−, (13.154)

and describes transitions from the ground state |g〉 to the excited state |e〉 and vice versa.
Back-substituting this result into Eq. (13.142), we are left with the complex scalar products

d · e= |d · e|eıφ , (13.155a)

d∗ · e= |d · e|e−ıφ . (13.155b)

Taking φ = π/2, the interaction term (13.142) can be written as

ĤI = h̄ε0
(
σ̂+ − σ̂−

) (
â − â†

)
, (13.156)

where the coupling constant

ε0 =
(

ω

2ε0h̄l3

) 1
2 |d · e|, (13.157)

is the so-called vacuum Rabi frequency. Equation (13.156) gives rise to four terms. The
term σ̂+â (σ̂−â†) describes the physical process by which the atom is (de-)excited and a



488 Quantum optics
�

photon is absorbed (emitted). The other two terms, i.e. σ̂+â† and σ̂−â, describe processes
by which either the atom is excited and a photon is emitted or the atom is de-excited and
a photon is absorbed. As a consequence, these are non-energy conserving terms and, in
this context, have no physical meaning. In the so-called rotating-wave approximation these
terms can therefore be neglected. This heuristic argument may be made rigorous by moving
into the interaction picture. When doing so,34 one arrives at an interaction Hamiltonian

Ĥ I
I = h̄ε0

(
σ̂−â†eı(ω−ωA)t + σ̂+âe−ı(ω−ωA)t − σ̂−âe−ı(ω+ωA)t − σ̂+â†eı(ω+ωA)t

)
,

(13.158)

where the non-energy conserving terms are multiplied by oscillatory terms that involve the
sum of the frequencies of the cavity and the atomic transitions and therefore, on averaging,
vanish, yielding

Ĥ I
I � h̄ε0

(
σ̂−â†eı�t + σ̂+âe−ı�t

)
, (13.159)

where � = ω − ωA is the so-called detuning.
Finally, dropping the zero-point energy in ĤF and the constant energy term in ĤA, we

arrive, at the total Hamiltonian in the Schrödinger picture,

ĤJC = h̄ωâ†â + 1

2
h̄ωAσ̂z + h̄ε0

(
σ̂+â + σ̂−â†

)
, (13.160)

which describes the interaction of a single mode of the electromagnetic field with a single
two-level atom in the rotating-wave and dipole approximations. This is also called the
Jaynes–Cummings model and is particularly relevant in quantum optics, because it is an
exactly solvable model of the matter–field interaction and displays some very interesting
and genuine quantum features.

13.7.2 Jaynes–Cummings model

In order to solve the Jaynes–Cummings model in the simplest case where the detuning is
zero, i.e. when ω coincides with the atomic frequency ωA (resonant case), we first note
that the free eigenstates undergo an obvious degeneracy: A situation in which n photons
are present in the cavity and the atom is excited is energetically equivalent to the situation
in which we have n + 1 photons in the cavity and the atom is in the ground state.35 In other
words, the combined field–atom eigenkets

|n, e〉 = |n〉 F ⊗ |e〉 A and |n + 1, g〉 = |n + 1〉 F ⊗ |g〉 A (13.161)

of the free Hamiltonian Ĥ0 = ĤF + ĤA share the same energy h̄ω(n + 1/2). Let us work
in the interaction picture (see Subsec. 3.6.2) and recast the Jaynes–Cummings Hamiltonian
(13.160) as

34 See [Schleich 2001, pp. 407–409].
35 The only exception is the combined ground state |0, g〉 , where there is no photon and the atom is in the ground

state, and for this reason there can be no further evolution.
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ĤJC = Ĥ0 + ĤI, (13.162a)

Ĥ0 = h̄ω

(
â†â + 1

2
σ̂z

)
, (13.162b)

ĤI = h̄ε0

(
âσ̂+ + â†σ̂−

)
. (13.162c)

Now, it is possible to show that Ĥ0 and ĤI commute. Indeed, we write[
Ĥ0, ĤI

]
= h̄2ωε0

{
σ̂+
[
â†â, â

]
+ σ̂−

[
â†â, â†

]
+ 1

2

[
σ̂z , σ̂+

]
â + 1

2

[
σ̂z , σ̂−

]
â†
}

,

(13.163)
and, since we also have that (see Prob. 4.11)[

â†â, â
]
= −â and

[
â†â, â†

]
= â†, (13.164)

taking into account the second of Eqs. (13.145), we immediately obtain the desired
result, i.e. [

Ĥ0, ĤI

]
= 0. (13.165)

From this fact two consequences follow:

(i) ĤI = Ĥ I
I , i.e. the interaction Hamiltonian in the interaction picture coincides with ĤI.

(ii) The eigenstates of ĤI are linear combinations of eigenstates of Ĥ0 (see Th. 2.4: p. 66).

The first consequence is due to the fact that we have (see Eq. (3.118))

Ĥ I
I = e

ı
h̄ Ĥ0t ĤIe

− ı
h̄ Ĥ0t , (13.166)

from which it also follows that

|ψ(t)〉 I = e−
ı
h̄ ĤIt |ψ(0)〉 . (13.167)

The second consequence enables us to calculate the eigenkets of ĤI. Considering the inter-
action Hamiltonian ĤI as a perturbation relative to the free Hamiltonian Ĥ0, its eigenvalue
equation may be written as

ĤI |ψn〉 I = E I
n |ψn〉 I , (13.168)

where |ψn〉 I are the perturbed eigenkets, while E I
n are the eigenvalues of the perturbed

Hamiltonian. As we have said, any eigenket of ĤI may be expanded in terms of the
degenerate eigenstates of the free Hamiltonian, i.e.

|ψn〉 I = cn |n, e〉 + c
′
n |n + 1, g〉 . (13.169)

Now, it is easy to see that we have

ĤI |ψn〉 I = h̄εn

(
cn |n + 1, g〉 + c

′
n |n, e〉

)
, (13.170)

where εn = ε0
√

n + 1. Since |ψn〉 I has to be an eigenstate of ĤI, we must have that cn =
c
′
n = 1/

√
2, in order for the state to be correctly normalized. Therefore,∣∣ψ+

n

〉
I =

1√
2
(|n, e〉 + |n + 1, g〉 ) (13.171a)
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�Figure 13.10 Resonant Jaynes–Cummings energy levels. In the first two columns, the separated energy levels
for the free field and for the free atom are shown. In the third column, the total free energy is
represented: exactly on resonance, apart from the ground state, all levels are doubly degenerate.
In the fourth column, the total energy levels are represented, in which the degeneracy is
removed.

is one of the two eigenstates of ĤI for a given n, with energy E I
n,+ = h̄εn . The other one

can be written as ∣∣ψ−
n

〉
I =

1√
2
(|n, e〉 − |n + 1, g〉 ), (13.171b)

which corresponds to the energy eigenvalue E I
n,− = −h̄εn . In other words, the perturbation

has removed the energy degeneracy of the unperturbed Hamiltonian (see Fig. 13.10).

13.7.3 Rabi osci l lat ions

In order to understand the dynamics of a two-level atom resonantly interacting with a single
mode of an electromagnetic field, it is instructive to study the time evolution of an initially
excited atom when n photons are present in the field. In this case, the initial state of the
system is |ψ(0)〉 = |n, e〉 and, according to Eq. (13.167), the evolved state at time t in the
interaction picture can be expressed as

|ψ(t)〉 = 1√
2

[
e−ıεn t

∣∣ψ+
n

〉 + eıεn t
∣∣ψ−

n

〉 ]
, (13.172)

where for the sake of simplicity we have dropped the subscript I to the states in the
interaction picture. In obtaining Eq. (13.172) we have made use of the identity

|n, e〉 = 1√
2

(∣∣ψ+
n

〉 + ∣∣ψ−
n

〉 )
. (13.173)
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�Figure 13.11 Rabi oscillations. The probabilities ℘e
n(t) (solid line) and ℘g

n+1(t) (dashed line) oscillate
sinusoidally in time in the resonant Jaynes–Cummings model when the initial state at t = 0 is
|n, e〉 . The sum of the two probabilities is obviously equal to 1 at any time.

After some simple calculations, and transforming back the perturbed eigenstates according
to Eqs. (13.171), we finally arrive at

|ψ(t)〉 = cos (εnt) |n, e〉 − ı sin (εnt) |n + 1, g〉 . (13.174)

Equation (13.174) shows an interesting quantum phenomenon: the evolved state oscillates
between the degenerate states |n, e〉 (initial state) and |n + 1, g〉 . In particular, at times
t = π/2εn the state has entirely evolved into |n + 1, g〉 , while at time t = π/εn it has
come back to the initial state (Fig. 13.11).36 It is possible to calculate the probability of
finding simultaneously exactly n photons inside the cavity and the atom in the excited state
at a generic time t , that is,

℘e
n(t) = |〈n, e | ψ(t)〉|2 = cos2 (εnt). (13.175)

This is the so-called Rabi oscillation and εn is called the Rabi frequency. When n = 0, we
have the vacuum Rabi frequency ε0.

13.7.4 Col lapses and revivals

It is particularly interesting to investigate the dynamics of our system (atom plus field)
when initially the atom is excited and the field is in a coherent state, i.e.

|ψ(0)〉 = |α, e〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n, e〉 . (13.176)

36 At first glance, this result may appear in contradiction with the statement given in Prob. 3.13. However, a more
careful analysis shows that it is instead a beautiful confirmation of that statement (see also Subsec. 3.5.3).
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�Figure 13.12 The phenomenon of collapses and revivals. The probability ℘e(τ ) from Eq. (13.181) is plotted
against the dimensionless time τ , for |α| = 4. After a time of the order of τ = 1, the envelope of
the oscillations collapses, but the oscillations revive after τ � 25.

The dynamics in this case can be easily derived from Eq. (13.174) and yields

|ψ(t)〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!

[
cos (εnt) |n, e〉 − ı sin (εnt) |n + 1, g〉 ]. (13.177)

Again, it is interesting to calculate the probability of finding at time t the atom in the
excited state, but regardless of the state of the field. To this end we have first to obtain the
atom–field density matrix

ρ̂AF (t) = |ψ(t)〉 〈ψ(t) | . (13.178)

Then, we have to perform the partial trace (see Subsec. 5.5.2) over the field degrees of
freedom

ˆ̃ρA(t) = TrF
[
ρ̂AF (t)

]
, (13.179)

so as to obtain the reduced density matrix of the atom alone, regardless of the state of the
field. Finally, the desired probability is found as (see Eq. (9.100))

℘e(t) =
〈
e
∣∣∣ ˆ̃ρA(t)

∣∣∣ e〉 . (13.180)

The final result is (see Prob. 13.34)

℘e(t) = 1

2

[
1 +

∞∑
n=0

e−|α|2 |α|2n

n!
cos (2εnt)

]
. (13.181)

This probability is plotted in Fig. 13.12 as a function of the dimensionless time τ = ε0t
and represents a nice illustration of the experimentally observed phenomenon known as
collapses and revivals: at the beginning, ℘e oscillates rapidly, but such oscillations are
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damped out after some time (called the collapse time, tc, of the order of ε−1
0 ). After another

characteristic time (the revival time, tr , of the order of 2π |α|/ε0), the oscillations in the
probability revive.

This striking phenomenon is deeply connected with the discrete nature of the quantized
electromagnetic field – which reflects into the sum in Eq. (13.181) – and to the factor√

n + 1: after tc, the contributions from the sum are out of phase with respect to each
other. After tr , however, the contributions come back in phase, giving rise to a revival of
the oscillations.

13.7.5 Spontaneous emission

If we investigate the dynamics of our system (atom plus field) in the case where the atom
is initially excited but there are no photons in the field, we immediately realize that Rabi
oscillations occur even when the field is in the vacuum state. In fact, in this case the initial
state is

|ψ(0)〉 = |0, e〉 , (13.182)

and the calculation performed in Subsec. 13.7.3 yields (see Eq. (13.174))

|ψ(t)〉 = cos (ε0t) |0, e〉 − ı sin (ε0t) |1, g〉 . (13.183)

In other words, the initially excited atom may emit a photon (and make a transition to
the ground state) even when no photons are present in the field. This is the simplest case
of a phenomenon known as spontaneous emission, in contrast to the so-called stimulated
emission, which in turn occurs in presence of photons (see Box 13.1). Spontaneous emis-
sion may also be regarded as a result of the perturbation of the vacuum fluctuations of the
field onto the excited atom. Moreover, spontaneous emission is an entirely random process
which occurs isotropically, whereas stimulated emission has a preferred direction, which
is precisely that of the stimulating photon.

Let us very briefly summarize the history of the laser (see Box 13.1). In 1954 it was first
shown in [Gordon et al. 1954, Gordon et al. 1955] that coherent radiation can be gene-
rated in the radio-frequency domain. Their experiments, performed in ammonia, gave
rise to the first MASER (Microwave Amplification by Stimulated Emission of Radiation).
This phenomenon was later extended in [Schawlow/Townes 1958,Prokhorov 1958] to opti-
cal radiation (LASER). Today it is possible to experimentally produce single-atom laser
beams, which show a more orderly photon stream than even the quietest “ordinary” laser.37

By making use of other techniques, in particular of a specific application of the Airy func-
tion, it is also possible to produce beams that do not show diffraction effects but preserve
the intensity profile (are “propagation invariant”).38 Indeed, a laser cannot preserve such a
coherence over long distances.

37 See [McKeever et al. 2003] [Carmichael/Orozco 2003].
38 See [Siviloglou et al. 2007] [Dholakia 2008].
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�Box 13.1 LASER

In Sec. 13.7 we have investigated the dynamics of the interplay between matter and light.
Ordinary light is dominated by spontaneous emission, with photons emitted randomly in
all directions, and represents just optical noise. In contrast, a LASER (Light Amplification by
Stimulated Emission of Radiation) is a device that amplifies the process of stimulated emission
so as to obtain coherent and highly directional light beams. In order to understand how a
laser works, we have first to study the thermodynamic equilibrium of a two-level atom in the
presence of radiation (see Fig. 13.13). Let us consider an atomic medium, Ng and Ne being
the number of ground-state and excited atoms, respectively. The rate of the spontaneous
emission from |e〉 to |g〉 is given by A and is independent from the photon number. However,
atoms can also make a transition from |e〉 to |g〉 through stimulated emission, and in this
case the corresponding rate will be given by Bρ, where ρ is the electromagnetic energy
density in the medium. Finally, atoms may be excited from |g〉 to |e〉 through (obviously,
stimulated) absorption of photons, again with a rate Bρ. A and B are the so-called Einstein
coefficients.39 At the thermodynamic equilibrium at temperature T, the number of excited
atoms will be much smaller than the number of the atoms in the ground state, as their ratio
is given by the Boltzmann factor, i.e.

Ne

Ng
= e

− h̄ω
kBT , (13.184)

where h̄ω is the energy separations of the two levels, ω is the photon frequency (i.e. the
energy separation of the two levels |e〉 and |g〉 divided by h̄), and kB the Boltzmann con-
stant. Therefore, spontaneous emission dominates the relaxation process and photons are
emitted incoherently in all possible directions. Laser operation, on the other hand, may occur
only when the system is far from equilibrium, i.e. when the number of excited atoms is much
larger than the number of atoms in ground state. This population inversion cannot be reached
just by increasing the temperature due to condition (13.184). A possible way to bypass this
problem is provided by the scheme shown in Fig. 13.14, where the medium is made of three-
level atoms: A strong pump (which, for example, may be of optical nature) excites the atoms
from level |0〉 to |e〉 , while Einstein’s A and B coefficients rule the transitions between |e〉
and |g〉. Atoms may also make a transition from |g〉 to |0〉 through a relaxation process.
In this case, the condition (13.184) forces Ne to be much smaller than N0. However, Ne is
much larger than Ng and population inversion is achieved. We may then imagine a laser as
schematically made of a three-level active medium contained in a long thin rod with mirrors
at the two ends (see Fig. 13.15).

13.7.6 Parametr ic down-conversion

Spontaneous parametric down-conversion (SPDC) is a very important process in quan-
tum optics that has relevant fields of application. A non-linear crystal splits incoming

39 See [Einstein 1917].
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�Figure 13.13 Schematic diagram representing stimulated and spontaneous transitions between atomic levels.
The rate A of the spontaneous process is independent of the field energy density ρ, whereas the
rate for the stimulated processes is given by Bρ.
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�Figure 13.14 Three-level atomic configuration able to achieve population inversion. Initially, all atoms are in
the level |0〉 and are pumped to the excited level |e〉 . Spontaneous and stimulated transitions
between levels |e〉 and |g〉 occur as in Fig. 13.13, while relaxation process brings the atom back
from |g〉 to the |0〉 level.

�Figure 13.15 A very schematic diagram of a laser. A long thin rod with two end-mirrors contains the active
medium shown in Fig. 13.14, which is brought to population inversion by a strong external pump.
Coherent photons emitted in the same direction (the axis of the rod) by stimulated emission are
further amplified through repeated passage of the photons through the medium, while
spontaneous photons emitted in different directions are simply lost. The process is initiated by a
spontaneously emitted photon which will in turn encounter other excited atoms and force them
to emit in the same direction. The phase of a stimulated photon is equal to the phase of the
stimulating one. As a result, laser light is simultaneously coherent, higly directional, and has a
very narrow distribution of frequencies. Among the processes which perturb a perfectly coherent,
unidirectional, and monochromatic laser beam, we may include spontaneous emission,
imperfections or inhomogeneities of the medium, and Doppler effect.
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�Figure 13.16 Parametric down-conversion (PDC). (a) Generation of the idler and signal photons. (b)
Momentum conservation. (c) Energy conservation.

photons (a coherent laser beam) into pairs of photons of lower energy whose combined
energy and momentum is equal to the energy and momentum of the original photon (see
Fig. 13.16). If the frequency of the laser is in the near ultraviolet (wavelength about 300
nanometers), then the light that emerges takes the form of a conical rainbow of visible
light (wavelengths in the range 400–800 nm) (see also Tab. 13.1). “Parametric” refers to
the fact that the process does not change the state of the crystal, which is the reason why
energy and momentum are conserved.40 We obtain a more correct view of this process,
once we realize that the non-linear crystal brings about an interaction between the laser
field and the zero-point field, and that, as a consequence of this interaction, there is a
secondary field emitted by the crystal. In fact, the process is “spontaneous” in the same
sense as spontaneous emission – it is stimulated by random vacuum fluctuations. Con-
sequently, the photon pairs are created at random times. However, if one photon of the
pair (the “signal”) is detected at any time, then one knows with certainty that its partner
(the “idler”) is present. This allows for the creation of optical fields containing (to a good
approximation) a single photon. As a matter of fact, this is the predominant mechanism
for experimentalists to create single photons (Fock states of the electromagnetic field).
The single photons as well as the photon pairs are often used in quantum information
experiments and applications such as quantum cryptography and the Bell test experiments
(see Chs. 16–17).

SPDC is a special case of parametric amplification. The main difference lies in the fact
that in the latter a laser field drives the crystal to squeeze an input state (see Subsec. 13.4.3),
whereas in the former the input is simply given by the vacuum state. As a consequence, the
output of SPDC is a squeezed vacuum, with an even number of photons. Apart from the
zero-photon term (the vacuum itself), the leading-order contribution comes exactly from
the two-photon process.

40 This is related to the so-called phase-matching condition of nonlinear optics: in type-I (or degenerate) phase
matching the two photons bear the same polarization, whereas in type-II they have orthogonal polarizations.
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�Figure 13.17 (a) Magnetic AB effect. The axis of the solenoid is perpendicular to the page. The wave function
is a split plane wave. (b) Electric AB effect. V1 = V2 = 0 except when the wave packet is shielded
from the electric field.

13.8 Geometric phase

13.8.1 Aharonov–Bohm effect

The Aharonov–Bohm (AB) effect41 consists of the discovery that the electromagnetic
potentials, and not only the fields, may have physical effects. The easiest way to detect
this striking phenomenon is to let two beams of particles pass to the right and left of an
isolated field. As we shall see, they will present a relative phase shift (see Fig. 13.17).

In classical electrodynamics the situation is quite different, since scalar and vector poten-
tials are useful mathematical tools that enable us to calculate the fields (see Subsec. 13.1.1),
but are deprived of direct physical significance. The AB effect manifests itself in quan-
tum mechanics through the electromagnetic scalar and vector potentials U and A. As a
consequence, the AB effect has two forms, magnetic and electric.

Let us consider the schematic setup depicted in Fig. 13.17(a), where the magnetic field
B is essentialy confined within the solenoid. On the other hand, the vector potential cannot
be zero everywhere outside the solenoid, because the total magnetic flux%M through every
circuit containing the solenoid is given by

%M =
∫

B · d- =
∮

A(r) · dr 	= 0, (13.185)

41 Introduced in quantum mechanics in [Aharonov/Bohm 1959]. See also [Peshkin/Tonomura 1989].
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where d- is the surface element of the area delimited by the circuit and dr is the linear
element of the circuit.

Now let

ψ(x , t) = ψ0
1 (x , t) + ψ0

2 (x , t) (13.186)

be the wave function of the electron beams when the magnetic field is switched off
(ψ0

1 (x , t) and ψ0
2 (x , t) represent the components that pass through the upper and lower

paths of the apparatus, respectively). When the magnetic field is present, the Hamiltonian
is given by (see Eq. (4.133))

Ĥ = 1

2m

(
p̂ − e

c
Â(r)

)2
, (13.187)

where e is the electron charge, and the total wave function modifies into

ψ(x , t) = ψ1(x , t) + ψ2(x , t), (13.188)

where

ψ1(x , t)=ψ0
1 (x , t)e

ı
h̄ SM,1 , (13.189a)

ψ2(x , t)=ψ0
2 (x , t)e

ı
h̄ SM,2 , (13.189b)

and

SM ,1 = e

c

∫
I

A(r) · dr, (13.190a)

SM ,2 = e

c

∫
I I

A(r) · dr (13.190b)

are the actions involved, where dr is the linear element of the circuit. Equations (13.190)
may be justified with the following argument: the square in Eq. (13.187) gives rise to three
terms. As we have already seen (in Subsec. 13.7.1), the first term is the usual kinetic-energy
term (common to the two paths), the second is proportional to Â2 and can be neglected,
while the third term is the only important term that makes a difference between the two
paths. Its contribution to the unitary time evolution operator may be written as

exp

⎛⎝ ıe

h̄c

t∫
0

dt
p̂
m
· Â(r)

⎞⎠ = exp

⎛⎝ ıe

h̄c

t∫
0

dtÂ(r) · v

⎞⎠ = exp

⎛⎜⎝ ıe

h̄c

∫
I/I I

Â(r) · dr

⎞⎟⎠,

(13.191)

It is then clear that the interference pattern generated in the interference region will depend
on the phase difference

SM ,1 − SM ,2

h̄
= e

h̄c

∮
I+I I

A(r) · dr = e

h̄c
%M , (13.192)

where the integral is intended along the circuit given by the paths I and II (in a clockwise
direction). The most striking feature of this effect is that its existence does not depend on
the magnetic forces acting on the electrons. Indeed, the above result is also valid if we
surround the solenoid by a potential barrier that reflects the electrons perfectly.
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The electric version of the AB effect is similar to the one we have just described (see
Fig. 13.17(b)). Again, a single coherent electron beam is split into two parts (I and II) and
each part is then allowed to enter along a cylindrical metal pipe that shields the electrons
from any electric field. Each of the pipes is connected to an external generator, which makes
the potential on the tubes to alternate in time, but only when the electron wave packet is
deep inside the cylinder. This ensures that the electron beam does not experience any local
field. The potential will add to the Hamiltonian of the particle a term U(x , t), which is, for
the region inside the pipe, a function of time only, so that the global Hamiltonian may be
written as

Ĥ = Ĥ0 − eU(x , t), (13.193)

where Ĥ0 is the Hamiltionian of the free particle. The wave functions for the electrons in
the two beams are then given by

ψ1(x , t)=ψ0
1 (x , t)e−

ı
h̄ SE ,1(x ,t), (13.194a)

ψ2(x , t)=ψ0
2 (x , t)e−

ı
h̄ SE ,2(x ,t), (13.194b)

where the action SE , j ( j = 1, 2) is given by

SE ,1(x , t)=−e
∫ t

0
dt ′U1(x , t ′), (13.195a)

SE ,2(x , t)=−e
∫ t

0
dt ′U2(x , t ′). (13.195b)

When the two beams meet again at the interference region, their relative phase is then
shifted by an amount

δφ = 1

h̄

[
SE ,2(x , t) − SE ,1(x , t)

]
. (13.196)

How can we interpret the AB effect? Aharonov and Bohm supposed the physical reality
of the vector and scalar potentials and this reality was understood as more fundamental
then that of the field strength. In other words, Bohm saw in the AB effect the physical
manifestation of a potential which cannot be accounted for in classical terms.42 However,
we can also explain the AB effect through the geometric phase formalism, as we shall see
below.

13.8.2 Geometric phase

In Sec. 10.3 we have discussed the adiabatic theorem, which applies to systems subject
to a Hamiltonian which is a function of a time-dependent parameter whose rate of change
is small. In that context, we have concluded that, under the adiabatic condition, an ini-
tial eigenstate of a time-dependent Hamiltonian remains an instantaneous eigenstate. In

42 Bohm was developing in those years a hidden-variable variant of quantum mechanics in which the vector
potential played an important role (see Sec 16.3).
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fact, the adiabaticity condition allows us to neglect the coupling to other energy eigenstates
|n [r(t)]〉 in Eq. (10.78), so that the latter equation reduces to (see also Eq. (10.79))

d

dt
ψm(t) � −〈m [r(t)] |∇r|m [r(t)]〉 · dr(t)

dt
ψm(t), (13.197)

where, for practical purposes of this section, we have substituted the parameter ζ of
Sec. 10.3 with r. Now, we wish to show that, after a cycle in the parameter space, the
system acquires a phase factor that adds up to its dynamical phase.43 This is called the
geometric phase. In fact, making use of the orthonormality condition 〈m(r) | n(r)〉 = δmn ,
we have

0 = ∇r 〈m(r) | m(r)〉 = 〈∇rm(r) | m(r)〉 + 〈m [r] |∇r|m [r]〉
= 〈m [r] |∇r|m [r]〉∗ + 〈m [r] |∇r|m [r]〉
= 2�{〈m [r] |∇r|m [r]〉}, (13.198)

which shows that 〈m [r] |∇r|m [r]〉 is purely imaginary. Therefore, we may integrate
Eq. (13.197) to find

ψm(t) = e−ıφ(g)
m (t)ψm(0), (13.199)

where

φ
(g)
m (t) =

r(t)∫
r(0)

dr′
 {〈m [r′] |∇r′ |m
[
r′
]〉}

(13.200)

is just the geometric phase.44 Notice that the presence of the factor dr(t)/dt in Eq. (13.197)
changes the integration in dt into an integration in dr

′
. If the parameter r(t) describes a

close loop C in the parameter space, Eq. (13.200) may be rewritten as

φ
(g)
m =

∮
C

dr
 {〈m [r] |∇r|m [r]〉}. (13.201)

In Eq. (13.201) the vector ∇rm [r] is tangent to the vector |m [r]〉 . Let us take as an exam-
ple a state vector on the Poincaré sphere (see Subsec. 1.3.3). Then, the vector ∇rm [r]
is tangent to the surface and r may be taken as the vector pointing to the surface, whose
motion causes the state |m [r]〉 to cycle on the surface of the sphere (the so-called parallel
transport) (see Fig. 13.18).

13.8.3 The AB effect as a geometric phase

As we have seen in the previous subsection, the geometric phase can be understood as a
measure of the curvature of the parameter space. In fact, by applying Stokes theorem to
transform the line integral in Eq. (13.201) into a surface integral, we have

43 See also [Schleich 2001, 174–76].
44 The introduction and the development of this concept is especially due to Sir Michael Berry [Berry 1984,

Berry 1987, Berry 1989], but there were already some contributions in [Pancharatnam 1956]. See also
[Aharonov/Anandan 1987].
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|m>

r

�Figure 13.18 Parallel transport. The geometric phase takes its name from the fact that its expression (13.200)
bears elements of differential geometry, in particular of the concept of measuring the curvature of
a surface by parallel transport of a tangent vector. Here, we transport a vector (represented by the
small arrows) that is tangent to a curved surface along a path on this surface. After a cycle on the
closed path, the vector is not identical to the initial one: the two vectors have a non-vanishing
angle between them, which is a measure for the curvature of the surface.

φ
(g)
m =

∫
S

d- · Bm(r), (13.202)

where S is the area enclosed by the path C, d- is a surface element and Bm(r) is a “field,”
given by

Bm(r) = ∇r × 
 {〈m [r] |∇r|m [r]〉}, (13.203)

whose “flux” outogoing through the surface is measured by φ(g)
m . Then, the formalism of

the geometric phase is particularly useful when applied to the interpretation of the AB
effect. In the case of the magnetic AB effect (see Eq. (13.192)), for example, we may write∫

C
dr · A(r) =

∫
S

d- · B(r) = %M = h̄c

e
φ(g), (13.204)

where this time the flux is that of the magnetic field. This confirms that the AB effect is
only dependent on abstract geometric properties that have nothing to do with the particular
nature of forces and fields involved.

13.9 The Casimir effect

The Casimir effect deals with the variation of the vacuum energy of the electromagnetic
field inside a cavity limited by a perfectly conducting surface. In the case of two parallel
plates the vacuum energy increases by increasing the distance and this leads to an attractive
force between the plates; however, in some other geometries the force may be repulsive.
There are folkloric statements that the Casimir force plays a crucial role in emulsions like
mayonnaise; however, it has a definitive impact on nanotechnological problems.
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In the case of the electromagnetic field in a region with given boundary conditions the
vacuum energy is given by (see also Eq. (13.30))

ER =
∞∑

n=0

h̄cE1/2
n , (13.205)

where En are the eigenvalues of the Laplacian inside the region: the factor 1/2 of the zero-
point energy compensates with the factor 2 arising from the number of the polarization
states producing a net result equal to 1. If the boundaries are conducting, zero boundary
conditions should be used for the Laplacian.

In the case of a region of size L × M × M the eigenvalues of the Laplacian are

E(nx , ny , nz) = π
2n2

x

L2
+ π

2n2
y

M2
+ π

2n2
z

M2
, (13.206)

where nx , ny , and nz run over all positive integer numbers.
It is quite evident that the vacuum energy as defined in Eq. (13.205) is infinite: The sum

over the variables n is not convergent. However, in the physical world, we have vacuum also
outside the cavity and this also contributes to the total energy. Moreover, another infinite
term is produced by creating a perfect conducting surface in the space. Clearly, we are not
interested in computing the total energy of vacuum fluctuations that cannot be measured
directly anyway. On the contrary, we would rather like to control the amount of energy that
comes from objects moving in space and that contributes to deforming the cavity, because
these energy variations produce observable forces.

If, for the time being, we restrict ourselves to a not too rigorous level and do not pay
too much attention to problems possibly arising from the interchange of summation and
integration limits, we could first compute the limit M →∞ in order to obtain the energy
per unit area. If we proceed in this way, we find

EL ≡ lim
M→∞

EL×M×M

M2
= h̄c

(2π )2

∞∑
n=1

∫
dkydkz

√
π2n2

L2
+ k2

y + k2
z . (13.207)

At the front of the previous equation we face the serious problem that the integral is infinite:
we have two ways around this in order to obtain the final result, applying some wizardry
or carefully extracting the divergent terms.

13.9.1 A useful wizardry : analyt ic continuation

Let us first discuss the wizardry. We start by contemplating the following equation:

∞∑
k=0

2k =
[ ∞∑

k=0

sk

]
s=2

= 1

1 − s

∣∣∣∣
s=2

= −1. (13.208)

It is clear that the divergent sum of the positive numbers on the rhs cannot be equal to –1:
we have used for s = 2 a formula that is valid only for |s| < 1 .
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In the same way we could write

∞∫
0

dx 2x =
⎡⎣ ∞∫

0

dx sx

⎤⎦
s=2

= − 1

ln(s)

∣∣∣∣
s=2

= − [ln(2)]−1 , (13.209)

which does not make sense for the same reasons.
However, there may be contexts where it could make sense to write

∞∑
k=0

2k −
∞∫

0

dx 2x = F(s)|s=2 = −1 + [ln(2)]−1 , (13.210)

where

F(s) = 1

1 − s
+ 1

ln(s)
. (13.211)

In the general case, also Eq. (13.210) is meaningless. However, it would be correct if we
could prove the following:

• The problem under study depends on a parameter s and for s < 1 the solution is given
by the lhs of Eq. (13.210), which in this region is correctly given by the function F(s).

• The solution of the problem is an analytic function of s, for positive s. Notice that the
function F(s) is an analytic function of s at s = 1, because the poles at s = 1 in each of
the two components cancel exactly.

Now, what could be the equivalent of the parameter s in the case of the Casimir effect? A
natural candidate might be the dimension of the space.45

If we redo our computation in a space of dimension D, we find that the Casimir energy
(neglecting trivial proportionality factors) is given by

CL (D) =
∞∑

n=1

⎡⎣D−1∏
ν=1

(∫
dkν

)√
π2n2

L2
+ k2

⎤⎦. (13.212)

We can now go into polar coordinates. If we denote by S(D) the area of surface of the unit
sphere in D dimensions,46 after integration over the angular variables we obtain

CL (D) =
∞∑

n=1

S(D − 1)

∞∫
0

dk k D−2

√
π2n2

L2
+ k2 (13.213)

= 1

2

∞∑
n=1

S(D − 1)

∞∫
0

dz

z
z

D−1
2

√
π2n2

L2
+ z. (13.214)

The integral over z in the previous equation is not convergent. In fact, it is divergent
near 0, for D ≤ 1. However, these divergences may be eliminated by integration by parts,

45 Of course, space dimensions are always integer, but with a little of imagination we could consider non-integer
dimensions. See [Parisi 2003].

46 We do not need its analytic expression, which we only write for completeness, i.e. 2πD/2/�(D/2). We only
need that S(D) is an entire function.
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exposing the divergences in an explicit algebraic form that is compensated by the zeros
of S(D − 2).47 We are not going to discuss this point in greater details. At any rate, the
dangerous divergence at infinity disappears for D < 0.

We shall make use of the formula48

∞∫
0

dzzμ−1(a + z)−ν = aμ−ν �(ν)

�(μ)�(ν − μ)
. (13.215)

If we do not pay too much attention to the conditions for convergence, we obtain

CL (D) =
S (D − 1) �

(
D−2

2

)
2�
(
− 1

2

)
�
(
− 1

2 − D−1
2

) ∞∑
n=1

A(n)
D−1

2 + 1
2 , (13.216)

where

A(n) ≡ π
2n2

L2
. (13.217)

The previous formula can also be written for L = 1 (neglecting π factors) as

1

�
(
− 1

2

)
�
(− D

2

) ∞∑
n=1

nD = 1

�
(
− 1

2

)
�
(− D

2

)ζ (−D) , (13.218)

where ζ (s) is the Riemann Zeta function. If we use the previous equations for D = 3 we
get

CL (3) = 1

2

(π
L

)3
S(2)

�
(

1
2

)
�
(
− 1

2

)
�
(
− 3

2

)ζ (−3). (13.219)

Putting everything together, and using the fact that ζ (−3) = −1/120, we obtain

EL = − h̄cπ2

720 L3
, (13.220)

which leads to an attractive force (per unit area) equal to

h̄cπ2

240 L4
. (13.221)

The computation has a chance to be correct as far as the divergent terms – coming from the
modes outside the cavity – may only give a contribution to the energy of the form a + bL .
These terms do not contribute to the final form of the Casimir force – they could only add
a constant term. However, this force should go to zero when L goes to infinity, as happens
in our result, which is in fact correct.

47 See [Marinari/Parisi 2008].
48 See [Gradstein/Ryshik 1981, 3.1.94.4].
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13.9.2 A sketch of the physical approach

In order to perform a proper computation we should first introduce a cutoff at large
momenta and consider the following function

E�L = h̄c

(2π )2

∞∑
n=1

∫
dky dkz F�

(
π2n2

L2
+ k2

y + k2
z

)
, (13.222)

where the function F�(k2) is equal to k for k / � and goes to zero very fast for k # �.
The introduction of a momentum cutoff is natural from a physical point of view as far as
all cavities become transparent at high energy.

Manipulating the previous equation and after some complex computations, described
in [Parisi 1988], one obtains for large � the result

E�L = − h̄cπ2

720 L3
+ a(�) + b(�)L , (13.223)

where a(�) and b(�) are divergent functions when the volume goes to infinity, and whose
detailed form depends on F�.

The computation for a generic cavity can be done in the following way.49 One writes

ER = h̄c
∫

dλ
(
ρ(λ) − sV Vλ

3
2 − sS Aλ

1
2

)
λ

1
2 , (13.224)

where ρ(λ) is the spectral function of the Laplacian with zero boundary condition, which
for large values of λ behaves as

ρ(λ) � sV Vλ
3
2 − sS Aλ

1
2 , (13.225)

as can be seen from a semiclassical analysis50 (we have neglected terms oscillating around
zero).

It turns out that if we add to the naive form

ER = h̄c
∫

dλρ(λ)λ
1
2 , (13.226)

only terms proportional to the volume and to the surface of the cavity, the result is finite.51

The term proportional to the volume should be compensated from the mode outside the
cavity and is therefore irrelevant. Here, we consider only deformations of the cavity that
keep the area of the cavity constant. There is also a physical term proportional to the area,
which depends on the conduction characteristic of the surface, but this point will not be
investigated further in this context.

49 See [Balian/Duplantier 1977, Balian/Duplantier 1978].
50 See [Balian/Bloch 1970, Balian/Bloch 1972, Balian/Bloch 1974]. In these papers, the quantities V and A,

which are respectively the volume and the area of the cavity, as well as sV and sS are computed.
51 See [Balian/Duplantier 1977, Balian/Duplantier 1978].
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The integral in Eq. (13.224) is convergent and thus we have found an explicit form for
the Casimir energy of a generic cavity. Of course, we have to compute the spectrum of the
Laplacian inside the cavity, but only the lowest eigenvalues will be relevant, whereas for
high λ the integral is convergent and the spectral density can be estimated by the subleading
terms in a semiclassical expansion. Clearly, this method gives the same results as those of
the previous subsection, as can be checked with some pain by a diligent reader.

Approximated methods based on a multipole expansion can also be found in the
literature52 for computing the force among two objects of arbitrary shape.

Summary

• Starting from the Maxwell equations, we have shown how to quantize the electromag-
netic field (the so-called second quantization). This amounts to quantizing an infinite
set of harmonic oscillators, one for each mode of the field. Quantization is then accom-
plished by interpreting the amplitude operators âk and â†

k as the annihilation and creation
operators of the k-th field mode, respectively.

• Using the classical methods of statistical mechanics, we have studied the thermodynamic
equilibrium of the radiation field.

• The phase-number uncertainty relation has been derived.
• We have successively investigated three special states of the electromagnetic field: (1)

the Fock (number) states: these are eigenstates of both the energy and of the num-
ber operators. For these states, the number of photons is perfectly determined and
the phase is completely unknown according to the phase–number uncertainty rela-
tion. (2) Coherent states, which are eigenstates of the annihilation operator â. These
are most similar to the classical states, i.e. to points in phase space. (3) Squeezed
states. These are the most general class of minimum uncertainty states. In this respect,
they represent a generalization of the coherent state in the case where the uncertainty
product is not symmetric. They constitute a genuine quantum feature of the radiation
field.

• Then, some quasi-probability distributions have been presented, as functions in the
phase space. In particular, we have presented the Q-function, the characteristic function,
the P-function, and the Wigner function.

• Then, we have studied the atom–field interaction, with particular attention to the Jaynes–
Cummings model for two-level atoms and to Rabi oscillations. In this context, we have
shown that quantum systems may present a collapse-and-revival behavior.

• We have discussed the geometric phase and interpreted the Aharonov–Bohm effect as a
useful application.

• Finally, we have analyzed the Casimir effect.

52 See [Emig et al. 2007].



507 Problems
�

Problems

13.1 Prove that

∇ · (∇ × V) = 0,

∇ × (∇ f ) = 0,

∇ · (∇ f ) = ∇2 f = � f ,

where f is an arbitrary scalar function and V an arbitrary vector.
13.2 Using Maxwell’s equations, the definition of the vector potential, and the condition

for the Coulomb gauge, show that A satisfies the wave equation (13.10).
13.3 Derive the coefficient (13.19).
13.4 Derive the explicit expressions (13.20) for the electric and magnetic fields.
13.5 Using Eqs. (13.20) and (13.22) derive the Hamiltonian (13.23) for the quantized

electromagnetic field.
13.6 Compute the partition function for a quantized harmonic oscillator so as to obtain

the result (13.32).
13.7 (a) Applying Eq. (5.32a), derive the mean energy (13.33a) for a harmonic oscillator

at the equilibrium.
(b) Obtain the same result by using the number distribution (13.31) of the state.

13.8 Show that the operator êıφ admits the number state expansion

êıφ =
∞∑

n=0

|n 〉 〈n + 1 |. (13.227)

Use this result to prove the commutation relation[
êıφ , ê−ıφ

]
= |0 〉 〈0 |, (13.228)

which shows that êıφ is not unitary.
(Hint: Take advantage of Eq. (13.39a) and of the resolution of identity for number
states

∑∞
n=0 |n 〉 〈n | = Î .)

13.9 Prove Eqs. (13.39).
13.10 Verify that the states ∣∣eıφ 〉 = ∞∑

n=0

eınφ |n〉 (−π < φ ≤ π) (13.229)

are eigenstates of the exponential phase operator êıφ , and compute the corre-
sponding eigenvalues. Are they orthogonal? Why? Write down their resolution of
identity.

13.11 Show that the only non-vanishing matrix elements of the exponential phase
operators are given by 〈

n − 1
∣∣∣êıφ

∣∣∣ n〉= 1, (13.230a)〈
n + 1

∣∣∣ê−ıφ
∣∣∣ n〉= 1. (13.230b)

Use these results to prove that êıφ and ê−ıφ are not Hermitian operators.
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13.12 Derive the uncertainty relation between ĉosφ and ŝinφ.
13.13 Use the results of Prob. 4.11 to show that[

N̂ , êıφ
]
=−êıφ (13.231a)[

N̂ , ê−ıφ
]
= ê−ıφ . (13.231b)

Take advantage of these latter results to prove the commutation relations (13.42).
13.14 Evaluate the uncertainty relation (13.43) for the eigenstates of the number operator.

Use this result to obtain the phase uncertainties �ĉosφ and �ŝinφ.
13.15 Write the commutation relation betweeen magnetic and electric field [Ê, B̂] of a

single mode and use it to derive the corresponding uncertainty relation. Evaluate
the uncertainty product for the vacuum state.

13.16 Prove Eqs. (13.60) by using the properties of the number operator and of the
coherent states. Obtain the same results exploiting directly the Poisson distribution
(13.59) for the photon number.

13.17 By exploiting the analogy between a one-dimensional particle subjected to a
harmonic oscillator potential and a single mode of the electromagnetic field, iden-
tify the dimensionless position and momentum operators corresponding to the
quadratures.

13.18 Prove Eq. (13.64).
(Hint: Make use of Eqs. (13.49), (13.61), and (13.24).)

13.19 Prove that, if ξ̂ and π̂ are two non-commuting operators, then

e−ηξ̂ π̂eηξ̂ = π̂ − η
[
ξ̂ , π̂

]
+ η

2

2!

[
ξ̂ ,
[
ξ̂ , π̂

]]
+ · · ·

=
∑

n

(−η)n

n!

[
ξ̂ , π̂

]
n

, (13.232)

where η is a complex parameter,[
ξ̂ , π̂

]
n
=
[
ξ̂ ,
[
ξ̂ , π̂

]
n−1

]
,

and [
ξ̂ , π̂

]
1
=
[
ξ̂ , π̂

]
.

First, give the proof up to the second order in η; then, prove the general case.
(Hint: For the general derivation, make use of the derivatives of Eq. (13.232) with
respect to η.)

13.20 Prove the Baker–Hausdorff(–Campbell) theorem, which states that, given any two
operators Ô and Ô

′
for which[

Ô ,
[

Ô , Ô
′]] = [Ô

′
,
[

Ô , Ô
′]] = 0,

when in particular
[

Ô , Ô
′]

is a c-number, we have

eÔ+Ô
′ = eÔ eÔ

′
e−

1
2 [Ô ,Ô

′
] = eÔ

′
eÔe

1
2 [Ô ,Ô

′
]. (13.233)

(Hint: Make use of the results of the previous problem.)
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13.21 Prove that D̂(α)D̂†(α) = Î .
13.22 Prove Eq. (13.69).
13.23 Show that a free-field single-mode coherent state remains coherent under time

evolution.
13.24 Coherent states are overcomplete. This means that any coherent state may be written

as an expansion in terms of the other coherent states. Show that this is indeed the
case.
(Hint: Use the completeness relation (13.71).)

13.25 Make use of

e−Ô Ô
′
eÔ =

∑
n

(−1)n

n!

[
Ô , Ô

′]
n

, (13.234)

where, as in Prob. 13.19,
[

Ô , Ô
′]

n
=
[

Ô ,
[

Ô , Ô
′]

n−1

]
is the iterated commutator,

to prove the equalities

Ŝ†(ξ )â Ŝ(ξ ) = â cosh r − â†eıχ sinh r , (13.235a)

Ŝ†(ξ )â† Ŝ(ξ ) = â† cosh r − âe−ıχ sinh r . (13.235b)

13.26 Use the results of problem 13.25 to prove Eqs. (13.81) and (13.82).
13.27 Prove that the Q-function is bounded by 1/π .
13.28 Prove Eq. (13.90).

(Hint: Make use of the fact that for any x and y we have 2xy ≤ x2 + y2.)
13.29 Derive the characteristic functions for a coherent state ρ̂ = |β〉 〈β | (see

Eq. (13.100)) and a number state ρ̂ = |n〉 〈n | (see Eq. (13.101)).
13.30 Prove that integration of the W-function with respect to px gives the correct

probability distribution of the position.
13.31 Derive Eq. (13.116).
13.32 Using the explicit expression (13.131), derive Eq. (13.135).

(Hint: Derive first Eq. (13.134) and then assume that the local oscillator is in a
coherent state |αL〉 .)

13.33 Prove the relations (13.144) and (13.145).
13.34 Derive the result (13.181).
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14 Quantum theory of open systems

In this chapter we shall deal with the quantum dynamics of an open system. By open quan-
tum system we mean here a system which interacts with an environment (see Sec. 9.4):
since we are not interested in the dynamics of the environment, we shall have to describe
the evolution of the system in some “effective” way. In particular, if we consider only the
evolution of the system, it will be non-unitary, and this will represent the subject of this
chapter. As we know, Hamiltonian quantum dynamics is unitary and changes pure states
into pure states. On the other hand, non-unitary dynamics changes an initially pure state
into a mixture, which must be described by a density matrix (see Ch. 5). In the case of
macroscopic systems, the coupling with the environment may be arbitrarily reduced and
therefore its influence can be made correspondingly small (see Sec. 1.1). Microscopic sys-
tems, however, always couple to the environment and this coupling cannot be considered
negligible. This is the reason why the quantum theory of open systems is one of the most
important and fundamental chapters of quantum mechanics that, though born in quantum
optics, has many implications in almost all fields of physics. The present chapter can be
seen as a further development of the measurement theory (see Ch. 9), as open systems
manifest a decoherent dynamics (see in particular Sec. 9.4).

One of the simplest and most effective ways to describe the interaction of a system
with an environment is the so-called reservoir or heat bath approach. In this approach, the
microscopic quantum system is assumed to interact with a much larger system endowed
with a large number of degrees of freedom. This concept has been mutuated from statis-
tical mechanics: the reservoir may be the water tank at a certain temperature used in the
Carnot engine, or a bath of harmonic oscillators representing the radiation field viewed as
an external perturbation acting on the dynamics of an atom. In some cases, the separation
into “system” and “bath” is not physically evident, but only convenient for the character-
istics of the system’s dynamics. In general, however, due to the large number of degrees
of freedom of the bath, the system does not influence the reservoir, whereas the presence
of the reservoir and its coupling to the system induces dissipation (i.e. energy loss) and
fluctuations (i.e. random noise).

In Sec. 14.1 we shall discuss the general effect of a reservoir on a quantum system
in terms of decoherence and dephasing and introduce the concept of superoperator. In
Sec. 14.2 the concept of master equation is introduced. In this section we shall also con-
sider a first example of superoperator, the Lindblad superoperator. Finally, methods for
finding the solution of the master equation are presented. In Sec. 14.3 we shall provide
a generalization of the master equation formalism. In Sec. 14.4 the second example of
superoperator, the jump superoperator, is presented and the quantum Monte-Carlo method
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is briefly reviewed. Finally, in Sec. 14.5 the issue of the Schrödinger cats is again discussed
by introducing the most recent methods developed in quantum optics.

14.1 General considerations

14.1.1 Decoherence and dephasing

Let us consider a quantum system S. We shall study here the simplest case, i.e. a generic
two-level system described by the ket

|ψ〉 = c′0 |0〉 + c′1|1〉 , (14.1)

|0〉 and |1〉 representing an arbitrary basis. S interacts with a large reservoir R, whose
state can be expanded in the orthonormal basis {|rn〉 }. Initially, the state of the combined
system (S +R) is simply given by the factorized state

|&〉 = |ψ〉 ⊗ | R〉 , (14.2)

where | R〉 =∑n an |rn〉 is some initial state of the bath. In other words, the initial state
is separable, i.e. it may be represented as a direct product of the two initial state vectors. In
general, after the interaction, the state of the combined system will no longer be factorized,
i.e. we may write ∣∣& ′〉 = c0 |0〉 | R0〉 + c1 |1〉 | R1〉 , (14.3)

where | R0〉 and | R1〉 are some other (normalized but not necessarily orthogonal, i.e.
〈R1 | R0〉 	= 0) states of the reservoir. The density matrix corresponding to the state
described in Eq. (14.3) is given by

ρ̂SR = |c0|2 |0〉 〈0 | R0〉 〈R0 | + |c1|2 |1〉 〈1 | R1〉 〈R1 |
+ c0c∗1 |0〉 〈1 | R0〉 〈R1 | + c1c∗0 |1〉 〈0 | R1〉 〈R0 | , (14.4)

which is a pure state. In order to obtain the reduced density matrix of the system alone, we
have to trace the reservoir out, so that (see Prob. 14.1)

ˆ̃ρS =
[ |c0|2 c0c∗1 〈R1 | R0〉

c∗0c1 〈R0 | R1〉 |c1|2
]

. (14.5)

We see from Eq. (14.5) that the diagonal elements are not affected by this transformation,
whereas the off-diagonal elements are reduced by the factor | 〈R1 | R0〉 | < 1. The more the
two states | R1〉 and | R0〉 become orthogonal, the smaller the off-diagonal elements will
be. This is therefore a simple example of how decoherence may occur in an open quantum
system.

Another “phenomenological” way to show the effects of the reservoir’s random fluctu-
ations is provided by the so-called dephasing. In this case we assume that the state of the
system S after interaction with R may be written as

|ψ〉 = c0 |0〉 + c1eıφ |1〉 , (14.6)
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where φ represents a random phase. When the fluctuations are large enough, the off-
diagonal terms again tend to vanish, since

〈
eıφ
〉 = 0. Similar considerations may be

developed in the case of an n-level system, with n > 2.

14.1.2 Operators and superoperators

We want now to develop the appropriate formalism to study the dynamics described in a
qualitative way in the previous subsection. Generally speaking, any operator Ô may be
represented in the following form (see Eq. (5.5)):

Ô =
∑
j ,k

| j〉 〈 j | Ô|k〉 〈k |, (14.7)

where {|n〉 } is an arbitrary basis on the underlying Hilbert space. In this way, operators may
be considered as – not necessarily normalized – “vectors” in a super Hilbert space,1 which
is the direct product of the original Hilbert space H and its dual H∗ (see also Subsec. 1.3.2).
In fact, Eq. (14.7) may be rewritten as

Ô =
∑
j ,k

O jk | j 〉 〈k |, (14.8)

where

O jk =
〈

j
∣∣∣Ô∣∣∣ k〉 . (14.9)

Therefore, we may associate to any operator Ô a S-ket |Ô} and a S-bra {Ô|, defined by∣∣∣Ô }=∑
j ,k

O jk | j , k}, (14.10a)

{
Ô
∣∣∣ =∑

j ,k

O∗
jk{ j , k|, (14.10b)

where

| j , k}= || j 〉 〈k |} , (14.11a)

{ j , k| = {| j 〉 〈k | | (14.11b)

represent the basis in which the S-ket (and the S-bra) is expanded. Their scalar product
may be represented as

{l, m| j , k} = 〈l | j〉 〈k | m〉 = δl, jδk,m , (14.12)

from which the generalized scalar product follows (see Prob. 14.2){
Ô
∣∣∣ Ô

′} = Tr
(

Ô† Ô
′)

. (14.13)

From Eq. (14.13) it follows that we may reformulate Eq. (14.9) as〈
j
∣∣∣Ô∣∣∣ k〉 = { j , k|Ô} . (14.14)

1 See [Royer 1989].
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As a consequence of the introduction of S-kets and S-bras, the operators acting on the
S-kets and S-bras are called superoperators, which will be symbolized with a double hat in
the following. We shall consider in this chapter two examples: the Lindblad superoperator
(in Subsec. 14.2.2) and the jump superoperator (in Sec. 14.4). In the next subsections, when

a superoperator ˆ̂L acts on an operator Ô , if not explicitly expressed, it will be understood

that the superoperator acts on the S-ket
∣∣∣Ô }.

14.2 The master equation

In the open-system context, the master equation is a first-order differential equation for the
reduced density operator of the system. It incorporates all the “ingredients” of the system–
reservoir dynamics, so that the knowledge of the initial density matrix and the ability to
solve the master equation allow us to determine the density operator of the system at any
time t .

14.2.1 General formalism of the master equation

In this subsection we shall derive a rather general form of the master equation. In order
to reach this goal we shall use several assumptions and approximations, which will be
emphasized during the derivation.

Let us consider the Hamiltonian of the system plus reservoir. This may be written as

ĤSR = ĤS + ĤR + ĤI = Ĥ0 + ĤI, (14.15)

where Ĥ0 = ĤS + ĤR is the free part and ĤI is the interaction part of the Hamiltonian.
In the Schrödinger picture, the dynamics of the total system is ruled by the von Neumann
equation (5.28), which, in this case, is

d

dt
ρ̂
SR
S = ı

h̄

[
ρ̂
SR
S , ĤSR

]
, (14.16)

where the subscript S refers to the Schrödinger picture. Our aim is to find an equation for
the reduced density operator of the system S

ˆ̃ρSS (t) = TrR
[
ρ̂
SR
S (t)

]
, (14.17)

where the superscript S refers to the system. First, we move to the Dirac picture (see
Subsec. 3.6.2 and Eq. (5.30)) and transform the density operator ρ̂SRS according to

ρ̂
SR
I (t) = e

ı
h̄ Ĥ0t

ρ̂
SR
S (t)e−

ı
h̄ Ĥ0t . (14.18)

In the interaction picture, the von Neumann equation for the total system reads

d

dt
ρ̂
SR
I (t) = ı

h̄

[
ρ̂
SR
I (t), Ĥ I

I (t)
]

, (14.19)



517 14.2 The master equat ion
�

where the interaction Hamiltonian in the interaction picture is given by

Ĥ I
I (t) = e

ı
h̄ Ĥ0t ĤI(t)e

− ı
h̄ Ĥ0t . (14.20)

As a consequence, making use of Eqs. (14.17) and (14.18), the reduced density operator of
the system S may be written as

ˆ̃ρSS (t) = TrR
[
e−

ı
h̄ Ĥ0t

ρ̂
SR
I (t)e

ı
h̄ Ĥ0t

]
, (14.21)

from which, taking into account that Ĥ0 = ĤS + ĤR, that the trace is over the reservoir
degrees of freedom, and the cyclic property of the trace (see Box 3.1), it follows that

ˆ̃ρSS (t) = e−
ı
h̄ ĤS t ˆ̃ρSI (t)e

ı
h̄ ĤS t , (14.22)

where

ˆ̃ρSI (t) = TrR
[
ρ̂
SR
I (t)

]
. (14.23)

At this point we may integrate Eq. (14.19), so as to obtain

ρ̂
SR
I (t) = ρ̂SRI (0) − ı

h̄

∫ t

0
dt ′
[

Ĥ I
I (t ′), ρ̂SRI (t ′)

]
. (14.24)

If we perform a second iteration by substituting back ρ̂SRI (t ′) into Eq. (14.24), we obtain

ρ̂
SR
I (t) = ρ̂SRI (0) − ı

h̄

∫ t

0
dt ′
[

Ĥ I
I (t ′), ρ̂SRI (0)

]
− 1

h̄2

∫ t

0
dt ′
∫ t ′

0
dt ′′

[
Ĥ I

I (t ′),
[

Ĥ I
I (t ′′), ρ̂SRI (t ′′)

]]
. (14.25)

One could keep on iterating this way, deriving an infinite series. This process, however,
would not be very helpful and we prefer to differentiate Eq. (14.25). This calculation gives

d

dt
ρ̂
SR
I (t) = − ı

h̄

[
Ĥ I

I (t), ρ̂SRI (0)
]

− 1

h̄2

∫ t

0
dt ′
[

Ĥ I
I (t),

[
Ĥ I

I (t ′), ρ̂SRI (t ′)
]]

. (14.26)

Now we perform the trace over the reservoir degrees of freedom. By taking into account
Eq. (14.23), this yields

d

dt
ˆ̃ρSI (t) = − 1

h̄2

∫ t

0
dt ′TrR

{[
Ĥ I

I (t),
[

Ĥ I
I (t ′), ρ̂SRI (t ′)

]]}
, (14.27)

where, without restrictions, we have assumed

TrR
{[

Ĥ I
I (t), ρ̂SRI (0)

]}
= 0. (14.28)

Now, we impose that the reservoir and the system S are initially uncoupled, i.e.

ρ̂
SR
S (0) = ρ̂SS (0) ⊗ ρ̂RS , (14.29)
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and that the interaction energy is much smaller than the energy of the system and of the
reservoir (weak coupling assumption), so that the reservoir density matrix is practically not
affected by the interaction with S, i.e.

ρ̂
R
I (t) � ρ̂RI (0) = ρ̂R, (14.30)

from which it follows that

ρ̂
SR
I (t) � ρ̂SI (t) ⊗ ρ̂R. (14.31)

In the weak coupling approximation, Eq. (14.27) takes the form of an integro-differential
equation for ˆ̃ρSI (t)

d

dt
ˆ̃ρSI (t) = − 1

h̄2

∫ t

0
dt ′TrR

{[
Ĥ I

I (t),
[

Ĥ I
I (t ′), ˆ̃ρSI (t ′) ⊗ ρ̂R

]]}
. (14.32)

In order to reduce the previous equation into a true differential equation, we consider the
case where the correlation functions of the reservoir vary at a time scale much shorter than
the characteristic time of the dynamics of S. In this case, we can make use of the so-called
Markov approximation, and say that ˆ̃ρSI (t) changes by a negligible amount over the time
scale on which the reservoir correlation functions in Eq. (14.32) tend to vanish. With such
an approximation, we may replace ˆ̃ρSI (t ′) by ˆ̃ρSI (t) and let the lower limit in the integral
go to minus infinity in Eq. (14.32). After defining τ = t − t ′, we finally obtain

d

dt
ˆ̃ρSI (t) = − 1

h̄2

∫ ∞

0
dτTrR

{[
Ĥ I

I (t),
[

Ĥ I
I (t − τ ), ˆ̃ρSI (t) ⊗ ρ̂R

]]}
. (14.33)

As in the theory of stochastic processes, we see that the Markov approximation has pro-
duced exactly the desired result: the knowledge of ˆ̃ρSI (0) and of the interaction Hamiltonian
(both of the state of the system and of the “force” acting on it) is sufficient to determine
ˆ̃ρSI (t) at all future times. In the following subsections we shall see how these general
considerations apply to particular cases.

14.2.2 The Lindblad master equation

Equation (14.33) has a rather general form and makes no assumptions on the type
of system–reservoir interaction. Let us now write the interaction Hamiltonian in the
Schrödinger picture in the form

ĤI = h̄
∑

j

(
�̂

†
j �̂ j + �̂ j �̂

†
j

)
, (14.34)
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where �̂k are reservoir operators and the system operators �̂k satisfy the quite general
property2 [

ĤS , �̂†
j

]
= h̄ω j �̂

†
j . (14.35)

Equation (14.34) is sufficiently general and, for example, includes the case when �̂ j are
annihilation operators of the reservoir (supposed to be a bath of harmonic oscillators)
and �̂ j are annihilation operators of the system. In such a case, the master equation
will describe the dynamics of the damped harmonic oscillator, and the Hamiltonian
(14.34) expresses the exchange of quanta between the system and the bath: it is precisely
this exchange which represents the energy loss due to dissipation. Using Eqs. (14.34)
and (14.20) in Eq. (14.33), we obtain 42 = 16 terms: the four terms given by the dou-
ble commutator, in each of which Ĥ I

I (t) is expanded following Eq. (14.34). For example,
one of the terms has the form

−
∫ t

0
dt ′
∑

j ,l

e−ıω j t�̂
†
j e

ıωl t�̂l ˆ̃ρSI (t ′)TrR
[
�̂ j (t)�̂

†
l (t ′)ρ̂R

]
, (14.36)

where

�̂k(t) = e
ı
h̄ ĤRt

�̂ke−
ı
h̄ ĤRt , (14.37)

and we have used the formula (see Prob. 13.19)

e
ı
h̄ ĤS t

�̂ j e
− ı

h̄ ĤS t = eıω j t�̂ j . (14.38)

The other three terms have a similar form. Now, we assume, as we have already seen in
the previous subsection, that the state of the reservoir is stationary, i.e. that the last term in
the trace in Eq. (14.36) only depends on the difference t ′ − t . As a consequence, the terms
in the sum for which ω j 	= ωl are quickly oscillating terms with respect to the dynamical

time scale of ˆ̃ρSI (t), and can be neglected. This is another manifestation of the so-called
rotating wave approximation, first introduced in Subsec. 13.7.1.

Next, we use the Markov approximation of the previous subsection, and therefore we
are allowed to replace ˆ̃ρSI (t ′) by ˆ̃ρSI (t). The term (14.36) can be written as

−
∑

j

�̂
†
j �̂ j

∫ ∞

0
dτeıω j τ ˆ̃ρSI (t)TrR

[
�̂ j (τ )�̂†

j (0)ρ̂R
]

, (14.39)

where τ = t − t ′ and we let t go to infinity. In conclusion, since the terms involving the
correlation functions of products as �̂(τ )�̂(0) or �̂†(τ )�̂†(0) are for simplicity assumed to
be negligible if, for τ 	= 0, the reservoir is in a thermal state,3 all the remaining terms can
be cast in one of the following forms

2 When, for some operators �̂ j and �̂†
j , Eq. (14.35) holds, we say that �̂ j and �̂†

j are eigenoperators of the
system’s Hamiltonian. This property is general because it can be proved that any system’s operator can be
expanded into eigenoperators of the system’s Hamiltonian.

3 These terms, however, are not necessarily zero if the reservoir is in a squeezed state (see Subsec. 13.4.3).
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0
dτeıω j τTrR

[
�̂ j (τ )�̂†

j (0)ρ̂R
]
= A j + ı B j , (14.40a)∫ ∞

0
dτe−ıω j τTrR

[
�̂ j (0)�̂ j (τ )ρ̂R

]
= A j − ı B j , (14.40b)∫ ∞

0
dτeıω j τTrR

[
�̂

†
j (τ )�̂ j (0)ρ̂R

]
=C j + ı D j , (14.40c)∫ ∞

0
dτe−ıω j τTrR

[
�̂

†
j (0)�̂ j (τ )ρ̂R

]
=C j − ı D j , (14.40d)

where A j , B j , C j , and D j are real numbers. The master equation in the interaction picture
then takes the final form

d

dt
ˆ̃ρSI (t) = −ı

∑
j

[
B j �̂

†
j �̂ j + D j �̂ j �̂

†
j ,

ˆ̃ρSI
]

+
∑

j

A j

(
2�̂†

j
ˆ̃ρSI �̂ j − �̂†

j �̂ j ˆ̃ρSI − ˆ̃ρSI �̂†
j �̂ j

)
+
∑

j

C j

(
2�̂ j ˆ̃ρSI �̂†

j − �̂ j �̂
†
j
ˆ̃ρSI − ˆ̃ρSI �̂ j �̂

†
j

)
, (14.41)

where the first commutator term just represents a small perturbing Hamiltonian term (e.g.
the Lamb and Stark shift terms) and is usually neglected.

Equation (14.41) is an example of a general class of equations known as Lindblad’s
master equation,4 which, in the Schrödinger picture, can be written in the form

d

dt
ρ̂(t) = ˆ̂Lρ̂(t), (14.42)

where ˆ̂L is the Lindblad superoperator for the generalized Liouville transformation
given by

ˆ̂L |ρ̂} = ( ˆ̂Ld + ˆ̂Lnd

) ∣∣ρ̂ } , (14.43a)

where the term (for the sake of notation, we drop the S-ket formalism, as already
announced)

ˆ̂Lndρ̂ = − ı

h̄

[
Ĥ , ρ̂

]
(14.43b)

represents the unitary evolution given by the quantum counterpart of the Liouville equation

(5.28), while the term ˆ̂Ld represents the dissipative part given by

4 See [Lindblad 1983].
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ˆ̂Ldρ̂ = 1

2

∑
j

([
�̂ j ρ̂, �̂†

j

]
+
[
�̂ j , ρ̂�̂

†
j

])
, (14.43c)

where, in this context, the set of operators {�̂ j } is also known as Lindblad operators.

14.2.3 The damped harmonic osci l lator

Let us consider the simplest case of a harmonic oscillator interacting with a bath of
harmonic oscillators (the heat bath), which we have already mentioned in the previous
subsection. This model may represent, for instance, a single mode of the electromagnetic
field interacting with its environment. The total Hamiltonian in this case would be

Ĥ = ĤS + ĤB + ĤI, (14.44)

where

ĤS = h̄ωâ†â (14.45)

is the harmonic-oscillator type Hamiltonian of the system,

ĤB = h̄
∑

n

ωnb̂†
nb̂n (14.46)

is the bath Hamiltonian, b̂n being the annihilation operator of the n-th oscillator of the
bath, and

ĤI = â�̂† + â†
�̂ (14.47)

is the interaction Hamiltonian, where �̂ is a bath operator defined as

�̂ =
∑

n

gnb̂n , (14.48)

and gn are the system–bath coupling constants. As we have seen, in this approximation the
bath is stationary. Its correlation functions (14.40) can be shown to be5〈

�̂†(t)�̂(t ′)
〉
= 2γ Nδ(t − t ′), (14.49a)〈

�̂(t)�̂†(t ′)
〉
= 2γ (N + 1) δ(t − t ′), (14.49b)〈

�̂(t)�̂(t ′)
〉
= 0, (14.49c)〈

�̂†(t)�̂†(t ′)
〉
= 0, (14.49d)

5 See, e.g., [Gardiner 1991, 336].
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where the δ functions reflect the fact that the dynamics of the system are very fast, γ is
known as damping constant and is a function of the coupling constants, and

N = 1

exp
(

h̄ω
kB T

)
− 1

, (14.50)

where T is the temperature of the bath that we assume to be constant (the bath is
both stationary and in equilibrium). As we have already mentioned, such an interaction
induces exchange of quanta between the system and the bath. Using the above results into
Eq. (14.41), we may derive the master equation for the reduced density matrix of the sys-
tem in the interaction picture. For a zero-temperature heat bath, we have N = 0 and the
master equation can be written as (see Prob. 14.3)

dρ̂

dt
= γ

(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
. (14.51)

14.2.4 Solut ion of the master equation

The solution of the master equation, for instance of Eq. (14.51), is often difficult. In some
cases, it is even impossible to solve an operatorial master equation directly and find ρ̂(t)
in operatorial form. However, alternative methods of solution are available. For exam-
ple, one can derive equations of motion for certain relevant expectation values and solve
these to obtain the desired operator averages. Alternatively, one may take matrix elements
of the master equation in a given representation and obtain equations of motion for the
matrix elements of ρ̂ (see for instance Subsec. 14.3.2). Another possible way out is to
adopt numerical techniques to integrate the master equation. Finally, it is also possible
to translate the master equation into an equivalent c-number partial differential equation
for the Q, W , or P functions (see Sec. 13.5). This yields a Fokker–Planck-type equation
for the corresponding quasi-probability distribution.6 It is not our intention here to give a
complete treatment of the methods which allow the conversion of the master equation into
a partial differential equation. We shall only sketch briefly the steps which are necessary
to accomplish this task for the Q-function and apply the method to the damped harmonic
oscillator case.

If we want to turn Eq. (14.51) into a Fokker–Planck equation for the Q-function, it is
sufficient to compute the expectation value of both sides of the master equation onto a
coherent state |α〉 . The lhs of Eq. (14.51) then becomes (see also Eq. (13.83))

1

π

〈
α

∣∣∣∣dρ̂dt

∣∣∣∣α〉 = ∂

∂t
Q(α,α∗; t). (14.52)

6 See [Fokker 1914] and [Planck 1917]. Originally, the Fokker–Planck equation described the time evolution of
the probability density function of the position and velocity of a particle, but it can be generalized to any other
observable, too, It applies to systems that can be described by a small number of “macrovariables,” where
other parameters vary so rapidly with time that they can be treated as noise. The first use of the Fokker–Planck
equation was the statistical description of Brownian motion of a particle in a fluid.
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On the rhs, it is first necessary to normally order (see footnote 19 of Ch. 13) all the terms,
i.e. to move all the creation operators â† to the left of the annihilation operators â, using
the commutation relation [â, â†] = Î , and then compute the corresponding expectation
value.

For instance, considering the last term in brackets on the rhs of Eq. (14.51), we have (see
Prob. 14.5)〈

α

∣∣∣ρ̂â†â
∣∣∣α〉 = α 〈α ∣∣∣∣â†

ρ̂ + dρ̂

dâ

∣∣∣∣α〉 = π (|α|2 + α ∂∂α
)

Q(α,α∗; t), (14.53)

where we have taken advantage of the fact that |α〉 is an eigenstate of the destruction
operator with eigenvalue α. In a similar way,〈

α

∣∣∣â†
ρ̂â
∣∣∣α〉 = |α|2 (α,α∗; t), (14.54)

and, for the first term in brackets on the rhs of Eq. (14.51), we have (see Prob. 14.6)〈
α

∣∣∣âρ̂â†
∣∣∣α〉 = |α|2 Q + α∗ ∂

∂α∗
Q + ∂

∂α
(αQ)+ ∂2

∂α∂α∗
Q. (14.55)

In conclusion, one can establish an operatorial correspondence between the operators â, â†

(which act on the density matrix) and the differential operators ∂/∂α, ∂/∂α∗ (which act on
the corresponding Q-function):

âρ̂↔
(
α + ∂

∂α∗

)
Q(α,α∗), (14.56a)

â†
ρ̂↔α∗Q(α,α∗), (14.56b)

ρ̂â↔αQ(α,α∗), (14.56c)

ρ̂â† ↔
(
α∗ + ∂

∂α

)
Q(α,α∗). (14.56d)

Proceeding in this way for all the operator products in the rhs of the master equation,
one obtains the corresponding partial differential equation for the Q-function. In par-
ticular, if one applies this procedure to the master equation (14.51), one obtains (see
Prob. 14.7)

∂

∂t
Q = γ

(
2
∂2

∂α∂α∗
+ ∂

∂α
α + ∂

∂α∗
α∗
)

Q. (14.57)

14.3 A formal generalization

In the present section, we want to make a formal connection between the master equation
formalism, developed in the preceding subsections, and the POVM formalism, described
in Sec. 9.10.
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14.3.1 The master equation as a non-unitary transformation

Any time that a system and its environment interact, we may write the transformation T
(see Subsec. 9.10.1), which occurs on the system as a result of the interaction,7 as

T
(
ρ̂
S
)
= TrE

[
Û
(
ρ̂
S ⊗ ρ̂E

)
Û †
]

, (14.58)

where, as usual, ρ̂S and ρ̂E stand for the density matrix of the system and the environment,
respectively, and Û is the evolution operator for the combination system plus environment.

Equation (14.58) may also be written in terms of the transformation superoperator ˆ̂T as
(see also Eq. (9.116a))

ˆ̂T
∣∣∣ρ̂S } =∑

j

〈
e j

∣∣∣Û (
ρ̂
S ⊗ |e0〉 〈e0 |

)
Û †
∣∣∣ e j

〉
=
∑

j

ϑ̂ j ρ̂
S
ϑ̂

†
j , (14.59)

where |e0〉 is the initial state of the environment and {∣∣e j
〉 } is an orthogonal basis for the

environment, and where

ϑ̂k =
〈
ek

∣∣∣Û ∣∣∣ e0

〉
(14.60)

are the amplitude operators (here for the environment) introduced in Eqs. (9.123)
and (9.124) (see also Eq. (9.150)). Let us now consider the probability that the system
is in the state ρ̂Sk , written as

ρ̂
S
k ∝ TrE

[
P̂kÛ

(
ρ̂
S ⊗ |e0〉 〈e0 |

)
Û † P̂k

]
= ϑ̂k ρ̂

S
ϑ̂

†
k , (14.61)

where P̂k = |ek〉 〈ek |. The state ρ̂Sk can be normalized as

ρ̂
S
k = ϑ̂k ρ̂

S
ϑ̂

†
k

TrS
(
ϑ̂k ρ̂

S
ϑ̂

†
k

) , (14.62)

so that we may finally write the probability that the system is in the state ρ̂Sk as

℘k = Tr
(
ϑ̂k ρ̂

S
ϑ̂

†
k

)
(14.63)

and the transformation given by Eqs. (14.58) and (14.59) as

T
(
ρ̂
S
)
=
∑

k

℘k ρ̂
S
k . (14.64)

Let us now consider the special case in which we perform a measurement on the environ-
ment and project it onto to the state |em〉 . In this case, the final state of the compound
system is given by (see Eq.(9.101))

7 See [Nielsen/Chuang 2000, 356–73, 386–89].
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ρ̂
S+E
f =

P̂mÛ
(
ρ̂
S ⊗ ρ̂E

)
Û † P̂m

Tr
[

P̂mÛ
(
ρ̂
S ⊗ ρ̂E

)
Û †
] , (14.65)

where P̂m = |em〉 〈em |. The net transformation acting on the object system may then be
written as

ˆ̂T m

∣∣∣ρ̂S } = TrE
[

P̂mÛ
(
ρ̂
S ⊗ ρ̂E

)
Û † P̂m

]
=
∑

jk

w j TrE
[

P̂k P̂mÛ
(
ρ̂
S ⊗ ∣∣e j

〉 〈
e j
∣∣) Û † P̂m P̂k

]
=
∑

jk

ϑ̂ jk ρ̂
S
ϑ̂

†
jk , (14.66)

where

ρ̂
E =

∑
j

w j
∣∣e j
〉 〈

e j
∣∣ , (14.67)

the w j being weights, i.e. real and positive numbers, and

ϑ̂ jk = √
w j

〈
ek

∣∣∣P̂mÛ
∣∣∣ e j

〉
. (14.68)

Now, we can show the connection of this formalism with that of the master equation. Let
us consider, for the sake of simplicity, the specific example of a two-level atom coupled to
the vacuum radiation field and undergoing spontaneous emission. The coherent part of the
atom’s evolution is described by the Hamiltonian

Ĥ = 1

2
h̄ωσ̂z , (14.69)

where h̄ω is the energy difference of the atomic levels (see Subsec. 13.7.1). The emission
of a photon, causing the atom to make a transition from the excited level |e〉 to the ground
state |g〉 , is described by the operator

�̂ = √2γ σ̂−, (14.70)

where σ̂− = |g 〉 〈e | and γ is the rate of spontaneous emission. The other possible process,
namely the absorption of a photon (which would be described by the σ̂+ operator), is
not allowed since initially no photons are present in the radiation field (and the atom is
supposed to be in the excited state). From Eqs. (14.43) and making use of Eq. (14.70), we
immediately obtain the master equation ruling this process as

ˆ̂L ∣∣ρ̂ } = dρ̂

dt
= − ı

h̄

[
Ĥ , ρ̂

]
+ γ (2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂ − ρ̂σ̂+σ̂−) . (14.71)

Now, we show that this master equation may be reduced to Eq. (14.59) by performing the
change of variables

ρ̂
′(t) = e

ı
h̄ Ĥ t
ρ̂(t)e−

ı
h̄ Ĥ t . (14.72)

In fact, the master equation for ρ̂′(t) is

ˆ̂L ∣∣ρ̂′ } = γ (2σ̂ ′−ρ̂′σ̂ ′+ − σ̂ ′+σ̂ ′−ρ̂′ − ρ̂′σ̂ ′+σ̂ ′−) , (14.73)
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where (see Prob. 13.19)

σ̂ ′− = eı Ĥ t σ̂−e−ı Ĥ t = e−ıωt σ̂−, (14.74a)

σ̂ ′+ = eı Ĥ t σ̂+e−ı Ĥ t = eıωt σ̂+. (14.74b)

Thus, Eq. (14.73) may be rewritten as

ˆ̂L ∣∣ρ̂′ } = γ (2σ̂−ρ̂′σ̂+ − σ̂+σ̂−ρ̂′ − ρ̂′σ̂+σ̂−) , (14.75)

which is formally similar to Eq. (14.51) – even though there we are faced with a mode of
the electromagnetic field and here with an atom. In order to solve Eq. (14.75) we need to
use the Bloch-vector representation for ρ̂′.

14.3.2 Bloch–sphere representation of a two-dimensional
system

It is interesting to note that there is a formal similarity between a two–level atom interacting
with the electromagnetic field and a spin-1/2 magnetic dipole precessing in a magnetic
field. In order to bring out this analogy in the most clear form, let us write the density
matrix of the atom in the form

ρ̂ =
[
ρee ρeg

ρge ρgg

]
, (14.76)

where ρ jk =
〈
j
∣∣ρ̂∣∣ k〉, with {| j〉 , |k〉 } = {|e〉 , |g〉 }. We may then introduce the Bloch

vector

s ≡ (sx , sy , sz
)

, (14.77)

defined by its (real) components

sx = ρeg + ρge, (14.78a)

sy = ı
(
ρeg − ρge

)
, (14.78b)

sz = ρee − ρgg . (14.78c)

The first two components are then linked to the coherences (the off-diagonal terms) of
the density matrix while the third component is the so-called population inversion of the
atom (see Box 13.1). The norm of the vector s cannot be larger than 1 (see Prob. 14.8).
The Bloch vector is therefore a three-dimensional vector contained within a sphere with
radius 1. Moreover, any pure state can be described as a Bloch vector pointing to the
surface of the sphere (see Fig. 14.1). The Bloch-sphere representation is then analogous to
the Poincaré-sphere representation (see Subsec. 1.3.3 and Sec. 5.6).

In conclusion, any density matrix (pure or mixed) ρ̂ of a two-dimensional system may
be written as

ρ̂ = 1

2

(
Î + s · σ̂

)
, (14.79)
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�Figure 14.1 Bloch-sphere representation of states of a two-level quantum system.

where σ̂ is the two-dimensional “spin” operator and

s · σ̂ =
∑

j

s j σ̂ j , (14.80)

where j ∈ {x , y, z} (see Eqs. (6.154)). In explicit matricial form Eq. (14.79) may be
written as

ρ̂ = 1

2

[
1 + sz sx − ısy

sx + ısy 1 − sz

]
. (14.81)

It is easy to verify that, by substituting expressions (14.78) into the matrix (14.81), we
obtain the density matrix (14.76).

In order to illustrate the formalism of the Bloch vector, let us go back to the master
equation (14.75) for a spontaneously emitting two-level atom. The equation of motion for
the three components of the Bloch vector can then be written as (see Prob. 14.9)

ṡx =−γ sx , (14.82a)

ṡy =−γ sy , (14.82b)

ṡz =−2γ (1 + sz) . (14.82c)

These equations are formally similar to the Bloch equations for a magnetic dipole in a
magnetic field and are known as the optical Bloch equations. Their solution (see again
Prob. 14.9) is

sx (t)= e−γ t sx (0), (14.83a)

sy(t)= e−γ t sy(0), (14.83b)

sz(t)= e−2γ t sz(0) + e−2γ t − 1. (14.83c)
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Defining γ ′ = 1 − e−2γ t , this evolution is equivalent to

ρ̂
′(t) = ˆ̂T ∣∣ρ̂′(0)

} = ϑ̂0ρ̂
′(0)ϑ̂†

0 + ϑ̂1ρ̂
′(0)ϑ̂†

1 , (14.84)

where

ϑ̂0 =
[

1 0
0

√
1 − γ ′

]
, ϑ̂1 =

[
0

√
γ ′

0 0

]
, (14.85)

where ϑ̂0 and ϑ̂1 are amplitude operators. In this specific case, the process (14.84) describes
amplitude damping and γ ′ represents the probability of spontaneous emission, which tends
to 1 as t goes to infinity.

It is interesting to note that the amplitude-operator formalism is more general than that
of the master equation. In fact, the amplitude-operator formalism may describe processes
that are not Markovian, i.e. describe state changes without the assumption of a continuous
time evolution.

14.4 Quantum jumps and quantum trajectories

In this section we shall present an entirely different way of viewing the master equation.
This approach is based on an analogy with classical statistical physics, where two descrip-
tions of the dynamical evolution of a system are possible: first, one may describe the system
by using a probability distribution; in this case, as we know, the evolution is generated by
a Fokker–Planck-type equation. Alternatively, one may describe the system as an ensem-
ble of stochastic trajectories, each of which is generated by a set of stochastic differential
equations. In the quantum mechanics of open systems, quasi-probability distributions (see
Sec. 13.4) may be used in the place of the classical probability distributions, whose evo-
lution is given by the corresponding Fokker–Planck-type equation (see Subsec. 14.2.4). It
is then natural to ask: can we envisage a description of a quantum system which is the
analogue of the classical stochastic-trajectory method?

In order to answer this question, let us suppose for the time being that we are able
to monitor in a perfect way our open quantum system. Even though we know that this
is not physically possible (see Subsec. 2.3.3 and also Ch. 15), this procedure will help
us in the derivation of the new formalism of quantum trajectories. If our monitoring is
perfect, then we are able to detect any quanta lost by the system. For example, in the
case of the electromagnetic field inside a cavity, we would be able to detect any single
photon lost by the cavity. We can then record the times at which the quanta are released.
Therefore, we may assume that between two successive detections the system evolves in
a continuous way (without emission of quanta) (see also Sec. 9.8). In this hypothetical,
perfectly monitored, quantum trajectory, the dynamics of the system would then consist
of a succession of continuous evolutions and discrete emissions of quanta, called quantum
jumps. Needless to say, these hypothetical trajectories have no physical meaning. In spite
of this, the evolved density operator at a certain time can be determined as the weighted
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ensemble average of all possible quantum trajectories. This is the essence of the quantum-
jump approach to the dynamics of open quantum systems.

Let us now briefly illustrate how this formalism works. Consider an open quantum
system described by the reduced density matrix ρ̂. Its dynamics is ruled by the master
equation (14.42)

d

dt
ρ̂(t) = ˆ̂Lρ̂(t), (14.86)

where (see also Eqs. (14.43))

ˆ̂Lρ̂ =
( ˆ̂Ld + ˆ̂Lnd

)
ρ̂ (14.87)

is the superoperator pertaining to the system and its environment. Equation (14.86) can be
formally solved as

ρ̂(t) = e
ˆ̂L t ρ̂(0). (14.88)

The jump superoperator, i.e. the superoperator describing the loss of a quantum by the
system, can be defined as

ˆ̂J ρ̂ = âρ̂â†, (14.89)

since this term precisely accounts for the emission of a quantum.8 We may then add and

subtract the superoperator ˆ̂J to ˆ̂L in the exponent in the rhs of Eq. (14.88) to obtain

ρ̂(t) = e[( ˆ̂L− ˆ̂J )+ ˆ̂J ]t ρ̂(0). (14.90)

By making use of the identity (see Prob. 14.10)

e(Ô+ηÔ ′)ξ =
∞∑

k=0

ηk
∫ ξ

0
dξk

∫ ξk

0
dξk−1 . . .

∫ ξ2

0
dξ1eÔ(ξ−ξk ) Ô ′eÔ(ξk−ξk−1) Ô ′ . . . Ô ′eÔ ′ξ1 ,

(14.91)
where the term for k = 0 is defined as

eÔ(ξ ), (14.92)

we arrive at

ρ̂(t) = e[( ˆ̂L− ˆ̂J )+ ˆ̂J ]t ρ̂(0)

=
∞∑

m=0

∫ t

0
dtm

∫ tm

0
dtm−1 · · ·

∫ t2

0
dt1

× e( ˆ̂L− ˆ̂J )(t−tm ) ˆ̂J e( ˆ̂L− ˆ̂J )(tm−tm−1) ˆ̂J · · · ˆ̂J e( ˆ̂L− ˆ̂J )t1 ρ̂(0). (14.93)

8 Truly speaking, the choice of ˆ̂J is not unique and may well depend on how the system is thought to be
monitored. This remark, however, does not alter the essence of the following argument.
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The expression inside the integrals may be considered as the unnormalized conditioned
density operator

ˆ̄ρc(t) = e( ˆ̂L− ˆ̂J )(t−tm ) ˆ̂J e( ˆ̂L− ˆ̂J )(tm−tm−1) ˆ̂J · · · ˆ̂J e( ˆ̂L− ˆ̂J )t1 ρ̂(0). (14.94)

Moving from right to left, this term can be interpreted in the following manner: the initial
density operator evolves in the time interval between t = 0 and t = t1 (when there are no

loss of quanta) under the propagator e( ˆ̂L− ˆ̂J )t1 , jumps under the action of ˆ̂J at the time
of the first emission (t1), evolves during the next interval (t2 − t1) under the propagator

e( ˆ̂L− ˆ̂J )(t2−t1), jumps again at t2 under the action of ˆ̂J , and so on. In this way, we are
building a step-wise trajectory for the conditioned density operator. Two ingredients are
necessary for this procedure: first, we need two types of evolution, one without jumps

ruled by the superoperator ˆ̂L− ˆ̂J , and a jump ruled by the superoperator ˆ̂J ; second, we

need the specific set of times for the jumps. Because neither ˆ̂J nor e( ˆ̂L− ˆ̂J )t preserve the
trace, we have to introduce a normalization by hand, and define the conditioned density
operator as

ρ̂c(t) = ˆ̄ρc(t)

Tr
[ ˆ̄ρc(t)

] , (14.95)

where, as defined above, ˆ̄ρc(t) is the unnormalized density operator. This way of proceed-
ing defines a decomposition of the quantum dynamics into an infinite number of quantum
trajectories, which are generated by the times at which jumps happen, and between which
jumps, although watched for, do not occur. Therefore, this method has a deep analogy
with the path-integral method developed by Feynman (see Sec. 10.8). The main difference
between the two methods lies in the fact that the former is based on the master equation
(and therefore on an analogy to classical statistical mechanics), while the latter repre-
sents a decomposition of the Schrödinger equation (and therefore represents an analogy
to deterministic classical mechanics).

The most powerful application of the quantum-jump approach is that it allows us to per-
form numerical (Monte Carlo) simulations, which often turn out to be more efficient than
numerical integrations of the master equation or of the Fokker–Planck equation. In fact,
this is the quantum analogue of the classical Monte-Carlo method. As it is well known,
several numerical techniques are available in order to integrate a one-dimensional function
between a and b (see Fig. 14.2). For instance, we may partition the interval [a, b] into
N subintervals and calculate the area of each rectangle separately and then sum them up.
We can also generate N random points from a uniform distribution in the rectangle of the
x − y plane containing the area we wish to integrate, and count the number Nu of those
falling below the curve. In the latter case, the quantity (b − a)cNu/N , where c is the height
of the rectangle, represents an estimate of the desired integral. For two-dimensional spaces
the two methods are equivalent and for N −→∞ both converge with high accuracy to the
integral of the function. However, for n-dimensional spaces (n ≥ 2), in order to obtain the
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�Figure 14.2 Two different numerical techniques for evaluating the integral
∫ b

a dxf(x). (a) We subdivide the
interval [a, b] in N subintervals, calculate the area of each rectangle, and finally sum them up.
(b) We generate N uniform random points in the dashed rectangle and count those falling
below the curve.

same degree of accuracy, while the first method requires N n calculations of f (x), the
Monte-Carlo method only requires a number of calculations of f (x) that is polynomial in
N (see also Sec. 17.8).

In the following we wish to illustrate a practical method that is a direct consequence of
what we have derived above and is known as stochastic Monte-Carlo wave-functions or
simply quantum trajectories. We shall proceed now in an operational manner and make
use of numerical simulations. Since the jumps occur at random times, we must build this
randomness in the theory in a way that is statistically correct.9 The probability that an
emission occurs in the time interval [t , t +�t) for the conditioned density operator ρ̂c(t)
is given by

℘c(t) = Tr

[ ˆ̂J ρ̂ ĉ(t)

]
�t , (14.96)

i.e. simply the product of the conditioned mean flux of quanta times the time interval �t .
Suppose that ρ̂c(t) may be written as the pure state

ρ̂c(t) = |ψc(t)〉 〈ψc(t) | , (14.97)

and that, for the density operator (14.94), we also have

ˆ̄ρc(t) = ∣∣ ψ̄c(t)
〉 〈
ψ̄c(t)

∣∣ . (14.98)

Then, we may write the propagation without emissions of quanta over a time �t as∣∣ ψ̄c(t +�t)
〉 = e−

ı
h̄
˜̂H�t ∣∣ ψ̄c(t)

〉
, (14.99)

where, for reasons that will be seen in short, ˜̂H is not a (Hermitian) Hamiltonian. At the
time of a jump, the unnormalized state undergoes the collapse∣∣ ψ̄c(t)

〉 � Ĉ
∣∣ ψ̄c(t)

〉
, (14.100)

9 See [Carmichael 1993, 122–30].
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where Ĉ is a collapse operator. For example, in the case ˆ̂J is defined as in Eq. (14.89),
Ĉ = â. Now, given the ket |ψc(tn)〉 (where tn = n�t), we may define a discrete-time
operational procedure to calculate the ket |ψc(tn+1)〉 . In fact, first we have to evaluate
the probability

℘c(tn) =
〈
ψc(tn)

∣∣∣Ĉ†Ĉ
∣∣∣ψc(tn)

〉
�t . (14.101)

Then, we generate a random number rn distributed uniformly on the interval [0, 1]. Finally,
we compare ℘c(tn) with rn and calculate |ψc(tn+1)〉 according to

|ψc(tn+1)〉 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ĉ |ψc(tn )〉(〈
ψc(tn )

∣∣∣Ĉ†Ĉ
∣∣∣ψc(tn )

〉) 1
2

if ℘c(tn) ≥ rn

e
− ı

h̄
˜̂H�t |ψc(tn )〉(〈

ψc(tn )

∣∣∣∣e ı
h̄ ( ˜̂H†− ˜̂H )�t

∣∣∣∣ψc(tn )

〉) 1
2

if ℘c(tn) < rn .
(14.102)

The result is a stochastic quantum mapping between the times tk (possibly separated by
many �t) at which the collapses occur

|ψc(tk+1)〉 = Ĉe−
ı
h̄
˜̂Hτk+1 |ψc(tk)〉(〈

ψc(tk)

∣∣∣∣e ı
h̄
˜̂H†τk+1Ĉ†Ĉe−

ı
h̄
˜̂Hτk+1

∣∣∣∣ψc(tn)

〉) 1
2

, (14.103)

where τk+1 = tk+1 − tk is a random time, which depends on the jump statistics (see
Eq. (14.101)). The central point (whose proof goes beyond our goal) is that this procedure
leads to the same ensemble averages for observables as the master-equation approach.

One could be tempted to interpret this formalism as a description of real trajectories.
However, as we have already said, since the single stochastic quantum trajectories do not
bear any physical meaning, the quantum jumps formalism has been shown to be rather a
pure numerical technique. This can also be seen if we apply this formalism to a simple case,
the master equation for the damped harmonic oscillator (see Eqs. (14.51) and (14.89)). In
this case, in the Schrödinger picture, we would have

ˆ̂J ˆ̄ρc = 2γ â ˆ̄ρcâ†, (14.104a)( ˆ̂L− ˆ̂J
)
ˆ̄ρc =−ıω

[
â†â, ˆ̄ρc

]
− γ

(
â†â ˆ̄ρc + ˆ̄ρcâ†â

)
, (14.104b)

where ˆ̄ρc is unnormalized. It is easy to see that, in this case, the evolution operator for the

relative ket
∣∣ ψ̄c

〉
is e−

ı
h̄
˜̂Ht , where (see Prob. 14.11)

˜̂H = h̄ωâ†â − ı h̄γ â†â. (14.105)

As a consequence, also ˜̂H is not Hermitian, which implies that the propagator e−
ı
h̄
˜̂Ht

cannot be unitary (see Stone’s theorem: p. 122).
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14.5 Quantum optics and Schrödinger cats

In the present section we would like to show one of the many possible connections between
quantum optics and fundamental quantum mechanics, via the theory of open systems. As
we know (see Sec. 9.3), Schrödinger cats are at the same time paradoxical states and a
fundamental key to a deep understanding of quantum mechanics. As we have already men-
tioned in the introduction of Ch. 13, quantum optics has been playing a major role in testing
some fundamental (and sometimes puzzling) results of quantum theory. The Schrödinger
cat business is precisely one of these examples.

14.5.1 The anharmonic osci l lator model

Let us consider a very simple quantum-optical model which is also a fundamental example
of quantum-mechanical dynamics, first pointed to in this context by Yurke and Stoler.10

It is essentially an initial coherent state of the single-mode electromagnetic field evolving
under the influence of an anharmonic-oscillator Hamiltonian (see Eq. (13.23)), given by

Ĥ = h̄
(
ωN̂ + ωa N̂ 2

)
, (14.106)

where ω is the energy-level splitting of the unperturbed harmonic oscillator (see Sec. 4.4)
and ωa is the strength of the anharmonic perturbation.11 Rigorously speaking, the anhar-
monic perturbation term in the Hamiltonian should be taken proportional to x̂4 (see
Subsec. 10.1.3). However, it can be shown (see Probs. 10.2 and 14.12) that, except for
a suitable frequency shift, the two formulations are equivalent. In the interaction picture,
where the anharmonic term is considered as the interaction part of the Hamiltonian, an
initial coherent state |α〉 will evolve as

|α, t〉 = e
−ıωa t

(
â†â

)2

|α〉 = e−
|α|2

2

∞∑
j=0

α j e−ıωa t j2

√
j!

| j〉 . (14.107)

This equation immediately tells us that the state vector is periodic with period 2π/ωa and
becomes particularly interesting for certain values of t : at time t = π/ωa , for example,
e−ıωa t j2 = (−1) j and the state |α〉 has evolved to the state |−α〉 . Furthermore, when t =
π/2ωa , we have (see Prob. 14.13)∣∣∣∣α,

π

2ωa

〉
= 1√

2

(
e−ı π4 |α〉 + eı π4 |−α〉

)
, (14.108)

i.e. the initial coherent state has evolved towards a coherent superposition of the coherent
states |α〉 and |−α〉 , which are 180◦ out-of-phase with respect to each other and, as a
consequence, are macroscopically distinguishable when |α| is large (|α| # 1). The state

10 See [Yurke/Stoler 1986].
11 The anharmonic term may, in general, be written as h̄ωa N̂ k with k > 1. Here we restrict our analysis to k = 2

even though many properties of the system are still present for any given k ≥ 2.
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�Figure 14.3 Beam-splitter model used to account for losses and dissipation in the anharmonic-oscillator
model. The input state (14.110) is injected into the first port of the beam splitter (mode â1). At
the output, one observes the light emerging from b̂1, independently of what emerges from b̂2.

(14.108) is a prototype of the quantum-optical Schrödinger cat state and, as shown by
several authors,12 is tremendously sensitive to decoherence and dissipation (which have not
been considered up to now) and therefore very difficult to experimentally realize and detect.

In order to exploit such a sensitivity, it is very interesting to evaluate what happens when
the state (14.108) is injected into a beam splitter that may be used to model losses due
to the medium or the detector (see Fig. 14.3). If we denote by η the (real) transmission
coefficient of the beam splitter (see Subsec. 13.6.2), then the loss will be proportional to
1 − η. In this simple model, loss is represented by the fact that, at the output modes, one
only observes light emerging from b̂1, independently from what emerges from b̂2. The
beam-splitter transformation may be written as(

b̂1

b̂2

)
=
[ √

η
√

1 − η
−√1 − η √

η

](
â1

â2

)
, (14.109)

while the input state is represented by

| in〉 =
∣∣∣∣α,

π

2ωa

〉
1
|0〉 2 , (14.110)

i.e. the input of the second port of the beam splitter is the vacuum. A direct calculation
shows that the output state is given by (see Prob. 14.14)

|out〉 = 1√
2

[
e−

ıπ
4
∣∣√ηα〉 1 ∣∣∣−√1 − ηα

〉
2
+ e

ıπ
4
∣∣−√ηα〉 1 ∣∣∣√1 − ηα

〉
2

]
, (14.111)

where the definition (13.58) of a coherent state has been used. Now, taking advantage of
homodyne detection (see Subsec. 13.6.2), we may observe the light coming out from the
output b̂1 of the beam splitter. In this way, we measure he operator (see also Eq. (13.136))

X̂θ = 1√
2

(
eıθ b̂1 + e−ıθ b̂†

1

)
, (14.112)

12 Besides the article of Yurke and Stoler, see [Walls/Milburn 1985] [Milburn 1986].
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where θ s the local-oscillator phase of the homodyne-detection scheme. Introducing the
operator (see also Eq. (13.80))

Ŷθ = 1√
2

(
eıθ b̂2 + e−ıθ b̂†

2

)
, (14.113)

we may reconstruct the wave function ψout(x , y) = 〈x , y | out〉 corresponding to the state
(14.111) in the representation x , y of the eigenvalues of X̂θ and Ŷθ , respectively, that is,

ψout(x , y) = 1√
2

[
e−

ıπ
4 ψγ (x)ψ−δ(y) + e

ıπ
4 ψ−γ (x)ψδ(y)

]
, (14.114)

where

γ = α√η and δ = α√1 − η, (14.115)

while

ψβ (x) = 1

π
1
4

exp

[
− x2

2
+ 2xβeıθ

√
2

−
(
βeıθ

√
2

)2

− |β|2
2

]
. (14.116)

The probability distribution for the outgoing photocurrent x , coming out from the homo-
dyne detector, may be obtained by integrating |ψout(x , y)|2 over all possible values of
y, i.e.

℘(x) =
+∞∫
−∞

dyψ∗
out(x , y)ψout(x , y)

= 1

2
√
π

{
e−[x−√2η|α| cos(θ+φ)]2 + e−[x+√2η|α| cos(θ+φ)]2

+ 2e−2(1−η)|α|2 e−x2−2η|α|2 cos2(θ+φ) sin
[
2
√

2η|α| sin(θ + φ)x
]}

, (14.117)

where α = |α|eıφ . This probability distribution may be immediately interpreted as an inter-
ference signal (see, e.g., Fig. 9.7): the first two terms represent two Gaussian bells centered,
respectively, at

x = ±√2η|α| cos(θ + φ), (14.118)

whereas the third term represents the interference due to the coherence (or superposition)
of the states |α〉 and |−α〉 in Eq. (14.108). One may then interpret the combination of the
beam splitter plus the ideal detector as a model for a real, inefficient detector (η < 1), or
even for lossy medium.

From a pedagogical point of view, the beauty of this model lies in the fact that, by
varying the local-oscillator phase θ , it is first possible to verify that the state (14.108)
has two macroscopically distinguishable components (see Fig. 14.4(a)), and, successively,
that such a state is a coherent rather than a statical mixture. Moreover, the number of
interference fringes is proportional to |α| (see Fig. 14.4 (b)), i.e. to the distance between
the components (see Fig. 14.4.(c)). However, as soon as the detection efficiency becomes
smaller than 1 or, equivalently, the loss enters into play (here represented by the the
fraction 1 − η of the light coming out from the second port of the beam splitter), the
interference fringes rapidly vanish. From an analytical point of view, this is made clear
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�Figure 14.4 Interference fringes and their sensitivity to losses in the Yurke–Stoler model. (a) The probability
distribution (14.117) is plotted for |α| = 2 and η = 1. The local oscillator phase of the homodyne
detector is set such that cos(θ + φ) = 1. Here, the two distinguishable components are clearly
visible. (b) As in (a) but with sin(θ + φ) = 1: the interference fringes arise. (c) As in (b) but with
|α| = 5: the number of interference fringes increases. (d) As in (c) but with η = 0.97: even small
losses partly destroy interference. (e) As in (c) but with η = 0.94: a slightly larger loss almost
washes out interference fringes.
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�Figure 14.5 (a) Pictorial representation in phase space of a coherent state of a quantum oscillator. (b) The
two coherent-state components separated by a distance d from a Schrödinger cat.

�Box 14.1 Coherent states and macroscopic distinguishability

It is possible to conceive of a Schrödinger cat in a very intuitive way [Brune et al. 1996].
Consider a two-level atom (ground and excited state: |g〉, |e〉) coupled to an apparatus A
represented by a quantum oscillator in a coherent state. The state vector |α〉 defining it has a
circular Gaussian distribution of radius unity due to quantum fluctuations which make the tip
uncertain (see Figs. 13.2 and 14.5(a)). Consider an ideal measurement in which the atom–
oscillator interaction entangles the phase of the oscillator ±φ to the internal state of the atom
leading to:

|&〉 = 1√
2

(
|e,αeıφ〉 + |g,αe−ıφ〉

)
. (14.119)

When the distance13 d = 2
√

N sinφ (where N = |α|2 is the mean photon number) is larger
than one, a Schrödinger cat is obtained (see Fig. 14.5(b)).

Practically, the biggest difficulty one encounters to generate and detect a Schrödinger
cat is the preservation of the quantum coherence when enlarging sufficiently the “dis-
tance” between the component states in order to obtain a quantum behavior on, at least, a
mesoscopic scale.

by the factor e−2(1−η)|α|2 in front of the interference term of Eq. (14.117): when the
loss 1 − η become larger than 1/2 |α|2, such a factor becomes much smaller than 1
(see Figs. 14.4.(d)–14.4(e)). When α is large, then, a detection efficiency slightly smaller
than 1 is sufficient to wash out interference fringes, making the probability distribution
(14.117) indistinguishable from that corresponding to a statistical mixture of the states |α〉
and |−α〉 .

13 Here, we use the concept of distance between quantum states in an intuitive, heuristic way. More formal
definitions of this concept may be introduced (Probs. 14.15–14.16). A complete discussion of this subject
goes beyond the aim of this book. For more details see, e.g., [Knöll/Orlowski 1995] .
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�Figure 14.6 Experimental setup of Haroche’s experiment. The cavity C is made by two superconducting
niobium mirrors. The rubidium atoms effusing from the oven O are velocity selected by two laser
beams L1 and L′

1 and are then excited into state |e〉 in box B. Each circular atom is prepared in a
quantum superposition of |e〉 and |g〉 by a resonant microwave π/2 pulse in a low-Q- cavity R1. It
then crosses the high-Q cavity C in which a small coherent field with average photon number N
varying from 0 to 10 is injected by a pulsed source S. The field, which evolves freely while each
atom crosses C, relaxes to a vacuum before being regenerated for the next atom. The field is left
coherent. After leaving C, each atom undergoes another π/2 pulse in a cavity R2 identical to R1.
R1 and R2 are fed by a continuous-wave source S′. The atoms in states |e〉 (|g〉) are finally counted
by detectors De (Dg).

14.5.2 A cavity QED model

A further example of Schrödinger cat realization in quantum optics is given by the combi-
nation of high-Q cavities14 and circular Rydberg atoms.15 In this kind of system, especially
prepared two-level atoms are sent at a controlled speed through the cavity, where the
electromagnetic field is usually prepared in an initially coherent state |α〉 , generating
entangled states of the atom–field combined system.16 Let us consider the apparatus shown
in Fig. 14.6. It is schematically made of a high-Q cavity (C), two auxiliary low-Q cav-
ities (R1 and R2), an atomic source (O, L1 and L′1, and B), and atomic detectors (De

and Dg). The Rydberg atoms may be in either of two possible states (ground, |g〉, or
excited, |e〉).

The |e〉 � |g〉 transition and the cavity frequency are slightly off resonance (detuning δ),
so that the atom and field cannot exchange energy but only undergo 1/δ dispersive fre-
quency shifts. The atom–field coupling then produces an atomic-level dependent dephasing
of the field and generates an entangled state.

14 The quality factor of an electromagnetic field cavity (a resonator) is given by Q = ω/γ , where ω is the
resonance frequency of the cavity and γ its dissipation constant. Clearly, the higher the quality factor of the
cavity, the smaller is the influence of dissipation on the dynamics of the electromagnetic field inside the cavity.

15 A Rydberg atom is an excited atom with one or more electrons that have a very high quantum principal number.
These atoms have a number of peculiar properties, including an exaggerated response to electric and magnetic
fields, and long decay times. When also the orbital quantum number is high, their electron wave functions
approximate classical (circular) orbits about the nucleus.

16 See [Brune et al. 1996].
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The initial state of the atom–cavity system is given by

|&(0)〉 = |e〉 ⊗ |α〉 = |e,α〉 . (14.120)

When passing through R1 the atom receives a π/2 pulse17 and the state becomes

|&(t1)〉 = 1√
2
(|g,α〉 + |e,α〉 ) . (14.121)

As said above, when passing through the cavity C, the state of the field undergoes a phase
shift, which is different for the two atomic states. As a consequence, the state of the system
becomes

|&(t2)〉 = 1√
2

(|g,αeıφg 〉 + |e,αeıφe 〉) . (14.122)

Finally, when the atom crosses R2, it receives a second π/2 pulse so that the combined
state may be cast into the form

|&(t3)〉 = 1

2

(|g,αeıφg 〉 − |e,αeıφg 〉 + |g,αeıφe 〉 + |e,αeıφe 〉) . (14.123)

It is then clear that, detecting the atomic state in |e〉 or |g〉 , respectively, leaves the cavity
field into the state

|ψF 〉 = 1√
2

(|αeıφe 〉 ∓ |αeıφg 〉) . (14.124)

If φe � −φg � φ, Eq. (14.124) may be rewritten as

|ψF 〉 = 1√
2

(|αeıφ〉 + |αe−ıφ〉) , (14.125)

which represents a coherent quantum superposition of two (distinct) states of the
single-mode electromagnetic field inside the cavity. These two coherent components are
(macroscopically) distinguishable if |α| is large and φ is of the order of π/2 (see Box 14.1).

The coherence between the two components of the state was revealed by a subsequent
two-atom correlation experiment. While a first atom creates a superposition state involving
the two field components, a second atom (the probe) crosses C with the same velocity after
a short delay τ2 and dephases the field again by an angle ±φ. The two field components
then turn into three, with phases +2φ,−2φ, and 0. The zero component may be obtained
via two different paths, since the atoms may have crossed C either in the (e, g) config-
uration or in the (g, e) configuration (i.e. the second atom undoes the phase shift of the
first one). Since the atomic states are mixed after C in R2, the (e, g) and (g, e) “paths” are
indistinguishable. As a consequence, there is an interference term in the joint probabilities
℘

(2)
ee ,℘(2)

eg ,℘(2)
ge ,℘(2)

gg .
The experimental results confirm that mesoscopic Schrödinger cat states may be actu-

ally created in this system and that their subsequent decoherence may be observed and
monitored: Fig. 14.7(a) shows the signal obtained when C is empty. The final probabil-
ity distribution ℘(1)

g (ν) (of finding an atom in |g〉 as a function of the continuous-wave

17 This amounts to the transformation | e〉 � 1√
2
(| g〉 + | e〉 ) and | g〉 � 1√

2
(| g〉 − | e〉 ) (see Sec. 13.7 and

Prob. 8.3).



540 Quantum theory of open systems
�

1.0

(a)

(b)

(c)

(d)

0.5

0.0

1.0

0.5

0.0

0 2 4

R
am

se
y 

fr
in

ge
 s

ig
na

l

6
ν (kHz)

8 10

�Figure 14.7 ℘
(1)
g (ν) signal exhibits Ramsey fringes.(a) C empty.(b)–(d) C stores a coherent field. Insets show

the phase space representation of the field components left in C. Adapted
from [Brune et al. 1996, 4888].

frequency ν) exhibits the so-called Ramsey fringes (interference) typical of atoms subjected
to successive pulses. In fact, transitions |e〉 � |g〉 occur either in R1 or in R2. Since the two
“paths” are indistinguishable this leads to an interference term between the corresponding
probability amplitudes.

In Fig. 14.7(b)–(d) we have represented the fringes when there is a coherent field in
C (with an average number of photons N = 9.5 and the coherent amplitude |α| = 3.1).
When δ is reduced, the contrast of the fringes decreases (and the “paths” of the atoms
become partially distinguishable) and their phase is shifted. The fringe contrast reduction
demonstrates the separation of the field state into two components.

Summary

• In this chapter we have dealt with a very important problem, that of the analysis of open
systems, mainly by using the methods developed in quantum optics. In particular, we
have derived the general form of the so-called master equation.
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• We have presented the most famous and general formulation, the Lindblad master equa-
tion. We have then applied this formalism to the case of the damped harmonic oscillator
and have found a quantum analogue of the Fokker–Planck equation.

• After having shown the connection between master equation and POVM, we have pre-
sented the method of quantum jumps, an analogue of the classical use of stochastic
trajectories for studying the evolution of a system.

• We have presented more details about some Schrödinger cat experiments: the
anharmonic-oscillator model of a coherent single-mode electromagnetic field and a
cavity-QED experiment.

Problems

14.1 Expand the two states | R0〉 and | R1〉 of the reservoir as | R0〉 =∑ j a0
j

∣∣r j
〉

and

| R1〉 =∑ j a1
j

∣∣r j
〉
, in order to derive the result (14.5).

14.2 Prove Eqs. (14.13) and (14.14).
14.3 Follow the procedure sketched in Subsec. 14.2.3 and explicitly derive the master

equation for a damped harmonic oscillator, Eq. (14.51).
14.4 From Eq. (14.51) show that the diagonal matrix element ℘(n) = 〈n ∣∣ρ̂∣∣ n〉, represent-

ing the probability of n quanta being in the system, obeys the equation

d℘(n)

dt
= 2γ

[
(n + 1) ℘(n + 1) − n℘(n)

]
. (14.126)

14.5 Derive Eq. (14.53), by first proving that

ρ̂â† = â†
ρ̂ + dρ̂

dâ
. (14.127)

14.6 Derive Eq. (14.55).
14.7 Taking into account the results of the previous two problems and starting from

Eq. (14.51), prove Eq. (14.57).
14.8 Prove that in the case of a pure state the norm of the Bloch vector is equal to 1 while

in the case of a mixed state it is strictly smaller then 1.
14.9 From the master equation (14.75) derive the equations of motion for ρee, ρgg ,

and ρeg . After solving these equations, obtain and solve the corresponding Bloch
equations for sx , sy , and sz .

14.10 Prove Eq. (14.91).
14.11 Consider a non-unitary Schrödinger equation

ı h̄
d

dt
|ψ〉 = ˜̂H |ψ〉 , (14.128)

where ˜̂H = Ĥ0 + Ĥ ′ is a non-Hermitian Hamiltonian, such that Ĥ0 = Ĥ†
0 and

(Ĥ ′)† = −Ĥ ′. Show that the Louville equation in this case would be written as

ı h̄
d

dt
ρ̂ =

[
Ĥ0, ρ̂

]
+
[

Ĥ ′, ρ̂
]
+ . (14.129)
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14.12 Show that the Hamiltonian (10.31) may be rewritten in the form of Eq. (14.106),
with a suitable redefinition of the frequency.
(Hint: Take advantage of the results of Prob. 10.2 and of Eq. (4.78).)

14.13 Derive Eq. (14.108).
14.14 Derive Eq. (14.111).

(Hint: Rewrite the input state (14.110) so as to explicitly show the dependence
on the creation operator â†

1. Then, resolve Eq. (14.109) for â1 and substitute into
Eq. (14.109).)

14.15 The simplest definition of distance between two pure quantum states |ψ1〉 and |ψ2〉
is the so-called Fubini–Study distance [Bargmann 1954], defined as

d f s =
√

1 − |〈ψ1 | ψ2〉|2. (14.130)

Verify that it satisfies the property of a distance and calculate the distance between
the coherent states

∣∣αe−ıφ
〉

and
∣∣αeıφ

〉
introduced in Box 14.1.

14.16 One of the most common ways to generalize the concept of distance to arbitrary
(mixed) states ρ̂1 and ρ̂2 is the so-called Hilbert–Schmidt distance, defined as

dhs(ρ̂1, ρ̂2) = 1√
2
‖ ρ̂1 − ρ̂2 ‖2= 1√

2

{
Tr
[(
ρ̂1 − ρ̂2

)2]} 1
2

= 1√
2

[
Tr
(
ρ̂

2
1

)
+ Tr

(
ρ̂

2
2

)
− 2Tr

(
ρ̂1ρ̂2

)] 1
2

. (14.131)

Verify that this distance reduces to the Fubini–Study distance in the case of pure
states.
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15 State measurement in quantum mechanics

In classical mechanics, as we know, all observables commute with each other and therefore
belong to the same “commuting set.” This means that – in principle – we can measure all
observables simultaneously. Then, the state manifests itself as a collection of properties
(of values of observables) (see Sec. 1.1), and as such it is observable. On the other hand,
quantum-mechanical observables may not commute (see Subsec. 2.1.5). As a consequence,
the state is not just a collection of observable values (see also Sec. 2.3) so that we may
ask ourselves whether it is observable or not, and therefore raise the following question:
What is the nature of the wave function? Is it simply a mathematical tool, i.e. does it only
represent the sum of all that we can know about a system? Or does it have an ontological
status? Since the early days of quantum mechanics, this question has been very popular.
As a first attempt, de Broglie tried to interpret the wave function as describing, in classical
terms, a wave field that envelopes a classical particle (see also Subsec. 16.3.2). This theory
should predict the existence of empty waves, but several experiments have shown negative
results (see also the end of Sec. 9.6). More recently, many physicists have tried to propose
some methods in order to measure the wave function. Here we shortly report on some of
these proposals and discuss to what extent the quantum state can be measured.

In Sec. 15.1 we shall discuss Aharonov and co-workers’ proposal to measure the wave
function and show why this is ultimately a measurement of an observable of the system. In
Sec. 15.2 we shall see an important consequence of the non-measurability of the state in
quantum mechanics: the no-cloning theorem, i.e. the impossibility of cloning a quantum
state. In Sec. 15.3 we shall return to an important problem (see also Sec. 9.5): the relation-
ship between reversibility and irreversibility in quantum mechanics. In Sec. 15.4 we shall
discuss the theory and the new techniques for measuring the Wigner function of a system.
Finally, in Sec. 15.5, we shall develop some concluding remarks about how the quantum
state should be understood.

15.1 Protective measurement of the state

One of the most interesting attempts at interpreting the wave function in ontological terms
is due to Aharonov and coworkers.1 The main idea is that of protective measurement, i.e. a

1 See [Aharonov et al. 1993] [Aharonov/Vaidman 1993].
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measurement of the wave function during which it is prevented from changing noticeably
by means of another interaction which it undergoes at the same time.

Let us assume that we wish to measure an observable Ô on a system in the state |ς〉 =∑
c j
∣∣ s j
〉
, where the states

∣∣ s j
〉

are eigenkets of Ô , and that the interaction between the
apparatus A and the system S is described by the Hamiltonian

ĤA+S = Ĥ0 + ĤAS + ĤA, (15.1)

where

ĤAS = Ĥ = ε(t)x̂A Ô , (15.2)

is the interaction Hamiltonian, Ĥ0 is the free Hamiltonian of the system, ĤA is the Hamil-
tonian of the apparatus, x̂A is the one-dimensional pointer observable, and ε represents the
coupling function (see Eq. (9.10)), i.e. ε(t) is non-zero only in the interval [0, τ ] (duration
of the interaction). In general, such an interaction leads to an entangled state (see Sec. 9.1),
which may be written as

|&(τ )〉 =
∑

j

c′j |s j 〉|a j 〉, (15.3)

where

|a j 〉 = e−(ı/h̄)εo j x̂A |A〉 (15.4)

are states of the apparatus A which, for sufficiently large ε are orthogonal for distinct
eigenvalues a j ’s of the pointer observable. The apparatus A is in the initial state |A〉 .

Let us now consider the case in which no entanglement takes place. Therefore, in place
of Eq. (15.3), we write the factorized state

|ς (0)〉|A(0)〉 �→ |ς (t)〉|A(t)〉, t > 0. (15.5)

In this case, there is no reduction of the wave function. Instead, we would have the equation
of motion

d

dt
〈ς (t) |〈A(t) | p̂Ax |ς (t)〉|A(t)〉 = −ε(t)〈ς (t)|Ô|ς (t)〉, (15.6)

where p̂Ax is the observable canonically conjugate to x̂A and, in the Heisenberg picture,

d

dt
p̂Ax = ı

h̄

[
Ĥ , p̂Ax

]
= −ε(t)Ô . (15.7)

Equation (15.7) shows that p̂Ax changes by different amounts for distinct eigenvalues
o j , and by Eq. (15.6) we can determine 〈ς (t)|Ô|ς (t)〉 by the change in the apparatus’
momentum.

A protective measurement can be made in two different ways. (i) If |ς (t)〉 is a
non-degenerate eigenstate of the Hamiltonian Ĥ , then the interaction is assumed to be
sufficiently weak and Ĥ changes slowly so that |ς (t)〉 is nearly equal to |ς (0)〉 up to a
phase factor for t ∈ [0, τ ]. Then, following the adiabatic theorem (see Sec. 10.3), |ς (t)〉
remains an eigenstate of the Hamiltonian and no entanglement takes place.

(ii) If we have an arbitrary evolution, so that |ς (t)〉 is not necessarily an eigenstate of
the Hamiltonian, we can operate in the following manner. If |ς0(t)〉 is the evolution of |ς〉
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determined by the unperturbed Hamiltonian Ĥ0 of the system S, then one can measure an
observable Ô ′(t), for which |ς0(t)〉 is a non-degenerate eigenstate, a large number of times
which are dense in the interval [0, τ ] – say at times tn = (n/N )τ , n = 1, 2, . . . N , where N
is an arbitrarily large number. Then, |ς (t)〉 does not noticeably depart from |ς0(t)〉 – it is a
sort of quantum Zeno effect (see Sec. 9.8). Now, consider the branch of combined system
evolution in which each measurement of Ô ′(tn) results in the state |ς0(tn)〉 of S

|&(τ )〉0 = |ς0(tN )〉〈ς0(tN )|e− ı
h̄
τ
N Ĥ (tN ) · · · |ς0(t2)〉〈ς0(t2)| (15.8)

× e−
ı
h̄
τ
N Ĥ (t2)|ς0(t1)〉〈ς0(t1)|e− ı

h̄
τ
2 Ĥ (t1)|ς (0)〉|A(0)〉

= |ς0(tN )〉〈ς0(tN )|e− ı
h̄
τ
N ε(tN )x̂A Ô · · · |ς0(t3)〉〈ς0(t2)|

× e−
ı
h̄
τ
N ε(t2)x̂A Ô |ς0(t2)〉〈ς0(t1)|e− ı

h̄
τ
N ε(t1)x̂A Ô |ς0(t1)〉|A0(τ )〉,

where |A0(τ )〉 is the state of A when it evolves under the Hamiltonian ĤA. We now cal-
culate explicitly the last expectation value in Eq. (15.8) up to the second order in 1/N
and find

〈ς0(t1)|e− ı
h̄
τ
N ε(t1)x̂A Ô |ς0(t1)〉 = 1 − ı

h̄

τ

N
ε(t1)x̂A

〈
Ô
〉
− 1

2h̄2

τ 2

N 2
ε(t1)2 x̂2

A
〈
Ô2
〉

= 1 − ı

h̄

τ

N
ε(t1)x̂A

〈
Ô
〉

− 1

2h̄2

τ 2

N 2
ε(t1)2 x̂2

A
〈
Ô
〉2 − 1

2h̄2

τ 2

N 2
ε(t1)2 x̂2

A�Ô2

= e
− ı

h̄
τ
N ε(t1)x̂A

〈
Ô
〉 [

1 − 1

2h̄2

τ 2

N 2
ε(t1)2 x̂2

A�Ô2
]

, (15.9)

where we have made use of the fact that

�Ô2 =
〈
Ô2
〉
−
〈
Ô
〉2

. (15.10)

In the limit N →∞, where the product of the factors in the term containing �Ô2

approaches 1, Eq. (15.8) reads

|&(τ )〉0 = |ς0(τ )〉 exp

⎛⎝− ı

h̄

τ∫
0

dtε(t)x̂A
〈
Ô
〉⎞⎠ |A0(τ )〉. (15.11)

In this limit, the considered branch undergoes a unitary evolution and therefore the contri-
bution from other branches – giving rise to states different from |ς0(t)〉 – vanishes. From
the exponential operator in Eq. (15.11), the momentum of the apparatus is shifted by an
amount (see also Eq. (15.7))

� p̂Ax = −
τ∫

0

dt
〈
Ô
〉
ε(t). (15.12)
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Therefore, by measuring p̂Ax ,
〈
Ô
〉

can be determined. Then, according to the present

approach, by repeating this experiment with different observables, the wave function of
a single system may be determined up to an overall phase factor. Moreover, since a pro-
tective measurement as proposed by Aharonov and co-workers should not give rise to
entanglement between the system and the apparatus and neither lead to a collapse, it could
allow us in principle to distinguish between two non-orthogonal states, provided that both
are protected.

In conclusion, this proposal aims at measuring the state of a quantum system and there-
fore to consider it as an observable. In other words, Aharonov and co-workers’ try to
consider the quantum state in classical terms.

Aharonov and co-workers’ proposal has been criticized2 (see Prob. 15.1) by pointing
out that it only proved that, if the wave vector of a system S is known beforehand to be the
eigenstate of the unknown Hamiltonian of S, then it is possible to determine the properties
of that eigenstate. In other words, one can determine some of the properties of an unknown
Hamiltonian of S, if one knows that S is in an eigenstate of that observable. In fact, the
main condition of their model is a protective measurement, i.e. the system S interacts with
an apparatus A or with the rest of the world in such a way that its wave function remains
unchanged after the measurement but affects A, so that a succession of measurements can
completely determine it. This in turn means that, if S is in an energy eigenstate and if the
interaction between S and the rest of the world is adiabatic, then the state vector after the
measurement would still represent the same energy eigenstate. While the state vector is
unchanged, the rest of the world has been changed in a manner dependent on the specific
state of S. However, if so, what we have obtained is only the measurement of an observable
(the Hamiltonian) and not of the wave function as such. The problem is that we can force
the wave function to be the eigenstate of an observable, but we cannot force the observable
to have the unknown wave function as its eigenstate.

On the other hand, we know that the density matrix describing a pure state is a projector,
i.e. it is an observable (see Subsec. 2.1.1 and Eq. (5.26)). So, why one can measure a pro-
jector but cannot obtain information about the state? The question is, what are the possible
values that we would obtain by measuring a projector? Obviously, 0 or 1. If we obtain 0,
we know that the system has not passed a certain test (say a vertical polarization filter),
whereas if we obtain 1, we know that it has passed it (see also Subsec. 1.3.2). However,
if the system before the test was in a superposition state of, say, vertical and horizontal
polarization, we have a non-zero probability that it passes the test and a non-zero proba-
bility that it does not. Therefore, if we obtain a 0, we are not able to distinguish whether
the system before the measurement was in a horizontal polarization state or in a super-
position of vertical and horizontal polarization, and, similarly, if we obtain 1, we cannot
distinguish between a previous vertical or superposed polarization state. In conclusion, the
measurement of a projector (which, of course, is always possible) is not able to discrim-
inate between non-orthogonal states. In other words, given an unknown state, we cannot
decide which projector, if measured, would allow us to determine it.

2 See [Unruh 1994].
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15.2 Quantum cloning and unitarity violation

An important problem that is strictly connected with the question whether it is possible to
measure the state of a single system is the possibility of cloning the state of a quantum
system. By cloning we mean here the ability to make a perfect copy of a certain state
without disturbing the original state. This issue is deeply connected with the problem of
state measurement: as a matter of fact, if we had a quantum copying machine, then we
would be able to make an arbitrarily large number of copies of the state to be measured,
and then repeatedly measure different and incompatible observables on different copies, so
as to extract enough information to determine the state of a single quantum system.

15.2.1 No-cloning theorem

The central question, which is deeply connected with the state measurement in quan-
tum mechanics is the following: given a quantum system S in a certain (but in principle
unknown) state |ψ〉 , is it possible to make a perfect copy of it, i.e. is it possible to have
a second system S ′

to be in the same state |ψ〉 while leaving S in the original state? We
know that classically this is certainly possible. Ordinary photocopy machines do exactly
the right job. Quantum-mechanically, the answer is more delicate. Yuen has shown that it
is possible to duplicate a state known a priori to be any one of an orthogonal set of state
vectors.3 Is this also true for an arbitrary set of states (that is, not necessarily mutually
orthogonal)? As a matter of fact, the following theorem may be proved:4

Theorem 15.1 (No-cloning) In quantum mechanics no state can be cloned.

Proof

Suppose that such a cloning is possible. For the sake of simplicity, let us restrict ourselves to
a two-level system, e.g. the polarization state of a photon. Then, considering the apparatus
being in an initial “ready” state |A0〉, an incoming photon with vertical polarization |  〉,
and a third system (the one onto which we want to make a copy of the photon’s state) in a
generic state |0〉, we would have the evolution

|A0〉|0〉|  〉 � |A 〉 | 〉 | 〉 . (15.13a)

Similarly, for the same initial state of the apparatus and of the third system, but with an
incoming photon in horizontal polarization, we would have

|A0〉|0〉| ↔〉 � |A↔〉 |↔〉 |↔〉 . (15.13b)

3 See [Yuen 1986].
4 See [Wootters/Zurek 1982].
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Now, given the assumptions (15.13), and considering the case of an incoming photon in a
linear superposition c′|  〉 + c′′| ↔〉, due to linearity, the result of the interaction will be

|A0〉|0〉
(
c′|  〉 + c′′| ↔〉) � c′|A 〉 | 〉 | 〉 + c′′|A↔〉 |↔〉 |↔〉 . (15.14)

Now, it is easy to recognize that this result is in no way a clone of the superposition repre-
sented by the state of the incoming photon in the lhs of Eq. (15.14). In fact, such a cloning
should, instead, be represented by

|A0〉|0〉
(
c′|  〉 + c′′| ↔〉) � |A?〉

(
c′|  〉 + c′′| ↔〉) (c′|  〉 + c′′| ↔〉) . (15.15)

Q.E.D

15.2.2 D’Ariano–Yuen theorem

The previous proof shows that cloning would represent a violation of the superposition
principle (i.e. of the linearity of quantum mechanics). The proof has been generalized by
Yuen and D’Ariano5 by showing that cloning of two non-orthogonal states would represent
a violation of the unitarity of the quantum-mechanical state evolution. Their main result
may be summarized as:

Theorem 15.2 (D’Ariano–Yuen) The possibility of discriminating between two non-
orthogonal quantum-mechanical states contradicts the unitarity of quantum-mechanical
transformations.

Proof

A quantum-cloning machine that produces n > 1 copies of a generic state |ψ〉 from a given
set of possible states, must effect a unitary evolution of the form

|A〉 ⊗ |ψ〉 ⊗ |b1〉 ⊗ · · · ⊗ |bn−1〉 �→ |A′(ψ)〉 ⊗ |ψ〉 ⊗ · · · ⊗ |ψ〉, (15.16)

where |A〉 represents the state of the apparatus or the environment, the |ψ〉 states are
present n times on the rhs, and |b1〉 ⊗ · · · ⊗ |bn−1〉 are the state preparation of the modes
which support the clones. |A〉 is the initial state of sufficiently enough other modes
(environment and others), so that the transformation is unitary. Now, consider two non-
orthogonal states |ϕ〉, |ς〉 (with 0 < |〈ϕ|ς〉| < 1), and suppose we know a priori that the
system is in any one of them. We know that the transformation (15.16) must preserve the
scalar product in order to be unitary (see Th. 8.1: p. 262). Let us write Eq. (15.16) for |ϕ〉 ,

|A〉 ⊗ |ϕ〉 ⊗ |b1〉 ⊗ · · · ⊗ |bn−1〉 �→ |A′(ϕ)〉 ⊗ |ϕ〉 ⊗ · · · ⊗ |ϕ〉, (15.17)

5 See [D’Ariano/Yuen 1996] .
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and for |ς〉 ,

|A〉 ⊗ |ς〉 ⊗ |b1〉 ⊗ · · · ⊗ |bn−1〉 �→ |A′(ς )〉 ⊗ |ς〉 ⊗ · · · ⊗ |ς〉, (15.18)

and take the scalar product of the lhs and rhs of these two equations, so that

〈ϕ|ς〉 = 〈A′(ϕ)|A′(ς )〉(〈ϕ|ς〉)n . (15.19)

From this expression it immediately follows that

〈A′(ϕ)|A′(ς )〉(〈ϕ|ς〉)n−1 = 1, (15.20)

which would in turn require that

|〈A′(ϕ)|A′(ς )〉| > 1 (15.21)

for n > 1.
So far, we have proved that the cloning of two non-orthogonal states contradicts unitar-

ity. Since the possibility to discriminate between two non-orthogonal states would in turn
imply the possibility – through quantum-mechanical unitary transformations – of generat-
ing clones of the two original states, then also the discrimination of two non-orthogonal
states would violate the unitarity of quantum-mechanical transformations.

Q.E.D

The above theorem proves the impossibility of measuring the state of a single system
through a single measurement. Moreover, the same authors have shown that any suc-
cession of repeated measurements performed on a single system gives exactly the same
probability distribution of an appropriately chosen single measurement with the output
state independent of the input one – this is entirely different from what happens in clas-
sical mechanics, where successive measurements on the same system do increment the
information about the system. This completes the picture and allows us to establish on
the most general grounds the impossibility of measuring the wave function of a single
system.6

15.3 Measurement and reversibi l i ty

An interesting question, which is to a certain extent complementary to the ones expressed
at the beginning of this chapter and of the previous section, is whether a measurement can
be made reversible (see also Sec. 9.5). Here we shall show that an ideal measurement is
reversible if and only if no information about the initial state is obtained, and then, if so, it
cannot be considered a true measurement (see also Subsec. 9.11.3).

6 An interesting study of Hillery and Buz̆ek [Buz̆ek/Hillery 1996] shows to what extent one can copy a state
imperfectly.
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15.3.1 A “unitar i ly reversible” measurement

In a pioneering work, Ueda and Kitagawa7 showed that a measurement can be made
reversible if it is unsharp (see Sec. 9.10), and if it is sensitive to the vacuum field fluc-
tuations. However, they did not consider a conserved quantity and, for this reason, the
argument was not definitive.

A conserved quantity, the photon-number operator, was considered in a paper by
Imamoglu,8 who investigated the possibility of repetitive (logically reversible) measure-
ments. He has demonstrated that, under certain conditions, the state of the field before and
after the measurement is unchanged. However, those conditions contradict the results of
the previous section.

More recently, Mabuchi and Zoller9 have shown under which conditions reversibility
is possible in the case of a system coupled to an environment. In short, they prove that
the action of a jump superoperator (see Subsec. 14.4) cannot in general be inverted as
such. Inversion is possible if one considers the system as pertaining to a subset of the
original Hilbert space and the jump as unitary – in this case, however, no new information
is obtained.

Let us discuss the problem on an abstract level (the authors also propose a concrete
experiment). Let the evolution of some system – in the formalism of the Monte-Carlo
wave-function approach – be subjected to the action of a collapse operator Ĉ jr (see again
Subsec. 14.4)

|ψS (tr + dt)〉 = Ĉ jr |ψS (tr )〉, (15.22)

where tr is the observation time of the jump jr ( j denotes the j-th channel, for example
the j-th harmonic oscillator of a bath reservoir). Between consecutive counts (jumps), the
system state vector evolves according to

|ψS (t)〉 = e−
ı
h̄
˜̂H (t−tr )|ψS (tr )〉, (15.23)

where ˜̂H = ĤE+S − ı

2

∑
k

Ĉ†
k Ĉk (15.24)

is an effective non-Hermitian Hamiltonian. It is certainly true that the quantum collapse
operator is not invertible on the entire Hilbert space of the system. In principle, it may be
invertible on a restricted subspace of the same Hilbert space. If we consider the presence
of a feedback mechanism, i.e. the action of the output of a system on its input, described
by a unitary operator Û j , such that

|ψS (tr + dt)〉 = Û j Ĉ jr |ψS (tr )〉, (15.25)

then the condition Ĉ j = c j Û
†
j , where c j is a complex number, ensures that the final state

is proportional to the initial state. If between two quantum jumps the unitary dynamics is
not distorted by damping factors, i.e.

7 See [Ueda/Kitagawa 1992].
8 See [Imamoglu 1993].
9 See [Mabuchi/Zoller 1996].
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|ψS (t)〉 = e−
ı
h̄
˜̂Ht |ψS (0)〉 = e−

1
2

∑
j |c j |2t e−

ı
h̄ t ĤE+S |ψS (0)〉, (15.26)

where the state vectors pertain to the considered subspace and the Hamiltonian ĤE+S is
Hermitian, then in principle the feedback can undo the effect of the quantum collapse
operator, as follows:

|&E+S (t)〉 = 1

N e−
ı
h̄
˜̂H (t−tn )Û jn Ĉ jn · · · Û j1Ĉ j1e−

ı
h̄
˜̂Ht1 |&E+S〉

= e−
ı
h̄ t ĤE+S |&E+S〉, (15.27)

where N is some normalization constant.

15.3.2 Is new information gained?

It can be shown that the scheme chosen by Mabuchi and Zoller is not a measurement
in the most general sense10 (see Subsec. 9.11.3). In fact they consider the action of an
annihilation operator â = Ĉ (which causes the jump by photon absorption, for example)
and which acts as an unitary operator on a subspace H1 of the original Hilbert space, i.e.
we have

â|ψ〉 = Û |ψ〉, 〈ψ |â† = 〈ψ |Û †. (15.28)

Due to the unitarity of Û , we also have

1 = 〈ψ |Û †Û |ψ〉 = 〈ψ |â†â|ψ〉 = 〈ψ |N̂ |ψ〉, (15.29)

where N̂ is the number operator, which means that the expectation value of the photon
number is equal to unity for an arbitrary state from the specified subset |ψ〉 ∈ H1. If we
expand |ψ〉 as follows (see Eq. (13.44))

|ψ〉 = c0|0〉 + c1|1〉 + · · · + cn|n〉 · · · , (15.30)

where |n〉 is a (normalized) state with n photons, then Eq. (15.29) can be written as

℘1 + 2℘2 + 3℘3 + · · · + n℘n + · · · = 1, (15.31)

with non-negative numbers ℘n = |cn|2. For this equation to be fulfilled, at least one of the
numbers ℘1,℘2, . . . must be non-zero. As a consequence, the state |ψ〉 ∈ H1 cannot be
the vacuum. Since a jump (annihilation operator) diminishes the number of photons by
unity, the fact that a jump occurred gives the information that the initial state was not the
vacuum – information that was already contained in the assumption that the initial state
belongs to the subset H1. Since the fact that |ψ〉 ∈ H1 depends on the preparation, no new
information is gained by such a reversible quantum jump (see also Subsec. 3.5.3). The
same argument can be extended to a double jump operator and in fact to any number of
jumps (see Prob. 15.2).

10 See [Mensky 1996].
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Hence we may conclude the following:

• In general, the action of a jump operator (which may describe certain dissipative
processes and certain kinds of measurement) is not unitary and cannot be inverted.

• If we restrict the possible states to a properly chosen subset of the original Hilbert space
of the system, the action of a jump operator may become unitary and therefore, under
those conditions, reversible.

• However, in all those cases in which the action of a jump operator is reversible, the
measurement described by the jump operator itself gives no new information besides
that already included in the preparation of the initial state.

In this context, a recent result due to Zurek is of particular relevance.11 He has shown
that, since a measurement consists in a transfer of information about a system to the appa-
ratus, even imperfect copying essential in such situations restricts possible unperturbed
outcomes to an orthogonal subset of all possible states of the system, thus breaking the
unitary symmetry of its Hilbert space implied by the quantum superposition principle.
Preferred outcome states emerge as a result. They provide therefore a framework for the
so-called Òwave-packet collapse, Ó designating terminal points of quantum jumps and
defining the measured observable by specifying its eigenstates.

15.3.3 A general izat ion on reversible measurements

Nielsen and Caves12 provided a powerful formal generalization of the previous analysis.
We recall here the formula (9.116a) for operations, i.e. (see also Sec. 14.3)

T ρ̂ =
∑
ϑ̂k ρ̂ϑ̂

†
k . (15.32)

If we have a single (not necessarily unitary) operator such that

T ρ̂ = ϑ̂ ρ̂ϑ̂† and ϑ̂†ϑ̂ = Ê , (15.33)

then we speak of an ideal measurement (perfect readout of the state of the apparatus). We
then have a unitarily reversible measurement – on a subspace H0 of the state space H of
the original problem – if there exists a unitary operator Û acting on H0 such that (see
Eq. (9.114))

ρ̂ = Û
T ρ̂

Tr[T ρ̂]
Û † (15.34)

for all ρ̂ whose support lies in H0. Now, consider the following generalized form of
measurement:

T j ρ̂ =
∑

k

ϑ̂ jk ρ̂ϑ̂
†
jk , (15.35)

11 See [Zurek 2007].
12 See [Nielsen/Caves 1997].
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where j labels the outcome of the measurement and (see Eq. (9.115))∑
jk

ϑ̂
†
jk ϑ̂ jk = Î . (15.36)

Supposing that j occurs, then the unnormalized state after the measurement is T j ρ̂. The
probability that the outcome j occurs is

℘( j) = Tr
[
T j ρ̂

] = Tr

[
ρ̂
∑

k

ϑ̂
†
jk ϑ̂ jk

]
, (15.37)

where use has been made of the cyclic property of the trace (see Prob. 5.4). It may be
proved that the following statements are equivalent (see Prob. 15.3)

• The ideal quantum operation T j ρ̂ = ϑ̂ j ρ̂ϑ̂
†
j is unitarily reversible on a subspace H0 of

the total Hilbert space H.
• The POVM Ê = ϑ̂†ϑ̂ , when restricted to H0, is a positive multiple of the identity

operator on H0, i.e.

P̂H0 Ê P̂H0 = η2 P̂H0 , (15.38)

where η is a real constant satisfying 0 < η ≤ 1 and P̂H0 is the projector onto H0.
• We have

Tr
[
ρ̂ϑ̂†ϑ̂

]
= Tr

[
ρ̂ Ê
]
= η2 (15.39)

for all density operators whose support lies in H0, and η takes the meaning of the
probability of occurrence of the result represented by ϑ̂ .

• The operator ϑ̂ can be written as

ϑ̂ = ηÛ P̂H0 + ϑ̂ P̂H⊥
0

, (15.40)

where Û is some unitary operator acting on the whole H and P̂H⊥
0

projects onto the

orthogonal complement of H0, that is P̂H0 + P̂H⊥
0
= Î . This condition makes formally

clear why an ideal operation described by ϑ̂ can be unitarily reversed on H0: when
restricted to H0, ϑ̂ acts as the unitary operator Û , except for rescaling by the real
constant η, which accounts for the probability of obtaining the result corresponding to ϑ̂ .

Summarizing, an ideal measurement is reversible if and only if no new information about
the prior state is obtained from the measurement. Given the result as stated by Eq. (15.39),
each state is equally likely. As a consequence, a reversible ideal measurement cannot be
considered as a true measurement.

15.4 Quantum state reconstruction

In this section, we shall discuss a few methods which allow the reconstruction of the quan-
tum state on a large set of identical systems. The following results are not in contrast with
what we have stated in the previous sections (and actually confirm the conclusion of the
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previous examination), that is, the impossibility of measuring the state of a single system.
In fact, the measurement of the Wigner function or any other of the methods discussed in
the present section are only possible if one performs a large number of measurements, each
one on a single element of a set of identically prepared systems.

15.4.1 Measurement of the Wigner funct ion

We have seen that the Wigner function (see Subsec. 13.5.4) is, among others, a phase space
representation of the density operator or, equivalently, a quasi-probability distribution for
conjugate variables. It is then clear that measuring the Wigner function is completely equiv-
alent to the measurement of the density operator. Indeed, there are circumstances where a
direct measurement of the Wigner function is simply more convenient.

Royer13 analyzed the problem in general terms by working out the premeasurement
techniques developed by Lamb.14 The problem can be cast as follows: given a well-defined
preparation procedure and a certain number of identical systems, is it possible to determine
experimentally (to measure) the state which such a procedure forces the systems to be in?
Due to the one-to-one correspondence between the W-function and the density matrix of a
system (see Subsec. 13.5.4), this is possible if one is able to determine the W-function.

Let us limit ourselves to a one-dimensional system whose phase state is represented by
position x̂ and momentum p̂x . Making use of the results of Subsec. 14.1.2, we introduce
the S-vectors

|x̂ p̂x } =
√

2

π h̄
| ̂xp}, (15.41)

where

 ̂xp = h̄

2

+∞∫
−∞

dx ′eıx ′ px

∣∣∣∣ x + 1

2
h̄x ′
〉 〈

x − 1

2
h̄x ′

∣∣∣∣
= h̄

2

+∞∫
−∞

dp′x eıxp′x
∣∣∣∣ px + 1

2
h̄ p′x

〉 〈
px − 1

2
h̄ p′x

∣∣∣∣
= h̄

4π

+∞∫
−∞

dp′x

+∞∫
−∞

dx ′eıp′x (x̂−x)−ı x ′( p̂x−px ), (15.42)

∣∣∣ x + 1
2 h̄x ′

〉
and

∣∣∣ px + 1
2 h̄ p′x

〉
being eigenkets of position and momentum, respectively,

and −∞ < x < +∞,−∞ < px < +∞. We may expand the operator  ̂xp about the
phase-space point (x , px ) by making use of the displacement operator (see Eq. (13.68)
and Prob. 15.4)

D̂xp = e
ı
h̄ (px x̂−x p̂x ), (15.43)

13 See [Royer 1985, Royer 1989].
14 See [Lamb 1969].
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so that we have

 ̂xp = D̂xp ̂D̂−1
xp , (15.44)

where the parity operator about the origin is given by

 ̂ =
+∞∫
−∞

dx | − x〉〈x | =
+∞∫
−∞

dpx | − px 〉〈px |. (15.45)

It follows from Eqs. (15.44)–(15.45) that

 ̂xp(x̂ − x) ̂xp = −(x̂ − x), ̂xp( p̂x − px ) ̂xp = −( p̂x − px ), (15.46)

that is,  ̂xp is the parity operator about the phase-space point (x , px ). The key point of the
following discussion is that the W-function is the expectation value of the parity operator
 ̂xp (see Eqs. (13.113) and (14.13))

Wρ̂(x , px , t) =
{
 ̂xp|ρ̂(t)

}
= 1

π h̄

〈
 ̂xp

〉
ρ̂(t)

, (15.47)

where  ̂xp is Hermitian (see Prob. 15.5). Since obviously  ̂2
xp = Î ,  ̂xp is an observ-

able whose eigenvalues are ±1 (see Prob. 15.6): a complete set of eigenstates |ψn
xp〉, n =

1, 2, . . ., satisfying

 ̂xp|ψn
xp〉 = (−1)n|ψn

xp〉, (15.48)

may be obtained by displacing in phase space any complete orthogonal set of kets |ψn〉 of
definite parity about the origin. Thus (see also Probs. 2.8 and 15.7),

ψn(−x)= (−1)nψn(x), (15.49a)

 ̂xp =
∑

n

(−1)n|ψn
xp〉〈ψn

xp|, (15.49b)

|ψn
xp〉= D̂xp|ψn〉, (15.49c)

so that Eq. (15.47) can be rewritten as

Wρ̂(x , px , t) = 1

π h̄

∑
n

(−1)n〈ψn
xp|ρ̂(t)|ψn

xp〉. (15.50)

We try now to measure Wρ̂(x , px , t) at some definite time (e.g. t = 0). This can be done
by measuring each transition probability 〈ψn

xp|ρ̂(0)|ψn
xp〉 following the method introduced

by Lamb: a simple approach is possible if we choose the |ψn〉s to be eigenstates of the
Hamiltonian

Ĥ = p̂2
x

2m
+ V (x̂), (15.51)

where V (−x) = V (x) is a symmetric potential. Then, the |ψn
xp〉’s are eigenstates of the

displaced Hamiltonian

Ĥxp = D̂xp Ĥ D̂−1
xp = ( p̂x − px )2

2m
+ V (x̂ − x), (15.52)
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so that measuring the set 〈ψn
xp|ρ̂(0)|ψn

xp〉 (or  ̂xp) becomes equivalent to measuring the

Hamiltonian Ĥxp. A suitable method to measure Ĥxp almost in the strict sense is as follows:

first, we place ourselves in a reference frame moving with uniform speed v = p f
x /m rela-

tive to the preparation apparatus A. By virtue of the Galilei transformations, the observed
density operator (for t ≤ 0) is

ρ̂ f (t) = D̂−1
vt ,p f

x
ρ̂(t)D̂

vt ,p f
x

. (15.53)

At time t = 0 we turn on the potential V (x − x f ) in the moving frame. The eigenstates of

Ĥx f ,0 =
(

p̂ f
x

)2

2m
+ V (x̂ f − x f ) (15.54)

are

D̂x f ,0|ψn〉 = |ψn
x f ,0〉, (15.55)

with corresponding energies En . Then, at times t ≥ 0 we obtain

ρ̂ f (t) = e−
ı
h̄ t Ĥx f ,0 ρ̂ f (0)e

ı
h̄ t Ĥx f ,0

=
∑
m,n

e−
ı
h̄ (En−Em )t |ψn

x f ,0〉〈ψm
x f ,0|〈ψn

x f ,0|ρ̂ f (0)|ψm
x f ,0〉

=
∑
m,n

e−
ı
h̄ (En−Em )t |ψn

x f ,0〉〈ψm
x f ,0|〈ψn

x f ,p f
x
|ρ̂(0)|ψm

x f ,p f
x
〉, (15.56)

where we have made use of the transformation (15.53) for ρ̂(0). Now, the transition prob-
abilities (see Prob. 15.8)

〈ψn
x f ,0|ρ̂ f (0)|ψn

x f ,0〉 = 〈ψn
x f p f

x
|ρ̂(0)|ψn

x f p f
x
〉 (15.57)

are time-independent, so that we have a long time available to perform a measurement of
Ĥx f ,0 referring to the set {|ψn

x f ,0
〉} and “find” the particle in one of the states pertaining to

this set. Repeating the measurement many times will allow to build the distribution (15.57),
from which Wρ̂ (x f , p f

x , 0) can be deduced by means of Eq. (15.50). What has been done

is a measurement of Wρ̂ (x f , p f
x , 0) by measuring

W
ρ̂

f (x f , 0, t) = Wρ̂ (x f + vt , p f
x , t) (15.58)

at t = 0 in the moving frame. In conclusion, applying the same procedure over and over
again with different values x f and p f

x , it is in principle possible to reconstruct the Wigner
function on any relevant region of the phase space.

15.4.2 Quantum tomography

Perhaps the most effective – and certainly the first – method that has been experimentally
used for the reconstruction of the W-function is the so-called quantum state tomography.
In this approach, one takes advantage of the inversion of a set of measured probability
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distributions of quadrature amplitudes (see Eq. (13.61)) in order to reconstruct the
W-function.15

The starting key point is the pioneering contribution of Vogel and Risken,16 who have
shown that measuring appropriate probability distributions of certain quadratures, it is pos-
sible to obtain the W-function. In fact, we recall here the definition of the W-function (see
Eq. (13.111))

W (α,α∗) = 1

π2

∫
d2ξe−ξα∗+ξ∗αχ (ξ ), (15.59)

expressed as the Fourier transform of the characteristic function

χ (ξ ) = Tr
[
ρ̂eξ â†−ξ∗â

]
. (15.60)

The homodyne detector (see Subsec. 13.6.2) measures the rotated quadrature operator X̂θ .
The complete information for calculating any single-time expectation value of X̂θ is given
by the probability distribution ℘(X , θ ), which is the Fourier transform

℘(X , θ ) = 1

2π

∫
dζχ℘(ζ , θ )e−ıζ X (15.61)

of the characteristic function

χ℘(ζ , θ ) = Tr
[
eıζ X̂θ ρ̂

]
. (15.62)

We try now to find a one-to-one correspondence between the W-function W (α,α∗) and the
probability distribution ℘(X , θ ). Recalling the definition (13.136) of X̂θ , we may rewrite

χ℘(ζ , θ ) = χ
(

ıζ
eıθ

√
2

)
. (15.63)

Making use of the notation ξ = ξr + ıξi and χ (ξ ) = χ (ξr , ξi ), χ℘(ζ , θ ) may be written as

χ℘(ζ , θ ) = χ
(
− 1√

2
ζ sin θ ,

1√
2
ζ cos θ

)
. (15.64)

It is then clear that, if χ℘(ζ , θ ) is known for all ζ values in the range −∞ < ζ < +∞ and
for all θ values in the range 0 ≤ θ < π , then the characteristic function χ (ξr , ξi ) is known
in the whole complex plane ξ , and therefore we also obtain a one-to-one correspondence
between the characteristic functions (15.60) and (15.62) as well as between the W-function
(15.59) and the probability distribution (15.61).

In order to see this explicitly, let us make the inverse Fourier transform of Eq. (15.61),
use Eq. (15.64), and insert the result into Eq. (15.59). After a proper change of variables,
we obtain (see Prob. 15.9)

W (αr ,αi ) = 1

2π2

+∞∫
−∞

d X

+∞∫
−∞

dζ

π∫
0

dθ℘(X , θ )e
ıζ
[

X−√2(αr cos θ+αi sin θ)
]
|ζ |, (15.65)

15 See [Freyberger et al. 1997] for a beautiful review of the topic of quantum state measurement.
16 See [Vogel/Risken 1989]. See also [Bertrand/Bertrand 1987].
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)
Xπ/2

X0

θ

Xθ

℘(X , θ)

�Figure 15.1 Tomographic method for reconstructing the W-function. The probability distributions ℘(X, θ) of
the observable X̂θ are measured. Pictorially, these correspond to overlaps between the W-function
and infinitesimally thin stripes in phase space. A full reconstruction of the W-function requires
℘(X, θ) to be measured for all angles θ between 0 and π .

where α = αr + ıαi . Equation (15.65) is the so-called inverse Radon transform17 and
reveals the essence of the tomographic method: one performs many measurements of entire
“slices” through the Wigner function, which correspond to measurements of the observable
X̂θ , obtaining the marginal probability distribution ℘(X , θ ) for any values of 0 ≤ θ ≤ π
(see Fig. 15.1). From these marginal distributions, the W–function can be reconstructed
by means of the inverse Radon transform. This technique is similar to the method used in
modern medicine to take the “picture” of humans organs – hence the name of quantum
tomography.

Optical homodyne tomography of a single mode of the electromagnetic field has been
experimentally realized18 (see Fig. 15.2). An ensemble of repeated measurements of the
quadrature for various phases relative to the local oscillator of the homodyne detector have
been performed.19

There are of course other sampling methods, which use the same principle.20 For exam-
ple, in the simultaneous method the phase space is sampled with circular discs rather than
cutting it into slices. In so doing one measures simultaneously two conjugate variables and,
in accordance with the uncertainty relation, the values can be known with limited accuracy

17 See [Natterer 1986].
18 See [Smithey et al. 1993].
19 See also [Freyberger/Herkommer 1994] [Wallentowitz/Vogel 1995].
20 See [Freyberger et al. 1997].
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�Figure 15.2 Tomographic measurements of quantum states as experimentally performed by Raymer and
co-workers. (a) Measured quadrature–amplitude distributions at various values of local-oscillator
phase. Since these distributions are normalized, a decreasing width of a particular distribution is
accompanied by an increase in its peak height. (b) Variances of quadrature amplitudes versus
local oscillator phase. Circles denote squeezed state, triangles vacuum state. (c) Measured Wigner
distributions for a squeezed state (left) and a vacuum state (right) viewed in 3D (top) and as
contour graph (bottom). Adapted from [Smithey et al. 1993].

(see also Fig. 2.8). In spite of the fuzzy character of such a measurement, it still fully
characterizes a quantum state and directly yields the Q-function (see Subsec. 13.5.1).

A third sampling method is the so-called ring method, where, graphically, phase space
is scanned with rings, each of which represents one energy eigenstate – Fock state (see
Subsec. 13.4.1). Then, for each value of the energy level n, we may build the probability
distributions ℘n(X0, Xπ/2). The W-function can then be obtained by the simple sum

W (X0, Xπ/2) ∝
∞∑

n=0

(−1)n ℘n(X0, Xπ/2). (15.66)

The tomographic method has also been extended in invariant form, by relating the homo-
dyne output distribution directly to the density matrix (without the intermediate step of
reconstructing the W-function) in a quadrature-component basis21 and in the Fock basis22

In practice, the reconstruction of the W-function can be a very difficult task: the knowledge
of the W-function is equivalent to the knowledge of all independent moments of the sys-
tem operators (see Subsec. 2.1.3); in the case of the harmonic oscillator it amounts to the

21 See [Kühn et al. 1994] [Zucchetti et al. 1996].
22 See [D’Ariano et al. 1994, D’Ariano et al. 1995] [Schiller et al. 1996]. See also [Leonhardt 1995].
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knowledge of all moments of the creation and annihilation operators. But the state under
consideration is generally characterized by an infinite number of independent moments,
i.e. we would need an infinite time in order to reconstruct the W-function. Hence, in the
general case, we can only partially reconstruct the W-function.23 Wallentowitz and Vogel24

have proposed a simple alternative technique: a mixing of signal and coherent fields with
controlled amplitude at a beam splitter may serve the reconstruction of the W-function and
other distribution functions by photon counting alone.

One of the most amazing features of the tomographic method and its variants is that its
application is not limited to the electromagnetic field. As a matter of fact, it has also been
experimentally realized for obtaining the reconstruction of the quantum state of matter, in
particular of atoms, molecules, ions in a Pauli trap, and even of an atomic beam.

15.4.3 Quantum state endoscopy of a cavity field

Schleich and co-workers25 have proposed an alternative method to probe the quantum state
of a single mode of electromagnetic field inside a cavity, called quantum state endoscopy.
This technique has the advantage that it does not require us to take the field outside the
cavity, as is the case for optical homodyne tomography.

The probe consists of a beam of two-level atoms that pass through a resonant quantized
cavity field (see Sec. 13.7). The atoms enter the cavity after having been prepared in the
coherent superposition

|ψA(0)〉 = 1√
2

(|e〉 + eıφ |g〉), (15.67)

where |g〉 and |e〉 are the atomic ground and excited states, respectively. The method
requires the measurement of the number of outgoing atoms that are found in the
excited state as a function of the interaction time for four distinct internal phases φ =
−π/2, 0,π/2,π of the initial state of the atoms. As we shall see, from these data it is
possible to infer the initial field state

|ψF (0)〉 =
∞∑

n=0

cn |n〉, (15.68)

where |n〉 denotes a Fock state (see Subsec. 13.4.1) with n photons. In fact, we may cal-
culate the probability ℘e(t ,φ) of finding the atom in the excited state after it has interacted
for a time t with the cavity field. To this end, we make use of the Jaynes–Cummings atom–
field interaction model (see Subsec. 13.7.2) and, in the rotating-wave approximation, we
write the interaction Hamiltonian as (see Eq. (13.160))

ĤI = h̄ε0

(
σ̂+â + σ̂−â†

)
, (15.69)

23 On this point see [Buz̆ek et al. 1996], where quantifications of the precision in the reconstruction of the W-
function and the minimal bound in order to discriminate between pure states and corresponding mixtures are
also given.

24 See [Wallentowitz/Vogel 1996].
25 See [Bardroff et al. 1995] .
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where σ̂+ and σ̂− are atomic raising and lowering operators, respectively, and ε0 is the
vacuum Rabi frequency (13.157). The initial state of the compound system is then given by

|&AF (0)〉 = 1√
2

∞∑
n=0

cn
(|e〉 |n〉 + eıφ |g〉 |n〉 ). (15.70)

After the interaction, the state of the combined system reads (see Prob. 15.10)

|&AF (t)〉 =
∞∑

n=0

(
ψe,n(t) |e〉 |n〉 + ψg,n+1(t) |g〉 |n + 1〉 )+ ψg,0(t) |g〉 |0〉 , (15.71)

where the probability amplitudes are

ψe,n(t) = 1√
2

[
cos (εnt) cn − ı sin (εnt) eıφcn+1

]
(15.72a)

and

ψg,n+1(t) = 1√
2

[− sin (εnt) cn + cos (εnt) eıφcn+1
]
, (15.72b)

where εn = ε0
√

n + 1. From Eq. (15.71) we obtain the probability to find the atom,
after the interaction time t , in the state |e〉 , independent of the final field state, i.e. (see
Prob. 15.11)

℘e(t ,φ) = 1

2

[
1 − 1

2
|c0|2 + 1

2

∞∑
n=0

cos (2εnt)
(
|cn|2 − |cn+1|2

)
−

∞∑
n=0

sin (2εnt)
 (cnc∗n+1e−ıφ)]. (15.73)

Our problem now is to infer the initial state of the field from the measured quantity ℘e(t ,φ).
In order to do this, consider that the contributions to ℘e are (i) two time-independent terms,
(ii) a contribution of cosines, and (iii) sines of the Rabi frequencies εn . The cosine contri-
bution contains only the absolute values squares of the field probability amplitudes. Due
to the initial superposition of the atom, the sine contribution brings in the relative phase
between neighboring photon probability amplitudes. Therefore, in order to reconstruct the
phases of cn we have to obtain the value of the product cnc∗n+1 from ℘e(t ,φ). For this pur-
pose, we use the above expression for different values of φ and define the complex function

fc(t) = ℘e

(
t ,
π

2

)
− ℘e

(
t ,−π

2

)
+ ı

[
℘e (t ,π)− ℘e (t , 0)

]
=

∞∑
n=0

sin (2εnt) cnc∗n+1, (15.74a)

which only contains cross terms cnc∗n+1, and the real function

fr (t) = ℘e

(
t ,−π

2

)
+ ℘e (t , 0)+ ℘e

(
t ,
π

2

)
+ ℘e (t ,π)− 2

=
∞∑

n=0

cos (2εnt)
(
|cn|2 − |cn+1|2

)
− |c0|2 , (15.74b)
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which in turn only contains the photon number probabilities. Finally, the problem is
reduced to a mathematical inversion of Eqs. (15.74) in order to obtain

en = cnc∗n+1 and gn = |cn|2 − |cn+1|2 (15.75)

from the measured functions fc(t) and fr (t), and then to derive from Eqs. (15.75) the
complex numbers cn . This allows us to completely reconstruct the initial cavity-field
state (15.68).

15.4.4 Informational completeness

The problem of quantum state reconstruction raises the question of the extent to which
an observable’s measurement informs us about the state of a given system. This, in turn,
brings us back to the relationship between sharp and unsharp observables (see Sec. 9.10).
Stated in other terms, we may ask ourselves whether the probability distributions of a
certain set of observables are sufficient to determine the state of a quantum system,
i.e. to discriminate between different states. Such a question leads naturally to the con-
cept of informational completeness: a family of self-adjoint operators {Ôk} is said to be
informationally complete if

Tr
[
ρ̂ Ôk

]
= Tr

[
ρ̂′ Ôk

]
, (15.76)

∀k, implies that ρ̂ = ρ̂′ on a Hilbert space H. It is possible to show that sharp observables
are not informationally complete.

In fact, take as an example the relationship between the momentum p̂x and the posi-
tion x̂ of a one-dimensional system. The famous Pauli problem26 is summarized in the
following question: do the position and momentum distributions determine uniquely the
wave function? We can now reformulate it in the language of informational completeness
of the canonically conjugate position and momentum observables: are sharp complemen-
tary observables informationally complete? As we shall prove now by making use of a
counterexample, this is not the case.

Take27 a normalized wave function ψ(x) ∈ L2(x), with

ψ(x) = |ψ(x)|eıφ(x), (15.77)

where

|ψ(x)| = |ψ(−x)|. (15.78)

The function φ(x) satisfies

0 ≤ φ(x) < 2π and φ(x) + φ(−x) 	= constant (mod 2π ). (15.79)

Then, the wave function

ψ ′(x) = ψ∗(−x) = |ψ(x)|e−ıφ(−x) (15.80)

26 See [Pauli 1980, 17]
27 See [Prugovec̆ki 1977].
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represents a state different from ψ(x) (i.e. P̂ψ ′ 	= P̂ψ ) but with

|ψ ′(x)|2 = |ψ(x)|2 and |ψ̃ ′(kx )|2 = |ψ̃(kx )|2, (15.81)

where ψ̃(kx ) is the Fourier transform of ψ(x). Therefore, the pair p̂x , x̂ is not able to
distinguish between the states ψ and ψ ′.

We recall, instead, that unsharp observables are the result of a smearing operation on
sharp ones. Now, this smearing operation on sharp observables, say p̂ and r̂, can be under-
stood as a coarse-graining operation on a set of sharp observable. This operation can have
an informationally complete refinement as a result. This is nicely illustrated by a care-
ful inspection of Eq. (15.65): the knowledge of ℘(X , θ ) for only two (sharp) values of θ ,
namely θ = 0,π/2, is not sufficient to reconstruct the W-function. In order to perform the
inverse Radon transform, it is necessary to know ℘(X , θ ) for a sufficiently large number of
θ values.28 In other words, the probability distributions of sharp momentum and position
(or relative quadratures) do not cover the whole phase space, whereas they do if they are
taken to be unsharp. Summarizing, the following theorem can be proved:

Theorem 15.3 (Informational completeness of unsharp observables) A set of un-
sharp complementary observables can be informationally complete.

15.5 The nature of quantum states

What we have learnt from this chapter is that we cannot have a direct evidence of, i.e.
directly measure, a quantum state of a single system. Our experience is only connected
with the experimental values of observables, and any time we measure an observable we
can only have a partial experience of a system under a certain perspective but we can never
have a complete experience that would be represented by an observation of the state vector,
which is – in a quantum-mechanical sense (see Sec. 16.1) – a complete description of the
system (see Subsec. 3.1.2). In other words, the quantum state is not an observable in the
classical sense (see also Sec. 5.2). However, since this feature of the quantum state is not
due to subjective ignorance but rather to an intrinsic characteristic of the microscopic world
(see Sec. 1.4 and Ch. 16), there are no definitive reasons to deny the reality of a quantum
state. We have indeed already seen (in Sec. 9.7) that the wave function can be considered
as a form of reality that is not reducible to the events. We understand with event, in the
simplest case, the click of a detector, that is, a local result of a physical interaction that can
be directly experienced.

28 The exact reconstruction may be achieved only when ℘(X , θ ) is known for any θ , i.e. for an infinite number
of values. However, finite-resolution quantum tomography may be achieved even when ℘(X , θ ) is known for
a finite number of θ values, if this number is sufficiently large.
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We may therefore ask the following question: how is it possible to assign an ontological
reality to something (the state or the wave function) which goes beyond the observables
that we measure or beyond the events that actually happen?29

Indeed,30 any quantum state can be conceived of as the result of a preparation. As a
matter of fact, both classically and quantum-mechanically, it is an equivalence class of
preparations, in the same way that any observable is an equivalence class of premeasure-
ments (see Subsec. 9.10.1). Moreover, any property is an equivalence class of events. This
is again true both classically and quantum-mechanically. In other words, properties are
only assigned to a system conditionally upon the occurrence of certain events (the only
reality that we directly experience). The substantial difference, is that classically we also
assume that the state is a property, whereas quantum-mechanically we cannot. The rea-
son is that classically the state is a collection of properties and can therefore be thought
of as a property itself. We may again conclude that reality is an interplay between events
and states, from which events, under certain environmental conditions and contexts (see
Ch. 14), emerge.

Summary

In this chapter we have dealt with the problem of the measurement of the wave function or
of the state of the system:

• The protective measurement of the wave function introduced by Aharonov and co-
workers is actually the measurement of the Hamiltonian of the system.

• We have proved the impossibility to clone a quantum state and that any cloning or
measurement of a state would represent a violation of the unitarity of quantum evolution.

• Moreover, we have shown that any measurement is an irreversible process and that a
reversible process cannot extract information from a given system.

• We have then presented a general formalism for measuring the Wigner function
and introduced some techniques (optical homodyne tomography and quantum state
endoscopy) that enable us to obtain this result.

• Finally, we have proposed that, though a quantum state cannot be measured, it should be
conceived as a form of reality even though not at the same ontological level as events.

Problems

15.1 Restate the criticism of the measurement of the wave function presented in Sec. 15.1
in the same mathematical form as that originally employed by Aharonov and
coworkers.

29 See [Auletta/Tarozzi 2004a, Auletta/Tarozzi 2004b].
30 See [Auletta et al. 2008].
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15.2 Why cannot the argument presented in Subsecs. 15.3.1 and 15.3.2 be developed by
making use of a creation operator?

15.3 Prove that the statements presented in Subsec. 15.3.3 are equivalent.
15.4 Find the relation between the displacement operators defined in Eqs. (13.68) and

(15.43).
(Hint: Make use of the explicit expressions (4.73) of the annihilation and creation
operators.)

15.5 Prove that  ̂xp is a Hermitian operator.
15.6 Prove that  ̂2

xp = Î .
15.7 Prove Eq. (15.49c).
15.8 Prove Eq. (15.57).

(Hint: Make use of Eq. (15.53) written for t = 0.)
15.9 Derive Eq. (15.65).

(Hint: Make use of the change of variable ξr = − 1√
2
ζ sin θ and ξi = 1√

2
ζ cos θ .)

15.10 Derive Eq. (15.71).
(Hint: Take advantage of Eq. (13.174) and generalize the procedure outlined in
Subsec. 13.7.3.)

15.11 Derive Eq. (15.73).
15.12 Prove that |ψ̃ ′(kx )|2 = |ψ̃(kx )|2 in Eq. (15.81).

Further reading

Freyberger, M., Bardroff, P. J., Leichtle, C., Schrade, G., and Schleich, W. P., The art of
measuring quantum states. Physics World, 10.11 (1997), 41–45.

Leonhardt, Ulf, Measuring the Quantum State of Light, Cambridge: Cambridge University
Press, 1997.

Schleich, W. P. and Raymer, M. (eds.), Quantum State Preparation and Measurement,
Journal of Modern Optics, 44 (1997), issues 11–12.



16 Entanglement: non-separability

In classical mechanics, two (or more) systems that do not interact – that do not exert any
kind of force on each other – are completely separated (see Sec. 1.1), i.e. experiments
performed locally on one of them cannot in any way influence experiments performed
locally on the other. Quantum mechanics, on the other hand, admits that there can be a
form of interdependence even in absence of physical interaction. This type of correlation
goes under the name of entanglement (see Def. 5.1: p. 183). We already know that entan-
glement means non-factorizability of the state vector describing a system with at least two
different degrees of freedom. In this chapter, we shall see that this may be the case also
for systems that are very far away (space-like distant) from each other and we shall learn
many interesting consequences of this state of affairs. Recent developments show that one
may entangle even particles that have never interacted with each other.

The starting point of the following analysis is necessarily represented by the pioneering
paper of Einstein, Podolsky, and Rosen,1 who inaugurated an incredible series of theo-
retical and experimental investigations right up to the present day that have confirmed the
predictions of quantum mechanics. The “irony” of this history is that Einstein, Podolsky,
and Rosen, EPR for short, aimed to present a definitive proof of the inconsistency of quan-
tum mechanics relative to classical physical theory. In fact, they initiated one of the most
prolific fields of modern science.

After discussing the EPR argument (in Sec. 16.1) and the answers that have been
given by Bohr and Schrödinger, in Sec. 16.2 we explain how to experimentally produce
a relatively simple entangled state – Bohm’s version of the EPR state. In Sec. 16.3 we
introduce hidden-variable theories. In Sec. 16.4 we review Bell’s important contributions
about hidden-variable theories and the quantum non-separability problem (the so-called
Bell inequalities). In Sec. 16.5 we describe the main experimental tests on the viola-
tions of Bell inequalities. In Sec. 16.6 we introduce an important result: the possibility
of entangling particles coming from different sources, while in Sec. 16.7 we show how
a conflict between quantum mechanics and the separability principle may arise without
making use of Bell-like inequalities. In Sec. 16.8 we point out that, even though quantum
mechanics violates the separability principle, it is not in contrast with relativistic locality.
In Sec. 16.9 a few further developments about the exact determination of quantum vio-
lation of separability bounds are introduced, and, finally, in Sec. 16.10 some concluding
remarks follow.

1 See [Einstein et al. 1935].
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16.1 EPR

In their ground-breaking paper, EPR formulated some general principles that any physical
theory should satisfy. In particular, EPR distinguished between objective reality and physi-
cal concepts, the latter having to correspond to the former. When judging a physical theory
that makes use of physical concepts, one should enquire about both the correctness and
completeness of the theory.

16.1.1 The logical structure of the EPR argument

Following EPR, the correctness consists of the degree of agreement between the conclu-
sions of the theory and human experience – the objective reality. However, EPR are mainly
interested in the completeness of quantum mechanics, and hence formulated the following
definition:

Definition 16.1 (Completeness) A theory is complete if every element of objective
reality has a counterpart in it.

It is evident that correctness together with completeness (in analogy with the completeness
theorem of mathematical logic) establishes an isomorphism between physical theory and
objective reality.

The aim of the EPR article, however, is rather to show the incompleteness of quantum
mechanics in the sense of its inability to give a satisfactory explanation of entities which
are considered fundamental – in a word, it a “disproof” and not a positive proof.2

The core of the argument is the separability principle, which we can express as follows
(see also Sec. 1.1):

Principle 16.1 (Separability) Two dynamically independent systems possess their own
separate state.

The separability principle is the principle of individuation for physical systems.3 Practi-
cally, it identifies the terms insulated and dynamically independent: in other words, it does
not acknowledge a form of interdependence between systems other than the dynamical or

2 In general, it is impossible to find a positive proof of an empirical theory (one can instead accumulate a certain
amount of evidence in favor of it). In particular, a positive proof of the completeness of a certain physical theory
would require a total knowledge of reality, and, as a consequence, an infinite time. On the other hand, theories
can be disproved by experience and (even thought) experiments. This type of epistemology is the so-called
falsificationism, and is due to the contributions of Peirce and Popper.

3 See [Howard 1985].
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the causal local form of interaction. Therefore, it is important to distinguish the problem of
locality carefully – i.e. the existence of bounds in the transmission of signals and physical
effects – from that of separability, which concerns only the impossibility of a correlation
between separated systems without dynamical and causal connections. Part of the EPR
argument is that, in the absence of physical interactions, the systems have no relation at all.

Furthermore, making use of the separability principle, EPR state a sufficient condition
for the reality of observables, which can be formulated as follows:

Principle 16.2 (Criterion of physical reality) If, without in any way disturbing a system,
we can predict with probability equal to unity the value of a physical quantity, then, inde-
pendently from our measurement procedure, there exists an element of the physical reality
corresponding to this physical quantity.

It is evident that, being a sufficient condition of physical reality, this criterion is strictly
related to the definition of correctness, in the sense that only a correct theory can perform
predictions of this type.

After having defined completeness and correctness, the aim of EPR is to show that,
assuming separability and the sufficient condition of reality, quantum mechanics is not
complete (see also Subsec. 9.2.2). In logical terms, according to the EPR argument, for
quantum mechanics the following statement holds:

[(Suff. Cond. Reality) ∧ (Separability)] �⇒ ¬Completeness, (16.1)

where ∧ is the logical AND, ¬ is the logical negation, and the arrow is the sign for logical
implication.4 Before entering into details, it is very important to understand the abstract
logic form of the argument. According to EPR, the incompleteness of quantum mechanics
would be a consequence of both separability and sufficient condition of reality. The argu-
ment, as said, has the logical structure of an implication. In order to invalidate it, it suffices
to show that at least one of the two assumptions is false. In fact, if one of the two assump-
tions is false, also their joint assertion (Suff. Cond. Reality ∧ Separability) is false, i.e.
the antecedent of the implication is false. However, if the antecedent of an implication is
false, its consequent (i.e. ¬Completeness) may be indifferently true or false, being, under
this condition, the implication always true. It this case, the argument would prove neither
the incompleteness, nor the completeness of quantum mechanics, and be finally inconclu-
sive. As we shall see below, Schrödinger argued against the principle of separability, while
Bohr tried to reject the sufficient condition of reality.

The argument of EPR is then structured as follows. From (i) Def. 16.1, (ii) Pr. 16.2,
and (iii) the fact that, according to quantum mechanics, two non-commuting observables
cannot simultaneously have definite values, it follows that:

4 The implication p �⇒ q, where p and q are arbitrary propositions, may be defined as: p is false OR q is true.
In other words, the implication is false only in the case in which p is true AND q is false.
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either (1) the quantum-mechanical description of reality given by the wave function is not com-
plete, or (2) when the operators corresponding to two physical quantities do not commute, the two
quantities cannot have simultaneous reality.5

At this stage, the separability concept is still hidden inside the words “[. . . ] without in
any way disturbing [. . . ],” contained in Pr. 16.2 The importance of this concept will
be made clear in what follows. As we shall see below, assuming that the wave func-
tion is a complete description of reality, EPR show that two non-commuting observables
can have simultaneous reality and from this conclude that quantum mechanics cannot be
complete.

16.1.2 A counterexample: the EPR state

For the structure of the argument, EPR must provide an example of wave function for
which two non-commuting observables can have simultaneous reality, and it is here that
separability comes into play. Let us, for this purpose, consider a one-dimensional system
S made of two subsystems S1 and S2, say two particles which interact during the time
interval between t1 and t2, after which they no longer interact. We take into account the
momenta

p̂(1)
x = −ı h̄

∂

∂x1
and p̂(2)

x = −ı h̄
∂

∂x2
(16.2)

on S1, with eigenfunctions ϕp(x1), where x1 is a position variable used to describe system
S1, and on S2, with eigenfunctions ψp(x2), x2 being the position variable describing S2,
respectively. Let us assume that the compound system is described by the wave function

&(x1, x2) =
+∞∫
−∞

dpψp(x2)ϕp(x1). (16.3)

We wish to stress that EPR are considering time-independent wave functions, that is, a
system at a certain (not specified) instant of time. It is clear that S1 and S2 are entan-
gled (see Subsec. 5.5.1), even if, as we shall see below, the concept of entanglement was
formally introduced by Schrödinger after the publication of the EPR article. Indeed, the
eigenfunctions of p̂(1)

x with eigenvalue p in the position representation are (see Sec. 2.2)

ϕp(x1) = 1√
2π

e
ı
h̄ px1 , (16.4)

while for S2 we have

ψp(x2) = 1√
2π

e−
ı
h̄ (x2−x0)p, (16.5)

where x0 is a constant and ψp(x2) is the eigenfunction in the position representation of the

momentum p̂(2)
x , corresponding to the eigenvalue −p of the second particle’s momentum.

5 This argument has the logical structure of an XOR: the propositions (1) and (2) can never be both true, as well
as never both false.
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Now we proceed as follows:

(a) We locally measure the momentum on S1 and suppose that we find the eigenvalue p′.
(b) Therefore, the state (16.3) reduces to

ψp′ (x2)ϕp′ (x1). (16.6)

(c) Then, it is evident that S2 must be in state ψp′ and this result can be predicted with
absolute certainty.

(d) However, we have obtained this result by not disturbing S2 (assumption of separabil-
ity).

(e) Then, as a consequence of (c) and (d) and of the sufficient condition of reality, p̂(2)
x is

an element of reality.

Note that steps (a)–(c) are purely quantum-mechanical. Only steps (d)–(e) are connected
to the EPR argument.

However, if we had chosen to consider another observable pertaining to S1, say x̂1,
whose eigenfunctions are ϕx (x1), whereas ψx (x2) are the eigenfunctions of the observable
x̂2 of S2, then we would have written & as

&(x1, x2) = 1√
2π

+∞∫
−∞

dxψx (x2)ϕx (x1), (16.7)

where the eigenfunction ϕx corresponding to the eigenvalue x of x̂1 is

ϕx (x1) = δ(x1 − x), (16.8)

and (see Prob. 16.1)

ψx (x2) = 1√
2π

+∞∫
−∞

dpe−
ı
h̄ (x−x2+x0)p = hδ(x − x2 + x0), (16.9)

corresponding to the eigenvalue x + x0 of x̂2. Let us now repeat the previous procedure for
the position measurement:

(a′) We locally measure the position on S1 and find the eigenvalue x ′.
(b′) Now it is clear that the state (16.7) reduces to

ψx ′ (x2)ϕx ′ (x1). (16.10)

(c′) Then, it is evident that S2 must be in state ψx ′ and this result can be predicted with
absolute certainty.

(d′) However, we have obtained this result by not disturbing S2 (assumption of separabil-
ity).

(e′) Then, as a consequence of (c′) and (d′) and of the sufficient condition of reality, x̂ (2)

is an element of reality.

Conclusions (e) and (e′) look incompatible on the basis of the fact that position and momen-
tum observables of particle 2 do not commute. However, going back to the alternatives (1)
and (2) of the previous subsection, EPR have in this way shown that, assuming that (1) is
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false (the quantum-mechanical description of reality is not complete), (2) is proved to be
false as well (both p̂(2)

x and x̂ (2) therefore have simultaneous reality). Then, the previous
assumption must be rejected, and (1) must be true. Therefore, according to the EPR argu-
ment, quantum mechanics cannot be complete, i.e. the wave functions (16.3) and (16.7)
cannot be considered a complete description of the compound system.

16.1.3 Bohr’s and Schrödinger’s cr i t ic ism of EPR

As we have said, due to the abstract logical structure (16.1) of the argument, it is evi-
dent that, in order to reject the conclusion that quantum mechanics is incomplete, one
needs to show the inconsistency of separability with quantum mechanics or the fail-
ure of the sufficient condition of reality in a quantum framework. In fact, they are the
only non quantum-mechanical assumptions in steps (a)–(e) and (a′)–(e′). EPR themselves
anticipated a possible objection [Einstein et al. 1935]. In their words:

One could object to this conclusion on the grounds that our criterion of reality is not sufficiently
restrictive. Indeed, one would not arrive at our conclusion if one insisted that two or more physical
quantities can be regarded as simultaneous element of reality only when they can be simultaneously
measured or predicted. On this point of view, since either one or the other, but not both simultane-
ously, of the quantities p̂ and x̂ can be predicted, they are not simultaneously real. This makes the
reality of p̂ and x̂ depend upon the process of measurement carried out on the first system, which
does not disturb the second system in any way. No reasonable definition of reality could be expected
to permit this.

In the same year (1935), Bohr rejected the sufficient condition of reality, while Schrödinger
rejected the separability principle.

Bohr,6 as partly anticipated by EPR themselves, criticized the EPR argument by point-
ing out that, even if the EPR thought-experiment excludes any direct physical interaction of
the system with the measuring apparatus, the measurement process has an essential influ-
ence on the conditions on which the very definition of the physical observables in question
rests. And these conditions must be considered as an inherent element of any phenomenon
to which the term “physical reality” can be unambiguously applied. Bohr acknowledged
that it is possible to determine experimental arrangements such that the measurement of the
position or of the momentum of one particle automatically determines the position or the
momentum of the other. However, such experimental arrangements for measuring momen-
tum and position are incompatible with each other. As we see, the central point of Bohr’s
criticism is that it is not possible to assign a reality to observables of quantum systems
independently of the experimental context in which we decide to interact with them. We
wish to point out that the experimental procedures through which observables are deter-
mined – we have indeed defined observables as equivalence classes of premeasurements
(see Subsec. 9.10.1 and Sec. 15.5) – are physical operations. Therefore, nothing prevents
us from considering observables as elements of reality notwithstanding the fact that they
may not commute. In this way, our interpretation assumes an important instance of EPR

6 See [Bohr 1935a, Bohr 1935b] and also [Jammer 1974, 195–97].
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and frames it in a wider ontological context, in which state, observables and properties
show an increasing degree of determination. We are always allowed to assume the real-
ity of the state of a quantum system, with all provisos about the word “reality” we have
already spoken about and provided that, at least in principle, it is possible to prepare the
system in that state. Moreover, it is also allowed to speak of observables as elements of
reality, at least provided that we are able to show a (possible) context of measurement, that
is, a premeasurement (a suitable coupling). Here, we are also somehow accepting Bohr’s
instance, even though, in our opinion, it is not sufficient to demolish the EPR argument.
Indeed, the fact that a certain observable is an element of reality does not imply that also
one of the properties (that is, one of its eigenvalues) is also a reality. In order to make
this inference, we need an event (see again Sec. 15.5). This is the essence of the devel-
opments of this chapter, starting from Schrödinger’s contribution, which we now briefly
sketch.

In a series of articles,7 Schrödinger answered EPR by introducing the concept of entan-
glement in quantum mechanics. As we shall see in this chapter, it is entanglement that (in
the absence of events) prevents us in some situations attributing properties to a system or
its subsystems. But, provided that there is an event, it is still entanglement that allows the
attribution of properties in a way that is classically unknown.8 However, we wish also to
stress that Schrödinger also thought that entanglement was not a phenomenon with onto-
logical pregnancy – in his opinion it was too far away from our common sense to be real.
We do not wish now to enter into an analysis of Schrödinger’s position. We only recall that
his answer to EPR is developed in the same series of papers where he proposes for the first
time the Gedankenexperiment of the Schrödinger cat as a possible bizarre consequence of
entanglement. Since we have already discussed this particular aspect of quantum theory
(see Secs. 9.3 and 14.5), in the following we wish to develop a deeper understanding of
entanglement with particular regard to the separability problem.

16.2 Bohm’s version of the EPR state

As a consequence of Bohr’s and Schrödinger ’s answers outlined above, we have two pos-
sible ways of solving what has been called the EPR paradox, i.e. we either accept the
incompleteness of quantum mechanics (according to EPR) or we admit a violation of sep-
arability (following the pioneering work of Schrödinger). If these different solutions to
this apparent paradox have a physical meaning, they must be somehow distinguishable
and therefore lead to different predictions that can be experimentally tested. As we shall
see, this is in fact the case. However, in order to arrive at a clear determination of the pre-
dictions to be tested, there was a long way to go: as a matter of fact, it took almost 40
years from the EPR paper to the first experimental tests of the above alternative. In this

7 See [Schrödinger 1935].
8 Incidentally, in finding entanglement as a solution of a possible conflict between a thought-experiment and

quantum-mechanical laws, Schrödinger was performing an abduction in the meaning given to it by [Peirce CP,
2.96].
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�Figure 16.1 Schematic overview of the EPR – Bohm experiment. Two particles are generated (e.g. by decay of
a spin-zero particle) from a common source S, and their spin is measured with two apparata A
and B at different angles with the z direction, a and b.

respect, David Bohm has given important contributions, leading both to a better defini-
tion of the problem and to an attempt to find a theory that could overcome the supposed
incompleteness of quantum mechanics (a so-called hidden-variable theory). In this section,
we shall consider the first contribution, while Sec. 16.3 will be devoted to hidden-variable
theories.

16.2.1 Theory

The formulation of the original EPR thought experiment proposed by Bohm9 deals
with discrete observables, instead of continuous ones such as position and momentum.
This step was originally understood as a further simplification of the EPR argument.
It is an important point because it clearly shows that the non-local features of quan-
tum theory are a consequence of entanglement, and because it is also experimentally
realizable.

Consider two particles with spin-1/2 that are in a state in which the total spin is zero
(singlet state). They can be produced by a single particle decay. After a time t0 the two
particles begin to separate and at time t1 they no longer interact (see Fig. 16.1). On the
hypothesis that they are not disturbed, the law of angular momentum conservation guar-
antees that they remain in a singlet state. Considering the projection of the spin along the
z direction, the singlet state may be written in the form (see Eq. (6.194))

|&0〉 = 1√
2
(| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2), (16.11)

where the subscripts 1 and 2 refer to the particles. Now, as we know, if a measurement of
the spin component along the z direction of particle 1 leads to a result+1/2, that of particle
2 along the same direction must give the value −1/2, and vice versa. This means that |&0〉
is an eigenket of the operator σ̂1z σ̂2z (see Prob. 16.2). This result remains true for the three

9 See [Bohm 1951, 614–23].
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possible directions of the spin. In other words, the state |&0〉 is rotationally invariant. In
order to see this, let us write it in terms of the z-component eigenspinors as

|&0〉 = 1√
2

[(
1
0

)
1

⊗
(

0
1

)
2

−
(

0
1

)
1

⊗
(

1
0

)
2

]
. (16.12)

Then, |&0〉 turns out to be also an eigenvector of σ̂1x σ̂2x and σ̂1y σ̂2y . For example,

(
σ̂1y σ̂2y

) |&0〉 = 1√
2

[
0 −ı
ı 0

]
1

[
0 −ı
ı 0

]
2

×
[(

1
0

)
1

⊗
(

0
1

)
2

−
(

0
1

)
1

⊗
(

1
0

)
2

]

= 1√
2

[(
0
ı

)
1

⊗
( −ı

0

)
2

−
( −ı

0

)
1

⊗
(

0
ı

)
2

]
= −|&0〉. (16.13)

Therefore, if the y component of the spin of particle 1 is measured, the y component of the
spin of particle 2 must have the opposite value relative to the spin of the first particle. This
state is perhaps the simplest discrete version of the EPR states (16.3) and (16.7), where the
role of position and momentum is played by different components of the spin. Moreover,
it is an ideal candidate for the possible realization of experimental tests.

16.2.2 Preparing a singlet state

An interesting question, which is preliminary to all further investigation, is: how can one
prepare a singlet state? It is instructive to see how such a state can be prepared in a different
context – two two-level atoms interacting with a single-mode of the electromagnetic field
in a cavity.10 One can prepare a singlet state by allowing the two atoms – 1 and 2 – initially
in their excited (|↑〉1) and ground (|↓〉2) states, respectively, to interact with the resonant
cavity mode in the vacuum state. After the preparation of the entangled atomic state, the
cavity mode is left in its original state. The preparation takes place in two steps. First, we
send atom 1, initially in the excited state |↑〉1 through the cavity in its vacuum state |0〉c in
a direction r1. After 1 has left the cavity, atom 2, prepared in its ground state |↓〉2, is sent
through the cavity in a different direction r2 (see Fig. 16.2). The interaction Hamiltonian
in a rotating frame at the cavity mode frequency and in the rotating wave approximation is
given by the Jaynes–Cummings model (see Eq. (13.162c))

ĤI = h̄ε(σ̂+â + â†σ̂−), (16.14)

where

σ̂+ = (σ̂−)† = |↑〉 〈↓| (16.15)

10 See [Cirac/Zoller 1994]. See also [Phoenix/Barnett 1993].
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microcavity

atom 1

atom 2
r2

r1

�Figure 16.2 Preparation of a singlet state. Two atoms (1 and 2) are successively sent through an empty cavity
in their initial excited and ground states, respectively. The velocity of the two atoms is selected
in such a way that, after the interaction, the cavity is left in its vacuum state.

is the atomic raising operator, valid for each atom. The coupling parameter between the
cavity and the atoms is ε. Here we take advantage of an important property of the resonant
Jaynes–Cummings model, which is the conservation of the excitation number. In other
words, the operator (see Prob. 16.3)

N̂e = â†â + |↑〉〈↑| (16.16)

is a conserved quantity (see Subsec. 8.1.2). In particular, the state |↓〉|0〉c does not change
during the interaction, and the states | ↑〉|0〉c and |↓〉|1〉c (where |1〉c describes the presence
of one photon in the cavity) will experience vacuum Rabi oscillations (see Subsec. 13.7.3),
which will depend on the interaction time t j of particle j ( j = 1, 2) with the cavity field
and therefore on the atomic velocity v j = Lc/t j —where Lc is the effective length of the
cavity. We suppose that v1 has been selected in such a way that atom 1 undergoes 1/4 of a
Rabi oscillation (a so-called π/2 pulse).

Therefore, the state of the combined system (atom 1 + atom 2 + cavity mode), after the
first atom has crossed the cavity, will be given by

|&〉 = 1√
2
(|↑〉1|0〉c − |↓〉1|1〉c) |↓〉2. (16.17)

The state of the system after atom 2 has crossed the cavity can be calculated if one takes
into account that |0〉c|↓〉2 remains unchanged during the interaction. By selecting v2 in
such a way that the state |1〉c|↓〉2 performs half a Rabi cycle (a π pulse), the final state of
the system may be written as

|&〉 f = 1√
2
(|↑〉1|↓〉2|0〉c − |↓〉1|↑〉2|0〉c)

= |&0〉12|0〉c, (16.18)

and therefore the singlet state (16.11) for the two-atom system has been prepared.
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16.3 HV theories

16.3.1 Prel iminary definit ions

As we have said, the aim of EPR was to show that quantum mechanics is incomplete and
to urge for a new deterministic theory able to integrate the supposed statistical formulation
of quantum theory. In other words, EPR implicitly believed that there exist some variables
that are presently unknown to us and that are able to explain the (apparently random)
phenomena described by quantum mechanics. These variables have been therefore called
hidden variables.

First, we give a basic definition of hidden variables (HV):11 if a given theory T contains
a set of observables {Ô} which describe a physical system S, and there are some variables
{λHV} about S which are not experimentally accessible within the framework of T and the
values of each Ô can be obtained by some averaging operation on the values of some λHV,
then the {λHV} are called HVs with respect to T.

Now we define an HV theory for quantum mechanics:12 if for each quantum system
there exists a measure space ' together with a finite measure μ (normalized, so that
μ(') = 1) on ' such that every state ρ̂ of an arbitrary quantum system can be represented
as a mixture

ρ̂ =
∫
'

dμ(λHV)ρ̂λHV(P̂) (16.19)

of dispersion-free states ρ̂λHV(P̂) for all PVM P̂ , then we call the theory which admits
such mixtures a quantum HV theory. A dispersion-free state may be defined as a state
such that all relevant observables have zero variance (see Subsec. 2.3.1). Therefore, the
expectation value of any observable coincides with one of its eigenvalues. If this were
the case, all observables of a given system would be simultaneously measurable, and the
quantum commutation relations and their consequence – the uncertainty principle – should
be rejected.

In other words, an HV theory supposes that the state of a system and its observables
are all – in a classical sense – perfectly determined, and hence also their dynamics. In
this sense, it is a classically deterministic theory. An HV theory is also a complete theory
in the sense of EPR (see Def. 16.1: p. 568): it would be characterized by the predictive
exhaustivity of all possible measurement outcomes.

The development of a mature HV theory is mainly due to David Bohm. In so
doing, Bohm also further developed some ideas that had been proposed for the first
time by de Broglie (see also end of Sec. 9.6). In fact, de Broglie proposed a deter-
ministic integration of quantum mechanics. Let us then briefly examine de Broglie’s
proposal.

11 See [Jammer 1974, 256–57, 262].
12 See [Jauch 1968, 116].
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16.3.2 De Brogl ie’s proposal

Two issues have to be spelled out here before proceeding further into our analysis:

• the pilot wave;
• the double solution.

The theory of the pilot wave is a proposal de Broglie put forward in order to understand
the basic ontology of the microworld as composed of two different entities existing simul-
taneously: a wave and a particle. According to this theory, the wave ψ is a field which
moves wave-like in the space and “pilots” a particle embedded in the field. The parti-
cle is sensible to all wave superpositions of the field. In the interferometer experiment
example, the particle, although both paths are open, actually always goes through one of
them, and the diffraction pattern is only due to the wave-like nature of the field (see again
Sec. 9.6). From this perspective, there is no complementarity between wave and particle
and no “uncertainty” at all.

The double solution theory is a mathematical aspect of the same idea: the correlation
between particle and wave is a phase correlation, such that the particle is a singularity of
the field, which differs from ψ only in amplitude, and which represents another, non-linear
solution of the wave equation.

De Broglie published his results in a series of articles.13 But, on the occasion of an
exposition to a large scientific auditorium at the Fifth Physical Conference of the Solvay
Institute in Brussels (October 1927), he presented only a simplified version, namely the
pilot-wave theory.14 The many important criticisms to his proposal pushed de Broglie to
abandon the theory: in a public lecture at the university of Hamburg in early 1928 he
embraced the complementarity principle.15 Later (1955–56) he returned to his old proposal
in a more systematic way, i.e. in the form of a double-solution theory.16

16.3.3 Bohm’s developments

Bohm was the first proponent of a systematic HV theory for quantum mechanics. Bohm’s
proposal17 originated from a sharp criticism – in the sense of EPR – of the Copenhagen
interpretation. According to Bohm, the wave function cannot be the best description of
microreality because it allows several forms of indeterminism.

Bohm’s proposal is substantially similar to that of de Broglie about the simultaneous
presence of waves and particles. However, in order to account for their reciprocal rela-
tionships and to face the measurement problems which quantum mechanics poses, Bohm

13 See [de Broglie 1927a, de Broglie 1927b, de Broglie 1927c].
14 See [de Broglie 1955].
15 There is a historical reconstruction in [Jammer 1974, 110–14].
16 See [de Broglie 1956]. It is worth mentioning that the double-solution theory (in its non-linear consequences)

has also been experimentally rejected [Auletta 2000, Sec. 28.2].
17 See [Bohm 1952, 371–75].
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developed the concept of quantum potential. Bohm started with the usual wave definition
(see Eq. (10.105))

ψ(r) = ϑ(r)e
ı
h̄ φ(r), (16.20)

and wrote the equations for the amplitude ϑ and the phase φ (both assumed to be real) in
the following form (see Eqs. (10.106)):

∂φ

∂t
=−

[
(∇φ)2

2m
+ V (r) − h̄2

2m

∇2ϑ

ϑ

]
, (16.21a)

∂ϑ

∂t
=− 1

2m

[
ϑ∇2φ + 2∇ϑ ·∇φ

]
. (16.21b)

In the classical limit, the phase φ is a solution of the Hamilton–Jacobi equation (10.107). In
this case, we can consider the probability density ℘(r) = ϑ2(r) as a classical (stochastic)
probability density for ensembles of particles (see Eq. (10.109a)).

Instead of neglecting the third term of the rhs of Eq. (16.21a) – as in the case for the
classical approximation – we derive a quantum equivalent of the Hamilton–Jacobi equation
for an ensemble of particles, the so-called Bohm–Jacobi equation

∂φ

∂t
+ (∇φ)2

2m
+ V (r) − h̄2

4m

[
∇2℘

℘
− 1

2

(∇℘)2

℘2

]
= 0, (16.22)

which implies that the particles are acted upon not only by the “classical” potential energy
V (r), but also by the quantum-potential energy

VQ(r) = −h̄2

4m

[
∇2℘

℘
− 1

2

(∇℘)2

℘2

]
= − h̄2

2m

∇2ϑ

ϑ
. (16.23)

A systematic analysis of Bohm’s interpretation shows that its central features are:

• Each quantum particle has a well-defined, continuous, and causally determined position.
• The particle is always embedded in a new type of fundamental quantum field, the ψ-

field, which satisfies the Schrödinger equation and represents a further development of
de Broglie’s position.

• The equation of motion of the particle is given by (see Eq. (1.17))

m
dv
dt

= −∇V (r) −∇VQ(r), (16.24)

which implies that, besides the classical forces −∇V (r), the quantum force −∇VQ(r)
also acts on the particle.

• The particle’s momentum is equal to p = ∇φ.

According to Bohm, the most important evidence for the existence of the quantum potential
is given by the Aharonov–Bohm effect18 (see Sec. 13.8 and also Figs. 16.3–16.4). Though
the AB effect can be explained in pure quantum-mechanical terms, its discovery is one of
the most important contributions of Bohm. It is another evidence for the circumstance that
the struggle for interpreting a theory can give rise to very important results.

18 See [Bohm/Hiley 1993, 51–52] .
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�Figure 16.3 (a) Particle trajectories for a two-Gaussian slit system after Bohm’s model, and (b) the
corresponding quantum potential. It is interesting to note that similar plots are used by Bohm and
Hiley for the description of the AB effect. Adapted from [Bohm/Hiley 1993, 33–34].

In the quantum-potential formula (16.23), the wave or fieldψ appears both in the numer-
ator and in the denominator, so that the quantum potential is not changed at all if ψ is
multiplied by an arbitrary constant, i.e. the effect of the quantum potential is independent
of the strength of the field.19 If this is correct, then it is impossible to conceive the quan-
tum potential as a form of physical energy. For this reason, the quantum potential was later
interpreted by its proponents as a special type of information, an active information – so-
called in order to distinguish it from the potential information represented by entropy (see
Ch. 17). It is evident that this interpretation is suggested by de Broglie’s concept of the pilot

19 See [Bohm/Hiley 1993, 31–37].
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�Figure 16.4 (a) Trajectories for a potential barrier (E = V/2) after Bohm’s model, and (b) the corresponding
quantum potential. Adapted from [Bohm/Hiley 1993, 76–77].

wave. The active information, according to Bohm, is a form of action where the strength
of the signal is not important but only the form, or the structure, of the driving “message”
is significant. Now, since the strength of the action does not decrease with distance, Bohm
was forced to affirm a strong form of non-locality.20

20 See [Bohm/Hiley 1993, 57, 62]. In the latter work, Bohm has proposed a theory based on the violation of the
Lorentz invariance [Bohm/Hiley 1993, 282–85, 289–93, 350]. See also [Bell 1981, 133].
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One should also mention that some more technical objections can be advanced. Englert,
Scully, Süssman, and Walther21 proved that Bohm’s trajectories can differ from observed
ones, and Dewdney, Hardy, and Squires22 proved that in Bohm’s model a particle can excite
a detector on one path of an interferometer, even if it takes the other path as a consequence
of the quantum potential.

16.4 Bell ’s contribution

After the EPR paper, developments were mainly in the discussion of HV theories, in par-
ticular due to the contribution of Bohm. However, until the mid 1960s the discussion about
the issues of separability and the completeness of quantum mechanics remained on a rather
abstract level. It was with the work of John S. Bell that this discussion entered a quantitative
ground and could, in ten years, be translated into experimental tests.

Bell worked mainly in two areas: the problem whether quantum mechanics could
be completed with a hidden variable theory and the question of separability and non-
locality. Although the two problems have a common root and are deeply connected, they
deserve a distinct discussion. In (Subsec. 16.4.1) we shall start by examing the first point
and then present Bell’s contribution to the original EPR problem (in Subsec. 16.4.2). In
Subsec. 16.4.3 we shall finally introduce further developments of Bell’s work.

16.4.1 Dispersion-free states

As we have seen (in Subsec. 16.3.1), dispersion-free states are states in which all observ-
ables are completely determined. In principle, one could interpret quantum-mechanical
uncertainties as being valid only on a statistical level but admitting a deeper (hidden)
level, where states are purely classical and are explained by adding hidden parameters
to the quantum state vector. In 1932, von Neumann had given a proof of the contradiction
between the hypothesis of dispersion-free states and quantum mechanics, with the evident
aim of showing the completeness of the theory.23 However, von Neumann’s argument
was not completely satisfactory because, at that time, it was not generally proved that any
expectation value of a given observable could be expressed as the trace of the product
between the operator representing the observable and the density matrix describing the
system (see Eq. (5.18)).

In the 1950s, Gleason24 was able to show that, for quantum-mechanical systems whose
states are represented by a vector in a Hilbert space with a dimension of at least three,

21 See [Englert et al. 1993].
22 See [Dewdney et al. 1993].
23 See [von Neumann 1932, 163–71] [von Neumann 1955, 324–25].
24 See [Gleason 1957].
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any expectation value may be expressed in terms of Eq. (5.18). Bell made use of Gleason
theorem to prove the following corollary:25

Corollary 16.1 (Bell dispersion-free) In a Hilbert space for a quantum system with at
least three dimensions, the existence of dispersion-free states is incompatible with the
additivity requirement for expectation values of commuting operators.

We shall prove Cor. 16.1 by making use of another theorem, formulated by Bell himself.
To this purpose, let P̂ς be the projector on the Hilbert space vector |ς〉, i.e. acting on an
arbitrary vector |ψ〉 in the following manner:

P̂ς |ψ〉 = |ς〉〈ς |ψ〉
〈ς |ς〉 . (16.25)

If {|ς j 〉} is a complete set of orthogonal vectors, we have (see Eq. (1.41a))∑
j

P̂ς j = Î . (16.26)

It is clear that, for any normalized state |ϕ〉 , we also have the additivity requirement for
expectation values of projectors pertaining to the same set, which are commuting operators
due to the requirement (1.41b), i.e.∑

j

〈
ϕ

∣∣∣P̂ς j

∣∣∣ϕ〉 =∑
j

〈
P̂ς j

〉
ϕ
= 1. (16.27)

We know that the expectation value of a projector is non-negative, since the eigenvalues
may only assume values 0 or 1. Now, it is possible to prove the following lemma (see
Prob. 16.4):

Lemma 16.1 (Bell I) If some arbitrary vector |ς〉 is such that
〈
P̂ς
〉
ϕ
= 1 for a given state

|ϕ〉 , then, for that state,
〈
P̂ψ
〉
ϕ
= 0 for any |ψ〉 orthogonal to |ς〉.

If |ψ1〉 and |ψ2〉 represent another orthogonal basis for the subspace spanned by |ς1〉 and
|ς2〉, then from Eq. (16.27) we have (see Prob. 16.5)〈

P̂ψ1

〉
ϕ
+
〈
P̂ψ2

〉
ϕ

= 1 −
∑
j 	=1,2

〈
P̂ς j

〉
ϕ

, (16.28)

or 〈
P̂ψ1

〉
ϕ
+
〈
P̂ψ2

〉
ϕ
=
〈
P̂ς1

〉
ϕ
+
〈
P̂ς2

〉
ϕ

. (16.29)

25 For a parallel and independent proof of the impossibility to have in quantum mechanics dispersion-free states
see [Kochen/Specker 1967].
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Since |ψ1〉 and |ψ2〉 can be any linear combination of |ς1〉 and |ς2〉, the following lemma
can also be proved (see Prob. 16.6):

Lemma 16.2 (Bell II) If, for a given state |ϕ〉〈
P̂ς1

〉
ϕ
=
〈
P̂ς2

〉
ϕ
= 0 (16.30)

for some pairs of orthogonal vectors |ς1〉 and |ς2〉, then〈
P̂c1ς1+c2ς2

〉
ϕ
= 0 (16.31)

for all complex scalars c1, c2.

Next, we develop Bell’s central idea, i.e. a theorem by which we shall prove Cor. 16.1:

Theorem 16.1 (Bell I) Let |ς〉 and |ψ〉 be some vectors in a Hilbert space with dimen-
sion d ≥ 3 such that, for a given state |ϕ〉 , we have〈

P̂ψ
〉
ϕ
= 1, (16.32a)〈

P̂ς
〉
ϕ
= 0. (16.32b)

Then, |ς〉 and |ψ〉 cannot be arbitrarily close. In fact,

‖ |ς〉 − |ψ〉 ‖ > 1

2
‖ |ψ〉 ‖ . (16.33)

Proof

In the case in which |ς〉 and |ψ〉 are orthogonal, the theorem is obviously proved. If not,
let us normalize |ψ〉 as ∣∣ψ ′〉 = |ψ〉

‖ |ψ〉 ‖ , (16.34)

and write

|ς ′〉 = |ψ ′〉 + ε|ψ⊥〉, (16.35)

where

|ς ′〉 = |ς〉
‖ |ψ〉 ‖ , (16.36)

|ψ⊥〉 is orthogonal to |ψ〉 and normalized, ε is a real and positive number (indeed any
phase factor can be eventually reabsorbed in the definition of |ψ⊥〉). Let |ψ⊥⊥〉 now be a
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|ψ > 
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|ψ⊥>

�Figure 16.5 The three-dimensional Hilbert space proposed by Bell. The state vector |ς〉 lies on the plane
|ψ〉 –|ψ⊥〉 , while |ψ⊥⊥〉 is orthogonal to this plane.

normalized vector orthogonal to both |ψ〉 and |ψ⊥〉 (see Fig. 16.5). By the orthogonality
of |ψ⊥〉 and |ψ⊥⊥〉 to |ψ〉 and by Eq. (16.32a), we have (Lemma 16.1)〈

P̂ψ⊥
〉
ϕ
= 0 and

〈
P̂ψ⊥⊥

〉
ϕ
= 0. (16.37)

However, from Eq. (16.32b) and Lemma 16.2 it follows〈
P̂ς ′+a−1εψ⊥⊥

〉
ϕ
= 0, (16.38)

where a is a real number and we have taken c1 = 1 and c2 = a−1ε, |ς1〉 = |ς ′〉, and |ς2〉 =
|ψ⊥⊥〉. Again, by Lemma 16.2 and Eqs. (16.37) we also have〈

P̂−εψ⊥+aεψ⊥⊥
〉
ϕ
= 0. (16.39)

The vectors ∣∣ς ′〉 + a−1ε |ψ⊥⊥〉 (16.40a)

and

− ε |ψ⊥〉 + aε |ψ⊥⊥〉 (16.40b)

are mutually orthogonal, so that, making use of Eq. (16.35) and again of Lemma 16.2, we
obtain 〈

P̂ψ ′+ε(a+a−1)ψ⊥⊥

〉
ϕ
= 0. (16.41)

Now, if ε is smaller than 1/2, there is a real number a such that (see Prob. 16.7)

ε(a + a−1) = ±1, (16.42)

and therefore we also have 〈
P̂ψ ′+ψ⊥⊥

〉
ϕ
=
〈
P̂ψ ′−ψ⊥⊥

〉
ϕ

= 0. (16.43)

The vectors |ψ ′〉 ± |ψ⊥⊥〉 are orthogonal to each other: Adding them and again using
Lemma 16.2, we have 〈

P̂ψ ′
〉
ϕ
= 0, (16.44)
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which contradicts the assumption (16.32a). Therefore, we must take ε > 1/2 and

‖ ∣∣ς ′〉 − ∣∣ψ ′〉 ‖ > 1

2
‖ ψ⊥ ‖ . (16.45)

By multiplying the lhs and the rhs by ‖ |ψ〉 ‖, since the norm of |ψ⊥〉 is =1, we obtain
Eq. (16.33).

Q.E.D

Now, using Th. 16.1 we can also prove Cor. 16.1.

Proof

In a dispersion-free state any projector has an expectation value which is given by either 0
or 1. Let us consider the case in which the projector P̂ψ has expectation value 1 on a given
state |ϕ〉 . Then, there is at least one projector, corresponding to the state |ς〉 that is arbitrar-
ily close to |ψ〉 , whose expectation value on |ϕ〉 is 0. However, this contradicts Th. 16.1.
Therefore, there are no dispersion free states satisfying the additivity requirement (16.27).

Q.E.D

It should be noted that the previous result could be criticized in principle by reject-
ing Lemma 16.2 on the following ground.26 P̂c1ς1+c2ς2 commutes with P̂ς1 and P̂ς2

only if, respectively, c2 = 0 or c1 = 0. Thus, in general, the measurement of P̂c1ς1+c2ς2

requires a distinct experimental arrangement. In other words, in Bell’s proof it is implicitly
assumed that the measurement of an observable must yield the same value independently
of whichever other measurements may be made simultaneously, i.e. that measurement of
an observable Ô yields the same value if it is measured as part of set Ô , Ô ′

1, Ô ′′
1 , . . . of

mutually commuting observables or of a second set Ô , Ô ′
2, Ô ′′

2 , . . . of mutually commuting
observables, though in general some observables of the second set fail to commute with
some of the first set. This objection brings some analogy with Bohr’s answer to EPR (see
Subsec. 16.1.3).

However, any local HV theory should be non-contextual,27 because it assumes that the
value of any observable is already determined by the hidden parameters, independently
of measurements on other observables. Then, if the non-contextuality of HV theories is
accepted, there is no reason to deny the validity of the proof.

Obviously, the problem of whether HV contextual theories are possible as such remains
open.28 However, the second Bell theorem, as we shall see in the next subsections, forces
these theories to assume a form of non-locality, so that a potential supporter of HV theories
would be forced to accept a non-local HV contextual theory.

26 See [Bell 1966, 8–9].
27 Contextually physical theories assume that a result of any operation on a system may depend on any other

operation that is simultaneously performed on the same system.
28 For recent examination of this point see [Weihs 2007].
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16.4.2 Non-local i ty

As shown in the previous subsection, the problem of quantum non-locality has for a long
time been deeply connected with that of the existence of HVs. As we shall see now, Bell
was able to prove the following striking result: no deterministic local HV theory can make
predictions compatible with quantum mechanics. This achievement was of particular rele-
vance because it moved the discussion from a qualitative level to a strict quantitative (and
therefore experimentally testable) ground. The incompatibility between a local HV theory
and quantum mechanics raises the difficult question of what type of locality is violated by
quantum mechanics. This discussion must be postponed (see Sec. 16.8) and for the time
being we will use the expression “quantum non-locality” as a generic term that could cover
two very different possibilities, i.e. the violation of separability (see Pr. 16.1: p. 568) and
or violation of Einstein’s locality dictated by special relativity.

The Gedankenexperiment proposed by Bell29 was a further refinement of the EPR–
Bohm model (see Subsec. 16.2.1, in particular Fig. 16.1). He assumed the existence of
a hidden parameter λHV such that, given λHV, the result Aa obtained by measuring the spin
of the first particle along a chosen direction a (i.e. the observable σ̂ 1·a), depends only on
λHV and on a. Similarly, the result Bb of measuring the spin of the second particle along a
chosen direction b (i.e. σ̂ 2·b), depends only on b and λHV. In fact, the separability princi-
ple denies that there can be a form of interdependence between two systems if they do not
dynamically interact. This hypothesis can be formulated mathematically in a more rigorous
way in terms of the factorization rule

(Aa Bb)(λHV) = Aa(λHV)Bb(λHV), (16.46)

where Aa and Bb are two deterministic functions of the hidden parameter. Equation (16.46)
expresses the fact that the probability distributions for the two particles are mutually
independent. In order to remain on a practical level, we assume that the result of each
measurement can be either +1 (spin up) or −1 (spin down), that is

Aa(λHV) = ±1, Bb(λHV) = ±1. (16.47)

Following Eq. (16.46), if ρ(λHV) denotes the probability distribution of λHV, then the
expectation value of the product of the two components σ̂ 1·a and σ̂ 2·b is〈(

σ̂ 1·a
) (
σ̂ 2·b

)〉 ≡ 〈a, b〉 =
∫
�HV

dλHVρ(λHV)Aa(λHV)Bb(λHV), (16.48)

where �HV represents the set of all possible values of λHV. Since we do not know the
values of the hidden parameters λHV, we must integrate over the possible values λHV ∈
�HV.30 Because ρ(λHV) is supposed to be a normalized probability distribution, we have∫

dλHVρ(λHV) = 1, (16.49)

29 See [Bell 1964, 15–19].
30 In the following we shall normally drop the explicit mention of integration over the entire space �HV.
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and

− 1 ≤ 〈a, b〉 ≤ +1. (16.50)

Our aim is to compare the prediction of a deterministic HV theory as expressed by
Eq. (16.48) with the quantum-mechanical expectation value, which for the singlet state
|&0〉 (see Eq. (16.11)) is given by (see Prob. 16.8)

〈a, b〉&0
= 〈&0

∣∣(σ̂ 1·a
) (
σ̂ 2·b

)∣∣&0〉 = −a · b. (16.51)

When the two orientations a and b are parallel, quantum-mechanical calculations (see
Eq. (16.13)) show that

〈a, a〉&0
= −1, (16.52)

as it should be since there is a perfect anticorrelation between the results of the two
measurements.

Since the value given by Eq. (16.52) for perfect anticorrelation is an experimental fact,
also a HV theory must satisfy this requirement. On the other hand, 〈a, a〉 = −1 holds if
and only if we also have

Aa(λHV) = −Ba(λHV), (16.53)

for any direction a, and except for, at most, a set of points λHV of zero measure in �HV.
In this case, Eq. (16.48) reaches the minimum value (see also Eq. (16.50)). Under this
assumption, we can rewrite Eq. (16.48) as

〈a, b〉 = −
∫

dλHVρ(λHV)Aa(λHV)Ab(λHV). (16.54)

Now we consider two possible orientations, say b and c, of the spin measurement of particle
2. Dropping the subscript HV for the sake of simplicity, we may write

〈a, b〉 − 〈a, c〉 = −
∫

dλρ(λ)[Aa(λ)Ab(λ) − Aa(λ)Ac(λ)]

=
∫

dλρ(λ)Aa(λ)Ab(λ)[Ab(λ)Ac(λ) − 1], (16.55)

because, due to the property (16.47), for any orientation a we have [Aa(λ)]2 = 1. Then,
from Eq. (16.55) we may prove (see Prob. 16.9) the inequality

| 〈a, b〉 − 〈a, c〉 | ≤
∫

dλρ(λ)[1 − Ab(λ)Ac(λ)], (16.56)

so that we finally obtain

| 〈a, b〉 − 〈a, c〉 | ≤ 1 + 〈b, c〉 . (16.57)

This formula is the first of a family of inequalities, collectively called Bell inequalities. Its
importance lies in the fact that it sets precise quantitative bounds on the prediction of any
local deterministic HV theory. It is now possible to formulate the second Bell theorem,
also known simply as “Bell’s theorem.”
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�Figure 16.6 Scheme of the orientations used in the counterexample proposed for proving the second Bell
theorem. Orientation a is chosen for particle 1 while b and c are the alternative orientations for
particle 2. Dashed lines denote orientations used for the other particle.

Theorem 16.2 (Bell II) A deterministic HV theory, which acknowledges the separability
principle (Pr. 16.1: p. 568) must satisfy an inequality of type (16.57). The predictions of
quantum mechanics, on the other hand, violate such an inequality.

Proof

The first part of the theorem has been already proved. In order to prove the second part,
it suffices to show a contradiction between Eq. (16.57) and Eq. (16.51) by means of a
counterexample.31 We take a, b and c to be coplanar, with c making an angle φ of 2π/3
with a, and b making an angle θ of π/3 with both a and c (see Fig. 16.6).

Then, according to the elementary formula

cosθ = a · b
‖ a ‖‖ b ‖ , (16.58)

and by choosing unitary vectors, i.e. ‖ a ‖=‖ b ‖=‖ c ‖= 1, we have

a · b = b · c = 1

2
; a · c = −1

2
, (16.59)

from which, taking into account Eq. (16.51), it follows∣∣〈a, b〉&0
− 〈a, c〉&0

∣∣ = 1, (16.60)

while we have

1 + 〈b, c〉&0
= 1

2
. (16.61)

These values do not satisfy inequality (16.57).

Q.E.D

31 See [Clauser/Shimony 1978, 1888–90].
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�Figure 16.7 Ideal experimental configuration used in the proof by CHSH and by Clauser and Horne (CH). A
source emitting particle pairs is analyzed by two apparata. Each apparatus consists of an analyzer
and an associated detector. The two analyzers are characterized by the vector parameters a and b,
respectively, which can be adjusted by the experimenter. In the above example a and b make
some angles with a fixed reference axis on the x–y plane. Coincidence detections are counted.

16.4.3 Other inequal it ies

Many physicists have further worked on this subject brought to the general attention of the
scientific community by the pioneering work of Bell, so that other similar inequalities have
been successively derived. These further developments usually go either in the direction
of generalizing Bell’s result or in the direction of simplifying its scheme and proof. In a
paper by Clauser, Horne, Shimony, and Holt (CHSH) Bell theorem was generalized in the
following manner:32

• The assumption of determinism was left aside so that the authors were able to
show an incompatibility between quantum mechanics and stochastic HV theories that
acknowledge the separability principle.

• The authors conceived a more realistic Gedankenexperiment so that a considerable step
toward factual experiments was made.

We suppose here correlated pairs of particles – that need neither be spin-1/2 particles nor
perfectly anticorrelated – such that one particle enters apparatus 1a and the other one enters
apparatus 2b, where a and b are two generic vector parameters. This apparatus consists of
two analyzers and a detector beyond each analyzer – it is an idealized coincidence count
experiment (see Fig. 16.7).

Under the HV assumption, in each apparatus a particle must select one of two “chan-
nels,” labelled +1 and −1, respectively. The results are represented by Aa and Bb, each of
which equals +1 or −1. We also assume the independence of Aa(λ) from b and of Bb(λ)
from a (see Eq. (16.46)). As before, the normalized probability distribution ρ(λ) is inde-
pendent of both a and b. Let us write again the correlation function (16.54) for the results
of the two measurements:

〈a, b〉 =
∫
�

dλρ(λ)Aa(λ)Bb(λ). (16.62)

32 See [Clauser et al. 1969].
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We prefer, in this context, to remain on an abstract level, without specifying the nature
of the involved particles and observables. As we shall see, in the next section we shall
concentrate on possible realizations of this kind of experiments, where the particles are rep-
resented by photons and the observables by polarization orientations. Taking into account
Eqs. (16.55) and (16.56), we also have

| 〈a, b〉 − 〈a, c〉 | ≤
∫
�

dλρ(λ)|Aa(λ)Bb(λ) − Aa(λ)Bc(λ)|

=
∫
�

dλρ(λ)|Aa(λ)Bb(λ)|[1 − Bb(λ)Bc(λ)]

= 1 −
∫
�

dλρ(λ)Bb(λ)Bc(λ). (16.63)

Suppose now that for some pair of orientations a′ and b (where a′ is an alternative
orientation for apparatus 1) we have 〈

a′, b
〉 = 1 − δ, (16.64)

where 0 ≤ δ ≤ 1. In this way we overcome Bell’s experimentally unrealistic condition that
for some pair b and a′ there is perfect (anti-)correlation. Partitioning the state space � into
two regions �+ and �−, such that

�± = {� | Aa′ (λ) = ±Bb(λ)}, (16.65)

we have (see Prob. 16.10) ∫
�−

dλρ(λ) = 1

2
δ, (16.66)

and therefore (see Prob. 16.11)∫
�

dλρ(λ)Bb(λ)Bb′(λ) ≥
∫
�

dλρ(λ)Aa′(λ)Bb′(λ) − 2
∫
�−

dλρ(λ)|Aa′(λ)Bb′(λ)|
= 〈a′, b′

〉− δ, (16.67)

where b′ is an alternative orientation for apparatus 2 and corresponds to the c orienta-
tion in Eq. (16.63). In conclusion, making use of Eqs. (16.63), (16.64), and (16.67), we
obtain

| 〈a, b〉 − 〈a, b′
〉 | ≤ 2 − 〈a′, b

〉− 〈a′, b′
〉
, (16.68)

which is the second inequality of the Bell’s family and is called the CHSH inequality. As
with Bell’s inequality, Eq. (16.68) also conflicts with quantum mechanics, as we shall see
below.

It is interesting to emphasize that inequality (16.68) implies inequality (16.57) as a spe-
cial case, so that the CHSH inequality is a more general instance of Bell’s results (see
Prob. 16.12).

Stimulated by the progress of the research, Bell returned to the problem in 1971.33 Dif-
ferently from CHSH, Bell implicitly proposed a device with an auxiliary apparatus (event–
ready detectors) to measure the number of pairs emitted by the source, and collocated it
before the analyzers. Bell reformulated the CHSH inequality as (see Prob. 16.13)

33 See [Bell 1971, 37].
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�Figure 16.8 Optimal orientations a, a’, b, and b’ for testing the CHSH inequality (16.69).

| 〈a, b〉 − 〈a, b′
〉 | + | 〈a′, b′

〉+ 〈a′, b
〉 | ≤ 2. (16.69)

It is easy to find a quantum counterexample to inequality (16.69).34

Proof

Taking into account the imperfections of instruments, the quantum-mechanical expectation
values have the form

〈a, b〉QM = −η a · b, (16.70)

where η (representing the efficiency of the detector) is some coefficient which is 1 only in
the idealized case. If we take a, a′, b, and b′ to be coplanar and the angle between a and b,
between b and a′, and between a′ and b′ to be θ = π/4, we have (see Fig. 16.8)

[∣∣〈a, b〉 − 〈a, b′
〉∣∣+ ∣∣〈a′, b′

〉+ 〈a′, b
〉∣∣]

QM =
[∣∣∣∣∣−

√
2

2
+
(
−
√

2

2

)∣∣∣∣∣+
∣∣∣∣∣−
√

2

2
−
√

2

2

∣∣∣∣∣
]
η

= 2
√

2η, (16.71)

with ‖ a ‖=‖ b ‖=‖ a′ ‖=‖ b′ ‖= 1 so that a · b = cos θ . The necessary and sufficient
condition to observe the quantum violation is that the efficiency η >

√
2/2.

Q.E.D

34 See [Bell 1981, 152–53] [Clauser/Shimony 1978, 1893–94].
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The previous proofs were generalized by Clauser and Horne35 (CH) by eliminating
the event-ready detectors of Bell’s 1971 proof: another step was thus made towards the
realization of real experiments.

The CH’s apparatus is the same as that of CHSH (see Fig. 16.7). The source during a
fixed time emits N pairs of particles. Let us denote with N1(a) and N2(b) the number of
counts at detector 1 and 2, respectively, and with N12(a, b) the number of simultaneous
counts (coincidence counts). When N is sufficiently large, the frequencies

π1(a) = N1(a)

N
, π2(b) = N2(b)

N
, π12(a, b) = N12(a, b)

N
, (16.72)

may be taken as the corresponding probabilities. Assuming a HV parameter λ, as before,
the requirement of separability (see also Eq. (16.46)) is now

π12(λ, a, b) = π1(λ, a)π2(λ, b). (16.73)

The ensemble average probabilities of Eqs. (16.72) are

℘k(j) =
∫

dρ πk(λ, j), k = 1, 2, j = a, b, (16.74a)

℘12(a, b) =
∫

dρπ1(λ, a)π2(λ, b). (16.74b)

The probabilities for orientations a and a′ of analyzer 1 and b and b′ of analyzer 2,
respectively, must obviously satisfy the inequalities

0 ≤ πk(λ, j) ≤ 1. (16.75)

CH were finally able to derive (see Prob. 16.14)

℘12(a, b) − ℘12(a, b′) + ℘12(a′, b) + ℘12(a′, b′)
℘1(a′) + ℘2(b)

≤ 1, (16.76)

which is the Clauser–Horne inequality, the third of the Bell family, and involves only
quantities which are independent of N. This is of relevance because – as we shall see
in Subsec. 16.5.1 – the CH inequality can be expressed entirely in terms of a ratio of
observable count rates.

Assuming now36 a and b to be orientation angles relative to some reference axis in
a fixed plane, cylindrical symmetry about a line normal to the fixed plane (see also Sub-
sec. 16.2.1), and reflection symmetry with respect to the fixed plane, quantum mechanics
allows the following predictions:[

℘k(j)
]

QM = ℘k , k = 1, 2, j = a, b, (16.77a)[
℘12(a, b)

]
QM = g(âb), (16.77b)

〈a, b〉QM = h(âb), (16.77c)

35 See [Clauser/Horne 1974, 527] [Clauser/Shimony 1978, 1894–95].
36 See [Clauser/Horne 1974, 528–29]. See also [Clauser/Shimony 1978, 1896–97, 1901–902].
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where g and h are some functions and âb is the angle between the vectors a and b.
Stochastic HV theories that acknowledge the separability principle should satisfy similar
symmetries, i.e.

℘k(j) = ℘k , k = 1, 2, j = a, b, (16.78a)

℘12(a, b) = ℘12(âb), (16.78b)

〈a, b〉 = h′(âb). (16.78c)

Suppose now that we take a, a′, b and b′ so that (see again Fig. 16.8)

âb = â′b = â′b′ = 1

3
âb′ = θ . (16.79)

We can reformulate Eq. (16.76) (see also the solution to Prob. 16.14) in the following
manner:

− 1 ≤ 3℘12(θ ) − ℘12(3θ ) − ℘1 − ℘2 ≤ 0, (16.80)

or

f (θ ) ≤ 1, (16.81)

where

f (θ ) = 3℘12(θ ) − ℘12(3θ )

℘1 + ℘2
. (16.82)

We now prove that quantum predictions can be in conflict with the CH inequality.

Proof

On general grounds, consider an experiment of the type shown in Fig. 16.7 with the
following quantum predictions:[

℘12(θ )
]

QM = 1

4
η1η2℘1℘2/1[ε1+ε2+ + ε1−ε2−E cos nθ ], (16.83a)

(℘1)QM = 1

2
η1℘1ε

1+, (16.83b)

(℘2)QM = 1

2
η2℘2ε

2+, (16.83c)

where η j represents the effective quantum efficiency of detector j and ε j
+ = ε j

M + ε j
m ,

ε
j
− = ε j

M − ε j
m , ε j

M and ε j
m being the maximum and the minimum transmissions of the

respective analyzers. Moreover, the functions ℘1 and ℘2 are the probabilities that an emis-
sion enters apparatus 1 or 2, respectively, while ℘2/1 is the conditional probability that,
if emission 1 enters apparatus 1 then emission 2 enters apparatus 2. E is a measure of
the initial-state purity. The possible values of n are 1 or 2 depending upon whether the
experiment is performed with fermions or bosons, respectively.

Now the quantum predictions (16.83) for the function f (θ ) (Eq. (16.82)) yield

fQM(θ ) = 1

4
η℘2/1

{
2ε+ + E[3 cos nθ − cos 3nθ ]

[
(ε−)2

ε+

]}
, (16.84)
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�Figure 16.9 Typical dependence of f (θ) (Eq. (16.82)) upon nθ in three cases (I–III). The upper bound for f (θ)
set by inequality (16.81) is +1. Case I (nearly ideal). We have η � ℘2/1 � E � ε+ � ε− � 1 (see
Eqs. (16.83)). Case II. Experiments have nearly ideal parameters E � ε+ � ε− � 1, but have η � 1
and/or ℘2/1 � 1. Case III. Experiments have nearly ideal parameters η � ℘2/1 � 1 but have
E � 1 and/or ε−/ε+ � 1. Adapted from [Clauser/Shimony 1978, 1903].

where, for simplicity, η ≡ η1 = η2, ℘1 = ℘2, ε+ ≡ ε1+ = ε2+, ε− ≡ ε1− = ε2−. Selecting
the value θ = π/4n, one finds that the condition for violation of inequality (16.81) is (see
also Fig. 16.9)

η℘2/1ε+

[√
2

(
ε−
ε+

)2

E + 1

]
> 2. (16.85)

In particular, in the ideal case η = ℘2/1 = ε+ = ε− = E = 1, fQM(θ ) assumes the value
(1 +√

2)/2, which is larger than 1.

Q.E.D

The lesson we learn from the above proof is that idealized conditions are not neces-
sary for testing violations of Bell-like inequalities, even though, of course, if experimental
conditions are too far from the ideal case, such violations may remain unrevealed.

16.5 Experimental tests

We now wish to discuss the transition from the theory in the form of Gedankenexperiments
to performed experiments. In doing this, we necessarily have to leave aside a number of
important and beautiful experiments, for many of which we refer to the literature.

From the nature of the Bell inequalities it follows that there are two different questions
to test:

• Are Bell inequalities experimentally violated?
• Does the violation conform to the predictions of quantum mechanics?
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Different tests of the Bell inequalities are possible. Some of these take advantage, e.g., of
two-particle polarization correlation (spin entanglement), two-particle energy–time entan-
glement, time entanglement for fields, or photon–number correlation. These kinds of
experiments can be performed either with massless particles (e.g. photon correlation) or
with massive particles (e.g., proton–proton scattering and positron annihilation).

The experiment we choose to test the theoretical predictions of the previous section is
of a photon-correlation type with linear polarizers on the line of CHSH or CH instead of
massive spin-1/2 particles.37

16.5.1 From theory to experiment

Before entering into the details of the tests of Bell inequalities, we wish to discuss a few
problems connected with this issue. CHSH assumed that, given a pair of photons emerging
from the polarizers, the probability of their joint detection was independent of the polariz-
ers’ orientations a and b. This assumption is a bit problematic because there is no way to
test it.38 CH made another assumption which leads to the same result: for every pair emit-
ted (i.e. for each value of λ), the probability of a count with a polarizer in place is less than
or equal to the corresponding probability with the polarizer removed39 – in fact very often
only a small number of photons is actually detected. This assumption appears reasonable
because the insertion of a polarization analyzer imposes an obstacle between the source
of the emission and the detector, and it is natural to think that an obstacle cannot increase
the detection probability.40 However, it is very difficult to prove positively CH’s second
assumption because it requires that the probability be diminished upon the insertion of a
polarizer for all λ. On the other hand, attempts at falsifying this assumption as a means of
invalidating experimental tests of non-locality or non-separability41 do not appear to be as
reasonable as the assumption itself. We therefore assume CH’s hypothesis and look for the
general conditions for its test.42

We denote with ∞ an apparatus configuration in which the analyzer is absent. πk(λ,∞)
denotes the probability of a count from detector k when analyzer k is absent and the state
of emission is λ. CH’s assumption may then be restated as

0 ≤ πk(λ, j) ≤ πk(λ,∞) ≤ 1, k = 1, 2, j = a, b. (16.86)

From Eq. (16.86) and following arguments similar to those used in the derivation of
Eq. (16.76) (see Prob. 16.14), we have that

−℘12(∞,∞) ≤ ℘12(a, b) − ℘12(a, b′) + ℘12(a′, b) + ℘12(a′, b′)
− ℘12(a′,∞) − ℘12(∞, b) ≤ 0. (16.87)

37 For a review of first experimental attempts in quantum optics see [Reid/Walls 1986].
38 See [Clauser/Shimony 1978, 1912–13].
39 See [Clauser/Horne 1974, 530].
40 Though this statement is not true in general in quantum mechanics (see Subsec. 2.1.5), it appears to be valid

in this context.
41 For example by Caser [Caser 1992, 24–25].
42 See [Clauser/Shimony 1978, 1905–906] [Fry 1995, 234–35].
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We again use the rotational invariance argument (Eqs. (16.78) and (16.79)), so that

℘12(j,∞)=℘12(∞), j = a, b, (16.88a)

℘12(a, b)=℘12(θ ), θ = âb, (16.88b)

so that we may rewrite inequality (16.87) in the following form (see inequality (16.80)):

− ℘12(∞,∞) ≤ 3℘12(θ ) − ℘12(3θ ) − ℘12(a′,∞) − ℘12(∞, b) ≤ 0. (16.89)

Since the emission rates in all experiments would be held constant, we can write the ratios
of probabilities as ratios of the corresponding counting rates

℘12(a′,∞)

℘12(∞,∞)
= R1

R0
,

℘12(∞, b)

℘12(∞,∞)
= R2

R0
,

℘12(θ )

℘12(∞,∞)
= R(θ )

R0
, (16.90)

so that we can write Eq. (16.89) in the form

− R0 ≤ 3R(θ ) − R(3θ ) − R1 − R2 ≤ 0. (16.91)

If we take θ = π/8 for the upper–limit violation, we have

− R0 ≤ 3R(π/8) − R(3π/8) − R1 − R2 ≤ 0. (16.92)

On the other hand, if we take θ = 3π/8 for the lower-limit violation, using the fact that, in
this context, 9π/8 is the same angle as π/8, we have

− R0 ≤ 3R(3π/8) − R(π/8) − R1 − R2 ≤ 0. (16.93)

Dividing both inequalities by R0 and subtracting (cum grano salis) the second inequality
from the first, and then the first from the second, we obtain

|R(π/8) − R(3π/8)|
R0

≤ 1

4
. (16.94)

If we take, in the ideal case,43 pairs of photons propagating in opposite directions from
the source along the z-axis with total angular momentum 0 and total parity +1, for the
polarization part of the wave function we have

|&0〉 = 1√
2

(| x〉 1 ⊗ | x〉 2 + | y〉 1 ⊗ | y〉 2
)

= 1√
2

⎡⎣⎛⎝ 1
0
0

⎞⎠
1

⊗
⎛⎝ 1

0
0

⎞⎠
2

+
⎛⎝ 0

1
0

⎞⎠
1

⊗
⎛⎝ 0

1
0

⎞⎠
2

⎤⎦, (16.95)

where the kets represent polarization vectors along the x-axis and the other two along the
y-axis.

The projection operator for linear polarization along an axis lying in the xy-plane and
making angle φ with the x-axis is given by

P̂(φ) = |φ〉 〈φ | =
⎡⎣ cos2 φ cosφ sinφ 0

cosφ sinφ sin2 φ 0
0 0 0

⎤⎦. (16.96)

43 See [Shimony 1971, 82–85] [Clauser/Horne 1974, 530] [Clauser/Shimony 1978, 1906–907].
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The vector

|φ〉 =
⎛⎝ cosφ

sinφ
0

⎞⎠, (16.97)

representing linear polarization in that chosen direction, is an eigenvector of the projector
(16.96) with eigenvalue 1, while the vector

|φ⊥〉 =
⎛⎝ − sinφ

cosφ
0

⎞⎠, (16.98)

representing linear polarization perpendicular to the chosen direction, is again an eigen-
vector of P̂(φ) but with eigenvalue 0.

The quantum predictions (using again θ = âb) are (see Prob. 16.15)[
R(θ )

R0

]
&0

=
〈
&0|P̂(a) ⊗ P̂(b)|&0

〉
= 1

4
(1 + cos 2θ), (16.99)

from which we find [
R(π/8)

R0
− R(3π/8)

R0

]
&0

= 1

4

√
2, (16.100)

which obviously violates Eq. (16.94). As it has already been pointed out, we cast the
following experimental tests into two classes:

• the test for stochastic HV predictions;
• the test for quantum predictions.

Freedman and Clauser44 observed that the 5513 ρ̂A and 4227 ρ̂A pairs of photons pro-
duced by 4p2 1S0 � 4s4p1 P1 � 4s2 1S0 cascade in calcium (see Fig. 16.10). Calcium
atoms in a beam from an oven were excited by resonance absorption to the 3d4p1 P1 level,
from which a considerable fraction decayed to the 4p2 1S0 state at the top of the cascade
(see Fig. 16.11).45

The average ratios for approximately 200 hours of running time were〈
R(π/8)

R0

〉
= 0.400 ± 0.007, (16.101a)〈

R(3π/8)

R0

〉
= 0.100 ± 0.003, (16.101b)〈

R(π/8) − R(3π/8)

R0

〉
= 0.300 ± 0.008, (16.101c)

and clearly violate inequality (16.94) by about six standard deviations.

44 See [Freedman/Clauser 1972].
45 More technical details can be found in the original paper.
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�Figure 16.10 Partial Grotrian diagram of atomic calcium for Freedman and Clauser’s experiment. Adapted
from [Freedman et al. 1976, 53].
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�Figure 16.11 Schematic diagram of apparatus and associated electronics of the experiment by Freedman and
Clauser. Scalers (not shown) monitored the outputs of the discriminators and coincidence circuits.
Adapted from [Freedman/Clauser 1972].

We now test the quantum predictions. With all the necessary corrections from an ideal
case, quantum prediction (16.100) has to be modified as

[R(π/8) − R(3π/8)]

R0
= (0.401 ± 0.005) − (0.100 ± 0.005) = 0.301 ± 0.007, (16.102)

which agrees exceptionally well with the experimental results (Eq. (16.101)). Freed-
man and Clauser’s experiment is thus an important step toward the rejection of HV
stochastic theories and a strong confirmation of quantum mechanics on one of its most
counterintuitive playgrounds, namely the violation of the separability principle.
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�Figure 16.12 (a) Friedman–Clauser experiment: the correlated photons γA, γB coming from the source S
impinge upon the linear polarizers I, II oriented in directions a, b, respectively. The rate of joint
detection by the photomultipliers is monitored for various combinations of orientations. (b)
Experiment proposed by Aspect: the optical commutator CA directs the photon γA either towards
polarizer I1 with orientation a1 or to polarizer I2 with orientation a2. Similarly for CB. The two
commutators work independently (the time intervals between two commutations are taken to be
stochastic). The four joint detection rates are monitored and the orientations a1, a2, b1, b2 are not
changed for the whole experiment. l is the separation between the switches.

16.5.2 Loopholes

The test we have discussed so far appears rather convincing and a clear confirmation of
the validity of quantum mechanics against any HV theory. However, for the sake of com-
pleteness, one has to admit the possibility of some loopholes. A loophole may here be
understood as an implicit assumption which undermines the full validity of an experimen-
tal test. This assumption is often connected to technical limits that have not been taken into
account or to the introduction of undesired parameters. In the following we discuss some
possible loopholes, which, at least in principle, may affect the type of test discussed in the
previous subsection.

Local i ty loophole

The first loophole we consider is the locality loophole. In all experiments, one should
consider the possibility that the result of a measurement obtained by using a certain polar-
izer direction depend on the orientation of the other polarizer. In other words, it could be
the case that quantum mechanics violates not only separability but also locality, which
we understand in this context as a superluminal connection between the two polarizers.
We shall discuss the issue of locality in more detail later (see Subsec. 16.8.1). Here, we are
not interested in excluding the non-locality as a possibility, but only in excluding its pos-
sible influence on the results of the experiments performed in order to test the separability
as such.

In 1976 Aspect46 proposed for the first time an experiment in which, instead of a fixed
apparatus47 as is shown in Fig. 16.12(a), an apparatus with optical commutators is used

46 See [Aspect 1976].
47 See also [Aspect et al. 1982a].
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(see Fig. 16.12(b)). This configuration allows us to ensure the validity of Bell’s locality
condition (16.46). As a matter of fact, this condition, though reasonable, is not a con-
sequence of any fundamental physical law.48 Using time-variable analyzers – as in the
experiment we are currently discussing – the locality condition becomes a consequence of
Einstein’s causality, which forbids superluminal influences. The experiment was later per-
formed by Aspect, Dalibard, and Roger.49 The switching between the two channels occurs
about every 10 ns. Since this delay, as well as the lifetime of the intermediate level of the
cascade (5 ns), is small compared with l/c (40 ns) (see Fig. 16.12(b)), a detection event
and the corresponding change in the orientation of the polarizer on the other side of the
apparatus are separated by space-like intervals.

Testing a Clauser–Horne type inequality (Eq. (16.76)) by choosing angles between the
orientations a (a1) and b (b1), b and a′ (a2), and a′ and b′ (b2) to be equal to 22.5◦,
and the angle between a and b′ equal to 67.5◦, the experimental result for the expression
in Eq. (16.87) was 0.101 ± 0.020, clearly violating the corresponding inequality by five
standard deviations.

Due to these results, we may conclude that the second Bell theorem excludes not
only non-contextual HV theories, because they satisfy the requirement of separability, but
also contextual ones (see the conclusions of Subsec. 16.4.1). In fact, if the two sides of
the apparatus are space-like separated, a supporter of a HV theory is forced to accept
a strong form of non-locality, i.e. an action-at-a-distance, in order to explain how it is
possible to obtain Bell inequalities violations both with fixed polarizers and with random
switches.50

Angular-correlat ion loophole

The problem of a possible correlation between polarizers is not the only difficulty in
the experiments which have been performed to test Bell inequalities. Another difficulty
(second loophole) concerns the angular correlation:51 because of the cosine-squared
angular correlation of the directions of the photons emitted in an atomic cascade, an inher-
ent polarization decorrelation is present. Hence the very polarization correlation which
could result in a violation of one of the Bell inequalities is reduced for non-collinear
photons.

The problem can be overcome52 by using SPDC sources (see Subsec. 13.7.6) instead of
atomic cascade ones. Pairs of photons resulting from SPDC can have an angular correlation
of better than 1 mrad, although in general they need not be collinear. Initially experiments
involving SPDC were limited by low quantum efficiency, but more recently efficiencies
larger than 90% have been reached.

We report here a SPDC experiment performed for the first time by Alley and Shih and
successively improved by Ou and Mandel.53 While Alley and Shih obtained a violation of

48 See [Bell 1964].
49 See [Aspect et al. 1982b].
50 See [Shimony 1984, 109–116].
51 See [Santos 1991] [Santos 1992].
52 See [Kwiat et al. 1994, 3210].
53 See [Shih/Alley 1988] [Ou/Mandel 1988].
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�Figure 16.13 Outline of the Alley–Shih and Ou–Mandel’s experiment. Light from the 351.1 nm line of an
argon-ion laser falls on a non-linear crystal of potassium dihydrogen phosphate (KDP), where
down-converted photons of wavelength of about 702 nm are produced. When the condition for
degenerate phase matching is satisfied, down-converted, linearly polarized signal and idler
photons emerge at angles of about ±2◦ relative to the ultraviolet (UV) pump beam with the
electric vector in the plane of the diagram. The idler (i) photons pass through a 90◦ polarization
rotator, while the signal (s) photons traverse a compensating glass plate C1 producing an equal
time delay. S-photons and i-photons are then directed from opposite sides towards a beam
splitter (BS). The input to the BS consists of an x-polarized s-photon and of a rotated y-polarized
i-photon. The light beams emerging from BS, consisting of a mixing of i-photons and s-photons,
pass through linear polarizers set at adjustable angles θ1 and θ2, through similar interference
filters (IF) and finally fall on two photodetectors D1 and D2. The photoelectric pulses from D1 and
D2 are amplified and shaped and fed to the start and stop inputs of a time-to-digital converter
(TDC) under computer control which functions as a coincidence counter.

Bell inequality by three standard deviations, the experiment performed by Ou and Mandel
obtained violations as large as six standard deviations (see Fig. 16.13).

If we denote by ℘(θ1, θ2) the joint probability of detecting two photons for a set-
ting θ1, θ2 of the two linear polarizers, we may rewrite the Clauser–Horne inequality
(16.87) as

C = ℘(θ1, θ2) − ℘(θ1, θ ′2) + ℘(θ ′1, θ ′2) + ℘(θ ′1, θ2) − ℘(θ ′1,∞) − ℘(∞, θ2) ≤ 0,
(16.103)

where again ∞ stands for the absence of analyzer.
Quantum mechanics describes the output state as the following linear superposition state

of the two channels 1 and 2 (towards detectors D1 and D2):

|&〉 = Tx Ty | x〉 1 | y〉 2 + Rx Ry | y〉 1 | x〉 2

− ıRyTx | x , y〉 1 |0〉 2 + ıRx Ty |0〉 1 | x , y〉 2 , (16.104)
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where R2
x , R2

y , T2
x , T2

y are the polarization-dependent beam-splitter reflectivities and trans-

missivities with R2
x + T2

x = 1 and R2
y + T2

y = 1 (for the sake of simplicity we have
assumed that all coefficients are real). Using polarized scalar fields at the two detectors,
it is possible to calculate the probability

℘(θ1, θ2) = η (Tx Ty cos θ1 sin θ2 + Rx Ry sin θ1 cos θ2
)2 , (16.105)

where η is characteristic of the detectors efficiency. Equation (16.105) reduces to

℘(θ1, θ2) = 1

4
η sin2(θ1 + θ2) (16.106)

if R2
x = T2

x = 1/2 and R2
y = T2

y = 1/2. If the polarizer angles are chosen so that θ1 =
π/8, θ2 = π/4, θ ′1 = 3π/8, θ ′2 = 0, one sees that the quantum correlation function (see
Prob. 16.16)

C = 1

4
η(
√

2 − 1) > 0 (16.107)

violates inequality (16.103) for any η > 0. If we express the function C in terms of
coincidence rates instead of probabilities, Ou and Mandel have found the experimental
result

Cexp = R(22.5◦, 45◦)− R(22.5◦, 0◦) + R(67.5◦, 45◦) + R(67.5◦, 0◦)

− R(67.5◦,∞) − R(∞, 45◦)

= (11.5 ± 2.0) min−1. (16.108)

Therefore, Cexp is positive with an accuracy of about six standard deviations, in violation
of inequality (16.103) (see Fig. 16.14).54

Detect ion loophole

Up to now we have considered the loopholes concerning possible non-local correlations
and the angular (de-)correlation. A further issue (third loophole) is represented by the
detection loophole.55 In fact, we may raise the question of how high the detection effi-
ciencies (the parameters η j ( j = 1, 2) in Eqs. (16.83)) must be for the experimental
confirmation of the quantum theoretical predictions. With experiments like that of Aspect
and co-workers a sufficient value for the efficiency is η = 83%.56 But if the inequality is
optimized changing the angle of the settings after the correction for η < 1, then a lower
requirement may be sufficient, varying from 66.7% to 100% depending on the variation of
the background level from 0.00% to 10.36%.57

54 In successive experiments the number of standard deviations for the violation has been strongly improved. For
instance, Kwiat and co-workers [Kwiat et al. 1999] have obtained a 242–σ violation of Bell’s inequality.

55 See [Ferrero et al. 1990, 686–87]. See also [Kwiat et al. 1994, 3209].
56 See [Mermin 1986].
57 See [Eberhard 1993].
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�Figure 16.14 Confirmation of the quantum-mechanical predictions in the Ou–Mandel experiment. (a) Measured
coincidence counting rate as a function of the polarizer angle θ1, with θ2 fixed at 45◦. The solid
line represents quantum prediction and the dash-dotted curve the classical prediction. The dashed
and dotted lines are the preceding curves with some corrections added to reduce modulation
caused by imperfect alignment. (b) Measured coincidence counting rate as a function of the
polarizer angle θ1 with θ2 fixed at 45◦, when a 8:1 attenuator is inserted into the idler beam. The
curves are the same as in (a) except that the dotted curve is absent. Adapted
from [Ou/Mandel 1988].

Instead, the problem with SPDC-type experiments is that, even with high detection effi-
ciency, one must discard part of the counts, since, if we have an output state of the type
(16.104), we are obliged to discard all events where both photons are in the same chan-
nel, represented by the third and fourth components of the rhs of Eq. (16.104), and one
could pose the question whether this selection might represent a bias. Even though this is
a remote possibility, in order to exclude any ambiguity a more refined solution is required.
A possibility is to directly produce a pair of photons in singlet-type state, thus avoiding
any post-selection. One of the first proposals for doing this is shown and summarized in
Fig. 16.15. By means of this apparatus it is possible to produce output photons in the state

|&〉 � |v〉 3 |h〉 4 + eıφ (|h〉 3 |v〉 4). (16.109)

Finally, we briefly discuss a related problem connected to Clauser and Horne’s assumption:
with polarizers in place the probability of a count is not larger than without polarizers.58

This assumption has been questioned on the basis of a possible form of enhancement in
the detection process. It has been shown that, even in this hypothesis, there is a detectable
difference between HV theories and quantum mechanics in the case of experiments with
three polarizers.59

58 See [Marshall et al. 1983].
59 See [Garuccio/Selleri 1984]. For the sake of completeness, we cite a paper by Marshall and Santos

[Marshall/Santos 1985] that does not strictly exclude a form of enhancement which would be able to invalidate
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�Figure 16.15 Proposed experiment for solving the detection loophole. (a) An ultraviolet pump photon may be
spontaneously down-converted in either of two non-linear crystals, producing a pair of collinear
orthogonally polarized photons at half the frequency (type-II phase matching). The outputs are
directed toward a second PBS [see Subsec. 3.5.2]. When the outputs of both crystals are combined
with an appropriately relative phase φ, a true singlet- or triplet-like state may be produced. By
using a half-wave plate (HWP) to effectively exchange the polarizations of photons originating in
crystal 2, one overcomes several problems arising from non-ideal phase matching. An additional
mirror is used to direct the photons into opposite direction towards separated analyzers. (b) A
typical analyzer, including an HWP to rotate by θ the polarization component selected by the
analyzing BS, and precision spatial filters to select only conjugate pairs of photons. In an advanced
version of the experiment, the HWP could be replaced by an ultrafast polarization rotator (such as
Pockels or Kerr cells) to also close the locality loophole.

16.6 Bell inequalit ies with homodyne detection

We schematically present here a different way to test Bell inequalities, but we will not go
into any details of the experimental testing. However, we include it here because we think
that it may be very instructive.

at least some of the performed experiments – see also [Haji-Hassan et al. 1987] for more details. However, such

a form of enhancement does not seem very plausible.
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�Figure 16.16 “Entanglement” with vacuum. Here, we consider a pair of homodyne detectors (see
Subsec. 13.6.2), each of which consists of a symmetric beam splitter (BS1 or BS2), a coherent local
oscillator with amplitude ak = αeıφk , and two photodetectors as output. One of the two inputs to
these homodyne detectors is derived from a third symmetric beam splitter (BS3).

16.6.1 Photon-intensit ies correlat ion

An interesting variation of the self-interference experiment is represented by the “entan-
glement” of photons with a vacuum60 (see Fig. 16.16). This can also be considered to
be an interesting generalization of beam splitting. The transformations between the mode
operators shown in Fig. 16.16 are (see Subsec. 3.5.2)(

ĉk

d̂k

)
= 1√

2

[
1 ı
ı 1

](
âk

b̂k

)
; (16.110a)(

b̂1

b̂2

)
= 1√

2

[
1 ı
ı 1

](
f̂
ê

)
. (16.110b)

Summing up, ⎛⎜⎜⎝
ĉ1

d̂1

ĉ2

d̂2

⎞⎟⎟⎠ =

⎡⎢⎢⎢⎢⎣
1√
2

ı
2 0 − 1

2
ı√
2

1
2 0 ı

2

0 − 1
2

1√
2

ı
2

0 ı
2

ı√
2

1
2

⎤⎥⎥⎥⎥⎦
⎛⎜⎜⎝

â1

f̂
â2

ê

⎞⎟⎟⎠ . (16.111)

60 See [Tan et al. 1991].
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Now we calculate the corresponding coincidence probabilities. First, let us consider the
case of vacuum inputs to the modes f̂ , ê. The local oscillators are assumed to be in coherent
states: |αeıφ1〉, |αeıφ2〉. The intensities at all detectors are equal to

〈
IC1

〉 = 〈IC2

〉 = 〈ID1

〉 = 〈ID2

〉 = 1

2
α2, (16.112a)

where the the detectors Ck , Dk correspond to mode operators ĉk , d̂k . The two-photon
correlation functions are also equal, i.e.

〈
IC1 IC2

〉 = 〈ID1 ID2

〉 = 〈IC1 ID2

〉 = 〈ID1 IC2

〉 = 1

4
α4. (16.112b)

Consider now the input of a single photon in mode ê while the mode f̂ is in the vacuum
state. The total state after the first BS can be written as

|&〉 = 1√
2

(
ı |1〉b1 |0〉b2 + |0〉b1 |1〉b2

)
, (16.113)

that looks as an entangled state of one-photon and the vacuum.61 The photon intensities at
each detector are given by

〈
IC1

〉 = 〈IC2

〉 = 〈ID1

〉 = 〈ID2

〉 = 1

2
α2 + 1

4
, (16.114a)

and are increased by 1/4 relatively to calculation (16.112a). Moreover,

〈
IC1 IC2

〉 = 〈ID1 ID2

〉 = 1

4

{
α4 + α2[1 + sin(φ1 − φ2)]

}
, (16.114b)

〈
IC1 ID2

〉 = 〈ID1 IC2

〉 = 1

4

{
α4 + α2[1 − sin(φ1 − φ2)]

}
, (16.114c)

where, if we set φ1 − φ2 = −π/2, we get the minimum of coincidence rate α4/4 for detec-
tor pairs (C1, C2) and (D1, D2), and the maximum value α4/4 + α2/2 for pairs (C1, D2)
and (D1, C2). The classical wave description of light also shows a similar non-local
behavior. However, it is possible to distinguish between the quantum and the classical
predictions.

In order to show this, we calculate, according to quantum mechanics, an intensity
correlation coefficient as follows:

C(φ1,φ2) = 〈(ID1 − IC1 )(ID2 − IC2 )〉
〈(ID1 + IC1 )(ID2 + IC2 )〉 . (16.115)

By evaluating the previous expression in the case of a single-photon input, we obtain

C(φ1,φ2) =
[

1

α2 + 1

]
sin(φ1 − φ2). (16.116)

61 Strictly speaking, the state (16.113) cannot be considered an entangled state, since it contains only one
excitation. However, this form is useful for our purposes here.
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�Figure 16.17 Schematics of Yurke and Stoler’s thought-experiment. Particles enter by pumps PS1 and PS2
(lines), vacuum by the other input port (dots), before beam splitters BS1 and BS2. Each arm
consists of a phase shifter φGj (j = 1, 2) or φRj(j = 1, 2), a beam merger (D1 or D2) and a particle
counter Gj (j = 1, 2) or Rj (j = 1, 2). Detector j consists of phase shifters φGj and φRj, of beam
splitter Dj, and of particle counters Gj and Rj. The original color version of this figure is on the
Cambridge University Press website, at www.cambridge.org/9780521869638.

If the coefficient of sin(φ1 − φ2) is greater than 1/
√

2, there is a non-local behavior that
directly translates into a violation of a Bell-type inequality.

16.6.2 Part ic les from different sources

Until the end of the 1980s the general belief was that entanglement was a consequence of
the fact that the particles involved originated from the same source. However, Yurke and
Stoler, by means of a thought-experiment, showed62 that entanglement can also originate
with two or three photons deriving from different sources. The scheme of the experiment
is depicted in Fig. 16.17, where R stands for “red” (represented by vertical lines) and G
for “green” (represented by dots). The involved input–output transformations induced by
the beam splitters are

62 See [Yurke/Stoler 1992a, Yurke/Stoler 1992b].
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d̂R1

d̂G1

)
= 1√

2

[
1 ı
ı 1

](
ĉR1

ĉG1

)
, (16.117a)(

d̂R2

d̂G2

)
= 1√

2

[
1 ı
ı 1

](
ĉR2

ĉG2

)
, (16.117b)

and (
b̂R1

b̂G2

)
= 1√

2

[
1 ı
ı 1

](
âR1

âG2

)
, (16.118a)(

b̂R2

b̂G1

)
= 1√

2

[
1 ı
ı 1

](
âR2

âG1

)
. (16.118b)

The possible events for each detector (1 or 2) are elements of the set {0, R, G, R2, G2, E},
where 0 represents the event in which nothing is detected, R (G) the event for the photon
counter labelled R (G) firing once, R2 (G2) the event for the photon counter labelled R
(G) firing twice, and E the event in which each photon counter of the detector counts a
single photon. Let us now consider possible joint events of the two detectors. In particular,
A = {R R, GG} be the event in which both of the R photon counters or both of the G
photon counters fire, B = {RG, G R} the event where each detector counts a single photon
and only one of the R photon counters fires, C = {0E , E0} the event in which both counters
of one detector fire, and finally D = {0R2, 0G2, R20, G20} the event in which one counter
of one detector fires twice. However, due to the geometry of the apparatus (in particular to
the destructive interference), events C do not occur. Suppose also that the detector phase
φ1 of detector 1, given by φ1 = φR1 − φG1, and the detector phase φ2 of detector 2, given
by φ2 = −φR2 + φG2, can only take one of the three values: φa ,φb,φc. For brevity, we
shall refer to these settings as 1, 2, and 3, respectively. For the sake of simplicity, assume
also that we always have φ1 = φ2, so that the detector phase settings are 11, 22, or 33. The
probabilities for the possible events ξ1 and ξ2 for detectors 1 and 2 are given by

1

4
cos2(φ1 − φ2) if ξ1, ξ2 ∈ A (16.119a)

1

4
sin2(φ1 − φ2) if ξ1, ξ2 ∈ B (16.119b)

1

8
if ξ1, ξ2 ∈ D. (16.119c)

Since the detector phases can be changed randomly up to the instant the photon enters the
detector, one concludes that, from a local realist point of view, there is a set of instructions
of the form λ1, λ2, λ3; λ′1, λ′2, λ′3, such that the λ j ’s (with j ∈ {1, 2, 3}) are elements of the
set {R, G}, and λ j is the instruction to the detector 1 telling it which counter has to fire
when the detector switch for the phase is j . The λ′j ’s play a similar role for detector 2. For
instance, the set of instructions (RG R; RG R), means that, for detector 1:

• when the switch position is on 1 (phase φa), the particle counter R will fire;
• when the switch position is on 2 (phase φb), the particle counter G will fire;
• when the switch position is on 3 (phase φc), the particle counter R will fire.
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The same instruction set is, in this case, sent to detector 2.
By the geometry of the apparatus, and limiting ourselves to the set B of events, we have

℘(R, G,φa ,φb)=℘(RG R; RG R) + ℘(RGG; RGG), (16.120a)

℘(R, G,φa ,φc)=℘(R RG; R RG) + ℘(RGG; RGG), (16.120b)

℘(G, R,φb,φc)=℘(RG R; RG R) + ℘(GG R; GG R), (16.120c)

where ℘(R, G,φa ,φb) is the probability that detector 1 reports the event R and detector
2 the event G, given that the detector phase φ1 of detector 1 is set to φa and the detector
phase φ2 of detector 2 is set to φb, and ℘(RG R; RG R) is the probability that instruction
set (RG R; RG R) is sent. From Eq. (16.120b) and (16.120c) one obtains

℘(R, G,φa ,φc)≥℘(RGG; RGG), (16.121a)

℘(G, R,φb,φc)≥℘(RG R; RG R). (16.121b)

From Eqs. (16.121) and (16.120a) one obtains the following Bell inequality (see Inequality
(16.57))

℘(R, G,φa ,φb) ≤ ℘(R, G,φa ,φc) + ℘(R, G,φb,φc), (16.122)

which can be rewritten as

sin2(φa − φb) ≤ sin2(φa − φc) + sin2(φb − φc). (16.123)

Taking θ = φa − φc = φc − φb we obtain

sin2(2θ ) ≤ 2 sin2 θ, (16.124)

which is violated when 0 < |θ | < π/4.

16.6.3 Entanglement swapping

In the previous subsection we have seen that is possible to entangle particles coming
from different sources. Here, we make another step towards the absolute generalization
of the concept of entanglement: it is possible to entangle systems that have never directly
interacted before. This was proposed by Zeilinger and co-workers63 and is known as entan-
glement swapping. Consider two pairs of entangled photons emitted by two independent
sources as shown in Fig. 16.18. The state of each photon pair will be given by

|ψ〉 I =
1√
2
(|h〉 1 |v〉 2 − |v〉 1 |h〉 2), (16.125a)

|ψ〉 I I =
1√
2
(|h〉 3 |v〉 4 − |v〉 3 |h〉 4), (16.125b)

while the total four-particle state is factorized, i.e.

|&〉 = |ψ〉 I ⊗ |ψ〉 I I . (16.126)

63 See [Żukowski et al. 1993].
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SPDC I

BS

1 2 3 4

Bell state
measurement

SPDC II

�Figure 16.18 Scheme of entanglement swapping. Two cw pumped down-conversion sources (SPDC I and
SPDC II) each emit a photon pair (1–2 and 3–4, respectively).

In other words, there is no entanglement of any of the photons 1 or 2 with any of the
photons 3 or 4.

If we now perform a particular type of joint measurement on photons 2 and 3, we are
able to project photons 1 and 4 onto a different entangled state, which depends on the result
of the measurement of photons 2 and 3. To be specific, let us use the Bell states64 (see also
Sec. 17.5) ∣∣&−〉

23 =
1√
2
(|v〉 2 |h〉 3 − |h〉 2 |v〉 3), (16.127a)

∣∣&+〉
23 =

1√
2
(|v〉 2 |h〉 3 + |h〉 2 |v〉 3), (16.127b)

∣∣%−〉 23 =
1√
2
(|v〉 2 |v〉 3 − |h〉 2 |h〉 3), (16.127c)

∣∣%+〉 23 =
1√
2
(|v〉 2 |v〉 3 + |h〉 2 |h〉 3), (16.127d)

which represent a complete orthonormal basis of the Hilbert spaces of particles 2 and 3.
In order to evaluate the effect of the joint measurement onto one of the states (16.127), we
rewrite the state (16.126) in terms of the previous basis

|&〉 = 1

2

(∣∣&+〉
14

∣∣&+〉
23 +

∣∣&−〉
14

∣∣&−〉
23

+ ∣∣%+〉
14

∣∣%+〉
23 +

∣∣%−〉
14

∣∣%−〉
23

)
. (16.128)

A close inspection of Eq. (16.128) tells us that, in all cases, the projection onto the Bell
basis of particles 2 and 3 also projects particles 1 and 4 on to an entangled state, and with
precisely the same form.65

A slightly different experimental proposal, which allows for the realization of event-
ready detectors, employs SPDC sources pumped by cw lasers.66 One of the most stringent

64 First introduced in [Braunstein et al. 1992a].
65 For the first experimental realization of entanglement swapping, see [Pan et al. 1998].
66 See [Żukowski et al. 1993].
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apparatus I

|a>

|a′>|b>

|b′>

|c>

|c′>|d>

|d′>

BS

BS

D2

D1

apparatus II

�Figure 16.19 Variation of entanglement swapping. Two cw pumped down-conversion sources each emit a
photon pair (1–2 and 3–4, respectively), which after suitable beam splitters and mirrors results in
the two states (16.129). The initially independent signal photons are entangled by an
ultracoincident registration of the idlers (for sake of simplicity γi= i) at D1, D2.

technical requirements for the realization of this proposal is the narrow filtering of
i-photons and their detection in ultracoincidence (i.e. a coincidence window narrower than
the filter bandwidth time) (see Fig. 16.19).67

Let the two pumped pairs of particles be described by the states

|ψ〉 I =
1√
2

(|a〉1|b〉2 + |a′〉1|b′〉2), (16.129a)

|ψ〉 II =
1√
2

(|c〉3|d〉4 + |c′〉3|d ′〉4), (16.129b)

where both |ψ〉 I and |ψ〉 II represent, say, an entanglement of path degree of freedom of
the two involved photons (1 is entangled with 2 while 3 is entangled with 4), so that for
instance, photons 1 and 2 are emitted either in the joint state |a〉1|b〉2 or in the joint state
|a′〉1|b′〉2. Then, the initial four-photon state can be written as

|&〉 = |ψ〉 I ⊗ |ψ〉 II

= 1

2

(|a〉1|b〉2 + |a′〉1|b′〉2
) (|c〉3|d〉4 + |c′〉3|d ′〉4

)
, (16.130)

where the photons 1, 4 can be called s-photons, and 2, 3 i-photons. In order to entangle
uncorrelated s-photons (1 and 4) and to obtain

|ϕ〉s = 1√
2

(|a〉1|d ′〉4 + |a′〉1|d〉4
)
, (16.131)

we need to project the i-photons into an entangled state. This projection can be done after
overlapping their modes at two BSs in such a way that any photon exiting a BS goes
through the path leading to the detector (constructive interference) and by observing the
i-photons at detectors D1, D2. If the two i-photons are indistinguishable, the joint detection
projects the i-state into (see Prob. 16.17)

67 In [Żukowski et al. 1995] these restrictions are abandoned.
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|ϕ〉i = 1√
2

(|b〉2|c′〉3 + |b′〉2|c〉3
)
. (16.132)

The consequence is that the registration of photons 2, 3 can operationally entangle the pair
1, 4. However, the joint detection of i-photons must happen in coincidence, and this poses
the experimental requirements for this purpose.

Entanglement swapping of photons is not the only phenomenon of genuine quantum
interference of systems from different sources. Recently, it has been shown that electrons
also show a similar behavior.68

16.7 Bell theorem without inequalit ies

In the next two subsections we analyze two independent approaches that share with Bell’s
inequalities the same final goal: to prove that quantum mechanics as such is incom-
patible with at least separability. As we shall see, this statement can also be proved
without making use of inequalities, but, instead, exploiting two-particle and three-particle
entanglement.

16.7.1 Two-part ic le entanglement

We begin with the original formulation of the Stapp theorem:69

Theorem 16.3 (Stapp) No theory can:

• give contingent predictions of the individual results of measurements;
• be compatible with the statistical predictions of quantum mechanics (to within a certain

confidence level);
• satisfy Pr. 16.1.

The first requirement may be understood in terms of the following Gedankenexperiment.
Consider an experimental arrangement similar to that described in Figs. 16.6 and 16.8,
where the input state is the usual EPRB state (see Eq. (16.11)), with two SGM apparata,
whose axes can be rotated, allowing different alternative settings. The word “contingent”
means that the theory gives predictions for various possible alternative settings. We denote

68 See [Neder et al. 2007].
69 See [Stapp 1971]. See also [Bell 1981, 132].
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a, b 

b′
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a, b 

a′ SGM1
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�Figure 16.20 Schematic experimental arrangement and setting orientations used for the proof of Stapp’s
theorem.

the directions of the axes of SGM1 and SGM2 by α and β, respectively. They are both
normal to the line of flight and θ (α,β) is the angle between them. Two different settings
α = a, a′ and β = b, b′ of SGM1 and SGM2, respectively, are considered (see Fig. 16.20).
Let i (i = 1, 2) label the SGMs and j label the individual runs of the experiments. Then,
ni j (α,β) = ±1 according to whether the theory predicts that the particle from the j pair
that passes through the SGMi is deflected up or down when the settings are α and β. Hence,
the first condition of the theorem implies that, for each individual pair j , the numbers
n1 j (α,β) and n2 j (α,β), are perfectly defined for all four combinations of arguments α
and β.

According to quantum mechanics, the following relation holds with increasing accuracy
as the number N of runs increases (see Eq. (16.51)):

1

N

N∑
j=1

n1 j (α,β)n2 j (α,β) = − cos θ (α,β), (16.133)

so that the second requirement of Stapp theorem amounts to say that Eq. (16.133) holds in
the limit N →∞. Now let us choose the directions a, a′, b, and b′ so that

cos θ (a, b) = 1, cos θ (a, b′) = 0, (16.134a)

cos θ (a′, b) = − 1√
2

, cos θ (a′, b′) = 1√
2

. (16.134b)

The third condition of Stapp’s theorem (separability) can be expressed as

n1 j (a, b)= n1 j (a, b′) = n1 j (a), (16.135a)

n1 j (a′, b)= n1 j (a′, b′) = n1 j (a′), (16.135b)

n2 j (a, b)= n2 j (a′, b) = n2 j (b), (16.135c)

n2 j (a, b′)= n2 j (a′, b′) = n2 j (b′). (16.135d)
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Proof

Inserting Eqs. (16.134) and (16.135) into Eq. (16.133) we obtain

1

N

N∑
j=1

n1 j (a)n2 j (b)=−1, (16.136a)

1

N

N∑
j=1

n1 j (a)n2 j (b′)= 0, (16.136b)

1

N

N∑
j=1

n1 j (a′)n2 j (b)= 1√
2

, (16.136c)

1

N

N∑
j=1

n1 j (a′)n2 j (b′)=− 1√
2

. (16.136d)

From Eq. (16.136a) we have

n1 j (a) = −n2 j (b), (16.137)

which, combined with Eq. (16.136b), gives

1

N

N∑
j=1

n2 j (b)n2 j (b′) = 0. (16.138)

Subtraction of Eq. (16.136d) from Eq. (16.136c) yields

1

N

N∑
j=1

n1 j (a′)
[
n2 j (b) − n2 j (b′)

] = √
2. (16.139)

Using the fact that n2 j (b′)n2 j (b′) = 1 (because the allowed values are only±1), we obtain

√
2= 1

N

N∑
j=1

n1 j (a′)n2 j (b′)
[
n2 j (b)n2 j (b′) − 1

]
(16.140a)

≤ 1

N

N∑
j=1

|n2 j (b)n2 j (b′) − 1| (16.140b)

= 1

N

N∑
j=1

[
1 − n2 j (b)n2 j (b′)

]
(16.140c)

= 1 − 1

N

N∑
j=1

n2 j (b)n2 j (b′), (16.140d)

= 1 (16.140e)

which is clearly impossible, so that quantum predictions are not compatible with a theory
that gives contingent predictions and acknowledges separability.

Q.E.D
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�Figure 16.21 The GHSZ Gedankenexperiment with a three-particle interferometer. The source emits a triple of
particles, 1, 2, and 3, in six beams, with the state given by Eq. (16.141). A phase shift φ1 is
imparted to beam a’ of particle 1, and beams a, a’ are brought together on a BS before
illuminating detectors D1, D′

1. Likewise for particles 2 with beams b, b’and for particle 3 with
beams c, c’.

16.7.2 Three-part ic le entanglement

Greenberger, Horne, Shimony, and Zeilinger (GHSZ) have been able to prove that
quantum mechanics violates separability in the spirit of Bell proofs but without using
inequalities at all.70

Consider a particle with zero mean momentum that decays into three photons.71 If all
three daughter particles have the same energy, by momentum conservation they must be
emitted 120◦ apart from each other. The central source is surrounded by an array of six
apertures: a, b, and c at 120◦ separation, and a′, b′, and c′ also at 120◦ separation, with
respect to each other (see Fig. 16.21). Because of the placement of apertures, the three
particles 1, 2, and 3 must emerge either through a, b, and c or through a′, b′, and c′. Thus,
the state of the three particles beyond the apertures will be given by the superposition
(GHSZ state)

|ϕ〉 = 1√
2

(|a〉1|b〉2|c〉3 + |a′〉1|b′〉2|c′〉3
)
, (16.141)

70 In making use of a three-particle entanglement we follow here a later development by GHSZ of an idea
proposed originally in [Greenberger et al. 1989], where the authors make use of a four-particle experiment,
giving rise to a state known as the GHZ state.

71 See [Greenberger et al. 1990].
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where |a〉1 denotes the particle 1 in beam a, and so on. Beyond the apertures, beams |a〉1
and |a′〉1 are totally reflected so as to overlap at a 50/50 BS, and the two outgoing beams
are monitored by detectors D1 and D′

1. A similar arrangement is in place for the other
beams. Suppose that |a′〉1 passes through a phase plate which causes a phase shift φ1.
Consequently, we have the evolutions

|a〉1 �→ 1√
2

(|D1〉 + ı |D′
1〉), (16.142a)

|a′〉1 �→ 1√
2

eıφ1 (|D′
1〉 + ı |D1〉), (16.142b)

where |D1〉 and |D′
1〉 denote the states of the particle emerging towards detectors D1 and

D′
1, respectively. Particles 2 and 3 are subjected to similar treatment with detectors D2 and

D′
2 for particle 2 and detectors D3 and D′

3 for particle 3.
The initial state |ϕ〉 of the three particles evolves then into

|&〉 = 1

4

[
(1 − iei(φ1+φ2+φ3))|D1〉|D2〉|D3〉 + (ı − eı(φ1+φ2+φ3))|D1〉|D2〉|D′

3〉
+ (ı − eı(φ1+φ2+φ3))|D1〉|D′

2〉|D3〉 + (−1 + ıeı(φ1+φ2+φ3))|D1〉|D′
2〉|D′

3〉
+ (ı − eı(φ1+φ2+φ3))|D′

1〉|D2〉|D3〉 + (−1 + ıeı(φ1+φ2+φ3))|D′
1〉|D2〉|D′

3〉
+(−1 + ıeı(φ1+φ2+φ3))|D′

1〉|D′
2〉|D3〉 + (−ı + eı(φ1+φ2+φ3))|D′

1〉|D′
2〉|D′

3〉
]

.

(16.143)

The probability for detection of the three particles by the respective detectors D1, D2, and
D3 is

℘&D1D2D3
(φ1,φ2,φ3) = 1

16

∣∣∣1 − ıeı(φ1+φ2+φ3)
∣∣∣2 = 1

8
[1 − sin(φ1 + φ2 + φ3)]. (16.144a)

Likewise,

℘&D′
1D2D3

(φ1,φ2,φ3) = 1

8
[1 + sin(φ1 + φ2 + φ3)], (16.144b)

and so on for the remaining six possible outcomes. The sum of the probabilities for all
eight possible outcomes is of course 1.

Given a parameter λ that determines the state of the whole multiparticle system, we may
define three functions αλ(φ1), βλ(φ2), and γλ(φ3) which represent the measurement result
at the detector pairs 1, 2, and 3, respectively. For the sake of concreteness, we assign to
each of these functions the value +1 when a particle enters an unprimed detector and −1
when it enters a primed one. There is an implicit assumption in the introduction of these
three functions (see Eqs. (16.46) and (16.135)): αλ(φ1) does not depend on φ2 and φ3, and
so on. Now we calculate the expectation value on the state |&〉 of the product of the three
measurement outcomes at the three arms of the interferometer, given that the relative phase
is tuned to φ1,φ2, and φ3 (see Prob. 16.18),
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C& (φ1,φ2,φ3) = ℘&D1D2D3
(φ1,φ2,φ3) − ℘&D′

1D′
2D′

3
(φ1,φ2,φ3)

+ ℘&D1D′
2D′

3
(φ1,φ2,φ3) + ℘&D′

1D2D′
3
(φ1,φ2,φ3) + ℘&D′

1D′
2D3

(φ1,φ2,φ3)

− ℘&D′
1D2D3

(φ1,φ2,φ3) − ℘&D1D′
2D3

(φ1,φ2,φ3) − ℘&D1D2D′
3
(φ1,φ2,φ3)

= sin(φ1 + φ2 + φ3). (16.145)

Let us now show that a contradiction arises between Eq. (16.145) and the EPR-like require-
ment that αλ(φ1), βλ(φ2), and γλ(φ3) possess definite values once λ,φ1,φ2, and φ3 are
specified. For φ1 + φ2 + φ3 = π/2 we obtain C& = +1 and for φ1 + φ2 + φ3 = 3π/2 we
obtain C& = −1. Stated in terms of the three functions αλ(φ1), βλ(φ2), and γλ(φ3), we
have that

αλ(φ1)βλ(φ2)γλ(φ3) =
⎧⎨⎩

+1 if φ1 + φ2 + φ3 = 1
2π

−1 if φ1 + φ2 + φ3 = 3
2π

. (16.146)

Consider three different choices of the phase angles that satisfy the former assign-
ment, i.e. (π/2, 0, 0), (0,π/2, 0), (0, 0,π/2), and one choice that satisfies the latter, i.e.
(π/2,π/2,π/2). In the first three cases, we may write the product of the outcomes as

αλ(π/2)βλ(0)γλ(0)= 1, (16.147a)

αλ(0)βλ(π/2)γλ(0)= 1, (16.147b)

αλ(0)βλ(0)γλ(π/2)= 1. (16.147c)

Multiplying the three Eqs. (16.147) we have

αλ(π/2)βλ(π/2)γλ(π/2) = 1, (16.148)

because the other factors are equal to one, since α2
λ(φ) = β2

λ(φ) = γ 2
λ (φ) = 1 for any φ.

This result clearly contradicts that, for φ1 + φ2 + φ3 = 3π/2, we have C& = −1.
Note that the observed count rates for coincidences (for instance, among detectors

D1, D2, D3), will depend on the phases. That is, if φ1 + φ2 + φ3 is varied linearly in time,
then the three-particle coincidence rate (the three-particle interference) will vary sinu-
soidally (see Eq. (16.144a)). However, there will be no two-particle interference fringes
(see Prob. 16.19).

The GHSZ thought experiment shows that there is an intrinsic contradiction between
the assumption of perfect correlation and the other EPR assumptions, namely separability
and reality, at the level of three – or more – particle systems. Moreover, the GHSZ thought
experiment demonstrates that such contradiction arises even for an individual system rather
than for the statistical properties of an ensemble of identically prepared systems.72

Finally, let us conclude this section by considering an interesting consequence of the
GHSZ state: entanglement, in a given compound system, is strongly affected by mea-
surements performed on one of its constituents.73 For instance, consider the case of three
spin-1/2 particles (a GHSZ-like state), defined by

72 A three-particle GHZ-or GHSZ-like entangled state has also been experimentally realized
[Bouwmeester et al. 1999].

73 See [Krenn/Zeilinger 1996],
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�Figure 16.22 Conceptual scheme allowing investigation of the conditional entanglement arising between two
out of three particles in a GHSZ state

|&〉 = 1√
2
(| ↑〉1| ↑〉2| ↑〉3 + | ↓〉1| ↓〉2| ↓〉3), (16.149)

where | ↑〉 j and | ↓〉 j represent the particle j’s up and down states of the spin component
along the z-direction, respectively. Now, we look for two-particle entanglement between
particles 1 and 2 when the spin of particle 3 is measured along the component defined by
the spherical angles (θ3,φ3) (see Fig. 16.22). If one performs spin measurements within the
xy-plane on particles 1 and 2 (θ1 = θ2 = π/2), two subensembles are generated depending
on the result (up or down) of the measurement performed on particle 3. Then, the two-
particle correlation functions for these subensembles are given by

C±
12 = ± sin(θ3) cos(φ1 + φ2 + φ3). (16.150)

Equation (16.150) tells us that, after having measured the third particle, the other two still
remain entangled, unless the third is measured along the z-direction (θ3 = 0), because in
this case we obviously obtain C+

12 = C−
12 = 0.

16.8 What is quantum non-locality?

We have seen that quantum mechanics is not compatible with an HV theory that acknowl-
edges the separability principle. However, in principle it could raise the problem of whether
quantum mechanics violates relativistic locality by some form of superluminal communi-
cation between entangled entities. Here, by locality we mean the principle of absence of
action-at-a-distance and the existence of bounds on the speed of transmission of signals
or physical effects. By relativistic locality we mean that these bounds, for particles of real
non-negative rest mass, are represented by the speed of light in vacuum. In this section,
we shall see that quantum mechanics does not violate locality because it does not imply
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a superluminal transmission of signals. As a matter of fact, quantum dynamics is strictly
local while quantum correlations exhibit non-local features.

16.8.1 Eberhard’s theorem

Since 1978 Eberhard focused on the problem of separability and locality.74 Let Ô1 and Ô2

be two observables on subsystems S1 and S2 of a system S, respectively, and℘(oa , a; ob, b)
be the probability that the results of a measurement of Ô1 and Ô2 on S1 and S2 yield oa

and ob when certain settings of the measurement apparata are a and b, respectively.
We now give the following definition of locality: the probability distribution of Ô1

(Ô2), independently of the measurement outcome on Ô2 (Ô1), obtained by integrating
℘(oa , a; ob, b) over ob (oa), is independent of the other setting b (a), that is∑

ob
℘(oa , a; ob, b) = ℘(oa , a);

∑
oa
℘(oa , a; ob, b) = ℘(ob, b). (16.151)

If locality were violated, we would have a causal interdependence between the two sub-
systems, because, by changing the setting a (b), we would be able to act on the result of
the other measurement, and, hence, if we performed experiments on subsystems that are
space-like separated, we would be able to transmit a message with superluminal or even
infinite speed. We can now prove the following theorem:

Theorem 16.4 (Eberhard) Quantum-mechanical correlations do not imply a violation of
locality as expressed by Eq. (16.151).

Proof

Let

P̂oa ,a = |oa , a〉 〈oa , a | and P̂ob ,b = |ob, b〉 〈ob, b | (16.152)

be the projectors on the state |oa , a〉 of subsystem S1 when the setting is a and on the
state |ob, b〉 of subsystem S2 when the setting is b, respectively, and ρ̂ be a density matrix
which represents the compound state of S = S1 + S2. The probability ℘(oa , a) that, by
measuring the observable Ô1 on S1, we obtain oa , is

℘(oa , a) = Tr
[

P̂oa ,aρ̂
]

. (16.153)

After a measurement of Ô1 when the setting is a with result oa we obtain the transformation
(see Eq. (9.101))

ρ̂ � ρ̂′ = P̂oa ,aρ̂ P̂oa ,a

℘(oa , a)
. (16.154)

74 See [Eberhard 1978]. A proof of a the following result can also be found in [Jordan 1983].
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If we perform a second measurement on the second subsystem, and calculate the
conditional probability of obtaining ob by measuring Ô2 when the setting is b, we have

℘′(ob, b|oa , a) = Tr

[
P̂ob ,b P̂oa ,aρ̂ P̂oa ,a

℘(oa , a)

]
. (16.155)

We now compute the joint probability of obtaining the two results oa and ob given the
settings a and b, respectively, i.e.

℘(oa , a; ob, b) = ℘(oa , a)℘′(ob, b|oa , a)

= ℘(oa , a)
Tr
[

P̂ob ,b P̂oa ,aρ̂ P̂oa ,a

]
℘(oa , a)

= Tr
[

P̂ob ,b P̂oa ,aρ̂ P̂oa ,a

]
. (16.156)

Finally we have (see Eq. (16.151))∑
oa

℘(oa , a; ob, b) = Tr
∑
oa

(
P̂ob ,b P̂oa ,aρ̂ P̂oa ,a

)
= Tr

[
P̂ob ,bρ̂

]
= ℘(ob, b), (16.157)

where we have made use of the cyclic property of the trace (see Prob. 5.4), of the fact
that P̂oa ,a and P̂ob ,b commute because they pertain to different subsystems, of the fact that
P̂2

oa ,a = P̂oa ,a (see Eq. (1.41b)), and of the property
∑

oa
P̂oa ,a = Î for any orthogonal set

of projectors {P̂oa ,a} (see Eq. (1.41a)). We may proceed in a similar way starting from the
conditional probability ℘′(oa , a|ob, b) in order to derive the first equality in Eq. (16.151).

Q.E.D

Eberhard’s theorem is of particular relevance because it shows that, though the probabil-
ity distributions of possible outcomes of measurement on two entangled systems are not
independent, there is no way – by changing the setting for the measurement on one sub-
system – to influence the probability distributions of the outcomes on the other subsystem,
something which in turn would imply the possibility of exchanging superluminal signals.
In the following we shall use the term non-locality as a short-hand way to refer to all
separability-violating quantum correlations based on entanglement. However, we should
never forget that in quantum mechanics there is no violation of locality stricto sensu.

16.8.2 A necessary condit ion for separabi l i ty

As we have seen, certain entangled states violate Bell inequalities. However, it is not true
that every violation of separability implies a violation of Bell inequalities. In other words,
while a separable system always satisfies Bell inequalities, the converse is not necessarily
true. We seek now a necessary condition for separability and show that it is more stringent
than that implied by Bell inequalities.75 Let us consider two separable subsystems S ′ and
S ′′ and write the density operator of the composite system as (see Eq. (5.39))

75 See [Peres 1996].
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ρ̂ =
∑

j

w j ρ̂
′
j ⊗ ρ̂

′′
j , (16.158)

where the weights w j are non-negative and satisfy
∑

j w j = 1.
In order to derive the separability criterion, let us explicitly rewrite Eq. (16.158) in terms

of the matrix elements, i.e.

ρmμ,nν =
∑

j

w j (ρ
′
j )mn(ρ′′j )μν , (16.159)

where Latin indices refer to the first subsystem and Greek indices to the second one (in
general the dimensions of the two subsystems can be different). Note that this equation can
always be satisfied if we replace the density matrices by Liouville functions, which have to
be non-negative. In the quantum-mechanical case, however, we require the non-negativity
of the eigenvalues. Let us define a new density matrix

!̂ =
∑

j

w j (ρ̂
′
j )

Tρ̂′′j , (16.160)

where only the density matrix referring to the first subsystem has been transposed. From
Eq. (16.160) it is clear that

!mμ,nν = ρnμ,mν . (16.161)

The transformation ρ̂ �→ !̂ is non-unitary, but !̂ is still Hermitian. Since a transposed
matrix of the form (ρ̂′j )T = (ρ̂′j )∗ is a non-negative matrix with unit trace, it follows that
none of the eigenvalues of !̂ is negative: this is the necessary condition for separability.

For example, take a pair of spin-1/2 particles in a Werner state (impure singlet state),
which, for the bidimensional case, has the form

ˆ̃ρW = w P̂&0 + (1 − w) Î , (16.162)

where P̂&0 is the projector on the singlet state (6.194). In terms of matrix elements we have

(ρW )mμ,nν = wρ0
mμ,nν + (1 − w)

δmnδμν

4
, (16.163)

where the density matrix elements for a pure singlet state are given by

ρ0
01,01 = ρ0

10,10 = −ρ0
01,10 = −ρ0

10,01 =
1

2
, (16.164)

and all other components of ρ̂0 vanish. An explicit calculation (see Prob. 16.20) shows
that !̂ (where the density matrix of the first subsystem has been transposed) has three
eigenvalues equal to (1 + w)/4 and the fourth one equal to (1 − 3w)/4. The condition for
the lowest one to be non-negative (a necessary requirement for separability) is w ≤ 1/3. It
is worth noting that this criterion is a stronger test for separability than that represented by
the Bell inequalities, which hold for w ≤ 1/

√
2 (see Fig. 16.23 and Prob. 16.21).

Finally, it should be noted that, in the particular case chosen above, this necessary sepa-
rability criterion is also sufficient – as it is for composite systems having dimensions 2 × 2
and 2 × 3. However, for higher dimensions it does not represent a sufficient condition.76

76 As proved in [Horodecki et al. 1996].
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�Figure 16.23 Simple representation of separability for a Werner state as a function of the weight w. It is
interesting to note that the grey area represents all those Werner states which do not violate the
Bell inequality but are still not separable.

16.9 Further developments about inequalit ies

The investigation of the non-local properties of quantum mechanics has been developed
and generalized in many directions. In the present section we first wish to recall some
developments, and then to stress in particular one of them, the Tsirelson theorem. The
main further developements may be summarized as follows:

• Several generalized forms of inequalities, of which the original Bell inequalities rep-
resent a special case. Among others, we recall here the work of Beltrametti and
Maczyński.77

• As we have seen, most proposed and performed experiments deal with spin-1/2 parti-
cles. A powerful generalization to particles with spin-1 and-3/2 has been provided by
Garg and Mermin.78

• We have already seen that CHSH introduced statistical considerations. Important gener-
alizations to non-deterministic HV theories have been provided, among many others, by
Stapp.79

• Violation of Bell inequalities by mixed quantum states has been shown by Gisin.80

• Quantum mechanics violates the bounds on the strength of correlations imposed by
Bell inequalities on HV theories. However, this raises the question of whether quantum-
mechanical correlations are in turn bound by a weaker constraint. In the following we
wish to answer this question.

First, we restate the Bell inequality (16.69) as

| 〈a, b〉 − 〈a, b′
〉+ 〈a′, b′

〉+ 〈a′, b
〉 | ≤ 2, (16.165)

which stems from the fact that |x + y| ≤ |x | + |y|. Since each of the terms in Eq. (16.165)
lies between −1 and +1, the natural upper bound for the entire expression is 4. If we
demand only that the probabilities satisfy the causal communication constraint, i.e. that

77 See [Beltrametti/Maczyński 1991].
78 See [Garg/Mermin 1984].
79 See [Stapp 1980].
80 See [Gisin 1991].
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they do not violate relativistic locality (see previous section), this bound is unchanged, that
is,81

| 〈a, b〉 − 〈a, b′
〉+ 〈a′, b′

〉+ 〈a′, b
〉 | ≤ 4. (16.166)

We have already seen that quantum-mechanical correlations violate the much stronger
bound imposed by Eq. (16.165). As a consequence of this situation, the natural question
arises: do quantum-mechanical correlations fill the gap between 2 and 4 or, in other words,
is there an upper bound for quantum-mechanical correlations smaller than 4?

Tsirelson proved that.82

Theorem 16.5 (Tsirelson) According to quantum mechanics the expression on the lhs of
Eq. (16.165) must be smaller than 2

√
2.

Proof

Let Ôa , Ôa′ , Ôb, Ôb′ be Hermitian operators on a Hilbert space H satisfying the condition
[Ôa , Ôb] = 0 and so on for the other couples (a, b′), (a′, b), (a′, b′). Moreover, each oper-
ator has eigenvalues 1 and −1. In the context of the second Bell inequality, we define the
operator

Ĉ = Ôa Ôb + Ôa′ Ôb + Ôa Ôb′ − Ôa′ Ôb′ . (16.167)

We know that the square of each operator is equal to the identity, which implies (see
Prob. 16.22)

2
√

2 − Ĉ = 1√
2

[
(Ôa)2 + (Ôa′)2 + (Ôb)2 + (Ôb′)2

]
− Ĉ

= 1√
2

(
Ôa − Ôb + Ôb′

√
2

)2

+ 1√
2

(
Ôa′ − Ôb − Ôb′

√
2

)2

. (16.168)

Since the expression in the rhs consists of the sum of squares of Hermitian operators, it is
clearly an operator with expectation value greater than or equal to zero. This leads to the
conclusion: 〈

Ĉ
〉
≤ 2

√
2. (16.169)

A similar argument leads to 〈
Ĉ
〉
≥ −2

√
2. (16.170)

Q.E.D

The importance of Tsirelson result lies in the fact that it proves that quantum mechan-
ics does not fill the entire gap between the bounds of Eqs. (16.165)–(16.166). In other

81 See [Hillery/Yurke 1995].
82 See [Tsirelson 1980]. Generalizations can be found in [Khalfin/Tsirelson 1992] [Hillery/Yurke 1995].
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words, quantum mechanics certainly allows for correlations that are much stronger than
those allowed by HV theories. However, there is a wide spectrum of “hyper-correlations”
that do not contradict causal communication constraints but are not allowed by quantum
mechanics.

16.10 Conclusion

In this chapter we have seen that quantum mechanics forces us to abandon the concept of
separability. Since this represents an important classical principle (see Sec. 1.1), this step
constitutes a historical breakthrough. The evolution of the debate concerning entanglement
and locality, from 1935 to the present day, is paradigmatic and represents a completely new
development for the philosophy and history of science. Indeed, the investigation started
with the aim of EPR at proving the incompleteness of quantum mechanics, which led to
the proposal of the EPR state, which, in turn, after a careful theoretical examination, per-
formed initially by Schrödinger, resulted in one of the most interesting states of the whole
history of science. It should also be noted that most of the theoretical investigation had
been performed before there was any possibility of experimental tests of the predictions.
On the contrary, by finding mathematical constraints like the Bell inequalities, these tests
became for the first time theoretically possible.

We have seen the incompatibility between quantum mechanics and local HV theories.
This is the reason that forced some supporters of HV theories to go in the direction of a
generalized non-local theory.83 A related question is whether quantum mechanics is also
incompatible with non-local HV theories. It is very difficult to provide a sufficiently general
answer to this problem, and probably there is none. However, a more specific question may
be formulated: is there any incompatibility between quantum mechanics and non-local HV
theories that is physically interesting? Leggett investigated a specific class of the latter and
found a new inequality that was inconsistent with inconsistent with quantum mechanics.84

Successive experimental verification found that experimental results also violate these new
inequalities.85

Summary

The main results of this chapter may be summarized as follows:

• Quantum-mechanical states are not dispersion-free, that is, there cannot be a state in
which all observables have zero variance.

83 As outlined in [Aspect 2007], it looks like we are faced with choosing between realism and locality.
84 See [Leggett 2003].
85 See [Gröblacher et al. 2007].
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• Quantum mechanics violates separability but not locality stricto sensu. This means that,
though the measurement outcomes on a given subsystem are not independent from the
measurement outcomes on another subsystem that is entangled with the former, there is
no way to manipulate the setting of a given apparatus on a subsystem in order to force
determined outcomes on another subsystem that is entangled with it.

• As a consequence, quantum systems may be correlated though dynamically and
communication-independent.

• Bell inequalities and, in a stronger form, the Tsirelson inequality set precise bounds that
can be violated by quantum (but not by classical) systems.

• There is a contradiction between perfect correlation and the EPR assumptions of reality
and separability.

• Experimental tests, which have become possible after and thanks to Bell’s contribution,
are consistent with the predictions of quantum mechanics and largely inconsistent with
those of local realistic theories.

Problems

16.1 Prove the equivalence of Eqs. (16.3) and (16.7).
16.2 Prove that the singlet state (16.11) is an eigenstate of the operators σ̂1z σ̂2z and

σ̂1x σ̂2x , and find the corresponding eigenvalues.
16.3 Prove that ĤI (Eq. (16.14)) and N̂e (Eq. (16.16)) commute.
16.4 Prove Lemma 16.1.
16.5 Prove Eq. (16.29).
16.6 Prove Lemma 16.2.
16.7 Prove Eq. (16.42).

(Hint: Study the function f (x) = x + x−1 and draw its graph. Is there any value of
x for which | f (x)| < 2?)

16.8 Prove Eq. (16.51).
16.9 Prove Eq. (16.56).

16.10 Prove the result (16.66).
16.11 Derive the result (16.67).
16.12 Show that the CHSH inequality implies inequality (16.57) as a special case.

(Hint: Take advantage of the solution of the next problem.)
16.13 Derive inequality (16.69).
16.14 Prove the CH inequality (16.76).

(Hint: Take advantage of the following lemma.86 Given six real numbers x1, x2, y1,
y2, X and Y such that

0 ≤ x1, x2 ≤ X , 0 ≤ y1, y2 ≤ Y , (16.171)

86 For the proof of this lemma see [Clauser/Horne 1974].
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the inequality

− XY ≤ f ≤ 0 (16.172)

is satisfied by the function f = x1 y1 − x1 y2 + x2 y1 + x2 y2 − Y x2 − X y1.)
16.15 Derive Eq. (16.99).
16.16 Derive Eq. (16.107).
16.17 Derive result (16.132).
16.18 Explicitly compute the eight possible detection probabilities of the type (16.144)

and derive Eq. (16.145).
16.19 Explain why there are no two-particle fringes in the GHSZ state.
16.20 Calculate the eigenvalues of the density matrix (16.163).
16.21 Show that the state (16.163) violates Bell’s inequality if and only if w > 1/

√
2.

16.22 Derive Eq. (16.168).

Further reading
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17 Entanglement: quantum information
and computation

In this chapter we shall deal with the most recent and challenging development of quan-
tum theory, and also one of the most important ones for interpretational, foundational, and
even technological issues. This field finds its roots in the observation that quantum states
can be viewed as bricks of information in a way that is intrinsically different from clas-
sical information. As a consequence, the ability to manipulate quantum states translates
immediately into a new form of information processing and exchange. What has been dis-
covered during this conceptual passage is that this type of information processing is in
many respects much richer than its classical analogue. This has contributed to the under-
standing of quantum states as an extension of the classical concept of state and not as a
defective reality (see also Subsec. 2.3.4 and Sec. 15.5). The impossibility of knowing the
value of all observables at the same time that had been seen as a strong limitation in the
early days of quantum mechanics, now turns out to be a manifestation of a different – but
not necessarily poorer – resource. On the contrary, we have increasingly discovered that
superposition and entanglement are additional informational resources. These resources,
for instance, allow for certain particular computations that are much faster on a quantum
device than on its classical counterpart, and therefore the former is able to solve problems
that cannot be practically solved using classical means. As we shall see, however, quantum
devices are incredibly sensitive to decoherence, which destroys this specific ability: the
fight against decoherence represents the biggest challenge for quantum technology in the
coming years.

In Sec. 17.1 we shall introduce the von Neumann entropy. In Sec. 17.2 we shall see how
to deal with entanglement by making use of the concept of information, and in Sec. 17.3
we shall discuss the relationships between measurement and information. In Sec. 17.4 the
basic unit of quantum information processing is introduced, the qubit, while in Sec. 17.5
the important informational consequence of quantum non-separability is considered: tele-
portation. In Sec. 17.6 we shall instead consider an important application of the no-cloning
theorem: quantum cryptography. In Sec. 17.7 we consider the basic elements of quan-
tum computation, while in Sec. 17.8 we introduce the fundamental algorithms of quantum
computation.

17.1 Information and entropy

The entropy of a state describing a physical system S is a quantity expressing the rando-
mness of S. It was introduced in 1877 by Boltzmann and can be defined as (see Eq. (1.60))
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SB = −kB lnwE , (17.1)

where kB is the Boltzmann constant and wE represents the total number of different con-
figurations the system. Shannon1 regarded this randomness as the amount of information
that can be obtained about the system. In fact, if S has a large degree of disorder, a much
larger amount of information is needed in order to determine it than the amount of infor-
mation that is necessary to determine a system having a smaller degree of randomness. The
Shannon entropy can be defined as

SS = −
∑
℘k ln℘k , (17.2)

where ℘k represents the probability that the k-th configuration occurs. Shannon’s definition
of entropy coincides with the one used in physics when the probabilities ℘ represent the
canonical distribution. Equation (17.2) is a general formula of wide applicability. Note that
entropy and information are to a certain extent complementary concepts because entropy
defines the amount of uncertainty of the system before we receive information and infor-
mation represents our posterior knowledge of the state of the system. In a classical frame,
where the uncertainty of a system is only due to subjective ignorance, the acquisition of
information normally decreases the entropy of a system. In quantum mechanics, as we
shall see, this is not necessarily the case.

Let us define the quantum entropy,2 the quantum analogue of Eq. (17.2) for a quantum
state ρ̂ as (see Eq. (5.33))

SVN(ρ̂) = −Tr(ρ̂ ln ρ̂). (17.3)

In fact, the density matrix can be seen as the operator which carries maximal information
about the state of the system – though, as we know (see Secs. 15.1–15.2), this maximal
information cannot be extracted by a measurement on a single system. SVN is referred to
as the von Neumann entropy.

If we consider an orthonormal basis {|bk〉} of eigenvectors of the density operator ρ̂ for
a system S such that (see Eq. (5.26))

ρ̂ |bk〉 = rk |bk〉 , (17.4)

where the rk’s are the eigenvalues of ρ̂, we may rewrite Eq. (17.3) as

SVN(ρ̂) = −
∑

j

r j ln r j , (17.5)

which is formally similar to the expression (17.2). For a complete mixture (see Sec. 5.6),
as expected, we have the maximal entropy (see Prob. 17.1)

S(n)
Max = ln(n), (17.6)

1 See [Shannon 1948].
2 See [von Neumann 1927c] [von Neumann 1932, 202] [von Neumann 1955, 379–81].
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where n is the dimension of the system, and here and in the following we drop the subscript
VN for the sake of notation. Indeed, for an n-dimensional system, the completely mixed
state has the form (see Eq. (5.61))

ˆ̃ρ =

⎡⎢⎢⎣
1
n 0 · · · 0
0 1

n · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

n

⎤⎥⎥⎦. (17.7)

In the case of pure states, instead, we have SVN = 0 (see Prob. 17.2). This means that pure
states are highly ordered states, in the sense we have given to this term in Eqs. (17.1)–
(17.2).

The properties of von Neumann entropy are as follows:3

• Non-negativity:

S(n)
Max ≥ S(ρ̂) ≥ 0, (17.8)

where the von Neumann entropy is equal to zero if and only if ρ̂ is a pure state and is
equal to S(n)

Max only when we have a complete mixture. In other words, as anticipated, S
expresses the degree of mixing. This is strictly related to the opposite concept of purity,
already defined in Eq. (5.57). Araki and Lieb4 proved that the entropy of a compound
system 1–2, with subsystems 1, 2, satisfies the inequality

|S1 − S2| ≤ S12 ≤ S1 + S2, (17.9)

which shows that, if the compound system is in a pure state, then the two subsystems
must have equal entropy.

• Unitary invariance. Since unitary transformations do not change the spectrum of any
observable, and neither therefore of any density matrix ρ̂, we have

S(ρ̂) = S(Û ρ̂Û †), (17.10)

for any unitary transformation Û .
• Concavity. For all projectors P̂j , we have

S

⎛⎝∑
j

w j P̂j

⎞⎠ ≥
∑

j

w j S
(

P̂j

)
, (17.11)

with w j ≥ 0 and
∑

j w j = 1. Concavity means that a mixture of certain pure states has
always more entropy than the sum of the corresponding pure states.

• Subadditivity. If we have ρ̂ ∈ H, where H = H1 ⊗H2 and the reduced density opera-
tors !̂1 = Tr2ρ̂ ∈ H1, !̂2 = Tr1ρ̂ ∈ H2, then

S(ρ̂) ≤ S(!̂1 ⊗ !̂2) = S(!̂1) + S(!̂2), (17.12)

3 See [Lindblad 1983, 20–21] [Wehrl 1978, 236–37, 242].
4 See [Araki/Lieb 1970].
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where equality holds iff ρ̂ = !̂1 ⊗ !̂2. Von Neumann entropy also satisfies a strong
subadditivity theorem,5 i.e.

S(ρ̂123) + S(ρ̂2) ≤ S(ρ̂12) + S(ρ̂23). (17.13)

In the case of pure states, we introduce a further property. If ρ̂12 is the density matrix of a
composite system S12 in a pure state, then we have (see Prob. 17.3)

S(!̂1) = S(!̂2), (17.14)

where

!̂1 = Tr2
(
ρ̂12
)

and !̂2 = Tr1
(
ρ̂12
)
. (17.15)

We now introduce an important concept, that of relative entropy, i.e. the entropy of a
state ρ̂1 relative to another state ρ̂2

6

S(ρ̂1||ρ̂2) = Tr
[
ρ̂1(ln ρ̂1 − ln ρ̂2)

]
. (17.16)

The relative entropy satisfies non-negativity and unitary invariance, and is characterized by
a third property, given by the following theorem:

Theorem 17.1 (Lindblad) For all density matrices ρ̂, r ′, and for any completely positive
active map T (see Subsecs. 8.1.1 and 9.10.1), we have

S(T ρ̂||T ρ̂′) ≤ S(ρ̂||ρ̂′). (17.17)

The larger S(ρ̂||ρ̂ ′ ), the more information for discriminating between the two states that
can be obtained from an observation. Therefore, the theorem expresses also a general
property of the loss of information in the sense that a time evolution obeying a certain
form of Markovian equation does not make the two states more easily distinguishable.7

The concept of relative entropy will turn out to be useful in the context of measures of
entanglement.

17.2 Entanglement and information

In Sec. 5.5 we have defined entanglement as a fundamental – and genuinely quantum –
feature of microscopic systems. Since then, we have encountered this concept many times
throughout the book (see, e.g., Chs. 9, 14, and 16). In this section, we shall provide a more
quantitative grounding of this property.

5 See [Lieb/Ruskai 1973a, Lieb/Ruskai 1973b].
6 See [Lindblad 1973] [Uhlmann 1977].
7 See [Lindblad 1983, 22–23].
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17.2.1 Mutual information

Let us define the entanglement between systems 1 and 2 as

E(1, 2) = −[S(1, 2) − (S(1) + S(2))]

= S(1) + S(2) − S(1, 2), (17.18)

where S(1, 2) is the joint (total) entropy of systems 1 and 2, and

S(1) = S(!̂1) and S(2) = S(!̂2) (17.19)

are the entropies calculated on the reduced density matrices (17.15) of the subsystems 1 and
2, respectively, relative to ρ̂12. This reflects the fact that entanglement is a quantum form
of mutual information: two entangled systems are correlated because they share an amount
of information that is not foreseen classically. Recently, it has been shown8 that entangled
systems can share a potential information that can be exchanged for free in a successive
instant of time. We shall discuss below this aspect in connection to teleportation.

It is useful at this stage to mention that, classically, we express the mutual information
between two generic random variables J , K as follows:

I (J : K ) = S(J ) − S(J |K )

= S(K ) − S(K |J )

= S(J ) + S(K ) − S(J , K ), (17.20)

where

S(J |K ) = −
∑
j ,k

p( j , k) ln p( j |k) (17.21)

is the conditional entropy between J and K , and j , k span all possible values of J , K ,
respectively, and

S(J , K ) = −
∑
j ,k

℘ j ,k ln(℘ j ,k) (17.22)

is the classical joint entropy of the systems J and K , while ℘ j ,k is the joint probability
distribution of events j , k.

It is also possible to calculate the entanglement relative to given observables9 – this is
very useful for choosing the observables that optimally express the entanglement between
subsystems. In this case we can write the actual entropies of observables Ô1 and Ô2 of the
system 1 and 2 as

S(Ô1)=−
∑

j

〈 j |ρ̂1| j〉 ln〈 j |ρ̂1| j〉 (17.23a)

S(Ô2)=−
∑

k

〈k|ρ̂2|k〉 ln〈k|ρ̂2|k〉 (17.23b)

8 See [Horodecki et al. 2005].
9 See [Barnett/Phoenix 1989].
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where {| j〉 } ({|k〉 }) are the eigenstates of the observable Ô1 (Ô2), i.e. the states of the
system 1 (2) that will be the output states when measuring the observable Ô1 (Ô2). The
joint entropy of the two quantum observables is given by

S(Ô1, Ô2) = −
∑

j

∑
k

〈 j , k|ρ̂|k, j〉 ln〈 j , k|ρ̂|k, j〉, (17.24)

where ρ̂ is the density matrix of the global quantum system, and we have used the notation
| j , k〉 = | j〉 ⊗ |k〉 . Then, we may define the entanglement between these two observables
as

E(Ô1, Ô2) = S(Ô1) + S(Ô2) − S(Ô1, Ô2). (17.25)

It is interesting to note that we always have

E(Ô1, Ô2) ≤ E(1, 2) (17.26)

i.e. that the information contained in the correlation between any two observables pertain-
ing to the two subsystems – given by Eq. (17.25) – cannot exceed the total information
content of the correlation between the two systems – given by Eq. (17.18). Moreover, it
can be proved10 that, if the state of the compound system is pure, then

E(Ô1, Ô2) ≤ 1

2
E(1, 2). (17.27)

17.2.2 More about Bel l inequal it ies

We can also interpret the Bell inequalities in terms of information and entropy. Braunstein
and Caves11 formulated an information-theoretic Bell inequality of the type

S(Ôa |Ôb) ≤ S(Ôa |Ôb′) + S(Ôb′ |Ôa′) + S(Ôa′ |Ôb). (17.28)

Inequality (17.28) is deduced (i) from the expression

S(Ôa |Ôb) ≤ S(Ôa) ≤ S(Ôa , Ôb), (17.29)

where the lhs inequality means that removing a condition never decreases the entropy
carried by a quantity, and the rhs inequality means that two observables never carry
less entropy than each of them separately; and (ii) from the following generalization of
inequality (17.29)

S(Ôa , Ôb) ≤ S(Ôa , Ôa′ , Ôb, Ôb′ ) (17.30)

= S(Ôa |Ôa′ ∧ Ôb ∧ Ôb′ ) + S(Ôb′ |Ôa′ ∧ Ôb) + S(Ôa′ |Ôb) + S(Ôb),

10 See [Barnett/Phoenix 1991].
11 See [Braunstein/Caves 1988] [Braunstein/Caves 1990].



634 Entanglement : quantum information and computat ion
�

where the expansion of the rhs is a recursion of the definition of conditional entropy, i.e.
[see, also Eq. (9.170)]

S(Ôa , Ôb) = S(Ôa |Ôb) + S(Ôb). (17.31)

Proof

In order to deduce Eq. (17.28) from inequality (17.30) one first needs to substitute the first
term of the rhs of expression (17.30) with the first term of the rhs of inequality (17.28) by
means of the following application of inequality (17.29):

S(Ôa |Ôa′ ∧ Ôb ∧ Ôb′ ) ≤ S(Ôa |Ôb′) . (17.32)

Then, one substitutes the second term of the rhs of expression (17.30) with the second term
of the rhs of inequality (17.28) by means of another application of inequality (17.29), i.e.

S(Ôb′ |Ôa′ ∧ Ôb) ≤ S(Ôb′ |Ôa′). (17.33)

Finally, one leaves the third term of the rhs of inequality (17.30), and one substitutes
the lhs term S(Ôa , Ôb) with the term S(Ôa |Ôb) by applying Bayes’ rule (17.31), which
also implies the deletion of the fourth term, S(Ôb), on both the lhs and the rhs of
expression (17.30).

Q.E.D

The authors show that, in the context of the Bell’s spin-like experiments (see Figs. 16.7
and 16.8), inequality (17.28) is violated by quantum mechanics and that the infor-
mation deficit increases with increasing spin number s of the involved particles
(see Fig. 17.1).

It is possible to arrive at a result formally similar to the previous one by using different
conceptual instruments.12 Recalling the definition (17.20) of mutual information, we now
define the informational distance δ(ξ , ξ ′) between the variables ξ and ξ ′ as

δ(ξ , ξ ′) = S(ξ |ξ ′) + S(ξ ′|ξ )

= S(ξ , ξ ′) − S(ξ : ξ ′)
= 2S(ξ , ξ ′) − S(ξ ) − S(ξ ′). (17.34)

The informational distance is positive definite and symmetric. It can be proved13 that the
informational distance satisfies the following triangular inequality for the three quantities
ξ , ξ ′, ξ ′′:

δ(ξ , ξ ′) + δ(ξ ′, ξ ′′) ≥ δ(ξ , ξ ′′). (17.35)

12 See [Schumacher 1991].
13 See [Schumacher 1990].
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�Figure 17.1 Information difference in bits versus angle θ in degrees for different values of the spin number
s = 1/2, 2, 5, and 25. The maximum information deficit for s = 1/2 is −0.2369 bits at 52.31◦; for
s = 25 the maximal deficit equals −0.4493 bits at 9.798◦. Adapted
from [Braunstein/Caves 1988, 664].

Oa^

Ob′^

Oa′^

Ob^

�Figure 17.2 Spin measurement axes yielding a violation of the information-distance quadrilateral inequality
for a singlet state. The angles between the vectors are all equal to π/8.

Similarly we can state a quadrilateral inequality, the so-called quadrilateral information-
distance Bell inequality for the four Bell-like quantum observables

δ(Ôa , Ôb) + δ(Ôb, Ôa′ ) + δ(Ôa′ , Ôb′ ) ≥ δ(Ôa , Ôb′ ). (17.36)

If we fix the information distance between Ôa and Ôb (separated by angle θ ) to be

δ(Ôa , Ôb) = 2 f

(
θ

2

)
, (17.37)
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�Figure 17.3 Schematic information-theoretic representation of quantum non-separability. The information

distance δ(Ô
a
, Ô

b’
) is greater than is allowed by the classical metric properties of informational

distance.

where f (φ) = − cos2 φ ln cos2 φ − sin2 φ ln sin2 φ, and take the angle between Ôa and
Ôb, between Ôb and Ôa′ , between Ôa′ and Ôb′ to be equal to π/8 (see Fig. 17.2), we
arrive at the following values:

δ(Ôa , Ôb) = δ(Ôa′ , Ôb) = δ(Ôa′ , Ôb′ ) = 2 f
( π

16

)
� 0.323, (17.38a)

δ(Ôa , Ôb′ ) = 2 f

(
3π

16

)
� 1.236. (17.38b)

But since 0.323 + 0.323 + 0.323 < 1.236 it is evident that the Bell inequality (17.36) is
violated (see Fig. 17.3).14

17.2.3 Vedral and co-workers’ measure

As we have seen, and as was expected, entanglement is a quantity that may take on different
values. A stringent formulation of entanglement’s measure has been given by Knight and
co-workers.15 They established three conditions which such a measure has to fulfill:

• E(ρ̂) = E(ρ̂1, ρ̂2) = 0.
• Local unitary operations leave E(ρ̂) invariant, i.e.,

E(ρ̂) = E
(

Û1 ⊗ Û2ρ̂Û †
1 ⊗ Û †

2

)
. (17.39)

• The measure of the entanglement E(ρ̂) cannot increase under local measurement and
classical correlation: if we represent such an operation by T , then E(T ρ̂) ≤ E(ρ̂).

14 In analogy with Eq. (17.20) it is also possible to obtain a violation of mutual-information Bell-like inequalities
[Cerf/Adami 1997].

15 See [Vedral et al. 1997].
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�Figure 17.4 The set of all density matrices of a compound system is represented by E + D. The subset D of all
disentangled states is represented by the inner circle. An entangled density matrix ρ̂E belongs to
E, and ρ̂∗ is the disentangled density operator which minimizes the relative entropy S(ρ̂E ‖ ρ̂D),
thus representing the amount of quantum correlations in ρ̂E. A product density matrix ρ̂∗

1 ⊗ ρ̂∗
2 is

obtained by tracing ρ̂∗ over S1, S2. The relative entropy S(ρ̂∗ ‖ ρ̂∗
1 ⊗ ρ̂∗

2) represents the classical
part of correlations in state ρ̂E (see also Subsec. 16.8.2).

The reason for the first requirement is evident (separable states contain no entanglement);
the reason for the second requirement is that local unitary transformations only represent
local changes of basis and leave quantum correlations unchanged; and the reason for the
third condition is that each increase in correlations achieved by T is classical in nature,
and hence entanglement is not increased. Moreover, since each form of operation is local,
correlations cannot be increased by this means.

Let us now consider the set of all density matrices of a compound system containing two
subsystems S1,S2 (see Fig. 17.4). We take D to be the subset of all disentangled states, and
E to be the subset of all entangled ones.16

Next we define the entanglement of a density operator ρ̂E in terms of the relative entropy
(17.16) as

E(ρ̂E) = min S(ρ̂E ‖ ρ̂D), (17.40)

where ρ̂D is an arbitrary density operator ∈ D.17 The difficulty here is that the relative
entropy is not symmetric, as should be the case for a proper distance. However, it appears
reasonable to define quantum entanglement as a distance from (relative to) a disentangled
state. Our first requirement is satisfied for ρ̂D = ρ̂E, the second one is automatically sat-
isfied, because D is invariant under local unitary transformations (see Prob. 17.4), and the
third one is satisfied by Th. 17.1 – where the operation T is defined by Th. 9.1 (p. 329).

16 Note that the sets E + D and D are convex but not E.
17 See [Vedral et al. 1997].
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�Figure 17.5 Representation of all density matrices. The set of all possible density matrices of a given
compound system is denoted by 
 = D + E (see Fig. 17.4). U is the set of all uncorrelated density
matrices, i.e. of the type ρ̂ = ρ̂1 ⊗ ρ̂2. The set D also comprehends classically correlated density
operators. The set B consists of all density matrices that satisfy Bell inequalities (see also
Fig. 16.23), whereas B is the set of all quantum density operators violating Bell inequalities (see
Prob. 17.5).

Therefore, the amount of entanglement given by Eq. (17.40) can be interpreted as finding
a state ρ̂∗ in D that is the closest to ρ̂E under the “measure” S(ρ̂E ‖ ρ̂D). The state ρ̂∗
approximates the classical correlations of ρ̂E as closely as possible. In this way we are able
to divide the correlations in the quantum-mechanical component E(ρ̂E) and the classical
one S(ρ̂∗ ‖ ρ̂∗1 ⊗ ρ̂∗2 ) (see Fig. 17.5).

17.2.4 Decompression

In order to control and to determine the amount of entanglement a technique of decompres-
sion of the information has been developed.18 It is an inverse operation with respect to the
purification (see Subsec. 5.5.3): by starting with a number of highly entangled pairs shared
by two distant parties, we end up (by local operations) with a greater number of pairs with
a lower entanglement. Here we will only sketch the procedure.

Such an operation is a local copying (see Sec. 15.2) of non-local quantum correlations.
By this means we can control the entanglement, because if we are able to optimally split
the original entanglement of a single pair into two equally entangled pairs (having the same
state), we have a means of defining half the entanglement of the original pair, which, for
example, can be a maximally entangled state like the singlet state (see Fig. 17.6).

18 See [Buz̆ek et al. 1997].
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�Figure 17.6 Scheme for decompression of information. The input is on the left (entanglement between a1 and
a2) and the output is on the right (entanglement between a1 and b2 and between b1 and a2).

17.3 Measurement and information

17.3.1 Information downloading

When measuring, we expect to obtain a mixed state of the object system and the apparatus,
which means an increase in entropy if the initial state is a pure state. An increase in entropy
can be obtained by discarding the initial potential information that cannot be acquired,19

which consists exactly of the quantum correlations that exist between the observed system
and the apparatus. The information I that can be acquired, instead, has to do with the sum
of the partial entropies of the subsystems.

In order to obtain such a result, we assume that the initial total state of the combined
system, before the premeasurement, be a product state relative to the two subsystems. The
initial entropy is then equal to the sum of the entropies of the subsystems, and this entropy
will not change during the measurement (if the two subsystems are isolated). However,
during premeasurement, the two subsystems may become correlated and now we can dis-
card the correlation and obtain a final useful piece of information (a function of the sum
of the final entropies of the two subsystems) which is greater than the sum of the initial
partial entropies. We have already considered this process in general terms (see Sec. 9.4).
Now, we wish to consider this process in the context of informational exchange.

Formally, for an initial state ρ̂12
i = ρ̂1

i ⊗ ρ̂2
i we have

S(ρ̂12
i ) = S(ρ̂1

i ) + S(ρ̂2
i ) = S(ρ̂12

f ) ≤ S(!̂1
f ) + S(!̂2

f ), (17.41)

19 See [Lindblad 1983, 27–28, 44–46, 59].
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having discarded the part of information due to entanglement, measured by

E(ρ̂12
f ) = S(!̂1

f ⊗ !̂2
f ) − S(ρ̂12

f ), (17.42)

in agreement with Eq. (17.18). We recall that the quantity S(!̂1
f ) + S(!̂2

f ) represents the
degree of disorder of the system in its final state (ideally a complete mixture) and defines
the amount of uncertainty of the system about which we may receive a posteriori informa-
tion, while ρ̂12

f represents the final state of the compound system. We assume here that the
two subsystems are open systems so that the correlation (17.42) can be downloaded into
a larger system (see also Ch. 14). Hence, as we know, we have to introduce the concept
of environment. The a posteriori information that we may gain from a system in a mixed
state whose entropy has the form S(!̂1

f ) + S(!̂2
f ) is given by the difference between this

entropy and the entropy associated to the final outcome – a much more ordered state ρ̂m

(see Subsecs. 9.10.2 and 14.3.1) – that is,

Im = −�S = S(!̂1
f ⊗ !̂2

f ) − S(ρ̂m). (17.43)

It is this information gain that represents the true irreversibility in the measurement process
(see Sec. 9.5).

In order to gain a better understanding of Eq. (17.41), let us consider20 the initial density
matrix ρ̂SAE (t0) for the system S plus the apparatus A plus the environment E , with

ρ̂SAE (t0) = ρ̂SA(t0)ρ̂E (t0). (17.44)

Due to the strong subadditivity property (see Eq. (17.13)), at a later time t we must have

St (S,A, E) + St (A) ≤ St (S ,A) + St (A, E), (17.45)

where St (S,A, E) is the entropy of the whole system at time t . Since the evolution of the
density matrix of the total system is unitary, it follows that

St0 (S ,A, E) = St (S ,A, E). (17.46)

Due to the initial state, in which S and A are uncoupled with the environment E , we have

St0 (S,A, E) = St0 (S ,A) + St0 (E). (17.47)

Suppose now that S is a spectator while A and E interact for time t . Thus we have

St (S) = St0 (S) (17.48a)

and also

St (A, E) = St0 (A, E). (17.48b)

The lack of entanglement or of correlation between A and E at t0 implies that

St0 (A, E) = St0 (A) + St0 (E). (17.49)

Combining all these relations, we now show that it is possible to derive

Et (S ,A) ≤ Et0 (S ,A), (17.50)

20 See [Partovi 1989].
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where E(S,A) may be derived from Eq. (17.42) and expresses the complex of quantum
correlations between S and A. To this purpose, let us add St (S) to both sides of Eq. (17.45)
and rewrite it as

St (S) + St (A) − St (S,A) ≤ St (S) + St (A, E) − St (S ,A, E). (17.51)

By using Eqs. (17.46) – (17.49), we obtain

St (S) + St (A) − St (S ,A) ≤ St0 (S) + St0 (A) − St0 (S ,A), (17.52)

which is Eq. (17.50) in explicit form. In other words, from a measurement we expect
a decrease in the quantum correlations between the system and the apparatus, i.e. the
entanglement between the system and the apparatus must somehow be reduced. As a
consequence, there is an increase in entropy.

17.3.2 Bounds for information

A problem of great interest for measurement problems is the existence of bounds for the
information gain. Holevo21 proved the existence of an upper bound for the information one
can extract from a quantum system. Holevo’s theorem shows that it is impossible to extract
the whole information contained in a quantum system.

Let us first write a continuous expression for the mutual information between an input η
and an output x which (classically) is given by

IM (η : x) = S(η) − S(η|x), (17.53)

where

S(η|x) = −
∫

dx℘(x)
∫

dη℘(η|x) ln℘(η|x) (17.54)

is the continuous expression for the conditional entropy.
Suppose, in a quantum-mechanical context, an effect Ê(dx) (see Sec. 9.10) so that, when

it is measured in a state ρ̂, the output probability distribution ℘ρ̂ of x̂ is given by

℘ρ̂ (dx) = Tr[Ê(dx)ρ̂]. (17.55)

Suppose now that η is a parameter that has a probability distribution ℘(dη) on the pro-
jectors P̂η on the Hilbert space of the system. Hence we write the output conditional
distribution as ℘(dx |η) = ℘ρ̂η (dx) and define a mixture of projectors P̂η

ˆ̃ρ =
∫

P̂η℘(dη). (17.56)

21 See [Holevo 1973b]. See also [Fuchs/Caves 1995].
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Then, we may state the following:

Theorem 17.2 (Holevo) The information which can be obtained from the considered
system is subjected to the following bound:

IM (η : x) ≤ S( ˆ̃ρ) −
∫

dη℘(dη)S(P̂η), (17.57)

where the equality holds if all the P̂η’s commute.

We omit here the proof of the theorem.22 Since we have S(P̂η) ≥ 0, inequality (17.57)
implies a fortiori

IM (η : x) ≤ S( ˆ̃ρ), (17.58)

which means that, independently of the quantum measurement one can perform, the related
information transfer is never larger than the entropy of the mixture one obtains.

Holevo’s theorem is a further confirmation of the impossibility of measuring (by
repeated measurements) the density matrix of a single system – which represents, as
already stated, the maximal amount of information contained in a physical state (see
Ch. 15). Once more we face the duality between state and observables, in the sense that
we may recover the information content of a state only through the specific perspective of
a measurement of a given observable.

17.4 Qubits

Before entering into the details of quantum information processing, we need to define its
basic unit: the qubit. A classical bit of information is represented by a system that can be
in either of two states, say, 0 or 1. From this simple observation, one may derive the whole
binary logic that is at the heart of classical information processing, which employs logical
binary operators (AND, NAND, OR, XOR, etc.), instantiated by gates. At the quantum-
mechanical level, the most natural candidate for replacing a classical bit is the state of a
two-level system, whose basic components may be written as

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
. (17.59)

22 See the original article, which is in turn based on a result of Uhlmann [Uhlmann 1977].
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This is the so called quantum bit of information or, in short, a qubit. The most striking
difference between a classical bit and a qubit is, as we know, that any two-level quantum
system may be in any superposition of these two components, namely

|ψ〉 = c0 |0〉 + c1 |1〉 . (17.60)

As we shall see, it is precisely this fact, together with its natural consequences (e.g.
entanglement), that makes quantum information processing much richer than its classi-
cal counterpart. Generalizing to the n-qubit case, we make use of 2n basis states of the
type

| j1〉 1 ⊗ | j2〉 2 ⊗ . . .⊗ | jn〉 n , (17.61)

where each of the jl may take on the values 0, 1.
Let us consider, in particular, a system composed of two two-level subsytems. In this

case, we can store two qubits of information, for instance

|&〉 = 1

2
(|00〉 + |01〉 + |10〉 + |11〉 ), (17.62)

where we have adopted the shorthand notation

| jk〉 = | j〉 1 ⊗ |k〉 2 , j , k = 0, 1. (17.63)

When dealing with two or more subsystems, it is very important to distinguish between
entangled and separable states (see also Subsec. 5.5.1). For instance, consider the following
two states:

|&〉 = cα |00〉 + cβ |01〉 , (17.64a)∣∣& ′〉 = c′α |00〉 + c′β |11〉 . (17.64b)

Though they may look quite similar, the latter is entangled while the former is not. In fact,
state (17.64a) may be written as

|&〉 = |0〉 1 ⊗
(
cα |0〉 2 + cβ |1〉 2

)
, (17.65)

which clearly shows that it is a product state of subsystems 1 and 2. On the other hand,
state (17.64b) cannot be written in such a factorized form.

Sometimes in the following we shall find it convenient to use the notation {|↑〉 , |↓〉 }
instead of {|0〉 , |1〉 } to denote the basis states of a qubit, especially when dealing with
spin systems.

17.5 Teleportation

In this section we describe one of the most striking examples of the power of quantum
information processing: teleportation. By this term, we mean a procedure that is able to
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�Figure 17.7 Scheme of teleportation. In step 1, Alice makes particle 1 (the qubit to be teleported) interact
with particle 2 (which is entangled with particle 3). In step 2 she reads the outcome of the Bell
measurement performed on particles 1 and 2. In step 3, she classically communicates this result
to Bob (the “owner” of particle 3). In function of this classical piece of information, in step 4 Bob
rotates the state of particle 3 and obtains as output the input qubit.

transfer with certainty the state of an input quantum system onto the state of a distant
output system of the same type.

As we know, an instantaneous transfer of information is not possible. However, it is pos-
sible to “teleport” some information by exploiting EPR correlations and without violating
the Einstein locality (the locality stricto sensu) (see also Ch. 16).23 Suppose that “Alice”
wishes to give “Bob” some information about a quantum system (a particle labelled “1”)
prepared in state | j〉1 – called the ancilla – unknown to her as well as to Bob. For this pur-
pose, Alice allows the ancilla to interact with a particle 2 that is entangled with a particle
3, previously given to Bob (see Fig. 17.7). Now, Alice performs a special kind of mea-
surement on the compound system 1 + 2, so that, by classically telling Bob the result of
this measurement, Bob can reconstruct the same state of 1 onto 3. In order to express this
procedure formally, let particles 2 and 3 be in the EPR state (see Eqs. (6.194) and (16.11))

∣∣&−〉
23 =

1√
2

(|↑〉 2 |↓〉 3 − |↓〉 2 |↑〉 3
)
. (17.66)

Now, Alice performs on particles 1 and 2 the measurement of the Bell operator

B̂ = σ̂ 1 · a
(
σ̂ 2 · b + σ̂ 2 · b′

)+ σ̂ 1 · a′
(
σ̂ 2 · b − σ̂ 2 · b′

)
, (17.67)

associated to inequality (16.69) and introduced by Braunstein, Mann, and Revzen,24 whose
eigenbasis is given by (see Subsec. 16.6.3)

23 See [Bennett/Wiesner 1992, Bennett et al. 1993].
24 See [Braunstein et al. 1992a].
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12 =
1√
2
(|↑〉 1 |↓〉 2 − |↓〉 1 |↑〉 2), (17.68a)

∣∣&+〉
12 =

1√
2
(|↑〉 1 |↓〉 2 + |↓〉 1 |↑〉 2), (17.68b)

∣∣%−〉
12 =

1√
2
(|↑〉 1 |↑〉 2 − |↓〉 1 |↓〉 2), (17.68c)

∣∣%+〉
12 =

1√
2
(|↑〉 1 |↑〉 2 + |↓〉 1 |↓〉 2), (17.68d)

which is a complete orthonormal basis spanning the Hilbert space H = H1 ⊕H2 of
particles 1 and 2 (see Prob. 17.6).

If we write the unknown state of the ancilla in the form

| j〉 1 = c |↑〉 1 + c′ |↓〉 1 , (17.69)

then the complete state of 1 + 23 before the measurement is given by

|&〉 123= c√
2

(|↑〉 1 |↑〉 2 |↓〉 3−|↑〉 1 |↓〉 2 |↑〉 3
)+ c′√

2

(|↓〉 1 |↑〉 2 |↓〉 3−|↓〉 1 |↓〉 2 |↑〉 3
)
.

(17.70)

The previous equation may be rewritten in terms of basis (17.68) as (see Prob. 17.7)

|&〉 123 = 1

2

[∣∣&−〉
12

(−c |↑〉 3 − c′ |↓〉 3
)+ ∣∣&+〉

12

(−c |↑〉 3 + c′ |↓〉 3
)

+ ∣∣%−〉
12

(
c |↓〉 3 + c′ |↑〉 3

)+ ∣∣%+〉
12

(
c |↓〉 3 − c′ |↑〉 3

)]
. (17.71)

Now, after Alice’s measurement, the system 12 is projected into one of the four pure states
superposed in Eq. (17.71), depending on the measurement outcome. As a consequence, the
four possible output states for particle 3 (Bob’s one) are very simply related to the original
state | j〉 1 which Alice wished to teleport:

Ûk |k〉 3 = | j〉 1 , k = 1, 2, 3, 4, (17.72)
where (see Prob. 17.8)

Û1 =
[ −1 0

0 −1

]
; Û2 =

[ −1 0
0 1

]
; Û3 =

[
0 1
1 0

]
; Û4 =

[
0 1
−1 0

]
(17.73)

are simple rotations in the two-dimensional Hilbert space of particle 3 (apart from Û1,
which is minus the identity operator). It is then clear that Bob, depending on Alice’s
measurement result, can recover with certainty the original state | j〉1 with the proper
application of one of the above transformations.

In conclusion, teleportation is based on two channels: a classical channel, by which
Alice communicates the result of her measurement and a quantum channel (the EPR pair
2–3), by means of which, using the entanglement, Bob – after having received the classical
information, and hence without violating the locality – instantaneously recovers the state
| j〉1 on particle 3.25 However, the original state | j〉1 is destroyed, in accordance with the

25 Recently, it has been shown [Meschke et al. 2006] that entropy as well as information is subjected to quan-
tization and quantum limits of transmission, both of which are independent from the material constituting
the channel. This then raised the interesting connection of this result with the capacity of a quantum channel
[Schwab 2006].
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�Figure 17.8 Zeilinger and co-workers’ scheme of teleportation experiment. A pulse of ultraviolet radiation
passing through a non-linear crystal NL produces the EPR photon pair 2–3. After retroflection
during its second passage through NL, the radiation creates another pair, 1–4, of which the photon
1 is to be teleported and photon 4 is a trigger indicating that the other photon is under way. Alice
looks for coincidence counts of photons 1 and 2, after the BS. Finally, Bob, after receiving the
classical bit of information, may retrieve the input state of photon 1 through appropriate
detection.

no-cloning theorem (see Sec. 15.2). If we define an ebit as the amount of entanglement
between a maximally entangled pair of two-state systems (for example two spin-1/2 parti-
cles in a singlet state), then by teleportation we transmit a qubit by means of a shared ebit
and a two-bit piece of classical information. Note that an ebit is a weaker resource than a
qubit: in fact the transmission of a qubit can always be used to create one ebit, while the
sharing of one ebit or many ebits does not suffice to transmit a qubit (we also need classi-
cal information). Teleportation has been experimentally realized, first with photons26 (see
Fig. 17.8), and later also with atoms.27

17.6 Quantum cryptography

One of the most important aspects of information technology in our society is how to
establish a secure way to exchange secret messages. By secure we mean here that the

26 See [Bouwmeester et al. 1997] [Furusawa et al. 1998]. See also the theoretical proposal [Vitali et al. 2000].
27 See [Barrett et al. 2004] [Riebe et al. 2004].
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message cannot be eavesdropped by extraneous agencies. Cryptography is precisely the
technique that allows party A (the sender, traditionally called Alice) to encode a message
and party B (the receiver, traditionally called Bob) to decode it using a certain key with
a procedure such that the eventual eavesdropper (traditionally called Eve) is not able to
break the secrecy of the original message.

This practical problem has roots dating back to ancient societies and their needs for pol-
itics, war, and economy. For example, Julius Caesar used to communicate secret messages
taking advantage of a simple substitution method: he simply replaced each letter of the latin
alphabet in the original message by the letter that follows it alphabetically by three places.
In this case, the receiver must simply invert this transformation (i.e. subtract three positions
to each letter) to recover the original message. In such case, the key is the translation rule
from latin to the Caesar cypher and vice versa. Of course, for this scheme to be reliable, the
key must be kept secret and known only to Alice and Bob. Schemes of this type are called
symmetric or private-key protocols. In these protocols, two obvious requirements should
be observed: the key must be as long as the message and must be used only once, both not
being satisfied by the Caesar cypher.

In other schemes, the encoding key may be publicly announced by the receiver to the
sender, but the decoding key is known only to the former, and this ensures that only the
receiver is able to decode the message. These other schemes rely on the enormous dif-
ficulty of inverting certain mathematical transformations. For instance, multiplying two
large prime numbers is relatively easy but, on the other hand, factoring the result into its
prime factors may take a very long time (as we shall see in Sec. 17.8). For this reason, such
schemes are called asymmetric or public-key protocols.

Unfortunately, it has never been proved that the transformations used in public-key cryp-
tography are truly difficult (i.e. the time required to solve them grows exponentially with
the length of the input). The only thing we know is that up to now there are no classi-
cal algorithms able to solve them in a polynomial time. Moreover, as we shall see in the
next sections, a quantum computer could in principle solve this class of problems. On the
other hand, private-key protocols rely on secure communication in order to establish a suf-
ficiently long key, to be used only once. Such a communication is often performed by a
human courier but that is, however, not completely reliable. Indeed, there does not exist
a classical procedure that allows for a completely safe key sending, since any key can in
principle be intercepted without the knowledge of the interested parties. This problem is
known as the key-distribution problem.

Things stand in a completely different light when making use of quantum information.
As a matter of fact, through quantum key distribution, quantum mechanics allows two
parties to establish a totally secure private key, by transmitting information in quantum
superpositions or entangled states. Essentially, what is used here are some basic quantum
principles:

• Any measurement will perturb the state of the measured system [Ch. 9].
• It is impossible to distinguish with a single measurement two non-orthogonal states

(Sec. 15.1).
• It is impossible to clone a quantum state (Sec. 15.2).
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Table 17.1 An example of sequence transmission in Bennett and Brassard’s protocol for
quantum key distribution

Alice’s random bits 0 1 1 1 0 0 1 0
Alice’s random chosen basis + + × × × + + ×
Photon polarization sent by Alice → ↑ ↗ ↗ ↘ → ↑ ↘
Bob’s chosen basis + × + × × × + +
Bob’s measurement result → ↘ ↑ ↗ ↘ ↗ ↑ →
Shared secret key 0 – – 1 0 – 1 –

The first two facts can lead to the third, especially when we consider Yuen and D’Ariano’s
theorem (Th. 15.2: p. 549).

Quantum cryptography was inaugurated by a pioneering study of Wiesner, proposed in
the 1970s but only published later on.28 Bennett and Brassard shortly after published a
seminal paper that is often known as BB84.29 In Bennett and Brassard’s protocol, Alice
and Bob are connected by a quantum communication channel which allows the transmis-
sion of quantum states. In addition, they may communicate via a public classical channel.
Both these channels may possibly not be secure. In particular, if the quantum channel is
represented by the transmission of photons (e.g. in an optical fiber or in free space), they
can make use of two possible bases of polarization,

+ = {|↑〉 , |→〉} and × = {|↗〉 , |↘〉}, (17.74)

representing, respectively, a vertical–horizontal polarization and a 45◦–135◦ polarization
state. First, Alice establishes a one-to-one correspondence between the classical bits (0, 1)
that she desires to communicate with each state of the two bases, for instance

0↔|→〉 , |↘〉 , (17.75a)

1↔|↑〉 , |↗〉 . (17.75b)

Then, she sends several bits of information by choosing at random one or the other basis.
Bob will measure the photons, choosing again at random one of the two bases. After this
exchange and measurement, they publicly tell each other which basis they have used. They
will immediately discard photon transmissions where the two bases do not match (on aver-
age 50% of the transmitted bits). The bits for which Alice and Bob chose the same basis
constitute the shared key. The situation is schematically shown in Tab. 17.1.

After this step, in order to exclude any possibility of eavesdropping, Bob takes a subset
of the key and publicly compares his measurement results with Alice’s inputs. If they
do not match, this means that Eve has intercepted and measured the photons, changing
their initial state in a random way (in 50% of the cases, i.e. when Eve choses a different
basis from that used by Alice), so that Bob has again a 50% probability of obtaining a
result that is a mismatch relative to the input. Therefore, the final mismatch between input
and output will be of the order of 25%. When this is the case, Alice and Bob discard

28 See [Wiesner 1983].
29 See [Bennett/Brassard 1984].
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their sequence and start the procedure again, continuing until they can be sure that no
eavesdropping has occurred. In other words, for any single compared bit Alice and Bob
have a 25% probability of detecting the presence of an eavesdropper, if any. By increasing
the number n of compared bits, Alice and Bob may increase the probability of detecting
Eve’s presence, i.e. the reliability of their procedure, according to

℘d = 1 −
(

3

4

)n

. (17.76)

For instance, if Alice and Bob would like to exclude the presence of Eve at a confidence
level of 99.99%, they need to compare 33 bits. As said, if they find a mismatch, they should
repeat the protocol from the very beginning, over and over again until they find a perfect
matching between their respective reference subset. Obviously, the number of bits to be
sent must be sufficiently large in order to allow a sufficiently high level of reliability. This
makes Eve’s attempts at eavesdropping even more difficult. Needless to say, Eve would
ideally like to intercept Alice’s bit, make a copy of it, and resend it unperturbed to Bob.
However, as we know, this is prohibited by the no-cloning theorem.

In the BB84 protocol Alice and Bob exploit the superposition principle to share a secret
key. A second very interesting protocol for quantum key distribution is due to Artur Ekert30

and is based on entanglement. In the Ekert’s scheme (sometimes called the EPRBE pro-
tocol, from Einstein–Podolsky–Rosen–Bell–Ekert) Alice and Bob make use of two qubits
emitted from a common source in a maximally entangled state of the form (17.68d), i.e.

∣∣%+〉 = 1√
2
(|↑,↑〉 + |→,→〉 ). (17.77)

Again, when Alice and Bob use the same basis, they obtain the same results, providing
them with a common key. In this case, moreover, it is possible to make use of Bell’s
inequality in order to check the security of the protocol: Alice and Bob have a third choice
of basis, so that, as they establish a key, they collect enough data to test Bell’s inequal-
ity (see Secs. 16.4–16.5). They can, in this way, check that the source actually emits
the entangled state (17.77) and not just factorized states, ruling out the presence of an
eavesdropper.

It should be noted that quantum cryptography may be only exploited to establish and
distribute a private key, not to transmit any message. Such a key may, of course, be used
with any chosen encoding algorithm to encode and to decode a message, which can be
transmitted over standard communication channels.

Concerning physical implementations, to our knowledge the longest distance over which
quantum key distribution (following the BB84 protocol) has been realized is 148.7 km.31 In
free space (using entangled photons in the Ekert’s scheme), the record distance is 144 km.32

Quantum cryptography is a very active field of research and has seen some very interesting
developments in recent years, such as privacy amplification, information reconciliation,

30 See [Ekert 1991].
31 [Hiskett et al. 2006].
32 [Ursin et al. 2007].
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quantum digital signature, quantum fingerprinting, etc. These, however, go far beyond the
scope of this book.

17.7 Elements of quantum computation

The first idea of a quantum computation able to exploit the potentialities represented by
the qubit is due to Deutsch,33 but the first conceptual hint is due to Feynman,34 who
had already proposed a simulation of physical processes on a quantum computer, and to
Benioff,35 who showed that a Turing machine can be simulated by the unitary evolution
of a quantum system. A classical Turing machine is a recursive device composed of a pro-
cessing unit in the form of a write/read head and a memory with unlimited storage capacity
in the form of an infinite tape divided into cells. Each cell can have a symbol from a finite
alphabet. The tape is scanned, one cell at a time, by the read/write head. The head can be
in one of a finite set of states. The machine action is made up of discrete steps, and each
step is determined by two initial conditions: the current state of the head and the symbol
that occupies the cell currently scanned. Given these two conditions, the machine receives
a three-part instruction for its next step, which specifies:

• the next state of the head;
• the symbol to write into the scanned cell;
• whether the head has to move (left or right) along the tape or to stop.

In the classical case, a Turing machine is an irreversible device, whereas, if we desire
to make use of the specificity of quantum information, we need unitary transformations
(see Sec. 17.4 and also below Subsec. 17.7.2), which are reversible. However, as we have
already shown at a general level (in Sec. 17.3) and show in the following in the con-
text of quantum computation (see especially Subsec. 17.7.5), an irreversible device can be
embedded in a larger device that is reversible.

17.7.1 Gates and circuits

A classical or quantum computer consists wires and logic gates. The wires transmit infor-
mation whereas a gate is a transformation of bits or qubits. A logic gate is any function
f : {0, 1} j → {0, 1}k from a certain number j of input (qu-)bits to a certain number k of
output (qu-)bits. When k = 1, f is called a Boolean function (see Sec. 2.4). Some very
simple quantum logic gates are the gate that does nothing, i.e. the identity operator gate
(therefore, this turns out to be a wire), the phase addition gate, which acts as

Ûφ (c0 |0〉 + c1 |1〉 ) =
(
c0 |0〉 + c1eıφ |1〉 ), (17.78)

33 See [Deutsch 1985].
34 See [Feynman 1982].
35 See [Benioff 1982].
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where

Ûφ =
[

1 0
0 eıφ

]
, (17.79)

and the NOT gate, which has the power to change any |0〉 into |1〉 and any |1〉 into
|0〉 , i.e.

σ̂x (c0 |0〉 + c1 |1〉 ) = (c0 |1〉 + c1 |0〉 ), (17.80)

where

σ̂x =
[

0 1
1 0

]
(17.81)

is the unitary NOT gate for a qubit and turns out to be identitical to the Pauli x-spin matrix.
The other Pauli matrices (see Eqs. (6.154)) also represent unitary quantum gates.

A more complex example is represented by the so-called Hadamard gate, which on a
single qubit acts as

ÛH |0〉 = 1√
2
(|0〉 + |1〉), ÛH |1〉 = 1√

2
(|0〉 − |1〉), (17.82)

where

ÛH = 1√
2

[
1 1
1 −1

]
. (17.83)

The input states may also be represented by polarization states of a photon (for instance,
vertical and horizontal). Then, the state |0〉 may be prepared by sending a photon beam
through, say, a horizantal polarization filter, and through a vertical polarization filter for
preparing |1〉 .

Note that the Hadamard gate transforms a state 0 or 1 in a “halfway” between this state
and its negation. However, two subsequent applications of the Hadamard gate are not equal
to the NOT gate but to the identity gate, which shows that the Hadamard gate is the inverse
of itself.36 On an initial two-qubit state the Hadamard transform has the form

Û⊗2
H |00〉 =

( |0〉1 + |1〉1√
2

)( |0〉2 + |1〉2√
2

)
= 1

2
(|00〉 + |01〉 + |10〉 + |11〉). (17.84)

In the case of three qubits we have

Û⊗3
H |000〉 =

( |0〉1 + |1〉1√
2

)( |0〉2 + |1〉2√
2

)( |0〉3 + |1〉3√
2

)
= 2−

3
2 (|000〉 + |001〉 + |010〉 + |011〉
+ |100〉 + |101〉 + |110〉 + |111〉 ), (17.85)

which is the binary codification of the numbers from 0 to 7. In general, we have

Û⊗n | x〉 = 2−
n
2
∑

y

(−1)x ·y | y〉 . (17.86)

where x · y is the binary multiplication bit by bit followed by addition modulo 2
(symbolized by ⊕), i.e. 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.

36 As for the Pauli matrices, this happens because ÛH is both Hermitian and unitary.
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�Figure 17.9 Representation of the CNOT gate. The top line represents the control qubit, the bottom line the
target qubit.

A controlled not (CNOT) gate is a transformation on a control qubit and on a target qubit
such that the target qubit is flipped if and only if the control qubit is 1, i.e.

ÛCNOT |00〉 = |00〉 , ÛCNOT |01〉 = |01〉 , (17.87a)

ÛCNOT |10〉 = |11〉 , ÛCNOT |11〉 = |10〉 , (17.87b)

where the first element of the pair is the control, the second the target qubit, and we have

ÛCNOT =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ = |0〉 〈0 | ⊗ Î + |1〉 〈1 | ⊗ σ̂x . (17.88)

Deutsch called the CNOT gate the measurement gate, because, if the target qubit is pre-
pared in the 0 state, it can always learn about the state of the control qubit (see also
Fig. 17.9). It is also easy to see that we have

ÛCNOT (c0 |0〉 + c1 |1〉 ) |0〉 = c0 |00〉 + c1 |11〉 , (17.89a)

ÛCNOT (c0 |00〉 + c1 |11〉 )= (c0 |0〉 + c1 |1〉 ) |0〉 , (17.89b)

which shows that the CNOT gate may entangle and disentangle states and that it is the
inverse of itself (Û 2

CNOT = Î ). We finally note that it is possible to implement the CNOT
gate by means of an interferometer (see Fig. 17.10).37

A Mach–Zender interferometer can be seen as a quantum circuit of logical wires and
gates (see Fig. 17.11), that is, the series beam splitter-phase shifter-beam splitter (with
two additional mirrors after the first BS) can be thought of as a succession Hadamard
gate–phase gate–Hadamard gate, that is,

37 See [O’Brien et al. 2003].
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�Figure 17.10 Implementation of a CNOT gate by means of a polarization interferometer. (a) Conceptual
framework of the experiment by means of an interferomenter and 1/3 and 1/2 beam splitters. A
sign change (π phase shift) occurs upon reflection off the lower side of the three lower BSs for
the target and off the upper side of the two other BSs for the control. Note that only the control
(C) |0〉 is entangled with the target (T). (b) A pair of photons is produced on the left by SPDC and
collected into single-mode optical fibres (not shown). Then, each fiber is collimated; a half-wave
plate (HWP) and a quarter-wave plate (QWP) in each input beam allow preparation of any
separable two-qubit state. First, the control and target qubits are split by a polarization beam
splitter (PBS) and the target qubit is polarization encoded through a HWP that rotates the
polarization by 45◦. The operation of all three 1/3 BSs is realized by a single HWP. For further
details, see the original article [O’Brien et al. 2003].
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�Figure 17.11 The quantum computation device as an equivalent of a Mach–Zender interferometer.
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|0〉 ÛH�→ 1√
2
(|0〉 + |1〉 )

Ûφ�→ 1√
2

(|0〉 + eıφ |1〉 )
ÛH�→ 1

2

[(
1 + eıφ) |0〉 + (1 − eıφ) |1〉 ]

= cos
φ

2
|0〉 − ı sin

φ

2
|1〉 . (17.90)

17.7.2 Gates as unitary transformations

Unitarity is the only constraint on quantum gates. This has the consequence that there are
a lot of non-trivial quantum gates that may be built. Though this set is infinite, the general
properties of unitary operation may be determined. In fact, any unitary 2 × 2 matrix Û may
be decomposed as38

Û (α,β, γ , δ) = eıα R̂z(β)R̂y(γ )R̂z(δ) (17.91)

for some real numbers α, β, γ , and δ, and where R̂z(β) is the two-dimensional rotation
matrix about the z-axis of an angle β and similarly for the other matrices. The three rotation
matrices about the x-, y-, and z-axes are (see Subsec. 6.1.2)

R̂x (θ )= cos
θ

2
Î − ı sin

θ

2
σ̂x =

[
cos θ2 −ı sin θ2
−ı sin θ2 cos θ2

]
, (17.92a)

R̂y(θ )= cos
θ

2
Î − ı sin

θ

2
σ̂y =

[
cos θ2 − sin θ2
sin θ2 cos θ2

]
, (17.92b)

R̂z(θ )= cos
θ

2
Î − ı sin

θ

2
σ̂z =

[
e−ı θ2 0

0 eı θ2

]
. (17.92c)

In other words, we may write any 2 × 2 unitary matrix as

Û (α,β, γ , δ) = eıα

[
e−ı β2 0

0 eı β2

][
cos γ2 − sin γ2
sin γ2 cos γ2

][
e−ı δ2 0

0 eı δ2

]
. (17.93)

The reason is that the rows and columns of a unitary matrix are orthonormal. From
Eq. (17.93) it follows that there exist real numbers α, β, γ , and δ such that (see Prob. 17.9)

Û (α,β, γ , δ) =
⎡⎣ e

ı
(
α− β2 − δ2

)
cos γ2 −e

ı
(
α− β2 + δ2

)
sin γ2

e
ı
(
α+ β2 − δ2

)
sin γ2 e

ı
(
α+ β2 + δ2

)
cos γ2

⎤⎦. (17.94)

38 See [Nielsen/Chuang 2000, 174–77].
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�Figure 17.12 Generation of Bell states by means of a Hadamard gate followed by a CNOT gate.

|0>

|0>

|0>

H

�Figure 17.13 Preparation of a GHSZ state.

17.7.3 Producing entanglement

Using the simple device shown in Fig. 17.12, it is possible to produce any of the Bell states.
Neglecting normalization, we have

|0〉 |0〉 ÛH�→ (|0〉 + |1〉 ) |0〉 ÛCNOT�→ |00〉 + |11〉 , (17.95a)

|0〉 |1〉 ÛH�→ (|0〉 + |1〉 ) |1〉 ÛCNOT�→ |01〉 + |10〉 , (17.95b)

|1〉 |0〉 ÛH�→ (|0〉 − |1〉 ) |0〉 ÛCNOT�→ |00〉 − |11〉 , (17.95c)

|1〉 |1〉 ÛH�→ (|0〉 − |1〉 ) |1〉 ÛCNOT�→ |01〉 − |10〉 . (17.95d)

We immediately recognize that the rhs of the previous equations coincide with Eqs. (17.68).
As we know, a very interesting entangled state is represented by the GHSZ state (see
Eq. (16.149))

|&GHZ〉 = 1√
2
(|000〉 ± |111〉 ), (17.96)

which can be easily prepared using quantum gates through the circuit shown in Fig. 17.13,
i.e.

|0〉 |00〉 ÛH�→ 1√
2
(|0〉 + |1〉 ) |00〉

ÛCNOT�→ 1√
2
(|000〉 + |110〉 )

ÛCNOT�→ 1√
2
(|000〉 + |111〉 ), (17.97)
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where the Hadamard operation is on the first qubit and the targets of the CNOT trans-
formations are, successively, the second and third qubits. This can be generalized to any
number of qubits, so that we can create any N -entangled states, since we do not need any-
thing more than two-qubit gates. In fact, it is always possible to decompose a three-qubit
gate into two-qubit gates. In general, any multiple qubit logic gate can be decomposed into
CNOT and single qubit gates.

A universal set of gates, by which any computation can be performed, is given by the
phase, the Hadamard, and the CNOT gates.

17.7.4 Computation and decoherence

Suppose that, in the device shown in Fig. 17.11, during the phase shift, the system interacts
with the environment (see Sec. 9.4) in the initial state |E〉 . In this case, we have

|0〉 |E〉 ÛH�→ 1√
2
(|0〉 + |1〉 ) |E〉

Ûφ�→ 1√
2

(|0〉 |e0〉 + eıφ |1〉 |e1〉
)

ÛH�→ 1

2

[|0〉 (|e0〉 + eıφ |e1〉
)+ |1〉 (|e0〉 − eıφ |e1〉

)]
, (17.98)

where |e0〉 and |e1〉 are two different – but not necessarily orthogonal – states of the
environment. If we calculate the probability of obtaining the outcome |0〉 , independently
from the state of the environment, we obtain

℘(|0〉 ) = 1

4

(〈e0 | e0〉 + eıφ 〈e0 | e1〉 + 〈e1 | e1〉 + eıφ 〈e1 | e0〉
)

= 1

2
(1 + cosφ 〈e0 | e1〉), (17.99)

which obviously shows less visibility interference than the probability calculated follow-
ing Eq. (17.90), which is ℘(|0〉 ) = cos2(φ/2). In the limit where 〈e0 | e1〉 goes to zero,
the interference is completely destroyed. This shows that decoherence can represent a big
problem for quantum computation, because the action of the environment can destroy the
coherence that is crucial for the quantum computing device, before the desired result is
obtained.

Let us now consider the problem of decoherence in more detail. We may write the
interaction of a qubit with the environment as follows:

|0〉 |E〉 �→ |0〉 |e00〉 + |1〉 |e01〉 , (17.100a)

|1〉 |E〉 �→ |0〉 |e10〉 + |1〉 |e11〉 . (17.100b)

Equations (17.100) may be written in compact form as



657 17.7 Elements of quantum computat ion
�

a

b

c

a

b

c ⊕ ab

�Figure 17.14 The Toffoli gate.

[ |e00〉 |e10〉
|e10〉 |e11〉

]( |0〉
|1〉

)
. (17.101)

This 2 × 2 matrix can be decomposed in terms of the Pauli matrices as

Î |e0〉 + σ̂x |e1〉 + ı σ̂y |e2〉 + σ̂z |e3〉 , (17.102)

where

|e0〉 = |e00〉 + |e11〉
2

, |e1〉 = |e01〉 + |e10〉
2

, (17.103a)

|e2〉 = |e01〉 − |e10〉
2

, |e3〉 = |e00〉 − |e11〉
2

, (17.103b)

so that we have in general that the action of the environment is represented by the operator

3∑
j=0

σ̂ j
∣∣e j
〉

, (17.104)

where σ̂0 = Î , σ̂1 = σ̂x , σ̂2 = σ̂y , and σ̂3 = σ̂z . The operator σ̂x represents a flip error, the
operator σ̂z a phase error, and finally the operator σ̂y a combination of both errors.

17.7.5 Reversibi l i ty and irreversibi l i ty

As is well known, there are classical gates that are irreversible. Typical examples are
the OR and NAND (NOT AND) gates, because we cannot infer the input from the out-
put. These gates are therefore not unitary in quantum computation. However, in classical
computation we may replace any gate by an equivalent circuit containing only reversible
elements by making use of a reversible gate known as the Toffoli gate. Here we have two
control bits and a target bit that is flipped if and only if the two control bits are 1 (see
Fig. 17.14 and Tab. 17.2). The Toffoli gate can easily be used to implement the NAND
gate: it suffices to set the target input to 1. In this case, the target output will be 1 ⊕ ab,
which is equivalent to ¬ab.
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Table 17.2 Toffoli truth table. ab are the
control bits

Inputs Outputs

a b c a b c ⊕ ab

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 17.3 Fredkin truth table. c is the
control bit

Inputs Outputs

a b c a′ b′ c

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 1
1 0 0 1 0 0
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 1

The quantum Toffoli gate can be represented by the following 8 × 8 unitary matrix:

ÛTOF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17.105)

Another interesting reversible gate is the Fredkin gate, whose truth table is shown in
Tab. 17.3. If c = 0, then a and b remain unchanged. However, if c = 1, a and b are
swapped. The Fredkin gate also has the property that the number 1 is conserved between
the input and the output. It is a universal gate that can be used to simulate the AND, NOT,
CROSSOVER, and FANOUT (cloning) gates.
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The quantum Fredkin gate can be represented as

ÛFRED =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17.106)

The most interesting point of the previous discussion is that an irreversible computation can
be transformed in a reversible one by adding additional inputs and outputs. This is closely
related to the problem of measurement. In fact, what from the perspective of the apparatus
plus object system seems to be an irreversible process, becomes a reversible one if we take
the environment into account, until the information downloaded in the environment can be
in principle recovered (see Secs. 9.4 and 17.3).

Another related question is: is the computation energy-free or does it require some
energy loss? Landauer39 showed that only where there is some information erasure is there
loss of energy by computing. Since in quantum computation all operations are unitary, there
is in principle no need to pump energy into the system.

On the other hand, measurement requires selection which implies energy expenditure
and local irreversibility. A recent approach to quantum computation makes use of the
techniques of entangling and measuring, and is called for this reason one-way quantum
computation.40

17.8 Quantum algorithms and error correction

The most fascinating and innovative aspect of quantum computation is that it allows us
to solve in an efficient way problems that classical computation cannot. An algorithm is
a method in which a set of well-defined instructions, applied to a certain initial state, can
complete a required task, or solve a given problem. From a completely general viewpoint,
let us consider an algorithm which takes an input of M digits and gives an answer after a
certain number N of steps (or time) (see Fig. 17.15). One says that an algorithm is easy or
efficient if the time taken to execute it (proportional to N ) increases no faster than a poly-
nomial function of the size of the input M (polynomial-time solution). On the contrary,
solutions that are not efficient require a time that is exponential in the size of the input.
Many operations can be performed using efficient algorithm, either logarithmic (e.g. mul-
tiplication) or polynomial (in most of the cases). However, there is a class of operations
whose algorithms are not efficient: among them perhaps the most known example is the

39 See [Landauer 1961, Landauer 1996a] and [Bennett 1982].
40 See [Walther et al. 2005].



660 Entanglement : quantum information and computat ion
�

P

NP

EXP
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�Figure 17.15 Representation of computational complexity. In the “space” of all possible problems (algorithms),
P stands for the subset of algorithms that require a polynomial time calculation, NP for algorithms
requiring polynomial time on a non-deterministic computer (roughly speaking a computer with
an unbound degree of parallelism), EXP for exponential time calculation. Problems are designated
“NP-complete” if their solutions can be quickly (polynomially) checked for correctness. Many
kinds of optimization problems (e.g. that of the “traveling salesman”) belong to the NP complete
category. A typical example of problem belonging to EXP is constituted by the game of chess. It is
conjectured that P �= NP, although it is not clear how to attack this conjecture.

f
f (0)

f (1)

0

1

�Figure 17.16 The evaluation of a Boolean function of an initial bit.

problem of factoring (see Prob. 17.10). We can pictorially represent the degrees of compu-
tational complexity (see Fig. 17.15). The Cook’s theorem states that if NP-complete = P,
then NP ⊂ P. This is so because we can map any NP problem to a NP-complete one with a
polynomial-time procedure. We consider Deutsch’s algorithm first.

17.8.1 Deutsch’s algorithm

As we have said, any Boolean function is a function f (x), x = 0, 1, that maps from the truth
values {0, 1} to the truth values {0, 1}. A function is called constant if it always maps to the
same value, i.e. f1(0) = f1(1) = 0 or f2(0) = f2(1) = 1. A function is called balanced if
it maps for one half of the x to 0 and for the other half of the x to 1, so that f3(0) = 0 and
f3(1) = 1 or f4(0) = 1 and f4(1) = 0. Suppose now that there is a device that can compute
a Boolean function and that is allowed to run only once (see Fig. 17.16). Deutsch’s problem
is whether, under these conditions, it is possible to know if the function is constant or
balanced. Classically, it is impossible to answer this question by running the device only
once. Quantum-mechanically, this can be done. In order to see this, let us first consider the
quantum-mechanical evaluation of a function. We may write the following transformation:

| x〉 |0〉 Û f�→ | x〉 | f (x)〉 , (17.107)
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�Figure 17.17 Device for solving Deutsch’s problem of evaluating if a Boolean function is constant or balanced in
a single run.

where the map is unitary. This can be implemented by

∑
x

| x〉 | y〉 Û f�→
∑

x

| x〉 | y ⊕ f (x)〉 , (17.108)

where | y ⊕ f (x)〉 is the computed modulo of the maximum value of the register.
In order to solve Deutsch’s problem let us consider the device shown in Fig. 17.17. The

input state is transformed by the first two Hadamard gates according to

|0〉 |1〉 ÛH ,ÛH�→ ÛH |0〉 ÛH |1〉 = 1

2
(|0〉 + |1〉 ) (|0〉 − |1〉 ), (17.109)

where the first two output states represent the x and the second two output states represent
the y. It is easy to verify that the Boolean transformation will give (see Prob. 17.11)

ÛH |0〉 ÛH |1〉 Û f�→ ±1

2
(|0〉 + |1〉 ) (|0〉 − |1〉 ) if f (0) = f (1), (17.110a)

ÛH |0〉 ÛH |1〉 Û f�→ ±1

2
(|0〉 − |1〉 ) (|0〉 − |1〉 ) if f (0) 	= f (1). (17.110b)

Finally, the final Hadamard gate will give

±1

2
(|0〉 + |1〉 ) (|0〉 − |1〉 ) ÛH�→± |0〉

( |0〉 − |1〉√
2

)
, (17.111a)

±1

2
(|0〉 − |1〉 ) (|0〉 − |1〉 ) ÛH�→± |1〉

( |0〉 − |1〉√
2

)
. (17.111b)

This shows that, apart from an irrelevant phase factor, a measurement on the first qubit
immediately gives the requested answer: 0 implies that the function is constant while 1
implies that the function is balanced. In fact, the Û f gate acts as a CNOT gate. It is inter-
esting to note that the state created by the Boolean evaluation gate is an entangled state. In
fact, the third term in the superposition in the final state of Eqs. (17.110) changes the sign
according to whether f (0) = f (1) or f (0) 	= f (1).

The previous result may be generalized to n qubits in the following form (see Fig. 17.18)
(it is called the Deutsch–Jozsa algorithm). The first two Hadamard gates induce the
transformation

|0〉⊗n |1〉 Û⊗n
H ,ÛH�→

∑
x∈{0,1}n

| x〉√
2n

( |0〉 − |1〉√
2

)
. (17.112)
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�Figure 17.18 Device for solving Deutsch’s problem for n + 1 input states.
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�Figure 17.19 Device for solving Deutsch’s problem for n + m input states.

Then, the Boolean function gate acts as∑
x∈{0,1}n

| x〉√
2n

( |0〉 − |1〉√
2

)
Û f�→

∑
x∈{0,1}n

(−1) f (x) | x〉√
2n

( |0〉 − |1〉√
2

)
. (17.113)

The action of the final Hadamard gates may be represented by∑
x∈{0,1}n

(−1) f (x) | x〉√
2n

( |0〉 − |1〉√
2

)
Û⊗n

H�→
∑

z

∑
x

(−1)x ·z+ f (x) | z〉
2n

( |0〉 − |1〉√
2

)
,

(17.114)

where x · z is the bitwise product between x and z, modulo 2.
A further generalization is provided when the input states are n + m with m > 1. While

the n inputs of the upper register (see Fig. 17.19) transform according to

|0〉 ÛH�→
∑

x

| x〉 , (17.115)

we may always prepare the m inputs of the lower register as

|&〉 =
2m−1∑
y=0

e
2π ı
2m y | y〉 . (17.116)

After the Boolean gate the state will be∑
x

| x〉 |&〉 Û f�→
∑

x

| x〉
∑

y

e
2π ı
2m y | y ⊕ f (x)〉

=
∑
xy

e−
2π ı
2m f (x)e

2π ı
2m (y+ f (x)) | x〉 | y ⊕ f (x)〉

=
∑

x

e−
2π ı
2m f (x) | x〉

(∑
y

e
2π ı
2m y

)
| y〉 . (17.117)

It is then clear that only the upper register has changed according to
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�Box 17.1 Example of factorization

Suppose we wish to factorize the number N = 15. We take an arbitrary number ξ < 15 which
has no common prime factors with N , say ξ = 7. Now we define a function

f (x) = ξ x mod15, (17.118)

where the x ’s are positive integers. f (x) is the periodic function of which we wish to find the
period, and mathematically it is the rest of the division of ξ x by N . For x = 0, 1, 2, 3, 4, 5, 6, . . .
we find that f (x) = 1, 7, 4, 13, 1, 7, 4, . . ., i.e. the period of f (x) is r = 4. Now we find the
largest common divisors of N and ξ

r
2 ± 1 = {50, 48}, which are respectively 5 and 3. These

are the desired factors of N .
Quantum-mechanically the solution to this problem is possible thanks to the superposition.

In fact, a quantum system can be in a superposition of all: f (0), f (1), f (2), f (3), f (4), . . ..
It is evident that, if we perform a measurement, we cannot obtain all the values together.
However, if we are able to evaluate the wave function, we can perform a Fourier transform
so that we obtain the period r . In fact, the different values f (0), f (1), f (2), f (3), f (4), . . .
are related to r as the fine structure of the interference pattern to the envelope of the
same (overall width). This has been realized experimentally with a quantum computer
[Vandersypen et al. 2001].

| x〉 �→ e−
2π ı
2m f (x) | x〉 . (17.119)

This means that one can give any phase factor to | x〉 to the extent of the minimum precision
allowed by the size of the second register from 0 to 2π with steps equal to 2π/2m . If one
desires to be more precise, one has to increase the number m of inputs.

This is the power of quantum computation. A quantum computer is allowed to follow
different paths simultaneously and then to “amplify” some answers at the expense of some
other answers. For this reason, quantum computation is more powerful than randomized
computation, where you have (and can add) only probabilities and not probability ampli-
tudes, a fact that allows us to modify the structure of the possible answers. For example,
the primality problem, where one is asked whether a given (large) integer number is prime
or not, is difficult for classical computation but is efficient both for randomized computa-
tion and for quantum computation. As we shall see however, factoring is difficult both for
classical and randomized computation, whereas it is efficient for quantum computation.

17.8.2 Shor’s algorithm

As we have shown, the most well-known problem for which classically there is no known
fast algorithm, is that of the factorization of large integer numbers: the number of com-
putational steps increases exponentially with the binary dimension of the input. Note that
factoring belongs to NP but not to NP-complete. Fortunately, the problem of factorizing
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(a)

(b)

(c)

(d)

r

q/r

�Figure 17.20 Shor’s superfast quantum Fourier sampling uses quantum interference to measure the period r of
a periodic function f(x). The period may be exponentially larger than the number of qubits
involved in the computation. (a) The computer starts in the state |x, f(x)〉 = |0, 0〉. (b) The
x-register is put in a superposition of all possible values (see Eq. (17.120)). (c) The value f(x) is
computed in the y–register simultaneously for all x values (see Eq. (17.121)). (d) A Fourier
transform of the x-register is performed (see Eq. (17.122)). Measuring the Fourier transform of x
yields a result c = λq/r, from which the period r can be deduced (see Eq. (17.124)).

a number can be transformed to that of finding the period of a periodic function, and the
latter problem can be solved quantum-mechanically.

This is the important result of Shor’s theorem:41 by evaluating a wave function on
a superposition of exponentially many arguments, each one representing a value of the
requested periodic function of the type (17.118) of Box 17.1, computing a parallel Fourier
transform on the superposition, and finally sampling the Fourier power spectrum, one
obtains the desired period (see Fig. 17.20).

Let us now generalize the example given in Box 17.1. We choose a number ξ at random
and find a period r such that ξ r ≡ 1 mod N , where N is the number to be factorized. Now
we choose a smooth number q (a number with small prime factors) such that N 2 < q <
2N 2 and prepare the input state

|ψi 〉 = 1√
q

q−1∑
x=0

|x , 0〉, (17.120)

41 See [Shor 1994].
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from which, with a quantum-computational step, one can obtain

|ψ f 〉 = 1√
q

q−1∑
x=0

|x , ξ x mod N 〉. (17.121)

Now we peform a Fourier transform on this pure state so as to obtain

|ψ̃ f 〉 = 1

q

q−1∑
m=0

q−1∑
x=0

eı2πxm/q |m, ξ x mod N 〉, (17.122)

where use has been made of the discrete Fourier transform

ÛDF : |x〉 �→ 1√
q

q−1∑
m=0

eı2πxm/q |m〉. (17.123)

It is interesting to note that classically one needs approximately N log(N ) = n2n steps to
Fourier transform N = 2n discrete inputs, whereas on a quantum computer the Fourier
transform takes approximately log2(N ) = n2 steps. We can now measure both arguments
of the superposition (17.122), obtaining a certain value c for m in the first one, and some
ξ k mod N as the answer to the second one (k being any number between 0 and r ). The
probability for such a result will be

℘(c, ξ k) =
∣∣∣∣∣∣ 1q

q−1∑
x=0

′
eı2πxc/q

∣∣∣∣∣∣
2

, (17.124)

where the prime indicates a restricted sum over values which satisfy ξ x = ξ k . ℘(c, xk) is
periodic in c with period q/r . A measurement gives, with high probability, c = λq/r –
where λ is an integer corresponding to one of the peaks shown in Fig. 17.20(c)–(d). But
since we know q , we can determine r with few trials.

17.8.3 Grover’s algorithm

Grover’s algorithm is related to a database search when the database is unstructured.42 For
instance, suppose that you are searching for a telephone number and you do not know to
whom it belongs. Then, if N is the length of the database, you need N steps or at least
N/2 steps (with probability 50%) if you perform a randomized search. Grover’s algorithm
is a faster quantum-computation solution to this problem. Grover’s algorithm may also be
described as “inverting a function.” Roughly speaking, if we have a function y = f (x) that
can be evaluated on a quantum computer, this algorithm allows us to calculate x when y is
given. Inverting a function is related to the database searching problem because it is always
possible to find a function that produces a particular value of y if x matches a desired entry
in the database, and another value of y for other values of x .

42 See [Grover 1996].
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�Figure 17.21 Implementation of Grover’s algorithm.
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�Figure 17.22 Computational steps in Grover’s algorithm. (a) The probability distribution is initially uniform. (b)
The probability distribution is strongly peaked about the searched state

∣∣k
〉
. It takes O(

√
N) steps

to go from (a) to (b) and O(
√

N) steps to go from (b) to (c). Entanglement is introduced through
the Boolean function evaluation.

Without going into solving equations, the steps involved in Grover’s algorithm are as
follows: we first generate an initial superposition state |&〉 of all the possible states | x〉
of the qubits. We then apply two transformations ( fk and f& in Fig. 17.21) that act as two
reflections and whose combined result is to “move” the input state toward the searched
state |k〉 . An explicit calculation shows that, repeating

√
N times the steps above, a final

measurement of an observable whose eigenstates are the | x〉 ’s, gives with high probability
the searched item. The previous steps are pictorially represented in Fig. 17.22.

17.8.4 Quantum computers

As we have said, quantum superpositions can be used to overcome problems for which
classical computation based on Boolean codes and gates only gives a solution after a very
long computation time. Several physical schemes have been proposed in the last 15 years as
possible candidates for quantum computers. Among them, we cite optical (included cavi-
ties), nuclear magnetic resonance, ion trap, superconducting, and semiconducting quantum
computers.

The biggest difficulty in quantum computation is of technical order, and consists both
in maintaining the coherence of the system to be used as processor and to build robust
quantum gates to control the operations. An important step under the last respect has been
the construction of good CNOT gates.43

43 See [Plantenberg et al. 2007].



667 17.8 Quantum algor i thms and error correct ion
�

input output

0 0

1 1

p

p

q

q

(a)

(b)

0

0
0
0

�Figure 17.23 Classical error correction. (a) The correct probability p has an output which reproduces the input
and the error probability q = 1 − p is shown. (b) Here three qubits are encoded in
place of a single one (0) and the output is taken as the majority voting among the outputs.

A new way to consider quantum computation has been proposed by Zeilinger and co-
workers.44 The idea is to make use of an irreversible quantum computation by combining
entanglement and measurement. Information is carried by the correlation between the
physical qubits, which are subjected to information processing and finally the output is
transferred onto physical readout qubits. Now, while entanglement may decrease in the
physical qubits as a result of measurement it may increase in the encoded qubits. This gives
us a more general lesson and suggests that there are only two ways in which information
can be modified:45

• by selecting it from a pre-existing pool, or
• by sharing it.

17.8.5 Quantum error correct ion

We have considered (in Subsec. 17.7.4) the negative effects of decoherence on quantum
computation. The question we want to answer here is: can we do anything about it? The
most obvious solution is to isolate the system so that it does not interact with the envi-
ronment. However, this cannot be done so easily and in general can be done only up to a
certain extent. A better idea is inspired by the classical (Shannon) error correction: repeat
the input and tolerate noise (see Fig. 17.23). Then, what is the probability that there is no
error in the system? In the case of three-qubit encoding of Fig. 17.23(b), this is shown in

44 See [Walther et al. 2005].
45 See [Auletta 2005].
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Table 17.4 Example of classical error correction.
The probability of different numbers of errors is

shown for the case of three–qubit encoding

Number of errors Probability
0 (1 − q)3

1 3q (1 − q)2

2 3q2 (1 − q)
3 q3

Tab. 17.4, where the first two situations are correctly interpreted by the error-correction
procedure while the last two are wrong.

The total probability of error, after decoding, will be

3q2 (1 − q)+ q3 = 3q2 − 2q3 � 3q2, (17.125)

which has to be compared with the error probability without correction, which is q. As a
consequence, if q is small, there will be a big gain in applying this procedure.

In order to use an analogue protocol in quantum mechanics (where we have qubits
instead of bits), we can define a fidelity F of the transmission as

F = 〈ψ ∣∣ρ̂∣∣ψ 〉, (17.126)

where |ψ〉 is the input state and ρ̂ represents the final state, which, after decoherence,
is generally a mixture (see Prob. 17.12). It is clear that, when F = 1, we have perfect
transmission. Then, we may encode a superposition input state as follows:

c0 |0〉 + c1 |1〉 encoding�→ c0
∣∣000

〉 + c1
∣∣111

〉
, (17.127)

where ∣∣0〉 = 1√
2
(|0〉 + |1〉 ), ∣∣1〉 = 1√

2
(|0〉 − |1〉 ). (17.128)

This enconding may be performed as shown in Fig. 17.24.
Now, let us consider the decoherence effect (see also Eq. (17.98)):∣∣0〉 |E〉 �→ |0〉 |e0〉 + |1〉 |e1〉 =

(∣∣0〉 + ∣∣1〉 ) |e0〉 +
(∣∣0〉 − ∣∣1〉 ) |e1〉 , (17.129a)∣∣1〉 |E〉 �→ |0〉 |e0〉 − |1〉 |e1〉 =

(∣∣0〉 + ∣∣1〉 ) |e0〉 −
(∣∣0〉 − ∣∣1〉 ) |e1〉 . (17.129b)

From the first equation, we obtain∣∣0〉 (|e0〉 + |e1〉 )+
∣∣1〉 (|e0〉 − |e1〉 ) =

∣∣0〉 |e+〉 + ∣∣1〉 |e−〉 . (17.130)

Therefore, if only the first qubit decoheres, we can write(
c0
∣∣000

〉 + c1
∣∣111

〉 ) |E〉 �→ |&〉 , (17.131)

where the output state is

|&〉 = (c0
∣∣000

〉 + c1
∣∣111

〉 ) |e+〉 + (c0
∣∣100

〉 + c1
∣∣011

〉 ) |e−〉 . (17.132)
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�Figure 17.24 Example of quantum circuit for error correction. In the encoding area, the two CNOT gates and the
three Hadamard gates contribute to generate an entangled state of the three qubits, which is
subject to decoherence in the central area. Finally, the decoding area is crucial in order to invert
the initial encoding.

By performing the decoding, we obtain

|&〉 decoding�→ (c0 |0〉 + c1 |1〉 ) |0〉 |0〉 |e+〉 + (c0 |1〉 + c1 |0〉 ) | ·〉 | ·〉 |e−〉 . (17.133)

It suffices to read the second and third qubits: if one gets |00〉 , then one knows that the
input has been correctly decoded on the first qubit, otherwise, whatever | ·〉 may be, one
knows which unitary operation one has to apply on the first qubit to get back the correct
input state. As in classical error correction, the price to pay for this error-correction is the
enlargment of the system.

Let us now introduce a time dependence in the environment dynamics, so that we may
write the scalar product present in Eq. (17.99) as

〈e0(t) | e1(t)〉 = γ (t). (17.134)

We have two possible decays: slow parabolic decay and exponential decay. Whatever the
interaction is, γ (t) will go to zero in time and quantum error correction will help a little.
We will compare two scenarios: one where there is no encoding and decoding (no error
correction), and one in which we encode a qubit in three qubits, and then decode them. If
we start with a state |ψ〉 = c0 |0〉 + c1 |1〉 , after a certain time we shall end up with

ρ̂(t) =
[ |c0|2 c0c∗1γ (t)

c∗0c1γ
∗(t) |c1|2

]
, (17.135)

whose fidelity is given by F = 〈ψ ∣∣ρ̂(t)
∣∣ψ 〉. In the case of an initial mixed density matrix

ρ̂0, a natural extension of the previous expression is

F = Tr
[
ρ̂0ρ̂(t)

]
. (17.136)

Let us consider the interaction Hamiltonian

Ĥ = λ(t)σ̂z · Ô , (17.137)
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�Figure 17.25 Environmental wave functions and their overlapping as a function of time in quantum
computation.

where Ô may represent, e.g. in the optical case, a quadrature of the field. We have then the
following time evolution:

|ψ〉 |E〉 �→ e−
ı
h̄

∫ τ
0 dtλ(t)σ̂z ·Ô (c0 |0〉 + c1 |1〉 ) |E〉

= e−
ı
h̄�Ô c0 |0〉 |E〉 + e

ı
h̄�Ô c1 |1〉 |E〉 , (17.138)

where ∫ τ

0
dtλ(t) = �. (17.139)

The final state of Eq. (17.138) is justified by the fact that σ̂z is a constant of motion, i.e.

σ̂z |0〉 = + |0〉 , σ̂z |1〉 = − |1〉 . (17.140)

Now, suppose that E(x) represents the wave function corresponding to the ket |E〉 in the x
representation, i.e.

|ψ〉 |E〉 �→ c0 |0〉 |Ex+�〉 + c1 |1〉 |Ex−�〉 . (17.141)

We see that the overlap between these two wave functions tends to zero as time passes (see
Fig. 17.25), i.e.

〈Ex+� | Ex−�〉 → 0. (17.142)

In the Bloch sphere language (see Subsec. 14.3.2)

ρ̂ = 1

2

(
Î + s · σ̂

)
= 1

2

[
1 + sz sx + ısy

sx − ısy 1 − sz

]
, (17.143)

where σ̂ is the vector of the Pauli matrices, the initial Bloch vector preserves the projection
onto the z-axis: in the limit t →∞, it will approach a vector pointing up (|0〉 ), where the
off-diagonal elements are zero.

The important point is that, whatever γ (t) is, quantum error correction does better when
the energy is preserved, i.e. when there is no energy exchange with the environment. This
is called dissipation-free decoherence.
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Now we come back to the two scenarios announced previously. For scenario 1 (with no
encoding and decoding) the fidelity is

F(t) = ( c∗0 c∗1
) [ |c0|2 c0c∗1γ (t)

c∗0c1γ
∗(t) |c1|2

](
c0

c1

)
= 1 − 2|c0|2|c1|2

[
1 − γ (t)

]
= 1 − 1

2
sin2 θ

[
1 − γ (t)

]
, (17.144)

where

c0 = cos
θ

2
, c1 = sin

θ

2
eıφ . (17.145)

The effect of decoherence depends on the state and it is therefore suitable to average over
all possible states. In order to do this, let us perform an integration over the whole solid
angle:

〈F(t)〉 = 1

2

∫ π

0
dθ

(
1 − 1

2
sin2 θ

[
1 − γ (t)

])
sin θ

= 1

3

[
2 + γ (t)

] = 1

3

[
2 + e−γ t ]

� 1 − 1

3
γ t , (17.146)

where γ (t) = e−γ t and the latter approximation is valid for small t .
Now, let us analyze the second scenario (shown in Fig. 17.24). In this case, we can iden-

tify which qubits have decohered, and following the perturbation theory we can identify
one-qubit, two-qubit, and so on, interactions. If we take this into account, we may build
a so-called error-syndrome table that allows to recognize which qubit has decohered and
what transformation one has to apply in order to recover the input state, as we have shown
previously.

An explicit calculation shows that the average fidelity over all possible configurations
and all possible states is given by

〈F(t)〉 = 1 − 1

2
γ 2t2, (17.147)

which shows that quantum error correction effectively provides a significant gain with
respect to Eq. (17.146).

Summary

• We have introduced the concepts of von Neumann entropy – characterized by non-
negativity, unitary invariance, concavity, subadditivity – and its relation with informa-
tion.

• We have discussed the relation between information and entanglement and shown that
entanglement is a form of mutual information between quantum systems.
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• Furthermore, we have considered the problem of measurement in informational terms
and also considered bounds on information acquisition.

• A relevant issue is represented by teleportation, that is, the ability to make use of entan-
glement for sharing information and – together with a classical communication – for
transporting a quantum state between distant locations. This protocol may also have
very interesting technological applications.

• Superposition and entanglement are genuinely quantum resources that can be used
for establishing and sharing a secret key in symmetric cryptographic protocols. Quan-
tum cryptographic schemes are able to circumvent the known limitations of classical
protocols.

• We have then introduced the important concept of qubit, which represents a general-
ization of the classical bit by allowing informational states that are superpositions of a
binary code. Quantum gates and circuits permit effective quantum information process-
ing and computing. Among the quantum gates the CNOT gate is of particular relevance
as it may be used to entangle qubits.

• Quantum computation is an interesting form of information processing that allows for
solutions to problems that are very time-consuming to deal with in classical computa-
tion. In particular, we recall here Deutsch’s algorithm for evaluating in a single step
whether a given function is constant or balanced, Shor’s algorithm, which allows for the
polynomial-time factorization of large integer numbers, and Grover’s algorithm, which
can be used for speeding up database searches.

• Several physical schemes have been proposed to realize quantum computation. All of
them have the same fatal enemy, namely decoherence. In order to combat the negative
effects of decoherence, a quantum version of error correction has been formulated.

Problems

17.1 Prove that, for a quantum system of dimensions n, the maximal entropy is ln(n).
17.2 Prove Property (17.14) of von Neumann entropy.

(Hint: Take advantage of Schmidt decomposition (see Subsec. 5.5.3) and of the fact
that S(ρ̂) is completely determined by the eigenvalues of ρ̂.)

17.3 Prove that in the case of pure states we have SVN = 0.
17.4 In the context of Fig. 17.4, prove that the subset D is invariant under local unitary

transformations.
17.5 In the context of Figs. 17.4 and 17.5, prove the following relations among the

subsets

' = D ∪ E, D ∩ E = ∅, (17.148a)

U ⊂ D, D ⊂ B, (17.148b)

B ∩ B = ∅, B ∪ B = ', (17.148c)

B ∪ (B/D) = E. (17.148d)

17.6 Verify that the states (17.68) are an eigenbasis of the operator (17.67 ).
(Hint: Take advantage of the solution to Prob. 16.8.)
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17.7 Show that the states (17.70) and (17.71) are identical.
17.8 Prove that from suitable application of transformations (17.73) to the state of the

particle 3 we always obtain the state (17.69).
17.9 Compute explicitly the matrix Û (α,β, γ , δ) in Eq. (17.94).

17.10 Show that factoring is indeed a classical example of non-polynomial algorithm.
17.11 Prove Eqs. (17.110).
17.12 An alternative definition of the distance between two states ρ̂1 and ρ̂2 (see also

Probs. 14.15–14.16 and Box 14.1) that is particularly interesting for qubits is
given by

d(ρ̂1, ρ̂2) = 1

2
Tr|ρ̂1 − ρ̂2|, (17.149)

and a suitable representation for qubits is provided by the Bloch vector. If ρ̂1 and
ρ̂2 have Bloch vectors r and s respectively (see Eq. (17.143)),

ρ̂1 =
1

2

(
Î + r · σ̂

)
, ρ̂2 =

1

2

(
Î + s · σ̂

)
, (17.150)

compute the distance by making use of this formalism so as to obtain

d(ρ̂1, ρ̂2) = 1

2
|r − s|. (17.151)

Further reading

Deutsch, D. and Ekert, A., Quantum computation. Physics World (March 1998), 47–51.
Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., Quantum cryptography. Review of

Modern Physics, 74 (2002), 145–95.
Nielsen, M. A. and Chuang, I. L., Quantum Computation and Quantum Information,

Cambridge: Cambridge University Press, 2000.
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