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Preface 

In the first volume we based quantum mechanics on the objective description 
of macroscopic devices. The further development of the quantum mechanics of atoms, 
molecules, and collision processes has been described in [2]. In this context also 
the usual description of composite systems by tensor products of Hilbert spaces 
has been introduced. 

This method can be formally extrapolated to systems composed of "many" ele­
mentary systems, even arbitrarily many. One formerly had the opinion that this 
"extrapolated quantum mechanics" is a more comprehensive theory than the objec­
tive description of macrosystems, an opinion which generated unsurmountable diffi­
culties for explaining the measuring process. With respect to our foundation of quan­
tum mechanics on macroscopic objectivity, this opinion would mean that our founda­
tion is no foundation at all. 

The task of this second volume is to attain a compatibility between the objective 
description of macrosystems and an extrapolated quantum mechanics. Thus in X 
we establish the "statistical mechanics" of macrosystems as a theory more compre­
hensive than an extrapolated quantum mechanics. 

On this basis we solve the problem of the measuring process in quantum mechan­
ics, in XI developing a theory which describes the measuring process as an interaction 
between microsystems and a macroscopic device. This theory also allows to calculate 
"in principle" the observable measured by a device. Neither an incorporation of 
consciousness nor a mysterious imagination such as "collapsing" wave packets are 
necessary. 

In XII fundamental problems such as the EPR-paradox are clarified on the 
basis laid down in the previous chapters. 

Chapter XIII is devoted to general problems of any physical theory concerning 
the "desired" form of a theory, the physical significance of the "laws" and the 
concepts of "real" and "possible". All this is demonstrated with the example of 
quantum mechanics, whereby the reality of the atoms is examined. 

References ih the text are made as follows: For references to other sections 
of the same chapter, we only list the section number of the reference; for example 
§ 2.3. For references to other chapters, the chapter is also given; for example III 4.2 
refers to section ·4.2 of chapter III. The formulas are numbered as follows: (3.2.7) 
refers to the 7th formula in section 3.2 of the current chapter. References to formulas 
of other chapters are given, for example, by III (2.1.8). 

The numbers in the bibliography are the same as in the first volume. Thus the 
bibliography of this second volume is only an extension of that of the first volume. 
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IX Further Structures of Preparation and Registration 

As already mentioned in Chapter VIII §6, the quantum mechanics of atoms 
and molecules is not yet closed by the base sets and structure terms introduced 
until now. We must yet go over to standard extensions (in the sense of XIII §3 
and [3] §8). Perhaps we then can obtain a g.G.-closed theory (in the sense of XIII §4.3 
and [3] § 10.3) for the fundamental domain of" atoms and molecules". This extension 
problem was explained in detail in [2]. Readers who already know quantum mechan­
ics, however, should neither study [2] nor refer to it again and again. Hence let 
us here, without mathematical axioms and proofs, summarize the essential further 
structures. This will enable us, in X and XI to invoke these structures by referring 
to this chapter. 

§ 1 Transformations of Registration Procedures Relative 
to Preparation Procedures 

In III § 7 we have already introduced a further base term Ll and a further structure 
term III (7.1), with physical interpretations and several axioms. We must now inquire, 
what these further structures imply in connection with the preparation and registra­
tion axioms introduced in VI. In III § 7, the elements b of Ll could already be defined 
as mappings of !flo, !fl into themselves. This leads immediately (in a canonical way) 

to a mapping $' ~$', with $' as in III D4.3. The mapping b, representing a 
displac~trl~nt of the registration by the time T, will be important in X §2 and XI §6. 
This b has been denoted by br • Thus br bo is the registration method bo displaced 
by the time T, while br b are the registration procedures of the method br bo. 

In V §2 we defined the mixture-morphisms of K into itself and also the mixture­
isomorphisms of K into itself, i.e. the mixture-automorphisms of K. Mixture­
automorphisms are just automorphisms of K into itself relative to the convex struc­
ture of K. If S is a mixture-automorphism, the duaL mapping S' maps the set L = [0, 
1] (bijectively and cr(go', go)-continuously) into itself (see V §2). We call the mapping 
S' dual to a mixture-automorphism a go-continuous effect-automorphism. Let .91 
be the group of all go-continuous effect automorphisms. 

Under physically natural assumptions for the mappings $' ~$' with bELl, 
one concludes that the Galileo group Ll(9 from III §7 is represented in .91 (Ll(9 -7.91, 
see [2] V, VI). With bELl(9 and gEL, for g' =b g we therefore find the physical 
interpretation: 



2 IX Further Structures of Preparation and Registration 

The effect g' = b g arises from g if one subjects g to the Galileo transformation 
b relative to the preparation (i.e. if b maps a device that registers g on another 
device, as described in III § 7). 

According to Wigner's theorem (see [2J V §5), the part of d connected with 
the unit consists of all transformations g' = U g U + , where U in each of the irreducible 
parts fJI~ (determined by a Hilbert space Jft'v; see VII §5.4 and VIII) is a unitary 
operator in Yl"v' For g= Igv, this says U g U+ = I U v g U; with unitary operators U v ' 

Therefore let us as Ll~ consider only those Galileo transformations which are 
connected to the unit (only these found a physical interpretation in III § 7; the inter­
pretation of the reflections is not so self-evident; also see [2J VII). Then to each 
representation Ll~ ~ d there corresponds a "series" of representations (of Ll~ in 
each ye,,) via unitary transformations up to a factor. Thus it is customary to consider 
the representations of Ll~ up to a factor separately for each system type (VII §6). 

The well known meaning of a "representation U(b) up to a factor" is that b1 b2 

=b3 only implies U(b 1) U(b 2 )=euo U(b 1 b2 ) with a "factor" eUo• Two representations 
up to a factor may briefly be called factor equivalent if they are identical as represen­
tations in d. Two representations U(b) and U(b) up to a factor are factor equivalent 
if and only if 

U (b) = eia (6) U (b). 

A system type is called "elementary" if the representation of Ll~ for this system 
type is irreducible (also see [2J VII §2). The system types which are not elementary 
are called "composite". 

According to A V 4a, the Hilbert space corresponding to each system type is 
either infinite-dimensional or one-dimensional. We now make the further assumption 
that there is only a single "one-dimensional" system type, in which Ll~ then must 
experience the identity representation(!). This single system type is called the "vacu­
urn". Moreover, we assume that Ll ~ does not experience that identity representation 
for any other system type. Since the identity is the only finite-dimensional unitary 
representation of LI~ up to a factor, A V 4a requires that no system type (except 
the vacuum) has a finite-dimensional Hilbert space. 

The irreducible representations up to a factor of the Galileo group are well 
known (see [2J VII). One naturally combines factor equivalent representations up 
to a factor into "the same" representation, since they yield the same representation 
in d. Thus, for each elementary system type, two parameters m and s uniquely 
characterize the irreducible representation. While m can be an arbitrary positive 
number, s can only take the values 0, 1/2, 1, 3/2, .... From among the factor equiva­
lent representations up to a factor, one can be choosen in such a way that the 
U(b) have the following form: 

For b a translation in space by a vector a, we have 

where the components Kv of K are self-adjoint operators in the Hilbert space Yl" 
of the irreducible system type considered. The Kv commute. 



§ 1 Transformations of Registration Procedures 

For b a proper Galileo transformation, i.e imparting a velocity v, we have 

U(v)=e iX .", 

3 

(1.2) 

where the X are self-adjoint operators in Yf. While the X v commute, the Kv and 
Xv have the "commutators" 

with the parameter m mentioned above. 
For b a time translation by , (i.e. for b = b<) we have 

U(,)=eiH<, 

where H is the self-adjoint operator 
1 

H=-K2. 
2m 

The Hilbert space Yf can be written as a product space 

so that the K/l and Xv become 

and are irreducible in :Yf". 
For b a rotation through the angle IX about the v-axis, we have 

U v (IX) = eiJva. 

The J v are self-adjoint operators, which relative to (1.6) become 

with 
J v = Lv x 1 + 1 x Sv 

1 
L=--X0K 

m 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(LlO) 

(0 denotes the exterior vector product). The iSv are the well-known infinitesimal 
rotation operators for an irreducible unitary representation of the rotation group 
up to a factor in J'f.. The possible irreducible representations are specified by an 
s=O, 1/2, 1 ... so that J'f. has the dimension (2s+ 1) and each Sv has the eigenvalues 
-s, -s+ 1, ... , s. 

Since the Lv, Sv, J v are self-adjoint operators, to each there corresponds a scale 
observable (see VIII T 4.3.4). The observable corresponding to L is called the orbital 
(angular) momentum, that corresponding to S is called the spin (angular) momentum, 
and the observable for J is called the total angular momentum (of the elementary 
system type). 

The characteristic parameter m is called the mass of the elementary system and 
the characteristic parameter s is called the spin of the system. 

For an elementary system type, the scale observables "position" and "momen­
tum" are defined uniquely (see [2] VII §4). 
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§ 2 Composite Systems and Scattering Experiments 

We assume that the reader knows the usual description of composite systems 
in quantum mechanics. The most significant results of quantum mechanics rest pre­
cisely on the possibility of completely describing not only elementary system types 
but also composites such as atoms, molecules, and colliding systems. 

In § 1 we have already distinguished elementary and composite systems. It is 
typical for the elementary systems that their structure is completely specified by 
the representation of the Galileo group, i.e that they have no "inner" structure. 
For composite systems the description by the Galileo group does not suffice. The 
inner structure of composite systems remains a problem. 

Concerning the representation of the Galileo group for a composite system (see 
[2] VIII), first of all we can represent the Hilbert space .Ye in the form 

.Ye = Yt/, x Yli. 

Here the representing operators (for the notation see § 1) have a form 

U(a)=eiK ' a xl, 
U(v)=eiX'vx 1, 

U(A)= YeA) x R(A). 

A is a rotation in space, .Yeb is irreducible relative to the operators K and X. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

One frequently calls .Yeb the" orbit space" and Yli the space of the inner structure. 
This terminology is not entirely logical since Yli is identical with the spin space 
£;, for elementary systems without inner structure. The decisive difference between 
elementary and composite systems just lies in the representation of the rotation 
group, which in Yli is not irreducible. This implies that for a time translation lit 
(see §1) we have 

(2.5) 

with 

(2.6) 

Though Hi commutes with the R(A), it is not a multiple of the I-operator. The 
determination of Hi (i.e. of H) is one of the essential problems in a theory of composite 
systems. For this problem there still is no mathematically exact theory. Either one 
can guess H by the correspondence principle, or obtain it as an approximation 
from quantum electrodynamics (using a renormalization for eliminating mathemati­
cally incorrect expressions). In this book we need not elaborate the H so obtained 
(see [2] VIII (5.8». 

Yet we must more precisely say what it really means that" atoms and molecules 
are composed of electrons and atomic nulcei", what after all is really meant by 
the word "electrons" and "atomic nuclei". 

Up to now, we only have defined composite systems but not yet said what 
it means that every composite system type is composed of a definite number of 
elementary systems. Naturally, the structures introduced until now in the mathemati­
cal picture do not suffice to describe this composition. 
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As a further structure, we must introduce the composition of finitely many prepa­
ration procedures into a new preparation procedure. This composition is of funda­
mental importance for scattering theory (see Fig. 1). We shall consider it mathemati­
cally only for the case of two preparation procedures (one will immediately recognize 
how to extend it to finitely many procedures). 

We introduce the new structure via a subset n c!2' x!2' and a mapping 

n-2.......!2' (also see [2] XVI §1). In the physical interpretation, (ai' a2)en means 
that the two preparation devices corresponding to al and a2 may be combined 
as described in III for a preparation and a registration device. The two combined 
preparation devices provide a new preparation procedure, for which we simply write 
a=y(al, a2). 

If the al and a2 represent precisely such preparation procedures which produce 
only systems of an elementary system type, then y(a1' a2) represents systems of 
a composite system type. One can formulate this axiomatically: 

If q>(a1)eK., and q>(a2)eK.2 (where VI and V2 denote irreducible parts and their 
system types are elementary), we have q>(y(al' a2»eK,., where Jl. characterizes a com­
posite system type. 

If one composes a finite number of preparation procedures, y generates mappings 
of the following form: Let vI> ..• , Vr be elementary system types and n1 , ••• , nr positive 
integers. Then y generates mappings 

(2.7) 

where Jl. is a composite system type. 
In principle, there could be many such mappings (2.7), which could further depend 

on the preparation procedures al> a2 , ••• used for the composition. For non-relativis­
tic(!) quantum mechanics, the following axiom (natural law) turns out as useable: 

The mappings (2.7) are bijective. Here, bijective means that for each composite 
system type there is precisely one sequence (nl> VI), (n2' V2), ••• , (n,., vr ) which obeys 
(2.7). 

If one assigns the number n=O to those elementary system types which do not 
appear on the left side of (2.7), one can also formulate the axiom as follows: Each 
composite system type is uniquely characterized by positive integers nl> n2 , ••• (with 
L ni < (0), where ni is the number of elementary systems of type i on the left side 
i 

of (2.7). For this one briefly says: The system is composed of nl elementary systems 
of type 1, n2 elementary systems of type 2, and so forth. 

This axiom made it easy to develop a non-relativistic quantum mechanics of 
atoms, molecules, and collisions. 

In order to concretize the theory, one must introduce further axioms for the 
elementary system types that actually occur. It is typical for physical theories that 
the axioms never finally solve a problem. They only present a useable approximation 
in a certain field of application (fundamental domain in the sense of XIII § 1 and 
[3] §3). Every physical theory is an approximation (see XIII §3 and [3] §§6 and 
9). Here we shall not consider several approximations jointly (this would cause unnec­
essary complications). We only formulate an approximation very useful for atoms 
and molecules. 
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The following occur as elementary system types: 
First, a system type with a small mass m (relative to the remaining masses), 

the spin s = 1/2 and the eiectric charge (- e) (e = elementary charge). This system 
type is called an "electron". 

Second, there is a series of elementary system types of "larger" masses m;, of 
different spins and charges Ze (Z a positive integer). One calls these elementary 
system types "atomic nuclei of the charge numbers Z". 

That we describe the nuclei as elementary system types is just the approximation 
used. It is customary to characterize the atomic nucleus by two positive integers 
Z and A (instead of Z and its mass m), where A is called the nucleon number. 
It determines the mass by m=Amp-Ll, where mp is the mass of the "smallest" 
nucleus with Z = 1 (the proton) and LI (small relative to Amp) is called the mass 
defect. 

Here we have introduced the new concept of the electric charge, which has origi­
nally been defined in one of the macroscopic pretheories. In quantum mechanics 
the electric charge is defined indirectly, namely as a parameter in the Hamiltonian 
(2.6) (see H in [2] VIII (5.8». The charge of the system types is especially simply 
measured in "exterior fields", where the Hamiltonian has a particularly simple struc­
ture (see [2] VIII §6). 

If one has completed the theory in this way by further structures (with axioms), 
one can uniquely characterize each composite system type by its numbers of electrons 
and of different nuclei. 

If the composite system contains only one atomic nucleus, it is called an atom, 
otherwise a molecule. If the number of electrons in the system equals the sum of 
the nuclear charge numbers, it is called neutral, otherwise ionized. On historical 
grounds, it is usual to give names to atoms with various nuclear charge numbers: 
Z = 1, Hydrogen; Z = 2, Helium, etc. 

In this book, not even a reference to the structure of atoms and molecules is 
needed. The reader interested in a logical structure analysis on the basis of prepara-

a 

Fig. 7 
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tion and registration procedures is referred to [2J XI through xv. Let us only 
recall that the Hilbert space of a composite system is obtained from a product 
space by reducing it to the subspaces symmetric and anti-symmetric in identical 
subsystems (see [2J VIII). 

We must go into more detail for basic concepts of scattering theory since these 
will be used in XI. We assume that the reader knows scattering theory; a short 
introduction is given in [2J XVI. 

A scattering experiment is characterized by a device symbolically shown in Fig. 7. 
Two preparation devices produce the systems which collide. With the mapping y 
introduced above, the two devices taken together represent a preparation procedure 
y(a1' a2)· The scattering problem consists in calculating qJ(y(a1' a2)) when qJ(a1) 
and qJ(a2) are given. 

The systems produced by the composite preparation procedure y(a1' a2) are 
registered. The experimental registrations in may cases yield the (differential) cross 
section (see [2J XVI §6). 

The calculation of qJ(y(a1, a2)) from qJ(a1), qJ(a2) is in principle based on the 
Hamiltonian (2.6). This happens as follows: 

One first introduces qJ(ad x qJ(a2) in the product space .1t'1 x.1t'2 and then goes 
over to a symmetric operator 

(2.8) 

which is defined in the symmetrized resp. antisymmetrized subspace {.1t'1 
x .1t'2}sc.1t'1 X.1t'2 and there has the trace 1. Here, Wi intuitively represents an ensem­
ble in which there seems to be no interaction between the systems produced according 
to a1 and to a2. Scattering theory indicates how the interaction in principle leads 
to a "wave operator" w_ (on {.1t'1 x .1t'2}s), so that 

qJ(y(a1, a2))=w- Wi w~ 

holds. The operator Q _ defined by 

(2.9) 

(2.10) 

is a mixture-morphism which maps the set K of ensembles corresponding to {.1t'1 
x .1t'2} s into itself, so that Q _ K is in general a proper subset of K! Also Q _ is 
briefly called a wave operator. 

The scattering experiment is completely described by Q_ since /l(Q- Wi, g) gives 
the probabilities for all possible effects g. But it is useful, as follows to introduce 
the so-called scattering operator. 

The scattered systems are again without mutual interaction "after the scattering", 
so that one can define a second wave operator w+. Let wI be an ensemble after 
scattering which behaves as if no mutual interaction of the scattered systems were 
present. Then w+ wI wt is the ensemble with the interaction taken into account. 
Because it must coincide with the ensemble qJ(y(a1' a2)), we get 

(2.11) 

For "complete" wave operators (see [2J XVI D4.3.2), from (2.9) and (2.11) follows 

(2.12) 
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The operator 
(2.13) 

is called the scattering operator. Using it, one can write (2.12) in the form 

(2.14) 

The "motion reversal" transformation (also called time reversal) is of general 
interest for quantum mechanics and especially problematic for scattering theory. 
The form of this time reversal is treated more precisely in [2] X §4. Here let us 
state it briefly and then discuss some questions connected with the g.G.-closure 
of quantum mechanics, which are of special significance in XI and XII. 

Let us define an operator C in the Hilbert space for n electrons. It is not difficult 
to extend this definition to a system of electrons and atomic nuclei. It is well known 
that we can represent the Hilbert vectors X corresponding to the n-electron system 
as 

(2.15) 
(Xl, ••• , an 

(see [2] IX §6). The !Xi take the values + 1/2 and -1/2. Here, u + 1/2 and U- 1/2 

are basis vectors of the two-dimensional spin space £'1/2 for an electron (see (1.6)). 
The ('1' ... Ix; !Xl> ••. ) are complex-valued position functions. The representation 
(2.15) must be chosen so that the position operator Qi has the form: "multiplication 

1 
with 'i" and the momentum operator Pi has the form: "-;- grad i ". 

I 

We now define C by 

(2.16) 
(11, •.. ,an 

Here (!Xl' ••• , !Xn) equals + 1 when the number of the !Xi with !Xi = -1/2 is even, and 
equals -1 when this number is odd. ('1' ... 1 ... ) is the complex conjugate of 

('1' ···1···)· 
The operator C is anti-unitary (for the definition of an anti-unitary operator, 

see [2] A IV § 13). 
C is called the time reversal operator; it makes C2 = (-1)" 1, hence C- 1 = ( _1)n C. 

We easily find 

CQj=QjC, 

C]?= -]?C, 

CSj=-SjC, 

CH=HC, 

where H is the Hamiltonian without exterior fields, as given in [2] Vln (5.8). 
For gEL, 

Tg=CgC- 1 

(2.17) 

(2.18) 
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dermes a ~-continuous effect automorphism T (see V §2 and IX § 1). The dual trans­
formation T' is for weK given by 

(2.19) 

Although T and T' can easily be defined mathematically, the following physical 
questions are not easy to answer. 

Let an effect procedure (bo, b) be given by a device. How can another device 
realize an effect procedure (bo, b') which (approximately) makes 

",(bo, b')= C ",(bo, b) C- 1 ? 

Let a preparation procedure a be given by a device. How can a device realize 
a preparation procedure a' which obeys cp(a') = C cp(a) C- 1 ? We shall return to this 
problem in XII § 3. 

Here let us only explain why C is also denoted as motion reversal transformation. 
This comes from the invariance of H under C, as expressed by the last equation 
in (2.17). 

From (2.17) follows 
(2.20) 

The Schrodinger picture has 

(2.21) 

With 
(2.22) 

from (2.21) together with (2.20) follows 

(2.23) 

Through a time interval 't", let Wo run according to (2.21). At the time 't", use (2.22) 
to go from Wt over to wo=CwtC- 1• Let this ensemble again run through the same 
interval 't". Then by (2.23) we do not get back wo, but the ensemble Cwo C- 1 (motion 
reversed to wo). 

§ 3 Measurement Scatterings and Transpreparations 

In more detail we must consider the application of scattering processes to mea­
surement and to transpreparation. Although such processes are very familiar to 
experimental physicists (not with this terminology), their theoretical investigation 
is not common among theorists. We must occupy ourselves more precisely with 
measurement scatterings and transpreparations, in order to generalize such processes 
in XI, namely to the scattering of microsystems by macrosystems. 

By the structures treated in this § 3 (investigated in great detail in [2] XVII), 
as in the description of scattering in §2 we go beyond the basic structure of coupling 
only one preparation with only one registration device (used as point of departure 
in III). We must now deal with more than two devices; but they shall not always 
be represented mathematically by new structure terms (as in the mapping y in §2). 
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Fig. 8 

The starting point is a device symbolically shown in Fig. 8, only that we do not 
compose al and a2 to a preparation procedure as in a scattering experiment. 

For departure we use the formula (2.14), regarding Wi as substituted form (2.8). 
For cp(al) we briefly write WI' for cp(a2) we write W2 and for wi simply w. Then 
(2.14) becomes 

(3.1) 

For brevity we have not symmetrized WI x W2 (assuming the systems from al and 
a2 as different). 

As a registration procedure, in Fig. 8 we consider one that after the scattering 
registers only the systems 2, so that we can set l/I(bo, b)=1 xg2 (with g2EL(£'2». 
The probability for l/I(bo, b) in the ensemble (3.1) then is 

tr(S(wl x W2) S+ (1 x g2». (3.2) 

Now let us combine the devices corresponding to a2 and to (bo, b) to a device 
registering the systems produced by a 1 • This is indeed possible since (3.2) is (relative 
to WI) a linear functional l(wd over K(£'d, with O::::;;l(wl)::::;;I, so that there is a 
gl EL(£'l) with 

(3.3) 

Here, gl is the effect determined by the registration procedure composed of a2 and 
(bo, b). The trace trl must be formed relative to the Hilbert space £'1 of the systems 
prepared by al. 

For a fixed W2' (3.3) dermes a &I-continuous effect morphism (as the mapping 
dual to a mixture-morphism; see V §2). This morphism L(£'2) ~ L(£'l), given by 

(3.4) 

is called the measurement scattering morphism assigned to the scattering. 
We can regard the devices aI' a2' b~) in Fig. 8 (with a registration of "only" 

the systems 2) as a whole (i.e. all three devices together) as a preparation device 
for system 1. In order to make this still clearer, we consider a registration device 
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that consists of two parts (see Fig. 8), of which one part registers only the system 
1 and the other only the system 2. 

First of all, we again can think of al and a2 (in the sense of scattering) as 
an a. Likewise, b~l), b(l), W), b(2) form a special registration device bo, b with 

(3.5) 

where I 

g 1 = I/t(W), b(1»E L(£'l) and g2 = I/t(W), b(2»EL(£'2)· 

Therefore, by (3.1) we easily obtain 

tr(S(wl x w2) S+ (gi x g2» (3.6) 

as the probability that b(1) and b(2) are triggered together. 
We can now compose aI' a2' bcg.) to a preparation procedure a(l) for the systems 

1. Then b\f) is a registration method for the systems 1 prepared by the composite 
device. Since different indicators b(2) can be present on b~2), by the correspondence 
(al,a2,b(2»-+a(1)(b(2», the preparation procequres a(1) form ,a Boolean ring 
isomorphic to 9l(W». What are the cp(a(1)(b(2»)? I 

When (3.6) is rewritten 

tr(S(wl x W2) S+ (gl x g2»=tr«1 x g!) S(WI x W2) S+ (1 x g!)(gl xl» 

=tr1 (Rl [(1 x g!) S(WI x W2) S+ (1 x d)] gl)' (3.7) 

Rl is called the reduction operator on the system 1. This Rl is a mixture-morphism 
K (£'1 x £'2) -+ K (£'d, defined by 

tr(w(gl x 1»=tr1«Rl w)gd. (3.8) 

With I/t(W), b(2»=g2, (3.7) immediately implies 

The equation 

cp(d1)(b<2») Rl [(1 x g!) S(WI x W2) S+ (1 x g!)] 
tr(S(wl x W2) S+ (1 x g2» 

(3.9) 

(3.10) 

defines a mapping K (£'1 x £'2) -+ K (£'1), which is easily seen to be an operation 
(V, D 11.1). The mapping b2 -+ S(I; I/t(b~2), b(2») defines an operation measure X on 
the Boolean ring 9l(b~2»: 

(3.11) 

with n as in V, D 11.2. By completing the Boolean ring 9l(W» to a complete ring 
E, from (3.11) one obtains a transpreparator 

(3.12) 
in the sense of V, D 11.3. 

Therefore, the preparation device composed from the three devices corresponding 
to aI' a2' bcg.) is a (special) example of the general considerations in V § lion transpre­
parators. In XI § 5, we shall get to know how macrosystems can also be used to 
define transpreparators. 

The reader further interested in applying scattering processes to registration and 
transpreparation is referred to [2] XVII, especially to §§5, 6 and 7. 
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After the discovery of quantum mechanics, the opiruon arose that quantum 
mechanics is a more comprehensive theory than "classical" mechanics (for a more 
exact formulation of a "more comprehensive theory" see XIII §3, [3] §8, and [48]). 

After the development of quantum electrodynamics,. one even hoped to obtain 
"all" classical theories from a quantum theory. Thus the classical mechanics of 
mass points and continua as well as thermodynamics and electrodynamics should 
follow as "approximate" (less comprehensive) theories. This expectation led to great 
difficulties regarding the "measurement process" in quantum mechanics. It appeared 
impossible to interpret quantum mechanics unless one admits paradoxes or a con­
scious "observer" or a profound modification of logics. We cannot review all these 
discussions; for such a review the reader is referred to [21]. 

We shall neither discuss arguments against the diverse interpretations of quantum 
mechanics. We rather elaborate the standpoint taken in III when we established 
an axiomatic basic for quantum mechanics. For this standpoint, quantum mechanics 
is not more comprehensive than classical theories. But then what is the relation 
between classical theories and quantum mechanics? This and the next chapter are 
devoted to this question. 

Before further discussions let us again expound this sharply: The authOJi's opinion 
is that the notion of quantum mechanics as the "most comprehensive" theory is 
wrong. The" axiomatic basis" presented in this book reflects precisely the conception 
and the idea espoused at the beginning of quantum mechanics with an astoundingly 
clear intuitive view by N. Bohr (see again [21]). The axiomatic basis (set forth 
from III on) also does not allow us to regard the objectivating description of macro­
scopic systems (presented in II) as some approximation to quantum mechanics. On 
the contrary, the theories from II were used as pretheories (see XIII §§ 1 and 3, 
[3] §§3, 5 and 10.5, and [48]) for quantum mechanics. 

§ 1 Classical Theories as Approximations to the Quantum Mechanics 
of Microsystems 

In order to elucidate the relations of the various theories, let us first describe 
several situations where classical theories in fact can approximate quantum mechan­
ics. In this description we shall emphasize more the conceptual situations than the 
mathematical demonstrations. 

The quantum mechanics ?}J ~ was introduced for the domain of those directed 
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interactions between macrosystems which one characterize as carried over by micro­
systems. Therefore, let us first consider only the fundamental domain for which 
we have recognized quantum mechanics as a g.G.-closed theory (see XIII §4.3 and 
[3] §10.3). 

In considering theories that are less comprehensive than f?jJ ~ we go back to 
the concepts from XIII §3, [3] §8, and [48]. In general, one thus obtains a theory 
f?jJ 5i less comprehensive than f?jJ ~ by the scheme 

(1.1) 

where -+ means a restriction and ~ an embedding. 
We first consider restrictions: Most often in quantum mechanics, one goes over 

to subsets fl. of fl and !#los of!#lo and !#ls of!#l. To this there corresponds a transition 
to subsets K. of K and Ls of L. Therefore one restricts the fundamental domain 
to part of the experiments (with respect to preparation as well as to registration). 

To construct an accelerator for electrons, for instance, we are not interested 
in "all possible" experiments with electrons. Rather we examine only a certain part, 
relevant for that accelerator. Therefore, it would be much too involved to invoke 
the quantum mechanics of electrons when we only (!) want to describe how they 
behave in the accelerator. 

For this purpose, we restrict Ks to ensembles with no electrons of low energies 
(intuitively, no "wave lengths" exceeding the scale on which the exterior fields change 
noticeably). The coexistent effects included in Ls should only represent (imprecise) 
measurements of positions and velocities (see [43]). The theory obtained this way 
is an example of a restriction f?jJ f/i . 

The theories f?jJ5i in (1.1) are chosen mostly for the purpose of "mathematically 
simpler" representations of f?jJf/i, i.e. as "standard embeddings" in the sense of 
XIII §3 and [3] §8. In the example just mentioned, one makes f?jJ5i a "classical 
point mechanics" of individual charged mass points in exterior fields. The embedding 
of f?jJ f/i in f?jJ 5i in this case shows in which fundamental domain of experiments 
such a "classical point mechanics" is useable for electrons. One finds sketched in 
[1] XI § 1.2, how the mathematics of restriction and embedding enters the just 
described transition from f?jJ~ to f?jJ5i (the classical mechanics of charged mass 
points). For such transitions there also are mathematically more exact methods 
(as presented in [23]). 

Therefore, in a situation like (1.1), f?jJ5i in fact is a less comprehensive theory 
than f?jJ~. Of course, for quantum mechanics there are not only approximations 
in the form of the described example (where f?jJ5i is a classical point mechanics). 
Many books on quantum mechanics mainly describe approximations for various 
purposes. But precisely this problem will not be the content of this chapter. We 
have only mentioned these approximations for quantum mechanics in order to pre­
vent misunderstandings of the problem we shall investigate. 

One such error is the notion that also the Newtonian mechanics of our planetary 
system is only an approximation of a "quantum theory" of the planetary system, 
just as the classical mechanics of charged mass points is really an approximation 
for the quantum mechanics of electrons. 

Also the description of tennis balls via a classical mechanics is not an approxima­
tion of a "quantum mechanics" for tennis balls. A dreamt-up quantum mechanics 
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for tennis balls at least is no g.G.-closed theory, since it is physically impossible 
to make experiments with tennis balls similar to the interference experiments with 
electrons. 

But what is then really the relation between quantum mechanics and macroscopic 
physics? First that theories of macroscopic systems are used as pretheories for quan­
tum mechanics (as described in III). On the other hand, quantum mechanics is 
used in "statistical mechanics" in order to say something about macroscopic systems. 
What does "to use" mean in this connection? 

§ 2 Macroscopic Systems and an Extrapolated Quantum Mechanics 

First we must recognize that no comprehensive theory yet exists for macroscopic 
systems. Such a theory ought to describe all (at least the not too energetic) processes 
on macrosystems. But we are still far from such a comprehensive theory. Instead 
we possess many different theories (most not even g.G.-closed), such as classical 
point mechanics, hydrodynamics, thermodynamics, electrodynamics. By these we 
describe one or another aspect of macro-systems, mostly with ad hoc axioms for 
material behavior such as equations of state. As a general feature of all these macro­
scopic theories &>:y;,., in II we emphasized that there are different theories for different 
areas of application. 

In order not to lose track of the various theories, it is useful to imagine that 
a theory for all macro-systems would exist. Since we do not know it, let us briefly 
call it &>91. Then each of the known macroscopic theories &>f/",l, &>f/",2, ... would 
be less comprehensive than &>91. In the sense of XIII §3, [3] §8 or [48], we can 
indicate this by 

(2.1) 

In II we described structures as they occur in each of the theories &>:Y;,.l' 
&>f/",2' .... As in I1,let us consider a particular f:iJf/",v, denoting it by &>f/",. Concern­
ing the presentation in II, we thus ascribe a physical interpretation to the state 
space Z. Similarly, suppose that a fundamental domain is known on which this 
theory can be applied. 

In II §3.3, we described how the dynamics are determined by the set Km(Y). 
But in II we did not consider any special form of dynamical laws. In the various 
theories &>:Y;,., the dynamics is more or less known. For example, in Newton's theory 
&>:Y;,. (of mass points moving under gravity), the dynamical laws are completely 
known. In a mechanics of continua, the dynamics is determined up to equations 
of state (and material coefficents like those of friction or heat conduction), which 
are theoretically not established. 

As in the example (of the mechanics of continua), often the dynamical laws 
are just poorly known in practice (to the dynamics there also belongs the behavior 
of systems in electric and magnetic fields !). The" statistical mechanics" now asserts 
that one can determine the dynamics in a &> f/", by an extrapolated quantum mechan­
ics. But for our initial purposes it is conceptually simpler to act as if the dynamics 
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were known, and on this basis to investigate the relation of f1JJ:T". to an extrapolated 
quantum mechanics. Conversely, such investigations can be used to find (or at least 
to narrow down) the dynamical laws. These methods of tracking down the dynamics 
will not be detailed in this book. A clear description of this procedure (without 
mathematical rigor) may be found in [1] XV. How rigor could be supplied, will 
follow from the presentations in this section. 

§ 2.1 An Extrapolated Quantum Mechanics 

We assume the reader familiar with the structures (sketched in IX §2) of the 
quantum mechanical description of "composite" systems. We can think of all the 
systems considered as composed of atomic nuclei (as approximately elementary sys­
tems) and electrons. 

It is characteristic of the mathematical structure of composites in quantum 
mechanics that a non-elementary system can be composed of arbitrarily many ele­
mentary systems. Formally, one can compose systems from a larger and larger 
number of subsystems, letting this number tend to infinity. This fact alone indicates 
(by [3] §9) that such a composition must be an idealization (the number of elementary 
systems in the entire universe is bounded). Therefore, it is impossible that the formal 
theoretical construction of systems from a larger and larger number of elementary 
systems yields a realistic theory of these systems. 

What does one do in such a situation? Extrapolating the theory into a domain 
where it probably is no longer realistic, one compares it with experience, in order 
to approach more and more the limits of validity of the theory. This procedure 
is entirely legitimate and represents one of the fruitful developmental methods of 
physics. After the discovery of electrons it was entirely legitimate, first to extrapolate 
classical point mechanics into the new region, in order to recognize the limits of 
the "particle picture" (see [1] XI §1.1). We now apply the same method to our 
problem. 

Therefore we formally extend quantum mechanics (as established for microsys­
tems and their composites such as atoms and simple molecules), to systems of "very 
many" particles. We briefly denote this extrapolated quantum mechanics by f1JJ!Yqexp-

In quantum mechanics one is used to consider only the sets K(Jt') and L(Jt') 
and to "forget" the set !!l of preparation procedures and the set /F of effect procedures. 
One obtains Jt' for many particle systems by symmetrizations from a product space 
~ x Jr2 x ... X Jt'N with N a very large number (N) 1020). If f1JJ !Yqexp were a realistic 
theory then the image <p(!!l') ought to be dense in K(Jt') (in physical approximation). 
Likewise, t/I(/F) ought to be dense in L(Jt'). Now let us not only think of the abstract 
sets K(Jt') and L(Jt'), but also of the corresponding sets !!l and /F (of preparations 
and effects). Then it becomes clear that this "physical" denseness is in no way guaran­
teed. Hence a realistic theory need not be obtainable by formal extrapolation to 
many particles. 

On the contrary, experience as well as theoretical considerations quickly convey 
that it is impossible to realize the fictive preparation and registration possibilities 
from !!l and PIt. Instead of going into a far-reaching discussion, let us only give 
some indications (also see [1] XV). 
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By the drastic example of the planetary system, already in § 1 we alerted the 
reader to an absurdity. For this planetary system (including the sun), by &Jf7"exp 
described as a "many particle" system, it appears absurd to regard as realistic all 
the preparation and registration "possibilities" occurring in f2: and {}t. From which 
parts of the universe should one construct all the "registration devices" from {}to? 

How to measure, for example, the precise positions of all nucleons and electrons 
of this many-particle system up to "only" 10- 8 cm? 

But already much smaller systems in our every day surroundings indicate that 
not all the elements from !2 and (}t of a &Jf7"exp can be realistic. For example, simply 
think of the preparation possibilities of a waterdrop. We shall quickly have at hand 
many realistic preparation possibilities. But the construction of a preparation device 
aE!2 such that <p(a) is the projector onto an eigenvector of the energy operator 
presents an unsolvable problem. Even if we imagine to have invented a construction 
possibility for such a preparation device, the most insignificant heat radiated from 
the surroundings would destroy its application. Of course, also the preparation device 
must not radiate any heat. 

This example demonstrates one of the reasons for which not all preparation 
procedures from !2 can be realized: For macrosystems it is not possible to remove 
all influences of the environment not coming from the intended preparation device. 
Only the truly realistic possibilities of preparing a macrosystem in its actual surround­
ings are at our disposal. Asking for the realistic preparation possibilities, we thus 
come up against the question of the realistic interaction possibilities of a macrosystem 
with its environment. In particular, for the preparation procedures we encounter 
the question: "Which variety of structures of macrosystems can be prepared by 
realistic interactions with the surroundings?" 

The depth of this problem becomes still clearer if we adjoin organisms as parts 
of the macrosystem: Which possibilities are there really in order to prepare an 
aquarium with fish as a "many particle system"? Obviously the whole historic evolu­
tion of organisms on Earth has been necessary for the aquarium to exist today. 
But in this case, how can the many other elements of Q be "realized"? 

But also large parts of {}t (from &J f7" exp) can only represent fictive registration 
possibilities. For example, how could one to within 10- 10 cm register the positions 
of all atomic nuclei and electrons of the above-mentioned waterdrop? One would 
not only need a monstrously energetic X-ray blitz (more than 1020 quanta of wave 
lengths below 10- 10 cm), but also a super-microscope to analyze this blitz. On the 
other hand, to measure the discrete energy levels of the waterdrop one ought to 
analyze an enormous number of transitions whose wave lengths exceed billions of 
light years. 

If we would even take &Jf7"exp so serious that all the operations formally appearing 
in &Jf7"exp (see IX §3 and XI §5) were realizable, then one could also conclude that 
a dead cat can be transformed into a live cat (as Piron drastically made clear during 
one of the discussions in Reisenburg Castle in summer 1979). 

Therefore, it is not just in cosmic dimensions, but already in "normal" macroscop­
ic regions that &Jf7"exp cannot represent a g.G.-closed theory. 

Thus, asking for registration possibilities of macro systems we again encounter 
the quest for the realistic interaction possibilities of a macro system with its surround-
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ings. In particular, the registration procedures raise the question: "By which actions 
on the environment can the macrosystem be recognized?" 

After these brief indications to the problem of preparation and registration possi­
bilities, let us summarize a result of importance for the connection of !?J!Tqexp with 
!?J f/",. 

The theory gt~e"p contains many purely fictive elements. The set !2 of preparation 
procedures introduced formally in !?J!Tqexp contains many purely fictive preparation 
procedures; they;' are' unrealizable and hence have nothing to do with the real struc­
ture of the" wotld. Tlie formally introduced set ~o correspondingly contains purely 
fictive registation methods and ~ contains purely fictive registration procedures. 
The fictive partition of Q into ensembles <p(a)EK(Jf) and of fF into effects 
",(bo, b)EL(Jf) is not realistic. Not all possibilities for distinguishing the aE!2' by 
means of the fEfF are really at one's disposal. Therefore, the elements of K(Jf) 
and L(Jf) can only be viewed as fictive ensembles and fictive effects. In a realistic 
theory, something. else. must take their place. 

Do there remain' any. realistic features of !?J!Tqexp ? And'if so, which are they? 
To just this question let us turn' now. 

§ 2.2 The Embedding of fYJ s;,. in fYJ.q; exp 

Even if we completely disregard that some elements of !?J !Tqexp are fictive, this 
!?J!Tqexp has the same disadvantage as the quantum mechanics of microsystems. In 
fact, no theory is yet known for deducing the mappings <p and '" from concretely 
prescribed constructions of the preparation and registration devices. In this context 
see the detailed presentations in [2J In practice one proceeds in the application 
of !?J!Tqexp similarly to the application of !?J!Tq and "divines" certain observables 
(i.e. mappings L ~L) corresponding to registrable quantities. This cannot be 
denied; but it shows the still unsatisfactory status of a theory of macrosystems. 
It thus appears not meaningful (in searching for a systematic way to a theory of 
macrosystems) to proceed solely from the theory !?J!Tqexp. But we are not in the 
fatal situation of knowing only !?J!Tq expo We rather know very realistic theories !?J f/", 
of macroscopic systems. Having described some structures of these !?J f/", in II, we 
have just before §2.1 recapitulated them with the simplified assumption that also 
the dynamics are known in !?J f/",. 

Our basic idea (as described at the beginning of §2) says that neither is !?J f/", 
more comprehensive than !?J!Tqexp nor !?J!Tqexp more comprehensive than !?Jf/",. We 
now must approach the relation between these two theories and later see whether 
this approach reflects the correspondence between these theories and experience. 
For this purpose, we first return to (2.1) from which we select the relation between 
!?J!J? and one of the !?J f/",v : 

(2.2.1) 

This we now supplement by the notion that !?J if; is more comprehensive than !?J!Tq exp : 

(2.2.2) 

Initially, the two relations (2.2.1) and (2.2.2) are not correlated. Nevertheless 
they would cause a relation between !?Jf/", and !?J!Tqexp if the restrictions and embed-
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dings in (2.2.1) and (2.2.2) were known. But since we even do not know f!I>§?, these 
relations can only help us to guess a direct relation between f!l>fl;" and f!l>g;exp' 
We base this guess for implementing (2.2.1) and (2.2.2) "imagined" diagram 

(2.2.3) 

with a f!l>g;'exp to be discussed soon. Then f!I>§? is more comprehensive than f!l>g;exp 
because from an embedding (in the sense of the theorem from XIII (3.2.4) or [3] 
§8 or [48]) one. obtains that part of f!l>g;exp which reflects realistic structures. But 
we cannot construct this embedding because of our ignorance of f!I>§? Hence let 
us by restrictions and embeddings go over to f!l>fl;" and f!l>g;'exp, of course assuming 
analogous restrictions on the left and the right of (2.2.3). 

We can only indicate such restrictions by examples: If the restriction of f!I>§? 
to f!I> fl;" is that to the hydrodynamics of water, then on the right side one must 
restrict f!l>g;exp to hydrogen and oxygen nuclei and electrons in appropriate ratios, 
and to such energies that one need not deal with vapor or ice. With corresponding 
restrictions of f!I>§? and f!l>g;exp, the embedding of f!I>§? into f!l>g;exp should as in 
(2.2.3) go over into an embedding of f!l>fl;" into f!l>g;'exp' The only distinction from 
a "normal" embedding (see below in XIII §3.2) may lie in those structures of f!l>g;'exp 
which reflect the real situations and the non-fictive possibilities for experiments. 

These structures are possibly more comprehensive than the embedding 
f!l>fl;,,~f!I>g;'exp says. Whether f!l>g;'cxp in fact has more real structures than the image 
of f!l>fl;", depends on how comprehensive f!l>fl;" is. For example, if one has the diagram 

f!I>.'Y;" 

1 ~[ljJg:, / qexp 

f!I>!Y,;. 

then it can happen that the image of f!I> fl;" in f!I> g;'exp yields precisely the realistic 
part of f!l>g;'exp' However, the image of the theory f!I>!Y,;. (which is less comprehensive 
than f!l>fl;,,) may in this embedding yield less than the realistic part of f!l>g;'exp' Such 
an example occurs when f!l>fl;" is the theory of the Boltzmann collision equation 
and f!I>!Y,;. is aerodynamics. Then the transition from f!I> fl;" to f!I>!Y,;. is sketched briefly 
in [3] pages 99-100, and in more detail in [1] XV §10.6. 

Having thus critically discussed the meaning of the bottom line in (2.2.3), let 
us implement the embedding of f!I> fl;" into f!I> g;'exp by a special approach, naturally 
suggested by physical considerations. Since obviously fl, flto and fit contain a set 
of fictive elements, let us view the sets flm' fltOm' fltm of f!I>!Ym as subsets of fl, flto, 

fit, namely as the subsets of the "realizable" preparation and registration procedures. 
Corresponding to the general embedding theorem in XIII (3.2.4), [3] (8.14) or [48] 
(3.4), we can express this by an embedding 

i 
Mm----+ M . (2.2.4) 
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Since in the sequel we shall consider only this embedding (2.2.4) of fJJff"" let 
us drop the prime on [JJ!Tq'exp- Then M denotes the set of systems in [JJ!Tqexp while 
Mm is the set of systems in [JJff",. Further let us assume that the mapping i in 
(2.2.4) is bijective. One could simply say that we identify Mm with M. 

We can extend i (in a canonical way) to a mapping of the subsets: 

In particular let us require the following relations (2.2.5) and (2.2.6) for a further 
concretization of XIII (3.24) or [3] (8.14): 

iii 
flm~fl, fJltm~fJIt, fJltom~fJltO· (2.2.5) 

This of course means that one obtains the same probabilities in [JJff", as in [JJ !Tqexp: 

A..9"m(a n bo, a n b) = A. «ia) n(ibo), (ia) n (ib». (2.2.6) 

One must reckon with the possibility that (2.2.6) is mathematically not exact 
(see § 3) but gives such a good approximation that the difference between the left 
and right sides remains experimentally undetectable (for instance smaller than 
10- 100). But we let (2.2.6) stand as an equation in order to avoid too great mathemati­
cal difficulties. 

Therefore, (2.2.5) together with (2.2.6) expresses our notion that flm' fJltm can 
be regarded as subsets of fl, fJIt. For this embedding i we furthermore demand that 
structures of the "same physical meaning" in [JJff", and in [JJ!Tqexp are also mathemati­
cally related to each other. Thus (2.2.6) already expresses the coincidence of probabili­
ties interpreted in the same way in [JJff", and [JJ!Tqexp. 

There surely can be many further relations that are "interpreted in the same 
way" in [JJff", and fJJ!Tqexp- The introduction of such relations restricts the mapping 
i more and more, as we shall presently demonstrate by the example of the time 
displacement. Perhaps the investigation of equally interpreted relations could be 
a first step on the way toward solving the problem of "macroscopic observables" 
(see the discussion after (2.3.13) and in §3). 

In II (4.2.11) we defined a mapping R. of fJltm into itself. Its physical interpretation 
was that the registration procedures are translated by a time r. The time displacement 
operator [). in quantum mechanics (considered in IX § 1) has the same physical 
interpretation. For this reason, for the mapping i from fJltm into fJIt it would be 
natural to require 

(2.2.7 a) 

While R. on the left side is a mapping of fJlt m into itself, the [). on the right side 
maps fJIt into itself. According to IX §§ 1 and 2, in quantum mechanics the mapping 
[). is given by 

By IX (2.5), the operator U. (in IX written U(r» is determined by the Hamiltonian 
IX (2.6). . 

We must recognize that the obvious requirement (2.2.7a) is still not entirely 
realistic (this makes it understandable, that the equation (2.2.8) set forth below need 
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hold only in physical approximation). That (2.2.7a) is not realistic, follows from 
the fact that the (jt from fJJffqexp are not at all realizable in the domain of macrosys­
terns! Why not? 

By .preparation and registmtion procedures, the quantum mechanics g> ffq (and 
hence the extrapolated theory fJJffqexp) describes the "interaction possibilities" of 
the micro systems with the surroundings. Correspondingly, fJJffqexp depicts the partial­
ly fictive interaction possibilities of the macrosystems with the surroundings (see 
§2.1). The mutual interaction of the microsystems is described by fJJffq in the form 
presented briefly in IX §2. This descriPtion only holds in the time interval "between" 
preparation and registration. About ,the physical meaning of (jt in fJJffq, this descrip­
tion says that the time interval between a preparation procedure a and the registra­
tion method (jt bo equals. plus the time interval between a and boo Therefore, 
the (jt in fJJ ffq means that the time interval of no interaction with the environment 
is increased by •. 

In fact one can in a very good approximation isolate microsystems between 
aE.f2 and boE~o from the surroundings (frequently with great experimental effort). 
But prepared macrosystems in practice continually interact with the environment 
(as described in §2.1). Therefore, Rt in fJJf/". does not mean that from the time 
t=O (the system was prepared before t=O; see II § 1) till t=. no significant interaction 
with the surroundings occurs (as one would reqtiiJ:e according to fJJffqexp I). Rather, 
Rt only means that Rt bo measures the trajectories just from '. 

Therefore, iRtbo in contrast to (2.2.7a) is not identical with (jtibo. In fJJf/". we 
only require that 'the ,unavoidable interaction of the macrosystem with the environ­
ment is till t =. so slight that the trajectories are not noticeably changed. This 
means nothing but a certain stability of the macroscopic dynamics under the unavoid­
able slight disfurbances from the surroundings. In contrast, the considerations in 
§2.1 showed a great microscopic change in fJJffqexp, already by the most insignificant 
heat radiation. 

For the macroscopic behavior of the really preparable macrosystems, the macro­
scopic stability also means that one can do as if (in the sense of fJJ ffq exp) no interaction 
is present until '. For the macro systems prepared in reality, i Rt bo and (jt i bo there­
fore are not distinguishable macroscopically. Mathematically, this means that the 
probabilities 

A«ia) 11 (iRt bo), (ia) 11 (iRt b)) and A«ia) 11 «(jt ibo), (ia) 11 «(jt ib)) 

practically coincide for all aE.f2m • We thus come to weaken the requirement (2.2.7a) 
to 

(2.2.7 b) 

for all aE.f2m • As explained above, (2.2.7b) is really just an approximation (though 
a very good one). In order to avoid mathematical complications from the beginning, 
we nevertheless have formulated (2.2.7 b) as an equation. 

The weakening to (2.2.7b) is essential. There surely can exist elements aE.f2 with 
a¢:i.f2m for which A(all(iRtbo), all(iRtb)) essentially differs from A(all«(jtibo), 
all«(jt ib))! This must even be expected, though we shall not explain it here. In 
fact, a measurement method of the form (jt ibo is anyhow unrealistic, just because 
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an interaction of the macrosystems with the environment (from t=O until t=.) 
is unavoidable. 

With R,boEROm and R,bERm, from (2.2.6) with R,bo instead of bo (and !Rr'b 
instead of b) follows 

A.9'rn(anR,bo, anR,b)=A((ia)n(iR,bo), (ia)n(i~b». 

With (2.2.7 b) this implies 

which again holds only approximately. 
Finally, the function f1 from g>.:J;;exp and the special form of 15, in g>.:J;;exp (see 

above) yield 
(2.2.8) 

Since R, is in g> ff", defined only as a semigroup for .2:0, also (2.2.8) is only a 
requirement for .2:0; for .=0 it goes over into (2.2.6). For the embedding (2.2.4), 
(2.2.5) we therefore only require the approximate validity of (2.2.8) for .2:0. 

But (2.2.8) also need not hold for "very large" •. This follows already from 
the general considerations in XIII §2.5 and [3] §9. Also the "recurrence theorem" 
(see (2.3.26) and [1] XV §§ 10, 11) shows that (2.2.8) cannot be meaningful for too 
large •. Here let us only mention that on the right side of (2.2.8) the system is 
assumed as "isolated"; only then is 15, in the given way representable by U,. But 
the macrosystems are really not isolated; hence (2.2.8) can indeed hold for finite 
macroscopic times ., but only for the aEi2m and bEg{m' For too large. (some 
or millions of years), (2.2.8) could well be false. 

With the canonical extension of i, from (2.2.5) follows the relation 

(2.2.9) 

With f1m as in II (2.4.4), then (2.2.8) can be written 

f1m(a, RJ)= f1(cp(ia), U, "'(if) Un (2.2.10) 

for. 2: 0 but not for. of physically meaningless magnitudes. 
Again, let us emphasize that in (2.2.10) the "equality sign" need not be mathemati­

cally exact; only physically the two sides must be indistinguishable. 
If an embedding theorem holds in the form just sketched, let us briefly say 

that g>ff", is compatible with g> .:J;;exp. In this context, we have in mind that a sufficient­
ly comprehensive theory g> ff", is more comprehensive than g>.:J;; ew Since g> ff", is 
often known only in broad outline, one conversely uses the embedding theorem 
in order to obtain a better (more comprehensive) theory g> fY,n- In this sense, one 
could say that (2.2.10) is the basis of "statistical" mechanics. Of course, we cannot 
develop an entire statistical mechanics. In [1] XV one finds a presentation (not 
with complete mathematical rigor) of statistical mechanics, which rests on the notions 
just sketched (of embedding g> ff", in g>.:J;; exp)' In order at least to point out which 
problems are raised by an embedding theorem of the form (2.2.10), in the following 
§§2.3 through 2.6 let us draw consequences from it. 
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§ 2.3 General Consequences of the Embedding Theorem 

In §2.2 we did not prove the embedding theorem, but only formulated it. Here 
let us proceed as if it were established and deduce consequences. Then one may 
try to prove the embedding theorem by first proving its "essential" consequences. 

We first consider the connection of the embedding i with the mappings CPm from 
II §3.2 and cP from III DS.1.1. In a diagram (already using the considerations from 
II §3.3) we can s~mmarize this by 

(2.3.1) 

Analogously, the connection of i with the mappings t/I m. from II (3.3.3) and t/I from 
III DS.1.2 yields 

(2.3.2) 

By means of the mappings CPm and t/I m .. we can rewrite J1.m as 

so that (2.2.10) becomes 

<CPm(a), t/lm.(Rt f) = J1.(cp (i a), Ut t/I(if) U/). (2.3.3) 

For Ut g U/ we briefly write dl.tt g with dl.tt a mapping of fljJ' into itself. In analogy 
to classical mechanics one may call dl.tt the Liouville operator. Finally, with V.(') 
from the diagram II (4.2.14), from (2.3.3) follows 

(2.3.4 a) 

The set t/lm.(ffJ separates (i.e. la t/lm.(ffJ is norm-dense in L(SJ) since we assumed 
(see II §3.1) la t/lm(¢) dense in L(Y). Therefore, from (2.3.4a) follows that to each 
cp(ia) there uniquely corresponds a CPm(a); hence there is a mapping j with j cp(ia) 
=CPm(a). In the special case oft =0, the relation (2.3.4a) implies thatj is continuous 
relative to the norm-topology in cP i(.,q;,.) and to the o-(CPm(.,q;,.), C(Sm))-topology since 
o-(CPm(.,q;,.), C(Sm)) and o-(CPm(.,q;,.), t/lms(ffJ coincide on the precompact set CPm(.,q;,.)· 
Therefore one can extend j as a mapping of the norm-closure Km of cpi(.,q;,.) into 

the set K(Sm). The existence of direct mixtures makes Km convex and Km~K(Sm) 
affine. 

Thus (2.3.4a) takes the form 

(2.3.4b) 

for all wEKm • 
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To deduce consequences from (2.3.4b) is very difficult without introducing ideal­
izations. The first idealization is only a mathematical one. It has no physical signifi­
cance, especially because we allow that (2.3.4 b) holds only in "very good" approxima­
tion. This idealization is to say that j is continuous also relative to the norm-topolo­
gies in cpi(,q;,,) and CPm(,q;,,). If t/lms(§'".) (and not only la t/lm.(§'".» were norm-dense 
in L(Sm), this idealization would be a theorem. When j is norm-continuous, then 
jKm is a subset of the norm-closure Km(Sml of CPm(,q;,,), and jKm is norm-dense in 
Km(Sml. Therefore, the diagram (2.3.1) can be completed to 

Km(Sm) c K(Sml 

Il 
,q;" Km c K (2.3.5) 

"\1- 1-
i,q;" c ,q'. 

The completion of (2.3.2) is not so easy since Km(Sml need not separate the elements 
of L(Sm)! 

By means of the considerations from II §3.3 and V §3, let us go over from C(Sm)' 
C(Sm) to another pair of dual Banach spaces. 

With Em=BI(Sm)/J(Sm) from II §3.3, we can form (according to V §3.1) the space 
BI(Em) and the space BI'(Eml dual to it. By II §3.3 one can identify Km(Sm) and 
Km(Sm) with subsets of K(Eml; for this reason let us write Km(Sml=Km(Eml and 
Km(Sm) = Km(Em). With Blm(Eml as the Banach subspace of BI(Em) spanned by Km(Em), 
there follows Km(Em) = K(Em) n Blm(Eml. The elements of c(Sml uniquely define norm­
continuous linear forms over K(Eml; hence one can identify C(Sm) with a subset 
of BI'(Eml. In this sense L(Sml becomes a u(BI'(Eml, BI(Eml)-dense subset of L(Em). 
The embeddings just described allow us to extend certain mappings. As a precaution, 
let us mention that K(Sm) must not be interpreted as a subset of K(Eml, since the 
set J(Sm) (of the sets ofu-measure zero) depends on the set Km(Sm)! 

Therefore, in (2.3.5) we can put Km(Sml=Km(Em) and replace Km(Sm)cK(Sm) 
by Km(Em) c K (Em). Then, instead of (2.3.2) we can write 

(2.3.6) 

The mappings v.(s) of c(Sml resp. L(Sml into themselves can be extended to BI'(Em) 
resp. L(Em), where Em (as a subset of L(Eml) is mapped into itself. One recognizes 
this easily from the facts that V. carries an element of BI(Y) into an element of 
BI(Y), and that a set of measure zero is mapped into a set of measure zero (as 
at the end of II §4.2 in the proof of Sfl =Sf2=>SV.fl =SV.f2). Using (2.3.5), we can 
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thus write (2.3.4b) in the form 

(2.3.7) 

where < ... , ... > now is the canonical bilinear form of BB(Lm) and BB'(Lm). 
In (2.3.6) let us introduce Lm c L as the cr(BB', BB)-closure of the set l/I i(~), and 

Lm(Lm)cL(Lm) as the cr(BB'(Lm), BB(Lm»-c1osure of the set l/Ims(~)' Though lal/lm.(~) 
is a(BB'(Lm), BB(Lm»-dense in L(LJ since lal/lms($'J is norm-dense in L(8".), in general 
neither a unique mapping of Lm into L(Lm) nor of L(Lm) into Lm follows from 
(2.3.6). This makes an evaluation of (2.3.6) difficult. For this reason we go over 
to partial mappings with fixed bOE~Om' Then (2.3.6) implies the diagram 

(2.3.8) 

with 

Since i ~m(bo) c~(ibo),the Boolean rings ~m(bo) and i[!,lm(bo) are isomorphic. From 
(2.3.8) follows 

(2.3.9) 

where l/Imsbo and l/Iiboi are additive measures over ~m(bo). By (2.3.7) the relation 

(2.3.10) 

holds for all wEKm. 
Since CfJm(,q;,.) is norm-dense in Km(SJ=Km(Lm), a wEKm exists (easily shown 

by mixing) such that jw is an effective measure from K(Lm). Now think of such 
a W=Wo as chosen. Then (jwo, l/Imsbo(b»=O implies b=f/J. With this Wo we can 
on ~m(bo) define a metric 
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Because of (2.3.10), both measures "'m.bo and "'iboi extend to the completion Ebo 
of 9tm (bo) (see V T 1.3.2); hence instead of (2.3.9) one obtains 

L(Em> 

:7 
Ebo (2.3.11) 

~ 
"',"abo l/IibOi • 

Then Ebo---+L(Em) and Ebo---+Lare two observables In the sense of V D1.3.1. 
Since all elements of L(Em) coexist, it is natural to assume (in the sense of the 

"classical" way of registering trajectories) that there is a registration method bOEBlom 
so that one can register (approximately) all trajectories. This just means 

(23.12) 

since the left side is all one can attain approximately (in the u(91' (Em), 
9I(Em»-topology) with registrations ofthe method boo 

Therefore, as a second idealization let us require the existence of a boE9tom 
such that (2.3.12) holds. This does not mean that there can be only one such boo 

This second idealization is not only a mathematical one: The existence of a 
bo with (2.3.12) corresponds to the classical assumption that one can measure the 
"total" trajectories, i.e. measure without perturbing the trajectories essentially. The 
existence of such a bo (the physical possibility to construct a device to measure 
the total trajectories, see [3] § 10 or XIII §4.6) does not mean that one could not 
construct other devices that partially disturb the statistics of the trajectories (see 
II §3.1). The presumption of a bo to exist with (2.3.12) is therefore stronger than 
the presumption" la '''m(4)) dense in L(t)" introduced in II §3.1. 

The presumption (2.3.12) can also be said to state the possibility to "continually 
measure" the trajectories. Therefore, (2.3.12) expresses a certain stability of the dy­
namics against unavoidable perturbations by the measuring process (see again 
II §3.2). 

We shall maintain the presumption (2.3.12) until §2.6 (for most of the deductions). 
In §2.7 we shortly shall discuss so "sensitive" macro-systems that (2.3.12) cannot 
be fulfilled (hence only" la '''m(4)) dense in L(t)" is possible). 

We can apply V T3.3.1 (ii) to the observable E;'o~L(Em> where we can identify 
oe L(Em) with Em (see V §3.1). Hence for each '1EEm there is exactly one uEEbo 
with '1= "'m.bo(U). Therefore, there is a subset El;o of Ebo for which 

E~ "'~.t;o E =0 L(E ) bo----+ m e m 

is a bijective mapping. From the u-additivity of the measure "'m.bo over Ebo' it follows 
that El;o is a Boolean ring isomorphic to Em under the mapping "'m.bo. From (2.3.11) 
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thus follows 

hence (2.3.11) implies the existence of an observable 

(2.3.13) 
with 

One often calls (2.3.13) the "macroscopic observable" of the macro systems 
described by [l)':Y", although, according to the above remark, in general there can 
be various observables (2.3.13). As observables in [l)'~exp, these Fbo in general need 
not coexist. 

According to V §3.2, F/;o is the restriction of S/;o. Sbo is the mixture-morphism 
corresponding to the observable (2.3.13): 

(2.3.14) 

Therefore, (2.3.10) implies 

(2.3.15) 

for all YE~'(I'm) and for all wEKm, and hence SboIKm=j. Thus, the diagram (2.3.5) 
can also be drawn as 

(2.3.16) 

i!2;" c !2' 

Although there can be different bo obeying (2.3.12), the ensuing mappings Sbo 
must of course agree withj on Km (but not necessarily on all of K !). 

The existence of a bo with (2.3.12) is therefore equivalent to the statement that 
the mapping j can be extended to all of K as a mixture-morphism. Such extensions 
are not unique. 
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That j cannot be extended as a mixture-morphism means that every linear and 
norm-continuous extension of j does not map K into K(Lm). In other words, for 
every extension there are such elements wEK, w¢Km which by the extension are 
mapped on elements outside K(Lm)! We cannot exclude this possibility (see §2.7). 

From (2.3.7) follows 
(v/s)' jw, t/tms(f) = Jl(o/1~ w, t/t(i f)) (2.3.17) 

for all wEKm. Since t/tms{:!FJ separates, it follows as above that to each o/1~w there 
corresponds a unique ~(s)' jw. Thus j can be extended to the set U 4't~ Km with 

(2.3.18) 

for all wEKm. 
Ifa bo with (2.3.12) exists, we may replacej in (2.3.17) by SEa and choosej=(bo, b), 

with bE~m(bo). Then L(Lm)=CO" t/tmsEa(L~a) implies 

<~(s)' SEa w,Y)=Jl(w,olt<S~aY) 

for all wEKm and all YEL(Lm), i.e. 

~(s)' SEa W = S~a 0/1~ W 

for all wEKm. Therefore SEa equalsj also on U 0/1; Km. 

With W t =0/1<1 wand wEKm, from (2.3.18) follows 

Thus we have proved that (2.3.18) even holds for all WE U 0/1; Km. 
t~O 

With Km(Y) = Km(Sm) = Km(Lm), from II (4.2.9) follows 

~(s)' Km(Lm) c Km(Lm). 

(2.3.19) 

All this (together with the existence of direct mixtures) implies that j can be extended 
(as an affine mapping) to 

Km=co U 0/1; Km 
T~O 

and that 

resp. 
SEa KmcKm(Lm). 

Also, (2.3.18) and (2.3.19) hold for all wEKm. 
Therefore (2.3.18) and (2.3.19) mean that 

(2.3.20) 

hold as mappings of Km into Km(Lm), wherejKm resp. SEaKm are dense in Km(Lm). 
We can regard (2.3.20) as the basic relation for the embedding of g> f7", into 

g>:J;exp. Since S/'a is uniquely determined by Flia , through Slia the macro-observable 
(2.3.13) and the set Km of ensembles essentially enter (2.3.20). Also the dynamics 
of the macro systems are determined by Km and Slia, since Slia Km is dense in Km(Lm) 
=Km(Sm)=Km(Y) (see II §3.3). 
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The considerations immediately following (2.3.19) show that (with fixed IiJ there 
is a largest subset K(bo) of K on which (2.3.20) is satisfied. Moreover, one sees 
that K (bo) is a closed convex subset of K and that 0/1; K (bo) c K (bo) for 1: ~ O. There-
fore, in particular, Km c K (bo). ' 

We often simply put Km=K(bO)' Since K(bo) is uniquely determined by Sm and 
Iio' then Km(1:m) as the norm-closure of SboKm=S"oK(bo) is also uniquely determined 
by Sm and F"o' In this sense, Sf,oK(bo) determines the "finest" dynamics compatible 
with the macro-observable Ff,o' If the norm-closure of S;'o Km differs from the norm­
closure of SboK(bo), one still can "imagine" that the macrosystems satisfy the "fmest" 
dynamics determined by S"o K (bo). The actual preparation possibilities, however, 
do not allow us experimentally to work out the details of this fmest dynamics, 
since only the trajectory ensembles from Sf,oKm are realizable. We shall return to 
this dynamical problem in §2.S. 

The mathematical structure of the fundamental relation (2.3.20) is well known. 
It means that the representation of the time translation semigroup in Km(1:m) by 
the v,,(s)' is homomorphic to the representation in Km by the 0/1;, and that j resp. 
S"o are homomorphic mappings of these representations. 

First of all the question arises whether (2.3.20) can at all be satisfied for suitable 
Sf,o and Km. In this book we cannot go into this question in mathematical generality. 
Only some indications for such an analysis shall be given here, and an example 
follows in § 3. 

In the applications, the macrosystems occupy finite space regions (in II we did 
not point this out explicitly). This fmiteness is attained in the macroscopic description 
by prescribing "boundaries" and boundary conditions. In f!Jflqexp the given bound­
aries are special structures of the Hamiltonian H (e.g. an external "box potential"). 
For the systems restricted to finite regions, one thus obtains a discrete spectrum 
of the operator H. This has the consequence that the operator o/It also has a discrete 
frequency spectrum. 

Therefore, writing H = L>:n E. with the eigenvalues e. and the projection operators 
E., we obtain 

'¥t'w=U+wU =e-iHtweiHt="ei(£,,-£v)tE wE 
l' t l' L.J v Jl. (2.3.21) 

'.Il 

Therefore,o/I; w is an almost periodic function, which leads to the well-known "recur­
rence theorem" (for suitable 1:, 0/1; w repeatedly comes arbitrarily close to the value 
w in the sense of the a(BH, gj')-topology). . 

When 0/1; has a discrete frequency spectrum as in (2.3.21), we easily see that 
(2.3.20) cannot hold exactly and not at all for very large 1:. In fact, the frequency 
spectrum of v,,(s) is (except at the frequency zero) most often continuous, correspond­
ing to the fact that the trajectories in Sm exhibit an irreversible behavior. Thus, 
most often the left side of (2.3.20) shows an aperiodic behavior, the right side an 
almost periodic behavior. Therefore, (2.3.20) need not hold at all for 1: of the magni­
tude of the recurrence time. 

In the almost periodic expression 
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the frequencies BIl-B. can be so dense that with suitable weK we may replace 
the second summand on the right side by 

+00 

L ei(t" -tv), E. wEll - J e io>< w(w) dw. 
-00 

This approximation is useable in the sense of the a(fJl, fJl')-topology, so that suitable 
geL make 

+00 

J.l(<¥I; w, g) = tr(F'U; w] g)-Ltr(E. wE.)+ J eia>' tr(w(w) g) dw. (2.3.22) 
-00 

The approximation (2.3.22) is very plausible and can easily be verified in artificial­
ly constructed examples. As such examples, one can choose the special almost period­
ic functions 

(2.3.23) 

where the w. are distributed very densely and the a. only "slowly" change with 
w •. Then for (2.3.23) one can find an approximation 

+00 

f(t)= J a(w) eia>t dw, 
-00 

which is very good for t~(LlW)-l (with Llw the maximal distance between adjacent 
w.). For real macro-systems, the distances of the frequencies in (2.3.21) are in fact 
so small that (LI W)-1 exceeds 106 years. Hence the main question is: "For which 
weK and geLis the approximation (2.3.22) useable?" 

One possible way of handling this problem consists in trying to formulate a 
mathematically correct transition to "infinitely large" systems. For macroscopic the­
ories, such transitions are very well known. They are used when one is less interested 
in the boundary effects than in the propagation processes. For example, for the 
heat conduction equation one can seek solutions for an "infinitely" extended body 
with the boundary condition that the temperature at infinity is constant. Similarly 
one can try to find limits in {JJ!Tqexp for infinitely large systems when one only 
considers local effects (local observables) and special ensembles which "at infinity" 
correspond to the well-known thermodynamic equilibrium. 

In this way, we certainly can obtain limits for which the dynamics is characterized 
by a continuous frequency spectrum. But it is an error to think that thereby the 
embedding problem is solved or that at least Lm and Km are determined. 

Another possible transition to a "continuous" frequency spectrum consists in 
replacing (2.3.22) by 

J.l(w [<¥I, g])-Ltr(wE. gE.) + L tr(wEIl gE.) ei (£" -£v),-'IT 

·,Il 
.*Il 

for 1:" not too large, where Tis large relative to all macroscopic "observation times" 
of the system but still small relative to (LI w) -1. But then one must investigate whether 
for appropriate wand g the right side in practice does not depend on T as long 
as this T obeys the conditions just given. 
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But in any case there remains the decisive question: "For what Sbo can the 
fundamental relation (2.3.20) be satisfied on a set K(jjo)~f/J?" Let us again emphasize 
that this question refers only to the semi-group of time translations with ,~O. 

This question is not trivial, since the Olt: represent isomorphic mappings of the 
convex set K into itself, whereas one knows from examples of macrosystems that 
the v.(s)' are "contractive" (represent mixture-morphisms of K(I:",) into itself, where 
v.(s) K(I:",) is a proper subset of K(I:m) for ,>0). But B.Sz. Nagy [31J has given 
examples where the Olt, are homomorphic to a contractive semigroup for ,~O. 

The theorems given by B.Sz. Nagy have the following structure: Let Q be a 
mixture morphism of K into itself with Q2 = Q. Let QK be properly smaller than 
K. If Olt, has a continuous frequency spectrum from - 00 to + 00, there exists a 
Q such that the V; = Q OJt: Q form a contractive semigroup (V;, +'2 = V;, V;2 for '1' 
'2 ~ 0 and v.' QK is properly smaller than QK for ,> 0). 

If such a "Nagy case" occurs, one can perform the following construction. We 
set 

Km=co U Olt: QK 
r:2::0 

(2.3.24) 

Let the present Km correspond to the set called Km on page 27, while KQ corresponds 
to the set denoted by Km(1':m). We assert that 

(2.3.25) 

then holds as a mapping from Km into K Q . Therefore, if one thinks of Q as the 
analogue of Sho and of v.' as the analogue of v.(s)', one has in (2.3.25) a mathematical 
model for the fact that a contractive semigroup V; can be homomorphic to the 
semigroup Olt;. 

(2.3.25) can easily be shown: For a w=Olt;, Qw, with arbitrary wEK, we have 

QOlt; w=QOJt~+" Qw=QOlt; QOlt:, Qw 
=QOlt; QQ°lt;, Qw= V; QOlt;, Qw 

= v.' QOlt:, Qw= v.' Qw. 

These discussions make it mathematically thinkable that (2.3.20) can be satisfied 
"approximately for, that are not too large". "Approximately" because one must 
(for not too large ,) approximate the discrete frequency spectrum by a continuous 
one. 

In §3 we shall give a more specialized example for an approximate embedding. 
This will prove in a mathematically rigorous way that (2.3.20) can be approximately 
fulfilled. 

The given considerations in no way show how the trajectory space Sm and the 
mapping Sbo can be chosen for real systems. It appears hopeless to solve this problem 
"in generality" if one recalls that systems as the mentioned aquarium with fish 
ought to be included. On the other hand, it appears conceivable that one could 
indeed find a general mathematical formulation for determining Sm and Sho' although 
this problem is practically unsolvable in complicated cases. 

Certainly it is initially more meaningful to ask for Sm and Shu in special simple 
cases, as one does in "statistical mechanics" with more or (most often) less exact 
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methods. In this connection, one generally is not aware that the question of &m 
and Silo is concerned. In §2.5 we shall for illustration give some initial indications. 

For now we can conclude our considerations by saying that f!JJ!ff;,. and f!JJ~exp 
most likely are compatible as formulated by (2.3.20). 

§ 2.4 Partitioning of the Macroscopic Effects into Classes 

Above, we already mentioned that Km(l:J need not separate the elements of 
L(l:m). Let us investigate more closely the partitioning into classes by Km(l:m) of 
the effects from L(l:m). We would have done this already in II; but in the description 
of macro-systems by f!JJ!ff;,. it has never been customary to consider such a partitioning 
into classes. For the embedding problem this partitioning presents an interesting 
structure. We can describe the partitioning of L(l:J in the structure of the dual 
pair Bi(l:m), Bi'(l:m). 

The set Km(l:Jl. of all elements in Bi'(l:m) that are orthogonal to Km(l:m) is 
a O"(Bi'(l:m), Bi(l:J)-closed subspace of Bi'(l:J. The set Km(l:m)l.l. is the norm-closed 
(hence also O"(Bi(l:m), Bi'(l:m»-closed) subspace of Bi(l:J spanned by Km(l:J. Thus 
Km(l:m)l.l. is the subspace Bim{l:J already introduced in §2.3. Then Bim(l:Jl. 
=Km(l:m)l., while Bi'(l:J/Bim(l:m)l. can be identified with the Banach space Bi;"(l:m) 
dual to Bim(l:m). The canonical mapping Bi'(l:m)~Bi'(l:m)/Bim(l:m)l.=Bi;"(l:m) is the 

mapping s' dual to the injection Bim(l:m)~Bi(l:m). 
In the sequel, the set Km(l:J=K(l:m)nBim(l:J introduced in §2.3 will occur 

more and more frequently. We have Km(l:m)c:Km(l:m), while one can identify Km(l:m) 
with Km(&m) (see §2.3) and Km(&J with Km(Y). Hence Km(l:m) describes an "ide-
alized" dynamics (as in II §3.3). , 

Therefore, we can write the partition of L(l:m) as the mapping L(l:m)~Bi;"(l:m). 
Let the image set s'L(l:J be denoted by L(l:m) and s' Lm(l:J by Lm(l:m). This L(l:m) 
is a O"(Bi;"(l:J, Bim(l:J)-compact, convex subset of Bi;"(l:m). Therefore L(l:J is generat­
ed by the set 0 e L(l:J of its extreme points. 

For gEoe L(l:m), S,-l g is a closed face of L(l:J. Hence there is an extreme point 
of L(l:J, i.e. a O"El:m with s' O"=g. If there were two extreme points 0"1' 0"2 with 
S' 0"1 = s' 0"2 = g, then 

would imply 

g=s' 0"1 =S'(O"l /\ O"~)+S'(O"l /\ 0"2) 

g=S' 0"2 =s'(O"T /\ 0"2)+S'(0"1 /\ 0"2) 

g=tS'(O"l v 0"2) + tS'(O'"l /\ 0"2)· 

Since g is an extreme point, we find s' (0"1 /\ 0"2) = g and hence s' (0"1 /\ O"~) = s' (O"T /\ 0"2) 
= 0, i.e. 0"1 /\ O"~ = O"T /\ 0"2 = 0 and thus 0"1 = 0"2 (S' is effective on l:m according to 
the definition of l:m I). 

Therefore, for the subset l:mk=s'-l oeL(l:J of l:m the mapping l:mk~oe L(l:m) 
is bijective. In general, l:mk is not a Boolean subring of l:m! If l:mk is not a Boolean 
ring, then the two dual Banach spaces Bim(l:m), Bi;"(l:J together with their sets 
of ensembles Km(l:J and of effects L(l:m) do not describe "classical systems" in 
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the sense of VII §5.3. The objectivating description of macrosystems does not imply 
automatically that these systems are classical! 

s' _ def_ 
From 1:mk~ae L(1:m) bijective, with L(1:mk) = co" 1:mk follows that the mapping 

(2.4.1) 

is surjective. 
Let us introduce a sort of inverse to the mapping (2.4.1) by choosing, for gEL(1:m), 

an element h from the set (s' -1 g) n L(1:mk) and setting r* g = h. This defines a mapping 

(2.4.2) 

where 

is the inverse to the bijective mapping 

One obtains s' r* = 1 as a mapping from L(1: J into itself and p2 = P for p = r* s' 
as a mapping from L(1:m) into itself. This implies pL(1:m)cL(1:mk) and that p is 
the identity mapping on 1:mk . For (JE1:m and for all uEKm(1:m), we therefore have 
<u, (J) = <u, p(J). 

The mapping r* is uniquely defined if and only if (2.4.1) is also injective. If 
one can define r* so that it is affine, then (2.4.1) is injective and r* is the mapping 
inverse to (2.4.1). Then L(1:mk) and L(1:m) are two isomorphic covex sets. Below 
we shall investigate a special case in which r* is affine. 

Because of II (4.2.9), i.e. V; Km(1:m)cKm(1:m), from S'li =S'12 follows 

< u, v.(s) 11) = < v.(s)' U,f1) = < v.(s)' U,f2) = < u, v.(s) 12) 

for all uEKm(1:m) and hence s' v.(s) 11 =S' v.(S) 12. Therefore, a mapping V. is defined 
by the diagram 

:.r~Lr 
L(1:m) ~L(1:m). 

(2.4.3) 

From v.(s) = v.(s) v.(s) (see II §4 2) with s' v.(s) = V: s' follows 
t'l + t2 rt t2 • , 't' L 

and hence 
(2.4.4) 

i.e. the V. form a semigroup. 
Whereas v.(s) has only a kinematic meaning in 1:m and L(1:m), by the mapping 

on L(1:m) one obtains time displacement operators V. in L(1:m) which reflect something 
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of the dynamics. For instance, for gEs'l:mk the element s' v.<S) r* g specifies (by its 
convex combination from the elements of s'l:mJ the "partition" over the various 
O'El:mk after a time T. For that reason we call 

s' v.<S) r* = v.s' r* = V. (2.4.5) 

the dynamical operators of time displacement. 
Let us also consider a partition into classes of the effects in fJJ~.xp. Let K! 

be a norm-closed, convex subset of Km with jK! resp. 8bo K! dense in Km(l:J (e.g. 
K!=KJ. Let the Banach subspace K!.LJ. of 14 generated by K! be denoted by 
14m • As a norm continuous affine mapping, j can be extended to all of 14m • The 

canonical mapping 14' -+14'/14~=14'". is the duall' to the injection 14m~14. Let 
the 0'(14'"., 14J-compact set l' L be denoted by L and the compact set l'Lm be called 
Lm. 

Because ofjK!cKm(l:m) we havej14m c 14m (l:m), so that we have the diagram 

B(l:m)~14m(IJ 

'·11' I 
14 ~ 14m, 

(2.4.6) 

since 8;'0 coincides with j on [JIm' Since jK! is dense in Km(l:J, the set j14m is 
dense in 14m(l:m) so that the mapping j' dual to j is injective. The diagram dual 
to (2.4.6) is 

(2.4.7) 

Also· if 8bo does not exist but j is norm-continuous, the mappings [JIm~[JIm(l:J 
and [JI'".(l:m)~[JI'". are well defined U' is injective). From (2.3.17) (valid for all 
wEKJ, i.e. from 

(jW, "'ms(f) = Jl(w, "'(if)) 

for all WE K! and all f E F m' then follows 

It need not be j' L(l:m) cL! Defining 

we have 
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The elements of LmCE,,J are the registrable trajectory effects. But we can imagine 
that also the elements of I!m(Lm) can be registered in an "idealized" form. If I!m(Lm) 
=l= L(Lm), the set I!m(Lm) describes a finite imprecision of the measurements of the 
trajectories in the following sense: As a compact convex set, I!m(Lm) is generated 
by oeI!m(Lm). The elements of oeI!m(Lm) give the finest possibilities to distinguish 
trajectories. The elements of oeI!m(Lm) replace the elements of OeL(Lm) which are 
the characteristic functions of the elements of Lm. The elements of oe I!m"(Lm) describe 
how much these characteristic functions must be "smeared out", i.e. how imprecisely 
the boundaries of the elements of Lm are determined by measurements. If I!m(Lm) 
=l=L(Lm), the "usual" classical idealization (that one can measure more and more 
precisely without finite limits) is then not applicable. 

Let us not discuss such a finite imprecision any more: Only in §2.6 and §3 
we shall remark on this possibility. Now let us use the idealization that Sbo exists. 
Then j'L(Lm)=LmcL implies I!m(Lm)=L(Ln,}. Proof: Because of S10 L(Lm)cLm, it 

is first guaranteed that j'L(Lm)cLm. The mapping L(Lm)~Lm is surjective if 
for each gELm there is a g'EL(Lm) with l'g=j's'g'=l'Sbog', i.e. with p(w,g) 
= p(w, Sbo g') = (jw, g') for all wEK~. But each gELm is representable approximately 
(in the u(f!l', f!l)-topology) by a t/J(ibo, ib) (since co" t/JmsbO Lbo = L(Lm»· For t/J(ibo, ib) 
and all wEKm , as above the validity of (2.3.17) (at ,=0) moreover implies 

(2.4.8) 

Therefore, since L(Lm) and Lm are compact and Sbo is continuous, for each gELm 
there is a g' EL(Lm) with l' g = l' S!;o g'. 

Since the mapping L(Lm)~Lm is bijective, its inverse T=j'-l exists: 

From the diagram (2.4.7) one obtains 

(2.4.9) 

As the bijective image of the convex set L(LJ, also Lm is convex. Thus Im 
= l' -1 Lm n L is a convex and u(f!l', f!l)-compact subset of L. In (2.4.9) one also can 
replace Lm by Im. 

(2.3.19) implies 
(2.4.10) 

as a mapping of f!l'(Lm) into f!l~, or as a mapping of L(Lm) into Lm. 
By multiplication of (2.4.10) with 1; because of s' = Tl'Sho (see (2.4.9» we find 

(2.4.11) 
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By multiplying (2.4.11) from the right by r*, for the dynamical operators in 
I(Lm) we get 

(2.4.12) 

We abbreviate: 
(2.4.13) 

and 
P=S~ r*7: 

bo ' (2.4.14) 

thus defining T as a mapping of fm onto I(Lm) and P as a mapping of fm into 
itself. Because of s'=1'l'S[,o' we obtain p=r*1'l'Sf,o and 1'l'S['o r*=1. With (2.4.14) 
follows 

and 

as well as 

Therefore P is a projector of Lm into PLmcS'r,o L(Lmk). Thus (2.4.12) can also be 
written 

v: = TI1lt< PSbo r* 

= TPI1lt< PS['o r*. 

With (2.4.12), from V:, +<2 = ~, ~2 follows 

and from this 

We abbreviate: 

V:, + <2 = 1'l' 11lt<1 Sbo r* 1'l' 11lt<2 Sbo r* 

= 1'l'I1lt<l PI1lt<2 Sbo r* 

= 1'l'I1lt<l +<2 Sbo r* 

~<=PI1lt<P. 

The ~< form a semigroup, which by 

v: = T~< Sbo r* 

yield the semigroup of the v:. 

(2.4.15) 

(2.4.16) 

(2.4.17) 

The ~< can be called operators of the "reduced" dynamics since (by means 
of the projection P) they are formed from the 11lt< according to (2.4.16). 

These considerations do not depend on the choice of K! cKm, provided only 
that S/'o K! is dense in Km(Ln,}. Hence the partition of Lm into classes (i.e. into 
the elements of Im) does not depend on K! since j' maps the set I(Lm) (which 
does not depend on K!) bijectively onto Im. Because of s' = 1'1' Sbo and S'L(Lmk) 
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=s'L(E..,), we have l'S/;o L(Emk)=Lm. Thus from the diagram (2.4.9) we can obtain 

1* :r · , .rr 
I' 

S/;o L(Em) - Lm, 

(2.4.18) 

where l' is surjective. This in particular shows that 

is a bijection. We have l' oe Sr,o L(E..,)=>oeLm and 

Sr,o Emk => oe Sr,o L(Emk), 

and S/;o l' is a bijec~ion of Emk onto oe Lm (becausej's' = S/;o l'). This implies that 

(2.4.19) 

are bijections. Therefore, P is the identity mapping on oe Sr,o(EmJ. Since Emk is unique­
ly determined as the set of those elements from Em which are mapped by l'Sr,o 

onto oeLm' with N as the kernel of the observable Em~LmcL (see V D3.3.4), 
we conclude N=>Emk. 

Whereas in the preceding derivations no additional assumptions about the struc­
ture of Km(E..,) entered, let us now consider a very frequent special case. In this 
context, we first investigate the macrotheory for its own sake (without reference 
to embedding). 

Let us take the special case where Emk is a Boolean subring of Em. Then Emk 
is also complete since r 1 oe L(E..,)nEm is closed in the u(1I (E..,), 1I'(E..,))-topology. 

If 1:' is a complete Boolean ring and 1:'~Em an isomorphic mapping of 
1:' onto the Boolean subring f 1:' of Em, then (for generality see V §3.2) a mixture­
morphism K(E..,)~K(E') is defined by <u,ju) = <v, u) and u-+v. On 1:', the 
dual mapping L(E')~ L(Em) is identical with the isomorphism 1:' ~ f 1:' c Em. 

If f 1:' = Emk, the mapping L(1:')~ L(E..,) is bijective. From r'1:' = Emk follows 
immediately s'r' 1:' =s' Emk=OeL(E..,) and from this that 

L(E')~L(E..,) 

is surjective. Let us show that 1I'(1:')~1I;"(E..,) is injective. If there were a ye1l'(E') 
with s' r' y = 0, then one could choose II y II = 1 and decompose y into y = y + - y_ 
(see [2] IV §2.1) so that the supports u ± of the positive and negative parts y± 
obey u+I\U_=O. We have y+,y_eL(E') and y+::::;;u+. Therefore, ji=u+-y 
=(u+-y+)+y_ is an element of L(1:'). Because of s'r'y=O we get s'r'ji 
=s'r'u+eoeL(Em). If we had jie1:', we would have ji-u+e1:' and hence 
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s'r' yE8e L(Lm), contradicting y~o and s'r' y=O. For YEL(L') the spectral representa­
tion of Y (see [2J IV §2.1) shows that there exist a (JEr «(J~O) and an 8>0 such 
that Y±MEL(L') holds. From y=1/2(ji+M)+1/2(ji-M) follows s'r'y=s'r'(J+ 
=ts'r'(y+8(J)+ts'r'(ji-8(J). Since s'r'(J+E8e L, we must have s'r'(ji+8(J)=s'r'(J+ 
= s' r' y and hence s' r' (J = 0, in contradiction to (J ~ o. 
L(L')~L(Lm) bijective implies BiJm(L~~BiJ(r) injective and rsBiJm(Lm) 

dense in BiJ'(L'). From s'r'L(L') = L(Lm) also follows that the mapping 
BiJm(Lm)~BiJ(L') preserves the norm; therefore, BiJm(L~~BiJ(r) is an 
isomorphism of Banach spaces. Hence we can identify BiJm(Lm) with BiJ(L') in the 

following way. BiJ(L')~BiJm(Lm)~BiJ(Lm) defines a mixture-morphism 
BiJ(L')~BiJ(Lm) whose adjoint mapping BiJ'(Lm)~BiJ'(L') is given by 

Then we get rS= 1, s'r' = 1 and sK(r) = Km(Lm). 
The mapping Km(Lm)=K(Lm)nBiJm(Lm)~K(L') is a bijection. But rKm(Lm) 

can be a proper subset of K (r). 
Above, we proceeded from the assumption f(L') = Lmk · This is equivalent to 

saying that Km(Lm)~K(r) is a bijective mapping. To finish the proof we now 

need only show that Km(Lm)~K(L') bijective impliesf(r) = Lmk . 

A mixture-morphism BiJ(L')~BiJm(Lm) is defined by K(L')~K(Lm). It can 
easily be shown that BiJ(L')~BiJm(Lm) and BiJm(Lm)~BiJ(L') are bijections with 

'8=st 
trs=rst= 1. Then, BiJ(L')~BiJ(Lm) can be defined as above, with 
K(r)~Km(Lm) as a bijection. From this follows rS= 1. For the adjoint mappings 

(2.4.20) 

we find s' r' = 1. From L' ~ Lm thus follows S'(r' r) = r. Therefore, r'L' equals 
8'-1 L'. From 

we obtain 

where t' must be a bijection and hence t'- l L'=8e L(Lm). Then, with Lmk 
=s,-18e L(Lm) we conclude Lmk =s'-1 L and finally Lmk=r' L'. 

Under the assumption made, we can use all the preceding results when we replace 
BiJm(Lm) by BiJ(L'), BiJ;"(Lm) by BiJ' (L'), L(LJ by L(L'), s by s, and finally r* by the 
mapping r' dual to r. Putting sr = q, we get q2 = q and p = r* s' = r' 8' = q'. 

Therefore, the systems are" classical" in the sense of VII § 5.3 if L mk is a Boolean 
ring and if we take Km(LJ as the set of ensembles. If Km(L~ is a proper subset 
of Km(Lm), the systems are classical in a restricted form, namely, we may "think" 
ofthese systems as classical but in reality not all ensembles in K(Lm) can be prepared. 

The mapping 
At = rV;(s)' S (2.4.21) 
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defines mixture-morphisms of K(r) into itself. From (2.4.5) follows 

(2.4.22) 

while S ~(s) = V. s (see the diagram (2.4.3)) yields 

(2.4.23) 

Since the V. form a semigroup, the At do also. The At will be called the dynamical 
operators in K (17'). This designation rests on the following considerations: 

The set Km(1:,J determines the mapping s and hence the set 1:mk . If 1:mk is a 
Boolean subring, the mappings S, r are determined by 17' = 1:mk . Then r, s and the 
kinematic mappings ~(s) determine At. But under certain assumptions a sort of 
converse also holds: 

If the mapping r~1:m is given as an isomorphism of 1:' onto f(r)=1:mk 
(and hence r), then s is restricted by the fact that we must have rS= 1. Via Km(1:m) 
=sK(1:'), the set Km(1:,J and hence the dynamics are determined by S, while the 
subset Km(1:m) of Km(1:m), is not determined by s. But Km(1:m) must be so large 
that Km(1:,Jl. = K (1:m)l.. 

If we prescribe At' then s is further restricted since (2.4.21) must be satisfied 
between the kinematic mappings ~(s) and the dynamic mappings At. How does 
this restriction look? 

Let the complete subring of 1:m generated by U ~(s) 1:mk be briefly denoted by 

~mk. Therefore, the kinematic transformations map ~mk into itself. We will show 
that s is uniquely defined on ~mk by the At. 

The elements of the Boolean subring of 1:m generated by U ~(S) 1:mk are [mite 
disjoint unions of elements of the form t2:0 

(~~) 0"1) /\ (~~) 0"2) /\ .•. /\ (~~) O"n), with 0"1,0"2'···' O"nE1:mk· 

Therefore, by the continuity of s, it suffices to determine 

s [(~~) 0"1) /\ (~~) 0"2) /\ •.• ]. 

We proceed step by step: 
With O"E1:mk (i.e. O"=rp for pEr), from (2.4.22) follows 

In order to calculate s [0" 1 /\ ~(S) 0"2] with 0"1 = r PI' 0"2 = r P2' we proceed from 

and 

For sO" 1 = PI' from (2.4.25) follows 

PI +s(~(s) 0"2\0" 1 /\ ~(s) 0"2)::; 1 

(1 is the unit element in L(1:'», hence 

s(~(s) 0"2\0" 1/\ ~(s) 0"2) ::;p! = 1-Pl. 

(2.4.24) 

(2.4.25) 
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From (2.4.24) follows 

This is the unique decomposition of the left side into a summand ::;; p 1 and a sum­
mand ::;;pi (see VII §5). Therefore we get 

s' (0" 1 /\ v.(s) 0"2) = p" 1 S' v.(s) 0" Z 

=P",A~P2' (2.4.26) 

where p" is the operator that projects each YEgg'(E') onto the summand ::;;p. For 
'z ;::":'1' from 

V.~S) 0" 1 /\ V.~) 0" Z = V.~S) [0"1 /\ v.~~ t, 0"2] 

with s' V.~)=A~s we obtain 

S'(V.~S) 0"1 /\ V.~) 0"2)=A~.[p", A~2-t' PZ]' (2.4.27) 

(2.4.28) 

We thus perceive that Zmk~L(E') is determined by At. If Zmk=Em, then s' is 
completely determined by At; hence the dynamics is determined by Km(Em) = sK(E') 
(see the beginning of §2.4 and II §3.3). 

What is the significance of this structure analysis of the macro-theory ~ 3,n for 
its embedding in ~:J; exp ? 

In § 3 we shall see that only an imprecise embedding is possible if Emk is a 
Boolean ring, since ggm in general has a high but finite dimension. Nevertheless 
let us (as so far) discuss the idealization of a precise embedding. It is simpler to 
take Emk as Boolean ring than to say that Emk is only approximately a Boolean 
ring. This idealization can be advantageous also for the problems discussed in §3. 

We first rewrite the diagram (2.4.9) in the form 

::[/1[: 
Lm ----+ Lm 

where T is defined in (2.4.13) and Sr by 

Sr=rSiio· 

Since T is the mapping inverse to j', from (2.4.29) follows 

TS~= 1, 
with P as in (2.4.14). 

From (2.4.12) and (2.4.17) follows 

with rfi1t =POlit P. 

(2.4.29) 

(2.4.30) 

(2.4.31) 

(2.4.32) 
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In (2.4.29) one can forget Lm and with L(bl:: co U ilItt S/;o L(~,J consider the 
diagram t~O 

l' 

:[7~ 
S;-'o L(~m)cL(bo), 

(2.4.33) 

where P L(bo) = S; L(r). The map S; must be injective since TS~ = 1. This is equivalent 
to the fact that Sr/JI is dense in /JI(r), i.e. that the Banach subspace of /JI(r) generated 
by Sr K is all of /JI(r). But Sr K must not be dense in K (r). The affine mapping 

L(bo)~L(~m,J is not determined solely by S~, but rather depends in an essential 
way on K;::. 

When K;:: has been chosen, Km(~,J follows as the closure of S;-'o K;::. Let the 
subset r Km(~m) of K (~') be called Km(r). Then rSbo K;:: = SrK;:: is dense in Km(r). 
Because r s = 1 and sK (r) = Km(~m)' we have sKm(~') = Km(~m)' Moreover, it follows 
that q=sr is the identity mapping on Km(~m)' Hence we get Sbo K;::=qS;-,o K;:: 
=sS,K;::. 

Tis determined by K;::: Because TS~=l, for y=Py=S~ Ty follows Ty=Ty and 
moreover l' y = I'S; 1'1' y = j' 1'1' y = l' y. Conversely, if for YE/JI' there is a YE S; /JI' (~') 
such that l' y= l' y, then 1'1' = T also yields Ty= TY. Here, x is uniquely determined 
by y = S; x and hence Ty = TS~ x = x. Thus one obtains 1; with the largest domain 
of definition, as follows: With l' -1 (1' S~ /JI' (r» as the domain of definition of 1; with 
l' y = I'S; x one puts Ty = x. 

Since l' is determined by K;::, thus Tis also determined. Then At is also determined 
by T according to (2.4.32). By K;:: and S" the set Km(r) is given as the closure 
of S, K;::. If s is known, it yields Km(~m)=sKm(r). 

F-
The observable ~m~L is also "essentially" determined, i.e. insofar as the 

form of lio manifests itself macroscopically. To this end, let us show that instead 
of lio one can just as well use Fho q' = F;-,o r'S', i.e. instead of Sr,o just as well qSho =sS,. 
As we have seen above, Sr,oK:'=qShoK;::. 

If the embedding condition (2.4.10) is satisfied, (2.4.32) follows. From (2.4.32) 
with (2.4.23) follows 

Because of S' = TSho and S' q' =s'r' S' =S', also S' = T(qSho) holds; this implies 

1'1'(qSr,J' v,(s) = 1'l'ilItt(qSho)" 
Multiplication by j' yields 

l'(qS;-,oY V,(s) = l'ilItt(qS;-,o)" 

i.e. the embedding condition (2.4.10) for qSho instead of Shoo Therefore, we can always 
choose 

as the macroscopic observable ~m -+ L. 
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Therefore, if Emk = 1:m holds for the macro-theory, then the dynamics is deter­
mined by S" K;!:, o/It. This is the exact formulation of the intuitive notion that 
"the dynamics of the macroscopic system is given by the microscopic Hamiltonian" 
(to be explained more clearly in the examples of §2.5). 

F 
Hence, since the macro-observable 1:m~Lcan be replaced by the equivalent 

S~ 8', for Emk = 1:m this observable is determined by At. 
For example, by means of (2.4.28) follows 

with the A~ given by (2.4.32). 

Till now we have not assumed that Km(1:J~K(r) is surjective. We carefully 
distinguished between K(r) and Km(r)=rKm(1:J. But in the macroscopic theory 
f!N'/"., one often makes the idealizing (see XIII §2.5 and [3]) assumption Km(1:m) 
= Km(1:m)· For the embedding problem, this can be an unnecessarily "stringent" 
idealization. Very likely, just by means of the embedding one obtains an estimate 
of how "close" the set Km(1:J can come to Km(1:J. We shall call the difference 
between Km(1:J and Km(1:J the macroscopic imprecision. In fact, Km(1:J ~Km(1:m' 
with r' Km(1:m) = K(J:') means that not each O'Er permits us to prepare ensembles 
u with the probability u(O') = 1. 

For the case Km(1:m)=Km(1:m), i.e. rKm(1:m) = Km(r) = K(1:'), we call the macro­
systems described in fJ's;,. classical, while 1:' is named the set of their objective 
properties (completely analogous to II §5 and VII §5.3). 

For such classical systems, a further embedding condition suggests itself: 
Since r is a complete Boolean ring, we can introduce an additive measure by 

(2.4.34) 

with J¥,.(p)=mp and mp(O')=mo(O' A p). Here we have p, O'E1:' and mo is an effective 
measure from K(r). Then, with e as the unit element of r, we get J¥,.(e)=mo. 

Wm=sJ¥,. is a preparator (V D6.4): 

(2.4.35) 

where we have used sK(r)=Km(1:m). Since this preparator yields ensembles from 
Km(1:m) only, it should be realizable (in the sense of a requirement analogous to 
APr in V §8), i.e. there should be an aE.,q;., such that one can identify 1:' with .,qm(ii) 
and Wm with A.'!.Ja, a) <pm(a). Then a second preparator is defined by Weal 
=A.,!(ia, ia) <p(ia): 

(2.4.36) 

Because of A.,! • .,(a, a) =A.,!(ia, ia), then II W(P) II =mo(p) holds with mo = J¥,.(e). 
Therefore, according to V T 6.3, there is a mixture-morphism 

K(r)~K (2.4.37) 

with 
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According to (2.3.16), we have 

qJm(a) = Sho qJ(ia) 
which implies 

(2.4.38) 

Since (due to [2J IV Theorem 2.1.11) the qJm(a) convexly generate all of Km(Lm), 
(2.4.38) holds on all of Km(Lm)=s' K(L'). Thus we get Sbo Ta rs=s, hence 

SbO Ta=s, 

rSho Ta=rS= 1. 

The operator 

(2.4.39 a) 

(2.4.39 b) 

(2.4.40) 

gives a mixture-morphism of K into itself. With (2.4.39b), it immediately yields 

With Km(a) = Ta r K (Lm), from Sho K c K (Lm) follows 

Moreover, 

which implies 

therefore Fa K = Km(a). 

Fa K = Ta rSho K cKm(a). 

Fa Km(a) = Ta rSho Km(a) = Ta r sr K (Lm) 

= Ta rK (Lm) = Km(a); 

Because of qJ(ia)EKm' by (2.4.37) we have 

Km(a)cKmcKm· 

With (2.3.42), from Sho Km c Km(Lm) follows 

Sho Km(a)=Sho Km = Km(L".). 

(2.4.41) 

(2.4.42) 

(2.4.43) 

Therefore, according to the discussion at the beginning of this subsection we can 
choose the set K; = Kill (a). 

Because Km(a) = Ta K (L:') holds with the choice K; = Km(a), a mapping T is 
defined by the diagram 

(2.4.44) 

This implies jT= 1. For the mapping T introduced in (2.4.9), thus we have T= T. 
Moreover, we obtain T= T; and P = F::. 
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Therefore, one can use all the preceding formulas if T is replaced everywhere 
by 7;;. In particular, from (2.4.32) follows 

(2.4.45) 
with 

Then the embedding problem can be formulated as follows: 
There exist mixture-morphisms Ta, Silo such that (2.4.39 a) holds and the condition 

(2.4.46) 

following from (2.4.11) is satisfied. 
One can weaken this condition somewhat: There exist mixture-morphisms Ta 

and Sr (where Sr is determined by the observable E'~L) such that (2.4.31) yields 

Sr Ta=1 (2.4.47) 
while (2.4.45) gives 

(2.4.48) 

The embedding problem in this weakened form was investigated in [44]. In 
§3 we shall report results from [44]. 

If a mixture-morphism 

is given, then (according to V T6.4) each effective measure mEK(E') yields a prepara­
tor 

E'~K, 

with W(O") = Ta moo. This implies 

and correspondingly 

,u(W(O"), 1-S~0")=<ma, 1-T; S~O") 

=<ma, 0"*)=0 

,u(W(O"*), S~ 0")=0. 

(2.4.49) 

Therefore (by [2] IV D 5.6) the preparator (2.4.49) is dispersion-free with respect 
s· 

to the observable E~L. 
Then (due to [2] IV § 5) we find E' atomic. With e as the support of the ensemble 

w = Ta m (for an effective m), we get 

S~ 0"= e(O") + !(O"), (2.4.50) 

with e(o")EG and e(O")::;;e=e(e). Moreover,f(O")::;;e.l. The support of all of TaK(r) 
is also e, while O"-+e(O") is a decision observable E-+G. We have ,u(Tam, S~O") 

=,u(Tam,e(O"»=<m, T; S~O")=m(O") for each mEK(Em) and O"EE', where Tam com­
mutes with all e(O"). 

It suffices to consider ev=e(O"v) and!v=!(O"v) for the atoms O"v of E'. There follows 
Lev=e. Each mEK(E') is a convex combination m=LAvmv, with mv(O",.)=(jV/l" It 
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For S" from (2.4.50) follows 

Sr W= LJ.l(w, ev+iv) mv' (2.4.51) 

Hence, for Pa we finally get 
(2.4.52); 

For At' from (2.4.48) follows 

A,mv=LJ.l(U,+wv Ut'el'+il')mp." (2.4.53) 
I' 

The A, form a semigroup provided the Olf~ form one, where 

Jii; W= L J.l(w, ev+iv) J.l(U/ WV Ut' el' + il'} wfL" (2.4.54) 
V,I' 

We shall become acquainted with an application of these considerations in §2.5. 
There remains the problem of systematically investigating the structure of the 

dynamics for a macroscopic system. Above, we became familiar with part of such 
a structure analysis: Lmk is a Boolean ring; Km(Lm)=Km(Lm). In the next subsection, 
we shall become acquainted with another such structure, namely, L z (defined in 
§2.5) and Lmk are isomorphic. But problems such as the following remain open: 
For which known macro systems is Lmk not a Boolean ring? Till now, physicists 
systematically investigated only systems for which Lz and Lmk are isomorphic. 

§ 2.5 Dynamics 

We have mentioned already (end of II §3.4 and end of the preceding §2.4) that 
in this book we shall not develop a general dynamics of macro-systems. In this 
§2.5 let us at least illustrate the relations between embeddings and dynamical laws. 
By examples one more easily recognizes the significance of the derivations from 
§2.4 for the macroscopic dynamics. 

Let us proceed from the relations in § 2.3, in order to see how the set 8m is 
determined as a subset of Yand how Km(8m) is determined. From many examples 
of statistical mechanics, one knows that in fact the Hamiltonian H from tJJ:Yqexp 
decisively determines the dynamics of the system. But what has H to do with 8m 

and Km(8m)? r 
First we extend the macroscopic observable Lm~L as a mapping on the 

Borel ring ,go(y) of Y. For erE,go(y) we have ern8m E::J8(8m). For erE::J8(Y) we put 

(2.5.1) 

where we already think of Fho as carried over naturally as a mapping from L onto 
::J8(8m)· 

Then Fho is a er-additive measure on ::J8(Y), and the support of FhD is just 8m 

(since the support of Fho was all of 8m !). 
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Since (2.3.21) holds for all wEKm, its application to a YEunSm because of 
Cv. u)nSm= y'<S)(unSJ yields 

/leW, Fbo(y' u))= /leW, I1IiT Fho(u)) (2.5.2) 

for all wEKm. 
For r=O, (2.5.2) dermes a mapping 8;'0 of K into the set K(t) with 

8ho W=U, where u(u)=/l(w,F;,o(u». (2.5.3) 

The support of 8;'0 K is just Sm, and the norm-closure of 8;'0 Km is just the Km(Y) 
from II §3.2. 

Thus (2.5.2) implies 

(2.5.4) 

for all wEKm, which is equivalent to (2.3.20). 
Therefore, the u-additive measure F;,o over aJ(t) determines 8ho ' and makes Sm 

the support of Fho (and of 8;'0 K). But from where does one obtain F;,o? Till now, 
we only know the embedding condition (2.5.4) as a restriction for Fho' into which 
the Hamiltonian from &J!Yqexp enters through 11Ii;. _ 

For simplicity, in the following let us also call aJ(Y)~ L a macro-observable 
and often imprecisely switch between aJ(t) and Em. It will be easy for the reader, 
always to recognize which mappings are concerned. 

The "optimistic" opinion, saying that the embedding condition (2.5.4) determines 
the state space Z as well as the dynamics in Z, is scarcely credible. A so-called 
thermodynamic limit can neatly eliminate problems with the boundary conditions 
for finite systems, but it cannot solve the problems of the state space Z and of 
the macro-observables. Still another structure besides that of the thermodynamic 
limit must be joined to &J!Yqexp in order to find Z, the macro-observables, and the 
dynamics in Z. 

It appears that one must know Z from other sources; one must know exactly 
what one can really measure on the macrosystems. Of course, Z itself is not at 
all uniquely determined, a point we shall take up briefly in § 2.6. 

In applications of statistical mechanics to concrete systems (e.g. gases, conductors, 
semiconductors) one proceeds from fixed state spaces. Therefore let us regard Z 
and hence Yas prescribed. Then Fho and Km are no longer arbitrary, but rather 
must satisfy (2.5.4). Whether we can (with given Z) always find appropriate Fho and 
Km which satisfy (2.5.4), is unknown. 

How does one arrive at Fho and Km? Statistical mechanics is a theory tested 
in many applications. Hence till now one must have applied (2.5.4) in a more intuitive 
than conscious way; but how? No previous theory has existed which tells us how, 
for given Z, one can really find the macro-observables F;,o' Hence only the condition 
(2.5.4) is available to us. 

In all applications one prescribed Z from experience. Then one has tried (by 
the correspondence principle, well known from the rudiments of quantum mechanics) 
to guess a part of F;,o which is not determined by (2.5.4). Besides, one also uses 
to prescribe a K;:: as a subset of Km. Such a K;:: (see its use in §2.4) is guessed 
by the procedures known as "coarse graining" and "microscopic equipartitioning". 
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One often employs the procedure of "random phases" (equivalent mathemati­
cally ( !) to microscopic equi-partitioning). But it is physically meaningless to invoke 
the" random phases" as physical (!) argument for the" foundation" of this procedure. 
Such a foundation rests on a physical misunderstanding of quantum mechanics. 
In Hilbert space, the sets K and L have a physical meaning but the phases of 
vectors do not (see XIII §2.3 and 4.8)! 

After giving a part of Fbo and the set K;, in such a way, till now one sought 
to find the macroscopic dynamics by means of illt,. Thus one intuitively applied 
the "usual interpretation" of quantum mechanics. Precisely by (2.5.4) we have given 
this usual interpretation an exact form. We shall show just this by tne following 
examples. For these, let us assume that the systems are dynamically continuous 
(see II D3.4.1). For this dynamic continuity it is necessary to assume Fbo(Y\Y)=O 
(more exactly, that there is a rrE88(Y) with Fbo(rr)=0 and Y\Ycrr). Then 

is equivalent to the observable 

For dynamically continuous systems, rr(p; r) with pE88(Z) is (due to II §3.4) 
an element of 88(Y). Here rr(p; r) is the set of those trajectories which at time r 
have a state z from p. Then we have 

Fbo (rr(p; r)) = Fi;o (rr m(P; r)) 

with rr",(p; r) as in II §3.4. Abbreviating 

X,(p)=Fbo(rr(p; r)), (2.5.5) 

we find X,(p) defined for all r>O. One could consider a special ro (physically not 
distinguishable from 0) as the "beginning" of the dynamics. For simplicity, let us 
assume that X,(p) is also defined for r=O. For Xo(p) we simply write X(p). 

From v. 1 rr(p; r 2)=rr(p; r 1 +r2 ) follows 

For rr=rr(p, r 2 ) the condition (2.5.2), which is equivalent to (2.5.4), becomes 

/leW, X'l + '2 (p)) = /leW, illt'l X'2 (p)) 

for all wEKm. In particular, from (2.5.7) follows 

/leW, x,(P)) = /leW, illt, x(p)) 

(2.5.6) 

(2.5.7) 

(2.5.8) 

for all wEKm; this already shows that X,(p) is not independent of oli,. But it would 
be false to put X,(p)=illt,X(p) since X,(p) is an effect that coexists with all Fiio(rr). 
Hence in particular it coexists with all X(p), which illt, X(P) in general will not do! 
But (2.5.8) suggests that the X(p) themselves do not depend on the dynamics of 
the system; hence they belong to that part of Ff,o which one must guess. After all, 
X(p) is intuitively the effect of measuring a state ZEP at the time 0 (i.e. when the 
macro system starts moving). But despite this, X is not entirely arbitrary since it 
is conceivable that one can guess a X for which (2.5.4) cannot be satisfied! 
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Therefore the observable 

(2.5.9) 

which describes the measurement of the state at time 0, must be guessed. 
Let us note already that the guessing rules of the correspondence principle do 

not suffice to determine (2.5.9). Most often, the correspondence principle yields several 
"microscopic" decision observables with scales corresponding to the "quantities" 
of interest. Thus it yields self-adjoint operators which do not even commute and 
hence cannot yield the observable (2.5.9) "exactly". Rather one must somehow modi­
fy these scale observables, so that the "imprecision of the macroscopic measurement" 
is included (also see below the discussion of macroscopic cells). 

In the literature on the foundations of statistical mechanics, one does not find 
jl-

the "macro-observable" Em~L but only the observable (2.5.9). Even this occurs 
in special forms (e.g. characterized by several commuting self-adjoint operators; see 
below). Correspondingly, (2.5.9) is also called the macro-observable. 

Let us further specialize our example so that only systems "without memory" 
are considered. By this one means that their distribution over the trajectories is 
already determined by the initial distribution, i.e. of the systems over the states 
at time t=O. For a mathematical formulation of this assumption, we introduce 
the Boolean ring Ez =86(Z)f/(Z), where feZ) is the set of all sets pe86(Z) with 
u(u(p; 0))=0 for all ueK(Em). Toward the end of II §3, we assumed that the support 
of the set of all measures Ut equals Z. Now let us particularly assume that the 
support of the set of all measures uo(p)=u(u(p;O)) with ueKm(l1 equals Z. This 
just means that one can produce all possible states from Z at time t=O. 

A mapping u -+ Uo for each ue K (Em), i.e. a mixture-morphism 

(2.5.10) 

is defined by uo(P)=u(u(P; 0)). Then the mapping r' adjoint to r makes 

(2.5.11) 

with r'(p) = u(p; 0). 
Above we assumed that the support of rKm(Em) is all of Z. Let us strengthen 

this to the "almost always" made assumption that the Banach subspace of 86(Ez) 
generated by the rKm(Em) is all of 86(Ez), i.e. rKm(EJ separates the set L(Ez). This 
assumption just means that two different registration effects of the states at time 
t = 0 cannot have the same frequencies for all preparable ensembles. Only occasionally 
one abandons this assumption for computational reasons (see the end of this §2.5) 
or to discuss imprecise embeddings (see § 3). 

Due to this assumption, r86m(Em) is dense in 86(Ez). From rK(Em)=K(Ez) then 
follows rKm(Em) = K(Ez); hence Km(Em)~K(Ez) is surjective. 

The set Km(Em) determines the dynamics inasmuch as a ueKm(Em) determines 
the distribution over the trajectories. The assumption that the systems do not have 
memories therefore just means that each ueKm(EJ is already uniquely determined 
by the corresponding uo=ru, i.e. that the mapping Km(EJ~K(Ez) is injective. 
Therefore the above assumption implies that Km(Em)~K(Ez) is bijective. 
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Thus we give the assumption that the systems have "no memory" the fmal 
mathematical formulation: 

The mapping KmCkm)~K(kZ) is bijective. 
According to §2.4, this Is equivalent to asserting r' kz=kmk. Hence considering 

kz as a E' from §2.4, we can adopt the whole theory from §2.4 with k' =kz and 
with r'p=u(p;O). But let us emphasize that we do not assume Km(km)=Km(km) 
nor the existence of a mapping Ta as in § 2.4. 

The mappings 
(2.5.12) 

defined in (2.4.21) represent mixture-morphisms of K(kz). Since they form a semi­
group, there is an operator B defined densely in K(kz) with 

(2.5.13) 

With u from the domain of definition of B, for UT = AT U we then obtain the differential 
equation 

(2.5.14) 

called the "master" equation. Since in applications only B can be calculated (approxi­
mately), this equation (2.5.14) plays a large role; it is viewed as the dynamical equation 
for systems without memory. Below we shall learn in more detail, why (2.5.14) is 
so highly regarded. 

The mapping S~ introduced in §2.4, when restricted to kz coincides with x. There­
fore, if X has been guessed, then Sr is known. As in the proof (in §2.4) that 

the mapping 8B'(k')~8B;"(17ml is injective, one shows that S~ injective is equivalent 
to X(u) being an extreme point of S~L(kz) for all UEkz. Hence the observable 
kz~L must be chosen so that 

X(17z)coe S~ L(17z) 

holds; otherwise no Twith TS~= 1 can exist. If S~ is injective, then there is a mapping 
T with TS~ = 1, defined at least on S~ 81' (17 z). How must T be introduced in a larger 
domain that comprises all of Lm ? This depends (as shown in §2.4) on the partitioning 
into classes, conditioned by K:!:, of the elements of 81'. Restricted to S~8B'(17z), the 
mapping l' must be injective. Hence K:!: must be so comprehensive that K:!: separates 
the elements of S~8B'(17z). One must yet guess a set K:!: suitable in this sense, in 
order to define T according to §2.4. Thus the domain of definition of T is the 
set of all YE8B' for which there is a zES~8B'(17z) with l'y=l'z; then Ty=x holds 
with z = S~ x. Since K:!: separates the elements of S~ 81' (17 z) and S~ is injective, T 
is well defined. It is important that in general T cannot be defined on all of 81'; 
this we shall recognize below. 

If K:!: is determined, then A~ and hence AT are by (2.4.26) determined with the 
aid of the Hamiltonian from f!jJ~ew It is not "automatically" guaranteed that 
these AT form a semigroup. 

The following is a frequent choice for K;::: One assumes that there is an increasing 
sequence PvE8B(Z) with UPv=Z and tr x(Pv) < 00. Let 17~ be the set of all PEkz 
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with tr X(P)<oo. Then one chooses 

K*=co U X(P) 
m pel;! trx(P) 

z 

(2.5.15) 

Since: S~ is injective, K::', separates all elements of S~.94'(17z) if fJ,(X(p), S;y)=O for 
all pEzii implies y=O. Equivalent to this is that <SrX(P), y) =0 implies y=O, i.e. 
the mp=Srx(p)[tr X(p)]-l separate the elements of .94' (17z). We have 

mp(p') = [tr X(p)] -1 <Sr X (p), p') 

= [tq;({J)JI- lt fJ,(X{p), X (P'». (2.5.16) 

If tlie' {'mp PP'E 17~} separate the elements of .94' (17 z), then it follows, conversely, 
that as well S~ is injective and also K::', separates the elements of S~.94'(17z)' The 
elements of K(17z) given in (2.5.16) must separate the elements of L(17z) (hence those 
of .94' (17z». To this important condition on the observable 17z~Lwe shall return 
below. 

Therefore, Ty=x is defined for a YE.94' for which there is an xE.94'(17z) with 

fJ, (X (P), y) = fJ,(X(P), S~ x) (2.5.17) 

fm all PE17~. 
From (2.4.32) follows 

A~= TUt X(p) Ut+ . 

Since the mp from (2.5.16) separate the elements of .94'(17z), we find A~ a (and hence 
A~) uniquely determined by 

<mp, A~ a) = <mp, TUt x(a) Ut+) 

= <mp, TXt(p». 

With the definition of Tthat follows from (2.5.17) and with (2.5.16), we obtain 

[tr x(P)] -1 fJ,(X(p); Xt(p» = [tr X (p)r 1 fJ, (X (P), S~ TXt(p» 

= <mp, TXt(p» = <mp, A~ a) = <At mp, a). 

Therefore, At is uniquely determined by the equations 

which hold for all mp' 

mp(a) = [tr x(P)] -1 fJ,(x(p), X (a», 

At mp(a) = [tr x(p)] -1 fJ,(X (p), Xt(p», 
(2.5.18) 

In mder to illustrate how the considered operators act, let us introduce the 
frequently used representation of .94 (17z) and .94' (17z) by functions over Z. 

To this end, we assume that X (a-additive relative to the a (.94', .94)-topology) is 
a-additive relative to the a (.94, .94')-topology for X(p) as elements of.94 (for PE17~). 

Then the meausre 

m(p)=tr X(p) = fJ, (X (p), 1) (2.5.19) 

is also a-additive. 
Under the above assumption, there is an increasing sequence PvE.94(Z) with 

U Pv = Z and m(pv) < 00. 
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Each YE&l'(Lz) can be represented by a measurable, essentially bounded, real 
function y(z) over Z, so that 

(m, y) = J y(z) dm(z) (2.5.20) 

holds for mEK(Lz). For YEL(Lz) one can assume O~y(z)~ 1. 
According to the Radon-Nykodym theorem, every measure mEK(Lz) can be 

represented by a positive, measurable function y(z) with 

J y(z) dm(z)= 1 

and with (2.5.21) 

(m, y) = J y(z) dm(z) = J y(z) y(z) dm(z). 

Using this well-known method of representing K(Lz) and L(Lz ), we can reformulate 
the above considerations of K:, S~, 1; AT as follows: 

Since it was assumed that X(p) is u-additive (in the u(&l,&l/)-topology!), by the 
Radon-Nykodym theorem there is a measurable function Z~K with 

S~p=X(p)= J w(z)dm(z). (2.5.22) 
p 

For YE&l'(Lz) this implies 

S~y= J y(z) w(z) dm(z) (2.5.23 a) 

and 

(Sr W, y) = Jl(w, S~ y) = J y(z) Jl(w, w(z» dm(z). 

Since this yields 

Sr W = Jl(w, w(z)), (2.5.23 b) 

we now have expressed Sr W by the density function corresponding to it. 
From (2.5.15) thus follows 

K: = co U w(z). (2.5.24) 
zeZ 

For p, p' EL~ we obtain 

Jl(X(p), X (P'» = J dm(z) J dm(z/) Jl(w(z), w(z')), (2.5.25) 
p p' 

which by (2.5.16) gives 

mp(p') = [J dm(z)r 1 J dm(z') J dm(z) Jl(w(z'), w(z». 
p p p' 

Therefore, to the measure mp there corresponds the density function y p with 

yp(z)=[J dm(z)r 1 J dm(z/) Jl(w(z'),w(z». 
p p 

Hence all convex combinations of the measures mp are given by the density functions 

y(z) = J y(z') dm(z') Jl(w(z'), w(z» (2.5.26) 
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with YEK(I'z). The latter means in short that y(z) represents an element of K(I'z). 
Thus the set Sr K; is just the set of all YE K (I' z) which by (2.5.26) can be calculated 
from the YEK(I'z). Hence (2.5.26) represents a mixture-morphism of K(I'z) onto 
Sr K;cK(I'z), which describes a "smearing" of Y to Y by the symmetric integral 
kernel p(to(z'), to (z». In applications, one should think of P(to (z'), to (z» as a function 
of z', something like a Gauss distribution around z. 

The assumption that the mp in (2.5.16) separate all elements of BU'(I'z) just means 
that 

S y(z) y(z) dm(z)=O 

implies y = O. This is to say, 

S p(to(z'), to (z» y(z) dnl(z)=O 

implies y = 0, i.e. the mapping BU' (I' z) -+ BU' (I' z) given by 

.Yez) = S p("o(z), to (z'» y(z') dm(z') (2.5.27) 

is injective. This can be tested most simply in the form (2.5.27). If the integral kernel 
in applications forms a Gaussian, it is plausible that the mapping (2.5.27) is injective. 
Thus, according to the considerations immediately following (2.5.16), it is guaranteed 

that BU'(I'z)-+/!/j' and S~L(I'z)~L are injective. Hence (2.5.17) makes T well 
defined. 

Let the smearing (2.5.26) be denoted briefly by 

Q 
K (I' z)---+ K (I' z). 

The mapping (2.5.27) is the corresponding dual 

One observes that Q is not a projector, i.e. Q2 =l= Q. 
By (2.5.17) and (2.5.23 a), Tis defined by Ty=x with 

p(x(p), y) = <X(p), S~ x> 
= S p(X(p), to (z» x(z) dm(z) 

= S dm(z') S dm(z) x(z) P (to (z'), to (z». 
p 

(2.5.22) implies 

p(x(p),y)= S p(to(z),y)dm(z) 
p 

for arbitrary YEBU'. 
By jl(z) = P (to (z), y), to each YEBU' there is assigned a YEBU' (I'z). 
This mapping BU' -+ BU' (I' z) is dual to the mixture-morphism 

defined by 

Tm = S y(z) to(z) dm(z), 

(2.5.28) 

(2.5.29) 

(2.5.30) 

(2.5.31) 
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where y is the density corresponding to m. There follows TK(1"z)=K!. From (2.5.28), 
(2.5.26) and (2.5.23b) follows 

Q=Sr 1', (2.5.32) 

thus ji = 1" y. According to (2.5.17), T is determined by 

Jl(Tm,Y)=Jl(Tm,S~x) forall mEK(1"z). (2.5.33) 

Hence Ty=x is defined for all y for which there is an x such that holds (2.5.33) 
and thus 

T'y=T' S~x=Q' x. (2.5.34) 

Therefore the domain of definition of Tis 1"-1 Q' .si'(1"z); and there we get 
T= Q'-l 1". It is essential that the domain of dernition of T not be all of .si'. This 
is so since Q' L(1"z) is not all of L(1"z). The "smearing" Q' is injective but not surjec-; 
tive. The existence of a Ta with (2.4.47) would imply T= T~ (see §2.4); then we could 
take 1'= Ta and thus Q = 1. An embedding without smearing would be possible. 
According to §2.4 this is only possible if 1"z is atomic. 

T has "neady" the properties of Ta. Instead of (2.4.47) we have (2.5.32), and 
Q should "neady" be 1. In fact, experience with macro systems has not given any 
indication that only the ensembles in Q K (1" z) can be prepared (rather than all in 
K(1"z». In§3 we shall discuss a measure for the difference between Q and 1. 

The introduction by (2.5.31) of the map l' with the property TK(1"z)=K! suggests 
to invert the way which provides K! by (2.5.15). Instead of (2.5.15) we may introduce 

a mixing morphism B(1"z)~B and define K! by TK(1"z). Then a function w(z) 
can be defined in analogy to (2.5.31) by 

Tm= fy(z) w(z) dm(z). (2.5.35) 

Here w(z) may differ from the w(z) defined by (2.5.22)! 
From (2.5.23 b) follows the "smearing" operator Q = Sr l' given by 

Qm= J y(z') Jl(w(z'), w(z) dm(z') (2.5.36) 

rather than (2.5.26). In this way the symmetric kernel Jl(w(z'), w(z» may in general 
be replaced by the asymmetric Jl(w(z'), w(z». Since it does not essentially change 
the formulas, this generalization shall not be carried out. 

When to mEK(1"z) we assign the density function y(z), the defining equation 
(2.5.18) for At reads 

At Qm= fy(z') dm(z') Jl(w(z'), Ut w(z) Un. (2.5.37) 

We define Qt m by the right side of (2.5.37). Qt is given by the integral kernel Jl(w(z'), 
Utw(z) Un and we have Qo=Q. Therefore, (2.5.37) can briefly be written 

AtQ =Q" i.e. At=Qt Q-l, (2.5.38 a) 

where (2.5.37) makes 
(2.5.38 b) 

Hence, to begin with, At is dermed only on QK (1" z). But since At must be a mixture­
morphism of K (1" z) into itself, one must be able to extend the operator Qt Q-1 
to the whole subspace of .si generated by QK(1"z), i.e. to 'all of .si. One mostly 
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writes A, with an integral kernel g,(z', z) in the form 

(A, y)(z) = J y(z') g,(z', z) dm(z'). (2.5.39) 

In the applications, one mostly assumes that y(z) is so "smooth" that 
y(z)eQK(I'z) holds. By (2.5.39) one may then replace g,(z', z) by Jl(eo(z'), U, eo(z) Un. 
Therefore one often writes 

g,(z', z)- Jl(eo (z'), U, eo(z) U:). (2.5.40) 

Thus we see more clearly how, with I'z~L given and K! chosen by (2.5.15), 
the dynamical operator A, in Z is determined by the Hamiltonian in [1jJ~exp" By 
(2.5.37) the A, determined by (2.5.37) and (2.5.38) are not guaranteed to satisfy the 
semigroup property (not even approximately). Rather, the semigroup property 
presents a condition on I'z~L. 

In practice, one cannot calculate A, since U, is not calculable due to the complex­
ity of the Hamiltonian. Therefore, one tries to calculate (more or less well) at least 
B from (2.5.14), by trying an expansion 

tr(eo(z'), U, eo(z) Un = tr(eo(z') eo(z» + Th(z', z) +... (2.5.41) 

With this, from (2.5.37) one obtains 

BQm= J y(z') h(z', z) dm(z'). 

But in the calculation of h(z', z) one must not fall into the error of differentiating 
the left side of (2.5.41) formally with respect to T, thus equating h(z', z) to 
tr(eo(z')[iH eo(z)-ieo(z) H]). Because of the smearing hidden in Jl(eo(z'), U,eo(z) U:) 
(see the operator Q), the expression tr(eo(z'), U,eo(z) Un does not change at all for 
microscopically small times. Hence, one must calculate the left side for microscopical­
ly large times in order to obtain "macroscopic" changes of (2.5.41). This holds 
even if one wishes to obtain on the right side only that term which increases linearly 
with T. Just this makes it difficult to determine the operator B for the master equation 
(2.5.14). 

The set I'mk consists of all (J(p; 0) with peI'z. The set v.(s) I'mk consists of all 
(J(p, T). Therefore, ~mk is the complete Boolean subring of I'm generated by the set 
{(J(p; T)lpeI'z, T~O}. Having assumed the systems to be dynamically continuous, 
we get ~mk=I'm. According to §2.4, the A, determine the mapping s and hence 

Km(I'm)=sSrK!, i.e. the dynamics of the system. One can choose I'm..!i:!.....L as 
Ff, 

the macro-observable I'm~L. Let us still express the 8' [(J(Pl; Tl)n (J(P2; T2)n ... ] 
calculated in §2.4 explicitly by the g.(z', z) from (2.5.39). 

For example, (2.4.27) implies 

S'[(J(Pl; T 1) n (J(P2; T2)] = J g" (z, z') dm(z') J g,,-,, (z', z") dm(z"); (2.5.42) 
p, P2 

hence the macro-observable F;;o = S; s' with (2.5.23 a) yields 

(S; 8') [(J(Pl; T 1) n (J(P2; T 2)] 

= J eo(z) dm(z) J g.(z, z') dm(z') J g,,-., (z', z") dm(z"). 
p, P2 

(2.5.43) 
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Thus it becomes understandable that often one does not worry about the observable 

1:m Fbo I L, but only about the 1:z~L by which eo(z) is determined in (2.5.22). 
For the probability (u, U(PI; 't"1)nu(PZ' 't"z» with uEKm(1:J, which obeys u=sm 

with mEKm (1:z )=S;K::', from (2.5.42) follows 

(u, U(Pl; 't" 1) n u(Pz' 't" 2» 

=Jy(z)dm(z) J g'l(z,z')dm(z') J g'2-<I(Z', z") dm(z"). (2.5.44) 
PI P2 

Here y(z) is the density function corresponding to m. Because of (2.5.44), one calls 
g,(z, z') the transition probability from z to z' in the time 't". Then (2.5.44) says: 
The probability that the trajectory goes through the region PI cZ at the time 't"1 
and through the region pz cZ at the time 't"z is the sum of the probabilities 

y(z) dm(z) g'l (z, z') dm(z') g'2 _" (z', z") dm(z"). (2.5.45) 

Each of these is the product of the probability y(z) dm(z) that the system has the 
state z at time "zero", the probability g'l (z, z') d m(z') that the system goes over 
from z to z' within the time 't"l' and the probability g'2- t l (z', z") dm(z") that the 
system then goes over to zIt within the time interval from 't" 1 to 't" 2' 

The product form (2.5.45) is not a consequence of the probability concept, but 
rather a special structure for systems without memory, obtained from the embedding 
condition (2.5.4). 

For systems without memory, we have thus shown that the embedding of f!Pff", 
into f!Pflqexp leads to the master equation, where the transition probabilities are 
determined by the gt(z', z) from (2.5.39). Then S;,o is also "essentially" determined 
since one can replace S;,o by Sr. Finally, also Km(Y) and hence the support Sm 
are determined by K! and Sbo' 

This finishes the description of our example. Let us still establish the connection 
with the widespread method of macroscopic cells, since the representation of the 
observable 1:z~L in the form of a general (not decision) observable is not yet 
customary. 

The description by macroscopic cells goes back to J. v. Neumann [25]. It arose 
from the notion of his days that each(!) observable is representable by a self-adjoint 
operator. Then it is identical with the structure which in VIII D 3.1 we called a 
scale observable. According to this idea, to the macroscopic measurements ought 
to correspond "macro-observables" as scale observables. Since all macroscopic mea­
surements can be performed "simultaneously" (formerly said instead of "coexistent­
ly"), all spectral families of these macro-observables commute (so one thought*», 
i.e. together generate a single decision observable in the sense of VII D 2.1. 

One soon recognizes that the assumption of 1: m ~ L as a decision observable 
is not tenable. Indeed J. v. Neumann did not at all mean a macroscopic observable 

to be our 1:m~L but rather the observable we have called 1:z~L. Since 

*) The different registration methods boEii1to (see §2.2) need not lead to observables coexistent 
in &JfFqexp! 
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in applications Ez is not atomic, the assumption that Ez~L is a decision observ­
able also leads to contradictions with the embedding. It was the fact of the so-called 
imprecision of macroscopic measurements, intuitively seen very correctly by J. v. 
Neumann, that led him to introduce discrete decision observables as macroscopic 
observables. Here, we shall not follow the path of J. v. Neumann but rather go 
the way indicated in §2.4. 

For this purpose, we somewhat mollify the requirement r' Ez=Emk (equivalent 
to assuming "no memory"). We imagine a Boolean subring E' of Ez such that 
r' E' =Emk . We complete the weakening by the sharpened requirement of the existence 
of a mixture-morphism Ta, as introduced in §2.4 by (2.4.37). We can then use the 
derivations in §2.4 from (2.4.39) on, adding the special condition E' cEz . We must 
now observe that r is the mapping of P4(Eml onto P4(E'). 

From §2.4 follows that E' must be atomic. Then the atoms Pv of E' must form 
a "cell partition" of Z, since U Pv = Z. Below we shall say more about a "reasonable" 

magnitude of the cells. According to §2.4 one can choose K:'= Ta K(E'). In §2.4 
we denoted the support of Ta K (E') bye. The Ta mv = Wv had to satisfy the condition 
wv=ev wev , but were otherwise undetermined. Therefore, K:' as the set of all convex 
combinations of the Wv must be determined by a special choice of the w., analogous 
to that in (2.5.15). For this purpose we assume that for all atoms Pv with x(pv)=ev+/v 
(ev~e,i.~el.) we have tr(ev) < 00. This tr(ev) is just the dimension of the subspace 
ev:Yt' of :Yt'. Analogously to (2.5.16), we try to fix K:' by 

K*--U X(Pv) 
m- CO --( -). 

v tr X Pv 
(2.5.46) 

[tr X(Pv)]-l X(Pv)EK:' is possible only wheni.=O, since we assumed 

support of K:' = e. 

Hence let us put/v =0. 
According to (2.4.51), we immediately find Km(E')=S,K:'=K(E'); thus we must 

have Km(Em)=Km(Eml=sK(E'). Since AT has the form given in (2.4.53), it makes 

(2.5.47) 

where 

(2.5.48) 

This AT(V, fl) is called the transition probability (within the time -r) from the cell 
P. to the cell Pfl. The AT form a semigroup if the 

(2.5.49) 

with dlt; W= ut w UT form a semigroup (also see (2.4.32», where the q;; are given 
explicitly in (2.4.54). 
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The question of the (approximate) semigroup property of the Pa OU; Pa has often 
been investigated in the literature. 

The semigroup property of the A< can easily be formulated in terms of the 
At(V, fl): 

A<! +<2 (v, w) = L A<! (v, fl) A<2(fl, w). (2.5.50) 
Il 

According to J. v. Neumann's idea, the "magnitude" of the ev ought to be 
described by the macroscopic imprecision of measurement. Here we can give this 
notion a precise meaning, since we not only know the ev but rather have started 
with the atoms Pv of };': A Pv should be chosen as large as possible but still so 
small that the various ZEpv are practically not distinguishable by macroscopic mea­
surements. The mapping X introduced in (2.5.9) should include the macroscopic 
imprecision. Above, this imprecision entered best through the integral kernel fl(eo(z), 
eo(z')), which differs from zero for z=l=z'. In order to permit a comparison between 
the preceding theory with X from (2.5.9) and the atomic description by};', we imagine 
the cells Pv to be so chosen that [tr(ev )] -1 ev is a good approximation to eo(z) 
for suitable ZEpv. The Pv have, say, the extension of the partition described by 
fl(eo(w(z), eo(z')) about a point ZEpv. 

That we have considered only};' instead of }; z has the disadvantage that the 
dynamics of the system is not completely described by the A< in K (};'). In fact, 
the Boolean subring Zmk generated by all the v.(s)G"v with G"v=G"(Pv;O) is not all 
of };m. 

In particular, not all G"(p;O) with pE};z are in Zmk. Therefore, s'G"(p;O) is not 
uniquely determined. In order to calculate the form of G"(p; 0) for a prf=};' also, we 
use 

hence S' G"(p; 0) = L S' G"(p n Pv; 0). Because of S' G"(pv n P; 0)::;; S' G"(Pv; 0) = p., this gives 

s' G"(Pv np; O)=Av(p npv) Pv. (2.5.51) 

The Av(p) form a real, positive measure on the Boolean subring [0, p.] of };z. This 
measure is not fixed, but rather can be "chosen". From 

S' G"(p; 0)= L Av(p npv) Pv (2.5.52) 

then follows 

s~ S' G"(p; 0)= L Av(p npv) ev (2.5.53) 

for the macro-observable S~ s'. 
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The right side of (2.5.53) corresponds to the effect that above we denoted by 
X(p). For the p 5;,P. (v flxed), we have 

S~ S' (J'(P; 0) = 1.(P) e •. (2.5.54) 

Even if the p become smaller and smaller, the type of the effect x(P)=le. does 
not change any more, only the factor 1 decreases. On the other hand, every (arbitrarily 
small) p 5;, P. yields 

II S~ S' (J'(P; 0) lI-lS~ S' (J'(P; O)=e •. 

In general, we expect the X(P) to behave similarly; this statement will be formulated 
in §2.6. 

Having prepared the formulas (2.4.47), (2.4.48), we leave it to the reader to calcu­
late S on ~mk. This results in formulas analogous to (2.5.43), carried over to the 
"discrete" case. In applications, one should be content with E' instead of the whole 
kz and with ~mk instead of the whole k m • 

The method of discrete cells P. has the advantage of mathematical simplicity. 
In the choice of the cells (i.e. of E' from kz), however, lies a physically odious 
arbitrariness. 

§ 2.6 Dynamically Determined Systems and Contracted State Spaces 

Let us return to §2.4, i.e. at flrst admit systems with memories. 
We call the dynamics preparation-determined if kmk=km. Then kmk is naturally 

a Boolean ring, while S' is the identical mapping ~'(km>~~'(E'). Thus, s is 
also the identical mapping ~(E')~~(km>, such that Km(km> = K(km>. Identifying 
Km(km> with Km(~m>, we then have K:(~m>=K(~m> and hence (see II §3.3) oe K" (8) 
= 0 e K (~m>, which is the set of all point measures on ~m. 

In this sense, each trajectory can be prepared "mentally" by the elements of 
Km(km). Of course, we can have Km(km>=I=Km(km>; but then one can interpret the 
elements of Km(km> in the sense that the individual trajectories can be prepared 
only with finite imprecision (see II §3.3). But also conversely: If be K:(~m> is the 
set of all point measures on ~m' we have Km(km)= K(km> and hence kmk = k m• 

Therefore, if the dynamics is preparation-determined, then in §2.4 we identify 
E' with k m • Then sand r are identity mappings of fJI(km> into itself. In particular 
this implies 

and hence 
(2.6.1) 

The mapping L(km)~Sbo L(km> is bijective, and T is dermed on all YEfJI' for 
which there is an XE~'(km> with Jl(w,Y)=Jl(w,S/;ox) for all wEK!. Then it gives 
Ty=x. 

Initially it remains unclear how to flnd Sbo and K!. Therefore we sharpen our 
assumptions by adding that the systems have no memory. 
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This implies that the mapping K(InJ~K(Iz) is bijective. Then r is an 
isomorphism B(Im)~B(Iz) of the Banach spaces; and Iz~Im is an 
isomorphism of the Boolean rings. For the continuous dynamics considered in §2.5, 
this yields a bijective mapping Z~Smc Y for which the d extended to 8B(Z) 
coincides with r'. The mapping d is equivalent to a continuous mapping 

Z x [0, <Xl) -+ Z, (2.6.2) 

which we write 

Z~Z forr2::0. (2.6.3) 

Then y=dz holds with y=z(r)=d, z(O). 
Conversely, if a continuous mapping (2.6.2) is given, it yields an injective mapping 
Z~ Ywith Sm ~ dZ as a closed set. Then a bijective mapping 8B(Z)~8B(Sm) 
is given by p E 8B (Z) and p -+ (i = {y I y = d z, Z E P }. Each (i-additive measure over 8B (Z) 

leads in this way to a (i-additive measure over 8B(Sm) and hence over 8B(Y). The 
choice of a (i-additive measure u over 8B(Z), which is effective on all open sets, 
then leads to a Boolean ring Iz=8B(Z)//(Z) with /(Z) as the set of elements 
in 8B(Z) having u-measure zero. Hence all the totally continuous measures u over 
8B(Z) can be identified with the elements of K (I z). Then via d we can identify 
K(Iz ) with K(Irn). 

If we require rKm(Im)=K(Iz) (see §2.5), this implies Km(IJ=K(Iz). Hence the 
systems have no memory and are preparation-determined. 

Systems without memory, whose dynamics is preparation-determined, are be­
cause of (2.6.3) called "initialvalue-determined" systems. From Sm = dZ follows 

With S' from §2.5, this is equivalent to 

(2.6.4) 

Therefore, systems without memory for which there is a continuous function (2.6.2) 
such that (2.6.4) is satisfied, are initial value-determined. 

From (2.6.4) follows 

(2.6.5) 

as a mapping of 8B' (I z) into itself; hence the d, also form a semigroup. Although 
(2.6.5) is very illustrative, it is difficult to evaluate this equation. Therefore let us 
reformulate it by the methods from §2.5. 

To this end, we multiply (2.6.5) by Q': 

(2.6.6) 

We can express this either by 

S II(W(Z), w(z'» y(z') dm(z')= S /1(w(z), U, wed, z') U,+) y(z') dm(d, z') (2.6.7) 
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for all ye.1l'(l'z), or by 

Jl(W(Z), X(P» = Jl(w(z), U.(d. p) Un (2.6.8) 

for all pel'z. 
From (2.6.8) follows 

i(P)= U. X (d. p) U: = x(P)+a(p), (2.6.9) 

where a(p) is "orthogonal" to all w(z), i.e. 

Jl(W(Z), a(p» = O. 

Hence, also Jl(X(P'), a(p»=O holds for all p'. Therefore (2.6.9) implies 

Because of i (P) ~ 1, we further find 

tr (X (Pf) ~ tr(i(Pf) ~ tr(i(p». 

Hence we get 

(2.6.10) 

where the left side can be written 

tr(x (P»2 = J J Jl(w(z), w(z'» dm(z) dm(z'). (2.6.11) 
p p 

From X(Z)= 1 follows 

J Jl(w(z), w(z'» dm(z') = 1. 
z 

For fixed z, the measure Jl(w(z), w(z'» is essentially different from zero only in 
a "macroscopic" imprecision neighborhood of z. Hence we also have 

J Jl(w(z), w(z'» dm(z')~ 1, (2.6.12) 
p 

if p contains the macroscopic imprecision neighborhood of z. Now let p be so 
large that there is a "small number" n of imprecision neighborhoods (for the mathe­
matical formulation and estimation of such imprecision sets, see §3 and [44]). To 
within a factor in the order of magnitude n, we then get 

J J Jl(w(z), w(z'»dm(z) dm(z')", J dm(z) = tr (x (P». 
p p p 

Since tr(x(p» is a "very large" number, let us take the logarithm. Then (2.6.10) 
yields 

logtr X(P)~logtr X(d.p) (2.6.13) 
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if p contains "some" imprecision neighborhoods. It may appear unsatisfactory that 
(2.6.13) is not an "exact" mathematical inequality. But it just is essential in the 
embedding problem that one replaces exact equations and inequalities by others 
having "very small" errors. Error estimates are always possible, as shown in §3 
and [44]. Such estimates then justify that in practice one may deal with equations 
resp. inequalities as in (2.6.13). 

The left side of (2.6.13) contains a measure for the macroscopic imprecision, 
since p in (2.6.13) contains "some" imprecision sets. The macroscopic imprecisions 
described by 

x(p)= S w(z) diii(z), 
p 

however, can not be guessed by the "correspondence" principle. This principle can' 
at most yield "reference points" for guessing the observable Lz~L. Therefore, 
for the macroscopic imprecision one must know more about macroscopic measure­
ments. Perhaps the embedding conditions could be used to find the smallest possible 
imprecision sets still compatible with the embedding (see §3 and [44]). Of course, 
one can increase the imprecision without thereby violating the embedding conditions 
(also see the contracted state spaces at the end of this §2.6). If one increases the 
imprecision, however, the dynamics can lose the "no memory" characteristic (again 
see below). 

The measure of macroscopic imprecision appearing on the left side of (2.6.13) 
can be given a somewhat different form. Since p is large for "some" imprecision 
sets, by (2.6.12) we have 

Jl(W(z), X(P» ;:d 

and hence II X(p) II ~ 1. On the other hand, in case p is not "too large", one may 
put 

x(p) = S w(z) diii(z) ~ w(z) S diii(z) 
p p 

=W(z) tr X(p) (2.6.14) 

up to a factor the order of magnitude n. Hence 1 ~ II X(p) II = w(z) tr X(P) permits 
us to put 

log tr X(p) = -log II w(z) II (2.6.15) 

(here II w(z) II is the norm of w(z) as an element of [16" !). In the form (2.6.15), the 
state z about which the macroscopic imprecision is considered comes more clearly 
to the fore. 

The measure of imprecision introduced in (2.6.15) is intimately connected with 
the concept of entropy. This concept is not always introduced in a uniform way. 
As two possible definitions of "entropy at the state z", let us here consider 

Sl(Z)= -log Ilw(z)II (2.6.16) 
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and 
S2 (z) = - tr(w(z) log w(z)). (2.6.17) 

Which of these expressions one uses, depends on which one can handle better mathe­
matically. In the case (2.5.46), i.e. with w(z)=tr(e.)-l ev , we have 

With X(p) from (2.6.14), the difference between Sl and S2 is of the order of magnitude 

-1 
-(-) tr(x(p) log x (p)). 
tr X P 

Hence Sl and S2 are "physically" equal if 

-1 
-(-) tr(x(p) log X(p)) ~ -log tr x (p). 
tr X p 

This happens when p does not contain too few imprecision sets. 
From (2.6.13) follows 

(2.6.18) 

where p is a neighborhood of z with" some" imprecision sets. If dr p were essentially 
smaller than a macroscopic imprecision set about dr z, then (2.6.18) could be violated. 
Therefore, dd cannot be arbitrarily small. But if dr p contains only" some" impre­
cision sets about dt z, then the right side of (2.6.18) equals the entropy stCdt z) and 
we obtain 

(2.6.19) 

This is the well-known theorem on the growth of entropy. 
On the other hand, if dtp is "very large", i.e. drP contains a large number 

N of imprecision sets, we can have 10gtrX(drP»Sl(dtz), namely if 10gN is not 
small relative to Sl (dr z). In such a case, dt p can become very large in spite of 
p being small; this is called the instability of the dynamics. Therefore, the entropy 
theorem is assured only for an initialvalue-determined and stable dynamics. It is 
often not sufficiently emphasized that for unstable dynamics the entropy theorem 
can be violated. In this context, let us recall ~hat a lowering of the macroscopic 
imprecision (by admission of finer measurement methods) can also raise the determin­
istic aspect of the dynamics, since fluctuation phenomena can be made accessible 
to refined measurement methods. 

Since the dt form a semigroup, (2.6.19) implies the continuous growth of the 
entropy for each stable trajectory. 

Frequent objections are raised to the assertion that the entropy theorem is com­
patible with iJI g;; exp. In our words, one suspects that a iJI:y;" with a deterministic 
dynamics cannot be embedded in iJlg;;exp. We have already handled the recurrence 
objection in §2.3. More serious objections rest on the fact that the motion reversal 
transformation C (described in IX § 2) exists in iJI g;; exp. The relation given in IX 
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(2.21) through (2.23) has the consequence that in f!IJ~exp for each "motion" there 
is the motion running in the "reverse" direction, which is not possible in most 
of the theories f!J g;" (irreversibility in f!J g;" !). This objection is not impressive since 
the embedding just clarifies that not all of K is realizable. But Km (unlike K) is 
not invariant under C: 

More important is the follo~ing objection. 
Let a motion reversal Z~z with C2=C be defined in Z. We write briefly 

C(z)=z'. Intuitively, z' is that state which differs from z by reversed velocity fields 
(e.g. in hydrodynamics). With C as in f!J~exp, we obtain 

CX(P) C=X(Cp)=X(P'). (2.6.20) 

A motion from Zl to z2=d,Zl is called reversible if d,Z~=Z'l. In many f!Jg;" most 
motions are irreversible. Is this compatible with the embedding in f!J~exp ? 

Choosing p in (2.6.12) from the magnitudes of "some" imprecision sets about 
z (hence writing p(z», one obtains 

tr(w(z) X(P(z))):=::; 1. (2.6.21) 

From (2.6.8) then follows 

(2.6.22) 

Let us consider the five states Zl' z2=d,Zl, Z'l = Cz1 , z~ = CZ2 and d,z~. Proceed­
ing from P(Zl) we put p(z2)=d,p(Zl), p(z'd=Cp(zd, p(z~)=Cp(Z2). From (2.6.22) 
follows 

tr(U: w(z~) U, X (d, p(z~»):=::; 1 (2.6.23) 

and also 
tr(w(zl) U, X(P(Z2» Un:=::; 1. 

With tr(CAC) = tr(A) this implies 

tr(w(zl) U: X(P(z~» U,):=::;1. (2.6.24) 

Only when the entropy increases noticeably in the motion from z 1 to Z2 = d, z 1> 

it should allegedly not be compatible with the embedding. Assuming 
Sl (Zl)~Sl (d,Zl)=Sl (Z2), with II w(z) II = II Cw(z) CII = II w(Cz) II we obtain 

Sl (Z'l) ~ Sl (Z2) = Sl (z~):::;; Sl (d, z~). 

For this reason, d, z~ significantly differs from z 1> i.e. the motion from Zl to Z2 = d, z 1 

is essentially irreversible. Therefore, with Z'l and d, z~ sufficiently far removed from 
one another, we get 

(2.6.25) 



§2 Macroscopic Systems and an Extrapolated Quantum Mechanics 63 

This implies 

hence 
tr(w X(P(Z'l») + tr(w X(d,(z~)))::; 1 (2.6.26) 

for all wEK. Putting W= U,+ w(z~) U,' with (2.6.23) we find 

tr(Ut w(z~)U,X(p(z~)))~O. (2.6.27) 

The two equations (2.6.24) and (2.6.27) in fact contradict each other: Using the 
approximation X(P(z~))~w(z~) tr x(P(z'd), from (2.6.27) (with ~O replaced by =0) 
we get tr(Ut w(z~) U,w(z'd)=O. If in (2.6.24) the approximation X(P(z~» 
=w(z~) tr X(P(z~)) were used one would on the left side obtain 0, in contradiction 
to ~ 1. Of course, the fallacy is due to not having performed a tidy error estimate. 
Under certain conditions we shall see that (2.6.27) can indeed be compatible with 
(2.6.24). Instead of (2.6.27) we write more precisely 

tr(x(p(z~) ut w(z~) U,»=e. (2.6.28) 

where e is so small that the probability e cannot "physically" be distinguished from 
the probability O. Thus we must "physically exclude" the effect X(P(Z'l» in the ensem­
ble ut w(z~) U, (also see [3] §11). 

From (2.6.28), i.e. from 

J tr(w(z) U,+ W(Z2) U,)dm(z)=e, 
p(z,) 

one quite certainly cannot conclude 

tr(w(z) U,+ w(z~) U,)=O. 

We obtain 

J tr(w(z) ut w(z~) U,) dm(z)::; II W(Z2) II J dm(z) = II w(z~) II tr X(P(z~)). 
p(zl) p(zl) 

Therefore, with log tr X(P(Z'l» = Sl (z~) and -log II w(z~) II = Sl (z~) we find 

(2.6.29) 

With 51 (z~)=(1 + IX) 51 (Z'l), from (2.6.29) one obtains 

(2.6.30) 

If IX is not small relative to 1, then IX (j 1 (Z'l) is large relative to 1, so that (2.6.30) 
as a probability cannot be distinguished from zero (estimates for tr X(p), i.e. the 
dimension of the macroscopic cells, are given in § 3.2 and [44]). 
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If (2.6.30) is very small relative to 1, then despite this (2.6.24) can be satisfied. 
In fact, although the integrand in 

f tr(£O(z~) U,+ £O(z) U,) dm(z) 
p(z,) 

is smaller than II £O(z') II =e-s,(zll, we find 

f dm(z)=trx(p(zz))e- s ,(z21. 
p(z,) 

Instead of a contradiction, we have obtained the important embedding relation 
(2.6.29), in whic~ we can again replace Z'l' Zz by Zl' Z2 =d, Zl. Hence, if the probability 

(2.6.31) 

is practically zero, then the embedding of a macroscopically determined and irrevers­
ible dynamics is possible. 

The appearance of an entropy in a formula for estimating probabilities as in 
(2.6.29) is the true meaning of the often mystified designation of eS1(z) as a "thermody­
namic" probability. 

For systems with memory but with preparation-determined dynamics (mentioned 
at the beginning of this §2.6), till now no investigation as systematic as for systems 
without memory has been possible. Certainly, one would again have to guess the 
observable I;z~L. But a set K! with SiioK! dense in Km(I;"J will be essentially 
larger than the set (2.5.15). In concrete cases, various systems with memory have 
been investigated. Many magnetic processes in macrosystems belong to this domain. 
Perhaps one will attain a more systematic theory on the basis of known examples. 

Also for systems without memory, the above discussion shows that the choice 
of the observable I;z~L (for given state space Z) is physically not at all trivial. 
In fact, this observable actually contains a physically as important quantity as the 
entropy for non-equilibrium states. The observable I;z~Land the whole macro-

scopic observable I;m~Linform us about macroscopic measurement possibilities. 
These possibilities pose a deep physical problem; it concerns the interactions of 
the macro system with its surroundings. 

But already the choice of Z expresses what is macroscopically measurable. There 
is no theory which tells us how to choose Z, i.e. how to define it mathematically 
and to interpret it physically. Up to now, it has been left to the physicist's intuition 
to guess (on the basis of systems such as rarefied gases) the state space Z (e.g. 
the set of Boltzmann partitions fer, v)). Yet it is easy to go over to "contracted" 
state spaces; e.g. from the space Z of Boltzmann partitions to the space z(r) of 
hydrodynamic magnitudes. With m the mass of the atoms, this z(r) contains 

f1(r)=m ff(r, v) d3 v, 

m 
u(r)= f1(r) f vf(r, v) d3 v, 

m 
T(r)=-(-f v2 f(r, v)d3 v. 

f1 1') 

(2.6.32) 
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Therefore, the transition from a state space Z to a contracted space z(r) consists 
in a mapping z~z(r), such as by (2.6.32). This mapping is physically meaningful 
if it is uniformly continuous with respect to the uniform structures of physical impre­
cision. Thus, we assume that a uniform structure of physical imprecision is given 
not only in Z, but also in z(r). Let Zp resp. zt) be the corresponding uniform 
spaces. Hence we assume Zp~zt) uniformly continuous. In Zp, this mapping 
! dermes a second uniform structure p r as the initial uniform structure corresponding 
to f. This pr is coarser than p and of course need not separate the points of Z 
(Zp and zt) are assumed as spaces with separating uniform structures). The mapping 
! can be extended to the completions Zp~zt). Since Zp is compact,f(tp) is 
a compact subset of ttl. One can identify!(Zp) with the separated completion 
Zpr' Therefore, the introduction of a contracted state space zt) is physically equiva­
lent to that of a uniform structure p r in Z that is coarser than p. 

The embedding condition is satisfied for the description in the contracted state 
space z(r) as soon as it is for the description in Z. While this is conceptually clear, 
let us briefly indicate the mathematical proof. 

To each trajectory from Y=C(O,Z), the mapping O-+Zp~zt) assignes a 
trajectory from y(r) = C(O, z(r» (for simplicity we assume! surjective). Let this map-
ping also be called!; then Yp~ y~r) is uniformly continuous so that it can be 
extended as a mapping y~ y(r) such that!(y)= Y(r). 

Then ue£f(y(r» and u-+!-l(u)e8B(Y) define a mapping 8B(y(r» -+8B(Y) by which 
a mapping K(I'".)~K(I'~» is generated in the canonical way. It is easy to see 
V; g = g v.'. Then (2.5.4) with S'~~ = gS'bo implies that the embedding condition holds 
for the" contracted" description: 

v.' S'1r) W = S'1r) 0/1' W 'tbo bot- (2.6.33) 

However, one must observe the following: The fact that the dynamics in Z is "without 
memory" by no means implies that the dynamics in z(r) is also without memory. 
With r from § 2.5 and a corresponding f for the contracted description, there is 
a g such that the diagram 

(2.6.34) 

is commutative. If the dynamics in Z is without memory (if the mapping s introduced 
in §2.5 exists), it does not yet follow that there is an analogous mapping s relative 
to f. 

In many practical cases (also in the contracted hydrodynamic description indicat­
ed by (2.6.32); see [1] XV§10.6) for g there is a mixture-morphism nwith gn=1 
on K(I'~». However, ng as a projector on K(I'z) can differ from 1. Then a mapping 
K(I'~»~K(I'~» is defined by s=gsn, with fs=fgsn=grsn=gn= 1. Therefore 
a dynamics without memory again holds in z(r) if we restrict ourselves to ensembles 
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from JiK (L~»). That is, we restrict the preparation procedures so that only such 
initial ensembles uEK(LZ) are allowed for which also uEhK(L~») holds (hence Jigu 
=u). 

Let us mention that there are many other contraction methods to describe very 
complex macrosystems, as e.g. computers or brains. One tries to find "global" 
descriptions, where all details are omitted which are inessential for the "interesting" 
parts. All these contractions can be described by contractions of the Boolean ring 
Lrn to subrings. Such contractions are also meaningful if the dynamics is not determin­
istic or even not without memory. In such contractions the time scale can partly 
disappear (becoming one of the uninteresting details). The selection of the subrings 
depends on the complex structure of the state space Z. For instance, Z can be 
a product II Zi of many "parts" Zi. Such contractions can be highly significant 

i 

in practice. But they obviously do not alter the embedding problem as discussed 
in § 2. Therefore let us not bring any example. 

§2.7 Disturbances by Measurements 

In the literature discussing the measuring process (in particular in quantum 
mechanics), we frequently find the opinion that classical physics neglects the distur­
bances by measurements whereas in quantum mechanics these disturbances are sub­
stantial and cannot be eliminated. Such an idea fails to see the core of the measuring 
process. Any measurement, whether on micro- or macrosystems, is a disturbance. 
Also there are measurements of macrosystems which considerably disturb these sys­
tems. For a measurement it is only essential that it yields conclusions about the 
measured systems as it was before the measurement. What happens to the systems 
after the measurement is unimportant also in macro physics. The sand bag mentioned 
in II §3.1 is a suitable measurement method for a bullet. 

Measurement methods (more correctly registrations) may be called hard if they 
essentially disturb the systems, otherwise soft. Any registration method in quantum 
mechanics thus is a hard method. Yet the objectivating description of classical physics 
does not depend on whether there are soft registration methods or not. 

A soft registration method bo can be defined more precisely by the condition 
(2.3.12). Of course also any bE~(bo) will be called a soft registration procedure. 
In this sense the conclusions of (2.3.12), described in § 2.3-§ 2.6, presuppose the 
existence of soft registration methods. 

That bo is a soft registration method in ~Om does not imply that ibo is a soft 
method in the theory .9'§.;exp. The disturbances by the registrations of the method 
ibo (as by all registrations in quantum theory) are so violent that they considerably 
change the imagined measurement results of certain hypothetical observables in 
.9' §.; ew The embedding condition (2.3.12) for bo just asserts that these disturbances 
by ibo can be neglected for the trajectories. 

If the dynamics of the systems is preparation-determined, (2.3.12) implies that 
every individual trajectory is undisturbed by the ongoing measurement according 
to bo. This implies a stability of the trajectories under small measurement distur­
bances (see §2.6). lfthe dynamics is only statistical it is imaginable that the measure-
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ment disturbances change individual trajectories, but without changing the statistics 
determined by the preparation. It is only "imaginable" and not detectable that 
the trajectories of individual systems are changed considerably by the measurement 
(individual trajectories cannot be reproduced by preparation). 

If a soft registration method with (2.3.12) is possible corresponding to a state 
space Z, then all the more it exists corresponding to a contracted state space (see 
§ 2.6). Experience suggests the presumption that most macrosystems in our laborato­
ries allow a soft registration method for their trajectories if we select a not too 
fme state space. To say it in another way: 

It seems very difficult and expensive to construct macrosystems with such state 
spaces that only hard registration methods remain. Therefore we have attached great 
importance to the structure analysis of the inferences from (2.3.12). For this reason 
we will continue to presuppose (2.3.12) in XI. 

Is it possible to recognize from the macrotheory f!Jfi;.. whether there are only 
hard registration methods? Of Course not: The existence of a Do with (2.3.12) is 
a certain hypothesis (in the sense of XIII §4.3 and [3] §10) in f!Jfi;... Therefore 
it must be regarded as physically possible if we have no severe objections to f!Jfi;.. 
as a g.G.-closed theory (see again XIII §4.3 and [3] §10). But now we have a theoreti­
cal possibility (namely by embedding) to investigate whether f!J fi;.. is closed and 
to find a more comprehensive theory if necessary. 

The possibility consists in investigating the following question. Assuming (2.3.12), 
examine the embedding according to §2.3 and 2.4. If the embedding should turn 
out. as impossible under the condition (2.3.12), we can try to replace (2.3.12) by 
a weaker condition. For instance, we may demand that for all possible but small 
intervals.1 ~ ... ~1'2 there are registration methods Do which satisfy 

(2.7.1) 

With L(Y, ~.) and L(Y, ~.) as in II (4.1.3) and II (4.1.4), the right side of (2.7.1) 
is defined by L(Y, ~.2)I1L(Y, ~.1) as L(Em) is by L(Y). 

Macrosystems for which high precision embedding with (2.3.12) is impossible, 
shall be called measurement-sensible. For such systems one would get a more com­
prehensive theory than f!J fi;.. by detecting the limitations of macroscopic measure­
ments. For instance, we could estimate the intervals .2 -.1 for which an embedding 
with the condition (2.7.1) is possible, or we could estimate the I.!m(EJ we defined 
after (2.4.7). In this sense, the investigation of measurement-sensible systems requires 
investigating at first the possibility of soft registration methods for embedding. 

This discussion of the problems posed by measurement-sensible systems makes 
it convincing that a theory of such systems is still unknown. 

All the investigations of macrosystems preceding in this §2 presumed that the 
systems are "isolated" between preparation and registration. This isolation need 
not be exact, as we have discussed in §2.2. But in many applications we are concerned 
with non-isolated systems, also called" open" systems. The dynamics of these systems 
is essentially influenced by the environment. There are many methods to approximate 
the influence of the surroundings. The method of embedding can in principle not 
solve the problem of open systems since quantum mechanics (and therefore f!J~exp) 
presupposes that the microsystems are isolated between preparation and registration. 
This we have established by the introduction of the "normative" axioms in III 
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§5.1. Only in the special case of microsystems in "external fields" an approximate 
method is developed in quantum mechanics (see [2] VIII §6). Therefore it is small 
wonder that also for macrosystems and the embedding in f!lJ~exp we should like 
to describe the surroundings by this method of external fields, e.g. introducing 
"boundary" conditions. 

This method of external fields is useless if the systems change the environment 
so that there is a feedback of the surroundings on the system. In this general case 
there only remains to consider a larger system which includes part of the environment 
and can be considered as isolated. This is the reason for not treating open systems 
in this book. 

In closing this §2let us emphasize again that the structure analysis of the relation 
between (ljJ5;,. and (ljJ~exp is not a "proof" of their compatibility. Rather it prese~ts 
an organizing principle for the whole field usually called "statistical" mechanics. 
In this sense, not all problems have been solved but received a novel formulation. 
Such equestions in novel formulation are: 

How can we find the state spaces and the corresponding macro-observables? 
How can a soft ongoing measurement be described in detail? How can we verify 
the embedding conditions? How does the dynamics of concrete macrosystems such 
as gases, fluids, solids look like? How could the many hitherto existing "fundamental 
investigations" of statistical mechanics be organized under the principle of embed­
ding? 

Regarding the last question, some readers may have the opinion that much 
of the work done in the foundations of statistical mechanics contradicts the concepts 
presented here. This is not true if we divest these approaches of the added philosophy. 
Then these approaches in fact present proofs or ways to possible proofs for parts 
of the structure analysis of §2 (for special systems). Such a synopsis of the achieved 
results in statistical mechanics would require a new book. 

Let us conclude with the following remarks. This §2 has in a certain way presented 
a mathematically correct basis for the developments in [1] XV. There the mathemati­
cal considerations about measure theory had been indicated only in outline (the 
Boolean ring E in [1] XV corresponds to the Boolean ring 1:m introduced in §2.3). 

§ 3 Examples for Approximate Embedding 

This section will bring examples for approximate embeddings. They prove that 
the embedding conditions in §2 can be satisfied approximately. We have discussed 
physically imprecise embedding in XIII §3 and [3] (for the general definition of 
imprecision sets see also [40]). The examples are therefore also an illustration of 
these general discussions. 

We will not discuss the most general problem of §2 but only special cases. One 
of these is given by (2.4.47), (2.4.48), where Sr and Ta are mixture-morphisms 

[JI~[JI(r) and [JI(r)~[JI. In addition we will identify 1:' with 1:z as in §2.5. 
The assumption r = 1: z is not essential since one can show that it is possible to 
introduce a finer state space Z f which makes r = 1: z, and Z a contracted state 
space (in the sense of§2.6) relative to Zf. 
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In this section we omit the labels r and ii. Then (2.4.47) and (2.4.48) take the 
form 

(3.1) 

(3.2) 

for the mixture-morphism B8~B8(Iz) and B8(Iz)~B8, where Ao=l and {At} 
is a contracting semigroup for 't ~ o. 

In §2.4 we have also seen that (3.1) cannot be fulfilled unless I z is atomic. In 
most applications, Zp (Z with the uniform structure of physical imprecision; see 
II §1) is not a discrete space, therefore I z is not atomic. We will demonstrate that 
nevertheless (3.1) and (3.2) can be fulfilled imprecisely, so that 

We must explain in detail the meaning of the sign "'. We will do this in §3.1. 

(3.3) 

(3.4) 

As a second case we take Tin (3.3), (3.4) as the mixture-morphism T of (2.5.31) 
or (2.5.35) and S as before. Then Q=ST is the smearing operator (2.5.32), given 
by the kernel J.L(w(z), w(z'» or J.L(w(z), w(z'». In this interpretation, condition (3.3) 
becomes 

(3.5) 

and does not mean an imprecise embedding. The embedding described in §2.5 is 
exact for the time zero. The difference between Q and 1 then describes the fact 
that not all ensembles in K(Iz) can be prepared but only those in QK(Iz). We 
will see in §3.2 that for macrosystems in finite space regions the Banach space 
81m will be finite dimensional. Then QK(Iz) cannot span all of B8(Iz). Therefore 
the assumption r' Imk=Iz in §2.5 is only an idealization (r'Imk can only approxi­
mately equal I z). In what sense this must be understood will be described briefly 
in §3.1. 

In §3.2 we will see that it is very difficult (sometimes impossible) to detect the 
difference between QK(Iz) and K(Iz) by experiments. Nevertheless this difference 
is important for the problem of the reality of atoms as parts of a macrosystem 
(see XIII §4.8). 

With Qt in (2.5.38b), the relation (3.4) becomes 

(3.6) 

This tells us that the {Qt} approximately form the semigroup {At}. We have used 
this approximation already in (2.5.40). 

An estimate of the imprecision between At and Qt Q - 1, i.e. of an approxmation 
to (2.5.38 a), has not been given. The main problem is, that Qt K (I z) will not be 
a subset of QK(Iz) (then {QtQ-l} would be a semigroup). Hence QtQ-l must 
be extended to all of K(Iz) (see the remarks after (2.5.38». One must expect that 
a semigroup {At} is defined on all of K(Iz), where the At act approximately on 
Q K(Iz) as the Qt Q-l do. This will be demonstrated in §3.3. 

The following sections §3.1 to §3.3 are excerpts from [44]. 
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§ 3.1 Imprecision Sets 

In II § 1 we introduced a uniform structure of physical imprecision in Z. The state 
space Z with this structure was denoted by Z P' the completion of this Z p by t. 
This 2 is a compact and metrizable space. The Boolean ring Pl(t)//(t), where 
/(2) contains no open set of t, was called Lz (see §2.5). Therefore we can identify 
C(t) with a subspace E0(t) of Pl'(Lz) (see the analogous consideration of Pl(~"J//(~m) 
in §2.3). C(t) is normseparable since t is compact and metrizable and therefore 
separable. K(Lz) is normseparable according to its construction. Therefore Pl(Lz), 
E0(Lz) is a special case of the general structure Pl, E0 in IV, namely that cf a "classical 
system" in the sense of VII §5.3. 

We abbreviate L(LZ) = [0, 1] in Pl'(Lz) and L(t) = L(Lz) n E0(Lz) = [0, 1] in C(t). 
We write the bilinear forms ofthe dualities Pl(Lz), Pl'(Lz) and C'(t), C(t) as < ... , ... ), 
that of the duality Pl, Pl' as J-l( ••• , ••• ). 

As discussed in IV, the uniform structure of physical imprecision on K(Lz) is 
given by the topology U(K(Lz), E0(Lz»=u(K(Lz), L(t». With K"(Lz) as the closure 
of K(Lz) in E0'(Lz), the set oe KO'(Lz) can be identified with t. The topology 
u(OeKO'(LZ)' E0(Lz» is identical with that of 2 (this follows since E0'(Lz) can be 
identified with C'(t); see also [7] V §8.1). 

The essential condition for the embedding was the invariance of the probability. 
For an imprecise embedding we do not use the exact relation <m,f)=rx (mEK(Lz), 
fEL(Lz» for the probablity. Rather a smeared relation j1 defined with imprecision 
sets as elements of the uniform structure of physical imprecision (see also XIII §1) 
is employed. Let U be an imprecision set, i.e. a vicinity belonging to U(K(Lz), E0(Lz». 
We define 

j1(m,f;rx)={(m,f;rx)l there is a m'EK(Lz) with <m',f)=rx and (m,m')EU}. 

Instead of <STm,f) = <m,f) let us only postulate <m,f) = rx=*'" j1(STm,f; rx) and [not 
j1(m,f; rx)]=*'"<STm,f) =l=rx (see [3] §8 and XIII §3). We can combine this by writing 
the postulate (3.3), resp. (3.5) in the form 

(STm,m)=(Qm,m)EU forall mEK(Lz). (3.1.1) 

The selection of the imprecision set U is a physical problem. We hope that such 
a U can be chosen that it is physically (not in the mathematical theory!) impossible 
to distinguish by measurements between elements (m, m')E U. 

U(K(Lz), E0(Lz» is metrizable. Therefore we can select a metric d, which generates 
the same uniform structure as U(K(Lz), E0(Lz». If we take d to select an imprecision 
set by 

U = {(m, m') I d(m, m') < e}, (3.1.2) 

the metric gets a physical significance which the more general uniform structure 
cannot describe. 

Obviously we cannot give any physical arguments for the selection of a 
metric as long as we do not specify the state space Z. Therefore we can discuss 
only generally the physical significance of a metric as an enrichment of the uniform 
structure. 

D 3.1.1 Let A be a subset of L(2) = L(Lz) n E0(Lz). By dA(z, z') = sup If(z)-f(z') I a 
leA 

metric is defined if A separates points, i.e. if f(z) = f(z') for allfEA implies z=z'. 
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We have dA::;1. For A=L(Z)=[O,l], in C(Z) we have dL(z)(z,z')={O for z=z' 
and 1 for z=l=z'}. According to the Stone-Weierstrass-theorem ([7] V §8.1) A separates 
points if I a A is normdense in L(Z) where I a is defined as in II § 3.1. 

Since A separates points, the initial uniform structures on Z generated by A 
and L(Z) are equal to that of the compact space Z. 

T 3.1.1 The uniform structure of Z and that generated by the metric dA are equal 
if and only if A is norm-precompact. For every metric d::; 1 which generates the 
uniform structure of Z, there is a set AcL(Z) with d=dA. For instance A may 
be 

Am={flfEL(Z) and If(z)-f(z')I::;d(z,z')} 

(If(z)-f(z') I ::;d(z, z') is known as the Lipschitz condition). 

(3.1.3) 

Proof Immediately follows dAm::; d with Am in (3.1.3). If d::; 1 generates the uniform 
structure of Z, we get f(z)=d(z,Zo)EL(Z) and If(z)-f(z') I = Id(z, zo)-d(z', zo)1 
::; d(z, z'), therefore d(z, ZO)EAm and dAm(z, zo)::2:d(z, zo). Since Zo is arbitrary, there 
follows dA zd. Let dA be a metric generating the uniform structure of Z. Then 
f ~ f (z) defines a mapping A---=--' [0, 1] cR. The initial uniform structure generated 
by all these mappings ZEZ is precompact. We will show that on A this uniform 
structure coincides with that generated by the norm. 

Obviously, the norm uniform structure is finer than the initial stucture for the 
mappings z. Therefore it remains to be shown that in {(f1 ,f2) III f1 - f211 ::; e} there 
is a vicinity 

(3.1.4) 
. ~ . e ~ 

Smce Z IS compact, there are n elements Zl, ... , Zn with dA(z,zJ<- for all ZEZ 
and a suitable Z;. We have 4 

Ifl (z) - f2(Z) I::; If1 (z) - fl (z;) 1+ If1 (z;) - f2 (z;) 1+ If2 (z;) - f2 (z) I 
::; 2dA (z, zJ + If1 (z;) - f2 (z;) I 

6 
if in (3.1.4) we choose c5<2. 

(3.1.5) 

That dA for a norm-precompact set A is a metric for Z can be proved very 
similarly by a relation analogous to (3.1.5): 

I f(z) - f (z') I::; I f(z) - /;(z)1 + I/;(z) - /;(z') I + I/;(z') - f(z') I 

::;2 II f-/; II + I/;(z)-/;(z') I. 0 

T 3.1.1 immediately shows that Am is the greatest set with d=dA. One easily 
proves that Am is norm closed (and therefore norm compact); it is a lattice and 
obeys Am=l-Am. We have Am=l=L(Z) since L(Z) is not norm compact. This is 

~ def ~ 

not a contradiction to I a Am norm dense in L(Z), since we made I a A = F n L(Z) 
with F the smallest subspace of C(Z) containing A which contains If(z)1 whenever 
it containsf(z) (see II §3.1). 
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By T 3.1.1 the physical selection of a metric is equivalent to the selection of 
a norm precompact set A c L(Z). 

In II §3.1 we have discussed the physical interpretation of the elements j of 
L(Y) by introducing the probability AMeas. This discussion can be taken over if 
we replace Y by Z. Therefore we may be brief, saying only thatj(z) is the probability 
(of an indication on a measuring device) for the state ZEZ. 

The set A (with la A norm-dense in L(Z» can be interpreted in the same way 
as the set l/Im(¢) in II §3.1 (for which we presumed la l/Im(¢) norm dense in L(Y». 
Therefore we will interpret A as the set of all "state effects" which can occur in 
devices for the measurement of the state ZEZ. That A itself is not norm-dense in 
L(Z) but norm precompact, is an additional physical structure beyond the idealiza­
tion of taking all of L(Z) as possible "state effects". We mentioned in II §3.1 that 
the presumption of l/Im(¢) norm-dense in L(Y) is perhaps too strong. We could 
on the contrary presume that l/Im(¢) is norm precompact. The consequences for 
the embedding problem have not been investigated. 

If the set A is given, then two states Zl> Zz cannot be distinguished if the difference 
of their probabilities obeys Ij(zd-j(zz)1 <8 for all JEA, with 8 so small that a 
repetition of more than 8 - 1 experiments is in principle impossible. In this manner 
we have found an 8 for an imprecision set {(zl,zz)ld A (Zl,ZZ)<8} in Z. The metric 
and the equivalent set A cannot be deduced from Z, but form an additional structure 
describing the measuring possibilities. These measuring possibilities are very essen­
tially connected with the embedding problem; hence we may perhaps get conditions 
for A from the postulate that the embedding be possible. 

If we distinguish points of Z by an imprecision, we may replace A by a finite 
subset A' cA. Since A is norm compact, there is such a A' that for every JEA 

8 
there is anf'EA' with II j-f' II <"2. We have 

and therefore 

Ij(z) - j(z') 1:-::; I j(z)-f' (z)1 + If' (z) - f' (z') I + I f' (z')-j(z') I 

:-::;8+1f'(z)- f'(z') I 

dA (z, z'):-::; 8 + sup If' (z) - f' (z') I. 
f'EA' 

The f' EA' define an initial uniform structure in Z, which is weaker than that of 
A. This uniform structure defined by A' does not necessarily separate points of 
Z, But the completion in this uniform structure is a new state space Z' which with 
non-zero imprecision cannot be distinguished from Z. This Z' is finite dimensional 
since we can take the values of the f' E A' as coordinates; then d A' is a metric in Z'. 

In this sense, every state space Z may be replaced with non-zero imprecision 
by a finite dimensional state space Z'. If Z' is suitably chosen, there is no possibility 
to distinguish physically between Z und Z'. The original Z can be viewed as a 
mathematical idealization of Z'. Such an idealization Z is sometimes more practical 
than a realistic Z' ! 

For the embedding we need a metric d for the a(K(l:z), ~(l:z»-topology to 
define the imprecision set (3.1.2). It would be physically senseless, in Z and in K(l:z) 
to take two metrics which have no physical connection. On the contrary, it seems 
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meaningful to take the same set A, in order to test the elements of K(17z ). This 
can be done as shown by the next definition and the subsequent theorem. 

D 3.1.2 Take A as in D 3.1.1. Then 

d~(m, m') = sup I (m,J)-(m',J) I 
JEA 

defines a metric if A separates the elements of K(17z ). 

A separates the elements of K (17 z) if and only if the linear span of Au {I} is 
u(£f'(17z ), £f(17z»-dense in £f'(17z) or norm dense in ~(17z)=C(t). Since A separates 
the elements of K(17z), the topologies u(K(17z), A) and u(K(17z), ~(17z» are equal 
(on K(17z». 

T 3.1.2 d~ is a metric of u(K(17z), ~(17z» if and only if A is norm precompact. 
The set 

A!={flfeL(Z) and l(m,f)-(m',J):::;d~(m,m')} 

is the greatest A' c L(Z) with d~ = d~,. 

The proof proceeds in the same way as for T 3.1.1. The metric d~ can be defined 
on K"(17z), and the set oeKO'(17z) can be identified with t. Hence d~ on oeKO'(17z) 
is identical with dA on t. But dA, =dA2 does not imply d~, =d~2 on K(17z). In general 
we have only A!cAm, where Am is given in (3.1.3) with d=dA. 

Therefore we select only such metrics dA, d~ on t resp. K(17z) which have A =Am. 
With (3.1.2) the condition (3.1.1) for an imprecise embedding (or alternatively 

for the approximation of Q by 1) then becomes 

or equivalently 

l(m,J)-(STm,J)I=I(m,J) (Qm;f)I<e 

for all meK(Ez) and all feA. 

(3. 1.6 a) 

(3.1.6b) 

Similar considerations can be performed to introduce a metric d for u(L(Ez), 
K(Ez» by selecting a suitable subset Kd of K(Ez): 

d(kl>k2)= sup l(m,k 1 -k2)1. 
meKd 

This KdcK(Ez) must be norm compact. For an imprecision d(kl' k 2)<e, it therefore 
suffices to use finitely many elements of K d • We must expect that in this sense 
the elements of Ez (Ez as oeL(Ez» can only be approximated with high (but finite) 
precision by the elements of r' Emk (see the remarks after (3.5». In the next section 
we will not go into details of estimating such an imprecision lying between r' Emk 

and Ez . 
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§ 3.2 Embedding at Time Zero 

This section is to prove that an imprecise embedding in the sense of (3.1.6) 
is possible. We also estimate the accuracy of the embedding by relations for A, 
e and the Hilbert space. With the exact embedding at time zero (of §2.5), we estimate 
the magnitude of the "smearing" by the operator Q. 

T 3.2.1 Let A be a norm precompact subset of L(Lz) (e.g. a norm precompact subset 
of L(t)) and choose e > O. Then there are a finite dimensional Hilbert space Ye 

and two mixture-morphisms ~(Ye)~,qg(Lz), .'?l(Lz)~,qg(Ye) such that 

I <m,f)-<STm,f) I <e forall mEK(Lz) and all JEA. (3.2.1) 

The condition for A cannot be weakened. 

Proal It suffices to consider the case of finite A: Suppose the theorem has been 
proved for finite A l' Since A is norm precompact there is a finite set A 1, such 
that II f - fv II < e/4 for all f E A and suitable fvE A l' Then there are mixture-morphisms 
S, Tsuch that I <m,!v) - <STm'!v)1 <e/2 for all mEK(Lz) and allfvEA1' Then 

I <m,f) - <STm,f) I:s;; I <m,f) - <m,fv) I + I <m,fv) - <STm,fv)1 

+ I <STm,jv) -<STm,f) 1:s;;2 II f-fv II +e/2:s;;e. 

Let A be finite and e>O. Each j~EAl may be approximated in the norm by 
a step functional Icx~ ["n' Here rrn is a partition of the unit element e in L, obeying 

<m, ["n)=m(rr) (see the spectral theorem [2] IV Th. 2.1.15). We can take the common 

partition e= nV1 rrn for allfvEA 1 such that Ilfv- nt1 cx~ ["nil <e/2. 

Let Ye be a Hilbert space of dimension N. Let CfJn be a complete orthonormal 
system in YE'. 

We set (mEK(Lz), wEK(Ye)) 

N N 

Tm= I m(rrn)P"'n' Sw = I fleW, p",J mn 
n=l n=l 

N 

STm= I m(rrn)mn 
n=l 

and therefore 

and 

Thus follows 



§3 Examples for Approximate Embedding 75 

Let A be a set such that for 8>0 there are S, Twith (3.2.1) and a [mite dimensional 
Hilbert space. Then we get 

IIf- T' S'fII <8 for all fEA, 

where T' is a norm continuous mapping of L(J'f) in L(LZ). Since J'f is finite dimen­
sional, L(J'f) is norm compact. Therefore T'L(J'f) is norm compact. Thus there 
are finitely many g.ET'L(J'f) with II T' S'f-g.II<8 and therefore IIf-g.II<28, i.e. 
finitely many balls of radius 28 which cover A. Since 8 was arbitrary, A is precom­
pact. 0 

Theorem T 3.2.1 is neither a solution of the embedding problem as described 
in the previous sections nor an estimate of the smearing by Q. This theorem does 
not take into account essential physical constraints (for instance the time develop­
ment according to (3.2) and the fact that in Z a macroscopic energy is defined 
which is a constant of motion). Rather T 3.2.1 demonstrates that the impossibility 
of (3.1) for non-atomic Boolean rings is no severe objection, because "in physical 
approximation" Lz can be replaced by an atomic ring (a partition of the unit eELz). 
In this sense, T 3.2.1 is a first justification of the method of "cell partitions" of 
Z which describes the imprecision sets in §2.5. 

The definition of T in the proof of T 3.2.1 rests on a mapping of a cell in Z 
on a projection operator Prp. We saw in §2.5 that this is extremely unrealistic. A 
cell must be related to a projection E with high dimension; otherwise an embedding 
of the dynamics would be impossible. In the proof of T 3.2.1 we can replace the 
Pq,n by such higher dimensional projectors En; only the dimension of the Hilbert 
space 'must exceed the number N of the (In. This is a first hint that the dimensions 
will playa decisive role in the embedding problem. 

In this section let us consider the constraint that a macroscopic energy is defined. 
Afterwards also the time development will be taken into account. 

We presume that a macroscopic energy is defined as a continuous function E(z) 
in Z. Then an interval E1:$;E(z):$;E2 defines a closed subset of Z which we call 
"energy shell". L1E=E2 -E1 is called the width of the shell. 

The constraint for the embedding is the following: Let e(A) be the spectral family 
of the Hamiltonian. We presume that there is a partial observable (of the macroscopic 
observable) which represents the macroscopic energy. This partial observable may 
be given by a family of eiTectsf(A) (increasing with A) for which 

II(e(A)-f(A-t5»_11 <8 
and 

11(f(A+t5)-e(A»-11 <8. 

Here 8 cannot be distinguished physically from 0 when 15 > 0 is a positive number 
characterizing the macroscopic imprecision of energy measurements. 

Then we have f(E2 + 2t5)-f(E1 -2t5)~e(E2 +t5)-e(E1 -t5)~f(E2)-f(E1). 
Therefore we may replace the yet unknown f(A) by the e(A) in the following way: 
There are two values E'l:$; Eland E2 ~ E2 (i.e. E'l ~ E 1 - 15 and E2 ~ E2 + 15) such 
that S' maps the subring of the Borel sets into the energy shell of Z in 
~'«e(E2)-e(E~» J'f). Likewise, T maps the measures with supports in this energy 
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shell of Z into Bi«e(E2)-e(E'1» Jf"). Here (e(E2)-e(E'1)) Jf" is called an energy shell 
in Jf". 

To simplify the notation we denote a fixed energy shell again by Z. Then 2 
is the completion of this Z. In the same way we denote (e(E2)-e(E~)) Jf" again 

by Jf". Then we have Bi(l,;z)~Bi(Jf") and Bi(Jf")~Bi(l,;z) with Z and Jf" as 
energy shells. 

Since in the applications the systems are enclosed in a fmite volume, the energy 
shell Jf" has a finite dimension. T 3.2.1 makes us expect that LiE (i.e. the macroscopic 
imprecision of the energy) is not too small, since the energy shell Jf" must be of 
very high dimension in order to make an embedding possible. In this section we 
want to get relations between the imprecision in Z and the dimension of Jf". 

In the following, Z and Jf" are always energy shells. 

D 3.2.1 Let Bi be a base-normed Banach space. Two mixture-morphisms 

Bi~Bi(l,;z) and Bi(l,;z)~BI are called an embedding with an g;..:;q>pl'oximation, 
with an e-smearing if 

l<m,J)-<STm,f)I=I<m,f)-<Qm,J)I<e forall mEK(l,;z) and JEA. 

This is equivalent to 

d(m, STm)=d(m, Qm)<e for all mEK(l,;z). 

In the following we omit the labels on dA and d~. 

D 3.2.2 With S, Tas in 03.2.1, we define 

L1 (2, Bi) =inf inf sup sup I <m,f) - <STm,,f) I. 
S T meK(Ez) leA 

L1 (2, Bi) is the smallest e for which an e-approximation, resp. an e-smearing of the 
embedding is possible. 

The following theorem is a first step in the calculation of L1 (2, ~). 

T 3.2.2 Let ~ be a O'(Bi', Bi)-dense subspace of Bi' with lE~ (see e.g. ~ in IV §4). 
Then K" (the O'(~',~)-closure of K in ~') is the base of ~', while K(2)=K"(l,;z) 

is the base of C' (2) =~' (l,; z). For any positive linear map C(2)~ ~ with R 1 = 1 
and zE2 we define '1(R,z)=SUp{AIAER,R(d(z, '»~H} and '1(R)=suP'1(R,z). Here 

zeZ 

d(z',') denotes d(z', z) as function of z with z' fixed; similarly we employ '1(R,·). 

Then 
(i) '1(R,' )EA, 

(ii) '1(R) = inf sup sup I <m,f) - JL(Tm, Rf)!. 
T meK(Ez ) leA 
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Here the infimum can be taken over any of the sets: 

(a) all mixture-morphisms Pi(l:z)~2)', 

(b) all mixture-morphisms Pi(l:z)~Pi, 
(c) all maps C(Z)--+lin K of the form 

N 

T(u)= L <u,Ji) W; 
;=1 

N 

77 

with JieC(Z), Ji~O and LJi=1 and w;eK; in this case sup can be taken over 
;=1 m 

all meK(Z). The last Tis also a special mixture-morphism Pi(l:z)~Pi. 

(iii) For any positive linear map C(Z)~2) with R 1 = 1 and any e>O, there 

is another such map Pi'(l:z)~2) satisfying II Rf-RJII <e for allfeA. 
(iv) LI (Z, Pi) = inf inf sup sup 1 <m,f) - J.L(Tm, Rf) I, where R is any positive lin-

R T meK(Ez) Ie). 

ear map Pi' (l: z)~Pi' with R 1 = 1. This LI (Z, Pi) does not depend on the set 
K(l:z) as a norm separable and 0" (C(Z), C(Z»-dense subset of the base K(Z) of 
C(Z) (therefore our notation in D 3.2.2 was meaningful). 

Proof. (i) R(d(z, o)-d(z', o»:S;R(d(z,z') 1):s;d(z,z') 1; hence Rd(z', o)~Rd(z', o)~ 
Rd(z, o)-d(z, z') 1 ~('7(R, z)-d(z, z'» 1. Consequently '7(R, z')~'7(R, z)-d(z, z') and 
by symmetry 1'7(R,z)-'7(R,z')I:s;d(z,z'). 

(ii) Let J" (ex=a, b, c) be the infImum over T in the set ex. We begin by showing 
'7(R):S;Ja • Let zoeZ be a point where '7(R,o) takes its maximum '7(R). Define fo 
=d(zo, 0) and choose m.eK(l:z) such that <m.,fo) :S;e. This is possible since m.(O") 
=mo(O"o1) mo(O"o 1\ 0"), with mo an effective measure and 0"0 corresponding to the 
open set {zld(zo,z)<e}, is such an m._ Then 

Ja = inf sup sup 1 <m,f)-J.L(Tm,Rf)1 
Te(a) meK(Ez) leA 

~ inf l<m.,fo)-J.L(Tm.,Rfo)l~ inf (J.L(w,Rd(zo,o»-e) 
Te(a) wei(" 

='7(R, zo)-e='7(R)-e. 

By trivial inclusions we get '7(R):S;Ja :S;Jb :S;J" so that only Jc :S;'7(R) remains to 
be proven. Let e>O and pick a set {z;}cZ (i=l, ... ,N) such that for every zeZ 
there is a Z; with d(z,z;):S;e/2. N 

With g; as the positive part of e-d(z;, 0) we have L g;(z)~e/2>0. Consequently 

the functions Ji=g;(t1 gkf1 are continuous an~=1satisfY Ji~O, ;t1Ji =I, Ji(z) 

* O=-d(z;,z):S; e. By the definition of '7(R, z;), and because K is 0"(2)', E&)-dense in 
j(a, we can find elements w;eK such that J.L(w;, Rd(z;, ° »:S;'7(R, z;)+e. 
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Defining S as in (ii) with (c), for any uEKU(ld=K(Z) andfEA we have 

I <u,/)-J1(Tu, Rf)1 =\(U,/- it/i fl(Wi, Rf))\ 

:c; ~~f \ it1 ;;(z) [f(z)- J1(w;, Rf)] \ 

N 

:c;sup I;;(z)IJ1(w;,R(f(z)1-f))1 
zeZ i= 1 

N 

:c;sup I ;;(z) J1(W;, R(lf(z) I-fl)) 
zeZ i= 1 

N 

:c;sup I j;(Z)J1(wi,Rd(z,·)) 
zeZ i= 1 

N 

:c; sup I ;;(z) [J1(Wi, Rd(Zi, .)) + d(z, Zi)] 
zet i= 1 

N N 

:c;sup I ;;(z) I1(R, Zi)+I:+SUP I ;;(z)d(Z,Zi) 
zet i = 1 zet i = 1 

:C;11(R)+2B 

since d(z,zJ:C;1: for ;;(z)=l=O and I1(R,zi):C;sup 11(R, z). 
zet 

(iii) It suffices to construct a map gg'(L:z)~C(Z)=~(L:z) with II Pf-fll <I: 

for all f EA. Then R = RP has the desired property. For the construction of P we 
use the;; from the proof of (ii) with (c). Let ai be the support of;;, and rnou, the 
measure rnO(ai) -1 rno(a A aJ for an effective mo. Then 

Pf= I;; <rnou,,f) E C(Z) 
i 

and forfEA: 

II Pf-fil = supII;;(z)[ <rnou,,!) - fez)] 
zeZ i 

:c;sup I;;(z) <rnou" If-f(z) II) 
Z i 

:c; sup I;;(z) <rnou" d(z, .) 
Z i 

since d(zi,z):c;e for ZEai (z in the support ofj;). 
(iv) First we shall prove that for any R there is an S with liS' f- Rf II < I: for 

allfEA. According to the proof of T 3.2.1 it suffices to prove this for finitely many 
step functionalsfv= IIX~ fun. We define 

n 
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with mOun as above. Then we gtyt 

S'I= IRlun <moun'!)' 
n 

which for 1= f" implies S' f" = Rlv· 
For ~=[1J', (iii) and (ii) imply that supinfsup{ ... } can be taken either over 

R T m 

all positive linear maps [1J'(l:z)~[1J' with R 1 = 1 and all mixture-morphisms 

[1J(l:z)~[1J and mEK(l:z) or over all positive linear maps C(Z)~[1J' with 
R 1=1 and all T of (ii) (c) and all mEK(Z). The last objects do not depeud on 
K(l:z)· 0 

For Z with the metric d and an e>O, we define the covering number Ne(e), 
the packing number N pee), and the Lipschitz partitioning number N L(e). The covering 
number Ne(e) is the smallest number of balls of radius e which cover Z i.e. 

NcCe) = min{NI there are N points Zl, ... , ZN such that 

for every ZEZ there is a Zi with d(z, zi)<e}. 

The packing number is the biggest number of balls of radius e which can be 
packed into Z without overlaps, i.e. 

Np(e) = max {N I there are N points Zl' ... , ZN with d(Zi' z)':?2e for i=l=j}. 

N L(e) is defined by 

N L(e) =max{NI there are N elementsl1 , ... ,fNEL(Z) 

with II j; II = 1, it1 j;~ 1 and ej;EA} 

with A=Am and Am in (3.13). 

T3.2.3 
(i) Ne(2e) ~ N pee) ~ NcCe). 

(ii) Nd2e)~Np(e)~NL(e). 
(iii) For IX=C, p, L, the numbers N,,(e) increase if e decreases and lim N,,(e) = card Z, 

..... 0 

which equals N if Z has N points and 00 if Z has infinitely many points. 

Proof (i) Choose Zl' ... , ZN as in the definition of Np(e). Since N = Np(e) is maximal, 
one cannot find any z' EZ with d(z', ziJ:? 2e for all i. That is, for every Z there is 
a Zi with d(z, Zi) <2e which is to say that the balls of radius 2e around the Zi cover Z. 

Suppose Np(e»Ne(e). Choose Zl' ... , ZNp and Y1' ... , YNc as in the definition of 
Np(e) resp. Ne(e). Then to each Zi there corresponds at least one Yk with d(Zi,Yk)<e. 
Since N p> N e , this correspondence cannot be injective, hence one can find Yk' Zi' Zj 

(i=l=j) such that d(z;'Yk)<e and d(Yk>zj)<e. Thus d(Zi,z)<2e in contrast to the 
definition of N pee). 

(ii) Choose 11, ... ,fNL as in the definition of N L(2e). Since II j; II = 1 and Z is 
compact, there are points Z1> ... , ZNL withj;(zJ= 1, hencej;(z)=bij. Since 2ej;EA: 

2e=2elj;(zi)-j;(z)l~d(zi'z) forall i=l=j. 
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Choose Zl> ... , ZNp as in the definition of Np(s). Then the functions 

der 
];(z) = t II-s- 1 d(z, z;)1 +t(I-s- 1 d(z, z;)) 

have disjoint supports and satisfy the definition of N L (s). 
(iii) It is trivial that N a(s) increases with decreasing s. Moreover N p(s) is obviously 

bounded by card Z. On the other hand, suppose that Z contains at least N different 
points Zl' ... , ZN and put s=t ~jJ? d(z;, z). Then Np(s)"2 N. D 

I~J 

Let J'l'D denote a Hilbert space of the finite dimension D. 

T 3.2.4 If D"2Nc(s) and <5>0, then 

<5 (1- N ~<5)L ~ L1 (Z, gB(J'l'D» ~s, 

where ( ... )+ is the positive part. 

~ R 
Proof for the lower bound: Let C(Z)---->gB'(J'l'D) as before. Let N=Nd<5) and 
fl' ···,fN as in the definition of N d<5) and Zl> ... , ZN such that];(z)= <5ij. Since <5 ];EA, 
we have ];"2(1-<5- 1 d(z;,·»+. Hence, with the notation of T 3.2.2: 

D = tr(R(l» "2 tr(R I];) 
; 

"2I tr(R(I-<5- 1 d(z;,· »+) 
; 

"2IIIR«I-<5- 1 d(z;,·»+)11 
; 

"2I sup Jl(W, 1-<5- 1 Rd(z;,·» 
i WEK 

= I (1- <5- 1 '1(R, Z;»"2 N(I-<5 -1 '1 (R». 
i 

Proof for the upper bound: Let N=Nc(s)~D and Zl' ... ,ZN as in the definition 
N 

of Nc(s). Define R by Rf= I f(z;)~, where {P;} is a family of orthogonal projections 
N ;=1 

with I ~= 1. Thus ZEZ gives 
;= 1 

and hence 



§3 Examples for Approximate Embedding 81 

The upper bound in this thoorem can be interpreted as an existence theorem: 
If Nc(e) 5, D, then an embedding of Z into £i(JfD) with an e-approximation, resp. 
with an e-smearing exists. How should we interpret the lower bound? 

It is fundamental for the structure of physical theories that infinite sets are mathe­
matical idealizations which have no analogue in the rear world., These idealizations 
must be "revoked'" by imprecision sets (see XIII §2.5 and' [3] §§6 and 9; and [40]). 
The introduction of a state spac~ Z. where Zp is precompact, is an example for 
such an idealization. It must be "revoKed," by introducing imprecision sets as ele­
ments oftIre' uniform structure p (see §3.1 and II § 1). But at the beginning we have 
no physical arguments other than experience, how to select useful imprecision sets. 
Now we have a theoretical method to find such imprecision sets; in particular we 
found a non-zet001) lower bound for the imprecision: The state space' 2 has only 
then a physical meaning when the imprecision, is 'greater than given by the lower 
bound in T 3.2.4. Therefore we can denote tliat lower bound as a fundamental 
"macroscopic imprecision" or a "thermodynamic imprecision relation" as done in 
[1] XV §8. 

In the sense of the smearing operator Q of the embedding from §2.5, we can 
describe the same situati@n,as--follows. 

2 is well defined, but we can neither measure nor-nrepare the states with arbitrary 
precision. We cannot measure the states more precisely, if e is so small that a repeti­
tion of e- 1 experiments is impossible (as described in §3.1). It is impossible to prepare 
the states more precisely siirce only ensembles in QK(I'z) can be prepared. 

In order to understand the magnitude of the bounds of T 3.2.4 more clearly, 
it may be useful to restate T 3.2.4 in terms of the inverse.function D -+ A (2, £i(JfD)): 

For e>O, let D(e) be the smallest dimension for which an e-embedding of 2 into 
£i(JfD) exists. Then T 3.2.4 yields 

iN d2e)~'s~p (I-i) N dc5) 5, D(e) 5, Nc(e). 

TIus the behavior of D(e) is closely related to the behavior' of the numbers N L, 

N p , Nc studied in T 3.2.3. 

T 3.2.5 Let 2 be a bounded region "f"" in Rn of total volume V and d the metric 
in Rn. Then asymptotically for large integers D we get: 

where v,. denotes the volume of the unit ball in Rn, and C ± (n) are constants depending 
only on n, satisfying t 5, C _ 5, C + 5, 2. 

Proof. The calculation of N a (e) for e -+ 0 and IX = p, L, c is reduced to determining 
the numbers 

vp(n) and vc(n) have been studied extensively (see [51]). (The value of vp(n) is desired 
in Hilbert's 18th problem and still unknown for n;;::: 3.) Of the estimates compiled 
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in [51], we shall only use 

n n n2 
v >-- ---
p- 2]13' 3]/2' 16 

and 

and the asymptotic estimates 

n 
,r.:<:; vAn):<:; n(log n + log log n + 5). 

eVe 
(3.2.2) 

The lower bounds for vp become bounds for VL by virtue of 

(3.2.3) 

This is proved as follows: Let {Xi} eRn be a packing of B-balls (i.e. IXi-XjI22B); 

then the functions !;(X)=(I- ,I;;::; lXi-XI) (+ means the positive part) satisfy 
BV 2 + 

B]/2!;EA andj;20. If they also satisfy I!;:<:; 1, we have N L(]/2 B) 2 N p(B) by definition 

of N L ; thus the result follows. Defineigi(X)=(1-2~2 IX-X;l2t. Then!;:<:;gi, and 

it suffices to prove I gi:<:; 1. The latter holds by the following elementary results: 

i (1 ) Let i' and j' run over those i which for fixed X make 1--2 I X - X;l2 +0 O. 
2B + 

From IXi-XjI2=(Xi-X)2+(Xj-X)2_2(Xi-X)'(Xj-x) and IXi-XjI222B for i+oj fol­
lows (Xi-X)2+(Xj-X)222(Xi-X)'(Xj-x)+4B2(1-()i)' Summing this over i' andj' 
(let this be N indices) we have 

2N I(Xi,-xf22(I(Xi,-x)HI(xp -x))+482 N(N -1)24B2 N(N -1), 
i' i' j' 

consequently 

F or the lower bound of the gap we need the bound" L (n):<:; 1 + n. Choose 11, ... ,fN 
as in the definition of N L(B) and assume !;(Xi) = 1. Then we get !;(X)2 
(I-B- 1 Ix-x;!)+, which with "f; as the B-neighborhood of l' (J1 = volume, i.e. 
J1(1') = V) yields 

J1("f;)2 I dnxI!;2I I dn X(1-B- 1 Ix- Xil)+ 
fe i i Rn 

=N (B) v,.Bn ~ "L(n) ("1/'). 
L ·l+n l+n J1 (3.2.4) 
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Given vL(n) and vc(n), the best bounds for D(e) take the form 

. h vdn) d T ki' f' . b d f h WIt v_ = 1 an v+ =vc' a ng mverse unctIOns gives oun sot e 

(1 +n)(l +·;;f 
desired type with 

C ± (n)=(v ± (n»l/n. 

Combining these with the bounds in (3.2.2), (3.2.3), (3.2.4) yields the estimates stated 
in the theorem. 0 

At first an estimate of D(e) up to a small factor independent of e may appear 
to be fantastically accurate since in the applications log D is of the order of the 
particle number and thus very large. In this sense, the estimates only prove that 
an embedding is possible with fantastic precision. There are situations, however, 
in which the dimension of Yf is of an order for which the above estimates are 
relevant. 

For example, in a theory of the Brownian motion the Hilbert space is of the 
form Yfparticle x Yfbath • The "particle" is "macroscopic" and Yfparticle is only the Hilbert 
space of its center of mass. The inner structure of the particle is not measured 
and shall not change macroscopically. The macroscopic measurements are in this 
sense only the measurements of the position of the particle. The embedding should 
therefore only proceed into &U(Yfparticle)' Since the particle is not "free", the energy 
of its motion is neither a macroscopic observable nor a constant of the motion. 
As finite dimensional subspace of Yfparticle, we therefore must not take an energy 
shell but rather the space where the energy is smaller than a fixed constant. 

As state space Z we can take a bounded region ofR3 (with the Euclidean metric). 
1 

The Hamiltonian of the particle (i.e. of the center of mass motion) is H = 2m p2, 

with m the mass of the particle. As Hilbert space we take the subspace YfE where 
the eigenvalues of H are smaller than E. The de Broglie. wavelength of a free particle 
with energy E is AE=2n(2mE)-1/2. 

For sufficiently large E we get 

0.23 < LI (2, ~(YfE» < 0.44. (3.2.5) 

We may derive (3.2.5) for the general case of Rn with H =_1_ LIn; then (3.2.5) takes 
the general form 2m 

~ nAE 1 
LI (Z, &U(YfE» ~ C -2 - with 1 M::;; C::;; 1. 

ne V 2 

This result merely combines T 3.2.5 with Weyl's asymptotic formula N(I])~ 

v.: 
V (2;)n I]n/2 for the number of eigenvalues of the Laplacian below I] (see e.g. [52] 
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XIII, Theorem 78). Thus T 3.2.5 implies 

Ll(Z,86'(£'E))~C( d.V J'f,)l/ft ~Cv,,-2/ft AE with CE[C+(n),C_(n)]. 
v" 1m E 

The energy E has the magnitude of the temperature. If m is high enough (greatly 
exceeding the mass of an atom), the bounds in (3.2.5) are very small. 

From the theory of Brownian motion, we know that the bath makes the statistics 
of the trajectories of the form: "without mem0fy". This is not true for a "free" 
particle. Nevertheless an embedding at "time zero" with the same bounds (3.2.5) 
is possible also for a free particle. The embedding at time zero cannot show whether 
the dynamics is without memory. 

In §3.4 we will give an explicit form of the morphisms Tand S for an embedding 
of a free particle, described in the 6-dimensionalll-space (position-momentum space) 
as state space including the dynamics. This embedding provides a dynamics without 
memory. We shall also see that the embedding in the 3-dimensional position space 
as "reduced" state space (see §2.6) cannot yield a dynamics without memory. Since 
in § 3.4 we shall describe the embedding in the Il-space in an explicit form, for 
this case let us here not evaluate the bounds according to T 3.2.5. 

The elements of the macroscopic state space Z are frequently "fields", i.e. there 
are two spaces Rft, and Rft2, and Zc=C(Rft',Rft2). Such a space is for instance that 
of the fields (u(r), p(r), T(r)) for hydrodynamics, where u is the velocity, p the mass 
density and T the temperature. Here the fields form a function R3 ~ R5. Another 
example is the state space of the Boltzmann distribution functions f(P, q) which 
form functions R6 ~ R. These distribution functions can also be represented mathe­
matically as measures (see below and §3.5). 

We will consider as state space Z only this last example; i.e. the base K(X) 
of C' (X) with the metric 

d(m 1 ,m2)= sup l<m1 -m2,f)I. 
feA(X) 

Here X may be a compact space with the metric d. Then K (X) is compact (see 
T 3.1.2 and the remarks after T 3.1.2), i.e. Z =Z. 

T 3.2.6 Let X, d and K (X) be as above. Also choose 10 > 0 and arbitrary integers 
M and N. Then we find 

(i) Let X M be the special space (for X) of M points with the discrete metric 
def. ••. 

and S(M) = K(XM ) the (M -I)-dImensIOnal sImplex. 

Then 

(ii) 

10gN p(S(M), e);::o:(M -l){log~-log 8}, 

log Nc(S(M), e):o:;(M -l){log~+ 1-IOg4+4e}. 

log N p(K(X), 10 1 102) ;::0: log Np(S(Np(X, 10 d), 102), 

log NAK(X), 101 + 102):0:; log NAS(NAX, ed), 102). 
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Proof (i) We can identify S(M) with {XIXERM, Xi~O, LXi=1}. Then the metric 
is given by i 

d(x, y) = max {IL(Xi- y;)Jili O::;j;::; 1} =tL IXi- Yil 
i i 

(since L(Xi-yJ=O). The e-ball around XES(M) can be written (x+eDS(M)) with 
i 

DS(M)={x-ylx,YES(M)}. Let Jl be the Lebesgue measure in the hyperplane 
Lxi =1 and suppose that the e-balls at {Xj}7=1 cover S(M). Then 
i 

N~-l Jl(DS(M))~Jl(S(M)). 

Since the relation 

(2(M -1)\ 
Jl(DS (M)) = M -1 J Jl(S (M)) 

characterizes the simplex (Theorem 6.2 in [51]), we have 

1 M[(M- 1W 
N.,(S(M), e)~e - (2M -2)! 

and 
1 1 

log Np(S(M), e)~log N.,(S(M), 2e)~(M -1) log 2e -(M -1) log 4+"2 10g(nM) 

by Stirling's formula. 
Let K be an integer. We shall compute the largest distance o(K) of points 

{PiES(M)(i= 1, ... , M)} to the points {ii(i = 1, ... , M} with integers Ki and ~ Ki =K: 

K!! K!!+1 
First find an M-tuple {K?} with -K' ::;Pi::;-' -. Set ri=Kpi-K? and R= Lr;. 

K i 

then R is an integer with O::;R::;M and K= L K? +R. For any subset O"c{1, ... , M} 
i 

of cardinality R, the M-tuple {Kf} with K'[=K? for i=l=O" and K'[=K?+1 for iEO" 
is normalized to K. Moreover, 

yield 

K" {K'!} P={Pi} and K"= ~ 

( K") 1 i K'! i 1 1 d p,- =-L Pi--' =-(Lri- L(1-ri))= K Lri. 
K 2 i K 2K iE" i,,, i,,, 

By a proper choice of 0", this d can be made smaller than 

~(M-R)~= M(1_~)~<~ 
K M K M M-4K· 

M 

The number of M-tuples {Ki} with L Ki=K ~s equal to the number of combina-
i= 1 

. (K+M-1) tlOns of the order K of M elements, i.e. K . Hence 

( M) (K+M+1) {K M-1} 10gN., S(M), 4K <log K ::;(M-1) log M-1 +1+~ . 
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ii) Let Xl' ""XNEX with N=Np(X,e l) be an el-packing and FcS(N) the set 
of centers of an e2-packing in S(N). With IFI as the cardinality of F we have 
IFI = Np(S(N), (2)' For pEF define JlpEK(X) by (JlpJ)=LP;/(x;). We show 

i 

d(Jlp,Jlp,)~2el e2 for all p,p'EF with p9=p'. Since F is a packing, there are CXiE[O, IJ 
with L(Pi-Pi) cxi~2e2' LetJ=t+ L(cxi-t)(el -d(Xi, .))+. ThenJEAX and 

i i 

i,j i,i 

Now let Xl> ""XNEX with N=N,,(X,e 1) be an el-covering and FcS(N) the 
set of centers of an e2 covering of S(N) with IFI = Nc(S(N), (2)' We must show 
that for every Jl*EK(X) there is a pEF such that I(Jl*-Jlp,f)I~el +e2 for all 
JEA(X). 

Consider a partition {Iii} of X with XiElii and d(x,xi)~e for all XElii and set 
pr=(Jl*,lii)=Jl*(lii)' Then 

(Jl*-Jlp*,f)=L J (J(x)-J(xi))dJl*(x)~el' 
i (Ii 

For p* we can find pEF with d(p*,p)~e2' thus 

(Jlp*- Jlp,f) = L(Pr - Pi)J(xi)~e2' D 

Combining the last two results with T 3.2.4, for embeddings of K (X) we obtain 
the estimates: 

T 3.2.7 Let X, d be as before, let 

Np(X,e)~Ape-n and N,,(X,e)~Ace-n, 

and let JIl'D be a Hilbert space of dimension D with log D ~ Ap. Then we have 

ProoJfor the lower bound: 

log Np(K(X), e)~log Np (S(Np(X, 8te)), ;t)~(Np(X, 8te)-1) log t 

~Ap(8et)-n logt-Iogt for 1~8t~e-l. 
1 

We may set log t=- to obtain 
n A 

logNp(K(X),e)~-8 p e- n 
nne 

where the small term ( -log t) has been neglected. With the abbreviation 
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hence T 3.2.4 yields 

L1(K(X), 8l(~D»~c5(1-exp{log D-log Np(K(X), c5)})+ 

~c5 {l-exp 10gD( l-(~n} +. 

This expression vanishes for c5 ~ B and has a steep maximum for c5 just below B. 

(li)n log log D 
Setting - = 1 + 1 we obtain 

e ogD 

( log 10gD)-1/n( 1) 
L1(K(X),81(~D»~B 1+ 10gD 1-10gD · 

Since log D was assumed large, we may set 

L1 (K (X), 8l(~D» ~ B. 

Proof for the upper bound: Assume e so small that no e-embedding of K (X) into 
~D exists. Then T 3.2.4 with 0 < t < 1 implies 

log D :=;;log N,,(K(X), e) :=;;log N,,(S (Nc (X, (1- t) e), tel 

:=;;N,,(X, (l-t) e){IOg~+ 1-10g 4}:=;;AA1-t)-n e-n.!..IOg(_e_)n. 
te n 4t+e 

Hence 

( e )~ n log D (e(l-t»)n 
Oog~~B with ~= -4 and B=-- -- . 

te Ac 4t 

B 
For sufficiently large log D we have B ~ e, hence ~ ~ -1 - because ~ --+ ~ log ~ is 
monotonic. Solving this inequality for e yields og B 

( Ac )l/n 1 {I log D log n e(l- t)}l/n e< -- -- -log--+--+log---
- log D 1- t n Ac n 4 t 

:=;;(~)l/n 1.001 {7 +.!..log log D}l/n 
10gD n Ac 

for t=9·10- 4 

and with log n :=;; L Since L1 ( ... ) is the sup of all e for which no embedding exists, 
n e 

it must satisfy the same inequality. 0 

The'most interesting example with a state space of the form K (X) is Boltzmann's 
distribution. A Boltzmann distribution functionf(p, r) shall by 

N("Y)= J f(P,r)d3pd3 r (3.2.6) 
f 

describe the "approximate number of particles" with (p, r) in the region "Y of the 
It-space. This can be given a better form: For a "smooth" function g(p,r), 

}' = J f(P, r) g(p, r) d3 pd3 r 
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N 

for all practical purposes equals L g(p;, rJ, if the N particles are distributed in 
i= 1 

the Jl-space as described by f(P, r) (see also §3.5). In this sense we may identify 
the Boltzmann distribution functions with the measures in K (X), except that these 
measures are multiplied by N. Here X must be a compactification of the Jl-space 
relative to a suitable metric. 

The physically interesting gas of many atoms is enclosed in a finite region Xl 
in space. Thus we may take X = X 1 X X 2, where Xl is compact with the usual 
Euclidean metric Irl-r21. To make the momentum space X 2 precompact, we there 
must choose another metric than the Euclidean one. With e=p/lpl one can introduce 

, t -l lpl p=e g -
Pm 

and (for instance) as metric in X 2 define 

d(Pl,P2)=lp~ -p~l· 

Let us take another form, which is not so elegant but simpler to use. In X 2 

we take a finite region Ipl ~Pmax and put 

Here we might (for instance) choose Pm=Pmax and rm as the diameter of the finite 
region Xl in space. But we shall choose other fixed values for Pm and r m' such 
that an imprecision d( ... )~e does neither depend on Xl nor on the temperature 
(Le. on the energy) of the gas. 

The set 
A(X)={cp:X ~[O, 1] Ilcp(x)-cp(x')I~d(x,x')} 

(similarly dermed as (3.1.3» induces a metric in Z = K (X); it is again denoted by 
d and makes Z compact. 

Provided the use of the asymptotic formulas for N,,(Xi , e) is justified, i.e. if 
(erm)3~ Vand ePm~Pmax (with Vthe volume of the gas), we have 

3vp(3)2 (Pmax)3 V -6 
Np(X,e);;:::Np(Xl,e)Np(X2,e);;:::-4- - 3 e , 

11: Pm rm 

3vc(3f (Pmax)3 V -6 
N,,(X,e)~N,,(Xl,e)Nc(X2,e)~-4- -- 3 e . 

11: Pm rm 

We expect that the kinetic theory of an ideal gas of N particles can be embedded 
into a quantum theory over the Hilbert space Yf, if we restrict the particles to 
the finite region Xl in space (by a suitable choice of the Hamiltonian) and restrict 
the energy to an interval (characterized by a temperature T). If T is not too small, 
then log D (D the dimension of Yf) coincides with the thermostatic entropy given 
by the well known equation 

( 5 {V(211:)3 }) 10gD=N 2+log ~(211:mT)3/2 . (3.2.7) 
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Here T is measured in energy units, i.e. the Boltzmann constant is taken equal 
to one. 

Let us apply T 3.2.7 to the above estimates for N,.(X, 8). The conditions ePm~Pmax 
and (8,rJ~ V on which they depend can be checked in retrospect by setting 

10gD 
e=L'J(K(X), ~(~». In order to control the term log 10 A in the c+ of T 3.2.7, 
r P g c 
~must be bounded. For instance we may assume Pm~Pmax and a fixed length Pmax 
rm. Then we have 

( p )1/2 ( V )1/6 
L1(K(X)'~(~D»=C ;~x r! 10gD (3.2.8) 

( 1 logD)1/6 
with 0.056 ~ C ~ 1.001 7 + "6 log --x.- and 

A _ 3 Vc(3)2 (Pmax)3 ~ 
c- 41t Pm r!· 

Taking the example of Helium at 0° C and atmospheric pressure, from (3.2.7) 
we get 

Then we have 

20 V 
logD~4.014·10 -3. 

cm 

log D =[3Vc(3)2 (Pmax)3]-1 (~)3 4.014.1020 

Ac 41t Pm em 

( 3V (3)2)-1(r )3 
~ T ~ 4.014.1020• 

Taking r m ~ 1018 cm (obvious for physical reasons) we obtain 

0.056 ~ C ~ 1.63. 

Taking log D from (3.2.9) in (3.2.8), we thus get 

..1 (K(X), ~(~D»= C e;~x )(~:r2 3.68.10-4. 

(3.2.9) 

Putting (3.2.7) into (3.2.8), we see the very important fact that the bounds for 
..1 ( ••. ) do not depend em the volume IV ,but only on the density N IV. This should 
be so if ..1 ( ... ) specifles a macroscopic; ~'limprecision" or "smearing". 

If we put L1( ... )=e, then (3.2.8) can;~ be read 

( V )1/3 
\~(erm>~(e.056)2 Pmax 10gD . 

Taking the values ifrom above (for Helium with NINo as the density relative to 
the density at atmoapilieric pressure) we obtain 

( p )(N)-1/3 (epm')(erm>~1.1 ;;x No 
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with PT = (3 m T)1/2. If Pmax ~ PT and N ~ No, we have 

This shows that the imprecision has the order of "Heisenberg's uncertainty re­
lation ", i.e. the imprecision is very small relative to the "macroscopic scales" Pm 
and rm . 

.1( ... ) was defined as the smallest e for which an e-embedding exists. In this 
definition no constraints were imposed (except on the energy). The actual possibilities 
for measurements on macroscopic systems, however, are not arbitrary. On the con­
trary, these possibilities are determined by the real interactions of the macrosystems 
with their surroundings. To formulate this problem of measurement possibilities 
seems to imply that it cannot be solved. This may be true, if one desires a general 
survey over "all" measurement possibilities. When one is content with less, it is 
possible to give special macroscopic observables for special systems. In this context 
one must stress that there can be more than one macroscopic observable (i.e. more 
than one S) for the same state space Z, since in general there is not only one 
measuring method for the states in Z. Therefore one must not be shocked that 
there is a certain arbitrariness in defining S, an arbitrariness within the imprecision 
of the description of the system in the state space Z. 

To guess special macroscopic observables for special systems, one often succeeds 
by the intuition that macroscopic measurements of position, momentum, current 
density etc. resemble very imprecise measurements of the corresponding quantum 
mechanical observables. For example the streaming velocity of a fluid at a position 
" should have something to do with the quantum mechanical momentum of the 
atoms in a region around r. 

It was the ingenious discovery of Boltzmann, to introduce the "Boltzmann distri­
bution function" as macroscopic observable. From this, we have only adopted the 
form Z = K (X) of the state space, not yet using the significance of (3.2.6). This signifi­
cance, however, will determine Sand T within an arbitrariness given by the physical 
imprecision. Therefore the imprecision resp. the smearing by embedding can be 
greater than the above bounds. For the kinetic theory, in §3.S we shall try to give 
such Sand T which describe the meaning of the" distribution function". 

§ 3.3 The Embedding of the Time Evolution 

As already mentioned at the beginning of §3, we have not succeeded to estimate 
the approximation to (2.S.38a), i.e. the difference between At Q and Qt' The main 
problem of such an approximation is that At must be a halfgroup. We have given 
some general remarks to this problem in §2.3. 

Our aim in this section is only to demonstrate that an approximation to (3.6) 
is not much worse than the approximation (3.3) discussed extensively in §3.2. Then 
the difference between At Q and Qt cannot be worse than the errors in (3.6) and 
(3.3). 

In II § 1 we have given physical imprecision sets for trajectories, taking into 
account the imprecision in time. We can avoid this complication of time imprecision 
by presuming that the At are "sufficiently" continuous. Therefore let us first contem­
plate continuity conditions for the time evolution operators At' 
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The quantum mechanical "time of evolution operator" OU, in (3.4) is given by 
the Hamiltonian in f!lJ!Tq exp. This Hamiltonian is a structure of nature and not at 
physicists' disposal. Nevertheless let us first prove that an imprecise embedding of 
the time evolution A, is possible for "suitable" Hamiltonians. Obviously, such an 
embedding for "suitable" Hamiltonians only proves that one cannot raise a "funda­
mental" objection to the embedding procedure. The real problem, to give an explicit 
form of Sand T and to deduce from the "real" Hamiltonian the time evolution 
operator A, with its halfgroup property, is no yet soluble. Only more or less good 
approximations to the master equation operator B in (2.5.14) have been deduced 
in special cases (see also §3.5). 

For a dynamics without memory, in §2.5 we have presumed that the systems 
are dynamically continuous (II 03.4.1). We shall sharpen this to the assumption 
that (A,m,f) is continuous in 't ('t~0) for all mEK(l:z) and all JEL(Z) (see §3.1). 
In addition we presume that A~ transforms L(Z) into itself, or equivalently that 
A, is (j(~(l:z), ~(l:z»-continuous (for fixed 't). Then (m, A~J) is continuous for 
each pair in ~(l:z) x ~(l:z). 

T 3.3.1 If 't -+ (u, A~J) is continuous for each pair (U,f)E~(l:z) x ~(l:z), then the 
mapping 't -+ A, u is norm-continuous for each UE~(l:z). If't -+ A, U is norm-continu­
ous for each UE~(l:z), then 't -+ A~J is (j(~I(l:Z)' ~(l:z»-continuous for all JE~I(l:Z). 
When 't -+ (u, A~J) is continuous for all (U,f)E~(l:z) x ~(l:z), then it is continuous 
for all (U,f)E~(l:z) x ~1(l:Z). If 't -+ (u, A~J) is continuous for all (U,f)E~(l:z) 
x~(l:z), then 't-+A~J is norm-continuous for all JE~(l:z). If 't-+A~J is norm­

continuous for all JE~(l:z), then 't-+A,u is (j(~I(l:Z)' ~(l:z»-continuous for all 
UE~I(l:Z). If't -+ (u, A~J) is continuous for all (u,f)E~(l:z) x ~(l:z), then it is contin­
uous for all (U,f)E~I(l:Z) x ~(l:z). 

The proof will not be given, since it is similar to that of the theorems VI Th. 1.2.1 
and 1.2.6 in [2]. 

The assumption that ('t,f) -+ A~J is continuous is sufficient to prove the following 
theorem, which is an extension of T 3.2.1. 

T 3.3.2 Let Am be as in § 3.1, 0 an interval [0, T] and e>D. Then there are a 

finite dimensional Hilbert space :7f, mixture morphisms ~(:7f)~~(l:z), 
~(l:z)~~(:7f), and a continuous unitary group U, on :7f, such that 

for all mEK(l:z), all JEAm and all 'tEO. 

The proof is very similar to that of T 3.2.1. In essence one must replace the 
set Am by Ao= U A~Am· We have AmcAo, while Ao is as norm compact as Am 

since Ao is the continuous image of the compact set 0 x Am. We do not give the 
whole proof here (see [44]), since below we will prove T 3.3.5 which makes a more 
precise statement about e, e and the dimension of :7f. To this purpose we define 
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D 3.3.1 
do(z, z')= sup sup I(A~f)(z)-(A~f)(z')I, 

leArn "CEO 

m(r)= SUp SUp sup I(A~J)(z)-(A~J)(z)l. 
leArn zeZ l'1.'t2E6 

1<1 -T21,;< 

T 3.3.3 do is a metric in Z, uniformly equivalent to d and do:2:: d. 

Proof. do:2:: d is obvious. The uniformity induced by do is equivalent to the initial 
uniformity induced by the set Ao as mapping Z -+ R, since Ao is norm compact. 
Since each A~fis uniformly continuous on Z with d as metric, d and do are uniformly 
equivalent. D 

T 3.3.4 lim m(r)=O. 
T~O 

~ ~ A - . -
Proof. We define a mapping C(Z) x Z---+C(8) by [A(f, z)](r)=(A~f)(z); thIS A 
is continuous in the sense 

II A(f, z)-A(f', z') II::; IIf-f' II +do(z, z'). 

Hence A(AmxZ)cC(8) is compact and thus its elements are equicontinuous by 
the Arzela-Ascoli theorem. D 

T 3.3.5 Let Z, d, AT and 8 be given as above. Let D 1, D 2 be integers and 8 1 , 82> 0 
such that 

(1) Dl balls of do-radius 81 cover Z and 

(2) (1 + n) m (~ Dilt2)::; 82 (with m(r) as in D 3.3.1). 

Then there are a Hilbert space Yf with dimension D1 ·D 2 , a continuous unitary 
group {U<} on Yf, and mixture-morphisms go(Yf)~go(l:z), go(l:z)~go(Yf), 
such that 

I (A< m,f) -(S[U<+ (Tm) U<],f) I ::;281 +1:2 

for all mEK(l:z), allfEAm and all rE8. 

Proof. Let Zl' ... ,ZD1 EZ be centers of the covering and let {ai} (i=1, ... ,Dd be 
a partition of Z such that dO(Z,Zi)::;l:l for ZEai. Then for all mEK(l:z),fEAm, tE8 
we get 

I(m, A~f) - I m(ai)(AJ)(Zi) I =II m(a;) [(m"" AJ) -(AJ)(z;)] I 
i i 

::; I m(ai) I (m"" do(·, Zi) I::; 1:1 I m(ai) = 1:1, 
i i 

where m",(a)=m(ar 1 m(aina). 
We shall now construct a Hilbert space Yf2 with dimension D2, a unitary group 

- s U<, a WoEK(£;,), and a map C(8)---+go(£;,), such that qJEC(8) and rE8 make 
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1q>(r)-tr(Wo O.(Sq» Onl~(I+1t)m(q>,: D2"1), 

where m(q>,.) = sup {I q>(rd- q>(.2>11. 1> .2EO, 1.1 -.21 < .}. 
Consider the function i{J defined in ( - T, + T) by 

i{J(t)=q>(ltl) for Itl~T. 

Let Iv) (v= 1, ... , D2) be a basis in £2. We defme O. by 
• T 

1tJV-

O.lv)=e T Iv) 

and Wo=P", with (t{!lv)=D2"1/2. Defming 

_ D2 +T _ _+ 

Sq>= 2T J q>(t) U t P", O. dt, 
-T 

we fmd Sq>'2:.0 for q>'2:.0 and 

i.e. Sl=l. We have 
D +T 

tr(Wo OAS q» 0:)= 2; J i{J(.') tr(P", 0.0: P,p 0., On d.' 
-T 

1 +T 
=(i{J a k)(.) = 2T J i{J(.') k(.-.') d.', 

-T 

where a denotes the convolution and k the kernel 

O 0 + - Z k(t)=Dz tr(P", t P", t )=Dzi (t{!, U t t{!) I 

( 

1t t) I D2 1ti·.!...12 sin "2 D2 T 
-D- 1 " T -D- 1 -2.t- e -2 . 

• =1 . 1t t sm--
2T 

This is called a Fejer-kernel, for which the estimate 

1Ii{J-i{Jokll~(I+1t)m(q>, ~ D2"1/2) 

can be found in [53] (section 2.4 and 2.5.1). 

93 

Let ~ be a Hilbert space with dimension D1> and P; (i= 1, ... , D1) a family 
of one-dimensional orthogonal projections. Let yt'=~ x £2, Ut = 1 X O. and 

D, 

Tm= L m(<Ti) p;x P"" 
i= 1 
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Then we get 

I (Arm,f)-(S[Ur+(Tm) Ur];f) I 
~ I (m, A~f) - I m(ui)(AJ)(z;) I 

i 

! 
D +T 

+ ~m(ui)(AJ)(Zi)-2; }T ~m(ui)(mo""AJ) 

. tr2(Ot P", Or 0,+ P,p 0,) dt! 

~II m(Ui) [(m"" A~f>-(A~f)(Zi)] I 
i 

+IIm(u;)[(AJ)(Zi)- tr2(Ot P,jJ Or S(A:f)(Zi)) I 
i 

! D +T 

+ ~ 2; _~ m(Ui)[(mO"" A;f)-(A;f)(Zi)] 

. tr2 (Or+ P", OrP", O,+)dt!. 

Since 

we have 

Hence 

I(Arm,f)-(S[Ur+(Tm) Ur],f) I 
~2el +IIm(Ui)[(A~f(Zi)-tr2(Or+ P", Or S(A:f)(z;))] I 

i 

From a physical viewpoint, T 3.3.5 seems very artificial. The formulation: "There 
is a continuous unitary group {Ur } ••• such that" seems without physical significance 
since the Hamiltonian in [ljJ !Yqexp is not at our disposal (but fixed as a law of nature). 
Such a "given" Hamiltonian is written down in [2] V (5.8). It is obvious that we 
often replace this very complicated Hamiltonian by suitable approximations. For 
instance for a gas we use a Hamiltonian describing bound atoms as "elementary 
systems" in the sense of [2] VIII. The group {U r} is therefore given and not dispose­
able. 

Nevertheless, T 3.3.5 can tell us some properties of the spectrum of the Hamilton­
ian, necessary for the possibility of embedding. It is clear that these properties actually 
should be proved, what in practice is not possible because of the complicated Hamil-
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tonian. Nevertheless, we have great confidence that such properties are present. 
But what are these properties? 

The model for the Hamiltonian used in the proof of T 3.3.5 is very artificial. 

The eigenvalues are n;. (v=l, ... ,D2), each with degeneracy D1. If we would lift 

the degeneracy by replacing the eigenvalue 1t v T- 1 by D1 eigenvalues 8vi (i = 1, ... , Dd 
spread between 1t(v-lj2)T- 1 and 1t(v+lj2)T-1, then the approximation would 
remain good for ,<T. For times ,>T, the two Hamiltonians with the spectra 1tV T- 1 

resp. 8vi would give different time evolutions. For instance, the recurrence time for 
the spectrum {8vi} is of the magnitude (D1 T) whereas that of 1tV T- 1 is ofthe magni­
tude T. We must expect that a good embedding of the time evolution is possible 
only up to times T small compared with the recurrence time D1 T. 

Another time scale is given by the, = T Di 1/2 in (2) of T 3.3.5. The significance 
of m(,) is that a macroscopic change is not noticeable (in the sense of 82) during 
a time, 1 = T Di 1/2. With LlE as the imprecision of the macroscopic energy relating 

1 
to the microscopic energy (see §3.2), we can define the time '2- LlE. Here we have 

LlE=D21tT- 1 i.e. '2-TDi 1='1Di 1/2. This '2 is the shortest time for evolutions 
of microscopic (not measurable) quantities which are coexistent with the macroscopic 
energy. Every physicist would say, that the observation of faster changes is impossi­
ble. We claim that already changes in times shorter than '1 cannot be observed. 

In this way we can interpret T 3.3.5 in the following way: There are two character­
istic times T and '1, where '1 is the shortest time of macroscopic changes and 
T the time until which the macro system is not essentially disturbed by the surround­
ings (i.e. until which the embedding of the time evolution is possible). If the spectrum 
of the Hamiltonian has the property that the number D 1 of eigenvalues in an interval 
IjTsatisfies the condition (1) of T 3.3.5, and if LlE;;:::Tj,f, then an embedding with 
the precision 281 + 82 in the sense of T 3.3.5 is possible. 

What do we know of the two numbers D1 and D2=(Tj'1)2 for real systems? 
The time '1 will be greater than the time which an atom needs to fly 10- B cm, 
i.e. '1 > 10-'B cinjl05 cmsec- 1 =10- 13 sec. As T we may take T~1017sec 
(_1010 years). Then we get D2 = 1030 or log D2 ~ 70. On the other hand, log(D1 D2) 
=logD1 +logD2 has the magnitude of the entropy, for 1 mm3 of Helium under 
atmospheric conditions 10g(Dl D2)_4·1017 (see the example in §3.2). Clearly 
log D2 ~ 10g(D 1 D2). Therefore the problem of the time T is physically irrelevant 
for the existence of approximate embeddings, which is very reassuring. 

Modifications of the results of § 3.2 can therefore only be expected from the 
estimates of D1 , i.e. from the metric d8 which enters the condition (1) of T 3.3.5. 
This d8 describes the physical distinguishability of states, when not only measure­
ments at t=O are taken into account. For systems which approach an equilibrium 
monotonically, the difference between initial states deteriorates step by step such 
that d8 can be expected to be practically equal to d. 

If on the contrary d8 is "very much" larger than d, i.e. if D1 according to (1) 
of T 3.3.5 is so large that an embedding is not possible, then one can follow two 
ways. 

First one can look for a better half group AT to describe the macroscopic dynam­
ics. For instance, it could be that the initially chosen AT describe a deterministic 
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dynamics (see also [44] V.3.6) and that this dynamics is in some regions of Z 
very unstable (see § 2.6). Then one must look for stochastic {A,} which allow an 
approximate embedding. 

If this is not possible, then the conjecture is justified that the dynamics in Z 
is not "without memory". We can try to take a finer state space Z J such that 
Emk can be identified with EZf (in the sense of Emk=r' EZf ' see §2.5). If also this 
fails, then possibly Emk is not a Boolean ring. 

§ 3.4 A Heavy Masspoint 

Through all previous sections of this chapter, as a red thread there passed the 
problem to find the actually possible macroscopic observables and macroscopic 
ensembles. Especially we could not find the actual possibilities for the observable 
X in (2.5.9) (X determines the mixture-morphism S used in §3.1 through §3.3). Only 
after choosing X, we had given an axiom for K* in the form (2.5.15) (K* determines 
the mixture-morphism T used in §3.1 through §3.3). Although the general solution 
of the problem to find the X for real macroscopic measurements is not yet solved, 
we have some arguments for special cases to choose some X as "real". We shall 
now treat such a special case, a heavy masspoint, i.e. the motion of the center 
of mass of a macroscopic body. 

What are the description of the center of mass in f!jJ ~ exp and in f!jJ:T". ? These 
two descriptions are very similar. 

In f!jJ~exp the description is given by a dual pair gH(Yl'), gH'(Yl') and an irreducible 
representation of the Galilei group (see IX § 1 and 2; or [2] VII §2 and [2] VIII § 1), 
which also determines the mass m of the body. The physical interpretation of the 
Galilei group is described in IX § 1. 

In f!jJ:T". the center of mass is described as a classical system in the sense of 
VII §5.3, i.e. by a dual pair gH(E), gH'(E). The representation of the Galilei group 
is defined in gH'(E) (similarly as in gH'(Yl'» with the same physical interpretation 
as in f!jJ~exp. For the center of mass we also presume that this representation is 
irreducible. It is possibte to prove (see [32], [33], [54]) that this leads to the following 
representation of E and of the Galilei group. 

E can be identified with gH(Z)//(Z), where gH(Z) is the Borel field of Z=R6 , 

and /(Z) the set of all (JEgH(Z) with Lebesque measure zero. gH'(E) can be identified 
with the measurable, essentially bounded functions on R6. The representation of 
the Galilei group is generated by the well known point transformations in the Jl-space 
R6 = {r,p}, where r is transformed like the position and p like the momentum. 

The trajectories in Z (= Jl-space) are given by 

p 
r(t)=r(O)+--.:-t, 

m 

p(t)=p. 
(3.4.1 ) 

The "mass" iii is a parameter characterizing the relation between momentum and 
velocity. This iii as a property of classical mass-points is not defined by the Galilei 
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transformations of one mass-point alone. One has to add a method to compare 
the momenta of various masspoints, e.g. by the conservation law of the sum of 
the momenta of interacting masspoints. In this manner the classical mass values 
are defined only up to a common factor. For the embedding described below, it 
will be very convenient to choose this factor such that corresponding masses m 
for ~!Tqexp and m from~!f". can b8:identified. 

This classical description of the motion of the center of mass is so familiar from 
classical mechanics that we need not show the mentioned proof. 

In ~!Tqexp the Hilbert space £" (see [2] VII §1) is irreducible relative to the 
position and momentum operators Q, resp. P, while. the Hamiltonian becomes 

1 
H = 2m p2. In a well knowa manner, Q, P, H determine the representations of 

the Galilei group (see IX § 1 or [2] VII). 
We have sketched the representations of the Galilei group in these two cases 

because we shall strengthen the condition (2.2.7b), taking for Rand (j "all" transfor­
mations of the Galilbi group and not only the time translations as in (2.2.7b). 

The dynamics (3.4.1) is a special, simple example for a deterministic dynamics. 
It suffices therefore to contemplate the observable (2.5.9): 

£f(Z)~ L(£,,). (3.4.2) 

From the generalized condition (2.2.7b) then follow (in the same way as for the 
time translation from (2.2.7b» as conditions for x: 

Jl(W, U(g) x (0") U(g)+)~ Jl(w, X (ga» (3.4.3) 

for all elements g ofthe Galilei group and for all wEK;::. Here U(g) is the representa­
tion of the Galilei group in £", and ga is tlie'subset generated from a by the 
point transformations in the Jl-space, i.e. by the representation of the Galileii group 
in £f'(I) (tlie'o;eI are the elements of oeL(I». The sign ~ indicates the approxiina>­
tion. 

We try to fulfill (3.4.3) by the constraints that 

U(g)x(o") U(g)+ =x(ga) (3.4.4) 

for all elements of the "Galilei group without time translations" (a subgroup of 
the whole Galilei group) and 

Jl(w, U. X(ff~)U~+) ~ Jl( w, x( a - ~ .)) (3.4.5) 

for all weK!. Here a- ~ '! is an abbreviation for 
m 

{(r,p)lr=r' - ~ .;p=p', (r',p')ea} 

We have chosen the strong condition (3.4.4), since one has suceeded to find 
"all" solutions of (3.4.4); (see [43] and [55]). Now it is very convenient to identify 
the two masses m and m, since then no factors mlm enter the following formulas. 
(That this identification is possible for all masspoints in the same way, is implied 
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by the fact that the embedding of heavy interacting masspoints exactly in this way 
conserves the sum of the momenta.) 

The solutions of (3.4.4) have the form 

(3.4.6) 

where 
1. . 

F( ) - ,(p'Q-r'P)UT -,(p'Q-r'P) 
r,p - (2n)3 e rre . (3.4.7) 

Here W is a rotation-invariant element of K (£b). 
The condition (3.4.5) takes the form 

(3.4.8) 

for all WE K;. This says, that the left side of (3.4.8) is (for 0 ~ T ~ T) approximately 
independent of T. 

With 

(3.4.8) holds if 

~- tr we 2m e m W. e m e 2m . 
1 (i~P2' i[p'Q-(r+~,).p] -i[p'Q-(r+~,),pJ _i~P2') 

(2n)3 
(3.4.9) 

is approximately independent of 1". With 

(3.4.9) takes the form 

1 t (-i(P'Q-r.P) i(p·Q-r·P) W) 
(2n)3 r e we "' (3.4.10) 

with 

(3.4.11) 

The embedding is possible, if (3.4.10) is approximately independent of T (0 ~ T ~ T) 
for all wEK;. 

From (3.4.6) follows the mixture-morphism S given by 

(3.4.12) 

Now we must choose K; in order to evaluate further the stated conditions and 
to fmd the mixture-morphism T. We take (2.5.15) for K;, i.e. K; is the convex 
set generated by the elements 

w(r,p) = ei(p.Q-r.p) Wei(P-Q-r.P). (3.4.13) 
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This w(r,p) coincides with w(z) from (2.5.24), while (3.4.12) takes the form 

(Sw)(O") = J tr(ww(r,p» dm(r,p) 

99 

(3.4.14) 

1 
with dm(r,p)= (2n)3 d 3rd 3p. In this notation, (3.4.14) is identical with (2.5.23 b) and 

m(O") with (2.5.19). According to (2.5.31) with 

m(O") = J y(r,p) dm(r,p), 
u 

T is defined by 

Tm= J y(r,p) w(r,p) dm(r,p), 
l.e. 

Tm= J y(r,p) F'(r,p) d 3 rd 3 p. 

The smearing operator Q = ST takes the form 

(Qm)(o) = J dm(r,p) J y(r',p') tr(w(r',p') w(r,p» dm(r,p) 
u 

with the kernel tr(w(r',p') w(r,p». This kernel is a function k(r-r',p-p') because 
of (3.4.4). We find 

k(r,p) =tr(w(O, 0) w(r,p» 
= tr(e-i(P'Q-r.P) Wei(p.Q-r.P) W), 

while (3.4.10) is approximately independent of! if 

tr(e-i(P'Q-r.P) Wei(P'Q-r.P)~) 

(3.4.15) 

(3.4.16) 

is so. Our task is to choose the rotation invariant W such that the smearing is 
small, i.e. that k(r,p) decreases rapidly with rand p, and that (3.4.16) is approximately 
independent of! if this is not too large. The choice of W is the choice of the measuring 
device for the macroscopic position and velocity of the mass point. It is very doubtful, 
whether all rotation-invariant W can be realized by suitable devices. 

The simplest choice for a rotation-invariant W seems to be 

with 

in the position representation and 

in the momentum representation. For this P"" Heisenberg's uncertainty relation holds 
with an equal sign. To measure position and momentum (by the corresponding 
effect F(r,p» together as precisely as Heisenberg's relation allows, is very unrealistic 
for the center of mass of a macroscopic body, e.g. of a tennis ball. Therefore we 
would prefer a W with two parameters to represent the precision of the position 
and momentum independently. Such a more realistic choice seems to be that in 
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[61] (2.17), which we write 

W=(4u tt)3 e- u2p2 e- 2 1'2Q2 e-u2p2• (3.4.17) 

Then we have 

(3.4.18) 

as the probability density for momentum, and 

(3.4.19) 

as the probability density for position, i.e. as if momentum and position in the 
sense of f1lJ~exp could be measured exactly (what we do not believe). For the realistic 
probability distribution of measurements of the "states" (r,p), we have to calculate 

1 
(3.4.10) at t = 0, i.e. (2n)3 k(r,p) with k in (3.4.15). 

We fmd ,2 
--1--

(2tt U)3 ,+4u2 

k(r,p) = e- u2p2 e I' 
(1 +4u2 tt2)3/2 

(3.4.20) 

The expression (3.4.16) takes the form 

(3.4.21) 

(I thank the last two authors of [61] very much for the calculation of (3.4.20) and 
(3.4.21).) In (3.4.20) we can interpret 

and 

1 
Ap=­

u 

( 1 )1/2 
Ar= Jl2 +4u2 

(3.4.22) 

(3.4.23) 

as the smallest imprecisions of preparation and measurement of momentum resp. 
position. This contrasts to the usual "purely classical" idealization that measure­
ments can be made more and more and thus "arbitrarily" precise. In this sense 
we get a theory more comprehensive than f1lJ:T", but more realistic than f1lJ~exp. 

To demonstrate this more clearly we will contemplate the general case. In f1lJ:T", 
we describe the ensemble (corresponding to a preparation method) by a density 
p(r,p) and the effect (corresponding to a registration procedure) by a function f(r,p). 
Then the probablity for this effect f (at a time L in the ensemble p) according 
to f1lJ:T", equals 
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in the more comprehensive theory to be replaced by 

This cannot be distinguished from the "embedded" expression 

tr(wU,FU;'+) 
with 

w= Tp= J p(r,p) w(r,p) d 3 rd 3 p 

and 
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if the expression (3.4.21) is in good approximation independent of't, i.e. as long 
as 

Ap Ar 
-<-. 
m 't 

(3.4.24) 

The expression Av=m- 1 Ap is the imprecision in velocity; (3.4.24) says that this 
smallest imprecision Av must be smaller than Arf't. This is very illustrative, since 
otherwise we could reduce the imprecision in velocity by measuring rf't. Thus (3.4.24) 
would not be a strong postulate if we could make Ap arbitrarily small. But this 
is not possible since due to (3.4.22) and (3.4.23) we have 

ApAr>l, 

corresponding to Heisenberg's uncertainty relation. For realistic measurements on 
macroscopic bodies, we conjecture /1-1 ~ (J such that A p LI r is much greater than 
1. This means that macroscopic measurements cannot come near the bounds from 
Heisenberg's relation. 

We therefore find 
1 Ar 
--~­
mAr 't 

(3.4.25) 

as the essential condition for the classical description of a masspoint. The time 
T=m(Ar)2 is the upper bound on the magnitude of time intervals during which 
the description of a free masspoint by trajectories of the form (3.4.1) is possible. 
We conjecture that this time T is also the characteristic time for the description 
of interacting masspoints if the forces do not vary much in intervals Ar. 

The imprecision Ar cannot be chosen arbitrarily. It is defined by the "best" 
real measuring methods (see above). Take for instance Ar= 10- 10 em and 
m=N .1012 cm- 1 with N of the magnitude 1024 of Avogadro's number and 
1012 cm -1 as the magnitude of the mass of an atom. Then we find T = 1016 cm, 
i.e. T ~ 3 .105 sec ~ 90 hours. Taking a body of magnitude 1 meter, we would get 
T ~ 104 years and for a body of the magnitude of the earth T ~ 1024 years, all this 
for the high accuracy of Ar~ 10- 10 cm. Thus we see why it is impossible to find 
any deviation from classical mechanics for macroscopic bodies. For instance, we 
can play tennis without taking into account "quantum mechanics ", i.e. without 
the problem of embedding classical mechanics into f?Jf!;exp. 
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This example of a heavy masspoint can serve to calculate all the terms introduced 
in §2. The trajectories (3.4.1) in the Ji-space R6 can be characterized by the "parame­
ters" reO) and p, i.e. Sm can be identified with the Ji-space R6: {r(O),p}. Then we 
have I'm = 81(R6)//(R6) with /(R6) as the subset of those elements of 81 (R6) which 
have Lebesgue measure zero. As Fbo in (2.3.13) we can choose 

(3.4.26) 

with X(lT) in (3.4.6), (3.4.7) and Win (3.4.17). It may be left to the reader to see, 
that (2.3.20) holds approximately if (3.4.21) is approximately independent of T. Let 
us emphasize that IT on the left side of (3.4.26) is an element of I'm and on the 
right side the corresponding element of I'z=81(Z)//(Z). Bearing this in mind, it 
is not difficult for the reader to calculate all the terms in §2.3 through §2.6. 

In §2.6 it is illustrative to consider the "contraction" of the Ji-space R6 to R3 
given by 

(r,p) .... r. 

In R3 the dynamics is not "without memory". Moreover, if one takes as state space 
R3 = {r}, the embedding conditions are fulfilled since we have to take the same 
"trajectory" observable Fbo as in (3.4.26)! In this manner we see, that it is advanta­
geous to take the Ji-space as state space since there the dynamics is without memory 
and even deterministic. 

Obviously all considerations of the entropy in §2.6 are trivial since the entropy 
does not change with time (the trajectories are reversible). 

§ 3.5 The Boltzmann Distribution Function 

We had already discussed in §3.2 the general embedding possibilities in the state 
space K (X), where X is a compactification of the Ji-space. The physical interpretation 
of an mEK(X) was that Nm(p), with p an open subset of X, and with N the number 
of particles in the macro system, is the "approximate number of particles" in the 
set p. But we had not used this interpretation as an additional condition for embed­
ding. Let us now use this interpretation to give a special form of the macro-observable 
X(lT) with lTEI'z· 

In [1jJ:Yqcxp we take (as an approximation for an atomic gas) the N identical 
atoms of a gas as "elementary" systems in the sense of [2] VII D2.1. Thus the 
atoms shall be in the ground state, described only by their positions Q., momenta 
p., and by potential interaction energies V (I Q. - Q!'I). 

In [1jJ:y;" we take as state space Z the set N K (X), i.e. the measures on X normed 
to the particle number N. (It is possible to use also an imprecise description of 
this particle number N; for simplicity we will not do so here.) The elements z of 
Z are called Boltzmann distribution functions since with gEC(X) one often writes 

<z, g) = S f(r,p) g(r,p) d 3 rd 3 p, (3.5.1) 

where f(P, r) is the "density" belonging to z. 
By (3.4.7) together with (3.4.17), effects to measure one atom in a region of the 

space X are defined. If we have N atoms, we introduce the T-space by T=XN 
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and can define effects to measure the N atoms in a region p of the r -space: 

y(p)= J Fl(Xl) x F2 (X2) x ... x FN(XN) dXl dX2 ... dXN' 
P 
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(3.5.2) 

Here Fv (xv) is given by (3.4.7), (3.4.17), if we replace x = (r, p) by Xv = (r v' Pv) and 
Q, P by QV' p", while dxv stands for d3rvd3pv. Since the atoms are all equal, we 
consider only such p which are symmetric, i.e. which contain with a point (Xl' ... , X N ) 

all the points with permuted XV' Then y(p) is a symmetric operator which leaves 
invariant the symmetric subspace {J't'N} + (for Bose atoms) or the antisymmetric 
subspace {J't'N} _ (for Fermi atoms) of J't'N, with J't' as the Hilbert space of one 
atom. 

The integrand in (3.5.2) is the effect that the N atoms are at the points Xl' ... , XN 
in the Il-space X, i.e. the effect for the special distribution function 

N 

f(r,p)=f(x)= I b(x-xv) (3.5.3) 
v=l 

in (3.5.1). For the z corresponding to (3.5.3), let us briefly write z(xv); then (3.5.1) 
takes the form 

N 

<z(xv), g> = I g(xv)· (3.5.4) 
v=l 

It is obvious that z(xv) is symmetric in Xl, ... , XN' 
Until now we have not used the intuitive notion that f(x) is in general an 

"approximation" to the special distributions z(x.}. This approximation is described 
by a metric d in Z. We have seen in §3.2 that this metric in Z is determined by 
the metric of physical imprecision in X, which determines the Lipschitz interval 
A. Because of the norming of z E Z by the particle number (Z = N K (X)), as metric 
in Z we choose 

1 
d(z, z')=- supl<z, g>-<z', g>l. 

N geA 

(3.5.5) 

We choose a measure mEK(Z) with m(a)=I=O for all open sets aE~(Z). With 
,1(Z)={al aE~(Z), m(a)=O} this m determines Lz=~(Z)/,1(Z). 

We take a finite 8>0 and as macroscopic observable choose L(Z)~L by 
means of 

x(a) = J F(z) dm(z), (3.5.6) 
u 

where 

F(z) = J (3.5.7) 
d(z, z(xv» 0>. 

with 

J dm(z). (3.5.8) 
d(z, Z(Xv)) 0>. 

Hence we have 

x(Z)=J F(z)dm(z)=J Fdxdx ... xFN(XN)dxl .. ·dxN 
z r 

= 1 x 1 x ... x 1 = 1. 
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This X is characterized by the three macroscopic imprecision constants B, /1, (J. We 
must choose the imprecision in X (determined by /1, (J) smaller than that given by 
the metric d in X in the form d (x, x') ::; B. This d in X is determined by the same 
set A as the d in Z. Therefore d::; B characterizes equivalent imprecisions in X and 
Z. Here B must be so big, that the entropy (defined below) is not changing essentially 
with B, e.g. if we replace B by 2B. On the other hand, let us choose B as small 
as possible under these constraints. (We must emphasize again that the X in (3.5.6) 
is not the only possible observable; there are others which cannot be distinguished 
macroscopically from that in (3.5.6), e.g. if we choose another effective mE K (LZ).) 

With (3.5.6), the mixture-morphism S is determined by 

(Sw)((J) = S tr(wF(z» dm(z). 
u 

If we take K* in (2.5.15), we have K* = co U w(z) with 
zeZ 

w(z) = [tr (F (z»] -1 F(z) 

(see (2.5.24». We find min (2.5.19) by 

m((J) = S tr(F(z» dm(z). 
u 

The mixture-morphism T is given by (2.5.31): 

Tm= S Hz) w(z) dm(z) 

with y(z) defined by 

m((J) = S fez) dm(z). 

(3.5.9) 

(3.5.10) 

(3.5.11) 

The kernel of the macroscopic smearing operator Q = ST (see (2.5.26» is given 
by 

, , tr(F(z) F(z'» 
k(z, z)= tr(w(z) w(z »= [tr F(z)] [tr F(z')] (3.5.12) 

Since the imprecision B exceeds that determined by /1, (J, the size of k(z, z') will 
be of the order B. 

By (2.6.16) (resp. (2.6.17) together with (3.5.9» the entropy S1 (z) (resp. S2(Z» is 
defined. 

For calculating the traces in these formulas, we must observe that the Hilbert 
space is {.YeN} + resp. {.YeN} _ (and not .YeN !). 

Although all these terms are well defined, the necessary calculations are not 
so simple as in §3.4. We can only give approximate values for great numbers N 
and not too small B. Therefore let us not try to show here these extensive calculations 
(see the remarks to follow below after the considerations about the dynamics). 

Much more difficult than these calculations is it to deduce the dynamics. Until 
now it is not possible to do so rigorously. But if we make the assumption that 
the dynamics is without memory and deterministic (proved for a heavy mass point 
in §3.4), then we can derive the famous Boltzmann collision equation as dynamical 
law in Z. 
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This derivation starts from the equation (2.6.7), i.e. from 

J tr(w(z) p(z'» y(z') dm(z')=tr(w(z) U, P(d,z') U/) y(z') dm(d,z'). (3.5.13) 

In particular choosing y(z') = (d,z', g) with gEA, we get 

J (d,z', g) tr(w(z) p(z'» dm(z') = J (d,z', g) tr(w(z) U, P(d,z') U/) dm(d,z') 

= J (z", g) tr(w(z) U, p(z") u,+) dm(z"). 

Since the "smearing" by tr(w(z)P(z'» is of the size d(z,z')<e, the left side takes 
the approximate form (d,z,g) if d,z' does not differ much from d,z for d(z,z')<e, 
i.e. if the dynamics is stable. 

Thus we have 
(d,z, g) = J (z', g) tr(w(z) U, p(z') U/) dm(z'). (3.5.14) 

Using on the right side (3.5.7), we get 

J ' ( J Fl (xt> x ... x FN(XN) +) , 
(d,z, g) = (z, g) tr w(z) U, () U, dm(z). 

d(z',z(xv))Se v. Xl' ... , XN 

For gEA we can replace (z',g) by (z(x.),g) because of d(z',z(x.»:5:e. With 
(z(x.), g) = L g(x.) and (3.5.8) we get .= 1 

Because of J F(x)dx=1 follows 

(d,z, g) = J g(x) tr(w(z) U,[Fl (x) x 1 x ... xl 

+1 xF2 (x) x 1 x ... x 1+ ... +1 x ... x 1 X FN(X)] U,+)dx. (3.5.15) 

With d,z=!(r,p; 1:), the latter is equivalent to 

!(r,p; 1:) = tr(w (!(r,p; 0» U,[Fl (r,p) x 1 x ... xl 

+ 1 x F2 (r,p) x 1 x ... xl + ... + 1 x ... x 1 x FN(r,p)] u,+). (3.5.16) 

For this formula see also [61]. 
It is impossible to evaluate (3.5.16) for all times 1:. But we can calculate the 

operator A in the following expansion of (3.5.16): 

!(r,p; 0)+1:[: !(r,p; 1:)] + ... =!(r,p; O)+1:A!(r,p; 0)+ ... . (3.5.17) 
u1: ,=0 

In this expansion the time 1: must be greater than ro/v where v is the mean velocity 
of the atoms and ro the range of the potential VCr). But 1: must be smaller than 
A/v where A is the mean free path. 

Since we had assumed a dynamics without memory, from (3.5.17) we get the 
Boltzmann equation 

o 
01: f(r,p; 1:) = A!(r,p; 1:). (3.5.18) 

The principal methods of such an evaluation of (3.5.17) are already given in 
[56] and [57] (the present section is only an improved version of [56] I). Essential 
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for this evaluation is the special form (3.5.9) with (3.5.7) of £0 (Z). See also the simplified 
evaluation in [61]. A more general evaluation of A is in preparation by the authors 
of [61] and others. 

What should we think: of our assumptions about the dynamics? 
The assumption that the dynamics is without memory seems to be fulfilled (on 

the basis of experience). We cannot preclude that perhaps good mathematicians 
could suceed in proving this assumption. 

The assumption that the dynamics is deterministic is certainly not fulfIlled in 
the total space Z. Since the Boltzmann equation in a contracted state space provides 
the Navier-Stokes equations (see §2.6), and since we know that the solutions of 
these Navier-Stokes equations have unstable regions, the deterministic dynamics 
of the Boltzmann equation must be improved by a master equation of a form 
described in §2.5. Such an improvement has been attempted in [57]. 

§ 4 Intermediate Systems 

To the presentation developed by us in §2, where r!J>~exp is not the most compre­
hensive theory, it is often objected that it does not appear meaningful to view r!J>~ 
as a realistic theory for micro systems, but to declare large parts of r!J> ~ exp as fictitious 
for macro systems. One asks: "How many elementary systems must compose a system 
for the deviation from quantum mechanics to begin?" 

Of course we must answer: "For no definite number of elementary systems which 
compose a system." Rather, everything indicates that the quantum theory of compos­
ite systems contains larger and larger domains of purely fictive preparation and 
registration procedures, when we raise the number of the elementary systems in 
the system. Therefore, r!J> ~ can be viewed as an appoximately g.G.-closed theory 
(see XIII §3.4) of micro systems only as long as the number of subsystems is "small". 

Conversely, the theory presented in II with its embedding in r!J>~exp described 
in this section can only hold if the number of subsystems is "very large". Expressed 
otherwise: As a theory of micro systems, r!J>~ asymptotically approximates an un­
known theory of systems with an arbitrary number of elementary subsystems. In 
fact, it provides an asymptotic approximation for small numbers of subsystems. 
As described in II, r!J>!7". is an asymptotic approximation to the unknown theory 
for very large numbers of subsystems. Systems for which these two asymptotic 
approximations no longer suffice, will briefly be called intermediate systems. 

As just mentioned, of course we cannot give a theory for intermediate systems. 
We can only describe some viewpoints which pertain to such a theory. 

First, the domain of macrosystems for which a theory of the form r!J>!7". holds 
is rather large. For instance, small crystals which are only visible under a microscope 
are very well describeable by a r!J>!7".. But also large molecules, important for biophys­
ics, are very well conceivable for theories of the same form as r!J> :T",; this has repeatedly 
been demonstrated by theoretical biophysicists. Therefore, the intermediate systems 
are indeed not "so large" as one could at first assume. The transition from a g.G.­
closed r!J> ~ to a r!J>!7". thus does not concern really large numbers of elementary 
subsystems. Hence indications of such a transition should appear already for small 
numbers of subsystems; and this is actually true. 
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For instance, let us reflect how to construct devices for the preparation procedures 
a in [lj>:Y'q for various wEK (i.e. with cp(a)=w). One soon sees that there exist such 
WEK for which it is "easy" to construct preparation devices. For other w, it makes 
enormous expenses to construct a device for an a with cp(a)=w. Of course, the 
"expense" of the necessary supply of material needed to construct the device could 
be so large that it would be "physically impossible" to realize the desired a with 
cp(a)=w. If one has found an aE!2' which is not realizable, an indication is thus 
obtained on the basis of experience that [lj>:Y'q cannot be g.G.-closed. Asking the 
question this way, one quickly realizes that one must replace [lj>~ by a more compre­
hensive theory that can be embedded in [lj>~. Such an embedding would tell us 
that [lj>:Y'q is the better g.G.-closed the smaller is the number of elementary components 
of the systems. 

The physics of atomic nuclei is a beautiful experimental example for intermediate 
systems, since nature in the clearest way furnishes these nuclei with an increasing 
number of subsystems. If gravity is included, one can still increase the number of 
particles of the nuclei and arrive at systems (neutron stars), which can be described 
entirely by a theory of the form [lj> 5;,., a theory [lj>!y". which one tries to derive 
more exactly from statistical mechanics, i.e. by the methods developed in §§2 and 3. 

Purely theoretically, one can indeed think of a way how one could in principle 
attain a theory for intermediate systems. One will also use preparation and registra­
tion procedures as the basic structures of such a theory for intermediate systems. 
But in order to find the desired realistic sets of preparation and registration proce­
dures, one could refer to the embedding to be described in the next chapter XI. 
For the "somewhat larger" action carriers, the critical remarks to follow in XI §4 
about the sets o:(!2'l x L(Sm)) and fJ(!2~ x L(SJ) will be of decisive importance. These 
sets would be determinable "in principle" with the aid of the embedding methods 
from XI §6, if in [lj>:Y'qexp one would work not with imagined interactions (i.e. imagined 
Hamiltonians), but rather with the realistic Hamilton operator given in [2] VIII 
(5.8). 

In this way we could "in principle" find a g.G.-closed theory for intermediate 
systems from the theories [lj> 5;,. and their embeddings in [lj>:Y'q exp (i.e. with statistical 
mechanics). Of course, this "in principle" approach is not practical because of its 
enormous difficulties. Therefore one will further advance towards a theory for inter­
mediate systems only when guided by experience as in nuclear physics. Of course 
we cannot write a book on theoretical nuclear physics so that the last remarks 
only indicate to the reader that the many nuclear models should be examined from 
the viewpoint of seeking an "intermediate theory" that is compatible with [lj>:Y'q. 
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In this section we apply the basic structures presented in §2 to the special case 
of those macrosystems from which we proceeded in Chapter III (the fundamental 
domain of a theory of microsystems). But we extend the theory of experiments 
with microsystems insofar as we also demonstrate how one can theoretically think 
of more complicated device structures, e.g. a device composed of more than two 
macrosystems (see I §3 and III § 1 and XII). For that reason. we first deal with 
a partial problem of such a complex device structure. 

§ 1 Scattering of Microsystems on Macrosystems 

Here we shall find, independently of the embedding problem, a description for 
the scattering of microsystems on macrosystems. Let us describe the: microsystems 
by the ensemble set K and the effect set L, and the macrosystems in the form 
set forth in II. Therefore, the theory to be presented shows an analogy to the scatter­
ing theory of microsystems on microsystems, briefly sketched in IX §2 and presented 
in detail in many books (see the references in IX §2). 

In order to describe the scattering of microsystems on macrosystems, we proceed 
from the situation of Fig. 1 (in I §3). There the macrosystem (0) prepares the microsys­
tems which are "scattered" by the macrosystem (1). The microsystems "arising" 
from (1) (which may comprise other system types than those which "fall" from 
(0) onto (1)) are then registered by the macrosystem (2). One readily extends the 
theory from III to three coupled systems. Hence let us not discuss this extension, 
but give only brief clarifications. 

The base sets are the three index sets M 0, M I, M 2. Let Me MIX M 2 X M 2 

be the set of coupled systems. In analogy to AZ 1 from III § 1 we require: If two 
elements (xo, Xl' X2)EM and (xo, X'l, X2)EM coincide in one component, then the 
remaining components also coincide. 

It is not difficult to carry out all further considerations analogously to III, in 
particular to introduce a probability function AOl2 in analogy to A12. Then, with 
the aid of AOI2, one can easily introduce a directedness of the interactions, namely 
that the probability distributions of the registrations on (0) do not depend on the 
procedures aIE~I' a2E~2' bIO E3110 , b20 E3120 , and that the registrations on (1) 
do not depend on the procedures a2E~2' b20 E3120 . 
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With coe9'o, a1e.E!l> a2e.E!2, blO eBl10, b2oe9l2o, b1eBll> b2eBl2, b10 =>b1, 
b20 => b2, then 

A012(CO x (a1 nb lO) x (a2 nb20)n M, Co x (a1 nb1) x (a2 nb2)nM) (1.1) 

is the probability for the "response of b1 and b2" when the systems (0) were selected 
according to Co and the systems (1) and (2) were prepared according to a1 and 
a2' respectively. 

Let us eliminate the systems (0), which prepare the microsystems falling on (1). 
To this end, we first think of all systems (0) as preparation systems and (1)+(2) 
as registration systems. Then, in analogy with III (4.1), by 

(1.2) 

we can introduce a set of "initial" preparation procedures for the microsystems 
prepared by (0) and falling on (1) (hence we have chosen the index i). Then, with 
the qJ from III 05.1.1, to each a(i)e.E!(i) there is assigned a qJ(ali»eK with K as 
the ensemble set of the microsystem. 

Corresponding to III (4.2), III (4.3), 

bg)=Mo x (a1 nb10) x (a2 nb20), 

b(i)=Mox(a1nb1)x(a2nb2) , 
(1.3) 

define a registration method bg) and a registration procedure b(i) for microsystems. 
Then, with r/J from III 05.1.2, the probability in (1.1) with a(i)=co x M1 x M2 nM 
and (1.3) becomes 

A012(CO x (a1 nblO) x (a2 nb20)nM, Co x (a1 nb1) x (a2 nb2)nM) 

= /l(qJ(a(i», r/J(bg), b(i»). 

To each a(i)e.E!(i) one can bijectively assign a subset ili)eM1 by 

;;(i) _ { I ( ) (i)} a - Xl XO,X1,X2 ea . 

(1.4) 

(1.5) 

The set ili) then forms a structure !i(1) of selection procedures (over M 1) that is 
isomorphic to .E!(i). Then a mapping !i(i)'~K is defined by qi(ili» = qJ(ali». 

If we denote by !i 1 the structure of selection procedures generated by 
{a<i)nada<i)e!i(i), a1e.E!1(a(l), a1) may be combined}, one can interpret !i1 as a sort 
of "extended" structure of preparation procedures of the systems (1). Thereby (1) 
itself is prepared according to a1 and likewise the micro systems falling on (1) are 
prepared according to a(i). With the aid of !i1, one can in practice eliminate the 
systems (0) by now thinking of (0) + (1) as a preparation system and (2) as a registra­
tion system. But one can easily describe the coupled system (0)+(1) solely by the 
indices of the systems (1), since to Xl eM 1 there is assigned an xoeMo (bijectively 
by (Xo, Xl , x2)eM). For this reason, with 

M = {(Xl' x2)1there is an Xo with (xo, Xl' x2)eM}, 

we can introduce a probability function I12 by 

I12 «a(i) n a1 n b10) x (a2 n b20) n M, (£IIi) n a1 n b1) x (a2 n b2) n M) 

(1.6) 

= A012(CO x (a1 n b10) x (a2 nb20) nM, Co x (a1 nb1) x (a2 nb2)n M). (1.7) 
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This stands in complete analogy with the function A.12 introduced in III, with the 
single difference that ~l is replaced by ~l. We have eliminated the indices of the 
macrosystems (0) by means of the left side of (1.7), so that the coupled system (0)+(1) 
appears as "one" preparation system for micro systems. Thus we can take over every­
thing from III word for word if we only replace ~l by ~l. 

For the microsystems prepared by (0)+(1), we can thus introduce the sets ~, 
910 ,91 according to III, (4.1) through (4.3). Therefore, in particular, 

ii=(a(i)nal nb lO) x M2nME~, 

a=(ali)nbl ) x M2nME~, 

bo=Ml x (a2nb20)nMEBlo, 

b=Ml x (a2nb2)nMEBl. 

(1.8) 

From this follows cp(ii)EK, cp(a)EK, t/I(bo, b)EL. Here, cp(ii) is the ensemble of the 
microsystems that are prepared by (0)+(1), i.e. are coming out of (1) when microsys­
tems prepared according to ali) fall on (1). Therefore, cp(ii) in this sense is the ensemble 
of the microsystems "scattered" on (1). One obtains cp(a) as a mixture-component 
of cp(ii) if one sorts out according to the indicator bl . The effect t/I(bo, b) can be 
triggered by the scattered microsystems. 

In carrying over the considerations of III §6, one must observe that the sets 
K 12m(Y) and Km(YIl are larger than the corresponding sets from III §6.3, since 
~l contains "more preparation possibilities" for the systems (1). For this reason, 
in particular the support 81 is larger than if "no" microsystems fall on (1). Here, 
"no" says that only the "vacuum" impinges on (1). 

Then the formula III (6.4.15) is significant for the description that we are striving 
for (of the scattering of microsystems on the systems (1». By III (6.3.11) that formula 
now reads 

I 12 «ali) nal n blO) x (a2 n b20)n M, (ali) nal nbl ) x (a2 n b2)nM) 

= < CP12 «a(i) n al ) x a2 n M), kl k2) 

= <CPl (ali) naIl, k l ) /I (cx. (ali) n aI' kIl, p(a2, k2)). (1.9) 

Here we used kl =t/lls(b lO ' btl, k2=t/l2s(b20 ,b2) and, according to III (6.4.14), 
cx.(alokl)=cp1t(a(i)nalnbIl=cp(a) with a according to (1.8), and p(a2' k2)=t/I(bo,b) 
with bo, b according to (1.8). Also CP12 and CPl are defined as in III §6.4, except 
that one everywhere must replace ~l by ~l. Then a mapping 

is defined by 

(1.10) 

This, on the basis of (1.9), is linear and norm-continuous in kl . 

If one combines (1.4), (1.7) and (1.9), it follows that a(a(i) n aI' kd does not depend 
on the ali) explicitly, but only on the cp(ali»=iP(a(i»EK. Therefore, by 

(1.11) 
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(and its extension from <p(~(i)) to all of K) there is defined a mapping 

(1.12) 

This LI is affine on K and linear and norm-continuous on L(S 1). Moreover, LI is 
an additive measure on a subset 2!da1) of 2,11. 

In order to prevent misunderstandings, let us point out that the mapping LI 
can describe changes of the system type by the scattering on (1). For instance, when 
W(i)EK is an ensemble in which only a single system type (e.g. electrons) occurs, 
then LI(w(i), al' kd can in general contain several system types which might differ 
from the original type. Of course, we can also describe the situation that the impinging 
systems will be stuck in (1): For example, for a definite kl it could follow that 
LI (W(i), a1 , k 1) is a multiple of the "vacuum ensemble" (cf. IX § 1). 

We have thus shown that the application of the theory from III to the case 
of Fig. 1 (in I §3) implies that the scattering of microsystems on a macrosystem 
can be described by a mapping LI. It has the properties given by (1.12) and the 
interpretation that by (1.9) the measure 

(1.13) 

is the probability for "the registration of the effect g on the scattered microsystems 
and the registration of the trajectory effect kl on the macrosystem". 

Now let us show that also conversely a mapping LI, according to (1.12) with 
the interpretation (1.13), implies the description of an experiment composed of prepa­
ration and registration (postulated as basic in III). In XII § 1 we shall see that with 
LI even more complicated experiments can be described. 

Therefore, let us choose LI according to (1.12) with (1.13). Naturally this assumed 
LI is not yet determined by a theory. One could perhaps obtain a theory for LI 
in a way similar to X §2, where one obtains the unknown dynamics of macro systems 
as a consequence of embedding (see §6). 

When (1.13) is used with g= 1, we obtain 

(1.14) 

with a trajectory measure Ul. By (1.14) with Ul = <Pl(W(i), al), i.e. by LI, there is defined 
a mapping 

(1.15) 

which is connected with the ({Jl in (1.9) by 

In this way we have retrieved the mapping ({Jl from the mapping LI. 
Since (1.13) is a bilinear form in (kl' g), one can rewrite it in yet another way. 

To this end we introduce, with ~ as in IV D 3.2, the Banach space C(S 1'~) of 
all continuous functions Sl -+fi) with the norm topology in ~. Then the products 
k 1 g, with k1EC(Sl) and gE~nL, are elements of C(Sl'~). The probability (1.13) 
is norm-continuous in kl and g; hence it can be extended uniquely as a linear 
form on the whole norm-closed subspace of C(Sl'~) generated by the kl g, i.e. 
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onto all of CCS1, £?). Thus J and 

Jl(J (w(i), a1> k1), g)= <u, g k1)l!'i) (1.16) 

determine a measure uEK(Sl,£?)c:C(Sl'£?)' In this context, < ... , "')l!ll is the ca­
nonical bilinear form of C (S 1> £?), CCS 1> £?), with C (S l' £?) as the Banach space 
dual to CCS1'£?)' Let K(Sl'£?) be the set of all positive elements U in CCS1'£?) 
with <u, 1)1!ll= 1. 

Therefore, (1.16) with U = T(w(i), al) determines a mapping 

K x!1'l~K(Sl'£?)' (1.17) 

With g=l and (1.14), (1.16) follows 

(1.18) 

Thus the mapping 

is given precisely by the reduction operator C(S1> £?)~C(Sl): 

As is well known, Rl is in general defined by <v, kl 1)1!ll= <R1 v, k1)1' 
Therefore, J determines r uniquely, and also conversely. The right side of (1.16), 

now being 
(1.19) 

is the probability that for impinging wei) there is registered the trajectory effect kl 
on the macrosystem and the effect g on the micro system after the scattering. For 
fixed k, (1.19) is a norm-continuous linear form over g. Now let us assume that 
(1.19) even be (J(fJIJ', fJIJ)-continuous relative to g (necessary on physical grounds be­
cause the physical imprecision in 2 is given by the (J(2, fJIJ)-topology; see IV §§2 
and 3). Then there is a uniquely determined element WEK with 

(1.20) 

The mapping J is determined by w=J(w(i), a1,k1). An "operator" k'l is defined 
by 

<U, gkl k1)1!ll= <k'l U, gk1)1!ll' 

The "reduction operator" R on the micro system is defined by <u, g 1)1!ll= Jl<Ru, g); 
therefore follows 

(1.21) 

Also for the scattering of micro systems, one can study the case that the macrosys­
terns are described completely by trajectories (similarly to III §6.5). In this case, 
the mapping J does not depend on the individual al E!1'l but only on 
q>lO)(al)EKlm(Yl), where q>1°>(a1) is defined by 

(1.22) 
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with Wo as the "vacuum ensemble" (cf. IX §1). Then, with K~o~=co cp~O) ,q'l (closure 
in the Dorm), from ,,1 and r one can obtailT. the. mappings 

(0) (f'i ,f ~ KxKlmxL .)tl-K, 

with 
(1.23) 

and 
(1.24) 

One may call f a scattering, operator, because one can identify K x K~o~ with a 
,subset of K(Sl> .@). Then f transforms the ensemble w(i) cp~O)(al) "before" the scatter­
ing into the ensemble f(w(i), cp\O)(al» "after" the scattering. 

In the following §§'2 through 5 we shall show that the mapping ,,1 comprises 
the theory of preparatiom and registration presented in. HI. 

§ 2 Preparation 

We can obtain the preparation from ,,1 if in particular we set W(i)=WO, where 
Wo is the vacuum ensemble (cfdX § 1). We define fi. as the mapping ,q'l x L(Sl)~K 
by 

(2.1) 

and 
(2.2) 

with <Pl from (1.15). 
For 

(2.3) 

is defined. We have thus constructed the mapping (X in III (6.4.14) with the aid 
of ,,1. With kl = '" ls(b lO , bl)' by III (6.4.14) there also follows the mapping cp, describ­
ing the ensembles corresponding to the preparation procedures from ,q. Therefore, 
knowledge of ,,1 enables us to calculate the prepared ensembles. 

The mapping fi.(a l kl )= ,,1 (wo, al' kl ) yields (for fixed al) a mapping 

as introduced in V §8. From this mapping follows (see V (8.4» the ideal preparator 

(2.4) 

of the ensemble w=fi.(al, 1). This preparator is fixed by a l and belongs to the prepar­
ing macro systems. 
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Our goal is to construct the right side of III (6.4.15). Naturally, one cannot 
do this solely with the set M 1 of the macro systems used for preparation. Therefore, 
we must see whether we can also obtain p from III (6.4.14) by means of .1. 

§ 3 Registration 

Let us now label the macro systems with the index 2 instead of 1! Since we 
will use the systems (2) only for registration, in this section we consider the mapping 
<Pl that follows from .1 according to (1.15) in the notation 

(3.1) 

Thus <<Pl(W(i), all, kl >2 is the probability for the trajectory effect k l , when microsys­
terns of the ensemble w(i) impinge on the system (2). This <<Pl(w(i),a2),k2>2 is a 
positive affine functional on K, since <Pz is affine on K. Hence there exists (see 
IV T4.7) a gEL such that 

(3.2) 

By (3.2) with g=p(az,kz), a mapping 

is defined, which corresponds to the p in III (6.4.14). Therefore, the mapping p 
is also determined by .1. In turn, from p the mapping l{! follows by III (6.4.14). 
Hence .1 also allows the calculation of "what" was measured by the macrosystem 
(2) (see § 6). 

This .1 especially allows to calculate the "ideal observable" specified by az (see 
V §5). To do this we must only write the probability jl(w, p(al, kl )) in the form 

then we get the mapping 

in V (5.2) by w ~ u. From Sa2 follows the ideal observable 

(3.3) 

as explained in V §5. Therefore, from the knowledge of .1 follows that of the ideal 
observable determined by the macro system. 

§ 4 Coupling of Preparation and Registration 

With w(i) as o:(al, kd according to §2, from (3.2) we obtain 

f.l (0: (a 1 , k1), p(az , kz)) (4.1) 
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as the probability for the trajectory effect kz . Let us multiply this by the < CJJ 1 (ad, k l ) 1 
from §2, the probability that corresponds to the trajectory effect kl on the system 
(1). Then finally, with ii from §2, 

(4.2) 

is the probability that (in the coupled experiment) the trajectory effect kl appears 
on the system (1) and kz appears on (2). 

Therefore, we should be able to obtain the right side of III (6.4.15) from (4.2). 
We see immediately that (4.2) is bilinear and norm-continuous in k l , kz since 

L1 is norm-continuous in kl and the left side of (3.2) is norm-continuous in kz . 
Therefore, there is a uEC'(8l x 8z) such that 

(4.3) 

Thus CJJ1Z in III (6.4.15) is uniquely determined by (4.3), with CJJ1Z(al, az)=u. Therefore 
we can also write the probability (4.2) in the form 

(4.4) 

We have thus eliminated the microsystems as action carriers by the right side of 
(4.4). 

The expression CJJ1Z (al X az (l M) defined by (4.4) also guarantees the directed ness 
of the interaction, since (4.4) for kz = 1 implies 

<CJJ1Z (al x az (l M), kl 1) = J1(ii(ar. kd, p(az, 1)), 

and since g = p(az, 1) in (3.2) is determined by 

<<Pz(w(i), az), l)z =J1(w(i), p(az, 1)). 

According to (1.4) we get <Pz(w(i), az)EK(Yz) and hence <<Pz(w(i), az), l)z = 1, whence 
p(az , 1)= 1 follows. This gives 

<CJJ12 (al x az (l M), kl 1) = J1(ii(iX l , kd, 1), 

which is independent of az . According to (2.2) we explicitly find 

J1(ii(al' kd, 1)= <CJJ(al ), kl)l' 

With III (6.3.11), from (4.4) with kl = t/!ls(b lO , b l), k z = t/!zs(bzo , bz) we obtain the 
values 

This due to III T 2.8 determines the function A12 completely. 
Thus the description of the scattering of microsystems on macro systems by the 

mapping L1 from § 1 encompasses the theory of preparation and registration presented 
in III. 

From these considerations, one could get the impression that it would suffice 
to calculate the mapping L1 in order to prove backwards the" correctness" of the 
main laws introduced in VI. This is a widespread error! The wrong view causing 
it can be formulated as follows: 

If one establishes the usual form of quantum mechanics with Hilbert spaces 
and superse1ection rules, then one can (by the methods of statistical mechanics) 
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construct the mapping Lt from § 1 for the scattering of microsystems (also see §6). 
With the aid of Lt, one then succeeds in describing all experiments with microsystems 
by means of quantum mechanics (as we have just constructed A.12). Experiments 
do not contradict these theoretical considerations. One believes that by this compati­
bility with experiments also such remarkable things as complementary observables 
(see V §4) and complementary de-mixtures (see V §7) would be established. 

But the existence of the mapping Lt from § 1 alone still does not guarantee the 
main laws in VI, as we shall presently see. 

According to §2, Lt determines the mapping 22'1 x L(§d~K (to be precise, 
on the subset of all (a 1 , kd for which < CPl (al), kl > 1 =1= 0). But there is no guarantee 
that the set 1X(221 x L(§ 1» is a subset that in "physical approximation" is norm-dense 
in K. 

Similarly, the p that follows by (3.3) from Lt does not guarantee that P(222 x L(§2» 
is "physically" dense in L= [0,1] in the u(&B', &B)-topology. Or, to make it still clearer: 
With (4.1), we still are far from showing that 

J.l(w,gd=J.l(W,g2) forall wEIX(221 xL(§d) 

already implies gl =gz and that 

J.l(Wl,g)=J.l(W2,g) forall gEP(222xL(§2» 

already implies Wl =W2' 
Therefore, the existence of Lt in itself does not yet guarantee that the partition 

into classes of 22' and ~ in III §5.1 is again reproduced. On the contrary, we must 
expect that already for large molecules the partition into classes will not be repro­
duced. We pointed this out already in X §4. 

In § 6 the calculation of Lt will seem possible for given macrosystems. Nevertheless 
it appears remote to state something about the sets 1X(221 x L(§l» and P(222 x L(§z» 
on the basis of the embedding in ~ffqexp (to be described in §6). In fact till now 
we know no theoretical methods to survey all physically possible macrosystems 
and their trajectories. If one thinks about "all" macroscopic devices that are con­
structible then it appears quite hopeless that we humans could ever obtain a systemat­
ic overview of "all possible" devices (a difficult problem of experimental physics 
just is continually to.invent new devices). Rather, we must be content with a theoreti­
cal description'of.'8pecial macrosystems by means of statistical mechanics. 

Conversely,. one will perhaps succeed in pro;ving, ,with the aid of the considerations 
in §6, that for large molecules the partition into classes of 22' and ~ must be revised, 
i.e. that for large molecules quantum mechanics can be improved by a more compre­
hensive theory (see X §4). 

§ 5 Macrosy.stems as Transpreparators 

In IX §3, we saw how scattering processes of microsystems on microsystems 
can be used as transpreparators. Here we shall show that Lt from § 1 determines 
a transpreparator. 

One sees immediately that for fixed al and kl the mapping 

(5.1) 
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is an operation in the sense of V DILL This operation is a function of k1 (for 
ftxed ad. Similarly as in V §5 and in V §8, this function can be extended to the 
elements 11 of the characteristic functions of Borel sets. 

In §1 we denoted the support of <P1(Kx,q'd by Sl' Let B6'(Sl) be the Borel 
fteld corresponding to S b so that we can deftne L1 (w, a 1,111) also for the elements 
111 EB6'(Sl)' Then (for ftxed ad, 

K .d( .... a,.qtl, K (5.2) 

to each 111 assigns an operation (!Ja,(11d with (!Ja,(11dw=L1(w,a1,111)· Thus CJa ,(11) 
is a a-additive measure over B6'(S d, such that (see V D 11.3) 

(5.3) 

represents a transpreparator. We call it the ideal transpreparator generated by the 
macro system prepared according to a1' 

Transpreparators played a large role in the discussion of the measurement pro­
cess, especially after the rise of quantum mechanics and in the efforts to ftnd its 
interpretation. 

1. v. Neumann in his famous book "Mathematical Foundations of Quantum 
Mechanics" (see [25] IV.3) introduced an unnecessarily narrow deftnition of the 
concept of measurement. This measurement process of 1. v. Neumann is today called 
measurement of the ftrst kind (also see [2] XVII §5). In this context, requirements 
are placed on a transpreparator which are not discussed in more detail here (see 
[2] XVII §5). But here arises a question similar to that discussed in V §5 and V §8, 
namely about the "realization" of trans pre para tors. We regard an approximate "real­
ization" of a transpreparator I: ~ n as given if there is a homomorphic mapping 
h of a ftnite subring I:' of I: into a B6'(Sl)' such that (4.5.2) restricted to hI:' represents 
the prescribed transpreparator approximately. Here we shall not discuss how one 
can conceive" approximately" in analogy to V §§ 5 and 8. 

We introduced the axiom AOb in V §5 and the axiom Apr in V §8 to emphasize 
that one can realize approximately" all" observables resp. "all" preparators. Here 
we consciously will impose no requirements on the realizability of transpreparators. 
Therefore in particular we do not require that transpreparators corresponding to 
measurements of the ftrst kind are approximately realizable. 

Rather, we leave the question of the physically possible transpreparators for 
microsystems (physically possible in the sense of [3] § 10.4 and XIII §4.6) to a theory 
of the mapping L1 from § 1. Such a theory cannot be established solely by an extrapo­
lated quantum mechanics, but only by a theory more comprehensive than 2P5,;exp, 
for which we shall set down some basic theorems in §6. Therefore, concerning the 
transpreparators we suspect that 2P 5,; is also not a g.G.-closed theory for microsys­
tems (cf. [3] § 10.3 and XIII §4.3). 

In concluding this subsection, let it again be emphasized, as discussed in detail 
in [2] XVII §4.3, that the "jump" from w(i) to w = L1 (w(i), a, k) is only a mathematical 
jump from the impinging ensemble w(i) to the scattered ensemble w. "In nature" 
a complicated interaction process with the macroscopic system lies between w(i) 

and w. 
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Unfortunately, the expositions of J. v. Neumann have been misunderstood (see 
[25] IV.3), since one conceived of the idealizations of a measurement process (that 
he consciously introduced) as real postulates. In addition one misinterpreted the 
jump from w(i) to was a "jump" of each individual microsystem. Thus there arose 
the apparent problem of a "collapse of the wave packet of a microsystem" (also 
see [2] XVII §4.3). When one looks at the mountains of literature that have been 
written about these collapse processes that do not even exist in nature, one cannot 
blame the author of this book for wishing that this apparent problem might vanish 
quite soon into oblivion. And if the present book together with [2] would only 
dissolve this apparent problem, that would already be an achievement! 

§ 6 The Problem of Embedding the Scattering Theory 
of Microsystems on Macrosystems in fl/' s;, exp 

We can proceed relatively quickly in the formulation of the embedding problem 
of the theory presented in §1 (of the scattering of microsystems on macrosystems 
in an extrapolated quantum mechanics £1lf1qexp), since we have discussed in detail 
the simpler case of an embedding in X §§2.2 and 2.3. 

Concerning scattering theory, we proceed from the formula (1.16) which together 
with the definition of r (see also (1.19» reads 

Jl(LI (w(i), aI' kl), g) = <r(w(i), all, gkl)ut! (6.1) 

with klEtfrlS(~l)cL(Sd. This Jl gives the probability for the simultaneous response 
of the trajectory effect kl (for the macrosystem) and of the effect g (for the scattered 
microsystem). This probability (6.1) depends on the impinging microsystem (i.e. on 
w(i) and on the preparation al of the macrosystem. 

It was also shown in § 1 that r and LI determine each other uniquely. For our 
embedding problem, it turns out that the right side of (6.1) is more suitable. 

In (6.1) one can not yet recognize how a time displacement of the registration 
should be described; but we can easily make up for this. Due to the physical meaning 
of such a time displacement (as described for macrosystems in II §§4.1 and 4.2 and 
for microsystems in IX §1), it is easy to find this description of the time displacement 
for the right side of (6.1). With v.(s) as in II (4.2.14), and U;O) as the U(t) given 
in IX (2.5) for microsystems alone (on that account the index (0», 

(6.2) 

is the probability for the registration displaced by a time t relative to the case 
in (6.1). 

According to §1, in (6.2) we have kl =tfr1s(blO,bd and g=tfr(bo, b), with bo,b 
as in (1.8). Thus (6.2) takes the form 

<r(W(i), all, u.(O) tfr(bo, b) u.(O) + tfr 1s(R< blO , R< bl»ut!. (6.3) 

According to (1.9), now (6.1) equals 

[12 «a(i) nal n blO) x (a2 n b20)nM, (a(i) nal nbt ) x (a2 nb2)nM) (6.4) 
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with w(i) = $ (iI(i») = cp(a(i»). In order to introduce the time displacement in (6.4), we 
must note that the entire registration device (2) must be displaced by T. Having 
been described in III § 7, this displacement was used to introduce the time displace­
ment for micro systems in IX § 1. 

In III § 7, the transformations of the system (2) relative to the system (1) were 
denoted by (j. In this sense let (jt be such a displacement by the time 7:. Then (6.3) 
equals 

A12 ((iI(i) n a l n Rt blO) x ((jt az n (jt bzo) n Nt, 
(iI(O n al n Rt bd x ((jt az n (jt bz) n Nt). (6.5) 

This expression is appropriate for formulating the embedding of the scattering theory 
of microsystems on macrosystems in a g>:Yq exp. 

In this connection, one must observe that in an extrapolated quantum mechanics 
we want to embed only the macro systems (1) with the impinging and the scattered 
microsystems, and not the macro systems (2). Furthermore, the systems (2) serve only 
as auxiliary systems also in g>:Yqexp, in order to define the effect g=t/I(bo, b). For 
this reason, analogous to the transition from a(i) to iI(i), let us think of az and bz 
as selection procedures over M I (the set of systems (1 )). 

The mapping (Xl' Xz) ---> Xl is a bijective mapping Nt ---> M I which leads in a canon­
ical way to a mapping MIx bzo ---> ozo, MIx bz ---> O2, MIx az ---> ilz , where the ozo, Oz 
and ilz generate selection procedures over M 1, isomorphic to ~zo, ~z and:?2z respec­
tively. (The mapping Nt ---> M 1 just introduced was already used in III § 6.6. There 
denoted by n-l, it also served to interpret the systems (2) as registration devices 
for the systems (I)!) 

As in III § 6.6, we now interpret the b 10 n il z n 010 as registration methods and 
the bl n ilz n Oz as registration procedures. (Strictly speaking, we should have consid­
ered the structures generated by the bl0 n il2 nOlO resp. by the bl n ilz n Oz as selection 
procedures over MI. This shall not be done here, since such extensions were treated 
several times in detail in III.) It is entirely in this sense that we denote the images 
of (jt az, (jt bzo , (jt bz by Rt ilz , Rt ozo, Rt oz, since we have interpreted Rt as time 
displacement of the registrations of the systems (1). 

Thus (6.4) defines a probability function 

)'1 (iI(i) nal n bl0 n il2 n Ozo, iI(i) n al n bl n ilz n Oz) 

=A12 ((a(i) n al n bl0 ) x (az n bzo) n Nt, (a(i) nal n bd x (az nb2) n Nt) (6.6) 

for the systems (1), for which (6.5) and (6.3) imply 

ill (a(i) n al n Rt bl0 n Rt az n Rt ozo, iI(i) n al n Rt bl n Rt az n Rt oz) 

= <T($(iI(i»), ad, u~O) cp(bo, b) U~O)+ t/lls(Rt blO , Rt bd)lg). (6.7) 

The left side of (6.7) is completely analogous to that of X (2.2.8), if we there replace 
the preparation procedure a by the extended preparation procedure iI(i) n ai' the 
registration method bo by the extended registration method bl0 n az n 020 , and the 
registration procedure b by the extended registration procedure bin a2 n O2 . Hence 
we can immediately carryover the considerations from X §2.2. 

The ensemble sets and effect sets from g>:Yq exp (i.e. of the systems composed 
of micro systems and many-particle systems) must be distinguished from the corre­
sponding sets K and L of the micro systems alone. For this distinction, let us denote 
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the sets from q>~exp by Kc and Lc and the corresponding Banach spaces by BUc 
and BU~. In analogy to X §2.2, for an embedding i we require 

..1.1 (a(i) n a1 n R, b10 n R, a2 n R, b20 , a(i) n a1 n R, b1 n R, a2 n R, b2) 

= J1( CfJc(i(a(i) n ad), U, 1/1 c(i(b01 n a2 nb02)' i(b1 nb1 n a2 nb2)) U/). (6.8) 

Here, CfJc is the mapping of the preparation procedure from q>~exp into Kc> and 
I/Ic is the mapping of the effect procedure from q>~exp into Lc. The time displacement 
operator defmed in q> ~ exp takes g into U, g U/ . Therefore, U, contains the interac­
tion of the micro system with the macro system on which the microsystems are scat­
tered. 

Naturally, there must exist a relation between K and Kc, resp. between Land 
Lc which declares that microsystems described by K, L form a "subsystem" of the 
system described by Kc> Lc- This problem is well known within the framework 
of normal quantum mechanics (see IX §2). Therefore it is well defined within q>~exp 
how the connection between K, Land Kc, Lc must be formulated. We shall return 
to this connection below. 

From (6.8) together with (6.7) we get the embedding condition 

<FCi/J(a(i)), ad, U,(O) 1/1 (bo, b) U,(O)+ v.(s) 1/1 ls(b 10 , bd)uJ 

= J1( CfJc(i(a(i) n a1)), u.: 1/1 c(i(b10 n a nb20), i(b1 n a2 nb2) U/), (6.9) 

where bo, b are given by (1.8). With the mapping lj/ defined by 

lj/(a2 nb20, a2 nb2) = 1/1 (bo, b), 

one can finally rewrite (6.9) as 

<rc ip(a(i), ad, U~O) lj/ (a2 nb20 , a2 nb2) u.:(O) + v.(s) 1/1 ls(b lO , b1) 1!» 

= J1(CfJcCi(a(i) n ad), u.: 1/1 c(i(b10 n a2 nb20), i(b1 n li2 nb2)) u.: +), (6.10) 

analogously to X (2.3.4 a). 
From the right side of (6.10) it still cannot be recognized that li(i) refers to the 

preparation of the impinging microsystems and that li2 nb20 , li2 nb2 refer to the 
registration of the scattered micro systems. But it can be recognized on the left side 
from the ensemble wei) = ip(li(i)) of the impinging microsystems, and from the effect 
g=lj/(li2nb20 , li2nb2) triggered by the scattered microsystems. Therefore, we must 
yet introduce the mentioned relation between K and Kc (and afterwards that between 
Land LJ To this end, we consider the system composed of micro systems and 
macrosystems in q>~exp- Still more specifically, we think of the total system as 
composed (see IX §2) of an impinging micro system and a many-particle system as 
the "scatterer". Hence, for CfJcCi(a(i)na1)) "at time t=O" (i.e. "before" the scattering, 
see IX §2), we require 

( . ( -(i) )) {(i) (.)} CfJc I anal ::;:; w X CfJ1c la1 s. 

The interaction of the impinging systems with the scatterer determines a "wave 
operator" Q (as in IX (2.10)) so that the ensemble prepared according to i(li(i) n ad 
is given by 

( .(-(i) )) Q {(i) (.)} CfJc I anal = w X CfJ1c la1 s. (6.11) 

where wei) = ip(li(i)). Therefore (6.11) is a supplementary condition to (6.10) which 
describes the connection between w(i)EK and CfJcCi«fi) n a1))EKc. 



§6 Embedding the Scattering Theory of Microsystems 121 

(Attention should be paid to the fact that Q works as the unit operator if w(i) 

is the vacuum, i.e. for the case of a preparation device. We may replace IPc(i(a(i) n ad) 
by IPlc(ial); and this has the character of a decaying state ([2] XVII §6.5). This 
is essential if we want to get fi. and k in §2.) 

We assumed that wei) and IPlc(ia l ) as ensembles so "fit one another" that the 
time t=O falls "before" the collision. This assumption is not valid for all wei) and 
all IPlc(ial), i.e. not for all al. In the general scattering theory for micro systems 
(as described briefly in IX §2), one can always find an appropriate time L(i) "before" 
the scattering (see [2] XVI). But for the scattering of micro systems on macrosystems 
it is essential that t = 0 is such a time before scattering since for macrosystems a 
limit for t ..... - 00 in general makes no sense (see II § 1). Hence such a limit is no 
realistic part of fj! g; exp. This is justified by an embedding of fj! 9;;,! Indeed, the 
fact that not all w(i) and IPIc(ia l) "fit one another" reflects the combination problem 
between the preparation device (0) (see § 1) and the device (1) used for registration. 
Therefore, the combination problem (III §5.1) is and remains an essential aspect 
of a theory of microsystems. 

Finally, together with (6.11) we obtain from (6.10) the embdding condition 

<r(w(i), all, u,(0) 1fJ(a2 n 520 , a2 n 52) u,(0)+ v,,(s) l/I l.(b IO , btl>u?D 

=Jl(Q{w(i) x IPlc(ial)}S' Ur l/Ic(i(blOna2n520)' i(b l na2n52)) u,+). (6.12) 

For abbreviation, we define the operators 

OU~O) g = u,(0) g u,(0) + for gEL 

and 

defines an operator OU~O) x v,,(s) in the space C(&l' .@). Then we can rewrite (6.12) 
in the form 

«OU~o)' x v,,(s)') r(w(i), all, 1fJ(a2 n 520 , a2 n 52) l/I Is(b lO , btl>!!il 

= Jl(OU; Q {w(i) x IPIc(ial )}" l/Ic(i(b lO n a2 n 520), i(b l n a2 n 52)). (6.13) 

Let !Jil(blO n a2 n 520) denote the Boolean ring generated by all the b i n a2 n 52 
(with bi cb lO , 52 c520). An additive measure 

!Jil(b IO n a2 n 520) ..... L(YI ,.@) (6.14) 

is uniquely determined by 

bl na2 n 52 ..... 1fJ(a2 n52) l/I l.(b IO ' btl, 

which we abbreviate by 

Similarly, an additive measure 

(6.15) 
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is determined by 

which we write 

In order to complete !1i(blOllii2IlD20) in a way similar to !1i(bo) in X§2.3 and 
to extend the mappings, we must extend L(Y1, .@). To this end, we consider the 
same set Lm as in X §2.3, only now denote it by L l' The set K (L 1, K) of all (in 

the norm topology of 86') a-additive measures L 1 ~ K (with W(e),::, K) forms a 
basis of a base-normed Banach space 86'(L 1'86'). With the Banach space 86" (L 1, 86') 
dual to 86'(L 1,86') and with L(L 1'86') as the order interval [0,1] of 86" (L 1,86'), one 
can identify L(Y1,.@) with a subset of L(Ll,86') that is a(86"(Ll'86'), 86'(L1,gB))-dense 
in L( L 1 , 86'). 

If one now completes !1i(b 10 Ilii2IlD20) to a ring LblQl,anh20 in the same way 
as in X §2.3, then one can extend the mappings (6.14) and (6.15) to 

(6.16) 

(6.17) 

The set of all elements b 1 11 ii2 11 D20 from !1i(blOllii2IlD20) with b1 cb10 forms a 
Boolean subring of !1i(b 10 11 ii2 11 D20) and hence also of LblOna2nb2o' Let the closure 
of this subring be denoted by Lb lO ' In exactly the same way, the set of all b 10 11 ii2 11 D2 
forms a Boolean subring whose closure will be denoted by La2nh2o' Let the subset 
of all elements from LblOna2nh2o of the form a2/\O"1 with O"IELblO and 0"2ELa2nh20 

be denoted by {La2 nh2o x LblO}' The measures (6.16) and (6.17) are already determined 
by their values on this subset. Because of 

(liia2nh20 x l/!1sb lO)(0"2 /\ 0"1)=liia2nh2o(0"2) l/!lsb lO (O"l), 

the measure (6.16) is already determined by its value on La2nh2o and Lb,o' There 
follows 

(liia2nh20 x l/!1 SblO) LblO c 1 L(L d 
(where 1 is the unit operator in L) and 

(where 1 is the "unit function" on 5\). 
We will require the existence of soft trajectory measurements, i.e. of a b10 such 

that 

(6.18) 

is satisfied (see (2.3.12)). As in §2.3, we can identify a subring of LhlO with Ll' In 
this sense, we introduce a macro-observable Fbo by 

(6.19) 
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Moreover, as measurements on the microsystem after scattering we can consider 
such measurements for which 

(considered as a mapping in L) has a decision observable as kernel (cf. V §3.3 and 
VII §3). Then one can identify a subring 1:2 of 1:a()b20 with the range of values 
of this kernel observable (i.e. with a complete Boolean sublattice of G, see VII T2.2). 
In ths sense we find 

(6.20) 

with eEG for (12E1:2. 
Let the complete Boolean subring generated by {(11" (121 (11 E 1: l' (12 E 1: 2} in 

1: b!O()D2()b20 be called 1: 12. Then the mapping 

(6.21) 

is determined by the special values 

(6.22) 

Instead of considering the whole mapping (6.17), it suffices to consider the observable 
(6.21). Since in &J5;exp we describe the interaction of the impinging microsystems 
with the many-particle system (1) as scattering, we can view Q as well defined. 

Similarly, we can regard as well defined what it means to measure effects gEL 
on the scattered microsystems after the collision under the following conditions: 
(a) The microsystems no longer interact with the remaining macrosystem. (b) One 
performs no measurements on the macrosystem, i.e. measures only the scattered 
microsystems. Hence, we assume that an injective affine (and «(1(.?6",.?6') 
-(1(.?6'~, .?6'e»-continuous) mapping L ~Le is well defined. It means that to a mea­
surement of gEL on the microsystems (in the description of &J5; as a theory of 
microsystems) there corresponds a measurement KgELe in the description of &J5;exp 
(one often assumes K(g)=g x 1 in the product representation of a Hilbert space 
in which w(i) x CP1 (iad is defined). 

Condition (6.18) means that a measurement of the paths has no influence on 
the statistics of the paths. Here let us in addition require that a registration of 
paths of the macrosystem also has no influence on (i.e. is also soft relative to) the 
measurement of micro systems after (!) scattering. We express this by the requirement 

With e from (6.20), this in particular implies 

(6.23) 

Therefore the mapping (6.21) satisfies the special conditions (6.19) and (6.23), whereby 
e is determined in (6.23) by (6.20). 

In &J5;cxp let the mapping K satisfy the further condition KG c Gc> where the 
Ge are the decision effects of Le (i.e. Ge=oe LJ 
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If K(e) is a decision effect, we obtain (cf. VIII T 4.3.1) 

t/li(blOna2nb20) i(a 1 /\ aZ )=Fbo (a 1 ) K(e)=K(e) Fbo(ad, 
with e from (6.20). 

Thus (6.13) goes over into 

«OZt;o)' x v,,(s)') t(w(i), WI), e a 1> UiJ = Jl(OZt; Q {w(i) x w d S' K(e)Fbo (a 1)) 

for all WI from KIm' While KIm is the norm-closure of co qJlc(i!!l'd, we used 

t(w(i), qJlc(iad)=r(w(i), a1) 

(6.24) 

and identified I: 1 with oe L(I: d. Since the measurement on the micro systems after 
the scattering should be arbitrary, we require (6.24) for all eEG. For all a 1 EI: 1 , 

the Fbo (a 1) must commute with all elements of KG, hence with all elements of KL, 
and thus also with all elements of KfJB. By 

Jl(w, K(e) Fbo(ad) = <u, ea1 >U2J 

with WE Kc and UE K (I: 1, K), there is defined a mapping (K' X S bo) w = u. With K x Sbo 
as the mapping dual to K'XSbo' in particular we have (K'xSbo)(eal)=K(e)Fbo(al)' 
Finally, (6.24) goes over into 

(OZt(o)' x v.(s)') t(w(i) w ) = (K' X S - ) 0Zt' Q {w(i) x w \ 
t" t , 1 bo r 1J s (6.25) 

for all W 1 EK 1m ; this for '[=0 in particular implies 

t(w(i), WI) = (K' x Sbo) Q {w(i) x wiL. (6.26) 

The" embedding condition" 

(OZt;o), X v,,(s)')(K x Siio) Q {w(i) x wds =(K' x Sbo) 0Zt; Q {w(i) x wd for all WI EKlm (6.27) 

together with (6.26) is equivalent to (6.25). 
The notation (K'XSr,) is to say that for gkEL(I: 1 ,fJB) (with gEL, kEL(I:d), the 

relation 

holds, where the Sbo k commute with KfJB'. 
Therefore, the problem of the compatibility of the scattering of micro systems 

on macro systems with fY/J.9;exp consists in giving a macro-observable and thus an 
Sbo so that the embedding condition (6.27) is satisfied (at least in a very good approxi­
mation). According to §2 and §3, this procedure also solves the problem of the 
compatibility of preparation and registration with g> .9;exp. If Sr,o is known, the opera­
tor t(w(i), WI) follows from (6.26). 

If one has t, the mappings qJ and t/I for the micro systems are obtained as given 
in §2 and §3. The complicated analysis of experiments in fact proceeds as follows. 
Aided by a statistical mechanics of preparation and registration devices, one tries 
to determine the mappings t for these devices (if only as coarse approximations) 
and thus to derive approximate values of qJ(a) and t/I(bo, b) for the constructed 
preparation and registration procedures, respectively. One seeks to improve the 
approximations for cp(a), t/I(bo, b) found this way by test experiments: For example, 
one tries to improve the approximation for cp(a) by testing with various t/I(bo, b) 
that are well known. It is just the art of the experimental physicist, in this way 
to obtain the best possible qJ(a) and t/I(bo, b). 
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It cannot be the task of the author to demonstrate by examples the applications 
of (6.26), (6.27). Since in X §§2 and 3 we have discussed the structure of the simpler 
(relative to (6.27)) embedding condition X (2.3.22), here we shall omit an analogous 
discussion. By experiments and theory, physicists are convinced that the compatibili­
ty conditions are fulfilled. 

The theory of this section (as that of X) is incomplete since we have no general 
theory, neither for state spaces of macrosystems nor for the embedding maps. Only 
in many special examples, the state spaces and sometimes more or less good embed­
ding mappings (see e.g. X §3) are known. Nevertheless, to simplify the representation 
we shall in the next section do as if the theory of the scattering of microsystems 
on macro systems were complete. 

At the end of §4 we had already mentioned that the possibility to calculate 
the interaction operator Ll (resp. r) by the embedding procedure does not guarantee 
that CX(,q'l x L(Sl)) is norm dense in K and that f3(,q~ x L(S2)) is a (eB', eB)-dense in 
[0,1]. In X §4 we presented arguments which made us expect greater differences 
between K and CX(,q'l x L(Sl)) resp. [0,1] and f3(,q~ x L(S2)) for large molecules. But 
a general constraint for preparation and registration is already imposed by the con­
servation laws of energy and momentum. Let us briefly discuss the conservation of 
energy because only the energy has in X §3 been treated as "macroscopic observable". 

The trajectories of the preparing device also determine the change of the energy 
of the macrosystem during the preparation. Hence we can demix the generated 
ensemble according to the values E ofthis energy change. Thus the prepared ensemble 
can only be a mixture of ensembles WE with various E. 

These mixture components WE must have an "imprecise" energy E since the 
macro-observable energy resembles an imprecise measurement of the non-measurable 
microscopic energy (given by the Hamiltonian) and since this microscopic energy 
is conserved. To each value E there must be an effect FE which corresponds to 
an imprecise measurement of the energy of the prepared micro systems such that 
tr(wE FE) = 1. The effect FE of the prepared micro systems is determined by the macro­
observable energy of the preparing device (and the conservation law). 

Thus we conclude: An ensemble which is a superposition (not a mixture) of 
"very" different energies, cannot be prepared. Here "very" different means that ener­
gy differences greater than the width of FE enter the superposition. The width of 
FE will be the greater, the greater the preparing macro systems are. Therefore, for 
the nonrelativistic quantum mechanics of microsystems (where the energies are lim­
ited by normative axioms) we cannot expect that energy conservation severely con­
strains the preparation possibilities. But this can be otherwise for relativistic quantum 
theory. 

In fact the law of energy conservation gives also constraints for the possible 
registrations: Every registration comprises a registration of the change in the macro­
scopic energy of the registering device. We may also measure the energy of the 
micro systems which come out of the device. Therefore all effects F registered by 
the device must coexist with a imprecise measurement of the energy of the incoming 
rnicrosystems. Hence they must coexist with effects FE, where E is the sum of the 
energy change of the registration device and of the energy of the outcorning microsys­
terns. The "width" of FE is determined by the difference between the macroscopic 
and the microscopic energy of the device. 
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Thus all effects coexist with those of an imprecise measurement of the energy. 
Because of the" great width" of FE, however, also this coexistence will not severely 
constrain nonrelativistic microsystems. 

The influence of conservation laws on measurements was already investigated 
in connection with earlier descriptions of the measuring process [59]. A more com­
prehensive investigation would be a new task connected with the embedding theory 
presented here. 

Let us still discuss a problem that is sometimes used as an objection to our 
claim that macro systems can be described objectively. This problem was already 
described in III §6.5. 

Let us write III (6.5.5) with III (6.5.8) as 

< U I , k I) jJ. (IX I (u I , k I), g) = < U I , 11), (6.28) 

where g is an arbitrary effect produced by the prepared microsystems (we dropped 
the '" from jJ.). Various g can be non-coexistent, although all II are coexistent. 
This is no objection to the right side of (6.28)! 

Since al (UI> kd = <UI, k l ) IXI (UI' kd is affine in UI and in kl' it has the form 

atCuI' kIl= J kl(y) w(y)duI(Y)' (6.29) 
5, 

where w(y) are elements of K" (see IV D3.7). Thus the left side of (6.28) for gELn~ 
takes the form 

J kl (y) jJ.(w(y), g) dUI (y) = <UI, kl p(g) (6.30) 
5, 

with 

p (g) (y) = jJ.(w(y), g). (6.31) 

Thus in (6.28) we have 

(6.32) 

where p defines a mapping Ln~~L(SI)' It also maps non-coexistent effects 
into coexistent trajectory effects. This is no contradiction to the embedding. 

S1,o peg) must not be equal to Kg although 

<UI, k l ) jJ. (IX I (UI> kIl, g) = jJ.(IXI (UI' 1), Kg Sf,o kd 

= jJ.(IXI (UI' 1), Sf,o [k l peg)]) 

=<UI , kl p(g). (6.33) 

This equation demonstrates that a registration of the emitted microsystems (i.e. a 
registration of g) is "equivalent" to a registration of peg) on the preparation device 
(see also III §6.6). 

A mathematically similar problem arises if a macrosystem contains a micro system 
that can be distinguished from all other microsystems composing the macrosystem. 
Such a possibility is often taken as an objection against the objective description 
of macrosystems, since according to quantum mechanics one can measure this indi­
vidual micro-subsystem. 

In §2 we have only considered trajectory registration methods for which we 
postulated the embedding condition X (2.3.7). We must extend these considerations 
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to a more comprehensive set of registration methods (see III §6.6), also containing 
methods which register trajectories together with registrations of the" distinguished" 
micro-subsystem. 

For such a problem we can adopt the whole theory of § 1 to §6, admitting 
the simplification that we have "no impinging microsystems" as for preparation 
procedures (see §2), and the complication that the distinguishable micro-subsystem 
is not emitted. But this complication is not essential since we presumed that these 
microsystems can be "distinguished". This makes it possible to give the Hilbert 
space for the whole system in g> 5,; exp the form £' = Yf'l X £'2 where £'2 is the space 
for the "distinguished" micro-subsystem. The form £' = £' x Jft; can be taken in­
variant under time translations if we use the "interaction picture" (see [2] X §3). 
Thus also the embedding can be taken over without essential changes We have 
only to replace the" prepared" micro systems by the" distinguished" ones. 

Thus the left side of (6.28) can be interpreted as the probability for the registration 
of the trajectory effect k1 together with an effect g produced by the distinguished 
micro-subsystem. If the state space is so comprehensive that (6.28) holds, we find 
again that a registration of g is "equivalent" to the registration of the trajectory 
effect peg) (see also the partition into equivalence classes by the mapping l' in X §2.4). 

In both cases ("prepared" or "distinguished" micro systems) we have a mapping 

Ln22~L(Sl)' which can be extended to a mapping L~L(Lm)' This mapping 
is of course not surjective (it can be injective). For two non-coexistent effects g 1, g 2, 

the trajectory effect peg d P(g2) (the product of the functions peg 1) and P(g2)) cannot 
be in the range of p! It would be an error to interpret the probabilities for p(gd P(g2) 
as the probabilities that gland g 2 "occur together"; just this was presumed impossi­
ble. 

The description of a distinguishable microscopic part of a macrosystem by quan­
tum mechanics not only presents no contradiction to the objective description of 
the total macrosystem in a state space Z. Rather this description in a state space 
can also comprise (by means of the mapping p) the quantum mechanical description 
of the distinguishable microscopic part (if the state space Z is comprehensive enough). 
Only the quantum mechanical description in .0005,;exp of the "total" macro system 
(with many unrealistic preparation and registration procedures) cannot be given 
objectively (by trajectories in a state space Z). 

§7 The Problem of the Desired Observables and Preparators 

After we have seen in §6 h9w one can in principle find the mapping I/J and 
the ideal observable (3.3) for a given registration device, it may seem that the measure­
ment problem is totally solved. But it was only half the problem. 

The other half of the problem is: Where do the devices come from? They are 
constructed by physicists and technicians. But what devices are constructed and 
why are these and not others constructed? 

Some say that all devices are constructed which are possible. This is false. Firstly 
there are so many possiblities that all human beings throughout their whole existence 
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cannot realize what is possible. Secondly, everyone a little acquainted with experi­
mental physics knows that no macrosystem is constructed which does not (at least 
approximately) fulfill the intentions of a physicist. 

Others will say, all right, a device is only then a measurement device if it fulfills 
the intention to detect the objective properties and structures of the microsystems. 
The registration devices are only aids to "see" what we cannot see with our own 
eyes. 

Also this is not true, as we have seen in the previous chapters. There are no 
objective properties (others than the superselection rules). The micro systems cannot 
be completely separated from the preparation and registration proiA!dures. The 
microsystems are rather "made" by the preparation procedures and "act" on the 
registration devices, an action which cannot be explained solely by objective struc­
tures of the microsystems. Quantum mechanics shows drastically that physics is 
not a voyage of discovery through a given world. Physics is rather an action of 
human beings confronted with the world and in this sense a craft, a very ingenious 
craft. A desire to separate technology from physics (as an application of the physical 
knowledge about the real structure of the world) misrepresents the essence of physics. 
Physics and technology cannot be separated from one another: Without physics 
no technology, but also without technology no physics. 

The background of the intentions of the physicists to construct certain devices 
and no others is a widespread field. Motives of importance can be to make money, 
to get reputation, to seek something extraordinary. Clearly we cannot discuss such 
motives here although these and similar motives must be queried by the conscience 
of every physicist. I hope that physicists will not use as registration devices e.g. 
an atomic bomb or "Schrodingers cat" (see [2] XVIII §3), or human beings if these 
could take injury. 

But there are other motives to influence the choice of devices, motives which 
we can discuss in connection with the theory represented in the previous chapters 
and in [2]. Theoretical physicists have special desires for registration procedures. 

A theory of the micro systems in which it would be necessary to treat every 
registration device by the methods of §6 would be very cumbersome. Therefore 
it is understandable that theoretical physicists seek for definitions of observables 
without the necessity to go into the technical details of the devices. If possible, 
the "defined" observables should not be complicated in order that the calculations 
of probabilities are not too difficult. They should be very appropriate to test the 
theory. Such observables, defined solely in the framework of the theory from [2] 
(i.e. without the more comprehensive theory from §§ 1 through 6 and of X) may 
be called "desired" observables. 

In this way the problem of the measured observables is divided into two parts: 
(1) to find "desired" observables; (2) to find a real device that delivers as ideal 
observable (3.3) an approximation to the desired observable and in this sense (V §5) 
a realization of the desired observable. 

The step (2) can be treated only by the theory of §6. But this theory is not 
sufficient to find a useful realization for the desired observable. It is left to the 
knack of the experimental physicists to find useful devices. After constructing the 
devices, however, the physicists must discuss (with the help of the theories in §6 
and IX §3) how well the ideal observable of this real device approximates the desired 
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observable. The differences between the ideal observable of the device and the desired 
observable are called "measurement errors". We know the extensive "error evalua­
tions" (Fehlerabschiitzungen) done by experimental physicists. 

The step (1) to fmd desired observables has been treated in [2]. But there we 
had not named the problem in this manner. We had described it in another way, 
e.g. at the beginning of [2] XI. There we declared it necessary to introduce "as 
new axioms" effect operators for special registration devices. This introduction of 
"axioms" was necessary since we had not at hand the more comprehensive theory 
of §6. But after the development of this more comprehensive theory we can interpret 
the procedure from [2] in a new way: 

The effects and observables introduced in [2] are to be called "desired observ­
abIes" and no longer "axioms". Since they are no axioms we must supplement 
this step (1) by the step (2) described above. 

Typical desired observables are the position and momentum observables, defmed 
in [2] VII §4, and the angular momentum observables defined in [2] VII §5. The 
observable of the impact of a microsystem on a surface in a time interval has been 
defined by the effect measure Fin [2] XVI §6.1. 

The position and momentum observables could be defined by some properties 
of the corresponding registration procedures. It would in principle be possible to 
test these properties for a given device in order to see, whether this device measures 
position resp. momentum. Therefore, already in [2] it was unnecessary to introduce 
these observables as axioms. A severe disadvantage of this method is that it does 
not at all indicate how to construct devices which measure these observables. One 
can use the theory of §6 and [2] XVII to see whether a device fulfills the postulated 
properties, or to prove directly that the ideal observable of the device is an approxi­
mation to. the position resp. momentum observable. 

The definition of the angular momentum observable in [2] VII § 5 by infinitesimal 
transformations already in [2] allowed to introduce these desired observables with­
out axioms. But this definition is so indirect, that the theory of §6 and [2] XVII 
is needed to prove that a constructed device is appropriate to measure the angular 
momentum. In this way one has to make a theory e.g. of the Stern-Gerlach experi­
ment to see that this device measures the spin. This device is composed of a measure­
ment transformation ([2] XVII § 3) by an inhomogeneous magnetic field and a mac­
roscopic registration process (see e.g. [1] XII §2.2 for such an approximative theory, 
and [49] for an improvement). 

For defining the observable of impact on a surface in [2] XVI §6.1, we started 
with the idea of a device with a sensitive surface fF. We hoped that the intuitively 
found operators F in good approximation describe devices with "very" sensitive 
surfaces fF. Therefore we introduced the effect operator F by [2] VI (6.1.13) as 
an axiom with the correspondence rule (see [2] I §1): F corresponds to devices 
the "principal" structure of which is just such a sensitive surface fF. With the theory 
of §6 we can now analyze any special device and see whether it yields a good 
approximation to the observable defined by [2] VI (6.1.13). Therefore we can now 
denote this observable as a desired one and omit its characterization as axiom. 

The effect of a photon emission (introduced in [2] XI §1) has a totally different 
character. The formula [2] XI (1.16) is not only a "desired" one. We cannot derive 
this formula by the theory of §6 alone. 
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First one has to add (to the theory of atoms and molecules) an approximation 
to quantum electrodynamics. We have already sketched such an approximation 
for the emission of an electromagnetic "operator" wave in [2] XI (1.1) through 
(1.11). This must be complemented by a theory describing the influence of this emitted 
wave on other systems. It can be attained by replacing the "external fields" in 
VIII (5.8) by the emitted wave. We will not develop such a theory in detail. We 
solely need to make it clear that such a theory introduces additional axioms. 

After this addition of an approximation to quantum electrodynamics, in a second 
step we can use the theory of §6 to get the influence of the emitted waves on 
macrosystems. We must only complement this theory for the case that w(i) also 
describes the possibility of impinging electromagnetic waves. Such a theory can 
also describe the function of spectral apparatuses. 

In this way the "axiom" [2] XI (1.16) can be interpreted as a desired observable, 
derivable for suitable devices called spectrometers. 

A frequently misunderstood observable is the "energy". This observable was 
introduced in [2] VII and VIII by an infinitesimal time translation. As such it 
is a desired observable. But the concrete form can only be derived for elementary 
systems (see [2] VII §5). For composite systems the specific form must be introduced 
as an axiom (see [2] VIII (5.8». This axiom is completely misunderstood if one 
has the opinion that the measurement of the observable "energy" is defined by 
a pretheory, such that the correctness of [2] VIII (5.8) can be tested by measurements 
of the energy. 

If one had defined a desired observable by [2] VIII (5.8), one could not say 
that this definition is wrong if one had a device the ideal observable of which is 
not [2] VIII (5.8). One rather should say that the device does not measure the 
desired observable. But we have not introduced [2] VIII (5.8) as a desired observable; 
we have introduced it as an infinitesimal time translation. As this it has another 
physical interpretation and by this interpretation it can be tested. It can be tested 
e.g. by the frequency spectra of atoms and molecules (see [2] XI to XV). 

To measure the desired observable energy by a device is a much more complicated 
problem than defining it by infinitesimal time translation. The definition of this 
energy (similar to that of the angular momentum) does not give any indication 
how to construct a suitable device for its measurement. The experimental physicists 
have found such devices using measurement scattering morphisms ([2] XVII §2.2), 
measurement transformation morphisms in external fields ([2] XVII § 3), and sensi­
tive macroscopic systems. 

The task of a collaboration between theoretical and experimental physicists is 
(for the theorists) to elaborate more precisely the desired observables and (for the 
experimentalists) to seek for devices which allow to approximate as well as possible 
the desired observables. 

We have defined many desired ensembles in [2]. These definitions had various 
intentions. In [2] XI §2 we had discussed the problem to prepare bound states. 
It is not difficult to define bound states as desired ensembles; but this definition 
gives no indication for a suitable preparing device. Therefore we had introduced 
the procedure "ideal gas at a temperature ()" and characterized this procedure by 
the axioms [2] XI (2.1) to (2.3). This form of axioms is not necessary if we use 
the theory of §6. 
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Scattering theory is characterized by many prescriptions for the ensembles, begin­
ning with the postulates CoIl I and ColI 2 in [2] XVI § I up to the many additional 
presumptions for applying the formulas in [2] XVI §§6.2 to 6.3. All postulates and 
presumptions are nothing but formulations for "desired ensembles". Only in [2] 
XVI § I we have tied ColI I and ColI 2 to a qualitative structure of the relative 
positions of two preparation devices. Having the theory of §6 at hand, we can 
take all postulates and presumptions (CollI and ColI 2 included) as structures which 
should be fulfilled by suitable preparation devices. It is just this what the experimental 
physicists do when they construct devices for scattering experiments, devices which 
sometimes cost millions of dollars. 



XII Special Structures in Preparation 
and Registration Devices 

§ 1 Measurement Chains 

In experimental physics it is very usual to build up measurement chains in order 
to perform complicated measurements. In IX §3 and in [2] XVII we have investigated 
measurement scatterings and pointed out how one can build up measurement scatter­
ing chains. Hence it will suffice here to discuss how three macrosystems can be 
composed into a measurement chain. 

We consider only a case where the subsystem (1) acts directedly on the systems 
(2) and (3). With an easily recognized generalization to III, for the probability of 
registering on aU three systems we write 

A.123(al x a2 x a3 n M nblO x b20 x b30 , a l x a2 x a3 nM nb i x b2 x b3). (1.1) 

That (1) acts directedly on (2)+(3), in analogy with III (3.1) means that 

A.123(al xa2 xa3nM nblO x b20 x b30 ,al x a2 xa3nM nbi x b20 x b30) (1.2) 

does not depend on a2, a3' b20 , b30 . 
Let us also assume that (1)+(2) acts directedly on (3). Then 

A.123(al xa2 x a3nM nblO x b20 x b30 ,al x a2 xa3nM nbi x b2 x b30) (1.3) 

does not depend on a3' b30 . 
Expressing both assumptions together by the symbolic Figure 9, we briefly call 

it a measurement chain (1) -+ (2) -+ (3). 
Obviously, one can describe this measurement chain in two ways: 
a: (1) as a preparation device and (2)+(3) as a registration device. 
fJ: (1)+(2) as a preparation device and (3) as a registration device. 
In a way similar to the derivations in XI §2 through §4, we obtain A.123 in 

the form 
A.123(al xa2 xa3nM nblO x b20 x b30 ,al x a2 x a3nM nbi x b2 xb3) 

= J.l(LI (LI (LI (wo, aI' k l ), a2' k2), a3' k 3), 1) 

= J.l(LI (LI (wo, aI' k l ), a2' k2), fJ(a3' k3» 

= (r(LI (WO, aI' k l ), a2), k2 fJ(a3' k3»2~ 

= J.l(LI (WO, aI' kd, '1(a2, k2 fJ(a3, k 3))), (1.4) 

Fig. 9 
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where ki=t/li.(blO' bi), with p as in XI §3 and 1'/ from 

(r(w(i), a2), k2 g)a = /l(w(i), l'/(a2, k2 g». 

If we describe the measurement chain in the form IX, then the ensemble WI prepared 
by (1) is given by 

Al w 1 =L1(wO,al,k1)· 

where Al is a normalization factor. The effect registered by (2) + (3) is 

g23 = l'/(a2 , k2 p(a3' k2»· 

(1.5) 

(1.6) 

If we describe the measurement chain in the form p, then the ensemble prepared 
by (1)+(2) is 

(1.7) 

with WI as in (1.5), where .12 is a normalization factor. The effect registered by 
(3) is 

(1.8) 

The equivalence of the two descriptions is expressed, according to (1.4), by 

(1.9) 

One can also write the effect g23 in the form 

g23 = l'/(a2 , k2 p(a3' k3» = p(a2 x a3' k2 k3), (1.10) 

whence it follows that all effects g23 coexist for fixed a2' a3. 
This sketch shows that with the scattering of microsystems on macrosystems 

according to XI § 1 we also can describe more complicated measurement chains. 

§2 The Einstein-Podolsky-Rosen Paradox 

The Einstein-Podolsky-Rosen paradox (briefly EPR paradox) plays a large role 
in the philosophical discussion of quantum mechanics. We assume that the reader 
has already had contact with examples of the EPR paradox so that here we can 
draw on a single example as an illustration! It can already be gleaned from [2] 
VIII §4.4, how the "EPR experiments" can be described consistently and without 
contradictions by preparation and registration procedures. Here, we shall mainly 
emphasize the fact that one can also describe these experiments as dealing with 
macroscopic systems, i.e. the microsystems as action carriers can be "forgotten". 

The EPR experiments are measurement chains of special structures, indicated 
by Fig. 10 or briefly by (2)+-(1)-+(3). Here (1) is to act directedly on (2)+(3). Hence 
we can think of Fig. 10 as a specialization of Fig. 9, namely as the case that no 

Fig. to 
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microsystem really scattered by the system (2) can reach the system (3). But one 
can also formulate this last statement without using the concept of a microsystem: 

To the requirements set forth in (1.2) and (1.3) we add that 

A123(al x a2 x a3 nM nb lO x b20 x b30 , al x a2 x a3 nM nb l x b20 x b3) (2.1) 

does not depend on a2 , b20 . 
Hence, the requirements (1.2), (1.3), (2.1) characterize an EPR experiment. 
Therefore, one now has three possibilities for describing an experiment with 

the concepts of preparation and registration; namely, besides the two possibilities 
a and f3 discussed in §1 yet the possibility 1': (1)+(3) as preparation device and 
(2) as registration device. 

Whereas it is important in Fig. 9 that (3) registers" after" the scattering on (2), 
this is not necessary in Fig. 10. In order to emphasize this clearly, in Fig. 10 we 
have drawn the systems (2) and (3) to the left and right of the system (1). 

In order to illustrate our general considerations, let us use the example described 
in detail in [2] XVII §4.4. Then we can be content with some intuitive references 
to this example: 

The preparation gevice (1) shall produce as a micro system a system composed 
of two elementary systems a and b. Each of the elementary systems shall have 
an eigenspin 1/2. Let the preparation procedure (1) be so directed that the total 
spin of the prepared systems composed of a and b equals zero. The subsystem 
a shall leave the device (1) to the "right" (Fig. 10), the subsystem b to the "left". 
The subsystem b shall reach the device (2) to register its spin in a definite space 
direction e. The device (3) shall register the spin of the subsystem a in a space 
direction d. 

Quantum mechanics says that for d=e the response of the two devices (2) and 
(3) is strongly correlated. Thus (2) shows a positive spin, when (3) shows a negative 
spin. This correlation is the result if one views (1) as the preparation device and 
(2)+(3) as the registration device. But one can also think of(1)+(2) as the preparation 
device for the system a (the system b may be absorbed in (2)). Then the digital 
indicators of (2) can be viewed as various "trajectories" of the preparation device 
(1)+(2). Using these indicators one can demix the ensemble of the systems a prepared 
by (1)+(2) acording to their spins in the e-direction. 

Let us generally formulate this line of reasoning with the Al23 introduced in 
§1: 

According to (1.4), 

}'123(a l x a2 x a3 n M n blO x b20 X b30 , a l x a2 x a3 n M n bl x b2 x b3) 

= }'l p(L! (WI' a2, k2), f3(a3, k3)) 

=}'lfl(Wl, f3(a2 x a3, k2 k3)) 

with Al WI as in (1.5). 

(2.2) 

Because of f3(a3, 1) = 1, from (2.2) conversely follows that the left side of (2.2) 
is independent of a3 for b3=b 30 . Similarly, because of f3(a 2 xa3,1 1)=1, the left 
side of (2.2) is independent of a2 and a3 for b = b20 , b3 = b30 . Hence the relation 
(2.2) expresses what we symbolically depicted in Fig. 9. But an EPR experiment 
must in addition obey (2.1); i.e. in the above reasoning one can interchange (2) 
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and (3). This implies that 
(2.3) 

must be independent of a2' In our example: The ensemble prepared by (1)+(2) 
does not depend on the direction e in which the spin is registered by (2). Naturally, 
the demixability of the ensemble (2.3) depends decisively on this e. Let us now 
formulate this generally. 

Analogously to III (4.1), the ensemble prepared by (1)+(2) is given by 

(2.4) 

where a=(al x a2 x M3)nM. 
In an EPR experiment, this cp(a)=cp((alxa2xM3)nM) is independent of a2 

because (2.3) is so. But cp(a) can be demixed according to the trajectory effects 
k2 of (2). 

In order to clarify such demixings still more, let us replace (in a limit considered 
frequently) the k2 by elements 0"2E81(S2"J, i.e. by Borel sets of trajectories (resp. 
by their characteristic functions, which we also denote by 0"2)' Therefore, LI (W 1, a2' 0"2) 
is that demixture component of LI (Wi' a2' 1) for which the trajectories of (2) lie in 
0"2' If 0"2v is a decomposition of S2m (i.e. U 0"2v=S2m and 0"2vn0"21'=0 for v=l=,u), 
then 

(2.5) 

is a demixture of LI(Wl' a2' 1)= cp(al x a2 x M 3 n M). For fixed a2' all demixtures 
of the type (2.5) are coexistent demixtures. By changing a2 one can, according to 
the EPR experiments, also obtain non-coexistent demixtures of the same ensemble 
(since LI (Wi' a2' 1) does not depend on a2)' 

In the example of the spin directions one can demix the ensemble LI(Wl' a2' 1) 
by a choice of a2 in any arbitrary spin direction e. Two distinct spin directions 
el and e2 lead to coexistent demixtures if and only if el = -e2. 

Therefore EPR experiments present no contradiction to quantum mechanics. 
What was felt so "paradoxical" about these experiments? 

One can arrive at contradictions if one attempts to interpret the EPR experiments 
ontologically. An ontological interpretation is a description in which an objective 
structure is assigned to the macro systems in addition to the structure assigned to 
them physically on the basis of the trajectories. Alternatively, to the microsystems 
one assigns ontological structures which exceed what can be expressed by preparation 
and registration procedures. 

We first consider the usual attempt to assign ontological structures to the micro­
systems: If these (the pairs (a, b)) have "left" the device (1) (a sufficiently long time 
has elapsed since the preparation process has run its course), then the microsystems 
no longer interact with the preparation device. Hence, its ontological structure is 
fixed with respect to what and how each of the systems (the pairs (a, b)) "is". Indeed, 
the device (2) acts on the system (on the subsystem b), but it can no longer act 
on the systems reaching the device (3) (the subsystems a). Such an action would 
be transferred faster than light (the devices (2) and (3) may be very far apart and 
respond, say, at the same time - in the adopted reference system). An influence 
of the device (2) on the microsystem reaching the device (3) is no longer possible 
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and indeed could not be achieved with any known interaction. Hence the action 
of the microsystem on the device (3) can only depend on the ontological structure 
of the microsystem (already determined after it left the device (1» and on the ontologi­
cal structure of the device (3). 

The choice of the device (2) as well as what happens to it, cannot influence 
what happens on the device (3). But one obviously can demix an ensemble on the 
basis of the indicators of the" not influencing" device (2) so that the mixture compo­
nents make one of the indicators (corresponding to decision effects e. with ~>.= 1) 

respond with certainty. Then this "certainty" should already be present as an onto­
logical structure of the microsystems after these leave the preparation. It would 
remain impossible, on the basis of the trajectories of the preparation device (1)+(2) 
to determine all the ontological structures of the individual microsystems; but it 
should become possible (at least in thought) to sort out the microsystems according 
to their ontological structures. Let us express this mathematically: 

In an EPR-experiment we take (1)+(2) as a preparation device. This preparation 
device is characterized by a set Q(a) of preparation procedures for the microsystems 
leaving the device (1)+(2). The preparation procedure a is given by (a l x a2 
xM3)nM and the corresponding qJ(a) by (2.4). Other procedures a'eQ(a) are e.g. 

(al n bl x a2 n b2 x M 3) n M; these are characterized by registrations bl , b2 of the 
trajectories of (1) and (2) (see 11(4.1» where we replace cl=alnbl by alnbl 
x a2 n b2). It is also possible to take (in a special EPR-experiment) a fixed (al n b l 
xa2 xM3)nM as the basic preparation device a for ~(a). For simplicity we discuss 
only the case of a=al x a2 x M3 n M. 

·Our imagination that the procedures of ~(a) may be decomposed according 
to ontological structures of the microsystems, may be expressed by additional subsets 
0. of M with 0. c a. Here 0. characterizes a finer sorting possibility, according to 
which even the elements a' of ~(a) can be decomposed: 

a' = (a' n ii) u [a'\(a' n 0.)]. 

Therefore we imagine a set §(a) with §(a)::::)~(a) and require 
1) §(a) is a Boolean ring with a as unit element. Therefore §(a) is also a structure 

of species selection procedure. We do not require that §(a) is a structure of species 
statistical selection procedure since experimentally we cannot take any statistics 
with decompositions possible only in thought. The following is of decisive significance 
for describing the meaning of the 0. e § (a) : 

Let eoeG be the support of qJ(a). If a registration method bo may be combined 
with a, then a'nbo*0 for all a'e~(a) with a'*0. We also presume o.nbo*0 for 
all o.e§(a) with 0.*0. For each eeG with e~eo, an element o.e§(a) (0.*0) shall 
be called "e-certain" if the relation 0. n bo = 0. n b holds for each effect procedure 
(bo, b) with ljJ(bo, b)~e and bo combinable with a. Let the subset of the e-certain 
o.e§(a) be denoted by §(a; e). It is obvious that el ~e2 implies §(a; el)::::)§(a; e2)' 
To simplify the applicability of our concepts, we consider not only the registration 
procedures from Bf but also all the "idealized" registration procedures according 
to V § 10. Moreover, for simplicity let us assume that for each ee [0, eo] there are 
a registration method bo and an idealized registration procedure be bo with 
ljJ(bo, b)=e (weaker conditions would suffice; see Bell's inequality [38]). 
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For each pair of iilEl(a;e) and ii2El(a;eJ.), we find ii1nii2=0. Proof: If we 
had iilnii2=1=0, there would exist a bo and a b such that ii1nii2nbo=l=0 (because 
iI1nii2El(a)!) and ifJ(bo,b)=e. Then ifJ(bo,bo\b)=eJ.. From iI1E~(a;e) follows 
iilnbo=iilnb; from ii2El(a;eJ.) follows ii2nbo=ii2n(bo\b). Hence ii1niI1nbo 
=iil nii2 nbn(bo \b)=0, in contradiction to al na2 nbo =1=0. 

For l(a) it is crucial to formulate the ontological demixability in thought: 
2) For each pair of e1,e2EG, with e1,e2:$;eO and e1.ie2, there exist three elements 

iil El(a; ed, ii2El(a; e2), ii3El(a; eO-el -e2) with a=ii1 Vii2 v ii3. 
But just this requirement of ontological de-mixability leads to a contradicton 

with quantum mechanics, as will be shown now. 
First let us cast the requirements 1), 2) into a more suitable form. For this 

purpose we introduce a mapping [0, eo]~gp(a) by 

¢(e)= U ii. 
ile.2(a;e) 

Since el ~e2 implies l(a; e1)::::l1(a; e2), we have 

el ~e2=-¢(el)::::l¢(e2)· 

Since iil El(a; e) and ii2El(a; eJ.) imply iil nii2 =0, we have 

¢(e) n ¢(eJ.)=0. 

According to (2.7) and (2.8) we have 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

¢(e1)n¢(e2)=0, ¢(edn¢(eo-el-e2)=0, ¢(e2)n¢(eO-e1-e2)=0; 

therefore ii2 v ii2 v ii3 = a implies 

iil=¢(e1), ii2=¢(e2) and ii3=¢(eO-el-e2). 

Since eo is the support of cp(a), for O=l=e<eo we have ll(cp(a),e)=I=O. For an ideal 
registration procedure b with ifJ(bo, b)=e follows )",9'(anbo, anb)=I=O and therefore 
anb=l=0. With el =e and e2.ie, (2.9) implies a=¢(e)v¢(e2)v¢(eO-e2-e). Since 
e2 and eo-e1-e are orthogonal to e, from iiEl(a;e2) (resp. iiEl(a;eo-e2-e» 
follows iinb=0 and hence ¢(e2)nb=0 and ¢(eo-e2-e)nb=0. Therefore anb 
=¢(e)nb=l=0 and thus 

(2.10) 

We shall now see that we arrive at the same mathematical requirements if we 
attempt to interpret only the macroscopic situation ontologically. The new departure 
starts from the three conditions (1.2), (1.3) and (2.1) for an EPR-experiment. (1.2) 
defines that the systems (2) and (3) do not act on (1). (1.3) defines that the system 
(3) does not act on the systems (1) and (2). (2.1) defines that the system (2) does 
not act on the systems (1) and (3). Hence there is no interaction at all between 
the systems (2) and (3). The causes for changes in the systems (2) and (3) can therefore 
lie only in the system (1). In the EPR experiment we can "determine" the action 
of the system (1) on (3) by considering the action of (1) on an appropriate auxiliary 
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system (2). Hence the action of the system (1) on (3) must be determined by causes 
lying only in (1), also if all these causes cannot be discovered on the system (1) 
alone or by a fixed auxiliary system (2). The action of (1) on various systems (2) 
can "reveal" once this and once that cause but never all causes. The actions of 
(1) on (3) can be determined by the behavior of appropriate systems (2), if the system 
(3) registers decision effects in the sense of quantum mechanics. 

One can define the decision effects without speaking of microsystems as action 
carriers. This is demonstrated by the definitions III (4.2), III (4.1), the definitions 
of "effects" in III 05.1.2, III 05.2.2, and finally by the definition VI 01.3.1. Obvious­
ly all these conditions are difficult to verify for an experimental physicist. Therefore 
let us add here another possible method to characterize the decision effects. 
e= l/J(bo, b) with bo, b according to III (4.2), III (4.1) is a decision effect (or approxi­
mately so), if there is no other effect g=l=O with g~e=l/J(bo,b) and g~l-e 
=l/J(bo, bo \b) (resp. if such a g is approximately 0). We may define: The effects 
gl' g2 exclude each other ifO~g~gl,g2 imply g=O. An effect e is a decision effect 
if and only if e and 1-e exclude each other. *) 

For a directed action of the system (1) on other systems, the action of the causes 
lying in (1) is determined if the other systems register decision effects. "Mentally" 
(a l x a2 x M 3) n M must therefore allow finer sorting according to the ontological 
causes. Sets thus sorted out would show determined actions in the registration of 
decision effects e~eo. But mathematically such a sorting out of (al x a2 x M3)nM 
is equivalent to a sorting out of a as a preparation device of the microsystems. 
Whether we perform the ontological foundation of the above requirements 1), 2) 
more macroscopically or more microscopically, is therefore without importance to 
the contradiction with quantum mechanics. 

Let us comprise the requirements 1),2) in an axiom using (2.7) through (2.10): 
OEPR: There is a preparation procedure aEfl for which the following relations 

are fulfilled: 

(i) With eo. as the components (see VII §5.4) of the support eo of cp(a), there 
is at least one v where eo. ~ is not less than three-dimensional. 

There is a mapping if> of [0, eo] c:G in g>(a) with: 

(ii) el ~ e2 implies if> (el) c: if> (e2), 

(iii) if> (e) n if> (el.) =0, 

(iv) el' e2 E [0, eo] and el.l e2 imply 

a=if>(el )uif>(e2)uif>(eO -el -e2)· 

(v) O=l=e ~eo implies if>(e)=t= 0. 

There are many EPR-experiments which obey the condition (i). 

For classical systems (in sense of VII §5.3) no additional ontological structures 
are necessary to "explain" EPR-experiments, since all demixtures of ensembles coex-

*) If we define: eeL separates if e and l-e exclude each other, we find, without any axioms 
for L, that all extreme points of L separate. If G is defined (according to A V 1.1) then G C De L 
(see VI T 1.3.6). We cannot prove more without the representation theorem in VIII, i.e. without 
the spectral theorem for the elements of L. 
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ist (VII TS.3.3). Therefore it was reasonable to formulate OEPR only for the case 
of microsystems as action carriers. 

Let us show that OEPR leads to a contradiction. 

A mapping [0, eo]~&(a) which satisfies (ii) and (iii) of OEPR, shall briefly 
be called an order orthomorphism of [0, eo] in &(a). A function m(e) defined on 
[0, eo] with m(e) = 1 or =0 for which el :::;;e2=>m(ed:::;;m(e2) holds and also m(el )= 1, 
e2 .lel =>m(e2) =0, shall be called a discrete measure over [0, e]. 

If cp is an order orthomorphism, then a discrete measure is defined by mAe) = {1 
for xecp(e) and ° for x¢cp(e)} for each xea. Conversely, if a discrete measure mAe) 

is defined for each xea, then an order orthomorphism [0, eo]~&(a) is defmed 
by cp(e)={xlmAe)=1}. 

For an atom p of the lattice [0, eo], the components of p (see VII, §S.4) are 
equal to zero except for a single component Pv, where Pv is the projection operator 
on a vector qJeeov JIf.,. For this reason, to characterize the atoms of [0, eo] we shall 
denote them by ev<p' 

We present the proof of contradiction in several steps which we shall arrange 
in theorems. 

T 2.1 For an order orthomorphism and the described corresponding measures, the 
following two relations are equivalent: 

(i) There are an eov JIf." and a qJeeov JIf." and an xeM, such that mAev<p) = 1 
and mAeVrjl + evrjl ·) = mAevrjl) + mAevrjl ·) hold for all I{I, I{I' eeov JIf." with I{I .l I{I'. 

(ii) With ,1v(I{I, I{I')=cp(evrjl+evrjl.)\[cp(evrjl)ucp(evrjl')]' we have 

u 

Proof. (i)=>(ii): According to (i), there is an xecp(ev<p) which obeys x¢cp(evrjl ) and 
x¢cp(eVrjl·)=>x¢cp(eVrjl +evrjl ·). Therefore, from (i) follows x¢,1v(I{I, I{I') and hence 

and 

xe U cp(evrjl ), 
t/JeeoyJft'v 

x¢ U ,1v(I{I,I{I')· 
rjI.rjI·elK. 

rjl1.rjI' 

(ii)=>(i): There is an xeM such that 

xe U cp(evrjl) 
l/Ieeo v .1l'v 

and 

x¢ U 
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From XE U ¢(evl/l) fallaws that there is a cpEeov £" with xE¢(evtp), i.e. mAevtp)= 1. 

Because af 
xfjo U 

far all pairs 1/1, 1/1' we have xfjo LJ v (1/1, 1/1'). 
If mAevl/l) = 1, i.e. XE ¢(evl/l)' we find mAevl/l') =0 (since mx is a discrete measure) 

and because evl/l+evl/l,e.evl/l alsO' mAevl/l+evl/l')= 1. If mAevl/l)=O and mAevl/l')=O, 
i.e. xfjo¢(eVI/I)u¢(eVI/I')' then xfjoLJv(I/I,I/I') alsO' implies xfjo¢(evl/l+evl/l')' i.e. mAeVI/I 
+eVI/I')=O. 0 

T 2.2 If ane af the Hilbert spaces eo v Yl'v is at least three-dimensianal, then there 
is nO' discrete measure m aver [0, eo] far which there is a CPEeov £" with m(evtp) = 1 
and m(eVI/I + evl/l') =m(evl/l) + m(evl/l') for all pairs 1/1, 1/1' Eeov £" with 1/1.11/1'. 

Proof Let bath canditians be fulfilled. Then, for 1/1, 1/1' E eo v£", 1/1 .11/1' the fallawing 
twa relatians hald: 

1. m(evl/l) = 1~m(eVI/I')=0 (since m is a discrete measure) 
2. m(evl/l)=O and m(evl/l')=O imply m(evxl=O far each vectar x=al/l+/N' (we 

assume 111/I11=IWII=1 and laI2+I/W=1), since O=m(evl/l)+m{evI/I,)=m(evl/l+evl/l') 
e.(evx)· 

If ane chaases a, vectar cP' arthaganal to' cP, then m(evtp)= 1 implies m{evtp') =0. 
Therefare, since each vectar l1=acp+f3cp' makes either m(eVq) = 1 ar m(eVq)=O, far 
each 8>0 there are twa vectars 111> 112 with 11111 -11211 <8 and m(evq ,} = 1, m{evq2) =0. 

We canstruct a cantradictian by deducing from m(eVq ,} = 1 and m(eVq2)=0 the 
canclusian m{eVq,}=O: 

Withaut changing eVJI2 ' we can change 112 by a phase factar eir sa that <111,112> 
is nan-negative and real. We set <111,112> = cas 9. Therefare, 9 can be chasen arbitrari­
ly small because 1111 1 -11 211 < 8. In the subspace af eo v £" spanned by 11 1 , 172, we choase 

. 1 
a vectar 113 perpendIcular to' 111' e.g. 113 = -111 cas 9+112 -.-; then 112 =111 cas 9 

sm9 
+ 113 sin 9. Mareaver, we chaase a vectar 114 that is orthaganal to' 111' 113 (eov £" 
is at least three-dimensianal !). Because of m(evq ,} = 1, we have m(evq3 ) = 0 and 
m{evq)=O. According to relation 2, for each vector 11 from the space spanned by 
112, 114 as well as from the space spanned by 113, 114, we have m{eVq)=O. We now 
chaase as fallaws twa vectars 11 and 11' from these twa subspaces: 

With (j = ± 1 and with z as a salutian of Z2 - Z cas 9 + sin 2 9 = 0 (z is real pravided 
sin2 9~!- cas2 9, which we can assume since 9 can be chosen arbitrarily small!), 
we set 
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Because ofm(ev~)=m(ev~')=O, for <5= ±1 then follows 

1 1 
m(evp)=m(eva)=O for p= ]/2(171 +174) and (J= ]/2(171 - 174), 

On the basis of the above relation 2, from this follows m(ev~)=O. 0 

The next theorem follows immediately from T 2.1 and T 2.2: 

T 2.3 For each of the Hilbert spaces eov ~ (having at least three dimensions) with 
Llv from T 2.1 we get 

Llv(t/t, t/t'). 0 

T 2.4 If an eo" ~ and an '1Eeov ,Yf,. obey cf>(ev~H'-0, the relation 

cannot hold for all orthogonal pairs el, e2::; eo. 

Proo.f We choose el =ev!{/, e2 =ev!{/" with t/t 1. t/t'. Because of cf>(ev~)=t=0 we have 

U cf>(ev!{/)=t=0. 
lP eeo v .1Pv 

Therefore, according to T 2.3 there is a pair t/t, t/t' Hov ~ with ,1,,(t/t, t/t') =t= 0. Because 
of cf>(eO-e1 -e2)ca\cf>(evif,+e,,!{/,) we have ,1v(t/t,t/t')ncf>(eO-e1 -e2)=0. Since 
Llv(t/t, t/t) n cf>(ei) = 0 holds for i = 1, 2, we have 

,1v(t/t, t/t') = ,1 ,,(t/t, t/t') n a 

= ,1 ,,(t/t, t/t') n [cf>(ed u cf>(e2) u cf>(eo - el - e2)] = 0 

in contradiction to ,1v(t/t, t/t')=t=0. 0 

Therefore, by T 2.4 the condition (iv) of OEPR leads to a contradiction with 
quantum mechanics if at least one of the Hilbert spaces eo" ~ contains an 17 which 
makes cf>(ev1,)=t=0. This last condition is fulfilled by (v). 

From this proof of the contradiction, one recognizes with the aid of T 2.1 through 
T 2.4 that one can weaken the assumptions in OEPR. We need not assume that 
the mapping cf> is defined on the whole lattice [0, eo]; it suffices to replace [0, e] 
by [0, eo v] where eo v ~ is no less than three-dimensional. 

If eo" Yt;, can be represented as a product space £(1) x Ye(2) and £(2) is not 
less than three-dimensional, it suffices to replace [0, eo.] by the subset of all the 
e::; eo v of the form 1 x e(2), where e(2) is a projection in Ye(2). 

We may weaken OEPR still more by replacing [0, eo.] or the set {e(2)} by suitable 
subsets, for example by denumerable ortho-complemented and atomic sublattices 
of [0, eo,,] or of{e(2)} which are (J(::?B', ::?B)-dense in [0, eo,,] or {e(2)} respectively. 
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All this shows that an ontological interpretation of a single (suitable) EPR-experi­
ment contradicts quantum mechanics. 

Now what should one think of this contradiction? There are two possibilities: 
1) one can deny that the ontological interpretations are meaningful. 2) one insists 
on this interpretation and seeks for a mistake in the conclusions leading to OEPR. 

Most easily one can recognize such a mistake in the last "macroscopic" argumen­
tation. The relation (2.1) says only that systems (2) do not change the frequency 
of the trajectories on (1) and (3), and we had defined by (2.1) that (2) "does not 
act" on (1) and (3). 

This is a very physical definition: No physically testable influence of (2) on (1) 
and on (3) exists. But if we allow an ontological decomposition according to invisible 
causes lying in (1), then it is inconsequent to use (2.1) as the condition that there 
is no action of (2) on (1) and (3). In spite of (2.1) there may be an ontological 
action of (2) on (1) and (3), an ontological action which cannot be detected by 
the trajectories of (2) and (3). Similarly, from the relations (1.2) and (2.3) one cannot 
deduce that there is no ontological interaction between (2) and (3). Why did we 
not consider these possibilities in the course of our first hasty conclusions? 

Obviously, on the basis of many experiences with directed action transfers by 
macro systems (e.g. the transfer of the action of a weapon on a windowpane by 
a bullet), we tend to conclude that III (3.1) means that no ontological action of 
the systems (2) on (1) is possible. Then the statistical dependence of the trajectories 
of the system (1) and (2) rests solely on the fact that the action emanating from 
(1) can differ for different trajectories of (1). But how may we conclude this? Perhaps 
only because this notion in the case of a weapon as system (1) and a windowpane 
as system (2) appeared to be correct? Or perhaps because in many (but not all!) 
experiments the trajectories on (2) run their course later than those on (1) and 
no actions can reach backwards in time? 

But if in discussing EPR-experiments we allow ontological structures of a system 
which do not show up in the trajectories of this system, then we also can no longer 
conclude from III (3.1) that the causes for ontological structures of (1) can lie only 
in (1) itself, but those of (2) can lie in (1) and (2). Rather, we must then also allow 
that in spite of III (3.1) there is a true ontological interaction of (1) on (2) and 
of(2) on (1), only with the special constraint III (3.1). Thus the cause for an ontological 
structure of (1) could also lie in what has happened or will happen to (2). This 
"reverse ontological action" of (2) on (1) (also possibly from the future into the 
past) is indeed "unusual" (we are not accustomed to something like this in our 
normal surroundings), but need not be logically excluded. 

But if we allow such a reverse action, then the above conclusions from the EPR 
experiment are impossible. Namely, (2) can act in reverse on (1) (in the past) so 
that the trajectory on (3) in fact is "caused" by the trajectory on (2). In the spin 
example, the indicator on (3) of the spin in the direction e can be produced by 
means of the indicator on (2). The process on (2) characterized by the indicator 
can act in reverse on (1) in the past (on (1) not recognizable in the trajectories) 
and act further from (1) into the future on (3). Of course, also (3) can correspondingly 
act on (2). Hence, between (2) and (3) there can very well exist an interaction that 
runs its course over (1) (in the past). Of course this interaction, because of the condi­
tions (1.2), (1.3), (2.1), cannot "transmit information" from (2) to (3) or from (3) 



§3 Microsystems and Time Direction 143 

to (2). For, by transmission of an information from (2) to (3) we understand that 
we arbitrarily make an adjustment (preparation) on (2) which can be determined 
by processes on (3). 

But transmission of information with directed interaction from (1) to (2) is possible 
under the condition III (3.1). In fact, with given a2' b20 , b2, 

A.12 (a1 x a2nM nb10 x b20 ,a1 x a2nM nb lO x b2) 

depends as well on the "arbitrarily" chosen a1 • 

After these critical remarks on the problem of ontological interactions, everything 
resolves very naturally. In the first conclusions we had "unknowingly" allowed our 
experiences with classical systems as action carriers to influence us. Hence conversely 
we must not be astonished that the consequences 1) through 3) deduced for ~(a) 
are allowed only for classical systems as action carriers but not for microsystems. 

If one thinks of(I)+(2) as a preparation device, and the indicator on (2) responds 
later than the indicator on the registration device (2), then we have an example 
where probability propositions are also made backwards in time. Since often "a 
priori" a special connection of probability and time direction is assumed, we shall 
devote the next section separately to this problem. 

§ 3 Microsystems and Time Direction 

The EPR experiments discussed in §2 can serve as examples for the situation 
that probabilities can also be meaningfully defined backwards in time. Namely, if 
one considers (1)+(2) together as a preparation device and (3) as a registration 
device, then one can construct the devices so that the trajectories on (2) run their 
course later than those on (3). But from the trajectories of (2) one can infer the 
behaviour of the trajectories on (3) that have already run their course earlier. 

The possibility of a meaningful definition of probabilities in both time directions 
exists still much more generally. It can already be read off from simple situations 
of preparation and registration. 

If aI' a2 are elements of fl.' with al::::> a2' and if (bo, b) is a procedure that may 
be combined with aI' the following probabilities are well defined: 

A.(a1 n bo, al n b) = Il(<p(al), t{!(bo, b)), 

A.(a2 n bo, a2 n b) = 1l(<p(a2), t{!(bo, b)), 

A.(al n bo, a2 n bo) = A.~(al' a2), 

'( b b)- A.~(al> a2) 1l(<p(a2), t{!(bo, b)) 
I\. a1 n ,a2 n - Il(<p(al),t{!(bo,b)) . 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

If we assume that the registration procedure b happens at times essentially later 
than the preparation procedures a1 and a2' then (3.1) and (3.2) represent probabilities 
in the direction of the future. They give the probability of the "later" indicator 
b after preparation according to al resp. a2 has happened earlier. The probability 
(3.3) does not depend on the registration. The probability (3.4) represents the proba­
bility of a2 relative to al under the condition that the indication b responds "later" 
relative to a 1 and a2. The probability (3.4) can also be easily tested experimentally; 
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from the experiments XEa1 n b one needs only to sort out those with XEaz n band 
to note the corresponding frequency. 

Therefore, it is an error to think that the concept of probability in physics requires 
a time scale (perhaps a generally valid one in contrast to relativity) and can be 
understood only as predicting events that have not yet occurred. 

Despite this, from the beginning there is distinguished a time direction in the 
theory of preparation and registration as the basis of quantum mechanics (as it 
was described in III). But in what way? 

We have already rejected the opinion that in the formula J.l(w, g) for the probabili­
ty the symbol w means our knowledge, g a possible effect, and Il(W, g) a measure 
for our expectation that g occurs. According to this opinion it would be senseless 
to speak of an expectation for something that has already happened. Therefore, 
this concept of probability presumes the existence of at time direction. 

For us, probability is the picture for reproducible frequencies; and it is the pre­
scription for a correct experiment, that the frequencies are reproducible. In this sense, 
physical probability is a property of devices. A roulette has a physical property, 
namely the frequencies for the various numbers. If it was well manufactured by 
a craftsman, these frequencies are equal for all numbers. From the physical property 
"frequencies" we must distinguish what a gambler calls his chance. In our interpreta­
tion of quantum mechanics in III, there is no symbol of our knowledge nor our 
expectations. Therefore we have to look for other structures which perhaps distin­
guish a time direction. 

If we take quantum mechanics in the form g> g; of III § 5.2 (forget the preparation 
and registration procedures and take only K and L as base sets), we are tempted 
to define the time direction from WEK to gEL. 

But this is not correct. The EPR-Experiments (XII, §2) demonstrate that there 
can be processes which partially determine the ensemble wand occur later than 
the registration processes. The direction from W to g in the first place determines 
the direction of the action of the preparation device on the registration device (see 
remarks after III (6.4.9». Nevertheless there is something in this directed action 
which corresponds to a time direction. To elaborate this structure is more complicat­
ed than to pretend that g is later than w. 

The key to find the right connection between directed action and directed time 
was already mentioned in § 3: the transmission of information. In this connection, 
information was defined as an "arbitrary" structure, which we produce. By the 
directed action, information obviously can only be transmitted from the preparation 
to the registration device. But not all that occurs on the preparation device is informa­
tion, since not all is "arbitrary". Information in this sense can only be transmitted 
in the time direction which we call future. How can we see what part of W is informa­
tion? 

For this purpose we must return to the description in III. There the preparation 
of the microsystems by the device (1) is described by a preparation procedure a1 

for the device (1) and trajectories from the space Yj . It was essential for the description 
in III that the trajectories are not arbitrary; they start after we have prepared the 
experiment. The procedure al is exactly what describes the structure of the device 
(1) as far as it is arbitrarily produced by us, i.e. al describes the information put 
into (1). This information, or parts of it, can be transmitted to the registration device 
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(2); this can be seen by the influence of al on the trajectories of (2). We know 
that information can only be transmitted into the future. Therefore, for "good" 
experiments we had introduced in III the prescription that the trajectories should 
only originate at the time "zero", where "zero" was the time "before" which the 
preparation ar has been finished. Hence there is indeed defined a time direction 
by the transmission of information from the preparation device to the registration 
device. In this sense, the time direction to the future is inherent in the direction 
from w to g, even though this inherence cannot be'seen immediately. 

By this. inherent time direction we are again confronted with the fact (already 
described at the beginning of XI § 7) that physics cannot be separated from human 
actions. The time direction in quantum mechanics is nothing but the fundamental 
fact that we can only influence the world in the future. 

In the description of the experiments in III, there is another structure connected 
with the time direction: the irreversibility of the trajectories. This does not affect 
w or g; but iti is' essential for the discussion of motion, reversal since there is no 
such reversal for all processes on the devices. 

It is well known' (see, IX §2) that for micro systems there is a motion reversal 
transformation which transforms a WEK into a motion reversed w'=CwC- l (see 
IX (2.19)). If quantum mechanics is a g.G.-closed theory (in the sense of [3] §§8 
and 10 and of XIII §4.3), then there should be preparation procedures aEfl and 
a'Efl for wand w', respectively, such that cp(a)=w and cp(a')=w"; But it is completely 
unknown how in reality to construct a device for the procedure a' if one for a 
is given. Certainly one cannot obtain the device for a' as a motion reversed device 
for a. To begin with, there does not exist such a device with motion reversed trajecto­
ries. Secondly such an imagined motion reversed device would transmit information 
into the past; hence it would rather resemble a registration device which absorbs 
impinging microsystems. But motion reversal also cannot produce a preparation 
device corresponding to a' from an absorbing registration device since there does 
not exist a macroscopic device which runs in motion reversed sense relative to 
the absorbing registration device. The macroscopic irreversibility prevents us from 
giving the motion reversal transformation w' = CwC- l an experimentally easily con­
ceivable sense. Rather, we appear to have encountered a thoroughly nontrivial prob­
lem, that of constructing two devices a and a' such that cp(a') = C cp(a) C- l • 

The existence of the motion reversal transformation w' = CwC- l is frequently 
interpreted by the idea that the "dynamics of the microsystem" itself is motion 
reversal invariant. Then the irreversibility of the macroscopic processes (with whose 
aid one prepares and registers the microsystem), would not react on the microsystem 
itself. But this reasoning veils the actual problem, since one thinks as if one could 
speak of the microsystems and their dynamics "in themselves" (without the prepara­
tion and registration procedures). The considerations of properties and pseudo-prop­
erties (in [2] II §4, [2] IV §8 and here in V §10 and VII §5.3) show that only for 
physical objects can we discard the preparation and registration procedures com­
pletely from a theory of the systems. For micro systems it is not possible; this was 
drastically brought to our attention in §2. To interpret IX (2.5) as describing the 
dynamics of the systems in itself is also a (wide-spread) misunderstanding. The opera­
tor U. in IX (2.5) describes a displacement of the registration device (relative to 
the preparation device) by a time r (see IX, § 1). Therefore we cannot say that a 
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microdynamics in itself is motion reversal invariant. Motion reversal invariant is 
the time translation of the registration devices relative to the preparation devices 
if it is possible, to a given preparation procedure a to construct another a' with 
cp(a')=C cp(a) C- 1. 

It this really possible? Can enough elements WE K (" physically" dense in K) 
really be prepared by suitable procedures a? To pose the question means to entertain 
doubts that ;JJ g;; is a g.G.-closed theory (in the sense of [3] § 10.3 and XIII §4.3). 

If one looks for preparation devices for the various ensembles wEK, it is obvious 
that the expenditure of material, technical finesse and also money can be extremely 
different for various aEfi2: There are ensembles W for which it is "easy" to construct 
devices a with cp(a)=w. For other WEK it may be necessary to drive the size and 
complexity of the preparation device very high; there may exist such W for which 
the size and complexity is in principle no longer realizable. 

All this seems to indicate that the structure of K, L, and of the time displacement 
operator in ;JJ g;; is an idealization. Though very good for systems composed of 
"few" elementary systems, it becomes worse and worse for bigger systems. In particu­
lar the "real" elements of K will form a subset Kr for which Kr = C Kr C- 1 is no 
longer valid. To ask for Kr is to ask for a more comprehensive theory than ;JJg;;; 
we encountered this already at several places in our development of quantum 
mechanics. 

§ 4 Macrosystems and Time Direction 

Of course also in ;JJ:Y;., (we have described such theories in II) there is determined 
a time direction from the preparation to the registration. This direction was intro­
duced in II by the prescription that the preparation should be terminated "before 
t=O" and that the registration should begin "after t=O". But this distinction of 
a time direction does not imply that the trajectories are irreversible, i.e. that not 
every trajectory motion is the reverse to another motion. Classical point mechanics 
(e.g. in the Hamiltonian form) is an example for a motion reversal invariant theory. 

To formulate the question for motion reversed trajectories more thoroughly, 
we start with the motion reversal transformation C introduced in X §2.6. To define 
a motion reversed trajectory we must introduce a time T. The interval 0 to T shall 
be the time during which we are interested in the trajectories. It makes no physical 
sense to introduce the idealization T= + 00. A motion reversal of a total trajectory 
{z(t) I 0 < t < + oo} would be unphysical because only for a finite time interval the 
considered systems can be isolated. We therefore define a motion reversed trajectory 
only for a finite time interval: The trajectory 

y'=Cy with y'=z'(t)=Cz(T-t) (4.1) 

is called motion reversed to y. Since the elements f of C(Y; ~ T) (defined in II §4.1) 
depend only on the parts of the trajectories between 0 and T, a linear norm-continu­
ous map C of C(Y; ~ T) onto itself is defined by Cf(y)=f(Cy). The Banach space 
dual to C(Y; ~ T) is C(Y)/C(Y; ~ T)J.. The set Km(Y; ~ T)=Km(Y)/C(Y; ~ T)J. 
(with Km(Y) defined in II §3.2) can be interpreted as formed by the physically possible 
ensembles for the trajectory parts between 0 and T; it is a subset of the base K(Y; 
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~ T) of C(Y; ~ T). Then we also have K~,(Y; ~ T)cK(Y; ~ T) and C' K~,CY; ~ T)c 
K(Y; ~ T), with the dual C' of the map C. The set K~(Y; ~ T)~ T)n C' K~(Y; 
~ T) is called the motion reversal invariant part of K~(Y; ~ T). In many cases 
(if the systems are in a box) we have as support of this part only constant trajectories 
z(t)=zo, the equilibrium states. In these cases we call the systems irreversible. What 
has this irreversible behavior to do with the embedding described in X §2? (Therein 
X § 2.6 we mentioned already a special case of irreversibility.) 

First one easily recognizes that irreversibility in [JjJ:y'" can be compatible with 
the embedding of [JjJ:y'" in [JjJ~exp. The fact that K~,(Y; ~ T) n C' K~(Y; ~ T) is essen­
tially smaller than K~(Y; ~ T) need not contradict the fact that K from [JjJ~exp 
shows the motion reversal invariance CKC- 1 =K (the subset Km of K need not 
be invariant). Already the definition of 

Km=co U illt; Km 
t"~O 

makes us expect CK,. C- 1 *Km . 

The set Km(Y) and the corresponding sets K,., K", are determined by the physi­
cally possible preparation procedures for macro systems. Therefore, irreversibility 
enters [JjJ:y'" via the determination of the physically possible preparation procedures. 
This determination cannot be deduced from [JjJ~exp (thus [JjJ~cxp is not comprehen­
sive enough !), but rather must be put into 'CY>'~cxp, e.g. by the embedding procedure 
described in X §2. The discussions in X §§2.S and 2.6 show that irreversibility and 
embedding are strongly correlated. 

Let K",(Y) be characterized as the set of ensembles which can be prepared by 
physically possible preparation procedures. The question arises whether we can 
describe these procedures themselves by physical theories and thus "explain" the 
size of K",(Y). This question is again a problem of compatibility: Is a macroscopic 
theory of a macroscopic part of a larger system compatible with the macroscopic 
theory of this total system? We have no doubt that this is true; see remarks to 
this problem in III §6.6. But this compatibility does not allow a deduction of Km(Y) 
for the parts (for the reasons mentioned at the end of XI §4). Also if we could 
estimate the size of KM(Y) for some systems as parts of larger systems we would 
have to presuppose the set K",(Y) for the larger systems. 

In this sense, the irreversibility of smaller systems possibly can be reduced to 
that of larger systems. The larger the systems the smaller the set of possible prepara­
tions. The earth, the sun are given and cannot be prepared in many specimens. 
Perhaps we may take stars in the universe" as if" they were prepared by procedures 
(in regard to this" as if" see the next section)! The cosmos does not exist in more 
then one specimen and can only be regarded "as if" prepared once by the Big 
Bang. 

The uniqueness of the cosmos poses the problem whether we can derive the 
set K",(Y) for a part of the cosmos from the structure of the cosmos. Then we 
could derive the irreversibility of the parts from the uniqueness of the development 
of the cosmos. Because of the uniqueness of the cosmos it makes no sense to derive 
something like an irreversibility of the cosmos. It makes only sense to derive in 
a theory that e.g. the motion reverse of a burning match contradicts the existing 
cosmos. 
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§ 5 The Place of Human Beings in Quantum Mechanics 

It is undoubted that we make experiments and theories and that we know what 
has happened in the experiments. A question is whether our knowledge and (or) 
our actions have reflection in the theories. There are three basically different view 
points. 

(a) Our knowledge must be represented in a theory as soon as we use the concept 
of probability. In quantum mechanics our knowledge is represented by the elements 
of K (or oe K). Often this view regards the statistical description by quantum mechan­
ics as basic for all of physics, so that classical physics is only a specialization. 

We reject this view as we have mentioned often in this book. Our first argument 
is that we have never seen physicists who adopt this view during their every day 
work. It seems to us that this viewpoint was invented to "solve" pseudo problems 
of the measurement process. Our second and as we hope stringent argument is 
that we can develop quantum mechanics without representing our knowledge in 
the theory, as demonstrated in III to XI. 

(b) As a basis for all theories (glI.o/;., and f7JJ!Yq) we introduced the selection proce­
dures (especially preparation and registration procedures). The word "procedure" 
expresses very clearly that we describe here human actions. We need not review 
this viewpoint here, since we have described.it .throughout this book. In some cases 
(fundamental domains) one can forget the procedures and describe objectively the 
systems (as done in II §1). But if we want to use statistics (unavoidable for systems 
with indeterministic dynamics) we must introduce human actions in the form of 
statistical selection procedures. Therefore the axioms for such selection procedures 
are prescriptions for "correct" acting. They are laws of nature only in the sense 
that the prescriptions can be fulfilled. For f7JJ!Yq it was not possible to eliminate 
totally the procedures, i.e. to make the microsystems physical objects. 

(c) For the last reason, many are disappointed with quantum mechanics as a 
physical theory. They anticipate that a physical theory should describe the real 
world as it is and that all experiments (of course human actions) are only justified 
for detecting the structure of the world. 

There are several objections to our viewpoint (b). Exponents of (a) say that 
frequencies are not reproducible, that they are reproducible only with probability 
and that we have in this sense already presumed the concept of probability to 
introduce probability by frequencies. This objection is not correct, since the word 
probability is used with different meanings (from our viewpoint). If we make many 
experiments, the frequencies N +/N (N + selected cases in N experiments) are repro­
ducible within a small imprecision. It is impossible to find frequencies N +/N which 
differ considerably from a reproducible value IX. Therefore in our viewpoint there 
is "no" probability for the possibility that N +/N is not approximately equal to 
IX. It make no sense that N +/N may be "in principle" considerably different from 
IX since this never happens. 

For us "certainty" of an event has only the meaning that the contrary has 
never been seen. It is physically senseless to say that an event is not certain but 
has only a high probability (e.g. 1_10- 100) and that because of this high probability 
no other case has been observed. This makes no more physical sense than the propo­
sition that on the tip of a needle there is an angel who can never be observed. 
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(To the question of the reproducibility of frequencies see also [3] § 11 and XIII 
§ 2.4.) 

Exponents of (c) object to (b): It is doubtless that we make experiments and 
that we may describe also the experiments by physical theories. But the aim should 
be to eliminate all structures where human activities enter and also all structures 
where the accidental size of humans plays a role. One has to elaborate an objective 
structure also in regions as small as the microsystems. 

The opinion of this objection is not that we have made a mistake but that 
we have stopped the development of the theory too early, before elaborating the 
objective reality of the micro systems. But we have not stopped too early. We have 
eliminated special structures of the preparation and registration devices as much 
as ever possible. A concrete device in a laboratory is a real object. That we cannot 
separate the microsystems completely from the devices is an objective fact and has 
nothing to do with the size of human beings. (That this size is macroscopic and 
not atomic is surely no accident!) 

It is possible to manufacture macro systems in such a way that they may be 
described well as if they where separated (for a time) from the rest of the world. 
To speak of microsystems as isolated from the world makes no sense. The microsys­
tems "exist" because they are produced by macrosystems and act on macrosystems. 
This fact destroys the dream to deduce the macrosystems from their smallest parts, 
the atoms. 

It is one of the most severe errors in physics (still widespread today) that the 
behavior of a total system can be explained by its parts; in the extreme form, that 
particle physics will explain the structure of the world. As physicists we must cease 
to dream and take the world as it is and as it can be changed by our activities. 
To describe a macrosystem as composed by atoms has only the sense described 
in X as a compatibility between?J>!T and ?J>ffqew The consequences of this compati­
bility for the reality of atoms as parts of a macrosystem are discussed in XIII §4.8. 

But we apply quantum mechanics not only to artifacts as devices for experiments 
with microsystems, but also to natural things as e.g. stars or biological objects. 
How can we do this if the theory is based on artifacts? This is a general objection, 
not only to quantum mechanics. 

First we observe that physics could never have developed if we only had walked 
through the world and philosophized over the things we came across. Physics has 
developed as a sequel of craft. It is easy to see also that little of the physics of 
natural things would remain if we had no registration devices as e.g. telescopes 
or modern radar antennas to observe stars. It is no accident that Galilei has con­
structed telescopes and has made experiments on a new way to physics, new versus 
the philosophies in his time. 

One will perhaps agree that no modern physics is possible without the modern 
technology of registration, i.e. measurement and observation. But how can we 
describe given natural objects by a physics which is based on preparation. We do 
not prepare e.g. stars or cats. Nevertheless we make physics of stars and also biophys­
ics of cats. How can we do so? 

We only succeed if we can do so "as if" the objects under consideration had 
been prepared. This "as if" was the starting point for the application of physics 
to natural objects since the beginning of physics. Already Newton's mechanics of 
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the planetary system argues "as if" this planetary system had been prepared a long 
time ago. If we want to explain this preparation of the planetary system we can 
try to describe it by condensing clouds of material "as if" these clouds had been 
prepared a long time ago. If we consider cosmology, also the "Big Bang" is nothing 
but an "as if" preparation of the total cosmos. 

If we register processes in the brain of a cat, we take this brain "as if" it has 
been prepared. The biotechnology demonstrates that we can prepare much more 
than we formerly expected. 

In this connection the viewpoint (c) seduces to the following widespread error: 
By the registration procedures applied to the brain we find the" real" structure 
of the brain and its processes. We find that there are "in reality" only chemical 
and electrical processes. This error is based on the imagination that there are pro­
cesses in the brain itself which can be detected completely by the devices we couple 
with the brain and that the devices have only this task. The right view is that 
"chemical and electrical processes" are only defined by registration (and preparation) 
devices. It is this reality which we meet if we act, e.g. if we couple the brain with 
registration devices. This view allows realities which cannot be defined by the indica­
tion of devices. And we know very well such realities. 

First there is what we call the moment "now". There is no indication on any 
device which can tell us what is the moment "now". Every indication of a clock 
is of the same type, none of these indications is distinguished from the others as 
the moment "now". We meet with this "now" only in our consciousness. This 
"now" is very essential for our life! Nevertheless there is no such "now" in any 
physical theory. Nobody will maintain that there is no "now" in our life because 
there are no indications on devices by which such a "now" could be defined. 

There are many other realities which cannot be defined by indications on devices. 
If we speak of colors and sounds, we do not mean physical quantities. Colors and 
sounds are already known before physicists couple registration devices with brains. 
There is no possibility to define by the indications on devices (as we have defined 
in [2] VIII §2 and [2] VII §4 what electrons are and what the position observable 
of such electrons is) what a color and what a sound is. We know what it is before 
we make biophysics of the brain. This impossibility of definition does not deny 
that seeing of colors and hearing of sound may be correlated with certain indications 
on registration devices. But these registrations cannot explain what cannot be defined 
by registrations. 

It is obvious that all the more there is in principle no possibility to define by 
indications on devices what is love or hatred and even what is the free will. 

In connection with the problem of the free will there is told another fairy-tale: 
The microsystems behave indeterministic ally. But according to the law of great 
numbers, the statistical behaviour of systems composed of many particles goes over 
to a deterministic dynamics for all macro systems, also for brains. This is in contradic­
tion to the free will. 

First it is not proved that there is a statistics of the micro systems themselves 
(we will return to this point below). The statistics is a structure in macroscopic 
experiments that we have described by statistical selection procedures. Secondly 
the law of great numbers has nothing to do with the composition of systems by 
"many" atoms. Rather the discussion of the embedding problem in X makes us 
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expect that the case of a deterministic dynamics as described in X §2.6 is only an 
exception. And this is what also experience shows. Natural (i.e. not artificial) systems 
as we see them on earth have an indeterministic dynamics. Only such exceptions 
as the motion of the centers of mass of the planets are deterministic over a long 
time. That artifacts, i.e. system manufactured by technical procedures, have a deter­
ministic behavior (as much as possible) is not astonishing. This deterministic behavior 
is often the aim of our technical efforts. Who wishes to use a gambling machine 
as automobil? 

An indeterministic dynamics does not contradict the free will. It also does not 
prove the existence of a free will since the concept of the free will cannot be defined 
by indications on devices. 

All these examples show that the viewpoint (b) realistically describes the relation 
between physics and technology as well as the application of physics and technology 
to given structures in the world such as stars or biological systems. This viewpoint 
cannot contradict other concepts as e.g. our impressions of colors or sound or our 
conscience. On the contrary, biophysics can give us new technical methods to heal 
disease. Who is not glad that there are special physical-technical laboratories (called 
operation theatres) and great experts (called surgeons with their teams) if a life 
saving operation is necessary? 

In spite of all our objections to the viewpoint (c), its proponents will not give 
it up since they are enamored of it. Therefore they will try to eliminate step by 
step all difficulties of this viewpoint. We cannot exclude that this might be possible. 
Obviously one may add to our viewpoint (b) imagined structures if one makes the 
addition carefully so that no contradictions to the propositions of (b) arise. But 
how shall we know that these imaginations have something to do with reality since 
all our physical work can be done without them? 

Finally we want to give an example for such an additional imagination. We 
have introduced probability as a function A(Cb C2) describing relative frequencies 
of the selection procedures Cl, C2. It is then possible to define a probability for 
an individual case: For XECl we define A(Cb C2) as the probability for XEC2. This 
probability is a relative one: It is the probability for XEC2 if one considers x as 
element of Cl. The probability for XEC2 may change if we consider x as an element 
of a stronger selection procedure C3 with C1 :=> C3:=> C2: A(C3' C2) =A(C1 , C2) A(C1 , C3)-1. 

One often uses this definition of a probability for individual cases in quantum 
mechanics for C1 =anbo (aE~, boE9lo) and C2 =an b (bE9l(bo». Assuming xEanbo, 
as probability for xEanb we get 

A(a n bo, an b)= Jl(cp(a), t/I(bo, b». (5.1) 

If one does not use these mathematical formulas it is easy to make mistakes. 
For instance one says that for XEa there is a probability Jl(cp(a), t/I(bo, b» of the 
effect t/I(bo, b). If XEa and xEbo where bonbo=0 (bo complementary to bo), then 
there does not exist a probability for the effect t/I(bo, b). If only XEa is realized 
(x is prepared by the procedure a) we have the possibility to decide what registration 
method bo we want to apply. This is a possibility of which we can freely dispose. 
Therefore there is no probability for the selection procedure an bo relative to the 
selection procedure a. 
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The experimental physicist tries to make a and bo in (5.1) as small as possible. 
For simplicity, we do not want here to use idealized registration and preparation 
procedures as in [2] III §4. It suffices to presume that the set {alae.,q, xea} has 
a smallest element as and likewise {bolboealo, xebo} has a smallest element bos' 
so that xeasnbos. Then 

(5.2) 

is the probability that also xeasnb (for bcboJ. All this is correct in the sense 
of the definition of a probability for a single event. 

In the sense of the viewpoint (c), i.e. wishing to eliminate the technical work 
of the experimental physicist, one adds to (5.2) an "objective" interpretation: (5.2) 
is a measure for the "propensity" that x will trigger the indication b. Here propensity 
is meant as a property lying in the microsystems and is considered as the cause 
of reproducible frequencies to occur in experiments. 

Since the imagination of such a propensity has no influence on the work of 
the physicists described by the viewpoint (b), it is a matter of taste whether one 
regards such a propensity as an "explanation". The author of this book does not 
believe that such a propensity describes anything real. It appears to him a psychologi­
cal problem why such concepts are introduced. 

To conclude, the viewpoint (b), taken throughout this book, describes physics 
as an enterprise of human beings to live in the world around them by reshaping 
this world. (Humans cannot live as animals in biological eqUilibrium with the world.) 
Therefore our viewpoint urges us to the question: How shall we reshape the world? 
An undisturbed environment and human life are in contradiction. Not conservation 
but cultivation of the environment, that is the problem. At every state of human 
development, this cultivation requires the highest possible technology, but is never­
theless not an automatic consequence of technology. 

Here one may terminate the reading of this book. Only readers should read 
the last chapter who more rigorously want to use such concepts as physically real, 
physically possible, a more comprehensive theory, experimental tests of a theory, 
etc. (and are not afraid of very abstract formulations). 



xm Relations Between Different Forms 
of Quantum Mechanics and the Reality Problem 

To conclude our presentation of quantum mechanics, let us once more discuss 
whether and how we have attained the goal of an axiomatic basis and how this 
presentation is connected with others. In particular, we will explain precisely the 
connection with the form that is regarded as "standard", which proceeds from the 
basic concepts of "state" and "observable". For these investigations, we use informa­
tion from [3J, [30] and [48]. We will collect those parts of these publications which 
are essential for the explanation of such concepts as axiomatic basis and "more 
comprehensive" theories. Thus the reader may follow the next sections if not afraid 
of very abstract investigations. 

We have sketched relations between various forms of quantum mechanics in 
III §4, III §5.2 and III §6.7, in order to give the reader an indication that in III 
through XII we have in fact presented the "known" quantum mechanics, only in 
a new form. In this form, connections otherwise described in everyday language 
are presented theoretically, i.e. in mathematical form. 

In §4 we will give a foundation for physical statements that concern the reality 
of "unobserved" facts or the possibility for the realization of facts. We have used 
such statements intuitively in developing an axiomatic basis for quantum mechanics. 
Statements about possibilities are also very significant for the interpretation of quan­
tum mechanics. 

§ 1 Correspondence Rules 

Let us regard a ?J>ff as given in the following form, introduced at the beginning 
of II (and described in [3], [30]): ?J>ff is composed of a mathematical theory Aff, 

correspondence rules (-) and a reality domain 111. 
The correspondence rules are prescriptions of how to translate into A ff such 

facts which can be detected in nature or on devices, or arise by technical procedures. 
Only facts in the fundamental domain q; (a part of 111) shall be considered. It is 
important that the description of facts in q; does not use the theory under consider­
ation. This does not mean that we use no theory at all. But we may use only 
"pretheories" to describe the fundamental domain q;, that is theories already estab­
lished before interpreting the theory ?J> ff to be considered. 

Clearly, the fundamental domain q; must be restricted to those facts which may 
be translated into the language of A ff. However, further restrictions of q; are often 
necessary. Such restrictions can be formulated as normative axioms in A:Y. All 
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those facts must be eliminated from the fundamental domain which translated by 
the correspondence rules contradict the normative axioms. Examples will be given 
below (§ 2.4 and § 3.2). 

The correspondence rules have the following form: Some facts in '§ are denoted 
by signs, say letters a 1, a2 , .... In Jlt,:y some sets are singled out as pictorial sets 
E 1, E 2, ... , E, and some relations R 1, R 2, ... as pictorial relations. By virtue of the 
correspondence rules, the facts of '§ are translated into an additional text in J/t:Y 
(sometimes called "observational report"), which is of the form 

(-).(1): alEEil,a2EEiz' ... ; (1.1) 

(-).(2): Rl'l (ail' ak l , ... , al'l)' RI'2 (aiz ' ak" ... , aM) ... , [not RVl (aUl ' ... )J, .... (1.2) 

Here the al' are real numbers which may be absent in some of the relations RI'. 
Let (-), designate the total text (-),(1) plus (-),(2). This (-), resembles a map 
of the facts into J!t:Y; therefore in [2] the correspondence rules have been called 
"mapping principles". 

The distinction between (-).(1) and (-).(2) has no fundamental significance. 
Instead of (-),(1) one may introduce relations T;(x) equivalent to xEE i • Then (-),(1) 
takes the same form 

T;1(a 1), T;z(a2), ... 

as (-),(2). It is essential, however, that for every sign al appearing in (-),(2) there 
is a formula al EEil in (-),(1). 

The correspondence rules are just rules for the translation of propositions from 
common language or from the language of pretheories into the relations (-),. How 
this translation from pretheories should be done is shown in § 3.4. 

The pictorial relations RI' of f1JJ:Y can be represented by subsets 

r I' CEil X Ei2 X ... x R (1.3) 

that is, by the set of all those (Yl,Yz, ... ,a) for which RI'(Yl,Yz, ... , a) is valid. 
(In this and all analogous formulas the factor R may be absent.) For the set on 
the right side of (1.3) we shall write SI'(E1 ,E2, ... , E"R). Then for U=(r 1 ,r2, ... ) 
we have 

(1.4) 

with 

(1.5) 

J!t:Y.xI will denote the mathematical theory J!t:Y completed by the observational 
report (-),. 

We say, that the theory f1JJ:Y does not contradict experience if no contradiction 
occurs in J!t :Ysi'. We do not claim as Popper [62] that this "no contradiction 
with experience" is the one and only criterion to accept a f1JJ:Y. 

We know that in general the relations (-), are not suitable to describe the 
facts in '§ because of imprecisions. Therefore we must generalize (-),(2) by introduc­
ing imprecision sets (see also [40]). We presume uniform structures of physical impre­
cision for the pictorial sets E 1, ... , E,. These can be extended canonically as uniform 
structures for the sets Sp.(E 1, ... ). With an imprecision set np' c S/E1 , ••. ) x SI'(E b ... ) 

as an element of the uniform structure for Sp.(E 1 , ••• ), we introduce the smeared 
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relations 
i'" = {xl there is a YEr" with (x, Y)En,,}, 

r;. = {xl there is a y¢r" with (x, Y)En,,}. (1.6) 

Instead of (-),(2) we then take 

(-),(2): (ai"ak" ... ,CX",)Ei'",,(ai2 ,ak2 , ••• ,CX"2)Ei'''2' ... ,(au" ••• )Ei;" .... (1.7) 

There can be two sources for imprecision: 
(1) Imprecisions in the pretheories, called imprecisions of measurements; (2) an 

imprecision of the theory [l}J!T itself, in the sense that in .A!T d we get contradictions 
if we take too small imprecision sets n,,; we say, that [l}J!T itself is an imprecise 
picture of reality (we know no physical theory which is a precise picture of reality). 

When the imprecision of a measurement is much smaller than the imprecision 
of the theory itself, this is an encouragement to find a "better" theory (a more 
comprehensive theory in the sense of § 3). 

The pictorial sets and relations in the case of the "usual" quantum mechanics 
will not be defined here because we will discuss this problem in §3.3, denoting 
the usual quantum mechanics by [l}J!Ts. We will discuss this problem in a special 
section, since one usually formulates the connection between experience and the 
mathematics of Hilbert space not precisely, so that errors are possible. 

§ 2 The Physical Contents of a Theory 

Quantum mechanics in the usual form is a very instructive example for various 
and very different opinions about what is "physical" of the mathematical objects 
in Hilbert space. Many stories are told which give imaginations without real contents. 
Therefore we must look for a more rigorous method to elaborate the physical con­
tents of .A!T in a [l}J!T. The essential point for this method is to introduce an 
axiomatic basis. We have done this for quantum mechanics in the previous chapters 
and will employ this procedure to elaborate the physical content of quantum theory 
more precisely. 

§ 2.1 Species of Structure 

Every mathematical theory .A!T as a part of a [l}J!T has the form called by 
Bourbaki [50] a "theory of the species of structure };". Let us denote it by .ASI, 
a term already introduced in III §1 (see also [3] and [48]). 

Now .A!T (without the label};) shall contain only set theory together with 
the theories of real and complex numbers, Rand C. (Bourbaki considers as .A!T 
also theories stronger than the theory of sets.) 

The additional ingredient in .A SI is the species of structure }; which is given 
by 

(1) a collection ofletters Yl, ... , y, called principal base sets, 
(2) the terms R and (sometimes) C as auxiliary base sets, 
(3) a typification tES(Yl, ... , Y2, R, C) where S is an echelon construction scheme, 

and t is called the structural term, 
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(4) a transportable relation P(Yl, ... , y" t), called the axiom of the species of 
structure I. 

Here an echelon construction scheme is a prescription of how to get the intended 
set by fInitely many steps, where a step is the taking of a product set or a power 
set. A transportable relation is defIned as follows: 

If}; are mappings Yi~Zi' then in a canonical way we defIne mappings 

where S is an echelon construction scheme. If the}; are bijective, also <11' ... ,/,.)8 
is so. 

A relation P(Yl,"" y" t) is called transportable if }; bijective implies 
P(Zl' ... , Z" u) with u=<Il, ... )8 t. 

If another I' is given by a text of the form (1) to (4) with Xl' ... , Xn as base 
sets, SES'(Xl, ... ) as structural term and P'(Xl, ... , xn,s) as axiom, we call terms 
E1 , ••• , E" U in .H!!iI a derivation ofthe species of structure 1:' if: 

(1) U is a structure of species I', that is, UES'(E 1 , ••• , E"R, ... ) and 
P'(E1> ... , E" U) are theorems in .H!!iI, 

(2) each of the terms E 1, •.• , E" U is an intrinsic term in .H!!iI. 

A term V(Y1> ... , y" t) is called intrinsic, if V is an element of an echelon set 
on Yl' ... ,Yr,R,C and if V(Yl' ... ,y"t) is canonically mapped on V(Zl' ... ,z"u) 

with u=<Il' ... ,/,.)8 t for bijective mappings Yi~Zi' 
Two species of structure I, 1:' on the same base sets Xl' ... , Xn are called equivalent 

relative to the deduction procedures U(Xl' ... , xn,s) and V(Xl' ... , Xn, t) if U( ... ) 
is a structure of species I' and V one of species I and if 

U(Xl' ... , Xn, V(Xl' ... , Xn, t»=t, 

V(X1> ... , Xn, U(Xl' ... , xn,s»=s. 

For .H!!iI as a part of a physical theory, of still greater importance is a case 
more general than that of equivalent structures: Let I, 1:' be defIned as before. 
In addition let be given a deduction of 1: in .HfTJ:' by intrinsic terms E1 (Xl, ... , xn,s), 
E2 (xl> ... ,xn,s), ... ,Er(Xl, ... ,xms) as base sets for a structure U(Xl' ... ,xn,s) of 
species I(U( ... ) also an intrinsic term). 

It could be that there is a species of structure II richer than I, such that 
U(Xl' ... ,xn,s) is also a structure of species II' Here "II richer than I" means 
that II has the same base and the same typifIcation but a stronger axiom. How 
can we exclude such richer II? 

We introduce an additional condition. We call the structure U(X1> ... , Xn, s) of 
species I deduced in .H!!iI. a representation of 1: in I' if the relation 

there are Xl' ... , Xn and S and bijective mappings 

Yi~Ei(Xl' ... ,xn ,s)suchthatsES'(Xl, ... ,xn) 

and P'(Xl, ... , Xn, s) and <11> ... /,.)8 t= U(Xl' ... , Xn, S) (2.l.1a) 
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is a theorem in Jt!Tx. This theorem says that every structure t of species L is 
isomorphic to U(Xl> ... , x., s) for suitably chosen Xl> ... , x. and s. For brevity, we 
shall sometimes say that U represents L in L'. 

In the following we will abbreviate: "there is x" by "3x" and "for every x" 
by 'ix. Then (2.1.1 a) can also be written 

3xl> ... , 3x., 3s, 3f1, ... , 3f,. 

{J; are bijective mappings Yi~Ei(X1' ... , x., s), SES'(X1, ... , x.), 

P'(X1, ... ,x.,s)and<f1, ... ,f,.)St=U(Xl> ... x.,s)}. (2.1.1 b) 

If U(Xl> ... ) is a representation of Lin L', then U(X1' ... ) cannot be a structure 
of a species richer than L. Then if R (Yl, ... , y" t) is a transportable relation and 
if R(E1' ... , E" U) is a theorem in JtffI , this and (2.1.1) imply that R(Y1' ... , y" t) 
is also a theorem in Jt!Tx. 

A familiar example for a representation of a species of structure L is analytical 
geometry. As Jt!Tx, we choose Jt ff (i.e. we introduce no L' at all). As a single 
Ei we take E=R3 and as the structure UE.?J>(R3 x R3 X R) the set of all (Xl' Xz, 
X3; Y1' Yz, Y3, ex) with 

We determine L by a base term y, a structure term tE T(y, R) with T(y, R) = 

.?J>(y x y x R), and an axiom P(y, t) not given explicitly. This P( ... ) is to say, that 

t determines a function Y x y~R+, and gives conditions for d which make y 
a three-dimensional Euclidean space. 

Then U is a structure of species L on the base E = R 3, but even a representation 
of L. The theorem (2.1.1) here becomes 

3f {f is a bijective mapping y~R3 with d(Zl' zz)= g(f(zd,f(zz))}. (2.1.2) 

The proof of this theorem is nothing but the proof, that the Euclidean geometry 

L can be represented by orthogonal coordinates (namely y~R3). 
Another, not so simple example is given in this book. We take L as given by 

the base sets Y1 =K, yz =L (with K, L from IV) and by a structure term tEK x Lx R. 

The axiom P(Y1, Yz, t) determines t as a function K x L~R (see also III T 5.1.4) 
with 

(i) O:::;/l(w, g):::; 1. 

(ii) /l(w1, g)=/l(wz, g) for all gEL implies W1 =Wz. 

(iii) /l(w, gJ=/l(w, gz) for all WEK implies gl =gz. 

(iv) There is a goEL with /l(w, go)=O for all WEK. 

(v) There is a gl EL with /l(w, gl)= 1 for all WEK. 

(vi) For each gEL there is a g' EL with /l(w, g)+ /l(w, g')= 1 for all WEK. 

With K and L (instead of :f{' and Sf) we also construct the spaces P4,P4' as 
in IV. Then P( ... ) claims that K is convex, norm-complete and separable, while 
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L is convex and (J(f1I', f1I)-complete. P( ... ) further contains the axioms A V 1.1, A 1.2s, 
AV 2J, AV id, AV 3, AV 4s (from VI), and AV 4a, AV 4b (from VIII §4.1). 

Let us specify 2:' by a base set x = Yf and such structure terms and axioms 
that 

holds with (disjoint) Hilbert spaces J'f" over the field C (see [2] A VI § 15). Then 
we may define the intrinsic terms E1 =K(Yf1'~' ... ) and E2 =L(Yf1, Yt2, ... ) where 
the elements wEK( ... ) and gEL( ... ) are given as sequences w=(w1, W 2, ... ) resp. 
g=(g1, g2, ... ). Here the Wv are selfadjoint operators in J'f" with wv~O and I tr(wv) 

= 1, while the gv are selfadjoint operators in J'f" with 0::-:::; gv::-:::; 1. As structure V 
we introduce the real function Jl(w, g) = I tr(wv gv). 

V is a structure of species Z; over the sets Eb E2 (see XIII §4.2). That V is 
a representation of Z; (i.e. (2.1.1) a theorem in At~) is proved in VI through VIII. 

§ 2.2 Axiomatic Bases 

In § 1 we have seen, how the correspondence rules enable us to compare experi­
ences with the mathematical theory .If ff, i.e. to establish .If ff Sil. Now we presume 
that At ff is of the form .It~, (possibly there is no Z;', i.e. At~, = At ff' is the 
theory of sets and real or complex numbers only). The pictorial sets E b ... , E, are 
supposed to be intrinsic terms in At ~" The observational report shall be denoted 
by (-); and the physical theory by PJ! ff'. 

There arise several questions: 

1. How is the fundamental domain delimited? It could be that a contradiction 
in At~, .9/' is only caused by the circumstance that in (-)~ we have noted facts 
not belonging to the fundamental domain t§'. 

2. What of At~, can in principle be rejected by experience? What of At~, 
are purely mathematical ingredients without any significance to experiments? For 
instance, does the axiom P'( ... ) of Z;' have any physical meaning? 

The questions under 2. are burning if At ff' is only set theory (including the 
theory of real or complex numbers) and the pictorial sets Ev as the relations RI' 
are constructed by using only the set R of real numbers. In §2.1 we have encountered 
such an example, the analytical geometry. Even in applying a theory we mostly 
use a form where utt ff' is only set theory; such a form allows to use the familar 
methods of dealing with real numbers. But if At ff' is only set theory, then all 
physical aspects of the theory must lie in the definitions of the pictorial sets Ev 
and pictorial relations Rw How can we exhibit the physical aspects of these defini­
tions? 

We try to answer all these questions by introducing an axiomatic basis for ,9ff'. 
The starting point for an axiomatic basis is the singling out of the pictorial 

sets and pictorial relations. Let x 1, .. " Xn be the (principal) base sets and s the 
structure term of 2:'. The Eb ... , Ev may be intrinsic terms Ev(X1, ... , xn,s), We 
introduce the term V (1"1,1"2, ... , ,All, ... ), where the 1"1' from (1.3) represent the pictorial 
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relations (see § 1) and .Ali, ... are uniform structures for the physical imprecision. 
Then we have 

UES(E 1 , ••• , R) : (2.2.1) 
with 

S(E 1 , ••• )=&JSdE1 , ••• , R)x&JS2 (E 1 , ••• )x ... X&J(&J(XI xX 1))x .... (2.2.2) 

Here &J (&J (X 1 X XI)) gives the typification of the uniform structure .Ali, and S" is 
given by the right side of (1.3). 

If U is a structure of the species 1: (with Yl, ... , Yr the base terms and 
t=(t1 , t2 , ••• ; St ... ) the structure term with t,,(Yi l x Yi2 x ... x R as in §2.1), we may 
construct a new &J fI from &J fI' as follows. 

As fundamental domain rg of &JfI we use the rg' of &JfI'. As mathematical 
theory of &JfI we choose .A:!i;;. The correspondence rules are transferred in obvious 
ways from &J fI': 

1. Instead of (-)~(1) given in (Ll) we write 

(2.2.3) 

2. In &JfI' we had introduced the "smeared" relations f", r;, according to (1.6). 
Now we assume intrinsic terms [I" in .A:!i;; which transported to .A:!i;;. give the 
nil" As smeared relations we define 

til = {zl there is a z' Et" with (z, Z')E!1,,}, 

t~ = {zl there is a z' rf;t" with (z, Z')E!1,,}. 

Then for (-)~(2) in (1.7) we write 

(-).(2): (ail,ak2' ... a".)Et"I' ... ,(aUI ' ... )Et~l' .... 

(2.2.4) 

(2.2.5) 

In this way, &JfI becomes a well defined physical theory. It can be proved that 
" .A:!i;;. d without contradiction" implies that also .A:!i;; d is without contradiction 
(see the end of this section and [3] § 7.3). 

A &J fI may be given (without recourse to &J:T'!) in the form that the base 
terms Y. of .A:!i;; are the pictorial terms and the components til of the structure 
term are the pictorial relations so that (-)r is given by (2.2.3) and (2.2.5). Then 
we say that .A:!i;; is an axiomatic basis (of the first degree) of &JfI. Sometimes 
we shortly call &JfI an axiomatic basis. 

The theory &J fI constructed above is an axiomatic basis. Since we have only 
presumed that U is a structure of species 1:, the theory &J fI' can be stronger than 
&JfI. But if U represents the species of structure 1:, the two theories &JfI' and 
&J fI are equivalent in the sense that .A:!i;; d is without contradiction if and only 
if .A:!i;;. d is so (proof at the end of this section and in [3] § 7.3). Then we call 
.A:!i;; and also &J fI axiomic bases (of the first degree) of &J fI'. 

The axiomatic basis for quantum mechanics (or more precisely: the axiomatic 
bases) developed in III through IX are not of the first degree and were not deduced 
from the "usual" quantum mechanics as &JfI'. The reason was that the pretheories 
for the usual form of quantum mechanics are not well formulated. Only with very 
imprecise formulations in common language and much intuition the usual quantum 
mechanics can be applied. We will give a precise formulation of the usual quantum 
mechanics in §3.3. 
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First we want to extend the concept of an axiomatic basis beyond the first 
degree. Extensions can be made without any connection with the theory [IjJ §". In 
order not to do the same work twice, let us introduce the extensions in connection 
with f!P §" (whoever is not interested in such connections, may skip all those following 
developments which are related to f!P§"). 

Sometimes it is possible to eliminate some base terms Yv by mappings. For some 
of the base terms in vIt /fi (which we denote by Yv,), as intrinsic terms we assume 
injective mappings 

(2.2.6) 

Here the T.'(YIl" ... , R) are echelon sets constructed only from those Yllk which 
do not belong to the family of the Yv,. (In many cases there are mappings (2.2.6) 
where the gi are not injective. We will discuss these cases in §3.) 

In the case of a connection between [IjJ§,' and [IjJ§' (discussed above where U 
is a structure of species L over the pictorial sets E v), we assume that the mappings 

(2.2.7) 

(the gi transported from vIt/fi to vIt/fi,) are identical mappings of E v,. This implies 

(2.2.8) 

Because of (2.2.6) we may eliminate the Yv, as base terms: Starting from L we 
define the following species of structure L(l). As base terms of L(l) we take the 
Yllk only. Instead of the Y., we introduce the sets g(y.,) as additional structure terms 
in L(l). ' 

To make this rigorous we use new letters for the text L(l). The Yllk of L are 
replaced by letters Zko the Y., by letters t\1). As typification of the tP) we prescribe 

(2.2.9) 

with the echelon construction schemes in (2.2.6). Besides the tp) we retain the struc­
ture term t of L with the denotation tlJ) and the same typification S(Ylo ... ) as 
in L. We only replace the Yllk by Zk and the Y., by the T.,( ... ) of (2.2.9): 

t~l)ES(Zl' ... , T." ... ). (2.2.10) 

The tp) and t~l) may be comprised in one structure term t(l) of L(l). 

As axiom P(1)(Zl' .•• , t~l), ... , t~l» of L(l) we introduce the following relations: 

where we replace the Yllk by Zk, the Y., by tP) and t by t~l). We add the relation 
t~1) E S (z 1, ... , t~l), ... ) which we get from the typification of t in L when Y Ilk is replaced 
by Zk and Yv, by t\l). Then (2.2.10) as axiom for L(l) is not necessary. We get the 
last part of the axiom p(1) ( ... ) as follows: 

Because of PJ 1)( ••• ), the mappings gi in (2.2.6) can be transported as injective 
mappings 

(2.2.11) 
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(i.e. g; intrinsic terms). As axiom we add that the g; are identical maps of tIl) on 
itself (often this is already a theorem). Therefore tj1) c: 1'", (z 1, ... ). 

It is obvious that t~) in .A 5};(1) is a structure of species L over the sets 
Z 1, .•• , t\l), .... Moreover, (2.2.6) implies that t~l) represents L in .A 5};(.). To prove 
this we write the condition (2.2.1) for this case: 

There are sets Zl' ... , t\l), ... , t~l) and bijective mappings f1' ... such that 

tj1)e 1'",(Zl' ... ) and t~l)eS(zl' ... ,t\l), ... ) and ~l)(Zl' ... ,t\l) ... ,t~l» (2.2.12) 

d iv, (1) i"k d <'" 5 (1) an Yv,~t;, Yl'k~Zk an J1, ... ) t=to . 

To prove (2.2.12) in .A5};, we only must take Zk=Yl'k,Jl'k as the identical maps, 
tIl) = g;(yv,) and f.,=g;: (g; in (2.2.6» and t~l)= <f1, ... )5 t. 

There is something like a reciprocity: The terms g;(yv) and t= <flo ... )5 t (where 
fl'k are identical maps and fv, = gil form a representation of L(l) in .A fIE. That these 
terms form a structure of species L(l) is equivalent to the following relation being 
a theorem in .A fIE: 

g;(yv,)C:1'",(YI'" ... ) and teS(yI'" ·.·,gv.)· .. ) (2.2.13) 

and P~l)(yI'" ... , gl(YV.)' ... , ij, and g; identically maps g;(y • .) on itself. 
Here the g; are defined as the mappings (2.2.6) transported by the mappings 

fl'k (as identical mappings) and fv,=g;. Therefore g(y.,)~g;(yv,) are identical 
mappings of g;{yv.) in itself. The rest of (2.2.13) follows since the axiom P( ... ) of 
L is transportable (§2.1). 

To prove that the g;(yv,),t form a representation of L(l), in .A5};(.) we must 
prove the theorem: 

There are sets Ylo ... , t and bijective mappings f1' ... such thatteS(y, ... ) and 
P(Y1' ... , t}and 

ik d < '" ) T (1)_ (y) d <f )5 (1)_ ~ Zk~Yl'k an J1, ... v,t; -g; v, an l' ... to -to 
(2.2.14) 

To prove this· we take Yl'k=Zk' Yv,=tj1), t=t~) and fk as identical mappings. 
Then g;=g; (g; in (2.2.11» and g; are identical mappings of tIl) into itself. 

We easily define a f?/Jf/(1) with .AfIE(1) as mathematical part. Instead of (2.2.3) 
we take 

(2.2.15) 

where Zk stands for Yl'k and tIl) for Yv,. 
The uniform structures can be transported from .A fIE to .A fIE(l) and therefore 

a ~ in (2.2.4) to a corresponding tlj-J as a smeared out component t~lJ of t~l). Then 
we replace (2.2.5) by 

(2.2.16) 

If we consider f?/Jf/(1) as a theory f?/Jf/' (as needed above), the connection of 
(_)(1) and (-) is such that f?/Jf/ is an axiomatic basis of the first degree of f?/Jf/(1). 
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In &Jff(l) all base terms Zk of 1'(1) are pictorial sets. But there are other pictorial 
sets tj1) which according to (2.2.9) are subsets of echelon sets over the base sets 
Zl' .•. , R. We say that vII§};(.) is of the n-th degree (relative to f!Jff) if n is the 
highest number of constituent power sets, i.e. the highest number of &J in 

&J( ... &J( ... &J( ... &J ... ))). 

We call also vII§};(.) an axiomatic basis in &Jff(l) and especially of the n-th degree. 
In this sense &J ff(l) is an axiomatic basis of the n-th degree of &J ff. 

For some deductions it is practical to take the relations apEtj1) from (-W)(1) 
to (-W)(2) and in (2.2.15) to write the relation apET".(zl' ... , R) instead of apEt!1). 

The axiomatic bases for quantum mechanics developed in III through IX are 
of the form &Jff(l). We will discuss this in §3.3. 

If there is a connection between &Jff' and &Jff as given in (2.2.7), (2.2.8), and 
U is a structure of species 1', we can collect the Ev. and U to a structure term 
V. Then Vis a structure of species 1'(1) over the"Epk' In vii§};. we must prove: 

Ev;cT".(Ep • ... ) and UES(E1, ... , E"R) 

and peE 1, •.. , E" U), and gi are identical mappings of Ev •. 
(2.2.17) 

This follows from (2.2.8), from (2.2.7) and the assumption formulated after (2.2.8) 
and from U being a structure of species l' over E 1, ... , E,. 

On the other hand, if {Ev;, U} is a structure of species 1'(1) over Ep • ... then 
U is a structure of species l' over E 1, ••• , E,. In vII§};. we must prove: 

UES(E1, ... , E"R) and P(El' ... , E" U). (2.2.18) 

Since {Ev, U} is a structure of species 1'(1), the theorem (2.2.17) holds in vII§};. which 
implies (2.2.18). 

If U even represents l' in 1", then V represents 1'(1) in r. In vii §};(.) we must 
prove the following theorem: 

There are sets Xl' ... , s and bijective mappings hl> ... such that SES'(X1 , ••• ) and 
P'(Xl, ... , s) hold as well as 

(2.2.19) 

with 
<hI' ... )Tv ,tj1)=Ev;(x1, ... ) and <hI, ... )St~l)=U(Xl' ... ,s). 

In vii§}; we find (2.1.1) as a theorem. Since t~l) is a structure of species 1', in 
vII§};(.) we have the theorem: 

There are sets Xl' ... , s and bijective mappings iI' ... such that 

(2.2.20) 

and 
(1) Iv" E ( ) d <I )S (l)-U( ) ti --'-'-+ v; Xl> .," an 1, ... to - Xl> .... 

If in (2.2.20) we replace the letters i Pk by hk and the Iv; by ki' we see that (2.2.19) 
is a theorem if in vii §};(.) we prove that (2.2.20) implies 

(2.2.21) 
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Since the g; in (2.2.6) are intrinsic terms, for bijective mappings !V, with g; in 
(2.2.7) we have the diagram 

g. 
Ev,~Ev 

f'·l lif ...... )', 
g, 

Yv, ~ T.,(Y/ll' ... ) 

that is 
g; !v2 = <f/l l ' ••• )Tv, g;. 

Since the g; are identical mappings (see after (2.2.7)), we conclude 

fVi=<f/l l ' ••• )Tvig;, 

to be transported to Jt §i(l) as 

k;=<h1' ... )Tv,g;. 

Since the g; are the identities on tj1), we finally get (2.2.21). 
If vice versa V={Ev , U} represents 1.;(1) in 1.;', then U represents 1.; in 1.;'. We 

must prove that the theorem (2.2.19) in Jt§i(l) implies (2.1.1) as theorem in Jt§i. 
Since {g;(yv.), i} is a structure of species 1.;(1) in Jt §i, the mappings (2.2.19) imply: 

There are sets Xl' ... , s and bijective mappings hi' ... such that SES'(X1, ... ) 
and P' (Xl' ... , s) hold as well as 

and 
<hi, ... )St=U(Xl> ... ). 

With !v,= <hi' ... )TVi g; and with the definition of tfollows (2.Ll). 
One easily sees, how to translate directly the observational report (Ll), (1.7) 

into (2.2.15), (2.2.16). Therefore &>.9""(1) can be derived from &>.9""' without use of 
&>5". We call &>.9""(1) also an axiomatic basic of &>.9""' if V={EVi , U} represents 1.;(1) 
in 1:'. 

Which of the three theories &>.9""', &>.9"" or &>.9""(1) is used, is a matter of taste. 
Better said, it depends on the problems which one wants to solve. Often special 
physical problems can be solved much more easily in &>.9""' since we generally are 
more familiar with the mathematics of &>.9""'. Yet &>.9"" is that form which shows 
most clearly the logics of the physical theory (see §2.3 and §4). General mathematical 
deductions often can be done best in &>.9""(1). In §3.3 we will find additional reasons 
for preferring &>.9""' or &>.9"" or &>.9""(1) in quantum mechanics. 

We have claimed that the three theories Jt §i, .91, Jt §i .91 and Jt §i(l) .91 with 
the "same" observational report .91 (i.e. (Ll), (1.7), resp. (2.2.3), (2.2.5), resp. (2.2.15), 
(2.2.16)) are equivalent in the following sense: A contradiction in one of these three 
theories implies a contradiction in the others. Let us prove this claim. 

The observational report (-),(1) consists of relations a;EYv' while (-)~(1) is 
formed by corresponding relations a;EEv, the second part (-h(2) by the relations 
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(2.2.5) and (-)~(2) by the corresponding relations (1.7). Collecting all aj into a term 
A=(a1,a2, ... ), we may write (-).(1) as 

AeT(Y1' ... , y,). 

The corresponding (-)~(1) gets the form 

AeT(E1' ... , E,), 

(2.2.22) 

(2.2.23) 

where T is an echelon construction scheme. The relations (-),(2) may be comprised 
in a transportable relation 

P(Y1' ... , y" t, A, R) 

and the corresponding (-)~(2) in 

P(E1' ... , E" U, A, R). 

Similarly (2.2.15) and (2.2.16) take the forms 

and 

(2.2.24) 

(2.2.25) 

(2.2.26) 

(2.2.27) 

Here the y,. resp. Yl'k from (2.2.22) and (2.2.24) have been replaced by t!l) resp. Zk' 

Also the connection between [J)ff' and [l}Jff(l) can be given such a form. To 
do this we first change (-).(1) and (-)~ a little. Instead of a relation a/let!l), in 
(2.2.15) we write a/le T..( ... ) with T..(. .. ) in (2.2.11) and take a/letj!) in (-): (2). Because 
of t!l) c T.,( ... ) this does not change any mathematical conclusion. We do the same 
with (-)~, replacing all a/leE" (E" the family defined by (2.2.7» by a/leT.,(El'l ... ) 
and taking a/leE'2 in (-)~(2). 

Then (-W)(1) takes the form 
AeT(zl' ... ) (2.2.28) 

and,the corresponding (-)~(1) the form 

AeT(El'l' ... ). (2.2.29) 

Likewise, (-W)(2) and (-),(2) become 

p(z 1> ••• , ttl), A, R) with t(l) = {t!l), tIl)}, (2.2.30) 
and 

P(El'l' ... , V,A,R) with V={E'i' U}. (2.2.31) 

Therefore we need to prove only for one pair (e.g. Jt /YE d, Jt /YE, d) that a 
contradiction in one of them implies a contradiction in the other. 

We have used the same letters aj for the observational report of [J)ff and [J)ff'. 

This can raise mathematical confusion if we compare the two theories Jt /YE d and 
Jt/YE, d. Therefore using new letters in Jt/YE we introduce the text: 

weT(Y1' ... ,y"R) 
and 

P(Y1> ... ,Y"t, w,R). 
The typification 

(t, w)eS(y1' ... ) X T(Y1' ... ) (2.2.32) 
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and the relation 

P(Yl, ... ,y"t) and P(Yl, ... ,y"t,w,R) (2.2.33) 

derme a species of structure <'1:.91); we call it the test .91 of '1:. The term (V,A) 
in vH!YE . .91 is then a structure of species <'1:.91) over E 1, ... , Er • 

vH!YE .91 and vH !/(Ed) are the same theory since they are written only with differ­
ent letters. We must compare the two theories vH !/(Ed) and vH!YE. d. 

Since {V, A} is a structure of species <'1: d) in vH!YE . .91, every theorem in vH !/(1'.d) 
leads to a corresponding theorem in vH!YE. d. Therefore every contradiction in 
vH!/(1'.d) leads to a contradiction in vH!YE. d. In this sense, f!lJ!T' is a stronger theory 
than f!lJ!T. If V represent '1: in vH!YE., then also the reverse holds. 

In vH!/(1'.d) we first have the theorem: 

{seS'(x1 , .•. ) and P'(x1 , ••• ), andJi bijective mappings 

Yi~ Ei(X 1, ••. , s) and <flo"')S t = V (x 10 ••• )} (2.2.34) 

implies 
A f - -{w=<fl, ... ) weT(E1 , .•• ) and P(E1, ... ,E" V, It>)}. 

If a contradiction in vH!YE . .91 can be deduced, in vH!YE. we have the theorem: 

It>eT(E1 , ••• )=>notP(E1 , ••• , Er , V, It>). 

Equivalent to this is the following theorem in vH!T (and therefore also in vH !/(1'.d)!): 

{seS'(xlo ... ) and P'(Xl, ... )}=>{It>eT( ... )=>notP( ... )}. 

Since {It>e T( .. . )=>not P( ... )} is the negation of the relation {It>e T( ... ) and P( ... )}, 
the left side of (2.2.34) implies {It>e T( . .. ) and P( ... )} and its negation. Therefore 
the negation of (2.1.1) is a theorem in vH!/(1'.d)' Since (2.1.1) is a theorem in vH!YE(V 
represents I:) and therefore in vH!/(1'.d)' we have a contradiction in vH!/(Ed)' 

Thus we have proven that the theories f!lJ!T', f!lJ!T and f!lJ!T(1) are equivalent. 
We had assumed that the observational report (-)r describes real facts of the 

fundamental domain ~. But we never used this "reality" of (-)r in the above deduc­
tions. If (-)r were only an "imagined" observational report, all about vH!YE .91, 
etc. would persist. The only difference would be that a contradiction in vH!YE .91 
with an "imagined" observational report .91 would never oblige us to reject the 
theory f!lJ!T. On the contrary one would interpret such an effect as saying that 
the "imagined" observational report encompasses something impossible in nature. 
It has been proposed that contradictions in vH!YE .91 for a "real" observational report 
form the only criterion to reject a theory (see Popper [62]). We will see in §2.4 
that this is not the only reason to accept or reject a theory. 

If we have an "imagined" observational report, instead of .91 let us write the 
letter Yf and call this report a "hypothetical report". We presume that Yf has 
no contradiction in itself, since (-)r for a real observational report cannot contradict 
itself unless we made a mistake in writing it down. 
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§2.3 Laws of Nature and Theoretical Terms 

In §2.2 we have explained what is an axiomatic basis J/I:7;; (resp. AI:7;;(I)) of 
a (l}!:r (with J/t 3 E ,). But we have not answered the question whether there is an 
axiomatic basis for every (l)! 3! 

The problem to find an axiomatic basis for a given (l}!3' can be solved in any 
case trivially. We only need to choose the relation (2.2.1) as axiom P(Y1, ... , y" t) 
of I:. We feel that (2.1.1) as axiom is not yet in the form of a physical law that 
physicists have in mind. At:7;; with (2.1.1) as axiom gives no new physical insight 
campared with At:7;;,. Only the logical structure of (l)! 3 with At:7;; is simpler than 
that of (l)! 3' with At 3};'; this will be of interest in § 4. 

As an example let us as At3' take analytic geometry (see page 157). An axiomatic 
basis with (2.1.1) as axiom would look as follows. With y as base term and d (z 1, z 2) = rJ. 

as distance relation we postulate the further axiom (2.1.2) (additional to the axiom 
that d(Zl,ZZ) is a real function). Obviously this axiomatic basis does not make the 
physical significance of Euclidean geometry more evident than (l)! 3' does. 

Nevertheless let us denote the axiomatic relation P( ... ) in an axiomatic basis 
At:7;; as "the physical laws". If P( ... ) is only of the form (2.1.1), we do not get 
an insight into the physical significance of these laws. Hence we desire another 
form of P( . .. ) than (2.1.1). Therefore let us first classify various forms of physical 
concepts. 

It is essential for physics to introduce new physical concepts. How do we intro­
duce such new concepts? 

For the introduction of new concepts, the form (l}!3' is not very suitable. In 
At:7;;, are defined the picture sets and picture relations. In J/13E , it is not simple 
to say what we mean by a definition of new physical concepts. For a logical problem 
such as the definition of new concepts by old ones, an axiomatic basis is much 
better, also if the axiomatic relation has e.g. the form (2.1.1). 

Such terms in P( ... ) which are connected with an "existential quantifier" 3 (e.g. 
3x(A(x)), i.e. there is an x with A(x)) are called theoretical auxiliary terms. Here 
it has been assumed that in P( . .. ) quantifiers (not\t) are replaced by 3 and (not 
3) by \to If e.g. P( ... ) is given by (2.1.1), all terms Xl' ... , X n , S'/l' ... ,f,. are theoretical 
auxiliary terms. Sometimes s is a collection of various terms sl'; then all sl' are 
also called theoretical auxiliary terms. In this sense the "rectangular coordinates" 

introduced in (2.1.2) by the mapping y~R3 are theoretical auxiliary terms. 
In this sense, At:7;;, from (l)! 3' is characterized by the theoretical auxiliary terms 

Xl' ... , X," S, 11, ... , Ir from (2.1.1 a, b). Here it is essential that also the h appear 
as theoretical auxiliary terms. Only in At3E with P( ... ) from (2.1.1a, b), and not 
already in At:7;;" can we see clearly what theoretical auxiliary terms are necessary 
for formulating (l)! 3'. 

It is usual to extend the concept of theoretical auxiliary terms. To do this rigorous­
ly, we want to extend AI3E (with P(Yb ... , y" t) as axiomatic relation) to a theory 
At Y.xt defined as follows. 

We replace at least some of the terms bound by existential quantifiers in P( ... ) 
by new terms (constants) U1, Uz, ... in addition to the Yb ... , y" t. As axioms 
for At:y;'xt we use the typification tES(Y1, ... , y"R) from J/I.'Y;; and 
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P.xt(Ul> U2' ... ; Yl' ... , y" t) where we get P.xt(· •. ) from P(Yl' ... , y" t) by everywhere 
replacing (3u) R(u) by R(u). 

For the example of the relation (2.1.1 b) as P( ... ), this transcription provides 

and the Ii are bijective mappings Yi ~ Ei(X 1, ••. , Xn s) with 

(2.3.1) 

Instead of u1 , U2' ... we have used the letters Xl' ... , Xm S,!l, ••. , fr. We define flIJf7;,xt 
by using the same correspondence rules as for flIJ5"! Thus (2.3.1) is determined by 
the theory flIJ 5"'; and if we "identify" the Yi with the Ei and t with U by the bijective 
mappings Ii, we regain flIJ5"'. But for logical purposes, flIJf7;,xt is more suitable than 
flIJ5"'. 

As in this example, we assume that flIJ f7;,xt has the form .A flIext with a species 
of structure 1:.xt • The base terms of 1:.xt are Yl' ... , y" ua" ••• and the structure 
terms are t, up" .... The Yl' ... , Yr are the pictorial terms, and t is the collection 
of the pictorial relations of flIJf7;,xt. Then we can introduce an extended concept 
of theoretical auxiliary terms: We call every intrinsic term in .A .'Yi:ext a theoretical 
auxiliary term. In the usuable forms of physical theories one applies many theoretical 
auxiliary terms. 

Often there are different forms of flIJ5"' and correspondingly of flIJf7;,xt. Hence 
it is not surprising that we have no systematics of such theoretical auxiliary terms. 
Such terms have rather been adopted in the historical development of physics. Some­
times such terms have been dropped later; an example is the "ether". This status 
of the theoretical auxiliary terms may recommend to avoid them. Is this possible? 

Before we try to answer this question, let us give some examples of theoretical 
auxiliary terms in the usual form of quantum mechanics. 

Let us return to the representation of quantum mechanics in [2]. When we 

take % and It' as pictorial terms and % x It'~[O, 1] as pictorial relation, then 
axiom AQ in [2] III §5 has the form of P( ... ) in (2.1.1) if we take p, y of AQ 
as the mappings Ii of (2.1.1) and if we think of % and It' as completed to K, 
L (as done in [2] III § 3 or here in VI 03.5 and 03.6). The corresponding structure 
in the form flIJf7;,xt looks like this: Xl =x=;if with sand P' such that;if is a "Hilbert 
space". Yl=K, Y2=L, tEKxLxR; E(x, s)=set of all selfadjoint operators Wwith 
W~O and tr(W)=1. E 2 (x,s)=set of all selfadjoint operators F with O::;F::;1. 
U (x, s) EEl X E 2 X R is determined by the relation tr (WF) = 0(. 

Yl =K is the pictorial set for the "ensembles", Y2=L is the pictorial set for 
the "effects" and tr(WF)=O( is the "probability for the effect F in the ensemble 

WIt. Thus!l and!2 are two bijective mappings Yl =K~El and Y2=L~E2. 
Examples for theoretical auxiliary terms are: The Hilbert space ;if; the set of 

all closed subspaces of ;if; the set of all elements cP E;if with II cp II = 1 (often called 
"states", not in accordance with our definition 11105.2.2). For all these terms, the 
definition lets open whether they have a "physical" meaning and what this meaning 
could be, and whether there is something "in reality" that corresponds to these 
terms. There is e.g. another example of an auxiliary term which has no "physical" 
meaning (as we shall see later): This term is the so-called "phase". This phase is 
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a relation between two vectors qJl> qJzEYf ofthe same direction with II qJ111 = II qJzll = 1. 
The phase ex is defined by qJ z = eia qJ 1. The widespread opinion that this phase" has" 
a physical meaning (i.e. that qJ1 and qJz are "physically" distinguished for ex=l=O) 
caused many mistakes. In fact qJ1 and qJz have the same physical meaning and 
therefore ex has no physical meaning. But what should we understand by what we 
called "physical" meaning? This can be clarified very well in the context of an 
axiomatic basis. 

Therefore we regress to [ljJ:T with At!lI as axiomatic basis (but without any 
presumption for the form of P( ... )). 

As "theoretical (not auxiliary) tenns" let us denote all intrinsic terms in At!lI. 
The physical meaning of such tenns is exactly defined by their deduction in At!lI 
and by the previously established physical meaning of the base terms Y1, ... , Yr 
(that are the pictorial terms) and of the structural tenn (characterizing the pictorial 
relations). 

During the development of an axiomatic basis for quantum mechanics in III 
through IX, we have introduced new concepts only by theoretical terms, i.e. by 
intrinsic terms. We will study some examples of such new concepts in §§3 and 
4, to see the importance of new concepts in the context of other problems. 

Obviously, we can transport all intrinsic terms of At!lI to terms in .It !lIe« . 

In this sense every theoretical term from o/p!!lI is also a theoretical auxiliary tenn 
from At !lIext but not vice versa. 

Some of the theoretical auxiliary terms can also be "declared" to be theoretical 
terms by bijective mappings f from one theoretical tenn (coming from At!lI) onto 
another term in At!lIext. For instance, the Ei(xl> ... , xn,s) and V(Xl, ... , Xn, s) can 

be "identified" by isomorphic mappings Yi~ Ei with t ---> V. Exactly this was 
the starting point of our analysis: The physical interpretation of the Ei as pictorial 
terms and of V as the composition of the pictorial relations. It is not difficult to 
identify by the h also all theoretical terms (i.e. intrinsic terms in At!lI) with corre­
sponding terms in o/H !lIext . But this in general does not give any physical meaning 
to the base sets Xi or to such intrinsic terms of .It !lIext which are not h-pictures 
of intrinsic terms of At!lI. 

In order to give the physical meaning of a theoretical term X to another intrinsic 
term Vof At !lIext' one may use a bijective mapping g of X on V. This g should 
be defined as intrinsic term of At !lIext' not necessarily as the canonical extension 
of the h. Then it is essential, however, not to forget the mapping g and not to 
think that Vby itself has the physical meaning defined by g. For instance, possibly 
there is another bijective mapping h of a theoretical term Yonto V, so that Vbased 
on h has another physical interpretation than when based on g. Such a situation 
may cause great confusion if one forgets the mappings g and h. Let us give an 
example from quantum mechanics. 

As At !lIext we use the same theory as above, i.e. Y1 = K, Yz = L, E1 (x, s) the 
set of all selfadjoint operators W with W;:o:O, tr(W)=l, and Ez(x,s) the set of 
all selfadjoint operators F with O:s; F:s; 1, with bijective mappings given by 

Y1=K~E1' Yz=L~Ez. Then X=oeK is a theoretical term. The elements 
of X shall be called extreme ensembles or extreme states. They are commonly called 
pure states or shortly states. We do not use these names to avoid misunderstandings. 
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X is mapped by 11 onto DeE1(x,s), while G=DeL is a theoretical term, the set 
of decision effects. 

Also Y = {set of all atoms of the lattice G} is a theoretical term. The elements 
of Yare often called the "finest" decision effects. 12 maps G on the set of the 
projection operators and especially Y on the set of all PIP (II cp II = 1) with P,p t/! 
= cp <t/!, cp). The set of all PIP also equals De E 1 (X, s). Defining Vas this set of all 
PIP we have 

X~V and y~v. 

Thus we get two different interpretations of V, one according to 11 (V as the set 
of extreme states), the other according to 12 (Vas the set of finest decision effects). 
For instance, with PIP. as extreme state and P,P2 as a finest decision effect we get 
tr(P,P. P,P2)= I<CPl' CP2)12 as the probability of the finest decision effect PIP2 in the extreme 
state P,P •• 

Sometimes one replaces V by the set of all cP EX =.Yt' with II cP II = 1. But there 
is no bijective mapping P,P -+ cP, since cP and cpt = eirz cP generate the same P,P = p,p .. 
If we define q> as the set of all eia cp, then the bijective mapping PIP -+ q> allows to 
transport the physical interpretations of V to te set of all q>. 

Since in J{ 5iext there is no bijective mapping of an intrinsic term of J{ 5i onto 
the set of all CPE.Yt' with IIcpli = 1, the "phases" a cannot be interpreted. 

As this example of the interpretation of V by bijective mappings of theoretical 
terms X, Y onto V. demonstrates, such transports of physical interpretations do 
not deepen the understanding of a theory. Why then are such transports used? 
The application of terms in J{ 5iext can have advantages for practical calculations 
and for solving special problems. Then the language shortened by transported inter­
pretations is very practical for the communication among experts (but can be danger­
ous for beginners or philosophers). 

Since the aim of this book is not to find "short phrases", we will not pursue 
the introduction of theoretical auxiliary terms nor their possible interpretation by 
transports with the help of bijective mappings. On the contrary, we try to avoid 
any theoretical auxiliary term which is not a theoretical term. 

The concept of theoretical terms appears to us still too broad since the set R 
of real numbers can enter the typification of an intrinsic term in J{ 5i arbitrarily. 
For instance, in the above example of Euclidean geometry we denoted the base 

set of the points by y. Then the set of all bijective mappings y~R3 with 

(i.e. the set of all rectangular coordinate systems) is an intrinsic term in J{ 5i, i.e. 
a theoretical term. The physical interpretation of this term is not immediately given 
by the pictorial term y and the pictorial relation d(z 1, Z2) = a. Surely also this theoreti­
cal term has a physical interpretation, which we will discuss in §4. 

Let us now restrict the concept of theoretical terms, allowing the real numbers 
to enter the terms only in that manner in which their physical meaning is given 
by the pictorial relations. Therefore we define: A physical term B is an intrinsic 
term in J{ 5i (i.e. a theoretical term) for which 

(2.3.2) 
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is a theorem in At!f;;. Here T is an echelon construction scheme and the tl' are 
the components of the structure term t, i.e. the pictorial relations. Thus Renters 
B only through the til" Hence (2.3.2) can be fulfilled in a trivial form, i.e. so that 
(2.3.2) is contained in the definition of B. 

The physical interpretation of such a term B is given by the" logical" construction 
(2.3.2) from the pictorial sets and pictorial relations tl" and by additional conditions 
which can be formulated intrinsically. 

Let us denote an axiomatic relation P( ... ) in an axiomatic basis as physically 
interpretable, if in P( ... ) there are only such quantifiers 3z (and \>'z) for which a 
relation z E T (y 1, ... , Yr; t b t 2 ... ) with T as in (2.3.2) holds, e.g. in the form 

3Z[ZET(y" ... ,t1 ,t2 ..• ) and ... J 

or as a relation following from other relations in [ ... J. 
How such a physically interpretable relation P( ... ) can indeed be interpreted 

is said by the interpretation of the physical terms Z and by that of the quantifiers 
3z (or \>'z). This last interpretation is not trivial and will be given in §2.4 and in 
a wider context in §4. 

Therefore the relation (2.1.1 b) is not a physically interpretable axiom. 
If we have an axiomatic basis At!f;; (as in §2.2), and if P( ... ) is physically interpret­

able we call At!f;; an axiomatic basis of the first degree with physically interpretable 
laws of nature. A ;JJ>:Y with such an axiomatic basis has exactly the desired form. 
Proceeding to At.YI(1) as described in §2.2, we call .~.YI(l) an axiomatic basis of 
the n-th degree with physically interpretable laws of nature. Because of the fundamen­
tal significance of an axiomatic basis of the first degree with physically interpretable 
laws of nature let us briefly call such a basis a simple axiomatic basis. 

There are philosophers of science who believe that there are physical theories 
(e.g. the quantum mechanics of atoms) for which there is no simple axiomatic basis, 
i.e. for which theoretical auxiliary terms are inevitable. Although we might demon­
strate here that we have indeed given an axiomatic basis of higher than first degree 
with physically interpretable laws in III through IX, let us do so a little later because 
in §3 we shall develop a general scheme to compare various theories. 

Having claimed a simple axiomatic basis as the "desired" form of a ;JJ>:Y, we 
do not mean that other forms "It!f;;. with theoretical auxiliary terms have no signifi­
cance. In the contrary, a Jt!f;;, in which the species of structure L of a simple 
axiomatic basis is represented (see §2.l), can be essential for the practical use of 
a;JJ>:Y. For instance, who would renounce analytic geometry and use only the Euclide­
an axioms? 

§2.4 Norms and Fundamental Domain 

For the following discussions we assume ;JJ>:Y in the form of a simple axiomatic 
basis. The intent is to analyse the "physically interpretable" laws P( ... ) in such 
a form that one can distinguish between those parts of P( ... ) which are "pictures 
of real stuctures of the world" and those which are" descriptions of special concepts" 
or "prescriptions for actions". These last parts have to do with thinking and acting 
of human beings. Nevertheless we shall see that they reflect something of reality. 
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For instance, let us take a set V with a relation < and interpret a<b as "a 
is a part of b". Then axioms which make V an ordered set are not coming from 
experience but from what we mean by "part of". An observational report cannot 
contradict the theory, unless we have made a "false application" of the concept 
of "to be a part of". We will see below another example from our axiomatic basis 
of quantum mechanics. 

Such axioms which "define" (in the sense of Jllfi) a concept shall be called 
"conceptual norms". The "application" of such a concept must be such that the 
observational report does not contradict these axioms. In this sense the conceptual 
norms lay down the mode of application of the concept. It is obvious that such 
a concept cannot be applied everywhere. When it cannot be applied, we get no 
observational report corresponding to an application of the concept. 

Often there are many other normative axioms in JII!'iI, in contradictions to 
which we are "not interested". There may be facts which contradict these axioms. 
But we declare that such contradicting facts do not belong to the fundamental 
domain of f!jJ fi. Such norms in this sense confine the fundamental domain. Sometimes 
we say that these norms lay down how we should make the "right" experiments. 
Therefore let us call these axioms "action norms", not excluding the possibility 
that in nature we may find facts (i.e. no artifacts) which fulfill the action norms 
and therefore belong to the fundamental domain. Then we say that we may contem­
plate these natural facts "as if" they were produced by a "right" experiment. 

Illustrative examples for conceptual norms and action norms are those axioms 
which in the study of probability are introduced (see AS 2.1 to AS 2.5) for the function 

;. 
fi={(a,b)la,bEY',a:::::>b and Q(=I=0}~[O, 1]. 

These axioms concern a relation between fi and R. The real numbers are "pictures" 
offrequencies N +/N. The axiom that A. maps only into [0, 1] is therefore a conceptual 
norm. The axiom that A. is mapping fi into [0, 1], is an (idealized) action norm: 
This axiom says that we experiment in such a way that the frequences N +/N are 
"reproducible", i.e. that for the same pair a, b we get (approximately) the same 
frequencies N +/N. If not, then the experiment does not belong to the fundamental 
domain. Obviously, choosing N large enough we find an approximate reproducibility 
for suitable a, b, as experimental physicists know. 

It is easy to see ([2] II §3) that AS 2.1, AS 2.2, AS 2.3 are conceptual norms. 
AS 2.4.1, AS 2.4.2 are pure idealizations. Below we will return to axioms which 

are pure idealizations. 
AS 2.5 is an empirical law, as we will define such laws further below. 
The normative axioms are connected with what protophysics calls norms (see 

[42]). The only difference seems to be that protophysics attaches great importance 
to instructions for actions which produce such facts that the corresponding observa­
tional report fulfills the normative axioms (obviously only if it is possible to follow 
the instructions). It would be a very interesting task, more extensively to compare 
the method of normative axiom and that of protophysics. 

We say that the fundamental domain '§ of a f!jJfi is "intrinsically" defined if 
the norms alone confine '§. We will see in §3 that there also are external possibilities 
to confine '§. The physical content of the norms is precisely that "there is" a funda-
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mental domain <§, i.e. that "it is possible to make" such experiments which do 
not contradict the norms. This "it is possible" will be discussed more rigorously 
in §4. 

No &>§' is known which contains no norms. But in most of the &>§' the initially 
introduced normative axioms do not suffice to confine <§; i.e. <§ is not intrinsically 
defined. Not until after many applications and experiences with &>§' we learn to 
find additional restrictions for <§. Such additional restrictions are often formulated 
in common language; nevertheless we could formulate them as normative axioms. 
For Newton's mechanics we would add the "normative axiom" that all velocities 
should be smaller than 10- 3 times the velocity of light. This example demonstrates 
that such additional normative axioms depend strongly on the imprecision sets used 
for the correspondence rules. Therefore we avoid "exact" axioms to confine <§. We 
want to permit different imprecision sets with different normative axioms to confine <§. 

Obviously, experimental tests of a &> §' are only possible when we have defined 
<§. We do not know any &>§' which can be applied to "everything". It is an illusion 
that we can find a theory of the whole world. The reason is that the "physical­
method" cannot reach all realities, as we shall see later. 

Before closing our general considerations concerning norms and going on to 
the special norms in quantum mechanics, we should remark about the "idealizations" 
we fmd in many axioms. Such an idealization (of the approximate reproducibility 
of frequencies) was the axiom that the relation between the elements of §' and 

the real numbers is a function §' ~[O, 1]. We have abeady seen in §1 that such 
idealizations are undone by using imprecision sets for the co-uespondence rules. 
Such a smearing by imprecision sets (as described in § 1) sometimes causes great 
difficulties if the pictorial relations and the corresponding norms define a concept, 
i.e. if we have conceptual norms. One can get the impression that the concept is 
smeared. Not the concept is smeared but only the application of the concept to 
the facts (as illustrated in § 1). Or to say it in another way: The concept rigorously 
defined in ..It§' by conceptual norms is nowhere applicable exactly. Only if one 
applies the concept with a certain inaccuracy defined by an imprecision set, the 
concept is useful. 

Similar is it with the action norms: The idealized action norms can only be 
fulfilled approximately; i.e. only by using imprecision sets one retains a fundamental 
domain on which the theory is applicable. 

There is still another source of normative axioms. In ..It!Y;; some of the axioms 
can be imposed by pretheories, as we shall see in §3. In &>§' such axioms have 
the character of norms since an experimental test of these axioms is not intended; 
on the contrary it is a condition for the fundamental domain <§ of &>§' that the 
pretheories can be applied without contradictions. 

Therefore for such axioms produced by pretheories we will be content with such 
forms as (2.1.1), since the physical significance of the axioms from pretheories is 
regarded as clarified in the pretheories. 

To conclude let us try to get the axiom P( ... ) into such a form that we can 
separate the normative axioms (in most cases also including idealizations). The 
remaining axioms (as far as they are no pure idealizations such as AVid) are called 
"empirical" laws. These shall be investigated in the next section. 
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Let us list the norms introduced (in III through IX) to develop quantum mechan­
ICS. 

AZ 1, AZ 2 are conceptual norms. AT 1 is produced by pretheories. APSZ 1 
contains various axioms (see II §2.1, where AS 1.1, AS 1.2 are conceptual norms 
and AS 2.1 through AS 2.5 are already classified above). The same holds for APSZ 2 
and APSZ 3, while APSZ 4.1,2 are conceptual norms. APSZ 8.1,2 are conceptual 
norms. APS 5.1 through APSZ 5.4 and APS 5.1.3, APS 5.1.4 are action norms which 
lay down how we should combine the systems for a "right" experiment. Also APS 6 
(i.e. the reproducibility of the corresponding frequencies) is such a condition for 
the "right" combining. If an experiment contradicts APS 6 we do not say that APS 6 
is defeated but that there are "disturbances" of the experiment. Only if we can 
remove the disturbances, we get an experiment of the fundamental domain. The 
same holds for APSZ 7.1.2. 

APSZ 9 is a typical action norm, in this case also called selection norm. We 
should select for the fundamental domain only such experiments which do not contra­
dict APSZ 9. Certainly we want to develop more comprehensive theories with greater 
fundamental domains, for instance in the way traced out in X and XI. 

AP 1 and AR 1 are action norms. Before introducing them we have described 
possibilities to realize the demanded "direct mixtures". 

AT 2 to AT 6 are also norms for "procedures" to measure trajectories. AT 7 
is an empirical law (with idealizations; see the word "dense "), just so AT 8. Also 
AOb and APr are empirical laws. 

All axioms A V ... in VI (except AVid, which is a pure idealization) are empirical 
laws. This claim seems to contradict the end of VI §7.1, where we declared the 
"microsystems" to form the fundamental domain of those physical systems for which 
the axioms A V 1.1, A V 1.2s, AVid, A V 3, A V 4 yield a usable theory. This sentence 
seems to claim that these axioms are norms for the fundamental domain; but it 
rather employs a language often used by physicists: The fundamental domain is 
that region of experience where the laws are valid. For others than "insiders" this 
sentence can indeed by misunderstood as if we make cyclic conclusions: By experi­
ments of the fundamental domain we can test whether the empirical laws are good. 
If we have a contradiction, then we have facts that do not belong to the fundamental 
domain. Such a cyclic conclusion is not meant by the above sentence. This sentence 
shall only describe a preliminary situation in the development of a theory: We know 
that the stated empirical laws are not valid everywhere. But we do not yet know 
how to confine a suitable fundamental domain. We hope that this will be possible 
later. Our "present" ignorance shall be expressed by the above sentence: we hope 
that it will be possible to define a fundamental domain (the "microsystems") where 
the empirical laws are valid. 

This has been done in IX, §2 and [2] VIII where we confined the fundamental 
domain to "atoms and molecules" and to processes of "not too high" energies 
(see above the analogous demand of not too high velocities in the case of Newton's 
mechanics). 

The axioms A V 4a, A V 4 bare empirical laws. Instead of characterizing the fur­
ther axioms of IX resp. [2] now, we shall give remarks to this characterization 
in §3. 
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§ 2.5 Empirical Laws and the Finiteness of Physics 

Where are the empirical laws coming from? Is it possible to test empirical laws 
as we have described such tests in §2.2? Is it possible to deduce empirical laws 
from observational reports? 

To discuss these questions we assume again f1/' g- in the form of a simple axiomatic 
basis and P( ... ) as split into the two parts P.,orm( ... ) (the normative axioms) and 
P.mp( ... ) (the empirical axioms). Thus P( ... ) is equivalent to "P.,orm(···) and P.mp(··')'" 
Let Lnorm be that species of structure where only P.,orm( ... ) is required. This Lnorm 
is a "poorer" species of structure than L. The axioms of an observational report 
(-).(1) have according to (2.2.3) the form ajEYv, and those of (-).(2) according 
to (2.2.5) the form 

Instead of a real observational report we can "invent" such a report, i.e. invent 
axioms of the same form. Let us write such invented axioms as (-Ml) and (-M2), 
and call them "hypotheses" (of the first kind; in the sense of §4.l). For a hypothesis, 
in (-M2) we also allow relations with tJL instead of tw If such relations (-Ml) 
and (-M2) are added to a .,I( fT, we symbolize the hypothesis by :Yl' and denote 
the theory by .,I( g-:Yl'. 

If we form .,I( flE:Yl' and .,I( flEnor~:Yl' in this way, the letters aj in (-)h are new 
constants of the theory. 

Besides on Lnorm and L we will also reflect on the following species of structure: 
Let RI and R2 be two relations such that "RI and R2" is a theorem in .,I(flE. 

Then the relation" P.,orm and RI and R2" is weaker than P. Let L RI be the species 
of structure which differs from L only in replacing P by "P.,orm and RI ", and L RI R2 

by "~orm and RI and R2". 
A relation R2 is called "refutable" relative to RI if there is a hypothesis :Yl' 

such that.,l( !YERI :Yl' is not contradictory while .,I( !YERIR2 :Yl' is contradictory. Equiva­
lently, "not R2 " is a theorem in .,I( !YERI :Yl'. 

An axiomatic basis is often developed by sharpening the axiomatic relation step 
by step, e.g. from ~orm to "~orm and R I " and from this to "~orm and RI and R2", 
etc. Precisely this was the way we developed quantum mechanics (see e.g. VI). There­
fore it is of high physical significance, whether a relation R2 is refutable relative 
to RI • If so, then .,I( flERIR2 genuinely confines the possible empirical facts relative 
to .,I( flERI , i.e. R2 sharpens the descriptive power of the theory. In the preceding 
section we assumed that the action norms confine the fundamental domain. We 
can express this in the form that the action norms are refutable (if we take RI 
and R2 as norms and especially R2 as an action norm). Whereas for a good f1/' g­
an empirical and refutable axiom R2 must hold in the fundamental domain (i.e. 
for real observational reports), this need not be the case for an action norm; otherwise 
this norm would lose its meaning as "action" norm. 

If there is a hypothesis such that .,I( flEnor~ :Yl' is not contradictory but .,I( flER2 :Yl' 

is contradictory, we say that R2 is refutable. For instance, we may ask whether 
p'rnp is refutable. The well known contention of Popper says that the physical content 
of a f1/' ff is that P.mp can be refuted by empirical facts. But this is only one half 
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the contents. There are many "empirical laws" in physical theories which are not 
refutable! 

Before Popper there was another opinion: The physical laws can be deduced 
from experience. In our formal description: There is a hypothesis yt' such that 
P.mp is a theorem in JIt:Yino= yt', or more strongly: There is an observational report 
d for which P.mp is a theorem in Jlt :Yinor= d. 

That R2 is a theorem in Jlt:YiRI yt' is equivalent with: Jlt:YiR1(no<R2l yt' is contra­
dictory, i.e. (not R 2 ) is relative to R 1 refutable. Also if there is no observational 
report d which makes R2 a theorem in Jlt :YiR! d, we say that R2 is relative to 
Rl empirically deducible if there is a hypothesis yt' which makes JIt:YiR!(no<R2l yt' 

con tradictory. 
Looking for empirically deducible laws in physical theories, one will find such 

laws only in very simple theories. Therefore the above contention of Popper was 
an important progress. 

Not to make mistakes, we must emphasize that R2 empirically deducible (relative 
to R 1 ) does not imply that R2 is also refutable (relative to Rl). It may be that 
R2 is empirically deducible (relative to R 1) and also refutable. But in physical theories 
we have many empirical laws R2 which are neither refutable (relative to R 1) nor 
empirically deducible (relative to Rl). What is the physical content of such laws? 

This can only be answered by returning to the problem of impresision and ideal­
ization. 

There are only finitely many relations in yt' (resp. d), and there are no quantifiers 
in ;Yf. This we call the finiteness of physics. Why do we in spite of this finiteness 
use infinite sets in JIt:Yi? All infinities in Jlt:Yi are idealizations! Why do we use 
such idealizations? There are two purposes for idealizations: The mathematics of 
infinities is much simpler than a purely finite mathematics; and by extrapolations 
"to infinity" we may conceal our ignorance (e.g. how long or how precisely a special 
structure in nature can be revealed). 

But if we have introduced infinities in JIt:Yi, we must cancel this by admitting 
that for all practical purposes with imprecisions we can replace infinite sets by finite 
ones. How can we formulate this more rigorously? (See also [3] §9 and [40].) 

For every infinite set M, we must introduce a uniform structure of physical 
imprecision p so that M p (M endowed with p) is a precompact and metrizable 
space. There are so many examples for such structures in the preceding chapters 
that we only want to add some remarks to one of them: 

In IIID5.1.1 and IIID5.1.2 we had introduced the sets % and 2. These % 
and 2 are countable because the sets of preparation and registration procedures 
were postulated as countable. This "countable" is the "smallest" idealization of 
finite, if "one does not know" how many (but finitely many) ensembles and effects 
can be realized. Then in IV §2 we had discussed the uniform structures of physical 
imprecision and saw that the countablity of % and 2 makes these sets precompact 
and metrizable. 

The uniform structures of physical imprecision on % (resp. K) and 2 (resp. 
L) can be described in the vector space description of IV §3 by the dual pair fJB, 
!?J and the corresponding topologies a(fJB,!?J) and a(!?J, fJB). But we have not suceeded 
by physical arguments to display the subspace !?J of fJB' most generally; some argu­
ments are given in [2] VII §8, [2] VIII §7 and [45]. 
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It was even less possible to display a special metric. Only in X §3 we introduced 
a metric in the state spaces and correspondingly in the set of ensembles to describe 
finite imprecisions for the purpose of embedding. There we have seen that a metric 
d introduced in K is equivalent to a norm-precompact subset A selected in L n!?IJ 
(re~p. a metric in L to a subset in K) such that 

d(w l , wz) =sup l/l(w l -W2 , g)l. 
geA 

The selection of such a A c L n!?IJ (resp. of a subset of K) is physically connected 
with the question what effects (resp. ensembles) can "easily" be realized by devices, 
a problem discussed in XI §4 and XII §3. For physics, A (resp. the corresponding 
subset of K) can be physically described as the set of all those effects (resp. ensembles) 
the realization of which is "not too difficult". The discussion in XI §4 and XII §3 
showed that we are far from solving this problem. Therefore we have not used 
metrics in K and L. 

Let us return to the general case of a precompact M p. 

For every specific vicinity (imprecision set) u there is a finite subset M of M 
such that for every XEM there is an xEM with (x, X)EU. By means of U we can 
smear the pictorial relations (or other deduced relations) as described in § 1. In 
such a way, in ./It fY;; we can as a theorem deduce a relation Rz which has 

RIRl 

the same form as R z with the only difference that every set M is replaced by a 
finite set M and every relation by a corresponding smeared relation. We say that 
Rz is the finite kernel of R z. 

1: R, R2 is therefore a weaker species of structure than 1: R, R2. The kernel R2 of 
R z depends on the imprecision set UEp. If VU(UEp and Rz)=-R z, then we say that 
R z is a normal idealization of its finite kernels. Otherwise one has to look for a 
pure idealization axiom RZid such that {VU(UEp and R z) and RZid}=-Rz . 

It is very cumbersome to formulate Rz (compared with R z). Already in VI § 1.1 
we have remarked on the finite content of the axiom A V 1.1 as we introduced 
the relation Az . Very shortly sketched, the finite kernel of AV 1.1 would look like 
this: First we must select a neighborhood U of 0 for the 0" (8B', &B) topology, then 
a finite subset L of L such that for every gEL there is a g'EL with g-g'EU. With 
the imprecision belonging to U, we must smear the order relation ~ into ~ so 
that g 1 ~ gz implies g'l ~ g'z for g 1 - g'l E U and gz - g'z E U. Similarly we have to smear 
the relation /leW, g) = Ct. into /lew, g) ~ Ct.. The set L specifies a vicinity of O"(iJlJ,!?IJ) corre­
sponding to which we can introduce a finite subset K of K and in analogy to 
IV (5.1) define 

From AV 1.1 we then can deduce the following finite kernel: For each pair 
gl, g2 EL, there is a gEL with g;:::;gl,g2 and KO(gl)nKo(g2)~Ko(g). Here the last 
sign ~ means that the sets are equal within the imprecision in K. This example 
demonstrates why it is so enormously simpler to use infinite sets instead of only 
finite sets. 

If we speak of R z as an empirical law, the word "empirical" indicates a property 
of the finite kernels R.2 (not of the additional idealizations contained in R2). 
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What is the "physical content" of the finite kernels R2 if R2 is neither refutable 
nor empirically deducible? The content is that R2 is empirically deducible (as we 
requir~ for ph~sically meaningful axioms !). (Since R2 is weaker than R 2, R2 not 
refutable also implies R2 not refutable.) 

It is easy to see that the finite kernel of A V 1.1 defined above is empirically 
deducible since one should only adopt such a hypothesis Yf that all effects gEL 
and all ensembles wEK are present in Yf and the freq).lencies (corresponding to 
Jl(w, g)) are such that the finite kernel of A V 1.1 can be "read" from Yf (the finite 
kernel is only a statement about finitely many elements !). 

The known cases of. empirical laws R2 which are neither refutable nor empirically 
deducible are of the same kind as AV 1.1. Such an R2 has the form 

R 2 : Vz 3w[A(z, w)], 

where A is a relation. The negation of R2 then is 

not R z: 3z Vw[not A(z, w)]. 

If z and ware elements of infinite sets, neither R2 nor [not Rz] can be refutable 
by finitely many relations in :If. But the negation of the finite kernel of R z may 
be refutable. 

That R2 is empirically deducible does not mean that we ever have a real observa­
tional report from which- R"2 can' be deduced. On the contrary, in almost all physical 
theories we have in R2 finite sets of so many elements that there are not enough 
human beings and not enough time for experiments to get an observational report 
sufficient to deduce R2 • We can only say that we are "on the way" to an empirical 
deduction of R2 • As long as "on this way" we do not find an indication that we 
have made a z for which there are fundamental difficulties in nature to make a 
w with A(z, w), we adopt R2 (and; its idealization R 2) as axiom. But we can never 
exclude that "on this way" we could detect a limitation of R2 and thus a new 
physical law (see the general investigations in §4). 

The best form of P( ... ) would allow us to separate norms, finite kernels and 
pure idealizations. We can now define more precisely what we mean by a pure 
idealization: R2 is a pure idealization if R 2 is a theorem in At:Y;; (for every imprecision 
set). 

We have not reached this "best form" of P( ... ) for our axiomatic basis of quantum 
mechanics since we have not separated finite kernels from idealizations. We will 
try to give some remarks for such a separation below. Since it is "usual" in the 
axioms to mix physical contents with idealizations, one has often made mistakes 
by claiming something as a physical structure what indeed was only an idealization. 
For instance, it sometimes has been claimed that there are infinite structures in 
nature. This is amusing since one has introduced infinities in j{.'Y;; only to conceal 
our ignorance. One has deceived oneself by transforming ignorance into knowledge. 
Honestly we must admit that either physics demonstrates the finiteness of a structure 
in nature, or physics cannot say how comprehensive this structure in nature really 
IS. 

Let us now try to characterize the empirical axioms in III to VIII. Not only 
A V 1.1 is a law with empirically deducible finite kernels. We have introduced many 
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similar laws: AOb and APr, AV 1.2, AV 2 or AV 1.28 (APr on page 145 has a 
mistake; O"(~', ,%') must be replaced by O"(~, £0)), 

A V 3 is refutable if it is independent of the foregoing axioms; this we have 
not proven. 

Very interesting for the finiteness of physics is the quantization law A V 4 or 
AV 4s. This axiom is the only to contain the word "finite", namely "finite dimen­
sion". 

We interpreted the introduction of infinities in the mathematical part Jt'1:T of 
a fJjJ:T as a clever method to hide unsolved physical problems. A V 4 is therefore 
nothing but the claim that we have solved, at least in one respect, a physical problem. 
We have not solved all problems hidden behind the infinity of the set K. 

That we have indeed solved a physical problem can be seen best by comparing 
AV 4 with the second part of AVk1 (VI §7.1). This says that each exposed face of 
K is infinite dimensional. Thus we cannot find an end to demixing ensembles: Every 
ensemble can be demixed into two orthogonal (IV D 5.1) ensembles with similar 
weights if we only make the precision high enough. A V 4 on the contrary says, 
that demixing ends in the following sense. 

For every given imprecision, by experimental demixing we can find approximate 
faces of such finite dimensions that these dimensions are not altered by increasing 
precision, i.e. the demixing of ensembles of such faces ends, since for higher precision 
at most such mixing components can be found which can be neglected because 
of their" very small" weights. 

In this sense, A V 4 is an empirically deducible axiom. 
AV 4a and AV 4b are refutable axioms. 
We have tried to give a short characterization of the axioms we used for the 

development of quantum mechanics. Obviously this characterization was not rigor­
ous. There remains the task to elaborate rigorously all the indications we have 
given. Such an elaboration would be mainly interesting for the philosophy of science. 

§ 3 Intertheory Relations 

Physics does not consist of one theory. On the contrary there are many theories, 
even though one finds the opinion that there should be one theory "behind" all 
these theories. But we do not in the least know this "one" theory. The belief in 
a single but not discoverable theory is fruitless. We rather should examine how 
the various theories are connected. In the philosophy of science this problem is 
well known as the problem of intertheory relations. (As addition to this section 
see [3] § 8 and [48].) 

A false view of intertheory relations has been the source of many false opinions 
concerning the "truth" of a physical theory. Thus the misconception has arisen 
that no theory is really" true" but that during the development of physics a later 
theory becoming valid (i.e. a paradigm) makes an older theory "untrue" (i.e. rejects 
it as paradigm by a revolutionary act). 

Our aim in studying intertheory relations is to see better the relations among 
the various forms of quantum mechanics given in the previous chapters. 
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§3.1 Restrictions 

We start with a theory fjJ:Yi and wish to construct a theory fjJf7 which makes 
less restrictive assertions about possible observational reports. The theory fjJ:Yi is 
assumed given in the form of an axiomatic basis of the first degree (but not necessarily 
simple). It is easy to transport all considerations to an axiomatic basis of higher 
degree or to a general form of a theory, only these transported forms are not so 
lucid. 

Let the species of structure E 1 of the mathematical part JIt 5E, of fjJ:Yi be charac­
terized by the base sets Xl' ••. , Xn (which are the pictorial sets) and the structural 
term s (the components s,.. of s being the pictorial relations). Further consider in 
JIt fii, intrinsic terms E I> ..• , Er of the following type: 

(IX) Ev is a subset of a product set xv, x XV2 X •.• X xVp ' or 
(fJ) Ev is the range of a mapping f from a set F of type (IX) into an echelon 

set over Xl' •.• , X n • 

As the mathematical part of the new theory fjJ f7 we simply take the same JIt 5E, 
as for fjJ:Yi. (Of course, this need not render fjJ f7 an axiomatic basis.) As pictorial 
sets for fjJf7 we single out the sets E 1 , ••• , Er • To obtain pictorial relations, we 
seek intrinsic terms u,..(xI> ... , X n , s), (.u= 1, ... , m) which have the following typifica­
tion over the pictorial sets: 

(3.1.1) 

(R may be absent in some of the u,..). These subsets u,.. represent the new pictorial 
relations. 

We must add that uniform structures of physical imprecision should be trans­
ported canonically to the sets E., whereby the mapping f in (/3) must become uniform­
ly continuous. 

The last step in defining fjJ f7 consists in transforming the correspondence rules 
of fjJ:Yi into the new ones of fjJf7, without changing (in a first step) the fundamental 
domain ~1 of fjJ:Yi. We start from a hypothesis £'1 in fjJ:Yi as defined in § 2.5. 
Thus £'1 has the form 

(3.1.2) 
and 

(3.1.3) 

We must define a Hypothesis £' in fjJ f7 corresponding to £'1 in fjJ:Yi, i.e. we 
must deduce a theory JIt fii, £' from JIt 5E, £'1. 

Let Ev be a term of type (IX). If 

(3.1.4) 

is a theorem in JIt fii, £'1 (i.e. if JIl;. =>(3.1.4) is a theorem in JIt fii,), we introduce 
a new sign h1 as an abbreviation for the p-tuple (ai" ... , ai): 

(3.1.5) 

While (3.1.4) and (3.1.5) imply 
(3.1.6) 

h1 is called a new pictorial element of the new pictorial term Ev. 
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Now let Ev be of type ([3), say Ev=f(F) and F exv , X X V2 X ... x xVp ' We are looking 
for sets of p-tuples 

(3.1.7) 

which are mapped under f onto the same element bk : 

f(a;" ... , a;) =f(aj, , ... , aj)= ... =bk • (3.1.8) 

In this event we introduce the sign bk as a new pictorial element of the new pictorial 
term Ev: 

(3.1.9) 

The new hypothesis £ will consist of statements of the form (3.1.6), (3.1.9) and 
of all relations 

(3.1.10) 

which are theorems in A.'J1:, £1' This completes the definition of the new correspon­
dence rules of q>:y. 

In the case of imprecise correspondence rules where (3.1.3) takes the form 

(3.1.11) 

one weakens (3.1.6), (3.1.8), (3.1.9) and (3.1.10). 
In the case (a) we replace (3.1.3) by neighborhoods Bv of Ev in xv, x ... x xVp 

(corresponding to the smearing of the SIl) and look for a theorem 

(3.1.12) 

In the case ([3) we replace Ev=f(F) by a neighborhood Bv of Ev in the correspond­
ing echelon set. 

Instead of (3.1.7) we only seek relations 

(a; , ... , a,· )EF , p (3.1.13) 

with F as a neighborhood of F. Then we take such a decomposition {O"k} of Bv 
in disjoint sets that the elements of one 0" k are vicinal in the sense of the used 
imprecision set. We take the same sign bk for those p-tuples which obey 

(3.1.14) 

(instead of (3.1.8)) and get (3.1.12). With ii ll as neighborhoods of u ll (i.e. as smeared 
relations) one looks for theorems 

(3.1.15) 

The thus defined theory q>:y will be called a restriction of q> y;. , in symbols: 

(3.1.16) 

If A 91:, Yt'1 is not contradictory, then also not the theory A 91:, £1 £ which 
grows out of A91:, £1 by introduCing the new constants bk via (3.1.5), (3.1.8) and 
by adding (3.1.6), (3.1.9), (3.1.10) resp. (3.1.12), (3.1.15). Since A91:, £ is weaker 
than A 91:, £1 Yf, a not contradictory A 91:, £1 implies A 91:, £ not contradictory. 
Therefore we call q> Y;. more comprehensive than q>:y' 
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As fundamental domain of q>:T we have initially used the <§l of q> s;., just labeling 
the facts by other signs. The new labels collect some older designations (by (3.1.5) 
or (3.1.8) resp. (3.1.14», and one then "forgets" these older designations. This forget­
ting can restrict also the fundamental domain. For instance all those facts must 
be eliminated from the fundamental domain the signs of which do not belong to 
the subsets Ev (resp. Ev) according to (a) or F (resp. F) according to (f3). In this 
sense the fundamental domain <§ of q>:T can be smaller than <§l ! 

It should be emphasized that the definition of the new pictorial sets Ev and 
the new pictorial relations u/L is not "imprecise". Imprecise are only the observational 
reports. 

Widespread is the following simple case of restrictions: The Ev are some of the 
Xv and the u/L are some of the Sw Then the observational report of q>:T is simply 
a part of the observational report of q>s;.. We say that we forget every Xv which 
is no Ev and every s/L which is no U w Such a restriction shall be called a standard 

restriction, in symbols q>s;. ~q>:T. 
Sometimes it will be necessary to generalize the concept of restriction in the 

following way. We consider a special hypothesis Yrs in jt ~" We now admit also 
new pictorial sets Ei and pictorial relations u/L which are only definable in the stronger 
theory uIt:Y;;,~. If the restricted theory q>:T obtained in this way is applied, one 
always must assume a realization of ~. This realization presents such facts in the 
fundamental domain <§l of q> s;. which furnish ""It ~, with an observational report 
sf "equal" to ~ (when suitable signs in <§l are used; see § 1). In the case thus 

described we call q>:T a restriction of q> s;. relative to ~, in symbols: q> s;. ~q>:T. 
Restrictions relative to a hypothesis Yf, are widespread in physics. Frequently 

J"l; describes a situation in a laboratory relative to which the theory q> s;. will be 
restricted. A fixed ~ can be realized by a variety of possible facts in <§l, for example 
by many different situations "of the same kind" in different laboratories. As an 
example let us take for q> s;. special relativity and for ~ the specification of an 
inertial frame. Then we could restrict the set of all inertial frames to the subset 
of those with a velocity less than 10- 6 times the velocity of light relative to the 
frame J"l; (the resulting restricted theory, however, is not yet Galilean relativity; 
see §3.2). 

§ 3.2 Embedding 

Another important procedure for obtaining from q>:T a less comprehensive 
theory q> 52 is an "embedding". The mathematical part uIt ~ of q>:T is not supposed 
to be an axiomatic basis, but rather to be given as q>:T in § 3.1, i.e. by certain 
intrinsic terms E 1, ... , Er for pictorial sets and a term U = (u1 , U2 .•• ) representing 
the pictorial relations and thus satisfying 

(3.2.1) 

Here R may be absent from some of the relations. 
Now we consider a second species of structure 1:2 , with principal base sets 

Yl' ... , Yp (p ~ r), typification tE T(Yl> ... , Yp; R) and axiom Pz (Yl' ... , Yp; t). We sup-
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pose that T has the precial form 

with 
(3.2.2) 

Hence 
(3.2.3) 

Let i ---+ Vi be a mapping of indices. Then we assume that the following relation 
is a theorem in .,I/:3i: 

f. 
and P2(Yl, ... ,yp,t) and Ei-----+yv. foralli (3.2.4) 

and /ll'=[<fl' ... ,j~, l>T~rl tl'l 

Here [<fl,".) T;' r 1 tl' is the set of all Z with <f1> .. .)T;' ZE tw It may be that 
<fl' ... > T;' ul' =l= tl' since the range of <fl, .. . >T~ is not necessarily the total set (3.2.2). 
[<j~, ... >T;'rl tl, = ul' implies <fl, ... >T~Ul'ctl' and z¢ul'=f(z)¢tw 

In the following, (3.2.4) will be called the "embedding theorem". It is easy to 
transport this theorem to a representation of 1:2 in another species of structure. 

The construction of &> g; is performed as follows: .$!:3i2 is the mathematical 
part of &> g;. As fundamental domain '52 we take '5 endowed with the same signs 
as in &>:Y. To obtain correspondence rules of &> g; we replace every relation of 
the form akEEi in the (-),(1) of &>:Y by 

(3.2.5) 

and every relation of the form 

by 
(ai"ai2, ... )EUI" resp. ¢U1, in (-),(2) 

(3.2.6) 
(ail' ai2, ... )Etl" resp. ¢tw 

This completes the definition of &> g;. All this together is called an embedding of 
&>:Y into &>g;, in symbols .t!P:Y ~&>g;. Obviously .,I/:Yr2 is an axiomatic basis of 
the first degree of &>g;. We speak of an embedding &>:Y ~&>g; also then, when 
1:2 is represented in the mathematical part of &>g; (see above). Then the;; map 
the Ei into the pictorial terms and the tl' into the pictorial relations of :'lJ>g;. 

For &> g; we have prescribed that '52 equals '5 with the same signs. This signifies 
that as hypothesis £2 in &> g; we cannot take any relation of the form (3.2.5), (3.2.6). 
We must examine whether there is a corresponding hypothesis £ in &>:Y which 
yields £2 in the designated way. This is only another formulation for a restriction 
of the fundamental domain of &> g;: We must not extend the fundamental domain 
'52 beyond '5. The limitation of this domain '52 is thus not completely defined intrinsi­
cally. 

If we take care of this limitation of the fundamental domain, &>:Y is more compre­
hensive than (lJJ g; in the following sense. Let £2 be a hypothesis in &>,'Yz when 
£ is a corresponding hypothesis in &>:Y. If .$!:3i2 £2 is contradictory, then [not 
yt;] is a theorem in Jlt:3i2 and therefore 

(If yd . .. (If t d ... {t I' c TI' (y l' ... ) for all /l 

and P2(Yl, ... )=(lfa1)(lfa2) ... [not J't;(Yl, ... ;a1,a2, ... )]} 
(3.2.7) 



§ 3 lntertheory Relations 183 

a theorem in .,{Iff;;. On the other hand, in .,(Iff;; JIf the embedding theorem implies 
the theorem: 

(3Yl) ... (3t 1) ••• (3fl) ... [tJLCJ;,( ... ) forallJl and Pz( ... ) 

and Ei~Yv; foralli and .n'2(Yl, ···;f(al), ... )]. 
(3.2.8) 

Since this contradicts (3.2.7), also .,{Iff;; JIf is contradictory. 
In physics one often encounters imprecise embeddings. We know that (3.2.4) 

can only be an idealization. If &!!7 and & fi2 do not harmonize relative to the 
idealizations, we expect that an embedding theorem of the form (3.2.4) is impossible 
but that an imprecise embedding theorem can be proven. 

Starting from smeared tJL , t~ (see § 1), let us try to prove the following weaker 
version of the embedding theorem: 

(3Y1) ... (3td ... (3f1) ... [tJLcJ;,( ... ) forallJl 

and Pz( ... ) and Ei~YV; foralli (3.2.9) 

and UJLC[(fl' ... )T;.rl tJL and U~C[(flo ... )T;.rl T;J. 

(Here u~ is the complement of uJL; for the definition of [(f1' ... )T;'rl tJL see after 
(3.2.4).) 

In (3.2.9) we must add that the h must be uniformly continuous relative to 
the uniform structures of physical imprecisions. Then 

(3.2.10) 

is a possible smearing of uJL in &!!7. 
The question concerning (3.2.9) is: If (3.2.4) (i.e. (3.2.9) for tJL = tJ is not a theorem 

we have to ask for the smallest possible imprecisions for which (3.2.9) is a theorem. 
Such a problem has been discussed in X §§3.1 and 3.2. 

Similarly as above we can prove that &!!7 is more comprehensive than & fi2. 
For this proof we must choose uJL and u~ (defined in (3.2.10» as the smeared pictorial 
relations of &!!7. For such an imprecise embedding we use the same symbol 
&!!7 -vvt-&fi2. 

We shall discuss further only the case that (3.2.4) has p = rand i -+ Jli is a bijection. 

Then we can choose such indices that Ei~Yi' 
If in addition the h are bijections, then U in .,{Iff;; is a structure of species 

}; 2 over the pictorial sets E l' .•• , En i.e. Pz (E 1, ... ; U) is a theorem in .,{Iff;;. But 
also conversely: If U is a structure of species }; 2 in .,{Iff;; over E 1, ... , En then 
the theorem (3.2.4) (with p = rand h bijections) follows. This last special case of 

s 
embedding shall be called a standard embedding and be symbolized by -~~. 
We shall use this notation also for (3.2.9) with p=r and bijections h. Then we 
say that };2 is an approximation to U (see also below). 

But what if the h are not bijective? If an h is not injective, we can divide the 
set Ei into classes of those elements which have the same image. Then a preceding 
restriction & f/i -+ &!!7 in (3.3.1) can be attained by choosing as pictorial sets in 
.,{Iff;; the set of classes in the Ei (instead of these Ei themselves). Therefore we shall 
only discuss the possibility that the h are injective but not necessarily surjective. 
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Then Pz(E1 , ••• , U) need not to be a theorem in .It.o/;;! How can this happen 
although f!JJ fI is a stronger theory than f!jJ fl2? This is possible since only those 
pictures of facts are admitted which are not elements of y;\fi(E;). This opens a 
possibility very decisive for the development of physics: Pz( ... ) only in the following 
sense contains less restricting axioms than .It.o/;; does: The refutable axioms (in 
the sense of §2.5) contained in Pz( ... ) are also contained as theorems in .It.o/;;. For 
some of the empirically (in the sense of §2.5) deducible axioms R( ... ) contained 
in Pz( ... ), however, [not R(El' ... )] is a theorem in.lt.o/;; ([not R( ... )] is then refutable 
in f!JJ fI !). This means that the real possibilities in nature are restricted as compared 
with the possibilities postulated by some of the axioms in P2("')' Precisely this is 
the meaning of the embedding introduced in X §2.2: The possibilities for preparing 
and registering postulated in f!JJ!Yqexp are unrealistic. 

The restriction of the fundamental domain <:f2 (see also above) can be described 
by the subsets fi(EJ. These !;(EJ are no intrinsic terms. Therefore, in order to use 
the less comprehensive theory f!JJ fl2 one will look for additional normative axioms 
(to make Pz( ... ) stronger, equivalent to the postulate that the pictures are elements 
of fi(E;». 

As an example let us take the theory f!JJfI obtained at the end of§3.1 by restricting 
special relativity. This f!JJfI can be embedded imprecisely into the theory f!JJfl2 of 
Galilean relativity. NO.t all inertial frames will appear as embedding pictures, only 
those with velocities smaller than 10- 6 times the velocity of light relative to a given 
inertial frame (symbolized by Jf.). This extra condition restricting the fundamental 
domain <:f2 remained unknown until the advent of special relativity. This is typical 
for the historical development of theories. One starts with a theory f!jJ fl2 in which 
a too large fundamental domain is assumed. Then one learns by experience that 
only under certain restrictions of the fundamental domain the theory succeeds. Later 
on, f!JJfl2 is understood by means of a restriction f!JJ:Yi --+f!JJfI followed by an embed­
ding f!JJfI ~f!JJfl2. Then the embedding procedure yields a systematic derivation of 
the constraints formerly encountered only as empirical limitations (unless completely 
unknown). 

We will return to the significance of such added normative contraints in §4. 
Closing this section we must warn of a mistake. The embedding theorem alone 

does not prove that the theory f!JJ fI is more comprehensive. In reality there can 
be the following situation between two theories f!JJ fI and f!JJ 5;: 

f!JJfI ~f!JJfl2 +-f!JJ5;. 

Then f!jJfI is not more comprehensive than f!jJ5; because f!JJfl2 is only a restricted 
part of f!JJ5;! In our opinion, f!JJ!Yqexp contains unrealistic parts; but the embedding 
of f!JJ:T". can yield a theory f!jJ fI' which contains less than necessary if the state 
space of f!JJ:T". is too "contracted" (X §2.6). 

§3.3 Networks of Theories and the Various Forms of Quantum Mechanics 

The concept of theory-nets was introduced in [62], by emphasizing that many 
"physical theories" (in the intuitive sense) such as classical mechanics should be 
considered as a network of f!JJ fI's. Let us show some aspects of this network for 
quantum mechanics (in the intuitive sense regarded as one theory). 
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Combining the two processes described in §3.1 and 3.2, we arrive at the following 
connection between three theories: 

(3.3.1) 

This represents a transition from the axiomatic basis f!J fft to the axiomatic basis 
f!Jfli, where f!Jfli is less comprehensive than f!Jfft. In §3.1, 3.2 we have given an 
example where f!J fft as special relativity and f!J fli as Galilean relativity make 

Since in physics we often encounter the special connection (3.3.1) where the theory 
f!J!T only provides a rigorous explanation of the relation between f!J fft and f!J fli , 
let us abbreviate (3.3.1) by 

(3.3.2) 

Here the fundamental domain ~2 of f!J fli is determined by a restriction from 
~1 to ~ (as described in §3.1) and a following embedding where ~2 is the same 
domain as ~. In this way, ~2 is defined by external conditions, i.e. by t'§ (see §3.2). 
When we try to change f!J fli in such a way that ~2 can be defined intrinsically 
by normative axioms, the embedding becomes a standard embedding: 

(3.3.3) 

Here also the constraints for ~2 are defined intrinsically. In (3.3.3) we have the 
most important relation between two theories. 

We claim that all physical theories can be ordered in a network of relations 
of the form (3.3.2) (which should be changed into (3.3.3)). Thus by a network we 
mean a set of theories f!J ff; and relations of the form (3.3.2) such that one can 
reach every theory f!J fJk from any other f!J ff; by going along arrows ~ (but 
possibly disregarding their directions). If one can reach f!J§3 from f!Jff; by going 
only in the direction of the arrows, we say that f!J §3 is less comprehensive than 
f!J ff;. 

The claimed existence of a network is the realistic counterpart of the utopian 
idea of a most comprehensive theory which comprises all others. During the develop­
ment of physics, not always did all theories belong to the same network. There 
were disconnected parts of physics as e.g. mechanics, acoustics, optics (and chemistry 
as a very separated part, as it seemed at that time). Our claim is that today (and 
in the future) there is one and only one connected network of theories. It will be 
the task of this section to exhibit a subnetwork of theories which is called" quantum 
mechanics". 

First there is a very simple link 

(3.3.4) 

where the restriction and the embedding are standard. The embedding shall be 
precise. The difference between f!Jfli and f!Jfft consists in "forgetting" some of the 
pictorial sets, pictorial -relations and axioms. The reverse transition from f!J fft to 
f!J fli consists in adding to E 1 new base (pictorial) sets, new pictorial relations and 
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new axioms. In this last direction proceeds the fundamental development of a theory. 
In this sense, 

(3.3.5) 

depicts a chain of theories developed from f!JJ!Yi to f!JJ fY;.. One easily sees that we 
have given such "developments" in III through IX. Therefore we will not go here 
into details. 

It must be emphasized that the way (3.3.5) from f!JJ!Yi to f!JJ fY;. of the development 
of an axiomatic basis is not a prescription for finding physical theories. It is allowed 
to seek theories in curious, even crazy ways: even contradictions are not forbidden. 
But if a theory has been established, then we should look for an axiomatic basis 
along (3.3.5). 

We have already pointed out some links in the network of quantum mechanics 
in III §§4, 5.2 and 6.7. In the following we are not interested in a development 
chain like (3.3.5) but only in the "result" f!JJfY;. of such a development. Nevertheless 
there are various forms of quantum mechanics. The theory denoted in III §6.7 by 
f!JJ!Yit is that form of quantum mechanics which contains the most comprehensive 
description of the devices. 

First we notice that .,I/ffi:" (the mathematical part of f!JJ!Yit) is not of the first 
degree since there are pictorial sets (e.g . .921> .922) which are no base terms. We therefore 
go over to an axiomatic basis with a species of structure flt of the first degree 
by a procedure presented in §2.2 (there we have described the transition from a 
structure E of the first degree to a structure E(l) of higher degree). 

As base terms of flt we introduce the pictorial terms M l , M 2, hfl, hf2' Yl , 

Y2 , as this was done in III §1 and III §6.2. We add the following base terms (new 
as compared to Elt):,ql, ,q2' which are pictorial terms for the preparation procedures 
of the systems 1 resp. 2. Since ,ql,,q2 are base terms, we must introduce a new 
relation PI (x l' a) as pictorial relation for" x 1 is prepared according to the procedure 
a". By 

(3.3.6) 

we define a mapping ,ql -+ f!JJ(M 1). The range of this mapping shall be denoted 
by .921 . We add the axiom (as conceptual norm) that the mapping (3.3.6) is injective. 
Thus ,ql -+.921 is bijective, while Pl (Xl' ii) is equivalent to Xl Ea. Then .92 1 and the 
similarly defined .922 are identified with the .921 ,.922 introduced in III §2. 

The relations 9llochfl,9t2ochf2 in AT 2 do not have the form desired for 
an axiomatic basis of the first degree. Therefore, instead of hfiO we introduce a 
pictorial relation ri(b) with the interpretation: b is a measuring method. Then we 
define hfiO = {blbEhfi and ri(b)} and have hfiO cPA i . 

The main pictorial relations are the probability relations. AMeas 1, AMeas 2 contain 
only elements of base sets (see II, §3.1). This is not immediately the case for the 
other A introduced in III, §2. But we easily get the postulated form of pictorial 
relations by a procedure like the i~troduction of ,qi above. For instance, instead 
of 912 from APSZ 6, in a first step we introduce a base term ~2 and a pictorial 
relation y(x, C) for XEM and CE~2 with the interpretation: X is selected according 
to the procedure c. By 

C-+C={XIXEM and y(x, C)} 
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we introduce a mapping ~2 --->£iJl(M), the range of which we denote by 912. We 
add the axiom that this mapping is injective and that 912 is generated by the 812 

defined in III (2.16). 

In fll we thus can introduce new base terms and define the probability relations 
as relations between elements of base terms (based on bijective mappings). 

Obviously, this method of introducing additional base terms in f 11 (as compared 
with L 11) does not make the physical contents of £iJl ffr, clearer. Only if some logical 
problem seems not clear enough in L 1" we should translate this problem to t ll • 

If we presently skip the base terms and axioms of III, § 7 and IX, we see that 
fll obeys the postulates of a simple axiomatic basis. The axioms have been discussed 
already in §2.4. We now have the task to examine whether also the additional 
base sets and axioms of III § 7 and IX fulfill the conditions for a simple axiomatic 
basis. 

In III § 7 we introduced the additional base term L1 and a pictorial relation. 
Now let us denote this relation by l1(a2, b, a~) with a2, a~E.P2' bEL1 and interpret 
it as: a~ is the preparation procedure a2 transported by b. By axioms we prescribe 

that I] defines a mapping (b,a2)--->a~ which we denote by a'=ba, i.e . .Pr-~-+.P2. 
Additional relations and axioms lay down that L1 "is" the Galilei group. But L1 
as Galilei group is a structure transported from pretheories. Therefore it is a familiar 
method (already discussed in §2.4), not to introduce all relations and axioms for 
this structure in the form of a simple axiomatic basis but to be content with the 
short formulation: L1 is the Galilei group. The relation l](a2' b, a~) can also be viewed 
as 11 (G2' b, G~) with G2, G~ E 2.2 . Thus the form of a simple axiomatic basis is attained. 

In IX we have sketched additional structures (described in more detail in [2] 

through XVII). After discussing L1 and the consequences of the relation .P2~.P2 
in [2] VII, in [2] VIII we introduced a new relation: "consisting of elementary 
systems". This is not a new pictorial relation, but a derived one (see [2] VIII §2 
to 4) on the basis of an additional (empirical) axiom. In [2] VIII §2 this axiom 
is formulated as AZ with additional requirements imposed there. 

This axiom is physically interpretable and therefore usable in f 11. This definition 
of" composed of ... " should be complemented by a pictorial relation, in IX described 

by a mapping n ~.P' (also see [2] XVI § 1). We easily see that this pictorial 
relation can be reduced to a relation between elements of base sets (by the procedure 
sketched above for the probability relations). Therefore also this relation is useable 
in f 11 . 

In [2] VII §2 we have tried to give intuitive indications for this axiom AZ, 
but also expressed the desire to find a more transparent way for introducing the 
structure "composed of ... ". The beginning of such a possibility is described in 

IX § 2. There we first introduced the pictorial relation n ~.P' and additional 
axioms which permit us to get a bijective mapping (2.7). But this is not enough 
to describe the interaction of the parts in a composed system. We must add other 
axioms, e.g. AZ. 

But all this discussion of the "best" way to introduce the structure "composed 
of ... " does not revoke the fact that f 11 can be formulated as a simple axiomatic 
basis. 
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There is another feature of the presentation in [2] XI through XVI, which is 
all the more unsatisfactory: We introduced many additional "axioms" to describe 
"special" preparation procedures and measuring methods. These axioms are nothing 
but axiomatic relations for the mappings IX and 13 defined at the end of III §6.4: 
For special subsets of ~'1 x 0/1s(9'1) (resp. ~2 x 0/2s(9'2)) which can be described by 
the pretheories, the axioms give values IX(a1' kd (resp. p(a2, k2))' This method is 
clearly not" elegant, but does not contradict the postulate of physically interpretable 
axioms. 

In order to improve this method, one can take two ways. On both we begin 
with the same step already described in XI §7: We regard all these axiomatically 
introduced ensembles and observables as desired ones, i.e. we say nothing about 
the mappings IX and p. The next step is to realize these desired ensembles and observ­
abIes in the sense of V §8, resp. V §5. Then the first way goes over to the more 
comprehensive theory in XI, by which we can deduce the mappings IX, 13 from the 
embedding in g>Yqexp. The second way prefers to introduce very few observables 
by axioms concerning 13 (e.g. for correlations between special (a z , k2) and the impact 
observable in [2] XVI (6.1.13)). Then the theory from [2] XVII is used to find 
new observables and to construct ensembles by transpreparators. The actual way 
in experimental physics combines these two ways. 

To formulate JIt §i" we exclude the first way but leave open all possibilities 
of the second way. Thus we see how a theory g>~, with JIt §i" as simple axiomatic 
basis can be formulated. g>ff;., is equivalent to g>~, and has an axiomatic basis 
JIt fIi" of higher degree but also with physically interpretable axioms. The relation 
between g>~, and g>ff;., is only a special case of that between g>ff and g>ff(1) 
described in §2.2. With the concept of embedding we also can write this relation 
as 

(3.3.7) 

The first embedding in (3.3.7) is nothing but the "identification" of the pictorial 
sets in Jltfli" w~th pictorial sets in JIt§i", as e.g. the range ~1 of ,ql -+g>(M1) 

is identified with the pictorial set ~1 in JIt§ilt' These identifications can also proceed 
in the opposite direction. Thus we get the second embedding in (3.3.7). It is obvious 
that g>ff;., is easier to use than g>~,. 

Still simpler is g> ff;., as defined in III, § 6.7. The relation of g> ff;., and g> ff;. is 
fixed in III (6.7.1). We get g>ff;.' with the same mathematical part JIt:Tr1t of g>ff;.t 
if we omit Y1, Y2 , ~ 1 , ~ 2 as pictorial sets and use f7t 1, f7t 2 as new pictorial sets. 
The embedding in III (6.7.1) is a standard embedding by "identification" of the 
terms f7t 1, f7t 2 of JIt fIi" with the pictorial terms f7t b f7t 2 of JIt fIi l' By the transition 
from g>ff;.t to g>ff;. we have "forgotten" the description of the devices by trajectories. 

J!t flil is an axiomatic basis with physically interpretable axioms but not of the 
first degree. We easily get an axiomatic basis of the first degree by the procedure 
used above for the transition from L 11 to f 11' For instance, instead of f7t 1, f7t 2 

we introduce base sets ~1' ~2 and relations IX(Xi,hi) with the interpretation: Xi 

is registered by hi' Then we introduce the mapping 
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and postulate that the mappings ~i-+(JJ(MJ are injective. fJl i will then be defined 
by the range of this mapping. Are these base sets ~ i similar to the sets ~ i of Jt!iI, t ? 
Indeed they are, except that an order structure of the sets ~i does not appear 
(corresponding to the feature that Y1 , Y2 do not appear in Jt!iI.). Such an order 
structure of ~i was necessary to introduce the probabilities AMeas which are unneeded 
for the formulation of Jt!iI, . 

A next step of "forgetting structures of the devices" is the transition from (JJ /Yi 
to &!!7i, described in III, §4 and symbolized by III (4.4). We get the restriction 
(JJ/Yi' by using as pictorial sets only the terms fl, fJlo, fJI, ::/. A standard embedding 
by identification of these terms with pictorial terms of 1:2 yields (JJ!!7i. The axiomatic 
basis Jt!iI2 is precisely that developed in [2], if we there use the axioms in [2] 
III §3 (not the axiom AQ in [2] III §5!). 

It is again easy to reformulate for Jt!iI, an axiomatic basis of the first degree. 
Therefore such a reformulation may be left to the interested reader. 

We get a species of structure 1:2Q equivalent to 1:2, if we replace the axioms 
in [2] III, §3 by the axiom AQ in [2] III §5. Then Jt!iI2Q is again an axiomatic 
basis of (JJ!!7i, but not only with physically interpretable axioms since in AQ we 
have introduced the theoretical auxiliary term of a sequence of Hilbert spaces. 

In III §5.2, as a next step in the process of forgetting we considered the transition 
from (JJ!!7i to a theory (JJS3 symbolized by III (5.2.1). The restriction (JJ!T-j follows 
from (JJ:T2 if as the only pictorial terms for (JJ:Ti we take the :ft, 2 in Jt!iI> and 
the probability function X x 2~[O, 1] as single pictorial relation. 1:3 is given 
by the base terms :ft, 2 and the relation J-l and additional axioms, which can be 
formulated by using :ft, 2, J-l. The definition of the elements of L1 as transformations 
in 2 (resp. X) can be transported from 1:2 to 1:3, The basis Jt!iI3 is of the first 
degree. 

The simple structure of (JJ S3 is attained at the expense of omitting from the 
fundamental domain some relations which are very important for the structure of 
the microsystems, namely the relations pictured by the concepts of observable and 
preparator. Obviously it is possible to add these concepts to (JJ S3 afterwards. But 
a foundation of these concepts similar to that given in V (or [2] IV) is not possible 
in (JJ f/3 since we cannot establish the physical significance of the Boolean rings 
(with the help of which the concepts of observable and preparator are defined). 
To give these Boolean rings a physical interpretation it would be necessary to extend 
the species of structure 1:3 by additional base terms fl, fJI (endowed with structures 
similar to those of !'J in II §2.1) without an index set M. Such a theory (JJf/3pr 

could serve as a step between (JJ!!7i and (JJ f/3 in the chain 

/1Jj I7T /1Jj 17T" S /1Jj I7T /1Jj dr' S /1Jj I7T 
;:;r.'!/2 -+ ;:;r.'!/2 --vv>;:;r.'!/3pr -+ ;:;r.7 3pr--vv>;:;r.'!/3· 

Here (JJ!T-j' would result from (JJ!!7i by forgetting M and the relations between 
M and fl, fJI. Since 1:3pr contains fl, fJI as base terms, (JJ:T3pr results from (JJS3 pr 

by forgetting besides M also fl, fJI. But if we use (JJ S3 pr instead of (JJ S3 in order 
to define the important concepts of observable and preparator rigorously, then only 
a small step leads to the more transparent theory (JJ!!7i developed in [2]. 

Neither (JJ!!7i nor (JJf/3 coincides with the "usual" form of quantum mechanics 
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taught in textbooks. Therefore let us also give the relation between f!J fl2 and this 
"usual" quantum mechanics to be called f!J:Y5. 

We introduce a species of structure 1:5 by a Hilbert space £ over the field 
C (of denumerable dimension). Let 9'r(£) be the Banach space of all bounded 
self-adjoint operators (often enlarged to the set of all essentially selfadjoint operators; 
see [2] A IV § 10; who wants can in the following take 9'r(£) as this set). 

To describe the superselection rules we assume a decomposition £ = LEEl.n:. 
Let Ob(£) be the subset of all those operators in 9'r(£) which map the subspaces 
.n: into themselves. This Ob(£) is singled out as pictorial set for what is commonly 
called an observable; but usually this concept is not completely clarified. To see 
this we need only read the deluge of words by which one tries to circumscribe 
an observable. 

Let K(£) be the subset of all those WE9'r(£) which transform each .n: into 
itself and obey W>O, tr(W) = 1. This K(£) is singled out as pictorial set for the 
ensembles (also called states). Again the meaning of ensemble (state) cannot be com­
pletely clarified. 

As pictorial relation we use tr(WA)=oc where WEK(£) and AEOb(£). This 
tr(W A) is interpreted as the expectation value of A in the ensemble W. The expectation 
value is the mathematical idealization of the mean value of the measured scale 
values for "many" measurements. 

Special observables, e.g. position and momentum are introduced again without 
the possibility to clarify what these observables mean, e.g. what is the "position" 
observable. Similarly the physical significance of the time evolution in the Schro­
dinger- or Heisenberg picture ([2] X) is only interpreted by vague comparisons 
with classical mechanics, since one commonly does not use the correct interpretation 
of the Galileo transformations as transports of the measuring devices. 

For all these unclear concepts, especially that of an observable, one had to pay 
dearly during the development of quantum mechanics; for instance all this unclear­
ness caused an extensive and partly abstruse discussion of the "measuring process". 
All unclearness can be removed if we clarify the relation of f!J:Y5 with f!J fl2. For 
f!Jfl2 we will use the 1:2Q from above without changing the denotation of f!Jfl2. 
We shall demonstrate the relation 

(3.3.8) 

with a suitable restriction f!J.0/4 constructed as follows. 
As a first new pictorial set in f!J~ we use the set K of ensembles. More difficult 

is it to define a new pictorial set formed by "scale observables". With this "interpreta­
tion" we do not immediately see an intrinsic term. A search for it reveals the more 
precise physical interpretation of "observable". A scale observable was defined as 
a decision observable with a scale. A scale for a Boolean ring is defined in V D3.5.1. 

A scale observable is therefore a pair 1:~G and YE~'(1:) (see VII D3.1). Since 
1: is not intrinsically defined we have to seek for an intrinsic analog of 1:. Such 
intrinsic Boolean rings are the sets af(bo) with boEafo (the observables were intro-

duced as abstractions of these af(bo)~ L !). 
We now can define a subset afOd of afo by those boEafo for which af(bo)~L 
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is nearly (in the sense of AOb in V §5) a decision observable. This "nearly" is 
typical for the physical applications of f?lJ ffs, since in general there are no exact 
measuring methods for decision observables. Nevertheless we do not want to estab­
lish here a precise description of this "nearly" by imprecision sets. To simplify our 

considerations we will do as if the boE9tOd by 9t(bo)~G define decision observ­
abIes. 

If 9t(bOI )n9t(bo2)=l=0 then a bE9t(bodn9t(bo2) would exist such that bo=bol n 
b02 =l=0with boE9to. Since ",(bOlo bo)=Al, bo =l=0 and bOI E9tOd , we get A= 1, i.e. bo=bol 
and therefore bOl =b02 . 

Thus the set 9td of all bER with bcbo E9tod is partitioned into disjoint sets 
9t(bo) with bo E9tOd . It would be possible to define a restriction of f?lJ§i by the 
new pictorial sets K, 9tOd and 9td and the probability relation Jl(w, ",(bo, b»=cx with 
WEK and bo E9tOd ' bE9t(bo). To define f?lJ!!14 we will use scales and the concept 
of expectation values (instead of Jl( .. . ». The scales are only aids for representations 
of the Boolean rings 9t(bo). This significance of scales was described in V §3.5 and 
[2] IV §2.5. Thus it is possible, for every bo to replace the Boolean ring 9t(bo) 
by the set of scales f!lJ'(9t(bo» (see V 03.5.1). f!lJ'(9t(bo» is a theoretical, but not 
a physical term (in the sense of §2.3) since we have to use the real numbers (not 
only bound by the probability relation) for its definition. The scales play the same 
role for a Boolean ring as for instance coordinates for the Euclidean geometry. 

We introduce the scales as aids for writing down the observational report in 
a form as clearly arranged as possible. How to do this? 

As new pictorial sets use 9tOd and the disjoint union U f!lJ'(9t(bo». The bo E9tOd 

are given in the fundamental domain as registration devices. The scales YEf!lJ'(9t(bo» 
are arbitrarily "chosen" (for a given device bo). They serve for a new description 
of the observational report. Instead of the probabilities for the various elements 
of 9t(bo) we introduce the expectation values for the YEf!lJ'(9t(bo». This expectation 
value relation is given by 

Jl(W,S'y)=cx. (3.3.9) 

Here S' is the mapping f!lJ'(9t(bo»~f!lJ' dual to the f!lJ~f!lJ(9t(bo» defined 
in §3.2. 

In the description of the observational report we must state the chosen scales 
y. From this observational report we can pass over to that of f?lJ!!14 by forgetting 
9tOd and by using K and Ob4 = U S' f!lJ'(9t(bo») (the mapping U f!lJ' (9t (bo» 

-+ Ob4 by S' is not necessarily injective!) as pictorial sets and (3.3.9) as pictorial 
relation. Then the axiom AQ (see [2] III §5) of L2Q implies the embedding 
f?lJ!!14~f?lJffs· 

Also the fundamental domain of f?lJ!!14 and thus of f?lJ ffs is very restricted compared 
with that of f?lJ§i. Only such devices (bo E9tod) are admitted to the fundamental 
domain of f?lJ!!14 which (nearly) "measure" decision observables. Since most measure­
ments are not of this type, this restriction is at least very impractial. But very dubious 
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is the imagination of some theorists that there is something real in nature that 
corresponds to the observables (in the usual sense of f!Jf/;, i.e. to the elements of 
Ob(Jr)) and that it is a question of experimental physics to seek for more or less 
precise measurements of these realities. These theorists feel pretty elevated above 
the work of the experimentalists. They think that theoretical physics has only to 
do with the clean reality, not dirtied by practical work, so clean that there is no 
such clean reality at all. 

It cannot be the task of this book to discuss critically the deluge of literature 
concerning problems which solely arise from unclear and false ideas about the inter­
pretation of the "usual" quantum mechanics f!Jf/;. Therefore all those having prob­
lems with f!Jf/; should ask themselves critically whether or not these problems can 
be formulated within the framework of the theories f!Jf/it, f!Jf/i or f!J§i. If not, 
then one must ask oneself on what these problems rest, apparently on some ideas 
additional to f!J f/;. But then, it is not more reasonable to abandon such additional 
ideas which are not compatible with quantum mechanics? 

The reader may review the discussion in X §2.1 and 2.2 concerning the relations 
between various theories for macroscopic systems. The only difference is that there 
we assumed an embedding f!J§"".~f!Jffqexp in §2 to 3 to complete the theory f!J§"". 
with respect to the dynamics. In this sense, the embedding postulate can be taken 
as an axiom of f!Jf7"., an axiom of the form (2.1.1). Probably we have not yet found 
enough constraints for the embedding mappings. For this reason, until now we 
cannot say exactly what in the atomic structure of macrosystems is real and what 
not (see §4.8). 

§ 3.4 Pretheories 

We have used the concept of pretheory very often but more intuitively than 
rigorously. We now are in the position to say rigorously what we understand by 
a pretheory. Already the discussions of restrictions and embedding revealed how 
the correspondence rules should be transferred. With f!J f/i and f!J §i as the two 
forms of quantum mechanics one could have the impression that III (4.4) makes 
f!J f/i a pretheory of f!J §i since that relation determines the correspondence rules 
of f!J §i by those of f!J!Tl. There is something right in this impression. 

We define: f!Jf7;, is a pretheory of f!J!T if there is a standard restriction f!J!T' 
of f!J!T such that 

(3.4.1) 

and the pictorial sets and relations of f!J!T which are "left" in f!J!T' are interpreted 
by f!Jf7;,--f!J!T'. 

As f!J f/i p let us take the theory developed in III § 1 to 3, as f!J:!i2 the standard 
restriction of the form f!J §i of quantum mechanics. Thus we forget all but fl, 9lo, 
9l and AjI, A9i!o and A.9' and the relations APS 1, APS 2, APS 3, APS 4, APS 5.1.1, 
APS 5.2, APS 6, APS 7 and APS 8 as axioms for 1:2 • Then we have 

(3.4.2) 

where fl, 9lo, 9l and AjI, A9i!o' A.9' are interpreted by the "pretheory" f!Jf/ip-
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Obviously &flip is not the "total" theory 9i'fIi; but we have 

9i' fIi ~ 9i' fIi P' 

193 

(3.4.3) 

where we get &flip by forgetting all of &fIi except structures established in III §1 
to 3. 

(3.4.2), (3.4.3) and III (4.4) yield 

(3.4.4) 

This diagram pictures a desire emerging from a relation chain such as (3.4.1): to 
find a theory more comprehensive than 9i' g;, and 9i' fr. But this desire is not fulfilled 
in most of the situations where we use pretheories. For the form &flit of quantum 
mechanics, we have to use pretheories of the form described in II to interpret the 
base sets Y1 , Y2 of E 1 t. Our efforts in X and XI are nothing but steps in the direction 
to a more comprehensive theory than &flit and its pretheories. 

In situations with more than one pretheory we have a diagram like 

(3.4.5) 

There can be much more complicated situations in the network of physical theories 
than described here as examples. So far this network has been explicitly elaborated 
only in very few places. Nevertheless physicists find their way in this network like 
spiders in their webs. 

§ 4 Physically Possible, Physically Real Facts 
and Physically Open Questions 

We have used words as "real" and "possible" not only in the preceding sections 
but also on many places in I to XII. But we have used these words only intuitively 
without defining rigorously what we mean. Obviously the interpretation of a 9i' fr 
is not exhausted by the correspondence rules introduced in § 1. These rules are 
only the fundament on which we can build a more comprehensive interpretation 
language. 

Certainly we adopt the observational report (1.1), (1.2) or (1.7) as statement of 
real facts formulated in the language of 9i' fr. But we all know that we claim much 
more as real than is written down in the observational report. We use to infer 
other, not observed realities. For instance, we speak of real electrons although only 
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interactions of macrosystems are observed. We speak of real atoms which compose 
macro systems. We speak of real electrons in a semiconductor. Is all this correct? 
Or are electrons and atoms in macrosystems only imaginations suitable to explain 
some properties of the macrosystems? All this can only be clarified if we have a 
rigorous method to proceed from the observational report to other realities. 

Much more mystical than the approach to realities seems to be that we speak 
of possible facts though there is no sign in .4t f7 for such a logical category as 
"possible", i.e. there is no modal logic in .4tf7. Obviously "possible" is a word 
of the interpreting language, and it is one of the most important words. In physics 
we mostly do not ask "what is?" but rather "what is possible?". Then the fundamen­
tal but not physical question arises "What of everything possible should we realize?" 

The intuitive usage of the words "real", "there are", "this is possible", sometimes 
has led to errors. We need only mention questions such as: Has a single microsystem 
a "real state"? Have the microsystems "real properties"? Can hidden variables 
be real? Is there something like a "real propensity" for every possible process, if 
we describe processes by probabilities? 

These and many other questions make it necessary to develop a rigorous method 
for introducing such words as "real" and "possible". The next sections are only 
preparations for such a development in §4.6 and §4.8. 

§4.1 Hypotheses in a ~/!T 

We have already introduced hypotheses in §2.5. We now want to extend this 
concept. For the following discussions it is suitable to take the mathematical part 
.4t fY;; as an axiomatic basis (not necessarily of the first degree and not necessarily 
simple). We will not change the theory .4tfY;; and therefore fix the base terms as 
YI, ... ,y" the structure terms by t=(tl ,t2 , ••• ) and the axiomatic relation by 
P(YI, ... , t). We regard as given an observational report in the form (2.2.22) of (-)r(1) 
and (2.2.24) of (-)r(2) . .4t fY;; d is the theory with the additional constants (aI' a2, ... ) 
comprised in A and the additional axioms (2.2.22), (2.2.24). 

It is now possible, as in §2.5 to invent additional relations of the same form 
as the observational report. To distinguish the letters of the invented relations from 
those of the "real" observational report, let us denote them by XI,X2, ... instead 
of aI' a2' •.•• The additional invented report takes the form 

XE1;,(YI, ... , Yr); 

P,,(YI' ···,Yr;t,A,X,R). 

(4.1.1) 

(4.1.2) 

Then .4t fY;; d Jf has the form .4t fY;; with the additional constants a 1> a2 , ••• ; 

Xl' X2' ... and the additional axioms (2.2.22), (2.2.24), (4.1.1), (4.1.2). If there is no 
observational report, we again get.4t fY;; Jf from §2.5, i.e . .4t fY;; with the only addition­
al axioms (4.1.1) and (4.1.2). Without invented elements X I, X 2, ... , the theory 
.4t fY;; d Jf has the form .4t fY;; d with the additional axiom 

P"(YI, ... , Yr; t, A, R) (4.1.3) 

which contains additional ipvented relations among the ai. If there is no A (i.e. 
no observational report), (4.1.3) has the form of an axiom additional to .4t fY;;. 
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If 1;. and P" as above have the form of invented observational reports, we denote 
(4.1.1), (4.1.2) as a hypothesis of the first kind. 

We will now extend this concept to more general hypotheses. Instead of Xi which 
only are elements of the pictorial sets, we admit 

where the 'Jk( ... ) are any echelon construction schemes. Then 1;.( ... ) in (4.1.1) has 
the more general form 

1;.(Yl, ... , y" R)= 'Ii, (Yl, ... , y" R) x 'Ii,( ... ) x .... 

We call the 'Jk( ... ) "extended pictorial sets". We also introduce "extended pictori­
al relations" by intrinsic terms S,,(Yl, ... ,y"R) of such a form that relations of 
the "extended" form 

(X., ... , a,l> ... , a)ES,,(Yl' ... , y" R) 

make sense. These extended relations can be collected into an axiom (4.1.2) with 
the only difference that p,,( ... ) can have a more generalized form. 

A hypothesis of the described form which is not a hypothesis of the first kind, 
is called hypothesis of the second kind. 

Whenever in the following we speak of hypotheses without addendum, all holds 
for hypotheses of the first and second kind. 

For the following discussions it is advantageous to introduce the set 

Eh(A) = {XIX E 1;. and P,,}. 

Then (4.1.1) and (4.1.2) can be comprised in 

XEEh(A); 

(4.1.4) 

(4.1.5) 

and vII!!7}; d:Yf' arises from vII!!7}; d by adding (4.1.5) as axiom. If there are no invented 
elements X, we must replace (4.1.5) by (4.1.3). 

Our definition of a hypothesis must be distinguished from a forecast. By a forecast 
we want to tell what will happen (or can happen) in the future. No physical theory 
contains a structure which tells us what is the moment "now". This should be 
so since physics is based on facts and on processes in devices; and there is no 
device which can tell us that the moment "now" is distinguished from moments 
in the past or future. Only we as human beings become aware in our consciousness 
of this "now". Only relative to this "now" we can say that something in our environs 
has happened or will happen. In the mathematical part vII!!7}; of a [lJJ f7; there can 
be only a structure which characterizes the "direction" of time. But no structure 
in vII!!7}; tells us what has happened and what will happen, since there is no "now" 
invll!!7};. 

Nevertheless we know that the distinction of the future (what has not yet hap­
pened) from the past (what has happened and cannot be changed any more by 
our actions) is a decisive structure for our working. Where is that structure coming 
in? 

It comes in by the observational report. Nothing in [lJJ!T tells us, what we can 
write down in (-),(1) and (-),(2). [lJJ!T tells us only how we must write down (-),(1) 
and (-),(2). The observational report can only be related to the past, not because 
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[ljJ ff forbids us to write down something about the future, but because we as humans 
are unable to state facts of the future. Therefore the observational report contains 
only facts of the past; or more precisely: Past in physics is that about which we 
have an observational report. 

A hypothesis of the first kind can be related to imagined facts in the past and 
in the future. A hypothesis is not restricted to the future. This will be important 
for the discussions in §4.6. 

§ 4.2 Classifications of Hypotheses 

We presume that J{5;;.91 is not contradictory; otherwise [ljJff would be useless. 
If J{ 5;; .9I.J'f is contradictory we call .J'f "false", otherwise" allowed". 
J{ 5;; .9I.J'f contradictory is equivalent to that [not .J'f], i.e. the negation of (4.1.5) 

resp. of (4.1.3) is a theorem in J{5;;.9I. The negation of (4.1.5) resp. of (4.1.3) has 
the form 

x ¢Eh(A); resp. [not il(Yl' ... ; t, A, R)]. (4.2.1) 

Equivalent to X¢Eh(A) is 'v'X(X¢Eh(A», i.e. 

Eh(A)=0. (4.2.2) 
.J'f is false if and only if 

(4.2.3) 

leads to a contradiction in J{ 5;;.91, i.e. (4.2.2) is a theorem in J{ 5;;.91. And vice 
versa: if (4.2.3) yields no contradiction in J{ 5;;.91, then .J'f is allowed. 

Therefore" .J'f allowed" is equivalent to: (4.2.3) can be added to J{ 5;;.91 without 
contradiction. 

It may be that (4.2.3) not only can be added to J{ 5;;.91 without contradiction, 
but is a theorem in J{ 5;;.91. Then we call .J'f "theoretically existent" . 

.Jf .J'f is allowed and if 

Eh(A) =l=0~ Eh(A) has only one element 

is a theorem in J{ 5;;.91, we call .J'f allowed and determined. 
If (4.2.3) and (4.2.4) are theorems in J{ 5;;.91, i.e. if 

Eh(A) has one and only one element 

is a theorem in J{ 5;;.91, we call .J'f theoretically existent and determined. 

(4.2.4) 

A hypothesis without X may be called determined; i.e. allowed and determined 
if (4.1.3) can be added to J{ 5;;.91 without contradiction, theoretically existent and 
determined if (4.1.3) is a theorem in J{5;;.9I. 

Let us discuss the case that .J'f is allowed but not theoretically existent. Then 
it must be possible, without contradiction to augment J{5;;.91 by (4.2.3) or alterna­
tively by the negation of (4.2.3), i.e. by (4.2.2). Therefore neither (4.2.3) nor (4.2.2) 
is a theorem in J{ 5;; .91. 

The relation (4.2.2) resp. [not il( ... )] may be called [neg.J'f]. As a hypothesis 
without invented elements X, this [neg.J'f] (i.e. Eh =0) must not be confused with 
[not .J'f] (i.e. X ¢Eh). Only if .J'f itself has no invented elements X, then [neg.J'f] 
and [not .J'f] are equal, i.e. equal to [not il]. 
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:Yf is allowed but not theoretically existent if and only if [neg:Yf] is allowed 
but not theoretically existent. If [neg:Yf] is theoretically existent, then :Yf is false. 

In a next step let us try to express the classification of hypotheses by relations 
in .H f/};. Obviously this step is only interesting if there is an observational report. 

:Yf is theoretically existent if (4.2.3) is a theorem in .H fIE d. This .H f/}; d arises 
from .H f/}; by addition of (2.2.22), (2.2.24), i.e. of 

AET(Yl' .. ·,Yr) and P(Yl, ... ,y"t,A,R) (4.2.5) 

as axiom. Therefore, (4.2.3) is a therorem in .H f/}; d if and only if 

[AET( ... ) and P( ... )]=>Eh(A)=t=0 

is a theorem in .Hf/};. Equivalent to (4.2.6) is 

'v'Z[(ZET( ... ) and P( ... »=>Eh(Z)=t=0]. 

(4.2.6) 

(4.2.7) 

Therefore :Yf is theoretically existent if and only if (4.2.7) is a theorem in .H fIE. 
Let us shorten (4.2.7) by introducing the set 

E(Yl, ... ,Yr,t)={ZIZET(Yl, ... ) and P(Yl, ... )}. 

Then (4.2.7) takes the form 
'v'Z [ZEE=> Eh(Z) =l= 0]. 

If :Yf contains no invented elements X we must replace (4.2.9a) by 

'v'Z[ZEE=>P"(Yl' ... t,Z)]. 

(4.2.8) 

(4.2.9 a) 

(4.2.9 b) 

(4.2.9) can be read in the very clear form: If there is an observational report of 
the form ZEE, it implies E(Z)=t=0 resp. P,,( ... ,Z). 

In the same way we get the result: :Yf is false if and only if 

(4.2.10a) 
resp. 

'v'Z[ZEE=>not P,,( ... ,Z)] (4.2.10b) 

is a theorem in .H f/};. 
A hypothesis is allowed but not theoretically existent if (4.2.3) resp. (4.1.3) can 

be added as axiom to .H fIE d without contradiction whereas (4.2.9) is not a theorem 
in .HfIE. That (4.2.3) resp. (4.1.3) can be added as axiom to .H!ysd is equivalent 
to: 

resp. 
3Z[ZEE and Eh (Z)=t=0] 

3Z[ZEE and P"( ... ,Z)] 

(4.2.11 a) 

(4.2.11 b) 

can be added as axiom to .H fIE without contradiction. That (4.2.9) is not a theorem 
in .H f/}; is equivalent to that 

(4.2.12a) 
resp. 

3Z[ZEE and not P,,( ... , Z)] (4.2.12b) 

can be added as axiom to .H f/}; without contradiction; this is equivalent to [neg:Yf] 
being allowed. 
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Decisive for the classification of a hypothesis are the four relations (4.2.9), (4.2.10), 
(4.2.11) and (4.2.12). With the set 

£+ = {ZIZE£ and £h(Z)=I=0} (4.2.13 a) 

resp. 

£+ ={ZIZE£ and ii( ... ,Z)} 

the following equivalences hold: 

£+ =£-=(4.2.9), 

£+ =1=£-=(4.2.12), 

£+ =1=0 -=(4.2.11), 

£+ =0 -=(4.2.10) . 

(4.2.13 b) 

(4.2.14) 

. £ = 0 is no theorem in j{.9}; since J1t:Yi sf is presumed to be not contradictory. 
Thus we see that the following six cases are possible (we shorten: "it" for "is 

theorem in ./i/:Yi"; "ad" for" can be added as axiom to J1t:Yi without contradiction"): 

[+ 1] £+ =£ it; 

[+] {£ =1=0 =- £+ =1=0 it, } 
£+ =£ ad, £ =1=0 =- £+ =1=£ ad; 

[0] {i =1=0 =- ~+ =I=~it, } 
=1= 0 =- E + =1= E it ; 

{ ~ + = £ ad, ~ =1= 0 =- ~ + =1= £ ad'} 
(4.2.15) 

[?] 
E =1=0 =- E+ =1=0 ad,E+ =0 ad; 

[-] {i =1=0 =- £+ =I=£it, } 

=1=0 =- £+ =1=0 ad,£+ =0 ad; 

[ -1] £+=0it. 

These six cases can be reduced if some special theorems hold, e.g. E + =1= 0=- £ + = E­
We will not discuss this here. For the case without observational report, J1t:Yi s~ 
equals J1t:Yi and we have only the three cases 

[ +1] £h=l=0 it; resp. iJ, it; 
[?] £h =1= 0 ad, £1r=0 ad; resp. ii ad, not ii ad; (4.2.16) 

[ -1] £h=0 it; resp. not ii it. 

Here £h={XIXE1';,(Yl, ... , y" R) and iiCY1, ... , Yr; t, R)}, i.e. £Ir and ii are identical 
with (4.1.4), resp. (4.1.3) but without A. 

We see that [ + 1] is equivalent to "'yf is theoretically existent", [ -1] to ";Yt 
is false". In the other cases [ + ], [0], [?], [ - ], ;Yt is allowed. In the cases [ + ] 
and [0], £ =1= 0=- £ + =1= 0 is a theorem in j{:Yi. In the cases [?] and [-], uP!:Yi 
does not decide between £ + = 0 and =1= 0. Therefore, let us call ,Yf "strongly allowed" 
in the cases [ + ], [0], and "weakly allowed" in the other cases [?], [ - ]. In the 
cases [0] and [-], £ =1= 0=- £ + =1= £ is a theorem in J1t.9};. This theorem says that 
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there are elements ZEE for which Eh(Z)=0. Therefore it cannot be excluded that 
the observational report is such a ZEE that Eh(Z)=0. This may called "restrictively 
allowed". Thus the following classification of hypotheses £' is possible: 

Classification scheme 

coarse normal fine 

[+ 1] theoretically existent 
[+] strongly allowed unrestrictively strongly allowed 
[0] allowed restrictively strongly allowed 

[1] 
weakly allowed unrestrictively weakly allowed 

[-] restrictively weakly allowed 

[ -1] false false false 

£' determined takes in vII!Y;; the form of the theorem: 

'v'Z[ZEE+ =-Eh(Z) has only one element]. (4.2.17) 

The right side of (4.2.17) says that a mapping E+ ~ 1;.( ... ) is defined by 

Z-XEEh(Z). 

We have already encountered such mappings I of a subset E + of E into an 
echelon set 1/,( ... ) in §3.1: E + is of type (ex) and therefore IE + = U Eh(Z) of type 

ZeE+ 

(P). We shall see later that mappings I of a subset of E into echelon sets are decisive 
in physics. 

§4.3 Relations Between Various Hypotheses 

In this section we presume for all hypotheses the same observational report, 
resp. no observational report. 

We begin with the comparison of two hypotheses £'1 and £'2 which are made 
separately, i.e. we investigate the two mathematical theories vII!Y;; d £'1 and 
vii !Y;; d Yl2 . 

We call £'1 "sharper" than Yl2 if 

(4.3.1 a) 

is a theorem in vII!Y;;. Then £'1 and £'2 have "the same" invented elements in 
the sense that (4.3.1 a) implies 

1/,(1)( ... ) = 1/,(2)( ... ). (4.3.2) 

Only the relation X EE~1)(A) is sharper than the relation X EEf)(A). For hypotheses 
.Yl;., £'2 without invented elements, (4.3.1 a) must be replaced by 

(4.3.1 b) 
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If there is no observational report, (4.3.1 a) must be replaced by 

E~1)cE~2) 

resp. 
(4.3.1 c) 

(4.3.1 d) 

We call Yl"l an extension of Yl"2 for fixed observational report, if Yl"l has the 
form 

(4.3.3a) 

and if 
E~n) c E~2) (Z) for all Z E E (4.3.3 b) 

is a theorem in A5;;. Then the hypothesis XEEhn)(A) is sharper than Yl"2' But Yl"l 
contains more invented elements than.Yl2, namely the components of X'. 

The set El!)(Z) takes the form 

With 

we obtain 

and thus 

E!,l) (Z) = {X, X') I XEEhn)(Z) and X'EEI,e)(z,X)}. 

E~l)(Z)={ZIZEE and E!,1)(ZH=0} 

={ZIZEE and Ehn.e)(ZH=0} 

C{ZIZEE and E~2)(ZH=0} 

If Yl"2 has no invented elements, we must replace (4.3.3) by 

j}.(n)(Yl> ... ,y"t,A) and X'EEhe)(A) 

and 
j}.(n)(Yl' ... ,y"t,Z)=-j}.(2)(Yl' ... ,y"t,Z) forall ZEE. 

For Jf1 we then have 

and 

This implies 

and therefore 

i.e. (4.3.4a). 
If there is no observational report, (4.3.4a) must be replaced by 

E~l) *0=- E~2) *0, 

(4.3.4 a) 

(4.3.5 a) 

(4.3.5b) 

(4.3.4 b) 
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and if moreover Jf2 has no invented X, (4.3.4b) must be replaced by 

E~l) *I/l=- P,,(2). 
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(4.3.4 c) 

(4.3.4) does not imply (4.3.3) resp. (4.3.5). We call Jf'1 "more restrictive" than 
Jf2 if (4.3.4) is a theorem. "More restrictive" is therefore less than "extension for 
fixed observational report". 

The most significant procedure is the composition of hypotheses. We define the 
composition of Jf'1, Jf2 as the hypothesis Jf' given by 

X1EE~1)(A) and X2EE~2)(A). (4.3.6 a) 

For .If we thus have: 

Eh(A) = E~l)(A) x E~2)(A) 

and X =(X 1, X 2); hence (4.3.6) takes the form 

This implies 

and thus 

X =(X 1, X2)EE~1)(A) x Ej.2)(A). 

E+ ={Z\ZEE and Eh(ZHI/l} 

={Z\ZEE and E~l)(Z) x E~2)(Z)*I/l} 

={Z\ZEE and E~l)(Z)*1/l and E~2)(ZHI/l} 

The same can simply be proved for hypotheses without invented X 1 or X 2' 

(4.3.7 a) 

(4.3.6 b) 

(4.3.8 a) 

If there is no observational report, we must omit the letter A in (4.3.7 a). If 
moreover there is no Xl' (4.3.7 a) must be replaced by 

- { -(2) -(1) } E h = X 2\X2EEh and p" (Y1, ... , t) . 

If moreover X 2 is absent also, (4.3.7b) must be replaced by 

P"(Yl> ... , t): P,,(l) (Y1, ... , t) and P,,(2)(Yl> ... , t). 

(4.3.7 b) 

(4.3.7 c) 

We define Jf'l> Jf'2 as "compatible" if Jf'1, Jf'2 and the composite hypothesis 
Jf' are at least' allowed, i.e. if 

is no theorem in .,II 9};. 
If there is no observational report, (4.3.9 a) must be replaced by 

E~l)=1/l or Ej.2)=I/l; 

resp.: not p(l) or Ej.2) = I/l 
resp.: not p(l) or not p(2). 

(4.3.9 a) 

(4.3.9 b) 

If in the absence of an observational report Jf'1 and Jf'2 are of the first kind, 
they must contain invented Xl and X 2• If Jf'1 and Jf'2 are allowed, neither E~l)=1/l 
nor Ef)=1/l are theorems in .,119};. Nevertheless" E~l)=1/l or E~2)=I/l" can be a theorem 
in .,II 9};, i.e. Jf'1 and Jf'2 can be incompatible . 

.,119}; is called "weakly complete" if every pair Jf'1' Jf'2 of the first kind without 
observational report is compatible. In §4.6 we will see why we desire at least a 
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weakly complete theory. We imphasize that also for a weakly complete theory two 
£1' £z with an observational report can be incompatible! 

A hypothesis £ is called" experimentally certain" if £ is compatible with every 
allowed hypothesis of the first kind. For every allowed hypothesis £ of the first 
kind, [neg £] is not experimentally certain since £ and [neg £] are not compatible. 

A hypothesis £ is experimentally certain if and only if for every allowed hypothe­
sis J't;. of the first kind, 

E+ nE<J.)=0 

resp. in the case without observational report 

Eh=0 or Ej,1)=0 

(4.3.10a) 

and without X (4.3.10b) 

is no theorem in '/#/:Y;;. 
£ is experimentally uncertain if and only if there is an allowed hypothesis Yt'l 

of the first kind, for which (4.3.10) is a theorem. Because of E<J.)cE, the relation 
(4.3.10a) is equivalent to 

E<J.)cE\E+, (4.3.11 a) 

From the definition of [neg .Yf'] follows that the set E'+ (belonging to [neg £]) 
equals E\E+. 

Therefore (4.3.11 a) is equivalent to £1 being more restrictive than [neg £]. 
(4.3. 10 b) is equivalent to 

E~l) o!= 0=- Eh = 0, 
resp. E~1)o!=0=-not p". 

(4.3.11 b) 

Thus we find again that £ is experimentally uncertain if £1 is more restrictive 
than [neg £]. 

[neg £] is experimentally certain, if there is no allowed hypothesis Yt'l of the 
first kind for which 

(4.3.12 a) 

resp. without observational report 

E~1)o!=0 =- Eho!=0, 
or without X (4.3.12b) 

are theorems in "#:Y;;. 
[neg £] is experimentally uncertain, if there is an allowed hypothesis £1 of 

the first kind with (4.3.12), i.e. with 

E<J.)cE+ (4.3.13 a) 

resp. E~l) o!= 0 =- Eh o!= 0, 
resp. E~l) o!= 0 =- p". 

This is equivalent to £1 being more restrictive than Ye. 

(4.3.13 b) 
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Thus [neg £] experimentally uncertain implies £ allowed. We denote £ for 
which [neg £] is experimentally uncertain as ec-allowed. Every allowed £ of the 
first kind is also ec-allowed, since such an £ is more restrictive than itself. An 
allowed £ is not ec-allowed if [neg £] is experimentally certain. 

If £ is compatible with all experimentally certain hypotheses, then [neg £] 
must be experimentally uncertain since £ is not compatible with [neg £]. Thus 
£ must be ec-allowed. 

If £ is experimentally certain, then £ is compatible with all ec-allowed hypothe­
ses; this can be proved as follows: £z ec-allowed implies that there is an £1 of 
the first kind and more restrictive than £2. If £2 were incompatible with Jt; then 
£2 and therefore all the more £1 would be more restrictive than [neg £] and 
thus £ experimentally uncertain. Thus the ec-allowed hypotheses are precisely all 
the hypotheses compatible with all experimentally certain hypotheses. £ compatible 
with all ec-allowed hypotheses implies that £ is compatible with all allowed hypothe­
ses of the first kind and therefore experimentally certain. 

Thus we see a duality between experimentally certain and ec-allowed: £ is 
ec-allowed if and only if £ is compatible with all experimentally certain hypotheses; 
£ is experimentally certain if and only if £ is compatible with all ec-allowed 
hypotheses. 

The concept of experimentally certain seems to us not restrictive enough since 
both £ and [neg £] can be experimentally certain! Then there are two experimen­
tally certain hypotheses which are not compatible. We ask for all allowed £ which 
are not compatible with all experimentally certain hypotheses. Such £ cannot be 
ec-allowed, i.e. [neg £] must be experimentally certain. To an experimentally certain 
£ there is another experimentally certain £1 incompatible with £ if and only 
if [neg £] is experimentally certain. 

We seek to sharpen the concept of certain in such a manner that all certain 
hypotheses are compatible. A first suggestive demand is: 

£ be called "almost certain" if £ is experimentally certain and ec-allowed. 
£ be denoted as "ac-allowed", if [neg £] is not almost certain. 

It follows that an ec-allowed hypothesis is also ac-allowed and that an allowed 
hypothesis of the first kind is also ac-allowed. 

A hypothesis of the first kind which is experimentally certain is also almost 
certain, since every allowed hypothesis of the first kind is also ec-allowed (see above). 

If £ is compatible with all almost certain hypotheses, [neg £] cannot be almost 
certain, since £ is not compatible with [neg £]. Therefore £ is ac-allowed. 

Let £ vice versa be ac-allowed, i.e. [neg £] not almost certain (i.e. [neg £] not 
experimentally certain or not ec-allowed) then £ is ec-allowed, or [neg [neg £]] 
and thus £ is experimentally certain. In both cases £ is compatible with all almost 
certain hypotheses since these are experimentally certain and ec-allowed. 

Let £ be incompatible with an ac-allowed £1. Then J'l;. is more restrictive 
than [neg £], and experimentally certain or ec-allowed. Therefore [neg £] is experi­
mentally certain or there is a hypothesis £z of the first kind which is more restrictive 
than J'l;.. Then £2 is also more restrictive than [neg £], i.e. £ is experimentally 
uncertain. Thus £ is not almost certain. 
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There is again a duality: Yf' is ac-allowed if and only if Yf' is compatible with 
all almost certain hypotheses. Yf' is almost certain if and only if Yf' is incompatible 
with all ac-allowed hypotheses. 

We have seen that Yf' is almost certain if Yf' is experimentally certain and if 
there is a Yf'1 of the first kind which is more restrictive than Yf. This suggests to 
sharpen the concept of almost certain as follows: 

A hypothesis Yf' be called "certain" if to every allowed Yf'2 of the first kind 
there is an Yf'1 of the first kind, compatible with Yf'2 and more restrictive than Yf. 

Another hypothesis Yf' be called "c-allowed", if [neg Yf'] is uncertain. 
Let Yf' be certain and Yf'2 allowed and of the first kind. Then there is an Yl;. 

of the first kind, compatible with Yf'2 and more restrictive than Yf'; thus Yl2 is 
all the more compatible with Yf' and therefore Yf' experimentally certain. Every 
experimentally certain Yf' of the first kind is also certain since Yf'1 in the definition 
of" certain" can be replaced by Yf. 

There follows at once that every ac-allowed ~ every ec-allowed Yf' and every 
allowed Yf' of the first kind are also c-allowed. 

Let Yf' be compatible with all certain hypotheses. Then [neg Yf'] must be uncer­
tain and therefore Yf' c-allowed. Let vice versa Yf'3 be certain and not compatible 
with Yf. Thus ~ is more restrictive than [neg Yf']. Since Yf'3 is certain, for every 
Yl2 of the first kind there is an Yf'1 of the first kind, compatible with Yf'z and more 
restrictive than Yf'3' Hence Yf'1 is also more restrictive than [neg Yf'], i.e. [neg Yf'] 
is certain. Thus Yf' compatible with all certain hypotheses is equivalent to [neg Yf'] 
uncertain. 

Let Yf' be compatible with all c-allowed hypotheses. Then [neg Yf'] is not 
c-allowed, i.e. [neg [neg Yf']] must be certain and therefore also Yf. 

There is again a duality: Yf' is c-allowed if and only if Yf' is compatible with 
all certain hypotheses; Yf' is certain if and only if Yf' is compatible with all c-allowed 
hypotheses. 

We can sharpen even more the concept of certain: Yf' be called "perfectly certain" 
if there is an experimentally certain Yf'1 of the first kind, which is more restrictive 
than Yf'. 

Since one can choose Yf'1 in the definition of "certain" equal to that in the 
definition of "perfectly certain", this last concept is sharper than "certain". 

Yf' be called "pc-allowed" if [neg Yf'] is not perfectly certain. We easily see 
that an experimentally certain Yf' of the first kind is also perfectly certain and that 
an allowed Yf' of the first kind is also pc-allowed. 

We have again a duality: Yf' is perfectly certain if and only if Yf' is compatible 
with all pc-allowed hypotheses. Yf' is pc-allowed if and only if Yf' is compatible 
with all perfectly certain hypotheses. 

If Yf' is theoretically existent, it is compatible with all allowed hypotheses and 
therefore perfectly certain. Then Yf' is all the more certain, alIriost certain and experi­
mentally certain. 

We repeat: For hypotheses of the first kind the concepts allowed, ac-allowed, 
c-allowed and pc-allowed are equivalent. The same is true for experimentally certain, 
almost certain, certain and perfectly certain. 

The classification can be simplified for weakly closed theories .4t.o/J;, and for 
hypotheses which are not connected with the observational report. Here Yf' not 
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connected with the observational report means that A is absent in (4.1.2) and thus 
also in (4.1.4). 

Since .A:!IE is weakly complete, every allowed hypothesis of the first kind which 
is not connected with the observational report, is experimentally certain. Therefore 
it is almost certain, certain and perfectly certain. 

Let Yf be not connected with the observational report and almost certain. Then 
there is an Yfl of the first kind which is more restrictive than Jt. Such an Yfl 
can be connected with the observational report. If we replace the letters ai of the 
observational report by invented elements xi, we get a hypothesis Yfo of the same 
form as the observational report. We define Yf; as the extension of Yfo which we 
get by the relations of Yfl with the ai replaced by the Xi! Then Yf; is not connected 
with the observational report. Since the observational report together with Yfl were 
more restrictive than Jff, and Yf is not connected with the observational report, 
also Yf; must be more restrictive than Jt. Then Yf; is experimentally certain since 
it is not connected with the observational report. Thus Yf is perfectly certain (and 
all the more certain). 

If .A:!IE is weakly complete, the concepts of almost certain, certain, and perfectly 
certain are equivalent for hypotheses not connected with the observational report. 
Therefore it is usual, for weakly complete .A:!IE to "forget" the observational report 
for the discussion of hypotheses not connected with the observational report. 

In the same way, for weakly complete .A:!IE one deduces that we can forget 
all those parts of the observational report which by their letters are separated from 
that part of the observational report with which the interesting hypotheses are con­
nected. A weakly complete theory is "so good" that we need not think of all experi­
ments ever done if we "work with the theory". 

Let .A:!IE be weakly complete, and Yf a hypothesis without invented elements 
X and not connected with the observational report, i.e. a relation P"(Yl' ... , y" t). 
If [not PJ is experimentally uncertain, i.e. refutable in the sense of §2.5 (and therefore 
P,. experimentally deducible), then P,. is perfectly certain. To add P,. as axiom to 
.A:!IE does not change the physical contents of the theory. One only sharpens P,. 
from perfectly certain to theoretically existent. We therefore in such cases add an 
axiom which makes P,. theoretically existent if such an additional axiom makes the 
mathematical part of f!J g- more perspicuous. 

Such an addition is a special case of a problem already treated in §2.5. Therefore 
let us here give some new aspects of this problem with the aid of the newly introduced 
concepts. For this purpose we do not presume .A:!IE as weakly complete. If P,. is 
experimentally uncertain, i.e. refutable but [not PJ no theorem in .A:!IE, then the 
addition of P,. as axiom would restrict the class of allowed hypotheses of the first 
kind and in this sense sharpen the physical theory. If P,. is experimentally certain 
and [not p"] uncertain, we can add P,. as axiom without restricting the class of 
allowed hypotheses of the first kind. 

If both P,. and [not p"] are experimentally certain, one could have the impression 
that we may add P,. or [not PJ as axiom: This judgement would be rash. If P,. 
is of the form 'v'x(A(x» and thus [not p"] of the form 3x(B(x» (with B=not A), 
it is for mathematical reasons important which of the two relations we add. That 
'v'x(A(x» is experimentally certain says that there is no hypothesis of the first kind 
from which 3x(B(x» follows. An axiom 'v'x(A(x» is not only the better physical 
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formulation of the experimental certainty of Vx(A(x)), but also a mathematically 
more restrictive formulation. 

If Ii. is experimentally certain and of the form Vx (A (x)), and if we add Ii. as 
axiom, then Ii. becomes theoretically existent. Therefore we regard such an experi­
mentally certain if, as almost equivalent to a theoretically existent one. 

As an example we contemplate the relation (4.2.17). If this is a theorem, the 
hypothesis Yf is called determined. If (4.2.17) is experimentally certain (also if in 
addition its negation is experimentally certain), we call Yf "almost determined" 
and regard this" almost determined" as equally" good" as the sharper" determined". 

In general the classes of almost certain, certain and perfectly certain hypotheses 
will not coincide. We prefer the concept certain. It appears to us as the least stringent 
concept which has the following additional property. 

If Yf and Yf' are certain (perfectly certain) then the composite hypothesis Yf* 

is also certain (perfectly certain). 
Let us sketch the proof for certain hypotheses. Let E + and E'+ be the sets belong­

ing to Yf and Yf'. Then E + n E'+ belongs to Yf*. 

Let an Yf2 of the first kind be given. Since Yf is certain, there is an Yfl of 
the first kind, compatible with Yf2 , such that E(~)cE+ is a theorem in A:Y;;. Since 
Yfl and Yf2 are compatible, the hypothesis Yf3 composed of them is allowed and 
of the first kind with the set E(-;) = E<f-) n E<J). Since Yf' is certain there is an J'4 
of the first kind, compatible with Yf3 , such that E(t) c E'+ is a theorem. Since Yf3 
and Yf4 are compatible, E<;) n E<t) = E<f-) = E<J) n E<t) = 0 is no theorem. Therefore 
the hypothesis Yfs composed of £;. and Yf4 is compatible with Yf2 and 

i.e. Yf* is certain. 
The proof for hypotheses without observational report and the proof for perfectly 

certain hypotheses may be left to the reader. 
If for Yf there is a theoretically existent Yfl of the first kind which is more 

restrictive than £, this Yf is also theoretically existent. The composition of two 
theoretically existent yf and Yf' is also theoretically existent. 

Let us apply these classifications and relations to an example important later. 
To a given Yf we define Yf" by 

(4.3.14) 

Here E+ is given in (4.2.13). Yf" is called "associated" to yt. 
Because of E + c E, the invented X in (4.3.14) are elements of the normal pictorial 

sets. Nevertheless the relation X E E + need not to be of the first kind! 
We first ask, which of the cases in (4.2.15) is possible for the associated hypothesis. 

For this hypothesis we have 

(4.3.15) 

Since E + does not depend on Z, we have the theorem 
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Therefore we have only three possible cases: 

[+1] E(a) = FY:)it, i.e. E+0=>E++0it. 

[?] E(a)=E~) ad, E~)=0 ad; i.e. E+0 => E+ +0 ad; 

E + 0 => E + = 0 ad. 

[-1] E~)=0it; i.e. E+0=>E+=0it. 
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(4.3.16) 

The case [ + 1] for ~ (i.e. ~ theoretically existent) occurs if and only if one of 
the cases [ + 1], [ + ], [0] occurs for :Yt'. Thus ~ is false if and only if:Yt' is false. 

Most interesting is the case that ~ is certain but not theoretically existent. 
We then have the case [?] in (4.3.16). For :Yt' we have thus one of the cases [?], 
[ -]. ~ is certain if to every allowed .Yl2 of the first kind there is an allowed 
:Yt'l (of the first kind and compatible with .Yl2) for which 

E<;) c: E~) 

is a theorem in JIt:Y;;. Thus ~ is certain if and only if to every allowed :Yt'2 of 
the first kind there is an allowed :Yt'l of the first kind, compatible with :Yt'2, for 
which 

(4.3.17) 
is a theorem in At:Y;;. 

It follows that :Yt' certain implies ~ certain. 

§4.4 Behavior of Hypotheses under Extension of the Observational Report 

Extending the observational report, we may get new letters bk added to the 
ai of the existing report. We comprise these into (A, B) with A=(al' a2' ... ) and 
B=(b 1 , b2 , ..• ). The extended observational report can be written 

(4.4.1) 

Here E~)(A) is the set defined in (4.1.4), except that i'J, is not invented but "read" 
from real facts. The label (r) shall point to this "reality" of i'J,. As mathematical 
term, E~)(Z) has the same structure as for a hypothesis of the first kind. 

For the extended observational report, the set E(ex) defined by (4.2.8) has by 
(4.4.1) the form 

With 

we have 
E~={ZIZEE and E~)(Z)+0} 

E(ex)={(z,Z')IZEE~ and Z'EE~)(Z)}. 

(4.4.2) 

(4.4.3) 

(4.4.4) 

The considered hypothesis'yf may be formulated already in .~:Y;;d, with EiI(A) 
defined in (4.1.4). Therefore the additional elements bk do not enter .'1t. Thus the 
set E~ex)(A, B), as defined in (4.1.4), for the extended observational report equals 
EiI(A). Thus for :Yt' and the extended observational report we get: 

E~X)={(Z,Z')IZ,Z')EE(ex) and EiI (Z)+0} 

={(Z,Z')IZEE and Z'EE~)(Z) and EiI (Z)+0} 

={(Z,Z')IZEE+ and Z'EE~)(Z)}. 

(4.4.5 a) 
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Here E+ is defined in (4.2.13). Using (4.4.3) we find 

E~X)={(Z,Z')IZEE+ nEV( and Z'EEt)(Z)}. 

By (4.4.4), (4.4.5 b) we obtain the equivalences 

E~X) = E(ex) ¢> EV( = E + n E~) ¢> EV( c E +, 

E~X) d/J ¢> E + n E~) = 0. 

(4.4.5 b) 

(4.4.6) 

Using these relations we easily see, how the extension of the observational report 
can change the characterizations [ + 1] to [ - 1] of (4.2.15). Yet [ + 1] cannot change, 
i.e. a theoretically existent hypothesis remains theoretically existent. Similarly [ -1] 
cannot change, i.e. a false hypothesis remains false. All other cases [ +], [?], [0], 
[ -] can change even into [-1], i.e. a not theoretically existent hypothesis can 
become false. This is not possible if the hypothesis is experimentally certain since 
then E+ nEV(=0 cannot be a theorem in Jt:Y;;. 

We even find that every experimentally certain:/t' remains experimentally certain, 
every almost certain :/t' remains almost certain, every certain :/t' certain, and every 
perfectly certain :/t' perfectly certain. We prove this only for" certain": 

Let :/t'2 be a hypothesis of the first kind for the extended observational report. 
:/t'2 with this observational report can be given the form 

(4.4.7 a) 

Formally this can be written as a hypothesis Yt'20 for the unextended observational 
report: 

AEE and XEEt)(A) and X'EEh2 )(A,X). (4.4.7 b) 

We must look for an :/t'l of the first kind: 

AEE and BEEt)(A) and X'EEhl)(A, B), 

which is compatible with ~ and more restrictive than :/t'; i.e. we have to prove 
that 

(4.4.8) 

are theorems in A:Y;;. 
Since :/t' is certain relative to the unextended observational report, to :/t'20 there 

must be a compatible :/t'lO of the first kind which is more restrictive than Jf. We 
write J'ft 0 in the form 

(4.4.9) 

Since J'fto is more restrictive than .!If, we have 

(4.4.10) 

as a theorem in JIt:Y;;. Since :/t'lO is compatible with the :/t'20 from (4.4.7b), it is 
all the more compatible with the hypothesis 

AEE and XEEt)(A). (4.4.11) 

Thus the hypothesis composed of (4.4.9) and (4.4.11), i.e. 

(4.4.12) 
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is an allowed hypothesis of the first kind, from which we form an allowed £'1 
of the first kind by 

AEE and BEEt)(A) and X"EEh10)(A). 

For this £'1 let us prove (4.4.8). 
From ~4.4Ui3). follows 

E~)={(Z,Z')I(Z,Z')EE(ex) and Eh10)(Z)=t=0} 

={(Z,Z')IZEE and Z'EEt)(Z) and Eh10)(Z)=I=0} 

= {(Z, Z')IZEE~O) and Z'EEt)(Z)}. 

This together with (4.4.10) and (4.4.5 a) implies E~)c:E~.x). 
From~4.4.7a\ b).follows-

where 

We define 

E<;)= {(Z, Z')I(Z, Z')EE(ex) and Ef)(Z, Z')=t=0} 

={(Z,Z')IZEE and Z'EEt)(Z) and Ef)(Z,Z')=t=0}, 

E<;O)={ZIZEE and EfO)(Z)=t=0}, 

P(2)(Z)={XlxEEt)(Z) and Eh2)(Z,X)=t=0}. 

Then Eh20)(Z) =1= 0 is equivalent to P(2)(Z) =1=0. Therefore we have 

E<;O)={ZIZEE and P(2)(Z)=I=0} 

and 

E~O)nE<;O)={ZIZEE~O) and p(2) (Z)=t= 0}. 

On the other' hand we have 

E<]) n E<;) = {(Z, Z')IZEE~O) and Z' EEt)(Z) and Eh2)(Z, Z')=I=0}; 

thus E<]) n E<;) =1= 0 is equivalent to 

{ZIZEE~O) and P(2)(Z)=t=0} =E<]O) n E<;O) =1= 0. 

(4.4.13) 

Therefore £'10' £'20 compatible, i.e. E<]O) n E<;O) =1= 0 implies also £'1' .Yt; compatible, 
i.e. E~) n E<;) =1= 0. 

The hypothesis J'l;, associated with £' changes its form under an extension of 
the observational report. While the unextended observational report has 

(4.4.14) 

the extended observational report gives 

J'l;,(ex): AEE and BEEt)(A) and (X, X')EE<;:X). (4.4.15a) 

From (4.4.5 b) follows that this can be written 

J'l;,(ex): AEE and BEEt)(A) and XEE+ nE~) and X'EEt)(X). (4.4.15b) 
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Jt;,(ex) differs from Jt;, for the extended observational report, which is 

(4.4.16) 

Since a certain :Y{' remains certain (under an extension of the observational 
report), and since the hypothesis associated with a certain hypothesis is also certain, 
also Jt;,(ex) is certain. But if for instance Yf is not experimentally certain, E + =l= (/) 
does not necessarily imply E<;X) =l= (/) even if yt;, is certain, i.e. Jt;,(ex) can become false 
although (4.4.16) is certain. 

F or later purposes we need the following definitions: 
(1) JIt;. be called an "extension" of Yt; if 

Yt'2: AEE and XEEj,2)(A) 

and 

with 

(4.4.17) 

(4.4.18 b) 

We see immediately that .yt'l in (4.3.3) indeed forms a special case of (4.4.18), 
namely if there is no B. 

(2) Yfl is called "more comprehensive" than Yf2 if (4.4.17), (4.4.18) hold except 
for the following changes: Some of the components Xi of (X,X') in (4.4.18a) can 
be replaced by some of the components ak or bk of (A, B) if we have the theorem 
xi=ak or bk . Some components Xl> Xk can be replaced by a single letter if Xl=Xk 

holds. 
We easily see that Yfl more comprehensive than .n"2' and Yf2 more comprehensive 

than Yt'3, imply Yfl more comprehensive than Yt'3' Thus "more comprehensive" 
defines an ordering in the field of hypotheses. 

If an allowed hypothesis of the first kind is also called an "imaginable extension 
of the observational report", we can characterise: 

A hypothesis Yf is experimentally certain if and only if there is no imaginable 
extension of the observational report for which Yf becomes false. 

A hypothesis Yf is certain if and only if to every imaginable extension of the 
observational report there is another more comprehensive extension for which Yf 
is theoretically existent. 

[neg Yf] is certain if and only if Yf is experimentally uncertain for every imagin­
able extension of the observational report. 

Yf is certain if and only if [neg Yf] is experimentally uncertain for every imagin­
able extension of the observational report. [neg Yf] is uncertain if and only if there 
is an imaginable extension of the observational report, for which [neg Yf] is experi­
mentally certain. 

The associated hypothesis Jt;, is certain if and only if to every imaginable exten­
sion of the observational report there is another more comprehensive extension 
for which Yf belongs to one of the cases [ + 1], [ + ], [0], i.e. for which Yf is strongly 
allowed. 
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§4.5 The Mathematical Game 

We have learned in the last sections 4.1 to 4.4 some procedures which are not 
customary in mathematics, not even in the theory of categories. 

At some places we have used such concepts as categories without saying so. 
The "observables" for instance form such a categorial structure. But the theory 
of categories is not essential for physics, since an essential objective of this mathemati­
cal theory is to formulate higher infinities more rigorously than set theory can. 
In physics all is finite and infinities occur only as mathematical idealizations. For 
instance, for using a category of finitely many morphisms we do not need the great 
apparatus of category theory. This is no objection to using category theory for 
a better survey of the various mathematical theories used in physical theories, for 
instance for a general discussion of intertheory relations (see § 3). 

The procedures described in §4.1 to 4.4 are beyond the scope of usual mathematics 
since such concepts as the field of hypotheses, of certain, of c-allowed, etc. are no 
definitions in the scope of a mathematical theory. Also the "proofs" in this range 
are no mathematical proofs. For instance, in order to prove that a hypothesis £' 
is certain we must give a method which to a £'2 of the first kind can construct 
a compatible £'1 of the first kind which is more restrictive than £'. Such construction 
proofs are necessary since the field of hypotheses is not a set in a mathematical 
theory. The hypotheses are not "existing", they are "made", made by us as humans 
applying the physical theory. 

In this sense the mathematical framework of a physical theory is not a closed 
mathematical theory. Rather it is an open mathematical field within which we contin­
ually change the mathematical theories by observational reports and hypotheses. 
Only one part of all these theories is left unchanged (as long as we do not pass 
to a more or a less comprehensive theory): the axiomatic basis ./Ii:YI. 

All this handling of mathematical theories within a {JJ:Y shall be called the "math­
ematical game" of {JJ;T. In §4.1 to 4.4 we have given the rules of this game. The 
introduced concepts are descriptions of situations of this game and not structures 
in At:YI. 

A physical theory does not only describe (by the axioms of At:YI) "physical 
laws" which are "valid for ever" and in this sense an enduring structure in nature. 
It also contains a variable part. Some aspects of this variable part are given by 
the mathematical game. And the development of this game depends essentially on 
our actions in playing this game. 

Although the axioms of At:Y;; are not changed in playing this game, many of 
these axioms are already adjusted to this game. For instance, they determine whether 
a hypothesis is theoretically existent or not. 

In practice the hypotheses are not formulated arbitrarily. One formulates part 
of the hypotheses as pure inventions and with the help of At:YI tries to supply 
a hypothesis in such a way that it becomes theoretically existent or at least certain. 
For this purpose, today many computers are employed. 

This mathematical game is not played for the sake of itself. This game is highly 
significant for physics, as we will discuss in the next section. 
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4.6 Possibility, Reality, Open Questions 

At the beginning of §4 we have said that it may seem mystical how we can 
speak of "possible" facts though there are no corresponding logical signs in .AS": 
This is different in the mathematical game. An allowed hypothesis may also be 
called "possible", i.e. permitted to be added without contradiction. But we are not 
interested in "possible" moves of the purely mathematical game. We are interested 
in physics, i.e. in a physical interpretation of this game. 

As well as a physical interpretation of a mathematical theory .A!/E is not given 
by .A!/E itself, also the physical interpretation of the mathematical game is not 
given by this game. The physical interpretation of .A!/E was given by the correspon­
dence rules, which permit us to write down the observational report in the language 
of .A!/E. We now wish to extend this interpretation to the mathematical game, 
using the classification of hypotheses from the preceding sections. 

There first arises a difficulty: If we pass from one f?i>SJ. to a more comprehensive 
f?i>fli, the classification of the hypotheses can change totally. This suggests not to 
rush to interpretations which could be refuted by a more comprehensive theory. 

If the relation between f?i> SJ. and f?i> fli has the form 

(4.6.1) 

the transition in (4.2.15) between the classifications [ + 1], [ + ], ... , [ -1] is not arbi­
trary. The following changes of the cases for a hypothesis by passing from f?i>SJ. 
to f?i>fli are possible (besides that every can be unchanged): 

______ [+1] 

75< lX[Ol 
[-] [-1] 

(4.6.2) 

The diagram is based on the fact that theorems in .A!/E, go over into correspond­
ing theorems in .A!/E> (see [3] § 10.3). 

The step (4.6.1) occurs in the usual development of a theory as described by 
(3.3.5). The diagram (4.6.2) can be helpful to interpret the mathematical game at 
an early stage f?i>f7; of the intended physical theory. We will not discuss such problems 
since we are only interested in the foundation of an interpretation going beyond 
that of the correspondence rules. A more technical elaboration for handling this 
interpretation must be left to future work. 

Therefore we will only consider one theory f?i> f7 and make such "presumptions" 
(concerning f?i>f7) that the interpretation to be described makes sense. The presump­
tions will be better understood as we develop this interpretation. 

Let us start by explaining what we mean by a "comparison of a hypothesis 
with experience". 
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Here we begin with the simplest but also fundamental case, that of an allowed 
hypothesis Yf' of the first kind. We presume this for the next considerations until 
this presumption will be terminated explicitly. 

The simplest case for a comparison is that where the extended observational 
report makes Yf' false (it could not have been experimentally certain for the unex­
tended observational report). We say that Yf' is refuted by the experiment. This 
does not (!) imply that Yf' will be refuted again if the experiment is repeated. What 
is meant by a repetition of an experiment in the context of the mathematical game 
will be defined rigorously below. 

Contrary to a refutation of Yf' is a "realization" of £. What is meant by realiza­
tion of Yf'? We consider the following change of Yf' for the extended observational 
report: We try to replace the invented Xi by letters aj (from the unextended observa­
tional report) and bk (from the extension) such that the new hypothesis (which has 
no invented elements!) is at least certain. Then we say to have "realized" £. If 
Yf' itself has no invented elements, we say that Yf' is "realized" if Yf' becomes at 
least certain for the extended observational report. 

Let us now ask: under what circumstances is it "possible" to realize Yf'? 
We begin with a simple but fundamental case: Yf' has no observational report 

and may be allowed. Obviously the mathematical game itself cannot decide, whether 
Yf' can be realized or not. If fJ>!T is too weak, there can be many allowed hypotheses 
which cannot be realized. For instance, if we take thermodynamics without the 
second law, the mathematical game contains as allowed hypotheses so-called perpe­
tuum-mobiles of the second kind. Thus we see again that the condition for a fJ>!T 
to show no contradictions between vi( fIE and the observational report, is too weak 
if we want to say whether a hypothesis can be realized. Without stronger require­
ments on fJ>!T we cannot define what is meant by real and possible facts. 

If fJ>!T is not weakly closed, there are Yf'l' Yf'2 (of the first kind) without observa­
tional report, which are not compatible. If one of them were realized, it would 
be impossible to realize the other. fJ>!T leaves unnecessarily open that ~ could 
perhaps be realizable although it is not since Yf'l was realized. Such a fJ>!T is therefore 
too weak for our purposes. Therefore we assume that fJ>!T is at least weakly closed. 
Then all allowed Yf' without observational report are also certain. 

Einstein's gravitation theory (general relativity) is not weakly closed. There are 
several cosmological models (i.e. hypotheses of the first kind without observational 
report) which are not compatible. But only one can be realized since there is only 
one cosmos from which we can get information, i.e. observational reports. In this 
case we try to decide between the models by observation, i.e. by asking: Which 
of the models is an allowed hypothesis with the observational report known until 
now? 

A well known case of not weakly closed theories fJ>!T is that where fJ>!T contains 
adjustable parameters. These parameters are just determined by experiments, i.e. 
observational reports. 

The presumption that fJ>!T is weakly closed is not enough. It does not guarantee 
that all Yf' without observational report are realizable. It may be, that we have 
forgotten a physical law what forbids some of these Yf' as observational reports. 
Such an additional law would be a refutable law (§2.5). 

We can pursue a similar consideration for a certain hypothesis with observational 
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report: 

We form the hypothesis £0 without observational reports: 

Since f!P:T was presumed weakly closed, .YtO can be realized. Let 

A'EE and BEEh(A') and ... 

(4.6.3) 

(4.6.4) 

(4.6.5) 

be such a realizing observational report (here B may contain some of the components 
of A). In general we do not know whether the observational report AEE can be 
extended to a form like (4.6.5). For an uncertain £ we cannot exclude that the 
extension of AEE might produce an observational report contradicting X'EE(A), 
i.e. making £ false. If £ is certain, no such extension can occur; but this does 
not imply that there must be an extension realizing £. 

For a certain £ our search for an extension of AEE which realizes £ may 
appear hopeless. Then we should conjecture that we lack some law to tell us that 
some of the extensions (taken as hypotheses) are not compatible with £, i.e. that 
£ in a more comprehensive theory is not certain. 

We denote f!P:T as "g$-closed" if f!P:T is weakly closed and all certain £ of 
the first kind are realizable. (We use the same notation as in [3]; g stands for 
the German "gleich" what means "the same"; "g.<:§" shall remind us that we have 
the same fundamental domain <:§ with the same correspondence rules.) Is it a cyclic 
definition if we now claim that in a g.<:§-closed f!P:T a certain £ can be realized, 
shortly, that £ is "physically possible"? This is right. Such a cyclic situation can 
occur in the development of physical theories and in judging them. We can test 
whether there are contradictions between J{ fY;; and observational reports, but we 
cannot experimentally deduce (see §2.5) all additional refutable laws, which are neces­
sary to exclude not realizable Yf. The work of physicists with a f!P:T can suggest 
the conjecture that some new refutable law should be added. Thus a previous judg­
ment that f!P:T is g.<:§-closed must perhaps be corrected. In this sense we are never 
absolutely sure that a f!P:T is g.<:§-closed. 

If experience suggests the strong conjecture that a (not only certain but) theoreti­
cally existent £ is not realizable, to J{ fY;; we cannot add an axiom which makes 
£ false resp. uncertain. Such an axiom must contradict J{ fY;;. In such a case we 
rather must replace some of the axioms of J{ fY;; by others. 

Just this is the case for f!P ffqexp. Instead of changing the axioms in the mathemati­
cal part J{ fi;; of f!P ffqexp, we have used the procedure of embedding g>:T,.. -vv> f!P ffqexp. 
This embedding procedure achieves two things: The axioms of f!P ffqexp are partially 
replaced by those of f!P:T,.., and the relation between f!P:T,.. and the not g.<:§-closed 
f!P ffqexp is explicitly given. 

We now presume f!P:T to be g.<:§-closed. 
Let £ be an allowed but not certain hypothesis of the form (4.6.3). Then a 

realization (4.6.5) of £0 should be possible. Now we cannot conclude that AEE 
must haye an extension realizing Yf. On the contrary there is an allowed 

(4.6.6) 
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which is not compatible with J'f (for which E + n E<J.) = (/) is a theorem in J/3E). 
If we had an observational report of the form 

AEE and BEE~l)(A) and ... , 

J'f would become false and therefore could not be realized by any additional exten­
sion of that observational report. Nevertheless we say that J'f is physically possible 
"before" the observational report AEE is extended. What do we mean by such 
a proposition? 

We just mean that J'fo is realizable, i.e. that there may be experiments with 
an observational report of the form (4.6.5). If we have only the observational report 
AEE it is not yet decided whether an extension will or will not allow a realization 
of J'f; but such a realization cannot be excluded. 

To characterize this situation, we more precisely say: J'f is "conditionally physi­
cally possible". 

For later we remark, that for J'fo we have 

E~O)={(X,X')IXEE and X'EEh(X)} 

={(X,X')IXEE+ and X'EEh(X)} 

and for ~ associated to J'f obtain 

(4.6.8) 

Obviously E~O)=I=(/)-=E~a)=I=(/), i.e. J'fo certain (resp. theoretically existent) is equiva­
lent to ~ certain (resp. theoretically existent). Also if J'f is only allowed but not 
certain, nevertheless ~ is certain (or just theoretically existent) since J'fo is certain 
(resp. theoretically existent). 

If we want to remark that the sharper condition "theoretically existent" is fulfilled 
(instead of only certain), we add the word "strongly". 

Let J'f be not only certain but also determined. The observational report can 
be extended in such a form that J'f can be realized by replacing the Xi by letters 
ai' bk from the report. Since J'f is determined, there cannot be two different signs 
ai and bk by which one of the Xi can be replaced, i.e. for every Xi there can be 
only one fact in the fundamental domain corresponding to Xi' Since J'f is realizable, 
there must exist one fact, even if we have not "reported" it, i.e. if the observational 
report does not contain the signs corresponding to this fact. (We have not reported 
it because either it lies in the future or we have not noted it.) Therefore we say 
that J'f is "physically real". 

We can weaken the condition "determined" to "almost determined". Then if 
in an extension of the observational report there would be two letters (e.g. aI, a2 
with al =l=a2) by which one Xk could be replaced, this would contradict the presump­
tion that (4.2.17) is experimentally certain. 

For the known physical theories (e.g. quantum mechanics) there are no deter­
mined (resp. almost determined) hypotheses without observational report. On the 
contrary, for these theories it is essential that a hypothesis X EEh can be realized 
by "many" experiments A1EEh, A 2 EEh, .... Thus J/3E does not say how the real 
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world looks like. Only the mathematical game in connection with its physical inter­
pretation gives us answers to the question what is real and what is possible. 

It is an easily made mistake, to forget the normative axioms which define the 
fundamental domain. Thus one might judge a hypothesis as certain although it 
is false (i.e. not in the fundamental domain). 

A not always remembered presumption for all questions about hypotheses is 
that also the observational report belongs to the fundamental domain. For instance, 
if by external influences (which may be excluded from the fundamental domain) 
the observational report leaves the fundamental domain, all conclusions about real­
izations of hypotheses may become senseless to the extent that the observational 
report has left the fundamental domain. Not only for the future but also for the 
past an observational report can be outside the fundamental domain (e.g. if the 
behaviour of a system before preparation does not belong to the fundamental 
domain); therefore conclusions about hypotheses in the past can also become sense­
less. Physicists are well aware of this presumption and say: Under the condition 
that ... (and here they formulate: that nothing "disturbs" the considered processes) 
this and that is possible or real. 

For instance, we can say where the planets will be in the future under the condi­
tion that the planetary system will not be disturbed by other stars. We also can 
say where the planets were in the past, but not before they originated from clouds 
of matter. 

If .1f is not certain we interpret .1f as "conditionally physically possible". Some­
times we can give an explicit condition for .1f to become possible. We may have 
to compatible hypotheses 

For an extension 

.1fc: AEE and X'EE~)(A), 

.1f: AEE and XEEh(A). 

AEE and BEE~C)(A) 

of the observational report the hypothesis 

may be certain. Then we say that .1f is "physically possible under the condition 
Jf;:", resp. (if .1f is determined) .1f is "physically real under the condition Jf;:". 

Thus we see how to reach more and more complicated structures of moves 
in the mathematical game and of physical interpretations of these moves. 

To use only hypotheses of the first kind would make physics too clumsy. The 
fruitfulness of the physical language rests on the use of hypotheses of the first and 
second kind. 

Let us consider a hypothesis .1f of the second kind: 

(4.6.9) 
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This Yf may be theoretically existent and determined. Then there is a mapping 
E+~ 7;. with X =f(A), so that (4.6.9) implies 

(4.6.10) 

In this sense we say that the observational report AeE "realizes" the relation 
X e Eh (A) and that Yf is physically real. 

We defme a realization of Yf (not necessarily theoretically existent and deter­
mined) by an extension Yfl of Yf for which XeEh(A) is realized. Explicitly: There 
is given an extension 

Yfl : AeE and BeE~)(A) and XeE~e)(A,B) (6.4.11) 

where 

(4.6.12) 

To define the "realization" we first replace (as far as possible) some of the compo­
nents Xi of X by letters from A or B so that the resulting hypothesis is theoretically 
existent and determined relative to the remaining Xi' (It is evident that only such 
Xi can be replaced which are elements of the pictorial sets.) 

Then (4.6.12) imples that already 

(4.6.13) 

is theoretically existent. (4.6.12) implies that (4.6.11) is sharper than (4.6.13) in the 
sense of (4.3.la). We have a realization if there is a "sharpening" of (4.6.13) and 
a suitable "replacing" so that a determined hypothesis results. 

It would be suggestive to define Yf as physically possible if a realization of 
Yf is possible. But we want to weaken the definition of physically possible. 

For this purpose we first consider Yf as theoretically existent, but not determined. 
We do not want to investigate whether there is a sharpening and replacing which 
makes the hypothesis determined. We will denote Yf as physically possible also 
without such an investigation, i.e. without knowing whether we can "select" one 
of the X eEh(A). The word "possible" shall not express that we can give a method 
of realization but only that we are invited to look for such a method. Therefore 
a theoretically existent Yf shall be interpreted as physically possible. 

If Yf is only certain, than to every extension of A e E there is a more comprehen­
sive extension for which Yf is theoretically existent (see the end of §4.4). Hence 
in every case we can make such an extension that Yf becomes theoretically existent. 
Then we call Yf (weakly) possible, and (weakly) real if it is almost determined. 

If Yf is not certain, the observational report can be extended in such a form 
that Yf becomes false. If we call Yf conditionally physically possible, we mean that 
there can be other experiments AleE, A 2 eE, ... such that some of these provide 
an extension which makes Yf theoretically existent. This can be expressed by the 
associated hypothesis~: An ~ being certain guarantees that there are experiments 
which make ~ and therefore also Yf theoretically existent. 

Thus we reach the following scheme of interpretation, valid for hypotheses of 
the first and second kind (fJlff presumed as g.~-closed). 
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Table 1. Interpretation Scheme 

Classification of .Yt' Interpretation of .Yt' 

theoretically existent and determined physically (strongly) real 
theoretically existent physically (strongly) possible 

certain and almost determined physically (weakly) real 
certain physically (weakly) possible 

associated hypothesis conditionally physically (strongly) possible 
theoretically existent 

c-allowed associated hypothesis certain conditionally physically (weakly) possible 

[neg .Yt'] certain physically (weakly) to exclude 

false physically to exclude 

The mathematical game with this interpretation scheme becomes what we call 
the "physical game" of f?jJ:?/, We see that the interpretation language of "real" and 
"possible" in this physical game depends decisively on a classification of hypotheses, 
which is not a purely mathematical question in the scope of .H 5E (see §4.5). 

Nevertheless there are many structures in .H 5E which are adjusted to this game 
and therefore interpreted by corresponding moves in the game. For instance, (4.6.9) 
theoretically existent is equivalent to the theorem (or axiom) (4.2.9 a) which is equiva­
lent to 

(4.6.14) 

We therefore interpret (4.6.14) in the form: To every physically real ZeE it is physi­
cally possible to get an X eEh(Z), An example for such an axiom is A V 1.1 in VI § 1.1. 
We have already used (intuitively!) this interpreting language during the development 
of an axiomatic basis for quantum mechanics. 

An example for a theoretically existent and determined hypothesis is given by 
the procedure of restriction &fli ~&/y in §3.1. The "observational report" of f?jJ/y 

is just a hypothesis which is theoretically existent and determined relative to the 
observational report of &fli (see §4.8). Therefore the observational report of f?jJ/y 

is physically real (on the basis of the observational report of f?jJ fli ; see also §4.8). 
By an embedding f?jJ/y """,f?jJ§i (see §3.2), the observational report is not changed. 

Thus the observational report of f?jJ§i is physically as real as that of f?jJ:?/, 

Thus also such observational reports gained by pretheories (see § 3.4) are physi­
cally real on the basis of the pretheories. 

Obviously, the physical game of a f?jJ/y is much simpler than it would be if 
we would include all the pretheories. Thus the physical game of quantum mechanics 
in the form denoted in §3.3 by f?jJ§i (and presented in detail in [2]) is much 
simpler than that of f?jJ fli t (notation as in § 3.3). But in order to make experiments, 
we must retrace the chain of pretheories until the language and the work of craftsmen 
are reached. Only thus is it possible to get "realizations". 
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Two points must be emphasized: 
There is no "pure" physics without technical applications. Such a pure physics 

would be a physics without physical game, i.e. only vi{ §E, i.e. only pure mathematics. 
Most of the observational reports describe realities produced by human actions, 

i.e. artifacts. The only "naturally" given and "interesting" observational report seems 
to come from astronomy; and also this is not given without indirect measurements 
by highly technical devices. (For the concept of indirect measurement see §4.8.) 

The interpreting language of the physical game can be systematically developed 
from the simple propositions introduced above. One may introduce dialog games 
with the intention to formulate a logic for this interpreting language. Decisions 
in this dialog game are not only based on vi{ §E but also on the observational 
reports. It is not our intent to develop here such a language and logic (see [2] 
IV §8 and [64]). Only one fundamental decision about this language and logic is 
already made by our opinion what physics is, presented in this chapter XIII: Such 
a logic is a logic "a posteriori". It depends on the given structure of vI{§E. The 
development of a f!J!Y needs only a primitive logic (" and ", "not ") for the formulation 
of the observational report and the mathematical logic of vi{ §E. There is no "new" 
logic "a priori" which determines the structure of vi{ §E and the formulation of 
the observational report. One often intends to develop a new logic "a priori" and 
to base quantum mechanics (i.e. some fundamental structures of vi{ §E, e.g. the Hilbert 
space structure) on this logic. From our point of view, this appears as if one would 
construct bridles and by this construction try to prove the existence of horses for 
which the bridles are suitable. 

§ 4.7 Some Aspects of the Quantum Mechanical Game 
and the Role of Probability Theory in Physics 

The role of probability theory in the physical game of a theory could be .discussed 
in full generality (see [3]), since we have developed a general foundation of probability 
theory in the form of statistical selection procedures. But it is more elucidating 
to explain the role of probability for the example of quantum mechanics. Since 
we would lose control over the various hypotheses and their interpretations if we 
would consider different forms of quantum mechanics, let us only use the fonn 
denoted in §3.3 by f!Jf/;.. 

The pictorial sets are M, fi2, Ell, Ello, ... ; one of the pictorial relati6Ds is the 
probability function A(a II bo, a II b). 

As a first example we adopt an observational report of the form 

aiEfi2' (i=1, ... ,6); bOkEEllo, 

A(ai II bOlo ai II bk) ~ 0 

We add the hypothetical part 

bkEEll, bkcbok (k=l, ... ,3); 

(i= 1, 2, 3; k= 1, 2, 3); 

XoEEllo, xeEll, XCXo, A(aillxo,aillx)~O (i=1,2,3~, 

A(aillxo,aillx)~aik (i>3, k= 1, 2, 3). 

(4.7.1) 

(4.7.2) 
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This hypothesis is theoretically existent by the axiom AV 1.1 in VI § 1.1. Therefore 
(4.7.2) is physically possible. Since the hypothesis is not determined, (4.7.2) is not 
physically real until one has built a device Xo with the demanded properties. The 
physical possibility of (4.7.2) does not tell us how to construct such a device. We 
will take up this question below. 

Another example typical for quantum mechanics is given by an observational 
report of the form: 

aEfl', boEf!ilo, bEf!il, bcbo, 

).,(anbo,anb).;:::;Ct., mEM, mEa, mEbo. (4.7.3) 

As hypothetical part we take 
mEb. (4.7.4) 

According to (4.7.3), m is a microsystem prepared by a and measured by the device 
boo The hypothesis (4.7.4) concerns the question whether m triggers the indication b. 

We presume that Ct. is physically distinguished from 0 and 1 (i.e. differs from 
o and 1 not only by its imprecision). Then the hypothesis (of the first kind without 
invented x) is not certain, but allowed. Therefore mEb is conditionally physically 
possible. 

Here one often uses formulations which can easily be misunderstood. 
One says "mEb is possible with the probability Ct.". If this is only a short formula­

tion that the hypothesis (4.7.3), (4.7.4) is physically possible, nothing can be objected. 
But this formulation seems to be a relation between three things: m, b and Ct.. Thus 
it can lead to mistakes or to imaginations which cannot be based on the theory. 

One imagines e.g. that the system m has the property to trigger b with the proba­
bility Ct., that there is something like a real propensity of m to trigger b. The strength 
of this propensity is given by Ct.. This is an imagination added to the theory (compati­
ble with the theory or not) since in the theory the probability is not a property 
of m but of (bo, b) relative to a. Since (4.7.3) makes mEanbo, a probability Ct.o!=O 

says that mEb is conditionally possible. 
To assign a probability to m relative to b can cause unnecessary difficulties: 

If e.g. the observational report (4.7.3) is extended by the additional relations {a' Efl', 
).,(a' nbo, a' nb)~Ct.', },(a' nanbo, a' nanb)~f3 and mEa'} we get a new hypothesis, 
for which mEb is possible unless f3~O. But what probability should be assigned 
to (m, b), Ct. or Ct.' or f3? One could perhaps decide on 13. But if one had forgotten 
to write down the additional relations, has one made a mistake when assigning 
on the basis of (4.7.3) the probability Ct. to (m, b)? All these difficulties arise because 
ofa logical mistake: One has done as if the relations mEanbo and ).,(anbo, anb)~Ct. 
(between the five things m, a, bo, b, Ct.) are only relations between m, b, Ct.. 

But if one says that besides the probability introduced in the theory there is 
another "hidden" probability assigned to each pair mEM and bEf!il, one cannot 
forbid such "hidden variable theories" unless they are incompatible with the theory. 

Sometimes another description of (4.7.3), (4.7.4) is added to our interpretation 
that mEb is conditionally physically possible. 

This description calls (4.7.3) our "knowledge" and (4.7.4) a not yet "known" 
event (the triggering of b by m). Then one calls Ct. a measure of the "chance" that 
m triggers b. (I use here the word chance instead of pro bability to distinguish between 
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the probability function A. and the intensity of subjective expectation.) In this sense 
of expectation, one restricts statements about the chance of events to events in 
the future (future indeed meant as the subjective future, defined relative to our con­
sciousness). 

Again such additional descriptions cannot be forbidden. They are indeed addi­
tional to what in §4.6 we called the physical game. We only object that such addition­
al subjective descriptions are not necessary and not used in the every day work 
of physicists, which is described completely by the "physical game". In practice, 
only in one case one uses such additional "chance" descriptions, namely to persuade 
oneself or others to use a machine, argueing that the "chance" of an accident is 
very small. 

There are some attempts to begin physics with the development of a language 
comprising concepts such as chance and of a corresponding logic. Such a language 
and logic shall establish fundamental structures of quantum mechnanics. This is 
not our understanding of physics. We object the same as at the end of §4.6. 

We must emphasize that the hypothetical relation (4.7.4) is not necessarily related 
to the future! In connection with the EPR-Paradox we have already discussed in 
XII §2 the possibility that the indication b can occur after the preparation is finished. 
What is then the meaning of mEb being conditionally physically possible? At the 
time when the observational report has been finished, mEb has already happened 
or not happened. Thus mEb is hypothetical not because it was not yet possible 
to detect mEb, rather because we forgot to write down whether m has triggered 
b, or because we gave someone the task to guess it. The possibility of mEb can 
therefore mean: It is possible that m will trigger b; or it is possible that m has 
triggered b. There are many examples in physics and technology where we are curious 
was has happened! In the physical game as described in §4.6, not only questions 
for the future but also for the past are possible. 

We have discussed the hypothesis (4.7.3), (4.7.4) if (X is physically distinguished 
from 0 and 1. For (X = 1 the hypothesis is not only certain but even theoretically 
existent. Therefore mEb is physically real. It is physically real because m has already 
triggered b (which we perhaps forgot to report), or m will trigger b. In the last 
case, mEb is real for the future. This case is similar to saying that the planets had 
a given position in the past or will have a given position in the future. 

(X= 1 is only a mathematical idealization. Physically, (i.e. in the observational 
report) we only have (X~ 1 (not distinguishable from 1). Then we say that mEb 
is "practically certrain" and interpret such a hypothesis in the same way as a certain 
one. 

Sometimes one reads that there is a difference between (X= 1 and (X~ 1 (e.g. (X 
=1-10- 30) in this sense: for (X=1 it is perfectly certain that ... , and for (X~1 it 
is only imperfectly certain that .... For (X=1 it is impossible, that not .... For (X~1 
it is possible, that not ... , although this can practically not be expected. But such 
a difference has nothing to do with physics since a probability 1-10- 30 cannot 
be distinguished from 1 by any experiment. On the other hand, physics cannnot 
say that anything is perfectly certain, since physics gives no causes why anything 
should be perfectly certain. Only God can guarantee a perfect certainty and not 
we human beings in our human work named physical game. 

For (X=O the hypothesis (4.7.3), (4.7.4) is false and therefore mEb must physically 
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be excluded. For IX~O we call the hypothesis practically false and mEb physically 
to be excluded as well. 

As further examples let us take more complicated hypotheses, not completely 
writing down their observational reports. Such a report may contain the relations 

aEf!2'; bOl,bozEgfo; b1,bzEgf; b1cb01 , bzcboz ; 
(4.7.5) 

mEM, mEa and ..1.(anbOI,anbl)~IXI' ..1.(anboz,anbz)~lXz. 

But the observational report may contain results of many more experiments which 
imply bOI n boz =0. (The reader may think of the case that bOI is a device for measur­
ing the momentum and boz one for the position at a time to; see also the discussion 
below.) Instead of writing down the observational report for all these experiments, 
to (4.7.5) we only add the relation bOI nboz =0. The hypothesis may be defined 
by the additional hypothetic relation 

(4.7.6) 

This hypothesis ofthe first kind without invented elements is not certain, but allowed. 
Thus mEbol is conditionally physically possible. In this case there is no probability 
which can be assigned to mEbol since we can decide whether we take bOI or boz 
as measuring devices. 

In the same way we can discuss the hypothetical relation mEboz instead of (4.7.6). 
If we take 

instead of (4.7.6), we get a false hypothesis since bOI n boz =0. A more interesting 
hypothesis arises if we replace (4.7.6) by 

(4.7.7) 

If IXI is distinguishable from 0 we have an allowed hypothesis (not certain, not 
even for IXI = i !). Therefore .(4.7.7) is conditionally physically possible. Here often 
the following mistake is made: One says that mEb l is possible with the probabiity 
al (and impossible with the probability (l-ad). This is a mistake since we can 
choose the device boz , i.e. we can realize mEboz which makes (4.7.7) false because 
of bOI nboz =f/J. The choice of boz has made mEbl to be physically excluded. 

For instance for m prepared by aEf!2' there is no probability for positions since 
one can measure the momentum and thus exclude any position possibility. 

For the hypothesis (4.7.3), (4.7.4) we have a "constrained" possibility, constrained 
by probability. We cannot "make" mEb, it "occurs". For (4.7.6) with (4.7.4) plus 
bOI nboz =f/J as observational report, we have a "free" possibility. We can dispose 
of(4.7.6). We therefore also call mEbol "disposably possible". (4.7.7) is neither dispos­
able nor constrained, it is partly disposably and partly constrained possible. 

The disposable possibilities were always known to experimental physicists and 
engineers, but they played no role in theoretical disoussiens until the development 
of {fuantum.mechallics. One was very astonished that such "practical" conc~pts 
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should playa role in "pure physics" which should give us the structure of matter. 
Therefore one has made big efforts to eliminate the "actions of human beings" 
from the "pure physics", but without success. In this context it is very astonishing 
that in "pure physics" one introduced human consciousness instead of human 
actions. As we have described physics in §4.6 as a game, this cannot be separated 
from human actions. There does not exist something like a "pure physics" describing 
a "pure matter" which can be imagined as separated from all applications. Even 
to "observe" the matter in the universe we need modern devices (i.e. modern technol­
ogy) to get effects from the universe in our laboratories. 

We must make a short remark about our concept of "free" possibilities. If we 
apply Newton's mechanics to bullets, there are many free possibilities to prepare 
"initial values" of position and velocity. If we want to understand such preparations, 
we must leave the fundamental domain of Newton mechanics and pass to more 
comprehensive theories, e.g. theories of the chemical processes in a barrel. If we 
apply Newton's mechanics to big systems given in nature (no artifacts), e.g. the 
planetary systems, the "free" possibilities of the initial values are not free in the 
sense that we can make them. Yet they are "free" in the sense that they have 
been made by processes not belonging to the fundamental domain of Newton's 
mechanics, i.e. free "relative" to Newton's mechanics. The word "free" does not 
mean than we can make all this, but only that there are no constraints in the 
theory under consideration. 

As a last example typical for quantum mechanics let us contemplate a desired 
observable (XI §7) as a hypothesis of the second kind. As desired observable we 
[rrst take that defined by 17(f, ff) in [2] XVI (6.1.13), calling it the observable 
of the .impact on a surface. 

We define a hypothesis by an observational report AeE which expresses the 
construction of a laboratory reference frame. This frame makes it possible to define 
time intervals f and parts ff of a plane surface. 

It is typical for playing the physical game that one does not write down explicitly 
the whole observational report if it is gained by "well known" methods. We" know" 
how to get a laboratory frame. We eo not know how to construct a device measuring 
the desired observable. Therefore we concentrate upon this question. To the observa­
tional report we add the hypotheticai relations: 

xoe~o, 9l(xo) is an approximation to I~L with I as the 
Boolean ring generated by the time intervals f and plane parts ff 

mentioned above and by the mapping 17 from [2] XVI (6.1.13). 
(4.7.8) 

The wore "approximation" must be made concrete by specifying f and U as 
defined in AOb in V §5. f can be dermed with the help of the reference frame, 
i.e. by means of the observational report. To define U we need finitely many weK. 
These must be given in explicit form, e.g. by finitely many "wave packets" P"" with 
well defined !/Ii' Thus (4.7.8) has indeed the for.m xOeEh(A). 

If we have introduced AOb in V §5, the hypothesis (4.7.8) is theoretically existent. 
If we do not presume AOb, the hypothesis is certain. To prove this we must give 
a hypothesis of the first kind more restrictive than. (4.7.8). 
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Since the I{!i are given, we can calculate the finitely many real numbers 

for the elements elk, (h)Ef. We define a certain hypothesis of the first kind by 

XoE~o. XkE~(Xo) and the set {xU is a finite Boolean 

ring isomorphic to f. 
Yi Ed', A(YinxO),YinxU=Cl.ik 

(4.7.9) 

with the same observational report AEE. This hypothesis (4.7.9) is more restrictive 
than (4.7.8), as one easily sees. 

Therefore, (4.7.8) is physically possible, (also without AOb) and in this case "freely 
possible". We can dispose of (4.7.8), i.e. we can construct a corresponding device. 

The proof that (4.7.8) is certain can be repeated for any "given" observable. 
This is the meaning of the short remark after AOb in V § 5. 

The task to construct a device corresponding (4.7.8) cannot be solved when only 
the physical game of quantum mechanics in the form fJjJg; (notation as in §3.3) 
is employed. In V §5 we have discussed this problem within fJjJ:Ylt . But also this 
is not sufficient. It is necessary to pass to the theory presented in X and XI as 
an embedding of fJjJ:y;" in fJjJ'~exp" Only this theory can decide whether a constructed 
device fulfills the hypothesis (4.7.8). 

But who tells us how to construct a device? No theory at all! Physical theories 
can only tell what is possible to do. They do not say which of many possible actions 
is the best to satisfy a given desire. Since no theory provides a systematic method 
for such a selection I must "invent" a construction of the desired device. This is 
a creative act and in this sense a great achievement of experimental physicists. 

As another example of desired observables let us discuss the famous position 
- and momentum - observables (defined in [2J VII §4). Instead of (4.7.8) we take 
the hypothesis 

XOE~O' ~(xo) is an approximation to 
the position- and momentum-observable. 

(4.7.10) 

Since the word "approximation" has been defined explicitly above, we need 
not explain it any more. 

Whether (4.7.10) is a certain or a false hypothesis depends on the "approxima­
tion" required there. If the approximation is very close, the hypothesis becomes 
false, since the position- and momentum-observables are complementary ([2J 
IV D3.3). But there are finite approximations for which (4.7.10) becomes certain, 
resp. theoretically existent on the base of AOb, i.e. for which a corresponding device 
is possible. 

To prove this we need only take an observable defined by the effects X(rJ) in 
X (3.4.6) with X (3.4.7) and Win X (3.4.17). This observable L~L is an approxi­
mation to both, the position and momentum observable. Then the hypothesis (4.7.8) 
for L~L (instead of L~L) is also one which fulfills (4.7.10). 

Much more difficult is it to get a systematic survey of all "approximations" 
for which (4.7.10) is certain, i.e. realizable. 
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§4.8 Real Facts and the Reality of Microsystems 

In §4.6 we have interpreted a hypothesis 

AeE and XeEh(A) 

as physically (strongly) possible if (4.8.1) is theoretically existent, i.e. if 

YZ[ZeE=>3X(X eEh(Z))] 
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(4.8.1) 

(4.8.2) 

is a theorem. Therefore one interprets (4.8.2) in the form: The situation X eE(Z) 
is physically (strongly) possible under the condition Z e E (see the interpretation 
of (4.6.14)). 

(4.8.2) has the form of well known mathematical "existence theorems". The proof 
of such theorems in .I{ fIE is therefore not only mathematically interesting, but in 
the context of [l}:T also of eminent physical importance. Many times physicists 
believe in such theorems even without proofs. 

If besides (4.8.2) we have the theorem that Eh(Z) has only one element, we interpret 
(4.8.2) in the form: The situation X eEh(Z) is physically (strongly) real under the 
condition Z e E. Theorems of the form" Eh (Z) has only one element" are well known 
as uniqueness theorems. These theorems guarantee that the mathematical solution 
X of a problem XeEh(Z) describes physical reality under the condition that ZeE 
is real. 

We may weaken the theoretical existence into certainty. A certain and determined 
hypothesis (4.8.1) is then also called physically (weakly) real. That (4.8.1) is determined 

implies: There is a mapping E~ 1;.( ... ) (on physical grounds presumed uniformly 
continuous). When the range of f is called Elfl, we have 

Elfl= U Eh(Z), (4.8.3) 
ZeE 

There is a certain inversion. We start with the same definition as in (0() and 
(fJ) of §3.1. The E. (as intrinsic terms) shall be subsets of products of pictorial sets. 

The h. (as intrinsic terms) shall be mappings E~ T.( ... ) where the T.( ... ) are 
echelon sets of the base sets of 1.:. (For h. also the identical map E. -+ E. is allowed.) 
The range of h. shall be called Ethl. 

In addition there shall be a structure U(hl of the species 1.:(hl over E<f'l, E~>' ... 
as base sets (see §2.1). 

Let U~hl be such subsets of product sets of the T.( ... ) (and R) that 

(4.8.4) 

with YAe T....{ ... ) is a relation among Yl, Y2, .. , ; 0(. Then U(hl shall have the form 

(4.8.5) 

We will see that such a structure U(hl over E<f'l, E~l ... can be interpreted as 
the picture of a real structure of real facts, labeled by the elements of E\hl, E~l, .... 

Let us think of an observational report AeE. It may be possible to find in 
A finite sequences (ail' ai"~ ... )eE •. Then there are defined the elements Xiv 
=hv(ail' ... )eEthl. With the collection X=( ... Xi • ... ), by A-+X we can define a 

mapping E~ T( ... ) from E into an echelon set. 
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Let it be possible to prove (in At ~ d) some relations of the form (4.8.4) for 
the Xiv. These relations defme a subset E(u)c T( ... ) with 

With the range E(f) of E, we therefore have 

E(f)cE(u). 

With Eh(A) as the set of the single element f(A), the relation 

AcE and XEEh(A) 

(4.8.6) 

(4.8.7) 

(4.8.8) 

is a theoretically existent and determined and therefore physically real hypothesis. 
We have 

E! = U Eh(A)cE(u) (4.8.9) 
AeE 

such that (4.8.8) implies 
(4.8.10) 

Thus (4.8.8) together with (4.8.10) is also a theoretically existt::nt. and determined 
hypothesis. Therefore it is physically real. ,-

We summarize this to: By the measurement (observation) AEE we have also 
measured (observed) XEE(u); or expressed more objectively: The real facts AEE 
imply the real facts X E E(u). 

This is the background for the following formulations: The E~h) are pictorial 
sets for real facts and the components U~h) of U(h) are pictorial relations for real 
relations, or shortly: The E~h) are sets of real facts with real relations U~h). 

The facts represented by the observational report AEE guarantee the facts repre­
sented by X E E(u). This last transition from A E E to X E E(u) is exactly that from 
fJJ:Yi to a restriction fJJff (see §3.1). 

We also say that by the facts (from the observational report) and by the structure 
laws (from the theory) we have "detected" the new realities (described by the structure 
U(h) of the species L(h) over the E~h». All physical detections are of this kind. 

Another formulation is the following: We have "indirectly" measl:lfed X EE(u) 
by the "direct" measurement AEE on the basis of the mapping f in (4.8.6). 

Sometimes we can measure indirectly what can also be measured directly. We 
can measure indirectly the position of the planets in two years by direct measurements 
made until now. In two years we can measure these positions also directly. 

It may be confusing if we measure the same real situation indirectly with a 
higher precision than directly. This can happen if the mapping f is magnifying, 
as e.g. the mapping of the object plane into the image plane of a microscope. In 
such cases one easily makes the mistake of defining a real situation by itself. Instead 
of this vicious circle, the theory provides a more precise extension of a not so precise 
measurement possibility (given by pretheories). 

All observational reports finally should be reduced by pretheories to the language 
of craftsmen. Hence physics can detect only realities that can be defined by effects 
which can be stated by craftsmen and formulated in their language. 

Therefore it is impossible, in physics to detect consciousness and all what I 
meet in my consciousness (red, green and yellow colors, beautiful sounds ect.). It 
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is only possible physically to detect so-called "physical processes" in the brain. 
These are all what can be dermed on the basis of theories by effects on devices. 

Definitions for the contents of my consciousness are logically impossible since 
it is already known what I mean e.g. by colors. All concepts which are already 
known before physics (and which do not enter the language of craftsmen to describe 
the given facts on which physics is based) cannot be defined in physics. Hence such 
concepts all the more cannot be explained by physics. 

In physics it is usual (similarly as in mathematics) to give names to sets Eth) 

of real facts endowed with a real structure U(h) of species 1:(h). We have done this 
often during the development of quantum mechanics in III through IX. Here let 
us only review the -"detection of microsystems" in f!J§i (notation as in §3.3). With 
this detection we have connected the restriction from f!J§i to f!J§2. The new pictorial 

sets are M, fl., 140, 14 with the mappings M~M (h1=identity), 91~fl., 
920~14, 92~14, where the last mappings are given by III (4.1) to (4.3). 
Structure terms are !7' and the probability function it9' (see III D4.1 to APS 6). 
The characteristic relations for the new structure 1:2 are given in III by APS 1 
through APS 8. The definition III D4.2 is what we have called above "to give names". 
Thus the detection of real microsystems is justified. 

Another not so difficult example of physical detections (in the realm of classical 
physics) is that of "electric charge", "electromagnetic fields", etc. In particle physics 
we see a growing family of newly detected microsystems, although the foundation 
of these detections is not yet as established as in such an "old" theory as quantum 
mechanics. 

Much more questionable is the reality of the micro systems (atoms) as parts of 
a macrosystem. This problem is not yet completely solvable, since we lack a surely 
g.~-closed theory for macrosystems. If f!Jg;.xP were g.~-closed, the question could 
be answered in the same way as for micro systems. But there are severe arguments 
that f!Jg;.xP is not g.~-closed. Hence we must not conclude from f!Jg;.xP the reality 
of the microsystems as parts of the macrosystems. 

The fundamental domain of most known theories f!J ff,., is too small to answer 
the question about the reality of those microscopic parts. Therefore we can only 
remark, how the solution of this problem could look like. 

At the end of XI §6 we have considered microsystems which (as parts of a macro­
system) can be distinguished from the rest of the macrosystem. Such systems are 
"real" in the same sense as prepared microsystems (the reality of which we have 
explicitly deduced above). Nevertheless it can be that measurements of such "emit­
ted" or "distinguished" microsystems give no new information about the macrosys­
tem, if the state space is comprehensive enough: To an effect g of the micro systems 
we can relate a trajectory effect p(g) in XI (6.31). 

But what about the reality of the many microsystems "inside" a macro system ? 
At the end of III §6.6 we have shortly described measurement possibilities for 

macrosystems by the scattering of microsystems. Such a scattering is extensively 
described in XI §1 and its embedding in f!Jg;.xP in XI §6. By such scatterings we 
get information about the macro system. Formula XI (1.19) describes this additional 
information, going beyond < ({)\o) (al), k1)1 as the probability for the trajectory effect 
kl without scattering of microsystems «({)\O)(al) in XI (1.22». Examples for such scat-
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terings are well known; most famous is the scattering of X-rays to analyse the 
atomic structure of crystals. 

XI (1.19) only then contains additional information about the macrosystem when 
r(w(i), al) does not only depend on qJ~O)(al)' i.e. when f cannot be introduced accord­
ing to XI (1.24). We conjecture that for macrosystems there is a most comprehensive 
state space Z such that XI (1.24) holds, i.e. that the preparation procedures for 
macrosystems cannot be better distinguished by scattering than by their trajectories 
in Z. This means: there are real microscopic structures of macrosystems; but these 
can be described in an objectivating manner. 

If XI (1.24) is valid, i.e. Z comprehensive enough, then (similarly as at the end 
of XI §6) the probability to get the trajectory effect kl and the effect g of the scattered 
microsystems becomes 

(4.8.11) 

Here we have UI = qJ~O)(ad, while w(i) is the ensemble of the impinging microsystems 
and peg; W(I») describes a trajectory effect (depending on g and w(i»). Then (4.8.11) 
is the mathematical form for not getting information beyond that from the objectivat­
ing description in Z. 

We know many microscopic but nevertheless objectivating descriptions of macro­
systems, e.g. of semiconductors. But since these theories are not simple we will only 
use the theory of rarefied gases as described in X §3.5. 

If we take as state space only that of aerodynamics, i.e. (u(r), per), T(r)) (u velocity 
field, p density field, T temperature field), this space is not sufficient to describe 
anything of the microstructure of the gas. This well known objection of the positivists 
against the reality of atoms is not valid, since this state space is too small to describe 
for instance scattering of microsystems on the gas. In our opinion, the state space 
of the Boltzmann distribution functions is comprehensive enough as far as the atoms 
can be approximated by systems without inner structures. The description by the 
Boltzmann distribution function gives us an imprecise (but objectivating!) description 
of the positions and momenta of the atoms. Thus the atoms are real, although 
not with precise positions and momenta. 

The fundamental domain of this Boltzmann theory must be expanded if one 
wants to account for the inner structure of the atoms. Experiences show that an 
"accupation number" of the discrete energy levels probably is the right objectivating 
description. 

Obviously, a general and systematic theory of the right state spaces describing 
also the microscopic structure of macrosystems is not yet developed. Such a theory 
would give precise answers to the question: What is for macrosystems physically 
possible or physically real? 

At the end of this section we must warn of a mistake. This mistake rests on 
the false notion that "mathematical objects" must be pictures of physical objects. 
The denotation "mathematical objects" is only an intuitive one. In mathematics 
it is better to say" term" instead of object. The language of mathematics is character­
ized by "substantific" and "relational" signs [50] I §1.3. These signs are used to 
formulate "facts" in the mathematical language. The substantific signs are used 
to identify a fact by a sign, and the relational signs are used to make statements 
about factual relations among the facts designated by substantific signs (see §1). 
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This does not mean that these facts are physical objects. Also a trajectory (i.e. a 
dynamical process) can be designated by a substantific sign. We had physical objects 
defined in V § 10. A one to one correspondence between substantific signs and physi­
cal objects is therefore a mistake. 

As we have already discussed in §2.5, the mathematical set theory is only used 
for idealizations from finitely many signs to infinitely many. In any case, only finitely 
many signs are used for the observational reports. 

Thus also the use of "elements of sets" as signs for physical facts does not 
mean that these facts are something rigid. As already emphasized, these facts can 
be processes or procedures as e.g. the preparation- and registration-procedures. 

Also the new mathematical concept of categories does not change anything since 
we have again signs representing morphisms, the composition of morphisms as rela­
tions, etc. That all this does not bring a revolution follows from the fact that for 
finitely many signs the new mathematics is equivalent to the older one. Nevertheless, 
At§;; as part of a physical theory and the observational reports have indeed some­
thing static. Neither At§;; nor the once recorded observational reports can be 
changed (except one has made a mistake). But this is exactly the method of physics: 
Stated facts remain stated facts. Nevertheless there is a very dynamic process in 
physics. This process is not described by a mathematical theory but by what we 
called the mathematical and physical game (§4.5 to §4.7). In addition there is the 
development of new theories, a development which progresses against the direction 
of the arrows in §3. The last section shall be devoted to one aspect of this dynamic 
process, the development of the" real domain" of a theory. 

§ 4.9 The Real Domain of a [!J' f!T 

We want to describe "all" what is real in the context of a Pf:T which we presume 
as g.'Y-closed. Initially the fundamental domain 'Y is real, or better: The observational 
reports are physically real in the sense that they report facts. "All" observational 
reports describe all facts of the fundamental domain 'Y. The word "all" in this 
context has nothing to do with the logical sign V in At§: These "all" observational 
reports are not given. The observational reports develop more and more, and we 
influence this development. Not Pf:T in itself determines the development. Our inter­
ests and our free decisions to realize these and not other free possibilities in the 
physical game are as essential. 

The reality domain "If! shall extend the domain of "all" observational reports 
which we have identified with '§. 

We try to define "If! as the domain of "all" certain and determined (i.e. of all 
physically real) hypotheses. 

To make this meaningful, we must consider the two processes 

(1) the composition of two hypotheses, 
(2) the extension of the observational report. 

These two processes are extensively described in §4.3 and §4.4. From there we 
conclude that the properties "certain" and "determined" are not changed by these 
processes. (It can be that a certain but not determined hypothesis becomes determined 
by process 2). 



230 XIII Relations Between Quantum Mechanics and the Reality Problem 

:#' may be a certain and determined hypothesis. If we have the theorem that 
one of the invented elements Xi equals an ak of the observational report, we replace 
Xi by ak. If we have the theorem that one of the invented elements Xi equals another 
one Xko we replace Xi and Xk by a single letter. After the two processes (1) and 
(2) it may be necessary to make such new replacements; but older replacements 
cannot be changed since all hypotheses are determined. We say that a certain and 
determined hypothesis has its normal form if there are no unnecessary letters Xi. 

The concept "more comprehensive" (defined in §4.4) provides a kind of ordering 
in the domain of certain and determined hypotheses. We will show that this ordering 
is directed, i.e. that to any two hypotheses ~, :#'2 of this kind there is a third 
one Jf3 more comprehensive than ~ and Jf2. 

To show this we combine the observational reports belonging to :#'1 and Jf2 
to a new observational report which extends the observational reports of :#'1 and 
Jf2. Let :#'{ resp. :#'2 be the hypothesis :#'1 and :#'2 with this extended observational 
report (:#'{ and :#'2 are again certain and determined). We can go over to the normal 
form, which does not change the relations that :#'{ is more comprehensive than 
:#'1 and :#'2 more comprehensive than Jf2. 

Let :#'; be the composition of :#'{ and :#'2. If we go over to the normal form 
Jf3 of :#';, we have :#'3 more comprehensive than :#'{ and :#'2 and thus more compre­
hensive than :#'1 and Jf2. 

That the kind of ordering in the domain of certain and directed hypotheses 
(in normal form) is directed is essential for a meaningful "definition" of 1r. The 
domain C§ of observational reports is never complete, it just grows. No older parts 
of the observational report need be dropped. Because of the directness of the ordering 
of the certain and determined hypotheses, the domain of these hypotheses can only 
grow if the observational reports are growing and new hypotheses are added. No 
hypothesis stated as physically real need be dropped later. In this sense we have 
an evolution of the observational reports and of the physically real hypotheses. 
This evolution is shortly called the domain C§ of the observational reports, resp. 
the physically real domain 1r. 

Not all physically possible hypotheses can be realized since there are not enough 
material, not enough time and last not least not enough human beings to do it. 
Thus the evolution of the physically real domain "If/" is essentially determined by 
us. 

We have defined "If/" for one g.C§-closed theory. But what about the various 
"If/" in the network of physical theories (defined in §3.3)? The intertheory relations 
"restriction" and "embedding" make it possible to transport parts of "If/" to less 
comprehensive theories. This shows that in a chain of the form (3.3.5) it is allowed 
to form "IY. as the domain of certain and determined hypotheses separately for every 
&' f/". Thus "IY. + 1 comprises "IY.. It is only necessary that "If!;. is g. C§-closed in order 
to know what can be realized. The &' f/" for v < n can perhaps suggest something 
as physically possible what is not so. 

We claim that the network of theories is only growing, i.e. no theories are aban­
doned. One can make mistakes during the development of a new theory, overestimat­
ing the fundamental domain or imagining something as physically real what is not 
so. Such errors are easily possible if one has no axiomatic basis and imagines some 
theoretical auxiliary terms as "realities". 
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But it also is an error that there are revolutions in the development of physical 
theories. In the contrary, we have an evolution of the network of theories and 
a corresponding evolution (not only of the physically real domain of one theory 
but also) of the collection of the physically real domains of all theories. For many 
parts of this evolution of the "total" physically real domain, we as human beings 
are responsible. 

No JI§! together with the corresponding correspondence rules can be evil. But 
moves in the physical games can indeed be evil, e.g. to make physical experiments 
with human beings which harm these. In many cases it is not simple to decide 
what move we ought to do, since many circumstances must be taken into account. 
Thus different persons can reach different conclusions. It would be bad to suspect 
all who do not make the same decisions as we ourselves. 
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