
www.cambridge.org/9781107025011




DO WE REALLY UNDERSTAND
QUANTUM MECHANICS?

Quantum mechanics is a very successful theory that has impacted on many areas
of physics, from pure theory to applications. However, it is difficult to interpret,
and philosophical contradictions and counter-intuitive results are apparent at a
fundamental level. In this book, Laloë presents our current understanding of the
theory.

The book explores the basic questions and difficulties that arise with the the-
ory of quantum mechanics. It examines the various interpretations that have been
proposed, describing and comparing them and discussing their successes and diffi-
culties. The book is ideal for researchers in physics and mathematics who want to
know more about the problems faced in quantum mechanics but who do not have
specialist knowledge in the subject. It will also appeal to philosophers of science
and scientists who are interested in quantum physics and its peculiarities.

franck laloë is a Researcher at the National Center for Scientific Research
(CNRS) and belongs to the Laboratoire Kastler Brossel at the Ecole Normale
Supérieure. He is co-author of Quantum Mechanics, with Claude Cohen-Tannoudji
and Bernard Diu, one of the best-known textbooks on quantum mechanics.





DO WE REALLY UNDERSTAND
QUANTUM MECHANICS?

FRANCK LALOË
Ecole Normale Supérieure

and
National Centre for Scientific Research (CNRS)



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107025011

© F. Laloë 2012

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
Laloë, Franck, 1940–

Do we really understand quantum mechanics? / Franck Laloë.
p. cm.

Includes bibliographical references and index.
ISBN 978-1-107-02501-1 (hardback)

1. Quantum theory. 2. Science–Philosophy. I. Title.
QC174.12.L335 2012

530.12–dc23 2012014478

ISBN 978-1-107-02501-1 Hardback

Cambridge University Press has no responsibility for the persistence or
accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such
websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9781107025011


Contents

Foreword page ix
Preface xi

1 Historical perspective 1
1.1 Three periods 2
1.2 The state vector 7

2 Present situation, remaining conceptual difficulties 17
2.1 Von Neumann’s infinite regress/chain 19
2.2 Schrödinger’s cat 21
2.3 Wigner’s friend 26
2.4 Negative and “interaction-free” measurements 27
2.5 A variety of points of view 31
2.6 Unconvincing arguments 37

3 The theorem of Einstein, Podolsky, and Rosen 38
3.1 A theorem 39
3.2 Of peas, pods, and genes 40
3.3 Transposition to physics 45

4 Bell theorem 56
4.1 Bell inequalities 57
4.2 Various forms of the theorem 66
4.3 Cirelson’s theorem 77
4.4 No instantaneous signaling 80
4.5 Impact of the theorem: where do we stand now? 89

5 More theorems 100
5.1 GHZ contradiction 100
5.2 Generalizing GHZ (all or nothing states) 105
5.3 Cabello’s inequality 108

v



vi Contents

5.4 Hardy’s impossibilities 111
5.5 Bell–Kochen–Specker theorem: contextuality 114

6 Quantum entanglement 120
6.1 A purely quantum property 121
6.2 Characterizing entanglement 126
6.3 Creating and losing entanglement 133
6.4 Quantum dynamics of a sub-system 142

7 Applications of quantum entanglement 150
7.1 Two theorems 150
7.2 Quantum cryptography 154
7.3 Teleporting a quantum state 160
7.4 Quantum computation and information 163

8 Quantum measurement 168
8.1 Direct measurements 168
8.2 Indirect measurements 176
8.3 Weak and continuous measurements 181

9 Experiments: quantum reduction seen in real time 195
9.1 Single ion in a trap 196
9.2 Single electron in a trap 200
9.3 Measuring the number of photons in a cavity 201
9.4 Spontaneous phase of Bose–Einstein condensates 204

10 Various interpretations 211
10.1 Pragmatism in laboratories 212
10.2 Statistical interpretation 220
10.3 Relational interpretation, relative state vector 222
10.4 Logical, algebraic, and deductive approaches 225
10.5 Veiled reality 230
10.6 Additional (“hidden”) variables 231
10.7 Modal interpretation 261
10.8 Modified Schrödinger dynamics 264
10.9 Transactional interpretation 280
10.10 History interpretation 281
10.11 Everett interpretation 292
10.12 Conclusion 300

11 Annex: Basic mathematical tools of quantum mechanics 304
11.1 General physical system 304
11.2 Grouping several physical systems 316
11.3 Particles in a potential 320



Contents vii

Appendix A Mental content of the state vector 328
Appendix B Bell inequalities in non-deterministic local theories 330
Appendix C An attempt for constructing a “separable”

quantum theory (non-deterministic but local) 332
Appendix D Maximal probability for a state 335
Appendix E The influence of pair selection 336
Appendix F Impossibility of superluminal communication 341
Appendix G Quantum measurements at different times 345
Appendix H Manipulating and preparing additional variables 350
Appendix I Correlations in Bohmian theory 353
Appendix J Models for spontaneous reduction of the state vector 357
Appendix K Consistent families of histories 362
References 364
Index 390





Foreword1

Quantum Mechanics is an essential topic in today’s physics curriculum at both the
undergraduate and graduate levels. Quantum mechanics can explain the micro-
scopic world with fantastic accuracy; the fruits from its insights have created
technologies that have revolutionized the world. Computers, lasers, mobile tele-
phones, optical communications are but a few examples. The language of quantum
mechanics is now an accepted part of the language of physics and day-to-day usage
of this language provides physicists with the intuition that is essential for achiev-
ing meaningful results. Nevertheless, most physicists acknowledge that, at least
once in their scientific career, they have had difficulties understanding the founda-
tions of quantum theory, perhaps even the impression that a really satisfactory and
convincing formulation of the theory is still lacking.

Numerous quantum mechanics textbooks are available for explaining quantum
formalism and applying it to understand problems such as the properties of atoms,
molecules, liquids, and solids; the interactions between matter and radiation; and
more generally to understand the physical world that surrounds us. Other texts are
available for elucidating the historical development of this discipline and describ-
ing the steps through which it went before quantum mechanics reached its modern
formulation. In contrast, books are rare that review the conceptual difficulties of
the theory and then provide a comprehensive overview of the various attempts to
reformulate quantum mechanics in order to solve these difficulties. The present text
by Franck Laloë does precisely this. It introduces and discusses in detail results and
concepts such as the Einstein–Podolsky–Rosen theorem, Bell’s theorem, and quan-
tum entanglement that clearly illustrate the strange character of quantum behavior.
Within the last few decades, impressive experimental progress has made it possible
to carry out experiments that the founding fathers of quantum mechanics consid-
ered only as “thought experiments”. For instance, it is now possible to follow the

1 Translated by D. Kleppner.
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x Foreword

evolution of a single atom in real time. These experiments are briefly reviewed,
providing an updated view of earlier results such as convincing violations of the
Bell inequalities.

This book provides a clear and objective presentation of the alternative formu-
lations that have been proposed to replace the traditional “orthodox” theory. The
internal logics and consistency of these interpretations is carefully explained so as
to provide the reader with a clear view of the formulations and a broad view of
the state of the discipline. At a time when research is becoming more and more
specialized, I think that it is crucial to keep some time for personal thought, to step
back and ask oneself questions about the deep significance of the concepts that we
employ routinely. In this text, I see the qualities of clarity, intellectual rigor, and
deep analysis that I have always noticed and appreciated in the work of the author
during many years of friendly collaboration. I wish the book a well-deserved great
success!

Claude Cohen-Tannoudji



Preface

In many ways, quantum mechanics is a surprising theory. It is known to be non-
intuitive, and leads to representations of physical phenomena that are very different
from what our daily experience could suggest. But it is also very surprising because
it creates a big contrast between its triumphs and difficulties.

On the one hand, among all theories, quantum mechanics is probably one of the
most successful achievements of science. It was initially invented in the context
of atomic physics, but it has now expanded into many domains of physics, giving
access to an enormous number of results in optics, solid-state physics, astrophysics,
etc. It has actually now become a general method, a frame in which many theories
can be developed, for instance to understand the properties of fluids and solids,
fields, elementary particles, and leading to a unification of interactions in physics.
Its range extends much further than the initial objectives of its inventors and, what
is remarkable, this turned out to be possible without changing the general principles
of the theory. The applications of quantum mechanics are everywhere in our twenty-
first century environment, with all sorts of devices that would have been unthinkable
50 years ago.

On the other hand, conceptually this theory remains relatively fragile because
of its delicate interpretation – fortunately, this fragility has little consequence for
its efficiency. The reason why difficulties persist is certainly not that physicists
have tried to ignore them or put them under the rug! Actually, a large number of
interpretations have been proposed over the decades, involving various methods
and mathematical techniques. We have a rare situation in the history of sciences:
consensus exists concerning a systematic approach to physical phenomena, involv-
ing calculation methods having an extraordinary predictive power; nevertheless,
almost a century after the introduction of these methods, the same consensus is far
from being reached concerning the interpretation of the theory and its foundations.
This is reminiscent of the colossus with feet of clay.

xi



xii Preface

The difficulties of quantum mechanics originate from the object it uses to describe
physical systems, the state vector |�〉. While classical mechanics describes a sys-
tem by directly specifying the positions and velocities of its components, quantum
mechanics replaces them by a complex mathematical object |�〉, providing a rel-
atively indirect description. This is an enormous change, not only mathematically,
but also conceptually. The relations between |�〉 and physical properties leave much
more room for discussions about the interpretation of the theory than in classical
physics. Actually, many difficulties encountered by those who tried (or are still try-
ing) to “really understand” quantum mechanics are related to questions pertaining
to the exact status of |�〉. For instance, does it describe the physical reality itself, or
only some (partial) knowledge that we might have of this reality? Does it describe
ensembles of systems only (statistical description), or one single system as well
(single events)? Assume that, indeed, |�〉 is affected by an imperfect knowledge
of the system; is it then not natural to expect that a better description should exist,
at least in principle? If so, what would be this deeper and more precise description
of the reality?

Another confusing feature of |�〉 is that, for systems extended in space (for
instance, a system made of two particles at very different locations), it gives an
overall description of all its physical properties in a single block, from which
the notion of space seems to have disappeared; in some cases, the properties of
the two remote particles are completely “entangled” in a way where the usual
notions of space-time and of events taking place in it seem to become diluted. It
then becomes difficult, or even impossible, to find a spatio-temporal description
of their correlations that remains compatible with relativity. All this is of course
very different from the usual concepts of classical physics, where one attributes
local properties to physical systems by specifying the density, the value of fields,
etc. at each point of space. In quantum mechanics, this separability between the
physical contents of different points of space is no longer possible in general. Of
course, one could think that this loss of a local description is just an innocent
feature of the formalism with no special consequence. For instance, in classi-
cal electromagnetism, it is often convenient to introduce a choice of gauge for
describing the fields in an intermediate step; in the Coulomb gauge, the potential
propagates instantaneously, while Einstein relativity forbids any communication
that is faster than light. But this instantaneous propagation is just a mathemat-
ical artefact: when a complete calculation is made, proper cancellations of the
instantaneous propagation take place so that, at the end, the relativistic limita-
tion is perfectly obeyed. But, and as we will see below, it turns out that the
situation is much less simple in quantum mechanics: in fact, a mathematical entan-
glement in |�〉 can indeed have important physical consequences on the result
of experiments, and even lead to predictions that are, in a sense, contradictory
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with locality. Without any doubt, the state vector is a curious object to describe
reality!

It is therefore not surprising that quantum mechanics should have given rise to
so many interpretations. Their very diversity makes them interesting. Each of them
introduces its own conceptual frame and view of physics, sometimes attributing
to it a special status among the other natural sciences. Moreover, these interpreta-
tions may provide complementary views on the theory, shedding light onto some
interesting features that, otherwise, would have gone unnoticed. The best-known
example is Bohm’s theory, from which Bell started to obtain a theorem illustrating
general properties of quantum mechanics and entanglement, with applications rang-
ing outside the Bohmian theory. Other examples exist, such as the use of stochastic
Schrödinger dynamics to better understand the evolution of a quantum sub-system,
the history interpretation and its view of complementarity, etc.

This book is intended for the curious reader who wishes to get a broad view on
the general situation of quantum physics, including the various interpretations that
have been elaborated, and without putting aside the difficulties when they occur.
It is not a textbook designed for a first contact with quantum mechanics; there
already exist many excellent reference books for students. In fact, from Chapter
1, the text assumes some familiarity with quantum mechanics and its formalism
(Dirac notation, the notion of wave function, etc.). Any student who has already
studied quantum mechanics for a year should have no difficulty in following the
equations. Actually, there are relatively few in this book, which focuses, not on
technical, but on logical and conceptual difficulties. Moreover, a chapter is inserted
as an annex at the end of the book in order to help those who are not used to the
quantum formalism. It offers a first contact with the notation; the reader may, while
he/she progresses in the other chapters, choose a section of this chapter to clarify
his/her ideas on such or such technical point.

Chapters 1 and 2 recall the historical context, from the origin of quantum
mechanics to the present situation, including the successive steps from which the
present status of |�〉 emerged. Paying attention to history is not inappropriate in a
field where the same recurrent ideas are so often rediscovered; they appear again
and again, sometimes almost identical over the years, sometimes remodelled or
rephrased with new words, but in fact more or less unchanged. Therefore, a look
at the past is not necessarily a waste of time! Chapters 3, 4, and 5 discuss two
important theorems, which form a logical chain, the EPR (Einstein, Podolsky, and
Rosen) theorem and the Bell theorem; both give rise to various forms, several of
which will be described. Chapter 6 gives a more general view on quantum entangle-
ment, and Chapter 7 illustrates the notion with various processes that make use of
it, such as quantum cryptography and teleportation. Chapter 8 discusses quantum
measurement, in particular weak and continuous measurements. Afew experiments
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are described in Chapter 9; among the huge crowd of those illustrating quantum
mechanics in various circumstances, we have chosen a small fraction of them –
those where state vector reduction is “seen in real time”. Finally, Chapter 10, the
longest of all chapters, gives an introduction and some discussion of the various
interpretations of quantum mechanics. The chapters are relatively independent and
the reader may probably use them in almost any order. Needless to say, no attempt
was made to cover all subjects related to the foundations of quantum mechanics.
A selection was unavoidable; it resulted in a list of subjects that the author consid-
ers as particularly relevant, but of course this personal choice remains somewhat
arbitrary.

The motivation of this book is not to express preference for any given interpreta-
tions, as has already been done in many reference articles or monographs (we will
quote several of them). It is even less to propose a new interpretation elaborated
by the author. The objective is, rather, to review the various interpretations and
to obtain a general perspective on the way they are related, their differences and
common features, their individual consistency. Indeed, each of these interpretations
has its own logic, and it is important to remember it; a classical mistake is to mix
various interpretations together. For instance, the Bohmian interpretation has some-
times been criticized by elaborating constructions that retain some elements of this
interpretation, but not all, or by inserting elements that do not belong to the inter-
pretation; one then obtains contradictions. The necessity for logical consistency is
general in the context of the foundations of quantum mechanics. Sometimes, the
EPR argument or the Bell theorem have been misunderstood because of a con-
fusion between their assumptions and conclusions. We will note in passing a few
occasions where such mistakes are possible in order to help avoiding them. We
should also mention that it is out of the question to give an exhaustive description
of all interpretations of quantum mechanics here! They may be associated in many
different ways, so that it is impossible to account for all possible combinations
or nuances. A relatively abundant bibliography is proposed to the reader, but, in
this case also, reaching any exhaustiveness is impossible; some choices have been
made, sometimes arbitrary, in order to keep the total volume within reasonable
limits.

To summarize, the main purpose of this book is an attempt to provide a bal-
anced view on the conceptual situation of a theory that is undoubtedly one of
the most remarkable achievements of the human mind, quantum mechanics, with-
out hiding either difficulties or successes. As we already mentioned, its predictive
power constantly obtains marvelous results in new domains, sometimes in a totally
unpredictable way; nevertheless this intellectual edifice remains the object of dis-
cussions or even controversy concerning its foundations. No one would think of
discussing classical mechanics or the Maxwell equations in the same way. Maybe
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this signals that the final and optimum version of the theory has not yet been
obtained?
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1

Historical perspective

The founding fathers of quantum mechanics had already perceived the essence of
the difficulties of quantum mechanics; today, after almost a century, the discussions
are still lively and, if some very interesting new aspects have emerged, at a deeper
level the questions have not changed so much. What is more recent, nevertheless,
is a general change of attitude among physicists: until about 1970 or 1980, most
physicists thought that the essential questions had been settled, and that “Bohr was
right and proved his opponents to be wrong”. This was probably a consequence
of the famous discussions between Bohr, Einstein, Schrödinger, Heisenberg, Pauli,
de Broglie, and others (in particular at the Solvay meetings [1–3], where Bohr’s
point of view had successfully resisted Einstein’s extremely clever attacks). The
majority of physicists did not know the details of the arguments. They nevertheless
thought that the standard “Copenhagen interpretation” had clearly emerged from the
infancy of quantum mechanics as the only sensible attitude for good scientists. This
interpretation includes the idea that modern physics must contain indeterminacy
as an essential ingredient: it is fundamentally impossible to predict the outcome
of single microscopical events; it is impossible to go beyond the formalism of the
wave function (or its generalization, the state vector |�〉) and complete it. For
some physicists, the Copenhagen interpretation also includes the difficult notion of
“complementarity” – even if it is true that, depending on the context, complemen-
tarity comes in many varieties and has been interpreted in many different ways! By
and large, the impression of the vast majority was that Bohr had eventually won
the debate against Einstein, so that discussing again the foundations of quantum
mechanics after these giants was pretentious, passé, and maybe even bad taste.

Nowadays, the attitude of physicists is more open concerning these matters.
One first reason is probably that the non-relevance of the “impossibility theorems”
put forward by the defenders of the standard interpretation, in particular by Von
Neumann [4] , has now been better realized by the scientific community – see [5–7]
and [8], as well as the discussion given in [9]). Another reason is, of course, the

1



2 Historical perspective

great impact of the discoveries and ideas of J.S. Bell [6] in 1964. At the beginning
of a new century, it is probably fair to say that we are no longer sure that the Copen-
hagen interpretation is the only possible consistent attitude for physicists – see
for instance the doubts expressed by Shimony in [10]. Alternative points of view
are considered with interest: theories including additional variables (or “hidden
variables”1) [11, 12]; modified dynamics of the state vector [7, 13–15] (non-linear
and/or stochastic evolution); at the other extreme, we have points of view such
as the so-called “many worlds interpretation” (or “many minds interpretation”, or
“multibranched universe”) [16]; more recently, other interpretations such as that
of “decoherent histories” [17] have been put forward (this list is non-exhaustive).
These interpretations and several others will be discussed in Chapter 10. For a
recent review containing many references, see [18], which emphasizes additional
variables, but which is also characteristic of the variety of positions among contem-
porary scientists2. See also an older but very interesting debate published in Physics
Today [19]; another very useful source of older references is the 1971 American
Journal of Physics “Resource Letter” [20]. But this variety of possible alternative
interpretations should not be the source of misunderstandings! It should also be
emphasized very clearly that, until now, no new fact whatsoever (or new reasoning)
has appeared that has made the Copenhagen interpretation obsolete in any sense.

1.1 Three periods

Three successive periods may be distinguished in the history of the elaboration of
the fundamental quantum concepts; they have resulted in the point of view that is
called “the Copenhagen interpretation”, or “orthodox”, or “standard” interpretation.
Actually, these terms may group different variants of the general interpretation, as
we see in more detail below (in particular in Chapter 10). Here we give only a
brief historical summary; we refer the reader who would like to know more about
the history of the conceptual development of quantum mechanics to the book of
Jammer [21] – see also [22] and [23]. For detailed discussions of fundamental
problems in quantum mechanics, one could also read [10, 24, 25] as well as the
references contained, or those given in [20].

1.1.1 Prehistory

Planck’s name is obviously the first that comes to mind when one thinks about the
birth of quantum mechanics: in 1900, he was the one who introduced the famous

1 As we discuss in more detail in §10.6, we prefer to use the words “additional variables” since they are not
hidden, but actually appear directly in the results of measurements.

2 For instance, the contrast between the titles of [10] and [18] is interesting.



1.1 Three periods 3

constant h, which now bears his name. His method was phenomenological, and his
motivation was actually to explain the properties of the radiation in thermal equi-
librium (blackbody radiation) by introducing the notion of finite grains of energy
in the calculation of the entropy [26]. Later he interpreted them as resulting from
discontinuous exchange between radiation and matter. It is Einstein who, still later
(in 1905), took the idea more seriously and really introduced the notion of quantum
of light (which would be named “photon” only much later, in 1926 [27]) in order
to explain the wavelength dependence of the photoelectric effect – for a general
discussion of the many contributions of Einstein to quantum theory, see [28].

One should nevertheless realize that the most important and urgent question at
the time was not so much to explain the fine details of the properties of interactions
between radiation and matter, or the peculiarities of the blackbody radiation. It was
more general: to understand the origin of the stability of atoms, that is of all matter
which surrounds us and of which we are made! According to the laws of clas-
sical electromagnetism, negatively charged electrons orbiting around a positively
charged nucleus should constantly radiate energy, and therefore rapidly fall onto
the nucleus. Despite several attempts, explaining why atoms do not collapse but
keep fixed sizes was still a complete challenge for physics3. One had to wait a little
bit longer, until Bohr introduced his celebrated atomic model (1913), to see the
appearance of the first ideas allowing the question to be tackled. He proposed the
notion of “quantized permitted orbits” for electrons, as well as of “quantum jumps”
to describe how they would go from one orbit to another, for instance during radi-
ation emission processes. To be fair, we must concede that these notions have now
almost disappeared from modern physics, at least in their initial forms; quantum
jumps are replaced by a much more precise and powerful theory of spontaneous
emission in quantum electrodynamics. But, on the other hand, one may also see a
resurgence of the old quantum jumps in the modern use of the postulate of the wave
packet (or state vector) reduction (§1.2.2.a). After Bohr, came Heisenberg, who, in
1925, introduced the theory that is now known as “matrix mechanics”4, an abstract
intellectual construction with a strong philosophical component, sometimes close
to positivism; the classical physical quantities are replaced by “observables”, corre-
sponding mathematically to matrices, defined by suitable postulates without much
help of intuition. Nevertheless, matrix mechanics contained many elements which
turned out to be essential building blocks of modern quantum mechanics!

In retrospect, one can be struck by the very abstract and somewhat mysterious
character of atomic theory at this period of history; why should electrons obey

3 For a review of the problem in the context of contemporary quantum mechanics, see [29].
4 The names of Born and Jordan are also associated with the introduction of this theory, since they immediately

made the connexion between Heisenberg’s rules of calculation and those of matrices in mathematics.
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such rules, which forbid them to leave a restricted class of orbits, as if they were
miraculously guided on simple trajectories? What was the origin of these quantum
jumps, which were supposed to have no duration at all, so that it would make no
sense to ask what were the intermediate states of the electrons during such a jump?
Why should matrices appear in physics in such an abstract way, with no apparent
relation with the classical description of the motion of a particle? One can guess
how relieved physicists probably felt when another point of view emerged, a point
of view which looked at the same time much simpler and more in the tradition of
the physics of the nineteenth century: the undulatory (or wave) theory.

1.1.2 The undulatory period

The idea of associating a wave with every material particle was first introduced by
de Broglie in his thesis (1924) [30]. A few years later (1927), the idea was con-
firmed experimentally by Davisson and Germer in their famous electron diffraction
experiment [31]. For some reason, at that time de Broglie did not proceed much
further in the mathematical study of this wave, so that only part of the veil of mys-
tery was raised by him (see for instance the discussion in [32]). It is sometimes
said that Debye was the first, after hearing about de Broglie’s ideas, to remark that
in physics a wave generally has a wave equation: the next step would then be to
try and propose an equation for this new wave. The story adds that the remark was
made in the presence of Schrödinger, who soon started to work on this program; he
successfully and rapidly completed it by proposing the equation which now bears
his name, one of the most basic equations of all physics. Amusingly, Debye himself
does not seem to have remembered the event. The anecdote may be inaccurate;
in fact, different reports about the discovery of this equation have been given and
we will probably never know exactly what happened. What remains clear is that
the introduction in 1926 of the Schrödinger equation for the wave function5 [33]
is one of the essential milestones in the history of physics. Initially, it allowed one
to understand the energy spectrum of the hydrogen atom, but it was soon extended
and gave successful predictions for other atoms, then molecules and ions, solids
(the theory of bands for instance), etc. It is presently the major basic tool of many
branches of modern physics and chemistry.

Conceptually, at the time of its introduction, the undulatory theory was wel-
comed as an enormous simplification of the new mechanics. This is particularly
true because Schrödinger and others (Dirac, Heisenberg) promptly showed how it
could be used to recover the predictions of matrix mechanics from more intuitive
considerations, using the properties of the newly introduced “wave function” – the
solution of the Schrödinger equation. The natural hope was then to extend this

5 See footnote 11 for the relation between the state vector and the wave function.
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success, and to simplify all problems raised by the mechanics of atomic particles:
one would replace it by a mechanics of waves, which would be analogous to elec-
tromagnetic or sound waves. For instance, Schrödinger initially thought that all
particles in the universe looked to us like point particles just because we observe
them at a scale which is too large; in fact, they are tiny “wave packets” which
remain localized in small regions of space. He had even shown that these wave
packets remain small (they do not spread in space) when the system under study
is a harmonic oscillator – alas, we now know that this is a very special case; in
general, the wave packets constantly spread in space!

1.1.3 Emergence of the Copenhagen interpretation

It did not take long before it became clear that the completely undulatory theory of
matter also suffered from very serious difficulties, actually so serious that physi-
cists were soon led to abandon it. A first example of difficulty is provided by a
collision between particles, where the Schrödinger wave spreads in all directions,
like a circular wave in water stirred by a stone thrown into it; but, in all collision
experiments, particles are observed to follow well-defined trajectories and remain
localized, going in some precise direction. For instance, every photograph taken in
the collision chamber of a particle accelerator shows very clearly that particles never
get “diluted” in all space! This stimulated the introduction, by Born in 1926, of the
probabilistic interpretation of the wave function [34]: quantum processes are fun-
damentally non-deterministic; the only thing that can be calculated is probabilities,
given by the square of the modulus of the wave function.

Another difficulty arises as soon as one considers systems made of more than
one single particle: then, the Schrödinger wave is no longer an ordinary wave since,
instead of propagating in normal space, it propagates in the so-called “configuration
space” of the system, a space which has 3N dimensions for a system made of N

particles! For instance, already for the simplest of all atoms, the hydrogen atom,
the wave propagates in six dimensions6. For a collection of atoms, the dimension
grows rapidly, and becomes an astronomical number for the ensemble of atoms
contained in a macroscopic sample. Clearly, the new wave was not at all similar to
classical waves, which propagate in ordinary space; this deep difference will be a
sort of Leitmotiv in this text7, reappearing under various aspects here and there8.

6 This is true if spins are ignored; if they are taken into account, four such waves propagate in six dimensions.
7 For instance, the non-locality effects occurring with two correlated particles can be seen as a consequence of

the fact that the wave function propagates locally, but in a six-dimensional space, while the usual definition of
locality refers to ordinary space which has three dimensions.

8 Quantum mechanics can also be formulated in a way that does not involve the configuration space, but just the
ordinary space: the formalism of field operators (sometimes called second quantization, for historical reasons).
One can write these operators in a form that is similar to a wave function. Nevertheless, since they are quantum
operators, their analogy with a classical field is even less valid.
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In passing, it is interesting to notice that the recent observation of the phenomenon
of Bose–Einstein condensation in dilute gases [35] can be seen, in a sense, as a
sort of realization of the initial hope of Schrödinger: this condensation provides a
case where a many-particle matter wave does propagate in ordinary space. Before
condensation takes place, we have the usual situation: the gas has to be described
by wave functions defined in a huge configuration space. But, when the atoms are
completely condensed into a single-particle wave function, they are restricted to a
much simpler many-particle state built with the same ordinary wave function, as for
a single particle. The matter wave then becomes similar to a classical field with two
components (the real part and the imaginary part of the wave function), resembling
an ordinary sound wave for instance. This illustrates why, somewhat paradoxically,
the “exciting new states of matter” provided by Bose–Einstein condensates are
not an example of an extreme quantum situation; in a sense, they are actually more
classical than the gases from which they originate (in terms of quantum description,
interparticle correlations, etc.). Conceptually, of course, this remains a very special
case and does not solve the general problem associated with a naive view of the
Schrödinger waves as real waves.

The purely undulatory description of particles has now disappeared from mod-
ern quantum mechanics. In addition to Born and Bohr, Heisenberg [36], Jordan
[37, 38], Dirac [39] and others played an essential role in the appearance of a new
formulation of quantum mechanics [23], where probabilistic and undulatory notions
are incorporated in a single complex logical edifice. The probabilistic component is
that, when a system undergoes a measurement, the result is fundamentally random;
the theory provides only the probabilities of the different possible outcomes. The
wave component is that, when no measurements are performed, the Schrödinger
equation is valid. The wave function is no longer considered as a direct physical
description of the system itself; it is only a mathematical object that provides the
probabilities of the different results9 – we come back to this point in more detail in
§1.2.3.

The first version of the Copenhagen interpretation was completed around 1927,
the year of the fifth Solvay conference [3]. Almost immediately, theorists started
to extend the range of quantum mechanics from particle to fields. At that time, the
interest was focussed only on the electromagnetic field, associated with the photon,
but the ideas were later generalized to fields associated with a wide range of par-
ticles (electrons, muons, quarks, etc.). Quantum field theory has now enormously
expanded and become a fundamental tool in particle physics, within a relativistic
formalism (the Schrödinger equation itself does not satisfy Lorentz invariance).

9 In the literature, one often finds the word “ontological” to describe Schrödinger’s initial point of view on the
wave function, as opposed to “epistemological” to describe the probabilistic interpretation.
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A generalization of the ideas of gauge invariance of electromagnetism has led to
various forms of gauge theories; some are at the root of our present understand-
ing of the role in physics of the fundamental interactions (electromagnetic, weak,
strong10) and led to the successful prediction of new particles. Nevertheless, despite
all these remarkable successes, field theory remains, conceptually, on the same
fundamental level as the theory of a single non-relativistic particle treated with the
Schrödinger equation. Since this text is concerned mostly with conceptual issues,
we will therefore not discuss field theory further.

1.2 The state vector

Many discussions concerning the foundations of quantum mechanics are related to
the status and physical meaning of the state vector. In §§1.2.1 and 1.2.2, we begin
by first recalling its definition and use in quantum mechanics (the reader familiar
with the quantum formalism might wish to skip these two sections); then, in §1.2.3,
we discuss the status of the state vector in standard quantum mechanics.

1.2.1 Definition, Schrödinger evolution, Born rule

We briefly summarize how the state vector is used in quantum mechanics and its
equations; more details are given in §11.1.1 and following.

1.2.1.a Definition

Consider a physical system made of N particles with mass, each propagating in
ordinary space with three dimensions; the state vector |�〉 (or the associated wave
function11) replaces in quantum mechanics the N positions and N velocities which,
in classical mechanics, would be used to describe the state of the system. It is often
convenient to group all these positions and velocities within the 6N components
of a single vector V belonging to a real vector space with 6N dimensions, called
“phase space”12; formally, one can merely consider that the state vector |�〉 is the
quantum equivalent of this classical vector V. It nevertheless belongs to a space
that is completely different from the phase space, a complex vector space called
“space of states” (or, sometimes, the “Hilbert space” for historical reasons) with
infinite dimension. The calculations in this space are often made with the help of

10 There is a fourth fundamental interaction in physics, gravitation. The “standard model” of field theory unifies
the first three interactions, but leaves gravitation aside. Other theories unify the four fundamental interactions,
but for the moment they are not considered standard.

11 For a system of spinless particles with masses, the state vector |�〉 is equivalent to a wave function, but for
more complicated systems this is not the case. Nevertheless, conceptually they play the same role and are used
in the same way in the theory, so that we do not need to make a distinction here.

12 The phase space therefore has twice as many dimensions as the configuration space mentioned above.
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the Dirac notation [39], which actually we will use here, and where the vectors
belonging to the space of states are often called “kets”.

Because the state vector belongs to a linear space, any combination of two
arbitrary state vectors |�1〉 and |�2〉 belonging to the space of states:

|�〉 = α |�1〉+β |�2〉 (1.1)

(where α and β are arbitrary complex numbers) is also a possible state for the
system. This is called the “superposition principle” of quantum mechanics, and has
many consequences.

Moreover, to each physical observable of the system, position(s), momentum(ta),
energy, angular momentum, etc., the formalism of quantum mechanics associates
a linear operator acting in the space of states, and provides rules for constructing
these operators. For historical reasons (§1.1.1), each of these operators is often
called “observable”; they belong to the category of mathematical operators called
“linear Hermitian operators”.

1.2.1.b Schrödinger evolution

The evolution of the state vector |�(t)〉 between time t0 and t1 is given by the
Schrödinger equation:

i�
d

dt
|�(t)〉 =H(t) |�(t)〉 (1.2)

where H(t) is the Hamiltonian evolution of the system (including the internal
interactions of this system as well as the effects of classical external fields applied to
it, for instance static or time-dependent magnetic fields). The Schrödinger equation
is a linear differential equation, similar to many other such equations in physics.
It leads to a progressive evolution of the state vector, without any quantum jump
or discontinuity. It is as general as the Newton or Lagrange equations in classical
mechanics, and can be applied to all physical situations, provided of course the
system is well defined with a known Hamiltonian.

In particular, the Schrödinger equation can also be applied to a situation where the
physical system interacts with a measurement apparatus (a spin 1/2 particle enter-
ing the magnetic field gradient created by a Stern–Gerlach apparatus for instance);
it then does not select precise experimental results, but keeps all of them as poten-
tialities (within a so-called “coherent superposition”). One more ingredient is then
introduced into the theory, the Born probability rule.

1.2.1.c Born probability rule

We assume that, at time t1, when the solution |�(t)〉 of equation (1.2) takes the
value |�(t1)〉, the system undergoes a measurement, associated with an operator
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M (observable) acting in the space of states. We note |mi > the eigenvectors of M
associated with eigenvalues mi (i = 1,2, . . . ); if some eigenvalues are degenerate,
several consecutive values in the series ofmi are equal, but associated with different
vectors |mi >. Since M is an Hermitian operator, the |mi > can be chosen as an
orthonormal basis of the space of states.

The Born probability rule then states that, in an ideal measurement:

(i) the result of a measurement associated with M can only be one of the mi ; other
results are never obtained.

(ii) if a particular eigenvalue mi is non-degenerate, the probability Pi of obtaining
result mi is given by the square modulus of the scalar product of |�(t1)〉
by |mi〉:

Pi = |〈mi |�(t1)〉|2 (1.3)

(iii) the probability of measuring a degenerate eigenvalue is the sum of the prob-
abilities (1.3) corresponding to all the orthonormal eigenvectors associated
with this eigenvalue13.

Rules (ii) and (iii) may be grouped in a simple form, which will be useful in what
follows. If the result corresponds to an eigenvalue m that is p times degenerate,
the series of p numbers mi , mi+1, . . . ,mi+p have the same value m. We can then
introduce the sum of the projectors (§11.1.3) over the corresponding eigenvectors:

PM(m)= ∣∣mi

〉 〈
mi

∣∣+ ∣∣mi+1
〉 〈
mi+1

∣∣+ . . . + ∣∣mi+p

〉 〈
mi+p

∣∣ (1.4)

This operator is also a projector (it is equal to its square), which can be applied to
the state vector |�(t1)〉 before the measurement:

PM(m)
∣∣�(t1)

〉= ∣∣� ′m〉 (1.5)

The probability of obtaining result m in the measurement is then nothing but the
square of the norm of

∣∣� ′〉:
Pm =

〈
� ′m

∣∣� ′m〉= 〈�(t1)
∣∣PM(m)

∣∣�(t1)
〉

(1.6)

1.2.2 Measurement processes

The standard interpretation of quantum mechanics contains the progressive, deter-
ministic, evolution of the wave function/state due to the Schrödinger equation.
Usually, one also includes in this interpretation a second postulate of evolution;

13 Similarly, in the classical theory of probabilities, if an event E can be obtained either as event e1, or e2, . . . , or
ei , . . . , and if all events ei are exclusive, the probability of E is the sum of the probabilities of the ei .
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this postulate is associated with the process of measurement, and completely dif-
ferent from the Schrödinger evolution since it is discontinuous. It is often called
the “wave packet reduction”, or “wave function collapse”, or again “state vector
reduction”, and was introduced by Von Neumann in his famous treatise (Chapter
VI of [4]). This is the version found in most textbooks. But Bohr himself preferred
another point view where state vector reduction is not used14; we discuss this point
of view afterwards (there exist also other interpretations of quantum mechanics
that do not make use of state vector reduction, as discussed in Chapter 10; see for
instance §§10.1.2, 10.6, or 10.11).

1.2.2.a Von Neumann, reduction (collapse)

Suppose now that the system we study is prepared at time t0, evolves freely (without
being measured) until time t1 where it undergoes a first measurement, and then
evolves freely again until time t2 where a second measurement is performed. Just
after the first measurement at time t1, when the corresponding result of measurement
is known, it is very natural to consider that both the initial preparation and the
first measurement are part of a single preparation process of the system. One then
associates to this preparation a state vector that includes the information of the first
result; this is precisely what the state vector reduction (or state collapse) postulate
does. The new “reduced” state vector can then be used as an initial state to calculate
the probabilities of the different results corresponding to the second measurement,
at time t2.

Dirac also takes this point of view when he writes (page 9 of “Quantum mechan-
ics” [39]): “There are, however, two cases when we are in general obliged to
consider the disturbance as causing a change in state of the system, namely, when
the disturbance is an observation and when it consists in preparing the system so
as to be in a given state”.

We assume that the measurement is ideal15 – it preserves the integrity of the
system, as opposed to destructive measurements such as the absorption of a photon
in a detector. Then, after the measurement associated to M has provided result mi

corresponding to a non-degenerate eigenvalue (and therefore to a single |mi〉), the
reduced state vector is: ∣∣� ′mi

〉= ∣∣mi

〉
(1.7)

14 As stated in [40]: “Most importantly, Bohr’s complementarity interpretation makes no mention of wave packet
collapse . . . or a privileged role for the subjective consciousness of the observer. Bohr was also in no way a
positivist. Much of what passes for the Copenhagen interpretation is found in the writings of Werner Heisenberg,
but not in Bohr”.

15 We come back in more detail on the Von Neumann model of measurement in §8.1.1 and on the notion of QND
(quantum non-demolition) measurement.
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In other words, at time t1 when the first measurement is performed and provides
result mi , the state vectors jumps discontinuously from |�(t1)〉 to |mi〉. If the same
measurement is repeated very shortly after, by applying the Born rule (1.3) to state∣∣� ′〉, one finds that all probabilities are zero but one. The result is then certain: one
obtains mi again.

The generalization of (1.7) to a degenerate eigenvalue is given by (1.5):∣∣� ′m〉= cPM(m)
∣∣�(t1)

〉
(1.8)

where a normalization coefficient c has been added16.
The rule can easily be generalized to more than two successive measurements.

Each time a measurement is performed and a result obtained, the state vector jumps
to a new value that includes this new information (but may also erase some previous
information). One exception occurs if the same measurement is performed repeat-
edly, at times that are sufficiently close to avoid any Schrödinger evolution of the
system between the measurements. Then all results are necessarily the same and,
after the first measurement, the state vector reduction has no effect (but it becomes
effective again as soon as a different observable is measured).

Clearly, state vector reduction is closely related to the Born probability rule.
Actually, if one generalizes this rule to multi-time measurements (§10.1.2.a and
Appendix G), one can derive the reduction of the state vector as a convenient rule
to calculate probabilities. From this point of view, the state reduction no longer
appears as a postulate, but just as a convenient way to make calculations that can
be derived from the generalized Born rule.

To summarize, the general scheme then includes different stages in the evolution
of the state vector. Between preparation and measurements, it evolves continuously
according to the Schrödinger equation. When the system undergoes a measurement,
it interacts with a measurement apparatus. The probabilities of the various outcomes
can be calculated from the state vector in a perfectly well defined way from this
equation and from the Born rule, but only the probabilities: the Schrödinger equation
itself does not select a single result. The uniqueness of the outcome in the quantum
description of the system is associated with state vector reduction, a process that
makes the state vector jump discontinuously (and randomly) to a new value. The
emergence of a single result is then obtained (one could say “forced”) explicitly in
the state vector by retaining only the appropriate component corresponding to the
observed outcome – while all components of the state vector associated with the
other results are put to zero (hence the name “reduction”) – we will come back to
this question in §2.1. The reduction process is discontinuous and irreversible. In
this general scheme, separate rules and equations are therefore introduced, one for

16 This coefficient is the inverse of the square root of 〈�(t1)|PM(m) |�(t1)〉.
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the “natural” continuous evolution of the system between measurements, another
for the measurements performed on it. The difficulty is then to understand precisely
how to avoid possible conflicts between these two different postulates.

1.2.2.b Bohr

Bohr does not make explicit use of the notion of state vector reduction. He prefers
to see the ensemble of all measurements performed at different times as being part
of one single big experiment, which includes all experimental devices necessary
to perform the series of measurements (and presumably also those involved in the
preparation stage of the studied system as well). The rules of quantum mechanics
then provide the probabilities corresponding to all possible series of results. In this
view, one should not ask (as we just did in §1.2.2.a) what is the quantum state
of the measured system between the first measurement and the second: separat-
ing the system from the whole experimental apparatus has no meaning in Bohr’s
interpretation of quantum mechanics (non-separability, §3.3.3.b).

Any possible conflict between two different evolution postulates then disap-
pears. It is nevertheless replaced by another difficulty since, in each experiment,
one has to distinguish between two different parts: observed system(s) and mea-
surement apparatus(es). Only the latter are directly accessible to human experience
and can be described with ordinary language, as in classical physics. The measure-
ment apparatuses and observers then have a very specific role. They provide the
results of measurements to observers, so that they are at the origin of our percep-
tion of the physical world; but at the same time they also introduce an irreducible
non-deterministic component into the theory and into the evolution of physical
systems. The difficulty is then to decide where exactly to put the frontier between
the two different parts17. For instance, if the distinction is to be made in terms
of size of the systems, one could ask from what size a physical system is suffi-
ciently macroscopic to be considered as directly accessible to human experience,
and will behave as a measurement apparatus. If the distinction is made in another
way than size, then more elaborate rules should be specified to clarify this vague
concept. In [41], Bohr writes (see also Bell’s quotation in §2.5): “This necessity
of discriminating in each experimental arrangement between those parts of the
physical system considered which are to be treated as measuring instruments and
those which constitute the objects under investigation may indeed be said to form
a principal distinction between classical and quantum-mechanical description of
physical phenomena”.

17 This does not necessarily mean that one has to choose a frontier between two parts of the physical world that is
fixed forever. In Bohr’s view, it may depend on the experiment considered (one could imagine that an element
that is part of the measured system in one experiment becomes part of the measurement apparatus in another).
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1.2.3 Status

Under these conditions, what is the status of the state vector (or wave function) in
standard quantum mechanics?

1.2.3.a Two extremes

When discussing the status of the state vector, two opposite mistakes should be
avoided, since both “miss the target” on different sides. The first is to endorse the
initial hopes of Schrödinger and to decide that the wave function, propagating in
a space with many dimensions, directly describes the physical properties of the
system. In such a purely undulatory view, the positions and velocities of particles
are replaced by the amplitude of a complex wave, and the very notion of point
particle becomes diluted. Nevertheless, the difficulties introduced by this view are
now so well known – see discussion in the preceding section – that nowadays
few physicists seem to be tempted to support it, at least within standard theory18.
At the opposite extreme, one considers that the wave function does not attempt
to describe the physical properties of the system itself, but just the information
that some observer has on it. It then becomes analogous to a classical probability
distribution in usual statistical theory; the wave function should then get a relative
(or contextual) status depending on the observer. Of course, at first sight, this
seems to bring an elementary solution to the difficulties introduced into quantum
mechanics by the state vector reduction and its discontinuities (§1.2.2): we all know
that classical probabilities may undergo sudden jumps, and nobody considers this as
a special problem. For instance, as soon as new information on an (possibly remote)
event becomes available to us, the probability distribution that we associate with it
undergoes a sudden and complete change; by analogy, is this not the obvious way
to explain the sudden state vector reduction?

One first difficulty of this point of view is that it would naturally lead to a
relative character of the wave function: if two observers had different informa-
tion on the same system, should they use different wave functions to describe the
same system19? In classical probability theory, distributions of probabilities that

18 Within theories introducing modified Schrödinger dynamics (non-standard versions requiring a modification
of the Schrödinger equation, see §10.8), a purely undulatory point of view can indeed be reintroduced.

19 We assume that the two observers use the same reference frame for space-time; they differ only by the amount of
information they have. If they used different Galilean reference frames, one should apply simple mathematical
transformations to go from one state vector to the other. But this has no more conceptual impact than the usual
transformations which allow us, in classical mechanics, to transform positions and conjugate momenta when
changing the frame of reference.

For completeness, we should add that there is also room in quantum mechanics for classical uncertainties
arising from an imperfect knowledge of the system, in particular with the formalism of the density operator
(§11.1.5). Here, we limit ourselves to the discussion of state vectors and wave functions (pure states).

Finally, let us mention that, in a more elaborate discussion, one would introduce other elements, for instance
the notion of intersubjectivity, etc. [10, 24].
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undergo sudden jumps are inherently “observer-dependent” and thus “subjective”:
the observer who has more information describes the phenomenon with a distribu-
tion that is narrower than that of another, less informed, observer; in principle, one
can always imagine an observer with perfect knowledge of the phenomenon for
whom the probability is perfectly peaked at one value (the process is then deter-
ministic for this observer). But standard quantum mechanics rejects the possibility
of such a perfect description of all properties of a system, even for an observer who
has all the possible information. Standard quantum mechanics does not attribute
such a relative character to the wave function or state vector.

Moreover, when in ordinary probability theory a distribution undergoes a sudden
“jump” to a more precise distribution, the reason is simply that more precise values
of the variables already exist – they actually existed before the jump. In other words,
the very fact that the probability distribution reflected our imperfect knowledge
implies the possibility of a jump to a more precise description, closer to the reality
of the system itself20. But this is in complete opposition with orthodox quantum
mechanics, which rejects the notion of any better description of the reality (§3.3.2).
In this theory, the random character of the measurement process is absolute; it is
vain to try and explain a particular result of measurement by causes, since they do
not exist. Ignorance cannot be invoked to explain the jumps of the state vector in
standard quantum mechanics.

We also note that classical probabilities can also be defined in the absence of
observers and then called “objective”21: one considers a physical event taken among
a whole ensemble of possible events, which all have well defined but different
dynamics because some of their initial physical properties differ, or because they
undergo uncontrolled perturbations. To introduce probabilities, one then postulates
that all these distinct events have the same “weight”. By contrast, standard quantum
mechanics introduces probabilities only if observers make measurements; it rejects
the idea of different initial properties, or perturbations, explaining the occurrence
of these probabilities.

Introducing the notion of pre-existing values is precisely the basis of “unortho-
dox” theories with additional variables (often called hidden variables – see §10.6
and footnote 1); uncontrolled perturbations are invoked in the theories with modified
Schrödinger dynamics (§10.8). So, advocating this “information interpretation”

20 Normally, information is about something! An information, or a probability, refers to an object or an event that
is supposed to have its own reality, independently of the information, and of the fact that someone is acquiring
it or not – see for instance §VII of [42]. It would be very unusual to define the object by the information itself,
raising questions about logical circularity.

21 In classical theory, objective probabilities occur in classical statistical physics and the study of chaotic systems
made of many particles. Nevertheless, these probabilites are then continuous functions of time; sudden jumps
occur only for subjective classical probabilities.
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for a straightforward explanation of state vector reduction amounts to advocating
non-orthodox approaches to quantum mechanics. It is therefore important to keep in
mind that, in the standard interpretation of quantum mechanics, the wave function
(or state vector) gives THE ultimate physical description of the system, with all its
physical properties; it is neither contextual, nor observer dependent (subjective),
but absolute; if it gives probabilistic predictions on the result of future measure-
ments, it nevertheless remains inherently completely different from an ordinary
classical distribution of probabilities.

1.2.3.b The Copenhagen (orthodox) point of view

If none of these extremes is correct, how should we combine them to obtain the
status of the state vector in orthodox quantum mechanics? To what extent should
we consider that the wave function describes the physical system itself (realist
interpretation), or rather that it contains only the information that we may have on
it (positivistic interpretation), presumably in some sense that is more subtle than a
classical distribution function? In orthodox quantum theory, the state vector has a
really non-trivial status – actually it has no equivalent in all the rest of physics.

The Copenhagen/orthodox interpretation is not defined in exactly the same way
by all authors22; nuances exist between the different definitions of what is a quan-
tum state. It may then be more appropriate to speak of the “standard” definition,
namely that found in most textbooks. The standard view is that the state vector (or
wave function) is associated with a preparation procedure of the physical system
under consideration. Dirac, in Chapter I of [39], writes: “We must first generalize
the meaning of a ‘state’ so that it can apply to an atomic system . . . The method
of preparation may then be taken as the specification of the state”. Or Stapp, when
introducing the Copenhagen interpretation [43]: “The specifications A on the man-
ner of preparation of the physical system are first transcribed into a wave function
�A(x)”. Similarly, Peres writes [44]: “a state vector is not a property of a physical
system, but rather represents an experimental procedure for preparing or testing one
or more physical systems”. He also makes the general comment: “quantum theory
is incompatible with the proposition that measurements are processes by which we
discover some unknown and pre-existing property”. In this view, a wave function
is an objective representation (independent of the observer) of a preparation proce-
dure, rather than of the isolated physical system itself. The preparation procedure

22 For instance, Howard writes [40]: “Much of what passes for the Copenhagen interpretation is found in the
writings of Werner Heisenberg, but not in Bohr. Indeed, Bohr and Heisenberg disagreed for decades in deep
and important ways. The idea that there was a unitary Copenhagen point of view on interpretation was, it
shall be argued, a post-war invention, for which Heisenberg was chiefly responsible. Many other physicists
and philosophers, each with his own agenda, contributed to the promotion of this invention for polemical or
rhetorical purposes”.
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may imply the measurement of a physical quantity by some observer; for instance,
one can prepare the state of a spin by sending the particle through a Stern–Gerlach
magnet, and measuring the position of the particle at the output. But one can also
prepare a system by letting it reach thermal equilibrium in interaction with a ther-
mostat, as for instance is the case in most magnetic resonance experiments; then,
the description of the system requires, not a single state vector, but many, which
can all be summarized in a “density operator” (§11.1.5). In any case, it seems safe
to associate the standard interpretation of the state vector (or density operator) with
a physical preparation procedure of the system under study.

This does not exclude that the state vector may contain some information about
the properties of the system itself. Indeed, when a given physical quantity has been
measured, and when a given result has been obtained, quantum mechanics predicts
that the same result is always obtained if the same measurement is repeated just
after. It is then natural to think that, between the measurements, the system had a
physical property related to the certainty of the result of the second measurement –
see Chapter 3. The result of measurement has then become a property of the system.
This idea can be expressed mathematically: all operators acting in the space of states
that take |�〉 as one of their eigenvectors correspond to physical quantities that have
precise values in this state, and can be associated with properties of the system. But,
for a quantum system in a given state |�〉, most operators are not in this case; only a
very small proportion of the properties that could be defined in classical mechanics
can still be defined quantum mechanically; moreover, the list of those that are
defined is not fixed, but depends on |�〉. Hartle proposes the following definition
[45]: “The state of an individual system in quantum mechanics is, therefore, defined
as the list of all propositions (concerning the individual system) together with their
truth values – true, false, or indefinite”.

At the end, we reach a sort of intermediate situation where neither the pure
continuous undulatory interpretation nor the pure probabilistic interpretation is
correct, while elements of both points of view are retained. A preparation procedure
for a physical system is indeed an objective fact, and if the state vector describes such
a procedure, it also necessarily has some objective component – it cannot be entirely
mental and observer dependent. Sometimes some properties of the system exist,
sometimes others, but most do not exist, so that their measurement will provide
random results. Both interpretations are combined in a way that emphasizes the
role of the whole experimental setup. Bohr described the situation by using the
general concept “complementarity”; for instance, in [46], he writes “the viewpoint
of complementarity presents itself as a rational generalization of the very idea of
causality” (how to relate in a causal way a preparation procedure to an observation
procedure).
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Present situation, remaining conceptual difficulties

Conceptual difficulties still remain in quantum mechanics, even if they had already
been identified by its inventors. This does not mean that the theory is not success-
ful! The reality is quite the opposite: in fact, independently of these difficulties,
quantum mechanics is certainly one of the most successful theories of all science.
One can even consider that its ability to adapt to new situations is one of its most
remarkable features. It continues to give efficient and accurate predictions while
new experiments are performed, even in situations that the founding fathers had no
way to imagine. Actually, there are very few theories that have been verified with
the same accuracy in so many situations. Nevertheless, it remains true that concep-
tual difficulties subsist, and their discussion is the object of this chapter. As we will
see, most of them relate to the process of quantum measurement, in particular to
the very nature of the random process that takes place on this occasion.

We have seen that, in most cases, the wave function evolves gently, in a perfectly
predictable and continuous way, according to the Schrödinger equation; in some
cases only (when a measurement is performed), unpredictable changes take place,
according to the Von Neumann postulate of state vector reduction. Obviously, hav-
ing two different postulates for the evolution of the same mathematical object is
very unusual in physics. The notion was a complete novelty when it was introduced,
and still remains unique, but also the source of difficulties – in particular logical
difficulties related to the compatibility between the two different postulates. Nor-
mally, one would tend to see a measurement process, not as very special, but just
as an interaction process between a (possibly microscopic) measured system and a
macroscopic measurement apparatus. The latter should be treated within the ordi-
nary laws of physics: indeed, a theory where no distinction is necessary between
normal evolution and measurements would seem much more general, and therefore
preferable. In other words, why give such a special character to measurements so
that two separate postulates become necessary? Where exactly does the range of
application of the first postulate stop in favor of the second? More precisely, among

17
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all the interactions – or perturbations – that a physical system can undergo, which
ones should be considered as normal (Schrödinger evolution), which ones are a
measurement (state vector reduction)? We need to understand better the reason
why physics needs to introduce a split between two different worlds, and the nature
of this split: Schrödinger’s world, which is perfectly continuous and determinis-
tic, and Born’s measurement world, which is very different since the continuous
evolution stops to be replaced by non-deterministic and discontinuous processes.

From Bohr’s point of view also, measurement processes and apparatuses are
clearly “discriminated” from the system under study. In Bohr’s universe, a gen-
eral evolution takes place in a continuous and deterministic way according to the
Schrödinger equation. But, in the particular case of events involving a transfer of
knowledge to an observer, randomness appears in the evolution of physical sys-
tems. Moreover, these measurement processes are so to say considered as “closed
bubbles" inserted within this general evolution, closed events from their beginning
to their end that extend over a whole region of space-time. They cannot be split
into more detailed relativistic events, and are fundamentally characterized by the
fact that an intelligent human being is asking a question to Nature; the outcome is
a unique answer, but non-deterministic.

Whether we prefer Von Neumann’s or Bohr’s point of view, we are faced with
a logical problem that did not exist before in classical mechanics, when nobody
thought that measurements should be treated as special processes in physics. We
learn from Bohr that we should not try to transpose our experience of the everyday
world to microscopic systems; then, for each experiment, where exactly is the limit
between these two worlds? Is it sufficient to reply that there is so much room
between macroscopic and microscopic sizes that the exact position of the border
does not matter?

It may also look very surprising that, in modern physics, the “observer” should
play such a central role, giving to the theory an unexpected anthropocentric foun-
dation, as in astronomy in the middle ages. Should we really reject the description
of isolated systems as unscientific, just because we are not observing them? If
observers are so important, how precisely is an observer defined? For instance, can
an animal perform a measurement and reduce the state vector, or is a human being
required? Bell once asked with humour [47]: “Was the world wave function wait-
ing to jump for thousand of millions of years until a single-celled living creature
appeared? Or did it have to wait a little longer for some highly qualified measurer, –
with a Ph.D.?” – see also [48], in particular its title. These general questions are
difficult, somewhat philosophical, and we will come back to them in Chapter 10
where, for instance, we mention that London and Bauer [49] have suggested that
it is the faculty of introspection that qualifies a living creature to be an observer in
quantum theory.
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Another difficulty is related to the random character of the predictions of quantum
mechanics, which provides only probabilities for the results of measurements. In
itself, this situation is relatively usual in physics, where for instance statistical
classical mechanics makes constant use of probabilities. But the probabilities are
then associated with the notion of statistical ensemble: one assumes that the system
under study is chosen randomly among many similar systems belonging to the
same ensemble. Indeed, they share common properties contained in the statistical
description, but a more accurate description can reveal that, at some finer level, they
also differ by other individual properties. In other words, every single system has
more physical properties than those specified for the whole ensemble. The same
question can immediately be transposed to quantum mechanics: if its predictions
are only probabilities, does it mean that it describes ensembles of systems only?
Or should we consider that the state vector provides the most accurate possible
description of a single system? We will often come back to this question in what
follows, in particular in Chapters 3 and 10.

It is probably impossible to summarize all that has been written on the exact
behavior and role of the state vector in a reasonable number of pages. As illus-
trations, we will discuss a few examples in this chapter: Von Neumann’s infinite
regress (§2.1), Schrödinger’s cat (§2.2), Wigner’s friend (§2.3), and negative mea-
surements (§2.4). We will then propose a number of quotations (§2.5), which give
an idea of the variety of possible positions on quantum mechanics, and finally
mention a few points where errors have been made in the past (§2.6).

2.1 Von Neumann’s infinite regress/chain

Von Neumann, in a treatise published in 1932, introduced an explicit theory of
quantum measurement (Chapters. 4–6 of [4]). In contrast with Bohr’s approach,
Von Neumann considers the measuring apparatus as a quantum system. He assumes
that the measured system S is put into contact with a measurement apparatus M
and interacts with it for some time. M contains a macroscopic “pointer” P which,
after the interaction has finished, reaches a position that depends on the initial state
of S. In this chapter, we introduce the general ideas related to the Von Neumann
infinite chain, without writing equations; we come back in §8.1 to Von Neumann’s
theory of measurement with more detail – see also, for instance, §9.2 of [21] and
§11.2 of [50].

Assume that, initially, this system was in an eigenstate of the measured observable
A characterized by one of its eigenvalues1 a. After the end of the interaction, the

1 Here, for the sake of simplicity, we assume that the eigenvalue is not degenerate, but the generalization to
degenerate eigenvalues is possible.
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pointer reaches a specific position that depends on the eigenstate; one can consider
that observing the macroscopic position of P amounts to measuring the observable
and obtaining a as a result.

Now, in general S is not initially in an eigenstate of the measured observable A,
but in a superposition of such states. The linear Schrödinger equation then predicts
that the whole physical system S+M reaches a linear superposition2 of states after
the interaction. In the different components of this superposition, the pointer has
several different positions, each corresponding to a different result of measurement;
this situation is described as quantum entanglement (Chapter 6). Indeed, because
the Schrödinger equation is linear, it cannot make a selection between these results:
it can only lead to a superposition of all possible outcomes, as if no macroscopic
result at all had emerged from the measurement!

To solve this problem, one can then try to add a second stage, and use another
measurement apparatus M′ in order to determine the position of the pointer of M.
But the process repeats itself and the linearity of the Schrödinger equation leads to
an even stranger superposition, this time containing S+M+M′ and different posi-
tions of the pointers of M and M′. By recurrence, if one adds more and more
measurement apparatuses, M′′ etc., one creates a longer and longer chain of cor-
related systems, without ever selecting one single outcome for the measurement.
This recurrent process M, M′, M′′ is called the Von Neumann regress, or chain. One
can summarize this discussion by saying that “Uniqueness of the results cannot
emerge from the Schrödinger equation only; in fact the equation creates a chain of
coherent superposition that propagates without any end”.

A simple example may be useful to illustrate the process in a more concrete way.
Assume for instance that we consider a spin 1/2 atom, which enters into a Stern–
Gerlach spin analyzer. If the initial state of the spin is parallel (or anti-parallel)
to the direction of the analyzer (the direction of the magnetic field which defines
the eigenstates associated with the apparatus), the wave function of the atom is
deflected upwards or downwards, depending on the initial eigenvalue of the longi-
tudinal spin. But if the initial direction of the spin is transverse, the wave function
splits into two different wave packets, one pulled upwards, the other pushed down-
wards; again, this is an elementary consequence of the linearity of the Schrödinger
equation. Propagating further, each of the two wave packets may strike a detector,
with which they interact by modifying its state (as well as theirs). For instance, the
incoming spin 1/2 atoms are ionized and produce electrons; as a consequence, the
initial coherent superposition now encompasses new particles. Moreover, when a
whole cascade of electrons is produced as in a photomultiplier, all these additional
electrons also become part of the superposition. In fact, there is no intrinsic limit in

2 This linear superposition is written explicitly in equation (8.7).
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what soon becomes an almost infinite chain: rapidly, the linearity of the Schrödinger
equation leads to a state vector which is the coherent superposition of states includ-
ing a macroscopic number of particles, macroscopic currents, and, maybe pointers
or recorders printing macroscopic zeros or ones on a piece of paper! If we stick
to the Schrödinger equation, there is nothing to stop this infinite regress, which
has its seed in the microscopic world but rapidly develops into a big macroscopic
phenomenon. Can we for instance accept the idea that, at the end, it is the brain of
the experimenter (who becomes aware of the results) and therefore a human being
with consciousness who enters into such a superposition?

The very notion of a brain, or consciousness, in a macroscopic superposition is
neither very intuitive nor clear; no-one has ever observed two contradictory results
at the same time. Would this strange situation correspond to an experimental result
printed on paper and looking more or less like two superimposed slides, or a double
exposure of a photograph? In practice, we know that we always observe only
one single result in a single experiment; linear superpositions somehow resolve
themselves before they reach us, and presumably before they become sufficiently
macroscopic to involve measurement apparatuses. It therefore seems obvious3 that
a proper theory should break the Von Neumann chain at some point, and stop the
regress when (or maybe before) it reaches the macroscopic world. But when exactly
and how precisely?

Von Neumann concludes from his analysis that, indeed, it is not possible to
formulate the laws of quantum mechanics in a complete and consistent way without
reference to human consciousness. He considers that the emergence of a unique
result of measurement is an irreducible element of the theory. The solution to the
problem requires the introduction of a special postulate: the “projection postulate”
of the state vector (§1.2.2), which forces the emergence of a single result as soon
as an experimenter becomes aware of the result.

The notion of the Von Neumann regress is also the source of the phenomenon of
decoherence (§6.3.3). The word decoherence is usually used to refer to the initial
stage of the chain, when the number of degrees of freedom involved in the process
is still relatively limited. The Von Neumann chain is more general and includes
this initial stage as well as its continuation, which goes on until it reaches the other
extreme where it really becomes paradoxical: the Schrödinger cat.

2.2 Schrödinger’s cat

The famous story of the Schrödinger cat (1935) illustrates the same problem in a
different way.

3 Maybe not so obvious after all? There is an interpretation of quantum mechanics that precisely rests on the idea
of never breaking this chain: the Everett interpretation, which will be discussed in §10.11.
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2.2.1 The argument

The cat appears in a few lines only in the context of a more general discussion written
by Schrödinger [51] and entitled “The present situation of quantum mechanics”. His
words (after translation into English [52]) are: “One can even set up quite ridiculous
cases. A cat is penned up in a steel chamber, along with the following device (which
must be secured against direct interference by the cat): in a Geiger counter, there
is a tiny bit of radioactive substance, so small that perhaps in the course of the
hour, one of the atoms decays, but also, with equal probability, perhaps none; if it
happens, the counter tube discharges, and through a relay releases a hammer that
shatters a small flask of hydrocyanic acid. If one has left this entire system to itself
for an hour, one would say that the cat still lives if meanwhile no atom has decayed.
The psi-function of the entire system would express this by having in it the living
and dead cat (pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the atomic
domain becomes transformed into macroscopic indeterminacy, which can then be
resolved by direct observation. That prevents us from so naively accepting as valid
a ‘blurred model’ for representing reality. In itself, it would not embody anything
unclear or contradictory. There is a difference between a shaky or out-of-focus
photograph and a snapshot of clouds and fog banks.”

In other words, Schrödinger considers a Von Neumann chain starting from one
(or a few) radioactive atomic nucleus, which can emit a photon, which is detected by
a gamma ray detector, which in turn is followed by electronic amplification, which
then triggers a macroscopic mechanical system that automatically opens a bottle of
poison, which finally kills the cat when the decay takes place (Figure 2.1). Quantum
entanglement therefore occurs at many stages. When the probability that a photon
has been emitted is about 1/2, the system reaches a state with two components
of equal weight, one where the cat is alive and one where it is dead. Schrödinger
considers this as an obvious impossibility (a quite ridiculous case), and concludes,
therefore, that something must have happened to stop the Von Neumann chain
before it went too far. Again, the challenge is to explain macroscopic uniqueness:
why, at a macroscopic level, a unique result (alive, or dead, cat) emerges, while this
does not happen within the linear Schrödinger equation.

The cat is of course a symbol of any macroscopic object – Einstein, in a letter
to Schrödinger the same year [53], used the image of the macroscopic explosion
of a barrel of powder4. Such an object can obviously never be in a “blurred” state
containing possibilities that are contradictory (open and closed bottle, dead and alive
cat, etc.). Therefore, as Schrödinger points out, his equation should not be pushed

4 Einstein writes “No clever interpretation will be able to transform this functiion � into an adequate description
of real things; in reality, there is nothing between exploded and non-exploded”.
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Figure 2.1. The story of the Schrödinger cat illustrates how the rules of standard
quantum mechanics may lead to very strange situations, where macroscopic objects
are at the same time in completely different physical states. Schrödinger imagines a
cat in a box where a device is triggered by the emission of a particle by a radioactive
nucleus. If the particle is emitted, the device starts and opens (or breaks) a bottle
of poison, which kills the cat. If the particle is not emitted, the cat remains alive.
After some time, when the probability of decay of the nucleus is 1/2, the state |�〉
of the whole system contains components associated with completely different
macroscopic situations, both realized at the same time. Uniqueness of macroscopic
reality would require that the “AND" in the middle of the figure should be replaced
by “OR", which cannot be explained within the Schrödinger equation. In the words
of Schrödinger, this is a “ridiculous” situation.

too far and include macroscopic objects. Standard quantum mechanics is not only
incapable of avoiding these paradoxical cases, it actually provides a general recipe
for creating them. The logical conclusion is that some additional ingredients are
needed in the theory in order to select one of the branches of the superposition, and
avoid such stupid macroscopic superpositions5. Needless to say, the limit of validity
of the linear equation does not have to be related to the macroscopic object itself: the
branch selection process may perfectly take place before the linear superposition
reaches the cat. But the difficult question is exactly where and when the process
takes place.

The usual interpretation of quantum mechanics postulates that the only way to
stop the linear propagation of the Schrödinger equation and break the chain is to
perform an act of measurement. The question then becomes: does an elaborate
animal such as a cat, or a primitive living creature such as a bacteria, have the

5 It is amusing to note that, historically, Schrödinger’s name is associated to two somewhat opposite concepts.
One is contained in a very powerful continuous equation of evolution that applies to all systems; the other is
the cat, which is the symbol of a limit that the same equation should never reach.
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intellectual abilities that are necessary to perform a measurement and resolve several
Von Neumann branches into one? At what stage of evolution can a living creature
perceive its own state, projecting itself onto one of the alive or dead states? Or do
humans only have access to a sufficient level of introspection to become conscious
of their own observations, and to reduce the state vector? Some theories take this
point of view, a case in which, when the wave function includes a cat component,
the animal could remain simultaneously dead and alive for an arbitrarily long period
of time, a paradoxical situation indeed.

The last sentence of Schrödinger’s quotation concerning photographs has often
been considered as obscure. Schrödinger probably wishes to emphasize the differ-
ence between an incomplete knowledge (out-of-focus photograph) of a well defined
object, and an object that is inherently not sharply defined in space (a cloud) –
between an indeterminacy that is related to lack of information or an inherent
indeterminacy. In other words, he is already questioning the complete character of
quantum mechanics (§3).

2.2.2 Misconceptions

A common misconception is that the paradox is easily solved by just invoking
decoherence (§6.3.3), which explains why it is impossible in practice to observe
quantum interferences between states where a cat is alive or dead. We come back
to this point in §6.3.3.b in more detail, and discuss it only briefly here. Actually,
(de)coherence is irrelevant in Schrödinger’s argument: the cat is actually a symbol
of the absurdity of a quantum state that encompasses two incompatible possibilities
in ordinary life, coherent of not. It does not change the absurdity of the final situation
whether the state in question is a pure state (sensitive to decoherence) or a statistical
mixture (insensitive to decoherence). Moreover, the cat itself is already part of the
environment of the radioactive atom (the detector and the bottle of poison are also in
this case)6. The chain (the tree of possibilities) starts to propagate at a microscopic
level (from the radioactive atom) and continues further and further without apparent
limits; the real difficulty is to stop it from reaching the macroscopic world. It
certainly does not help to remark that the chain propagates even further than the
cat; invoking decoherence is not answering the question, it is repeating it.

6 The cat itself is never in a coherent superposition of alive and dead states. When the curious state is created, the
cat is already correlated with the radioactive source, the mechanical system, the bottle of poison (open or closed),
the gas in the box, etc. All these components already act as an environment and produce complete decoherence.
Restoring this coherence would imply an operation of putting back all of them into the same quantum state,
a clearly impossible task. The propagation of decoherence further into the environment does not add anything
new to the argument.
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The real problem addressed by Schrödinger is how to explain the uniqueness
of the macroscopic world. How can something that was indeterminate become
determinate, and what is the process responsible for this? Until what point exactly
does the theory remain deterministic, to become stochastic beyond this point? This
question is not trivial and much more difficult to answer than just explaining the
absence of macroscopic coherence7. Schrödinger was well aware of the properties
of entanglement in quantum mechanics, a word that he introduced (and uses explic-
itly in the article on the cat; see §3.3.3.b); he was certainly not sufficiently naive
to think that dead and alive cats can give rise to interferences. In [51], he actually
never mentions the coherent or incoherent character of the superposition8: for him,
the question is not to avoid a coherent superposition of macroscopically different
states, it is to have no superposition at all9!

2.2.3 Modern cats

The meaning of words sometimes changes in physics. In the recent literature in
quantum electronics and optics, it has become more and more frequent to use the
words “Schrödinger cat (SC)” with a different meaning. Initially, the cat was the
symbol of an impossibility, an animal that can never exist (a Schrödinger gargoyle?);
it was the final step of a “reductio ad absurdum” reasoning, in short something that
obviously has (and will) never been observed. But, nowadays, the same words are
often used to describe states that are actually perfectly accessible physically, namely
any coherent superposition of states that are more or less macroscopically distin-
guishable (the coherent character is then essential). In this new sense, Schrödinger
cats have been predicted and observed in a variety of systems, for instance an ion
located in two different places in a trap; they of course undergo rapid decoherence
(§6.3.3) through correlation to the environment. Theoretical calculations of this
decoherence are possible within the Schrödinger equation, which is used to calcu-
late how the initial stages of the Von Neumann chain take place, and how rapidly
the state vector tends to ramify into branches containing the environment.

To summarize §2.2, the paradox addresses the core of most of our difficulties with
quantum mechanics: as Wigner writes [54] “measurements which leave the system
object-plus-apparatus in one of the states with a definite position of the pointer
cannot be described by the linear laws of quantum mechanics”. The question is

7 The impossibility of observing interferences between dead and alive cat states is, of course, a necessary condition
for macroscopic uniqueness. But it is also far from sufficient.

8 The words do not appear even once in his article.
9 This is for instance the purpose of theories with a modified non-linear Schrödinger dynamics (§10.8): they

provide equations of motion where, at a macroscopic level, all probabilities dynamically go to zero, except one
that goes to 1.
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then: what is exactly the process that forces Nature to break the linearity and to
make its choice among the various possibilities for the results of experiments?
Indeed, the emergence of a single result in a single experiment is a major issue. As
Pearle expresses it concisely [14], the problem is to “explain why events occur”!

2.3 Wigner’s friend

In a theory such as standard quantum mechanics, where the observer plays such
an essential role, who is entitled to play it? Wigner discusses the role of a friend,
who has been asked to perform an experiment, a Stern–Gerlach measurement for
instance [55]. The friend is working in a closed laboratory, so that an outside
observer cannot be aware of the result before he/she opens the door (Figure 2.2).
What happens just after the particle has emerged from the analyzer and when its
position has been observed inside the laboratory, but is not yet known outside?
For the outside observer, it is natural to consider the whole ensemble of the closed
laboratory, containing the experiment as well as his friend, as the “system” to be
described by a big wave function. As long as the door of the laboratory remains
closed and the result of the measurement unknown, this state vector will continue
to contain a superposition of the two possible results; it is only later, when the

A = +1 Ψ

Figure 2.2. Wigner assumes that a physicist outside of a closed laboratory has a
friend inside who performs a quantum experiment providing resultsA=±1. When
the friend observes a result, for instance A=+1, he describes the physical system
with a state vector that includes this information and therefore has undergone state
vector reduction. Nevertheless, as long as the door of the laboratory remains closed,
the physicist outside should describe the ensemble of the experiment and of his
friend with a state vector still containing all different possible results; for him, state
vector reduction occurs only when he opens the door and becomes aware of the
result. One then reaches a situation where the same physical reality is described at
the same time by two different state vectors. To avoid this, one may assume that
the first perception of the result by the mind of any observer (the friend in this
case) reduces the state vector; the system then has a single state vector even if for
some time it is not known by the experimenter outside.
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result becomes known outside, that the state vector reduction should be applied.
But, clearly, for Wigner’s friend who is inside the laboratory, this reasoning is just
absurd! He/she will much prefer to consider that the state vector is reduced as soon
as the result of the experiment is observed inside the laboratory. We are then back
to a point that we have already discussed (§1.2.3), the absolute/relative character
of the wave function: does this contradiction mean that we should consider two
state vectors, one reduced, one not reduced, during the intermediate period of the
experiment10? For a discussion by Wigner of the problem of the measurement,
see [54].

An interpretation, sometimes associated with Wigner’s name11, assumes that the
reduction of the state is a real effect taking place when a human mind interacts
with the surrounding physical world and acquires some consciousness of its state;
we will come back to it in §10.1.1.b. In other words, the electrical currents in the
human brain may be associated with a reduction of the state vector of measured
objects by some as yet unknown physical process. Of course, in this view, the
reduction takes place under the influence of the experimentalist inside the labora-
tory, and the question of the preceding paragraph is settled. But, even if one accepts
the somewhat provocative idea of possible action of the mind (or consciousness)
on the environment, this point of view does not suppress all logical difficulties:
what is a human mind; what level of consciousness12 is necessary to reduce the
state, etc.?

2.4 Negative and “interaction-free” measurements

Other paradoxical situations occur with “negative measurements” or “interaction-
free measurements” in quantum mechanics. These concepts may be illustrated with
the following examples:

(i) Consider a source that emits one particle with a spherical wave function (its
values are independent of the direction in space). The source is surrounded by
two detectors, as shown in Figure 2.3; one of the detectors, D1, captures the
particle emitted in almost all directions, except a small solid angle�; the second
detector D2 captures the particle inside this solid angle, but at a larger distance.
We assume a perfect situation where both detectors have 100% efficiency.

10 Hartle considers that the answer to this question is yes [45]; see also the relational interpretation of quantum
mechanics (§10.3.1).

11 The title of [55] is indeed suggestive of this sort of interpretation; moreover, Wigner writes in this reference
that “it follows (from the Wigner friend argument) that the quantum description of objects is influenced by
impressions entering my consciousness”. At the end of the article, he also discusses the influence of non-
linearities which would put a limit on the validity of the Schrödinger equation, and be indications of life.

12 See in §10.1.1 for a relation between consciousness and introspection (London and Bauer).
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Figure 2.3. A source S surrounded by a large detector D1 emits a particle. This
detector captures the particle and provides a signal to a first recording device,
except if the particle escapes through a hole corresponding to a small solid angle
(in the upper direction in the figure). In this case, the particle is necessarily detected
by the second detector D2 sitting at a larger distance and providing a signal to a
second recording device. In the discussion, it is assumed that the detectors are
ideal and have 100% efficiency.

Suppose that the wave packet describing the wave function of the particle
reaches the first detector. Two possibilities may occur:
• Either the particle is detected by D1. It then disappears, and the state vector

is projected onto a state containing no particle and an excited detector (the
first); later, the second detector D2 will never record a particle. This first
possibility occurs in most realizations of the experiment.

• Or the particle is not detected. This event occurs with a small probability,
given by the solid angle subtended by the hole in the first detector seen from
S, divided by 4π (we assume that the source is isotropic), but it sometimes
does occur. Then the only fact that the first detector has not recorded the
particle implies a reduction of the wave function to its component contained
within �, implying that the second detector will always detect the particle
later. We then have a curious situation where the probability of detection at
this second detector has been greatly enhanced by a sort of “non-event” at the
first detector, that is without any interaction between the particle and the first
measurement apparatus. This illustrates that the essence of quantum measure-
ment is something much more subtle than the often invoked “unavoidable
perturbations of the measurement apparatus” (Heisenberg microscope, etc.);
state vector reduction may take place even when the interactions play no role
in the process.

Of course, if one assumes that, initially, the emitted particle already had a well-
defined direction of emission, then the interpretation of this thought experiment
becomes straightforward: detector D2 records only the fraction of the particles
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Figure 2.4. Asource S emits a series of particles, one by one, into an interferometer.
The path differences are adjusted in such a way that all particles reach detector D1
and no particle reaches D2. When an opaque object O is inserted to block one path
for the particle, the destructive interference does not occur anymore and particles
are sometimes recorded at D2. In such an event, it seems that the presence of the
object has been measured with certainty, while no interaction whatsoever with the
object is involved since the detected particle necessarily went through the upper
path of the interferometer (otherwise it would have been absorbed).

that were emitted from the beginning in its direction. It is then not surprising that
no interaction at all occurred with detector D1. But standard quantum mechanics
postulates that this well-defined direction of emission does not exist before any
measurement. Assuming that it does would actually amount to introducing
additional variables to quantum mechanics, a subject that we will discuss in
much more detail below (Chapter 3 and §10.6), but which does not belong to
the standard interpretation of quantum mechanics.

(ii) Consider now Figure 2.4, with a Mach–Zhender interferometer into which a
source emits a series of particles, one by one, which are registered at detectors
D1 and D2. Following [56], we assume that the path differences are adjusted
to create a destructive interference effect at detector D2; no particle can then
reach this detector and all particles are necessarily detected in D1 (again we
assume ideal detectors with 100% efficiency). Now, an opaque object O is
inserted in the lower path of the interferometer, which cancels the destructive
interference effect and allows some particles to reach D2. If we assume that the
two input and output beam splitters have a 50% reflectivity, this event happens
one time out of four. What happened in such an event? Since the particle was
not blocked by the object, it seems that it necessarily went through the upper
path of the interferometer, meaning that it never interacted with the object. But,
if the object had not been inserted, it could never have reached D2! The net
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result is that the sole observation of a detection at D2 reveals the presence of
an object, during an event that apparently excludes any interaction with it. This
phenomenon is called “interaction–free measurement” process13. It illustrates
that, as long as the localization of the particle has not been measured, one
should not attribute any position or single trajectory to it in standard quantum
mechanics. The positive measurement in D2 “cancels” at a distance, so to say,
the effects of the interaction between the particle and the object, which ends
up totally unaffected in this particular experiment14.

For refinements of the ideas and experiments related to interaction-free measure-
ments, see [57, 58]. Hardy has proposed a version involving a double interferometer,
one for an electron and one for a positron, and the mutual annihilation of these
particles [59].

It has also been pointed out that negative measurements can be useful in the
context of quantum cryptography (§7.2). The idea proposed in [60] is that two
remote partners, Alice and Bob, make random choices between two orthogonal
photon polarizations; Alice sends a photon with the polarization chosen locally,
which Bob will send back with a mirror to Alice only if its polarization is different
from his own local random choice. The whole setup contains an interferometer that
is designed so that, if the photon comes back from Bob to Alice, the probability that
Alice will observe a photon at detector D1 vanishes due to a destructive interference
effect similar to that used in example (ii) above. Now, by selecting only the events
where Alice observes the photon at D1 (then necessarily Bob does not detect the
particle), one automatically selects events where the two remote random choices
made by Alice and Bob turn out to be the same. If Alice and Bob communicate to
each other the result of each run of the experiment (which detector has clicked or
not), but keep secret their choice of polarization, by writing down their binary local
choices for the selected events they progressively build a shared secret key. The
remarkable feature of this scheme is that the events used for secret transmission are
actually those where the photon has remained confined within Alice’s apparatus15:
it has not been transmitted from Alice to Bob, in perfect analogy with the particle

13 Even if the effect requires that the test particles may interact with the object, since clearly the effect would not
take place if the object was completely transparent to the particle.

14 In other words, the measurement process selects a component of the state vector that has propagated in the
upper path of the interferometer only. But this event is made possible by the fact that, while propagating in the
lower path, the Schrödinger wave has been absorbed. The curious thing is that the particle and this component
of the wave seem to be dissociated in the process, since they propagate in two different arms at an arbitrary
distance from each other.

15 The useful events for building the key are those where Bob did not return the Schrödinger wave to Alice’s
location, but without absorbing the particle. After Alice and Bob choose identical polarizations, the state
vector develops a component where the particle propagates to Bob’s site, so that it can be measured along the
transmission line or at Bob’s site, but this component vanishes when Alice observes the particle at D1.
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in example (i) above (since the detection of the particle meant that the particle had
not taken the path containing the object). Because the particle does not follow the
transmission line between the two sites in the events retained for building the secret
key, the flux of particles along this line contains no information whatsoever on the
random choices made by Alice and Bob; hence an enhanced security.

2.5 A variety of points of view

The following quotations may be useful to get an idea16 of the variety of interesting
points of view that have been expressed since the appearance of quantum mechanics.

Copenhagen interpretation:

(i) Bohr ([21], 2nd edition, page 204 and [61]): “There is no quantum world. There
is only an abstract physical description. It is wrong to think that the task of physics
is to find out how Nature is. Physics concerns what we can say about Nature”. Or,
similarly: “there is no quantum concept” [62].

Concerning physical phenomena: “one may strongly advocate limitation of the
use of the word phenomenon to refer exclusively to observations obtained under
specified circumstances, including an account of the whole experiment” [46].

He also defines the purpose of physics in the following way [63, 64]: “Physics
is to be regarded not so much as the study of something a priori given, but rather as
the development of methods of ordering and surveying human experience. In this
respect our task must be to account for such experience in a manner independent
of individual subjective judgement and therefore objective in the sense that it can
be unambiguously communicated in ordinary human language”.

While quantum mechanics is often (including nowadays) considered as a theory
that is completely new with respect to classical physics (a revolution), Bohr prefers
to see it as its logical continuation. He considers [65, 66] that, when introducing
quantum mechanics, “the problem with which the physicists were confronted was to
develop a rational generalization of classical physics17, which would permit the har-
monious incorporation of the quantum of action”. For this purpose, the “principle of
correspondence” should be used [67]: “The correspondence principle expresses the
tendency to utilize in the systematic development of the quantum theory every fea-
ture of the classical theories in rational transcription appropriate to the fundamental
contrast between the postulates and the classical theories”. It is therefore natural
that, on many occasions, he emphasized the importance of classical concepts to give

16 With, of course, the usual proviso: short quotations taken out of their context may, sometimes, give a superficial
view on the position of their authors.

17 Similarly, Bohr would probably have seen Einsteinian relativity as a rational generalization of classical
electromagnetism (Maxwell equations).
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a proper meaning to the formalism of quantum mechanics; in particular, classical
concepts are indispensable to describe any process of measurement.

Bohr actually wrote many texts on quantum mechanics, sometimes rather philo-
sophically oriented [1, 68]; we give more quotations in §3.3.2. In his famous Como
lecture (1927), he introduced the notion “complementarity”, the relation between
contradictory attributes of the same object in quantum mechanics, and then extended
it far beyond, including other sciences than physics (see [68] or for instance [46]
where he mentions biology18, sociology, and psychology; see also §7.2 of [21] or
Chapter 4 of [50]).

(ii) Born in 1926 (page 804 of [34]): “The motion of particles conforms to the laws
of probability, but the probability itself is propagated in accordance with the laws
of causality”.

Or, shortly later in [69]: “The quantum theoretical description . . . does not
answer . . . the question of where a certain particle is at a given time . . . This sug-
gests that quantum mechanics only answers properly put statistical questions, and
says nothing about the course of individual phenomena. It would then be a singular
fusion of mechanics and statistics”.

(iii) Heisenberg [21, 70]: “But the atoms or the elementary particles are not real;
they form a world of potentialities or possibilities rather than one of things and
facts”.

In Physics and Philosophy [70] (Chapter V): “Natural science does not simply
describe and explain nature; it is a part of the interplay between nature and ourselves;
it describes nature as exposed to our method of questioning”.

Chapter III of [70] is entitled “The Copenhagen interpretation of quantum theo-
ry”, and he writes in this chapter: “We cannot completely objectify the result of an
observation, we cannot describe what ‘happens’ between this observation and the
next”. Later, he adds: “Therefore, the transition from the ‘possible’ to the ‘actual’
takes place during the act of observation. If we want to describe what happens
during an atomic event, we have to realize that the word ‘happens’ can apply only
to the observation, not to the state of affairs between two observations".

He concludes this chapter with: “. . . the measuring device has been constructed
by the observer, and we have to remember that what we observe is not nature
in itself but nature exposed to our method of questioning. Our scientific work in
physics consists in asking questions about nature in the language that we possess
and trying to get an answer from experiment by the means that are at our disposal.

18 At the end of this article, he discusses the “complementary mode of description” and illustrates its generality
by writing: “An example is offered by biology where mechanistic and vitalistic arguments are used in a
typically complementary manner. In sociology too such dialectics may be often useful, particularly in problems
confronting us with the study and comparison of human cultures . . .”.
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In this way, quantum theory reminds us, as Bohr has put it, of the old wisdom
that when searching for harmony in life one must never forget that in the drama
of existence we are ourselves both players and spectators. It is understandable that
in our scientific relation to nature our own activity becomes very important when
we have to deal with parts of nature into which we can penetrate only by using the
most elaborate tools”.

(iv) Jordan (as quoted by Bell in [71]): “observations not only disturb what has to
be measured, they produce it. In a measurement of position, the electron is forced
to a decision. We compel it to assume a definite position; previously it was neither
here nor there, it had not yet made its decision for a definite position . . .”.

(v) Landau and Lifshitz, in the first section of their book on quantum mechanics [72]:
“The possibility of a quantitative description of the motion of an electron requires
the presence also of physical objects which obey classical mechanics to a sufficient
degree of accuracy. If an electron interacts with such a ‘classical object’ the state of
the latter is, generally speaking, altered . . . In this connection the ‘classical object’
is usually called apparatus, and its interaction with the electron is spoken of as
measurement. However, it must be most decidedly emphasized that we are here not
discussing a process of measurement in which the physicist-observer takes part.
By measurement in quantum mechanics, we understand any process of interaction
between classical and quantum objects, occurring apart from and independently of
any observer. The importance of the concept of measurement in quantum mechanics
was elucidated by N. Bohr”.

(vi) Dirac, page 7 of [39]: “The only object of theoretical physics is to calculate
results that can be compared with experiment, and it is quite unnecessary that any
satisfying description of the whole course of the phenomena should be given”.

Critics of the Copenhagen interpretation:

(vii) Schrödinger [73]: “the world is given to me only once, not one existing and
one perceived. Subject and object are only one. The barrier between them cannot be
said to have broken down as a result of recent experience in the physical sciences,
for this barrier does not exist”. In §2.2, we give more quotations by Schrödinger.

(viii) Einstein, in a letter to Schrödinger in 1928 [74, 75]: “The Heisenberg–Bohr
tranquilizing philosophy – or religion? – is so delicately contrived that, for the time
being, it provides a gentle pillow for the true believer from which he cannot very
easily be aroused.”

In 1936 [76]: “The � function does not in any way describe a condition which
could be that of a single system; it relates rather to many systems, to an ‘ensemble
of systems’ in the sense of statistical mechanics . . . If the function � furnishes only
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statistical data concerning measurable magnitudes . . . the reason lies . . . in the fact
that the function � does not, in any sense, describe the condition of one single
system”.

(ix) de Broglie [77]: “The interpretation of wave mechanics by Bohr and Heisenberg
has many consequences opening new philosophical perspectives. The corpuscle is
no longer a well-defined object within the frame of space and time; it is only an
ensemble of potentialities to which probabilities are assigned, it is only and entity
manifesting itself to us in a fugitive way, sometimes taking an aspect, sometimes
another. Professor Bohr, who is in a way the Rembrandt of contemporary physics,
since he sometimes shows a clear taste for ‘chiaroscuro’, said that the corpuscles
are ‘unsharply defined individuals within finite space-time limits’.”

More recent comments:

(x) Bell [47], describing “modern” quantum theory (Copenhagen interpretation)
and its relations with cosmology: “it never speaks of events in the system, but only
of outcomes of observations upon the system, implying the existence of external
equipment19” (how, then, do we describe the whole universe, since there can be no
external equipment in this case?).

“The problem is this: quantum mechanics is fundamentally about observations.
It necessarily divides the world into two parts, a part which is observed and a part
which does the observing. The results depend on how this division is made, but
no definite prescription for it is given. All we have is a recipe which, because of
practical human limitations, is sufficiently unambiguous for practical purposes”.

See also his text “Against measurement” where he discusses and criticizes
various presentations of the orthodox interpretation [78].

(xi) Mermin [9], summarizing the “fundamental quantum doctrine” (orthodox inter-
pretation): “the outcome of a measurement is brought into being by the act of
measurement itself, a joint manifestation of the state of the probed system and the
probing apparatus. Precisely how the particular result of an individual measurement
is obtained – Heisenberg’s transition from the possible to the actual – is inherently
unknowable”.

(xii) Shimony [10]: “According to the interpretation proposed by Bohr, the change
of state is a consequence of the fundamental assumption that the description of any
physical phenomenon requires reference to the experimental arrangement”.

(xiii) Rosenfeld [79], speaking of the orthodox interpretation: “the human observer,
whom we have been at pains to keep out of the picture, seems irresistibly to intrude
into it . . .”.

19 One could add “and of external observers”.
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(xiv) Gottfried [80] (page 188 of first edition): “The reduction postulate is an inde-
pendent axiom . . . The outcome of these considerations is that quantum mechanics
cannot give a complete description of the physical world because there must exist
systems (called ‘conscious’ by Wigner) that are beyond the theory’s power of
description, i.e. that cannot be incorporated into the part of the world that we
treat with the Schrödinger equation”.

(xv) Stapp [42] “The interpretation of quantum theory is clouded by the follow-
ing points: (1) Invalid classical concepts are ascribed fundamental status; (2) The
process of measurement is not describable within the framework of the theory; (3)
The subject–object distinction is blurred; (4) The observed system is required to be
isolated in order to be defined, yet interacting to be observed”.

Or, as cited by Bell in [47]: “How can a theory which is fundamentally a pro-
cedure by which gross macroscopic creatures, such as human beings, calculate
predicted probabilities of what they will observe under macroscopically specified
circumstances ever be claimed to be a complete description of physical reality?”
(the completeness of quantum mechanics will be discussed in Chapter 3).

(xvi) Leggett discusses the Copenhagen interpretation [81] in these terms:
“. . . the formalism of QM which goes under the name of the Copenhagen inter-
pretation (though it should probably more correctly be called the Copenhagen
non-interpretation, since its whole point is that any attempt to interpret the for-
malism in intuitive terms is doomed to failure) . . . while denying that microscopic
objects (electrons, photons, atoms, . . .) necessarily have definite properties in the
absence of observation, emphatically asserts (or at least implies) that macroscopic
objects (counters, cats, etc.) do have such properties at all times, whether they
are observed or not. This insistence on the necessity of drawing a sharp line . . .

between the microscopic world and the macroscopic one of everyday life (including
apparatus) is a pervasive theme in the writings of Niels Bohr . . .”.

In [82], he comments “The real trouble only starts when we take seriously the fact
that the measuring apparatus . . . is itself a physical system made up of atoms and
electrons, and therefore should in principle be describable in quantum-mechanical
terms. It should therefore be legitimate to ask what happens if, instead of treating
measurement as something quite extraneous to the ordinary behavior of physical
systems, we treat it as merely a particular type of physical process and describe it by
the linear time-dependent Schrödinger equation”. And then, in [83], he comments:
“Within the conventional interpretation of quantum mechanics, a system does not
possess definite properties until we, as it were, force it to declare them by carrying
an appropriate measurement. But is this the only possible interpretation? . . . it is
perfectly possible that at a deeper level systems do, in fact, have objective objective
properties, whether or not anyone is measuring them . . . The apparently random
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outcomes predicted by the quantum formalism would then simply be due to our
ignorance of the details of a deeper level description20”.

(xvii) Van Kampen [84] has proposed the following interesting caveat: “Whoever
endows the state vector with more meaning than needed for computing observable
phenomena is responsible for the consequences!" In Appendix A, we discuss how
two other references [85, 86] make good use of this warning.

Present situation:

As one can guess from the above quotations, even nowadays no general consensus
has been reached among physicists concerning the precise meaning of the state
vector or wave function. They agree on the formalism and how to use the state
vector in practice. For all experiments realized so far, a pragmatic choice between
the two postulates can be left to the judgment of the physicist; to make practical
predictions concerning an experiment, common sense is sufficient (cf. §10.1.1), so
that problems related to the foundations of the theory may be put aside. Never-
theless, it would be preferable to have well-defined mathematical laws than just
physically reasonable recipes! It is therefore not surprising that, when the ques-
tion comes to discussing the physical meaning of the mathematical objects and the
interpretation of the theory, the debate soon re-appears, and may even sometimes
become passionate. Moreover, even those who claim to be in perfect agreement
with orthodox quantum theory will use, in fact, a variety of nuances (and even
sometimes contradictory points of view and inconsistencies) when they are asked
to explain in detail their point of view.

To summarize, the orthodox status of the wave function is indeed a subtle mixture
between different concepts concerning reality and the knowledge that we have of
this reality. Do the fantastic achievements of standard quantum theory mean that
it is the ultimate and most precise description of a quantum system that physics
will ever provide? Is quantum theory compatible with realism, or does it require
positivism? The questions are not settled. Interestingly Bohr himself is generally
considered more as a realist21 than a positivist or an operationalist [21]. In the words
of Jammer ([50], p. 157): “Bohr, as Von Weizsäcker [87] emphasized, never rejected
the notion of reality, he only modified it”. If asked about the relations between the
wave function and reality, Bohr would probably have said that the wave function
is indeed a useful tool, but that the concept of reality cannot properly be defined
at its level only; it has to include all macroscopic measurement apparatuses that

20 Section 3 gives a much more detailed account of the discussions on the completeness (or incompleteness) of
quantum mechanics.

21 See for instance in §3.3.2 how he considers that physical reality can be defined without ambiguity. Bohr accepts
the notion of reality provided it is properly defined (with a full description of the experiment).
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are used to have access to microscopic information (we come back to this point in
more detail in §3.3).

2.6 Unconvincing arguments

We have already emphasized that the invention of the Copenhagen/standard
interpretation of quantum mechanics has been, and remains, one of the biggest
achievements of all science. One can admire even more, in retrospect, how early
its founders conceived it, at a time when experimental data were relatively scarce.
Since that time, numerous ingenious experiments have been performed, precisely
with the hope of seeing the limits of this interpretation; nevertheless, until now, not
a single fact has disproved the theory. It is really a wonder of pure logic that has
allowed the early emergence of such an intellectual construction.

This being said, one has to admit that, in some cases, the brilliant authors of
this construction may sometimes have gone too far, pushed by their great desire
to convince. For instance, authoritative statements have been made concerning the
absolute necessity of the orthodox interpretation which now, in retrospect, seem
exaggerated. According to these statements, the orthodox interpretation would give
the only possible ultimate description of physical reality; no finer description would
ever become possible. From this perspective, the fundamental probabilistic char-
acter of microscopic phenomena should be considered as a proven fact, a rule that
should be carved into marble and accepted forever by scientists. But, now, we know
that this is not necessarily true: yes, one may prefer the orthodox interpretation for
various reasons, but this is not the only choice allowed by pure logic. Other inter-
pretations are still perfectly possible; determinism in itself is not disproved at all22.
As discussed for instance in [9], and initially clarified by Bell [5, 6] and Bohm [7, 8],
the “impossibility proofs” put forward by the proponents of the Copenhagen inter-
pretation are logically unsatisfactory for a simple reason: they arbitrarily impose
conditions that may be relevant to quantum mechanics (linearity), but not to the
theories they aim to dismiss – any theory with additional variables such as the Bohm
theory, for instance. Because of the exceptional scientific stature of the authors of
the impossibility theorems, it took a long time for the physics community to realize
that the theorems were irrelevant; now that this is more widely recognized, the
plurality of interpretations is more easily accepted.

22 Provided one accepts non-locality, see Chapter 4.
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The theorem of Einstein, Podolsky, and Rosen

More than 70 years after its publication, the article by Einstein, Podolsky, and Rosen
(EPR) [88] is still cited hundreds of times every year in the literature; this is a very
exceptional case of longevity for a scientific article! There is some irony in this sit-
uation since, for a long time, the majority of physicists did not pay much attention
to the EPR reasoning. They considered it as historically interesting, but with no pre-
cise relevance to modern quantum mechanics; the argument was even sometimes
completely misinterpreted. A striking example is given in the Einstein–Born corre-
spondence [89] where Born, even in comments that he wrote after Einstein’s death,
clearly shows that he never completely understood the nature of the objections
raised by EPR. Born went on thinking that the point of Einstein was a stubborn
rejection of indeterminism (“look, Albert, indeterminism is not so bad!”), while
actually the major concern of EPR was locality and/or separability (we come back
later to these terms, which are related to the notion of space-time). If giants like
Born could be misled in this way, no surprise that, later on, many others made
similar mistakes!

This is why, in what follows, we will take an approach that may look ele-
mentary, but at least has the advantage of putting the emphasis on the logical
structure of the arguments and their generality. Doing so, we will closely fol-
low neither the historical development of the ideas nor the formulation of the
original article1, but rather will emphasize the generality of the EPR reason-
ing. For a more precise historical report, see Chapter 6 of [50], or [93], as well
as references contained therein; [94] relates the circumstances under which the
EPR article was written, and was sent not only to Physical Review but also to a

1 The published version of the EPR article was written by Podolsky. In later comments on the subject, Einstein
gave the impression that he thought that the essence of the argument could have been expressed in a simpler
way; see for instance a letter from Einstein to Schrödinger [90] (“the writing is not really what I was expecting:
what is essential is sort of buried under erudition”); see also [76], [91], and [92], where Einstein explains the
argument in his own terms.

38
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newspaper (New York Times), which published a report2 – an initiative that Einstein
disapproved.

3.1 A theorem

One often speaks of the “EPR paradox”, although the word “paradox” is not com-
pletely appropriate in this case. For Einstein, the basic motivation was not to invent
paradoxes or to entertain colleagues inclined to philosophy, it was to build a strong
logical reasoning that, starting from well-defined assumptions (roughly speaking:
locality and some form of realism), would lead ineluctably to a clear conclusion
(quantum mechanics is incomplete, and even: physics is deterministic3). To empha-
size this logical structure and generality, here we will speak of the “EPR theorem4”,
which formally could be stated as follows:

Theorem: If the predictions of quantum mechanics are correct (even for systems
made of remote correlated particles) and if physical reality can be described in a
local (or separable) way, then quantum mechanics is necessarily incomplete: some
“elements of reality5” exist in Nature that are ignored by this theory.

The theorem is certainly valid; it has been scrutinized by many scientists who
have found no flaw in its derivation. Indeed, the logic which leads from the assump-
tions to the conclusions is perfectly sound. It would therefore be an error to repeat
(a classical mistake!) “the theorem was shown by Bohr to be incorrect” or, even
worse, “the theorem is incorrect since experimental results are in contradiction
with it6”. Bohr himself, of course, did not make the error: in his reply to EPR [41],
he explained why he thought that the assumptions on which the theorem is based
were not relevant to the quantum world, which made it inapplicable to a discus-
sion on quantum mechanics. More precisely, he used the word “ambiguous” to
characterize these assumptions, but never claimed that the reasoning is faulty (for
more details, see §3.3.2). A theorem that is not applicable in a particular case is not
necessarily incorrect: theorems of Euclidean geometry are not wrong, or even use-
less, because one can also build a consistent non-Euclidean geometry! Concerning
possible contradictions with experimental results we will see that, in a sense, they
make a theorem even more interesting, mostly because it can then be used within
a “reductio ad absurdum” reasoning.

2 This reports ends with comments by E. Condon (Princeton University) which show that he also did not realize the
exact point of the EPR article; maybe he did not have the time to read the article in detail before the newspaper
was published.

3 Born’s mistake, therefore, was to confuse assumptions and conclusions.
4 Einstein himself nevertheless sometimes used the word “paradox”, for instance in §5 of [76].
5 These words are carefully defined by the authors of the theorem; see the beginning of §3.3.
6 The contradiction in question occurs through the Bell theorem (which is therefore sometimes criticized for the

same reason), which was introduced as a continuation of the EPR theorem.
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S
Measurement
with setting b

Measurement
with setting a

Alice’s laboratory Bob’s laboratorySource

Figure 3.1. Asource S emits two particles, which then propagate in space and reach
different regions of space, where Alice and Bob perform measurements with them
in their respective laboratories; a and b are the settings of the two corresponding
measurement apparatuses (for instance, orientations of Stern–Gerlach magnets).

Good texts on the EPR argument are abundant; for instance, a classic is the little
article by Bell [71]. Another excellent introductory text is, for instance, [48], which
contains a complete description of the EPR thought experiment in a particular case
(two settings only are used) and provides a general discussion of many aspects of
the problem. For a detailed list of references, see for instance [95]. The basic scheme
considered is summarized in Figure 3.1: a source S emits two correlated particles,
which propagate towards two remote regions of space where they undergo measure-
ments; the type of these measurements are defined by “settings”, or “parameters”7

a in the first region, b in the second (typically orientations of Stern–Gerlach ana-
lyzers), which are the free choice of the experimentalists; in each region, a result is
obtained, which can take only two values symbolized by ±1 in the usual notation.
Finally, a crucial assumption is made: for the particular experimental arrangement
considered, every time both settings are chosen to be the same value, the results of
both measurements are always the same (perfect correlations).

Here, rather than trying to paraphrase the good texts on EPR, we will intentionally
take a different presentation, based on an analogy, a sort of a parable. Our purpose
is to emphasize an important feature of the argument: the essence of the EPR
reasoning is actually nothing but what is usually called “the scientific method”, in
the sense discussed by Francis Bacon and Claude Bernard. For this purpose, we
will leave pure physics for botany! Indeed, in both disciplines, one needs rigorous
scientific procedures in order to prove the existence of relations and causes, which
is precisely what we want to do.

3.2 Of peas, pods, and genes

Inferring the properties of microscopic objects from macroscopic observations
requires a combination of ingenuity, in order to design meaningful experiments,
with a good deal of logic, in order to deduce these microscopic properties from
the macroscopic results. Because it is impossible to observe an electron or even

7 Depending on the context, we will use the words “settings” and “parameters” indifferently.
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a macromolecule with the naked eye, or to take it in one’s hand, some abstract
reasoning is necessary. The scientist of past centuries who, like Mendel, was trying
to determine the genetic properties of plants, had exactly the same problem: he
did not have access to any direct observation of the DNA molecules, so that he
had to base his reasoning on adequate experiments and on the observation of their
macroscopic outcome. In our parable, the scientist grows plants from peas, and
later observes the color of flowers (the “result” of the measurement, +1 for red,
−1 for blue) as a function of the conditions (temperature for instance) in which the
peas are grown – these conditions correspond to the “settings” a or b, also called
“experimental parameters” which determine the nature of the measurement. The
basic purpose is to infer the intrinsic properties of the peas (the EPR “element of
reality”) from these observations.

3.2.1 Simple experiments: no conclusion yet

It is clear that many external parameters such as temperature, humidity, amount
of light, etc. may influence the growth of vegetables and the color of a flower; in
a practical experiment, it seems therefore very difficult to identify and control all
the relevant parameters with certainty. Suppose that one observes that the flowers
growing in a series of experiments are sometimes blue, sometimes red; the reason
behind these variations may therefore be some irreproducibility of the conditions
of the experiment, but it can also be something more fundamental. In more abstract
terms, a completely random character of the observed result of the experiments may
originate either from the fluctuations of uncontrolled external perturbations, or from
some intrinsic property that the measured system (the pea) initially possesses. It
may even result from the fact that the growth of a flower (or, more generally, life?)
is a fundamentally indeterministic process – needless to say, all three reasons can
be combined in any complicated way. Transposing the issue to quantum physics
leads to the following formulation of the question: are the results of the experi-
ments random because of the influence of some uncontrolled fluctuating process
acting somewhere (fluctuations in the macroscopic apparatus, fluctuations of some
microscopic property of the measured particles, etc.)? Or are they fundamentally
random because they are the result of an irreducible quantum process?

The scientist may repeat the “experiment” a thousand times and even more: as
long as the results are always totally random, there is no way to decide which
interpretation should be selected; it is just a matter of personal taste. Of course,
philosophical arguments may be built to favor or reject one of them, but from a
pure scientific point of view, at this stage, there is no compelling reason to make
one choice or another. Such was the situation of quantum physics before the EPR
argument.
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3.2.2 Correlations: causes unveiled

The stroke of genius of EPR was to realize that studying quantum correlations
could lead to a big step forward in the analysis. They exploit the crucial assumption
mentioned above: when the choices of the settings are the same, the observed results
are always identical.

3.2.2.a Same measurement parameters

In our botanical analogy, we assume that the botanist observes correlations between
colors of flowers under appropriate conditions. Peas come together in pods, so that
it is possible to grow peas taken from the same pod and observe their flowers in
remote places. When no special care is taken to give equal values to the experimental
parameters (temperature, etc.), or when peas are taken from different pods, nothing
special is observed. But when the two peas come from the same pod and when the
parameters for the growth of each of them are chosen to the same values, then the
colors are systematically the same (both remain random from one pod to the next,
but they always take the same value).

What can we then conclude? Since the peas grow in remote places, there is no
way that they can be influenced by any single uncontrolled fluctuating phenomenon,
or that they can somehow influence each other in the determination of the colors.
If we believe that causes always act locally, and that perfect correlations cannot
appear by pure chance (without any cause), we are led to the following conclusion:
the only possible explanation of the common color is the existence of some common
property of both peas, which determines the color8. It may be difficult to detect the
property in question directly, since it is presumably encoded inside some tiny part
of a biological molecule, but the property exists and is sufficient to determine the
results of the experiments.

This is the essence of the argument, and we could stop at this point. Nevertheless,
for completeness, let us make every step of the EPR reasoning even more explicit.
The key idea is that the nature and the number of “elements of reality” associated
with each pea cannot vary under the influence of some remote experiment, per-
formed on the other pea. Let us first assume that the two experiments are performed
at different times: one week, the experimenter grows a pea; the next week another
pea from the same pod, in exactly the same conditions of temperature, humidity, etc.
We then assume that perfect correlations of the colors are always observed, without
any special influence of the delay between the experiments. Just after completion
of the first experiment (observation of the first color), but still before the second

8 The fact that the correlations disappear if the parameters are no longer set to the same value shows that the color
is a function of both this common property and of the local parameters of the experiment (settings).
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experiment, the result of that future experiment has a perfectly determined value;
therefore, there must already exist one element of reality attached to the second pea
that corresponds to this certainty. Clearly, it can not be attached to any other object
than the pea, for instance one of the measurement apparatuses; this is because the
observation of perfect correlations only arises when making measurements with
peas taken from the same pod. Symmetrically, the first pod also had an element of
reality attached to it, which ensured that its measurement would always provide a
result that coincides with that of the future measurement. We can assume that the
elements of reality associated with both peas are coded in some genetic information,
and that the values of the codes are the same for all peas coming from the same
pod; but other possibilities exist and the precise nature and mechanism involved in
the elements of reality do not really matter here. The important point is that, since
these elements of reality cannot appear by any action at a distance, they necessarily
also existed before any measurement was performed – presumably even before the
two peas were separated.

It seems difficult not to agree that the method which led to these conclusions
is indeed the scientific method; no tribunal would believe that, in any circum-
stance, perfect correlations could be observed in remote places by pure chance,
without being the consequence of some common characteristics shared by both
objects. Such perfect correlations can then only reveal the initial common value
of some variable attached to them, which is in turn a consequence of some
fluctuating common cause in the past (a random choice of pods in a bag for
instance).

3.2.2.b Different measurements parameters

Now, let us consider any pair of peas, when they are already spatially separated, but
before the experimentalist decides what type of measurements they will undergo
(values of the parameters, delay or not, etc.). We know that, if the decision turns out
to favor measurements with exactly the same parameter, perfect correlations will
always be observed; this is true for any local choice of the parameters, provided
they are the same at both places. Since elements of reality cannot appear or change
their values depending of experiments that are performed in a remote place, the
two peas necessarily carry some elements of reality that completely determine the
color of the flowers for any experimental condition – not only for the conditions
that turn out to be chosen for the experiment. Any theory ignoring these elements
of reality is necessarily incomplete.

To take another analogy, let us for instance assume that the peas are replaced
with elaborate automata, using the most elaborate technology available, able to
measure the external parameters such as temperature, etc. and to process them
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with powerful computers9 to calculate the results ±1 from the parameters. All
this computing power is actually useless to simulate the predictions of quantum
mechanics for remote experiments, unless the memory of each computer contains
initially a common random number. Because each automaton does not have access
to the remote parameters, the only way to reproduce quantum mechanics is to feed
the memory of both computers with the same random number, and to program both
for calculating in the same way all the possible results as a function of the local
parameters and the common random number.

3.2.2.c Summary

To summarize, the reasoning shows that each result of a measurement may be a
function of two kinds of variables10:

(i) intrinsic properties of the peas, which they carry along with them;
(ii) the local parameters of the experiment (temperature, humidity, etc.); because

correlations disappear when the parameters are different, a given pair that
turned out to provide two blue flowers with one choice of common exper-
imental conditions could have provided a pair of red flowers with another
choice.

We may also add that:
(iii) the results are well-defined functions of these variables, which means that

no fundamentally indeterministic process takes place in the experiments. The
only source of randomness is the choice of the initial pair.

(iv) when taken from its pod, a pea cannot “know in advance” to which sort of
experiment it will be submitted, since the decision may not yet have been
made by the experimenters; when separated, the two peas therefore have to
take with them all the information necessary to determine the color of flowers
for any kind of experimental conditions.

In other words, each pea carries with it as many elements of reality as
necessary to provide “the correct answer”11 to all possible questions it might
be asked in the future.

9 We are assuming here that the computers are not quantum computers (if quantum computers can ever be built,
which is another question).

10 In Bell’s notation, the A functions depend on λ as well as on a.
11 In §13 of [51], Schrödinger offers a comparison with a “schoolboy under examination” who may be asked two

different questions by a teacher. During many tests, it appears that “the pupil will correctly answer the first
question that is put to him. From that it follows that in every case he knows the answer to both questions”, even
if afterwards he does not necessarily answers the second correctly. “No school principal will judge otherwise”.
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3.3 Transposition to physics

We now come back to microscopic physics, as in the original EPR argument.

3.3.1 The EPR argument for two correlated microscopic particles

Historically, EPR introduced their arguments for two correlated particles and
measurements of their position and momentum, with continuous results. It is nev-
ertheless convenient to use a version of the argument, often called EPRB, that
involves discrete results and spins, initially introduced by Bohm [96].

3.3.1.a Assumptions

We consider two spin 1/2 particles, which are emitted by one source S in a singlet
state12 where their spins are correlated, and then propagate towards two different
regions of space, where they undergo the measurement of their spin component
along a direction defined by angle a on the left, b on the right (Figure 3.2). We call
Alice and Bob the two operators who perform these experiments in two remote
laboratories, separated by an arbitrary distance. Alice makes a free choice of
the direction a, which defines her “type of measurement”, and can only obtain
result +1 or −1 whatever type of measurement has been chosen; similarly, Bob
chooses direction b arbitrarily and obtains one of the results +1 or −1. In the
EPR thought experiment, it is assumed that the two spins interact only with the
measurement apparatuses, with no proper evolution of the singlet state. Standard
quantum mechanics then predicts (§4.1.1) that the distance and times at which the
spin measurements are performed is completely irrelevant for calculating the prob-
abilities of the various combined results. If for instance a and b are chosen equal
(parallel directions of measurements), the prediction is that the results are always
opposite, even if the measurements take place in very remote places. This remains
true whatever common choice of a = b is made, even by two experimenters who
operate independently in the two regions of space and make a random choice at the
last moment (after the emission of the pair of particles).

The starting point of EPR is to assume that the predictions of quantum mechanics
concerning the results of experiments are correct. More specifically, the reasoning
assumes that the perfect correlations predicted by this theory are always observed,
whatever the distance between the experimental apparatuses may be. In the parable
of the peas, the red/blue colors are obviously the analogue of the two results ±1,

12 In this chapter, we do not need to know the precise definition of a singlet spin state. This definition is given
in §4.1.1, as well as the quantum probabilities of the results associated with any values of a and b. For equal
values of a and b, these probabilities give perfect correlations, which is the only result we need to know to
understand the EPR reasoning. See also see the Annex, equation (11.69).
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Figure 3.2. Scheme of an EPRB experiment. A source S emits pairs of particles in
a singlet spin state. The particles propagate along direction Oz towards two remote
regions of space A and B, where Stern–Gerlach magnets are used to measure the
components of their spins along directions in the plane perpendicular to Oz. For
the first particle, the direction is defined by angle a, for the second by angle b. Each
measurement provides result+1 or−1, and correlations between these results are
measured when the experiment is repeated many times.

the experimental parameters (temperature, etc.) are the analogous to the orientation
of these apparatuses. We have assumed that the same colors are always observed
for the same pair of peas, provided the experimental conditions are the same for
both peas, while for quantum mechanics we just saw that the results are always
opposite for parallel settings; to obtain a perfect correspondence with the parable,
we have to insert a sign change. For instance we may assume that, in the quantum
experiment, Alice attributes a red color to result +1 and a blue color to result −1,
while Bob chooses the opposite convention13. In practice, Alice could complete
her measurement apparatus with a device that makes a red lamp flash for result+1,
or a blue lamp flash for result −1; Bob could use a similar device with different
connections providing the opposite correspondence between results and colors.
This question of sign does not introduce any difficulty; in the context of the EPR
argument, there is no fundamental difference between a perfect correlation and a
perfect anti-correlation.

Another essential ingredient of the EPR reasoning is the notion of “elements of
reality”; EPR first remark that “these elements cannot be determined by a priori
philosophical considerations, but must be found by an appeal to results of experi-
ments and measurements”. They then propose the following criterion: “if, without
in any way disturbing a system, we can predict with certainty the value of a phys-
ical quantity, then there exists an element of physical reality corresponding to
this physical quantity”. In other words, certainty cannot emerge from nothing: an
experimental result that is known in advance is necessarily the consequence of

13 Alternatively, one may make no change on the quantum mechanics side and attribute values +1 to red flowers
and −1 to blue flowers in one place where peas are grown, and choose the opposite convention in the other
place.
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some pre-existing physical property. In our botanical analogy, we implicitly made
use of this idea in the reasoning of §3.2.2.

A last, but essential, ingredient of the EPR reasoning is the notion of space-
time and locality: the elements of reality in question are attached to the region of
space where the experiment takes place14, and they cannot vary suddenly under the
influence of events taking place in a very distant region of space. They can even less
appear under these conditions15. The peas of the parable were in fact not so much
the symbol of microscopic objects, electrons or spin 1/2 atoms for instance. Rather,
they symbolize regions of space where we just know that “something is propagating
inside”; it can be a particle, a field, a biological molecule, or anything else, with
absolutely no assumption on its structure or physical description. Actually, in the
EPR quotation of the preceding paragraph, one may replace the word “system” by
“region of space”, without altering the rest of the reasoning. One may summarize
the situation by saying that the basic belief of EPR is that regions of space can
contain elements of reality attached to them (attaching distinct elements of reality
to separate regions of space is sometimes called “separability” – see §3.3.3.b) and
that they evolve locally – for brevity, this is often called “local realism” in the
literature.

3.3.1.b Conclusions

From these assumptions, by the same reasoning as above, EPR obtain the equivalent
of the conclusions of §3.2.2: whatever values are chosen for a, b, the results of the
measurements are functions:

(i) of intrinsic individual properties of the spins that they carry with them (the
EPR elements of reality);

(ii) of course, also of the orientations a, b of the Stern–Gerlach analyzers.
In addition, they show that:

(iii) the results are given by well-defined functions of these variables, which implies
that no indeterministic process is taking place; in other words, a particle with
spin carries along with it all the information necessary to provide the result for
the measurement, whatever choice is made for the orientation a (for the first
particle) or b (for the second). All components of each spin have determined
values simultaneously.

14 Einstein writes in [91]: “Things in physics are imbedded in a space-time continuum. These things require an
autonomous existence inasmuch as they are in separate ‘parts’ of space”.

15 In standard quantum mechanics, if one applies the state vector reduction, the unmeasured spin suddenly “jumps”
to a state with a perfectly well-defined spin component along the direction of measurement for the other spin. In
this sense, quantum mechanics does attribute an element of reality to the unmeasured spin before it undergoes
any measurement, in partial agreement with the EPR conclusion. But the disagreement occurs before the first
measurement, since then standard quantum mechanics contains no such element of reality whatsoever.
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(iv) it is possible to envisage future measurements of observables that correspond to
two different values b and b′ for instance, that is to two different components
of the spin that are called “incompatible” in quantum mechanics; the EPR
reasoning shows that, in reality, incompatible observables can simultaneously
have perfectly well-defined values.

Item (i) may be called the EPR-1 result; it implies that something is missing in
quantum mechanics (the description of these intrinsic individual properties before
the measurements), which is thus incomplete (EPR require from a complete theory
that “every element of physical reality must have a counterpart in the physical
theory”). The state vector may be a sufficient description for a statistical ensemble
of pairs, but not for one single pair of spins; in this case, it should be completed by
some additional information. In other words, inside the ensemble of all pairs, one
can distinguish between sub-ensembles with different physical properties.

Item (iii) goes further and establishes the validity of determinism from a locality
assumption, combined with correct predictions of quantum mechanics.

Item (iv) can be called the EPR-2 result; it shows that the notion of incompatible
observables is not fundamental, but just a consequence of the incomplete character
of the theory. It actually provides a reason to reject complementarity. Curiously,
EPR-2 is often presented as the major EPR result, sometimes even with no mention
of the others; actually, the rejection of complementarity is almost marginal or, at
least, less important for EPR than the proof of incompleteness. In fact, in our rea-
sonings, we will only need EPR-1. Einstein himself did not give much importance
to the relation between the reasoning and non-commuting observables16, and it
seems likely that this component was introduced into the article by Podolsky.

Finally, we should also mention that the EPR article contains another logical
element, which is often overlooked (maybe because it is not mentioned in the
abstract of the EPR article). Nevertheless, Einstein considered it as important –
for instance it is the main aspect that he emphasizes in his 1936 article [76], one
year after the publication of the EPR article17. The result may be called EPR-3:
the description of physical reality given by quantum mechanics is “redundant”,
since it describes the same physical reality for particle 2 with several different

16 At the end of the already mendioned letter to Schrödinger [90], he writes “as for the fact that the different states
of system 2 may be considered as eigenvectors of different operators, I really do not care" (“Das ist mir Wurst”
in German).

17 Einstein’s words in this article are (he calls systems A and B the systems we called 1 and 2): “Since there
can be only one physical condition of B after the interaction, and which can reasonably not be considered as
dependent on the particular measurement we perform on the system A separated from B, it may be concluded
that the � function is not unambiguously coordinated with the physical condition. The coordination of several
� functions with the same physical condition of system B shows again that the � function cannot be interpreted
as a (complete) description of a physical condition of a unit system”.
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state vectors. Indeed, if all pairs of particles are identical as assumed in quantum
mechanics, the physical reality attached to particle 2 cannot depend on the type of
measurement performed on particle 1; it will necessarily be the same just after this
measurement is performed, whatever physical quantity is measured on particle 1.
But quantum mechanics implies that state vector reduction should be applied in a
basis of the space of states that does depend on the measurement; therefore, particle
2 will reach several different states, depending on the measurement performed on
particle 1. We then end up with too many different state vectors to describe the same
physical reality for particle 2; hence a contradiction. It is somewhat paradoxical
that the same theory should be both incomplete and redundant! By contrast, if we
accept the idea of the EPR elements of reality, the measurement on particle 1 reveals
pre-existing properties of this particle, and therefore of the emitted pair, and finally
of particle 2 if the two particles are initially correlated; the situation can then be
understood within the usual frame of classical correlations.

3.3.2 Bohr’s reply

Bohr, in his reply [41, 97], does not criticize the EPR reasoning, but their assump-
tions, which he considers as inappropriate in quantum physics. For Bohr, the
criterion of physical reality proposed by EPR “contains an essential ambiguity
when applied to quantum phenomena”; he adds: “their argumentation does not
seem to me to adequately meet the actual situation with which we are faced in
atomic physics” (in this context, “atomic” is equivalent to “microscopic” or “quan-
tum” in modern language). His text has been studied in detail and discussed by many
authors (for an historical review, see for instance Chapter 6 of [50]), but remains
delicate to understand in detail. One reason may be that, instead of concentrat-
ing his arguments on the precise situation considered by EPR, Bohr emphasizes
in general the consistency of the mathematical formalism of quantum mechanics
and the “impossibility of controlling the reaction of the object on the measuring
instruments”. But, precisely, the main point of the EPR argument is to select a situ-
ation where these unavoidable perturbations do not exist! EPR locality implies that
a measurement performed in region A can create no perturbation on the elements
of reality in region B.

Only the second part of Bohr’s article really deals with the EPR argument. Bohr
then writes the following: “The wording of the above mentioned criterion (the EPR
criterion for elements of reality) . . . contains an ambiguity as regards the expression
‘without in any way disturbing a system’. Of course there is, in a case like that
considered (by EPR), no question of a mechanical disturbance of the system under
investigation during the last critical stage of the measuring procedure. But even at
this stage there is essentially the question of an influence on the very conditions
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which define the possible types of predictions regarding the future behavior of the
system . . . the quantum description may be characterized as a rational utilization of
all possibilities of unambiguous interpretation of measurements, compatible with
the finite and uncontrollable interactions between the objects and the measuring
instruments in the field of quantum theory”.

Several authors have wondered how exactly these words should be interpreted,
what is meant by “mechanical disturbance” and, especially, how to understand the
central sentence “there is essentially the question of an influence on the very con-
ditions which define the precise types of predictions regarding the future behavior
of the system”. What is probably meant is “an influence of the first measurement
performed in A on the conditions which define the predictions on the future behav-
ior of the system during the second measurement performed in B” – or maybe
“the future behavior of the whole system extending in both regions A and B”. In
Bohr’s view, physical reality cannot be properly defined without reference to a
complete and well-defined experiment. This includes, not only the systems to be
measured (the microscopic particles), but also all the measurement apparatuses:
“these (experimental) conditions must be considered as an inherent element of any
phenomenon to which the term physical reality can be unambiguously applied”.
As a consequence, a spin measurement performed in A on one spin, as well as
the direction of the measured component, change the physical reality of the whole
physical system, which of course includes the second spin. This leads to a rejection
of the EPR assumption, according to which the physical reality contained within
the space region B of one spin is independent of measurements performed on the
other in an arbitrarily remote region A, and the EPR conclusion is no longer valid.

In the same line, more than ten years later (in 1948), Bohr summarized his point of
view by writing [46]: “Recapitulating, the impossibility of subdivising the individ-
ual quantum effects and of separating a behavior of the objects from their interaction
with the measuring instrument serving to define the conditions under which the phe-
nomena appear implies an ambiguity in assigning conventional attributes to atomic
objects which calls for a reconsideration of our attitude towards the problem of
physical explanation”. What is questioned by Bohr is therefore the very necessity
of an explanation in the situation considered. The quotations given above in §2.5
also show that, for Bohr, a consistent interpretation of the quantum formalism can-
not be obtained without the inclusion of the classical concepts associated with each
experiment18.

18 Heisenberg did not agree with Einstein either, and characterized his position on quantum mechanics in the
following terms (Chapter V of [70]): “When Einstein has criticized quantum theory he has done so from the
basis of dogmatic realism. This is a very natural attitude. Every scientist who does research work feels that he
is looking for something that is objectively true. His statements are not meant to depend upon the conditions
under which they can be verified”.
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J.S. Bell summarizes Bohr’s reply concisely by writing [71] that, in Bohr’s
view, “there is no reality below some classical macroscopic level”. Indeed, if one
assumes that physical reality is necessarily macroscopic, then EPR’s attempt to
assign elements of reality to one of the spins only, or to a region of space con-
taining it, is incompatible with quantum mechanics and therefore unphysical19 –
even if the region in question is very large and isolated from the rest of the world.
Expressed differently, a physical system that is extended over a large region of
space is to be considered as a single entity, within which no attempt should be
made to distinguish physical sub-systems or any sub-structure; trying to attach
physical reality to regions of space is then automatically bound to failure. In terms
of our Leitmotiv of §1.1.3, the difference between ordinary space and configu-
ration space, we could say the following: the system has a single wave function
for both particles that propagates in a configuration space with more than three
dimensions, and this should be taken very seriously; no attempt should be made
to come back to three dimensions and implement locality arguments in a smaller
space. Bohr’s point of view is, of course, not contradictory with relativity, but it
certainly minimizes the impact of basic notions such as space-time, or events (a
measurement process in quantum mechanics is not local; therefore it is not an event
stricto sensu). His point of view does not fit well with a very strict interpretation
of relativity.

Many physicists admit that a precise characterization of Bohr’s attitude, in
terms for instance of exactly what traditional principles of physics should be
given up, is delicate (see for example the discussion of [10]). What is clear
is that Bohr considers that it is vain to attempt to give any physical explana-
tion that goes beyond orthodox quantum mechanics. In his reply to EPR [41] in
Physical Review, there seems to be an influence of previous discussions that he
had with Einstein at the Solvay conferences, explaining why he just repeats the
orthodox point of view for a single particle submitted to incompatible measure-
ments, rather irrelevant in the EPR context. Locality is not explicitly discussed.
Did he fully appreciate how interesting the discussion becomes for two remote
correlated particles, and the novelty of the EPR argument, which is the start-
ing point of the Bell theorem for instance20? In Pearle’s words: “Bohr’s rebuttal

In his Nobel lecture in 1933, he had already written: “The very fact that the formalism of quantum mechanics
cannot be interpreted as a visual description of a phenomenon occurring in space and time shows that quantum
mechanics is in no way concerned with the objective determination of space-time phenomena”.

19 One could add that the EPR disproval of the notion of incompatible observables (EPR-2) implies that, at least,
two different settings are considered for one of the measurement apparatuses; but this should correspond, in
Bohr’s view, to two different physical realities (corresponding to every different couple a,b), instead of a single
one as assumed in the EPR reasoning.

20 If Bohr had known the Bell theorem, he could merely have replied to EPR that their logical system was
inconsistent (see §4.1.3)!
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was essentially that Einstein’s opinion disagreed with his own” [98]. Even Bell
confessed that he had strong difficulties understanding Bohr (“I have very lit-
tle idea what this means . . .” – see the appendix of [71]). But, in any case, the
Bohrian point of view remains presently as strong as ever, while we now know
that the EPR assumptions contain self contradictions, as we will see in the next
chapter.

3.3.3 Locality and separability

Locality and separability are two different notions, even if they are often (but not
always) related.

3.3.3.a Various aspects of locality

The notion of locality itself contains various concepts. Most physicists, because
of the strong impact of relativity, tend to immediately associate it with the notion of
lightcone and the existence of a maximum possible velocity for the propagation of
influences, interactions, or messages. It is indeed perfectly possible to interpret the
EPR reasoning in these terms, assuming for instance that the two measurements are
made simultaneously (in the reference frame of the source) at very large distances.
But locality is also a much more general basic concept of physics, which predates
any kind of relativity (Galileo or Einstein). It could be expressed simply as “the
mutual influence of events decreases when their distance is increased”; or even
“the influence of distant objects can be ignored if they are sufficiently remote”.
This purely spatial notion (no time is involved) is indeed one of the foundations of
all experimental sciences: one assumes that the observations made in a laboratory
depend on what is contained in the laboratory, but not on arbitrarily remote events
(including human choices for experimental settings). In practice, if the observa-
tions made in each physics laboratory depended on the parameters chosen in all
other laboratories in the world, it would probably become impossible to do any
meaningful experiment! This simple notion of locality, which appears as a basic
component of the scientific method, is sufficient for the EPR reasoning. See §3.3 of
[99] for a generalization of the locality concept to systems with stochastic evolu-
tion; we come back to the importance of locality in the context of the Bell theorem
in §4.2.3.

3.3.3.b Quantum non-separability

Instead of invoking the role of the measurement apparatuses to define physical
reality, as Bohr does to reject the EPR reasoning, one can introduce the notion of
“non-separability”. The idea is that different quantum systems, when they have
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interacted in the past, no longer have in general their own physical properties;
they are both part of a larger system, which is the only one possessing physical
properties. One should then not try to separate (conceptually) the whole system
into two smaller physical systems and attribute them properties; the whole system
is non-separable21.

In general, separability is a notion that is conceptually distinct from locality. It
is not necessarily related to space: two physical systems could occupy the same
region of space and remain distinct with their own physical properties (separable is
not the same thing as separate). In the EPR reasoning, nevertheless, since the two
particles are in remote regions of space, separation is assumed to entail separability.
By contrast, quantum non-separability can be stated as “even when two regions of
space are disconnected and very far apart, one cannot always attribute separate
physical properties to what they contain”.

Quantum non-separability is rooted in the way the quantum formalism describes
systems and sub-systems, and clearly related to the notion of entanglement (§6.1):
a perfect description of the whole does not contain a perfect description of the
parts. We mentioned earlier that Schrödinger considered entanglement as one
of the most fundamental properties of quantum mechanics. Entanglement dras-
tically restricts the number of physical properties that can be attributed to the
sub-systems; this number may even vanish in some cases. In other words, the
“best possible description” (with a state vector) is not available to the sub-systems;
they have an additional level of indeterminacy, which never occurs in classical
mechanics.

Invoking intrinsic quantum non-separability is appealing, since the difficulties
associated with the precise definition of a measurement apparatus do not imme-
diately appear. It nevertheless remains delicate, in particular because correlations
and entanglement can, according to the Schrödinger equation, propagate towards
the macroscopic world (Schrödinger cat paradox) so that this absence of physical
properties can reach any scale; it can end up with a situation where only the whole
universe has physical properties!

Generally speaking, if the world was completely non-local (or completely
non-separable), all physical phenomena being totally interlaced, unravelling them
would be beyond reach, and their scientific analysis by the experimental method
would become impossible. The scientific progress of mankind have been made pos-
sible by the fact that, fortunately, non-locality and non-separability remain relatively
rare phenomena, appearing mostly in physical situations designed by physicists to
observe them.

21 Peres has proposed a mathematical criterion defining the separability of an ensemble of two physical systems
described by a density operator (see §6.2.5).
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3.3.4 The EPR argument for macroscopic systems

Interestingly, the EPR argument also applies in the context of another discovery
made by Einstein, namely Bose–Einstein condensation. The original EPR argument
involved two microscopical particles, atoms for instance. The essence of Bohr’s
point of view then hinges on the idea that microscopic systems do not possess phys-
ical reality independently of the measurement apparatuses, since physical reality
cannot be defined at this level. But it turns out that quantum mechanics also predicts
that similar correlations should be observed with systems that are arbitrarily large,
and can therefore be macroscopic [100]; this requires that they should be initially
in a special quantum state, a “double Fock state”. Such a state is not very com-
mon, but could be reached for instance through the phenomenon of Bose–Einstein
condensation.

Here we just summarize the general idea, since we come back to this subject in
§9.4.3. We assume that two large condensates, associated with two Fock states with
different spin states, overlap in two different regions of space. Initially, according
to quantum mechanics, the relative phase of the two condensates is totally undeter-
mined, so that none of the overlap region contains any transverse spin orientation.
But, if spin measurements are performed along transverse directions in one of the
regions, a transverse spin polarization spontaneously appears under the effect of
quantum measurement in this region. The direction of this spontaneous polariza-
tion is completely random. Nevertheless, since this process fixes the relative phase
of the two condensates, theory predicts that a spin polarization also appears in the
other region of overlap, with a transverse direction that is parallel to that in the mea-
surement region. One then has a remote consequence of the measurement, without
any interaction between the two regions, but just under the effect of state vector
reduction.

Clearly, the EPR argument then directly applies: How can a spin polarization
spontaneously appear in an arbitrarily remote region of space, without any inter-
action to create it? How can the physical reality associated to a region of space be
affected by an arbitrarily distant measurement? But in this case the big difference
with the original EPR situation is that the number of particles involved is arbitrarily
large, so that the transverse spin polarizations can be macroscopic. If the spins carry
magnetic moments, they will create a macroscopic transverse magnetization, which
can be detected directly with macroscopic devices such as ordinary compasses. For
arbitrarily large macroscopic objects, it seems difficult to invoke the Bohrian argu-
ment, and to decide that they have access to physical reality only when they are
associated with a well-defined measurement apparatus!

In this case, the EPR element of reality pre-existing the first measurement is the
relative phase of the two condensates with spin. The notion is related to spontaneous
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symmetry breaking and the spontaneous appearance of a phase in a system that
undergoes a superfluid transition (Anderson’s phase [101]). Of course, we do not
know what Bohr would have said concerning this macroscopic version of the EPR
thought experiment. The relative phase of Bose–Einstein condensates also contains
some interesting effects leading to violations of quantum non-locality [102], but
non-local effects will be discussed in the next chapter.
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Bell theorem

The Bell theorem [103] can be seen in several different ways, as the EPR argument.
Initially, Bell invented it as a direct logical continuation of the EPR theorem: the
idea is to take the existence of the EPR elements of reality seriously, and to push
it further by introducing them explicitly into the mathematics with the notation λ;
one then proceeds to study all possible kinds of correlations that can be obtained
from the fluctuations of one or several variables λ, making the condition of locality
explicit in the mathematics (locality was already useful in the EPR theorem, but
not used in equations). The reasoning develops within determinism (considered as
proved by the EPR reasoning) and classical probabilities; it studies in a completely
general way all kinds of correlations that can be predicted from the fluctuations of
some classical common cause in the past – if one prefers, from some random choice
concerning the initial state of the system. This leads to the famous inequalities. But
subsequent studies have shown that the scope of the Bell theorem is not limited to
determinism; for instance, the λ variables may determine the probabilities of the
results of future experiments, instead of the results themselves (see Appendix B),
without canceling the theorem. We postpone the discussion of the various possible
generalizations to §4.2.3. For the moment, we just emphasize that the essential
condition for the validity of the Bell theorem is locality: all kinds of fluctuations
can be assumed, but their effect must affect physics only locally. If we assume that
throwing dice in Paris may influence physical events taking place in Tokyo, or even
in other galaxies, the proof of the theorem is no longer possible. For non-specialized
general discussions of the Bell theorem, see for instance [48, 71, 104, 105].

Another, less general, view of the Bell theorem is obtained by disconnecting
it from the EPR reasoning. It can then be seen as an impossibility theorem for
additional (or “hidden”) variables (see §10.6): if these variables are arbitrarily
introduced, and if their evolution is local, the resulting theory cannot reproduce all
predictions of standard quantum mechanics, even if a very complicated evolution
is postulated.

56
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4.1 Bell inequalities

The Bell inequalities are relations satisfied by the average values of products of ran-
dom variables that are correlated classically – by this we mean that their correlations
originate from some fluctuating past event that has influenced their values, as in
the preceding chapter for the peas. The inequalities are especially interesting in
cases where they are contradictory with quantum mechanics; one of these situa-
tions occurs in the spin version of the EPR argument [96], already introduced in
§3.3.1, where two spin 1/2 particles undergo measurements in remote regions of
space. This is why we begin this section by briefly recalling the predictions of
quantum mechanics for such a physical system – the only ingredient we need from
quantum mechanics at this stage is the predictions concerning the probabilities of
results. Then we will leave again standard quantum mechanics and come back to
the EPR–Bell argument, discuss its contradictions with quantum mechanics, and
finally emphasize the generality of the theorem.

4.1.1 Quantum mechanics: two spins in a singlet state

We come back to the experiment shown in Figure 3.2, where two spins 1/2 are
emitted by a source S in a singlet spin state and propagate in opposite directions.
Their spin state is described by:

|� >= 1√
2

[
|+,−〉− |−,+〉

]
(4.1)

with the usual notation: the two-spin state |±,∓〉 contains the first spin in an eigen-
state with eigenvalue ±�/2 of its component along Oz1, and the second in an
eigenstate with eigenvalue ∓�/2. When they reach distant locations, the spin on
the left is submitted to a spin measurements with a Stern–Gerlach apparatus ori-
ented along the direction defined by angle a, while the other spin undergoes a
similar measurement along the direction defined by b.

If:

θab = a− b (4.2)

is the angle between the directions defined by a and b, quantum mechanics predicts
that the probability for a double detection of results +1, +1 (or of −1, −1) is:

P(+,+) =P(−,−) = 1

2
sin2 θab

2
(4.3)

1 One can show that the singlet state is invariant under any rotation, which implies that it has the same form (4.1)
if any quantization axis Oz is used.
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while the probability of two opposite results is:

P(+,−) =P(−,+) = 1

2
cos2 θab

2
(4.4)

This is all that we need to know, for the moment, of quantum mechanics: probability
of the results of measurements. An important remark is that, if θab = 0 (when the
orientations of the measurements apparatuses are parallel), the formulas predict
that the two probabilities (4.3) vanish, while the others are equal to 1/2. This means
that the condition of perfect correlations required by the EPR reasoning is fulfilled.
More precisely, the results of the experiments are always opposed instead of equal,
but it is sufficient to change the arbitrary direction of one of the axes to make them
equal – see the discussion of §3.3.1.a.

A state such as (4.1), where the properties of the two sub-systems (two spins in
this case) are correlated inside the state vector itself, is called “entangled state”
in quantum mechanics. We will come back to the notion of quantum entanglement
in Chapter 6 in more detail.

4.1.2 Local realism: proof of the BCHSH inequality

We start from the EPR theorem and, following Bell, we assume that λ represents
the “elements of reality” associated with the spins; it should be understood that λ
is only a concise notation which may summarize a vector with many components.
The number of elements of reality is arbitrary – no limitation is introduced by this
notation – and, in fact, one can even include in λ components that play no special
role in the problem. The only thing that really matters is that λ should contain all
the information concerning the results of possible measurements performed on the
spins.Another usual notation is to write these resultsA andB, and to use small letters
a and b for the settings (parameters) of the corresponding apparatuses. Clearly, A
and B may depend, not only on λ, but also on the settings a and b; nevertheless,
locality requests that b has no influence on the result A (since the distance between
the locations of the measurements can be arbitrarily large); conversely, a has no
influence on result B. We therefore call A(a,λ) and B(b,λ) the corresponding
functions; their values are either +1 or −1.

In what follows, it is sufficient to consider two directions only for each separate
measurement; we then use the simpler notation:

A(a,λ)≡A A(a′,λ)≡A′ (4.5)

and:

B(b,λ)≡ B B(b′,λ)≡ B ′ (4.6)
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S
A = ± 1  B  = ± 1

a b

Figure 4.1. A source S emits two particles, which propagate to two remote mea-
surement apparatuses having respective settings a and b; each apparatus provides a
result±1. The oval containing a dice below the source symbolizes a random fluctu-
ating process controlling the conditions under which the two particles are emitted,
which in turn determine their properties. Correlations are observed between the
results obtained with the two remote measurement apparatuses; they are conse-
quences of the common random properties shared by the particles of each pair,
initially created by the random process at the source.

For each pair of particles, λ is fixed, and the four numbers have well-defined values
(which can only be ±1). With Eberhard [106], we notice that the sum of products:

M =AB−AB ′ +A′B+A′B ′ =A(B−B ′)+A′(B+B ′) (4.7)

is always equal to either +2 or −2; this is because one of the brackets in the right-
hand side of this equation always vanishes, while the other is ±2. Now, if we take
the average value 〈M〉 of M over a large number of emitted pairs (average over λ),
since each instance of M is limited to these two values, we necessarily have:

−2≤ 〈M〉 ≤ +2 (4.8)

This is the so-called BCHSH (Bell, Clauser, Horne, Shimony, and Holt) form [107]
of the Bell theorem. The inequality is necessarily satisfied2 by the average values
of all possible kinds of measurements providing random results ±1, whatever the
mechanism creating the correlations may be, as long as locality is obeyed: A does
not depend on setting b, and B does not depend on setting a.

A natural assumption is to consider that randomness arises from the fluctuations
of some common cause in the past. Figure 4.1 illustrates this situation, and Figure 4.2
shows the corresponding space-time representation of the events; the lines connect-
ing the cause and the effects must remain within the light cone x=±ct if relativity is
obeyed. But the inequality remains valid if, for instance, other fluctuating processes
perturb the particles while they are on their way to the measurement apparatuses,
or while they interact with the measurement apparatuses themselves (Figure 4.3).

2 In our definition (4.7) of M , the term AB ′ has a minus sign and the three others a plus sign, but this is
arbitrary. By writing AB+AB ′ ±A′B∓A′B ′ =A(B+B ′)±A′(B−B ′) and ±AB∓AB ′ +A′B+A′B ′ =
±A(B−B ′)+A′(B+B ′), we can obtain four inequalities where the minus sign goes to any of the four terms.
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t

B = ± 1A = ± 1

S

x

Figure 4.2. Space-time diagram associated with the events shown in Figure 4.1.
According to relativity, the two arrows joining the emission of the particles to the
measurement events should remain inside the light cone x =±ct (dotted lines).

S
B = ± 1  A = ± 1  

a b

Figure 4.3. Fluctuating uncontrolled causes may influence, not only the emission
of particles, but also their propagation and the measurement apparatuses, without
changing the validity of the BCHSH inequality.

It then becomes necessary to include into λ new components associated with the
corresponding random processes, which may change the distribution of this multi-
dimensional variable, but not the fact that the average of a number M that is always
equal to ±2 necessarily obeys (4.8).

The simplicity of the proof is such that one can expect the validity of the inequality
to apply in many situations; this is indeed true, as we will discuss in more detail
in §§4.2.2 and 4.2.3. Here we just remark that the result is independent of the
interpretation of the variable λ, which does not have to be defined as an additional
variable or an element of reality. For instance, we can assume that λ is simply used
to label the realization of the experiment: λ= 1 corresponds to the first experiment,
λ = 2 to the second, . . . ,λ = N to the last of a series of experiments. If, for each
realization, the four numbers A, B, A′, and B ′ have well-defined values, all equal to
±1, the number M is also defined for each realization and is necessarily equal to−2
or +2. Whatever arbitrary values of the four numbers may occur during any series
of experiments, mathematically, there is no way for the sum of the M to exceed 2N
or to be less than −2N . The average obtained by dividing by N then necessarily
obeys (4.8); the mere existence of the four numbers is sufficient to obtain this result.
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4.1.3 Contradiction with quantum mechanics

The simplicity and the generality of the proof are such that one could reasonably
expect that any sensible physical theory should automatically give predictions that
obey this inequality. The surprise is to realize that quantum mechanics does not.
From (4.3) and (4.4), we can calculate the average value of the product of the two
results obtained by measuring the components of the two spins along directions a

and b with relative angle θab; the result is:

P(+,+) + P(−,−) − P(+,−) − P(−,+) =−cosθab (4.9)

This gives the quantum equivalent of the average over λ of the product
A(a,λ)B(b,λ) in a local realist theory. To obtain the quantum equivalent 〈Q〉
of the combination of four products in expression (4.7), we calculate the same
combination of averages of products of results:

〈Q〉 = −cosθab+ cosθab′ − cosθa′b− cosθa′b′ (4.10)

For some appropriate choices of the four angles a, a′, b, b′, 〈Q〉 reaches values
±2
√

2. Figure 4.4 shows the relative positions of the four vectors a, a′, b, b′
defining the directions of measurements for which these extrema are obtained3.
But we have seen that all local realist theories obey the BCHSH inequality (4.8)
with bounds±2. Quantum mechanics therefore predicts a violation by a factor

√
2,

more than 40% (it turns out that
√

2 is the maximal possible violation predicted by
quantum mechanics – cf. §4.3). As simple as the cosine variation of (4.9) may look,
no local realist theory can reproduce it. The EPR–Bell reasoning therefore leads
to a quantitative and significative contradiction with quantum mechanics, which is
not a local realist theory in the EPR sense.

How is this contradiction possible, and how can a reasoning that is so simple be
incorrect within quantum mechanics? Different answers are possible:

(i) In Bohr’s view, as we already discussed in §3.3.2, only the whole experiment
should be considered, without distinguishing in it two separate measure-
ments that would performed on each particle: a single indivisible two particle
measurement takes place. A fundamentally random process then takes place
simultaneously over the whole region of space occupied by the experimental
setup; it is delocalized, as schematized in Figure 4.5, to be contrasted with
Figures 4.1 and 4.3.

3 The four vectors a, b, a′ and b′ are in the same plane and each of them makes an angle of 45◦ with the preceding
vector; one then immediately sees that 〈Q〉 = −2

√
2 . If both directions of b and b′ are reversed, one obtains

〈Q〉 = 2
√

2.
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a

b

a'

b'

Figure 4.4. The position of the four vectors a, b, a′, and b′ corresponding to a
maximal violation of the BCHSH inequality for two spins 1/2 in a singlet state.
The only pair of vectors giving rise to a negative correlation coefficient is (a, b′),
since the angle between the vectors exceeds 90◦.

B = ±1A = ±1
Sa b

Figure 4.5. Scheme associated with the quantum description of a measurement
involving two remote apparatuses. This scheme may be compared to those of
Figures 4.1 and 4.3. The big flash at the top of the figure symbolizes a fundamentally
random and non-local process, by contrast with ovals below the events used in
previous figures to represent fluctuating processes resulting from uncontrolled
local perturbations. The quantum process is inherently extended in space, so that
no space-time description similar to that of Figure 4.2 is possible.

Functions A and B then depend on the two settings, so that they should be
written A(a,b) and B(a,b). Instead of two numbers A and A′, we now have
four, which are A=A(a,b), A′ =A(a′,b), as well as A′′ =A(a,b′) and A′′′ =
A(a′,b′); similarly, B and B ′ are replaced by four numbers. Their products
than have 16 possible values instead of 4; clearly, the proof of the BCHSH
inequality is then no longer possible so that the contradiction disappears.

(ii) One may prefer a more local view of the process of measurement and retain
the concept of single-particle measurement as meaningful in this context. To
avoid the contradiction with the predictions of quantum mechanics, one then
considers that it is wrong to attribute well-defined values A, A′, B, B ′ to each
emitted pair, since only two of them can be measured in any realization of the
experiment. Therefore, it is not legitimate to speak of these four quantities,
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or reason on them, even as unknown quantities (we come back to this point
with the discussion of counterfactuality in §4.5.2). As nicely summarized by
Peres [108], “unperformed experiments have no result4”! Wheeler expresses
a similar idea when he writes: “No elementary phenomenon is a phenomenon
until it is a registered (observed) phenomenon” (p. 184 of [109]).

(iii) As for Wigner, he emphasizes in [110] that the proof of the Bell inequalities
relies on a very simple notion within realism (local or non-local): the number
of categories into which one can classify all pairs of particles5 or, equiva-
lently, all realizations of the experiment. Each category is associated with
well-defined results of measurements for the various choices of the settings
a and b (configurations of the experiment) that are considered; in any long
sequence of repeated experiments, each category contributes with some given
weight equal to its probability of occurrence (a positive or zero number). For
one single type of experiment that can give R different results, the number of
categories is R. When one considers P different possible configurations, each
with R different possible results, the number of categories becomes RP .

For the sake of simplicity, here we assume that each setting can take two
different values (but, in §4.2.1, we study Wigner’s original case with three
different values). If, following Bohr, we consider that the experiment as a
whole must be considered, then each configuration is given by the choice of
a pair a, b among P = 4 possibilities; since each of them can give 4 different
pairs of results, the number of categories is 44. One can then attribute to
each of them appropriate weights and reproduce the predictions of quantum
mechanics, and no special contradiction is obtained.

But then Wigner notes that, if one adds the notion of locality, for each pair
the result on one side becomes independent of the setting on the other side,
keeping only a dependence on the local setting. Each category then becomes
the intersection of two sub-ensembles: one associated with the first side of the
experiment depending on a only, which is chosen among 2×2= 4 possibilities
(2 for the possible choices of a, and 2 for the possible results); another sub-
ensemble associated with the second side of the experiment depending on b

only, which is also chosen among 4 possibilities. Altogether the total number
of categories is now only 24. To each of these categories one can ascribe four
numbers A, A′, B and B ′, which are well defined and all equal to ±1, so

4 In Bohr’s view, it is not forbidden to consider that “unperformed experiments have results”, but experiments
and results can only be expressed in terms of the whole experimental setup, and therefore of both parameters a

and b.
5 In this reference, Wigner actually reasons explicitly in terms of hidden variables; he considers domains for these

variables, which correspond to given results for several possible choices of the settings. But, from the EPR point
of view, these domains also correspond to categories of pairs of particles, which is why we use this notion of
categories.
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that their combination in (4.7) has values M =±2; the BCHSH inequalities
are then immediately obtained. In other words, Wigner points out that the
mathematical origin of the Bell inequalities lies precisely in the possibility
of distributing all pairs with positive probabilities into a smaller number of
categories than from a non-local point of view; the difference between these
numbers is the origin of the contradiction6.

4.1.4 Logical content

A general way to express the Bell theorem in logical terms is to state that the fol-
lowing system of three assumptions7 (which could be called the EPR assumptions)
is self-contradictory:

(1) validity of the EPR notion of “elements of reality”,
(2) locality,
(3) the predictions of quantum mechanics are always correct.

Indeed, if one starts from the three assumptions, one can then discover situ-
ations where the third assumption is not true, hence a self-contradiction. The
Bell theorem then becomes a useful tool to build a “reductio ad absurdum”
reasoning: it shows that, among all three assumptions, one (at least) has to be
given up. If Einstein’s program was to assume local realism and, at the same
time, that all predictions of quantum mechanics are correct, this program is
impossible. This conclusion is purely logical, independent of any experimental
result.
One may notice that the reasoning actually contains a fourth assumption:

(4) the measurement settings a and b are freely chosen by the experimenters8, and
not the physical consequence of some past event.

This is the “free will” hypothesis. It is so general in all experimental scientific
disciplines that, often, it is not even mentioned: one naturally assumes that
experimenters can freely decide what kind of experiments they will perform,
and what parameters they will choose for them. The opposite attitude would be
to consider that these decisions are in fact predetermined by some past event and
by the propagation of its influences to the distant experimenters (see in §4.5.1.c

6 It has also been noticed [111] that the Bell inequalities can be seen as applications of theorems on marginal
distributions in the theory of probabilities [112]; the mathematical proof of the inequalities relies on the existence
of one common probability space for the relevant random variables (this is also related to the notion of
conterfactuality).

7 Here we focus ourselves only on one set of assumptions leading to the theorem, the set we have used to derive
it. Other possible sets of assumptions to derive the theorem will be discussed in §4.2.2.

8 One can even assume that they choose their value after the emission of the two particles by the source while
they are still flying towards them.
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the discussion of fatalism, or superdeterminism). What is then at stake is the
notion of a free parameter in a physical theory: a and b are considered as
free parameters that are external to the theory, and not as solutions of some
dynamical equations starting from a common initial condition in the past.

When stated in this way, the Bell theorem appears as general conceptually, but
experimentally inaccessible since assumption 3 is obviously too broad to be tested.
One may then prefer another form of the logical self-contradiction, where this
assumption is replaced by two more specific statements concerning one particular
experiment only (for instance: two 1/2 spins in a singlet state, or two photons
emitted in an atomic 0-1-0 cascade):

(3′) in this experiment, the prediction of quantum mechanics concerning the total
correlations observed when the settings are the same (a = b) are correct (this
assumption leads to the existence of the EPR elements of reality).

(3′′) the predictions concerning the correlations for different settings are also
correct.

Removing either (3′) or (3′′) from the set of assumptions is also sufficient to
remove the self-contradiction. The motivation of the experimental tests of the Bell
inequalities was precisely to check if it was not assumption (3′) or (3′′) that should
be abandoned. Maybe, after all, the Bell theorem is nothing but an efficient pointer
towards unexpected situations where the predictions of quantum mechanics are so
paradoxical that they are actually wrong? Such was the hope of some theorists, as
well as an exciting challenge to experimentalists.

4.1.5 Contradiction with experiments

In 1967, an experiment was undertaken by Kocher and Commins [113] with pho-
tons emitted during an atomic cascade between three levels of atomic Mercury
having angular momenta J = 0→ 1→ 0. In this case, quantum mechanics pre-
dicts correlations that are similar to those with two spins 1/2 in a singlet state; the
directions of photon polarization analyzers play the role of the orientations of the
Stern–Gerlach analyzers for spins 1/2 (it is sufficient to divide all angles by 2 to
transpose the results from spins to photons). This experiment tested that the pre-
dictions of quantum mechanics are correct when the two analyzers are parallel (or
perpendicular), corresponding to perfect correlations – in other words, assumption
(3′) was tested successfully in this case.

Two years later Clauser, Horne, Shimony, and Holt [107] realized that this kind
of experiment could be extended to provide an experimental test of assumption
(3′′), with measurements of correlations rates at various angles of the polarizers.
They proposed a generalization of the Bell theorem to a new form (the BCHSH
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inequality) that was more suitable to experimental tests than the original Bell
inequality. Following this line, in 1972 correlations for different settings (and
therefore assumption 3′′) were tested by Freedman and Clauser [114] in an atomic
cascade J = 0→ 1→ 0 of the Calcium atom; this provided a confirmation of the
quantum predictions and a lead to violation of local-realist inequalities by 6 stan-
dard deviations. In 1976, three other experiments were performed, two with photons
emitted duringJ = 1→ 1→ 0 cascades in Mercury [115, 116], and one with protons
[117]; again the predictions of quantum mechanics were fully confirmed.

In the eighties, the results were made more and more precise and convincing
in a series of experiments performed in Aspect’s group, using the same Calcium
transition as [114]. One of these new experiments [118] included a study of the effect
of the distance between the detectors and the source on the quantum correlations for
various polarizations, in order to check that this distance plays no role as predicted
by quantum mechanics.Another used two-channel detections [119] providing actual
±1 signals, while in previous experiments one polarization was just absorbed and
gave no signal at all (this experiment led to violations by 15 standard deviations!).
The third included a time-component in a random choice of the polarizations of
the detections [120] – see also [121] for experiments using a two-photon transition
between two levels of zero angular momentum in Deuterium.

Ever since, the experiments have been constantly improved, including the use
of parametric down conversion of light to obtain efficient two-photon sources,
leading to violations by 22 standard deviations [122], and even measurements
of correlations over more than 10 km. [123], and now even more than 100 km.
[124]. Violations with systems of four photons, equivalent to two particles of spin
1 correlated in a singlet state, have been reported [125]. The list of all references is
too long to be given here, but we give a few more in §4.5.1 during the discussion of
“loopholes”. A summary of the present situation is that, even in these most intricate
situations invented and tested by the experimentalists, no one has been able to
disprove quantum mechanics. In this sense, we can say that Nature obeys laws which
are non-local, or non-realist, or both. It goes without saying that no experiment in
physics is perfect, and it is always possible to invent ad hoc scenarios where some
physical processes, for the moment totally unknown, “conspire” in order to give us
the illusion of correct predictions of quantum mechanics – we come back to this
point in §4.5.1 – but the quality and the number of the experimental results does
not make this attitude very attractive intellectually.

4.2 Various forms of the theorem

What is generally meant by the “Bell theorem” is actually not limited to a single
inequality applying in one set of specific circumstances, but encompasses a whole
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set of inequalities that are valid in various cases. We will give a few examples of
such derivations, inequalities, and possible generalizations.

4.2.1 Other inequalities

Many forms of inequalities9 have been proposed as consequences of local realism
(or of the other logical sets discussed above), while in contradiction with the pre-
dictions of quantum mechanics; here we will give three examples as illustrations,
starting with the initial 1964 Bell inequality. Following a well-established tradition,
we will call Alice and Bob the partners who, each in one of two remote laborato-
ries, perform experiments on the particle they receive for each emitted pair by the
source.

4.2.1.a Bell 1964

In his initial 1964 article [103], Bell did not introduce the BCHSH inequality (4.7)–
(4.8), but another similar but mathematically distinct inequality. His derivation was
also different from that given above, but we now show that this inequality can be
obtained as a special case of the BCHSH inequality. Assume we replace (4.5) and
(4.6) by:

A=A(a,λ) ; B = B(b,λ) ; A′ =A(−b,λ) ; B ′ = B(c,λ) (4.11)

where a, b, and c are three angles defining three different settings (orientations of
the Stern–Gerlach analyzers), instead of four as above; notation −u is used for the
direction opposite to u, obtained by turning the analyzer by half a turn. Since this
operation interchanges results +1 and −1, we have, for any u:

A(−u,λ)=−A(u,λ) (4.12)

Now, we assume that, as quantum mechanics predicts, the results obtained by
Alice and Bob are always perfectly correlated when they use opposite directions
for their measurements. We therefore have:

A′B =A(−b,λ)B(b,λ)= 1 (4.13)

so that (4.8) becomes:

−2≤ 〈
A(a,λ)B(b,λ)−A(a,λ)B(c,λ)−A(b,λ)B(c,λ)

〉+ 1 ≤+2 (4.14)

9 It has been noticed [111] that the Bell inequalities can be seen as applications of theorems on marginal distribu-
tions in the theory of probabilities [112]; the mathematical proof of the inequalities relies on the existence of one
common probability space for the relevant random variables (this is related to the notion of conterfactuality).
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If we note E(a,b) the average of the product of results obtained by Alice and Bob:

E(a,b)= 〈A(a,λ)B(b,λ)〉 (4.15)

the upper bound condition in (4.14) then becomes:

E(a,b)−E(a,c)≤ 1+E(b,c) (4.16)

Now, if we replace a by −a and perform the same calculation, we obtain:

−E(a,b)+E(a,c)≤ 1+E(b,c) (4.17)

or, grouping (4.16) and (4.17):

|E(a,b)−E(a,c)| ≤ 1+E(b,c) (4.18)

which is the 1964 Bell inequality. We remark that its proof requires the perfect
correlations contained in (4.12), which is not the case in the BCHSH inequalities.

Quantum mechanics predicts violations of this inequality: if we choose θab= 45◦
and θac = 135◦, using (4.9) we obtain

√
2 for the left-hand side of (4.18) while the

right-hand side is equal to 1, corresponding to a violation by a factor
√

2.

4.2.1.b Wigner inequalities

At the end of §4.1.3, we discussed Wigner’s point of view, who ascribes the succes-
sive realizations of an experiment to different categories; this classification stems
from a realist point of view that can be either local or non-local, with a smaller
number of categories in the former case. The choice of the experimental setting
by each partner was limited to two different values; here, as in the original article
[110], we assume that Alice may choose among three different values a, a′, and
a′′, and, similarly, that Bob may choose among three values, b, b′, and b′′. The
number of pairs of possible results (±1,±1) for each realization remains the same
as above, R = 4, but the number of experimental configurations now increases to
P = 3× 3= 9. From a non-local realist point of view, the number of categories is
then 49; if locality is added, one has to consider the intersection of 23 classes by
23 others, which eventually leads to 26 = 43 categories, a much smaller number
indeed.

Within local realism, how to simply define these categories? It is actually suffi-
cient to specify the results A=±1, A′ =±1, and A′′ =±1 observed by Alice if she
chooses respectively the settings a, a′, or a′′ (locality implies that the value of the
setting chosen by Bob does not affect her own result) as well as the three values B,
B ′, and B ′′ observed by Bob if he chooses respectively settings b, b′, or b′′. We now
attempt to reproduce, within this scheme, the predictions of quantum mechanics
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for two spins 1/2 in a singlet state, when b = a, b′ = a′, and b′′ = a′′. For these
configurations, we have seen in §4.1.1 that the results obtained by Alice and Bob
are always opposed. This leads us to write B = −A, B ′ = −A′, and B ′′ = −A′′;
it then becomes useless to specify the values of Bob’s results, and the number of
categories of realizations is now reduced to 23 = 8. The predictions of quantum
mechanics are reproduced each time Alice and Bob choose parallel directions; but
we will see that, when they choose different directions, it cannot always be the case.

We consider a large number N of realizations of the experiment, each associated
with results (A,A′,A′′) – it is not necessary to specify the values of B, B ′, and B ′′
since they are opposite. We denotep3(A,A′,A′′) the proportion of these realizations
falling into the category defined by three given results, among the eight possible
triplets. Similarly, we note p2(A, A′) the proportion of realizations for which only
the two variables A and A′′ are specified, but not A′; in the same way, we introduce
the proportions p2(A, A′′) and p2(A

′, A′′). We then have:

p2(A=+1, A′′ = −1)= p3(+1,+1,−1)+p3(+1,−1,−1) (4.19)

while the proportion p2(A=+1, A′ = −1) is given by:

p2(A=+1, A′ = −1)= p3(+1,−1,+1)+p3(+1,−1,−1) (4.20)

and finally the proportion p2(A
′ = +1, A′′ = −1) is given by:

p2(A
′ = +1, A′′ = −1)= p3(+1,+1,−1)+p3(−1,+1,−1) (4.21)

Since the proportions are ratios between numbers that are positive or zero, they are
themselves positive or zero. The preceding equalities then provide:

p2(A=+1, A′′ = −1)≤ p2(A=+1, A′ = −1)+p2(A
′ = +1, A′′ = −1)

(4.22)

an inequality which puts limits on the possible proportions when the two settings
are different.

In quantum mechanics, this inequality may be violated. This is because, since
result B ′′ is the opposite of A′′, equation (4.3) provides:

p2(A=+1, A′′ = −1)= p2(A=+1, B ′′ = +1)= 1

2
sin2 θab′′

2
(4.23)

where θab′′ is the angle between directions a and b′′ (or a′′, since we have assumed
that b= a, b′ = a′, and b′′ = a′′). Inequality (4.22) then becomes:

sin2 θaa′′

2
≤ sin2 θaa′

2
+ sin2 θa′a′′

2
(4.24)
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In the particular case where a, a′, and a′′ are equally distributed in a plane and
in this order, we have θaa′ = θa′a′′ and θaa′′ = 2θaa′ , and the preceding inequality
becomes:

2cos2 θaa′

2
≤ 1 (4.25)

which is violated in interval−π/2 < θaa′ <+π/2. We have therefore another case
where the predictions of quantum mechanics contradict those of local realism.

4.2.1.c Mermin inequality

Another inequality, proposed by Mermin [126], can be obtained with the same
experimental configuration, but different angles than those considered by Wigner.
In footnote 11 of Chapter 3, we mentioned Schrödinger’s comparison to illustrate
the local realist reasoning: he represents the particles by schoolboys passing exams,
the measurement apparatuses by teachers asking them questions, and the results
of measurements by the answers of the schoolboys, assumed to be binary answers
(+1 for yes,−1 for no). Extending this comparison, we assume that two schoolboys,
Albert and Bernard, are each asked a question by two different teachers in separate
rooms; each teacher chooses his question at random among three possible questions,
with a probability 1/3 each (these three questions correspond to the three possible
values of the settings a or b). The plan of the schoolboys is to give answers to the
question that reproduce the predictions of quantum mechanics as well as possible;
they know in advance the nature of the three questions, but not which precise
question they will have to answer; moreover, when they meet one teacher, they
do not know what question has been selected by the other (since the rooms are
separate). However, before the examination, they are free to elaborate together any
common strategy and to decide what answer each of them will give to each question.
The total number of possible strategies is 23× 23 = 64.

As above, in order to reproduce the quantum predictions, every time the questions
are the same the schoolboys have to make opposite answers. Obtaining this result
is not very difficult: they decide in advance which answer Albert will make to every
possible question, and agree that Bernard will choose the opposite answer to the
same question. This brings back the number of possible strategies to eight; each
of them can be noted (A,A′,A′′), where the three numbers between the brackets
are equal to ±1 and give Albert’s answers to the three possible questions. Among
these eight strategies, two are (+1,+1,+1) and (−1,−1,−1): the answers of the
first schoolboy are always the same, whatever question is asked; for the 6 other
strategies (+1,+1,−1), (+1,−1,−1), etc. two answers are of one sort and the
third is opposite.
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We now assume that the experiment is repeated a large number of times (the
schoolboys may change their strategy each time if they wish); one retains only the
sub-ensemble of the realizations where the two questions have been different. For
each such realization, two cases may occur:

(i) Either the selected strategy is one among the two where the three answers of
the first schoolboy are the same; since those of the second are always opposite,
the two results are then necessarily opposite.

(ii) Or one of the 6 other strategies has been chosen; in this case, since the three
questions are random with equal probabilities 1/3, there are two chances out
of three that the two selected questions correspond to cases where the first
schoolboy has planned to give opposite answers, which means that there is
also a probability 2/3 that the two teachers will get the same answer; there is
a probability 1/3 that they will get opposite answers.

Therefore, whatever strategies are chosen, the probability to get opposite answers
is some number between 1/3 and 1, but cannot be smaller than 1/3. In terms of
classical probabilities, this provides:

P(+1,−1)+P(−1,+1) � 1

3
(4.26)

Let us now return to the quantum problem with two spins in a singlet state, and
assume that the three a, a′, and a′′ are coplanar directions, all making 120◦ with
each other (Figure 4.6), directions b, b′, and b′′ being the same as above. Relations
(4.4) show that the probability to obtain different results is:

P(+,−)+P(−,+) = 1

2

(
1

4
+ 1

4

)
= 1

4
(4.27)

But this probability is smaller than 1/3, the minimum possible value according
to (4.26); we therefore obtain one more case where the predictions of quantum
mechanics are incompatible with those of local realism.

b a

S

b' b'' a' a''

Figure 4.6. Scheme of a quantum experiment providing a large violation of
inequality (4.26). The source S in the center emits two spins in a singlet state
propagating to two apparatuses. Measurements of the spin components along three
directions a, a′, and a′′ can be performed with one particle, and along three possible
directions b, b′, and b′′ with the other.
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4.2.2 Other sets of assumptions

We have given a derivation of the Bell theorem from one possible set of general
assumptions, listed in §4.1.4. The only condition that is necessary for the derivation
of the inequality is the existence of four numbers A, B, A′, and B ′, all equal to
±1, which have to be well defined (but not necessarily known). It is therefore not
surprising that other sets of assumptions could also be used to obtain the theorem
[127]. This actually increases the strength of the result: a violation of the Bell
inequalities means that, within each of all these sets, at least one of the assumptions
should be rejected, so that the discussion of §4.1.4 can be generalized. To provide
a few examples, we now list some possibilities; we do not mention the “free will
assumption” (§4.5.1.c) within each set of assumptions, since it is common to
all sets.

(i) We have already mentioned in the introduction of this chapter that the Bell
theorem can be seen as a theorem applying specifically to theories with hidden
variables. In this case, the λ arise, not from the EPR reasoning and their notion of
realism, but from the a priori assumed existence of these variables. The conclusion
is then that, if these variables evolve locally, the results of measurements must obey
the Bell inequalities. Conversely, a violation of the inequalities means, either that the
hidden variables do not exist, or that they evolve non-locally (or that there is no free
will, meaning in this case that a and b are functions of additional components of λ).
This point of view is less general than that we have used, but also simpler, which
probably explains why it is rather popular. For instance, in one of his celebrated
books on quantum mechanics [50], Jammer introduces the Bell theorem within a
chapter treating specifically hidden variable theories.

This is nevertheless not the point of view taken by Bell in his article [103], where
he clearly introduces his reasoning as a continuation of the EPR argument. The title
is “On the Einstein–Podolsky–Rosen paradox” and the first sentences of the intro-
duction are “The paradox of Einstein, Podolsky and Rosen was advanced as an
argument that quantum mechanics could not be a complete theory but should be
supplemented by additional variables. These additional variables were to restore to
the theory causality and locality. In this note that idea will be formulated mathemat-
ically (our emphasis) and shown to be incompatible with the statistical predictions
of quantum mechanics. It is the requirement of locality . . . that creates the essential
difficulty”. In other words, the additional variable λ he introduces is a mathematical
object associated with the EPR elements of reality. Bell therefore distinguishes
between “additional variables” and “hidden variables”, which he then proceeds
to discuss in the special case of Bohmian theory: “There have been attempts to
show that even without such a separability or locality requirement no ‘hidden
variable’ interpretation of quantum mechanics is possible. These attempts have
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been examined elsewhere and found wanting. Moreover, a hidden variable inter-
pretation of elementary quantum theory has been explicitly constructed”. Bell’s
point of view is therefore not ambiguous.

(ii) Assuming counterfactuality is another way to derive the Bell theorem: the pre-
existence of all the possible results of experiments allows one to derive BCHSH
and other inequalities. This is because, as soon as the four quantities A, A′, B

and B ′ (all equal to ±1) can be defined for each realization of the experiment, the
method of §4.1.2 immediately leads to (4.8) and provides a proof of the inequality.
Counterfactuality is not necessarily related to the notion of space or to locality10,
so that this view provides another independent logical frame for reasoning. Peres’s
quotation in §4.1.3 [108] gives the conclusion to draw from a violation of the
inequalities.

(iii) Assuming non-contextuality is still another possibility; this will be discussed
in more detail in §5.5. Again, non-contextuality can be seen as a natural conse-
quence of the spatial separation between Alice’s and Bob’s laboratories, but also as
an independent and even more general principle (obeyed for instance in classical
physics, local or non-local).

These are only a few examples of situations covered by the Bell theorem. In
fact, one may combine various assumptions, such as separability, the existence of
causes within relativistic past light cones, as in Figure 4.2, etc. and obtain the Bell
theorem in a whole series of logical contexts. All these derivations are interesting
since they extend the list of assumptions that are incompatible with the predictions
of quantum mechanics, and therefore extend the range of the theorem.

4.2.3 Generalizations of the theorem, role of locality

We have already mentioned that several generalizations of the Bell theorem are
possible. For instance, in some of these generalizations, it is assumed that the result
of an experiment becomes a function of several fluctuating causes: the fluctuations
taking place in the source, but also fluctuations in the measurement apparatuses
[128], and/or perturbations acting on the particles during their motion towards the
apparatuses, etc.Actually, even fundamentally indeterministic (but local) processes
may influence the results, without changing the Bell inequality [99]; the theorem
remains valid within local non-determinism, in situations such as that illustrated
by Figure 4.7. The two former cases are almost trivial since they just require the

10 Counterfactuality can be postulated ab initio, without any particular reference to locality. Conversely, if one
assumes locality and realism, the EPR reasoning shows the existence of elements of reality, which play the
role of counterfactuals. The EPR theorem nevertheless requires more than locality only, since realism is also
assumed.
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SA = ± 1 B = ± 1
a b

Figure 4.7. Scheme of a fundamentally indeterministic local theory. As in the
preceding figures, fundamentally random processes are symbolized by flashes
above the events, and the effect of uncontrolled local perturbations are repre-
sented by ovals below the events. Actually, for the present discussion, the nature
of the stochastic process at the center of the figure, fundamentally indeterminis-
tic or not, is not irrelevant as long as the it remains local; one may replace the
central oval by a flash above the source acting only on it without changing the
results. This scheme may be compared with Figure 4.5 associated with quantum
mechanics, where the fundamentally random process is delocalized in space. A
more detailed discussion of this type of indeterministic, but local, theory is given
in Appendix C; such theories lead to predictions that necessarily obey the Bell
inequalities.

addition of more dimensions to the vector variable λ; the latter requires replacing
the deterministic functions A and B by probabilities, but this is also relatively
straightforward [105] (see also footnote 10 in [128] and Appendix B). Moreover,
one should realize that the role of theA andB functions is just to relate the conditions
of production of a pair of particles (or of their propagation) to their behavior when
they reach the measurement apparatuses, and to the effects that they produce on
them. They are, so to say, solutions of the equations of motion, which are assumed
to be well-defined but do not need to be specified. They may perfectly include,
in a condensed notation, a large variety of physical phenomena: propagation of
point particles; propagation of one or several fields from the source to the detectors
(see for instance the discussion in §4 of [71]); particles and fields in interaction;
or whatever process one may have in mind (even random propagations can be
included) – as long as they remain independent of the other setting. The exact
mathematical form of the equations of propagation is irrelevant; the essential thing
is that the functions exist, even if they are too complicated to be written down
explicitly.

Locality, expressed mathematically in terms of a and b, is the crucial ingredient.
What really matters for the proof of the Bell theorem is the dependence with respect
to the settings a and b: the function A must depend on a only, while B must depend
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on b only11. For instance, if we wished, we could have assumed that the result A
of one measurement is also a function of fluctuating random variables attached to
the other apparatus, which introduces a non-local process; but this does not create
any mathematical problem in the proof, as long as these variables are not affected
by setting b. On the other hand, if A becomes a function of a and b (and/or the
same for B), it is easy to see that the situation is radically changed: in the reasoning
of §4.1.2, we must now associate eight numbers to each pair (since there are two
results to specify for each of the four different combinations of settings), instead of
four, so that the proof immediately collapses. Appendix C gives another concrete
illustration showing that it is locality, not determinism, which is at stake; see also
the appendix of [105].

An interesting generalization of the Bell theorem, where time replaces the set-
tings, has been proposed by Franson [129] and implemented in experiments for an
observation of a violation of the Bell inequalities (see for instance [130]). Another
generalization shows that a violation of the Bell inequalities is not limited to a
few quantum states (singlet for instance), but occurs for all states that are not
products [131–134]. With statistical mixtures of states, violations of the BCHSH
inequalities are also possible [135], although, conversely, entangled mixtures do not
necessarily lead to violations [136]; one then has to use more elaborate sequences
of measurements to reveal non-locality [137, 138]. Two independent sources can
be used for observing violations, provided that appropriate interference measure-
ments are performed [139]. The generalization is possible to an arbitrary number of
particles, see [140]; for macroscopic systems, Leggett and Garg [141] have shown
that BCHSH type inequalities exist for the same physical quantity considered at
different times, provided two postulates are assumed: macroscopic realism, and
non-invasive measurability at the macroscopic level. At the other extreme, schemes
have been proposed to observe non-locality even with a single photon [142–144]
(but, in the measurement process, more than one photon is involved, for example
photons from local oscillators). For a general discussion of the conceptual impact
of a violation of the inequalities, we refer to the book collecting Bell’s original
articles [6].

11 The fact that function A does not depend on variable b (and that function B does not depend on variable a) does
not mean that the results observed on one side are uncorrelated with the results at the other side. In general, they
are actually correlated through the fluctuations of variable λ, in a way that depends on the statistical distribution
ρ(λ) of this variable. In other words, strong correlations may well be introduced by fluctuations of a common
cause in the past, as in any usual statistical theory.

In §4.4.2.b, we discuss stochastic generalizations of the theorem and the role of both the “setting dependence”
and of the “outcome independence” (the factorization of the probability for a given value of λ, when the
fluctuations of common causes are frozen).
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4.2.4 Status of the theorem; attempts to bypass it

Provided locality is assumed, the Bell theorem is very general; it is therefore difficult
to build a reasonable theory that can violate the inequalities, more difficult than one
might think. All potential authors who believe that they have found a simple expla-
nation for the observed violations should think twice before taking their pen and
sending a manuscript to a physics journal. Every year a large number of such texts is
submitted, with the purpose of introducing “new” ways to escape the constraints of
the Bell theorem, and to “explain” why the experiments have provided results that
are in contradiction with the inequalities. For instance, the violations could origi-
nate from some new sort of statistics, or from perturbations created by cosmic rays,
gas collisions with fluctuating impact parameters, random effects of gravity, etc.
Imagination is the only limit to the variety of the processes that can be invoked. Nev-
ertheless, we know from the beginning that all attempts to obtain violations within
classical local theories are doomed to failure, however elaborate these theories are.

The situation is somewhat reminiscent of the attempts in past centuries to invent
“perpetuum mobile” devices: even if some of these inventions were extremely
clever, and if it is sometimes difficult to find the exact reason why they should
not work, it remains true that the law of energy conservation allows us to know
immediately that they cannot function. In the same way, some of these statistical
“Bell beating schemes” may be extremely clever, but we know that the theorem is
a very general result in statistics: in all situations that can be accommodated by the
mathematics associated with the variables λ and the A and B functions (and there
are many!), it is impossible to escape the inequalities. No, non-local correlations
cannot be explained cheaply; yes, a violation of the inequalities is a very, very,
rare situation. In fact, until now, it has never been observed, except of course in
experiments designed precisely for this purpose. In other words, if we wanted to
build automata including arbitrarily complex mechanical systems and computers,
we could never mimic the results predicted by quantum mechanics (at least for
remote measurements) without allowing communication between them; it is even
possible to calculate the minimum amount of information that must be exchanged
to simulate the quantum correlations [145]. This will remain impossible forever – or
at least until completely different computers working on purely quantum principles
are built12.

The only way to bypass the Bell theorem is to explicitly give up at least one of
the assumptions listed in §4.1.4; in §4.5.1 we come back to one of them, the free
will assumption.

12 In terms of the Mendel parable: an observation of a violation of the Bell inequalities would imply that something
inside both peas (maybe a pair of DNA molecules?) remains in a coherent quantum superposition, without
decoherence, even if the distance between the peas is large.
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4.3 Cirelson’s theorem

In §4.1.2, we have introduced a combination 〈M〉 of four averages that can never
exceed 2 within to local realism (BCHSH inequality). In §4.1.3 we have seen that,
in quantum mechanics and with two spins in a singlet state, the corresponding
combination of averages 〈Q〉 can reach 2

√
2. This is of course already a large

violation of the BCHSH inequality, but one could nevertheless hope to find other
quantum systems or other measurements that lead to even larger violations. After
all, each of the four average values 〈AB〉, 〈A′B〉, etc. appearing in 〈Q〉 is bounded
between−1 and+1; if these averages were independent variables, mathematically
the maximal value accessible to 〈Q〉 would be 4, larger than 2

√
2. One could then

wonder if better quantum situations could be found where the violation is larger
than what is obtained with two spins in a singlet state.

Within quantum mechanics, Cirelson’s theorem [146, 147] shows that, with a
system made of two sub-systems, it is actually impossible to go beyond this value
of 2
√

2, whatever series of measures is made on the two sub-systems and whatever
the initial state of the whole system is.

4.3.1 Measurements on two-level sub-systems

Consider a physical system made of two quantum sub-systems on which separate
measurements can be performed, each leading to two possible results, +1 and
−1. Each of the sub-systems has a space of states that is spanned by two levels
which, without loss of generality, we can consider as the two eigenstates of the Oz

components of a (pseudo) spin 1/2. We denote σx(1), σy(1), and σz(1) the three
components for the first sub-system – cf. equation (11.52) of Chapter 11 – which
we group into a vectorial operator −→σ (1). A similar notation σx(2), σy(2), σz(2),
and−→σ (2) is taken for the second sub-system. Any measurement performed on the
first sub-system corresponds to an Hermitian operator O(1) acting in its space of
states, which can be expressed as a linear combination of the three components of−→σ (1) and of the unit operator Î (1) in the form:

O(1)= αÎ (1)+−→a ·−→σ (1)

where α and the three components of −→a are real scalar parameters. Nevertheless,
since the results of the measurement can only be ±1, the two eigenvalues must
have the same values, so that α= 0 and

∣∣−→a ∣∣= 1. We then denote σa(1) and σa′(1)
the spin operators associated with two kinds of measurement performed on the first
sub-system with the settings −→a and −→a ′:

σa(1)=−→a ·−→σ (1) σa′(1)=−→a ′ · −→σ (2) (4.28)
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and similarly, for the second sub-system:

σb(2)=−→b ·−→σ (2) σb′(2)=−→b ′ · −→σ (2) (4.29)

(the norm of vectors −→a , −→a ′, −→b , and
−→
b ′ are all 1). Since the square of any Pauli

matrix gives the identity operator Î , we have:

[σa(1)]
2 = [σa′(1)]

2 = Î (1) ; [σb(2)]
2 = [σb′(2)]

2 = Î (2) (4.30)

The quantum average 〈Q〉 that generalizes (4.10) is given by 〈�|Q |�〉, where
|�〉 is any normalized state of the two-particle system, and where Q is the operator
given by:

Q= [σa(1)] [σb(2)]− [σa(1)] [σb′(2)]+ [σa′(1)] [σb(2)]+ [σa′(1)] [σb′(2)]
(4.31)

Our purpose is to show that the modulus of the average value of this operator cannot
exceed 2

√
2 , whatever choice is made for |�〉 and the four vectors −→a ,

−→
b , −→a ′,

and
−→
b ′.

4.3.2 Maximal quantum violation

We first calculate the square of this operator, which contains three kinds of terms:
the squares of each of the four operators appearing in (4.31), the crossed terms
where one of the operators between brackets occurs twice, and finally the crossed
terms where all σ operators are different. Since the squares of the Pauli matrices
are Î , the contribution of the first kind of terms is:

4× Î (4.32)

As for the terms implying one operator σ twice, they give:[
− [σa(1)]

2+ [σa′(1)]
2
][

σb(2)σb′(2)+σb′(2)σb(2)
]

+
[
[σb(1)]

2− [σb′(1)]
2
][

σa(2)σa′(2)+σa′(2)σa(2)
] (4.33)

which vanishes since the squares of all Pauli matrices are equal to the unit matrix
(§11.1.6). The crossed terms containing four different σ operators give:

σa(1)σa′(1)σb(2)σb′(2)+σa′(1)σa(1)σb′(2)σb(2)

−σa(1)σa′(1)σb′(2)σb(2)−σa′(1)σa(1)σb(2)σb′(2)
(4.34)
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which is nothing but the product of two commutators:

[σa(1),σa′(1)] [σb(2),σb′(2)] (4.35)

Collecting all these results, we obtain the equality [147]:

Q2 = 4× Î + [σa(1),σa′(1)] [σb(2),σb′(2)] (4.36)

The commutation relation of the Pauli matrices:[(−→
a ·−→σ ) ,(−→a ′ · −→σ )]= 2i

(−→
a ×−→a ′) ·−→σ

can then be used to arrive at:

Q2 = 4× Î − 4
[(−→

a ×−→a ′
)
·−→σ (1)

][(−→
b ×−→b ′

)
·−→σ (2)

]
(4.37)

The operator
(−→
a ×−→a ′) · −→σ (1) has eigenvalues ± ∣∣−→a ×−→a ′∣∣, which in general

have a modulus smaller than 1 since the length of vector−→a ×−→a ′ cannot exceed 1;

similarly, operator
(−→
b ×−→b ′

)
·−→σ (2)has eigenvalues with modulus equal or smaller

than 1. Therefore, the modulus of average value of this product of operators cannot
exceed 1, so that: 〈

Q2
〉
= 〈�|Q2 |�〉 ≤ 8 (4.38)

But the square of the average 〈Q〉2 of an Hermitian operator is always smaller13

than the average value of its square
〈
Q2
〉
. We therefore always have:

−2
√

2≤ 〈Q〉 ≤ 2
√

2 (4.39)

This inequality is Cirelson’s theorem.
Remarks:
(i) the proof of this inequality is useful to predict conditions under which the

bound ±2
√

2 can be reached. We notice in particular that the vectors −→a ×−→a ′
and

−→
b ×−→b ′ should have unit length, which requires that −→a and −→a ′ should be

perpendicular, as well as
−→
b and

−→
b ′ (cf. note 3). Moreover state |�〉 should be an

eigenvector with eigenvalue −1 of the product of the component of the first spin
along axis −→a ×−→a ′ by the component of the second spin along axis

−→
b ×−→b ′; in

the coplanar configuration of the four vectors, this corresponds to spin components
along the same axis, which we may call Oz. Indeed, a singlet state is such an
eigenstate of σz(1)σz(2) – but this is also the case of a triplet state with zero

13 This Schwartz inequality is obtained by writing that the average value of [Q−〈Q〉]2 is positive; it appears in
the definition of the square of the mean square value +Q.
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component along Oz, for which one can check that the same violation is obtained
as with the singlet state.

(ii) In §5.3, we study a case where, by considering three sub-systems instead of
two, one can find cases where quantum mechanics predicts that |〈Q〉| exceeds 2

√
2

and reaches the mathematical limit 4.

4.4 No instantaneous signaling

The theory of relativity requires that it should be fundamentally impossible to trans-
mit signals containing information between two distant points faster than the speed
of light (relativistic causality); suppressing this absolute limit would lead to seri-
ous internal inconsistencies in the theory. But one could then wonder if a violation
of the BCHSH inequalities does not imply the possibility of a communication at
an arbitrary velocity, since the distance between the two operators Alice and Bob
has no influence on the appearance of correlations between the results of distant
measurements. Indeed, from a local realist point of view, we have seen that the
only possibility to reproduce the predictions of quantum mechanics is to include
an instantaneous influence of the value of a local experimental setting on the result
at the other end. Moreover, even within standard quantum mechanics, the instant
determination of the state of the second particle by a measurement performed on
the first seems to indicate an influence at an arbitrary distance. We now check
that quantum mechanics does not lead to such a possibility of instantaneous signal
transmission.

What methods of transmission could be envisaged? The first idea that comes
to mind is to imagine a system having some analogy with the Morse telegraph,
where the results +1 and −1 are used by Alice to code a message to be sent to
Bob (for the sake of simplicity, here we assume that each of the measurements can
only provide two results, but a generalization is possible). But, obviously, such a
system would not work since the results of measurements are completely random,
so that Alice has no control of them to code any message. A telegraphic system
can work only if what is used to code a message is chosen by the experimenters
(for instance, the experimental settings instead of the results). Is it then possi-
ble for Bob to determine the value a or a′ of the setting that Alice has chosen,
knowing that Bob can only make local observations in his laboratory, and that he
is completely free to choose whatever value for his measurement setting b? This
signaling technique would not imply any particular delay for the transmission of
information.

We now discuss under which conditions a conflict with relativity can be
avoided. For a deterministic theory, we will see that this amounts to a condition
of “setting independence”; for a stochastic theory, this also introduces so called
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“non-signalling” conditions, or if more stringent conditions of locality are assumed,
a condition of “outcome independence”. See [148] and [149] for a discus-
sion in terms of “strong locality” and “predictive completeness” (or “parameter
independence” and of “outcome independence” in [150]).

4.4.1 Non-signaling (NS) conditions

From a general point of view, and without restricting the discussion to quantum
mechanics, what are the general mathematical conditions ensuring that a theory is
“non-signaling” (NS conditions), meaning that it does not allow Alice to transmit
instantaneous signals to Bob (and conversely)?

For a deterministic theory, these conditions are very simple: the result A=±1
of each measurement performed by Alice must depend only on the measurement
setting a, while the result B = ±1 of each measurement performed by Bob must
depend only on b. This is the condition of “setting independence”.

For a stochastic theory, and for each well-defined experimental setup (as meant
by Bohr) corresponding to given measurements settings a and b, four probabilities
P(A,B|a,b) are associated with the four events A=±1 and B =±1, with a unit
sum 1: ∑

A,B

P(A,B|a,b)= 1 for every couple a,b (4.40)

In what follows, we will assume that the first setting can take only two values a and
a′, while the second can take only two values b and b′, so that four experimental
setups are possible for the whole experiment. We then have 16 probabilities obeying
4 sum relations similar to (4.40); the most general probabilistic model therefore
depends on 12 free parameters.

When the experiment is repeated, since Bob does not have access to Alice’s
results, the only thing that he can measure is the occurrence frequency of his own
results. This corresponds to the probabilities obtained by a summation over A of
the preceding probabilities (sum of probabilities associated with exclusive events):∑

A

P(A,B|a,b) (4.41)

The NS condition amounts to assuming that this probability is independent of a;
we therefore obtain the condition:∑

A

P(A,B|a,b)=
∑
A

P(A,B|a′,b) for any value of b (4.42)
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One could write this relation for any value of B but, when only two results can
occur, the sum rule (4.40) implies that the two conditions for different values of B
are not independent (their sum provides 1 = 1); we can therefore retain only one
condition, for one value of B. Since we have assumed two different values of b, the
NS condition relative to the Alice-to-Bob communication channel then implies two
linear relations (4.42) between the probabilities. For the reverse communication
channel, one gets two other relations:∑

B

P(A,B|a,b)=
∑
B

P(A,B|a,b′) for any value of a (4.43)

Altogether, we therefore have four NS conditions.
These conditions are indeed satisfied in quantum mechanics, when Alice and

Bob perform local experiments in two remote laboratories, without any possible
influence of one of the sub-systems on the other. For the singlet state studied in
§4.1.1, we immediately obtain P(+,±)+P(−,±) = 1/2 and P(±,+)+P(±,−) = 1/2,
which shows that relations (4.42) and (4.43) are obeyed. The general proof is given
in Appendix F, whatever entangled state is chosen for the quantum system, and
whatever measurements are performed by Alice and Bob. This property of quantum
mechanics avoids a frontal conflict with relativistic causality.

4.4.2 Logical boxes

Following Popescu and Rohrlich [151] (see also [152]), we define logical “boxes”
as devices with which Alice and Bob can arbitrarily choose a binary value of “input
variables”, a =±1 for Alice and b =±1 for Bob; the box returns to them binary
“output variables” A=±1 and B =±1 (left part of Figure 4.8). We will distinguish
between deterministic boxes, where A and B are given functions of a and b, and
stochastic boxes defined by probabilities for the output variables that depend on
a and b.

4.4.2.a Deterministic boxes

When the input variables can take only two values, 4 distinct experimental setups
are possible for the whole system; when the output variables can take only two
values, each setup can provide 4 different pairs of results. The number of distinct
deterministic boxes is therefore 44= 256. But, if the NS condition is satisfied, output
A must be a function of a only, so that 4 different functions A(a) are possible for
Alice (since she uses two values of her variable a), 4 also for Bob; the total number
of deterministic boxes is only 16.

4.4.2.b Stochastic boxes

The number of stochastic boxes is not finite, since they depend on continuous
parameters. A stochastic box associates to each experimental setup 4 probabilities
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Figure 4.8. The left part of the figure gives a schematic representation of a logical
box which, from the values±1 of the input variables a and b, provides the values
of the output variables A=±1 and B =±1. The box is deterministic if A and B
are given functions of a and b, stochastic if A and B are determined by a and b
dependent probabilities.

The right part of the figure illustrates how a stochastic logical box is character-
ized by a point belonging to a polytope in probability space Pi (a,b) (j = 1, . . . ,4).
For any given value of the input variables a and b, the sum of probabilities is equal
to one, so that it is sufficient to plot the three first probabilities on the three axes;
the point associated with the logical box belongs to the inside (or surface) of a
tetrahedron with unit sides. Since four values are possible for the (a,b) couple,
the polytope is the product of four tetrahedra. The deterministic boxes correspond
to points at the corners.

Pi (j = 1, . . . ,4) with a unit sum. If we choose three axes P1, P2, P3, each box
is associated with a point in the corresponding three-dimensional space, while P4

is given by 1− P1− P2 − P3. Since all probabilities Pi remain non-negative,
the corresponding point therefore lies inside (or at the surface) of a tetrahedron
having a corner at the origin and the three other corners on the axes at a unit
distance from the origin (right part of Figure 4.8). Each of the corners corre-
sponds to a deterministic box. Since the box characterizes in fact the output values
A and B for four different values of the pairs of input variables a and b, it is
actually defined by four independent points inside (or at the surface of) four
thetrahedra. We can group these four points into one single point G in a space
with 4 × 3 = 12 dimensions. The space that is accessible to G is a polytope,
with boundaries corresponding to one vanishing probability, and corners associ-
ated with deterministic situations. A general discussion of such polytopes is given
in [152].

For a NS box, the four points are no longer independent, since they must satisfy
the four relations (4.42) and (4.43); the stochastic NS boxes therefore depend on
eight parameters, and the new polytope accessible to the parameters is smaller than
before; in particular, the corners are limited to those associated with deterministic
NS boxes.
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4.4.2.c Local stochastic boxes

A sub-category of the stochastic NS boxes is given by the local stochastic boxes,
which have the property of “outcome independence”14. Among them the simplest
are those with probabilities that factorize:

P(A,B|a,b)= p(A|a)×p(B|b) (4.44)

where p(A|a) and p(B|b) are two local probabilities between 0 and 1 obeying two
separate normalization conditions:∑

A

p(A|a)= 1
∑
B

q(B|b)= 1 (4.45)

The corresponding boxes depend on 2× 2= 4 continuous parameters only.
But, in the spirit of the Bell theorem, it is possible to generalize them by assuming

the presence of fluctuating causes characterized by a random variable λ and a
normalized distribution ρ(λ): ∫

dλ ρ(λ)= 1 (4.46)

One then assumes that, for a given value of λ (which may be a multidimensional
parameter), the conditions of the box are sufficiently well defined to obtain a
factorization from a locality argument:

Pλ(A,B|a,b;λ)= pλ(A|a;λ)×pλ(B|b;λ) (4.47)

Now the local probabilities pλ and qλ depend on the statistical parameter λ, while
satisfying (4.45) for each value of λ. When λ fluctuates, the probabilities become:

P(A,B|a,b)=
∫

dλ ρ(λ) pλ(A|a)×pλ(B|b) (4.48)

In general, this probability does not factorize, as opposed to (4.44) and (4.47). These
boxes are classical, and can be seen as a natural continuation of local realism as
introduced by EPR and Bell; they obey the Bell theorem. It is easy to check that
these boxes are NS since:∑

A

P(A,B|a,b)=
∫

dλ ρ(λ) pλ(B|b) (4.49)

which is indeed independent of a (the proof is similar for the B summation).

14 The Bayes theorem provides the general relation P(A,B|a,b)=p(A|a,b)×p(B|A,a,b), wherep(B|A,a,b)

is the conditional probability to obtain B if result A has been obtained. Assuming “setting independence”
amounts to replacing p(A|a,b) by p(A|a) as well as p(B|A,a,b) by p(B|A,b). Assuming “outcome inde-
pendence” amounts to writing that this conditional probability is independent of the outcome A, and therefore
leads to (4.44). The same assumptions can be made when one has to take into account the fluctuating variable
λ, and then lead to (4.47).
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Quantum mechanics can be used to build stochastic NS boxes, since it obeys
relations (4.42) and (4.43), but which do not necessarily belong to the category of
local stochastic boxes with outcome independence – otherwise it could not lead to
violation of the Bell inequalities.

4.4.3 Popescu–Rohrlich boxes

Any quantum scheme with experiments depending on two experimental settings a

and b and leading to binary results can be used to calculate probabilities and then
define a logical box, called a quantum box. We mentioned above that conditions
(4.42) and (4.43) are always satisfied; all quantum boxes are therefore NS. One
can then ask the reverse question: can any logical NS box be a quantum box?
Is it possible, by starting from an appropriate quantum state for two sub-systems
and performing adequate measurements on them, to reconstruct any NS box? We
will see that the answer to this question is no: the category of theories leading to
logical boxes that remain compatible with relativity is actually larger than quantum
mechanics.

Introducing the “Popescu–Rohrlich box” [151] is a way to prove this result
by producing an example, a box that is sometimes called a “PR box”. The idea
is simple: in expression (4.10), we obtained a quantum violation by considering
values of the input variables (settings) for which the three cosines with the same
sign have value 1/

√
2, while that with opposite sign has value −1/

√
2, so that the

sum reaches 2
√

2; we can try to increase this sum even more by building a model
where the correlation rates are enhanced to their maximal value 1. For the 3 pairs
of values (a,b), (a′,b) and (a′,b′) of the input variables, we then assume that the
output variables are perfectly correlated, and therefore always equal; moreover, to
preserve the NS conditions at best, we minimize the transmission of information
by attributing equal probabilities to the two pairs of possible results (−1,−1) and
(+1,+1)

P(−1,−1)=P(+1,+1)= 1/2 (4.50)

so that the probability of a different value vanishes:

P(−1,+1)=P(+1,−1)= 0 (4.51)

For the couple (a,b′), the situation is the opposite, and the output variables are
never equal:

P(−1,−1)=P(+1,+1)= 0

P(−1,B+ 1)=P(+1,−1)= 1/2
(4.52)
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We now check that this box is NS. In both the right- and left-hand sides of (4.42),
only one term contributes in the summation overA if the probabilities (4.50), (4.51),
and (4.52) are assumed. This is because the same value of B is never associated to
two different values of A, for any experimental setting; the two sides have therefore
value 1/2 and the equality holds. The same is true of (4.43). The Popescu–Rohrlich
box thus does not permit instantaneous transmission of signals; it is compatible
with relativity15.

Let us now calculate the value obtained for the combination of products of results
appearing in (4.7):

〈M〉 = 〈AB〉(a,b)−〈AB〉(a,b′)+〈AB〉(a′,b)+〈AB〉(a′,b′) (4.53)

The calculation is very simple since the probabilities we have chosen imply that the
product AB is always +1 for the three pairs of inputs (a,b), (a′,b), and (a′,b′),
while relation (4.52) implies that this product is always −1 for (a,b′). Therefore:

〈M〉 = 4 (4.54)

which shows that the mathematical limit for 〈M〉 is indeed saturated.
The fact that the Cirelson bond (§4.3) is exceeded immediately signals an

incompatibility with quantum mechanics: no quantum setup with two sub-systems
undergoing measurements, no initial quantum state can reproduce a Popescu–
Rohrlich, even if such a box forbids instantaneous transmission of signals. This
box16 therefore provides an example of “superquantum” correlations.

It is also possible to simulate such a box by using post-selection of detected
events, which amounts to introducing a bias in the sampling of detected pairs (we
come back to this notion in more detail in §4.5.1.a). With a sufficient selection, one
can then not only exceed the Cirelson limit 2

√
2 but virtually reach the mathematical

limit of 4 [153–155].

4.4.4 How to characterize quantum mechanics?

Popescu and Rohrlich propose new axioms to introduce quantum mechanics [151].
Instead of considering indeterminism as a fundamental postulate, as one usually

15 A Popescu–Rohrlich box also obeys the no-cloning theorem (§7.2.1).
16 Physically, it may seem more plausible to consider continuous input variables, instead of binary variables.

This is because they correspond to experimental settings (such as angles of measurement for instance) which,
in most cases, are continuous. Assuming relations (4.50) to (4.52) for all values of the input variables would
then lead to discontinuities. But, in quantum mechanics, the maximal violation 2

√
2 is obtained only for some

values of the variables. Similarly, here, one can assume that these probability relations are satisfied only for
some values of the parameters, and continuously interpolate between them in a second step; the violations are
then limited to some range of the variables, but this does not change the proof of existence of superquantum
correlations.
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does in quantum mechanics, they suggest choosing two different axioms: the the-
ory is non-local (meaning that it sometimes predicts violations of the BCHSH
inequalities), but nevertheless remains compatible with relativistic causality. Non-
determinism is then a consequence of these postulates, as a “reductio ad absurdum”
reasoning shows. Indeed, if the theory was deterministic, it would provide results
A and B as functions of the experimental parameters a and b, and the compatibil-
ity with relativistic causality would immediately imply that A depends on a only,
and B on b only; the proof of §4.1.2 would then apply, forbidding any violation
of BCHSH inequalities. In other words, within determinism, a BCHSH violation
would immediately create another violation of relativistic causality; it is quantum
indeterminism that avoids this conflict.

Nevertheless, the example of the Popescu–Rohrlich box shows that these axioms
do not define the theory in a unique way. What is defined is a broader ensemble
of theories, among which quantum mechanics with the Cirelson bound 2

√
2, while

other theories can reach the mathematical limit 4.Ageneral discussion of the proper-
ties of non-signaling theories is given in [156]: intrinsic randomness, impossibility
of perfect cloning, monogamy, etc. (we come back to the meaning of these terms
in §§6.2.4 and 7.2.1). One can nevertheless take a point of view where the BCHSH
inequalities and the degree of their violation are more considered as indicators of
the degree of correlations permitted by a theory than as a proof of non-locality.
The question is then: why are the correlations predicted by quantum mechanics not
maximal among those that remain compatible with relativistic causality, but more
restricted? What is the additional physical principle obeyed by quantum mechanics
that selects the value 2

√
2?

A partial answer to this question is given in [157] by remarking that stronger
correlations would result in a world in which communication complexity is not
trivial17. It has been proposed in [158] that the principle in question is a generaliza-
tion of the principle of non-instantaneous communication: for any quantum system
shared by Alice and Bob, if she sends to him m bits through a classical channel,
whatever local operations and measurements Bob makes (these operations may
depend on the received bits) he cannot obtain information that exceeds m.

In this scheme, Alice receives a chain of N binary numbers ai (i = 0, 1,
N − 1); her objective is to transmit as much information as possible concerning
this chain to Bob, knowing that she can only send m bits to him through a classical
channel (m<N). She chooses some of the numbers of her chain as values for the
measurement parameters she performs (inputs for her side of the box), and obtains

17 Alice and Bob wish to compute some Boolean function F(a,b) of variable a, chosen by Alice and known to her
only, and of variable b chosen by Bob (and known to him only). The communication complexity of F is said
to be trivial if the operation can be performed by the transmission of a single classical bit of communication.
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outputs (results); the message she sends to Bob can be built by combining her inputs
and outputs in an arbitrary way. Bob, when he receives the message, is free to use
its bits to perform any operation with his own logical system, in order to obtain the
maximum possible number of values of the ai .

(i) We first assume that Alice and Bob share a logical system made of Popescu–
Rohrlich boxes. One can then show [158] that such a device allows Bob to
exactly determine the value of any series of m different ai , and to choose
which ones – but never to determine more than m values. All bits in Alice’s
data base are accessible to Bob, but the number of bits he can acquire is strictly
limited to m.

(ii) Now assume that the system initially shared by Alice and Bob is a quantum
system in any state. It is shown in [158] that there exists a relation between
the rate of violation of the BCHSH inequality and the maximum amount of
information obtained by Bob on the values of the series of ai . It defines the
information causality principle as: “the information gain that Bob can reach
about a previously unknown to him data set of Alice, by using all his local
resources and m classical bits communicated by Alice, is at most m bits”. It
then shows that the information causality principle is violated exactly when
the Cirelson limit 2

√
2 is exceeded.

The information causality principle is, so to say, a principle of non-
amplification of classical information. Form= 0, one recovers the NS condition
of relativistic causality: no information at all can pass from Alice to Bob
through simple local measurements that they can perform, each in his/her
own laboratory. For larger values of m, the new principle posits that, for any
local measurements performed by the two partners, the amount of transmit-
ted information is not increased; these measurements are, in a way, useless.
This provides an explanation of the Cirelson bond. It then becomes natural
to consider that the information causality principle belongs to those defining
quantum mechanics, or even to conjecture that it may be used to perfectly
define the theory.

The authors of [159] propose a different approach to the characterization
of quantum non-local correlations. Assuming that quantum mechanics holds
locally, they show that the no-signallig condition then implies that all possi-
ble correlations between the two distant parties should be those of quantum
mechanics as well. In other words, if any experiment provided non-local cor-
relations beyond those of quantum mechanics, relativity would imply that
quantum mechanics could not be valid locally either. The reference [160] gen-
eralizes the characterization of quantum correlations to those observed between
N partners, instead of two. It discusses a non-local game where each partner is
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given an input variable xi and where, by using quantum correlations provided
by a common quantum system in an entangled state |�〉, each partner tries
to guess the xj variable of his neighbor. It turns out that, in this case, quan-
tum correlations do not perform better than classical correlations. This result
suggests that quantum mechanics might be characterized by a multi-partner
no-improvement criterion, a generalization of the non-signaling principle.

4.5 Impact of the theorem: where do we stand now?

In view of the experimental results mentioned in §4.1.5, which were not avail-
able when the orthodox interpretation of quantum mechanics was invented, and
which are in complete agreement with the predictions of quantum mechanics, some
physicists conclude triumphantly: “Bohr was right!”. Others claim with the same
enthusiasm “Einstein was right!” and will emphasize his precursor role in one more
domain of physics. Both these opinions make sense, depending on what aspect of
the debate one favors. Whether one personally feels closer to the orthodox quantum
camp or to local realism, it remains clear that the line initiated by Einstein and Bell
had the decisive role to play over the last 50 years. They are the ones who pointed
out the crucial importance of the notion of locality in all these discussions, which
resulted in much more progress and understanding than the simple re-statement of
the orthodox position. For instance, even now, the introduction of the reduction
of the state vector is sometimes “explained” by invoking the “unavoidable pertur-
bations that the measurement apparatus brings to the measured system” – see for
instance the traditional discussion of the Heisenberg microscope which still appears
in textbooks! But, precisely, the EPR–Bell argument shows us that this is a cheap
explanation: in fact, the quantum description of a particle can be modified with-
out any mechanical perturbation acting on it, provided the particle in question was
previously correlated with another particle. So, a trivial effect such as a classical
recoil effect in a photon–electron collision cannot be the real explanation of the
deep nature of the state vector reduction! It is much more fundamentally quantum
and may involve non-local effects.

Another lesson is that, even if quantum mechanics and relativity are not incom-
patible, they do not fit very well together: the notion of events in relativity, which
are supposed to be point-like in space-time, or the idea of causality are still basic
notions, but not as universal as one could have thought before the Bell theorem.
Indeed, quantum mechanics teaches us to take these notions “with a little grain
of salt”. Still another aspect is related to the incredible progress that experiments
have made in the twentieth century, whether or not stimulated by fundamental
quantum mechanics. One gets the impression that this progress is such that it will
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allow us to have access to objects at all levels of scale, ranging from the macro-
scopic to the microscopic. Therefore, while in Bohr’s time one could argue that the
precise definition of the border line between the macroscopic world of measurement
apparatuses and microscopic objects was not crucial, or even academic, the question
may become of real importance. In §3.3.4, we have given one example (macroscopic
systems in Fock states) but many other possibilities may emerge and, hopefully,
even give rise to experiments soon. All these changes, together, give the impression
that the final stage of the theory is not necessarily reached and that conceptual revo-
lutions are still possible, even if for the moment no precise new result has weakened
the orthodox interpretation in any way.

4.5.1 Loopholes, conspiracies

One sometimes hears that the experiments that have been performed so far to test the
Bell inequalities against quantum mechanics (§4.1.5) are not perfectly convincing;
therefore, local realism has not been disproved. Strictly speaking, this is true: there
are indeed logical possibilities, traditionally called “loopholes”, which are still open
for those who wish to keep strict local realism in physics. There are several ways
in which one can deny the existence of any real conflict between the experimental
results and the Bell inequalities.

First of all, of course, one can always invoke trivial errors, such as very
unlikely statistical fluctuations, to explain why the experiments seem to “mim-
ic” quantum mechanics so well; for instance, some authors have introduced ad hoc
fluctuations of the background noise of photomultipliers, which would magically
correct the results in a way that would give the impression of exact agreement
with quantum mechanics. One could as well even assume that all experimen-
tal results in physics are erroneous fluctuations! But the number and variety of
Bell-type experiments supporting quantum mechanics with excellent accuracy
is now large; in view of the results, few physicists take this explanation very
seriously.

One could also think of more complicated scenarios: for instance, some local
unknown physical variables may couple together in a way that will give the (false)
impression of non-local results, while the mechanism behind them remains local.
We now discuss some of these scenarios.

4.5.1.a Pair selection loophole (efficiency loophole)

In the proof of the Bell theorem, we have assumed that all pairs are detected and
provide results A and B equal to±1, whatever values for a and b are chosen. While
keeping a local realist point of view, one can give up this assumption and consider
that, somehow, the polarization analyzers select a subclass of pairs that depend on
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their settings. For each choice (a, b), only a fraction of the emitted pairs is then
detected; one can even assume that, as soon as the orientation of one (or both)
of the analyzers is changed by a few degrees, a completely different category of
physical systems is selected. Then, depending on the choice of a made on one side,
a different category of particles will reach the detector; it then becomes possible
to ascribe to this (a dependent) category whatever ad hoc physical properties are
needed to reproduce any result, including those of quantum mechanics. Clearly,
the Bell limits do not apply to such situations. In other words, if on each side one
counts only events that are correlated with a detection on the other side, one actually
counts particles that may have properties that depend on the other remote setting,
and locality can no longer be expressed in simple terms of a and b (see Appendix
E for more details).

The Bell inequalities therefore apply only if the ensemble of detected pairs can
be considered as independent of a and b; this important point was realized before
the first experiments were performed [99, 161, 162]. Therefore, any experiment
leading to a violation of the Bell inequalities, but without any direct experimental
proof of this independence, can in principle be interpreted within local realism by
invoking what is often called the “pair selection loophole” (also called “detection
loophole”, “efficiency loophole” or “(un)fair sampling loophole”, etc.).

Definition of the ensemble A crucial point is therefore the existence of averages
over a non-biased, well-defined, ensemble of pairs (completely independent of the
settings a and b). In terms of the probability distribution 0(λ) of pairs, which
defines the ensemble on which the averages are taken, the non-biasing assumption
is equivalent to considering ρ as independent of a and b; conversely, if ρ becomes
a function of a and b, it is easy to see that the proof of the Bell inequalities is no
longer valid. In the reasoning of §4.1.2, no function ρ was introduced, but what
we have assumed is that the four numbers A, A′, B, and B ′ are all attached to the
same pair. It then makes sense to obtain the ensemble average 〈M〉 from successive
measurements of four average values 〈AB〉, 〈AB ′

〉
, etc. But, if M is built from

more numbers, such as numbers associated to different pairs, the algebra no longer
holds18, and the rest of the proof of the inequality collapses.

Experimentally, it is not especially difficult to start with an ensemble of pairs
that is independent of the settings, but the difficulty is to ensure that all pairs are

18 The pairs that are detected on both sides with orientations a and b of the analyzers belong to a first sub-ensemble,
those detected with orientations a and b′ to another sub-ensemble. If the choice of the first orientation is a, the
result observed locally can then be written either Ab , if the pairs belong to the first sub-ensemble, or Ab′ if it
belongs to the second. The number M is then formed from eight different numbers±1 instead of four, and the
proof of the Bell limit is not possible.
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detected and provide two results±1 (independently of the fact that the choice of a
and b is made before or after the emission of the pair). If some pairs are undetected,
one cannot be completely sure that the detection process has not selected an a and
b dependent sub-ensemble of pairs. The statistics of counted pairs can then differ
from the statistics of emitted pairs; rigorously speaking, there is no reason why
the Bell limit should still be a consequence of local realism – see for instance the
example given by Pearle in [161] and Appendix E.

An ideal situation would be provided by a device with a triggering button that
could be used by an experimentalist, who could at will launch a pair of particles
(with certainty); if the pair in question was always analyzed and detected with
100% efficiency, the loophole would be closed. But one could also obtain the
same result without capturing all pairs, but by redefining the ensemble in rela-
tion to detection; the only condition is to make sure that the sample of counted
events is independent of their settings a and b (unbiased sample). When dis-
cussing thought experiments, Bell introduced in some of his talks the notion of
“preliminary detectors” [163], devices which he sketched as cylinders through
which any pair of particles would have to propagate before reaching both ends of
the experiment (where the a and b dependent measurement apparatuses sit); the
preliminary detectors should signal the presence of pairs that, later, would always
be detected at both ends, whatever choice of a and b is made. The role of these
cylinders was therefore to make the definition of the sample more precise, even
if initially the pairs were emitted by the source in all directions. Such systems,
which allow a definition of an ensemble that is indeed totally independent of a and
b, are sometimes called “event-ready detectors”. See also reference [164] where
Bell imagines a combination of veto and go detectors associated with the first
detected particles in a ternary emission, precisely for the purpose of better sample
definition.

It is also possible to take the opposite point of view and to deliberately choose, as
we saw in §4.4.3, to bias the sample of detected pairs with a post-selection process.
One can then, not only violate Bell inequalities without non-locality (Appendix E,
§E.2), but also exceed the Cirelson bound by a large factor [153–155]. This illus-
trates the importance of the fair sampling condition for obtaining clear experimental
violations of local realism.

Imperfections of the experiments Needless to say, in practice, the experimental
situation is never ideal! First, one should realize that, in all experiments performed
until now, most pairs are simply missed by the detectors. There are several reasons
for this situation: in photon experiments, the particles are emitted in all direc-
tions, while the analyzers collect only a small solid angle and, therefore, only a
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tiny fraction of the pairs. This was especially true in the initial experiments using
photon cascades; in more modern experiments [122], the use of parametric pho-
ton conversion processes introduces a strong correlation between the direction
of propagation of the photons and a much better collection efficiency, but it still
remains low. Moreover, the transmission of the analyzers is less than 1 (it is actu-
ally less than 1/2 if ordinary photon polarization filters are used, but experiments
have also been performed with birefringent two-channel analyzers [119], which are
not limited to 50% efficiency). Finally, the quantum efficiency of particle detectors
(photomultipliers for photons) is not 100% either, so that pairs of particles are lost
at this stage too. The net result is that there is no independent way to determine
the sample of detected pairs, since the detection process itself is obviously a and b

dependent; as a consequence, all experimental results become useful only if they are
interpreted within a “no-biasing” assumption, or “fair sampling hypothesis”, which
amounts to considering that the settings of the analyzers does not bias the statistics
of events.

On the other hand, we should also keep in mind that there is no known reason
whatsoever why such a sample biasing should take place, so that the possibility
remains speculative. The experimentalists are not in the dark concerning the detec-
tion efficiencies of their experimental setups. On the contrary, they can calculate
them with accuracy, knowing the geometrical characteristics of the apparatuses,
the quantum efficiency of the detectors, the rate of excitation of the source, etc.;
all these parameters can be carefully controlled and allow them to check that the
coincidence rates are exactly what one expects from theory. The rates are also
compared with those of single-particle detection under the same experimental con-
ditions; experimenters are not restricted to measurements of the relative variations
of the coincidence rates as functions of a and b. The same care has been taken to
make all possible checks, as in other important experiments in physics; the result
of all this work is that everything fits very well with the predictions of quantum
mechanics. It would be rather extraordinary if some mysterious physical effect
existed that depended so crucially on the detection efficiency; for low efficien-
cies, it would mimic the results of quantum mechanics and fool the physicists,
who would then erroneously think that the results of quantum mechanics are valid;
but, for higher (not yet obtained) efficiencies, it would act completely differently
and stop to reproduce quantum mechanics. This is probably why most physicists
remain sceptical about this scenario and believe that, when more perfect experi-
ments become possible, the same agreement with standard quantum mechanics will
be obtained.

For a theoretical discussion of the necessary conditions to design a loophole-
free experiment in terms of background level and counter efficiencies, see [165].
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For proposals of really loophole-free experiments19, see [166, 167] and [168]. The
latter reference proposes to use continuous variables that are quantized artificially
afterwards (result +1 if the integral of the signal during a pulse is positive, −1 if
it is negative). Especially interesting is an idea of “photon subtraction” that does
two things at the same time: providing an event-ready detector (in order to close
the pair selection loophole) and introducing the necessary quantum state to violate
Bell’s inequalities. In this case, the predicted violation is only 1%, but there are
more elaborate situations where much higher violations are expected [169].

In any case, there seems to be now a reasonable hope that this loophole will be
closed by the experiments within a reasonable delay.An experiment with 9Be+ ions
was performed with high detection efficiency [170], so that the corresponding loop-
hole was closed; nevertheless, the distance between the two ions was small (a few
microns) so that the communication loophole (see below) could not simultaneously
be closed. It has nevertheless been proposed to use the method of “entanglement
swapping” (§6.3.2) where pairs of photons entangle remote ions in different traps
[171]; the experiment was performed [172, 173] with 171Yb+ ions at a distance of
1m. from each other, and led to a clear violation of the Bell inequalities (3 standard
deviations). Recent experiments with solid-state Josephson junctions have given
results violating the BCHSH inequalities by more than 200 standard deviations,
with quantum systems that are macroscopic electrical circuits [174]. In this case,
the problem of capturing pairs of particles does not occur. Nevertheless, since the
distance between the circuits is small, the communication loophole remains open;
no completely loophole-free experiment has been performed yet.

4.5.1.b Conspiracy (or communication) loophole

Other loopholes are also possible: even if experiments were done with 100% effi-
ciency, one could also invoke some possibilities for local processes to artificially
reproduce quantum mechanics. One of them is usually called the “conspiracy of

19 A perfect correlation between the existence of a detection event on each side (independently of the obtained
results) would provide another possible scheme for a loophole free experiment – this, of course, would imply
that two channel detectors with a 100% efficiency are used on both ends of the experiment. In itself, the fact
that any click at one side is always correlated with a click at the other, independently of the settings a and
b, is not sufficient to exclude a setting dependence of the ensemble of detected pairs. But, if one assumes
locality at this stage also, a simple reasoning shows that a perfect detection correlation is sufficient to ensure
the independence: if some selection occurs for the first particle, it is determined by the detection of the second
particle with setting b, independently of the value chosed for a; it is therefore independent of a. Symetrically,
the detection of the second particle is independent of b. Therefore the detection of the pair is independent of
a and b.

In other words, locality arguments may be used, not only for the results of the apparatuses (the functions
A and B), but also in order to specify the ensemble of observed pairs (the distribution function ρ). Therefore,
the observation (in some future experiment) of a violation of the Bell inequalities with a perfect detection
correlation would be sufficient to exclude local theories, and therefore to close the loophole.
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the polarizers”20 (actually, “conspiracy of the analyzers” would be more appropri-
ate), or also “communication loophole”. Assume that, by some unknown process,
each analyzer becomes sensitive to the orientation of the other analyzer; it can
then acquire a response function that depends on the other setting, and the function
A may have a dependence on both a and b. Under these conditions, the proof of
the Bell theorem is no longer possible. The same is true if the choice of a may
somehow influence the propagation of the second particle between the source and
the apparatus with setting b. Unknown physical processes could therefore conspire
to reproduce violations of the inequalities without violating local realism, giving
the false impression that the latter is not obeyed.

A way to exclude the possibility of these processes is to make use of relativistic
causality. If the distances between the two analyzers and between the analyzers and
the source are sufficiently large, and if the settings a and b are chosen at the very last
moment, then no physical influence can propagate (at the maximum speed of light)
between the different parts of the apparatus; unless of course they violate relativity,
these unknown processes become impossible. The loophole is therefore closed. A
first step in this direction was done by Aspect et al. in 1982 [120]. More recent
experiments [175] with very fast changes of a and b have succeeded in exclud-
ing this possibility and completely closing this loophole. Quantum mechanics still
works perfectly well under these more stringent time-dependent conditions.

4.5.1.c Fatalism versus free will

Along a similar line is what is sometimes called the “fatalistic loophole” (or also
“superdeterminism”). The idea is to put into question an implicit assumption of
the reasoning that leads to the Bell theorem: the completely arbitrary choice by the
experimenters of the settings a and b. Usually, a and b are indeed considered as
free variables: their values are not the consequence of any preliminary event that
took place in the past, but those of free human choice, which may be made just
before the measurement. On the other hand, it is true that there is always an overlap
between the past cones of two events (here the choice of the settings). It is therefore
always possible in theory to assume that they have a common cause; a and b are
then no longer free parameters, but variables that can fluctuate (in particular, if this
cause itself fluctuates) with all kinds of correlations. In this case, it is easy to see
that the proof of the Bell theorem is no longer possible21.

20 The word polarizer refers to the experiments performed with photons, where the spin orientation of the particles
is measured with polarizing filters; but there is nothing specific on photons in the scenario, which can easily
be transposed to massive spin 1/2 particles.

21 For instance, in the proof that makes use of a probability density ρ(λ), if one assumes that a and b become two
functions a(λ) and b(λ), it makes no sense to compare the average values for different fixed values of a and b.
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What is then denied is the notion of free will of the experimenters, whose deci-
sions are actually supposed always to be predetermined, even if they are not aware of
it; the notion of arbitrary external parameters, which usually define the experimen-
tal conditions, no longer makes sense in this scheme. This price being paid, one can
build a theory that remains at the same time realist, local, and (super)deterministic,
includes a sort of physical theory of human decision, and can violate the Bell
inequalities; see for instance [176]. This remains, of course, an unusual point of
view, since the notion of arbitrary external parameters is generally accepted in
physics; in the words of Bell [177]: “A respectable class of theories, including
quantum theory as it is practiced, have free external variables in addition to those
internal to and conditioned by the theory . . . They are invoked to represent the
experimental conditions. They also provide a point of leverage for free willed
experimenters . . .”.

In practice, when many values of the settings are chosen randomly in an exper-
iment, they are not decided by a human being, but are automatically created by a
random number generator. For instance, in the time-dependent experiment men-
tioned above [120], a double random generator was used to pilot the values of the
settings at both ends of the experiment. Transposing the free will loophole to this
situation leads to the question: are the number generators actually not random? Do
they actually provide values that are actually consequences of the fluctuations of
some common cause in the past? If so, a and b are functions of some variable λ,
and the Bell theorem no longer applies. One could also imagine influences of the
random number generator onto the source of particles, which would be emitted in
a state that is correlated with the type of measurement they will undergo later; this
also would block the proof of the theorem. It is then not totally impossible that
λ fluctuates and influences a and b, and/or the source, in a way that reproduces
the predictions of quantum mechanics, but from a totally different mechanism that
may be local and realist. A method to reduce the plausibility of this possibility
is to use very remote measurement apparatuses with independent random number
generators, as was done in a recent experiment [124].

A fatalistic view of the physical universe leaves little room for experimental
scientific disciplines. If the history of the universe is predetermined once and
for all, including all experiments that have and will be performed within this
universe, it is not possible to “ask questions to Nature” in various ways, since
the questions themselves are already consequences of this unique history. The
very notion of the scientific experimental method becomes somewhat dimmed,
if it keeps any meaning at all. Needless to say, the fatalist attitude is not very
common among scientists; many consider that eliminating the possibility of free
observers in this way is too high a price to explain the difficulties of quantum
mechanics.
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It is nevertheless possible to take an intermediate point of view, where exper-
imenters retain some free will, but not complete. It is shown in [178] that, if the
experimenters just give up 14% of their decision independence, within local realism
it becomes possible to reproduce the predictions of quantum mechanics for spin
measurements with a singlet spin state.

4.5.1.d Credibility of loopholes

We should not conclude this section on loopholes without mentioning that, if they
undoubtedly exist, they keep a somewhat “ad hoc” character. The explanations in
question do not rest on any specific theory: no-one has precise ideas about the nature
of the physical processes involved in the conspiracy, or of how pair selection would
occur in a way that is sufficiently complex to perfectly mimic quantum mechanics.
The only thing one can do (see Appendix E) is to build ad hoc models to reproduce
quantum mechanics. But by what kind of mysterious process would experiments
mimic quantum mechanics so perfectly at low collection efficiencies, and cease
to do so at some higher value of efficiency? Bell himself was probably the one
who should have most liked to see that his inequalities could indeed be used as a
logical tool to find the limits of quantum mechanics; nevertheless, he found these
explanations too unaesthetic to be really plausible. But in any case logic remains
logic; yes, there still remains a slight possibility that, when the experiments reach a
level of efficiency in pair collection where the loophole becomes closed, the results
concerning the correlation rates will progressively deviate from those of quantum
mechanics to reach values compatible with local realism. Who knows?

4.5.2 Is quantum mechanics itself non-local? Counterfactuality

One can find in the literature various attitudes concerning the exact relation between
quantum mechanics and locality and realism. Some authors consider that the non-
local character of quantum mechanics is a fact. For instance, in [179], Bell writes
“Quantum mechanics is non locally causal” and adds “quantum mechanics cannot
be embedded in a local causal theory”.As for Popescu and Rohrlich, as mentioned in
§4.4.4, they even propose to consider non-locality as one of the axioms of quantum
mechanics [151]. For others, quantum non-locality is just an artefact created by the
introduction into quantum mechanics of notions that are foreign to it (typically the
EPR elements of reality). They add that state vector reduction is not an essential
component of quantum mechanics (see for instance §§1.2.2.b and 10.1.2.b) and that
this theory never introduces any violation of relativistic causality. Their conclusion
is then, in general, that quantum mechanics is contradictory with realism, but not
locality.
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Consider for instance the correlations of the results observed by Alice and Bob
in distant galaxies. The proponents of a local non-realist theory remark that such
distant correlations are unobservable directly; to be measured, they require that
Alice and Bob should exchange messages, or travel to some common place, and
then compare their results. Since neither they nor their messages can travel faster
than the velocity of light, the observation of the correlations is indeed subject to the
minimum time prescribed by relativity. Indeed, a perfectly relativistic space-time
diagram accounting for the whole experiment can be drawn, from the emission
of the entangled particles to the observation of the correlations. The proponents
of non-locality then reply that a basic component of the scientific method is to
trust the observation made by other scientists. Since Alice and Bob report that
they observed the results long before they met at the end of the experiment, the
correlation already existed when they made their measurement, and was therefore
necessarily non-local. But the first group then remarks that this reasoning implies a
definition of the reality in the past, a delicate concept that is not at all indispensable
if realism is abandoned, etc. Lively discussions to decide whether or not quantum
mechanics in itself is inherently non-local have taken place and are still active
[180–182]; see also references [24] and [99, 183]. Delicate problems of logic are
involved and we will not discuss the question in more detail here.

What is easier to grasp for the majority of physicists is the notion of “counter-
factual statement” or, more generally, “counterfactuality” [184]. A counterfactual
reasoning considers the results of possible experiments that can be envisaged for
the future as well-defined quantities, and as valid mathematical functions to use in
equations, even if they are still unknown – of course, in algebra one writes unknown
quantities in equations all the time. This is very natural: as remarked by d’Espagnat
[185, 186] and by Griffiths [187], “counterfactuals seem a necessary part of any
realist version of quantum theory in which properties of microscopic systems are
not created by the measurements”. One can also see the EPR criterion of reality as
a statement of the existence of counterfactuals.

But it also remains true that, in practice, it is never possible to realize more than
one of the four experiments that are necessary to obtain a violation of the BCHSH
inequalities: for a given pair, one has to choose a single orientation of the analyzers
for the measurement, so that all other orientations will remain forever in the domain
of speculations. For instance, in the reasoning of §4.1.2, at least two of the numbers
A,A′,B, andB ′ are counterfactuals. One could then conclude that counterfactuality
is the notion to reject from quantum mechanics. We have already quoted a sentence
by Peres [108], who wonderfully summarizes the situation in orthodox theory:
“unperformed experiments have no results”; as Bell once regretfully remarked
[177]: “it is a great inconvenience that the real world is given to us once only”!
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But, after all, one can also accept counterfactuality and take a point of view that
is still perfectly consistent with quantum mechanics, provided one then also accepts
a more explicit appearance of non-locality. The Bell theorem is not an impossibility
theorem, either for counterfactuality, or for hidden variables – a sort of (correct)
version of the Von Neumann theorem. Accepting explicit non-locality is after all
natural: why require that theories with counterfactuality/additional variables should
be explicitly local at all stages, while this is not required from standard quantum
mechanics? Indeed, in this theory, neither the state vector itself, nor the state vector
reduction postulate – or the calculation of correlation of experimental results in the
correlation point of view (§10.1.2) – corresponds to mathematically local calcula-
tions. As we have seen in §4.4.2.b, in terms of logical boxes, quantum mechanics
does not lead to local stochastic boxes. In other words, even if one can discuss at a
fundamental level whether or not quantum mechanics is local or not, it is perfectly
clear that its formalism is not; it would therefore be just unfair to request a local
formalism from a non-orthodox theory – especially when the theory in question is
built in order to reproduce all results of quantum mechanics! As an illustration of
this point, we quote Goldstein [18]: “in recent years it has been common to find
physicists . . . failing to appreciate that what Bell demonstrated with his theorem was
not the impossibility of Bohmian mechanics, but rather a more radical implication –
namely non-locality – that is intrinsic to quantum theory itself”.
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More theorems

The Bell theorem can take the form of several inequalities, as we have seen in
§4.2. Moreover, since it was discovered, the theorem has stimulated the discovery
of several other mathematical contradictions between the predictions of quantum
mechanics and those of local realism. We review a few of them in this chapter:
GHZ contradictions (§5.1) and their generalization (§5.2), Cabello’s inequality
(§5.3), and Hardy’s impossibilities (§5.4). Finally, in §5.5, we discuss the notion
of contextuality and introduce the BKS theorem.

5.1 GHZ contradiction

For many years, everyone thought that Bell had basically exhausted the subject
by considering all really interesting situations, and that two-spin systems provided
the most spectacular quantum violations of local realism. It therefore came as a
surprise to many when in 1989 Greenberger, Horne, and Zeilinger (GHZ) showed
that systems containing more than two correlated particles may actually exhibit
even more dramatic violations of local realism [188, 189]. They involve a sign
contradiction (100% violation) for perfect correlations, while the BCHSH inequal-
ities are violated by about 40% (Cirelson bound) and deal with situations where the
results of measurements are not completely correlated. In this section, we discuss
three-particle systems, but generalizations to N particles are possible (§5.2).

5.1.1 Derivation

GHZ contradictions may occur in various systems, not necessarily involving spins.
Initially, they were introduced in the context of entanglement swapping (§6.3.2)
for four particles [188] or entanglement of three spinless particles [189]. Here,
following Mermin [190], we will consider a system of three 1/2 spins, since this
simple example is sufficient to discuss the essence of the ideas. We assume that the

100
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Figure 5.1. Scheme of a GHZ experiment, where three spins in state (5.1) undergo
measurements in three different regions of space, and provide results A = ±1,
B =±1 and C =±1.

three spins are described by the quantum state:

|�〉 = 1√
2

[
|+,+,+〉+η |−,−,−〉

]
(5.1)

where the |±〉 states are the eigenstates of the components of the spins along the
Oz axis of an orthonormal frame Oxyz; in the three-particle kets, the first sign
refers to the state of the first spin, the second to the state of the second spin, and,
similarly, for the third spin; the number η is either +1 or −1:

η=±1 (5.2)

We now calculate the quantum probabilities of measurements of the spins σ1,2,3

of the three particles, either along direction Ox, or along a perpendicular direction
Oy (Figure 5.1). We first consider a measurement of the product σ1y × σ2y ×
σ3x ; a straightforward calculation (made explicit in §5.2 in a more general case1)
then shows that | � > is an eigenvector of this product with eigenvalue −η, so
that −η is the only possible result with state (5.1). Therefore the corresponding
probability is:

P(σ1y ×σ2y ×σ3x =⇒−η)= 1 (5.3)

while the probability P(σ1y × σ2y × σ3x =⇒ +η) of the other possible result
vanishes. Similarly, we find that | � > is an eigenvector of the two products

1 With the notation of that section, here we haveη= eiξ ,ϕ1=ϕ2=π/2, andϕ3= 0, so that ζ = ei(ξ−ϕ1−ϕ2−ϕ3)=
−η, which provides the eigenvalue. Similarly, for a measurement of the product σ1x × σ2x × σ3x , we have
ζ = eiξ = η, and the eigenvalue is +η.
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σ1x×σ2y×σ3y and σ1y×σ2x×σ3y , with eigenvalues−η, so that the corresponding
probabilities are:

P(σ1x ×σ2y ×σ3y =⇒−η) = 1

P(σ1y ×σ2x ×σ3y =⇒−η) = 1
(5.4)

All three products therefore take the value−η; the results are known with certainty
before the measurement2. Now, if we consider the product of three spin compo-
nents along Ox, it is also easy to check (§5.2) that the same state vector is also an
eigenstate of the product operator σ1x × σ2x × σ3x , but now with eigenvalue +η,
so that:

P(σ1x ×σ2x ×σ3x =⇒+η)= 1 (5.5)

This time the result takes the value +η with certainty.
Let us now investigate the predictions of an EPR local realist point of view in

this kind of situation. Since the quantum calculation is so straightforward when the
initial state is an eigenstate of all observables considered (all the results are per-
fectly certain), one could expect that nothing special will be found. But, actually,
we will see that a complete contradiction emerges from this analysis! The local
realist reasoning is a direct generalization of that given in §4.1.2. First, the perfect
correlations imply that the result of measuring the component along Ox (or Oy) of
the spin of any particle can be inferred from the results of measurements made on
other particles, at arbitrarily large distances. Therefore the local realist EPR reason-
ing shows the existence of elements of reality attached to these two components,
which we note Ax,y = ±1. This number is the result that the first spin will give
for a measurement along Ox or Oy, independently of the type of measurement
performed for the two other spins; similar letters B and C are used for the mea-
surement on the two other spins. To reproduce the three equalities written in (5.3)
and (5.4), we need to have:

AyByCx =−η

AxByCy =−η

AyBxCy =−η

(5.6)

Now locality implies that the same values of A, B, and C can be used again for the
experiment where the three Ox components are measured: the result is merely the
product AxBxCx . But, since the squares A2

y etc. are always equal to +1, we can

2 The product is fixed, but each of the individual components still fluctuates between results +1 and −1.
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obtain this result by multiplying all three lines of equation (5.6), which provides:

AxBxCx =−η (5.7)

But equality (5.5) predicts that the measurement of σ1x × σ2x × σ3x will always
give the result +η, which has the opposite sign! The contradiction between the
predictions of local realism and those of quantum mechanics cannot be more
pronounced.

5.1.2 Discussion

The GHZ contradiction looks even more dramatic than for the Bell inequalities since
the quantum and local realist predictions do not differ by some significant fraction
(about 40%), but are completely opposite. In a thought experiment, all fluctuations
are eliminated since all of the results (the products of the three components) are
perfectly known before measurement: the 100% contradiction is obtained with
100% certainty! Apart from this, what differentiates a GHZ situation from a usual
Bell experiment with two spins? Different points of view are possible.

(i) One point of view assumes that the three spins are measured individually in each
realization of the experiment. The three spins may be in different regions of space;
when the spatial variables are included, (5.1) symbolizes a ket that can be written
more explicitly as:

|�〉 = 1√
2
|1 : ϕa〉 |2 : ϕb〉 |3 : ϕc〉⊗

[
|1 : +;2 : +;3 :〉+η |1 : −;2 : −;3 : −〉

]
(5.8)

where
∣∣ϕa,b,c

〉
are three orbital states with non-overlapping wave functions. These

functions can be entirely localized in separate boxes, where the spin measurements
are performed, so that no particle is missed and each of them is addressed separately.
The way to proceed is that, after choosing a component, Ox or Oy for each spin,
one performs the three corresponding measurements, obtains three results Ax,y ,
Bx,y , and Cx,y , and then calculates their product. Averaging over many realizations
of the experiment provides the average value

〈
Ax,yBx,yCx,y

〉
. With this procedure,

one first measures
〈
AyByCx

〉
,
〈
AxByCy

〉
, and

〈
AyBxCy

〉
to check the perfect corre-

lations predicted by quantum mechanics, from which the EPR reasoning leads to
the existence of the six separate elements of reality. Then one measures 〈AxBxCx〉
and, if quantum mechanics still gives correct predictions, obtains the opposite sign;
the conclusion is then that local realism is violated. Equivalently, one can conclude
that the value obtained by measuring, say, σ1x depends on whether the spin compo-
nent measured for the other particles is along Ox or Oy, even if the corresponding
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operators commute with σ1x . In other words, one arrives at the notion of “quantum
contextuality”, which we will discuss in more detail in §5.5.

(ii) A different point of view is to consider that some experimental procedure has
been found to measure directly the products of operators, without obtaining infor-
mation on the three separate factors inside each product. All four product operators
then commute with each other, which introduces an important conceptual difference
with violations of Bell type inequalities, where the non-commutation is essential.
Here, at least in principle, it is not impossible to measure all of them with a single
setup; Bohr could not have invoked the incompatibility of experimental arrange-
ments. Under these conditions, where is the contradiction between the local realist
reasoning and quantum mechanics? While, within local realism, a measurement of
the product of three operators is equivalent to a separate measurement of each of
them, in quantum mechanics this is not the case. Within quantum mechanics, it is
possible (in principle) to conceive an apparatus that measures all four products, but
impossible to design a single experimental setup to have access to all six factors
Ax,y , Bx,y , and Cx,y (since, for instance, Ax and Ay correspond to the results of
two incompatible measurements). What quantum mechanics then violates is the
“product rule” discussed in §5.5.2.

An ideal GHZ experiment would therefore involve only measurements of com-
muting products, more precisely the simultaneous measurement of four products
(without measuring separately each factor in the products). The beauty of this the-
oretical possibility is that loopholes such as the “biased sample loophole” (§4.5.1)
would then automatically be closed3. On the other hand, measuring a product
without measuring each factor may raise a real experimental challenge.

Even with separate measurements, experimental tests of the GHZ equality still
require that three particles should be put in state (5.1), surely a non-trivial task.
Nevertheless, with the help of elaborate techniques of quantum electronics, GHZ
entanglement has been observed with three photons [191], leading to a successful
experimental test of the GHZ non-locality [192]. Similar results have also been
obtained with four entangled photons [193]. The techniques of NMR (nuclear
magnetic resonance) have also been used to test the GHZ equality, at least with
microscopic distances [194] – see also [195, 196]. All these experiments have
confirmed the predictions of quantum mechanics.

When the measurements are imperfect, the GHZ equality can give rise to
inequalities (as for the BCHSH theorem) see [197] (this reference also presents
a generalization to an arbitrary number N of particles) and [198]. The use of parti-
cles originating from three independent sources with quantum interference effects
that disprove local realism has been discussed in [199], and later generalized to an

3 One could not assume that different experimental setups select different groups of particles, since only one is
used.
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arbitrary large number of particles [140]. The transposition to continuous position
and momentum variables is discussed in [200]. Two-particle interferometers can
also lead to GHZ contradictions for spinless particles [201].

5.2 Generalizing GHZ (all or nothing states)

We now generalize the GHZ state (5.1) by introducing an N -particle state |�〉
defined as:

|�〉 = 1√
2

[
|+,+, . . . ,+〉+ eiξ |−,−, . . . ,−〉

]
(5.9)

where ξ is a real parameter defining the relative phase of the two components; |�〉
is a coherent superposition of two N -particle states where all, or none, of the spins
are in the individual state4 |+〉, hence the name “all-or-nothing state” that we use
here5 – but “many-particle GHZ states” would be equally appropriate. One also
sometimes finds the name “maximally entangled states”, or6 “NOON states”, in
the literature.

The state we consider here is very special, since it is a superposition of two
N -particle components where all particles are in different, orthogonal, individual
states. This state should not be confused with a different state where many parti-
cles have each been prepared in a coherent superposition. For instance, one can
prepare individually N spin 1/2 by sending them through a spin filter (polarization-
dependent beam splitter, Stern–Gerlach analyzer, etc.), which prepares a coherent
superposition α |+〉+ β |−〉 for each spin. The effect of the filter on the group of
N particles is to put them into a state that is a product of single-particle coherent
states, namely:∣∣� ′〉= [α |1 : +〉+β |1 : −〉

]
⊗
[
α |2 : +〉+β |2 : −〉

]
⊗ . . . ⊗

[
α |N : +〉+β |N : −〉

] (5.10)

This state contains components of the state vector where some of the spins are up,
some down, in various proportions. In (5.10), each particle is in the same spin state,
and the situation is somewhat analogous to a Bose–Einstein condensate where all

4 An all-or-nothing state does not necessarily require that all spins be up in the first component of the state vector,
down in the second; what actually matters is that every spin changes to an orthogonal spin state when one goes
from one N -particle component of |�〉 to the other (in other words, the quantization axis may vary from spin
to spin)

5 Strictly speaking, we should use the name “all and nothing state”, since both possibilities are simultaneously
present in |�〉.

6 These states can be written as a superposition of kets with occupation numbers N ,0;0,N , hence the name.
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particles are in the same coherent state – for instance a condensate located on both
sides of a potential barrier coupled by tunnel effect, as in the Josephson effect. By
contrast, in (5.9) the coherence is essentially an N -body coherence only, so that the
entanglement is more subtle.

Consider now the component of spin j along a direction in plane xOy making
angle ϕj with Ox; it corresponds to the operator:

σj (ϕj )= 1

2

[
e−iϕj σ+(j)+ eiϕj σ−(j)

]
(5.11)

where σ± denotes the operator σx ± iσy as usual, with the following action:

σ± |±〉 = 0 and σ± |∓〉 = 2 |±〉 (5.12)

We now introduce the N -particle operator corresponding to the product of various
components of the spins:

Q(ϕ1,ϕ2, . . . ,ϕN)= σ1(ϕ1) σ2(ϕ2) . . .σN(ϕN) (5.13)

which is equal to:

Q(ϕ1,ϕ2, . . . ,ϕN)=
N∏

j=1

1

2

[
e−iϕj σ+(j)+ eiϕj σ−(j)

]
(5.14)

The action of this operator onto state (5.9) is easily obtained by using (5.12). If one
takes the first component of |� >, the only way to obtain non-zero by application
of operator (5.14) is to select the term in eiϕj σ−(j) in each bracket of the product
over j ; therefore:

Q(ϕ1,ϕ2, . . . ,ϕN) |+,+, . . . ,+〉 = ei(ϕ1+ϕ2+ ...+ϕN) |−,−, . . . ,−〉 (5.15)

In the same way:

Q(ϕ1,ϕ2, . . . ,ϕN) |−,−, . . . ,−〉 = e−i(ϕ1+ϕ2+ ...+ϕN) |+,+, . . . ,+〉 (5.16)

Therefore, if we set:

ζ = ei(ξ−ϕ1−ϕ2− ...−ϕN) (5.17)

we obtain:

Q(ϕ1,ϕ2, . . . ,ϕN) |�〉 = 1√
2

[
ζ |+,+, . . . ,+〉+ 1

ζ
eiξ |−,−, . . . ,−〉

]
(5.18)
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We then see that, if the condition:

ζ = 1

ζ
=±1 (5.19)

is fulfilled, the action of Q on |�〉 reconstructs exactly ζ |�〉, which means that
|�〉 is an eigenstate of Q with eigenvalue ζ . In other words, provided the sum of
all angles ϕj is equal to ξ (plus some integer multiple of π ), the product of all
operators σj (ϕj ) corresponds to a measurement that gives a result ζ = ±1 with
certainty.

We can calculate the quantum average of Q from (5.18) and (5.17); for any value
of the angles, we obtain:

〈Q〉 = cos(ξ −ϕ1−ϕ2− . . . −ϕN) (5.20)

For instance, if all angles ϕj are equal to the same value ϕ, this formula predicts that
the average value of Q oscillates rapidly as a function of ϕ if N is large. Whatever
the value of N is, it turns out that it is completely impossible to reproduce the
oscillations contained in (5.20) within local realism [202]. In the case N = 2, this
of course reduces to the usual Bell theorem. But, as soon as N becomes 3 or takes a
larger value, the contradiction becomes even more dramatic. In [202], it is assumed
that a local probabilistic theory reproduces (5.20) only for some sets of particular
value of the angles ϕ (those for which the result is certain). One can then show that
the theory in question necessarily predicts that 〈Q〉 is independent of all angles ϕ:
the average then keeps a perfectly constant value +1! Indeed, the very existence
of the oscillation predicted by (5.20) is a purely quantum non-local effect.

As we have already remarked, the effect is essentially a coherent N body effect:
if a single spin is missed in the measurement, in (5.14) the number of spin operators
is no longer sufficient to transform the ket |+,+, . . . ,+〉 into |−,−, . . . ,−〉 as in
(5.15). The result then becomes completely independent of the relative phase eiξ

of the two components; no quantum coherence effect then takes place. Actually,
it is easy to check that the average value of any product of N − 1, N − 2, etc.
components of the spins vanishes; the quantum interference effect leading to (5.20)
takes place only if all N spins are measured.

This is not the only remarkable property of all-or-nothing states. For instance,
it can be shown that, for large N , they lead to exponential violations of the
bounds put by local realist theories [197]. In the context of a possible use of
quantum correlations to reduce the quantum noise in spectroscopy [203], it has
been pointed out [204] that these states (called “maximally correlated states”)
have remarkable properties in terms of spectroscopic measurements: the frequency
uncertainty of measurements decreases as 1/N for a given measurement time,
therefore much faster than the usual 1/

√
N factor obtained with measurements on
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independent particles7. A discussion of this method, as compared to others making
use of Bose–Einstein condensates, is given in [205]. Such quantum states may also
be the source of “quantum lithography”, using on a non-linear optics process (many
photon absorption process) where the usual diffraction limit λ/2 obtained in classi-
cal physics is divided by N [206–208]. The quantum correlation of these states may
turn out to be, one day, the source of improved accuracy in various experiments.

We have already mentioned in §5.1 that entanglement with N = 3 was reported
in [191, 209] and used to test the GHZ equality [192]. Proposals for methods to
generalize to larger values of N with ions in a trap were put forward by Mølmer
et al. [210]; the idea exploits the motion dependence of resonance frequencies
for a system of several ions in the same trap, as well as some partially destructive
interference effects. The scheme was successfully put into practice in an experiment
[211] where “all-or-nothing states” were created for N = 2 as well as N = 4 ions in
a trap. GHZ states are not the only possibility to obtain violations of local realism
with three particles; one can also use three particles originating from independent
sources, and send them into an appropriate interference device [199].

5.3 Cabello’s inequality

We now discuss a scheme introduced by Cabello [212], which leads to violations of
BCHSH type inequalities exceeding the Cirelson bound (§4.3) – in fact, reaching
the maximal value 4 mathematically compatible with the definition of the sum of
averages appearing in these inequalities. To obtain this result, we consider a system
made of three sub-systems, and we cast the GHZ results into a form in which they
appear as components of a BCHSH inequality; the idea is, so to say, to transform
three-particle GHZ correlations into two-particle BCHSH correlations.

Again, we consider three spins in state (5.1) with η=+1 and measurements of
the components of the three spins along Ox or Oy. More explicitly, we write the
initial quantum state as:

|�〉 = 1√
2
|ϕa(1)〉 |ϕb(2)〉 |ϕc(3)〉⊗

[
|1 : +,2 : +,3 : +〉+ |1 : −,2 : −,3 : −〉

]
(5.21)

7 One can give a simple physical interpretation of this sensitivity improvement. Suppose that the two individual
spin states |±〉 represent single particles propagating in the two arms of a Mach–Zhender interferometer. The
ket (5.9) then describes a N particle state where all particles propagate together, either in one arm of the
interferometer, or in the other. In other words, what propagates in the interferometric device is a cluster of N

particles having N times the mass and N times the energy of a single particle. Since the de Broglie wavelength
of a quantum object with mass Nm and energy Ne is �/N

√
em, it is N times shorter than for a single particle,

which improves the sensitivity of the interferometer by the same factor.
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where
∣∣ϕa,b,c

〉
are three orbital states located in three different regions of space A,

B, and C, where the separate spin measurements take place (Alice, Bob, and Carol).
Assume for instance that we measure the three Ox components of all spins.

We have shown that the product of the results is always +1, so that two cases are
possible. If two results −1 are obtained, we call i and j the corresponding regions
and spins (i being attributed to the first region in the alphabetical order A, B, C),
and k the region where result +1 has been obtained. If the three results are equal8

to +1, we choose i =A, j = B, and k =C. We always have:

〈σx(i)σx(j)〉 = 1 (5.22)

which is indeed a two-spin relation.

5.3.1 Local realist point of view

To each of the three regions of space we attach three numbers X, Y , and Z, each
equal to ±1. The EPR local realist theorem and the existence of complete GHZ
correlations between remote spins show the existence of nine numbers Xa,b,c,
Ya,b,c and Za,b,c for regions A, B, and C; these nine numbers give the result that
a measurement of the spin component along Ox, Oy, or Oz in each region will
provide. The transposition of the results of quantum mechanics implies that, for
each realization of the experiment (each triplet of particles), the product XaXbXc

is equal to 1; either two of the X are equal to −1, or none.
This allows us to define three indices i, j , and k for all triplets of spins (not only

those for which all Ox components of the spins are measured) as follows:

• if two of the X are equal to−1, they get indices i and j (among these two regions,
i is associated with the region that is first in alphabetical order), and k is for the
third region; Xk is then always equal to +1.

• if all the X are equal to +1, then i = a, j = b, and k = c.

For each realization of the experiment, this defines a perfect correspondence
between the regions and the three indices i, j , and k, but of course this corre-
spondence may change from one experiment to the next. Nevertheless, because
local realism has introduced the counterfactuality (§4.5.2) on which the numbering
process is based, this correspondence is always possible whatever measure-
ments are actually performed, which is of course not the case within quantum
mechanics.

8 Expanding |�〉 onto the eigenvectors of the Ox components of the three spins shows that this happens one time
out of four.
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In the proof of the BCHSH inequality for two spins in §4.1.2, we have considered
in (4.7) a quantity of the form:

X
(
Y +mY ′

)+nX′
(
Y −mY ′

)
(5.23)

with:

m=±1 ; n=±1 (5.24)

Expression (5.23) is always equal to ±2 when the four numbers involved are ±1.
Here, we introduce the following combination of the nine numbers:

Xi

(
Xj +mYj

)+nYi

(
Xj −mYj

)
(5.25)

which is also always −2 or +2; this is because either
(
Xj +mYj

)
or
(
Xj −mYj

)
vanishes, and all numbers have modulus equal to 1. Since Yk =±1, we may choose
m= n=−Yk , so that this expression becomes:

Xi

(
Xj −YkYj

)−YiYk

(
Xj +YkYj

)
(5.26)

which provides:

XiXj −XiYkYj −YiXjYk−YiYj =±2 (5.27)

But since, by definition of index k, we have Xk = 1, equation (5.27) gives:

XiXjXk−XiYjYk−YiXjYk−YiYjXk =±2 (5.28)

Therefore, within local realism, the product of three measurements along Ox

minus the three products of twoOy components with oneOx components is always
equal to −2 or +2. The average value over many realizations is therefore always
comprised between −2 and +2:

−2≤ 〈XiXjXk

〉− 〈XiYjYk

〉− 〈YiXjYk

〉− 〈YiYjXk

〉≤+2 (5.29)

The average value of the product of the three different X, minus the three different
combinations of one X and two Y , is always bounded by ±2.

5.3.2 Contradiction with quantum mechanics

In quantum mechanics, the average of the product of the three different Ox

spin components, minus the three different combinations of one Ox and two Oy

components, is:

Q= 〈σx(1)σx(2)σx(3)
〉− 〈σx(1)σy(2)σy(3)

〉
− 〈σy(1)σx(2)σy(3)

〉− 〈σy(1)σy(2)σx(3)
〉 (5.30)
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But we have seen above (§5.1) that the first term is+1, while all the others are−1.
Therefore quantum mechanics predicts +4 for this quantity, in strong violation of
(5.29) – by a factor 2.

The conclusion is that, by combining elements of the BCHSH reasoning with
others of the GHZ reasoning, it is possible with three particles to obtain violation
of generalized BCHSH inequalities that saturate the absolute mathematical limit.
Using a third particle as a “marker” so to say, allows one to select the appropriate
BCHSH inequality for the two other particles and to exceed the Cirelson bound.
The reference [213] proposes another scheme, involving pre- and post-selection,
which also provides the maximum value 4 to the BCHSH term.

5.4 Hardy’s impossibilities

Another scheme illustrating contradictions between local realism and the predic-
tions of quantum mechanics was introduced by Hardy [59]. As the initial Bell
theorem, it involves two correlated particles, but it is conceptually different: Hardy’s
theorem leads to conclusions concerning the very possibility (or impossibility) of
occurrence for some type of events – instead of mathematical constraints on correla-
tion rates. A general discussion of this interesting contradiction is given in [214]. As
in §4.1.2, we assume that the first particle may undergo two kinds of measurements,
characterized by two values a and a′ of the first setting.

Within local realism, we call A and A′ the corresponding results. Similar mea-
surements can be performed on the second particle, and we call B and B ′ the results.
Let us now consider three types of situations (Figure 5.2):

(i) if the settings are a, b, the result A= 1, B = 1 is sometimes obtained.
(ii) when “crossed measurements” are performed (either a, b′ or a′, b), we have

certainties: if A= 1, the value of B ′ is always −1; if B = 1, the value of A′

A = +1 B = +1

A' = -1 B' = -1

sometimes

never

always

Figure 5.2. Logical scheme associated with the Hardy impossibilities. If results
A=B = 1 are sometimes obtained, and if B ′ (resp. A′) is always equal to−1 when
A (resp. B) is equal to 1, then event A′ =B ′ =−1 must sometimes occur. But one
can construct a quantum state for which the first two conditions are obeyed while
such events never occur, which creates a contradiction with local realism.
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is always −1. One can also express this as an exclusion: “double ones” never
occur in crossed measurements, neither A= 1, B ′ = 1 nor A′ = 1, B = 1 are
ever obtained.

(iii) when both settings are primed, we assume that “double minus one” is
impossible: A′ = −1, B ′ = −1 is never observed.

It turns out that these three assumptions are in fact incompatible. To see why, let
us consider the logical scheme of Figure 5.2, where the upper part corresponds to
the possibility opened by statement (i); statement (ii) then implies that, ifA= 1, one
necessarily has B ′ =−1, which explains the first diagonal in the figure; the second
diagonal follows by symmetry. Then we see that all events corresponding to the
results A= B = 1 also necessarily correspond to A′ = B ′ = −1, so that a contra-
diction with statement (iii) appears. Indeed, the “sometimes” of (i) is contradictory
with the “never” of the exclusion of proposition (iii).

But it turns out that quantum mechanics does allow a simultaneous realization
of all three propositions! To see how, let us consider a two-spin state vector of the
form:

|�〉 = α |+, −〉+β |−, +〉+ γ |+, +〉 (5.31)

where the kets |±, ±〉 refer to the common eigenstates of the Pauli operator σz(1)
for spin 1 and the spin operator σz(2) for spin 2, with a given quantization axis Oz.
We assume that A′ = σz(1) and B ′ = σz(2), so that:

|±,±〉 = ∣∣A′ = ±,B ′ = ±1
〉

(5.32)

The absence of any |�〉 component on
∣∣A′ = −1,B ′ = −1

〉
ensures that proposition

(iii) is automatically true. As for the measurements without prime, we assume that
they are both performed on the spins along a direction in the plane xOz that makes
an angle 2θ with Oz; the single-spin eigenstate with eigenvalue +1 is then:

cosθ |+〉+ sin θ |−〉 (5.33)

Proposition (ii) (diagonals in Figure 5.2) amounts to excluding the two-spin state:

cosθ |+,+〉+ sin θ |−,+〉 (5.34)

as well as state:

cosθ |+,+〉+ sin θ |+,−〉 (5.35)

The two exclusion conditions are obtained by cancelling the scalar product of |�〉
and these two vectors. This is equivalent to the condition:

α sin θ + γ cosθ = β sin θ + γ cosθ = 0 (5.36)
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or:

α = β =−γ cot θ (5.37)

Within an arbitrary coefficient, we can then write |� > in the form:

|�〉 = −cosθ
(
|+,−〉+ |−,+〉

)
+ sin θ |+,+〉 (5.38)

The scalar product of this ket with that where the two spins are in the state
(5.33) is:

−sin θ cos2 θ (5.39)

The final step is to divide the square of this result by the square of the norm of ket
(5.38) in order to obtain the probability of the process considered in (iii); this is a
straightforward calculation (Appendix D), but here we just need to point out that the
probability is not zero; the precise value of its maximum with respect to θ is found
in Appendix D to be about 9%. This proves that the pair of results considered in
proposition (i) can sometimes be obtained together with (ii) and (iii): indeed, in 9%
of the cases, the predictions of quantum mechanics are in complete contradiction
with those of a local realist reasoning.

An interesting aspect of the above propositions is that they can be generalized to
an arbitrary number of measurements [215]; it turns out that this permits a significant
increase in the percentage of “impossible events” (impossible within local realism)
predicted by quantum mechanics – from 9% to almost 50%! The generalization
involves a chain (Figure 5.3), which keeps the two first lines (i) and (ii) unchanged,
and iterates the second in a recurrent way by assuming that:

(iii) for measurements of the type (a′, b′′) or (a′′, b′), one never gets opposite
results9;

(iv) similarly, for measurements of the type (a′′, b′′′) or (a′′′, b′′), one never gets
opposite results,
etc . . .

(n) but, for measurement of the type (an ,bn), one never gets −1 and −1.

The incompatibility proof is very similar to that given above; it is summarized
in Figure 5.3.

In both cases, the way to resolve the contradiction is the same as for the Bell
theorem: in quantum mechanics, for a given pair of spins, it is not correct to reason
on all four quantities A, A′, B, and B ′, even considered as quantities that are

9 In fact, the reasoning just requires that the pair −1, +1 is never obtained, and does not require any statement
about +1, −1.
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A = +1 B = +1

A' = -1 B' = -1

sometimes

always

always

always

A'' = -1 B'' = -1

…
.

A(n) = -1 B(n) = -1
never

Figure 5.3. Logical scheme for iterating the Hardy impossibilities

unknown and that could be determined in a future experiment. This is simply
because, with a given pair, it is obviously impossible to design an experiment that
will measure all of them: the measurements are incompatible. For a discussion of
non-local effects with other states, see [216].

GHZ contradictions, or Hardy impossibilities, may appear as a stronger con-
tradiction with quantum mechanics than just a violation of statistical BCHSH
inequalities. But a closer examination shows that, in fact, both are logically related
and that all violations discussed so far involve inequalities at a deeper level [217].

5.5 Bell–Kochen–Specker theorem: contextuality

Another theorem was introduced also by Bell [5] as well as (independently and
almost simultaneously) by Kochen and Specker [218], hence the name “BKS the-
orem” that is often used for it. This theorem is not particularly related to locality,
but to another notion called “contextuality”. An additional variable attached to a
physical system is called “contextual” if its value depends, not only on the physical
quantity that it describes, but also on the other physical quantities that can be mea-
sured at the same time on the same system (therefore corresponding, in quantum
mechanics, to commuting observables). If, on the other hand, its value is indepen-
dent of all the other observables that the experimenter may decide to measure at
the same time, the additional variable is called “non-contextual”. One can then
say that it describes a property of the physical system only, and not a combined
property of the system and the measurement apparatus; it may have pre-existed in
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the system before any measurement. The notion of distance is no longer relevant in
this context; for instance, the theorem applies to a single system with no extension
in space.

5.5.1 A spin 1 particle

Let us first consider a spin 1 particle in quantum mechanics, with three quantum
states |−1〉, |0〉, and |+1〉 as a basis of a state space of dimension 3. The three
components Sx , Sy , and Sz do not commute (they obey the usual commutation
relation for the angular momentum), but it is easy to show that all the squares of
these three operators do commute; this is a specific property of angular momentum
1, and can be seen by an elementary matrix calculation with the usual operators
S±. Moreover, the sum of these squares is a constant (an operator proportional to
the identity operator, sometimes called a “c-number”) since:

S2
x +S2

y +S2
z = 2�

2 (5.40)

It is not against any fundamental principle of quantum mechanics, therefore, to
imagine a triple simultaneous measurement of the observables S2

x , S2
y , and S2

z ; we
know that the sum of the three results will always be 2 (from now on we drop the
factor �

2, which plays no role in the discussion). Needless to say, the choice of the
three orthogonal directions is completely arbitrary, and the compatibility is ensured
for any choice of this triad, but not more than one: the measurements for different
choices of the triad remain incompatible.

In passing, we note that the measurement of the square S2
x of one component

cannot merely be seen as a measurement of Sx followed by a squaring calcula-
tion made afterwards by the experimentalist! Not obtaining some information (the
sign) is not equivalent to ignoring the information after it has been obtained by a
measurement (we come to this point in more detail, in terms of interferences and
decoherence, at the end of §10.1.2). There is indeed less information in S2

x than
in Sx itself, since the former has only two eigenvalues (1 and 0), while the latter
has three (since result −1 is also possible). What is needed to measure S2

x is, for
instance, a modified Stern–Gerlach system where the components of the wave func-
tion corresponding to results±1 are not separated, or where they are separated but
subsequently grouped together in a way that makes them impossible to distinguish.
Generally speaking, in quantum mechanics, measuring the square of an operator is
certainly not the same physical process as measuring the operator itself!

Now, suppose that we try to attach to each individual spin an EPR element of
reality (additional variable) that corresponds to the result of measurement of S2

x ; by
symmetry, we will do the same for the two other components, so that each spin now
gets three additional variables λ to which we may attribute values that determine
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the possible results: 1 or 0. The results are described by functions of these variables,
which we note Ax,y,z:

Ax = 0 or 1; Ay = 0 or 1; Az = 0 or 1 (5.41)

At first sight, this seems to provide a total number of eight possibilities; but, if we
want to preserve relation (5.40), we have to select among these eight possibilities
only those three for which two A are 1, and one is 0. For this particular spin we
then attribute colors to the three orthogonal directions Ox, Oy, and Oz: the two
directions that get an A= 1 are painted in red, the last in blue [219].

The same operation can obviously be made for all possible choices of the triplet of
directions Oxyz.Aquestion which then naturally arises is: for an arbitrary direction
Ox, can one attribute a given color (a given value for Ax) that remains independent
of the context in which it was defined? Indeed, we did not define the value as a
property of an Ox direction only, but in the context of two other directions Oy and
Oz; the possibility of a context independent coloring is therefore not obvious. Can
we for instance fix Oz and rotate Ox and Oy around it, and still keep the same
color for Oz? We are now facing an amusing little problem of geometry that we
might call “ternary coloring of all space directions”. Bell as well as Kochen and
Specker showed that this is actually impossible; for a proof see either the original
articles10, or the review [9] given by Mermin.

The conclusion is that any theory where measurements reveal a property that
the system already had before measurement must be contextual to reproduce the
predictions of quantum mechanics: the results of several compatible measurements
performed at the same time must depend on the nature of all these measurements,
otherwise contradictions appear. An important feature of this theorem is that it does
not require the system to be in a precise quantum state, but applies to any state (we
come back to state-independence in §5.5.3).

5.5.2 Two spin 1/2 particles, product rule

In a similar line, Peres [221] has shown that the results of quantum mechanics are
incompatible with the two following propositions:

(i) the results of the measurement of an operator A depend solely on A and on the
system being measured (non-contextuality)

(ii) if operators A and B commute, the result of a measurement of their product
AB is the product of the results of separate measurements of A and B (product
rule).

10 The original proof by Kochen and Specker involves projectors over 117 different directions in real space; since
then proofs involving a smaller number have been given, for instance in [220] where 18 directions are used.
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Peres shows the existence of the incompatibility by considering two spin 1/2
particles in a singlet state. Mermin has generalized the result [9, 222] to any state
vector of the two spins, and we follow his proof to show that the two assumptions
lead to a sign contradiction with the predictions of quantum mechanics11. We con-
sider two spin 1/2 particles and the following table of nine quantum variables (we
use the same notation as in §5.1):

σ1x σ2x σ1xσ2x

σ2y σ1y σ1yσ2y

σ1xσ2y σ1yσ2x σ1zσ2z

(5.42)

All operators have eigenvalues ±1. The three operators belonging to the same
line commute, as well as the three operators belonging to the same column (the
products of two anti-commuting σ are commuting operators, since changing their
order introduces two −1 signs with cancelling effects). Moreover, the products of
all three operators is always+1, except the last column12 for which it is−1 . Here,
instead of an infinite number of triplets of directions in space, we have three groups
of three operators, but the same question as above arises: can we attribute a value
±1 to each of the nine elements of matrix (5.42) in a way that is consistent with
the results of quantum mechanics? For this consistency to be satisfied, all lines and
columns should contain either three +1 values or one +1 and two −1, except the
last column that must contain one or three −1.

This little matrix problem is much simpler13 than the geometrical coloring prob-
lem mentioned in §5.5.1. One can calculate the product of all matrix elements,
either as the product of the products inside each line or as the product of the prod-
ucts inside columns. The product of all lines has to be (+1)3 = +1, while the
product of all columns is (+1)2 (−1), which is −1; a sign contradiction arises. It
is therefore impossible to find nine numbers satisfying all conditions.

For another illustration of this sort of impossibility, see also §VI of [9] which
deals with three 1/2 spins instead of two.

5.5.3 Contextuality versus local realism

From the discussions above, we can conclude that the predictions of quantum
mechanics are incompatible with a non-contextual view on the EPR elements of

11 We note in passing that the reasoning is very close to that of §5.1, which illustrates again the similarity between
the GHZ theorem and this form of the BKS theorem.

12 This can easily be checked from the well-known properties of the Pauli matrices; the minus sign for the third
column comes from the product of the two i, arising from the relation σxσy = iσz; on the other hand, in the
third line one gets i× (−i)= 1 because of the change of order of the operators.

13 The complication of the geometrical problem of the original BKS theorem is entirely avoided by going to a
space of states of dimension 4 instead of dimension 3.
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reality/additional variables. Now, is this result more or less general than the Bell
theorem, based on locality instead of contextuality? The Bell theorem, seen as
a continuation of the EPR argument, does not assume additional variables: their
existence is derived from the local realist EPR argument applied to perfect cor-
relations. In the BKS theorem, such a derivation is not made; the existence of
additional variables is assumed, as well as some specific properties. In this sense,
the Bell theorem is more general. Moreover, as Bell noted [5], “the result of an
observation may reasonably depend not only on the state of the system (including
hidden/additional variables) but also on the complete disposition of the apparatus”.
Mathematically, in a theory with additional variables λ, the function A giving the
result of a measurement then depends on the settings of all the apparatuses inter-
acting simultaneously with the measured quantum system; for instance, in the case
studied in §5.5.1, the function should be written as A(a,b,λ), where a and b define
the two directions along which the squared measured components of the angular
momentum are measured. One can also build a theory where additional variables
are attributed to the apparatuses, and where both kinds of additional variables col-
laborate in order to determine the observed a and b dependent results; the results of
quantum mechanics can then be recovered. By contrast, the Bell local realist theo-
rem can handle variables associated with the measurement apparatuses – provided
of course they are local – and maintain a contradiction with these results. Violations
of the Bell theorem by quantum mechanics are therefore generally considered as
more significant quantum manifestations than violations of the BKS theorem.

On the other hand, if one reasons from the beginning within hidden variable
theories, and disconnects the Bell theorem from the EPR argument, the situation
is different. Local hidden variables then appear as a special type of non-contextual
hidden variables [223] (the Bell conditions of setting independence are a special
case of non-contextuality). Seen in this way, the Bell theorem appears as less general
than the BKS relations. Both theorems can be expressed in forms that are either
state-dependent, or state-independent and therefore more general. Examples of
state-dependent forms were given above when we assumed that the system should
be put in a given quantum state, such as (4.1) or (5.1); by contrast, the reasonings
used in §§5.5.1 and 5.5.2 are state-independent. For a general discussion of the status
of the various “impossibility theorems” with emphasis on the BKS theorems, see
[9, 222].

We have seen in Chapter 4 that local realism can give rise to several forms of
the Bell theorem, leading to different equalities or inequalities. In the same way,
non-contextual realism can be expressed in various mathematical ways. An all-
or-nothing state-independent test involving two spins 1/2 was proposed in [224];
extending the idea, [225] has proposed an all-or-nothing test that can be performed
with single particles. This resulted, a few years later, in an experiment done with
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single photons [226], which provided results in agreement with quantum mechan-
ics, eliminating non-contextual hidden variables. Another inequality applying to
three-level systems was introduced in [227] and [223], leading to experiments
done with single photons propagating along three modes [228]; a violation of the
inequality by more than 120 standard deviations was obtained, eliminating again
non-contextuality. Experiments have also been performed with neutrons [229],
trapped ions [230], and nuclear spins in a solid studied by nuclear magnetic reso-
nance [231], providing other examples of good agreement with the predictions of
quantum mechanics.

The notion of contextuality has been used to propose a realist interpretation of
quantum mechanics, based on the notion of contextual objectivity [232]. In this
formulation, realism is defined in a way that is reminiscent of the EPR criterion
of reality, but emphasizes the role of the whole experimental setup (holism) rather
than local properties of sub-systems or regions of space – in other words in a way
that is in line with Bohr’s point of view. Under these conditions, clearly, neither
the EPR incompleteness argument nor the Bell theorem apply, and contradictions
with the standard formulation of quantum mechanics are avoided.



6

Quantum entanglement

In this chapter, we study the properties of quantum entanglement, and more gener-
ally the way correlations can appear in quantum mechanics. Quantum entanglement
is an important notion that we have already discussed, for instance in the context
of the Von Neumann chain or of the Schrödinger cat, but here we give more details
on its properties.
In classical physics, the notion of correlation is well known. It hinges on the cal-
culation of probabilities and on linear averages over a number of possibilities. A
distribution gives the probability of having the first system in a some given state
and the second in another state. If this distribution is not a product, the two systems
are correlated. If it is a product, they are uncorrelated; measuring the properties
of one system does not bring any information on the other. This is in particular
the case if the state of each of the two systems is perfectly defined (which also
defines the state of the whole system perfectly well). The notion of correlation
between sub-systems therefore stems from the multiplicity of possible states of the
whole system; fluctuations of this state are necessary to give its full meaning to the
classical notion of correlation.

In quantum mechanics, the situation is different: as we have seen (in particular in
Chapter 4), even a physical system that is perfectly defined by a given state vector
already contains fluctuations. This leads naturally to another notion of correlation,
independent of any fluctuation of the state. For instance, the components of two 1/2
spins are strongly correlated in a singlet state (§4.1.1), which is a pure state. This is
because the principle of linear superposition of quantum mechanics allows one to
introduce superpositions directly inside the state vector; this is very different from
superpositions of probabilities, which are quadratic functions of this state vector.
In other words, in quantum mechanics one may introduce correlations directly
at the level of probability amplitudes, one level “below” linear combinations of
probabilities; this may create cross terms in the amplitudes resulting in quantum
interference effects. Since it is also possible in quantum mechanics to assume that

120
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the state of the whole system is imperfectly known and defined only by probabilities,
the two levels may coexist, so that the quantum notion of correlation is much richer
than in classical physics.

We come back in more detail to these points in §6.1, and to methods to character-
ize entanglement in §6.2. In §6.3, we discuss how quantum entanglement may be
created in experiments, as well as an opposite process, decoherence, which tends to
make entanglement disappear1. The dynamics of a sub-system of a large quantum
system and the corresponding master equation are studied in §6.4.

6.1 A purely quantum property

In quantum mechanics, the relation between parts and the whole is very special, and
certainly non-intuitive. We have already mentioned that Schrödinger was the first to
use the words “quantum entanglement” in 1935, when he wrote (page 555 of [233]):
“When two systems, of which we know the states by their respective representatives,
enter into temporary physical interaction due to known forces between them, and
when after a time of mutual influence the systems separate again, then they can no
longer be described in the same way as before, viz. by endowing each of them with
a representative of its own. I would not call that one but rather the characteristic
trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought. By the interaction the two representatives [the quantum states]
have become entangled . . . Another way of expressing the peculiar situation is: the
best possible knowledge of a whole does not necessarily include the best possible
knowledge of all its parts, even though they may be entirely separate and therefore
virtually capable of being ‘best possibly known’, that is, of possessing, each of
them, a representative of its own. The lack of knowledge is by no means due to the
interaction being insufficiently known – at least not in the way that it could possibly
be known more completely – it is due to the interaction itself.”

6.1.1 The part and the whole

In classical mechanics, the description of the part is simply contained in the descrip-
tion of the whole2: when a system is made of two sub-systems, 1 and 2, a full
description of the whole system 1+ 2 immediately provides a full description of

1 More precisely, it tends to make it propagate further and further into the environment, so that in practice it rapidly
becomes impossible to observe; for all practical purposes, one can consider that entanglement has disappeared.

2 Heisenberg published in 1969 a book with the title The Part and the Whole, relating how quantum mechan-
ics emerged from discussions between him and other physicists. Nevertheless this title does not seem to be
specifically related to entanglement, but to a more abstract concept: “There is a fundamental error in separating
the parts from the whole, the mistake of atomizing what should not be atomized. Unity and complementarity
constitute reality” (sentence attributed to Heisenberg [234]).



122 Quantum entanglement

each sub-system. Actually, the description of the dynamical state of the whole sys-
tem is nothing but the sum of the descriptions of the sub-systems: if one specifies
the values of the positions and the momenta of all particles (as well as the values
in space of the fields), all dynamical variables associated to each sub-system are
automatically known. For instance, a perfect description of the solar system con-
tains a perfect description of all the positions and velocities of the planets and their
satellites; a perfect description of the state of the electromagnetic field contains a
perfect description of the electric field, as well as of the magnetic field, in all space.

Strangely enough, and as emphasized by Schrödinger, this is no longer true in
quantum mechanics. If the whole system is described with the most accurate way
accessible in quantum mechanics, a state vector, the sub-systems may be described
less accurately; one can assign them just probabilities of occupying quantum states –
in other words, as we see in more detail below, they are not in a pure state but in
a statistical mixture, described mathematically by a density operator. Therefore,
parts may be known only statistically, while the whole is perfectly known (with
probability unity).

To see how this can happen in simple terms, suppose that a system is made of
a first sub-system 1 with quantum states |ϕ〉, and of a second sub-system 2 with
quantum states | χ〉. If the whole system is described by a simple product quantum
state3:

|�〉 = |1 : ϕ〉 |2 : χ〉 (6.1)

the two sub-systems are uncorrelated; the first is described by a quantum state
|ϕ〉, while the second is described by | χ〉. All three systems (whole and two sub-
systems) are then associated with state vectors, the most accurate description that
standard quantum mechanics can assign to any physical system.

But assume now that the whole system is in state:

|�〉 = α |1 : ϕa〉 |2 : χa〉+β |1 : ϕb〉 |2 : χb〉 (6.2)

where
∣∣1 : ϕa,b

〉
are two orthonormal states for the first system, and

∣∣2 : χa,b

〉
two other orthonormal states associated with the second; α and β are two (non-
vanishing) complex numbers satisfying |α|2+|β|2= 1. The whole system is still in
a well defined quantum state, but the first sub-system has a probability |α|2 of being
in state |ϕa〉 and a probability |β|2 of being in state |ϕb〉, so that it is described by

3 As already mentioned in Chapter 11 – see equation (11.61) – we use three equivalent notations for the tensor
product:

|1 : ϕ〉⊗ |2 : χ〉 ≡ |1 : ϕ〉 |2 : χ〉 ≡ |1 : ϕ; 2 : χ〉
Depending on the context of each calculation, one or the other may be more convenient and correspond better
to the general use.
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a statistical mixture instead of a pure state4 – we come back to this point below in
terms of density operators. The sub-systems are then described less accurately than
the whole system, a situation without any classical equivalent. The words “quantum
entanglement” are used to describe such situations.

The formalism of the density operator (§11.1.5) and the use of partial traces
(§11.2.3) is useful to express this property in a more quantitative way. The density
operator ρ associated with state |�〉 is:

ρ = |�〉 〈�| (6.3)

which is merely the projector over state |�〉, obeying ρ2 = ρ since:

ρ2 = |�〉 〈�|�〉 〈�| = |�〉 〈�| = ρ (6.4)

One then says that ρ describes a “pure state”, a case characterized by the equality:

T r
{
ρ2
}
= 1 (6.5)

(the trace of ρ itself is always 1 by definition). The sub-systems are described by
partial traces of ρ; for instance, the first sub-system is described by operator:

ρ1 = T r2 {ρ} (6.6)

with the following matrix5 in basis |ϕa〉, |ϕb〉:

(ρ1)=
|α|2 0

0 |β|2

 (6.7)

This diagonal expression shows that system 1 is described by a statistical mixture
of states |ϕa〉 and |ϕb〉 with probabilities |α|2 and |β|2.

We also have:

(ρ1)
2 =

|α|4 0

0 |β|4

 (6.8)

4 Similarly, the second sub-system has a probability |α|2 of being in state |χa〉 and a probability |β|2 of being in
state |χb〉, and is therefore also associated with a statistical mixture.

5 According to equation (11.77) of Chapter 11 defining a partial trace, the matrix elements of ρA are given by:〈
ϕi
∣∣ρA ∣∣ϕj 〉=∑

k

〈
1 : ϕi ;2 : χk

∣∣ �〉 〈� ∣∣1 : ϕj ;2 : χk

〉
(where i,j and k label one of the basis vectors, a or b). From expression (6.2) of |�〉, we then obtain:〈

ϕi
∣∣ρA ∣∣ϕj 〉= (αδi,a)(α∗δj,a)+ (βδi,b)(β∗δj,b)

which is matrix (6.7).
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and:

T r
{
(ρ1)

2} = |α|4+|β|4 = [|α|2+|β|2]2− 2 |α|2 |β|2

= 1− 2 |α|2 |β|2 ≤ 1
(6.9)

If one of the coefficients α or β vanishes, we are back to the case where the sub-
systems are uncorrelated as in (6.1); one then obtains (ρ1)

2 = ρ1 and the trace of
(ρ1)

2 is equal to 1, which indicates that the first sub-system is in pure state (as
well as the second sub-system). But, when none of the coefficients vanishes, the
sub-systems are correlated, we have (ρ1)

2 �= ρ1, and the trace of (ρ1)
2 is smaller

than 1; this indicates that the sub-system is described with less accuracy than if it
was in a pure state, by a statistical mixture.

Of course, one can add more than two terms in the sum of (6.2), which tends
to make the knowledge on each sub-system less and less precise, while the whole
system still remains perfectly defined. For instance, if |�〉 contains a linear super-
position of three terms, all containing orthogonal individual states, the density
operator ρ1 describing system 1 becomes a 3×3 diagonal operator and introduces
three possible states for this system (eigenstates of ρ1). Moreover, in general and
as remarked by Schrödinger [233], the determination of these possible states is not
necessarily unique; one can then not even list the states that are accessible to the sub-
system without ambiguity6. One can even reach a situation where the description
of each sub-system is completely random, so that no information at all is available
on their states, all kets in their space of states being equally probable. In such cases
of extreme entanglement, the whole system has some physical properties, those
associated with its state, but nothing can be said about any specific property of the
sub-systems. A simple example of extreme quantum entanglement is given by the
singlet state of two spins 1/2 – cf. equation (4.1) – or its direct generalization:

|�〉 = 1√
2

[
|+,−〉+ eiξ |−,+〉

]
(6.10)

(where eiξ is an arbitrary phase factor). With this state, the whole system is perfectly
defined, while no information at all is available on the state of each individual spin,
which has equal probabilities to be in state |+〉 or |−〉.

The purely quantum character of entanglement is clear. In classical mechanics,
if the properties of two physical systems are initially defined with the best possible
accuracy, after mutual interactions each system is still defined as accurately as
possible. By contrast, in quantum mechanics, starting from systems with the best
possible definition compatible with their quantum nature, at the end of the process

6 This happens each time two probabilities (eigenvalues of the reduced density operator) are equal.
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one reaches in general situations where they are defined with less accuracy. This is a
signature of the quantum character of the entanglement created by the interaction.
In terms of entropy of the two systems (§6.2.2), if initially they both have zero
entropy, the same is true at the end of the process, while in quantum mechanics this
is not the case.

6.1.2 Two possible origins of correlations

Entanglement and correlation are obviously closely related notions. As we have
already mentioned in the introduction to this chapter, correlations may arise in
quantum mechanics in two ways:

(i) By a process that is the direct transposition of classical correlations: one
attributes random correlated quantum state vectors to each of the two sub-
systems. The statistical average is then performed linearly with respect to prob-
abilities, and one then says that the whole system is described by a statistical
mixture of product states (or by a density operator). This leads to classical cor-
relations, which necessarily obey the Bell inequalities (§4.1 and Appendix C).

(ii) By a purely quantum process involving quantum entanglement: the whole sys-
tem is described by a state vector that is neither random nor a product. The
linear superposition then occurs at the level of the state vector itself, which
is a coherent sum of several components, with a relative phase that plays an
important role. The correlations then have a purely quantum origin, and may
violate the Bell inequalities.

The former process takes place at the level of events, properties of systems,
results of measurement, etc. as in classical physics. The latter takes place “at a
lower level” involving directly state vectors and probability amplitudes (instead of
probabilities themselves). It can also result in a broader range of correlations, as
illustrated by the Bell theorem.

Both possibilities may also be combined: one can assign to the whole system
itself a statistical mixture of states that are not necessarily products. The formalism
of the density operator (§11.1.5) makes it possible to include both into the same
operator, which is very convenient for compact calculations; on the other hand, it
looses the trace of the origin of correlations7, classical of quantum, which may also

7 The formalism of the density operator, or matrix, is elegant and compact, but precisely because it is compact
it sometimes partially hides the physical origin of the mathematical terms. The density matrix allows one to
treat in the same way classical probabilities (proper mixtures), arising from non-fundamental uncertainties and
imperfect knowledge of a physical system, and purely quantum probabilities (improper mixtures) which are
more fundamental and have nothing to do with imperfect knowledge. But mathematical analogies should not
obscure conceptual difficulties!
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sometimes be inconvenient. One sometimes calls “proper mixtures” the situations
associated with usual quantum statistics, and “improper mixtures” those associated
with purely quantum correlations.

6.2 Characterizing entanglement

We now study how quantum entanglement can be characterized more quantitatively.
For this purpose, we come back to the properties of the density operator ρ of
the whole system, when compared to those of the density operators ρ1 and ρ2 of
sub-systems 1 and 2.

6.2.1 Schmidt decomposition of a pure state

We now generalize the discussion of §6.1.1. The quantum system containing sub-
systems 1 and 2 is described by a normalized state vector |�〉, or equivalently by
the density operator ρ given by the projector onto |�〉; relation (6.5) is obeyed, as
expected for a pure state. Each of the sub-systems is described by density operators
obtained by partial traces:

ρ1 = T r2 {ρ} ; ρ2 = T r1 {ρ} (6.11)

These two operators are Hermitian and non-negative; their matrices can therefore
be diagonalized, with eigenvalues that are real, comprised between 0 and 1. We
call |ui〉 the eigenvectors of ρ1 (index i takes P different values, where P is the
dimension of the space of states of sub-system 1) with eigenvalues qi , all positive
or zero (but not necessarily all distinct). Similarly, the kets

∣∣vj 〉 are the eigenvectors
of ρ2(where j takes Q different values, Q being the dimension of the space of states
of the second sub-system) and rj the corresponding eigenvalues. The two partial
density operators can then be written as:

ρ1 =
P∑
i=1

qi |ui〉 〈ui | ρ2 =
Q∑
l=1

rj |vl〉 〈vl| (6.12)

with 0≤ qi , rj ≤ 1.
We can now expand |�〉 onto the base of tensor products {|1 : ui〉⊗ |2 : vl〉}, for

which we use the simplified notation {|ui,vl〉}; we therefore write:

|�〉 =
∑
i,l

xi,l |ui,vl〉 (6.13)
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where the xi,l are the components of |�〉 in this basis. If we introduce the ket |wi〉,
which belongs to the space of states of sub-system 2, by:

|wi〉 =
∑
l

xi,l |vl〉 (6.14)

expression (6.13) becomes:

|�〉 =
∑
i

|ui,wi〉 (6.15)

From the definition (11.77) of partial traces8 in Chapter 11, we then obtain:

ρ1 = T r2 {|�〉 〈�|} =
∑
i,j

∣∣ui

〉 〈
uj

∣∣× 〈wj

∣∣wi

〉
(6.16)

But, by construction of the basis {|ui〉} we have used in the calculation, ρA is
diagonal and given by expression (6.12); comparing with (6.16) shows that we
necessarily have: 〈

wj

∣∣wi

〉= δi,j × qi (6.17)

For all values of index i that correspond to non-zero eigenvalues qi , this relation
implies that we can define an ensemble of orthonormal kets |wi〉 belonging to the
space of states of sub-system 2 by:

|wi〉 = 1√
qi
|wi〉 (6.18)

For all values of index i associated to zero eigenvalues qi , the same relation shows
that the kets |wi〉 must vanish.

Therefore, expression (6.15) becomes:

|�〉 =
∑
i

√
qi |ui,wi〉 (6.19)

where the |ui〉 are a set of orthonormal vectors in the space of states of the first
system, and where the |wi〉 are another set of orthonormal vectors in the second
space of states. The sum over i may run, at choice, over all possible P values,

8 According to definition (11.77) of a partial trace, we have
〈
ui

∣∣∣ρ1

∣∣∣uj ′ 〉=∑
m

〈
ui ,vm

∣∣∣�〉〈�∣∣∣ui ,vm〉, where we

insert the expression of |�〉 〈�| obtained from (6.15). One then obtains
∣∣∣�〉〈�∣∣∣=∑i′,j ′

∣∣∣ui′ ,wi′
〉 〈
uj ′ ,wj ′

∣∣∣.
In the summation, the only relevant terms have i′ = i and j ′ = j , and we finally obtain

〈
ui

∣∣∣ρ1

∣∣∣uj ′ 〉 =∑
m

〈
vm

∣∣∣wj

〉〈
wj ′

∣∣∣vm〉= 〈wj ′
∣∣∣wj

〉
, which is equivalent to (6.16).
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or only over those for which the eigenvalue qi is non-zero. This expression is
the Schmidt decomposition of a pure entangled state; it is also sometimes called
the “bi-orthonormal decomposition”, and plays an important role in the modal
interpretation of quantum mechanics (§10.7).

If we now come back to the partial traces ρ1 and ρ2, a calculation from (6.19)
provides two symmetrical expressions:

ρ1 =
∑
i

qi |ui〉 〈ui | (6.20)

(already known) and:

ρ2 =
∑
i

qi |wi〉 〈wi | (6.21)

This shows that the two partial density operators always have the same eigenvalues9,
with a sum equal to 1, since the two operators have unit trace. In the special case
where they are all zero except one, each of the sub-systems is in a pure state. But, in
general, several eigenvalues are non-zero, and we then immediately see that (ρ1)

2

is not equal to ρ1, and, similarly, for ρ2. We then find again a case where the two
sub-systems are described by statistical mixtures while the whole system is in a
pure state.

The number of non-zero eigenvalues qi , in other words the number of effective
terms in (6.19), is called the “Schmidt rank” R of |�〉. If R = 1, the state of the
whole system is not entangled, and the two sub-systems are in pure states. If R= 2,
the situation is that discussed in the example of §6.1.1; if R = 3, the entanglement
is more complicated, etc. Because R does not depend on the sub-system, 1 or 2,
entanglement is shared by them in a symmetrical way; for instance, one of the
sub-systems cannot be in a pure state while the other is in a statistical mixture.
The dimension of the space of state of sub-system 2 with which 1 is entangled
gives an upper bound to the number of independent kets |wi〉, and therefore to the
rank R; actually, R cannot exceed the dimension of any of the spaces of states of
the sub-systems: a complicated entanglement between them therefore requires that
both should have spaces of states with sufficient dimensions.

6.2.2 Statistical entropies

We can associate a statistical entropy (§11.1.5.d) to each density operator ρ. We
now compare the entropy of ρ to those associated with the two partial density
operators ρ1 and ρ2.

9 These properties are specific of pure states for the whole system; they are not necessarily true if it is described
by a statistical mixture.
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In the case studied in the preceding section, the whole physical system is in a
pure state, its density operator is the projector (6.3) over a single state |�〉, with a
vanishing associated entropy S = 0. Nevertheless, the two sub-systems are not in
general in pure states (except if |�〉 is a tensor product, without any entanglement),
so that:

S1 =−kBT r {ρ1 lnρ1} ≥ 0

S2 =−kBT r {ρ2 lnρ2} ≥ 0
(6.22)

We then have:

S1+S2 ≥ S (6.23)

The equality corresponds to the particular case where |�〉 is a product, and where
the Schmidt rank is equal to 1.

In a more general situation, the whole system is described by a density operator
ρ that does not necessarily correspond to a pure state, so that its entropy S does
not vanish either. One can nevertheless show that this entropy S always remains
smaller than, or equal to, the sums of the two entropies of the sub-systems10; in
other words, relation (6.23) remains valid in this case. The equality is obtained only
when ρ is a product:

ρ = ρ1⊗ρ2 (6.24)

which corresponds to a case where both sub-systems are described by statistical
mixtures, but remain completely uncorrelated. The difference S1+ S2− S there-
fore gives a quantitative estimation of the loss of accuracy between the quantum
description of the whole system and the separate quantum descriptions of the two
sub-systems.

6.2.3 Measures of entanglement

If the whole system S1+S2 is in a pure state |�〉, the Schmidt decomposition shows
that:

S1 = S2 =
∑
i

qi lnqi ≥ 0 (6.25)

It is then natural to choose S1 as the definition of the entanglement of the two
sub-systems. But one may also wish to define a precise measure of the degree of

10 One sometimes speaks of “sub-additivity of the entropy” to express the fact that the entropy of the whole
system is less than the sum of the entropies of the two sub-systems.
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entanglement of two quantum sub-systems, whether the whole system is in a pure
state or not. To be physically acceptable, this measure must obey several criteria.
For instance, it must obviously vanish if the whole system is in a state that is a
tensor product where the two sub-systems are not correlated. It is also necessary
that the degree of entanglement should remain invariant when Alice and Bob, each
acting on two remote sub-systems, perform local operations on them [235]. For
instance, maximally entangled states, such as those we have studied in §5.2, keep
the same form if different unitary transformations are applied to the spins (footnote
4 of that section). Several such measures have been proposed, generally related to
Von Neumann entropies; for a review, see for instance [236]. When the number of
entangled systems is three or more, the definition of their degree of entanglement
becomes more difficult; for the moment, there is no generally accepted definition
of a degree of entanglement of a multipartite system.

One could also expect that a system giving rise to maximal violations of the
BCHSH inequalities should reach the maximal degree of entanglement. Actually,
it turns out that the notions of entanglement and of non-locality are not directly
related, except in a few special cases (two spins 1/2 for instance). Curiously, maxi-
mally entangled states generally produce less non-local effects than non-maximally
entangled states [237]. Non-locality and entanglement are therefore really different
concepts.

6.2.4 Monogamy

A state such as (6.10) is a state where the two spins are strongly correlated, while a
GHZ state such as (5.1) can be regarded as the equivalent for three spins. One might
think that the latter state conserves the entanglement between the two first spins
available in the former, while they have become entangled with the third. In fact,
this is wrong: while going from (6.10) to (5.1), it is true that one entangles the third
spin with the group of the two others, but at the same time one totally destroys the
entanglement within the initial group of two spins.Actually, we have already noticed
this property, when we remarked in §5.2 that these states exhibit strong correlations
between the spins only if all of them are measured; if the measurements relate to
two spins instead of three, no correlation between them appears whatsoever.

Under these conditions, what can we do to add an additional spin without destroy-
ing the correlation between the two initial spins? We can assume the following form
of the three-spin state:

|� >= 1√
2

[|1 : +;2 : −〉+ eiξ |1 : −;2 : +〉]⊗|3 : θ〉
= 1√

2

[|1 : +;2 : −;3 : θ〉+ eiξ |1 : −;2 : +;3 : θ〉] (6.26)
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(where |θ〉 is any normalized state for the third spin), with a factorized state for the
additional spin; this choice retains the same entanglement between spins 1 and 2
as (6.10)11. But then the third spin is totally uncorrelated with the two former!

A compromise between the two preceding attempts is:

1√
2

[
|1 : +;2 : −;3 : θ1〉+ eiξ |1 : −;2 : +;3 : θ2〉

]
(6.27)

If |θ1〉 = |θ2〉, one recovers (6.26), and the additional spin is not entangled with the
two first; if |θ1〉 and |θ2〉 are orthogonal, one recovers a GHZ state where none of the
three pairs has any entanglement, this property being restricted to all three particles.
When |θ1〉 and |θ2〉 are neither parallel nor orthogonal, we have an intermediate
situation: the more parallel they are, the more entangled the two first spins remain
(we will see in the next section that the coherent terms contain the scalar product
〈θ1 |θ2〉), but the third then has little entanglement. Conversely, the more orthogonal
they are, the less entangled the two initial spins are: they lose their correlations in
favor of a three-spin correlation. The third spin actually plays for the two others a
role that is similar to the role of the environment in decoherence (§6.3.3.a): indeed,
the environment destroys the coherence of the initial state more efficiently when it
correlates to its components with states that are almost orthogonal.

This is a general property: if two systems are maximally entangled, a principle
of mutual exclusion makes it impossible to be entangled with a third system. Math-
ematically, the property can be expressed through the Coffman–Kundu–Wooters
inequality12 [238, 239]. It has no classical equivalent, since classically nothing
forbids the correlation of a third system with two others without destroying the ini-
tial correlation. One often calls this property “entanglement monogamy”. It is for
instance possible to show that, if two quantum sub-systems A and B are mutually
entangled as well as to a third system C, and if two of them are sufficiently corre-
lated to create violations of the BCHSH inequalities with measurements on these
sub-systems, then the inequalities are necessarily satisfied for all measurements
related to the two other pairs of sub-systems [240, 241].

6.2.5 Separability criterion for density operators

We have seen in §3.3.3.b that the EPR argument and the Bell theorem are strongly
related to the notion of quantum non-separability; they are also related with the

11 In the calculation of the effect of the coherent term (in eiξ ) with the method used in §5.2, it is now sufficient
to flip two spins, the third remaining always in state |θ〉.

12 Reference [238] makes use of a measure of entanglement called “concurrence”. It shows that the sum of the
squares of the concurrence between A and B and of that between A and C cannot exceed the concurrence
between A and the BC pair.
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notion of quantum entanglement, since violations of the Bell inequalities require
the presence of quantum entanglement. In terms of density operators, how is it
possible to recognize quantum non-separability?

Consider a quantum system made of two sub-systems 1 and and 2 and described
by a density operator ρ. If ρ can be expanded in terms of a series of density operators
ρn

1 and ρn
2 relative to each sub-system according to:

ρ =
∑
n

wn ρn
1 ⊗ρn

2 (6.28)

with real positive coefficients wn, one says that ρ is separable13 [136, 242]. When
the traces of all density operators are normalized to 1, one obtains:

1=
∑
n

wn and therefore 0≤wn ≤ 1 (6.29)

which shows that the wn can be interpreted as probabilities14; the event where
first sub-system is described by ρn

1 and the second by ρn
2 has probability wn. If

the expansion (6.28) necessarily contains coefficients wn that are not real positive
numbers, one says that the density operator ρ is “non-separable” and contains
quantum entanglement15.

If one performs separate measurements on sub-systems 1 and 2, and if the
whole system has a separable density operator, the results always obey the Bell
inequalities (nevertheless, the opposite is not necessarily true: non-separable den-
sity operators do not necessarily give rise to violations of the inequalities). In
such a situation, even if each of the two sub-systems has strong quantum proper-
ties, the way correlations between them are introduced remains purely classical.
A separable system cannot have quantum entanglement, even if each sub-system
exhibits extreme quantum properties. The Peres–Horodecki criterion [242, 243]
indicates that a necessary condition for a density matrix to correspond to a sepa-
rable density operator ρ is that the matrix obtained by partial transposition (where
only the indices relative to one of the sub-systems are transposed, not for the
other) should have non-negative eigenvalues. The appearance of negative eigen-
values may then signal quantum entanglement, with a better sensitivity than Bell
violations.

13 In his initial article, Werner uses the words “classically correlated” [136], but the word “separable” chosen by
Peres [242] is more frequently used nowadays.

14 If one replaces the discrete variable n by a continuous variable λ, one obtains the case studied in Appendix C.
15 For two spins 1/2, one can easily show that the density operator associated with a singlet state, or its direct

generalization (6.10), necessarily involves negative expansion coefficients. Two spins in a singlet state are
therefore not separable, and possess quantum entanglement.
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6.3 Creating and losing entanglement

Historically, at Schrödinger’s time, quantum entanglement was seen as a rather
rare phenomenon, playing a role mostly in thought experiments. Nowadays, many
experimental methods have been invented to obtain entanglement. Actually, quan-
tum entanglement has now become an essential part of quantum information,
quantum cryptography, teleportation, etc. All experiments mentioned in §4.1.5
involve pairs of entangled particles, often photons with entangled polarization
variables.

6.3.1 Entanglement created by local interactions

As Schrödinger had initially suggested (see quotation in §6.1), one way to obtain
entanglement between physical sub-systems is to make use of local interactions
between particles. An atom emitting two photons in succession may provide such
a scheme, which in fact has been used in many experiments. Initially, the atom
is in an excited state, then emits a first photon, and reaches an intermediate state
that depends on the polarization characteristics of the emitted photon; at this stage,
the atom plus photon system is described by an entangled state, with coherent
components on several polarization states associated with intermediate states of
the atom. Each of these components then gives rise to the emission of a second
photon with different polarizations, while the atom itself reaches a ground state
that is independent of the polarizations of the emitted photons. This corresponds
to the case |θ1〉 = |θ2〉 in (6.27), where the state of one of the three particles (here,
the final state of the atom) factorizes; the atom leaves the quantum entanglement
party, which allows the two photons to enter maximal entanglement.

An often cited example is that of the atomic cascade J = 0 → 1 → 0 of the
Calcium atom. It provides, by successive spontaneous emissions, two photons in a
state:

|� >= 1√
2

[
|1 :H ;2 :H 〉+ |1 : V ;2 : V 〉

]
(6.30)

where |H 〉 and |V 〉 are two states of polarization (horizontal and vertical) – for
photons16 these states are analogous to states |+〉 and |−〉 for a spin 1/2. We
have also seen that the techniques of parametric down-conversion in non-linear
optics provide similarly entangled photons, often in more favorable experimental
conditions.

16 These polarizations are mutually perpendicular as well as perpendicular to their direction of propagation. For
the sake of simplicity, we limit our discussion to the polarization variables of the photons, which are the
essential variables in the discussion of the BCHSH inequalities. Nevertheless, photons have other variables,
frequency (energy) and direction of polarization, which we consider as fixed here.
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Quantum entanglement is not limited to photons, but can also be obtained with
particles with rest mass. For instance, the experiment described in [117] studies the
correlation between the spins of two protons after a low energy collision between
a beam of protons and an hydrogen target; the reference [167] proposes using the
dissociation of Mercury dimers (isotope 199 has a nuclear spin 1/2) to obtain atoms
with correlated spin variables. Experiments have also been done where two atoms
are entangled because they exchange a single photon confined in a cavity with
extremely high quality factor [244].

Trapped ions provide other possibilities to obtain quantum entanglement, in a
case where the particles are localized and may be observed for a long time. The
reference [245] describes how such an entanglement has been obtained with Beryl-
lium ions sitting in a radio-frequency Paul trap, according to the method proposed
by Cirac and Zoller [246]. For a review of experiments with entangled ions, see
[247]. Entanglement may also be observed in solid-state physics with supercon-
ducting currents [248] involving a very large number of electrons (macroscopic
systems). We now discuss still another method, entanglement swapping, which
produces entangled particles without any interaction between them, only under the
effect of the process of quantum measurement acting on other particles.

6.3.2 Entanglement swapping

The “entanglement swapping” method can entangle two particles created by two
independent remote sources (the particles then have no common past) under the
effect of the process of quantum measurement [249, 250]. Assume that we have
two independent sources S12 and S34, each emitting a pair of entangled photons, 1
and 2 for the former, 3 and 4 for the latter (Figure 6.1). The state describing both
pairs is a tensor product of terms that are similar to (6.30):

|� >= 1

2
[|1 :H ;2 :H 〉+ |1 : V ;2 : V 〉]⊗ [|3 :H ;4 :H 〉+ |3 : V ;4 : V 〉]

(6.31)

If we introduce the 4 Bell states relative to particles i, j defined as:

|CB
i,j >(±)= 1√

2
[|i :H ;j :H 〉± |i : V ;j : V 〉]

|DB
i,j >(±)= 1√

2
[|i :H ;j : V 〉± |i : V ;j :H 〉]

(6.32)

we obtain an orthonormal basis in the space of states associated with particles i and
j . Since:

|CB
1,4 >(+) ⊗ |CB

2,3 >(+) + |CB
1,4 >(−) ⊗ |CB

2,3 >(−)= [|HHHH 〉+ |VVVV 〉]
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Figure 6.1. Schematic representation of entanglement swapping. Two independent
sources S12 and S34 emit each a pair of particles, numbered 1 and 2 for the former,
3 and 4 for the latter. A half-reflecting beam splitter BS is inserted on the trajectory
of particles 2 and 3, and two detectors Da and Db measure the number of particles
in the two output channels. This measurement can project the state vector and
put particles 1 and 4 into a completely entangled state, even if they have never
interacted with each other.

(to simplify the notation, we implicitly assume that, in the right-hand side, the
particles are always in the order 1, 2, 3 and 4) and:

|DB
1,4 >(+) ⊗ |DB

2,3 >(+) + |DB
1,4 >(−) ⊗ |DB

2,3 >(−)= [|HHVV 〉+ |VVHH 〉]
(6.33)

we can write state (6.31) in the form:

|� >= 1

2

[
|CB

1,4 >(+) ⊗ |CB
2,3 >(+) + |CB

1,4 >(−) ⊗ |CB
2,3 >(−)

+ |DB
1,4 >(+) ⊗ |DB

2,3 >(+) + |DB
1,4 >(−) ⊗ |DB

2,3 >(−)

] (6.34)

Suppose now that the experiment shown schematically in Figure 6.1 is per-
formed: particles 2 and 3 undergo an interference experiment with eigenvectors
that are the four Bell states for these two particles – this can be obtained by sending
the two particles onto a semi-reflecting beam splitter and observing at which detec-
tors, Da or Db, they are found in the output channels17. The projection onto one
of the four Bell states for these particles projects the state of the two others onto
the same Bell state. The two non-observed particles are then put into a completely
entangled state. What is remarkable in the process is that, initially, the 1, 2 pair is

17 Among the four Bell states, the only one for which each output channel contains one particle is |DB
23 >(−);

the three other states correspond to situations where the two particles always exit through the same channel
(Hong–Ou–Mandel effect). If the two detectors Da and Db each register a particle, the measurements project
the remaining particles 1 and 4 into the completely entangled state |DB

14 >(−).
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internally entangled, but not with the 3, 4 pair, which also has only internal entan-
glement. By performing an appropriate measurement on one particle from each
pair, one projects the two remaining particles into a completely entangled state,
even if these two particles have never interacted.

We have already mentioned the possibility to entangle a larger number of parti-
cles [209] with similar schemes. Other protocols have been implemented to create
quantum entanglement, and to put six ions in a NOON state [251] and up to eight
into a W state (coherent superposition of states where a single excitation is localized
on any of the ions, with the same probability amplitude) [252]. In quantum optics,
the techniques of parametric down-conversion in non-linear crystals have been used
in experiments providing entanglement in 2, 4, or 6 photons [253, 254]. In §18,
we have discussed how entanglement swapping has been used to create quantum
correlations between remote ions with the help of photons (in Figure 6.1, particles
1 and 4 are then ions, particles 2 and 3 are photons), leading to Bell inequality
violations that are closer and closer to a loophole-free experiment.

6.3.3 Decoherence

We now discuss more precisely a phenomenon that we have already introduced,
decoherence, which acts to reduce the lifetime of coherent superpositions. The
process is extremely efficient if the number of correlated particles is large.

We have introduced decoherence in §2.1 as the initial part of the phenomenon
associated with the Von Neumann infinite regress: coherent superpositions tend to
constantly propagate towards the environment, involving more and more complex
correlations with it. During decoherence, entanglement does not really disappear,
but goes further and further into the environment; in practice, it becomes rapidly
completely impossible to detect.

6.3.3.a Mechanism

To see more precisely how this happens, let us for instance consider a state:

|�〉 =
[
α |ϕa〉+β |ϕb〉

]
⊗|k0〉 (6.35)

which is the product of two states: one describes an atom in a coherent superposition
of two orthogonal states |ϕa〉 and |ϕb〉, localized in two different regions of space;
the other describes another particle, a photon for instance, initially in state |k0〉 (we
assume that all theses states are normalized).

Initially, the atom is described by a state with quantum properties that depend
on the relative phase of α and β, which are therefore coherent; decoherence is
a process where these coherent properties will disappear. This happens when the
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photon interacts with the atom and is scattered into a quantum state that depends on
the location where scattering took place: if the scattering atom is in state |ϕa〉, the
photon reaches state |k+〉; if it is in state |ϕb〉, it reaches state |k−〉18 (states |k±〉
are normalized). After scattering, the atom has not changed its position, and returns
to the same internal ground state (assuming that momentum transfer is negligible),
so that the state vector describing the whole system after interaction becomes:∣∣� ′〉= α |ϕa〉⊗ |k+〉+β |ϕb〉⊗ |k−〉 (6.36)

Assume now that we are interested only in the atom, not the photon; the reason
might be, for instance, that detecting the scattered photon is impossible or very
difficult (e.g. it may be a far-infrared photon). It is then useful to calculate the
partial trace (§11.2.3) over this photon, in order to obtain the density operator that
describes the atom only. A calculation similar to that leading to (6.16) shows that
this partial trace can be written, in the basis of the two states |ϕa〉 and |ϕb〉:

ρ =
( | α |2 αβ∗ 〈k− |k+〉
α∗β 〈k+ |k−〉 | β |2

)
(6.37)

If the scalar product 〈k− |k+〉 was equal to 1, the density matrix of the atoms
would not be affected at all by the scattering of the single photon. But this would
be assuming that the photon is scattered exactly into the same state, independently
of the spatial location in |ϕa〉 or |ϕb〉 of the scatterer; in other words, that it carries
no information about the location of the atom! This is very unlikely if the distance
between the two locations is much larger than the photon wavelength. Actually, it
is much more realistic to assume that this scalar product is close to zero, which
means that the off-diagonal element of (6.37) is also almost zero. We then conclude
that the scattering of even a single photon destroys the coherence between atomic
states, as soon as they are located in different places.

The loss of coherence becomes even worse when more and more photons
(assumed to be all in the same initial state |k0〉) are scattered, since one should
then replace (6.36) by state:∣∣� ′′〉= α |ϕa〉⊗ |k+〉

∣∣k′+〉 ∣∣k′′+〉 . . . +β |ϕb〉⊗ |k−〉
∣∣k′−〉 ∣∣k′′−〉 . . . (6.38)

with obvious notation (the states with n primes correspond to the (n−1)th scattered
photon); the same calculation as above then provides the following value for the

18 We could also have assumed that the photon is focussed so that it can interact only with atoms in one of the two
states, but is not scattered by the other state; the conclusions of our discussion would not have been changed.
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partial trace ρ:( | α |2 αβ∗ 〈k− |k+〉
〈
k′−

∣∣k′+〉 . . .
α∗β 〈k+ |k−〉

〈
k′+

∣∣k′−〉 . . . | β |2

)
(6.39)

Since we now have, in the off-diagonal elements, the product of many scalar prod-
ucts 〈k− |k+〉, it is clear that these elements have even smaller modulus than when
a single photon is scattered. Actually, as soon as the two states |k+〉 and |k−〉 are
not strictly identical, the off-diagonal elements tend exponentially to zero when the
number of scattering events increases.

This is a completely general property: all objects have a strong tendency to leave
a trace in the environment because they develop correlations with any elementary
particle which passes by, so that they lose their coherence in the process. To illustrate
this property, one can for instance in (6.35) replace the coherent state of a single
atom by a GHZ type state (coherent state of a large number of atoms) and write the
initial state as:

|�〉 =
[
α |ϕa,ϕa, . . . ,ϕa〉+β |ϕb,ϕb, . . . ,ϕb〉

]
⊗|k0〉 (6.40)

The larger the number of scattering atoms initially in states |ϕa〉 and |ϕb〉, the
sooner many photons will be scattered, and the faster the off-diagonal elements will
tend to zero. Nevertheless, the scattering of a single photon into two orthogonal
states is already sufficient to completely destroy the coherence. Consequently, the
large size of a physical system in a coherent superposition makes the superposition
extremely fragile. The coherence actually propagates into a coherence involving
the environment and more and more complex correlations with it (the scattered
photon, in turn, may correlate with other particles); soon the coherence becomes
practically impossible to detect. The phenomenon is unavoidable, unless of course
the scattering properties of both states symbolized by |ϕa〉 and |ϕb〉 are exactly the
same, which excludes any significant spatial separation between the states. This
illustrates how fragile coherent superpositions of macroscopic objects are, as soon
as they involve states that can be seen as distinct.

Nevertheless, it has been pointed out that the coupling of a quantum system with
an environment can also, in some cases, be used to “engineer” the master equation
that gives the time evolution of the density operator of the system, and to drive it
into given quantum states; the method is called “quantum reservoir engineering”
[255–257]. Therefore, dissipative coupling to a reservoir does not necessarily lead
to states without quantum coherence; in fact, controlled decoherence may be used
to prepare interesting quantum states.
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6.3.3.b Revisiting the Schrödinger cat

We are now in a position where we can come back in more detail to some questions
that we already discussed above in §2.2, and which are related to decoherence
and/or the Schrödinger cat. Obviously, a cat that is alive or dead will not scatter all
photons in the same way, otherwise we could not even see the difference! Clearly,
decoherence will take place almost immediately. Does this simple remark provide
an obvious solution to the paradox? More generally, can we regard decoherence
(as some authors have done) as an “explanation” of the postulate of state vector
reduction: when the superposition of the initial system becomes incoherent, are
we not in the presence of a statistical mixture that resembles the description of a
classical object with well-defined (but unknown) properties?

The answer to this question was already given in §2: this explanation is unsatis-
factory because the purpose of the postulate of state vector reduction is not to explain
decoherence, already contained in the Schrödinger equation, but the uniqueness of
the result of the measurement, which is beyond this equation. In fact, the effect
of the state vector reduction may sometimes be just the contrary: it puts back the
measured sub-system into a pure state, the perfect opposite of a statistical mixture,
so that the real question is then to understand how the (re)emergence of a pure state
should be possible [49], not of a statistical mixture. Indeed, in common life, as
well as in laboratories, one never observes superposition of results; Nature seems
to operate in such a way that a single result always emerges from a single experi-
ment. How can something that was indeterminate become determinate, and where
does this disturbance come from? This will never be explained by the Schrödinger
equation, since all that it can do is to endlessly extend its ramifications into the
environment, without ever selecting one of them.

Another way to answer the question is to emphasize its logical structure. The
central point of the paradox is the necessity for some kind of limit of the validity
of the linear Schrödinger equation, since a linear equation can never predict the
emergence of a single result in an experiment. The difficulty is where and how
to create this border. Logically, it is clear that this problem will never be solved
by invoking any process that is already contained inside the linear Schrödinger
equation19, such as decoherence or any other similar process that remains linear.
No one doubts that a typical measurement process will involve decoherence at some
preliminary stage, but the real questions are what happens after, and how does a
single result emerge. Decoherence is only the preliminary stage of the measurement
process itself, when the off-diagonal elements of the density matrix vanish; in a
second step, all diagonal elements but one should vanish (emergence of uniqueness),
and this is the process that is very difficult to explain.

19 Staying in the middle of a country, one never reaches its borders . . .
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Pressed to this point of the discussion, some physicists reply that one can always
assume that, at some later stage, the superposition resolves into one of its branches
only. This is of course true, but this would amount to first throwing a problem out
through the door, and then letting it come back through the window! (see discus-
sions in Chapter 2, for instance on the status of the state vector and the necessity
to resolve the Wigner friend paradox). We have discussed in §1.2.3.a the funda-
mental differences between a classical probability and how probabilities appear
in quantum mechanics. A more consistent attitude would then be to consider that
the natural complement of decoherence is the Everett interpretation of quantum
mechanics (§10.11). Indeed, this provides a consistent interpretation of quantum
mechanics, where the emergence of a single result does not have to be explained,
since it is assumed never to take place (the Schrödinger equation then has no limit
of validity). But, of course, if one takes this point of view, one has do deal with all
the intrinsic difficulties of the Everett interpretation, which we will discuss later
(§10.11). A general discussion of the relations between decoherence and the mea-
surement problem, and its role in the various interpretations of quantum mechanics,
is given in [258].

Concerning terminology, we have already mentioned in §2.2 that, during the last
few years, it has become rather frequent to use the words “Schrödinger cat” (SC)
to characterize coherent states such as (5.9), even sometimes for small values of N
(sometimes for a single ion!). This is a redefinition of the words, since the essential
property of the original cat was precisely to have a macroscopic number of degrees
of freedom, as opposed to the few radioactive atoms or ions. Let us then assume
that someone succeeded in preparing an all-or-nothing state with a very large value
of N – would that be a much better realization of the Schrödinger cat as meant by
its inventor? To some extent, yes, since the cat can be seen as a symbol of a system
of many particles that go to an orthogonal single-particle quantum state, when one
goes from one component of the state vector to the other. Indeed, it is likely that
many of the atoms of a cat take part in different chemical bonds if the cat is alive
or dead, which puts them in a different quantum state. But it seems rather hard to
invent a reason why every atom, every degree of freedom, should necessarily be
in two orthogonal states in the original story, while this is the essential property of
“all-or-nothing states”. In a sense, they do more than realizing a standard
Schrödinger cat; the two concepts are related but remain somewhat different, even
for large values of N .

From an experimental point of view, decoherence is an interesting physical phe-
nomenon that is certainly worth studying in itself, as recent experiments have
illustrated [259]. A result of these studies and of the related calculations, among
others, is to specify the basis in the space of states that is relevant to the decoherence
process, as a function of the coupling Hamiltonian, as well as the characteristic time
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constants that are associated with it. One can reasonably expect that more exper-
iments on decoherence will follow this initial breakthrough and provide a more
detailed understanding of many aspects of the phenomenon.

6.3.4 Purification, distillation

Distributing entangled states among partners may play an important role in several
processes, such as quantum cryptography or teleportation, which we will study in
§7.2. But, to realize this distribution, it is not sufficient to have a source that emits
pairs of particles in a strongly entangled state. The reason is that the particles must
propagate towards Alice and Bob who, in many applications, may be in remote
places; this propagation may then change the state of the pair, transforming it either
into a different pure state or a statistical mixture, and reduce the entanglement.
The problem that then arises is to find a method to restore the initial entangle-
ment, and to obtain particles that return to a state of complete entanglement. For
this purpose, the only possible actions are local operations: each partner, in his/her
laboratory, can modify the property of his/her particles by applying appropriate
evolutions (for instance, they can apply a magnetic field to locally rotate one spin,
or a phase plate to change the polarization of a photon), or perform local mea-
surements with results that can be communicated to the other partner by classical
channels.

It has been remarked that this operation is indeed compatible with the rules
of quantum mechanics [260, 261], provided one accepts to reduce the number of
useful pairs available to Alice and Bob. The loss of quality of entanglement is,
so to say, converted into a reduction of the efficiency of the source, but then one
is sure that the remaining pairs are indeed in the requested quantum state. This
process is possible only if the initial loss of quality of the entanglement is not too
strong. It conserves the entropy of entanglement, inasmuch as the local Hamiltonian
operations performed by Alice and Bob do not change the Von Neumann entropies
of their respective sub-systems. In fact, the efficiency of the process (number of
pairs after the entanglement concentration operation divided by the total number
of received pairs) is merely given by this entropy. The method can actually be used
to produce any state of the two particles, provided the two partners can exchange
information through a classical channel and act accordingly. It has a deep relation
with the protocols for quantum correction of errors, an essential component of
quantum computation (§7.4) [262]

Experimentally, this method has been successfully tested [263], nevertheless
with a rate for success that is smaller than the maximal rate in theory; the
involved protocols are difficult to implement, so that making some compromise is
necessary.
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6.4 Quantum dynamics of a sub-system

We now study the evolution of a test system S interacting with another (possibly
much larger) quantum system B. Under general conditions, we will see that one
can obtain a “master equation” giving the time evolution of the partial density
operator ρS of S. This is in particular the case when the coupling between S and B

is sufficiently weak, and for instance when B is a large system playing the role of a
thermal reservoir. The master equation gives more quantitative information on the
process of decoherence, generally called “transverse relaxation” in this context. It
also contains other types of evolution such as “longitudinal relaxation” or “effective
Hamiltonian” due to the coupling with B. In order to introduce a master equation
in a general and convenient way, it is useful to first introduce the notion of Kraus
operators.

6.4.1 Kraus operators

The space of states of S is an NS-dimensional space ES spanned by an orthonormal
basis {|un〉}, with n= 1,2, . . . ,NS . Initially, S is in state:

|ϕ0〉 =
NS∑
n=1

cn |un〉 (6.41)

while B is in a state |C0〉 ∈ EB , where EB is the space of states of B spanned by the
NB kets of an orthonormal basis

{∣∣Dq

〉}
. We assume that the initial state |�〉 of the

whole system at t = 0 is a product:

|�〉 = |ϕ0〉⊗ |C0〉 (6.42)

Between time t = 0 and t = τ , the two systems interact and become entangled; we
call

∣∣� ′〉 their state at time τ after interaction. We wish to obtain state
∣∣� ′〉 and the

corresponding reduced density operator ρ′S of system S.

6.4.1.a A first calculation

We begin with a simple calculation in order to define NB operators Mq acting in
the space of states of S, called Kraus operators. In the next section, we refine this
definition and show how the number of Kraus operators can be limited in a way
that depends only on the dimension NS of ES , instead of NB .

Assume that the initial state of S is one of the |un〉:

|�〉 = |un〉⊗ |C0〉 (6.43)
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The corresponding final state
∣∣� ′〉 can then be expanded over the basis of the tensor

products
∣∣un′

〉⊗ ∣∣Dq

〉
as:

∣∣� ′〉= NS∑
n′=1

NB−1∑
q=0

x
(n)

n′,q
∣∣un′

〉⊗ ∣∣Dq

〉
(6.44)

(for reasons that will become clear in §6.4.3, it is convenient to let the values of
index q range from 0 to NB − 1). We then have:

∣∣� ′〉= NB−1∑
q=0

∣∣∣un
q

〉
⊗ ∣∣Dq

〉
(6.45)

with:

∣∣∣u(n)
q

〉
=

NS∑
n′=1

x
(n)

n′,q

∣∣∣un′
〉

(6.46)

The states
∣∣uq

n

〉
of S appearing in this expansion are neither necessarily orthog-

onal nor normalized. We can introduce the NB linear operators Mq acting in ES

defined by:

Mq

∣∣∣un

〉
=
∣∣∣un

q

〉
(6.47)

for any value of n. We then have:

∣∣� ′〉= NB−1∑
q=0

Mq

∣∣un

〉⊗ ∣∣Dq

〉
(6.48)

Assume now that the initial state of S is any state (6.41) in ES . By linearity, the
state after interaction can be written as:

∣∣� ′〉= NS∑
n=1

cn

NB−1∑
q=0

Mq

∣∣un

〉⊗ ∣∣Dq

〉

=
NB−1∑
q=0

Mq

∣∣ϕ0
〉⊗ ∣∣Dq

〉 (6.49)

Since the unitary interaction between S and B does not change the norm of the
state vector, this state is still normalized to 1. But by construction the

∣∣Dq

〉
are
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orthonormal; we therefore have:

NB−1∑
q=0

〈ϕ0|M†
qMq |ϕ0〉 = 1 (6.50)

for any |ϕ0〉. This can only be true20 if:

NB−1∑
q=0

M
†
qMq = 1 (6.51)

6.4.1.b An upper limit of the number of Kraus operators

The summations overq in the preceding expressions containNB terms; this situation
may become intractable when NB is very large (for instance if B is a macroscopic
thermal reservoir). We now show that these summations can actually be limited
to a maximum of (NS)

2 terms, that is the square of the dimension of the space of
state of S.

We begin with a simple lemma. Suppose that a state of the whole system S+B

can be written as:

|�〉 =
∑
s

λs |ϕs〉⊗ |Cs〉 (6.52)

where the summation contains an arbitrary number of terms, and where all kets |Cs〉
belong to the same subspace E ′B of EB with dimension N ′

B ≤ NB . The constants
λs and the kets |ϕs〉 ∈ ES can have any value. Then |�〉 can always be written as a
sum of N ′B terms as:

|�〉 =
N ′B∑
q=1

∣∣θq 〉⊗ ∣∣Gq

〉
(6.53)

where the
∣∣Gq

〉
form an orthonormal basis in subspace E ′B ; the kets

∣∣θq 〉 ∈ ES are
neither necessarily normalized nor mutually orthogonal in general. Obtaining (6.53)
from (6.52) is straightforward since it is sufficient to replace all kets |Cs〉 by their
expansion on any orthonormal basis

{∣∣Gq

〉}
, and to group all kets of ES appearing

in a product with a given
∣∣Gq

〉
into their sum

∣∣θq 〉.
20 Operator

∑NB−1
q=0 M

†
qMq is Hermitian, and can therefore be diagonalized. Relation (6.50) then shows that all

its eigenvalues are necessarily equal to 1, which means that the operator himself is equal to the identity operator
acting in ES .
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Consider now an initial state of the whole system where S is initially in one of
the states |un〉:

|�〉 = |un〉⊗ |C0〉 (6.54)

The associated state
∣∣� ′〉

n
after interaction can be written in the form of a Schmidt

decomposition with Ns terms (we have seen in §6.2.1 that such a decomposition
cannot have more terms than the smallest dimension of the two spaces of states,
and we assume NB ≥NS):

∣∣� ′〉
n
=

NS∑
i=1

√
qi
∣∣ϕn

i

〉⊗ ∣∣Gn
i

〉= NS∑
i=1

∣∣θn
i

〉⊗ ∣∣Gn
i

〉
(6.55)

where the
∣∣Gn

i

〉
form an orthonormal ensemble spanning a subspace En

B of EB with
dimension NS , and where: ∣∣θn

i

〉=√qi
∣∣ϕn

i

〉
(6.56)

(some of the
∣∣θn

i

〉
vanish if some of the qi are zero).

Now assume that the initial state ofS is a linear superposition of two components:

∣∣�〉= [cn |un〉+ cp
∣∣up

〉]⊗|C0〉 (6.57)

By linearity, the final state
∣∣� ′〉

np
can be written:∣∣� ′〉

np
= cn

∣∣� ′〉
n
+ cp

∣∣� ′〉
p

(6.58)

where
∣∣� ′〉

n
is given by (6.55) and

∣∣� ′〉
p

by a similar relation with p replacing n.

This ket has the form (6.52) corresponding to a subspace En
B ⊕Ep

B of EB , obtained
by direct sum of En

B and Ep
B . The dimension Nnp of this direct sum is equal to, or

smaller than, the sum 2NS of their dimensions (this maximum value 2NS can be
reached only if NB ≥ 2NS and if all kets

∣∣Gn
i

〉
and

∣∣Gp
i

〉
are independent). The final

state can therefore be written as:

∣∣� ′〉
np
=

Nnp∑
j=1

∣∣θj 〉⊗ ∣∣∣Gnp
j

〉
(6.59)

where the
∣∣∣Gnp

j

〉
form an orthonormal basis in En

B ⊕Ep
B .

The reasoning can be continued by recurrence and applied to an initial state
(6.42) containing the general expansion (6.41) of |ϕ0〉. The final state of the whole
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system will then be:

∣∣� ′〉= N ′∑
k=1

|θk〉⊗
∣∣Gk

〉
(6.60)

where N ′ is the dimension of the subspace En=1
B ⊕En=2

B ⊕ . . .⊕En=NS

B of EB (with
N ′ ≤NS×NS), and where the |Gk〉 provide an orthonormal basis in this subspace.

If we apply this relation to an initial state (6.54), using basis {|Gk〉} we obtain:

∣∣�〉= |un〉⊗ |C0〉⇒
∣∣� ′〉

n
=

N ′∑
k=1

∣∣un
k

〉⊗ ∣∣Gk

〉
(6.61)

Changing the dummy index k into q, and still defining the Kraus operators Mq by
(6.47), we then obtain:

∣∣� ′〉
n
=

N ′−1∑
q=0

Mq |un〉⊗
∣∣Gq

〉
(6.62)

By linearity, for any initial state |ϕ0〉 of S, we then have:

∣∣� ′〉= N ′−1∑
q=0

Mq |ϕ0〉⊗
∣∣Gq

〉
(6.63)

We have therefore recovered exactly the same expansions as above, but with a
different range of summation, which may be much smaller if the dimension of the
space of states EB is very large. The number of terms in the sum is N ′ ≤ (NS)

2, so
that (NS)

2 gives an upper limit for the number or relevant Kraus operators associated
with a given initial state |C0〉 (of course, one can also decide to always write sums
with (NS)

2 terms exactly, but then some Kraus operators Mq may vanish). The
unitarity relation (6.51) still holds, for the same reasons as above. Note also that the
Kraus operators are not uniquely defined: there is a large flexibility for the choice
of the basis

∣∣Gq

〉
in the subspace of dimension N ′, which may result in different

Mq operators.

6.4.2 Density operator, Kraus sum

The density operator of system S after the interaction is given by a trace over the
states of B:

ρ ′S = T rB
{∣∣� ′〉 〈� ′∣∣} (6.64)
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where
∣∣� ′〉 is given by (6.63). Since the

∣∣Gq

〉
are orthonormal, we have:

ρ′S =
N ′−1∑
q=0

Mq |ϕ0〉 〈ϕ0|M†
q (6.65)

Therefore, the density operator of S after interaction can be expressed as a function
of its value ρ0 = |ϕ0〉 〈ϕ0| before entanglement as:

ρ′S =
N ′−1∑
q=0

Mq ρ0 M
†
q (6.66)

where the Kraus operators obey the normalization condition (6.51) and where N ′ ≤
(NS)

2. The right-hand side of (6.66) is called a “Kraus sum”; it provides the general
expression of the partial density operator of S at the end of the process.

The Kraus operators therefore characterize, not only the way the state of the
whole system has evolved from an initial product state (6.42), but also the evolution
of the density operator ρS of the test system S. If, initially, the state of system S

is defined by a density operator that is a statistical mixture and not a pure state, a
simple linear superposition shows that relation (6.66) is still valid with the same
operators Mq . If, initially, system B is also defined by a statistical mixture, a linear
superposition can still be used. Nevertheless, since the definition of the Kraus
operators depend on the initial state |C0〉, adequate averages should be introduced
with the square roots of the probabilities associated with the initial states of B.
Physically, it is not surprising that the Kraus operatorsMq , which give the evolution
of the partial density operator ρS , should depend on the state of the physical system
B to which S is coupled; for instance, if B is a thermal bath, the evolution of ρS

depends on the temperature of this bath.

6.4.3 Master equation, Lindblad form

We now assume that the interaction between the two systems is weak. The evolution
operator U(0,τ ) is then not very different from 1, and

∣∣� ′〉 not very different from
|�〉. If we choose a basis

{∣∣Dq

〉}
having |C0〉 as its first vector, we have:∣∣� ′〉� |�〉 = |ϕ0〉⊗ |D0〉 (6.67)

and the contribution of value q = 0 is then dominant in (6.49), with M0 � 1. We
can write M0 as:

M0 = 1+J + iK (6.68)
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with the following definitions of J and K:

J = M0+M
†
0

2
− 1 K = i

M
†
0 −M0

2
(6.69)

They are both Hermitian operators, with small values if the interaction is weak. To
first order in this interaction, we have:

M
†
0M0 = 1+ 2J + . . . (6.70)

and the contribution of the term q = 0 in the right-hand side of (6.66) is:

ρ0+ [J,ρ0]++ i [K,ρ0]+ . . . (6.71)

where [C,D]+ is the anti-commutator CD + DC and [C,D] the commutator
CD−DC.

If we insert (6.70) into (6.51), we obtain:

1+ 2J +
N ′−1∑
q=1

M
†
qMq = 1 (6.72)

or:

J =−1

2

N ′−1∑
q=1

M
†
qMq (6.73)

To first order, we can then write (6.66) in the form:

ρ′S −ρ0 = i [K,ρ0]+
N ′−1∑
q=1

(
Mqρ0M

†
q − 1

2
M

†
qMqρ0− 1

2
ρ0M

†
qMq

)
(6.74)

where ρ0 = |ϕ0〉 〈ϕ0| is the initial density operator of S.
Now we assume that, during time dt , system S interacts in succession with ndt

identical systems B, all identical and initially in the same state |C0〉 (n has the
dimension of an inverse time). We then obtain the variation dρS of ρS during this
time in the form:

dρS

dt
= −i

�

[
Heff ,ρS

]+N ′−1∑
q=1

(
LqρSL

†
q − 1

2
L

†
qLqρS − 1

2
ρSL

†
qLq

)
(6.75)

where Heff is the “effective Hamiltonian” acting on S:

Heff =−�nK (6.76)
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and Lq the “Lindblad operator”:

Lq =
√
nMq (6.77)

Differential equation (6.75) is called a “master equation” for the evolution of the
partial density operator ρS . The right-hand side term has a general form called a
“Lindblad form”. The number of Lindblad operators can exceed neither the square
of the dimension of the space of states of the test system, nor the dimension of the
space of states of the coupled system B.

This type of master equation occurs in many physical situations. Its derivation
can be generalized in several ways:

(i) If S is initially described by a density operator ρ0 corresponding to a statistical
mixture, instead of a pure state, this operator can be expanded as:

ρ0 =
∑
m

pm

∣∣ϕm
0

〉 〈
ϕm

0

∣∣ (6.78)

The above reasoning applies to each component
∣∣ϕm

0

〉 〈
ϕm

0

∣∣ of this operator
and leads to (6.74) with ρ0 replaced by

∣∣ϕm
0

〉 〈
ϕm

0

∣∣. Linearity then implies that
equations (6.74) and (6.75) are still valid.

(ii) If B is also described by a density operator corresponding to a statistical
mixture and if the initial density operator of the whole system is the product of
this operator by ρ0, the situation is different since the Mq operators depend on
the initial state |C0〉 of B. Nevertheless, Lindblad forms can still be obtained
in this case (see for instance §4.3 of [264]).

(iii) We have assumed that system S interacts in succession and for a short time
with many other systems B. A more frequent situation is that S constantly
(but weakly) interacts with a single system B, for instance a heat bath. In such
a case, one can show that similar pilot equations can be obtained, provided
the correlation times associated with B are sufficiently short. Physically, it is
plausible that a big system with short correlation times should be equivalent to
a series of independently prepared systems. We refer for instance to Chapter
IV of [265] for more details.

(iv) The proper evolution in time of systems S and B can be included in the
equations.
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Applications of quantum entanglement

Quantum entanglement does not only provide a field of fundamental studies, but
can also be harnessed as a tool for applications. In this chapter, after introducing two
general theorems that are useful in the context of this discussion (§7.1), we propose
a few examples: quantum cryptography (§7.2), teleportation (§7.3), and quantum
computing (§7.4). For the moment, only quantum cryptography has given rise to
real applications, and has been used in practical (and even commercial) applica-
tions; its purpose is the sharing of cryptographic keys between several partners by
using a protocol where privacy is guaranteed by fundamental laws of physics. As
for quantum computation, it is based on the general manipulation of quantum infor-
mation, and is probably a more futuristic field of research in terms of applications,
but it is certainly a domain of intense activity throughout the world.

Strictly speaking, none of these subjects in itself brings a really new view on
the interpretation of quantum mechanics. Nevertheless, in addition to their strong
intrinsic interests, they provide very direct and particularly interesting applications
of its basic principles. This is the reason we study them in this chapter. We will
only summarize the main ideas; the interested reader is invited to read the proposed
references.

7.1 Two theorems

The two theorems that follow are similar; one deals with the creation and duplication
of quantum states, the other with their determination.

7.1.1 No-cloning

The duplication of a quantum state, often called “quantum cloning”, is an operation
where one starts from one particle in an arbitrary quantum state and reaches a
situation where two particles are in the same state |ϕ〉. However, it turns out that,

150
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within the laws of quantum mechanics, this operation is fundamentally impossible,
a property often called the “no-cloning theorem” [266, 267]. The proof involves
the linearity and the unitarity of the evolution of the state vector (the norm and the
scalar product between states is conserved during the evolution).

We assume that the complete system contains:

• the “source”, initially in an arbitrary state |ϕ〉
• the “target”, a physical system having the same space of states than the source

(or an isomorphic space of states). Initially, the target is in a normalized state |ξ0〉
and should be transferred into the same state |ϕ〉 as the source.

• an environment, with any space of state, and which is initially in the normalized
state |C0〉.

We wish to study what kind of evolution can transform the initial state:

|�i〉 = |ϕ〉⊗ |ξ0〉⊗ |C0〉 (7.1)

into a final state
∣∣�f

〉
given by:∣∣�f

〉= |ϕ〉⊗ |ϕ〉⊗ ∣∣Cf (ϕ)
〉

(7.2)

We now consider two different values |ϕ1〉 and |ϕ2〉 of |ϕ〉 , associated to initial

states
∣∣∣�(1)

i

〉
and

∣∣∣�(2)
i

〉
for the whole system; according to (7.1), the scalar product

of these two states is: 〈
�

(1)
i

∣∣∣�(2)
i

〉
= 〈ϕ1 |ϕ2〉 (7.3)

After evolution, the product scalar should become, according to (7.2):〈
�

(1)
f

∣∣∣�(2)
f

〉
= [〈ϕ1 |ϕ2〉]2 〈Cf (ϕ1)

∣∣Cf (ϕ2)
〉

(7.4)

This can be equal to (7.3) only in two cases:

• either 〈ϕ1 |ϕ2〉 = 0,
• or:

〈ϕ1 |ϕ2〉×
〈
Cf (ϕ1)

∣∣Cf (ϕ2)
〉= 1 (7.5)

If this second possibility occurs, since all vectors are normalized, each of the scalar
products in this expression has a modulus that is less than, or equal to, 1 (Schwarz
inequality); the equality necessarily implies that the vectors themselves are equal
(within an irrelevant phase factor). Relation (7.5) therefore implies at the same time
that |ϕ1〉= |ϕ2〉 and

∣∣Cf (ϕ1)
〉= ∣∣Cf (ϕ2)

〉
, while we have assumed above that states

|ϕ1〉 and |ϕ2〉 are different. We then reach a contradiction, and the only remaining



152 Applications of quantum entanglement

possibility is the first: the scalar product 〈ϕ1 |ϕ2〉 should vanish. Unitarity therefore
requires that, if state |ϕ1〉 can be cloned, the only other states |ϕ2〉 that can be cloned
are orthogonal; it is impossible to clone an arbitrary linear combinations of source
states.

Suppose that we release one of the assumptions, namely that state |ϕ〉 is invariant
in the whole process; can we then make cloning possible? We now assume that,
instead of putting two systems into the initial state |ϕ〉 of the source, the process
puts them both into another state |ϕ〉 that is a function of |ϕ〉 given by:

|ϕ〉 =U |ϕ〉 (7.6)

where U is a unitary operator. Equation (7.2) is then replaced by:∣∣�f

〉= |ϕ〉⊗ |ϕ〉⊗ ∣∣Cf (ϕ)
〉

(7.7)

After all, this would also be a useful sort of cloning, since from the knowledge
of |ϕ〉 one could infer that of |ϕ〉. But this process also is forbidden by the rules
of quantum mechanics. To see why, it is sufficient to apply the same reasoning as
above to the unitary operator obtained by multiplying the evolution operator by

the product U
−1

(source)×U
−1

(target); one then obtains the same equations and
reaches the same contradictions. Releasing the invariance of the state of the source
therefore does not help.

If it is impossible to clone states exactly, is it possible at least to do it in some
approximated way? We now show that this is impossible as well. Without writing
the strict equality (7.2) for the final state, let us now assume a weaker condition:∣∣�f

〉= |ϕ〉⊗ |ϕ̃〉⊗ ∣∣Cf (ϕ)
〉

(7.8)

where |ϕ〉 and |ϕ̃〉 are good approximations of the initial target state |ϕ〉. The
conservation rule of the scalar product then gives:

〈ϕ1 |ϕ2〉 =
〈
ϕ1

∣∣ϕ2
〉 〈ϕ̃1 |ϕ̃2〉

〈
Cf (ϕ1)

∣∣Cf (ϕ2)
〉

(7.9)

Since
〈
ϕ1

∣∣ϕ2
〉� 〈ϕ1 |ϕ2〉, we necessarily have

• either 〈ϕ1 |ϕ2〉 = 0,
• or:

〈ϕ̃1 |ϕ̃2〉×
〈
Cf (ϕ1)

∣∣Cf (ϕ2)
〉� 1 (7.10)

which implies that 〈ϕ̃1 |ϕ̃2〉 � 1 and, by symmetry, that
〈
ϕ1

∣∣ϕ2
〉� 1. As a conse-

quence, the states that can be approximately cloned are necessarily either almost
orthogonal, or almost identical; again, arbitrary linear combinations cannot be
cloned.
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In Appendix F, we discuss why, if state cloning was possible in an EPR exper-
iment, Bob could apply it to the particle he receives after Alice has made her
measurement along direction a. Since his particle is also polarized along this direc-
tion, he could, if he had multiple copies of it, determine the polarization with
accuracy and know which direction a Alice has chosen. This scheme could be
used to transmit information about the orientations a without any minimal delay
proportional to the distance, in contradiction with relativity. In this case, the consis-
tency of physics is guaranteed by the no-cloning theorem; see [268] for a historical
discussion of this theorem, and [269] for a study of multiple cloning.

7.1.2 No single shot state determination

A similar theorem is the following: given a single quantum system in a state |ϕ〉,
it is impossible to determine |ϕ〉 exactly with any sequence of measurements. The
physical reason is that, whatever first measurement is performed on the system, if
some information is indeed obtained, at the same time the state is modified (state
vector reduction). Further measurements will then have access only to this modified
state, which make the accurate determination of the initial state |ϕ〉 impossible. This
theorem is necessary to ensure consistency with the no-clonig theorem: if it was
possible to determine the quantum state with arbitrary accuracy, one could then
construct a filter (Stern–Gerlach system for spins) to put an arbitrary number of
particles into the same state |ϕ〉, in violation with the no-cloning theorem.

The no-determination theorem is valid only when a single realization of the quan-
tum system is given: if many copies of the system in state |ϕ〉 are available, then
it becomes possible to determine this state with an accuracy that is an increas-
ing function of the number of copies. Different methods have been proposed,
in particular “quantum tomography”, which relies on the successive measure-
ments of incompatible observables with several realizations of the same quantum
state, and a mathematical reconstruction of the most probable initial quantum state
[270–272]; it has been used in many experiments. See also the discussion of Chapter
15 of [273] and the method of so-called “weak measurements” (§8.3.1) [274, 275],
which has been used to determine the wave function of single photons with the
appropriate use of small birefringent phase shifter, a Fourier filter, and polarization
measurements [276].

A related interesting theoretical result is the following: if several copies of the
initial system are available and described by the same density operator ρ (pure state
or statistical mixture), it turns out that a single experimental setup is sufficient to
determine the quantum state [277]. A condition is that a larger auxiliary quantum
system is allowed to interact in a controlled way with the initial system; at the end
of the process, one measures a factorized observable acting on the two systems.
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The interaction with the auxiliary system (sometimes called “ancilla”) transforms
the information related to non-commuting observables in the initial system into
commutative information for the total quantum system.

7.2 Quantum cryptography

Quantum cryptography is not, as one could believe from these words, a method of
cryptography to code or decode messages by quantum methods. The purpose of
the method is only the transmission of a secret key between two partners through
quantum measurements, the subsequent use of this key remaining classical. This
explains why the more accurate name “quantum key distribution” is often used
for it.

7.2.1 Sharing cryptographic keys

The method makes use of the specific properties of quantum systems to ensure the
transmission of a cryptographic key between two partners, without any risk of a
third person having access to the key by monitoring the transmission line. It has
several variants, some making use of series of single-particle events [278] as in
the BB84 protocol, some involving several entangled particles, typically in an EPR
quantum state [279, 280]. For a general introduction, see [281]; for a review with
more details, see [282].

The basic idea is to build a scheme that leads to a perfectly secure way to
transmit a cryptographic key – such a key is a random sequence of 0 and 1, which
is used to code, and then decode, a secret message. In a first step, the two remote
correspondents Alice and Bob share this key, and then use it to code1 and decode all
messages they exchange. If the key is perfectly random and if each of its elements is
used only once (which means that the key should be at least as long as the messages
themselves), it becomes totally impossible to anyone to decode any message without
knowing the key, even if the message is sent publicly. But the risk is that, during
the initial process of key communication, a spy (traditionally named Eve, after
“eavesdropping”) is able to have access to the communication line used by Alice
and Bob in order to learn the key; from this moment, she will be able to decode
all messages sent with this key. The exchange of keys is therefore a crucial step in
cryptography. The usual strategy is to make the best possible use of the traditional
methods of confidentiality: storing the key in a safe, secure transportation, etc., but

1 The simplest method is to write the message with a binary coding of its characters, and then to perform a binary
sum of each bit of the message with the corresponding bit of the key (the bit with the same rank); the result,
which looks totally random and is therefore completely unreadable, is sent by Alice to Bob. He can then perform
the same binary addition again and recover the initial message.
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it is always difficult to assess the safety of such methods, where human factors play
such an important role.

By contrast, the quantum key distribution relies on fundamental laws of physics,
which are impossible to break: as clever and inventive spies may be, they will not
be able to violate the laws of quantum mechanics! The basic idea is that Alice and
Bob will create their common key by making quantum measurements, for instance
on particles in an EPR correlated state; in this way they can generate series of ran-
dom numbers that can be subsequently used as a secret communication key. What
happens then if Eve tries to intercept the photons during the process of key cre-
ation? For example, she could couple some elaborate optical device to the optical
fiber where the photons propagate between Alice and Bob, and then make mea-
surements. If Eve just absorbs the photons she measures, this immediately changes
the correlation properties observed by Alice and Bob, and the spying process can
be detected. Of course, this does not necessarily stop the spying, but at least Alice
and Bob know which data have been perturbed and can use only the others in the
future as a perfectly safe cryptographic key.

7.2.2 Examples of protocols for key exchange

Quantum cryptography is now a big field of research; there is a large variety of
schemes and protocols for quantum cryptography, some based on the use of EPR
correlated particles [279], others not [280]. Some of the schemes have been imple-
mented in practice, and provide the distribution of keys over distances exceeding
100 kilometers.

7.2.2.a BB84 protocol

We assume that Alice sends to Bob single photons, one by one, either in state |H 〉
with horizontal polarization to signal a bit 0 of the key, or in state |V 〉 with vertical
polarization to signal a bit 1 (Figure 7.1). Bob, when he measures the polarization of
the photons he receives, can reconstruct the key, but there is not guarantee that Eve
has not been able to interfere and obtain the value of the bit. This is because, when
Eve does the same polarization measurement as Bob in her laboratory along the
transmission line, even if she has to absorb the photon, she can also re-send another
photon with the polarization corresponding to the result of her measurement. Bob,
when measuring the polarization of the photons he then receives from Eve, obtains
exactly the same result as if Eve had not made any measurement; neither he nor
Alice can know that they have been spied.

The BB84 (for Bennett and Brasssard, 1984 [278]) protocol provides a way to
suppress this risk. The protocol involves two different bases for the polarizations,
that of the two states |H 〉 and |V 〉 (horizontal and vertical polarizations) and a
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Figure 7.1. Scheme of the BB-84 protocol for secure exchange of a cryptographic
key. Alice sends photons one by one to Bob and, for each of them, randomly
chooses a polarization among four possible values: H (horizontal), V (vertical),
A (first diagonal at 45◦), and B (second diagonal at −45◦). For this purpose, she
uses two optical devices P and R that produce these four possible polarizations.
By convention, H and A correspond to a bit 0, V and B to a bit 1. Bob, on his
side, uses optical system R′ to choose randomly along which pair of polarizations,
(H,V) or (A,B), he will make each measurement, which provides result ±1. The
extraction of the shared secret key from these results is discussed in the text and
summarized Figure 7.2.

second base with two other states:

|A〉 = 1√
2

[|H 〉+ |V 〉]

|B〉 = 1√
2

[|H 〉− |V 〉]
(7.11)

These two states correspond to the two linear polarizations at±45◦ with respect to
polarizations |H 〉 and |V 〉. By convention, |H 〉 and |A〉 are associated with a bit of
the key equal to 0, while |V 〉 and |B〉 are associated with a bit equal to 1 (this is
just a possibility; any other convention associating 0 with one state of each basis,
and 1 with the two others, would work equally well).

A crucial point is that, to send each bit of the key, Alice must choose in a com-
pletely random way to use either basis {|H 〉 , |V 〉} or basis {|A〉 , |B〉}. On his side,
Bob also chooses his direction of measurement completely randomly, so that there
is a 50% chance that his basis is different from Alice’s. Relations (7.11) then show
that he can obtain his two results with the same probability 1/2, independently
of the bit sent by Alice, so that he receives no information. But if, by chance, he
chooses the same basis, the information is contained in his measurement. The pro-
tocol therefore has two steps: first, Alice sends particles to Bob and, second, and
only later, they communicate with each other publicly (through a classical channel,
which does not have to be secret) to exchange information about what basis they
used. Of course, they do not communicate any information on their results, other-
wise privacy would be lost! This allows Bob to retain only the bits corresponding
to cases where the two bases are the same (perfectly correlated results), and to
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reject all the others. The secret key is then made of the retained results only, with
a number of bits that is approximately half the number of particles sent by Alice.
This method may look complicated, but we will see that it ensures that any attempt
by Eve to get access to the data becomes detectable by Alice and Bob.

What can Eve do to have access to the key sent by Alice? While the particles
are travelling from Alice to Bob, she may attempt to capture each of them and to
perform a measurement of their polarizations; to remain unnoticed, each time she
measures a particle, she re-sends towards Bob another particle with the polarization
corresponding to the result she has obtained. But, before Alice and Bob commu-
nicate about what basis they choose, no information is available on this basis, so
that Eve does not know if she must analyze the particle with basis {|H 〉 , |V 〉} or
basis {|A〉 , |B〉}. We have seen in §7.1 that she cannot determine the quantum state
of a single particle, and moreover that the no-cloning theorem prevents her from
duplicating the received particle into several in the same state. Actually, as Bob,
Eve has one chance out of two to choose the wrong basis. If for instance Alice
used the first basis and Eve the second, Eve will receive a state |H 〉 or |V 〉 but
re-send a particle in one of the states |A〉 or |B〉, which changes the flux of particles
received by Bob and creates anomalies. Since there is a chance in two that Alice
will choose the wrong basis, and also a chance in two that this will change the result
observed by Bob, the perturbations created by Alice introduce an anomaly in 25%
of the cases.

The strategy used by Alice and Bob is therefore to sacrifice some of the “good”
bits that they have obtained when their bases coincide, to exchange them publicly,
and to check if they are always identical as expected (Figure 7.2). It does not matter
if Eve learns the values of these bits, which will not be used anymore. Alice and
Bob compare their results and, if they differ by roughly 25%, know that someone
has been spying on their communication. Whatever Eve can do inevitably modifies
the correlation properties of the photons measured at the two ends of the line, so that
Alice and Bob can become aware of the problem – provided they take the trouble
to carefully compare their data and correlation rates.

Of course, our discussion is simplified, and only gives the general principles.
In practice, when Alice and Bob choose the same basis, the coincidence between
their results is not perfect, even in the absence of Eve. The reason is that various
perturbations may occur during the propagation of the particles and during the
measurements. If the corresponding error rate does not exceed a given value, one
can use the techniques associated with classical error correction codes (as those used
when reading CD or computer hard disks, for instance parity controls); the size of
the key is then reduced even more, but random errors are very efficiently reduced.
For a discussion of various methods of “privacy amplification” and “quantum secret
growing”, see [282].
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Figure 7.2. A typical run for a secret key exchange experiment. Alice sends her
photons one by one by choosing randomly among four polarizations H, V, A, and
B; then Bob measures the received polarization, either in the (H,V) basis or in
the (A,B) basis. After the measurement is performed, they publicly communicate
the choice of basis, either (H,V) or (A,B), for each pair, but not the results. The
common key is then obtained from the results for which the two bases turned out
to be the same; all results where the basis are different are ignored. In the case
shown, only five bits are retained, but by repeating the experiment many times one
can obtain a key of arbitrary length.

The general scheme works with any sort of quantum particles but, for practical
reasons, they are often photons propagating inside optical fibres. A difficulty is
that the fibres may change the polarizations of the photons and destroy the correla-
tions used to build the key. To overcome this problem, Bennett [283] has proposed
another technique where time resolution is used, and where both Alice and Bob
use a Mach–Zhender interferometer with adjustable phase shift in one arm. Each
photon emitted in Alice’s laboratory can reach Bob’s detectors through several dif-
ferent paths, two of which interfere in the time pulse he measures. The quantum
interference effect that then takes place is very similar to the interference between
different polarizations in the previous scheme, and a similar protocol of quantum
measurements (involving non-commuting operators) can be used to transmit secure
keys. This scheme has been realized in an experiment in 1993 [284] and is still in
use nowadays.

7.2.2.b EPR protocol

In the preceding protocol, the quantum particles carrying the information are sent
by one of the two partners and received by the other. It is also possible to design
protocols that are more symmetric, where both receive particles belonging to pairs
emitted by a common source. A particularly interesting case occurs when these
pairs are in an entangled state such as that used in the Bell theorem; this makes a
connection between the completeness of quantum mechanics (or its non-locality),
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as discussed by EPR, and the quantum distribution of keys [279]. To emphasize
the similarity with the discussion of the Bell inequalities in §4.1, we now come
back to a situation with two spin 1/2 particles, initially in the singlet state written
in (4.1); but the transposition in terms of vertical or tilted polarizations of photons
is straightforward.

The protocol to be used in this case remains rather similar to the BB84 protocol;
it also gives a central role to the random choice of basis, but this time both Alice and
Bob make a completely random choice of the components of the spins they measure.
One can assume that they limit themselves to two directions of measurement, either
along axis Oz, or along a perpendicular axis Ox. As above, two situations may
occur: either they make different choices and their results have no correlation;
or they make the same choice and, for an ideal experiment, the correlations are
perfect. In this case also, Alice and Bob communicate only after the reception
and measurement of all particles, and only about the choice of directions they
have made – never about the results obtained. Each partner only retains the cases
where it happens that the two choices have coincided. With this protocol, often
called “EPR protocol”, the cryptographic key that Alice and Bob extract from their
measurements is completely random: none of them can choose the series of bits of
the key (while, in the BB84 protocol, Alice may do it), but this difference has no
effect on the subsequent transmission of messages.

The effects of Eve’s intrusions are similar to those in the BB84 protocol: since she
does not know which base is used by Alice and Bob, any action from her implies
a significant probability that it will change the correlations observed by the two
partners (in the cases when they have chosen the same basis). More precisely, when
Eve performs a measurement on a spin and finds a result, the other spin is projected
onto an eigenstate of the spin component that she has chosen, with the opposite
eigenvalue. If Eve sends on the line another spin having the polarization that she
has measured, and if by chance Alice and Bob choose a direction of measurement
that is parallel to Eve’s, they will observe a perfect anti-correlation of their results,
exactly as if Eve had done nothing; her action is not visible. But if she chooses a
perpendicular direction, there is one chance in two that they will observe the same
result, which would be impossible in the absence of Eve’s perturbation; an error
rate of 25% then appears. As in the BB84 protocol, the result is that, if Alice and
Bob decide to sacrifice a fraction of their results to check that no perturbation has
occurred, they can easily verify that their communication has remained confidential.

Moreover, they can use a broader range for the directions of measurement, in
particular those leading to a quantum violation of the BCHSH inequalities [107];
this provides another test to check that no action has been performed on the spins
between the source and the measurements. In fact, the direction chosen by Eve and
the result she observes play a role that is very similar to an additional variable λ,
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which determines the polarization properties of the particles received by Alice and
Bob. The average over λ then leads very naturally to the BCHSH inequalities (in
fact, one is precisely in the case studied in Appendix C). Checking that significant
violations of the inequalities are still obtained is therefore a good criterion for the
absence of Eve’s intermediate measurements; this illustrates an interesting relation
between the Bell theorem and quantum cryptography.

Conceptually, the EPR protocol nevertheless remains rather different from BB84
since, at any moment when Eve may attempt to intrude into the system, the infor-
mation that Alice and Bob will use to build the key still does not exist: all possible
results of all spin components are still potentially present in the singlet entangled
state, since no measurement has been performed – in other words, the useful infor-
mation does not exist yet. If Eve attempts to acquire some knowledge, it is (so to
say) she who takes the responsibility of projecting the state vector and to attribute
definite polarizations to the spins; it is rather intuitive that this operation should be
detectable by Alice and Bob.

One can go even further in this direction and conceive schemes where, for the
events that are useful for creating the key, no particle at all propagates along the
line between Alice and Bob where Eve could intervene. Such a scheme has already
been discussed at the end of §2.4 – see also [60]. This particular protocol involves
one single particle only, and constructs the key from events where the particle
has remained in Alice’s laboratory; it never propagated between Alice’s and Bob’s
locations, because of a destructive quantum interference effect. This is an extreme
case where, for all events that are retained for constructing the key, no particle
has propagated between the two partners, which prevents Eve from obtaining any
useful information.

Other protocols have been proposed. It is possible for instance to use protocols
making use of six quantum states, or individual quantum systems having a space
of states with dimension larger than 2; again, for more details, we refer the reader
to the review article [282].

7.3 Teleporting a quantum state

The notion of quantum teleportation [285] is also related to quantum non-locality;
the idea is to take advantage of the correlations between two entangled particles,
which initially are for instance in an “all or nothing” state (5.9) (for N = 2), in order
to reproduce at a distance the arbitrary spin state of a third particle. The scenario
is the following (Figure 7.3): initially, two entangled particles propagate towards
two remote regions of space; one of them reaches the laboratory of the first actor,
Alice, while the second reaches that of the second actor, Bob; a third particle in
an arbitrary quantum state |ϕ〉 is then provided to Alice in her laboratory; the final
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Figure 7.3. A source S emits two spin 1/2 entangled particles, which fly to Alice
and Bob. In addition, Alice receives a particle in an arbitrary state |�〉, which
she does not know. She performs a measurement M involving both this particle
and one of the particles of the pair emitted by S. She then sends a message to
Bob by a classical communication channel (shown by a broken line in the figure)
containing the result of her experiment (two bits of classical information). Bob
uses this information to perform a unitary transformation U on his particle which,
then, is transferred into exactly the same state |�〉 as the initial remote particle.
This process is often called “quantum teleportation”.

purpose of all this scenario is to put Bob’s particle into exactly the same state |ϕ〉,
whatever it is (without, of course, transporting the particle itself). One then says
that state |ϕ〉 has been teleported.

What procedure can be followed to realize teleportation? One could naively
think that the best strategy for Alice is to start by performing a measurement on the
particle in state |ϕ〉 to be teleported. This is not true: one can show that it is more
efficient to perform a “combined measurement” that involves at the same time this
particle as well as her particle from the entangled pair. In fact, for the teleportation
process to work, an essential feature of this measurement is that no distinction
between the two particles used by Alice should be made. With photons one may
for instance, as in [286], direct the particles onto opposite sides of the same optical
beam splitter, and measure on each side how many photons are either reflected or
transmitted; this device does not allow one to decide from which initial direction the
detected photons came, so that the condition is fulfilled. Then, Alice communicates
the result of the measurement to Bob; this is done by some classical method such
as telephone, e-mail, etc., in other words by a method that is not instantaneous but
submitted to the limitations due to the finite velocity of light. Finally, Bob modifies
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the state of his particle by applying a local unitary transformation that depends
on the classical information he has received. This operation puts his particle into
exactly the same state |ϕ〉 as the initial state of the third particle, which realizes the
“teleportation” of the state. The whole scenario is “mixed” because it involves a
combination of transmission of quantum information (through the entangled state)
and classical information (the phone call from Alice to Bob). Here we discuss only
the general ideas, without explicitly writing the calculations that show how the
measurement process modifies the state vector, and which unitary transformation
Bob should apply, even if these calculations are not very complicated. A more
detailed description can be found in the original reference [285], or for instance in
§9.8 of [287], or again in §6.5.3 of [288].

Teleportation may look either magical, or trivial, depending how one looks at it.
The possibility of reproducing at a distance a quantum state from classical infor-
mation is not in itself a big surprise. Suppose for instance that Alice decided to
choose what the teleported state should be, and filtered the spin (she sends particles
through a Stern–Gerlach system until she gets a+1 result2); she could then ask Bob
by telephone to align his Stern–Gerlach filter in the same direction, and to repeat
the experiment until he also observes a +1 result. This might be called a trivial
scenario of teleportation, based only on the transmission of classical information.
But real quantum teleportation does much more than this! First, the state that is
transported is not necessarily chosen by Alice, but can be completely arbitrary.
Second, a message with only binary classical information is used (the result of the
combined experiment made by Alice3), which certainly does not provide sufficient
information to reconstruct a quantum state. In fact, a quantum state depends on
continuous parameters, while results of experiments correspond to discrete infor-
mation only. Somehow, in the teleportation process, the finite binary information
has turned into continuous information! The latter, in classical information theory,
would correspond to an infinite number of bits.

From Bob’s point of view, the amount of received information has two com-
ponents: classical information sent by Alice, with a content that is completely
“uncontrolled”, since it is not decided by her, but just describes the random result
of an experiment; quantum information is contained in the teleported state itself
(what we will call a “qubit” in the next section). If the teleportation is repeated
many times with the same state prepared by Alice, by successive measurements
on the teleported particles Bob will be able to determine its quantum state with

2 For filtering a spin state, one obviously needs to use a non-destructive method for detection after the Stern–
Gerlach magnet. One could for instance imagine a laser detection scheme, designed in such a way that the atom
goes through an excited state, and then emits a photon by returning to the same internal ground state (closed
optical pumping cycle – this is possible for well-chosen atomic transition and laser polarization).

3 Alice sends to Bob two classical bits corresponding to the result of a measurement performed on two particles.



7.4 Quantum computation and information 163

arbitrary accuracy, including the direction that was chosen by Alice; he therefore
receives a real message from her (for a discussion of the optimum strategy that Bob
should apply, see [289]).

If one wishes to describe teleportation in a sensational way, one could explain
that, even before Bob receives any classical information, he has already received
“almost all the information” on the quantum state, in fact all the controllable infor-
mation (the content of the classical message is random); this “information” has
come to him instantaneously, exactly at the time when Alice performed her com-
bined experiment, without any delay proportional to the distance covered. The rest
of information, which is the “difference” between continuous “information” and
discrete information, comes only later and is, of course, subject to the minimum
delay associated with relativity. But this is based on an intuitive notion of “dif-
ference between quantum/controllable and classical/non-controllable information”
that we have not precisely defined; needless to say, this should not be taken as a
real violation of the basic principles of relativity!

Finally, has really “something” been transported in the teleportation scheme,
or just information? Not everyone agrees on the answer to this question. In any
case, what is perfectly clear is that the essence of the teleportation process is com-
pletely different from any scenario of classical communication between human
beings. The relation between quantum teleportation and Bell-type non-locality
experiments is discussed in [290]; see also [291] as well as [292] for a review
of recent results, as well as [293] for a teleportation experiment of an N-photon
GHZ state with the help of only one pair of entangled particles. Recently, tele-
portation of photon states over a distance of 16 kilometers in free space has been
reported [294].

7.4 Quantum computation and information

What we said above of cryptography and teleportation is even more true concerning
quantum computing. This field of research gives rise to a large activity, with new
results constantly appearing in an abundant literature; giving an up-to-date report
is out of the question here. We will thus limit ourselves to a brief introduction of
some of the major ideas, and refer the interested reader who wishes to learn more
to [295–299].

7.4.1 General idea

The general idea of quantum computing [300] is to base numerical calculations,
not on classical “bits”, which can be only in two discrete states (corresponding to
0 and 1 in usual binary notation), but on quantum bits, or “qubits”. These qubits
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are quantum systems, each having access to a two-dimensional space of states; this
means that qubits can, not only be in one of the two states |0〉 and |1〉, but also in any
linear superposition of them. For a single qubit, it is already clear that a continuum
of states is a much “larger” ensemble than two discrete states only. For a large
collection of bits, the difference is even more pronounced: for classical bits, the
dimension of the state space increases linearly with the number of bits (for instance,
the state of three classical bits defines a vector with three components, each equal
to 0 or 1); for qubits, the dimension increases exponentially (this is a property of
the tensor product of spaces; for instance, for three qubits the dimension of space
is 23 = 8). If one assumes that a significant number of qubits is available, one gets
access to a space state with an enormous “size”, where many kinds of interference
effects can take place.

Now, if one could somehow make all branches of the state vector “work in
parallel” to perform independent calculations, it is clear that one could perform
much faster calculations, at least in theory. For instance, suppose that one wishes
to calculate the solutions of a system of equations that depend on a parameter; one
could imagine an algorithm where the system of qubits goes to a superposition of
states associated with all possible solutions of the equations, simultaneously for all
values of the parameter. But then the difficulty is to have access to these components:
one cannot directly measure the state vector as a classical variable. Nevertheless,
appropriate quantum measurement processes can be designed to make some use of
this “quantum parallelism”, which in fact opens up many possibilities. For instance,
the notion of unique computational complexity of a given mathematical problem,
which puts limits on the efficiency of classical computers, no longer applies in the
same way.

A summary of the history and prehistory of quantum computing can be found
for instance in [301]. Feynman, in a conference given in 1981 at MIT, remarked
that it seems to be in general impossible to simulate the evolution of any quantum
system on a classical computer with reasonable efficiency. This led him to propose
a basic model for a quantum computer that would perform this task. In 1985, David
Deutsch [300] described a “universal quantum computer”, or “quantum Turing
machine”, that can simulate any other quantum computer, as a classical Turing
machine can simulate any classical computer. The whole field, which is presently
a domain of very active research, expanded rapidly in the decade 1990–2000 with
the introduction of quantum gates and algorithms.

7.4.2 Quantum gates and algorithms

A “quantum computer” is generally considered as a combination of basic elements
called “logical quantum gates”, which are connected with each other in a way that
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is appropriate for the calculation to be performed. The simplest quantum gates act
on a single qubit:

• the “X gate”, which transforms |0〉 into |1〉, and |1〉 into |0〉; its action is represented
by the σx Pauli matrix.

• the “Hadamard gate H”, which acts according to:

H |0〉 = 1√
2

[|0〉+ |1〉]
H |1〉 = 1√

2
[|0〉− |1〉]

(7.12)

(if the two basis states |0〉 and |1〉 correspond to photon states that are polarized
horizontally and vertically, the effect of H is to turn these linear polarizations
by 45◦). Quantum gates acting on two qubit states also exist, such as the “cNOT
gate” (for “controlled not”), which acts on both a control qubit and a target qubit.
For an introduction to various gates and a rapid discussion of how they can be
used to implement quantum algorithms, see for instance §6.5 of [288] or Chapter
8 of [302].

Among quantum algorithms, one often cites first the Shor algorithm [303]. Shor
noticed that the factorization of large integer numbers into prime factors may
become enormously faster than with classical methods; an introduction to the rela-
tion between quantum mechanics and the factorization of integer numbers is given
in [304], and with more details in Chapter 3 of [299]. The Grover algorithm [305]
is a quantum algorithm that allows searching an unsorted data base in a much more
efficient way than classical computation (the gain is quadratic as a function of the
number of objects in the base); the algorithm is probabilistic since it gives the cor-
rect answer with high probability, but the probability of failure can be decreased
at will by repeating the algorithm. The Deutsch–Josza algorithm [306] provides
another case where the gain offered by the quantum computation is exponential.
Similar enhancements of the speed of computation are expected in the simulation of
many-particle quantum systems [307]. Depending on the problem, the theoretical
gain in speed provided by quantum algorithms is polynomial or exponential, but
sometimes there is no gain at all. More recently, a new algorithm has been proposed
to obtain useful information concerning the solutions of very large systems of linear
equations, by providing approximate values of mathematical quantities depending
on the solution [308].

Fundamentally, there are many differences between classical bits and quantum
qubits. We have already mentioned that classical bits have two reference states that
are fixed once and for all, while qubits can use any orthogonal basis in their space
of states, but this is not the only difference by far. Classical bits can be copied at
will and ad infinitum, while the no-cloning theorem mentioned in the preceding
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section (see also Appendix F) applies to qubits. On the other hand, classical bits
can be transmitted only into the forward direction of light cones, while the use
of entanglement and teleportation may remove this limitation for qubits. Another
difference is that the information is less directly coded in quantum qubits than
in classical bits: in order to transmit and receive usable information from qubits,
one has to specify what kind of measurements should be made with them (this
is related to the flexibility concerning space state basis mentioned above). Since
the quantum measurement process involves randomness, often the algorithm will
provide results with randomness also, so that repeating it may be necessary. In
the end, as all human beings, Alice and Bob can communicate only at a classical
level, for instance by adjusting the macroscopic settings of their measurement
apparatuses and observing the red and green light flashes associated with the results
of measurements. Paraphrasing Bohr (see the end of §1.2.3), we could say that
“there is no such concept as quantum information; information shared by humans is
inherently classical, but may be transmitted through quantum qubits”; nevertheless,
the whole field is now sometimes called “quantum information theory”.

One of the first proposal of a scheme of a quantum computer involved cold
trapped atomic ions, in particular the realization of a cNOT gate, see [246]. Since
then, many laboratories have realized experiments to demonstrate the feasibility
of quantum computations with ions [247]. In 2001, a group at IBM [309] used the
techniques of nuclear magnetic resonance to implement the Shor algorithm, and to
factorize the number N = 15 into 3×5. For the moment, we are still very far from
practical applications!

7.4.3 Quantum error correction codes

Decoherence is the big enemy of quantum computation, since it constantly tends
to destroy the useful coherent superpositions; this immediately reduces the full
quantum information to its classical, boolean, component (made of diagonal matrix
elements only). It is now perfectly clear that a “crude” quantum computer based
on the naive use of non-redundant qubits will never work, at least with more than
a very small number of them. It has been remarked that this kind of quantum
computer would simply be a sort, or resurgence, of the old analog computers (errors
in quantum information form a continuum), in an especially fragile version!

But it has also been pointed out that an appropriate use of quantum redundancy
may allow one to design efficient error correcting schemes [310, 311]. Decoherence
can be corrected by using a system containing more qubits, and by projecting its
state into some subspaces in which the correct information about the significant
qubit survives without error [312]; the theoretical schemes involve collective mea-
surements of several qubits, which give access to some combined information on
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all them, but none on a single qubit. It turns out that it is theoretically possible to
“purify” quantum states by combining several systems in perturbed entangled states
and by applying to them local operations, in order to extract a smaller number of
systems in non-perturbed states [313]. Chapter 5 of [299] discusses in more detail
how this “miracle” can happen and how error correcting systems can be built from
the basic quantum logic gates.

Quantum error correction codes apply to various situations, including quantum
computation as well as communication or cryptography [314]. Similarly, the notion
of “quantum repeaters” [315] has been introduced to correct for the effect of imper-
fections and noise in quantum communication. Another very different approach to
quantum computation has been proposed, based on a semi-classical concept where
qubits are still used, but communicate only through classical macroscopic signals,
which are used to determine the type of measurement performed on the next qubit
[316]. This kind of computer should be much less sensitive to decoherence.

Another possibility is to accurately control the coupling of a quantum system to
its environment. While, for many forms of dissipation, decoherence tends to destroy
the quantum effects that are used for quantum computation, dissipation may also
sometimes have the opposite effect. With a good control of the coupling of the
system to the outside reservoir, the environment may actually drive the system to
a steady state in which the outcome of the quantum computation is encoded [317].

Generally speaking, whether or not it will be possible one day to beat or control
decoherence in a sufficiently large system for practical quantum computing still
remains to be seen. Moreover, although the factorization into prime numbers is
an important question (in particular for cryptography), as well as the many-body
quantum problem, it would be nice to apply the principles of quantum computation
to a broader scope of problems! The question as to whether or not quantum com-
putation will become a practical tool one day remains open to debate [297, 318].
In any case, this is an exciting new field of research.
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Quantum measurement

The process of measurement plays an important role in quantum theory. Measure-
ments can be direct, if the physical system S interacts directly with the measurement
apparatus M (as we have assumed until now), or indirect. In the latter case, the
physical system first interacts with an ancillary system B, which may have a space
of states that is very different from that of S, for instance much larger; after this
interaction has finished, M is used to perform a measurement on B, without any
direct interaction with A. Because S is then “protected” from any direct interaction
with the measurement apparatus, the state of S is not necessarily strongly mod-
ified, and may even be only weakly affected. In both cases, the process implies
entanglement between several physical systems. In this chapter, we study how this
entanglement is created and used for measurements as well as the notion of weak
and continuous measurements. These questions play an important role in several
of the interpretations of quantum mechanics that we discuss in Chapter 10.

8.1 Direct measurements

The Von Neumann model of quantum measurement [4] provides a general frame
for describing the process in terms of correlations appearing (or disappearing) in
the state vector associated with the whole system S +M . In this model, the two
systems S and M are initially described by a product state |�0〉 and interact during
the time of measurement, so that they become entangled; they then reach a final
state

∣∣� ′〉 and do not interact anymore.

8.1.1 Ideal measurement, Von Neumann model

We assume that the physical quantity measured on S is described by an Hermitian
operatorA acting in its space of states ES . This operator has normalized eigenvectors
|an〉 associated with eigenvalues an (for the sake of simplicity, we assume that they
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are non-degenerate):

A |an〉 = an |an〉 (8.1)

Initially, the state |ϕ0〉 of S is any linear combination of the |an〉:

|ϕ0〉 =
NS∑
n=1

cn |an〉 (8.2)

with arbitrary complex coefficients cn; the only condition is that the sum of their
squared modulus is equal to 1 (normalization condition). As for the measurement
apparatus M , we assume that before measurement it is always in the same quantum
state |C0〉. The initial state of the whole system is then:

|�0〉 = |ϕ0〉⊗ |C0〉 (8.3)

8.1.1.a Basic measurement process

Let us first study the special case where, initially, S is in one of the eigenstates
associated with the measurement: |ϕ0〉 = |an〉. The initial state of the whole system
is then:

|�0〉 = |an〉⊗ |C0〉 (8.4)

After the measurement, system S is left in the same state |an〉. Nevertheless, the
measurement apparatus reaches a state |C′n〉 that is different from |C0〉 and depends
on n; it has to be so since, to make the result accessible experimentally, the position
of its “pointer” used for reading the result on the apparatus (macroscopic pointer
moving in front of a scale, state of light emitting diodes, writing of the result into
a computer memory, etc.) must depend on n. The various states |Cn〉 are actually
mutually orthogonal, since the pointer necessarily involves a very large number
of atoms reaching a different state to make the reading by a macroscopic observer
possible1. The effect of measurement is therefore summarized by:

|�0〉 = |an〉⊗ |C0〉 =⇒
∣∣� ′〉= |an〉⊗ ∣∣C′n〉 (8.5)

where C′n〉 is a normalized state. No correlation or entanglement has then appeared
between the measurement apparatus and the measured system; this corresponds to
the simple situation where the result of the measurement is certain.

1 This is a necessary but not sufficient condition for M to constitute a good measurement apparatus. The states∣∣C′n〉 should also provide a stable recording of the measurement result, which should not quickly be erased
under the effect of the proper evolution of M or its coupling to the environment – we come back to this point
in §8.1.2.b.
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In the general case, the initial state of system S is a superposition (8.2) of
eigenstates associated with the measurement. The state replacing (8.4) is the linear
combination with the same coefficients:

|�0〉 =
∑
n

cn |an〉⊗ |C0〉 (8.6)

The linearity of the Schrödinger equation then implies that:

|�0〉 =⇒
∣∣� ′〉=∑

n

cn |an〉⊗
∣∣C′n〉 (8.7)

which is a state where the measurement apparatus is entangled with the measured
system S. After the measurement, one can then no longer attribute a state vector to
system S (pure state), but only a density operator obtained by partial trace. Since
the

∣∣C′n〉 are mutually orthogonal and normalized, this density operator is given by:

ρ′S = T rM
{∣∣� ′〉 〈� ′∣∣}=∑

n

|cn|2 |an〉 〈an| (8.8)

This result looks very natural: it expresses that the measured system has a prob-
ability |cn|2 to be in each of the states |an〉 associated with the results an, which
corresponds exactly to Born’s probability rule. It is indeed a very useful formula
that summarizes some features of the measurement postulate of quantum mechan-
ics. Nevertheless, as we have already emphasized (for instance in §§2.1 and 2.2),
it does not contain one essential component of this postulate: the uniqueness of the
result of measurement (emergence of macroscopic uniqueness). Indeed, all possible
results are still contained in the partial trace, considered as equally possible even
after the measurement. The system is described mathematically by a sum contain-
ing all possible results of the experiment simultaneously, while in reality one single
result is observed in a given realization. This was expected: equation (8.8) is only
a consequence of the Schrödinger equation, which is unable to stop the endless
progression of the Von Neumann chain.

As we have seen in §1.2.2.a, to solve this problem Von Neumann introduced
a specific postulate: the state reduction postulate, which forces the uniqueness of
the result of the measurement. According to this postulate, a single result ar is
indeed observed after measurement and, in the summations of (8.7) and (8.8),
all components except the component n = r should be suppressed2. Under these
conditions, the state vector after measurement becomes a product, entanglement
has disappeared, and S is in a pure state again.

2 Non-standard interpretations of quantum mechanics (additional variables, modal interpretation, non-linear
dynamics, etc. ) solve the problem in different ways (Chapter 10).
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8.1.1.b Effects of the interaction, pointer observable

Relations (8.5) or (8.7) imply that some interaction has occurred between S and M .
We can for instance assume that their interaction Hamiltonian Hint has the form:

Hint = g A PM (8.9)

where A is the operator introduced above (acting on S only), PM an operator acting
on M only, and g a coupling constant. We also assume that, in the space of states
of M , operator PM has a conjugate operator XM :

[XM,PM ]= i� (8.10)

This means thatPM acts as the infinitesimal translation operator with respect toXM ,
in other words that the action of its exponential on any eigenvector |xM〉 of XM :

XM |xM〉 = xM |xM〉 (8.11)

provides a translation of the eigenvalue xM :

e−i+xPM/� |xM〉 = |xM ++x〉 (8.12)

where +x is any real number.
We now assume that |C0〉 (state of the apparatus before measurement) is an

eigenstate of XM with eigenvalue x0, and ignore any other source of evolution3

of the combined system other than the mutual interaction between S and M . The
evolution operator between time t = 0 before measurement and time t = τ after the
end of interaction is:

U(0, t)= e−igτAPM/� (8.13)

Its application to (8.4) then provides:

U(t) |an〉⊗ |C0(x0)〉 = |an〉⊗ |C(x0+gτan)〉 (8.14)

where the variables written between brackets in the state of the measurement appa-
ratus4 refer to the eigenvalues of XM . In terms of the kets

∣∣C′n〉 introduced in (8.5),
we therefore have: ∣∣C′n〉= |C(x0+gτan)〉 (8.15)

3 This is a valid approximation if the interaction time τ is very short and g very large. One could include the
proper evolutions of systems S and M by using the interaction representation associated with the sum of their
Hamiltonians. Nevertheless, since here we are mostly interested in the effects of their mutual interaction, for
the sake of simplicity we ignore the effects of the separate proper evolutions.

4 Needless to say, a measurement apparatus is macroscopic and has many more degrees of freedom than the only
position of its pointer. For the sake of simplicity, these degrees of freedom are not made explicit in our notation.
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These relations show that, for the measurement apparatus M , the eigenvalue of X
has been translated by an amount gτan that depends on the eigenvalue an of S.
For the measurement apparatus, the observable XM therefore plays the role of the
position of a “pointer” which indicates the result of measurement after interaction
between both systems.

If, initially, the system is in an eigenstate of A, it will remain in the same
eigenstate after measurement. One then says that the measurement is a “quantum
non-demolition” measurement5 (QND). Of course, in general, the system S is not
initially in an eigenstate of A, and the interaction with the measurement apparatus
changes its pure state into a complicated statistical mixture obtained by inserting
(8.15) into (8.7); the usual “Von Neumann regress” (§2.1) takes place.

8.1.2 Effects of the environment

If, without the state reduction postulate, formula (8.8) does not suffice to introduce
a uniqueness of the observed measurement result, one could at least hope that
it determines without any ambiguity the basis into which the projection towards
a single state associated with the measurement takes place. Actually, this is not
necessarily the case. The notion of pointer states, which involves the environment
of the measurement apparatus, is useful to remove this ambiguity.

8.1.2.a Ambiguous entanglement

To see why formula (8.8) may be ambiguous, let us consider a simple example: the
measurement of the Oz component of a spin 1/2, associated with eigenvectors |+〉
and |−〉. Initially, the spin is in the following state:

|ϕi〉 = 1√
2

[|+〉+ |−〉] (8.16)

After interaction with the measurement apparatus, the state vector
∣∣� ′〉 of the whole

system is:

∣∣� ′〉= 1√
2

[
|+〉⊗ ∣∣C′+〉 + |−〉⊗ ∣∣C′−〉] (8.17)

where the
∣∣C′±〉 are the two possible states that the measurement apparatus can

reach.

5 QND measurements can for instance be performed in quantum optics [319]. In Chapter 9, we discuss other
examples of QND measurements.
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Looking at this expression of the vector, one could have the impression that it
directly indicates that the basis of measurement is indeed the basis of the eigenvec-
tors |±〉 associated with the Oz component of the spin. But, if one introduces the
basis of spin states:

|ξ±〉 = 1√
2

[
|+〉± eiξ |−〉

]
(8.18)

(corresponding to the eigenstates of the spin component along axis Oξ in plane
xOy making angle ξ with Ox),

∣∣� ′〉 can be written as well:

∣∣� ′〉= 1√
2

{
|ξ+〉⊗ |G+〉+ |ξ−〉⊗ |G−〉

}
(8.19)

with:

|G±〉 = 1√
2

[∣∣C′+〉± e−iξ
∣∣C′−〉] (8.20)

Equation (8.19) has exactly the same form as (8.17); it is sufficient to replace
the two vectors |±〉 by the two other vectors |ξ±〉 as well as vectors

∣∣C′±〉 of the
measurement apparatus by |G±〉. Looking at expression (8.19 ) of the entangled
state vector after the measurement, one could now get the impression that it is the
spin component along direction Oξ that has been measured, in contradiction with
what was obtained from expression (8.17) of the same ket. This example illustrates
that, for an initial state of S such as (8.16), the nature of only the final entanglement
between the system and the measured apparatus is not sufficient to determine which
observable has been measured (of course, even less what is the result obtained in a
given realization of the experiment).

To avoid this ambiguity, one can generalize our discussion and consider the
case where |ϕi〉 can be any linear superposition6 of states |±〉. We now discuss
another method, which takes into account the unavoidable interaction between the
measurement apparatus and its environment.

8.1.2.b Pointer states

Afirst obvious condition is that the states |C′n〉 of the measurement apparatus should
store the information related to the result of the measurement in a robust way, and
not destroy it immediately under the effect of the proper evolution of M . This

6 If one replaces (8.16) by a more general superposition |ϕi 〉 = α |+〉 + β |−〉, one obtains
∣∣� ′〉 = α |+〉 ⊗∣∣C′+〉 + β |−〉 ⊗ ∣∣C′−〉. For any α and β, one cannot find basis vectors |ξ±〉|D±〉 other than that used in

(8.17), in which this state can also be written in general
∣∣� ′〉 = α |ξ+〉⊗

∣∣D′+〉 + β |ξ−〉⊗
∣∣D′−〉, so that the

ambiguity is lifted.
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condition is fulfilled if XM is a constant of motion of M , in other words if XM

commutes with the proper Hamiltonian HM of M .
Moreover, a measurement apparatus cannot remain completely isolated from

its environment, even at a microscopic level. This would require that none of its
macroscopic number of atoms, electrons, etc. interacts with any particle of the
environment to become correlated with it in some way (for instance a photon that
is scattered into a different state, depending on the position of the measurement
pointer, as in the scheme discussed in §6.3.3.a). One can even remark that, because
of its very purpose, the apparatus must be able to interact and correlate with the
experimenter, when he acquires the knowledge of the result of measurement. This
impossibility has stimulated Zeh [320] and Zurek [321, 322] to push further the anal-
ysis, and to include the environment of the measurement apparatus in the process
of quantum measurement.

Models have been developed which, at the price of some simplification, lead
to tractable calculations. This gives a good idea of the general nature of the phys-
ical phenomena occurring during the entanglement with the environment. In the
Coleman–Hepp model [323, 324], the system under study is coupled to a semi-
infinite linear array of N spin 1/2 particles at fixed positions, representing the
apparatus. The calculation then shows that, if “local” observables are built from
a finite number of spin operators, their measurement cannot make the distinction
between a coherent superposition of the various positions of the pointer and an
incoherent statistical mixture. Zurek considers an environment E made of a large
number of either harmonic oscillators [325], or spins 1/2 that are all coupled to the
measurement apparatus M [322]; the apparatus is also simplified and treated as a
two-level system (equivalent to a spin 1/2). This coupling introduces a Hamiltonian
HME(i) between the ith spin of the environment and the spin of the measurement
apparatus; HME(i) is proportional to the product of the components of the two
spins along Oz with a coupling constant gi , which varies randomly as a function
of i. One can then show that a preferred basis exists in the space of states of the
measurement apparatus M (as simplified in this model), the “pointer states basis”
in which the entanglement with E tends to destroy the coherences. What deter-
mines this basis, preferred to all the others, is the form of the coupling Hamiltonian
between the measurement apparatus and its environment. For a more realistic mea-
surement apparatus than a single spin, for instance an apparatus that includes a
pointer moving in front of a scale, the preferred basis corresponds to states where
the position of the pointer is well defined (as opposed, for instance, to the eigenbasis
of its momentum, or to any other state that is significantly extended in space). Zurek
calls this phenomenon “einselection” (for “environment induced selection”).

This is an important idea: the very physical constitution of a measurement appara-
tus determines the way it is coupled to the environment. The Hamiltonian describing
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this coupling determines the basis of the pointer states. Actually, if the proper
dynamics of the apparatus is neglected, pointer states are merely the eigenvec-
tors of the operator which commutes with the interaction Hamiltonian between the
apparatus and the environment [321]; if this dynamics is included, the situation is
more complicated. Several necessary conditions therefore determine if a device can
be considered as satisfactory to give access to a physical quantity of S; first, the
coupling between S and M must be appropriate to transfer the desired information
from S toM; second, this information must be recorded in a way that makes it stable
in time with respect to both the proper evolution of M and the coupling between
M and E; finally, it should also be robust against small perturbations.

Needless to say, from a fundamental point of view, once more the same remark
applies: uniqueness does not emerge from this theory. It just determines the basis of
states of the apparatus that are sufficiently robust with respect to the environment
to store the result of the measurement. An independent postulate is therefore still
needed. Zurek [326] (see also §VI-D of [322] and §III-F of [258]) has nevertheless
proposed to use the notion of “envariance” (environment-assisted invariance), a
symmetry exhibited by correlated quantum systems and related to causality, to
describe the nature of statistical ignorance and derive the Born rule and macroscopic
classicality, without any notion of measurement or state vector collapse.

8.1.3 Hund paradox

A similar analysis applies to a problem in molecular physics, the so-called “Hund
paradox” [327], namely the origin of the stability of chiral states of molecules. Chiral
molecules in their ground state have access to two configurations, one left-handed
configuration associated with quantum state |L〉, and one right-handed configura-
tion associated with quantum state |R〉. A mirror image symmetry transforms each
of these states into the other, but none of them is invariant: each has chirality, which
means that a solution of molecules in one of these states exhibits “rotary power”
(it rotates the plane of polarization of an optical beam that crosses the solution).

These two states are always coupled by tunnel effect (as for the two symmetrical
configurations of the Ammonia molecule), so that the real ground state of the
molecule is the symmetrical combination:

|G〉 = 1√
2

[|L〉+ |R〉] (8.21)

This state is invariant under mirror symmetry, as expected: the non-degenerate
ground state of any quantum system has the same symmetry as its Hamiltonian (in
this case the Hamiltonian of the molecule, which is invariant in this symmetry). It
has no chirality and therefore no rotary power.
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Nevertheless, by measuring the rotation of the plane of polarization of light when
it crosses the solution, one observes that molecules are “enantiomers”: they are
either in state |L〉 or |R〉, which indeed rotate polarizations in opposite directions,
but they are not in the real ground state |G〉 with no rotary power. One can even
sort molecules of one configuration, |L〉 or |R〉 only, to enhance the rotation of the
solution. The intriguing question is then: why aren’t the molecules in a state with
the same symmetry as the Hamiltonian of the molecule, such as state |G〉? More
generally, why can’t the molecules be found in any superposition:

|D±〉 = 1√
2

[
|L〉± eiξ |R〉

]
(8.22)

since this possibility is a direct consequence of the superposition principle?
The answer to the question involves the coupling to the environment, as above

for pointer states. The molecule constantly collides with others or scatters photons
so that it correlates with them in a way that is different for states |L〉 and |R〉 because
interactions are local; those two states therefore provide the preferred basis with
respect to the environment, while |G〉 is a combination of such states and therefore
very fragile against decoherence [328]. This explains why state |G〉 is not observed
in the optical properties of the solution.

Actually, if the coupling with the other molecules is sufficiently fast and the
tunnel effect relatively slow, the interaction with the environment completely blocks
the tunnel effect. Assume a molecule is initially in state |L〉; if the molecule was
completely isolated, it should oscillate between states |L〉 and |R〉 under the effect
of its internal Hamiltonian, at a frequency fixed by the rate of the tunnel effect.
Nevertheless, the effect of the environment blocks this oscillation, so that state
|R〉 is never reached by the molecule (this is sometimes called the “quantum Zeno
effect”).

8.2 Indirect measurements

To introduce the notions of indirect measurements and of POVM, we begin with
a simple case: a two-level system coupled to another quantum system B with an
arbitrarily large space of states.

8.2.1 A simple model: two-level system

We assume that the space of states ES of S is two dimensional and call |+〉 and
|−〉 two states forming an orthonormal basis in ES . Between times t = 0 and t = τ ,
system S is coupled to another system B called “ancillary system”, with space
of states EB spanned by an orthonormal basis |Cm〉 (with q = 0,1, . . . ,NB ; the
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dimension NB may be much larger than 2). At time τ , a measurement is performed
on the ancillary system, without any direct interaction with S; we ignore the proper
evolution of S and B during this time interval, and take into account only their
interaction (otherwise we should use the interaction representation with respect to
the sum of the proper Hamiltonians of both systems, which would complicate the
calculations).

8.2.1.a Interaction and entanglement

The interaction Hamiltonian is:

Hint. = g σz(S) G(B) (8.23)

where g is a coupling constant, σz(S) the operator acting in the space of states
of S (defined by the third Pauli matrix in the {|±〉} basis), and G(B) an arbitrary
operator acting on B only. Initially, the ensemble of S+B is in the state:

|�0〉 = |ϕ0〉⊗ |C0〉 (8.24)

where |ϕ0〉 is any state in ES :

|ϕ0〉 = α |+〉+β |−〉 (8.25)

Both |ϕ0〉 and |C0〉 are normalized. Since the proper evolutions of S and B are
ignored, the evolution operator between t = 0 and t = τ is:

U(0,τ )= e−igτ σz(S) G(B)/� (8.26)

If S is initially in one of the states |+〉 or |−〉, relation (8.5) becomes:

|�0〉 = |±〉⊗ |C0〉 =⇒
∣∣� ′〉= |±〉⊗ ∣∣C±B 〉 (8.27)

with: ∣∣C±B 〉= e∓igτG(B)/� |C0〉 (8.28)

The state of S is then unchanged, and will not be affected by whatever measurement
is performed on B, since the two systems are not entangled. Note that

∣∣C±B 〉 are
normalized vectors (they are obtained by the action of unitary operators onto |C0〉)
but that they are in general not mutually orthogonal: for instance, if the coupling
constant g tends to zero, they both tend to the same vector |C0〉 in the space of
states of B.

In the more general case where S is initially in state (8.25), the ensemble S+B

after interaction is described by the entangled state:∣∣� ′〉=U(0,τ ) |ϕ0〉 |C0〉 = α |+〉 ∣∣C+B 〉+β |−〉 ∣∣C−B 〉 (8.29)



178 Quantum measurement

so that the effect of the measurement performed on B may change the state of S,
as we now discuss.

8.2.1.b Measurement on the ancillary system

At some time t ≥ τ , a measurement is performed on system B; the possible results
bm, corresponding to the orthonormal kets |Cm〉, are assumed to be non-degenerate
for simplicity. Expanding over the corresponding basis allows to write

∣∣� ′〉 as:∣∣� ′〉=∑
m

[
α
〈
Cm

∣∣C+B 〉 |+〉+β
〈
Cm

∣∣C−B 〉 |−〉]⊗|Cm〉 (8.30)

If the result of measurement is br , the projection postulate reduces this ket to one
of its components in the summation over m, so that it becomes the product:∣∣�r

mes.

〉= [α 〈Cr

∣∣C+B 〉 |+〉+β
〈
Cr

∣∣C−B 〉 |−〉]⊗|Cr〉 (8.31)

System S is then in a pure state again, state
∣∣ϕr

mes.

〉
given by:∣∣ϕr

mes.

〉= α
〈
Cr

∣∣C+B 〉 |+〉+β
〈
Cr

∣∣C−B 〉 |−〉 (8.32)

or: ∣∣ϕr
mes.

〉=Nr |ϕ0〉 (8.33)

where Nr is the operator acting in ES defined by:

Nr =
〈
Cr

∣∣C+B 〉 |+〉〈+| + 〈
Cr

∣∣C−B 〉 |−〉〈−| (8.34)

In the general case, the state of S is indeed changed by the action of the indirect
measurement.

In general, Nr is not a projection operator, since its square is not the same
operator:

[Nr ]2 = 〈Cr

∣∣C+B 〉2 |+〉〈+| + 〈
Cr

∣∣C−B 〉2 |−〉〈−| (8.35)

(except in the special case where |Cr〉 is equal to one of the
∣∣C±B 〉 and orthogo-

nal to the other). For this reason, the operation is often called a “non-projective
measurement”, as opposed to projective measurements, such as those discussed
in §8.1.

A similar calculation gives:

N
†
rNr =NrN

†
r =

〈
C+B

∣∣Cr

〉 〈
Cr

∣∣C+B 〉 |+〉〈+| + 〈
C−B

∣∣Cr

〉 〈
Cr

∣∣C−B 〉 |−〉〈−|
(8.36)
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8.2.1.c Probabilities and sum rule

The probability Pr of obtaining result br is nothing but the square of the norm of
ket (8.31), which by (8.33) and (8.34) can be simply expressed as an average value
over the initial state |ϕ0〉 of S:

Pr =
∣∣α 〈Cr

∣∣C+B 〉∣∣2+ ∣∣β 〈Cr

∣∣C−B 〉∣∣2 = 〈ϕ0|N†
rNr |ϕ0〉 (8.37)

A summation over index r in (8.36) then introduces a closure relation over basis
{|Cr〉}, and one obtains:∑

r

N
†
rNr =

〈
C+B

∣∣C+B 〉 |+〉〈+| + 〈
C−B

∣∣C−B 〉 |−〉〈−| = |+〉〈+|+ |−〉〈−|
(8.38)

or: ∑
r

N
†
r Nr = 1 (8.39)

which means that the sum of probabilities gives 1, as expected.
As a consequence, the series of operators Gr =N

†
rNr provides a decomposition

of the identity operator in the space of states of S. In general, theGr are not mutually
orthogonal (their binary products are not zero), as one can easily see from (8.34).
With mutually orthogonal projectors in a two-dimensional space associated with a
spin 1/2, the identity could only be obtained by summing two projectors over two
opposite spin directions; it is impossible to build more than two orthogonal pro-
jectors in ES . With the non-orthogonal Gr , a decomposition of identity is obtained
with NB operators, the dimension of the space of state of B, which can be much
larger than 2. For instance, one can obtain the identity in the space of states of a
spin 1/2 by summing projectors over any series of K spin directions defined by
vectors in space having a zero sum, and dividing them by K/2. Since, moreover,
the Gr are not necessarily projectors, there is a large flexibility for forming series
of operators summing to 1 as in (8.39).

8.2.2 Generalization: POVM

We now assume that the dimension of the space of states ES has any value NS ,
instead of necessarily 2. We also assume that the two systems evolve under the
effect of their interaction only, with a unitary evolution given for instance by
(8.13). We can then use the results already obtained in §6.4.1 and, using defi-
nition (6.47) of operators Mq a well as (6.49), write the state vector

∣∣� ′〉 after
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interaction as:

∣∣� ′〉= NB−1∑
q=0

Mq |ϕ0〉⊗
∣∣Dq

〉
(8.40)

where the
∣∣Dq

〉
form an orthonormal basis in the space of states of

B.
We can choose for this basis the eigenstates of the measurement performed on

B. The probability Pr to obtain result br associated with a particular |Cr〉 is given
by the norm of the corresponding term q = r in the expansion of the state written
in (8.40). This probability is thus:

Pr = 〈ϕ0|M†
r Mr |ϕ0〉 (8.41)

Consider the series of operators:

Kr =M
†
r Mr (8.42)

Relation (6.51) indicates that their sum is equal to the identity operator:

NB−1∑
r=0

Kr = 1 (8.43)

and the average of each Kr in any state of S is always a positive number (a probabil-
ity). Such an ensemble of operators are called a POVM (an acronym for “Positive
Operator Valued Measure”). As in the case where S is a spin 1/2, the number of
operators in a POVM is not equal to the dimension of space ES , but to the dimension
of space for system B. Their number may therefore be much larger, as we have
seen above when the ancillary system is a spin 1/2. It may also be much smaller
if, for instance, the ancillary system B is a spin 1/2: in this case, the number of
POVM operators acting in the space of states of S cannot exceed 2, whatever the
dimension of this space is. A well-known example of a two-operator POVM acting
in a two-dimensional space of states ES spanned by the two vectors |±〉 is given by
the two operators:

M0 = |−〉〈−| M1 = |−〉〈+| (8.44)

satisfying:

M
†
0M0+M

†
1M1 = |−〉〈−| + |+〉〈+| = 1 (8.45)

If M0 is a projector, M1 is not such an operator (its square vanishes); the cross
products of these operators are M0M1 =M1 and M1M0 = 0.



8.3 Weak and continuous measurements 181

8.3 Weak and continuous measurements

Situations where the entanglement produced during the interaction stage between
S and M remains weak are appropriate for performing weak and continuous
measurements.

8.3.1 Measurements of weak values

The notion of “weak values” was introduced by Aharonov, Albert, and Vaidman
[274] (see also Chapter 16 of [273], and [275]). As in §8.1.1.b, let us consider the
evolution of the coupled system S+M , but in the opposite case where the indication
readable on the pointer is inaccurate and provides little information on the state of
S. This case is obtained if, in the expression (8.9) of the coupling Hamiltonian, the
coupling constant g is small and can be treated to first order only. The initial state
of the system is:

|�0〉 = |ϕ0〉 |C0(x0)〉 (8.46)

where |ϕ0〉 has the general form (6.41), expressed in terms of the eigenvectors
|an〉 of A. Instead of assuming that |C0〉 is an eigenstate of the pointer observable
XM , we now assume that it is a state |C0(x0)〉 with Gaussian components on the
eigenvectors |xM〉 of this operator; we choose a broad Gaussian function centered
around xM = x0:

〈xM |C0(x0)〉 =
(

2πσ 2
)−1/4

e−(xM−x0)
2/4σ 2

(8.47)

where σ is the mean-square fluctuation of the position of the pointer in this initial
state. After interaction between time t = 0 and time t = τ , the state vector of the
whole system is obtained by action on |�0〉 of the evolution operator (8.13), and
given by7:∣∣� ′〉= (2πσ 2

)−1/4 ∑
n

cn

∫
dxM e−(xM−x0)

2/4σ 2
e−igτanPM/� |an〉⊗ |xM〉

=
(

2πσ 2
)−1/4 ∑

n

cn

∫
dxM e−(xM−x0)

2/4σ 2 |an〉⊗ |xM +gτan〉
(8.48)

With a change of the integration variable xM into x = xM +gτan, we obtain:∣∣� ′〉= (2πσ 2
)−1/4 ∑

n

cn

∫
dx e−(x−x0−gτan)

2/4σ 2 |an〉⊗ |x〉 (8.49)

7 As in §8.2.1, we consider that the only evolution of the whole system is due to the interaction Hamiltonian
between S and M , ignoring the proper evolution of the two isolated systems.
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or, to first order in gτ (we assume gτan� σ for any an):∣∣� ′〉= (2πσ 2
)−1/4 ∑

n

cn

∫
dx

[
1+gτan

d

dx0
+ . . .

]
e−(x−x0)

2/4σ 2 |an〉⊗ |x〉
(8.50)

The summation over n of the term in 1 in the bracket reconstructs the ket |ϕ0〉
written in (8.2), while the second term in the bracket introduces A |ϕ0〉. We then
obtain: ∣∣� ′〉= (2πσ 2

)−1/4
[

1+gτA
d

dx0
+ . . .

]
|ϕ0〉⊗ |C0(x0)〉 (8.51)

Now, assume that a measurement is performed on S, projecting this system into
state

∣∣ϕf

〉
corresponding to a non-degenerate eigenvalue of some operator acting

in ES . After this measurement, the state becomes:∣∣� ′′〉∼ [〈ϕf

∣∣ϕ0
〉+gτ

〈
ϕf

∣∣A ∣∣ϕ0
〉 d

dx0

]∣∣ϕf

〉 |C0(x0)〉

= 〈ϕf

∣∣ϕ0
〉[

1+ gτ
〈
ϕf

∣∣A ∣∣ϕ0
〉〈

ϕf

∣∣ϕ0
〉 d

dx0

]∣∣ϕf

〉 |C0(x0)〉
(8.52)

If the ratio between the matrix elements
〈
ϕf

∣∣A ∣∣ϕ0
〉

and
〈
ϕf

∣∣ϕ0
〉

is real, we finally
obtain the simple relation: ∣∣� ′′〉∼ ∣∣ϕf

〉 |C0 (x0++x0)〉 (8.53)

with:

+x0 = gτ

〈
ϕf

∣∣A ∣∣ϕ0
〉〈

ϕf

∣∣ϕ0
〉 (8.54)

+x0 is the average shift of the position of the pointer for this particular series of
events; it can be large if

〈
ϕf

∣∣ϕ0
〉
has a very small modulus. If the ratio between the

matrix elements is complex: 〈
ϕf

∣∣A ∣∣ϕ0
〉〈

ϕf

∣∣ϕ0
〉 =R+ iJ (8.55)

one can show that the additional term in J changes the phase of the state of M after
the measurement, which to first order corresponds to the substitution:

e−(x−x0−+x0)
2/4σ 2 =⇒ eiξ(x)e−(x−x0−+x0)

2/4σ 2
(8.56)

where ξ(x) is a phase variable8. Measurements of the position of the pointer variable
are not affected by this change (but a measurement of the conjugate variable PM

8 To first order, the phase shift ξ(x) is given by:

ξ(x)= gτJ e(x−x0)
2/σ2 d

dx0

[
e−(x−x0)

2/σ2]= gτJ
x− x0

2σ 2
(8.57)
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would give access to it). In what follows, we limit ourselves to the case where the
ratio between the matrix elements is real.

The experimental procedure is therefore the following: first, one prepares S

in a state |ϕ0〉 and M in a state |C0(x0)〉 associated with a wide distribution
of the pointer variable xM ; the two systems are left to interact for a short time
τ ; one then measures S with an observable that has

∣∣ϕf

〉
as a non-degenerate

eigenstate, and one selects only the events where S is found in this state (this
is a post-selection process); finally, one observes the average shift +x0 of the
pointer variable of M . The interesting result is that, with this combined scheme
of pre- and post-selection performed on S, the observed shift can be much larger
than any of the shifts gτan associated with the eigenvalues of A; the amplifica-
tion factor is the real part of the ratio written in (8.55). +x0 is called the “weak
value” associated with this measurement [273, 274] – even if its value may be
surprisingly large. Note that our first-order calculation implies that the weak value
should always remain much smaller than the width σ associated with the initial
state of the measurement apparatus. To detect this amplified shift with a reason-
able accuracy, a large number of successive measurements is therefore necessary
in order to reduce the uncertainty by averaging the individual fluctuations of the
observations.

A good amplification factor is obtained if
〈
ϕf

∣∣ϕ0
〉

is small but
〈
ϕf

∣∣A ∣∣ϕ0
〉

large. Situations where
∣∣ϕ0
〉

and
∣∣ϕf

〉
are almost orthogonal are therefore favor-

able, but this implies that the post-selection process will reject most events,
which means that the experiment has to be repeated a very large number of
times to provide a significant result. For a spin 1/2 for instance, one can assume
that: ∣∣ϕ0

〉= |+〉 and
∣∣ϕf

〉= ε |+〉+α |−〉 (8.58)

with ε real and very small, and α almost equal to 1. If the measurement apparatus
M measures the spin Pauli operator A= σx , then:

A
∣∣ϕ0
〉=A |+〉 = 1√

2
|−〉 (8.59)

The scalar product of this ket with
∣∣ϕf

〉
is not infinitesimal when ε tends to zero,

but almost equal to 1/
√

2. As a consequence, the amplification factor (8.55) is

∼ 1/
(
ε
√

2
)

, which can be arbitrarily large if ε is very small.

Another interesting situation occurs when:

∣∣ϕ0
〉= |+〉 and

∣∣ϕf

〉= 1√
2

[|+〉+ |−〉] (8.60)
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The spins then start in an eigenstate of σz and reach an eigenstate of σx , both with
eigenvalues 1. We assume that:

A= 1√
2

[σx +σz] (8.61)

which corresponds to a spin measurement along a direction in the xOz plane at 45◦
of both axesOx andOz.An easy calculation then shows that the amplification factor
is
√

2. In other words, the spins interact with M as if their component at 45◦ was
not±1, as for any component of−→σ , but the geometrical sum 1/

√
2+1/

√
2=√2

obtained by adding the initial value of the spin with the final value (as if they were
classical perpendicular vectors). A curious property is that this value exceeds the
largest eigenvalue +1 of any component of −→σ . The authors of [275] propose to
interpret this situation in a non-standard way, by considering that the pre-selection
and post-selection processes, when combined, select spins having two orthogonal
components perfectly well defined (which is of course totally impossible in the usual
formulation of quantum mechanics, where two perpendicular spin components
cannot have well-defined values at the same time).

Similar ideas apply to the time evolution of a quantum system S coupled to an
external system B through an Hamiltonian gQSQB , where QS acts in the space
of states of S and QB in the space of states of B. Pre-selecting the state of B

in a quantum superposition of eigenstates of QB and post-selecting its state in
another superposition may lead to a quantum evolution of S that is equivalent to
the superposition of different Hamiltonians, and of evolutions at different periods
of time [329].

The general idea of measuring weak values is not restricted to quantum physics,
but applies to any wave theory. In classical optics for instance, when detecting
the weak field scattered by an object, it is well known that one can enhance the
contrast by inserting almost orthogonal polarizers on the input and output beams. A
variety of experiments have been made to measure weak values, either in a regime
of classical optics, or in a purely quantum regime involving entanglement between
particles [330–338]. The measurement of weak values has also been used [339] to
test the Leggett–Garg inequalities (§4.2.3) or to obtain a “direct measurement” of
a quantum wave function [276].

8.3.2 Continuous measurements

We now consider a situation similar to weak measurement but, instead of assuming
that S is post-selected in a given state, we calculate the evolution of its state when
the position of the pointer of M is measured, still ignoring the proper evolution of
the isolated systems S and M . We start from the expression (8.49) of the quantum
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state of the combined system S+M , which provides:∣∣� ′〉= (2πσ 2
)−1/4

∫
dx e−(x−x0−gτA)2/4σ 2 |ϕ0〉⊗ |x〉 (8.62)

and we assume that a measurement of the position of the pointer of M has given a
result in the interval: [

xr − dxr

2
, xr + dxr

2

]
(8.63)

where dxr � σ . After the measurement, the state
∣∣� ′′〉 is obtained by projecting∣∣� ′〉 over the eigenstates of XM corresponding to this interval:

∣∣� ′′〉= (2πσ 2
)−1/4

e−(xr−x0−gτA)2/4σ 2 |ϕ0〉⊗
∫ xr+dxr/2

xr−dxr/2
dx |x〉 (8.64)

Since this ket is a tensor product, we can attribute a ket
∣∣ϕ′′〉 to system S:∣∣ϕ′′〉∼ e−(xr−x0−gτA)2/4σ 2 |ϕ0〉 (8.65)

In what follows, we assume that the dimensionless parameter:

ε = gτa

σ
(8.66)

(where a is the largest of the modulus of all eigenvalues ofA) is small, and perform a
second-order calculation with respect to this parameter; the reason why a first-order
calculation is not sufficient will become apparent at the end of §8.3.2.c.

8.3.2.a Probability of the result

The probability P(xr)dxr of obtaining a result in the interval (8.63) is given by the
square of the norm of

∣∣� ′′〉, which gives:

P(xr)dxr =
(

2πσ 2
)−1/2 〈ϕ0|e−(xr−x0−gτA)2/2σ 2 |ϕ0〉 dxr (8.67)

By expanding the exponential to second order in ε, we obtain:

P(xr)=
(

2πσ 2
)−1/2

e−(xr−x0)
2/2σ 2

×
{

1+ gτ

σ

xr − x0

σ
〈A〉0+

(gτ
σ

)2 〈
A2
〉
0

[
−1

2
+ (xr − x0)

2

2σ 2

]
+ . . .

}
(8.68)
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where the averages of A and its square in state |ϕ0〉 are defined by:

〈A〉0 = 〈ϕ0|A |ϕ0〉 and
〈
A2
〉
0
= 〈ϕ0|A2 |ϕ0〉 (8.69)

To second order in ε, we then obtain:

P(xr)=
(

2πσ 2
)−1/2

×
{
e−(xr−x0−+x0)

2/2σ 2 +
(gτ
σ

)2
e−(xr−x0)

2/2σ 2
F( xr − x0)+ . . .

}
(8.70)

where:

+x0 = gτ 〈A〉0 (8.71)

and where F is an even function9 of (xr−x0). To first order in ε= gτa/σ , one can
set F = 0 and the distribution is a shifted Gaussian distribution, centered around:

xr = x0++x0 (8.72)

If one calculates the second-order correction to the average of (xr−x0−+x0), one
obtains no second-order correction: the term in (xr − x0) vanishes because of the
parity of F , and the term in +x0 combined with the second term in the right-hand
side of (8.70) gives a third-order correction.

We conclude that the average value of the result of the measurement is not
exactly the most probable initial position of the pointer x0, but a value shifted by
an amount +x0 given by (8.71); the shift depends on the initial state |ϕ0〉 of S. We
then introduce the dimensionless random variable ξr defined by:

ξr = xr − x0−+x0

σ
(8.73)

which characterizes the random result of the measurement, has zero average value,
and a unit mean-square deviation.

8.3.2.b Evolution of the state

With this notation, the state (8.65) of S after measurement becomes:∣∣ϕ′′〉∼ e−[ξr− gτ
σ (A−〈A〉0)]2

/4 |ϕ0〉 (8.74)

9 The expression of F is:

F =− 1

2

〈
A2
〉
0
+ (xr − x0)

2

2σ 2

[〈
A2
〉
0
− (〈A〉0)2

]
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or, by expanding the exponential to second order:∣∣ϕ′′〉∼ e−(ξr )
2/4

×
{

1+ gτ

2σ
ξr [A−〈A〉0]+

(gτ
2σ

)2
[

1

2
(ξr)

2− 1

]
[A−〈A〉0]2+ . . .

}
|ϕ0〉

(8.75)

The prefactor e−(ξr )
2/4 is irrelevant, and we only need to calculate the square of the

norm of the ket written in the second line of this expression, that is the product of
this ket by the associated bra. This product introduces average values in the initial
state |ϕ0〉, which we note 〈 〉0 as above. The first-order term contains (〈A〉0−〈A〉0)
and vanishes; the zero and second-order terms then give:

1+
(gτ

2σ

)2 〈
[A−〈A〉0]2

〉
0

[
(ξr)

2+ 2

[
1

2
(ξr)

2− 1

]]
+ . . . (8.76)

To obtain a normalized state, we must therefore multiply the ket by:{
1+

(gτ
2σ

)2 〈
[A−〈A〉0]2

〉
0

[
2(ξr)

2− 2
]
+ . . .

}−1/2

(8.77)

or: {
1−

(gτ
2σ

)2 〈
[A−〈A〉0]2

〉
0

[
(ξr)

2− 1
]
+ . . .

}
(8.78)

If we multiply the curly bracket in the right-hand side (8.75) by this bracket, we
obtain the normalized ket

∣∣ϕ̂′′〉 after measurement:∣∣ϕ̂′′〉= {1+ gτ

2σ
ξr [A−〈A〉0]− 1

2

(gτ
2σ

)2
(ξr)

2 [A−〈A〉0]2

+
(gτ

2σ

)2 [
(ξr)

2− 1
][

[A−〈A〉0]2−
〈
[A−〈A〉0]2

〉
0

]
+ . . .

}
|ϕ0〉

(8.79)

8.3.2.c Wiener process: stochastic differential equation

We now assume that the system undergoes a continuous series of measurements
separated by a time interval δt , with measurement apparatuses that are all identical
and all in the same initial state |C0(x0)〉. Since we wish to obtain a continuous
process, we assume that two parameters go simultaneously to zero: the time interval
δt and the parameter ε= gτa/σ characterizing the perturbation introduced by each
measurement. At this stage, in order to introduce the appropriate continuous limit,
we recall a few properties of Brownian motion.
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Brownian motion Consider a particle moving on an axis Ox by random jumps
occurring constantly with a time interval δt between them. Each jump changes the
position by an amount ±δl, the two opposite values having the same probability
1/2. We are interested in the continuous limit where both δl and δt tend to zero.
We consider a fixed time interval dt , which we divide into N smaller intervals
δt = dt/N , corresponding to times t0,t1, . . . , tr , . . . , tN at which jumps δxr =±δl

occur. Each jump is characterized by the dimensionless variable ξr = δxr/δl=±1.
We first assume that the ratio δl/δt keeps a constant value:

δl

δt
= c (8.80)

Since, during the time interval dt , the particle makes jumps in both directions with
equal probabilities, the average dx of the variation of its position x vanishes:

dx = 0 (8.81)

Moreover, the average of the square of this variation is given by:

dx2 = [ξ0+ ξ1+ . . . + ξN ]2 (δl)2 =N (δl)2 (8.82)

This is because, in the square of the sum, all cross terms containing the product of
two different ξr have zero average value, so that only N square terms remain. The
mean-square deviation of the distance covered by the particle during dt is therefore:√

dx2 =√Nδl =
√

dt

δt
δl = c

√
dt δt (8.83)

which tends to zero in the limit δt → 0. We then see that, in the continuous limit
where δl/δt is constant, the particle does not move anymore; the infinitesimal
distance covered by each jump is too small.

We now assume that the ratio (δl)2 /δt keeps a constant value in the continuous
limit:

(δl)2

δt
=D (8.84)

The average value of dx is still equal to zero, as in (8.81), but now we have:

dx2 =N (δl)2 = dt

δt
(δl)2 =D dt (8.85)

During a time interval dt , the particle now covers an average distance
√
dx2

proportional to
√
dt . This regime is called a Brownian motion regime.
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Note that, for the sake of simplicity, we have assumed that the jumps take only
two opposite values±δl so that ξr =±1. However, the same results hold if the jumps
take a continuous range of values, in other words if ξr is any stochastic variable with
zero average value and unit mean-square deviation. For a more detailed study of
this random motion and its various applications in physics, see for instance [340].

The square of the displacement dx2 is a random variable with significant fluc-
tuations. But if, instead of considering the square of the sum of the ξr as in (8.82),
we introduce the sum of the squares of the ξr :

ds =
[
(ξ0)

2+ (ξ1)
2+ . . . + (ξN)2

]
(δl)2 (8.86)

we obtain another variable with an average value:

ds =N (δl)2 = dt

δt
(δl)2 =D dt (8.87)

If ξr = ±1, this variable does not fluctuate, and has no random character at all.
If ξr takes a continuum of values, the fluctuations of ds are given by

√
N (δl)2 =

D
√
δt dt , which tends to zero in the limit δt → 0. Although initially defined as a

random function, ds actually becomes a deterministic function varying linearly in
time in the continuous limit. Relation (8.87) will be useful in what follows.

If one considers an ensemble of particles defining a statistical distribution ρ(x, t)

at time t and each undergoing a Brownian motion, one can show that the evolution
of this distribution obeys the “diffusion equation”:

d

dt
ρ(x, t)=D

d2

dx2
ρ(x, t) (8.88)

which has applications in many domains of physics (heat conduction, transport
theory, etc.).

Stochastic evolution of the state vector We now apply the previous considerations
to the evolution of the state vector. For the sake of simplicity, we assume that system
S evolves only under the effect of its coupling with the series of measurement
apparatuses. We also assume that the change of state written in (8.79) occurs at
small time intervals δt , and that the constant gτ/2σ characterizing the size of the
jump of the state vector is related to δt by a relation:(gτ

2σ

)2 =D δt (8.89)

This relation is similar to (8.84), with gτ/2σ playing the role of δl in Brownian
motion. At the end of the calculation, we will take the limit δt→ 0.
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By analogy with the position undergoing steps ξrδl, we define the variations of
a random function W by:

δWr = ξr
gτ

2σ
= ξr

√
D δt (8.90)

If a time interval dt is split into N smaller intervals δt , the variation dW of W
during dt is given by:

dW =W(t + dt)−W(t)=
N∑

r=1

δWr (8.91)

In the limit where δt and the coupling constant g tend to zero, at constant D, W
is not a regular function. It is actually a highly singular function, with a derivative
that is always infinite. W is an example of what is called a “Wiener process”. We
briefly come back on the properties of Wiener processes in §11.

The sum of the squares of the variations δWr has the same properties as the
function ds introduced in (8.86), which is not stochastic but merely equal to D dt :

N∑
r=1

(δWr)
2 =D dt (8.92)

We can now use (8.79) to express the variation |δϕ〉r =
∣∣ϕ̂′′〉− |ϕ〉0 of the state

vector |ϕ〉 of S during one single infinitesimal measurement process, in terms of
the Wiener process W :

|δϕ〉r =
{
δWr [A−〈A〉0]− 1

2
(δWr)

2 [A−〈A〉0]2

+
[
(δWr)

2−
(gτ

2σ

)2
][

[A−〈A〉0]2−
〈
[A−〈A〉0]2

〉
0

]
+ . . .

}
|ϕ〉
(8.93)

Consider a sufficiently short time interval dt during which the evolution of |ϕ〉 is
very small. We sum the variations |δϕ〉r during the N smaller intervals δt to obtain
|δϕ〉. The sum of the terms linear in δWr introduces a term in dW , as in (8.91).
The quadratic term in δWr of the first line of (8.93) gives a term in Ddt , according
to (8.92). As for the quadratic term in the second line, it gives zero when relations
(8.92) and (8.89) are inserted.

Finally, we take the continuous limit where both δt and gτ/2σ tend to zero at
constant D in (8.89) and obtain:

|dϕ〉 =
{
dW [A−〈A〉]− 1

2
D dt [A−〈A〉]2

}
|ϕ〉 (8.94)
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with10:

〈A〉 = 〈ϕ|A |ϕ〉 (8.95)

Note that this stochastic differential equation is significantly different from any
usual differential equation, the Schrödinger equation for instance: the term in dW

is stochastic and singular, with an amplitude proportional to
√
dt instead of dt as

usual. We now understand why a second-order calculation with respect to ε was
necessary: the term in D dt arises from the square of the variations (δWr)

2, which is
proportional to ε2, and would have been missed by a first-order calculation only11.
This term is called an “Ito term”, and the corresponding sum an “Ito integral” [341].
Although the stochastic term in dW is much larger than the Ito term at a given
time, it is also stochastic and may have opposite effects on the evolution of the
state vector at successive times. By contrast, the Ito term is non-stochastic and has
cumulative effects, so that they are not negligible in the long run when compared to
the much larger stochastic terms. Note also that equation (8.94) is non-linear, since
〈A〉 depends on the state |ϕ〉, which may lead to evolutions that are very different
from a usual Schrödinger evolution.As expected, we check that |dϕ〉 vanishes if |ϕ〉
is any eigenstate of A with eigenvalue an: in this case all successive measurements
provide the same result xr = x0 + gτan, and the process is no longer stochastic
(actually no evolution takes place). This type of non-linear stochastic differential
equation has been studied by Gisin [342, 343] and discussed in the context of
quantum measurements [344]. For introductory text on stochastic evolutions of the
state vector and continuous measurements, see for instance [345, 346].

Properties of the Wiener process Since ξr is a stochastic variable with zero aver-
age, the definition (8.90) implies that the statistical average of the variations of W
vanishes:

δWr = 0 or dW = 0 (8.96)

(the upper bar denotes an ensemble average over many realizations of the process).
Since the mean-square deviation of ξ is 1, we also have:

[δWr ]2 =Dδt (8.97)

Moreover, since the successive results of measurements result from successive
quantum processes, which are all independent and fundamentally random, the

10 Using (8.92), we can check that (〈ϕ|+ 〈dϕ|)(|ϕ〉+ |dϕ〉)=〈ϕ |ϕ〉+0(dt2), in other words that (8.94) conserves
the norm of the state vector.

11 A second-order calculation is indeed sufficient since third-order terms give a contribution in dt3/2, playing no
role in the limit dt→ 0.



192 Quantum measurement

stochastic variables xr − x0 are independent for different values of r . The same
is therefore true of the ξr and of the δWr . Combining this property with (8.97), we
obtain:

δWr δWr ′ = δr,r ′Dδt (8.98)

where δr,r ′ is a Kronecker delta symbol.
We can also introduce the time derivative W ′(t) of the Wiener process. This

derivative may be defined as a random process obtained by dividing the variation
of W by the time interval:

W ′
r =

δWr

δt
= ξr

√
D

δt
(8.99)

In the continuous limit, we then have:

W ′(t)W ′(t ′)=D δ(t − t ′) (8.100)

where δ(t − t ′) denotes the Dirac delta function of (t − t ′). This equality can be
checked by remarking that, if t ′ �= t , the average of the product of two W ′

r vanishes
for different values of the index r (they contain independent random variables ξr ).
Moreover, integrating (8.100) over t ′ introduces an integral that is the continuous
limit of the discrete sum:∑

r ′
δt

[
1

δt2
δWr δWr ′

]
=
∑
r ′

δt
1

δt2
δr,r ′Dδt =D (8.101)

Therefore, W ′(t)W ′(t ′) is entirely concentrated in an infinitesimal interval around
t ′ = t and has an integral equal to D, which defines a delta function multiplied by D.
Equation (8.100) expresses that the time variations of the Wiener process have no
memory. They are what is often called a “white noise” in physics, with completely
independent values at different times, even if the times are almost equal.

Now, instead of writing the evolution of the state vector in terms of an unknown
Wiener process as in (8.94), it may seem more natural to express it as a function of
the results of measurements, which are directly observable. In a given run of the
experiment, what is actually obtained is a whole string of results (xr − x0) – it is
convenient here to take x0 as an origin for expressing the results. By analogy with
(8.73), we define the stochastic variable ζr by:

ζr = xr − x0

σ
= ξr + +x0

σ
(8.102)
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and, to obtain a proper continuous limit as in (8.90), we define the stochastic function
R by:

δRr = ζr
gτ

2σ
= δWr + gτ

2σ

+x0

σ
(8.103)

R is called the “measurement record” for each realization of the series of
measurements. Using expression (8.71) as well as (8.89), we then obtain:

δWr = δRr − 2
(gτ

2σ

)2 〈A〉 = δRr − 2 〈A〉Dδt (8.104)

and, inserting this result into (8.94) and going to the continuous limit:

|dϕ〉 =
{
dR [A−〈A〉]− 1

2
D dt

[
[A+〈A〉]2− 4 〈A〉2

]}
|ϕ〉 (8.105)

This equation provides the evolution of the state vector as a function of the
measurement record R.

Stochastic evolution of the density operator We finally study the evolution of the
density operator ρ = |ϕ〉 〈ϕ|. Its infinitesimal variation is given by:

δ (|ϕ〉 〈ϕ|)r = [|ϕ〉+ |δϕ〉r ] [〈ϕ|+ 〈dϕ|r ]−|ϕ〉 〈ϕ| (8.106)

where |dϕ〉r is given by (8.94) and 〈dϕ|r is the corresponding bra. Usually, the
term in |dϕ〉r 〈dϕ|r can be ignored to first order, since it is in dt2. Here the situation
is different since, in terms of the Wiener process, |dϕ〉 contains a term in dWr ,
with a square proportional to δt as shown by (8.92). This term then introduces a
contribution:

Ddt [A−〈A〉]ρ [A−〈A〉] (8.107)

When this term is added to the linear terms contained in |dϕ〉r and the associated
bra, the evolution of ρ is obtained in the form:

dρ =
{
dW

(
[A,ρ]+− 2 〈A〉ρ)− 1

2
Ddt [A, [A,ρ]]

}
(8.108)

containing an anticommutator [A,ρ]+ and a double commutator [A, [A,ρ]]. This
equation is sometimes called a Belavkin equation [347]. As above for the state
vector, one can replace dW by dR − 2 〈A〉Ddt to express the variation of the
density operator as a function of the measurement record, instead of the Wiener
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process. We can easily check that if ρ is a statistical mixture of projectors over
eigenstates of A, since it commutes with A, no evolution takes place under the
effect of the successive measurements, for the same physical reasons as above.

The mathematical tools we have discussed in this chapter (Wiener processes,
stochastic differential equations, etc.) turn out to be useful in some interpretations
of quantum mechanics we discuss in Chapter 10, in particular those involving a
stochastic Schrödinger dynamics.
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Experiments: quantum reduction seen in real time

From a fundamental point of view we must acknowledge that, since about 1935,
our conceptual understanding of quantum mechanics has not progressed so much.
Really new ideas are few and far between – except of course the major line initiated
by the contribution of Bell [6]. This is in big contrast with the rest of physics, where
new theoretical and experimental discoveries in many fields have flourished, very
often with the help of the tools of quantum mechanics. The fantastic evolution of
the experimental techniques has completely changed the situation. At the beginning
of quantum mechanics, the observation of the tracks of single particles in Wilson
chambers [348] played the essential role in the introduction of the postulate of state
vector reduction, but otherwise it was impossible to observe continuously a single
electron, atom, or ion; the experiments that theorists were proposing in discussions
on the principles of quantum measurement were therefore “thought experiments”
(“Gedanken Experiment”), as for instance in the famous Solvay meetings [1, 21].
But nowadays, after almost of century of experimental progress, experiments that
were then unthinkable have become a reality.

A huge number of contemporary experiments involves the laws of quantum
mechanics in general; several books would not be sufficient to describe all of them.
Nevertheless, in the majority of experiments, what is really observed is the sum over
a very large number of particles of one individual microscopic observable (sum of
atomic dipoles for instance), which is accurately described by the average value of
this observable. The Schrödinger equation can then be used to calculate this average,
which is subsequently treated as if it was a classical variable. No particular use of
the Born rule or of the projection postulate is then necessary – a typical illustration
is given by many NMR (nuclear magnetic resonance) experiments in chemistry
and physics. Similarly, in many coincidence experiments, the relevant physical
observable is the product of quantum operators associated to individual counting
rates, and the Schrödinger equation can be used again to obtain the average of this
product. Of course, this does not necessarily mean that the projection postulate is

195
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completely irrelevant for these experiments! In quantum optics and atomic physics
for instance, optical detection with photomultipliers and diodes is often used; the
projection postulate then determines the size and nature of the random “shot noise”
observed in the experiments. This noise limits the accuracy by adding a fluctuating
component to the signal, while the latter itself has a smooth deterministic behavior
as a function of the experimental parameters; since very often what is studied in
detail is the signal rather than the noise, the projection postulate then plays only an
auxiliary role.

Here we will focus our interest only on the small fraction of experiments where
the effect of the projection postulate is particularly visible, for instance those where
a single quantum particle is observed, and where “quantum jumps are visible in real
time”. The observations then exhibit more quantum features than what is predicted
by the continuous Schrödinger evolution, and in this sense go beyond this equation.
Our purpose is not to give a complete review, but just to provide a few particularly
illustrative examples.

9.1 Single ion in a trap

It is possible to observe a single Barium ion contained in a radio-frequency trap
by monitoring its fluorescence under laser irradiation [349, 350]; the lifetime of
the excited resonance level is about 10−9 second, meaning that even if only a
thousandth of the fluorescence light is collected (as typical in these experiments)
one can still detect a flux of a million of photons per second, directly visible with
the naked eye. Under these conditions, it is possible, as the authors of [349] write,
to directly “watch the reduction of the wave function by the measurement process
on the oscilloscope screen”.

The relevant energy levels of a Barium ion used in the experiment performed by
Dehmelt and coworkers is shown in Figure 9.1: the ground state is g, two excited
states are e1 and e2, and m1 and m2 are two metastable states. The transition g−e1

from the ground state g to a first excited state e1 is strongly illuminated with a
laser, while the fluorescence at the corresponding wavelength is also constantly
monitored. Another laser excites the transition from e1 to a first metastable level
m1, so that the ion cannot be trapped in this metastable level. The role of this second
laser is to create a g− e1−m closed circuit from which the ion cannot escape, and
which is also used for laser cooling of the ion. If no other excitation of the ion was
used, it would constantly fluoresce. But another, much weaker, light source excites
the g− ee transition to a second excited level e2. Sometimes, when the ion reaches
level e2, it does not fall back into the ground state g, but into the metastable level
m2, where it can no longer be excited optically; it then stops fluorescing, and one
then says that it has been “shelved” in the metastable state. Nevertheless, since



9.1 Single ion in a trap 197
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e2

e1

m1
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Figure 9.1. Energy levels of the Barium ion involved in the experiment. The
ground state of the ion is g, e1 and e2 are two excited states, and m1 and m2 two
metastable states. Two lasers of high intensity excite the transitions g − e1 and
m1−e1 for laser cooling of the ion motion in the trap; the fluorescence emitted by
spontaneous emission from level e1 to g is constantly monitored. The transition
g− e2 is excited only weakly with a lamp; when the ion reaches e2, it sometimes
falls (dotted line) into the second metastable level m2. It is then “shelved” and
no longer fluoresces, until it falls spontaneously into the ground state and starts
fluorescing again.

this level has a finite lifetime, the ion eventually falls back spontaneously into the
ground state, and starts fluorescing again.

If one applies the Schrödinger equation to this situation, one has to include in
the quantum system the ion itself as well as the electromagnetic field, with sev-
eral modes populated, and treat the effect of interactions (absorption, stimulated
emission, spontaneous emission). The solution of the equation that is obtained in
this way is, after some time, a superposition of two components: one where the
ion is not shelved and strong spontaneous radiation is emitted, and another com-
ponent where the ion is shelved and emits no radiation at the frequency of the
e1 − g transition. The ion fluoresces and does not fluoresce at the same time, as
the Schrödinger cat is alive and dead; the state vector provides an average fluo-
rescence intensity that is intermediate between the two situations. In other words,
within the Schrödinger equation, everything remains continuous, and “jumps” never
occur.

But, since in the experiment the fluorescence intensity is continuously measured,
the two components of the state vector also contain macroscopically different states
of the measurement apparatus, and therefore the projection postulate applies: a
fundamentally random process takes place, and spontaneously the system chooses
one of the components only. Consequently, the fluorescence has either its maximal
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shelved in m2
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Figure 9.2. Fluorescence signal of a single ion at the wavelength of the transition
g− e1 as a function of time t in the experiment of [349]; the horizontal scale is
seconds, and the vertical scale gives the number of counts per second delivered
by a photomultiplier. Until t = 30s., the weak lamp remains off, so that the ion
cycles between levels g, e1, and m1 and constantly fluoresces (upper noisy line).
The weak lamp is then switched on and may transfer the ion to metastable level
m2, where it stops emitting light. When this happens, the ion remains shelved for
some time in the metastable level, and a dark period occurs (lower line) until the
ion spontaneously returns to the ground state. The whole cycle then starts again
from the beginning.

value (that corresponding to the ion circulating between the three levels g, e1, and
m1), or zero; it does not vary continuously between these values.

The experimental results fully confirm this prediction: as shown in Figure 9.2,
the observed fluorescence undergoes “jumps” between a fixed value and zero. The
times at which these jumps occur are not controlled experimentally, since they
are a consequence of the fundamentally random character of quantum measure-
ment. Consequently, if many ions were fluorescing at the same time, each of them
would switch between the fluorescing and the dark regime at different times, and
on average one would observe only the average value of the fluorescence – the
value predicted by the continuous Schrödinger equation. But, with a single ion the
quantization of the signal is directly observed, and the system can undergo a very
large number of jumps between the two values.

Experiments performed at the same time in Toschek’s group [350] on the same
ion have provided similar results in a case where only three levels are involved,
also exhibiting very clear “quantum jumps”. Similar experiments with other ions
were performed in other laboratories, in particular with the Mercury ion [351,
352]. In this case, three atomic levels are relevant, the ground state, a resonance
excited level 2P1/2 with short lifetime (2 ns.), and a metastable level 2D5/2 with
lifetime 0.1 s. When the transition between the ground state and resonance level is
constantly excited, the ion fluoresces with no interruption. But when the transition
to the metastable states is also excited, sometimes the ion is “shelved” in this
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Figure 9.3. Lowest curve: fluorescence signal of a single Hg+ ion at the resonance
wavelength corresponding to the transition between the 2S1/2 ground state of the
ion and the 2P1/2 excited state. The units of the horizontal axis are ms, and the
vertical axis gives number of counts per ms. When the transition to a metastable
2D5/2 level is simultaneously excited, quantum jumps are clearly visible, as in
Figure 9.2. The middle curve is obtained when two ions sit in the trap; three
cases may then occur, depending on the number (0, 1, or 2) of ions “shelved” in
the metastable state, and resulting in three possible fluorescence intensities. The
upper curve shows the fluorescence when three ions are trapped, and provide four
possible levels of fluorescence at the resonance transition (figure kindly provided
by D. Wineland and W. Itano).

state and stops fluorescing until it falls back to the ground state by spontaneous
emission. Results are shown in Figure 9.3. As in Figure 9.2 the fluorescence of the
ion exhibits discontinuities between two regimes, often called “quantum jumps” as
a reminiscence of the historical Bohr theory of atoms (§1.1.1).

Long before these results were obtained, Schrödinger had analyzed a thought
experiment where the light emitted by an atom was used in an interference exper-
iment [353]; he had pointed out that quantum jumps, if they occur when an atom
emits photons, cannot be instantaneous, but necessarily have a finite duration related
to the radiative width of the atomic levels. Here, the situation is similar, since the
change from the dark regime (no fluorescence) to the bright regime (fluorescence)
is triggered by the spontaneous emission from level e2 to m2, while the transition
from bright to dark is triggered by the transition from m2 to the ground state g –
in other words two “jumps” play a role, instead of one, but Schrödinger’s remark
applies as well.

Then, how is this compatible with the observations of Figure 9.2? The explana-
tion is that the signal of Figure 9.2 is averaged over time, so that it does not show
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the discontinuities that would appear under a more precise observation. At a much
smaller time scale, the signal provided by the photomultiplier monitoring the flu-
orescence is a series of sudden “clicks” occurring at random times, corresponding
to the detection of individual photons; Figure 9.2 actually shows nothing but the
averaged frequency of these clicks. What is really observed is transitions between
periods where the clicks occur frequently and others where they are rare; the tran-
sition time between these periods cannot be measured more precisely than the time
between two consecutive clicks. As a consequence, the time at which the “jumps”
occur can only be measured within some uncertainty, related to the emission rate
and therefore to the radiative width of the levels, as implied by Schrödinger’s argu-
ment – for a more precise discussion see [354]. A more detailed theoretical study
of the fluorescence intermittence phenomenon can be found in [355, 356].

9.2 Single electron in a trap

A single electron orbiting in a cyclotron trap can also give rise to observations
reaching the quantum limit, as demonstrated by Gabrielse et al. [357]. In their
experiment, a cold Penning trap was used to store one electron. Such a trap has
a strong homogenous axial magnetic field and a quadrupole electric field created
by electrodes. In the magnetic field, the quantized levels of a charged particle are
the equidistant orbital “Landau levels” with energy nhνc, where νc is the cyclotron
frequency andn an integer (the energy results from a combined effect of the coupling
of the magnetic field with the orbital and spin variables). What is measured is the
quantum number n characterizing this energy.

Two different motions of the electron in the trap are actually relevant in this
experiment. The main motion is the usual cyclotron motion, perpendicular to the
magnetic field, which is the central focus of the experiment. But there is also a lon-
gitudinal motion, parallel to the field, which has a frequency that depends weakly
on the energy of the cyclotron motion (experimentally, this coupling is introduced
by a small distortion of the homogeneous magnetic field). It is therefore possi-
ble to have access to the cyclotron energy by a very precise measurement of the
frequency of longitudinal oscillations of the electron, which gives access to n. In
the experiment, a single electron orbits in the magnetic field, while its longitu-
dinal frequency is constantly monitored with great accuracy, which amounts to a
constant quantum measurement of n. Figure 9.4 shows an example of the varia-
tion in time of this frequency: it clearly exhibits steps occurring when the system
is projected into an energy eigenstate under the effect of quantum measurement.
The general comments of §9.1 apply to this experiment as well, which provides
another illustration of a “quantum non-demolition” measurement monitored in real
time. More recently, a new version of the cyclotron experiment has provided an
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Figure 9.4. Real time detection of the quantum orbital number of a single electron
in a Penning trap. In figures (a) and (b), the excitation between the Landau levels
is obtained under the effect of blackbody radiation in the experiment, at a few
degrees Kelvin. In figure (c), the temperature is much lower so that this process
does not occur anymore; the excitation of the electron towards excited Landau
levels is then obtained by applying a microwave field (figure kindly provided by
G. Gabrielse).

extremely accurate measurement of the magnetic moment of the electron and of
the fine structure constant [358].

9.3 Measuring the number of photons in a cavity

In the experiments described in the two preceding sections, the observed quantum
system was a material particle (particle with rest mass), either an ion or an electron.
One could think that photons are less appropriate to be observed individually,
since they are so easily absorbed in various processes, including their detection
with photomultipliers or diodes. But recent experiments have obtained comparable
results by observing photons in a cavity, illustrating the properties of quantum
measurement in a way that is even more spectacular. Until relatively recently, the
only way to detect a photon was to absorb it in a detector (photomultiplier for
instance), so that further measurements on the same particle were impossible. But
various “quantum non demolition” methods now make it possible to measure the
presence and the number of photons without destroying them [319, 359] – see
also §6.2 of [264]. The combination of this possibility with the methods of cavity
electrodynamics has resulted in experiments where the number of photons stored
in a cavity is constantly monitored in real time [360].

Rydberg atoms are atoms in high energy levels, Rydberg levels, very close to
the ionization threshold. Among them, the “circular Rydberg levels” (those where
the rotation quantum number l takes its maximal value) interact with photons in a
particularly simple and well-controlled way. These atoms have a very large dipole
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moment, which means that they are strongly coupled to the electromagnetic field;
they can therefore be used as probes of its properties, even if it contains very
few photons. Moreover, they can be ionized and detected with high efficiency and
selective access to the various Rydberg levels. Current experimental techniques
allow the production of beams of such atoms, which can be sent through a resonant
electromagnetic cavity to test the number of photons it contains.

One could make use of the absorption of photons by the atoms, by sending
atoms one by one through the cavity, controlling their energy level before the
crossing of the field and measuring the energy level at the output – but obviously
this process would absorb photons and not lead to a quantum non-demolition mea-
surement. A much better technique is to choose a case where the frequency of the
photons in the cavity differs significantly from the resonance frequency of the atoms
(Bohr frequency associated with the transition between the two relevant Rydberg
levels), so that the absorption probability of photons remains negligible. Due to
non-resonant interactions between atoms and photons, the atoms create index (dis-
persive) effects for the photons and, conversely, the photons shift the atomic energy
levels; one can show that the frequency of the transition between the two atomic
levels is increased by an amount that is proportional to the number of photons in
the cavity.

The idea is then to send into the cavity atoms that are in a coherent superposition
of two Rydberg states, let them interact with the photons inside the cavity, and at
the output measure the change of phase of the coherent superposition induced by
this interaction. Since the phase change is proportional to the number of photons
in the cavity, one obtains in this way a measurement of their number. This purely
dispersive technique is non-destructive: it changes neither the energy of the elec-
tromagnetic field (that is the number of photons) nor the energy of the atom at the
output of the cavity. It provides quantum non-demolition measurements (§8.1.1.b).
The experiment is shown schematically in Figure 9.5.

One major experimental difficulty is that a sufficient number of atoms must
cross the cavity in order to give a reasonably accurate measurement, before the
electromagnetic field has decayed by absorption in the walls of the cavity. As a
consequence, one has to use a cavity with an extremely high quality factor Q. This
has been achieved with the help of a high quality superconducting cavity so that,
in the experiment, hundreds of atoms can cross the cavity before the number of
photons changes. By constantly monitoring the state of the outgoing atoms, one
has access to a really continuous and non-destructive measurement of the number
of photons. Initially, the cavity is fed with a coherent state that does not have a
well-defined number of photons; nevertheless, as soon as a few atoms have crossed
the cavity and their phase has been measured at the output of the cavity, the system
is projected into a state with fixed number of photons. Then, the photons disappear
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Figure 9.5. A beam of atoms in a given highly excited state (circular Rydberg
level) is created by a source S. Each atom crosses, first a region where a device
RF1 excites coherently a transition between the initial and another close Rydberg
level, then crosses a cavity C with resonant frequency shifted with respect to the
atomic transition, and a region where another device RF2 (locked in phase with
RF1) excites again the same transition. Devices RF1 and RF2 perform what is
called Ramsey spectroscopy on the atom: the first interaction creates a coherent
dipole associated with the two relevant Rydberg levels and the second detects
the phase of this dipole, including its evolution between the two regions and the
effect of cavity C. Since the dipole accumulates a dephasing when it crosses C,
and since this dephasing depends on the number of photons contained in C, the
final population of the Rydberg level depends on this number of photons. One
then has direct access to it by measuring this population in detector D. Since the
cavity is not resonant at the atomic resonant frequency, the number of photons in
the cavity is not changed by the interaction; the method thefore provides quantum
non-destructive (QND) measurement (this figure has been kindly provided by
J.M. Raimond).

one by one as they are absorbed in the walls of the cavity, which occurs at a
slow rate since the superconducting cavity has a very high quality factor. This
produces a series of quantized changes in the observed signal until no photon
remains in the cavity. Two examples of recordings made in this way are shown in
Figure 9.6.

In this case, the discussion concerning the time it takes to obtain this projection
(see end of §9.1) can be given with particular clarity, in terms of the number of
atoms that are required before one can ascertain with good probability that a jump
has occurred [360]. What one observes is clearly not the continuous evolution
predicted by the Schrödinger equation, which has the same solution for all identical
realizations of the experiment; in each experiment, one sees marked steps, which fall
at times that are different for each realization. The Schrödinger equation provides
only the average of the observations over many experiments; the steps seen in single
experiment cannot be explained within this equation only, but require an additional
ingredient. This is another particularly spectacular case where one can see “the
reduction of the state vector occurring directly under your eyes”.



204 Experiments

7 

5.0 

4.5 

<
n>

 

4.0 

0.06 0.07 0.08 
Time (s) 

6 

5 

4 

3 

2 

1 

0 

4 

3 

Ph
ot

on
 n

um
be

r 
<

n>

Ph
ot

on
 n

um
be

r 
<

n>

2 

1 

0 

0.0 0.1 0.2 0.3 0.4 

Time (s) 

0.0 0.1 0.2 0.3 0.4 

Time (s) 

0.5 0.6 0.7 

Figure 9.6. Continuous monitoring of the number of photons contained in an elec-
tromagnetic cavity, obtained by measuring the phase shift accumulated by Rydberg
atoms crossing the cavity. Initially, the cavity is loaded with a coherent field of
small intensity which, under the effect of quantum measurement, is projected to a
state with a well-defined number of photons (five in the left part of the figure, four
in the right part). Then the photons are progressively absorbed by the wall of the
cavity and disappear, one by one. This process is constantly observed in real time
(figure kindly provided by J.M. Raimond).

9.4 Spontaneous phase of Bose–Einstein condensates

The notion of “identical particles” plays a much more important role in quantum
mechanics than in classical physics. It leads to the introduction of a special “sym-
metrization” postulate, which determines the possible forms of the state vector of
a system of identical particles, with a distinction between two classes of particles:
bosons and fermions. The latter obey the Pauli exclusion principle: two fermions
can never occupy the same individual quantum state. By contrast, an arbitrary num-
ber of bosons can occupy the same quantum state, as for instance photons do in a
monomode laser beam. Another example is given by Bose–Einstein condensates;
in a very dilute gas at very low temperatures, such condensates can be represented
by states where all N bosons are in the same individual state |ϕ〉:

|�〉 = |1 : ϕ〉 |2 : ϕ〉 . . . |N : ϕ〉 (9.1)

In this case, as opposed to the situation where one single particle is in state |ϕ〉
(§7.1.2), it becomes possible to determine the state, or equivalently its wave function
ϕ(r); one sometimes says that this wave function becomes analogous to a classical
field. But, in classical physics, two wave packets of the same field may give rise
to interference effects. By analogy, one can ask the question: if two Bose–Einstein
condensates made of identical atoms are prepared independently, is it possible to
observe interference effects between them? The answer to the question involves
interesting quantum measurement effects, and has been clarified by Javanainen and
Yoo [361] as well as by other authors (see for instance references given in [100]).
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9.4.1 Interferences between independent condensates

Assume that N identical bosons occupy state |ϕ〉 and P other bosons (identical to
the former) state |χ〉. When wave functions ϕ(r) and χ(r) overlap, the first idea that
comes to mind is to assume that the wave functions interfere exactly as a classical
field, so that the probability to find a particle at point r is proportional to:

|ϕ(r)+χ(r)|2 (9.2)

In classical optics for instance, the intensity at point r contains an interference
terms between the electric fields of two overlapping beams; here we have crossed
interference terms in ϕ∗(r)χ(r) and ϕ(r)χ∗(r). But, in quantum mechanics, the
phase of each wave function is arbitrary: no physical property associated with
the wave functions is changed if they are replaced by eiαϕ(r) and eiβχ(r), while
this obviously changes the crossed terms in (9.2). This argument shows that the
quantum probability cannot be given by this classical formula. An explicit quantum
calculation confirms this point; when one detects the first particle, its probability
of presence is given by:

|ϕ(r)|2+|χ(r)|2 (9.3)

The probability is therefore merely the sum of the probabilities corresponding
to a detected particle being initially either in state |ϕ〉 or in state |χ〉, without
any interference term. As far as the detection of the first particle is concerned,
the relative phase of the two condensates is therefore non-observable, because
actually it does not exist: nothing in the definition of the initial state can be used
to determine this phase. The same result can also be interpreted in terms of an
uncertainty relation between the phase and the number of particles (similar to the
time-energy uncertainty relation): if the number of particles is perfectly determined,
as is the case here, the phase is completely undetermined.

But, as the authors of [361] have shown, the situation becomes more interesting
when the positions of several particles are measured. For a given realization of the
experiment, one can study the correlations between these positions. The quantum
prediction is then that, while more and more particle positions are measured, the
relative phase becomes better and better defined. Already the first position mea-
surement creates some information on this phase1, which plays a role for the second
measurement; the phase distribution, instead of being completely independent of
the phase, is given by a sinusoid having maxima and minima at positions depend-
ing on the measured position. Then, while measurements accumulate, the phase

1 For instance, the measurement shows that the phase cannot take a value that puts a destructive interference
anti-node at the measured position (we assume that the two intensities are the same).
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distribution becomes a product of more and more sinusoids and exhibits a sharper
and sharper maximum, making this phase better and better determined; one finally
practically reaches a classical situation where the phase is perfectly determined.
This provides an interesting process where, initially, the phase did not exist, but
where the successive projections due to quantum measurement make it emerge, and
give it a better and better defined value. Interestingly, the observations would be
exactly the same if the phase had existed from the beginning for each realization,
but was totally unknown. Nevertheless, from one realization of the experiment to
the next, the new phase value that emerges is totally different, with no correlation
with the preceding value.

Experiments performed in Ketterle’s group at MIT with condensates made of
Sodium atoms have confirmed these predictions [362]. Two condensates were inde-
pendently prepared, and then released from their separate traps to allow them to
overlap spatially. Optical absorption was then used to measure the positions of
atoms in the overlap region. Figure 9.7 shows the result obtained in a given run
of the experiment: indeed one observes fringes with a well-defined phase, even if
quantum mechanics predicts that it did not exist before measurements; this provides
a case where the state vector reduction is very directly visible. From one experi-
ment to the next, the phase is completely uncorrelated; in other words, if one sums
the results obtained in several runs, the fringes disappear, as predicted by theory.

Figure 9.7. Observation of interference fringes when two Sodium condensates
are prepared separately, and then released from their traps to spatially overlap. For
each run of the experiment, the fringes have a well-defined phase, but the phase
is completely uncorrelated from one run to the next (figure kindly provided by
W. Ketterle).
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A specificity of the experiment is that the physical quantity that emerges from the
measurement (the phase) directly fixes the value of a macroscopic quantity (the
density of the gas at each point of the interference region), which provides a direct
observation of the effects of state vector projection.

9.4.2 An additional variable?

The question that then arises very naturally is the same as for any quantum mea-
surement: should we really think, as standard quantum mechanics invites us to do,
that it is the act of measurement that creates the value of the phase? Or should
we consider, on the contrary, that it only reveals a value that existed before the
measurement? When a variable is macroscopic, as can be the case for the phase
of an interference pattern, it does not seem very natural to consider that it can be
created by the measurement, due to some uncontrolled perturbation of the measure-
ment apparatus. This raises once more the question of the existence of additional
variables, this time in a macroscopic context. Moreover, this experiment has some
analogy with the discussion of the Schrödinger cat, where quantum uncertainty is
transferred to the macroscopic world.

Leggett and Sols [363] have discussed a similar situation, where a Josephson
current appears between two superconductors; the value of this current is fixed by
the difference between the two superconducting phases. These authors ask whether
such a phase, with all its consequences on a macroscopic current, can really appear
under the influence of a measurement apparatus, which can be very small: “Does
the act of ‘looking to see’ whether a Josephson current flows itself force the system
into an eigenstate of current and hence of relative phase? . . . Can it really be that
by placing, let us say, a minuscule compass needle2 next to the system, with a
weak light beam to read off its position, we can force the system to ‘realize’ a
definite macroscopic value of the current? Common sense certainly rebels against
this conclusion, and we believe that in this case common sense is right”.

9.4.3 Non-locality of phase

One can add another component to the argument by assuming that the interference
takes place, not in a single region of space, but in two remote regions whereAlice and
Bob operate. The situation is then analogous to that discussed with measurements
performed on two remote spins (§4.1.1), but the correlations now occur between
the phases of the interference patterns instead of the directions of spins. To push

2 The purpose of this needle is to measure, through its rotation, the magnetic field created by the macroscopic
Josephson current.
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Alice Bob

+

–

Figure 9.8. Two condensates, one corresponding to particles with spin state |+〉,
the other to particles with spin state |−〉, have wave functions (represented in the
figure) that overlap in two regions of space. In these two regions, two operators
Alice and Bob measure a transverse component (in the plane that is perpendicular
to the quantization axis) of the spins of the particles. Initially, the relative phase of
the two condensates is completely undetermined, so that Alice’s first measurement
gives a completely random result. But, when she accumulates measurements, their
effect on the quantum system is to determine the relative phase better and better;
after some time, the phase is practically fixed, and one can say that the system has
given transverse spin polarization in the overlap regions.

What is surprising is that, under the effect of Alice’s measurements, the same
direction of spin polarization appears in Bob’s region, whatever the distance
between the two regions is and without any mutual interaction. This is very sim-
ilar to the usual situation of the EPR argument, but now with macroscopic EPR
elements of reality if the number of particles in each region is macroscopic.

the analogy further, it is more convenient to assume that the condensates are spin
condensates, with a relative phase controlling the average value of a transverse3

spin component in all overlap regions. The corresponding situation is schematized
in Figure 9.8: two condensates, one containing spin + particles, the other spin −
particles, extend in space and overlap in two remote regions, where Alice and Bob
perform measurements of the transverse components of the spins. The predictions of
quantum mechanics in such a case are a direct generalization of what was described
in §9.4.1: whenAlice performs a first measurement, the result is completely random;
but, while measurements are accumulated, the successive results make a relative
phase emerge with a better and better definition – in other words a transverse spin
polarization emerges in a well-defined direction.After a sufficient number of results,
the results of spin measurements along this direction are practically certain. If the
overlap region in which Alice operates contains a macroscopic number of particles,
the emerging spin polarization is macroscopic.

Still, according to standard quantum mechanics, another effect of Alice’s mea-
surements is the appearance of a parallel orientation in Bob’s region, without any
time of propagation of the influence between the two regions. But is it really possible

3 Here “transverse” means: in the plane perpendicular to the quantization axis defining the initial condensates.
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that a measurement performed by Alice on a small number of spins, a hundred for
instance, will create an arbitrarily large spin orientation in Bob’s region, at an arbi-
trary distance, especially if the distance between the two regions is extremely large?
The question is strongly reminiscent of the EPR argument, but in a case where the
“elements of reality” are macroscopic quantities [100], which makes the argument
even stronger. Can we really imagine that a macroscopic spin orientation is created
in Bob’s laboratory without any local interaction, and appears (so to say) from
nothing? Or should we follow EPR and say that this orientation existed from the
beginning of the experiment, so that the measurements do nothing but reveal the
existence of a phase that was initially fixed at a random value? If so, the phase
becomes an additional variable that should be inserted into quantum mechanics to
make it complete. Since the discussion deals with macroscopic quantities, which
presumably are directly accessible to human experience, it is difficult to guess
precisely what Bohr would have replied to this form of the argument.

Moreover, the conservation of angular momentum raises delicate questions in
such a case. How can the angular momentum contained in Bob’s region be changed
instantaneously as a result of measurements performed in an arbitrarily remote
region4? Of course, if one considers only the region where Alice performs her
experiment, no particular difficulty occurs. The measurement apparatus she uses,
in order to be able to measure the angular momentum of the particles, must interact
with them with a coupling Hamiltonian that contains their angular momentum, as
well as its own angular momentum; this makes a transfer between them possible.
One can then assume that the transfer depends on the result of measurement in a
way that ensures perfect angular momentum conservation. Any paradox is avoided
with the help of, so to say, a recoil effect of the measurement apparatus. But the
coupling Hamiltonian in question certainly commutes with all operators associ-
ated with physical quantities localized in Bob’s region; its action cannot change
angular momentum in that region of space. It is therefore difficult to understand
how Alice’s measurement apparatus can create such an angular momentum at a
distance. Moreover, if Alice performs her measurement on a small number of spins
it seems paradoxical to consider, in order to conserve total angular momentum,
that her apparatus gets a recoil effect that corresponds to the very large number of
spins in Bob’s region. But if we decided, rather, that her measurement apparatus
cannot get a larger recoil than the maximal angular momentum allowed by quantum
for a small number of spins, then we would have to give up angular momentum
conservation. Here also, it is tempting to follow EPR and to avoid any difficulty
by considering that the angular momentum in Bob’s region already existed before

4 Here we discuss a single realization of the experiment. With a large number of measurements, the angular
momentum may take all transverse directions, so that its average vanishes; no paraxox then occurs.
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Alice’s measurement, which amounts to complete quantum mechanics with the
addition of a phase.

Even if one modifies the theory to include this phase, this is not sufficient to obtain
a completely classical behavior and to restore locality in the quantum predictions.
Actually, the situation is relatively similar to the usual case with two spins, where
the Bell theorem forces the EPR elements of reality to have a non-local evolution
if one wishes to reproduce the predictions of quantum mechanics in all cases. Here
also, when the relative phase is measured in two different regions, a model where
this phase existed from the beginning (while being unknown) cannot reproduce all
predictions of quantum mechanics [102]. This impossibility appears when the spin
components along several different directions are measured, and takes the form of
BCHSH inequalities that are violated by quantum mechanics. In addition, and in
opposition to what one could have expected, these violations do not tend to zero
for systems with a very large number of particles5, but remain constant.

Indeed, Fock states (or Bose–Einstein condensate) provide interesting transpo-
sitions of the EPR argument and the Bell theorem to macroscopic systems; this
sheds a new light onto the arguments.

5 The angles between the directions of the spin components to be measured become smaller and smaller when
the number of particles increases.
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Various interpretations

Long ago, and almost in parallel with the “orthodox” Copenhagen/standard
interpretation, other interpretations of quantum mechanics were proposed. Giv-
ing an exhaustive discussion of all points of view that have been put forward since
then would probably be an impossible task. Moreover, while one can distinguish
big families among the interpretations, it is also possible to combine them in many
ways, with an almost infinite number of nuances. The Copenhagen/standard inter-
pretation itself, as we have seen, is certainly not a monolithic construction, but can
be declined in various forms. In this chapter, we will therefore limit ourselves to a
general description of the major families of interpretations.

We will begin with a brief description of some frequent attitudes observed among
scientists in laboratories, who do not necessarily pay extreme attention to the foun-
dations of quantum mechanics, even when they do experiments in quantum physics.
In practice, they often use pragmatic rules, which are sufficient to interpret all their
experiments, and prefer to avoid difficult questions about the very nature of the
measurement process. For instance, one popular point of view is the “correlation
interpretation”, which can be considered as a “minimal interpretation” – minimal
but sufficient for all practical purposes; it is accepted as a valid rule by a large
majority of physicists, even those who prefer to supplement it with other elements
in order to reach a more precise interpretation for the whole theory. We will then pro-
ceed to discuss various families of interpretations that are less common, including
additional variables, modified Schrödinger dynamics, consistent histories, Everett
interpretation, etc. All of them tend to change the status of the postulate of state
vector reduction; some interpretations incorporate it into the normal Schrödinger
evolution, others make it a consequence of another physical process that is con-
sidered as more fundamental, still others use a formalism where the reduction is
hidden or even never takes place. But the general purpose remains always the same:
to solve the problems and questions that are associated with quantum measurement,
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the coexistence of two postulates for the evolution of the state vector, and the
emergence of macroscopic uniqueness.

10.1 Pragmatism in laboratories

Until now the fundamental difficulties of quantum mechanics have had little impact
in the practical application of quantum mechanics in laboratories. Fortunately, in
a sense, physicists know how to avoid these difficulties by just applying common
sense (or physical intuition), even if the logics behind the method may sometimes
remain rather vague at a fundamental level. This attitude has proved fruitful, open-
ing the way to many discoveries, which would not necessarily have been possible
if the physicists had remained blocked at the level of the foundations; applying the
theory as it is to concrete examples can be more productive. Moreover, for reasons
that we have given in the introduction of Chapter 9, in practice there is often no need
to apply the quantum postulates of measurement (Born rule and state vector reduc-
tion), since the calculation of quantum averages with the Schrödinger equation is
sufficient. It is then rather natural that, in laboratories, the problems associated with
the conceptual difficulties of quantum mechanics are not always given first priority.

Conceptually, of course, even very pragmatic physicists would not mind having
some explanation for the uniqueness of macroscopic observations; logical consis-
tency requires to be able to somehow incorporate it into quantum mechanics. In a
first step, we will limit ourselves to the description of two popular strategies. The
first (§10.1.1) is to break the Von Neumann chain by hand, when it “obviously” goes
too far; the appearance of uniqueness is applied, so to say, above the formalism of
the theory. Another popular strategy (§10.1.2) is to use the “correlation interpreta-
tion”, a point of view where macroscopic events are indeed considered as unique
by definition (or by common sense), and where the role of the theory is just to give
probabilities relating preparation events to measurement and observation events.
Other scientists prefer to emphasize the central role of information in a theory such
as quantum mechanics (§10.1.3).

10.1.1 Common sense: breaking the Von Neumann chain by hand

When physicists put an end to the infinite Von Neumann chain, they often do it in
an implicit way, based on physical intuition. Here we attempt to make the process
explicit by discussing two examples: modified macroscopic decoherence, and the
effect of consciousness.

10.1.1.a Modified decoherence

One possible empirical rule to apply is to consider that, as soon as “signifi-
cant” decoherence takes place, the Von Neumann chain automatically stops: all
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its branches spontaneously disappear, except one. Nature chooses this branch by
some unknown physical process. In other words, one systematically associates
emergence of uniqueness with macroscopic decoherence. For instance, as soon as
a measuring apparatus is inserted in the experiment, if it is able to register results,
one considers that it actually registers a single result, whether or not a human being
observes it. As we have already seen (Chapter 6), there is no hope to ever observe
the physical effects of coherent superposition when they have propagated too far
in the environment; assuming that they have merely vanished therefore creates no
risk of contradiction with experimental observations. The difficulty is, of course,
to define the precise meaning of the word “significant” in this context.

Breaking the Von Neumann chain in this way “by hand” is, after all, not very dif-
ferent from applying the state vector reduction postulate in a slightly different way:
instead of the conscious act of measurement, one considers that decoherence triggers
the reduction. In other words, one believes in the Schrödinger equation, but not too
far: only until it contains correlations with the environment that become too macro-
scopic. Somewhere, decoherence sets the border between Schrödinger’s world and
Born’s (introduction of §2). The “postulate of macroscopic decoherence” is not very
different from Bohr’s point of view, since it also involves a macroscopic world that is
accessible to our human experience and is unique. It contains inherent non-locality
to explain Bell-type experiments: when two spins in a single state are measured at
very distant places, the correlation with the macroscopic world and the modified
decoherence will occur simultaneously at these places in a way that is non-local.

One could nevertheless see this view more as phenomenology than as a full inter-
pretation of the theory; questions such as “Precisely at what degree of entanglement
is the Von Neumann chain resolved into a single branch?” are left to common sense
and personal judgment; in this sense the theory is not complete. Theories with mod-
ified Schrödinger dynamics (§10.8) are precisely built to rationalize this approach
by introducing a precise physical mechanism to stop the Von Neumann chain. They
provide precise answers to such questions, but the mechanism allowing the emer-
gence of a single branch is more intrinsic to the system (it may involve the masses
of the particles) than necessarily related to the environment.

10.1.1.b Effect of consciousness

We have already mentioned in §2.3 what is sometimes called the “Wigner inter-
pretation” of quantum mechanics [55], where the origin of state vector reduction
is related to consciousness. The idea is similar to breaking the Von Neumann chain
when it reaches a measurement apparatus, but here the chain stops as soon as
the linear superposition involves different states of consciousness. Similar views
have been discussed by London and Bauer in 1939 [49], who emphasize that state
vector reduction restores a pure state from a statistical mixture of the measured
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sub-system (see §6.3.3), as well as “the essential role played by the consciousness
of the observer in this transition from a mixture to a pure state”; they then explain
this special role by the faculty of introspection of conscious observers. Others pre-
fer to invoke “special properties” of the electrical currents which correspond to
perception in a human brain.

In any case, common sense suggests that consciousness provides at least an
upper limit, a boundary beyond which the Von Neumann chain certainly does not
propagate; whether or not this propagation stops exactly at this limit, or before, is
another question. Indeed, Wigner may have seen the introduction of an influence
of consciousness only as an extreme case (exactly as the Schrödinger cat was
introduced by Schrödinger as a “ridiculous case”), just for illustrating the necessity
of a non-linear ingredient in order to predict definite results of experiments (we
come back to modified Schrödinger dynamics in §10.8). In any event, the merit of
the idea is also to show how the logic of the notion of measurement in the standard
interpretation can be pushed to its limits: indeed, how is it possible to ascribe such
special properties to the operation of measurement without considering that the
human mind also has very special properties?

10.1.2 Correlation interpretation

As already noted, the correlation interpretation is, more or less, a component that is
common to all other interpretations. Those who would consider that it is not really
sufficient to be a full interpretation may even call it “minimalistic”. But, precisely,
the fact that it is a sort of common core makes it especially interesting. After all,
anyone who finds it insufficient may add more elements to it, for instance more
realism. Here we will use the words “correlation interpretation” to describe this
point of view, since it puts the emphasis on the correlations between successive
results of experiments.

In this interpretation, the uniqueness of macroscopic events (including acts of
measurements) is not questioned, but postulated; one also postulates that they occur
in a stochastic way. The purpose of the theory is just to provide probabilities asso-
ciated with all possible situations of preparation, evolution, and measurements
performed on the quantum system.

10.1.2.a Calculating the probability for a sequence of results in successive
measurements

We now evaluate the probability associated with any sequence of measurements,
performed at different times. Let us assume that a measurement1 of a physical

1 We assume that all measurements are ideal; if non-ideal measurements are considered, a more elaborate treatment
is needed.
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quantity associated with operator M is performed at time t1, with possible results
mi , mj, . . . ; this is followed by another measurement of observable N at time t2,
with possible results nk , nl, . . . , of observable P at time t3, etc. The system is
initially described by a normalized pure state |�(t0)〉. Between time t0 and time t1

this state evolves from |�(t0)〉 to |�(t1)〉 according to the Schrödinger equation:

|�(t1)〉 =U(t1, t0) |�(t0)〉 (10.1)

where U(t ′, t) is the evolution operator between times t and t ′; we can expand
this new state into its components corresponding to the various results that can be
obtained at time t1:

|�(t1)〉 =
∑
m

|�m(t1)〉 (10.2)

where |�m(t1)〉 is obtained by applying to |�(t1)〉 the projector PM(m) on the
subspace corresponding to result m (§1.2.2.a):

|�m(t1)〉 = PM(m) |�(t1)〉 (10.3)

The terms inside the sum over m of (10.2) are all mutually orthogonal; they will
never give rise to interference effects in the future, since they correspond to different
results of measurement. Actually, each term becomes correlated to an orthogonal
state of the environment (the pointer of the measurement apparatus for instance)
and decoherence will cancel any interference effect (cf. §6.3.3). Instead of making
a complete calculation including the state of the environment, here we take the
simpler point of view where we ignore the environment and consider the various
orthogonal components |�m(t1)〉 of |�(t1)〉 as independent from each other.

From time t1 to time t2, state |�m(t1)〉 evolves under the effect of the Schrödinger
equation and becomes a state |�m(t2)〉 given by:

|�m(t2)〉 =U(t2, t1) |�m(t1)〉 (10.4)

For the second measurement, the procedure repeats itself; we expand this new state
according to:

|�m(t2)〉 =
∑
n

∣∣�m,n(t2)
〉

(10.5)

where
∣∣�m,n(t2)

〉
is obtained by the action of the projector PN(n) on the subspace

corresponding to result n: ∣∣�m,n(t2)
〉= PN(n) |�m(t2)〉 (10.6)
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Again, we consider that the evolution of each
∣∣�m,n(t2)

〉
is independent and, if

a third measurement is performed at a later time t3, it will generate one more
decomposition, and so on. One can then check (Appendix G) that the probability
of any given sequence of measurements m, n, p, etc. is nothing but the square of
the norm of the final state vector:

P(m, t1;n, t2;p,t3; . . . ;q, tr )=
〈
�m,n,p, ... ,q(tr )

∣∣�m,n,p, ... ,q(tr )
〉

(10.7)

The probability is therefore merely the square of the norm of the “branch” of the
state vector, after the action of all projections at various times corresponding to the
whole series of results.

This formula can also be written in terms of the initial density operator ρ(t0):

ρ(t0)= |�(t0)〉 〈�(t0)| (10.8)

In the Heisenberg picture (for more details, see Appendix G), the projectors PM(m)

and PN(n) become time-dependent operators P̂M(m,t) and P̂N(n, t). For two mea-
surements, the probability of obtaining result m followed by result n can then be
written as2:

P(m, t1;n2, t2)= T r
{
P̂N(n2, t2)P̂M(m1, t1)ρ(t0)P̂M(m1, t1)P̂N(n2, t2)

}
(10.9)

Relation (10.9) is sometimes called theWigner formula3. It can easily be generalized
to more than two measurements by inserting additional projectors on both sides in
the reverse time order, and to situations where ρ(t0) describes a statistical mixture
instead of a pure state.

10.1.2.b Getting rid of state vector reduction

Equations (10.7) and (10.9) can be seen as a consequence of the postulate of state
vector reduction. Conversely, it is also possible to take either of these equations
as a starting point, which then becomes a postulate in itself giving the probability
of any sequence of measurements in a perfectly unambiguous way. The postulate
of state vector reduction then becomes superfluous, since the generalized (multi-
time) Born rule given by (10.7) or (10.9) is sufficient to predict the probabilities
of any sequence of measurements – one could still argue that the state vector
reduction is also contained in some way in the trace operation of (10.9), but no
explicit reference to it is indispensable. From this perspective, the projection of
the state vector resulting from measurement is no longer a postulate, but just seen

2 Using circular permutation under the trace, one can in fact suppress one of the extreme projectors P̂N (n2; t2)
in formula (10.9), but not the others.

3 See equation (12) of [54, 364].
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as a convenient rule to make calculations, which can be derived from another
postulate. As for the Schrödinger evolution, it is contained in the Heisenberg evo-
lution of projection operators, so that the evolution of |� > is no longer directly
apparent.

It is of course still necessary to postulate that the results of any measurements can
give only one of the eigenvalues of the corresponding operator, and that the result
is fundamentally random, which is essentially the content of the Born rule. The
advantage is that, if one just uses formula (10.9) and ignores state vector reduction,
the problems associated with a difficult coexistence of two different evolution
postulates disappear; no discontinuous jump of any mathematical quantity ever
occurs in the formalism. Why not then give up entirely the other postulates and just
use this single formula for all predictions of results?

This is indeed the best solution for some physicists: if one accepts the idea
that the purpose of physics is only to correlate the preparation of a physical
system, contained mathematically in ρ(t0), with all possible sequence of results
of measurements (by providing their probabilities), it is true that nothing more
than (10.9) is needed. Why then worry about which series of results is realized
in a particular experiment? There is no need in physics to do more than just
give rules for the calculation of probabilities associated with the various prepa-
ration and measurement procedures (see for instance Dirac’s quotation in §2.5). No
attempt is made to describe the physical system itself during each realization of an
experiment.

The “correlation interpretation” is perfectly consistent; it goes well with the view
where a state vector expresses a preparation procedure (§1.2.3) rather than a physical
property of the measured system. On the other hand, it is the complete opposite of the
EPR reasoning, since it shows no interest whatsoever in questions related to physical
reality as something “in itself”. Questions such as: “How should the physical system
be described when one first measurement has already been performed, but before
the second measurement is decided” are dismissed as superfluous or meaningless4.
Needless to say, the notion of the EPR elements of reality itself becomes completely
irrelevant to physics, which automatically solves all potential problems related to
Bell, GHZ, and Hardy type considerations. The same is true of the emergence of
a single result in a single experiment; in a sense, the Schrödinger cat paradox is
eliminated by putting it outside of the scope of physics, because the paradox is not

4 Suppose for instance that the polarization of a photon is measured non-destructively somewhere in Europe,
that it propagates along a polarization preserving optical fibre, and reaches America where another polarization
measurement is performed. In practice, most physicists consider intuitively that “something having physical
properties” has propagated from one site of measurement to the other, and that physics has something to say
about these properties. In the pure correlation interpretation, this intuition should be rejected: nothing real that
physics could describe propagates along the fiber.
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expressed in terms of correlations. An interesting feature of this point of view
is that the boundary between the measured system and the environment of the
measuring devices is flexible; an advantage of this flexibility is that the method
is well suited for successive approximations in the treatment of a measurement
process, for instance the tracks left by a particle in a bubble chamber as discussed
by Bell [47].

10.1.2.c Discussion

In practice, most physicists who favor the correlation interpretation do not feel the
need for making it very explicit. Some nevertheless do; see for instance the article
by Mermin [365], which starts from the statement: “Throughout this essay, I shall
treat correlations and probabilities as primitive concepts”. In a similar context, see
also a recent “opinion” in Physics Today by Fuchs and Peres [86] who emphasize
“the internal consistency of the theory without interpretation”. On the other hand,
the correlation interpretation is seen by some physicists as minimalistic because
it leaves aside, as irrelevant, questions they find important; the best example is
probably the notion of physical reality seen as an entity that should be independent
of measurements performed by human beings. As we have already mentioned,
this interpretation can easily be supplemented by other elements to make it more
specific. Experience shows that defenders of the correlation point of view, when
pressed in a discussion to describe their point of view with more accuracy, often
express themselves in terms that come very close to the Everett interpretation
(§10.11); in fact, they may sometimes be proponents of this interpretation without
realizing it!

Let us finally mention in passing that formula (10.9) may be the starting point for
many interesting discussions, taking it as a convenient formula, not necessarily basic
in the interpretation. Suppose for instance that the first measurement is associated
with a degenerate eigenvalue of an operator, in other words that P̂M(m; t1) is a
projector over a subspace of more than one dimension:

P̂M(m; t1)=
n∑

i=1

|ϕi〉 〈ϕi | (10.10)

(for the sake of simplicity we assume that t1= t0, so that no time dependence appears
in this expression). Inserting this expression into (10.9) immediately shows the
appearance of interference terms (or crossed terms) i �= j between the contribution
of the various |ϕi〉. Assume, on the other hand, that more information was actually
obtained in the first measurement, so that the value of i was also determined, but
that this information was lost, or forgotten; the experimenter ignores which of two
or more i results was obtained. Then, what should be calculated is the sum of
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the probabilities associated with each possible result, that is a single sum over i

from which all crossed terms i �= j have disappeared. In the first case, interference
terms arise because one has to add probability amplitudes; in the second, they do
not because one has to add the probabilities themselves (exclusive events). The
contrast between these two situations may be understood in terms of decoherence:
in the first case, several states of the system correlate to the same state of the
measuring apparatus, which plays here the role of the environment; they do not in
the second case, so that by partial trace all interference effects vanish. This remark
is useful in the discussion of the close relation between the so-called “Zeno paradox
in quantum mechanics” [366] and decoherence; it is also basic in the definition of
consistency conditions for decoherent histories, to which we will come back later
(§10.10).

10.1.3 Emphasizing information

Another popular point of view is to emphasize the role of information [287,
367–373]; with the rise of the field of quantum information, the informational
point of view is natural. Information can be about the whole experimental setup,
including preparation and measurement devices; in this case, the idea becomes
very similar to Bohr’s emphasis on the relevance of the whole experimental setup
(§3.3.2). Information can also include components that are acquired when exper-
imental results become known, and undergo sudden changes when the results are
observed; this property can be invoked to explain the Von Neumann state vector
reduction, seen as a “purely mental process” (Appendix A).

An interesting point is that any measurement process gives rise to a flow of
information from the location where the measurement takes place to the envi-
ronment. This is because the interaction between the measured system and the
measurement apparatus, and then the environment, initiates a Von Neumann chain,
during which entanglement progresses further and further in the environment
[372]. Consider a fixed volume containing all the measurement apparatus; as
long as the entangled chain does not leave this volume, since any Hamiltonian
evolution preserves pure states as well as entropy, the amount of entropy con-
tained in the volume remains constant; but, as soon as entanglement proceeds
beyond the fixed volume, the properties of the physical system contained inside
the volume must be obtained by a partial trace (over the system outside of the
volume), and the entropy contained in the volume increases (§6.2.2). To the local
observer, the effect of this leak of entanglement towards the outside world appears
as an entropy production – as an illustration, see for instance Peres’s quotation
in §10.3.2 and his discussion of the flux of information in an EPR experiment,
and [374].
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This informational point of view can be applied in a more or less strict way. One
may focus the interest on the information content of the state vector5, or consider
that the nature of the state vector itself is mostly informational, or even take the
more extreme view where it is purely informational (§10.3.2). In any case, this point
of view has obvious relations with the correlation interpretation, and can actually
be used to complement it. It seems to explain the discontinuities arising from state
vector reduction rather naturally, but of course the difficulties already discussed in
§§1.2.3.a and 10.1.2 remain (for instance, questions about the division of the world
into systems providing information and those on which information is acquired,
or the description of independent reality during the experiment). Wigner’s friend
paradox is not problematic since, as long as the friend outside the closed laboratory
has less information than the other, he continues to use a non-reduced state vector,
while the friend inside has already reduced his.

10.2 Statistical interpretation

The statistical interpretation6 does not discard the idea of describing physical sys-
tems, but specifies that the description given by the state vector applies only to
ensemble systems prepared in identical conditions, not single systems (or sin-
gle experiments). Einstein supported this point of view; for instance, in a letter
to Schrödinger [53], he writes: “The � function does not describe the state
of a single system but (statistically) an ensemble of systems”. The EPR argu-
ment leads to the statistical interpretation. A review of this interpretation has
been given by Ballentine [375], who writes: “Several arguments are advanced
in favour of considering the quantum state description to apply only to an ensem-
ble of similarly prepared systems, rather than supposing, as is often done, that
it exhaustively represents an individual physical system. Most of the problems
associated with the quantum theory of measurements are artifacts of the attempt
to maintain the latter interpretation”. This author distinguishes two classes of
interpretations:

(i) “The statistical interpretation . . . according to which a pure state . . . need not
provide a complete description of an individual system.

5 Here is for instance how Fuchs [370] describes the program of informational quantum theory: “The quantum
system represents something real and independent of us; the quantum state represents a collection of degrees of
belief about something to do with that system . . . The structure called quantum mechanics is about the interplay
between these two things – the subjective and the objective. The task before us is to separate the wheat from
the chaff. If true quantum state represents subjective information, then how much of its mathematical support
structure might be of the same character? Some of it, maybe most of it, but surely not all of it.”

6 This interpretation is also sometimes called “ensemble interpretation”.
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(ii) Interpretations which assert that a pure state provides a complete and exhaustive
description of an individual system. This class contains . . . several versions of
the Copenhagen interpretation”.

He then adds that “hypothesis (ii) is unnecessary for quantum theory, and more-
over leads to serious difficulties”. Other authors have expressed similar points
of view; see for instance [98], where an alternative to the orthodox interpreta-
tion of quantum theory is proposed in the same line. For an example of explicit
disagreement with the statistical interpretation, see for instance [45].

Once the statistical interpretation is accepted, two different attitudes become
possible logically:

(i) either one considers as satisfactory a theory that describes only ensembles of
systems. If a single experiment is performed, one decides that a fundamentally
random process takes place and makes a single result appear; no attempt is
made to describe this process. This is, in a sense, a modern version of the
historical “quantum jumps”. Pushing this attitude to the extreme leads to what
Leggett [376] calls the “extreme statistical interpretation, according to which
no physical meaning should be attached to the QM formalism either at the
microscopic or at the macroscopic level”.

(ii) or one considers that the fact that a description is valid for ensembles only, but
not for a single system, signals that the description cannot be complete; more
variables are needed to specify which particular system is considered inside
the ensemble. This leads to introducing new elements of description that come
in addition to the state vector7, which leads to theories with additional (hidden)
variables.

Not all physicists favoring this interpretation make an explicit choice among
these two possibilities. Nevertheless, with or without explicit reference to addi-
tional variables, one can find a number of authors who support the idea that the
quantum state vector should be used only for the description of statistical ensem-
bles. An interesting connection between the two points of view has been proposed
by Aharonov et al. in [377], under the title “What is the meaning of the wave
function?” After remarking that “Since the discovery of quantum theory, a very
fundamental question has haunted physicists: what is the physical meaning of the
wave function?”the authors explain how it is possible to extend the usual interpre-
tation of the wave function (with a physical meaning by ensemble averages of a
large number of identical systems) to a single system. This is done by considering

7 In his article, Ballentine remarks that “the introduction of hidden variables is fully compatible with the statistical
predictions of quantum theory” and discusses the properties of these variables at the end of his article.
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a measurement that lasts a long time, a “protective measurement”, during which
the wave function is prevented form changing appreciably by means of another
interaction which it undergoes at the same time.

10.3 Relational interpretation, relative state vector

Other possible interpretations of quantum mechanics emphasize the relative char-
acter of the state vector: several observers using the same Galilean frame may use
different state vectors to describe the same sequence of events.

10.3.1 Relational interpretation

The relational point of view on quantum mechanics, introduced by Rovelli in
1996 [378, 379], is inspired by relativity, where different observers may use dif-
ferent times (if they use different Galilean frames). In the relational interpretation,
the notion of an absolute, observer-independent, state of a physical system is
rejected: different observers may give different accounts of the same series of
events by using different state vectors. But the difference does not arise from the
use of different Galilean frames; it arises from different informations available
to the observers, or on a more concrete basis from the use of different mea-
surement apparatuses to make observations. Physical properties of systems are
then not seen as absolute, but as depending on the apparatus used to measure
the property. Quantum mechanics is considered as “a theory about information”.
In the words of Rovelli (§2.3 of [378]): “A quantum description of the state of
a physical system S exists only if some system O, considered as an observer8,
is actually ‘describing’ S or, more precisely, has interacted with S. The quan-
tum state of a system is always a state of that system with respect to other
systems”.

The emphasis is clearly put on the relations between physical objects, not the
physical objects themselves. In an EPR experiment for instance, if the spin of one
particle only is measured, this has no effect whatsoever on the state of the other
spin, since it is not in relation with any measurement apparatus; nothing like a
non-local effect of state vector reduction happens. In a second experiment, if the
spins of the two particles are now measured along the same direction, one can then
observe a property of the pair, namely that the results are always opposite; but this
cannot be related to any property of the system in the first experiment, since the
physical properties of the system with respect to a different apparatus may have

8 System O can be understood as a measurement apparatus. This sentence then implies that (in a given Galilean
frame) a particle can have a definite position, or velocity, or spin direction, etc. only with respect to the specific
apparatus used to measure this property, never in an absolute way.
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completely changed. If finally the two spins are measured along different directions,
one observes still other physical properties of the pair, with no special relation to
those observed in the two first experiments.

In this interpretation, quantum state vector reduction (or collapse) becomes very
different from what it is in the standard view. For instance, for a given quantum sys-
tem, some observers may consider that state collapse has already occurred while,
for others, collapse has not yet taken place – for them the system remains in a
coherent superposition. Consider again an EPR experiment [380]: when Alice per-
forms her experiment, a reduction occurs for her state vector describing her spin in
relation with her measurement apparatus, and of course herself having observed a
single result. Nevertheless Bob, who is far away, knowing that she has performed
an experiment but not knowing the result, describes the same ensemble as a coher-
ent superposition involving all possible results. In other words, for Bob, Alice has
become a Schrödinger cat. Similarly, if Bob also performs a measurement along a
different spin direction, this reduces his own state vector, but Alice does not know
the result and considers that he has put himself into a coherent superposition with
respect to her and her apparatus. Each experimenter considers that the other is a
Schrödinger cat, and this remains true until they communicate to exchange their
results; the cats then disappear and both operators use the same state vector again.
This example illustrates that, in this interpretation, the state vector does not directly
describe reality, but rather the information that is available on this reality (not nec-
essarily available to someone, but possibly relative to a measurement apparatus for
instance).

In Bohr’s point of view, the role of the experimental apparatus is also empha-
sized, but it is essential to consider it as a whole. Here, various part of the apparatus
may be distinguished, and may actually introduce different state vectors. Moreover,
in the Copenhagen interpretation, measurement apparatuses and observers play a
central role, as well as differences between the microscopic world and the world
that is directly accessible to our human experience. In the relational interpreta-
tion, this becomes unnecessary. All physical systems are considered equal, with no
mention of the necessarily macroscopic character of measurement apparatuses: the
measurement process is just an ordinary interaction process, with no special role in
the theory. The process can even take place in the absence of any observer, since
the state vector and its reduction can be defined in relation with the measurement
apparatus only.

As Rovelli summarizes in [378], “Quantum mechanics is a theory about the
physical description of physical systems relative to other systems, and this is a
complete description of the world”. Since the relational interpretation considers
that state vectors provide a complete description of physical reality, it is of course
in complete opposition with the EPR argument, additional variables, etc.
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10.3.2 Pure informational point of view

As we saw in §10.1.3, some physicists emphasize the informational content of the
state vector. One can go further in this direction and take an extreme informational
point of view, where |�〉 is completely disconnected from physical reality; what
is then considered is only the information content of the state vector |�〉, which
describes the information that one observer has concerning a given physical system
(§10.1.3), but says nothing about the system itself. The state vector |�〉 then relates
to mental information only (Appendix A) and may take almost arbitrary values
for the same system, depending on the amount of knowledge one ascribes to an
arbitrary observer. This is analogous to a classical probability distribution, which
also expresses a relation between some amount of knowledge and some independent
reality; for instance, such a distribution may sometimes describe the system with
perfect accuracy, but sometimes also contains no information at all (if the observer
knows nothing about the system).

Consider an experiment which, in ordinary language, one would describe as:
“A device at point A produces a particle, which propagates in space to another
remote point B, where its interactions with a target are observed and recorded” – it
can be a proton that is injected into the big CERN accelerator and collides with a
target kilometers away. During the experiment, a wave packet associated with the
state vector propagates from A to B. Nevertheless, from a strict informational point
of view, one should consider that “nothing real” travels along within this wave
packet: it is just a transfer of abstract information. The real world includes only
the experimental devices and the observations; what propagates in between is just
information about what the future experimental observations with the measurement
apparatuses can be.

In [94], the words of Peres nicely illustrates this point of view, applied to the
discussion of EPR experiment: “WhenAlice measures her spin, the information she
gets is localized at her position, and will remain so until she decides to broadcast it.
Absolutely nothing happens at Bob’s location . . . It is only if and whenAlice informs
Bob of the result she got . . . that Bob realizes that his particle has a definite pure
state. Until then, the two observers can legitimately ascribe different quantum states
to the same system . . .Quantum states are not physical objects: they exist only in our
imagination . . . The question raised by EPR ‘can quantum mechanical description
of physical reality be considered complete’ has a positive answer. However, reality
may be different for different observers”.

Most physicists are prepared to accept the idea of observer-dependent density
operators: if different observers have different amounts of information about the
same physical system, they may describe it with different statistical mixtures, and
therefore by different density operators ρ. The analogy with a classical distribution
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function is then obvious, since ρ does not correspond to the most precise possible
description of a system within quantum mechanics; it actually attributes probabili-
ties to several such descriptions (with state vectors, or pure states). But an observer
dependence of state vectors |�〉, or equivalently with density operators ρ associ-
ated with pure states, seems much more delicate to accept: pure states do not leave
room for a more precise quantum description. Moreover, most physicists would
probably agree that, at least sometimes, the wave function does contain elements
of reality; for instance, a system described by a ground state wave function is really
in the ground state and has the properties of this state, not only in the mind of
humans. The electrons of a superconductor at very low temperature are really in
a BCS (Bardeen–Cooper–Schrieffer) ground state; the BCS wave function is not
a mental process, but a description of the system itself. Similarly, chemists think
that molecular orbitals describe real properties of molecules such as shape, size,
etc. and not just knowledge of these properties. The standard view is rather that
the Schrödinger evolution contains at the same time a physical evolution for those
properties that quantum mechanics does attribute to the system (observables that
have |�〉 as an eigenvector), but also an evolution of probabilities (for all other
observables) that represent only our knowledge of the system, and therefore can
indeed be seen as mental.

We have already discussed the difficulties of the pure informational point of view
in §§1.2.3.a and 10.1.3. If |�〉 is only information, what is this information about?
How can we distinguish between systems that produce information and the systems
on which information is acquired? If we accept the idea of an independent physical
reality, how should we then describe the system itself? Does this mean that this
very idea should be abandoned, and that physics completely gives up any idea of
saying something about independent reality? In some early writings, Heisenberg
seemed not to be very far from the pure information point of view, but later he took
a more moderate point of view. As for Bohr, he was not a positivist but a realist, one
could suggest in his own way (see §2.5, for example Von Weizsäcker’s quotation
at the end); the pure information point of view is usually considered as beyond the
standard interpretation (§1.1.3).

10.4 Logical, algebraic, and deductive approaches

In this section, we discuss a family of interpretations where the state vector |�〉 is
not considered as the starting point for describing a quantum physical system. It is
rather seen as a mathematical tool that can be derived from more basic considera-
tions concerning the possible statements that can be made about the properties of
a physical system. We will briefly review three classes of theories: quantum logic,
which is related to logic as a branch of philosophy applied to quantum phenomena,
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but also involves mathematics; algebraic and C∗ algebra theories, which are more
purely mathematical; axiomatic theories, which also borrow from both logic and
mathematical formalism. In the last part of this section, we discuss a general
theorem, the Gleason theorem, which has interesting applications in these theories
and, more generally, in all quantum mechanics.

10.4.1 Quantum logic

Quantum logic studies the formal structure of deductive reasoning and of propo-
sitional statements within quantum mechanics, in order to provide a set of rules
that are compatible with its principles. Within science in general, this defines a
broad problem, with a rich history, actually too broad and philosophically oriented
to be discussed here, despite its intrinsic interest. The roots of the subject go back
to Greek philosophy (Aristotle), but the application to quantum mechanics is of
course more recent. Nevertheless, even within this more restricted frame, one can
still find a large variety of contributions; we will therefore limit ourselves to a brief
summary, giving just a flavour of the variety of ideas in quantum logic. A general
historical presentation of the field can be found in Chapter 8 of Jammer’s book
The Philosophy of Quantum Mechanics [50], with many references. More special-
ized books are for instance Quantum Logic by Mittelstaedt [381] or The Logic of
Quantum Mechanics by Beltrametti and Casinelli [382]; many useful references
can also be found in [383].

Von Neumann, in his famous 1932 treatise [4], remarked that “the relations
between a physical system on one hand, and the projections on the other, make
possible a sort of logical calculus with these. However, in contrast to the concepts
of ordinary logic, this system is extended by the concept of ‘simultaneous decid-
ability’, which is characteristic of quantum mechanics”. In 1933, an astrophysicist,
Fritz Zwicky, suggested that non-classical logic should be used in microphysics
[384]; he proposed a “principle of flexibility of scientific truth”, which “must be
many-valued”. In 1936, Birkhoff and Von Neumann attempted to reconcile the
apparent inconsistency of classical boolean logic with the rules applying to the mea-
surement of incompatible observables in quantum mechanics [385]; they pointed
out that the characteristic difference between the logical structures of classical
and quantum mechanics is that distributive identities hold in the former, but not
in the latter. Jordan published a few articles on the subject around 1950 [386].
Soon after the publication of the Birkhoff and Von Neumann article, Strauss crit-
icized it in his Ph.D. dissertation (1938); he then introduced another version of
logic, “complementarity logic” [387]. Later, in 1968, Popper also criticized the
Birkhoff and Von Neumann article, but this time by considering that it is logically
inconsistent [388]; a debate ensued, in particular with Ramsay and Pool, which
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will not be reported here. For a simple introduction of quantum logic, see for
instance [389].

Many valued logic corresponds to a version of quantum logic that has been
proposed by Reichenbach in the early 1940s [390]. In his “probability theory of
meaning”, he considers that “a proposition has a meaning if it is possible to deter-
mine its weight, i.e. a degree of probability, for the proposition” as well as similar
rules for groups of propositions. Later, Von Weizsäcker [391] proposed a different
version of complementarity logic, where “every elementary proposition can have,
apart from 1 and 0, a complex number as its truth value”. The square modulus of this
value gives, as in standard quantum mechanics, the probability that an experimental
test will verify the logical proposition; the phase of the complex number is related
to the complementary logical alternative. This logical construction is analogous to
an infinite valued logic.

10.4.2 Algebraic theory

The axiomatic approach and the “C∗ algebra theory” is a mathematical view of
quantum mechanics, sometimes involving elaborate theorems, algebras of opera-
tors, and their representations. It arose initially from the need to develop a quantum
theory treating rigorously systems with an infinite number of degrees of freedom,
especially in quantum field theory but also in statistical mechanics. Von Neumann
also initiated the field by considering algebras of operators [4], and continued his
work with Jordan and Wigner [392]. In addition to the “Von Neumann algebras”,
Gelfand and Naimark [393] introduced another class of algebras, now named “C∗
algebras”, which were also used in the contributions of Segal [394] and later of
Haag and Kastler [395].

Murray and Von Neumann had given a classification of the various types of
algebras [396], with type I, type II, etc. Type I algebras are appropriate to quantum
mechanics with a space of states of finite dimension only. Von Neumann used type
II algebras, but it turns out that type III factors are actually necessary for quantum
field theory (for a brief review, see for instance §§9.2 and 8.3 of [383]). A important
clarification in this field was introduced by Connes, who gave a classification of
algebras of type III [397] and further introduced the notion of non-commutative
geometry [398].

10.4.3 Formal axiomatic theory

In the line initiated by Von Neumann, Hilbert, and Jordan, Mackey [399] provided
a formalism for relating observables, system preparation filters, and states, and
introduced an axiomatization of quantum mechanics based on two fundamental
notions, observables and states. This was the first complete system of axioms for a
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formal theory. The work was then expanded by Piron [400] who, with Jauch [401],
showed that one can reconstruct a Hilbert lattice (and not only an orthomodular
lattice) by introducing an appropriate “covering property”. For a more detailed
review of the role of the Geneva school in this field, see §8.5 of [50]. A more
recent and important contribution is the Solèr theorem [402] which, on the basis of
algebraic assumptions, proves that the Hilbert space must be built either from real
numbers or complex numbers (as in standard theory), or quaternions.

The above theories are not free of difficulties, sometimes illustrated by coun-
terexamples. One of them is that, while the structure of a Hilbert space provides a
natural way to treat the composition of several physical systems, with the notion
of the tensor product (§11.2), one can not merely multiply Hilbert lattices. In fact,
combining two or more physical systems may introduce new mathematical struc-
tures. To treat this problem, it has been proposed to introduce convex sets and the
language of categories [403–405]; for a review, see [406].

10.4.4 Gleason theorem

A theorem due to Gleason [407] is useful in the context of this family of interpre-
tations. Consider a space of states E and the ensemble of the orthogonal projectors
Pj onto all its subspaces9. Any orthonormal basis {|ui〉} of E immediately provides
examples of such projectors, for instance projectors onto single states:

Pj =
∣∣uj

〉 〈
uj

∣∣ (10.11)

Any sum of these projectors (without including the same operator twice or more)
also gives a possible Pj :

Pj = |ui〉 〈ui |+ |uk〉 〈uk|+ . . . |uk〉 〈uk| (10.12)

since the |ui〉 are mutually orthogonal. Moreover, any basis {|ui〉} can be chosen, so
that it is clear that the ensemble of the Pi is large; it is neither limited to projectors
onto single states, nor to projectors that are mutually orthogonal.

Each Pj is an Hermitian operator with two eigenvalues, 0 and 1. Physically, one
may associate a measurement to Pj , with results 1 or 0. If the state |�〉 of the system
is invariant under the action of Pj , the result 1 is obtained with certainty; if |�〉 is
cancelled under the action of Pj , the result 0 is obtained with certainty. In all other

9 To define Pj , one chooses a subspace Ej
S

. Any ket |�〉 of E can be written as the sum of a vector |�〉j belonging

to Ej
S

and a vector |�〉⊥
j

orthogonal to Ej
S

. The definition of Pj is then Pj |�〉 = |�〉j .
Orthogonal projectors are Hermitian. If the product PjPk of two operators vanishes, since the Hermitian

conjugate PkPj also vanishes, Pj and Pk are commuting operators. Orthogonal projectors are a special case of
the ensemble of projectors acting inside a space (oblique projectors), satisfying the relation P 2 = P .
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situations, namely when the state is changed but not cancelled under the action of
Pj , the result is randomly either 1 or 0; the probability Pj (1) of obtaining 1 is given
by the average of Pj in |�〉:

Pj (1)= 〈�|Pj |�〉 (10.13)

A particular operator Pj is the identity operator I (E) in E , corresponding to a
measurement having a result 1 with certainty, whatever the state of the system is.

The sum of operators Pj is not necessarily another operator Pn. It is a projector if
all thePj project over subspaces that are orthogonal, or equivalently if all the binary
products PiPj vanish10. We then call them “mutually exclusive projectors” or just
“exclusive projectors” for simplicity. Mathematically, they are exclusive because
it is impossible to find any ket |�〉 that does not vanish under the successive action
of the two orthogonal projectors. Physically, the projectors correspond to mutually
compatible observables that can both be measured at the same time; when they are
exclusive, no state exists for which two results 1 are certain.

Adding a sufficient number of orthogonal P can then lead to a point where their
sum projects over the whole space E and gives the identity operator:

Pj1 +Pj2 + . . . Pjp = I (E) (10.14)

One then says that this series of projectors provides a “resolution of unity”. An
obvious example is provided by the series of projectors over all kets |ui〉 of any
orthonormal basis of E , but one can also group these projectors in any way to obtain
other decompositions of identity.

Suppose now that a real functionf is defined over all possiblePj : a real number is
assigned to each of these projectors. Moreover, we assume that f has the following
properties:

0≤ f (Pj )≤ 1 for any Pj

f [I (E)]= 1 (10.15)

f (Pj1 +Pj2 + . . . Pjm)= f (Pj1)+f (Pj2)+ . . .f (Pjm) for exclusive Pj

10 If two operators Pi and Pj project over orthogonal subspaces, one can choose orthonormal basis in each of
these subspaces, and complete an orthonormal basis in E by adding a sufficient number of normalized vectors
that are mutually orthogonal and orthogonal to the two subspaces. All these vectors are common eigenvectors
of Pi and Pj with eigenvalues 1 or 0. Since by construction none of them has eigenvalue 1 twice, the product
PiPj vanishes.

Conversely, if this product vanishes, the projectors necessarily commute (footnote 9), and again one can
build a common basis of eigenvectors in E . The product PiPj vanishes only if none of these eigenvectors has
a double eigenvalue 1, which means that Pi and Pj project onto orthogonal subspaces.

In both cases, it is then easy to see that the sum Pi +Pj is the orthogonal projector over the subspace given
by the direct sum of the two initial projection subspaces. The generalization to more than two orthogonal
projectors is straightforward by recurrence.
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(the second and third conditions imply immediately that the probability associated
to any decomposition of identity is 1). These mathematical conditions have a simple
physical interpretation: they mean that f (Pj ) can be considered as the probability
of obtaining result 1 in the quantum measurement associated with any Pj . The third
relation expresses that the probability of the union of exclusive events is the sum
of their probabilities.

The Gleason theorem then states that, if the dimension of E is more than 2, there
exists a non-negative Hermitian operator with unit trace ρ acting in E such that:

f (Pj )= T r
{
ρPj

}
for any Pj (10.16)

In other words, all the values of f can be derived from a single operator ρ by a
simple product and trace operation11. The mathematical proof of this theorem is
not trivial, and we refer the reader to the original publication [407].

If f is interpreted as giving the probabilities associated with the measurements
defined by the projectors, this theorem shows that these probabilities can all be
obtained from one single operator ρ, which can then be considered as the density
operator of the system. This is an interesting result, since it derives mathemati-
cally the quantum formalism of the density operator and of the trace from general
considerations concerning the necessary conditions satisfied by probabilities.

The Gleason theorem requires a lower limit of 3 for the dimension of the space
of states; it does not apply to a spin 1/2. Nevertheless, Bush has shown [408] that,
if one extends conditions (10.15) to POVM (positive operator valued measures, see
§8.2.2), this limitation of the theorem can be removed. POVM define a broader class
of operators, and lead to more possible decomposition of identity, than orthogonal
projectors. As a consequence, the Bush form of the theorem requires more assump-
tions than the Gleason form. This is the price to pay to obtain a more general result
(also valid in two dimensions), as well as a simpler mathematical proof.

10.5 Veiled reality

The interpretation of the “veiled reality” was introduced by d’Espagnat [24, 25]. As
far as the mathematical formalism is concerned, it does not differ from the standard
interpretation, but it proposes a conceptual and philosophical frame that is different.
This frame is realist, as for Bohr, but here the definition of reality does not involve
human perception relayed by measurement apparatuses; the existence of reality is
considered as fundamental, with no need to refer to humans and their perceptive
structure. Analyzing the theory of measurement, the EPR and Bell arguments, a

11 There is a one-to-one correspondence between the projectors and the subspaces over which they project, so
that it is equivalent to consider that the function f is defined over the projectors or over the subspaces of E . In
mathematics, one often defines f as a “measure over all possible subspaces of E”.
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study of the relation between counterfactuality and realism, and the consequences
of the inter-subjective agreement, d’Espagnat concludes that quantum mechan-
ics cannot lead to descriptive interpretations of individual objects. He distinguishes
between independent reality, of which at best the general structures are accessi-
ble, and empirical reality (perceived phenomena). This leads him to conclude that
the ultimate reality is a “veiled reality”, only marginally accessible to discursive
knowledge.

Other interpretations of quantum mechanics also distinguish between two levels
of reality. This is for example the case of the de Broglie–Bohm theory (§10.6.1),
with a physical field that can be manipulated (the wave function) and the parti-
cle positions (which are observable, but not manipulable). But it remains a very
different approach, in particular because the two levels of reality appear in the
mathematical formalism of the de Broglie–Bohm theory itself.

10.6 Additional (“hidden”) variables

With additional/hidden variables, elements that clearly do not belong to the ortho-
dox interpretation are explicitly introduced. Additional variables are added to the
quantum state vector in order to obtain a more precise description of a single system.
We have already seen that the EPR theorem itself can be seen as a strong argument
in favor of the existence of additional variables. These variables are sometimes still
called “hidden”, even if this word is somewhat paradoxical, since they are often
more visible than the complex state vector12; Bell proposed to use the word “be-
able” instead [410], which tends to be more and more used in recent articles. Here
we will use the word “additional”, because of its generality.

Theories with additional variables are often built mathematically to reproduce
the predictions of orthodox quantum mechanics exactly. If they give the same
probabilities for all possible measurements, it is clear that there is no hope to
disprove experimentally orthodox quantum mechanics in favor of these theories, or
the opposite. In this sense, they are not completely new theories, but rather variations
on a known theory (an exception is nevertheless mentioned in footnote17). They
nevertheless have a real conceptual interest: they can restore realism and solve the
difficulties related to the presence of two kinds of evolution of the state vector
(Schrödinger cat paradox). They can also restore determinism, although this is
not necessarily the case: one can also build theories with additional variables that
remain fundamentally non-deterministic.

12 They appear directly in the results of measurements so that, instead of being hidden, the additional variables
are actually visible. In [409], Bell writes “Absurdly, such theories are known as ‘hidden variables’ theories.
Absurdly, for there it is not in the wave function that one finds an image of the visible world, and the results of
the experiments, but in the complementary ‘hidden’ (!) variables”.
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The general idea is that the wave function does not directly represent a quantum
particle but, rather, is a wave that guides the motion of the particle. These theories
started in 1926–1927 with the early work of de Broglie [411, 412], in the line of his
thesis [30]. L. de Broglie first elaborated his “theory of the double solution”, which
he named so since the same wave equation has two solutions: the usual continuous
wave function �(r), and a solution with mobile singularities u(r) representing the
physical particle itself. The particle is then considered as an energy concentration
in the singularity region of the new field u(r); it therefore remains perfectly local-
ized as in classical physics. It is also considered as a small clock having internal
vibrations, and a motion determined by a synchronization condition between these
vibrations and the external wave: “the particle glides on its wave in such a way
that its internal vibrations always remain in phase with the vibration of the wave
at the point where it sits”13. Mathematically, this leads to a “guidance equation”
for u(r) in terms of the wave �(r). Since the latter is subject to diffraction effects
on external obstacles, one can then recover the predictions of standard quantum
mechanics, provided one assumes that the statistical distribution of singularities is
given by |�(r)|2. Nevertheless, when invited by Lorentz to report on his work at
the 1927 Solvay meeting, it seems that de Broglie was too worried about the math-
ematical difficulties of this theory to report on it in front of this audience [77, 413].
He preferred to discuss a simpler version14, the “pilot wave theory”, where the
localized singularity of u(r) is directly replaced by a position of the particle, as in
classical theory, while its motion remains totally different from classical physics
since it is determined by the pilot wave.

Actually, also in 1926, Born had envisaged the possibility of introducing
“additional parameters” to the theory, in the course of the famous article where
he introduced the probabilistic interpretation of the wave function [34]; he even
worked on this subject in more detail with his assistant Frenkel [50] but, unfor-
tunately, this work seems to have been lost. Chapter 8 of [414] discusses early
attempts at causal theories in more detail.

13 In de Broglie’s view, a single particle is really represented by a wave u(r), while the wave function �(r) gives
only statistical information on an ensemble of particles, so that it does not have the same status of reality. He
describes this as a “curious mixture of single events and statistics ” [77].

14 At the Solvay meeting, Pauli made objections to the pilot wave theory, in particular that it could not reproduce
the results of standard theory for inelastic collisions. We now know that it is perfectly possible to build a pilot
wave theory that provides exactly the same predictions as standard quantum mechanics, so that this objection
is not valid.

Later, de Broglie regretted [77] to have “weakened his point of view” by presenting a “truncated version”
of his double solution theory, from which the singularity of the wave had been suppressed and useful features
disappeared. He was particularly interested in the similarities with the theory of general relativity, where the
motion of singularities of the gravitational field follows geodesics of space-time. He also considered the idea
of introducing a non-linear equation of motion for the wave u(r), which spreads the singularity over a tiny
mobile region of space.
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In 1952, Bohm [11, 415] independently elaborated a more complete version of
the pilot wave theory. As in the de Broglie pilot wave theory, he added positions
to the wave function and assumed that the motion of the particle in space is guided
by the gradients of the wave function, but also introduced new elements as we
will see below. Both points of view thus share common basic concepts, and one
often speaks of the “de Broglie–Bohm” theory. Bohmian theory is probably the best
known among those that add variables to standard quantum mechanics. Another
well-known example is nevertheless the work of Wiener and Siegel [12], who
elaborated a mathematical formulation of quantum mechanics in terms of probabil-
ities (or probability densities), instead of probability amplitudes, while the results
remain exactly equivalent to those of the standard calculation of probabilities. Such
a point of view completely eliminates the need for a special postulate concerning
measurement processes.

10.6.1 Bohmian theory

In standard quantum mechanics, a single quantum object may sometimes behave as
a particle, sometimes as a wave, sometimes combine both, depending on the exper-
iment considered. In the de Broglie–Bohm theory, the particle and the wave always
coexist; they actually go together and are constantly coupled. The elementary sys-
tem called “quantum particle” in standard theory is replaced by an inseparable
couple made of a particle and a field. We begin with a brief discussion of the gen-
eral framework of this theory, and then discuss trajectories for one or two particles
as well as quantum measurements. We will then outline a few objections that have
been made to the theory, and conclude with a discussion putting the achievements
of the theory into perspective.

10.6.1.a General framework

We first introduce the essential components of the de Broglie–Bohm theory, the
guiding formula and the quantum equilibrium condition.

Guiding formula None of the usual ingredients of standard quantum mechanics
disappears in theories with additional variables such as the Bohmian theory. In a
sense, these ingredients are even reinforced, since the status of the wave function
is promoted to become a field that is physically real15, instead of an object with

15 This field has actually two components, the real and the imaginary part of the wave function (for simplicity, we
assume that the particle is spinless). Similar real fields are, for instance, the components of the electromagnetic
field (we consider components since these fields are vectors while, in Bohmian theory, we are dealing with
scalar fields). The analogy is nevertheless imperfect since the wave function is defined only within an irrelevant
phase factor, which implies that the two components of the associated real field are also only defined modulo
a constant phase. The real field then depends only on the spatial changes of the phase of the wave function,
not of the value of the phase at a given point of space.
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intermediate status of reality (see §1.2.3). The Schrödinger equation itself remains
strictly unchanged but a completely new ingredient is added to it: in addition to its
wave function/field, each particle now gets an additional variable λ, more precisely
three additional variables that are the three components of a vector Q. The evolution
of Q is coupled to the wave function field through a “guiding formula” (or “quantum
velocity term”) that, for a single particle with wave function �(r, t), is given by16:

d

dt
Q= 1

m |�(Q, t)|2 Re

[
�

i
�∗(Q, t)∇�(Q, t)

]
= �

m
∇ξ(Q, t) (10.17)

where m is the mass of the particle and ξ(r, t) the phase of the complex num-
ber �(r, t); the right-hand side of this equation is nothing but the velocity of the
hydrodynamic version of the Schrödinger equation introduced by Madelung in 1927
[416]. We will call Q the Bohmian position of the particle and its time derivative
(10.17) the Bohmian velocity, but for simplicity the word “Bohmian” will often be
omitted.

For a system made of N particles, the λ variable summarizes the 3N components
of Q1, Q2, . . . ,QN , which evolve according to a direct generalization of (10.17)
in configuration space: the time derivative of each Qi is obtained by replacing
the gradient ∇ by the gradient ∇ri of the partial derivative with respect to the
corresponding variable in the wave function – see for instance (10.19).An important
point is that there is no retroaction of the additional variables onto the wave function;
the coupling goes one way only. From the beginning, the theory therefore introduces
a marked asymmetry between the two mathematical objects that are used to describe
the system; we will see later that they also have very different physical properties.

The quantum velocity term depends only on the gradient of the phase of the
wave function, not on its modulus. Therefore, vanishingly small wave functions
may have a finite influence on the position of the particles. With a Gaussian wave
packet for instance, the influence of the wave packet on the velocity of the particle is
comparable near the center of the wave packet or at arbitrarily large distances, where
the wave function is vanishingly small. Of course, situations where the position of
the particle is extremely far from the center of the wave packet are very rare, but
when they occur by chance, the position is guided exactly with the same efficiency
in all space; this can be seen as a sort of non-local effect (we come back to more
pronounced non-locality effects in §10.6.1.c).

In order to make his theory more similar to classical mechanics, initially Bohm
did not start directly from (10.17), but introduced the notion of a “quantum
potential”; this potential depends on the wave function and adds its effect to the

16 We assume that no potential vector A(r, t) is contained in the Schrödinger equation. In the presence of a
potential vector, and for a particle of charge q, some changes are necessary: in the right-hand side of (10.17),
(�/i)∇ should be replaced by (�/i)∇ −qA(r, t), so that �∇ξ becomes �∇ξ−qA(r, t).
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usual potential V (r) acting on the particle, and its value is:

Vquantum(r)=− �
2

2m

+ |�(r, t)|
|�(r, t)| (10.18)

(where + is the Laplacian). Using the Schrödinger equation for �(r, t) and the
usual Newton equation for the acceleration of the particle, one can then recover
the quantum velocity term. The two points of view are equivalent: one can either
directly postulate that (10.17) is always valid, or assume that it is valid at time
t = 0 and add Vquantum(r) to the usual potential. Subsequent versions of Bohmian
mechanics have nevertheless often discarded the quantum potential in favor of a
quantum velocity term only.

Quantum equilibrium condition
The theory also postulates an initial random distribution of the position variables
Q1, Q2, . . . ,QN that reproduces exactly the initial quantum probability distribution
|�(Q1,Q2, . . . )|2 of standard theory for position measurements. This distribution
is often called the “quantum equilibrium distribution”. The distribution is not due
to a preparation of the system that is not sufficiently accurate, but postulated as
fundamental. For a given realization of an experiment, there is no way to select
which value of the position is actually realized inside the distribution; from one
realization to the next, a new completely random choice of position is spontaneously
made by Nature. This assumption conserves the fundamentally random character
of the predictions of quantum mechanics [417].

The additional variables then depend on the wave function in two ways, through
both their initial values and their evolution. Combining the Schrödinger equation
with the form of the “quantum velocity term” (10.17) one can show that, if at time t

the distribution of positions is equal to |�(Q1,Q2, . . . )|2, the equality also holds at
time t+dt . This ensures that the property continues to be true for any time, and auto-
matically provides a close contact with all the predictions of quantum mechanics17.
In particular, under the effect of the quantum velocity term, the Bohmian positions
are constantly dragged by the wave function and can never move away from it;

17 In 1953, Bohm nevertheless considered the possibility of theories that are not equivalent to quantum mechanics
by introducing distributions differing from the quantum equilibrium distribution [415]. He then showed in a
simple model that, under the effect of random collisions, an arbitrary probability density will ultimately tend
to a distribution given by |�(r1,r2, . . . )|2, so that its difference with quantum equilibrium is likely to remain
very small at all times. In 1954 he and Vigier treated a more general case, by assuming irregular fluctuations of
the fluid that guides the positions of the particles [418]. Later, Valentini took a different approach [419] inspired
from the H-theorem in statistical mechanics, and introduced a “subquantum entropy” H to characterize any
distribution differing from the quantum equilibrium condition; he then showed that a course-grained value of
H can only increase in time, and that the maximal value is obtained for the quantum equilibrium. The latter then
appears as an attractor. The reasoning can be seen as a derivation of the Born rule, which no longer appears as an
independent postulate, but as a consequence of the dynamics. See [420] for more recent numerical simulations
along the same line.
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they remain in regions of space where it does not vanish, which ensures that neither
the guiding formula (10.17) nor the quantum potential (10.18) become indetermi-
nate. Another important consequence of this postulate is to ensure compatibility
with relativity [421], since arbitrary distributions would introduce the possibility
of superluminal signaling (Appendix H). Since the Born rule is a consequence of
the quantum equilibrium, one can then consider that this rule is not an independent
postulate of quantum mechanics, but merely a consequence of relativity.

One can then restore determinism, and assume that the results of measurements
merely reveal the initial pre-existing value of the positions, chosen among all pos-
sible values in the initial probability distribution (we come back in more detail to
this point in §10.6.1.c). This assumption solves many difficulties, for instance those
related to understanding why quantum systems can manifest both wave and particle
properties in interference experiments. The system always contains two objects, a
wave and a particle; the wave may produce interference effects and guide the parti-
cle in a way that forces its trajectory to reproduce the interference pattern – nothing
especially mysterious conceptually (below we study Bohmian trajectories in more
detail). Similarly, in the negative experiment with a Mach–Zhender interferometer
discussed in §2.4, in all events a wave propagates in the two arms, uninfluenced by
the position of the particle; the interference effect it produces at the output beam
splitter is different, whether one of its components in one of the arms is absorbed
by the object, or whether it is not, and the particle is guided accordingly. The final
outcome of the experiment is just a result of an initial choice for the path of the
particle and of its guiding by the wave at the output beam splitter; no paradox at all!
The same is also true for the Schrödinger cat: depending on the exact initial posi-
tion of a many-dimension variable λ, which belongs to an enormous configuration
space (including the variables associated with the radioactive nucleus as well as all
variables associated with the cat), the cat remains alive or dies. Nevertheless, deco-
herence will act in exactly the same way as in standard quantum mechanics, and
make it impossible in practice to observe interferences with macroscopic objects in
very different states (this is related to the notion of “empty waves, see §10.6.1.c);
the reason is that the theory is built to be equivalent to ordinary quantum mechanics.

Description of physical reality
For anyone who is very familiar with standard quantum mechanics, but not with the
concept of additional variables, at first they may look somewhat mysterious, since
they require a drastic change in the way we usually reason in quantum mechanics.
This may explain why they are sometimes called “hidden”, but this is only a con-
sequence of our much better familiarity with standard quantum mechanics! In fact,
these variables are less abstract than wave functions. The additional variables are
those that are directly “seen” in a measurement, as opposed to the state vector which
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remains invisible; it actually plays mostly an indirect role, through its effect on the
additional variables. In the example of a particle creating a track in a bubble cham-
ber, what we see directly on the photograph is the successive values of an additional
variable, which is actually nothing but the position of the particle. By contrast, who
has ever obtained a photograph of the wave function of a single quantum system?

To summarize, we have in this context a description of physical reality at two
different levels:

(i) First, one corresponding to the elements associated with the wave function (or
state vector), which are not directly visible but can be influenced in experi-
ments by applying fields (or moving walls), since the evolution of the state
vector depends on a Hamiltonian that can be controlled by applying fields
(and on boundary conditions). This evolution takes place in a space with high
dimensionality: for instance, for a system made of N spinless particles, the
wave function evolves in a space with dimension 3N . The state vector is not
sufficient to give a complete description of a physical system.

(ii) Second, another corresponding to the additional variables, the Bohmian posi-
tions, which are visible in experiments and move in ordinary three dimension
space. It is nevertheless impossible to manipulate them directly, and for instance
to change their distribution from quantum equilibrium. The reason for this
impossibility is fundamental, otherwise it would become possible to send super-
luminal signals, in contradiction with relativity [421]. The Bohmian positions
can only be manipulated indirectly, through actions on the state vector, which
then guides their velocities.

The two levels together are necessary and sufficient for a complete descrip-
tion of reality18. We have already mentioned that there is no retroaction of the
additional variables onto the state vector, which creates an unusual situation in
physics: usually, when two physical quantities are coupled, they mutually influ-
ence each other19. Another unusual feature is that the effect of the field on the
particle position does not depend on the intensity of the field, but only on its rel-
ative variations on space. Interestingly, we are now facing another sort of duality,
which distinguishes between direct action on physical systems (or preparation),
directly related to the state vector, and results of observations performed on them
(results of measurements), determined by the additional variables.

18 Some authors prefer to consider that Bohmian positions only are real, and not the wave functions. But, since
the wave functions act directly on the positions, and even mediate our actions onto them, it seems delicate to
consider that they are less real than the positions. See also Bell’s quotation in §10.6.1.e.

19 Variants of the Bohmian theory including a retro-action of the positions onto the wave functions have
nevertheless been studied [422].
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10.6.1.b Bohmian trajectories

As soon as particles get a time-dependent position, they also get a velocity, an accel-
eration, etc. and a trajectory as in classical physics. By studying these trajectories,
one obtains a variety of interesting, sometimes unexpected, results. For instance,
even in the simplest case, a single particle in free space, the trajectories are not
necessarily simple straight lines [423, 424]; they may be curved in a complicated
way. We now study a few situations leading to characteristic Bohmian trajectories.

One particle
A first remark is that (10.17) gives zero velocity for any wave function that is real;
a non-zero velocity can occur only if the phase of the wave function varies in
space. As a consequence, for instance in the ground state of the Hydrogen atom,
the Bohmian position of the electron does not turn around the proton as one could
expect, but remains static at the same place. The effect of the quantum potential
exactly cancels the attraction of the proton when the electron is in its ground state,
so that it experiences no force. Similarly, for an harmonic oscillator in the ground
state (or in any stationary state), the position of the particle does not oscillate in the
potential, but remains at the same place.

This property is general: each time the Hamiltonian is invariant under time rever-
sal, one can choose a basis of stationary wave functions that are real, and for which
the corresponding Bohmian velocity always vanishes20. Of course, with arbitrary
wave functions that are coherent superpositions of stationary states, the situation is
different: under the effect of the phase changes induced by the Schrödinger equation,
the position and the associated velocities become functions of time. An example
is an oscillator in a coherent quasi-classical state, where the time evolution of the
position reproduces the classical oscillation in the potential well. Moreover, even
in real stationary states, the correlation functions of positions are time dependent
because, in Bohmian theory, the effect of the measurement on the wave function has
to be included (we come back to correlations between measurements at different
times in the discussion of §10.6.1.e).

We now consider a usual interference experiment, as shown schematically in
Figure 10.1: a source S emits, one by one, a series of single particles that reach a
screen D through which two apertures have been created, so that interferences can be
observed in region R on the other side of the screen. The experiment is symmetrical

20 The hydrogen atom also has stationary wave functions that are not real, with a phase factor eimlϕ , where ϕ is
the azimuthal angle and ml the quantum number associated with one component of the orbital momentum. For
these states, the Bohmian trajectories do turn around the proton, as in the classical image. Nevertheless, in the
absence of a magnetic field, the values ±ml have the same energy and, by linear combination, one can build
a basis of stationary wave functions that are real and correspond to zero Bohmian velocity. So, for a given
degenerate energy, depending on the wave function one chooses, this velocity vanishes or not.
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Figure 10.1. Bohmian trajectories associated with a particle emitted by a source
S and crossing a screen D with two holes. In §10.6.1.e, two cavities C1 and C2
will be added into the scheme, but for the moment they can be ignored. Quantum
mechanics predicts that the particle interferes with itself and produces an interfer-
ence pattern in the observation region R; the dotted lines in this region symbolize
the bright fringes. In Bohmian mechanics, the particle trajectories are not neces-
sarily straight lines in free space; they bend inside the two holes under the effect
of diffraction, and moreover oscillate in the interference region. The final result
is that the predictions of quantum mechanics are exactly reproduced. One notices
a “no-crossing rule”: the trajectories never cross the symmetry plane P (central
horizontal dashed line).

with respect to an horizontal plane drawn as a broken line in the figure. We know
that Bohmian mechanics is built to reproduce exactly the predictions of standard
quantum mechanics concerning the measurement of the positions of particles; how
will it manage to reproduce the interference pattern observed on the other side of
the screen if one measures the position of the particle?

Bohmian theory solves the problem because (10.17) predicts that free particles
may have curved trajectories; this feature is actually indispensable for the statistics
of the positions to reproduce the usual predictions of quantum mechanics [425].
Two typical trajectories are shown in the figure. A first interesting effect occurs
when the particle crosses the screen through a hole that is sufficiently small to
diffract the wave function (its size is smaller than, or comparable to, the de Broglie
wavelength): without touching the walls, the particle is deflected because the wave
function that pilots its velocity is subject to diffraction. Moreover, after the screen
and in the region where the states coming from the two holes overlap, bending
effects again occur, since the velocity of the particle is affected by interference
effects. The trajectories are then modified in a way that ensures that, when the
experiment is repeated many times, the series of measured positions reproduces the
quantum interference pattern exactly.
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One can easily see by symmetry that, at points in the plane of symmetry of the
experiment (central horizontal dashed line of Figure 10.1), the Bohmian velocity
always lies within this plane: no trajectory of the particle can cross the symmetry
plane. This result is sometimes called the “no-crossing rule” of Bohmian trajec-
tories. Consider now two wave packets, each coming from a different hole, and
crossing each other in the region of the symmetry plane. The no-crossing rule
makes the trajectories “bounce” on the symmetry plane so that, after the wave
packets have crossed each other, the trajectories that followed one wave packet
have “jumped” to the other. As a consequence, after the screen, any trajectory
that is above the symmetry plane necessarily went through the upper hole, and
conversely.

See [47] for a discussion of the trajectory of a particle that can be reconstructed
from the observation of its successive positions in a cloud chamber, and Chapter 5
of [424] for a discussion of Bohmian trajectories through a potential barrier (tunnel
effect). Similar effects occur when particles propagate inside a Mach–Zhender
interferometer; in the absence of a final beam splitter, their position jumps from
one wave packet to the other at the ouptut, making their trajectory look like a
zig-zag [426].

Two particles For systems of two particles or more, the situation becomes even
more interesting. The velocities of the two particles are given as a function of the
two-particle wave function �(r1,r2; t) by:

d

dt
Q1 = 1

m1 |�(Q1,Q2; t)|2
Re

[
�

i
�∗(Q1,Q2; t)∇r1�(Q1,Q2; t)

]
d

dt
Q2 = 1

m2 |�(Q1,Q2; t)|2
Re

[
�

i
�∗(Q1,Q2; t)∇r2�(Q1,Q2; t)

] (10.19)

where m1 and m2 are the masses. Since the Schrödinger equation remains
unchanged in Bohmian theory, the wave function still propagates in the config-
uration space, as in standard quantum mechanics; on the other hand, the Bohmian
positions propagate in ordinary three-dimensional space. As a result, non-local
propagation effects may appear.

An interesting feature of the theory is that, even for interacting particles, their
two positions are not directly coupled. The interaction Hamiltonian affects the wave
function, which in turn guides the positions, but the world of Bohmian positions
remains completely free of mutual interactions.

If the wave function �(r1,r2; t) is a product:

�(r1,r2; t)= ϕ(r1, t)χ(r2, t) (10.20)
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it is easy to see that (10.19) simplifies into:

d

dt
Q1 = 1

m1 |ϕ(Q1, t)|2
Re

[
�

i
ϕ∗(Q1, t)∇r1ϕ(Q1, t)

]
d

dt
Q2 = 1

m2 |χ(Q2, t)|2
Re

[
�

i
χ∗(Q2, t)∇r2χ(Q2, t)

] (10.21)

Each particle then propagates independently, guided locally by its own wave
function.

If the wave function is not a product, the velocities have to be evaluated at a point
of configuration space that depends on the positions of both particles; the result for
the velocity of particle 1 may then depend explicitly on the position of particle 2,
and conversely. Suppose for instance that the two-particle wave function can be
written as a sum of two products:

�(r1,r2; t)= αϕ(r1, t)χ(r2, t)+βϕ′(r1, t)χ
′(r2, t) (10.22)

and let us study the Bohmian velocity of particle 1; when do non-local effects
occur? This depends on the overlap of the single-particle wave functions in the two
terms of (10.22).

(i) Consider a particular point (Q1,Q2) of a trajectory in configuration space. If,
at time t , one of the two wave functions χ(Q2, t) or χ ′(Q2, t) vanishes, only
one term of (10.22) is relevant in the expression of the velocity of particle 1 at
point Q1. The wave function of particle 2 disappears from this expression, as
in (10.21); particle 1 then propagates locally.

(ii) If both wave functions χ(Q2, t) and χ ′(Q2, t) are non-zero, then the same
simplification does not take place, and non-local effects take place in general.
Of course, this is not necessarily the case; if, for instance, it turns out that at
point Q1 the two wave functions of the first particle have the same relative
variation:

∇r1ϕ(Q1, t)

ϕ(Q1, t)
= ∇r1ϕ

′(Q1, t)

ϕ′(Q1, t)
(10.23)

again a simplification occurs and the velocity at point Q1 is independent of
position Q2. But, in general, this relation does not hold, so that the velocity of
particle 1 is explicitly dependent on the position of the other particle.

To summarize, non-local effects of particle 2 on particle 1 may occur when the
wave functions χ(Q2, t) and χ ′(Q2, t) overlap, and if the position Q2 falls in the
overlap region. If the two wave functions do not overlap, whatever trajectory is
selected, one of the two components always vanishes; this component then plays
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no role whatsoever in the evolution of the positions, and the particles move inde-
pendently. The vanishing component21 of the wave function is what Bohm calls an
“empty wave” [11].

Empty waves In Bohmian theory, empty waves do not occur only when two par-
ticles are entangled as in the example above. In the single-particle experiment
described in Figure 10.1 for instance, each time a particle is emitted by the source,
the initial position of the Bohmian variable determines which path it will follow
and which hole it will cross. One component of the wave function then guides the
particle while the other becomes an empty wave, playing no role as long as the two
components do not overlap. Nevertheless, when later both waves recombine in the
interference region R, they both contribute to the guiding of the particle and create
the observed fringe pattern. During the interference phenomenon, the empty wave
has, so to say, recovered its particle. Moreover, as we have seen in §10.6.1.b, the
empty wave “catches” the particle while the wave packets cross; after the crossing,
the wave packet that was empty becomes non-empty and converssely.

Something similar may happen with wave function (10.22), when two particles
are entangled but functionsχ andχ ′ have no overlap: if an appropriate measurement
is performed on particle 2, standard quantum mechanics predicts that interference
effects between the two components of the wave function can be restored, affect-
ing subsequent position measurements performed on particle 1. The condition to
recover interference effects22 is that the measurement should project the wave func-
tion of particle 2 onto a functionχ ′′(r2, t) having non-zero scalar products with both
functions χ(r2, t) and χ ′(r2, t). Similarly, in Bohmian mechanics, if a measure-
ment performed on particle 2 drives its position Q2 in a region of space where the
two components contribute, a wave that was empty can play a guiding role again.

If eventually particle 2 becomes entangled with a large number of other parti-
cles, for instance those contained in a measurement apparatus (§10.6.1.c), the Von
Neumann chain propagates too far and it becomes impossible in practice to restore
interference effects. When decoherence becomes irreversible, empty waves remain
empty forever.

Consider now a series of experiments providing a chain of successive results.
For each realization of the series, the chain of results that is actually observed
corresponds to a non-empty component of the state vector, which is called the
“effective wave function” in [417]. All other chains of results (those that have not
been obtained) are associated to empty waves, which still exist, but can have no

21 Of course, depending on the trajectory considered, it may be one or the other component that is empty.
22 This is sometimes called “two-particle interference” or “quantum eraser” effect. It is also the basic mechanism

of the Bell inequality violation experiments discussed in Chapter 4, where particle 1 is in an incoherent statistical
mixture before any measurement is performed on 2, but reaches a coherent superposition when correlated with
a given result for particle 2.
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effect on the future evolution of any Bohmian position. These empty waves never
disappear from the solution of the Schrödinger equation (as the Everett interpreta-
tion, §10.11), but their fate is to remain forever inactive, without any observable
effect. If the number of successive experiments is increased, the number of empty
waves becomes very large, while only one wave remains non-empty (the effective
wave function) and may have future physical effects. If for instance we consider the
state vector or the universe, we clearly have to face an absolutely fantastic number
of empty waves. Of course, they can be discarded without affecting the physical
predictions in any way, but their status of reality is not obvious (we come back to
this point in §10.6.1.f).

For other discussions of the role empty waves in the context of Bohmian theory
or other interpretations, see for instance [58] and [427].

Constraints on Bohmian velocities The agreement between the predictions of
standard quantum mechanics and the statistics over Bohmian trajectories rests on
a relation where only the divergence of the velocity defined in (10.17) plays a role.
If one adds to the velocity any vector with no divergence, any curl, the agreement
remains unaffected. This remark gives the impression of an almost too large flex-
ibility for Bohmian theories, and even to some extent of an insufficiently defined
framework. But in fact more constraints exist than this simple agreement to build
reasonable trajectories. See [428] for a discussion of the requirements introduced
by Galilean invariance, which creates drastic limitations (while still leaving several
possibilities for defining the velocities).

10.6.1.c Quantum measurement, non-locality

We now study in more detail how of the mechanism of empty waves ensures that
the uniqueness of results of quantum measurements appears naturally in Bohmian
theory. This success is obtained at the price of an explicit non-locality, which we
will also discuss in this section.

Measurement in Bohmian theory In Bohmian theory, there is no need to introduce
a special postulate for state vector reduction; it is already contained in the theory as
a consequence of the mechanism of “empty waves”, which in turn is a consequence
of the equations of motion and of the notion of trajectory. This solves the difficulties
related to the definition of the border between the Schrödinger equation and state
reduction. In other words, the Schrödinger equation applies equally well during all
stages of a measurement process and at any other time.

To understand in more detail why, we consider a physical system after it has
interacted with a measurement apparatus. It is then necessarily entangled with the
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apparatus (§8.1), so that the wave function of both systems takes the form:

�(r,r1,r2, . . . ,rN ; t)=
∑
j

ϕj (r, t) χj (r1,r2, . . . ,rN ; t) (10.24)

where the ϕj (r, t) are mutually orthogonal states of the measured system associated
with the various possible results. The χj (r1,r2, . . . ,rN ; t) are the correspond-
ing states of the measurement apparatus (including the “pointer”), which are also
orthogonal. Actually, they are not only orthogonal but also without spatial over-
lap – otherwise the observation of the position of the pointer would not provide
an observable measurement. This form of the state vector is similar to (10.22),
in the case where there is no overlap, so that the same discussion applies. We
have seen (§10.6.1.a) that the Bohmian variables cannot “leave” the wave function
(they cannot reach points of configuration space where it vanishes). After measure-
ment, the variables Q1, Q2, . . . ,QN associated with the measurement apparatus
necessarily belong to one of the domains of configuration space where one of the
wave functions χj does not vanish; since these functions have no overlap, they
cannot belong to more than one of these domains. Therefore, for any possible
trajectory, only one term of the sum (10.24) can play a role, all the others being
“empty waves”. We have also seen at the end of §21 that, because of the very
large number of variables associated with a measurement apparatus and its envi-
ronment, it is impossible in practice to restore an overlap of all the components
and to drive each of the many Bohmian positions to its specific of overlap. These
empty waves can therefore no longer influence the guiding of the position of the
particles, and have become completely irrelevant to determine the results of future
position measurements; they remain empty forever. It is then possible to retain only
this non-empty term, without affecting in any way the future dynamics of the com-
bined system. Moreover, one can normalize this term since, in Bohmian theory,
the velocities are unchanged if the wave function is multiplied by a constant. The
net result is that, for any realization of the experiment, corresponding to a given
trajectory:

• a single result is obtained
• only one component of (10.24) plays a role in the calculation of the future motion

of the Bohmian positions in configuration space (as well as in the calculation of
probability of any possible future measurement performed on the system). State
vector reduction is then reconstructed.

From the point of view of Bohm, the result of any experiment is just a con-
sequence of the random initial position of the system in configuration space.
The uniqueness of this result follows from the impossibility of a single point in
configuration space to belong at the same time to more than one of the domains
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associated with the components of (10.24). This automatically makes all compo-
nents of the wave function vanish, except the one corresponding to the result of
measurement. Determinism is restored in principle but, since this additional vari-
able cannot be controlled in the preparation stage of the experiment – see above
and point (ii) in §10.6.1.a – in practice quantum experiments give random results.
While in standard quantum mechanics, the mechanism of decoherence (correlation
with the environment) is not sufficient to explain the emergence of a single result
in a single experiment, in Bohmian theory it is, thanks to the introduction of the
Bohmian variables of the measurement apparatus and the mechanism of empty
waves. This is a great achievement!

Non-locality In §20, we have seen that Bohmian positions evolve according to
explicitely non-local equations. Non-locality is of course a surprising feature for
any physical theory, but we should keep in mind that this feature is not artificially
added into a theory that otherwise would be completely local: standard quantum
theory is not perfectly local either. Actually, in configuration space, the equations
of both theories are local, but non-localities may appear when one comes back to
ordinary three-dimensional space.

Consider for instance two spinless particles and their six-dimensional con-
figuration space. The formalism of standard quantum mechanics offers no local
description of the physics taking place at the position of one single particle, even
if the particles are contained in remote regions of space. The standard description
is actually contained in the wave function23, which has values that depend on the
positions r1 and r2 of the two particles. If the wave function is not a product, the
only proper characterization of the system therefore occurs in configuration space.
For instance, the time evolution of the phase of this wave function depends on
the values of the single particle potentials V (r1) and V (r2). The same is true of
the probability current J, which is defined in the same configuration space, and
has a time derivative containing both potentials in general (nevertheless, for both
theories, non-locality disappears from the equations as soon as a partial trace over
the other particle is taken; in Bohmian theory, this involves an integration over all
possible positions of the second particle).

The difference between the two theories is therefore not so much in the mathe-
matical equations, which in neither case are really local. It is more that, in Bohmian
theory, one ascribes physical reality to variables that evolve non-locally (positions),

23 This is true in the Schrödinger picture. In the Heisenberg picture, the dynamics is contained in the evolution of
operators; their matrix elements belong to a space with dimension equal to the square of that of the configuration
space, which is even larger. If one uses second quantization or field theory, the dimensions become infinite (in
field theory, coordinates in ordinary space time appear in the formalism as parameters defining the operators,
but the space in which these operators act has infinite dimension).
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while in standard quantum mechanics non-local evolutions occur only for physical
quantities that are more indirectly related to physical reality.

10.6.1.d Spin and field theory

Bohmian theory can include treatments of spin and of quantum fields. Here we give
only a brief summary and limit ourselves to a few simple examples.

Spin
Spins can easily be included in Bohmian theory within a non-relativistic treat-
ment based on Pauli spinors. A simple method does not add any specific Bohmian
variable associated with the spin, but just keeps the usual Bohmian position of
the particle. Even within this simple context, interesting effects occur, but still
in a way that avoids any contradiction with the predictions of standard quantum
mechanics.

For a single particle with spin S, the quantum state can be defined in terms of a
spinor having 2S+ 1 components �µ(r, t). If S = 0 (spinless particle), the single
component of the spinor is the wave function �(r, t) already appearing in (10.17);
if the particle has a spin 1/2, it is described by two components �±(r, t) obeying
the Pauli equation, etc. At each point of space, the Bohmian velocity of the particle
is defined as the ratio of the local current of probability by the local density of
probability, which are both obtained by a trace over the spin variable (sum over
index µ). Equation (10.17) is then replaced by:

d

dt
Q= 1

m
∑

µ

∣∣�µ(Q, t)
∣∣2 Re

∑
µ

[
�

i
�∗µ(Q, t)∇�µ(Q, t)

]
(10.25)

Moreover, by calculating from the spinor in standard quantum mechanics the local
average of the spin orientation, one can also define a local direction of the spin,
which leads to an even more visual representation of the propagation of the particle.

(i) The effects taking place for a spinless particle have their counterpart for particles
with spin. In particular, the direction of the spin does not necessarily remain constant
along a trajectory, even in free space – for more details, see for instance Chapters 9
and 11 of [424], and [429]. As in [430], consider an atom entering a Stern–Gerlach
apparatus that measures the component of the spins along Ox. If, initially, the
spins of the particle point in a perpendicular direction Oy, their directions change
progressively when the trajectory propagates in the magnetic field gradient, as
shown schematically in Figure 10.2 (for clarity, the uniform precession of the spins
around the homogeneous part of the magnetic field has been removed).At the output
of the device, the spins are now either parallel or anti-parallel to Ox. The former
case corresponds to the trajectories leading to spin result +1, the latter to those
giving result −1.
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Figure 10.2. In a Stern–Gerlach experiment, atoms propagating along direction
Oz enter a region (rectangle) where a high magnetic field B along direction Ox is
applied. Its strong gradient acts on the magnetic moments of the atoms and creates
a spin dependent deviation. Initially, the atoms have a transverse spin direction
along Oy. While they progress in the gradient, the direction of their spin changes;
when they exit the apparatus, two separate beams are formed with spins either
parallel or anti-parallel to Ox. Four examples of Bohmian trajectories are shown
(the directions of the arrows show the changes of the polar angle between the spin
and Ox; for clarity, the rapid precession of the azimuthal angle around B is not
included).

Spin rotations along trajectories occur even for free particles; there is an equiv-
alent of the “no-crossing rule”: if two wave packets associated with opposite spin
directions cross in free space, along any Bohmian trajectory the direction of spin
turns during the crossing and, after the position has jumped from one wave packet
to the other, ends up in the opposite direction – an analogous effect to the exchange
of wave packets by trajectories that we discussed above.

(ii) An interesting thought experiment considers one spin particle propagating in
direction Oz that is sent through a series of spin analyzers (Stern–Gerlach systems
for instance) with various orientations; for instance, the first analyzer measures the
spin component along Ox, the second along a perpendicular direction Oy, the third
along Ox again, etc. (at each step, the direction of measurement changes by 90◦),
as shown in Figure 10.3. The first analyzer divides the trajectories into two groups,
those going to positive directions along Ox, and those going to negative directions,
depending on the initial position of the particle. The second analyzer divides again
each of these two groups of trajectories into two subgroups, depending again on
the initial position of the trajectory. The same phenomenon repeats when more and
more measurements are added. One could then hope to reach a situation where the
determination of the initial position becomes sufficiently accurate to provide a deter-
mination of the trajectory of the particle in the next analyzer. Actually, this never
happens: whatever number of analyzers is used, one never reaches a situation where
the initial position becomes sufficiently well known to be able to predict the devi-
ation observed in the next measurement with certainty: without any end, the result
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Figure 10.3. A particle with spin 1/2 propagating in direction Oz crosses several
Stern–Gerlach analyzers, which measure its spin component in succession along
directions Ox, Oy, Ox, etc. Result +1 for the spin component is obtained if the
deviation of the trajectory of the particle occurs in one direction, result −1 if it
occurs in the opposite direction. These results are completely random, and provide
information about the initial Bohmian position of the particle inside the wave
packet associated with the wave function at the input of the system. Nevertheless,
whatever the number of measurements is, this information is never sufficient to
give any information on the result of the next measurement.

of the spin measurement remains completely random. The reason why this happens
is that repeated measurements introduce an exponentially increasing sensitivity to
the initial position of the particle, in analogy with chaotic situations in classical
physics. At each step, the distribution of the Bohmian variables remains exactly the
quantum equilibrium distribution. There is no way, even with many measurements,
to determine the position sufficiently well to eliminate the fundamentally random
character of quantum mechanics.

Wigner has pointed out the time irreversibility of the evolution of the additional
variables in such situations [431]; Clauser has remarked that reversibility can be
restored if one takes into account the spin polarization variables [432]. In addition,
it is also possible to assume the existence of additional variables associated with
the successive measurement apparatuses, as in “Von Neumann’s informal hidden
variable argument” then, more randomization takes place at each measurement,
so that it is no longer necessary to assume this extreme sensitivity to the initial
conditions.

(iii) For two particles, consider an EPRB experiment of the type described in §3.3.1
and the evolution of the positions of the two particles when they are far apart. If
particle 1 is sent through a Stern–Gerlach analyzer oriented along direction a, the
evolution of its Bohmian position is obviously affected in a way that depends on
a (the positions have to follow the quantum wave functions; in this case, it has
the choice between two wave packets that are separated along axis a). But this
will also change the position (Q1,Q2) of the point representing the system in the
six-dimensional configuration space. As we have seen above, if the orbital wave
function is not a product, this changes the quantum velocity term for particle 2,
in a way that then depends explicitly on a. Moreover, spins have to be taken into
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account, including their correlations with positions. With a singlet spin state, the
selection of an orbital wave packet for the first particle produces a projection of
the spin state of the second particle onto a state that also depends on a (for more
details, see Appendix I, second part). No wonder if such a theory has no difficulty in
reproducing the non-local effects associated with violations of the Bell inequalities!

In this case, the advantage of introducing additional variables is to emphasize
the effects of non-locality, while these effects often remain relatively hidden in
the orthodox formalism (one more reason not to call these variables “hidden”!).
Bell for instance wrote “it is a merit of the Broglie–Bohm interpretation to bring
this (non-locality) out so explicitly that it cannot be ignored” – in fact, historically,
he came to his famous inequalities precisely through this channel. As mentioned
in §4.5.2, it is a matter of debate whether the standard interpretation of quantum
mechanics just hides the non-locality it actually contains, or can be seen as a local
theory despite the violations of the inequalities.

Bohmian field theory
In the second of his initial articles (Appendix A of [96]), Bohm included a brief
discussion of field quantization, in the context of a study of the Compton effect.
The close analogy between an harmonic oscillator and the dynamics of a free mode
of the electromagnetic field in a cavity is a useful guide for introducing Bohmian
trajectories within quantum electrodynamics – see also §§10.6 and 12.4 of [424].
Bohm introduces an additional variable A associated with the quantum operator A
describing the vector potential, which plays the role of the “position” of the har-
monic oscillator; the “wave function” in the representation whereA is diagonal then
guides A according to the usual pilot equation. To avoid questions related to gauge
dependence, instead of introducing a Bohmian variable for the potential vector, one
can also directly associate a Bohmian variable E to the electric field. This variable
is guided by the “wave function” in the representation where the electric field is
diagonal. Then E and its time derivative dE/dt directly describe the electric and
magnetic (within a constant factor) fields associated with the mode considered. An
inverse Fourier transform provides the values of the electromagnetic fields at every
point inside the cavity. Similar methods may be applied to other bosonic fields24.

For fermionic fields, a frequent method is to just add variables for particle posi-
tions, but not fields. The pilot equation remains exactly the same, all Bohmian
positions being guided by a fully antisymmetric wave function. Combining this
approach with the above description of bosonic fields, one then obtains a description
of reality where bosons and fermions are treated in a very different way, the

24 The difficulties associated with divergences in standard quantum field theory, and the necessity of introducing
renormalization procedures, still occur in Bohmian theory, as one could expect.
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former having Bohmian field variables and the latter position variables. The stan-
dard symmetry of second quantization is lost. But, after all, boson and fermion
systems are indeed very different physically; there is no special reason why similar
Bohmian variables should be used for both. Moreover, composite bosons (atoms
for instance) made of an even number of fermions have a Bohmian position variable
in this theory, the center of mass of the positions of the fermionic constituents.

Bell discussed another realist method to quantize bosonic and fermionic fields
on a discrete space lattice [410]; it is actually on this occasion that he introduced
the word “beable”. In this model, the deterministic guiding equation is replaced
by stochastic transition probabilities, but a conjecture is that this stochastic feature
should go away in some sense in the continuum limit. In [433], he extended this
work to discuss the effect of annihilation and creation operators in Bohmian field
theory, and the appearance of trajectories that can begin or end at points. For reviews
on Bohmian field theories, see for instance [434] and [435] or, for relativistic theory,
[436, 437].

10.6.1.e Objections and solutions

It is not possible here to discuss all aspects of Bohmian theory. It is not a “main
stream” theory, and has certainly not been applied to all problems that have been
treated successfully within standard quantum mechanics. These problems range
from usual applications in condensed matter physics, quantum optics, etc. to
quantum chromodynamics (theory of the strong interaction involving quarks), an
essential component of our present physical description of the world. Since our pur-
pose here is rather to focus on the interpretation, we will just discuss a few examples
of applications of Bohmian theory. They have been selected because they involve
situations that help clarify the physical content of the Bohmian point of view, as
well as some frequent misunderstandings concerning this theory.

Are Bohmian trajectories real?
From one observation of the position of the particle, Bohmian trajectories can be
reconstructed in a deterministic way for the past. For the future, it is neverthe-
less impossible to make more accurate predictions than those of standard quantum
mechanics; the same fundamental indeterminism applies. In this sense, the expla-
nations of quantum phenomena given by Bohmian theory are more retrodictive
than predictive.

The authors of [429] propose to study an interference experiment in an interesting
and intriguing case. The usual interference device is supplemented by electromag-
netic cavities, which can store the energy of photons and be used as a “Welcher
Weg” device (a “which way” device that tells the experimenter which hole the
particle went through in an interference experiment). The first particle goes through
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a screen having two holes, with two cavities sitting near the holes (C1 and C2 in
Figure 10.1). If the particle goes through the upper hole, it leaves a photon in the
first cavity25; if it goes through the lower hole, it leaves it in the second cavity.
Probing the number of photons in one of the cavities then allows one to know
through which hole the particle went. A way to obtain the information is to observe
the trajectory of a second particle, which is sent afterwards through this cavity,
experiences the field it contains, and takes a trajectory that depends on the number
of photons26. At the end, one can compare the trajectories of the two particles,
which can interact indirectly through a photon in a cavity, and to investigate the
conditions under which they can influence each other.

The experiment is supposed to be symmetrical with respect to the horizontal plane
P shown in Figure 10.1. The diffraction of wave function by each hole creates an
angular spread so that, far beyond the screen, the component originating from any
hole covers both sides of the symmetry plane. The authors of [429] then show that,
in standard quantum mechanics, the first particle can leave a photon in the upper
cavity, while the detection of its position gives a result that is below the symmetry
plane. But, in Bohmian theory, the trajectories can never cross the symmetry plane
(“no-crossing rule”): finding the particle below the symmetry plane P necessarily
means that the corresponding trajectory went through the lower hole, even if a
photon is left in the upper cavity. Eventually, when this photon is later detected
by its influence on the trajectory of the second particle, the net result is that the
two trajectories influence each other without ever coming close to each other. The
first particle has left a photon in the cavity it never crossed! From this strange
conclusion, the authors conclude that the Bohmian trajectories are “surrealistic”.

Of course, considering that trajectories may be called surrealistic is somewhat
a matter of taste, and we will not discuss this issue. A first remark is that the
paradox relies on the idea that the particles may be identified with their positions
and trajectories only. This corresponds to a truncated form of Bohmian theory in
which only the positions of the particles have physical reality, but not the wave
function27. But, in full Bohmian theory, one does not assume that only positions
and trajectories contain all physical reality. On the contrary, the wave function
becomes a real classical field, which exists objectively, being as real as a laser field
for instance. As expressed by Bell [438]: “No one can understand this theory until
he is willing to think of � as a real objective field rather than just a probability

25 We may assume that the particles are atoms in high Rydberg states, which can have very large dipole moments
and can easily emit or absorb photons in superconducting cavities.

26 A similar scheme is used in the experiment described in §9.3.
27 This truncated theory would be intermediate between standard theory and Bohmian quantum mechanics, with

a wave function that would keep the same status as in the standard interpretation (§1.2.3), combined with the
addition of real positions.
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amplitude”. Therefore, a “particle” always involves a combination of both a position
and the associated field, and there is no reason whatsoever why the latter could not
also influence its surrounding. Indeed, no fundamental argument limits mutual
influences to the vicinity of the trajectory only.

So, within a full Bohmian theory, the simplest way to solve the apparent paradox
is just to point out that the real field associated with the first particle can interact
locally with the electromagnetic field in the cavity, leaving a photon in it; later this
photon acted on the trajectory of the second particle. This explanation involves a
crossed field–field–trajectory effect, and in these terms it is even perfectly local! Or,
equivalently, if one prefers to use the notion of quantum potential, one can express
the same idea by saying, as the authors of [439]: “the energy has been transferred
non-locally to the cavity-field mode by the action of the quantum potential . . . a phe-
nomenon no less real than the non-local correlations observed in EPR effects . . .” –
see the figures of this reference for examples of plots of the trajectories.

After all, interaction between bodies mediated by fields occur in many domains of
physics. The notion of action at a distance was introduced by I. Newton with his law
of universal gravitation, which implies that the earth can attract the moon without
the two mechanical bodies ever being in contact or even close. The earth creates a
real gravitational field in all space, which then acts locally on the moon. In a similar
way, here, the first particle creates a Bohmian field that crosses both cavities, and
can create a photon in any of them, which, in turn, deviates the second particle28.

We can also remark that, within the standard interpretation of quantum mechan-
ics, “interaction-free measurements” are described in a way that is actually very
similar to this Bohmian description. In §2.4, we have described an experiment
where some events can occur only because the Schrödinger wave is absorbed in
the arm of an interferometer, while the particle had only access to the other arm
to propagate; the propagations of the wave and of the particle were also to some
extent dissociated in these events. Standard interaction-free quantum measurement
processes are not less “surreal” than Bohmian trajectories!

But we can also go further and make interesting connections with the appearance
of correlations with the measuring apparatus and the famous Einstein–Bohr debate
at Solvay conferences; this gives an idea of how partial traces (of density operators)
appear in Bohmian theory. We now discuss how such correlation effects should be
treated within this theory.

Measurement and entanglement
As we will see, the apparent paradox of “surrealistic trajectories” arises from an
incomplete treatment of entanglement. This treatment assigns Bohmian positions

28 Nevertheless, a curious property of this Bohmian field is that many trajectories are associated with the same
field, while for the gravitational field different trajectories would lead to different values of the field.
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to some entangled quantum systems, but not all of them, as would be required in a
consistent Bohmian theory. The existence of the events studied by [429], where a
particle leaves a photon in a cavity while its trajectory does not cross it, is derived
from the “no-crossing rule” – Bohmian trajectories can never cross the horizontal
symmetry plane of Figure 10.1. This is indeed true for a single particle, which
propagates in a symmetrical environment with a symmetrical wave function. But,
after the particle has crossed the cavities, the particle is entangled with the two
fields in the cavities, and it is no longer possible to treat it as an isolated quantum
system, with a single wave function propagating in three-dimensional space. A
more precise investigation is necessary and shows that the no-crossing rule is no
longer valid.

Two different cases can occur, depending whether a measurement is performed
or not :

• If a measurement of the field in the cavities is performed, the analysis of §10.6.1.c
directly applies: for each trajectory, one of the components of the wave function
becomes “empty”, without any effect on the trajectory. The trajectory of the parti-
cle is then guided only by the component of the wave function that originates from
one of the holes. The other component is empty and plays no role. Since the ini-
tial symmetry it then broken, the trajectories can then cross the symmetry plane,
and the surreal events considered in [429] simply disappear, cancelling the para-
dox29. See also the discussion given by Bell [425] of how consistent trajectories
are generated in measurements within Bohmian theory. In Appendix I, we give a
discussion of how correlations functions are affected by the first measurements
in Bohmian theory.

• Even if no measurement is performed, when the particle propagates on the right
side of the screen, we must take into account its entanglement with other physical
systems. In Bohmian theory, when entanglement occurs, consistency requires that
the position variables associated with all entangled sub-systems be included. We
must therefore introduce position variables associated with the modes of the field
in each cavity; since we do not wish to develop Bohmian field theory here, we will
treat the modes of the field within a simple model: harmonic oscillators associated
with massive particles in a potential. The position variable of the wave function
of the initial particle is r, that associated with cavity C1 is r1, that associated with
cavity C2 is r2, corresponding in Bohmian mechanics to position variables Q,

29 The same conclusion applies to the spin version of the paradox also given in [429]; as soon as “Welcher Weg”
(which way) detectors provide information about the path followed by the particle, one must include in the
wave function the states of the pointer. The particles then go in straight lines in the region where the wave
packets cross. They no longer bounce on the symmetry plane. The paradox therefore disappears again if a full
Bohmian theory is used.
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Q1, and Q2. The entangled situation is then described by a wave function:

�(r,r1,r2)= 1√
2

[
ϕupper(r)χe(r1)θg(r2)+ϕlower(r)χg(r1)θe(r2)

]
(10.26)

where ϕupper(r) and ϕlower(r) are the wave functions of the particle that originate
from the upper and lower hole respectively,χg,e(r1) the wave functions associated
with the first harmonic oscillator in either its ground or first excited state, and
θg,e(r2) the similar wave functions for the other oscillator.

The most probable locations of the positions Q, Q1, and Q2 are those where
|�(Q,Q1,Q2)|2 takes relatively large values, which implies that at least one of the
two components of (10.26) should have a significant modulus. A maximal value of
the first component requires that Q1 should be chosen to give a maximal value to
|χe(Q1)|2, while the second component requires that

∣∣χg(Q1)
∣∣2 should be maxi-

mal. But the functions χe,g(r) are different (they are actually orthogonal), and their
maxima do not coincide; whatever the choice of Q1, at most one of these functions
can be relatively large, while the other remains rather small30. The same is true for
variable Q2. Therefore, for any choice of Q1 and Q2, the probability can be signifi-
cant only if one component of (10.26) dominates over the other. In other words, for a
particular trajectory of the system (in nine-dimensional configuration space), there
is a large probability that the two components should have different modulus. This
breaks the initial symmetry and changes the interference pattern: the no-crossing
rule is no longer valid. Some paradoxical trajectories (those where the trajectory
goes through one cavity and excites the field in the other) still exist, but they require
unlikely configurations of Q1 and Q2, which significantly reduces their probability.

But this is not the end of the Bohmian decoherence process: if we require some
information on the state of the field in the cavities to be obtained, we need to couple
it to other physical systems, a second test particle for instance. In turn, the position
of this particle will be scattered in directions that depend on the state of the field in
the cavities. The superposition written in (10.26) will then contain four functions
and four variables, and by the same effect the unbalance between the two terms will
be even more reduced for most trajectories (in 12-dimensional space). When this
second particle reaches a measurement apparatus, the number of entangled degrees
of freedom becomes so large that one reaches the same situation as above: one
of the waves becomes empty forever, and the paradoxical trajectories disappear
completely. A similar situation occurs if the test particle propagates in a bubble
chamber; it then quickly becomes entangled with many other particles, and its
Bohmian trajectory coincides with the trajectory detected by the excitation of these
particles, in contrast with a statement in the introduction of [429].

30 For instance, if Q1 happens to be at the maximum of the probability distribution for the ground state, the wave
function of the excited state vanishes exactly, so that one of the terms in (10.26) completely disappears.
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Connection with the Einstein–Bohr debate
It is interesting to also make a connection between this analysis and one of the
famous paradoxes discussed by Einstein and Bohr at the Solvay meetings. Einstein
raised an objection against the uncertainly principle, considering a interference
experiment where the momentum recoil of the screen with the two interference
holes is measured, so that “Welcher Weg” (which way) information is obtained
(see for instance complement DI of [440]). Bohr replied that one should take into
account the quantum character of the screen, which is also subject to uncertainty
relations; a proper calculation then shows that, if an interference can be observed,
the state of the screed is necessarily such that the determination of the path of
the particle is impossible. Einstein then agreed that the paradox was lifted. Here,
we have a similar situation: momentum is also transferred from the particle to
the screen, in particular while the trajectories are bent inside the holes31. Now, if
the quantum state of the screen also changes depending whether the particle went
through the upper or the lower hole, clearly it becomes necessary to include the
corresponding Bohmian variables and the above argument applies again. One way to
treat the problem32 is to consider that a phonon is emitted and propagates within the
screen, and to calculate the microscopic changes of the positions of a macroscopic
number of atoms in the screen (the recoil of each of these atoms is extremely small,
but affects an extremely large number of terms in a product, so that the resulting
effect is finite). We do not give more details here but, clearly, the fact that the Von
Neumann chain inevitably propagates further than just the fields in the cavities
reduces even more the weight of the unwanted component of the wave function.
After a few steps, one expects that this component will vanish in practice, and that
all paradoxical trajectories disappear. It is amusing to see that a historical argument
due to Bohr should find another application in the context of Bohmian theory!

Our discussion of these examples can be summarized in two major points.
The first is that one should always remember that Bohmian mechanics considers
the wave functions as real physical quantities, not only the positions; as a con-
sequence, the trajectories of two particles may influence each other, even if they
never come close to each other (in an EPR type experiment for instance). This
should not be considered as absurd, but just an illustration of the explicit character
of non-locality in Bohmian theory – see the quotation by Bell above, as well as
the discussion of this thought experiment by Griffiths [441]. There are many other

31 As for the fields contained in the cavities, they cannot recoil without transferring momentum to the wall of the
cavities.

32 Another way to proceed would be to replace the two cavities by detectors, for instance bubble chambers,
which contain particles having Bohmian positions that are changed if the test particle goes though the chamber.
This change will immediately turn the other component of the wave function (the component where the test
particle goes through the other detector) into an “empty wave”, which subsequently does not play any role.
The non-crossing rule then disappears, as well as all paradoxical trajectories: the test particle can only leave a
trace in the detector through which its trajectory passes.
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examples illustrating that the quantum phenomena are indeed local in configura-
tion space, but not necessarily in ordinary space. The second general remark is that,
when entanglement is involved in the standard quantum mechanical treatment of
the system, it becomes indispensable to take into account the role of all the Bohmian
position variables associated with the various entangled systems; treating quantum
entanglement correctly within standard theory, but in Bohmian theory forgetting
to include all the corresponding variables and their effect – in other words treating
the two quantum systems differently – is inconsistent.

Correlation between measurements at different times
Until now, we have only considered measurements made at one time, but quantum
mechanics also gives predictions about measurements performed at different times;
it is interesting to compare them to those of Bohmian theory [442]. In fact, at
first sight, it is not obvious that the results will be the same; for instance, if one
considers a system in a stationary state with a real wave function, the Bohmian
velocity vanishes, so that the position Q remains constant. On the other hand, in
quantum mechanics, the two-time correlation function in a stationary state has
no reason to be time-independent: for a harmonic oscillator in its ground state
for instance, it is well known that the two-time correlation function oscillates in
time. One could then naively think that Bohmian theory predicts time-independent
correlation functions, in contradiction with the time dependence obtained within
standard quantum mechanics.

Actually, again a proper use of Bohmian mechanics shows that this contradiction
does not exist. Within this theory, the effect of the first measurement must be taken
into account – this is indispensable even if the two measured observables commute,
and even if they correspond to independent systems. The first measurement corre-
lates the position of the particle with that of a pointer; it becomes then necessary to
take into account this second Bohmian position as well. Because the wave function
of the whole system is no longer a product, situations similar to those discussed
for two particles in §10.6.1.b then occur: the position of the measured system then
takes a velocity that depends on the position of the pointer. This completely changes
its future evolution, so that the correlation function is also modified. At the end of
a correct calculation within full Bohmian theory, one recovers exactly the same
results as in standard quantum mechanics – for more details, see Appendix I, which
also discusses other experiments in the context of Bohmian mechanics [443–445].

The structures of the two theories are similar
The conclusion of this brief review of various objections to Bohmian mechanics is
that, after all, its structure is more similar to that of standard quantum mechanics
than one could think; all standard rules that are applied to the state vector have their
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direct counterpart with the Bohmian velocities and positions. We should therefore
not repeat mistakes that we have learnt to avoid in standard quantum mechan-
ics. In standard theory, we know that, when the system becomes correlated with
others, in particular measurement apparatuses, we must take this correlation into
account in an entangled state vector. Similarly, in Bohmian theory, we must also take
into account the correlations between the corresponding Bohmian variables – this
introduces the phenomenon of “empty waves” (§10.6.1.c). We have learnt from
Bohr’s historical arguments that the consistency of quantum mechanics requires
that all parts of the experiments be treated as quantum systems, and for instance
that one cannot ignore the recoil effect of parts of the apparatus (the screen). Sim-
ilarly, the Bohmian description also requires that this recoil should be taken into
account in terms of positions; if this principle is ignored, various inconsistencies
appear.

But the similarities between the way standard quantum theory and the de Broglie–
Bohm version should be used does not mean that they are also conceptually similar.
There are actually deep conceptual differences. If they both share the same state
vector, they attribute to it very different physical interpretations; moreover, the
de Broglie–Bohm interpretation contains elements (positions, trajectories, local
direction of the spin, etc.) that have no equivalent whatsoever in standard theory.

10.6.1.f Summary and discussion

One could summarize the main features of the de Broglie–Bohm version of quantum
theory as follows:

(i) it describes the same events in a richer way than standard theory, but without
introducing any contradiction with its predictions. It often brings unexpected
views on phenomena by introducing intricate arrays of trajectories, particles
jumping from one wave packet to the other33, etc., and leads to representa-
tions that may sometimes be found esthetically pleasing. It makes non-locality
completely explicit but, as we have seen (§10.6.1.c), this non-locality is not
totally absent from standard quantum mechanics either. This explicit character
of non-locality may be the starting point of interesting new discoveries, as the
Bell theorem has illustrated.

(ii) it has often been rejected for bad reasons, starting from Pauli’s objections at the
1927 Solvay conference (inability to treat non-elastic collisions), which does
not hold. Its predictions are indeed equivalent to those of standard quantum

33 Of course, these pictures are not really specific of Bohmian theorẏ. They can also be obtained within standard
theory by drawing figures of the probability current. The difference is that Bohmian theory attributes more
physical reality to these figures.
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theory, but when entanglement is involved (or partial trace operations), for
a correct treatment of the problem one must include the associated Bohmian
positions.

(iii) it brilliantly succeeds in eliminating the role of observers during measure-
ments. With the mechanism of empty waves, measurements are considered as
ordinary interaction processes; the uniqueness of the final result emerges with-
out any external observation. State vector reduction is no longer a postulate,
but is derived from this mechanism.

(iv) concerning determinism, the situation is less clear-cut: the theory provides a
scheme where the measurement process appears as deterministic, but where
an average over an initial and uncontrollable “quantum equilibrium” distri-
bution is necessary. The measurement reveals some pre-existing property of
the Bohmian positions, in a retrodictive way. There is no possibility to con-
trol these positions in order to suppress the random character of the event, or
even only reduce the indeterminism of standard theory. If one wishes, one can
consider that the result of all experiments in physics is a consequence of the
initial Bohmian positions of all particles of the universe, at the big bang, but
one cannot say that indeterminism has really disappeared34; it just gets a more
concrete basis.

(v) concerning realism, the theory does not succeed in re-introducing a simple,
naive, realism. The reason is that, if one wishes to avoid incompatibility with
relativity (avoid the prediction of possible superluminal signaling), one is
forced to accept the existence of two levels of reality, as noted at the end of
§10.6.1.a (see also Appendix H):
• one level of reality (wave functions, or state vectors), described by a field that

can be manipulated directly in experiments (by changing potentials, moving
walls, etc.), but is not directly observable. It propagates in configuration
space, which is much larger than the usual three-dimensional space (except
for a single spinless particle).

This level includes empty waves, with a reality status that is intermediate
and somewhat delicate35 [427].

34 In standard quantum mechanics, random events occur all the time – at least each time a measurement is
performed somewhere in the universe. In Bohmian mechanics, a big single random event occurred at the
creation of the universe; it is the source of all probabilities for future measurements

35 As already discussed at the end of §21, one question is what level of reality should be attributed to empty waves
associated with the results experiments that have not been obtained. These waves tend to constantly proliferate;
for instance, the wave function of the universe develops an enormous number of empty branches, with a single
non-empty branch that is the only one having any influence on future positions (the effective wave function).
It is then tempting to decide that only the non-empty component of the state vector is a real Bohmian field.
But this would amount to re-introducing the postulate of state vector reduction, while its disappearance was
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• another level of reality (Bohmian positions) that is described by variables
propagating in the usual three-dimensional space, and is directly observ-
able. This level cannot be manipulated directly – it is actually completely
interaction free. The corresponding variables are only guided by the field,
which allows manipulating them indirectly, but without ever changing their
quantum equilibrium distribution.

A sort of dualism is re-introduced at this stage, but an asymmetrical dualism
since the former level of reality influences the latter, but not the reverse. Moreover,
while positions propagate naturally in ordinary three-dimensional space, they are
guided only by a field propagating in a completely different space, the abstract
configuration space. The very fact that the two levels of reality are distinguished
by the possible influence of experimental manipulations means that the observer,
whose role was supposed to disappear, actually re-appears in the physical descrip-
tion of phenomena. In this sense, one could consider that the interpretation does
not succeed in bringing the complete simplification of the interpretation that was
initially intended. Moreover, we observe that the tension (without contradiction)
between relativity and the standard theory has its counterpart in the de Broglie–
Bohm interpretation: relativity is the source of the fundamental impossibility to
manipulate Bohmian variables, which in turn ensures that the non-local evolution
of these variables cannot be used for superluminal signaling.

Accepting or rejecting this interpretation therefore remains a matter of personal
choice. It is not so surprising that even its inventors, de Broglie and Bohm, have
themselves sometimes changed their views on the subject during their lives. A good
point of comparison might be the theory of path integrals introduced by Feynman
[446], which is usually considered as a branch of standard quantum mechanics. Most
quantum physicists do not see any contradiction between this point of view and the
use of the standard Hamiltonian quantification procedure and of the Schrödinger
equation (or of the Heisenberg point of view); they are just complementary, and
any of them may be used according to what is more convenient in every context. In
the same way, Bohmian theory may be seen as still another possible point of view,
complementary but not contradictory.

10.6.2 Nelson mechanics

Another formulation of quantum mechanics including additional variables was
introduced in 1952 by Fenyes [447] and in 1966 by Nelson [448], in a somewhat
different form. Instead of taking the Schrödinger equation for granted and adding

one main motivation of the theory; moreover, it would raise delicate questions concerning the exact stage at
which an empty wave becomes empty forever.
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positions to it, the idea is to derive the equation by introducing stochastic motions at
a lower level. One considers point particles with massm, each subject to a Brownian
motion (Wiener process) with diffusion coefficient �/m and no friction; the effect
of an external force deriving from a potential is included by simply using Newton’s
law. Non-linear equations are then obtained for two classical real variables, which
can be grouped into one single complex variable. An appropriate change of vari-
ables36 then results in a sort of “miracle”: a linear equation is obtained at the end.
For appropriate values of the parameters, assuming a universal Brownian motion
therefore leads to a natural derivation of the time-independent and time-dependent
Schrödinger equations, including the possible role of an external electromagnetic
potential.

One may consider this procedure as a purely mathematical method for quantiza-
tion, without any particular physical consequence. But one may also attribute to it a
more fundamental character, by considering the random positions and the Brownian
motions of all particles as real. One then obtains another interpretation of quantum
mechanics with additional variables, which is reminiscent of the Bohmian theory.
One difference with this (and standard) theory is that the evolution of the wave func-
tion is no longer given by a postulate, but actually derived from other postulates
that are considered more fundamental, including a “universal Brownian motion”.
Another difference is that the Nelson point of view makes direct use of Newton’s
law, so that is remains much more classical than a theory where this classical law is
modified. But, as in Bohmian theory, one introduces continuous trajectories for the
particles, even if they are also not directly accessible by experimentation. Again,
the formalism is built to lead exactly to the same predictions as standard quantum
mechanics, so that a large part of our discussion concerning Bohmian theory can be
transposed to Nelson mechanics. For the discussion of statistical mixtures in this
context, see [449].

As in the de Broglie–Bohm theory, a central role is played by the Madelung
hydrodynamic equations [416]. It has been pointed out [450] that these equations
are not sufficient to ensure a single valued wave function, if this wave function has
nodes; to ensure a single value, one has to add circulation quantization conditions
around the nodes, in addition to the local equations of motion of the fluid. In
stochastic mechanics as well, such additional constraints are necessary to ensure
total compatibility with standard quantum mechanics, which makes the physical
interpretation more complicated.

36 The two classical real variables are the “current velocity” and the “osmotic velocity”, defined as the half sum
and half difference of two velocities: the forward and backward time derivatives of the (non-differentiable)
random position of the particle. The change of variables introduces �, defined with a modulus equal to the
square root of the probability density of the position, and with a phase gradient that is proportional to the
current velocity.
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Wiener processes have been used in many other domains of physics – we have
already seen applications to quantum measurement (§8.3.2.c). They can actually
provide a general quantization method. For instance, stochastic quantization has
been applied in quantum field theory [451, 452], in particular by Parisi and Wu,
who have proposed a quantization method with one additional time variable and
a stochastic Langevin equation, and allowing gauge independent perturbation
calculations [453, 454].

10.7 Modal interpretation

The words “modal interpretation of quantum mechanics” are used for a class of
interpretations [455], introduced by Van Fraassen [456], which also attribute more
properties to physical systems than standard quantum mechanics does – but, in this
case, the position of particles plays no particular role. On the one hand, the addi-
tional properties are sufficiently restricted to avoid contradictions or inconsistencies
with the predictions of standard quantum mechanics. On the other hand, they are
sufficiently rich to lead to definite macroscopic events and results of measurement.
A physical system may have a sharp value of a given observable even if its state
vector in standard quantum mechanics is not an eigenstate of the corresponding
operator. The state vector reduction postulate is then no longer necessary.

The main general idea, common to all this family of interpretations, is to associate
two different states to any physical system:

(i) the “dynamical state”, which is the usual quantum state (or density operator) of
standard quantum mechanics. This state describes the evolution of the system,
which, for an isolated system, is given by the Schrödinger equation. In the modal
interpretation, the dynamical state never undergoes state vector reduction.

(ii) a “value state”, which represents the physical properties of the system at any
time (it may be tempting to call it “physical state”, but the tradition is to use
the words “value state” in this context).

Consider a system S that is part of a larger system T , which, for the sake of
simplicity, is assumed to be isolated. The dynamical and the value states describing
S may differ if the dynamical state of S (density operator obtained by partial trace)
is not a projector over a pure state (at least two of its eigenvalues do not vanish).
In this case, the value state of S may contain more information about the physical
properties of S than its dynamical state. A general limit is nevertheless put to
how much information may be added in this way: the set of physical properties
resulting from this more precise description should not exceed the maximum that
is permitted by a standard description with any quantum state. In other words, one
may well attribute to S a pure state even if this system is entangled with another
quantum system (i.e. even if this system cannot be associated with a single pure
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state in standard quantum mechanics), but is is not possible to go beyond this and
obtain an even more precise description. One can then never attribute simultaneous
sharp definitions to non-commuting operators, position and momentum for instance
(as opposed to Bohmian mechanics, where a particle has a perfectly well defined
position and velocity at every time). This provides a description with two state
vectors that is somewhat reminiscent of the Bohm–Bub theory of measurement [7],
to which we come back in the next section.

The question, now, is how to define the value state precisely; various possibilities
have been suggested. Van Fraassen [456] initially proposed relatively general rules,
assuming that the state value could be any state appearing in the decomposition of
the dynamical state (it can be any linear combination of the eigenstates with non-
zero eigenvalues of the partial density operator ρS defining the dynamical state
of S). The definition of the value state then remains rather loose. Other authors
have proposed to be more specific and to use the bi-orthonormal decomposition
(Schmidt decomposition, §6.2.1) to write the entangled dynamical state of the whole
system T as:

|�〉 =
∑
n

cn |ϕn〉⊗
∣∣C′n〉 (10.27)

where the |ϕn〉 are normalized and mutually orthogonal, as well as the
∣∣C′n〉. The

|ϕn〉 are then the possible value states describing system S. Of course, if all cn but
one are zero, within standard quantum mechanics system S is already in a pure
state, and there is nothing new. But the modal interpretation postulates that, even
when several cn do not vanish, system S has the all properties associated with
a single |ϕn〉. This postulate remains fundamentally non-deterministic: the only
possible prediction is given by the probability |cn|2 for S to be in state |ϕn〉, which
reconstructs the Born rule (at this stage, the use of the dynamical state cannot be
avoided). But, even if it is impossible in advance to predict which of the accessible
states will be reached, when it is reached, all sets of propositions about S that would
be true if S was in state |ϕn〉 within standard quantum mechanics are indeed true.
This point of view, where the dynamical state does not determine value states in an
univocal way, but just provides possible values for them, is called “modal” because
it leads to a modal logic of quantum propositions (§10.4).

Consider a measurement process involving system S and a measurement appa-
ratus M . During the initial stage of interaction between S and M , both systems
develop entanglement. This is sufficient to introduce a value state for S that differs
from its standard description (with a density operator). From this moment, the inter-
pretation guarantees that both sub-systems have all the properties associated with
the emergence of a single result from the measurement (macroscopic uniqueness).

This program was later extended by Kochen [457] with more emphasis on the
relational character of properties of physical systems: he considers that the value
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states of S do not describe properties of S alone, but properties in relation to all
the other systems that are entangled with it (including possibly measurement appa-
ratuses). Dieks [458] introduces another view where systems do have intrinsic
properties, and discusses how measurement processes and the existence of macro-
scopic behavior can be understood within the modal interpretation. He points out
that this interpretation is realist in the sense that it assigns definite values to a set of
magnitudes pertaining to a physical system (“beables” or “existents”), as opposed
to results of measurement only in standard theory.

Healey [459] has proposed an “interactive interpretation”, which has similarities
with a modal interpretation. He introduces a distinction between:

(i) the “quantum state” of the system, which is the usual state of standard quantum
mechanics.

(ii) the “dynamical state” of the system, which contains information about all its
current dynamical properties. “The dynamical state of a system at an instant
may be identified with a truth value assignment to all sentences ascribing a
quantum dynamical property to that system at that instant”. Nevertheless, the
dynamical state does not generally also suffice to determine the future behavior
of the system, nor even the probabilities of future behaviors.

The function of the quantum state is precisely to generate probabilities. It
characterizes a system’s current probabilistic disposition, some of which will be
manifested in future interactions, but does not suffice to determine its future behav-
ior. Every quantum system always has a dynamical state, but not necessarily a
quantum state (if it is entangled with another system). Note the difference in
vocabulary: the dynamical state of the interactive interpretation is analogous to
the value state of the modal interpretation, while the dynamical state of the modal
interpretation is analogous to the quantum state of the interactive interpretation.

The role of environment is clearly essential in all these interpretations37. For
a measurement apparatus, the role of “pointer states” is important, see §8.1.2.b.
Bacciagaluppi [460], Dickson [461], Berkowitz and Hemmo [462], and others
have also made contributions to this interpretation, discussing for instance the
role of imperfect measurements, the relation with the BKS theorem (§5.5), etc.
Nevertheless, this interpretation has some difficulties, in particular with mod-
els of environmental decoherence assigning definite values to pointer positions
[463] when they are continuous [460], with Lorentz invariance and contextuality
[462, 464], and with applications in relativistic quantum field theory [465].

37 Of course, the idea to create a correspondence between the physical properties of a system and its environment
is not a specificity of this interpretation; it exists also, for instance, in the pragmatic views discussed in §§10.1.1
and 10.1.2.
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10.8 Modified Schrödinger dynamics

Another way to resolve the coexistence problem between the two evolution pos-
tulates of quantum mechanics is to fuse them into a single postulate, by changing
the Schrödinger equation itself in order to incorporate all features that are neces-
sary to describe a measurement. One assumes that the equation of evolution of
the wave function contains, in addition to the usual Hamiltonian terms, new terms
(possibly non-linear and/or stochastic), which introduce the equivalent of state
vector reduction when necessary [7, 13, 15, 344, 466]. The main objectives of this
approach are:

(i) Uniqueness of macroscopic reality: the new dynamics should be built in such
a way that superpositions of states that are macroscopically distinguishable
are never reached, in other words that Schrödinger cats (as defined in the orig-
inal article) never occur. In particular, measurements made with macroscopic
instruments must have definite outcomes.

(ii) Compatibility with standard quantum mechanics at the macroscopic level: the
probabilities of the different outcomes of measurements must reproduce the
usual Born probability law.

(iii) Compatibility with standard quantum mechanics at the microscopic level:
the theory should remain consistent with the enormous amount of known
experimental results where quantum mechanics has already been applied to
various microscopic systems successfully.

Condition (i) implies that, for macroscopic superpositions (involving for instance
pointers of measurement apparatuses), the new terms select one branch of the
superposition, and cancel all the others. The postulate of state vector reduction of
standard quantum mechanics then becomes useless; a single law of evolution is
sufficient. In other words, macro- and micro-dynamics are unified. Condition (ii)
adds that the selection of one branch must be (or seem to be) random in a way that
exactly reproduces the probabilistic rules of standard mechanics and the effect of
state vector reduction. Condition (iii) implies that the consequences of the change
in the Schrödinger equation must remain extremely small in all situations involving
microscopic objects only (atoms, molecules, etc.); this will immediately ensure that
the enormous amount of successful predictions of quantum mechanics is preserved.

In other words, two extremes must be avoided: either to perturb the linear
Schrödinger equation too much, and make interference effects disappear while
they are still needed (for instance, recombination of the two beams at the exit of a
Stern–Gerlach magnet if no decoherence has occurred), or too little and not ensure
the complete disappearance of macroscopic indeterminacy (Schrödinger cats). The
perturbation term must be efficient when (but not before) any microscopic system
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becomes strongly correlated to a macroscopic environment, which ensures that sig-
nificant decoherence has already taken place; the recovery of interference effects
is then already impossible anyway within standard theory. When necessary, the
process then reproduces the effect of the postulate of the wave function collapse,
which no longer appears as an independent postulate, but as a consequence of the
“normal” evolution of the wave function.

Including the emergence of macroscopic uniqueness in the fundamental dynam-
ical equation of all physical systems solves the major conceptual difficulties of
quantum mechanics. Obviously, this suppresses the problem of specifying the limits
of application of two different postulates: measurement processes become ordinary
interaction processes between two physical systems. Moreover, the state vector can
then be said to directly describe physical reality, instead of being just a computa-
tional tool. The theory contains the elements that explain [14] “why events occur”!
General discussions of the necessity of introducing the notion of events in quan-
tum physics, and the “transmutation from possibilities to facts”, can be found in
[467, 468].

To really define the theory, the above conditions are of course not sufficient; it
is necessary to specify exactly what form the modified Schrödinger equation has,
with no special guidance for doing so except the “border lines not to cross” (ii) and
(iii) mentioned above. It is therefore not surprising that several versions of theories
with modified Schrödinger dynamics should have been proposed.

10.8.1 Evolution of the ideas

It is possible to build versions of modified Schrödinger dynamics by changing
the Schrödinger equation either without introducing additional variables, or by
introducing them at the same time; both methods have been used.

10.8.1.a Early work

In 1966, Bohm and Bub [7] proposed a theory of measurement that contains a mech-
anism leading to state vector reduction. It belongs to the second category since these
authors incorporate in their theory the additional variables previously considered by
Wiener and Siegel [12], which are contained in a “dual vector”. The latter is a math-
ematical object that is actually very similar to the usual state vector |� >, but obeys
an entirely different equation of motion – in fact, both vectors evolve with coupled
equations. The probabilities of the results of measurement are just consequences of
the initial random distribution of the dual vector. For some “normal” distribution of
the new variables, the predictions of usual quantum mechanics are recovered; but it
is also possible to assume the existence of “dispersion free” distributions that lead
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to more precise, non-orthodox, predictions. As a consequence, this theory leads to
a statistic that is richer than usual quantum mechanics. The authors discuss under
which circumstances the effect of the new variables, which have not been observed
yet, could be detected in the future.

In 1976, Pearle [13] introduced a version of the theory that belongs to the first
category, where additional variables are not necessary. He considers the state vector
of the combined system containing both the measured system and the apparatus, just
after their interaction, when they are strongly entangled in a coherent macroscopic
superposition (§8.1). The idea is to assume that the result of a measurement is
determined by the relative phases of the components of this state vector; since these
phases are not controlled experimentally with perfect accuracy, the final result of
measurement then takes values that seem to be completely random. This behavior
is obtained by adding a new non-linear term into the equation of evolution of the
state vector, with a time rate constant λ; this term drives the state vector to one
of its macroscopic components only, in a way that depends on the initial relative
phases. From this point of view, the randomness, postulated by standard quantum
mechanics as fundamental, appears to be just apparent, being a mere consequence
of experimental conditions that are never perfectly reproducible. Relatively little
is added to the usual formalism of standard quantum mechanics, but the new term
added in the equation of evolution should obey necessary conditions listed by the
author:

• property 1: a single result is predicted by the new equation of evolution, meaning
that, among a series of probability amplitudes, all of them go the zero after the
interaction, except one that gets modulus unity – the equivalent of property (i)
above.

• property 2: if the experiment is repeated many times, the selection of a single
non-vanishing probability amplitude happens in a way that is consistent with the
probabilistic predictions of quantum mechanics – the equivalent of property (ii)
above.

In both the preceding theories, the reduction of the state vector is seen as a
dynamical process which, as any dynamical process, has a finite time duration.
We will see below examples of theories (GRW for instance, discussed in the next
section) where this is not the case.

In 1979, Pearle proposed a different approach [14], this time by introducing
stochasticity into the Schrödinger equation; the equation then becomes a stochastic
differential equation with a term containing a randomly fluctuating operator, and
acting on the state vector in a non-linear way. The presence of this new operator puts
the theory into the category with additional variables. By contrast with the 1976
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version, the selection of the outcome of the experiment is no longer due to uncon-
trolled phases, but to a randomly fluctuating operator. The mathematical process
through which the new equation reduces the state vector to one component associ-
ated with a single result is described by a Fokker–Planck equation; it is analogous
to a random walk between absorbing barriers – the corresponding statistical prop-
erties are sometimes described as those of the “gambler’s ruin game”. This version
of Pearle’s theory is more general than the previous one; it nevertheless still has
some problems, which he listed in a review article [469], including “preferred basis
problem”, “interaction problem”, “trigger problem”, etc. In the Bohm–Bub theory,
the complete reduction time was infinite but here, because the statistical process
associated with the “gambler’s ruin game” has a finite mean duration, this time is
finite [470].

10.8.1.b Spontaneous localization (“hits”)

In 1986, Ghirardi, Rimini, and Weber (GRW) introduced a new version of the
theory, which provides an “unified dynamics for microscopic and macroscopic
systems” [15]. They obtain this result by adding to the usual Schrödinger equation
a random process, called “spontaneous localization” (SL), which suddenly changes
the state vector by localizing the particles – as if the positions of the particles were
measured at random times, but not with perfect accuracy (the localization remains
approximate). Some features of this theory are actually reminiscent of the effect
of continuous observations and measurements in standard quantum mechanics
[471, 472] (§8.3.2), or that of approximate measurements. Spontaneous localization
occurs at random times with a time constant that is adjusted so that, for macroscopic
systems, the occurrence of superposition of far-away states is destroyed – condition
(i) above; but this is true for macroscopic systems only, not microscopic systems –
condition (ii) above. Earlier (1984), Gisin had also introduced modified Schrödinger
dynamics with similar equations of evolution implementing the projection postulate
[344], but where the collapse time of the state vector was infinite.

A remarkable property of the GRW approach is that it completely solves the
“preferred basis problem” as well as the “trigger problem” mentioned above; the
basis necessarily corresponds to position localized states. In this model, for indi-
vidual systems38 the localization processes are sudden (they are sometimes called

38 For ensemble of systems, the discontinuities are averaged, and one recovers continuous equations of evolution
for the density operators. Since most of the discussion of [15] is given in terms of density operators/matrices, and
of the appearance of statistical mixtures (decoherence), one may get the (incorrect) impression that individual
realizations are not considered in this work; but this is in fact not the case and “hitting processes” are indeed
introduced at a fundamental level.
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“hitting processes”), which of course makes them completely different from what
happens within usual Schrödinger dynamics. Consider for instance a single parti-
cle described by a state vector |�(t)〉. The effect of one of these processes is to
suddenly replace |�(t)〉 by a ket

∣∣� ′(t)〉 given by:

∣∣� ′(t)〉= Fj |�(t)〉
〈�(t)|(Fj

)2 |�(t)〉
(10.28)

(the numerator of this expression ensures the conservation of norm of the state
vector) where Fj is an Hermitian operator diagonal in the position representation.
GRW assume thatFj localizes the particle around point of space rj with an accuracy
characterized by a free parameter α of the theory (α−1/2 is a length):

Fj = c e−α(R−rj )
2
/2 (10.29)

(R is the position operator of the particle and c a real normalization factor). Now
assume that all localization processes corresponding to the various rj act in par-
allel, constantly and randomly localizing the particle at these points, each with a
probability per unit time given by:

λ 〈�(t)|(Fj

)2 |�(t)〉 (10.30)

where λ is another free parameter of the theory (a rate, the inverse of a time). The
condition: ∑

j

(
Fj

)2 = 1 (10.31)

ensures that the total probability for any sort of hits is independent of the initial
state |�(t)〉. The random effect of these localization processes is then added to the
usual Schrödinger evolution. One then obtains a theory where, for each possible
realization of the random hits at all times, the state vector follows a trajectory that
is well defined, but different for each realization.

Consider the first localization process. If �(r, t) is the wave function associated
with state |�(t)〉, according to (10.29) the probability of occurrence of the process
with index j is:

Pj = λc2
∫

d3r e−α(R−rj )
2 |�(r, t)|2 (10.32)

The localization processes are therefore more likely to be centered at values of rj
where the density of probability |�(r, t)|2 is maximal; conversely, spontaneous
localizations are very unlikely to occur around positions where the modulus of
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the wave function is tiny. Whatever rj is selected in the first localization process,

the wave function after this process is multiplied by e−α(r−rj )
2
/2, which tends to

restrict the wave function to a neighborhood of rj with spatial extension α−1/2.
For the sake of simplicity, let us first assume that the wave function does not have

the time to evolve before a second localization process takes place; because of the
effect of the first localization, the second is then more likely to be centered at a point
not too far from rj . Similarly, the third localization is likely to select a point that is
in the neighborhood of the two preceding localization points, and so on: after a few
localization processes, the wave function is well localized around a point r that is
random, but well defined. This creates the spontaneous spatial reduction process
of the wave function. Now, if the wave function evolves between the localization
processes, the succession of the points of localization reconstructs a trajectory for
the particle, as the track created in a Wilson or cloud chamber.

The scheme can immediately be generalized to a system made of N particles,
by assuming that all the particles independently undergo localization processes.
The operators Fj are then replaced by Hermitian operators F i

j acting on the i-th
particle, and their effect is summed over both indices i and j in the Schrödinger
equation, but again for each realization one obtains a single trajectory for the state
vector |�(t)〉 describing the physical system. The effect of the random processes is
to spatially localize the wave function around a single point of configuration space
with 3N dimensions, with a spatial extension α−1/2 in every direction.

Consider now an ensemble of realizations of the same physical system, described
by an ensemble density operator ρ. The average over all realizations of the hits
provides the time evolution of ρ in the form:

i�
dρ(t)

dt
= [H(t),ρ(t)]+λ

∑
j

[
Fjρ(t)Fj −ρ

]
(10.33)

In the right-hand side of this equation, the first term containing the HamiltonianH(t)

gives the usual Schrödinger–Von Neumann evolution. The second term describes
the average effect of stochastic processes that replace the density operator by a new
value Fiρ(t)Fi with a probability per unit time λ.

In quantum mechanics, localizing a particle is automatically associated with
a change of its kinetic energy; the hitting process therefore “heats” the particle,
necessitating a study of the role of energy conservation. In practice, this means
that the time constant λ and localization constant α have to be adjusted to avoid
the prediction of spontaneous heating effects that have never been observed. GRW
propose choices of the parameters (λ= 10−16 s−1 and α−1/2 = 10−7 m.) such that
the heating rate of a mole of ideal gas is approximately 10−15 K. per year, which
is indeed compatible with known results.
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Benatti et al. have checked that the main effect of the new term is to produce
an actual reduction of the state vector [473]. A more general study of the conse-
quences of introducing non-Hamiltonian evolutions of the state vector was given in
[474], discussing in particular the possibility of introducing position and momen-
tum localizations simultaneously; the conclusion of the study is that, in order to
avoid unacceptable modification of the predictions concerning microscopic pro-
cesses, one should limit oneself to spontaneous localization of positions only. A
problem, nevertheless, of the GRW approach assumes independent localizations of
all the particles, so that it does not preserve the symmetry requirements of quantum
mechanics for identical particles, bosons, or fermions.

Ageneral approach to derive spontaneous localization models has been proposed
[475]: Event-Enhanced Quantum Theory (EEQT), where the quantum system S
under study is coupled to a classical system C having a state described by a classical
parameter α. In the simplest picture, α can take two values only, corresponding for
instance to the two positions of the pointer of a measurement apparatus; but α may
also take any series of discrete values, or even be a vector with many components
having such discrete values. The value of α determines the evolution of the state
vector |�(t)〉 of S, which obeys an equation containingα-dependent non-Hermitian
termsTα (in addition to the usual Hamiltonian). The value ofα changes randomly at
times determined by the value of the average ofTα in state |�(t)〉; as a consequence,
the evolution of |�(t)〉 depends on α and conversely. This model contains the GRW
theory as a special case. Nevertheless, inasmuch as α is considered as describing a
classical physical system, the model re-introduces the Bohrian notion of a frontier
between classical and quantum worlds, while a motivation of theories with modified
Schrödinger dynamics is precisely to suppress this frontier.

10.8.1.c Continuous spontaneous localization

In 1989, Pearle showed [476] that it is possible to solve this problem and to get rid
of the discontinuous character of the hitting processes, while retaining the attractive
features of the GRW model. This is obtained by adding terms of “continuous spon-
taneous localization” (CSL) to the usual Hamiltonian in the Schrödinger evolution.
The new terms introduce Markov processes that depend on a series of random func-
tions of time wj (t) with a broad frequency spectrum (white noise), and contain a
time rate λ as well as a set of mutually commuting Hermitian operators Aj . For an
appropriate choice of these operators, a full compatibility with the standard notion
of identical particles in quantum mechanics is realized. One advantage of this point
of view is that it introduces less radical changes with respect to the standard theory,
since the state vector still evolves according to a differential equation. Nevertheless,
this equation includes random functions of time as well as anti-Hermitian terms
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(Itô stochastic differential equation); the norm of the state vector |�(t)〉 is no longer
conserved.

This non-conservation of the norm actually plays an important role in the theory,
since the statistical properties of the random functions are defined precisely from
this norm: one postulates (CSL probability rule) that the probability39 for realiz-
ing any time dependence wj (t) that leads to a given value of |�(t)〉 is nothing but
〈�(t) |�(t)〉2.At this point, the non-linear character of the theory becomes obvious:
the evolution of |�(t)〉 depends on functions wj (t) which, in turn, have statistical
properties constantly following the norm of |�(t)〉 itself. Such a postulate strongly
favors the realizations of the random functions that give a large norm to the state vec-
tor, while reducing the effect of all the others that give exponentially small values to
the norm (even if mathematically they correspond to many more possibilities). One
can then check that this choice of statistical properties remains consistent with the
independent Markovian evolution of each realization of the state vector. A Fokker-
Planck equation may be obtained for the time evolution of the probability densities.

In order to understand the mechanism of state reduction in this theory (described
in more detail in Appendix J), let us first consider a simple case where one single
operator A (with eigenvalues an) is introduced; we assume that A corresponds to
the observable measured in a quantum measurement process such as that discussed
in §8.1. Just after the end of the interaction between the measured system and
the apparatus, both systems are entangled and described by the ket (8.7) of §8.1.
Now, under the effect of anti-Hermitian terms controlled by the random functions
wj (t), the modulus of each probability amplitude cn(t) fluctuates in time, instead
of remaining constant. Among the large number of mathematically possible wj (t),
according to the CSL probability rule, only a very small proportion may occur
with a non-negligible probability: the proportion leading to a large sum over n of
all |cn(t)|2. It turns out that, among these special functions, the most effective in
providing a large norm for the state vector are those that give a large value to one
|cn(t)|2 only. This is because, during its fluctuations, wj (t) can favor one value
of n, but not several at the same time; situations where the fluctuations of wj (t)

successively favor two (or more) of these coefficients lead to a dilution of the
norm preservation effect and to an exponentially smaller value of the total norm
at the end. We then obtain a process that selects a single outcome in a way that is
reminiscent of the “gambler’s ruin game” of [14]. The fluctuations of the random
functions break the symmetry between all possible measurement outcomes, so that
this theory reproduces state vector reduction.

39 This is somewhat reminiscent of postulating (10.30). Several realizations of the random function wj (t) may
lead to the same value of |�(t)〉 at time t ; the square norm of |�(t)〉 then gives the probability of each of these
realizations.
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In the CSL theory, the operator A is actually not associated with any particular
measurement process – this would make it measurement dependent and imme-
diately destroy one of the achievements of the theory (giving no special role to
measurements). One rather assumes that A is replaced by a series of position local-
ization operators Aj , acting on all particles of the system, and localizing them at
all possible positions in space (j then becomes an index for spatial positions, and
thus may be continuous). As in GRW theories, perfect localizations of the particles
would transfer an infinite amount of energy to them, which is physically unaccept-
able. One then postulates that the localization provided by each Aj is imperfect,
over a spatial range α−1/2; all Aj are mutually commuting operators. Despite these
changes concerning the definition of the operators, the essence of the localiza-
tion process remains similar to that discussed above. It introduces a selection that
eventually localizes each particle into a single random region of space – a spatial
reduction process of the quantum state. For small quantum systems (single parti-
cle, atoms, molecules, etc.), the probability of occurrence of any collapse process
remains extremely low for a very long time (λ is small). For macroscopic systems
in quantum superpositions of two spatially distinct states, collapse is very likely
to take place rapidly and to cancel one of the components; this is because all the
particles involved are constantly subject to localization, while the localization of a
single particle is sufficient to destroy one of the two components.

The functions wj (t) are considered as fundamentally random; as the Bohmian
position variables, they cannot be manipulated directly, but they cannot be detected
directly either (they could be called “hidden functions” instead of “hidden vari-
ables”). But, if one changes by hand the external parameters controlling the
Hamiltonian (changing the magnetic field for instance), the state vector is affected,
which may in turn change the statistical properties of the wj (t) and therefore affect
these functions indirectly.

In 1990, the study of Markov processes and continuous spontaneous localization
for identical particles was expanded by Ghirardi, Pearle, and Rimini [477]. They
showed that, for an ensemble of systems, equation (10.33) is then replaced by an
“Lindblad form” (§6.4.3) giving the time evolution:

i�
dρ(t)

dt
= [H(t),ρ(t)]+ λ

2

N∑
j=1

[
2AjρAj −

(
Aj

)2
ρ(t)−ρ(t)

(
Aj

)2] (10.34)

where the Aj are mutually commuting Hermitian operators (they may be arbitrary
operators but, in this context, they are position localization operators). In general,
discrete Markov processes in Hilbert space can be reduced, in the limit of small
hits with infinite frequency, to a continuous spontaneous localization. For instance,
if one chooses operators such that Aj = Fj in (10.34), according to (10.31), one
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recovers (10.33); this introduces an interesting correspondence between discrete
(GRW type) and CSL models [477] in terms of the average evolution of den-
sity operators. But, conversely, the CSL theory does not require that the sum of
squares of all operators should necessarily be 1, so that the most general Lindblad
equation cannot be obtained from a hitting process. The CSL theories therefore
offer a broader range of possibilities, which turns out to be useful for elaborating
relativistic versions of the theory (§10.8.1.e) or in cosmology [478].

A problem nevertheless is that in CSL, again, a complete collapse of the wave
function is never obtained in any finite time. Even for a macroscopic system, when
most of the wave function goes to the component corresponding to one single
outcome of an experiment, there always remain a tiny component on the others
(even if extremely small and continuously decreasing in time). The existence of
this component is not considered as problematic by the proponents of the CSL
theory [479]. Nevertheless, Shimony has argued [480] that it is philosophically
objectionable to associate physical reality with one single state, as long as the system
remains in a quantum superposition of this state and another; he considers that this
is true even if the weight of the former is enormous in comparison with that of the
latter. This is often called the “tail problem” of modified Schrödinger dynamics; see
[481] and for instance [482] for a proposed solution to the tail problem involving
a combination of modified Schrödinger dynamics and Bohmian velocities, both
stochastic.

An important common feature to all these theories is that they include new
universal constants. They appear in the modified Schrödinger dynamics, and are
adjusted to satisfy conditions (i) to (iii) of §10.8. For instance, we have seen that
the GRW theory (SL) introduces a time scale λ−1 for the rate at which spontaneous
localization takes place, and a length scale α−1/2 to characterize how narrow this
localization is. These constants may in a sense look like ad hoc physical quantities,
introduced only for technical reasons. But actually they have an extremely important
conceptual role: they define the border between the microscopic and macroscopic
world. The corresponding border line, which was ill-defined in the Copenhagen
interpretation, is now introduced in a perfectly precise way. Conceptually, their
role is therefore somewhat reminiscent of that of the Planck constant.

10.8.1.d Relation with gravity

In 1989, starting also from a study of quantum stochastic processes (“quantum
Wiener processes” [12]) as models for state vector reduction [466], as well as
from the treatment of continuous measurements [483], Diosi proposed an inter-
esting modification of the GRW theory [484]. The new theory still provides a
unification of micro- and macro-dynamics, but without requiring the introduction
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of any new parameter. The general idea is to replace the previous spontaneous
position localization processes by a stochastic process of mass localization, with
a strength that is proportional to the Newton universal gravitational constant G;
this is the only parameter appearing in the new terms that are added to the usual
Schrödinger dynamics. Diosi then introduced a treatment of the collapse of the
wave function from a completely general law of density localization, which results
in a parameter-free unification. One can then really speak of a universal mechanism
for reduction!

Nevertheless, Ghirardi et al. [485] soon showed that this appealing approach
also introduces serious problems at short distances, for which completely unrealistic
predictions are obtained; for instance, atomic nuclei would receive so much energy
that they could not stay in their ground state, but would rapidly be excited (or even
dissociated). Ghirardi et al. propose a modification of Diosi’s theory that solves
these problems while still retaining the idea of implying gravitation. One of the two
parameters of the GRW theory is eliminated with the help of a relation implying
Newton’s constant, but the other remains necessary, a constant having the dimension
of a length. In this sense, the “universal” character of the mechanism is lost – the
authors take this as a general indication that a new parameter is really necessary to
solve the problem of the quantum theory of measurement.

Penrose has often invoked a relation between gravity and uniqueness of reality in
quantum mechanics [486], in a more general and philosophical context including
the notion of consciousness, and argued that “the quantum gravity threshold for
self-collapse is relevant to consciousness”.

10.8.1.e Relation with relativity

The localization process introduced in the GRW theory is not easy to describe in
a relativistic way, since it assigns a special role to positions and their localiza-
tion into a finite volume at a given time; the concept belongs more to Galilean,
than Eisteinian, relativity. Nevertheless, relativistic versions of stochastic quantum
dynamics and of the CSL theory have been developed [487, 488]. Moreover, in
2005 Pearle introduced a quantization of the classical random field of the CSL
theory [489], leading to a “completely quantized theory of state vector collapse”;
this resolves a problem related to the conservation of energy under the effect of
collapse mechanism where particles gain energy, by assigning an energy to the
random field, which loses energy so that the total energy remains constant. See also
[490] and [491].

A general remark is that non-linearity and stochasticity must go together if one
wants to avoid contradictions with relativity. For instance, if one introduces non-
linear changes in the Schrödinger equation (at a microscopic level) while keeping
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the standard reduction postulate of quantum mechanics (normally this postulate is
no longer useful in these theories), faster than light signaling becomes possible,
as pointed out for instance by Gisin [492]. Tumulka has proposed a relativistic
version of the GRW theory [493], which he calls “flash ontology”, where the “local
beables” (§10.6) are given by a discrete set of space-time points, at which the
collapses are centered; these points have a random distribution that is determined
by the initial wave function40. For general or historical reviews on collapse and
dynamical reduction theories, see [494] and [469].

10.8.1.f Relation with experiments

As we have seen, the fundamental motivation of theories with modified Schrödinger
dynamics is to provide a unification of all kinds of physical evolution, including
the emergence of a single result in a single experiment. They obtain this result
by the introduction of new physical constants characterizing new physical mech-
anisms, which means that they are necessarily more specific about the conditions
under which state vector reduction takes place. In other words, they are more pre-
dictive than standard quantum mechanics. This provides at the same time a strong
constraint, namely compatibility with all known experimental results, but also inter-
esting opportunities for testing new theory experimentally. This domain is therefore
not limited to purely theoretical considerations.

Concerning possible conflicts with existing experiments, we have already men-
tioned the discussion of [485], which points out incompatibilities of Diosi’s
universal form of the theory with known properties of microscopic objects. A sim-
ilar case is provided by the generalization of quantum mechanics proposed by
Weinberg [495], which he introduced as an illustration of a non-linearity that may
be incompatible with available experimental data; see also [496] for an application
of the same theory to quantum optics and [492] for a proof of the incompatibility
of this theory with relativity, due to the prediction of superluminal communication
(the proof is specific of the Weinberg form of the non-linear theory and does not
apply to the other forms mentioned above).

Another possibility would be to detect the very weak spontaneous heating effect
predicted by these theories. Under the effect of the collapse terms in the evolution
equation, atoms and nuclei should become partly excited, and emit some weak
radiation, which one could try to detect [497]. It turns out that several experiments
of this sort have been performed for different purposes, for instance detecting
radiation in Germanium crystals due to possible collisions with “dark matter”, or

40 We recover one ingredient of the de Broglie–Bohm theory, but here we have collapse points in space-time
instead of purely spatial position. Moreover, in Bohmian theory collapse does not occur.
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two neutrino double-β decay [498]. For the moment, no experiment has been able
to confirm or to exclude theories with modified Schrödinger dynamics.

Significant tests of these new theories could be given in the future by quan-
tum interference experiments performed with objects containing many particles
and going through two spatially distinct paths at the same time. While, in the
experiments performed until now with small objects, the localization terms have a
completely negligible effect, with larger objects they should reduce or even cancel
the contrast of the observed fringes. With the presently proposed values of parame-
ters λ and α, significant tests would be obtained with objects having 108 nucleons.
Nevertheless, observing interference patterns with objects having the correspond-
ing masses remains a very difficult experimental challenge with present technology.
For a review of recent results obtained with clusters and molecules, and a discussion
of future experiments, see [499].

10.8.2 Physical description of reality within modified dynamics

In these interpretations of quantum mechanics, the state vector no longer keeps
the subtle intermediate status it had in standard quantum mechanics (§1.2.3): it
now directly represents physical reality “in itself”. This reality evolves according
to a unified dynamical theory, whether or not measurements, human observations,
etc. are involved. Of course, this does not mean that the theory becomes more or
less similar to classical mechanics. For instance, since the state vector evolves in
a complex state space (Hilbert space), the description of reality should be made in
this space, instead of the usual three-dimensional space; the two spaces are very
different (not only because of their dimensions; even a classical configuration space
with many dimensions remains very different from a Hilbert space). Nevertheless,
the unification of the theory and of its dynamics is perfectly reached, which brings
an enormous conceptual simplification.

Similar physical descriptions are obtained, whatever specific form of the non-
linear dynamics theory is preferred. For instance, when a particle crosses a bubble
chamber, the new terms create the appearance (at a macroscopic level) of a particle
trajectory; they also select one of the wave packets at the measurement output of
a Stern–Gerlach analyzer (and eliminate the other), but not before these packets
become correlated with orthogonal states of the environment (e.g. detectors). Of
course, a localization process of the wave function that operates in the space of
positions, rather than in that of momenta, destroys to some extent the usual sym-
metry between positions and momenta in quantum mechanics. But this is actually
not a real problem, since one can easily convince oneself that, in practice, what is
measured in experiments is basically the positions of particles or objects (pointers,
etc.); momenta are only indirectly accessible.
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What about the Schrödinger cat and similar paradoxes? If the added non-linear
term has all the required properties to properly mimic the state vector reduction, they
are easily solved. For instance, a broken poison bottle must have at least some parts
that have a different spatial localization (in configuration space) than an unbroken
bottle; otherwise it would have all the same physical properties. It is then clear that
the modified dynamics will resolve the components long before it even reaches the
cat, which ensures the emergence of a single possibility. For a recent discussion
of the effects of the modified dynamics on “all or nothing coherent states” (§5.2)
in the context of quantum optics, and of the effects on perception in terms of the
“relative state of the brain” (§10.11), see [500].

How is an EPRB experiment described in this context? In the case of Bohmian
trajectories, we emphasized the role of the “quantum velocity term”, which has a
value defined in configuration space, not in ordinary space. Here, what is essen-
tial is the role of the localization terms added into the Schrödinger equation and
their action on the state vector. Intrinsically, these terms remain perfectly local; in
the GRW theory for instance, at any time each particle may undergo a spontaneous
localization process to any point of space where its probability density does not van-
ish. Consider two particles with spin propagating towards Stern–Gerlach magnets
along orientations a and b. Nothing special occurs as long as each of the particles
propagates towards a Stern–Gerlach analyzer, or even within its magnet, since the
particles are microscopic and have an extremely weak localization probability.As in
standard theory, they can perfectly well be in coherent superpositions, even if they
are far away from each other. But as soon as particle 1 (for instance) hits a detector
at the output of the magnet, the system develops correlations with the particles
contained in the detector, an electronic current, the amplifier, etc. A Von Neumann
chain then develops with two branches, each arising from one of the two wave pack-
ets split by the magnet. A macroscopic level is reached and the localization term
becomes very effective, acting almost instantaneously. Assume for instance that the
localization selects the branch where particle 1 has a+ component along direction
a. Mathematically, this localization amounts to a projection of the two-particle state
vector onto a component where the first particle is in the+ state along a; because of
the mathematical structure of the entangled state, this also projects particle 2 onto
a spin state with component − along the same direction41. As a consequence, the
spin state of the second particle is projected exactly as if the state vector projec-
tion postulate had been applied. Non-locality is not introduced by the localization
process alone, but by its action onto a state that already contains non-local entan-
glement. Since this point of view emphasizes the role of the detectors and not of

41 The equations are similar to those written in the second part of Appendix I in the context of Bohmian theory,
except that they involve entanglement with the more than the other spin only.
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the analyzers, it is clearly closer to the standard interpretation than the Bohmian
interpretation. State vector reduction takes place later than in that interpretation,
since entanglement with the experimental environment is required, and not only a
magnetic splitting of one of the spin wave packets. Both interpretations emphasize
the role of non-locality in a very explicit way, but with a different mechanism.

The program can be seen as a sort of revival of the initial hopes of Schrödinger,
for whom all relevant physics should be contained in the wave function and its
progressive evolution (see the end of §1.1.2); this is especially true, of course, of
the versions of non-linear dynamics that are continuous (even if fluctuating extra
quantities may be introduced), and less true of versions including “hits” that are
somewhat reminiscent of the state vector reduction. Here, the state vector directly
describes the physical reality, in opposition with our discussion of §1.2; we have a
new sort of wave mechanics, where the notion of point particles is completely aban-
doned in favor of wave packets. The theory is different from theories with Bohmian
additional variables because the notion of infinitely precise position in configuration
space never appears. It is free of the difficulties mentioned in §10.6.1.f, since there
is no need to introduce several levels of reality or a distinction between what can be
observed and what can be manipulated; it nevertheless introduces in the evolution
of the state vector stochastic functions (or stochastic hits) that cannot be controlled
by human action. As we have seen, another important difference is that these theo-
ries with modified dynamics are really new theories: in some circumstances, they
lead to predictions that differ from those of orthodox quantum mechanics, so that
experimental tests might be possible. We should finally emphasize once more that,
in these theories, the wave function can still not be considered as an ordinary field:
it continues to propagate in a high dimension configuration space instead of the
usual three-dimensional space.

A conclusion of our discussion of modified Schrödinger dynamics may be
given by quoting Bell’s essay “Speakable and unspeakable in quantum mechanics”
(Chapter 18 of [6]). Speaking of standard quantum mechanics, he writes: “The
‘problem’ then is this: how exactly is the world to be divided into speakable appa-
ratus . . . that we can talk about . . . and unspeakable quantum system that we cannot
talk about? How many electrons, or atoms, or molecules, make an ‘apparatus’?
The mathematics of the ordinary theory requires such a division, but says nothing
about how it is to be made42 . . . Now in my opinion the founding fathers (of quan-
tum mechanics) were in fact wrong on this point. The quantum phenomena do not
exclude a uniform description of micro and macro worlds . . . system and apparatus.
It is not essential to introduce a vague division of the world of this kind”. Modified
Schrödinger dynamics does provide an answer to these questions, and shows that
a theory where the state vector directly describes the physical reality is perfectly

42 Compare, for instance, with the quotation by Landau and Lifshitz in §2.5
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possible: quantum mechanics can indeed be modified without immediately intro-
ducing blatant contradictions with presently known results.

After all, if we truly believe that quantum mechanics is fundamentally non-
deterministic, why should we request that its fundamental equation of evolution
should remain deterministic, as is the standard Schrödinger equation? Is it not
more natural to accept the existence of a small stochastic term in the evolution
equation itself to account for this random character and unify all dynamics? The
border between the situations where macroscopic uniqueness emerges, or does not
emerge, is then no longer vague as in the standard interpretation, but precisely
contained in the equations. Moreover, the theory opens the possibility for new
physical phenomena occurring at this border. It is true that the precise form of the
additional terms in the dynamics of quantum systems is not known; a whole class
of possibilities exist, so that this is still a subject for exploration. But the only fact
that one can built a theory without giving up realism is important, if only just as a
proof of existence.

In particular, physics teachers do not necessarily have to introduce quantum
mechanics to students with all the conceptual difficulties associated with the stan-
dard interpretation. In fact, if they wish they could take a simpler point of view,
retaining the familiar idea that the properties of the physical world exist indepen-
dently of observations, and considering that a physical system is really described
by a wave function (or state vector) propagating in configuration space. They
should admit that the evolution of this wave function obeys an equation which,
for the time being, is still unknown in the most general case. What is never-
theless perfectly clear is that, in the limit of microscopic systems, this equation
reduces to the Schrödinger equation, which describes these systems with an extreme
accuracy. For larger systems, the equation contains terms that lead to the sponta-
neous emergence of macroscopic uniqueness; unfortunately, for the moment the
precise form of these mathematical terms is still unknown. Several possibilities
for these terms have been proposed, but the final form of the theory is still a
subject of research and debate. But, after all, this situation is not worse than in
the standard interpretation, where almost nothing can be said about the nature
of state vector reduction! Eventually, the price to pay for this simplification of
the general conceptual frame of quantum mechanics would be the introduction of
more complicated mathematical equations, containing the reduction process. We
can hope that, one day, experiments will be able to tell us which point of view
is best.

10.8.3 Open quantum systems in standard quantum mechanics

One can also introduce stochastic terms into the Schrödinger equation without any
fundamental purpose, just to obtain a convenient method of calculation [501–503].
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These terms are used for the calculation of the evolution of a partial trace density
matrix describing a sub-system, within an unchanged linear Schrödinger equation
for the whole system. The method replaces a master equation for the partial density
operator by the calculation of the evolution of a series of state vectors; these vectors
are submitted to random perturbations, which may introduce sudden changes that
mimic quantum jumps. Each time evolution of a state vector provides an individual
quantum trajectory.

In some circumstances, it turns out that this approach saves computing time
very efficiently. The method has found many useful applications, in particular in
quantum optics. It is sometimes called “quantum trajectory method”, or “Monte
Carlo wave function”, or still “quantum jumps simulation”; for a review, see [504].
In the limit of very small jumps, it becomes the method of “quantum state diffusion”
[505, 506].

10.9 Transactional interpretation

The transactional interpretation of quantum mechanics also considers quantum
states as real, rather than a mathematical representation of knowledge. It was pro-
posed by Cramer in 1986 [507] as a generalization of previous work he had made in
1980 [508] on the possible role of advanced and retarded waves in EPR situations. It
is known that, in classical electromagnetism, advanced waves (waves propagating
from the future to the past) are solutions of the Maxwell equations, as well as the
usual retarded waves. In non-relativistic quantum mechanics, since the Schrödinger
differential equation is first order in time, it does not have this double type of solu-
tions for a given energy. Nevertheless, in relativistic quantum mechanics, second
order time equations replace the Schrödinger equation, so that in this case also
advanced waves coexist with retarded waves. In transactional quantum mechanics,
the microscopic exchange of a single quantum between a present emitter and a
future absorber is described in terms of exchange of retarded and advanced waves
between them.

This exchange is called a “transaction”, also described by Cramer as a “hand-
shake” between the two participants of a quantum process. The emitter produces
a retarded wave (called “offer wave”), which travels to the absorber, making it
produce an advanced wave (“confirmation wave”), which travels back in time to
the emitter and reacts on it. The cycle repeats itself until a standing wave regime is
reached, in which destructive interference cancels the wave outside the time inter-
val of the transaction (destructive interference between either the two retarded, or
the two advanced, waves). The whole process has a finite extent in space and time,
which means that in relativity it cannot be seen as an event (a point in space-time).
As for the collapse of the state vector, it does not happen at any precise time in this
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interpretation either; it takes place during the whole transaction, in a symmetric
emission and absorption process. It is clear that the theory is explicitly non-local,
so that it has no problem in explaining Bell-type correlations [508].

The mathematical elegance of this point of view makes it attractive. It neverthe-
less remains uncommon among physicists, probably because it requires to give up
intuitive ideas about the past influencing the future and not the reverse, which may
be considered as too high a price for a better understanding of quantum mechanics.

10.10 History interpretation

The interpretation of “consistent histories”43 is also sometimes called “decoherent
history interpretation”, or just “history interpretation” – here we will use the latter.
As we will see, it proposes a logical framework to discuss the evolution of a closed
quantum system, without any reference to measurements. The general idea was
introduced and developed by Griffiths [17]; Omnès and Gell-Mann also contributed
to it and sometimes adapted it [509–511]. The history interpretation is probably the
most recent among those that are discussed in this book. We will remain within
the limits of a non-specialized introduction; the reader interested in more precise
information on the subject should go to the provided references – for a general
presentation, see also an article in Physics Today [512], as well as the references
contained therein, or the introductory review article by Hohenberg [513].

10.10.1 Histories, families of histories

Consider any orthogonal projector P on a subspace F of the space of states of
a system; it has two eigenvalues, +1 corresponding to all the states belonging to
F , and 0 corresponding to all states that are orthogonal to F (they belong to the
supplementary subspace, which is associated with the projector Q= 1−P ). One
can associate a measurement process with P : if the state of the system belongs to
F , the result of the measurement is+1; if the state is orthogonal to F , the result is
0. Assume now that this measurement is made at time t1 on a system that is initially
(at time t0) described by a density operator ρ(t0); the probability for finding the
state of the system in F at time t1 is then given by formula (10.9), which in this
case simplifies into:

P(F, t1)= Tr
{
P̂ (t1)ρ(t0)P̂ (t1)

}
(10.35)

where P̂ (t) is the projector P in the Heisenberg picture at time t . This result
can obviously be generalized to several subspaces F1, F2, F3 , etc. and several

43 The notion of consistency is essential at the level of families of histories, rather than at the level of individual
histories.
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measurement times t1, t2, t3, etc. (we assume t1 < t2 < t3 < .. . ). The probability
that the state of the system belongs to F1 at time t1, then to F2 at time t2, then to
F3 at time t3, etc. is, according to the Wigner formula (§10.1.2.a):

P(F1, t1;F2, t2;F3, t3 . . . )= Tr
{
...P̂3(t3)P̂2(t2)P̂1(t1)ρ(t0)P̂1(t1)P̂2(t2)P̂3(t3) . . .

}
(10.36)

where, as above, the P̂i(ti) are the projectors over subspaces F1, F2, F3 in the
Heisenberg picture. We can now associate a “history” of the system with this
equation: a history H is defined by a series of arbitrary times ti , each of them
associated with an orthogonal projector Pi over some subspace; its probability is
given by (10.36) which, for simplicity, we will write as P(H). In other words,
a history is the selection of a particular path, or branch, for the state vector in a
Von Neumann chain, defined mathematically by a series of times and projectors.
Needless to say, there is an enormous number of different histories, which can
have all sorts of properties; some of them are accurate because they contain many
times associated with projectors over small subspaces F ; others remain very vague
because they contain only a few times with projectors over large subspaces F (one
can even decide that F is the entire space of states, so that no information at all is
contained in the history at the corresponding time).

There are in fact so many histories that it is useful to group them into families,
or sets, of histories. A family is defined again by an arbitrary series of times t1, t2,
t3, . . . , but now we associate to each of these times ti an ensemble of orthogonal
projectors Pi,j that, when summed over j , restore the whole initial space of states.
For each time we then have a series of mutually orthogonal projectors that provide
a decomposition of the unity operator:∑

j

Pi,j = 1 (10.37)

For each time ti this gives the system a choice, so to say, among many projectors,
and therefore a choice among many histories of the same family. It is actually easy
to see from (10.37) and (10.36) that the sum of probabilities of all histories of a
given family is equal to 1: ∑

histories of a family

P(H)= 1 (10.38)

which we interpret as the fact that the system will always follow one, and only one,
of them.

The simplest case occurs when a family is built from a single history: a triv-
ial way to incorporate one history into a family is to associate, at each time
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ti(i = 1,2, . . . ,N), in addition to the projector Pi , the supplementary projector
Qi = 1− Pi ; the family then contains 2N individual histories. Needless to say,
there are many other ways to complement a single history with “more accurate”
histories than those containing the Q; this can be done by decomposing each Q into
many individual projectors, the only limit being the dimension of the total space of
states.

10.10.2 Consistent families

The above definitions are in general not sufficient to ensure a satisfactory logical
consistency in the reasonings. Having chosen a given family, it is very natural to
also enclose in the family all those histories that can be built by replacing any pair or
projectors, or actually any group of projectors, by their sum; this is because the sum
of two orthogonal projectors is again a projector (onto a subspace that is the direct
sum of the initial subspaces). The difference introduced by this operation is that,
now, at each time, the events are no longer necessarily exclusive44; the histories
incorporate a hierarchy in their descriptive accuracy, including even cases where
the projector at a given time is just the projector over the whole space of states (no
information at all on the system at this time).

Consider the simplest case where two projectors only, occurring at time ti , have
been grouped into one single projector to build a new history. The two “parent”
histories then correspond to two exclusive possibilities (they contain orthogonal
projectors), so that their probabilities add independently in the sum (10.38). What
about the daughter history? It is exclusive of neither of its parents and, in terms of the
physical properties of the system, it contains less information at time ti : the system
may have either of the properties associated to the parents. But a general theorem
in probability theory states that the probability associated to an event that can be
realized by either of two exclusive events is the sum of the individual probabilities.
One then expects that the probability of the daughter history should be the sum of
the parent probabilities. But, in quantum mechanics, relation (10.36) shows that
this is not necessarily the case; since any projector, P̂2(t2) for instance, appears
twice in the formula, replacing it by a sum of projectors introduces four terms: two
terms that give the sum of probabilities, as expected, but also two crossed terms45

(or “interference terms”) between the parent histories, so that the probability of the
daughter history is in general different from the sums of the parent probabilities.
This difficulty was to be expected: we know that quantum mechanics is linear at the

44 For these non-exclusive families, relation (10.38) no longer holds since it would involve double counting of
possibilities.

45 These crossed terms look very similar to the right-hand side of (10.36), but their trace always contains at some
time ti one projector P̂i,j (ti ) on the left of ρ(t0) and one orthogonal projector P̂i,k(ti ) on the right.
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level of probability amplitudes, not probabilities themselves; interferences occur
because the state vector at time ti , in the daughter history, may belong to one of the
subspaces associated with the parents, but may also be any linear combination of
such states. As a consequence, a sum rule for probabilities is not trivial.

One way to restore the additivity of probabilities is to consider only families
where the crossed terms vanish, which amounts to the condition:

Tr
{
. . . P̂3,j3(t3)P̂2,j2(t2)P̂1,j1(t1)ρ(t0)P̂1,j ′1(t1)P̂2,j ′2(t2)P̂3,j ′3(t3) . . .

}
∝ δj1,j

′
1
× δj2,j

′
2
× δj3,j

′
3
× . . .

(10.39)

Because of the presence of the product of δ in the right-hand side, the left-hand
side of (10.39) vanishes as soon as at least one pair of the indices (j1,j

′
1), (j2,j

′
2),

(j3,j
′
3), etc. contains different values; if they are all equal, the trace merely gives

the probability P(H) associated with the particular history of the family. In this
way, we introduce the notion of “consistent family”: if condition (10.39) is fulfilled
for all projectors of a given family of histories, we will say that this family is
logically consistent, or consistent for short. Condition (10.39) is basic in the history
interpretation of quantum mechanics; it is sometimes expressed in a weaker form,
as the cancellation of the real part only; this, as well as other points related to
this condition, is briefly discussed in Appendix K. We now discuss how consistent
families can be used as an interpretation of quantum mechanics.

10.10.3 Quantum evolution of an isolated system

Let us consider an isolated system and suppose that a consistent family of histories
has been chosen to describe it; any consistent family may be selected but, as soon
as the choice is made, it cannot be changed (we discuss later what happens if one
attempts to describe the same system with more than one family). This unique choice
provides us with a well-defined logical frame, and with a series of possible histories
that are accessible to the system and give information at all intermediate times t1,
t2, . . . Which history will actually occur in a given realization of the physical system
is not known in advance: we postulate the existence of some fundamentally random
process of Nature that selects one single history among all those of the family. The
corresponding probability P(H) is given by the right-hand side of (10.36); since
this formula belongs to standard quantum mechanics, this postulate ensures that the
standard predictions of the theory are automatically recovered. For each realization,
the system will then possess at each time ti all physical properties associated to the
particular projectors Pi,j that occur in the selected history.

This provides a description of the evolution of its physical properties that can be
significantly more accurate than that given by its state vector; in fact, the smaller
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the subspaces associated to the projectors Pi,j , the more accuracy is gained46. For
instance, if the system is a particle and if the projector is a projector over some region
of space, we will say that for a particular history the particle is in this region at the
corresponding time, even if the whole Schrödinger wave function extends over a
much larger region. Or, if a photon strikes a beam splitter, or enters a Mach–Zehnder
interferometer, some histories of the system may include information on which
trajectory is chosen by the photon47, while standard quantum mechanics considers
that the particle takes all of them at the same time. Since histories contain several
different times, one may even attempt to reconstruct an approximate trajectory for
the particle, while this is completely excluded in standard quantum mechanics (for
instance, for a wave function that is a spherical wave); but of course one must always
check that the projectors that are introduced for this purpose remain compatible with
the consistency of a single family.

The physical information contained in the histories is not necessarily about posi-
tion only: a projector can also project over a range of eigenstates of the momentum
operator, or include mixed information on position and momentum (subject, of
course, to Heisenberg relations, as always in quantum mechanics), information on
spin, etc.. There is actually a huge flexibility in the choice of projectors; for each
choice, the physical properties that may be ascribed to the system are all those that
are shared by all states contained in the projection subspace, but not by any orthog-
onal state. A frequent choice is to assume that, at a particular time ti , all Pi,j are
the projectors over the eigenstates of some Hermitian operator H : the first operator
Pi,j=1 is the projector over all the eigenstates of H corresponding to the eigenvalue
h1, the second Pi,j=2 the corresponding projector for the eigenvalue h2, etc. In this
case, all histories of the family include an exact information about the value of the
physical quantity associated at time ti to H (for instance, the energy if H is the
Hamiltonian). But, as already mentioned, we are not free to choose any operator Hi

at any time ti : in general, there is no reason why the consistency conditions should
be satisfied by a family built just by choosing physical quantities in an arbitrary way.

Using histories, we obtain a description of the properties of the system in itself,
without any reference to measurements, conscious observers, etc. This does not

46 Obviously, no information is gained if all Pi,j are projectors over the whole space of states, but this corresponds
to a trivial case of little interest.

47 Assume that, with a Mach–Zhender interferometer, the family provides information about the path of the photon
inside the interferometer. Then consistency requires that it gives no information on its output path (after the
last beam splitter), and on which output detector it triggers at the end. This is because the probability of having
a particle in each output path contains interference terms between the paths inside the interferometer, but that
these interference terms vanish by sum over the two outputs.

One can also build other consistent families where the output channel is specified, as well as the excited
output detector, but then consistency requires that no information about the path inside the interferometer is
available. This is an illustration of how quantum complementarity applies within the history interpretation.
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mean that measurements are excluded; but they can be treated merely as particular
cases, by incorporating the corresponding physical devices in the system under
study. Moreover, one attributes properties to the system at different times; this
contrasts with the orthodox interpretation, where a measurement does not reveal
any pre-existing property of the physical system, and moreover projects it into a
new state that may be totally independent of the initial state. It is easy to show
that the whole formalism of consistent families is invariant under time reversal, in
other words that it makes no difference between the past and the future (instead
of the initial density operator ρ(t0), one may use the final density operator ρ(tN)

and still use the same quantum formalism [514]) – for more details, and even
an intrinsic definition of consistency that involves no density operator at all, see
§III of [515]. In addition, one can develop a relation between consistent families
and semi-classical descriptions of a physical system; see [510] for a discussion of
how classical equations can be recovered for a quantum system provided sufficient
coarse graining is included (in order to ensure, not only decoherence between the
various histories of the family, but also what the authors of this reference call
“inertia” to recover classical predictability); see also Chapter 16 of [511] for a
discussion of how classical determinism is restored, in a weak version that ensures
perfect correlations between the values of quasi-classical observables at different
times (or course, there is no question of fundamental determinism in this context).
The history point of view undoubtedly has many attractive features, and seems to
be particularly clear and easy to use, at least as long as one limits oneself to one
single consistent family of histories.

10.10.4 Incompatibility of different consistent families

How does the history interpretation deal with the existence of several consistent
families? They are a priori all equally valid, but they will obviously lead to totally
different descriptions of the evolution of the same physical system; this is probably
the most delicate aspect of the interpretation (we will come back to this point in
the next subsection). The history interpretation considers that different consistent
families should be considered as mutually exclusive (except, of course, in very
particular cases where the two families can be embedded into a single large con-
sistent family); any family may be used in a logical reasoning, but not combined
together with others in general. The physicist is then free to choose any point of
view in order to describe the evolution of the system and to ascribe properties to
the system; in a second independent step, another consistent family may also be
chosen in order to develop other logical considerations within this different frame;
but it would be totally meaningless (logically inconsistent) to combine considera-
tions arising from the two frames. This very important fundamental rule, somewhat
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reminiscent of Bohr’s complementarity, must be constantly kept in mind when one
uses this interpretation. We refer the reader to [515] for a detailed and systematic
discussion of how to reason consistently in the presence of disparate families, and
to [516] for simple examples of incompatible families of histories (photon hitting
a beam splitter, §II) and the discussion of quantum incompatibility (§V); various
classical analogies are offered for this incompatibility, including a two-dimensional
representation of a three-dimensional object by a draftsman, who can choose many
points of view to make a drawing, but can certainly not take several at the same
time – otherwise the projection would become inconsistent.

10.10.5 Comparison with other interpretations

In the history interpretation, there is no need to invoke conscious observers, mea-
surement apparatuses, etc. The system has properties in itself, as in the Bohmian
or modified Schrödinger dynamics interpretations. When compared to the others,
a striking feature of the history interpretation is the enormous flexibility that exists
for the selection of the points of view that can be chosen for describing the system;
we have seen that all the times t1, t2, . . . are arbitrary (actually their number is also
arbitrary) and, for each of them, many different projectors P may be introduced.
One may even wonder if the interpretation is sufficiently specific, and if this very
large number of families of histories is not a problem.

What is the exact relation between the history interpretation and the orthodox
theory? There is certainly a close relation, but several concepts are expressed in
a more precise way with histories. For instance, complementarity stands in the
Copenhagen interpretation as a general, almost philosophical, principle. In the his-
tory interpretation, it is related to mathematical conditions, consistency conditions,
and orthogonality of projectors. It is impossible to come back to classical physics
and to a simultaneous definition of all its observables: every projector cannot be
more precise than the projector over a single quantum state |ϕ〉, which is itself
obviously subject to the uncertainty relations because of the very structure of the
space of states. Of course, it is still possible to make Bohrian considerations on
incompatible measurement devices, or distinctions between the macroscopic and
microscopic worlds, but with histories they lose part of their fundamental character.
The history interpretation allows a quantum theory of the universe (compare for
instance with quotation (viii) of §2.5); we do not have to worry about dividing the
universe into observed systems and observers.

The bigger difference between the orthodox and the history interpretations is
probably the way they describe the time evolution of a physical system. In the
usual interpretation, we have two different postulates for the evolution of a single
entity, the state vector, which may sometimes create difficulties; in the history
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interpretation, the continuous Schrödinger evolution and the random evolution of
the system among histories are put at very different levels, so that the conflict is
much less violent. Actually, in the history interpretation, the Schrödinger evolution
plays a role only at the level of the initial definition of consistent families (through
the evolution operators contained in projectors in the Heisenberg picture) and in the
calculation of the probability P(H); the real time evolution takes place between the
times ti and ti+1 and is purely stochastic. A purely non-deterministic evolution has
now become the major source of evolution! There is a kind of inversion of priorities
with respect to the orthodox point of view, where the major source of evolution is
deterministic under the effect of the continuous Schrödinger equation. Nevertheless,
and despite these differences, the decoherent history interpretation remains very
much in the spirit of the orthodox interpretation; indeed, it has been described as
an “extension of the Copenhagen interpretation”, or as “a way to emphasize the
internal logical consistency of the notion of complementarity”. Gell-Mann prefers
a more general point of view on the history interpretation [517], which makes the
Copenhagen interpretation just “a special case of a more general interpretation in
terms of the decoherent histories of the universe. The Copenhagen interpretation is
too special to be fundamental . . .”.

What about the relation with the “correlation interpretation”? It also seems to
be very close, since both points of view give a central role to the Wigner formula.
In a sense, this minimal interpretation is contained in both the Copenhagen inter-
pretation and in the history interpretation. Some physicists favoring the correlation
interpretation would probably argue that adding a physical discussion in terms of
histories to their mathematical calculation of probabilities does not add much to their
point of view: they are happy with the calculation of correlations and do not feel the
need for making statements on the evolution of the properties of the system itself.
Moreover, they might add that they wish to insert whatever projectors correspond
to a series of measurements in (10.9), and not worry about consistency conditions:
in the history interpretation, for arbitrary sequences of measurements, one would
get inconsistent families for the isolated physical system, and one has to include
the measurement apparatuses to restore consistency. We have already remarked in
§10.1.2 that the correlation interpretation allows large flexibility concerning the
boundary between the measured system and the environment. For these physicists,
the history description appears probably more as an interesting possibility than as
a necessity, but without introducing any contradiction either.

Are there also similarities with theories with additional variables? To some
extent, yes. Within a given family, there are many histories corresponding to the
same Schrödinger evolution and, for each history, we have seen that more informa-
tion on the evolution of physical reality is available than from the state vector
(or wave function) only. Under these conditions, the state vector appears as a
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non-complete description of reality, and one may even argue that the histories
themselves are indeed additional variables48. In a sense, histories provide a kind of
intermediate view between an infinitely precise Bohmian trajectory for a position
and a very delocalized wave function. In the Bohm theory, the wave function pilots
the position of the particles; in the decoherent history interpretation, the propagation
of the wave function pilots rather the definition of histories (through a consistency
condition) as well as a calculation of probabilities, but not the evolution between
times ti and ti+1, which is supposed to be fundamentally random.

Two theories, one deterministic, the other completely indeterministic, are neces-
sarily different conceptually. Nevertheless, it is not impossible to transpose some of
the Bohmian ideas to the history interpretation, and make it deterministic. Consider
a given consistent family for which, at time t1, the number of different projectors
Pj1 is Q1; at time t2 the number of different projectors is Q2, etc. One could for
instance introduce an additional variable x(ti) that, by definition, always belongs
to the [0,1] interval, and postulate that this variable provides a criterion to decide,
among all projectorsPji at each time ti , which is “realized” (which projector defines
physical properties that are associated with this history at this time). Mathemati-
cally, this can be done by dividing the [0,1] interval into Qi smaller intervals Iij

(with j = 1,2, . . . ,Qi) and associate the values of x(ti) within interval Iij to the
realization of projector Pji . In this way, a “trajectory”, defined by the values of x(t)
at all discrete times t1, t2, . . . , ti , . . . defines a single history of the family. At the
initial time t1, as in Bohmian theory one then could assume a probability distribu-
tion that reproduces the quantum predictions, and finally define a law of motion of
the additional variable that ensures compatibility with the predictions of standard
quantum mechanics49 – in this case relation (10.36). By adding this variable x(t)

to the history interpretation, the latter could be made deterministic and, to some
extent, compatible with the Bohmian ideas. Still, with the present states of the two
theories, we can probably safely conclude this comparison between the Bohmian
and history interpretations by saying that they give very different points of view on
quantum mechanics.

Finally, what is the comparison with theories using a modified Schrödinger evo-
lution? In a sense, they correspond to a completely opposite strategy, since they
introduce into one single equation the continuous evolution of the state vector as
well as a mechanism simulating the state vector reduction (when needed); by con-
trast, the history interpretation puts on different levels the continuous Schrödinger
evolution and a fundamentally random selection of history selection by the system.

48 They would then be family dependent, and therefore not EPR elements of reality, as we discuss later.
49 This could be done either continuously by postulating some equation of evolution of x(t), or by discrete steps

by postulating a mapping of the interval [0,1] over itself corresponding to the translation in time from ti to
ti+1 (we note in passing a similarity with the notion of Poincaré maps in classical mechanics).
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One might venture to say that the modified non-linear dynamics approach is an
extension of the purely wave program of Schrödinger, while the history interpre-
tation is a modern version of the ideas put forward by Bohr. Another important
difference is, of course, that a theory with modified dynamics is not strictly equiv-
alent to usual quantum mechanics, and could lead to experimental tests, while
the history interpretation is built to reproduce exactly the same predictions in all
cases – even if it can sometimes provide a useful point of view that allows to grasp
its content more conveniently [316].

10.10.6 A profusion of histories; discussion

We finally come back to a discussion of the impact of the profusion of possible
points of view, which are provided by all the families that satisfy the consistency
condition. We have already remarked that there is, by far, no single way in this inter-
pretation to describe the evolution of properties of a physical system – for instance,
all the complementary descriptions of the Copenhagen interpretation appear at the
same level. This is indeed a large flexibility, much larger than in classical physics,
and much larger than in the Bohmian theory for instance. Are the rules that we
have defined above (“no combination of points of view”) really sufficient to ensure
that the theory is completely satisfactory? The answer to this question is not so
clear for several reasons. First, for macroscopic systems, one would like an ideal
theory to naturally introduce a restriction to sets corresponding to quasi-classical
histories; unfortunately, the number of consistent sets is in fact much too large to
have this property [325]. This is the reason why more restrictive criteria for mathe-
matically identifying the relevant sets are (or have been) proposed, but no complete
solution or consensus has yet been found; the detailed physical consequences of
consistency conditions are still being explored, and actually provide an interesting
subject of research. Moreover, the historical paradoxes are not all solved by the
history interpretation. Some of them are, for instance the Wigner friend paradox,
to the extent where no reference to observers is made in this interpretation. But
some others remain unsolved, just with a reformulation in a different formalism
and vocabulary.

Let us for instance take the Schrödinger cat paradox, which initially arose from
the absence of any ingredient in the Schrödinger equation able to create the emer-
gence of a single macroscopic result – in other words, for excluding impossible
macroscopic superpositions of an isolated, non-observed, system. In the history
interpretation, the paradox transposes in terms of choice of families of histories:
the problem is that there is no way to eliminate the families of histories where the cat
is at the same time dead and alive; actually, most families that are mathematically
acceptable through the consistency condition contain projectors on macroscopic
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superpositions, and nevertheless have exactly the same status as the families that
do not. One would much prefer to have a “super-consistency” rule that would elim-
inate these superpositions; this would really solve the problem, but such a rule does
not exist for the moment. At this stage, one can then do two things: either consider
that the choice of sensible histories and reasonable points of view is a matter of
common sense – a case in which one returns to the usual situation in the tradi-
tional interpretation, where the application of the postulate of wave packet is also
left to the good taste of the physicist – or invoke decoherence and coupling to the
external world in order to eliminate all these unwanted families – a case in which
one returns to the usual situation where, conceptually, it is impossible to ascribe
reasonable physical properties to a closed system without referring to the external
world and interactions with it50.

Finally, one may notice that, in the history interpretation, there is no attempt
to follow “in real time” the evolution of the physical system; one speaks only of
histories that are seen as complete, “closed in time”, almost as histories of the past
in a sense. Basic questions that were initially at the origin of the introduction of
the state reduction postulate, such as “how to describe the physical reality of a spin
that has already undergone a first measurement but not yet a second”, are not easily
answered. In fact, the consistency condition of the whole history depends on the
future choice of the observable that will be measured, which does not make the
discussion simpler than in the traditional interpretation, maybe even more compli-
cated since its very logical frame is now under discussion. What about a series of
measurements which may be, or may not be, continued in the future, depending
on a decision that has not yet been made? As for the EPR correlation experiments,
they can be re-analyzed within the history interpretation formalism [518] (see also
[187] for a discussion of the Hardy impossibilities and the notion of “consistent
counterfactuality”); nevertheless, at a fundamental level, the EPR reasoning still
has to be dismissed for exactly the same reason already invoked by Bohr long ago:
it introduces the EPR notion of “elements of reality”, or counterfactual arguments,
that are not more valid within the history interpretation than in the Copenhagen
interpretation (see for instance §V of [518] or the first letter in [517]). We are then
brought back to almost the same old debate, with no fundamentally new element.
We have nevertheless already remarked that, like the correlation interpretation, the
history interpretation may be supplemented by other ingredients, such as the Everett

50 For instance, in the context of histories, one sometimes invokes the practical impossibility to build an apparatus
that would distinguish between a macroscopic superposition and the orthogonal superposition; this would justify
the elimination of the corresponding histories from those that should be used in the description of reality. Such
an argument reintroduces the notion of measurement apparatus and observers in order to select histories, in
contradiction with the initial motivations of this point of view – see Rosenfeld’s quotation in §2. Moreover,
this immediately opens again the door to Wigner friend type paradoxes, etc.
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interpretation51 or, at the other extreme, EPR or deterministic ingredients, a case
in which the discussion would of course become different.

For a more detailed discussion of this interpretation, see the references given at
the beginning of this section. For a discussion of the relation with decoherence, the
notion of “preferred (pointer) bases”, and classical predictability, see [325]. For a
critique of the decoherent history interpretation, see for instance [519], where it is
argued that consistency conditions are not sufficient to predict the persistence of
quasi-classicality, even at large scales in the universe; see also [520], which claims
that these conditions are not sufficient either for a derivation of the validity of the
Copenhagen interpretation in the future; but see also the reply to this critique by
Griffiths in [516]. The history interpretation is related to the theory of continuous
measurements in quantum mechanics [521] (§8.3.2) as well as to the technique
of stochastic quantum theories (§10.8.3). Finally, another interesting reference is
an article published in 1998 in Physics Today [18], which contains a discussion
of the history interpretation in terms that stimulated interesting reactions from the
proponents of the interpretation [517].

10.11 Everett interpretation

A now famous point of view is that proposed in 1957 by Everett [522], who named
it “relative state interpretation”. Other names also appear in the literature, such
as “many-worlds interpretation” (MWI), “many-minds interpretation”, “univer-
sal wave function interpretation”, or “splitting universe interpretation” (the word
“splitting”, or “branching”, refers here to the ramifications of the state vector of
the universe into various branches, which we discuss below). These names corre-
spond to different members of the same family of interpretations, which may differ
slightly from each other, or even sometimes be significantly different. A common
feature of all the family is that any possible contradiction between the two evolu-
tion postulates is removed by a simple but efficient method: the second postulate
is merely suppressed.

10.11.1 No limit for the Schrödinger equation

In the Everett interpretation, the Schrödinger equation is taken even more seriously
than in any other interpretation. One does not attempt to explain how, in a sequence
of measurements, a well-defined result is obtained for each measurement. Instead,
one merely considers that a single result never emerges: for each measurement,

51 Nevertheless, since the Everett interpretation completely suppresses from the beginning any specific notion of
measurement, measuring apparatus, etc., the usefulness of completing it with the history interpretation is not
obvious.
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all possibilities are realized at the same time! The Von Neumann chain is then
never broken; its tree of possibilities is left free to develop its branches ad infini-
tum. Everett writes [522] that, for a composite system of correlated sub-systems
(observed system, measurement apparatus, and observer, after a measurement):
“there does not exist anything like a single state for one sub-system. Systems do
not possess states that are independent of the states of the remainder of the system . . .

One can arbitrarily choose a state for one sub-system and be led to the relative state
for the remainder” – this seems to be just a description of quantum entanglement,
a well-known concept. But, now, the novelty is that the observer is considered as
a purely physical system, to be treated within the theory on the same footing as
the rest of the environment, microscopic or macroscopic. “As models for observers
we can, if we wish, consider automatically functioning machines, possessing sen-
sory apparatus and coupled to recording devices registering past sensory data and
machine configuration”. Everett adds that “current sensory data, as well as machine
configuration, is immediately recorded in the memory, so that all the actions of the
machine at a given instant can be considered as functions of the memory contents
only”; all relevant experience that the observer keeps from the past is then contained
in this memory (magnetic tape, counter, even configurations of brain cells). From
this Everett concludes that “there is no single state of the observer . . . with each
succeeding observation (or interaction), the observer state branches into a number
of different states . . . All branches exist simultaneously in the superposition after
any sequence of observations”. He then checks that “experiences of the observer”
(registered in the memory) “are in full accord with the predictions of the conven-
tional ’external observer’ formulation of quantum mechanics”. Much later, in a
letter to D. Raub [523], he writes that this interpretation is “the only completely
coherent approach to explaining both the contents of quantum mechanics and the
appearance of the world”.

Consider for instance the physical system made of one microscopic system (or
several systems) under study, a measurement apparatus and the observer, and then
assume that this ensemble is isolated from the rest of the universe. Its state vector
then represents reality itself, not our knowledge of this reality. While measurements
are performed, the state vector ramifies into branches corresponding to all possible
results of measurements, without ever selecting one of these branches; all remain
real after measurement. The observer is part of this ramification process, and his
mind becomes captured in an entangled state with the experimental apparatus and
all the environment, reaching simultaneously different states corresponding to the
registration of several different results (hence the words “many minds”). In other
words, the observer plays the role of the Schrödinger cat in the historical paradox.
Nevertheless, he cannot perceive several different results at the same time. Indeed,
each “component of the observer” has no relation whatsoever with all the others, as



294 Various interpretations

well as with the state vectors that are associated to them (hence the name “relative
state interpretation”).

The emergence of macroscopic uniqueness is then just a delusion, a consequence
of the way the observer perceives his own memory, of his abilities of introspection.
This delusion appears as a consequence of the limitations of the human mind; since
the universe itself evolves in a perfectly regular and deterministic way, randomness
occurs only in the mind of the observer as a consequence of the specific properties
of his memory (storage into the memory and reading its content). Independently
of the observers, nothing puts a limit on the predictive deterministic power of the
Schrödinger equation. In reality, the random process we usually call “quantum
measurement” never takes place!

The “universal wave function” is the wave function of the universe, which con-
tains many branches, in particular all those created by quantum experiments leading
to several possible results. Nevertheless, a split of one branch into several others may
also occur in interaction processes that were not designed specifically as measure-
ments52. Different branches corresponding to macroscopically different situations,
involving for instance the position of the pointers and their consequences, are inde-
pendent. The reason is that no interaction Hamiltonian has matrix elements coupling
states where a macroscopic number of elementary quantum systems are in orthog-
onal states; they cannot be made to interfere in practice, since this would require
acting coherently on the individual microscopic states of too many particles. This
is why one sometimes considers these branches as different “worlds” existing in
parallel, which is the origin of the acronym MWI; others prefer to consider that one
still has a unique world in a quantum superposition of very different states, some-
times called “multiverse” [524]. In any case, the universe has a single quantum state
but its sub-systems, including the observers, are simultaneously in many states.

10.11.2 Consistency of the interpretation

In the Copenhagen interpretation, the consistency of quantum mechanics requires
the existence of a classical world where external observers make and record obser-
vations; in this interpretation, observers are neither external nor classical. Of course,
the postulate of state vector reduction disappears as well. Moreover, the Born prob-
ability rule is then seen, not as an independent postulate, but as a rule that should be

52 When Wigner’s friend (§2.3) communicates the result he has obtained to the physicist outside of the laboratory,
for instance by giving him a telephone call, more branching takes place; the physicist outside becomes entangled
with the branches resulting from the experiment, while he was not before he learnt the result. There is a relation
between branching and the flow of information.
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derived from the superposition principle. This means that one has to explain, within
the formalism of the space of states and of the linear Schrödinger equation, why:

(i) as we have already remarked, every observer has the impression that a single
result has been obtained when he uses his memory to recall the experiments
that were made in the past. Different observers of the same experiment agree
when they compare the obtained results.

(ii) why, when repeating the same experiment, the observer also has the impression
that the frequency of occurrence of each possible result corresponds to the usual
Born rule.

(iii) it is also necessary to define precisely the appropriate basis of the space of
states in which the preceding properties are true, and the conditions under
which the branching (or splitting) of the observers take place.

Point (i) is a postulate related to the faculties of registering results and of intro-
spection and the human mind. Even if they belong to a perfectly deterministic
universe, when they perform experiments, observers have stochastic perceptions
of the results they register in their memories. An essential component of the inter-
pretation is that, in each state of his mind, the observer can have access only to the
content of his memory in the corresponding branch of the state vector, without any
influence of all the other components. Similarly, when exchanging information on
results of experiments with other observers, he or she has access to only one branch
associated with one single well-defined content of their memories. In other words,
any group of observers is split into many completely independent components,
without any possible communication between them.

Point (ii) requires that, without invoking the notion of external observations,
probabilities should emerge from considerations on the mathematical structure of
the entangled state vector, and that their value should be predicted [525, 526]. The
Schrödinger equation is linear, and of itself does not imply any particular meaning
to the square of the norm of its various components, which must be related to
the frequencies of occurrence of the various results. When the same experiment is
repeated many times, many branches appear in the state vector, corresponding to all
possible series of results; the idea is to show that, in most cases, the observer is part of
a branch where the relative frequency of the results corresponds to the Born rule53.

53 Consider the simplest case, an experiment providing two results, with probabilities p and q = 1−p according
to the Born rule. When the experiment is repeated many times, the state vector splits into two components each
time, and therefore develops a very large number of branches. One can then show that most of its norm goes
to the components where the ratio between the two kinds of splits is very close to p/q, while the norm of the
other components is negligible. This argument has sometimes been used as a derivation of the Born rule, but
it is actually circular, since it assumes from the beginning that the weight of the various branches is given by
their norm.
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One may also consider situations where the nature of the experiment changes during
the sequence, or for instance where several observers repeat different experiments
in parallel.

Everett argues that a natural way to attribute measures to the various “trajec-
tories” of the observers is to choose the usual Lebesgue norm, since it conserves
the total probability. He then evaluates the measure associated with any particular
sequence of results stored in a memory54. More recent versions of the Everett inter-
pretation are formulated in terms of information and flow of information (§10.1.3).
For instance, Deutsch [525] has proposed an information-theoretic derivation of
the Born rule by combining the Everett interpretation with game theory; see
also the work of Wallace [527] and Saunders [528]. Zurek [326, 529] has dis-
cussed the relations between the Born probabilities and “environment-assisted
invariance”, or “envariance”, which he compares to Laplace’s standard defini-
tion of probabilities based on the “principle of indifference”. Envariance can also
be used to derive the dynamical independence of the branches of the state vec-
tor. Nevertheless, whether or not one can derive the Born rule from the Everett
theory in a way that remains more economical than the rule itself remains some-
what controversial. For instance Peres writes (§12.1 of [287]), speaking of this
family of interpretations: “None is satisfactory because they merely replace the
arbitrariness of the collapse postulate by that of the no-communication hypoth-
esis” (no-communication between branches of the state vector); see also [530]
and [531].

In any case, the Everett notion of probability remains very different from any
usual notion of probability, including that used within standard quantum mechanics.
Normally probability relates to a situation of uncertainty where a set of possibil-
ities exist, while only some will become actual. This is not the case in Everettian
theory, where every outcome of a measurement actually occurs, so that there is
no distinction between what actually happens and what does not. In reality, there
is no uncertainty at all. Moreover, in the usual notion of probability, the observer
samples an ensemble of possibilities among those of a statistical ensemble; in the
Everett interpretation, the observer contains all possibilities in the various branches
and therefore plays himself, in a sense, the role of the statistical ensemble. A new
concept of probability is then introduced, see for instances the discussions of Refs.
[532] and [533]. Curiously, instead of disappearing from the scene as one could
have expected55, the observer plays a central role in the theory again, by generating
probabilities.

54 There is an interesting relation between this work and Gleason’s theorem (§10.4.4), which was discovered
independently and published almost simultaneously.

55 See for instance Rosenfeld’s quotation in §2.5.
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Point (iii) is also very important. In Everett interpretation, macroscopic unique-
ness is not a property of the outside world, but rather of the states of this world
that become entangled with the relevant basis of states for the memory of the
observers56 – a basis in which they store permanent information about the past
and they use for instance to exchange consistent information on the results of the
experiments with others. Each observer is always macroscopic, having no direct
access to the microscopic world: an appropriate macroscopic device is necessary
to transmit the microscopic information to his memory. Therefore, an observer can
never become directly entangled with a microscopic system, for instance with the
two trajectories that a single particle can take in an interferometer (which would
destroy the interference effect). Such an entanglement can only occur indirectly,
through an apparatus acting as an environment of the observed system. It then
becomes natural to invoke macroscopic decoherence as the source of branching
of the observer [534]; we have seen (§§6.3.3 and 10.1.1.a) that decoherence pre-
vents the observation of any interference effect between the various components
of a coherent superposition, whether the observer is involved or not in this super-
position. Generally speaking, the “pointer state basis” (§8.1.2.b) created by the
environment naturally appears as the best choice for expanding the Everett entan-
gled state and applying properties (i) and (ii). This is a common point of view,
even if it creates a somewhat indirect relation: both the memory of the observer
and the external environment are coupled to the pointer, but the idea is to assume
that the nature of the second coupling determines the relevant basis for the first
interaction and entanglement. In other words, the relevant basis of the memory
is not directly determined by its coupling with the observed object (pointer), but
by its coupling with a third partner (considering that the memory of the observer
is the only effective environment of the pointer seems rather unrealistic). One
should then assume that both couplings share common properties concerning the
preferred basis.

Another point of view is to consider (as is often the case in the variant called
“many-world interpretation”) that the splits of the state of the universe take place
only during the processes of measurement; the Copenhagian notion of measurement
is then conserved. In the “many-mind interpretation”, the split takes place at the level
of the minds of the observers, a point of view that can be seen as an elaborate version
of Wigner’s interpretation involving human consciousness (§§10.1.1.b and 2.3).

56 Consider macroscopic sub-ensembles of the universe that have interacted with observers. Macroscopic unique-
ness is not an intrinsic property that could be attributed to them; rather, it corresponds to the perception of a
property arising from the type of correlation occuring between them and the memory registers of the observers.
In this interpretation, the observers therefore play a role that is at least as important as in the other interpretations
of quantum mechanics. In the parts of the universe that have never interacted with observers, macroscopic
uniqueness has no physical meaning at all.
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Since each branch of the state vector involves a different history of the world, it
is also relatively natural to combine the Everett interpretation with the decoherent
history interpretation (§10.10).

10.11.3 Discussion

How is an EPRB experiment seen in this theory? In the Bohmian interpretation,
we emphasized the role of Stern–Gerlach analyzers; in the modified Schrödinger
dynamics, the role of the detectors and decoherence; here we have to empha-
size the correlations with the external world, which take place for the memories
in the minds of the two human observers. The state vector actually develops
its Von Neumann chain through the analyzers and the detectors and, at some
point, also includes the observers whose brains become part of the superposi-
tion. For each choice of the settings a and b, four branches of the state vector
coexist; each branch depends explicitly on both parameters, and it is not possible
to write mathematically a state vector describing locally the properties associ-
ated with a limited region of space and depending on a only, or on b only. Since
in the Everett interpretation the state vector directly describes reality, the very
expression of an entangled state vector then leads to a non-local description of
reality. As for the observers, Alice and Bob, they are themselves embedded in this
non-local Von Neumann chain, with components that depend on both a and b;
therefore, the choice of a has a distant influence on what Bob’s registers, and
conversely. Clearly, the Everett interpretation implies a non-local description of
reality57.

A question that naturally then arises is whether or not the notion of external
parameters remains valid within the Everett interpretation (cf. discussion and Bell’s
quotation in §4.5.1.c). The memories of the observers are considered as registers
functioning according to the deterministic Schrödinger equation. Should one then
consider that these observers retain free will, so that they can arbitrarily choose
the settings a and b, or rather that these choices are causally determined, exactly
as their memories? In the latter case, one arrives at superdeterminism, and the
notion of free parameter disappears altogether; the proof of the Bell inequalities
becomes impossible, since the settings a and b may be considered as consequences
of common causes in the past; all the discussion of locality we have given becomes
meaningless.

57 Nevertheless, if one considers the flux of information taking place during the Schrödinger (or Heisenberg)
evolution of a system of qubits reproducing an EPR experiment, one is led to equations that remain perfectly
local [535]; the authors of this reference conclude that a violation of the Bell inequalities means that one
cannot attribute stochastic variables to experimental results, which is similar to rejecting counterfactuality (or
realism).
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We have seen above that different branches of the state vector of the universe are
independent. Then, by construction, the Everett interpretation leads to experimental
predictions that are identical to those of the standard interpretation; in this sense,
it is not falsifiable. DeWitt [16] even considers that this interpretation is a mere
consequence of the formalism: after asking the question “Could the solution to
the dilemma of indeterminism be a universe in which all possible outcomes of
an experiment actually occur?” he states that “the mathematical formalism of the
quantum theory is capable of yielding its own interpretation” – see also the inter-
esting debate [19] that was stirred by the publication of this point of view. DeWitt
also states that the Everett interpretation is a necessity58 in quantum cosmology:
“Everett’s [’many worlds’] interpretation has been adopted by the author (Bruce
DeWitt) out of practical necessity: he knows of no other. At least he knows of no
other that imposes no artificial limitations or fuzzy metaphysics while remaining
able to serve the varied needs of quantum cosmology, mesoscopic quantum physics,
and the looming discipline of quantum computation” (page 144 of [536]).

Considering the wave function of the universe is of course natural when studying
it as a whole. Generally speaking, the idea of multiple universes is not uncommon in
astrophysics and cosmology. It has sometimes been evoked to explain the existence
of dark matter and dark energy; in the context of the Everett interpretation, one
could propose an explanation involving the existence of some interaction between
the branches of the state vector of the universe. Multiple universes have also been
conjectured in the context of the “anthropic principle” (assuming that the state of the
universe contains many branches where the conditions are such that the appearance
of intelligent beings is not possible; nevertheless, mankind can only observe what
is happening in the small proportion of branches where this appearance has been
possible, and therefore very special universes). For a review of parallel universes
and many worlds in the context of cosmology, see the articles by Tegmark [537],
who emphasizes that “parallel universes are not a theory, but a prediction of certain
theories”. A large proportion of physicists specialized in quantum cosmology seem
to prefers the Everett interpretation [538].

At first sight, the Everett interpretation may look like a welcome unification
in quantum physics, especially since it requires no change in the formalism. This
makes it attractive to many physicists in a first contact; but on further study some
find it difficult to really assimilate, and the interpretation has been criticized. For
instance, Bell writes [539] that: “the elimination of arbitrary and inessential ele-
ments from Everett’s theory leads back to, and throws new light on, the concepts
of de Broglie”. Indeed, while the Everett interpretation is often considered as the

58 Other interpretations, for instance those involving modified Schrödinger dynamics (§10.8), are nevertheless
also perfectly suitable for introducing the state vector of the universe.
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exact opposite of de Broglie–Bohm interpretation, often seen as more naïve, both
are actually rather similar. The ensemble of the Bohmian empty waves, together
with the non-empty wave, reconstructs the same state vector as in the Everett
interpretation. Moreover, when an Everettian observer examines the content of his
memory after performing a series of experiments, he has access to a single branch
of the state vector selected along a sequence of ramifications. But this branch can
also be defined by a retrodictive Bohmian trajectory in configuration space; during
each measurement, the trajectory directly indicates which branch has been selected
by the Bohmian position to “surf” on it. The only difference is that the sequence
of state vectors gives only a blurred view of the trajectory, while it is defined with
infinite accuracy in Bohmian theory. Nevertheless, this difference has no conse-
quence in practice since, in both cases, the observer remembers the same sequence
of events, and nothing more. In [47], Bell adds that: “this multiplication of uni-
verses . . . serves no real purpose in the theory, and can simply be dropped without
repercussions59”. Peres calls it a “bizarre theory” [287] and considers the inter-
pretation as non-economical (quotation above in §10.11.2). Leggett discusses this
interpretation in the following terms [81]: “The branches of the superposition which
we are not conscious of are said to be ‘equally really’, though it is not clear . . . what
these words, ostensibly English, are supposed to mean”. One question is what we
should expect from a physical theory; does it have to explain how we perceive
results of experiments, and if so of what nature should such an explanation be?
Since the emphasis is put, not on the physical properties of the systems themselves,
but on the effects that they produce on our minds and memories, notions such as
perception ([522] speaks of “trajectory of the memory configuration”) and their
description in neurosciences (the properties of introspection) become part of the
theory. What is clear, anyway, is that the whole point of view is exactly opposite
to that of the proponents of the additional variables. The Everett interpretation is
attractive aesthetically but remains somewhat mind boggling. Since the human pop-
ulation of the earth is made of billions of individuals, and presumably since each
of them is busy making quantum measurements all the time without even knowing
it, should we see the physical reality of the universe as constantly branching at an
exponentially fantastic rate?

10.12 Conclusion

Quantum mechanics is, with relativity, the essence of the big conceptual revo-
lution of the physics of the twentieth century. The progress, in theoretical and

59 If one cuts by hand all branches of the various universes but one, one reaches an interpretation that is very
similar to the “pragmatic” interpretation discussed in §10.1.1.a.
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experimental physics, has been extraordinary. New breakthroughs have con-
stantly occurred, ranging from pure theory to practical applications; they have
given access to situations and devices that would not even have been con-
ceivable before the advent of quantum mechanics. Our present understanding
of the universe is only possible with the use of quantum mechanics at almost
every step.

Now, do we really understand this marvellous theory? We understand its machin-
ery pretty well, and we know how to use its formalism to make predictions in an
extremely large number of situations, even in cases that may be very intricate.
Quantum mechanics has provided many counterintuitive predictions that, initially,
seemed hard to believe, but turned out to be verified by experiments – even if some-
times the experimental verification came long after. One striking illustration is the
observation of Bose–Einstein condensation in dilute gases, which was predicted
by Einstein in 1925 [540], but observed only in 1995 [541, 542]. The phenomenon
takes place at extremely low temperatures (much lower than that of the cosmic
radiation background), so that, presumably, it had never occurred anywhere in the
universe before 1995! It was just in limbo, waiting in the equations of quantum
mechanics until it was realized one day. This illustrates the extraordinary pre-
dictive power of the theory. Heinrich Hertz, who played such a crucial role in
the understanding of electromagnetic waves in the nineteenth century (Hertzian
waves), remarked that, sometimes, the equations in physics are more intelligent
than the person who invented them: “It is impossible to study this amazing the-
ory without experiencing at some times the strange feeling that the mathematical
formulas somehow have a proper life, that they are smarter than we, smarter than
their author himself, so that we obtain from them more than what was originally
put into them” [543]. The remark certainly applies to the equations of quan-
tum mechanics and to the superposition principle: they contain probably much
more substance that any of their inventors thought, for instance in terms of unex-
pected types of correlations, entanglement, etc. It is really astonishing to observe
that, in all known cases, the equations have always predicted exactly the correct
results.

But, conceptually, whether or not we really understand the theory is less clear, as
illustrated by the variety of interpretations used by physicists. True, the Schrödinger
equation reaches the initial aim of quantum mechanics perfectly well: it explains
why atoms, molecules, and matter in general are stable, which is impossible within
classical physics. But the same equation, with its enormous number or success-
ful predictions, seems to go too far when it extends its linear superpositions into
the macroscopic world. It then raises difficult questions about the uniqueness of
our observations and the very existence of any classical reality on a human scale.
Some interpretations (Everett for instance) consider that this uniqueness is not part
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of reality, but just a delusion arising from the way our memories register events.
Others propose to change the Schrödinger equation to remove these problematic
macroscopic superpositions and turn the wave function into a real wave, propagat-
ing in configuration space. Still other interpretations (Bohm for instance) propose
to introduce additional variables to solve the problem of macroscopic uniqueness.
In this context, a major issue is whether or not the present form of the theory of
quantum mechanics is complete. If it is, it will never be possible in the future to
give a more precise description of the physical properties of a single particle than its
wave function; this is the position of the proponents of the orthodox interpretation.
If it is not, future generations may be able to do better and introduce some kind of
description that is more accurate.

We have seen why the EPR argument is similar to Gregor Mendel’s reason-
ing, which led him from observations performed between 1854 and 1863 to
the discovery of specific factors, the genes (the word appeared only later, in
1909). These genes turned out to be associated with microscopic objects hid-
den inside the plants that he studied. In such cases, one infers the existence of
microscopic “elements of reality” from the results of macroscopic observations.
Mendel could derive rules obeyed by the genes, when they combine in a new
generation of plants, but at his time it was totally impossible to have any pre-
cise idea of what they really could be at a microscopic level (or actually even
if they were microscopic objects, or macroscopic but too small to be seen with
the techniques available at that time). It took almost a century before Avery et al.
(1944) showed that the objects in question were contained in DNA molecules; later
(1953), Franklin, Crick and Watson discovered how subtle the microscopic struc-
ture of the object actually was, since genes corresponded to subtle arrangements
of nucleic bases hidden inside the double helix of DNA molecules. We now know
that, in a sense, rather than simple microscopic objects, the genes are arrange-
ments of objects, and that all the biological machinery that reads them is certainly
far beyond anything that could be conceived at Mendel’s time. Similarly, if quan-
tum mechanics is one day supplemented with additional variables, these variables
will probably not be some trivial extension of the other variables that we already
have in physics, but variables of a very different nature. But, of course, this is
only a possibility, since the histories of biology and physics are not necessarily
parallel!

A natural comparison is with special relativity, since neither quantum mechanics
nor relativity is intuitive; indeed, experience shows that both, initially, require a lot
of thought from each of us before they become intellectually acceptable. But the
similarity stops here: while it is true that the more one thinks about relativity, the
more understandable it becomes (at some point, one may even get the feeling that
relativity is actually a logical necessity!), one can hardly make the same statement
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about quantum mechanics. Nevertheless, among all intellectual constructions of
the human mind, quantum mechanics may be the most successful of all theories,
since, despite all efforts of physicists to find its limits of validity (as they do for all
physical theories), and many sorts of speculations, no one for now has been able
to obtain clear evidence that these limits even exist. Future will tell us if this is the
case; surprises are always possible!



11

Annex: Basic mathematical tools
of quantum mechanics

This chapter gives a summary of the mathematical formalism used in quantum
mechanics, with a short bibliography put directly at its end. It should be seen
as a complement, to be used by readers who wish to know more than what has
been recalled about the mathematical tools in the other chapters. Some results are
given without explicit proofs; they can be found for instance in Chapters II and
IV of [1]. Many quantum mechanics textbooks introduce its general formalism
in a more complete way, for instance Chapter VII of [2], Chapter 3 of [3], or
Chapter 2 of [4].

We first summarize the general formalism of quantum mechanics for any physical
system (§11.1), with the Dirac notation; we then study how this formalism treats
the grouping of several physical systems into one single quantum system (§11.2);
finally, we study a few simple special cases (§11.3), for instance a single particle in
an external potential, with or without spin; the reader who prefers wave functions
to more abstract reasonings in spaces of states may begin with this section.

11.1 General physical system

The general formalism of quantum mechanics applies to all physical systems,
whether they contain a single particle, many particles of various sorts, one or several
fields, etc.

11.1.1 Quantum space of states

The physical state of a system at each time is defined in quantum mechanics by
a state vector which, in Dirac notation, is written |�〉 – or |�(t)〉 if one wishes
to make the time dependence explicit. This vector |�〉 belongs to a complex state
vector space E , which may have a more or less complicated structure depending on
the system considered. In Dirac notation, the vectors of E are often called “kets”. We
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explain below (§11.1.3) how the physical properties of the system can be calculated
from |�〉. Space E is called either “space of states”, or “Hilbert space” for historical
reasons.

Consider any pair of vectors |�1〉, |�2〉 , . . . belonging to E ; by definition of a
complex vector space, any linear combination with complex coefficients α, β:

α |�1〉+β |�2〉+ . . . (11.1)

is another vector |�〉 belonging to E . The “superposition principle” states that any
linear combination of state vectors provides another possible state vector for the
considered physical system; this principle has many physical consequences, several
of which are discussed in this book.

In this space, one defines the scalar product of state vectors; the scalar product
of vector |�〉 by vector |C〉 is a complex number that is usually written:

〈C |�〉 (11.2)

This number depends linearly on |�〉 (it is multiplied by λ if |�〉 is multiplied
by λ) and anti-linearly on |C〉 (it is multiplied by the complex conjugate µ∗ of µ

if |C〉 is multiplied by µ). In Dirac notation, the mathematical object 〈C| is often
called “bra”.

A basis {|ui〉} of E is an ensemble of vectors |ui〉 such that any vector of E can
be written as a linear combination:

|�〉 =
∑
i

xi |ui〉 (11.3)

in a unique way; the xi are called the “components” of |�〉 in this basis.
If the dimension of state space is finite and equal to P , the number of vectors

|ui〉 (and therefore the number of terms in this sum) is equal to P . Basis {|ui〉} is
orthonormal if the scalar products between its vectors obey the relations:〈

ui

∣∣uj

〉= δi,j (11.4)

where δi,j is the Kronecker delta. With an orthonormal basis, one can show that
the components xi appearing in (11.3) are given by:

xi = 〈ui |�〉 (11.5)

so that:

|�〉 =
P∑
i=1

〈ui |�〉 |ui〉 (11.6)
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We also have:

〈� |�〉 =
P∑
i

|xi |2 〈C |�〉 =
P∑
i

y∗i xi (11.7)

where the yi are the components of ket |C〉.
If the dimension of the state space is infinite, only normalizable kets correspond

to a physical state, namely kets for which:∑
i

|xi |2 = finite number (11.8)

Some “bases”are not only infinite, but also continuous1, which means that the
sums of (11.3), (11.6), and (11.7) are all replaced by integrals; it is also necessary
to replace the Kronecker delta in (11.4) by a Dirac delta distribution.

11.1.2 Operators

One also defines the action of linear operators in the state space. An operator A is
linear when the action of A on vector α |�〉 + β |C〉, where α and β are complex
constants, is given by:

A [α |�〉+β |C〉]= αA |�〉+βA |C〉 (11.9)

In any finite basis, operator A may be written as a P × P matrix with matrix
elements Ai,j ; the columns of the matrix contain the components of the transforms
of the basis vectors under the action of A. In an orthonormal basis {|ui〉}, the matrix
elements are given by the scalar product of A

∣∣uj

〉
by
∣∣ui

〉
:

Ai,j =
〈
ui

∣∣A∣∣uj

〉
(11.10)

One can easily define the product of an operator by any complex constant α,
the sum of operators, or more generally the linear combination αA+ βB of two
operators A and B by:

[αA+βB] |�〉 = α (A |�〉)+β (B |�〉) (11.11)

11.1.2.a Product, commutator, eigenvectors

The product of two operators A and B is defined by its action on any ket |�〉:
AB

∣∣�〉=A
∣∣� ′〉 where:

∣∣� ′〉= B
∣∣�〉 (11.12)

1 The vectors of continuous basis are not normalizable, and therefore do not really belong to E , which explains
our quotation marks; see for instance the discussion in §A-3 of [11-1] .
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This product AB corresponds to the action of the B operator, followed by that of A.
The matrix corresponding to the product operator C =AB is merely given by the
product of the matrices associated with A and B, with the usual rule for multiplying
matrices (multiplying the lines of the left matrix by the columns of the right matrix).
In general, the product operator AB is different from the product operator BA in
the reverse order; the operator [A,B] defined by:

[A,B]=AB−BA (11.13)

is called the “commutator” between operatorsA andB. If this commutator vanishes,
one says that operators A and B commute.

The eigenvectors |ak〉 of A associated to the eigenvalues ak are defined as vectors
for which the action of A is simply a multiplication by ak:

A |ak〉 = ak |ak〉 (11.14)

A method to obtain the eigenvalues and the eigenvectors of A is to proceed to a
diagonalization of the matrix of coefficients Ai,j ; nevertheless, for some matrices,
the complete diagonalization is not possible. If an eigenvalue corresponds to several
eigenvectors that are not proportional, one says that the eigenvalue is “degenerate”.

11.1.2.b Hermitian and unitary operators

(i) To each operator A one associates an Hermitian conjugate operator A† with
matrix elements obtained by complex conjugation of those of A, followed by
a transposition of lines and columns:〈

ui

∣∣A†
∣∣uj

〉= 〈uj

∣∣A∣∣ui

〉∗ (11.15)

An operatorA is Hermitian if it is equal to its own Hermitian conjugate:A=A†;
this means that all its matrix elements obey the relations2:

Ai,j =
[
Aj,i

]∗ (11.16)

In other words, matrix elements in symmetrical positions with respect to the first
diagonal of the matrix are complex conjugate. One can show that any Hermitian
operator can always be fully diagonalized, and that all its eigenvalues are real
(which does not mean that they are all distinct: some may be degenerate).

2 One can show that, if this relation is satisfied in one basis {|ui 〉}, it is also satisfied in any other orthonormal
basis.
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(ii) A linear operator U is unitary if the product of its Hermitian conjugate by U is
the unity operator:

U†U = 1 (11.17)

Consider two kets |C〉 and |�〉 in the space of states and the action of U on
these kets: ∣∣C′〉=U |C〉 and

∣∣� ′〉=U |�〉 (11.18)

Relation (11.17) shows that:〈
C′
∣∣� ′〉= 〈C|U†U |�〉 = 〈C |�〉 (11.19)

This result expresses that the action of a unitary operator does not change the
scalar product (as a consequence, it does not change the norm of a ket either).
A unitary operator transforms any orthonormal basis into another orthonormal
basis of the space of states. Conversely, any orthonormal change of basis in
the space of states defines a unitary operator. This property can be used as an
alternative definition of unitary operators.

The matrix associated to a unitary operator is called a unitary matrix. Its
columns contain the components of the kets U |ui〉 in the initial basis {|ui〉}.
Unitarity can easily be checked by selecting any pair of columns i and j ,
taking the complex conjugate of the first column, and calculating the line-by-
line product; the result should be the Kronecker delta δi,j for any choice of i

and j .
A unitary operator can always be diagonalized in an orthogonal basis, as a

Hermitian operator. The eigenvalues are all complex numbers of the form eia ,
where a is a real number. A consequence is that U can always be written in the
form U = eiA, where A is a Hermitian operator; unitary operators are, so to
say, complex exponentials of Hermitian operators.

It is easy to show from (11.17) that the product of any number of unitary
operators is another unitary operator; unitary operators can be chained without
losing unitarity. Nevertheless, two unitary operatorsU1 andU2 do not commute
in general.

11.1.2.c Trace

The trace of an operator is a number, the sum of all its diagonal matrix elements:

T r {A} =
∑
i

Aii (11.20)
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One can show that the value of the trace is independent of the basis used to calculate
it. Moreover, circular permutations of the operators inside a trace do not change
the value of the trace; for any three operators A, B, and C:

T r {ABC} = T r {BCA} = T r {CAB} (11.21)

11.1.3 Probabilities

Hermitian operators play an important role in quantum mechanics: any physical
quantity that can be measured on the system (such as its energy, momentum, angular
momentum, etc.) corresponds to a Hermitian operator acting in its state space E .

We have seen that, when A is Hermitian, it can be “diagonalized”. One can then
find a basis made of vectors of E that are all eigenvectors |ak〉 of A, associated with
real eigenvalues ak; in this basis, the operator is represented by a diagonal matrix
(having all zero matrix elements except the diagonal elements, which are the ak).

A fundamental postulate of quantum mechanics is the Born probability rule. It
is also discussed in the main text (§1.2.1.c) but, for completeness, we briefly recall
it here. The rule says that, when the physical quantity associated to operator A is
measured on a system in a normalized state |�〉:
(i) the only possible results are the eigenvalues ak ,

(ii) the probability P(ak) to find a particular result ak is given by the squared
modulus of the scalar product of |�〉 by the corresponding normalized
eigenvector:

P(ak)= |〈ak |�〉|2 (11.22)

We have assumed that a single eigenvector corresponds to eigenvalue ak (non-
degenerate eigenvalue); if several distinct eigenvectors correspond to this eigen-
value, one must add the probabilities (11.22) corresponding to all orthonormalized
eigenvectors associated with ak , as in equation (1.4).

Assume we have an ensemble of systems that have been all prepared in the same
state |�〉. If one performs a large number of measurements of the physical quantity
associated with operatorA, since the Born rule is probabilistic, one generally obtains
different values at each measurement. Nevertheless, one can calculate an average
value 〈A〉 and obtain from this rule:

〈A〉 =
∑
k

ak P(ak)= 〈�|A |�〉 (11.23)

Consider the operator:

PC = |C〉 〈C| (11.24)
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where |C〉 is normalized (〈C |C〉 = 1). Its action on an arbitrary ket |�〉 is:

PC |�〉 = |C〉 〈C |�〉 = c |C〉 (11.25)

where c= 〈C |�〉 is a number. Any ket is transformed under the action of PC into a
ket that is proportional to |C〉; this indicates that PC is the projector onto state |C〉,
obeying the characteristic projector relation P 2 = P . We note P(ak) the projector
onto eigenvector |ak〉:

P(ak)= |ak〉 〈ak| (11.26)

if ak is non-degenerate; if it is degenerate, P(ak) is defined as the sum of projectors
over an orthonormalized ensemble of eigenvectors associated with this same eigen-
value. Applying the Born probability rule shows that the probability of obtaining
result ak is then given by:

P(ak)= 〈�|P(ak) |�〉 = 〈P(ak)〉 (11.27)

11.1.4 Time evolution

Until now we have considered the properties of the physical system at one
time. When time evolution is taken into account, the state vector becomes a
time-dependent ket |�(t)〉, with an evolution given by the Schrödinger equation:

i�
d

dt
|�(t)〉 =H(t) |�(t)〉 (11.28)

where H(t) is the Hamiltonian operator at time t (operator associated with the
energy of the system) and � the Planck constant h divided by 2π . Since (11.28) is a
first-order time differential equation, it provides a continuous time evolution of the
state vector from any initial value. The Hamiltonian operator H(t) is Hermitian but
may take various forms, sometimes very complicated, so that it is not necessarily
possible to solve equation (11.28) exactly; nevertheless, the equation is always
valid.

The Schrödinger evolution does not change the norm of the state vector:

i�
d

dt
〈�(t) |�(t)〉 = 〈�(t)|

[
H(t)−H †(t)

]
|�(t)〉 = 0 (11.29)

which means that the solution |�(t)〉 of the equation at time t has the same norm
as the initial state |�(t0)〉. The same reasoning immediately shows that the scalar
product 〈�1(t) |�2(t)〉 of two different solutions of the Schrödinger equation does
not change in time, whatever the initial values of these solutions were at time t0.
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In other words, time propagation from t0 to t corresponds to a unitary evolution
(§11.1.2.b), which defines a unitary operator U(t, t0):

|�(t)〉 =U(t, t0) |�(t0)〉 (11.30)

The evolution operator U(t, t0) between time t0 and t obeys the chain relation cor-
responding to an evolution between times t and t ′′, followed by evolution between
times t ′′ and t ′:

U(t ′, t)=U(t ′, t ′′) U(t ′′, t) (11.31)

11.1.5 Density operator

Expressions such as (11.22), (11.23), and (11.27) are not linear with respect to the
state vector |�〉. One can nevertheless obtain linear expressions as functions of an
operator ρ called “density operator”, which replaces |�〉.

11.1.5.a Definition

The density operator associated with a normalized state vector |�〉 is the projector
over this state, defined by:

ρ = |�〉 〈�| (11.32)

The trace of this operator is one3:

T r {ρ} = 1 (11.33)

It is a Hermitian operator:

ρ = ρ† (11.34)

One can then replace expressions (11.22) and (11.23) by:

P(ak)= T r {P(ak) ρ} (11.35)

and:

〈A〉 = T r {Aρ} (11.36)

A useful property of these expressions is their linearity, which is convenient to
combine the notions of classical and quantum probabilities. Assume that the state

3 This is a consequence of the normalization of |�〉 since the calculation of the trace in any orthonormal basis
{|ui 〉} gives T r {|�〉 〈�|} =

∑
i

〈ui |�〉 〈� |ui 〉 , which is equal to 〈� |�〉 = 1.
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|�〉 of a physical system is not known, but that the system is in normalized state |�1〉
with probability p1, in normalized state |�2〉with probability p2, . . . in normalized
state |�n〉 with probability pn. We define the density operator ρ as the sum of the
density operators of these states with a weight equal to their probabilities:

ρ =
∑
n

pn |�n〉 〈�n| (11.37)

where:

0≤ pn ≤ 1 and
∑
n

pn = 1 (11.38)

Equations (11.33) to (11.36) then remain valid. For instance, the trace (11.33),
obtained in any orthonormal basis {|ui〉}, can be derived from the normalization of
the |�n〉 and pn:

T r {ρ} =
∑
i

∑
n

pn |〈�n |ui〉|2 =
∑
n

pn = 1 (11.39)

11.1.5.b Pure states and statistical mixtures

The density operator is a Hermitian, positive (or, more precisely, non-negative)
operator; every diagonal element of ρ obeys:

0≤ 〈C|ρ |C〉 ≤ 1 (11.40)

for any normalized ket |C〉. To check this property, it is sufficient to replace ρ by
its definition (11.37), to use the Schwarz inequality, and finally to take (11.38) into
account. The density operator can always be diagonalized and, if we write |θm〉 its
eigenvectors associated with eigenvalues qm, we can write ρ in the form:

ρ =
∑
m

qm |θm〉 〈θm| (11.41)

Since 〈θm|ρ |θm〉 = qm is a real number between 0 and 1 – relation (11.40) – we
have:

0≤ qm ≤ 1 (11.42)

Every eigenvalue qm of ρ is therefore bounded between 0 and 1, and their sum
gives the trace of ρ, equal to 1:∑

m

qm =
∑
〈θm|ρ |θm〉 =

∑
m,n

pn |〈�n |θm〉|2 =
∑
n

pn = 1 (11.43)
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We can therefore interpret the eigenvalues of ρ as the occupation probabilities of
states |θm〉; we find a form that is similar to (11.37), but now with projectors onto
eigenstates that are necessarily orthogonal. If we square (11.41), we obtain:

ρ2 =
∑
m

(qm)2 |θm〉 〈θm| (11.44)

One then distinguishes two cases for the density operator:

Pure state
If only one of its eigenvalues qm is equal to 1 (all the others being equal to zero), a
single term plays a role in the m summation of (11.41); ρ is then the projector onto
a single quantum states, its first eigenstate, which we can rename |�〉. We are then
in the case where the system is described by a “pure state” |�〉, as in (11.32); this
description corresponds to the maximal amount of information that can be given on
a physical system within quantum mechanics. With (11.44), and since 12 = 1 and
02 = 0, we check that ρ2 = ρ; in terms of density operators, we can characterize a
pure state, either by this equality between ρ and ρ2, or by relation:

T r
{
ρ2
}
= T r {ρ} = 1 (11.45)

Statistical mixture
If several eigenvalues qm are non-zero, it is no longer possible to assign a single state
|�〉 to the system; several states are necessary, with weights given by probabilities
that are neither 0, nor 1. One then says that the density operator ρ describes a
“statistical mixture”. In contrast with the preceding case, the quantum description
provided by ρ is not the most accurate possible within quantum mechanics. In fact,
the description may even be very inaccurate, if many states |θm〉 are associated with
equal (or similar) probabilities qm. Because, for any number q between 0 and 1, we
have q2 < q, we see in (11.44) that the density operator is not equal to its square
(ρ2 �= ρ). Another way to characterize a statistical mixture is the relation:

T r
{
ρ2
}
< T r {ρ} = 1 (11.46)

11.1.5.c Time evolution

When the |�n〉 in (11.37) become functions of time |�n(t)〉 evolving according to
the Schrödinger equation, the density operator ρ becomes time dependent (the kets
change in time but the probabilities pn, which define the initial random choice of
the system, remain constant). By inserting (11.28) as well as the associated time
evolution for the bra 〈�n(t)| into (11.37), one obtains the equation of evolution of
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the density operator:

i�
dρ(t)

dt
= [H(t),ρ(t)] (11.47)

where [H(t),ρ(t)] is the commutator of H(t) and ρ(t). This equation is often
called the “Von Neumann equation”.

The same reasoning applies if one starts from expansion (11.41) of ρ onto its
eigenvectors; one then notices that the eigenvalues of ρ remain constant during
time evolution, as well as the trace and the trace of ρ2.

11.1.5.d Statistical entropy

The statistical entropy (or Von Neumann entropy) S associated with any density
operator ρ is defined by:

S =−kBT r {ρ lnρ} (11.48)

where kB is the Boltzmann constant of statistical mechanics and thermodynamics,
and where ln denotes the natural logarithm (in quantum information, one often
prefers to take kB = 1 and the base 2 logarithm, but this changes nothing essential).
Equation (11.41) provides:

S =−kB
∑
m

qm lnqm (11.49)

For a density operator describing a pure state, all eigenvalues are 0, except one
that is equal to 1; one then has S = 0. For a statistical mixture, relations (11.42)
imply4 that S > 0; for instance, if the system is with equal probabilities in two
orthogonal states, two eigenvalues of ρ are equal to 1/2 and S = 2ln 2 (or S = 2
if the base 2 logarithm has been chosen). The value of S characterizes the distance
between the quantum description provided by ρ and the optimal description with a
pure state, the most accurate possible within quantum mechanics.

We have seen that the probabilities qm remain constant during the time evolution
of ρ according to (11.47); the Hamiltonian evolution of a density operator therefore
conserves its entropy: dS/dt = 0.

11.1.6 Simple case, spin 1/2

The simplest space of states has two dimensions (except the trivial case with one
dimension, which is of little interest since the system can never change state). This

4 Function −x lnx is positive when 0 < x < 1.
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case occurs in the study of the properties of a spin 1/2 particle with a single orbital
wave function (§11.3.2); one then usually denotes |+〉 and |−〉 the two eigenstates
of the Oz component of the spin, which provide a basis. The most general state
then reads:

|�〉 = α |+〉+β |−〉 (11.50)

where α and β are any two complex numbers, obeying condition |α|2+|β|2 = 1 if
|�〉 is normalized; this ket is associated with the column vector:(

α

β

)
(11.51)

The three components Sx,y,z of the spin along the three directions Ox, Oy, and
Oz correspond to three Hermitian operators; their action onto the column vector
(11.51) is given by the three “Pauli matrices” σx , σy , and σz defined by5:

σx =
(

0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
(11.52)

A simple calculation shows that the squares of the Pauli matrices are all the unit
matrix:

[σx]2 = [σy

]2 = [σz]
2 =

(
1 0

0 1

)
(11.53)

The commutation relations of these Pauli matrices are:[
σx,σy

]≡ σxσy −σyσx = 2iσz (11.54)

but the Pauli matrices anti-commute:[
σx,σy

]
+ ≡ σxσy +σyσx = 0 (11.55)

(in both cases, two other relations may be obtained by circular permutations of σx ,
σy , and σz).

The density operator ρ associated with state |�〉 has the following matrix:

ρ =
(
α∗α β∗α
α∗β β∗β

)
(11.56)

5 More precisely, the three components of the spin correspond to the three Pauli matrices multiplied by constant
�/2.; this is why we use the word “associated” and not “equal”.
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which therefore corresponds to a pure state (one can easily check that ρ2= ρ if |�〉
is normalized). The most general density operator (pure state or statistical mixture)
is described by the matrix:

ρ = 1

2

[
1+ aσx + bσy + cσz

]= 1

2
[1+M ·σ ] (11.57)

where vector M , with components a, b, and c on three axes Ox, Oy, and Oz, is
called the “Bloch vector”. If its length is equal to 1, the state is pure as in (11.56);
if its length is smaller than 1, one has a statistical mixture (ρ2 �= ρ). Chapter IV of
[11-1] gives more examples of quantum calculations performed in a space of states
with dimension 2.

11.2 Grouping several physical systems

Consider two physical systems 1 and 2, the first with space of states F containing
state vectors |C〉, the second with space of statesG containing state vectors |G〉. Each
of them may be considered as a sub-system of a larger physical system containing
both, and having a space of states E .

11.2.1 Tensor product

Assume that the ensemble of kets {|ui〉} provides a basis of F ; any vector |C〉 can
then be written as a linear combination:

|C〉 =
∑
i

xi |ui〉 (11.58)

where the xi are the (complex) components of |C〉 in this basis. Similarly, the
vectors

{∣∣vj 〉} provide a basis of G and we can write:

|G〉 =
∑
j

yj
∣∣vj 〉 (11.59)

The space of states E of the physical system made by grouping the two preceding
sub-systems is spanned by vectors defining the individual state of each sub-system.
These vectors are the “tensor products”, which we write:∣∣1 : ui

〉⊗ ∣∣2 : vj 〉 (11.60)

We will often use a simplified notation for these kets, assuming that the first state
always refer to sub-system 1:∣∣1 : ui

〉⊗ ∣∣2 : vj 〉≡ ∣∣1 : ui;2 : vj
〉≡ ∣∣ui,vj

〉
(11.61)
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If K is the dimension of F (number of distinct values for index i) and Q that of G
(number of distinct values of j ), the number of distinct product vectors is R=KQ,
which determines the dimension of E . Any state |�〉 belonging to E can then be
written:

|�〉 =
K∑
i=1

Q∑
j=1

zi,j
∣∣ui,vj

〉
(11.62)

where the complex numbers zi,j are its KQ components. Space E is called the
tensor product of F and G:

E =F ⊗G (11.63)

In the simple case where all components zi,j of |�〉 in (11.62) can be written as
products:

zi,j = xi yj (11.64)

the state vector |�〉 is a tensor product:

|�〉 = |C〉⊗ |G〉 (11.65)

This corresponds to two quantum systems without any correlation6. But this is only
a special case: in general, one has to use relation (11.62), which does not factorize.
We discuss the relation between this general expression and the notion of quantum
entanglement in Chapter 6.

We have explicitly studied two physical systems grouped into a single system, as
for instance a system of two particles (cf. §11.3.3). Needless to say, this operation
can be generalized to any number of particles: the space of state E of a system
made of N particles with individual spaces of states Fi (i = 1,2, . . . ,N ) is the
tensor product of all these spaces:

E =F1⊗F2⊗ . . . ⊗FN (11.66)

and (11.62) may be generalized in the same way.
Remark: to simplify the discussion, we have assumed that the individual spaces of

states F and G have finite dimensionsP andQ, but the reasoning can be generalized
to cases where one of these dimensions is infinite, or both. For instance, in the case
of a particle with spin 1/2 (§11.3.2.b), the orbital space of states (associated to the
position of the particle) has an infinite dimension, while that of spin has dimension
2; the result is then that the dimension of the whole space of states (tensor product)
is also infinite.

6 Similarly, with classical probabilities, a distribution of two variables that is a product corresponds to non-
correlated variables.



318 Basic mathematical tools

11.2.2 Ensemble of spins 1/2

The simplest case occurs when both F and G are state spaces of spins 1/2, with
dimension 2 each. Space of states E then has dimension 4, with a basis provided
by vectors:

|1 : +;2 : +〉 , |1 : +;2 : −〉 , |1 : −;2 : +〉 , and |1 : −;2 : −〉 (11.67)

where, for instance, |1 : +;2 : −〉 denotes the state where the Oz component of the
first spin is equal to+�/2, and that of the second spin equal to−�/2. We will write
these four vectors in a simpler way, without making the numbering of the spins
explicit, as:

|+,+〉 |+,−〉 |−,+〉 |−,−〉 (11.68)

The most general state vector belonging to E is any linear combination of these
four vectors.

A particular state in this space, used in many examples, is the “singlet” state:

|�〉 = 1√
2

[
|+,−〉− |−,+〉

]
(11.69)

One special property of this state is that it is rotation invariant: it keeps exactly
the same properties if, instead of a reference axis Oz to characterize both spins,
we choose any other arbitrary direction Ou. Moreover, the two spins are anti-
correlated: if the component of the first spin along any direction is found positive,
the component of the second spin on a parallel axis is found negative and opposite.
This property is essential for the discussion of §4.1.1.

For N spins 1/2, one proceeds in the same way. Their space of states is the
tensor product of all individual spin states, with dimension 2N and spanned by the
2N vectors:

|±,±,±, . . . ,±〉 (11.70)

A very special state that generalizes (11.69) is the state often called “GHZ state”,
or state “by all or nothing”:

|�〉 =
[
α |+,+,+, . . . ,+〉+β |−,−,−, . . . ,−〉

]
(11.71)

(where α and β are two complex numbers with the sum of their squared modulus
equal to 1). This state is remarkable because it contains only two components
where all spins change from one individual state to an orthogonal state. It exhibits
marked quantum properties, which were discussed in §§5.1 and 5.2. It should not
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be confused with a product state, where all spins are uncorrelated, and which can
be written:

|�〉 =
[
α |+〉+β |−〉

] [
α |+〉+β |−〉

]
. . .
[
α |+〉+β |−〉

]
(11.72)

This state exhibits properties that are more similar to those of a classical state.

11.2.3 Partial traces

The density operator may be used to introduce the convenient notion of “partial
traces”. Consider a system made of two sub-systems, 1 and 2. If they are uncorre-
lated and each in a pure state |C(1)〉 and |G(2)〉, the state of the whole system is
given by:

|�(1,2)〉 = |C(1)〉⊗ |G(2)〉 (11.73)

The density operator of this system is then simply the product of the projectors
ρ1(1) and ρ1(2) over states |C(1)〉 and |G(2)〉:
ρ12(1,2)= |�(1,2)〉 〈�(1,2)| = |C(1)〉 〈C(1)|⊗ |G(2)〉 〈G(2)| = ρ1(1) ρ1(2)

(11.74)

All three systems, the whole system and the sub-systems, are in pure states.
But, if |�(1,2)〉 is not a product (if the two sub-systems are entangled), the

situation is more complex. One can start from the density operator of the whole
system:

ρ12 = |�(1,2)〉 〈�(1,2)| (11.75)

and perform an operation called “partial trace”, which transforms ρ into an operator
ρ1 that acts only in the space of states of the first sub-system:

ρ1 = T r2 {ρ12} (11.76)

The matrix elements of ρ1 are defined7 by:

〈ui |ρ1
∣∣uj

〉=∑
k

〈ui,vk|ρ12
∣∣uj ,vk

〉
(11.77)

From this partial trace one may obtain all probabilities and average values associated
with measurements performed only on the first sub-system, since:

T r {A(1) ρ} = T r1 {A(1) ρ1} (11.78)

7 The partial density operator ρ1 is independent of the basis
{∣∣ui ,vj 〉} that is used to define it. One can show from

(11.77) that, in any other basis
{∣∣u′q ,v′l 〉} one obtains

〈
u′q
∣∣ρ1
∣∣u′r 〉=∑l

〈
u′q ,v′l

∣∣ρ12
∣∣u′r ,v′l 〉.
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where A(1)≡ A(1)⊗ I (2) is an operator acting only in the space of states of the
first sub-system, while the identity operator in the space of states of the sub-system
is denoted I (2); the right-hand part of the equation is a trace taken only in the space
of states of sub-system 1. Similarly, one defines another partial trace ρ2, which
relates only to the properties of the other sub-system 2.

A specific property of quantum mechanics is that, even if the whole system
is known with the best possible accuracy (it is in a pure state), in general its sub-
systems are not in this case: they are described by statistical mixtures, and therefore
with an accuracy that is not maximal. A classical example is given by two spins
in a singlet state (11.69), for which the whole system is indeed in a pure state; if
one calculates the partial trace over any of the two spins, one obtains the matrix
associated with individual spins in the form:

ρ1(1)= ρ2(2)=
(

1/2 0

0 1/2

)
(11.79)

Under these conditions, the state of each spin is completely unknown: it has the
same probability to be in state |+〉 or |−〉 or, in fact, in any linear combination of
these states8. Therefore, even if the whole system is known with the best possible
accuracy in quantum mechanics, in this case no information whatsoever is available
concerning the two sub-systems, a situation that has no equivalent in classical
physics (for a more detailed discussion of this unusual situation, in particular by
Schrödinger, see §6.1).

11.3 Particles in a potential

We now apply the general formalism to a few simple cases.

11.3.1 Single particle

In classical mechanics, the position of a point particle is defined by the three com-
ponents of its position r at time t . The momentum p of the particle is a vector with
three components given by the conjugate momenta of the components of r:

p=m
d

dt
r (11.80)

where m is the mass of the particle. The dynamical state of the particle at any time
is defined by the simultaneous specification of its position r and of its momentum

8 The matrix is propotional to the unit matrix, which keeps the same form in any basis.
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p, which corresponds to six scalar variables if the particle moves in ordinary three-
dimensional space.

When a potential V (r) acts on the particle, the evolution of the state of the
particle may be obtained from an Hamiltonian H, which is nothing but the sum of
its kinetic energy and potential energy V:

H(r,p; t)= p2

2m
+V(r; t) (11.81)

11.3.1.a Wave function

In quantum mechanics, the state of the particle at time t is no longer defined by
its position and momentum, but by a state vector |�(t)〉 belonging to a space of
states Er; in this space, a continuous “basis” (cf. note 1) is given by the ensemble
of kets |r〉 where the particle is perfectly localized at point r. According to (11.5),
the components of |�〉 in this basis are given by a r-dependent function:

�(r, t)= 〈r |�(t)〉 (11.82)

with, according to (11.6):

|�(t)〉 =
∫

d3r �(r, t) |r〉 (11.83)

The complex function �(r, t) is called the “wave function” of the particle. Since
this function may extend over a whole domain of space, the position of the particle
is not perfectly defined. Quantum mechanics only specifies that the probability to
find at time t the particle in any volume D is given by:

P =
∫
D

d3r |�(r, t)|2 (11.84)

In other words, |�(r)|2 gives the density of probability n(r) associated with the
position variable of the particle:

n(r, t)= |�(r, t)|2 (11.85)

The normalization condition of the total probability implies that the integral should
be equal to 1 when D extends to all space:∫

d3r |�(r, t)|2 =
∫

d3r n(r, t)= 1 (11.86)

Of course, this condition is crucial to interpret n(r) as a density of probability. If a
wave function does not provide a unit value for the integral of its square modulus,
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one says that it is not normalized; but it is then sufficient to divide it by the square
root of this integral to normalize it. This operation is possible only if the integral
in all space is finite; one can normalize only functions that obey this condition, an
essential condition for a function to be acceptable as a wave function.

The probability to find the momentum within any domain is given by a formula

that is similar to (11.84), but with the probability density n(p) replaced by
∣∣�(p)

∣∣2,
where �(p) is the Fourier transform of �(r).

11.3.1.b Schrödinger equation, probability current

The time evolution of the wave function �(r,t) is given by the Schrödinger
equation:

i�
∂

∂t
�(r,t)=− �

2

2m
+�(r,t)+V (r; t) �(r,t) (11.87)

From this wave function, one can define a probability current:

J(r, t)= �

2im

{
�∗(r,t)∇�(r,t)−�(r,t)∇�∗(r,t)

}
(11.88)

and, by using (11.87), derive the equation for local conservation of the probability:

∂

∂t
n(r, t)+∇ · J(r, t)= 0 (11.89)

Integrated over all space, this relation shows that the norm of any wave function
remains constant as a function of time; if it is initially normalized as in (11.86), the
Schrödinger equation conserves this normalization during the time evolution.

11.3.2 Spin, Stern–Gerlach experiment

The formalism we have described applies only to spinless particles, also called
spin zero particles. We now study how the formalism can be adapted to particles
with non-zero spin, which will allow us to better understand the origin of the
two-dimensional space of states that was introduced in §11.1.6.

11.3.2.a Introduction of spin

At the time quantum mechanics was invented, the experimental study of atomic
spectral lines made physicists realize that a particle such as an electron must possess
an additional degree of freedom, in addition to those associated with its position in
space – this idea was proposed by Uhlenbeck and Goudsmit in 1925 [11-5]. The
additional degree of freedom is called “spin”; it corresponds to an internal rotation
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Figure 11.1. Schematical representation of a Stern–Gerlach experiment. A source
S emits a beam of particles (Silver atoms), which propagate to region B where they
undergo the influence of a strong magnetic gradient along direction Oz created
by a magnet (not shown in the figure). The force exerted by this gradient on the
magnetic moment of the particle, which is parallel to its spin, then depends on the
direction of the spin; the trajectory is therefore bent in a way that depends on the
Oz component of the spin.

In classical mechanics, one would expect a continuum of possible deviations
for the particles (since this component can take continuous values within a whole
interval). But two groups of completely different impacts are observed on screen E,
corresponding to two possible deviations. This indicates that the Oz component of
the spin can only take two discrete values – one says that it is quantized. In classical
physics, no vector can have components on any axis that are equal to constant
values. The experiment provides evidence, at the same time, for the existence of
spin, and for its completely non-classical properties.

of the particle (rotation around itself). The existence of spin can not be explained
with a classical image: a classical object can turn around itself only if it extends
over some domain of space, while in quantum mechanics even a point particle (the
electron for instance) can have a spin.

Shortly before (1922), Stern and Gerlach [6] had performed an experiment that
provided a direct evidence of an internal rotation of quantum particles such as
atoms; the particles they had used were Silver atoms, which have a spin arising in
particular from the electrons they contain. The experiment is shown very schemat-
ically in Figure 11.1. A beam of particles (atomic beam) originates from source S
and propagates to region B, where a magnet creates a magnetic field with a strong
gradient along direction Oz. The particles carry a magnetic moment that is propor-
tional to their spin, and is therefore colinear with it. The local magnetic gradient
creates a force acting on this magnetic moment, so that the trajectory of the particles
is bent in a direction that depends on the Oz component of their spin. The impact
of the particles is eventually registered on a screen E.

Within classical mechanics one would expect that, initially, the spins should have
completely random orientations, uniformly spread in all directions; this component
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should then vary continuously between two extreme values. In other words, one
should observe a continuum of possible values for the deviations of the particles,
resulting in a broad spot on the screen. But the experimental surprise was to observe,
instead, two well-separated spots: only two kinds of deviations were obtained,
one along Oz, the other in the opposite direction. This result is interpreted by
assuming that the component of each spin along Oz can only take two discrete
values (which turn out to be equal to ±�/2): this is spin quantization, directly
observed experimentally with this device.

In this experiment, direction Oz does not correspond to any particular direction
for source S. This means that the spin component can take only one out of two
opposite values, whatever measurement direction is chosen. Of course, in classical
physics, such a situation is totally impossible: no vector has its component on
any direction in space with constant modulus. This provides one more illustration
of the completely quantum nature of spin, without any classical equivalent. For
a more detailed discussion of the Stern–Gerlach experiment, and in particular of
measurements of spin components along various directions, see for instance §A in
Chapter IV of [1].

In fact, quantum mechanics does not necessarily imply that the number of discrete
components of a spin should be two: in general, their number is given by 2s+ 1,
where s is any half integer number9. The case we have described corresponds to
s = 1/2, and this explains why one speaks of “spin 1/2 particle”; this applies to the
electron for instance, as well as to other particles such as the proton, the neutron,
etc. (but not the photon).

11.3.2.b Space of states

For a spin 1/2 particle, the formalism of non-relativistic quantum mechanics intro-
duces two wave functions instead of one: each spin component has a wave function.
One first chooses a fixed reference axis, the “quantization axis” Oz, and one defines
two wave functions �±(r); index ± specifies the sign of the Oz component of the
spin. For a particle with any spin s, one would introduce 2s + 1 wave functions,
but for the sake of simplicity here we limit ourselves to the case s = 1/2.

Introducing two functions �±(r), instead of one, doubles the number of com-
ponents of the state vector |�〉, as well as the number of vectors in a basis of the
space of states. We therefore now replace (11.83) by:

|�(t)〉 =
∫

d3r
[
�+(r; t) |r,+〉+�−(r; t) |r,−〉

]
(11.90)

9 A half integer number is by definition a number that is, or becomes, integer when multiplied by 2.
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where |r,+〉 denotes the ket where the particle is localized at point r with a positive
component of its spin along Oz, while |r,−〉 is the corresponding state with a
negative component.

One sometimes call “spinor” the ensemble of the two components of |�〉,
which are grouped in a column matrix as the two components of a vector in a
two-dimensional space: (

�+(r)
�−(r)

)
(11.91)

Applying the three Pauli matrices (11.52) to the column vector (11.91) defines
(after multiplication by a constant factor �/2) the action of the operators Sx,y,z

associated with the three components of the spin. We now see the emergence of a
structure of a space of states that combines the properties of spin (space of states
with dimension 2, studied in §11.1.6) and those of the orbital variable r (space of
states with infinite dimension), and provides a good illustration of the notion of
tensor product (§11.2.1).

11.3.3 Several particles

Assume now that the system under study is made of several particles. In classi-
cal mechanics, the evolution of a system containing N particles with masses m1,
m2, . . . ,mN and positions r1, r2, . . . ,rN involves an Hamiltonian:

H(r,p ; t)=
N∑
i=1

p2
i

2mi

+V(r1,r2, . . . ,rN ; t) (11.92)

where V(r1,r2, . . . ,rN ; t) is the sum of the external potential acting on the particles
and of their mutual interaction potential.

In quantum mechanics, for an ensemble ofN spinless particles, the single particle
wave function�(r, t) is replaced by a wave function�(r1,r2, . . . ,rN ; t)depending
of the positions r1,r2, . . . ,rN of all particles:

�(r1,r2, . . . ,rN ; t)= 〈r1,r2, . . . ,rN |�(t)〉
The function:

n(r1,r2, . . . ,rN ; t)= |�(r1,r2, . . . ,rN ; t)|2 (11.93)

generalizes (11.85) and provides the probability to find the first particle at point r1,
the second at point r2, . . . the last at point rN . The wave function � is physically
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acceptable only if the integral of n in all configuration space (with 3N dimensions)
is finite, which makes the normalization of � possible.

The introduction of the notion of tensor space is natural in terms of wave func-
tions. For two particles, we know that a function �(r1,r2) can be expanded as a
sum of products of r1 functions by r2 functions:

�(r1,r2)=
∑
µ

∑
ν

φµ(r1) φν(r2) (11.94)

(where the sums may possibly be infinite, or even continuous so that they become
integrals over µ and ν): the space of two-particle wave functions �(r1,r2) is the
tensor product of the spaces of single-particle wave functions. This notion can be
generalized to N particles, for which the wave functions can be written:

�(r1,r2, . . . ,rN)=
∑
µ

∑
ν

. . .
∑
ξ

φµ(r1) φν(r2) . . . φξ (rN) (11.95)

and belong to the tensor product space ofN spaces of single particle wave functions.
The Schrödinger equation is a generalization of (11.87), which reads:

i�
∂

∂t
�(r1, . . . ,rN ; t)=− �

2

2m
+�(r1, . . . ,rN ; t)+V (r1, . . . ,rN ; t)

×�(r1, . . . ,rN ; t) (11.96)

where, as in classical mechanics, the potential V may include a part due to an
external potential acting separately on each particle as well as a mutual interaction
part (generally the sum of binary interactions). One can define a probability current
J in a space with 3N dimensions (configuration space); this generalizes relations
(11.88) and (11.89) and provides a multidimensional conservation relation.

If the N particles are spin 1/2 particles, the wave functions splits into 2N

components, labeled with N equal to ±:

�±,±, ... ,±(r1,r2, . . . ,rN ; t) (11.97)

Except for this change, the general idea remains the same: the space of states of
the whole system of particles is the tensor product of the single-particle spaces of
states.

Remark: one can also quantize other physical systems than particles, for instance
fields. For an introduction, see for instance [7] and [8].
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Appendix A

Mental content of the state vector

(i) A relatively recent (1999) article by Englert, Scully, and Walther [85] provides
an interesting illustration of the debate about the content of the state vector, in
particular because of the wording chosen by the authors. Speaking of standard
theory, they write: “(One) is led astray by regarding state reductions as physical
processes, rather than accepting that they are nothing but mental processes”. They
then advocate a “minimalistic interpretation of state vectors” and actually even give
a general warning that it is dangerous to go beyond it (“Van Kampen’s caveat1”), but
do not expand very much on these dangers. It is then interesting to extend this line
of thought further: if the state vector can evolve under the effect of a “purely mental
process”, it then necessarily acquires elements that are mental (subjective), instead
of being related to external reality only (objective). The Schrödinger evolution, on
the other hand, is determined by external macroscopic parameters, and therefore
has a reality content that is similar with these parameters. Should we consider that
the state vector is hybrid, and combines elements describing external reality, at least
partially, and others that are purely mental, all contained in a single mathematical
object2? In this view, the process of state vector reduction would correspond to
times when the state vector suddenly acquires more mental elements (since the
reduction process is considered as purely mental); the Schrödinger evolution would
correspond to periods of time where the mental content remains constant.

Such a hybrid view concerning the reality content of the state vector is neverthe-
less not compatible with the standard view where it defines a physical preparation
procedure, which can be a measurement process involving state reduction (selec-
tion of atoms in one beam at the output of a Stern–Gerlach filter for instance).

1 “Whoever endows the state vector with more meaning than is needed for computing observable phenomena is
responsible for the consequences” [84].

2 This in itself would not necessarily be a problem. A classical statistical distribution function for an ensemble of
time-dependent systems has similar properties: it does combine real evolution with elements related to imperfect
initial knowledge on the systems.
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If the effect of the measurement is a purely mental projection of the state vector,
the resulting state vector should also be purely mental. With this definition, a state
vector should then have no real content at all.

But we have already noted (§10.3.2) that most physicists would probably agree
that, at least sometimes, the wave function does contain elements of reality, and
illustrated this with a few examples (BCS state of electrons, etc.). One usually con-
siders that Schrödinger evolution contains at the same time a physical evolution for
those properties that quantum mechanics does attribute to the system (observables
that have |�〉 as an eigenvector), but also an evolution of probabilities (for all other
observables) that represent only our knowledge of the system, and therefore can
indeed be seen as mental processes. In fact, the notion of a “purely mental process”
is not often mentioned by supporters of the Copenhagen interpretation (maybe with
the exception of Wigner, see §10.1.1.b, but the Wigner interpretation is not really
standard). Peres for instance, in the quotation of [44] given in §1.2.3.b, while also
orthodox, never invokes human minds, but just preparations and tests on physical
systems.

(ii) Another interesting illustration is provided by a note published by Peres and
Fuchs [86] entitled “Quantum theory needs no interpretation” – especially since this
note has stimulated many reactions from authors expressing various points of view.
It goes even further than [85] since these authors seem to take explicitly a point of
view where the wave function is not absolute, but observer dependent3.After stating
that: “Quantum theory does not describe physical reality. What it does is provide
an algorithm for computing probabilities for the macroscopic events that are the
consequences of our experimental interventions”, they add that “a wave function
is only a mathematical expression for evaluating probabilities and depends on the
knowledge of whoever is doing the computing”. The wave function then becomes
really similar to a classical probability distribution which, obviously, depends on
the knowledge of the experimenter; several different distributions can be associated
with the same physical system if there are several observers. As mentioned above
(1.2.3.a), associating several different wave functions with one single system is not
part of what is usually called the orthodox interpretation (except, of course, for a
trivial phase factor); on the other hand, this idea is part of the relational interpretation
(§10.3.1).

3 As in §1.2.3.a, we assume that all observers use the same Galilean reference frame. Otherwise, they need different
state vectors for describing the system, for trivial reasons (as in classical mechanics).
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Bell inequalities in non-deterministic local theories

In the derivations of the various forms of Bell inequalities resulting from local
realism (§4), we have assumed that the results of experiments are known functions
A(a,λ) and B(b,λ), which depend on the settings a and b and of the additional
variable λ. This is a natural continuation of the EPR theorem, which concludes
on the existence of these functions from the assumption of local realism, in other
words on determinism. Here we show that the Bell inequalities are actually more
general and that, provided locality is preserved, they can still be established within
a non-deterministic context.

The basic idea behind this generalization is straightforward: probabilities can
always be considered as resulting from a deterministic process controlled by one
more additional random variable, which we call µ here. Adding this variable does
not change anything to the reasoning that leads to the inequalities; actually, λ can be
seen as one single variable with several dimensions, one of its components being µ.

Consider a given value of λ. Within a non-deterministic theory, mathematically
we have to replace A(a,λ) by two probabilities PA+(a,λ) and PA−(a,λ), andB(b,λ)

by two probabilities PB+(b,λ) and PB−(b,λ). For any a and λ we have:

PA+(a,λ)+PA−(a,λ)= 1 (B.1)

with a similar condition for the probabilities PB± . We can then introduce one addi-
tional variable µ having uniform distribution within interval [0,1], and define a
function A(a,λ,µ) by1:

A(a,λ,µ)=
{+1 if 0≤ µ≤PA+(a,λ)
−1 if PA+(a,λ) < µ≤ 1

(B.2)

1 We use the notation A to make a distinction from A, which was defined in the main text as the result of the
experiment. Here, A is just a mathematical variable introduced to express probabilities in a convenient way.
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We then have:

PA+(a,λ)−PA−(a,λ)=
∫ 1

0
dµ A(a,λ,µ) (B.3)

and, of course, a similar equation for the difference PB+(b,λ)−PB−(b,λ).
Suppose now that we wish to calculate the average of the product of the two

results observed with settings a and b. For each value of λ, we have to sum the prob-
abilities associated with the+,+ and−,− events and to subtract the probabilities
of the +, − and −, + events, which amounts to introducing the term:

PA+(a,λ)PB+(b,λ)+PA−(a,λ)PB−(b,λ)−PA+(a,λ)PB−(b,λ)−PA−(a,λ)PB+(b,λ)

=
[
PA+(a,λ)−PA−(a,λ)

]
×
[
PB+(b,λ)−PB−(b,λ)

]
(B.4)

The average value of this expression is obtained by a sum over λ which, according
to (B.3), gives the integral:∫

dλ

∫ 1

0
dµ A(a,λ,µ)

∫ 1

0
dµ′ B(b,λ,µ′) (B.5)

At this point, we see that we obtain the same expression as with a deterministic
theory, with an integral of the product of two functions that are equal to ±1. The
only difference is the presence of two additional integration variables µ and µ′: the
local stochastic theory is therefore equivalent to a deterministic theory with more
additional variables. The rest of the reasoning leading to Bell inequalities remains
unchanged.

The conclusion is that these inequalities are also valid for non-deterministic
theories, provided the dependences of the probabilities are local – if we had assumed
that PA+(a,λ) also depends on b, the proof of the inequalities would no longer have
been possible.



Appendix C

An attempt for constructing a “separable”
quantum theory (non-deterministic but local)

We give an example of such a non-deterministic local theory that looks similar to
quantum mechanics, and actually even makes use of its formalism, while it is in
fact significantly different. This theory includes the non-determinism of quantum
mechanics, but gives to the state vector a role that is more local than in standard
quantum mechanics. For this, we consider a physicist who has well understood the
basic rules of quantum mechanics concerning non-determinism, but who remains
sceptical about non-locality (or non-separability; for a detailed discussion of the
meaning of these terms, see §3.3.3.b as well as, for instance, [24, 47]). This physicist
thinks that, if measurements are performed in remote regions of space, it is more
natural to apply the rules of quantum mechanics separately in these two regions.
In order to calculate the probability of any measurement result, he/she will then
apply the rules of quantum mechanics, in a way that is locally perfectly correct,
but that also assumes that it is possible to reason separately in the two regions of
space. If for instance the two measurements take place in two different galaxies,
our sceptical physicist is prepared to apply quantum mechanics at the scale of a
galaxy, but not at an intergalactic scale!

How can one then treat the measurement process that takes place in the first
galaxy? It is very natural to assume that the spin it contains is described by a state
vector (or by a density operator, it makes no difference here) that may be used to
apply the orthodox formula for obtaining the probabilities of each possible result.
Of course it would not be a good idea to assume that each spin is described by a
single, fixed, density operator: obviously, the model would then exclude correlations
between the results of measurements performed in the two galaxies. A better idea is
to assume that the density operators in question are random mathematical objects
ρ1(λ) and ρ2(λ) that fluctuate because they are functions of a random variable λ,
corresponding for instance to fluctuating conditions of emission of the particles.
The method is then clear: for any possible condition of the emission, one performs
an orthodox quantum calculation in each region of space, and then takes an average
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value over the conditions in question. After all, this is nothing but the universal
method for calculating correlations in all the rest of physics! This approach takes
into account the indeterministic character of quantum mechanics1, but introduces
a notion of space separability that is directly in the line of the EPR reasoning. Our
physicist may for instance assume that the two measurement events are separated
by a space-like interval in the sense of relativity, so that no causal relation can relate
them in any circumstance; this seems to fully justify an independent calculation of
both phenomena.

If we note |+(a)〉 the eigenstate of the measurement corresponding to result+1
and ρ1(λ) the density operator of s, the probability of obtaining result+1 if the first
measurement is made along direction a is then:

PA+(a,λ)= 〈+(a)|ρ1(λ) |+(a)〉 (C.1)

In the same way, we write the probability for the result −1 in the form:

PB−(a,λ)= 〈−(a)|ρ1(λ) |−(a)〉 (C.2)

If, instead of direction a, another different direction a′ is chosen, the calculations
remain the same and lead to two functions PA±(a′,λ). As for measurements per-
formed in the second region of space, they provide two functions PB±(b,λ) and
PB±(b,λ).

We now calculate the average of the product of the two results, which is nothing
but the average over λ of the expression already written (B.4). If now we define
Â(λ) and B̂(λ) by:

Â(λ)=PA+(a,λ)−PA−(a,λ)

B̂(λ)=PB+(b,λ)−PB−(b,λ)
(C.3)

we can write the average of the product of results as:∫
dλ n(λ) Â(λ) B̂(λ) (C.4)

where n(λ) is the distribution density of variable λ.
The difference with the usual result is that, here, Â(λ) and B̂(λ) are not defined

as functions that are always equal to±1. To complete the proof, we have the choice
between two different methods:

1 In §7.2.2.b, we remarked that this is an appropriate method, within standard quantum mechanics, to study
situations where Alice and Bob observe correlations when Eve interferes and measures polarizations before the
particles reach the two partners.
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(i) either we proceed as in Appendix B and introduce an additional variable µ to
express the probability differences as in (B.3), in terms of new quantities A(a,λ,µ)

and B(b,λ,µ′) that are always equal to ±1. This leads to the same mathematical
expression and proof of the BCHSH inequalities as above.

(ii) or we introduce the couples of orientations (a,b), (a,b′), (a′,b), (a′,b′) to
calculate the average over λ of the expression:

Â(λ)B̂(λ)− Â(λ)B̂ ′(λ)+ Â′(λ)B̂(λ)+ Â′(λ)B̂ ′(λ) (C.5)

The Â and B̂, which are now defined as probability differences, are no longer
necessarily ±1; but it is nonetheless easy to see that they have values between
+1 and −1 , whatever the value of λ is. This implies2 that expression (C.5) is
necessarily between ±2, which brings us back to the calculation of Section 4.1.2.

Once more, we find that the Bell theorem holds in a large variety of situations!
One may wonder what exactly went wrong in the approach of our sceptical physi-
cist, and why his results, because they satisfy the Bell inequalities, are necessarily
incompatible with standard mechanics (not necessarily always, but at least some-
times). After all, his reasoning was based on the use of the usual formalism of
quantum mechanics. In fact, what caused the error was the insistence of treating
the quantum measurements as separable events, while orthodox quantum mechan-
ics requires us to consider the whole two-spin system as a single, non-separable,
system; in this system, no attempt should be made to distinguish sub-systems. The
correct reasoning uses only state vectors/density operators that describe this whole
system with one single mathematical object. This example illustrates how it is really
separability and/or locality that are at stake in a violation of the Bell inequalities,
not determinism.

2 To see why, let us for a moment consider λ, Â and Â′ as fixed, keeping only B̂ and B̂ ′ as variables; in the
space of these variables, expression (C.5) corresponds to a plane surface which, at the four corners of the square
B̂ =±1, B̂ ′ =±1, takes values±2Â or±2Â′, which are between±2; at the center of the square, the plane goes
through the origin. By linear interpolation, it is clear that, within the inside of the square, the function given by
(C.5) also remains bounded between ±2; finally, its average value has the same property.



Appendix D

Maximal probability for a state

In this appendix, we give more details on the calculations of §5.4; the two-particle
state corresponding to the measurement considered in (i) is the tensor product of
ket (5.33) by its correspondent for the second spin:

cos2 θ |+,+〉+ sin θ cosθ [|+,−〉+ |−,+〉]+ sin2 θ |−,−〉 (D.1)

which has the following scalar product with ket (5.38):

cos2 θ sin θ − 2sin θ cos2 θ =−sin θ cos2 θ (D.2)

The requested probability is obtained by dividing the square of this expression by
the square of the norm of state vector (5.38):

P = sin2 θ cos4 θ

2cos2 θ + sin2 θ
=

sin2 θ
(

1− sin2 θ
)2

2− sin2 θ
(D.3)

A plot of this function shows that it has a maximum of about 0.09.
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Appendix E

The influence of pair selection

In the proof of the Bell theorem, we have assumed that all pairs of particles emitted
by the source are actually detected, whatever choice is made for the measurement
settings a and b; within local realism, the Bell inequalities are then obeyed, which
means that it is impossible to reproduce the a and b dependence (4.9) of the corre-
lation function predicted by quantum mechanics (since it allows violations of the
Bell inequalities). In this appendix, we examine what happens when the detection
process introduces a selection in the ensemble of emitted pairs; in a first step (§E.1),
we assume that this selection is independent of a and b, and in a second step (§E.2),
we generalize to include a possible dependence. In the latter case, we will see that it
then becomes possible to reproduce any variation of the correlation rate as a func-
tion of a and b, including the prediction (4.9) in cos(a−b) of quantum mechanics,
while remaining within local realism; this is the origin of the “loophole” discussed
in §4.5.1.a.

E.1 Setting independent selection

Our first model is as follows:

(i) We assume that some process selects particles in a way that is independent
of the choice of the experimental settings a and b. We can for instance assume
that the particles are emitted randomly by the source in many directions, while only
the particles that are emitted into a small solid angle can reach the analyzers and
detectors. For each particle, we characterize this emission direction with a random
variable ω. The first particle is detected only if its random variable ω1 falls inside
a range Dλ(�1) corresponding to a cone originating at the source and going to the
periphery of the input diaphragm of the detector:

ω1 ∈D1(�1) (E.1)
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(otherwise it is lost). Similarly, the second particle is detected only if its random
variable ω2 falls inside domain Dλ(�2), and is lost otherwise. This sort of angular
selection occurs in practice in all experiments where the small size of detectors puts
a strong angular limit; the two domains are then small ω domains with sizes d�1,2

centered around values ωdet 1,2.

(ii) The particles that have survived the preceding selection arrive on the analyzers
and detectors, and provide results that depend on a random variable λ1 for the first,
λ2 for the second. As in §4.1.2, these results depend also of the local choice of the
measurement setting; they are noted A(a,λ1)=±1 for the first particle, B(b,λ2)

for the second (we assume that two channel detectors are used, as in an EPRB
experiment). For the particles that have not been selected in process (i), we choose
by convention to attribute to them result 0.

The ensemble of variables λ1, λ2, ω1, ω2, can be grouped formally into a single
parameter T with several components (a vector in a space with many dimensions).
Every pair is characterized by a given value of T, which determines if the pair will
be detected or not by the detection apparatuses and the results that they will provide.
Assume now that the source emits the pairs of particles randomly; the values of
T are then associated to a probability distribution ρ(T), with the normalization
condition:∫

dT ρ(T) =
∫

dλ1

∫
dλ2

∫
dω1

∫
dω2 ρ(λ1,λ2,ω1,ω2)= 1 (E.2)

The average value of the product of results is then:

〈AB〉 =
∫

dλ1

∫
dλ2

∫
D1(�1)

dω1

∫
D2(�2)

dω2 ρ(T) A(a,λ1) B(b,λ2) (E.3)

which, if the sizes of the domains d�1,2 centered around values ωdet 1,2 are small,
is also given by:

〈AB〉 � d�1d�2

∫
dλ1

∫
dλ2 ρ(λ1,λ2,ωdet 1,ωdet 2) A(a,λ1) B(b,λ2) (E.4)

The two formulas are exactly of the type that can be handled by the Bell theo-
rem; they allow to derive inequalities such as, for instance, the BCHSH inequality
(4.8). We note in passing that, if the selection is very efficient, most particles
give result zero and do not contribute to the average value; as a consequence,
the value of expression (E.4) is necessarily very small (it contains the very small
product d�1d�2); it is then not surprising that the sum of four average values can
never reach values±2. In quantum mechanics, the probability of detecting pairs is
also proportional to d�1d�2, and therefore low; there is no hope either to obtain
violations of the Bell inequalities beyond ±2, and the situation is not extremely
interesting.
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Nevertheless, one can also take a different point of view: instead of normalizing
the average values over the ensemble of emitted pairs, we can normalize over
the smaller ensemble of detected pairs. The normalization condition (E.2) then
becomes: ∫

dλ1

∫
dλ2

∫
D1(�1)

dω1

∫
D2(�2)

dω2 ρ(λ1,λ2,ω1,ω2)= 1 (E.5)

or:

d�1d�2

∫
dλ1

∫
dλ2 ρ(λ1,λ2,ωdet 1,ωdet 2)� 1 (E.6)

This change of normalization introduces a factor 1/d�1d�2 into ρ , which cancels
that of the average value (E.4). As a consequence, the strong reduction of the
average values does not occur anymore, and we merely come back to a case that is
exactly equivalent to what happens in the absence of selection. The BCHSH sum
of four average values can then reach the values ±2. In quantum mechanics, since
the small factor has now disappeared, one recovers the cos(a−b) dependence and
the violation of the Bell inequality.

E.2 Setting dependent selection

We now replace assumption (i) above by a more general assumption, which no
longer excludes a setting dependence in the selection process:

(iii) An a and b dependent selection process occurs; for instance, after being
emitted, when the particles fly towards the detectors, they are part of a physical
process (absorption for instance) that destroys some fraction of them in a way that
depends on a for the first particle, b for the second. The no-absorption condition
for the first particle then becomes:

ω1 ∈D1(a) (E.7)

and a similar condition applies to the second particle. If a and b are angles, we can
write the no-absorption condition in the form:

a−+a <ω1 < a++a and b−+b <ω2 < a++b (E.8)

where +a and +b are some fixed small angles. We can then replace the distribution
ρ(λ1,λ2,ω1,ω2) by ρ(λ1,λ2,a,b), and relation (E.4) by:

〈AB〉 �+a +b

∫
dλ1

∫
dλ2 ρ(λ1,λ2,a,b) A(a,λ1) B(b,λ2) (E.9)
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At this stage, it becomes clear that the model gives much more flexibility than
above to reproduce arbitrary a and b dependences; this is because we are indeed
free to choose the positive distribution ρ(T) as we wish, in particular its ω1 and
ω2 dependences which, in turn, introduces an a and b dependence of ρ into (E.9).

To see mathematically why, we can simplify the model even more, while pre-
serving the possibility of reproducing an arbitrary dependence on the settings.
Assume for instance that the domains D±1 of variable λ1 where A(a,λ1)=±1 are
independent of a, and, similarly, for the other particle. Then:

〈AB〉 �+a +b
[
I+,++ I−,−− I+,−− I−,+

]
(E.10)

with:

I±,± =
∫
D±1

dλ1

∫
D±2

dλ2 ρ(λ1,λ2,a,b) (E.11)

The four integrals I±,± correspond to the probabilities of the four possible mea-
surement results (±,±), which in quantum mechanics have the expressions given
in (4.3) and (4.4). By arbitrarily choosing the ω1 and ω2 dependence of ρ, and
therefore the a and b dependence of ρ(λ1,λ2,a,b), we can obtain any dependence
of the four probabilities on the experimental settings, while remaining within local
realism. For instance, we can choose a distribution ρ that is constant (independent
of λ1 and λ2) within the four domains D±1,2, and select for ρ a value that is propor-
tional to the target probability, to obtain the desired dependence on a and b. In this
way, we reproduce the predictions of any arbitrary theory1, provided of course it
gives positive probabilities for all values of a and b.

Physically, what we have done is merely to assume that, for each value of the
settings a and b, a narrow selection occurs for the detected particles; each time
the settings are changed, a different class of pairs is detected; it is then sufficient
to attribute arbitrary properties to these classes in order to reproduce all possible
variations as functions of a and b, including those of quantum mechanics. Never-
theless, we should remark that what is reproduced is only these a and b variations,
and not the absolute value of coincidence rates. There is a compromise between
accuracy and detection efficiency: the smaller the values of +a and +b, the better
(E.9) can approximate any variation, but the price to pay is that more and more
pairs go undetected.

1 A few examples of setting dependent pair selection processes that lead to artificial violations of the BCHSH
inequalities are given in [153]; in its §3-3 it shows that the selection can lead to a violation of the Cirelson bound
and, in §3-4, to the maximal mathematically possible violation, even with a pair of uncorrelated spins.
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The conclusion is that the validity of the Bell inequalities is strongly related to
assuming that all pairs of a well-defined and a,b independent sample are detected.
If, each time one changes the measurement settings one changes the category of
detected pairs, no Bell-type limit may exist for the dependence of the correlation
rates with respect to the settings a and b.



Appendix F

Impossibility of superluminal communication

F.1 Introduction

In EPR schemes, applying the reduction postulate projects the second particle
instantaneously onto an eigenstate corresponding to the same quantization axis
as the first measurement. If it were possible to determine this state completely,
superluminal communication would become accessible: from this state, the second
experimenter could calculate the direction of the quantization axis to which it cor-
responds, and rapidly know what direction was chosen by the first experimenter1,
even if the experimenters are in two different and remote galaxies. This, obviously,
could be used as a sort of telegraph, completely free of any relativistic minimum
delay (proportional to the distance covered) for the transmission of information.
Nevertheless, we have seen in §7.2.1 that it is impossible to obtain a complete
determination of a quantum state from a single realization of this state. Such a real-
ization allows only one single measurement, which (almost always) perturbs the
state, so that a second measurement on the same state is not feasible; there is not,
and by far, sufficient information in the first measurement for a full determination
of the quantum state – see discussion in §7.2. This telegraph would therefore not
function.

If a single particle is not sufficient for Bob to get a message, could he use more
particles? Suppose for a moment that a perfect “cloning” of quantum states could be
performed – more precisely the reproduction with many particles of the unknown
state of a single particle2. Applying the cloning process to the second particle of an

1 What is envisaged here is communication through the choice of the settings of the measurement apparatuses;
this makes sense since the settings are chosen at will by the experimenters. On the other hand, the results of the
experiments are not controlled, but random, so that they cannot be directly used as signals.

2 The “cloning” operation is not to be confused with the preparation of a series of particles into a same quantum
state that is chosen by the experimentalist. The latter operation can be realized by sending many spin 1/2 half
particles through the same Stern–Gerlach magnet, or many photons through the same polarizing filter. What is
theoretically impossible is to perfectly duplicate an initially unknown (and arbitrary) state.

341



342 Impossibility of superluminal communication

EPR pair, one could then make a large number of perfect copies of its state; one could
then perform a series of measurements on each of these copies, and progressively
determine the state in question with arbitrary accuracy. In this way, the possibility
for superluminal communication would be restored! But we have also seen in §7.1
that quantum mechanics does not allow for such a perfect reproduction of quantum
states [266, 267]; for instance, if one considers using stimulated emission in order
to clone the state of polarization of one single photon into many copies, the pres-
ence of spontaneous emission introduces noise in the process and prevents perfect
copying.

Even if it is impossible to clone quantum states and to measure single states
accurately, this does not provide an obvious answer to the general question: by using
only the information that is available in one single measurement in each region of
space, is it possible to make use of the instantaneous reduction of the state vector
for superluminal communication? After all, it is possible to repeat the experiment
many times with many independent pairs of correlated particles, and to try to extract
some information from the statistical properties of the results of all measurements.
The EPR correlations are very special and exhibit such completely unexpected
properties (e.g. violations of the Bell inequalities)! Why not imagine that, by using
or generalizing EPR schemes (more than two systems, delocalized systems, etc.),
one could invent schemes where superluminal communication becomes possible?
Here we show why such schemes do not exist; we will give the general impossibility
proof in the case of two particles (or two regions of space), but the generalization
to more systems in several different regions of space is straightforward.

F.2 A first scheme

Suppose that, initially, the two remote observers already possess a collection of
pairs of correlated particles, which have propagated from their common source to
two remote regions of space before the experiment starts; the first has propagated
to region A where Alice does experiments, the second to region B containing
Bob’s laboratory. Each pair is in an arbitrary state of quantum entanglement; we
describe its state before measurement with a density operator ρ(t0) in a completely
general way. When the two particles are very distant, they do not interact, and their
Hamiltonian is merely the sum H1+H2. Alice then chooses a setting a or, more
generally, any local observable OA(1) to measure. Bob is equally free to choose any
local observable OB(2), and may use as many particles as necessary to measure the
frequency of occurrence of each result (i.e. probabilities). The question is whether
the second observer can extract some information on the choice of OA from any
statistical property of the observed results.
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Equation (10.9) provides the probability of an event where Alice observes result
m at time t1 and Bob result n at time t2:

P(m, t1;n, t2)= T r
{
P̂OB

(n, t2) P̂OA
(m,t1) ρ(t0) P̂OA

(m,t1) P̂OB
(n, t2)

}
(F.1)

where P̂OA
(m,t1) is the projector onto the eigenstates corresponding to Alice’s

measurement in the Heisenberg picture, and P̂OB
(n2, t2) the corresponding projec-

tor for Bob. But Bob does not have access to the results obtained by Alice, so that
the probability of the events that he observes is the sum of (F.1) over m (§4.4.1):

PB(n, t2)=
∑
m

P(m, t1;n, t2) (F.2)

To calculate this sum, we first remark that the two projectors P̂OA
(m,t1) and

P̂OB
(n, t2) commute: they correspond to operators acting on different particles, and

evolve in the Heisenberg picture under the effect of independent Hamiltonians H1

and H2. In the right-hand side of (F.1), consider the operator P̂OA
(m,t1) appearing

just before last in the trace; we can bring it to the last position and then, by circular
permutation of the operators inside the trace, put it first. It then sits just before the
first P̂OB

(n, t2), and can be put just after since it commutes with that operator; but,
since the square of projector P̂OA

(m,t1) is equal to the projector itself, eventually
the result of our operation is just to suppress one of the operators P̂OA

(m,t1) in
(F.1). We now have to perform the summation over m. Since:∑

m

P̂OA
(m,t1)= 1 (F.3)

we obtain at the end:

PB(n, t2)= T r
{
P̂OB

(n, t2) ρ(t0) P̂OB
(n, t2)

}
(F.4)

We then see that, in this probability, any dependence on the choice of operator OA

made by Alice has disappeared. By measuring probabilities locally, Bob obtains no
information on the choice of operator made by Alice.

The proof can easily be generalized to a situation where Alice and Bob perform
several measurements at different times3. We have therefore shown that, in a very

3 The proof proceeds by the same method as above. One takes the last projector corresponding to Alice’s mea-
surements, one pushes it to the end of the product in the trace, then at the beginning, and finally groups it
with the other occurrence of the same operator. The summation of this residual projector over the last result
obtained by Alice then gives 1. Then one proceeds in the same way for the second projector associated to Alice’s
measurements, etc. When all the m summations are performed, one obtains a probability that is completely
independent of the choice of Alice’s operators.

Of course, the proof is meaningful only if the time intervals between Alice’s measurement remain shorter
than the time of propagation to Bob’s site at the speed of light. Otherwise the particles would have the time to
propagate from one region to the other, and the comparison with relativity is irrelevant.
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general way, the second observer receives exactly the same information, in a way
that is completely independent of the decisions made by the first observer; even the
fact that Alice makes experiments or no measurement at all is impossible to detect
in Bob’s laboratory. No faster-than-light-communication is therefore possible by
this method.

F.3 Generalization

One could object that it is not necessary that particle 1 is located in regionA of space
and particle 2 in region B: if each of the particles is at the same time in both regions,
can we not imagine cases where the probabilities observed by Bob depend on the
choices made by Alice? In fact, this situation is not so different from the previous
case since, again, all operators corresponding to the measurements performed in
regionA commute with all those associated with measurements performed in region
B. In field theory, this is a consequence of the commutation of field operators at
points of space-time that correspond to space like intervals in relativity. In a more
elementary theory, ifAlice can detect both particles, we can write the corresponding
measurement operator as a sum of operators acting on the two particles:

OAlice = PA(1)OA(1)PA(1)+PA(2)OA(2)PA(2) (F.5)

where PA(1,2) is the projector over all states of particle 1, 2 localized in region
A; the first term corresponds to the case where Alice detects particle 1, the second
to the case where she detects particle 2. Similarly, the measurement performed by
Bob corresponds to the operator:

OBob = PB(1)OB(1)PB(1)+PB(2)OB(2)PB(2) (F.6)

It is then easy to check that OAlice and OBob commute. The reason is that, in the
products between these two operators, the terms in PAPB vanish when the two
projectors act on the same particle, and the two remaining terms have the form:

PA(1)OA(1)PA(1)×PB(2)OB(2)PB(2) (F.7)

added to the similar term where the particle numbers are exchanged; this is because,
if each of the two operators performs a measurement on a particle, either particle
1 is in region A and particle 2 in region B, or the reverse, but the two particles are
never in the same region. One then immediately sees that it is possible to reverse
the order of the two factors in (F.7) without changing the result, so that the two
operators OAlice and OBob commute. This result allows us to use the same proof as
above and to obtain the same conclusion: the information available in one region
of space is completely independent of the sort of measurements that are performed
in the other region. No message can then be sent, and quantum mechanics is not
contradictory with relativity!



Appendix G

Quantum measurements at different times

In this appendix, we discuss the probabilities associated with several measurements
of the same quantum system at different times. We first give a proof of relation
(10.7), which we have used in §10.1.2 without justification, in order to derive the
Wigner rule (10.9) from the postulate of state vector reduction (§1.2.2). Conversely,
this postulate can also be considered as a consequence of a generalized Born rule,
dealing with several measurements performed at different times. In a second part of
the appendix, we discuss this derivation, with a reasoning that involves the coupling
of the system with the environment provided by the measurement apparatuses.

G.1 Wigner formula

To understand how (10.7) can be obtained, let us first calculate the probability
that the first measurement provides result m at time t1. The usual Born rule (1.6)
indicates that this probability is given by the square norm of |�m(t1)〉 defined in
(10.3):

P1(m, t1)= 〈�m(t1) |�m(t1)〉 (G.1)

Equivalently, we can express this probability as a trace:

P1(m, t1)= T r {|�m(t1)〉 〈�m(t1)|} (G.2)

(the definition of the trace in any orthonormal basis immediately shows that these
two expressions are equal). We now calculate the conditional probability QN/M

that, if result m has been obtained, the second measurement will provide result n.
After the first measurement, the state vector reduction postulate – relation (1.8)–
indicates that the normalized state vector is:∣∣� ′m(t1)

〉= 1√〈�m(t1) |�m(t1)〉
∣∣�m(t1)

〉
(G.3)

345



346 Quantum measurements at different times

which, after evolution between time t1 and time t2, is nothing but the ket |�m(t2)〉
given by (10.4) and (10.5), divided by

√〈�m(t1) |�m(t1)〉. The same reasoning as
above then gives the conditional probability as:

QN/M(m,t1;n, t2)= 1

〈�m(t1) |�m(t1)〉
〈
�m,n(t2)

∣∣�m,n(t2)
〉

(G.4)

where
∣∣�m,n(t2)

〉
has been defined in (10.6). From this, we obtain the probability

of obtaining the sequence m and n:

P1(m, t1;n, t2)=P1(m, t1)×QN/M(m,t1;n, t2)=
〈
�m,n(t2)

∣∣�m,n(t2)
〉

(G.5)

(two factors 〈�m(t1) |�m(t1)〉 cancel each other in the numerator and the denomi-
nator). Equivalently, one can express the right-hand side of (G.5) as a trace:

P1(m, t1;n, t2)= T r
{∣∣�m,n(t2)

〉 〈
�m,n(t2)

∣∣} (G.6)

By recurrence, (G.5) leads to (10.7).
To prove (10.9), we introduce the projection operator in the Heisenberg picture:

P̂M(m,t1)=U†(t1, t0)PM(m)U(t1, t0) (G.7)

where U(t1, t0) is the unitary evolution operator between times t0 and t1 (§11.1.4).
From (10.3) and (10.1), we obtain, since U(t1, t0)U

†(t1, t0)= 1:

|�m(t1)〉 = PM(m)U(t1, t0) |�(t0)〉 =U(t1, t0)P̂M(m,t1) |�(t0)〉
and relation (G.2) gives, since PM(m) is Hermitian:

P1(m, t1)= T r
{
U(t1, t0)P̂M(m,t1) |�(t0)〉 〈�(t0)| P̂M(m,t1)U

†(t1, t0)
}

= T r
{
P̂M(m,t1) |�(t0)〉 〈�(t0)| P̂M(m,t1)

}
= T r

{
P̂M(m,t1)ρ(t0)P̂M(m,t1)

} (G.8)

(we have used the circular permutation of operators under the trace, which makes
the product of two operators disappear).

Asimilar calculation can also be made from (G.5). The ket
∣∣�m,n(t2)

〉
is given by:∣∣�m,n(t2)

〉= PN(n) U(t2, t1)
∣∣�m(t1)

〉
= PN(n) U(t2, t1)U(t1, t0)U

†(t1, t0) PM(m) U(t1, t0)
∣∣�(t0)

〉 (G.9)

where we have inserted the relation U(t1, t0)U
†(t1, t0) = 1 in order to make the

Heisenberg projector P̂M(m,t1) appear again; we then simplify the product of
operators U(t2, t1)U(t1, t0) into U(t2, t0) and use the unitarity of U to write:∣∣�m,n(t2)

〉=U(t2, t0)P̂N(n, t2)P̂M(m,t1)
∣∣�(t0)

〉
(G.10)
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Finally, using (G.6) and after circular permutation of operators under the trace
(which make two U operators disappear), we obtain:

P1(m, t1;n, t2)= T r
{
P̂N(n, t2)P̂M(m,t1) |�(t0)〉 〈�(t0)| P̂M(m,t1)P̂N(n, t2)

}
(G.11)

which leads to (10.9). By the same method, it is straightforward to generalize this
formula to more than two measurements, with additional projectors in the reverse
order on both sides of ρ(t0). By linearity, this result also applies to situations where
the density operator ρ(t0) is not a projector (a pure state) as in (10.8), but a statistical
mixture.

G.2 Generalized Born rule

We now take a different approach by taking into account the entanglement of the
measured system S with the measurement apparatuses1. A measurement associated
with operator M is performed at time t1, another measurement associated with
operator N at time t2, etc. (in the calculation, we assume that two measurements
are performed, but the generalization to an arbitrary number of measurements is
straightforward).

Initially, at time t0, the system S is in state
∣∣�S(t0)

〉
; the two measurement appa-

ratuses M and N , which have not yet operated, are in states
∣∣�M(t0)

〉
and

∣∣�N(t0)
〉
,

and the state vector
∣∣�(t0)

〉
of the whole system including these apparatuses is the

(tensor) product: ∣∣�(t0)
〉= ∣∣∣�S(t0)

〉
⊗
∣∣∣�M(t0)

〉
⊗
∣∣∣�N(t0)

〉
(G.12)

(all these states are normalized). We assume that the three systems evolve indepen-
dently (without any interaction), except between times t1 and t ′1 where S interacts
with the first measurement apparatus M , and between times t2 and t ′2, where it inter-
acts with the second measurement apparatus N . The two measurement apparatuses
are macroscopic; each includes a pointer that indicates, after the measurement, the
result that has been obtained. They never interact with each other, but only with
system S.

Between time t0 and time t1 the state of S evolves from
∣∣�S(t0)

〉
to
∣∣�S(t1)

〉
according to the Schrödinger equation (10.1) and, similarly, the state vectors of the
measurement apparatuses become

∣∣�M(t1)
〉

and
∣∣�N(t1)

〉
.

We now consider the effect of the first measurement. As in §§1.2.2.a and 10.1.2,
we call PM(m) the projectors over the possible eigenvectors of operator M , with

1 This approach is necessary if one chooses the Everett interpretation (§ 10.11).
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eigenvaluesm=m1,m2, . . . ,mi, . . . , and expand
∣∣�S(t1)

〉
over these eigenvectors;

with our notation, relations (10.2) and (10.3) become:∣∣∣�S(t1)
〉
=
∑
m

∣∣∣�S
m(t1)

〉
(G.13)

and: ∣∣∣�S
m(t1)

〉
= PM(m)

∣∣∣�S(t1)
〉

(G.14)

If it turns out that
∣∣�S(t1)

〉
is an eigenvector of M with eigenvalue mi , then only

one term m = mi occurs in the summation; the result of the first measurement is
certain. At time t ′1 just after this measurement, the first apparatus will reach a well-
defined normalized state

∣∣�M
mi

(t ′1)
〉
where its pointer indicates the result. Therefore,

in this particular case, just after the first measurement the state of the whole system
will be: ∣∣�(t ′1)

〉= ∣∣∣�S
mi

(t ′1)
〉
⊗
∣∣∣�M

mi
(t ′1)

〉
⊗
∣∣∣�N(t ′1)

〉
(G.15)

In general, for any
∣∣�S(t1)

〉
, the linearity of the Schrödinger equation implies that

the state of the whole system just after the first measurement is:∣∣�(t ′1)
〉=∑

m

∣∣∣�S
m(t ′1)

〉
⊗
∣∣∣�M

m (t ′1)
〉
⊗
∣∣∣�N(t ′1)

〉
(G.16)

The first measurement apparatus has then reached a state that depends on the eigen-
value m, but not the second, which has not yet interacted with S. All the evolutions
of the individual state vectors correspond to unitary time evolutions, which con-
serve the norm; nevertheless, expansion (G.13) contains kets

∣∣�S
m(t1)

〉
having a

norm that is in general smaller than that of
∣∣�S(t1)

〉
.

For the second measurement, we repeat the same calculation. Between time t ′1 and
t2, for each value of m in (G.16) every term in the product evolves independently
(unitary evolution), and

∣∣�(t2)
〉

is obtained by replacing t ′1 by t2 in (G.16). The
analogous expressions of (G.13) and (G.14) are now:∣∣∣�S

m(t2)
〉
=
∑
n

∣∣∣�S
m,n(t2)

〉
(G.17)

with: ∣∣∣�S
m,n(t2)

〉
= PN(n)

∣∣∣�S
m(t2)

〉
(G.18)
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The second measurement correlates the state of the second apparatus to that
of system S. Finally, the state of the whole system at time t ′2 after the second
measurements is:∣∣�(t ′2)

〉=∑
m

∑
n

∣∣∣�S
m,n(t

′
2)
〉
⊗
∣∣∣�M

m (t ′2)
〉
⊗
∣∣∣�N

n (t ′2)
〉

(G.19)

This state vector contains a coherent superposition of various components asso-
ciated with all possible pairs (m,n) of results of measurements; in each of these
components, the state of the measurement apparatuses have registered the results.

At this stage, we can introduce a “generalized Born rule” and postulate that the
probability of obtaining results (m,n) is given by the square of the norm of each
component. We have already remarked that, as long as the three sub-systems do
not interact, the norm of each factor in one component remains constant. Actually,
the only changes of norm occur during the interactions (the measurements) and
are contained in expansions (G.13) and (G.17). Since the states of the measurement
apparatuses in (G.19) are normalized, the probability Pm,n of any result (m,n)

is then:

Pm,n =
〈
�S

m,n(t
′
2)

∣∣∣�S
m,n(t

′
2)
〉

(G.20)

which is nothing but the norm of the ket:

PN(n)U(t2, t
′
1)

∣∣∣�S
m(t ′1)

〉
= PN(n)U(t2, t

′
1)PM(m)U(t1, t0)

∣∣∣�S(t0)
〉 (G.21)

The state vectors associated to the measurement apparatuses have completely dis-
appeared from this result. It has a simple interpretation in terms of system S only,
if one reads the second line from the left to the right: system S was initially in state∣∣�S(t0)

〉
, evolved freely from time t0 to time t1, then underwent a projection over

the eigenstates corresponding to the result of measurement m, then evolved freely
again from time t ′1 to time t2, to be projected a second time over the eigenstates corre-
sponding to the result of measurement n. Moreover, (G.20) is equivalent to relation
(G.5), which was obtained by applying the postulate of state vector reduction. From
the probabilities of combined (m,n) events, one can derive the conditional prob-
abilities of other events, using the usual rules of statistics. The final conclusion is
that both methods provide exactly the same results for all probabilities: one may
either involve the measurement apparatuses and use a generalized Born rule, or
consider the measured system S only and apply the state vector reduction postulate
(§1.2.2.a). It is a matter of taste to choose one method as a postulate and derive the
other as a consequence, or the reverse.



Appendix H

Manipulating and preparing additional variables

Introducing the hydrodynamic equations (Madelung [416]) associated with the evo-
lution of the wave function, and using them to guide the evolution of the additional
variables (positions of particles), is a natural idea. In the dynamics of fluids, hydro-
dynamic equations can be obtained by taking averages of microscopic quantities
over positions and velocities of point-like particles; for instance, the Navier–Stokes
macroscopic equations can be derived from the Boltzmann transport equation
by appropriate microscopic averages (Chapman–Enskog method); conversely, the
hydrodynamic variables will influence the motion of individual particles. Moreover,
there is some analogy between the guiding term and the force term in a Landau type
kinetic equation, where each particle is subject to an average force proportional to
the gradient of the density of the others. Nevertheless, here we are dealing with
a single particle, so that the guiding term cannot be associated with interactions
between particles. Moreover, we also know from the beginning that rather unusual
properties must be contained in the guiding equations, at least if we wish to exactly
reproduce the predictions of usual quantum mechanics: the Bell theorem states that
the additional variables have to evolve non-locally in ordinary three-dimensional
space (they evolve locally only in the configuration space of the system, exactly as
for the state vector). In other words, in real space the additional variables must be
able to influence each other at an arbitrary distance. Indeed, in the Bohmian equation
of motion of the additional variables, the velocity of a particle contains an explicit
dependence on its own position, as expected, but also a dependence on the positions
of all the other particles (assuming that the particles are entangled). This is not a
problem in itself: as mentioned in the main text, one can consider that making non-
locality completely explicit in the equations is actually an advantage of Bohmian
mechanics.

But one also has to be careful when this non-local term is included in the
equations of motion: since relativity is based on the idea that it is totally impossible
to send a message at a velocity exceeding the velocity of light, one must avoid
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features in the theory that would create conflicts with this principle. We must dis-
tinguish two cases, depending whether we consider influences on the additional
variables that are direct (one modifies them “by hand”, in a completely arbitrary
way, as for instance the position of a billiard ball), or indirect (applying exter-
nal fields changes the Hamiltonian of the system, therefore modifies the evolution
of the wave function so that, in turn, the evolution of the additional variables is
affected). In the latter case, one can check that the non-local Bohmian term cre-
ates no problem: it cannot be used to transmit instantaneous information through
the additional variables. This is a general result, which holds simply because the
statistical predictions of Bohmian theory are equivalent to usual quantum mechan-
ics, which itself does not allow superluminal communication (§4.4 and Appendix
F). But assume for instance that we could manipulate directly the additional vari-
able attached to a particle belonging to an EPR correlated pair, in a completely
arbitrary way (even at a microscopic scale) and without changing the wave func-
tion. Then, the “quantum velocity term” acting on the additional variables of the
other particle would instantaneously be affected, and so would be its subsequent
position in space. Since that particle may be in principle at an arbitrary distance,
one could use this property to send messages at a velocity exceeding the veloc-
ity of light. The conclusion is that such manipulations should be considered as
impossible: the only possible source of evolution of the additional variables has
to be the wave-function-dependent term, without any possibility for direct human
action.

If the additional variables cannot be directly manipulated at a microscopic scale,
can we then assume that it is possible somehow to filter them in a range of values, as
one does for the state vector when the Oz component is filtered in a Stern–Gerlach
apparatus? Suppose for instance that we could, for a particle in an eigenstate of
the Oz component of its spin, select the values of the additional variable that will
correspond to a result +1 in a future measurement of the Ox component; were
such a selection possible with the help of any physical device, the theory with
additional variables would obviously no longer be completely equivalent to stan-
dard quantum mechanics, introducing determinism where this theory forbids it1.
Moreover, Valentini has shown [421] that, if the initial distribution of the Bohmian
positions differs from the usual “quantum equilibrium” distribution (§10.6.1.a),
faster than light communication becomes possible. If one could somehow prepare
by hand a distribution of the Bohmian positions that differs from |�(Q1,Q2, . . . )|2,
a narrower distribution for instance, then contradictions with relativity would

1 Within orthodox theory, if a spin 1/2 particle is initially selected into the +1 spin state by an Oz oriented
Stern–Gerlach apparatus, it becomes completely impossible to make any prediction on the deviation observed
later in an Ox oriented Stern–Gerlach apparatus.



352 Manipulating and preparing additional variables

occur. This is the reason why one generally considers that such preparations are
impossible2.

To summarize, if one provides the additional variable theories with features
that make them equivalent to orthodox theory, it is necessary to assume that the
additional variables can neither be manipulated directly nor filtered, as opposed
to the state vector. The additional variables describe an objective reality, but at a
different level from the reality of the field of the wave function, since only the latter
can be influenced directly by human decisions. Additional variables are indeed
easily visible (the results of the experiments) but not controllable, while wave
functions have the complementary properties. At the end, we have two levels of
reality, one for experimentally controllable classical fields (the wave functions),
and one for positions which can be observed but not controlled.

Moreover, when empty waves appear during measurement processes, classical
wave functions in turn split into two sub-levels of reality: part of them continues
to play an effective role as a pilot of the position of particles, while another part is
made of empty waves that play no role at all in determining the result of future mea-
surements. This second part becomes, so to say, virtual. If for instance one considers
the wave function of the universe, as in the Everett theory it is split into a fantastic
number of orthogonal components (although, here, these components have a dif-
ferent status, with no special relation to memory registers of observers). Among all
these components, only one plays a role to pilot the position of the point represent-
ing the universe, in a configuration space with enormous dimension. All the others
are too far from the real position in this space, and will remain in limbo forever.

In conclusion, the description of physical reality within the de Broglie–Bohm
theory is certainly not as direct as in classical theory of particles and fields. It is
not entirely free of conceptual difficulties, which have some similarity with those
encountered in the standard interpretation of quantum mechanics.

2 We should mention that, historically, Bohm and Bud have developed a theory where this possibility is not
excluded [7] – see §10.8.1.a. Conceptual revolutions are of course always possible, but for the moment it may
seem safer to provide the additional variable theories with features that make them equivalent to orthodox theory.



Appendix I

Correlations in Bohmian theory

I.1 Time correlation functions

In standard quantum mechanics, the calculation of any two-time correlation func-
tion has to include the evolution of the system between the two times considered;
this evolution is contained in the unitary evolution operator U(t ′, t), as for instance
in relation (10.9). In Bohmian theory, it is important to take into account the effect
of the first measurement, which correlates the system under study to a measure-
ment apparatus and creates “empty waves” (§10.6.1.c). Otherwise one obtains
contradictions with the standard predictions.

For instance the author of [443] considers a one-dimensional harmonic oscil-
lator that is initially in a stationary state, and studies the correlation function of
the position at times t and time t ′, in the particular case where t ′ − t is equal to
half the period 2π/ω of the oscillator. In standard quantum mechanics, it is easy
to show that the corresponding position operators X(t) and X(t ′) are then oppo-
site, so that the correlation function

〈
X(t)X(t ′)

〉
is equal to − 〈[X(t)]2〉, therefore

negative. In Bohmian mechanics, the particle is initially static since the wave func-
tion is real. If one ignores the effect of the first measurement, the position of the
particle will remain at the same place, which corresponds to a correlation function
equal to

〈
[X(t)]2〉, therefore positive; one reaches an apparent complete contra-

diction. But, if one takes into account the effect of the first measurement on the
particle, one finds that, just after this measurement, each position of the oscilla-
tor becomes correlated with a different Bohmian position of the pointer. Since the
wave function is no longer a product, the motions of both systems become cor-
related: for each position of the pointer, the measured particle takes a different
velocity. In practice, just after the measurement, the position distribution of the
oscillator becomes a narrow function that starts to oscillate in the potential well,
giving an oscillating character to two-time position distribution. The sign difference
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with the standard correlation function then disappears and a perfect agreement is
obtained.

A similar case is studied in [442], with two independent one dimension harmonic
oscillators, initially in the state:

|�〉 = 2√
2

[
|1,0〉+ |0,1〉

]
(I.1)

where |n,p〉 is the state where the first oscillator has quantum number n and the sec-
ond quantum numberp; for the sake of simplicity, we assume that the frequencies of
the two oscillators are the same, equal to ω/2π . Since the stationary wave functions
of the harmonic oscillator can be chosen real, the associated wave functions are
also real, meaning that none of the Bohmian positions of the two particles moves
at all.

The position operators of the two oscillators commute and can be measured,
either simultaneously, or with any delay between the measurements (one can assume
for instance that the two oscillators are centered at different points of space, so that
differentiating between the two positions is easy). Since the two operators commute,
the standard quantum calculation of the correlation coefficient of the two positions
is simple; one finds that it contains a component oscillating at frequency ω/2π .
On the other hand, we have seen that the Bohmian positions are static, so that the
average of their product over all possible trajectories gives a constant result. It
therefore seems again that one reaches a contradiction between the predictions of
standard mechanics and those of Bohmian mechanics.

But actually this is not the way correlation functions should be calculated within
Bohmian mechanics: again, the effect of the first measurement must be properly
taken into account, even if the two measured observables commute, and even if they
correspond to independent systems. The first measurement correlates the Bohmian
position of the particle with that of a pointer, resulting in “empty waves” and
modified dynamics of the system, which then affects the correlation function. The
case studied in [442] is actually particularly interesting, since the effect of this
first measurement is to switch off (instead of on) non-local effects. The following
scenario takes place:

(i) Initially, since the wave function is not a product, the motions of the two
particles are subject to complicated non-local effects. For a real wave function
such as (I.1), the non-local effects combined with the local effects of the potentials
exactly cancel, which results in a very simple motion: the position of none of them
moves.

(ii) When particle 1 is measured, the system becomes a three (or more) body
problem including the positions of the two particles and that of the pointer. Each
Bohmian trajectory selects a pointer position (for instance that corresponding to a
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positive measurement in the detection volume), and for each such trajectory the two
particles move guided by a wave function that is now a product. The correlations
have vanished so that the non-local effects have disappeared; both particles then
follow a local Schrödinger evolution.

(iii) After the measurement, both particles oscillate in their potential wells, in a
way that exactly reproduces the standard quantum result for the correlation function.

I.2 Two-particle correlations

I.2.1 EPRB experiment

Consider an EPRB experiment (§3.3.1) with two remote particles, the first with
wave function ϕ(r1) and the second with wave function χ(r2). We assume that
each of these particles has a spin 1/2 and that their spins are entangled in a singlet
spin state. In Bohmian theory, it is convenient to write explicit wave functions, so
that here we will use a mixed notation with wave functions for orbital variables and
spins treated as kets in the Dirac notation. We can then write the wave function/state
vector of the two-particle system as:

|�〉 = ϕ(r1) χ(r2)
1√
2

[
|1 : +,2 : −〉− |1 : −,2 : +〉

]
(I.2)

Assume now that the first particle enters a magnetic field gradient such as that of
a Stern–Gerlach magnet oriented along direction a, which splits the wave func-
tion ϕ(r1) into two spatially separated components ϕ′+(r1) and ϕ′−(r1). Then |�〉
becomes:

∣∣� ′〉= 1√
2

[
ϕ′+(r1) |1 : +〉a |2 : −〉a −ϕ′−(r1) |1 : −〉a |2 : +〉a

]
χ(r2) (I.3)

where the indices a in the spin states refer to a quantization direction that has been
chosen parallel to a. In such a situation, the Bohmian position of the first particle
must be either in wave packet ϕ′+(r1), or in wave packet ϕ′−(r1). The other wave
is necessarily an “empty wave”, which does not play any role and may be ignored.
One of the components of (I.3) then disappears, so that the spin state of the second
particle has been projected onto the opposite state of that of the first particle. We
see that a spatial separation of the wave packet of one of the particles is already
sufficient to project both spin states, even before the second particle has entered any
magnetic gradient. One therefore obtains in this way a very efficient mechanism
for reproducing the standard state vector projection.
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I.2.2 Two-photon interferences

An experimental refutation of Bohmian mechanics was published in [444], involv-
ing correlations between two photons, each going through different slits of a screen;
the refutation was based on a previous theoretical claim of a discrepancy between
Bohmian theory and standard quantum mechanics [445]. But, here again, what is
disproved is not the full Bohmian theory, but a modified version. The full Bohmian
theory is built to reproduce exactly the same results as standard quantum mechan-
ics, provided the same wave function is used in both cases (symmetrical with
respect to exchange between the two bosons in this case); such discrepancies in
predictions concerning position measurements cannot occur. In the present case,
the extra assumption is that the trajectories of the two bosons are always symmetric
with respect to the symmetry plane of the experiment. But, in Bohmian theory,
the positions of the particles fill the whole volume available in six dimensional
configuration space, and within this volume non-symmetric pairs of positions are
perfectly accessible.



Appendix J

Models for spontaneous reduction of the state vector

In this appendix, we introduce a few simple models involving modified Schrödinger
dynamics with stochasticity, in order to illustrate how such models may lead to an
evolution that reproduces the reduction of the state vector during a measurement
(emergence of a single eigenvalue during a single realization, with a random value).
For the sake of simplicity, we ignore the usual Hamiltonian evolution during the time
of measurement, assuming for instance that this time is too short for this evolution to
be significant; otherwise, it would be necessary to use the interaction representation
with respect to the Hamiltonian, which does not change the calculations much,
except that this introduces a time dependence of the operators.

J.1 Single operator

We consider the measurement of some quantum observable associated with an
Hermitian operator A; we look for an equation of evolution containing a state
vector reduction process associated with this particular measurement. Since the
final eigenvector must vary randomly from one realization to the next, the evolution
equation necessarily contains a random component. In our case, it will take the form
of a random function of time (as opposed to the GRW theory where the stochasticity
is introduced by the discontinuous “hitting processes”, see §10.8.1.b).

J.1.1 Equation of evolution

We assume that the state vector |�(t)〉 evolves according to:

d

dt
|�(t)〉 = − [w(t)−A]2 |�(t)〉 (J.1)

where w(t) is a real random function of time. In order to simplify the model as
much as possible, we may discretize time into small finite intervals +t , during
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which we assume that w(t) remains constant; moreover, we may also assume that
the possible values of w(t) belong to a finite discrete ensemble w1, w2, . . . ,wN .
One may then choose a rule to specify the time progression of w(t), and possibly
an interpolation rule to make the functions continuous. Another choice would be
to assume that w(t) corresponds to a white noise (Wiener process), with no time
memory. For the moment, we do not specify the properties of this random function
any further.

Equation (J.1) clearly does not conserve the norm of |�(t)〉, but it is possible to
define a normalized state vector |C(t)〉 by:

|C(t)〉 = |�(t)〉
〈�(t) |�(t)〉1/2

(J.2)

We then have:

d

dt
|C(t)〉 = − [w(t)−A]2 |C(t)〉

− 1

2 〈�(t) |�(t)〉3/2
(−2) 〈�(t)| [w(t)−A]2 |�(t)〉× |�(t)〉

(J.3)

or:

d

dt
|C(t)〉 =

{
− [w(t)−A]2+〈C(t)| [w(t)−A]2 |C(t)〉

}
|C(t)〉 (J.4)

With this non-linear equation, the norm of |C(t)〉 does not vary in time, whatever
choice is made for the random function w(t).

J.1.2 Solution of the equation

We denote |an〉 the eigenvectors of A with eigenvalues1 an; we may then expand
|�(t)〉 as:

|�(t)〉 =
∑
n

xn(t) |an〉 (J.5)

We then have:

d

dt
xn(t)=− [w(t)−A]2 xn(t) (J.6)

so that:

xn(t)= e−
∫ t

0 dt ′[w(t ′)−an]2
x0
n (J.7)

1 In case of degeneracy, several consecutive values of an are equal, but they correspond to different (orthogonal)
eigenstates.
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where x0
n is the initial value of xn(t) at time t = 0. Equivalently, we may also write:

|�(t)〉 = e−
∫ t

0 dt ′[w(t ′)−A]2 |�(0)〉 (J.8)

According to (J.7), all components of |�(t)〉 constantly decrease in time, except if
w(t)= an; in this particular case, the components associated with one eigenvalue
of A remain constant, as long as the equality is obeyed.

J.1.3 CSL probability rule

We now assume that the probability of each realization of w(t) (the number of
these realizations is finite if we take the simple assumptions mentioned above) is
proportional to the square of the norm of the value of |�(t)〉 obtained from (J.1):

P(w1,w2, . . . ,wN)= cN 〈�(t) |�(t)〉1/2 (J.9)

where t = N+t , and where w1,w2, . . . ,wN are the selected values for w(t); the
normalization coefficient cN is obtained by writing that the sum of probabilities
associated with all realizations is 1. Relation (J.9) may be called the CSL probability
rule. From this condition, the Bayes theorem provides the probability that, if w(t)

has a given value at some time, the function will jump to any other value in the
next discrete time interval.

Among all possible realizations of the random functions w(t), the CSL probabil-
ity rule strongly favors a small sub-ensemble, that containing functions conserving
a large norm for |�(t)〉, in other words functions that remain constantly equal (or
almost equal) to one of the eigenvalues an. All other possibilities, even if there
are very many of them, are assumed to be very unlikely. For each realization, the
mechanism obtained in this way breaks the symmetry between all eigenvalues:
the same random function cannot remain very close all the time to more than one
eigenvalue an; it has to make a choice among all of them. The net result is that,
after some time, one always ends up with a state vector that differs very little from
an eigenvector of A. Nevertheless, depending on the random function w(t), which
may be different for each realization of the experiment, a different eigenvalue is
obtained each time. This is precisely the behavior that is needed to reproduce state
vector reduction.

Remarks:
(i) this model does not correspond to a hidden variable theory stricto sensu, but is

relatively similar; what is added to standard mechanics is a random function playing
a role in the dynamics of the state vector, not a hidden variable giving directly the
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measured observable, the position for instance. One may call it a “hidden function
model”.

(ii) the CSL probability rule gives the probability of a particular realization of
a random function, but not of a particular value of |�(t)〉, since several different
random functions may lead to the same state vector.

J.2 Several operators

To measure the position of a particle, one may imagine that many detectors are
located at different places in space, each signalling the possible presence of the
particle within its spatial range. This amounts to the simultaneous measurement
of a large number of observables, all commuting with each other. We therefore
generalize the preceding model to a case where several commuting operators Ak

play a role in the dynamics of a state vector.

J.2.1 Equation of evolution

We now postulate the equation of evolution:

d

dt
|�(t)〉 = −

∑
k

[wk(t)−Ak]2 |�(t)〉 (J.10)

which contains a series of random real functions wk(t) and a series of commut-
ing operators Ak . For instance, these operators are assumed to be diagonal in the
position representation, and their effect is to multiply the wave function by a given
function ϕk(r). These functions are, for instance, Gaussian functions with width
α−1/2 centered on a regular lattice in all space, labeled by an index k. The Ak then
all commute, but their product for two different values of k is not necessarily 0
since the ϕk(r) have mutual overlap.

We now introduce another, much finer, lattice, made of cubic “cells” having
dimensions significantly smaller thanα−1/2, which are labeled with index q. Within
each of these cells, each function ϕk(r) remains practically constant, so that in this
volume the action of Ak may be approximated by a multiplication by a constant,
the value ϕ

q
k of ϕk(r) at the center of the cell. We then expand the state vector onto

its components in the cells2:

|�(0)〉 =
∑
q

∣∣∣�0
q

〉
(J.11)

2 By definition, the component
∣∣∣�0

q

〉
has the same wave function as |�(0)〉 within cell q, but is 0 outside of this

cell.
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We then have:

Ak

∣∣∣�0
q

〉
� ϕ

q
k

∣∣∣�0
q

〉
(J.12)

which means that
∣∣∣�0

q

〉
is almost an eigenvector of Ak . Under these conditions:

|�(t)〉 �
∑
q

[
e−

∫ t
0 dt ′

∑
k[wk(t

′)−ϕ
q
k ]2
]∣∣∣�0

q

〉
(J.13)

We can also write the evolution equation of the normalized state vector |C(t)〉
defined in (J.2); we then obtain:

d

dt
|C(t)〉 =

{
−
∑
k

[wk(t)−A]2+〈C(t)|
∑
k

[wk(t)−A]2 |C(t)〉
}
|C(t)〉

(J.14)

J.2.2 Spontaneous localization of the state vector

The situation is then rather similar to that occurring for one operator A. Equation
(J.13) shows that the component associated with a particular cell q can keep a
large norm only if each random function wk(t) remains very close to value ϕ

q
k

during all time interval [0, t]. This means that the function wk(t) corresponding to
the point k that is closest to cell q must take a significant value; as for the other
random functions wk′(t) with k′ �= k, they must be much smaller, since ϕ

q

k′ takes an
exponentially smaller and smaller value when point k′ is far from the considered
cell. As a consequence, the random functions wk(t) may select a particular cell q,
or even an ensemble of close cells if they are small and if the time is not too large,
but certainly not remote cells at the same time. Finally, if one postulates the CSL
probability rule as above, one favors a very particular ensemble of functions, those
for which the wave function becomes localized in close cells, or even a single
cell after some time. This realizes the equivalent of a state vector reduction in an
arbitrary and random small region of space.



Appendix K

Consistent families of histories

This appendix provides a discussion of the consistency condition (10.39) and of
the construction of consistent families of histories. First, we should mention that
other conditions have been proposed and used in the literature; in the initial arti-
cle on histories [17], a weaker condition involving only the cancellation of the
real part of (10.39) was introduced. For simplicity, here we limit ourselves to
the stronger condition (10.39), which is a sufficient but not necessary condition
to the weaker form; it turns out that, as noted in [519], it seems more useful in
this context to introduce selectivity than generality in the definition of consistent
histories.

At first sight, a natural question that comes to mind is whether or not it is easy,
or even possible at all, to fulfil exactly the large number of conditions contained in
(10.39). Actually, it has been proposed by Gell-Mann and Hartle to give a funda-
mental role to families that satisfy consistency conditions in only an approximate
way [510], but here we leave aside this possibility and consider only exact con-
sistency conditions. Let us assume for instance that the system under study is a
particle propagating in free space; the various projectors may then define ranges
of positions for the particle, playing a role similar to diaphragms or spatial fil-
ters in optics that confine an optical beam in the transverse direction. Then the
consistency condition will appear as similar to a non-interference condition for
the Huyghens wavelets that are radiated by the inner surface of each diaphragm.
But we know that diffraction is unavoidable in the propagation of light; even if
it can be a very small effect when the wavelength is sufficiently short and the
diaphragms sufficiently broad, it is never strictly 0. Can we then satisfy the non-
interference conditions exactly? The answer is not obvious. It turns out to be
yes, but it is necessary to exploit the enormous flexibility that we have in the
choice of subspaces and projectors in a large space of states, and not to limit our-
selves to projectors over well-defined positions only. To understand why, we now
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briefly sketch one possible systematic method to construct consistent families of
histories.

The simplest method is to guide the construction on the structure of (10.39),
and to introduce the eigenstates | ϕ0

n > of the density operator ρ(t0) (an Hermitian
operator can always be diagonalized); let us then define the operators P̂1,j1(t1) as:

P̂1,n(t1)=
∣∣∣ϕ0

n

〉 〈
ϕ0
n

∣∣∣ (K.1)

which is equivalent to assuming that their Schrödinger counterparts P1,j are the
projectors over the states that have evolved from the

∣∣ϕ0
n

〉
from time t0 to time t1.

Because ρ(t0) is of course diagonal in its own basis, this choice already ensures
the presence of a factor δj1,j

′
1

in the right-hand side of (10.39). Now, we can also
assume that the P2,j2 are defined as the projectors over the states that have evolved
from the

∣∣ϕ0
n

〉
from time t0 to time t2, so that a relation similar to (K.1) is obtained

again; this will ensure, not only the presence of factors δj2,j
′
2

in the right hand side
of (10.39), but actually also the appearance of a delta function δj1,j2 . The procedure
can be repeated as many times as needed, and in this way a consistent family
is built.

It is nevertheless a very special family, for several reasons. The first is that
each projector corresponds to a subspace of dimension 1 only, which corresponds
to histories that are “maximally accurate”; the second is that most histories of
the family have zero probability: in fact, only those with j1 = j2 = j3 = . . . are
possible, which means that the only randomness occurs at the initial time t1, and
that all subspaces at later times are then perfectly determined. The description that
we obtain is, in a sense, trivial: initially, the system is in one of the eigenstates that
are contained in ρ(t0), and then evolves deterministically from this initial state.

But it is possible to make the family less singular by grouping together, for
each time ti , several projectors into one single projector; different associations
of projectors may be used at different times. In this way, the description of the
evolution of the state within this family becomes less accurate, but also less trivial
since projectors at different times are no longer associated pair by pair. On the
other hand, it is possible to see that this grouping of projectors has not destroyed
the consistent character of the family; other methods for constructing consistent
families are also possible.
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