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Preface

The aim of this revised second edition is to bring in new materials, worked
examples and problems that makes the book more broad based and useful.
These have been done keeping in mind the dual goals of the first edition, i.e.,
to help students to build a thorough conceptual understanding of Quantum
Mechanics and to develop a more positive and realistic impression of the
subject.

A new chapter on field quantization is added as most of the Universities
have this as a part of the course. Classical field equation both in the Lagrangian
and Hamilton’s form, quantization of non-relativistic Schrodinger equation and
relativistic scalar, spinor and vector fields have been discussed. The mechanism
that holds the atoms together in a molecule are discussed in the chapter on
Chemical Bonding. It includes the molecular orbital, valence bond and Hiickel
methods alongwith hybridization and Hiickel’s treatment of benzene molecule.
New sections on Rayleigh scattering and Raman scattering have been added to
the chapter on time dependent perturbation theory.

Learning how to approach and solve problems is a basic part of any
physics course, since it helps the understanding of the subject. Additional
worked examples and problems, ninety four in all, illustrating the various
concepts involved have also been included in most of the chapters. A solutions
manual is available from the publisher for the use of teachers.

The author is grateful to Prof. V.K. Vaidyan, Prof. V.U. Nayar, Prof. C.S.
Menon and Prof. V.S. Jayakumar for their constant encouragement and support.
The help received from Asitha L.R. and Divya P.S. during the preparation of
the manuscript is acknowledged. I also express my gratitude to those who have

™
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Xiv Preface

given meaning to my life—my wife Myrtle and members of my family—
Vinod and Anitha, Manoj and Bini, Ann and Suresh and grand children. Finally,
I express my sincere thanks to the publisher, PHI Learning for their unfailing
co-operation and for the meticulous processing of the manuscript.

Above all, I thank Lord Jesus Christ who has given me the wisdom,
might and guidance all through my life.

G. ARULDHAS



Preface to the First Edition

The concepts and formulation of quantum mechanics are not elementary in the
sense that they are easily understood. They are based on the outcome of
considerable theoretical research supported by experimental evidence. The
quantum mechanical approach to physical problems cannot be explained or
expressed comprehensively in simple non-mathematical terms. Often it is the
gap between the high-theoretical treatments and the descriptive accounts found
in many of the texts that makes the subject a difficult one for students. The
present book, Quantum Mechanics, is expected to bridge this gap. Simple and
elegant mathematical techniques have been used to elucidate the physical concepts.

The book has originated from a series of lectures on quantum mechanics
which the author had given for a number of years at the postgraduate level in
different universities in Kerala and as such the material is thoroughly class-
tested. It is designed as a textbook not only for postgraduate students of physics
and chemistry but also for students offering an advance course in quantum
mechanics. Emphasis is given for giving the students a thorough understanding
of the basic principles and their applications to various physical and chemical
problems. Details of mathematical steps are provided wherever found necessary.
Physical ideas contained in the results have been discussed. Every effort has
been taken to make the book explanatory, exhaustive and user friendly.

In Chapters 1-14, the non-relativistic areas of quantum mechanics have
been dealt with whereas the relativistic aspect is discussed in Chapter 15.
Chapter 1 serves as an introduction to quantum theory bringing out the historical
events that led to the development of quantum ideas and its subsequent
progressive advances. It also discusses the inadequacies of quantum theory. In
Chapter 2, wave nature of matter, the uncertainty principle, the time-dependent
and time-independent Schrodinger equations are introduced along with a

XV



XVi Preface to the First Edition

discussion on the physical significance of the wavefunction. Chapter 3, the
core of the book, deals with the general formalism of quantum mechanics. It
presents the basic ideas of vector space, Hermitian operators, postulates of
quantum mechanics, momentum representation and equations of motion.
Chapters 4 and 5 discuss the energy eigenvalues and eigenfunctions of certain
simple potentials on the basis of Schrodinger method. The Heisenberg’s
formulation of quantum mechanics based on matrices is presented in Chapter 6.
The different types of symmetries and the related conservation laws are the
subject of discussion in Chapter 7. A detailed chapter on angular momentum
(both orbital and spin), a topic of fundamental importance in physics, is also
included.

Chapters 9—12 treat the important approximation methods, the variation,
WKB, time-independent and time-dependent perturbation methods. The
application of these techniques to study the ground state of two electron atoms,
Stark effect in hydrogen, the deuteron ground state, alpha emission, spin-orbit
interaction, transition probability, emission and absorption of radiation and
selection rules is treated in the related chapters. The information provided by
many electron atoms is of considerable importance for the understanding of the
structure of molecules and their properties. The scattering phenomenon is very
important as it represents one of the best methods of studying the properties
of atoms, nuclei and interaction of elementary particles among themselves.
Even the concept of an atom is the outcome of a scattering experiment.

The book concludes with a chapter on relativistic wave equation which
accounts for electron spin, electron magnetic moment, the concept of hole and
many other interesting phenomena.

Considerable attention is devoted to worked examples in the text. More
than hundred examples ranging from simple plug-in type to fairly complicated
ones have been fully worked out. About 150 problems, given at the end of
respective chapters, are useful for the understanding of the basic concepts and
applications. Answers to these problems are also provided at the end of the
text. The review questions may serve as the basis for self-study, class discussion,
assignments, etc.

It is with deep sense of gratitude and pleasure that I acknowledge my
indebtedness to my students for all the discussions and questions they have
raised. I am likewise indebted to Dr. A.D. Damodaran, Dr. V.K. Vaidyan,
Dr. C.S. Menon, Dr. V. Ramakrishnan and Professor Jose Davidson for their
support and cooperation. Last, but not least, I acknowledge my gratitude to my
wife Myrtle Grace and children for the encouragement, cooperation and academic
environment they have provided throughout my career.

Finally, I express my sincere thanks to the publishers, PHI Learning for
the meticulous processing of the manuscript both during editorial and production
stages.

G. ARULDHAS
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Origin of the Quantum Theory

1.1 LIMITATIONS OF CLASSICAL PHYSICS

The first scientific attempt to study the nature of light radiation was that of Sir
Isaac Newton who proposed the corpuscular theory of light. According to this
theory, light consists of tiny perfectly elastic particles, called corpuscles which
travel in all directions in straight lines with the velocity of light. It could not
explain phenomena such as interference, diffraction and polarization. It predicted
that the velocity of light is more in a denser medium than that in a rarer
medium.

The theory that light is propagated as a wave through a hypothetical
elastic medium called ether was developed by Huygens, Young and Fresnel.
They considered light as propagation of mechanical energy. It got established
as it could explain most of the experimentally observed phenomena including
the velocity of light in different media. A completely different concept regarding
the nature of light was proposed by Maxwell in the second half of the nineteenth
century. According to him, light consists of electromagnetic waves with their
electric and magnetic fields in planes perpendicular to the direction of
propagation. The electric and magnetic fields associated with the wave are
governed by Maxwell’s equations. Predictions of Maxwell were confirmed
experimentally by Hertz. The electromagnetic theory of light was received well
though it had failed to explain phenomena such as photoelectric effect and
emission of light.

Thus, towards the end of the nineteenth century there was a sense of
completion among the physicists as they thought that classical physics was
capable of explaining all observable phenomena. Then came a series of important

1



2 Quantum Mechanics

experimental discoveries starting with X-rays in 1895, radioactivity in 1896
and electron in 1897, which could not be explained, on the basis of classical
physics. In addition, lot of experimental observations starting with black-body
radiation and optical spectra accumulated could not be explained by the classical
theory.

Black-body Radiation Curves

The spectral energy density u, of black-body radiation from a black-body
cavity depends only on frequency n and temperature T of the cavity. Based on
thermodynamic arguments, Wien attempted to explain the observed spectral
energy density verses frequency v curves. The agreement with experimental
results was good only in the high-frequency region (Figure 1.1). Treating
radiation inside a black body as standing electromagnetic waves, Rayleigh and
Jeans estimated the number of modes of vibration per unit volume in the
frequency range v and v + dv and evaluated the spectral energy density u, by
taking its product with the average energy of an oscillator of frequency v.
Their expression agreed with experiment only at low frequencies. The methods
based on classical theories thus failed to give a single formula that could agree
with the experimental black-body radiation curve for the entire frequency range.
There is no wonder that this disagreement led to a complete revision of our
ideas of physics.

u,4
.,
Y N
. N,
0 .\-
o ‘\
©; "
v/ e
l:f \.
L N,
# ~.
2 'S,
i s
L5 -~
7 Trmna
£ .
v
----- Experimental Curve, ....... Wien’s Curve,.. . . . Rayleigh Jeans

Figure 1.1 Black-body radiation curve.

Optical Spectra

Each chemical element showed characteristic emission spectrum consisting of
discrete lines. Comparatively, simple spectrum was observed for hydrogen
atom. In 1885, J.J. Balmer arranged them in the form of a series and had
suggested the following empirical formula for the wavelength:
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A 22 p?
where, R is the Rydberg constant for hydrogen. Later, other spectral series
were also discovered (Table 1.1) and they were found to obey the formula:

1. R(L - L), n=3,4,5,-" (1.1)

1 1 1
— =Rl — - )
P (mz nz) (1.2a)
where
m=123,-- n=@m+1),(m+2), (m+3), - (1.2b)

The regularities found in the spectral lines indicate that there must be some
general mechanism in the emission of light. The classical theories failed to
give the correct mechanism responsible for the spectral series in hydrogen.

Table 1.1 The Hydrogen Spectral Series

Quantum number

Name of series Lower state (m) Upper state (n) Region
Lyman series m=1 n=2734, - Ultraviolet
Balmer series m=2 n=3,4y>5, - Visible
Paschen series m=3 n=4,5,6, - Infrared
Brackett series m=4 n=5,6,7, - Infrared
Pfund series m=5 n=6,7,8, - Infrared

Photoelectric Effect

When light is incident on certain metallic surfaces, electrons are released.
These are called photoelectrons and the phenomenon is called photoelectric
effect. Some of the important conclusions arrived from a detailed investigation
of the phenomenon are listed below.

1. The energy distribution of the photoelectrons is independent of the
intensity of the incident light.

2. The maximum kinetic energy of the photoelectrons from a given metal
is found to be proportional to the frequency of the incident radiation.

3. For a given metal, photoelectrons are not emitted if the frequency of the
incident light is below a certain threshold value, whatever be the intensity
of incident light.

4. For a given frequency, the number of photoelectrons emitted is directly
proportional to the intensity of incident light.

5. There seems to be no time lag between the onset of irradiation and the
resulting photocurrent.



4 Quantum Mechanics

Though attempts were made to explain these aspects on the basis of
classical ideas, the different conclusions stood unexplained.

Specific Heat of Solids

In solids, the atoms vibrate about their equilibrium positions in their lattice
sites. Based on the law of equipartition of energy, the average energy of a
simple harmonic oscillator is k7, where k is the Boltzmann constant and T is
the absolute temperature. An atom can vibrate about three mutually perpendicular
directions, the average energy of an atom is 3k7. Then the energy per gram
atom is 3NkT = 3RT, N being the Avogadro’s number and R, the gas constant.
This leads to a value of C,, = 3R, which is known as the Dulong and Petit’s
law. At ordinary temperatures, solids generally obey this relation, which is
based on classical theory. However, when the temperature is lowered the specific
heat decreases and goes to zero when 7' — 0 K. Thus, the classical ideas failed
to explain the variation of specific heat of solids with temperatures.

Thus, by 1900 scientists were convinced that a number of experimentally
observed phenomena could not be explained on the basis of classical physics
and certain new revolutionary ideas are needed to understand things better.

1.2 PLANCK’S QUANTUM HYPOTHESIS

The problem that confronted Max Planck was a theoretical explanation for the
black-body radiation curves. As already mentioned, the Wien’s formula agreed
well with experimental results at high frequencies whereas the one due to
Rayleigh and Jeans agreed at low frequencies. In 1900, Planck modified Wien’s
formula in such a way that it fitted with the experimental curves precisely and
then he looked for a sound theoretical basis for the formula. He assumed that
the atoms of the walls of the black body behave like tiny electromagnetic
oscillators each with a characteristic frequency of oscillation. The oscillators
emit electromagnetic energy into the cavity and absorb electromagnetic energy
from it. Planck then boldly put forth the following suggestions regarding the
atomic oscillators:

1. An oscillator can have energies given by
E_ = nhv, n=20,1,2,3, ... (1.3)

where v is the oscillator frequency and 4 is a constant known as Planck’s
constant. Its value is 6.626 x 10734 Js. In other words, the oscillator
energy is quantized.

2. Oscillators can absorb or emit energy only in discrete units called quanta.
That is

AE = Anhv = hv (1.4)

An oscillator, in a quantized state, neither emits nor absorbs energy.
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The average energy € of an oscillator can be evaluated on the basis of
canonical distribution formula:

Y &, exp [-¢,/(KD)]
n=0

oo

Y exp [-&,/(KT)]

n=0

Y nhv exp [-nhvI(kT)]
n=0

oo

Zexp [-nhvI(kT)]

n=0

hv
= (L.5)
exp [AVv/(KT)] -1
The quantization condition, Eq. (1.3), thus invalidates the theorem of
equipartition of energy which is based on classical physics. It is known that the
number of oscillators per unit volume in the frequency range v and v + dv is
(8mV%c3) dv. With the above expression for average energy & the spectral

energy density u, is given by:

8rhv? dv
u, = 3
c exp [Av /(kT)] -1

(1.6)

Equation (1.6) is the Planck’s radiation formula which reduces to the Wien’s
or Rayleigh—Jeans law according as

hv hv
— >>1 or — <1
kT kT

Planck’s explanation of the black-body radiation curves in 1900 provided
the crucial step in the development of quantum ideas in physics which was put
on a firm basis by the pioneering work of Einstein, Bohr and others in later
years. The concept that energy is quantized was so radical that Planck himself
was reluctant to accept it. This can be seen from his own words “my futile
attempts to fit the elementary quantum of action (that is the quantity #) somehow
into the classical theory continued for a number of years and they cost me a
great deal of effort”.

1.3 EINSTEIN’'S THEORY OF PHOTOELECTRIC EFFECT

Einstein succeeded in explaining photoelectric effect on the basis of quantum
ideas. He assumed that electromagnetic radiation travels through space in discrete
quanta called photons as during the emission and absorption processes. The



6 Quantum Mechanics

energy of a photon of frequency v is Av. When light photon of energy hv is
incident on a metallic surface, part of energy hv, is used to free the electron

from the metallic surface and the other part appears as kinetic energy %mv2

of the photoelectrons. The conservation of energy requires
— 1
hv=hv, + i (L.7)

where hv,, referred to as the work function, depends on the nature of the
emitter. The frequency v, is called the threshold frequency. This relation
accounted for the experimental observations regarding photoelectric effect.

Though Planck quantized the energy of an oscillator, he believed that
light travels through space as an electromagnetic wave. However, Einstein’s
photon hypothesis suggests that it travels through space not like a wave but
like a particle. The photon hypothesis is thus in direct conflict with the wave
theory of light. Millikan who verified Einstein’s hypothesis calls it a ‘bold, not
to say reckless, hypothesis’.

In the photon picture, each photon transports a linear momentum p = E/c
= hVlc, where E is the photon energy. This conclusion can also be deduced
from the theory of relativity. The relativistic expression for energy E is given by:

E*= c2p2 + méc4
where c is the velocity of light and m is the rest mass of the particle. Since
the rest mass of the photon is zero,

E hw  h
E=cp or p==="2_-12 (1.8)
C

This equation contains in it both particle concept (E and p) and wave concept
(vand A). Confirmation of particle nature of radiation was provided by Compton
effect. Compton effect is discussed in the next section.

1.4 COMPTON EFFECT

The spectrum of X-rays scattered from a graphite block contains intensity
peaks at two wavelengths, one at the same wavelength A as the incident radiation
and the other at a longer wavelength A’. Assuming the incoming X-ray beam
as an assembly of photons of energy hc/A, Compton was able to show that

M= -1= L(l — cos @) (1.9)
myc
where m is the rest mass of electron, c is the velocity of light and ¢ is the
scattering angle. The factor h/(mc) is called the Compton wavelength. The
Compton shift AA varies between zero (for ¢ = 0, corresponding to a grazing
collision) and 2h/(m,c) (for ¢ = 180°, corresponding to head-on collision).
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Agreement of Eq. (1.9) with the experimental results confirms the particle
nature of radiation.

1.5 QUANTUM THEORY OF SPECIFIC HEAT

Einstein explained the anomaly in the specific heat of solids using quantum
ideas. He replaced the 3N degrees of freedom of N atoms of the solid by 3N
oscillators, all having the same frequency ;. Quantization of the energy of the
oscillators leads to the following expression for the vibrational specific heat

hvy T exp [hvy I(kT)]

C, = 3Nk( .
KT ) {exp [hvg I(T)] - 1}

2
6 j exp (6;/T) (1.10)

T ) [exp (6/T) - 1T
where 6 = hvg/k defines the Einstein temperature. At ordinary temperatures
T >> 6, the expression for C, approaches the Dulong and Petit law. At low

temperatures, T << 6.
C, =3Nk 0—E 2c::x —0—5 (1.11)

= 3Nk(

which is not in agreement with the experimental 7> dependence.

Debye improved the Einstein’s model by assuming different frequencies
of vibration for the 3N oscillators and distributing them as in black-body
radiation. A cut-off frequency v,, was also assumed. Debye derived the following
T® law for C, when hvp/(kT) >> 1.

3
127* kT
C, = Nk| — )
s ( th] (1.12)

The agreement between the Debye model and the experimental observations is
good.

1.6 BOHR MODEL OF HYDROGEN ATOM

Rutherford, based on the results of «-scattering experiment, was the first to
propose the nuclear model of the atom. In this model, the positive charge is
confined to a very small sphere called the nucleus and the electrons move
around it. This model of the atom is highly unstable as a moving electric
charge radiates energy. Consequently, the electron in the Rutherford model of
the atom spirals into the nucleus. Moreover, it failed to explain the observed
sharp spectral lines of atoms. The concept of the nuclear model of the atom
was thus available for Bohr in 1913.
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The emission spectral lines of hydrogen were grouped into several series
which fit the empirical formula, Eq. (1.2). A theoretical explanation of the
hydrogen spectrum, based on quantum ideas, was first formulated by N. Bohr
in 1913. He based his arguments on two assumptions, now known as Bohr’s
postulates:

Postulate 1 An electron moves only in certain allowed circular orbits, which
are stationary states in the sense that no radiation is emitted. The condition for
such states is that the orbital angular momentum of the electron equals an
integral multiple of # (= h/27x), called modified Planck’s constant. Therefore,

mur = nh, n=123, ... (1.13)

Postulate 2 Emission or absorption of radiation occurs only when the electron
makes a transition from one stationary state to another. The radiation has a
definite frequency v, given by the condition:

hv, =E, -E, (1.14)

Consider a hydrogen atom in which the electron of mass m moves with velocity
v in a circular orbit of radius r centred in its nucleus. For simplicity, the
nucleus is assumed to be at rest. The Coulombic attraction between the electron
and the proton provides the necessary centripetal force. That is

mvz_ e* _k62

r 47t£0r2 r?

(1.15)

In this expression e is the electronic charge measured in coulombs and &, is a
constant called the permittivity of vacuum. The experimental value of g; is
8.854 x 107'2 C2N-'m2. For convenience, we have written

1
4re,

k= =8.984 x10° Nm2C ™2 (1.16)

The kinetic energy (7) of the electron is then given by

1 ke’
T = -m? = 2 (1.17)
2 2r
From Eq. (1.13), the velocity of the electron in its nth orbit is
b, = M (1.18)
mr
Substituting this value of v, in Eq. (1.15), we get
242
h
r,o= (1.19)

kme
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The state for which n = 1 is called the ground state while states for which n > 1
are called the excited states. The radius of the orbit in the ground state is called
the Bohr radius and is usually denoted by a,.

In SI units, we get

=0.53A (1.20)

The potential energy V(r) of the electron proton system is

2
V(r) = —k% (1.21)

The total energy of the hydrogen atom in the nth state is

E-rsvo ke Kk
" 2r, r, 2r,
Therefore,
2 4
; _kz’:f L. n=123 . (1.22)
n

Substituting the values of constants, we have

4
E=-—bm 1 DBSoy  u-123. a2y

" (dme, ) 20

Substitution of Eq. (1.22) in Eq. (1.14) gives the frequency of the spectral line
when the electron drops from the mth to nth state

_ k2272 me*

vV h3

mn

(Lz - Lz)’ m>n21 (1.24)

n m

For hydrogen like systems (He*, Li*?, Be*?), the energy is given by

2.2 4 2 4
En=—Zk2mf = - Z’;’e“, n=1,23, - (125
2h°n (4rey) 2h°n

where Z is the atomic number of the system. Bohr model was highly successful
in explaining the spectrum of hydrogen and hydrogen like atoms.

Three electronic length scales used in numerical calculations are the Bohr
radius a,, Eq. (1.20); the Compton wavelength A_= h/mc and the fine structure
constant o defined by

o= =— (1.25a)
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Often the Bohr formula, Eq. (1.23) is expressed in terms of Rydberg constant
R, defined by

4

_ ke
8eich’

Ry (1.25b)

For solving numerical problems, often we require the following relations
connecting these parameters:

and Ry =5 (1.25¢)

%= amc 2h

The Rydberg constant for an atom with a nucleus of infinite mass is
denoted by R_. Then in the expression for Ry, u has to be replaced by m, the
mass of electron.

1.7 EXISTENCE OF STATIONARY STATES

Einstein’s photoelectric equation proved unambiguously that electromagnetic
radiation interacts with matter like an assembly of discrete quanta of energy.
In 1914, Franck and Hertz reported an ingenious experiment to prove that
mechanical energy is also absorbed by atoms in discrete quanta.

The experimental set-up consists of an electrically heated filament
(cathode) along the axis of a cylindrical grid which is surrounded by a collector
(anode). The whole set-up is placed in a quartz chamber filled with mercury
vapour; refer to Figure 1.2(a). Electrons from the filament are accelerated to
the grid by a positive potential V,. A small retarding potential V, (V, << V,)
between the grid and anode retards the accelerated electrons. The electrons
collected by the anode give rise to a current which is measured by a
micrometer. The plot of collector current verses the accelerating potential V,
is shown as in Figure 1.2(b). When V, is increased from zero to a critical
potential V, the accelerated electrons make only elastic collisions with the
atoms of mercury. However, when V|, = V, the electrons make inelastic
collisions near the grid and give the entire kinetic energy to mercury atoms.
After losing their energy, the electrons are unable to overcome the retarding
potential V, leading to a sharp fall in current. Electrons which have not
made inelastic collisions reach the anode giving a small current. The first
drop occurs at 4.9 V and a spectral line appears simultaneously in the
emission spectrum of the mercury vapour at 253.6 nm, the value
corresponding to a photon energy of 4.9 eV.

When the potential is increased further, the region where the electrons
reach the critical energy of 4.9 eV moves closer to the filament. After losing
the energy to mercury vapour by inelastic collision, the electron picks up
energy on their way to the grid resulting in an increase of current. A second
inelastic collision occurs near the grid, when V|, = 2V_and a second current
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Grid
Heater A/
rd
Collector 1
w | —®
vapour
| H H K
! ! ! 5 10 15 Vi
Vl V2
(a) (b)

Figure 1.2 (a) Experimental arrangement of Franck and Hertz,
(b) Plot of collector current verses accelerating voltage.

minimum occurs as shown in Figure 1.2(b). A similar behaviour is found at
integral multiples of V. That is, the mercury atoms absorb mechanical energy
in quanta of 4.9 eV. Thus, the occurrence or minima in the 7 verses V, curve
can be explained only by the existence of stationary states in the atom.

1.8 WILSON-SOMMERFELD QUANTIZATION RULE

In 1915, Wilson and Sommerfeld proposed independently a more general
quantization rule in which the Hamilton’s equations of motion are first solved
in the independent variables g, q,, ..., g, and p,, p,, ..., p,. The stationary
states are those for which the action integral of any periodic motion equals an
integer times h.

$pidg =mh,  n=0.1.2 .n (1.26)

where the integration ¢ is over one cycle of motion. In circular orbits, the
orbital angular momentum L = muvr is a constant of motion. Hence for circular
orbits Eq. (1.26) reduces to

nh
murd¢ =nh or mvr=— 1.27
§ mur g - (127)

which is Bohr’s quantization rule, Eq. (1.13). In the following sections, we
shall apply the general quantization rule to some cases of interest.
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1.9 ELLIPTIC ORBITS OF HYDROGEN ATOM

The simplest force that is associated with point particles is the mutual central
force acting along the line joining the two. Consider the two particles of the
hydrogen atom with the nucleus of charge Ze fixed at the origin and the
electron of mass m moving relative to the nucleus (refer to Figure 1.3). As per
classical mechanics, the first integrals of the equations of motion of the system
are

mr’d = L (a constant) (1.28)
and
1 ., I?
—mr° + - + V(@) =E (a constant) (1.29)
2 2mr
e
,
Ze e
A B
Tmin Fmax
Figure 1.3 Parameters of the ellipse.
where
ke?
V() = -— (1.30)
r

L and E are the angular momentum and total energy of the system respectively.

The radial momentum p_= m7 and the angular momentum L = p, obey the
quantization rules:

<f>pa d6 = kh and <j>p, dr =nh (1.31)
where k and n_ are integers. Since p, is constant,
Pa 95d0 —kh or py2m=2mL = kh (1.32)

From Eq. (1.29), we have

e I?
,=mf =% 2m| E + - 1.33
P ( dregr  2mrt ] . )

The positive value of p, corresponds to the increase of r from r_, to r . and
the negative value to the other half of the elliptical path. Therefore,



Origin of the Quantum Theory 13

Fmax 2 2
L
C_ﬁprdr=2j 2m|E + ——— - dr=2r e2‘/i—L
4reyr 2mr —2E

"min

[

Combining this result with Egs. (1.31) and (1.32), we get

2
2ze Jﬂ = (k +n,)h = nh (1.34)
4re, N -2E

where the principal quantum number, n = n, + k. Solving for E, we have

2 4 4
po-_kme ___ me . on=1,23, ...  (135)
2h°n (47ey) 20%n’

which is same as Eq. (1.22). It may be mentioned here that no restriction is

made to circular orbits while deriving Eq. (1.35).
dr

At points A and B, d_= 0 and this happens for r = r_, and r =r_, .
t

When ﬂ=0, from Eq. (1.33), we get

dt
2 2
per L (1.36)
4me,E 2mE
and the sum of the roots of this equation is given by
o2
Foin + Tpax = —
4re E
As r . + r... = 2a, the semi-major axis of the ellipse is
2
a=-—2 (1.37)
(4rey )2E

Substitution of the value of E gives a , the length of the semi-major axis of the
nth orbit

dregn*h? )
= —mez = n a; (1.38)

a

where a is the Bohr radius.

Elliptic orbits of hydrogen atom was first solved by Sommerfeld as an
example of the general quantization rule. The energy is dependent on the
principal quantum number n which is the sum of k and n,. Therefore, all orbits
for which k + n_= n has the same value, will have the same energy. States of
motion corresponding to the same energy are said to be degenerate. Among all



14 Quantum Mechanics

orbits having the same value of n, one will be a circular one for which n, = 0,
k = n. This explains why the energy expression is the same as the one by
Bohr’s theory for circular orbits. The case k = 0 was ruled out by Sommerfeld
as it corresponds to motion of the electron along a straight line through the
nucleus. Electron orbits for n = 1,2, 3 are shown in Figure 1.4.

<
k=1
6a
3ag
O
+ 9610
n=3
k=1
n=73
k=2
n=3
k=3
Figure 1.4 Sommerfeld electron orbits for n = 1, 2, 3.

1.10 THE HARMONIC OSCILLATOR

The displacement x with time ¢ of a harmonic oscillator of frequency v, is
given by
X = x, sin 27vyl) (1.39)

The force constant k and frequency n, are related by the expression:

- LR o k= a4y (1.40)

Vy =
2t \m

Therefore, the potential energy is

V= %kx2 = 2mmVy’x,? sin?(27vy1)
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The kinetic energy is
2
1
T = Em(%j = 2P mv,’x,? cos*(2mv,t)
And the total energy is
E =T+ V=2rmvy,’ (1.41)

According to the quantization rule

Cﬁpx dx =nh or m @i—x dx = nh (1.42)
t

When x completes one cycle, ¢ changes by period T = 1/v,,. Hence, substituting
the values of dx/dt and dx, we get

1/v,
A mVixl j cos?mvyt) dt =nh, n=0,1,2, ...
0

On solving, we get
5 12
2w mvyxt =nh  or  x,= Z— (1.43)
27 my,
Substituting the value of x, in Eq. (1.41), we have
E =nhv, = nhw, n=0,1,2, ... (1.44)

That is, according to old quantum theory, the energies of a linear harmonic
oscillator are integral multiples of Av, = hw.

1.11  THE RIGID ROTATOR

A rigid rotator consists of two mass points connected by a massless rod. As
the rotator is rigid, potential energy is zero. A rigid rotator restricted to move
in a plane is described by an angle coordinate 6. The momentum conjugate to

the angle coordinate p, = 1 6 = Iw, where I is the moment of inertia, is a
constant of motion. The quantization rule reduces to

2r Jh

[pedo =an or p, = =012 (1.45)
T

0

That is, the angular momentum p, is an integral multiple of A/2z. With this

value of p, = Iw the energy of a classical rotator E = 1a?/2 reduces to

Co8nll

, J=012, .. (1.46)

J
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To describe a rigid rotator in space, one requires the two coordinates 6 and ¢
of the polar coordinates. Application of the quantization rule gives the same
expression as the one in Eq. (1.45) for the total angular momentum and

po =" m=-l-J+l . T- L (1.47)

2r

for the component of angular momentum along the z-axis. The energy is
independent of the quantum number m and is given by Eq. (1.46). Each energy
level is (2J + 1) fold degenerate.

1.12 PARTICLE IN A BOX

Consider a particle of mass m moving inside a rectangular box of sides a, b
and ¢ without the influence of any force. Let us assume that the collision with
the walls of the box is perfectly elastic. The cartesian axes are taken along the
edges of the box. The linear momentum p , p, and p_ are constants of motion
and change sign during collision with the walls. Applying the rule of
quantization:

@px dx = 2apx =nxh

We get
n.h
= X n_ = O, 1, 2, ..
px 2a k X
Similarly,
h
po= 2% p=0,1,2, ..
2b :
and
neh 0,1,2
= —, n = s by &y out
& 2c z
The total energy
2 2
1/, 2 2 R (n2 ny, n
E = —I|p: +p; + = —| =<+ =+ = 1.48
nyony,n; m (p p pZ) 8m a2 b2 c ( )
In the case of a cubical box of side a
n? 2 2 2
Hesnyon; = _Sma2 (nx + n.\, + nz) (149)

The energy of the system is thus quantized.
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1.13 THE CORRESPONDENCE PRINCIPLE

The correspondence principle of Bohr states that the quantum physics reduces
to classical physics at large quantum numbers. To explain the principle, Bohr
used a simple illustration based on the line spectra of one electron atom.

Classically, during the periodic motion in a stationary orbit, the frequency
of the light emitted by the atom is equal to its frequency of revolution v,. From
Eqgs. (1.17) and (1.18), we get

v, me*

27, (4mey) 2mn’ kY

V. =

r

(1.50)

For the transition (n + 1) — n, the frequency of the emitted radiation (V) is
given by Eq. (1.24) as

= 27 me* L B 1 _ 27 me* 2n +1
(e’ h* [ n* (n+ 1) n(n + 1)*

= 1.51
(4rey)* b’ ] (4>D
It is clear that v — v, when n — oo, as required by the correspondence
principle.

1.14 THE STERN-GERLACH EXPERIMENT

The concept of vector atom model was introduced to explain certain experimental
observations in the atomic spectra of complex atoms. This atom model has the
two special features: spatial quantization and the electron spin. Direct
experimental confirmation of these features was provided by the Stern-Gerlach
experiment.

The magnetic moment [ of an atom arises due to orbital and spin motions
of the electrons. In a uniform magnetic field, the magnetic moment vector
experiences a torque which tends to turn the direction of pu and hence that of
angular momentum with the magnetic field. This makes the vector { to precess
around the field keeping a fixed angle @ with the field. If the magnetic field
is nonuniform, the atom with the magnetic moment experiences an additional
translatory motion. Hence, if an atom with a magnetic moment is shot in the
x-direction through a magnetic field which increases along the z-axis, it will
be deflected in the positive or negative z-direction. The shift will depend on
the value of u . If u, takes continuous values the beam would spread out into
a continuous band in the xz-plane. Instead, if there is space quantization each
atom will enter the magnetic field in a particular quantum state defined with
the magnetic field direction as the axis. Consequently, the beam will split into
separate beams and produce a series of distinct spots or sharp lines, one for
each possible value of u..

In their experiment, Stern and Gerlach passed a collimated beam of silver
atoms through an inhomogeneous magnetic field produced by a specially
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designed electromagnet (Figure 1.5). While passing through the magnetic field,
the beam splits into two parts, one travelling upwards and the other downwards,
producing two spots on the screen.

o I el
T T

Figure 1.5 The Stern—Gerlach experiment.

In the ground state, the outer electron of silver atom is in an s-state (5s).
Therefore, it has no orbital angular momentum and consequently no orbital
magnetic moment. The observation of 2 spots suggests that all electrons have
an intrinsic magnetic moment of the same magnitude with two possible
orientations—parallel or antiparallel to the magnetic field. The origin of this
magnetic moment can be understood if it is assumed that the electron of the
silver atom has an intrinsic spin angular momentum. If the spin of the electron
is s, the z-component of spin can have 2s + 1 orientations. As two spots have
been observed experimentally 2s + 1 =2 or s = 1/2. That is, the spin of electron
is 1/2. Thus, spin, first detected in the Stern-Gerlach experiment, has become
an ‘observable’.

1.15 INADEQUACY OF QUANTUM THEORY

The quantum theory developed by Max Planck, Einstein and Bohr was found
to be adequate in explaining certain phenomena such as black-body radiation,
photoelectric effect, harmonic oscillator, rigid rotator, spectral lines of hydrogen
atom, etc. However, it was inadequate to explain number of cases. Some of
them are:

1. The general quantization rule is valid only for periodic systems. Hence
the quantum theory is not applicable to non-periodic cases.

2. Even in the case of hydrogen spectrum, the theory could explain only
the broad features.

3. Application of the quantum theory to helium atom, hydrogen molecule,
etc., led to results contrary to experiments.

4. Failed to account the concept of half odd integer quantum numbers
which are necessary for explaining Zeeman effect and fine structure of
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spectral lines. In other words, it failed to account for the concept of
spin.
5. It failed to give a method for evaluating transition probabilities and
intensities of spectral lines.
6. The theory was unsuccessful in explaining the dispersion of light.
These shortcomings suggest that the quantum theory is not a very general one

and the defects cannot be removed by extensions and modifications. Therefore,
one has to look for a more basic theory to account for all phenomena.

ﬁWORKED EXAMPLES —

EXAMPLE 1.1 The work function of barium and tungsten are 2.5 eV and
4.2 eV, respectively. Check whether these materials are useful in a photocell,
which is to be used to detect visible light.

Wavelength (A) of visible light is in the range 4000-7000A.

-34 8
Energy of 4000-A light = 7€ - 0626 X10~ x3 x10
A 4000 x 107 x 1.6 x 10~

= 3.106 eV

and

. 626 x 107 108
Energy of 7000-A light = —ozo X 10~ x3x10__, 770y
7000 x 107" x 1.6 x 10

The work function of tungsten is 4.2 eV which is more than the energy range
of visible light. Hence barium is the only material useful for the purpose.

EXAMPLE 1.2 Verify Eq.(1.23) for the energy of the hydrogen atom in the
nth state.

From Eq. (1.23), we have

E = _m—e‘ti _ (911 X 10_3l kg)(16 x 10—19C)4
" 8¢,k n® 8(8.85x 107'2C2N"'m2)2(6.626 x 107s)%n>
21.703x 107"
B —
n

_21.703x1077 ]
(1.6 107" J/eV) n*

__13s6
n
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EXAMPLE 1.3 Calculate the maximum wavelength that hydrogen in its
ground state can absorb. What would be the next maximum wavelength?

Maximum wavelength corresponds to minimum energy. Hence the jump
from ground state to first excited state gives the maximum A.
Energy of the ground state = —13.6 eV

Energy of the first excited state = — % =-34¢eV

Energy of the n = 3 state = —% =-15¢eV

Maximum wavelength corresponds to the energy = 13.6 — 3.4 = 10.2 eV
Maximum wavelength

c _ __he _ (6.626x107*Js) x (3.0 x 10° m/s)
v E, -E 102x1.6x1077J

=122 nm

The next maximum wavelength corresponds to jump from ground state to the
second excited state. This requires an energy = 13.6 — 1.5 = 12.1 eV. This
corresponds to the wavelength:

he  (6.626 x 10*Js) x (3.0 x 10° m/s)

— =103 nm
E3_El 121 x1.6 x 107°J

EXAMPLE 14 A hydrogen atom in a state having a binding energy of
0.85 eV makes a transition to a state with an excitation energy of 10.2 eV.
Calculate the energy of the emitted photon.

Excitation energy of a state is the energy difference between that state
and the ground state.

Excitation energy of the given state = 10.2 eV

Energy of the state having excitation energy

102 eV = -13.6 + 10.2 = -34 eV
Energy of the emitted photon during transition from —0.85 eV to —-3.4 eV
=-0.85-(-34)=255¢eV
Let the quantum number of — 0.85 eV state be n and that of —3.4 eV state
be m. Then

¥=0.85 or n=4
n
g=3.4 or m=2

The transition is from n = 4 to m = 2 state
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EXAMPLE 1.5 Determine the ionization energy of the He* ion. Also calculate
the minimum frequency a photon must have to cause ionization.

Energy of a hydrogen like atom in the ground state = —-Z> x 13.6 eV

The ground state energy of He* ion = -4 x 13.6 eV = —54.4 eV
Ionization energy of He* ion = 54.4 eV

The minimum frequency of a photon that can cause ionization

-19
yo B 34AXLOXI0TTT a0 a0 1015 Hy

h 6.626 x 107 Js

EXAMPLE 1.6 Calculate the velocity and frequency of revolution of the
electron of the Bohr hydrogen atom in its ground state.

From Egs. (1.17) and (1.18), the velocity of the electron of a hydrogen
atom in its ground state
e (1.6 x 107")*
260 2(8.85 % 107'%) 6.626 x 107

v, ms™' =2.18 x 10 ms~!
From Eq. (1.50), the frequency of revolution of the electron in the ground
state

4 =31 -19.\4
me* __©11x10°H A6 x107%)¢ o s

' o4gh 4885 x 107'7)7(6.626 x 10%)?

Vv

EXAMPLE 1.7 What potential difference must be applied to stop the fastest
photoelectrons emitted by a surface when electromagnetic radiation of frequency
1.5 x 10'5 Hz is allowed to fall on it. The work function of the surface is 5 eV.

Energy of the photon = hAv = (6.626 x 10734 (1.5 x 101%) J

_(6.626 x 107*)(1.5 x 10")
1.6x 107"
= 6.212eV

Energy of the fastest electron = 6.212 — 5.0 = 1.212 eV
Hence, the potential difference required to stop the fastest electron is 1.212 V.

EXAMPLE 1.8 X-rays with A= 1.0 A are scattered from a metal block. The
scattered radiation are viewed at 90° to the incident direction. Evaluate the
Compton shift.

Compton shift AA = L(l — cos ¢)
myc

_ 6626 x 107*(1 — cos 90)
9.11 x 101 3 x 10%)
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=242 x 102 m
=0.024 A
EXAMPLE 1.9 From a sodium surface, light of wavelength 3125A and

3650 A causes emission of electrons whose maximum kinetic energy is 2.128 eV
and 1.595 eV, respectively. Estimate Planck’s constant and work function of

sodium.

h_c = E + kinetic ener
1% gy
e 2128 % 16 x 109
3125 x 10~ A
__he ke 1505 x 1.6 x 10
3650 x 10 A
he ( 1 j = 0533 x 1.6 x 10719
107'° (3125 3650
Therefore,
0533 x 1.6 x 107" x 107"° x 3125 x 3650

= 6.176 x 1073* Js

h 8
525 x 3 x 10

From the first equation, the work function

34 8
h_C= 6.176 x 10 x3x 10 —2.128)(1.6)(10_19

Ao 3125 x 107'°
=2524x 1.6 x 107197
=2.524 eV

ﬁ REVIEW QUESTIONS —

1. How classical physics failed to account for the spectral distribution of
energy density in a black body?

2. Explain photoelectric effect. Define the terms: work function, threshold
frequency and cut-off wavelength.

3. Briefly outline the mechanism by which photoelectrons are emitted.
4. List out the basic experimental results of the photoelectric phenomena.

5. Write the expression for the velocity of photoelectrons emitted when
radiation of wavelength A is incident on a photosensitive surface, the
threshold wavelength being 4.

6. What is Compton effect? Explain its significance.
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10.

11.

12.

13.

14.
15.

. Explain the assumptions of Planck with regard to cavity radiation and of

Einstein with regard to photoelectric effect.

How particle nature of radiation was confirmed by the photoelectric effect
and Compton effect?

Explain the postulates of Bohr with regard to hydrogen atom.

Apply Bohr’s theory to singly-ionized helium atom. What relationship
exists between this spectrum and the hydrogen spectrum?

Can a hydrogen atom absorb a photon whose energy exceeds its binding
energy?

What are the different possibilities of spectral line emission for the
hydrogen atom when the electron is excited to the n = 5 state?

State and explain the general quantization rule. Explain how it leads to
Bohr’s postulate regarding stationary states.

Sketch Sommerfeld electron orbits for n = 4.

Explain the significance of Stern—Gerlach experiment.

— PROBLEMS —

1.

Light of wavelength 2000 A falls on a metallic surface. If the work
function of the surface is 4.2 eV, what is the kinetic energy of the fastest
photoelectrons emitted? Also, calculate the stopping potential and threshold
wavelength for the metal.

. What is the work function of a metal, if the threshold wavelength for it

is 580 nm? If light of 475 nm wavelength falls on the metal, what is its
stopping potential?

How much energy is required to remove an electron from the n = 8 state
of a hydrogen atom?

. Calculate the frequency of the radiation that just ionizes a normal hydrogen

atom.

A photon of wavelength 4 A strikes an electron at rest and scattered at
an angle of 150° to its original direction. Find the wavelength of the
photon after collision.

. When radiation of wavelength 1500 A is incident on a photocell, electrons

are emitted. If the stopping potential is 4.4 volts, calculate the work
function, threshold frequency and threshold wavelength.

If a photon has wavelength equal to the Compton wavelength of the
particle, show that the photon’s energy is equal to the rest energy of the
particle.

. X-rays of wavelength 1.4 A are scattered from a block of carbon. What

will be the wavelength of scattered X-rays at (i) 180°, (ii) 90°, (iii) 0°?
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9. Determine the maximum wavelength that hydrogen in its ground state
can absorb. What would be the next wavelength that would work?

10. Construct the energy level diagram for doubly-ionized lithium.

11. What is the potential energy and kinetic energy of an electron in the
ground state of the hydrogen atom?

12. Show that the magnitude of the potential energy of an electron in any
Bohr orbit of the hydrogen atom is twice the magnitude of its kinetic
energy in that orbit. What is the kinetic energy of the electron in the
n = 3 orbit. What is its potential energy in the n = 4 orbit?
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Wave Mechanical Concepts

2.1 WAVE NATURE OF PARTICLES

The theory that radiation travels in space in the form of waves got established
as it successfully explained the optical phenomena like reflection, refraction,
interference, diffraction and polarization. However, to explain photoelectric
effect and Compton effect one needs the particle or corpuscular nature of
radiation. Thus, radiation possesses wave-particle duality. Sometimes it behaves
like a wave and at times like a particle.

Matter Waves

The dual nature of radiation prompted Louis de Broglie to extend it to material
particles also. He reasoned that (i) nature is strikingly symmetric in many
ways, (ii) our observable universe is composed entirely of radiation and matter,
(iii) if light has a dual nature, perhaps matter has also. Since matter is composed
of particles, his reasoning suggested that one should look for a wave-like
behaviour for matter. In other words, de Broglie assumed that a wave is
associated with a particle in motion, called matter wave, which may be regarded
as localized with the particle. Again he suggested that the wavelength of matter
wave be given by the same relationship, namely

A== 2.1

where m is the mass and v is the velocity of the particle. This relation is often
referred to as the de Broglie relation.

25
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Electron Diffraction Experiment

The concept of wave nature of material particles was independently tested by
Davisson and Germer and by G.P. Thomson. Thomson’s experimental
arrangement is analogous to Laue’s X-ray diffraction method. The arrangement
as shown in Figure 2.1(a) consists of a discharge tube in which a beam of
electrons from a cathode C is accelerated by a potential difference ranging
from 10,000 to 50,000 volts. The electrons collimated by the tube A fall on a
thin gold film of thickness of the order of 107 cm. The apparatus is evacuated
to avoid collision of electrons with the molecules of the gas. The diffracted
beam is allowed to fall on a fluorescent screen S or on a photographic plate
P. The photograph of the diffracted beam has a system of concentric rings, as
shown in Figure 2.1(b). Measuring the radii of the rings and the distance
between the film and photographic plate, the angle of diffraction 8 can be
obtained. Knowing the distance between atomic planes d, the wavelength of
the diffracted beam can be calculated. The experiment clearly demonstrates the
wave nature of electron as diffraction pattern can only be produced by waves.

P
pump pump “

ITI ITI

A
|

(a) (b)

Figure 2.1 (a) Thomson’s apparatus for electron diffraction, (b) diffraction
pattern of a beam of electrons by thin gold foil.

In the acceleration process the electron behaves like a particle, in the
diffraction process it behaves like a wave and in the detector it behaves like
a particle. The electron which showed wave aspect in one part of the experiment
showed particle aspect in two other parts of the same experiment. That is, for
a complete description of physical phenomena, both particle and wave aspects
of material particles are required. Hence, the new theory which we are looking
for must account for the dual nature of radiation and matter.

Standing Wave of an Electron in the Orbit

An electron orbiting around a nucleus at a distance r is a bounded one and
therefore the motion is represented by a standing wave. Only certain definite
number of wavelengths can now exist in an orbit, otherwise the wave after
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travelling once round the orbit will be out of phase with the previous one.
Mathematically,

ds

— =n, n=12, ... 2.2

1 (2.2)
where the integration is over one complete revolution. Substituting A = h/(mv),
Eq. (2.2) reduces to

9va ds=nh, n=12 .. 2.3)

which is a form of the general quantization rule. For circular orbits, ds = r d@

mvr(ﬁ d@ =nh or mur = ﬂ, n=12, ... (2.4)
2r

which is Bohr’s quantization rule. Thus, the de Broglie relation gives the

quantization rule in a refined way which was earlier introduced as an ad hoc

hypothesis. The standing wave patterns of the electron in an orbit are illustrated

in Figure 2.2.

Figure 2.2 Standing wave patterns of an electron in an orbit for
n=1andn=4.

2.2 THE UNCERTAINTY PRINCIPLE

As per classical ideas, it is possible to determine all dynamical variables of a
system to any desired degree of accuracy. This principle of determinism is the
backbone of classical physics.

Position-momentum Uncertainty

The position of a plane wave is completely indeterminate as it is of infinite
extent. Therefore, when waves are assigned to particles in motion an
indeterminacy arises automatically in the formalism because an electron wave
of definite frequency is not localized. Heisenberg analysed this indeterminacy
and proposed that no two canonically conjugate quantities can be measured
simultaneously. For the canonically conjugate variables x and p , mathematically,
the principle is stated as
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Ax Ap, = h 2.5)

The uncertainty relation can be illustrated by the single-slit experiment
discussed below.

Single-slit experiment. Consider a beam of monoenergetic electrons of speed
v, moving along the y-axis. Let us try to measure the position x of an electron
and its velocity component v, in the vertical direction (x-axis). To measure x,
we insert a screen S, which has a slit of width Ax (Figure 2.3). If an electron
passes through this slit, its vertical position is known to this accuracy. This can
be improved by making the slit narrower.

As the electron has a wave nature, it will undergo diffraction at the slit
giving the pattern as in Figure 2.3. Just at the time of reaching the slit, the
velocity v of the electron is zero. The formation of the diffraction pattern
shows that the electron has developed velocity component v after crossing the
slit. For the first minimum, the theory of diffraction gives

b
+M ;
—2C ™
Ax
S

Figure 2.3 lllustration of Heisenberg uncertainty principle—single-slit experiment.

A
inf =60 =— .
sin Ay 2.6)

where A is the wavelength of the electron beam. Let ¢ be the time of transit
from o to a and v, be the value of v_at b. Then

ab

vt = oa and v, = —
t

an 6=0=2 -0 _ U 2.7
oa vt U,

From Egs. (2.6) and (2.7), we get

A
Ax Uy
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Replacing A by h/mv, and taking v, as a rough measure of uncertainty Av,
inv
P

h Av
mvyAx Vo

X or AxAp, =h (2.8)

which is the desired relation. In the same way, we have
AyAp, =h and AzAp =h 2.9)

As the product of uncertainties is a universal constant, the more precisely we
determine one variable, the less accurate is our determination of the other
variable.

Before the introduction of the slit, the electrons travelling along the y-
axis had the definite value of zero for p . By introducing the slit we measured
the x-coordinate of the particles to an accuracy Ax, but this measurement
introduced an uncertainty into the p values of the particles. Thus, the act of
measurement introduced an uncontrollable disturbance in the system being
measured which is a consequence of the wave particle duality.

Though the result is based on a particular experimental set-up, it is a very
general one since it is independent of the particle mass and constants of the
apparatus used. Heisenberg assumed it to be a fundamental law of nature.
Therefore, the new mechanics we are looking for must abandon the deterministic
model and allow only for probable values for dynamical variables.

The new mechanics was formulated independently by Werner Heisenberg
(1925) and Erwin Schrodinger (1926). Heisenberg based his mechanics on
matrix methods whereas Schrodinger used the idea of wave nature of electron.
Introducing relativistic ideas, P.A.M. Dirac generalized quantum mechanics.

Uncertainty Relations for other Variables

Uncertainty relations can also be obtained for other pairs of canonically conjugate
variables. For a free particle moving along x-axis, energy E is given by

E= Px

or AE = &Apx =v, Ap,
m

Therefore,

or AE At = Ax Ap,

Hence
AE At=h (2.10)

This equation indicates that if a system maintains a particular state for time Az,
its energy is uncertain at least by AE = h/At.

The uncertainty for the pair of variables, component of angular momentum
along the direction perpendicular to the plane of the orbit (L)) of a particle and
the angular position (¢) can be obtained as follows:
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L} =2IE
On differentiating, we get
L AL, =IAE
where
Ag
LZ =lo=1 Tt
Therefore,
1 MAL, =IAE
At ¢
Using Eq. (2.10), we have
AQAL = AE At = h (2.11)

These uncertainty relations are very useful in explaining number of
observed phenomena which the classical physics failed. We shall now consider
some of them.

Applications of Uncertainty Relations
Ground state energy of hydrogen atom. The classical expression for the
total energy of the electron in the ground state is given by

2 2
_Pp ¢

T 2m 4mea

(2.12)

where a is the radius of the first orbit. Let the uncertainty in the position of
the electron Ax be of the order of a. More correctly, the product of uncertainties
is given by #. Therefore,

n

aAp=h or Ap= — (2.13)
a

Taking the momentum to be of the order of #i/a, we get
2 2
E-_"___¢ 2.14)
2ma* 4re,a

For the ground state, the energy E has to be minimum. For this, dE/da must
be zero. Denoting the minimum radius by a,, we have

dE _ 0= __h2 e
da ma;  Ameyal
or
YN
a, = (2.15)

2
me
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With this value of a, Eq. (2.14) becomes

me4 me4

E =— = —
(47e,)*2n* 8elh®

(2.16)

which is the ground state energy of the hydrogen atom.

Width of spectral lines. Spectral lines have finite width due to various factors.
One such factor is the natural broadening which is a direct consequence of
uncertainty principle. Atoms remain in the excited state for a finite time T,
called the life time; before making a transition. Hence there will be an uncertainty
in time of the order of 7. Then

1
TAE=h or Av=z — (2.17)
2rt
For most of the states, the life time 7 = 108 s. Hence, Av = 108 Hz. This

spreading is experimentally observed when the pressure is very low.

Mass of meson. Yukawa proposed that nuclear forces are due to an exchange
of mesons. Uncertainty principle may be used to derive a relation between
mass of meson (m) and the range (r,) of nuclear force. When one nucleon
exerts force on the other, a meson is created. During transit, its position is
uncertain by an amount r,. Use of the uncertainty relation gives

n
rAp = h or Ap= — (2.18)
To
For a relativistic particle p = mc. Taking the uncertainty in momentum to be
of this order, we obtain

n n
mec= — or m= — (2.19)
Ty e

For ry = 1.5 x 107! cm, m = 200 m,_, where m, is the electron mass.

Nonexistence of electron in the nucleus. For an electron to exist inside a
nucleus, the uncertainty in its position must be at least of the order of 2r, r,
being the radius of the nucleus. The uncertainty in the electron momentum is

then
/]

Ap = — (2.20)
2,

For a typical nucleus r, = 10~'4 m. Hence

1.055 x 107

> % 107 = 5.28 x 107*! kgms™
X

Ap =
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The momentum of the electron must at least be of this order. The kinetic
energy of the electron

2 212
7= P _GBXI0T) 1 957 Mev 2.21)

2m  2(9.1 x 107"

In B-decay, the energy of the emitted electron is usually of the order of few
MeV. Therefore one does not expect the electron to be a constituent of the
nucleus.

2.3 THE PRINCIPLE OF SUPERPOSITION

Two or more waves can traverse the same space independently of one another.
Hence the total displacement at any point due to number of waves is simply
the vector sum of the displacements produced by the individual waves. This is
known as the principle of superposition. This principle is very important in the
different branches of physics, namely optics, acoustics, electrical engineering,
etc. Superposition principle allows us to analyse a complicated wave motion
as a combination of number of simple harmonic motions. Though the linear
superposition of waves is important in optics, sound, etc., it is unknown in the
classical theory of particles. Since wave motion is assigned to particles in
motion, we tentatively extend it to matter waves also. The concept of
superposition of states would allow us the construction of wave packets.

2.4 WAVE PACKET

We have already seen that matter exhibits wave-like behaviour under suitable
conditions. When the momentum of a particle is well defined, the wave can be
of infinite extent. Therefore, a free particle moving along x-axis with a well
defined momentum is described by an infinite plane wave ‘P(x, ) given by

Y(x, 1) = A, exp [i(kx — o1)] (2.22)

where the wave vector k = 27/A and  is the angular frequency. In the case
of electromagnetic waves, the electromagnetic field varies in space and time.
Sound waves can be described by the pressure variation in space and time. In
other words, to describe wave motion, one requires a quantity which varies in
space and time. In analogy with these, to describe matter waves associated with
particles in motion, one requires a quantity which varies in space and time.
This variable quantity, called the wave function, ¥(x, t), must be large in
regions where the particle is likely to be found and small in the region where
it is less likely to be found. That is, the wave function of a particle in conformity
with the uncertainty principle must be localized in a small region around it.
The wave function of the matter wave which is confined to a small region of
space as in Figure 2.4 is termed as a wave packet or wave group.
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Figure 2.4 Representation of a wave packet.

Mathematically, a wave packet can be constructed by the superposition
of an infinite number of plane waves with slightly differing k values.

Weon) = [ Atoexp [ike - io(or] dk (2.23)

—oo

As the particle is localized, we are interested in the superposition which leads
to a wave group which travels without change of shape. This is possible when
A(k) is zero everywhere except for the small range of k values

Ak Ak
(ko - 7j< k <(k0 + 7), where Ak << k, (2.24)

As k lies in a very small interval, expanding axk) as a power series in (k — k)
about kO, we have

(k) = o(ky) + (k — ko)(d—wj + . (2.25)
dk Ji_,
Neglecting higher order terms and writing
o wmd (@) 4o
ko) = @ and G0 Tk

we have

do

W(x,r) = JA(k)exp[ikx — iwgt + i(k — ky) ( o

—oo

) t] dk (2.26)

Adding and subtracting ikx to the exponential, we get

W(x,t) = F(x,0)exp [ilkox — @pt)] (2.27)
where

ko+ (Ak/2)

F(x,1) = j Ak) exp[i(k — k) (x - ‘Z—Z’t)] dk (2.28)

ko— (Ak/2)
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Equation (2.27) represents a plane wave with propagation constant k, and
angular frequency @, modulated by F(x,?) which depends on x and ¢
through [x — (dw/dk)t]. It follows that the wave packet moves with the group
velocity

_do
YT Tak
While the envelope of the wave packet (dotted line in Figure 2.4) moves with
the group velocity v o the individual waves of the packet travels with velocity
v, called phase velocity or wave velocity. It is the wave group that carries the
energy and what we measure experimentally is the group velocity.

It can easily be proved that the group velocity of the wave packet v, is

the same as the velocity of the material particle. Consider the relations

(2.29)

E=hw and p= hk

The group velocity

dow dE
v, = — = — (2.30)
& dk dp
For a free nonrelativistic particle
2 dE
E=P o Z-L_, 2.31)
2m dp m
For a relativistic particle, we have
E? = ¢?p? + my2c*
Therefore,
dE _ c2_p _ Emuh1 = @*c?) _ 2.32)

dp E myc® 1 — @*/c?)

Thus, the velocity of a particle and the group velocity of the corresponding
wave packet are the same. The phase velocity

@ E mc? c?

It has no physical significance and is not a measurable quantity.

2.5 TIME-DEPENDENT SCHRODINGER EQUATION

The nature of the wave function W(x, ) for localized and nonlocalized free
particles have been discussed in the previous section. However, for detailed
study of systems, we require the equation of motion for W(x, r) which was
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formulated by Erwin Schrodinger in 1926. Schrodinger equation is a fundamental

one in quantum mechanics as Newton’s equation in classical physics.

One-dimensional Equation for a Free Particle

The wave function of a localized free particle is the one given in Eq. (2.23).

For a free particle, the classical expression for energy is

p:

2m

E =

Replacing p by kz and E by ha, we get

e

2m

Substituting this value of w in Eq. (2.23)

* 2
W(x,1) = jA(k) exp[i(kx - ZLt]:' dk
m

—oo

Differentiating ‘¥(x, r) with respect to 7, we get

oV -in T ., , nk?
— = — | KAk kx — —t || dk
ot 2m _J; ( )exp[z( 2m t]:'

Differentiating ‘¥'(x, ) twice with respect to x, we get

¥ e nk?

— = — | k"A(k) exp|i| kx — —t || dk

ox? _£ © p[{ 2m
Combining Eqs. (2.37) and (2.38), we have

L o¥(x,0) n’ *¥
ih—=" =

ot 2m Jx?

which is the one-dimensional Schrodinger equation for a free particle.

Operators for Momentum and Energy

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

To obtain the operators for momentum and energy, Eq. (2.39) may be written

as

9 _ (a0
(thgj‘l’(x,t) = Zm( zhaxj( thaxj‘l’(x,t)

(2.40)
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From a comparison of Eqs. (2.34) and (2.40), it may be concluded that the
energy E and momentum p can be considered as the differential operators

Esind ad p— -in 2.41)
ot ox

operating on the wave function W(x, 7). Equation (2.39) is obtained even if the

operator for p is taken as ifd/ox in place of —i%#d/dx. The choice of the negative
sign is very significant which is explained in Section 2.7.

Extension to Three Dimensions

The one-dimensional treatment given above can easily be extended to three
dimensions. The three-dimensional wave packet can be written as

¥(r,0= [ A0 exp[i(k-r - or)] dk, dk, dk, (2.42)

—oo

Proceeding on similar lines as in the one-dimensional case we get the three-
dimensional Schrodinger equation for a free particle as

2
ihm = - h—vz\}'(r, ) (2.43)
ot 2m

An analysis similar to the one made for one-dimensional system leads to the
following operators for energy and momentum

E—n'hai and p — —ihV (2.44)
t

Inclusion of Forces

Modification of the free particle equation to a system moving in a potential
V(r, ) can easily be done. The classical energy expression for such a system
is given by

2

E=2_ yvaun (2.45)
2m

Schrodinger then made the right guess regarding the operators for r and ¢ as
ro>r and t ot (2.46)
Replacing E, p, r and ¢ in Eq. (2.45) by their operators and allowing the

operator equation to operate on the wave function ‘¥(r, f), we get

., 0F(r, 1)
h =
: ot

2
[_h V? + Vi, t)]\{'(r, 1) (2.47)
2m
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which is the time-dependent Schrodinger equation for a particle of mass m
moving in a potential V(r, ). The quantity in the square bracket in Eq. (2.47)
is the operator for the Hamiltonian of the system. In general, its solution will
be complex because of the presence of i in the equation. The equation cannot
be relativistically invariant as it contains first derivative in time and second
derivate in space coordinates.

2.6 INTERPRETATION OF THE WAVE FUNCTION

Probability Interpretation

The wave function ‘¥(r, ) has no physical existence since it can be complex.
Also, it cannot be taken as a direct measure of the probability at (r, #) since the
probability is real and nonnegative. However, W(r, f) must in some way be an
index of the presence of the particle at (r, 7). A universally accepted statistical
interpretation was suggested by Born in 1926. He interpreted the product of
¥(r, 1) and its complex congugate ‘¥'* as the position probability density P(r, )

P(r,H) = ¥* (r, ) Y(r, 1) = I¥(r,0) I (2.48)

The quantity | W(r, 1) I?d7 is then the probability of finding the system at time
t in the small volume element d7 surrounding the point r. When |'¥(r, 1) 1> dt
is integrated over the entire space one should get the total probability, which
is unity. Therefore,

[I¥@ofar =1 (2.49)
For Eq. (2.49) to be finite, ¥(r, ) must tend to zero sufficiently rapidly as

r — + . Hence, one can multiply ‘¥(r, r) by a constant, say N, so that N¥
satisfies the condition in Eq. (2.49). Then

N[ [ e, ofar =1 (2.50)

The constant N is called the normalization constant and Eq. (2.50) the
normalization condition. Since the Schrodinger equation is a linear differential
equation, N¥ is a solution of it. The wave functions for which the integral in
Eq. (2.49) does not converge will be treated depending on the nature of the
functions.

Probability Current Density

The probability of finding a system, described by a wave function ‘¥(r, 7) in
a finite volume V in space is given by | ) Py 47 and this changes as the wave
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function evolves in time. To study this, consider the Schrodinger equation and
its complex conjugate form, as under:

2
in a‘P(r, t) — |:_h V2 + V(r)] W (251)
ot 2m
and
* _ 12
Y [va + V(r)] ¥’ (252)
ot 2m

Here, the potential V is assumed to be real. Multiplying Eq. (2.51) by ¥* and
Eq. (2.52) by ¥ from left and subtracting one from the other

* _ 2
il Y LY | i[\{!*vz\{'-\wz\}'*]
ot ot 2m

or
9 (') = i[V PV — ‘PV‘P*)] (2.53)
ot 2m

Integrating, we get
9 T‘P‘P ar = M Tv -(\P*V\P - ‘I’V‘I’*)dr
ot 4 2m 4

oo

in T, .
= [(‘P VY - $VY )] (2.54)

—oo

If we have a localized wave packet, which is the situation in almost all cases,
¥ and ¥* — 0 as r — + o and the right-hand side of Eq. (2.54) vanishes.
Then

ai J‘I’*‘I’ dt =0 or j‘I’*‘I’ dt = constant in time  (2.55)
t

—oo

That is, the normalization integral is constant in time.
By defining a vector j(r, 7), called the probability current density.

iy = (¥ve" —¥'vy) (2.56)
2m

and substituting in Eq. (2.53), we get

? +Vejr,n =0 2.57)
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Equation (2.57) is the equation of continuity for probability, which is analogous
to the equation of continuity in hydrodynamics and electrodynamics. With this
definition of probability current density, Eq. (2.57) becomes a quantum
mechanical probability conservation equation. It may be noted that if ‘¥ is real,
the vector j(r, r) vanishes. Writing the integral form of Eq. (2.57) over a finite
volume V and using Gauss theorem, we get

% [ panar=-[v-jar = -§ j-ds 258)

where s is the area of the enclosed volume V. This result suggests that any
decrease in probability in a region is accompanied by an outflow of probability
across its surface. In other words, if the probability of finding a system in some
region increases with time, the probability of finding the system outside decreases
by the same amount.

Expectation Value

The definition of probability density immediately allows the calculation of the
expectation value of the position vector of a particle. Consider a large number
of measurements of the position vector r of a particle made when it is in a
particular state. Ensure that the particle has the same wave function ‘P(r, f)
before each measurement. The average of all the different values is the
‘expectation value’ (r) of the position coordinate. As |'P(r, #) I represents the
probability with which the value r occurs in the measurement, (r) can be
written as

(r) = [r¥'war = [¥rvar (2.59)

In this definition, the wave function ¥ is a normalized one. The necessity for
sandwiching r between W* and W would be made clear in the latter part of this
section. Based on similar arguments the expectation value of a function of r
may be written as

(f0) = [¥" @ 0¥, 1 dr (2.60)

Left multiplying the time dependent-Schrodinger equation, Eq. (2.47), by ¥*
and integrating from —co to oo, we get

=3

J‘P*(ih%j‘l’ dr = ]:‘P*(— %W]‘P dr + T‘P*V‘Pdr

Lo\ [ K,
<that> = < oV > + (V) (2.61)

or
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Therefore,

(E) = <”—2> + (V) (2.62)

2m

which is the quantum analogue of the classical energy expression. That is
sandwiching of the operator between W* and W is consistent with the
Schrodinger equation. Here, we have assumed that the average motion of the
wave packet to be the same as the classical motion of the particle. This
requirement is further justified by the Ehrenfest’s theorem (refer to Section 2.7).

From the above discussion, we can reasonably take the expectation value
of any dynamical variable A whose operator is AOp as

(4) = [ w4, ¥ ar (2.63)
If the wave function is not normalized,
[ a,,war
(A) = =—— (2.64)
j\}' Ydr

Since the space coordinates have been integrated out, the expectation value is
a function of time only.

2.7 EHRENFEST'S THEOREM

Correspondence between the motion of a classical particle and the motion of
a wave packet was worked out by Ehrenfest in 1927. In the limit when the
wave packet associated with a particle reduces to a point, one expects the
particle to behave like a classical one. Consider the one-dimensional motion of
a particle of mass m. The time derivative of (x) is given by

d(x) 9 T T (o . ¥
e J;‘P xWdx = j (7)&'#}' xE]dx (2.65)

—oo

Substituting the values of 9W¥/9¢ and 0" /0r from Egs. (2.51) and (2.52), we

get
. hod 2 N
d(x) _ ih J(X\p*a Y _ Y ]dx (2.66)

dt 2m ox? ox?
Integrating the second term by parts twice and using the condition that ‘¥ and
its derivative tends to zero as x — *oo (for a localized packet), we have

o 2
dx = j p* (28—\{’ +xa—\P]dx

oo

PV (x¥)
Jx‘I’ " dx—:[c‘l’ ¥

ox ox?

9
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Hence
o 2y 2y
d<x> = iR j x‘I’*a—2 - 2‘1’*8—\{’ —‘I’*xa— dx
dt 2m 7 ox ox ox?
L3
= — Yd
MG
Therefore,
mM = (p,) (2.67)
dt * ’

In the limit the wave packet reduces to a point, (x) = x and = ( px> =p, and
Eq. (2.67) reduces to the classical equivalent

& . 2.68
o Ps (2.68)

X

The time rate of change of < p ) is given by

d d T o .0
E<px> = E _w\P (—lha—x)‘}’dx

OV ¥ .0 (oW
= - - 2.69
’hj [at ) ax(at)]d" (269

Again substituting 0W/dr and o¥'/dr, we get

2% 2 2
dpy _ B [\P*i(a_\?] ad aw]dx

dt 2m ox| Jx? ox? ox

—oo

J (V\P*a_‘l’ ¢ aijdx
ox ox

—oo

h2 Tlo(. .0 oV Y *Y o
= ¥ - - 27 |ax
ax ox?2 ox ox? ox? Ox
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The first term on the right side can easily be integrated out and is equal to zero
since W* and 9W/ox are zero as x —> + oo, Hence

dp) _ [-av
dt ox

When the wave packet reduces to a point, Eq. (2.70) becomes Newton’s second
law of motion. Generalizing Eqgs. (2.67) and (2.70), we obtain

> = (F,) (2.70)

d(r) _ 4
(p)=m " and (F) o 2.71)
Equation (2.71), called the Ehrenfest’s theorems, are the quantum equivalent
of the equations of motion of a classical particle. Reduction of the wave packet
to a point means the violation of uncertainty principle. Hence, uncertainty
principle limits the equivalence of quantum and classical mechanics.
If AV, instead of —j#V, is selected as the operator for p, we would have
obtained

de) _
dt

which is not the quantum analogue of Newton’s second law of motion. The
selection of the operator —i#V for the dynamical variable p is thus justified.

—(F)

2.8 TIME-INDEPENDENT SCHRODINGER EQUATION

The time-dependent Schrodinger equation, Eq. (2.47), describes the evolution
of quantum systems using time-dependent wave function ‘¥(r, 7). It completely
neglects the time dependence of the operators. More about these aspects will
be discussed in Section 3.9. If the Hamiltonian operator does not depend on
time, the variables r and ¢ of the wave function W(r, ) can be separated into
two functions y(r) and ¢(7).

¥(r, 0 = y(r) ¢@) (2.72)
Substituting this value of W(r, 7) in Eq. (2.47) and dividing throughout by
v()o(n) we get

L1 ode@) _ 1 (R,
oW @ wr)( o +V(’)]W> (2.73)

The left side of this equation is a function of time and right side a function of
space coordinates. Since ¢ and r are independent variables, each side must be
equal to a constant, say E. This gives rise to the equations

1 do¢(t)  iE

#(r) dt T h 2.74)
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and
o,
——V* + V() |w(r) = Ey(r) (2.75)
2m
Solution of Eq. (2.74) is straightforward and is given by

#(1) = C exp (-%) (2.76)

where C is a constant. The equation for y(7), Eq. (2.75), is the time-independent
Schrodinger equation or simply Schrodinger equation. Since y(r) determines
the amplitude of the wave function W (r, ?), it is called the amplitude equation.
Equation (2.72) now takes the form

¥(r, t) = y(r) exp (-’%’j (2.77)

The constant C is included in the normalization constant for y(r).

Significance of the separation constant, E, can be understood by
differentiating \W(r, 7) in Eq. (2.72) with respect to time and multiplying by i#.
Then

(1)
ot

Multiplying both sides of Eq. (2.78) by ¥ from left and integrating over the
space coordinates from —oo to oo, we get

in

= E¥(r,1) (2.78)

oo

j ¥ (mi) W(r, 1) dt = E (2.79)
s ot

As the left side of Eq. (2.79) is the expectation value of the energy operator,
the constant E is the energy of the system. The same can be understood from
Eq. (2.75) as

2

/]
-—V2+ V()
2m

is the operator associated with the Hamiltonian of the system.

2.9 STATIONARY STATES

The solution of the time-independent Schrodinger equation, Eq. (2.75), can be
obtained if the explicit form of V(r) is known. It is found that in general a
system has a set of well-defined energy values E,, for n = 1, 2, 3, ... with
corresponding wave functions y (r). Including the time dependent part, the
wave function of the system is
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¥, (r,1) = y,(r) exp (— ii"tj (2.80)
= W (r, 0) exp (- ”i"’ j 2.81)

The probability density P(r, #) is then given by

P(r,1) = [¥,(r,0) = |¥,(r,0) = constant in time  (2.82)

where n = 1, 2,3, ... . The states for which the probability density is constant
in time are called stationary states. The time-dependent factor exp (—iE,t/h)
of such states are governed by the energy E, of the particle.

It can be seen that in stationary states, the expectation value of an
observable whose operator does not depend on time explicitly is a constant in
time. Then

T iE iE
(A) = j‘I’n(r, 0) exp (l h"t)A‘Pn(r, 0) exp (—l h”t) dt

= J‘\p: (r,0) A (r,0)dr

—oo0

= constant in time (2.83)

It is obvious from Eq. (2.56) that for stationary states the probability current
density j(r, r) is also constant in time. As dP/dt = 0 for such states, from the
equation of continuity for probability, Eq. (2.57), we have

V.j=0 (2.84)

A stationary state is a bound one if the corresponding wave function y(r) or
probability density | y/(r) |2 vanishes at infinity. That is, for bound states
lim w(r) =0 (2.85)
r—oo
N. Bohr was the first to postulate the existence of stationary states. These
are the states on which physical measurements are performed. Spectral transitions
are induced between such states. Owing to these reasons, solution of the time-
independent Schrodinger equation for different systems is of fundamental
importance in quantum mechanics.
In stationary states, the probability density is constant in time. If a particle
is in a superposition state (of stationary states) like

¥(r, 0 = Y oW, ) exp (— ”i"’j (2.86)

n
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the probability density

P@.1) = [ 0f = Yo, |v,@f

. i(E,,— E,)t
+ CullW W, €Xp | ————— 2.87
;Z VoW, exp [ - ] 287)
Hence, if a particle is in a superposition state, in general, the probability
density depends on time.

2.10 ADMISSIBILITY CONDITIONS ON THE WAVE FUNCTION

In the preceding sections, we have discussed the Schrodinger equation and
interpretation of the wave function. However, we have not formulated the
conditions to be satisfied by a wave function. A physical system is described
by the probability density I'¥ (r, 1) |* and the normalization integral, Eq. (2.49).
For the probability density to be unique and the total probability to be unity,
the wave function must be finite and single valued at every point in space. The
probability current density j, Eq. (2.56), another important parameter of the
probability interpretation, contains ¥ and V. Hence ¥ has to be continuous
and V¥ must be finite. The Schrodinger equation has the term V2¥. For V2¥
to exist V¥ must be continuous. For a wave function W(r, t) to be acceptable,
Y(r, r) and V¥ must be finite, single valued and continuous at all points in
space.

— WORKED EXAMPLES —

EXAMPLE 2.1 Calculate the de Broglie wavelength of an electron having
a kinetic energy of 1000 eV. Compare the result with the wavelength of X-rays
having the same energy.

2
Kinetic energy T = ;; = 1000 eV = 1.6 x 10716 J
m

and
_h_ 6.626 x 107**Js
P [209.11 x 10 kg)(1.6 x 107'67)] /2
=039 x 10°m = 0.39 A
For X-rays,

hc

Energy = 7
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Therefore,
_34 8
4 - (6626 x 10 Js)(l36 x10°ms) _ o0 4
1.6 x107°J
Hence
Wavelength of X-rays _1242A =31.85

de Broglie wavelength of electron "~ 0.39A

EXAMPLE 2.2 Determine the de Broglie wavelength of an electron that has
been accelerated through a potential difference of 100 V.
The energy gained by the electron = 100 eV

2
p

Therefore, — =100 eV
2m
or
1/2
p= [2(9.11 x 107" kg)(100 x 1.6 x 10-‘91)}
=5.399 x 102* kg ms™!
Hence
_34
p=h o 6626 XI07s 10 m=1234

p 5399 x 10 *kg ms™

EXAMPLE 2.3 Electron scattering experiment gives a value of 2 x 10-> m
for the radius of a nucleus. Estimate the order of energies of electrons used for
the experiment. Use relativistic expressions.

For electron scattering experiment, the de Broglie wavelength of electrons
used must be of the order of 4 x 10~!5 m, the diameter of the atom. If T is the
kinetic energy, the relativistic expression for momentum is given by

2
T
p = myc (1+ 2] -1

or

or
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B (6.626 x 107 1
(16 x 107°)(9.11 x 107")?(3 x 10%)?

= 3.6737 x 10°

On solving, we get
T = 605.1mc* = 605.1(9.11 x 1013 x 10%)2 ]
=310 x 10% eV = 310 MeV

EXAMPLE 2.4 An electron has a speed of 500 m/s with an accuracy of
0.004%. Calculate the certainty with which we can locate the position of the
electron.

Momentum, p = mv = (9.11 x 1073! kg)(500 m/s)

and
Ap
Percentage accuracy = — X 100 = 0.004
p
or
-31
Ap = 0.004 x 9.11 x 10 x 500 = 1822 x 107 ke ms™
100
Hence

-34
_ 6.626 x 107" Js = 0.0364 m

h
Ap 1822 x 107 kg ms™

Ax

n

The position of the electron cannot be measured to accuracy less than 0.036 m.

EXAMPLE 2.5 The average lifetime of an excited atomic state is 10~ s. If
the spectral line associated with the decay of this state is 6000 A, estimate the
width of the line.

We have

Ar=107s, 1=6000% 10°m =6 x 107" m
and

hc he

E=7 or AE=?A/?,

Multiplying both sides by Az, we get
AE-At=h—CA/?,-AtEh
/12

Therefore,

A 36 x10"m?
cAt (3 x 10°m/s)107° s)

Al = =12x10 " m
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EXAMPLE 2.6 An electron in the n = 2 state of hydrogen remains there on
the average of about 10-3s, before making a transition to n = 1 state. Estimate
the uncertainty in the energy of the n = 2 state. What fraction of the transition
energy is this? What is the wavelength and width of this line in the spectrum
of hydrogen atom?

h 6626 x10>'Is

AE > — - = 6.626 X 107°] = 4.14 x 107" eV
At 107%s
Energy of the n =2 — n = 1 transition = —13.6 eV(L2 - iz) =102 eV
22 1
and
-7
Fraction, 25 = #1410 _ 456 %108
E 10.2
Wavelength,
-34 8
22 he _ (6626 X103 x 10°m/s) _ 4 5ie s 107 1 = 122 nm

E 102 x 1.6 x 107°]

Width of the line in the spectrum is obtained as

E
or

AA =4.06 x 108 x 1.218 x 1077 = 4.95 x 10> m = 495 x 10 nm
EXAMPLE 2.7 Normalize the wave function y(x) = A exp(-ax?), A and a
are constants over the domain — oo < x < co,

Taking A as the normalization constant, we have

AZJ vy dx = A jexp (<2ax?) dx = 1

Using the result

oo

jexp (<2ax?) dx = =
2a

—oo

we get

L N
A= (—) and y(x) = (—) exp (—ax?)
V4 V4
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EXAMPLE 2.8 A particle constrained to move along x-axis in the domain
0 < x < L has a wave function y(x) = sin (nmx/L), where n is an integer.
Normalize the wave function and evaluate the expectation value of its
momentum.

The normalization condition gives

L L
szsinzmedx =1 or NZJ.%(I - coszn”x) dx =1
0

0

Then

2£=1 or N = 3
2 L

The normalized wave function is

2 . nmx
— SiIn ——
V L L

The expectation value of the momentum is obtained as

N

(p,) = jw*(—ih%) y dx

=—zh—n— sin—— cos — dx
L L L
= —ihg in 2nzx dx
L

EXAMPLE 2.9 Give the mathematical representation of a spherical wave
travelling outward from a point, and evaluate its probability current density.

The mathematical representation of a spherical wave travelling outwards
from a point is given by

A ikr
y() = ="
r
where A is a constant and k is the wave vector. The probability current density is

in
i= 2y Vs — yrv
j 2m("' y* — y*Vy)

. ikr —ikr —ikr ikr
2m r r r r
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hk 2
= A
g

EXAMPLE 2.10 The time-independent wave function of a particle of mass
m moving in a potential V(x) = ox? is

ma’*
w(x) = exp [— e x*

o being a constant. Find the energy of the system.

We have,
2
y(x) = exp [— ';‘:2 xzj

On differentiating with respect to x, we get

dy 2mor* ma®
A\ » XCXP[_ w

Differentiating again with respect to x, we have

dzl// 2ma’® 2ma® ma®
— = - 1- x° |lexp| — X
dx?® \ w2 n* P 2h°

Substituting these in the time-independent Schrodinger equation, we obtain

_i[_ 2ma2 + szj + a/2x2 =F

On solving, we get

, 2
h a——a2x2+a2x2=E or E=h—a
2m \2m

EXAMPLE 2.11 For a particle of mass m, Schrodinger initially arrived at
the wave equation

Laz‘l’ _ °¥ : m2c?
c? or? ox2 h?

¥
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Show that a plane wave solution of this equation is consistent with the relativistic
energy momentum relationship.
For plane waves, we have

Y(x,t)=Aexp [i (kx - a)t)]

Substituting this solution in the given wave equation, we obtain

o) o oy M
2 Y = (k)" - hz‘l’
or
2 2.2
-0 m-c
2 = —k* — 2
c h

Multiplying by c¢?# 2 and writing #® = E and kk = p, we get
E? = ¢%p? + m?c*
which is the relativistic energy—-momentum relationship.

EXAMPLE 2.12  An electron of rest mass m,, is accelerated by an extremely
high potential of V volts. Show that its wavelength is:

he
A= 21172
[eV(eV + 2myc”)]

Energy gained by the electron in the potential = Ve
myc? 5

The relativistic expression for kinetic energy = W— myc
1-v’/c

Equating the two and rearranging,
m002
(1 _ v2 /C2)l/2

172
v? myc?
-~ | =05
c Ve + myc

— myc® =Ve

2 2 4
v myc
or l-—== 0—22
c© (Ve + myc”)
v? _(Ve+ myc?)? — mict _Ve(Ve+2 myc?)
c? (Ve + mocz)2 (Ve + mocz)2

o ClVe(Ve+2 myc?)1'?
Ve + myc?
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B Rl =uvt )2
de Broglie wavelength A LA el
my myv

1= h myc? Ve + myc?
my Ve + m002 c[Ve (Ve + 2m002)]

1/2

_ hc
[Ve (Ve + 2myc*)]"?

EXAMPLE 2.13 Show that the phase velocity of a relativistic electron is

mac* A

h2

12
v,=c [1 + :| where A is its de Broglie wavelength.

For relativistic electron

2.2

2 4

myc

E2=c2p2 +m§c4=02p2 1+
cp

E e 1/2
Phase velocity v,=—=c|l+ 20 5
p c’p

h
Since de Broglie wavelength A =—
p

12
B mic* A
v,=c|l+ 2

EXAMPLE 2.14 Find the probability current density j(r, t) associated with
the charged particle of charge e and mass m in a magnetic field of vector
potential A which is real.

The Hamiltonian of the system is:

2 . . 2 42
H=Lp-tap=—ly2 eh gy h iy, 8 A2
2m c 2m 2mc mc 2mce
The time dependent Schrodinger equation is:
2 . . 2 42
I gy g Ay 2 (v)AT+ A - SA i Y
2m 2mc mc 2mc? ot
Its complex conjugate equation is:
n . eh . . jeh . AT . ¥
— VW - (VAW HVEA] - AV + S = 2
2m 2mc mc 2mc ot
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Multiplying the first equation by W* from left and the complex conjugate
equation by ¥ and subtracting, we have

2 .
I vy vt St VA £ e (VA
2m 2mc

ieh
+ R—
2mc

ieh

[P'(VP).A + P(V¥') . Al+ —
2mc

. 0¥ v
=ih| V' =—+¥Y—
l[ at+ at]

[F'A.(VP) + YA . (V)]

9 (P'P) = ih [V.(¢'V¥ — ¥V¥")] + £ Y¥(VA)
ot 2m mc
+ LWV + PVED)A
mc
— YY) =V|— W V¥ -¥YV¥ )+ — (¥ YA
ot 2m mc
Defining the probability current density vector j(r, 7) by
. ih * * e *
jo,n=— VY -¥Y V¥) - — (¥ YA)
2m mc
The equation reduces to

iP(r, H+V. jr,n=0
ot

which is the familiar equation of continuity for probability.

EXAMPLE 2.15 Using time independent Schrodinger equation, find the
potential V(x) and energy E for which the wave function

n
x ) _
—] e, g, X, — constants

oo -

Xo

is an eigenfunction. Assume that V(x) - 0 as x — oo.
Differentiating the wave function with respect to x,

n—1 n
W _nfx ) wx L[ X ) yx
dx x5\ x, Xy \ X

2 n—-2 n-1 n
4y _nn-l) (L] o0 L”(L] o L(L] e
2 2 2

2
dx Xy \ Xo Xo \ Xo Xo \ Xo
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1) 2 1 "
=[n(n2 ) _ _n + _2:| (ij e x/xq
X xox x5 |\ xo

n(n-1) 2n 1
X XOX XO
Substituting in the Schrodinger’s equation,
2
_h_ M_z_n.{_i W+VW=EW
2m| X2 XX xZ
which gives the operator equation
n -1y 2 1
E-V(x)=-— ”(”_2)__”+_2
2m| x XoX X,
When x — oo, V(x) — 0. Hence
2
E=- h >
2mx;
2
o= Lfod 2]
2m| «x XoX

— REVIEW QUESTIONS —

1.

Explain de Broglie’s hypothesis. Why the wave nature of matter is not
apparent in our daily observations?

. For a complete description of physical phenomena, both particle and

wave aspects of material particles are required. Comment.
Illustrate the uncertainty principle on the basis of single-slit experiment.

. Explain the uncertainty principle. How does it account for the natural line

width of spectral lines?

. Does the concept of Bohr orbits violate the uncertainty principle?

. Prove the nonexistence of electron in the nucleus on the basis of uncertainty

principle.

. Consider the standing wave of an electron in an orbit and obtain Bohr’s

quantization rule.

. What is a wave packet? How is it represented analytically and

diagrammatically?

. Prove that the velocity of a particle and the velocity of the corresponding

wave packet are the same.
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10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22,
23.

Outline the probability interpretation of the wave function.

Show that any decrease in probability in a region is accompanied by an
outflow of probability across its surface.

State the quantum analogue of the classical energy expression E =
(p%/2m) + V(r) and explain its significance.

Is the time-dependent Schrodinger equation relativistically invariant?
Explain.

Schrodinger equation of a free particle results when E is replaced by
ih(3/01), p, by —ih(d/dx) or i#(d/dx) in E = p *(2m) and the resulting
operator equation operates on the wave function. Why is {(9/0x) not
acceptable?

Explain the significance of Ehrenfest’s theorem.

In the definition for the expectation value of an observable the operator
associated with the observable is sandwiched between y* and y. Why?

What are stationary states? In stationary states, show that the probability
current density is constant in time.

Define probability current density. What is its value when the wave
function is real?

Outline the various admissibility conditions on the wave function of a
system.

Explain the principle of superposition of states. Prove that the probability
density of a particle in a superposition state depends on time.

Directly demonstrate the superposition property of the Schrodinger
equation.

Distinguish between group velocity and phase velocity.

Uncertainty principle limits the equivalence of quantum and classical
mechanics: comment.

— PROBLEMS —

1.

2.

What is the de Broglie wavelength of an electron accelerated from rest
by a potential of 200 V?

Evaluate the ratio of the de Broglie wavelength of electron to that of
proton when (a) both have the same kinetic energy (b) the electron kinetic
energy is 1000 eV and that of proton is 100 eV.

Proton beam is used to obtain information about the size and shape of
atomic nuclei. If the diameter of nuclei is of the order of 10~!° m, what
is the approximate kinetic energy to which protons are to be accelerated?
Use relativistic expressions.
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4.

10.

11.

12.

13.

14.

15.

16.

Estimate the velocity of neutrons needed for the study of neutron diffraction
of crystal structures, if the interatomic spacing in the crystal is of the
order of 2 A. Also, estimate the kinetic energy of neutrons corresponding
to this velocity.

. Estimate the energy of electrons needed for the study of electron diffraction

of crystal structures, if the interatomic spacing in the crystal is of the
order of 2 A.

A bullet of mass 0.03 kg is moving with a velocity of 500 ms~!. The
speed is measured accurate to 0.02%. Calculate the uncertainty in x.
Also, comment on the result.

Wavelength can be determined with an accuracy of one in 10%. What is
the uncertainty in the position of a 10-A photon when its wavelength is
simultaneously measured?

. If the position of a 5-keV electron is located within 2 A, what is the

percentage uncertainty in its momentum?

The uncertainty in the velocity of a particle is equal to its velocity. Show
that the uncertainty in its location is its de Broglie wavelength.

The wave function of a particle of mass m moving in a potential V(x) is

Y(x,1) = A exp(—ikt - %nxz)

where A and k are constants. Find the explicit form of the potential V(x).

The time-independent wave function of a system is w(x) = A exp (ikx), k
is a constant. Check whether it is normalizable in the domain — oo < x < o,
Calculate the probability current density for this function.

Show that the phase velocity v_ for a particle with rest mass m, is always
greater than the velocity of light and that v, is a function of wavelength.

Show that the wavelength of a particle of rest mass m, with kinetic
energy T is given by the relativistic formula

he
,/Tz + 2myc*T

An electron moves with a constant velocity 1.1 x 10 m/s. If the velocity
is measured to a precision of 0.1 per cent, what is the maximum precision
with which its position could be simultaneously measured.

A=

What is the ratio of the kinetic energy of an electron to that of a proton
if their wavelengths are equal?

Calculate the probability current density j(x) for the wave function:

V() = u(x) exp [i¢g (0],  u,¢ real
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17.

18.

19.

20.

21.

Find the form of the potential for which y(r), a constant, is a solution of
the Schrodinger equation.

Obtain the form of the equation of continuity for probability, if the potential
in the Schrodinger equation is of the form V(r) = V (r) + iV,(r), where
V, and V, are real.

For a one dimensional wave function of the form,

W(x, 1) = A exp [ig(x, 1)]

. h
show that the probability current density can be written as: J = P |

20
APR2?
ox
¥,(x) and y,(x) be the normalized ground and first excited state energy
eigenfunctions of a linear harmonic oscillator. At some instant of time
Ay, + By, A and B are constants, is the wave function of the oscillator.

Show that (x) is in general different from zero.

Waves on the surface of water travel with a phase velocity v, = / gAl2rm,

where g is the acceleration due to gravity and A is the wavelength of the
wave. Show that the group velocity of a wave packet comprised these
waves is vp/2.



: Chapter \ 3
|

General Formalism of Quantum Mechanics

Based on the wave nature of matter we have developed the Schrodinger
equation (which is the basic equation of quantum mechanics), the physical
significance of the wave function and the uncertainty principle in Chapter 2.
A more systematic presentation of the mathematical formalism of quantum
mechanics along with a set of basic postulates will be discussed in this
chapter.

3.1 LINEAR VECTOR SPACE

Vector in a Three-dimensional Space

A vector in three dimensions is a physical quantity having both magnitude and
direction. A vector of magnitude 1 is called a unit vector. To represent an
arbitrary vector, we introduce unit vectors, say €, €,, and e,, along the positive
direction of a right-handed system OXYZ of three mutually perpendicular axes.
Then any vector a can be expressed as

a=ae + ae, + ae, 3.1)

where a, a,, a,, are scalars. Given a vector a the scalars a,, a,, a, in Eq.
(3.1) are uniquely determined. The unit vectors e, e,, e, are said to form a
basis for the set of all vectors in three dimensions. Further, since these are
unit vectors along mutually perpendicular directions, we say that e, e,, €,
form an orthonormal basis. The scalars a, a,, a,in Eq. (3.1) are the
components of a in the basis (e, €,, €;). We may represent a as a column
vector:

58
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a=|a (3.2)

The components of e, are 1, 0, 0; those of e, are 0, 1, 0 and those of e, are
0, 0, 1. Hence, on expressing them as column vectors, we have

1 0 0
e =10 e=|1}| e=]0 (3.3)
0 0 1

The totality of vectors in three dimensions is called a three-dimensional space.
Given two vectors

a b,
a=|a,| and b=|b, 34
a3 by

in this space, the scalar product or inner product of a and b, denoted by a- b
or (a, b), is defined as

3

@@ b) = Y ab, (3.5)

i=1

Vectors in an n-dimensional Space

We now generalize these concepts to an n-dimensional real space, with the
VECtors €, €,, ..., €, forming an orthonormal basis. A vector a can be expressed
in this orthonormal basis as

n

a= ) ae (3.6)

i=1
The totality of all n-dimensional vectors is called an n-dimensional space, or
simply an n-vector space. In this space, the inner product is defined as

n

@ b)= D ab, 3.7)

i=1

If the vectors are complex, that is, if the components of the vectors are complex
numbers, the inner product is defined as

n

(@ b) = Y a'b, (3.8)

i=1
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where, for any complex number z, z* denotes the conjugate. Thus, we observe
that for any vector a,

n

@)= Y aa = zn“|a,‘|2 (3.9)
i=1

i=1
is real. We then define the norm (N) of a vector a by
N = (a, a)'”2 (3.10)

A vector whose norm is unity is said to be normalized. Thus, for a normalized
vector a, we have

n

(a, a) = znlaz‘ai = Yal =1 (3.11)

i=1 i=1
Two vectors a and b are said to be orthogonal if
(a,b) =0 (3.12)

Using the concept of inner product, we say that the vectors a, a,, ... form an
orthonormal set if and only if

(a,a) = 0., Lj=1,2, .. (3.13)
where 51)‘ is the Kronecker delta defined by
1 ifi=j
s .14
5'1 {O ifi#j 19
In an n-dimensional space, a set of n vectors a,, a,, ..., a, are said to be
linearly dependent if there exist scalars ¢, c,, ..., ¢, not all zero such that
Y ca =0 (3.15)

i=1

The vectors are linearly independent if no relation of the form Eq. (3.15) exists
unless ¢, =¢c, =+ =¢,=0

A set of n linearly independent vectors a,, a,, ..., a, spans an n-dimensional
space and any vector ¢ which lies in this space can be expressed in the form

0 =Y ca (3.16)
i=1

This set of vectors is complete if there is no other vector which falls in this set
of linearly independent vectors.

The generalization of these concepts to an infinite-dimensional space,
called vector space is straightforward.
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Hilbert Space

In the vector space we considered, the unit vectors e,, €,, €,, ... form the
orthonormal basis. Alternately, a space can be defined in which a set of functions
0,(x), ¢,(x), ¢5(x), ... form the orthonormal unit vectors of the coordinate
system. The corresponding infinite-dimensional linear space is called a function
space. In quantum mechanics, very often we deal with complex functions and
the corresponding function space is called the Hilbert space.

Orthogonal Functions
We shall now consider some of the important definitions regarding orthogonal
functions.

(i) The inner product or scalar product of two functions F(x) and G(x)
defined in the interval a < x < b, denoted as (F, G) or (FIG), is

b
(F.G) = jF*(x) G(x) dx (3.17)

The notation (F,G) for the scalar product of functions F(x) and G(x) is
sometimes referred to as bracket notation.

(ii)) Two functions F(x) and G(x) are orthogonal if their inner product is
Zero.
b
(F,G) = JF*(x)G(x)dx =0 (3.18)

a

(iii) The norm of a function is defined by square root of inner product of the
function with itself

b 1/2
N = (F, )" = [j|1'~"(x)|2 dx] (3.19)
(iv) A function is normalized if its norm is unity.
b 1/2
(F, P = [J|F(x)|2 dx] =1 (3.20)
or
b
(F, F) = JF*(x)F(x) dx =1 (3.20a)

where the integral on the right-hand side is called the normalization
integral.
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(v) Functions that are orthogonal and normalized are called orthonormal
functions. From Egs. (3.18) and (3.20a), we get
(F, Fj) = SU; Lj=1,2,.. (3.21)

(vi) A set of functions F(x), F,(x), F5(x), ... is linearly dependent if a
relation of the type

Y eFi(x) =0 (3.22)

1

exists, where the c;s are not all zero. Otherwise they are linearly
independent.

(vii) A set of linearly-independent functions F\(x), F,(x), ... is complete, if
there is no other function which falls in the set of linearly-independent
functions.

The expansion theorem states that any function ¢ (x) defined in the same
interval can be expanded in terms of the set of linearly-independent functions
as

00 = Y ¢F(x) (3.23)

1

The complete set need not be orthonormal. However, it is convenient to use
orthonormal sets. In such a case, the coefficients in Eq. (3.23) are given by

c; = (F, 9 (3.24)
The expansion of a function in terms of a complete orthonormal set of functions
is of fundamental importance in quantum mechanics.

3.2 LINEAR OPERATOR

An operator can be defined as the rule by which a different function is obtained
from any given function. Therefore, in

g0 = Af
the operator A operating on f(x) gives the function g(x). So, in
g0 = A f(n = WP

the operator squares the function f(x). The operator A differentiates the function
f(x) with respect to x if

g0 = Af@ = L)
dx

An operator is said to be linear if it satisfies the relation

Ale, f1(x) + ¢, £,0] = ¢, Af,(x) + c,Af,x) (3.25)
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where ¢, and c, are constants. In

d d d
g(x) = E[lel(x) + czfz(x)] = Efl(x) + ¢, EfZ(x)

the operator (d/dx) is linear. The operator which squares a function is not linear
since

A e, f,(0) + ¢, O] = [e, f;,®) + ¢, £
I+ G+ 2c011 ]y
#o\f + o f;

Linear operators are the most important ones in quantum mechanics and
therefore we shall consider only such operators.
The sum and difference of operators A and B are defined by:

A + B)f(x) = Af(x) £ Bf(x) (3.26)

Addition is commutative:

>
+
v}
Il
v}
+
>

Addition is associative:

A+B +C=A+@B+ 0

The product of two operators A and B is defined by:
AB () = ALBf)]
Multiplication is associative:

AB + Of(x) = AB + AC) f(x)

Commutator of operators A and f?, denoted by [A,I§], is defined as:

[A, Bl = AB - BA (3.27a)
It follows that
[A, B] = - [B, A] (3.27b)

If AB f(x) = BA f(x), that is [A,B] = 0, A and B are said to commute. If
AB + BA = 0, A and B are said to anticommute. The anticommutator of A with
B is usually denoted as [A, I§] + An operator can be applied in succession on
the same function. This is written as follows

OG- bf=d"f (3.28a)
and
[&", a"l=a"a" —a"a™ =a™" - a™™" =0 (3.28b)

That is, the powers of the same operator commute. The inverse operator A~
is defined by the relation
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A1 =A"4=1 (3.29)
An operator commutes with its inverse since

[AA"N=A"A-4A"'A=0
As an example of commutator, consider the operators % and (d/dx)

4 olpey 2 AEN 4

[%, 2] =1 or [fc, ;—x] = -1 (3.30)

For convenience, we shall denote an operator associated with a dynamical
variable by the same letter without cap in the rest of the book.

Hence

3.3 EIGENFUNCTIONS AND EIGENVALUES
Often an operator A operating on a function multiplies the function by a constant.

Ay() = ay(x) 331)
where a is a constant with respect to x. The function y(x) is called the
eigenfunction of the operator A corresponding to the eigenvalue a. In

kx
L ke (3.32)
dx

e* is an eigenfunction of the operator d/dx corresponding to the eigenvalue k.
It may be pointed out here that formulation of quantum mechanics is dominated

by ideas connected with the solution of such eigenvalue equations.
In general, we have a set of values a for which eigenfunctions exist.
Denoting the set by a running index m, we can write the eigenvalue equation as

Ay (x) = a, vy, (%), m=1,2, ... (3.33)

As Ay (x) is unique, we cannot have different a, associated with a single y.
However, we may have a given a, associated with a large number of ¥, . Now
the eigenvalue is said to be degenerate. If all the eigenvalues of an operator
are discrete, it is said to have a discrete spectrum. The continuous eigenvalues
allowed for certain operators form a continuous spectrum. In certain cases the
eigenvalues may be discrete over a certain range and continuous over the rest.

3.4 HERMITIAN OPERATOR

Let us consider two arbitrary functions ¥, (x) and ¥, (x). The operator A is said
to be Hermitian if
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=3

TWm*AWn dx = j(Ay/m)* v, dx = []3 v, *Ay,, dx] (3.34)

—oo

In bracket notation

W AV,) = (AW v,) = (Vs AV,,) (3.34a)
An operator is said to be anti-Hermitian if
(v, Ay,) = - Ay, y) = - (y,, Ay, )* (3.34b)

Two important theorems regarding Hermitian operators which we use
throughout quantum mechanics are the following.

Theorem 3.1 The eigenvalues of Hermitian operators are real.
Proof Consider a Hermitian operator A. Its eigenvalue equation be
Ay, =ay,
Taking inner product with v, we get
(v, Ay) =a(y, y,) =a, (3.35)
Since A is Hermitian, we have
v, Ay,) = Ay, y) = a} (y,, y,) = a} (3.36)

It follows from Eqgs. (3.35) and (3.36) that a, = a* which is possible only when
a, is real. Real eigenvalues of Hermitian operators play a very important role
in quantum mechanics.

Theorem 3.2 Any two eigenfunctions of a Hermitian operator that belong to
different eigenvalues are orthogonal.

Proof Let y, and y, be the eigenfunctions of the operator A
corresponding to the eigenvalues a, and a, respectively. Then

Ay, =a vy , Ay, =ay, (3.37)
From Eq. (3.37), we obtain
(v, Ay) =a (v, v,)
Since operator A is Hermitian,
Ay, vy ) =a(y,vy,) or a(y,vy)=a (¥, V)
or

(a,-a, (y,vy,)=0
As a, # a,, we have

(v, v,)=0 (3.38)

Hence, the eigenfunctions ¥, and y  are orthogonal.
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Schmidt Orthogonalization Procedure

When eigenvalues are degenerate, the above arguments fail. However, one can
form orthogonal linear combinations from the functions belonging to different
eigenvalues. Let y, and 7 be two normalized eigenfunctions of the Hermitian
operator A having the same eigenvalue a. Then

Ay, = ay, Al//j = ay, (3.39)
The linear combination of y; and v, is given by
Vi = Q¥+ QY (3.40)
where ¢, and c, are constants. Also,
Ay, = Alcy, + Cz‘/’j) = alc,y, + czlllj) (3.41)
that is, y, is also an eigenfunction of the operator A with the same eigenvalue a.
We assume that
(v, v) =0 and (y,, y) =1 (3.42)
Then

(v, v) =0 gives ¢, =—c,(y, l//j) (3.43)
and

(y,, y) =1 gives c?+ 3+ ¢y, v) + (v, y)l =1 (3.44)

The constants are assumed to be real. From Eqs. (3.43) and (3.44), we have

1 (v, v))
Cy = —-— and c =— T
JL =l w)P V1= vyl
Hence
_ ¥y,

Vi = - (3.45)
V- lwew)|

This y, is a normalized eigenfunction of the operator A corresponding to the
eigenvalue a. It is orthogonal to y,. This procedure is a case of Schmidt
orthogonalization procedure for systems having two-fold degeneracy. Similar
procedure can be followed for higher order degenerate cases.

3.5 POSTULATES OF QUANTUM MECHANICS

Postulates are not unknown in physics. They often serve as the basis of physical
theories. Though they cannot be proved, one can prove the conclusions derived
on the basis of the postulates. The success or failure of the postulates depends
on the strength of the experimental results. There are different ways of stating
the basic postulates of quantum mechanics, but the following formulation seems
to be satisfactory.
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Postulate 1: Wave function

The state of a system having n degrees of freedom can be completely specified
by a function ¥ of coordinates g, g,, ..., ¢, and time ¢ which is called the wave
function or state function or state vector of the system. ¥ and its derivatives
must be continuous, finite and single valued over the domain of the variables
of . All possible information about the system can be derived from this wave
function.

The wave function ¥ as such is not an observable, but in some way it is
related to the presence of the particle. Its physical interpretation has already
been discussed in Section 2.5. The representation in which the wave function
is a function of coordinates and time is called the coordinate representation.
In the momentum representation, the wave functions are functions of the
momentum components and time. The details worked out in this book are in
the coordinate representation.

Postulate 2: Operators

To every observable physical quantity there corresponds a Hermitian operator
or matrix. The operators in quantum mechanics are derived from the Poisson
bracket of the corresponding pair of classical variables according to the rule

[0, R] = in{q, r} (3.46)

where Q and R are the operators selected for the dynamical variables g and r
and {g, r} is the Poisson bracket of ¢ and r.

Some of the important operators associated with observables in the
coordinate representation are given in Table 3.1.

Table 3.1 Classical observables and their quantum mechanical operators

Operator in coordinate

Observable Classical form representation
Coordinates X, ¥, 2 X, ¥, 2
Function of coordinate fx, y, 2 fGx, ¥, 2)

M R T Y |
omentum components P D P. —ih—, —ih—, —ih—
s ox dy dz
Momentum p —ihV
: ! n?
nergy o

Operators representing some of the other dynamical variables take the
following form:

Kinetic energy operator. For a particle of mass m and momentum p, the
kinetic energy
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T=-1(p2 +p2 +pD)
2m : -
2 2 2 2 2
T=-1_ a—2+a—2+a—2 SO £ (3.47)
2m | ox ay 0z 2m
Hamiltonian operator. For a particle of mass m moving in a potential
V(x, y, z), the Hamiltonian
P
H= — + V(X,y,Z)
2m
or

2
H = _ V2 + V(x, y,2) (3.48)
2m

Angular momentum components. The angular momentum

€ € €
L=rxp=|x y 2z (3.49)
Px Dy P,

where the operators representing the components of L are:

. 0 0
L =yp,—2p, = —ih|y— — z—j

9z dy
" a9 0
L_‘, =zp, —xp,= 1 Zg - Xg (3.50)

(.0 d
L ,=xp -yp, = —ih xg - ya—x)

We shall next see some of the important commutation relations of position
and momentum operators. It is obvious from Eq. (3.30) that

[x, - ihi] =ih or [xp]l=in 3.51)
dx
Similarly,
b.pl= in, z pl=in (3.52)
and

pl=kpl=bprl=bprl=kpl=pl=0 53
The above commutation relations can be combined into a single one as

lq;, pi1=iR 3, (3.54)
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The following two commutation relations can also be proved

[Qj’ qk] =0, [pj’ Pk] =0 (3.55)

When observables are represented by matrices, the condition for a matrix A to
be Hermitian is

A=At (3.55a)
where AT is formed by transposing the matrix A"

Postulate 3: Expectation Value

When a system is in a state described by a wave function ‘P, the expectation
value of any observable A is given by

(A) = j YAY dr (3.56)

where A in the integral is the operator associated with the observable A. In
Eq. (3.56), the wave function ¥ is assumed to be normalized. If the wave
function is not normalized

T Y AY dr
(Ay= = (3.57)
j Y'Y dr

As already discussed in Section 2.6, the sandwiching of the operator between
¥* and ¥ is a necessity.

Postulate 4: Eigenvalues

The possible values which a measurement of an observable, whose operator is
A, can give are the eigenvalues a; of the equation

Ay, = ay, i=12..,n (3.58)

The eigenfunctions (y;) form a complete set of n independent functions.

The normalized eigenfunctions of an operator A be y, i = 1, 2, ...
belonging to the eigenvalues a, i = 1, 2, ... . The expectation value of the
observable A when it is in a state Y is given by

4y = [viay, dr = [viay, d7 = q, (3:59)

That is, when an experiment is performed to determine the value of an
observable A in a particular state, the value we expect in the measurement is
its eigenvalue. In other words, the eigenvalues of an operator are the only
experimentally measurable quantities. Hence the eigenvalues always give a
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real number. We have already seen that the eigenvalues of Hermitian operators
are real. Therefore operators associated with physical quantities must be
Hermitian.

When the wave function ¢ of a system is not an eigenfunction, it can be
expressed as a linear combination of y,’s as they form a complete set. Expanding
¢ in terms of y’s, we get

6= Zc,% (3.60)

where the coefficients c;s are given by

¢ = J‘Wi*¢ dT, i = l, 2, - (3.61)

In such a situation

(A)= j¢*A¢ dr = chl‘*cf J v, Ay, dt
i e

= ZZC:CJ j y/i*aj;//jdf
i oo

=Yl a, (3.62)

If o, is the probability for occurrence of the eigenvalue g, in a measurement
of the observable A,

4y = Y oa, (3.63)

Since a;’s are constants, from Egs. (3.62) and (3.63), we have
o, = Icil2 (3.64)

Hence the coefficients c|, c,, ... are called the probability amplitudes. 1f the
system is in one of the eigenstates, say y,, Eq. (3.61) gives

¢ = j V’i*V’k dr = 6
Consequently,
®; = |Ci|2 = |‘5ik|2

Hence, Eq. (3.63) can be written as

(A) = Zwiai = Z|6:k|2 a; =a; (3.65)
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That is, when the system is in an eigenstate y,, the probability for the occurrence
of the value g, in a measurement of A is unity. In other words, we will certainly
be getting the value g, in the measurement.

An important eigenvalue equation is that of the Hamiltonian operator
given by

2
[— Lo V(r)] W,(r) = Ey,(r) (3.66)
2m

y(r) is the eigenfunction of the Hamiltonian operator corresponding to the
eigenvalue E,. This equation is the time-independent Schrodinger equation
which we have already derived in Section 2.7.

Postulate 5: Time Development of a Quantum System

The first-four postulates describe the concept of a quantum system at a given
instant of time whereas the fifth one deals with the time development of a
system. The time development can be studied systematically with the help of
equations of motion which could be differential equations of the physical
variables describing the system. The state vector or wave function ¥ (r, ¢)
which describes the state of system as fully as possible may be brought into
the picture.

Postulate: The time development of a quantum system can be described by
the evolution of state function in time by the time-dependent Schrodinger
equation

.. 0¥(r,0)
h -7
! ot

where H is the Hamiltonian operator of the system which is independent of
time.

This procedure of considering the state function depends on coordinates
and time and the operator to be independent of time is called the Schrodinger
picture or Schrodinger representation. As time development of a quantum
system is an important topic, it is considered in detail latter (in Section 3.9).
However, it is mentioned here to complete the discussion regarding the
postulates.

= HY¥(r, 1) (3.67)

3.6 SIMULTANEOUS MEASURABILITY OF OBSERVABLES

We have been discussing the measurement of one observable at a time. If two
observables are simultaneously measurable in a particular state of a given
system, then the state function is an eigenfunction of both the operators. Two
observables are said to be compatible, if their operators have a common set of
eigenfunctions. The following two theorems indicate the connection between
compatible observables and commuting operators.
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Theorem 3.3 Operators having common set of eigenfunctions commute.

Proof Consider operators A and B with the common set of eigenfunctions
v,i=1,2, .. as

Ay, =a,y, and By, = by, (3.68)
Then

ABy, = A(by) = bAy, = aby, (3.69)
and

BAy, = B(a,y) = aBy, = aby, (3.70)

Since ABy, = BAy,, A commutes with B. Hence the result.

Theorem 3.4 Commuting operators have common set of eigenfunctions.

Proof Consider two commuting operators A and B. The eigenvalue
equation for A be

Ay, = ay, i=12, ... (3.71)
Operating both sides from left by B
BAy, = aBy,
Since B commutes with A
A(By) = a(By) (3.72)

That is, By, is an eigenfunction of A with the same eigenvalue a,. If A has only
nondegenerate eigenvalues, By, can differ from y; only by a multiplicative
constant, say b,

By, = by, (3.73)

In other words y; is a simultaneous eigenfunction of both A and B.

3.7 GENERAL UNCERTAINTY RELATION

The general uncertainty relation follows from what we have discussed so far
in this chapter. The uncertainty (AA) in a dynamical variable A is defined as
the root mean square deviation from the mean. Here mean implies expectation
value. Therefore,

(AAY? = {(A - (A)?) (3.74a)
= (A2 - 2A(A) + (A)®)
= (A%) - (A)? (3.74b)

Consider two Hermitian operators, A and B. Let their commutator is given by
[A, B] =iC (3.75)
It is convenient to define a new operator R by

R=A+ imB (3.76)
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where m is an arbitrary real number. The inner product of Ry with itself must
be greater than or equal to zero. That is,

(Ry, Ry) = J(A* —imB") v (A + imB)y dt >0
or

JA*III*(A + imB)ydt — im JB*III*(A + imB)w dt >0 (3.77)
Since A and B are Hermitian Eq. (3.77) becomes

Jl//*(A —imB) (A + imB)ydt >0 (3.77a)
or
Jl//*(Az— mC + m*B)ydr >0
Then
(A% — m(C) + m*(B® =0 (3.78)
The inequality in Eq. (3.78) must hold regardless of the size of m. To find the

value of m for which the left-hand side of Eq. (3.78) is minimum, we have to
differentiate it with respect to m and set it to zero

—{CY+2m(B>»=0 or m= 22;2) (3.79)
Eliminating m between Egs. (3.78) and (3.79), we get
2
(A% (B% > % (3.80)

This equation is very general and is valid for any two operators A and B
obeying Eq. (3.75).
Let us now evaluate the commutator of (A — (A)) with (B — (B)).
[A —(A), B-(B)]= (A -(A)) (B-(B) - (B-(B)) (A-(A)
= AB - BA
=iC (3.81)
Hence in Eq. (3.80), A can be replaced by A — (A) and B by B — (B).

©r

(A - AN (B -BY) 2 —

Using Eq. (3.74a), we have

«©r

(AA)* (AB)* 2 2
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or

©Q
2
This is the general uncertainty relation which expresses the limitation to the

accuracy with which one can hope to measure the values of two incompatible
observables. If the operators A and B commute, C = 0 and then

(AA) (AB) 2 (3.82)

(AA) (AB) =0 (3.83)

In the case where A = x and B = p , the commutator of operators representing
x and p_gives [x, p ] = ik and the inequality in Eq. (3.82) takes the familiar
form

h
(Ax) (Ap) = > (3.84)
which was introduced as Heisenberg’s uncertainty relation (Section 2.2)

3.8 DIRAC’S NOTATION

The state of a system can be represented by a vector called state vector in the
vector space. Dirac introduced the symbol | ), called the ket vector or simply
ket to denote a state vector which will take different forms in different
representations. To distinguish the ket vectors corresponding to different states,
a label is introduced in the ket. Thus, the state vector corresponding to v (r)
is denoted by the ket la). Corresponding to every vector, la) is defined a
conjugate vector |a)* for which Dirac used the notation {(al which is called a
bra vector or simply bra. The conjugate of a ket vector is a bra vector and vice
versa. A scalar in the ket space becomes its complex conjugate in the bra
space. The bra—ket notation is a distorted form of the bracket notation. Thus,
the bracket symbol (|) is distorted to { | and | ) in the Dirac notation. The
words ‘bra’ and ‘ket’” were derived from the word bracket by dropping the
letter ‘c’.

Operation by an operator A on a ket vector produces another ket vector.

Ala) = |a) (3.85)
Operation on a bra vector from the right by A gives another bra vector
(blA = (b'I (3.86)

In terms of bra and ket vectors, the definition of the inner product of the state
vectors ¥ and y, takes the form

W, v = [yry, dr=(alb) (3.87)
The norm of a ket la), denoted by {ala) is a real nonnegative number. That is

(alay 2 0 (3.88)
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The equality sign holds only if la) = 0. The ket la) is said to be normalized
if

(alay = 1 (3-89)
Kets la) and |b) are orthogonal if
(alb) = 0 (3.90)
The orthonormality relation is expressed as
(ailaj) = 517 3.91)
In this notation, the condition for an operator to be Hermitian is
(alAIb) = (blAla)* 3.92)

Compared to conventional notation, Dirac’s notation is compact.

3.9 EQUATIONS OF MOTION

The motion of a physical system can be systematically studied only with the
help of equations of motion. If the state is known at a particular time, they
allow the determination of the state at a previous or future time. As the state
of a physical system is described as fully as possible by a state vector in the
vector space, the equation of motion could be an equation for the state vector.
State vector as such is not an observable. But the expectation value of a
dynamical variable (A) is an observable quantity. Therefore, the variation with
time of (A) can be considered as an equation of motion. The definition of (A),
Eq. (3.56), suggests that the variation with time of (A) may be due to one of
the following situations:

1. The state vector changes with time but the operator remains constant
(Schrodinger representation or Schrodinger picture),

2. The operator changes with time while the state vector remains constant
(Heisenberg representation or Heisenberg picture).

3. Both state vector and operator change with time (interaction representa-
tion or interaction picture).

Schrédinger Representation

We are very familiar with the wave mechanical approach to quantum mechanics
and therefore it is appropriate to start with the Schrodinger representation. As
already stated (Section 3.5), in this picture the state vectors are time-dependent
kets ly (1)) and the operators are constants in time. The equation of motion is
then an equation for Iy (#)), the subscript ‘s’ is to indicate Schrodinger picture.
The ket ly(¢)) varies in accordance with the time-dependent Schrodinger
equation

ihdit|l//s(t)> = H|y (1) (3.93)
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As the Hamiltonian H is independent of time, Eq. (3.93) can be integrated to
give

WD) = exp (—%jlvrs(o» (3.94)

Here, the operator exp (—iHt/f) is defined as

exp( j Z (ciHe /B’ (3.95)

Equation (3.94) reveals that the operator exp (-iHt/%) changes the ket Iy (0))
into ket ly(#)). Since H is Hermitian and ¢ is real, this operator is unitary and
the norm of the ket remains unchanged. The Hermitian adjoint of Eq. (3.93)
is

—ih— <l//s(t)| = (y.0O|H = (y,0)|H (3.96)

whose solution is

[ Hi
(v, = (w0 exp (%j (3.97)

Next we consider the time derivative of expectation value of the operator A_.
The time derivative of (A ) is given by

d d
ARG d—t<v/s(t)|As|v/s(t)> (3.98)

where A_ is the operator representing the observable A. Replacement of the
factors

d d
d—tll//s(t)) and d—t<l//s(t)|

using Eqs. (3.93) and (3.96) gives

d 1
d_t<As> = E<l//5(t)|ASH - HAs|Ws(t)> <Ws(t)| |Ws(t)>
or
d 1 0A
el = — —s 3.99
dt<AS> in [4.H] + <at> G99

If A  has no explicit dependence on time, we get

ihdit(As) = [A,, H| (3.100)

If the operator A, commutes with the Hamiltonian, it is a constant in time.
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Heisenberg Representation

In this representation, the time dependence is completely taken up by the
operators. This leaves the state vectors fixed in time. Let us use the unitary
operator exp (iHt/f1) to change the state vectors and operators of the Schrodinger
picture. The state vector ly;;) and the operator A;; are defined as under:

ly) = exp (%)Ivfs(t)) (3.101)
and
A0) = exp (%) A, exp (_%j (3.102)

Substituting the value of |l//s(t)) from Eq. (3.94) in Eq. (3.101), we get

Iy = exp(%) exp(—%) ly,(0)) = ly,(0)) (3.103)

Thus, even if A, does not depend on time explicitly, A;; generally depends
on time. From Eqgs. (3.103), (3.101) and (3.102), it is obvious that at z = O the
state vectors and operators are the same in the two representations. Since H
commutes with exp (xiHt/h), it follows from Eq. (3.102)

H, = exp (%) H exp (_%) -H (3.104)

That is, the Hamiltonian is the same in both Heisenberg and Schrodinger
representations.
Differentiation of A, with respect to time gives

dA iH iH iHi j iHi iH
A = l—exp (%) A exp(—u) - Lexp (%) A H exp (—%)

dt n /] /]
iHt \ 9A, iHt
— = -—— 1
+ exp( P ) 5 exp( P ) (3.105)

By virtue of Eq. (3.102) the third term on the right side is dAy/dt . Remembering
that H commutes with exp (xiHt/h) we have from Eq. (3.105)

dt

If A, has no explicit dependence on ¢,

ay

Y (3.106)

1
= E[AH, H]+

dA
ih—L = [Ay, H] (3.1062)
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which is the Heisenberg equation of motion that replaces the Schrodinger
equation of motion.

Interaction Representation

Another representation introduced by Dirac, called interaction representation,
is very useful in problems involving perturbations. Let the Hamiltonian of the
system consists of two parts

H=H"+ H (3.107)
where H° does not depend explicitly on time and H may depend on time. There
is no strict rule for the division of H into H® and H’. H® may represent the

Hamiltonian for a relatively simple system and H’ some additional interaction,
which is dependent on time. The interaction picture is defined by the equations

.HO
W) = exp (’ - ’les(t» (3.108)
and
iH iH
A0 = exp - A exp | — . (3.109)

Differentiating Eq. (3.108) with respect to time and multiplying by ;7, we get

770
in =—H°Iw1(t)>+exp(’f;’J i PO o

d
We have

ih ditl‘l’s(t» = (H + H') ly (1))

H

= (H° + H') exp (_ih

J ly ()

Since H® commutes with exp (-iH%/# ), using the above result Eq. (3.110) can
be written as

d
ih WD) = H ly(©) (3.111)

770 .770
H)= exp(l};tj H exp(— ’P;’J (3.112)

Equation (3.111) is the equation of motion for y;(#) which is similar to the
time-dependent Schrodinger equation with H| replacing H. If H| = 0, y(?) is
constant in time. That is, if the interaction term H’ is absent, the interaction

where
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picture is the same as the Heisenberg picture. Differentiation of (3.109) with
respect to time gives

dA 1 0 0A;
— = —|AH |+ — 3.113

dt ih[ oH'] ot G
From Eqgs. (3.111) and (3.113), it is evident that the state vector changes in
accordance with H whereas the dynamical variables change in accordance
with H°. In the interaction picture part of the time dependence is assigned to
the state vector and part to the dynamical variable.

3.10 MOMENTUM REPRESENTATION

As we have discussed in earlier sections, the wave function is a function of the
coordinates and time. In such a case, we have the coordinate or position
representation. In certain cases, it is convenient to work in the momentum
representation in which the state function of a system ¢(p, ) is taken as a
function of the momentum and time. In the coordinate representation, the
operator for the coordinate r is simply r and the operator for p is —iAV.
However, in the momentum representation, the momentum p is represented by
the operator p itself and the coordinate is represented by a differential operator.
Since p = kh, the momentum space is equivalent to a k-space in which the
operator for k is k itself. Relations in the momentum representation equivalent
to the ones in the coordinate representation can easily be derived.

Probability Density

For a one-dimensional system, the Fourier representation of ‘¥ (x, 1) is given by

Y(x, 1) = ﬁj‘d)(k, /) exp (ikx) dk (3.114)
Dk, 1) = ﬁj“l’(x, /) exp (=ikx) dx (3.115)

Changing the variable from k to p, we get

_ L7 ipx
Y, 1) = micb@, ) exp( ; )dp (3.116)
@@, 1) = ﬁ_‘[‘l’(x, ) exp(_’%")dx (3.117)

Then

oo

. - Twfo _X) 0 Taw. e (224
J“P 6 )W D dx = 2ﬂ_ﬁ_£dx_£d> o, ) exp ( - )dp _j (P, ) exp (7)4117
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Changing the order of integration, we have

jwquu-—jéumej¢w mw—Ljem[<p m{

—oo

1 R * T ’ ’, ’
s _[ @ (p,t)dp _[ @(p’, 1)dp’hd(p’ - p)
where 8(p” — p) is the Dirac delta function (Appendix III)

I‘P*(x, ) W(x, 1) dx = Id)*(p, D) ®@p, 1) dp (3.118)

It follows that the probability density in the momentum representation is
ID(p, )12

Operator for Position Coordinate

The expectation value of the position coordinate x is

{(x) = j Y, 1) x P(x, f) dx

—o0

oo

- 1 ’
= dxj(b(p t)exp( ) j(b(p t)xexp( )d

—oo —o0

27rh dqu)(p 1) exp (——)dp J(I)(p t)[ i]eXP( 7 )d ’

(3.119)

Integration by parts gives,

TCI)(p',t

ip’x) ., , i\~
Prapy = |o(p,
(h) p [ (p t)eXP(h)]_oo

_ jexp (lp ) o', 1) dp’

The integrated term vanishes since ®(p’, 1) = 0 at p’ = too. Hence

0
op’

oo

mfcp*(p, f) dp T%d)(p', 0 dp’ j [ (0’ —p)x]

x

MJ$m0@j£@WW5W—mW
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- j @, t)(ihai]d) @, 1) dp (3.120)
J P

The operator associated with the coordinate x in the momentum representation
is then ih%. Generalizing, the operator associated with the vector r in
the momentum representation is izZVp, where Vp is the gradient in the p-
space.

Operator for Momentum

We shall next investigate the operator for momentum in the momentum
representation. In the coordinate representation

) = J‘P(x t)(—zh )‘P(x 1) dx

%h]:dxjd)* t)exp( ) J —® @, t)exp(h)d’

17 .. I 1 i
= (I) d ’ /d/_ e ’_
h_[ (1295 p_[®(p,t)p p 2”Jexp[h(l7 p)x]dx

—o0

l\)

1°° * T ’ ’ ’ 4
=0, 0 d [ow, » prw - pap

J|<I)(p, o*p dp (3.121)

—o0

Thus the operator for momentum in the momentum space is p itself.

Equation of Motion

The equation of motion in the momentum space can easily be obtained by
differentiating Eq. (3.117) with respect to time and multiplying by i#

zhiqn(p ) —\/_Jth W(x, 1) exp ( I;x)dx

Replacing in-Z inside the integral by

2 2

h* 9
_ﬂaT + V(x)
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we get

., 0 1 ¢ # 82 _ipx

(3.122)
Integration by parts gives

T o ipx ipx\o¥ |”
Ja?‘l’(x, 1) exp (—7) dx = [exp ( ) ax |
i [ o (i
+h-[ax exp( h)dx

The integrated term vanishes as 0¥W/dx vanishes at x = * oo. Integrating again,
we get

T ipx ip)2 N ( ipx)
2 P =21 | v, i
J 0 Y(x,t) exp( - ) dx (h _J; (x, 1) exp P dx

Equation (3.122) now reduces to

., 0 __ L pr _ipx
zhgd) @, ¢ \/—2 J‘I’( 1)) exp( )dx

+

ipx
\/_ jV‘I’(x 1) exp( P ) dx

Using Eqgs. (3.116) and (3.117), we get

2
ihi‘b @ n= P—CD(P, 1)
2m

ot
" _];Vq)(pl’t)d ihj; [ »’ —p)x]

i .
=P ap.ny + [V, nd sp' - p)
m —o00

2

P
= D(p,1) + V (x) ®(p, 1)

or
2

n? - |2
ih=® (p, 1) = [2m +v(x)]c1>(p, ) (3.123)

which is the equation of motion in the momentum representation.



General Formalism of Quantum Mechanics 83

—WORKED EXAMPLES —

EXAMPLE 3.1 A and B are two operators defined by

d
Ay() = () +x and By(x) =E"’ + 2y ()

Check for their linearity.
An operator O is said to be linear if
O [c, fi®) + ¢, [,(0)] = ¢,0 f,(x) + ¢,0 fo(x)
For the operator A, A [c, f,(x) + ¢, /,(0)] = ¢, f(x) + ¢, /,(x) + x
¢, A fix) + c, A f,(0) = ¢, fi(x) + ¢, f,(x) + ¢, x + ¢y x

The above two right-hand sides are not equal. Hence operator A is not linear.
Again for the operator B,

B [c, fi(x) + ¢, f,(x)] =% [e) i) + ¢ HL(01 + 2[e; fi(x) + ¢, /(0]
= cl%fl(x) + CZ% fz(x) + 2C1fl(X) + 2c2f2(x)

= %clfl(x) + 2C1f1(X) + %szz(x) + 2c2f2(x)

= ¢,Bf,(x) + ¢,B f,(x)
Hence operator B is linear.

EXAMPLE 3.2 Prove that the operatorsi < and - arc Hermitian.

Consider the integral

To.(.d
J. Y (13) Y dx
Integrating it by parts and noting that ¥ and y, are zero at the end points.

oo
*

T '//m(i%) vods = ilynw, | i m%'/fﬁ, d

*

= T (i%wm) v, dx

—oo

which is the condition fori to be Hermitian. Hence i< is Hermitian. Now

P A R dx  dx

—oo

Tw;dzy/"dx_[*dﬁr 'T%%d"

—o0
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_ e T T &y T
= [W'I’nJ_wﬂLJWn P dx—_J?'/’ndx

2 . .. . . .
Hence, < is Hermitian. The integrated terms in the above equations are zero

. dx .
since ¥, and y, are zero at the end points.

EXAMPLE 3.3 Show that the cartesian coordinates (r|, r,, ;) and the cartesian
components of angular momentum (L, L,, L,) obey the commutation relations

W [L, r] = ihr, (i) [Ly, r ] =0,
where k, [, m are a cyclic permutation of 1, 2, 3.

(1) [Lk’ V,]‘If = (Lkrl - V,Lk)‘lf

Calfi 2 222,
larm marl ] 1 larm marl

= —in(r, 6, - r )V
= ihr, Y

Hence [L,, r] = ihr,,

.. . J J J d
L. rlv=—ih -l 2yl =0
(11) [ k rk] 1 [[rl arm T 9’ ) T Tk [rl arm Tn an ) :l

Therefore,
[Lk, r k] =0

EXAMPLE 3.4 If A and B are Hermitian operators, show that (AB + BA) is
Hermitian and (AB — BA) is not Hermitian.

Since A and B are Hermitian, we have
(v, Av) = Ay, , v), (v, By) =By, v)
J‘y/,;f (AB + BA) y, dx = JWZ ABy, dx + Jl//,:BAI//n dx
= JB*A*W,:W" dx + JA*B* vy dx
= J(AB + BAY'y v dx
Hence (AB + BA) is Hermitian. Now

JWJ (AB - BA) v, dx = j(B*A* —ABY yly dx = - J(AB — BAY'v' v, dx

Hence (AB — BA) is not Hermitian.
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EXAMPLE 3.5 If x and p_are the coordinate and momentum operators,
prove that

Ix, p,"l = nihp "
xp=kp " pl=Ixplp"™ +p.[x p']
=ihp" +p. (% plp/ 2 +p. % p D)
= 2ihp + pA(x, p 1> + p, [x pD
= 3inp ' + p 3 [x, p
Continuing, we get
[x, pI1 = nihp ™!
EXAMPLE 3.6 The wavefunction of a particle in a state is

2 |\
v = N exp [—x—], where N = (—)
2a o

Evaluate (Ax) (Ap).
For evaluating (Ax) (Ap), we require the values of {x), (x), {p) and (p?).
Since ¥ is symmetrical about x = 0, {x) = 0.

2 2
ey (22 ) s 2
<x2>=N2J.xexP(a)dx_2

—o0

° 2 2
a2 x4 —x
(p) = —ihN jexp(m)dxexp(m)dx

—oo

= Constant J X exp (%) dx

—oo

=0 (since integrand is odd)

hod 2 2 2
2\ _ (_i3)2 N2 X x
= o2} o0 ()

—o0

22 % .2 22 % .2
= WN J. exp (L)dx—hlll szexp (L)dx
a a o a

—oo

o
=~ (refer to Appendix A)
hZ
Y
Hence
2 AZ = (o2 (2 = OB
B0 BpP = () (P = 52— = %
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or

(Av) (Ap) = g

EXAMPLE 3.7 Show that the linear momentum is not quantized.

The operator for x-component of linear momentum is —iz-% . Let y,(x) be
its eigenfunction corresponding to the eigenvalue a,. The eigenvalue equation
is
d'//k (x) _ i

dx
v (x) h i

L d
—lh;l//k(x) =aqy,(x) or

Integrating, we get

i

Y (x) = Cexp (;aka

where C is a constant. Function ¥;(x) will be finite for all real values of a,.
Hence all real values of a, are proper eigenvalues and they form a continuous
spectrum. In other words, linear momentum is not quantized.

EXAMPLE 3.8 Can we measure the kinetic and potential energies of a
particle simultaneously with arbitrary precision?

2

Operator for kinetic energy, T = —;’—VZ
m

Operator for potential energy, V = V(r)

n? n?
-—ViV|y = - V3Vy)-V|-—V?
e Eg

h2
=~V Vy
#0

Since the operators of the two observables do not commute, simultaneous
measurement of both is not possible. Simultaneous measurement is possible if
V is a constant.

EXAMPLE 3.9 If the wave function for a system is an eigenfunction of the
operator associated with the observable A, show that (A") = (A)".

Eigenfunctions and eigenvalues of operator associated with the observable
A be y and o respectively.

@y = [yaryde
= J VA Ay dr

aj v'A™ly dt



General Formalism of Quantum Mechanics 87

= azj VA" 2y dt

a"J vy dt
o'

and

@y = ([y'Ay dor
([ y'y do”

:(x"

Hence (A") = (A)".

EXAMPLE 3.10 The wave function v of a system is expressed as a linear
combination of normalized eigenfunctions ¢, i = 1, 2, ... of the operator
of the observable A as y = Zc,¢.. Show that (A”) z |c | a', where a9, = a9,
i=1,2,

Given that

V= ZCi 0, where ¢; = J Sydr, i=1,2, ..
Then : w e
(A" = f y'a'y dr

= ZZ J'¢,a ¢, dr

= ZZC, cjaj J.¢i*¢j drt
= Z|Ci|2“f'

since the ¢’s are orthonormal.

EXAMPLE 3.11 The Hamiltonian operator of a system is

Show that Nx exp (—x%/2) is an eigenfunction of H and determine the eigenvalue.
Also, evaluate N by normalization of the function.

2
v =N x exp (%) N is a constant

H N Nx exp |
V=ae Pl
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2 2 2
= Nx3 g N Vo I R -
x exp( 2) dx[exp( > Xx° exp >

2
= 3N x exp (%)

:3]/[

Hence eigenvalue of H is 3. The normalization condition gives

N? J. xPexp (—xH dx =1

1/2
N2£ =1 or N= (i)
2 Jz

The normalized function is

G

EXAMPLE 3.12 Obtain the form of the wave function for which the
uncertainty product (Ax) (Ap) = /2.

We have seen that the left-hand side of Eq. (3.78) is minimum when

_ O
m =
2B*)
This implies that
(A+imBy=0

The uncertainties (AA) and (AB) are defined by
(A4 = (A - (A)%,  (ABY =((B - (B)?)
We have also proved that
[A, Bl = [A - (A), B-(B)] =iC
Hence, the product (AA)? (AB)? will be minimum when
(A -{A) +imB - B)ly =0
Identifying x with A and p with B

h
[(x-C(N+im@P-PN]y=0 and ™= 2(Ap)?

Then
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or

d_'/’ - _ M(x_ <x>)—M dx

Integrating and replacing Ap with 7/(2Ax), we get

~ (x - <x>)2 N i<p>x

= N ex
"4 p 4(Ax)2 7

Normalization of the wave function is straightforward which gives

ve () j”ﬁp_u—uw+mmx

27(Ax)? 4(Ax)? h

EXAMPLE 3.13 Find the eigenfunctions and nature of eigenvalues of the
operator

d> 2d
—_ + PR —
dx*  x dx
Let ¥ be the eigenfunction corresponding to the eigenvalue A. Then the
eigenvalue equation is given by

2
(d_gi]y,zw

dx?  x dx

Consider the function # = XY . Differentiating with respect to x, we get

42 2 2
du_dy dy Ly dy  dy
dx*  dx dx dx* dx dx*
Dividing throughout by x,
1d (24  d°
x dx? xdx  dx? v

Combining this equation with the first one,

VP,
x dx? dx*

=Au
Its solution is:

u =cle‘/7" + cze"ﬁ" where ¢, and c, are constants.
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For u to be a physically acceptable function, \/Z must be imaginary, say if.
Also, at x = 0, u = 0. Hence ¢, + ¢, =0, ¢, = —c, Consequently,

i i 1 i —ifx
u=c (P - e P, l//=;c1(e'ﬂ" —e Py

_ 5 Px

x
EXAMPLE 3.14. A particle is constrained in a potential V(x) = 0 for 0 < x<a
and V(x) = oo otherwise. In the x-representation, the wave function of the

particle is given by
’2 2
w(x)=,[— sinﬂ
a a

Determine the momentum function ®(p).
From Eq. (3.117),

_ipx

1 7 =
O(p)=—— [pwe "ax
V2zh ¢
In the present case, it reduces to

O(p) = 1

1
Jrha
where

a p.
. 2rx
I= jsm—e h dx
! a

Integrating by parts,

Since the integrated term is zero,

27ch orx( mY - 2znt( Rm) -E( 27\ . 27x
I=—|cos——|—-—|e " —,—J‘ -—|e " |-—|sin—dx
ipa a ip , ipa ip a a

242
_2mh(_h (e—ipa/h _1) +ﬂ1
ipa ip
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2mah® i
I=227m sale " -1
a’p” —4nh

With this value of I,

®d(p)=

1 27mah’ e—iPTa -1
Jrha a*p? — AnH?

272\ 21312 _ipa

_ i

T~ 22 2.2 | € -1
a’p”—4r’h

1/4
EXAMPLE 3.15 A particle is in a state |1//>= (Lj exp (- x2/2). Find Ax
P4

and Ap . Hence evaluate the uncertainty product (Ax)(Ap)).
For the wave function, we have
12 e
<x> = (L) j x e_"2 dx=0

T

since the integrand is an odd function of x.
1/2 e A
1 2
<x2 —( ) sz e dx =2 (L) T”:% (Appendix A)

T

—oo
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112 42
=( j nr''? ( j 22 7 (Appendix A)
72
@ap.)*=(p2)~(p,)’ =7

The uncertainty product

h
(A0-(Ap)=-

EXAMPLE 3.16 For a one dimensional bound particle, show that
d [y :
i) — J“P (x,8) P(x,t) dx =0, ¥ need not be a stationary state.

(i) If the particle is in a stationary state at a given time, that it will always
remain in a stationary state.
(i) Consider the Schrodinger equation and its complex conjugate form:

d¥(x, 1) I
/] T—[—z—a—2 + V(X) lP(.X t)

ot

Multiplying the first equation by ¥* and the second by ¥ from left and
subtracting the second from the first one, we have

* 2 2
0 _ [ h_a_w(x)]q, )
2m Jx>

. 0¥ o’ . 0°Y v
NV —+ ¥ e — |
[ ot ot ] 2m[ 8x2 ox? ]

9 ih | 0 (0¥ v’
N “’*ﬁ[a—x(“’ x “‘a—xﬂ

| 3 = [ ¥ g2
ot 2m ox ox

Integrating over x,

d—co

ih « 0¥ 8‘1’
| QS A
2m ox ox

d—oo

0T
Ejm(\P Yydx =

Since the state is a bound one ¥ = 0 as x — +oo. Hence the right hand side
of the above equation is zero. The integrated quantity will be a function of time

only. Hence
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% _J;‘P*(x, 1) W(x, 1) dx=0

(ii) Let the particle is in a stationary state at ¢+ = 0. H be its Hamiltonian
which is time independent and E its energy eigenvalues. Then

HY(x,0)=EY¥(x,0)
Using Eq. (3.94), we have

W(x, 1) =exp (—iH?tj‘P(x, 0)

Operating from left by H and using the commutability of H with

HY¥(x,t) =exp (—%) HY(x,0)

=E exp (—%) Y(x,0)=E Y¥(x,01)

Hence W(x, 1) represents a stationary state at all times.

EXAMPLE 3.17 The solution of the Schrodinger equation for a free particle
of mass m in one dimension is W(x, 7). At t =0,

2
P(x,0)= A exp (— x—2]
a

Find the probability amplitude in momentum space at £ = 0 and at time 7.
From Eq. (3.117)

O(p,0) = \/21”_71 j ¥(x, 0) exp (—”’7") dx

Here, the other term having sin(px/%) reduces to zero. Using standard integral,

A 2.2
@p.0) =" exp (— %]
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The Schrodinger equation in the momentum space, Eq. (3.123), is:

2
inLa(p, 1) = L—d(p, 1)
t 2m

b}

0 —ip?

2 o(p, 1) =L a(p,
ot p-) 2mh .1

It can easily be written as:

—7 2
<I>(p,t>=Bexp( P ’]

2mh

Att=0, ®(p,0)=B. Hence

Aa —p2a2 ipzt
d(p, )= ex -
-0 \2h p( 4> 2mh

EXAMPLE 3.18 Write the time dependent Schrodinger equation for a free
particle in the momentum space and obtain the form of the wave function.

The Schrodinger equation in the momentum space is:

oD(p.1) _ p’
ih ————==—®&(p,t
ot 2m .0
o0 —ip?
—=——9®(p,t
ot 2hm 2.0
ae _—ip?
O 2mm
Integrating,
—7 2
In® = P + Constant
hm
—ip’t
O(p,t)=Aexp p where A is constant.
2hm

When ¢t = 0, ®(p, 0) = A. Hence

—7 2
®(p, 1) = B(p, 0) exp| 2!
2hm

which is the form of wave function in momentum space.
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— REVIEW QUESTIONS —

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

What is Hilbert space?

When do you say two functions are orthonormal?

State and explain the expansion theorem.

With examples explain linear operator.

Define the commutator of two operators. Evaluate the commutators of

d d
[x.4] and [L, F(x)].
What are eigenfunctions and eigenvalues of an operator?

Define a Hermitian operator. Show that the eigenvalues of a Hermitian
operator are real.

Show that eigenfunctions of a Hermitian operator belonging to different
eigenvalues are orthogonal.

Outline Schmidt orthogonalization procedure for a doubly degenerate
system.

Distinguish between coordinate and momentum representations. What
are the operators for coordinate and momentum in the two representations?

Explain the connection between operators in quantum mechanics and
Poisson bracket of the corresponding classical variables.

Outline the different postulates of quantum mechanics.

The eigenvalues of an operator are the only experimentally measurable
quantities. Comment.
Only Hermitian operators are associated with physical quantities. Why?

The wave function of a system is expressed as a linear combination of
eigenfunctions of the operator associated with an observable A. Why the
coefficients of the linear combination are called the probability amplitudes?

Define the uncertainty (AA) in the measurement of a dynamical variable.
State and explain the general uncertainty relation.

Outline Dirac’s bra and ket notation.

Explain Schrodinger picture. Obtain the time derivative of the expectation
value of an observable in it.

Explain Heisenberg picture. Obtain the equation of motion for an operator
in it.
If the Hamiltonian H(f) = H° + H'(?), show that the state vector changes

in accordance with H’(f) whereas the dynamical variables change in
accordance with H? in the interaction picture.

Distinguish between Heisenberg and Schrodinger pictures. Show that the
state vectors and operators are the same in both the pictures at t = 0.
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22,
23.

24,

Deduce the equation of motion in the momentum representation.

Is simultaneous measurement of energy and momentum with arbitrary
precision possible?

Can we measure the kinetic and potential energies of a particle
simultaneously with arbitrary precision?

— PROBLEMS —

1.

2.

10.
11.

12.

Prove the following commutator relation:
[[4, B1, C]+[[B. Cl. A]+[[C, A1, B]=0

Evaluate the commutators:

o @ . [9
® [a_a_] @ [30r0)

Show that the cartesian linear momentum components (p,, p,, p,) and the
cartesian components of angular momentum (L,, L,, L;) obey the
commutation relations: (i) [L,, p] = iAp,,, (ii) [L,, p,] = 0, where k, [, m
are cyclic permutation of 1, 2, 3.

. Prove the following commutation relations: (i) [L,, 7] = 0, (ii) [L,, p*] = 0,

where r is the radius vector and p is the linear momentum.

. If operators A and B are Hermitian, show that i[A, B] is Hermitian.
. What relation must exist between Hermitian operators A and B in order

that AB is Hermitian?

. For the angular momentum components L and L, check whether

L L + LL, is Hermitian.
Show that the commutator
h2

[x [x, H]|= - —

m

where H is the Hamiltonian operator.

. Prove that the function

y = sin (k; x) sin (k, y) sin (k; 2)
is an eigenfunction of the Laplacian operator and determine the eigenvalue.
Check whether the operator —ifix-L is Hermitian.

If A is a Hermitian operator and v is its eigenfunction, show that
(i) (4% = | 1Ay dr and (ii) (42) = 0.

Prove the following commutation relations in the momentum
representation:
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14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

O kpl=bpl=1Ipl=in,

) [x yl=In2ad=I[zx1=0
13.

Show that the function exp (ik . r) is simultaneously an eigenfunction of

the operators —i#V and —#%V? and find the eigenvalues.

The normalized wave function of a particle is ¥ (x) = A exp (iax — ibt),
where A, a and b are constants. Evaluate the expectation value of its
momentum.

Two normalized degenerate eigenfunctions y,(x) and ,(x) of an
observable satisfies the condition

[viv, dx=a,

where a is real. Find a normalized linear combination of y, and v, that
is orthogonal to y, - y,.

The ground state wave function of a particle of mass m is given by
W (x) = exp (—02x*/4) with energy eigenvalue #2ct 2/m. What is the potential
in which the particle moves?

If an operator A is Hermitian, show that the operator B = iA is anti-
Hermitian.

Find the eigenvalues and eigenfunctions of the operator di
X

An operator A contains time as a parameter. Using time dependent
Schrodinger equation for the Hamiltonian H and the Hermitian property

of H, show that
d(A) i 0A
=i (5)

Find the value of the operator products

o el o Gl
! dx dx i dx dx
Evaluate the commutator (i) [x, pf] (ii) [xyz, pi].

1
By what term the operators (x> pi + pfx2) and E(XP" + pxx)2 differ?

oo

The Laplace transform operator L is defined by Lf(x)= |e ™ f(x) dx
0

(i) Is the operator L linear? (ii)) Evaluate Le® if s > a.



98 Quantum Mechanics

24. The operator ¢* is defined by the equation:

2 3
AolrAar A A
2t 3!

Show that e” =T, where D = di and T is defined by T,f(x) = fix + 1)
X

25. Find the Hamiltonian operator of a charged particle in an electromagnetic
field described by the vector potential A and scalar potential ¢.



(Chapter \ 4
|

One-Dimensional
Energy Eigenvalue Problems

The problem of finding the energy eigenvalues and eigenfunctions of the
Hamiltonian (energy operator) is very important since they play a very crucial
role in the understanding of atomic, molecular and crystal structures, chemical
bonding, optical, electrical and other properties of substances. In this chapter
we shall apply the ideas developed so far to the solution of some simple
one-dimensional energy eigenvalue problems. In each case, we solve the
time-independent Schrodinger equation

I &y
2m  dx?

+ V)y () = Ey(x) “4.1)

to obtain energy eigenvalues E and the energy eigenfunctions. The solution of
these simple models may also emphasize the difference between classical and
quantum descriptions of systems.

4.1 SQUARE-WELL POTENTIAL WITH RIGID WALLS

Consider a particle of mass m moving in a one-dimensional potential specified
in Figure 4.1.

0, —a<x<a
Vix) = { “4.2)

o, |>a

99
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The time-independent Schrodinger equation for the region | x | < a is

42
—d'f + Ky =0 or K= 2;:12E 4.3)
X
whose solution is
Y (x) = A sin (kx) + B cos (kx) 4.4)

As V(x) = o at x = *a, ¥ (xa) = 0. Application of this boundary condition
gives

A sin (ka) + B cos (ka) = 0 4.5)
and
—A sin (ka) + B cos (ka) = 0 (4.6)
o V(x) =)
n=3
n=2
n=1
X
—a 0 a

Figure 4.1 The infinite potential well and the eigenfunctions of n = 1, 2, 3 states.

From Egs. (4.5) and (4.6), we get
B cos (ka) = 0, A sin (ka) = 0 4.7

The solution A = 0, B = 0 leads to the physically unacceptable solution y = 0.
The other possible cases are A =0, B# 0 and A # 0, B = 0. The first condition
gives

cos (ka) = 0; ka = %, n=13,5, ...

or

Q= 2mE n*n?
n 44’
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or

Ch2 hn?
C2m $md?
The eigenfunction corresponding to this energy eigenvalue is

E ., n=13,5, .. (4.8)

n

v,(x) =B cosnzﬂ, n=13,5, ... 4.9)
a

The second condition leads to

_ 2 h%n?

E,=Z2" . n=246 . (4.10)

8ma

with the eigenfunction
w,(x) = A sin”zﬂ, n=246, .. 4.11)
a

The quantum number n = 0 is not included as it corresponds to the trivial
solution y(x) = 0. The normalization of the wave function gives A = B = 1Na.
Thus, confinement of the particle in the box led to the quantization of the
energy which is given by
2,2 2
E =7 a-1,2,3,4, ... (4.12)
8ma’®

The complete set of eigenfunctions are

L
\/a_ 2a
v (x) = | (4.13)
—cos 22X R n=123,5,
\/a_ 2a

These eigenfunctions for the first-three states are also illustrated in Figure 4.1.
From Eq. (4.13) it is evident that the wave functions corresponding to odd
quantum numbers are symmetric with respect to the operation x — —x whereas
those for even quantum numbers are antisymmetric.
The energy and the wave function of the ground state are

252

m°h
E = and vy (x) =

2

8ma

L cos = 4.14)

\/a_ 2a

That is, any particle confined in a box must have a certain minimum energy
called the zero-point energy, which is a manifestation of the uncertainty principle.
This is understandable since an uncertainty of order a in position implies an
uncertainty of order 7#/(2a) in momentum which in turn gives a minimum
kinetic energy of h%/(8ma?).
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For a particle trapped in the potential well V(x) = 0 for 0 < x < g and
V(x) = « otherwise, the energy eigenvalues and eigenfunctions are
2252
n 2
En=n il and y/n=\/:sinm—x, n=1273--- (4.14a)
a a

2ma*

4.2 SQUARE-WELL POTENTIAL WITH FINITE WALLS

Consider a particle of mass m moving inside a potential well with finite barriers
of height V,, (Figure 4.2)

Vo x<-a
Vix) =40 —a<x<a (4.15)
Vo x>a

The wave equation in region 2 is the same as Eq. (4.3) with solution given
by Eq. (4.4) which leads to symmetric (n = 1, 3, 5, ...) and antisymmetric
(n=2,4,6, ...) wave functions. In regions 1 and 3

n* d*y

) oV = Ey (4.16)

It is convenient to consider the two different cases: (i) E < V,, and (ii) E >V

V(x) V(x)
] Vo [ ] n=73 _
Region 1 ) .
Region 2 Region 3
n=2
n=1
. -
—a 0 a —-a 0 a *
@ (b

Figure 4.2 (a) The square-well potential with finite walls (b) the wave functions.
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Case (i): E<V,
Equation (4.16) can now be written as

d*y 2 2 _ 2m
dx_2 =o'y, o = h—z(VO -E) (4.16a)

whose solution is
w(x) = Ce™™ + De™ (4.17)
where « is positive, C and D are constants. If D is not zero, y(x) — o as

x — oo (region 3), which is physically unacceptable. Similar arguments leads
to C = 0 in region 1. Thus, the wave function for the different regions are

De** x<-—a
Y(x) = 4 Asin (kx) + B cos (kx) —a<x<a (4.18)
Ce ™™ x>a
where
2mE
k2 = e 4.19)

The wave function in region 2 can either be symmetric or antisymmetric about
the origin (Section 4.1). Hence, we can match either the symmetric or the
antisymmetric wave function of region 2 to the wave function of regions 1 and
3 at a time. Accordingly, the solutions in region 2 may be divided into two
types: symmetric function and antisymmetric function.

Symmetric function in region 2, A = 0: The continuity conditions on y and
its derivative at x = +a gives

De™® = B cos (ka) and Dae * = Bk sin (ka) (4.202)
Ce™™ = B cos (ka) and Cae * = Bk sin (ka) (4.20b)

From Eq. (4.20), it is obvious that C = D and
ka tan (ka) = oa “4.21)

Antisymmetric function in region 2, B = 0: Use of continuity conditions at
x = %a gives

De ™ = —Asin (ka) and Dae™* = Ak cos (ka) (4.22a)
Ce™™ = A sin (ka) and —Cae™ = Ak cos (ka) (4.22b)
From Eq. (4.22), we obtain C = -D and

ka cot (ka) = —aa 4.23)

The energy eigenvalues are obtained by solving Eqs. (4.21) and (4.23)
graphically or numerically. Defining
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ka=p and oa =y
equations (4.21) and (4.23) take the form

pan p =y 4.21a)
B ot B=-y (4.23a)
The constants f and 7y are related by the equation
2mV,a’
B2+ 7%= mhfa (4.24)

which is the equation of a circle in By-plane with radius 2mV,a¥ h?)!2. A
graphical procedure is followed to solve Eq. (4.21a). To get the solution, the
curve representing the variation of 8 tan B against 8 is plotted (continuous
curve) along with circles of radii (2mVya? h?)!2 for different values of V a?
(Fig. 4.3). As B and y can have only positive values, the intersection of the two
curves in the first quadrant gives the energy levels for n = 1, 3, 5, ... The
intersection of the circle with the curves of Eq. (4.21a) be B, 3,, B;, ... Then

9 2 2 2mEa2 hzﬁn2
=ka"="—"—— or E, =—1 4.25)
p n? 2ma’®
A similar construction for the solution of Eq. (4.23a) (dashed curves) gives the

energy levels forn =2, 4, 6, ...
For a given particle, the number of bound states depend on the height and

width of the potential through the factor Voaz. From Figure 4.3, it follows that
there will be

|
§ g |
g/ L
¥=aa § 5},’
8 é |
=< |
|
|
|
|
|
/
/
/
/
/
/
0 7i2 V.4 37m/2

B = ka

Figure 4.3 Graphical solution of Eqgs. (4.21) and (4.23) for 4 values
of V a2 Continuous curve is ka tan (ka) = aa. Dashed curve is
ka cot (ka) = —aa. The dots show the intersections.
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. . . . V.4
One intersection, if 0 < radius < 5
. . . T .
Two intersections, if By < radius < 7
. . . . V.4
Three intersections, if 7 < radius < 35

and so on. That is, there will be
ot
m

222 42h2
zh < Vya?< il

One energy level of the first type (symmetric) for 0 < V0a2 <

Two (one symmetric and one antisymmetric) for 3
nm

°n? 9’ h?
< Voa2 <

Three (2 symmetric and one antisymmetric) for

and so on.

The first-three bound state eigenfunctions are represented in Figure 4.2(b).
In region 2, the wave functions are similar to those in a potential well with
infinite walls. However, they have tails in regions 1 and 3. The points x = £ a
are the classical turning points for the well. Wave functions have tails beyond
the classical turning points mean a finite probability for the particle to be
outside the well. In other words, the quantum mechanical particle has runnelled
or leaked into the classically forbidden regions.

Case (ii): E > V,,

In the region E > V|, the quantity V,, — E is negative which makes o imaginary.
Consequently, the solution of Eq. (4.16) for w(x) is sinusoidal in regions 1 and
3, too. Hence the probability density is distributed over all space and the
particle is not bound.

4.3 SQUARE POTENTIAL BARRIER

The potential function of the type in Figure 4.4 allows exact solution for the
equation of motion. The potential V(x) is defined by

0 x<0
Vix) =3V, 0O<x<a (4.26)
0 x>0

Consider a stream of particles of mass m approaching the square barrier
from left. Classically, if the energy of the particle E < Vit is always reflected
whereas it is transmitted if £ > V. However, quantum mechanically it can be
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V(x)

Vo

Incident wavS

Transmitted wave

geﬂected wave

Region 1 Region 2 Region 3

0 a X
Figure 4.4 Representation of one-dimensional square barrier.

seen that there is always a finite probability for a particle to penetrate or leak
through the barrier and continue its forward motion even if E < V,. This
phenomenon, called quantum mechanical tunnelling, is possible because of the
wave nature of matter.

Case (): E<V,

The Schrodinger equation for the three regions of the potential are:

% Ky, K- 2}’1’;’5 , x<0 @27)
d;? - Py, o= W 0<x<a (4.28)
d’y, 2
5 = —ky,, =x2a (4.29)
whose solutions are respectively
Y, = e + Ae ik (4.30)
W, = Be™ + Ce™ (4.31)
W, = Deikx 4.32)

The plane wave e’ represents the incident particles travelling from left to right
and Ae ™ represents the stream of reflected particles travelling from right to
left. For simplicity the amplitude of the incident wave is taken as one. In region
3, we expect only waves travelling from left to right. In region 2, the
exponentially increasing function Be®* is also an acceptable wave function like
the exponentially decreasing Ce™®*, since the barrier is of finite extent.
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The probability density of the incident, reflected and transmitted waves
are 1, |AI> and IDI?, respectively. Consequently, the transmission coefficient
T = IDI? and the reflection coefficient R = |AI>. The two are connected by the
relation R + 7= 1. As we are mainly interested in the transmission and reflection
coefficients, the determination of all the constants are not necessary. The
continuity conditions on the wave functions and their first derivatives at x = 0

and at x = g give
l1+A=B+C

ik — ikA = B - aC
and
Be® + Ce % = De'ka

aBe® — qCe=%* = ikDe'k®

On solving Eq. (4.34), we get

B= 2 (a+ ik et
2o

C = 2(0{ _ ik)eika+aa
2a

From Eqgs. (4.33) and (4.35), we have

_ D(a+ ik)

eika—ota _ o+ ik
o - ik o - ik
Substitution of the values of A, B and C in Eq. (4.33a) gives

_ 2ik e
" (a*- k) sinh (@a) — 2ick cosh (ca)
Now
T = IDI? = DD* = o
(2= k*)? sinh*(ca) + 40*k* cosh?(ca)
Therefore,
Rel_T= (&2 + k*)?sinh?(0a)

For broad high barrier,

aa >> 1 and sinh (oa) = cosh (xa) —» %e"‘"
So,
16k o e 2% 16 k*ae 2

T (@ k) 1 4Pk (P + k)

T (0P k*)*sinh®(aa) + 4ak? cosh?(aa)

(4.33a)
(4.33b)

(4.34a)
(4.34b)

(4.35a)

(4.35b)

(4.36)

4.37)

(4.38)

(4.39)

(4.40)
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Substitution of the values of ¢ and k% in Eq. (4.40) gives

16E(V, — E)e 2™

T =
Ve

(4.41)

An illustration of the wave function in the three regions is given in Figure 4.5.

Vo

Incident wave

0 a

Figure 4.5 lllustration of the wave function in the three regions
corresponding to E < V,. The reflected wave in region 1 and
the exponentially increasing wave in region 2 are not shown.

X

The phenomenon of barrier penetration has numerous applications in
physics. The most important one is the explanation of alpha emission by nuclei.

Case (ii): E > V

When the energy of the particle is greater than the height of the barrier, the
wave function in the region 0 < x < a also becomes trigonometric and is given by

. . 2m
y(x) = EeP + FeP,  B2= “T(E-W)

The constants A (in Eq. 4.30) and F are finite as reflection can occur at x = 0
and x = a. Figure 4.6 illustrates the waves (without reflected ones) in the
different regions.

Region 1 Region 2 Region 3

x=0 XxX=a
Figure 4.6 lllustration of the wave function in the three
regions corresponding to E > V.
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4.4 ALPHA EMISSION

Alpha particles are held inside a nucleus by strong attractive short-range nuclear
forces. However, when they are outside the nucleus there exists strong Coulomb
repulsive force between the residual nucleus and the alpha particle because
both are positively charged. Figure 4.7 shows the variation of the potential
with the alpha particle distance from the centre of the nucleus. If the residual
nuclear charge is Ze, the repulsive Coulomb potential beyond the attractive
nuclear potential is 2Ze?/r. The radius (r,) of the nuclear-alpha particle attraction
is approximately equal to nuclear radius. If r, is the point at which the alpha
particle energy E exceeds the Coulomb potential,

2Ze* 27¢*

E = or r,= 4.42)
T, E
V(r)
Coulomb repulsion
a-particle energy E
0 r
r r

Nuclear
attraction

Figure 4.7 The variation of potential with the a-particle distance
from the centre of the nucleus.

Treating the potential in the r| < r < r, as a one-dimensional square barrier,

we get
_ 16E(V—°;_E)exp l:—\/% a:| (4.43)
v h
T = exp l:—\/% a] (@.44)

or
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As the real barrier is not a square, more rigorously

I‘2 2
T = exp —j 8—’?[22"’ - E] dr (4.45)
r h r

1
It is estimated that an o-particle within a nucleus moves with a velocity
of about 107 ms~!. The radius of a heavy nucleus like uranium has a value of
about 10-'* m. Hence, the alpha particle strikes the wall of the barrier at the
rate of about 10?' times per second. The probability that the particle penetrates
at each time it hits the wall is given by the transmission coefficient 7. Therefore,
the probability that it comes out in one second is P = 102!T. The mean life time

1 1
T= — = —— 4.46
P 10%T (446)
If A is the decay constant
1 8m 172
A= = =102 exp {—[—2(% - E)az] } (4.47)
T h
or
InA=A+ BE (4.48)

where A and B are constants. Equation (4.48) is Geiger—Nuttal law. Thus, the
barrier penetration could explain the phenomenon of o-decay.

4.5 BLOCH WAVES IN A PERIODIC POTENTIAL

As the next example we shall consider the motion of an electron in a one-
dimensional periodic potential. A one-dimensional metal crystal consisting of
a number of stationary positive ions provides a periodic potential of period d
(Figure 4.8). That is

V(x + nd) = V(x), n=0,1, .. (4.49)

For discussion, consider a crystal lattice with N ions in the form of a
closed loop. The Schrodinger equation at points x and (x + d) is then

<«—d—> V(x)

Figure 4.8 One-dimensional crystal lattice along with the periodic potential.
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d*y(x) 2m
D 2 BV pn) =0 (@30
and
d> d) 2
W(x2+ ) +h_r;[E_V(x)] W(x+d)=0 (4.51)

respectively. Here we have used Eq. (4.49). Since y(x) and y(x + d) satisfy
the same equation, the two can differ only by a multiplicative constant, say o.

yix+d) =aykx) and ywx + Nd) = o yx) (4.51a)
Since the lattice is in the form of a ring
Y+ Nd) = oMy = y) (4.52)
Hence,
oV =1 or o = forn=0,1,... (N-1)
Therefore,
o = e niN, n=0,1,..,(N=-1 (4.53)
It means that
vx) = e*u(x) (4.54)
where
_ 27n

u(x + d) = u(x) and k= n=0,=Il,£2, ... (4.55)

Nd '’
The justification for Eq. (4.54) can easily be done by replacing x by (x + d)

e+ D y(x + d)

eikd eikx u(x)

e y(x)

ean’/Nv[(x)

ay(x)

which is Eq. (4.51a). Equation (4.54) with the condition in Eq. (4.55) is called
the Bloch theorem. That is, the solution of Schrodinger equation of a periodic
potential will have the form of a plane wave modulated by a function having

the periodicity of the lattice. Functions of the type as in Eq. (4.54) are sometimes
referred to as Bloch functions.

y(x + d)

4.6 KRONIG-PENNEY SQUARE-WELL PERIODIC POTENTIAL

In the preceding section, we have considered a one-dimensional metal crystal
consisting of a number of positive ions providing a periodic potential. The
approximation of the periodic potential in Figure 4.8 is known as the Kronig—
Penney potential which is illustrated in Figure 4.9. The width of each well be
a and that of each barrier be b. The period of the potential d = a + b. Then
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Vix + n(a + b)] = V(x + nd) = V(x) (4.56)

We have already seen that in a periodic potential of the form in Eq. (4.56), the
one-electron wave functions are the Bloch functions in Eq. (4.54), where u(x)
has the periodicity of the lattice. In the region 0 < x < a, V(x) = 0 and the
Schrodinger equation takes the form

d*y 2mE
dx21 + k12¥/l= O’ k12 = h2 (4.57)
V(x)
L] V L] L ] L] L]
b 0 a d x
Figure 4.9 The Kronig—Penney periodic potential.
In the region -b < x < 0, V(x) = V. Then
d* 2m(V - E
d—“?—kgy@:o, k§=%, V>E (4.58)
x

According to Bloch theorem, the solution of Eqs. (4.57) and (4.58) must be of
the type
v, = e*u (x) O<x<a (4.59)

v, = eu,(x) -b<x<0 (4.60)
Substitution of Eq. (4.59) in Eq. (4.57) and Eq. (4.60) in Eq. (4.58) gives

2

AU ™ L k2~ K () = 0 (4.61)
dx? dx
d? d
L 2?2 (k2 4 kEuy(x) = 0 (4.62)
dx? dx
For Eq. (4.61), let us assume a solution of the form
u,(x) = e™ (4.63)
With this value of u,(x), Eq. (4.61) reduces to
m? + 2ikm + (2 -k =0, O0<x<a (4.64)

or
m =ik, - k), ik, + k)
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Hence the solution of Eq. (4.61) is
u,(x) = A exp [itk, — k)x] + B exp [-i(k, + k)x], 0<x<a (4.65)
In the same way
u,(x) = C exp [(k, — ik)x] + D exp [~ (k, + ik)x], —b < x <0 (4.66)

The wave functions and their derivatives must be continuous at x = 0.
That is

dul du2
Wy = @, and o TH = TH (4.67)
These conditions give
A+B=C+D (4.68a)
and
i(k, — k)A — ik, + k)B = (k, — ik)C — (k, + ik)D (4.68b)

As the potential is periodic, the value of the wave function at x = a must be
equal to that at x = —b. Hence

w(x)| _, =u(x)|_, and %m = %x=_b (4.69)
With these conditions in Eq. (4.65) and Eq. (4.66), we have
A exp [i(k, — k)a] + B exp [-i(k, + k)a]
= C exp [-(k, — ik)b] + D exp [(k, + ik)b]
(4.70a)

and
i(k, — k) A exp [i(k, = k)a] - i(k; + k)B exp[-i(k, + k)a]

= (k, - ik)C exp [~ (k, — ik)b] — (k, + iK)D exp [(k, + ik)b]
(4.70b)

For a nontrivial solution of Eqs. (4.68) and (4.70), the determinants of the
coefficients of A, B, C and D should vanish. This gives the relation
K-k . B
ST sinh (k,b) sin (k,a) + cosh (k,b) cos (k,a) = cos (kd) (4.71)
152
As k, and k, are functions of energy the left side is a function of energy.
The right side of Eq. (4.71) can have values only between +1 and -1
whereas the left side can have values outside this range. Therefore, Eq. (4.71)
can be satisfied only for values of E for which the left-hand side remains
between +1 and —1. That is, in a crystal, only certain energy bands are allowed
for the electron and there are regions of energy which are forbidden. In other
words, in a one-dimensional crystal, the periodicity of the potential together
with the condition u(x + Nd) = u(x) led to the concept of energy bands.
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The transcendental Eq. (4.71) can be solved graphically. For that, the left
side of Eq. (4.71) is plotted as a function of E/V (continuous curve) and the
limiting lines of cos (kd) = +1 (broken lines) are also drawn (Figure 4.10). The
energy ranges for which cos (kd) is between —1 and +1 are the allowed ones.
In the figure, these are AB, CD, EF, etc.

V)

cos (kd) Forbidden regions

o e o

Forbidden regions

Figure 4.10 Graphical evaluation of energy values in the Kronig-Penney model.

4.7 LINEAR HARMONIC OSCILLATOR: SCHRODINGER
METHOD

The problem of linear harmonic oscillator is of importance since many systems
of interest can be approximated to it. Its potential energy V = 1kx? k is the
force constant, is a continuous function of the coordinate x and therefore is
completely different from systems we considered so far where the potential is
constant over a region.

Wave Equation
With the force constant expression in Eq. (1.40), the potential V is given by

V= %47tmvgx2 = —mwx? 4.72)

The time-independent Schrodinger equation of the linear harmonic oscillator is
then

d2¥’ 2m 152 —
de + h—2(E - Ema) X"\ = 0 (4.73)

It is convenient to work with a new variable y and a new parameter A defined
by

1/2
y= (m—‘”) x and - 2E (4.74)
h hao
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In terms of these quantities, Eq. (4.73) reduces to

2
d_g/+(ﬂ_y2)¥/ =0 4.75)
dy

Asymptotic Solution

We shall investigate first the solution of Eq. (4.75), when y — c. When y is
very large, A — y* = y? and Eq. (4.75) becomes

2

y

2
— - =0 4.76
e yy (4.76)

Its asymptotic solutions are
2
yx)=e"" 4.77)
since substitution of Eq. (4.77) in Eq. (4.76) gives

d’ 2 32 2
—dy‘§’=<y + DB =32y
2 . .
Out of the two asymptotic solutions, ¢' /> is not acceptable as it diverges

when |yl — oo. The exact solution of Eq. (4.75) may be written as
=V
v=e H(y) (4.78)

2
where H(y) is a function of y and the product ¢™* "> H(y) tends to zero as
[yl = oo.

Series Solution

Substitution of Eq. (4.78) in Eq. (4.76) gives
d*H(y) dH

- 2y—+ (A -DH=0 4.79
PG @D 4.79)

which is known as the Hermite equation. We shall look for H(y), a series
solution of the type

oo

HO) = D a,)" (4.80)

n=0

Equation (4.80) when substituted in Eq. (4.79), we have

Y [tk + Dk + 2)ap,, - @k + 1= Da]y* = 0 (4.81)
k=0
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For the validity of this equation, coefficient of each power of y must vanish
separately. Coefficient of y* when equated to zero gives the recurrence relation

2k+1-4

Ay = Gr Dkt a; (4.82)

This formula allows the calculation of all even coefficients in terms of a, and
the odd coefficients in terms of a,. Equation (4.80) will have only odd
coefficients if a; = 0 and even coefficients if a, = 0. Thus we have two
independent solutions for Eq. (4.80) and a linear combination of the two will
be the most general solution. The two solutions are:

H(y) = ay + ay* + ay* + - (4.83)
and
H () = y(a, + ay? + ay* + ) (4.84)

Energy Eigenvalues
When k — < in Eq. (4.82), we get

Ar 2

2
== 4.85
P (4.85)

Consider the Taylor series expansion of exp (y?)

exp (y?) = 022; ﬁy" (4.86)

The ratio of the coefficients of the successive terms in Eq. (4.86) is

Ared _ (k/2)! 1 - Z

a  [(2)+ 1]t (K2) +1 " k

(4.87)

where k is large. Therefore, for large values of k, v = exp (-y*/2)H(y) tends
to behave like exp (y?/2), if the series is even, and y exp (y%/2) if the series is
odd; which is not acceptable. This unrealistic solution can be avoided if the
series in Eq. (4.80) terminates after a finite number of terms. In such a situation,
w(y) will tend to zero as y — o because of the factor exp (-y%2). The series
can be terminated by selecting A in such a way that (2k + 1 — A4) vanishes for
k = n. Thus one of the series becomes a polynomial and the other can be
eliminated by setting the first coefficient to zero. Substitution of the value of
A gives
2n+1 - 2E =0
hao

or

E = (n + %)ha), n=0,1,2, .. (4.88)
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The energy value of an oscillator based on quantum theory is
E = nho, n=0,1,2, ..

From the two expressions, it is evident that the quantum mechanical energy
value is higher than the quantum theory value by%ha), which is the energy
possessed by the lowest state n = 0. The oscillator will have this energy even
at absolute zero. This energy of %ha) is called the zero-point energy which is
a manifestation of uncertainty principle. £ = 0 means that both position and
momentum are well defined which is a violation of uncertainty principle. It can
be shown that the minimum energy of an oscillator without violating uncertainty
principle is %ha). Figure 4.11(a) illustrates the energy values as given by Eq.

(4.88).

Energy Eigenfunctions
When A = 2n + 1, Eq. (4.79) reduces to
2
d an(y) — 2y ) ol (=0 (4.89)
dx d

The solutions of Eq. (4.89) are the Hermite polynomials H (y) of degree n. The
energy eigenfunctions can now be expressed as

w.() = N.H () exp [_gj 2 = mwaz (4.90)
The first-four Hermite polynomials are
Hyy) =1 4.91a)
H(y) =2y (4.91b)
H,(y) = 4y* - 2 4.91c)
Hy(y) = 8y* - 12y (4.91d)

The normalization condition leads to

( h 172 ) )
LA P JHn(y)eXP(—y )ay=1

or

2f 12 1/2~n
N, | —] 7 2" (nf)=1
m

o 172 1 1/2
N, =||=—
n [(m) z"(nz)] (4.92)

or
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The normalized eigenfunctions and the ground state eigenfunction are given by

SN 12 2
'//n(y)=[(ﬁ) Y (n')} H,(y) exp [T] (4.93)

ma)'* max?
Vo (x)= E exp | — (4.94)

2h

The wave functions y, (x) and the probability density Il//n(x)l2 of the lowest four
states are also illustrated in Figure 4.11.

[y ()
V(X) E, W(X) V( X) {

7 A
—ho n=73 \r ~~ !
2 ’r\\‘f\ ‘/'\\ /I . n=73

1
—hw - =0
5 n=0 n

\I/ . "

% 0

Figure 4.11 (a) Energy levels (E,) and wave functions y, (x) of the

lowest four states of the linear harmonic oscillator
(b) probability density |y, (x)|? of the lowest four states.

It may also be noted from the figure that oscillator eigenfunctions are
even for even values of n and odd for odd values of n. This is understandable
as exp (-y%?2) is always even and H (y) is even or odd according as n is even
or odd. It may also be noted that the quantum oscillator can be found outside
the parabolic potential barrier since ¥ does not vanish at the classical turning
points. In other words, the particles can penetrate the barrier to some extent.
This barrier penetration is an important feature of quantum mechanics.

Another interesting point to be noted in connection with the results is the
nature of probability distribution of classical and quantum oscillators. Classically,
the probability of finding the oscillator at a given point is inversely proportional
to its velocity at that point. The total energy

2
E=lmv2 +lkx2 or p= M
2 2 m
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Therefore the classical probability

m
P, o< ,/m (4.95)

This probability is minimum at x = 0 (mean position) and maximum at the
extreme positions. In the quantum case, for n = 0, the probability is maximum
at x = 0 and as the quantum number increases the maximum probability moves
towards the extreme positions. Figure 4.12 shows the probability density “/’10'2
and the classical probability distribution (dotted line) for the same energy.
Though the two distributions become more and more similar for high quantum
numbers, the rapid oscillations of |l//n|2 is still a discrepancy.

Figure 4.12 The probability density |w|? for the state n = 10 (solid curve)
and for a classical oscillator of the same total energy (broken curve).

4.8 LINEAR HARMONIC OSCILLATOR: OPERATOR METHOD

The operator method of solving for the energy eigenvalues of the linear harmonic
oscillator is based on the basic commutation relation

[x, pl = in (4.96)
where x and p are the coordinate and momentum operators. The Hamiltonian

of a linear harmonic oscillator is

H= P’ + L e (4.97)
2m 2

It is convenient to introduce two new operators a and a' defined by
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1/2 12
() () wo
2h 2mha ’
and
1/2 1/2
at =220 _ p (4.99)
2h 2mho ’
where a' is the Hermitian adjoint of a. From Eqgs. (4.98) and (4.99), we get
+ ma 2 1 2 i
A TR ST e
_H 1 (4.100)
ho 2 ’
In the same way
da=t 1 (4.101)
ho 2 )

From Eqs. (4.100) and (4.101), one can write the following expressions

H= hTw (aaT + aTa) (4.102)
and
[a,a'] =1 (4.103)
Therefore,
[a, H] = ahTw(acfr + a1a) - —(acfr + aTa) a
- B ]
= hTa) {a [a, aT] + [a, aT] a}
= haa (4.104)
In the same way
[at, H] = - iwa’ (4.105)

To obtain the energy levels of the oscillator, we have to calculate the
matrix of the Hamiltonian and diagonalize it. However, if we work in the
energy representation in which the eigenvectors of H form the basis of the
space, the matrix of H would be diagonal

(mlHln) = E (mln) = E § (4.106)

where E is the energy eigenvalue of the nth state. Next, we shall evaluate the
matrix of the product a'a.
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H 1 E, 1
LU P 4.107
ho ‘"> 2 @107

The matrix of a’a can also be written as

(nla*aln) = <n

(nlataln) = (nla’lm) {(mlaln)
= (mlaln)(mlaln)
= Kmlaln)l> > 0 (4.108)
From Egs. (4.107) and (4.108), we have

E, 1 >0 E >lha) (4.109)
o 2 -0 % Ea=3 '
Now consider the eigenvalue equation Hln) = E In). Operating from left by a,
we get, aHIn) = E aln). But from Eq. (4.104), aH = Ha + hwa, and therefore,
we have

(Ha + hwa)ln) = E aln)
or
Haln) = (E, — hw)aln) 4.110)

That is, if In) is an eigenvector of H with an eigenvalue E , aln) is also an
eigenvector of H corresponding to an eigenvalue lowered by 7. In a similar
way, we can show that

Ha'ln) = (E, + hw)a'ln) 4.111)

The operators a' and a are respectively known as raising and lowering operators.
It follows that the kets afln) and aln) are also eigenkets of H corresponding
to the eigenvalues (E, + hw) and (E, — h®), respectively.

Denoting the ground-state eigenket corresponding to the minimum
eigenvalue E, by 10), we have

Hal0) = (E, — hw)al0) (4.112)
As E, 2 ho, this equation is possible only if
al)) =0 or a'al0)=0 (4.113)
In other words,
H 1 E 1
— — —1l0) = =0 _ - = .
(ha) 2)‘ > 0 or (ha) 2)‘0> 0 4.114)

As 10) # 0,

Eo—lha) =0 or E
2

1
0= 5 ho (4.115)

When the eigenvalue equation H 10) = E, 10) is operated from left by a', we
are led to
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Ha'10) = (E, + hw)a'l0) (4.116)
That is, a' 10) is an eigenket of H with eigenvalue E, + ho = (312) ho.
Repeated operation by a' raises the eigenvalue every time by 7. Consequently,

E =E,+ nho = (n+%)ha), n=0,1,2, ... “4.117)

with the eigenket (a®)” 10). Thus,
0), a'l0), (@H20), .., @YW), ... n=0,1,2 ... (4118)

form a series of eigenkets corresponding to the eigenvalues £, n =0, 1, 2, ...
given by Eq. (4.117).

The form of these eigenkets can easily be obtained from Eq. (4.113).
From Egs. (4.98) and (4.99), we get

1 ( d ) + 1 ( d )
a=——— | mwx + h— a = — mwx - h—
(2mhw)"? dx ) (mhw)’? dx

Substituting the value of a in Eq. (4.113), we have

(ma)x+hi) v, =0 or ¥, _ - MO
dx Y h
Integrating, we get
2
maox
=N, exp | — 4.119
¥, = N, exp [ oh ] ( )
We have already seen that y, = a'y,. Hence
d maox?
= wx — h— — A
v =N, (m x dx) exp [ o ] (4.120)
Repeated operation by a' from left gives
=N Y oxp |-mex (4.121)
vfn =N, |mwx — h; p oy .

This result is identical to the one we derived by the Schrodinger method.

According to Eq. (4.110), the operator a annihilates a quantum of energy
ho and therefore it is sometimes referred to as annihilation or destruction
operator. Similarly, the operator a' creates a quantum of energy 2®, Eq. (4.111),
and therefore it is called a creation operator. The creation and annihilation
operators a' and a play important roles in the quantum theory of the
electromagnetic field.
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4.9 THE FREE PARTICLE

In this section we shall look into the free particle Schrodinger equation

n dy(x) d*y 2
— T _E or —— = —k 4.122
2m  dx? v dx? v ( )

where k? = 2mE/h%. For a given value of E, we have two solutions
Y () = Ae®™ and  y(x) = Ae (4.123)

The free particle solutions are thus degenerate. The energy has to be real and
positive to make the eigenfunction finite at x = e and x = —oo. The solution
e™® corresponds to the particle moving in the positive x direction with +7k
momentum and e ** corresponds to the particle moving in the negative
x direction with —#k momentum. However, the energy is same in both the
cases. Thus, all real positive values are allowed eigenvalues.

Box Normalization

In the usual sense it is not possible to normalize a free-particle wave function
as the normalization integral diverges. One way to overcome the situation is
to restrict the domain of the particle under investigation to an arbitrarily large
length L and to impose periodic boundary conditions at the end-points. Because
of the periodic condition k is allowed to take only the discrete values:

27n

k= 7 n=0,z%l, £2, ... (4.124)

The normalization can now be carried out by integrating between the limits
—L/2 and L/2, which leads to

v(x) = %eikx (4.125)

The wave function is said to be box normalized. In three dimensions, the
normalization is done in an arbitrarily large but finite cubical box of length L.

Delta Function Normalization

Normalization of wave functions of the type in Eq. (4.123) can also be carried
out using delta function. One of the representations of delta function (also refer
to Appendix C) is

Ox —xy) = i"‘ exp [ik(x - xo)]dk (4.126)

Let y,(x) and y,.(x) be two wave functions belonging to wave numbers k and
k’. The normalization integral in the infinite space is
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[ vivi dx = 8 (4.127)

—o0

where &, is the Kronecker delta. As the energy eigenvalues are continuous,
the Kronecker delta 6, is replaced by delta function in the delta function
normalization. Equation (4.127) with delta function normalization is written as

17 .
— W, dx = 0k — k'
2”:[ YW, ax ( ) (4.128)
The delta function normalized free particle wave function is then
1 .
(x) = —e¢k (4.129)
Y 27z

The delta function normalization is thus a useful technique for the normalization
of eigenfunction with continuous eigenvalues.

—WORKED EXAMPLES —

EXAMPLE 4.1 For an electron in a one-dimensional infinite potential well
of width 1 A, calculate (i) the separation between the two lowest energy levels
(ii) the frequency and wavelength of the photon corresponding to a transition
between these two levels (iii) in what region of the electromagnetic spectrum
is this frequency/wavelength?

(i) We have 2a = 1A = 1071 m. We also know

h*n?

8ma’®

E =

n

Therefore,

2
32H? 377 x (1.055 x 1072*) x 4
-E = ( )

27 8ma? 8x9.1x 1073 x 10720
=1.812x 10717 ]
= 113.27 eV
(i)) We have
hv = 1.812 x 10717 ]
or
v=27x 10'° Hz
Therefore,
8
A= c - —3X1016 =11x10%m
v 2.7 x 10

(iii) This frequency falls in the vacuum ultraviolet region.
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EXAMPLE 4.2 Show that the energy and wave function of a particle in a
square well of finite depth V|, reduces to the energy and wave function of a
square well with rigid walls in the limit V; — oo,

For a well of finite depth, Eq. (4.21) gives

ka tan (ka) = aca or tan (ka) = %
Also, from Eqgs. (4.19), and (4.16), we have
2mE 2m
K = o and o = h—z(v0 - E)
Hence
tan (ka) = o —E

When V) — oo, tan (ka) — ka. Then

2.2
nrw n°r
ka = == or k%?=
2
Hence
E = 7 h*n?
" 8ma’®

which is Eq. (4.12).
Equation (4.18) gives the wave function for a particle in a square well
with finite depth. When V|, — o, @ — o, the wave function reduces to

0 x<-a
Y(x) = {Asin (kx) + Bcos (kx) —-a<x<a
0 x>a

which is the wave function of a particle in a square well with rigid walls.

EXAMPLE 4.3 A harmonic oscillator is in the ground state. (i) Where is the
probability density maximum? (ii) What is the value of maximum probability
density?

(i) The ground state wave function is

1/4 2
(x)=(m_a)) exp _mox
Vo hm 2h
Probability density is

1/2 2
mw mwx
P(x) = yo*y, = (_hﬂ') exp (— 7 )

P(x) will be maximum at the point where

P _

dx
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mo\"? ( mw maox*
— ——|2xexp|— =0
hr h /)

x=0

or

or

Therefore, the probability density is maximum at x = 0.

(ii) P(0) = (';—;’)

EXAMPLE 44 A l-eV electron got trapped inside the surface of a metal. If
the potential barrier is 4.0 eV and the width of the barrier is 2 A, calculate the
probability of its transmission.

If L is the width of the barrier, the transmission coefficient

T = 165 (1 - é) exp [—%sz(v - E)]

2x2x107"°

o5 <10 V2x9.1%x 1073 x 3% 1.6 % 10‘19J
05 x

=16xlx§xexp
4 4

= 0.085

EXAMPLE 4.5 Complete the steps involved in deriving Eq. (4.66) from
Eq. (4.62).

Assuming the solution, u, = exp (m,x) and differentiating both sides with
respect to x, we get,

d d*
E“Z =m, exp (m;x) and “22 = m? exp (m,x)
Substitution of these values in Eq. (4.62) gives
m? + 2ikm, — (k3 + k%) = 0, b<x<0

or

ikt \/—418 + 4k + &)

m, =
1 2

On solving, we get two values of m:
m, = —ik + k, and -ik - k,
Therefore, the final solution is
u, = Cexp [(k, — ik)x] + D exp [-(k, + ik)x], -b<x<0
which is Eq. (4.66).
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EXAMPLE 4.6 Show that the probability density of the linear harmonic
oscillator in an arbitrary superposition state is periodic with the period equal
to the period of the oscillator.

The time-dependent wave function of the linear harmonic oscillator in a
superposition state is

Y(x,1) = Z C,v,(x) exp (— iEh”t)

where y (x) is the time-independent wave function of the harmonic oscillator
in the nth state. Now, the probability density

P(x,t)= |‘P(x,t)|2 = zz C;:Cn'//;'//,, exp [ i (Em ;En) t}

m n

It is obvious that P(x, 1) is dependent on time. Let us investigate what happens
to P(x, 1) if ¢ is replaced by t + (27/®). It follows that

exp [M (, N 2_;)} - [i(E,,, —En)t:lexp[MZ_ﬂ]

h h 17

- o ez E]

h

as (E, - E)) is an integral multiple of 2. That is, P(r, 1) is periodic with period
2r/®, the period of the linear harmonic oscillator.

EXAMPLE 4.7 For harmonic oscillator wave functions, find the value of
(ka, X V/,,)
For Hermite polynomials
H _  (y)-2yH (y) + 2nH, ,(y) =0

Substituting the values of H |, H and H,_
functions (Eq. 4.93) and dropping

ar V4 ¥
(—) exp | —
mao 2

[2n+l(n+1)!] 2y =2y "n) 2y, +2n|:2"‘l(n—1)!] "y, =0

| in terms of the oscillator wave

from all terms, we get

or

172

(n+1) Vst _\/5 Yy, + nllzv/n—l =0

Since y = (mw/h)“zx, inner product of this equation with y, gives
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me 172
(n+ D" (i Vo) — (T) Wi-xv,) +n'? (W w,) =0
or
n+nr\"? nh )
(i, xw,) = ( T ) (Wi Vo) + Ey (vi> )
or
A(n+1
(anw) if k=n+1
(Y xy,) = hn if k=n-1
2mw
0 if kzntl

EXAMPLE 4.8 Evaluate (x2), {p?), (V) and (T) for the states of a harmonic
oscillator.

From Example 4.7, we have

2ma

172
(n+ 1)1/2 Vi1 — (T) xy, + nllzl//n—l =0

Multiplying from left by x and then taking inner product of the resulting
equation with vy, we get

172
1+ DY (Y ¥Y) = (2"17”) (war 2w, ) + 2 (W x9,0) = 0
Then
2 _ 2\ _ _h
x%) (://,,,x 1//,,) =5 —@n+D
and

(pH = —hz(m,dz"/”)

dx?

Schrodinger equation for harmonic oscillator is

dzl//,, _ 2mE, m? 0’ x*
e T
d*y,

Substituting this value of and using the result for (x?), we get

dx2
(p2> = 2mE, — mzsz (2n + 1)
2ma

= (2n + 1) mha — %mhw
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= (n + —1) mhw
2

Expectation value of potential energy

V)= 2kx?)

Substituting the values of k and (x?), we get
1 1 E,
<V> = 5(7[ + E)hw = 7

Expectation value of kinetic energy

1 1 1 E,
<T> = ﬂ<p2> = E(Vl + E)ha) = 7

EXAMPLE 4.9 Show that the zero point energy of %ha) of a linear harmonic
oscillator is a manifestation of the uncertainty principle.

The average position and momentum of a classical harmonic oscillator
bound to the origin is zero. As per the Ehrenfest’s theorem this rule must be
true for the quantum mechanical case also. Hence

(Ax)? = (&) - () = (%)

(Ap)? = (p» - (p)* = (p?

and

For the total energy E,

(E) = ﬁ(;ﬂ) + %k(xz), (where k = ma?)

LA, L 2
= 5 -(Ap)* + Sk (Ay)

Replacing (Ap)? with the help of the relation
h2
(Ap)*(Ax)* 2 vy

we get
h2

8m

(E) >

2

1 2
+ 5 k(Ax)

For the right-hand side to be minimum, the differential of (E) with respect to
(Ax)? must be zero

— + Ly 0 or (Ax) =——
8m(Ax)min 2 2ma

and
n 2mew 1 h 1
<E>min = ?

=+ mw’—— = —ho
8m h 2 2mw 2
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EXAMPLE 4.10 A stream of particles of mass m and energy E moves towards
the potential step V(x) = 0 for x < 0 and V(x) = V,, for x > 0. If the energy of
the particles E > V|, show that the sum of fluxes of the transmitted and reflected
particles is equal to the flux of incident particles.

The Schrodinger equations for regions 1 and 2 (Figure 4.13) are

d? ) 2 2mE
7'/2,1+k0 v=0 ky = h—z,(forx<0)
42 2m(E -V,
ey - %,(for)om
E
V= V()
Region 1 Region 2

V=0

0
Figure 4.13 Potential step.

The solutions of the two equations are

v, = exp (ikyx) + A exp(—ikyx) (forx < 0)

v, = Bexp (ikx) (for x > 0)
For convenience, the amplitude of the incident wave is taken as 1. The second
term in y,, a wave travelling from right to left, is the reflected wave whereas
Y, is the transmitted wave. It may be noted that in region 2 we will not have

a wave travelling from right to left. The continuity conditions on y and its
derivative at x = 0 gives

1+A=B and ky(l-A)=kB
Simplifying, we get

A= k=k a4 B= e

ko + k ko + k
The flux of particles for the incident wave (Problem 2.11) = koh
m

The magnitude of flux of particles for the reflected wave = @IAI2
m

The flux of particles for the transmitted wave = K gy
m



One-Dimensional Energy Eigenvalue Problems 131

Sum of reflected and transmitted flux = ﬁ[ko |A]* + k|B|2]
m

= & (kO_k)2 + 4kky
m | (k+ k) (ko+ k)

ity
which is the incident flux.

EXAMPLE 4.11 A particle of mass m confined to move in a potential V(x) = 0

for 0 < x < a and V(x) = o otherwise. The wave function of the particle at time
t = 0 is given by
. Snx 27wx
v(x,0)=A sin—— cos—
a a

(i) Normalize y(x, 0) (ii) Find w(x, ¢) (iii)) Is w(x, ¢) a stationary state?
It is given that

2
v(x,0)=A sinSﬂ cosﬂ = % (sinm + sin 3ﬂj

a a a a
(i) The normalization condition gives

A% ol Tzx . 3rx )
—J sin—— +sin—— | dx =1

0 a a

A ¢ L, Im .37 . Irx . 3«7
—J (31n2—x+31n2—x+2 sm—xsm—x)dx=1
0 a a a a

A’(a a 2
—|=+=|=1 or A=—f4
4 (2 2) Ja

Normalized y(x, 0) is:

(x O)—L sin7ﬂ+sin3ﬂ
RO A R a

For a particle in an infinite square well the eigenvalues and eigenfunctions are:

2 2h2

172

n°r 2

E,=——— and ¢,,(x)=(—j sin . n=1,23, ..
2ma a a

Hence

1
w(x, 0)=$(¢7 + ¢3)
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(ii) The time dependence of a state is given by

—iEt/h

y(x,)=y(x,0)e
Hence y(x, 1) in this case is:

yx,1)= % (9, e

—iEqt I h + ¢3 e—1E3t/h)

(iii) It is not a stationary state since W(x, f) is a superposition state.

EXAMPLE 4.12 A particle of mass m and charge ¢ moving in a one
dimensional harmonic potential is subjected to an electric field € in the
x-direction. Find the energy levels and eigenfunctions.

Additional potential energy due to the electric field € = —eex. The
Schrodinger equation of the oscillator is:

nd 1
—2—d—l/2/+(5kx2 —esx)y/=E;1/; k = mo?
m dx

Introducing a new variable x, defined by

2 k
2.2

— kx? —e£x=lkx12— ¢ ¢
2k

Since dx = dx,, with this expression for the modified potential energy

nodw 1, e’e?
- — ik} y=|E+
om a2 Y ok |V
2.2
Writing E'=E+ ezi
ndv 1,
- 4t —kxly=FE
m dx2 2 1V’ V’

which is the Schrodinger equation of a single harmonic oscillator. The energy
eigenvalues are:

E,’,=(n+%jha); n=0,1,2, ..

1 2.2 2.2
E,=|n+— ho - <5 = n+l ho - 2£
2 2k 2 2ma*
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The eigenfunctions are given by

mao 12 1 1 max?
v, = ( j H, (Nmo/hx)) exp (— L ]

zh ) 2 2

EXAMPLE 4.13 Consider a particle of mass m in the one dimensional short
range potential

V(x) = -V,6(x), V,>0

where 6(x) is Dirac delta function. Find the energy of the system.
The Schrodinger equation for such a potential is:

n dy(x)

T om a2 = Vp 6(x) w(x)=E w(x)
d*v 2mEy  2mV,
o T T

Since the potential is attractive the equation to be solved, when E < 0, is:

2mE
_ e

d? 2mV,
dxgl - Ky =- m_o Sy K=

The solution everywhere except at x = 0 must satisfy the equation:
42
- Ky=0
dx

and for the solution to vanish at x — *oo, we must have

e‘k", x>0

u/(x)={ e

e, x<0

@

The normalization factor is assumed to be unity. Integrating the original equation
from —A to +A, A being an arbitrarily small positive number.

[d—*”]l e j y dx=- 2100 j 5(x) w(x) dx

dx |, K2

2mVy w(0) (Appendix C). Hence, in

The integral on the right side becomes — >
h

the limit A — 0, the above equation becomes
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dy dy 2mV,
e I e =_ 0
( dx jx=0+ (dx jx=0— h2 W( )

Substituting the values of the left hand side from Eq. (i)

2mV,

—k w(0) -k y(0)=- PP w(0)
i = m\z/0 or — 2n12E _ m2\4/02
n /] n
_m
2h?

EXAMPLE 4.14 Consider the one dimensional problem of a particle of mass
m in a potential V= forx <0; V=0for0 < x<aand V=V, forx > a.
Obtain the wave functions and show that the bound state energies (E < V) are

given by
N2mE E
an

The Schrodinger equation for the different regions are:

v, , 2mE
P T

d? 2
K‘;’ —Ky=0, K =h—'f(v0-E), x>a

The solution of these equations are:

y = A sin kx + B cos kx 0<x<a

—kyx kyx x>a

w=Ce " + De

where A, B, C and D are constants. Applying the boundary conditions y = 0
atx=0and y - 0 asx = o

y = A sin kx 0<x<a

w=Ce x>a
. dy . .
The requirement that y and T are continuous at x = a gives
X

A sin ka = Ce ™"

Ak cos ka = —Ck,e”"“
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Dividing one by the other,

tan ka = — i
1
\N2mE a E 12
tan | ——— |=—

EXAMPLE 4.15 Consider a stream of particles of mass m each moving in
the positive x-direction with kinetic energy E towards the potential barrier

3E
V(x) =0 for x<0 and V(X)=T for x > 0

Find the fraction of the particles reflected at x = 0.

The Schrodinger equations for the different regions are:

v, , 2mE
dx_2+k V/=O, k =0 x<0
d*v 2m(3E

LI _Ely=0 x>0
dx? h2(4 jw g

d? kY
?1/2/"’(5) =0, x>0

The solution of the first equation is:

v=el 4 et x<0

where r is the amplitude reflection coefficient since e ** represents a wave
travelling in the negative x-direction. The solution of the second equation is:

v=1t*? x>0

where ¢ is the amplitude transmission coefficient. It is also oscillatory, since the
height of the barrier is less than the kinetic energy of the particle. As the wave
function is continuous at x = 0,

l+r=t
As the derivative dy/dx is continuous at x = 0,

kt
k(l-r)=—
a-r >

Solving the two equations, r = 1/3 and hence one-ninth of the particles are
reflected at x = 0.
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EXAMPLE 4.16 An electron of mass m is contained in a cube of side a
which is fairly large. If it is in an electromagnetic field characterised by the

vector potential A = Byx J,  is the unit vector along y-axis determine the energy
levels and eigenfunctions.

The Hamiltonian operator of the electron having charge —e is:

2
1 B
=3 [p§+(p"+ oeX) +p§]
m C

where p , p,» p, are operators.

We can easily prove the following commutation relations:
[H pl=[H pl=0 and [H p]#0

Hence, by virtue of Eq. (3.106a) p and p, are constants. The Schrodinger
equation is: ‘

dx? c? c

[ B 2Bep
2m

+p?+p§]W=EW

— w42 B2e®x? Bye pyx 2 1
WJ{ v R Sy Bt |y

2m  dx? 2mc? mc 2m 2m

Introducing a new variable x, defined by

cp,
Bye

2¢p x czpz,

xlz =24 ) )

2 2
Bye Bje

Multiplying by B§e2/2mc2,

2
Bie’x? Bie’x* Bye p.x  p,
= + —+

2

2

2mc 2mc mc 2m

In terms of the new variable, the Schrodinger equation takes the form:

W dy VBSdy (15
9 7t 2 E p ¥
mdx; 2 mc 2m

The form of this equation is similar to that of the Schrodinger equation for a
simple harmonic oscillator. Hence, the energy eigenvalues are:

1, 1
E-—p ' =|n+—|iw, n=0,1,2, ..
om b ( 2)
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E=(n+%)ha)+Lp2 n=0,1,2, ..

2m" Y
where
2 2
2 BO e Boe
mw” = > or w=——
mc mc

The eigenfunctions are given by

172 { 1/2
Wn(xl)=[(gj ] H,,(\/E xl) P /2
V1 2"n!

Here
_mo _ By
/] ch

EXAMPLE 4.17 A harmonic oscillator moves in a potential
1.2
V(ix)= 5 kx® + cx

where ¢ is a constant. Find the energy eigenvalues.

The Schrodinger equation is:

wday (1,
-— + | =k + =E
R U i d

W dv 1 , 2
————+—k| X +—cx =E
2m dx2 2 ( k v v

Changing the variable to x, by defining x, = x + c/k,

2c c
=t S+ =
k 2

2c c?
x2 +—x=x12——2
k k

Since dx, = dx, the Schrodinger equation reduces to

wdy 1 , 2
-+ —k| Xy —— =F
'm dx12 2 ( 1 k2 W W
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wdv 1, ., c?
-——+—kxy=| E+ —|y=E
2modx? 2 o) V=RV

02

E'=E+—
2k

Hence the energy eigenvalues are:

1 2
E;=(n+—jhv or E, = n+l ho — <
2 2 2k

— REVIEW QUESTIONS —

1.

A particle confined in a box must have a certain minimum energy called
zero point energy. Comment.

Sketch graphs of wave function y and of ly I for the n = 3 and 4 states
of a particle trapped in a potential well of infinite depth.

. Write the Schrodinger equation and the form of the wave function in the

different regions of a square well with finite depth.

4. Explain symmetric and antisymmetric wave functions with examples.

5. Explain quantum mechanical tunnelling.

6. In barrier penetration problem, why the exponentially increasing function

e™, where « is given by
o = 2m(V, — E)
h2
is also an acceptable solution inside the barrier.

A particle having energy E is incident on a finite barrier of height
Vo(E < V). lllustrate the wave function in the different regions.

8. Explain how barrier tunnelling accounts for a-decay by certain nuclei.

9. What are Bloch functions? State and explain Bloch theorem.

10.

11.

12.

13.

In a one-dimensional crystal, the periodicity of the potential led to the
concept of energy bands. Explain.

Explain why the quantum oscillator is found outside the parabolic potential
barrier.

Sketch graphs of y and |y |? for the first 4 states of the one-dimensional
harmonic oscillator.

What is zero-point energy of harmonic oscillator? How is it explained?
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— PROBLEMS —

1.

Obtain the energy eigenvalues and eigenfunctions of a particle trapped in
the potential V(x) = 0 for 0 < x < a and V(x) = o otherwise.

Show that the wave functions for the different energy levels of the particle
trapped in the square well in Problem 1 are orthogonal.

. Calculate the expectation values of position (x) and of the momentum

{p,» of the particle trapped in the one-dimensional box of Problem 1.

. An electron in a one-dimensional infinite potential well (Section 4.1)

goes from the n = 4 to the n = 2 level. The frequency of the emitted
photon is 3.43 x 10'* Hz. Find the width of the box.

. Evaluate the probability of finding the trapped particle of Problem 1

between x = 0 and x = a/n, when it is in the nth state.

An alpha particle is trapped in a nucleus of radius 1.4 X 10713 m. What
is the probability that it will escape from the nucleus, if its energy is
2 MeV? The potential barrier at the surface of the nucleus is 4 MeV.

The wave function of a particle confined in a box of length a is
N x
yvx) = (—) sin (—), O<x<a
a a

Calculate the probability of finding the particle in the region 0 < x < a/2.

. Find (x) and (p) for the nth state of the linear harmonic oscillator.

9. For the nth state of the linear harmonic oscillator, evaluate the uncertainty

10.

11.

12.

13.

14.

product (Ax) (Ap).

A stream of particles of mass m and energy E moves towards the potential
step of Worked Example 4.10. If the energy of particles E < V,,, show that
there is a finite probability of finding the particles in the region x > 0.
Also, determine the flux of (i) incident particles (ii) reflected particles
(iii) the particles in region 2. Comment on the result.

A beam of 12 eV electrons is incident on a potential barrier of height
30 eV and width 0.05 nm. Calculate the transmission coefficient.

For the linear harmonic oscillator in its ground state, show that the
probability of finding the particle outside the classical limits is about
16 per cent.

An electron moves in a one-dimensional potential of width 8 A and depth
12 eV. Find the number of bound states present.

A linear harmonic oscillator is in the first excited state (i) where is its
probability density maximum? (ii) what is the value of maximum
probability density?
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15.

16.

17.

18.

19.

20.

21.

22,

23.

Sketch the probability density |y > of the linear harmonic oscillator as a
function of x for n = 13. Compare the result with that of the classical
oscillator of the same total energy and discuss the limit n — oo.

Calculate the energy levels and wave functions of a particle of mass m
moving in the one-dimensional potential well defined by

0 for x <0
Vix)= 122

S max for x >0

The strongest IR absorption band of '2C'°0 molecule occurs at 6.43 x
103 Hz. If the reduced mass of '2C'°0 is 1.185 x1072° kg, calculate
(i) the approximate zero-point energy (ii) the force constant of the CO
bond.

For the nth state of the linear harmonic oscillator, what range of x values
is allowed classically.
An electron is confined in the ground state of a one-dimensional harmonic
oscillator such that Ax = 107'° m. Assuming that (T)=(V), find the
energy in eV required to excite it to its first excited state.
An electron having energy E = 1 eV is incident upon a rectangular barrier
of potential energy V, = 2 eV. How wide must the barrier, so that the
transition probability is 1073?
A particle of mass m confined to move in a potential V(x) = 0 for
0 < x < a and V(x) = o otherwise. The wave function of the particle at
time ¢t = 0 is:

w(x0)=A (2sin@ + sin&j

a a

(i) Normalize y(x, 0) (ii) Find w(x, 1), (iii) Is y(x, r) a stationary state?

The force constant of HC1 molecule is 480 Nm! and its reduced mass is
1.63 x 1027 kg. At 300K, what is the probability that the molecule is
in its first excited vibrational state?

For a one dimensional harmonic oscillator, using creation and annihilation
operators, show that

(Av) (Ap>=(n+%jh



< Chapter \ 5
|

Three-Dimensional
Energy Eigenvalue Problems

In the previous chapter we applied the basic ideas developed to certain important
one-dimensional potential problems. In this chapter, we demonstrate how
effectively quantum mechanics explains most of the important features of some
of the three-dimensional problems.

5.1 PARTICLE MOVING IN A SPHERICALLY SYMMETRIC
POTENTIAL

In a spherically symmetric problem, the potential depends only on the distance
of the particle from a fixed point. The time independent Schrodinger equation
for such a system is

V3y(r) + i—’;’ (E-V)pr)=0 (5.1)

Since the potential is spherically symmetric, it is convenient to work in spherical
polar coordinates r, 6, ¢, (0 S r < e, 0 <0< 7 0 < ¢ < 2m). Expressing
Eq. (5.1) in polar coordinates, we get

19 2071//) 1 2 ( . 071//) 1 Py 2m
2~ Zline Y Y E-V)y=0
r? or (r or " r’sin@ J6 s 0 i r’sin’6 Jp* * n? ( v

(5.2)

141
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Separation of the Equation
Equation (5.2) can be separated into three equations by writing

v(r, 6, ¢) = R(r) © (0) D(¢) (5.3)
Substituting this form of y in Eq. (5.2) and multiplying by

r? sin’@
ROD
we obtain
.2 . 2
S ei r2£ + smei sin@ @ + 2—m[E—V(r)]rzsinzé? = —i—d @
R dr dr O do daeé 2 [0} d¢2
(5.4)

The left-hand side of Eq. (5.4) is a function of r and 6 and the right side is a
function of ¢ alone. This is possible when each side is a constant, say m> Then

d*®
9D - wrap) 5.5)
d¢
and
sin0dd ( ,dR) sin@ d (.  dO) 2m 2.2 )
2 ;(r ;)+ ) d—e(sme d_B) +h—2[E—V(r)]r sin“@=m (5.6)

Dividing both sides of Eq. (5.6) by sin?@ and rearranging, we get

2
ld ﬁﬂ +2—m(E—V)r2=— 1 d sin@ a0 L "
R dr dr 72 ®sind do sinZ6@

This is possible when both sides are equal to a constant, say A. Consequently,
we get the B-equation and the radial equation:

2
#i(sine@% 1-" _le=0 (5.7)
sing d@ dé sin’@
and
1d(,dR) 2m A
— P2+ = [E-Vvn]R-Z R=0 .
r dr(r dr) hz[ "] r’ S

Thus, the three-dimensional wave equation (5.2) is separated into three one-
dimensional equations (5.5), (5.7) and (5.8).

Solution of the ¢-equation
The solution of Eq. (5.5) is straightforward and is given by

D(9) = Aetimt
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For @ to be single valued, ®(¢) = ®(¢ + 27). Therefore
Ae:timq) - Aeiim(¢+27t) or 1= e:tim27t

This is possible only if m = 0, 1, 2, ... The quantum number m is called the
magnetic quantum number. The normalization condition gives

2 2
1= [@'® dg=|af [dg
0 0
Then

AP2z=1 or A= _L_
27
except for an arbitrary phase factor which can be taken as zero. The normalized
solution is then

D=L o =0, 41, 42, .. (5.9)

NPT

Some of the normalized ®(¢) are given in Table 5.1. As sin (Iml¢) and
cos (Im|¢) are also solutions of Eq. (5.5), the real form of the solutions are also
listed in the table.

Table 5.1 The First-few Normalized ®(¢) functions

Iml Complex form Real form
1 1
0 O = b = —
0 27 ° or
1 o = ! &' o = Lcos ¢
1 \/ﬁ 1cos J;
o = ! i o, = L sin ¢
\/E 1sin \/;
2 D, = ! i2¢ o, = 1 2
2= \/ge ZCOS_ﬁCOS(¢)
1 2 1.
q)_z = \/g e q)Zsin = ﬁ Sin (2¢)

Solution of the 8-equation

To solve the 6-equation, a new variable z = cos 6 is introduced. On
differentiating, we get

dz = —sin 6d0
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We may also write

. d N
—_ = - _— = = 1 —_
a6 - Sl (1-2) dz
In terms of z, Eq. (5.7) is
d 1\ dO(z) m?
“-2)==+]a- O(z) =0 )
dz[( @)= ] [ — 22] @ (5.10)

which is associated Legendre equation. Equation (5.10) has poles at z = +1. For
physically acceptable solution,
A=11+ 1), 1=0,1,2, ... m=0,=%1,£2, ..., +1]

The solution of Eq. (5.10) is the Legendre polynomial P(z) for m = 0 and the
associated Legendre polynomials P;™!(z) for m # 0. The normalized solution
is then

e(6) = N, P,"\(z) (5.11)

where N, is the normalization constant. The normalization condition is

+1
Nl [ R ) dz =1
-1
The orthogonality relation for associated Legendre polynomials

]l Pl PP yaz = —2 -+ ) (5.12)
Joe QL+ (1~ |m]) " '
leads to
S IR Chall (cos 6) (5.13)
! 2 (14 |m) ! '

where € = (-1)" for m > 0 and € = 1 for m < 0 as per the established phase
convention.

Spherical Harmonics

The solution of the angular part of the equation, called the spherical harmonics,
is independent of E and V(r). Combining Egs. (5.9) and (5.13), the normalized
angular part of the wave function is

I - ! .
2+ IM P" (cos @) ™ (5.14)

Y,,m(9,¢)=e\/ ar (L+ |m) !

where
[1=0,1,2, ... m=0, £1, £2, ..., */ (5.15)

The spherical harmonics are mutually orthogonal and the first-few of them are
given in Table 5.2.
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Table 5.2 The First-few Spherical Harmonics

Complex form Real form
1 1
Y = Y. =
0,0 ( 4”)1/2 0,0 ( 4”)1/2
172 12 12
Yl 0= (i) cos 0 Yl 0= (i) cos O = i 2
’ ar ’ 4 Ar r
172 12 172
3 . 3 3 X
Y, = -|— sin G)e’® Y =|—| sinfcosgp=|—| =
1,1 (87[) ( ) 1,1cos (4”) ¢ (4”) r
Y 3 0)e ¢ Y 3 )" in @ si >
- (g) (sin B)e Lisin = | 27 sin 6 sin ¢ = yp p
12 12
5 5 5
Y, — | (Bcos?6-1) Y,o=|—| (3cos’0-1) (—) = -1
207 (167[ > \16r 167

Yz‘l (g) (Sln 0 cos B)er¢ YZ,]COS = (E sin @ cos 6 cos ¢ = (E) E

47:) ar) ¢?
12 12 "
Y= B (sinf cos )e™? Y, 16in = (E) sinf cos Bsin ¢ = L)
8 ’ 4 ar) 2
1”2 ' 15 V2 42_ |2
Y,,= i (sin?@)e??® Y, pees = i sm20 cos (2¢) = (_) X~
' 32 167 167 2
12 12
15 ; i 15 . 15 xy
Y, ,=|——1| (sin?@)e%? —| sin?6sin(2¢) = | —| =
22 (32;:) (570 Va2 = (167[) @9 (16/:) 2

The presence of the factor e™? makes the spherical harmonics complex in
general. Often it is advantageous to work with real form. We have already seen
that a linear combination of degenerate eigenfunctions of a degenerate level is
also an eigenfunction with the same eigenvalue. Thus, one can express Y|, and
Y, _, in the real form by taking a suitable linear combination of them. Similar
linear combinations are taken for other spherical harmonics also. The real
forms of the first-few of them are also listed in Table 5.2.

Radial Equation

To solve the radial equation, Eq. (5.8), the explicit form of the potential V(r)
is needed. However, this can be expressed in the form of a one-dimensional
equation by writing

R() = @ (5.16)
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The radial equation now reduces to

2 2
d*y | 2m 11+ Dh ]x o 517

+ |E- V(@) -
dar* n’ [ 2mr?
This has the form of a one-dimensional Schrodinger equation of a particle of
mass m moving in the direction of r in a field of effective potential
1 + DA
Ve = V() + % (5.18)
2mr
The additional potential /(I + 1) #%/(2mr?) is a repulsive one and
corresponds to a force I(I + 1) #%*(mr). The centrifugal force mr@? can be
written in terms of the orbital angular momentum L as

2
2
mr-@ 2
mre? = (—3) - L (5.19)
mr mr

This form of the centrifugal force and the force corresponding to the additional
potential suggest that L? can be taken as

L2 =1+ 1)A? (5.20)

This shrewed guess regarding the value of L? is put on firm theoretical basis
in Chapter 8. As the quantum number [ is associated with the orbital angular
momentum, it is called the orbital angular momentum quantum number. Often
we say that the orbital angular momentum is /%, though the exact value is

[I(1 + D]"?#h. If V(r) is Coulombic (-ZZ'e*/r), the additional potential is
negligible at large distances. However, this becomes the dominant term at

close distances. Figure 5.1 gives a plot of V. as a function of r for a Coulomb
potential.

—
N
(98

Vete (1)

Figure 5.1 The effective potential V4 verses r for a Coulomb potential.
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5.2 SYSTEM OF TWO INTERACTING PARTICLES

So far we have considered the motion of a particle in a potential field. However,
there are situations wherein we have two interacting particles moving in a
three-dimensional space. The wave equation of such a system can be reduced
into two one-particle equations, one representing the translational motion of
the centre of mass and the other the relative motion of the two particles.

Hamiltonian Operator

The position vectors and masses of the two particles are shown in Figure 5.2.
The radius vector of the centre of mass

_ mr +mr,
R = W (5.21)

y
X
Figure 5.2 System of two interacting particles.
The relative position vector is given by
r=r -r, (5.22)
From Eqgs. (5.21) and (5.22), we have
mr
=R+ = p=rR-T"_ (5.23)
m; + m, m, + m,
The momenta of the two particles can be written as
p, = mi, = mR + pi, p, = mi, = m,R — p¥ (5.24)
where
mym
U= 172 (5.25)

is called the reduced mass of the particles. Assuming the potential to be
dependent only on the distance between the two particles, the Hamiltonian of
the system is
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2 2
H=2_, 2 Ly, (5.26)
2m, 2m,

Substituting the values of p, and p,

1 . 1{ 1 1
H = —(m +m,)R* + —(— + —],u21"2+ V(r)
2 m, m,

1 1,
= —p2+—p*+V 5.27
o PR 2 Dr ) (5.27)

where M = m + m,,p, =M R and p, = ur. Replacing the dynamical variables
by the corresponding operators and writing

2 2 2 2 2 2
V?e=072+072+072 and Vf=0‘)—2+0‘)—2+07—2 (5.28)
ax°: JY* JZ dx-  dy" Jz
o, .,
H=——Vy —— V. +V(r) (5.29)
2M 2u
The time-independent Schrodinger equation is then
S g gy s (Ror) = By (R )
oM R T () |yr(R,r) = E;yr (R, 1 (5.30)

Wave Equation for Relative Motion

Equation (5.30) can be separated into two equations by writing
vr (R, 1) = X(R) y(r) (5.31)
With this form of v, (R, r), Eq. (5.30) reduces to
o1, o1 o,
-— =VixR)=———V +E -V .
oM g rXR) ) LY@+ Ep (5.32)

For the validity of Eq. (5.32), each side must be equal to a constant, say E,.
That is

o,
Y; Vzx(R)=Ex(R) (5.33)
and
o,
"o Viy(r) + V(r) w(r)=(E; - E,) y(r) (5.34)

As Eq. (5.33) is the same as a free-particle equation of mass M, it describes
the translational motion of the system in space. Equation (5.34) is the same as
the Schrodinger equation of a particle of mass y moving in a field of potential
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V(r) and represents the relative motion of the two particles. The energy for the
relative motion is E. — E, = E. In the coordinate system in which the centre
of mass is at rest, E, = 0 and then E is the total energy of the system. Thus,
the Schrodinger equation for relative motion is

72

~u V2 (r) + V(r) y(r) = Ey(r) (5.35)
In the following sections we shall consider two important systems of two
particles, the rigid rotator and hydrogen atom.

5.3 RIGID ROTATOR

A rigid rotator consists of two masses m, and m, separated by a fixed distance
r. Consider the rotation of the system about an axis passing through the centre
of mass and perpendicular to the plane containing the two masses. For free
rotation, the potential V(r) = 0. As r is fixed, the wave function will depend
only on the angles 6 and ¢. In spherical polar coordinates, the Schrodinger
equation for relative motion reduces to

2 2
h [ ! i(sinei)Jr L ]y/(e,¢)=Ey/(e,¢) (5.36)

24| r¥sing 20 00) r%in’@ W
or
1 of. oy 1 d*w 2ur’E
—|sin0—| + + 6,9=0 5.37
sing ae(sm ae) o op o VOP -37)
Writing
2
2,1;r2E - 2th =2 (5.38)
and
v (6, ¢) = 6(8) D(¢) (5.39)
Equation (5.37) reduces to the following two equations:
d*®(9) 2
=-m"D(9) 5.40
17 ¢ (5.40)
and
1 d do m?
—isin@ —|+| 4 - 0(6)=0 41
sinede(sm de) [ e 9] (0) (541)

where I = pr? is the moment of inertia of the rotator and m? is a constant.
These equations are the same as Eqs. (5.5) and (5.7). Hence, the rigid rotator
wave functions are the spherical harmonics Y, (6, ¢). From the solution, it
follows that A = /(I + 1). From Eq. (5.38) the energy eigenvalues are
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Il + DA
g < lron
21
This constitutes a set of quantized energy levels with (I + 1)#%I separation
between any two consecutive levels, (I is the quantum number of the lower

state). Since (21 + 1) values of m are possible for a given value of /, each state
is (21 + 1)-fold degenerate.

, 1=0,1,2, ... (5.42)

5.4 HYDROGEN ATOM

Theory of hydrogen atom is of fundamental importance as it provides the basis
for the theory of many electron systems. Also, this is the only atom for which
exact solution of the Schrodinger equation is possible. For discussion we shall
consider hydrogen like atom which consists of a nucleus of charge Ze and an
electron of charge —e separated by a distance r. The potential is Coulombic and
is given by

kZe*

r

Vir) = - (5.43)

The time-independent Schrodinger equation for relative motion is given by

n? kze?
[— v ] ()= Ey(r) (5.44)
2u r

Radial Equation

Expressing Eq. (5.44) in spherical polar coordinates (, 6, ¢) and separating the
variables as in Section (5.1) by writing

v (r, 6, ¢) = R(r) O(6) ©(¢) (5.45)
we get the radial equation as
2 2
ii(ﬁ ﬁ) p 2\ p MEDR K2 g (5.46)
rrdr\ dr n? 2ur? r

The solution of the angular part is the spherical harmonics Y, (6, ¢).
To solve Eq. (5.46), let us introduce a variable p and a constant A defined by

= 3 = — 5.47
p = h2 r, ﬂ 7 5 ( )

As E is negative for bound states, p and A are real quantities. In terms of the
new variable, Eq. (5.46) becomes

2
ﬂ+3£+[_l_’<’+1> ﬂ]H (5.48)

2 > T
dp~ pdp 4 p P
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Solution of the radial equation. Its asymptotic solution can be investigated
first. When p — oo, Eq. (5.48) reduces to

2
4R _1p o
dp* 4
Its solutions are R = ¢®? and e”2. Out of these two solutions, only e®? is
acceptable since e”’? — o0 as p — . The exact solution of Eq. (5.48) be
R(p) = e F(p) (5.49)
Substitution of Eq. (5.49) in Eq. (5.48) gives the differential equation satisfied
by F(p) as
d’F dF
2
—+p2-p)—+|pA-1(l+1)-p|F(p)=0 5.50
P PR lpd=i+) - p]F(p) (5.50)
When p = 0, we get
I+ HDFO0)=0 or FO)=0, I#0 (5.51)
Therefore if we try a power series solution for F(p) it must not contain a
constant term. Hence

=3

F(p) = Y ap™ (5.52)

k=0
With this value of F(p), Eq. (5.50) reduces to
Y a(A-1-c=k)p ™t + Y ap(P+2ck + K2+ c+k—12-Dpt =0
k

k
(5.53)

Equation (5.53) is valid for all values of p only if the coefficient of each power
of p vanishes separately. Equating the coefficient of p¢ to zero, we have

afc*+c-PF-D=0

or
t+c-P-1=0 (as ay# 0)
or
c-Dc+I1+1)=0
Therefore,

c=1 or c=-(1+1) (5.54)

If c = - (I + 1), the first term in F(p) would be a/p +1 which tends to infinity
as p — 0. Hence ¢ = [ is the only acceptable value. Setting the coefficient of
p'+**1 in Eq. (5.53) to zero, we obtain

4 = I+k+1-21 4
Ml e+ Dk +21+2) k

(5.55)
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This recursion relation allows us to determine the coefficients a;, ay Ay ... in
terms of a, which is quite arbitrary. For large values of k, we get from Eq. (5.55)

Ayl _ l

In the expansion

A k! 1 1
= = % J—
A, (k+D! k41 ke k

Hence as k — oo, the series for F(p) behaves like p’e? and
R(p) - e—p/Zplep — plep/2

This value of R(p) is not acceptable and therefore the series must break off
after a certain value of k, say »’. For this to happen a,,,, must be zero. Then,
from Eq. (5.55)

I+n+1-21=0, n=012,.. (5.56)

Energy Eigenvalues

Defining a new quantum number n by

, kze* | u
n=l+n+1=A4= A\ 2E
Squaring and simplifying
2 4 2 4
- MZe | HZe n=1,23, .. (557

@dme)2ntn? Rentelntn®

Since n” and [ are integers including zero

n=1,2, .. (5.58)
As n > [ + 1, the highest possible value of [ is n — 1. Thus
[1=0,1,2,...,(n-1) (5.59)

The new quantum number n is called the principal quantum number which
determines the energy. For hydrogen Z = 1 and the reduced mass y = m, the
mass of electron.

The energy E, is the same as the one obtained by Bohr on the basis of
quantum ideas. The major difference is the occurrence of the concept of
stationary states and the quantization of energy as a consequence of the solution
of the Schrodinger equation.
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Radial Wave Functions

The above restriction in energy makes the series for F(p) into a polynomial.
Writing

F(p) = p'L(p) (5.60)
Equation (5.50) reduces to
2
praito} KD 4 o140 p R 4LP) | w—1-1) L(py=0 (5.61)
dp’ dp

The associated Laguerre polynomial of order p and degree (g — p), denoted as
L’; (p), satisfies the equation
27p p
q

P +(p+1—/3)—p+(q p) Li(p)=0 (5.62)

Equations (5.61) and (5.62) are identical if L(p) is taken as Lf,’:} (p) - Hence

R, () =N e??p' L (p) (5.63)

The normalization integral

J Ry (Nridr=1
0

allows the determination of the constant N. Hence

n3

Using the orthogonal properties of associated Laguerre polynomials

n*h® | |2 2n[(n+ D] B
8u°Z%k3e® (n-1-11
or
172
27 jike® ’ (n—1-1)!
V] =+ 3 5 (5.64)
nh 2n[(n+1)!]

Thus, the normalized radial wave functions are

3 1/2
Rnl ) = - {[ 2Z ] (n—=1- 1)'3} e—p/2 IL2I+1 (p) (565)
nay ) 2n((n+ 1!
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where
4e, i
ay =—% (5.66)
Me

The negative sign is selected to make R, positive. As u is approximately equal
to the electron mass, a, = a, the Bohr radius. Some of the radial wave
functions are given in Table 5.3. It may be noted that at the origin the wave
functions R, R, R, are finite whereas R, R;,, R,, are zero.

100 “20° 21° 7131

Table 5.3 The First-six Radial Wave Functions of a Hydrogen-like Atom

n l R, (1)
32
| 0 2( z ] o~ 2@0)
9
32
) 0 Z 5 _ Zr) ~zrica)
2a, a,
32
1 (Z Zr  _zv(2a0)
1 —|—| —e
V3 \ 24 9
31 55
3 0 212 Vo182 220 | e
27| 3a, a  ay
4\/5 VA 2 Zr Zr ~Zr/(3ag)
1 — == =]6-—|e
54 \ 3a, a, ag
31 2
5 4 (i) (ﬁ) o~ ZrlGag)
27\/5 3a, a,

Wave Functions of Hydrogen-like Atom
The complete wave function for hydrogen-like atom is given by

Y, . 6,9) =R, (NY, (6, ) (5.67)

where
n=123 ..., 1=0,1,2,3,....,(n-1), m=0, =1, £2, ..., £]

The explicit form of the wave function for some of the states are

1 7 3/2
Vg = W[_] P (5.682)

ay
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3/2
1 Z Zr ~Zrl(2ay)
= |5 l-—— 0 5.68b
Y00 27 [2%] [ 2%]3 ( )
1 7 5/2
Vao = m [2—] r e ZrlCa) oo (5.68¢)
T ay
1 7 5/2
Vo = i [—] re”#'%) (sin §)*? (5.68d)
T ay

It may be noted that the expressions for the / = 1 state contain the factor r'.
The [ = 2 states will have the factor 7> and so on. The presence of the factor
¥ makes the wave function zero at r = 0 except for the s-states.

Radial Probability Density

For the state specified by the wave function y,, , the probability of finding the
electron in a volume element d7 is

ly,, 1747 = IR > 1Y, I r sin 6 dr d6d¢

The probability of finding the electron in a thin spherical shell bounded by
radii » and (r + dr) is then
&%
P() dr =R, dr [ [ 1Y, sin 6 d6 dg
00

Since the spherical harmonics are normalized to unity
P (r) dr = R J* P dr (5.69)

The radial probability density P ,(r) is defined as the probability of finding the
electron of the hydrogen atom at a distance r from the nucleus. Then

P () = PR (5.70)

Plots of radial probability density for some of the states are illustrated in
Figure 5.3.

For the ground state, a maximum probability density P, exists at a radial
position given by

dP,
dr

2
2r _
=0 or |2r—-=— |20 =0 or r=a,
a

The maximum occurs at a distance equal to the Bohr radius from the
origin. Though the radial probability density is maximum at the Bohr
radius, a spherical distribution of the ground state probability cannot be
overlooked.
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Figure 5.3 The radial probability density P, (r) for the hydrogen like atom.

5.5 HYDROGENIC ORBITALS

The three quantum numbers n, [, m specify the hydrogen atom wave functions
and describe the motion of the electron. The wave function y ,  of the electron
in the hydrogen atom is referred to as the hydrogenic orbital. When [ = 0, 1,
2, 3, ..., the electron is defined as an s, p, d, f, g, etc., electron. This notation
is derived from an old description of spectral series: sharp series, principal
series, diffuse series and fundamental series. An electron with / = 0 is an s-
electron and the corresponding wave function is called an s-orbital. The wave
functions corresponding to [ = 1 are the p-orbitals and those for / = 2 are d-
orbitals and so on. Thus the symbol 3d is a shortened notation for the electronic
wave function havingn =3, /=2 and m =2, 1, 0, -1, -2.

The wave function Ym (s 6, ¢) can be written as the product of the two
functions R (r) and Y, (6, ¢). For a given value of /, m can have the values
L{d-1,(-2),..,1,0,-1, ..., -l and the radial part R (r) is the same
for all the (2/ + 1) wave functions. Hence, the wave functions are represented
often by the angular part Y, (6, ¢) only. Thus, the state having n = 2, I = 1 have
m =1, 0, -1 and the states are sometimes denoted as 2p,, 2p, and 2p ,. We
have already discussed in Section 5.1 how real forms of spherical harmonics
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are formed. The linear combination of 2p, and 2p , gives one combination
with the factor cos ¢ and the other with the factor sin ¢ (Table 5.2). The one
with the cos ¢ factor is denoted as 2p and the other as 2p . The 2p,, is denoted
as 2p,. Similar notations are used for higher states also.

Representation of orbitals are usually done in two ways: in the first
method, graphs of Y, (6, ¢) and in the second method contour surfaces of
constant probability density are drawn. Polar representations of the angular
part of s, p and d orbitals are illustrated in Figure 5.4. These plots represent
surfaces in three dimensions, the distance from the origin to a point on the graph
will be proportional to the square of the angular part, 1Y, (6, @) of the orbital.

The s-orbital wave functions depend only on r and therefore they are
spherically symmetric. Each p-orbital has two lobes. For p , P, and p_, the lobes
are along x, y and z axes with yz, xz and xy as nodal planes. Four of the five
d-orbitals have four lobes and two nodal planes each. The fifth one (dzz-orbital)
has two lobes along the z-axis and a ring (charge distribution) in the xy plane.

y

any axis L any axis L any axis L
9 to x-axis to y-axis to z-axis

Q)
¢/

axis 1 to
z-axis

Figure 5.4 Polar representations of |Y, (6,¢)|%of hydrogen s, p and d
orbitals. The distance of the curve from the origin is proportional
to the square of the angular part of the atomic orbital.
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5.6 THE FREE PARTICLE
A free particle has three degrees of freedom and its time-independent

Schrodinger equation is

_ 32
vy = By (5.71)
2m

Plane Wave Solution
In cartesian coordinates, writing
v (r) = XY (y)Z(2) (5.72)

Equation (5.71) can be separated into the three equations:

da’x 2mE
Tﬁ") XD =0, k=T (5.73)
d*Y(y) 2mE,
pE KY(y) =0, ki = h,‘ (5.73b)
d’Z(z) ., » 2mE,
e +k2Z(2)=0, k2= - (5.73¢)
where
h2 ) ) ) h2k2
E=E +E +E = ﬂ(kx + k2 +kz)— ” (5.74)
The solution of Eq. (5.73a) is
X(x) = C exp (ikx) (5.75)

X(x) will be finite for all real values of k. Similar solutions for y and z
coordinates are possible. Combining the three solutions, we get

y(r) =Aexp ((kk'r) (5.76)
where A is the normalization constant. In the usual sense, the eigenfunctions
are not normalizable. In such situations, one can resort to what is known as box
normalization by restricting the domain of y(r) to an arbitrarily large but finite
cube of side L centred at the origin. The box normalized plane wave solution
is given by

1
yp(r) = [}T exp (k-r) (5.77)

Spherical Wave Solution

Laplacian V2y(r) in Eq. (5.71) is expressed in (r, 8, ¢) coordinates and the
variables are separated by writing w(r), as in Eq. (5.45). The radial equation,
Eq. (5.8), with V = 0 takes the form



Three-Dimensional Energy Eigenvalue Problems 159

1 d(,dR) |2mE L(1+1)
- = —L |+ - — 7R =0 5.78
r2 ar (r dr) |: h2 r2 1(7‘) ( )
Defining
=L and p=kr (5.79)
h

Equation (5.78) reduces to

2 1(1+1
TR 2R [1 - #] R(p)=0 (5.80)
dp>  pdp p
By writing
R(p) = Z(p)p~'" (5.81)
Equation (5.80) can be written as
2 2
2P, LaZP) Ly [—”(1/2)] Z(p)=0 (5.82)
dp* p dp P

which is Bessel’s equation. Its general solution is

Z(p)= AT 11112 (P) + BT _(141/2(P)
Then

’ ’

A B
R(p)=pWJ:+<1/z)(P) + /)17]—u+(1/2>1(/’)

= Aj,(p) + Bn, (p) (5.83)

where A and B are constants, j,(p) and n,(p) are the spherical Bessel functions
and spherical Neumann functions respectively, and are defined by

172
Ji(p) = [%) Jira72)(P) (5.84)
and
(7 172
I+
n(p) = (-1) [5] T v (P) (5.85)

Explicit expressions for the first-few j’s and n’s are

sin p

Jo(p)= (5.86a)

=L 2P (5.86b)
P
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J (p)—[ > ljsinp : cos p 5.86
2 =73 - T .00C
P 7 ( )
COS
ny(p) = - P (5.86d)
cosp sinp
np)=-———-——
1 pz P (5.86¢)
ny(p)= [3 l}:os/o : sin p 5.86f)
2 -7 3" - Ty .
2 p 7 (

For small and large values of p, the behaviour of j(kr) and n(kr) are given by

|
. P . 1 . 174
_ - -— .87
Ji(p) p:)O 135..00%D Ji(p) ,,:L P sin (p > ) (5.87a)
1.35...(21-1) 1 Ir
n(p) p:)O —T, n(P) p:)M _; cos (P - 7) (5.87b)

The solution of the free particle equation corresponding to a definite energy
E = hk*(2m) and a definite orbital angular momentum [/(/ + 1)]"2 / can be
written as

v (r. 6 ¢) = [Ajkr) + Bpn (kn]Y, (6, ¢) (5.88)
The most general solution corresponding to a definite energy is
v (r, 6, ¢) = Z[A,j,(kr) + Bjn(kn1Y,, (6, ¢) (5.89)
1=0

The requirement that y must be finite everywhere makes the constant B, = 0,
since n(kr) is not finite at the origin. The well-behaved wave function of free
particle is then

v, 6 9) = Y AY, (6 ¢) j k) (5.90)
1=0
If the particle moves only in the region kr > 0, the solution which is not regular
at the origin is also as important as the regular one and we have to use
Eq. (5.89). In the theory of scattering we will have occasion to use this important
result.

5.7 THREE-DIMENSIONAL SQUARE-WELL POTENTIAL

The three-dimensional square well of finite depth is illustrated in Figure 5.5
and is defined by
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- O<r<a

V(r) = { (5.91)

0 r>a

where a is the radius of the sphere having spherical symmetry.

V(r)

—1E|

_VO

Figure 5.5 Three-dimensional square-well potential.

From Eq. (5.8), the radial equation for a state with definite angular momentum
is given by

ii(ﬁﬁ}r[z—f(vo—ml)— I(l“)]R,:o, 0O<r<a (592)
h

2 dr dr r?
and
1 d(,dR)\ [—2uEl 10+D)] ,
7;(7‘ ?) + l:h—z - r2 R, =0, r>a (593)

The solutions of these equations for cases with finite angular momentum
(I # 0) is too much involved since one has to deal with spherical Bessel and
Hankel functions. Let us consider here the simpler case of s-state (/ = 0) which
is sufficient for understanding the ground state of most of the systems of
interest. To solve Eqs. (5.92) and (5.93) let us write

R = —, k%=2/u|2E|
r h

2
B h—é‘ (Vo IED (5.94)
In terms of these quantities, for s-states

d2
d—?+k22u=0, O<r<a (5.95)
r

and

2
Z—f —kKu=0, r>a (5.96)
r
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The respective solutions of these equations are

u(r) = A sin (k,r) + B cos (k,r) (5.97)
and
u(r) = C exp (-k;r) + D exp (k;r) (5.98)

where A, B, C and D are constants. As u(r) must tend to zero as r — 0, the
constant B has to be zero. The solution exp (k,r) is not finite as r — oo. This
makes D = (. Hence the acceptable solutions are

u(r) = A sin (k,r) O<r<a (5.99)
and
u(r) = C exp (=k;r) r>a (5.100)
Applying the continuity conditions on u(r) and du/dr at r = a, we have
A sin (kya) = C exp (-k,a) (5.101)
and
Ak, cos (kya) = —k,C exp (-k,a) (5.101a)

Dividing one by the other, we have
k, cot (kya) = -k, (5.102)

Equation (5.102) is similar to Eq. (4.23) of the one-dimensional square well.
Therefore, the graphical solution of Section 4.2 is applicable. It follows that no
solution exists unless V,a”> > 7°#*/(8u) and there will be a bound state if

7°h?
< <
8u 8u

(5.103)

5.8 THE DEUTERON

An interesting application of the three-dimensional square-well potential is to
the ground state of deuteron nucleus. Deuteron is the smallest nucleus in which
a proton and a neutron are held together by the nuclear potential. Study of this
two particle system helps to understand the nature of nuclear force, nuclear
size, etc. The binding energy of deuteron |El = 2.226 MeV and therefore k, can
be calculated from Eq. (5.94). Equation (5.103) can then be used to determine
the parameters of the square-well potential. It follows from Eq. (5.102) that

1/2
cot (ka) =~ [ _1E! (5.104)
k |V, ~IE]

Since the binding energy |E| is small compared to the depth of the potential V,,
to get an approximate range—depth relation, we can set

IE|
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