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Preface 

This book is the first volume of a two-volume work, which is an improved 
version of a preprint [47] published in German. We seek to deduce the funda
mental concepts of quantum mechanics solely from a description of macroscopic 
devices. The microscopic systems such as electrons, atoms, etc. must be detected on 
the basis of the macroscopic behavior of the devices. This detection resembles 
the detection of the dinosaurs on the basis offossils. 

In this first volume we develop a general description of macroscopic systems by 
trajectories in state spaces. This general description is a basis for the special de
scription of devices consisting of two parts, where the first part is acting on the 
second. The microsystems are discovered as systems transmitting the action. 

Axioms which describe general empirical structures of the interactions between 
the two parts of each device, give rise to a derivation of the Hilbert space structure 
of quantum mechanics. Possibly, these axioms (and consequently the Hilbert space 
structure) may fail to describe other realms than the structure of atoms and mole
cules, for instance the "elementary particles". 

This book supplements ref. [2]. Both together not only give an extensive 
foundation of quantum mechanics but also a solution in principle of the measuring 
problem. 

At several places of this book the reader will find references to the book Grund
strukturen einer physikalischen Theorie [3]. Previous knowledge of [3] is not 
necessary for understanding this book (except for chapter XIII of the second vol
ume). Readers familiar with [3], [30], [48] can easily recognize how the general 
structure of a physical theory is implemented for quantum mechanics. 

Several theorems are not proved in this book, since the reader can, word by 
word, take over their proofs from [2] (the corresponding references are given). 
Persons not interested in the proofs can read the book as it is. 

References in the text are made as follows: For references to other sections of 
the same chapter, we shall only list the section number of the reference; for 
example, § 2.3. For references to other chapters, the chapter is also given; for 
example III § 4.2 refers to section 4.2 of chapter III. The formulas are numbered as 
follows: (3.2.7) refers to the 7th formula in section 3.2 of the current chapter. 
References to formulas of other chapters are given, for example, by III (2.1.8). 
References to the Appendix are given by A II § 2 where A II denotes Appendix II. 

I would like to express my gratitude to Professor Leo F. Boron for the transla
tion of the manuscript from German to English. I want to thank very much Pro
fessor K. Just for reading very critically the English and German version of the 
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manuscript, for countless improvements of the text, and for this thorough proof
reading. His extensive collaboration during the summer of 1983 made the formula
tion of the text clearer at many places. 

Marburg, January 1985 G. Ludwig 
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I The Problem of Formulating an Axiomatics 
for Quantum Mechanics 

In [3], [30] and [48] we formulated the objective of finding, for a physical 
theory, an axiomatic basis with "physically interpretable axioms" (see [30] and 
XIII § 2), wherein the physical laws appear distinctly and whereby the problems of 
interpretation can be solved clearly. In this book, we attack this objective for 
quantum mechanics. 

In XIII we shall improve the analysis from [3] and [30] of the requirements 
which one may impose on an axiomatic basis. Various versions of such a basis will 
be discussed. Reviewing the structure analysis from III through IX we shall present 
such versions for quantum mechanics. 

Also for readers not interested in the general discussions of [1] or who do not 
care exactly what an axiomatic basis is, the following discussion is relevant. The 
phrase "axiomatic basis" need only symbolize a goal to be aspired to, namely to 
begin a theory solely from the facts already "known" before one develops the 
theory. These facts can be recognized directly or with the help of other, already 
known theories (the "pretheories"). 

If, after becoming familiar with the foundations of quantum mechanics 
developed here, such readers are still interested more generally in the structure of 
physical theories, they will more easily understand [3] and [30]. The subsequent 
references to [3] are therefore not needed to understand this text. They rather serve 
two purposes: 

(1) The reader who knows the generalities from [3] can recognize the present 
considerations as examples. 
(2) For readers not acquainted with [3], this presentation of quantum mechanics 
can ease the reading of [3], since then one has an example at hand. 

§ 1 Is There an Axiomatic Basis for Quantum Mechanics? 

The decisive requirement of an axiomatic basis (see [3], [30], [48] and XIII) is 
that the interpretation, i.e. the correspondence rules can be deduced solely by means 
of concepts already interpreted by pretheories. But just of quantum mechanics it is 
often asserted that it does not admit an interpretation retaining the "classical" 
concepts from pretheories. Indeed, this retention is said to incur inconsistence, 
described by phrases such as "semantic inconsistence", "incompatibility between 
quantum mechanics and classical physics", "paradox of measuring processes in 
quantum mechanics", or "inseparability of physics and subjective consciousness". 



2 I The Problem of Formulating an Axiomatics for Quantum Mechanics 

From the literature on the philosophy of quantum mechanics, one recognizes 
of what importance it would be to establish an axiomatic basis for quantum 
mechanics, using only those pretheories which in an objectivating way describe the 
devices for experiments with microsystems. Then an "inseparability of physics and 
subjective consciousness" in quantum mechanics can no longer arise, since it is at 
least possible to erect quantum mechanics itself on "objective" properties of the 
devices. 

A paradox of the measuring process in quantum mechanics cannot arise either, 
since conversely the experiments with microsystems form the only point from which 
quantum mechanics receives its interpretation, i.e. its physical meaning. 

Semantic inconsistence likewise does not occur since only the semantically 
known concepts from the pretheories are used, whereas the further concepts 
derived from quantum mechanics are reducible to those "semantically known" (see 
§ 2). From the problems thus hinted at, only the compatibility between an 
extrapolated quantum mechanics and the classical description of a macroscopic 
system remains to be discussed in X and XI. But this compatibility does not pose a 
problem of any conceptual or logical consistence, rather it concerns a relation 
between physical theories and asks for a more comprehensive (!) theory. 

The motive for developing an axiomatic basis for quantum mechanics therefore 
concerns primarily the philosophy of science and is thus closely related to the 
question of the best possible "understanding" of quantum mechanics. Secondly, 
there also arise interesting viewpoints on the possibility of new physical theories, 
because one recognizes better where physical laws can perhaps be altered. For 
(non-relativistic) quantum mechanics itself one naturally obtains no "new" effects. 

§ 2 Concepts Unsuitable in a Basis for Quantum Mechanics 

We shall really not develop an axiomatics for quantum mechanics interpreted 
"as usual" (in the sense of [3] § 7.3, or [30]). In fact, the basic concepts such as 
observable, ensemble, state, or yes-no measurement, employed in the "usual" 
interpretation of quantum mechanics, are themselves not explainable by known 
pretheories. This even holds for the concept of a microsystem (often called a 
"particle") so that in an axiomatic basis one cannot use those sets which picture 
such concepts in quantum mechanics. Rather we must as an axiomatics develop a 
more comprehensive theory for "usual" quantum mechanics. In view of this 
"comprehension", usual quantum mechanics then appears as a restriction (in the 
sense of[3] § 8, or VIII § 3). 

On the other hand, if one foregoes an axiomatic basis, one can by all means 
begin an axiomatics with basic concepts that are meant, for example, ontologically, 
i.e. not immediately provable. Of course the subsequent theory must indicate 
image sets and image relations with proper interpretation; then it is quite 
legitimate to start with basic concepts such as microsystem, property, or state. Also 
in [3] § 10.7 we pointed out such possibilities in general form. 

Also the reader who does not refer to [3] can easily see that concepts such as 
microsystem, state, properties of the microsystem cannot be interpreted without 
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invoking quantum mechanics. Just therefore they are not suitable for our goal of 
an axiomatic basis for quantum mechanics. 

Let us begin with the concept of a microsystem! 
Whenever we speak of single microsystems, we cannot simply display them as 

one would display a cup on a table. Neither does the "explanation" of a 
macrosystem on the basis of its composition from atoms shows us the existence of 
individual microsystems. It is only in experiments with individual microsystems 
that these occasion macroscopically registerable effects. There they arise as entities 
which only by a theory are inferred indirectly from directly established actions. 

When one speaks of the state of a microsystem, one means either in the 
ontological sense something that belongs to each individual system (but just as 
such can be recognized as little as the microsystem itself); or one understands a 
state as the sum total of how the microsystem is prepared for experiments (which 
again one can deduce only indirectly from directly established preparation 
procedures). 

If one speaks of the properties of a microsystem, one understands either (in the 
ontological sense) something the microsystem itself possesses (indirectly measur
able by complicated devices); or one means an abstraction (to be made more 
precise) from the direct actions of the microsystem on a measuring device. 

But from what can one start an axiomatics for quantum mechanics if we forego 
concepts such as microsystems and states or properties? 

§ 3 Experimental Situations Describable Solely by Pretheories 

It is therefore not a question of explaining a macrosystem by many-particle 
quantum mechanics (see X), but rather of describing experiments with single 
microsystems. Here, "single" does not mean that they are not composite. Com
posites in the sense of connected systems or of scattering theory (see IX § 2) are 
also regarded as single systems, whenever the experiments consist of macroscopic 
processes triggered by single microsystems and frequently repeated for a statistics. 

The scattering of an electron on a proton is such an experiment with single 
microsystems, where each is just an electron-proton pair. A plasma of many 
electrons and protons, however, is not the object of an experiment with 
"individual" electron-proton pairs, but rather of a macroscopic experiment in 
which the plasma as a whole (!) is investigated. 

For an axiomatic basis of quantum mechanics we therefore restrict ourselves to 
experiments with single microsystems, also when there is multiple repetition. But 
how can we characterize this experimental situation without the concept of 
"microsystem" which is only established by quantum mechanics itself? Just 
through the interaction of macrosystems, where the microsystems appear later as 
effect carriers, i.e. as the entities to carry the action from one macrosystem onto 
another. An axiomatic basis must therefore start from an interacting macrosystem, 
described without the "interpretation" and "explanation" of the interactions. 
Therefore, we shall tum in II to the form of such a "description" of processes on 
macrosystems, where only concepts of pretheories are permitted. 
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"Description" of processes here does not mean that a theory of their dynamics 
is given. For example, the motion of mass points along paths ret) is describable 
without specifying the Newtonian equations of motion and the forces. The 
dynamic laws of processes On macrosystems describable by pretheories therefore 
need not occur in pretheories. On the contrary, we just seek in quantum mechanics 
such laws of dynamics that certain interactions among macrosystems can be 
represented mathematically, i.e. by axioms. 

The processes to be used in a basis for quantum mechanics are of course not 
arbitrary processes On arbitrary macrosystems. Rather they are structural in a 
special way, briefly characterized by a directed action of One macrosystem on 
another. One might think that this basis is too narrow. Of course one cannot prove 
a priori that is suffices for a complete theory of the microsystems (carrying action 
from one macrosystem to another). Precisely this (that we can thus find the "total" 
quantum mechanics) will be shown in II through IX. 

The choice of the directed action of One macrosystem on another as a basis of 
quantum mechanics of course does not signify that we as physicists are desin
terested in more complex processes. But there is hope that such processes can be 
described in a more comprehensive theory (developed in principle in X). In XI it 
will finally be applied to our special point of departure, the directed interaction 
processes. 

Let us consider the reflection of light in a mirror. One macrosystem, the lamp, 
acts on the other macrosystem, the mirror. We denote the action carrier by the 
word "light". The action is directed from the lamp to the mirror. If One lets the 
reflected light act on a third macrosystems, e.g. a photocell, we have a situation 
that appears frequently in experiments! To this we shall shortly return below. Now 
let us compare the directed action of the lamp on the mirror with a typical case of 
an non-directed interaction: a laser. There the "illuminating material" is so 
coupled (over the "light") with "mirrors" that we cannot even approximately 
speak of a directed action of the "illuminating material" on the mirror. On the 
contrary, the coupling is so mutual that the "illllminating material" between the 
mirrors behaves completely differently from a "free" material. In the directed 
action of the lamp On the mirror, however, the lamp is not influenced by the 
mirror. In this context, see the exact formulation of the concept of directed action 
in III § 3. 

Similarly to the first case (the light reflected by the mirror being investigated 
by a photocell), where the lamp and the mirror are viewed as the single system 
which in the directed way acts On the photocell (as the second system), one can 
also let the laser (composed of illuminating material and mirrors) act in the 
directed way on a photocell. But if One wishes to investigate the light quanta as 
action carriers, then only the cases of directed action are suitable. The interaction 
of the illuminating material and the mirrors in the laser can no longer be desribed 
by the "single" independent light quanta, but only wi thin the "many-particle 
system" of the laser as a whole (by methods pointed out in X). The elaboration of 
these methods by the simplest possible means is described in [I] XV, where various 
applications are shown (e.g. to lasers). 

The indicated examples show that directed· actions of one macrosystem on 
another really comprise complex experiments, where the "decomposition" of the 
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Fig.! 

total macrosystem into parts (that act in a directed way on each other) can often 
proceed in quite different ways. The entire macrosystem can consist of three parts 
(see Fig. I), where the part (0) acts in a directed way on the part (1) and the latter 
on (2). But this experiment nevertheless belongs to the basis chosen: indeed 
one can view (0) as the macrosystem which acts in a directed way on the composite 
system (I) + (2); or one can view (0) + (1) as a system that acts in a directed way 
on (2). Naturally, here the description of our basis does not include that these two 
decompositions are only two different decompositions of the same entire experi
ment. But one can easily insert such auxiliary structures later (as in XI and XII). 

Of course the basis of the directed processes is itself too broad for a 
fundamental domain of quantum mechanics. Even such interactions as those 
between a weapon and a target fall into this category. In order to single out 
processes relevant for quantum mechanics, one therefore needs certain dynamical 
laws. Such laws are introduced in VI under the heading "fundamental preparation 
and registration laws". These laws narrow the region of the theory down to just 
those interactions which we then denote as transmitted by "microsystems". 

This fundamental domain for quantum mechanics is therefore completely 
describable by known pretheories. It contains nothing that one could a priori 
designate as something like the properties of microsystems or as a measurement of 
their observables. Only subsequently can one introduce, under certain assumptions 
concerning the interactions, concepts such as properties, pseudo-properties, observ
ables, states as derived concepts (see in particular V and VII). 

§·4 Mathematical Problems 

The mathematics of the basis for quantum mechanics, i.e. the introduction of 
basic sets, structure terms and axioms of course proceeds under physical points of 
view. Therefore, in the introduction of structure species the pure mathematician 
will miss a systematic order of the various more or less rich structures; for, it is no 
systematics that stands in the foreground. 

In IV we shall recognize that a base-normed Banach space f!IJ together with its 
dual f!IJ' forms a general initial structure. The strengthening of this structure to the 
f!IJ finally characterized in VIII does not occur by axioms that are perhaps 
mathematically especially interesting, but rather by physically explicable axioms, 
interpretable by preparations and registrations. Hence it is physically often 
meaningful to sharpen derived theorems by axioms whereas one would, from a 
purely mathematical viewpoint, rather search for sufficient and necessary assump
tions for sharpening the theorems. Nevertheless, to the author the axioms in VI 
appear also of mathematical interest. 
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A mathematical deficiency in VI through VIII surely consists in that we forego 
the independence of the axioms. It is therefore possible that certain axioms could 
be omitteq which follow from the others as theorems. The physicist need not prove 
the independence of axioms (by counterexamples); for, if an axiom later turns out 
"superfluous", so much the better for physics. 

The author has tried, insofar as possible, to derive as many of the theorems as 
possible from the respective axioms, i.e. to comply with the mathematical desire of 
asking, which axioms already suffice to derive what theorems. But it should be 
possible to go still farther (see IV through VIII). 

In order to prove the representation theorem for g{j, g{j' in VIII, the author has 
used the representation theory of modular lattices and of orthocomplementary 
orthomodular lattices (which during a long historical development arose from 
projective geometry). This appears as a detour inasmuch as on this path one for a 
while forgets the embedding of the lattice G in g{j'. Shouldn't there be a shorter 
path that immediately uses the entire structure of the dual pair g{j, g{j'? 

In particular, the question of a more general representation theorem without an 
axiom of the fonn A V 4 is still unclear. 

§ 5 Progress to More Comprehensive Theories 

After the basic sets and the structure tenns are introduced in III, up to VIII we 
proceed (by adjoining further axioms) from each theory to a "structure richer" (in 
the sense of [3] § 8) theory. But in VIII the goal of a theory of electrons, atoms, 
molecules, etc. is still not reached. Rather, we have in VIII only derived the 
fundamental description of quantum mechanics by the operators of Hilbert space. 

An exhaustive presentation how to proceed by "normal standard extension" (in 
the sense of [3] § 8) to the quantum mechanics of atoms, molecules, etc. is given in 
[2]. But so that subsequent to VIII the reader need not study the entire book [2], 
certain steps of this advance to the closed (to be precise: g. G.-closed; see [3] § 10.3) 
theory of atoms and molecules are in IX explained in descriptive form, without 
mathematical formulations. In particular, we shall state how in quantum mechanics 
one describes composite systems in terms of direct products of Hilbert spaces. This 
composition is mathematically possible for arbitrarily many microsystems. 

But this compositions cannot be physically meaningful for arbitrarily many 
microsystems because there are not arbitrarily many microsystems in the world. The 
physical meaning of the "quantum mechanial composition" probably becomes 
physically questionable when the composite system has the same magnitude as the 
macrosystems to prepare and register it. Thus a new question arises for a theory to 
encompass quantum mechanics, to describe not only microsystems as action 
carriers but also the dynamics of whole macroscopic systems. 

But this more comprehensive theory must describe the preparation and 
registration devices together with their interactions and their dynamical laws, i.e. it 
must be compatible with the description of macrosystems previously used for 
quantum mechanics. 

This transition to a comprehensive theory of macrosystems no longer proceeds 
by standard extensions, but rather as an embedding (see again [3] § 8) of the 
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comprehension (into the formal extrapolation of quantum mechanics to "many 
particles"). 

In X and XI we shall explain how this embedding could appear and how the 
mentioned compatibility problem could be solved. 

To the extent the author has been able to, an axiomatic basis for quantum 
mechanics will thus be established. X and XI at least demonstrate the possibility 
that the developed quantum mechanics (extrapolated to many particles) is 
compatible with the initial axiomatic basis. 



n Preiheories for Quantum Mechanics 

Since we intend to develop an axiomatic basis for quantum mechanics, we must 
delve into the pretheories for quantum mechanics in order to describe the 
fundamental domain of quantum mechanics (see [1] III §§ 2 and 4; or, to be precise, 
[3] §§ 3 and 5). Nevertheless, to understand the following it is not necessary to 
have read [1] or [3] or [30]. 

The pretheories of quantum mechanics comprise essentially all macroscopic 
theories such as classical mechanics, electrodynamics, continuum mechanics, etc. 
The reality domain of these theories ([1] III § 9.6; [3] § 10) will be presumed. A 
typical feature of all these theories is the objectivating manner of description. This. 
fact was before quantum mechanics perceived as so fundamental that many 
physicists rejected quantum mechanics since it no longer presents an objectivating 
description of microsystems. 

Since we shall in the sequel use abbreviations defined in [3], we shall here note 
them briefly. 

&Y denotes a physical theory,.ffY a mathematical theory as a part of&Y. The 
"fundamental domain" of &Y is denoted by &. In this context, "fundamental 
domain" designates that region of experience to which the theory is applicable and 
which contains only those facts that are recognizable directly or through pre
theories. Going beyond &, the "reality domain" Ywill also encompass those facts 
which are only recognizable by the theory itself. H symbolically describes the 
interpretation of .IIY in the given &Y so that often we briefly write &Y 
=.ffYH Yr. 

§ 1 State Space and Trajectory Space 

Let &.'T", be one of the pretheories for quantum mechanics. Of course, here we 
are not to develop axiomatic bases for the pretheories. It is just the advantage of 
the methods from [3] that one need not solve all fundamental physical problems in 
order to present a special theory as correctly as possible in the form .ff Y H 'Yr. 

Therefore, here it suffices to formulate several structures of the pretheories for 
quantum mechanics (not all their structures), without having to justify them within 
those pretheories. One of these general structures is the objectivating manner of 
description in a state space. 

For each pretheory &.'T", =.ffY m Hm Y m we assume that the following intrinsic 
terms ([3] § 7.2) are defined: A set M m , called the set of the physical systems, a set 
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Z, called the state space, a time scale e, and a mapping Mm x e ~ Z. By f(x, t) 
with x E Mm, tEe one here denotes the "state of the system at the time t". Often 
one calls Mm the index set for the physical systems. 

Concepts such as "system", "state", "time", and "state of the system at time t" 
(introduced along with the mathematical terms) are simply brief formulations of 
the correspondence rules from 9Ym (see "Abbildungsprinzipien" in [I] III § 4 and 
[3] § 5). We will not describe these rules in detail. We can briefly say what can be 
understood without [3]: We first assume it known how to measure the state of a 
macrosystem at some time. In § 3 we will go more into the description of the 
"measurement of the states for various times". Finally, in § 5 we must investigate 
the relation between the function Mm x e L Z just introduced and the measuring 
described in § 3. 

It is not customary to introduce the index set Mm explicitly in the pretheories. 
One speaks only of the state space Z and the "various" trajectories f: e ~ Z. In 
order to formulate the "special cases" of functions f cleanly, we have introduced 
the set Mm and instead of "the different f(t)" we write f(x, t) where x is the 
"index" for the different experiments. Therefore, note that one must keep XI =1= X2 

even for two different experiments with perhaps the "same object" (e.g. in the 
sense of "the same device" from a laboratory). The introduction of the set Mm also 
promotes the formulation of a statistics (see § 2). 

In order to elucidate the general formulation let us briefly give examples. 
In point mechanics onc can use the T-space of the Pi, qi as the state space. In 

hydrodynamics one can as points of Z introduce the triples of fields 
{Jl(r),u(r), T(r)}, where Jl(r) is the mass density, u(r) the velocity, and T(r) the 
temperature. In the second example one can further use "prescribed" external 
conditions to characterize the states of Z. But also in point mechanics one can 
augment the states by perhaps using prescribed external fields as further charac
terizing the points of a space Z that generalizes T. In thermostatics one introduces 
parameters to describe conditions such as volumes or exterior fields, using them as 
some of the coordinates of Z. In electrodynamics, the fields: charge density, current 
density, electric and magnetic field strengths, polarization, magnetization can be 
regarded as the points of a state space. 

Even the most complex macrosystems such as entire devices together with their 
internal electromagnetic processes can be described in state spaces. It should not be 
disturbing that several9Y are often used in describing a complex device. In fact, 
we have emphasized in [3] that physics consists of a coexistence (of course not 
relationsless) of different 9Y. We have therefore not spoken above about one but 
rather of various pretheories 9Ym. Only the objectivating manner of description 
(expressed most clearly in state spaces) is important for an axiomatic basis of 
quantum mechanics. 

The imprecision in the correspondence rules for Z must be described (due to 
[3] §§ 6 and 9) by a "uniform structure of physical·imprecision". The reader who 
does not refer to [3] can easily visualize the . situation by the example of a state 
space given below. (For the concept of uniform -structures, see [5] or [2] All § 2; for 
a brief introduction, also see [40].) 

The case of a discrete state space Z will not be considered in order to avoid too 
many special cases. Otherwise we would lose track of the general view (about a 
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discrete Z see [4]). Since in many pretheories it is "not customary" to exhibit the 
uniform structure of physical imprecision in Z, we must expressively assume that 
one has enlarged the pretheories by such uniform structures which satisfy the 
principles from [3] § 9. We cannot show here how to carry out such enlargements in 
special cases. But one can use methods entirely similar to those by which we shall 
introduce a uniform structure in the trajectory space Y in terms of those in Z and 
in e. Here, the uniform structures in space and time can serve as the most general 
point of departure for introducing those in Z ([3] § 9 or [1] III § 5). 

The reason why we need a uniform structure in Z (although often one 
apparently gets away without it) is the need for a statistical description in any 
pretheory 9.'7;" for quantum mechanics. We shall recognize this need in the course 
of developing an axiomatic basis for quantum mechanics. Of course one could for 
the statistical description get by with a weaker than the uniform structure (e.g. 
with a "measure space" structure). But it is "more physical" to obtain the 
measurable sets from a uniform structure (see § 3.3). 

Therefore we now assume that a uniform structure is deducible in JI.'7;", to be 
used for9.'7;" as the uniform structure of the physical imprecision in Z. 

The meaning of the uniform structure of physical imprecision is that one can 
use its vicinities to describe the imprecision in the possible measurements of the 
states Z E Z. That two states Zl and Z2 cannot be distinguished by a specific 
measurement method can with a suitably chosen vicinity V be expressed by 
(Zl, Z2) E V. (The reader who wishes quickly to look up details of such impreci
sions is referred to [40].) 

ill the following, Zp will denote the state space Z with the uniform structure p 
of physical imprecision (also see [3] § 9). Let Zp be the completion of Z relative to 
the uniform structure p. According to [3] § 9 we assume that Zp is compact (so that 
Zp is precompact), separable and metrizable (if Zp is compact, the metrizability 
implies that Zp is separable, and conversely; [5] IX § 2, n. 9). 

The known pretheories 9.'7;" are so constructed that there is a further uniform 
structure in Z (finer than p). In the "usual" formulation of the images JI Y m , only 
this finer structure is "present" (in the r-space of point mechanics only that of an 
Rn). Let Z with this finer structure be Zg. For Zp, Zg we make assumptions that 
are in generality presented in [3] § 9: Zg and Zp have the same topology, Zg is 
complete. The elements of Zp - Zg are often called virtual states. 

We have here briefly mentioned the difference between Zg and Zp although we 
shall rarely be concerned with it. But since (as pointed out above) mostly only the 
structure g is known in the theories 9.'7;", one could easily confound g and p. In § 3, 
however, p will be important for the statistical description. 

As assumed above, in JI.'7;" there is a mapping Mm x e !... Z with the physical 
interpretation thatf(x, t) is the state of the system x at the time t. But we have not 
yet said which values of t the time scale shall comprise. It may be tempting, 
idealizing (see [3] §§ 6 and 9 for "idealizing") to assume that e comprises all 
- 00 < t < + 00. But if one looks more closely at some pretheories this assumption 
appears too far-reaching; for, there are pretheories 9.'7;" which describe irreversible 
behavior. In such theories it can be meaningless, idealizing to assume that 

Mm x e !... Z exists for arbitrary t ....... - 00. But another idealization, that 
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Mm x 8 ~ Z exists for arbitrarily large t, is allowed in all pretheories and expresses 
that in principle no bound of t is "known" (indicating an ignorance; see [3] § 9), 
beyond which the system x is no longer describable in Z (it may have been 
"absorbed" in the neighborhood). Of course, a concrete physical system from the 
fundamental domain of 9Y". can after a certain time cease to "exist", i.e. it can 
egress from the fundamental domain of 9Y". (e.g. being "destroyed from the 
outside"). In [3], end of § 10.3, we called the reader's attention to such possibilities. 

For these reasons we only assume that 8 comprises an interval to;§i t < 00. 

Here, to is a time (in the laboratory scale), before which the systems x E Mm have 
been created (i.e. prepared). In order to avoid too many terms in this § I we think 
of choosing such a laboratory time scale that we can set to = o. Therefore, we assume 
that 8 equals the interval 0 ~ t < 00, but reserve the right to displace the "time 
zero" to points to specified in any other way. 

That we consider for 8 "only" the interval 0 ;§i t < 00 of course permits that in 

a particular pretheory the function Mm x 8 ~ Z may be defined for t < O. 
Furthermore, we must keep in mind that the mathematically "sharp" initial point 
t = 0 will lose its sharpness under a uniform structure of the physical imprecision 
for trajectories (see below) since one can physically achieve only that the 
trajectories are observed from approximately t = 0 on. 

(In principle one can also consider discrete time scales 8 = {n LIT 1 n = 0, I, 2, ... }. 
But here let us not diminish clarity by utmost generality; for discrete scales, see 
[4]). 

The set Ze of all functions 8 -+ Z shall be called the space of all trajectories. 

The Mm x 8 .4 Z defined above then determines a function Mm ~ Ze, where 

g (x) represents 8 ~ Z. It is probably impractical to consider the whole space 
Ze since only the subset g (Mm) c Ze is interesting for physics. One calls g (Mm) 
the set of physically possible trajectories (see [3] § 10.4 for "physically possible"). 

In order to express mathematically the imprecision in the measurement of 
trajectories, we consider the set 8 x Z. Each trajectory z (t) can be characterized 
uniquely by 

G(x(t))={(t,z)ltE8,zEZ and z=z(t)} (1.1) 

(the subset of 8 x Z called the graph of the mapping 8 -+ Z). One can thus 
identify Ze with the set of all graphs. This enables us, in a physically meaningful 
way, to base a uniform structure for the physical imprecision of trajectories on a 
physical imprecision in 

X=8xZ. (1.2) 

We presumed that a uniform structure p of physical imprecision is given in Z. A 
uniform structure gin 8 is defined by the metric I t - t' I. Let the product uniform 
structure in 8 g x Zp ([5] II § 2, n.6) be briefly denoted by g p. It is metrizable 
because 8 g and Zp are. With ~ (z, Zl) as the metric in Zp, one can e.g. use 
d«t, z), (t', Zl)) = max {I t - t'l, ~(z, Zl)} as the metric in Xgpo But g p is certainly too 
sharp for a uniform structure of the physical imprecision since 8 g and therefore 
Xgp is not precompact (required by [3] § 9 or [40] for a uniform structure of 
physical imprecision). 

According to [3] §§ 6 and 9, or [40], we must abolish the idealization t -+ 00. 

How does this idealization go beyond the possibilities of experimental measuring? 
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For the points in X, i.e. for the pairs (t, z), the experimental difficulty does not 
consist in that arbitrarily large t can only be determined with greater and greater 
imprecision. Experience with the theories flJy;" rather shows that the considered 
systems cease to exist (as indicated above), before the exactness of measuring 
decreases very strongly. We will therefore not introduce in 8 a uniform structure p 
of imprecision (e.g. by the metric I arctan t - arctan t'l), using 8 p x Zp to describe 
the imprecision in X. We rather shtl postulate that from some finite time Tone 
can no longer measure. Of course, must still remain "open", otherwise we didn't 
have to introduce the idealization t· 00 at all. Since we still wish to lift the sharp
ness of the initial point t = 0 (as pointed out above), it is natural to introduce the 
following uniform structure p of physical imprecision in X. 

Let 8 0 denote the open interval 0 < t < 00 and put Xo = 8 0 x Z. One can 
describe "finite time intervals" from 8 0 by compact subsets of 8 0g (with g the 
uniform structure introduced on 8). Such a compact subset 8 of 8 0 also leaves the 
sharpness of the origin t = 0 of 8 "open". It is thus natural to define Xp by the 
fundamental system of vicinities 

Ua,V= (Xa,xXa,) U V. (1.3) 

While the Vare the vicinities of Xgp and the 8 are the compact subsets of 8 0 , we 
used Xa' = 9' x Z with 9' = 8\9. We evidently have the inclusion 

In (1.3) we have expressed that nothing is measured outside 8, while inside one 
measures with the precision characterized by the vicinities V of Xgpo Instead of 
using all the compact subsets 9 of 8 0 , it suffices to use the special 9n = {f 1*::;; f::;; n} 
(n = 1,2, ... ) in ordet to obtain from (1.3) a fundamental system of vicinities for 
Xp- Likewise, instead of all the V one can use a countable fundamental system of 
vicinities for Xgp since g p is metrizable. It follows immediately that Xp is metriz
able. 

But Xp is also precompact (as required by [3] § 9). That Xp is precompact 
follows from (1.3) if one prescribes V = {(t, z), (f', z') II f - t'l < e and (z, z') E W}, 
with W from a vicinity filter of Zp. To 8 then belongs a finite number of tv so that 
for each f E 9 there is a fv with If - tv I < e and at least one tv (e.g. fl) is outside 9. 
To W there belongs a finite number of z/l so that for each Z E Z there is a z/l with 
(z, z/l) E W. We will show that to each (f, z) E X there is one of the finitely many 
pairs (t., z/l) so that «t, z), (fv, z/l)) E Ua, v: If t E 9 one chooses I f - fv I < e and 
(z, z/l) E W; if f ¢ 9 one chooses tv = tl ¢ 9. 

Since Xp is precompact and metrizable, Xp is also separable ([5] IX § 2, n. 9). 
Though p does not separate in X since the points (0, z) are not distinguished, it 
obviously separates in Xo. Therefore, XOp is a separated, metrizable, precompact, 
separable space. 

With Xg = 8 g x Zg one sees immediately that Xg is finer than Xgp and Xgp finer 
than Xp. The metrizability of Xg follows from that of 8 g and Zg in the way shown 
above for Xgp. The topologies of Xog and XOp are identical on Xo. This follows 
when the identity mappings XOgp"'" XOg and XoP ..... XOgp are continuous. That 
XOgp"'" XOg is continuous follows immediately from Zg and Zp having the same 
topology. The continuity of XOp"'" XOgp follows from the fact that for each 
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compact subset 9 c eo the spaces [9 x Z]p and [9 x Z]gp have the same uniform 
structure, as (1.3) easily shows. 

Since we are interested in the trajectories; i.e. in the graphs as subsets of X, let 
us in &6(X) (equal to "&,(X) without the empty set") introduce a uniform struc
ture of physical imprecision based on Xp. It is physically natural to do this in a 
"canonical" way (see [3] § 8 and also [5], Exercise 5 for II § 1). 

Let JV be the vicinity filter of Xp. We introduce the corresponding "canonical" 
vicinity filter f of&'o (X) by the fundamental system of the sets 

0= {(A,B) IA E &'o(X), B E &6 (X), A E V(B), BE V(A), V EJV}, (104) 

where V (A) is the set of those x E X for which there is an x' E A with (x, x') E V. 
In this way &6(X)p is defined (likewise &6 (Xo)p)· As is easily seen, one also can 
regard &6(Xo)p as a subspace of the uniform space [&6 (X)]p. But the uniform struc
ture p separates neither in &6 (X) nor in &6 (Xo), since A and its closure A in Xp 
(resp. in Xop) obviously have the same neighborhood filter. 

If A and B are the graphs of two trajectories, (104) with (1.3) yields 

Os,v= {(A, B) lAs E V(B), Bs E V(A)} (1.5) 

as a vicinity of p (in Z8 c &6 (X», where As =A II (9 x Z) and Bs = B II (9 x Z). 
In fact, (1.5) follows from (1.4) and (1.3) because A II (9' x Z) and B II (9' x Z) are 
not empty. 

Since Xp is precompact, [&6 (X)]p is so ([5], Exercise 11 for II § 4). The comple
tion of [&6 (X)]p is also metrizable since, with d (x, x') as a metric in Xp, one can in 
[&6 (X)]p use the distance 

IA,B I = sup {d(x,A), d(x',B) I x E B, x' EA}, 

where d (x, A) = inf {d (x, x') I x' E A} ([5], Exercise 6 for IX § 2). Therefore 
[&6 (X)]p is also separable, and the corresponding holds for [&6 (Xo)]p' 

[&6(X)]p and [&6 (Xo)]p are typical examples of sets in which the uniform struc
ture of physical imprecision does not separate all elements. One should see clearly 
that just this is "physically reasonable". As shown above, [&6 (X)]p and [&6 (Xo)]p 
fulfill all assumptions of [3] § 9. The subset of the singletons (i.e. one-element sets 
{x}), considered as a subset of &6 (X) relative to the uniform structure in [&6 (X)]p, 
is isomorphic to Xp ([5], Exercise 6 a for II § 2), which is also as it should be on 
"physical grounds". 

Let Y(Xo) be the set of closed subsets of Xo. They do not depend on the 
uniform structure p or g of Xo since Xop and XOg have the same topology. Then 
[Y(Xo)]p, considered as a subspace of [&6 (Xo)]p, is separated, i.e. p distinguishes 
the closed subsets of Xo ([5], Exercise 6 b for II § 2). 

One can to each A EY(Xo) assign its closure A in Xg. Since A is closed in 
XOg , it follows that A =04 II Xo. Let Yo (X) be the set of those closed subsets B of 
Xg for which there is an A EY(Xo) with B =04. Therefore, B = (B II Xo) for 
B EYo(X). 

Thus B i-+ B II Xo establishes a one-to-one correspondence between Yo (X) and 
Y (Xo) and, with Yo (X) c [&'0 (X)]p and Y (Xo) c [&'0 (Xo)]p it follows that 
[Yo (X)]p and [Y (Xo)]p are isomorphic. Therefore, [Yo (X)]p is a separated, sepa
rable, metrizable, precompact space. 
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It is customary to denote the set of continuous mappings e --+ Z by C (e, Z). 
Since the topologies of Zg and Zp are equal, the set C (e, Z) does not depend on 
whether one uses p or g as uniform structure in Z. The graph (1.1) of a trajectory 
Z (t) Ecce, Z) is an element of Yo (X), for, firstly, it is a closed subset of 
Xg ~ e g x Zg ([5] I § 8, n. I) and, secondly, z (0) is the limit of z (t) for I> 0 and 
t --+ O. 

As the "trajectory space" Y we denote the set of graphs belonging to C (e,Z) 
and identify C (e, Z) with it. Here, we "mentally" assumed that Mm .J4 Y holds for 
the mapping Mm .J4 Ze introduced above. But we will not exhibit such an assump
tion mathematically since we must in § 5 look into the mapping Mm .J4 Ze more 
closely. An injective mapping C (e, Z) --+ c (eo, Z) is defined by z (t) --+ z (I) leo 
so that one can identify Yp= Cp(e,Z) with a subset of Cp(eo,Z) since [.5'Q(X)]p 
and [Y(Xo)]p are isomorphic. 

Since Y E.Yo (X), the space Yp is separated, uniform, precompact, separable and 
metrizable. We view p here as the uniform structure of physical imprecision for 
trajectories. That we have chosen Y = c (e, Z) as the trajectory space is a state
ment about the structure of the pretheory &'.Ym . One could imagine also to use pre
theories where it is practical to admit non-continuous trajectories. But no theory is 
known which could not describe the trajectories by elements from Yp (the 
completion of Yp). Since (as mentioned above) one can identify Y with a subset of 
C (eo, Z) EY(Xo), and [Y(Xo)]p is separated, one can identify some of the ele
ments of Yp with elements of Y (Xo) , namely with those of Y (the closure of Y in 
[Y(Xo)]p)' From this it easily follows that Y contains for example such subsets by 
which one can represent "jumps" of the trajectories (Fig. 2). Therefore, it would be 
quite thinkable that as the trajectory space Y in a pretheory one chooses any other 
subset, which is dense in Yp but differs from C (e, Z). Let us not consider such 
cases in order not to sacrifice clarity for generality. The choice of the trajectory 
space Y depends intimately on the choice of another uniform structure in Y, which 
is finer than p but yields the same topology in Y as p does. We will now construct a 
uniform structure for C (eo, Z) (and thus for Y c c (eo, Z)), relative to which 
C (eo, Z) is complete, but which leads to the same topology as Cp (eo, Z). 

Let 9 be a subset of eo. A mapping Zeo --+ Z·9 is defined by z (t) --+ z (t) 19 (the 
mapping of a trajectory Z(I) onto its part in 9), for which C (eo, Z) --+ C (9, Z) 
holds. In Z9 we define (by means of Zg) a uniform structure g u, called the struc
ture of the uniform convergence on Z9. As a basis of this g u let us choose the 

z An element in Y 

t 
Fig. 2 
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vicinities 

where.Aj, is a vicinity filter of Zg. 
If ;W'is a subset of .9'(80), the mappings Zeo -+ [Z.9]gU for all a E;W' define an 

initial uniform structure on Zeo, to be denoted g:W: One sees immediately that for 
a) c a2 the mapping [Z.92]gu -+ [Z.9']gU is uniformly continuous. If Zeo -+ [Z.9 2]gu 
is so and a1 C a2, then Zeo -+ [Z.9']9U is also uniformly continuous. If ;W" is a subset 
of ~ so that for each a E ;W'there is a a' E ;W" with a c a', the uniform structures 
g ;W' and g;W" are thus equal on Zeo. If ;W'is the set of compact subsets of eo, one 
can choose ;W" as the set of all intervals an = {t I * ~ t ~ n} (n = 1, 2, ... ). For ;W' 
the set of compact subsets of 8 0 we write g ;W'simply g. Therefore, g is the initial 
uniform structure for which all the mappings Zeo -+ [Z.9·]9U (n = 1,2, ... ) are uni
formly continuous. Since they are countable and Zg was assumed metrizable, 
[ZeO]g is also metrizable. Therefore, C (eo, Z) c Zeo implies that Cg (eo, Z) is also 
metrizable. But Cg (eo, Z) is also complete ([5] X § 1, n. 6) since Zg was assumed 
complete. We will show that Cp (eo, Z) and Cg (eo, Z) have the same topology. 

Let us first show that the identity mappings Cg (eo, Z) -+ Cpc (eo, Z) -+ 

Cp (eo, Z) are uniformly continuous, where p is the uniform structure obtained 
from Zp exactly as g is obtained from Zg. The mapping Cg(eo,Z) -+ Cpc(eo,Z) 
is uniformly continuous if the mappings Cg (eo, Z) -+ Cpu (a, Z) are so for all 
compact a since pc is the initial uniform structure generated by C (eo, Z) 
-+ Cpu (a, Z). Since Cg (80, Z) -+ Cgu (a, Z) is uniformly continuous, it follows 
that the mappings Cg(eo,Z)-+Cgu(eo,Z)-+cpu(a,Z) are so if Cgu(a,Z) 
-+ Cpu (a, Z) is uniformly continuous, which easily follows from the fact that Zg is 
finer than Zp- Thus we still have to show the uniform continuity of Cpc (eo, Z) 
-+ Cp (eo, Z). 

Let U.9,Vbe a vicinity of the form (1.5) with 

V= {(t, z), (t', z') II t-t' I <~, (z, z') E W}, 

where W is a symmetric vicinity of Zp; then (z (t), z' (t» E W for all tEa implies 
«z, t), z' (t» E U.9, v and thus the uniform continuity of Cpc (eo, Z) -+ Cp (eo, Z). 

We have thus shown that the uniform structure g in C (eo, Z) is finer than p. 
Therefore, the topologies of Cp (eo, Z) and Cg (eo, Z) coincide if the mappings 
Cp (eo, Z) -+ Cpc (eo, Z) -+ Cg (eo, Z) are. continuous. We first show that 
Cpc (eo, Z) -+ Cg (80, Z) is continuous. 

Since the topology of Cg (80, Z) is the initial topology for all mappings 
Cg (eo, Z) -+ Cgu (a, Z) ([5] II § 2, n. 3), Cpc (eo, Z) -+ Cg (eo, Z) is continuous if 
the mapping Cpc(eo, Z) -+ Cgu(a, Z) is continuous for all compact subsets a of 
80. Since Cpc(eo, Z) -+ Cpu (a, Z) is continuous, it suffices to show that 
Cpu (a, Z) -+ Cgu (a, Z) is. 

One can in a "canonical way" obtain uniform structures g and ft for &1b (a x Z) 
from those of a x Zg and a x Zp. According to [5], Exercise 11 c for II § 4, the 
topologies of [y(a x Z)]g and [y(a x Z)]jJ (with y(a x Z) the set of compact 
subsets of ax Z) are equal since a x Zg and a x Zp have the same topology. Since a 
is compact, the graph of a continuous function a -+ Z is likewise compact, i.e. 
C (a, Z) E y(a x Z). Therefore Cg (a, Z) and CjJ (a, Z) have the same topology. 
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Since Cpu (.9, Z) -+ Cp (.9, Z) is easily recognized as continuous (see above), it 
therefore suffices to show that Co (.9, Z) -+ Cgu (.9, Z) is so. 

Let W be a vicinity of Zg and Zo (I) a fixed trajectory. Let ~ be a vicinity with 
U)2 c W. Since Zo (I) is uniformly continuous on .9 (since .9 is compact), there is an 
B such that for I 1- f I < e the relation (z (I), z' (I» E ~ holds. If we choose a 
vicinity in Co (.9, Z) by means of e and U), then Z (I) lies in the corresponding 
neighborhood of Zo (t) ifthere is such a I' with I I - 1'1 < B that (z (I), Zo (I'» E WI. 

Since also (zo (t'), Zo (I» E ~, it follows that (z (I), Zo (t» E W, whereby the conti
nuity of Co (.9, Z) -+ Cgu (.9, Z) is proved. Therefore Cpc (eo, Z) -+ Cg (eo, Z) is 
continuous. . 

It remains to show that Cp (eo, Z) -+ Cpc (eo, Z) is also continuous. Since the 
topology of Cpc (eo, Z) is the initial topology for the mappings C (eo, Z) 
-+Cpu (.9n ,Z) with .9n={/I~~/~n}, it suffices to show that Cp(eo,Z) 
-+ Cpu (.9n, Z) is continuous for all .9n• Let W be a vicinity of Zp and Zo (I) a fixed 
trajectory. Let U) be a vicinity with U)2 c W. Since Zo (I) is uniformly continuous 

on the compact subset .9n+ I, there is an e > 0 with B < .!. - _1_, such that 
n n + 1 

(Zo(/), zo(f) E U) holds for I, I' E .9n+1 and I I - I' 1< e. With these .9n+ l , B and ~, 
according to (1.5) with 

V = {«I, z), (I', z'» II I - I' I < e, (z, z') E Wd 

we form a neighborhood of zo(t) by means of 08.+1.V. Then the following holds for 
Z (I) E 0 8.+" v(zo(/»: For IE.9n c .9n+1 there is a I' with I I - I' I < Band 

1 1 
(Z(/),Zo(t'» E U). Because of t E.9n and B < ---- we have I' c .9n+ l ; hence 

n n + I 
(zo (t'), Zo (I» E U) and thus for t E .9n the relation (z (I), Zo (I» E ~2 C W holds. 
Therefore Cp (eo, Z) -+ Cpu (.9n, Z) is continuous. 

We have thus finally shown that Cp (eo, Z) and Cg (eo, Z) have the same 
topology. Since Cp (eo, Z) is separable, Cg (eo, Z) is also separable, which also 
follows directly from [5] X § 3, n. 1. Therefore, Cg (eo, Z) is complete, separable 
and metrizable. Since one can identify Y= C (e, Z) with a subset of C (eo, Z), the 
topologies of Yp and Yg also coincide. Although Yg need not be complete, Y is 
dense in C (eo, Z). This easily follows from the fact that for each .9n and a 
trajectory Z (I) E C (eo, Z) one can construct the trajectories 

Zn (I) ={ Z (I) for I E .9n and Zn (I) = Z ( ! ) for I < ! and 

zn(t)=z(n) for l>n}EC(e,Z), 

which converge to z(t) in C (eo, Z). Since Y is dense in C (eo, Z) and Cg (eo, Z) 
is complete, one can identify the completion of Yg with Cg (eo, Z), and hence the 
completion of Yp with that of Cp (eo, Z). In the sequel we shall for the completion 
t of Yp simply write Y. We denote the elements of Y\C (eo, Z) as virtual trajec
tories. 

Later, yet the following facts will be important. When .9 t consists of a single 
point r E eo, it is compact so that [ZeO]g -+ [Z8']gu is uniformly continuous. One 
easily sees that the mapping [Z8']gu -+ Zg for [z (t)]I=t E Z8, defined by [z (/)]/=t 
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~ z(r) E Z is uniformly continuous. Therefore, for each fixed r E eo, the mapping 
[ZeO]g~Zg defined by y = z (t) ~ z (r) E Z and thus the similarly defined 
mappings Cg (eo, Z)~Zg and Cg (e, Z)~Zg are uniformly continuous. The 
last, however, does not hold for r = O! 

Therefore, since the topologies of Cg (e, Z) and Cp (e, Z) coincide and also 
those of Zg and Zp do, Yp~Zp is at least continuous. 

§ 2 Preparation and Registration Procedures 

In many pretheories flJY,." no statistical description is formulated to begin with; 
and if there already is such a description (in statistical point mechanics by means 
of densities e in r-space), then it is not of the general form particularly suited for 
an axiomatic basis of quantum mechanics. Therefore let us extend the mathemati
cal pictures .ffY,., of the pretheories by a statistical structure, but retaining the 
notation .ffY,., for the sake of simplicity. In § 3 it will turn out that the statistical 
description to be introduced encompasses all cases in which there already was a 
statistical description. 

In order to introduce the statistical description we use [3] § 12 and [2] II §§ 2-4. 
The general significance of this method proceeds clearly from [3] § 12. In [2] 
II §§ 2-4, one finds the most detailed presentation of theorems, but also of the 
physical interpretation. Here one must note that in [2] II in no way was it used that 
the set M is an image set (index set) of microsystems. Therefore, one can carry over 
all the considerations from [2] II, replacing the M from [2] II by the set Mm intro
duced above in § 1. For that reason, here we can be brief in introducing the 
statistics and forego proofs of theorems. 

The reader can look up an introductory formulation of the statistical descrip
tion used here in [1] XIII §§ 1 and 2. One can find a brief formulation of this 
method in [6] §§ 1 and 2. 

§ 2.1 Statistical Selection Procedures 

When a set/'c .~(M) as a theorem or axiom obeys 

ASl.1 

AS 1.2 

a, bE..:/' and a c b => b\a E..:/', 

a,bE..:/' => anbE..:/' 

(with b\a the relative complement of a in b), let us name it a structure of species 
"selection procedures" (shortly SP) over M. For brevity such an..:/' will simply be 
called a "set of SP", an element of it a "sele.ction procedure" (SP). 

In the following we always denote the set of all bE..:/' with be a by ..:/' (a). This 
..:/'(a) is a Boolean ring (with a as unit element). For each subset ..ra:f of flJ (M) there 
is a smallest set..:/' of SP with..ra:f c..:/'. One calls this..:/' the set of SP generated by.if. 
(For further details and considerations concerning AS 1.1,2, see [2] II § 2.) 

A set..:/' of SP shall be called a structure of species "statistical selection proce
dures" (SSP) or simply a "set of SSP", if there is given a mapping A of 

.'7= {(a, b) I a, bE/, a ~ b and a*, 0} 
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into the interval [0, I] of real numbers for which the following holds: 

AS 2.1 a], a2 E/, al n a2 = 0, al u a2 E./' ~ A (al U a2, al) + A (al U a2, a2) = 1. 

AS2.2 aJ,a2,a3E/, al=>a2=>a3, a2*0 ~ A(al,a3)=A(al,a2)A(a2,a3)· 

AS 23 
00 

AS 2.4.1 If av E./' is a decreasing sequence with n av = 0 and a E./' with a=> aI, 
then A (a, av) -+ O. v= I 

AS 2.4.2 Each totally ordered subset of./' has an upper bound in /. 

One can further adjoin the following axiom without contradicting ·known ap
plications of probability theory in physics. 

AS 2.5 Let ai E./', with ai * 0 for i = 1,2, ... , n, and let al = an. Then 
n-I n-I 

II A (ai+], ai n ai+l) = II A (ai' ai n ai+l) 
i=1 i=1 

holds. The reader may look up further consequences of this axiom in [41]; we do 
not use it in the sequel. 

AS 2.4.2 can somewhat be weakened as described in [3] § II; there one can also 
read about the physical interpretation of a set of SSP. Therefore let us only state 
tersely that physicists compare the real number A (a, b) with the experimental fre
quencies with which circumstances x E M, selected according to a, do also fulfill 
the criteria of b. 

One calls A (a, b) the probability of b relative to a. For our development of an 
axiomatic basis for quantum mechanics it is important that the concept of 
probability and its interpretation is already clarified in the pretheories. Quantum 
mechanics has no need for any novel probability concept. On the contrary, all 
probabilities in quantum mechanics relate in the final analysis to those of the pre
theories, i.e. to probabilities in the macroscopic domain of objectivatingly de
scribed devices (see III)! 

Above, we have pictured the selection procedures a E./' immediately by 
subsets a c M, namely by the "subsets of those systems which are selected 
according to a" .. This practice (followed above) is very convenient for many pur
poses since one gets on "quickly". But this practice happens to be misunderstood; 
also it can often be necessary to analyse more precisely the selections by a device. 
For these reasons, we will here briefly formulate at pretheory for the theory of 
selections, even though we shall seldom use it (see § 2.3 and § 3.1). 

Instead of proceeding from a set ./' E &' (M), we start from a basic set ;;' of 
elements to picture actual procedures. Let;;' be equipped with the following 
structure (in brief formulation): ;;' is an ordered set; there is a smallest element in 
;;' to be denoted by 0; for each pair of elements iiI, ih E./' there is a lower bound 
alA a2; each order interval [0, ii] is a Boolean ring (with a as the unit). 

We then briefly call ;;' the set of procedures. The physical notion here is this: If 
&,y involves a set;;' with the structure just described, correspondence rules shall be 
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given under which the elements of./ are the pictures of definite physical 
procedures and the order relation in ./ pictures a "finer-coarser" factual relation. 

Therefore, ./ represents a picture of the procedures without already referring to 
the fact that "systems" x E M are selected by these procedures. Hence, in order to 
portray the selection of systems, one needs a mathematical relation between the 
elements of./ and of M. 

Consequently, we proceed from two basic sets ./ and M and a two-place 
relation IY. c./x M where (a, x) E IY. is the picture of the factual relation that "x is 
selected by the procedure a". 

The two-place relation IY. can also be characterized uniquely by the mapping 

./.14.9'(M) with 

a ~ {x I x E M and (a, x) EIY.}. 

Therefore, h(a) is the "set of systems selected by a". 
For the mapping h we demand the following relations (2.1.1) and (2.1.2): 

h(al 1\ (2) = h(aI) n h(a2)' (2.1.1) 

This expresses that al 1\ a2 selects precisely those systems which are selected by al 
as well as a2' 

For al > a2 (hence al 1\ a2 = (2) it follows from (2.1.1) that h (a2) = h (aI) n h (a2), 
i.e. h (aI) c h (az) holds. Therefore, h preserves the ordering. Thus it is meaningful, 
with al \a2 as the complement of a2 in the Boolean ring [0, ad to demand: 

(2.1.2) 

This asserts that al \a2 selects precisely those systems which were selected by al 
but do not satisfy the criteria of the finer proced ure az. 

If al va2 exists (which is just then the case when there is an a3 E./ with 
aI, a2 < a3!), then it follows that h (al V (2) :::> h (ai) for i = 1,2, hence h (al V (2) 
:::> h (al) u h (a2)' On the other hand, from h (al V a2 \al) = h (al V (2) \h (ad with 
al V a2 \al < a2 follows h (al V (2)\h (ad c h (a2) and hence h (ad u [h (al V (2)\ 
h (al)] = h(a1 V (2) c h (a1) u h (a2)' Therefore, h (a1 V (2) = h (ad u h (a2). 

def -. . 
T 2.1.1 The set f = h (/) IS a system of selectIOn procedures. 

Proof If a1, a2 E /, there exist aI, a2 E ./ with al = h (al), a2 = h (a2)' From this 
follows h (al 1\ (2) = h(al) n h (a2) = al n a2 E f 

From a1 c a2, with h (ai) = ai follows h (al 1\ (2) = h (al) n h (a2) = al n a2 = a2 
and h (al\aI 1\ (2) = h (ad\h (al 1\ (2) = a1 \a2 E /. 0 

T 2.1.2 For the set 

f= {ala E ,/, h(d) = 0J 

the following assertions hold: 

(i) al E f, a2 E./, a2 c al = a2 E f; 
(ii) a], a2 E f, al V a2 E ./ =;. al v a2 E f· 
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Proof Since h preserves the ordering, from al cal follows that h (a2) c h (al) and 
hence i) holds. ii) follows from h (al V a2) = h (al) u h (a2)' D 

D 2.1.1 An ideal in/' is defined as a subset f c /' for which (i), (ii) in T 2.1.2 
hold. 

T 2.1.3 A partition of /' into classes relative to an ideal f is determined by the 
equivalence 

def 
al ~ a2 <=> al \al 1\ a2 E f and a2\al 1\ a2 E f 

with a\[j the complement of [j in [0, a]. 

Proof It follows from al ~ az ~ a3, with the aid of the identity 

al \(al 1\ a3) = [(al \al 1\ aZ)\(al \al 1\ az) 1\ a31 v [al 1\ (az \az 1\ a3)], 

that al \al 1\ a3 E f holds. Likewise follows a3 \a3 1\ al E f and hence al ~ a3' D 

The set of classes of/' relative to the equivalence in T 2.1.3 will be denoted 
/'/ f. Let k be the canonical mapping/,! /'/ f· 

T 2.1.4 With f from T 2.1.2, the mapping h can be factored according to the 
diagram 

.J// 
/ ~ 

/' ~ /', 

where i is a bijection. If f contains only the zero element, i.e. /' .! ./' is bijective, h 
is an order isomorphism of/' and /. 

Proof From h(a,)=h(az) follows h(all\a2)=h(al)=h(az) and hence 
h(ai\a,l\ii2)=0 for i=I,2, i.e. iil~iiz. And, if al~ii2' there follows 
h (iii\ii, 1\ a2) = 0 and hence h (al) = h «al \al 1\ az) v (al 1\ a2)) = h (al 1\ a2); like
wise, h (a2);, h (al 1\ a2), hence h (al) = h (a2). If.? 14 /' is bijective, then from 
h(ad::::> h(a2) and heal 1\ az) =;= heal) n h(ii2) follows al 1\ a2 = a2, i.e. al > a2' D 

The set f = {iii a E J; h (ii) = 0} is formed by those procedures a for which there 
are no systems x E M that they could select. 

Therefore, if for a §J,Y one need not formulate more exactly the pretheory with 
/', then we shall (as at the beginning of this § 2.1) restrict ourselves to considering 
only./'. 

§ 2.2 Preparation Procedures 

After briefly having given the fundamental structure of the statistical description 
in § 2.1 let us now formulate how to apply this statistics to physical systems. In 
order to get a statistics for the behavior of the systems x E Mm one must often 
repeat trials, i.e. one must prepare a large number of systems x E Mm. The 
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statistics of their behavior depends on the type of preparation. Hence we first 
introduce a mathematical structure to describe the different preparation possibili
ties for the systems from Mm (also see [1] XIII § 2; [2] II § 4.1; [3] § 12.1). 

As a picture of the preparation, let in JfYm a structure £1m C 9 (Mm) be given 
which obeys: 

APS 1 £1m is a structure of species statistical selection procedures (SSP). 

We denote £1m briefly as the "set of preparation procedures". This presents an 
abbreviated formulation of a correspondence rule from 9Ym • For instance, if a 
special preparation procedures has been applied in the experiments and if one has 
denoted it by the letter a, then the relation a E £1m must be recorded in Hr (I) (see 
[3] § 5). If a system C has been prepared by the procedure a, then the relation C E a 
must be recorded in Hr (2). Therefore, x E a (for x E M m , a E £1m ) is a picture 
relation (see [3] § 5). 

Without going into details of [3], one can also briefly and in an obvious way 
formulate the interpretation of £1m as follows: An a E £1m is the set of those systems 
which were prepared (i.e. produced) by a definite procedure a. 

The relations characterized here and in the following by Hr always represent 
experimental facts, expressed in the language of JfY. Therefore, C E a is simply 
the mathematical way of expressing that the concrete system C used in the 
experiment was prepared (i.e. produced) by the procedure a. 

The probability function according to APS 1 defined for £1m is in the following 
denoted by Aj)m. 

If a(, a2 are two preparation procedures, of which a2 is finer than al (i.e. 
al ::::> a2), and if CI, .•. , CN, have been produced by the procedure ai, one can search 
out those cit' Ci., ••• , CiN. among the cdk = 1, ... , N 1) which were produced by the 
finer procedure. Then in Hr (2) one must (as experimental result) record 
A~m(a(, a2) - N21NI corresponding to the mapping principle for probabilities (see 
[3] § 11; [2] II § 2; [1] XIII § I). 

§ 2.3 Registration Procedures 

More interesting for physics is not the preparation but the registration, i.e. the 
measurement of the trajectories g (x) (the function Mm .!4 Y introduced in § 1). In 
order to describe the statistics of such measurements we need in Jf.r". a picture for 
the methods according to which one measures and a picture for the measured 
results. We will describe the results digitally, i.e. with Yes-No indicators of the 
measuring device, which is "customary" today in the era of computer technology. 
We shall only in § 3 formulate more precisely how these (frequently very many!) 
Yes-No statements of a measuring device are interconnected with the trajectories 
Y E Y"to be measured". 

Digital measuring likewise represents a selection procedure since one "selects 
those systems to which a definite indicator has responded". This is well known to 
all physicists. Less consciously one is aware that already the application of a 
measuring method (without any sorting for results) represents a selection procedure, 
namely the (of course, very arbitrary) "selection of those systems to which the 
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measuring method is applied". We must try to describe this experimental situation 
by selection procedures. In order in § 3 to establish the mentioned connection 
between "measuring" and "trajectories", let us here begin with the more general 
representation of procedures as described in the second half of § 2.1. 

For this reason we introduce a new basic set;jm whose elements shall describe 
the digital indications of the measuring device. We have said "we introduce" since 
till now it is not customary in a 9.'7;., to exhibit mathematical terms for the 
measuring procedure. In § 3 we shall yet go in more detail into the meaning of 
such an extension of the usual macroscopic theories. But first we must equip ;jm, 
Mm with a structure which mathematically describes that a measuring device is 
applied. 

First we introduce a subset ;jom c;jm which is to describe the measuring 
methods. While Qo E ;jom means that Qo is the picture of a definite measuring 
method, Q E;jm means that Q is the picture of a certain digital indication. It is very 
convenient to also view QQ E ;jom as an indication from ;jm, namely as the "trivial 
Indication" that one has measured with the method Qo. For this reason we 
introduced the measuring methods as a subset ;jom c ;j m. 

As further structure we assume that ;jm is a set of procedures (in the sense of 
§ 2.1), i.e. an ordered set with the additional requirements from § 2.1. In this 
context QI < Q2 (i.e. QI finer than (2) means that QI indicates the result "more 
precisely" than Q2 does, i.e. that (due to the construction of the measuring device) 
the response of QI necessarily implies that of Q2. We here extend the requirements 
from § 2.1 to the additional one: For each Q E ;jm there is a Qo E ;jom with Q < Qo. 

The last demand just states that for each indication there also is a device on 
which it appears, because Q < QQ (i.e. Q finer than Qo) means that Q is finer than the 
"trivial" indication QQ. Hence, the order interval [0, Qo] in ;jm is just the set of all 
digital indications on the device QQ. 

As in § 2.1, the choice of physical systems by means of procedures from;jm is 
described by a mapping ;jm 14 9 (Mm) on which (2.l.l) and (2.1.2) are imposed. 
We denote h (;jm) by:?llm and h (;jom) by :?110m , 

We must yet describe the physical fact that the norms of the measuring devices 
fluctuate statistically. All experimental physicists know this. They take pains to 
keep these fluctuations as small as possible, but take them into consideration in 
the "error estimates" of their measurements. We describe this situation in two 
steps: first by the demand that ;jom be a set of procedures in the sense of § 2.1, 
then by the additional requirement of a statistics which is involved in the relation 
denoted below by APS 3. 

From the theorems proved in § 2.1 follows that :?IIo and :?110m are structures of 
species selection procedure over Mm, that :?110m c:?llm holds and also: For each 
b E:?IIm there is a bo E :?110m with b c boo 

In order not to talk about "useless" measuring methods we agree that the 
mapping ;jom ~ :?110m be bijective. From T 2.1.4 then follows that ;jom and :?110m are 
isomorphic. This is the reason why one often identifies ;jom with :?110m and speaks of 
the bo E :?110m as measuring methods. We will use the following terminology: :?110m is 
called the set of registration methods and:?llm that of registration procedures. 

We further require that :?110m is not only a structure of species selection 
procedures (SP), but a structure of species statistical selection procedures (SSP). 
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The corresponding probability function A8?om shall just describe the above
mentioned fluctuations of the norms of the measuring devices. In fact, because of 
the isomorphism of ~Om and &Om one can also view A8?om as the probability relative 
to the procedures from &Om. 

Therefore, for the structures ~m C .9 (Mm) and ~Om (.9 (Mm) we find (as 
theorems) the relations 

APS 2 ~m is a structure of species selection procedures. 
APS 3 ~Om is a structure of species statistical selection procedures. 
APS 4.1 ~Om C ~n; 
APS 4.2 For each b E ~m there is a bo E ~Om such that b c bo. 

Because of the isomorphism of ~Om and &Om, the designation of ~Om as the "set of 
registration methods" is only an abbreviated form of the following correspondence 
rule: For a measuring method bo one records bo E ~o in HI" (I); for a system 
x E Mm which was measured by the method bo one records x E bo in Hr (2). 

The designation of ~m as "the set of registration procedures" is likewise only an 
abbreviated form of the following principles: For a digital indication Q one is to 
record Q E &rn. When for a measurement of the system x E Mm the digital 
indication Q has occurred, one is to record x E b = h (Q). 

As has already been stated, the order interval [0, Qo] is the set of digital 
indications on the measuring device Qo. As a subset of &m, this interval [0, Qo] is a 
Boolean ring well known to computer technologists as the logical switch ring. The 
image set h ([0, QoD is the set of all b E ~m with b c bo = h (Qo), i.e. the order 
interval [0, bo] in ~m which we shall write ~m (bo) and which is a Boolean set ring. 
Often one denotes (somewhat leger) the b E '~m (bo) as the digital responses of the 
registration method bo although the mapping &m ~ ~m need not be injective. In 
this sense, x E b with be bo means that the registration procedure b has 
"responded" in the measurement of the system x by the method bo, while 
x E bo\b correspondingly means that the procedure b has "not responded". One 
often does not introduce a pretheory in the sense of a basic set &m, but proceeds 
straight from the structures ~Om' ~m with the requirements APS 2 through APS 4, 
as detailed in [2] II § 4.2 and briefly sketched in [3] § 12.1. 

§ 2.4 Dependence of Registration on Preparation 

The statistics of registering depends decisively on the preparing procedure. We 
must try to describe this mathematically. For a E gm and bo E ~Om' the set a (\ bo 
pictures "the systems prepared by a and measured by the method bo". Thus, the 
question immediately arises whether the procedures a and bo might stand in each 
other's way experimentally, hence mathematically, whether perhaps a (\ bo = 0. 
The combination problem thus brought up is in various areas of physics by no 
means trivial (see e.g. [2] II § 4.3; [2] III § 1, and here in III § 5.1). But for the 
considered pretheories this problem can easily be treated since we have already 
assumed in § 1 that the systems were prepared "before" the time t = 0 and the 
trajectories measured "after" t = O. We can formulate this presumption mathe
matically by: 



24 n Pretheories for Quantum Mechanics 

APS 5 m From a E qm, bo E ~Om, a =1= 0, bo =1= 0 there results a n bo =1= 0. 

In the following we write q:., for the set qm without the empty set and ~Om for ~Om 
without the empty set. Then APS 5 m can also be formulated as: (X E q:." bo e ~Om 
implies a n bo =1= 0. In the notation from [2] II § 4.3 or [3] § 12.1 this assumption 
simply reads C = q:., x ~Om' As pointed out in [2] III § 1, for macrosystems 
C = q:., x ~Om is meaningful. 

In order to spare unnecessary deliberations (see [2] § 4.4 and [3] § 12.1) we 
further assume 

APS8 Mm= U a= U boo 
QE£)", bo E9Po", 

This is physically almost meaningless since x E a resp. x E bo does not assert that 
experimentally one has established under which procedure a the system x was 
prepared or by which method it was measured. (The relations APS 5.1.3 and 
APS 5.2 from [2] III § 1 and [2] II § 4.3 resp. [3] § 2.1 follow from APS 8 and 
APS Sm.) 

We first introduce the set 

em={cic=anb, where aEqm,bE~m}' 

The set a n b precisely pictures "all systems prepared under a for which the digital 
indication b has occurred". The frequencies with which the different b occur are of 
physical interest. As a portrait for this we introduce the structure /", of species 
selection procedure (SP) generated by em (see § I) and assume: 

APS 6 /m is a structure of species statistical selection procedures (SSP). 

Hence there is a probability function A..I"", so that A..I"m (CI' C2) with CI, C2 E /m 
represents the frequency with which systems selected by C2 are found among the 
systems selected by CI • 

Corresponding to the notion that bo characterizes a measuring method (see [2] 
II § 4.3 and [3] § 12.1) we assume 

APS 7 For ai, a2 E qm with a2 cal, a2 =1= 0 and blO , b20 E ~Om with b20 c blO , 
b20 =1= 0 follows 
APS 7.1 A..I"m (al n blO , a2 n blO ) = Agm (at. a2); 
APS 7.2 Av-m (al n blO , al n b20) = A.9Pom (blO' b20). 

The function A..I"m completely describes all experimental possibilities for the 
taking of statistics. But one need not at all know the complete function A..I"m (CI' C2) 

for all C2, CI E /", with C2 c CI, because in [3] II § 4.5 we have proved the important 
theorem: 

The function A..I"m is uniquely determined by the function Agm and the special 
values 

A./., (a n bo, a n b) (2.4. I} 

for a eq:." bo E~Om and b E ~m with b c bo (hence b E ~m (bo}). 
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The function values (2.4.1) are those experimentally measured almost exclusive
ly: One produces a system by a preparation procedure a and measures it under the 
method bo (i.e. systems XI, X2, ••• , XN from a n bo), noting the frequencies of the 
various digital indications b (i.e. noting the number N+ of those xit' Xi., ••• , XiN for 
which Xi. E b holds, and thus getting the frequency N+IN) and comparing these 
frequencies with the real numbers A/m (a n bo, a n b). The experimental physicists 
will try to find the finest possible preparation procedures, since their experiments 
tell the more the finer preparation procedures have been chosen. This is the reason 
why in most experiments the statistics Agm are not talked about except perhaps in 
"error estimates" of the preparation. But it is theoretically cleaner to introduce gm 

as a structure of species SSP (statistical selection procedures). 
Since only the function values (2.4.1) are physically important, it is natural to 

introduce the sets 

Ym def {(bo,b)lboE~6m,bE~m(bo)}; 

~m def {(a,f) I a E Q~,f E Ym} =g:" x.7",. 

Ym is called the set of "effect processes" or "questions". 
Then a function Pm on ~ m is defined by 

Pm (a,f) = Pm (a, (bo, b» = A/m (a n bo, a n b), 

so that [2] II § 4.5 yields the theorem: 

T 2.4.1 The following assertions hold for the function Pm: . 

(i) 0 ~ Pm (a,f) ~ 1. 
(ii) For each a E P/", there is an 10 E.7", with Pm (a,/o) = o. 

(iii) For each a E P/", there is an II E Y m with Pm (a, fi) = 1. 
n 

(2.4.2) 

(2.4.3) 

(2.4.4) 

(iv) For a decomposition a = U ai (i.e. ai * 0 and ai n aj = 0 for i * j) one gets 

Pm (0 ai'/) = ~ AiPm (:i:~) for all IEYm, where 0 < Ai= Ag .. (a, ai) ~ 1 
1=1 1 

n 

i=1 
(v) For boI. b02 E ~6m' bOI ::::> b02 ::::> b and for fi = (bOI , b), 12 = (b02 , b) follows 

Pm (a, fi) = Asp.". (boI. b02) Pm (a,12) for all a E g~. 
n 

(vi) For ji = (bo, bi) with bo = U bi (bi n bj = 0 for i * j) and all a E g~ follows 
n i=1 
L. Pm (a,ji) = 1. 
i=1 

(vii) For 1= (bo, b) we find Pm (a,/) = 0 for an a E g:" ~ a n b = 0. 
n 

(viii) If bo = U bOi with bOi E ~6m (bOi n bOj = 0 for i * j) then, for 1= (bo, b) 
i=1 n 

and ji= (bOi , bOi n b) follows Pm (a,f) = L. Aspo .. (bo, bOi) Pm (a,ji) and 
n 

L. ASPom (bo, bOi) = 1. 
i=1 

i=1 
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A certain converse of this theorem also holds (see [2] IT § 4.5): 

T 2.4.2 If, for given Aqm' a function ttm defined on ~m fulfills (i), (iv), (v), (vi) and 
(vii), for ~ there is one, and only one, probability function A/m for which 

A./n, (a (') bo, a (') b) = ttm (a, f) 

holds with f= (bo, b). The A/m so defined fulfills the conditions APS 7 and the 
further, just listed relations (ii), (iii), (viii), with A9i'om determined by ttm because 

A9i'om (bOI , b02) = ttm (a (bOI , b02)) • 

This theorem justifies that it suffices experimentally to test the function ttm over 
~m. Thus the conditions (i), (vi) and (vii) are almost trivially satisfied in an experi
ment (due to the meaning of ttm as the picture of a frequency). Condition (iv) 
expresses the fact that the preparation is not influenced by the registration (one 
must experiment this way, otherwise one has not carried out a "suitable" experi
ment!). Condition (v) expresses the fact that a refinement of the measuring method 
is statistically independent ofthe preparation (also this must hold in experiments). 

The description just given shows that some of the axioms are less "prescribed 
by nature" than containing "orders for correct experimentation". Thus, for ex
ample, APS 7 contains an experimentation order. If, say, one has violated APS 7, 
then one must not use the results to test the theory. When APS 7 is violated, we no 
longer even talk about "preparations" and "registrations". Therefore, APS 7 is a 
"natural law" in the sense of [3] and [30] only insofar as it is possible to satisfy its 
requirements, i.e. insofar as there really "exists" a fundamental domain ~ of 
suitable experiments. 

§ 3 Trajectory Preparation and Registration Procedures 

The structures of the statistical way of description introduced in § 2 are not yet 
connected with the objectivating way of description from § 1. In fact the structures 
from § 2 do not yet distinguish an objectivating from a non-objectivating descrip
tion. From. this we recognize that a structure of the same type!!J, ~o, ~ as in § 2 can 
also be used for the description of microsystems (see III § 4). But the microsystems 
cannot be described in an objectivating manner (see VII §§ 5.3 and 6, and [2] IV 
§ 8). 

For the pretheories 9.Y", we must still express mathematically that a registra
tion is a measurement of trajectories (in § 2 pointed out verbally without a mathe
matical formulation). 

§ 3.1 Trajectory Effects 

In the "usual" probability theory, which proceeds from a measure space 
(Q, J/, P) (see [3] § 11.1), it would be natural to set Q = Y, i.e. to regard the trajec
tories Y E Y as the elementary events and to select a a-algebra .>f/ of subsets of Y. 
One would call an element Y E .>f/ an event, namely the event that the trajectory y 
lies in Y (that Y E Y holds). Then P (Y) would be the probability that the event Y 
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occurs. But in § 2 we consciously have not started from the "customary" form of 
probability theory (see the remarks in [3] § I I). Thus we shall only later obtain a 
derived structure of the form (Q, .if, P). In this derivation we shall recognize that 
the elements of crY' only correspond to "idealized" registrations, i.e. to only 
approximately attainable Yes-No registrations. 

The foundation of that probability theory on which § 2 has been based is 
physically more realistic and more appropriate for constructing an axiomatic basis 
of quantum mechanics. But in order to express that the E E #im should represent 
the registratjon of trajectories, we must establish a mathematical relation between 
#im and Y. The physical background for such a relation is the functioning of the 
devices by means of which one can measure the trajectories. 

It is physically impossible to measure a trajectory y arbitrarily precisely. Just 
this ought to be expressed by the uniform structure p of Y. But if it is impossible to 
measure trajectories precisely, then one also cannot construct any device with 
digital indications Q E i)m whose response or non-response decides whether a trajec
tory y belongs to some subset Y c Y. The indications can therefore "decide" only 
with a certain imprecision (described by the uniform structure p) whether y E Yor 
y 1= Y holds. How should this imprecision of realistic registrations Q E #im be 
described mathematically? 

If one has built a real device Qo E #iom and aks for its response, one recognizes 
(what every experimenter has long known) that there are trajectories for which a 
digital indication Q < Qo occurs with certainty and other trajectories y for which Q 

certainly does not occur, but that there are y in a transition region (describing the 
"measurement imprecision") such that Q sometimes does and sometimes does not 
occur. Therefore, for the device Qo there exist probabilities to respond to the trajec
tories y. The experimenters use these trajectory probabilities to calculate their 
measurement errors. 

It is typical of "classical" measuring that it is possible (due to the construction 
of the measuring device, i.e. by means of pretheories for the £l'Ym ) to describe what 
the device measures; hence briefly: It is typical of classical theories that the 
observables are directly measurable (for direct and indirect measurability, see [3] 
§§ 5 and IO or [I] III §§ 4 and 9). 

Contrary to widespread opinion it is also not decisive in classical physics that 
all measurements show a "negligible" interaction with the measured systems. Just 
the fact that for any classical theory £l'y'" there are pretheories to explain how 
something should be measured, is the reason why in the classical theories it is not 
"customary" to bring into £l'y'" something from the structure of measuring. 

The standpoint of many theoreticians that "measurement is a thing for the 
experimental physicist" can therefore be retained for the classical theories £l' Y",. 
But is has turned out that just this standpoint is untenable for quantum mechanics, 
since the pretheories for quantum mechanics no longer allow to describe what on 
the microsystems a device measures (see I § 2). The pretheories for quantum 
mechanics only permit us, objectivatingly to "describe" the processes within the 
devices, a fact we shall exploit in III. 

For our goal of constructing an axiomatic basis for quantum mechanics it will 
tum out very advantageous if general structures of measuring are already included 
in the picture ..4Y", of ?Y",. In § 2 we have already begun to do so and now we 
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must continue by introducing a probability for the response fl of a device flo to the 
various trajectories y E Y, a probability which "customarily" occurs only in the pre
theories used by experimental physicists. 

We shall later see that by "forgetting" structures one can recover the "custo
m5UY" form of the theories flJ.'T,., from the picture dI.'T,., we use. In this sense the 
form of flJ.'T,., presented here (though more mathematicized!) is more closely con
nected with experimental physics than those forms in which the measuring 
methods are not considered. 

Consequently, as a structure of measuring methods flo E ~Om we now include in 
flJ.'T,., that it is independently (!) of the measured systems x E Mm possible to interpret 
the occurrences of the individual digital indications fl < flo as measurements of the 
trajectories (by means of pretheories!). This shall hold even then when there are 
not systems x E Mm whatever to let this or that indication occur. 

The fact that the measuring devices can be completely described by pretheories 
shall be expressed by saying that for ~m there exists a probability structure which 
yields the response probability of an indication for the various trajectories from Y. 
Thus we assume a function Y x ~m ~ [0, 1] with 

3'J;m = {(fllo fl2) I fllo fl2 E ~ m, fll > fl2 and fll 9= o} 

is defined to furnish the probability that fl2 occurs if the trajectory y E Y is realized 
and fl. has occurred. Let these probability functions (defined by the construction of 
measuring devices due to the pretheories for flJ.'T,.,) be denoted by AMeas (y; fll , fl2)' 
For fixed y, this probability shall of course with respect to ~m satisfy relations 
similar to the structure relations AS 2 from § 2.1. Corresponding to the meaning of 
~Om and ~m' and in analogy to APS 7.2, let us additionally require: For fllO, fl20 E ~Om 
with fl20 ~ fllO, elO 9= 0, 

(3.1.1) 

holds with A990m transferred to ~Om (see § 2.3). 
Then it easily follows that AMeas is completely determined by A&j>om aQd the 

special values AMeas (y; flo" fl) with Qo 9= ° and Qo E ~Om' fl E ~m (eo), where ~m (flo) 
is the order interval [0, Qo] in ~m' 

With the set 

4> = {(flo", @), I flo E ~Om' Qo 9= 0;. fl E ~m (flo)} (3.1.2) 

formed similarly to Y,;, j:n (2.4.2), AMeas (y; eo, fl) represents a function 
Yx 4> --+ [0, 1]. This function uniquely determines a function 4> ~ y[O, I], where 
y[O.I] is the set of functions Y ~ [0, 1]. Here the function 'fIm is given by 
'fIm (Qo, e) = k (y) with k (Y)i= AMeas (y; flo, fl)· 

The properties of AMeas imply: If etlll' Qo2 E ~Om' flol > fl02 9= IT, fl02 > fl then 

(3.1.3) 

n 

From Qo = V fl, «(}j 1\ Qj = ° for i 9= j) follows 
i=1 

n 

L 'fIm (~,.fli) = 1 , (3.1.4) 
i=1 
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where 1 is that function in y[O, I] that identically equals 1. For 0 as the function in 
y[O, I] that identically equals 0, we have 

(3.1.5) 

Conversely, if a function IfIm obeys (3.1.3) through (3.1.5), then IfIm uniquely 
determines a function AMeas which satisfies the above requirements AS 2 and 
(3.1.1). 

With QO=QI v Q2 and el =Qo, Q2= 0 from (3.1.5) and (3.1.3) follows IfIm (Qo, Qo)= 1. 
With Qo = QI V Q2 V Q3 and QQ = e v Q3 (where Q = el v (2) follows 

1 = IfIm (Qo, Qd + IfIm (Qo, (2) + IfIm (Qo, (3) 

= IfIm (Qo, Q) + IfIm (Qo, (3) . 

Therefore, for QI /\ Q2 = 0 and QI, Q2 E ~m (Qo) we find 

IfIm (QQ, QI v (2) = IfIm (QQ, QI) + IfIm (Qo, (2) . (3.1.6) 

While this can directly be derived from the properties of AMeas, it states that IfIm is 
an additive measure on the Boolean ring ~m (Qo). 

Let us point out the normative demand that a measuring method shall be said 
to measure trajectories only then, when it affects the statistics of these trajectories 
only in such a way that the changes are not registered by this method itself. If a 
method violates this demand, it can often be "altered" by erasing those indications 
Q < QQ, which are affected by the changed course of the trajectories. In this way 
one obtains a new method, which measures less but obeys the normative demand. 
Thus a sand bag can serve to measure the trajectories of bullets, if one only 
registers the entrance hole in the sandbag and not the further course of each bullet 
in the sand. 

Only in § 3.2 shall we show the mathematical formulation of this normative 
demand on measuring methods, here merely depicted intuitively. Yet the physical 
meaning of the following considerations becomes more evident, when we already 
think of this normative demand on the elements of ~ m' 

The range of values IfIm(tP) c y[O,I] must (due to the fact that the (eo, Q) E tP 
just describe the measurement of trajectories) be intimately connected with the 
uniform structure p of the physical imprecision, since this must be identical with 
the imprecision in the measurement. 

But this imprecision due to the registration is, just by the meaning of IfIm' the 
initial uniform structure generated by the mappings 

y~[O,I] forall kElflm(tP). (3.1. 7) 

Since we always assume (under the presumptions of [3] § 9) that ~m is a countable 
set, tP is also countable and hence that initial structure is metrizable. Since the 
mappings k occur in [0, I], also Y (with this initial structure) is precompact. But 
since p shall describe the measurement imprecisions, we thus must assume that just 
such measuring procedures Qo E ~Om can be constructed that the initial structure 
determined by (3.1.7) coincides with p. We want to find a necessary and sufficient 
condition on the set IfIm (tP) to make the initial uniform structure determined by 
(3.1.7) identical with p. 
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If follows immediately that the k E IfIm (C/» must be uniformly continuous func
tions on ~. Since each uniformly continuous function can be extended to the com
pletion Y which is compact, the set of uniformly continuous functions on Y can be 
identified with the set C (Y) of the continuous functions Y -> R. This C (Y) is 
an order unit space (see [7] V § 8 or [2] A III § 6). Since Y is separable, the Banach 
space is so ([5] X § 3, no. 3). 

When we denote by L(Y) the order interval [0,1] in C(Y), we find L(Y) 
= {k IkE C (Y) and 0 ~ k ~ I}. We therefore have IfIm (C/» C L (Y), hence 

C/> ~ L(Y). (3.1.8) 

If this holds, the initial uniform structure determined by (3.1.7) can only be weaker 
than p. For it to be equal to p, the subset IfIm(C/» of L(Y) must be "sufficiently 
large". 

Let F m be the smallest subspace of C (Y) which contains IfIm (C/» and contains 
I k (y) I whenever it contains k (y). Then Fm is a vector lattice. Since even the 
initial structure determined by (3.1.7) must separate the elements of 1'; this is a 
fortiori the case if all the elements of Fm are used for k. By the Stone-Weierstrass 
theorem ([7] V §8.1), Fm separates the points of Yonly if Fm is dense in C(Y). 
Thus Fm n L(Y) must be dense in L(Y) because this is the closure of its open 
kernel. We briefly write Fm n L (Y) = la IfIm (C/». 

In the following we always presume that la IfIm(C/» is dense in L(Y). This 
condition can often be sharpened. For instance, when the statistics of the trajec
tories of considered systems is rather insensitive to measurements, one can arrive at 
the later demand X (2.3.12). Stronger than "la IfIm (C/» dense in L (Y)" would be the 
demand that co IfIm (C/» be dense in L (Y). 

When a presumption analogous to AR 1 from [2] III § 2 is imposed on 3?'om and 
thus on iiiom , then "co IfIm(C/» dense in L(Y)" implies that even IfIm(C/» is dense 
there. Let us emphasize, however, that a sharpening of "la IfIm (C/» dense in L (Y)" 
is not a trivial demand. 

The structure connections among iiiom , iiim , .9j'Om, 3?'m and Yp (established in this 
§ 3.1) are meant when we briefly say that the elements of 3?' m represent "trajectory 
registration procedures". The elements of L (Y) are briefly denoted as "trajectory 
effects". 

It must be emphasized that in the pretheories 9.'7;" for quantum mechanics we 
consider no other registration procedures than the trajectory registrations, but not 
because one could not think up other procedures on macrosystems. Rather it would 
go beyond the "pretheories" for quantum mechanics, to consider theories more 
comprehensive than 9.'7;" (about "more comprehensive" see [3] § 8), which would 
describe still other procedures than trajectory registrations. For this problem see 
also II § 6.5, § 6.6 and X, XI. 

§ 3.2 Trajectory Ensembles 

We must now consider the connection between the function Jim, described as 
centrally important in § 2.4, and the function IfIm, introduced in § 3.1. Also the 
normative demands described behind (3.1.6) enter this connection, which will 
conclusively be formulated in (3.2.2). Hence this formulation will include the 
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normative demand to consider (as elements of 9'jlom) only measuring methods 
obeying the following restriction. They shall measure only those parts of the trajec
tories the statistics of which is not affected by the measuring methods themselves! 

The following considerations shall make it plausible, how to arrive at the 
demand (3.2.2). We shall show two different ways (IX) and (p) to lead us to (3.2.2). 

(IX): By Mm 14 Y (the assignment of trajectories from § I) a mapping a 14 Y is 
given for every a E 9:". The set g (a) consists of the trajectories of the systems 
prepared bya. Since the normative demands on the measuring of trajectories (as 
discussed in § 3.1) do not permit the occurrence of an indication b to depend on 
anything but the statistics of the trajectories g (x) determined by the preparation 
procedure a, the probability measure Ilm (a, (bo, b» can only depend on 
'I'm (eo, e)· 

With h as the canonical extension of 9'jlm JJ. &1m to cP JJ. Y", (i.e. h (eo, e) 
= (bo, b» one can represent this requirement most simply by the diagram 

cP I/Im l'l'm(cP)cL(Y) 
h! ! u. 

.7", I'm Ca, ... \ [0, I] . 
(3.2.1) 

It should hold for an appropriate function Ua (for each a E 9:"). From 
1= Ilm (a, (bo, bo» and 'I'm (eo, eo) = 1 follows Ua (1) = 1 and likewise Ua (0) = 0. 

Since the norm II k( - k211 = sup I k( (y) - k2 (y) I for k(, k2 E 'I'm (cP) represents 
y 

the maximal deviation of the response probability we should have I Ua (k() - U a (k2) I 
~ IIk(-k2 1\; thus Ua should represent a norm continuous mapping on 'I'm (cP). 
When 'I'm (cP) is assumed norm dense in L (Y), we can extend U a to all of L ( Y). 

If for &10m and hence 9'jlom, one makes an assumption analogous to AR 1 from 
[2] ill § 2, it follows from Ilm (a, (h (eo), h (e») = Ua 'I'm (eo, e) in a manner analogous 
to the proof of Th 2.4 in [2] II § 2, that Ua is a rational affine mapping on the 
rational convex set 'I'm (cP). Therefore, Ua can be extended to all of L (Y) as an 
affine mapping and thus to all of C (Y) as a linear norm continuous mapping. 
Consequently, one can identify Ua with an element of the Banach space C' (Y) dual 
to C(¥). 

From L (Y) ~ [0, 1] follows Ua E K (Y) with K (Y) the basis of the base 
normed Banach space C' (Y) - that is, K (Y) = {u I U E C:" (Y) and (u, 1) = l} with 
C:" (Y) the positive cone of C' (Y). Hence there is a mapping 

9~, ~ K(Y) with Ilm (a, (h(eo), h(e))) = ('Pm (a), 'I'm (eo, e»; (3.2.2) 

and therefore the elements of 9:" are called "trajectory preparation procedures". 
The elements of K (Y) are also called "ensembles of trajectories". 
(P): If one does not want to presume that 'I'm(cP) is dense in L(Y), one could 
argue as follows in order to arrive at (3.2.2). 

Again one starts from the opinion that a preparation procedure a determines 
the statistical distribution of the trajectories y = g (x) with x E a. To each 
k E C (Y) this statistical distribution should assign an expectation value, especially 
to each k E L(Y) a value from [0, 1]. To each a E 9:" thus corresponds a mapping 
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LCY) ~[O, I]; and vice versa the statistical distribution of the trajectories is 
described by Ua . For k" k2 E L (Y) and k, + k2 E L (Y) the concept of an expecta
tion value yields 

(3.2.3) 

A theorem analogous to Th 4.2.1 from [2] V § 4.2 then implies that Ua can as a 
linear, norm continuous mapping be extended to all of C (Y); hence Ua determines 
a mapping!!):" ~ K (Y) with 

(3.2.4) 

The initially mentioned normative demand that the eo E ~Om only measure the 
statistics of the prepared trajectories g (x) with x E a, then says that 
f.1.m (a, (h (bo), h (b))) must equal the expectation value of IfIm (eo, e); hence (3.2.4) 
leads to (3.2.2). The condition from § 3.1, that la IfIm«(/J) be dense in L(Y), guaran
tees that the IfIm (eo, e) separate the rpm (a) with a E !!);". 

The two mappings IfIm, rpm form the background because of which in the "custo
mary" presentations of the theories f!lJy'" one does not speak about the set Mm 
(stated more precisely, why one transfers all considerations about Mm, !!)m, ~Om, 
~m' ~Om' ~m to pretheories of f!lJYm). In the statistical descriptions from f!lJYm, one 
then employs only Y and the probability measures U E K (Y) and even these mostly 
in a specialized form. From the form of f!lJYm that we presented, one can by means 
of the mappings h, IfIm, rpm proceed to a restriction (in the sense of [3] § 8) in which 
Mm, !!)m, ~Om' ~m' ~Om' ~m no longer occur but only Y, L (Y) and the norm closure 
of rpm (Q;"). We shall study similar restrictions for quantum mechanics in VIII § 6. 

As an abbreviation, we write Km (Y) = co rpm (!!);,,) for the norm closure of the 
convex set generated by rpm (!!J;,,). If one uses a postulate for !!)m that is analogous to 
AP 1 from [2] III § 2, then the norm closure of rpm (!!J;,,) equals Km (Y). 

§ 3.3 The Dynamic Laws and the Objectivating Manner of Description 

Also in this section, we shall not strive for the greatest generality, but rather 
describe the principal structures with regard to their physical meaning; the reader 
interested in the general structures of macro systems is again referred to [4]. 

First let us perceive that the set Km (Y) encompasses the dynamical laws, or 
expressed more precisely: The dynamical laws of vii Y", can be formulated as struc
ture laws over Km (Y). But here we need not go into such structure laws in vIIYm, 
since it is just up to an axiomatic basis for quantum mechanics to formulate such 
structure laws for certain composite macrosystems (see VI). It is not the structure 
laws of dynamics, but rather the objectivating manner of description of the devices 
that in quantum mechanics will be taken over from the pretheories f!lJ Y"" as to be 
described in Ill. 

Let K::' (Y) denote the closure of Km (Y) in the a (C', C)-topology. Since K (Y) 
is a(C', C)-compact, K::'(Y) obeys K::'(Y) cK(Y) and is likewise a(C', C)
compact. The elements of K::' (Y) comprise "idealizations" of trajectory ensembles. 
Since K::' (Y) is compact, due to the Krein-Milman theorem K::' (Y) is generated by 
the set oeK::'(Y) of extreme points, i.e. K::' (Y) = coq oeK::' (Y). If 6' is a a (C', C)
dense subset of oeK::' (Y), of course also K::' (Y) = co q 6' holds. In this sense one can 
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regard all ensembles of K:' (f) and thus also of Km (f) as "mixtures" of ensembles 
from c. But the ensembles from C can perhaps be idealized ensembles (see below). 

D 3.3.1 An element u e oeK:' (f) is called an elementary trajectory ensemble. 

The elements of oeK:' (f) describe the trajectory ensembles which are in 
idealized form the "finest preparable". The elements of oeK:' (f) therefore 
describe the dynamics, since they make the statistically "finest possible" assertions 
about the trajectories of the systems. Therefore, the structure of the set 
oeK:' (f) determines the dynamics of the systems. In order to analyze this descrip
tion, we introduce yet the following concepts. 

D 3.3.2 We call the set 

Lo(Km;f)={klkeL(f) with (u,k)=O for all ueKm(f)} (3.3.1) 

briefly the set of "trajectory null effects". 

Since (u, k) is a (C', C)-continuous in u (for fixed k), thus also (u, k) = 0 holds 
for k e Lo (Km; f) and all u e K:' (f). 

Since we assume due to [3] § 9 that the s~t qm is countable, Km (f) is norm 
separable. Therefore, in Km (f) there is a u = L: Av Uv with Av > 0, L: Av = I and 

v v 

{uv} regarded as a cOuntable set norm dense in Km(f). Hence Lo(Km; f) 
= Lo (u; f) holds for 

Lo(u;f)={klkeL(f) with (u,k)=O}. (3.3.2) 

Let (j(jm denote the Banach subspace of C' (f) spanned by Km (f), so that (j(jm is 
norm-separable. Denote the set (j(jm n K (f) by Km (f), such that Km (f) c: Km (f). 
The set of linear combinations of elements in Km (f) which are positive and have 
norm 1 is norm-dense in Km (f). 

Of course, due to the above remarks, Lo (Km; f) = Lo (Km; f) = Lo (u; f). 
Likewise, on L(f), the a(C(f), Km(f»-topology is identical with the 
a (C (f), Km (f»-topology which describes the physical distinguishability of the 
trajectory effects. 

Thus one often uses Km (f) instead of Km (f) in discussing the dynamics. The 
elementary trajectory ensembles u e oeK:' (f) can be properly finer than the 
u f~ . ..iJeK:, (f). One then says that the dynamics can be described by the elements of 
oig;, (f), even when, because of Km (f) c: Km (f), not all the elements of 
oeK:,(f) can be prepared "arbitrarily well", but perhaps only with a finite 
precision described by Km (f). But one can imagine that all elements of oel:, (f) 
describe the "actual" dynamics. 

Corresponding to the considerations presented in [7] V § 8.1, one can introduce 
the support of an ensemble u and the support of Km (f): For k e L (f), 
Ok = {y I k(y) > O} is open. The closure of Ok in f is called the support Sk of 
k e L (f).' To each u e K (f) one can assign the set U u regarded as the largest 
open subset· of f for which {k e L (f), Sk c: Uu -= k e Lo (u; f)} holds. The 
(closed) set Su complementary to Uu is called the support of u. With U Km as the 
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largest open set for which {k E L(Y), Sk C UK .. = k E Lo(Km; Y)} the set 8 m 
complementary to UK .. is called the support of Km (Y). Consequently, 8 m = Sa with 
the above u. We have written 8m instead of Sm because we shall later introduce the 
subset 8m 11 Yand denote it by Sm. 

Let us still note the theorem (see [7] V § 8.1) that {k E Lo (u; Y), u E K (Y)} is 
equivalent with {k (y) = 0 for all y E Su}, which we shall use below. Therefore, 
k E £0 (Km: Y) = £0 (K::'; Y) is equivalent with {k (y) = 0 for all y E 8m }. As a 
closed subset of Y, 8m is compact. After the above considerations, it is natural to 
adopt the definitions 

D 3.3.3 8m is called the set of admissible trajectories; Y\8m is called the set of 
forbidden trajectories. 

It follows from U E K::'(Y) (or U E K::'(Y» that Lo(u; Y):::> Lo(Km; Y) and 
hence that Su C 8m. Since 8m is compact and Y is normal, each continuous 
function k (y) on 8m with 0 ;§; k (y) ;§; I can be extended to all of Y as a continuous 
function with the same bounds (see [5] IX § 4, No.2). Hence, the mapping 
k (y) ~ k (y) ISm is a surjective mapping L (Y) .!. L (8m ) and thus also a surjec
tive mapping C(Y) ~ C(8m). Since s is surjective, it follows immediately that the 
adjoint mapping C (8m) ~ C (Y) is injective. 

If h (Q)= 0, we obtain 

0= f1m (a, (h (Qo), h (Q))) = (u, "'m (Qo, Q» 

for all U E f/Jm (g~) and hence also for U = u. As we shall see below, this implies 
s "'m«(lo, Q) = O. Thus follows that the diagram 

L(Y) 

y ~-
~ L(Sm) (3.3.3) 

~ /-;.:. 
Ym 

uniquely defines a mapping "'ms from Ym into L (8m ). If one restricts oneself to 8m 

instead of Y, one can forget 9;m, 9;om and need consider only fYlm, fYlOm • Then to each 
effect procedure from.)';' there uniquely corresponds an element from L (8m )! 

Furthermore, it is easy to see that 

s' K(8m) = {ulu E K(Y), SU C 8m}. 

Being the image of a compact subset, this s' K (Sm) is compact. The subspace 
s' C(8m) that is spanned in C(Y) by s' K(8m), is closed in the a(C', C)-topology 
and isomorphic with C (8m ). One likewise recognizes the isomorphism in the 
norm topology. 

Because of Km (Y) C .R::, (Y) C s' K (8m) one can, by means of the inverse 
mapping (sT', identify the sets Km(Y) and Km"(Y) with subsets of K(8m) and in 
this sense write Km (Y) = Km (8m) and .R::, (Y) = K::' (8m), with Km (8m), Kg. (8m) as 
subsets of K(Sm). We can likewise regard the Banach space iIlm spanned by Km (Y) 
as a subspace of C (8m) and identify Km (Y) with Km (8m) = iIlm 11 K (8m). 
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Therefore, it suffices to consider instead of Y its compact subset 8m , in order to 
represent the trajectory effects by continuous functions over 8m and the trajectory 
ensembles by elements of K(8m). 

Since the support of Km (8m) c K::' (8m), i.e. of ii, equals the whole 8m, for 
k E L (8m) and k =1= 0 follows <ii, k) =1= o. 

The elements of oeK(8m) are just all point measures of the form <UYO , k) = k (Yo). 
Thus one can map oeK(8m) bijectively onto 8m, whereby the topology of 8m 
coincides with the a(C', C)-topology on oeK (8m). In this sense, one can identify 8m 
with OeK (8m) (see [7] V § 8.1). 

According to the Riesz representation theorem (see [8] IV § 6.3), K(8m ) is the 
set of all a-additive measures on the Borel field g{J(8m) (see [8] III § 5.10). 
Therefore, using the characteristic functions 1'/,,(y) with a E g{J(Sm), we find <u, 1'/,,) 
defined for all a E g{J(8m ). We write briefly <u, 1'/,,) = u (a). Using this, we can write 
<u; k) in the usual form of an integral, which is often called ~he trajectory integral 
or path integral: 

<u,k)= J k(y)du(y). (3.3.4) 
Sm 

If, in particular, a is an open subset of 8m (nevertheless, a need not be open as a 
subset of Y!), then a E g{J (Sm). Since a is open (and the compact set 8m completely 
regular!); there is a k E L(8m) with k =1= 0 and k (y) = 0 for all y fj a. Then 
<ii, k) ~ <ii, 1'/,,) ~ ii(a) and henc~ <ii, k) =1= 0 implies u (a) =1= O. 

If Ue E oeK::'(8m) (or Ue E oeK::'(Sm)) due to D 3.3.1 is an elementary trajectory 
complex, the support Su, is an element of g{J (8m). Precisely as with 8m, one can 
with Su, form the Borel ring g{J (Su,) on which Ue is a a-additive measure, different 
from zero for all sets open within Su,. The measure Ue indicates the probabilities of 
the traje~tories from Su,. ~ 

If, wIth the ii defined above, ii(a) = 0 holds for a a E g{J(Sm), then also uvea) = 0 
holds for all Uv from the sum ii = L. Av Uv• In as much as all elements from Km (8m) 

v 

can be approximated arbitrarily closely by elements Uv in the norm of C' (8m ), also 
u (a) = 0 holds for all u E Km (8m), since the norm II UI - U211 is also equal to 

sUR II UI (a) - U2 (a)ll 
"E.!B(~m) 

(see [8] IV § 6.3). Consequently, the elements of Km (8m) and Km (8m ) are 
absolutely continuous measures with respect to ii. 

The set /" (8m) of all elements a E g{J (Sm) with ii (a) = 0 is a a-ideal of g{J (8m ). 

The factor ring Em=g{J(Sm)//"(8m) is a complete Boolean ring and ii is an 
effective, a-additive measure on Em. In this context, note thatf(8m ) (and thus Em) 
depends on ii, i.e. on Km (Y) = Km (8m)! 

One uses to call Em the set of objective properties of the systems from Mm. We 
shall see in § 5 how this is meant. 

§ 3.4 Dynamically Continuous Systems 

When in § I we "mentally" imagined that Mm.!4 Y holds, the a E g:r, were just 
to produce systems x with trajectories g (x) from Y and hence with g (x) from 
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Sm = Sm n Y. Then, for all u E rp (g~), the u-measure of Sm \Sm should vanish. This 
idea leads us to the definition 

D 3.4.1 The systems from Mm are called dynamically continuous if there exists a 
(J E !YJ (Sm) of ii-measure zero (a (J E f (Sm)) with Sm \SI1} C (J (ii as in § 3.3). 

That (J is of ii-measure zero is equivalent to (J being of u-measure zero for all 
U E rpm (g~). Thus (J is also of u-measure zero for all u E Km (Y) = Km (Sm)' and all 
U E Km(S",). 

T 3.4.1 Dynamical continuity implies that S", is dense in Sm. 

Proof Since there is a (J E f (Sm) with (J ::::J Sm \S", no open subset of Sm can be 
contained in Sm \Sm since for all open subsets (J of Sm the measure ii «(J) is not zero 
(as shown in § 3.3). If Sm were not dense in Sm, there would be a neighborhood 
about a point y E Sm \Sm and hence an open subset which contains no point of 
Sm. 0 

If (J is an open subset of Sm, then (J = a n Sm with if an open subset of Sm (see 
[5] I § 3, n. I). Therefore a --? if n Sm is a surjective mapping of the open subsets of 
Sm onto the open subsets of Sm. Hence a --? if n Sm is also a surjective mapping 
!YJ(Sm) --? !YJ(Sm) for all a E ,q(J(Sm). Then by u(a n Sm) = u(iJ) one can define the 
measures from Km (Sm) as measures on !YJ (Sm), for it follows from a] n Sm = 

a2 n Sm that the difference between if] and a2 , i.e. (a] \if] n a2) u (a2 \a] n a2), is a 
subset of Sm\Sm C (J E f (Sm). 

(One can also, what in practice amounts to the same, form the Lebesgue 
extension ./ (Sm) of !YJ (Sm). As is known, this is the (J-algebra generated by ,q(J (Sm) 
and by all subsets of the (J E f (Sm). Then the measures u E Km can be extended as 
measures on alI of ./ (Sm), so that Sm and Sm \Sm are elements of 1" (Sm). With 
/l(Sm) as the set of the elements (J E 1"(Sm) with ii «(J) = 0, we then have 
Sm\Sm E /l(Sm) so that u(if n Sm) = u(a) holds for all a E 1"(Sm). The Boolean 
ring Lm =!YJ(Sm)/ f (Sm) is isomorphic with 1" (SmV!i(Sm), as can easily be seen. 
Hence Lm can also be identified with 1" (SmVti (Sm). Dynamical continuity is 
equivalent to Sm\Sm E /I (Sm). All elements of the form (J n Sm, where (J E 1"(Sm), 
form a subset of 1"(Sm) identical with the Lebesgue extension 1"(Sm) of !YJ(Sm). 
Therefore Lm can also be identified with 1" (Sm)/ /I (Sm).) 

The mapping a --? an Sm defines a bijective mapping of the elements of 
!YJ (Sm)! f (Sm) onto !YJ (Sm)/ f (Sm), with f (Sm) as the subset of those (J E !YJ (Sm) 
for which ii«(J) =0. Thus one can also identify Lm=!YJ(Sm)if(Sm) with 
,q(J (Sm)/ f (Sm)· 

The description attained here corresponds to that of "probability" by Kolmo
gorov's theory. To this end, choose Sm as the space of "elementary events", !YJ (Sm) 
(or 1"(Sm» as the (J-algebra of the "measurable sets" (the "events"). As the 
probability measure choose a U E Km (Sm). Then (Sm, ,q(J (Sm), u) forms an example 
of the fundamental structure used by Kolmogorov for probability theory. 

The mappings Y/!4 Zp introduced at the end of § 1 are continuous for r> O. If 
Q is an open set in Z, therefore Y has the open subset g-;] (Q) which we wiII denote 
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by a(e; r). But thus a(e; r) is an element of 36' (Y) for all e E 36' (Z). Then the 
elements Sm n a(e; r) are elements of 36'(Sm). We shall write Sm n a(e; r) simply 
as am(e; r). Then, for each u E Km(8m) and r > 0, 

ut(e) = u(am(e, r» 
defines a a-additive measure Ut over 36' (Z). The support of the set {Uti UE Km (8m), 
r> O} of measures is mostly assumed to be Z; otherwise one could simply replace 
Z by that support. 

In the applications, very often only the measure U t over 36' (Z), depending on 
time, will be considered. This restricted description will of course suffice for many 
cases in which the dynamical laws have an especially simple structure (also see X 
§ 2.5). 

Here in § 3, we will not undertake any typifying of "different" dynamic laws 
such as "dynamically determined laws" or "stochastic laws". For, we do not intend 
to develop a detailed theory of macrosystems. We will describe the general 
structures of macrosystems just to as far as we need them to begin in III the 
construction of an axiomatic basis for quantum mechanics, and in X to formulate 
clearly the compatibility problem. Only then we shall draw conclusions about the 
dynamics. 

For these purposes, we still need to describe transformations of macrosystems. 

§ 4 Transformations of Preparation and Registration Procedures 

Transformations of macrosystems play a large role in many respects. Here, we 
shall not consider all the possibilities of transformations. The first to be investi
gated are the "time displacements" of the trajectory registration procedure. These 
transformations will of course play no role in the formation of an axiomatic basis 
for quantum mechanics, but will be important for the compatibility considerations 
inX § 2.3. 

§ 4.1 Time Translations of the Trajectory Registration Procedures 

We begin with a mathematical definition: For each fixed r;E; 0 a mapping of 
Y = C( e, Z) into itself is defined by T. y = y', with y = z (t) and y' = z' (t) = z (t + r), 
because "z (t) is continuous" implies "z (t + r) is continuous". One sees immediate
ly that the set of the Tt with r;E; 0 forms a semigroup, since To = 1 and Ttl Tt• = 

T.,+ ••. 

T 4.1.1 Each Tt (fixed r) is a p-uniformly and g-uniformly continuous mapping of 
Yonto itself, i.e. Tt is surjective (but not injective for r > O!). 

Proof As in (1.5), we prescribe a vicinity 08. v, where we regard Vas determined 
by d«t, z), (t', z'» < 8 with the d( ... ) introduced behind (1.2). We denote this 
vicinity by 08, •• If we now choose an 8' > 0 with 8' < 8 and t - 8' > 0 for all t E 8, 
then 08+t,.' is a vicinity which by Tt is mapped into 0 8 .• , Therefore, Tt is p-uni
formly continuous. 
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Tr is g-uniformly continuous if Cg (eo, Z) ~ Cg (eo, Z) --+ Cgu U}., Z) is uni
formly continuous for all 8, where g u is the uniform structure on Z8 introduced in 
§ I. But since the composite mapping 

Cg(eo, Z)~Cg(eo, Z) --+ Cgu (8, Z) 

is just identical with Cg (eo, Z) --+ Cgu (8 + r, Z), it is uniformly continuous. 
In order to show that Tr is surjective onto Y, take z (t) E Yand put 

i(t) = {z (0) for 
z(t - r) for 

Theni(t) E C(e,Z) = Yand Tri(t)=z(t). D 

I ~ r, 

I ~ r. 

Since Tr is uniformly continuous on Yp , it can be extended uniquely to all of 
Yp = Y. Therefore, Tr can also be defined for virtual trajectories. Since Yp is 
compact. Tr Yp is a compact subset of Yp. Because Tr Y = Y, we have Y c Tr Yp. 
Consequently, since Y is dense in Yp, we have Tr Yp = Yp. Therefore the mapping 
Tr is also surjective onto Y. 

For / E C (Y), the mapping Yp ~ Yp L R is uniformly continuous; hence a 
mapping of C (Y) onto itself is defined by 

Vr/(y) = f' (y) = /(Tr y). (4.1.1) 

Because of Tr Y = Y, the norm invariance of the mapping Vr follows im
mediately. 

For r ~ 0 the mappings Vr likewise form a semigroup as do the mappings Tr. 

Since the mapping Yp IL. Yp 1. R is uniformly continuous, this mapping is 
already determined uniquely by y..24 Y 1. R. Thus Vr from (4.1.1) is also uniquely 
determined by 

Vrf(z (I» = /(z (I + r» (4.1.2) 

for z(t) E C(e, Z) and for all uniformly continuous mappings Yp 1. R. 
An /E C(Y) is uniquely fixed as a function over Y. We say briefly that / 

depends only on the course of the trajectory after r, if YI = Zl (I), Y2 = Z2 (t) and 
z, (t) = =2 (t) for t ~ r imply .((y,) = /(Y2). Correspondingly, we say that / depends 
only on the course of the trajectory up 10 r, if YI = Z, (t), Y2 = z2 (1) and ZI (t) = z2 (1) 
for 1 ~ r imply /(YI) = /(Y2). 

Let the space of all / E C (Y) that depend on the course of the trajectory up to r 
be denoted by C(Y; ~ r). Correspondingly, let C(Y; ~ r) denote the space of all/ 
that depend on the trajectory after r. One sees immediately that C (Y; ~ r) and 
C(Y; ~r) are Banach subspaces (even Banach sublattices) of C(Y). It easily 
follows from (4.1.2) that Vr(C (Y) c C(Y; ~ r); but we even find 

T 4.1.2 Vr is an isomorphic mapping of the Banach lattice C (Y) onto C (Y; ~ r). 

Proof. It is not immediately obvious that Vr C (Y) :::> C (Y; ~ r). Therefore, we 
must show that for each/E C(Y; ~ r) there is anf' E C(Y) with Vrf' = f, i.e. with 
f' (Tr y) = /(y). 
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We can factor the mapping Tr canonically by means of the equivalence relation 
1': "YI '" Y2 for Tr YI = Tr Y2" and of the canonical mapping Y ~ Y II' as shown in 
the left part of the diagram 

The mappings rp and Tr are continuous in the quotient space topology of Y II' since 
this is just the final topology belonging to the mapping rp. Since Y is compact, Y II' 
is also compact. Since Tr is bijective (Tr was surjective), Tr therefore is a 
homeomorphic mapping of Y II' onto Y. Thus T:; I is likewise continuous. 

IffEC(Y;~r), thenf(YI)=f(Y2) for TrYI= TrY2, i.e. there is a mappingj 
with fey) = J rp (y) (see the above diagram). Thus /' = J T:; I is a continuous 
mapping of Y into R, i.e. /' E C (Y). Hence the diagram immediately implies 
/' (Tr y) = fey). 0 

Using L (Y) of § 3.1, one calls 

L(Y; ~ r) = L(Y) n C(Y; ~ r) 

the set of "trajectory effects after r" and correspondingly 

L(Y; ~ r) = L(Y) n C(Y; ~ r) 

the set of "trajectory effects before r". 
With T 4.2.1 one easily sees 

VrL(Y) = L(Y; ~ r). 

(4.1.3) 

(4.1.4) 

(4.1.5) 

After this preliminary mathematics let us introduce the easily interpretable 
time translations of the registration procedures. 

For some r ~ 0 we consider a mapping Rr of iilm into itself, with iilm as in § 2.3. 
This Rr maps the set iilom order isomorphically onto a subset of iilom and maps the 
Boolean ringiilm (eo) = {el e ~ eo E iilom } isomorphically onto iii (Rr eo). 

The physical interpretation of Rr shall be that the registration method Rr eo 
arises by applying the method eo a time r later (for fixed preparation). We must 
yet express this "physical meaning" of Rr by a mathematical relation between Rr 
and the measurement probability AMeas (y; el , (2) introduced in § 3.1. 

Rr is defined canonically by Rr (eo, e) = (Rr eo, Rr e) as a mapping of <P from 
(3.1.2) onto itself. If IfIm is the mapping defined in § 3.1, then fey) = IfIm(eo, e) 
= AMeas (y; eo, e)· Therefore, if one shall represent Rr (eo, e) as the registration 
displaced just by r, then/' (y) = IfIm (Rr(eo, e» must obey 

/' (y) = f(Tr y) (4.1.6) 

with the above T .. This result is due to (4.1.1) equivalent with /'(y) = Vrf(y), 
hence with 

(4.1.7) 
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This together with (3.1.8) yields the diagram 

rp~ L(Y) (4.1.8) 
R,l 1 V; 

rp~ L(Y); ~ r). 

Therefore, we presume the diagram (4.1.8) to hold in q;ym • Since we assumed 
ikm as countable, we cannot assume that Rr is defined for all r ~ O. But we can 
imagine a countable subset {rd that is dense in [0, <Xl] and so chosen that the Rri 
form a semigroup (for instance, all rational ri ~ 0). Then (4.1.8) will hold for 
each rio 

§ 4.2 Time Translations of the Preparation Procednres 

In a way entirely similar to the above for ikm, for '2m we can introduce the 
mappings R~ of '2m into itself, which are to describe a time translation of the 
preparation procedure. R~ must map each order interval [0, a] from '2m order 
isomorphically onto [0, R~ a]. Since up to the time t = 0 the preparing must (!) be 
terminated, only for r ~ 0 can we regard R~ as defined on all of '2m. With the same 
argument as at the end of § 4.1, let us assume that the R'- r, (defined for the same 
ri ~ 0 as there) form a semigroup. 

Since the mappings Rr are injective (as are the R~), k; I = R-r (resp. R'--:" I = R~) 
is defined on Rrikm (resp. on R'-r'2m) for r ~ O. Therefore, if R; means the 
displacement of the preparation procedure by the time r, the probabilities must 
obey 

(4.2.1) 

with h (e{h~Q). = (h (eo), h (e», whenever R~ a and Rr eo are defined. In fact the right 
side of (4.2.1) describes an experiment for which the whole arrangement is 
displaced only by a time r; hence we assume (4.2.1) to hold. 

Let us assume r ~ O. Then Rr is defined on all of ikm . For a, we can put 
a = R'-r Ii with a an arbitrary element in '2m. From (4.2.1) with (3.2.4) then follows 

<rpm (R'-r ti), IfIm(Qo, e) = <rpm (a), IfIm Rr(eo, e). (4.2.2) 

Using (4.1.7) we conclude 

<rpm (R'-r Ii), IfIm (eo, e) = <rpm (ti), Vr IfIm (eo, e) = <V~ rpm (ti), IfIm (eo, e), (4.2.3) 

where V; is the operator in C'(Y) that is dual to Vr. Since la IfIm(q» is dense in 
L (Y), i.e. since the IfIm (eo, e) separate, from (4.2.3) furthermore follows 

(4.2.4) 

as shown in the diagram 

'2:"~K(Y) 
R~,l 1 V; 

'2:" ~ K(Y). 

Since the left side of (4.2.4) is an element of rpm ('2:"), from (4.2.4) follows III 

particular 
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for all the 'j introduced above. Since V:. is norm continuous, we conclude 

V:. Km CY) c: Km CY) . 

Since V:. is even a(C' (y), C(Y»-continuous, 

V:. K::' (Y) c: K::' (Y) 

(4.2.5) 

(4.2.6) 

also holds. If 'j differs little from 'j' also the probabilities for rpm (R~,. if) and 
rpm (R~,; if) must differ but little. For physical reasons we thus must in fNT", assume 
that V" rpm (if) with fixed Ii is norm continuous relative to ,. For fixed U E rpm (g;.), 
we obtain 

(4.2.7) 

This imposes a condition on rpm (qm); expressed better, it places a condition on 
Km(Y), because (4.2.7) for all U E rpm(~) also implies (4.2.7) for all U EKm(Y). Till 
now, this is the sole condition on Km (Y): For physical reasons, all those U E K (Y) 
must be excluded for which (4.2.7) does not hold. . 

Because of (4.2.7) one can define V: U for U E rpm (g;.) and all, $: 0 and obtain 

v: rpm (g;.) c: Km ( Y) 

for all , $: O. Thence it follows as above that 

v: Km(Y) c: Km(Y) 

and 

hold for all , $: O. 
From h (Q) = 0 with a Q E &1m follows 

flm(a, h(Qo, Q» = (rpm (a), IJIm(Qo, Q» = 0 

for all a E ~. From·(4.2.1) further follows 

flm'(ii, hCR,(Qo,Q») = 0 

(4.2.8) 

(4.2.9) 

(4.2.10) 

for. all Ii E g;.. Therefore, Ii n h vR, Q) = 0 holds for d a E q~, which by APS 8 
implies h(R, Q) = 0. 

Hence h(QI)=h(Q2) implies h(R,QI) = h(R,Q2). Therefore a mapping R, is 
uniquely defined by the diagram 

(4.2.11) 

This explains.why one often forgets iilm and speaks in g.eneral only about f?lIm ; for, 
.also the time .displacement operator.:R" is uniquely defined on f?lIm • One can 
;immediately carry the diagram (4.2.11) over to !P, Y m and compose it with (4.1.8) 
to 

(4.2.12) 

Cir h m 'fIm ".,(yA. 2: ) J"m +-- '¥ ~ L, , _ -r • 
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We will now complete this diagram by (3.3.3). To this end, we must think 
about the behavior of the mappings s and V,. The latter is first defined only in 
L (n. Let fi and h be two elements in L (Y) and assume s fi = S f2. Then fl and h 
agree on the subset Sm of Y, so that 

f+-f-=fi-h, 

where f+ is the positive and f- the negative part of fi -f2. This is to say 
f+,f- E L(Y) while f+ and f- are equal to zero on Sm, so that sf+ = sf- = o. 
Therefore, if we show that f E L (Y) and sf = 0 imply s V.j = 0, then s fi = S f2 
quite generally implies s Yr fi = s Yr h· 

sf=O is equivalent to J1.m(u,j) =0 for all u E Km(Y). Because of (4.2.9), thus 
J1.m (u, V.j) = J1.m (V; u,f) = 0 follows for all u E Km (Y) so that s V.j = O. Then, 
with the abbreviation 0.3) = s V, we also find 

vg) 0.:) = s 0.:) s 0.:) = s V" 0.:) = s V"+'2 = S Vg~'2· 

Hence. the ~ .. ) form a semigroup; furthermore we get the diagram 

Together with (3.3.3) and (4.2.12), this implies 

(4.2.13) 

(4.2.14) 

§ 4.3 Further Transformations of Preparation and Registration Procedures 

Here we will make remarks about other transformations possibly defined in 
&'3',;" but without aspiring an exact formulation. 

For this purpose one must realize that for preparation and registration devices 
it is pertinent, how they are oriented to a laboratory coordinate system. We have 
already assumed in the preceding §§ 4.1 and 4.2 an orientation relative to the 
laboratory time scale; otherwise the mappings R, and R~ would have been 
meaningless. We have also represented the action of these mappings mathematical
ly. The action of R, could be given by the diagram (4.1.8), since the trajectories 
depend on the laboratory time scale. 

As the preparation and registration procedures have an orientation to the time 
scale, they also need an orientation in the spatial laboratory coordinate system. 
Therefore, procedures must also be regarded as different if they only differ in their 
orientations to the laboratory. Without formulating this more precisely, one 
recognizes that one can for spatial translations and rotations introduce mappings 
similar to R" R~. The same can be done for imparting a uniform velocity (relative 
to the laboratory system), i.e. for every element of the Galileo resp. Poincare 
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group. Exactly as with Rr and R; one can consider such transformations separately 
for the preparation and registration procedures. Then the transformations of the 
registration procedures are again connected with the trajectories, since we must 
due to the meaning of the state space Z assume that the laboratory system enters 
the description of Z. We have given an example in § 1, where the points of Z were 
given by {.u(r), u(r), T(r)} with r as position vector in the laboratory system. 

Naturally, only the transformations of the registration procedures for fixed 
preparation procedures and of the preparation procedures for fixed registration 
procedures are physically interesting for the structure of the dynamics of the 
systems from Mm. If both procedures are transformed in the same way, then 
physically nothing is changed. This fact can as at (4.2.1) be exploited to connect 
the transformations of the preparation and registration procedures with each other. 

But also the joint, identical transformation of preparation and registration 
procedures can acquire an important physical meaning,· if for a composite system 
one transforms (as to described in III) the procedures of a subsystem, keeping fixed 
the procedures of the other subsystem (see III § 7). 

§ 5 The Macrosystems as Physical Objects 

We introduced in § I the objectivating manner of describing the systems from 
Mm by the function Mm 14 Y, but later, when considering the trajectory registra
tion procedures, referred only "intuitively" to the physical meaning of Mm .!4 Y. In 
fact we have yet not shown any mathematical connection between the mapping 
Mm ~ Y introduced in § I and the registration procedures. Therefore we must 
again ask, to what extent the function Mm ~ Y may be conceived as a physically 
real structure, if only the fact of the preparation and registration of trajectories is 
used as a description of the actual experiments. These investigations are con
ceptually very important since otherwise one could call the function Mm ~ Y a 
"pure fantasy" which one can "imagine" but which represents no "physically real" 
connection (that can be justified in the sense of [3] § 10). 

We formulated briefly in § I that we "first of all" assume it known how to 
measure the state of a system at some time. In § 3 we described this "measuring" 
by mathematical structures. Now, we must ask to what extent the structures 
introduced in § 3 determine a mapping Mm ~ Y as "physically real". In this 
connection, we must of course assume that due to pretheories the elements of the 

- - - h sets Mm, ~m' ~Om' SPm, the connection (3.1.8), and the mapping ~m -+ 9 (Mm) are 
recognized as "physically real". To what extent can one then say that, by means of 
the thus described registration processes, one can "in principle measure" the 
trajectory g (x) of a system x and thus really recognize it as physically real? 

For these deliberations, it is very important to apply the methods from [3] § 10, 
since one does not get away with only an intuitive notion of "real". If one has 
measured (approximately) the trajectory for a system x occurring in an experiment 
(i.e. employed a Q E.#Im for which fIlm (eo, Q) differs from zero only in a small 
neighborhood of a trajectory y) and has obtained x E h (Q), then one can rightly say 
that the trajectory y physically pertains to this x. But what shall it mean that a 
trajectory pertains to an x E Mm, even if it is not or only partly measured? 
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According to [3] § 10, it depends on the form of the theory how one has to 
judge whether Mrn ~ Y describes a physically real structure. If one proceeds from 
a theory as sketched in § I, then Mrn and Y will in any case be viewed as sets of 
"real facts" ascertained by the pretheories (in the sense of [3] § 10). Then Mrn .!4 Y 
represents a relation between an x E Mrn and some y E Y. In the construction of a 
theory according to § lone must likewise assume (!) that by direct measurements 
(in the sense of [3] § 10), i.e. due to pretheories, this relation between x and y is 
verifiable experimentally, i.e. can be read from a real text (see [3] § 5). Then 

Mrn ~ Y is to be viewed as a physically real relation, but as an idealized relation 
which for a comparison with experiment must first be smeared by means of 
imprecision sets (described in [3] § 6). The imprecision sets are thereby determined 
by the uniform structure of Yp (see again [3] § 6). But this path sketched in § I has 
not been followed here, since it furthers the erection of an axiomatic basis for 
quantum mechanics to bring in the "pretheories" of registering trajectories, as 
exhibited in § 3. There we also recognized the connection between the uniform 
structure p for Y, as introduced in § 1, and the registration procedure. The 
imprecision sets for Y were thus determined just by the digital registration 
procedures. Therefore, if one chooses the path described in § 2 and § 3, one must 
rightly ask whether a relation Mrn ~ Y is "determined" by the structures laid down 
in § 2 and § 3 (for "determined" see [3] § 10). 

On the basis of the theory from § 2 and § 3, the following sets (inner terms, [3] 
§§ 7 and 10) can be derived: 

3';= {yly EY; forall e Eiirn with x E h(e) 

holds with k = IfIrn (eo, e): k (y) =l= O}; 

,gIrnx= {al a E,gIrn and x E a}. 

With Sa the support of rprn (a), we then define 

rx= n Sa; 
ae!!)1t 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

If ~ is a singleton for all x, then a function Mrn .!4 Y is defined by x -+ Y E 'Wx. 
Then one can justifiably assert that each system x "in reality" has a trajectory. 

Unfortunately, '~is a singleton for all x" cannot be derived as a theorem from 
the axioms demanded in §§ 2 and 3. But also '~ is not a singleton for all x" is not 
a theorem. Such undeciable situations occur frequently in physical theories. For 
that reason, in [3] § 10 we introduced for hypotheses, together with "theoretically 
existent", also the almost equivalent qualifer "certain". That'Wx is a singleton, is (in 
the sense of [3] § 10) certain for all x, whereas '~ is not a singleton" is not certain 
for any x. 

Very intuitively this can due to [3] § 10 be expressed as follows: Every 
experiment of preparing and registering can be imagined as complemented in such 
a way that YI; becomes a singleton. But then we can as a additional axiom simply 
require: YI; is a singleton for all x. The theory obtained in this way leads to no 
contradiction with experience. 
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One often demands that Yx is already a singleton. This has a very intuitive 
physical interpretation, namely, that one can in principle improve the exactness of 
the trajectory measurement for each system x; this is a typical "classical" 
assumption (see [3] §§ 6 and 9). 

The physical interpretation of such assumptions (which lead to the existence 
of a function Mm ~ y) must of course be mollified by the imprecise mappings in 
Y (see § 3.1 and [3] § 6). 

The existence of the function g now lets us introduce a set of "objective" 
properties Il of Mm. Due to (5.3) we have g (Mm) c: 8 m. As the set of objective 
properties we define 

Il= {EI E = g-l (J, (J E ~(8m)} c: (!l' (Mm). (5.5) 

All preparations and trajectory registrations can be interpreted by means of 
these objective properties. That in this sense there exists a "sufficient" (see V § 10) 
set of objective properties for the macrosystems rests on the fact that the 
registration of macrosystems can be described as a measurement of trajectories by 
pretheories. The distinction to the considerations to follow in V § 10 therefore just 
arises because for the action carriers to be considered in V § 10 there even do not 
exist pretheories which would allow the interpretation of the registrations as the 
measurement of "anything on the microsystems". 

Since the probability measures vanish for (J E f (8m ), for such (J the set g-l (J 

must be empty. Conversely the set g-l (J cannot be empty for any open set 
(J E ~(8m)' since for such a (J there exist nonzero probability measures. Hence, one 
often calls the Boolean ring Em = ~ (8m)/ f (8m) the set of objective properties. 
For the compatibility problem, Em will be central in X § 2.3. 

The set Mm , equipped with the structures from § 2 and § 3 (augmented by the 
axiom that Yf'; is a singleton), by the structures (5.5) becomes a set of "physical 
objects" (see V § 10; VII § 5.3 and [2] II § 1; [2] III § 4.1). But despite this, Mm is in 
general not a set of "classical" systems (in the sense of VII § 5.3) for, though due to 
§ 3.3 and X § 2.3 one can of course identify Km (8m) with a subset of K (Em), in 
general Km (8m) = K(Em) need not hold. Hence one also uses another definition of 
objective properties. 

For a dynamically continuous system, to each Q E ~ (Z) and 7: E e there is 
assigned (due to § 3.4) a am (Q; 7:) E ~ (8m). Thereby, for each 7: E e there is 
defined a mapping ~(Z) -+ ~(8m) and hence also ~(Z)/f(Z) -+ Em= 
~(8m)/f(8m)' Here, f(Z) is the set of all Q E ~(Z) such that u.(Q) = 
u(am(Q;7:»=O for all 7: and all uEKm(8m). Then, with Ez=~(Z)/f(Z) and 
K(Ez ) the set of all a-additive measures over E z , for each 7: there is defined a 
mapping Km(8m)""t K(Ez ) by u -+ u •. As explained in § 3.4, one can presume the 
support of all measures {u. I u E Km (8m), 7: > O} to be Z. There exist many systems 
for which am (Q; 7:) is defined as an element of ~ (8m ) even for 7: = 0 (systems called 
continuous also for 7: = 0). Then Uo = u (am (Q; 0» is also defined. The mapping 
Km(8m) "6 K(Ez ) thus defined can then in all known cases be presumed surjective, 
which simply means that one can at the time 7: = 0 prepare all ensembles of states 
from Z. How the u, then appear depends on the Km (8m), i.e. on the dynamics. But 
in general it is not true that Km (8m) "6 K (E z) is injective and hence bijective. 
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Therefore, in general to a prepared Uo E K (1:"z) there does not correspond a unique 
U E Km (8m) and thus not a unique measure Ur for r > O. But there are many 
systems for which one can presume Km(8m) -+ K(1:"z) to be injective. In fact, 
general theoretical questions of statistical mech~nics have mainly been limited to 
such systems. This is the background for the very customary definition of 1:" z as the 
set of objective properties. One calls g-I am (Q; r) the set of systems which at 
the time r have the property Q E fjj (Z), often not distinguishing between the 
Q E fjj(Z) and the elements of 1:"z (an entirely physical custom). 

If Km(8m) -0 K(1:"z) is bijective, one can identify Km (8m) with K(1:"z) and (by 
means of the mapping K(1:"z) -0 Km(8m) inverse to Km(8m) -0 K(1:"z» introduce a 

"dynamical" mapping Uo ~ Ur by 

(5.6) 

One can then consider Mm as a set of classical systems (in the sense of VII § 5.3 
with K(Ez ) the set of ensembles and 1:"z that of objective properties) whose time 
variation is described by (5.6). We shall denote such systems briefly as systems 
"classically describable in the state space Z". 

For considerations in X, let us yet note that, by means of V: from § 4.2, one can 
write the mapping (5.6) as 

(5.7) 



m Base Sets and Fundamental Structure T~~s for a Theory 
of Microsystems . 

As already pointed out in I, we intend to construct an axiomatic basis for 
quantum mechanics, beginning only with sets and structures interpretable by known 
pretheories. Therefore, we cannot start with a set M interpreted as a set of micro
systems as in [2] (see [3] § 5 for abbreviated formulations such as "set of micro
systems"). We rather "question" the existence of a microsystem, i.e. we will 
theoretically retrace the discovery of microsystems. In the theory to be constructed 
we do this by obtaining the microsystems as physical realities only through a 
physically real set (derived from the basic sets) with a physically real structure (in 
the sense of [3] § 10.5). 

§ 1 Composite Macrosystems 

Therefore, to begin with, we "forget" the microsystems. Each experiment with 
microsystems (described in I) is really "only" a complex macroscopic device in 
which various macroscopic processes occur, i.e. processes described by pretheories. 
We will elaborate a "typical" structure of these frequently complex experiments 
and describe it mathematically. 

This typical structure involves devices composed of two macro systems, the 
interaction of which is investigated experimentally. In this characterization, it is 
not excluded that the devices may be composed of more than two systems. But the 
subsystems can be partitioned into two groups, each regarded as a subsystem so 
that the entire system appears again composed of two subsystems (the two groups). 
That it is possible in this way to consider a device in different ways as composed of 
two subsystems is an interesting structure often used experimentally (also see I § 3). 
We have investigated such structures in [2] XVII and shall return to this question 
in XII § 1. In order to construct an axiomatic basis, we at first need not introduce 
any mathematical description for the different possibilities available for a device to 
be decomposed into subsystems. Thus, in the first step we will mathematically map 
only the structure of the composition of two subsystems. 

In order to describe the composition of two systems, we start with two base sets 
of the theory ..#3'l;*) to be constructed: Ml and M 2 • Corresponding to [3] § 9, we 
require as axiom (not yet giving it a number): 

*) The index 1: on JI:T now emphasizes that we construct the mathematical theory as a 
structure of species 1:. A structure of species 1: is characterized by base sets, relations 
(structures) and axioms (see XIII § 2.1, [3] and [48]). 
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The set Ml and M2 are countable. 
In the relevant experiments, a system from Ml will always be "composed" with 

a system from M2 . Therefore, we must in JI:Yi introduce a relation to portray this 
"composition". But before we do this, we adopt the following convention for the 
mapping principles of Ml and M2, which will turn out very practical (already used 
in II § I for the sets Mm): For two different experiments (e.g. x E M[, x' E M l ) we 
set x =1= x' also when the two experiments with the subsystems x and x' are carried 
out with the "same" subdevice in the sense that the same technical device is used. 
A sub aspect of this reality structure (that x and x' can be "the same" device) is 
grasped in the preparation process (see II § 2.2) namely by regarding x E a and 
x' E a to hold for the same preparation a. 

In characterizing different experiments by different elements of Ml and M2, we 
also simplify the mathematical relation for a composition. It is natural to describe 
"Xl and X2 are composed" by a subset Me Ml X M2. For the structure M we then 
require the axiomatic relations 

AZ 1 (Xl, X2) E M and (xl, X2) EM implies Xl = xl; 
(Xl, X2) E M and (Xl, Xl) E M implies X2 = xz. 

This axiom expresses the following fact: If Xl is composed with X2, then X2 cannot 
be composed with "another" system Xl since otherwise (Xl, X2) would not even 
describe "the system composed of Xl and X2". 

Since it is uninteresting to consider the systems Xl E Ml resp. X2 E M2 not 
composed with other systems, to AZ I we add the axiom 

AZ 2 For each Xl E Ml there is an X2 E M2 with (Xl, X2) EM; 
for each X2 E M2 there is an Xl E Ml with (Xl, X2) E M. 

AZ I, 2 are equivalent to saying that M is the graph of a bijective mapping 
M I -+M2 . 

The mapping principle "(XI, X2) E M is the image relation ([3] § 5) for the real 
relation that the systems Xl and X2 are composed" is often summarized in the brief 
statement: Mis the set of composed systems (see [3] § 5 for such abbreviations). 

Since MJ, M2 are countable, also M can at most be countable. We require that 
Mbe neither empty nor of finite cardinality. 

The axioms AZ 1,2 determine the application of the concept "composed of two 
parts". Therefore, these axioms are to be regarded as "laws of nature" only in the 
sense, that there is a fundamental domain (of real situations) to which the concept 
specified by AZ I, 2 is applicable. It is immaterial whether we "encounter" such 
real situations or "produce" them technically. Just this production, i.e. the 
experimentation, is of fundamental importance for all physical theories (see about 
"physically possible" processes in [3] §§ 10 and 11). 

In order to emphasize the objectivating description of the systems from M l , 

M2 , M by the pretheories from II, we enrich the structure introduced in M by 
trajectory spaces. This enrichment'is of course not necessary for an axiomatic basis 
of quantum mechanics since one obtains the essential structures of quantum 
mechanics just by "forgetting" the detailed structures of the devices. 
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The systems from M\, M2, M shall be systems describable by the pretheories 
from II. Let us for instance consider M\. Certain elements of M\ (i.e. a subset of 
M\) can be described by trajectories in an appropriate state space from one 
pretheory. Other elements from M\ might be describable in a state space from 
another pretheory. If one has several state spaces Z). (A. an index), one can also 
introduce Z = U Z). as a state space. These considerations make it natural to 

). 

demand that to M\ there corresponds one state space Z \ so that the systems from 
M\ can be described by trajectories in Z\. Thus, for the physical interpretation of 
the points in Z\ several pretheories may be required. 

As described in II, one can corresponding to Z\, Z2 introduce trajectory spaces 
y\, Y2 in which uniform structures g and p are defined, p being the uniform 
structure of physical imprecision. 

As further base sets for quantum mechanics, we introduce Y\, Y2 with the 
physical interpretation (given by pretheories) that they are the trajectory spaces of 
the systems from M\ resp. M 2 • As axioms we first introduce only those to define 
the uniform structures of physical imprecision in Y\ and Y2 • We shall not write out 
these axioms explicitly, but only indicate them by 

AT 1 Axioms for the uniform structures pin Y\, Y2 • 

The introduction of the base sets Y\, Y2 is typical for an axiomatic basis of a 
theory g;y, if complex pretheories are already required for its formulation. In the 
pretheories, Yj, Y2 are derived with a complex structure. In g;y they are base 
terms so that there one need not formulate the complex structures with which these 
terms are equipped in the pretheories. Rather, these complex structures are innate 
in the mapping principles of g;y which, just by means of the pretheories, enable 
us to interpret the elements of Y\ , and Y2 • 

As mentioned above, one can formulate an axiomatic basis for quantum 
mechanics so that the terms Y\, Y2 do not appear at all, i.e. one can leave the 
description of the trajectory registration entirely to the pretheories. But in order to 
better discuss in XI the measurement process, and to emphasize the objectivating 
method of describing the experiments, we shall also formulate an axiomatic basis 
which includes the base sets Y), Y2 • Therefore, we shall give two parallel 
formulations of an axiomatic basis for quantum mechanics. We shall by AT denote 
all the axioms for that extension by Y\, Y2• 

In §§ 2 through 5 we first begin with the restricted form (without Y\, Y2). In 
§ 6, this is extended to the form with Y\, and Y2 • This extended form of the 
axiomatic basis will not be used in IV through IX. 

We hope that the presentation of two forms of the axiomatic bases here in III 
will not confuse the reader. The physical meaning of the mathematical relations 
will be clear without a detailed idea of the "axioms". In chapter IX, we shall 
conclude with an overview over the erection of the axiomatic basis, intended for 
readers interested to know that it is realy possible to erect quantum mechanics 
without "theoretic auxiliary concepts" (in the sense of [30]). In XIII we shall show 
that of course there exists an axiomatic basis for quantum mechancis in which only 
the image relations between elements of the base sets are used. Therefore, XIII is 
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intended only for those readers who, proceeding beyond an understanding of 
quantum mechanics, have an interest in the philosophy of science. 

§ 2 Preparation and Registration Procedures for 
Composite Macrosystems 

The fact that the systems from M are "composite", shall relative to prepara
tions and registrations be expressed as follows. We start with the structures 
of preparing and registering the subsystems from M, and M2 , and only then derive 
corresponding structures for M (as sets of pictures for real situations, see [3] 
§ 10.5). We can forego discussing the physical meaning of the structure terms for 
M, and M2 as well as of the axioms in view of the explanations in U § 2; [I] XIII; 
[2] II; [3] § 12. 

Therefore, we introduce two structure terms .01, c f!J1 (M,), .012 c f!J1 (M2) with the 
axiom 

APSZ 1 .01, and ~ are statistical selection procedures (see II § 2.2 and also [2] II 
§ 4.1 [3] § 12). 

According to [3] § 9 we require that.0l, and .012 be countable sets; their 
probability functions be AgJ" A~. The sets .01, and .012 consist of the preparation 
procedures of the systems from M] resp. from M2 • This is - to emphasize it again 
- an abbreviation for a mapping principle. The interpretation of the elements of 
.01, and.0l2 is given by pretheories, just by identification with elements of the sets .0Im 

(from perhaps different pretheories; see [3] § 10.5). 
But here let us recall an aspect of the physical interpretation of li] and 22 that 

we briefly sketched in II § 4.3: In the meaning· of the preparation procedures 
from.0l, resp. ~ there enters the orientation of the systems from M] resp. M2 to the 
"laboratory system". Although we shall only in § 7 express this fact mathematically 
by further structures, we have again pointed out this aspect of the elements of.0l] 
and ~ so that the reader will not get false notions about their physical interpreta
tion. 

Important. is the connection among the structures .01" .012 and M. The physical 
significance of these three structures will suggest further axioms for this connec
tion. First we introduce, for the later formulation of such axioms, definitions in 
which we use words to remind us of the physical interpretation of.0l, ,.012 , M. 

For brevity, in many relations we write 

.@[={alae.0li ,a=l=0} for i=I,2. 

If for ai e.0l; the set a] x a2 II M is empty, by the interpretation of.0l" .012, M this 
means that it is not "physically possible" (see [3] § 10.4) to compose systems 
prepared by a, and a2' This problem of which systems can be composed in order 
to yield a "meaningful" experiment, of course has great physical significance. By 
demanding a "meaningful" experiment we have emphasized that this "combina
tion" not only requires that the devices can be joined in the laboratory; it rather 
involves a physical choice of experiments. Only step by step can we by axioms map 
the experimental situations (explained intuitively in I) into the mathematical 
image. 



§ 2 Preparation and Registration Procedures for Composite Macrosystems 51 

D 2.1 Two preparation procedures ai E!!Jr are said to be mutually exclusive if 
al x a2 (\ M = 0. 

If we pick any two (not mutually exclusive) preparation procedures ai E !!Jr 
it may happen that there are finer procedures aj c ai with aj E!!J; and a; x a2 (\ M 
= 0. This would mean that indeed the preparation procedures aI, a2 do not exclude 
the physical possibility ([3] § lOA) of composing some of the systems from al and 
a2 into a meaningful experiment but that there are finer procedures a;, a2 that 
exclude each other. In this case it is not true that "arbitrary" systems from al can 
be composed with "arbitrary" systems from a2. But then one cannot expect that 
al x a2 (\ M is a statistical selection procedure over M, since systems from al and a2 
cannot be composed "statistically independently". These considerations suggest, 
not for every pair ai E !!Ji to regard the set al x a2 (\ M as a "preparation procedure" 
of composite systems from M. Hence let us first adopt the definition 

D 2.2 We say that ai E!!J[ with i = 1,2 may be combined if aj c ai, aj E !!Jr always 
implies a; x a2 (\ M =t= 0. 

For abbreviation we introduce the set 

TI2 = {al x a2 (\ MI al E !!J[, a2 E !!J2, al and a2 may be combined}. (2.1) 

T 2.1 From "al E !!J{ , a2 E !!J2 may be combined" there follows 

(i) al x a2 (\ M=t= 0; 
(ii) {aj E!!J[, at c ai, i = I, 2} => a;, a2 may be combined; 

(iii) {a\k)E!!J(,a~l}E!!J2,k=I, ... ,n;I=I, ... ,m and there exist an aIE!!JI 

with a\k) c al and an a2 E!!J2 with a~) c a2 and each a\k) may be combined 
n m n 

with each a~)} => U a\k) E !!J;, U a~) E!!J2 and U a\k) may be combined 
m k=1 1=1 k=1 

with U a~). 
1=1 

Proof (i) and (ii) follow directly from D 2.2. 
(iii): Since !!JI is a structure of selection procedures and a\k) c al E!!JI holds, 

n m n m 

U a(k) E!!JI also holds; likewise, U a~) E !!J2. If a; c U a\k) and a2 c U a(l), 
k=1 1=1 k=1 1=1 

n 

then from 0 =t= a; = U (a\k) (\ aD follows that there is a k with afk) (\ a; =t= 0 and 
k=1 

likewise some I with afl) (\ a2 =t= 0. Since afk) and a~l) may be combined, we have 
(a\k) (\ ai) x (a~) (\ aD (\ M =t= 0 and because of a; x a2 (\ M::::> (alk) (\ aD x (a~) (\ aD 

n m 

(\ M also a; x a2 (\ M =t= 0, i.e. U a\k) and U a~) may be combined. D 
k=1 1=1 

We shall frequently use (i) and (ii) from T 2.1 without indicating it! 

T2.2 IfYis a structure of selection procedures over M I , then i'= {axM2(\ MI a E'Y/} 

is a structure of selection procedures over M, and the mapping a -+ a x M2 (\ M 
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represents an isomorphism r -+ Y. The same holds for a structure "1// over M2 
with yr= {MI x a (\ M I a E YF}. 

Proof It suffices to present the proof for r; Y: From AZ 2 follows for a E r' (r' 
equals r without the empty set) that a x M2 (\ M =l= 10. 

From a x M2 (\ M = a' x M2 (\ M follows (a (\ a') x M2 (\ M = a x M2 (\ M and 
thus (a\a (\ a') x M2 (\ M = 10. This due to a\a (\ a' E r implies a\a (\ a' = 10, i.e. 
a = a (\ a'. Likewise follows a' = a (\ a' and thus a = a'. Therefore, the mapping 
r -+Y is bijective. The isomorphism ofr and Y (regarded as structures of selec
tion procedures) follows in an elementary way. D 

By application of T 2.2 to 0 1 and O2 one obtains 

T2.3 The sets .01={aIXM2(\MlaE01} and .02={MIXa2(\Mla2E02} are 
structures of species SP, and the mappings al -+ al x M2 (\ M and a2 -+ MI x a2 (\ M 
represent isomorphisms 0 1 -+ .01 and O2 -+ .02 • D 

With al E 0 1, a2 E O2, from al x a2 (\ M = (al x M2 (\ M) (\ (MI x a2 (\!vi) follows 
that ai, a2 may be combined if and only if the corresponding al = al x M2 (\ M E .01 

and li2 = MIX a2 (\ MEg, obey 

ai E .0;" ai c iii E .0:, i = I, 2 = a; (\ ii 5. =l= 10 . (2.2) 

Therefore let us in an entirely natural way call two elements ai E .0[ combinable 
if (2.2) holds. To say that ai, a2 may be combined is thus equivalent to saying that 
the corresponding al , a2 may. In particular, (2.1) therefore becomes 

Fi2 = {al (\ a21 al E .0;, a2 E.02, al and a2 may be combined} . (2.3) 

According to [3] § 10.5, the structure 0 12 of selection procedures over M 
generated by Ji2 (see [2] II Satz 2.2) is a set of pictures of real situations - briefly, 
0 12 is a set of real situations. 

T 2.4 For Q12, a probability Ag12 is uniquely defined by the two requirements 

Ag,. (al x a2 (\ M, a; x a2 (\ M) = Ag, (ai, aD , 

AJ!12 (al x a2 (\ M, al x a5. (\ M) = Ag2 (a2, a2) . 

It follows 

Proof Using the elements a that due to T2.3 correspond to the a by the isomor
phisms 0 1 -+ .01 , O2 -+ .02, one can write 

Ag12 (al (\ a2, al (\ a2) = Ag, (ai, aD , 

AEJ,.(al (\ a2, al (\ a2) = Ag2 (a2, a2). 

This immediately implies 

~12 (al x a2 (\ M, a; xa5. (\ M) = Ag12 (al (\ a2, a; n a2) 

=AEJ,.(al (\ a2,a; (\ a2) Ag12 (a; (\ a2,.a; (\ a2) 

=~, (ai, aD Ag2 (a2, aD· (2.4) 
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In order to prove the uniqueness and existence of A.g,., one can think of A!lI,. and 
~ as being transferred (by the isomorphisms £II -+ ~I' £12 -+~) to ~I' ~ as the 
functions AQ" AQ •. 

Then the requirements of the theorem become 

~ (al n a2, al n a2) = A~ (ai, aD , 

~ (al n a2, al n a2) = A.q. (a2' al) ; 

hence one can immediately adopt the methods from the proof of theorems 
Th 4.5.1, Th 4.5.2 and Th 4.5.4 in [2] II: 

Pick a, d E £112 with d c a. Due to Th 4.5.1 from [2] II, it follows that there are 
an element al n a2 E Ii2 (Ii2 from (2.3» with a c al n a2 and elements a1i), 
~v} E i5(; ~k), df} E i5z with ~i) c ai, ~v} c ai, ~k} c a2, aIf} c a2 and a~i} n a~k} = (3 
for i 9= k, ~v) n ~(l) = (3 for v 9= e, a~k) n tfj) = (3 for k 9= I, a!f) n a~u} = (3 for J1 9= (J 

and 
a' = U a<v) n df}, a = U ~i) n a~k} , 

(V,Il) e B (i,k) eA 

where B is a subset of the pairs (v, J1) and A is a subset of the pairs (i, k). From 

~ (al n a2, a') = A!lI,.o (al n a2, a) A!lI,.o (a, a') 

we then get 

With (2.5) follows 

~ (al n a2, a') = L, A!lI,.o (al n a2, a1v) n a!f}) , 
(V,Il) e B 

A.g,. (al n a2, a) = L, A!lI,.o (al n a2, a~i) n a~k» . 
(i,k) eA 

By (2.4) one finally obtains 

Ag,. (al n a2, d) = L, A!lI,. (aJ, a~v» AQ. (a2' a!f» . 
(V,Il) e B 

~(alna2,a) = L, A!lI,.(aJ,a~i})AQ.(a2,a~k}). 
(i,k) eA 

This together with (2.6) shows that ~ is determined uniquely by A!lI,. and A!l' •• 

(2.5) 

(2.6) 

(2.7) 

In order to show that one can define a function A!l'12 for prescribed A!lI,., A!l'., one 
uses (2.6) with (2.7) as defining equations. As in the proof of Th 4.5.4 in [2] II, one 
shows that these definitions are meaningful, i.e. do not depend on the choice of ai, 
a2 and of the ~i>, ~k}, ~v}, df}. For the AQ12 thus defined one verifies AS 2.1 
through AS 2.3 from II § 2.1. Since the methods of proof are given in detail for the 
theorem Th 4.5.4 from [2] II, these hints may suffice. 0 

QI2 together with the probability A!lI,.o defined according to T 2.4 will be called 
the set of preparation procedures of the composite systems from M. This £112 as 
well as ;'&" are pictures of physically real situations (see [3] § 10.5), whose physical 
interpretation arises from the construction of QI2 and the general interpretation of 
a probability. 
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Since we shall only consider systems that are somehow prepared, we further 
require 

APSZS.l U a=M. 
a EEIu 

This axiom does not render any profound physical structure; if it were not valid, 
one could simply go over from M to the set if = U a. Therefore, APSZ 8.1 only 

characterizes the fundamental domain of the theory we envisage. 
Since (as stated in the proof of T 2.4) every a E gh is a subset of an dE 1)2, 

from APSZ 8.1 also follows 

M= U a. (2.8) 
a E r,. 

For each XI E M I , due to AZ 2 there is an X2 E M2 with (XI, X2) E M. Hence by 
(2.8) we have an al E £)( and an a2 E ~ with (XI, X2) E al x a2 II M. Consequently 
there is an al with XI E aI, so that APSZ 8.1 yields 

M, = U a (2.9) 
a egJl 

and likewise 
(2.10) 

Similarly to AZ I, 2, the axiom APSZ 8.1 determines what situations we want 
to consider in the fundamental domain of the theory. Hence the same holds as 
elucidated about APSZ 6, 7 on· page 57. Also the ~ntroduction of £)12 with A3'2 (in 
T 2.4) only determines more precisely how the composite systems should be 
prepared. Thus £)12 with ~,. is a derived structure, i.e. the physical possibility to 
prepare as prescribed by £)'2 is already given by the axioms APSZ I, APSZ 8.1, as 
due to APSZ 8.1 the set 1)2 cannot be empty (see (2.8». 

Having over M introduced a structure £)'2 of the preparation procedure species, 
we must yet describe the registration (interpretable by pretheories) of the systems 
from M, and M2• To this end, we introduce four structure terms YS',o, YS'" YS'20, YS'2 
with YS'IO c &(M,), YS', c &(M,), YS'20 c &(M2), YS'2 c &(M2). Due to the general 
axioms of a registration procedure (see II § 2.3 or [2] II § 4.2 or [3] § 12) we first 
require 

APSZ 2 YS', and YS'2 are structures of species SP. 
APSZ 3 YS'IO and YS'20 are structures of species SSP. 
APSZ 4.1 YS'IO c YS'" YS'20 C YS'2; 
APSZ 4.2 For each b E YS'i there is a bo E YS'iO with b c bo, i = I, 2. 

Let the probability functions for YS'IO and YS'20 be denoted by A'*10' A'*20. Due to [3] 
§ 9 we require that YS'" YS'2 are countable sets; hence YS'IO, YS'20 are countable. 

Since the zero point of the laboratory time scale has been chosen so that the 
preparation is completed before t = 0 and the registration begins after t = 0 (a con
vention adopted in II), no restrictions should occur for combining a preparation 
and a registration. Moreover, we will for simplicity assume that no restrictions 
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occur for combining the registration of the systems from M} and M2 , since "trajec
tory registration processes" are concerned. We express this by 

APSZ 5.1 From a} E !?II, a2 E !?I:i, blO E .'?4'{o, b20 E .'?4'2o and a}, a2 being combinable 
there follows (a} n blO) x (a2 n b20) n M *' 0. 

We might replace this by a weaker axiom. It would allow preparation 
procedures which terminate at some times t> 0 and registration procedures which 
begin already at some t < O. But then we would need the following condition for 
combining preparation and registration procedures. They may only be combined 
when the preparation procedure terminates before the registration procedure 
begins. Also it would be necessary to introduce several trajectory spaces corre
sponding to the times at which the trajectories begin. We avoid all these complica
tions by the stronger axiom APSZ 5.1. 

Since this axiom APSZ 5.1 is normative, one cannot ask for facts "in nature" 
which contradict it. One can only ask, whether the normative postulate APSZ 5.1 
excludes experiments essential for the erection of quantum mechanics. This seems 
not to be the case. 

APSZ 5.1 implies the relation: a}, a2 being combinable implies a} n blO *' 0. 
From AZ 2 and (2.8) follows that for arbitrary a} E !?I{ there is an (x} , X2) E M with 
x} E a} and furthermore a combinable pair ai" a2 with (x}, X2) E ai' x a2. Therefore 
a; = a} n ai' may also be combined with a2. Hence we find a; n blO *' 0, and thus 
also a} n blO *' 0. Therefore, a} E !?I{, blO E .'?4'{o implies a} n blO *' 0, i.e. we have a 
relation analogous to APS 5 m from II § 2.4. Likewise follows that a2 E !?I:i, b20 E .~20 

implies a2 n b20 *' 0. 
By virtue of (2.8), from APSZ 5.1 also follows that blO E .'?4'[o, b20 E .'?4'zo implies 

blO x b20 n M *' 0. 
For the definition D 2.2 carried over from!?l},!?12 to .'?4'1O, .'?4'20, this asserts that all 

the elements of .'?4'[o may be combined with all the elements of .'?4'5.o. Therefore, 
T 2.4 immediately carries over to 

T 2.5 On the structure .'?4'120 (of species SP) generated by the set 

{blO x b20 n M I blO E .'?4'1O, b20 E .'?4'20} 

one can uniquely define a probability A",120 by the requirements 

,1$'120 (blO x b20 n M, blo x b20 x M) = ,191'10 (b lO , blo) , 

AM120 (blO X b20 n M, blO x b20 n M) = ,191'20 (b20 , b20 ) ; 

then one finds 

AM120 (blO x b20 n M, blo x b20 n M) = A3l'lo (b lO , blO) ,191'20 (b20 , b20 ) . 

From T2.2 follows immediately 

T2.6 The sets aSi}={b}xM2 nMlbE.'?4'}} and aSi2={M}xb2nMlb2 E.'?4'2} are 
structures of species SP and the mappings b} ~ b} X M2 n M and b2 ~ M} X b2 n M 
represent isomorphisms.'?4'} ~ aSi,.'?4'2 ~ aSi2. 
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By a>12 let us denote the selection procedure structure generated over M by the 
set 

{bl X ~ 11 M 1 bl E a>1, b2 E a>2} = {hi 11 h21hl E ~I' b2 E ~2} . 

a>120 from T 2.5 and a>12 therefore satisfy, because of T 2.5, the relations APS 2, 
APS 3 and APS 4.1 (as formulated in II § 2.3 or [2] II § 4.2, or [3] § 12.1). We will 
show that APS 4.2 also holds. 

According to T 2.6, a>12 is the SP structure generated by {hi 11 h2 1 hi E ~I , 
h2 E ~2}' where ~I and ~2 are SP structures. By Th 4.5.1 in [2] II, there thus exists 
for each bE a>12 a pair hi E ~(, h2 E ~2' where be hi 11 h2. Because of 
hi = bl X M2 11 M, h2 = MI X b2 11 M, where bl E a>1, b2 E a>2, by APSZ 4.2 there 
exist blO:::> bl, b20 :::> b2, i.e. a hlO = blO X M2 11 M and a h20 = MI X b20 11 M such 
that b c hlO 11 h20 E a>120, whereby APS 4.2 is proved. 

Calling a>120, a>12 the registration structure of the composite systems from M, we 
need not emphasize again that a>120, a>12 and A&I'l2O portray real situations. Just as 
little need we speak of the physical interpretation. 

Corresponding to APSZ 8.1 we also demand 

APSZS.2 U b=M. 
be &1'12 

Since a>120, a>12 satisfy APS 4.2, it follows that 

M= U bo 

and similar to (2.8): 

From this again follows 

and 

bo e &1',20 

M = U (blO X b20 11 M) . 
bwe !?I'w 
boo e !?I'20 

Again corresponding to D 2.3, let us define 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

D 2.4 An a E gl2 and a bo E a>120 are called combinable if 0 =1= a' c a, 0 =1= bb c bo 
always imply a' 11 bb =1= 0. 

We introduce the set 

el2 = {(a, bo) 1 a E giz, bo E a>izo, a and bo may be combined} . (2.15) 

Pro(){ We need only show that a E g12, bo E '~120 implies a 11 bo =1= 0. Due to T4.5.1 
in [2] II, each a E g12 is a union of elements of the form til 11 ti2 E 112, where 
til = al x M2 11 M, ti2 = MI x a2 11 M. Similarly follows that each element of a>izo is 
a union of elements hOI 11 h02 , where hOI = blO X M2 11 M, h02 = MI X b20 11 M and 
blO E a>{o, b20 E a>20' 
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The theorem is thus proved when al n a2 n hOI n h02 =1= 0 in case al n a2 = 

al x a2 n ME Ii2' But this is just the assertion of APSZ 5.1. 0 

For brevity, we write 
(2.16) 

and by J'(2 denote the SP structure generated over M by e l2 • 

As axiom to describe the coupled systems we impose on ~120, ~12' J'(2 the 
general axioms from [2] II or [3] § 12 (for Mm already mentioned in II § 2): 

APSZ 6 J'(2 is an SSP. 

For the probability function AI2 corresponding to J'(2, let us require 

APSZ 7 For ai, a2 E 9 12 with a2 c ai, and for bOl , b02 E ~120 with b02 c bOI and 
(ai, bOl) E e12 , we presume 

APSZ 7.1 AI2 (al n bOI , a2 n bOI) = ~12 (ai, a2); 

APSZ 7.2 AI2 (al n bOI , al n b02) = A""'20 (bOI , b02)' 

Because ofT2.7, the structures trivially satisfy all the axioms APS 5 in [3] § 12.1 
resp. in [2] III § 1. This together with the axioms APSZ 6 through APSZ 8 implies 
that M with the structures 9 12 , ~l2O' ~12 forms a set of "physical systems" (in the 
sense of[3]§ 12.1 resp. [2] II § 4.4). 

Also note again that the axioms APSZ 6 and APSZ 7 not so much describe 
structures readable from nature. Rather they characterize the fundamental domain 
of the theory, i.e. the domain of the "correctly" performed experiments. APSZ 6 
requires to consider experiments to which the probability concept is applicable. 
APSZ 7 says that in a "correct" experiment the preparation procedures and the 
registration methods must not disturb each other. Therefore, APSZ 6, 7 are 
"natural laws" in the sense that it is possible to experiment as these axioms 
demand. 

T 2.8 The function AI2 is completely determined by A~" A~ and by the special values 

AI2 (al x a2 n M n blO x b20 , al x a2 n M n bl x b2) 

for al x a2 n M E Ii2 (with Ii2 as in (2.1» and blO E ~IO, b20 E ~20, bl E ~I' 
b2 E ~2, bl c bOI, b2 C b02' 

Proof. From Th 4.5.2 in [2] II follows that AI2 is completely determined by A~12 and 
by the special values AI2 (a n bo, a n b), where a E 9 12 , bo E ~120, b E ~12' be boo 
According to T 2.4, Afjll2 is determined by Afjl, and Afjl2' 

Due to Th 4.5.1 of [2] II, a is of the form a = U ali) n a~k), with ali) E g" 
(i,k)EA 

14k) E J'2 and with iiI;) c al E J'I , a~k) c a2 E g2 and af) naY) = 0 for i =1= j, 
14k) n d{) = 0 for k =1= I. Thus follows 

A12 (al n a2 n bo, a n b) = AI2 (al n a2 n bo, an bo) Al2 (a n bo, a n b) 

= Ag,. (al n a2, a) AI2 (a n bo, a n b) , 
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and furthermore 

A.J2 (til r. ti2 r. bo, a r. b) = L. .1\2 (til r. ti2 r. bo, ti~i) r. ti~k) r. b) . 
(i,k) eA 

Therefore, .1\2 is determined by the values .1\2 (a r. bo, a r. b) with the special 
a = al x a2 r. ME Ii2. 

As for a E £lh, for bo E ~120 and b E ~12 we can from Th 4.5.1 of [2] II conclude 

U i;tl) f"fk) -(i) - -(k) - -(i) - - -(k) - . bo = bIO r. 020' bIO E ~IO, b20 E ~20, bIO C bIO E ~IO, b20 c b20 E ~20, etc., 
(i,k) eA 

b = U b\V) r. Gy'), h\v) E gjil, etc. 
(v, 1') e B 

Because of b c bo we obtain 

b = b r. bo = U (h~'& r. W») r. (h~1cJ r. h¥'») ; 
(i,k) eA 
(v,l') eB 

thus we can also assume b\v) c hIO' Gy') c h20 . Then follows 

.112 (a r. hIO r. h2o , a r. b) = .112 (a r. hIO r. h2o , a r. bo) .112 (a r. bo, a r. b) , 

hence furthermore 

and 

A.J2 (a r. hIO r. h20 , a r. bo) = L. .112 (a r. hIO r. h2o , a r. h~iJ r. h~lcJ) 
(i.k) eA 

.112 (a r. bIO r. h2o , a r. b) = L. .112 (a r. blO r. b20 , a r. b~v) r. b¥'») . 0 
(v, 1') e B 

Theorem T 2.8 suggests to consider the function 

1112 (a, (bo, b)) = .112 (a r. bo, a r. b) , (2.17) 

(defined analogously to (2.4.4) of II), where a E Qh. bo E ~120, b E ~\2 (bo) and 
(a, bo) E C12 • In particular, for a = al x a2 r. M, bo = blO X b20 r. M, b = bl X b2 r. M 
it becomes 

1112 (al x a2 r. M, (blO x b20 r. M, bl x b2 r. M)) 

(2.18) 

According to T 2.8, 1112 (al x a2 r. M, (blO x b20 r. M, bl x b2 r. M)) together with 
~, ~ therefore determines all of .1\2 and thus the interaction of the systems. 

Let it yet be noted that the discription of the registration procedure (to be 
introduced in § 6 as the "trajectory registration procedure") will in § 6.3 imply that 

A.J2 (al x a2 r. M r. blO x b20 , al x a2 r. M r. blO x b2) 

does not depend on bIO and 

.112 (al x a2 r. M r. bIO x b2o , al x a2 r. M r. bl x b20) 

does not depend on b20 (see the explanations after (6.3.11)). Therefore we will not 
introduce the corresponding axioms here; but see the partial implications of 
APSZ 9 and APSZ 5.3 in § 3. 
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§ 3 Directed Interactions 

We now decisively narrow the fundamental domain ;§ ([3] §§ 1-6) of our 
theory for the purpose of discovering the microsystems. Thus we consider only 
those composite systems (XI, X2), where XI acts on X2 but not conversely. We 
briefly say that the interaction is directed from XI to X2. But we must first 
formulate by a mathematical relation what is meant by "X2 does not act on XI" 

(expressed differently, "the interaction is directed from XI to X2"). The mathe
matical relation to define the directedness in the action of XI on X2 shall at once be 
imposed as the axiom 

APSZ 9 The function 

..1.12 (al x a2 II Mil blO X ~o, al x a2 II Mil b l X b 20 ) 

= ..1.12 «al II b lO) x (a2 II b 20) II M, (al II bl) x (a2 II b 20 ) II M) , (3.1) 

defined for al x a2 II ME li2, blO E ~IO, b l E ~I' b 20 E ~20' does not depend on a2 

and ~o. (That (3.1) does not depend on b20 holds in greater generality; see the 
remarks at the end of § 2, then the remarks after (6.3.11) and (6.4:1).) 

That the function (3.1) does not depend on a2 and b 20 expresses the fact that on 
the systems from MI the effect procedures (blO' bl) yield frequencies independent 
of the selection a2 II b20 of the systems from M2 that are coupled in. Thus the 
trajectories of the subsystems XI in the composite systems (XI, X2) do not depend 
on which systems are '~close by" (whenever XI, X2 are combinable) and by which 
method the X2 are registered. 

The introduction of axiom APSZ 9 shows directly that in no way is it a law 
found in nature, but rather a "choice" of the fundamental domain. In the 
philosophy of science it is often emphasized that such "laws" must be distin
guished from the laws of nature. Protophysics (see the introduction in [42]) has 
coined the word "norms" for such "selection laws" in order to express that they are 
"laws imposed" by the people treating the problem. In [3] and [30], we have for 
"all" laws introdl,lced the designation "natural laws". But axiom APSZ 9 only 
insofar describes "realities" as it declares some selection to be satisfiable, i.e. that 
it is possible to select a nonempty fundamental domain obeying APSZ 9. 

In [3] and [30] we have not distinguished the various sorts of natural laws in the 
axiomatic basis since a further classification appears in general very difficult·. 
For, there often occur in one and the same axiom selection principles as well as 
invariant structures of reality and also idealizations. Up to now, only for each 
particular case it appears possible to point out the various aspects of an axiom. 
Only in rare cases just one of those three aspects enter e.g. in APSZ 9. In AVid 
from VI § 3, we shall meet an axiom that introduces only an idealization, i.e. that 
has nothing to do with "norms" or "invariant real structures". 

These remarks about the difficulties in classifying natural laws (the concept of 
natural law meant as broadly as in [3], [30]) shall of course not hinder us in 
contemplating such classifications. Rather we may try to formulate each axiom of 
an v1fYi: so that it either contains only invariant structures of reality (and perhaps 
idealizations) or only the norms to determine the fundamental domain (and 
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perhaps idealizations) or only idealizations. In XIII we shall in view of this 
question review the axiomatic basis presented here. 

Physicists prefer to investigate directed interactions when they want to find out 
some regularity. The general interaction situation, where APSZ 9 is violated, can 
contain complicated recouplings of the systems XI E MI and X2 E M2, which are 
not so simple to analyze, but just for technical purposes can be very interesting. 

T 3.1 If al E £1, bl E @I and al II bl =1= 0, then there is an al E £){ with al cal and 
an a2 E gz combinable with aJ , so that (aJ II bl) x a2 II M =1= 0. 

Proof By AZ 2 follows from al II bl =1= 0 that there is an (XI, X2) E M with 
XI E al II bl • From (2.8) follows that there are two combinable ai" a2 with 
(XI, X2) E al' x a2. For aJ = al II ai' thus follows that ai, a2 may be combined and 
that (XI, X2) E (ai II bl) x a2 II M holds. 0 

T 3.2 If an al E £)f may be combined with a2 E £)2 and makes al II bl =1= 0, then 
(al II bl) x(a2 II b20) II M=I= o for all b20 E@20' 

Proof For blO E @{o and blO :::> bl and b20 E @20, from APSZ 5.1 follows (al II blO ) 

x(a2 II b20 ) II M=I= 0. Therefore 

Au«al II blO ) x(a2 II b20 ) II M, (al II bd x(a2 II b20 ) II M) 

is defined (see T 2.7 and (2.16». For al c al follows 

AI2«al II blO ) x(a2 II b20 ) II M, (al II bl) x(a2 II b20 ) II M) 

s: Au«al II blO ) x(a2 II b20 ) II M, (al II bd x(a2 II b20 ) II M). 

If aJ, a2 are combinable, so are aJ, a2, and thus APSZ 5.1 gives (a' II b lO ) 

x(a2 II b20 ) II M=I= 0. Since al may also be combined with az (az as in T 3.1), also 
(a{ II blO ) x (a2 II b20 ) II M =1= 0 follows. Using APSZ 9, we therefore obtain 

A\2«al II blO ) x(a2 II ~o) II M, (ai II bl) x(a2 II b20 ) II M) 

= Ad(al II bIO ) x(a2 II b20) II M, (ai II bIO ) x(a2 II b20 ) II M) 

. AI2«ai II bIO ) x(a2 II b20 ) II M, (ai II bl) x(a2 II b20 ) II M) 

= 4, (aJ, aD A\2 «aJ II blO) x(a2 II b20 ) II M, (ai II bl) x (a2 II b20 ) II M). 

Because al =l=0, we have tL..J:,(aJ,ai) =1= O. Due to T3.1, (aillbl)xazIlM=I=0. If 
(aJ II bl) x (a2 II b20) II M were equal to 0 for all b20 E @zo, then (2.14) would also 
yield (aJ II bl) x a2 II M = 0; hence there is a b20 with 

Au«aJ II bIO ) x(a2 II b20) II M, (aJ II bd x(a2 II b20 ) II M) =1= 0. 

But since, according to APSZ9, all this is independent of b20 , it also holds for 
all bw E@20' Thus we also conclude' 

Ad(al II bIO ) x(a2 II b20 ) n M, (al II bl) x(a2 II b20 ) II M) =1= 0 

and hence 
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For a directed interaction, the following SP structure over M, plays a large role: 
Let f, denote the SP structure generated over M, by the set 

(3.2) 

This structure describes the possibilities of selecting systems from M,. Because of 
APSZ 9 we can expect that by A'2 the structure Jj becomes an SSP structure, since 
it is "immaterial" which systems from M2 are combined with the systems from 
M,. 

D 3.1 We say that a c, E Jj with c, =l= 0 may be combined with an a2 E gi if 
o =l= c; c c" c; E Jj and a2 n a2, a2 E gi imply c; x a2 n M =l= 0. 

T 3.3 To say that c, may be combined with a2 is equivalent to saying that there 
exist an a, E g; and a b, E ~, with c, c a, n b, so that a, may be combined with 
a2' If, in particular, c, = a, n b" then c, may be combined with a2 if and only if a, 
may be combined with a2. 

Proof There always exist an a, E g{ and a b, E ~{ with c, c a, n b,. 
Let c; c c, c a, n b,. With Th 4.5.1 from [2] II, we easily find 

c, = U afi) n W) and c; = U a}o b}k) , (3.3) 
(i,k)eA (i,k)eB 

where a}/) c a" b}k) c b, and B is a subset of A. For as. c a2 follows 

c; x a2 n M = U [(a}/) n W)) x a2 n M]. 
(i,k) eB 

If a, may be combined with a2, because a}!) c a, and a2 c a2 also afo may be 
combined with a5.. Thus T 3.2 yields (a\i) n b\k)) x a5. n M =l= 0 and hence 
c; x a2 n M =l= 0. Therefore, c, may be combined with a2' 

Conversely, if c, may be combined with a2 and a2 c a2, then in (3.3) one can in 
particular put 

a, = U aV) and b, = U b}k) , (3.4) 
k 

with the unions taken over all i for which there is a k with (i, k) E A and over all k 
for which there is an i with (i, k) EA. Moreover, one can in particular set 
c; = aVo) n b}ko) for some pair Cio, ko) EA. Therefore follows ci x a2 n M = 
(a[i°) n b}ko)) x as. n M =l= 0 and hence aVo) x a2 n M =l= 0. Instead of alio), as. one could 
also have chosen the subsets ai' c a}io), as.' c as. with ai' E g{, as.' E gi. Consequently 
all a[i) may be combined with a2' By T 2.1 and (3.4) follows that a, may be 
combined with a2. 0 

T 3.4 J!2 is also the SP structure over M that is generated by 

A, = {C, x(a2 n b2) n MI c, E Jj, a2 E Q2, b2 E ~2, c, may be combined with a2}' 

Proof J!2 is equal to the SP structure generated by 

A2= {C, n b,) x(a2 n b2) n Mia, Eg{, a2 E gi, 

a, may be combined with a2, b2 E ~" b2 E ~2}; 
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this follows easily from (2.16) and (2.1). Since (due to T 3.3) CI =al II bl may be 
combined with a2 when al and a2 are combinable, we have A2 cAl. 

When CI is combinable with a2 and (3.3) holds, all af) II bfk) may be combined 
with a2. Due to T 3.3, all a~/) may then be combined with a2 so that 
(afi) II bfk» x(a2 II b2) II ME A2. By T 3.3 there also is an al II bl with CI cal II bl 
and al combinable with a2 such that (al II bd x (a2 II b2) II ME A2. Hence 
CI x(a2 II b2) II M must be an element of the SP structure generated by A2, i.e. an 
element of J)2. Therefore AI c J)2. 0 

T 3.5 If 0 =l= CI E J) and a2 may be combined with Ch we have CI x (a2 II b20) II M 
=l= 0 for all b20 E ~20. 

The proof follows from the representation (3.3) of CI together with T 3.3 and 
T3.2. 

Thus T 3.5 presents a generalization of T 3.2. 
Similarly to the axioms APSZ 8 (which exclude "uninteresting" cases from the 

fundamental domain rather describing a physical structure), let us postulate 

APSZ 5.2 For each al E PJ{ there is an a2 E PJ2 which may be combined with al. 
This extension of APSZ 5.1 will simplify the following considerations. 
Physically, there is no reason (unless one considers the entire universe as a 

preparation device) why it should not be possible, given a preparation procedure 
al for the systems from MI, to find another preparation procedure a2 for the 
systems from M2 so that one can arbitrarily combine systems from al and a2. 

T 3.6 For CI, ci E J) , CI =l= 0, a function Av, is given by 

A,/i(CI, cD def An(CI x(a2 II b20) II M, ci x(a2 II b20) II M), (3.5) 

where ~o E ~20, a2 E gz while a2 may be combined with CI. This AJ, makes J) into 
an SSP structure. With ai, ai E PJI and blO, blo E ~IO it satisfies 

AJ,(al II blO , ai II blO) = ~ (ai, ai); 

Av;(al II blO, al II bio) = A",1O(b lO , bio). 

Proof Because ci c CI while CI may be combined with a2, also ci may be 
combined with a2. Hence T 3.4 yields 

CI x(a2 II b20) II ME J)2 and ci x(a2 II b20) II M E J)2, 

so that the right side of (3.5) is defined. Because of CI =l= 0, by T 3.5 we also have 
CI x(a2 II ~o) II M =l= 0. 

With alo bl as in T 3.3 follows 0 =l= (al II bl) x (a2 II b20) II ME J)2 and 

AI2 (CI x(a2 II b20) II M, ci x (a2 II b20) II M) 

AI2«al II bl) x(a2 II b20) II M, ci x(a2 II b20) II M) 

AI2 «al II bd x (a2 II b20) II M, CI x (a2 II b20 ) II M) 
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With CI , ci as in (3.3) follows 

A12«al n bl) x(a2 n b20 ) n M, CI x(a2 n b20 ) n M) 

= L A12«al n b.) x(a2 n b20 ) n M, (afz) n bfk}) x(a2 n bzo ) n M) 
(i.k}eA 

and a similar equation for ci instead of CI. Due to these two equations and 
APSZ 9, the right side of (3.5) does not depend on a2, bzo ; defining Aft by (3.5) 
therefore makes sense. 

By (3.5) a definition is given for all CI E .7'( and Ct E .7'( with c( C CI, if for each 
CI there is an az that may be combined with CI' This follows from T 3.3 together 
with APSZ 5.2 since for each CI a pair ai, bl with CI c al n bl exists according to 
Th 4.5.1 in [2] II. 

lt remains to be shown that A/i fulfills AS 2.1 through AS 2.3 from II § 2.1. 
By (3.5) follows from AJ'i (CI' cD = 0 that ci x (a2 n b20) n M = 0 holds and thus 

by T 3.5 also c; = 0, which corresponds to AS 2.3. 
AS 2.1 follows immediately from c; C CI, ci' c c) and c( n cl' = 0, c( U cl' = c) 

and (3.5). Equally easily AS 2.2 results. 
The following statements follow step by step from (3.5): 

.1..11 (al n blO , a; n blO) = .1.12 «al x az) n (blO x b20) n M, (ai x az) n (blO x bzo) n M) 

= k..>u (al x a2 n M, ai x az n M) = AgI (a), aD; 

A/i (al n blO , al n bio) = .1.12 «al x a2) n (blO x bzo) n M, (al x az) n (bio x bzo ) n M) 

= A$I2O(blO X bw n M, bio x b20 n M) = A."IO (blO' bio). 0 

T 3.6 means that gl, 9l'IO, 9l'1 together with .7'( and A& .. .1."'10' A/i form a 
preparation-registration structure on M), i.e. a structure that fulfills APS 1 through 
APS 8 (see [3] § 12.1 or [2] II, III). Thus all the axioms APS 5 are trivially fulfilled, 
because each al E Q; may be combined with each blO E 9l'{o as al n blO =1= 0 follows 
from al E g; , blO E 9l'{o (see the remarks after APSZ 5.1). 

In general, due to T 2.8 only the special probabilities 

#IZ (al x a2 n M, (blO x b20 n M, bl x b2 n M)) = 

= Alz (al x a2 n M n blO x b20 , al x a2 n M n bl x bz) 

are physically interesting. If APSZ 9 holds, there follows 

Alz (al x az n M n blO x bzo , al x az n M n bl x b2) 

= .1.12 «al n blO) x(a2 n b20) n M, (al n bl) x(a2 n b20) n M) 

. Ad(al n b.) x(a2 n b20) n M, (al n bl) x(a2 n b2) n M) 

= A/i(al n blO , al n bl) AJ2 «al n bl) x(a2 n b20) n M, 

(al n bl) x(a2 n b2) n M). (3.6) 

The first factor is the probability of the (trajectory) registrations on the subsystems 
XI E M, a probability not dependent on the systems X2 E Mz that are coupled on. 
The second factor is the conditional probability for the registrations on the 
subsystems X2 E Mz, namely under the "condition" that the systems X2 are 
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influenced by systems x, E M, selected according to a, II b,. This conditional 
probability 

Ad(a, II b,) x(a2 II b20) II M, (a, II bd x(a2 II b2) II M) (3.7) 

is the central quantity by which the directed action is completely described. In fact 
by (3.7), by~, ,1.-"" and the functionll, defined by 

Il, (a" (blO' b,» = A..,-; (a, II blO , a, II b,), 

due to T 2.8 and (3.6) all of A'2 is determined! 
One could designate (3.7) as the central structure of experimentation. That it 

does not seem so central is only due to the great generality of (3.7). But actually the 
laboratories of experimental physicists are filled with devices in which systems x, 
exert a directed action on systems X2 and the probabilities (3.7) are read off 
experimentally. In order to indicate the range of possible applications of (3.7), let 
us mention quite different examples: A rifle (x,) to make a hole in a target (X2); a 
transmitter (x,) which acts on a receiver (X2) (e.g. produces a television image); a 
piece of uranium (x,) which blackens a photo plate (X2); an accelerator plus a 
target (x,) which cause traces in a bubble chamber (X2)' The readers should clarify 
for themselves the physical meaning of (3.7) by such examples. 

The expression (3.7) suggests to consider, besides the SP structure J) (generated 
by {a, II b, I a, E 9, , b E f#,} over M,) the following SP structures over M2 : the 
structure .72 generated by {a2 II b2 1 a2 E 92, b2 E f#2} and the .720 generated by 
{a2 II hzo I a2 E 9z, b20 E f#20}. We see immediately that .720 c: .72. Then (3.7) is only 
a particular case of the general expression 

(3.8) 

for c, E J), C20 E .720, C2 E.72 and C2 c: C20' Here (3.8) is defined whenever 
c, x C20 II M and c, x C2 II M are elements of J)2' In order to tell when they are 
elements of J12, we first formulate the definition 

D 3.2 We say that a c, E./j with c, * 0 may be combined with a C20 E J20 if 
0* c) c: c" c) E JI and 0 * C20 c: C20, C20 E .720 imply c) x c~o II M * 0. 

The two definitions D 3.1 and D 3.2 are intimately connected as shown by the 
theorem 

T 3.7 c, being combinable with C20 (in the sense of D 3.2) is equivalent to the 
existence of an a2 E ~ and a b20 E f#20 with C20 c: a2 II b20 such that c, and a2 may 
be combined (in the sense of D 3.1). 

Proof Let C20 c: a2 II b20 , suppose c, and a2 may be combined, and assume 
0* C20 c: C20, 0 * c) c: c. From Th 4.5.1 in [2] II we easily get 

C20 = U (a!i) II b!~» and 
(i,k)eA 

with a~') c: a2, bW c: b20 and B a subset of A. 
From this follows 

C20 = U (a!!) II b~~», 
(i,k)eB 

c) x C20 II M = U [c) x (a!') II b~~» II M]. 
(i,k)eB 

(3.9) 
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Because of a~i) c a2 we find Cl and hence also ci combinable with a~i). Therefore 
T 3.5 yields ci x(a~i) n b~~) n M=I= 0 and hence ci x C20 n M=I= 0. Thus Cl may be 
combined with C20. 

Conversely, if Cl may be combined with C20, choose in (3.9) in particular (as for 
T 3.3) - U (i) d b - U b(k) a2 - al an 20 - 20 . (3.10) 

k 

Moreover, for any pair (io, ko) E A picking a particular clo = afo) n b~~o), we 
obtain c( x (a~io) n b~~o» n M =1= 0. Likewise, ci x (al' n b~~o» n M =1= 0 and hence 
ci x a2' n M =1= 0 would follow for subsets a2' c a~io). Therefore Cl may for all i be 
combined with a~i) and hence, by T 2.1 and (3.10), also with a2. D 

From T 3.4 and T 3.7 follows the important theorem 

T 3.8 J\2 is also the SP structure that is generated over M by 

A3 = {cl X C2 n M I Cl E J\ , C2 E ""2 and there is a C20 E ""20 such that C2 C C20 and Cl 

may be combined with C20}. 

Proof Consider C2 = a2 n b2, where a2 and Cl may be combined. For this b2 there 
is a b20 E 9i'20 with b2 C b20 . Due to T 3.7, Cl may be combined with C20 = a2 n b20 
and C2 C C20. Consequently, Al from T 3.4 obeys Al C A3. 

From C2 C C20 with a C20 E ""20 combinable with Cl follows by (3.9) that also 
a~l) n bW may be combined with Cl. Then T 3.7 says that all ap may be combined 
with Cl. Applying Th 4.5.1 from [2] II to ""2 we find that C2 (with C2 C C20) can be 
represented as 

C2 = U (af) n b~k». (3.11 ) 
(i.k)EB 

Here one can choose the afl to be the same as in (3.9) and assume b~k) C bW. Since 
all a~) may be combined with Cl and we have a~O n b~k) C a~O n bW, we conclude 
Cl x(a~l) n b~k» n MEAl. From C2 C C20 C a2 n b20 and because a2 n b20 may be 
combined with Cl , it then follows that Cl x C2 n M is an element of the SP structure 
generated by AI, such that A3 C J!2. D 

With C20 as in (3.9), from (3.5) follows that also 

A,/i (Cl' cD = Al2 (Cl X C20 n M, ci x C20 n M) (3.12) 

holds whenever the right side is defined, i.e. whenever Cl may be combined 
with C20. 

T 3.9 A probability function A/20 for ""20 can be introduced uniquely by the 
requirements 

A/2o (a2 n b20 , a2 n b20 ) = )",2 (a2' aD, 

A/20 (a2 n b20 , a2 n b20 ) = Aa>20 (b 20 , b20 ). 

This A/io makes ""20 into an SSP over M 2 • 

Proof Since a2 E 212 and b20 E 9i'20 imply a2 n b20 =1= 0 (see the remarks after 
APSZ 5. I), the proof ofT 2.5 can at once be transferred. D 
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T 3.10 Besides (3.12), for AI2 holds 

(3.13) 

with C20, C20 E .;20' 

Proof As in the proof of T 3.6, with (3.3) follows 

L. AI2 «al (\ bd x C20 (\ M, (afi) (\ bfk» x C20 (\ M) 
AI2 (CI X C20 (\ M, CI x C20 (\ M) = (ik)eA (0 k 

L.A12 «al (\ bl ) X C20 (\ M, (ai' (\ bf» x C20 (\ M) 
(i,k)eA 

Furthermore, (3.12) yields 

and 

A(2 «al (\ bd x C20 (\ M, (afi) (\ bfk» x C20 (\ M) = A./, (al (\ bl , af') (\ bfk» 

AI2 «al (\ b) X C20 (\ M. (afi) (\ bfk» x C20 (\ M) 

= Au«a) (\ bd x C20 (\ M, (a) (\ bd x C20 (\ M) 

. Au«a) (\ b) x C20 (\ M, (af) (\ bfk» x C20 (\ M) 

= A)2 «a) (\ b) X C20 (\ M, (a) (\ bJ) x czo (\ M) 

. A./i(a) (\ bl> afi) (\ W». 

If A12«al (\ bl) XC20 (\ M, (a) (\ bl) x C20 (\ M) = A./2o(C20, C20), (3.13) then follows; 
hence it suffices to prove (3.13) for c) = al (\ bl . 

With (3.9) and C20 c a2 (\ b20 follows 

Au«a) (\ b) x C20 (\ M, (a) (\ bl) x czo (\ M) 

L. Ad(a) (\ bl) x(a2 (\ b20 ) (\ M, (al (\ b) x(af) x b1~» (\ M) 
(i,k)eB 

L. ),d(a) (\ bd x(a2 (\ b20) (\ M,(al (\ bl) x(a~i) x bW) (\ M) 
(i,k)eA 

If a2 c a2, b20 c b20 satisfy 

we obtain 

AI2 «a) (\ hd x (a2 (\ b20 ) (\ M, (a) (\ bd x (a2 (\ b20 ) (\ M) 

= i'/20 (a2 (\ hzo, a2 (\ b20 ) = AuJ, (a2, a2) A.",20 (b20 , bzo ), 

A)2 «a) (\ bl) x C20 (\ M, (a) (\ bd x czo (\ M) 

L. ~/io(a2 (\ b2O , a~i) (\ b~~» 
_ (i,k)eB 
- L. ~(a2 (\ b20 , a~i) (\ b~"c?) 

(i,k)eA 

thus it suffices to prove (3.14). 
For blO E ~IO with blO :::> b) follows 

Ad(a) n b) x(a2 n b20 ) n M, (a) n b) x(a2 n b20 ) (\ M) 

i,u«a) n blO ) x(a2 (\ b20 ) n M, (a) n bd x(a2 n b20 ) n M) 

A)2«al n blO ) x(al (\ b20 ) n M, (al (\ bl) x(a2 n b20 ) n M) 

(3.14) 
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Furthermore, the numerator equals 

Ad(al n blO ) x(a2 n b20 ) n M, (al n blO ) x(a2 n b20 ) n M) 

• AI2 «al n bJO )x(a2 n b20) n M, (al n bd x(a2 n b20 ) n M); 

thus one obtains 

AI2«al n bl) x(a2 n b20) n M, (al n .bl ) x(a2 n b20} n M} 

Ad(al n b lO ) x(a2 n b20 ) n M, (al n blO) x(a2 n b20 ) n M) ~/i (al n blO , al n bl) 

~/i(al n b lO, al n bl ) 

= AI2 (al x a2 n M n blO x b20 , al x a2 n M n blO x b20 ) 

= AJ2 (al x a2 n M n blO x b20 , al x a2 n M n blO x b20 ) 

• AI2 (al x a2 n M n blO x b20 • al x a2 n M n blO x b20). 

By APSZ 7 this becomes 

A..,12O (blO x b20 n M, blO x b20 n M) Ag12 (al x a2 n M, al x a2 n M) 
= A9I'2 (b20 , b20) Ao..J:. (a2' a2) , 

which completes the proof of (3.14). 0 

T 3.11 For each C2 E ~ there is a C20 E ~o with C20 ::> C2. 

Proof. According to Th 4.5.1 in [2] II, for each C2 E ~ there exist an a2 E ~ and a 
b2 E 9j'2 with C2 c: a2 n b2. For b2 E 9j'2 there exists a b20 E 9j'20 with b2 c: b20 • Hence 
C20 ::> C2 holds with C20 = a2 n b20 E ~o. 0 

In APSZ 5.2 we only required that for each al E Ell there be an a2 E El2 
combinable with al' In the proof of T 3.6 we saw that from this more generally 
follows that for each CI E df with CI =F 0 there is an a2 E E?2 combinable with CI • 

But from T 3.7 then immediately follows 

T 3.12 For each CI E df, C2 =F 0, there is a C20 E ~6 so that CI and C20 may be 
combined. 

This among other things asserts CI x C20 n M=F 0. But the derivation of T 3.12 
from APSZ 5.2 was possible only because we presumed APSZ 9. Therefore it is 
understandably not sufficient to introduce an axiom analogous to APSZ 5.2 for 
interchanged Ell> ~ in order to prove a relation analogous to T 3.12. As an axiom 
we therefore demand 

APSZ 5.3 For each a2 E El2 and each a2 n b2 =F 0 with a2 c: a2, a2 E El2' b2 E 9j'2, 

there is an al E Elf that may be combined with a2, so that al x (a2 n b2) n M =1= 0. 
We assume AI2 «al n blO) x (a2 n b20) n M, (al n blO) x (a2 n b2) n M) to be inde
pendent of blO (see the remarks at the end of § 2). 
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From this follows 

T 3.13 For each C2 E J2 with C2 =t= 0 there is a C20 E J20 with C20 => C2 and a CI E J') 
combinable with C20, where CI x C2 11 M =t= 0. 

Proof By T 3.11 there is a C20 => C2, which can be assumed of the particular form 
a2 11 b20 • Then C2 is a union of elements of the form a21l b2 with a2 c a2 and 
b2 c b20 (a fact already used many times). Because C2 =t= 0, there consequently exists 
such an a2 11 ~ '*' 0. According to APSZ 5.3, there is an al combinable with a2, so 
that al x (a2 11 b2) 11 M '*' 0. 

If for a blO E ~{o and a b20 => b2 the probability 

.112 «al 11 blO ) x (a2 11 b20 ) 11 M, (al 11 blO ) x (a2 11 b2) 11 M) 

where zero, this would hold for all blO E ~{o, since that .112 is independent of blO · 
It would imply 

(al 11 blO ) x (a2 11 b2) 11 M = 0 for all blO E ~IO 

and hence, because of (2.13), also al x (a2 11 b2) 11 M = 0, 10 contradiction to 
APSZ 5.3. Thus we get 

and a fortiori 
(al 11 blO) x C2 11 M =t= 0. 

The proof is completed by taking CI = al 11 blO . 0 

§ 4 Action Carriers 

The structures introduced in the preceding §§ 1- 3, describing the directed 
interaction of coupled systems, appear at first to have nothing to do with what till 
now is intuitively understood by microsystems. But how were microsystems such 
as electrons, atoms, nuclei, or molecules discovered? Surely, the hypothesis of 
atoms stood at the forefront in the historical development. By this hypothesis one 
wanted to "explain" the properties of macroscopic processes, such as the behavior 
of gases and the laws of chemistry. The positivists rightly pointed to the still "soft" 
spot, that the "reality" of atoms is not yet "proven" by the consequences of the 
atom hypothesis. But then the physicists learned to experiment with single atoms, 
single electrons, etc. They invented devices on which these microsystems evoked 
actions, and what "acted" that had to be "real". It is precisely this experimenting 
in the discovery of microsystems that we wish to describe by a mathematical 
picture. We assert that we have in §§ 1-3 introduced the fundamental structures 
for this mathematical picture, so that we can step by step begin with the "dis
covery" of microsystems. 

The base sets introduced were M I , M2 , the structure terms were M, then ql, 

~IO, ~I with~, .1,';$'10 and~, ~20' ~2 with .1&., A,';$'20 and finally .1 12 , 

These structures (terms and axioms) enabled us to equip the set M with a struc
ture q12, ~120' ~12 with A&,., .181'120 and .112 so that M can be called a set of physical 
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systems, prepared by the procedures from gl2 and registered by those from ~12. 
We called M endowed with g12, ~120, ~12' A~, A9l'12O' AI2 the set of composite 
systems. 

Of course one could "forget" how this set M of composite systems was derived, 
and start a mathematical theory from M as the base set and structures g12, ~120' 

~12' k..;,., A.",12O' A12, subject to the "axioms" 

gl2 is an SSP structure. 
~J20 is an SSP structure. 
~12 is an SP structure. 

~120 c ~12. 

For each b E ~12 there is a bo E ~120 with b c bo. C 12 = gh x ~ho. 
J12 is an SSP structure. 
For a, d E gl2 and bo, b6 E ~120 we have 

AI2 (a (') bo, a' (') bo) = A.q12 (a, a') , 

AI2 (a (') bo, a (') b6) = A9l'12o(bo, b6). 

M=Ua=Ub. 
De&,. bei'?12 

In §§ 2 and 3 we proved these "axioms" as theorems. If one "forgets" the 
derivation and starts from Mwith g12, ~120, .•• and the given axioms, then M is a 
set of physical systems (just as Mm in II § 2) of which one "forgot" that they are 
"composite". 

But the theory erected in §§ 1-3 enables one to endow M with yet another 
structure, by which M gets another physical meaning, as said in [3] § 10.5. Since we 
shall not presume these general considerations let us make some clarifying remarks 
on this method. 

The difficulty in comprehending is due to the fact that one cannot "imagine" 
that one and the same set M can describe different physical facts. Despite the hint 
that the elements of M are only "pictures" of facts, in the "imagination" one ille
gally identifies these elements with the facts. Insisting that M is initially nothing 
but a kind of "index set" for real facts can perhaps avoid one's getting that false 
idea. Just this "indexing" has been described in [3] § 5 as "marking" to record the 
axioms Hr. 

But if one endowes M with a physically interpreted structure, its elements get a 
further meaning than of mere indices. This likewise happens in mathematics: A set 
M is first of all only a set; but if one endowes it with a group structure then M 
becomes a group. 

Therefore in the following one must not worry when we endow M with another 
structure (likewise physically real; see [3] § 10.5), and then characterize it by 
another physical concept. But whoever still has qualms with this can imagine an 
auxiliary set !VI and a bijective mapping M ++ !VI and interpret all the structures 
introduced below as structures of !VI (due to M ++ !VI). Then one will certainly no 
longer have trouble in viewing !VI with these structures as the image of other 
physical facts. 
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As new structure terms over M we introduce 

!!J = {cl X M2 Il M I CI E .:II} , 

~o = {M1 X C20 Il M I C20 E J2o} , 

~ = {MI X C2 Il M I C2 E J2} . 

(4.1) 

(4.2) 

(4.3) 

Therefore, !!J, ~o, ~ are countable since!!J1, !!J2 , ~I' ~2 are. Due to T2.2, the selection 
procedures !!J,.:II are isomorphic, and so are ~o, J20 and likewise ~ and J2. By these 
isomorphisms one can transfer AJ'i from .:II to !!J (as Ad and likewise A/20 from J20 to 
~o (as ~). Thus the following relations hold as theorems (!): 

APSI 

APS2 

APS3 

!!J is an SSP structure. 

~ is an SP structure. 

~o is an SSP structure. 

From J20 C J2 follows immediately 

APS4.1 ~OC~. 

From T 3.11 and the above isomorphisms follows 

APS 4.2 For each b E ~ there is a ho E ~o with b c boo 

In a way entirely analogous to the definitions of combinability given in § § 2 
and 3, we adopt 

D 4.1 We say that an a E!!J' and a bo E ~6 may be combined if a' E !!J', b6 E ~6 and 
a' c a, b' c b always imply a' Il b' 9= 0. 

With D 3.2 and the above isomorphisms follows immediately that 
a = CI x M2 Il M may precisely then be combined with bo = M X C20 Il M when CI 

may be combined with C20' From this follows that 

8 = {a Il b I a E !!J', b E ~ and there is a bo E ~o with bo ::> b 

and a combinable with bo} 

is identical to the set A3 in T 3.8. From T 3.8 thus follows that .:112 is the SPstruc
ture generated over M by 8. We now omit the indices on .:112 and simply write ./. 
We write the probability AI2 accordingly as A/. As theorem (!) therefore follows 

APS 6 ./' is an SSP structure. 

From T 3.12 follows 

APS 5.1.1 For each a E q there is a bo E ~6 combinable with a. 

From T 3.13 follows 

APS 5.2 For each b E ~ with b * 0 there exist an a E !!J and a bo E ~o with bo ::> b, 
a Il b * 0 and a, bo are combinable. 
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The next relations follow from (3.12) and (3.13): 

APS 7 For ai, a2 E g with a2 c al and bOI , b02 E tWo with b02 c bOI and al 
combinable with bOI we obtain 

7.1 

7.2 

A./' (al n bOl , a2 n bOI) = A.g (ai, a2) , 

Av (al n bOl , al n b02 ) = A910 (bol> b02 ) . 

From (2.9) and (2.13) follows 

U a = U [(al n bl) x M2 n M] = [( U al) n ( Ubi)] 
aE:9 a,E!9t a,E~ b,EM 

b, E M, 

=(M nMI)xM2nM=M; 

likewise (2.10) and (2.14) imply 

U b = MI X [( U a2) n ( U b2)] n M = MI X (M2 n M2) n M = M. 
bEM a.Eil\, b.E91. 

Consequently we find 

APS8 M=Ua=Ub. 
a E!l/ bE 91 

D4.2 We denote M, endowed with the structure {g, tWo, tW, A!l/, A910' A..",} obeying 
APS 1 through APS 8, as the set of action carriers. 

This notation should connote that one can interpret g as the set of preparation 
procedures for the action carriers, tWo as the set registration methods and tW as the 
set of registration procedures. Precisely in this sense one designates the interaction 
between the systems (XI, X2) as "caused by action carriers going from XI to xz. 
Such a statement in everyday language must always be regarded as abbreviation 
for an entire complex relationship. In the above formulation there naturally enters 
an ontological notion whose basis in 9:7 is the "physical reality" of M, g, tWo, tW, 

43, A!jpo' A./; one can easily prove this reality by the methods from [3] §§ 10.4 and 
10.5. 

If one "forgets" the derivation of M, of the structure {g, tWo, tW, A!l/, A910' A./'} and 
of APS 1 through APS 8 as theorems, one can start a theory from M as base set and 
APS 1 through APS 8 as axioms. Quantum mechanics was developed in just this 
way in [2] (see [2] II). The theorems derived there are thus also theorems in the 
theory presented here (some to be stated below). 

If one denotes the theory presented here by 93) and the theory presented in 
[2] II by 9.92, then 9.92 is a restriction of 93'j (in the sense of [3] § 8, [48] and 
XIII § 3 and provable with the methods presented there). Strictly speaking (in the 
notation from [3] § 8, [48] and XIII § 3), the relation 

(4.4) 

holds. Here the embedding 93)' "'4932 is trivial, since the M from 93)' (i.e. from 
9y!) need only be identified (by a bijection) with the M from 932 in such a way 
that also g, tWo, ... from 93) are identified with g, tWo, ... from 932. 
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D 4.2 need not entice one to additional ideas about these action carriers (for 
instance the whereabouts in space and time). By the axioms from §§ 1-3 it is not 
even guaranteed that one can view the action carriers as physical systems (see § 5). 
Still many axioms, i.e. natural laws, must be added to characterize M as the set of 
microsystems. 

The following theorems can be deduced from APS I through APS 8. 

T 4.1 The function A./' for./' is uniquely determined by A£I and by the special values 

A (a 11 bo, a 11 b) 

for a, bo combinable and b E f/f with b c bo. 

Proof See [2] II Th 4.5.2. 

To formulate further theorems we adopt the definitions: 

D4.3 Y= {(bo, b) I bo E f/f6, b E f/f, be bo} be called the set of "effect processes" 
(or of "questions"). 

Since f/fis countable, Yis so. 

D4.4 ~= {(a,f) 11= (bo, b) E Yand a, bo combinable}. 

D 4.5 On ~ we define the real-valued function fl by fl (a, f) = fl (a, (bo, b)) = 
A,/, (a 11 bo, a 11 b). 

Then T 4.1 says that Av- is completely determined by k> and fl. 
The fl defined by D 4.5 plays a central role in the statistical description of 

action carriers. Therefore the reader should review the definition of the sets g, 
f/fo, f/f (given in § 4) on the basis of g), g2, f/f\O, f/f), f/f20 , f/f2, which are the experi
ments to test fl. 

Furthermore we adopt 

D4.6 (bo, bo) = Ibo and (bo, 0) = Obo' so that Ibo and Obo are elements of Y. 

n 

D 4.7 For a decomposition of a bo E f/fo of the form bo = Ubi, with bi 11 bk = 0 for 
i=1 

i =1= k (bi E f/f) we call the Ji = (bo, bi) a disjoint decomposition of Ibo and write 
n 

Ibo = l:J J;. 
i=1 

For each 1= (bo, b) E Y there is an /' E Y with Ibo = I \:J /', namely 
f' = (bo, bo\b). 

T 4.2 The function fl obeys 

(i) 0 ~ fl (a, b) ~ 1. 
(ii) For each a E Q' there is an 10 E Y with fl (a, /0) = o. 

(iii) For each a E Q' there is an II E Y with fl (a, II) = I. 
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n 

(iv) Under a decomposition a = U ai (with ai n aj = 0 for i::j:: j) for all f 
with (a, f) E ~ follows i= I 

fl. (VI ai,J) = tl Ai fl. (ai,f) 

n 

with 0 < Ai = A", (a, ai) ;;§; I and L, Ai = 1. 
i=1 

(v) For bolo b02 E ~6 and bOI :J b02 :J b and for fi = (bOI , b), 12 = (b02 , b) every 
a with (a,fi) E ~yields 

fl. (a, fi) = A9l'o (bOI , b02) fl. (a,12) . 
n n 

(vi) For a, bo combinable, lbo = l:.J fi implies L, fl. (a, fi) = 1. 
i=1 i=1 

(For each fEY there is in particular an I' E Y with fl. (a, f) + fl. (a, 1') 
=1.) 

(vii) For (a,J) E ~withf= (bo, b), we find fl. (a,J) = 0 ~ an b = 0. 
n ( n 

(viii) If bo = ~I bOi with bOi E ~6 and bOi n bOk = 0 for i::j:: k i.e. i~1 bOi a de-

composition of bo in ~o), for f = (bo, b) with fi = (bOi , bOi n b) and for 

each a E 9' with (a, f) E ~ follows 

and 

n 

fl. (a, b) = L, A9l'o(bo, bOi) fl. (a,fi) 
i=1 

n 

L, A9l'o(bo, bOi) = I . 
i=1 

(In this case we call the fi the decomposition of f induced by that of bo.) 

Proof. See [2] II Th 4.5.3. 

T 4.3 If for prescribed Ae, a function fl. (a, f) on ~ satisfies (i), (iv), (v), (vi) and 
(vii) from T 4.2, for ./ there is one and only one probability A/ with 
AAa n bo, a n b) = fl. (a, f). The Av- thus determined fulfills APS 7 and the condi
tion (viii) from T 4.2, while A..,o is uniquely determined by fl.. 

Proof. See [2] 11Th 4.5.4. 

T 4.3 shows that in experiments it suffices to test the function fl.. Due to the 
meaning of fl. as picture of a frequency, the conditions (i), (vi) and (vii) are almost 
trivially fulfilled in experiments. Condition (iv) expresses the fact that the prepara
tion of the action carriers is not influenced by their registration (the initially 
imposed directedness of the action). In fact one must experiment in just this way; 
-etherwise one has not performed an experiment suitable for the test. Condition (v) 
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expresses the fact that a refinement of the registration method is statistically inde
pendent ofthe preparation (one also must experiment in this way). 

Therefore, the conditions (i), (iv), (v), (vi) and (vii) "control" a "correct" 
experimentation rather than stating something about the investigated action 
carriers. The entire "information about the carriers" therefore resides in the func
tion f-l over -c. This shows us the path to be followed if we want to learn the "most 
possible" about the action carriers themselves regardless of the employed devices. 
We took a first step in this direction in § 4, considering only M with the structure 
g, afio, afi, f-l and "forgetting" how M with this structure was obtained from the "pre
theory" of the coupled macrosystems. In § 5 we shall take a further step in this 
direction. 

§ 5 Ensembles and Effects 

Into the concept and the description of the action carriers only that entered in 
§ 4 what in § 3 we called the directed interaction between two macrosystems. 
Therefore, quite understandably one still misses a certain "independence" in the 
concept of action carriers. In fact, M with the structure g, afio, afi, f-l is nothing but a 
description of the "interaction" under the utmost abstraction of all individual 
structures of the interacting macrosystems. But now we shall introduce further 
axioms for those carriers, which signify a first step in the direction of autonomy for 
action carriers. 

§ 5.1 The Problem of Combining Preparation and Registration Procedures 

We got a bearing on the combinability problem just before definition D 2.2. 
Already there we pointed out that the two systems XI E MI and X2 E M2 not only 
must be put side by side. Rather the combinability also "establishes a prescrip
tion", saying what should be viewed as experiments belonging to the "fundamental 
domain". 

What is the aim we are pursuing by prescriptions for the selection of "correct" 
experiments? 

There are two such objects which condition each other. First of all, from the 
fundamental domain we try to eliminate two complicated problems. One is the 
production of the action carriers by the preparing device; the other is the action of 
the carriers on the registration device. In the fundamental domain, we thus want 
only to keep the facts that the carriers are produced and are acting, without 
theoretically describing how this happens inside the devices. Secondly, we want to 
select the experiments in such a way that they inform us about the action carriers 
and not about the structure of the devices. 

Intuitively the second intent is in the minds of all experimental physicists. For 
planning their experiments, they imagine the carriers to spread (after leaving the 
preparation device), and the registration devices to test this spreading. This 
imagination is very obvious for scattering experiments. 

During the historical development of the theory for microsystems one has 
adopted many additional imaginations for the structure of the carriers, which one 
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later had to abandon (e.g. the carriers as particles that fly through space). Our task 
is it to avoid such additional imaginations when we introduce axioms for the 
allowed combination of preparation and registration methods. 

Thus eliminating the detailed description of the processes inside the prepara
tion and registration devices, we strongly simplify the intended theory. This 
elimination is a first step in the direction of describing the action carriers as they 
are. 

These two objects in our minds can be illustrated by two examples. 
The first example is a rifle as preparation device (1) and a target (sandbag) as 

registration device (2). Obviously the action of (1) on (2) is directed. 
Our first object intended is to include in the fundamental domain neither the 

physical and chemical processes inside the rifle not the burst of the bullet into the 
sandbag. In the same direction goes our second intention, namely to describe only 
the flight of the bullet (as action carrier). We have to accomplish both intentions 
by introducing axioms for combining preparations and registrations. 

As the second example let us take a radio transmitter as preparation device (1) 
and a reciever as registration device (2). First we want to eliminate (from the 
fundamental domain) the description of how the transmitter and reciever are func
tioning. We see immediately that this elimination strongly simplifies the problem 
of how the action spreads from the transmitter to the receiver. In this example we 
know how to describe the action carriers (electro-magnetic waves), namely by the 
homogenous (!) Maxwell equations. How can we for the combination of transmit
ters and receivers introduce such axioms that in the fundamental domain the 
propagation processes need only be described by the homogeneous (!) Maxwell 
equations? 

The desired reduction of the fundamental domain shall be described (of course 
not only for the above examples) by the axioms APSZ 5.4, APS 5.1.3, APS 5.1.4. 
How can these axioms be made plausible? The second example is best suited to 
guide us to them. 

Let the transmitter operate during the time interval from tl to t2 and occupy the 
space region V. Obviously we must forbid to register at a t < tl because there is no 
electromagnetic wave at such a time. If a registration before tl were allowed, one 
could estimate the time about which the wave was emitted. But this emission 
cannot be described by the homogeneous Maxwell equations. We also must forbid 
to register within the region V (inside the transmitter). We can only allow to 
register at times and in regions, where the waves can be described by the homo
geneous equations, hence sufficiently late and outside V. When we imagine subsets 
~Ct of ~ with a parameter 0( (to describe the time after which and the region 
outside which one registers), it is plausible to introduce the following axiom for 
the set ,12 of all ~Ct: 

APSZ 5.4 There is a downward directed set ,12 c 9 (q2) with 0 ¢ ,12 so that for 
each al E 9f there is at least one element Q2Ct E ,12 such that al is combinable with 
all a2 E ~Ct. 

The next relation easily follows (as a theorem) from APSZ 5.4 and the theorems 
in § 3. 
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APS5.1.2 There is a downward directed set re &'(9Po) with 0 f£ r such that for 
each a E f!)' there is at least one element 9Poa E r such that a is combinable with all 
bo E &roa. 

This APS 5.1.2 has in [2] 1lI § 1 been used as an axiom. 
The demand of APSZ 5.4 and its implication APS 5.1.2 are weak; they do 

not essentially restrict the fundamental domain. In particular, APSZ 5.4 does not 
indicate the physical significance of the index IX. There are two ways of strengthen
ing the prescriptions for the combination. One possibility would be to introduce 
in vIIYl: relations between the index IX and space-time-regions. The second 
possibility is to introduce additional axioms for the set r, having in mind the 
physical significance of the index IX without introducing mathematical relations for 
this significance. We choose the second possibility. This does not mean that we do 
not attach importance to describing the relations between space-time-regions and 
preparation or registration procedures occuring in these regions (for such relations 
see [46]). We do not introduce such relations for the sole reason that we shall have 
no opportunity to use them in other contexts within this book. 

To strengthen APS 5.1.2 let us ask, what information about the carriers the 
registration methods of 9Poa can give. It might turn out that the time specified by 
an index IX is "too late". 

Nothing about the actions proceeding from the X\ E a E f!)' (for fixed a) can be 
learned any more from the bo E 9Poa because these actions have meanwhile petered 
out. That just this does not happen in the intended fundamental domain of the 
microsystems (not only there) will be expressed by an axiom. This axiom APS 5.1.3 
will assert that the structure of the action carriers is not lost in time even if perhaps 
it is temporally variable. This shows the first sign of a certain autonomy of the 
action carriers. We formulate this "not getting lost" so that it suffices to test the 
elements of f!)' by means of the procedures bo from anyone of the elements 9Poa E r. 
Since, according to APS 5.1.2, for any at, a2 E !?)' there is a common 9Poa E r such 
that all bo E &roa are combinable as well with a\ as with a2, we formulate 

APS 5.1.3 The set r from APS 5.1.2 can be so chosen that the following holds: For 
each element &roa E r, with a\ , bo and a2, bo combinable for all bo E 9Poa , from 

J1 (a\, (bo, b)) = J1 (a2' (bo, b)) 

for all bo E &rop and all b e bo follows 

J1 (a\,J) = J1 (a2,J) 

for all! E Y, where (a\,J) and (a2,J) E £. 

This axiom asserts that two preparation procedures for action carriers do not 
differ at all in their probability distributions if they cannot be distinguished by the 
registration methods bo of a single 9Poa E r. Hence nothing of the structure of the 
action carriers gets lost if one registers after any length of time. 

In our example of the electromagnetic waves as action carriers, APS 5.1.3 holds 
because any solution of the homogeneous Maxwell equations is determined by the 
values of the field at a particular time. 

The next theorem follows from APS 5.1.3: 
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T5.1.1 The relation'" defined by 

al '" a2: f.l (al,J) = f.l (a2' f) for all f with (al ,J), (a2' f) E ~ 

is an equivalence relation. 

Proof See [2] III Th 1.2. 

We now adopt 

77 

D 5.1.1 Let:% be the set of classes of !!J' relative to the equivalence relation from 
T 5.1.1. Let rp denote the canonical mapping: !!J' ~ :R: 

The set :% is countable since !!J is countable. 

From T 5.1.1 follows immediately that 

A (rp (a),J) = f.l (a,J) (5.U) 

defines a function A on a subset of :%x.7, formed by all those pairs (w,J) for 
which an a E wexists with (a, f) E ~. 

The intuitive notions having led to APS 5.1.3 lead us to formulate a further 
axiom. We have imagined that for any a E !!J' there exists a set fliOrx E r with whose 
elements a is combinable. If we now compare the different a which belong to the 
same class w, one can perhaps find, for an a' E w not yet combinable with all 
bo E fli6rx (since the preparation procedure a' of the action carriers is not "ter
minated" by the time corresponding to oc), an a E w for which the preparation has 
already terminated at an earlier time. One could thus require that in each wand 
for any oc one finds an a E w combinable with all bo E fliorx. Also vice versa, for 
fixed a E!!J' and any fEY with (a,f) rt~, there should exist anI' to be registered 
later (with (a,f) E ~), which yields the same probabilities. These intuitive 
considerations suggest 

APS 5.1.4 For each bo E fli6 there is in each class w E :% an a E w such that a and bo 
are combinable. For any pair a E !!J', fEY there is an I' E Y with (a,f') E~, 
making A (w, f) = A (w, 1') wherever defined. 

As the intuitive path to axioms APS 5.1.3 and APS 5.1.4 has shown, these are 
by no means trivial. It certainly is thinkable that these axioms' so severely restrict 
the fundamental domain of the theory that it becomes useless just for the intended 
interaction situations. Therefore, if difficulties arise (for example, for a "relativis
tic quantum theory") one must not assume that the axioms APS 5.1.3 and 
APS 5.1.4 cannot be responsible. 

From APS 5.1.4 follows 

T 5.1.2 A is defined on all of :%xY. 

Proof" See [2] III Th 1.3. 

T 5.1.3 The relation", defined by 

fi '" ji: A (w,fi) = A (w,ji) for all WE :% 

is an equivalence relation. For every pair a E !!J', fEY there is an I' E Y with 
f '" I' and (a,f') E~. 
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D 5.1.2 Let./ be the set of classes of :T relative to the equivalence relation in 
T 5.1.3. Let If! be the canonical mapping :T .34 ./. 

The set ./ is countable since :T is countable. 

From T 4.2 easily follows 

T5.1.4 A real-valued function fi is defined on Yfx./ by fi (w, If! (J» = p. (w,f) 
with WE%, fEY; it satisfies 

(i) O:;§ fi (w, g) :;§ I for g E ./. 

(ii) fi (WI> g) = fi (W2' g) for all g E./ implies WI = W2· 
(iii) fi (w, gl) = fi (w, g2) for all W E Yf implies gl = g2· 
(iv) There is a go E./ with J.l (w, go) = 0 for all w E Yf. 

(v) There is a gl E./ with J.l (w, gl) = 1 for all W E .J¥: 
(vi) For each g E./ there is a g' E./ with J.l (w, g) + J.l (w, g') = I for all w E Yf. 

Later on, instead of go we simply write 0 and instead of gl simply I. If no error 
is possible, we shall simply write J.l instead of fi so that J.l (qJ (a), If! (J» = J.l (a,f) 
holds (in a not quite correct notation). 

One should recall that the partition of !!)' and :T into classes depends essentially 
on the combinable pairs (a, bo). If one had declared the pair (a, bo) combinable if 
and only if the corresponding devices are not in each others way, one would have 
obtained (for example for !!)') an essentially more refined partition into classes. The 
classes from Yf would split into finer ones because the a E!!)' could be distin
guished, for instance, by the space-time region in which they prepare. But just by 
choosing the coarser partition we believe we can dig out the structures of the 
"interaction carriers". They are structures which no longer contain the special form 
of the devices belonging to the a E !!J'. 

Let it further be noted that APS 5.l.l, APS 5.1.2, APS 5.1.3 are not mutually 
independent: APS 5.1.3 is formulated so that it comprises APS 5.1.2 from which 
APS 5.l.l follows as a theorem. Whereas APS 5.l.l, APS 5.1.2 and APS 5.2 are 
easily reduced (see §§ 1 through 4) to physically not very deep statements about 
composite systems, APS 5.1.3 and APS 5.1.4 thus present important "selection 
axioms" for "correct" experiments. The "aim" of this selection is to introduce the 
equiValence relations in!!J' and :T. (A similarity of this procedure with the intro
duction of selection norms in protophysics is unmistakable; see [42].) Therefore, 
the axioms APS 5.1.3 and APS 5.1.4 represent essential statements about the inter
action, declaring it possible to select such a fundamental domain that this selection 
axiom can be satisfied. Of course, even with APS 5.1.3 and APS 5.1.4 there are in 
fact larger domains of the theory than only the microsystems. 

The consequence APS 5.1.2 of APSZ 5.4 and the axioms APS 5.1.3, APS 5.1.4 
do not explicitly describe the relation between the elements of rand space-time
regions. But these relations will in § 7 be important in formulating the transport of 
the preparation and registration devices relative to each other. 

In applying quantum mechanics, one very often disregards that APS 5.1.2 to 
APS 5.1.4 (together with the structures of § 7) actually reduce the fundamental 
domain in such a way that the discription of physical processes inside the prepara
tion and registration devices is eliminated. To say it very clearly: By introducing 
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APS 5.1.2 to APS 5.1.4, we deprived ourselves from the beginning of the possibility 
to describe the processes inside the preparing and registering devices by quantum 
mechanics alone. Or to say it in a familiar form: Quantum mechanics is from the 
beginning not suited to explain the "measuring process" (the registration). The 
attempt to derive the measuring process from quantum mechanics resembles that 
of deriving the inhomogeneous Maxwell equation from the homogeneous one. 

Therefore it is amusing to watch the various philosophical gymnastics by which 
one hopes to escape from this hard fact. It is not possible, simultaneously to get a 
"simple" theory of the microsystems as action carriers (in the form of quantum 
mechanics) and a theory of the preparation and registration devices. 

For instance it is essentially simpler to describe the structure of light (as action 
carrier) than to describe the production of this light by a star. 

This example of the spreading of light may seduce us to some errors. 

(I) One may assume that the emission of a photon by an atom (describable by 
quantum mechanics) were a preparation process for light. This is not the case. One 
must take a macroscopic device to establish a preparation procedure. It is possible 
to construct a preparation device producing single excited atoms and to register the 
emitted photons (see [2] XI). 
(2) It seems wrong that we cannot measure the position of a light source in space 
time by registrations far away from the source. Indeed we observe the stars and 
also other light sources in this way. But the registrations alone cannot tell us where 
the sources are. It is not difficult, by optical methods with lenses and mirrors to 
procedure such light beams that the light seems to come from "virtual" sources. To 
infer "real" sources is only possible when one has additional information. This is 
not available from registrations far away from the sources (registrations combin
able with the preparations). To conclude: Quantum mechanics alone is not suited 
to describe the preparation and registration devices. 

Is this a reason, not to be interested in the processes inside the preparation and 
registration devices? On the contrary! But for this purpose we have to develop a 
more comprehensive theory than quantum mechanics (similarly as the inhomo
geneous Maxwell equation yields a more comprehensive theory than the homo
geneous one does). How such a more comprehensive theory may look will be seen 
in XI. 

§ 5.2 Physical Systems 

Let us express the importance of the axioms APS 5.1.3 and APS 5.1.4 by a new 
concept, which sharpens the definition D 4.2. 

D 5.2.1 We shall designate M, endowed with the structure !!J, a'o, a', Ag, A9I'0' A/ 
which satisfies APS I through APS 4, APS 6 through APS 8 and APS 5.1.3, 
APS 5.104, APS 5.2, as a set oj physical systems. 

Therefore, one can for physical systems introduce the sets yr and ../ defined in 
D 5.l.l and D 5.1.2. In view of the importance of these sets, we likewise introduce 
two new concepts: 
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D 5.2.2 The elements of .Y will be called ensembles or states, those of J' will be 
calles effects. 

Using the methods of [3] §§ 10.4 and 10.5, one can (by means of the mappings rp 
and lfI) easily show that % and J' are sets of real situations. Our intention to 
recognize the structure of the physical systems from M suggests, in forgetting the 
devices to go a step farther, namely also to forget !!J, ~o, ~, k, A[jj'o' Av-" considering 
only %, J' with the structure .Y x J' A [0, I]. This is a very customary way of 
presenting quantum mechanics. 

One can surely construct a &'3) so that the axiomatic basis ..-IIY1:3 is replaced by 
a structure species E 3, There Y, J' are taken as the base sets and .Y x J' 4 [0, 1] 
as the structure term with the relations from T 5.1.4 as axioms. But one buys such a 
presentation (that seemingly relates purely to the microsystems) at the expense of 
serious difficulties in the interpretation as we will now make clear. 

According to our derivation, &'3) would be a restriction (with trivial embed
ding) of .951, the theory we have started to erect in § I. Therefore, one could 
continue the scheme (4.4) in the sense of [3] § 8 and [48] to 

(5.2.1) 

In this sense also the mapping principles of &'3) are fixed as shown in [3] § 8 
and [48]. All the theories presented (in § I through § 5.1) "before" &'3) can then be 
counted among the pretheories of &'3) (see [48]), whereby one obtains the mapping 
principles of &'3) from the pretheories (as hinted in [3] § 10.5 and [48]). But also 
without knowledge of the general considerations from [3] or [48] is it obvious what 
the sets .Y and J' mean since they were derived from the interpreted sets M 1, M2, 
!!J1, ~, ~l' ~2' etc. If one abandons all this in order to interpret the elements of ,Y, 
J' and fJ" one must try to explain the mapping principles in everyday language. The 
explanations in [1] XI § 1.7, for instance, show how difficult and obscure such 
explanations are. 

Still worse than obscurities are the erroneous interpretations that can occur if 
for &'3) one foregoes the "pretheories" from § I through § 5.1. Such erroneous 
interpretations can easily be suggested by intuitive concepts. In classical 
mechanics, an ensemble is characterized by a density e (x) in the phase space r. 
One can regard this e (x) as realized by a very large number of systems whose 
swarm of points in r approximates e. In this sense the structure of e seems to 
determine the partition of a large swarm of systems uniquely. Whenever el = Q2, a 
swarm of systems characterizing el is in no way physically distinguishable from a 
swarm of systems characterizing Q2. Such notions carried over to quantum 
mechanics can easily lead to misjudgments. Only so is it understable that one could 
perceive the so-called "Einstein-Podolski-Rosen paradox" as a paradox although it 
is none. Subsets aI, a2 of microsystems (aI, a2 E !!J') can very well be physically 
distinguishable although rp (al) = rp (a2). Yes, it can even happen that two prepara
tion procedures al and a2 in spite of rp (al) = rp (a2) differ so strongly that necessarily 
al n a2 = 0 (see V § 7 and VII T 5.3.2). Similar remarks hold for the effects. 

Evidently something in the structure of the physical systems which transfer the 
action is lost when one "forgets" everything up to (,Y, J; fJ,). We shall in V com
pensate this loss by introducing the concepts "preparator" and "observable". 
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The suspicion that (~J; p,) does not contain everything that can be said about 
the structure of the microsystems is already suggested by the fact that without the 
preparation and registration procedures it is no longer possible to express 
mathematically a relation between M and the sets ~../. To the structure 
(.%, J, p,), the concepts of preparators and observables attach pictures for prepara
tion and registration procedures. These pictures appear in mathematically idealized 
form, namely as abstract Boolean rings. Therefore, one cannot completely under
stand quantum mechanics if one only starts from :%, J, p,. 

The only reason why in definition D 5.2.1 we have used the phrase "physical 
systems" and not "physical objects" is that we reserve the word "objects" for 
special physical systems (see V § 10). 

§ 5.3 Mixing and De-mixing of Ensembles and Effects 

An important theorem for p, (i.e. for il) follows from T 4.2 (iv): 
n 

T 5.3.1 From a de-mixing a = U ai of a preparation procedure a, for all g E ../' fol
lows i=1 

n 

;=1 
n 

where Ai = Aq (a, ail, 0 < Ai ~ 1 and L. Ai = 1. 
i=1 

Proof By [2] III Th 2.1, it results from T 4.2 (iv) and T 5.1.3. 

(5.3.1) 

n 

D 5.3.1 If for aWE :% there is a set of real numbers Ai with 0 < Ai ~ I, L. Ai = I, 
and a set Wi E :%so that n i=J 

(5.3.2) 
i=1 

holds for all g E ../', then one calls (5.3.2) a de-mixing of W relative to the Wi with 
weights Ai' 

By the construction of preparation devices, used to select systems, a further 
structure of preparation procedures is suggested. It reverses the de-mixing of 
preparation procedures and is therefore called the mixing of preparation proce
dures: 

If one has constructed two selection procedures c', c" E .fJ., one can evidently 
construct another selection procedure c E.fJ. as follows: One takes a random 
generator B with two indications (+) and (-), where (+) appears with the 
frequency Il( (hence (-) with the frequency 1 - Il(). To the device B one attaches 
devices selected by c' resp. c", so that upon appearance of (+) the device selected 
due to c' is used for the action on systems from M2 and upon appearance of (-) the 
device selected due to c" is used. The new "large" device thus composed from B 
and the devices selected due to c' resp. c" is again a system XJ E MI with directed 
interaction. One thus obtains from B, c', c" a new selection procedure c E ./. How 
can one express this technical construction possibility of c from c', c" and B 
mathematically? 
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The new procedure c is de-mixed into c+ and c_ according to (+) or (-) having 
appeared on B. Therefore, c = c+ U c_ and c+ (J c_ = 0. 

One would be tempted to simply set c+ = c' and c_ = c". But this is false since 
the selection procedure c' concerns only the selection due to c' and not a selection 
of the "large" systems comprizing the device B. Nevertheless, c+ evidently is very 
similar to c'. This similarity can be expressed best with the aid of the mapping rp 
from D 5.1.1. 

According to the definition of f!) in § 4, to each element of./( there corresponds 
in a one-to-one fashion an element of f!): c' ++ a', c" ++ a", c+ ++ a+, L ++ a_. Then 
we can express the similarity of c' with c+ simply by rp(a') = rp(a+). Because of the 
isomorphism of f!) with ./I, the axiom to describe the possibility of constructing c 
shall be formulated directly by means of the elements of f!). Let us first introduce 
two definitions. 

D 5.3.2 Two preparation procedures a, dE f!)' are called isomorphic (this is what 
we intuitively designated above as being similar) if there is an isomorphic 
mapping i of the Boolean ring f!) (a) (f!) (a) = [0, a] c f!) onto the Boolean ring f!) (d) 
such that 

rp (i a') = rp (a') and Ag (a, a') = Ag (i a, i a') 

hold and if (a, bo) combinable is equivalent to (d, bo) combinable. 

(5.3.3) 

D 5.3.3 A preparation procedure a is called a direct mixture of the preparation 
procedures al and a2 if these are isomorphic to two preparation procedures a;, a2 
with a; (J a2 = 0, a = aJ u a2. One calls 0( = k(a, aD resp. (I - O() = Ag(a, a2) the 
weight of al respectively a2 in the direct mixture a. 

Due to the above intuitive considerations for the construction of devices let us 
now require: 

AP 1 For every pair ai, a2 E f!)' and for every rational number 0( with 0 < 0( < I 
there is a direct mixture a E f!)' of al and a2 with 0( the weight of al in a. 

The phrase "there is" in this axiom due to [3] § 10.4 asserts that a direct 
mixture a of the stated form is "physically possible". Just this was to be suggested 
by the above considerations about possibilities of constructing devices. 

The "natural law" AP I is no indication for "correct" experimentation. It is an 
assertion about what is doable (physically possible, according to [3], in the sense of 
"at one's disposal"). However, AP 1 contains no suggestion for realizing a direct 
mixture. Just before introducing the axiom AP 1 we have described such a 
suggestion; perhaps one can think of yet other possibilities. 

From AP I follows 

T 5.3.2 For each sequence Wi E Y(i = I, ... , n) and each sequence of rational 
numbers Ai> 0 (i = 1, ... , n) with L. Ai = 1 there is an a E f!)' and a de-mixing 

n i 

a = U ai with rp(ai) = Wi and Ag(a, ail = Ai. With W = rp(a) we have: 
i=l n 

J1.(W, g) = L. AiJ1.(Wi,g) forall g E../'. 
i=l 
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Proof See [2] III Th 2.2. 

That we required AP 1 only for rational r:J. corresponds to the fact that g is 
countable (a consequence from [3] § 9). 

In regard to AP I let the reader be warned of the wrong inference that for each 
n 

de-mixing a = U ai the device A belonging to a must consist of a random generator 
i=l 

B, which triggers other subdevices Ai belonging to the ai. Actually, the indications 
on the device A need not relate to a random generator. They can be so intimately 
connected with the processes within the device A that it is impossible to define 
subdevices Ai of A which function according to the occurrence of the indications of 
some random generator. It will be quite decisive for understanding quantum 

n 

mechancis that there really exist demixings a = U ai which do not correspond to a 
i=l 

decomposition of a device A into subdevices Ai switched by a random generator. 
A contradiction to quantum mechanics would arise if one rashly would sharpen 

the axiom AP I to the following requirement: 
If there is given a de-mixing of W into the Wi according to D 5.3.1 and if 

n 

W = rp(a), then a has a de-mixing a = U ai, with rp(a;) = Wi and Ag>(a, ai) = Ai' 
i=l 

In VII, § 5.3 we shall see that there must be selection procedures a with 
n 

rp(a) = W for which there is no de-mixing a = U ai with rp(ai) = Wi and Ag>(a, ai) = Ai 
i=l 

although W = tp(a) obeys (5.3.2). Of course, AP I then postulates another selection 
n 

procedure a' with tp(a') = W which allows a de-mixing a' = U at with tp(aj) = Wi and 
l,,(a', at) = Ai. i=l 

These considerations about the preparation procedures can easily be trans
ferred in a slightly modified form to the effect procedures. 

To begin with, from T 4.2 (viii) follows 
n 

T 5.3.3 If bo = U bOi is a de-mixing of the registration method bo into the bOi with 
i=l 

weight Ai, an effect proceduref= (bo, b) with!; = (bOi ' bOi n b) satisfies 
n 

peW, 1fI(f)) = L Ai/l(W, 1fI(Ji)) (5.3.4) 
i=l 

for all W E .ff. 

Proof See [2] III Th 2.3. 
n 

D 5.3.4 If for agE J there is a set of real numbers Ai with 0 < Ai ~ I, L }'i = 1 
and a set gi E Jso that i=l 

n 

p (w, g) = L Ai P (w, g;) (5.3.5) 
i=l 

holds for all WE %, one calls (5.3.5) a de-mixing of the effect g into the effects gi 
with the weights Ai. 
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Thus (5.3.4) presents a de-mixing of 9 = lJI(bo, b) into the gi = lJI(bOi , bOi (J b) 
with the weights Ai = A9?o (bo, bOi)' 

The above prescription for constructing a selection procedure c E J'[ from two 
selection procedures c', c" E J'[ and a random generator can at once be transferred 
to the elements of J2o. By the isomorphic correspondence of ~o with J20 thus 
follows the construction of a "direct mixture" bo E ~o from two bo I , b02 E ~o. In 
order to formulate this, correspondingly to D 5.3.2, D 5.3.3 we adopt 

D 5.3.5 Two registration procedures bo and bE! are called isomOlphic if there is an 
isomorphic mapping i of the Boolean ring ~ (bo) onto the Boolean ring ~ (bb) such 
that lJI(ibo,ib)=IJI(bo,b) holds and i maps the subring ~o(bo) isomorphically 
onto ~o (bb), and if (a, bo) combinable is equivalent to (a, bb) combinable. 

D 5.3.6 A registration procedure bo is said to be a direct mixture of the registration 
procedures bOI , b02 if these are isomorphic to some bOI and b02 with bOI (J b02 = 0 
and bo = bOI U b02 ' One calls r:J. = A9?o (bo, bod resp. 1 - r:J. = A9l'o (bo, b02) the weight of 
bOI resp. b02 in the direct mixture bo. 

As axiom let us require 

AR 1 For every pair bOI , b02 E ~o and every rational number r:J. with 0 < r:J. < 1 
there is a direct mixture bo E ~o of bOI , b02 , where bOI , has the weight r:J. in boo 

From AR 1 follows 

T 5.3.4 For every sequence gi E J (i = 1, ... , n) and every sequence of rational 
numbers Ai> 0 (i = 1, ... , n) with L, Ai = 1, there exist a bo E ~o and a de-mixing 

n 

bo = U bOi with bOi E ~o, and abE ~ with be bo such that IJI (bOi , bOi (J b) = gi 
i= I 

and ,.1,'*0 (bo, boJ = Ai' With IJI (bo, b) = 9 then follows 
n 

peW, g) = L, Ai p (w,gJ forall WE .Yf. 
i=1 

Proof See [2] III Th 2.4. 

A special case ofT 5.3.2 is 

APK For every sequence Wi E .Yf (i = 1, ... , n) and every sequence of rational num
bers Ai > 0 (i = 1, ... , n) with L, Ai = 1, there is W E Ywith 

n 

peW, g) = L, }'i P (Wi, g) for all 9 E J. 
i=1 

Likewise, T 5.3.4 contains the special case 

ARK For every sequence gi E J (i = 1, ... , n) and every sequence of rational 
numbers Ai > 0 (i = 1, ... , n) with L, Ai = 1, there is agE J such that 

n i 

p(w,g)=L,AiP(W,g;) forall WE%. 
i=1 
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If one wants to forget '2), .9i'0, .9i', A/ and use only %, ../, fl as the basis for a 
theory, then one must require APK, ARK as axioms. One does this mostly by 
describing all that in § 5.3 has been depicted and mathematically derived, only in 
everyday language. Of course, we also have thus described a part, namely that up 
to the statement of the axioms AP 1 and AR 1. 

§ 5.4 Re-elimination of the Action Carrier 

Since one very often uses only the method of describing physical systems by the 
sets .~ J and the function fl, the question arises how to present in a clearer form 
the production of ensembles and the registration of effects. 

Therefore, we now start backwards with the set % of ensembles, the set J of 
effects and the probability fl which satisfies (i) through (vi) ofT 5.1.4. 

In order to give the concept "ensemble" a meaning, we must introduce a set M 
of systems to which this concept refers. Likewise the concept "effect" must be 
explained. Therefore, over M we introduce the structure terms '2), .9i'0, .9i', with '2) the 
set of preparation procedures, .~o the set of registration methods, and .9i' the set of 
registration procedures. 

With .r as in D 4.3 we then obtain % = cp '2)', J = !jI Y and 

fi (cp (a), !jI(bo, g» = A/ (a n bo, a n b). 

This equation defines A/ if one furthermore prescribes Ag. But how are the 
elements of '2), .9i'0, .9i' defined by the devices with which these procedures are 
performed? 

To begin with, to every x E M one must assign a preparation device and a 
registration device. Due to AZ 1, AZ 2 a mapping 

(5.4.1) 

is defined by n(x,) = (x" X2)' This n (x,) is called the action carrier prepared by 
the device x,. By (4.1) there is defined an isomorphic mapping 

(5.4.2) 

(see the remarks after (4.1) through (4.3». We can transfer (5.4.1) canonically to: 

(5.4.3) 

One easily recognizes that the h in (5.4.2) is just the mapping n from (5.4.3) 
restricted to c/]. For (5.4.2) we can thus write 

(5.4.4) 

Hence cp n(c,) with c, E c/] is just the "ensemble prepared by the devices x, E c,". 
Similarly to (5.4.1), a mapping 

(5.4.5) 

is defined by Q(X2) = (x" X2)' This Q(X2) is called the action carrier registered by 
the device X2. Canonically extending (5.4.5) one obtains a mapping 

g; (M2) ~ g; (M), (5.4.6) 
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which reproduces the isomorphisms defined by (4.2), (4.3): 

<7'20 S ~o, 
<7'2 S~. 

As a subset of ~20 x ~2 we introduce 

A2 = {(C20, C2) I C20 E 0120, C2 E 012, C2 c: C20}· 

Then (5.4.7) canonically yields the bijective mapping 
(1 A2 ~ Y. 

(5.4.7) 

(5.4.8) 

(5.4.9) 

Thus If/Q(C20, C2) with (C20, C2) E A2 is the effect defined by the indications C2 on 
the registration devices from C20. 

If now the action carriers x E n(cI) generated by the devices XI E CI are 
registered by devices X2 E C20, then the probability of an indication C2 equals 

(5.4.10) 

According to T 2.8 it suffices to choose in particular CI = al n b l , C20 = a2 n b20 , 

C2 = a2 n b2 with b2 E ~2 (b20 ). Then (5.4.10) reads 

fi(rp n(al n bl , If/ Q(a2 n b20 , a2 n b2» (5.4. II) 

= A12«al n b l ) x(a2 n b20 ) n M, (al n b l ) x(a2 n b2) n M). 

The left side describes as fi(w, g) the probability that action carriers of an 
ensemble w= rp n(al n bl ) cause an effect g = If/Q(a2 n b20 , a2 n b2). If one "for
gets" how wand g have arisen, the left side of (5.4. II) thus gives a description in 
which only the action carriers occur as physical systems. But the right side says 
what is really meant, namely a macroscopically describable experiment in which 
"at first" nothing is seen of physical systems as action carriers. 

The fi in (5.4.II) due to (3.7) determines Al2, if also A.@, and A~2 are given 
together with the PI (aI, (blO' bl» which describes the macroscopic behavior of 
the preparing device. The left side of (5.4.11) therefore completely describes the 
action of system I on system 2, i.e. the directed interaction of the systems I, 2. 
Therefore one can call (5.4.11) the mathematical "description of the interaction of 
system I and 2 by action carriers". These are emitted from the systems I (as the set 
n(al n bl ) which belongs to the ensemble rp n(al n bd) and cause the "effects" 
If/Q(a2 n b20 , a2 n b2) on the systems 2. This is just the mode in which one uses to 
describe the experiments with microsystems (e.g. scattering experiments; see [2] 
XVI). 
. Before we investigate the sets .Jr';../', and to give them more structure by further 
axioms, let us in the following § 6 finish the description (sketched only briefly in 
§ I) of composite systems in state spaces and trajectory spaces. 

§ 6 Objectivating Method of Describing Experiments 

Here let us connect the base terms introduced in § I with the sets .Y, ../' and the 
function .Yf x J A [0, I]. Before doing this, let us point out the remarkable fact 
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that in § 2 through § 5 we did not really use the objectivating description of the 
macrosystems XI E M I, X2 E M2, (XI, X2) E M. 

§ 6.1 The Method of Describing Composite Macrosystems 
in the Trajectory Space 

Already in § I we introduced the state spaces ZI, Z2 defined by pretheories and 
assumed them equipped with uniform structures g and p. The description of the 
systems in M as composite systems then means that the states of X = (XI, X2) are 
described by the state space Z = ZI X Z2, where one must set Zg = ZI 9 X Z2g and 
Zp = Zip X Z2p- Thus one must choose the uniform structures g and p in Z to be 
the product uniform structures, as appears physically meaningful. 

Constructing (as in II § I) the trajectory space YI for ZI, the trajectory space Y2 

for Z2, and the trajectory space Y for Z = ZI X Z2, one immediately finds 
Y= YI X Y2 and Yp= Ylpx Y2p and thus Y= YI x Y2. 

Therefore, on the basis of the axiom AT I, the sets Y= YI X Y2 and Y= YI X Y2 
can be derived in the extended axiomatic basis with YI , Y2 as base sets. 

§ 6.2 Trajectory Effects of the Composite Systems 

In § 2 we introduced the sets ~I' ~1O; ~2' ~20 of registration procedures. In 
order to interpret these (as in II § 3.1) as trajectory registration procedures, we first 
introduce (analogously to II § 2.3) instead of ~I' ~1O' ~2' ~20 the base terms 
ril, rilO , ri2, ri20, and as axiom demand 

AT 2 rilO c ril, ri20 E ri2• 

ril, rilO , ri2 , ri20 are "sets of procedures" in the sense of II § 2.1. 

As picture relations we introduce (as in II, § 2.1) two relations (X;(i = 1,2) with 
the interpretation: (Q;, Xi) E (Xi c rii X M; is the picture of "the system Xi was 
selected due to the procedure Qt, i.e. "for X; the digital indication characterized by 
Q; has occured" (see II § 2.3). Then two mappings ri;.l!49(M;) are defined by 

Qi~{X;!XiEMi,(Qi,X;)E(x;} with i=I,2. 

By these one can replace (XI and (X2, i.e. replace (Q;, Xi) E (X; by Xi E h;(Qi). Then 
defining ~i = hi (ri;), ~iO = hi (riiO) as axioms we introduce 

AT 3 Equations analogous to II (2.1.1) and II (2.1.2) hold for h h h2 . For each 
Qi E ri; there is a QiO E ri;o with Qi ~ Q;o (i = 1,2). 

AT 4 ~iO ~~;o (i = 1,2) are isomorphic mappings. 

AT5 ~o (i= 1,2) are SSP. 

These AT 4, AT 5 very briefly say that as further picture relations we have 
introduced probabilities over ~10 and ~20 with the corresponding axioms (also see 
II § 2.3). 
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According to II § 2.3, the relations APSZ 2, APSZ 3 and APSZ 4.1, 2 follow as 
theorems from AT 3, AT 4, AT 5. 

We retain APSZ I, APSZ 8.1, APSZ 5.1, APSZ 8.2, APSZ 6, APSZ 7 from § 2 as 
axioms. 

Corresponding to II § 3.1, as further picture relations we introduce two 
probabilities }'Meas I and }'Meas2, postulating the requirements from II § 3.1 as the 
axiom 

AT 6 For A Meas I and }, Meas 2 there hold relations analogous to AS 2 from II § 2.1 and 
equations analogous to II (3.1.1). 

Then the considerations from II (3.1.8) with 

ifJi = {(eiO, eJ I eiO E rfoiO , ei E ;ji' eiO =1= 0, ei ~ eiO} 

lead to 

(6.2.1) 

The physical meaning of II (3.1.8) and thus of (6.2.1) was that, with 
lfli(eiO,ei)=f(Yi), the probability AMeasi(Yi;eiO,e;) for the occurrence of the 
indication ei equalsf(Yi). 

Corresponding to II § 3.1, as further axiom we introduce 

AT7 la lfli(ifJi) with i= 1,2 is norm-dense in L(Yi). 

Let ~12 be the system of procedures freely generated by the set ;jl x ;j2' One 
obtains ~12 by a procedure that is entirely analogous to that from [2] II Th 2.2: The 
elements of ;j12 are of the form 

L, -+ (eli), e~) with eli) ~ el E ;jl, eY) ~ e2 E ;j2 
i,j 

efO (l elk) = 0 for i =1= k, 

eY) (l (J} = 0 for .i =1= t, 

with + understood as addition in the Boolean algebra [0, (el, (2)], freely generated 
by [0, el] and [0, ez]. 

Corresponding to ~12' let ;j120 be the system of procedures freely generated by 
the set ;jIO x ;j20' We inquire into the structure of AMeas (y; e120, el2) with Y E Y, 
el20 E ~120' el20 =1= 0, el2 E ;j12, el2 < eJ20· This AMeas (y; e120, (12) is determined 
when AMeas (y; (eIO, (20), (el, (2» is known. 

We now assume that the trajectories on the systems 1 and 2 are registered 
independently, i.e. that Y = (YI, Y2) yields 

(6.2.2) 

Then, the probability for measuring trajectories, defined by 
1f/J2 A 

ifJ I2 ----+ L (Y) (6.2.3) 
with 
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is determined by (6.2.2), i.e. by 

1f/12 «QIO, Q20),(QI, (2» = If/I (QIO, Qd 1f/2 (Q2o, Q2). (6.2.4) 

Since the lalf/i(Qio,Qi) with i= 1,2 are dense in the L(Yi ), we find laIf/12(<1>12) 
dense in L (n. In fact, the linear subspace of C (Y) spanned by all the products 
fl(YI)h(Y2) and Iii (YI)h(Y2)1 with!; E If/i(<1>i) is equal to the subspace spanned 
by alljj (YI~ h (Y2) with!; E la If/i (<1>i). Hence this subspace is dense in C (Y). 

The following sets will later be of importance: ~12 be the system of SP 
generated over MI x M2 by the set {b l x b21 bl E ~I' b2 E ~2}' Correspondingly, 
~120 be the system of SP generated by the set {blO x b20 I blO E ~IO, b20 E ~20} such 
that ~120 c ~12' 

A mapping 9 (MI x M2) 4 9 (M) is defined by d c MI X M2 and d -+ d n M. 
By the definition of ~12 and ~120 in § 2, one sees that 

(6.2.5) 

holds and that these mappings are surjective. Furthermore, it follows easily that r 
is a homomorphism of ~12 onto ~12 while the mapping ~120 4 ~120 is an 
isomorphism (because blO x b20 * 0 => blO X b20 n M * 0, see the remarks after 
APSZ 5.1). 

The mapping 

can be extended to all of ~12 as the homomorphism 
- h12 A 

~12 -=+~12' (6.2.6) 

Then a homomorphism 
(6.2.7) 

is defined by h = r h12 , where 
(6.2.8) 

holds and is an isomorphism. 
The physical interpretation of h is given by: h (QI , (2) is that subset of systems 

x =(XI' X2) EM for which Xi with i = 1,2 triggers the indication Qi' 
In § 2 we have not introduced the sets ~I' ~2 to make it a priori clear that an 

axiomatic basis for quantum mechanics can be erected without them. 
Below we shall see that we can forget ~I' ~2 even in grasping the objectivating 

method of describing composite systems. 

§ 6.3 Trajectory Ensembles of the Composite Systems 

We can immediately extend the considerations of II § 3.2 to <1>12 and to .9!2 
dermed by 

.9!2 = {(b l20 , bd I bl20 E ~120, bl2 E ~12 (b I20 ), bl20 * 0, bl2 c bI20 }. (6.3.1) 

In this connection, II (3.2.1) goes over into 

<1>12 ~ L(Y) 
h! ! Ua" 

y 12 1',z(a12 • ... ») [0, 1] 
(6.3.2) 
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with h from (6.2.7), with al2 E ~2' ua12 E C' (Y) and (see (2.7» 

f.l12 (aI2' (bI20 , bd) = AI2 (a12 (') bl2o , al2 (') b12) . 

Corresponding to II § 3.2, as axiom we therefore require 

AT 8 The diagram (6.3.2) holds and ua12 is an affine mapping. 

Due to T 2.8 it suffices to restrict J'i2 to the subset 

Yt2 = {(bI20 , bd I bJ20 = blO X b20 (') M, b12 = bl X b2 (') M, 

blO E Yl'1O, b20 E 8*'20, bl E 9f1 (b lO ), b2 E Yl'2 (b20 )} 

(6.3.3) 

and instead of al2 E ~2 to choose in particular the preparation procedures 
al2 = al x a2 (') Mwith al x a2 (') ME Ii2 to be used below. 

Due to II (3.2.2) there is a mapping ~h ~ C' (Y) with 

f.l12 (aJ2, (h (QI20), h «(112») = (qJ12 (ad, 1f112 «(1120, (112». (6.3.4) 

The remarks just made about T 2.8 show that qJI2 is already determined by 
Ii2 ~ C' (Y) and the equation 

f.l12 (al x a2 (') M, (hi (QIO) X h2 «(120) (') M, hi «(It> x h2 «(12) (') M» 

= AI2 (al x a2 (') M (') hi «(110) x h2 «(120), al x a2 (') M (') hi «(II) x h2 «(12» 

== (qJ12 (al x a2 (') M), IfII (QIO, (II) 1f12 «(120, (12». (6.3.5) 

With Ji=IEL(Yi), hEL(Y2), uEK(Y) (where !t(YI)!2(Y2)=1!2(Y2)= 
h (Y2) E K (Y) I), a mapping C' (Y) .B4 C' (Y2) is determined by 

(u, h) = (R2 U, 12)2, 

with (u,f) the canonical dual form of C' (Y), C (Y) and (v,f)2 that of C' (t), 
C(Yz). This mapping is dual to C(Y2)~C(Y) with S2h= 112; it easily implies 
R2 K (Y) c K2 (t). One calls R2 u with u E K (Y) the contraction of u to 
U2 = R2 U E K2 (Y2). Likewise one calls R2 the "contraction operator (or simply 'con
tractor') on the system 2". As a dual mapping, R2 is not only norm continuous but 
also (j (C' (Y), C (Y», (j (C' (t), C (Y2) )-continuous. 

In an entirely analogous way one can define RI as the contractor on the 
system l. 

With co (A) as the norm closure of the convex set generated by A, analogous to 
Km (Y) in II § 3.2 we define 

K I2m (Y) = co qJ12 (~2) . (6.3.6) 

Due to the definition of ~12 as the SF structure generated by" Ii2, we easily obtain 
co qJI2 (~2) = co qJ12 (Ii2) and thus 

(6.3.7) 

We define 

(6.3.8) 
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In analogy to II § 3.3, we can define 051 as the support of Kim (i\) and 052 as the 
support of K2m (t). With 05 as the support of K I2m (Y), we easily find 

(6.3.9) 

If one applies (6.3.5) with QI = QIO, in analogy to II (3.3.3) a function '112S is 
uniquely defined by Yz = {(b20 , b2) I b20 E 9i'20, b2 E R2 (b20)} and the diagram 

L(Y2) 

;/ ~ -
CP2~ / L(S2); 

h2 ,9'2 1f/2' 

(6.3.10) 

the mapping YI ~ L (051) follows correspondingly. The two mappings 'IIiS (i = 1,2) 
enable us to "forget" the sets ~i if one replaces ~ by o5i. Then we can supplement 
the discussion from § 2 by the "objectivating description" to follow. 

Because of (6.3.9), one can identify K 12m (Y) with a subset KI2m (0512) of 
K12 (0512) C C' (0512) (see analogous considerations in II § 3.3) and thus regard 1/111 as 
the mapping 011 ~ C' (0512). In particular, (6.3.5) then goes over into 

!l11 (al x a2 n M, (blO x b10 n M, bl x b1 n M» 

= }L[1 (al x a1 n M n blO x b10 , al x a1 n M n bl x b1) 

= <1/112 (al x a1 n M), 'IIls(b lO , bl) '112s(b20 , b2» (6.3.11) 

where (. .. , ... ) is the canonical bilinear form of the dual pair C' (0512), C (0512). 

According to T 2.8, all of AI2 is thus determined by .A.gl' .A.g2' and 

< 1/112 (al x a1 n M), 'illS (blO' bl ) '112S (b20 , b2» . 

The 'illS (blO' bl) and '112S (b10 , b2) have nothing to do with the interaction, but only 
describe the registration of the trajectories. The trajectory ensembles 
1/112 (al x a2 n M), i.e. the mapping 

111 ~K(05I2) 

(with 112 as in (2.1», describe the interaction of the systems 1 and 2 completely. 
In particular, from (6.3.11) with bl = blO follows 

such that 

AI2 (al x a2 n M n blO x b20 , al x a2 n M n blO x b2) 
= <1/112 (al x a2 n M), '112S (bo2 , b2» , 

does not depend on blO . Likewise follows that 

Al2 (al x a2 n M n blO x b20 , al x a2 n M n bl x b20 ) 

does not depend on b20 . Hence, the additional requirement in APSZ 9 and 
APSZ 5.3 is not necessary whenever on uses the connections between the registra
tions and the trajectories (also see the end of § 2) described here. 

With 
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with the mapping r from (6.2.5), hl2 from (6.2.6) and their canonical extensions, 
from (6.3.10) and a corresponding diagram with the index 1 we obtain 

L (Y) -:--+ L (SI2) ------> L (S) 

T "'12 1 tiJ12S T fJ/12S (6.3.12) 
m. h12 w- r 6L '¥12 ---4 .T12 ------+ .Y12 . 

Since 1j112S is determined uniquely by 

1j112S (blO X b20 , bl x b2) = IfIIS (b lO , bl) 1f12S (b20 , b2), (6.3.13) 

one can in diagram (6.3.12) forget the left part (which refers to L (Y) and (/>12) and 
thus forget a;1, a;2. 

Thus we may call (6.3.11) the fundamental formula of the objectivating manner 
of describing the experiments with composite systems. But we are interested in a 
special situation, which in § 3 has been called the directed interaction. 

§ 6.4 The Structure of the Trajectory Measures for Directed Action 

Because of 1f12S (b20 , b20) = 1, the relation APSZ 9 with (6.3.11) says that 

.1.12 (al x a2 n M n blO x b20 , al x a2 n M n bl x b20) 

= (IP12 (al x a2 n M), IfIls (blO' bl) (6.4.1) 

does not depend on a2. That (3.1) does not depend on b20 is secured automatically 
by the objectivating description, i.e. it holds due to (6.3.11). 

Using the contractor RI which maps C' (SI2) on C' (SI) one can write (6.4.1) as 

.1.12 (al x a2 n M n blO x b20 , al x a2 n M n bl x b20) 

= (RI IPI2 (al x a2 n M) , IfIls (b IO , bl)1 , (6.4.2) 

where the last subscript indicates the canonical bilinear form for C' (Sd, C (SI). 
Since the IfIIS (blO , bl) separate (because la IfII «(/>1) is dense in L (SI)), axiom 

APSZ 9 is equivalent to 

AT9 RI IPI2 (al x a2 n M) does not depend on a2. 

This uniquely characterizes a directed interaction. 

(6.4.3) 

We retain the axioms APSZ 5.2 and APSZ 5.3 from § 3, where the last addi
tional requirement can be dropped from APSZ 5.3 (see § 6.3). 

Because of APSZ 5.2, a mapping gl ~K (SI) is defined by 

al ~ RI IPI2 (al x a2 n M) . 

Using (6.3.8) and identifying KIm (l;). with KIm (SI)' we then find 

co fPI (gd = KIm (SI) . 

By T 3.6 the probability (6.4.2) goes over into 

4/1 (al n blO , al n bl) = /11 (aI, (b lO , bl)) = (fPI (ad, IfIIS (b lO , bl)I, (6.4.4) 
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which holds for the trajectory effect "'IS (blO' bd on systems 1 prepared according 
to al' This simply expresses the expected fact that the dynamics of the systems 1 is 
independent of the coupled-on systems 2. 

We also retain the further axioms APSZ 5.4, APS 5.1.3, APS 5.1.4 from § 5.1 so 
that the function J1 from § 5.1 can be defined. 

In the case of a directed interaction, we are interested in the probability func
tion J1(a,J) = fi (rp (a), ",(f» from D 4.5 and T 5.1.4, which forms the basis for all 
further discussion in the following chapters. According to the definition of J1 and 
the definition of g, .tWo, .tW, we have 

J1 (a, (bo, b» = .\t,(a 11 bo, a 11 b) = A12 (CI X C20 11 M, CI X C2 11 M) 

with CI E fj, C20 E J2o, C2 E ./'2' This value is determined by the particular values 
for CI = al 11 b l , C20 = a2 11 b20 , C2 = a2 11 b2, i.e. by 

A12 «al 11 bd x (a2 11 b20) 11 M, (al 11 b l ) x (a2 11 b2) 11 M) . 

By means of (3.6) and (6.3.11), with a = al 11 b l x M2 11 M, bo = MI x (a2 11 b20) 11 M, 
b = MI x (a2 11 b2) 11 M, follows 

<rp12 (al x a2 11 M, "'IS (blO' b l) "'2S (b20 , b2» = A/i (al 11 blO , al 11 b l ) J1 (a, (bo, b)) . 
(6.4.5) 

The gdefined in § 4 yields 

A." (al 11 blO , al 11 b l ) = Ag (ao, a) , (6.4.6) 

with ao = (al 11 blO) x M2 11 M. Hence (6.4.5) implies 

<rp12 (al x a2 11 M), "'IS (blO' b l ) "'2S (b20 , b2» = A£I (ao, a) fi (rp (a), '" (bo, b)), (6.4.7) 

while T 3.6 and (6.4.4) give 

).",(ao, a) = A./i(alll blO , alll b l ) = <rpl (al), "'IS (blO' bl»I' 

Using (5.4.11), from (6.4.7) we thus get 

fi (rp 7t (al 11 bl), '" e (a2 11 b20 , a2 11 b2)) 

<rp12 (al x a2 11 M, "'IS (blO' b l ) "'2S (b20 , b2» 
<rpl (al), "'IS (blO' bl»1 

(6.4.8) 

(6.4.9) 

This directly connects the function fi with the trajectory effects and trajectory 
ensembles, thus emphasizing most clearly that fi (rp(a), '" (bo, b» is obtained from an 
objectivating description. From (6.4.9) with b2 = b20 follows that RI rpl2 (al x a2 11 M) 
= rpl (al), i.e. the directedness of the interaction. According to the remarks 
following (3.7), due to (6.4.8) the mapping 1(2 ~K (812) and thus the interaction 
are determined by fi and ~ ~K (81), 

In order to rewrite (6.4.9), we consider for C' (812), C (812) the expression 

< u, fi (YI) g (YI. Y2» , (6.4.10) 

with u E K(8 12),fi (YI) E L(81) and g (YI.Y2) E L(812). 
Multiplication of g (YI, Y2) with fi (YI) E L (81) is a norm continuous mapping 

C (812) -+ C (812), The dual mapping of C' (812) into itself will be denoted fi'. For 
f.. E L (81) one immediately finds fi' K (812) c K (8d, where K (812 ) is the 
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tnfficated cone U A. K (812), In this sense, from (6.4.10) follows 
O~)'~I 

(U,JI g) = (f{ u, g); 

hence (6.4.9) can be rewritten 

Here we have 

Ii ('P1T. (al n bl), /f/Q (a2 n b20 , a2 n b2» 
(R2 /f/ls (blO' bl) 'P12 (al x a2 n M), /f/2S (b20 , b2) )2 

('PI (al), /f/IS (blO' bl»1 
(6.4. II) 

R2/f/ls (blO' bl) 'P12 (al x a2 n M) E K (S-2) , 
( (6.4.12) 

'PI (al), /f/ls(b lO , bl»1 

because /f/2s(b20,~O) = 1 implies /f/(bo, bo) = 1 and thus Ii ('P(a), /f/(bo, bo» = 1. 
Entirely analogously to the derivation of (6.4. II), from (6.4.7) with 

ao = (al n blO) x M2 n M, a = (al n bl) x M2 n M one obtains 

Aq (ao, a) Ii ('P (a), /f/ Q (a2 n b20 , a2 n b2» 

= A../i(al n blO , al n bl) Ii ('P 1T. (al n bl), /f/ Q (a2 n b20 , a2 n b2» 

= (RI /f/lS (b20 , b2) 'P12 (al x a2 n M), /f/IS (blO' bd)1 . (6.4.13) 

The formulas (6.4.9), (6.4.II), (6.4.13) show that their left sides do not depend 
directly on bl , b20 , b2, but only on the trajectory effects ki = /f/iS (biO , b;). 

In order to exhibit this more distinctly, we can also write 

w = 'P 1T. (al n bl) = 0( (aI, kd , 

g = /f/Q (a2 n b20 , a2 n b2) = P (a2' k2) 

with mappings 0(, p given by 

9{x /f/IS(.9() c 9{x L (81), 

IX! 
:% 

then (6.4.9) becomes 

92 x /f/2S(Jii) c 9 2 x L (82); 

P! 
../ 

(6.4.14) 

('PI (al), kl)1 Ii (0( (aI, k l ), p (a2' k2» = ('P12 (al x a2 n M), kl k2)' (6.4.15) 

§ 6.5 Complete Description by Trajectories 

'P «al n bl) x m2 n M) = 0( (a(, k l ) is uniquely determined by (6.4.15), where 
the form of 0( shows that not the registration procedure b l but only the trajectory 
effect kl enters. On the other hand, the SP al E 9 1 appears as a "production proce
dure" of the preparation devices XI E MI' We say that the systems XI E MI are 
"completely" described by the traj~ctories from 81 whenever 'PI (al) = 'PI (ad 
implies 0( (aI, kd = 0( (aI, k l ). Then two preparation procedures al and aI, which 
are not distinguishable by the trajectories on a system 1, are also not distinguished 
by the action of the systems 1 on other systems 2. Equivalent to this is that the 
right side of (6.4.15) does not depend on al except through 'PI (al). Thus 
'P12 (al x a2 n M) depends only on 'PI (al), so that a function YI2 is determined by 
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the diagram 

The fact that 1fJ12 (al x a2 n M) depends only on IfJI (al) must for physical reasons be 
extended to the fact that YI2 is norm continuous in its first variable. Then one can 
extend YI2 to the norm closure Kim (SI) of IfJI (0n: . 

Kim (81) x ~ ~ K I2m (812) • 

Therefore (6.4.15) goes over into 

<UI, kl)1 fl (al (UI' k l ), P (a2' k2)) = <Y12 (UI' a2), kl k2) 

with UI E IfJI (~), kl E 'filS (Ji() where a\ is determined by the diagram 

~ x 'filS (Ji() -7:W-
! qltxl! /(1., 

IfJI (~) x 'fIIS(Ji() 

(6.5.1) 

(6.5.2) 

(6.5.3) 

The "complete describability" of the systems I by trajectories is not self
evident. But most often one assumes that for a sufficiently fine state space the com
plete description of the systems I by trajectories is possible. In order to obtain a 
similar statement for the systems 2, one must know how these behave without 
"external influence". In IX § 1 we shall obtain this description by choosing al so 
that the systems XI E al prepare "vacuum". Here let us simply presume it possible 
experimentally to investigate the systems 2 without external influence (what 
experimenters do for testing their registration devices). Thus a mapping 

<p(O) A 

.02 -4 K2m (S2) 

is so defined that the probabilities for the trajectory effects k2 on the systems 
prepared due to a2 are given by 

in case the systems are not externally influenced. 
Let it be emphasized that the support of IfJ~O) (.02) need not be all of 82: For, with 

external influence from the systems 1, trajectories can by all means appear which 
are otherwise impossible (i.e. physically excluded; see [3] § 10). 

The systems 2 are called completely describable by trajectories if 1fJ12 (a\ x a2 n M) 
does not explicitly depend on a2 but only on IfJ~O) (a2) and that norm continuously. 

If the systems I as well as the systems 2 are completely describable by trajec
tories, then a norm continuous bilinear function £512 is determined by the diagram 

gr x .02 !!E.o.KI2m (812) 

1 qltx~oi To,. (6.5.4) 

Kim (81) X K~o;, (82) 
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where Kl~ (82) is the norm closure of the set rp1°) (qen. Then (6.5.2) can be written 

<UI, kl)1 fi (al (UI' k l), fh (u~O), k2» = <bl2 (UI' u~O», kl k2) (6.5.5) 

with u~O) E rp~O) (Zi2), where fh is determined by the diagram 

(6.5.6) 

In (6.5.4) one can identify KIm (81) X K~o;, (82) with a subset of KI2m (812) and 
thus extend bl2 to the norm closed subset of K I2m (812) generated by 
KIm (81) X K~o;, (82): 

The elements of KITm (812) describe the system pairs (XI, X2) "as if no interaction 
were present". In this sense bl2 can be called the "interaction operator"; 
bI2KITm(812) must be norm dense in K I2m (8 12), 

With .'.?6'ITm as the Banach subspace generated by the KI~)m (812) in C' (812), one 
can extend bl2 to all of .'.?6'ITm' so that the mapping biz dual to bl2 maps the space 
C (812) into 1iA~~(812)' One can thus rewrite the right side of (6.5.5) as 

<b12 (UI' u~O», kl k2) = <UI u~O), bi2 (k l k2»(0) , (6.5.7) 

where (. .. , ... )(0) is the canonical bilinear form of .'.?6'ITm (812), .'.?6'~~~ (812), 
For fixed u~o>, kl' k2' by (6.5.7) a norm continuous linear form over UI is 

defined, i.e. an element XI E .'.?6'lm (81) with .'.?6'lm (8d as the Banach subspace of 
C' (SI) generated by KIm (81), With jl as the embedding .'.?6'lm (8d JJ. C' (SI) and j; 
its dual that maps C (8d into .'.?6'im (81), we find ji C (Sd dense in .'.?6'im (81) under 
the a (.'.?6'im (81), .'.?6'lm (81»-topology, since C (81) separates the U E KIm (81), In this 
sense XI represents a "generalized trajectory effect" on the systems 1. On physical 
grounds, one must expect that XI is not only approximated by elements of ji C (SI) 
but that even XI E ji C (SI) holds. Then there is a "proper" trajectory effect 
II E C (81) with XI = jill, i.e. with 

<b12 (UI' u~O», kl k2) = <UI, 11)1 . (6.5.8) 

We can apply a quite analogous reasoning to the systems 2. For fixed UI, kl' k2, an 
element X2 E .'.?6'~o~' (82) is defined by (6.5.7). With h as injection .'.?6'~o;, (82) --+ C' (S2), 
we find j2 C (82) is dense in .'.?6'l~' (82), On physical grounds, one can expect 
X2 E j2 C (82), i.e. that there is an 12 E C (82) with 

<b12 (UI' u~O», kl k2) = <U~.o), 12)2' (6.5.9) 

The complete description of the systems I and 2 by the trajectories therefore 
implies that one can obtain "no new information" beyond the trajectories from any 
interaction of the systems 1 with the systems 2. In the following § 6.6 we shall 
describe this in more detail by extending the registration procedures. 
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§ 6.6 Use of the Interaction for the Registration of Macrosystems 

Let us first consider the systems I! Proceeding from the sets £II and ~I of 
preparation and registration procedures, we have first considered (in the sense of 
§ 6.2) only trajectory registration procedures. We will now extend 9S'10 and 9S'1' 

The mapping ndefined in (5.4.1) is bijective, with n- I (XI,X2) =XI' (We could 
directly have defind the mapping (XI, X2) - XI of Minto MI but want to clarify 
the connection with (5.4.1) by the notation n-I.) 

With .'WIO as the system of SP generated by the two sets 9S'1O and 

{blO I blO = n- I (blO x (a2 n b20 ) n M), blO E 9S'1O, a2 E £12, b20 E 9S'20} , (6.6.1) 

and.'W1 as the system of SP generated by 9S'1 and 

{bl I bl = n-I (b l x (a2 n b2) n M), bl E 9S'1, a2 E £12, b2 E 9S'2} . (6.6.2) 

:iflO and .'WI form an extended registration structure for the systems I, namely 
extended by the "registrations of the systems I by means of their action on the 
systems 2". Of course, also the registration of trajectories of the systems I is for 
physics an action of the systems I on the devices to register trajectories. For these 
trajectories we have presumed and explained in II § 3.1, that the trajectory registra
tion can be described by pretheories. But the "new" registrations indicated in 
(6.6.1) and (6.6.2) are describable by their probability functions only in a theory of 
the coupling between different macrosystems, which provides 

II (al n n-I (blO x (a2 n b20) n M), al n n-I (b l x (a2 n b2) n M) 

def AI2 «al n blO) x (a2 n b20) n M, (al n bl) x (a2 n b2) n M) 

=(IPI2 (al x a2 n M), If/IS (blO' bl) 1f/2S (b20 , b2». (6.6.3) 

If the systems I are completely describable by the trajectories as presented in § 6.5, 
then (6.5.8) yields 

(6.6.4) 

with an II E C (.5\); i.e. the new registration procedures yield no new information 
about the systems 1. 

But in physics often just the opposite happens; one checks by (6.6.3) whether 
one has already attained a complete description by trajectories. If it has not yet 
been attained one tries by an extension (a refinement of the state space) to achieve 
a complete description by trajectories. 

One can proceed quite analogously with the systems 2. By means of the sets 

{b20 I ~o = e-I «al n blO) x b20 n M), al E.@J, blO E 9S'1O, b20 E 9S'20} (6.6.5) 

and 
(6.6.6) 

with e-I as in (5.4.5) one extends 9S'20, 9S'2 to .'W20 , .'W2 with the probability function 

I2 (a2 n e- I «al n blO) x b20 n M), a2 n e- I «al n bl) x b2 n M» 

def }'12 «al n blO) x (a2 n b20) n M, (al n bl) x (a2 n b2) n M) 

= (IP12 (al x a2 n M), If/IS (blO' bl) 1f/2S (b20 , b2» . (6.6.7) 
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Ifa complete description by trajectories holds, then (6.5.9) implies 

(qJ12 (al x a2 n M), 'filS (blO' b l ) 'fI2S (b20 , b2» = (qJ~O) (a2), 12 )2. (6.6.8) 

Thus from the additional registrations (due to the influence possibilities of the 
systems I on the systems 2) one does not obtain any new information. 

The very extensive investigations of macroscopic systems that go beyond any 
description by trajectories or at least beyond the "till now known" trajectories rest 
on experiments with two auxiliary systems. The principle of such experiments is 
sketched in Fig. 3, where the arrows demonstrate interactions. One investigates the 
system (2,2) by means of the systems 1 and (2,3). If one combines the systems 
(2,2) and (2,3) into a system 2 (as in Fig. 3), one obtains that experimental 
structure from which in §§ 1-3 we started an axiomatic basis for quantum 
mechanics. For such an axiomatics it is not necessary to introduce more detailed 
structures of the registration devices 2, e.g. that 2 is composed from the two 
systems (2,2) and (2, 3). On the other hand, it is not difficult in principle to 
specialize the considerations from §§ 1-3 to a more precise description of. such 
situations, e.g. that in Fig. 3. In fact, that 2 is composed of (2, 2) and (2, 3) is just a 
special case of the general considerations from §§ 1- 3. These hints must suffice 
here since we first want to develop an axiomatic basis. In XI and XII we shall 
return to consider the problem sketched in Fig. 3. O r------------------i 

1 ~--;-i ... ·1 (2,2) 1 2· ~ ! 
L _________________ 

Fig. 3 

In conclusion one thing must yet be emphasized: Till now there are no 
experiences or theoretical indications on the basis of the considerations presented 
in X and Xl that an objectivating description of macrosystems would not be 
possible. Therefore, there cannot be a quantum mechanics of the macrosystems in 
the proper sense (i.e. including such structures as non-coexistent observables and 
non-coexistent decompositions; see V and X). 

§ 6.7 The Relation Between the Two Forms of an Axiomatic Basis 

In § 4 we denoted by .9'Yj" the theory with the axiomatic basis developed in § 1 
through § 5 (i.e. without the base sets Y I , Y2 , ••• ). 

Let .9'Yj"t denote the extended axiomatic basis given in § 6.1- § 6.6. The 
theorems presented there then show directly that a relation of the form 

(6.7.1) 

holds, where .9'Yj"; arises from .9'Yj"t if one forgets the sets Y1, Y2 , iii, iilO , ii2 , ii20 • 

Then .9'Yj"; ~.9'Yj" is the trivial embedding obtained by identifying the corre
sponding sets from .9'Yj"t and .9'Yj" (e.g. hi iii with @I), as already done throughout 
this § 6. 
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To a "theory of microsystems", 9.7)1 contributes nothing further than 9.7), 
since in 9.7)1 only the devices are more precisely described than in 9.7). But for 
investigating the compatibility problem (i.e. the measurement process in quantum 
mechanics) in XI, just 9.7)1 is the appropriate point of departure. The problem of 
the measurement process therefore cannot be solved solely within a quantum 
mechanics of the form 93) (see § 5.2), but rather only within a more com
prehensive theory, as discussed in XI. 

§ 7 Transport of Systems Relative to Each Other 

As already mentioned at the end of II § 4.3, in the case of composite systems 
(XI, X2) one can transport the systems X2 (leaving the XI fixed). Such transports are 
spatial translations, time displacements, or the imparting of a uniform velocity. 
Thus the transports are in a Newtonian space-time called Galileo transformations, 
in a relativistic space-time Poincare transformations. It is important to note that 
the physical interpretation of these transformations (of macrosystems relative to 
the laboratory coordinate system) is assumed known from pretheories. Not any 
unknown microsystems are transformed in ways not recognizable by pretheories. 
Therefore, in quantum mechanics, first of all place and time are defined by 
pretheories solely for the macroscopic devices, defined as objective properties and 
not (!) as observables of the action carriers, as to be introduced in V. 

In order to introduce a mathematical structure for the transports interpretable 
by pretheories, we think of a countable subgroup A specified in the group A;9 of 
Galileo transformations (we shall only speak of these since everything carries over 
analogously to Poincare transformations) where A is dense in A.~. 

As an example of an element from A, let us consider the spatial translation by a 
vector a. What does it mean that the system Xl is translated by a relative to the 
system X2? Evidently that the position of Xl is made to differ just by a from that of 
X2' Positioning the devices 2 in the laboratory system, however, belongs to 
preparation. When a2 is the preparation procedure used to fix X2, to fix Xl we must 
use just that procedure a2 which prepares systems shifted by a relative to those 
from a2. 

Thus we arrive at representing the real relation of transporting the systems 2 
mathematically (by a structure species) as follows: 

To every 0 E A not containing a translation in the time, we assign an 
automorphism g2 ~ g2, denoting it too by O. For time translations Ot, each Ot as a 
mapping in ~ coincides withe the mapping R~ introduced in II § 4.2, where its 
domain has in detail been discussed. 

In a transport of the devices 2, however, let us not only include the positioning 
by the preparation procedures, but also the "co-transport" of the registration proce
dures. Hence we impose that to each 0 E A (not containing a time translation) there 
corresponds an automorphism of 9S'20 and 9S'2' For time translations Ot, each Ot as a 
mapping in 9S'20 and 9S'2 shall coincide with the mapping Rt defined in II § 4.2. 

If we would desire to find, as we did in II § 4 for Ot, an explicit representation 
also for other elements of .1, we ought to describe the structure of the phase space 
Z in more detail. Only then could we describe the changes of states under 
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translations in space, under rotations and under imparting of uniform velocities. 
Here we do not want to do so, because in this book we shall only very broadly refer 
(in IX § I) to the whole Galileo group as transforming the devices 2. Moreover, the 
example of the bT shows us how to proceed. 

Only in order to emphasize clearly the physical meaning of the transport of the 
registration devices, have we introduced the pertinent mathematical structures 
already in the theory of coupled macrosystems. Only after this interpretation (that 
lies purely in the macroworld) of the relative space-time position of the systems 
XI E MI and X2 E M2 is it possible later to give meaning to the "position 
observable" for microsystems as an only indirectly measurable quantity (as done in 
[2] II § 4). 

For b as automorphism of the sets ,qil, f4'20, f4'2' we conclude that it also maps the 
sets J20 and J2 into themselves. On the basis of (4.2) and (4.3), we therefore can 
also define b as an automorphism of f4'0 and f4'. 

Then this automorphism may canonically be extended to Y ~ Y with Y as in 
D 4.3. Just these mappings for the b E ,1 form the point of departure for 
representing the Galileo group in quantum mechanics. We have in [2] VII 
presented this in detail and shall briefly scetch it in IX § I. 

In order to emphasize more precisely the interpretation of b in the macro
world, let us in particular for a time translation bT use the macroscopic description 
of the probability fi, as obtained in § 6.4 and § 6.5: 

From (6.4.9) we get 

fi «({l n(al (l bl ), If/ (bTf)) 

«({luCal x R; al (l M), If/ls(b lO , bd VT 1f/2s(b20 , b1) 

«({ll (ad, If/ls(b lO , bl)1 

withf= Q(al (l blO , al (l b1) E Y, which by (6.4.15) implies 

(7.1) 

«({ll (al), kl)1 fi (a (aJ, k l ), fJ (R; al, VT k l )) = «({l12 (al x R; al (l M), kl VT k2)' (7.2) 

By (6.5.2) this becomes 

(7.3) 

so that (6.5.5) yields 

(uJ, kl)1 fi(al (uI. kd, fJ2 (V'-T u~O), VT k2)) = (bl2CuI' V'-T u~O)), kl VT k1)· (7.4) 

Here the right side most clearly shows, how If/ (brf) = fJ2 (V'- T uiU), VT k 2) is deter
mined by the purely kinematic transformation VT of the trajectory effects and by 
the mapping bl2 which describes the interaction. 

Similarly as the devices 2 can for fixed devices I be transformed by elements b 
of ,1, one can also transform the devices I for fixed devices 2. To the reader it may 
be left to elaborate this in detail. b as transformation of the devices 2 must affect 
the probabilities just as b- I as transformation of the devices 1. This fact has been 
employed in [2] VII. 



IV Embedding of Ensembles and Effect Sets 
in Topological Vector Spaces 

No new physical laws will arise in this chapter. We shall in fact forget all 
considerations from III except the countable sets :%,...1' with the mapping 
:%x...l' 4 [0,1] for which III T 5.1.4 and the relations APK and ARK (from III § § 5.3) 
hold. Hence we shall not gain new physical insights, but rather arrange the mathe
matical framework so flexibly that it is comfortable (!) to formulate further axioms 
and to prove theorems. Nevertheless, we shall use some general considerations from 
[3] § § 6 and 9 in order to clarify the meaning of new concepts. 

Let it be emphasized again, in order to avoid misunderstanding, that the vector 
spaces introduced will not change the structure of vii Yl: in any way. Everything 
deals only (!) with structures derived from :%, ...1', /1, i.e. with inner terms with 
respect to $,...1', /1 in the sense of [3] § 7.2, hence only with concepts for a simpler 
style of expression. Notwithstanding this general warning, in the following sections 
we shall often point out possible misunderstandings. 

§ 1 Embedding of .ff, 1" in a Dual Pair of Vector Spaces 

We begin with a definition 

D 1.1 Let D be the set of all functions :% ~ R that can be represented as, 
n 

y(w) = L lXi /1 (w, gi) (1.1) 
i=\ 

with real numbers lXi and the elements gi E...I'. Let B be the set of all functions 
...I' ~ R that can be represented as 

n 

x (g) = L Pi/1(Wi,g) (1.2) 
i=\ 

with real numbers Pi and the elements Wi E :%. 

It follows immediately that D and B are linear, real vector spaces. 
From III T 5.1.4 (ii) and (iii) follows that W ~ /1 (w, g) and g ~ /1 (w, g) are 

injective mappings :% -+ B resp . ...I' ~ D. Thus, one can identify :% with a subset 
of B and ./' with a subset of D. In the sequal, we shall always adopt this 
identification. From (1.1) resp. (1.2) follows directly that ...I'resp. :% linearly spans 
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the space D resp. B. (Note that initially we use neither the relations (iv) and (v) 
from ill T 5.1.4 nor APK and ARK!) 

TI.l A bilinear from B x D ~ R, which coincides with fl when restricted to 

]rx../', is uniquely defined by :Yx../' ~ [0, 1]. Thus <B,D) becomes a dual pair, 
where D separates Band B separates D. 

Proof For WE ,Yand g E ../', with <- .. , ... ) as bilinear form, we must have 

<w, g) = fl(w, g). 

With (l.l) this implies n 

<W, y) = L ct.i fl (w, g;). 
i=l 

But (1.3) as the definition of < w, y) is only meaningful if 
n n 

y(l) (w) = L ct.f') If/(w, g}l), y(2) (w) = L ct.?) fl (w, g?) 
i=l i=l 

and y(l) = y(2) also make < w, Yl) = < w, Yz), which is immediately clear. 
As easily follows that < w, y) is linear in y. 
Since <x, y) must be bilinear, with (1.2) in the form 

n 

<x, g) = L Pi <Wi, g) 
i=l 

and (1.3) follows n 

<x,y) = L Pi <Wi'Y)' 
i=l 

Equation (104) is meaningful if 
n n 

x(l) (g) = L pf') fl (w}l), g), X (2) (g) = L p?) fl (w?), g) 
i=l i=l 

(1.3) 

(104) 

(1.5) 

and x(l) = X(2) imply <x(l), y) = <x (2) , y); but this follows from (1.5) and (1.3). The 
linearity of <x, y) in x follows easily. 

From <Xl, g) = <X2, g) for all g E J, with (1.2) follows Xl = X2' From <w, y,) 
= <w, Y2) for all WE :Y, with (1.1) follows y, = yz. Therefore, D separates Band B 
separates D. 0 

Because of the connection of <x, y) with fl, in the sequel we write <x, y) 
= fleX, y). 

Therefore, the embedding of :Y, J in the dual pair B, D with fl (x, y) as 
canonical bilinear form is possible for purely mathematical reasons (without any 
further law of nature); it follows from III T 5.1.4 (i), (ii), (iii). From III T 5.1.4 (iv) 
follows the zero element of D is an element of ../': 0 E../'. From III T 5.1.4 (v) 
follows 1 E..f (we denote the element gl by 1) and 

Il(w,I)=1 forall WE:Y. 

From III T 5.104 (vi) follows that g E J implies 1 - g E J. 
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D 1.2 A subset A of Band D is called convex if x), X2 E A implies 

A.x)+(I-A.)X2EA for 0<.1<1. 

A is called rational convex if (1.6) holds at least for all rational A.. 

By means of (1.3), (1.4) one immediately sees: 

(1.6) 

T 1.2 Relation APK resp. ARK from III § 5.3 is equivalent to % resp . ../' being 
rational convex. 

Let us collect all the properties obtained from III T 5.1.4 and APK, ARK. 
% and ../' can be embedded in a dual pair of vector spaces B, D so that % 

linearly spans B, ../' linearly spans D and so that % x ../' .!!. [0, 1] is the restriction of 
the canonical bilinear form of <B, D). The following holds: 

(a) 0 E../', 
(b) there is an element 1 E ../' with p (w, 1) = 1 for all w E %, 
(c) g E ../' implies 1- g E ../', 

(d) % and ../' are rational convex sets. 

Of course, for .'Y x../' .!!. [0, I] the properties from III T 5. 1.4 conversely follow from 
(a) through (d) for the sets %, ../'and the mapping %x../' A [0,1]. 

We stress here once more that the spaces B, D are only auxiliary constructions. 
They enable us to formulate the properties (a) through (d) for %, ../' and the 
mapping .'Y x../' .!!. [0, I] in a mathematically convenient way. 

§ 2 Uniform Structures of the Physical Imprecision on :ff and ./ 

The sets % and ../' were obtained as partition classes of the sets !!J' and Y. Two 
a), a2 E!!J' belong to the same class provided p (a),J) = p (a2,f) holds for allf E Y 
(as far as p (a),J) and p (a2,J) are defined). Likewise, two Ji ,12 E Y belong to the 
same class provided p(a,Ji) = p (a, h) holds with all a E !!J' for which p (a,Ji) and 
p (0,12) are defined. Thus, the elements of % are distinguished by the effect 
procedures, hence by the elements of ../'. Vice versa, these elements of ../' are 
distinguished by those of :Yf. Physically, an equation, for example of the form 
p (a),J) = p (a2,J), is of course an idealization, in as much as these probabilities 
can be compared with experience only my means of imprecision sets (see [3] 
§ 11.6). Therefore, also the elements of % and../' can only imprecisely be separated 
from each other. These considerations lead to uniform structures of physical 
imprecision on:% and../' (as described in [3] §§ 6 and 9 and [40]). 

From these general considerations and the meaning of the elements of %, as a 
uniform structure of the physical imprecision on % there follows the initial 
uniform structure (see [3] § 9) associated with the mappings % I'(w,g)l [0, 1] for all 
g E../'. Likewise, as the uniform structure of the physical imprecision on ../' one 
obtains the initial uniform structure associated with the ~appings ../' ~ [0, 1] 
for all WE :Yf. As mentioned in [3] § 9, % and../' are precompact relative to these 
uniform structures, since [0, I] is a bounded set of real numbers. Since the sets % 

and../' are countable, such uniform structures are also metrizable (see [3] § 9). 
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These uniform structures of the physical imprecision can be expressed 
especially simply if one regards :% and 1" as subsets of B resp. D (as in § I). It is 
customary to denote by a(B, A) the initial topology generated by the mappings 
B ~ R for the elements y of a subset A of D. Likewise one denotes by a(D, A) 
the topology generated on D by a subset A of B. A vector space topology 
determines uniquely a uniform structure (see [7] I § 1.4), i.e. the continuous linear 
functionals always are also uniformly continuous. Thus it suffices for vector spaces 
to prescribe the "topology" of the physical imprecision (see [3] § 9). Therefore, the 
physical imprecision on :% is to be described by the topology a(B, 1") restricted to 
f, the imprecision on 1" by the topology a (D,:%) restricted to 1". 

As described in [3] § 9, one can now complete the sets :% and 1" relative to 
a(B, 1") resp. a(D, Y) to compact sets :Y, J Due to the physical interpretation of 
uniform structures of physical imprecision (see [3] §§ 6 and 9), it is physically 
meaningless, in a precisely way to single out the set :% as a subset of :Y and 1" as a 
subset of j. Of course, one also cannot choose an arbitrary countable subset of :Y 
as the set ,~, if one requires that the uniform structure generated on 1" by (D, :%) 
does not change. Thus, the question arises for which subsets :i/ of :Y are the 
uniform structures generated on 1" by a (D,;i') equal to those generated by 
a(D, .~. In order for a(D, ,ff) and a(D, :%) to lead to the same uniform structure 

on 1", the mapping 1" -6 [0, I] must for x E :ff be uniformly continuous with Ix (g) 

as the extension of the mapping ,~~ [0, I] to :Y ~ [0, I]. From this follows that 
there is a largest subset ,ff of :Y which contains :% and for which a (D, $) and 
a(D,.~ generate the same uniform structure on 1", namely: $= {x I x E :Y and 
Ix (g) is uniformly continuous on 1" relative to a(D, Y)}. Correspondingly one can 
define ./. The mapping :% x 1" ~ [0, I] can be extended to $ x ./ ~ [0, I] (but 
not to a mapping ,j? x j ~ [0, I]!). 

Therefore, every countable subset of :% which. does not generate a weaker 
initial uniform structure on J and hence on ./ is physically undistinguishable 
from :%; the analogous result holds for 1". Thus it appears meaningful to consider 
the sets ,%, ./ and :Y, j further, where :Y, j are also the completions of $, ./ 
relative to a(B, ./), a(B, J) resp. a(D, $), a(D, :%). 

In order to describe the sets $, ./, :Y, ~; it is again practical (not necessary!) to 
return to the vector spaces B, D and to complete them topologically. We will do so 
in the next section. 

§ 3 Embedding of ,y{ and ../ in Topologically Complete 
Vector Spaces 

Since B is linearly spanned by ,Y(, we have a(D, :%) = a(D, B). For fixed x E B 
the linear functional f.l (x, y) is a(D, B)-continuous on D and can thus be uniquely 
extended to the a(D, B)-completion of D which one can identify with B* (the set of 
all linear functionals on B; see [7] IV § 1.3). Therefore, one can think of f.l (x, y) as 
the restriction to <B, D) of the canonical bilinear form of <B, B*) for which we 
shall again write f.l (x, y). Therefore, j is equal to the a(B*, B)-closure of 1" in B*. 
The set ./ was to consist of all y E j for which (with x in :%) f.l (x, y) is a(B, 1")-
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unifonnly continuous. Since D is linearly spanned by ../, we have O"(B,../) 
= O"(B, D). This suggests to look for the set of all Y E B* for which fl (w, y) is 
O"(B, D)-uniformly continuous on :%. This set is obviously a linear vector space 
~ c B* and yields J=../ n~. 

We can define a norm in ~ by 

IIYII =SUplfl(W,y)l, 
we% 

(3.1) 

since fl(W,Y) as a uniformly continuous function on the precompact set :%must be 
bounded. 

T 3.1 With the norm (3.1), ~ is a Banach space. 

Proof This follows from known general theorems, but can also be easily shown 
directly. If Yn E !}J is a Cauchy sequence, fl (x, Yn) is a Cauchy sequence for each 
x E~. Thus, there is a linear functional f(x) on B which is bounded on :% and 
yields 

Hencefis uniformly continuous on :%because 

If(wd - f(W2) 1 :§ If(w,) - fl (w" Yn) 1 

+ Ifl (w" Yn) - fl (W2' Yn) 1 + Ifl (W2' Yn) - f(W2) I· 0 

D3.1 We denote by R the subset of all yE B* for which Ifl(W,y)1 is bounded 
on .ff. 

It follows directly that R is a subspace of B*. From T 3.1 also follows ~ c R. 
The same norm (3.1) can be introduced immediately in R. Then R is a Banach 
space, which follows even more easily than in the proof of T 3.1. 

D 3.2 Let.'21 denote the norm closure of D in R. 

Therefore !fl is also a Banach space. From D c ~ and T 3.1 follows !fl c ~, hence 
the three Banach spaces .'21, ~, R fulfill 

!flc~cR. (3.2) 

Form J = ../ n ~ follows ../ n !fl c J. Later we shall find J = ../ n.'21. The 
aim of the next considerations is a similar result for ,Y? To this end, we start from 
the dual pair <B, R). 

T 3.2 The Banach space R' dual to R makes Be R'. 
n 

Proof With x = L ai WJWi E :%) follows 
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D 3.3 For a subset R with D eRe R, we define a norm in B by 

l.u (x, y) I 
Ilxllli=~~~ IIYII . (3.3) 

Because of Dc R, one easily sees that II x II Ii = 0 implies x = 0; hence (3.3) is 
meaningful. From RI c R2 follows II x IIR, ~ II x II li2 , thus in particular II x II D 

~ II x II Ii ~ II x II R, where II x II R is the norm in the Banach space R' restricted to B. 
Let Bli denote the Banach space generated by B with the norm (3.3). For Y E R the 
.u (x, y) are linear functionals on B; they are continuous in the norm (3.3) and hence 
can be continued to Bli. In this way, .u (x, y) can be extended to a function 
on BliX R. 

Using (b) (end of § 1), we obtain 

T 3.3 The following holds: II w II Ii = 1 for all WE$"; II g II ~ 1 for all g E J"; 
IIY II = sup {I.u (x, y) 1\1 II x II Ii = 1, X E B Ii } for all y E R. 

Proof From (3.1) follows l.u(w, y) I ~ IIY II for all y E R, which together with (3.3) 
yields II w II Ii ~ 1. For g E J" we have l.u (w, g) I ~ 1 so that (3.1) gives II g II ~ 1. For 
g = 1, thereby follows 11111 = 1 and this by (3.3) implies 

.u (w, 1) 
II w II Ii ~ 11111 = 1 , 

hence we get II w II Ii = 1. 
From Xc B Ii follows 

sup {I.u(x, y) 1I11 x II Ii ~ 1, x E BIi} ~ sup {I.u (w, y) II w E .~} = IIY II 

for y E R, because II w II = I holds for w E :Y. From (3.3) follows 

l.u (x, y) I ~ II x II Ii II y II 
and 

sup{l.u(x,y)llllxllli ~ l,x E BIi} ~ IIYII. 0 

Therefore, iff(x) is a linear functional form BJi (the Banach space dual to BIi), 

then f(x) restricted to B is an element of B*. Because If(x) I ~ C II x II for a 
suitable C on ,~, we have Ilf(w) II ~ C (because II w II Ii = 1 for WE :Y) and hence 
f(x) IB E R. If fi (x) IB = h (x) IB' also fi (x) = h (x) holds for all x E Bli because fl 

and h are continuous. Thus BJi can be identified with a subset of R, namely with 
the subset of all y E R for which.u (x, y) is continuous on B in the norm (3.3). 

This proves the theorem 

T 3.4 We have Dc R c Bli c R. The norm in the dual Banach space Bft. coincides 
with that of R at least on the subset R (!) (see T 3.3). 

D 3.4 A subspace R with Dc R c R is called symmetric if R = Bft.. 
Symmetric subspaces exist, for T 3.4 with R = R gives BR = R. 

For a symmetric subspace R, by T 3.4 the norm of B~ coincides with that of R 
on all of B~. 
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T 3.5 A a(BR, BA)-closed subspace T of a symmetric subspace R = BR IS a 
a(R, BR)-closed subspace of R. 

Proof The subspace Tis a(R,BR)-closed if Tr'lRlll (with Rill the unit ball of 
R) is a(R, BR)-closed (see [7] IV § 6.4). Since the norms of BR and R coincide, for 
the unit ball BRill of BR we find 

BRill = BR r'I Rill· 

Because of T c Bii, we therefore have 

T r'I Rill = T r'I BRill. (3.4) 

BRill is a(BR' BR)-compact and hence (since T should be a(BR' BA)-closed) 
T r'I BRill is also a(BR' BJi.) compact. 

By J-l(x, y) a linear form on R is uniquely assigned to each x E BR. Let 
J-l (x, y) Iii be this linear form restricted to R. We will show that J-l (x, y) Iii E B ii holds: 
If Xn E B is a sequence that in the norm II·IIR converges to x E B R , due to 
II x llii ~ Ix IIR the Xn also form a Cauchy sequence in the Hlii norm, so that 
J-l(x,y)liiEBii holds. On R=BR' therefore a(R,BR) is coarser than a(R, Bii). 
Since $c BR , the s(R, BR)-topology separates. Since on a compact set a weaker 
separating topology coincides with the topology of the compact set (see [5] I § 9.4), 
a(R,BR) and a(R,Bii) coincide on Tr'lBlllll . Thus Tr'lBlllll is a(R,BR)-closed 
(being compact), so that T r'I Rill due to (3.4) is a(R, BR)-closed. 0 

T 3.6 Every a(R, BR)-closed subspace R of R with D c R is symmetric. 

Proof Since R is a(R, BR)-closed, Bii is isomorphic to the factor space BRIRJ.. 
and R is isomorphic to the Banach space dual to BRIRJ.. (see [15] § 22.3), hence 
Bii'=R'. The isomorphic mapping Bii - BRIRJ.. is just given by J-l(x,y) - {x'lx' 
E BR and J-l (x', x) Iii = J-l (x, y)} (with x E Bii). 0 

The preceding theorems allow us to prove the important, central theorem 

T 3.7 There is a subspace R of R with 

(I) DcR; 
(2) R with the norm (3.1) is a Banach space; 
(3) R = BHBA the completion of B relative to the norm (3.3»; 
(4) a(Bii, J) separates (i.e. x E Bii, J-l (x, g) = 0 for all g E J implies x = 0). 

The conditions (1) to (4) uniquely determine R. 
(5) R is the intersection of all symmetric subspaces of R. 
(6) R is the a(R, BR)-closed subspace spanned by D. 
(7) 9cR. 
(8) For WE $we have II W llii = 1; for g E J we have II gil:§! 1. (Since R = BIl 

we have, as is known, IIY II = sup {IJ-l (x, y) II x E Bii and II x II ii:§! I} for all 
y E R.) 

Proof (3) says that R is a symmetric subspace of R. By T 3.5 and T 3.6, the 
intersection L1 of all symmetric subspaces is again a symmetric subspace, and hence 
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the smallest symmetric subspace of R. Therefore, since A is also the smallest 
O'(R, BR)-closed subspace of R which contains D, this A is the O'(R, BR)-closed 
subspace of R generated by D. 

If R were properly larger than A, this A would be a proper, O'(R, BR)-closed 
subspace of R, hence a fortiori O'(R, BR:)-closed (since O'(R, BR:) is finer than 
O'(R, BR); see the proof of T 3.5). Therefore in BR: an x would exist which is 
orthogonal to A. Then .u (x, y) = 0 would hold for all YEA and hence .u (x, g) = 0 
for all g E ./ in contrast to (4). Therefore, R = A must hold. 

It remains yet to show that O'(BR,./) with R = A in fact separates: If there were 
an x E BR with .u (x, g) = 0 for all g E ./, the O'(R, B R:)-closed subset T spanned by 
./ in BIi. = R would not be all of R = A. According to T 3.5, then T would also be a 
O'(R, BR)-closed and hence (by T 3.6) symmetric subspace of R. Thus T would be 
properly smaller than A in contrast to the fact that A was the smallest symmetric 
subspace. 0 

In the sequel we shall denote the uniquely (by T 3.7) determined Banach space 
BR: by BiJ and correspondingly R by BiJ' . Thus Yr is identified with a subset of BiJ and 
./ with a subset of BiJ' . For this embedding we find that O'(BiJ,./) separates while 
the norm in .tIll' satisfies (3.1). 

Thereby BiJ and BiJ' are due to T 3.7 determined uniquely (up to isomorphisms, 
for BiJ' can always be embedded isomorphically in R). That BiJ is the Banach space 
generated by Yr, already follows from the fact that the norm of BiJ' satisfies (3.1). In 
fact, if the Banach space A generated by Yr were not all of BiJ, in BiJ' there would 
exist a Y =1= 0 orthogonal to A. Such a Y would make .u (w, y) = 0 for all WE Yr and 
thus Ily II = 0 according to (3.1), contradicting y =1= O. Since O'(BiJ,./) separates, the 
O'(BiJ', BiJ)-closed subspace of BiJ' spanned by ./ must be all of BiJ' (as shown in the 
proof of T 3.7). The Banach subspace of BiJ' spanned by ./, denoted above by !P, of 
course need not be all of BiJ/! From (3.1) follows II g II ~ 1 for all g E ./, while T 3.3 
implies II W II = 1 for all W E Yr. We shall prove other important properties of BiJ, BiJ' 
further below. But before this let us once more reflect on the extent to which BiJ, BiJ' 
are also determined "physically uniquely". 

How shall the words "physically uniquely" be interpreted? We have indeed 
proved in T 3.7 that BiJ, BiJ' are uniquely determined by Yr, ./. But this uniqueness 
would only be "physical" if fIIJ, BiJ' were already determined by the sets denoted 
above by :Y and ./ and did not depend on the choice of the Yr, ./ as subsets of 
:Yand./. 

In order to investigate this problem of physical uniqueness, it is advantageous to 
examine the spaces!P and !P' more closely, introducing some abbreviations. 

D 3.5 Let the norm closure ofYr in BiJ be denoted by K. 

From (d) (end of § l) follows immediately that K is a convex set. 

D 3.6 Let the 0' (BiJ', BiJ)-closure of./ in BiJ' be denoted by L. 

From (d) follows directly that L is a convex set. 



§ 3 Embedding of.%and f in Topologically Complete Vector Spaces 109 

T3.8 For WE Kwe have II w II = I and Jl (w, 1) = 1. For Y E!!il' we find 

II y II = sup I II (w, y)= sup I Jl (w, y) I . (3.5) 
W E.% we.-*, 

For gEL we have II g II ~ I, while WE K, gEL give 0 ~ Jl (w, g) ~ 1. 

Proof The equality (3.5) follows immediately since K is the norm closure of .%. 

From (3.5) follows I Jl (w, y) I ~ I y II and hence 

_ I Jl (w, y) II -< 
II W II - }~g, IIY II = 1. 

From Jl (w, 1) = I for W E .% also follows Jl (w, 1) = I for W E K. Thus 11111 = I gives 
II W II ~ I, such that II W II = 1. 

For each WE K and e> 0, for g fE L there is a rJ EJ' with I Jl (w,g)- Jl (w,rJ) I < e. 
Because of 0 ~ Jl (w, rJ) ~ I there results 0 ~ Jl (w, g) ~ I; hence (3.5) finally gives 
Ilg II ~ 1. 

T 3.9 For J'from § 2, we have./ = L C !!ill l I' 

Proof ./ is the CT (!!il', .%)-completion of ../. Since !!ill 1 I is compact in the CT (!!il', !!il)
topology, the CT (.qjj', !!il)- and CT (!!il', .%)-topologies coincide on !!ill 1 I. Hence, the 
CT (!!il', !!il)-closure L of l' in !!ill l I equals the CT (!!il', .%)-completion ./ of ../. From this 
follows again the relation./ C %'11 I already established in T 3.8. 0 

Since the elements of %' are norm-continuous functionals over !!2J C %,', we can 
also identify %' with a subset of !!2J' (the Banach space dual to !!2J). Thus %' c !!2J' 
holds and therefore .% eKe 'fi'. Because of D c !!2J c R we can view 'fi as a special 
set R from the theorems T 3.3, T 3.4, T 3.5. Thus we can define the Banach spaces 
Bfp and Bfp. 

T 3.10 The inclusions %' c B!/, c !!2J' hold. 

Proof Since!!2J' is a Banach space relative to the norm 

I Jl (x,y) I 
II x 119) = sup II II YEfp y 

and Bfp the Banach space generated from B in the norm II x II fp, this K~ is the 
closure of B in!!2J' in the 11.llfp-norm; hence we get Bfp c !!2J'. Because of !!2J c %,', we 
find II x II!/' ~ II x II with II x II as the norm in %' (since II x II = II x II.SiI')' If x E %', there 
is a sequence Xv E B such that II XV - x II ~ O. Thus we also have II XV - x 11!p ~ 0 
and hence x E B!/,. 0 

T 3.11 The inclusions !!2J c B!x c %" hold. On !!2J, the norm of Bg equals that of R, 
hence that of %,'. On B~ \!!2J, the norm of Bg can at most be larger than that of %,'. 

For !!2J =1= %" we have!iJ =1= B~. 
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Proof From T 3.4 immediately follows 9 c B9. Since ff1j' was the smallest 
symmetric subspace of R, for 9 =F f!I)' we must also have 9 =F B9 . 

B~ is the set of linear functionals on Bg continuous in the 11·llg-norm. Because 
of ff1j c BYJ they are therefore also functionals on ff1j continuous in the II· II g-norm. 
As elements of R, those of By are already uniquely determined by their values in 
,qu. Inasmuch as II x IIYJ ~ II x II, they are a fortiori continuous on ff1j relativ to the 
norm in ff1j, such that By c ff1j'. 

From II x IIYJ ~ II x II follows by duality that the norm of ff1j' is smaller than that 
of B~. But by T 3.4 both coincide on 9. 0 

D 3.7 Let A" be the (J (9', 9)-closure of a subset A c 9'. 
From APK immediately follows that ;i/ct is a convex set. Since on ff1j the norm 

topology is stronger than the (J (9',9)-topology, we directly conclude K c ;i/ct and 
hence K" = ;i/ct. 

T 3.12 The unit ball 9(11 of 9' gives 9(11 = co (K" u - K"), hence 

9)( II = U (il K" - (l - il) K") . 
O;§).;el 

For W E K" we have II W 119' = 1. Each element x E 9)' can be written in the form 
x = (l( W - P v, where (l( ~ 0, p ~ 0, W E K" v E K" and (l( + P = II X Ilg. Both ff1j III and 
ff1j are (J (9)' 9)-dense in 9)( II resp.9)'. 

Proof The norm of 9)' is just 

l.u (x,y) I 
II X IIYJ=;~~ II y II . 

Because of II x II!?! ~ II x II (see the proof of T 3.10) we get ff1j111 c 9)( II' Since the 
norm in 9) is given by (3.1), the set 9)(11 is bipolar to :%u -:% so that [7] IV § 1.5 
gives 9)~1 = co" (:%u -Y). This makes K" E 9(11 and (- K") c 9)111' Since K" 
and (-K") are compact (being closed subsets of the (J (9)',9)-compact set 9)(11), 
the set co (K" u - K") is already compact and hence closed in the (J (9)',9)
topology, such that 9)( II = co (K" u - K"). Because of K" c 9( II we get II W Ilg ~ 1 
for WE K". From .u (w, I) = 1 for WE K also follows .u (w, I) = I for WE K", 
therefore II W II!?! = 1. Since x' = II X II:~I x with x E 9' has the norm II x' Ilg = 1, it 
equals x' = il W - (1 - il) v with 0 ~ il ~ I and w, v E K". From this follows 
x = II X II!?! il W - II X II!?! (l - il) v and II x IIYJ = II X II!?! il + II X \lg (1 - il). 

Hence the set of all (l( W - P v with w, v E :% is (J (9)',9)-dense in 9'. Therefore 
ff1j due to :%c ff1j is (J (9)',9)-dense in 9)'. For (l( + P ~ 1 we have II (l( W - P v II 
~ (l( II W II + P II v II = (l( + P ~ 1, and thus (l( W - P v E ff1j111' The il W - (l - il) v with 
w, v E :% are (J (9)',9)-dense in 9( II; hence ff1j111 is a (J (9)', 9)-dense subset of 9( II' 

T 3.13 :% = ;i/ct = K" holds. 

Proof Already above we showed K" =;i/ct. 
As a closed subset of the (J (9',9)-compact set 9)(11, also K" is (J (9',9)-com

pact. Thus on K" the weaker topology (J (9)',../) equals (J (9)',9). Therefore, the 
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completion .i' 0[,:::W- in the a (9', J)-topology is identical with the a (9',9)-closure 
of.Y. 0 

Thus :i? is the subset of all WE K([ for which f1 (w, g) with g E J is a (9, Y)
continuous on J: 

For that reason we adopt 

D 3.8 Let.ciJJ be the set of all y E 9' for which f1 (y, g) is a (9, jV)-continuous on J. 
This gives :i? c iiJ n K([ = .ciJJ n :i?([ . 

For our subsequent considerations, we will observe that Y and J are countable 
sets. Then we easily obtain 

T 3.14 fJiJ and 9 are separable Banach spaces. 

By [10] § 21.3 (4) this in tum yields 

T3.15 The topologies a (fJiJ',fJiJ) and a (9',9) are metrizable on each set that is 
norm bounded in fJiJ' resp. !iJ'. 

The following important theorem then holds with the g defined at the 
beginning of this section. 

T 3.16 g = 9 and hence..? = ~ n 9 = L n 9. 

Proof Let IE iff;, i.e. I be a linear form on B which is a (B, J)-continuous on :Yo 
Since .%is a subset of the a (9',9)-compact set K([ and a (9',..1') is separating on 
!iJ', the topologies a (9', J) and a (9',9) are identical on :Yo 

Since Yr is rational convex by APK, we can extend I as an affine functional to 
the a (!iJ', !iJ)-completion of .ff, i. e. to K([. Since !iJ' is linearly spanned by K([, we 
can extend I as a linear functional to all of 9', and this extended I is a (9',9)
continuous on K([. It follows immediately that I is norm-continuous on all of 9', 
because it must be bounded on the compact set K([ so that T 3.8 easily yields 

sup II (x) I = sup II (w) I . 
XE~"ll WEK~ 

We will show that I is even a (9',9)-continuous on all of 9'. The functional I is 
a (9',9)-continuous on all of 9' if the subspace F of all x E 9 with I (x) = 0 is a 
a (9',9)-c1osed subspace of 9'; and this holds if F n 9( 11 is a (!iJ', 9)-closed ([7] 
IV § 6.4). Let x E 9(11 be an accumulation point of F n 9( 11. Since the a (9',9)
topology on 9(11 is metrizable by T 3.15, there is a sequence Xv E F n 9(11 with 
Xv -> x in the a (9',9)-topology. From T 3.12 follows Xv = C(V WI' - PI' VI' with 
C(v + PI' = II XV II ~ I. Hence there is a subsequence of the Xv (briefly denoted again 
by xv) such that C(v -> C( and PI' -> P hold with C( + P ~ 1. From this follows 
II XV - XV II -> 0 with Xv = C( WI' - P VI" hence also Xv -> x in the a (9', 9)-topology. 
Since I is norm continuous, from I exv) - I (xv) = I (xv) we obtain I (xv) -> O. 
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Since K(J is compact, we can select a subsequence of Xv (again denoted briefly 
by xv) so that Wv -> wand Vv -> v hold in the a (§I, §)-topology. With Xv -> x this 
implies x = r:t. w - fJ v. Since I is a (§I,§)-continuous on K(J, we obtain I (wv) -> I (w) 
and l(vv)->l(v) and hence l(xv)=r:t.I(wv)-fJI(vv) -> r:t.1(w)-fJI(v)=/(x). Be
cause of I (xv) -> ° follows I (x) = 0, hence x E F. 

Since I(x) is a(.'0/,9)-continuous on all of 9)', we have 1 E §. Therefore, 
9 E 9 holds, and, with (3.2), finally 9 = 9. 0 

Therefore, from T 3.9 and T 3.16 follows that the spaces £!il' and § contain only 
the physical structure of the sets -? / = L since J = L n § and § is the Banach 
subspace generated by J in £!il'. Therefore, the choice of J as a subset of / does 
not enter into £!il' and §. But does perhaps the choice of :% and not only :% enter the 
structure of £!il and £!il'? 

T 3.17 The inclusions £!il c B!;t c iii C §' and hence K c :% hold. 

Proof According to T 3.10 and D 3.8, we must only show B!;t c iii. Let I E B'/i; then 
I is a a(B~"B!;t)-continuous linear functional on B~. By T 3.11, the norm of Bfp 
coincides on § with that of £!il'. Therefore J c § implies J c B~lll' Since B9111 
is compact in the a (B~, B!;t)-topology and a (B:X,:%) is weaker but separating on 
B'y, (T 3.11 makes B;" c £!ill), the a (B'y" B!;t)-topology on J equals the a (B9' :%)
topology. Therefore, I is a (B'y" :%)-continuous on J, so that B!iJ c iii. 

From £!il c B!;t c .riJ C §' follows K = iii n K(J :::J £!il n K(J and K c K(J finally 
gives K c ,O)J n K(J c:%. 0 

K =:% would mean that the vector space £!il and the set K are determined 
"physically uniquely". The description of the probability function :% x..:/' A [0, 1] 
within the dual pair ,O)J, £!il' is therefore independent of "random" choices (of.:Y as a 
subset of.i? and of J as a subset of J) just then, when we can yet show K =.% 

If iii = £!il and .O)J n K(J = K, holds, they imply :% = iii n K(J = K. By T 3.17 from 
.riJ= £!il also follows BfjJ=.O)J (as sets). Nevertheless, in principle we could have 
II x II'/i 2§; II x II and hence B~ ~ £!il'. 

Therefore, we first ask under what presumptions iii = qj would hold. In the 
following theorem T 3.18 we shall state an assumption which will later (after the 
introduction of further axioms, e.g. A V 1.2 s in VI), tum out fulfilled. 

From L c £!il 111 follows with 1 E J, that 

1-2L c £!ill 1 I (3.6) 

holds due to f1 (w, 1- 2 g) = f1 (w, 1) - 2 f1 (w, g) = 1 - 2 f1 (w, g). From (c) (end of 
§ 1) follows 

L=I-L (3.7) 
such that 

1- 2 L = 1- 2 (1- L) = - (1 - 2 L) . (3.8) 

Therefore, 1- 2 L is a set symmetric about O. 
If the convex set L possesses any interior element go (relative to the norm topology 
of qjl), then 0 is an interior element of 1- 2 L, hence (1/2) 1 an interior element of 
L. This can easily be shown on the basis of (c) (end of § 1): 
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If go is an interior element, there is an (X> 0 with go + (X ~rll c L. With (c) 
follows 1 - go c L. Since L is convex, we obtain 

1 1 1 (X 

2(go+ Q(~rll) +2 (I-go) =2 1 + 2 ~rll c L 

hence t 1 is an interior point of L and thus 0 an interior point of 1- L. 

T 3.18 If L in the norm topology of ~' has an interior point, we obtain ij = ~. 

Proof The proof proceeds analogous to that of T 3.16, so we can be brief. An I E ij 
can be extended to L as a (J (~', ~)-continuous affine functional, because on L the 
(J (~', ~)-topology coincides with the (J (~', JY)-topology. 

Since 0 is an interior point of 1- 2L, there is an (X> 0 with (X ~(JI c 1 - 2 L. 
Since 1 E L holds, L therefore spans the whole space ~'. Therefore, I can be 
extended as a linear functional to all of ~'. Because of (X ~r II c 1 - 2 L, this I is 
(J (~', ~)-continuous on (X ~rll and hence ([7] I § 4.2 and IV § 6.4) on all of ~'. 
Thus we get I E ~, hence ij c ~. This, together with T 3.17, implies ij = ~. 0 

The second condition, ~ 11 KI1 = K, means that K is closed as a subset of ~ in 
the (J (~, g)-topology. Let x E ~ 11 KI1; then 1 E./ implies /l (x, 1) = 1. From 
o ~ /l (w, y) for all WE KI1 and Y E g+, with g+ from § 4, we also get 0 ~ /l (x, y) 
for all y E i»~, where i»~ is the (J (~', ~)-closure of g+ in ~'. As shown in § 4, we 
have g+ = g 11 ~~ and hence ~~ c fi~l1. If ~~ = ~~,by T 4.3 follows x E ~+ and 
hence x E K, i.e. ~ 11 KI1 = K. We have thus proven 

T 3.19 If g 11 ~ is (J (~', ~)-dense in ~~ and if L has an interior point relative to 
the norm topology, we obtain K = % 

According to VI T 2.2.1, from AV 2 follows that the (J (~', ~)-closed cone gen
erated by L is all of ~~; hence g 11 ~~ is (J (~', ~)-dense in ~~. By VI T 2.2.2, the 
same follows from A V 1.2 s. From A V 1.2 s also follows that L has an interior point 
relative to the norm topology. Therefore from A V 1.2 s follows K = % . 

In concluding this section, we again emphasize that the spaces ~, g, ~', g' do 
not affect the structure of the "physical" sets :%, ./, :.w,- ..? and :i; ..J: It is altogether 
legal that (together with the sets :%, ./, :.w,- ..? and :i; '..j and the uniform structures of 
physical imprecision) we use other mathematical structures, such as the spaces ~, 
g and the norm topology in ~ (all uniquely determined by :%, '/), because these 
only reflect properties of:%, ./, :.w,- ..? and :i; .:? that are already at hand. The spaces 
~, g, ~', g' do not depend on the choice of./ as a subset of ..?, but only on./. For 
the case %=K (e.g. if AV1.2s holds) the spaces ~,g, ~', g' also do not depend 
on the choice of :% as a subset of :.w,- but only on % Just this shows that the struc
ture of the spaces ~, g, ~', g' depicts the true physical structure of the prob
ability /l. 
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§ 4 f/J, f/J',~,~' Considered as Ordered Vector Spaces 

Here we shall sketch some basic structures of the spaces fiJ, fiJ', 5$, 5$', which are 
necessary and sufficient to characterize the situations described by the sets :% and 
./. Together with J= L n 5$ (valid by T 3.16), in this context we have in mind the 
relation :%=:Y. Due to further axioms, this will later follow from T 3.19. We first 
introduce several concepts. 

A vector space E is called an ordered vector space if an ordering relation is 
given which makes 

XI ::l! X2 = XI + X ::l! X2 + X for all X E E , 

XI ::l! X2 = ex X;::l! exx2 for all ex ~ o. 
As a cone C of E we denote a subset of E which makes C + C c C and or; C c C 

for all or; ~ O. A cone C is called proper if C n (- C) = {OJ. 
The structures of a proper cone C and of an ordering are equivalent via 

x~O_xEC. 

In the sequel we shall by E+ denote a proper cone C which defines an ordering 
inE. 

In fiJ the set U A K is a proper cone: It is a cone since K is convex. This cone 
).l!;0 

is proper since AI WI = - .12 W2 with WI, WI E K would imply AI WI + .12 W2 = 0 
whereas, on the other hand, 

II AI WI +.12 W211 = (AI + .12) II~WI + ~ W211 = AI + .12 
AI + .12 AI + .12 

holds because K is convex and II W II = 1 for W E K. 

D 4.1 By fiJ+ we denote the cone defined in fiJ by U (A K). Via this cone, fiJ 
becomes an ordered vector space. ),;:;0 

T 4.1 fiJ+ is closed in the norm topology and in the (j (fiJ, fiJ')-topology. 

Proof If A.. Wv -+ X in norm then the norm of Av Wv is also convergent: II Av WV II 
= Av II WV II = A.. -+ A.. Then 

II A Wv - X II ::l! II (A - Av) WV II + II Av Wv - X II = I A - Av I + II Av Wv - x II 

holds and hence A Wv -+ x. Since K is norm-closed, we have Wv -+ WE K and 
x = AWE fiJ+. 

But a convex set, norm-closed in fiJ, is also (j (fiJ, fiJ')-c1osed in fjJ ([7] II 
§ 9.2). 0 

For an x E fiJ+ we easily see that the representation x = A w, with W E K, is 
unique because II x II = A II W II = A. 

A subset M of a cone C is called a basis of C, when C = U A M and x = AI WI 
),;:;0 

=.12 W2 (W., W2 E M) always imply AI = .12 and hence WI = W2. Therefore, K is a 
basis of the cone ff8 .... 
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T 4.2 Y6'111 = co (K u - K) (in the sense of norm closure). 

Proof By the definition of the norm in Y6", the set Y6'111 is bipolar to K u - K and 
hence equal to colT (K u (- K)) (in the sense of the closure in the a (Y6', Y6")
topology). Since every norm closed convex subset of Y6' is also a (Y6', Y6")-closed, the 
assertion follows. 0 

Theorem T 4.2 says explicitly that Y6'111 is the norm closure of the set 

U (A K - (l - A) K) . 
0,;;).';; I 

D 4.2 An ordered Banach space Y6' is called basis normed if a basis K of Y6'+ makes 
Y6'111 = co (K u - K). 

We easily recognize K = {x I x E Y6'+ and f1 (x, 1) = l}, i.e. K is the section of 
.9J+ by the hyperplane {x I f1 (x, 1) = l}. 

It easily follows that the set of all Y E Y6", with f1 (x,y) ~ 0 for all x E Y6'+, is a 
cone. This cone is proper: From f1 (X,YI) ~ 0, f1 (X,Y2) ~ 0 and YI = - Y2, i.e. 
YI + Y2 = 0 follows f1 (x, YI) + f1 (x, Y2) = 0 and hence f1 (x, yd = 0 for all x E K. 
Since K separates the space Y6", we get YI = O. 

D 4.3 We denote the proper cone Y6'~ = {y lYE Y6" and f1 (x, y) ~ 0 for all x E Y6'+} 
as dual to Y6'+. 

We immediately find Y6'~ = {y lYE Y6" and f1 (w, y) ~ 0 for all WE K}. 

T 4.3 Y6'~ is a (Y6", .9J)-closed and makes 

Y6'+= {x I x E Y6' with f1 (x,y) ~ 0 forall Y E Y6'~}. 

Proof Being polar to Y6'+, the set Y6'~ is a (Y6", Y6')-closed. Thus, {x I x E Y6' with 
f1 (x, y) ~ 0 for all Y E .9J'+} is the set bipolar to Y6'+ and hence equal to Y6'+ (since 
Y6'+ is convex and a (Y6", Y6')-closed). 0 

T 4.4 Y6'111 = [- 1, 1], where [YI, Y2] denotes the order interval {y I YI ~ Y ~ Y2}. 

Proof By the definition of the norm of y, the set Y6'1 II consists of all Y with 

sup I f1 (w, y) I ~ 1 
WEK 

i.e. - 1 ~ f1 (w, y) ~ 1. Because of f1 (w, 1) = 1, this is equivalent to f1 (w, 1- y) ~ 0 
andf1(w, y-l) ~ 0, i.e. -1 ~Y ~ 1. 0 

T 4.5 The inclusion L c [0, 1] holds. 

Proof This follows immediately from 0 ~ f1 (w, g) ~ 1 for gEL. 0 

D4.4 An ordered Banach space is called an order-unit space if the unit ball equals 
the order interval [-1,1]. 

Thus Y6' is a base normed space with the basis K, and Y6" is an order-unit space. 



116 IV Embedding of Ensembles and Effect Sets in Topological Vector Spaces 

The following theorem states the most important property of the base normed 
space ~ and of its dual order-unit space. 

T 4.6 The equalities ~ = ~+ - ~+ and ~' = ~~ - ~~ hold. 

Proof The last relation can be shown very simply: For Y E~' we have 
IIY 11-1 Y E ~(II' i.e. -1 ~ II Y 11-1 Y ~ 1 and hence II Y 11-1 Y + 1 iE: 0, i.e. IIY 11-1 y+ 1 
= YI with YI E B~. From this follows Y = II Y II YI - II Y 111, where II Y II YI E B~ and 
IIY 111 E ~~. 

The relation ~ = ~+ - ~+ is more profound since K need not be compact. 
From [7] V § 3.1 (e) follows first that the cone ~+ is normal because 
Y = sup I J1 (w, y) I for YI, Y2 E ~~ implies II YI II ~ II YI + Y2 II. Since ~+ is normal 

lVEK 

and closed (by T 4.1), by [7] V § 3.5 follows ~= ~+ - ~+. 0 
According to [7] V § 5.5, for ~~ we find 

T 4.7 The set of all positive linear forms on ~+ equals ~~, so that 

~+ = {y lYE ~* and J1 (x, y) iE: 0 for all x E ~+} 

= {y lYE ~* and J1 (w, y) iE: 0 for all W E K} ; 

hence ~~ is also the set of all positive affine functionals on K. 
This T 4.7 implies a relation stronger than T 4.3: ~~ is a (~', ~)-complete. 

According to T 4.7, ~~ in fact is the cone polar to ~+ in ~* and hence a (~*, ~)
closed in ~*. Since ~* is a (~*, ~)-complete, ~~ is so. 

T 4.8 The norm in ~ makes II x II the gauge functional p (x) of co (K u - K), i.e. 

II x II = inf {A. I A. iE: 0, X E A. co (K u - K)} 

= inf {IX + P I a, P iE: 0, x = IX WI - P W2 and w" W2 E K} . 

Proof By T 4.6 we have ~ = ~+ - ~+ and hence co (K u - K) is radial; therefore, 
p (x) is a seminorm. Due to II IX WI - P W2 II ~ IX II WI II + P II W2 II = IX + p, from 
p (x) = 0 follows II x II = 0, i.e. x = 0; therefore, p (x) is a norm. 

Then the sets Un = {x III x II ~ Il2n} are closed ·in the HI-topology and obey 
Un+1 + Un+1 C Un. 

According to [7] V § 3.4, the sets 

v" = Un 11 ~+ - Un 11 ~+ 

then form a neighborhood basis of a topology .'T in which ~ = ~+ - ~+ is com
plete. With ~+ = U (A. K) and II A. W II = A. for W E K, we obtain 

2.,,0 

Therefore, the inclusions 

{x I p(x) ~ ;n} C v" C {x I p(x) ~ 2nl- l } 
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hold and hence Y is the topology of the norm p (x) in q). Therefore, q) is also a 
Banach space relative to p (x). 

From T 4.2 follows p (x) ~ II x II. Then, according to [7] III § 2.1, the topologies 
of p (x) and II x II are the same and hence the set .'!Il' of the continuous linear func
tionals is the same for p (x) and II x II. Since the norm in q) also makes 

IJl(x,y)1 
II x II = sup II II ' 

yEfliI' Y 

the norms p (x) and II x II are equal if the norms 

IIY II = sup I Jl (w,y) I = sup {I Jl (x,y) 1I11 x II;§ I} 
IVEK 

and 
II Y III = sup {I Jl (x, y) II p (x) ;§ I} 

coincide. Because of p (x) ~ II x II we have II y III ;§ II y II. On the other hand, 
becausep(w);§ I for W E Kwe have 

II y III ~ sup I Jl (w, y) I = II y II· 0 
IVEK 

From T 4.8 immediately follows 

T 4.9 For each x E q) and e > 0, there is a representation x = r:J. WI - fJ W2 with 
r:J., fJ ~ 0 and WI, W2 E K, such that r:J. + fJ ~ II x II > r:J. + fJ - e. 

For II x II < I we therefore have x E co (K u - K), i.e. q)111 can differ from 
co (K u - K) only by elements x with II x II = I. 

We say that q) possesses the minimal decomposition property if each x has a 
decomposition x = r:J. WI - fJ W2 with II x II = r:J. + fJ. We easily see that the minimal 
decomposition property is equivalent to co (K u - K) being norm closed, since 
p (x) = II x II. There are base normed spaces that do not posses the minimal decom
position property ([11] page 30). 

But T 4.9 can be sharpened to 

T 4.10 For each x E Band e> 0 there is a decomposition x = r:J. WI - fJ W2 with 
r:J., fJ ~ 0 and WI, W2 E K such that there is a Yo E [-I, I] which makes Jl (W2' Yo) 
= - 1 and Jl (WI> Yo) ~ 1 - e, and also a Yo E [-I, I] with Jl (wJ, Yo) = 1 and 
Jl (W2' Yo) ;§ - 1 + e. If x = r:J. WI - fJ W2 is a minimal decomposition so that 
II x II = r:J. + fJ, then there exists ayo E [-I, I] withJl(whYo) = I,Jl(w2,Yo) = - I. 

Proof If x = r:J. WI - fJ W2 is a minimal decomposition, we have 

r:J. +fJ = sup {Jl (x,y) lYE [-I, I]}. 

Since [-I, I] is (J (q)', q))-compact, Jl (x,y) reaches its supremum on [-I, I], i.e. 
there is a Yo with Jl (x, Yo) = r:J. + fJ= r:J. Jl (WI, Yo) - fJ Jl (W2' Yo)· Since I Jl (WI, Yo) I ;§ 1 
and I Jl (W2' Yo) I ;§ 1, we must therefore have Jl (WI, Yo) = 1 and Jl (W2' Yo) = - 1. 

If q) lacks the minimal decomposition property, then (by A IV, T 6 and T 7) for 
each x E q) and e> 0 there is an element Ye E q)' with Ye E [0, I] and III - Ye II < el2, 
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so that x has a minimal decomposition relative to the basis Ke = !31J+ II 
{x I J1. (x,Ye) = l}. Hence, there is a decomposition x = a XI - P X2 with XI> X2 E Ke 
and 

sup {J1. (x,y) lYE [- Ye, Ye)} = a + p. 
Likewise follows that there is a Yo with Yo E [- Ye, Ye] and J1. (XI> Yo) = 1, J1. (X2,YO) 
= - 1. Because of XI, X2 E !31J+, we obtain XI = Al WI and X2 = A2 W2 with WI, W2 E K 
and Al = II XI II = J1. (XI> 1), A2 = II x211 = J1. (X2, 1). Therefore, X = IX WI - P W2 holds 
with IX = a AI> P = P A2' 

From J1. (XI, Ye) = 1 and 111- Ye II < el2 we conclude 

III XI II = 1 I = I J1. (XI' 1-Ye) I < II XI II ~ 
hence 

1 1 
--<llxIII<--· 

e e 
1+- 1--

2 2 

The same follows for II X2 II, such that 

1 --<AI, 
e 

1+-
2 

1 
A2<--

e 
1--

2 

(4.1) 

holds. Because of Yo E [- Ye, Ye] and Y. E [0, 1], we have Yo = Yo + Ye - 1 E [-1, 1] 
andyo=- Ye+ Yo+ 1 E [-1, 1]. 

From J1. (XI, Yo) = 1, J1. (X2, Yo) = - 1, with J1. (XI>Ye) = J1. (X2, Ye) = 1 we get 

J1. (XI, Yo) = 2 - AI, J1. (X2, Yo) = - A2, 

and hence 

J1. (W2, Yo) = - 1 , 

- 2 + A2 
J1. (W2, Yo) = A2 . 

This together with (4.1) implies 

J1. (Wl> Yo) > 1- e,J1.(w2,YO) < - 1 + e. 0 

The situation for g and g' is simpler. From T 3.12 immediately follows that 
g', with the cone g~ = U A KG, is a base-normed space (basis K") and that g' 

A!!;O 

possesses the minimal decomposition property. 
The cone g+ dual to g~ in g is given by 

g+={yIYEg with J1. (x, y) is; 0 for xEgn· 

From J1.(w, y) is; 0 for WE K and Y E g also follows J1. (w, y) is; 0 for WE K". 
Therefore we get 

g+=!31J~lIg. 

This g+ is norm-closed in g and (T (g, g')-closed. 
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Since g~ is u (g', g)-closed, we also have 

g~={xlxeg' and Jl(x,y) 5:0 for yeg+}. 

Since the norm of g coincides with that of &J' and 1 e ../ c g holds, we have 
gill = &1J'11 n g and hence gill = [-I, Il~ where [- I, I]!j is the order interval in g. 
Therefore, g is an order unit Banach space. 

Whenever L = [0, I] (as further axioms will imply), from ../ c g and ../ c &J(II 
follows that gill is u(&J', &J)-dense in &J(II. By T 3.16 then follows ./= [0, I]!j and 
(by T 3.19) the relation K = %. 

So far no satisfying way is known to physically transparent axioms which 
characterize g more precisely as a subspace of &J'. Hence only the following 
properties remain for the choice of g: 

g is a separable Banach subspace of &J'; 1 e g; gill = g n &J(II is u (&J', &J)
dense in &J(II. Then g is also u(&J',&J)-dense in &J', and gn[O,I]=[O,lk is 
u(&J', &J)-dense in [0, I], and g n &J~ is u(&J', &J)-dense in &J~ so that T 3.19 gives 
K=:Y. 

Some further considerations regarding the physical problem of the space g can 
be read in [2] and [45]. In this book, we need not further occupy ourselves with the 
spaceg. 

§ 5 The Faces of K and L 

Here we shall introduce yet several concepts important for later considenitions. 
If C is a closed convex set in a topological vector space E, we define a closed 

face of C as a subset FcC which is closed and obeys: 

(i) Fis convex. 
(ii) From xeF and X=A.XI+(l-A.)X2' with 0<,1.<1 and XI,X2eC, 

follows XI , X2 e F. 

We see immediately that the closed faces, ordered by set-theoretic inclusion, 
form a complete lattice (with C as unit element and 0 as zero element), in which the 
lattice-theoretic intersection equals the set-theoretic one. 

If a face consists of only one point, this point is called an extreme point of C. 
The set of extreme points of C is often denoted by iJe C. 

Let A be the set of affine, continuous functionals on C. Let A+ denote the subset 
of positive functionals. For y e A+ and X e C, one easily sees that {x I y(x) = O} is a 
closed face of C. A face F of C for which there is aye A+ with F= {x I y(x) = O}, is 
called an exposed face. 

If an exposed face consists of only one point, this point is called an exposed 
point of C. Therefore, the set of exposed points is a subset of iJec. But not every 
extreme point need be an exposed point! 

Because of T 4.6 and T 4.7, for the basis K of B the set of positive affine 
functionals on K can be identified with B~. An exposed face of K is therefore 
given by a set 

Ko(y)={wlweK and Jl(W,y) =0 fora yeB~}. (5.1) 
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For the convex sets C: [- 1, 1], [0,1], L and 2L ~ 1, one obtains the set of 
a(fiJ', fiJ)-continuous affine functionals from the elements of fiJ by adding arbitrary 
constants. One thus obtains all the exposed faces of these convex sets C as the sets 
{y lYE C and J-l (x, y) = inf J-l (x, y')}. Since the given sets C are a (fiJ', fiJ)-compact, 

y'eC 

for each x E fiJ the functional J-l (x, y) attains its infimum on C, i.e. each x E fiJ in 
this way determines an exposed face of C. Since C is a (fiJ', fiJ)-closed, it equals the 
intersection of all half-spaces of the form 

{ylJ-l(x,y) i5; inf J-l(X,y')}, 
y'ee 

which are generated by the hyperplanes 

{ylJ-l(x,y) = inf J-l(X,y')}. 
y'eC 

Since C is compact, its intersection with each of these hyperplanes is a (nonempty) 
exposed face of C. 

According to the Hahn-Banach-theorem ([7] III § 9.1), the same holds for a 
convex set that has an interior point: 

If C is a convex set in a real topological vector space (e.g. in fiJ) and C has an 
interior point (e.g. C is the unit ball fiJI I I of fiJ), for each x on the boundary of C 
there is a continuous linear functional I such that! (x) = inf I (x'). 

x'eC 

Then the set {x I I (x) = inf I(X')} is an exposed face of C. If C is closed, it 
x'eC 

equals the intersection of all half-spaces of the form {x II (x) i5; inf I (x')} for those 
• ~eC 

I which attain their infimum on C. The same holds for K, even though it need not 
be compact or have an interior point: 

TS.I With J={yIYE[O,I] and Ko(y)=l=0}, we have K={xlJ-l(x,I)=1 and 
J-l(x, y) i5; 0 for all y E J}. 

Proof Let x fj K and J-l(x, 1) = 1. By a decomposition x = rx WI - fJ W2, with 
IX, fJ i5; 0 and w), W2 E K from J-l (x, 1) = I follows rx - fJ = I, i.e. x = rx WI +(1 - rx)W2, 
where rx must be greater than 1 in order that x fj K holds. 

By T 4.10, the decomposition can be chosen so that, for given e > 0 there is a 
YoE[-I,I] with J-l (w), Yo) = 1, J-l(w2,Yo)<-1+e. For y=·}(I-yo) we then 
have YE[O,I] and J-l(WI,y) =0, J-l(W2,y)i5; 1-f; that is, YEJ and J-l(x,y) 
=(1- rx) J-l (W2, Yo) < O. 0 

We could also have proved T 5.1 directly by means of the Bishop-Phelps 
theorem (A IV, T 5): 

If K is bounded closed convex set of the Banach space fiJ, then the set of y for 
which J.l (x, y) attains the value inf J-l (x', y) on K, is norm-dense in fiJ'. 

x'eC 

According to this theorem, the set of y with y E [0, 1] for which (x, y) attains 
its inf J-l (w, y) on K, is norm-dense in [0,1]. For y E [0, 1] we have y' = y 

weK 

- inf (f-L(w,y)) 1 E [0, 1] and inf J-l(W,y') = O. The set J in T 5.1 is therefore 
weK weK 
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norm-dense in the set 

{yly E [0, 1] and inf Jl (w, y) = O} 
WEK 

which again provides T 5.1. 
Somewhat more generally than in (5.1), for a subset N c &6'~ we define 

Ko(N)={wlwEK and Jl(w,y) = 0 for YENc&6'~}. (5.2) 

T 5.2 ~ (N) is an exposed face of K. 

Proof Since &6" is separable in the a(&6", &6')-topology, there is a countable subset 
{Yv} of N which is a(&6", &6')-dense in N. From Jl (w, Yv) = 0 for all Yv then follows 
Jl (w, y) = 0 for all YEN. Since &6'~ is convex, Yo = 2: AvYv with Av> 0 and 2: Av = I 

v v . 

is an element of &6'~. From Jl (w, Yo) = 0 follows Jl (w, Yv) = 0 for all Yv' Therefore, 
~(N)=~(yo). 0 

D 5.1 An exposed face F) of K is called orthogonal to another exposed face F2 if 
there is ayE [0, 1] such that F) c Ko (y) and F2 c Ko (1 - y). For this we briefly 
write F) ..L F2• 

We see immediately that the relation F) ..L F2 is symmetric, since 1-(1- y) = y. 
The following sets of faces of K will carry special interest to us. Since norm

closed convex sets in &6' are always a (&6', &6")-closed, we simply call a convex set in 
&6'closed. 

We shall use the notations 

'Yr = {F 1 F is a closed face of K}, 

~ = {Ko (N) 1 with N c &6'~}, 

'YIL = {Ko(N) 1 with N c L}, 

with ~ (N) defined in (5.2). 
Because L c &6'~, we immediately see 

'Yr~ ~, ~'YIL. 

Since y E &6'~ also makes IIY 11-) y E &6'~, (5.4) becomes 

~,= {Ko (N) 1 with N c [0, I]}. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

According to T 5.2, this ~, is also the set of all exposed faces of K! By (5.2), 
we can regard Ko as the surjective mapping 

(5.8) 

As is easy to see, here we have 

(5.9) 

Since the intersection of faces yields faces, for each set k c K there is a smallest 
closed face that contains k. We call it the face generated by k and write it C(k). If 
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k consists of only one element w, simply C(w). Therefore, C is a surjective 
mapping 

(5.10) 

where "II ~Yris the identity mapping. 
In an quite analogous way, we can define sets of faces for L and the order 

interval [0, I]: With 

1.o(k)={yiyeL and Il(w,y) =0 for wekcK}, (5.11) 

£o(k)={yiye[O,I] and Il(w,y) =0 for wekcK}, (5.12) 

we introduce 
OU = {Lo(k)ik c K}, 

r= {io(k)ik c K}. 

One can regard 1.0 and £0 as the surjective mappings 

9(K)~OU, 

where 

and 

9 (K)kr, 

Lo (y k.\) = 0 Lo(k,\) I 
io (y k.\) = 0 io(k,\). 

(5.13) 

(5.14) 

(5.15) . 

(5.16) 

(5.17) 

T5.3 The sets ~~"YIJ."ou,r are complete set-lattices, where the set-theoretic 
and lattice-theoretic intersections coincide. 

Proof The proof for Yr has been indicated above. For ~, and in precisely the 
same way for YIJ." the proof follows from K = Ko (0) e ~, and (5.9). The latter 
implies that the intersection of elements of a subset of~, is again an element of 
~. The proof for OU, r follows with (5.17). 0 

. . Ko Ko Lo Lo . T5.4 The mappmgs r~~, OU ----"+YIJ." ~,~r, YIJ., -=tou are dual Isomor-
phisms of the lattices ("dual" as they reverse the ordering). Here Lo, Ko resp. 
£0, Ko are mutually inverse mappings, e.g. Ko Lo is the identity mapping of YIJ., 
onto itself. The set of those k c K for which the Lo (k) are equal, has a largest 
element, namely Ko 1.0 (k); something analogous holds for the other mappings. 

Proof As an example, we perform the proof for the mappings OU ~ YIJ., and 
YIJ.,--..!4OU. It is directly clear that these mappings reverse the ordering. 

Just as easily follows k c Ko Lo (k) and N c Lo Ko (N). Since Ko reverses the 
ordering, the last relation implies Ko (N) ::::> Ko Lo Ko (N). From k c Ko Lo (k) with 
k = Ko (N) follows Ko (N) c Ko Lo Ko (N) and hence Ko (N) = Ko Lo Ko (N), hence 
Ko 1.0 is the identity mapping on YIJ.,. In the same way, one shows that Lo Ko is the 
identity mapping on OU; and so forth. 

Because of Lo (k) = Lo Ko Lo (k) and k c Ko Lo (k), we find Ko Lo (k) as the 
largest of all the subsets k for which the sets Lo (k) are equal. 0 
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T 5.5 The inclusions C (k) c Ko La (k) and Lo (k) = Lo C (k) hold. 

Proof From k c Ko La (k) follows that Ko Lo (k) is a closed face which comprises 
k so that C (k) c Ko Lo (k). Using La we conclude Lo C (k) ::> Lo Ko Lo (k) = Lo (k). 
From k c C (k) follows Lo (k) ::> Lo C (k); therefore, Lo (k) = Lo C (k). D 

T5.6 For each CEYr, there is one element WEK with C=C(w). For each 
element in ~ (resp. Y) there is one W E K such that this element can be written 
La(k) = Lo(w) (resp. io(k) = Lo(w». 

Proof Since fJiJ is norm-separable, in C E r there is a countable set {wv} with 
Wv E C, which is norm-dense in C. With numbers Av> 0 and L Av = 1, we have 

N v 

L A.. Wv E C. One can easily show that L Av Wv converges in norm as N -+ 00 and 
v v=1 

that the 

(5.18) 

N 

have the same limit in the norm as the L Av Wv have. Since C is closed, we find 
L A.. Wv E C. v= I 

From L Av Wv = AVo wVo + (1 - Avo) L 
v V""o 

Av --w 
I-Av v 

and Avo =1= 0 follows wvo E C, since C is a face. Therefore, C = C (w). 
From C(k)=C(w) and Lo(k) = LaC(k), by T5.3 follows Lo(k) = LoC(w) 

and Lo(w) = Lo C(w), i.e. Lo(k) = Lo(w). D 

T 5.6 means that the elements of ~ and Yare exposed faces of L resp. of [0, 1 J. 
AWE K is called effective if p (w, g) = 0 for agE L implies g = O. If {wv} is a 

countable norm-dense subset in K, then Wo = L A. WV (with A. > 0, L Av = 1) is an 
v v 

effective element of K. For, from p(wo,g)=O follows p(wv,g)=O for all Wv 
(because A.. =1= 0 and p (wv, g) ii:: 0). From this follows p (w, g) = 0 for all w E K and 
henceg=O. 

The above Wo makes C(wo) = K since rov E C(wo) holds, the Wv are dense in K, 
and C(wo) is norm-closed. Conversely, if C(w) = K holds for some WE K then w 
is effective: 

From p(w, g) = 0 for agE L follows g E Lo(w). By T 5.3 we find Lo(w) 
= Lo C(w) = Lo K and hence g = 0, since Lo K contains only the elements g = O. 

§ 6 Some Convergence Theorems 

The following two theorems will be of importance later. 

T6.1 An increasing bounded sequence (resp. a decreasing sequence) Xv E fJiJ+ is a 
Cauchy sequence in the norm. Then Xv -+ X E fJiJ+ holds. 
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Proof If Xv is increasing, for v> J.l follows Xv - x" E fJIJ+ and hence Xv = x" + A W 

with A ~ 0, W E K. With x" = A" w" follows 

Xv = (A" + A) [A"A:A w,,+ A"~A w]. 
Since the brackets contain an element of K, we get II XV II = A" + A = II x" II + 
II XV - x" II. Since the Xv are bounded, the increasing sequence II XV II is convergent 
and thus (because II XV - x,,11 = II XV II - II x"ll) the sequence of the Xv is a Cauchy 
sequence. From T 4.1 follows X E fJIJ~. . 

If Xv is decreasing, for v> J.l follows II XV - x" II = II x" II - II XV II and thus (because 
II XV II ~ 0) the xv's form a Cauchy sequence. 0 

For g a theorem corresponding to T 6.1 does not hold in the norm topology! 
One must certainly go over to fJIJ' and the a(fJIJ', fJIJ)-topology. 

T 6.2 A norm-bounded upward directed (resp. downward directed) subset R of fJIJ~ 
has a supremum (resp. infimum) Y E fJIJ~, which is an accumulation point of R in 
the a (fJIJ', fJIJ)-topology and to which the section filter of R converges. 

Proof Because of T 4.3 the set fJIJ~ 11 (a fJIJ(lI) with a> 0 is a a (fJIJ', fJIJ)-compact 
set. Hence jiu (the a(fJIJ', fJIJ)-closure of R) is compact. 

We will show that jiu has a greatest element if R is directed upward (resp. a 
smallest element if R is directed downward). On jiu the a(fJIJ', fJIJ)-topology equals 
the a(fJIJ', K)-topology. Therefore (and because YI ~ Y2 <=> J.l (w, YI) ~ J.l (w, Y2) for 
all WE K!) we find a a(fJIJ', fJIJ)-accumulation point I of R determined by 
l(w) = sup J.l (w, y). Hence an element I of jiu is given with I ~ Y for all Y E R. 

ye~ 

Something analogous holds for a set directed downward. 0 

Of course, T 6.2 holds in particular for increasing bounded (resp. decreasing) 
sequences from fJIJ~. 

The two theorems T 6.1 and T 6.2 evidence the significant nonsymmetry 
between fJIJ and g, based on the fact that fJIJ is a base-normed space whereas g is an 
order unit space. Whereas fJIJ suffices to mathematically include the limit elements 
of increasing (resp. decreasing) sequences, g does not: We obtain limit elements 
only when we proceed from g to fJIJ'. This is one of the mathematical reasons why 
one intensively deals with the dual pair fJIJ, fJIJ' and scarcely with g (and g'). 

We shall later see that "physically interpretable" axioms can be expressed 
especially "simply" as relations in fJIJ, fJIJ' K, L. 

T6.3 Let F(=t= K) be an exposed face of K. Then there is in £0 (F) a maximal g 
with F = Ko (g), which makes sup J1 (w, g) = 1. 

weK" 

Proof Since F is exposed there is an Y E [0, 1] with Ko (y) = F. Zorn's Lemma and 
T 6.2 imply that there is a maximal g E £0 (F) with g ~ y. Therefore Ko (g) = F. If 
sup J.l ( w, g) = a =t= I then a-I g ~ g. 0 
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D 6.1 AYE [0, 1] may be called extremal, if Ko (y) V Ko (1- y) = K. For an 
extremal y, a complement of Ko (y) in the lattice'Jr£ll' is Ko (1 - y). 

T 6.4 An extremal y is maximal in Lo Ko (y). 

Proof If y were not maximal, there would be a Z E [0, 1] with y + Z E Lo Ko (y). It 
follows Ko (z) c Ko (y) and Ko (z) c Ko (1 - y) and therefore Ko (z) c Ko (y) V 

Ko (1 - y) = K, so that z = O. 0 

It has not been proven that every maximal y is also extremal. There can be 
different maximal Yi (i = 1, 2) with Ko (yd = Ko (Y2) and Ko (1- yd =l= Ko (1 - Y2) 
(this is impossible if AV 1.1 and AVid are presumed; IV § 3). 

T 6.S The (J(:JiJ', :JiJ)-closed convex set generated by the maximal elements is [0, 1]. 

Proof See the proof of VI T 3.1 and replace eo by a maximal element g ~ go. 0 

If L = [0, 1], then we can by analogy to [2] IV (8.2.15) introduce "generalized 
properties" in the following way. Using the sets 

!?)F = {a I a E!?)' and IP (a) E F}, 

!JifF = {b I b E !Jif and there is a bo E !Jifo 

with lfI(bo, b) ~ 1-Y where y is maximal and Ko (y) c F}, 

we define 

PF= [ U a] u [ U 1 where FE W£lI' 
GE'!iF bE£lIF 

and call it a generalized property. We shall not pursue this possibility. We wanted 
only to demonstrate that propositions of the form "x has the (generalized) 
property pI' are not restricted to the case of an orthomodular lattice 'Jr£ll' treated in 
[2] IV § 8.3. 

In conclusion, let us yet note an important property of Land [0, 1]: Since Land 
[0,1] area(:JiJ', :JiJ)-compact, by the Krein-Milman theorem ([10] § 25.1) follows 

T 6.6 col1 oeL = L; co l1 oe[O, 1] = [0, 1]. 



V Observables and Preparators 

If we forget all about the originally introduced structures, up to the derived sets 
K, L with the structure K x L ~ [0, 1], which we investigated in IV, then we have 
forgotten "too much" to describe physical systems as effect carriers. Let us try to 
amend this by introducing the concepts "observable" and "preparator". These 
concepts represent abstract and idealized residues from the structure of prepara
tion and registration procedures. Without falling back on these physically inter
preted procedures, we must use many descriptive words in order to give a physical 
sense to the concepts observable and preparator. That this is difficult is shown not 
only by the uncertainty if introducing the concept observable via the "correspon
dence principle" (see [1] XI § 1.7), but in particular by the fact that one has not yet 
used the concept of preparator and for this reason encountered great difficulties 
with the Einstein-Podolski-Rosen paradox. 

In our treatment, the idealization of the abstract concepts observable and 
preparator and their physical interpretation will be especially clear from the 
axioms AOb of § 5 and Apr of § 8. 

This chapter is really only a brief summary of the considerations from [2] IV. 
There one finds a detailed presentation, where more special sets K and L are 
chosen than the sets K, L from IV which still are little structured. In [2] IV, many 
proofs were knowingly so carried out that the special properties of the sets K, L 
used there did not enter. Therefore we can limit ourselves in the next sections to 
describe the most important structures and leave the proof to the reader (referring 
to [2] IV). 

We called the elements of :Y ensembles, those of l' effects. Since K and L are 
certain topological completions of :Y resp. l' let us call all the elements of K 
ensembles and all the elements of L effects. 

§ 1 Coexistent Effects and Observables 

The very practical concept of observable often used in quantum mechanics 
turns out to be derivable from @o, @ after idealizations. 

§ 1.1 Coexistent Registrations 

So far we have only considered the image set l' of the mapping Y -'4 -/, i.e. in 
l' the f= (bo, b) occur only as elements of a set Y. Nothing has entered from the 
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fact that these elements f are pairs (bo, b) of a registration method bo E ~o and a 
registration procedure b E ~ with be boo The registration procedures b E ~ (bo) 
represent an important physical structure, namely as "indications" on one and the 
same "device" characterized by boo This structure is lost if one forgets ~o, ~ 
completely, considering only the set../' c L as basis set of a structure. 

We shall now attempt to introduce in idealized form something from the 
structure of the sets ~(bo) for various bo E ~o in the theory characterized by K, L 
and K xL 4 [0, 1]. The idealizations enable us to define a concept really generally, 
first disregarding concrete, experimental realizations. 

In order to specify briefly the additional structure to be considered in Y, we 
introduce 

D 1.1.1 The registration procedures b E ~ (bo) are called coexistent relative to the 
registration method boo Several (bo, b) E Y relative to the same bo are called 
coexistent effects procedures. 

Therefore, a subset A c Y just then is a set of coexistent effect procedures, 
when all elements in A have the same first component boo How is this structure of 
coexistent effect procedures reflected after the mapping If/ of Y into L? 

§ 1.2 Coexistent Effects 

For fixed bo, the mapping y.!4 L defines a mapping ~(bo)~L by If/o(b) 
= If/(bo, b). We know that ~(bo) is a Boolean ring. What property has the mapping 
If/o relative to the Boolean ring structure of ~ (bo)? 

The following definition is customary: 

D 1.2.1 A mapping F of a Boolean ring E into the order interval [0, u] of an 
ordered vector space, which has F (e) = u (where e the unit element of E) and 

F«(11 V (12) = F«(1I) + F«(12) for (11 1\ (12 = 0, 

is called an (additive) measure on E. 

In particular, if [0, u] is the interval [0, 1] of real numbers, we say that F is a real 
(normed) measure. From III T 4.2 (vi) follows: 

The mapping If/o from ~(bo) into [0, 1] c !JIj' defined by If/(bo, b) (for fixed bo) 
is an additive measure on ~(bo). Of course, If/o ~(bo) c ../' c L holds (see [2] IV 
Th.1.2.1). 

This suggests the following definition (generalized in idealized form): 

D 1.2.2 A set A c L is called set of coexistent effects if there is a Boolean ring E 
with an additive measure E .4 L such that A c F E. 

The following definition will be useful. 

D 1.2.3 An additive measure F over E is called effective if F(o) = 0 implies (1 = 0. 
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If E ~ L is an additive measure, an additive effective measure P on the 
Boolean ring ElEo with Eo = {a I a E E and F(a) = O} is defined by 

Pea) = F(a) for a a E a 

(see [2] IV Th 1.2.2). 
To investigate coexistent effects we therefore need only consider Boolean rings 

with effective measures. We see immediately that IfI maps a set of coexistent effect 
procedures into a set of coexistent effects. It also follows easily that the 
mapping ffll(bo)~L is an effective measure on ffll(bo). For, from lfIo(b) = 0, i.e. 
IfI (bo, b) = 0, follows A/ (a n bo, a n b) = 0 for all a E!!J' combinable with bo. 
Therefore, a n b = 0 holds for all a E !!J' combinable with bo. According to APS 5.2, 
this implies b = 0. 

The definition D 1.2.2 has (in comparison with the situation ffll (bo)~L) the 
essential advantage that initially one need not worry, whether for each set A of 
coexistent effects there also exists a registration method bo E ffllo with A C lfIoffll (bo). 
Indeed we shall in § 5 require that there is "approximately" a "realization" by an 
ffll (bo) for each Boolean ring E with an effective, additive measure E ~ L. But just 
from the mathematical complication of the "approximate realization" we are relieved 
by considering a general additive, effective measure over a Boolean ring. 

Now we have the interesting theorem that for gl, g2 E L the following two 
conditions are equivalent: 

(i) {g I, g2} are coexistent; 
(ii) There exist three elements g;, g5., g12 E L such that gl = g; + g12, g2 = 

g2 + g12 and g; + g2 + g12 = gl + g2 = g2 + g2 E L. 

(See [2] IV Th 1.2.4; here one must notice that also the proof in [2] IV Th 1.2.3 
persists since gEL always implies I - gEL.) 

§ 1.3 Observables 

The concept of an observable is an idealized generalization of the structure 
ffll(bo)~L, already considered in § 1.1 and § 1.2. But not the general structure 
E.4 L, with E a Boolean ring and F an additive measure, shall be called an 
observable. Rather let us impose several additional requirements on the concept of 
an observable. Starting from E -4 L, we therefore introduce a uniform structure 
inE. 

T 1.3.1 The sets 

Nw,e = {Cab a2) I a), a2 E E, J1 (w, F (al -i- a2» < e} 

with WE K and al -i- a2 = (a) V a2) /\ (a) /\ a2)* form a fundamental system for a 
uniform structure o/Ig of the Boolean ring E with the additive measure E -4 L. This 
o/Ig separates E if F is effective. o/Ig is metrizable; one can use 

deal, a2) = J1 (wo, F(a) -i- a2» 

as a metric, where any effective W E K can be chosen for Wo (w is called effective if 
gEL and J1 (w, g) = 0 imply g = 0); see [2] IV Th 1.7 and [2] IV Th 2.1.11. 
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Let E with the uniform structure ~g be briefly denoted by E g' 

T 1.3.2 The uniform completion ig of Eg is a (lattice-theoretically) complete ring, 
and the additive measure Eg .4 L is extended to an additive measure ig .4 L. If F 
is effective on Eg, then also on ig (see [2] IV Th 1.4.2 and [2] IV Th 1.4.3). 

The extension of F to ig would not be possible if we had not completed../' to L 
in the q (fIJ', fIJ)-topology. In the case of preparators, it will suffice to have K norm
complete (see § 6)! 

The point of departure for our discussion was the structure E.4 L as an 
idealization of [iJi(bo)~L. In particular, if E= [iJi(bo) and F= '1'0, then one can 
extend the measure '1'0 (by the methods of measure theory, see e.g. [34]), to a larger 
set of "measurable" subsets of bo than the b E [iJi (bo). Let the set of "measurable" 
subsets be ~(bo) such that [iJi(bo) c ~(bo). 

Then, using 

f(bo) = {b I b E ~(bo) and '1'0 (b) = O}, 

we find ig isomorphic with ~(bo)/ f (bo). Moreover, F = '1'0 extended to i g is 
connected with '1'0 extended to ~(bo) by F(1'/) = '1'0 (b) with 1'/ E ~(bo)/f(bo) and 
b E 1'/. Here let us not pursue this extension ~ (bo) further. 

In [2] IV § 1.4 we discussed a uniform structure of "physical imprecision" on E, 
which we shall not repeat here. We only emphasize that OUg need not be the 
uniform structure of physical imprecision because in general i g is not compact. 

Since E.4 L represents an idealization and abstraction of the structures 
[iJi(bo)~ L, and [iJi(bo) is countable, it is natural to introduce the concept of an 
observable by 

D 1.3.1 A Boolean ring E with an additive, effective measure E -4 L such that E is 
complete and separable, relative to the uniform structure ~g (determined by F) 
shall be called an observable. 

The following theorem holds: 

T 1.3.3 E -4 L is an observable if and only if E is lattice-theoretically complete, 
F is q-additive (relative to the q (fIJ', fIJ)-topology in L) and there is a countable 
Boolean sublattice Ea of E whose lattice-theoretic completion in E equals E (see 
[2] IV Th 1.4.6). 

§ 2 Mixture Morphisms 

In this section, let us only define and investigate some mathematical structures 
needed later, which playa large role in many parts of quantum mechanics. 

We start from two convex sets KI and K2 which are bases of the base-normed 
Banach spaces fiji and flJ2 • 

D 2.1 An affine mapping S of KI into K2 is called a mixture morphism. 



130 V Observables and Preparators 

T 2.1 A mixture morphism KI ~ K2 can be extended uniquely as a linear mapping 
of .16'1 into .16'2 with II S II = 1. 

Proof Since .16'1 is spanned linearly by K I , we can extend S to .16'1' Since W E KI 

implies S WE K 2 , all W E KI make II S W II = 1 so that II S II ~ 1. With x = IX WI- PW2 

and II x II ~ IX + P - e (e> 0 arbitrary), we find II S x II ;2 IX + P;2 II x! + e and thus 
II S x II ;2 II x II, i.e. II S II ;2 1. 0 

T2.2 To each mixture morphism S corresponds a dual mapping .16'5. ~ .16'{ with 
[0, Ih ~ [0, III and S'1 = 1. Here, S' is a (.16'5., .16'2) - a (.16'{, .16'1)-continuous and has 
II S' II = 1. 

Proof That S' exists and is continuous in the a-topology, follows directly from the 
fact that (by T 2.1) S is norm-continuous. From KI ~ K2 follows 112 (S W, I) = 1 
= JlI (w, S' 1) for all W E KI and hence S' 1 = 1. 0 

It follows easily that a bijective mixture-morphism KI 4 K2 is a mixture-iso
morphism, for, v = A VI + (l - A) V2 with V, VI, V2 E K and W = A WI + (l - A) W2 

with WI = S-I VI, W2 = S-I V2, imply S W = A VI + (1 - A) V2 = V and hence 

S-I V = W = A S-I VI + (l - A) S-I V2 • 

T 2.3 For a mixture-morphism S, the following conditions are equivalent: 

(i) S is a mixture-isomorphism, 
(ii) KI ~ K2 is injective and SKI is norm-dense in K 2 , 

(iii) [0, Ih 4 [0, Ih. is bijective, 
(iv) S' is an isomorphic mapping of Banach spaces, 
(v) S is an isomorphic mapping of Banach spaces. 

Proof 
(i) => (ii) is trivial. 

(ii) => (iii): Since SKI is norm-dense in K 2 , 

II S' y II = sup I III (w, S' y) I = sup I Jl2 (S W, y) I = sup I Jl2 (w, y) 1= IIY II 
weK, weK, we K2 

holds, i.e. S' is norm-preserving and hence injective. From this follows that S' .16'5. 
is a norm-closed subspace of .16'{. 

From KI ~ K2 injective follows that.16'1 4 .16'2 is also injective, since each x E .16'1 
can be written x = IX WI - P W2 with IX, P ~ 0 and WI, W2 E K I • Because S WI , 

S W2 E K2 then follows from 0 = S x = IX S WI - P S W2, IX = P; hence we must have 
S WI = S W2' Since KI ~ K2 is injective, WI = W2 follows and thus finally x = O. 

Since .16'1 ~ .16'2 is injective, S'.16'5. must be a (.16'{, .16'1}-dense in .16'{. Since the unit 
ball [-1, Ih is a (.16'5., .16'2}-compact, the set A = S' [-1, Ih is a (.16'{, .16'1}-compact. 
Since S' preserves the norm, we get A = S' .16'5. n [-1, 111. Thus S'.16'5. is also 
a (.16'{, .16'1}-closed ([7] IV § 6.1) and hence S .16'5. = .16'{. Therefore, S' [- 1, Ih = [- 1, 1h 
holds and thus (iii) is proven. 

(iii) => (iv) follows easily. 
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(iv) => (v): Being the inverse mapping of the a-continuous bijective mapping 
of the a-compact unit ball, (S')-I is also a-continuous on the unit ball and hence 
a-continuous throughout. From this follows that S-I exists with (S-I)' = (S')-I. 
Since S' maps the unit ball bijectively, we have II S x II = II x II, whence (v) follows. 

(v) => (i): The existence of (S,)-I and that (S,)-I = (S-I)" follow straightaway. 
Since T 2.2 gives S'I = 1, we also have (S,)-I 1 = 1. From this follows III (S-I W, 1) 
= 112 (w, (S-I)' 1) = 112 (w, 1) = 1 for WE K2 . Since S-I preserves the norm, WE K2 
also makes II S-I W II = 1. With S-I W = a WI - (J W2 (a, (J ~ 0; WI, W2 E K I) and 
IIS-lwI12a+(J-e (e>O arbitrary), we obtain a-(J=l and l;&a+(J;&a+(J-e, 
i.e. 1;& a;& 1 - el2 and hence a = 1 and (J = 0, whence S-I K2 c KI follows. Since 
S must be a mixture-morphism, we also have SKI c K2. Therefore KI 4 K2 is 
bijective, whence (i) follows. 0 

§ 3 Structures in the Class of Observables 

In this section we shall describe structures of an observable I -4 L that were 
investigated in [2] IV. We shall use them later, especially in XI. 

§ 3.1 The Spaces fJij (2:') and fJij' (2:') Assigned to a Boolean Ring 2:' 

We generally start from a Boolean ring I with an additive and effective 
measure I ~ [0, 1] c R relative to which Ig (i.e. I with the uniform struc
ture ~g defined by the metric d(al,a2) =rno(al +0'2» is complete. According 
to [2] IV Th 1.4.4, a lattice-theoretically complete Boolean ring I, with a a-addi
tive, effective measure, is also ~g-complete. The effective measure can be of the 
form rno (a) = 11 (wo, F (a», with Wo an effective ensemble from K. 

D 3.1.1 A function I .4 R is called a signed a-additive measure over I, if there is 
a number c with I x (a) I < c for all a E I, and if a = V av (with av /\ ap = 0 for 
v '* 11) implies 

for countably many av• 

We can use all the considerations from [2] IV § 2.1. Let us only mention 

D 3.1.2 Let the set of all signed a-additive measures over I be denoted by fJiJ (I) 
and the set of all a-additive (normed) measures by K (I). 

Then the following fundamental theorems are known to hold: 
fJiJ(I) is a base-normed Banach space with the basis K (I) (see Th 2.1.8 

through Th 2.1.1 0 in [2] IV). 
fJiJ (I) is separable if I is (see [2] IV Th 2.1.12). 
Since fJiJ(I) is a base-normed Banach space, fJiJ' (I) is an order-unit space. The 

"unit" (briefly 1) is that linear functional on .qJ (I) such that 1 (rn) = 1 for all 
rn EK(I). 
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The unit ball of go' (E) is the order interval [-1,1] and is a (go', go)-compact. 
Therefore, by the Krein-Milman theorem, [-1,1] = coq ae [-1,1]. 

D 3.1.3 L (E) def [0, 1] c go' (E). 

Therefore, L (E) is topologically isomorphic to the unit ball smce L (E) = 

t{[-I,I]+I}. 
By lq(m) = m (a) for fixed a E E, a bounded, linear functionallq is defined with 

lq E L(E). The set aeL (E) equals {lq I a E E} (see [2] IV Th 2.1.16). 
Therefore, one can identify E with aeL (E) by a - lq. 

§ 3.2 The Mixture Morphism Corresponding to an Observable 

By an observable E -4 L, a-additive measures m (a) = J.l (w, F(a» for all w E K 
are defined ([2] IV Th 1.4.3). Obviously, 

w -+ J.l (w, F(a» (3.2.1) 

defines an affine mapping 8 by 

K ~ K(E). 

According to D 2.1, 8 is a mixture morphism; by T 2.1 it can be extended as a 
norm-continuous mapping 

go ~ go (E) with 118 II = 1. 

T 3.2.1 The mixture-morphism 8 defined by (3.2.1) maps effective ensembles 
w E K into effective measures m E K (E). The adjoint mapping 8' of go' (E) into 
go' maps L (E) into [0, 1]; its restriction to aeL (E) equals the measure E -4 L, if 
one identifies E with aeL(E) according to § 3.1. This restriction of 8' to aeL(E) 
uniquely determines 8 (see [2] IVTh 2.2.1). 

T 3.2.2 If 8 is a mixture morphism K ~ K (E) which maps effective ensembles 
into effective measures, then the adjoint mapping 8', restricted to aeL (E), defines 
a a-additive, effective measure E -4 [0, 1] c go' by F (a) = 8' a. Here F ( e) = 1 
holds. With '1Ig as the uniform structure determined by F, Eg is complete. If 
FEe L holds and Eg is separable, then E -4 L is an observable. (See [2] IV Th 2.2.21 

where one must begin the proof by saying that 8' due to T 2.2 maps the set L (E) 
into [0, 1] ego'.) 

In particular, if L = [0,1] (true by subsequent axioms), then the observables 
E -4 L and mixture-morphisms 8 by (3.2.1) are in one-to-one correspondence if 
go (E) is separable. 

§ 3.3 The Kernel of an Observable 

If E -4 L is an observable, its elements a E E in abstract form symbolize the 
various bE fA'(bo). If a, aI, a2 thus are three "indications" in E, which in particular 
obey 

(3.3.1) 
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then it is experimentally not necessary to read the indication 0"; reading 0") and 0"2 
suffices. Here, 0" can be interpreted as a statistical mixture of the two 0") and 0"2 
with the weights ct resp. 1 - ct. Thus the question arises whether or not a Boolean 
subring 1:a of 1: suffices so that the 0" E 1:\1:a can be regarded as statistical mix
tures ofthe 0" E 1:a • 

We begin our discussion with a definition: 

D 3.3.1 Let 1: -4 L be an observable. Then co'" (F 1:) is called the convex image set 
of the observable F. 

Since L is 0" (&B', &B)-compact, its closed subset co'" (F 1:) is also 0" (&B', &B)-com
pact; hence the Krein-Milman theorem gives co'" (F 1:) = co'" oe (co'" (F 1:». Thus 
0eco'" (F 1:) is the really essential set of effects in the measurement of the observ
able1:.4 L. 

Therefore let us adopt 

D 3.3.2 oeco'" (F 1:) is called the extremal kernel of the observable 1: -4 L. 

D 3.3.3 Two observables, 1:) ~ L and 1:2..!4 L, are called convex equivalent, if 
co.,. (F) 1:) = co.,. (F21:2). 

Thus the following two assertions are equivalent by the Krein-Nilman 
theorem: 

(i) 1:) -4 L and 1:2 -4 L are convex equivalent. 
(ii) 1:) -4 L and 1:2 -4 L have the same extremal kernel. 

For physics this suggests to seek a smallest possible subring 1: a of 1: so that 
1:a .4 L and 1: .4 L still are convex equivalent. We can solve this problem on the 
basis of 

T3.3.1 Let 1:.4 L be an effective, additive measure and 1: = tg (tg need not be 
separable). Let S be the mixture-morphism which due to (2.3.1) corresponds to F, 
and S' the mapping adjoint to S. Then we find 

(i) S'L (1:) = co'" (F 1:). 
(ii) For each ge E 0eco'" (F 1:) = oeS' L (1:), there is one and only one 0" E 1: 

with ge = F(O"). 
(iii) oeL (\ co'" (F 1:) = oeL (\ 0eco'" (F 1:) = oeL (\ (F 1:). 

Proof For (i) and (ii), see [2] V Th 2.3.4. From (ii) follows 0eco'" (F 1:) c F 1:. 
Because co'" (F 1:) c L, we must have oeL (\ co'" (F 1:) = oeL (\ 0eco'" (F 1:), 

hence oeL (\ co'" (F 1:) c oeL (\ (F 1:). Because F 1: c co'" (F 1:), we also have 
oeL (\ co'" (F 1:) ::::> oeL (\ (F 1:). 0 

D 3.3.4 For an observable 1: .4 L, the subset 

N={O"lo"E1: and F(O") Eoeco"'(F1:)} 

is called the kernel of the observable. 
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Acco.rding to. T 3.3.1, a -+ F(a) defines a bijectio.n o.f N o.nto. iJe co.l1 (F L). 
The kernel N o.f an o.bservable is the part essential fo.r measuring practice: Only 

fo.r the "indicatio.ns" a EN the frequency f.J. (w, F(a» need be "measured". 

T3.3.2 The kernel N o.f a measure L .4 L (with L = ig but if! no.t necessarily 
separable; see [39]) is "#g-separable. There is an o.bservable LI--4 L with LI C L 
and FI = FI.I:" who.se kernel is NI = N with N the kernel o.f L .4 L. The co.mplete 
Boo.lean ring L2 C L generated by the kernel N is separable; hence L2 f4 L with 
F2 = FI.l:2 is an o.bservable (see [2] IV Th 2.3.5). 

The complete Bo.o.lean ring L2 generated by the kernel N (which exists by 
T 3.3.2) therefo.re yields the smallest po.ssible o.bservable co.nvex equivalent to. 
L-4L. 

D 3.3.5 An o.bservable L .4 L fo.r which the co.mplete Bo.o.lean ring generated by 
the kernel N equals L, is briefly called a "kernel o.bservable". 

§ 3.4 De-mixing of Observables 

We have intro.duced the co.ncept o.f an o.bservable (as an abstractio.n and 
idealizatio.n o.f the structure ~(bo) .!!!4 L fo.r fixed bo) in o.rder to. co.mpensate the 
"lo.ss" in fo.rgetting the sets !!J, ~o, ~. In the preceding sections, we have only 
considered one o.bservable L .4 L that correspo.nds to. one bo E ~o. But the struc
ture ~o, ~ alSo. establishes a relatio.n amo.ng the "real o.bservables", i.e. amo.ng the 
vario.us bo E ~o and hence amo.ng the ~ (bo). Such relatio.ns can at least partly be 
retrieved in the abstract fo.rm o.f o.bservables. Here, we shall be mainly interested in 
a relatio.n correspo.nding to. a de-mixing o.f registratio.n methods (see III § 5.3). Let 
us begin with a natural definition (see [2] IV § 2.4): 

D3.4.1 If LJ4L and L2.f4L are two. o.bservables,we write (LI -f4L) -< (L2 .f4L) 
if there is a ho.mo.mo.rphism h o.f the Bo.o.lean ring LI into. the Bo.o.lean ring L2 such 
that we get the diagram 

(3.4.1) 

We then say that L2 f4 L is more comprehensive than L 1-f4 L. 

It fo.llo.ws (see [2] IV § 2.4) that h is an isomorphism LI -4 h LI o.f the Bo.o.lean 
rings LI and h LI (as a subring 0.1' L2), also. relative to the uniform structures "#g o.f 
the Boo.lean rings induced by FI resp. F2 • Therefore, h LI is a co.mplete Bo.o.lean 
sublattice o.f L2' 

o 3.4.1 expresses fo.rmally what o.nly wo.uld fo.rmulate intuitively as fo.llo.ws: 
L2.f4L "measures more" than LI-f4L since the measurement o.f LI-f4L is 
"contained" in that o.f L2.f4 L. 
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One can show (see [2] IV § 2.4) that the relation -< represents a sort of pre
ordering, so that one can define an equivalence: 

D3.4.2 Two observables EI~L and E2~L are said to be equivalent if 
(El~L) -< (E2~L) and (E2 !4L) -< (El.!4L) hold. 

By a de-mixing of a registration method bo E g;o we understand a decomposi
tion 

n 

bo = U bOi with bOi E @o and bOi n bOk = 0 for i 9= k . 
i=1 

Then ill T 4.2 (viii) provides 

with 

n 

I{I (bo, b) = 2, Ai I{I (bOi , bOi n b) 
i=1 

Ai = A9l'o (bo, bOil . 

Because of Ae,o (bo, bOil = -V (a n bo, a n bOil, we have 

A9I'o(bo, bOil = J1. (w, l{I(bo, bOi)) 

for all w E K. Since this implies 

I{I (bo, bOil = Ai 1, 

the Ai are determined by the mapping I{I. 

(3.4.2) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

In order to imitate this de-mixing in abstract form for observables, we note that 
the mappings 

with 
1{I0(b) = l{I(bo, b) and 1{I0i(b) = l{I(bOi,boin b) 

are additive measures on the Boolean ring @(bo) while (3.4.3) implies 
n 

1{I0 = 2, Ai 1{I0i· 
i=1 

This can easily be imitated for abstract observables: 

D 3.4.3 An observable E .4 L is called a mixture of the observables E ~ L if 
n n 

F = 2, Ai Fi holds with Ai > 0, 2, Ai = 1 . 
i=1 i=1 

(3.4.6) 

The Ai are called the weights of the individual "mixture components" Fi. If 
F = A FI + (1 - A) F2 with 0 < A < 1 always implies FI = F (hence also F2 = F), 
then F is called an irreducible observable. For the Fi in D 3.4.3 one need only 
presume that they are additive measures. Then it follows that they must also be 
a-additive (as F is). 

Since mixtures of observables cannot yield more information about the 
physical systems than the mixture components do, it appears worth striving for the 
irreducible observables. For fixed E, the observables E .4 L form a convex set, 
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briefly to be called K (1:', L). Hence the irreducible observables are the extreme 
points of K (1:', L). But in general there are not enough extreme points of K (1:', L) 
so that K (1:', L) = co BeK (1:', L) holds in a suitable topology of the physical im
precision on K (1:', L). (Example: The theory of classical point mechanics.) 

To be sure, one thing follows immediately: 
For F 1:' c BeL, 1:' -4 L is kernel observable and irreducible. 

Proof This follows immediately from T 3.3.1 and the definition of an extreme 
point. That F 1:' c BeL holds for each irreducible kernel observable is in general 
(also for quantum mechanics) not correct (see [2] IV § 2.4). 

§ 3.5 Measurement Scales of Observables and Totally Ordered Subsets of L 

A most remarkable prejudice is that a quantitative measurement characterized 
by a scale is essential for physics. In fact quantitative measurement is not of funda
mental significance for physics, though in many cases eminently practical. Since 
we have here begun an axiomatic foundation of quantum mechanics, one should 
not wonder that the measurement scales of observables so far did not appear. Only 
additional structures would allow us to distinguish "practical" measurement scales 
and "interesting" observables. We shall not treat such structures in this book 
because they are in detail presented in [2] V through VIII. In spite of this, we can 
introduce the general concept of a measurement scale, without distinguishing 
"definite" scales. 

A measurement scale is simply a practical device to provide a view over the 
complete Boolean ring 1:'. Hence the scale is an "ordering" principle for the 
elements of 1:' and does not concern the mapping 1:' -4 L. Let us adopt 

D 3.5.1 An element y E fIJ' (1:') is called a measurement scale for the complete 
Boolean ring 1:'. 

Instead of "measurement scale" the phrase "random variable" is also in use; we 
do not use this phrase in order to avoid prejudices which the adjective "random" 
might evoke. 

The investigations in [2] IV § 2.1 and § 2.5 can easily be transferred so that we 
need not describe them here. Let us only introduce several concepts of later 
importance. 

For each y E .9J' (1:') and real ct, one can define O'(Y ~ ct) E 1:' as the largest 
element of the set {a 10' E 1:' and s (y I 0') ~ ct}. Here we have 

s (y, 0') = sup {(m,y) I mE K(1:') and m (0') = I} 

with (. .. , ... ) the canonical bilinear form of .9J (1:'), fIJ' (1:'). For - 00 < ct < + 00, 

0' (y ~ ct) is called the spectral family of y. 

D 3.5.2 The complete Boolean subring of 1:' generated by the spectral family 
0' (y ~ ct) shall be called 1:' (y). 

If 1:' is separable, there is a scale y E fIJ' (1:') with 1:' (y) = 1:' (see [2] IV Th 2.5.6). 
Therefore, if 1:' -4 L is an observable, a y exists with 1:' (y) = 1:'. 
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If y is an arbitrary element of fJ)' (E) and u (y ;a; IX) its spectral family, then 
F(A) = F(u(y;a; A» defines a family of effects that increase with A. With the 
mapping S' assigned to the observables by § 3.2, we then get 

S' y = J A dF(A). (3.5.1) 

But S' is not always injective, so that in general one cannot retrieve the scale 
y E fJ)' (E) uniquely from 

y' = J A dF(A) E fJ)' • 

§ 4 Coexistent and Complementary Observables 

The concepts to be introduced here have only for quantum mechanics become 
of interest since for "classical theories" all observables coexist and there exist no 
complementary observables. 

D4.1 Two observables E/4L and E2~L are said to coexist if there exist an 
observable E .4 L and two homomorphisms h\ , h2 which give the diagram 

Therefore (F\ E\) u (F2 E2) is a set of coexistent effects. 

For two observables let us define a relation to describe that somehow the two 
observables are "extremely" non-coexistent. To this end we first adopt 

D4.2 E= {g I gEL and g coexist with each g' E L}. 

D4.3 Two observables E/·4L, E2f4L are called mutually complementary if 
F\ E\ $ E, F2E2 $ E and each observable E .4 L yields either (F\ E\) II (F E) c: E 
or (F2E2) II (F E) c: E. 

§ 5 Realization of Observabtes 

The structure analysis of observables was made mathematically transparent by 
defining observables in a form E.E. L, more idealized than &I(bo)~ L. But now 
we must ask whether one can actually realize an observable E .4 L in measuring
practice, i.e. whether there exists a bo E &10 and an -is0morphism h such that we 
obtain 

E\ h j&l(bo) 
F \./ 1(1. 

L 

Demanding such an &I(bo) to exist for each observable E .4 L would certainly 
be too severe, especially because we assumed 9, &I countable. 
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The following "approximate" realization can be joined to the axioms postulated 
so far. 

AOb: For each observable I -4 L, and each finite Boolean subring i of I, and 
each a (311', 311)-neighborhood U of 0 E 311', there exist an &I (bo)~ L and a homo
morphism i 14 &I(bo) such that /fIoh (a) - F(a) E U for all a E i. 

If one foregoes this as an axiom, one can in any case regard it as a "certain 
hypothesis" (in the sense of [3] § 10.1) though we shall omit the proof. Proving this 
(that AOb is a certain hypothesis) we would see that the adjunction of AOb as an 
axiom leads to no contradictory theory. As explained in [3] § lOA, it is then only a 
matter of taste whether one adjoins AOb as an axiom, unless experience strongly 
indicates that nature presents serious obstacles to constructing all the devices 
"possible" under AOb (see [3] § 10). 

One often expresses AOb briefly by saying: Every observable can be measured 
"approximately" (in this connection, one pays attention to the fact that a (311', 311) 
determines the uniform structure of physical imprecision in L; see IV § 2 and § 3). 

The coexistence of two observables (defined in D 4.1) has as a consequence, on 
the basis of AOb, that there is a measurement method bo E &10 by which the two 
observables are measured (approximately) together. One can easily deduce this 
from the diagram in D 4.1: Let i l and i2 be finite Boolean subrings of II resp. of 
I 2. Then hi i l and h2i2 generate in I a finite Boolean subring i for which "due 
to AOb an &I(bo) exists with hie &I (bo) and /fIoh(a)-F(a) E U whenever a 
neighborhood U is given. But from this follows 

i; ~ &I(bo) 

for i = 1, 2 and likewise 

/flo h h;(a) - F;(a) E U for all a in i;. 

Therefore, bo is an approximate measurement of II A L as well as of I2 !i" L, i.e. 
these coexistent observables can jointly be measured approximately, i.e. they can 
be measured by a single method bo. 

Axiom AOb indeed means that it should be "physically possible" (see [3] 
§ 10.4) to measure every observable approximately. But it does not state how to 
find the measurement method bo in a concrete case. The theory presented here 
clearly cannot accomplish this since it contains no mathematical mapping for the 
technical construction of the "devices" bo E &10 , We shall return to this problem 
in XI. 

The objectivating way of describing experiments in trajectory spaces (as ex
plained in ill § 6) enables us to relate the observables closely to the trajectory 
spaces and hence to obtain a certain overview of all realizable observables. 

According to ill (6.4.12), for fixed a2 there is a correspondence 

( b ) R2/f11s (blO' b l) tpl2 (al x a2 n M) 
tpn al n I -+ 

(tpl (al), /filS (blO' bl)1 " 
(5.1) 

which satisfies ill (6.4.11). It can at once be extended to a mapping of tp(Q') into 
K(S2) since tpl2 n (al x a2) and /fils (blO' b l) are additive measures relative to al resp. 
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bl . The mapping by (5.1) is also norm-continuous, since for calculating norms, the 
supremum on the right side of III (6.4.11) must for fixed a2 be taken only over the 
different 'l'2S (b20 , b2), i.e. over L(82) (since la'l'2(4)2) is dense in L(Y2»' Being 
norm-continuous that mapping can be extended to all of K: 

K ~K(82)' (5.2) 

The index on Sa. means that it depends on a2. 
Let 82 (a2) be the support of Sa.K. Then, for fixed a2, one can instead of 82 use 

the subset 82 (a2) ,and regard. Sa.K as a subset of K (82 (a2», so that (5.2) can be 

written K ~ K (82 (a2» . (5.3) 

With gjJ(82 (a2» as the Borel field belonging to 82 (a2),and.f(82(a2» as the sets of 
(Sa.K)-measure zero (see II § 3.3), the elements of Sa.K are a-additive measures 
on Ea. = gjJ(82 (a2»I,/" (82 (a2»' The set 82 (a2) consists of those physically possible 
trajectories on the systems 2 which were prepared according to «J} and on which the 
various system I can act. The open subsets of 82 (a2) are not elements of 
,/"(82 (a2». 

Since one can also regard Sa.K as a subset of K (Ea.), for (5.3) one can also 
write 

(5.4) 

Sa. maps effective measures into effective measures since an element of Ea. 
cannot have measure zero for all elements Sa. W with W E K. 

Therefore, Sa. due to § 3.2 defines a a-additive measure Ea. ~ [0, 1]. The set 
L (82 (a2» can be identified with a subset of gjJ' (Ea.) and L (82 (a2» is a (gjJ' (Ea.), 
gjJ(EaJ)-dense in L(Ea.). Hence, Fa.Ea.c L holds because of S~.L(82(a2» c L. 
Therefore, Ea. ~ L is an observable. 

The observable Ea. ~ L is called the ideal observable fixed by a2. The deriva
tion immediately implies 'I' (! (a2 II b20 , a2 II b2) E COU (Fa. Ea.); hence one can view 
the measurement of trajectories by method b02 as a more or less accurate measure
ment of the ideal observable. For fixed a2, the range of every other observables 
determined by measurements on the systems 2 lies in COU (Fa. Ea.). Therefore, for 
fixed a2, all observables resting on various methods of measuring the trajectories 
are coexistent! 

Hence we say that the observable Ea. F., L is measured "objectively" on the 
action carriers by the coupling with the registration devices which have been 
prepared due to a2. It does not matter how precisely one measures the processes on 
the registration devices, even being immaterial whether or not one measures these 
processes at all. A measurement of an observable Ea. ~ L is perfect as soon as the 
registration devices prepared due to a2 are used. 

Neither the "reading" of the results on the registration devices, nor the accep
tance of these results into a consciousness is decisive for the final validity of the 
measurement. This fact is often erroneously interpreted. It rests on the objectivat
ing description of the measuring devices by trajectories of a trajectory space. The 
ideal observable is fixed by the set Ea. of the "objective properties" of the mea
suring devices. 

We have eliminated the more or less exact measurement of the measuring 
devices X2 E a2 by considering the observable Ea. ~ L. This Ea. ~ L represents 
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the ideal limiting case of the "arbitrarily accurate" measurement of the measuring 
devices X2 E a2' Of course this by no means says that Ea. ~ L is an especially 
interesting observable, e.g. an irreducible observable. 

For example, a de-mixing of a2, as an element of g2, yields a de-mixing of the 
observable Ea. ~ L and thus an illustrative example for the discussion from § 3.4. 
Hence the experimental physicist strives for the "smallest possible" elements of 
~, i.e. for elements of g2 that in practice are no longer properly de-mixable. An a2 
is no longer properly de-mixable if and only if in practice there do not appear fluc
tuations in the quality of the devices X2 E a2, i.e. if for all experiments all the ele
ments X2 E a2 are practically (macroscopically) "equal". 

Thus, we see how the basis structure from III precisely reflects the problems of 
experimental work. One problem certainly remains completely open: Which 
"choice" a2 of measuring devices should one in practice adopt, even when one only 
considers a2 which are no longer de-mixable? Which choice a2 leads to "inter
esting" experiments? 

The experimental physicist tries to find irreducible kernel observables. But 
which "sort a2" of measuring devices does approximately yield such observables? 
Behind a2 there is hidden the whole problem of constructing measurement devices. 
Without further theoretical considerations, one cannot attack this problem (see XI 
§ 6 and 7). 

§ 6 Coexistent De-mixing of Ensembles 

The concept of coexistent effects and observables resulted in a natural way by 
idealizing a substructure @(bo)~L. Equally important is the closer investigation 
of a substructure g' (a) .!+ K of preparing (described in ill § 5.3). According to ill 

n 

T 5.3, in the Banach space fj) follows: For a de-mixing a = U ai of a preparation 
procedure a, i=l" 

n 

tp(a) = L: Aitp(ai) (6.1) 
i=1 

n 

holds with Ai = ~(a, ai), 0 < Ai ~ 1 and L: Ai = 1. 
i=1 

n m 
Therefore, two such de-mixings a = U ai = U am of the same a E g' yield 

i=1 k=1 
n m 

tp(a) = L: Ai rp(ai) = L: i k rp(ak) . 
i=1 k=1 

But then one can combine both de-mixings into the de-mixing 

a = U' (ai !l ak) , 
i,k 

(6.2) 

where U' requires to sum only over the pairs i, k with ai !l ak =1= 0. From (6.2) then 
follows 

rp(a) = L:' Aik rp (ai !l ak) (6.3) 
i,k 
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with Aik = A~(a, ai n dk). Moreover we get 

ffJ(ai) = L:' Ak ffJ (ai n dk), 
k 

ffJ(dk) = L:' Xt ffJ (ai n dk), 
i 

where Ak=Aik(~' Aikr, X1=Aik(~' Aikr. 
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These relations can be formulated especially simply if one further defines the 
following set and mapping. 

D 6.1 By K we denote the truncated cone 

K= U AK. 
Oi!i'<i!il 

For fixed a E '!J', we introduce the mapping 

ffJa (d) = Aq (a, d) ffJ (d) 

of '!J(a) into K, where '!J(a) = {d IdE '!J, de a}. 
With this definition, from (6.1) follows 

T6.1 The mapping ffJa of '!J(a) into K is an additive measure over the Boolean ring 
'!J(a), with ffJa (a) = ffJ (a) E K (see [2] IV Th 5.1). 

n m 

Two de-mixings of one and the same preparation procedure a = U ai = U dk 
thus lead to two de-mixings i= 1 k= 1 

n m 

ffJ(a) = L: ffJa(ai) = L: ffJa(dk) 
i=1 k=1 

of the ensemble ffJ (a), the components ffJa (ai), ffJa (dk) of which lie in the range of the 
additive measure ffJa over the Boolean ring '!J(a). 

This suggests 

D 6.2 Two de-mixings 
n m 

W = L: Wi = L: Wk with Wi, Wk E K 
i=1 k=1 

of an ensemble are called coexistent if there is a Boolean ring L: with an additive 
measure L: ~ K, such that W (8) = wand Wi, Wk E W L:. 

Two de-mixings of one and the same preparation procedure a thus always yield 
coexistent de-mixings of ffJ (a). 

D 6.3 A set A c K is called a set of coexistent components of w, if there is a Boolean 
ring L: with an additive measure L: ~ K, where W (8) = wand A c W L:. 

Similarly to the case of coexistent effects, one can restrict one-self to effective 
measures; and just as there it is natural to idealize the situation L: ~ K mathe
matically by completion. 
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T 6.2 If W is an effective, additive measure over a Boolean ring E ~ K, with 
W(e)=weK, then mo(a) = II W(a) \I =fJ. (W(a), 1) is an effective, additive, real 
measure with mo(e) = 1. Here, d (a), a2) = mo (a) -i- a2) is a metric in E for which 
W is uniformly continuous as a mapping in the Banach space fJJ. (See [2] IV 
Th 5.2.) 

As in § 1.3, from T 6.2 follows immediately that E can be completed and that W 
can be extended to the completion. Then W becomes a a-additive measure on the 
completion. If E is a (lattice theoretically) complete Boolean ring and W a a-addi
tive measure, then E is also complete with respect to the metric d (a), a2) = 
fJ. (W (a) -i- a2), 1). As for an observable, we therefore adopt 

D 6.4 A Boolean ring E with additive, effective measure E ~ K, with 
W (e) = w e K, which is complete and separable in the metric determined by W, is 
called a preparator of w. 

The concept of a preparator is not customary because one is not accustomed to 
distinguish between "measuring" and "trans-preparing". Historically, this goes 
back to the too restrictive consideration of measuring by 1. v. Neumann. According 
to him, a system should after the measurement have the measured value of an 
observable (see XI § 5 and [2] XVII), although in reality this is rarely the case. 

Speaking of preparing in everyday language (to avoid the cOJ?cept of a pre
parator) can easily lead to alleged contradictions as in the so-called Einstein
Podolski-Rosen paradox (XII § 2). 

T 6.3 If E ~ K is a preparator, then there is a mixture-morphism fJJ (E) .4 fJJ with 

Tmou = W (a) , (6.4) 
where mou is determined by the measure mo from T 6.2 according to 

mou(u) = mo (a 1\ u). (6.5) 

Tis uniquely determined by (6.4). 

Proof. The elements of the subspace Y that is linearly spanned by E in fJJ' (E) are 
finite linear combinations L IXv av. The\1 V (L. IXvav) = L. IXv mou, defines a linear 

v v v 
mapping Y ~ fJJ(E). For, from L. IXv av = L. p" a~ follows L. IXv av = L. Yv" (av 1\ a~) 

V" v V" 
= L. p" a~; hence the additivity of mou (as a function of a!) implies L. IXv mou, 

" v 
= L.p"mou;. 

" The mapping V is injective since each element in Y can be written L. IXvav with 
v 

av 1\ a" = 0 for v '* fJ., so that L. IXv mou, = 0 gives IXv = 0 and thus L. IXv av = o. 
v v 

From the additivity of W likewise follows that L. IXvav --+ L. IXv W (av) defines 
v v 

an extension of W as a mapping Y ~ fJJ. Then VY ~ Y ~ fJJ defines a linear 
mapping VY 4 fJJ, which is norm-continuous: 

Because av 1\ a" = 0 for v '* fJ., with the mo from T 6.2 follows 

\I L. IXv mouv \I = L.llXv I mo (av) = L. IlXv I \I W (av) \I • 
v v v 
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On the other hand, 

II L (Xv W(av) II ~ L I (Xv I II W(av) II = II L (Xv mOlT, II . 
v v v 

According to [2] IV Th 2.1.11, VY is norm-dense in .'16'(E). Therefore, T can be 
extended as a linear norm-continuous mapping .'16' (E) -4 .'16'. 

From L tXv mOlT, E K (E) follows (Xv ~ 0 and 1 = II L (Xv mOlT, II = L (Xv mo (av) 
v v v 

= LtXv II W(av) II = II L (Xv W(av) II and hence L (Xv W(av) E K. The mapping Tis a 
v v v 

mixture-morphism. 
The proof shows that Tis uniquely determined by (6.4). 0 

T 6.4 If T is a mixture-morphism .'16' (E) -4 .'16', each eff ecti ve measure mo E K (E) 
by means of W(a) = TmolT (with mOlT of (6.5» defines a preparator E ~ K of 
wo=Tmo· 

Proof The additivity of W follows immediately from the linearity of T. But W is 
in fact a-additive, since mo is a-additive and T is norm-continuous. 0 

§ 7 Complementary De-mixings of Ensembles 

The classical theories are distinguished by the fact that all de-mixings are co
existent Indeed, one can prove (see VII Th 5.3.3) that the coexistence of all de
mixings makes .'16' isomorphic to the space .'16' (E) of a Boolean ring E. 

But it is just important for quantum mechanics that there also exist de-mixings 
of an ensemble W which are not coexistent. In order to describe this possibility still 
better, we introduce the following concepts: 

D7.1 A prfJ?a~ator E ~ K of the ensemble W is called more comprehensive than 
another E\ ---4 K of the same ensemble w, if there is a homomorphism h to give the 
diagram 

D7.2 Two preparators E\ J4K and E2 ~ K of the same ensemble ware said to 
coexist if there is a preparator E ~ K which is more comprehensive than either of 
E\ J4K and E2 ~K. 

For two preparators, the situation opposite to coexistence somewhat differs 
from that for observables. We are led to diametrically distinct situations by first 
considering two de-mixings of an ensemble W which arise from de-mixings of 
preparation procedures. 

n 

Thus, let a = U ai be a de-mixing of a preparation procedure a and let 
m i=\ 

ii = U iik be a de-mixing of ii. Moreover, in particular choose !P (a) = !P (ii) = w. 
k=\ n m 

Then !Pa (a;) = Wi and !Po (iik) = Wk yield W = L Wi = L Wk with Wi' Wk E K. 
;=\ k=\ 
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Therefore, if these assumptions imply a Il ii = 0, the preparation procedures a 
and ii can have nothing in common. Then one must physically exclude (see [3] 
§ 10.4) that a single micro system can be viewed as being prepared according to a as 
well as Ii The preparation procedures a and ii are mutually exclusive, although 
theypreparethesame(!) ensemble W = tp(a) = tp(ii). 

Let us formulate this possibility a Il ii = 0 in an abstract, idealized form, with 
I], I2 instead of 9(a), 9(ii). Initial difficulties are caused by the fact that for 
0"1 E II, 0"2 E I2 with two distinct Boolean rings II, I 2, no intersection 0"1/\0"2 is 
defined. Hence we proceed as follows: 

From a preparator I ~ L of an ensemble w, one can easily obtain new pre
parators as follows: Let [0, 11] be a section from I. Then [0, 11] ~ K with 
A = J1. (W(11), 1) is a preparator of the ensemble Wo = A-I W (11). We call such a pre
parator briefly the preparator determined canonically by [0, 11]. 

D 7.3 Two preparations II ~ K and I2 ~ K of the same ensemble ware called 
mutually exclusive if there do not exist two sections [0, 11d c II and [0,112] c I2 
such that All WI(11I)=A2-1 W2(112) holds with Al = J1.(WI (111), 1), A2=J1.(W2(112), 1), 
and the preparators determined canonically by [0, 111] and [0, 112] coexist. 

D 7.4 Two preparations II ~ K and I2 ~ K of the same ensemble w. are called 
complementary, if two preparators are mutually exclusive whenever they are more 

• WI T/ W2 T/ 
comprehensIve than II - 1\. resp. I2 ~ 1\.. 

D 7.5 Two de-mixings 
n m 

W= L. Wi= L. Wk 
i=1 k=1 

WI v 

of an ensemble are called complementary whenever two preparators II -"-4 K, 
I2 ~ K with WI E WI II, Wk E W2 I2 are complementary. 

How can one recognize that two de-mixings are complementary? The following 
theorem gives the answer. 

T7.1 Twode-mixings n m 

W = L. Wi = L. Wk 
i=1 k=1 

of an ensemble are complementary if and only if each pair Wi, Wk makes 

Wo E K, Wo ~ Wi, Wo ~ Wk = Wo = 0. 

(see [2] IVTh 6.1). 

Complementary de-mixings playa large role in quantum mechanics (see VII 
§ 5.3 and XII § 2). The Einstein-Podolski-Rosen "paradox" presents nothing than 
examples for preparation devices a, ii with tp(a) = tp(ii), for which the preparators 
9(a) 14K and9(ii) 14 K are complementary. 
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§ 8 Realizations of De-mixings 

If, for a preparator E ~ K, there exist a preparation procedure a E !!J' and a 
homomorphism h of E into!!J(a) such that we get the diagram 

E ~ !!J(a) 

w\~. , 
K 

one can identify E with the Boolean subring hE of !!J(a). Then the preparation 
procedure a (with its !!J(a) and f/Ja) can be called a realization of the preparator 
E ~ K. But too strong would be the demand that a realization be physically 
possible for each preparator (also see § 5). In analogy to § 5 let us therefore impose 

w ~ -Apr: For each preparator E -+ K, and each finite Boolean subring E of E, and each 
(1(fJIJ', fJIJ)-neighborhood U of 0, there exist a !!J (a) ~ K and a homomorphism 
- h -E -+ !!J(a) such that f/Ja h «(1) - w «(1) E U holds for all (1 E E. 

In the sense of this axiom one can realize each preparator and hence each de
mixing of W E K "in a physical approximation". 

Similarly to what we did for observables in § 5, let us point out connections 
between preparators and the trajectory registration procedures on the preparation 
devices. To this end, we use III (6.4.13). We now keep al fixed and let a2, b20 , b2 
run over all possible values; this is equivalent to testing a E!!JI for all possible 
values of (bo, b) E.r because bo = MI x(a2 II b20) II M and b = MI x(a2 II b2) II M 
generate all of ~o and ~. Thus III (6.4.13) gives (for fixed al !) a correspondence 

(8.1) 

with l1{J = al II bOi x M2 II M, a = al II bl x M2 II M. Due to D 6.1 this can also be 
written 

(8.2) 

The mapping k is norm-continuous if L = [0,1] (or L contains at least one 
interior point; see IV Th 3.18). 

In fact, with III (6.4.13) we step by step obtain 

t Ilf/Jao(a) - f/Jao(6) II = sup III (f/Jao(a) - f/Jao(a),g)1 
geL 

= SUp III (f/Jo (a) - f/Jao (6), ",(bo, b)) I 
(bo,b)eY 

= sup I(RI "'2S (b20 , b2) f/J12 (al x a2 II M), "'IS (blO' bl) - "'IS (blO' bl)1 
(boo, b2) e Yo 

a2 e !l'" 

;:;§ II "'IS (blO' bl ) - "'IS (blO' bl ) II· 
Therefore, k can be extended as a mapping 

- k ~ 
L(Sd -+ [0, f/J(ao)] c K. 

Since "'IS (bOl' b) is an additive measure on ~I (bod, this k is linear, so that it can 
be extended to all of C(SI). 
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The dual mapping k' then makes 

fg'~C'(Sd with L~ [(SI), 

where [(SI) is the truncated cone on the basis K(Sd. 
Let SI (al) be the support of k' L. Then we can go over from SI to SI (al). To 

eachfE C(SI) there corresponds anfE C(SI(al» by restriction to SI(al)' Then 
one can regard k as the mapping 

L(SI(al» ~[O,9'(ao)]c [(, (8.3) 

because (k' g,f)1 = (k' g,fiS.(au)la, holds with ( ... , .. ')Ia, the canonical dual 
form of C' (SI (al», C (SI (al». The mapping k in (8.3) is injective. 

With .Ea,= fg(SI (al»lf(SI (al», where f(SI(ad) are the sets of measure 
zero relative to k'L, one can regard L (SI (ad) as a subset of L (.Ea,). Then one 
can extend k to the elements of .Ea, as a a-additive measure (.Ea, regarded as a 
subset of L(.Ea,); see § 3.1). 

This follows because for a decreasing (or increasing) sequence Iv from 
L(SI (al» the sequence klv is norm-convergent (IV T6.1), while for a decreasing 
sequence ap E .Ea, with 1\ ap = 0 the sequence k ap is norm-convergent to a 

p 

WE [0, 9'(ao)]. Here we have 

(aJl> k' g)la, = p(k ap, g) --+ p (w, g) 

and (ap, k' g)la, --+ 0, hence W = O. Since the k in (8.3) is injective, 

.Ea, .!5. [O,9'(ao)] (8.4) 

is an effective, a-additive measure with k(e) = 9'(ao). Therefore, (8.4) is a 
preparator of 9'(ao). We call it the ideal preparator belonging to al E ~{. The 
mixture components k a (with a E .Ea,) of 9'(ao) are given by the objective 
properties a E .Ea, of the systems 1 prepared by al' Every kf with f E SI (al) is a 
mixture of the k a. For fixed ai, all possible de-mixings coexist with the ideal 
preparator (8.4). . 

The considerations from § 5 about de-mixings of a2 can at once be transferred 
to al: The experimenter will if possible choose such ai, i.e. preparing devices 
which possibly no longer fluctuate in their norms. 

At this point, we can not yet ask for those al which are especially interesting 
for experiments with microsystems. 

§ 9 Preparators and Faces of K 

For a preparator .E ~ [( of the ensemble W = W (e), all a E .E make W(a) ;§ w. 
The range W.E of a preparator of w is therefore a subset of the order interval 
[0, w]. Conversely, for WI E [0, w] we can construct a preparator of the ensemble w, in 
whose range WI lies. Consider the Boolean ring of the subsets of the two-element set 
{ex, P}. With al = {Q(}, a2 = {P}, and e = {Q(, P} we set W (e) = w, W (ad = WI> W (a2) 
=W-WI' 
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The order intervals [0, w] are intimately connected with the closed faces C (w) 
of K generated by w: 

T 9.1 With C (w) = U A C (w) we get [0, w] = C (w). There is a Wo E C (w) such 
O;§}.;§I 

that C(w) is the norm-closure of 

A(wo)={wjIV=W',u(w',Ir l with w'=I=O, W'E[O,Wo]}. 

For arbitrary WI E K, the set A (WI) is a face of K (in general not closed). 

Proof For WI =1= wand WI =1= 0, from WI ~ w follows 

w = A WI + (1 - A) W2, 

where WI = Wl,u (w], I)-I, W2 =(w - WI) (1 - ,u (w], 1))-1 and A =,u (w], 1). This 
gives WI, W2 E C(w), hence WI = A WI E C(w), which proves [0, w] c C (w). 

For a set {wv} dense in C(w) and Av > 0, L, Av = 1, we have Wo = L, Av Wv E C(w) 
v v 

(see IVT 5.6). From this follows Wv E A(wo), whence A (wo) is norm-dense in C (w). 
[0, wd convex implies A(wI) convex. WE A(wI) implies W = w' ,u(w', Ir l with 

w'E[O,wd, hence A[O,w]c[O,wd with A=,u(w',I). Thus A(w)cA(wI) so that 
A(wI) is a face. 0 

In general, no Wo E C(w) exists with A (wo) = C(wo); but we find 

T 9.2 If C(w) is finite-dimensional, then A (w) = C (w). 

Proof From T9.l follows that A(w) c C(w) holds and A(w) is a face. Thus, we 
need only show that a finite-dimensional A (w) is closed. 

If A(w) is finite-dimensional, w is interior to the convex set A(w). For, w is 
interior to a convex subset of the same dimension as A (w), generated by finitely 
many Wi (with Ai Wi ~ w if 0 < Ai < 1). Since w is interior to A (w), each boundary 
point w, of A (w) gives w = r:J. W, + (1 - r:J.) W, with 0 < r:J. < 1 and W, E A (w). 0 

Hence for any WE K the range of all its possible preparators is just the order 
interval [0, w]. This interval and C(w) correspond one-to-one. If Wo from C(w) is 
suitably chosen, A (wo) is norm-dense in C(w) so that we can regard C(w) as the set 
of all possible mixture components of wo0 In fact, A(wo) and C(w) are physically 
indistinguishable, since A(wo) is norm-dense in C(w). Thus the closed faces of K 
become physically important, describing all possibilities of acquiring ensembles by 
preparators of W00 This result will lead us intuitively to axioms for preparation and 
registration possibilities (see VI § 2.1). 

After this discussion of the physical meaning of the closed faces of K, let us 
emphasize again: That the sets Yf/, ~" YIL of faces are complete latti"ces 
(IV T 5.3), is a fundamental structure solely based on the description of directed 
actions by physical systems as action carriers. Herein lies the "general validity" of 
this structure for a wide area in physics. In contrast, microsystems as action carriers 
are distinguished by more special structures of the set K. 
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§ 10 Physical Objects as Action Carriers 

In VII § 5.3, we shall define when in a fundamental domain to say that the 
action carriers are "classical systems". There some axioms from VI (laws for the 
fundamental domain) will be presumed. Here, however, we shall seek to give a 
definite meaning °to the basic concept of "objective properties" of the action 
carriers. Since this problem has also been discussed in [2] III § 4, we here proceed 
faster in order to exhibit the essential viewpoint. 

It must be emphasized that the approach from Chapter II § 5 cannot be 
transferred to action carriers because there exist no pretheories by which objective 
properties of the action carriers could be introduced. Therefore, there remains only 
to seek a way to the objective properties from the preparation and registration 
procedures. We shall not consider purely "imagined" properties. 

As the first step let us complete the registration and preparation procedures by 
"idealized" elements *). We adopt 

D 10.1 A set c c M be an idealized registration procedure, if a bo E ~o exists with 
c c bo while 

c = U band bo\c = U h. 
beiJI be iJI 
bee bebo\e 

Via the following considerations, one recognizes that the idealized registration 
procedures c c bo can be identified with some elements of the Boolean ring t, 
which in the sense ofT 1.3.3 is the abstract (!) completion of L = ~ (bo). 

In general we cannot uniquely identify all of t with subsets of bo (one can only 
do so up to sets of "measure zero"). 

Therefore, ideal registration procedures can be approximated arbitrarily well 
"from above and below" by real registration procedures. 

According to V T 6.2, the mapping Y ~ L can be extended to the ideal 
registration procedures c c bo by 

",(bo, c) = sup ",(bo, b) = inf ",(bo, b); 
beiJI beiJI 
bee bo=>b=>e 

and likewise we extend the function A./. Thus, one can extend ~ by the idealized 
registration procedures to a system #t of selection procedures (see [3] § 12.3). 

D 10.2 A set p c M is called ideally registrable if, for every bo c ~o, bo n p is an 
idealized registration procedure. 

Then an ideally registrable set p (see [3] § 12.3) obeys 

p = U band M\p = U b. (10.1) 
beiJI beiJI 
bep beM\p 

If this holds for p, then p is also ideally registrable. 

*) A different extension can be performed by the methods from [41]. 
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Thus, an ideally registrable p has one structure to be expected of an objective 
property. But p is still too arbitrary as long as one does not fix how p is connected 
with the preparation procedures. The set of those systems from an a E !!)' which 
also have the property p, should be a n p. Hence this set should also be 
interpretable as a selection procedure, namely as the "procedure" which selects 
according to a E!!)' and according to the property p. This suggests a definition 
analogous to D 10.2: 

D 10.3 Ap c: Mis called ideally preparable if 

p = U a and M\p = U a. 
a e f!) aef!) 
acp aeM\p 

Again, one can extend the mapping !!)'..!. K uniquely to !P'..!. K with !P' the 
system generated by all {(a n p) I a E !!)', P is ideally preparable}. 

Then we are led to 

D 10.4 The set Cm of all ideally registrable and ideally preparable subsets pc: Mis 
called the set of objective properties of the action carriers. 

This Cm is a Boolean set ring, as follows immediately from (10.1) and D 10.3. 
In [3] § 12.3 it is shown, that 

X(p) = If/(bo, bo n p) 

does not depend on bo, so that Cm ~ L is an additive measure. Therefore, with im 
as the completion of Cm in the sense of T 1.3.3, im ~ L is an observable. 

By § 3.2, to this observable corresponds a mixture-morphism S, with 
fJIJ ~ fJIJ (im). The dual S' maps im (regarded as a subset i= oeL(im) of L(im)) into 
L, and S' p = X (p) holds. 

In [3] § 12.3, we have by means of [2] IV 2.1.11 shown that SK is norm-dense in 
K(im ). 

Till now we have only introduced some definitions and theorems. The sets Cm 

and im could in principle be trivial, e.g. consist only of M and 0. We shall denote 
action carriers as physical objects if Cm is sufficiently comprehensive, i.e. if "it 
suffices" to perform only the bo n p with p E Cm instead of all registration 
procedures. Here "it suffices" means that X(Cm ) separates the WE K. Hence we 
adopt 

D 10.5 The action carriers are called physical objects if X (Cm) separates the set K 
(better, if "X (Cm) separates K" is a certain hypothesis in the sense of [3] § 10.1). 

Therefore, if X (Cm ) separates the set K, then K ~ K (im ) is injective and SK 
norm-dense in K (im). Due to T 2.3, this conclusion makes S an isomorphism be
tween K and K (im) while S' becomes an isomorphism between L = [0, 1] and 
L(im). 

For physical objects, we thus can identify fJIJ, fJIJ' with fJIJ(im), fJIJ' (im) and K, L 
with K (im), L (im). 

Therefore, a set of objective properties that is "sufficient for objects" (a set Cm 

for which X (Cm) separates K), does only exist if fJIJ= fJIJ(im). Then im is uniquely 
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determined by 3IJ; hence (by [3] § 10.5) em is a set of real situations. Thus, the 
properties p can be ascribed "objectively" to the action carriers in the sense of 
x E p, i.e. independently of all preparation and registration procedures. The 
objective properties are approximately registrable in the above sense, i.e. approxi
mately measurable. Other "imagined" properties would not be uniquely defined 
and hence not recognizable as "real". 

Conversely, if 3IJ = 3IJ (.E), with the given axioms it is a certain hypothesis that 
17 = em holds for a suitable em. 

Therefore, action carriers are physical objects if and only if 3IJ and 3IJ' have the 
form 3IJ (.E) resp. 3IJ' (.E). 

§ 11 Operations and Transpreparators 

For later, let us here introduce concepts that are already meaningful in the 
structure 3IJ, 3IJ' with 3IJ a base-normed Banach space. 

As in § 2 we start from two base-normed Banach spaces 3IJ., 3IJ2 with the bases 
K .. K 2 , and somewhat more generally than in D 2.1 adopt 

D 11.1 An affine mapping S of K. into K2 is called an operation (for K see D 6.1). 

By T 2.1, a mixture-morphism is a special operation, which maps the subset K. 
of K. into K2• For an operation, K. can thus be mapped "only" into K2• 

Just as T 2.1, one can easily prove 

T 11.1 An affine mapping K. ~ K2 can be uniquely extended as a linear mapping 
3IJ. -+ 3IJ2 with II S II ~ 1. 

But we also obtain 

T 11.2 Every positive, linear, norm-continuous mapping 3IJ. ~ 3IJ2 with II S II ~ 1 is 
(restricted to K.) an operation. Every positive linear mapping 3IJ. ~ 3IJ2 is norm
continuous and II S 11-· S is an operation. 

Proof. See [2] V Th 4.1.2. 

T 11.3 To each operation S there corresponds a dual mapping S' of 3IJ2 into 3IJ; 
with [0, Ih ~ [0, 1] .. while Sis·a mixture-morphism if and only if S' 1 = 1. 

Proof. See [2] V Th 4.1.3. 

As is well known, the norm-continuous mappings of 3IJ. into 3IJ2 form a Banach 
algebra .#'(3IJ., 3IJ2) and hence a Banach space with the norm 

II S II = sup {II S x II I x E 3IJ., II x II ~ I} = sup {II S w II I w E K.}. 

A positive cone .#'+ (3IJ. , 3IJ2) is in .#' (3IJ. , 3IJ2) defined by 

S ~ 0 is equivalent to {S x ~ 0 for all x ~ O}. 

This .#'+ (3IJ. , 3IJ2) is the set of "positive" mappings. 
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As is well known, d(~\, ~2) is complete not only in the norm topology but also 
in the topology of simple convergence. Hence for each sequence of Sn with Sn W 

norm-convergent in ~2 for all W E K\, there is an S E d(~\, ~2) which makes 
IISnw-Swll-+O for all wEK\ and also IISnx-Sxll-+O for all XE~\. 
According to T 11.2, this SEd (~I> ~2) is an operation if and only if 
S E d+ (~\, ~2) and II S II ;i! 1 hold. 

The set of operations, which therefore is the intersection of d+ (~\, ~2) with 
the unit ball, shall be denoted by II. 

D 11.2 An additive mapping of a Boolean ring E 4 II for which X (e) (with e the 
unit element) is a mixture-morphism, will be called an operation measure over E. 

Given an effective ensemble wo, one can in E introduce a uniform structure by 

d (O"\> 0"2) = Jl (x (0"\ + 0"2) wo, 1). 

This equals the metric in T 6.2, if there one puts W(O") = X (0") woo 
Then easily follows 

T 11.4 The mapping E 4 II is uniformly continuous relative to the metric in E and 
to the uniform structure of simple convergence in II. 

Proof See [2] V Th 4.3.2. 

This theorem and the fact that II is closed in the topology of simple 
convergence, as in § 6 imply that we can complete E and extend X to the 
completion. 

With D 6.4 follows: 
By E 4 II with a complete and separable E for each W E K\, the mapping 

E ~K2 defines a preparator of the ensemble X (e) w. 
Therefore we adopt 

D 11.3 An additive measure E 4 II over a separable Boolean ring E that is 
complete relative to d (0"\,0"2) is called a trans preparator. 

D 11.4 A set;; of operations is said to coexist if there exist a Boolean ring E and 
an additive measure E 4 II, with;; c: X E. 
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So far the theory of physical systems as action carriers is far from a g. G.-closed 
theory (in the sense of [3] § 10.3), i.e. too little structured to characterize the 
directed actions in nature. Hence, we must add axioms (laws in the sense of [3] 
§ 7.3) and thus try to approach (by standard extension in the sense of [3] § 8) a 
g. G.-closed theory of "microsystems". Here, the word "microsystem" is to 
characterize (initially inexactly) the fundamental domain ;# of the intended theory 
(for;# see [3] §§ 2, 3 and 5). 

In this chapter let us introduce basic axioms for preparation and registration, 
which therefore shall be called the main natural laws (briefly, main laws) of 
preparation and registration. They do not yet characterize the individual structures 
of the various microsystems (electrons, atoms, etc.), but are universal, like the main 
laws of (phenomenological) thermodynamics are universal, not specifying the 
individual properties of thermodynamic systems. 

We shall proceed by discussing the physical meaning of tht: individual main 
laws for the sets 9, ,gpo, ,gp, in order then finally to give them a concise mathematical 
form. The two sets K, L and the mapping K x L -4 [0, 1] will tum out especially 
suitable for such a concise form. Expressed in yet another way: 

We shall prove mathematical theorems between relations in 9, ,gpo, ,gp and rela
tions in K, L, the physical meaning of those in 9, ,gpo, ,gp being more transparent. 
Due to these theorems, as axioms one could choose certain relations in 9, ,gpo, ,gp,or 
others in ,K, L. But we shall formulate the axioms as relations in K, L where they 
are mathematically more concise, just because K and L have arisen from Yresp. l' 
by "completions". 

In deriving further theorems from the axioms we shall presume the properties 
of K x L -4 [0, I] described in IV, but indicate which further axioms are used. 

All the axioms introduced in this chapter are ultimately just structure state
ments for the convex set K. As we saw in IV, the set [0, 1] c ge' is uniquely deter
mined by K as the set of the affine functionals Ion K with 0 ;a I (w) ;a 1. When we 
formulate axioms for [0,1], they are thus indirect axioms for K. We shall formulate 
axioms for Lc [0, 1] instead of[O, 1]. Then they are "not only" axioms for K, since 
they also express something about the magnitude of L as a subset of [0, 1]. Often 
one uses to fix L = [0,1] in advance (see AV 1.2s in § 1.4). Then the axioms for L 
are "only" axioms on K. However, from the axioms A V 1.2 and A V 2 formulated 
only for L, the relation L = [0,1] will follow as a theorem. 

Together with this validity of L = [0,1] as a theorem, the further axioms will in 
particular determine the lattice ~, of exposed faces in K. The first decisive restric-
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tion by axioms A V I through A V 2 will make 'Y/;;;' an orthocomplemented, ortho
modular lattice. How this is achieved by physically interpretable axioms will be 
described in §§ I and 2. Therefore recall from IV § 5 that the lattice structure of 
~ needs no foundation by further axioms (see IV T 5.3). Difficult is it only to 
determine by axioms (natural laws ) the further structure of the lattice 'Y/;;;'. 

§ 1 Main Laws for the Increase in Sensitivity of Registrations 

The laws to be introduced here make assertions about the possibilities of the 
preparation devices to act on various registration devices. Therefore, the laws will 
govern the possibilities of constructing registration devices (characterized by ele
ments bo E 9l'o), but also the possibilities of the action carriers to act on these 
registration devices, described by the probability function A/ (a n bo, a n b) for 
the various a E f?)'. Summarizing, we can briefly say: The axioms to be introduced 
in this section govern the possible interactions between action carriers and registra
tion devices. Here, the word "possible" is always used in the sense of "physically 
possible" (introduced in [3] § 10.4). Hence, besides the mathematical formulation 
of the axioms we shall always give the physical interpretation which "results" due 
to the considerations from [3] § 10.4. The reader who has not studied [3] should 
accept the physical formulation as a "known", intuitively "customary" manner of 
speaking about mathematical relations in a physical theory. 

§ 1.1 Increase in Sensitivity Relative to Two Effect Procedures 

Registration device plus indication were characterized by the pair (bo, b) E Y. 
Very intuitively we call an effect procedure fl E :T more sensitive than an f2 E :T if 
f1 (a,fl) ~ f1 (a,f2) for all those a E f?)' for which f1 (a, fi) as well as f1 (a,f2) is 
defined. One sees immediately that this is equivalent to f1 (w, If/(fl)) ~f1 (w, If/(h)) 
for all w E :% and hence for all w E K. But with respect to the order in fJ1j' this is 
equivalent with If/ (fi) ~ If/ (f2). Therefore we adopt 

D 1.1.1 The effect procedure fi E:T is called more sensitive than h E:T if 
If/(fl) ~ 1f/(f2). An effect gl E L is called more sensitive than g2 E L if gl ~ g2. 

In this sense, the effect procedures (bo, bo) are most sensitive since If/(bo, bo) = 1. 
This is no physically profound assertion but only a trivial consequence of bo being 
the unit element of the Boolean ring 9l' (bo). Therefore, really physical structures 
are only described if one considers such f E :T that satisfy special supplementary 
conditions. 

One such condition is suggested if one asks for those action carriers which 
cannot trigger a definite registration procedure b E 9l' (b =1= 0). This means asking 
for those a E f?)' which make an b = 0 although some bo (with bo::J b) is 
combinable with a. If such an a E f?)' makes a n b = 0 with some b =1= 0 (by APS 5.2, 
for every b =1= 0 an a' E f?)' exists with a' n b =1= 0), this b therefore does not appear 
in the device bo "by itself', but only by its interaction with a preparing device. Of 
course, on devices bb there can also be such indications b' the response of which 
does not depend on the interaction with preparing devices. Then, however, 
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IfI (bo, b') = Xl holds since this is the condition for XJ' (a n bo, an b') = J.l ('I' (a), 
lfI(bo, b)) = X to hold for all a E!?) combinable with bo. In other words, the 
response probability of b' is independent of the preparation procedure a. 

AbE g; (with b =1= 0) for which Ko (Ifl (bo, b)) is not empty (Ko as in IV (SA)), is 
therefore an indication which can only be triggered by "real" interactions with 
action carriers. In this connection, 

Mo (bo, b) = u a 
a E f!)' 

q>(a) E Ko(",(bo,b» 

is the set of all those action carriers which cannot trigger b. All other preparing 
procedures d with 'I' (a') ¢ Ko (Ifl (bo, b)) must also generate such systems x E a' (of 
course not only these) which make b occur, i.e. obey x E b. This raises the experi
mentally obvious problem of finding devices bo with such signals b c bo that the 
sets Mo (bo, b) are not decreased while the response probability for (bo, b) is made 
as large as possible, i.e. the problem of making effect procedures (bo, b) more 
sensitive without decreasing Mo (bo, b). But it is a priori far from clear whether 
such an experimental problem is solvable. We shall step by step formulate axioms 
(natural laws) which say that it is "physically possible" (in the sense of [3] § lOA) 
to solve such experimental problems of increasing the sensitivity of effect 
procedures. We begin with an axiom about increasing a sensitivity relative to two 
effect procedures, 11,12 E Y. We shall not in advance postulate that such an lEY 
exist for which there is aWE Yr obeying A (w, I) = 0 exactly (with A as in III 
(5.1.1)). Rather we shall for an lEY consider a Wo E Yr such that A (wo,f) = 8 

holds with a number 8 ~ 1. The mathematically exact requirement A (w, f) = 0 
could be an idealization (for the concept idealization, see [3] §§ 6 and 9), which is 
experimentally only approximately attainable (i.e. A (wo,f) = 8 with 8 physically 
equivalent to zero). Therefore we tentatively consider the heuristic relation 

A I: For prescribed fi,f2 E Y and Wo E K, with small 8i = J.l (wo, IfI (fi)), there is 
an lEY with J.l (wo, IfI (I)) = 1'/ and small 1'/ and I more sensitive than fi and 12. 

The set K instead of only Yr has been used for convenience, since K c % holds 
according to IV § 3 while the elements of % are in no physical way distinguishable 
from those of Yr (also not by the topology of physical imprecision in 1'!). For 
"ease of mind" the reader can check that one could have restricted Al to elements 
from Yr, nevertheless obtaining the same relation for elements of K, since Yr is 
norm-dense in K. 

Physically interpreted (by concepts from [3] §§ lOA and 11.4), relation Al with 
81,82, 1'/ ~ 1 means the following: Assume two effect procedures fi, 12 whose 
responses can practically not be evoked by systems prepared due to a E Wo, i.e. 
these responses can physically "almost certainly" be excluded (see [3] § 1104). Then 
it is physically possible to construct an effect procedure which likewise is almost 
certainly not triggered by systems from an a E Wo but is more sensitive than fi 
and 12' 

Therefore, Al concerns the practical possibility of constructing a registration 
device with contingent interactions with the action carriers. When we formulate 
Al as a physical law, of course one cannot deduce it from experience, but only 
intuitively guess from experiences (see [3] § 5). A physical law of the form Al can 
therefore be suggested by special experiences as well as by intuitive notions that 
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transcend experience. That intuitive notions can also playa role is entirely legiti
mate, since the methods of physics do not prescribe how to arrive at physical laws 
([3J § 5). One only must not mistake such a law as necessarily true, perhaps 
regarding certain intuitive notions as necessary although they are not. . 

Hence we shall describe some experimental experiences and intuitive notions 
which suggest a natural law of the form AI' But in order not to interrupt the 
mathematical formulation of such a law "similar" to AI, let us describe experi
mental and intuitive hints to Al afterwards in § 1.2. 

Why doesn't Al satisfy us as mathematical formulation of a natural law? 
Because of the "physically small" numbers el, £2 and " occuring there. Since we 
have no idea how small these numbers should be, as always in such cases we 
idealize (see [3J §§ 6 and 9). 

For the numbers el, e2, " this means not to prescribe bounds, but to let them 
"become" arbitrarily small. By such an idealization, we mathematically formulate 
Alas 

A2: For given numbers el, e2 > 0 and given fi, hEY and Wo E K with 
J.l (wo, '" (fi» < elo J.l (wo, '" (h)) < e2, there exist an ,,(elo e2) and an fEY with 
J.l (wo, '" (f)) <" and f more sensitive than fi, h. Here ,,( elo e2) can be so 
chosen that el, e2 ~ 0 implies" (el' e2) ~ O. 

We also define the relation 

AVI.I For each pair glog2 E L, there is agE L with g;S; glog2 and Ko(gl) 
rl Ko (g2) c Ko (g). 

We shall prove the theorem 

T 1.1.1 A2 = A V 1.1. 

Proof. Let glo g2 E L. Then sequences gf E J' and g~ E J' exist with gf ~ gl and 
g5. ~ g2 in the (metrizable!) U (YlJ', Y1)-topology. Hence any Wo E Ko (gl) rl Ko (g2) 
makes J.l (wo, gO ~ 0 and J.l (wo, gn ~ O. With ef = J.l (wo, gO and e2 = J.l (wo, gn, 
from A2 follows that for each v there is a gV E J' with J.l (wo, gV) < " (e£, en and 
gV;s;gf, g5. such that v~ 00 gives ,,(er,e2) ~ O. Since L is u(Y1', Y1)-compact, 
there is a subsequence of the v (again to be called v) for which gV ~ gEL holds in 
the u (81', Y1)-topology. From this follows J.l (wo, g) = 0 and g ;S; glo g ;S; g2' 

Since Ko(gl) rl KO(g2) is a closed face of K (IV § 5), there exists (by T 5.4) a Wo 
such that C(wo) = Ko (gl) rl Ko (g2)' We now assume that the above Wo is just so 
chosen that C(wo) = Ko(gl) rl KO(g2)' From J.l (wo, g) = 0, i.e. Wo E Ko(g), follows 
C(wo) c Ko(g). 0 

As the reader can easily see, A V 1.1 conversely implies a relation almost like A2, 

only that one must replace ''13 is more sensitive than fi and h" by ''13 is 
approximately more sensitive than fi and h", what is more physical than A2 itself. 
We have chosen A2 in order not to obscure the formulation by many approxima
tion estimates. 

Because of g;S;ghg2 follows Ko(g)cKo(gl), KO(g2) and hence Ko(g) 
cKo(gl)rlKo(g2)' Hence we can in AVl.l simply replace Ko(g):::JKo(gl) 
rl Ko(g2) by Ko(g) = Ko(gl) rl KO(g2). 
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We regard AV 1.1 as the idealization of AJ, an idealization which just replaces 
"physically small" el> e2, 'I by the limit zero. In the form AV 1.1 we introduce the 
"first main law" of registering as an axiom. We saw clearly how this idealized 
A V 1.1 is so simple just because we mathematically completed :Yf and J' to K and 
L. Let us call AV 1.1 the law of increase in sensitivity of the first kind (another law 
AV1.2 will follow in § 1.4). 

§ 1.2 Some Experimental and Intuitive Indications for the Law of Increase 
in Sensitivity 

In order to suggest the relation Al in § 1.1 by experience, it would for 
fi = (bOI , bl), h (b02 , b2) be nicest to derive from the physical construction of the 
registration devices corresponding to bOi , b02 a physical construction for a device bo 
with indication b, so that f = (bo, b) satisfies AI' Here the "physical construction" 
of a device bo means what we have in III described by the preparation procedure 
a2 E ~ of the systems 2 and the corresponding state space Z2 (see the construction of 
9i'o, 9i' and their connection with trajectory effects in III §§ 4 and 6). Since in III we 
agreed to conceive the state space Z2 so broadly that all systems 2 could be 
described in it, our question of a physical construction amounts to this: Given two 
a2l> a22 E g2 and two trajectory effects f//2S (b02 l> b21 ), f//2S (b022 , b22), we seek an 
a2 E ~ and a trajectory effect f//2S (b02 , b2) so that for fi '/2, f with f = (bo, b), 
fi = (bOl' bl),h = (b02 , b2) and 

bo = (MI x a2 II b02) II M, b = (MI x a2 II b2) II M; 

hoi = (MI x a21 II b021 ) II M, bl = (MI x a2 II b21 ) II M; (1.2.1) 

b02 = (MI x a22 II b022) 11M, b2 = (MI x a22 II b22) II M; 

the relation Al holds with physically small eJ, e2, 'I. Here one can allow, still in the 
sense of the remarks to the proof of T 1.1.1, that f is only approximately more 
sensitive than fi and h. 

Since we assumed (see n § 3.1) that the measurement of trajectories is ex
plained by pretheories for given kl (y) = f//2s(bo21o bo) and k2(y) = f//2s(bo22 , b22), it 
suffices to find a suitable k (y), without worrying about the measuring methods. If 
in particular a22 = a21, a suitable, more sensitive f is easy to find: One sets a2 = a21 
and chooses k (y) = max {k l (y), k2 (y)}. Hence, the problem of greater sensitivity 
is of crucial importance only for a22 =1= a21; then another construction rule a2 is 
sought as well as a suitable trajectory effect k. 

In order to express this more clearly, let us formulate this problem with the 
mapping p from III (6.4.14): 

For given a210 kl and a22, k2 and Wo E K with J.l (wo, P (a2J, k l» '" 0, 
J.l (wo, P (a22' k2» '" 0, we seek a pair a2, k to fulfill J.l (wo, P (a2' k» '" ° and 
p(a2' k) ~ p(a21o k l ),p(a2, k) ~ p(a22' k2). 

It appears entirely hopeless to solve this problem for a22 =1= a21 in generality. It 
was just an advantage of the basic relations presented in III that no "complete 
survey" of the construction rules a2 E ~ was needed. In the sense of the correspon
dence rules, we need only to know whether an actual ,production method of 
registration devices implements some a2 E ~. Hence, in III we had no need, by 
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pretheories to describe "comprehensively" "all" the possible devices. Just vice 
versa, a principal problem of the experimental physicist is to "find" especially 
appropriate construction rules a2 E £)2 for measuring devices. Here "appropriate" 
means that the trajectory effects on the devices lead to such IfI (bo, b) E L (with 
bo, b from (1.2.1)) which allow one to say especially much about the action carriers 
(see in [2] XVII § 2.3 the discussion of the information about the microsystem 
provided by the effects gEL). 

Hence we cannot in generality answer the question for a pair a2, k for given 
a21, k; and an, k2. We must in each concrete case leave the answer to intuition and 
to the wealth of ideas of the experimental physicist. Nevertheless let us at least by 
some examples (simplified for theorists!) demonstrate how such a construction a2 
and a corresponding k could appear. 

For our example we choose a filter and impact counters (similar considerations 
were performed by Mielnik [36]). When in such examples speaking of micro
systems or even quanta instead of saying "action carriers", we do so for the sake of 
physical intuition, an intuition quite permissible for "guessing" natural laws and 
often successful (see the figure at the end of § 5 in [3]). By a filter we here 
understand a "device part", (more or less complicated, e.g., a piece of painted 
glass) which lets microsystems pass through or "absorbs" them. An impact counter 
is a device part (see [2] XVI § 6.1) which responds as soon as a microsystem hits a 
sensitive surface. Figure 4 depicts a registration device composed of a filter and an 
impact counter. If microsystems pass through (from the left), they will be 
registered. Thus Fig. 4 symbolizes as device a2 E £)2. The trajectory effects consist in 
that the counter does or does not respond. When (b02 , b2) denotes the effect of non 
response, one often calls the probability f.l (w, lfIe(a2 II b20 , a2 II b2)) the absorption 
coefficient of the filter for the ensemble w (for IfI e see III (6.4.9)), even if the micro
systems not hitting the collector can also be reflected by the filter. The filter and 
the impact counter together form a registration device. 

Sensitive surface of 
impact counter 

Fig. 4 

Let a21 and an denote two registration devices similar to Fig. 4, only with 
different filters. Let Wo be an ensemble with f.l (wo, IfI e (a21 II b2lO , a21 II b21 ) '" 0 
and f.l (wo, IfI e (an II bno , an II bn ) '" 0, i.e. an ensemble which passes the filter 
FI of a21 as well as the F2 of an. How can one construct an a2 with the properties 
desired in AI? One often succeeds by the method from Fig. 5. One constructs a 
block of "very many", alternatingly inserted filters F I , F2 followed by the impact 
counter. This device a2 of Fig. 5, with b02 , b2 as the effect that a microsystem was 
absorbed by the filter block, then has the desired properties: Wo passes practically 
without absorption through the whole block; each ensemble is absorbed more by 
the block than by one of FI , F2 alone. The example of polarization filters for light 
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Sensitive counter surface 

I I I I 11 
Fig. 5 

shows that a block of just two filters FI, F2 occasionally absorb certain ensembles 
less than each filter FI , F2 alone! 

The example of constructing a2 with a block of many filters should not suggest 
that this construction succeeds for all possible filters. We only wanted to show a 
method which frequently yields the desired a2' 

Under the caption "semipermeable walls" the indicated example achieved a 
physical significance beyond the theory of microsystems (e.g. in thermodynamics). 
Nature itself constructs many such walls as biological membranes. 

Such semipermeable walls resp. membranes (for the use of such walls in a 
foundation of quantum mechanics see [37]) are called "impassable" for an 
ensemble Wo if f.l (wo, IfIQ (a2 n b20 , a2 n b2» ~ 1, when (as above) b2 indicates that 
the impact counter has not responded. Then b! = b20 \b2 is the indicator that the 
counter has responded. Hence the semipermeable wall is impassable for Wo if 
f.l (wo, IfIQ (a2 n b20 , a2 n b!» ~ O. This suggests the following sensitivity question: 
Let two given walls be impassable for Wo; we seek another semipermeable wall 
which likewise is impassable for Wo, but otherwise more passable than the first two. 
(This problem can of course also be posed for filters !). 

A more passable wall is not so easily found as a more absorbing filter. But 
A V 1.1 says that it is experimentally possible to solve this problem. 

Therefore it is not true that AV 1.1 can simply be read from the experiments. 
Deep physical laws are never read off from experience. Rather one can only expect 
that a few experiences can stimulate an intuitive step to a natural law. Hence it is 
quite legitimate if we now, after discussing experimental possibilities, also invoke 
purely intuitive notions which can lead to the natural law A V 1.1. The statement 
f.l (wo, p (a2, k» ~ 0 means that the devices Xl E al n b i with a = (al n bI) 
x M2 n ME Wo are unable, by interacting with the devices X2 E a2, to evoke on 
these X2 trajectories from the support of k. Something analogous holds for a2I, ki 
and a22, k2. 

Thus one could imagine that the interaction possibilities described by Wo are 
endowed with some "property" (characterized by wo), namely of not being able to 
evoke certain trajectories on the systems X2 E a21 resp. X2 E a22' Concerning the 
action carriers determined by al n bi one could say that Wo determines a "property 
of the action carriers" X E a E Wo, namely of not being able to evoke certain trajec
tories on the X2 E a21 resp. X2 E a22. 

If some w has the probabilities f.l (w, p (a2, k I» =l= 0 and f.l (w, p (a22, k 2» =l= 0, 
then for realizations of w by preparation procedure a E w there should always 
appear action carriers X E a which do not have the property determined by Wo. 

This "notion" of the action carriers having a property characterized by Wo 
suggests to regard f.l (w, P (a2I, k I» and f.l (w, P (a22 , k 2» as measures for the ability 
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of the devices X2 E a21 resp. X2 E all from an a E w to separate such action carriers 
which do not have that property. But then there should also be devices which can 
separate at least as well as those from a21 and a22' After all, the devices from a21 
and all show that one can, at least with the probability max {Jl (w, P (a21' k l », 
Jl (w, P (all, k2»} separate those action carriers x E a E w which do not have the 
property determined by wo! But this means that there exists a pair a2, k which 
makes 

and 

Not these intuitive notions, but the experimental experiences with filter blocks 
as in Fig. 5 suggest the following possibility for greater sensitivities: One chooses 
the two filters FI and F2 in Fig. 5 to be equal. Experiment shows that the absorp
tion coefficient increases, in fact for an appropriate ensemble up to the maximal 
value 1. Or, expressed otherwise: For y = sup Jl (w, P (a2' k» and an ensemble Ws 

weK 

with Jl(w.,p(a2,k»-y, there ought to be a pair a2, k' such that Jl(w"p(a2,k'»-1. 
But also for all other w we should have Jl (w, P (a2' k'» ~ Jl (w, P (a2' k2». Never
theless, for Wo with Jl (wo, P (a2' k2) - 0 also Jl (wo, P (a2' k» - 0 should hold. 

This assertion of a possible increase in sensitivity of one effect, suggested by 
experiments with filter blocks, is not contained in A V 1.1. We shall postulate this 
idealization as AV 1.2 in § 1.4. 

The. discussions in this subsection shows how difficult it can be to classify a 
natural law such as A V 1.1. On the one hand, it contains a challenge to construct a 
more sensitive device (under given constraints), on the other hand an "existing" 
structure, namely that "nature" does not erect unsurmountable limits to attempts 
to meet that challenge. But experiences in constructing devices might raise the 
suspicion that such limits could exist. Later such limits might even become 
recognizable, so that they can be formulated in laws. Then physics would progress 
toward a more comprehensive theory (see [3] § 8), while the present theory would 
remain useable in a certain fundamental domain, delimited by means of the more 
comprehensive theory. 

§ 1.3 Decision Effects 

Here let us deduce some consequences from axiom AV 1.1, but first show 
several equivalences. 

T 1.3.1 The following relations are equivalent. 
(i) AVl.1. 

(ii) The elements of OU (IV (5.13» are upward directed sets. 
(iii) The sets LI (k) = {g I gEL and Jl (w, g) = 1 for all WE k} are downward 

directed. 
(iv) The set OU has a largest element. 
(v) The sets LI (k) have a smallest element. 
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Proof (i) => (ii): Let g], g2 E Lo (k). By AV 1.1 there is a g with g ~ g], g2 and 
Ko(g)::J Ko(g]) II Ko(g2). 

From g], g2 E Lo (k) follows Ko (g]) II Ko (g2) ::J Ko Lo (k) and hence Ko (g) 
::J Ko Lo (k), i.e. g E Lo Ko (g) c Lo Ko Lo (k) = Lo (k) (the last by IV T 5.4). 

(ii) => (iv): By IV T 6.2. 
(iv) => (i): For k = Ko (g]) II Ko (g2) we have g], g2 E Lo (k). The largest ele

ment g of Lo(k) then makes g ~ g], g2 and by g E Lo (k) yields Ko(g)::J KoLo (Ko (gd 
II Ko (g2)) = Ko (g]) II Ko (g2). 

(ii) => (iii) and (iv) => (v) follow from the fact that g ---> I - g is a bijection of 
Lo (k) onto L] (k). 0 

When we impose AV 1.1 as an axiom, (ii) through (v) in T 1.3.1 thus hold as 
theorems. For the next discussions in this § 6.1, let us presume A V 1.1 as an axiom. 

D 1.3.1 The largest element of Lo (k) which due to T 1.3.1 exists, will be denoted 
by e Lo (k) and called a decision effect. By G we denote the set of all decision 
effects. 

T 1.3.2 The following relations hold: 

Lo(k)={glgEL and g~eLo(k)}, 

Ko Lo (k) = Ko (e Lo (k)) , 

Lo (k) = Lo Ko (e Lo (k)) , 

{g I gEL and g ~ e} = Lo Ko (e) for each e E G. 

(1.3.1) 

(1.3.2) 

(1.3.3) 

(1.3.4) 

Proof From g E Lo (k) immediately follows g ~ e Lo (k). From g ~ e Lo (k) 
follows 

f1 (w, e Lo(k)) = 0 => f1 (w, g) = 0, (1.3.5) 

i.e. f1 (w, g) = 0 for all WE k, since e Lo (k) E Lo (k). Thus g E Lo (k) holds, which 
proves (1.3.1). 

From (1.3.1) follows (1.3.5) for all g E Lo(k) and hence Ko(e Lo(k)) c Ko Lo(k), 
which implies (1.3.2). By applying Lo to (1.3.2), and with Lo Ko as the identity 
mapping (IV T 5.4), we get (1.3.3), which due to (1.3.1) is identical with 
(1.3.4). 0 

T 1.3.3 G is a complete lattice. The mapping Lo (k) ---> e Lo (k) is a lattice isomor
phism'V -4 G. 

Proof From (1.3.1) follows immediately that the mapping Lo (k) ---> e Lo (k) is an 
order isomorphism of 'V and G. Since 'V is a complete lattice (IV T 5.3), also G is a 
complete lattice. 0 

T 1.3.4 The mapping e Lo (k) ---> Ko (e Lo (k)) is a dual isomorphism of the lattices 
G and Yf[. 

Proof 'V ~Yf[ is a dual isomorphism due to IV T 5.4. Therefore (with e-] as the 
mapping inverse to the e in T 1.3.3), G 4'V..!S2,,"YfL is a dual isomorphism of G onto 
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YrL. With eLo(k) EG we thus find that eLo(k)-+e-leLo(k)=Lo(k)~KoLo(k) 
= Ko (e Lo (k» is a dual isomorphism (the last equality sign by (1.3.2». 

T 1.3.5 For gEL and e E G, the relations 
(i) g;&: e, 

(ii) Ko (g) ::J Ko (e) 
are equivalent. For each subset 1 c L there is exactly one e E G with Ko (I) = Ko (e), 
i.e. a smallest e E G with e ~ g for all gEl. 

Proof (i) ==> (ii) follows immediately. 
(ii) ==> (i): From (ii) follows Lo Ko (g) c Lo Ko (e) and hence g E Lo Ko (e), 

from which (i) follows by (1.3.4). 
By T 1.3.4 an element Ko (I) of YI£ is equal to a Ko (e) for one and only one 

e E G. From (ii) => (i) follows g ;&: e for all gEl. If e2 E G and e2 ~ g for all gEl, 
then Ko (e2) c Ko (I) = Ko (e) and thus e2 ~ e due to T 1.3.4. 0 

T 1.3.6 G c GeL. 

Proof From e E G and e = A gl + (1 - A) g2 with 0 < A < 1 and gl, g2 E L follows 
Ko (gl) ::J Ko (e) and hence gl ;&: e due to T 1.3.5. Likewise follows g2 ;&: e. If we had 
gl =1= e, some W E K would exist with fl (w, gl) ~ fl (w, e). From this follows fl (w, e) 
= Afl (w, gl) + (1- A) fl (w, g2) ~ Afl (w, e) +(1- A) fl (w, e) = fl (w, e) which is a 
contradiction. 0 

Since in 'IlL the lattice operation /\ is identical with set intersection, T 1.3.4 
implies 

T 1.3.7 With el , e2 E G we get 

Ko (el) n Ko (e2) = Ko (el V e2) , 

i.e. fromfl (w, el) = 0 andfl (w, e2) = 0 follows fl (w, el V e2) = O. 

T 1.3.8 With el e2 E G and gEL we find g ;&: el , e2 => g ;&: el /\ e2' 

Proof Due to T 1.3.5, from gEL and g;&: el, e2 follows Ko (g) :::::l Ko (el) and 
Ko (g) ::J Ko (e2) and hence 

in the lattice 'Y/[. 

Due to T 1.3.4 follows Ko (el) V Ko (e2) = Ko (el /\ e2) and hence Ko (g) 
::J Ko (el /\ e2), whence T 1.3.5 yields g ~ el /\ e2. 0 

T 1.3.9 For a subset A c G, the lower bound of A in L is 1\ e. If A is directed 
eeA 

downward, 1\ e is the limit of A in the a (88', 88)-topology. 
eeA 

Proof The first part of the theorem generalizes T 1.3.8. As there, for gEL with 
g ;&: e for all e E A follows Ko (g) :::::l Ko (e) and hence Ko (g) :::::l V Ko (e) = Ko ( 1\ e), 

eeA eeA 

whence g ;&: 1\ e follows; therefore /\ e is also the lower bound of A in L. 
eeA eeA 
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If A is directed downward, by IV T 6.2 the limit g of A exists and g is the lower 
bound of A in &O~. Since L is compact, we find gEL and hence g = /\ e by the 
first part of the theorem. 0 e e A 

§ 1.4 The Increase in Sensitivity of an Effect 

For effects g E f' which have J1. (wo, g) '" 0 but not sup J1. (w, g) '" 1, the discus-
weK 

sion in § 1.2 suggests that one can construct a more sensitive effect g' E f' with 
J1. (wo, g') '" 0, which makes J1. (w, g') '" 1 for those WE K for which J1. (w, g) comes 
close to its supremum. 

We could express this as follows: For g E f' with J1. (wo, g) '" 0 and 0 < A-I 
= sup J1. (w, g), there exists a g' E f' with J1. (w, g') '" 1 for those W E K for which 

weK 

J1. (w, Ag) '" 1. 
L is convex and always contains 1- g whenever it contains g. Each accumula

tion point can in the (j (&0', ~)-topology be .represented by a convergent sequence. 
This_suggests to consider an "auxiliary set" I defined as follows: _ _ 

Ie [0, 1] is the smallest cotlvex (j (~', ~)-closed set with LeI, where Y E I 
and II AY II ;a;; 1 for A> 0 imply AyE £ and where Y E £ implies 1 - Y E L. 

Idealizing for the increase in sensitivity of one effect from L one could then 
formulate the axiom: 

For goEL, J1.(wo,go)=O, YEI, J1.(wo,y)=O, there is a gEL with 
J1. (wo, g) = 0 which also makes J1. (w, g) 5; 1 - 0 (e) for J1. (w, y) 5; 1 - e, where 
o (e) --+ 0 as e --+ O. 

T~ obtain the final formulation of this axio~, we take into account the theorem 
that I = [O,!J. This is proven once we show 2I -} = [- 1, 1]. We first show that 
F = U A (2 I-I) is the subspace spanned by 2 I-I. This follows easily if we 

).>0 

take note that Y E 2 £ - 1 implies - Y E 2 £ - 1 and 2 £ - 1 is convex. 
Th~ set F n [- 1, 1] consists of all Y E F with IIY II ;a;; 1. For Y = A Yo with 

Yo E 2I -1 follows A II Yo II ;a;; 1. Provided we show below that II Yo 11-1 Yo is also an 
element of 2£ -1 if Yo is, we get F n [-1, 1] = 2 £ - 1. Thus, since 2 £ - 1 is 
(j(~/, ~)-closed, also F is (j(~', ~)-closed ([7] IV § 6.4). Since the (j(~', ~-c!9sed 
subspace of ~' spanned by L is all of ~/, we obtain F = ~' and hence 2 I-I 
=[-1,1]. 

If Yo * 0 and Yo E 2£-1, then 1 and Yo span a two-dimensional subspace E of 
~', whose intersec!!on E n [0,1] must have the form given in Fig. 6. Since II g 11-1g 
is an element of I provided g = (112) (Yo - 1) is, and 1 - gEL provided gEL, 
also gl = 111-11 gil-I gil-I (1-11 gil-I g) and g2 = 1- gl are elements of L. B\!.t 
gl, g2, 1, 0 are the four extreme points of En [- 1, 1], i.e. En [0, 1]= E n I, 
whence En [-1, 1] = fi n (2£ - 1) follows. For Yo thus II Yo 11-1 Yo E En [- 1, 1] 
implies II Yo 11-1 Yo E 2£ -1. 0 

Therefore, as final formulation of the axiom we choose 

AV 1.2 From go E L, Wo E K, J1. (wo, go) = 0, Y E [0, 1], J1. (wo, y) = 0 follows the 
existence of agE L with J1. (wo, g) = 0, which makes J1. (w, g) 5; 1 - o(e) for all 
WE KwithJ1.(w,y) 5; 1- e, where o(e) can be chosen with o(e) --+ 0 for e --+ O. 
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o 
Fig. 6 

There are arguments for sharpening this axiom to 

AV 1.2 s L = [0,1] 
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(obviously stronger than A V 1.2). As an argument for A V 1.2 s one could invoke a 
method often used in physical theories: If no experiments indicate that L is not the 
maximal possible set [0, 1], one just chooses L as large as possible. Such a require
ment brings us closer to the goal of a g. G.-closed theory (in the sense of [3] § 10.3). 
If it should later turn out by experience that not all g E [0, 1] are approximately 
realizable by effect procedures (i.e. physically possible), then one must modify the 
theory. In the fundamental domain of microsystems (for macrosystems see X §§ 1, 
2 and 3) there have not yet appeared experimental indications against the 
"physical possibilities" formulated by AV 1.2 s for constructing registration devices. 

Therefore it is a matter of taste whether one adds A V 1.2 rather than A V 1.2 s 
as an axiom. Perhaps even A V 1.2 <=> A V 1.2 s holds, but this could not be proven. 
In § 2.2 we shall prove other relations to make clearer which choice of axioms 
leads to equivalent theories. For that reason, we shall here deduce no further 
-consequences from AV 1.2 or A V 1.2 s. 

Let us only note 

T 1.4.1 A V 1.2 is equivalent to the relation 

A: For each go ELand y E [0, 1] with Ko (y) :::::> Ko (go), there is agE L with 
Ko (g) :::::> Ko (go) and f1 (w, g) s;; 1 - 15 (e) for all WE K with f1 (w, y) s;; 1 - e, where 
15 (e) can be chosen with 15 (e) --+ 0 as e --+ O. 

Proof Suppose A V 1.2 holds. If we choose the element Wo in A V 1.2 so that 
Ko(go) = C(wo) (possible by V T 5.6), then Ko (y) :::::> Ko (go) implies f1 (wo, y) = O. 
Hence by A V 1.2 there is a g with f1 (wo, g) = 0 etc; but from f1 (wo, g) = 0 follows 
Wo E Ko(g) and hence Ko(go) = C(wo) c Ko(g), whence AV 1.2 => A. 

Now suppose A holds. From f1(wo, go) = 0 follows Wo E Ko(go) and hence 
Wo E Ko(y), i.e. f1(woY) = O. By A there is agE L with Ko(g):::::> Ko(go) etc. But 
from Ko(g):::::> Ko(go) follows Wo E Ko(g), i.e. f1(wo,g) = 0, whence A=> AV 1.2. 0 
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A V 1.2 resp. the equivalent relation A in T 1.4.1 is called the law of increase in 
sensitivity of the second kind. We shall call AV 1.2 s the "strong form" of this law. 
Let us emphasizes that A V 1.2 s does not imply A V 1.1. Even when one requires 
AV 1.2 s (which does not influence the convex set K!), A V 1.1 does not hold 
automatically, but presents a true restriction on the convex set K. Thus, one must 
view AV 1.1 as a fundamental structure law of the directed action by physical 
systems (as action carriers). But despite this we must warn against the opinion that 
AV 1.1 is typical for microsystems. Rather, it holds much more generally, e.g. for 
the directed actions by macroscopic electromagnetic waves ("radio waves"). 

Corresponding to T 1.4.1, in citing and applying A V 1.2 we shall not distinguish 
its first formulation and the relation A from T 1.4.1. 

§ 2 Relations Between Preparation and Registration Procedures 

Here let us discuss the relations between the de-mixing of ensembles and the 
registrable effects. This will lead us to an axiom which, together with A V 1.2, is 
equivalent to AV 1.2 s. Thus we have to ask whether and how the possibilities of 
de-mixing are connected with those of registering. 

§ 2.1 Main Law for the De-mixing of Ensembles 
and Related Possibilities of Registering 

In V §§ 6, 7 and 8, we discussed the mathematical possibilities of de-mixing an 
ensemble w E K and related it to the "physical possibilities" of de-mixing 
preparation procedures. Hence we may here limit ourselves to mixtures and de
mixings of ensembles. Since we consider only elements w E K, and K c :Y holds 
(IV T 3.17), we can always act as if the WE K are also produceable by preparation 
procedures. 

In V § 8 we saw that the closed faces of K characterize just those sets which 
remain invariant under mixtures and de-mixings and are closed in the norm 
topology (hence also in the (J (!!I', !!I)-topology). 

Let F be a closed face of K. The set 

(2.1.1) 

of systems is then characterized by the fact that it is not physically possible 
(physically excluded in the sense of [3] § 10.4) to construct ensembles outside F by 
decomposition into subsets and by joining subsets. In this sense the microsystems 
from MF admit a uniform characterization, which one uses to call a "property". 
This Uniform characterization belonging to an F is no longer appropriate for all 
systems from an d E f!)' with rp(a) rt F. 

This intuitively suggests that it should also be possible to construct an effect 
procedurefsuch that,u(rp(a), If/(f)) noticeably differs from zero, whereas ,u(rp(a), 
IfI (f)) "-' 0 holds for all the a E !!J' with rp (a) E F. Such an effect procedure indeed 
does not respond to systems from MF but can be triggered by systems from d, since 
not all systems from d can have the characteristic belonging to F. These 
considerations intuitively suggest a law similar to: 
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For a closed face F of K, a Wo E F and aWE K with w 1= F, there always exists a 
g E J with fl (wo, g) '" 0 and fl (w, g) > fJ with fJ noticeably different from zero. 

Again, it is obvious to idealize this to 

AV 2 s: If F is a closed face of K, for Wo E F, W E K and W ¢ F there is a sequence 
gv EJ with fl (wo, gv) --+ 0 and fl (w, gv) > fJ for a fixed number fJ> O. 

A V 2 s could appear too sharp for the following reasons: 
Choosing a certain closed face F, let us assume that to Wo with F= C(wo) and 

WE K, W 1= Fthere belongs a sequence g. E J with fl (wo, g.) --+ 0 and fl (w, g.) > fJ 
(fJ fixed). Then the compactness of L implies that there is agE L with 
fl (wo, g) = 0 and fl (w, g) =l= O. From this follows Ko Lo (wo) = F; hence F must be 
an exposed face. Therefore A V 2 s would imply that all closed faces of K are also 
exposed. One could thus try to demand A V 2 s only for exposed faces: 

AV 2: If F is an exposed face of K, for Wo E F, W E K and W ¢ F there is a sequence 
gv E Jwithfl(Wo, g.) --+ 0 and fl (w, g.) > fJ (fJ > 0 a fixed number). 

On the other hand, according to the considerations that led to A V 2 s, the 
postulate A V 2 could again appear too weak: If for a Wo E K one considers 
A(wo)={wlw=w'fl(W', I)-I with w'=l=O,W'E[O,WO]} (see VT9.1), this A (wo) is 
the set of the mixture components of Wo0 Therefore, it is "physically doable" to de
mix the ensemble Wo into WO=fl(W', 1) w+(I-fl(W', 1» w". If A (wo) is a closed 
face of K, then all WE A (wo) are "produceable" mixture components of W00 For a 
W outside A(wo), one should then find a sequence gv E J with fl (wo, gv) --+ 0 and 
fl (w, gv) > fJ> O. Due to V T 9.2, finite-dimensional faces of K make A (wo) 
= C(wo). This would suggest AV 2 s at least for finite-dimensional faces. As we saw 
above, this implies that the finite-dimensional faces are exposed. Since we shall 
always require AV 2 (or since AV 2 by T 2.2.2 follows from A V 2.1 s) let us 
complement A V 2 by the next axiom, to be used much later: 

A V 2 f: Each finite-dimensional face of K is exposed. 
Since it is convenient also to use forms equivalent to A V 2, let us show: 

T 2.1.1 The following relations are equivalent to A V 2: 
(i). For each exposed face F of K and WE K, W 1= F, there is agE L with 

Ko(g)::::> Fandfl(w, g) =l= O. . 
(ii) The sets 'Yf'i and 'Yf'iJ' (from IV § 5) are equal. 
(iii) For two exposed faces FI = C(WI), F2 = C(W2) with FI ~ F2, there is a 

gEL with fl (wt. g) =l= 0, fl (W2' g) = O. 
(iv) For two exposed faces FI = C(WI), F2 = C(W2), from FI ~ F2 follows 

Lo(WI) =l= Lo(W2). 
(v) For two exposed faces FI=C(wI) and F2=C(W2), from Lo(wd=Lo(W2) 

follows FI = F2. 
(vi) For each exposed face F of K there is agE L with F = Ko (g). 

Proof AV 2 ~ (i): Since L is (J (fJIJ', fJIJ)-~ompact, there is a subsequence of gv 
(which we again denote by g.) such that g. --+ gEL. From this follows 
fl(Wo, g) = 0 and fl(W, g) =l= o. Choosing Wo so that C(wo) = F, we get Ko (g) ::::> F. 
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(i) => A V 2: Choosing a Wo E F, we find Wo E Ko (g). Because gEL, there is a 
sequence gv E..:/' which in the a(fJiJ', fJiJ)-topology converges to g. Therefore, 
,u(wo,gv)~,u(wo,g)=O and ,u(w,gv)~,u(w,g)=2(j, so that from some von 
,u (w, gv) > (j must hold. 

(i) => (ii): Because of IV (5.6), we have only to show that each element OfYIII' is 
an element of YfL. But YIB' is just the set of all exposed faces. With FE YfB', by 
T 5.5 we get Fe Ko Lo (F), where Ko Lo (F) is an element of YfL. If we had 
F =l= Ko La (F), aWE Ko Lo (F) would exist with W ¢ F. From (i) follows that there 
is a g with Ko (g) ~ F and ,u (w, g) =l= O. From Ko (g) ~ F follows g E Lo (F) and 
hence Ko (g) c Ko Lo (F), contradicting the fact that,u (w, g) =l= 0 for aWE KoLo (F). 

(ii) => (iii): From (ii) follows FI = Ko (gl), F2 = Ko (g2) with gl, g2 E L. With 
FI=C(wt>, F2=C(W2), we have ,u(wI,gd=O, ,u(W2,g2)=0. If we had 
,u (Wb g2) = 0, we would get WI E Ko (g2) and hence FI = C (WI) c Ko (g2) = F2· 

For FI ¥ F2 we thus must have ,u (WI, g2) =l= O. 
(iii) => (iv) follows directly from the meaning of Lo. 
(iv) => (v): For FI =l= F2, either FI ~ FI V F2 or F2 ~ FI V F2 would hold. Let 

F2 * FI V F2. For some W3 we get FI V F2 = C (W3), while (iv) yields Lo (W2) 
=l= La (W3)' Because Lo (W3) = Lo C (W3) =Lo (C (WI) U C (W3» = Lo C (WI) /\ Lo C (W2), 
from Lo (W2) =l= Lo (W3) follows Lo (W2) = Lo C (W2) =l= Lo C (WI) /\ Lo C (W2) and 
hence Lo (W2) =l= Lo (WI)' 

(v) => (i): For FI = C (WI) and W ¢ FI and F2 = Ko Lo (Wh w) we have FI ~ F2. 
By (v) follows Lo (Ft> =l= Lo (F2)' Because FI c F2, we have Lo(FI) ~ Lo(F2)' Hence 
agE La (Ft> exists with g ¢ Lo (F2) = Lo Ko Lo (WI, w) = Lo (WI, w); therefore 
,u(Whg) = 0 implies,u(w, g) =l= O. 

(i) => (vi): L convex implies that Lo (F) is also convex. From (i) follows 
Ko La (F) = F. For a set {gv} that is countable and a (fJiJ', fJiJ)-dense in Lo (F), for 
A" > 0, L }",,= 1 we have g = L }'vgv E Lo(F) and Ko Lo(F) = Ko (g). 

v v 

(vi) => (i) is trivial. 0 

§ 2.2 Some Consequences of Axiom A V 2 

Here we shall draw consequences from A V 2 and discuss relations among the 
axioms A V 1.2, A V 1.2 s, A V 2, not assuming the axiom A V 1.1. 

T 2.2.1 From AV 2 follows that the a (fJiJ', fJiJ)-closed cone generated by L 
equals fJiJ~. 

Proof One obtains the a (fJiJ', .'?B)-closed cone generated by L as the bipolar set of 
L. Hence, this cone equals fJiJ~ provided the cone polar to L equals .'?B+, i.e. if the 
set 

LO = {x I x E fJiJ,,u (x, g) ~ 0 for all gEL} 

equals fJiJ+. Because L c [0, 1], we have L 0 ~ fJiJ+. Thus we must only show that for 
each x ¢ fJiJ+ there is agE L such that,u (x, g) < O. 

Due to IV T 4.10, for x there is a decomposition x = r:t WI - fJ W2 (with fJ> 0 
because x ¢ fJiJ+) such that a Yo E [-1,1] exist with ,u(wo,Yo) = 1 and ,u(W2,YO) 
;§; - 1 + e. Then Y = (112) (1 - Yo) is an element of [0, 1], so that ,u (WI, y) = 0 and 
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Il (W2' y) ~ I -1 hold. Therefore, WI E Ko (y) and W2 ¢ Ko (y). By (i) in T 2.1.1, a 
go E L thus exists with Il (WI, go) = 0 and Il (W2' go) > 0, hence Il (x, go) = -
P Il(W2, go) < O. 0 

T2.2.2 AV 1.2 and AV2 <=;> AV 1.2s. 

Proof Very easily the preceding theorems yield AV 1.2s => AV 1.2 and AV 2. 
Conversely, now let A V 1.2 and A V 2 be satisfied. Due to the proof of T 2.2.1, 
there is a decomposition X=o(WI-PW2 such that Il(WhY)=O and Il(W2,Y) 
~ 1-1 hold with ayE [0, 1], while Il (WI, go) = 0 with a go E L. Also agE L with 
Il (Wlo g) = 0 and Il (W2' g) ~ 1- b (1) then exists by AV 1.2. With y' = 1- 2g we 
havey'E 1-2Lc [-1, 1] and 

Il(x, y') ~ 0( - P(- I + 2 b(1)) = 0( + P - 2 P b(1) 

~ 0( + P - 2 P b(1) - 20( b(1) = (0( + PHI - 2 b(1)). 

Therefore, II x II ;§ 0( + P yields 

Il (x, y') ~ II x II (I - 2 b (1)) , 

so that 1- 2 L c [- 1, 1] implies 

Ilxll ~ sup Il(x,y)~ Ilxll{l-2b(1))· 
yel-2L 

For e .... 0, also b(1) .... 0 holds and hence 

sup Il (x, y) = II x II· 
yel-2L 

Therefore the set polar to 1- 2 L is the unit ball in fJIJ; hence we obtain 
1- 2 L = [-1,1], since 1- 2 L is absolutely convex and u(fJIJ', fJIJ)-closed. 0 

Therefore T 2.2.2 shows that it really is a matter of taste whether we take 
A V 1.2 and A V 2 as an axiom or rather require A V 1.2 s. When we assume 
A V 1.2 s as an axiom, one therefore can also presume A V 1.2 and A V 2, and 
conversely. Thus in the sequel we shall conveniently state that we presume A V 1.2 s 
although we could also say that A V 1.2 and A V 2 are presumed. 

T2.2.3 Assume AV 1.2s. Then g n [0, 1] is u(fJIJ', fJIJ)-dense in [0,1]; likewise, 
g n [- 1, 1] is dense in [- 1, 1]. Hence fJIJ is a Banach subspace of g'. Al~o :ff = K 
and../= g n [0,1] hold. 

Proof Because J' n g and J' is u (fJIJ', fJIJ)-dense in L = [0, 1], the first part of the 
theorem follows immediately. From IV T 3.19 follows :ff = K, while"? = g n [0, 1] 
follows from IV T 3.16. 0 

§ 3 The Lattice G 

Here let us assemble several fundamental properties yielded by A V 1.1 and 
AV 1.2s. We thus continue the considerations of § 1.3, in addition assuming 
L= [0,1]. 
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T 3.1 We have cot1 G = [0, 1] = L, which implies aeL c Gt1. For e E G we get 
La Ko(e) = [0, e]. 

Proof It suffices to show 
sup J1.(x, e) = sup J1.(x, g). 
eeG ge[O,I] 

Due to IV T 4.1 0, there is a decomposition x = ex WI - P W2 with a Yo E [- 1, 1], with 
J1.(w .. Yo)~I-e, J1.(W2,YO)=-1. For go=t(l+yo) we have goE[O,I] and 
J1.(w .. go)~I-f, J1.(W2,gO) =0. From this follows J1.(x,go)~ex(l-f). With 
Ko(go) = Ko(eo), eo E G, by T 1.3.5 we get J1. (W., eo) ~ J1. (WI' go) ~ 1 - f. Because 
Ko(eo)=Ko(go), we have J1.(W2,eO) =0 and hence J1.(x,eo)~ex(l-f). Because 
J1.(w, g) ~ 1 for all W E K, 9 E [0, 1], we have sup J1. (x, g) ~ ex, hence 

ge[O,I] 

J1.(x, eo) ~(l-f) sup J1.(x, g). 
ge[O,I] 

Since e was arbitrary, we obtain 

SUPJ1.(x, e) ~ sup J1.(x, g). 
eeG ge[O,I] 

Because G c [0, 1], this proves 

SupJ1.(x,e)= sup J1.(x,g). 
eeG ge[O,l] 

aeL c au follows by [7] II 10.5 from co U G = L. 
With L = [0, 1], from (1.3.4) we get Lo Ko (e) = [0, e]. 0 

By T 1.3.6 we have G c ae [0, 1], so that G is (1' (fij', fiJ)-dense in ae [0, 1]. Without 
further assumptions, the equality G = ae [O,I] has not be proven. 

T 3.2 For e E G and e =1= 0 we have II ell = 1, i.e. sup J1. (w, e) = 1. 
weK 

Proof With 9 = II ell-I e E [0, 1] we have Ko(g) =Ko(e), so that T 1.3.5 gives 9 ~ e, 
i.e. II e II ~ 1. Because e E [0, 1], we have II e II ~ 1. 0 

According to T 3.2 the probabilities J1. (w, e) for an e E G with e =1= 0 approach 
the value 1 arbitrarily closely. But it has not been proven that J1. (w, e) really attains 
the value 1 on K. Physically, the case that J1. (w, e) reaches the value 1 on K cannot 
be distingl,lished from sup J1. (w, e) = 1 (also see [3] § 11.4). 

weK 

Therefore, we change nothing in the physical structure of K xL J:,. [0, 1] if we 
require as an axiom that the function J1. (w, e) attains its supremum on K for each 
e E G with e =1= O. Such an axiom is a purely mathematical idealization. Whereas 
mathematical idealizations entered the axiom A V 1.1 in the way described in § 1.1, 
an axiom that the function J1. (w, e) reaches its supremum is only a mathematical 
idealization. Therefore, one cannot invoke any physical arguments against such an 
axiom. The only counter argument could be that this axiom contradicts later 
mathematical idealizations. For the case of quantum mechanics, such contradic
tions (to the assumption that J1. (w, e) reaches its supremum) are not known. In 
order to express the fact of a pure idealization, we denote this axiom by AVid. 
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AVid For e E G, the function J1 (w, e) attains its supremum on K. 

Without presuming this axiom, let us first prove some equivalences, following 
from A V 1.1 and A V 1.2 s. 

T 3.3 The following relations are equivalent: 

(i) AVid. 
(ii) 1 - e E G for all e E G, i.e. 1 - G c G. 

(iii) 1 - G = G. 
(iv) e E G, e =!= 0 = Ko (1 - e) =!= 0. 
(v) e" e2 E G and e, ~ e2 = e2 - e, E G. 

Proof From T 3.2 follows (i) <=*- (iv). (iii) = (ii) is trivial. (ii) = (iii) follows from 
1 -(1- g) = g so that e -+ 1 - e is bijective. With e2 = 1 follows (v) = (ii). 
(ii) = (iv) follows because Ko (1- e) =1= 0 for 1- e =!= 1. 

(iv) = (v): From e2 ~ e, follows 1 ~ e2 ~ e2 - e, ~ 0 and hence e2 - e, E [0, 1]. 
Due to T 1.3.5, an e' E G with e2 - e, ~ e' is determined by Ko (e2 - e,) = Ko (e'). 
Because e2 ~ e2 - e" we get Ko (e') = Ko (e2 - e,) => Ko (e2) so that T 1.3.5 yields 
e' ~ e2' From 0 ~ e2 - e, ~ e' follows 0 ~ e' - (e2 - e,) ~ e: and because e' ~ e2 we 
also have e'-(e2-e,)~e2-(e2-e,)=e,. For g=e'+e,-e2 we therefore get 
g ~ e" e' so that T 1.3.8 gives g ~ e, /\ e'. i! def e, /\ e' is an element of G. Because 
i!~e, and i!~e',from J1(w,e)=1 follows J1(w,e,)=1 and J1(w,e')=I. From 
J1 (w, e,) = 1 follows WE Ko (e2 - ed = Ko (e') and thus J1 (w, e') = 0, which con
tradicts J1 (w, e') = 1. By (iv) this implies i! = ° and hence g = 0, i.e. e' = e2 -
e, E G. 0 

T 3.4 From AVid follows that all elements of G are exposed points of L = [0, 1]. 

Proof We must for each e E G show that there is an x E g1J such that J1 (x, g) with 
gEL = [0,1] attains the value sup J1 (x, g) only at g = e. Let e =!= 0,1 and set 

geL 

X = W2 - w, with W" W2 given by C(w,) = Ko (e) and C (W2) = Ko (1- e) (by T 3.3 (iv) 
we have Ko (1- e) =!= 0). From J1 (x, g) = J1 CW2, g) - J1 (w" g) ~ 1 and J1 (x, e) = 
J1 (W2' e) - J1 (w" e) = I follows sup J1 (x, g) = 1 and this supremum is reached for 

geL 

g = e. Let gEL with J1(x, g) = J1(W2, g) - J1(w" g) = 1; then we get J1 (W2' g) = 1 
and J1(W, , g) = O. From J1(w" g) = 0 follows g E Lo Ko (e) and hence g ~ e. From 
J1 (w" g) = I follows J1 (w" 1- g) = 0 and hence 1 - g E Lo Ko (1 - e). This gives 
1- g ~ 1- e and hence e ~ g, so that e = g. 0 

If g1J possesses the minimal decomposition property, then G equals the set of 
exposed points of L = [0, 1] (see A III). 

T 3.5 If 1- G = G, then the mapping 1- of G onto itself, defined by e -+ e-L = 1- e, 
is an orthocomplementation. 

Proof It follows immediately that 1- is a dual automorphism of G with e-L-L = e. 
For e V e-L we have Ko(e V e-L) = Ko(e) n Ko(e-L) = Ko(e) n Ko(l- e) = 0 and 
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hence e V e.L = 1. With the mapping ..L, from this follows e.L /\ e = 11. = 
1-1=0. 0 

Thus AVid makes G an orthocomplemented lattice. Henceforth we presume 
AV 1.l,AV 1.2s and AVid. 

D 3.1 e" e2 E G are called mutually orthogonal if e, ~ er; for this we write e, ..L e2. 

The relation e,..L e2 is symmetric since e, ~ ef by the mapping ..L implies 
er 5; e2' When we write K, (e) = Ko (1- e) = Ko (e.L) the mappings G~YI'iB' =YIJ. 
forms a lattice isomorphism. This follows immediately from K, = Ko..L, i.e. K, 
equals the mapping composed of ..L and Ko. 

T 3.6 Two exposed faces F, , F2 of K are orthogonal in the sense of IV D 5.1, if and 
only if F, = K, (e,), F2 = K, (e2) with e" e2 E G and e, ..L e2' 

Proof With y = 1 - e, and e, ..L e2 follows F, c Ko (y) and (because e, ~ e{ ) 
F2 = Ko(ef) c Ko(ed = Ko(l- y). 

With F, = K, (e,) c Ko (y') and F2 = K, (e2) c Ko (1- y') follows Ko (1- e,) 
c Kn(y') and Kn(I- e2) c Ko(l- y'). This gives y' ~ 1- e, and 1- y' ~ 1- e2 
and hence e2 ~ y' ~ 1 - e, , so that e2 ..L e, . 0 

The orthocomplemention, transferred from G to ~, by the isomorphic 
mapping K" therefore makes K, (e).L = K, (e.L), i.e. Ko(e.L).L = Ko(e) and hence 
Ko(e.L) = Ko(e).L. 

T 3.7 From e" e2 E G and e, + e2 ~ 1 follows e, ..L e2' From e" e2 E G and e, ..L e2 
follows e, V e, = e, + e2' 

Proof From e, + e2 ~ 1 follows e, ~ 1- e2 = e{, i.e. e, ..L e2' From e, ..L e2 follows 
e, ~ 1 - e2 and hence e, + e2 ~ 1. From this follows Ko (e, + e2) = Ko (e,) II Ko (e2) 
= Ko (e, V e2) and thus e, + e2 ~ e, V e2' By T 3.3, from e, ~ ef follows ef - e, E G 
and 1- (e{ - e,) = e, + e2 E G. Because e, ~ e, + e2, e2 ~ e, + e2, this also gives 
e, V e2 ~ e, + e2' 0 

This T 3.7 can be extended to many summands. But to this end let us first 
extend T 1.3.9: 

T3.8 For a subset A c G, the upper bound of A in L = [0, 1] is V e. 
eeA 

If A is directed upward, this V e is the limit of A in the a (.?IJ', .?IJ)-topology. 
eeA 

Proof Apply T 1.3.9 to the set A.L = {e.L leE A}. 0 

T 3.9 From A c G and L. e ~ 1 follows that the e E A are pairwise orthogonal 
eeA 

and at most countably many e are in A, e =1= 0 (here, L. e is meant in the a(.?IJ', .?IJ)-
eeA 

topology). If the elements of A are pairwise orthogonal, then A has at most 
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countably many e 9= O. With the positive integer v as index of the elements e 9= 0 in 
A, we then have L e. = V e •. 

• • 
Proof Since there is an effective W E K, for e 9= 0 we also have p (w, e) 9= O. Then 
L p(w, e) ~ 1 shows that there are at most countably many e 9= O. From L e. ~ I 

eeA v 

then follows e., ~ 1- L ev ~ 1- e.j , i.e. ev,1- e'j for Vi 9= Vj' 
V+Vt 

Conversely, if two distinct e in A are always orthogonal, T 3.7 by induction 
implies that each finite subset AI c A yields 

" V def 4... e= e = eA,. 
eeA, eeA, 

The eA, form an upward directed subset of G with V eA, = V e. 
An effective WE Ktherefore gives A, eeA 

p(w, eA,) = L p(w, e) ~ p(w, V e). 
eeA, eeA 

Therefore, only countably many e E A can be different from zero. Hence T 3.8 
N 

yields L ev -+ Vein the (J (&0', &o)-topology. 0 
v=1 eeA 

T 3.10 In every subset A :::> G there is a countable set {e.} c A so that V = V ev ; 

the corresponding result holds for the intersection /\. e eA v 

Proof Let €/J be the set of all finite subsets of A. For fP E €/J we write erp = V e, such 
t e rp 

that V e = V erp. The set of erp is directed upward. Due to T 3.8 thus V e is also 
eeA rpet/> eeA 

the (J (&0', &O)-limit of the directed set of the erp. Since the (J (&0', &o)-topology on 
n 

[0, IJ is metrizable, there is a countable subsequence erp., -+ V e. With fPn = U fPv, 
by T3.8 we have teA .=1 

erp. -+ V erp. ~ V erp = Ve . 
n rpet/> teA 

For each erp.,' there is an erp. with erp., with erp., ~ erp.' From erp. -+ V e then follows 
teA 

erp. -+ e' !!; erp., -+ V e, i.e. e' = V erp. !!; V e, such that V erp. = V e. Since the fPv are 
teA n teA n teA 

finite subsets of A, the set V fP. is countable and yields V e = V e. By the 
v ee';"v eeA 

mapping 1-, an analogous theorem follows for the intersection. 0 

T3.11 The lattice operations /\, v, 1- for G are continuous in the (J (&0', &0)
topology. More rigorously, 

ev -+ e implies e/ -+ e.L 

(since the (J (&0', &o)-topology on [0, IJ is metrizable, it suffices to consider 
sequences). 

From ev -+ e, e~ -+ e' follows ev V e~ -+ eVe' in case there is a number p > 0 
such that 

inf {p (w, (ev V e~).L + t (ev + e~))} !!; p 
weK 



172 VI Main Laws of Preparation and Registration 

for all /1, v, up to finitely many; and ev A e; --+ e A e' in case there is a number 
Y > 0 such that. I.L .L 

mf {/1 (w, evA e; +"2 (ev + e~ ))} i$; y 
weK 

for all /1, v up to finitely many. 

Proof From ev --+ e follows e; = 1- ev --+ 1- e = e.L. From t (ev + e;) ;;§; 1 and 
Ko (t ev + t e~) = Ko (ev v e~) follows t (ev + e;) ;;§; ev V e~. Let 

sup /1 (w, ev V e; - t (ev + e;)) = 1- PVl' with I - PVl' =1= 0 ; 
weK . 

then gvl' def (1 - PVl')-1 lev V e; - t (ev + e;)] E [0, 1] holds, hence gvl';;§; ev V e~ be
cause Ko (gVl') ::::> Ko (ev V e;). For PVl' =1= 0 this implies 

ev ve;;;§; 2pl (ev+ e;). 
V" 

This also holds for PVl' = I since I - PVl' = 0 implies ev v e~ = t (ev + e~). If there 
is a P > 0 with PVl' > P for all v, /1, it makes 

I 
ev V e~ ;;§; 27i (ev + e;) . 

Since L = [0,1] is compact, a subsequence Vi, /1i can be so chosen that eVI V e~, 

--+ gEL converges. Together with ev --+ e, e; --+ e' this yields 

g;;§; 2lp (e + e') , 

so that Ko(g) ::::> Ko (t (e + e')) = Ko (e V e') and hence g ;;§; eVe'. 
From ev, V e;, i$; ev, and ev, V e;, i$; e;" in the limit follows g ~ e, e' and hence 

1- g ;;§; e-L, 1- g ;;§; e'.L. By T 1.3.8 follows 1- g ;;§; e.L A e'.L and hence 

g i$; 1- (e.L A e!.L) = (e.L A e'.L).L = eVe' , 

therefore g = eVe'. Since g was any accumulation point 
ev V e; --+ eVe' must hold. 

PVl' > pmeans 
sup /1 (w,ev V e; -t (ev+ el'));§! 1- p, 
weK 

which due to (ev V e~).L = 1- ev V e~ is equivalent to 

inf /1 (w, (ev V e;).L + t (ev + e;)) i$; P . 
weK 

of ev V e~, thus 

The last part of the theorem follows easily with ev A e; = (ef V e~.L).L and 
e; --+ e.L, ~.L --+ e'.L. D 

§ 4 Commensurable Decision Effects 

Here let us give some complements to the considerations in V which result 
when AV1.l, AV1.2s and AVid are valid. Due to AV 1.2s we can everywhere in V 
identify L with [0, 1]. In particular now all the relations derived in V "under the 
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assumption L = [0, I]" become valid. Thus AV 1.1 (complemented by the idealiza
tion AVid) becomes the crucial axiom for the following considerations. 

In this section let us consider some concepts introduced in V for the subset G of 
L = [0, I]. Corresponding to V D 1.2.2, for a subset A of G we adopt 

D4.1 A set A c G (a set of decision effects) is called commensurable if there is a 
Boolean ring E with an additive measure E .4 G such that A c FE. 

Observe that in this definition the JIlapping F proceeds from E into G. Ac
cording to V D 1.2.2, a set A eGis coexistent if there is a Boolean ring E' with an 
additive measure E' 4 L so that A c F' E. Therefore, a set of commensurable 
decision effects is always coexistent. Does the converse also hold? 

T 4.1 For gEL and e E G, the following conditions are equivalent: 
(i) {g, e} is coexistent; 
(ii) g = gl + g2 with gl, g2 ELand gl";§! e, g2;§! e.L (in this decomposition, gl 

and g2 are uniquely determined); 
(iii) e = g; + g) with g;, g) ELand g; ;§! gl, g) ;§! I - gl (in this decomposi

tion, g; and g) are uniquely determined and g; = gl with gl from (ii». 

Proof See [2] IV Th 1.3.1. 
This theorem can be specialized further: 

T 4.2 The coexistence of two decision effects el, e2 EGis equivalent to the de
compositions el = gl + g2, e2 = gl + g3 with gJ, g2, g3 ELand gl + g2 + g3 E L. 
Here gJ, g2, g3 are uniquely determined by eJ, e2, and in fact gl = ell\. e2, 
g2 = ell\. 4, g3 = et I\. e2 and hence gl, g2, g3 E G. If E is a Boolean ring with 
the additive measure E .4 L for which F (al) = eJ, F (a2) = e2, we therefore obtain 
F (all\. (2) = ell\. e2, F (all\. an = ell\. er, F (a21\. an = e21\. ef. 

Proof By T 4.1 (ii) we get gl ;§! e2, g2 ;§! er and gl ;§! el, g3 ;§! ef. By T 1.3.8 follows 
gl ;§! ell\. e2, g2;§! ell\. er, g3;§! ef I\. e2' Therefore T 3.7 yields el = gl + g2;§! (ell\. e2) 
+ (ell\. er) = (ell\. e2) V (ell\. er) ;§! el' Because gl ;§! ell\. e2 and g2;§! ell\. er, this 
implies gl = ell\. e2, g2 = el I\. er. Analogously follows g3 = ef I\. e2. The remainder 
of the theorem then follows from the additivity of the measure E .4 L. D 

T 4.3 If E .4 G is an additive, effective measure on the Boolean ring E, then F is 
an isomorphic mapping of the Boolean ring E onto the Boolean sublattice FE 
ofG. 

Proof See [2] IV Th 1.3.3. 

T 4.4 The following conditions are equivalent for decision effects: 
(i) {el, e2} is coexistent. 

(ii) {el, e2} is commensurable. 
(iii) The orthocomplemented sublattice r of G generated by el, e2 is a Boolean 

ring. 
(iv) el = (ell\. e2) V (ell\. er). 
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Proof See [2] IV Th 1.3.4. 

Let us list some special cases of coexistent resp. commensurable effects. From 
g, ;&g2 follows that g" g2 are commensurable since g, =g, +0 and g2=g, + (g2-g,). 
From e" e2 E G and e, ;& e2 thus follows that e" e2 are commensurable. If e, -.l e2, 
then e" e2 are commensurable. If e, + e2 ;& 1, then e, -.l e2 (T 3.7) and hence e" e2 
are commensurable. If e, and e2 are commensurable and e, 1\ e2 = 0, we get e, -.l e2 
and hence e, V e2 = e, + e2. 

T 4.5 If A" A2 C G and each e, E A, is commensurable with each e2 E A2, also 
1\ e and Ve are commensurable with each e, E A,. If e is commensurable with 

eEA2 eEA2 

each e, E A" also e.L is so. 

Proof See [2] IV Th 1.3.5. 

T 4.6 The following conditions are equivalent for A c G: 
(i) A is coexistent. 

(ii) A is commensurable. 
(iii) Each two e, , ez E A are coexistent. 
(iv) Each two e, , ez E A are commensurable. 
(v) The orthocomplemented sublattice rA of G generated by A is a Boolean 

ring. 
(vi) The orthocomplemented and complete sublattice ~ of G generated by A is 

a Boolean ring. 

Proof See [2] IV Th 1.3.6. 

T 4.7 If ev is a sequence of commensurable decision effects which in the (J (,q(J', i?iJ)

topology converge to an e E G, then e is commensurable with all e E G which are 
commensurable with the ev• A subsequence ev• can then be chosen so that 

00 00 

e = 1\ en with en = V ev •• 
n=' k=n 

(In particular, every complete Boolean subring of Gis (J (,q(J', ,q(J)-c1osed in G.) 

Proof See [2] IV Th 1.3.7. 

§ 5 The Orthomodularity of G 

Let Vbe an orthocomplemented lattice. For brevity we define the relations: 
A pair of elements a, b E V is called a modular pair if the following relation 

M (a, b) holds: 

M(a, b): For all c with c < b follows (c V a) 1\ b = c V (a 1\ b). 

The last relation is nothing else than the distributive relation (c va) 1\ b 
= (c 1\ b) V (a 1\ b) in case c < b. 
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A pair a, bE V is said to be compatible if the following relation £ (a, b) holds: 

£(a,b): a=(a/\b)v(a/\bl.). 

This immediately gives a 1.. b ::;. £ (a, b); £ (a, b) ::;. £ (a, bl.); a < b::;. £ (a, b), and 
we get the important theorem: 

T 5.1 In an orthocomplemented lattice the following relations are equivalent: 
(i) M (a, b) holds for all pairs a, b with a 1.. b. 

(ii) M (a, al.) holds for all a. 
(iii) £(b, a) holds for all pairs a, b with a < b, i.e. b = a V (b /\ al.). 
(iv) All pairs a, b with a < b give a = b /\ (a V bl.). 
(v) All pairs a, b give £ (a, b) ::;. £ (b, a). 

(vi) Each triple a, b, c with a 1.. b and a 1.. c gives a V b = a V c::;. b = c. 
(vii) Each triple a, b, c with a 1.. b and a 1.. c gives a V b = a V c and b < c 

::;. b = c. 
(viii) For all a, from b 1.. a and a V b = 1 follows b = al.. 

Proof (i)::;. (ii) follows directly since a 1.. al. holds. 
(ii)::;. (iii): From a < b follows bl. < al., which by M (a, al.) yields (bl. V a) /\ al. 

=~v(a/\al.) =bl.. Applying 1.., from this we obtain b = aV (b/\ al.). 
(iii) ::;. (v): From £ (a, b), i.e. a = (a /\ b) V (a /\ bl.), follows al. = (al. V bl.) 

/\ (al. V b) and thus b /\ al. = b /\ (al. V bl.) which gives (b /\ a) V (b /\ al.) = 
(b/\a) V [b/\ (al. V bl.)] = (b/\a)v[b/\(a/\bl.)]. Because b/\a<b, by (iii) we 
conclude (b /\ a) V [b /\ (b /\ al.)] = b. 

(v)::;. (vi): If (v) holds, we get £ (a, b)::;. £(a, bl.)::;. £ (bl., a)::;. £ (bl., al.) 
::;. £ (al., bl.). From a vb = a V c with b 1.. a and c 1.. a follows al. /\ bl. = al. /\ cl.. 
Because a 1.. b::;. £ (a, b) ::;. £ (bl., al.), we find bl. = (bl. /\ a) V (bl. /\ al.) = 
av(bl./\al.)=av(cl./\al.). Similarly follows cl.=av(cl./\al.) and hence 
bl. =~, i.e. b= c. 

(vi) ::;. (vii) is trivial. 
(vii) ::;. (viii): From a vb = 1 = a val. and b 1.. a, i.e. b ~ al., in particular fol

lowsb=al.. 
(viii)::;. (iii): Due to (iii) we assume a < b. We define d= a V (b /\ al.). From 

this follows d < b and hence d /\ bl. = (d /\ b) /\ bl. = O. Since also bl. V d = 
bl. V a V (b /\ al.) = (b /\ al.)l. V (b /\ al.) = 1, from (viii) follows d = (bl.)l. = b, 
i.e. b = a V (b /\ al.). 

(iii) ::;. (i): By (i) we assume c < b and a 1.. b, which makes M (a, b) equivalent 
to (c V a) /\ b = c. Because c < band c < c V a, we have (c va) /\ b > c. Therefore 
(iii) with g=[(cva)/\b]/\cl. yields (cva)/\b=cvg. Because (cva)/\b<b, 
we have g < b /\ cl., i.e. bl. V c < gl.. From (c va) /\ b < c V a follows g < c V a, 
which by a 1.. b gives g < c V bl. < gl.. This implies g = 0, i.e. c = (c V a) /\ b. 

(iii) ::;. (iv): For a < b we get bl. < al.; thus (iii) gives al. = bl. V (al. /\ b), 
hence a = b /\ (a V bl.). Analogously one shows (iv) ::;. (iii). D 

If an orthocomplented lattice V obeys one (and hence all) the relations (i) 
through (viii) ofT 5.1, then Vis called orthomodular. 

Still presuming A V 1.1, A V 1.2 s and AVid, we find 
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T 5.2 Gis orthomodular. 

Proof Let us show (vi) from T 5.1. From el, e2 ..l e and e V el = e V e2, with T 3.7 
follows e + el = e + e2 and hence el = e2. D 

All the relations (i) through (viii) from T 5.1 thus hold as theorems in G. Since 
this is isomorphic to the lattice yt;;, = YI£ of the exposed faces of K, the same 
relations hold for that lattice. 

The relation (vi) used in T 5.2, i.e. e1..l e, e2..l e, e V el = e V e2 => el = e2, has 
by § 4 the intuitive meaning that e and e = el V e = e2 V e are commensurable (be
cause el V e ~ el). Therefore, we may by V § 5 think of a registration method 
which measures e and e "approximately". In order to simplify the language let us 
pretend that some measuring method bo registers the e and e "exactly", i.e. that 
there are abE f#(bo) and abE f#(bo) with 'If (bo, b) = e and 'If (bo, b) = e. Because 
e~ e, we have b:::) b. Then 'If (bo, b\b) = 'If (bo, b) - 'If (bo, b) = e - e is necessarily 
uniquely determined (i.e. el = e2). 

The relations (vii) and (viii) are only special cases of (vi). It is mathematically 
interesting that the validity of these special cases suffices to guarantee (vi). 

The relation tf(el' e2) coincides with (iv) in T 4.4. Since the relations (i) and (ii) 
in T 4.4 are symmetric in el, e2, the proof of T 4.4 contains an implicit proof of (v) 
in T 5.1. Therefore one can replace (iv) in T 4.4 by "el' e2 are compatible". 

§ 6 The Main Law for Not Coexistent Registrations 

Although we could derive interesting structures in the theory set forth up till 
now (i.e. practically on the basis of AV 1.1), this theory turns out as rather weakly 
restricted. Hence one cannot assume to have already a g. G.-closed theory ([3] 
§ 10.3), at least not for microsystems. Therefore, the two axioms A V 3 and A V 4 yet 
to be set up shall strengthen the structure type; they will have essential significance 
just for microsystems as action carriers. 

The axioms A V 1.1, A V 1.2 s and AVid are also satisfied for so called "classical 
systems" which one can characterize by "all decision effects being commensurable" 
(see VII § 5.3). For this case, the main law AV 3 now to be formulated for not co
existent registrations is "without meaning", as we shall recognize more precisely 
below. 

Therefore, summarizing, let us emphasize again that by the next axioms A V 3 
and A V 4 we shall restrict the domain of application, i. e. the fundamental domain 
(see [3] §§ 3 and 5) of the theory to "microsystems as action carriers". 

§ 6.1 Experimental Hints for Formulating the Main Law 
for Not Coexistent Registrations-

We consider (straightaway idealizing) the registration of three decision effects, 
eJ, e2, e3 with e2..le3. Our language is abbreviated much if we now "after some 
practice" speak of registration methods bo which permit us to register decision 
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effects. Strictly speaking, we always ought to add that bo registers decision effects 
"approximately" and that idealizing we can let these approximations become 
arbitrarily good in the limit. Having assumed e2 1- e3, we find e2 and e3 commen
surable (see § 4), i.e. we can think of a registration method bo with such registra
tion procedures b2, b3 E ~(bo) that If! (bo, bi ) = ei (i = 2, 3). From e2 1- e3 then fol
lows b2 n b3 = 0. Moreover we must have If! (bo, bo \(b2 U b3)) = 1- (e2 + e3). 

Therefore, since e\ need not necessarily be commensurable with e2, e3, we think 
of a second registration method 50 with 51> 52 E ~(50) and If! (50,51) = el> 
If! (50, 52) = e\ Ve2 (since e\ ~ e\ V e2 holds, e\ and e\ V e2 are commensurable; see 
§ 4). It yields 52::> 5\ and If! (50, 52\5\) = (e\ V e2) - e\ and If! (50, 50\52) 

= 1- (e\ ve2). 
Of course there are important relations between the responses of the two 

devices bo and 50 for the various ensembles WE K. We are interested in the 
response of the device bo to ensembles WE K\ (el ve2) and that of 50 to the 
WE K\ (e3). The WE K\ (e\ ve2) are just those ensembles for which the indication 
fh. on 50 occurs with certainty; the W E K\ (e3) are those for which the b3 on bo 
occurs with certainty. 

About the response of the registrations of the device bo to the W E K\ (e\ ve2), 
resp. of the device 50 to the WE K\ (e3), we can immediately say something in the 
case e\ 1- e2 V e3 = e2 + e3: Namely, we than have e\ V e2 = e\ + e21- e3 and hence 
Jl(w,lf!(bo,b3))=0 for all wEKde\Ve2) and Jl(w,If!(50,52))=0 for all 
WE K\ (e3). 

We are now interested in the response for the case that e\ is no longer "quite 
orthogonal" to e2 + e3 and thus also no longer commensurable with e2, e3. Indeed 
e\ 1-e2 + e3 shall no longer hold, but despite that e\ shall not be "close" to e2 + e3. 
What should be understood by that? 

e\1-e2 + e3 is equivalent to Jl (w, e2 + e3) = 0 for all WE K\ (el) and to 
Jl (w, e\) = 0 for all WE K\ (e\ + e3). For e\ to be not close to e2 + e3, let us under
stand that at least one of the following relations holds: 

sup Jl (w, e2 + e3) =1= 1 resp. sup Jl (w, e\) =1= 1 . 
we K,(ei) we K,(e.+ ea) 

These two conditions can be tested by means of the two devices bo, 50. 
K\ (e2 + e3) is the set of all ensembles W for which b2 u b3 (on the device bo) 

occurs with certainty. 
Hence sup Jl(w, e\) = 1 - Q( =1= 1 

we K,(e.+ea) 

means that at least the fraction Q( for those ensembles triggers the indications 50\5\ 
on 50. For C(W3) = K\ (e3), from W3 E K\ (e2 + e3) thus follows Jl (W3, If! (50 , 50 \5d) 
~ Q( =1= o. Can in Jl(W3, 1f!(50 , 50\51) = Jl(W3, If! (50 , 52\51)) + Jl(W3, If! (50 , 50\52)) the 
last summand vanish? 

Intuitively, one expects the answer "no", because W3 due to e31- e2 charac
terizes an ensemble, in whose realization by preparation procedures only such 
systems are prepared that are "totally different" from e2 (with certainty do not 
trigger the indiCations b2 on bo). Hence, at least some of these systems should 
trigger the indication 50\52 even when Q( =1= 0, i.e. not yet all systems trigger the 
indication 5\. Experimental experience appears not to contradict this. We thus 
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arrive at a relation which we might axiomatically postulate as follows: 

sup J1.(W, ed *' I = {for W3 with 
we K,(e2+e.) 

C(W3) = K} (e3) we have J1. (W3, 1- e} V e2) *' O}. (6.1.1) 

Quite analogously we can consider what follows: K} (ed is the set of all ensembles 
for which 6} (on the device 60) occurs with certainty. Hence 

sup J1. (w, e} + e2) = 1 - P*'I 
weK,(e.) 

means that for each of those ensembles the indication bo \b2 U b3 occurs at least 
with the frequency p. If we now consider ensembles W E K} (e} ve2) (for which 52 
on 50 occurs with certainty), one intuitively conjectures that such a W due to 
e3..L e2 has a frequency J1. (w, ",(bo, b3)) *' I. Experiments again corroborate this. 
We thus arrive at a further relation which we might require axiomatically: 

sup J1.(w, e2 + e3) *' 1= K} (e} v e2) ('\ K} (e3) = 0. (6.1.2) 
weK,(e,) 

With C(W3) = K} (e3), from (6.1.2) we obtain the apparently weaker relation: 

sup J1.(w, e2 + e3) *' I=>{for W3 with C(W3) = K} (e3) we have W3 rI K} (e} V e2)}' 
weK,(e,) (6.1.3) 

The relation J1.(W3, 1- e} Ve2) *' 0 in (6.1.1) is identical with J1.(W3, e} Ve2) *' I, 
i.e. with W3 rI K} (e} V e2)' Thus (6.1.1) can also be written 

sup J1.(w, e}) *' 1 = {for W3 with C(W3) = K} (e3) 
we K,(e2+e.) 

(6.1.4) 

Because C(W3) = K} (e3), we find W3 E K} (e} ve2) equivalent to C(W3) = K} (e3) 
¢ K} (e} v e2), i.e. to e3 ~ e} V e2' Therefore (6.1.3) and (6.1.4) can also be written 

sup J1.(w, e2 + e3) *' 1= e3 ~ e} Ve2; 
weK,(e,) 

sup J1.(w,e})*, I = e3~e}Ve2' 
weK,(e.+e.) 

(6.1.5) 

(6.1.6) 

From e4 ~ e3 follows J1. (w, e2 + e4) ~ J1. (w, e2 + e3) and K} (e2 + e4) c K} (e2 + e3), 
so that (6.1.5) applied to e4 rather than to e3 yields 

sup J1.(w, e2 + e3) *' 1= e4 ~ e} V e2 for all e4 ~ e3 
weK,(e.) 

while (6.1.6) yields 

sup J1.(w, e}) *' 1= e4 ~ e} Ve2 for all e4 ~ e3' 
we K,(e2+e.) 

(6.1. 7) 

(6.1.8) 

e4 ~ e} Ve2 for all e4 ~ e3 is equivalent to e3/\ (e} V e2) = O. Therefore (6.1.3) is 
equivalent to (6.1.5) and also to 

sup J1.(w, e2 + e3) *' I = e3/\ (e} ve2) = 0, 
weK,(e,) 

whereas (6.1.4) is equivalent to (6.1.6) and also to 

sup J1.(w,ed*,l=e3/\(e}ve2)=0. 
we K,(e.+e.) 

(6.1.9) 

(6.1.10) 
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In all these relations we assumed e21. e3 so that e4 ~ e3 implies e2 1. e4' Since 
(6.1.9) is identical with (6.1.2), also (6.1.3) is so. 

In order to summarize (6.1.5) and (6.1.9) resp. (6.1.9) and (6.1.10) in one 
relation between two elements of G we define the "distance": 

A(el>e2)=max{ inf Jl(W,I-e2); inf Jl(W,I-ed}. 
weK,(et} weK,(e.) 

Then the relation"(6.1.5) and (6.1.6)" is equivalent to 

A (e(, e2 + e3) 9= 0, e2 1. e3 => e3 ;;j! e( V e2, 

whereas "(6.1.9) and (6.1.10)" is equivalent to 

A (e( , e2 + e3) 9= 0, e2 1. e3 => e3 /\ (e( V e2) = O. 

Moreover, these relations (6.1.12) and (6.1.13) are equivalent. 

(6.1.11) 

(6.1.12) 

(6.1.13) 

In order to "visualize" the important relation (6.1.12) or (6.1.13) even better, let 
us by an example illustrate the general considerations of registration devices and 
ensembles. As registration method let us use a somewhat modified Stem-Gerlach 
experiment. Since this example requires a knowledge of quantum mechanics we 
invoke it only to illustrate the general considerations (it falls out of the present 
construction of quantum mechanics). 

We think of two Stem-Gerlach devices into which an atomic beam (of 
hydrogen atoms in the ground state) falls in the I-direction (in a rectangular 
system of axes I, 2, 3). One device shall decompose the beam according to the 
3-component of spin, the other according to im r-direction (which lies in the 
2-3-plane). Moreover, let the two devices be equipped to measure the energy of 
the atoms in the outgoing beam. 

For the above e(, e2, e3 let us now in particular assume: The first device 
measures 

e2: spin in the (+ 3)-direction, energy greater than e; 
e3: spin in the (+ 3)-direction, energy smaller than e: 
1-(e2 + e3): spin in the (- 3)-direction. 

The second device measures 

e(: spin in the (+ r)-direction; 
e( Ve2 = e( + (e( V e2 - e() with e( V e2 - e(: spin in the (- r)-direction, energy 
greater than e; 
1- e( Ve2: spin in the (- r)-direction, energy smaller than e. 

The reader should check that e( , e2 imply the given meaning of measuring e( V e2! 
If the r-direction is the (- 3)-direction, then both devices do the same and 

A (el> e2 + e3) = I. Then (6.1.1) and (6.1.3) hold trivially, since l-e(ve2=e3 
immediately eauses "C(W3) = K( (e3) => Jl (W3, 1- e( V e2) = I". 

If one slowly rotates the r-direction out of the (- 3)-direction, Jl (W3, 1 - e( V e2) 
should not jump to zero but continuously vary away from I. Very pictorially, 
A (e(, e2 + e3) is a measure for the deviation of the r-direction from the 3-direction, 
becoming zero as the r-direction· approaches the 3-direction. Then Jl (W3, 1 - e( V e2) 
can also tend to zero. 
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Therefore, (6.1.12) is a sort of continuity law for the probability function Jl. In 
generality (not only for the example) this can be seen as follows. 

Let C(W3) = K) (e3). For L1 (eJ, e2 + e3) = 1 we have Jl (W3, 1 - e) V e2) = l. As 
L1 (e), e2 + e3) decreases, Jl (W3, 1 - e) V e2) also decreases but tends to zero only if 
L1 (e), e2 + e3) does. 

We might introduce (6.1.12) or (6.1.13) as a further main law. Before doing so, 
let us yet prove theorems intimately connected with (6.1.12) and (6.1.13). 

§ 6.2 Some Important Equivalences 

First let us in theorems collect some assertions about L1 ( ... ): 
Besides L1 (e) , e2) we can introduce the following distances derivable from the 

norms in f1iJ and f1iJ': First II e) - e211 with the norm in f1iJ', second the distance 

b(eJ, e2) = t inf II W) - w211 , 

with II W) - w211 the norm in f1iJ. 

w,e K , (e,) 
w2 e K , (e2) 

From II e) - e211 = sup IJl (w, e) - e2) I follows 
weK 

lie) - e211 E; sup IJl (w, e) - e2) I 
we K , (e,) u K, (e2) 

=max{ sup IJl(w,e)-e2)1, sup IJl(w,e)-e2)1} 
weK,(e,) weK, (e2) 

(6.2.1) 

=max{ sup IJl(w,l-e2)1, sup IJl(w,l-edl }=L1(eJ,e2). 
weK,(e,) weK, (e2) 

Analogously, 

implies the relations 

and hence 

Ilw)-W211= sup IJl(W)-W2,y)1 
ye[-I,I] 

=sup IJl(w) - W2, 2g -1)1 
geL 

= 2 sup IJl(w) - W2, g) I 
geL 

Ilw)- w211 E; 2IJl(w)- W2, 1- edl, 

Ilw)- w211 E; 2IJl(w) - W2, 1- e2)1, 

b(eJ,e2)E; inf IJl(w)-W2,I-e))I= inf Jl(w2,I-ed, 
w,eK,(e,) w2 e K2(e2) 
w,eK, (e2) 

b(eJ,e2)E; inf IJl(w)-w2,I-e2)1= inf Jl(wJ, l-e2). 
w,eK,(e,) w, e K , (e,) 
w2 e K , (e2) 

From these immediately follows b(e), e2) E; L1 (e), e2). 
Because 0 ~ Jl(w, e) ~ 1, we obtain II e) - e211 ;;:§ l. From O;;:§ Jl (w, g) ~ 1 simi

larly follows b(e), e2) ;;:§ I, such that 

o ;;:§ L1 (eJ, e2) ~ b(eJ, e2) ~ 1, 

o ;;:§ L1 (eJ, e2) ;;:§ II e) - e211 ;;:§ 1. 

(6.2.2) 

(6.2.3) 
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T 6.2.1 The following relations are equivalent: 

(i) e, .1 e2, 
(ii) LI (e, , e2) = 1 , 

(iii) c5(e" e2) = I. 
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Proof (i) => (ii): Because e, .1 e2 makes e, ;;§ 1 - e2 and e2;;§ 1 - e" from T 3.6 
follows LI (e" e2) = l. From (6.2.2) follows (ii) => (iii). 

(iii) => (i): (6.2.1) and c5(e" e2) = I imply II w, - w211 ~ 2 for all Wi E K, (ei) 
with i = 1, 2, hence 

sup Ip (w, - W2, g) I = 1 for all Wi E K, (ei)' 
geL 

We choose Wi = WiO so that C(WiO) = K, (ei). Since L is a (ffIJ', ffIJ)-compact, 
there is agE L with (WIO - W20, g) = I (for p (WIO - W20, g) = - I follows 
P(WIO- W20, I-g) = I, so that it suffices to consider P(WIO- W20, g) = 1), whence 
P(WIO,g) = 1 and P(W20,g)=0 follow. Thus we get p(w"g)=l for all 
w, E C(WIO) = K, (e,), and p (W2' g) = 0 for all W2 E C (W20) = K, (e2). This gives 
gEL, K, (e,) and g E Lo K, (e2) and hence 1- g E Lo K, (e,) = Lo Ko(l- ed, 
g E Lo Ko (1 - e2). By (1.3.4) follows 1 - g ;;§ 1 - e, and g;;§ 1 - e2, i.e. e,;;§ g 
;;§ 1- e2 and thus e, .1 e2' 0 

T 6.2.2 If e, is commensurable with e2, we have LI (e" e2) = 0 or 1 and likewise 
c5(e" e2) = 0 or 1 as well as lie, - e211 = 0 or l. 

For e" e2 commensurable, T 4.4 (iv) makes e, = (e, /\ e2) V (e, /\ ej-). For e, /\ e2 
=l= 0 we get K, (e,) (') K, (e2) =l= £1 and hence LI (e" e2) = O. From K, (ed (') K, (e2) 
=l= 0 follows c5(e" e2) = O. For e, /\ e2 = 0 we obtain e, = e, /\ ef, hence e, .1 e2. By 
T 6.2.1 this gives LI (e" e2) = 1 and c5(e" e2) = l. 0 

When all e E G are mutually commensurable (G = Z with Z as in VII D 1.2), 
T 6.2.2 makes (6.1.13) trivially satisfied, because LI (e" e2 + e2) =l= 0 then gives 
e, .1 e2 + e3 and hence e, .1 e2 and e3 .1 e, + e2 = e, V e2, whence e3/\ (e, /\ e2) = O. 
Our intended main law AV 3, to be equivalent to (6.1.13), hence is meaningless 
when all decision effects are commensurable (see VIII § 5.3). 

T 6.2.3 For elements ei E G, the following relations are equivalent: 

(i) e2 .l e3, LI (e" e2 + e3) =l= 0 => e3 ~ e, Ve2, 
(ii) e2 .l e3, LI (e" e2 + e3) =l= 0 => e3/\ (e, V e2) = 0, 

(iii) e2;;§ e4, LI (e" e4) =l= 0, e, V e2 = e, V e4 => e2 = e4, 
(iv) e2;;§ e4, LI (e" e4) =l= 0, e2 =l= e4 => e4 ~ e, V e2' 
(v) e3 ~ e2, LI (e" e2 + e3) =l= 0 => e3 ~ e, Ve2' 

(vi) e3;;§ e, V e2, LI (e" e2 V e3) =l= 0 ~ e3;;§ e2' 
(vii) e3;;§ e, V e2, e3;;§ 1 - e2, LI (e" e2 V e3) =l= 0 => e3 = O. 

(viii) e2;;§ e" LI (e, /\ (e2 V e3), e3 - e, /\ e3) =l= 0 => (e2 V e3) /\ e, = e2 V (e3/\ e,). 
(ix) e2;;§ e,;;§ e2 V e3, LI (e" e3) =l= 0 => e, = e2' 

Proof (i) => (ii) has been shown in § 6.1, since (i) and (ii) are identical with 
(6.1.12) and (6.1.13). 
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(ii) => (iii): If e4 - e2 = e3, then e2 1- e3 and e2 + ej = e4. By (ii) thus follows 
ej/\ (ej V e2) = O. From ej ~ e4 and ej V e2 = ej Ve4 follows e3/\ (ej V e2) = 
ej/\ (ej ve4) = ej and hence ej = o. 

(iii) => (iv): If we had e4 ~ ej V e2, we would get ej V e2 = ej V e2 V e4 = ej V e4 

(because e2 ~ e4) so that (iii) would give e2 = e4. 

(iv) => (v): With e4 = e2 + ej we have e2 ~ e4. Because e3 ~ e2, we have ej oj= 0 
and thus e2 oj= e4. From (iv) follows e4 ~ ej Ve2. If we had ej ~ ej V e2, we would 
get e4 = e2 V ej ~ e2 V ej Ve2 = ej Ve2 which contradicts (iv). 

(v) => (i) follows immediately since for ej 1- e2 we have a fortiori ej ~ e2. 

(iii) => (vi): With e4 = e2 V ej we have e2 ~ e4. Because ej ~ ej Ve2, we have 
ej V e4 = ej V e2 V ej = ej Ve2. With A (ej, e2 V ej) oj= 0, from (iii) follows e2 = 
e2 V e3 and thus e3 ~ e2. 

(vi) => (vii) follows directly because e3 ~ e2, ej ~ 1 - e2 = ef => ej ~ e2/\ ef 

=0. 
(vii) => (viii): From e3/\ ej ~ ej and ej/\ ej ~ ej follows e2 V (e3/\ ej) ~ e2 V ej 

and e2 V (ej/\ ed ~ e2 V ej = ej (because e2 ~ ej), hence e2 V (ej/\ ej) ~ (e2 V e3) 

/\ ej. Putting (e2 V ej) /\ ej - e2 V (ej/\ ej) = e3 we get e3 ~ 1 - e2 with e2 = 
e2 V (ej/\ ej) and ej ~ ej/\ (e2 V e3). With ej = e3 - ej/\ ej we have ej/\ e3 = ej and 
ej 1- ej/\ ej, i.e. ej /\ (ej/\ ej) = 0, whence ej /\ ej = ej /\ e2/\ ej = O. 

From e3 ~ ej /\ (e2 V e3) ~ e2 V ej = e2 V [(e3 /\ ej) V ed = e2 V ej and (vii), for 
A (ej, e2 V ej) oj= 0 follows e3 = O. With e2 V e3 = (e2 V e3) /\ ej and ej = ej - ej /\ ej, 
finally (viii) follows. Let us yet remark that always ej /\ (e2 V ej) = ej/\ ej /\ (e2 V e3) 

= 0 because ej /\ ej = O. Thus A (ej, e2/\ ej) oj= 0 sharpens the always satisfied rela
tion ej /\ (e2 V e3) = O! 

(viii) => (ix): With e2 ~ ej ~ e2 V ej follows ej/\ (e2 V e3) = ej. From A (ej, e3) 
oj= 0 follows ej /\ ej = 0 and hence e2 V (ej /\ ej) = e2. Thus (viii) in particular gives 
ej =e2. 

(ix) => (iii): e2 ~ e4 and ej V e2 = ej V e4 imply e4 ~ ej V e4 = e2 V ej; hence (ix) 
with A (ej, e4) oj= 0 finally proves e2 = e4. 0 

Mathematically especially interesting are (viii) and (ix), called the generalized 
modular relation and the generalized covering condition. Physically, (i) and (ii) 
can be interpreted most clearly, as we tried to do in § 6.1. 

§ 6.3 Formulation of the Main Law and Some Consequences 

Due to T 6.2.3, we can as main law formulate the axiom 

AV3 One of the relations (i) through (ix) in T 6.2.3. 

All the remaining relations in T 6.2.3 then hold as theorems. Approaching from 
experiments, one could choose (i) in T 6.2.3 as A V 3. 

As remarked in § 6.1, for "classical systems as action carriers" (the case G = Z 
with Z as in VII D 1.2), A V 3 is satisfied as a theorem and hence without any 
meaning. A mathematical counterexample (in which A V 1.1, A V 1.2 s and AVid 
are satisfied but AV 3 is not) can apparently be constructed since there are 
examples of orthocomplemented, orthomodular lattices which do not satisfy (viii) 
in T 6.2.3. A rigorous proof for the independence of the axioms AVid and A V 3 is 
still lacking. 
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AV 3 does not exclude classical systems as action carriers, but it is essential for 
non-classical systems. 

T 6.3.1 For L1 (e], e3 - ej /\ e3) =l= 0, the modular relation M(e3, ed holds, so that 

(ev e3) /\ ej = eV (e3 /\ ej) for all e;§ ej. 

Proof According to (viii) of T6.2.3, we need only show that L1 (ej, e3 - ej /\ e3) =l= 0 
implies L1 (ej /\ (e V e3), e3 - ej /\ e3) =l= O. This is true because ej /\ (e V e3) ;§ ej. 0 

If a face K j (e) of K is finite dimensional as an affine space, then on K j (e) all 
separating topologies of the vector space iIJ coincide with the "euclidean" 
topology; hence in particular each finite-dimensional K j (e) is compact in the 
a (.@, .'?6")-topology. 

T 6.3.2 If K j (ej) or K j (e2) is compact in the a (.@, iIJ')-topology, then 

L1 (ej, e2) =l= 0 <=> ej /\ e2 = O. 

Proof That L1 (ej, e2) =l= 0 implies ej /\ e2 = 0 is trivial. Let K j (ed be a (iIJ, iIJ')
compact and let inf ,u(w, 1- e2) = O. Since K j (ed is compact, there is a 

wEK,(e,) 

Wo E K j (ed with ,u(wo, 1- e2) = 0, i.e. with Wo E K j (e2), so that K j (ed n K j (e2) 
= K j (ej /\ e2) =l= 0. Since this would contradict ej /\ e2 = 0, we conclude L1 (ej, e2) 
=l= O. 0 

T6.3.3 If K j (ej) or K j (e3) is a(t#, iIJ')-compact, M(e3, ej) holds and hence also 
M(ej, e3)' 

Proof Because K j (e3 - ej /\ e3) c K j (e3), also K j (e3 - ej /\ e3) is a(iIJ, iIJ')-compact 
if K j (e3) is, since K j (e3 - ej /\ e3) is always a (.'JJ, .%")-c1osed. Since e] /\ (e3 -ej 
/\ e3) = 0, the theorem thus follows from T 6.3.1 and T 6.3.2. 0 

T 6.3.4 If K j (ej) or K j (e3) is a (iIJ, iIJ')-compact, we find 

Proof This follows from T 6.2.3 (ix) and T 6.3.2. 0 

Therefore T 6.3.4 holds in particular when K j (e3) is null-dimensional, i.e. an 
extreme point of K. Then e3 is an atom of the lattice G. If moreover K j (e3) is 
a (.@, iIJ')-compact (not necessarily zero-dimensional), then T 6.3.4 for ej =l= e2 
implies ej /\ e3 =l= O. Since e3 is an atom, therefore ej /\ e3 = e3 holds, hence e3 ;§ ej. 

With e2 ;§ ej we obtain e2 V e3 ;§ ej V e3 = ej. Together with ej ;§ e2 V e3 this finally 
gives ej = e2 V e3; hence between e2 and e2 V e3 there is no ej E G, distinct from e2 

and e2 V e3' 

T6.3.5 If Kj(e) is a(iIJ,iIJ')-compact, the order interval [O,elcG is a complete 
orthocomplemented and modular lattice. 
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Proof. That [0, e] is a complete lattice follows directly from the fact that G is com
plete. With e - el .as the orthocomplement of el E [0, e] in [0, e], this lattice is ortho
complemented. 

From el;:§; e follows Kl (el) c Kl (e). Since Kl (el) is (T (&i, gQ')-closed, also 
Kl (ed is compact. Hence T 6.3.3 proves M(eb e2) for any two elements in [0, e], 
which therefore is modular. 0 

§ 7 The Main Law of Quantization 

The typical pecularity of microsystems to occupy "discretely distinguishable 
states", as seen in the case of atoms, has found no expression in the previous 
axioms. But what are really the experimental experiences one uses to label with 
captions such as quantized states? On the historical path of heuristically guessing 
quantum mechanics, one perceived Planck's quantum of action as the prominent 
element of quantization. However, the value of a dimensioned constant cannot be 
essential in a theory. Hidden behind Planck's action quantum there must be some 
"finiteness" which he first encountered in the discretely quantized states of the 
harmonic oscillator. But the pure scale value of the energy of an harmonic 
oscillator must not be decisive, if we conjecture a central law of microsystems. If 
we now try to formulate such a general law, we cannot expect that one could 
directly grasp it in generality. Rather, it must just express a structure not familiar 
to us from classical systems. 

§ 7.1 Intuitive Indications for Formulating the Main Law of Quantization 

What is the significance of "discrete states" of atomic systems (e.g. of the 
harmonic oscillator first described by Planck), if we try to express it by the concepts 
of preparing and registering? It shows that there are preparations (i.e. ensembles) 
which no longer can be de-mixed into "arbitrarily" many different subensembles. 
The "ground state" of an atom (one of the typically quantum mechanical 
structures of microsystems) is an easily produced ensemble which no longer can be 
de-mixed properly, i.e. into different ensembles. 

On the contrary, one uses to describe classical macrosystems (e.g. a system of 
mass points) in a continuous state space. Ensembles can never be produced as 
point measures, but rather only finer and finer. Never to reach a limit of maximal 
precision is a typical feature of experimenting with classical systems. On the 
contrary, with quantum systems there is the fact of easily producable ensembles 
which nonetheless cannot be made more uniform. 

This manifests itself as follows in the concepts of the set K and its faces. For 
classical systems, every face can be arbitrarily refined, i.e. subdivided into smaller 
faces. On the other hand, for quantum systems there are faces which cannot be 
further refined, or allow only refinements in finitely (!) many steps. We can also 
express this as follows: The unexpected in quantum systems (as action carriers) just 
are those faces F of K whose ensembles can be distinguished by finitely many 
registrations, i.e by finitely many effects. On the other hand, from classical systems 
(described in continuous state spaces) one was accustomed to the situation that 
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finitey many effects never suffice to distinguish the ensembles of a face. The finer 
one wishes to distinguish the ensembles of a face experimentally, the more 
registrations one needs. The continuous scales typical for classical systems are the 
striking indication of measurements that can be more and more refined. For 
quantum systems, there are faces where one gets along with a finite, discrete set of 
measurement points in order to distinguish the element of a face. 

Therefore we adopt 

D 7.1.1 A set Ie L is called separating with respect to a face F of K, if 
WI> W2 E F,p(wl> g) = P(W2' g) for all g E limply w, = W2· 

The smallest cardinality of a separating set I for a face F is precisely the (affine) 
dimension of F. Of course, one could define this dimension by this smallest 
cardinality. 

Therefore, continuously described classical systems are distinguished just by 
the fact that the dimension of all faces of K is infinite. For quantum systems, 
experiments yielded the initially strange fact that there are faces of finite 
dimension. But as a mathematical axiom, i.e. as mathematical formulation of a 
general law, a relation of the form: "There are faces of finite dimension" is 
unsuitable. It would not be a "universal" structure, since the existence of a single 
finite-dimensional face of K would satisfy it. This suggests, as a "main law of 
quantum systems" to try out 

A V 4 For each exposed face F of K, there is another exposed face F, of finite 
dimension such that F, c F. 

One could sharpen this "finiteness axiom" to 

AV4s Each exposed face F of K is the upper bound of a sequence {F.} of 
increasing exposed faces of finite dimension. 

This AV 4s postulates that F = V F. with V as the lattice-theoretical union in 
• • 

~,=~has F. c F.+, and each F. of finite dimension. 
In a certain sense, AV 4s expresses that any F has finite-dimensional approxi

mations. Physically, not much speaks against a further sharpening of AV 4s to the 
form that K (and hence every face F) is finite dimensional, except for the fact that 
one does not know how to determine a finite dimension of K. As usual, one then 
replaces this lack of knowledge (see [3] §§ 7.3 and 9) by the requirement that K be 
infinite dimensional. In this sense the infinite dimensionality of K is an idealiza
tion. But it becomes "necessary" if one wishes to introduce yet further idealizations 
such as the Galileo (or Poincare) group as the transport group of the registration 
devices (see ill § 7; IX § 1). Namely, if we would assume K finite dimensional and 
introduce the idealization of the translation group (as a subgroup of the Galileo 
resp. Poincare group) up to "infinity", then only the trivial "solution" of the axiom 
system would remain: There the preparation devices do not act at all on the 
registration devices. In the language of physics, there would be "no action-carriers 
at all" (one does not call the "vacuum" an action carrier; for "vacuum" see IX § 1). 

We have stated the two formulations A V 4 and A V 4 s since on one hand we 
need AV 4s in order to attain the "Hilbert space structure", but on the other hand 
many theorems can be proved with A V 4 alone. 
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We declare the "microsystems" to form the fundamental domain of those 
physical systems (as action carriers) for which the axioms AV 1.1, AV 1.2s, AVid, 
A V 3, A V 4 (perhaps sharpened by A V 2 s and A V 4 s) yield a useable theory. 

Similarly one can give the word "classical systems" a precise sense: They form 
that fundamental domain of physical systems (as action carriers) for which 
(besides the axioms A V 1.1, A V 1.2 s, AVid) the following axiom A Vkl leads to a 
useable theory. 

A Vkl: Any two decision effects are commensurable and each exposed face of K is 
infinite dimensional. 

§ 7.2 Simple Consequences of the Main Law of Quantization 

T 7.2.1 From AV 4 follows: The lattices G and 'YfL are atomic. An atom in 'YfLis a 
finite-dimensional face of K. 

Proof G is isomorphic to ~, =YIL. Due to A V 4, each face of YIL contains a finite
dimensional face of YIL. If it is not an atom, it contains a smaller face and hence a 
face of smaller dimension. Afterjinitely many steps one must obtain an atom. 0 

T 7.2.2 From A V 4 and A V 2 f follows that the atoms of'Jl£ are just the extreme 
points of K. 

Proof By AV2f, an extreme point of K is an element of YIL and obviously an atom 
of~. 

Due to T 7.2.1, an atom of YIL must be a finite-dimensional face. Since each 
finite-dimensional face possesses an extreme point (by A V 2 f an element of YIL), 
an atom of ~ must always be an extreme point. 0 

T 7.2.3 From AV 4 and AV 3 follows: If p is an atom of the lattice G, then 
e2 ~ e] ~ e2 V p implies e] = e2 or e] = e2 V p. 

Proof Follows easily from T 7.2.1 and the remarks after T 6.3.4. 0 

One often calls the relation in T 7.2.3 the covering condition. 

T 7.2.4 From AV 4 and AV 3 follows: If e E G, e oF 0, e oF 1 and p is an atom, there 
are two atoms q] ~ e, q2 ~ e.l with p ~ q] V q2. 

Proof The theorem is trivial for p < e and p < e.l. If p ;t; e and p ;t; e.l, we have 
e oF eV p and e.l oF e.l V p. With q2 = e V p - e we get q2 ~ 1- e = e.l. 

If q2 were not an atom, there would exist e], e2 oF 0 and q2 = e] + e2 and hence 
e ;t; e + e] ;t; e + e] + e2 = e + q2 = e V p, contradicting T 7.2.3. Therefore q2 is an 
atom. Similarly follows that q] = e.l V p - e.l is an atom with q] ~ e. Because 
p~eVp andp~e.lvp, we obtain p~(evp)/\(e.lvp)=(evq2)/\(e.lvq]). By 
T 4.2 we easily find (see the remarks after T 4.4) that e, e'L, q], q2 are pairwise 
commensurable. Hence the orthocomplemented sublattice generated by these ele
ments is a Boolean ring (see T 4.4 iii), such that (e V q2) /\ (e.l V qd = (e /\ e.l) 
V (e/\q]) V (q2/\e.l) V (q] /\ q2) = q] V q2. 0 
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The following sections will extend and specialize the discussions in V for the 
case that certain main laws of preparing and registering are presumed. In this 
chapter, we shall in general presume only A V 1.1, A V 1.2 s and AVid. Therefore, 
the results to follow are not only valid for microsystems as action carriers. 

§ 1 The Commutator of a Set of Decision Effects 

In VI § 4 we have introduced the concept of commensurability and proved 
theorems on commensurable decision effects. We will supplement these discussions 
by structure assertions about special subsets of decision effects. 

D 1.1 We call the set A' = {e'l e' E G and e' is commensurable with each e E A} 
the commutator of the subset A c G. 

T 1.1 The set A' is a complete, orthocomplemented sublattice of G. The set A' is 
(J(~', ~)-closed in G. 

Proof The first part of the theorem follows directly from VI T 4.5. The second part 
of the theorem follows in a way similarly to the proof of VI T 4.7: Since (J (~', ~) 
is metrizable on L, we need only show that e~ E A' and e~ -+ e' E G in the 
(J (~', ~)-topology implies e' E A'. From e~ commensurable to e E A follows 
e; =(e; /\ e) +(e; /\ e.L). Since L is compact, one can choose a subsequence Vi such 
that 

hence e' = gl + g2. From e~. /\ e ;§ e follows gl ;a; e and likewise g2;a; e.L. Thus 
VI T 4.1 and VI T 4.4 show that e' is commensurable with e. 0 

One easily finds A" ::::> A, Alii = A', etc. 

D 1.2 The set Z = G' is called the center of G. 
From T l.l and VI T 4.6 (vi) immediately follows 

T 1.2 Z is a complete Boolean sublattice of G. 

D 1.3 A set A of commensurable decision effects is called maximal if A' = A. 
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T 1.3 Every set A of commensurable decision effects is a subset of a maximal set B 
of commensurable decision effects. A maximal set of commensurable decision 
effects is a complete, maximal Boolean sublattice of G. 

Proof Due to VI T 4.6 (iv), the set of the B c: G with B:::::J A and B commensurable 
satisfies the presumptions of Zorn's Lemma. Hence there is a (set-theoretic) 
maximal B in the set ofthe E, which one easily proves B' = B. 

The remainder of the theorem follows easily from T l.l and VI T 4.6 (vi). D 

§ 2 Decision Observables 

It is obvious to specialize the general definition V D 1.1.1 of an observable to 

D 2.1 A decision observable is a Boolean ring 1: with an effective additive measure 
1: ~ G such that 1: is complete relative to the uniform structure '1Ig (that 1: is '1Ig -

separable follows as a theorem; see T 2.2). 

We first prove: 

T 2.1 If an additive measure 1: ~ G is given for a Boolean ring, this also holds for 
- F - - -the extension 1:g ~ G of F onto 1:g , which also makes F 1:g c: F 1:" 11 G. 

Proof See[2]IVTh 1.4.7. 
Due to T 2.1 it is therefore uninteresting to consider such measures 1: ~ G for 

which 1: = tg does not hold, i.e. for which 1: ~ G is not a decision observable. 

T 2.2 For a decision observable, 1:g is separable. F is an isomorphism onto the 
image F 1: c: G. Therefore one can identify a decision observable 1: with a '1Ig -

closed Boolean sublattice of G. Every lattice-theoretically closed Boolean sublattice 
of G is also '1Ig -complete, and conversely; hence we can also identify the decision 
observables with the (lattice-theoretically) complete Boolean sublattices of G. The 
topology defined on 1: by '1Ig is identical with the a(tIl', tIl)-topology on 1: (the 
uniform structures might differ). From this also follows that 1:, as a subset of G, is 
a(tIl', tIl)-closed in G since 1:g is complete. 

Proof See [2] IVTh 1.4.8. 
From T 1.2 follows that the center Z is a decision observable. From T 1.3 

follows that any maximal set of commensurable decision effects is a decision 
observable. 

D 2.2 A decision observable is called maximal if, considered as a subset of G, it is 
a maximal set of commensurable decision effects. 

From T 1.3 follows that every set A of commensurable decision effects is a 
subset of a maximal decision observable. Since the elements of Z are commen
surable with all the elements of G, each maximal decision observable contains the 
center Z as a subset. 
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§ 3 Structures in That Oass of Observables Whose Range 
also Contains Elements of G 

All the considerations in V § 3.2 and § 3.3 remain intact. Because of G C oeL, 
from V T 3.3.1 (iii) in particular follows 

G n cot1 (F E) = G n oecot1(F E) = G n(F E), 

i.e. that part of the range of an observable that lies in G is u (g(J', g(J)-closed in G. 
From VI T 4.2 and VI T 4.3 follows that there is a complete Boolean subring EG of 
17 such that F EG = G n (F E), where F is an isomorphic mapping of 17 G onto 
G n (F E). In particular, if 17 -+ G is decision observable, we get 

Gn cot1(FE)=Gnoecot1(FE)=FE. 

By V T 3.3.1 (ii) follows oe co t1 (F E) c FE and thus FE = oe cot1 (F E). Hence, the 
kernel of a decision observable is identical with 17, so that every decision 
observable is a kernel observable in the sense of D 3.3.5. 

Since G c oeL holds, from V D 3.4.3 immediately follows that every decision 
observable is also irreducible (see V § 3.4). 

But it is not generally true that an irreducible kernel observable is a decision 
observable. In particular, in quantum mechanics one can give examples for other 
irreducible kernel observables than decision observables ([2] IV § 2.4). 

For decision observables the features of measurement scales become especially 
simple; this follows from 

T 3.1 In the case of a decision observable, g(J' (E)~ g(J' is a norm isomorphism of 
g(J' (E) onto the subspace S' g(J' (E) of g(J'. Here S is the mapping from V § 3.2, and 
S' g(J' (E) is u (g(J', g(J)-closed in g(J'. 

Proof For y E g(J' (E), since S' is norm continuous, V (3.5.1) yields 
lX. 

S'y= J 2de(2), (3.1) 
lXl-~ 

where e(2) E G; () > 0 can be chosen arbitrarily. Here we have II y II = 

max (I (J(ll, I (J(2 I) with (J(I = sup {2 I u(y ~ 2) = O} and (J(2 = inf {2 I u(y ;;§ 2) = e}. From 
(3.1) thus follows 

sup /-l(w, S' y) = (J(2 

and weK 

inf /-l (w, S' y) = (J(J, 
weK 

and hence II y II = II S' y II. Therefore S' is a norm isomorphism. 
If S' g(J' (E) n g(J(11 is u (g(J', g(J)-closed, S' g(J' (E) is so. Due to the norm isomor

phism we have 
. S' g(J' (E) n g(J(11 = S' g(J(11 (E) . 

Since S' is u-continuous, it maps the compact set g(J(11 on a compact set. Hence 
S' g(J' (E) n g(J(11 is u (g(J', g(J)-compact and thus u (g(J', g(J)-closed. 0 
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Because of this isomorphism S', one can identify not only E with a complete 
Boolean sublattice of G, but all of 11' (E) with the (J (11', 1I)-closed subspace 1Ir 
spanned in 11' by E (as a subset of G). 

If one identifies S' 11' (E) with 1Ir in this way, one can regard S' as the injec
tion of 1Ir in 11'. Since 1Ir is a (J (11', 1I)-closed subspace, one can interpret S as a 
surjective mapping of 11 onto 1I/1I'i- (see [10] § 22.3), i.e. one can identify 11 (E) 
with 1I/&I'l. Thus we have proved 

T 3.2 For a decision observable, 11 ~ 11 (E) is surjective. 

Because 11' (E) is isomorphic with SHr C 11' (where E is identified with a Boolean 
subring of G), a measuring scale y belonging to E (see V § 3.5) can be identifi,ed 
with an element S' y from (3.1). Thus if E is a complete Boolean subring of G, and 
1Ir the (J (11', 1I)-closed subspace in 11' spanned by E, then a scale of the decision 
observable determined by E is uniquely determined by an element y' of Br, the 
spectral representation (3.1) with y' = S' y being determined by prescribing E 
(hence 1Ir) and y'. 

D 3.1 A decision observable E c G having a scale y E 1Ir with E (y) = E is often 
called briefly a "scale observable". 

It cannot in generality be shown whether each y E 11' possesses a unique 
spectral representation of the form (3.1). In this case, already an element y E 11' 
itself would determine the whole scale observable. The representation theorem 
derived in VIII § 4 follows from the axioms AVl.l, AVI.2s, AV2f, AVid, AV3, 
A V 4s. Together with the decomposition from § 5.4 it will imply (by known 
theorems on operators in Hilbert space) that each y E 11' possesses a unique 
spectral representation of the form (3.1). 

§ 4 Commensurable Decision Observables 

Applying V D 4.1 to two decision observables Ei.!J.,. G (i = 1, 2), we find that 
FI (EI) U F2 (E2) must be a set of co-existent decision effects. By VI T 4.6 this is 
just the case when FI EI and F2 E2 are subsets of a complete Boolean ring E c G. 
Identifying EI with FI EI and E2 with F2 E2, we get EI c E and E2 c E so that the 
diagram in V D 4.1 is trivially satisfied with the h l ,2 as canonical injections of E I ,2 

in E. Therefore, two decision observable are coexistent if and only if all decision 
effects of one of them are commensurable with those of the other. 

D 4.1 Two coexistent decision observables are also called commensurable. 

From V D 4.3 follows that two decision observables are complementary if and 
only if ei E Fi Ei with ei = el , e2 commensurable implies either el E Z or e2 E Z (Z 
the center of G). 

§ 5 Decomposition of IJIJ and IJIJ' Relative to the Center Z 

If the center Z consists of only the two elements 0 and 1, then G and also the 
pair (11, 11') are called "irreducible". 
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If the center Z does not only consist of the two elements 0 and" 1, we can try to 
decompose the structures K, L into simpler components so that for each "part" the 
center has the trivial form to, I}, i.e. each part is irreducible. 

§ 5.1 Reduction of the Elements of fjj' by the Elements of G 

We start with a definition suggested by VI T 4.1 (ii). 

D 5.1.1 An e E GeL (specifically e E G) "reduces" aYE!!Il' if there exilit a de
composition Y = YI + Y2 and a c > 0 such that 

- c e ~ YI ~ c e, - c(l- e) ~ Y2 ~ c(l- e). 

T 5.1.1 If e reduces the element Y then the decomposition in D 5.1.1 is unique. 

Proof For Y = YI + Y2 = yj + Y2 and 

- c' e ~ yj ~ c' e, - c' (1 - e) ~ Y2 ~ c' (1 - e) 

we obtain 0 = (YI - yJ) + (Y2 - yD, where 

- (c + c') e ~ YI - yj ~ (c + c') e, - (c + c')(1 - e) ~ Y2 - Y2 ~ (c + c')(I- e). 

Hence it suffices to show that YI + ii2 = 0 and 

- e e ~ YI ~ e e, - c(l- e) ~ Y2 ~ e(l- e) 

imply YI = Y2 = O. Because Y2 = - YI we first get 

From this follow 

and 

1 
- e ~ -=- YI ~ e , 

c 
- (1- e) ~ ~ YI ~ (1- e). 

c 

1 o ~ e + -=- YI ~ e + (1- e) = 1 
c 

1 o ~ e - -=- YI ~ e - (e - 1) = 1, 
c 

hence e ± (lie) YI E L. Then e = t (e + (lIe)jil) + t (e - (lIC)jiI), which implies 
YI = 0 since e E GeL. 0 

By this theorem, condition (ii) in VI T 4.1 also demands that e reduces g. Hence 
"e and g are coexistent" is equivalent to "e reduces g". 

T 5.1.2 If e E G reduces the element y, the YI and Y2 from Y = YI + Y2 obey 
!XI e ~ YI ~ PI e, !X2 e.L ~ Y2 ~ P2 e.L with !Xi = inf f1 (w, Y;), Pi = sup f1 (w, y;). 

weK wcK 

The latter yield 

sup f1 (w, y) = max (PI, P2) , 
weK 

inf f1 (w, y) = min (!XI, !X2) 
weK 



192 VII Decision Observables and the Center 

and 

Proof From 

- c e ~ YI ~ c e , - c e.i ~ Y2 ~ c e.i 

follows 

Y + c1 = (YI + c e) + (Y2 + c e.i) !?: O. 

With y' = Y + c 1, Y; = YI + c e and Y2 = Y2 + c e.i, we thus have 

y' = Yl + Y2 !?: 0 and 0 ~ Yl ~2 c e, 0 ~ Y2 ~ 2c e.i . 

From this follows 

t e + t II ~~ II E [0, 1] 

and 

hence 

and thus 
Y; ~ IIY; II e . 

Analogously follows Y2 ~ II Y2 II e.i, hence y' = Y; + Y2 ~ II Yl II e + II Y2 II e.i. Be
cause f1. (w, e) + f1. (w, e.i) = I for all w, we have 

IIY'II = sup f1. (w, Y') ~ max {IIY; II, II Y2 II} . 
weK 

In particular choosing w E KI (e) and W E KI (e.i), we finally get 

II Y' II = max { II Y; II, II Y2 II} . 
With Y' = Y + c 1, we have 

IIY' II = sup f1. (w, Y') = Y + c , 
weK 

where 
y= SUPf1.(w,y). 

weK 

With II yj II = sup f1. (w, yj) = P2 + c (i = 1,2), from II Y' II = max {II Y; II, II Y2 II} 
weK 

follows y= max {PI, P2}· From Y; ~ II Y; II e, Y2 ~ II Y2 II e.i follows YI ~ PI e, 
Y2 ~ ~e.i. 

Repeating these considerations for - Y = (-YI) + (-Y2), we obtain YI !?: (XI e, 
Y2 !?: (X2 e.i. 0 

D 5.1.2 An e E G "decomposes" a Y into a positive part Y+ and a negative part Y_ if 
it reduces Y to Y = Y+ + Y_ with Y+ !?: 0, Y_ ~ o. 

The preceding theorems show that Y+ and Y_ are uniquely determined bye. 
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§ 5.2 Reduction by Center Elements 

Due to T 1.2, the center Z is a complete Boolean sublattice of G, by § 2 re
presenting a decision observable. By § 4 this Z is commensurable with all decision 
observables. Let us show that Z coexists with all observables. To this end, we first 
prove 

T 5.2.1 An r E Z reduces each Y E fJJ'. 

Proof Since for each Y there is a c ~ 0 with Y + c 1 ~ 0 and hence 

IIY + c1 11-1 (y + c1) E [0, 1], 

it suffices to prove the theorem for g E [0, 1]. 
Since r is commensurable with each e E G, due to T 1.4 (iv) we have 

e = (e /\ r) + (e /\ r1.) , 

i.e. r reduces each e E G. 

(5.2.1) 

Let Ir be the set of all gEL reduced by r, such that G c Ir. We easily see that Ir 
is convex since Ko (r) and Ko (1- r) are convex. Let us show that Ir is a (fJJ', fJJ)
closed. 

It suffices to consider sequences since the a (fJJ', fJJ)-topology is metrizable on L. 
Let gv E Ir and gv -+ g, so that gEL. From gv E Ir follows gv = g~ + g~ where g~ ~ r 
and g; ~ r1. = 1 - r. Since L .is compact, there is a subsequence (indexed again by 
v) so that gt -+ gi E L (i = 1,2) and thus g = gl + g2 holds. From g~ ~ r also fol
lows gl ;§! r and analogously we get g2 ;§! 1- r, so that g E Ir • 

Since Ir is convex and a (fJJ', fJJ)-closed, from G c Ir eLand VI T 3.1 follows 
Ir= L. 0 

In the decomposition y = YI + Y2 of ayE fJJ' according to the r that reduces y, 
due to T 5.1.1 the components YI, Y2 are uniquely determined. To each r E Z thus 
corresponds a mapping T,. of fJJ' into itself, with T,. Y = YI' This implies T,.2 = T,., 
i.e. T,. is a projector. For e E G, from (5.2.1) follows 

T,.e=e/\r. (5.2.2) 

From T 5.1.2 follows easily that 1; is norm continuous. But T,. is even a (fJJ', fJJ)
continuous. First we prove 

T5.2.2 The subspace fJJ; = T,. fJJ' is a (fJJ', fJJ)-closed. 

Proof That 1; fJJ' is a subspace follows from the linearity of T,.. Here, fJJ; is 
a (fJJ' fJJ)-closed if fJJ; (') fJJ111 is so. By T 5.1.2 we have 

fJJ; (') fJJ111 = [- r, r] , 

which hence is a (fJJ', fJJ)-closed. 

T 5.2.3 T,. is a (fJJ', fJJ)-continuous. 
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Proof T; is a (~', ~)-continuous if each x E ~ makes I (y) = j1 (x, T;y) a a (~', ~)
continuous linear form on flo'. This happens when the space {y II (y) = O} is 
a(~',~)-cIosed. In turn, this occurs if {y I/(y) = O} II ~ill = {y I/(y) = 0 and 
IIY II ~ I} is a (~', ~)-cIosed. Due to T 5.1.2, with X = {y I j1 (x, y) = O} we have 

{y I/(y) = 0 and II y II ~ I} 

= {y III T;y II ~ 1, Pi-rY II ~ 1, j1 (x, T;y) = O} 

=~; II ~(IIII X + ~l-r II ~(II. 
Since X is a (~', ~)-cIosed while ~; and ~l-r are so (by T 5.2.2) we find that 
~;IIXII~(II and ~l-rll~(11 are a(~',~)-compact. Hence {yl/(y)=O, 
II y II ~ l} is also a (~', ~)-compact. 0 

T 5.2.4 There is a positive mapping ~ ~~ with Sr K c K, such that T; = S;. 

Proof From T 5.2.3 follows that the T;' adjoint to T; exists as a norm-continuous 
mapping of ~ into itself. Therefore, with Sr = S; we have T; = S;. 

For gEL = [0, 1], from W E K follows 

j1 (Sr W, g) = j1 (w, S;g) = j1 (w, T;g)!?= 0, 

i.e. Sr W E ~+. For g = 1 follows 

j1 (Sr W, 1) = j1 (w, T; 1) = j1 (w, r) ~ 1 , 

and hence Sr W E K. 0 

A mapping S of ~ into itself with SK c K (equivalent to SK c K) is often 
called an operation ([2] V § 4.1). 

From T;2 = T; follows S; = Sr; hence Sr is also a projector. 

T5.2.5 For r, rl, r2EZ, we have T;,M.=T;,T,.=T,.T" and T;.=11-r=I-T;. If 
{r,}cZ and r,/\rl' = 0 for v=l=j1, we get Vr,=Lr, and Tyr,=LT", where the 

v v l' v 

convergence of the sum L T;, is pointwise convergence in ~' with the a (~', ~)-
topology. ' 

Proof From the reduction y = YI + Y2, according to r follows T; y = YI and 
1I.-rY= Y2, hence T;+ 1I.-r= 1. 

From T; 1 = r follows T;, T,.1 = T;, r2 = rl /\ r2 = T"A r.1. Thus it suffices to verify 
T;, T;. g = T;,M. g for g E [0, 1]. First we obtain T" T,. g ~ rl and T" T,. g ~ T,. g ~ r2, 
which by VI T 1.2.8 gives T" T,. g ~ rl /\ r2. From 

g = T;, T;.g + (1- T,,) T,.g + T" (1- T,.) g + (1- T,,)(I- T;.) g 

then follows 

(1 - T;,) T;. g ~ rf /\ r2 , T;, (1 - T,.) g ~ rl /\ rt, (1 - T,,) (1 - T,.) g ~ rf /\ rt 

and hence 
(1- T" T,.) g ~ rf /\ r2 + rl/\ rt + rf /\ rt = (rl /\ r2).L , 

such that T;, T;.g = T;,M.g· 
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From 'I, '2 E Z and 'I I\. '2 = 0 follows 'I 1.. '2 because Z is a Boolean ring. By 
VI T 3.9 this permits at most a countable number of '. with '. I\. '" = 0 for v =1= fl. 
Since the '. are then pairwise orthogonal, from VI T 3.9 follows 

V,.= L ' •. 
• • 

For 'I 1.. '2 and ,= 'I + '2 we have 

1; = 1; 1;, + 1; (1 - 1;,) = 1; A r, + 1; Art = 1;, + 1;2 . 

N 

By induction for, = L '. this yields 
.=1 

N 

1;= L 1;, . 
• =1 

00 N 00 

With 'N = L '. - L '. and, = L '. we have 
.= 1 .=1 .=1 

N 

1;= L 1;,+1;N' 
.=1 

Thus we need only show that 1;N U --. 0 with U E [0, 1] holds in the a (~', ~)
topology. Due to 0 ::!i! 1;NU ::!i! 'N it suffices to show rN --. 0; but just this is meant by 

00 

the convergence of L 'v. 0 
v=1 

From T 5.2.5 follows that the mapping' --. 1; is a a-additive measure on the 
Boolean ring Z. If E .4 L is any observable, we can consider the free Boolean 
algebra (E, Z) generated by E and Z, whose elements are finite sums L -i- 11. with 

v 

11.' 11" (= 11v l\. 11,,) = 0 for v =1= fl (hence L -i- 11. = V 11.) and 11v = a.' '. with a. E E 
v v 

and '. E Z. An additive measure on (E, Z) .4 Lis d"efined by a·,.4 1;F(a). For 
two homomorphisms E l!4 (E, Z) and Z ~ (E, Z), defined by hI (a) = (a, 1) and 
h2 (,) = (e, ,), the diagram in V D 4.1 is then satisfied with F instead of F, this F 
instead of FI , and with" F2 as the identity mapping of Z into itself. Therefore we 
have shown that each obserVable coexists witli the decision observable" defined by Z. 

Theorems corresponding to T 5.2.3, T 5.2.5 hold for Sr = 1;'. 

T 5.2.6 ~r = Sr ~ is a norm-closed subspace of ~; thus ~r is a Banach space. Its 
dual can be identified with ~; = S; ~'. 

Proof ~r consists of all the x E ~ with Sr x = x. Since Sr is norm-continuous, from 
Xv --. x and Sr Xv = Xv follows Sr x = x, hence x E ~r' 

For x E ~r and YES;~, obviously fl (x, y) is a norm-continuous linear form on 
~r' From YI, Y2 E S;~' and fl (x, YI) = fl (x, Y2) for all x E~" for x = Sr x and x 
arbitrary in ~ follows 0 = fl (Sr x, YI - Y2) = fl (x, S; YI - S; Y2) = fl (x, YI - Y2) and 
hence YI =Y2' If I (x) is a norm-continuous linear form on~" then l(x) = I(Srx) 
defines a norm-continuous linear form on ~ because I l(x) 1= I I (Srx) I 
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~ C II Sr x II :;§i C II x II. Hence there is a y with i (x) = J1. (x, Y). Because S~ = S" we 
have i (Sr.:i) = i (x), i.e. J1. (x, Y) = J1. (Sr x, y) = J1. (x, S; yj. This gives y = S; y, 
henceYE~. D 

T 5.2.7 Corresponding to T 5.2.5 we have Srl/\r2 = SrI Sr. = Sr. SrI and S,... = 1- Sr· 
Furthermore, SVr. = L Sr. converges pointwise in f!IJ relative to the norm topology. 

v v 

Proof This follows from T 5.2.5 up to the asserted convergence of L Sr,. With rN 
from the proof of T 5.2.5 and with W E K we get v 

II SrN W II = J1. (SrN W, 1) = J1. (w, rN) -+ 0, 

which also yields II SrNx II -+ 0 for x = 0( WI - P W2' D 

For a sequence rv E Z with L rv = 1, T 5.2.5 and T 5.2.7 in. particular give 

L T,. = 1 and L Sr. = 1. 
v v 

For y E f!I)' and Yv = T" y together with x E f!IJ and Xv = Sr. x, we then have 

x = L xv, y = L Yv (5.2.3) 
v v 

and J1. (x, y) = L J1. (xv> y,J. From Xv = Sr. x, yp. = T,.y and T,. T,. = T,./\ r. = 0 for 
v, p. 

v::j:: J1. (since rv /\ rp' = 0 for v::j:: J1. !), we thus obtain 

J1. (x,y) = L J1. (X.,yv) . (5.2.4) 
v 

In particular, for x = W E K and y = gEL we have Wv = Sr. WE K and gv = T"g E L. 
For e E G, from (5.2.2) in particular follows 

e = L ev , where ev = T,. e = e /\ r v . 
v 

(5.2.5) 

Most important about the dual pair f!IJ" f!IJ; is that it has the same structure 
properties as f!IJ, f!lJl; we shall show this in the next theorems. 

T 5.2.8 f!lJr is a base normed space with the basis Kr = {w I W E K and Sr W = w} 
= KI (r). The dual f!IJ; is an order unit space with r as the order unit. We have 
f!lJr+ = f!lJr (') f!IJ+, f!IJ;+ = f!IJ; (') f!IJ~ and Lr = [0, r] = f!IJ; (') [0, 1] = f!IJ; (') L = Lo Ko (r). 

Proof The set f!lJr (') f!IJ+ is just the set of all x E f!lJr with x ~ 0, i.e. the positive cone 
f!lJr+ in f!lJr generated by f!IJ+. This implies that {w I W E K and Sr W = w} is just a basis 
of the cone f!lJr+. From WE K and Sr W = W follows J1. (w, r) = J1. (w, S; 1) 
= J1. (w, 1) = 1, i.e. WE KI (r). From WE KI (r) follows J1. (Sr W, 1) = 1, i.e. Sr WE K. 
From W = Sr W + S,... W then follows J1. (Sr. W, 1) = 0, so that Sr. W ~ ° gives 
Sr. W = 0, hence W = Sr W. We have thus proved {w I W E K and Sr W = w} = KI (r). 

In order to recognize f!lJr as base normed with the basis K" we need only show 
that each x E f!lJr can be written x = 0( WI - P W2, where WI, W2 E Kr and 
II x II ~ 0( + P - e (with e> 0 arbitrarily small). From x E f!IJ follows x = 0(' WI- pi W2 
with WI, W2 E K and II x II ~ 0(' + P' - e. Because Srx = x we get x = 0(' Srwi- pi SrW2' 
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Because SrK c K, we have Sr WI = AI WI, Sr W2 = A2 W2, where WI, W2 E Kr and AI;§; 1, 
A2;§; 1, which for IY. ;§; IY.:P;§ P' implies x = IY. WI - P W2 and hence [I x II ~ IY. + P - e. 

Therefore, co (Kr U (- Kr» is the unit ball of fiJ" i.e. co (Kr U (- Kr)) = 

fiJr (\ co (K U (- K)). Since fiJr is base-norm ed, fiJ; is an order unit space. From 
Kr = KI (r) follows that r is the order unit in fiJ;. But one also finds 

fiJ; (\ [- 1, 1] = [- r, r] , 

for we have - 1 ;§; Y ;§; 1 and S; y = y (since S; preserves the ordering!) so that S; 1 = r 
implies - r ;§; y ;§; r. 

From 11 (w,y) ~ 0 for all WE Kr and ayE fiJ;, with WE K and Sr WE ifr follows 
11 (w,y) ~ 0 for all WE K and hence y E fiJ~. The relation 11 (w,y) ~ 0 for all WE Kr 
follows for y E i~/ (\ fiJ~. Thus fiJ; (\ .%'~ is the positive cone in fiJ; dual to fiJ'r+. 

At once we get Lr c fiJ; with Lr = [0, r]. From y E fil; and o;§; y ;§; 1 follows ° ;§; Y ;§; r and hence Lr = fiJ; (\ [0, 1] = fiJ; (\ L. From VI T 3.1 then follows [0, r] 
= 1.0 Ko(r). 0 

From T5.2.8 follows that the norm of an element in fiJr is the same relative to the 
basis K of fiJ as to the basis Kr of fiJr. Correspondingly, the norm of an element of 
fiJ; is the same relative to [- r, r] as the unit ball of fiJ" as it is relative to [- 1, 1] as 
the unit ball of fiJ'. 

Hence the decomposition (5.2.3) with (5.2.4) yields 

II x II = sup 111 (x,y) I = sup I I., f.l (xv> Yv) I 
y E [- 1, IJ y, E [- r" r,J v 

= I., sup 111 (xv, Yv) I = I., II XV II (5.2.6) 
v y" E [- f", rv] v 

and 

1lY II = sup 111 (w, y) I = sup (I., 11 (wv, Yv) I Wv E if., I., 11 (wv, 1) = 11· 
wE K v v 

For Av = 11 (Wy, 1) ~ 0, we have I., Av = 1 and 
v 

whence we obtain 

1lY II = sup II Yv II . (5.2.7) 
v 

The T 5.2.8 also asserts that AV 1.2s with Lr = .%'; (\ L is satisfied for fiJ" fiJ;. But 
AV 1.1 and AVid also hold for .%',., fiJ;, as proved in the theorems to follow. 

TS.2.9 The sets Lro (kr ) = {g I g E Lr and 11 (w, g) = 0 for all WE kr c Kr} are 
upward directed with a largest element er Lro (kr) E G (\ Lr. Moreover, er L ro (kr) 
= r 1\ e 1.0 (kr ) = T,. e Lo (kr). 

Proof We have r 1\ e Lo (kr) E G (\ Lr and r 1\ e Lo (kr) E L ro (kr). For each 
g E Lro (kr) , we get g E Lo (kr) and gEL" i.e. g ;§; e Lo (kr) and g;§; r, so that 
g ;§; r 1\ e 1.0 (kr). From (5.2.2) follows r 1\ e Lo (kr) = T, e Lo (kr). 0 
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This T 5.2.9 shows that AV 1.1 is satisfied. We denote the set of all er Lr (kr) by 
Gr. For this set holds 

T5.2.IO Gr = G (l Lr = {e leE G, e ~ r} = {e I e = 1',. e,e E G}. 

Proof Obvious is G (l Lr = {e leE G, e ~ r} since Lr = [0, rl. For each subset kr of 
K" we get r 1\ e Lo (kr) ~ r. Conversely, el E G and el ~ r yield Ko (ed (l Kr 
= Sr Ko (el), because w' E Ko (ed gives 0 = fJ (w', el) = fJ (w', S; ed = fJ (Sr w', el)' 
For WE Ko(el) (l Kr we have 0 = fJ (w, ed and WE Sr w. From fJ (w, g) = 0 for all 
WE SrKo(ed follows fJ (Sr W, g) = fJ (w, S; g) = 0, i.e. S; g E Lo Ko (el)' Thus we get 
1',.g ~ el, i.e. e Lo (Sr Ko (el» = {g I 1',.g ~ ed· From g = 1',.g + 'Ft-r g and 1',.g ~ el 
follows e Lo (Sr Ko) el» = el + (I - r), hence el = r 1\ e Lo (Sr Ko (ed). D 

For Krl (el) = {w I w E Kr and fJ (w, el) = I} with an el ~ r, we obtain Krl (el) 
= Kl (el) because fJ (w, el) = 1, 1',. el = el, and 0 ~ fJ (w, el + (1- r» = fJ (w, el) 
+ fJ (w, 1- r) ~ 1 yield fJ (w, 1- r) = 0, i.e. W E K r • We have thus proved 

T 5.2.n For e E Gr we have Krl (e) = Kl (e); hence AVid holds in !J1J" !J1J;. D 

Krl (e) = Kl (e) means that the isomorphic mapping Kr] of Gr onto Ai, in 
(!J1J" !J1J;) is only the restriction of the isomorphic mapping G .&. 11 L to Gr. 

With L1 as in VI (6.1.11), for el ~ r, e2 ~ r we get 

L1 (e], e2) = max J inf fJ (w, I - el), inf fJ (w, 1- e2)!. 
\w E K,,(e2) WE K,,(e,) 

Because fJ (w, I - r) = 0 for w E K" we finally have 

L1 (e], e2) = max J inf fJ (w, r - ed, inf fJ (w, r - e2)!. 
\W E K" (e2) W E K" (e,) 

Since K r, and K] are the same isomorphic mappings of Gr onto'Yll", we obtain 

T 5.2.12 If AV 3 holds for!J1J, !J1J', it also holds for!J1J" !J1J;. 

Since Kr, (e) = Kl (e) for e ~ r, we conclude 

T 5.2.13 If A V 4 resp. A V 4s holds for !J1J, .q;I, it also holds for!J1J" !J1J;. 

If F is a closed face of Kr = Kl (r), it is also a closed face of K. If this face F due 
to A V 2s or AV 2f is exposed, F = Kl (e) holds with e E G. Because Fe Kl (r), we 
have e ~ r and hence also F = Kr, (e), i.e. F is also an exposed face of Kr in !J1Jr. This 
also proves 

T 5.2.14 If A V 2s resp. AF 2f holds for !J1J, !J1J ' , it also holds for !J1J" !J1J:. 

T 5.2.15 The center Zr of Gr equals Gr (l Z = {e leE Z and e ~ r}. 

Proof Zr is the set of those f E G with f ~ r which are commensurable with all 
e E G for which e ~ r. Having r commensurable with e E Gr in G" however, is 
equivalent to e = el + e2 with el ~ f, e2 ~ r - f. 
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From this follows e, ~ f" e2 ~ 1 - f; thus f is commensurable with e in G. 
Conversely, if f ~ r and fEZ, then f is commensurable with all e E Gr in G; hence 
e = e; + e2 holds with e; ~ f and e2 ~ 1- f. From f~ r we conclude e2 ~ r - f 
+(1- r). Because of e; ~ f~ r, we have Tr e; = e;. From Tr e = e then follows 
Tr e2 = e2 and hence Tr e2 ~ Tr (r - 1) + Tr (1 - r) = r - f. 0 

Thus we can conclude the structure analysis of (pg" pg;), emphasizing that we 
only needed to presume A V 1.1, A V 1.2 s, AVid. 

§ 5.3 Classical Systems 

To characterize the "classical" systems as effect carriers, in VI § 7.1 we 
introduced the relation A V kl. 

Due to D 1.2, this is equivalent to Z = G and the additional requirement that 
each face of K be infinite-dimensional. But first let us in generality investigate the 
condition Z = G, of course without assuming A V 4. Inasmuch as Z = G, Axiom 
A V 3 is due to VI § 6.2 without meaning, since it follows as a theorem from A V 1.1, 
AV 1.2s, AVid and Z = G (see just before VI T 6.2.3). 

Due to T 1.2, we find Z = G equivalent to the lattice G being a Boolean ring. 
With E = G, we can by V § 3.1 construct the Banach spaces pg (G) and pg' (G). 
Then we find the important theorem that for Z = G the Banach spaces pg and pg' 
can be identified with pg (G) resp. pg' (G). 

T5.3.1 Let Z= G. There is an isomorphic mapping pg ~ pg(G) which maps K 
onto K(G). Then 8' maps pg' (G) isomorphically onto pg'. 

Proof The identity mapping E =G .!. G is a decision observable. By T 3.1, for 
the mapping pg ~ pg (E) = pg (G) of V § 3.2 (which corresponds to an observable) 
we find that pg' (E) = pg' (G) !; pg' is a norm isomorphism of pg' (G) onto the 
O'(pg', pg)-closed subspace 8' pg' (G). 

Here the restriction of 8' to G is identical with the mapping F of the 
observables, i.e. to the identity mapping G -+ G. Since VI T 3.1 imples [0,1] = L 
= CO U G in pg', we have 8' pg' (G) = pg'. Together with V T 2.3 this proves the 
assertion. 0 

We must still show in generality that pg (E), K (E), pg' (E), L (E) really satisfy 
AVl.l, AV1.2s, AVid and G=E. We have satisfied AV 1.2s by fixing L(E) as 
the order interval [0,1] from pg' (E). 

By VI T 1.3.1, relation AV l.l is equivalent to the fact that each set Lo(k) with 
k c: K has a largest element. Since we assume E separable, it suffices to replace k 
by elements m E K (E) and to show that each Lo (m) has a largest element. 

Following [2] IV D 2.1.2, let as be the support of m. Applying the spectral 
theorem V (3.5.1) to an element of L(E), we find that Lo(m) is the set of all 
g E L(E) with O'(g ~ 0) > as. Because g ~ 1, the spectral theorem then yields 
g ~ o'~. On the other hand we have o'~ E Lo (m); thus AV 1.1 is proven. 

In case K = K (E), each closed face F of K is exposed. Since E, and hence 
K(E), is separable, there is an m E K with F= C(m). With as as the support of m, 
this makes Fc:Ko(O'~). It remains to show F=>Ko(O'~). With ml EKo(O'~), the 
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relation asl c as follows for the support asl of ml; and we must show ml E C (m). 
Applying [2] IV Th 2.1.11 to the subring [0, as] (rather than to 17) and to the m 

given by F= C(m), we find ml E F. 
Moreover we have shown above that e La (m) = a~. Since an m", with the 

support al is from an effective m E K (17) obtained by m", (a) = m (ad- I m (a /\ al), 
the set G of all e La (m) equals 17; thus we have also proven AVid. 

Due to A Vk:l, classical systems thus are effect carriers making K = K (17) for a 
Boolean ring 17; and this 17 has no atom. For, if K has finite-dimensional faces 
then it also has atoms. If there is an atom ao in 17, the face KI (ao) belongs to it. 
Then KI (ao) is the set of all measures m with supports as c ao. Since ao is an atom, 
only one such m therefore exists. Thus KI (ao) is an extreme point of K and hence 
finite-dimensional. 

Including considerations from V § 10, we recognize that physical objects are 
"classical systems" provided they have no atomic, objective properties. 

In closing this section let us prove the following two theorems without 
presuming AV 1.1 and AVid. We merely assume AV 1.2s, i.e. L = [0,1]. 

T 5.3.2 &?J= &?J (17) (with a Boolean ring 17) is equivalent to the case that every pair 
of effects is coexistent. 

Proof From gl = g12 + g', g2 = gl2 + g", h = gl2 + g' + g" E L (see V § 1.2) and 
gJ, g2 E La (w) follows h E La (w), i.e. A V 1.1. Therefore the set G of decision 
effects exists. 

It remains to prove AVid. Then T 5.3.1 shows &?J = &?J (G) where G is a Boolean 
rIng. 

With e E G and gEL we have g = il + h, e = il + k and il + h + k ~ 1, i.e. 
h ~ 1- e. 

Therefore e reduces g in the sense of D 5.1.1. According to T 5.l.l, il is 
uniquely determined (the proof of T 5.U does not use AVid!). Therefore a 
mapping L~L is defined by il = Teg. Then h =(1- Te) g. Let us prove that Te is 
affine on L. 

With gl, g2, gl + g2 E L we have gl = ill + hi, g2 = il2 + h2 and ill + il2 E L. 
Hence ill ~ e and il2 ~ e imply ill + il2 ~ e. 

Withy = ill + il2 - Te(gl + g2) we have - e ~ y ~ 2 e. 
From gl + g2 = ill + il2 + hi + h2 = Te (gl + g2) + (1- Te) (gl + g2) follows 

y = (1 - Te)(gl + g2) - hi - h2· 

Because of hI, h2 ~ 1 - e, we have 

- 2 (1 - e) ~ y ~ 1 - e. 

Hence - e ~ t y ~ e and - (1 - e) ~ t y ~ 1 - e. 
According to the proof ofT 5.1.1, this implies y = 0, i.e. Te(gl +g2)= Teg l + Teg2. 
With 0 ~ A. ~ 1 from g = il + hand il ~ e, h ~ 1 - e we get A. g = A. il + A. hand 

A. il ~ e, A. h ~ 1 - e; i.e. Te (A. g) = A. Te g. 
Since Te is affine, it can be extended as a linear map to all of &?J'. This mapping 

is a (&?J', &?J)-continuous if it is so on the unit ball and therefore if it is so on L. 
Since the a (&?J', &?J)-topology is metrizable on L, it suffices to take convergent 
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sequences gn -+ g. Since L is compact in the (1 (q)', q)-topology we may choose 
such a subsequence gn, that T. gn, -+ gl ;§! e and (1 - Te) gn, -+ g2 ;§! 1 - e. From 
gn, = T.gn, +(1- Te) gn, follows g = gl + g2 and thus gl = T. g, i.e. the continuity 
ofTe • 

Therefore there exists the dual mapping T; of q) into q), where T; maps K into 
K. Ifw E K is effective we have p(w, e) *' O. With w = p (w, e)-I T; w E Kwe get 

p(w, e) =p(w, e)-lp(T; w, e) =p(w, e)-Ip(w, Tee) 

=p(w, erlp(w, e) = I, 
i.e. AVid. 0 

T 5.3.3 q) = q) (E) is equivalent to the case that every pair of demixings of an 
ensemble is coexistent; hence all demixings coexist. 

Proof (for parts of the proof see also [32]). 

We shall first show that q) is a Riesz space if two demixings always coexist. q) is 
called a Riesz space if [0, xd + [0, X2] = [0, XI + X2] holds for XI, X2 E q)+. 

To show this property, it suffices to consider the case II XI + x211 = 1. With 
w = XI + X2, we then have w E K, and w = XI + X2 is a demixing of w. Each v E [0, w] 
is a mixture component because w = v + (w - v ~ ~ince both demixings coexist, 
there are a Boolean ring E and a measure E -+ K with W (8) = W, W «(11) = XI, 
W«(12) = X2, W«(13) = v. From this follows 

v= W«(13) = W«(13t\(1d+ W«(13t\(1j), 

i.e. we have a demixing of v with 

W«(13t\(1d;§! W«(1I)=XI 

and W«(13t\(1j);§!W- W«(1I)=W-XI=X2. 
Thus q) is a Riesz space since [0, XI] + [0, X2] c [0, XI + X2] holds trivially. 
If q) is a Riesz space, the Riesz theorem (see A II T 2) makes q)' a vector 

lattice. Then (see A II T 1) every pair of elements YI, Y2 E q)' fulfills 

YI + Y2 =(YI t\ Y2) + (YI V Y2)· 

This implies that every pair of effects g;(i= 1,2) is coexistent: Since glt\g2 
;§! gl, g2 we have gl = gl t\ g2 + gl, g2 = gl t\ g2 + g2 with gl, g2 E L. gl + g2 
=(gl t\g2) +(gl V g2) implies gl + g2 + gl t\ g2 = gl + g2 - (gl t\ g2) = gl V g2 E L, 
i.e. gl, g2 are coexistent according to V § 1.2. Then T 5.3.2 finishes the proof of 
q)= q)(E). 

Conversely, now let q) =q) (E). The set of mixture components of an ensemble 
mE K(E) is the order interval [0, m] from q) (E). Therefore all demixings of m 
coexist if there is a Boolean ring with additive measure in K (E) whose range is 
just [0, m]. To check this, it suffices (see the remarks after V D 3.3.1 and in [2] IV 
§ 2.3, carried over to preparators) to specify a Boolean ring t with a measure 
t ~ K(E) such that [0, m] = co (W t). We choose t as the section [0, (1.] with (1. 
the support of m. For a 8 E t we set W(a)= m' with m' «(1)= m (8 t\ (1) for (1 E E. By 
a result analogous to [2] IV Th 2.1.11 we conclude [0, m] = co { W «(1) I 8 E t = 
[0, (1s]). 0 
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§ 5.4 Decomposition into Irreducible Parts 

For microsystems, A V 4 provides the important theorem that G is atomic 
(VI T 7.2.1). Hence the decomposition of (&6', &6") into irreducible parts shall for this 
case be described more precisely (though almost all theorems have been proven in 
§ 5.2). Since A V 4 is not needed for this decomposition, let us also in this § 5.4 only 
presume AV 1.1, A V 1.2s and AVid. 

Instead of assuming A V 4, we formulate the following theorems in the form: 
From G atomic follows ... ; from Z atomic follows .... This enables us to apply the 
theorems when A V 4 does not hold, but G is atomic; or when G is not atomic but 
Z is. We shall first show A V 4 => G atomic => Z atomic. That AV 4 => G atomic 
was already shown in VI T 7.2.1. That G atomic => Z atomic is the content of the 
following important theorem. 

T 5.4.1 If G is atomic, Z is also atomic. 

Proof If Z were not atomic, a q E Z would exist which contains no atom of Z. 
Then considering G(q) = Tq G, we find 

G(q)={eleEG and e~q}. 

Since G is atomic, G(q) must contain an atom p of G. We introduce the 
following subsets of Z: 

Z(q;p) = {qlq E z, q ~q, q~p}, 

Z(q)={qlqEZ,q~q}. 

Since Z(q) is simply the order interval [0, q] in Z, it is a Boolean ring with q as unit 
element. The set Z (q; p) is a subset of Z (q); as we shall straightaway show, inside 
Z (q) it satisfies 

(ex) q) E Z(q;p), q2 E Z (q;p) => q) /\ q2 E Z (q;p), 
(jJ) q) ~ q2, q2 E Z (q;p) => q) E Z (q;p), 
(y) q) ¢ Z (q;p) => qt /\ q E Z (q;p), 

where qr /\ q is simply the complement of q) in Z (q). 
The relations (ex)-(y) are - to emphasize it again - meant to be relations in 

Z (q), i.e. all occurring elements qi belong to Z (q). The relations (ex) and (P) are 
obvious so that it only remains to prove (y). 

Because q) ~ q, from 1 = q) + qt = q) + qt /\ q + qt /\ ql.. follows 1 = q) + 
q) /\ q + ql... Hence (5.2.2) and T 5.2.5 for pEG yield 

p = p /\ q) + P /\ qr /\ q + P /\ ql.. . 

Due to p ~ q and p = p /\ q + P /\ ql.., we have p /\ ql.. = o. Since p is an atom, we 
get either p=p/\q) or p=p/\qr/\q. Because q) ¢Z(q;p), we find P*"P/\q) 
and hence p= p /\qr /\ q. Therefore p ~ qr /\ q and thus qr /\ q E Z (q;p), which 
proves (y). 

As a complete lattice, Z yields 

q= 1\ q E Z(q). 
qeZ(q;p) 
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Because p ~ q for all q E Z (q;p), we also have p ~ lj and hence lj E Z (q;p). Since 
Z(q) must not contain any atoms, there is a ij E Z (q) with 0 =1= ij ~ lj. This gives 
ijl. A lj =1= 0 and ijl. A lj =1= lj. Because ij ~ lj, we have ij ¢ Z (q; p); hence (y) makes 
ijl. A q E Z (q;p), so that (0() yields ijl. A q A lj = ijl. A lj E Z (q; p). This contradicts 
0=1= ijl. Alj =1= lj and that lj was the smallest element of Z (q;p). 0 

T 5.4.2 If Z is atomic, the set of atoms in Z is at most countable. Writing this 
set Az = {qv}, we have L. qv = 1 and to each r E Z there is uniquely associated a 

v 

subset Ar c Az which makes L. q = r. The mapping r ~ Ar is an isomorphism of 
qeA, 

Z with the lattice of subsets of Az . 

Proof Since the atoms q, q' of each pair with q =1= q' are commensurable and have 
q' A q = 0, from q' = (q' A q) V (q A ql.) follows that q' is orthogonal to q. There
fore, due to VI T 3.9 there are only countably many atoms qv, and L. qv = V qv E Z 

v v 

holds. If we had L. qv =1= I, there would be an atom q E Z with q ~ 1- L. qv, con-
v • 

tradicting the fact that {q.} was the set of all atoms. In analogous manner, for an 
r E Z with Ar = {qlq E Az and q ~ r} we obtain 

r= V q= L. q. 
qeA, qeA, 

Conversely, each subset A of Az makes L. q an element of Z. It is easy to show 
qeA 

that the mapping r ~ Ar(with r, A r2 ~ Ar, (\ Ar., r, V r2 ~ Ar, u Ar. and 1- r ~ 
Az\Ar) is an isomorphism. 0 

From § 5.2, especially from T 5.2.5 and T 5.2.7 and (5.2.2)-(5.2.7), in particular 
for r. = q. we conclude: Each x E f!I) can uniquely be written 

x= L. x., 
v 

where Xv E f!l)v = Tq, f!I). In particular, for W E K we have 

w= L. w. 
• 

with Wv E Kv, where Kv = K, (qv). 
Eachy E f!I)' can uniquely be written 

y= L.y. 
• 

withy. E f!I): = Sq, f!I)'. In particular, for gEL we have 

g = L. g. 
• 

with g E Lv = {g I gEL and g ~ qv}. Here, Gv is the set of all e E G with e ~ qv and 
G is the set of all e = L. e. with e. E G •. 

We have v 

fJ. (x, y) = L. fJ. (xv, Y.) 
v 

and Ilx II = L.llx Ilv and II y II = sup II Yvll· 
v v • 
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From T 5.2.15 follows: 
Each Zv consists only of the zero and the unit element, i.e. each (,qlv, ,ql:) is 

irreducible. 
These results can be inverted: 

T 5.4.3 If ,qlv is a sequence of at most countably many base-normed spaces, the real 
vector space ,ql defined by the sequences {xv} with Xv E ,qlv and finite L II XV II is a 
base-normed Banach space with the basis v 

K = {w: W = {wv}, Wv E Kv, L II Wv II = l}. 
v 

Proof. One can easily see that ,ql is a Banach space since all the ,qlv are Banach 
spaces. ,ql+ is given by {xv} with Xv E ,qlv+' The unit ball of .~ is formed by the {xv} 
with L II XV II ~ 1. Hence, Xv belongs to the unit ball of ,qlv, i.e. Xv E co (Kv u (- Kv))' 

v 

Therefore, with Av;S; 0 and LA.. = 1, the unit ball of ,ql is formed by all {xv} 
v 

with Xv E co (Av Kv U (- A.. Kv)); hence it equals co (K U (- K)) with the K defined 
above. 0 

T5.4.4 With ,ql from T 5.4.3, its dual ,ql' can be identified with the space of all 
y = {Yv} with Yv E ,ql: and sup II Yv II < 00. The order-unit in ,ql' is given by Yv = Iv 

v 

with Iv the order-unit in ,ql:; and we have II y II = sup II Yv II. 
v 

Proof. It is easily seen that a norm-continuous linear form y on ,ql uniquely 
determines norm-continuous linear forms Yv E ,ql: with II Yv II ~ II y II. Conversely, 
each such sequence {Yv} with sup II Yv II < 00 determines a norm-continuous linear 

v 

formywith Ilyll = sup IIYvll. 0 
v 

T 5.4.5 If, for the ,ql from T 5.4.3, the ,ql.,,ql: satisfy A V l.l, A V 1.2 s, A V 2 f, 
AVid, A V 3, A V 4, A V 4s, then the same holds for ,ql, ,ql'. 

Proof. For a subset k c K, we find Lo (k) given by the set of all g = {gv} with 
gv E Lo(kv), where kv is the set of the v-components in the elements of k, i.e. 

Lo(k) = {gig = {gv} with gvELo(kv)}. 

Therefore, Lo (k) has a largest element e Lo (k) = {ev Lo (kv)}, and thus AV 1.1 for 
,ql, ,ql' is a consequence of AV 1.1 for all ,qlv, ,ql:. 

AV 1.2 s now means [0, I] = {y I y = {Yv}, Yv E lOy, Iv]}. 
For an e E G with e = {ev} and ev E G., from AVid follows that there are 

elements wvEl(\. with JL(wv,ev)=l: With Av;S;O and LAv=l, for W={AvWv} 
follows - v 

JL(w, e) = L AvJL(Wv, ev) = L Av = 1; 
v v 

therefore AVid also holds for ,ql. 
In order to show AV 3 for ,ql, ,ql', let us use relation (iv) from VI T 6.2.3 and 

also (6.1.11). From 
JL(W, 1- e) = L JLv(wv, Iv - ev) 

v 



and 

then follows 

§ 6 System Types and Super Selection Rules 

KI (e) = {wi w = {wv} E K, II:: II E K1 (ev) for Wv =!= o} 
inf /l (w, 1 - e2) = ° , 

WE K,(e,) 

provided that at least a single v obeys 

inf /lv(wv, 1- e2v) = 0. 
W. E K,(e,,) 

Therefore, from A (e1' e3) =!= 0 follows Av (el v' e3v) =!= ° for all v. 
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From e2 ~ e1 ~ e2 V e3 follows e2v ~ e1 v ~ e2v V e3v for all v; hence A V 3, i.e. (ix) 
from VI T 6.2.3 yields e1 v = e2v for all v. Thus we find e1 = e2, whereby A V 3 is 
shown for £!I), /:ljj'. 

A closed face F of K is determined by a sequence {Fv} of closed faces of Kv: 

F= {wi W = {Av wv} with Av ~ 0, L, Av = 1, Wv E Fv}' 
v 

Therefore, the dimension of F equals [- I + L,' (1 + dimension of Fv), with L~ 
v 

taken only over those v for which Fv =!= 0. Thus, the dimension of F is finite if and 
only if that sum runs over only finitely many v and the dimension of Fv is finite for 
all v. Hence if AV 2f holds for all v then all the Fv are exposed faces, i.e. 
Fv = Ko(gv)' Then we get F = Ko (g) with g = {gv}, where one must set gv = Iv for 
Fv = 0. Therefore A V 2 f holds for £!I), £!I)'. 

If AV 4 holds for all v, then in an Fv =!= 0 there is a finite-dimensional face Fv, of _ '-
Kv. Thus F1 = {wi W = {O, 0, ... , wv" 0, O, ... } with wv, E Fv, is a finite-dimensional 
face of K with F1 c F. Hence AV 4 holds for £!I), £!I)'. 

If even A V 4s holds for all v, then each v makes 

where the FVi are finite-dimensional and increasing. Then a finite-dimensional face 
Fi of K is determined by the finite sequence {Fv;} with FVi = FVi for v ~ i and 
FVi = o for v > i. Then F= V Fi and hence AV 4s holds for £!I), £!I)'. 

i 

If Axiom AV 4 holds for a pair £!I), £!I)', we can perform the given decomposition 
of £!I), £!I)' into the irreducible parts £!I)v, £!I):. In the converse way, we can then by 
T 5.4.3 construct a pair ;j,;j' from the irreducible £!I)v, ,qjJ:. We see immediately the 
isomorphism of fi, fi' with £!I), £!I)'. Thus, only the decisive problem of further 
investigating the structure of £!I), £!I)' for the irreducible case remains. 

§ 6 System Types and Super Selection Rules 

To the decomposition of £!I), £!I)' and hence of K, L into irreducible parts 
described in § 5.4, there correspond some important physical concepts which are 
not always uniformly named. 

In V D 10.4, we defined the set rflm of objective properties. Let us show that the 
mapping rflm ~ L from V § 10 yields rflm ~ Z, and that we can set X (rflm) = Z (as a 
certain hypothesis). 
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If X (6'm) = Z, then 6'm ~ Z is a decision observable while T 2.2 makes X an 
isomorphism between 6'm and Z. Hence one uses to denote Z also as the set of 
objective properties of the microsystem. Thus we must first show X (6'm) c Z. To 
this end, we proceed step by step. 

T6.1 By 

,u(w, ",(bo, b Il p» =,u (Tp w, ",(bo, b» 

a mapping K -S K uniquely corresponds to each p. While it obeys T M\p = 1 - Tp 
and Tpl "P2 = TPl TP2 = TP2 Tp1 , the dual T; makes T; 1 = X (p). 

Proof Use [2] III Th 4.1.6 or [3] § 12.3. In particular, from the defining equation 
for Tp follows 

T 6.2 6'm ~ Z holds. 

Proof See [2] IV § 8.1. 

,u (w, X (p» =,u (w, ",(bo, bo Il p» 

= ,u(Tp w, ",(bo, bo» = ,u(Tp w, 1) 

= ,u(w, T; 1). 0 

That 6'm ~ Z is surjective has (also in the extended theory) turned out as 
certain hypothesis: One can always "think" that for each registration procedure bo 
and prescribed Z E Z one can ideally register those bo Il P which make X (p) 
= ",(bo, bo IIp) = z. 

Since Z is atomic, one can completely characterize the objective properties by 
the set Az of the atoms of Z. For a q E Az , the set p (q) with X (p (q» = q consists 
of the systems with the (atomic) objective property q. 

D6.1 For a qEAz , we call p(q) the set of systems of type q or briefly a "system 
type". 

Thus we have M= u p(q) and p(ql) IIp(q2) = 0 for ql =F q2. Hence the set M 
q 

can be decomposed into system types. 
Examples of such type are, for instance, "one electron", "one helium atom", "a 

system composed of one helium atom and one hydrogen atom", and so forth. Of 
course, one must first go over from the theory presented so far to the standard 
extensions in the sense of [3] § 8, in order to give such "words" a meaning (see IX 
and [2]). 

It is customary in physics to consider each system type separately, because only 
this is interesting. That is, one singles out a q. E Az and takes only Mv def p(qv) as 
the "set of systems", Kv as the set of ensembles, Lv as the set of effects and Gv as the 
set of decision effects. One considers in this way only one irreducible part of the 
decomposition described in § 5.4. In the course of such an investigation (e.g. of 
"hydrogen atoms"), one drops the index v, since one has prescribed which system 
type is considered. 
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The fact that the element of Az are atomic objective properties, commensurable 
with all the decision effects, is frequently characterized by the concept of super 
selection rules. It is described in [2] IV § 8.1, how this concept was arrived at. In this 
sense, a q E Az determines a super selection rule. To be sure, there enters 
something from the fact that the transports introduced in II § 7 map each 
irreducible Lv into itself (see IX § 1). 



vm Representation of fJD, fJD' by Banach Spaces of Operators 
in a Hilbert Space 

In this chapter lef us show that the irreducible parts @v, @; (see VII § 5.4) 
permit a representation by Hilbert space operators, i.e. for @v, @; there is a 
Hilbert space ~ over the field R of real numbers or over the C of complex 
numbers or over the Q of quaternions where @v can be identified with the set of 
self-adjoint operators of the trace class and @; with the set. of all bounded, self
adjoint operators, so that It (x, y) = tr (x y). Then Kv is the set of all operators 
WE @v with W ~ 0, tr(w) = I, while Lv is the set of all operators g E @; with 
O~g~l. 

§ 1 The Finite Elements of G 

We now presume AV 1.1, AV 1.2s, AVid, AV 3 and AV 4, without always 
mentioning it. Then VII § 5.2 makes them valid for each irreducible part. Likewise 
the validity of AV 2f and AV 4s carries over. Hence the theorems to be proved 
hold for all of G as well as for each irreducible part. 

By VI T 7.2.1 the lattice G is atomic. According to VI T 6.3.5, for an e E G with 
finite dimensional KI (e), the order interval [0, e] is a complete orthocomplemented 
and modular lattice. 

T 1.1 Each e EGis the sum of at most countably many pairwise orthogonal 
atoms. 

Proof The countability follows from VI T 3.6. 
The set A = {(PhP2, ... ) I the Pv are pairwise orthogonal atoms with Pv ~ e} 

satisfies the assumptions of Zorn's lemma. Hence, there is a maximal element. 
When (PhP2, ... ) is such an element, with e' = L Pv = V Pv we have e' ~ e. If we 

v v 

had e' =l= e, hence e - e' =l= 0, there would be an atom ft ~ e - e', i.e. an atom ft with 
ft..le' and hence ft..l all Pv, contradicting the fact that (PhP2, ... ) was maximal. 0 

T 1.2 If KI (e) is finite dimensional, then e is the sum of finitely many atoms. 
From AV 4s follows: If e is the sum of finitely many atoms, then KI (e) is finite 
dimensional. 

Proof Let KI (e) be finite dimensional. By T 1.1 we have e = L Pv, where the Pv 
n v 

are atoms. For en = L Pv we find KI (e) ::::> KI (en) ~ KI (en-I), hence "dimension 
v=1 

KI (en) ~ dimension KI (en-I)". Therefore the sequence of en must break off. 
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n 

Let e = L P., where the P. are atoms (pairwise orthogonal; see VI T 3.9). Putting 
k .=1 

ek = LP., we get 
.=1 

o ~ eo < el < e2 ... < en-I < en = e . 

By the covering condition (VI T7.2.3), between any two e., e.+1 there does not exist 
any element of G different from e. or ev+ I • 

By A V 4s there is a sequence e; with 

o < eo < el < e2 ... < e , e = V e; 
; 

and KI (e;) finite dimensional for all i. We will show that there must be a finite 
number M such that eM = e, so that KI (e) = KI (eM) is finite dimensional. 

We define 
Cij = (e; /\ ej) V e;_1 , ~; = (ej /\ e;) V ej_1 , 

where i ranges from 0 to n andj over all its (still unknown) values. 
One finds immediately 

and 

~-I=~O~~I ~ ••• ~~,n-I ~~n=ej. 

Since between e;_1 and e; there cannot be any of these distinct elements of G, there 
must exist an m; (possibly m; = 0) with C;k = c;m. for k ~ mi. With M as the largest 
of the numbers ml> m2, ... mn , we thus get C;k = C;M for k ~ M and for all i. 

Let us show that cij= C;,j_1 is equivalent to ~,;_I = ~;. Here we use the rela
tions M (e;, ej), M (ej, e;) for all j and i, which follow from VI T 6.3.3, because 
KI (ej) is finite dimensional. Because of these modular relations, we also have 

cij = e; /\ (e;_1 vej) . 

Hence C;j = C;,j_1 is equivalent to 

e;/\ (e;_1 V ej_l) = e;/\ (e;_1 vej). (1.1) 

This implies 

which provides 
(1.2) 

The latter gives 
e;/\ (e;_1 V ej) ~ e;/\ (e;_1 vej_l) 

and by ej ~ ej_1 also yields (1.1). Hence cij = C;,j_1 is equivalent to (1.2). Because 
of the modular relations, one can also replace (1.2) by 

e;_1 V (e;/\ ej) ~ e;_1 V ej_1 . 

Thus (1.2) is equivalent to 
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hence to 

(1.3) 

Thus Cij = Ci,j-I is equivalent to (1.3). Therefore, from Ci,k+1 = Cik for k ~ M and 
for all i follows dk+l,i-1 = dk+l,i for k ~ M and all i. 

From this follows 

ek = dk+l,o = dk+I,1 = ... = dk+l,n-1 = dk+l,n = ek+1 

for all k ~ M and hence ek = eM for all k ~ M. Thus we get V ei = eM and hence 
e=eM' D i 

T 1.3 AV 4s implies the following: If e is the sum of finitely many atoms, then 
[0, e] is an atomic, complete, orthocomplemented and modular lattice. 

Proof. This follows immediately from T 1.2 and VI T 6.3.5. D 
The method of proving T 1.2 contains practically also the proof of the well

known theorem 

T 1.4 If V is an atomic, orthocomplemented lattice, whose unit element is the 
union of finitely many atoms, each sequence 

where a,,+1 =1= a" and av+1 covers a" (i.e. bE V and av < b < av+1 imply b = av or 
b = av+I), has the same finite length n. The atoms pv = av+1 /\ a;- then are pairwise 

n 

orthogonal and make a = V PV' Hence each set of pairwise orthogonal atoms, 
v-I 

whose union equals a, has the same cardinality d(a). To each a, this cardinality 
thus assigns a positive integer d (a) called "dimension of a". 

Proof. Consider two distinct sequences, 

o = ao < al < a2 < ... < an = a , 

o = ao < al < a2 < ... < an = a , 

without the assumption that av+1 covers av and av+1 covers avo To these sequences 
one applies the procedure from the proof of T 1.2. For each of the two sequences 
one thus obtains a refinement of the same length. 

If av+1 covers av and av+1 covers £lv, then no proper refinement exists; hence all 
such sequences have the same length. 

The remainder of the prooffollows easily. D 

§ 2 The General Representation Theorem for Irreducible G 

Here let us show that AVl.l, AV1.2s, AVid, AV3 and AV4s make an irreduc
ible G isomorphic to the lattice of the closed subspaces of a Hilbert space. 

Let D be a field. Let Vbe a vector space over D. As antiautomorphism 8 of D 
one denotes a mapping D ~ D with 8 (a + b) = 8 a + 8 b, 8 (a b) = (8 b) (8 a). 
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A (9-bilinear form over V is understood as a mapping Vx V ~ D, written 
(x,y) with 

(XI + X2, y) = (XI, y) + (X2' y), (X, YI + Y2) = (X, YI) + (X, Y2), 

(ax, by) = «(9 a) (x,y) b. 

This bilinear form is called symmetric if 

(x,y) = (9 «y, x»). 

Then (9 is involutory, i.e. (92 = 1; here we assume that ( ... , ... ) is not identically 
zero. 

Proof Let (x,y) =1= O. From (x, ay) = (x,y) a follows {(x, ay) I a E D} = D. 
Therefore, afortiori {(x,y) I x, y E V} = D. From this follows (92 (x,y) = (9 (y, x) 
= (x, y) and hence (92 = 1. 0 

A symmetric (9-bilinear form is called definite if (x, x) = 0 implies x = o. 
In a vector space V over D, let (9 be an involutory antiautomorphism and 

(. .. , ... ) a symmetric definite (9-bilinear form. For a subset MeV, we define 

M..L = {y lYE M, (y, x) = 0 for all x EM} . 

This is obviously a linear subspace of V, which obeys 

MnM..L={O} and McM..L..L. 

A linear subspace M of V is called ( ... , ... )-closed if M= M..L..L. Because 
M..LLL = M..L, we find M..L always closed. 

V is called "Hilbert space" if each closed subspace M satisfies V = M + M..L. This 
means that each x E V can be written x = y + z with y EM, Z E M..L; as one easily 
sees, y, Z are uniquely determined by x and M. 

Presuming AVl.l, AVI.2s, AVid, AV3 and AV 4s, we obtain: 

T2.1 An irreducible G, which has at least four orthogonal atoms, is isomorphic to 
the lattice of closed subspaces of a Hilbert space V. 

Proof If AV 1.1, AV 1.2s, AVid, AV 3 and AV 4s hold for fij, fijI, by VII § 5.2 they 
hold for each irreducible part. 

For the proof we can use that of Theorem 7.40 in [9], if we show that its 
presumptions from [9] are satisfied. 

According to VI T 1.3.3 the lattice G is complete. The assumptions (96) of page 
176 in [9] are satisfied, for: 

(i) G is atomic by VI T 7.2.1. 
(ii) is satisfied by T 1.3. 

(iii) is satisfied by VI T7.2.4. 
(iv) is satisfied by the assumption of T 2.1. 

The assumptions from (2) of page 105 in [9] are satisfied, since G is complete and 
because e = e2 - eI with eI < e2 fulfills e2 = eI + e = eI V e and e 1. eI . 0 
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It is unknown whether each lattice Gv of the closed subspaces of a Hilbert 
space V can be embedded in a dual pair ~,~' so that the presumptions A V 1.1, 
A V l.2s, AVid, A V 3 and A V 4s hold for ~, ~' and so that Gv coincides with the G 
defined by /dJ, ~'. This question would be interesting as follows. When axiom 
A V 2f is adjoined, it turns out that D must be one of the fields R, C, Q whereas :Yr' 
is a Hilbert space (i.e. a norm-complete space) over one of these three fields. Thus, 
a field other than R, C, Q could appear only if there exist finite-dimensional faces 
of K, which are not exposed! 

§ 3 Some Topological Properties of G 

We now presume AV1.1, AV1.2s, AVid, AV3 and AV4s without mentioning 
it again. Under these presumptions, G is an atomic lattice. Let the set of atoms of 
G be denoted by A (G). From AV2f and VI T7.2.2 with the isomorphism K\ of G 
onto 'YJ[ follows that a bijective mapping of A (G) onto iJeK is given by K\. Let A (e) 
denote the set of all atoms P ~ e E G. Due to T 1.2, the relation "K\ (e) is finite 
dimensional" is equivalent to "e is the sum of finitely many atoms". In this case we 
say briefly: e is finite. 

We furthermore assume A V 2 f. 

T 3.1 A (e) with finite e is a a (~', ~)-compact subset of ~', of course obeying 
A (e) c GeL c ~'. 

Proof Since the a (~', ~)-topology is metrizable on L, it suffices to consider a 
convergent sequence Pv E A (e) and to prove Pv -> g E A (e). Because Pv ~ e, we have 
g ~e and hence g E LoKo(e). For each Pv, one can find atoms p~,p~, ... ,p~-\, 

n-\ 

with e = I p~ and p? = Pv (by T 1.4 the number n is the same for each v!), since 
a=O 

e - Pv due to T 1.1 need only be represented as a sum of orthogonal atoms. From 
p~ ~ e follows K\ (P~) c K\ (e); hence the K\ (pn are elements from iJeK n K\ (e) 
= iJeK\ (e). We briefly write w~ = K\ (P~). Since Lo Ko (e) is a ('<?B', ~)-compact and 
K\ (e) is likewise compact (being a finite dimensional face) one can choose a sub
sequence of the v (again writing v) so that for each (J( the sequences p~, w~ are 
convergent. Then we get p~ v> g~ E Lo Ko (e) (with gO = g) and w~ -> wa E K\ (e). 

Using 

I J1 (wa, get) - 11 = I J1 (w~, get) - J1 (w~, p~) I 

~ I J1 (w", get) - J1 (w a, p~) I + I J1 (w a - w~, p~) I 

~ I J1 (w", ga - p~) I + II WOO - w~ II 

with gC p~ -> 0 (in the a (~', .<?B)-topology) and II w'" - w~ II -> 0, from J1 (w~ ,p~) = 1 
n-\ n-\ 

we get J1 (w", get) = 1. From I p~ = e follows I get = e. Because wa E K\ (g"), we 
",=0 ,,=0 

have ga =l= O. With e" E G and K\ (ea) = K\ (g~) follows gOO ~ e" =l= 0; hence there is 
n-\ n-\ 

an atom q" ~ e" ~ get. From I q~ ~ I gOO = e follows that the q" are pairwise 
,,=0 a=O 
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n-I 

orthogonal. Since there are n pairwise orthogonal qa., we obtain L qa. = e and 
n-I a.=o 

hence L (ga. - qa.) = O. From gao - qa. ~ 0 follows gao = qa. for all ct, also for ct = 0; 
a.=o 

henceg=gOEA(e). 0 

A finite-dimensional convex set C is called strictly convex if its boundary 
consists solely of extreme points. Then C is homeomorphic to a ball. 

T 3.2 If PI, P2 are two distinct elements of A (G), then e = PI V P2 is finite; if G is 
irreducible, then KI (e) is strictly convex and hence homeomorphic to a ball of at 
least dimension two. 

Proof According to the covering theorem, q = e - PI must be an atom, so that 
e = PI + q is two dimensional and hence finite. Therefore, KI (e) is finite dimen
sional. 

If G is irreducible, there must be a third atom P3 ~ e distinct from PI and P2 
(see AI). Since KI (P3) = W3 E KI (e) and W3 is an extreme point, W3 cannot lie on 
the segment between the extreme points WI = KI (PI) and W2 = KI (P2)' Therefore 
the whole triangle generated by WI, W2, W3 lies in KI (e), so that KI (e) is at least 
two dimensional. . 

If F is a face of K with F c KI (e), then F is finite dimensional and (by A V 2 f) 
an element of Yf£.. If F is not an extreme point and F =l= KI (e), with WI as an 
extreme point of F one obtains the following chain of properly increasing faces of 
KI (e): 

But T 1.4 shows that each chain due to e = PI V P2 has at most the length 2. Hence 
no faces F =l= KI (e) exist which are not extreme points. 

Therefore KI (PI V P2) is homeomorphic to a ball having at least the dimension 
two. 0 

T 3.3 If e is finite, KI is a homeomorphic mapping of A (e) onto OeKI (e) with the 
norm topology in ffIj and the (J (ffIj', ffIj)-topology in ffIj'. 

Proof Since KI is a bijective mapping of A (e) onto OeKI (e) and A (e) is compact, 
by T 3.1 it suffices to show that the mapping KI is continuous. 

Let Pv E A (e) be a convergent sequence of atoms, so that T 3.1 makes 
Pv -+ pEA (e). It must be shown that Wv -+ W holds with Wv = KI (Pv) and 
W = KI (P). Since KI (e), as a finite-dimensional face, is compact in the norm 
topology, the sequence Wv has an accumulation point w; then a subsequence exists 
with wv, -+ w. From 

I J.l (w,p) -II ~ I J.l (w,p) - J.l (w,Pv,) I + I J.l (w,Pv,) - J.l (wv"Pv.) I 
~ I J.l (w, P - Pv,) I + II w - wV, II 

follows J.l (w,p) = I and hence WE KI (P) = w. Thus, W is the only accumulation 
point and hence Wv ~ w. 0 
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T 3.4 For each e E G, the set A (e) is a connected set in the a (fiJ', fiJHopology. 

Proof It will suffice to show that any two atoms PI and P2 can in A (PI V P2) be 
connected by a continuous path. But T 3.2 and T 3.3 make A (PI V P2) homeo
morphic to the surface of a ball having at least the dimension two, from which the 
assertion follows. 

T 3.5 If e is finite, [0, e] is a (fiJ', .qg)-compact (as a subset of G). 

Proof We have only to show that ev E G, ev ~ e and ev -+ g imply g E G. For 
ev ~ e, T 1.3 and T 1.4 yield 

d(e,) 

ev = L, P~ (3.1) 
i=1 

with atoms P~ and d (ev) ~ d (e) the dimension of ev • One can complete the P~ by 
zero-elements and instead of (3.1) write 

d (e) 

ev = L, pt (3.2) 
i=1 

with pt an atom or pt = 0. 
Then we can choose a subsequence of the v (again written v) so that pt -+ gi for 

each i= I, ... , d (e). By T3.1 we have gi EA (e) or gi = 0, so that 

d(e) 

g = L, gi ~ 1. 
i=1 

Hence the gi are pairwise orthogonal and thus g E [0, e]. D 

From this proof follows easily 

T3.6 If e is finite, the set [0, e]d of all e' E [0, e] with d (e') = d is a a (fiJ', fiJ)-com

pact set. 

The last theorems permit us to formulate the continuity properties from VI T 3.11 
especially simply for sequences e~I), e~) from an order interval [0, e] with finite e: 

T 3.7 Let e~l) ~ e and e~2) ~ e for a finite e. From eV) -+ e(l) and e~2) -+ e(2) in the 
a (.qg', .qg)-topology follows 

(i) 41).1 /\ e -+ e(l).1 /\ e. 

(ii) e~1) V e~2) -+ e(l) V e(2) if d (e(l) V e(2) = {min d (e), d (e(l) + d (e(2)}. 

(iii) eV) /\ e~2) -+ e(l) /\ e(2), if d (e(l) /\ e(2) = max {O, d (e(l) + d (e(2) - d (e)}. 

Proof. From eV).1 /\ e = e - e~1) and e~l) -+ e(l) follows e(l) ~ e and ep).1 /\ e -+ e - e(l) 

= e(I).1 /\ e, i.e. we obtain (i). 
As in the proof of VI T 3.11, for an accumulation point g of ep) V e~2) follows 

g ~ e(l) V e(2). By T 3.5 follows g E G with g ~ e, hence g = e(l) V e(2) if d(g) 

= d(e(l) ve(2). By T 3.6 one obtains an accumulation point g with the largt;:st 
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possible d(g) when d(g) = lim d(e~1) v e(2». Thus g = e(l) v e(2) is the only accu
mulation point if lim d(eV) v e~2» :§! d(e(l) v e(2». Because e~1) --+ e(l), by T 3.6 we 
get d(eV» --+ d(e(l»; likewise follows d(elj» --+ d(e(2». From d(e~1) V e~2» 
:§! min {d(e), d(e$I»+d(e£2»} results lim d(e$l)ve£2}):§! min {d(e), d(e(l})+d(d(e(2})}; 
thus (ii) follows. 

(iii) follows from (ii) by means of (i). 0 

§ 4 The Representation Theorem for K, L 

We now presume AV1.I, AV1.2s, AV2f, AVid, AV3 and AV4s. These axioms 
suffice to prove the important representation theorem T 4.1.5. Since in VII § 5.3 we 
have shown the decomposition into irreducible parts, we can now assume G 
irreducible. 

§ 4.1 The Representation Theorem for G 

In § 2 we proved the general representation theorem T 2.1 for G, not assuming 
AV2f. Let us now show that under AV2f the field D can only be one of R, C, Q. 
The involutory anti automorphism e is then uniquely determined by R, C, Q (the 
field of real or complex numbers or of quatemions). 

As we saw in IV §§ 2 and 3, the topology of the physical imprecision on L is 
given by u (L,.:w), where L is compact and u (L,.Jf) metrizable. Moreover, in IV 
§ 3 we saw that on L the u (L, .:w)-topology coincides with the u (~', ~)-topology. 
From this follows that u (L,.Jri) and u (L,~) coincide on L for any two countable 
subsets .Jri , ~ norm-dense in K. For many practical purposes, it is convenient in~' 
to use a norm whose topology on L coincides with the u (~' ~)-topology. 

T 4.1.1 The u(~', ~)-topology is normable on L. 

Proof For a countable subset :Y= {wv} norm-dense in K, and a sequence Av (with 
Av > 0, 2: A.. = I), define 

v II y II" = 2: Av I .u (wv, y) I , (4.1.1) 
v 

which is easily seen to be a norm. 
From (4.1.1) follows 

hence the u (L,$J-topology is weaker than the II ... II ,,-topology. 
For gJ, g2 E L from (4.1.1) we due to.u (w, g):§! 1 conclude 

N 00 

II gl - g211" :§! 2: Av I .u (wv, gl - g2) I + 2: Av 
v=1 v=N+1 

and from this in tum that the u (K,$J-topology is stronger than the II··· 11,,
topology. 0 

From T 3.7 resp. VI T 3.11 thus follows that the lattice operations relative to the 
II ... II ,,-topology are continuous in G. One can use this fact to prove: 
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T 4.1.2 The field D (of the representing Hilbert space) is a topological field and 
locally compact. 

Proof Since in this book we have not presented the introduction of coordinates, 
but have adopted it from other presentations of orthocomplementary, modular and 
atomic lattices available in the literature, also in this proof we must refer to other 
literature. Coordinatization is presented in many books; in T 2.1 we have referred 
to the presentation in [9]. In order to transfer the II ... II.,--topology from G to D, in 
the introduction of coordinates we must refer to a paper of Kolmogorov [12] (also 
see [13], [15], [16] and [9] p. 182). In [12] the proof is presented for T 4.1.2, i.e. that 
the field operations are continuous in the introduced topology and that D is locally 
compact. In our case, the local compactness follows quickly from T 3.1. D 

T 4.1.3 D is one of the three fields R, C, Q. 

Proof The proof of T 4.1.2 given in [12] shows that the field D is homeomorphic 
to the set A (PI V P2) from T 3.2 if from A (PI V P2) one removes an element as the 
"point at infinity". This by T 3.2 and T 3.4 implies that D is connected. But each 
connected, locally compact topological field is one of R, C, Q (see [18] Satz 21, or 
[17]). 0 

T 4.1.4 The anti-automorphism e (which exists due to T 2.1) is continuous. 

Proof To prove this, we must again refer to the literature, since we have not 
presented an introduction of the e from T 2.1. The proof of T 4.1.4 is in [14] shown 
on the basis of [19]. Co'ncerning [19], also see Theorem 4.6 in [9]. D 

Since e is continuous, for D = C we get e a = a, where a is the complex 
number conjugate to a (see [14] and also [19] p. 181). This finally implies the 
important representation theorem of G: 

T 4.1.5 An irreducible G, which has at least four orthogonal atoms, is isomorphic 
to the lattice of the (topologically) closed subspaces of a Hilbert space ~ over one 
of the fields R, C, Q, where 1- is defined by the inner product in d'f': 

Proof This follows from T 2.1, T 4.1.3, T 4.1.4 and Lemma 7.42 in [9], resp. from 
the Piron theorem (see [20]) which is formulated in [9] as Theorem 7.44. D 

In T 4.1.5, the assumption enters that G contains at least four orthogonal atoms. 
To be sure, this condition is not aggravating for physics, because (for representing the 
Galileo resp. Poincare group, see IX § 1), the irreducible parts must be either one
or infinite-dimensional. Without anticipating IX § 1 as an axiom we therefore 
formulate (with G a whole lattice, not only one of its irreducible parts): 

AV 4a For each atom q of the center Z which is not an atom of G, the face KI (q) 

is not finite dimensional. 
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For each irreducible part G of the lattice G, this makes the assumptions of 
T 4.1.5 satisfied. Hence Gv is isomorphic to the lattice of the closed subspaces of a 
Hilbert space :w.; over one of the fields R, C, Q. 

Only C turns out to be "realized" for the physics of the microsystems. There are 
various arguments which prefer C due to several indications from experience, e.g. 
the following: A two-dimensional representation of the rotation group (as a 
subgroup of the Galileo resp. Poincare group), describing the spin of many micro
systems, is not possible for D = R. The production of "uncorrelated" ensembles for 
scattering processes (see IV § 2) suggests to exclude D = Q. The consideration of 
"composite systems" in the way described in IX § 2 is not possible for D = Rand 
D = Q. But so far one has not succeeded, in a physically coincise way to formulate 
an axiom that excludes D = Rand D = Q. Therefore let us choose a mathematically 
simple formulation, which is at least based on a physically verifiable assumption, 
namely the dimension of KI (PI V P2) with PI, P2 E A (G). This formulation rests on 
the following theorem, whose proof results from the considerations of § 4.2. 

T 4.1.6 If G is the lattice of the closed subspaces of a Hilbert space over the field 
R resp. Q, then two atoms PI ,P2 with PI -L P2 yield a face KI (PI V P2) of the dimen
sion 2 resp. 5. 

As an axiom we therefore formulate (G is again the whole lattice): 

AV 4 b For two atoms PI, P2 of G with PI -L P2, the face KI (PI v P2) is neither 
2-dimensional nor 5-dimensional. 

Due to T 4.1.6 this A V 4 b can physically be checked as follows: For an irred uc
ible part G, one picks any two atoms PI, P2 with PI -L P2, and for these verifies that 
KI (PI V P2) is neither 2-dimensional nor 5-dimensional. In this sense, one could 
"physically" express A V 4 b as follows: So far no system types (see § 6) have been 
found for which D = R or D = Q; for this reason we reject the two cases D = Rand 
D = Q by the axiom A V 4 b. 

§ 4.2 The Ensembles and Effects 

Since the decomposition into irreducible parts is shown in VII § 5.4, let us 
again assume G irreducible. Henceforth let us consider only the case D = C. If 
one wishes to prove a theorem analogous to T 4.2.5, one must perform the 
considerations of this § 4.2 analogously for D = R andD = Q; for brevity let us not 
do so. 

The following is shown in [2] A IV: The space f%J (df") of the self-adjoint opera
tors in df" of trace class is a base-normed Banach space with the basis K (df") of all 
self-adjoint operators W ~ 0 with tr (W) = 1. 

For XE f%J(df"), we have II X II =tr (yx2)=tr (X+) +tr (X_) with x+=t(ff+X) 
the positive part and X_= t (ff- X) the negative part of the operator 
X =X+ - X_. Thus f%J(df") satisfies the minimal decomposition property (see IV 
§ 4). The Banach space f%J' (df") dual to f%J (df") can be identified with the space of all 
self-adjoint, bounded operators, if one writes the canonical bilinear form of f%J (df"), 
f%J' (:W) as tr (XY) with X E f%J(df"), Y E f%J' (df"). Here, f%J' (df") is an order unit space 
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with the unit operator as the order unit. The norm in fljJ' (Jf') is the operator norm 
of the operators in ~ 

One can assign the closed subspaces of Jf' bijectively to the projectors in 
fljJ' (.;w'). Let G (.;w') denote the set of projectors, which is an orthocomplemented 
lattice, isomorphic to that of the closed subspaces in £ Therefore, we can write the 
isomorphism given by T 4.1.5 as an isomorphism G ~ G (Jf'). Proceeding from this 
isomorphism a, let us draw further conclusions about K, L. 

T 4.2.1 There is an injective mapping K J4 K (Jf') with tt (w, e) = tr «P w) (a e)). 

Proof For pairwise orthogonal e., from VI T 3.9 follows tt (w, Lev) = L tt (w, ev). 
v v 

As an isomorphism, a gives a (L ev) = a (v ev) = V (a ev) = L a ev (as sum of the 
v v v v 

operators a ev). Hence, mw(E) = tt (w, a-I E) with E E G (Jf') defines a function 
G(.;w') ~[O, 1], with mw(L Ev) = L mw(Ev) for pairwise orthogonal Ev. By 

v v 

Gleason's theorem (see [2] A IV § 12) aWE K (Jf') therefore exists with mw (E) 
= tr (WE). One can easily see that W is uniquely determined, since tr (Wi - ~) E) 
= 0 for all E E G (.;w') implies Wi = ~. Hence, there is a mapping K J4 K (Jf') with 
tt (w, e) = tr «P w) (a e)). Since tt (WI' e) = tt (W2' e) for all e E G likewise implies 
WI = W2 (the a (fljJ', (ij»)-closed space spanned by G is all of (ij)'; see VI T 3.1) P is 
injective. 0 

T 4.2.2 The mapping P in T 4.2.1 is affine. 

Proof Since P is injective, from w = A WI + (1 - A) W2 follows 

and hence 

tr «P w) (a e)) = tt (w, e) = A tt (WI, e) + (I - A) tt (W2' e) 

= tr «P WI) (a e)) + (1- A) tr «P W2) (a e)) 

= tr ([A (P WI) + (1- A) (P W2)] (a e)) 

T 4.2.3 The mapping P in T 4.2.1 is surjective and hence bijective. 

Proof With p an atom of G, we have a p = P 'P' with P'P the projector on a vector 
rp E Jf'(11 rp II = 1), i.e. projecting on a one-dimensional subspace of ~ The face 
KI(P) is an extreme point wp of K. From tt(wp,p)=I=tr«pwp)P'P) follows 
P wp = P 'P. Therefore all P'P lie in P K. 

Each WE K (.;w') can be written W = L Av P 'P. with Av ~ 0 and L Av = 1. Hence 
v v 

a Wv E K with P Wv = P rp, exists, for each P rp,. The conditions on the Av make 
w = L A.. Wv E K, since K is norm closed. With this w, we then have 

tt (w, e) = L Avtt (w, e) = L Av tr (P'P,(a e)), 
v v 

= II" (W(exe)) 

and hence W=pw. 0 
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T 4.2.4 The bijective and affine mapping K .4 K (Jf') can be extended uniquely as 
an isomorphic mapping !J1j .4 !J1j (Jf') of Banach spaces. 

Proof This follows from the previous theorems and the fact that !J1j as well as 
!J1j(Jf) are linearly spanned by K resp. K (Jf'). 0 

From T 4.2.4 follows that the dual mapping p' is an isomorphic mapping 
!J1j'(;y,P)£'!J1j' of Banach spaces. From fl (w, e) = tr «P w) (IX e)) for e E G follows 
IX = pH on G. 

Therefore, one can extend IX as an isomorphic mapping !J1j' ~ !J1j' (Jf') with 
IX=P'-I. 

Thus L ~ L (Jf) is a bijective mapping with L (Jf') as the order interval [0, 1] 
in !J1j' (Jf), while 

fl (w, g) = tr «P w) (IX g)) 

holds for all WE K, gEL. Hence one can identify K, Land fl with K (Jf'), L (Jf) 
and tr. 

Conversely, for K = K (Jf') and L = L (Jf') it remains to be shown that A V 1.1, 
A V 1.2 s, A V 2 f, AVid, A V 3 and A V 4 s hold as theorems. A V 1.2 s holds by the 
definition of L (Jf). 

In order to prove AV 1.1, we consider the set Lo (W) for aWE K (Jf'), i.e. the 
set of all F with O:;§; F:;§; 1 and tr (WF) = o. Using W = L: 2v Pip, (with 2v> 0 and 

v 

f/Jv pairwise orthogonal) we get <f/Jv, F f/Jv) = II F1I2 f/Jv 112 = 0, i.e. F1I2 f/Jv = 0 and hence 
F f/Jv = O. The projector L: P", = E (here 2v> O!) is called the support of W. 

v 

Therefore, FE = 0 holds which easily gives tr (W F) = O. From FE = 0 also follows 
FEJ. = F(I- E) = F, hence EJ. F = F and thus EJ. FEJ. = F. From F:;§; 1 
follows EJ. FEJ. :;§; EJ. and hence F;a EJ.. Therefore EJ. is the largest element of 
Lo (W), so that A V 1.1 holds. 

As is easily seen, for each projector E there is a W with support E; therefore 
G(Jf') = {e Lo(W)} is equal to the set of all projectors. As a trivial result this 
provides AVid as a theorem. 

In order to show AV 2f and AV 4s, let us determine the closed faces of K (Jf'). 
Each such face has the form C(W). Using W= L: 2vP", (with 2v> 0 and pairwise 

v n 

orthogonal f/Jv), we obtain P", E C (W), hence * L: Pip,. E C (W) for each finite 
i=1 

n n 

subset {Vi} of {v}. Since one can write the projector L: Pip,. = L: P'II' with any (!) 
i=1 i=1 

other complete orthogonal system 'fIi in the subspace spanned by the f/Jv., we also 
have P'II' E C (W). Thus P'II E C (W) holds for any linear combination 'fI of finitely 

many f/Jv. For 'fI= L: IXv f/Jv with L: IIXvl2 = 1 and 'fiN = (£ IlXvI2)-112 £ IXvf/Jv we find 
v v v= 1 v= 1 

P'IIN E C (W) and II P'IIN - P'II II -+ 0 (with the norm in !J1j (Jf'), i.e. the trace norm). 
Since C (W) is norm closed, we also have P'II E C (tv) for all 'fI in the projection 
space of the support E of W. From this in turn follows W' E C (W) for all W' with 
a support E';aE. Since E':;§;E is equivalent to tr(W'EJ.) =0, we have 
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C(W):::l Ko(E.1). Since WE Ko(E.1) always makes C (W) :::l Ko (E.1), we conclude 
C(W) = Ko (E.1). Hence each closed face of K (J'r) is exposed, i.e. AV 2s and thus 
afortiori AV2fhoid as theorems. 

With C (W) = Ko (E.1) = K\ (E) and an orthogonal system rpv with L. P tp., = E, 
n v 

the K\ (En) with En = L. P tp., are finite dimensional and give KI (E) = KI (V En) 
_I n 

= V KI (En), whereby A V 4s is proven. 
n 

Therefore it remains to show A V 3. To this end, let us prove (iii) from VI 
T 6.2.3, first considering LI (E), E4) from VI (6.1.11). One obtains 

inf tr(W(I-EI»= inf tr(Pq>(I-E\» 
WeK,(E,) E.q>-q> 

and correspondingly 

= inf II (1- Ed rp 112 
E.q>=q> 
119111-\ 

inf tr(W(I-E4»= inf 1I(I-E4)rpIl2. 
WeK,(E,j E,q>=q> 

Ilq>~-1 

Making LI (E\, E4) ::f: 0 is equivalent to fulfilling at least one of the inequalities 

inf II (1- E4) rp II ::f: 0, (4.2.1) 
E,q>=rp 
~q>i=1 

inf 1I(1-E1)qJlI::f:0. 
E.q>-q> 

(4.2.2) 

119111=\ 

Let us first show: If (4.2.1) or (4.2.2) holds, the set of all vectors X + 11 with 
EI X = X and E411 = 11 is a closed subspace; hence it is the space on which EI V E4 
projects. Since the set of all X + 11 trivially forms a subspace, we need only show 
that it is closed. 

Let Xv + I1v be a convergent sequence of vectors, i.e. II Xv + I1v - XI' - 111' II < e for 
v, /I > N. Then (!vI' = Xv - XI' and uvp = I1v - 111' yield II evp + uvp II < e. Let us show 
(!vI' --+ 0 and u vp --+ O. From the identity 

uvp = II!: II \II~: II ' Uvp ) + ·vp 

follows .vp .1 (!vI'; hence 
(!vI' + uvp = ... evp + .vp 

yields the estimate II evp + uvp II s; .vp· 

Since (1- E\) uvp is the vector of least distance from uvp to the subspace EI J'r, 
we obtain 

II.vp II s; 11<1- E\) uvp II 
and hence 

lI.vp II s; II u vp /I inf /I (I - Ed rp /I. 
, E.q>-q> 

119111=1 

If (4.2.2) holds, then II evp + Uvp II < e for v, /I > N implies that II uvp II can be chosen 
arbitrarily small. Hence I1v is a convergent sequence, and Xv also converges. 
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Conversely, if (4.2.1) is satisfied, one interchanges (Iv" with Qvpo Since 1'/v -+ 1'/ and 
Xv -+ X imply Xv + 1'/v -+ X + 1'/, by LI (E) , E4) ::j: 0 the projection space given by 
E) V E4 equals the set of vectors X + 1'/ with E) X = X, E41'/ = 1'/. The representa
tion X + 1'/ of such as vector is unique since LI (E), E4) ::j: 0 implies E) /\ E4 = o. 

Because E2 ~ E4 in (iii), from VI T 6.2.3 follows LI (E) , E2) ~ LI (E), E4), so that 
LI (E), E2) ::j: O. Therefore, the subspace on which E) V E2 projects is the set of all 
vectors r+ ewith E) r= r, E2 e = e. 

Therefore, E) V E2 = E) V E4 for a vector X from E4 :YI" implies X = r + e with 
E) r = r and E2 e = e. Then E2 ~ E4 also makes E4 e = e and hence X = r + e with 
E) r= rand E4 e= e. Hence E)/\ E4 = 0 and X E E4 :YI" yield r = 0 and e = X, i.e. 
X = e E E2:Y1'. Thus we find E4 ~ E2 and hence E4 = E2, whereby (iii) in VI T 6.2.3 
is proven. 

We have thus proven the important representation theorem 

T4.2.S From the axioms AVl.l, AV1.2s, AV2f, AVid, AV3, AV4s, AV4a, 
A V 4 b follows that K, L can be decomposed into irreducible parts in the way of VII 
§ 5.4. Unless an irreducible part (Kv, Lv) is "trivial" (Kv has only one element and 
£. is isomorphic to the interval [0, 1] of real numbers), (Kv, Lv) can be identified 
with the sets K (~), L (~), with ~ a separable infinite-dimensional Hilbert space 
over the field C. The probability function ltv for Kv, Lv is then the trace in ~. 

By T 4.2.5 we have linked up with the representation of quantum mechanics in 
[2] (see [2} III § 3). This representation intersects in many points with that given 
here, since we could here show that not all the theorems derived in [2] require the 
complete system of the axioms listed in T 4.2.5. 

It would be interesting to know whether many other theorems about the 
elements of K and L, which one uses to derive from the algebraic properties of the 
operators in K (:YI") and L (:YI"), also follow without these properties, solely in fA 
and fA'. In § 5 we shall face some of these problems, without being able to solve 
them in generality. 

By the representation theorem T 4.2.5, the algebraic properties of the operators 
in fA (:YI") and fA' (:YI") follow as mathematical consequences of the above axioms 
for K and L. Whereas these axioms are transparent in their physical meaning, the 
algebraic structure of the operators is far removed from the original physically 
interpretable structures of K and L. For instance, the physical meaning in 
multiplying operators is not recognizable. The historic "correspondence principle" 
by means of which one inferred quantum mechanics, appears to speak against this 
view on algebraic structures. But the correspondence principle just consisted in 
mapping classical, physically interpretable quantities, such as the product of two 
quantities, in quantum mechanics on mathematical expressions, for which this 
"correspondence" by no means gives a physically interpretation. 

And yet certain algebraic properties of operators often typically characterize 
physically meaningful relations. Therefore let us yet consider such relations. 

§ 4.3 Coexistence, Commensurability, Uncertainty Relations, 
and Commutability of Operators 

Due to VII § 5.4 one can represent the elements of fA and fA' as sequences 
x = (x) ,X2, •• . ), where the Xv are operators in the Hilbert spaces ~. One can then 
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regard these elements of f!Ij and f!Ij' themselves as forming an algebra of operators 
with the multiplication 

(x" X2, .. . )(y" Y2, ... ) = (XI y" X2 Y2, ... ). 

It is interesting that mathematically equivalent algebraic relations can be given for 
many physical concepts. Examples are the theorems to follow: 

T 4.3.1 For gEL and e E G, the coexistence of {g, e} is equivalent to g e = e g (the 
commutability of the operators g and e). 

Proof See [2] IV Th 1.3.1. 0 

For gl g2 = g2 gl we get gl g2 = gl2 ELand gl2 ~ gl, gl2 ~ g2. This gives 
gl = gl2 + g; and g2 = g12 '* g2 with g; = gl (1- g2) and gz = g2 (1 - gl), hence 
gI2+gl=gl+g2(I-gl)~gl+(I-gd=l. Thus glg2=g2g1 makes gl and g2 
coexist (V T 1.2.3). But let it be emphasized that two effects gl, g2 can coexist 
even when gl g2 '* g2 gl! 

T 4.3.2 Two decision effects el, e2 E G are commensurable if and only if 
el e2 = e2 el· 

Proof This follows from T 4.3.1 and VI T 4.4. 

T 4.3.3 Two decision effects el, e2 E G are commensurable if and only if el e2 = 
el /\ e2. 

Proof See [2] IV Th 1.3.4. 

T 4.3.4 A scale observable (V D 3.1) is uniquely determined by an a E f!Ij'. The 
corresponding Boolean ring is generated by the spectral family e (A.) of a, so that 

a = J A. de (A.) . 

Proof See [2] IV Th 2.5.9. 

T 4.3.5 Two scale observables ai, a2 are commensurable if and only if al a2 = a2 al. 

Proof See [2] IV Th 3.2. 

The mixture components of an ensemble W E K are just all the elements of [0, w]; 
they obey. 

T 4.3.6 Each WE [0, w] can be written w = w l12 g W 1l2 with some gEL, while any 
gEL makes W 1I2 g wl12 E [0, w]. The mapping g -+ W 1l2 g W 1l2 is an order 
isomorphism of [0, e] onto [0, w] where e is a decision effect with KI (e) = C(w). 

Proof See [2] V Th 5.3. 
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If a is a scale observable while WE K, the expression Str(a) = f1 (w, a,2), with 
a' = a -1 f1 (w, a), is the expectation value for the quadratic deviation of a in the 
ensemble w. Hence one defines 

Aa = [Str(a)]1I2. 

Then any two scale observables a, b obey the famous uncertainty relation 

AaAb~ilf1(w,c)1 with c=i(ab-ba). 

Proof See [2] IV (8.3.17). 

(4.3.1) 

It is recommended that the reader review the experimental meaning of (4.3.1) 
(see [2] IV § 8.3). 

§ 5 Some Theorems for Finite-dimensional and Irreducible f%J 

The contents of this section is in principle not needed. We shall only point out 
mathematical problems which unfortunately have not been solved except for a 
finite-dimensional Banach space 1iJ. We again assume 1iJ irreducible, since the 
general reduction has been performed in VII § 5.4. 

If .qjJ is finite dimensional, AVid is satisfied as a theorem since K is compact 
and thusf1(w, e) must for e E G attain its supremum on K. Also AV4s is satisfied 
since all faces of K are finite dimensional. Thus we need only presume A V 1.1, 
AV 1.2s, AV 2f and AV 3 where AV 2f just says that all faces of K are exposed. 

It is remarkable that many well-known theorems for operators in finite
dimensional Hilbert spaces can already be proved without A V 3 and some even 
without AV2f. Therefore we now assume AV 1.1 and AV 1.2s without mentioning 
this again. Whether A V 2 f or A V 3 or both axioms are assumed, will on occasion 
be stated. 

In the finite-dimensional case, solely A V 1.1 and A V 1.2 s are therefore needed, 
when by means of VI T 3.3 and VI T 3.4 one proves 

T 5.1 The following are valid: 

(i) 1- e E G for all e E G; 
(ii) 1- G = G; 

(iii) e E G, e =t= 0 => Ko (1 - e) =t= 0; 
(iv) e], e2 E G and e} ~ e2 => e2 - e] E G; 
(v) all elements of G are exposed points of L = [0, 1]. 

Without reformulating them as further theorems, we thus find that VI T 3.5 
through VI T 3.11 also hold in this context. One must only specialize that the 
a (1iJ', 1iJ)-topology coincides with the uniquely determined topology for finite
dimensional vector spaces, and that only finitely many ev E G can be pairwise 

orthogonal, because K] (en) 
sequence of faces of K. 

n 

with en = L ev represents a properly increasing 
v=] 
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T 5.2 For all y E fij', the spectral theorem 

y= L, A.e. (5.1) 
• 

holds with e. E G, L, e.= 1 and A. * All for v * f.1.; and this representation (5.1) is 
unique. • 

Proof Since each y E fij can be written y = ex 1 - P g with gEL, we need to prove 
the theorem only for gEL. With Al = sup {.u (w, g) I WE K}, we have All g E [0, 1] 
= L. We define el by KI (el) = KI (All g). Since K is compact, f.1. (w, g) attains its 
supremum on K, so that KI (All g) * 0, hence el * O. From KI (el) = Ko(l- el) 
= KI (All g) = Ko(I- All g) follows 1- All g ~ 1- el and hence Al el ~ g, such 
that gl = g - Al el E L. With gl just as with g, we can define a A2 and an e2' Let us 
show A2 ~ Al and e2.J.. el' Because gl ~ g, we have A2 ~ A. If we had A2 = AI, a Wo 
would exist with Al = f.1. (wo, gd = f.1. (wo, g) - Al f.1. (wo, ed· Because f.1. (wo, g) ~ AI> 
this gives f.1.(wo, g) = Al and f.1. (wo, el) = O. But f.1. (wo, g) = Al implies Wo E KI (el), 
which contradicts f.1. (wo, el) = O. 

For WE KI (All g) = KI (el) follows f.1.(w, gl) = 0, i.e. KI (ed c Ko(gl). Because 
e2 ~ A2"1 glo we have KO(e2) => Ko(gl) => KI (el) = Ko(er) and hence e2 ~ er. 

Thus we recursively obtain (5.1) since after finitely many steps the process must 
terminate. The uniqueness also follows easily from this recursive process. 0 

T5.3 We have G = GeL. All extreme points of L are exposed. 

Proof If we show GeL c G, then the theorem follows from T 5.1 (v). 
For gEL from (5.1), because A. > Av+ I follows 

sup {.u (w, g - (AI - A2) ed I WE K} = A2 ~ A2 + (1 - AI)' 

Therefore Al - A2 * 1 yields 

g' = [1 - (AI - A2)f I [g - (AI - A2) ell E L. 

Then g = (AI - A2) el + [1 - (AI - A2)] g' shows that g is not an extreme point. 
Therefore g E GeL yields Al - A2 = 1, i.e. Al = 1 and A2 = 0 and hence A. = 0 for 
v ~ 2, so that g E G holds. 0 

This T 5.3 persists for infinite-dimensional G if also the axioms AVid, A V 3, 
A V 4s and A V 2 f hold, since T 5.3 then follows from the representation theorem 
T 4.2.5 (see [2] III 6.6). 

Presuming A V 3, from § I we conclude: 
Each e EGis the sum of finite many atoms; G is an atomic, complete, ortho

complemented and modular lattice. For each e E G, a dimension is defined as the 
number d(e) of orthogonal atoms Pv which make e = L, P •. 

• 
Then the well-known representation theorems hold for such lattices (see [9]), but 

here we shall not state them. 
Presuming A V 3 and A V 2 f, from T 3.1 we conclude that the set A (G) of the 

atoms of G is a compact subset of L, from T 3.3 that K I is a homeomorphic 
mapping of A(G) onto GeK, and from T 3.4 that A(G) is a connected set. From 
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T 3.5 and T 3.6 follows that G and all sets Gd are compact, when Gd consists of all e 
having dimension d. 

We now assume only AV 1.1, AV 1.2s and AV 2f. For each e E G (e 9= 0), let us 
show that the two sets Ke = KI (e) and Le = [0, e) satisfy the same relations as K and 
L do, i.e. that the following theorems hold. 

T 5.4 The set of all a WI - P W2 with WI, W2 E Ke is a base-normed Banach space (lj)e 
with the basis Ke. The Banach space (lj); dual to (lj)e is just the set of all elements 
(X e+ P 9 with 9 E L e, where e is the order unit of (lj); and Le = [0, e). 

Proof Since (lj) is finite-dimensional, the subset of all (X WI - P W2 with WI, W2 E Ke 
is a closed finite-dimensional vector space (lj)e, where one can introduce a norm 
with Ke as basis. For 9 E [0, e) and WE KI (e), .u(w, g) is an affine functional 
on KI (e). 

Since K is compact, .u (w, g) attains its supremum (X = sup .u (w, g). From 9 ~ e 
weK 

(as shown more than once above) also follows a-I 9 ~ e. With.u (wo, g) = a we thus 
get .u(wo, e) = I, i.e. Wo E KI (e). Thus the proof of ·the spectral theorem T 5.2 
shows that the spectral representation of 9 E [0, e) is already determined by the 
values .u (w, g) with WE KI (e). If .u (w, gl) = .u (w, g2) with gl, g2 E [0, e) holds for 
all WE KI (e), we then must have gl = g2. Hence the elements 9 E [0, e) can be 
identified with elements of (lj);. 

The space spanned by [0, e) equals (lj); if the 9 E [0, e) separate the set 
Ke = KI (e), i.e. if .u (Wh g) =.u (W2' g) for Wh W2 E KI (e) and for all 9 E [0, e) 
implies WI = W2. 

Let WI 9= W2 and .u(Wh g) = .u(W2, g) for all 9 E [0, e); then we also have 
.u (wi, g) =.u (W2, g) for all 9 E [0, e) and all WI, W2 on the intersection of the straight 
line a WI + P W2 with KI (e). This line segment in KI (e) has two boundary points 
WI and ~ with WI =1= W2, since we had WI 9= W2. 

We must have C(WI) =1= C(W2); for otherwise the whole line segment between 
WI and ~ would be in C(WI). By V T 9.2, then WI and w2 could not be boundary 
points of the line segment. From C(WI) =1= C(W2) and AV 2f follows C(WI) = KI (el) 
and C(W2) = KI (e2) with el =1= e2. From WI E KI (e) follows C (WI) c KI (e) and 
hence el ~ e; likewise we get e2;;§; e. Therefore .u (W2' el) =.u (WI, ed = I holds in 
contradiction to our assumption; thus Le separates the set Ke. 

We must yet show that [- e, e) is the unit ball of (lj);. This follows from the 
spectral representation of ayE (lj);, because it has ev ~ e for Av =1= O. 0 

T 5.5 (lj)e, (lj); satisfy the axiom A V 1.1. 

Proof By AV 1.1, in (lj), (lj)' we find for gh g2 E Leo that agE L exists with 9 ~ gh 
g~g2 and Ko(g);2Ko(gl)nKo(g2)· Because gl,g2E[0,e), we have Ko(g) 
;2 Ko(e) and KO(g2);2 Ko(e) and hence Ko(9);2 Ko(e), i.e. 9 ~ e. 0 

As T 5.4 has already shown, Le = [0, e) holds by definition and hence AV 1.2s is 
satisfied. 

T 5.6 (lj)e, (lj); satisfy AV 2f, i.e. each closed face of Ke is exposed relative to (lj);. 
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Proof If F is a closed face of K., then F is also a closed face of K; hence there is 
an e] E G with F= K] (el)' Since Kl (el) c Kl (e) implies el ~ e, we find F exposed 
relati ve to gjj;. D 

From T 5.3 follows that Ge is the set of extreme points of the order interval 
[0, e], i.e. Ge = {e'l e' E G, e' ~ e}. 

T 5.7 If AV 3 holds for gjj, gjj', then it also holds for .rJ8., gjj;. 

Proof For finite-dimensional faces, J (el' e3) =l= 0 is equivalent to el =l= e3' The 
proof follows immediately from (ix) in VI T 6.2.3. D 

Henceforth we assume only A V 1.1, A V 1.2 s, A V 2 f, i.e. do not use A V 3. 
Because gjj" gjj; satisfy the same axioms A V 1.1, A V 1.2 s and A V 2 f, to each 

e E G belongs an operator Te projecting from gjj' onto the subspace gjj; c gjje: To 
Y E gjj', a Ye E gjj; is uniquely assigned by f..l (w, Ye) = f..l (w, y) for all WE Kl (e). 
WritingYe = Tey, we obtain T; = Te; hence Te projects the space gjj' onto gjj;. 

One sees immediately Te [0,1] = [0, e] = Le; hence Te is positive. (In general, we 
do not have 1'. e] E G for e] E G!). 

Therefore, the mapping T; dual to Te is an operation K --> K. In particular, for 
WE Ke = Kl (e) we find that f..l (T; w, g) = f..l (w, Te g) first yields T; W E Kl (e) and 
then T; W = w. For an arbitrary W E K, from Te 1 = e follows f..l (Te W, 1) = f..l (w, e). 
Since T; is also positive, for f..l (w, e) =l= 0 we have f..l (w, e)-l T; W E Kl (e). Therefore, 
T; is a projector from gjj onto gjje. 

Further theorems about the map e --> Te can be looked up in [24]. Unfortunate
ly, for infinite-dimensional gjj, gjj' it has not been possible to prove the existence of 
such operators Te without AV 3 and AV 4s. Of course, with AV 3, AV 4s one 
succeeds when a representation by operators is admitted, because then we get 
Te Y = eye and T; W = ewe. 



Appendix 

A I Some Theorems for Atoms in the Lattice G 

We presume all the axioms AV 1.1, AV 1.2s, AVid, AV 3, AV 4s. Therefore G 
is an atomic orthomodular lattice. Moreover, el, e2 satisfy the modularity relation 
M(eh e2), provided at least one of them is finite (VI T 6.3.3 and VIII T 1.3). 
Furthermore the covering condition (VI T 6.3.4) holds. 

T 1 Let p and q be two distinct atoms. If there is an x E G such that (p V x) /\ q 
=1= x /\ q, then there is an atom r, distinct from p and q, such that r ~ p V q. 

Proof. Since x /\ q = 0 or x /\ q = q, from (p V x) /\ q =1= x /\ q follows x /\ q = 0 and 
(pvx)/\q=q. 

If we had x /\p =1= 0, i.e. x /\p = p, it would imply p ~ x and hence x V p = x. 
From this would follow (p V x) /\ q = x /\ q = 0, which contradicts (p V x) /\ q = q; 
therefore x /\ p = o. 

We set r =(p V q) /\ x. If we had r = p V q, we would get p V q ~ x. From this 
would follow x /\ q = q, in contradiction to x /\ q = o. If we had r = 0, the modular 
relation M(x, b) with b = p V q would due to p ~ b imply (p V x) /\ b = p V (x /\ b) 
=pVr= p and hence (pv x) /\ b/\ q = p/\ q = O. With b /\ q = q follows 
(pv x) /\ q = 0, in contradiction to (p V x) /\ q = q. 

Thus the covering condition makes r an atom distinct from p and q, with 
r <pVq. 0 

D 1 For an atom q, let Sq be the set of all a E G for which 

(avx)/\q=x/\q 

holds for all x E G. 

T2 a E Sq, c ~ a => C E Sq; 
a E Sq, bE Sq => aV bE Sq. 

Proof. Let (a V x) /\ q = x /\ q. For c ~ a follows 

(c V x) /\ q ~ (a V x) /\ q = x /\ q. 

That (c V x) /\ q ~ x /\ q is trivial. 
From a, b E Sq follows [(a V b) V x] /\ q = [a V (b V x)] /\ q = (b V x) /\ q = 

x /\q. 0 
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T 3 If p is an atom from Sq, then z = V a is a center element with 0 =1= z =1= 1 and 
p;;§; z, q;;§; z-1, so thatp -1 q. OES. 

Proof From (a V x) /\ q = x /\ q for all x E G, with x = a-1 follows q = (a V a-L) /\ 
q = a-1 /\ q. This gives q ;;§; a-1 and hence 

q;;§; 1\ a-1=( V a)-1=z-1. 
aESq aESq 

Because p E Sq, we have in particular q ;;§; p-1. From this also follows 0 =1= z =1= I. 
Suppose z is not a center element. Then there is a U E G with U =1= (u /\ z) 

V (u /\z-1). For y = u - [(u /\ z) V (u /\ z-1 )], we have y =1= 0 and y /\ z = 0 = Y /\ z-1. 
Therefore, there also exists an atom r with r /\ z = 0 = r /\ z-L. From r /\ z = 0 fol
lows r /\ a = 0 for all a E Sq. If we had r;;§; a-1 for all a E Sq, also r;;§; z-1 would 
follow. Hence there is an a E Sq with r /\ a-1 = o. We now think of a E Sq as being 
so chosen that r /\ a = 0 = r /\ a-1. From this follows a V r =1= a. Hence, there is an 
atom t -1 a with a V t = a V r. We shall show that b = (a V r) /\ r-1 must be an 
element of Sq. 

Immediately follows a V t = a V r = b V r. If we had b ¢ Sq, there would be a y 
with (b V y) /\ q =1= y /\ q, i.e. with (b V y) /\ q = q and y /\ q = O. Because a E Sq, we 
get (a V tV y) /\ q = (t V y) /\ q. With (a V tV y) /\ q = (b V r V y) /\ q ?;. (b V y) /\ q 
= q therefore follows (t V y) /\ q = q, i.e. q ;;§; tV y. 

Because t;;§; a-L, the modular relation a-1/\ (y V t) = tV (a-L /\ y) holds. With 
q;;§;a-1 this implies q;;§;tv(a-1/\y). Because aESq, we further obtain 
(a V t V (a-1 /\y» /\ q = (t V (a-L /\ y» /\ q = q and hence (a V tV (a-1 /\ y)) /\ q = 
(avrv (a-L/\y))/\q=(rV (a-L/\y))/\q= q. With y'=a-1/\y, by y/\q=O we 
also get y' /\ q = O. Therefore q;;§; r V y', q <I: y'; hence the covering condition gives 
qV y' = rV y'. Because q;;§; a-1 and y';;§; a-1, we thus have rV y';;§; a-1 and hence 
r ;;§; a-1. Since this contradicts r /\ a-1 = 0, we find b E Sq. 

By T 2, from bE Sq also follows a vb E Sq. Because b;;§; a V r, we have 
a;;§; a vb;;§; a V r. Therefore the covering condition yields either a V b = a V r or 
a V b = a. If we had a vb = a, we would have b ;;§; a and hence t -1 b. Furthermore, 
b ;;§; a would imply b;;§; b V t ;;§; a V t = b V r. Because t -1 b, this would give 
b V t = b V r. With t -1 band r -1 b, we would obtain t = r and hence r -1 a, in con
tradiction to r /\ a-1 = O. Thus a vb = a V r holds and hence a V r E Sq. From this 
follows a V r ;;§; z and hence r ;;§; z, which contradicts r /\ z = O. 

Therefore, z is a center element. D 

T4 Ifz is a center element and q an atom with q;;§; z-1, they yield [0, z] c Sq. 

Proof For each x E G we get x = (x /\ z) V (x /\ z-1). This implies z V x = 
zv(x/\z-L); hence q;;§;z-1 gives (zvx)/\q=(x/\z-1)/\q=x/\q, therefore 
z E Sq. By T 2 then follows [0, z] c Sq. D 

T 5 If z = V a, then Sq = [0, z] and z-1 is that atom of the center which contains q. 
OES. 

Proof By T 4 and T 3 we have [0, z] c Sq. By T 2, from a E Sq follows a V z E Sq 
and hence a V z ;;§; z, i.e. a ;;§; z. If u is that atom of the center which contains q, then 
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T 4 gives [0, ul. ] C Sq. But there cannot be any larger center element z than z = U 1., 

such that q ;§! zl.. 0 

T 6 If G is irreducible and p, q are two distinct atoms in G, then there is a third 
atom r distinct from p, q with r ;§! p V q. 

Proof If G is irreducible, T 3 yields Sq = {O}. Hence there is an x E G such that 
(p V x) 1\ q * x 1\ q. By T I, the desired atom r then exists. 0 

T 7 If G is irreducible, the order interval [0, e] is irreducible for each e E G. 

Proof If [0, e] were not irreducible, there would exist a center element z of [0, e] 
such that 0* z * e. For all a;§! e we would then have a = (a 1\ z) V [a 1\ (xl. 1\ e)]. 
Therefore, an atom r;§! e obeys either r ;§! z or r ;§! zl. 1\ e. 

Let p be an atom with p;§! z and q an atom with q;§! zl. 1\ e. For an atom 
r ;§! p V q follows r ;§! z or r ;§! zl.. 

For r;§! z we would have r = (p V q) 1\ r = p 1\ r, i.e. r = p. For r;§! zl. we would 
likewise get r = q. Hence no atom in p V q would differ from p, q. Thus by T 6, the 
lattice G would not be irreducible. 0 

A II Banach Lattices 

DIAn ordered vector space is called a vector lattice if the upper and lower 
bounds exist for any two elements x, y. Let them be denoted by x V y and x 1\ y. 

T 1 If R is a vector lattice, then 

x+y={xl\y)+{xvy). 

Proof Since z ~ x implies - z ;§! - x, we get 

x V Y = - [(- x) 1\ (- y)] 
and 

.x 1\ Y = - [(- x) V (- y)]. 

Also, z ~ x implies z + y ~ x + y, hence 

z +(xv y) =(z + x) V (z + y). 

Summarizing, from this follows 

z -(x 1\ y) =(z - x) V (z - y), 

which for z = x + y becomes 

x+y-(xl\y)=xvy. 0 

D 2 A base-normed Banach space fJi) has the Riesz decomposition property if 
[0, xtl + [0, X2] = [0, X3]. We say briefly: fJi) is a Riesz space. 

T 2 If fJi) is a Riesz space, fJi)' is a vector lattice. 
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Proof For I(x) = (x, y) with x E !!Ii+ and Y E !!Ii', let us define 

1+ (x) = sup {/(x') lx' E [0, x]}, 

L (x) = sup {/(x') I x' E [- x, o]}. 

We shall first show that 1+ and L are elements of !!Ii'. We show this for 1+ since 

L (x) = sup {i(x') I x' E [0, x]}, 

where i(x) = 1(- x) = -/(x). 
For 2> ° and x E!!Ii+ follows 1+ (2 x) = 2 1+ (x). For XI, X2 E !!Ii+, because 

[0, xd + [0, X2] = [0, XI + X2] follows 1+ (XI + X2) = h (XI) + 1+ (X2). Therefore 1+ is 
an affine functional in !!Ii+. Because !!Ii = !!Ii+ ~ !!Ii+, we can extend 1+ as a linear 
functional to all of !!Ii. 

With the basis K, we have 

sup 1/+ (x) I = sup II (x') I = IIY II , 
xeK x'eK. 

so that 1+ E !!Ii' and 11/+ II ~ II Y II hold. For this reason we write 1+ = Y+ and L = Y-· 
In order to show that !!Ii' is a vector lattice, we need only to show that a 

supremum exists of ° and y, since then the supremum of YI, Y2 equals 
YI+sup{O,Y2-yd. Similarly we obtain inf(Y~~Y2)=-SUP{(-YI)'(-Y2)}. We 
now assert sup {O, y} = Y+. Immediately from the definition of 1+ follow Y+ ~ 0 and 
Y+ ~y. IfYI ~ O,y, for X E !!Ii+ we get 

(x, YI) ~ (x,y) = I(x). 

This gives 

(x"YI)~/(x') for X'E[O,X], 

whence YI ~ Y+ follows. 0 

A ill The Axiom AVid and the Minimal Decomposition Property 

Here let us assume that !!Ii has the minimal decomposition property, i.e. each 
x E !!Ii is representable as x = ex WI - P W2 with WI, W2 E K and II x II = ex + p. Then the 
following two theorems hold: 

T 1 Every exposed point of L is an element of G. 

Proof If ge is an exposed point of L, then 2 ge - 1 is an exposed point of the unit 
ball [-1,1] of !!Ii'. Therefore, there is an x E!!Ii such that II x II = I and 
Il (x, 2 ge - 1) = 1 and Il (x, 2 g - 1) =1= 1 for g =1= ge. With the minimal decomposition 
x = ex WI - P W2 (ex + P = 1) follows 

Il (x, 2 g - 1) = ex [21l (WI> g) - 1] - P [21l (W2, g) - 1]. 

Because ex + P = 1, from Il (x, 2 g - 1) = 1 follows 

Il(WI,g) = 1 and Il(W2,g)=O. 
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From P.(W2' g) = 0 follows g E Lo (W2) and hence g ;§ e Lo (W2)' We briefly write 
e2 = e Lo(W2). From P.(Wh g) = 1 follows 1- g E Lo (wd and thus 1- g ;§ e Lo (wd 
= el' Therefore, 1 - el ;§ g ;§ e2' 

Conversely, from 1 - el ;§ g ;§ e2 also follows p. (x, 2 g - 1) = 1. Therefore, ge is 
an exposed point if and only if there is a unique element gEL such that 
1- el ;§ g;§ e2' Hence we have 1- el = ge = e2, i.e. ge E G. D 

T 2 AVid is equivalent to the fact that G is the set of exposed points of L. 

Proof. This follows immediately from T 1 and VI T 3.4. 

A IV The Bishop-Phelps Theorem and the Ellis Theorem 

In order to spare the reader the trouble of referring to the journals, we shall 
prove two theorems from [28] and [29]. 

We proceed from a Banach space (fIJ and consider a convex set K in (fIJ. If Xo E K 
and C is a convex cone, we call Xo + C .a support cone of K at the point Xo if 
(xo + C) n K = {xo}. If C has an interior point, by the separation theorem (see [7] 
II § 9.1) there is hyperplane H which separates K and Xo + C, i.e. there is ayE (fIJ' 

and an IX such that K c {x I <x, y) $;; IX}, Xo + C c {x I <x, y) ;§ IX}. From this follows 
<Xo,Y) = IX and lX=inf<x,y). If K is closed, {xlxEK,p.(x,y)=IX} is a non-

xeK 

empty, closed face of K. y is a support functional of K. Therefore, in order to find 
support functionals and closed faces of the closed convex set K it suffices to find a 
support cone with interior points. 

D 1 For y E (fIJ' with II y II = 1, and for k > 0, let 

C(y, k) = {xiii x II;§ k <x,y)}. 

This C (y, k) is a closed convex cone. If k > I, then C (y, k) has interior points. In 
order to show this, we choose an Xl with II xIII = 1 and <Xl ,y) > k- l > 1, which is 
possiQle since IIY II = I. From this follows II Xl II < k <Xl, y). Since the norm II X II 
and the linear functional <x, y) are continuous, there is a neighborhood U of Xl 
with II X II < k <x, y) for all X E U. 

T 1 Let K be a closed, convex subset of (fIJ. Let y E (fIJ' with IIY II = 1 and <x, y) 
bounded .on K. Let k> O. For each point Z E K, there is an Xo E K such that 
Xo E Z + C (y, k), and Xo + C (y, k) is a support cone of K. 

Proof. Let <e be the order on B defined by C (y, k). If I is a totally <e ordered 
subset of the closed set [z + C (y, k)] n K, then p = sup <x, y) =1= 00, since <x, y) is 

xel 

bounded on K. Since I is totally ordered, for any two elements Xl, X2 E I we have 
either Xl - X2 E C (y, k) or X2 - Xl E C (y, k). For X2 - Xl E C (y, k) we have 
II X2 - Xl II ;§ k(X2 - Xl, y). Thus, there is a Cauchy sequence Xv in I such that 
Xv --+ x' E [z + C (y, k)] n K and <xv, y) --+ p. For each X E I we have X <ex': For, if 
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we had Xv <ex for all Xv> they would obey Ilx - XV II ~ k (x - Xv> y) = k [(x, y)
(xv, y)]. This would yield II X - Xv II < e for sufficiently large v, i.e. X = x'. Since I has 
a supremum in [z + C (y, k)] n K, by Zorn's lemma there is a maximal element Xo 
in [z + C (y, k)] n K, i.e. [xo + C (y, k)] n K = {xo}. 0 

T 2 Let Yh Y2 E YIJ' with IIYI II = II Y211 = 1 and (x, Y2) ~ l' with e > 0 for all x with 
(x, YI) = 0 and II x II ~ 1. Then either II YI + Y211 ~ e or II YI - Y211 ~ e. 

Proof By the Hahn-Banach theorem, one can find a z E YIJ' which on the 
hyperplane {x I (x, YI) = O} coincides with Y2 and has the norm II z II = 
sup {1(x,Y2)I(x,YI)=0 and Ilxll ~ l}. Therefore, by assumption, Ilzll ~1'· Since 
(x, Y2 - z) = 0 if (x, YI) = 0, we have Y2 - z = IX YI for a suitable number IX. From 
this follows II Y2 - IX YI II ~ II z II ~ f· 

Let IX 5; O. For IX 5; 1, we have IX-I ~ 1 and II Y2 - YIII ~ II Y2 - IX-I Y211 + 
II IX-I Y2 - YIII ~ 1 -IX- I + IX-I II Y2 - IXYIII ~ 1 - IX-I + f· With IX = II IX YIII ~ II Y211 
+ IIIXYI - Y211 = 1 + IIY2 - IXYIII follows 1 -IX- I = 1 -(1 + II Y2 -IXYIII)-1 =(1 + 
IIY2 -IXYlllr l II Y2 -IXYIII ~ II Y2 - IXYIII ~ 1'· We thus finally obtain II Y2 - YIII ~ e. 

For 0 ~ IX ~ 1 follows 

IIY2- yili ~ IIY2 -IXYIII +(I-IX) IIYIII ~ 1'+(1-IX) 

= f + II Y211 - II IX YI II ~ l' + II Y2 - IX YI II ~ e. 

Ifoc ~ 0, one replacesYI by (- YI) and thus obtains II Y2 + YIII ~ e. 0 

T 3 Let Yh Y2 E YIJ' with IIYI II = II Y211 = 1, and k > 1 + f with 0 < e < 1. If Y2 is not 
negative on C (YI , k), then II YI - Y211 ~ e. 

Proof One can choose an XI with II XI II = 1 so that (XI> YI) > k- I (1 + f) < 1. Let 
X2 be chosen in {xl(x,y)=O} so that IIx211 ~f. Then follows Ilxl ± x211 ~ 1 + 
f < k (Xh YI) = k (XI + X2, YI), therefore XI ± X2 E C (YI> k) and hence by as
sumption (XI ± X2, Y2) 5; O. From this follows l(x2, Y2) I ~ (XI, Y2) ~ II XI II = 1. 
For (x, YI) = 0 and II x II = lone can choose X2 = f. x and obtain I (f x, Y2) I ~ 1, i.e. 
I (x, Y21 ~ 1'· Therefore T 2 yields II YI + Y211 ~ e or I YI - Y211 ~ e. In order to ex
clude II YI + Y211 ~ e, we choose an X3 E YIJ with II x311 = 1 and (X3,YI) > max {k- I, e}. 
From this follows X3 E C (YI, k). By assumption, (x, Y2) 5; 0; so we conclude 
IIYI + Y2115; (X3,YI + Y2) 5; (X3,YI) > e. 0 

T 4 Let K be a closed convex set in YIJ, let M .be a compact, convex set in YIJ. Let 
YI E YIJ' with II YI II = 1 and sup (x, YI) < inf (x, YI) (by the separation theorem, 

xeK xeM 

there always exists such a YI if K n M = 0; see [7] II § 9.2). Then, for each e > 0, 
there exist a Y2 E YIJ' and an Xo E K with II YI - Y211 ~ e and (xo, Y2) = sup (x, Y2) 
< inf (x, Y2)' xeK 

xeM 

Proof For brevity we set y = sup (x, YI), fl = inf (x, YI)' We choose a p with 
xeK xeM 

y < p < fl. With YlJIII as the unit ball of YIJ, we find that N = M + (fl - P) YlJIII is a 
neighborhood of M. Since Mwas assumed compact, N is bounded. 
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Because inf (x, YI) = - 1, we have 
xe9l)11 

inf (x, YI) = inf (x, YI) - (0 - P) = p. 
xeN xeM 
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With oc = 1 +~, we choose an XI E K with y - (x" YI) < (2 OC)-I (P - y). Let /1 be 
greater than '2-1 (P - y) and sup II x -' x.ll. With k = 2 oc /1 (P - y)-I, we have 

xeN 
k > oc > 1. By T 1, there is a point Xo in K such that Xo + C (YI, k) is a support cone 
of K at the point Xo and Xo - XI E C (YI, k) holds. We have N c Xo + C (YI, k), 
because x E N makes II x - Xo II ~ II x - XIII + II XI - Xo II < /1 + II Xo - x.ll ~ /1 + 
k (xo- X"YI) ~ /1 + k(y- (X"YI» < /1 + k(2ocrl (P- y) = 2/1 < 2 OC/1 = k(P - y) 
~ k(x-xo,Y). By the separation theorem, there is aY2 E B' with 

sup (x, Y2) ~ inf (x, Y2)' 
xeK xexo+C(y" k) 

Since Xo + C (Yo, k) is a support cone of K at Xo, we have sup (x, Y2) = (xo, Y2)' 
Moreover, xeK 

(xo, Y2) ~ inf (x, Y2) ~ inf (x, Y2) 
xexo+C(y1k) xeN 

= inf (x, Y2) -(0 - P) < inf (x, Y2)' 
xeM xeM 

Since 

inf (x, Y2) = inf (x, Y2) - (XO,Y2) ~ 0 
xeC(Yl.k) xexo+C(y"k) 

and k > 'Y. = I +~, from T 2 follows Ii YI - Y211 ~ e. 0 

As a special case of T 4 we immediately obtain: 

T 5 If the convex set K is closed and bounded in IJO, then the set of those Y E IJO I for 
which (x, y) attains its supremum on K, is norm-dense in IJO ' • 

In a base-normed Banach space IJO, one can apply the T 4 just derived not only 
to the basis K. One also can investigate the problem of the minimal decomposition 
of an x E IJO. As defined in IV § 4, by a minimal decomposition of x one 
understands a decomposition x = oc WI - P W2 with WI, W2 E K and II x II = oc + p. 
One can also express this by: x = XI - X2, where XI, X2 E IJO+ and II x II = II XI II 
+ II x211· As a positive decomposition of x let us denote a general decomposition 
x = XI - X2 with XI, X2 E IJO+. According to IV T 4.6, every x has a positive 
decomposition. The set of XI for which x = XI - X2 = XI - (XI - x) is a positive 
decomposition, is IJO+ n [x + IJO+]. 

The cone IJO~ has interior points (in the norm) since IJO' is an order unit space. If 
Y is an interior point of IJO~, then Ky = {x I x E IJO+ and (x, y) = I} is a basis of IJO+. 
Then x E IJO+ and so (x, y) = A > 0; hence A-I x E Kyo Therefore the initial basis K 
of IJO equals KI . 

One can define a norm II x lIy with Ky instead of K, namely as a gauge 
functional of the set coCKy U - Ky); for this see IV T 4.8. We also have II x lIy 
=sup{l(x,Y)II-Y~y~y}. From IIYII-IYE[-I,I] follows IIxlly~IIYllllxll. 
Since Y is an interior point of IJO~, there is an e > 0 with Y - e 1 E IJO~, i.e. e- I Y ~ I. 
From this follows IIx lIy ~ e II x II. Therefore the norms \Ix lIy and II x II are equiva
lent Hence IJO is also a Banach space relative to the norm II x llyo 
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T6 Anx E .%'has 

II x II = 2 inf {(z, I) Iz E .%'+ n [x + .%'+]} - (x, I). 

A minimal decomposition of x exists if and only if 1 is a support functional on 
.%'+ n [x + .%'+1. With Xl E .%'+ n [x + .%'+1 and 

(Xl, I) = inf {(z, 1)lz E.%'+ n [x + .%'+1}' 

we find the minimal decomposition x = Xl - (Xl - X). 

Proof By IV T 4.8 we get 

II X II = inf {II z II + II z - X III z E .%'+ n [x + .%'+]}. 

Because z, z - X E .%'+, we have II z II = (z, I) and II z - x II = (z - x, I). Thus 
follows 

Ilx II = inf {(2z - x, 1)lz E.%'+ n [x + .%'+]) 

= 2 inf {(z, I) Iz E .%'+ n [x + .%'+]} - (x, I). 

A positive decomposition x = Xl - (Xl - x) is minimal if and only if II x II = II Xl II 
+ II Xl - x II, i.e. if and only if 

(x, 1)= inf {(z, 1)lz E.%'+ n [x + .%'+]) - (x, I). 0 

This T 6 aiso holds if one replaces K by Ky and II x II by II x Il y , where Y is an 
interior point of .%'+. Therefore, x has a minimal decomposition with respect to the 
basis Ky if and only ify is a support functional of .%'+ n [x + .%'+1. 

Let Ex denote the set of those y in the interior of .%'+ which are support 
functionals on.%'+ n [x + .%'+1. Then we find 

T 7 Ex is norm-dense in .%'.+. 

Proof The set .%'+ n [x + .%'+1 is closed and convex. Let Yl be an interior point of 
.%'.+. Then 

inf {(x', Yl) lx' E .%'+ n [x + .%'+]} 

exists. By T 4, for each 8> 0 there is a support functional Y2 of .%'-t' n [x + .%'+1 with 
II Yl - Y211 ~ 8. 0 
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