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Preface and Introduction

Though this be madness, yet there is method in’t.

Hamlet, William Shakespeare

Matrix mechanics was introduced in 1925 by the German physicist Werner
Heisenberg1 [13]. However, the American Nobel laureate Steven Weinberg2 writes
about this publication [26]:

If the reader is mystified at what Heisenberg was doing, he or she is not alone. I have tried
several times to read the paper that Heisenberg wrote on returning from Helgoland, and,
although I think I understand quantum mechanics, I have never understood Heisenberg’s
motivations for the mathematical steps in his paper.

For years, Heisenberg and his colleagues had been struggling with a problem that
had been raised in 1913 by Niels Bohr3 in his atomic theory: why do electrons in
atoms occupy only certain permitted orbits with certain well-defined energies?
Heisenberg took a completely new approach to this question. Because the trajectory
of an electron in an atom cannot be directly observed, he decided to deal only with
measurable quantities (namely the allowed energies for the quantum states of all
electrons in the atom, as well as the frequencies with which an atom spontaneously
jumps from one of these quantum states to a different state while emitting a light
particle, i.e., a photon). Heisenberg introduced a sort of “table” of these frequencies.
He performed mathematical operations on it, which led to new tables for the various
physical quantities such as position, velocity, or the square of the velocity of an
electron.

To be more precise, the table entries were the so-called transition amplitudes,
that is, quantities whose squares specify a transition probability. When returning

1Werner Heisenberg, 1901–1976, German physicist, Nobel Prize 1932.
2Steven Weinberg, * 1933, American physicist, Nobel Prize 1979.
3Niels Bohr, 1885–1962, Danish physicist, Nobel Prize 1922.
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from Helgoland (where he first had this crucial idea) to Göttingen, Heisenberg
found out that the operations he applied to these tables were well known to
mathematicians. The tables were called matrices, and the operations that he used to
get from the table representing the electron velocity to the table representing the
square was named matrix multiplication. Starting from the known dependence
between the energy of a particle and its velocity and position in a simple system,
Heisenberg could calculate a table of the system’s energies in its different quantum
states, similar to Newton’s4 calculation of the energy of a planet based on its
position and velocity.

At the time, Heisenberg was constantly in touch with some influential theoretical
physicists, including the German researchers Max Born5 and Pascual Jordan6 and
the English physicist Paul Dirac.7 Until the end of the year 1925, they transformed
Heisenberg’s ideas into a comprehensive and systematic version of quantum
mechanics, which today we refer to as matrix mechanics. With the help of the new
matrix mechanics, the German physicist Wolfgang Pauli8 managed in the following
January to solve the paradigmatic problem in atomic physics, namely the calcula-
tion of the energy levels of the hydrogen atom. His calculations proved the earlier
ad hoc results of Bohr.

H.S. Green, an employee of Max Born, writes in [12]:

Most books on quantum theory emphasize the wave mechanical approach (of Schrödinger9),
probably because it is supposed to be easier to understand for those who already have a solid
knowledge on differential equations.

In this book, however, we restrict ourselves to the algebraic method using matrices
and only briefly describe Schrödinger’s wave mechanics in order to show the
equivalence with Heisenberg’s matrix mechanics. By implementing numerical
algorithms in standard software such as MAPLE or MATHEMATICA, matrices
and matrix equations are easy to handle these days [23].

I would like to thank Dr. Claus Ascheron from Springer for his kind assistance
during the compilation of this manuscript. Last but not least, I would like to express
my gratitude towards my wife Renate, without whom this book would have never
been published.

Bremen, Germany Günter Ludyk

4Isaac Newton, 1642–1727.
5Max Born, 1882–1970, German physicist, Nobel Prize 1954.
6Pascual Jordan, 1902–1980, German physicist.
7Paul Dirac, 1902–1984, English physicist, Nobel Prize 1933.
8Wolfgang Pauli, 1900–1958, German physicist, Nobel Prize 1945.
9Erwin Schrödinger, 1887–1961, Austrian physicist, Nobel Prize 1933.
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Notations

Important definitions, facts, and theorems are shown in boxes. Important in-
termediate results are double underlined.

Scalars are written in normal font:

a; b; c; a; b; �; . . .

Vectors are written as lowercase letters in bold font:
x, p, v, …

Vectors in four-dimensional spacetime (R4) are written as bold lowercase letters
with an arrow:

~x;~v;~u; . . .

Matrices are written as uppercase letters in bold font:

X;P;R; I; . . .

Matrix vectors are written as uppercase letters in bold Fraktur font:

<<;X;B; . . .

Matrix vectors are block matrices:

<< ¼def
X 1

X 2

X3

0
@

1
A:

The identity matrix In of size n is an n-by-n matrix in which all the elements on the
main diagonal are equal to 1 and all other elements are equal to 0:

ix



I4 ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

If the components are real numbers (R), the transpose of a vector x or a matrix A is
written as xT and AT, respectively. If the components are complex numbers (C), the

transpose is written as xy and Ay, respectively. In this case, the components of the
transpose row vector are the complex conjugate. Note that this is necessary in order

for the scalar product xyx to be a real number. The same reasoning applies to the
transpose matrix elements.

x Notations
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Chapter 1
Quantum Theory Prior to 1925

Abstract A description is given of the “Older Quantum Mechanics” as introduced
by Nils Bohr and Arnold Sommerfeld in the years before 1925. Bohr’s postulates
are formulated and the atom size is derived from them.

1.1 Bohr–Sommerfeld Quantization Rule

Before the behavior of atoms could be described with the help of quantum mechan-
ics, Bohr and Sommerfeld1 explained the spectra of simple atoms based on Bohr’s
atom model (“Older Quantum Mechanics”). In this model, spectral lines appear as
energy differences between two “discrete” electron orbits. The Bohr–Sommerfeld
quantization rule requires that not only the equation of motion holds for the orbit of
the electron around the nucleus, but that for each additional circulation

∫
p dx = nh (n = 1, 2, . . . ) (1.1)

applies, where p is the momentum, and the position x runs through one complete
circle. As does the angular momentum, this integral has the dimension location times
moment and is an action. The constant

h = 2π · � = 2π · 1.054572 · 10−34 Js = 6.6260755 · 10−34 Js

is the Planck quantum of action or Planck’s constant.2 In other words, the action of
each stationary electron orbit in the atom is quantized. The action can only occur as
an integer multiple of Planck’s constant. A detailed derivation of this principle by
Sommerfeld [22] is presented in the following section.

1Arnold Sommerfeld, 1868–1951, German physicist.
2Max Planck, 1858–1947, German physicist, Nobel Prize 1919.

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
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2 1 Quantum Theory Prior to 1925

1.2 Sommerfeld’s Derivation

Let us consider an arbitrarily moving point mass with momentum

p = mv. (1.2)

With v = q̇ we get
p = m q̇. (1.3)

It is important to note that the dynamic triple of the momentum coordinates p is
considered in addition to the geometric triple of the position coordinates q. Newton
supplies

ṗ = f = −∂Epot

∂q
, (1.4)

where it was assumed that the force f can be derived from a potential energy Epot

(which is a function of the position coordinates q). Using (1.3), the kinetic energy is
obtained as

Ekin = m

2
q̇

ᵀ
q̇ = 1

2m
p

ᵀ
p.

The total energy as a function of the qk and pk is also called the Hamilton function
or Hamiltonian H . We hence have

H(q, p) = Ekin + Epot ,
∂H

∂q
= ∂Epot

∂q
,

∂H

∂ p
= ∂Ekin

∂ p
= p

m
.

As a result, the basic (1.3) and (1.25) can be written as

dq
dt

= ∂H

∂ p
,

d p
dt

= −∂H

∂q
. (1.5)

Assuming that the kinetic energy is expressed as a function of q and q̇, the equation

p = ∂Ekin

∂q̇
(1.6)

is identical to (1.3).
The values of the coordinates q and p determine the state of the system. To

understand how the state of motion of the system depends on the location q and
the speed/momentum p, let us imagine a single mass point with three degrees of
freedom. Its three location coordinates and its three momentum coordinates can be
plotted as Cartesian coordinates in a state space of six dimensions, such that each
point of this state space represents a potential state of our mass point. Accordingly,
for a system with d degrees of freedom one gets a state space with 2d dimensions.



1.2 Sommerfeld’s Derivation 3

In a first step,we can restrict ourselves to systemswith only one degree of freedom.
In this case, the general state space is a simple (two-dimensional) state plane. In this
state plane, we can introduce q and p as orthogonal coordinates. Afterwards, we
can construct state trajectories in this state plane, that is, the sequence of points
corresponding to the successive states of motion of the system. Taking each point
as the initial condition, we could draw such state trajectories and cover the entire
state plane with them, whereby the trajectories are arbitrarily close to each other. It is
characteristic for quantum theory, however, that a discrete subset of state trajectories
is singled out from the infinite amount of potential trajectories. For defining this
subset, we first consider a surface area of the state plane that is bounded by any two
state trajectories, and we associate this area with the corresponding state. Afterwards
we construct our bundle such that the area of the state between two neighboring
curves is always equal to Planck’s constant h. In other words, h has the meaning of
an elementary area of the state. Let us from now on consider this meaning the true
definition of Planck’s quantum h.

We illustrate these abstract ideas with the help of two important special cases,
namely the oscillator and the rotator. The linear oscillator is a spring attached to
a point mass m at rest position, whereby the mass can only move in one direction
x = q from its rest position. Due to the spring, the mass experiences a restoring
force, but no damping. The oscillator is the simplest model of a vibration center, as it
is used in optics to describe a “quasi-elastically bounded electron.” The oscillator is
specified as a harmonic oscillator if we want to emphasize that only a certain eigen-
oscillation is allowed. The oscillation frequency of the oscillator (i.e., the number of
free vibrations in one time unit) is ν. The oscillation process then looks like

x = q = a sin 2πνt, (1.7)

where a is the amplitude of the oscillation. In this case, the momentum p is simply
mq̇; that is,

p = 2π ν m a cos 2πνt. (1.8)

Eliminating t from (1.7) and (1.8), we obtain an ellipse as the state trajectory in the
p, q-plane:

q2

a2
+ p2

b2
= 1, (1.9)

where the semi-minor axis b has the value

b = 2π ν m a. (1.10)

The area of the ellipse is
a b π = 2π2ν m a2.



4 1 Quantum Theory Prior to 1925

Fig. 1.1 State plane of the
linear oscillator

p

q

area = h

Note that this entity equals E/ν, where E is the constant vibrational energy. To see
this, let us calculate E at the time t = 0, where the potential energy is equal to 0 and
the kinetic energy is

m

2
a2(2πν)2 = E . (1.11)

Therefore in fact

a b π = E

ν
. (1.12)

Figure1.1 shows a family of similar ellipses in the state plane (p, q) that is obtained
by changing E accordingly. After all, (1.10) ensures that the ratio b/a has the constant
value 2π ν m. In the image, the ellipses follow one another in such a way that the
resulting ellipse rings have the same area h. If we denote the difference of the energy
constants for two consecutive ellipses with �E , we obtain from (1.12)

h = �E

ν
, �E = h ν. (1.13)

By numbering the ellipses as 0, 1, . . . , n and calling the corresponding energies
E0, E1, . . . , En , it follows from (1.13)

En = E0 + h ν n. (1.14)

In the classical theory, all points of the state plane are equal and represent possible
states of the oscillator. In quantum theory, however, those states are distinguished
whose points lie on one of those ellipses. Such states are called the stationary states of
the oscillator, because they can be continuously passed through without energy loss
of the oscillator. In a way, they represent the charged mass point without radiation.



1.2 Sommerfeld’s Derivation 5

From time to time, however, the oscillator changes its energy. In particular, it emits
energy once its state moves onto a smaller ellipse. Similarly, it absorbs energy once
the state jumps to a larger ellipse. Note, however, that both emission and absorption
occur in multiples of the energy quantum hν.

Let us generalize this insight to any mechanical system with one degree of free-
dom. The image point of the system in the state plane is restricted to certain quantum
theoretically special “quantized” state trajectories, each of which includes an ele-
mentary region of size h with the following trajectory. The nth trajectory includes
(when closed) the area

J =
∫∫

dp dq, (1.15)

where the integral covers the inside of the nthtrajectory. Carrying out the integration
with respect to p yields

J =
∫

p dq, (1.16)

where the integral is bound by the nth trajectory itself.We call (1.16) the state integral
or action.

The final formulation of the quantum hypothesis is obtained by requiring that the
difference of the state integrals for two consecutive trajectories must be equal to h:

�J = h, J = J0 + n h. (1.17)

This requirement selects a discrete (infinite) number of real, quantum theoretically
possible trajectories out of the continuous manifold of all possiblemechanical move-
ments. Unlike this general version of quantum hypothesis, the original energy quan-
tum hypothesis as formulated by Planck with respect to thermal radiation is only
valid for the oscillator. The above evaluation of the state integral (1.15) was very
easy because we could directly calculate the area of the ellipses by the formula a b π.
In particular, (1.17) yields (assuming J0 = 0) a formulation that is analogous to
(1.14):

J =
∫

p dq = n h. (1.18)

Now let usmove on to the rotator. A rotator is a pointmassm that rotates uniformly
on a circle of radius a around a fixed center. We can use the rotation angle ϕ = q as
a natural location coordinate. Starting from an arbitrary initial position ϕ = 0, the
particle position on the circle is labeled by the angle ϕ. Because the velocity of the
point mass m is equal to aq̇ , the kinetic energy is given by

Ekin = m

2
a2q̇2. (1.19)

For a uniform rotation, the potential energy is independent ofϕ. Also, we can assume
that it does not depend on a either, inasmuch as a is constant during the motion. We
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Fig. 1.2 State plane of the
rotator

p

q

area = h

+π−π

can therefore write
Epot = const.

According to (1.6) and (1.19), the momentum corresponding to q̇ is

p = m a2q̇. (1.20)

Because q̇ = const , this momentum p is also constant, in accordance with the
equations of motion (1.5). Therefore, the state trajectory of the rotator in the state
plane (p, q) is a line that is parallel to the q-axis; see Fig. 1.2.

Note that the state trajectory is not a closed curve in this case. Therefore we must
first define what we understand as the area of the state trajectory. We remark that the
state of the rotator (i.e., its location on the trajectory as well as the direction of its
momentum) is repeated after each loop. The true state trajectory is therefore not an
infinite, but a finite line that is repeatedly passed through from left to right. In the
q-direction, the state area of the rotator has only the length 2π. Casually speaking,
one can cut out the line q = ±π and glue it together to form a cylinder. The area of
the cylinder between the nth and the (n−1)th state trajectory is then given (similar to
a rectangle with the baseline 2π) by 2π(pn− pn−1). This areamust now be equal to h.
For the area between the nth and the zero state trajectory (the latter being represented
by the q-axis), we then get

2 π pn = n h. (1.21)

This area plays the same role as the closed curves in the case of the oscillator.
As we can see, the rotator is not quantized in energy quanta (as the oscillator),

but according to its angular momentum. More precisely, the angular momentum of
a rotator is an integral multiple of h/2π. We can now calculate the (kinetic) energy
of the rotator based on (1.19) and (1.20) as

Ekin = p q̇

2
.
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From (1.21), with ν = q̇/2π we further get:

Ekin = n h

2

q̇

2π
= n h ν

2
. (1.22)

Here, ν is the winding number of the rotator, that is, the number of full rotations
in one time unit. This number is the analogue of the oscillation frequency of the
oscillator.

1.3 Bohr’s Postulates

Niels Bohr derived his model by adding three postulates to Rutherford’s model,
namely:

1. Electrons move on stable orbits around the nucleus. Contrary to the prediction
of the theory of electrodynamics, the electron radiates no energy (in the form of
electromagnetic radiation) when moving on the orbits.

2. The radius of the electron orbit does not change continuously, but abruptly. When
the electron jumps from one orbit to another, electromagnetic radiation is emitted
(or absorbed). The frequencyof the radiation is givenbyMaxPlanck’s relationship
between energy and the frequency of light. According to this relationship, if En

is the energy of the initial state and Em is the energy of the target state, then a
photon is emitted with frequency

ν = (Em − En)

h
. (1.23)

3. Electron orbits are only stable if the orbital angular momentum L of the electron
is an integral multiple of the reduced Planck constant � = h

2π : L = n�. This
postulate is often called the selection condition.

In addition, the classical equation of motion applies, that is, a centripetal Coulomb
force acts.

1.4 Atom Sizes

Bohr’s atom model allows a comparison of a series of numerical predictions with
experimental results, especially with respect to the position of the lines in the hydro-
gen spectrum. The model treats the electron as a pointlike particle that is attracted by
the opposite electric charge of the nucleus. This force shapes the path of the electron
according to the laws of classical mechanics on circular orbits. That is why in Bohr’s
atomic model the distance of an electron to the nucleus is also referred to as the



8 1 Quantum Theory Prior to 1925

classical atomic radius. The angular momentum L of a particle with mass m and
velocity v along a circular orbit of radius r is

L = mvr.

A centripetal force acts on the moving electron according to

Fcentr = mv2

r
.

On the other hand, the electron with the elementary charge e experiences a force in
the electric field of the proton according to Coulomb’s law:

Fel = e2

4πε0r2
.

This Coulomb force keeps the electron on the circular orbit; that is, the two forces
must be equal:

Fel = Fcentr ⇔ e2

4πε0r2
= mev

2

r
. (1.24)

Hereby, the angular momentum must satisfy the above-postulated selection con-
dition. A more sustainable formulation of this condition is that the length of the
orbit (2πr ) must be an integer multiple of the electron’s elementary wavelength (or
de Broglie wavelength), because otherwise destructive interference would occur.
Along a permitted orbit, the electron forms a standing matter wave:

λdB = h

p
= h

mev
⇒ 2πr = n

h

mev
.

Solving for v yields

v = n�

mer
.

This velocity v can be substituted in the above equation for the forces:

e2

4πε0r2
=

me

(
n�

mer

)2

r
⇔ e2

4πε0r2
= men2�2

m2
er

3
⇔

rn = n2
ε0 · h2
mee2π

. (1.25)
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The smallest radius (n = 1) is denoted as Bohr’s atomic radius:

r1 = ε0h2

mee2π
≈ 5.29 · 10−11m. (1.26)

For each higher electron orbit, we get

rn = n2 · r1 ≈ n2 · 5.29 · 10−11m. (1.27)

The energy En of the electron on the nth orbit consists of kinetic as well as
potential energy, whereby the potential energy is negative:

En = Ekin + Epot = me · v2
n

2
− 1

4πε0
· e

2

rn
. (1.28)

From (1.24), it follows that

v2
n = e2

4πε0 · rn · me
.

We substitute this term in (1.28), which provides

En = −1

2

1

4πε0

e2

rn
.

With (1.26) and (1.27), we get

En = −1

2

1

4πε0

e2

n2r1
= − mee4

8ε20h
2

1

n2
= −13.6 eV · 1

n2
. (1.29)

In a hydrogen atom, an electron can only assume these discrete energy values, where
the integer n denotes its current trajectory.



Chapter 2
Heisenberg’s Year 1925

Abstract Starting from the known facts on spectral lines up to 1925, the crucial new
ideas of Heisenberg are presented which led him to the introduction of his matrix
quantum mechanics.

2.1 Spectral Lines

Nineteenth century research on spectral lines can be considered the starting point
for quantum theory. These investigations are based on two measurable variables,
namely the frequency and the brightness of the spectral lines. After all, the emitted
light consists of very sharp frequencies. In the year 1850, Kirchhoff1 and Bunsen2 had
discovered that chemical elements produce such characteristic lines in their spectra.

In the visible region of the hydrogen spectrum, four lines can be observed (the
wavelengths get closer as they decrease). In 1885, the Swiss mathematician Balmer3

(a teacher at a lyceum) discovered that the wavelength λ of these lines can be calcu-
lated with the simple formula

λ = A

(
n2

n2 − 4

)
,

where A = 364.56 × 10−9 m and n = 3, 4, 5, or 6. This leads to the following wave-
lengths (in nanometers):

• 656.279 nm (red)
• 486.133 nm (blue-green)
• 434.047 nm (violet)
• 410.174 nm (violet)

1Gustav Robert Kirchhoff, 1824–1887, German physicist.
2Robert Wilhelm Eberhard Bunsen, 1811–1899, German chemist.
3Johann Jakob Balmer, 1825–1898.

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
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Table 2.1 Measured or calculated hydrogen spectral lines in the Balmer series

Transition
n → m = 2

3 → 2 4 → 2 5 → 2 6 → 2 7 → 2 8 → 2

Name Hα Hβ Hγ Hδ Hε Hζ

Measured (nm) 656.2793 486.1327 434.0466 410.1738 397.0075 388.8052

Calculated 656.278 486.132 434.045 410.1735 397.0074 388.8057

Colour Red Blue-Green Violet Violet Violet Violet

For the wavelengths λ, we obtain the Balmer formula

1

λ
= R

(
1

4
− 1

n2

)
,

where R = 4/A is the so-called Rydberg4 constant.5 With explicit numbers, it reads

1

λ
= 10973731

(
1

4
− 1

n2

)
[m−1].

Table 2.1 is a table of the currently known spectral lines in the Balmer series, measured
or calculated with the Balmer formula.

Five years later, in 1890, Rydberg generalized the Balmer equation into the
Rydberg formula

1

λ
= R

(
1

m2
− 1

n2

)

with m = 1, 2, . . . and n = m + 1,m + 2, . . .. For m = 1, one obtains the Lyman
series. Form = 2, we get again Balmer’s series, andm = 3 yields the Paschen series.
For m = 4, the Brackett series is obtained, and m = 5 leads to the Pfund series. Each
series is named after its discoverer; see Table 2.2 and Fig. 2.1.

For the spectra of other elements, different Rydberg constants are obtained. The
Swiss physicist Ritz6 discovered in 1908 that one can derive new lines from the
known spectral lines of an element without having to modify any constants. Here is
why: from the above formulas it becomes obvious that the resulting frequencies ν
depend on two integers, namely m and n, in other words,

ν(m, n) = Rc

(
1

m2
− 1

n2

)
. (2.1)

4Johannes Robert Rydberg, 1854–1919, Swedish physicist.
5Today, R is an accurately known fundamental constant with R∞ = 10973731.568539(55)m−1.
The index ∞ indicates that an infinitely large nucleus mass is assumed.
6Walter Ritz, 1878–1909, Swiss theoretical physicist.
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Table 2.2 Hydrogen spectral lines series

Name n1 n2 Formula Spectrum range/Colour

Lyman-Series 1 2, 3, 4, . . . ν̃ = R

(
1 − 1

n2
2

)
Vacuum-UV (121 nm →
91 nm)

Balmer-Series 2 3, 4, 5, . . . ν̃ = R

(
1
22 − 1

n2
2

)
red, blue-green, 4×
violet, then transition to
near-UV → 365 nm

Paschen-Series 3 4, 5, 6, . . . ν̃ = R

(
1
32 − 1

n2
2

)
IR-A (1875 nm →
820 nm)

Brackett-Series 4 5, 6, 7, . . . ν̃ = R

(
1
42 − 1

n2
2

)
IR-B (4050 nm →
1460 nm)

Pfund-Series 5 6, 7, 8, . . . ν̃ = R

(
1
52 − 1

n2
2

)
IR-B (7457 nm →
2280 nm)

Balmer-Series:

600 400 200λ(nm)

En
(eV )

0

−5

−10

−15 −5 −2
Lyman-Series Balmer-Series Paschen-Series

n

n

n

2

3

4

5

2

1

3
4

3

4

5

6
7

0

−2

−5

0

−1

−2

Hα Hβ Hγ

Fig. 2.1 The visible part of the hydrogen spectrum of the Balmer series (above). Energy levels and
transitions (below)

Adding two different frequencies ν(m1, n1) and ν(m2, n2) of a spectrum, one obtains

ν(m1, n1) + ν(m2, n2) = Rc

(
1

m2
1

− 1

n2
1

+ 1

m2
2

− 1

n2
2

)
. (2.2)

For n1 = m2 we obtain the new frequency according to the Ritz combination prin-
ciple:

ν(m1, n2) = ν(m1, n1) + ν(n1, n2) = R · c
(

1

m2
1

− 1

n2
2

)
. (2.3)
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And then the time of Niels Bohr came! It can be safely assumed that he was
inspired by the Rydberg formula

ν(m, n) = R · c
(

1

m2
− 1

n2

)
.

We can write this formula without brackets:

ν(m, n) = R · c 1

m2
− R · c 1

n2
. (2.4)

On the other hand, we have

E = h · ν,

and therefore

ν = E

h
.

It seems very plausible to rewrite for (2.4)

ν(m, n) = Em

h
− En

h
. (2.5)

From this follows

Ek = h · R · c
k2

.

Note that the dimensions in the formula are consistent: the action quantum h has
dimension Js, R · c has dimension s−1 and k is a dimensionless integer, so Ek has
indeed the dimension J .

We need to emphasize once again that in quantum theory the mechanical behavior
of an atom is characterized by two basic parameters, namely the energy En of the
stationary state n and the probability per unit time A(n,m) for the spontaneous
transition from state n to the state m. In a spectroscopic study, we measure the
radiation as emitted by the atom, that is, the line spectrum. Quantum theory then
puts the mechanical properties (namely En and A(n,m)) into relation to the spectral
characteristics (namely the frequency and intensity of the emitted light). Hereby, the
transition energy En − Em determines the frequency of the light, and the transition
probability A(n,m) determines its intensity.

The emission of radiation by an atom is the result of electrons jumping between
two discrete electron orbits. The transition probability determines the occurrence
of a quantum jump. The radiation emitted during the transition n → m then has
the frequency ν(n,m). Therefore, a mechanical energy loss Em − En occurs during
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the transition n → m. Because7 the photon energy is h ν(n,m) = � ω(n,m), energy
conservation requires Em = En + � ω(n,m); that is,

Em − En = � ω(n,m). (2.6)

Note that a single photon only generates a flash of light on a spectral line. The
complete spectral line is produced only if many atoms emit many photons. The num-
ber of photons with frequency ν(n,m) that arrives at a given area of the spectrometer
per unit time determines the intensity of the line. In other words, the line intensity is
a function of the number of jumping electrons, that is, the transition rate A(n,m).

Let us consider a set of atoms, each in the state n. Then the light intensity P(n,m)

of the transition n → m defined by the amount of energy emitted per unit time �t
and per atom is

P(n,m)
def= 1

Nn

�E(n,m)

�t
, (2.7)

where Nn is the number of atoms in the state n, and �E(n,m) is the energy con-
sumption of all atoms accomplishing the transition n → m in the time interval �t .
Again, the conservation of energy requires

�E(n,m) = �N (n,m)� ω(n,m),

where �N (n,m) is the number of atoms jumping from n to m in the time interval
�t . For large Nn , the portion of jumping atoms equals the probability for an atom to
jump, namely

�N (n,m)/Nn = A(n,m)�t.

A(n,m) is therefore the probability per unit time. From (2.7) we get

P(n,m) = �N (n,m)� ω(n,m)

Nn�t
= A(n,m)� ω(n,m). (2.8)

This result implies that intense lines are very probable transitions, and weak lines
are improbable transitions.

2.2 Introduction of Matrices

Werner Heisenberg started off from the principle that concepts which do not corre-
spond to physically observable facts should not be used in a theoretical description.
Heisenberg therefore banished the idea of electron orbits with fixed radii and orbital

7
�

def= h
2π .
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periods, because these quantities cannot be observed. Instead, he postulated that the
theory was to be constructed with the help of abstract quadratic schemes. Rather than
describing the motion by a time-dependent coordinate x(t), he suggested determin-
ing a scheme of transition amplitudes xmn . Heisenberg’s theory is entirely based on
measurable quantities, namely the frequencies and strengths of the spectral lines of
atoms.

From Rydberg’s formula it follows that each frequency ν(n,m) of the observed
spectrum can be written as the difference of two energy terms En and Em :

hν(n,m) = En − Em . (2.9)

This immediately leads to the Ritz combination principle

ν(n, k) + ν(k,m) = 1

h
((En − Ek) + (Ek − Em)) = 1

h
(En − Em) = ν(n,m),

(2.10)
where the νs are the observable frequencies of the spectrum. From (2.9), we also
find that

ν(n,m) = 1

h
(En − Em) = − 1

h
(Em − En) = −ν(m, n), (2.11)

and that

ν(n, n) = 1

h
(En − En) = 0. (2.12)

For an objective observer, the frequencies and intensities of the spectral lines are
the only available data of what is happening inside an atom. Because the occurring
frequencies depend on two terms, it makes perfect sense to arrange the frequencies
in a table. The first row contains all frequencies that are generated from E0, that is,

ν(0, 0), ν(0, 1), ν(0, 2), . . . .

The second row contains frequencies that can be generated starting from E1, namely

ν(1, 0), ν(1, 1), ν(1, 2), . . . .

The columns always contain all frequencies (in rising order) that can be generated
upon reaching a certain level. Eventually, the table can be written in the form of a
matrix � as

� = 2π

⎛
⎜⎜⎜⎝

ν(0, 0) ν(0, 1) ν(0, 2) · · ·
ν(1, 0) ν(1, 1) ν(1, 2) · · ·
ν(2, 0) ν(2, 1) ν(2, 2) · · ·

...
...

...
...

⎞
⎟⎟⎟⎠ . (2.13)
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For a harmonically bound electron, the position x(n, t), where the stationary state
is labeled by n, can be written as a Fourier series

x(n, t) =
∞∑

α=−∞
aαe

i ω(n)t . (2.14)

Heisenberg observed that the αth component of the classical motion corresponds to
the quantum mechanical transition from the state n to the state n − α. So Heisenberg
replaced the classical component

aαe
iω(n)t

by
a(n, n − α)eiω(n,n−α)t .

In order to account for the transition from one stationary state n to another (n − α),
he replaced (2.14) by

x → a(n, n − α)eiω(n,n−α)t ,

or
xnm = a(n,m)eiω(n,m)t , (2.15)

and summed over transition components as in (2.14). Heisenberg represented the
position by a set of transition components, xmn , and he replaced xα(n) by xmn and
αω(n) by ω(n,m).

Additionally Heisenberg modified the old Bohr–Sommerfeld quantization rule
(1.18)

J =
∫

p dq =
∫

mẋ2dt = h n,

integrated over a full period of the motion. If one expressed this equation in terms of
the Fourier series (2.14) for x(n, t) one would obtain

h n = 2πm
∞∑

α=−∞
|aα(n)|2α2ωn. (2.16)

The presence of the integer n in (2.16) seemed for Heisenberg to be an arbitrary con-
dition, and he concluded that this equation must be replaced by a new condition and
that the new condition must be about the transition between states. By differentiation
(2.16) with respect to n Heisenberg found

h = 2πm
∞∑

α=−∞
α

d

dn
(αωn|aα|2).

http://dx.doi.org/10.1007/978-3-319-26366-3_1
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Heisenberg replaced the derivative by a difference:

h = 4πm
∞∑

α=0

{|a(n, n + α)|2ω(n, n + α) − |a(n, n − α)|2ω(n, n − α)}. (2.17)

This is Heisenberg’s quantum condition; it relates the amplitudes of different lines
within an atomic spectrum.

How is the quantity (x(t))2 to be represented in quantum mechanics, which
appears, for example, by modeling an anharmonic oscillator? The answer in classical
theory is obviously:

bβ(n)eiω(n)β t =
∞∑

α=−∞
aαaβ−αe

iω(n)(α+β−α)t , (2.18)

so that

(x(t))2 =
∞∑

β=−∞
bβ(n)eiω(n)β t . (2.19)

To Heisenberg it seemed that in quantum mechanics the simplest and most natural
assumption would be to replace (2.18) by:

b(n, n − β)eiω(n,n−β)t =
∞∑

α=−∞
a(n, n − α)a(n − α, n − β)eiω(n,n−β)t . (2.20)

Max Born studied Heisenberg’s manuscript and discovered that Heisenberg’s sym-
bolic multiplication was nothing but matrix multiplication.

By collecting all possible transitions in a matrix (similar to the frequencies ν in
�), we obtain a matrix of the form8

X = (
a(n,m) ei2πν(n,m)t

)
.

Due to ν(n,m) = −ν(m, n) and a(m, n) = a∗(n,m), we get x(n,m) = x∗(m, n);
that is, the matrix X is an Hermitian9 matrix. When transposing an Hermitian matrix
X , each component becomes its complex conjugate value. If we introduce a matrix
multiplication as XX†, the elements of the product matrix are

a(n,m)a(m, n) = a(n,m)a∗(n,m) = |a(n,m)|2 . (2.21)

8The matrix components x(n,m) = a(n,m) e2πiν(n,m)t are not to be confused with the classical
coefficients aαeiαωt of a Fourier series (see Appendix C), where we sum up from α = −∞ to
α = +∞ in order to obtain the periodic function x(t).
9Charles Hermite, 1822–1901, French mathematician.
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Born and Jordan postulated in [5] that (2.21) is the likelihood for the transitions
n � m from the atomic state n into the state m, and vice versa.

The description is based on the idea of state transitions, therefore the diagonal
elements of the matrix X must vanish; that is,

ν(n, n) = 0

for all n. After all, no transition takes place from n to n. Altogether we get the form

X =

⎛
⎜⎜⎜⎝

0 a(0, 1) e2πiν(0,1)t a(0, 2) e2πiν(0,2)t · · ·
a(1, 0) e2πiν(1,0)t 0 a(1, 2) e2πiν(1,2)t · · ·
a(2, 0) e2πiν(2.0)t a(2, 1) e2πiν(2,1)t 0 · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎠ . (2.22)

Note that it is not summed over any coefficients as in a Fourier series. Rather, all the
transition components that are collected in the matrix X reproduce all the possibilities
for transitions of the system from the perspective of quantum theory. The aim of
quantum theory is to create a mathematical model such that:

1. It allows the calculation of measurable frequency spectra of atoms (namely
frequency and intensity of the spectral lines).

2. The classical theory is contained in the limit h → 0, where h is Planck’s quantum
of action.

For the time derivatives of the elements x(n,m) of the matrix X one gets

ẋ(n,m) = 2πiν(n,m)a(n,m) e2πiν(n,m)t . (2.23)

We introduce the diagonal matrix E with the matrix elements

E(n,m)
def= δn,mEn, (2.24)

that is,

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E0 0 0 · · ·
0 E1 0 · · ·
0 0 E2

. . .

0 0 0
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

With (2.9), we then get for (2.23)

ẋ(n,m) = 2πiν(n,m)x(n,m) = 2πi

h
(En − Em)x(n,m). (2.25)
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Because E is diagonal, we have for matrix elements

Enx(n,m) = (EX)(n,m)

and

Emx(n,m) = (XE)(n,m).

Therefore we get

ẋ(n,m) = 2πi

h
((EX)(n,m) − (XE)(n,m)) ,

and because this applies to every element of the matrix

Ẋ = 2πi

h
(EX − XE) . (2.26)

This is the simplest form of the so-called quantum mechanical equation of motion,
or Heisenberg’s equation of motion. Here for the first time a commutator enters in
the form

[EX] def= (EX − XE).

In the theory of quantum mechanics such commutators play an important role, as we
show later. For a single matrix element, (2.26) means (2.25). Dividing by 2πi x(n,m)

again yields the frequency condition hν(n,m) = En − Em .

2.3 Problems

2.1 Hermitian Matrices: Under which conditions is the product of two Hermitian
matrices again an Hermitian matrix?

2.2 Eigenvectors: Show that eigenvectors belonging to different eigenvalues are
linearly independent.

2.3 Eigenvalues of an Hermitian Matrix: Show that the eigenvalues of an
Hermitian matrix are real.

2.4 Eigenvalues of a Unitary Matrix: What general property do the eigenvalues of
a unitary matrix have?

2.5 Eigenvectors: In an N -dimensional space, N linear independent vectors a j are
given. Construct a set of N normalized orthogonal vectors e j .
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2.6 Normalized Eigenvectors: The two linear independent vectors

(
1
1

)
and(−1

1

)
are given. Which transformation matrix T transforms these two vectors

into

(
1
0

)
and

(
0
1

)
? Which vectors would be obtained by using the method of

Problem 2.5?



Chapter 3
Expansion of the Matrix Method

Abstract We describe the general ideas concerning the matrix method, which was
further developed by Born, Heisenberg, and Jordan and extended to systems with
several degrees of freedom.

3.1 Commutation Relation

In classical mechanics, the behavior of a system is described by canonical variables
p1, p2, . . . , q1, q2, . . ., and its dynamical structure is contained in the Hamilton
function H( p1, p2, . . . , q1, q2, . . .). This scheme turned out to be very suitable for
quantum theory aswell.However, the canonical variables have to be replaced bymore
generalmathematical objects, namelymatrices. Because onewants to end upwith the
classical Hamilton theory, it makes sense to call the entries of the matrix X position
coordinates and the correspondingly structuredmatrix P = m Ẋ amomentummatrix,
where m is the particle mass.

Max Born and Pascual Jordan, later together with Werner Heisenberg, further
expanded the matrix method. For this, we start with the two matrices X and P . The
matrices do not need to be commutative; that is, we do not require X P = PX .
Therefore the difference

[P, X] def= (PX − X P), (3.1)

called the commutator of the two matrices, is normally not zero. Differentiation of
the commutator with respect to the time yields

d

dt
[P, X] = [ Ṗ, X] + [P, Ẋ]. (3.2)

Newton’s law states m Ẍ = Ṗ = f (X). Substitution in (3.2) provides

d

dt
[P, X] = [ f (X), X]

︸ ︷︷ ︸

f (X)X − X f (X)

+ [P, (1/m)P]
︸ ︷︷ ︸

(1/m)P2 − (1/m)P2

= 0. (3.3)

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_3
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Note that f (X) is composed of the matrix X and powers of the same. In this case,
f (X) commutes with X ; that is,

f (X)X = X f (X).

The commutator [P, X] is thus a constant matrix!What is the form of this constant
matrix? Its elements consist of sums of products of the form

ẋ(�, j)x( j, k) = iω(�, j)x(�, j)x( j, k)

and
x(�, j)ẋ( j, k) = iω( j, k)x(�, j)x( j, k).

A general matrix element of the commutator of dX/dt with X is of the form

(X Ẋ − Ẋ X)�k = i
∑

j

(ω(�, j) − ω( j, k)) x(�, j)x( j, k). (3.4)

The time derivative of this commutator is

d

dt
(X Ẋ − Ẋ X)�k = i2

∑

j

(ω(�, j) − ω( j, k)) (ω(�, j) + ω( j, k)) x(�, j)x( j, k)

= i2ω�k

∑

j

(ω(�, j) − ω( j, k)) x(�, j)x( j, k) = 0,

by the Ritz combination principle. It was already proved that this quantity vanishes.
An off-diagonal component of this result is ω(�, k) �= 0; therefore the remaining
sum must vanish. But this is just an off-diagonal element of (3.4). Therefore only
diagonal elements of (3.4) are nonzero. It follows that [P, X] is a diagonal matrix.

What are the diagonal elements of thematrix [P, X]? Let us use the energymatrix

H = 1

2m
P2 + V (q) (3.5)

for the total energy of the system. The total energy is constant, that is, Ḣ = 0, thus
the energy matrix H must also be constant. In fact, it must be a diagonal matrix like
the commutator. Furthermore, the diagonal elements H(i, i) must be related to the
i th stationary state. It is therefore plausible to choose H(i, i) to be exactly equal to
the constant energy of the system state:

H(i, i) = Ei . (3.6)



3.1 Commutation Relation 25

According to (2.26), we have

Ẋ = 2πi

h
(HX − XH), (3.7)

and with P = m Ẋ we get

P = 2πi m

h
[H, X]. (3.8)

Because H represents the total energy, it must be of the form

H = 1

2m
P2 + V (X), (3.9)

with the potential energy V (X). The commutator of the potential energy V (X) with
X is equal to zero and inserting (3.9) into (3.8), one obtains

P = πi

h
[P2, X]. (3.10)

With

[P2, X] = P2X − X P2 = P2X − PX P + PX P − X P2 = P[P, X] + [P, X]P

Equation (3.10) can be simplified to

P = πi

h
(P[P, X] + [P, X]P). (3.11)

If we replace [P, X] by the diagonal matrix D (as discussed above), we get

P = πi

h
(P D + DP). (3.12)

Componentwise, this reads as

p(n,m)dm + dn p(n,m) = h

π i
p(n,m). (3.13)

Under the assumption that p(n,m) �= 0 for n �= m, (3.13) supplies

dm + dn = h/(πi).

Inasmuch as this condition applies to allm, n, it follows that dm = dn = h/(2πi), or

D = h/(2πi)I . (3.14)

http://dx.doi.org/10.1007/978-3-319-26366-3_2
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Thus we have the final result for the commutation relation:

PX − X P = h

2 π i
I . (3.15)

Note that you can just as well ignore this “derivation” and simply postulate this
commutation relation, as Born and Jordan did later. By the way, Dirac used a similar
strategy with his “q-numbers”.

From (3.15), the following commutation relations for powers of X and P can be
derived:

Xn P − PXn = n
i h

2 π
Xn−1, (3.16)

and

PnX − X Pn = −n
i h

2 π
Pn−1. (3.17)

Proof of (3.16) (by induction): The case n = 1 corresponds to (3.15). Now suppose
that (3.16) is true for n. Multiplication from the left with X yields

Xn+1P − X PXn = n
i h

2 π
Xn.

Calculate X P from (3.15) and use it in the second term, which yields

Xn+1P −
(

PX + h

2 π i
I
)

Xn = n
i h

2 π
Xn.

We can now bring the second term in parentheses to the right side, which yields
(3.16) for n + 1. q.e.d. Note that (3.17) can be proved similarly.

From the commutation relation, we can derive a further useful relation. Let
f (P, X) be any function of P and X . Then

f X − X f = h

2π i

∂ f
∂P

(3.18)

and

P f − f P = h

2π i

∂ f
∂X

. (3.19)

Proof Suppose that (3.18) and (3.19) were correct for any two functions f 1 and f 2.
Then they are also true for f 1 + f 2 and f 1 · f 2. This fact is trivial for f 1 + f 2. For
f 1 · f 2, a short calculation shows
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f1 f2X − X f1 f2 = f 1( f2X − X f2) + ( f1X − X f1) f 2 =

= h

2π i

(

f1
∂ f2
∂P

+ ∂ f 1
∂P

f 2

)

= h

2π i

∂( f1 f2)
∂P

,

corresponding to P f1 f2 − f1 f2P . Now these relations (3.18) and (3.19) obviously
apply for P and X . Therefore, they also apply for each function f that can be
expressed in powers of P and X . q.e.d.

If we solve any H for P = p(X, H), and then choose P = f in (3.18) we find

PX − X P = h

2π i

∂P
∂P

= h

2π i
I . (3.20)

Thus we have shown that the commutation relation (3.15) is valid in general for any
Hamiltonian H .

Differentiation with Respect to a Matrix

When it comes to differentiating a matrix function with respect to a matrix, we use
a very basic type of differentiation, namely if F(X,Y, Z, . . .) is a function of the
independent matrices X,Y, Z, . . ., then we define the partial derivative with respect
to the matrix X as

∂F
∂X

def= lim
ε→0

F(X + εI,Y, Z, . . .) − F(X,Y, Z, . . .)

ε
.

With this definition, matrix differentiations give similar results to “normal” differ-
entiation; for example,

dX
dX

= I

and

dX2

dX
= lim

ε→0

1

ε

∑

k

[(Xnk + εδnk)(Xkm + εδkm) − Xnk Xkm] =

= (2Xnm) = 2X .

For the differentiation of a product of two matrix functions, we get

∂

∂X
(FG) = ∂F

∂X
G + F

∂G
∂X

. (3.21)
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This results from

F(X + εI,Y , . . .)G(X + εI,Y , . . .) − F(X,Y , . . .)G(X,Y , . . .) =

= [F(X + εI,Y , . . .) − F(X,Y , . . .)]G(X + εI,Y , . . .)

+F(X,Y , . . .) [G(X + εI,Y , . . .) − G(X,Y , . . .)] .

From (3.21), it follows directly that

dXn

dX
= nXn−1.

Therefore one can differentiate polynomials and power series of matrices similar to
“normal” differentiation. For the exponential of a matrix

eX
def=

∞
∑

i=0

X i

i !

one obtains by termwise differentiation

d eX

dX
= eX .

3.2 Systems with Several Degrees of Freedom

Thus far, we know that P equals m Ẋ . Putting this formula in the commutation
relation (3.15) provides a new form of the commutation relation:

X Ẋ − Ẋ X = h

2 πm i
I . (3.22)

From this form, it becomes obvious that the commutation relation refers to the entity
X and its time derivative. However, this is not always the case, as we show later in
the case of angular momentum.We can use this knowledge to generalize our findings
to systems with several degrees of freedom:

Xk Pk − PkXk = −h

2 π i
I . (3.23)

Because the degree of freedom Xk does not depend on X i for i �= k, we get for i �= k

Xk Pi − Pi Xk = 0, (3.24)
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XkXi − Xi Xk = 0, (3.25)

and

Pk Pi − Pi Pk = 0. (3.26)

In general, if F(P, X)k is a function of Pk and Xk , then the following relations hold.

[Xk, F] = − h

2πi

∂F
∂Pk

, (3.27)

[Pk, F] = h

2πi

∂F
∂Xk

. (3.28)

In classical physics, a mechanical system is characterized by its energy as a func-
tion of the momenta and coordinates. In quantum mechanics, a system is similarly
characterized by specifying the energy function (energy matrix) H(P, X). In close
analogy to the classical equations of motion1

ẋ = ∂H

∂ p
= {H, x} and ṗ = −∂H

∂x
= {H, p} (3.29)

we use as quantummechanical equations of motion these matrix relations, following
from (3.7), (3.27), and (3.28):

Ẋk = ∂H
∂Pk

= 2πi

h
[H, Xk] , (3.30)

Ṗk = − ∂H
∂Xk

= 2πi

h
[H, Pk] . (3.31)

3.3 Transformations

Matrix differential equations of the form

Ẋ = AX,

1Here, we use the Poisson–Jacobi bracket symbol:

{F,G} = −{G, F} =
∑

k

(

∂F

∂ pk

∂G

∂xk
− ∂G

∂ pk

∂F

∂xk

)

.

.
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where A is a constant matrix, have the solution

X(t) = �(t)X(0),

with the transition matrix [15]

�(t)
def=

∞
∑

k=0

1

k! (At)
k = exp(At).

For the matrix equation

Ẋ = i

�
[H, X] (3.32)

we can define a similar solution approach:

�(t) = exp

(

i

�
H t

)

, (3.33)

X(t) = �(t)X(0)�−1(t) , (3.34)

where X(0) is the value of X at time t = 0. With �̇(t) = i
�
H�(t), we then get

indeed

Ẋ = �̇(t)X(0)�−1(t) + �(t)X(0)�̇
−1

(t) =

= i

�
HX(t) + �(t)X(0)

(

− i

�
H�−1

)

= i

�
[HX(t) − X(t)H] .

Note that we assumed the commutativity of H and �−1(t) = �(−t), which can be
readily verified by expanding the series (3.33) of �(t).

The following summary [14] turns out to be very useful. If the matrices Pk , Xk

satisfy the canonical commutation rules (3.24)–(3.26) and also have the property
that their Hamilton function H(P, X) is a diagonal matrix, the canonical equations
of motion (3.30) and (3.31) are satisfied. In other words, if only (3.24)–(3.26) are
satisfied and H is a diagonal matrix, you have already solved a given quantum
mechanical problem!

By introducing the transformations

X ⇒ X ′ = TXT∗

P ⇒ P ′ = T PT∗
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with

T = exp(−iH t/�) = �(−t),

the coordinates and momenta become independent of time. However, a formerly
constant vector v now becomes a time-dependent vector Tv = exp(−iH t/�)v. But
exp(−iH t/�)v is the solution of the differential equation

v̇(t) = − i

�
Hv(t). (3.35)

This is the Schrödinger equation for the state vector v; see Chap.11. In quantum
mechanics in the Heisenberg picture the state vector v (see Chap.4) does not change
with time, whereas an observable A satisfies the Heisenberg equation

d

dt
A = i

h
[H, A].

3.4 Problems

3.1 Commutation Relations: What is

[A, [B,C]] + [B, [C, A]] + [C, [A, B]]?

3.2 Powers in Commutation Relations: Show that

[X, Pn] = n i�Pn−1.

3.3 Anti-Commutation Relation for Hermitian Matrices: Show that for Her-
mitian matrices A and B, the sum AB + BA is also an Hermitian matrix.

3.4 Coordinate Transformation: What does X look like when a coordinate trans-
formation is applied according to (3.34) with a diagonal matrix H?

3.5 Exponential of an Hermitian Matrix: Show that for an Hermitian matrix H
the matrix exp (iH) is a unitary matrix.

3.6 Commutation Relation: Show that for Hermitian matrices A and B, the matrix
i�C = [AB − BA] is an Hermitian matrix.

3.7 Commutation Relation: Show that

a)[A, BC] = B[A,C] + [A, B]C

and
b)[AB,C] = A[B,C] + [A,C]B.

http://dx.doi.org/10.1007/978-3-319-26366-3_11
http://dx.doi.org/10.1007/978-3-319-26366-3_4
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3.8 Exponential of a Nilpotent Matrix: What is the exponential matrix exp(tN)

for the nilpotent matrix

N =
⎛

⎝

0 1 0
0 0 2
0 0 0

⎞

⎠?



Chapter 4
Observables and Uncertainty Relations

Abstract State vectors and other matrices are introduced. We also define projection
matrices for the interpretation of experiments and density matrices for the descrip-
tion of mixed states. Also, Heisenberg’s famous uncertainty relation is derived and
interpreted.

4.1 State Vector

In classical physics, the dynamic behaviour of a system is completely described
through the state vector

ξ
def=

(
x
p

)
.

The temporal behaviour of the system is determined by a system of first order dif-
ferential equations, the Hamilton equations

ξ̇ =
(
ẋ
ṗ

)
=

⎛
⎝

∂H
∂ p

− ∂H
∂x

⎞
⎠ .

The state variables (e.g., in astronomy, the space coordinates xi and the momentum
components pi of a celestial body) can be measured simultaneously at each given
time. These physical entities are real numbers that can be measured with a finite
precision, e.g. �xi . More specifically, the measured value is a multiple of this finite
precision, i.e. xi = ni · �xi , where ni is an integer. Once the product �xi�pi of
the accuracies �xi and �pi reach the magnitude of the Planck constant h (which
is obviously the case in quantum mechanics), xi and pi can no longer be measured
simultaneously with arbitrary precision.

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_4
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4.2 The Stern-Gerlach Experiment

In their famous Stern-Gerlach experiment in 1922, the physicists Otto Stern1 and
Walther Gerlach2 were the first to observe the directional quantization of angular
momenta of atoms. The experiment is one of the most fundamental experiments in
physics, and it is repeatedly referred to for explaining quantum mechanical effects
that cannot be understood in the framework of classical physics.

In this experiment, a beam of (electrically neutral) silver atoms is sent through a
vacuumbetween the poles of amagnet. One of the poles has the formof a cutting edge
(parallel to the beam), the other pole looks like a groove in a flat plane. This setup
implies that the magnetic field is strongly inhomogeneous in the direction transverse
to the beam. Eventually, the silver atoms are displayed on a screen. It turns out that
the silver atoms can be found in two separate patches. In other words, the magnetic
field splits the beam into two separate sub-beams.

Here is a quantummechanical explanation of the experiment. The silver atom has
a magnetic moment �μ, which points into the same direction as its angular momentum
�S. The magnetic field can be represented as

�Btotal = �Bhomogeneous + �Binhomogeneous = (
Bhomogeneous + Binhomogeneous

) · �ez .

The angular momentum has a quantum number 1
2 . Therefore, only the settings −�

2

or +�

2 are allowed in the z-direction (also called “spin down” and “spin up”). In
contrast, a classical angular momentum could point in any direction with respect to
this axis. In the inhomogeneous field, the force

�F = −∇(−�μ · �Btotal) = (�μ · ∇) �Btotal) =
⎛
⎝ 0

0
μz · ∂B

∂z

⎞
⎠

acts on the magnetic moment of the atom. Since �μ is proportional to �S, the z-
component of �μ can only have a positive value or a negative value of equal size.
Depending on the orientation of the angular momentum, a force that is of the same
value but opposite in direction therefore acts perpendicular to the flight direction of
the atom. As a result, the beam splits into two sub-beams. From a classical point of
view, the magnetic moment �μ can occupy any angle with respect to the z-axis. The
deflection force would therefore also have a continuously distributed value, and the
silver atoms would be visible in a continuous strip.

1Otto Stern, 1888–1969, German physicist, Nobel Prize 1943.
2Walther Gerlach, 1889–1979, German physicist.
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4.3 States and Postulates

In the Stern-Gerlach experiment, we can assign two states to the atoms:

atoms with μz > 0 :
(
1
0

)
,

atoms with μz < 0 :
(
0
1

)
.

The total state is thus characterized by a vector of the form

ξ = 1√
α2 + β2

(
α

(
1
0

)
+ β

(
0
1

))
= 1√

α2 + β2

(
α
β

)
.

Quantum Mechanics is an axiomatic theory because it is well-grounded on few
postulates. A postulate is a statement, also known as an axiom, which is taken to
be true without proof. Postulates are the basic structure from which lemmas and
theorems are derived.

Postulate 1 The physical state of a quantum system at a time t0 is completely
described through a state vector ξ.

In quantum mechanics, all physically measurable properties are described by
matrices, for example X i and P i .

Postulate 2 Each physically measurable property A is described by a Her-
mitian matrix A in the state space. A is called the observable.

SinceHermitianmatrices have only real eigenvalues, measurement results are always
real, as expected.

Postulate 3 The measurement of the physical property A always returns an
eigenvalue of the matrix A.
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A quantum state a is called an eigenstate of the matrix A if the action of the matrix on
the state returns the same state multiplied by some eigenvalue λ, that is, Aa = λa.
If the quantum system is in the state a, then a measurement of the observable A will
give the result λ. Note that λmust be a real number (since anything that is physically
measurable is a real number).

As an example, quantized results are observed in the Stern-Gerlach experiment.
As we just saw, the distribution of possible magnetic moments μz is not continuous
(as predicted by the classical theory), but limited to two values. These are exactly
the eigenvalues ±1 of the matrix

(
1 0
0 −1

)
.

It follows that a state variable can be fully described by a linear combination of
eigenvectors. In order for the eigenvalues (which are now the measurements results)
to be always real, the associated matrices must always be Hermitian. For example,

the condition X i = X̄
ᵀ

i = X†
i must hold (i.e., the transposed matrix with complex

conjugate elements is equal to the original matrix).
It can be shown that Hermitianmatrices (that correspond to physical entities) have

a complete set3 of eigenvectors. Such matrices are also called observables, and any
possible measurement result of a physical entity corresponding to the observable
A can only be an eigenvalue λi of A. If the state vector ξ can be composed of
eigenvectors ei of A, i.e.

ξ =
∑
i

ci ei , (4.1)

then the probability for the measurement of A to give the result λi is equal to |ci |2
(under the condition that the eigenvectors are orthonormal). For the case that the state
vector is equal to an eigenvector ei , you will surely find the measurement result λi .

4.4 Projection Matrices

If the eigenvectors ei are normalized (i.e., e†i e j = 1 for i = j and e†i e j = 0 for i �= j),
one obtains the coefficients c j by multiplying (4.1) from the left with the row vector
e†j :

e†jξ =
∑
i

ci e
†
j ei = c j . (4.2)

3A complete set of eigenvectors is a set of eigenvectors so that every vector is a linear combination
of the eigenvectors.
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If we multiply this equation from the left with the column vector e j , we obtain

e j e
†
jξ = P j ξ =

∑
i

ci e j e
†
j ei = e j e

†
j

∑
i

ci ei = P j

∑
i

ci ei = c j e j . (4.3)

The matrix
P j

def= e j e
†
j (4.4)

is called projection matrix, since it projects the state vector ξ on the eigenvector e j .
Projection matrices, also called projection operators, have the following properties:

•
P2

j = P j ,

since P2
j = (e j e

†
j )(e j e

†
j ) = e j (e

†
j e j )e

†
j = e j e

†
j = P j .

• ∑
i

P i = I .

Therefore the choice

P2 =

⎛
⎜⎜⎜⎝
0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠

and so on define valid projection matrices.

To some extent, the projection matrix describes the preparation of an experiment,
since they are mathematical models for the experiment!

If we add a shield behind the magnetic field of the Stern-Gerlach apparatus such
that the lower radiation component is blocked, then only the upper portion can reach
the detector, i.e. only “eigenvectors”

(
1
0

)
.

The projection matrix is thus composed as

P1 =
(
1
0

)
(1, 0) =

(
1 0
0 0

)
,

and we have

P1ξ =
(
1 0
0 0

) (
α

(
1
0

)
+ β

(
0
1

))
= α

(
1
0

)
.
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4.5 Probabilistic Interpretation

We can specify the probability pi that the result of a measurement is ai . In order to
determine this probability, a large number ofmeasurementsmust be carried out under
steady state conditions. The result of such measurement series is the expectation
value 〈A〉 of the observable A. e.g., the spectral line wavelengths of an atom are the
mean values based on many transitions from one atom state to another. In the state
representation

ξ =
∑
i

ci ei ,

the element ci ei describes the possibility that the measurement of the appropriate
entity related to A gives the eigenvalue ai . If ξ and ei are normalized, then according
to Max Born the number c∗

i ci = ∣∣c2i ∣∣ is the probability that the measurement gives
the eigenvalue ai . Of course, the probabilities are positive and add up to 1:

∑
j

c∗
j c j = 1.

The measured mean value of A is then given by

∑
j

c∗
j c j a j = ξ†Aξ,

where it was agreed that if the coefficient ci is complex, one uses the transposed
vector ξ† as

ξ† =
∑
i

c∗
i e

ᵀ
i ,

The above formula can be easily verified, since the eigenvalue equation Aei = ai ei
yields

Aξ = A
∑
i

ci ei =
∑
i

ci Aei =
∑
i

ci ai ei .

Multiplying with ξ† from the left, we finally get (with e†i e j = δi j )

ξ†Aξ =
⎛
⎝∑

j

c∗
j e

†
j

⎞
⎠

(∑
i

ci ai ei

)
=

∑
j

∣∣c2j ∣∣ a j = 〈A〉 . (4.5)
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Let us sum up our findings:

The probability to measure the eigenvalue a j of A in the state ξ is given by
∣∣∣c2j

∣∣∣.
c j e j is the projection of the normalized vector ξ on the normalized eigenvector
e j . The average value of the observable A for a system being in the state ξ
is 〈A〉 = ξ†A ξ. The expectation values are extremely importent in quantum
mechanics. If the measurement of the observable A is repeated a large number
of times, the average of all the results will approach 〈A〉. The same is true
if we measure the observable A in many independent yet identical systems
simultaneously.

4.6 Density Matrix

4.6.1 Definitions

Until now, we considered systems that consist of different particles in specific states.
Let now an ensemble be a collection of many identical particles. They may be in
different states. However, assume the statistical distribution of these states is known.
Albert Einstein was an early advocate of the ensemble interpretation [28]:

“The attempt to conceive the quantum-theoretical description as the complete
description of the individual systems leads to unnatural theoretical interpretations,
which become immediately unnessary if one accepts the interpretation that the
description refers to ensembles of systems and not to individual systems.”

While the state of a single particle is described by a vector, the state of an ensemble
of particles is best described by a state matrix, also called density matrix. The density
matrix D is obtained as follows. In the definition (4.5) of the expectation value 〈A〉,
we can insert the identity matrix in the special form

I =
∑
i

I i =
∑
i

ei e
ᵀ
i ,

where I i is a diagonal matrix that is 1 only in the i-th diagonal element and zero
otherwise:

〈A〉 = ξ†Aξ = ξ†AIξ = ξ†A

(∑
i

I i

)
ξ =

= ξ†A

(∑
i

ei e
ᵀ
i

)
ξ =

∑
i

ξ†Aei︸ ︷︷ ︸ e
ᵀ
i ξ︸︷︷︸ =

∑
i

e
ᵀ
i ξ︸︷︷︸ ξ†Aei︸ ︷︷ ︸ . (4.6)
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Now we can introduce the density matrix D as

D
def= ξξ† =

∑
i

ci ei ·
∑
j

c∗
j e

ᵀ
j =

∑
i, j

ci ei · c∗
j e

ᵀ
j . (4.7)

The matrix elements of D in the e-basis are

d(k, �) = e
ᵀ
k De� = e

ᵀ
k

∑
i, j

ci ei · c∗
j e

ᵀ
j = ckc

∗
� .

Generally the density matrix is not diagonal. The trace of a matrix is defined as
the sum of the elements on the main diagonal. It can be written by means of the
normalized eigenvectors eν as

trace(X)
def=

∑
ν

e
ᵀ
ν Xeν . (4.8)

With this definition, we finally get from (4.6) and (4.7)

〈A〉 = trace(DA). . (4.9)

The expectation value of a dynamical variable A, represented by the matrix A, in the
state D, is (4.9).

If ξ is a normalized state vector (i.e. length 1), it follows from (4.7)

trace(D) =
∑
i

∣∣c2i ∣∣ = 1. (4.10)

Also, we get
D2 = D, (4.11)

since
D2 = ξ ξ†ξ︸︷︷︸

1

ξ† = ξξ† = D.

4.6.2 Mixed States

If all particles of the considered ensemble are in a definite quantum state, it is called
a pure state. In this case, the measurement result according to (4.9) is obviously the
expectation value. If, however, the particles are in different quantum states, we call it
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a mixed state. Now, if Nν out of N particles are in the state ξν , then the probability
4

to pick such a particle from the entire ensemble equals

pν = Nν

N
,

which certainly assumes ∑
ν

pν = 1.

For the expectation value, we obtain

〈A〉 =
∑

ν

pνξ
†
ν Aξν . (4.12)

For mixed states, we can now modify the density matrix as

DM
def=

∑
ν

pνξνξ
†
ν . (4.13)

This provides a straightforward extension of the state concept, since we can now also
describe systems whose state is not known in all detail (e.g., as a state vector in a
Hilbert space). For this modified density matrix DM , we again have

trace(DM A) =
∑

ν

∑
μ

e
ᵀ
ν pμξμξ

†
μAeν =

∑
ν

∑
μ

pμξ
†
μAeνe

ᵀ
ν ξμ =

=
∑

μ

pμξ
†
μAξμ = 〈A〉. (4.14)

However, we now have
D2

M �= DM , (4.15)

since
D2

M =
∑

ν

pνξνξ
†
ν

∑
μ

pμξμξ
†
μ =

∑
ν

p2νξνξ
†
ν . (4.16)

If you compare (4.13) with (4.16), the two are equal only if one pν = 1, and all
others are equal to zero. This is only the case, however, if the state is a pure state.
For a mixed state, equation (4.15) is always true.

4The same holds if we only have incomplete information on the system, for example if the particle
number is very large and when we can only make probability statements.
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For the trace of D, we obtain

trace(D) =
∑

ν

e
ᵀ
ν ξνξ

†
νeν =

∑
ν

ξ†
νeνe

ᵀ
ν ξν =

∑
ν

ξ†
νξν = 1, (4.17)

and since D2 = D, we also get

trace(D2) = 1. (4.18)

For the mixed state is obtained, however,

trace(D2
M) =

∑
ν

e
ᵀ
ν

(∑
μ

pμξμξ
†
μ

∑
κ

pκξκξ
ᵀ
κ

)
eν =

=
∑

ν

e
ᵀ
ν

(∑
μ

p2μξμξ
†
μ

)
eν =

∑
ν

p2ν < 1. (4.19)

Note that trace(DM) = 1 holds as well. With the trace of the squared density matrix,
we now have a tool to determine whether the system is in a pure or a mixed state!

4.6.3 Examples

1. For the state vector

ξ =
(
1
0

)

one obtains

D = ξξ† =
(
1
0

)
(1 0) =

(
1 0
0 0

)
.

In fact

D2 =
(
1 0
0 0

) (
1 0
0 0

)
=

(
1 0
0 0

)
= D.

2. For

ξ = 1√
2

(
1
i

)

one gets

D = ξξ† = 1√
2

(
1
i

)
1√
2
(1 − i) =

( 1
2 − i

2
i
2

1
2

)
.

Again we have D2 = D, and for the trace we get trace(D) = 1.
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3. In the case of the Stern-Gerlach apparatus, we assigned the vectors

(
1
0

)
and(

0
1

)
to the two possible states. If the two vectors occur with the probabilities p1

and p2, we obtain the density matrix

DM = p1

(
1
0

)
(1 0) + p2

(
0
1

)
(0 1) =

(
p1 0
0 p2

)
.

In this case, we get

D2
M =

(
p21 0
0 p22

)
,

i.e., D2
M �= DM and trace(DM) = 1. However trace(D2

M) < 1, since p1 < 1,
p2 < 1 and p1 + p2 = 1 yields p21 + p22 = 1 − p1 p2 < 1.

4.7 Time Evolution of the Expectation Value

Although the state matrix D is constant, the expectation value 〈A〉 = 〈
ξ†Aξ

〉 =trace
(DA) of an observable A varies over time. This can be readily seen with the help of
the Heisenberg equation of motion (if A does not explicitly depend on time):

d

dt
A = i

�

[
HA

]
= i

�

(
HA − AH

)
, (4.20)

and thus
d

dt
〈A〉 = i

�
〈(HA − AH)〉 ,

or, respectively,
d

dt
〈A〉 = trace(DȦ).

Let us now sumup our findings.A single particle is described by a quantum state ξ.
The only thing that you canmeasure, however, is the expectation value 〈A〉 = 〈

ξ†Aξ
〉

of that state. In contrast, the density matrix D describes everything that there is to
know about the state of an ensemble of particles. If we consider a single particle
of this ensemble, we know that it is in the state D and that the expectation value is
〈A〉 = trace(DA).
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4.8 Heisenberg’s Uncertainty Principle

In addition to the average value 〈A〉 (also called the expectation value), the variance
is a good indicator for how strongly the measured values fluctuate. The variance is
defined as the average of the squared deviations from the mean value 〈A〉:

(�A)2
def= 〈

(A − 〈A〉 I)2〉 = 〈
A2 − 2A 〈A〉 + 〈A〉2 I 〉 = 〈

A2〉 − 〈A〉2 . (4.21)

Let us now assume that we would like to measure the two physical parameters a and
b, represented by two matrices A and B. Let ξ be a normalized state vector. The
expectation values of a and b are then

〈A〉 = ξ†A ξ

and
〈B〉 = ξ†B ξ.

The average fluctuation squares are given by

(�A)2 = ξ†(A − 〈A〉 I)2ξ

and
(�B)2 = ξ†(B − 〈B〉 I)2ξ.

We define a complex matrix

M
def= (A − 〈A〉 I) + i α(B − 〈B〉 I),

where α > 0 and real. Due to (Mξ)†(Mξ) ≥ 0, we get

(Mξ)†(Mξ) = ξ†M†Mξ =

= ξ† [
(A − 〈A〉 I)2 + α2(B − 〈B〉 I)2 + i α(AB − BA)

]
ξ =

= (�A)2 + α2(�B)2 + i α ξ†(AB − BA)ξ ≥ 0.

It follows5

α−1(�A)2 + α(�B)2 ≥ −i ξ†[A, B] ξ = −i 〈[A, B]〉 . (4.22)

Varying α for fixed �A and �B, we find that the left side of this inequality has its

5With 〈[A, B]〉 def= ξ†[A, B] ξ.
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minimum when α satisfies the equation

−α−2(�A)2 + (�B)2 = 0,

i.e., α = �A/�B. For this value of α, the inequality (4.22) reads

2�A�B ≥ −i 〈[A, B]〉 ,

that is,

�A�B ≥ −i
1

2
〈[A, B]〉

.

(4.23)

For A = X and B = P , we get in particular

〈[X, P]〉 = 〈i�I〉 = i�,

and therefore

�X�P ≥ �

2

.

(4.24)

This is Heisenberg’s famous uncertainty relation! It shows that the uncertainty�P of
the momentum must increase to the extent that the uncertainty �X of the coordinate
decreases, and vice versa. Note, however, that the inequality only holds if AB �= BA
(which is the case here).

The situation changes for systemswithmultiple degrees of freedom.The equations
(3.23)–(3.26) state that Xk does not depend on X i for k �= i and therefore Xk Pi =
Pi Xk, XkXi = Xi Xk and Pk Pi = Pi Pk. Therefore we get for these observables

�Xk�Pi ≥ 0(k �= i),

�Xk�Xi ≥ 0(k �= i)

and
�Pk�Pi ≥ 0(k �= i).

In other words, we can simultaneously determine both observables of different par-
ticles with arbitrary precision!

http://dx.doi.org/10.1007/978-3-319-26366-3_3
http://dx.doi.org/10.1007/978-3-319-26366-3_3
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4.9 Problems

4.1 Uncertainty Principle: The speed of an electron is 1000 m
s , and it is measured

with an accuracy of 0.1%. With which accuracy can you measure the position
of the electron?

4.2 ProjectionMatrices: Under which condition is the productmatrix P = P1 · P2

of two projection matrices P1 and P2 also a projection matrix?
4.3 Density Matrix: What are the density matrices for the two pure spin 1/2 states,

if the system is in the state a) e3,1 =
(
1
0

)
and b) e2,1 = 1√

2

(
1
i

)
?

4.4 ProjectionMatrix:What are the eigenvalues and eigenvectors of ameasurement
device that is represented by the projection matrix M = e1e

ᵀ
1 + e2e

ᵀ
2 , where e1

and e2 are orthogonal vectors?



Chapter 5
The Harmonic Oscillator

Abstract As a first application of the matrix method, the quantum mechanical
behavior of the harmonic oscillator is discussed in detail.

5.1 Physics of the Harmonic Oscillator

A typical harmonic oscillator consists of a mass attached to a spring. The oscillator
has always been a fruitful dynamic model for an atom or molecule in quantum
physics. For example, it is often assumed that the electrons in an atom are elastically
coupled (one-dimensional elastic oscillators). Such a one-dimensional system can
be mathematically described by

mẍ = −kx,

where m is the mass, x is the displacement from the equilibrium position, and k is
the spring constant.1 This can also be written as

ẍ + ω2
0 x = 0, (5.1)

with the angular frequency

ω0
def= √

k/m.

The Hamiltonian function for this simple system is

H = m

2
ẋ2 + m

2
ω2
0x

2,

where the first term is the kinetic energy and the second term is the potential energy.
If we introduce the momentum p = mẋ , it becomes

1We assume that the restoring force f is proportional to the deflection; that is, f = −kx .

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_5
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H = 1

2m
p2 + m

2
ω2
0x

2. (5.2)

Heisenberg [13], and later also Born and Jordan in a more sustainable mathe-
matical framework [5], used this one-dimensional harmonic oscillator as a first case
study for quantummechanics. They tried to determine for thismodel onwhich energy
levels the electrons can move. For the corresponding quantum system, we use the
expression

H = 1

2m
P2 + m

2
ω2
0X

2 (5.3)

as the matrix for the total energy. This equation can be slightly modified into

H = �ω0

⎛

⎜
⎜
⎜
⎝

1

2mω0�
P2

︸ ︷︷ ︸
P̃
2

+ mω0

2�
X2

︸ ︷︷ ︸
X̃

2

⎞

⎟
⎟
⎟
⎠

. (5.4)

Therefore it is better to use scaled location and impulse operators:

X̃
def=

√
mω0

2�
X, respectively X =

√
2�

mω0
X̃,

and

P̃
def=

√
1

2mω0�
P, respectively P = √

2mω0� P̃ .

From basic algebra, we know that (a + ib)(a − ib) = a2 + b2. For noncommuting
matrices A and B, however, we obtain

(A + iB)(A − iB) = A2 + B2 + i(BA − AB).

Therefore
(X̃ + i P̃)(X̃ − i P̃) = X̃

2 + P̃
2 − i(X̃ P̃ − P̃ X̃). (5.5)

Let us now introduce new terms for the matrices in parentheses on the left-hand side
of the equation:

A
def= X̃ + i P̃ . (5.6)

Because X and P are Hermitian matrices (and therefore also X̃ and P̃), we get

A† = X̃ − i P̃ . (5.7)
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A and A† do not commute, inasmuch as

[A, A†] = AA† − A†A = (X̃ + i P̃)(X̃ − i P̃) − (X̃ − i P̃)(X̃ + i P̃) =

= − i

2�
(X P − PX)︸ ︷︷ ︸

i�I

+ i

2�
(PX − X P)︸ ︷︷ ︸

−i�I

= I . (5.8)

Note that we used the fact that the matrices X and P obey the commutation relation

X P − PX = i�I . (5.9)

Also, we can calculate

A†A = X̃
2 + P̃

2 − 1

2
I,

and therefore

X̃
2 + P̃

2 = A†A + 1

2
I .

With these findings, we can modify (5.4) into

H = �ω0

(
A†A + 1

2
I
)

. (5.10)

The following commutation relations hold:

[H, A] = [�ω0A†A, A] = �ω0[A†, A]A = −�ω0A, (5.11)

and
[H, A†] = [�ω0A†A, A†] = �ω0A†[A, A†] = �ω0A†. (5.12)

In the following, we are looking for the eigenvalues of the energy matrix H ,
because they represent (in a simple atomic model) the energy levels for the electrons
and define the radiation that they absorb or release when jumping from one level to
another. Let us suppose that we found an eigenvector e of H . Then

He = λ e. (5.13)

Now multiplying (5.11) by e from the right yields

HAe− AHe = −�ω0Ae.

With (5.13), we have
HAe = (λ − �ω0)Ae. (5.14)
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In otherwords: if e is an eigenvector of H with eigenvalueλ, Ae is also an eigenvector
of H , but with the eigenvalue λ − �ω0. The eigenvalue has thus been reduced by the
energy �ω0 = hν0.

Let us now multiply (5.11) by Ae from the right. Using (5.14), we get

HA2e − AHAe︸ ︷︷ ︸
(λ−�ω0)A2e

= −�ω0A2e,

which can be rewritten as

HA2e = (λ − 2�ω0)A2e. (5.15)

In other words, the eigenvalue was once again reduced by the energy �ω0. This
process can be continued for arbitrary powers of A. However, the eigenvalue of the
energy H can never become negative! After all, if we multiply H in the form (5.10)
from left and right with an eigenvector e, we obtain

e
ᵀ
He = λ e

ᵀ
e = �ω0

(
e

ᵀ
A†Ae + 1

2
e

ᵀ
e
)

= (Ae · Ae)︸ ︷︷ ︸
≥0

+1

2
e

ᵀ
e︸︷︷︸

≥0

≥ 0;

that is, the eigenvalues λ of H are all positive. For this reason, the above-explained
reduction of energy has to come to an end at some point. Let this point be the basic
eigenvector e0.Then we must have Ae0 = 0, because we could otherwise continue
with another reduction loop. For the eigenvalue equation of the Hamiltonian, we
obtain

He0 =
(

�ω0A†A + 1

2
�ω0

)
e0 = 1

2
� ω0 e0. (5.16)

Multiplying (5.12) with e0 from the right, we obtain

HA†e0 − A†He0 = �ω0A†e0,

and therefore

HA†e0 = �ω0

(
1 + 1

2

)
A†e0. (5.17)

We see that the eigenvalue is now increased by the energy �ω0. For that reason, the
matrix A† is also called the creation operator. If we multiply (5.12) once again with
the new eigenvector A†e0 from the right, we get

H(A†)2e0 − A†HA†e0 = �ω0(A†)2e0,
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and therefore

H(A†)2e0 = � ω0

(
2 + 1

2

)
(A†)2e0. (5.18)

As a general result, we find

en
def= (A†)ne0,

where n can be an arbitrary large positive integer. We then get

H e j = � ω0

(
j + 1

2

)

︸ ︷︷ ︸
λ j=E j

e j , j = 0, 1, 2, . . . , (5.19)

which implies

λ j = E j = � ω0

(
j + 1

2

)
, j = 0, 1, 2, . . . (5.20)

In other words, you can pump as much energy into the system as you like. However,
the lowest energy level is E0 = � ω0

2 (and not 0 as in classical theory). We can collect
all energy levels in the diagonal matrix

E = � ω0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
2 0 0 0 · · ·
0 3

2 0 0 · · ·
0 0 5

2 0 · · ·
0 0 0 7

2 · · ·
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.21)

The energy spectrum consists of equidistant energy values with the distance � ω0.
When jumping from one level to the next, the harmonic oscillator can therefore
absorb or emit only integral multiples of � ω0 (Fig. 5.1).

What is the shape of the matrices X and P for the harmonic oscillator? If we
adopt Heisenberg’s assumption that only transitions between neighboring states are
possible (i.e., only x(k, k + 1) �= 0 and x(k + 1, k) �= 0), one obtains the matrix

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 x(0, 1) 0 0 0 · · ·

x(1, 0) 0 x(1, 2) 0 0 · · ·

0 x(2, 1) 0 x(2, 3) 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.22)
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+1
2 ω0

+3
2 ω0

+

+

5
2 ω0

+

9
2 ω0

7
2 ω0

+

1
2 ω0

0 Deflection x

Energy

Fig. 5.1 The parabolic potential energy and the equidistant energy levels of the harmonic oscillator
(to be continued upwards to infinity)

Because of
p(k, �) = mẋ(k, �) = m i ω(k, �)x(k, �), (5.23)

we can calculate the respective matrix for P :

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 p(0, 1) 0 0 0 · · ·

p(1, 0) 0 p(1, 2) 0 0 · · ·

0 p(2, 1) 0 p(2, 3) 0 · · ·
...

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.24)

Let us now derive the shape of X and P in a more sophisticated way. From (5.10),
we get

Hen = �ω0A†Aen + �ω0

2
en =

= �ω0

(
n + 1

2

)
en,

and therefore with (5.19)
A†Aen = n en. (5.25)

The matrix A†A is obviously an Hermitian matrix; that is, its eigenvalues are all
real and its eigenvectors form an orthogonal basis. Moreover, one can descend in the
series of eigenvectors en by multiplying from the left with A:
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Aen = αnen−1. (5.26)

We multiply this result by the complex conjugate from the left, which yields

e†n A
†Aen = e†nen |αn|2 != |αn|2 , (5.27)

in order for the length of the eigenvectors to be 1. With (5.25), we get from (5.27)

ne†nen = n = |αn|2 . (5.28)

Choosing αn as a real number, we get

αn = √
n.

Equation (5.26) now reads
Aen = √

nen−1. (5.29)

Using (5.25), we find
A†Aen = n en = A†(

√
nen−1);

in other words,
A†en−1 = √

nen,

or (shifting to the index n rather than n − 1)

A†en = √
n + 1en+1. (5.30)

This calculation can be repeatedly applied, and we get

en = 1√
n
A†en−1 = A†

√
n

· A†

√
n − 1

en−2 = · · · .

As a final result, we find

en = 1√
n!

(
A†)n e0. (5.31)

The ei are eigenvectors of an Hermitian matrix, therefore they are mutually orthog-
onal; that is,

e†i e j = δi j .

We therefore obtain the elements Ai,k (i, k = 0, 1, 2, 3, . . .) of the infinitely large
matrix A from

Ai,k = e†i Aek = (A†ei )†ek
(5.30)= (

√
i + 1ei+1)

†ek = √
i + 1 δi+1,k;
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that is,

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 · · ·
0 0

√
2 0

0 0 0
√
3

. . .

...
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎠

. (5.32)

Accordingly, the elements A†
i,k of the infinitely large matrix A† are obtained by

evaluating

A†
i,k = e†i A

†ek = (Aei )†ek
(5.29)= √

ie†i−1ek = √
i δi−1,k,

A† =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 · · ·
1 0 0 0
0

√
2 0 0

0 0
√
3 0

. . .

...
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.33)

From (5.6) and (5.7) follows2

X̃ = 1

2
(A + A†) and P̃ = i

2
(A† − A),

and thus finally

X =
√

2�

mω0
X̃ =

√
�

2mω0
(A + A†), (5.34)

X =
√

�

2mω0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 · · ·
1 0

√
2 0 0 · · ·

0
√
2 0

√
3 0 · · ·

0 0
√
3 0

√
4 · · ·

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5.35)

2Note that we get in fact

AA† − A†A =

⎛

⎜
⎜
⎜
⎝

1 0 0 · · ·
0 2 0 · · ·
0 0 3 · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

0 0 0 · · ·
0 1 0 · · ·
0 0 2 · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
.
.
.

.

.

.
.
.
.

. . .

⎞

⎟
⎟
⎟
⎠

= I .
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X2 = �

2mω0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0
√
2 0 0 · · ·

0 3 0
√
2 · 3 0 · · ·√

2 0 5 0
√
3 · 4 · · ·

0
√
2 · 3 0 7 0 · · ·

...
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.36)

For P , we get similar results:

P = √
2�mω0 P̃ =

√
�mω0

2
(i A† − i A)

P = i

√
�mω0

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −1 0 0 0 · · ·
1 0 −√

2 0 0 · · ·
0

√
2 0 −√

3 0 · · ·
0 0

√
3 0 −√

4 · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.37)

P2 = �mω0

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 −√
2 0 0 · · ·

0 3 0 −√
2 · 3 0 · · ·

−√
2 0 5 0 −√

3 · 4 · · ·
0 −√

2 · 3 0 7 0 · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.38)

Note that their form is indeed as predicted in (5.22) and (5.24), which had originally
been derived by Heisenberg.

Next, we are looking for the frequency matrix �. We have

Ẋ( j, k) = i · ω( j, k)X ( j, k),

and we can calculate the elements in the secondary diagonals (on both sides of the
main diagonal) from the formula

P( j, k) = m · i · ω( j, k) · X ( j, k); (5.39)

that is,

ω( j, k) = P( j, k)

m · i · X ( j, k)
. (5.40)

This yields the value ∓ω0 for the secondary diagonals. In total, the frequency matrix
looks like
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� =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 −ω0 0 0 0 · · ·
ω0 0 −ω0 0 0 · · ·
0 ω0 0 −ω0 0 · · ·
0 0 ω0 0 −ω0 · · ·
...

. . .
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.41)

According to (5.19), we have

En = �ω0

(
n + 1

2

)
for n = 0, 1, 2, . . . . (5.42)

Also, we know

ω(n,m) = 2πν(n,m) = 1

�
(En − Em).

Together with (5.42), this yields

ω(n,m) = (n − m) · ω0 for | n − m| = 1,

that is, a perfect agreement with the values in (5.41)!

5.2 Expectation Values and Variances

Let a harmonic oscillator be in the eigenstate e j with the eigenvalue ( j + 1/2)� ω0.
If we choose the energy matrix to be diagonal, the eigenvector components must be
e j (k) = δ jk ; that is, the j th component is equal to one and the others are zero. The
expectation value of any observable A in the considered eigenstate is then given by

〈A〉 = e j
ᵀ
Ae j = a j j .

For example, the expectation value of the observable X is equal to zero, because in
(5.35) we find a j j = 0 for all j . Similarly, the mean value of P is equal to zero. On
the other hand, if we calculate the mean value of X2 and P2, it follows from (5.36)
that

(X2) j j = �

2mω0
(2 j − 1),

and from (5.38) that

(P2) j j = �mω0

2
(2 j − 1).

Themean values are all zero, thus this value also represents themean square deviation
of the position, namely
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(�x)2 = �

2mω0
(2 j − 1).

Similarly, we get for the mean square deviation of the momentum

(�p)2 = �mω0

2
(2 j − 1).

It follows that

(�x�p)2 = �
2

(
j − 1

2

)2

,

thus Heisenberg’s uncertainty relation is fulfilled:

�x�p ≥ 1

2
�.

In the ground state, neither �x nor �p is equal to zero. Instead, �x�p = 1
2 � > 0.

In this state, the system has the “zero-point energy” E0 = �ω0
2 , that can never leave

the oscillator.

5.3 Problems

5.1 Commutation Relation: Show that the standard commutation relations for P
and X apply for the harmonic oscillator.

5.2 Dimension of A: What is the physical dimension of A = X̃ + i P̃ , as defined in
(5.6)?

5.3 Observables: Is the matrix A = X̃ + i P̃ as defined in (5.6) an observable?

5.4 Hamiltonian: According to (5.10)we have H = �ω0(N + 1
2 I)with N

def= A†A.
Is N Hermitian?

5.5 Commutator: Show that for A = X̃ + i P̃ , as defined in (5.6), [An, N] = nAn

holds.
5.6 Form of N: What is the form of N , and what are the eigenvalues?
5.7 Form of X , X2, and X3: What do the matrix elements of X , X2, and X3 look

like? Calculate them by means of the eigenvalue equations of the matrices A†

and A.



Chapter 6
Angular Momentum

Abstract The general procedure for the one-dimensional harmonic oscillator is
now extended to three-dimensional systems. In such systems, the three-dimensional
angularmomentum comes into play. It has an important role in the treatment of atoms
and quantum mechanical problems with rotational symmetry. The generalization to
three dimensions reached a first climax in Born’s, Heisenberg’s, and Jordan’s famous
“Three men work” (Born et al., ZS f. Physik, 1925, [6]). Green explains in [12]:

Even before the discovery of matrix mechanics, Bohr realized that atomic spectra could
only be explained if the angular momentum was limited to certain values, which are integral
multiples of Planck’s constant �. But a full knowledge of the behaviour of the angular
momentum of atomic systems was obtained only when matrix mechanics was developed.

Most of the matrices in this chapter are finite-dimensional N × N -matrices with
N ∈ N = {0, 1, 2, 3, . . .}.

6.1 The Matrix Vector of the Angular Momentum

If a mass point revolves around a fixed axis, it has an angular momentum which is
defined as

�
def= r × p, (6.1)

where

r
def=

⎛
⎝
x1
x2
x3

⎞
⎠ (6.2)

is the distance vector of the mass point from the axis of rotation and

p
def= m ṙ (6.3)

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_6
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is the momentum of the particle. Componentwise, the equation for the angular
momentum (6.1) looks like

�1 = x2 p3 − x3 p2,

�2 = x3 p1 − x1 p3,

�3 = x1 p2 − x2 p1.

In quantummechanics, the components of the distance vector are defined by three
matrices X1, X2, and X3, which are summarized in the matrix vector

R
def=

⎛
⎝

X1

X2

X3

⎞
⎠ . (6.4)

Accordingly, the matrix vector of the momentum is defined as

P =
⎛
⎝

P1
P2
P3

⎞
⎠ def=

⎛
⎝
m Ẋ1

m Ẋ2

m Ẋ3

⎞
⎠ , (6.5)

or, with the matrix vector for the velocity

V
def=

⎛
⎝

Ẋ1

Ẋ2

Ẋ3

⎞
⎠ , (6.6)

also as
P = mV. (6.7)

Remember that for the matrices Xi and Pi the commutation relations according to
(3.23) to (3.26) hold.

By defining the vector product for matrix vectors as

A × B =
⎛
⎝

A1

A2

A3

⎞
⎠ ×

⎛
⎝

B1

B2

B3

⎞
⎠ def=

⎛
⎝

A2B3 − A3B2

A3B1 − A1B3

A1B2 − A2B1

⎞
⎠ ,

we can show that
A × B = −B × A,

but only if Ai commutes with B j for i �= j . Because X i commutes with P j for
i �= j , we obtain the definition:

http://dx.doi.org/10.1007/978-3-319-26366-3_3
http://dx.doi.org/10.1007/978-3-319-26366-3_3
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Definition (Matrix vector of angular momentum)

L =
⎛
⎝

L1

L2

L3

⎞
⎠ def= R × P = −P × R. (6.8)

Note, however, that the components of angular momentum do not commute! For
example, we have

[L1, L2] = L1L2 − L2L1 =

= (X2P3 − X3P2)(X3P1 − X1P3) − (X3P1 − X1P3)(X2P3 − X3P2)

= X2P3X3P1 + X3P2X1P3 − X3P1X2P3 − X1P3X3P2

= X1P2(X3P3 − P3X3) + X2P1(P3X3 − X3P3)

= (X1P2 − X2P1) i � = i � L3.

Similarly, we obtain
[L2, L3] = i � L1

and
[L3, L1] = i � L2.

As a consequence, the observables that are assigned to the components of the angular
momentum L can not be measured at the same time.

For “normal” vectors, a vector multiplied by itself is always zero:

a × a = 0.

This no longer applies to the matrix vector product in quantummechanics. It follows
from the above that

L × L = i �L �= 0 . (6.9)

For the two mutually attracting masses me and mn of an electron and a nucleus in
an atom, the following equations of motion apply.

me
d2

dt2
xe = f , mn

d2

dt2
xn = − f .

By dividing the equations of motion by the masses and subtracting them, we obtain
for the relative distance
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x
def= xe − xn (6.10)

an equation of motion that looks like

d2

dt2
(xe − xn) =

(
1

me
+ 1

mn

)
f = 1

m
f ,

where the reduced mass m is defined by

m
def= memn

me + mn
.

With the relative velocity v
def= ẋ and the relative momentum

p
def= mv,

we finally get

m
d2

dt2
x = f = mv̇ = ṗ.

On the other hand, it follows from (6.10) by differentiation with respect to time that

v = ve − vn = 1

me
pe − 1

mn
pn = 1

m
p,

which provides an alternative formulation for the relative momentum:

p = m

(
1

me
pe − 1

mn
pn

)
. (6.11)

In quantum mechanics, the relative position and the relative momentum of the
electron and the nucleus in an atom are represented by the matrices:

X j = Xej − Xnj , j = 1, 2, 3.

The velocities and momenta of the electron and the nucleus are represented by the
matrices V ej and V nj as well as

V ej = 1

me
Pej and V nj = 1

mn
Pnj .

The relative momentum is defined as

P j = m

(
1

me
Pej − 1

mn
Pnj

)
= 1

mn + me

(
mn Pej − mePnj

)
.
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The matrices Xej and Pej for the electron commute with the matrices Xnj and Pnj

for the nucleus. This leads to the following commutation relations for the relative
position matrices and momentum matrices:

X j P j − P j X j = mn

mn + me

(
Xej Pej − Pej Xej

) + me

mn + me

(
Xnj Pnj − Pnj Xnj

) =

=
(

mn

mn + me
+ me

mn + me

)
i�I = i�I .

Thus, the relative matrices satisfy the same conditions as in the case of a single mass.

If we define the scalar product of two matrix vectors as

(A · B)
def= A1B1 + A2B2 + A3B3,

then we get

(L · L)
def= L2 = L2

1 + L2
2 + L2

3.

6.2 Eigenvalues and Eigenvectors of L2 and L3

6.2.1 Commutativity of L2 and L3

First, we show that for the matrix L2 and all matrices Li , i = 1, 2, 3 the following
relation holds,

L2Li − Li L2 = 0;

that is, L2 commutes with all matrices Li , and therefore L2 and Li can be measured
simultaneously (which is not the case for the Li among themselves). We prove this
result for the two matrices L2 and L3. With the abbreviation

[A, B] def= AB − BA,

we get
[L3, L2

1] = L3L1L1 − L1L3L1︸ ︷︷ ︸
[L3,L1]L1

+ L1L3L1 − L1L1L3︸ ︷︷ ︸
L1[L3,L1]

=

= i�(L2L1 + L1L2). (6.12)

Similarly, we find that

[L3, L2
2] = −i�(L1L2 + L2L1). (6.13)
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Furthermore, it is clear that
[L3, L2

3] = 0. (6.14)

Adding (6.12), (6.13), and (6.14) gives the desired result. The general rule for the
commutativity is

Li L2 = L2Li , i = 1, 2, 3;

that is,
[Li, L2] = 0.

6.2.2 Eigenvalues and Eigenvectors

We now want to determine the eigenvalues and eigenvectors of the two matrices L2

and L3. L3 is preferred over L1 and L2, inasmuch as we later observe the effect of
a magnetic field on atoms, where the field is aligned along the x3− or z-direction.

Generally speaking, two commuting matrices A and B have the same set of
eigenvectors. To see this, let eA be an eigenvector of A to the eigenvalue λA; that is,
AeA = λAeA. Because A and B commute, we have

ABeA = BAeA = B(λAeA) = λABeA.

Hence BeA is an eigenvector of Awith the same eigenvalue λA, therefore BeA must
be a multiple of the eigenvector eA:

BeA = λBeA.

As claimed, the matrices A and B have the same eigenvectors.
The two matrices L3 and L2 commute, therefore they have the same set of eigen-

vectors. Let us single out one of them, e. In addition, we extract the factor �
2 from

the eigenvalue, such that λ is a purely numerical value1

L2e = �
2λ e, (6.15)

and
L3e = � μ e. (6.16)

Similar to the harmonic oscillator, we can now define the so-called creation and
annihilation operators that allow us to jump from a known eigenvector to the next:

1Planck’s constant � has the dimension energy · time. The angular momentum has the dimension
length · mass · length · time−1. The energy has the dimension mass · length2 · time−2. There-
fore, � has the dimension mass · length2 · time−1, that is, the same dimension as the angular
momentum. The squared angular momentum then has the same dimension as �

2.
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L+
def= L1 + i L2, (6.17)

and
L−

def= L1 − i L2. (6.18)

The matrices L± commute with the matrix L2, because

L2L± − L±L2 = L2L1 ± i L2L2 − L1L2 ∓ i L2L2 =

= [L2, L1]︸ ︷︷ ︸
0

+i [L2, L2]︸ ︷︷ ︸
0

= 0.

On the other hand, we have

[L3, L±] = ± � L±, (6.19)

because
[L3, L±] = [L3, L1] ± i[L3, L2] = i�L2 ∓ i2�L1 =

= �(±L1 + iL2) = ± � L±.

It also follows that
[L+, L−] = 2�L3. (6.20)

Solving (6.20) for L+L− yields

L+L− = L2 − L3(L3 − �I) (6.21)

and
L−L+ = L2 − L3(L3 + �I). (6.22)

6.2.3 Maximum and Minimum Eigenvalues

Instead of (6.15), we can also write

(L2
1 + L2

2)e + �
2μ2e = �

2λe.

If we multiply this with e
ᵀ
from the left, we get for the normalized eigenvectors (i.e.,

|e| = 1)
e

ᵀ
(L2

1 + L2
2)e = �

2(λ − μ2). (6.23)
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Because the matrices L1 and L2 are Hermitian matrices, the eigenvalues are all real.
Therefore, the left side of (6.23) must be positive: (λ − μ2) ≥ 0, or λ ≥ μ2. Let us
now multiply (6.15) with the matrix L± from the left. Because L± commutes with
L2, we obtain

L±L2e = L2L±e = �
2λL±e; (6.24)

that is, L±e is also an eigenvector of L2 with the same eigenvalue �
2λ. Next, we

obtain with (10.21) for L3L±e

L3L±e = ([L3, L±] + L±L3)e =

= (±�L± + L±L3)e = �(1 ± μ)L±e. (6.25)

In other words, L±e is also an eigenvector of L3. However, the associated eigenvalue
changes to �(1 ± μ). As in the case of the harmonic oscillator, a multiple application
of L+ to the eigenvalue equation subsequently increases the eigenvalue of L3. Of
course, this has to stop at some point, inasmuch as otherwise the condition λ ≥ μ2

would be violated. Let m̄ be the maximum value of λ that does not violate λ ≥ μ2.

With the definition em
def= Lm+e, we then get

L3em = � m̄em. (6.26)

Because L+ and L3 commute, it follows that

L3(L+em) = �(1 + m̄)(L+em).

But an eigenvalue �(1 + m̄) is not possible, because m̄ was by definition the largest
value of μ! Therefore (L+em) = 0 must apply. Under consideration of

L−L+ = L2 − L2
3 − �L3,

this equation multiplied by the matrix L− from the left finally gives

L−(L+em) = 0,

or
(L2 − L2

3 − �L3)em = 0.

Therefore, we get
�
2(λ − m̄2 − m̄)em = 0.

Inasmuch as the eigenvector em cannot be a zero vector, the value in brackets must
be zero; that is,

http://dx.doi.org/10.1007/978-3-319-26366-3_10
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λ = m̄(m̄ + 1). (6.27)

If we now multiply the second eigenvalue equation (6.26) with the matrix L−
from the left, we obtain

L−L3em = � m̄L−em,

or with (6.25)
L3(L−em) = �(m̄ − 1)(L−em).

For the largest eigenvalue m̄, we get

L2em = �
2λem,

or
L2(L−em) = �

2λ(L−em).

In other words, L−em is an eigenvector of L2 and L3 with the eigenvalues �
2λ and

�(m̄ − 1), respectively. Similarly, n-times multiplication by L− yields

L3(Ln
−em) = �(m̄ − n)(Ln

−em).

However, there must be a lowest value for m, because otherwise λ ≥ m2 would be
violated. The minimum value of m without violation of λ ≥ m2 is �(m̄ − n). Then

L3(L
n+1
− em) = �(m̄ − (n + 1))(Ln+1

− em) = 0.

Because �(m̄ − (n + 1)) �= 0, (Ln+1
− em) = 0must hold; that is, (L−Ln−em) = 0 and

therefore also (L+L−Ln−em) = 0. Replacing L+L−, we obtain

(L2 − L2
3 + �L3)Ln

−em = 0,

or
�
2(λ − (m̄ − n)2 + (m̄ − n))Ln

−em = 0.

Because Ln−em �= 0, we get the condition

λ − (m̄ − n)2 + (m̄ − n) = 0.

With the value of λ = m̄(m̄ + 1) according to (6.27), we get

m̄(m̄ + 1) − (m̄ − n)2 + (m̄ − n) = (n + 1)(2m̄ − n) = 0.

Due to (n + 1) �= 0, 2m̄ − n = 0 (i.e., m̄ = n/2)must hold, where n is the number of
steps from the maximum eigenvalue �

2m̄ to the minimal eigenvalue �
2(m̄ − n). This

number n is always an integer (including zero). If we set � for n/2, �� and−�� are the
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maximum and minimum eigenvalues of L3. For a given value of �, the eigenvalues
of L3 are therefore equal to �m, where m = �, � − 1, . . . ,−�. In particular, there
are 2� + 1 eigenvalues of L3. Because n is always an integer, the possible values of
� are 0, 1/2, 1, 3/2, . . .. Note that these fractional quantum numbers automatically
occurred in our treatment of angular momentum.

If we denote e�m the common eigenvector of L2 and L3 with eigenvalues �
2�(� +

1) and �m, respectively, we finally obtain the following theorem.

Theorem For the matrices L2 and L3, the eigenvalue equations are

L2e�m = �
2�(� + 1)e�m (6.28)

and
L3e�m = �me�m, (6.29)

where the allowed quantum numbers are the Angular momentum quantum num-
ber,

� = 0, 1/2, 1, 3/2, . . . ,

and the Magnetic quantum number,

m = −�, −� + 1, . . . , � − 1, �.

For a given �, the matrix L3 has a spectrum with � + 1 eigenvalues

−� �, �(−� + 1), . . . , �(� − 1), � �.

The matrix is a square (2� + 1) × (2� + 1)-matrix. Therefore in the Heisenberg
matrix mechanics also finitely large matrices occur in a Hilbert space!

6.2.4 Orientation of the Angular Momentum Vectors

From the above theorem, we obtain for |L| and the z-component of angular momen-
tum L

|L| = �

√
�(� + 1), (6.30)

L3 = �m. (6.31)

Because it is not possible in quantum mechanics to determine the components
(L1, L2) in addition to the length |L| and the z-component L3 at the same time,
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Fig. 6.1 The angular
momentum L has a
component along the x3 axis
with the allowed values
L3 = �m, −� ≤ m ≤ �, and
undetermined components
L1 and L2 in the x1 - x2
plane L = ( + 1)L3 = m

( + 1) − m2

x3

x2

x1

the angular momentum vector L can never be exactly parallel to the z-axis of the
coordinate system. In such a case, the x- and the y-components would be exactly
zero and thus accurately determined. The only statement that can be made about the
x- and y-components is that they make up a circular path together, because

L2
1 + L2

2 = |L|2 − L2
3 = �

2[�(� + 1) − m2], (6.32)

where the right side of this equation is constant for given values of the quantum
numbers � and m. The circle has the radius �

√
�(� + 1) − m2 (see Fig. 6.1).

Our system with the angular momentum |L| = �
√

�(� + 1) has a well-defined
component along the axis x3, with allowed values L3 = �m , (−� ≤ m ≤ �), and it
has indefinite components L1 and L2 in the x1–x2 plane. The angular momentum is
therefore quantized, and � is called the angular momentum quantum number. The
quantumnumberm specifies the x3-component of the angularmomentum.Becausem
is boundedby the value 2� + 1, the x3-component of the angularmomentum is limited
to 2� + 1 discrete values for a given �. This limitation of the angular momentum is
also called space quantization. This name results from the vector representation of
the angularmomentum,where the angularmomentum is defined by a vector of length
�
√

�(� + 1) and a direction that is determined by its x3-component of length �m;
see Fig. 6.2. It is not possible to determine the x1- and x2-components of the angular
momentum from the quantum numbers � and m.

6.2.5 The Matrices L2 and L3

We can use the eigenvectors as a complete set of orthonormal vectors for constructing
a matrix that represents the angular momentum. Because the two matrices L2 and
L3 commute, they are both diagonal matrices in this representation. In contrast, the
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Fig. 6.2 The five (i.e., 2�+
1) permitted directions of the
angular momentum for � =
2. The length of the vector is
�
√

�(� + 1) = �

√
6

m
0

+1

+2

−1

−2

x3

√
6

√
6

√
6

√
6

√
6

two matrices L1 and L2 do not commute with the matrix L3, therefore they will
not be diagonal. If we multiply the eigenvalue equations as specified in the above
theorem with the transposed normalized eigenvector e

ᵀ
�m from the left, we obtain for

the diagonal elements

e
ᵀ
�mL

2e�m = L2
mm = �

2 �(� + 1) (6.33)

and
e

ᵀ
�mL3e�m = L3,mm = �m. (6.34)

We now characterize matrices for the value � by a superscript number, for example,
L3

(�). The matrices L2(�) then have the simple diagonal form

L2(�) = �
2 �(� + 1)I . (6.35)

For � = 1
2 , for example, we obtain the diagonal matrices

L2(1/2) = �
2

(
3/4 0
0 3/4

)
, (6.36)

L3
(1/2) = �

2

(
1 0
0 −1

)
. (6.37)

For � = 1, the diagonal matrices are

L2(1) = �
2

⎛
⎝

2 0 0
0 2 0
0 0 2

⎞
⎠, L(1)

3 = �

⎛
⎝

1 0 0
0 0 0
0 0 −1

⎞
⎠,
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6.2.6 The Matrices L+, L−, L1 and L2

We know
L3L+e�m = �(m + 1)L+e�m. (6.38)

For the eigenvalue �(m + 1), this eigenvalue equation can also be written as

L3e�,m+1 = �(m + 1)e�,m+1. (6.39)

Because the eigenvalues of L3 in the (6.38) and (6.39) are the same, the eigenvectors
can only differ by a multiplicative factor αm :

L+e�,m = αm e�,m+1. (6.40)

Similarly, we obtain
L−e�m = βm e�,m−1, (6.41)

where
αm = e

ᵀ
�,m+1L+e�m (6.42)

or
α∗
m = e

ᵀ
�,mL−e�,m+1, (6.43)

and
βm = e

ᵀ
�,m−1L−e�,m (6.44)

or
βm+1 = e

ᵀ
�,mL−e�,m+1. (6.45)

A comparison of (6.43) and (6.45) provides

α∗
m = βm+1. (6.46)

Multiplication of (6.40) by the matrix L− from the left yields

L−L+e�m = αm L−e�,m+1. (6.47)

Replacing L−L+ by L2 − L2
3 − �L3 and using (6.41) leads to

(L2 − L2
3 − �L3)e�m = αmβm+1e�m

or
(�(� + 1) − m2 − m)�2e�m = |αm |2 e�m.
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This implies
αm = [�(� + 1) − m(m + 1)]1/2 �. (6.48)

With this αm , we obtain

L+e�m = [�(� + 1) − m(m + 1)]1/2 �e�,m+1, (6.49)

or
e�′m′

ᵀ
L+e�m = [�(� + 1) − m(m + 1)]1/2 � δ��′δm ′,m+1. (6.50)

Similarly, we obtain

e�′m′
ᵀ
L−e�m = [�(� + 1) − m(m − 1)]1/2 � δ��′δm ′,m−1. (6.51)

The equations (6.50) and (6.51) provide all the elements of the matrices L+ and
L−. The Kronecker-Delta functions indicate that all nonvanishing matrix elements
occur in blocks along the diagonal �′ = �. The blockmatrices belonging to the values
� = 0, 1

2 , and 1 are shown below. The matrices L1 and L2 can now be derived from
the following relations.

L1 = 1

2
(L+ + L−) and L2 = 1

2i
(L+ − L−). (6.52)

For � = 0, we get
L+ = L− = L1 = L2 = 0. (6.53)

For � = 1/2, we get

L(1/2)
+ = �

(
0 1
0 0

)
and L(1/2)

− = �

(
0 0
1 0

)
,

L(1/2)
1 = 1

2
�

(
0 1
1 0

)
and L(1/2)

2 = 1

2
�

(
0 −i
i 0

)
. (6.54)

Finally, for j = 1 we have

L(1)
+ = �

⎛
⎝
0

√
2 0

0 0
√
2

0 0 0

⎞
⎠ and L(1)

− = �

⎛
⎝

0 0 0√
2 0 0
0

√
2 0

⎞
⎠ ,

L(1)
1 = 1√

2
�

⎛
⎝
0 1 0
1 0 1
0 1 0

⎞
⎠ and L(1)

2 = 1√
2

�

⎛
⎝
0 −i 0
i 0 −i
0 i 0

⎞
⎠ . (6.55)



6.2 Eigenvalues and Eigenvectors of L2 and L3 73

Note that all matrices L1, L2, and L3 are Hermitian matrices; that is, L†
i = L̄

ᵀ
i = Li

for all i . Also,
(L(�)

1 )2 + (L(�)
2 )2 + (L(�)

3 )2 =

= 1

2
�
2

⎛
⎝
1 0 1
0 2 0
1 0 1

⎞
⎠ + 1

2
�
2

⎛
⎝

1 0 −1
0 2 0

−1 0 1

⎞
⎠ + �

2

⎛
⎝
1 0 0
0 0 0
0 0 1

⎞
⎠ =

= �
2

⎛
⎝
2 0 0
0 2 0
0 0 2

⎞
⎠ = L2(�).

A given �-value defines a (2� + 1) × (2� + 1) matrix. This dimension reflects
that the space is spanned by the 2� + 1 different m-values. If we allow all possible
�-values, we obtain an infinitely large matrix consisting of (2� + 1) × (2� + 1)-
blocks along the main diagonal. Their general form can be written as a direct sum
(α = 1, 2, 3,+ or −):

Lα =
⊕∞

�=0
L(�)

α =

⎛
⎜⎜⎜⎝

L(0)
α 0 0 · · ·
0 L(1)

α 0 · · ·
0 0 L(2)

α · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

For integer values of �, we obtain matrices such as

L1 = �

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 · · ·
0 0

√
2 0 0 0 0 0 0 0 · · ·

0
√
2 0

√
2 0 0 0 0 0 0 · · ·

0 0
√
2 0 0 0 0 0 0 0 · · ·

0 0 0 0 0
√
4 0 0 0 0 · · ·

0 0 0 0
√
4 0

√
6 0 0 0 · · ·

0 0 0 0 0
√
6 0

√
6 0 0 · · ·

0 0 0 0 0 0
√
6 0

√
4 0 · · ·

0 0 0 0 0 0 0
√
4 0 0 · · ·

0 0 0 0 0 0 0 0 0
. . .

...
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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L2 = i
�

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 · · ·
0 0

√
2 0 0 0 0 0 0 0 · · ·

0 −√
2 0

√
2 0 0 0 0 0 0 · · ·

0 0 −√
2 0 0 0 0 0 0 0 · · ·

0 0 0 0 0
√
4 0 0 0 0 · · ·

0 0 0 0 −√
4 0

√
6 0 0 0 · · ·

0 0 0 0 0 −√
6 0

√
6 0 0 · · ·

0 0 0 0 0 0 −√
6 0

√
4 0 · · ·

0 0 0 0 0 0 0 −√
4 0 0 · · ·

0 0 0 0 0 0 0 0 0
. . .

...
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

L3 = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 · · ·
0 −1 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 · · ·
0 0 0 0 −2 0 0 0 0 0 · · ·
0 0 0 0 0 −1 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 1 0 0 · · ·
0 0 0 0 0 0 0 0 2 0 · · ·
0 0 0 0 0 0 0 0 0

. . .

...
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

With these matrices, we obtain

L2 = L2
1 + L2

2 + L2
3 = �

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 · · ·
0 2 0 0 0 0 0 0 0 0 · · ·
0 0 2 0 0 0 0 0 0 0 · · ·
0 0 0 2 0 0 0 0 0 0 · · ·
0 0 0 0 6 0 0 0 0 0 · · ·
0 0 0 0 0 6 0 0 0 0 · · ·
0 0 0 0 0 0 6 0 0 0 · · ·
0 0 0 0 0 0 0 6 0 0 · · ·
0 0 0 0 0 0 0 0 6 0 · · ·
0 0 0 0 0 0 0 0 0

. . .

...
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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6.3 Problems

6.1 Commutation Relation: What isX · P − P · X for the harmonic oscillator?

6.2 Matrix Vectors: Prove the identity

(A × B) · C = A · (B × C).

6.3 Matrices L+ and L−: Are L+ and L− Hermitian?

6.4 Eigenvector for L+ and L−: Let e( j,m) be normalized, common eigenvectors
of L2 and L3. Show that

L+e( j,m) = �

√
( j − m)( j + m + 1)e( j,m + 1),

and
L−e( j,m) = �

√
( j + m)( j − m + 1)e( j,m − 1).



Chapter 7
Wolfgang Pauli and the Hydrogen Atom

Abstract It was up to the physicistWolfgang Pauli to apply the newmatrix quantum
mechanics to the hydrogen atom successfully.

7.1 Basic Matrices and Matrix Vectors

In his work, Pauli [18] first introduced some matrices that we already know from
the angular momentum. This is not surprising, however, because the hydrogen atom
essentially consists of a nucleus and one electron orbiting around it. At least, that
was the general image in the older atomic theory.

The Cartesian coordinates are again represented by the matrices X1, X2, X3 and
combined into the matrix vector

R
def=

⎛
⎜⎝

X1

X2

X3

⎞
⎟⎠ ,

which satisfies the relation

R2 = (R · R) = X2
1 + X2

2 + X2
3. (7.1)

Next, Pauli defined the momentum matrices P1
def= m Ẋ1, P2

def= m Ẋ2, and P3
def=

m Ẋ3, which are summarized in the matrix vector

P
def=

⎛
⎜⎝

P1

P2

P3

⎞
⎟⎠ = m

d

dt
R.

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_7
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Also, he derived the relations1 from equations (3.23) to (3.26)

PρPσ − Pσ Pρ = 0, XρXσ − XσXρ = 0, (7.2)

PρXσ − Xσ Pρ =
{
0 for ρ �= σ
h
2πi I for ρ = σ.

(7.3)

He further assumed that for an arbitrary function F of R, X1, X2, X3, this relation
is valid for all i (see (3.19) and (3.27)):

Pi F − FPi = h

2πi

∂F
∂X i

(7.4)

In particular, it is true for F = R:

Pi R − RPi = h

2πi
X i R−1. (7.5)

With these relations, together with the energy equation for a single particle,

E = 1

2m
P2 + F(X1, X2, X3), (7.6)

where E is a diagonal matrix, as well as the Heisenberg equation for any quantity �,

h

2πi
�̇ = E� − �E,

he obtained the equations of motion for all i as

dP i

dt
= − ∂E

∂X i
. (7.7)

1Pauli summarizes these relationships as

RR = RR

and

PR − RP = h

2πi
R/R,

which of course is not formally correct for both row-vectormatrices and for column-vectormatrices.
Rather, one must write, for example, for column-vector matrices R and P:

(I3 ⊗ R)R = RR

and

PR − (I3 ⊗ R)P = h

2πi
RR−1,

where ⊗ is the Kronecker product.

http://dx.doi.org/10.1007/978-3-319-26366-3_3
http://dx.doi.org/10.1007/978-3-319-26366-3_3
http://dx.doi.org/10.1007/978-3-319-26366-3_3
http://dx.doi.org/10.1007/978-3-319-26366-3_3


7.1 Basic Matrices and Matrix Vectors 79

Hereby, Pauli postulated the existence of a matrix R that satisfies the relations (7.1)
and (7.5). Next, he introduced the vector matrix L corresponding to the angular
momentum of the particle with respect to the origin. Similar to (6.8), with mV
instead of P, we get the following definition.

Definition The angular momentum of a particle is

L
def= m(R × V) = −m(V × R). (7.8)

7.2 Introduction of the Matrix VectorA

For the further calculations, we need the so-called Laplace–Runge–Lenz vector. This
vector was introduced by Lenz2 into quantum theory. An atom contains an electron
with mass m and charge e. The electron is attracted by the fixed nucleus with the
charge +Ze due to the Coulomb force. The matrix E is set as

E = 1

2m
P2 − Ze2R−1. (7.9)

Note that E is supposed to be diagonal. The equations of motion corresponding to
(7.7) are

Ṗ = mR̈ = −Ze2RR−1. (7.10)

We can now define the Lenz-Matrix-Vector.

Definition The Lenz-Matrix-Vector is given by

A
def= 1

Ze2m

1

2
(L × P − P × L) + RR−1. (7.11)

Note that the symmetrized vector matrix difference 1
2 (L × P − P × L) was used

for the vector product � × p in the Lenz-Vector, in order for the vector matrix com-
ponents Ai to be anti-symmetrical.

In a somewhat lengthy, but trivial calculation (see Problem7.2), Pauli also showed
that

2See AppendixD.

http://dx.doi.org/10.1007/978-3-319-26366-3_6
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d

dt
(RR−1) = 1

2m

[
L × (RR−3) − (RR−3) × L

]
. (7.12)

Using this relation, one can show (see Problem7.3) that the time derivative of A is
equal to zero. In other words,A is a constant matrix vector over time.

Summing up, we now have three time-constant matrix vectors or matricesA,L,
and E that describe the system (i.e., the atom) completely. We do not need the
coordinate matrices Xi and R anymore. Let us summarize the governing equations
forA,L, and E.

L × L = i�L, (7.13)

[Ai , Li ] = 0, (7.14)

[Ai , L j ] = i� εi jk Ak, for i �= j �= k, (7.15)

A · L = L · A = 0, (7.16)

A × A = h

2πi

2

mZ2e4
LE, (7.17)

A2 = 2

mZ2e4
E

(
L2 + h2

4π2
I
)

+ I . (7.18)

Equation (7.13) is identical to equation (6.9). Equations (7.14) and (7.15) are analo-
gous to (7.2) and (7.3) in form. Equation (7.18) is analogous to the classical equation
(D.5). These equations are proofed in AppendixH.

Because the matrices Li and Ai commute with the matrix E, the quantities that
are represented by them can be measured at a given energy value. Once the atom has
a specific energy, the variables that correspond to the matrices Li and Ai describe the
simplified system completely. Inasmuch as the matrices X i and P i do not commute
with E, they cannot be measured for a given energy value.

Let ε be this fixed energy value; that is, E = ε · I .We introduce yet anothermatrix
vector

K
def=

√
−mZ2e4

2ε
A.

Because of (7.16), we certainly also have

L · K = 0.

http://dx.doi.org/10.1007/978-3-319-26366-3_6
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Furthermore, (7.18) implies

K2 =
(
L2 + h2

π2
I
)

+ mZ2e4

2ε
I .

Relation (7.17) now reads

K × K = ih

2π
L.

We further define the matrix vectors

M
def= 1

2�
(L + K)

and

N
def= 1

2�
(L − K).

Based on the relations (7.13) to (7.18), it is easy to see that the following relations
hold.

M2 − N2 = 1

�2
(L · K) = 0,

2(M2 + N2) = 1

�2
(L2 + K2) = −

(
1 + mZ2e4

2�2ε

)
I,

M × M = iM,

and
N × N = iN.

Therefore, we get
M2 = N2

and

4M2 = −
(
1 + mZ2e4

2�2ε

)
I . (7.19)

For negative values of ε (as assumed byNiels Bohr in his atommodel), the square root√
−mZ2e4

2ε is real. In this case, the matrices K i , M i and N i represent real entities. The
commutation relations for the M i are the same as for the matrices Li representing
the angular momentum (except a factor �). For this reason, the matrix

M2 = M2
1 + M2

2 + M2
3
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can only have the eigenvalues

�(� + 1), � = 1,
3

2
, 2, . . . .

From (7.19), it follows that

4�(� + 1) = −1 − mZ2e4

2�2ε
;

that is,

−mZ2e4

2�2ε
= 4�(� + 1) + 1 = (2� + 1)2.

This yields for the energy value

ε = − m(Ze2)2

2�2(2� + 1)2
.

If we introduce the quantum number

n
def= 2� + 1,

then n must be one of the numbers

1, 2, 3, 4, . . . ,

and the possible energy values are (with the usual notation E instead of ε)

En = −m(Ze2)2

2�2n2
. (7.20)

Did you notice that these are the exact same values as predicted in Bohr’s atommodel
(1.29)? We solved the eigenvalue problem of the hydrogen atom! For Z = 1, (7.20)
defines its energy spectrum. n is called the principal quantum number. In addition to
the principal quantum number, there is still the angular momentum quantum number
� and the magnetic quantum number m (see the chapter on angular momentum).
Note that this equation was derived without describing the hydrogen atom in detail,
such as electrons orbiting around the nucleus.

http://dx.doi.org/10.1007/978-3-319-26366-3_1
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7.3 The Hydrogen Spectrum

In Sect. 2.1 we have already provided some information on the hydrogen spectrum.
Back then, however, the relationships were more or less an educated guess; see
Balmer. Based on the results of Pauli’s calculations,we can nowgive amore profound
summary.

For an arbitrary nuclear charge (with Z protons), we get an energy

En = − me4

8ε20h
2

Z2

n2
= −13, 6

Z2

n2
eV, (7.21)

where ε0 is the so-called permittivity of free space. For the energy difference between
the n1th and the n2th state, we obtain

�E = En2 − En1 = me4Z2

8ε20h
2

(
1

n21
− 1

n22

)
. (7.22)

For n2 > n1, this energy difference is positive; that is, the total energy of the system
is increased by external energy input. Otherwise energy is emitted. This so-called
Rydberg formula was found by Johannes Rydberg3 in 1888. Rydberg had no knowl-
edge of any atomic model, but found this formula based on the observed line spectra
only. A few years earlier, Balmer4 had found the famous Balmer formula for the case
n1 = 2 in the hydrogen atom (Z = 1),

λ = A

(
n2

n2 − 4

)
= A

(
n2

n2 − 22

)
,

which covers the visible region of the spectrum lines. The empirical constant is A =
364.56 nm = 3645.6 × 10−10 m. For the explanation of the spectra, we are interested
in the frequency. According to Einstein and Planck, it is E = hν. For a jump from the
n1th to the n2th state (n1 > n2), the frequency of the emitted radiation is therefore

ν = c

λ
= me4

8ε20h
3

(
1

n22
− 1

n21

)
= cR

(
1

n22
− 1

n21

)
, (7.23)

with the Rydberg constant

R = me4

8ε20h
2

= 10 973 731.568 539 (55)m−1.

3Johannes Robert Rydberg, 1854–1919, Swedish physicist.
4Johann Jakob Balmer, 1825–1898, Swiss mathematics teacher.

http://dx.doi.org/10.1007/978-3-319-26366-3_2
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If we set n1 to infinity in (7.22), we obtain the energy that is needed to move an
electron from infinity to the state n2, so the total energy of the state n2.

7.4 Problems

7.1 Time Derivative of P: Under which conditions is (7.10) equal to Ṗ =
−Ze2RR−1?

7.2 Time Invariant Matrix: Show the relation (7.12),

d

dt
(RR−1) = 1

2m

[
L × (RR−3) − (RR−3) × L

]
.

7.3 Constancy of A: Show that the Lenz-Matrix-Vector A is constant.



Chapter 8
Spin

Abstract We introduce the spin based on symmetry considerations. Its effect is
described by spinors and Pauli matrices. Also, spin-orbit coupling is investigated.

8.1 Magnetic Fields and Light

In the nineteenth century, the influence of magnetic fields on light was studied exten-
sively. Based on the idea of classical physics that light is an electromagnetic wave
caused by atomic vibrations, in 1892 Lorentz1 theoretically derived that the spectral
lines are split threefold once the radiating atom is placed in a magnetic field. In
1896, the Dutch physicist Zeeman2 confirmed this splitting in an experiment. Sub-
sequent measurements of the splitting showed that it even complies with Lorentz’s
formula if it is assumed that not the entire atom, but only the much lighter electron
vibrates. Already back then, electrons were assumed to be part of the atom. Thanks
to this so-called normal Zeeman effect, the electron hypothesis was considerably
strengthened.

In addition to the normal Zeeman effect, however, a great number of observations
were made where more than three lines appear. This so-called anomalous Zeeman
effect was an inexplicable phenomenon both for classical physics and Bohr’s atom
model and stimulated further theoretical investigation.

8.2 Derivation of the Zeeman Effect (Without Spin)

According to classical physics, an electron with the massm and the electric charge e
that moves on a circular path with the angular momentum L has a magnetic moment

pm = − e

2m
L.

1Hendrik Antoon Lorentz, 1853–1928, Dutch mathematician and physicist, Nobel Prize 1902.
2Pieter Zeeman, 1865–1943, Dutch physicist, Nobel Prize 1902.

© Springer International Publishing AG 2018
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without magnetic field
with magnetic field

m = +1
m = 0
m = −1

1s

2p

Fig. 8.1 Splitting of spectral lines due to the Zeeman effect. Photons with three different energies
can be emitted

The factor e
2m is called the gyromagnetic ratio. Under the influence of a magnetic

field b, there is an additional contribution to the potential energy of the electron in
the Hamiltonian function to

Em = − pm · b = e

2m
(L3 · b),

where we assumed the magnetic field to be parallel to the x3-axis, having the magni-
tude b. If we transfer this relationship into quantum mechanics, using the eigenvalue
�m of L3, we get

Em = e

2m
· b · �m = μBohr · b · m,

with the Bohr magneton

μBohr
def= e�

2m
= 9.2732 · 10−24 J

T
.

Overall, we now get the energy

En,m
def= En + μBohr b m.

The so-called Zeeman splitting then yields an energy difference for �m = ±1
(Fig. 8.1):

�E = En,m+1 − En,m = ±μBohr b.

For the so-called one-electron atoms [21] (i.e., one electron on the outermost elec-
tron shell), the standard terminology for the energy levels � = 0, 1, 2, 3 is s, p, d,

and f . For the hydrogen atom and other one-electron atoms, these letters are pre-
ceded by a number that indicates the total energy level. For example, the lowest
energy level in the hydrogen atom is 1s, the next 2s and 2p, then 3s, 3p and 3d, and
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so on. For each n, the value of � ranges from 0 to n−1, and for each �we have 2�+1
values of m. The total number of states with an energy value of En is therefore

n−1∑

�=0

(2� + 1) = 2
n(n − 1)

2
+ n = n2.

The alkali metals lithium, sodium, potassium, and so on are one-electron atoms
that consist of Z − 1 inner electrons and one external electron. The transitions of the
latter between the energy levels are responsible for the spectral lines. If no external
fields are present, the energy levels depend on the angular momentum quantum
number � as well as the principal quantum number n. Due to the spherical symmetry,
they do not depend on the x3-component �m of the angular momentum. In other
words, there is one energy level for each n, �, andm. However, studies of the spectra
revealed that (except for the s-level) all levels occur twice. For example, the so-called
D-line of sodium, which is generated by the transition 3p → 3s, occurs twice with
the wavelengths 589.6 and 589.0nm. It is for this very reason that Pauli predicted
a fourth quantum number for electrons in atoms that has two values (except for the
s-level). In 1925,Uhlenbeck3 andGoudsmit4 proposed that the doublingof the energy
level is created by an internal angular momentum of the electron. The component in
the direction of the angular momentum L of the electron orbit around the nucleus can
only assume two values, and its interaction with the weak magnetic field formed by
the electrons that orbit around the nucleus, all except the s category, splits into two
levels. All components of the inner angular momentum S can have 2�+ 1 values,
such that the size s corresponding to � assumes the unusual value 1

2 . This inner
angular momentum was called the spin of the electron. How is a spin of size �/2
generated? For an angular momentum of this amount and the classical electron radius
of rE = α�/mec, a peripheral speed would be required that is more than 70 times the
speed of light! From a classical perspective, the spin can therefore not be explained
as an angular momentum. Let us approach the solution to this question via symmetry
considerations.

8.3 Symmetry Considerations

Historically, classicalmechanics supplied quantummechanicswith observable quan-
tities and their properties [21]. In some cases, this contradicts Heisenberg’s idea to
use only measurable, that is, observable, quantities, for example, when analyzing the
motion of an electron around a nucleus (which cannot be observed). However, many
of the entities required in quantum mechanics are introduced solely by symmetry
considerations.

3George Uhlenbeck, Dutch/American physicist, 1900–1988.
4Samuel Goudsmit, Dutch/American physicist, 1902–1978.
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The symmetry principle states that a law of nature does not change, for example,
if we change our viewpoint. In other words, if a law is valid here (locus x), then the
law is also valid there (at the location x + a).

The unity operator I represents a trivial symmetry that does not alter the state.
Next, there is a special class of symmetries that can be represented by linear unitary
operators U that are arbitrarily close to I . Such operators can be written as a Taylor
series

U(ε)
def= I + ε · dU

dε

∣∣∣∣
ε=0

+ O(ε2), (8.1)

where ε is arbitrarily small. In order for U to be unitary (i.e., UU† = I), we must
require

UU† =
(

I + ε · dU
dε

∣∣∣∣
ε=0

+ O(ε2)

) (
I + ε · dU†

dε

∣∣∣∣
ε=0

+ O(ε2)

)
!= I .

This leads to

I + ε

[
dU
dε

+ dU†

dε

]∣∣∣∣
ε=0︸ ︷︷ ︸

!=0

+O(ε2)
!= I .

Let us now introduce the notation

dU
dε

= i · G, (8.2)

with the (symmetric) generator
G = G†. (8.3)

Then we get indeed [
dU
dε

+ dU†

dε

]
= i · G − i · G = 0.

With the definition ε
def= θ/N , (8.1) now reads

U(θ/N ) = I + i · θ/N · G + O(ε2).

Now let θ be fixed and N get large. Then we can obtain the transformation according
to θ by applying N times the infinitesimal transformation according to θ/N :

U(θ) = (I + i · θ/N · G)N .

For N → ∞, this becomes
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U(θ) = lim
N→∞(I + i · θ/N · G)N = ei θG. (8.4)

Note that we left the higher-order terms O(ε2) aside in this rather heuristic deriva-
tion. However, it can be shown in a mathematically rigorous way that this is indeed
a feasible definition for any size of θ ! In particular, the first terms of the series
representation

eX =
∞∑

m=0

Xm

m! ,

with X = iεG, indeed yield the desired result (8.1) for small ε.
It is well known from mathematics that a similarity transformation leaves eigen-

values and eigenvectors unchanged. Now we want to show that there is a unitary
transformation such that a coordinate shift occurs according to

x ⇒ x + a, for all x,

where a is an arbitrary three-dimensional vector. In the case of the Heisenberg matri-
ces X j of the matrix vector

X =
⎛

⎝
X1

X2

X3

⎞

⎠ ,

the equivalent condition is

X j ⇒ X j + a j I , j = 1, 2, 3,

or
X ⇒ X + a ⊗ I .

In other words, we are looking for a unitary matrix U(a) such that

U(a)X jU(a)† = X j + a j I . (8.5)

For infinitesimally small a j , U must have a shape like that in (8.1). Therefore, it
seems useful to start with the ansatz

U(a) = I + i

�
(a1 P1 + a2 P2 + a3 P3) + O(a2). (8.6)

The dimension of � is length2 · mass/time. It turns out later that P represents the
momentum (with dimension length ·mass/time) and that the ai have the dimension
length. It is therefore convenient to add the � in order to render U a dimensionless
transformationmatrix. For an infinitesimal three-vector a the condition (8.5) requires
that
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i[P j · a, X j ]/�
!= a j I .

P j commutes with itself, and of course also with any function of P j . Therefore, we
get

U(a)P jU†(a) = P jU(a)U†(a) = P j . (8.7)

In other words, P j remains unchanged.
Does this transformation also shift the position vector x′ = x + a; that is, X′ =

X + a ⊗ I? We have
X ′

j (a) = U(a)X jU†(a).

Let us now form the derivative with respect to ak :

∂

∂ak
X ′

j (a) =
[

∂

∂ak
U(a)

]
X jU†(a) + U(a)X j

∂

∂ak
U†(a). (8.8)

Differentiating (8.4) by ak and exploiting the fact that all three P j matrices commute
with each other, one obtains

∂

∂ak
U(a) = i

�
U(a)Pk,

∂

∂ak
U†(a) = − i

�
PkU†(a).

Putting this result in (8.8) yields

∂

∂ak
X ′

j (a) = − i

�
U(a)

[
X j , Pk

]
︸ ︷︷ ︸

i � δ jk I

U†(a) = δ jk I, (8.9)

where we used the known fact

X j Pk − Pk X j = [
X j , Pk

] = i � δ jk I .

We can now integrate (8.9) to get

X ′
j (a) = X ′

j (0) + a j I .

Because of U(0) = I , we have X ′
j (0) = X j . Therefore, we indeed find that

X′(a) = X + a ⊗ I .

The most exciting result of this whole consideration is that we found the previously
called momentum matrix

P =
⎛

⎝
P1

P2

P3

⎞

⎠
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to be a generator of a symmetry operation, without having to use classical mechanics
as a justification.

8.4 Symmetry and the Spin

Consider now an infinitesimal rotation of a physical system around the x3-axis by
an angle δϕ. The components of a vector v then change according to

v′
1 = v1 + δϕv2; v′

2 = v2 − δϕv1 und v′
3 = v3.

In vector form, this reads
v′ = v − ω × v, (8.10)

where ω is defined as

ω
def=

⎛

⎝
0
0
δϕ

⎞

⎠ .

If we want this infinitesimal rotation to be performed by means of a generator G via
a transformation U(δϕ) = I + iGδϕ + O(δϕ2), we must start with

G = 1

�
(ω · J) = 1

�
(ω1 J1 + ω2 J2 + ω3 J3). (8.11)

It will turn out that J is the total angular momentum, a 3-vector matrix, consisting
of the three matrices J1, J2, and J3. Applying the transformation to Vj yields

Vj
′ = (I − iG)Vj (I + iG) = Vj + i(Vj G − GVj ) + O(δϕ2), (8.12)

or with (8.11)

Vj
′ − Vj = i(Vj G − GVj ) = i[Vj , G] = i

�
[Vj ,ω · J]. (8.13)

Multiplying (8.13) with a1, a2, and a3, and summing up the three equations, we get

a · (V′ − V) = 1

i�
[a · V,ω · J], (8.14)

where
a · V = a1V1 + a2V2 + a3V3

and
ω · J = ω1 J1 + ω2 J2 + ω3 J3.
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From (8.10) follows
1

i�
[a · V,ω · J] = a · (ω × V). (8.15)

In compliance with (see also Problem 6.2)

a · (b × c) = (a × b) · c,

we get the relationship

1

i�
[a · V,ω · J] = a · (ω × V) = (a × ω) · V. (8.16)

If a and ω are parallel to each other, it follows that

[Vj , J j ] = 0, j = 1, 2 or 3. (8.17)

If a and ω are perpendicular, however, it follows that

1

i�
[Vj , Jk] =

{
+V� if j, k, �are cyclic permutations of 1, 2, 3,

−V� if j, k, � are anti-cyclic permutations.
(8.18)

We can summarize this as5

[Vj , Jk] = i�
∑

�

ε jk�V� . (8.19)

The same is true for Vj = J j = L j , thus

[L j , Lk] = i�
∑

�

ε jk�L� . (8.20)

Nowwe are ready to turn to the spin. For that purpose, let us define a vector matrix
S according to

S
def= J − L;

5The Levi-Civita symbol ε jk� is defined as

ε jk� =

⎧
⎪⎨

⎪⎩

+1 if ( j, k, �) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if ( j, k, �) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0 if j = k or k = � or � = j
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that is,
J = L + S. (8.21)

By subtracting (8.20) from (8.19), after substituting L j for V j in (8.19), we find

[Si , L j ] = 0. (8.22)

Together with the other equations above, we obtain

[S j , Sk] = i�
∑

�

ε jk�S� . (8.23)

In other words,S also behaves as an angular momentum and is called the spin. The
spin angular momentum S of a closed system, therefore, is the proportion of the
total angular momentum J that is not due to an orbital angular momentum L.

Goudsmith and Uhlenbeck suggested in 1925 to assign such an additional angular
eigenmomentum called spin to the electron. It must have a half-integral angular
momentum quantum number s = 1

2 in order for the magnetic spin quantum number
to be limited to two possible values ms = ± 1

2 . The spin accounts for a twofold or,
together with an orbital angular momentum � ≥ 1, a higher splitting of the spectrum.

8.5 Spin-1
2 Systems and Spinors

We can obtain the matrices representing S1, S2, and S3 from (6.37) and (6.54):

S1
def= L(1/2)

1 = �

2

(
0 1
1 0

)
, S2

def= L(1/2)
2 = �

2

(
0 −i
i 0

)
,

and S3
def= L(1/2)

3 = �

2

(
1 0
0 −1

)
. (8.24)

Using the Pauli matrices6 σi , we can write

Si = �

2
σi , (8.25)

where the Pauli matrices have the form

σ1
def=

(
0 1
1 0

)
, σ2

def=
(
0 −i
i 0

)
, and σ2

def=
(
1 0
0 −1

)
. (8.26)

6We stick to the traditional notation for these matrices.

http://dx.doi.org/10.1007/978-3-319-26366-3_6
http://dx.doi.org/10.1007/978-3-319-26366-3_6
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The eigenvalues of these matrices are ±1, and we have

σ2
1 = σ2

2 = σ2
3 = I2. (8.27)

Pauli was the first to recognize the need for two-component state vectors for describ-
ing the observed properties of atomic spectra.

The spin-(1/2) matrices S1, S2, and S3 have eigenvalues and two-dimensional,
normalized eigenvectors as follows.

S1 = �

2

(
0 1
1 0

)
has eigenvalues ± �

2
and eigenvectors

1√
2

(
1

±1

)

,

S2 = �

2

(
0 −i
i 0

)
has eigenvalues ± �

2
and eigenvectors

1√
2

(
1

±i

)

,

S3 = �

2

(
1 0
0 −1

)
has eigenvalues ± �

2
and eigenvectors

(
1
0

)
,

(
0
1

)

.

8.6 Adding Angular Momenta

8.6.1 Clebsch–Gordan Coefficients

We now consider a system with two sources of angular momenta, which we call

J′ =
⎛

⎝
J ′
1

J ′
2

J ′
3

⎞

⎠ and J′′ =
⎛

⎝
J ′′
1

J ′′
2

J ′′
3

⎞

⎠ .

The system may be a single particle with a spin and an angular momentum, or
may consist of two particles with either spin or angular momentum. What are the
commutator rules for the total angular momentum? As for all angular momenta, the
following eigenvalue equations apply.

J ′2e′ = j ′( j ′ + 1)�2e′, (8.28)

J ′
3e′ = m ′

�e′, (8.29)
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and
J ′′2e′′ = j ′′( j ′′ + 1)�2e′′, (8.30)

J ′′
3 e′′ = m ′′

�e′′, (8.31)

where
m ′ = j ′, j ′ − 1, . . . ,− j ′; und m ′′ = j ′′, j ′′ − 1, . . . ,− j ′′.

For independent angular momentum sources, we certainly have

[J ′
k, J ′′

� ] = 0 for all k, � ∈ {1, 2, 3}, and [J ′2, J ′′2] = 0. (8.32)

However,
[J ′

j , J ′
k] = i�ε jk� J ′

�, (8.33)

and
[J ′′

j , J ′′
k ] = i�ε jk� J ′′

� . (8.34)

Is the sum

J =
⎛

⎝
J1

J2

J3

⎞

⎠ def= J′ + J′′

also an angular momentum that satisfies the usual commutation rules? In fact, we
get

[J1, J2] = [J ′
1 + J ′′

1 , J ′
2 + J ′′

2 ] = (8.35)

= [J ′
1, J ′

2] + [J ′′
1 , J ′′

2 ] + [J ′
1, J ′′

2 ] + [J ′′
1 , J ′

2] =

= i�J ′
3 + i�J ′′

3 + 0 + 0 =

= i�J3.

The same applies to all cyclic permutations of the indices, therefore J = J′ + J′′ is
indeed an angular momentum. Its quantum numbers j andm j can have the following
values. Generally we know, that for given j ,

− j ≤ m ≤ j and mmax = j.

Because m = m ′ + m ′′, the maximum value of m for all j is j ′ + j ′′; that is, the
maximum value ofm ′+m ′′. This must be themaximum value of j also, for otherwise
there would be a larger value of m ′ + m ′′. Thus

jmax = j ′ + j ′′.
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With the minimum value of jmin = | j ′ − j ′′|, given at the end of this subsection, we
obtain

| j ′ − j ′′| ≤ j ≤ | j ′ + j ′′|,

m j = − j,− j + 1, . . . , j.

Summing up, J is an angular momentum with the length
√

j ( j + 1)�, where j
can be an integer or half-integer, and the x3-component has the value m j� (with
m j = j, j − 1, . . . ,− j).

Each angular momentum has its own eigenspace that is spanned by the eigen-
vectors e′

i and e′′
i , respectively. In the basis of the eigenvectors e′

i , J ′
j has a simple

diagonal form. The same applies to J ′′
j . The eigenvectors of the overall system can

be assembled of eigenvectors for the subsystems (see Chap. 10) according to

ei = e′
j ⊗ e′′

k .

However, these vectors are generally not eigenvectors to

J2 = J2
1 + J2

2 + J2
3,

As a consequence, this matrix is not diagonal in this basis. Therefore, one better
shifts from the complete set of commuting matrices J ′2, J ′

3, J ′′2, J ′′
3 with the

eigenstates e′
j ⊗e′′

k to the complete set of commutingmatrices J2, J3, J ′2, J ′′2, with
the eigenvectors e( j,m j , j ′, j ′′). In this new basis, all four matrices J2, J3, J ′2, and
J ′′2 can be diagonalized simultaneously. The new eigenvectors satisfy the following
eigenvalue equations:

J2e( j,m j , j
′, j ′′) = �

2 j ( j + 1) e( j,m j , j
′, j ′′),

J3e( j,m j , j
′, j ′′) = �m j e( j,m j , j

′, j ′′).

How can we obtain the new basis vectors e( j,m j , j ′, j ′′) if the basis vectors
e′
j ⊗ e′′

k are given? The elements of one basis must be a linear combination of the
elements of the other basis. In the basis with the basis vectors e′

j ⊗ e′′
k , the new basis

vector e( j,m j , j ′, j ′′) looks like

e( j,m j , j
′, j ′′) =

∑

a,b

C(a, b; j,m j , j
′, j ′′)e′

a ⊗ e′′
b. (8.36)

The coefficients C(a, b; j,m j , j ′, j ′′) can be calculated by multiplying (8.36) from
the left with the transposed basis vector e′

a ⊗ e′′
b (remember that the basis vectors

e′
a ⊗ e′′

b are orthogonal). These coefficients are called Clebsch
7-Gordan8-coefficients

7Rudolf Friedrich Alfred Clebsch, 1833–1872, German mathematician.
8Paul Albert Gordan, 1837–1912, German mathematician.

http://dx.doi.org/10.1007/978-3-319-26366-3_10
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Fig. 8.2 The relationship
m j = m′

j + m′′
j

mj

mj

mj = mj + mj

x3

and are defined by

C(a, b; j,m j , j
′, j ′′) = (e′

a ⊗ e′′
b)

†e( j,m j , j
′, j ′′) . (8.37)

Now which values j can exist for the system for a given j ′ and j ′′? Because J2

commutes with its own components, it commutes in particular with J3 = J ′
3 + J ′′

3 .
This shows us that we can specify the value ofm j and j at the same time. The allowed
values for m j follow immediately from the relationship

J3 = J ′
3 + J ′′

3 ;

that is (see Fig. 8.2),
m j = m ′

j + m ′′
j . (8.38)

To determine the allowed values of j , we first note that the complete number of
possible values for the uncoupled systems is

(2 j ′ + 1)(2 j ′′ + 1) = 4 j ′ j ′′ + 2 j ′ + 2 j ′′ + 1.

There is only one state inwhich both components reach theirmaximumvalue, namely
m ′

j = j ′ and m ′′
j = j ′′ (which entails m j = j ′ + j ′′). However, the maximum value

of m j is j by definition, therefore the maximum value of j is j = j ′ + j ′′. Note that
the Clebsch–Gordan coefficients only differ from zero if | j ′ − j ′′| ≤ j ≤ j ′ + j ′′
and m j = m ′ + m ′′.
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8.6.2 Clebsch–Gordan Coefficients on the Internet

You can find the following formula for the calculation of the Clebsch–Gordan coef-
ficients on the Internet:

C(m ′,m ′′; j,m j , j
′, j ′′) =

= δm j ,m ′+m ′′

(
(2 j + 1)( j ′ + j ′′ − j)!( j ′ − j ′′ + j)!( j + j ′′ − j ′)!

( j ′ + j ′′ + j + 1)!
) 1

2

×

∑

n

⎛

⎝ (−1)n [( j ′ + m′′)!( j ′ − m′)!( j ′ + m′′)!( j ′′ − m′′)!( j + m j )!( j − m j )!]
1
2

n!( j ′ + j ′′ − j − n)!( j ′ − m′ − n)!( j ′′ + m′′ − n)!( j − j ′′ + m′ + n)!( j − j ′ − m′′ + n)!

⎞

⎠ .

The sum runs over all n such that the factorials are always well-defined and positive.
The formula is available at
http://www.spektrum.de/lexikon/physik/clebsch-gordan-koeffizienten/2438.
A downloadable PDF table of Clebsch–Gordan coefficients can be found under
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf.
You can also download a calculator under http://www.volya.net/index.php.

8.7 Spin-Orbit Coupling

This stands for the observation in atomic, nuclear, and elementary particle physics
that a particle’s direction of the spin with respect to its orbital angular momentum
affects the energy of the particle. Good examples are electrons in the atomic shell,
where the spin-orbit coupling leads to the splitting of the spectral lines and thus
contributes to the fine structure of atomic spectra.

It is easiest to describe spin-orbit coupling of the electrons in a semi-classical
model. Maxwell’s theory and the special theory of relativity require that a magnetic
field act on an electron when it circulates in the electric field of the atomic nucleus.
After all, a circular motion of the nucleus is perceived in the electron’s frame of
reference. Due to the charge of the nucleus, this movement represents a circulating
current that generates a magnetic field parallel to the angular momentum vector.
Because the electron with its intrinsic angular momentum (spin) has a magnetic
moment in its resting frame of reference as well, the spin direction parallel to the
field yields a lower energy and vice versa. Hence, a single energy level is split into
two levels, and we find two optical spectra that are slightly shifted compared to the
original lines. The total angular momentum of the electron is a combination of the
spin and the orbital part:

J = L + S.

The usual quantum mechanical properties must be valid:

http://www.spektrum.de/lexikon/physik/clebsch-gordan-koeffizienten/2438
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf
http://www.volya.net/index.php
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Fig. 8.3 Spin-orbit coupling

J2e j m j = j ( j + 1)�2e j m j ,

J3e j m j = m j�e j m j ,

− j ≤ m j ≤ j,

where e j m j is a common eigenvector of J2 and J3.
As we already found out, in the hydrogen atom the total spin quantum number

can have two values (depending on the coupling):

j = � + 1

2
(parallel).

j = � − 1

2
(antiparallel).

Figure 8.3 shows this result for � = 1 in vector form.
The following section gives a relatively simple description of the spin-orbit inter-

action for an electron that is bound to an atom.Weuse semi-classical electrodynamics
and nonrelativistic quantum mechanics. The results agree quite well with the obser-
vations.

Energy of the Magnetic Dipole Moment

The energy of a magnetic dipole moment in a magnetic field is given by

�E = −μ · b

whereμ is themagnetic dipolemoment of the particle andb is themagnetic induction
of the magnetic field.
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Magnetic Field

Let us first consider the magnetic field. An electron with mass me and charge e that
moves with velocity v in an electric field e generates the magnetic field

b = e × v

c2
.

If the electric field is generated by the potential U (r), we have

e = − r
r

∂U (r)

∂r
.

The unit vector r/r implies a radial direction of the electric field. With this, we get

b = − 1

rc2
∂U (r)

∂r
r × v.

Therefore, if r and v are in the x1, x2 plane, b points in x3-direction. Now remember
the angular momentum of a particle,

� = r × p,

and the relation p = mev. Then

b = −1

mec2r

∂U (r)

∂r
�. (8.39)

In other words, the magnetic field b is parallel to the orbital angular momentum � of
the particle.

Magnetic Dipole Moment of the Electron

The magnetic dipole moment of the electron is given by

μ = −gsμB

�
s = − gse

2me
s, (8.40)

where s is the spin angular momentum vector,

μB
def= e�

2me
= 9.274 · 10−24 J

T

is the Bohr magneton, and gS = 2, 002319304 ≈ 2 is the electron spin g-factor9 We
see that the magnetic dipole moment is anti-parallel to the spin angular momentum.

9The g-factor (Lande factor) is the ratio of the measuredmagnetic moment to the magnetic moment,
which we would expect from classical physics. It comes into play when considering quantum
electrodynamics (Dirac).
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The potential due to the spin orbit interaction consists of two parts. The Larmor10-
part has to do with the interaction of the magnetic moment of the electron with the
magnetic field of the nucleus in the coordinate system of the electron. The second
contribution is related to the so-called Thomas11 precession.

In a homogeneous magnetic field with the magnetic induction density b, a particle
with a magnetic dipole moment μ experiences the angular momentum m = μ × b.
The work required for the rotation of a magnetic dipole by an angle dϕ is given by

dW = −|m| · dϕ = −|μ| · |b| sinϕ · dϕ,

where ϕ is the angle between μ and b (the minus sign is because ϕ decreases by
the action of the angular momentum m). This work equals the decrease of potential
energy Epot of the system; that is,

dEpot = −dW = |μ| · |b| sinϕ · dϕ.

Integrating the equation, we get

Epot = −|μ| · |b| cosϕ = −μ · b.

This contribution is also called Larmor interaction energy. Substituting the expres-
sions for the magnetic moment and the magnetic field leads to

�EL = −μ · b = 2μB

�meec2
1

r

∂U (r)

∂r
� · s.

Next, we have to consider the Thomas precession correction that is caused by the
curved path of the electron. In 1926, Llewellyn Thomas computed the splitting in
the fine structure of the atomic spectrum in a relativistic framework. The Thomas
precession rate, �T , is related to the angular frequency of the orbital motion ω of a
spinning particle as follows.

�T = ω(1 − γ),

where γ = 1/
√
1 − (v/c)2 is the Lorentz factor of the moving particle. The Hamil-

tonian that causes the spin precession �T is given by12

�ET = �T · S.

In the first order of (v/c)2, this yields

10Joseph Larmor, 1857–1942, Irish physicist.
11Llewellyn Thomas, 1903–1992, British physicist.
12Note that we now moved back from the matrix vectors to operators.
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�ET = − μB

�meec2
1

r

∂U (r)

∂r
L · S.

Total Interaction Energy

The total spin-orbit potential in an external electrostatic potential therefore has the
form

�E ≡ �EL + �ET = μB

�meec2
1

r

∂U (r)

∂r
(L · S).

Note that the net effect of the Thomas precession is a reduction of the Larmor
interaction energy by a factor 1

2 , which became famous as the “Thomas half”.

Evaluation of the Energy Shift

With all the above approximations, we can now determine the energy shift in this
model. In particular, we want to find a vector basis that diagonalizes both H0 (the
nonperturbed Hamilton function) and H . For this purpose, we first define the total
angular momentum matrix (operator)

J = L + S.

The scalar product of J with itself yields

J2 = L2 + S2 + 2L · S,

and therefore

L · S = 1

2
(J2 − L2 − S2).

It is easy to show that the five matrices H0, J2, L2, S2, and Jz all commute with
each other as well as with H . Therefore, the basis that we are looking for is also a
simultaneous eigenbasis of these five matrices (i.e., a basis in which all five matrices
are diagonal). Eigenvectors of this basis have five quantum numbers:

• n (the “principal quantum number”)
• j (the “total angular momentum quantum number”)
• � (the “orbital angular momentum quantum number”)
• s (the “spin quantum number”)
• j3 (the “x3-component of total angular momentum”)

The expectation value of L · S is

〈L · S〉 = 1

2
(〈J2〉 − 〈L2〉 − 〈S2〉) = �

2

2
( j ( j + 1) − �(� + 1) − s(s + 1)).

To calculate the final energy shift, we can say that
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�E = β

2
( j ( j + 1) − �(� + 1) − s(s + 1)),

where

β = −μB

me ec2

〈
1

r

∂U (r)

∂r

〉
.

For a nucleus with charge Ze, the Coulomb potential is

U (r) = Ze

4πε0r

Therefore,
∂U

∂r
= Ze

4πε0

(
∂1/r

∂r

)
= −Ze

4πε0r2
. (8.41)

For hydrogen, the expectation value for 1
r3 is given by (see, e.g., [1] p. 251)

〈
1

r3

〉
= 2

a3n3�(� + 1)(2� + 1)
,

where a = �/Zαmec is the Bohr radius divided by the nuclear charge Ze. For
hydrogen, we therefore get the result

β(n, l) = μ0

4π
gsμ

2
B

1

n3a30�(� + 1/2)(� + 1)
.

For any hydrogenlike atom with Z protons, one can show that

β(n, l) = Z4 μ0

4π
gsμ

2
B

1

n3a30�(� + 1)(2� + 1)
. (8.42)

This leads to an energy shift for the individual energy levels as

�E = Z4 μ0gsμ
2
B

8πa30

j ( j + 1) − �(� + 1) − s(s + 1)

n3�(� + 1)(2� + 1)
. (8.43)

In general, the magnitude of this energy shift is 10−4eV . Note that the splitting
due to spin-orbit coupling increases with increasing atomic number (namely as Z4).
Inasmuch as spin-orbit coupling is possible only for � ≥ 1, the presence of � in the
denominator causes no issues.

For an electron in the p-shell, for example, the difference between the energies
j = 3

2 and j = 1
2 is only
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without spin-orbit coupling
with spin-orbit coupling

P3/2 (j = 3
2)

P1/2 (j = 1
2)

S ( = 0)

P ( = 1)

Fig. 8.4 Splitting of spectral lines due to spin-orbit coupling. Photons can be emitted at twodifferent
energies

Z4 μ0gsμ
2
B

8πa30n
3
,

which is negligible with increasing n. For an electron in the p-shell (i.e., for � = 1),
j can only assume the two values 1 + 1

2 = 3
2 and 1 − 1

2 = 1
2 . For j = 3

2 , we find
2 j + 1 = 4 degenerate states with an energy that is proportional to j ( j + 1)− �(�+
1) − s(s + 1) = 1. For j = 1

2 , there are 2 j + 1 = 2 degenerate states with an energy
of j ( j + 1) − �(� + 1) − s(s + 1) = −2. Due to 4 · 1 + 2 · (−2) = 0, the center
of the distribution of energy levels is unchanged (see Fig. 8.4). Also, the center of
energy levels that are split due to spin-orbit coupling is always the same as without
splitting, because the interference comes from within the atom (and not from the
environment).

8.8 Problems

8.1 Exponential Function of a Pauli Matrix: Evaluate the exponential function of
the Pauli matrix σ1.

8.2 Eigenvalues and Eigenvectors of the Pauli Matrices: Evaluate the eigenvalues
and eigenvectors of the Pauli matrices σ1,σ2 and σ3.

8.3 Transformation of the Pauli Matrices to Diagonal Form: How can you trans-
form the Pauli matrices to diagonal form?

8.4 Clebsch–Gordan Coefficients: What are the Clebsch–Gordan coefficients of
two spin- 12 particles?

8.5 Clebsch–Gordan Coefficients: The orbital angular momentum L and the spin
S of an electron are coupled to the total angular momentum J = L + S. What
are the coupled states and the Clebsch–Gordan coefficients?



Chapter 9
Atoms in Electromagnetic Fields

Abstract We examine once again how external magnetic and electric fields affect
the energy levels and thus the spectra of atoms. Now, however, we take the spin into
account. The Zeeman effect reflects the response to magnetic fields.

9.1 Normal Zeeman Effect

If we apply an external magnetic field to an atom, it will interact with the magnetic
dipole moment of the atom. The atomic magnetic dipole moment contains contribu-
tions from both the orbital and the spin angular momenta of the electron. The normal
Zeeman effect (without spin) has already been discussed in Sect. 8.2. Therefore, two
pictures (namely Figs. 9.1 and 9.2) should suffice to remind you of the results.

9.2 Anomalous Zeeman Effect

9.2.1 Weak Field Limit

In fact, the anomalous Zeeman effect is muchmore common than the normal Zeeman
effect. Here, however, the spectral lines are split into more than three lines in a very
complicated way, often an even number (quartet, sextet, etc.). To explain this effect,
we must consider the spin. This angular momentum s of the electron that amounts to
1
2� cannot be explained by classical physics. Although it is only half as large as the
unit � of the orbital angular momentum, the spin carries the same strength in terms
of the magnetic effect (1 Bohr magneton). In the anomalous Zeeman effect, we thus
have to include both the orbital and the spin magnetism.

Let us now calculate the complete magnetic moment. The Hamiltonian for the
interaction of the magnetic field b with the orbital and spin angular momenta L and
S is

H = −µL · b − µS · b = −γ(L + 2S) · b, (9.1)

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_9
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Fig. 9.1 Splitting of spectral lines in the normal Zeeman effect. Photons can be emitted with three
different energies
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Fig. 9.2 Splitting of spectral lines due to the normal Zeeman effect in cadmium. There are three
line triplets (with almost similar wavelengths within the triplet)
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Fig. 9.3 Vector diagram for
the calculation of the Landé
g-factor

b

J

,

LS k

wherewechoseγ = 2 for the spin.What does thisHamiltonian look like in proportion
to J? We write

H = −gJ (L , S)γ J · b, (9.2)

where gJ (L , S) is a constant that depends on L, S, and J . Hereby, we assume that
the Hamilton functions in (9.1) and (9.2) share at least their values on the diagonals.

In Fig. 9.3, three precessionmovements can be seen, namely L around J , S around
J , and J around b. The effective magnetic moment can be determined by projecting
L onto J and J onto b, and then the same for S. Let k be a unit vector pointing in

the direction of J , that is, k
def= J/|J |. Then the projections are

L · b −→ (L · k)(k · b) = (L · J)(J · b)

|J |2 , (9.3)

S · b −→ (S · k)(k · b) = (S · J)(J · b)

|J |2 .

Because J = L + S, it follows that

2L · J = J2 + L2 − S2 and 2S · J = J2 + S2 − L2.

Substituting this in (9.1) and using the quantum mechanical variables (e.g., J2 is
replaced by J (J + 1)�2), we obtain

H = −γ(L + 2S) · b =

= −γ

(
1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)

)
J · b. (9.4)
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Fig. 9.4 Splitting of spectral lines due to the anomalous Zeeman effect. The various g-values make
the spectrum more complicated than in the normal Zeeman effect (Fig. 9.2)

Compared with (9.2), we get the Landé g-factor

gJ (L , S)
def= 1 + J (J + 1) + S(S + 1) − L(L + 1)

2J (J + 1)
. (9.5)

If S = 0, then gJ (L , S) = 1, because J is then equal to L . In this case, the magnetic
moment is independent of L , and we get the normal Zeeman effect as before; that is,
all lines are shifted by the same amount. For S �= 0, the value gJ (L , S) depends on
the values of L and S; that is, different lines are shifted by different amounts.

Figure9.4 shows the anomalous Zeeman effect where themagnetic field is applied
to the transition 2D3/2 −→2 P1/2. The Landé g-factor is computed for each level
separately, and the level energy is then shifted proportional to its g-value. Hereby, the
selection rule1 �Mj = 0,±1 decides which transitions are allowed. For the level of
2D3/2, we get L = 2, S = 1

2 , and J = 3
2 . This implies g3/2(2, 1

2 ) = 4
5 . For the lower

level 2P1/2, we find g1/2(1, 1
2 ) = 2

3 . The shift therefore amounts to 4
5μBb in 2D3/2,

and 2
3μBb in 2P1/2, respectively. The six allowed transitions, namely three doublets,

are shown in Fig. 9.4.

1In physics and chemistry, a selection rule constrains the possible transitions of a system from one
quantum state to another.
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9.2.2 Strong Magnetic Field

In strong magnetic fields (B > 1 Tesla), the coupling of the magnetic moments to
the applied field can be stronger than the spin-orbit coupling. In such a case, the total
spin S and the total orbital angular momentum L do not couple to J , but precess
independently around the axis of the applied magnetic field.

When the magnetic field increases, deviations from the equidistance of the split-
ting occur in the anomalous Zeeman effect. In fact, some of the individual lines
approach each other such that the result resembles the normal Zeeman effect, with
only triple splitting. This Paschen-Back effect case is called,2,3

9.3 Problem

9.1 Zeeman effect: Into how many lines does an energy line for � = 2 split up once
a magnetic field is applied?

2Friedrich Paschen, 1865–1947, German physicist.
3Ernst Emil Alexander Back, 1881–1959, German physicist.



Chapter 10
Many Particle Systems

Abstract In this chapter, systems of distinguishable and indistinguishable particles
are discussed in detail. Besides, the new concept of the entangled state is intro-
duced. Also, the Pauli principle for the occupation of atomic shells is derived, and
its application is discussed with respect to an explanation of the atomic structure.

10.1 Composed Systems

10.1.1 Systems with Two Distinguishable Particles

Let us consider a composite system consisting of two particles which do not interact
with each other. The matrix A describes an observable of the particle 1, and B an
observable of the particle 2. Any behaviour of a particle can therefore be described
without reference to the other particle.

We can now prepare a state of the particle 1 in which the observable belonging
to A has a unique value with probability 1. The corresponding state vector is an
eigenvector of A. A similar state vector exists for B. The probability for the result
of a simultaneous measurement of such observables that only relate to one or the
other particle must be the product of the individual probabilities. For an overall
representation of the system, this strongly suggests that all possible products of
the components of the two state vectors occur in a common representation of both
particles. Let the two state vectors be a and b. We then obtain a vector containing all
possible combinations of aib j by using the Kronecker product of the two vectors:

a ⊗ b =

⎛
⎜⎜⎜⎝

a1b
a2b
a3b
...

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1b1
a1b2
a1b3

...

⎞
⎟⎟⎟⎠ .

If A is a N × N matrix, and B a M × M matrix, the state vector a belongs to the
N -dimensional Hilbert spaceH1, and b is an element of the M-dimensional Hilbert

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_10
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space H2. The Kronecker-product a ⊗ b then belongs to the N × M-dimensional
Hilbert space H1,2, which is spanned by the Kronecker products uA ⊗ uB of the N
eigenvectors uA(i) of A and the M eigenvectors uB( j) of B. As an abbreviation for
the newly established Hilbert space, we write

H1,2 = H1 ⊗ H2.

If the set {uA} of vectors defines an orthonormal basis for H1, and the set {uB}
of vectors is an orthonormal basis for H2, then the set of pairs {(uA, uB)} forms an
orthonormal basis for the product space H1,2. For the scalar product on H1,2, we
find

(uA(i) ⊗ uB(m))† (uA( j) ⊗ uB(n)) = (
uA(i)

†uA( j)
) ⊗ (

uB(m)†uB(n)
) =

= (
uA(i)

†uA( j)
) · (

uB(m)†uB(n)
)
. (10.1)

Note that this is a normal product of two numbers, since the Kronecker product of
two scalars on the right side of the equation is just an ordinary multiplication.

The expectation value 〈A〉 for the observable A in a system that is in the state ξ
is (as has been defined in (4.5))

〈A〉 = ξ†A ξ.

For a two-particle system, we can define A1,2 = A ⊗ B for any two observables A
and B. If the subsystems are in the states ξ1 and ξ2, respectively (the overall system
is therefore in the state ξ1 ⊗ ξ2), the expectation value is given by

〈A1,2〉 = (ξ1 ⊗ ξ2)
†(A ⊗ B)(ξ1 ⊗ ξ2) = (ξ†

1A ξ1) ⊗ (ξ†
2B ξ2) =

= (ξ†
1A ξ1)(ξ

†
2B ξ2) = 〈A〉〈B〉. (10.2)

In other words, the expectation value of the composite system equals the product of
the expectation values of the observables in the subsystems.

One important note has to be made on the matrices in H1,2. In general, we have

(A ⊗ B)(ξ1 ⊗ ξ2) = (A ξ1) ⊗ (B ξ2). (10.3)

For B = IM , (10.3) would read

(A ⊗ IM)(ξ1 ⊗ ξ2) = (A ξ1) ⊗ ξ2.

If we want to apply the matrices A or B (which only act on H1 and H2) in the
composite system, we have to extend their effect toH1,2 by setting

A1,2
def= A ⊗ IM and B1,2

def= I N ⊗ B. (10.4)

http://dx.doi.org/10.1007/978-3-319-26366-3_4
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With this definition, we get indeed

A1,2(ξ1 ⊗ ξ2) = (A ξ1) ⊗ ξ2,

or
B1,2A1,2(ξ1 ⊗ ξ2) = (A ξ1) ⊗ (B ξ2).

One more interesting fact is provided by the following theorem.

Theorem If A has the eigenvalues ai and B has the eigenvalues b j , then the
so-called Kronecker sum

A ⊕ B
def=(A ⊗ IM) + (I N ⊗ B) ∈ R

N ·M×N ·M (10.5)

has the eigenvalues
ai + b j .

If ai is an eigenvector of A and b j is an eigenvector of B, then

ai ⊗ b j

is an eigenvector of A ⊕ B.

Proof [(A ⊗ IM) + (I N ⊗ B)](ai ⊗ b j ) = (Aai ⊗ b j ) + (ai ⊗ Bb j ) =
= (ai ai ⊗ b j ) + (ai ⊗ b j b j ) =
= (ai ⊗ 1)︸ ︷︷ ︸

ai

(ai ⊗ b j ) + (1 ⊗ b j )︸ ︷︷ ︸
b j

(ai ⊗ b j ) = (ai + b j )(ai ⊗ b j ) q.e.d.

10.1.2 Systems with N Distinguishable Subsystems

For more than two subsystems, for example N , the Hilbert spaceH(N ) is the product
space of N single Hilbert spaces:

H(N ) = H1 ⊗ H2 ⊗ H3 ⊗ · · · ⊗ HN .

A system state is then given by

ξ(N ) = ξ1 ⊗ ξ2 ⊗ ξ3 ⊗ · · · ⊗ ξN .
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Instead of the matrices Ai that only act onHi , the corresponding matrices A(N )
i that

act on H(N ) have to be used:

A(N )
i = I (1) ⊗ · · · ⊗ I (i−1) ⊗ Ai ⊗ I (i+1) ⊗ · · · ⊗ I (N ).

Then we get in fact

A(N )
i ξ(N ) = ξ1 ⊗ · · · ⊗ ξi−1 ⊗ Aiξi ⊗ ξi+1 ⊗ · · · ⊗ ξN ,

i.e. the operator only acts on ξi in the subspace Hi . Consequently, the expectation
value in the composite system is defined by

〈
A(N )

〉 = 〈A1〉 〈A2〉 · · · 〈AN 〉 .

In other words: The expectation value for a combination of individual observables
is equal to the product of the expectation values for each subsystem observable.

Like in the case of two particles, the extended Kronecker sum

N⊕
i=1

Ai =
N∑
i=1

A(N )
i

has the eigenvalues ∑
i

a(N )
i

if the Ai have the eigenvalues ai . The proof is very similar to the above theorem for
only two matrices A and B.

10.1.3 Entangled Systems

Let us again start with two systems in the Hilbert spaces HA and HB , connected to
HA ⊗ HB . If the system A is in the state ξA and the System B in state ξB , the state
of the composite system is ξA ⊗ ξB . Let {uA(i)} and {uB( j)} be a orthonormal basis
of HA and HB , respectively. Then the composite state can be rewritten as

ξA ⊗ ξB =
(∑

i

aiuA(i)

)
⊗

⎛
⎝∑

j

b juB( j)

⎞
⎠ .

States of the composite system that can be represented in such a product form are
called separable states. Not all possible states in HA ⊗ HB are separable states,
however! The most general state in the composite system has the representation
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ξAB =
∑
i, j

ci j (uA(i) ⊗ uB( j)).

Obviously this state is only separable if ci j = ai · b j , yielding ξA = ∑
i aiuA(i) and

ξB = ∑
j b juB( j). The state is inseparable if any one of the ci j cannot be factored

into a product ai · b j . If a state is not separable, we call it an entangled state. E.g., if
uA(1) and uA(2) are two basis vectors inHA and uB(1) and uB(2) two basis vectors
inHB , the following state is an entangled state:

ξAB = [uA(1) ⊗ uB(2) − uA(2) ⊗ uB(1)] /
√
2. (10.6)

To see this, we write down the general condition for a state in HA ⊗ HB (which is
2 × 2 = 4-dimensional) to be a separable state:

ξAB = c11(uA(1) ⊗ uB(1)) + c12(uA(1) ⊗ uB(2)) +
+ c21(uA(2) ⊗ uB(1)) + c22(uA(2) ⊗ uB(2))

!=
= a1b1(uA(1) ⊗ uB(1)) + a1b2(uA(1) ⊗ uB(2)) +

+ a2b1(uA(2) ⊗ uB(1)) + a2b2(uA(2) ⊗ uB(2)). (10.7)

This yields a necessary condition for the state to be separable:

c11 · c22 = c12 · c21. (10.8)

In the case of (10.6), however, we find

c12 · c21 = −1/2,

but
c11 · c22 = 0 �= −1/2.

The stateξAB in (10.6) is therefore not separable, i.e., the state is entangled. Entangled
states are unique to quantummechanics. They do not exist in classical mechanics and
have no classical analogue! In quantum mechanics, however, they are fundamental
in modern applications such as quantum communication and quantum computing.

10.2 Indistinguishable Subsystems

The most prominent examples for indistinguishable, i.e. identical particles are elec-
trons in the atomic shell, or the protons and neutrons in the atomic nucleus.When the
structure of the electron shells in an atom and the resulting setup of the periodic table
of the elements was derived in the Bohr–Sommerfeld quantum theory, it had just
been assumed that the energy levels of an atom cannot be occupied by an arbitrary
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number of electrons. Today we know that this is a consequence of thePauli principle,
according to which two electrons can never simultaneously occupy one and the same
state. As we shall see soon, this principle is a direct consequence of the fundamental
indistinguishability of the electrons!

Identical particles have identical particle properties (such asmass, spin, or charge).
Of course, the state of each particle may be different and may also change over time.
Still, an individual assignment such as

Particle i ⇔ State ξi

is not possible! Instead, only a general assignment

{Set of all particles, i = 1, . . . , N } ⇔ N -particle state ξ(N ).

Here, the overall state is again a composed state, i.e.

ξ(N ) = ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξN . (10.9)

However, all expectation values are only allowed to refer to the totality of the particles.
In other words, they must look like

ξ(N )† ANξ(N ). (10.10)

Moreover, this result must not depend on the order of the sub-states ξi in (10.9). This
gives us the condition

(ξ1 ⊗ · · · ⊗ ξi ⊗ · · · ⊗ ξ j ⊗ · · · ⊗ ξN )†AN (ξ1 ⊗ · · · ⊗ ξi ⊗ · · · ⊗ ξ j ⊗ · · · ⊗ ξN )
!=

(ξ1 ⊗ · · · ⊗ ξ j ⊗ · · · ⊗ ξi ⊗ · · · ⊗ ξN )†AN (ξ1 ⊗ · · · ⊗ ξ j ⊗ · · · ⊗ ξi ⊗ · · · ⊗ ξN ).

(10.11)

This condition must hold for any permutation of the state vectors.

Permutations

In Appendix B, a permutation relationship is specified as

U s×p(B ⊗ A)Uq×t = A ⊗ B, if A ∈ R
p×q and B ∈ R

s×t .

In the present case, we have to deal with the interchange of vectors, i.e.

U s×p(b ⊗ a)U1×1 = a ⊗ b = U s×p(b ⊗ a), if a ∈ R
p×1 and b ∈ R

s×1,

(10.12)
since U1×1 = 1.
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We now derive as an example what the permutation matrix must look like for
the case of three state vectors ξ1 ⊗ ξ2 ⊗ ξ3, when the first and third state vector
are interchanged. This is done in three steps. Since all subsystems are indistin-
guishable, we must assume that the state vectors all have the same dimension. In
our example, the dimension is 2, i.e., ξi ∈ R

2. In the first step, ξ1 and ξ2 are inter-
changed. This is achievedbymultiplyingξ1 ⊗ ξ2 ⊗ ξ3 with the transpositionmatrix

1

T 12 = (U2×2 ⊗ I2), where U2×2 ∈ R
4×4 has the form

U2×2 =

⎛
⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ ,

i.e., it has only one 1 and otherwise only zeros in each row and in each column (like
all permutation matrices). The transposition matrix T 12 ∈ R

8×8 then has the form

T 12 = U2×2 ⊗ I2 =

⎛
⎜⎜⎝

I2 0 0 0
0 0 I2 0
0 I2 0 0
0 0 0 I2

⎞
⎟⎟⎠ .

In fact, we get

(U2×2 ⊗ I2)(ξ1 ⊗ ξ2 ⊗ ξ3) =

⎛
⎜⎜⎝

I2 0 0 0
0 0 I2 0
0 I2 0 0
0 0 0 I2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ξ11ξ21ξ3
ξ11ξ22ξ3

ξ12ξ21ξ3
ξ12ξ22ξ3

⎞
⎟⎟⎠ =

=

⎛
⎜⎜⎝

ξ11ξ21ξ3
ξ12ξ21ξ3

ξ11ξ22ξ3
ξ12ξ22ξ3

⎞
⎟⎟⎠ =

(
ξ21(ξ1 ⊗ ξ3)

ξ22(ξ1 ⊗ ξ3)

)
= ξ2 ⊗ ξ1 ⊗ ξ3.

In a next step, we multiply this intermediate result with T 23 = (I2 ⊗ U2×2), which
leads to

T 23(ξ2 ⊗ ξ1 ⊗ ξ3) = ξ2 ⊗ ξ3 ⊗ ξ1.

In a third step, we multiply the result with T 12 = (U2×2 ⊗ I2) and finally obtain the
desired result

T 12(ξ2 ⊗ ξ3 ⊗ ξ1) = ξ3 ⊗ ξ2 ⊗ ξ1.

1If only two states are exchanged, the permutation is called transposition matrix.
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In total, the permutation matrix P1,3 has the form

P1,3 = T 12T 23T 12 = (U2×2 ⊗ I2)(I2 ⊗ U2×2)(U2×2 ⊗ I2) =

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

You can easily check that
P1,3P1,3 = I,

which yields
P−1

1,3 = P1,3.

Of course this result does not come as a surprise! After all, applying the same per-
mutation twice must lead back to the original state.

Transposition and Permutation

As just explained, a transposition matrix2 T i j just swaps the i th and the j th state
vector. In an N -particles system, there are N (N − 1)/ 2 different transpositions, and
it must hold

T i i = I, T i j = T j i .

Each of the N different permutations can be obtained as a product of transpositions.
This can be done in various ways. In any case, however, the sign of a permutation is
always defined as +1 if an even number of transpositions is needed, and −1 for an
odd number of transpositions.

Considering (10.10), (10.11) can be rewritten with permutation matrices as

ξ(N )†ANξ(N ) = (P i jξ
(N ))†AN (P i jξ

(N )) =
= ξ(N )†P†

i j AN P i jξ
(N ), (10.13)

which yields the matrix identity

AN = P†
i j AN P i j . (10.14)

2A transposition is an exchange of two elements in an ordered list with all other elements staying the
same, i.e., a permutation of two elements. For example, the swapping of 2 and 5 in the list 123456
yields a transposition 153426 of the list. The permutation symbol εi jk... is defined as (−1)n , where
n is the number of transpositions that must be applied to build up the permutation.
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Furthermore, the scalar product of the permuted state vectormust satisfy the condition

(P i jξ
(N ))†(P i jξ

(N )) = ξ(N )†ξ(N ), (10.15)

i.e.,
I N = P†

i j P i j , (10.16)

or
P†
i j = P−1

i j . (10.17)

In other words, the permutation matrix P i j is unitary. From (10.14), we then get

P i j AN = AN P i j ,

i.e., the P i j commute with AN :

[AN , P i j ] = 0. (10.18)

What are the eigenvalues of P i j? Since P i j commutes with AN , the two matrices
(operators) have the same eigenvectors. Naming the eigenvectors ei j and the eigen-
values λi j , we get

P i j ei j = λi j ei j . (10.19)

Since P2
i j = I , we have λ2

i j = 1. Therefore, the eigenvalues can only be +1 or −1.

10.2.1 Interchanging Two Particles

We consider the example of two spin-1/2 particles, e.g., two electrons. The spin
state of an electron is described by a two-dimensional vector in C

2. The spin itself
is three-dimensional and has three components in x1-, x2- and x3-direction. This
means that the information about a three-dimensional real vector is included in a
two-dimensional complex state vector. What are the eigenvectors? Using the Pauli
matrices σi , each of the two particles can be represented according to (8.24) as

Si = �

2
σi ,

hence

S1 = �

2

(
0 1
1 0

)
, S2 = �

2

(
0 −i
i 0

)
and S3 = �

2

(
1 0
0 −1

)
.

All three matrices have the eigenvalues +�

2 and −�

2 . The eigenvectors, which are
called spinors in this case, are given by

http://dx.doi.org/10.1007/978-3-319-26366-3_8
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S1 : e1 = 1√
2

(
1

±1

)
; S2 : e2 = 1√

2

(
1
±i

)
;

S3 : e+ =
(
1
0

)
and e− =

(
0
1

)
.

The spins of the two electrons are described by the matrix vectorsS′ andS′′, where

S′ =
⎛
⎝

S′
1

S′
2

S′
3

⎞
⎠ and S′′ =

⎛
⎝

S′′
1

S′′
2

S′′
3

⎞
⎠ .

For the two spin angular momentum, we have the usual relations

[S′
1, S

′
2] = i�S′

3 and [S′′
1, S

′′
2] = i�S′′

3.

The two sets of matrices S′
i and S′′

j , however, commute with each other, since the
two particles are assumed to be independent of each other. This implies

[Si ′, Sj
′′] = 0.

According to (10.4) and (10.5), we define

S3 = S′
3 ⊕ S′′

3 = (S′
3 ⊗ I2) + (I2 ⊗ S′′

3). (10.20)

With

S′
3 ⊗ I2 = �

2

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

and

I2 ⊗ S′′
3 = �

2

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1,

⎞
⎟⎟⎠

we obtain

S3 = S′
3 ⊕ S′′

3 = �

⎛
⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1.

⎞
⎟⎟⎠

The eigenvectors of S3 are
e′
i ⊗ e′′

j ,
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where S′
3 has the eigenvectors e

′
i , and S′

3 has the eigenvectors e
′′
j . The eigenvalues

are then the sum of the corresponding eigenvalues, i.e.

λ′
i + λ′′

j .

With (6.28) and (6.29), we get for the spinors e′± of the first electron

S′2e′
± = 1

2

(
1

2
+ 1

)
�
2e′

± = 3

4
�
2e′

± (10.21)

and

S′
3e

′
± = ±�

2
e′
±. (10.22)

The same holds for the spinors e′′± of the second electron. The matrix S3 of the
two-particle system then has the four eigenvectors

e′
+ ⊗ e′′

+ =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ , e′

+ ⊗ e′′
− =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ ,

e′
− ⊗ e′′

+ =

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ , e′

− ⊗ e′′
− =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , (10.23)

to which we find the four eigenvalues +�, 0, 0 and −�, e.g. by having a look at the
main diagonal of the diagonal matrix S3.

What subspaces of H1,2 do the eigenvectors span? Let the two electrons be in
the states ξ1 and ξ2, respectively, where each ξi completely describes the particle’s
coordinates: ξi = xi ⊗ si (xi is the spatial coordinate and si the spin). The permu-
tation matrix P1,2 = T 12 is again defined such that the states ξ1 and ξ2 of the two
particles are exchanged:

P1,2(ξ1 ⊗ ξ2) = ξ2 ⊗ ξ1. (10.24)

Of course, the permutation matrix P1,2 has only the two eigenvalues +1 and −1
also in this case. The eigenstates with eigenvalue +1 are called symmetric, and the
eigenstates with eigenvalue −1 are called antisymmetric states. The symmetric and
the antisymmetric states each form a subspace ofH1,2 = H1 ⊗ H2, since each linear
combination of symmetric or antisymmetric states is again symmetric or antisym-
metric. Let H(+)

1,2 be the symmetric subspace and H(−)
1,2 the antisymmetric subspace.

It can be easily verified that a state of the form

(e1 ⊗ e2)(+) def= α+(e1 ⊗ e2 + e2 ⊗ e1) (10.25)

http://dx.doi.org/10.1007/978-3-319-26366-3_6
http://dx.doi.org/10.1007/978-3-319-26366-3_6
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is always symmetrical (with the normalization constant α+). However, a compound
state like

(e1 ⊗ e2)(−) def= α−(e1 ⊗ e2 − e2 ⊗ e1) (10.26)

is always antisymmetric, since in such case we get

P12(e1 ⊗ e2)(−) = −(e1 ⊗ e2)(−).

If we want to generate members of the symmetric subspace H(+)
1,2 from members of

the complete space H1,2 = H1 ⊗ H2, we can apply the operator

PS
def= I + P12

on ξ1 ⊗ ξ2. Accordingly, the elements of the asymmetric subspaceH(−)
1,2 are obtained

by applying the operator

PA
def= I − P12.

As a proof, let us apply PS or PA on an arbitrary vector α(e1 ⊗ e2) + β(e2 ⊗ e1).
The resulting vector is

P S(α(e1 ⊗ e2) + β(e2 ⊗ e1)) = α + β

2
(e1 ⊗ e2 + e2 ⊗ e1),

or

P A(α(e1 ⊗ e2) + β(e2 ⊗ e1)) = α + β

2
(e1 ⊗ e2 − e2 ⊗ e1).

Note that the following also applies:

1

2

(
1

α+ (e1 ⊗ e2)(+) + 1

α− (e1 ⊗ e2)(−)

)
=

= 1

2
[(e1 ⊗ e2 + e2 ⊗ e1) + (e1 ⊗ e2 − e2 ⊗ e1)] = e1 ⊗ e2. (10.27)

In other words, each state of the two-body system can be written as a linear combi-
nation of a symmetric and an antisymmetric state. Therefore, the two Hilbert spaces
H(+)

1,2 and H(−)
1,2 span the entire Hilbert space H1,2.

Moreover, symmetric and antisymmetric states are orthogonal to each other, since
their scalar product yields ξ(+) ∈ H(+)

1,2 with ξ(−) ∈ H(−)
1,2

ξ(+)†ξ(−) = ξ(+)† P†
12P12︸ ︷︷ ︸
I

ξ(−) = ξ(+)†(+1)(−1)ξ(−) = −ξ(+)†ξ(−), (10.28)

what can only be true if ξ(+)†ξ(−) = 0, i.e., ξ(+) and ξ(−) are orthogonal to each other.
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Fermions and Bosons

As we just discussed, a state with exchanged particles is physically indistinguishable
from the initial state in a quantum mechanical two-body system of identical parti-
cles. After all, we can only measure the expectation value, e.g. 〈X〉 = ξ†Xξ for the
observable X . If under the permutation of ξ the value changes to −ξ, then we still
have

(−ξ†)X(−ξ) = ξ†Xξ = 〈X〉 .

Now experience shows that this factor (+1 or −1) due to the permutation is always
either +1 or −1 for particles of a given kind. All particles with half-integer spin
( 12 ,

3
2 ,

5
2 , . . .), also called fermions,

3 always have a factor−1 under exchange. Mean-
while, all particles with integer spin (0, 1, 2, . . .), also called bosons,4 always have
a factor +1. Mathematically speaking, we get for the states of fermions

ξFermion ∈ H(−)
1,2 ,

and for bosons
ξBoson ∈ H(+)

1,2 .

If we want to describe two indistinguishable particles, it is therefore not required
to use the Hilbert space H1.2. Instead, only one of the subspaces H(−)

1,2 or H(+)
1,2 is

enough, depending on whether the particles are fermions or bosons. The vector basis
is then given according to (10.25) or (10.26):

(e1 ⊗ e2)(∓) = 1√
2

(e1 ⊗ e2 ∓ e2 ⊗ e1).

The atomic building blocks are all made out of fermions:

Leptons: electron e, electron-neutrino νe, myon-neutrino νμ, tauon-neutrino ντ ,
myon μ, tauon τ ;
Baryons: proton, neutron, �-baryon, �-baryon, �-baryon;
Quarks: up, charm, top (all s = + 1

2 ), down, strange, bottom (all s = − 1
2 );

The Helium-isotopes 3He (s = 1
2 ).

The following particles are bosons:

Mesons: pion, kaon, ρ-meson, ω-meson;
Photons (s = 1);
Gauge bosons (s = 1);
Gluons (s = 1);
The Helium-isotopes 4He (s = 0).

3Enrico Fermi, 1901–1954, Italian physicist, Nobel Prize 1938.
4Satyendra Nath Bose, 1894–1974, Indian physicist.
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10.2.2 Interchanging Three Identical Particles

Before we get to the general case with N particles, let us examine the case of 3
identical particles as an intermediate stage. There are three transpositions P12, P23

and P13. The symmetric and antisymmetric linear combinations of the N ! = 3! = 6
states e(1)

1 ⊗ e(2)
2 ⊗ e(3)

3 , e(1)
1 ⊗ e(2)

3 ⊗ e(3)
2 , e(1)

2 ⊗ e(2)
1 ⊗ e(3)

3 , e(1)
2 ⊗ e(2)

3 ⊗ e(3)
1 , e(1)

3 ⊗
e(2)
1 ⊗ e(3)

2 and e(1)
3 ⊗ e(2)

2 ⊗ e(3)
1 are given by

(e1 ⊗ e2 ⊗ e3)
(+) def= 1√

6
(e(1)1 ⊗ e(2)2 ⊗ e(3)3 + e(1)1 ⊗ e(2)3 ⊗ e(3)2 + e(1)2 ⊗ e(2)1 ⊗ e(3)3 +

+ e(1)2 ⊗ e(2)3 ⊗ e(3)1 + e(1)3 ⊗ e(2)1 ⊗ e(3)2 + e(1)3 ⊗ e(2)2 ⊗ e(3)1 )

(10.29)

and

(e1 ⊗ e2 ⊗ e3)
(−) def= 1√

6
(e(1)1 ⊗ e(2)2 ⊗ e(3)3 − e(1)1 ⊗ e(2)3 ⊗ e(3)2 − e(1)2 ⊗ e(2)1 ⊗ e(3)3 +

+ e(1)2 ⊗ e(2)3 ⊗ e(3)1 + e(1)3 ⊗ e(2)1 ⊗ e(3)2 − e(1)3 ⊗ e(2)2 ⊗ e(3)1 ),

(10.30)

where e( j)
i is the i th eigenvector of the j th particle. Both the symmetric vector (e1 ⊗

e2 ⊗ e3)(+) and the antisymmetric vector(e1 ⊗ e2 ⊗ e3)(−) span a one-dimensional
subspace (also called a ray) of the Hilbert spaceH. The shape of the antisymmetric
vector (e1 ⊗ e2 ⊗ e3)(−) reminds us of the shape of a 3 × 3 determinant. Remember
that for an ordinary determinant we get

det

∣∣∣∣∣∣
e11 e12 e13
e21 e22 e23
e31 e32 e33

∣∣∣∣∣∣
=

= e11e22e33 − e11e23e32 − e12e21e33 + e12e23e31 + e13e21e32 − e13e22e31.

If we replace the entries of the determinant by vectors and the normal multiplication
by the Kronecker product (indicated by the index ⊗ at the right hand side of the
determinant), then we find

det

∣∣∣∣∣∣
e(1)
1 e(1)

2 e(1)
3

e(2)
1 e(2)

2 e(2)
3

e(3)
1 e(3)

2 e(3)
3

∣∣∣∣∣∣
⊗

def=

= e(1)
1 ⊗ e(2)

2 ⊗ e(3)
3 − e(1)

1 ⊗ e(2)
3 ⊗ e(3)

2 − e(1)
2 ⊗ e(2)

1 ⊗ e(3)
3 +

+ e(1)
2 ⊗ e(2)

3 ⊗ e(3)
1 + e(1)

3 ⊗ e(2)
1 ⊗ e(3)

2 − e(1)
3 ⊗ e(2)

2 ⊗ e(3)
1 ,
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where e( j)
i is the i th eigenvector of the j th particle. Summing up, we get

(e1 ⊗ e2 ⊗ e3)(−) = 1√
6

· det
∣∣∣∣∣∣
e(1)
1 e(1)

2 e(1)
3

e(2)
1 e(2)

2 e(2)
3

e(3)
1 e(3)

2 e(3)
3

∣∣∣∣∣∣
⊗

. (10.31)

Each particle is assigned to one row.A transposition of two particles thus corresponds
to interchanging two rows of the determinant. From basic linear algebra we know
that such an interchange changes the sign of the determinant. Therefore the particle
is indeed a fermion! Also, the determinant is equal to zero if two lines are equal.
This fact brings us to a crucial theorem in quantum theory.

Pauli Principle Two identical fermions cannot occupy the same quantum state
simultaneously.

There is an alternative version of Pauli’s principle.

Theorem The state of an atom is fully described by four quantum numbers
n, �,mJ and mS, and it can be occupied by at most one electron.

This important principle essentially determines the structure of the periodic table of
the elements. Note, however, that the Pauli principle only applies to fermions, not to
bosons (especially not for atomic nuclei)!

10.2.3 Interchanging N Identical Particles

For a systemwith N identical particles (think of an atomwith N electrons on different
shells), the state vector of each state ξ(i)

k (i.e., the kth eigenvector of the i th particle)
is composed of the vectors

ξ(1, . . . , N )
def= ξ(1)

i1
⊗ ξ(2)

i2
⊗ · · · ⊗ ξ(N )

iN
, (10.32)

where i1, i2, . . . , iN are permutations of the numbers 1, 2, . . . , N . Remember once
again that each of the state vectors ξ(i) of the single particle depends on both the
location x(i) and the spin s(i) of this particle. With the transposition operator P i j ,
which swaps two particles i and j , we get

P i jξ(1, . . . , i, . . . , j, . . . , N ) = ξ(1, . . . , j, . . . , i, . . . , N ),
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and obviously also

P2
i jξ(1, . . . , i, . . . , j, . . . , N ) = ξ(1, . . . , i, . . . , j, . . . , N ).

Due to P2
i j = I , the eigenvalues are bound to be +1. The transposition operator P i j

therefore can only have the eigenvalues +1 and −1.
If a state vector ξ and a permuted state vector ξ′ are given, then the expectation

values of any observable A must be the same:

〈A〉 = ξ†A ξ = ξ′†A ξ′.

We now write formally
ξ′ = Pξ,

where the permutation operator is given by

P =
(
1 2 · · · N
i1 i2 · · · iN ,

)

i.e., the index i1 occurs in the first place, the index i2 in the second place, etc. Remem-
ber that all permutations can be assembled from transpositions T i j . A permutation
can be either composed of an even, or of an odd number of transpositions. Accord-
ingly, these permutations are called even permutations or odd permutations. For
example, for three particles we find

even : P =
(
1 2 3
1 2 3

)
, P =

(
1 2 3
2 3 1

)
, P =

(
1 2 3
3 1 2

)
;

odd : P =
(
1 2 3
2 1 3

)
, P =

(
1 2 3
1 3 2

)
, P =

(
1 2 3
3 2 1

)
.

With these permutations, we can reshape the above requirement for observables as

(Pξ)†APξ = (ξ)†P†APξ
!= (ξ)†Aξ, for all P, ξ.

It follows that P†AP = A, or with P† = P−1

AP = P A for all P .

In other words: In a system of identical particles, only those observables are allowed
which commute with all permutations. Such observables are, e.g., the total momen-
tum and the total angular momentum.

Next, we claim that the symmetric state ξ(1, . . . , N )(+) of a system can be calcu-
lated as
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ξ(1, . . . , N )(+) = 1√
N !

∑
β

Pβ(ξ(1)
i1

⊗ ξ(2)
i2

⊗ · · · ⊗ ξ(N )
iN

) . (10.33)

Pβ is the permutation operator which swaps the ξ(i) (i = 1, . . . , N ), and β numbers
the N ! permutations of ξ(i). The normalization factor 1/

√
N ! normalizes the sum to

1 and ensures
ξ†(1, . . . , N )(+)ξ(1, . . . , N )(+) = 1.

We shall now prove that there is only one symmetric state ξ(1, . . . , N )(+), i.e.,
the application of an arbitrary permutation operator Pα to ξ(1, . . . , N )(+) returns
ξ(1, . . . , N )(+). This is indeed the case, since

Pαξ(1, . . . , N )(+) = 1√
N !

∑
β

PαPβ︸ ︷︷ ︸
Pγ

(ξ(1)
i1

⊗ ξ(2)
i2

⊗ · · · ⊗ ξ(N )
iN

) =

= 1√
N !

∑
γ

Pγ(ξ
(1)
i1

⊗ ξ(2)
i2

⊗ · · · ⊗ ξ(N )
iN

) = ξ(1, . . . , N )(+).

Furthermore, we now claim that the antisymmetric state of a system ξ(1, . . . , N )(−)

can be calculated as

ξ(1, . . . , N )(−) = 1√
N !

∑
β

(−1)πβ Pβ(ξ(1)
i1

⊗ ξ(2)
i2

⊗ · · · ⊗ ξ(N )
iN

) . (10.34)

πβ denotes the minimum number of transpositions from which Pβ is constructed. In
other words,

(−1)πβ =
{

+1, if Pβ is even

−1, if Pβ is odd.

This formula strongly reminds us of the Leibniz formula (see Appendix F) for n × n
determinants:

det A =
∑

β

(
(−1)πβ

n∏
i=1

Ai,Pi

)
.

Therefore, the antisymmetric state (10.34) can also be written with the help of the
Slater determinant5 as

5John Clarke Slater, 1900–1976, American physicist.
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ξ(1, . . . , N )(−) = 1√
N ! · det

∣∣∣∣∣∣∣∣∣

ξ(1)
1 ξ(1)

2 · · · ξ(1)
N

ξ(2)
1 ξ(2)

2 · · · ξ(2)
N

...
...

. . .
...

ξ(N )
1 ξ(N )

2 · · · ξ(N )
N

∣∣∣∣∣∣∣∣∣
⊗

. (10.35)

Remember that the symbol ⊗ on the right side of the determinant indicates that the
Kronecker product is to be used. The determinant’s shape immediately reveals its
antisymmetry under transpositions. After all, an exchange of two particles corre-
sponds to exchanging two rows of the determinant! Furthermore, the Pauli principle
follows immediately, since two equal lines in the determinant render the determinant
zero.

The Pauli principle can also be derived by considering an antisymmetric N -
particle state in which two single-particle states ξ(i) and ξ( j) are equal. Then

ξ
(1)
i1

⊗ · · · ⊗ ξ
(i)
ii

⊗ · · · ⊗ ξ
( j)
i j

⊗ · · · ⊗ ξ
(N )
iN

= −ξ
(1)
i1

⊗ · · · ⊗ ξ
( j)
i j

⊗ · · · ⊗ ξ
(i)
ii

⊗ · · · ⊗ ξ
(N )
iN

.

It follows immediately that

ξ(1)
i1

⊗ · · · ⊗ ξ(i)
ii

⊗ · · · ⊗ ξ
( j)
i j

⊗ · · · ⊗ ξ(N )
iN

= 0, if ξ(i) = ξ( j).

Summing up, two identical fermions may never have the same single-particle quan-
tum numbers simultaneously. When filling up available states with fermions, the
Pauli principle must always be taken into account! This is how periodic table of the
elements arises.

10.3 Problems

10.1 Entangled States: Arrange the four components ci j in a 2 × 2 matrix and
derive the condition (10.8) from it.

10.2 Commutator: In (10.4), we defined the matrices

A1,2 = A ⊗ I B, and B1,2 = I A ⊗ B.

What is the commutator [A1,2, B1,2] of these two matrices?
10.3 Expectation Value: In (10.4), we defined the matrices

A1,2 = A ⊗ I B, and B1,2 = I A ⊗ B.

What are the expectation values 〈A1,2〉 and 〈B1,2〉 of these two observables?
10.4 Permutation Matrix: Which permutation matrix P swaps two spin states?

What is P−1 and P†? What are the eigenvalues of P?



Chapter 11
Equivalence of Matrix and Wave Mechanics

Abstract Schrödinger’s wave mechanics is briefly introduced, and its equivalence
with the matrix formalism of Heisenberg (and others) is demonstrated.

11.1 The De Broglie Wavelength

Schrödinger’s wave mechanics is based on the matter-wave theory of de Broglie.
For his hypothesis of the wave nature of material particles, de Broglie was inspired
by the classical analogy between the mechanical Maupertuis-Euler principle of least
action and Fermat’s principle on the shortest light path in optics. According to de
Broglie’s hypothesis, each free particle induces a wave field that is linked in such
a way that a particle with momentum p and energy E corresponds to a plane wave
propagating in the direction of p. The wavelength of the particle satisfies the same
relationship as for photons, namely

p = h

λ
= � k,

that is, the condition
k = p/�

for the wave vector, and for the frequency

ω = E/�, (11.1)

where E is the total energy of the particle and � is the reduced Planck quantum of
action � = h/2π.

In general, one can represent a wave as

ϕ = A cos

[
2π

(
r

λ
− t

T

)]
, (11.2)

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3_11

129
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where r is the distance from the origin, λ denotes the wavelength, and T is the
oscillation period. For a wave in three-dimensional space, we need to write

ϕ = A cos

(
k

ᵀ
x − 2π t

T

)
, (11.3)

where the wave vector k is defined such that it represents the direction of the wave
and has the length |k| = 2π/λ. From amathematical point of view, a harmonic plane
wave in three-dimensional space can be written as

A(x, t) = Re
(
A0e

i(k
ᵀ
x−ωt)

)
= Re(A0) cos(k

ᵀ
x − ωt) − Im(A0) sin(k

ᵀ
x − ωt),

(11.4)
with the complex amplitude A0.

11.2 Operators in the Schrödinger Formalism

The differentiation
∂

∂q
is an example of a linear operator because it has the property

∂

∂q
[ f (q) + g(q)] = ∂

∂q
f (q) + ∂

∂q
g(q). (11.5)

The same property is given for the multiplication with q:

q [ f (q) + g(q)] = q f (q) + q g(q). (11.6)

Let R be a general operator acting on the function f (q) with the resulting function
R f (q). If another operator T is applied to R f (q), the result is yet another function
T R f (q). The composed operator T R is called the operator product. By the way,
adding operators follows the simple rule

(T + R) f (q) = T f (q) + R f (q).

For such operators, there exists an eigenvalue equation as well. However, we now
find eigenfunctions corresponding to a given eigenvalue (instead of eigenvectors as

in the case of matrix operators). For example, the operator D = ∂2

∂q2
applied to the

function f (q) = cos(ωq) yields

Df (q) = ∂2

∂q2
cos(ωq) = −ω2 cos(ωq) = −ω2 f (q).
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The function f (q) = cos(ωq) is thus an eigenfunction to D and −ω2 is the corre-
sponding eigenvalue.

Operators that are defined on a space of functions can thus be used similarly to
matrices. As in the matrix case, however, the commutative law RT = T R generally
does not apply! For example, we find that

(
∂

∂q
q − q

∂

∂q

)
f (q) = ∂q

∂q︸︷︷︸
1

f + q
∂ f

∂q
− q

∂ f

∂q
= f (q). (11.7)

As an operator equation, this reads

∂

∂q
q − q

∂

∂q
= 1, (11.8)

that is, an equation that is similar to the commutation relation for position andmomen-
tum in matrix theory.

If we denote the operator “multiplication by q” with Q, if P is the operation
h
2πi

∂

∂q
, and if the operator “multiplication with 1” is denoted by I , then (11.8) reads

P Q − Q P = h

2πi
I, (11.9)

which corresponds exactly to the commutation relation (3.15)

PX − X P = h

2 π i
I

from matrix mechanics. Formally speaking, there is an “isomorphism” between the
operators P, Q and the matrices P, X . For the harmonic oscillator, for example, we
get the Hamilton operator (here again with x instead of q)

H = P2

2m
+ mω2X2

2
= − �

2

2m

∂2

∂x2
+ mω2x2

2
, (11.10)

where m is the particle mass, ω is the angular eigenfrequency of the oscillator, X is

the position operator, and P = −i�
∂

∂x
is the momentum operator.

11.3 Schrödinger’s Wave Mechanics

The starting points for the Schrödinger equation are Louis deBroglie’s idea ofmatter-
waves and the Hamilton-Jacobi theory of classical mechanics. The so-called wave
function ψ can be interpreted as the solution of a linear partial differential equation.

http://dx.doi.org/10.1007/978-3-319-26366-3_3
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What does the differential equation look like? According to de Broglie, a free particle
is always associated with a plane wave. Therefore, it seems plausible to assume the
wave function ψ for a particle to be

ψ = Aei(k
ᵀ
x−ωt), (11.11)

according to (11.4). Equation (11.1) states that the total energy E of the particle is
proportional to the frequency ω, namely

E = �ω.

The total energy E of the particle consists of kinetic energy Ekin and potential energy
V :

E = Ekin + V .

A particle of mass m and momentum p has the kinetic energy

Ekin = 1

2

p2

m
, (11.12)

where p2 = p
ᵀ
p. In general, the potential energy of a particle is a function of the

position x of the particle; that is, V = V (x). Therefore we get

E = Ekin + V (x) = p2

2m
+ V (x). (11.13)

Assuming that the particle is represented by the wave function (11.11), we can
calculate the derivative of this wave function with respect to time t :

∂

∂t
ψ(t, x) = −iωAei(k

ᵀ
x−ωt) = −iω ψ(t, x) = −i

(
E

�

)
ψ(t, x),

or

i�
∂

∂t
ψ(t, x) = E ψ(t, x). (11.14)

The derivative of a plane wave (which in a first step depends only on x) with
respect to the space variable x is

∂

∂x
ψ(t, x) = ik Aei(kx−omegat) =

(
i p

�

)
ψ(t, x),

therefore
∂2

∂x2
ψ(t, x) = −

( p

�

)2
ψ(t, x).
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Dividing by 2m and rearranging finally yields

− �
2

2m

∂2

∂x2
ψ(t, x) = p2

2m
ψ(t, x) = Ekinψ(t, x). (11.15)

If we now insert E = Ekin + V (x) into (11.14), we find

i�
∂

∂t
ψ(t, x) = (Ekin + V (x))ψ(t, x) = − �

2

2m

∂2

∂x2
ψ(t, x) + V (x)ψ(t, x).

(11.16)

In general, however, the plane wave depends not only on the x-direction, but also
on the y- and z-directions, that is, on the full position vector x of the particle. If
we differentiate the wave function (11.11) with respect to the vector components xν

(x1 = x, x2 = y, x3 = z), we obtain

∂

∂xν
ψ(t, x) = ikν Ae

i(k
ᵀ
x−ωt) =

(
i pν

�

)
ψ(t, x)

and

∂2

∂x2ν
ψ(t, x) = ik2ν Ae

i(k
ᵀ
x−ωt) =

(
i pν

�

)2

ψ(t, x). (11.17)

Dividing this equation by 2m and rearranging yields

− �
2

2m

∂2

∂x2ν
ψ(t, x) = p2ν

2m
ψ(t, x). (11.18)

We can add these three equations for ν = 1, ν = 2, and ν = 3 and use the definition

∇2 def= ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
,

and we finally obtain

− �
2

2m
∇2ψ(t, x) = p2

2m
ψ(t, x) = Ekinψ(t, x). (11.19)

Putting E = Ekin + V (t, x) into (11.14) similar to the one-dimensional case, one
obtains

i�
∂

∂t
ψ(t, x) = (Ekin + V (t, x)ψ(t, x) =

(
− �

2

2m
∇2 + V (x)

)
ψ(t, x). (11.20)
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If we now introduce the Hamilton operator

H
def= − �

2

2m
∇2 + V (x), (11.21)

we obtain Schrödinger’s wave equation

i�
∂

∂t
ψ(t, x) = Hψ(t, x) . (11.22)

Note that we “derived” this equation only for the plane wave. In other words, if
a particle is assumed to have a wave function (11.11), it is bound to satisfy the
above equation. With this plausibility check in mind, Schrödinger postulated that
this equation is valid for all quantum mechanical wave functions.

In the Schrödinger equation, we find both the wave function and the Hamilton
operator. In Heisenberg’s picture, however, the equations of motion only consid-
ered the operators in question. Still, we now show that the two formulations are
mathematically equivalent.

11.4 Equivalence of Heisenberg and Schrödinger Pictures

The Schrödinger equation (11.22) is a linear partial differential equation. Solutions
can be found by separating the variables, that is, by the ansatz

ψ(t, x) = f (t) · ϕ(x). (11.23)

Substituting (11.23) in (11.22), one obtains

i�ϕ(x)
d f (t)

dt
=

[
− �

2

2m
∇2ϕ(x) + V (x)ϕ(x)

]
f (t). (11.24)

Dividing by f (t) · ϕ(x) yields

i� d f (t)/dt

f (t)
= −(�2/2m)(∇2ϕ(x)) + V (x)ϕ(x)

ϕ(x)
. (11.25)

Because the left side does not depend on x and the right side does not depend on t ,
both sides must be equal to the same constant! We can therefore set

i�
d f (t)

dt
= E f (t) (11.26)
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and

− �
2

2m
∇2ϕ(x) + V (x)ϕ(x) = H ϕ(x) = E ϕ(x) . (11.27)

Equation (11.26) describes the temporal development of ψ(t, x). Equation (11.27)
is an eigenvalue equation, which is generally referred to as a time-independent or
stationary Schrödinger equation. It is a linear, second-order partial differential equa-
tion of the variable x. In contrast, (11.26) is an ordinary linear differential equation
of first order, which can be solved by the ansatz

f (t) = c exp(−i E t/�).

In the eigenvalue equation for H ,

H ϕν = hνϕν,

the hν are the eigenvalues of the operator H , and the functions ϕν represent the
associated eigenfunctions. In other words, if we apply the operator H to an eigen-
function, we obtain the same function multiplied by the corresponding eigenvalue.
If we consider, for example, the one-dimensional free motion of a particle on the
interval [0, 1] of the x-axis, then the Schrödinger equation contains the Hamilton
operator

H = − �
2

2m

∂2

∂x2
,

and the eigenfunctions are

ϕν(x) = √
2 sin(νπx). (11.28)

Applying H to those eigenfunctions yields

− �
2

2m

∂2

∂x2
√
2 sin(νπx) = �

2(νπ)2

2m

√
2 sin(νπx),

thus the eigenvalues are

hν = �
2(νπ)2

2m
, ν = 1, 2, 3, . . . .

For two different eigenvalues hi and h j , the corresponding eigenfunctions ϕi and ϕ j

have the property ∫ 1

0
ϕ∗
i (x)ϕ j (x)dx = 0 for i �= j; (11.29)
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that is, they are orthogonal to each other. Also, the eigenfunctions ϕi (x) are normal-
ized, because ∫ 1

0
ϕ∗
i (x)ϕi (x)dx =

∫ 1

0
|ϕi (x)|2dx = 1. (11.30)

The general property for a set of normalized eigenfunctions is therefore

∫ 1

0
ϕ∗
i (x)ϕ j (x)dx = δi j . (11.31)

Now remember from mathematics that every continuous function f (x) that is also
continuously differentiable can be represented by a series with these eigenfunctions:

f (x) =
∞∑

ν=1

aν

√
2 sin(νπx), (11.32)

where the coefficients aν of the series expansion can be calculated according to

aν =
∫ +∞

−∞
ϕ∗

ν(x) f (x)dx . (11.33)

We now have all the necessary tools to prove the equivalence of Schrödinger’s
and Heisenberg’s formalism. The proof is carried out in close analogy with the proof
of Pasqual Jordan in [14]. First, we claim that the components (X)νμ and (P)νμ of
the matrices X and P of Heisenberg’s theory can be calculated from the normalized
eigenfunctions ϕν as follows.

(X)νμ =
∫ +∞

−∞
ϕ∗

ν(x) · x · ϕμ(x)dx, (11.34)

and

(P)νμ =
∫ +∞

−∞
ϕ∗

ν(x) · �

i

dϕμ(x)

dx
· dx . (11.35)

In other words, if a quantum problem is completely solved in the Schrödinger picture,
we can also construct the corresponding matrix solution according to Heisenberg’s
matrix mechanics. The proof is divided into three steps.

1. First we show that the matrices as defined in (11.34) and (11.35) in fact satisfy
the commutation relation (3.15)

PX − X P = �

i
I . (11.36)

http://dx.doi.org/10.1007/978-3-319-26366-3_3
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For the elements (PX)νμ of the matrix product PX , we get

(PX)νμ =
∑

κ

(P)νκ(X)κμ = �

i

∫ +∞

−∞
ϕ∗

ν(x)
d

dx

∑
κ

ϕκ(x)(X)κμdx . (11.37)

Now the function
f (x)

def= x · ϕμ(x)

can also be written as a series according to (11.32):

f (x) = x · ϕμ(x) =
∞∑

ν=1

aνϕν(x). (11.38)

For the aν , (11.33) yields

aν =
∫ +∞

−∞
ϕ∗

ν(x) f (x)dx =
∫ +∞

−∞
ϕ∗

ν(x)x · ϕμ(x)dx .

Putting this in (11.38) provides

x · ϕμ(x) =
∞∑

ν=1

ϕν(x)
∫ +∞

−∞
ϕ∗

ν(y)y · ϕμ(y)dy, (11.39)

and with (11.34), we finally get

x · ϕμ(x) =
∞∑

ν=1

ϕν(x)(X)νμ. (11.40)

Thus we find that

(PX)νμ = �

i

∫ +∞

−∞
ϕ∗

ν(x)
d

dx
x · ϕμ(x)dx . (11.41)

For the elements (X P)νμ of the matrix product X P , we similarly get with the help
of (11.34)

(X P)νμ =
∑

κ

(X)νκ(P)κμ = �

i

∫ +∞

−∞
ϕ∗

ν(x)x
∑

κ

ϕκ(x)(P)κμdx . (11.42)

This requires a series expansion of the function

g(x)
def= �

i

d

dx
ϕ(x) = �

i

∑
ν

bνϕν(x),
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with

bν =
∫ +∞

−∞
ϕ∗

ν(x)
d

dx
ϕ(x)dx .

This leads to

g(x) = �

i

d

dx
ϕ(x) = �

i

∑
ν

ϕν(x)
∫ +∞

−∞
ϕ∗

ν(y)
d

dy
ϕ(y)dy = �

i

∑
ν

ϕν(x)(P)νμ.

(11.43)

Inserting (11.43) into (11.42) finally gives

(X P)νμ = �

i

∫ +∞

−∞
ϕ∗

ν(x)x · d

dx
ϕμ(x)dx . (11.44)

Now we can combine the results (11.41) and (11.44), and we find

(PX − X P)νμ = �

i

∫ +∞

−∞
ϕ∗

ν(x)

[
d

dx
x − x · d

dx

]
ϕμ(x)dx =

= �

i

∫ +∞

−∞
ϕ∗

ν(x)ϕμ(x)dx = �

i
δνμ,

thus we get the commutation relation (11.36) indeed.
2. Now we show that the matrices X and P as constructed in (11.34) and (11.35)

lead to the following representations of the matrices U(X) and P2 that occur in the
Hamilton matrix H .

U(X)νμ =
∫ +∞

−∞
ϕ∗

ν(x) · V (x) · ϕμ(x)dx (11.45)

and

(P2)νμ =
∫ +∞

−∞
ϕ∗

ν(x) · −�
2 d

2ϕμ(x)

dx2
dx . (11.46)

Note that V (x) is the operator that corresponds to the matrix V (x). Equation (11.46)
can be proved with the help of (11.35) and (11.43):

(P2)νμ =
∑

κ

(P)νκ(P)κμ =
∫ +∞

−∞
ϕ∗

ν(x)
�

i

d

dx

∑
κ

ϕκ(x)(P)κμ =

=
∫ +∞

−∞
ϕ∗

ν(x)

(
�

i

)2 d2ϕμ(x)

dx2
dx . (11.47)
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Equation (11.45) can be proved by first showing that the assumption is correct for
a power V (X) = Xr . Because the potential can be written as a series V (X) =∑

r crX
r , the assumption then holds for an arbitrary V (X). We prove the simplified

claim inductively. For this, let us assume that the assertion is true for V (X) = Xr .
Then according to (11.34) and (11.40), we indeed get

(Xr+1)νμ =
∑

κ

(Xr)νκ(X)κμ =

=
∫ +∞

−∞
ϕ∗

ν(x)x
r
∑

κ

ϕκ(x)(X)κμ · dx =
∫ +∞

−∞
ϕ∗

ν(x)x
r · xϕμ(x)dx . (11.48)

3. It remains to be shown that the matrices X and P as constructed in (11.34) and
(11.35) meet the commutation relation (11.36) and have the property

H(P, X) = 1

2m
P2 + V (X) = diagonal matrix. (11.49)

With (11.45), (11.46), and (11.27) for ϕμ(x), we find

(H)νμ =
∫ +∞

−∞
ϕ∗

ν(x)

[−�

2m

d2

dx2
ϕμ(x) + V (x)ϕμ(x)

]
dx =

=
∫ +∞

−∞
ϕ∗

ν(x)Eμϕμ(x)dx = Eμδνμ. (11.50)

Indeed, the eigenvalues of the Hamilton matrix H(P, X) equal the eigenvalues Eμ

of the Schrödinger equation.

11.5 Example: The Harmonic Oscillator

In accordance with (11.10) and (11.27), the stationary Schrödinger equation for the
harmonic oscillator is

(
− �

2

2m

∂2

∂x2
+ mω2x2

2

)
ϕν(x) = Eνϕν(x). (11.51)

With

q
def= x

√
mω/�, (11.52)
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we get
d2ϕν(q)

dq2
+

(
2Eν

�ω
− q2

)
ϕν(q) = 0. (11.53)

This nonlinear ordinary differential equation of second order is solved by theHermite
polynomials

Hν
def= (−1)νeq

2 dν

dqν
e−q2

, ν = 0, 1, 2, . . . (11.54)

We therefore obtain the normalized eigenfunctions of (11.53) as

ϕν(q) = (2νν!√π)−1/2 e−q2/2Hν(q), ν = 0, 1, 2, . . . (11.55)

The eigenvalues are given by
2Eν

�ω
= 2ν + 1. (11.56)

Compare this result to the energy values

Eν = � ω

(
ν + 1

2

)
(11.57)

that we found in Chap.5 with the help of quantum matrix mechanics.

11.6 Problems

11.1 Schrödinger’s Cat: A cat is locked in a steel chamber, along with a machine
that the cat cannot manipulate by any means. The machine includes a Geiger
counter tube that contains a tiny amount of radioactive substance. The amount
is so small that in the course of an hour perhaps one of the atoms decays,
but also (with equal probability) perhaps none decays. If an atom decays, the
counter tube discharges and releases a hammer that smashes a small bottle
with cyanide. If we leave the entire system to itself for an hour, we can predict
that the cat is still alive if no atom has decayed in the meantime. However,
one single atomic decay would have poisoned it. How do you interpret this
experiment from a quantum mechanical perspective?

11.2 Commutators: What are the commutators [p, x], [p, xn], and [pn, x] for p =
�

i

∂

∂x
?

11.3 Differentiation of Operators: Derive the differentiation rules for functions of
operators.

http://dx.doi.org/10.1007/978-3-319-26366-3_5


Chapter 12
Relativistic Quantum Mechanics

Abstract The basic concepts of the special theory of relativity are provided,
followed by Dirac’s application of these concepts to quantum mechanics.

12.1 Special Relativity

12.1.1 Four-Dimensional Spacetime

Dirac writes in his book [8]: “Let us now try to make the theory invariant under
Lorentz transformations, so that it conforms to the principle of special relativity.
This is necessary in order for the theory to apply to particles at high speed.” In this
section, we present the most important results of the special theory of relativity, as
shown, for example, in my book [15]. Note that the components of the vectors that
occur here are numbers, not matrices.

The theory of special relativity is based on two postulates:

• The laws of physics are the same for all inertial frames.
• The speed of light c is constant in all inertial frames.

An inertial frame is a frame of reference in which Newton’s laws apply. In special
relativity, one speaks of an event if something happens at a time t at some spatial
location

x =
⎛
⎝
x1
x2
x3

⎞
⎠ .

With the help of the speed of light c, the time t is transformed into a space coordinate
as ct . Space and time therefore form the four-dimensional spacetime. We denote an
event in spacetime by a four-dimensional vector

�x =

⎛
⎜⎜⎝
ct
x1
x2
x3

⎞
⎟⎟⎠ .

© Springer International Publishing AG 2018
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One consequence of the second postulate is the invariance of spacetime intervals. If
a flash of light is emitted at the origin at t = 0, the spherical wavefront of the light
at some later time �t is described by

c2�t2 = �x21 + �x22 + �x23 = �x
ᵀ
�x,

or
c2�t2 − �x

ᵀ
�x = 0. (12.1)

With the Minkowski matrix

M
def=

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠

and the vector

��x =

⎛
⎜⎜⎝
c�t
�x1
�x2
�x3

⎞
⎟⎟⎠ ,

this can be rewritten as a quadratic form

��xᵀ
M��x = 0.

Due to the second postulate, this equation must also hold for an observer in another
frame with the coordinates �x′:

��x′ᵀ M��x′ = 0.

12.1.2 Lorentz Transformation

If an inertial reference frame �x′ moves with respect to another inertial reference
system �x with a constant speed v, then the Lorentz transformation connects the two
frames (see [8]):

L(v)
def=

(
γ − γ

c v
ᵀ

− γ
c v I + (γ − 1) v v

ᵀ

v2

)
, (12.2)

where the factor γ is given by

γ = (1 − v2/c2)−1/2.
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The transformation is then given by

�x′ = L(v)�x.

Componentwise, this reads

c t ′ = γ c t − γ

c
v

ᵀ
x,

and

x′ = x + (γ − 1)
v

ᵀ
x

v2
v − γ v t. (12.3)

Note that these relations assume the coordinate axes of both systems to be parallel.

12.1.3 Velocity and Its Lorentz Transformation

If we define the four-dimensional velocity vector

�u def= γu

(
c
u

)
(12.4)

with

γu
def= 1√

1 − u2
c2

,

the Lorentz transformed velocity vector �u′ is [15]

�u′ = L �u, (12.5)

with

�u′ = γu′

(
c
u′

)
.

Inasmuch as such a velocity vector �u looks the same in every inertial frame, it is
much better suited for the formulation of physical laws. The quadratic form for the
velocity is given by

�uᵀ
M �u = γ2

uc
2 − γ2

uu
ᵀ
u = c4

c2 − u2
− c2u2

c2 − u2
= c2, (12.6)

invariant with respect to Lorentz transformations, because �u′ᵀ M �u′ = c2 holds as
well.
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12.1.4 Momentum and Its Lorentz Transformation

Multiplying (12.5) with the rest mass m0, we obtain

(
m0γu′c
m0γu′u′

)
= L

(
m0γuc
m0γuu

)
. (12.7)

We define the momentum as usual:

p
def= m0γuu = muu = mu

dx
dt

, (12.8)

where
mu

def= m0γu = m0√
1 − u2

c2

.

The four-dimensional momentum vector

�p def=
(
mu c
p

)
= m0 �u = m0γu

(
c
u

)
(12.9)

transforms according to (12.7) as

�p′ = L �p. (12.10)

Also, the quadratic form associated with the momentum vector

�pᵀ
M �p = m2

0�u
ᵀ
M �u = m2

0c
2 (12.11)

is invariant with respect to Lorentz transformations, because we also find

�p′ᵀ M �p′ = m2
0c

2.

12.1.5 Equation of Motion and Force

The relativistic equation ofmotion for a particle has to beLorentz invariant. Addition-
ally, Newton’s equation of motion has to hold in the inertial frame of the considered
particle:

m0
du
dt

= f ∈ R
3. (12.12)

Let the respective inertial system be X . Furthermore, suppose that X ′ is an inertial
system that moves relative toX with the constant speed u(t0). Then the particle rests
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momentarily at the time t = t0 in X ′. Now note that the equation of motion (12.12)
refers to a point of time and its neighborhood. For the neighborhood t = t0 ± dt , the
speed in X ′ is arbitrarily small. For speeds v � c, (12.12) holds. Hence in X ′,

m0
du′

dt ′
= f ′ ∈ R

3 (12.13)

also holds exactly. Here, m0 is the rest mass and f ′ the three-dimensional force in
X ′. From (12.13), we can derive the relativistic equations of motion in an arbitrary
reference frame.

Expanding the vector f ′ in (12.13) to a four-vector and calling the result �f ′
, we

get

m0
d

dt ′

(
c
u′

)
=

(
0
f ′

)
def= �f ′

. (12.14)

Note that �f ′
is specified in the rest system X ′. In the inertial system X (in which

the particle moves with the velocity u), �f is obtained by a Lorentz transformation
L(−u):

�f = L(−u)

(
0
f ′

)
=

( γu
c u

ᵀ
f ′

A(u) f ′
)

def=
(

f0
f

)
, (12.15)

where

A(u)
def= I + (γu − 1)

uu
ᵀ

u2

is the known part from the Lorentz matrix. Finally, the equation

m0γ
d

dt

(
γc
γu

)
=

(
f0
f

)
;

that is,
m0 �a = �f , (12.16)

has all the properties that we need. Namely, the four-vectors �a and �f are Lorentz-
invariant and the equation changes intoNewton’s equation ofmotion in the rest frame
of the particle:

m0

(
0
du′
dt ′

)
=

(
0
f ′

)
.

For the last three components of the equation of motion (12.16), we get

d(muu)

dt
= 1

γu
f , (12.17)

with the velocity-dependent mass
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mu
def= γum0. (12.18)

In the theoryof relativity, the timederivative of themomentummu u is also interpreted
as a force. According to (12.15) and (12.16), the components fi of the relativistic
equation of motion are thus

f0 = γu
d

dt
(mu c) = γu

c
u

ᵀ
f ′ (12.19)

and

f = γu
d

dt
(mu u) = A(u) f ′. (12.20)

12.1.6 Energy and Rest Mass

Equation (12.19) multiplied with c/γu provides

d

dt
(muc

2) = u
ᵀ
f , (12.21)

where u
ᵀ
f is the instantaneous power, that is, the work per time unit accomplished

by the force f . Therefore, the left-hand side of (12.21) must be the temporal change
of energy, which requires that muc2 = γum0c2 is an energy. For the relativistic
energy, we obtain the formula

E = muc
2. (12.22)

For u = 0 (i.e., the particle is at rest), we find γu = 1 and therefore

E0 = m0c
2. (12.23)

This is Einstein’s famous formula for the “rest energy”.
The four-dimensional momentum vector �p can now be recognized as a combina-

tion of energy and momentum:

�p =
(
E/c
p

)
. (12.24)

The quadratic form (12.11),
�pᵀ

M �p = m2
0c

2,

now reads

�pᵀ
M �p = (

E/c, p
ᵀ) (

E/c
− p

)
= E2/c2 − p2 = m2

0c
2,
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that is, Einstein’s relativistic energy-momentum relationship

E2 = p2c2 + m2
0c

4. (12.25)

12.2 The Dirac Equation

12.2.1 The Wave Equation for a Free Particle

In classical mechanics, a moving particle has the energy

E = p2

2m
, (12.26)

where
p2 = p

ᵀ
p, p ∈ R

3.

On the other hand, we saw in Sect. 11.3 that (12.26) transforms into the
Schrödinger equation

i�
∂

∂t
ψ(t, x) = − �

2

2m
∇2ψ(t, x) (12.27)

for the wave function ψ(t, x). The temporal and spatial derivatives occur in differ-
ent orders, therefore the Schrödinger equation cannot be invariant under Lorentz
transformations. Rather, its structure changes during transition from one inertial sys-
tem to another. The Schrödinger equation is a nonrelativistic approximation, for low
velocities, of the fully relativistic equation of motion.

Still, let us note the two formal correspondences (substitutions)

E → i�
∂

∂t
and p → −i�∇ (12.28)

that transformed (12.26) into (12.27). If we now consider a relativistic quantum
particle and assume the same correspondence in the energy-momentum relationship
(12.25), we obtain the so-called Klein–Gordon equation

(
1

c2
∂2

∂t2
− ∇2

)
ψ(t, x) = m2

0c
2

�2
ψ(t, x) . (12.29)

The Hamiltonian is obtained from the relationship (12.25) as

E = H = ±
√
p2c2 + m2

0c
4, (12.30)

http://dx.doi.org/10.1007/978-3-319-26366-3_11
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where m0 is the rest mass of the moving particle. However, the minus sign causes
a problem. After all, what is a negative energy? At the end of this chapter we learn
more about Dirac’s interpretation of this negative energy. Still, the solutions of the
Klein–Gordon equation can even contain negative probability densities!

Let us first turn to yet another problem, namely how to calculate the square root
of an operator. Dirac made the ingenious ansatz

√
p2c2 + m2

0c
4 = c (α1 p1 + α2 p2 + α3 p3 + βm0c) . (12.31)

Squaring this ansatz gives

p2c2 + m2
0c

4 = c2 (α1 p1 + α2 p2 + α3 p3 + βm0c)
2 =

= c2
(
α2
1 p

2
1 + α2

2 p
2
2 + α2

3 p
2
3 + β2m2

0c
2+

+α1α2 p1 p2 + α1α3 p1 p3 + α2α3 p2 p3+

+α2α1 p2 p1 + α3α1 p3 p1 + α3α2 p3 p2+

+α1 p1βm0c + α2 p2βm0c + α3 p3βm0c+

+βm0cα1 p1 + βm0cα2 p2 + βm0cα3 p3) . (12.32)

Under which conditions for the α′s and β is (12.32) valid? The conditions are

α2
1 = α2

2 = α2
3 = β2 = 1, (12.33)

α1α2 + α2α1 = α1α3 + α3α1 = α2α3 + α3α2 = 0, (12.34)

α1β + βα1 = α2β + βα2 = α3β + βα3 = 0. (12.35)

In other words: The α’s all anti-commute with one another and with β, and their
square is unity. These properties of the α′s and β suggest that they are not just (real
or complex) numbers. Now recall that the Pauli 2 × 2 matrices satisfy very similar
conditions. Therefore, let us assume that the α′s and β are n × n matrices,1 where
n is initially unknown. We obtain for the energy

E = ±c (α1 p1 + α2 p2 + α3 p3 + βm0c) . (12.36)

Inasmuch as the squares of all matrices are equal to the unit matrix, all eigenvalues
must be equal to ±1. Also, remember that the sum of the diagonal elements of a
matrix is equal to the sum of its eigenvalues. Now, however,

1Written now in boldface letters.
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αi = αiβ
2 = αββ = −βαβ,

and therefore

traceαi = trace(−βαiβ) = −trace(αiβ
2) = −traceαi . (12.37)

Note that we exploited the fact that the trace operation is cyclic; that is,

trace(αβγ) = trace(βγα).

Also, we used the fact that

trace(a α) = a trace(α), a ∈ C.

Equation (12.37) can only be true if traceαi = 0, which is possible only if the
number of +1 eigenvalues is equal to the number of −1 eigenvalues. Hence, n must
be an even number. Now how can we make use of the three Pauli matrices

σ1 =
(
0 1
1 0

)
,σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)

for finding a solution to our problem? Perhaps finding a fourth matrix that anti-
commutes with these three? It turns out, however, that this is impossible. Therefore
let us move on to the next even number, namely n = 4. In other words, we are now
looking for 4×4matrices that satisfy our conditions (12.33)–(12.35). One possibility
for the α′s and β are the four matrices called Dirac matrices:

α1 = σ1 ⊗ σ1 =
(

0 σ1

σ1 0

)
=

⎛
⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ , (12.38)

α2 = σ1 ⊗ σ2 =
(

0 σ2

σ2 0

)
=

⎛
⎜⎜⎝
0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠ , (12.39)

α3 = σ1 ⊗ σ3 =
(

0 σ3

σ3 0

)
=

⎛
⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , (12.40)
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β = σ3 ⊗ I2 =
(
I2 0
0 −I2

)
=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ . (12.41)

If we interpret (12.36) as the Hamiltonian and use the known relation E =
i�

∂

∂t
ψ(x, t), we obtain the Dirac equation

i�
∂

∂t
ψ(x, t) = c

(
α1 p1 + α2 p2 + α3 p3 + βm0c

)
ψ(x, t) . (12.42)

Because the matrices αi and β are 4× 4 matrices, the Dirac wave function must be
a four-column vector, also called a Dirac spinor:

ψ(x, t) =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ .

Note that the pi are also represented as 4 × 4 matrices

pi =

⎛
⎜⎜⎝

pi 0 0 0
0 pi 0 0
0 0 pi 0
0 0 0 pi

⎞
⎟⎟⎠ .

12.2.2 Invariant Form of the Dirac Equation

Multiplying the Dirac equation (12.42) from the left by the matrix β, one obtains
with ββ = I4

i�β
∂

∂t
ψ(x, t) = c

(
βα1 p1 + βα2 p2 + βα3 p3 + m0cI4

)
ψ(x, t). (12.43)

If we define the alternative Dirac matrices

γ0
def= β and γ j

def= βα j ( j = 1, 2, 3), (12.44)

the Dirac equation looks like

i�
∂

∂t
γ0ψ(x, t) = c

(
γ1 p1 + γ2 p2 + γ3 p3 + m0cI4

)
ψ(x, t). (12.45)
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If we set pi
def= −i�

∂

∂xi
and x0 = c t , we get the equation

(
i�

3∑
i=0

γ i
∂

∂xi
− m0 I4

)
ψ(x, t) = 0. (12.46)

With the Feynman2 dash-notation

�∂
def=

3∑
I=0

γ i
∂

∂xi
,

where �∂ is a 4 × 4 matrix, we finally get the compact Feynman notation of Dirac’s
equation:

(i�∂ − m0

�
I4)ψ(x, t) = 0 . (12.47)

Adetailed proof of the invarianceof theDirac equationunderLorentz transformations
can be found, for example, in Klaus Schulten’s “Notes on Quantum Mechanics”
(freely available for download at the website of the University of Illinois).

12.2.3 Solution of the Dirac Equation

The Dirac equation is a system of four linear differential equations. As an ansatz, we
try the four wave functions

ψ = θ exp
(
i( p

ᵀ
x/� − ωt)

)
(12.48)

as eigenfunctions of energy and momentum with the eigenvalues E = �ω, p1, p2,
and p3. If we insert the ansatz (12.48) in the Dirac equation (12.42), we obtain the
algebraic equation

Eθ = c
(
α1 p1 + α2 p2 + α3 p3 + βm0c

)
θ. (12.49)

Due to the block structure of the α-matrices and of β, it is useful to split the Dirac
spinor ψ into two two-dimensional spinors χ and η:

ψ(x, t) =
(

χ
η

)
=

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ . (12.50)

2Richard Phillips Feynman, 1918–1988, American physicist, Nobel Prize 1965.
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In the solution (12.48), we similarly split the vector

θ =
(

ξ
ζ

)
=

⎛
⎜⎜⎝

θ1
θ2
θ3
θ4

⎞
⎟⎟⎠ . (12.51)

Also, we introduce the notation

σ· p̄ def= σ1 p̄1 + σ2 p̄2 + σ3 p̄3, (12.52)

where

p̄i
def=

(
pi 0
0 pi

)
.

The algebraic Dirac equation (12.49) now reads

E

(
ξ
ζ

)
= c

(
0 σ· p̄

σ· p̄ 0

)(
ξ
ζ

)
+ m0c

2

(
I2 0
0 −I2

)(
ξ
ζ

)
. (12.53)

Rearranging yields
(E − m0c

2)ξ = c(σ· p̄) ζ, (12.54)

(E + m0c
2) ζ = c(σ· p̄) ξ. (12.55)

If we multiply (12.54) with (E + m0c2) and insert (12.55), we obtain

(E2 − m2
0c

4) ξ = c2(σ· p̄)2ξ. (12.56)

For the product σ· p̄, we can show that

(σ· p̄)2 = p2, (12.57)

which brings us back to the known condition

E2 = m2
0c

4 + c2 p2. (12.58)

With the definitions

p+
def= p1 + i p2 and p−

def= p1 − i p2, (12.59)

the two (12.54) and (12.55) are then

(E − m0c
2)θ1 = c(p3θ3 + p−θ4),
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(E − m0c
2)θ2 = c(p+θ3 + p3θ4),

(E + m0c
2)θ3 = c(p3θ1 + p−θ2),

(E + m0c
2)θ4 = c(p+θ1 + p3θ2).

If θ3 and θ4 are given, these four equations determine θ1 and θ2 (and vice versa). For

a given p with E = +
√
c2 p2 + m2

0c
4, there are therefore two independent solutions

of the four equations, namely

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

cp3
E+m0c2

cp+
E+m0c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

cp−
E+m0c2

−cp3
E+m0c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12.60)

These solutions represent the two spin states of an electron with the given momen-
tum p, as is physically required. This becomes particularly clear if we consider the
nonrelativistic limit v � c of the solution. In this case, we get the two vectors (see
Chap.8) ⎛

⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ .

12.2.4 Dirac’s Interpretation of the Negative Energy

Dirac developed the idea that the states in an atom with negative energies are already
occupied with electrons, like the filled electron shells in the Pauli exclusion scheme.
If the states with negative energies were unoccupied, all electrons would fall “down”
into these states, which would lead to a release of huge amounts of energy. Because
this does not happen in reality, these states must already be occupied. Countless
numbers of electrons fill the so-called “Dirac sea” of negative energies and make
sure that all such states are occupied. The vacuum state is characterized by the fact
that all the negative energy states are filled. Based on this idea of occupied negative
energy states, Dirac developed his theory of holes. According to this theory, an
electron that absorbs a photon can make a transition from a negative energy state to a
state with positive energy, leaving behind a state with a positive charge that can move

http://dx.doi.org/10.1007/978-3-319-26366-3_8
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like a particle. Casually speaking, this state is a piece of anti-matter. In other words,
Dirac predicted the positron! In 1932, Anderson3 finally discovered the positron with
a positive electric charge in cosmic rays.

12.3 Problems

12.1 Gamma Matrices: What is the form of the gamma matrices and what rela-
tionships exist between them?

12.2 Dirac Equation: Solve the Dirac equation

(i�∂ − m0

�
I4)ψ(x, t) = 0 (12.61)

with the ansatz
ψ(x, t) = c exp

(
i(k

ᵀ
x − ωt)

)
. (12.62)

3Carl David Anderson, 1905–1991, American physicist, Nobel Prize 1936.



Appendix A
Solutions to Problems

2.1. Given the two Hermite matrices A = A† and B = B†, we find (AB)† =
B†A† = BA. This is equal to AB only if the matrices commute; that is,
AB = BA.

2.2. Let Ae1 = λ1e1 and Ae2 = λ2e2 for λ1 �= λ2. Proof by contradiction. We
assume that there are c1, c2 �= 0 such that

c1e1 + c2e2 = 0. (A.1)

Multiplying this equation by A and taking into account the above eigenvalue
equations, we receive

c1λ1e1 + c2λ2e2 = 0. (A.2)

If we multiply (A.1) by λ1 and subtract the result from (A.2), we obtain

c2(λ2 − λ1)e2 = 0.

Because λ1 �= λ2 and e2 �= 0, it must be c2 = 0, which contradicts the
assumption.

2.3. An Hermitian matrix satisfies the equation

Ae = λe.

Because A† = A, we have

(Ae)†e = e† A†e
︸︷︷︸

λ∗e

= e† Ae
︸︷︷︸

λe

,

or λ∗e†e = λ e†e. Because e†e > 0, we have λ∗ = λ; that is, the eigenvalue
λ is real.

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
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2.4. For unitary matrices, we have U†U = I . With Ue = λe, we find from

(Ue)†(Ue) = e†U†Ue = e†e

that
λ∗λ e†e = e†e,

thus |λ| = 1.
2.5. Take a1 and construct

e1 = a1
√

a†1a1
.

Then we get indeed

e†1e1 = a†1a1
√

a†1a1
√

a†1a1
= 1.

Now we subtract the vector (e†1a2)e1 from the vector a2 and normalize the
result to get

e2 = a2 − (e†1a2)e1
√

(a2 − (e†1a2)e1)†(a2 − (e†1a2)e1)
.

We find again that
e†2e2 =

=
(

a2 − (e†1a2)e1
)† (

a2 − (e†1a2)e1
)

(

a2 − (e†1a2)e1
)† (

a2 − (e†1a2)e1
)

= 1.

Also, e2 is orthogonal to e1 because of

e†1e2 = a†1
√

a†a1

a2 − (e†1a2)e1
√

(

a2 − (e†1a2)e1
)† (

a2 − (e†1a2)e1
)

=

= a†1a2 − a†1(e
†
1a2)e1√· · · =

a†1a2 − a†1(a
†
1a2)a1

a†1a1√· · · = 0.

Similarly, we obtain the general formula

e j = a j −∑ j−1
i=1 (e†i a j )ei

√

(

a j −∑ j−1
I=1(e

†
i a j )ei

)† (

a j −∑ j−1
i=1 (e†i a j )ei

)

.
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2.6. (a)

T
(

1
1

)

=
(

t11 t12
t21 t22

)(

1
1

)

!=
(

1
0

)

and

T
(−1

1

)

=
(

t11 t12
t21 t22

)(−1
1

)

!=
(

0
1

)

provides the four conditions

t11 + t12 = 1, t21 + t22 = 0, −t11 + t12 = 0, −t21 + t22 = 1.

The transformation matrix is therefore given by

T =
⎛

⎝

1
2

1
2

− 1
2

1
2

⎞

⎠.

Because of T †T = I , T is a unitary matrix.
(b) According to Problem 2.5, we get

e1 = a1
√

a†1a1
=
⎛

⎜

⎝

1√
2

1√
2

⎞

⎟

⎠

and

e2 = a2 − (e†1a2)e1
√

(a2 − (e†1a2)e1)†(a2 − (e†1a2)e1)
=

=

(−1
1

)

− 0 · e1
√
2

=
⎛

⎜

⎝

−1√
2

1√
2

⎞

⎟

⎠.

3.1. We have
[A, [B,C]] + [B, [C, A]] + [C, [A, B]] =

= [A, BC − CB] + [B,CA− AC]] + [C, AB − BA]
= ABC − ACB − BCA+ CBA +

+BCA− BAC − CAB + ACB +
+CAB − CBA− ABC + BAC

= 0.
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3.2. If we multiply the relation

[X, Pn] = X Pn − PnX = n i�Pn−1

with P from the left, we find

PX Pn − Pn+1X = n i�Pn. (A.3)

From
[X, P] = i�I

we get
PX = X P − i�I .

A substitution in (A.3) finally yields the assertion for n + 1:

X Pn+1 − Pn+1X = (n + 1) i�Pn.

3.3. Because (AB)† = B†A† and (A+ B)† = A† + B†, we find

(AB + BA)† = B†A† + A†B† = AB + BA.

3.4. With

H = E =

⎛

⎜

⎜

⎜

⎝

E1 0 · · · · · ·
0 E2 0 · · ·
...

. . .
. . .

0 · · · 0 EN

⎞

⎟

⎟

⎟

⎠

,

we can write

X(t) = exp(−i tE/�)X(0) exp(i tE/�) =

=

⎛

⎜

⎜

⎜

⎜

⎝

e(−i t E1/�) 0 · · · 0

0 e(−i t E2/�) 0
...

...
. . . 0

0 · · · 0 e(−i t EN /�)

⎞

⎟

⎟

⎟

⎟

⎠

X(0) exp(i tE/�) =

=

⎛

⎜

⎜

⎜

⎝

X11(0) X12(0)e(−i t (E1−E2)/�) · · · X1N (0)e(−i t (E1−EN )/�)

.

.

. X22(0) · · ·
.
.
.

.

.

.
.
.
.

. . .
.
.
.

XN1(0)e(−i t (EN−E1)/�) · · · · · · XNN (0)

⎞

⎟

⎟

⎟

⎠

.
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This implies
Xμν(t) = e(i t (Eν−Eμ)/�)Xμν(0).

3.5. The matrix exp(iH) is a power series in H , therefore we can easily show that

(exp(iH))† = exp(−iH†) = exp(−iH).

This leads to

(exp(iH))† (exp(iH)) = exp(−iH) (exp(iH)) = exp(0) = I .

In other words, exp(iH) is indeed a unitary matrix.
3.6. This question is equivalent to the question of whether −�C = i[AB − BA]

is Hermitian. We find that

(i[A, B])† = −i([AB − BA])†
= −i((AB)† − (BA)†)

= −iB†A† + i A†B†

= −iBA + i AB

= i[A, B].
(A.4)

Therefore,−�C and thus�C = 1
i [A, B] are indeedHermitian.Note, however,

that [A, B] is anti-hermitian!
3.7.

(a) [A, BC] = ABC − BCA + BAC − BAC
︸ ︷︷ ︸

0

= B[A,C] + [A, B]C.

(b) [AB,C] = ABC − CAB + ACB − ACB
︸ ︷︷ ︸

0

= A[[B,C] + [A,C]B.

3.8. A nilpotent matrix is a square matrix N such that Nk = 0 for some positive
integer k. In the present case, we find

N2 =
⎛

⎝

0 0 2
0 0 0
0 0 0

⎞

⎠ and N3 = 0,

which leads to

exp(tN) = I + tN + t2

2
N2 =

⎛

⎝

1 t t2

0 1 2 t
0 0 1

⎞

⎠ .
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4.1. The momentum of the electron is

p = me · v = (9.11 · 10−31kg)(103 ms−1) = 9.11 · 10−28 m kg s−1.

The percentage of the momentum accuracy is

�p

p
· 100 = 0.1,

therefore

�p = p · 0.1
100

= 9.11 · 10−31 m kg s−1.

Heisenberg’s uncertainty principle then yields

�x ≥ �

2�p
= 1.055 · 10−34Js

2 · 9.11 · 10−31kgm s−1
= 0.0579 · 10−3m = 0.0579mm.

4.2. A matrix is a projection matrix if (1) P is Hermitian and (2) P2 = P . Let us
check these conditions for the product matrix.
(1) Because P1 and P2 are projection matrices, they are Hermitian; that is,
P1 = P†

1 and P2 = P†
2. Therefore

(P1P2)
† = P†

2P
†
1 = P2 · P1.

A necessary condition for the product matrix being Hermitian is therefore that
P1 · P2 = P2 · P1; that is,

[P1, P2] = 0.

In other words, P1 and P2 must commute.
(2) If P1 and P2 commute, we have

(P1P2)
2 = P1P2P1P2 = P1(P2P1)P2 = P1(P1P2)P2 = P2

1P
2
2 = P1P2.

We see that the second condition is automatically fulfilled if the two projection
matrices commute.

4.3. (1) The density matrix is

D = e3,1e
†
3,1 =

(

1
0

)

(1 0) =
(

1 0
0 0

)

,

and it is indeed D2 = D.
(2) In this case, the density matrix is
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D = e2,1e
†
2,1 = 1

2

(

1
i

)

(1 − i) =
(

0.5 −0.5i
0.5i 0.5

)

,

and it is again D2 = D.
In both cases trace(D) = 1, therefore both systems are in a pure state.

4.4. Because
Me1 = (e1e

ᵀ
1 − e2e

ᵀ
2 )e1 = e1,

and
Me2 = (e1e

ᵀ
1 − e2e

ᵀ
2 )e2 = −e2,

the eigenvectors are e1 and e2, and the eigenvalues are +1 and −1.
5.1. With

X =
√

�

2mω0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 · · ·
1 0

√
2 0 0 · · ·

0
√
2 0

√
3 0 · · ·

0 0
√
3 0

√
4 · · ·

...
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

P = i

√

�mω0

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 −1 0 0 0 · · ·
1 0 −√

2 0 0 · · ·
0

√
2 0 −√

3 0 · · ·
0 0

√
3 0 −√

4 · · ·
...

...
...

...
...

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

we get

X P = i
�

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −√
2 0 0 · · ·

0 1 0 −√
6 0 · · ·√

2 0 1 0 −√
12 · · ·

0
√
6 0 1 0 · · ·

...
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and

PX = i
�

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 −√
2 0 0 · · ·

0 −1 0 −√
6 0 · · ·√

2 0 −1 0 −√
12 · · ·

0
√
6 0 −1 0 · · ·

...
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

;

that is, indeed
X P − PX = i�I .
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5.2. We have

˜X =
√

mω0

2�
X

and

˜P =
√

1

2mω0�
P .

� has the dimension of an action (M · L2 ·T−1). The factor
√

mω0
2�

therefore has

the dimension L−1. Because X has the dimension of a length L , the first term
of A is dimensionless. We find the same result for the second term, therefore
A is dimensionless.

5.3. A is not Hermitian, inasmuch as

A† = 1√
2�

(√
mω0X† − i√

mω0
P†

)

= 1√
2�

(√
mω0X − i√

mω0
P
)

= ˜X − i˜P

�= A.

Therefore, A cannot be an observable.
5.4. Because

N† = (A†A)† = A†A = N,

N is Hermitian.
5.5. We prove the formula by induction.

1. n = 1: Is [A, A†A] = A? According to Problem 3.7,

[A, BC] = B[A,C] + [A, B]C.

Together with [A, A†] = I from (6.10), we get

[A, A†A] = A† [A, A]
︸ ︷︷ ︸

0

+[A, A†]
︸ ︷︷ ︸

I

A = A.

2. n − 1 → n: Does [An, N] = nAn follow from

[An−1, N] = (n − 1)An−1?

Again according to Problem 3.7,

http://dx.doi.org/10.1007/978-3-319-26366-3_6


Appendix A: Solutions to Problems 163

[AB,C] = A[B,C] + [A,C]B.

We can apply the above induction assumption to find

[An, N] = A[An−1, N]+ [A, N]An−1 = A(n− 1)An−1 + (1 · A1)An−1 =

= (n − 1)An + An = nAn.

5.6. With (5.32) and (5.33), we get

N = A†A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 · · ·
1 0 0 0
0

√
2 0 0

0 0
√
3 0

. . .

...
. . .

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0 · · ·
0 0

√
2 0

0 0 0
√
3

. . .

...
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎠

=

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 · · ·
0 1 0 0
0 0 2 0

0 0 0 3
. . .

...
. . .

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The eigenvalues are the numbers at the main diagonal, namely 0, 1, 2, 3, . . ..
5.7. The eigenvalue equations (5.29) and (5.30) are

Aen = √
nen−1

and
A†en = √

n + 1en+1.

With these equations, (5.34) supplies

Xen =
√

�

2mω0
(A + A†)en =

√

�

2mω0

(√
nen−1 + √

n + 1en+1

)

. (A.5)

Multiplying by the transposed eigenvector em from the left gives the matrix
element in the mth row and nth column of X (with emen = δmn):

Xmn = e
ᵀ
mXen =

√

�

2mω0

(√
n δm,n−1 + √

n + 1 δm,n+1

)

.

http://dx.doi.org/10.1007/978-3-319-26366-3_5
http://dx.doi.org/10.1007/978-3-319-26366-3_5
http://dx.doi.org/10.1007/978-3-319-26366-3_5
http://dx.doi.org/10.1007/978-3-319-26366-3_5
http://dx.doi.org/10.1007/978-3-319-26366-3_5
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Multiplying (A.5) with X yields

X2en =
√

�

2mω0

(√
nXen−1 + √

n + 1Xen+1

)

, (A.6)

and with (5.29) and (5.30) we get

X2en = �

2mω0

(√
n(A + A†)en−1 + √

n + 1(A + A†)en+1

)

=

= �

2mω0

(
√

n(n − 1)en−2 + (2n + 1)en +√(n + 1)(n + 2)en+2

)

.

Multiplying this equation also by the transposed eigenvector em from the left
gives the matrix element in the mth row and nth column of X2:

X2
mn = �

2mω0

(
√

n(n − 1)δm,n−2 + (2n + 1)δm,n +√(n + 1)(n + 2)δm,n+2

)

.

In the same way, we obtain

X3
mn =

(

�

2mω0

)3/2 (
√

n(n − 1)(n − 2)δm,n−3 + 3
√

(n + 1)3δm,n+1+

+3
√
n3δm,n−1 +√(n + 1)(n + 2)(n + 3)δm,n+3

)

.

The matrix X3 therefore has the form

X3 =
(

�

2mω0

)3/2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 3 0
√
2 · 3 0 · · ·

3 0 6
√
2 0

√
2 · 3 · 4 · · ·

0 6
√
2 0 9

√
3 0 · · ·√

2 · 3 0 9
√
3 0 · · ·

...
...

...
...

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

6.1.

X · P − P · X = X1P1 + X2 P2 + X3P3 − P1X1 − P2X2 − P3X3 =

= i�I + i�I + i�I = 3 i � I .

6.2. We have
(A × B) · C =

http://dx.doi.org/10.1007/978-3-319-26366-3_5
http://dx.doi.org/10.1007/978-3-319-26366-3_5
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=
⎛

⎝

⎛

⎝

A1

A2

A3

⎞

⎠×
⎛

⎝

B1

B2

B3

⎞

⎠

⎞

⎠ ·
⎛

⎝

C1

C2

C3

⎞

⎠ =

=
⎛

⎝

A2B3 − A3B2

A3B1 − A1B3

A1B2 − A2B1

⎞

⎠ ·
⎛

⎝

C1

C2

C3

⎞

⎠ =

= A2B3C1 − A3B2C1 + A3B1C2 − A1B3C2 + A1B2C3 − A2B1C3 =

=
⎛

⎝

A1

A2

A3

⎞

⎠ ·
⎛

⎝

B2C3 − B3C2

B3C1 − B1C3

B1C2 − B2C1

⎞

⎠ = A · (B × C).

6.3. L†
± = (L1 ± iL2)

† = L†
1 ± (iL2)

† = L1 ∓ iL2 = L∓ �= L±, so neither L+
nor L− is Hermitian.

6.4. We have

|L+e( j,m)|2 = |αe( j,m + 1)|2 = |α|2 e( j,m + 1)†e( j,m + 1)
︸ ︷︷ ︸

1

= |α|2.

Also, it applies

(L+e( j,m))†(L+e( j,m)) = e( j,m)†(L−L+)e( j,m).

With L−L+ = L2 − L2
3 − �L3 from (6.21), we obtain

(L+e( j,m))†(L+e( j,m)) = e( j,m)†(L2 − L2
3 − �L3)e( j,m)

= �
2( j ( j + 1) − m2 − m) e( j,m)†e( j,m)

︸ ︷︷ ︸

1

.

This implies
|α|2 = �

2( j ( j + 1) − m2 − m)

and therefore

α = �

√

j ( j + 1) − m2 − m = �

√

( j − m)( j + m + 1).

The factor for L− can be calculated in a similar way.
7.1. First, we know that

Ṗ i = − ∂H
∂X i

.

If the Hamiltonian is

http://dx.doi.org/10.1007/978-3-319-26366-3_6
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H = 1

2m
P2 − Ze2R−1,

then we find

∂H
∂X i

= −Ze2
∂R−1

∂X i
= −Ze2

∂(X2
1 + X2

2 + X2
3)

− 1
2

∂X i
=

= Ze2X i (X2
1 + X2

2 + X2
3)

− 3
2 = Ze2X i R−3,

in other words,
Ṗ = −Ze2RR−3. (A.7)

7.2. For the first component matrix X1R−1 of RR−1, we obtain with the help of
the Heisenberg formula d

dt A = i
�
[E, A]

d

dt

(

X1R−1
) = i

�

{

E(X1R−1) − (X1R−1)E
} = (A.8)

= i

2m�

{

P2(X1R−1) − (X1R−1)P2} . (A.9)

Note that we used the fact that

RXi = (X2
1X

2
i + X2

2X
2
i + X2

3Xi
2
)1/2 = Xi R,

which implies Xi R−1 = R−1X i . Therefore, the component −Ze2R−1 of the
Hamiltonian

E = 1

2m
P2 − Ze2R−1

vanishes in (A.8). Now with

P2 = P2
1 + P2

2 + P2
3

Equation (A.9) can be written as

d

dt

(

X1R−1
) = i

2m�

⎧

⎨

⎩

3
∑

j=1

(

P2
j

(

X1R−1
)− (X1R−1

)

P2
j

)

⎫

⎬

⎭

. (A.10)

We can add the entity 0 = −Pj Xi R−1Pj + Pj Xi R−1Pj into (A.10), which
leads to

d

dt

(

X1R−1
) =
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= i

2m�

⎧

⎨

⎩

3
∑

j=1

{(

P j (P j X1R
−1 − X1R

−1P j

)

+ (P j X1R
−1 − X1R

−1P j

)

P j

⎫

⎬

⎭

.

(A.11)
Multiplication with R3R−3 = I from the right supplies

d

dt

(

X1R−1
) =

= i

2m�

3
∑

j=1

{

P j
(

P jX1R2 − X1R−1P j R3
)+

+ (P jX1R−1 − X1R−1P j
)

P j R3
}

R−3. (A.12)

If we multiply (7.5), namely

P j R − RP j = h

2πi
X j R−1,

with R−1 from both the left and the right, and if we also take into account that
R−1X j = X j R−1, we get

R−1P j − P j R−1 = �

i
X j R−3.

Rearranging yields

R−1P j = P j R−1 − i� X j R−3. (A.13)

We can now put this result into the round parentheses in (A.12) in order to get

d

dt

(

X1R−1
) =

= i

2m�

3
∑

j=1

{

P j
(

P jX1R2 − X1P j R2 + i� X1X j
)+

+ (P jX1R−1 − X1P j R−1 + i� X1X j R−3
)

P j
}

. (A.14)

Next, we know that P jX1 − X1P j = �

i I for j = 1 and = 0 for j �= 1. Using
this result as well as inserting I = R3R−3 in the second round parentheses,
we get

d

dt

(

X1R−1
) =

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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= 1

2m

{(

P1(X2
2 + X2

3)R
−3 − P2X1X2R−3 − P3X1X3R−3

)+

+ ((X2
2 + X2

3)R
−3P1 − X1X2R−3P2 − X1X3R−3P3

)}

. (A.15)

It turns out that

(P1(X2
2 + X2

3)R
−3 − P2X1X2R−3 − P3X1X3R−3) =

= X3P1X3R−3 − X1P3X3R−3 − X1P2X2R−3 + X2P1X2R−3 =

= (X3P1 − X1P3)X3R−3 − (X1P2 − X2P1)X2R−3 =

L2X3R−3 − L3X2R−3,

that is, the first component of L×RR−3. So we finally get the desired result

d

dt
(RR−1) = 1

2m

{
L× (RR−3) − (RR−3) ×L

}
. (A.16)

7.3. According to (7.11), the Lenz matrix-vector is defined as

A
def= 1

Ze2m

1

2
(L × P − P × L) + RR−1,

where the angular momentum L (in the round parentheses) is constant. For
the time derivative of A, we therefore obtain

d

dt
A = 1

Ze2m

1

2

(

L × Ṗ − Ṗ × L
)+ d

dt
RR−1. (A.17)

With (A.7) and (A.16), we get

d

dt
A = − 1

2m

{

L × (RR−3) − (RR−3) × L
}+

+ 1

2m

{

L × (RR−3) − (RR−3) × L
} = 0. (A.18)

8.1. The Pauli spin matrix σ1 has the form

σ1 =
(

0 1
1 0

)

.

With α a real number, the power series expansion of the exponential function
is

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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exp(iασ1) =
∞
∑

ν=0

iαν

ν! σν
1 .

We find that

σ2
1 =

(

1 0
0 1

)

= I2,

and therefore
σ2ν

1 = I2 and σ2ν+1
1 = σ1. (A.19)

We can now separate the sum into one part with even integers and one part
with odd integers:

exp(iασ1) =
∞
∑

ν=0

(iα)2ν

(2ν)! σ2ν
1 +

∞
∑

ν=0

(iα)2ν+1

(2ν + 1)! σ2ν+1
1 .

With (A.19), we get

exp(iασ1) = I2
∞
∑

ν=0

(−1)ν
(iα)2ν

(2ν)! + iσ1

∞
∑

ν=0

(−1)ν
(iα)2ν+1

(2ν + 1)! =

= I2 cosα + iσ1 sinα

=
(

cosα 0
0 cosα

)

+
(

0 i sinα
i sinα 0

)

=
(

cosα i sinα
i sinα cosα

)

.

8.2. Each of the three Pauli matrices has the two eigenvalues +1 and −1. The
corresponding normalized eigenvectors are

e1+ = 1√
2

(

1
1

)

, e1− = 1√
2

(

1
−1

)

,

e2+ = 1√
2

(

1
i

)

, e2− = 1√
2

(

i
1

)

,

e3+ =
(

1
0

)

, e3− =
(

0
1

)

.

8.3. If we write the eigenvectors as columns of the transformation matrix T , we
obtain, for example, for the Pauli matrix σ1
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T = 1√
2

(

1 1
1 −1

)

.

This yields

T †σ1T = 1

2

(

1 1
1 −1

)(

0 1
1 0

)(

1 1
1 −1

)

=
(

1 0
0 −1

)

,

that is, a diagonal matrix with the eigenvalues +1 and −1 on the diagonal.
8.4. We start with the largest possible values j = 1

2 + 1
2 = 1 andm = 1

2 + 1
2 = 1.m

can then have the values−1, 0, and+1. For the largest total angularmomentum
quantum number j = m = 1

2 + 1
2 = 1, there is exactly one state in the coupled

and uncoupled basis:
e j=1,m=1 = e 1

2 , 12
⊗ e 1

2 , 12
. (A.20)

Now let us remember that for spin- 12 systems the Pauli matrix σ3 has the two
eigenvectors

e 1
2 , 12

=
(

1
0

)

and e 1
2 ,− 1

2
=
(

0
1

)

.

The four possible vector combinations are

e 1
2 , 12

⊗ e 1
2 , 12

=

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

, e 1
2 , 12

⊗ e 1
2 ,− 1

2
=

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

,

e 1
2 ,− 1

2
⊗ e 1

2 , 12
=

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

, e 1
2 ,− 1

2
⊗ e 1

2 ,− 1
2

=

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

.

We can apply the lowering operator

J− = J1 + i J2 = S− ⊗ I2 + I2 ⊗ S−

to (A.20) and get

J−e j=1,m=1 = (S−e 1
2 , 12

) ⊗ e 1
2 , 12

+ e 1
2 , 12

⊗ (S−e 1
2 , 12

). (A.21)

With (6.49), namely

J−e jm = [ j ( j + 1) − m(m − 1)]1/2 �e j,m−1

and

http://dx.doi.org/10.1007/978-3-319-26366-3_6


Appendix A: Solutions to Problems 171

S−esm = [s(s + 1) − m(m − 1)]1/2 �es,m−1,

we obtain from (A.21)

(2)
1
2 �e j=1,m=0 = �e 1

2 ,− 1
2
⊗ e 1

2 , 12
+ �e 1

2 , 12
⊗ e 1

2 ,− 1
2
,

which leads to

e j=1,m=0 = 1√
2
e 1

2 ,− 1
2
⊗ e 1

2 , 12
+ 1√

2
e 1

2 , 12
⊗ e 1

2 ,− 1
2

=

= 1√
2

⎛

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎠

+ 1√
2

⎛

⎜

⎜

⎝

0
1
0
0

⎞

⎟

⎟

⎠

= 1√
2

⎛

⎜

⎜

⎝

0
1
1
0

⎞

⎟

⎟

⎠

.

According to (8.37), the Clebsch–Gordan coefficients are defined as

C(a, b; j,m) = (e′
a ⊗ e′′

b)
†e( j,m).

For our problem, this reads

C(a, b; j,m) = (ea ⊗ eb)†e( j,m).

In particular, we find the Clebsch–Gordan coefficients

C

((

1

2
,−1

2

)

,

(

1

2
,
1

2

)

; j = 1,m = 0

)

= (e 1
2 ,− 1

2
⊗ e 1

2 , 12
)†e(1, 0) = 1√

2
,

C

((

1

2
,
1

2

)

,

(

1

2
,−1

2

)

; j = 1,m = 0

)

= (e 1
2 , 12

⊗ e 1
2 ,− 1

2
)†e(1, 0) = 1√

2
.

Another Clebsch–Gordan coefficient can be obtained directly from (A.20):

C

((

1

2
,
1

2

)

,

(

1

2
,
1

2

)

; j = 1,m = 1

)

= 1.

Applying the lowering operator J− once again yields

C

((

1

2
,
1

2

)

,

(

1

2
,−1

2

)

; j = 1,m = −1

)

= 1.

Until now we have had three basis vectors, namely

http://dx.doi.org/10.1007/978-3-319-26366-3_8
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1√
2

⎛

⎜

⎜

⎝

0
1
1
0

⎞

⎟

⎟

⎠

,

⎛

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎠

, and

⎛

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎠

.

By choosing an orthonormal vector corresponding to e j=1,m=0, we get the
missing fourth basis vector

1√
2

⎛

⎜

⎜

⎝

0
1

−1
0

⎞

⎟

⎟

⎠

.

This means that the additional Clebsch–Gordan coefficients are ± 1√
2
.

8.5. Because J2 and J3 commute, they have identical eigenvectors e jm . The eigen-
value equations of J are then

J2e jm = j ( j + 1)�2e jm, (A.22)

J3e jm = m�e jm, − j ≤ m ≤ j. (A.23)

The largest total angular momentum quantum number is j = m = � + 1
2 . For

these values, there is exactly one state in the coupled and uncoupled basis:

e j=�+ 1
2 ,m=�+ 1

2
= e�,� ⊗ e 1

2 , 12
.

As in the previous problem, we apply the lowering operator

J− = J1 + i J2 = L− ⊗ I S + I L ⊗ S−

and receive

J−e j=�+ 1
2 ,m=�+ 1

2
= L−e�,� ⊗ e 1

2 , 12
+ e�,� ⊗ S−e 1

2 , 12
. (A.24)

With (6.49), namely

L−e�m = [�(� + 1) − m(m − 1)]1/2 �e�,m−1,

J−e jm = [ j ( j + 1) − m(m − 1)]1/2 �e j,m−1,

and
S−esm = [s(s + 1) − m(m − 1)]1/2 �es,m−1,

we obtain from (A.24)

http://dx.doi.org/10.1007/978-3-319-26366-3_6
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(2� + 1)
1
2 �e j=�+ 1

2 ,m=�− 1
2

= (2�)
1
2 �e�,�−1 ⊗ e 1

2 , 12
+ (1)

1
2 �e�,� ⊗ e 1

2 ,− 1
2
.

This can be written as

e j=�+ 1
2 ,m=�− 1

2
=
(

2�

2� + 1

) 1
2

e�,�−1 ⊗ e 1
2 , 12

+
(

1

2� + 1

) 1
2

e�,� ⊗ e 1
2 ,− 1

2
.

The vectors e�,�−1 ⊗ e 1
2 , 12

and e�,� ⊗ e 1
2 ,− 1

2
are orthogonal to each other. The

orthogonal linear combination is therefore the state of the total angularmomen-
tum j = � − 1/2 with the same m = � − 1/2:

e j=�− 1
2 ,m=�− 1

2
=
(

�

2� + 1

) 1
2

e�,�−1 ⊗ e 1
2 , 12

−
(

2�

2� + 1

) 1
2

e�,� ⊗ e 1
2 ,− 1

2
.

Applying the lowering operator J− as above and writing down the orthogonal
linear combination, we find

e j=�+ 1
2 ,m=�− 3

2
=
(

2� − 1

2� + 1

) 1
2

e�,�−2 ⊗ e 1
2 , 12

+
(

2

2� + 1

) 1
2

e�,� ⊗ e 1
2 ,− 1

2
,

e j=�− 1
2 ,m=�− 3

2
=
(

2

2� + 1

) 1
2

e�,�−2 ⊗ e 1
2 , 12

−
(

2� − 1

2� + 1

) 1
2

e�,�−1 ⊗ e 1
2 ,− 1

2
.

With this method, we get the general result

e j=�+ 1
2 ,m =

(

� + m + 1
2

2� + 1

) 1
2

e�,m− 1
2
⊗ e 1

2 , 12
+
(

� − m + 1
2

2� + 1

) 1
2

e�,m+ 1
2
⊗ e 1

2 ,− 1
2
,

e j=�− 1
2 ,m =

(

� − m + 1
2

2� + 1

) 1
2

e�,m− 1
2
⊗ e 1

2 , 12
−
(

� + m + 1
2

2� + 1

) 1
2

e�,m+ 1
2
⊗ e 1

2 ,− 1
2
.

There are 2(2� + 1) states in total. The Clebsch–Gordan coefficients are

C

((

�,m ∓ 1

2

)

,

(

1

2
,±1

2

)

; j = � + 1

2
,m

)

=

(e�,m∓ 1
2
⊗ e 1

2 ,± 1
2
)†e j=�+ 1

2 ,m =
(

� ± m + 1
2

2� + 1

) 1
2

,

and
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C

((

�,m ∓ 1

2

)

,

(

1

2
,±1

2

)

; j = � − 1

2
,m

)

=

= (e�,m∓ 1
2
⊗ e 1

2 ,± 1
2
)†e j=�− 1

2 ,m = ±
(

� ∓ m + 1
2

2� + 1

) 1
2

.

9.1. In the normal Zeeman effect, the energy level En splits into 2�+1 levels under
the influence of a magnetic field. After all, the highest �-value for a fixed n is
� = n − 1, and these include 2� + 1 = 2n − 1 values of m. For � = 2, we
therefore find 2� + 1 = 5 values of m, namely m = +2,+1, 0,−1 and −2.
In other words, the level � = 2 is split into 5 levels.

10.1. From (10.7), we find in matrix form

(

c11 c12
c21 c22

)

= C =
(

a1b1 a1b2
a2b1 a2b2

)

=
(

a1b
ᵀ

a2b
ᵀ

)

= ab
ᵀ
.

In the second matrix, the second line is a multiple of the first line, therefore
the determinant of the matrix is zero. This implies that the determinant of C
must also be equal to zero:

c11 c22 − c12 c21 = 0.

By the way, an algebraic computer program for the calculation of the ai and
b j can be found in [23].

10.2.
A1,2B1,2 = (A ⊗ I B)(I A ⊗ B) = A ⊗ B,

B1,2A1,2 = (I A ⊗ B)(A ⊗ I B) = A ⊗ B.

It follows that
[A1,2, B1,2] = A ⊗ B − A ⊗ B = 0.

10.3.
〈

A1,2
〉 = (ξ1 ⊗ ξ2)

†(A ⊗ I B)(ξ1 ⊗ ξ2) = (ξ†
1Aξ1) (ξ†

2ξ2)
︸ ︷︷ ︸

1

= 〈A〉 ,

〈

B1,2
〉 = (ξ1 ⊗ ξ2)

†(I A ⊗ B)(ξ1 ⊗ ξ2) = (ξ†
1ξ1)

︸ ︷︷ ︸

1

(ξ†
2Bξ2) = 〈B〉 .

10.4. According to (11.8), we have

P(ξ1 ⊗ ξ2) = ξ2 ⊗ ξ1

http://dx.doi.org/10.1007/978-3-319-26366-3_10
http://dx.doi.org/10.1007/978-3-319-26366-3_11
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with the permutation matrix

P = U2×2 =

⎛

⎜

⎜

⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟

⎟

⎠

.

Because P is symmetric and real, we find P† = P . Due to P2 = I4, we get
P−1 = P . The matrix P therefore only has eigenvalues equal to ±1.

11.1. Schrödinger would assign a wave function to each state of the cat, that is,
“alive after an hour” and “dead after an hour.” The probabilities for both states
would be equal. The total state of the system would then be a superposition of
the two wave functions. In other words, the ψ-function of the system would
express that the living and the dead cat are mixed in equal parts.
According to the Copenhagen interpretation of quantum mechanics, the wave
function of the system collapses at the time of measurement. Once you open
the chamber and observe the system (i.e., a measurement), the atomic nucleus
jumps from the earlier superposition state into one of the eigenstates according
to the measurement device. It is therefore only at the time of the measurement
(by an outside observer) that it is decided whether the cat is dead or alive. Prior
to the measurement, we can only make a probability statement about the status
of the cat.
From the perspective of ensemble theory, the experiment would be described
by an ensemble of identical systems, say 10,000 boxes with one cat in each
box. After a certain time interval, approximately 5000 cats would be dead and
approximately 5000 cats would be alive. This result is due to the empirical
law of large numbers. According to this law, the more often you repeat the
experiment, the better the results approach the theoretical probability of 50%.
To me, this is the interpretation of a physicist, whereas other interpretations
(such as Everett’s parallel universe, with one universe for the living cat and
one universe for the dead cat) rather belong to the field of philosophy. In any
case, we had better speak of Schrödinger’s cats, that is, in plural.

11.2.

(a) [p, x]ψ(x) = (px − xp)ψ(x) = �

i

∂

∂x
xψ(x) − x

�

i

∂

∂x
ψ(x) =

= �

i
ψ(x) + x

�

i

∂

∂x
ψ(x) − x

�

i

∂

∂x
ψ(x) = �

i
ψ(x).

In other words, [p, x] = �

i .

(b) [p, xn]ψ(x) = �

i

∂

∂x
xnψ(x) − xn

�

i

∂

∂x
ψ(x) =

= nxn−1 �

i
ψ(x) + xn

�

i

∂

∂x
ψ(x) − xn

�

i

∂

∂x
ψ(x) = nxn−1 �

i
ψ(x);
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that is, [p, xn] = n �

i x
n−1.

(c)With the commutator rule from Problem 3.7,

[AB,C] = A[B,C] + [A,C]B,

we prove the statement inductively.
n = 2 :

[p2, x] = [p · p, x] = p [p, x]
︸ ︷︷ ︸

�

i I

+[p, x]p = 2
�

i
p.

n − 1 → n :

[pn, x] = [p · pn−1, x] = p [pn−1, x]
︸ ︷︷ ︸

(n−1) �

i p
n−2

+[p, x]
︸ ︷︷ ︸

�

i

pn−1 = n
�

i
pn−1.

11.3. (a) The differentiation of an operator A with respect to time t is defined as

dA

dt
def= lim

ε→0

A(t + ε) − A(t)

ε
.

For two time-dependent operators A(t) and B(t), we find

d

dt
(A(t)B(t)) = lim

ε→0

A(t + ε)B(t + ε) − A(t)B(t)

ε
=

= lim
ε→0

[ [A(t + ε) − A(t)]B(t)

ε
+ A(t + ε)[B(t + ε) − B(t)]

ε

]

=

= dA(t)

dt
B(t) + A(t)

dB(t)

dt
. (A.25)

Next, we show inductively that dA(t)n

dt =∑n
ν=1 A(t)ν−1 dA

dt A(t)n−ν

n = 2:

dA(t)2

dt
= dA(t)

dt
A(t) + A(t)

dA(t)

dt
=

2
∑

ν=1

A(t)ν−1 dA

dt
A(t)2−ν .

n → n + 1 :

dA(t)n+1

dt
(A.25)= dA(t)n

dt
A(t) + A(t)n

dA(t)

dt
=
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n=
n
∑

ν=1

A(t)ν−1 dA

dt
A(t)n−ν + A(t)n

dA(t)

dt
=

=
n+1
∑

ν=1

A(t)ν−1 dA

dt
A(t)n+1−ν .

The differentiation of a function f (A) of an operator A with respect to the
operator A is defined as

d f (A)

dA
def= lim

ε→0

f (A + ε 1) − f (A)

ε
,

with the neutral element 1. We obtain a similar product rule

d

dA
( f (A)g(A)) = lim

ε→0

f (A + ε 1)g(A + ε 1) − f (A)g(A)

ε
=

= lim
ε→0

[ [ f (A + ε 1) − f (A)]g(A)

ε
+ f (A + ε 1)[g(t + ε 1) − g(A)]

ε

]

=

= d f (A)

dA
g(A) + f (A)

dg(A)

dA
.

12.1. The gamma matrices are defined as

γ i
def= βαi .

With (12.38) to (12.41), where σ j are the Pauli matrices, we get

α1 = σ1 ⊗ σ1 =
(

0 σ1

σ1 0

)

=

⎛

⎜

⎜

⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟

⎟

⎠

,

α2 = σ1 ⊗ σ2 =
(

0 σ2

σ2 0

)

=

⎛

⎜

⎜

⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞

⎟

⎟

⎠

,

α3 = σ1 ⊗ σ3 =
(

0 σ3

σ3 0

)

=

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟

⎟

⎠

,

http://dx.doi.org/10.1007/978-3-319-26366-3_12
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β = σ3 ⊗ I2 =
(

I2 0
0 −I2

)

=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎠

.

The gamma matrices are therefore

γ0 = β =
(

I2 0
0 −I2

)

=

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟

⎟

⎠

, (A.26)

γ1 = βα1 =
(

I2 0
0 −I2

)(

0 σ1

σ1 0

)

=

⎛

⎜

⎜

⎝

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎞

⎟

⎟

⎠

, (A.27)

γ2 = βα2 =
(

I2 0
0 −I2

)(

0 σ2

σ2 0

)

=

⎛

⎜

⎜

⎝

0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

⎞

⎟

⎟

⎠

, (A.28)

γ3 = βα3 =
(

I2 0
0 −I2

)(

0 σ3

σ3 0

)

=

⎛

⎜

⎜

⎝

0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

⎞

⎟

⎟

⎠

. (A.29)

Note that for j = 1, 2, and 3, we can also write the gamma matrices as

γ j =
(

0 σ j

−σ j 0

)

. (A.30)

In this form, we immediately find that

γ2
j =

(

0 σ j

−σ j 0

)(

0 σ j

−σ j 0

)

=
(−I2 0

0 −I2

)

= −I4, (A.31)

because σ2
j = I2 for all j . With the Levi-Civita symbol

εi jk =

⎧

⎪
⎨

⎪
⎩

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0 if i = j or j = k or k = i,

we find for the product of two Pauli matrices (μ �= ν)
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σμσν = i
∑

κ

εμνκσκ. (A.32)

With (A.31), we finally get (μ �= ν)

γμγν =
(

0 σμ

−σμ 0

)(

0 σν

−σν 0

)

=

=
(−σμσν 0

0 −σμσν

)

=
(−i

∑

κ εμνκσκ 0
0 −i

∑

κ εμνκσκ

)

. (A.33)

For example, we get

γ1γ2 =
(−iσ3 0

0 −iσ3

)

=

⎛

⎜

⎜

⎝

−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i

⎞

⎟

⎟

⎠

.

From (A.33), we immediately see that

γμγν = −γνγμ, (A.34)

which implies that the matrices anti-commute:

{γμ,γν} def= γμγν + γνγμ = 0. (A.35)

The commutation law also follows from (A.33) as

[γμ,γν] def= γμγν − γνγμ = 2

(−i
∑

κ εμνκσκ 0
0 −i

∑

κ εμνκσκ

)

. (A.36)

12.2. Using (2.5) to (2.4), we first obtain

i γ0
∂

∂x0
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
∂

∂x0
0 0 0

0 i
∂

∂x0
0 0

0 0 −i
∂

∂x0
0

0 0 0 −i
∂

∂x0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.37)

http://dx.doi.org/10.1007/978-3-319-26366-3_2
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i γ1
∂

∂x1
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 i
∂

∂x1

0 0 i
∂

∂x1
0

0 −i
∂

∂x1
0 0

−i
∂

∂x1
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.38)

i γ1
∂

∂x2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
∂

∂x2

0 0 − ∂

∂x2
0

0 − ∂

∂x2
0 0

∂

∂x2
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.39)

i γ1
∂

∂x3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 i
∂

∂x3
0

0 0 0 −i
∂

∂x3

−i
∂

∂x3
0 0 0

0 i
∂

∂x3
0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.40)

Adding these four matrices yields

i�∂ = i
3
∑

j=0

γ j
∂

∂x j
=

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
∂

∂x0
0 i

∂

∂x3
i

∂

∂x1
+ ∂

∂x2

0 i
∂

∂x0
i

∂

∂x1
− ∂

∂x2
−i

∂

∂x3

−i
∂

∂x3
−i

∂

∂x1
− ∂

∂x2
−i

∂

∂x0
0

∂

∂x2
− i

∂

∂x1
i

∂

∂x3
0 −i

∂

∂x0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (A.41)

This takes us to four linear differential equations:

(i�∂ − m0

�
I4)ψ =
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⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
∂

∂x0
− m0

�
0 i

∂

∂x3
i

∂

∂x1
+ ∂

∂x2

0 i
∂

∂x0
− m0

�
i

∂

∂x1
− ∂

∂x2
−i

∂

∂x3

−i
∂

∂x3
−i

∂

∂x1
− ∂

∂x2
−i

∂

∂x0
− m0

�
0

∂

∂x2
− i

∂

∂x1
i

∂

∂x3
0 −i

∂

∂x0
− m0

�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ψ0

ψ1

ψ2

ψ3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i
∂ψ0

∂x0
+ i

∂ψ3

∂x1
+ ∂ψ3

∂x2
+ i

∂ψ2

∂x3
− m0

�
ψ0

i
∂ψ1

∂x0
+ i

∂ψ2

∂x1
− ∂ψ2

∂x2
− i

∂ψ3

∂x3
− m0

�
ψ1

−i
∂ψ2

∂x0
− i

∂ψ1

∂x1
− ∂ψ1

∂x2
− i

∂ψ0

∂x3
− m0

�
ψ2

−i
∂ψ3

∂x0
− i

∂ψ0

∂x1
+ ∂ψ0

∂x2
+ i

∂ψ1

∂x3
− m0

�
ψ3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0
0
0
0

⎞

⎟

⎟

⎠

. (A.42)

With the ansatz of a plane wave

ψ(x, t) =

⎛

⎜

⎜

⎝

c1
c2
c3
c4

⎞

⎟

⎟

⎠

exp(i(k
ᵀ
x − ωt)), (A.43)

we obtain for the first derivative
∂

∂x0
ψ = c (−i ω/c) exp(i(k

ᵀ
x − ωt)). (A.44)

With k
ᵀ
x = k1x1 + k2x2 + k3x3, we further get

∂

∂x j
ψ = c (i k j ) exp(i(k

ᵀ
x − ωt)). (A.45)

If we insert these derivatives into (A.42), we finally get the linear algebraic
equation

⎛

⎜

⎜

⎜

⎜

⎝

ω
c − m0

�
0 −k3 ik2 − k1

0 ω
c − m0

�
−k1 − ik2 k3

k3 k1 − ik2 −ω
c − m0

�
0

k1 + ik2 −k3 0 −ω
c − m0

�

⎞

⎟

⎟

⎟

⎟

⎠

c = 0. (A.46)
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Note that there is an algebraic computer program (written in MAXIMA) in
[23].



Appendix B
The Kronecker Product

B.1 Definitions

The Kronecker product of two matrices A ∈ C
n×m and B ∈ C

p×q leads to a matrix
C ∈ C

np×mq and is denoted by
A ⊗ B = C.

The submatrices C i j ∈ C
p×q for i = 1 to n and for j = 1 to m are defined as

C i j
def= ai j B,

the matrix C therefore has the form

C =

⎛

⎜

⎜

⎝

a11B a12B . . . a1mB
a21B a22B . . . a2mB
. . .

an1B an2B . . . anmB

⎞

⎟

⎟

⎠

.

B.2 Properties of the Kronecker Product

Without proof, the following important properties also hold (see, e.g., [7]):

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), (B.1)

(A ⊗ B)
ᵀ = A

ᵀ ⊗ B
ᵀ
, (B.2)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (B.3)
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Appendix C
Fourier Decomposition of Periodic Functions

Let f (t) be an arbitrary periodic function. Its Fourier decomposition is given by the
sum of simple sine waves

f (t) = y0
2

+
∞
∑

n=1

yn · sin(nωt + ϕn),

where the yn are the amplitudes and the ϕn are the phases. With the help of the
trigonometric addition theorem, the function can be decomposed into

f (t) = y0
2

+
∞
∑

n=1

an · cos(nωt) +
∞
∑

n=1

bn · sin(nωt). (C.1)

The goal of Fourier analysis is to compute the coefficients an and bn (with the help
of integrals over a full period).

We can also write the Fourier series with the help of complex numbers as

f (t) =
∞
∑

n=−∞
cne

inωt .

The connection with the above notation with sine and cosine expressions is obtained
as

∞
∑

n=−∞
cne

inωt = c0 +
∞
∑

n=1

cne
inωt +

−∞
∑

n=−1

cne
inωt

= c0 +
∞
∑

n=1

cn(cos nωt + i sin nωt) +
−∞
∑

n=−1

cn(cos nωt + i sin nωt)

© Springer International Publishing AG 2018
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= c0 +
∞
∑

n=1

cn(cos nωt + i sin nωt) +
∞
∑

n=1

cn(cos nωt − i sin nωt)

= c0 +
∞
∑

n=1

[

(cn + c−n) cos nωt + i(cn − c−n) sin nωt
]

. (C.2)

A comparison of (C.1) with (C.2) yields

co = y0
2

,

an = cn + c−n

and
bn = i(cn − c−n),

or

cn = an − ibn
2

and c−n = an + ibn
2

= c∗
n .

Themain idea of Fourier analysis is to compare the signalwith sinusoids of various
frequenciesωn . Each such sinusoid may be thought of as a prototype oscillation. As a
result, we obtain for each considered frequency parameterωn amagnitude coefficient
yn ≥ 0, along with a phase coefficient ϕn . In the case that the coefficient yn is large,
there is a high similarity between the signal and the sinusoid of frequency ωn , and the
signal contains a periodic oscillation at that frequency. In the case that yn is small,
the signal does not contain a remarkable periodic component at that frequency. The
original signal and the Fourier transform contain the same amount of information.
This information, however, is represented in different ways. Whereas the signal
displays the information across time, the Fourier transform displays the information
across frequency.



Appendix D
Laplace–Runge–Lenz Vector

In a potential of the form V (r) = −α/r (e.g., the Coulomb potential or the gravita-
tional potential), the Laplace–Runge–Lenz vector is a conserved entity. In classical
mechanics, the vector is primarily used to describe the shape and orientation of orbits
of astronomical bodies, such as the path of a planet around its star. For two bodies
that move according to Newtonian physics, the Laplace–Runge–Lenz vector is a
constant of motion; that is, it is the same on every point of the path. With

� = r × p (D.1)

the (time-constant) angular momentum of the electron around the nucleus, and

p = m v

its linear momentum, the respective (constant) Laplace–Runge–Lenz vector is
defined as

a
def= 1

Ze2m
(� × p) + r/r. (D.2)

Let us now prove that the Laplace–Runge–Lenz vector is indeed constant over

time. With k
def= Z2e, we get

a = 1

k m
(� × p) + r/r. (D.3)

In addition, the time derivative of the momentum for the potential V = −k/r is

ṗ = −k r/r3, (D.4)

that is, Newton’s law of motion. Now
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ȧ = d

dt

(

1

k m
(� × p) + r/r

)

=

= 1

k m
( �̇
︸︷︷︸

0

× p + � × ṗ) + ṙ
r

+ r
((

∂

∂r

1

r

)

· ṙ
)

=

= 1

k m
(r × p) × ṗ + 1

m

p
r

+ r
(

r
−1

r3
· ṙ
)

.

With (D.4) and the vector product rule α × β × γ = (α · γ)β − (α · β)γ, we find
indeed

ȧ = − 1

mr3
(r × p) × r
︸ ︷︷ ︸

(r·r) p−(r· p) r
+ 1

m

p
r

+ r

⎛

⎜

⎝r
−1

r3
· ṙ
︸︷︷︸

1
m p

⎞

⎟

⎠ =

= − 1

m r
p + 1

m r3
(r · p) r + 1

m r
p − r(r · p) 1

m r3
= 0.

D.1 Further Properties of the Vector a

Lemma The vector a is perpendicular to the angular momentum vector �.

Proof The vector � × p is perpendicular to �. Also, the vector � = r × p is perpen-
dicular to r . This implies

� · a = 1

Ze2m
� · (� × p)
︸ ︷︷ ︸

0

+ � · r
︸︷︷︸

0

/r = 0. q.e.d.

Lemma The scalar product of a and r is

a · r = − 1

Ze2m
�2 + r.

Proof With (α × β) · γ = α · (β × γ), we find
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a · r = 1

Ze2m
(� × p) · r
︸ ︷︷ ︸

� ( p× r)
︸ ︷︷ ︸

−�

+ (r · r)
r

= − 1

Ze2m
�2 + r. q.e.d.

Lemma

|a| =
√

2 H

Z2e4m
�2 + 1. (D.5)

Proof With the Lagrange identity

(α × β) · (γ × δ) = (α · γ)(β · δ) − (α · δ)(β · γ)

and the Hamilton function H = 1
2m p2 − Ze2

r , we find

|a|2 = a · a =
∣

∣

∣

∣

1

Ze2m
(� × p) + r/r

∣

∣

∣

∣

2

=

= 1

Z2e4m2
(� × p) · (� × p)
︸ ︷︷ ︸

(�2)( p2)−(�p)
︸︷︷︸

0

( p�)

+ 2

Ze2m
(� × p) · r
︸ ︷︷ ︸

−�2

/r + 1 =

= 2

Z2e4m
�2
(

1

2m
p2 − Ze2

r

)

︸ ︷︷ ︸

H

+1. q.e.d.



Appendix E
Permutation

A permutation without repetition is an arrangement of n objects. For the first object,
we have n placement possibilities, for the second object only n − 1 possibilities, for
the third object onlyn−2, and so on. For the last item, there is only one empty seat left.
The number of possible permutations of n objects is therefore n! = n ·(n−1) · · · · ·1.
For example, there are 4! = 4 ·3 ·2 ·1 = 24 possible ways to arrange four differently
colored balls.

Let us now introduce a more precise representation of an n digit permutation π as
Cauchy’s two-line notation with two rows and n columns. In the top row, we place
the numbers 1 to n (in any order). Under each number j , we put the function value
π( j) in the second line. For example,

π =
(

1 2 · · · n
π (1) π (2) · · · π (n)

)

.

Obviously, the second row also contains each number 1 to n exactly once. As an
example, let us consider the permutation

π : {1, 2, 3, 4} → {2, 4, 3, 1}

with π(1) = 2,π(2) = 4,π(3) = 3, and π(4) = 1. In Cauchy’s two-line notation,
this permutation looks like

π =
(

1 2 3 4
2 4 3 1

)

.

One can represent a permutation of n objects as an n × n matrix. If a permutation
π : {1, . . . , n} → {1, . . . , n} of n objects is given, then the permutation matrix Pπ

is defined as
Pπ

def= ( �p1 . . . �pn
)

,

© Springer International Publishing AG 2018
G. Ludyk, Quantum Mechanics in Matrix Form,
https://doi.org/10.1007/978-3-319-26366-3

191
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where �pi is a canonical basis vector,1 thus a permutation matrix is a square binary
matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere.
As an example, consider the permutation

π =
(

1 2 3 4 5
4 2 1 5 3

)

.

The corresponding permutation matrix now has the form

Pπ = ( �p1 �p2 �p3 �p4 �p5
) =

= ( �e4 �e2 �e1 �e5 �e3
) =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

.

For a vector �v = (v1, v2, v3, v4, v5)
ᵀ
, this yields

Pπ �v =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

v1
v2
v3
v4
v5

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

v3
v2
v5
v1
v4

⎞

⎟

⎟

⎟

⎟

⎠

.

1The canonical basis vector �ek is the kth column of the n × n-identity matrix In .



Appendix F
Determinants

F.1 Axiomatic Definition of the Determinant of a Square
Matrix

A mapping from the space of square matrices onto the underlying field maps each
matrix A = (v1| . . . |vn) on its determinant det A, if it satisfies the following three
properties.

• It is multilinear, that is,

det(v1| . . . |vi−1|bvi + cw|vi+1| . . . |vn) =

= b det(v1| . . . |vi−1|vi |vi+1| . . . |vn)+

+c det(v1| . . . |vi−1|w|vi+1| . . . |vn)

for all v1, . . . , vn,w ∈ V , and for all b, c ∈ K .
• If we interchange two columns or two rows, the sign is changed

det(v1| . . . |vi | . . . |v j | . . . |vn) = − det(v1| . . . |v j | . . . |vi | . . . |vn).

• If two columns or two rows are equal, the determinant is zero.
• It is normalized, that is,

det In = 1

for the identity matrix In .
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F.2 The Leibniz Formula

For an n × n matrix A with elements ai, j , the determinant can be defined by the
Leibniz formula

det A =
∑

σ∈Sn

(

sgn(σ)

n
∏

i=1

ai,σ(i)

)

.

The sum stretches over all permutations2 σ of the symmetric group Sn of degree n.
sgn(σ) denotes the sign of the permutation σ, that is, +1 if σ is an even permutation,
and −1 if it is odd. We can recognize whether a permutation is even or odd by
counting the number of transpositions that are required to generate the permutation.
An even number of permutations means that the permutation is even; an odd number
of permutations means that the permutation is odd.

2See Appendix E.



Appendix G
Dirac’s Bra-Ket Notation

In [9], Dirac introduced a special notation for quantum mechanical states. Today,
this notation is used in many books on quantum mechanics and should therefore be
briefly described here as well.

The state space in quantum mechanics is a complex finite or infinite vector space.
Dirac denotes an element f of the vector space by | f 〉, which he then calls a ket vec-
tor. An example for a one-dimensional ket is Schrödinger’s wave function |ψ 〉, whose
representation in position space is the well-known complex-valued wave function
ψ(x). An example for a four-dimensional ket is the vector

|ψ 〉 def= ψ =

⎛

⎜

⎜

⎝

ψ1

ψ2

ψ3

ψ4

⎞

⎟

⎟

⎠

in the Dirac equation. Note that the ket |ψ 〉 stands for the entire wave function ψ!
Dirac then defines a dual to each ket called the bra.Weget a bra from the respective

ket by taking its conjugate complex (if the ket is a vector, we also need to transpose):

〈 f | def= ( f ∗)
ᵀ = f †.

The scalar product of two vectors can then be written with the bra and the ket as

〈 f | g 〉 def= f †g.

We then have
〈 f |g 〉 = 〈g | f 〉∗.

For an operator C , the definition can be extended to

〈 f |C |g 〉 def= f †Cg.

© Springer International Publishing AG 2018
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This definition allows us to write the operation of C in two equivalent versions,
depending on to which state we prefer to apply the operator:

〈 f |C |g 〉 = 〈C† f |g 〉 = 〈 f |Cg 〉.

The length of a vector f is given by

| f | = √〈 f | f 〉.

For the case of wave functions in position space, the scalar product is defined as

〈 f |g 〉 def=
∫ +∞

−∞
f ∗(x)g(x)dx .



Appendix H
Proofs of Pauli’s Formulas

H.1 ‘Commutator Gymnastics’

First we notate formulas that we need to perform the proofs. We have (k = 1, 2, and
3) for F = F(Xk, Pk)

(3.27) [Xk, F] = i�
∂F
∂Pk

,

(3.28) [Pk, F] = −i�
∂F
∂Xk

.

For F = R =
√

X2
1 + X2

2 + X2
3 we get

[Xk, R] = i�
∂R
∂Pk

= 0, (H.1)

and

[Pk, R] = −i�
∂R
∂Xk

= −i�XkR−1. (H.2)

Also

[Pk, R−1] = −i�
∂(R−1)

∂Xk
= −i�Xk(R3)−1. (H.3)

Furthermore

[L1, R] = (X2P3−X3P2)R−R(X2P3−X3P2) = X2 [P3, R]
︸ ︷︷ ︸

−i�X3R−1

+X3 [R, P2]
︸ ︷︷ ︸

i�X2R−1

= 0,

generally
[Lk, R] = 0. (H.4)
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This implies that R−1 commutes with Lk . For example, from LkR = RLk it follows
that

R−1LkRR−1 = R−1RLkR−1

so
R−1Lk = LkR−1

or
[Lk, R−1] = 0. (H.5)

It is

[X1, L1] = i�
∂L1

∂Pk
= i�

∂(X2P3 − X3P2)

∂P1
= 0

and generally
[Xk, Lk] = 0. (H.6)

Next we have

[X1, L2] = i�
∂L2

∂P1
= i�

∂(X3P1 − X1P3)

∂P1
= i�X3,

and general3

[X i , L j ] = i� εi jkXk . (H.7)

Similarly for the commutator with P we get

[Pk, Lk] = 0 (H.8)

and
[P i , L j ] = i� εi jk Pk . (H.9)

Notice these commutator properties [29]

[A, BC] = B[A,C] + [A, B]C.

3The Levi-Civita symbol εi jk is defined as follows.

εi jk =

⎧

⎪
⎨

⎪
⎩

+1 if (i, j, k) is (1, 2, 3), (2, 3, 1), or (3, 1, 2),

−1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3),

0 if i = j or j = k or k = i

;

that is, εi jk is 1 if (i, j, k) is an even permutation of (1, 2, 3), −1 if it is an odd permutation, and 0
if any index is repeated.
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Proof: B[A,C] + [A, B]C = B(AC − CA) + (AB − BA)C =
= ABC − BCA = [A, BC]. q.e.d.
Similarly,

[AB,C] = A[B,C] + [A,C]B. (H.10)

Suppose now that [A, B] = 0. If n is a positive integer, then so is

[An, B] = 0.

Proof By induction: The base case, n = 1, is given. Then using the inductive hypoth-
esis, we get

[An, B] = [An−1, B]A + An−1[A, B] = 0. q.e.d.

H.2 Proof of Pauli’s Formula (7.14)

[Ai , Li ] = 0 (7.14)

First we prove
− P × L = L × P − 2i�P. (H.11)

We have with (H.9) for the first component, and similarly for the other two compo-
nents,

(L × P)1 − 2i�P1 = L2P3
︸ ︷︷ ︸

−P3L2+i�P1

− L3P2
︸ ︷︷ ︸

−P2L3−i�P1

−2i�P1 = −(P × L)1.

With (H.11) we can write (7.11) now

A = 1

Ze2m
(L × P − i�P) + RR−1. (H.12)

With

A1 = 1

mZe2
(L2P3 − L3P2 − i�P1) + X1R−1

we have

[A1, L1] =
[

1

mZe2
(L2P3 − L3P2 − i�P1) , L1

]

+ [X1R−1, L1
]

,

and with (H.8)

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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[A1, L1] = 1

mZe2

⎛

⎝L2P3L1 − L1L2P3
︸ ︷︷ ︸

[L2 P3,L1]
−L3P2L1 + L1L3P2
︸ ︷︷ ︸

−[L3 P2,L1]

⎞

⎠+ [X1R−1, L1],

and with (H.13)

[A1, L1] = 1

mZe2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[L2P3, L1]
︸ ︷︷ ︸

L2 [P3, L1]
︸ ︷︷ ︸

i�P2

+[L2, L1]
︸ ︷︷ ︸

−i�L3

P3

− [L3P2, L1]
︸ ︷︷ ︸

L3 [P2, L1]
︸ ︷︷ ︸

−i�P3

+[L3, L1]
︸ ︷︷ ︸

i�L2

P2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ [· · · ] =

= 0 + [X1R−1, L1],
and with (H.13), (H.5), and (H.6) we finally get

[A1, L1] = X1 [R−1, L1]
︸ ︷︷ ︸

0

+[X1, L1]
︸ ︷︷ ︸

0

R−1 = 0.

Similarly we get for k = 2, and 3

[Ak, Lk] = 0.

H.3 Proof of Pauli’s Formula (7.15)

(7.15) [Ai , L j ] = i� εi jk Ak .

with

A1 = 1

mZe2
(L2P3 − L3P2 − i�P1) + X1R−1

we have

[A1, L2] =
[

1

mZe2
(L2P3 − L3P2 − i�P1) , L2

]

+ [X1R−1, L2
]

,

and with (H.8)

[A1, L2] = 1

mZe2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

L2P3L2 − L2L2P3
︸ ︷︷ ︸

[L2 P3,L2]
−L3P2L2 + L2L3P2
︸ ︷︷ ︸

−[L3 P2,L2]
−i�P1L2 + i�L2P1
︸ ︷︷ ︸

−i� [P1, L2]
︸ ︷︷ ︸

i�P3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

http://dx.doi.org/10.1007/978-3-319-26366-3_7
http://dx.doi.org/10.1007/978-3-319-26366-3_7


Appendix H: Proofs of Pauli’s Formulas 201

+[X1R−1, L2],

and with (H.13)

[A1, L2] = 1

mZe2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

[L2P3, L2]
︸ ︷︷ ︸

L2 [P3, L2]
︸ ︷︷ ︸

−i�P1

+[L2, L2]
︸ ︷︷ ︸

0

P3

− [L3P2, L2]
︸ ︷︷ ︸

L3 [P2, L2]
︸ ︷︷ ︸

0

+[L3, L2]
︸ ︷︷ ︸

−i�L1

P2

−(i�)2P3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+[· · · ] =

= i�
mZe2 (−L2P1 + L1P2 − i�P3) + [X1R−1, L2].

With (H.13), (H.5), and (H.6) we finally get

[A1, L2] = i�

mZe2

⎛

⎜

⎝−L2P1 + L1P2
︸ ︷︷ ︸

(L×P)3

−i�P3

⎞

⎟

⎠+ X1 [R−1, L2]
︸ ︷︷ ︸

0

+ [X1, L2]
︸ ︷︷ ︸

i�X3

R−1 = i�A3.

Similarly we get
[Ai , L j ] = i�εi jk Ak .

H.4 Proof of Pauli’s Formula (7.16)

(7.16) A · L = L · A = 0.

We have

A · L =
{

1

Ze2m
((L × P) − i�P) + (RR−1)

}

· L (H.13)

The angular momentum vector matrix L is orthogonal to each of the three terms in
(H.13). To see this, we first look for

(L × P) · L =
⎛

⎝

L2P3 − L3P2

L3P1 − L1P3

L1P2 − L2P1

⎞

⎠ ·
⎛

⎝

L1

L2

L3

⎞

⎠ = (H.14)

= L2P3
︸ ︷︷ ︸

P3L2−i�P1

L1 − L1P3
︸ ︷︷ ︸

P3L1−i�P2

L2

︸ ︷︷ ︸

−i�P1L1+i�P2L2−i�P3L3

+ L3P1L2 − L2P1L3
︸ ︷︷ ︸

−i�P1L1+i�P3L3−i�P2L2

+

+ L1P2L3 − L3P2L1
︸ ︷︷ ︸

−i�P2L2+i�P1L1+i�P3L3

= −i�P1L1 − i�P2L2 − i�P3L3 = −i�P · L.

This is the same as the second term in (H.13). But for this term we get

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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P · L = P · (R × P) =
⎛

⎝

P1

P2

P3

⎞

⎠ ·
⎛

⎝

X2P3 − X3P2

X3P1 − X1P3

X1P2 − X2P1

⎞

⎠ ,

and because X i commutes with Pk for i �= k, we finally get

P · L = 0. (H.15)

The same is true for the third term in (H.13), inasmuch as X i commutes with Xk ,

R · L = R · (R × P) = 0. (H.16)

H.5 Proof of Pauli’s Formula (7.17)

(7.17) A × A = −i� 2
mZ2e4LE.

With

A = 1

Ze2m

1

2
(L × P − i�P) + RR−1,

B
def= 1

2
(L × P − i�P,

and

A = 1

Ze2m
B + RR−1,

we have

A × A = 1

Z2e4m2 (B × B) + 1

Ze2m

{

(RR−1) × (L × P) + (L × P) × (RR−1)
}

.

(H.17)
First, we obtain for (B × B)

B×B = ((L×P)×(L×P))− i�((L×P)×P)− i�(P×(L×P)). (H.18)

and for the first component

((L × P) × (L × P))1 = (L × P)2(L × P)3 − (L × P)3(L × P)2 =

= [(L × P)2, (L × P)3] = [L3P1 − L1P3, L1P2 − L2P1] =

= (L3P1 − L1P3)(L1P2 − L2P1) − (L1P2 − L2P1)(L3P1 − L1P3).

With (7.13), (H.8), and (H.9) we obtain

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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((L×P) × (L×P))1 = −i�L1P2
1 − i�L1P2

2 − i�L1P2
3 = −i�L1P

2, (H.19)

and generally
((L × P) × (L × P)) = −i�LP2. (H.20)

Next, we obtain for the first component of the second and third terms in (H.18)

((L × P) × P)1 + (P × (L × P))1 =

= {(L × P)2P3 − (L × P)3P2} + {P2(L × P)3 − P3(L × P)2} =

= [(L × P)2
︸ ︷︷ ︸

L3 P1−L1 P3

, P3] − [(L × P)3
︸ ︷︷ ︸

L1 P2−L2 P1

, P2] = 0.

Finally, we need to examine the last term in (H.17)

(RR−1) × (L × P) + (L × P) × (RR−1)
def= C.

With
B

def= L × P

we have for the first component C1 of C

C1 = ((RR−1) × B)1 + (B × (RR−1))1 =

= (X2R−1B3 − X3R−1B2) + (B2X3R−1 − B3X2R−1) =

= [X2R−1, B3] − [X3R−1, B2],

and with (H.13) and (3.27)

C1 = X2[R−1, B3] + [X2, B3]
︸ ︷︷ ︸

i�
∂B3

∂P2

R−1 − X3[R−1, B2] − [X3, B2]
︸ ︷︷ ︸

i�
∂B2

∂P3

R−1 =

= i�
∂B3

∂P2
R−1 − i�

∂B2

∂P3
R−1 + X2[R−1, L1P2 − L2P1]− X3[R−1, L1P3 − L3P1]

−i�
∂R−1

∂X3
X2 + i�

∂R−1

∂X2
X3,

or

C1 = i�
∂B3

∂P2
R−1 − i�

∂B2

∂P3
R−1

http://dx.doi.org/10.1007/978-3-319-26366-3_3
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+i�L1

(

∂R−1

∂X2
X2 + ∂R−1

∂X3
X3

)

− i�(L2X2 + L3X3)
∂R−1

∂X1
.

With LR = L1X1 + L2X2 + L3X3 = 0 and
∂R−1

∂Xk
= −XkR−3 we obtain for the

last line
i�L1

(

X2
1 + X2

2 + X2
3

)

R−3 = ı�L1R−1.

Furthermore, one has

∂B3

∂P2
− ∂B2

∂P3
= ∂

∂P2
(L1P2) + ∂

∂P3
(L1P3) =

= 2L1 + (P2
∂

∂P2
+ P3

∂

∂P3
)L1 = 3L1,

thus in total
C1 = 2i�L1.

Putting this in (H.17), we have

A × A = −i�
2

mZ2e4
L

(

1

2m
P2 − eR−1

)

.

H.6 Proof of Pauli’s Formula (7.18)

(7.18) A2 = 2
mZ2e4 E

(

L2 + h2

4π2 I
)

+ I .

With

A = 1

Ze2m

1

2
(L × P − i�P) + RR−1,

B
def= 1

Ze2m

1

2
(L × P − i�P),

and
A = B + RR−1,

we have
A · A = {B2 + RR−1B + BRR−1 + I

}

(H.21)

For the first term on the right-hand side of (H.21) we get

http://dx.doi.org/10.1007/978-3-319-26366-3_7
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B2 = 1

Z2e4m2

1

4
(L × P − i�P)2 =

= 1

Z2e4m2

1

4

(

(L × P)2 − i�P(L × P) − i�(L × P)P − (�)2P2) . (H.22)

As with formula (H.14), these formulas can be proven.

(L × P)2 = P2L2, (H.23)

P(L × P) = 2i�P2, (H.24)

and
(L × P)P = 0. (H.25)

With these three formulas, we have

B2 = 1

Z2e4m2

1

4

(

P2L2 + 2�
2P2 − (�)2P2) = 1

Z2e4m2

1

4
P2(L2 + (�)2 I).

(H.26)
Next we get

(RR−1)·(L×P) =
⎛

⎝

X1R−1

X2R−1

X3R−1

⎞

⎠·
⎛

⎝

L2P3 − L3P2

L3P1 − L1P3

L1P2 − L2P1

⎞

⎠ = 2i�(R·P)R−1+L2R−1,

and
(L × P) · (RR−1) = L2R−1.

Thus we have

RR−1B = 1

Ze2m

1

2
(L2R−1 + 2i�R · P)R−1),

and

BRR−1 = 1

Ze2m

1

2
(L2R−1 − 2i�R · P)R−1).

Putting these in (H.21) we obtain the final result

A ·A = 2

mZ2e4

(

1

2m
P2 − Ze2R−1

)

(L2 +�
2 I)+ I = 2

mZ2e4
E(L2 +�

2 I)+ I .



Appendix I
Physical Quantities and Units

• Bohr Magneton: μB = e�
2me

= 9.27400968 · 10−24Am2 (or JT−1);

• Fine Structure Constant: α = e2

4πε0c�
= e2cμ0

2�
= 7.29735357 · 10−3 ≈ 1

137 ;
• Bohr Radius: a0 = 4πε0�

2

mee2
= �

αmec
= 5.2917721092 · 10−11 m ≈ 52.9 pm;

Force: 1N(Newton) = 1m kg/s2;
Work, Energy: 1J(Joule) = 1Nm;
Magnetic Flux Density: 1T(T esla) = 1N/(Am);
Power: 1W(Watt) = 1J/s;
Voltage: 1V(Volt) = 1J/C;
Charge Quantity: 1C(Coulomb) = 1A s;
Current: 1A(Ampere) = 1C/s.
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