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Preface

Perturbation theory is an approximate method that enables one to solve a wide variety of problems
in applied mathematics, and for this reason it has proved useful in theoretical physics and chemistry
since long ago. Most textbooks on classical mechanics, quantum mechanics, and quantum chemistry
exhibit a chapter, or at least a section, dedicated to that celebrated approach which is afterwards
applied to several models.

In addition to the general view of perturbation theory offered by those textbooks, there is a wide
variety of techniques that facilitate the application of the approach to particular problems in the
fields mentioned above. Such implementations of perturbation theory are spread over many papers
and specialized books. We believe that a single source collecting most of those methods may profit
students of theoretical physics and chemistry.

For simplicity, in this book we concentrate on problems that allow exact analytical solutions of
the perturbation equations and avoid those that require long and tedious numerical computation that
may divert the reader’s mind from the core of the problem. However, we also resort to numerical
results when they are necessary to illustrate and complement important features of the theory.

In order to compare different methods, we apply them to the same models so that the reader may
clearly understand why we prefer one or another. Sometimes, we also apply perturbation theory to
exactly solvable models in order to illustrate the most relevant features of the approximate method
and to disclose some of its limitations. This strategy is also suitable for clearly understanding the
improvements in the perturbation series.

In this introductory book we try to keep the mathematics as simple as possible. Consequently,
we avoid a thorough discussion of certain topics, such as the analytical properties of the eigenvalues
of simple nontrivial quantum-mechanical models. The reader who is interested in going beyond the
scope of this book will find the necessary references for that purpose.

Nowadays, there are many symbolic processors that greatly facilitate most analytical calculations,
and this book would not be complete if it did not show how to apply them to perturbation theory. Here
we choose Maple® because it is uncommonly powerful and simple at the same time. In addition,
Maple offers a remarkably friendly interface that enables the user to organize his or her work in the
form of useful worksheets which can be exported in several formats. For example, here we have
chosen LATEX® to produce some of the tables, thus avoiding unnecessary transcription of the results
that may lead to misprints.

Maple allows one to do a great deal of calculation interactively, which is commonly useful to
understand the main features of the problem, and when programming becomes necessary, Maple
language is straightforward and easy to learn. Both modes of calculation have proved most useful
for present work, and our programs reflect this fact in that they are not completely automatic or
foolproof. In the program section we show several examples of the Maple procedures used to obtain
the results discussed in this book, and we think that the hints given there are sufficient for their
successful application. However, the reader who finds any difficulty is encouraged to contact the
author via E-mail at: framfer@isis.unlp.edu.ar.
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Chapter 1

Perturbation Theory in Quantum Mechanics

1.1 Introduction

It is well known that one cannot solve the Schrödinger equation in quantum mechanics except
for some simple models. For that reason many authors have devoted considerable time and effort
to develop efficient approximate methods. Among them, perturbation theory has been helpful since
the earliest applications of quantum mechanics. One of the main advantages of this approach is that
it provides analytical approximate solutions for many nontrivial simple problems which are suitable
for subsequent discussion and interpretation of the physical phenomena. In fact, perturbation theory
is probably one of the approximate methods that most appeals to intuition.

The standard textbook formulas for the perturbation corrections are somewhat cumbersome for a
systematic calculation of sufficiently high order. In this book we show several alternative strategies
that are easily programmable for numerical or algebraic calculation. We are mainly concerned with
the derivation of exact perturbation corrections, and therefore concentrate on sufficiently simple
nontrivial models having physical application. However, some of the algorithms discussed in this
book are also suitable for numerical calculation.

Most of the methods discussed in this book lead to recurrence relations and other mathematical
algorithms that are straightforward for hand calculation, and most suitable for computer algebra.
The use of the latter is mandatory if one is interested in great perturbation orders. Among the many
computer algebra packages, we have chosen Maple because it is easy to use, extremely powerful
and reliable, and offers many facilities to write reports and convert the output into forms suitable for
word processing [1].

In this chapter we briefly review those formulas of perturbation theory in quantum mechanics that
we need in subsequent chapters. We assume that the reader is familiar with standard concepts and
notation used in most textbooks on quantum mechanics. We are mainly concerned with perturbation
theory for bound stationary states; however, in this chapter, we also outline time-dependent pertur-
bation theory, and later in Chapter 8 we show simple applications of perturbation theory to stationary
states in the continuum spectrum.

1.2 Bound States

We first consider bound states that are square-integrable solutions of the eigenvalue equation
Ĥ� = E�, where Ĥ is the Hamiltonian operator of the system andE is the energy of the state� [2].
If� is complex, then both its real�R and imaginary�I parts satisfy the eigenvalue equation (because

1

                          



2 PERTURBATION THEORY IN QUANTUM MECHANICS

E is real) and are square integrable as follows from < �|� >=< �R|�R > + < �I |�I ><∞.
Therefore, without loss of generality we only consider real solutions of the eigenvalue equation. In
principle, we apply perturbation theory to

Ĥ�n = En�n, n = 1, 2, . . . (1.1)

provided that we can write

Ĥ = Ĥ0 + λĤ ′ , (1.2)

where Ĥ0 is a sufficiently close approximation to Ĥ so that Ĥ ′ may be considered to be a small
perturbation, and λ is a perturbation parameter. In Chapter 6 we will discuss the meaning of the
expression “small perturbation.” We also assume that the eigenvalue equation for Ĥ0 is exactly
solvable:

Ĥ0�n,0 = En,0�n,0, n = 1, 2, . . . . (1.3)

The eigenvalues and eigenvectors of Ĥ given by equation (1.1) depend on the perturbation pa-
rameter λ and can be formally expanded in Taylor series about λ = 0:

En =
∞∑
s=0

En,sλ
s, En,s = 1

s!
∂sEn

∂λs

∣∣∣∣
λ=0

, (1.4)

�n =
∞∑
s=0

�n,sλ
s,�n,s = 1

s!
∂s�n

∂λs

∣∣∣∣
λ=0

. (1.5)

From straightforward substitution of these series into the eigenvalue equation (1.1) we derive a
system of equations for the perturbation coefficients:

[
Ĥ0 − En,0

]
�n,s =

[
En,1 − Ĥ ′

]
�n,s−1 +

s∑
j=2

En,j�n,s−j . (1.6)

For example the equation of first order is[
Ĥ0 − En,0

]
�n,1 =

[
En,1 − Ĥ ′

]
�n,0 . (1.7)

We say that the unperturbed states are nondegenerate if E(0)
n 	= E

(0)
m when n 	= m. In order to apply

the method below we assume that the eigenfunctions �n,0 form a complete orthonormal set (a basis
set) so that we can expand the perturbation corrections as follows:

�n,s =
∑
m

Cmn,s�m,0, Cmn,s =
〈
�m,0|�n,s

〉
. (1.8)

Notice that Cmn,0 = δmn. For simplicity we write |m > instead of |�m,0 > from now on.
On applying the bra vector < m| to equation (1.6) we obtain

[
Em,0 − En,0

]
Cmn,s =

s∑
j=1

En,jCmn,s−j −
∑
k

H ′mkCkn,s−1 , (1.9)

where H ′mk =< m|Ĥ ′|k >. When m = n we obtain an expression for the energy

En,s =
〈
n

∣∣∣Ĥ ′∣∣∣�n,s−1

〉
−

s−1∑
j=1

En,jCnn,s−j . (1.10)

                          



1.2. BOUND STATES 3

Some authors choose the intermediate normalization condition Cnn,s = δs0 because it leads to a
simpler expression for the energy: En,s =< n|Ĥ ′|�n,s−1 > [3]. In that case one has to normalize
the resulting approximate eigenfunction �n to unity. Here we choose the standard normalization
condition < �n|�n >= 1 from which it follows that

s∑
j=0

〈
�n,j |�n,s−j

〉 = δn0 . (1.11)

When m 	= n equation (1.9) gives us an expression for the expansion coefficients

Cmn,s =
[
En,0 − Em,0

]−1


∑

k

H ′mkCkn,s−1 −
s∑

j=1

En,jCmn,s−j


 . (1.12)

The remaining coefficient Cnn,s follows from equation (1.11):

Cnn,1 = 0, Cnn,s = −1

2

s−1∑
j=1

∑
m

Cmn,jCmn,s−j , s > 1 . (1.13)

Equations (1.10) and (1.12) are the standard textbook perturbation expressions. For example, when
s = 1 we obtain

En,1 = H ′nn (1.14)

from equation (1.10), and

Cmn,1 = H ′mn

En,0 − Em,0
(1.15)

from equation (1.12).
For the second order we obtain

En,2 =
〈
n

∣∣∣Ĥ ′∣∣∣�n,1

〉
=
∑
m

H ′ 2mn

En,0 − Em,0
(1.16)

from equation (1.10) and so on. We repeat this process as many times as needed. At each perturbation
order we first calculate the energy and then the eigenfunction coefficients, both in terms of corrections
already obtained in previous steps.

The recursion relations given by equations (1.10) and (1.12) yield analytical expressions provided
that one is able to carry out the sums over intermediate states exactly. The simplest situation is that
each such sum has a finite number of terms, which already happens if H ′mn = 0 for all |m− n| > J .
Lie algebraic methods greatly facilitate the calculation of analytical matrix elements Hmn in certain
cases [4].

Once we have the perturbation coefficients Cmn,s we easily express matrix elements and between
perturbed states in terms of matrix elements and between unperturbed states as follows:

〈
�m

∣∣∣Â∣∣∣�n

〉
=

∞∑
p=0

λp
p∑

s=0

〈
�m,s

∣∣∣Â∣∣∣�n,p−s
〉

=
∞∑
p=0

λp
p∑

s=0

∑
j

∑
k

Cjm,sCkn,p−s
〈
j

∣∣∣Â∣∣∣ k〉 . (1.17)

                          



4 PERTURBATION THEORY IN QUANTUM MECHANICS

1.2.1 The 2s + 1 Rule

The discussion above suggests that it is necessary to calculate the correction of order s to the
eigenfunction in order to obtain the correction of order s + 1 to the energy. However, this is not
the case; given all the corrections to the eigenfunction through order s we can obtain all the energy
coefficients through order 2s + 1. This calculation is based on more symmetric formulas that we
briefly discuss in what follows. Consider a matrix element < �n,s |[En,1 − Ĥ ′]|�n,t > with s < t .
Using the general equation (1.6) we rewrite it as〈

�n,s

∣∣∣[En,1 − Ĥ ′
]∣∣∣�n,t

〉
=
〈[
En,1 − Ĥ ′

]
�n,s |�n,t

〉

=
〈[
Ĥ0 − En,0

]
�n,s+1|�n,t

〉
−

s+1∑
j=2

En,j

〈
�n,s+1−j |�n,t

〉

=
〈
�n,s+1

∣∣∣[Ĥ0 − En,0

]∣∣∣�n,t

〉
−

s+1∑
j=2

En,j

〈
�n,s+1−j |�n,t

〉

=
〈
�n,s+1

∣∣∣[En,1 − Ĥ ′
]∣∣∣�n,t−1

〉
−

s+1∑
j=2

En,j

〈
�n,s+1−j |�n,t

〉

+
t∑

j=2

En,j

〈
�n,s+1|�n,t−j

〉
. (1.18)

The net result of this process is a reduction in the greater subscript and an increment in the smaller
one making the matrix element more symmetric. We apply it to equation (1.10) as many times as
required in order to obtain the most symmetric expression for the energy that consequently contains
perturbation corrections of the smallest order to the eigenfunction. For example, the first energy
coefficients are

En,3 =
〈
�n,1

∣∣∣[Ĥ ′ − En,1

]∣∣∣�n,1

〉
, (1.19)

En,4 =
〈
�n,2

∣∣∣[Ĥ ′ − En,1

]∣∣∣�n,1

〉
− En,2

[〈
�n,2|n

〉+ 〈�n,1|�n,1
〉]

, (1.20)

En,5 =
〈
�n,2

∣∣∣[Ĥ ′ − En,1

]∣∣∣�n,2

〉
− En,2

[〈
�n,1|�n,2

〉+ 〈�n,2|�n,1
〉]

, (1.21)

where we have used equation (1.11) to simplify the right-hand sides. Such symmetrized energy
formulas and their generalizations are well known and have been discussed by other authors in more
detail [4].

1.2.2 Degenerate States

When the unperturbed states are degenerate we cannot apply the perturbation equations given
above in a straightforward way. If there are gn linearly independent solutions to the unperturbed
equation with the same eigenvalue:

Ĥ0�n,a = En,0�n,a, a = 1, 2, . . . , gn (1.22)

we say that those states are gn-fold degenerate. Any linear combination

�n,0 =
gn∑
a=1

Ca,n�n,a (1.23)

                          



1.3. EQUATIONS OF MOTION 5

is an eigenfunction of Ĥ0 with eigenvalue En,0. Applying the bra < �n,a| from the left to the
equation of first order (1.7), we obtain an homogeneous system of gn equations with gn unknowns:

gn∑
b=1

(
H ′a,b − En,1δa,b

)
Cb,n = 0, a = 1, 2, . . . , gn . (1.24)

As before we assume that < �n,a|�n,b >= δab and write H ′a,b =< �n,a|Ĥ ′|�n,b >. Nontrivial
solutions exist only if the secular determinant vanishes:∣∣H ′a,b − En,1δa,b

∣∣ = 0 . (1.25)

The gn real roots En,1,b, b = 1, 2, . . . , gn are the corrections of first order for those states.
We may treat higher perturbation orders in the same way but the notation becomes increasingly

awkward as the perturbation order increases. For this reason we do not proceed along these lines and
will return to perturbation theory for degenerate states when we discuss a more systematic approach
in Chapter 3.

In Chapters 5 and 7 we will show that it is sometimes convenient to choose a nonlinear perturbation
parameter λ in the Hamiltonian operator and expand Ĥ (λ) in a Taylor series about λ = 0 as follows:

Ĥ (λ) =
∞∑
j=0

Ĥjλ
j . (1.26)

If we can solve the eigenvalue equation for Ĥ0 = Ĥ (0), then we can apply perturbation theory in
the way outlined above. One easily proves that the perturbation equations for this case are

[
Ĥ0 − En,0

]
�n,s =

s∑
j=1

[
En,j − Ĥj

]
�n,s−j , (1.27)

and that the systematic calculation of the corrections is similar to that in preceding subsections.

1.3 Equations of Motion

In quantum mechanics one obtains the state �(t) of the system at time t from the state �(t0) at
time t0 by means of a time-evolution operator Û (t, t0) [5]:

�(t) = Û (t, t0)� (t0) . (1.28)

The time-evolution operator satisfies the differential equation

ih̄
d

dt
Û (t, t0) = Ĥ Û (t, t0) (1.29)

with the initial condition

Û (t0, t0) = 1̂ , (1.30)

where 1̂ is the identity operator. It follows from the adjoint of equation (1.29)

ih̄
d

dt
Û (t, t0)

† = −Û (t, t0)
† Ĥ (1.31)

                          



6 PERTURBATION THEORY IN QUANTUM MECHANICS

that Û (t, t0) is unitary (Û† = Û−1).
Other important properties of the time-evolution operator are

Û (t, t0)
† = Û (t, t0)

−1 = Û (t0, t) (1.32)

Û (t, t0) = Û
(
t, t ′

)
Û
(
t ′, t0

)
. (1.33)

It follows from equation (1.33) that we can restrict ourselves to the case t0 = 0 without loss
of generality because Û (t, t0) = Û (t, 0)Û(0, t0) = Û (t, 0)Û(t0, 0)†. Therefore, we consider
Û = Û (t) = Û (t, 0) from now on.

In the Schrödinger picture outlined above the states change with time; on the other hand, the
states are time independent in the Heisenberg picture [5]. Given an observable Â in the Schrödinger
picture, we obtain its Heisenberg counterpart ÂH as follows:

ÂH = Û†ÂÛ , (1.34)

which satisfies the equation of motion

ih̄
d

dt
ÂH = −Û†Ĥ ÂÛ + Û†ÂĤ Û = Û†

[
Â, Ĥ

]
Û =

[
ÂH , ĤH

]
, (1.35)

where [Â, B̂] = ÂB̂ − B̂Â is the commutator between two linear operators Â and B̂. In order to
derive equation (1.35) we have taken into account that Û†ÂB̂Û = Û†ÂÛ Û†B̂Û .

If Ĥ is time independent then

Û (t, t0) = Û (t − t0) = exp
[
−i (t − t0) Ĥ /h̄

]
, (1.36)

and ĤH = Ĥ .

1.3.1 Time-Dependent Perturbation Theory

It is not possible to solve the Schrödinger equation (1.29) exactly, except for some simple models;
for this reason one resorts to approximate methods. In order to apply perturbation theory we write
the Hamiltonian operator as Ĥ0 + λĤ ′, where, typically, Ĥ0 is time independent and Ĥ ′ may be
time dependent. We further factorize the time-evolution operator as

Û (t) = Û0(t)ÛI (t) (1.37)

giving rise to the so-called interaction or intermediate picture [5]. The time-evolution operator in
the interaction picture ÛI is unitary and satisfies the differential equation

ih̄
d

dt
ÛI = λĤI ÛI , ĤI = Û

†
0 Ĥ
′Û0 . (1.38)

The usual initial conditions are Û0(0) = 1̂ and ÛI (0) = 1̂.
Expanding ÛI in a Taylor series about λ = 0

ÛI =
∞∑
j=0

ÛI,j λ
j (1.39)

we obtain a recurrence relation for the coefficients [6]

ÛI,j (t) = − i

h̄

∫ t

0
ĤI

(
t ′
)
ÛI,j−1

(
t ′
)
dt ′, ÛI,0(t) = 1̂ . (1.40)

                          



1.3. EQUATIONS OF MOTION 7

Notice that any partial sum of the series (1.39) satisfies the initial condition ÛI (0) = 1̂, but it is not
unitary.

In some cases we can choose Û0 in such a way that equations (1.39) and (1.40) provide an
approximate expression for ÛI that may be suitable for the calculation of matrix elements and
transition probabilities [6].

In order to illustrate the application of perturbation theory in the interaction picture we concentrate
on the approximate calculation of operators in the Heisenberg picture when the Hamiltonian operator
Ĥ = Ĥ0 + λĤ ′ is time independent.

If we expand a given Heisenberg operator ÂH in a Taylor series about λ = 0

ÂH =
∞∑
j=0

ÂH,jλ
j , (1.41)

then equation (1.35) with ĤH = Ĥ gives us

ih̄
d

dt
ÂH,j =

[
ÂH,j , Ĥ0

]
+
[
ÂH,j−1, Ĥ

′] , j = 1, 2, . . . . (1.42)

We propose a solution to this operator differential equation of the form ÂH,j = Û
†
0 B̂j Û0 and derive

a differential equation for the time-dependent operator B̂j

ih̄
dB̂j

dt
= Û0

[
ÂH,j−1, Ĥ

′] Û†
0 (1.43)

which we easily integrate:

B̂j (t) = − i

h̄

∫ t

0
Û0
(
t ′
) [

ÂH,j−1
(
t ′
)
, Ĥ ′

]
Û0
(
t ′
)†

dt ′ . (1.44)

Finally, we have

ÂH,j (t) = − i

h̄

∫ t

0
Û

†
0

(
t − t ′

) [
ÂH,j−1

(
t ′
)
, Ĥ ′

]
Û0
(
t − t ′

)
dt ′ (1.45)

where j = 1, 2, . . . , and ÂH,0 = Û
†
0 ÂÛ0.

If we define a dimensionless time variable s = ωt in terms of a frequency ω, and a dimensionless
Hamiltonian operator

Ĥ = Ĥ

h̄ω
, (1.46)

then we obtain a dimensionless Schrödinger equation

i
dÛ

ds
= ĤÛ . (1.47)

Notice that we can derive equation (1.47) formally by setting h̄ = 1 in equation (1.29).

1.3.2 One-Particle Systems

Most of this book is devoted to one-particle models because they are convenient illustrative
examples. More precisely, we consider a particle of mass m under the effect of a conservative force

                          



8 PERTURBATION THEORY IN QUANTUM MECHANICS

F(r) = −∇V (r), where V (r) is a potential-energy function and r denotes the particle position. The
Hamiltonian operator for this simple model reads

Ĥ = |p̂|
2

2m
+ V (r) , (1.48)

where p̂ and r̂ are vector operators with components (p̂x, p̂y, p̂z) and (x̂, ŷ, ẑ), respectively. They
satisfy the well-known commutation relations for coordinates and conjugate momenta[

û, p̂v

] = ih̄δuv,
[
û, v̂

] = 0,
[
p̂u, p̂v

] = 0, u, v = x, y, z . (1.49)

The Hamiltonian operator (1.48) also applies to the relative motion of a pair of particles of masses
m1 and m2. In this case m = m1m2/(m1 + m2) is the reduced mass, r̂ = r̂2 − r̂1 is the relative
position and p̂ = p̂2 − p̂1 is the relative momentum.

Because mathematical equations are dimensionless, we believe it is appropriate to remove the
dimensions from physical equations. The resulting equations are commonly simpler because they
are free from most physical constants and parameters. Moreover, dimensionless equations clearly
reveal the relevant parameters of the model. With that purpose in mind, we first define dimensionless
coordinate q = r/γ and momentum p′ = γp/h̄, where γ is a yet undefined unit of length. The
Hamiltonian operator reads

Ĥ = h̄2

mγ 2

[ |p̂′|2
2
+ v(q)

]
, v(q) = mγ 2

h̄2
V (γq) , (1.50)

and we choose γ in such a way that the form of the dimensionless Hamiltonian operator Ĥ =
mγ 2Ĥ /h̄2 is as simple as possible.

In the case of the time-dependent Schrödinger equation one also defines a dimensionless time
s = ωt , as discussed earlier, and obtains

i
d

ds
Û = ĤÛ , Ĥ =

[ |p̂′|2
2
+ v(q)

]
(1.51)

provided that

γ 2 = h̄

mω
. (1.52)

We obtain the dimensionless equation by formally setting h̄ = m = 1. For brevity we write p instead
of p′ when there is no room for confusion.

1.4 Examples

In what follows we illustrate the application of some of the general results derived above to simple
one-dimensional models.

1.4.1 Stationary States of the Anharmonic Oscillator

As a first illustrative example we consider the anharmonic oscillator

Ĥ = p̂2

2m
+ mω2x̂2

2
+ k′x̂M, M = 4, 6, . . . (1.53)

                          



1.4. EXAMPLES 9

which in dimensionless form reads

Ĥ = 1

2

(
p̂′2 + q̂2

)
+ λq̂M, λ = k′h̄M/2−1

mM/2ωM/2+1
. (1.54)

In particular we choose M= 4 and apply perturbation theory with Ĥ0 = (p̂′2+ q̂2)/2, and Ĥ′ = q̂4.
The unperturbed problem Ĥ0|n >= (n + 1/2)|n > is nondegenerate and we easily calculate the
matrix elements H′mn by means of the recurrence relation [7]

〈
m|q̂j |n

〉
=
√
n

2

〈
m

∣∣∣q̂j−1
∣∣∣ n− 1

〉
+
√
n+ 1

2

〈
m

∣∣∣q̂j−1
∣∣∣ n+ 1

〉
. (1.55)

Notice that in this case equations (1.10) and (1.12) yield exact analytical results because< m|Ĥ′|n >

= 0 if |m− n| > 4; consequently Cmn,s = 0 if |m− n| > 4s.
By means of the Maple procedures given in the program section we derived the results in Table 1.1.

Notice that the matrix elements < �0|q̂|�3 > and < �0|q̂2|�4 > vanish when λ = 0 because they
are exactly zero for the harmonic oscillator and arise from the perturbation.

1.4.2 Harmonic Oscillator with a Time-Dependent Perturbation

In what follows we illustrate the application of time-dependent perturbation theory to a one-
dimensional harmonic oscillator with a simple time-dependent perturbation. In the case of perturbed
harmonic oscillators it is commonly convenient to express the dynamical variables in terms of the
creation â† and annihilation â operators that satisfy the commutation relation [â, â†] = 1̂ (from now
on we simply write 1 instead of 1̂). The model Hamiltonian operator is Ĥ = Ĥ0 + λĤ ′, where

Ĥ0 = h̄ω0

(
â†â + 1/2

)
, H ′ = f (t)â + f (t)∗â† , (1.56)

f (t) is a complex-valued function of time, and f (t)∗ its complex conjugate [8]. The dummy
perturbation parameter λ is set equal to unity at the end of the calculation.

The dimensionless Schrödinger equation

i
dÛ

ds
=
[
â†â + 1

2
+ f (t)

h̄ω0
â + f (t)∗

h̄ω
â†
]
Û , (1.57)

where s = ω0t , clearly reveals that the result will depend on the dimensionless function f (t)/(h̄ω0).
In order to facilitate comparison with earlier results, in this case we prefer to work with the original
Schrödinger equation.

Taking into account that

Û0(t)
†âÛ0(t) = â exp (−iω0t) (1.58)

we obtain [8]

ĤI = g(t)â + g(t)∗â†, g(t) = f (t) exp (−iω0t) . (1.59)

It is our purpose to write the perturbation corrections ĤI,j in normal order (powers of â† to the left
of powers of â) because it facilitates the calculation of matrix elements.

According to equation (1.40) the perturbation correction of first order is

ÛI,1(t) = β1(t)â
† + β2(t)â , (1.60)

                          



10 PERTURBATION THEORY IN QUANTUM MECHANICS

Table 1.1 Perturbation Corrections for the Dimensionless Anharmonic

Oscillator Ĥ = p̂2 + q̂2

2
+ λ q̂4

Perturbation corrections to the energy of the nth excited state

En, 1 = 3
2 n

2 + 3
2 n+ 3

4

En, 2 = − 17
4 n3 − 51

8 n2 − 59
8 n− 21

8

En, 3 = 1041
16 n+ 177

2 n2 + 375
8 n3 + 333

16 + 375
16 n4

En, 4 = − 111697
128 n− 80235

64 n2 − 71305
64 n3 − 30885

128

− 10689
64 n5 − 53445

128 n4

First terms of the perturbation series for the ground state

E0 = 1
2 + 3

4 λ− 21
8 λ2 + 333

16 λ3

− 30885
128 λ4 + 916731

256 λ5 − 65518401
1024 λ6 + 2723294673

2048 λ7

− 1030495099053
32768 λ8 + . . .

Some matrix elements 〈�m|q̂k|�n〉

〈�0|q̂|�1〉 =
√

2
2 − 3

√
2 λ

4 + 189
√

2 λ2

32 − 4527
√

2 λ3

64 + 1093701
√

2 λ4

1024 + . . .

〈�0|q̂|�3〉 =
√

3 λ
4 − 39

√
3 λ2

8 + 14041
√

3 λ3

128 − 714681
√

3 λ4

256 + . . .

〈�0|q̂2|�0〉 = 1
2 − 3 λ

2 + 105 λ2

8 − 333 λ3

2 + 339735 λ4

128 + . . .

〈�0|q̂2|�2〉 =
√

2
2 − 15

√
2 λ

8 + 1233
√

2 λ2

64 − 68133
√

2 λ3

256 + 16908219
√

2 λ4

4096 + . . .

〈�0|q̂2|�4〉 =
√

6 λ
2 − 55

√
6 λ2

4 + 6517
√

6 λ3

16 − 212125
√

6 λ4

16 + . . .

where

β2(t) = −β1(t)
∗ = − i

h̄

∫ t

0
g(u)du . (1.61)

A straightforward calculation shows that the correction of second order is

ÛI,2(t) = − |β1|2 â†â + β3 + β2
1

2

(
â†
)2 + β2

2

2
â2 , (1.62)

where

β3(t) =
∫ t

0
β1(u)

dβ2(u)

du
du . (1.63)
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In order to obtain equation (1.62) notice that �(β3) = −|β1|2/2, where �(z) stands for the real part
of the complex number z.

It is not difficult to verify that the time-evolution operator for this simple model is exactly given
by [8]

ÛI (t) = exp
(
β1â

†
)

exp
(
β2â

)
exp (β3) . (1.64)

Expanding the exponentials and keeping terms through second order in Ĥ ′ we obtain the results
given above by perturbation theory.

On calculating the transition probabilities [8]

Pmn =
∣∣∣〈m ∣∣∣Û (t)

∣∣∣ n〉∣∣∣2 = ∣∣∣〈m ∣∣∣ÛI (t)

∣∣∣ n〉∣∣∣2 (1.65)

by means of the approximate perturbation expression for ÛI , we conclude that at first order Pmn = 0
if |m − n| > 1, at second order Pmn = 0 if |m − n| > 2, and so on. The reader may easily obtain
the nonzero transition probabilities in terms of |β1|. If we keep only the perturbation correction
of first order, we derive the usual approximate selection rule for the harmonic oscillator: 0n =
m − n = ±1 [9]. If, on the other hand, we use the exact expression for ÛI , we realize that all
the transition probabilities are nonzero [8]. However, at sufficiently short times, perturbation theory
gives a reasonable approximation to the dynamics of the problem because the correction of order P
is proportional to |β1|P and |β1| → 0 as t → 0. In order to have a deeper insight into this point we
discuss a particular example below.

Consider the periodic interaction given by

f (t) = f0 cos(ωt) , (1.66)

where |f0| � h̄ω0 for a weak interaction. In the case of resonance ω = ω0 we have

β1(t) = f0

4h̄ω0

[
1− 2iω0t − exp (2iω0t)

]
. (1.67)

As expected this result depends only on the dimensionless time variable s = ω0t and the ratio
f0/(h̄ω0). The absolute values of the first and third terms in the right-hand side of this equation are
small for all values of t , while the absolute value of the second term increases linearly with time.
Perturbation theory will give reasonable results provided that |β1| is sufficiently small; that is to say,
when |t | � h̄/f0 � 1/ω0. In other words, perturbation theory is expected to be valid in a time
interval sufficiently smaller than the period of the harmonic oscillator 2π/ω0. Under such conditions
P02 = |β1|4/2� P01 = |β1|2 and the harmonic-oscillator selection rule is approximately valid.

1.4.3 Heisenberg Operators for Anharmonic Oscillators

In what follows we derive approximate expressions for Heisenberg operators in the particular case
of anharmonic oscillators (1.53). It is not difficult to verify that the dimensionless time-evolution
equation becomes

i
Û

ds
= ĤÛ , (1.68)

where Ĥ is given by equation (1.54).
From now on we simply write p̂ instead of p̂′ and t instead of s to indicate the dimensionless

momentum and time; one must keep in mind that it is necessary to substitute x̂/γ for q̂, γ p̂/h̄ for
p̂, and ωt for t everywhere in order to recover the original units.
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Notice that Ĥ0 = (p̂2 + q̂2)/2, and Ĥ′ = q̂M play the role of Ĥ0 and Ĥ ′, respectively, in the
perturbation equations developed earlier in this chapter. It is our purpose to obtain q̂H for the cubic
(M = 3) and quartic (M = 4) oscillators. In order to apply equation (1.45) recursively one must
take into account the well-known canonical transformations

Û
†
0

(
t − t ′

)
q̂Û0

(
t − t ′

) = cos
(
t − t ′

)
q̂ + sin

(
t − t ′

)
p̂ (1.69)

Û
†
0

(
t − t ′

)
p̂Û0

(
t − t ′

) = cos
(
t − t ′

)
p̂ − sin

(
t − t ′

)
q̂ . (1.70)

Table 1.2 shows results through second order for M = 3 and of first order for M = 4. The
calculation is straightforward but tedious. One carries out the commutators by hand and then uses
Maple to calculate the necessary integrals. We should be careful with the order of the coordinate and
momentum operators because they do not commute. It is convenient to choose an order for those
operators and we have arbitrarily decided to write powers of q̂ to the left of powers of p̂ following
the rule p̂q̂ = −i + q̂p̂.

Table 1.2 Perturbation Corrections to the Heisenberg Operator q̂H for

Dimensionless Anharmonic Oscillators Ĥ = p̂2 + q̂2

2
+ λ q̂M

M = 3

q̂H, 1 =
(−2 q̂ p̂ + i

)
sin(t)+ (q̂ p̂ − i

2

)
sin(2 t)+ (2 p̂2 + q̂2

)
cos(t)

+
(
− p̂2

2 + q̂2

2

)
cos(2 t)− 3 p̂2

2 − 3 q̂2

2

q̂H, 2 =
(
− 9 i q̂

16 + 9 q̂2 p̂
16 − 3 p̂3

16

)
sin(3 t)

+
(

65 q̂2 p̂
16 + 5 p̂3

16 + 15 q̂ p̂2 t
4 − 15 i p̂ t

4 + 15 q̂3 t
4 − 65 i q̂

16

)
sin(t)

+ (i q̂ − q̂2 p̂ + 2 p̂3
)

sin(2 t)

+
(
− 15 p̂3 t

4 + 29 q̂3

16 − 55 q̂ p̂2

16 − 15 q̂2 p̂ t
4 + 55 i p̂

16 + 15 i q̂ t
4

)
cos(t)

+ (4 q̂ p̂2 − 4 i p̂ + q̂3
)

cos(2 t)+
(
− 9 q̂ p̂2

16 + 9 i p̂
16 + 3 q̂3

16

)
cos(3 t)− 3 q̂3

M = 4

q̂H, 1 =
(

3 q̂2 p̂
8 − 3 i q̂

8 − p̂3

8

)
sin(3 t)

+
(
− 3 q̂3 t

2 − 21 q̂2 p̂
8 + 3 i p̂ t

2 − 3 q̂ p̂2 t
2 − 9 p̂3

8 + 21 i q̂
8

)
sin(t)

+
(
− 3 i p̂

8 + 3 p̂3 t
2 − 3 i q̂ t

2 + 3 q̂2 p̂ t
2 − q̂3

8 + 3 q̂ p̂2

8

)
cos(t)

+
(
− 3 q̂ p̂2

8 + q̂3

8 + 3 i p̂
8

)
cos(3 t)

                          



Chapter 2

Perturbation Theory in the Coordinate
Representation

2.1 Introduction

In Chapter 1 we briefly showed how to solve the perturbation equations systematically in the
number representation that is suitable for the calculation of the matrix elements necessary for the
application of equations (1.10) and (1.12). Alternatively, if we write the Hamiltonian operator
in the coordinate representation (substituting −ih̄∇ for p̂ or −i∇ for p̂′), then the perturbation
equations (1.6) become differential equations. The unperturbed equation is a solvable eigenvalue
problem, and the perturbation corrections are solutions to inhomogeneous differential equations. In
this chapter we discuss some widely used strategies for the solution of such equations.

2.2 The Method of Dalgarno and Stewart

Some time ago, Dalgarno and Stewart [10] developed a simple and practical method for the
solution of perturbation equations, later adopted by many authors in the treatment of a variety of
problems. For simplicity we apply this method to a one-particle model Hamiltonian operator, which
in dimensionless form reads

Ĥ = −1

2
∇2 + V (r) , (2.1)

where ∇2 is the Laplacian operator and V (r) is a dimensionless potential-energy function. Here r
stands for the dimensionless coordinate introduced in Chapter 1. We assume that we can solve the
eigenvalue equation for

Ĥ0 = −1

2
∇2 + V0(r) , (2.2)

where V0(r) is a properly selected potential-energy function, and choose λV1(r) = V (r) − V0(r)
to be the perturbation. We set the dummy perturbation parameter λ equal to unity at the end of the
calculation.

For simplicity, in the following discussion we omit the label that indicates the selected stationary
state and simply write 	j and Ej for the perturbation corrections of order j to the eigenfunction and

13

                          



14 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

energy, respectively. That is to say, we expand a particular solution of Ĥ	 = E	 as

	(r) =
∞∑
j=0

	j(r)λj , E =
∞∑
j=0

Ejλ
j . (2.3)

The method of Dalgarno and Stewart [10] consists of writing the perturbation corrections to the
eigenfunction as

	j(r) = Fj (r)	0(r), j = 0, 1, . . . (2.4)

and solving the resulting equations for the functions Fj (r):

−1

2
∇2Fj − 1

	0
∇	0 · ∇Fj + V1Fj−1 −

j∑
i=1

EiFj−i = 0 . (2.5)

In this equation ∇ is the gradient vector operator and the dot stands for the standard scalar prod-
uct. These equations are easier to solve than the original differential equations for the perturbation
corrections 	j . In many cases the correction factors Fj are simple polynomial functions of the
coordinates. Notice that F0 = 1 is a suitable solution to the equation of order zero, and that E0 does
not appear in the perturbation equations (2.5).

In the following subsections we illustrate the application of the method of Dalgarno and Stewart
to simple quantum-mechanical models.

2.2.1 The One-Dimensional Anharmonic Oscillator

As a first example we choose the widely discussed one-dimensional anharmonic oscillator

Ĥ = −1

2

d2

dx2
+ x2

2
+ λx4 (2.6)

that we split into a dimensionless harmonic oscillator and a quartic perturbation λx4.
Upon substituting the unperturbed ground state normalized to unity

	0(x) = π−1/4 exp
(
−x2/2

)
(2.7)

into equations (2.5) we have

−1

2
F ′′′j + xF ′j + x4Fj−1 −

j∑
i=1

EiFj−i = 0 . (2.8)

Straightforward inspection reveals that the solutions are polynomial functions of the form

Fj =
2j∑
i=0

cjix
2i . (2.9)

Substitution of equation (2.9) into equation (2.8) for j = 1 leads to the polynomial equation

(4c12 + 1) x4 + (2c11 − 6c12) x
2 − c11 − E1 = 0 (2.10)

                          



2.2. THE METHOD OF DALGARNO AND STEWART 15

from which we obtain

c12 = −1

4
, c11 = −3

4
, E1 = 3

4
. (2.11)

The eigenvalue equation does not determine the coefficient c10 that we derive from the normalization
condition (cf. equation (1.11))

〈	0|	1〉 = c10 − 9

16
= 0 . (2.12)

Finally, we have

F1(x) = 9

16
− 3x2

4
− x4

4
. (2.13)

It is worth noticing that we have obtained the energy coefficient E1 without having recourse to
equation (1.14). The reason is that we have tacitly forced the solution to satisfy the boundary
condition (that is to say, F1(x)	0(x) to be square integrable) and this requirement completely
determines the energy.

By means of equations (1.16) and (1.19) we obtain the perturbation corrections of second and
third order, respectively:

E2 =
〈
	0|x4|	1

〉
= −21

8
, (2.14)

E3 =
〈
	1|x4 − E1|	1

〉
= 333

16
(2.15)

that agree with the results of Table 1.1.
Proceeding along these lines, one easily obtains perturbation corrections of greater order. However,

we prefer to illustrate such systematic calculation by means of more interesting, and slightly more
complicated, quantum-mechanical models. The simple anharmonic oscillator discussed above serves
just as an introductory example.

2.2.2 The Zeeman Effect in Hydrogen

Our second illustrative example is a spinless hydrogen atom in a uniform magnetic field. From a
physical point of view this model is certainly more motivating than the anharmonic oscillator and has
also been widely discussed in terms of perturbation theory [11, 12]. From a mathematical point of
view this problem is more demanding because it is not separable and leads to perturbation equations
in two variables. Arbitrarily choosing the z axis along the field the Hamiltonian operator reads

Ĥ = − h̄2

2m
∇2 − e2

r
+ eB

2mc
L̂z + e2B2

8mc2
(x2 + y2), (2.16)

where m is the atomic reduced mass, e is the electron charge, c is the speed of light, L̂z is the
z-component of the angular-momentum operator, and B is the magnitude of the magnetic induc-
tion [13].

If we define units of length γ = h̄2/(me2) and energy h̄2/(mγ 2) = e2/γ we obtain a dimension-
less Hamiltonian operator

Ĥ = −1

2
∇2 − 1

r
+√2λL̂z + λ

(
x2 + y2

)
, (2.17)

                          



16 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

where L̂z is given in units of h̄ and λ = B2h̄6/(8m4c2e6) is a perturbation parameter. We hope that
the use of the same symbols for the original and dimensionless quantities will not be confusing. In
order to recover the original units at the end of the calculation, one simply multiplies lengths, energy,
linear momenta, angular momenta, and wavefunctions, respectively, by γ, e2/γ, h̄/γ, h̄ and γ−3/2.

Taking into account that [Ĥ , L̂z] = 0 we omit the constant of the motion L̂z in the perturbation
calculation and then add the eigenvalue of

√
2λL̂z to the resulting energy. In other words, from now

on, we consider Ĥ −√2λL̂z instead of Ĥ and write

Ĥ = Ĥ0 + λĤ ′, Ĥ0 = −1

2
∇2 − 1

r
, Ĥ ′ = x2 + y2 . (2.18)

We can solve the perturbation equations in several different coordinate systems. Here we choose a
kind of modified spherical coordinates in which u = cos(θ) takes the place of θ :

x = r
√

1− u2 cos(φ), y = r
√

1− u2 sin(φ), z = ru . (2.19)

By straightforward application of the general method outlined in Appendix A, we obtain the form of
the laplacian ∇2 in terms of such coordinates, and the perturbation equations for the factor functions
Fj (r, u, φ) become

− 1

2

∂2Fj

∂r2
− 1

r

∂Fj

∂r
+ u2 − 1

2r2

∂2Fj

∂u2
+ u

r2

∂Fj

∂u
+ 1

2r2(u2 − 1)

∂2Fj

∂φ2

− 1

	0

[
∂	0

∂r

∂Fj

∂r
+ 1− u2

r2

∂	0

∂u

∂Fj

∂u
+ 1

r2(1− u2)

∂	0

∂φ

∂Fj

∂φ

]

+ r2
(

1− u2
)
Fj−1 −

j∑
i=1

EiFj−i = 0 . (2.20)

Notice that ∂Fj/∂φ = 0 because the perturbation is independent of φ, and the state depends on φ

only through 	0 which is an eigenfunction of L̂z.
In what follows we call ground state the one that correlates with the state 1s of the hydrogen atom as

B → 0 despite the well-known fact that states with negative values of the magnetic quantum number
m may eventually have lower energy for sufficiently great values of B [14]. The dimensionless
ground state energy and eigenfunction are

E0 = −1

2
, 	0(r) = 2 exp(−r) . (2.21)

Because 	0 is independent of u and φ, the perturbation equations (2.20) take a simpler form:

− 1

2

∂2Fj

∂r2
− 1

r

∂Fj

∂r
+ u2 − 1

2r2

∂2Fj

∂u2
+ u

r2

∂Fj

∂u
+ ∂Fj

∂r

+ r2
(

1− u2
)
Fj−1 −

j∑
i=1

EiFj−i = 0 . (2.22)

Proceeding exactly as in the preceding example, at each step j = 1, 2, . . . we substitute a poly-
nomial solution of the form

Fj (r, u) =
j∑

k=0

u2k
3j∑
i=0

cjikr
i (2.23)

                          



2.3. LOGARITHMIC PERTURBATION THEORY 17

into equations (2.22), and solve for the coefficients cjik . The calculation of the first perturbation
corrections is straightforward and can be easily carried out by hand. However, as difficulty increases
noticeably with the perturbation order, the use of computer algebra is recommended. In the program
section we show a set of simple Maple procedures for the systematic calculation of the perturbation
corrections to the ground state. Table 2.1 shows some results.

Table 2.1 Perturbation Corrections to the Ground State of a Hydrogen Atom in a
Magnetic Field by Means of the Method of Dalgarno and Stewart

E0 = − 1
2

E1 = 2

E2 = − 53
3

E3 = 5581
9

E4 = − 21577397
540

E5 = 31283298283
8100

E6 = − 13867513160861
27000

E7 = 5337333446078164463
59535000

E8 = − 995860667291594211123017
50009400000

F1 = 11
3 − 5

6 r2 − 1
3 r3 +

(
1
2 r2 + 1

3 r3
)
u2

F2 = − 1489
18 + 703

180 r2 + 131
90 r3 + 11

10 r4 + 17
45 r5 + 1

18 r6

+
(
− 83

60 r2 − 83
90 r3 − 13

10 r4 − 3
5 r5 − 1

9 r6
)
u2 +

(
5

18 r4 + 2
9 r5 + 1

18 r6
)
u4

2.3 Logarithmic Perturbation Theory

Logarithmic perturbation theory is an alternative way of solving the perturbation equations in
the coordinate representation. It was developed many years ago [15] and has lately been widely
discussed and applied to many problems in quantum mechanics. Here we mention just some illus-
trative examples [16]–[20]. For simplicity, in what follows we restrict ourselves to the one-particle
dimensionless Hamiltonian

Ĥ = −1

2
∇2 + V0(r)+ λV1(r) . (2.24)

Given the ground state 	 we define the logarithmic derivative

f(r) = −∇	(r)/	(r) (2.25)

                          



18 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

that satisfies the Riccati equation

∇ · f − f · f + 2 (V0 + λV1 − E) = 0 . (2.26)

Expanding f in a Taylor series around λ = 0

f =
∞∑
j=0

fj λj (2.27)

we obtain a linear differential equation for the perturbation correction of order j

∇ · fj −
j∑

i=0

fi · fj−i + 2V0δj0 + 2V1δj1 − 2Ej = 0 . (2.28)

Notice that perturbation theory enables us to transform the nonlinear Riccati equation (2.26) into a
set of linear differential equations (2.28).

It is sometimes convenient to write 	(r) = exp[−G(r)], so that f = ∇G, and the new function
G(r) satisfies

∇2G− ∇G · ∇G+ 2(V − E) = 0 . (2.29)

The perturbation equations then read

∇2Gj −
j∑

i=0

∇Gi · ∇Gj−i + 2V0δj0 + 2V1δj1 − 2Ej = 0 . (2.30)

The equations above are suitable for the nodeless ground state. In order to avoid singularities
in the function G(r), we commonly write excited states as 	(r) = N(r) exp[−G(r)], where N(r)
accounts for the state nodes. In this case we have to solve perturbation equations for both N(r) and
G(r) [18]. For simplicity we only consider the ground state here.

The logarithmic perturbation theory is closely related to the method of Dalgarno and Stewart dis-
cussed earlier. To realize the connection between both approaches we simply expand the approximate
state given by logarithmic perturbation theory

exp
(
−G0 − λG1 − λ2G2 − λ3G3 − . . .

)

=
[

1− λG1 + λ2

(
G2

1

2
−G2

)
+ λ3

(
G1G2 −G3 − G3

1

6

)
+ · · ·

]
exp (−G0) ,(2.31)

and take into account that 	0 ∝ exp(−G0). In order to obtain exactly the same results, order by
order, by means of both methods, one may have to add appropriate normalization constants c1, c2, . . .

as follows:

F1 = c1 −G1, F2 = c2 −G2 + (c1 −G1)
2

2
, . . . . (2.32)

2.3.1 The One-Dimensional Anharmonic Oscillator

As a first simple illustrative example we choose the anharmonic oscillator (2.6). The logarithmic
derivative for this one-dimensional problem is a scalar. By inspection of the perturbation equations

f ′j −
j∑

i=0

fifj−i + x2δj0 + 2x4δj1 − 2Ej = 0 (2.33)
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we conclude that

fj =
j∑

i=0

cjix
2i+1 . (2.34)

For example, an appropriate solution to the unperturbed equation

f ′0 − f 2
0 + x2 − 2E0 = 0 (2.35)

is f0 = x, E0 = 1/2. At first order

f ′1 − 2f0f1 + 2x4 − 2E1 = 0 (2.36)

we try

f1 = c10x + c11x
3 (2.37)

and obtain

f1 = 3x

2
+ x3, E1 = 3

4
. (2.38)

Notice that

c1 −G1(x) = c1 −
∫

f1(x) dx = c1 − 3

4
x2 − 1

4
x4 (2.39)

agrees with the function F1(x), equation (2.13), given by the method of Dalgarno and Stewart if
c1 = 9/16.

We do not proceed with the discussion of higher perturbation corrections for this simple model
and turn our attention to the Zeeman effect in hydrogen.

2.3.2 The Zeeman Effect in Hydrogen

Here we consider the reduced dimensionless Hamiltonian operator (2.18) for a hydrogen atom in
a magnetic field. Using the same coordinates chosen earlier for the method of Dalgarno and Stewart
we derive the perturbation equations

∂2Gj

∂r2
+ 2

r

∂Gj

∂r
+ 1− u2

r2

∂2Gj

∂u2
− 2u

r2

∂Gj

∂u

−
j∑

i=0

[
∂Gi

∂r

∂Gj−i
∂r
+ 1− u2

r2

∂Gi

∂u

∂Gj−i
∂u

]

− 2δj0

r
+ 2r2

(
1− u2

)
δj1 − 2Ej = 0 . (2.40)

By inspection we conclude that

Gj(r, u) =
j∑

i=0

2j+1∑
k=0

cjkir
ku2i (2.41)

for the ground state. For simplicity we arbitrarily choose the normalization constants cj00 equal to
zero.

                          



20 PERTURBATION THEORY IN THE COORDINATE REPRESENTATION

The algorithm for the calculation of perturbation corrections is so similar to that for the method of
Dalgarno and Stewart that we do not think it is necessary to show the Maple program here. Suffice
to say that the program for logarithmic perturbation theory runs faster and requires less computer
memory, so that we could calculate more perturbation corrections. The first eight perturbation
corrections to the energy omitted in Table 2.2 agree with those in Table 2.1. Table 2.2 also shows the
normalization constants c1 and c2 that enable one to obtain F1 and F2 from G1 and G2 according to
equations (2.32).

2.4 The Method of Fernández and Castro

The method of Dalgarno and Stewart discussed earlier in this chapter is powerful and straightfor-
ward. However, the explicit occurrence of the unperturbed eigenfunction 	0(r) in the perturbation
equations for the factor functionsFj (r) is a disadvantage as it forces us to treat just one particular state
at a time. Consequently, it is not easy to obtain analytical expressions in terms of the unperturbed
quantum numbers for all the states simultaneously. One can certainly perform such a calculation for
separable problems by means of other methods. Logarithmic perturbation theory exhibits the same
limitation, and even the treatment of particular excited states by means of this approach is rather
awkward [18].

Fernández and Castro developed an alternative approach that in principle overcomes the above-
mentioned limitation retaining the simplicity of the method of Dalgarno and Stewart and logarithmic
perturbation theory [21]– [23]. This implementation of perturbation theory is particularly suitable
for separable problems to which we restrict here.

We say that an eigenvalue equation is separable when it is possible to split it into a set of one-
dimensional differential equations in terms of an appropriate set of coordinates. Typical examples
are central-field problems in spherical coordinates, and the hydrogen atom in spherical and parabolic
coordinates [24], among others. After separation we are left with one-dimensional equations with
additional unknowns called separation constants that play the role of eigenvalues. Such equations
are typically of the form

P(x)&′′(x)+Q(x)&′(x)+ R(x)&(x) = 0 , (2.42)

where we assume that P(x),Q(x), and R(x) are differentiable functions. If we cannot solve equa-
tion (2.42) exactly we resort to an approximate method.

In order to apply perturbation theory to equation (2.42), we need a closely related and exactly
solvable equation of the form

P(x)&′′0(x)+Q(x)&′0(x)+ R0(x)&0(x) = 0 , (2.43)

which we call the unperturbed or reference equation. We then write a solution to equation (2.42) in
terms of a solution to equation (2.43) as follows

&(x) = A(x)&0(x)+ P(x)B(x)&′0(x) , (2.44)

where A(x) and B(x) are two functions to be determined.
In order to obtain the master equation for A(x) and B(x), we first substitute equation (2.44) into

equation (2.42) and obtain[
PA′′ +QA′ + RA

]
&0 +

[
2PA′ + P(PB)′′ +QA+Q(PB)′ + PRB

]
&′0

+ [PA+ 2P(PB)′ + PQB
]
&′′0 + P 2B&′′′0 = 0 . (2.45)
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Table 2.2 Logarithmic Perturbation Theory for the Ground State of Hydrogen in a
Magnetic Field (Continued)

E9 = 86629463423865975592742047423
15752961000000

E10 = − 6127873544613551793091647103033033
3308121810000000

E11 = 2860906791689054643886413587592711789049
3820880690550000000

E12 = − 6321227877045544041116164554305582082898406063
17652468790341000000000

E13 = 64835922754141197801861813085958043042686022627637303
323952223084074585000000000

E14 = − 33967369850210532149380889524787472328231987496282476312654993
262663701998798514263850000000000

E15 = 2264264109482307631060000641858301878713803408913224993147208305977287
23663372913071758150030246500000000000

E16 = −891276111940023292896005053253585006698797584111331839938484\
0209366528899109141/110855329818409003970283695173620000000000000

E17 = 1846826604847204664087127274868002680909705982968538931488046\
002854928790263651235117089/
24254037610969705978658369667036319800000000000000

E18 = −419913308585042798041537996924734146513044350228875757255915\
00636329692816021516227600886758735263/
520041007112598073164925140546185888086116000000000000000

E19 = 1518092578288527437732059802137479306225379703305765542184136\
03949845758935566633621749551652251120733809553/
1592916807246314653988555601001400146361058474960000000000000000

E20 = −219336910702035766950803747959309042604555587884643200068180\
13697669126783211746126272935870916863837201434323044446772\
3
/

17613911117730066596206728280324088923648860618042629\
13600000000000000000

E21 = 1837484722422899428119801480748793174932836600343205332902060\
22860047889070248598241514628043115087331845204569614075298\
40680730547

/
1025096865177210897975362641400260572550965\

70108933145642500704000000000000000000
E22 = −410028655365006605342946219548517631006241419490856211629573\

74232580856759781138017331664741402268244231682149031060919\
92059752967013968849373

/
1448854892633507941497471166335\

2810489180305758890229976089282952191360000000000000000000

G0 = r

G1 = 5
6 r2 + 1

3 r3 +
(
− 1

2 r2 − 1
3 r3

)
u2

G2 = − 1253
180 r2 − 241

90 r3 − 271
360 r4 − 1

10 r5 +
(

193
60 r2 + 193

90 r3 + 53
60 r4 + 7

45 r5
)
u2

+
(
− 11

72 r4 − 1
18 r5

)
u4
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Table 2.2 (Cont.) Logarithmic Perturbation Theory for the Ground State of
Hydrogen in a Magnetic Field

G3 = 648977
2700 r2 + 4567

50 r3 + 530879
18900 r4 + 29572

4725 r5 + 10757
11340 r6 + 1

14 r7

+
(
− 90877

900 r2 − 90877
1350 r3 − 94727

3150 r4 − 41746
4725 r5 − 6347

3780 r6 − 289
1890 r7

)
u2

+
(

803
180 r4 + 122

45 r5 + 431
540 r6 + 1

10 r7
)
u4 +

(
− 7

108 r6 − 1
54 r7

)
u6

c1 = 11
3

c2 = − 805
9

By means of equation (2.43) and its first derivative we remove &′′0 and &′′′0 from equation (2.45) to
derive an expression only in terms of &0 and &′0:[

PA′′ +QA′ + (R − R0) A− 2PR0B
′ − (R0P

′ + R′0P)B
]
&0

+ P
[
PB ′′ + (2P ′ −Q)B ′ + (P ′′ −Q′)B + (R − R0) B + 2A′

]
&′0 = 0 . (2.46)

In order to solve this equation, it is sufficient to choose the arbitrary functions A(x) and B(x) to
satisfy the following set of coupled differential equations of second order

PA′′ +QA′ + (R − R0) A− 2PR0B
′ − (R0P

′ + R′0P)B = 0

PB ′′ + (2P ′ −Q
)
B ′ + (P ′′ −Q′

)
B + (R − R0) B + 2A′ = 0 . (2.47)

To facilitate the application of perturbation theory, we introduce a perturbation parameter λ into
the function R in such a way that R(λ, x) satisfies R(0, x) = R0(x) and R(1, x) = R(x). Assuming
that we can expand the difference R − R0 in a Taylor series about λ = 0

R(λ, x)− R0(x) =
∞∑
j=1

rj (x)λ
j (2.48)

we look for a solution to the set of coupled equations (2.47) in the form of λ-power series

A(λ, x) =
∞∑
k=0

Ak(x)λ
k, B(λ, x) =

∞∑
k=0

Bk(x)λ
k , (2.49)

where A(0, x) = A0(x) ≡ 1 and B(0, x) = B0(x) ≡ 0.
The coefficients Ak(x) and Bk(x) satisfy

PA′′k +QA′k − 2PR0B
′
k −

(
R0P

′ + R′0P
)
Bk +

k∑
j=1

rjAk−j = 0

PB ′′k +
(
2P ′ −Q

)
B ′k +

(
P ′′ −Q′

)
Bk + 2A′k +

k∑
j=1

rjBk−j = 0 (2.50)

and the perturbation corrections to the eigenfunction

&(x) =
∞∑
k=0

&k(x)λ
k (2.51)
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are given by

&k(x) = Ak(x)&0(x)+ Bk(x)&
′
0(x) . (2.52)

The perturbation equations (2.50) look more complicated than the ones in the method of Dalgarno
and Stewart and in the logarithmic perturbation theory discussed above. This is the price we have
to pay for the advantage that &0 does not appear explicitly in them. If we are able to solve them,
then we obtain general perturbation corrections in terms of the quantum numbers of the unperturbed
model as we will shortly see.

2.4.1 The One-Dimensional Anharmonic Oscillator

The time-independent Schrödinger equation for a dimensionless one-dimensional quantum-me-
chanical model

&′′(q)+ 2[E − V (q)]&(q) = 0 (2.53)

is a particular case of (2.42) with P = 1, Q = 0, and R = 2(E−V ). Given a closely related exactly
solvable problem of the form

&′′0(q)+ 2[E0 − V0(q)]&0(q) = 0 , (2.54)

the perturbation equations (2.50) become

A′′k + 4 (V0 − E0) B
′
k + 2V ′0Bk + 2 (E1 − V1) Ak−1 + 2

k∑
j=2

EjAk−j = 0

B ′′k + 2A′k + 2 (E1 − V1) Bk−1 + 2
k∑

j=2

EjBk−j = 0 . (2.55)

As a simple nontrivial example we choose the anharmonic oscillator

V0(q) = q2

2
, V1(q) = q4 (2.56)

for which equations (2.55) become

A′′k + 2
(
q2 − 2E0

)
B ′k + 2qBk + 2

(
E1 − q4

)
Ak−1 + 2

k∑
j=2

EjAk−j = 0

B ′′k + 2A′k + 2
(
E1 − q4

)
Bk−1 + 2

k∑
j=2

EjBk−j = 0 . (2.57)

We first note that &0 and & have definite parity (either even or odd) because both V0(q) and V (q)

are parity-invariant (even). It therefore follows that A(q) is even and B(q) is odd in order that &0
and & have the same parity. By straightforward inspection of equations (2.57) we conclude that

Ak(q) =
αk∑
i=0

akiq
2i , Bk(q) =

βk∑
i=0

bkiq
2i+1 , (2.58)

where α1 = β1 = 1, αk = βk−1 + 3, and βk = αk−1 + 1 for all k > 1.
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The perturbation equations (2.57) do not determine the coefficients ak0 which we obtain by nor-
malization. For simplicity we choose an intermediate normalization such that ak0 = 0. If necessary
we normalize the eigenfunction afterwards. Table 2.3 shows some results in terms of E0 = n+ 1/2,
where n = 0, 1, . . . is the harmonic oscillator quantum number. We have obtained many more
perturbation corrections by means of the simple program shown in the program section.

Table 2.3 Method of Fernández and Castro for the Anharmonic Oscillator

Ĥ = p̂2 + q̂2

2
+ λ q̂4

E1 = 3
2 E0

2 + 3
8

E2 = − 17
4 E0

3 − 67
16 E0

E3 = 375
16 E0

4 + 1707
32 E0

2 + 1539
256

E4 = − 10689
64 E0

5 − 89165
128 E0

3 − 305141
1024 E0

E5 = 87549
64 E0

6 + 587265
64 E0

4 + 9317949
1024 E0

2 + 1456569
2048

E6 = − 3132399
256 E0

7 − 124269873
1024 E0

5 − 912774217
4096 E0

3 − 1056412343
16384 E0

E7 = 238225977
2048 E0

8 + 3294251289
2048 E0

6 + 78698260599
16384 E0

4 + 104934994197
32768 E0

2

+ 106611707169
524288

E8 = − 18945961925
16384 E0

9 − 349771437429
16384 E0

7 − 12484329668811
131072 E0

5

− 30818393633217
262144 E0

3 − 114146479775437
4194304 E0

E9 = 194904116847
16384 E0

10 + 4646230497315
16384 E0

8 + 233413756830177
131072 E0

6

+ 938878529637915
262144 E0

4 + 7968922195994439
4194304 E0

2 + 110903991788745
1048576

E10 = − 8240234242929
65536 E0

11 − 988099602430105
262144 E0

9 − 16709415020420169
524288 E0

7

− 201401788392932181
2097152 E0

5 − 1579588053085388253
16777216 E0

3

− 1268701005225618653
67108864 E0

A1 = − 3
8 q2

B1 = 3
4 E0 q + 1

4 q3

A2 =
(

43
32 E0 − 9

16 E0
3
)
q2 +

(
191
384 − 3

32 E0
2
)
q4 + 1

8 E0 q
6 + 1

32 q8

B2 =
(
− 91

64 − 77
32 E0

2
)
q − 95

96 E0 q
3 − 5

24 q5

A3 =
(
− 1539

256 − 735
128 E0

2 + 231
64 E0

4
)
q2 +

(
− 131

32 E0 + 13
16 E0

3
)
q4

+
(
− 331

768 E0
2 − 3467

3072

)
q6 − 79

384 E0 q
8 − 9

256 q10

B3 =
(

6093
256 E0 + 1731

128 E0
3
)
q +

(
2143
512 + 1507

256 E0
2 − 9

64 E0
4
)
q3

+
(
− 9

128 E0
3 + 911

512 E0

)
q5 +

(
397

1536 + 3
128 E0

2
)
q7 + 7

384 E0 q
9 + 1

384 q11
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In addition to giving general expressions for the eigenfunctions and eigenvalues in terms of the
quantum numbers of the unperturbed problem, the method of Fernández and Castro is faster and
requires less computer memory than the method of Dalgarno and Stewart and the logarithmic pertur-
bation theory. The reason is that the polynomial functions Ak(x) and Bk(x) are remarkably simple
because &0(x) and &′0(x) carry out most of the details of the perturbed eigenfunction &(x) (such
as the oscillation in the classical region). The disadvantage of the method of Fernández and Castro
is that its application to nonseparable models is not so obvious.

The method of Fernández and Castro has already been applied to several separable quantum-
mechanical models [21]–[23]. We will mention some of them later in this book.

                          



Chapter 3

Perturbation Theories without Wavefunction

3.1 Introduction

In the preceding chapters we solved the time-independent Schrödinger equation approximately by
calculation of perturbation corrections to both the eigenvalue and eigenfunction at each perturbation
order. Typically, the calculation of the perturbation corrections to the eigenfunction is more tedious,
lengthy, and time consuming. For this reason, if one is primarily interested in the energy, then it
will be desirable to bypass the explicit treatment of the eigenfunction. In what follows we discuss
some well-known strategies for this purpose. Two approaches simply substitute expectation values
and moments for the eigenfunction, whereas the third approach is a true perturbation theory without
wavefunction as it only takes the Hamiltonian operator into consideration.

3.2 Hypervirial and Hellmann–Feynman Theorems

An hermitian operator Â satisfies
〈
�|Â|�

〉
=
〈
Â�|�

〉
(3.1)

for any pair �, � of vectors of the state space. In particular, the Hamiltonian operator satisfies
equation (3.1), and in the case that � is an eigenfunction of Ĥ with eigenvalue E, Ĥ� = E�, we
have 〈

�

∣∣∣(Ĥ − E
)∣∣∣�〉 = 〈(Ĥ − E

)
�|�

〉
= 0 . (3.2)

If Ŵ is an arbitrary linear operator such that� = Ŵ� then (Ĥ−E)� = Ŵ (H−E)�+[Ĥ , Ŵ ]�,
and equation (3.2) leads to the hypervirial theorem [25]

〈
�

∣∣∣[Ĥ , Ŵ
]∣∣∣�〉 = 0 . (3.3)

If � is normalized to unity < �|� >= 1 we simply write
〈[
Ĥ , Ŵ

]〉
= 0 (3.4)

where < . . . > denotes the quantum-mechanical expectation value.

27

                          



28 PERTURBATION THEORIES WITHOUT WAVEFUNCTION

If the Hamiltonian operator depends on a parameter λ, which may be a particle charge or mass,
a field strength, or simply a dummy parameter artificially introduced to apply perturbation theory,
then the eigenvalues and eigenfunctions of Ĥ will also depend on that parameter. If we differentiate
< �|(Ĥ − E)|� >= 0 with respect to λ

〈
∂�

∂λ

∣∣∣(Ĥ − E
)∣∣∣�

〉
+
〈
�

∣∣∣∣∣
∂(Ĥ − E)

∂λ

∣∣∣∣∣�
〉
+
〈
�

∣∣∣(Ĥ − E
)∣∣∣ ∂�

∂λ

〉
= 0 (3.5)

and take into account equation (3.2), then we obtain the Hellmann–Feynman theorem [25]

∂E

∂λ
< �|� >=

〈
�

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣�
〉

, (3.6)

or

∂E

∂λ
=
〈
∂Ĥ

∂λ

〉
(3.7)

if � is normalized to unity.
In what follows we show that the general results just derived facilitate the application of pertur-

bation theory.

3.3 The Method of Swenson and Danforth

The first method that we discuss here was developed long ago [26], but it had to wait until its
main equations were rewritten in a simpler way [27] to become popular [28, 29]. The approach
is based on the combination of the hypervirial and Hellmann–Feynman theorems with perturbation
theory, and for this reason we will also call it hypervirial-Hellmann–Feynman method or hypervirial
perturbative method [28].

The first step is the derivation of a recurrence relation for the expectation values of properly chosen
functions of the coordinate by means of the hypervirial theorem. Such recurrence relations have only
been obtained for separable quantum-mechanical models as shown in the examples below.

3.3.1 One-Dimensional Models

We illustrate the main ideas behind the method of Swenson and Danforth by means of a one-
dimensional model

Ĥ = p̂2

2m
+ V̂ , V̂ = V

(
x̂
)
, (3.8)

where [x̂, p̂] = ih̄.
First, rewrite the commutator [Ĥ , Ŵ ] for the linear operator

Ŵ = W
(
x̂, p̂

) = f̂ p̂ + ĝ , (3.9)

where f̂ = f (x̂), and ĝ = g(x̂), in the following way:
[
Ĥ , Ŵ

]
= 1

m

[
p̂, f̂

]
p̂2 + 1

m

(
1

2

[
p̂,
[
p̂, f̂

]]
+ [p̂, ĝ]

)
p̂

+ 1

2m

[
p̂,
[
p̂, ĝ

]]+ f̂
[
V̂ , p̂

]
. (3.10)
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Second, choose the arbitrary functions f (x̂) and g(x̂) so that the coefficient of p̂ in equation (3.10)
vanishes:

ĝ = 1

2

[
f̂ , p̂

]
, (3.11)

and write p̂2 in terms of Ĥ and V̂ . Equation (3.10) becomes

[
Ĥ , Ŵ

]
= 2

[
p̂, f̂

] (
Ĥ − V̂

)
+ 1

4m

[
p̂,
[
p̂,
[
f̂ , p̂

]]]
+ f̂

[
V̂ , p̂

]
. (3.12)

Finally, the hypervirial theorem (3.4) gives us an expression for expectation values of operators
that commute with the coordinate operator:

2E
〈[
p̂, f̂

]〉
+ 1

4m

〈[
p̂,
[
p̂,
[
f̂ , p̂

]]]〉
+
〈
f̂
[
V̂ , p̂

]〉
+ 2

〈[
f̂ , p̂

]
V̂
〉
= 0 . (3.13)

Notice, for example, that [p̂, f̂ ] is a function only of the coordinate operator as it follows from the
Jacobi identity

[
p̂,
[
x̂, f̂

]]
+
[
f̂ ,
[
p̂, x̂

]]+ [x̂, [f̂ , p̂
]]
=
[
x̂,
[
f̂ , p̂

]]
= 0 . (3.14)

Equation (3.13) reduces to the well-known virial theorem for the particular case f̂ = x̂:

2E − 2
〈
V̂
〉
+ i

h̄

〈
x̂
[
V̂ , p̂

]〉
= 0 . (3.15)

In the coordinate representation p̂ = −ih̄d/dx, and equation (3.13) reduces to

2E
〈
f ′
〉+ h̄2

4m

〈
f ′′′
〉− 〈fV ′

〉− 2
〈
f ′V

〉 = 0 , (3.16)

where the prime denotes the derivative with respect to x. To simplify the notation we drop the caret
on functions of the coordinate operator reflecting the fact that x̂�(x) = x�(x). Although it is
simpler to derive equation (3.16) directly in the coordinate representation, we have followed a more
lengthy way with the purpose of obtaining the main equation (3.13) independent of any particular
representation.

Equation (3.16) enables one to obtain expectation values in terms of the energy of a stationary state
of a given exactly solvable model. As an example consider the dimensionless harmonic oscillator

Ĥ = 1

2

(
− d2

dx2
+ x2

)
. (3.17)

Choosing f (x) = x2j+1, j = 0, 1, . . . , equation (3.16) with h̄ = m = 1 becomes a three-term
recurrence relation that we conveniently rewrite as

Xj+1 = 1

2(j + 1)

[
2(2j + 1)EXj + j

2

(
4j2 − 1

)
Xj−1

]
, (3.18)

where

Xj =
〈
x2j
〉
. (3.19)
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Notice that we do not consider the expectation values < x2j+1 > that vanish because the eigen-
functions are either even or odd. We obtain all the expectation values Xj , j = 1, 2, . . . by simply
setting j = 0, 1, . . . in equation (3.18) and taking into account that X0 = 1. The expectation value
Xj is a polynomial function of E of degree j , where E = n+ 1/2, and n = 0, 1, . . . is the quantum
number.

If the quantum-mechanical model is not exactly solvable we apply perturbation theory to the
recurrence relation for the expectation values. To illustrate this approach we consider the simple
anharmonic oscillator

Ĥ = 1

2

(
− d2

dx2
+ x2

)
+ λx2K , (3.20)

where K = 2, 3, . . . and λ is a perturbation parameter. The recurrence relation for the expectation
values becomes

2(2j + 1)EXj + j

2

(
4j2 − 1

)
Xj−1 − 2(j + 1)Xj+1 − 2λ(2j +K + 1)Xj+K = 0 . (3.21)

If we expand the expectation values and the energy in a Taylor series around λ = 0

E =
∞∑
i=0

Eiλ
i, Xj =

∞∑
i=0

Xj,iλ
i , (3.22)

then equation (3.21) gives us a recurrence relation for the coefficients Ei and Xj,i . Substituting j−1
for j it reads

Xj,i = 1

2j

{
j − 1

2
[4(j − 1)2 − 1]Xj−2,i + 2(2j − 1)

i∑
m=0

EmXj−1,i−m

− 2(2j +K − 1)Xj+K−1,i−1

}
, (3.23)

where

X0,i = δ0i (3.24)

as follows from the normalization condition X0 = 1.
The recurrence relation (3.23) gives us the perturbation correctionsXj,i in terms of the yet unknown

energy coefficients Ei . The Hellmann–Feynman theorem

∂E

∂λ
= XK (3.25)

provides an additional equation that enables us to solve the problem completely. Expanding equa-
tion (3.25) in a Taylor series about λ = 0 we have

Ei = 1

i
XK,i−1 (3.26)

for all i > 0. By straightforward inspection of the recurrence relation (3.23) one easily convinces
oneself that it is sufficient to calculate the coefficients Xj,i , for all i = 1, 2, . . . , p − 1 and j =
1, 2, . . . , (p − i)(K − 1)+ 1 in order to obtain Ep.
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Table 3.1 Method of Swenson and Danforth for the Anharmonic Oscillator

Ĥ = −1

2

d2

dx2
+ x̂2

2
+ λx̂4

X1, 0 = E0

X1, 1 = − 3
4 − 3E0

2

X1, 2 = 335
16 E0 + 85

4 E0
3

X1, 3 = − 1539
32 − 1707

4 E0
2 − 375

2 E0
4

X1, 4 = 3356551
1024 E0 + 980815

128 E0
3 + 117579

64 E0
5

X1, 5 = − 10195983
1024 − 65225643

512 E0
2 − 4110855

32 E0
4 − 612843

32 E0
6

X1, 6 = 17959009831
16384 E0 + 15517161689

4096 E0
3 + 2112587841

1024 E0
5 + 53250783

256 E0
7

X1, 7 = − 533058535845
131072 − 524674970985

8192 E0
2 − 393491302995

4096 E0
4

− 16471256445
512 E0

6 − 1191129885
512 E0

8

X1, 8 = 2625369034835051
4194304 E0 + 708823053563991

262144 E0
3 + 287139582382653

131072 E0
5

+ 8044743060867
16384 E0

7 + 435757124275
16384 E0

9

X1, 9 = − 1441751893253685
524288 − 103595988547927707

2097152 E0
2 − 12205420885292895

131072 E0
4

− 3034378838792301
65536 E0

6 − 60400996465095
8192 E0

8 − 2533753519011
8192 E0

10

Note: The energy coefficients are identical to those in Table 2.3.

In the program section we show a set of simple Maple procedures that facilitates the systematic
calculation of the perturbation corrections for the anharmonic oscillator (3.20). Table 3.1 shows
perturbation corrections Ei and X1,i for K = 4. The former agree with our previous calculation in
Chapter 2. From the perturbation corrections to the energy and equation (3.26), one easily obtains
the coefficients X2,i .

The method of Swenson and Danforth also applies to potentials that are not parity invariant.
Consider, for example, the cubic-quartic anharmonic oscillator

Ĥ = 1

2

(
− d2

dx2
+ x2

)
+ λ

(
αx3 + x4

)
. (3.27)

In this case we choose f (x) = xj , j = 0, 1, . . . , and define

Xj =
〈
xj
〉
. (3.28)

Repeating the algebraic steps in the discussion of the preceding example we obtain the recurrence
relation

Xj,i = 1

j

[
(j − 1)(j − 2)(j − 3)

4
Xj−4,i + 2(j − 1)

i∑
m=0

EmXj−2,i−m

− α(2j + 1)Xj+1,i−1 − 2(j + 1)Xj+2,i−1

]
(3.29)
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from the hypervirial theorem, and

Ei = 1

i

(
αX3,i−1 +X4,i−1

)
(3.30)

from the Hellmann–Feynman theorem. The initial conditions are also given by equation (3.24).
In order to obtain Ep we need the perturbation coefficients Xj,i for all i = 0, 1, . . . , p − 1, and
j = 1, 2, . . . , 2(p − i + 1).

Table 3.2 shows perturbation corrections to the energy and some moments. Notice that when
α = 0 the energy coefficients reduce to those in Table 2.3, and that all the X1,i vanish because the
resulting potential-energy function is parity-invariant.

3.3.2 Central-Field Models

In Chapters 1 and 2 we briefly outlined the Hamiltonian operator for one- and two-particle systems.
In this chapter we specialize in central conservative forces that are given by the gradient of a potential-
energy functionV (r), where r = |r| is the distance between the particles. It is well known that in such
a case the Schrödinger equation is separable in spherical coordinates r, θ, φ [30]. We can therefore
write the eigenfunctions of the Hamiltonian operator as �nlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), where
n = 1, 2, . . . , l = 0, 1, . . . , and m = −l,−l + 1, . . . , l are three quantum numbers that completely
specify the state, and Ylm are the spherical harmonics [30, 31]. From now on we consider the
dimensionless form of the Schrödinger equation derived in Chapter 1. It only remains to obtain
the radial factor R(r) of the eigenfunction. For convenience we consider �(r) = rR(r) that is an
eigenfunction of the one-dimensional-like Hamiltonian operator [30]

Ĥ = −1

2

d2

dr2
+ l(l + 1)

2r2
+ V (r) . (3.31)

The bound states satisfy the boundary conditions

�(0) = 0, lim
r→∞�(r) = 0 . (3.32)

If we naively follow the steps of the discussion above regarding the hypervirial theorem for actual
one-dimensional models, and choose the function f (r) = rj , we obtain

2jE
〈
rj−1

〉
+ (j − 1)

[
j (j − 2)

4
− l(l + 1)

] 〈
rj−3

〉

−
〈
rjV ′

〉
− 2j

〈
rj−1V

〉
= 0 . (3.33)

However, this equation is not valid for all values of j because of the boundary condition at r = 0.
Although the form of the hypervirial theorem under arbitrary boundary conditions is well known [32],
we briefly address this point here for completeness.

Consider the scalar product

< �|χ >=
∫ ∞

0
�(r)∗χ(r)dr , (3.34)

where �(0) = 0. The radial Hamiltonian (3.31) satisfies

〈
�

∣∣∣Ĥ ∣∣∣χ〉 = 〈Ĥ�|χ
〉
− 1

2
�′(0)∗χ(0) , (3.35)
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Table 3.2 Method of Swenson and Danforth for the Anharmonic Oscillator

Ĥ = − 1
2

d2

dx2
+ x̂2

2
+ λ

(
αx̂3 + x̂4

)

E1 = 3
8 + 3

2 E0
2

E2 =
(
− 15

4 E0
2 − 7

16

)
α2 − 67

16 E0 − 17
4 E0

3

E3 =
(

225
4 E0

3 + 459
16 E0

)
α2 + 1539

256 + 1707
32 E0

2 + 375
16 E0

4

E4 =
(
− 705

16 E0
3 − 1155

64 E0

)
α4 +

(
− 40261

512 − 62013
64 E0

2 − 24945
32 E0

4
)
α2

− 305141
1024 E0 − 89165

128 E0
3 − 10689

64 E0
5

E5 =
(

131817
1024 + 116325

64 E0
4 + 239985

128 E0
2
)
α4

+
(

338625
32 E0

5 + 1597845
64 E0

3 + 3909285
512 E0

)
α2 + 1456569

2048 + 9317949
1024 E0

2

+ 587265
64 E0

4 + 87549
64 E0

6

E6 =
(
− 101479

2048 − 115755
128 E0

4 − 209055
256 E0

2
)
α6

+
(
− 53000175

2048 E0 − 25428615
256 E0

3 − 6383475
128 E0

5
)
α4

+
(
− 70997745

128 E0
4 − 18237765

128 E0
6 − 104283313

4096 − 809619141
2048 E0

2
)
α2

− 1056412343
16384 E0 − 912774217

4096 E0
3 − 124269873

1024 E0
5 − 3132399

256 E0
7

X1, 0 = 0

X1, 1 = −3α E0

X1, 2 =
(

23
4 + 39E0

2
)
α

X1, 3 =
(
−45E0

2 − 21
4

)
α3 +

(
− 4677

16 E0 − 2055
4 E0

3
)
α

X1, 4 =
(

7545
4 E0

3 + 14259
16 E0

)
α3 +

(
49495

64 + 72255
8 E0

2 + 27195
4 E0

4
)
α

X1, 5 =
(
− 19035

16 E0
3 − 31185

64 E0

)
α5 +

(
− 839475

16 E0
4 − 1131183

256 − 1890135
32 E0

2
)
α3

+
(
− 72618213

1024 E0 − 28507965
128 E0

3 − 5770737
64 E0

5
)
α

X2, 0 = E0

X2, 1 = − 3
4 − 3E0

2

X2, 2 =
(
15E0

2 + 7
4

)
α2 + 335

16 E0 + 85
4 E0

3

X2, 3 =
(
− 1575

4 E0
3 − 3213

16 E0

)
α2 − 1539

32 − 1707
4 E0

2 − 375
2 E0

4

X2, 4 =
(

6345
16 E0

3 + 10395
64 E0

)
α4 +

(
124725

16 E0
4 + 201305

256 + 310065
32 E0

2
)
α2

+ 3356551
1024 E0 + 980815

128 E0
3 + 117579

64 E0
5

X2, 5 =
(
− 348975

16 E0
4 − 719955

32 E0
2 − 395451

256

)
α4

+
(
− 50820705

512 E0 − 20771985
64 E0

3 − 4402125
32 E0

5
)
α2 − 10195983

1024

− 65225643
512 E0

2 − 4110855
32 E0

4 − 612843
32 E0

6
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as follows from integration by parts. For the particular case χ = D̂�, D̂ = d/dr , we have

〈[
Ĥ , D̂

]〉
= l(l + 1)

〈
r−3
〉
− 〈V ′〉 = −1

2

∣∣�′(0)∣∣2 . (3.36)

If

lim
r→0

r2V (r) = 0 , (3.37)

then the eigenfunctions of Ĥ behave as Crl+1 close to r = 0, where C is a nonzero constant. We
clearly see that the master equation (3.33) does not hold when j = 0 for those states with l = 0
because �′(0) = 0. This apparent complication does not take place when l > 0.

Another important point to notice is that the integrand in the expectation value

〈
rj
〉
=
∫ ∞

0
|�(r)|2rj dr (3.38)

behaves as |C|2r2l+j+2 close to origin. For this reason the expectation value (3.38) does not exist if
j < −2l − 2. It is most important to take into account this fact in the case of perturbations that are
singular at origin.

In what follows we consider two exactly solvable models as illustrative examples. The master
equation (3.33) for the harmonic oscillator in three dimensions

V (r) = r2

2
(3.39)

becomes

2jERj−1 + (j − 1)

[
j (j − 2)

4
− l(l + 1)

]
Rj−3 − (j + 1)Rj+1 = 0 (3.40)

for all j > 0, where

Rj =
〈
rj
〉
. (3.41)

According to equation (3.36), for j = 0 we have

l(l + 1)R−3 − R1 = −1

2

∣∣�′(0)∣∣2 , (3.42)

and for j = 2 equation (3.40) reduces to

4ER1 − l(l + 1)R−1 − 3R3 = 0 . (3.43)

It is clear that we cannot obtain the expectation values of odd powers (either positive or negative) of
the radial coordinate, unless we have additional information about the solutions of the Schrödinger
equation. On the other hand, equation (3.40) is sufficient for the calculation of R2j for all j > 0 in
terms of the energy; for example:

R2 = E, R4 = 3

8
− l(l + 1)

2
+ 3E2

2
, . . . . (3.44)

Substituting the energy eigenvalues [33]

E = 2ν + l + 3

2
, ν = 0, 1, . . . (3.45)
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into the Hellmann–Feynman theorem

∂E

∂l
=
(
l + 1

2

)
R−2 (3.46)

we obtain

R−2 = 2

2l + 1
. (3.47)

Taking into account this expression and the master equation (3.40), we easily calculate the expectation
values R2j for all −(l + 1) ≤ j < 0.

We are entitled to apply the Hellmann–Feynman theorem as in equation (3.46) because the ex-
pression (3.45) for the energy is also valid for noninteger values of l [33]. We substitute the actual
value of the angular momentum quantum number l into the resulting expression.

It follows from the master equation (3.40) with j = −1 that

R−4 = 8E

(2l + 1)[4l(l + 1)− 3] . (3.48)

Since Rj > 0 for all j we clearly see that this expression is not valid when l = 0 in agreement with
the discussion above. Analogously, it follows from equation (3.40) with j = −3 that

R−6 = 8[24ν2 + 24νl + 36ν + 4l2 + 16l + 15]
(2l + 1)[4l(l + 1)− 3][4l(l + 1)− 15] (3.49)

provided that l ≥ 2.
We now consider anharmonic oscillators with potential-energy functions

V (r) = r2

2
+ λr2K, K = 2, 3, . . . (3.50)

as illustrative examples. In order to apply the method of Swenson and Danforth, we take into account
the perturbation series for the expectation values

Rj =
〈
r2j
〉
=
∞∑
i=0

Rj,iλ
i (3.51)

and proceed as in the one-dimensional case obtaining the recurrence relation

Rj,i = 1

j

{
(j − 1)

[
(2j − 1)(2j − 3)

4
− l(l + 1)

]
Rj−2,i

+ (2j − 1)
i∑

m=0

EmRj−1,i−m − (2j +K − 1)Rj+K−1,i−1

}
. (3.52)

The normalization condition and the Hellmann–Feynman theorem give us R0,j = δ0j and

Ei = 1

i
RK,i−1 , (3.53)

respectively. In order to obtain the perturbation correction to the energy Ep, we need all the coeffi-
cients Rj,i with i = 0, 1, . . . , p − 1 and j = 1, 2, . . . , (p − i)(K − 1)+ 1.
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Table 3.3 Method of Swenson and Danforth for the Anharmonic Oscillator

Ĥ = −∇
2

2
+ r̂2

2
+ λr̂4

E1 = 3
8 − 1

2 l (l + 1)+ 3
2 E0

2

E2 = − 67
16 E0 + 9

4 E0 l (l + 1)− 17
4 E0

3

E3 = 1539
256 + 1707

32 E0
2 − 129

8 l (l + 1) E0
2 + 375

16 E0
4 − 273

32 l (l + 1)

+ 11
16 l2 (l + 1)2

E4 = 28647
128 E0 l (l + 1)− 909

64 E0 l2 (l + 1)2 + 4455
32 l (l + 1) E0

3 − 305141
1024 E0

− 89165
128 E0

3 − 10689
64 E0

5

R3, 1 = − 945
128 + 171 l (l+1)

16 − 885E0
2

16 − 9 l2 (l+1)2

8 + 63 l (l+1) E0
2

4 − 165E0
4

8

R3, 2 = − 10707
32 E0 l (l + 1)+ 393

16 E0 l2 (l + 1)2 − 1425
8 l (l + 1) E0

3 + 117281
256 E0

+ 29555
32 E0

3 + 3129
16 E0

5

R3, 3 = 136923
64 l (l + 1)− 4259307

256 E0
2 − 4907

16 l2 (l + 1)2 + 246465
32 l (l + 1) E0

2

− 367605
256 − 473985

32 E0
4 − 6915

16 l2 (l + 1)2 E0
2 + 16815

8 l (l + 1) E0
4

+ 37
4 l3 (l + 1)3 − 31983

16 E0
6

R3, 4 = − 262575777
2048 E0 l (l + 1)+ 7429035

512 E0 l2 (l + 1)2 − 39645255
256 l (l + 1) E0

3

+ 1230998721
8192 E0 + 965258733

2048 E0
3 + 118198899

512 E0
5 − 46515

128 E0 l3 (l + 1)3

+ 895125
128 l2 (l + 1)2 E0

3 − 3261825
128 l (l + 1) E0

5 + 2742687
128 E0

7

Table 3.3 shows perturbation corrections to the energy andR3. We do not give more results because
the length of the corrections rapidly increases with the perturbation order. One easily obtains many
more perturbation corrections by means of a simple Maple program which we do not show here
because it is similar to that discussed earlier for the one-dimensional model.

Another interesting exactly-solvable model is the nonrelativistic hydrogen atom. Upon solving the
dimensionless Schrödinger equation with the dimensionless Coulomb interaction between electron
and nucleus

V (r) = −1

r
(3.54)

one obtains the dimensionless energy eigenvalues

E = − 1

2n2
, n = ν + l + 1 , (3.55)

where ν = 0, 1, . . . , n− l − 1. The master equation (3.33) reduces to

2jERj−1 + (j − 1)

[
j (j − 2)

4
− l(l + 1)

]
Rj−3 + (2j − 1)Rj−2 = 0 . (3.56)

When j = 1 we obtain the well-known virial theorem

R−1 = −2E . (3.57)
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The Hellmann–Feynman theorem (3.46) gives us

R−2 = 2

(2l + 1)n3
. (3.58)

From the master equation (3.56) with j = 0 we obtain

R−3 = R−2

l(l + 1)
, l > 0 . (3.59)

In what follows we consider simple perturbations of the form λrK , K > 0. The method also
applies to singular perturbations (K < 0) with the reservations mentioned above regarding the
expectation values of negative powers of the radial coordinate. Substituting the potential-energy
function

V (r) = −1

r
+ λrK (3.60)

into the master equation (3.33) we obtain the recurrence relation

2jERj−1 + (j − 1)

[
j (j − 2)

4
− l(l + 1)

]
Rj−3

+ (2j − 1)Rj−2 − (2j +K)λRj+K−1 = 0 . (3.61)

Expanding the energy and expectation values in Taylor series about λ = 0 as in preceding examples,
equation (3.61) gives us the recurrence relation

Rj,i = 1

2(j + 1)E0

{
j

[
l(l + 1)− j2 − 1

4

]
Rj−2,i − (2j + 1)Rj−1,i

− 2(j + 1)
i∑

m=1

EmRj,i−m + (2j +K + 2)Rj+K,i−1

}
(3.62)

where we have substituted j + 1 for j for convenience. It follows from the Hellmann–Feynman
theorem that equation (3.53) also applies to this example. The recurrence relation (3.62) is unsuitable
for the calculation of the perturbation corrections to R−1 because the denominator vanishes. In order
to obtain them we resort to the virial theorem that follows from equation (3.61) with j = 1. Expanding
the resulting expression in a Taylor series we have

R−1,i = −2Ei + (K + 2)RK,i−1 . (3.63)

Table 3.4 shows sample results: one easily obtains more perturbation corrections by means of a
simple Maple program written according to equations (3.53), (3.62), (3.63), and the normalization
condition R0,j = δ0j .

3.3.3 More General Polynomial Perturbations

The method of Swenson and Danforth applies to more general polynomial perturbations than the
ones discussed above. For example, the reader may easily derive suitable perturbation equations
from the hypervirial and Hellmann–Feynman theorems for the following cases:

V (x) = x2

2
+
∞∑
j=1

λj

nj∑
i=1

cjix
i , (3.64)

V (r) = r2

2
+
∞∑
j=1

λj

nj∑
i=1

cjir
2i , (3.65)
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Table 3.4 Method of Swenson and Danforth for Ĥ = −∇
2

2
− 1

r̂
+ λr̂

E1 = − 1
2 l (l + 1)− 3

4
1
E0

E2 = − 3
16

l2 (l+1)2

E0
+ 7

64
1

E0
3 − 5

32
1

E0
2

E3 = − 5
32

l3 (l+1)3

E0
2 + 7

128
l2 (l+1)2

E0
3 − 33

512
1

E0
5 + 75

256
1

E0
4

E4 = 45
512

l3 (l+1)3

E0
4 + 45

256
l2 (l+1)2

E0
4 − 21

128
l4 (l+1)4

E0
3 − 2275

4096
1

E0
6 + 55

256
1

E0
5

− 99
2048

l2 (l+1)2

E0
5 + 465

8192
1

E0
7

E5 = − 91
1024

l3 (l+1)3

E0
6 − 2093

4096
l2 (l+1)2

E0
6 + 33

256
l4 (l+1)4

E0
5 + 55

128
l3 (l+1)3

E0
5

− 99
512

l5 (l+1)5

E0
4 − 1995

32768
1

E0
9 + 4335

4096
1

E0
8 − 11409

8192
1

E0
7

+ 465
8192

l2 (l+1)2

E0
7

R2, 0 = 3
4

l (l+1)
E0
− 1

4
1
E0
+ 5

8
1

E0
2

R2, 1 = 15
32

l2 (l+1)2

E0
2 − 45

128
1

E0
4 + 63

64
1

E0
3 + 5

16
l (l+1)
E0

2 − 7
32

l (l+1)
E0

3

R2, 2 = 63
128

l3 (l+1)3

E0
3 − 45

128
l2 (l+1)2

E0
4 + 91

256
1

E0
6 − 649

256
1

E0
5 + 99

512
l (l+1)
E0

5

− 225
256

l (l+1)
E0

4 + 21
32

l2 (l+1)2

E0
3 + 93

128
1

E0
4

R2, 3 = − 253
512

l3 (l+1)3

E0
5 − 2893

1024
l2 (l+1)2

E0
5 − 55

64
l (l+1)
E0

5 + 315
512

l4 (l+1)4

E0
4

+ 285
256

l3 (l+1)3

E0
4 + 24855

4096
1

E0
7 − 465

2048
l (l+1)
E0

7 − 819
128

1
E0

6

+ 455
1024

l2 (l+1)2

E0
6 + 2275

1024
l (l+1)
E0

6 − 3621
8192

1
E0

8

or

V (r) = −1

r
+
∞∑
j=1

λj

nj∑
i=1

cjir
i . (3.66)

3.4 Moment Method

In what follows we call moments of a given vector � of the state space the inner products
< f |� > between � and other vectors f . In particular, we choose � to be an eigenvector of the
Hamiltonian operator Ĥ . It is known since long ago that the moments of an eigenvector of Ĥ prove
suitable for nonperturbative [34] and perturbative [35] treatments of the Schrödinger equation. The
application of the moment method to perturbation theory has since been considerably generalized
and extended [36]–[39] (and references therein).
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The main idea behind the moment method is that if (Ĥ −E)� is orthogonal to a complete set of
(not necessarily orthogonal) vectors {fj }, then � is eigenvector of � with eigenvalue E. In other
words, 〈

fj

∣∣∣Ĥ − E

∣∣∣�〉 = 〈(Ĥ − E
)
fj |�

〉
= 0 (3.67)

for all j is equivalent to the Schrödinger equation Ĥ� = E�.
Since the set of vectors {fj } is complete we have

Ĥfj =
∞∑
i=0

Hi,j fi , (3.68)

where Hi,j are coefficients. It follows from equations (3.67) and (3.68) that

∞∑
i=0

(
Hi,j − Eδij

)
Fi = 0 , (3.69)

where

Fj =
〈
fj |�

〉
(3.70)

is a moment of �.
Notice that if the set {fj } is orthonormal, then Hi,j =< fi |Ĥ |fj > is the usual matrix element

of the Hamiltonian operator and Fj is a coefficient of the expansion of � in the orthonormal basis
set. In what follows we do not assume that the set of vectors {fj } is orthonormal.

3.4.1 Exactly Solvable Cases

When Hi,j = 0 for all i > j the eigenvalue equation (3.69) becomes an exactly solvable triangular
system of homogeneous linear equations (

H0,0 − E
)
F0 = 0

H0,1F0 +
(
H1,1 − E

)
F1 = 0

· · ·
H0,jF0 +H1,jF1 + · · · + (Hj,j − E)Fj = 0

· · · (3.71)

We first consider the nondegenerate case Hi,i = Hj,j for all i = j . If E = Hj,j for all j , then all
the moments Fj vanish and � is the null vector because the set {fj } is complete. Consequently, E
has to be one of the diagonal coefficients in order for a nontrivial solution to exist. Suppose that
E = Hn,n; then Fj = 0 for all j < n, and

Fj = 1

Hn,n −Hj,j

j−1∑
i=n

Hi,jFi, j = n+ 1, n+ 2, . . . . (3.72)

All the nonzero moments are proportional to Fn which we may arbitrarily choose equal to unity as
an intermediate normalization condition.

As an illustrative example consider the dimensionless harmonic oscillator

Ĥ = 1

2

(
− d2

dx2
+ x2

)
(3.73)
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and the set of functions

fj = x2j+s exp
(
−x2/2

)
, s = 0, 1 . (3.74)

In this case we have

Ĥfj = − (2j + s)(2j + s − 1)

2
fj−1 +

(
2j + s + 1

2

)
fj (3.75)

so that the only nonzero coefficients Hi,j are

Hj−1,j = − (2j + s)(2j + s − 1)

2
, Hj,j =

(
2j + s + 1

2

)
. (3.76)

The argument above leads to the well-known energy eigenvalues E = (2j + s + 1/2), where s = 0
and s = 1 apply to even and odd states, respectively. The recurrence relation for the moments is

Fj = − (2j + s)(2j + s − 1)

4(j − n)
Fj−1, j = n+ 1, n+ 2, . . . . (3.77)

The fully degenerate case Hi,i = Hj,j for all i, j is also interesting. Choosing E = Hj,j , the
eigenvalue equation (3.71) becomes

H0,1F0 = 0

H0,2F0 +H1,2F1 = 0

· · ·
H0,jF0 +H1,jF1 + · · · +Hj−1,jFj−1 = 0 . (3.78)

If all the coefficients Hj−1,j are nonzero, then all the moments Fj are zero, and � is the null vector.
We must therefore assume that Hn−1,n = 0. The nonzero moments given by the recurrence relation

Fj = − 1

Hj,j+1

j−1∑
i=n−1

Hi,j+1Fi, j = n, n+ 1, . . . (3.79)

are proportional to Fn−1 which we may arbitrarily choose equal to unity.
A simple example of full degeneration is given by the radial Hamiltonian operator for the Coulomb

problem

Ĥ = −1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
. (3.80)

Choosing the functions

fj = rj+l+1 exp(−αr), j = 0, 1, . . . (3.81)

the only nonzero Hamiltonian coefficients are

Hj−2,j = −j (j + 2l + 1)

2
, Hj−1,j = α(j + l + 1)− 1, Hj,j = −α2

2
. (3.82)

Therefore, from E = Hn,n and Hn−1,n = 0 we obtain the well-known results

α = 1

N
, E = − 1

2N2
, (3.83)

where N = n+ l + 1 is the principal quantum number of the hydrogen atom [40].
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3.4.2 Perturbation Theory by the Moment Method

If the moment equations (3.69) are not exactly solvable, then we apply perturbation theory. We
introduce a dummy perturbation parameter λ as follows:

Ĥfj =
j∑

m=0

Hm,jfm + λ

∞∑
m=j+1

Hm,jfm , (3.84)

so that the recurrence relation for the moments becomes

j∑
m=0

(Hm,j − Eδmj )Fm + λ

∞∑
m=j+1

Hm,jFm = 0 . (3.85)

Notice that we have split the recurrence relation (3.69) into a solvable part and a perturbation that
vanish when λ = 0. We can therefore try approximate solutions in the form of Taylor series about
λ = 0:

E =
∞∑
i=0

Eiλ
i, Fj =

∞∑
i=0

Fj,iλ
i , (3.86)

where commonly

E0 = Hn,n (3.87)

for a given value of n.
The normalization condition is arbitrary. Sometimes it suffices to choose Fn = 1, but in other

cases a more elaborate normalization condition appears to be more practical, as shown in what
follows. First, rewrite equation (3.85) as

-EFj =
j∑

m=0

(
Hm,j −Hn,nδmj

)
Fm + λ

∑
m>j

Hm,jFm , (3.88)

where

-E = E −Hn,n . (3.89)

Second, look for a set of coefficients Cj , j = 0, 1, . . . , n, such that

n∑
j=0

Cj

j∑
m=0

(Hm,j −Hn,nδmj )Fm =
n−1∑
m=0


 n∑

j=m

(
Hm,j −Hn,nδmj

)
Cj


Fm = 0 . (3.90)

It is convenient to choose the coefficients Cj to be solutions to the homogeneous linear system of
equations

n∑
j=m

(
Hm,j −Hn,nδmj

)
Cj = 0, m = 0, 1, . . . , n− 1 . (3.91)

If the problem is nondegenerate, then there is just one linearly independent set of coefficients Cj ;
otherwise, there will be more than one. We will illustrate both cases later by means of appropriate
examples.
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Once we have the coefficients Cj , we rewrite the equation for the energy as follows

-E

n∑
j=0

CjFj = λ

n∑
j=0

Cj

∑
m>j

Hm,jFm . (3.92)

The intermediate normalization condition

n∑
j=0

CjFj = 1 (3.93)

leads to a useful expression for the energy in terms of the moments

-E = λ

n∑
j=0

Cj

∑
m>j

Hm,jFm . (3.94)

3.4.3 Nondegenerate Case

Suppose that Hj,j = Hn,n for all j = n. Upon expanding the energy and moments in equa-
tion (3.85) in Taylor series about λ = 0 and solving for Fj,i we obtain

Fj,i = 1

Hn,n −Hj,j


j−1∑

m=0

Hm,jFm,i −
i∑

k=1

EkFj,i−k +
∞∑

m=j+1

Hm,jFm,i−1


 . (3.95)

Notice that this equation does not give us the perturbation corrections to the moment Fn, which we
obtain from the arbitrary intermediate normalization Fn = 1 that leads to

Fn,i = δi0 . (3.96)

Substitution of this normalization condition into equation (3.88) for j = n yields an expression for
the energy

-E =
n−1∑
m=0

Hm,nFm + λ

∞∑
m=n+1

Hm,nFm , (3.97)

and, consequently, for its perturbation corrections

Ei = Hn,nδi0 +
n−1∑
m=0

Hm,nFm,i +
∞∑

m=n+1

Hm,nFm,i−1 . (3.98)

Remember that Fj,0 = 0 for all j < n as shown above for the chosen exactly solvable models.
We easily obtain exact expressions for the perturbation corrections when Hi,j = 0 for all |i − j |

larger than some positive integer. As an example consider the dimensionless anharmonic oscillator

Ĥ = 1

2

(
− d2

dx2
+ x2

)
+ λx4 (3.99)

and the set of functions (3.74). The recurrence relation for the moments is

− (2j + s)(2j + s − 1)

2
Fj−1 + 2(j − n)Fj −-EFj + λFj+2 = 0 (3.100)
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and the intermediate normalization condition Fn = 1 leads to

E = 2n+ s + 1

2
− (2n+ s)(2n+ s − 1)

2
Fn−1 + λFn+2 . (3.101)

Expanding the energy and moments in Taylor series about λ = 0, we obtain

Fj,i = 1

2(j − n)

[
(2j + s)(2j + s − 1)

2
Fj−1,i +

i∑
m=1

EmFj,i−m − Fj+2,i−1

]
(3.102)

and

Ei =
(

2n+ s + 1

2

)
δi0 − (2n+ s)(2n+ s − 1)

2
Fn−1,i + Fn+2,i−1 . (3.103)

These two equations and the normalization condition (3.96) give us all the perturbation corrections to
the energy and moments. By straightforward inspection of the equations above, one concludes that in
order to obtain Ep one has to calculate the moment coefficients Fj,i with n−2i ≤ j ≤ n+2(p− i)

when i = 0, 1, . . . , p − 1, and those with n− 2p ≤ j ≤ n− 1 when i = p.
Table 3.5 shows results for the first four states of the anharmonic oscillator which we calculated

by means of a simple Maple program. We do not show it here because it runs more slowly and yields
less general results than the set of procedures given earlier for the method of Swenson and Danforth.
The only purpose of Table 3.5 is just to help the reader check his or her own calculations.

Table 3.5 Moment-Method Perturbation Theory for the Anharmonic Oscillator

Ĥ = − 1
2

d2

dx2
+ x̂2

2
+ λx̂4

Ground State

E = 1
2 + 3 λ

4 − 21 λ2

8 + 333 λ3

16 − 30885 λ4

128 + 916731 λ5

256 + . . .

F1 = 1
2 − 3

4 λ+ 75
16 λ2 − 1527

32 λ3 + 165741
256 λ4 + . . .

First Excited State

E = 3
2 + 15 λ

4 + 18075 λ2

256 − 10982535 λ3

4096 + 10863836055 λ4

131072 − 43563085647015 λ5

16777216
+ . . .

F1 = 3
2 + 1317

64 λ− 1399395
2048 λ2 + 655649973

32768 λ3 − 1275828608445
2097152 λ4 + . . .

Second Excited State

E = 5
2 + 93

8 λ− 49761
512 λ2 + 12053211

8192 λ3 − 15240517155
524288 λ4 + 22590881117433

33554432 λ5

+ . . .

F0 = 1− 3
8 λ− 22239

512 λ2 + 14786319
8192 λ3 − 31401053397

524288 λ4 + . . .

Third Excited State

E = 7
2 + 579 λ

16 − 723285 λ2

1024 + 138568419 λ3

8192 − 893001846771 λ4

2097152 + 214869089419155 λ5

16777216
+ . . .

F0 = 1− 53
16 λ+ 85695

1024 λ2 − 24839823
8192 λ3 + 263498107665

2097152 λ4 + . . .

                          



44 PERTURBATION THEORIES WITHOUT WAVEFUNCTION

Another interesting example is the radial Hamiltonian operator for a perturbed Coulomb problem

Ĥ = −1

2

d2

dr2
+ l(l + 1)

2r2
− 1

r
+ λrK , (3.104)

where K = 1, 2, . . . . Choosing the set of functions (3.81) the recurrence relation for the moments
is

−j (j + 2l + 1)

2
Fj−2 + j − n

n+ l + 1
Fj−1 −-EFj + λFj+k = 0 , (3.105)

where we have substituted the value of α given by equation (3.83) and

-E = E + 1

2(n+ l + 1)2
. (3.106)

The choice n = 0 selects the states with angular and principal quantum numbers l = 0, 1, . . . , and
N = l + 1, respectively, commonly denoted 1s, 2p, 3d, . . . that are free from radial nodes. When
j = 0 we obtain

-EF0 = λFK , (3.107)

so that the intermediate normalization condition F0 = 1 leads to

-E = λFK . (3.108)

We obtain an expression for F−1 from the general equation (3.105) with j = 1:

F−1 = 1

l + 1

(
1

l + 1
−-EF1 + λFK+1

)
. (3.109)

The expansion of the energy and moments in Taylor series about λ = 0 leads to

F−1,i = 1

l + 1

(
δi0

l + 1
−

i∑
m=1

EmF1,i−m + FK+1,i−1

)
(3.110)

F0,i = δi0 (3.111)

Fj,i = l + 1

j + 1

[
(j + 1)(j + 2l + 2)

2
Fj−1,i +

i∑
m=1

EmFj+1,i−m − Fj+k+1,i−1

]
.(3.112)

The last expression follows from substituting j+1 for j in equation (3.105). The energy coefficients
are given by

Ei = FK,i−1 . (3.113)

In order to obtain Ep one has to calculate all the moment coefficients Fj,i with i = 1, 2, . . . , p− 1,
1 ≤ j ≤ (p − i)(K + 1)− 1.

The choice n = 1 selects all the states with N = l + 2: 2s, 3p, 4d, . . . , and their treatment
illustrates the application of equations (3.92)–(3.94). The general equation (3.105) with n = 1
yields

− F−1

l + 2
−-EF0 + λFK = 0 , (3.114)

−(l + 1)F−1 −-EF1 + λFK+1 = 0 , (3.115)

−(2l + 3)F0 + F1

l + 2
−-EF2 + λFK+2 = 0 , (3.116)

                          



3.4. MOMENT METHOD 45

for j = 0, 1, and 2, respectively. It is difficult to explain how to develop a workable system of
equations for the general case. For this reason we show how to proceed in a particular example and
hope that the reader will imagine the strategy to be followed in other situations. Besides, we will
discuss more illustrative examples which may give the reader additional hints later in this book. In the
problem at hand we multiply equation (3.114) by (l + 1)(l + 2) and subtract from equation (3.115),
thus removing F−1 and obtaining a preliminary expression for the energy:

-E [F1 − (l + 1)(l + 2)F0] = λ
[
FK+1 − (l + 1)(l + 2)FK

]
. (3.117)

The intermediate normalization condition

F1 − (l + 1)(l + 2)F0 = 1 (3.118)

leads to a simpler expression for the energy that is suitable for the application of perturbation theory:

-E = λ
[
FK+1 − (l + 1)(l + 2)FK

]
. (3.119)

From equations (3.116) and (3.118) we derive the following expression for F0:

F0 = 1

l + 2

(
1

l + 2
−-EF2 + λFK+2

)
. (3.120)

Expanding the energy and moments in Taylor series about λ = 0 we obtain all the necessary
recurrence relations for the perturbation coefficients

F0,i = 1

l + 2

(
δi0

l + 2
−

i∑
m=1

EmF2,i−m + FK+2,i−1

)
(3.121)

F1,i = δi0 + (l + 1)(l + 2)F0,i , (3.122)

Fj,i = l + 2

j

[
(j + 1)(j + 2l + 2)

2
Fj−1,i +

i∑
m=1

EmFj+1,i−m − Fj+k+1,i−1,

]
(3.123)

Ei = FK+1,i−1 − (l + 1)(l + 2)FK,i−1 . (3.124)

The calculation is analogous to the one above except that in this case 2 ≤ j ≤ (p − i)(K + 1)− 1.
Table 3.6 shows perturbation coefficients for the energy and arbitrarily selected moments when

K = 1. The energy coefficients agree with those in Table 3.4 provided that we substitute the
appropriate value of E0 in each case: E0 = −1/[2(l + 1)2] and E0 = −1/[2(l + 2)2] for the states
with zero and one radial node, respectively.

3.4.4 Degenerate Case

In order to illustrate the application of the moment method to a model with degenerate unperturbed
states, we choose a simple nontrivial anharmonic oscillator in two dimensions with dimensionless
Hamiltonian operator

Ĥ = −1

2
∇2 + V (x, y), V (x, y) = 1

2
(x2 + y2)+ λ

(
ax4 + by4 + 2cx2y2

)
, (3.125)

where λ, a, b, and c are real and positive.
The potential-energy function V (x, y) is a single infinite well with a minimum V = 0 at origin.

It is invariant under the transformation (x, y)←→ (−x,−y), and in the particular case that a = b,
it is also invariant under the exchange (x, y) ←→ (y, x). The latter higher symmetry makes the
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Table 3.6 Moment-Method Perturbation Theory for the Perturbed Coulomb Model

Ĥ = −∇
2

2
− 1

r̂
+ λr̂

States with No Radial Nodes

E1 = 1
2 (l + 1) (2 l + 3)

E2 = − 1
4 (l + 1)4 (2 l + 3) (l + 2)

E3 = 1
8 (l + 1)7 (2 l + 3) (l + 2) (9+ 4 l)

E4 = − 1
32 (l + 1)10 (2 l + 3) (l + 2)

(
225 l + 48 l2 + 265

)
E5 = 1

32 (l + 1)13 (2 l + 3) (l + 2)
(
3128 l + 2562+ 1281 l2 + 176 l3

)
E6 = − 1

64 (l + 1)16 (2 l + 3) (l + 2)
(
93141 l + 59552+ 55031 l2 + 14561 l3 + 1456 l4

)

F2, 0 = 1
2 (l + 1)2 (l + 2) (3+ 2 l)

F2, 1 = − 1
8 (l + 1)5 (3+ 2 l) (l + 2) (9+ 4 l)

F2, 2 = 1
32 (l + 1)8 (3+ 2 l) (l + 2)

(
197+ 168 l + 36 l2

)
F2, 3 = − 1

128 (l + 1)11 (3+ 2 l) (l + 2)
(
6375+ 7842 l + 3236 l2 + 448 l3

)
F2, 4 = 1

512 (l + 1)14 (3+ 2 l) (l + 2)
(
413298 l + 246636 l2 + 65912 l3 + 6656 l4 + 261659

)
F2, 5 = − 1

2048 (l + 1)17 (3+ 2 l) (l + 2)(
24183756 l + 18566064 l2 + 7188320 l3 + 12707073+ 1403696 l4 + 110592 l5

)
F2, 6 = 1

8192 (l + 1)20 (3+ 2 l) (l + 2)
(
1548721272 l + 1434654808 l2 + 715587960 l3

+ 1984512 l6 + 202719056 l4 + 30925216 l5 + 703100137
)

States with One Radial Node

E1 = 1
2 (4+ l) (2 l + 3)

E2 = − 1
4 (2 l + 3)

(
l3 + 11 l2 + 26 l + 22

)
(l + 2)2

E3 = 1
8 (2 l + 3)

(
4 l5 + 75 l4 + 371 l3 + 890 l2 + 1088 l + 552

)
(l + 2)4

F0, 0 = 1
(l+2)2

F0, 1 = 1
4

(
3 l + 2 l2 + 4

)
(2 l + 3)

F0, 2 = − 1
8 (l + 2)2

(
8 l4 + 18 l3 + 27 l2 + 53 l + 54

)
(2 l + 3)

F0, 3 = 1
32

(
8 l7 + 184 l6 + 688 l5 + 1211 l4 + 2093 l3 + 4826 l2 + 7030 l + 4060

)
(l + 2)4

(2 l + 3)
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application of the moment method simpler as it allows the treatment of degenerate states as if they
were nondegenerate [41, 42]. Here we do not restrict to such a simplification keeping our results as
general as possible.

The set of functions

fij = xiyj exp
[
−
(
x2 + y2

)
/2
]
, i, j = 0, 1, . . . (3.126)

enables us to construct the recurrence relation for the moments

Fi,j =
〈
fij |�

〉
(3.127)

necessary for the application of perturbation theory. For clarity, two subscripts label the func-
tions (3.126) and moments (3.127) instead of only one as in the discussion of the general case in
preceding subsections. The moment recurrence relation reads

− i(i − 1)

2
Fi−2,j − j (j − 1)

2
Fi,j−2 + (i + j −N)Fi,j

−-EFi,j + λ
(
aFi+4,j + bFi,j+4 + 2cFi+2,j+2

) = 0 , (3.128)

where

-E = E −N − 1, N = 0, 1, . . . . (3.129)

Notice that the unperturbed energy is E0 = N + 1. Because the subscripts of the moments in
equation (3.128) are displaced by even numbers, we have four different sets of solutions denoted
(e,e), (e,o), (o,e), and (o,o), where e = even and o = odd is the parity of the corresponding subscript.
They certainly match the symmetry classes of the eigenfunctions.

The coefficients of the perturbation series

Fi,j =
∞∑

m=0

Fi,j,mλm (3.130)

satisfy

Fi,j,m = 1

i + j −N

[
i(i − 1)

2
Fi−2,j,m + j (j − 1)

2
Fi,j−2,m +

m∑
k=1

EkFi,j,m−k

− aFi+4,j,m−1 − bFi,j+4,m−1 − 2cFi+2,j+2,m−1

]
, (3.131)

which together with an appropriate expression for the energy enables us to calculate the perturbation
corrections. In what follows we show how to apply the method to some of the lowest states of the
anharmonic oscillator.

For the ground state we choose N = 0. Setting i = j = 0 into equation (3.128) we obtain

-EF0,0 = λ
(
aF4,0 + bF0,4 + 2cF2,2

)
. (3.132)

The intermediate normalization condition F0,0 = 1 determines the coefficients

F0,0,m = δ0m (3.133)
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that we cannot obtain from the general recurrence relation (3.131), and also gives us a simple
expression for the energy coefficients:

Em = aF4,0,m−1 + bF0,4,m−1 + 2cF2,2,m−1 . (3.134)

Notice that this state belongs to the class (e,e) mentioned above. In order to obtain Ep we need the
moment coefficients Fi,j,m for all m = 0, 1, . . . , p − 1, i, j = 0, 2, . . . , 4(p −m).

When N = 1 we identify two unperturbed states with the same energy and different symmetry.
Setting i = 0, and j = 1 we have

-EF0,1 = λ
(
aF4,1 + bF0,5 + 2cF2,3

)
. (3.135)

The intermediate normalization condition F0,1 = 1 leads to

F0,1,m = δ0m (3.136)

and

Em = aF4,1,m−1 + bF0,5,m−1 + 2cF2,3,m−1 . (3.137)

In order to obtain Ep we need Fi,j,m for all m = 0, 1, . . . , p − 1, i = 0, 2, . . . , 4(p − m), and
j = 1, 3, . . . , 4(p −m)+ 1. This state belongs to the class (e,o).

The remaining state for N = 1 belongs to the class (o,e). Arguing as in the preceding case we
obtain

F1,0,m = δ0m (3.138)

and

Em = aF5,0,m−1 + bF1,4,m−1 + 2cF3,2,m−1 . (3.139)

In order to obtain Ep we need Fi,j,m for all m = 0, 1, . . . , p − 1, i = 1, 3, . . . , 4(p −m)+ 1, and
j = 0, 2, . . . , 4(p −m).

Although the unperturbed states for N = 1 are degenerate we treat them as if they were nondegen-
erate because the perturbation does not couple them. The application of the moment method just out-
lined clearly discloses this independence that arises from the symmetry of the states. More precisely,
the eigenfunctions �0,1(x, y) and �1,0(x, y) of Ĥ for the states with N = 1
satisfy �0,1(−x, y) = �0,1(x, y),�0,1(x,−y) = −�0,1(x, y),�1,0(−x, y) = −�1,0(x, y), and
�1,0(x,−y) = �1,0(x, y) for all values of λ. Therefore the moments with subscripts (o,e) vanish
when � = �0,1 and those with subscripts (e,o) vanish for the other state. Notice that no explicit
consideration of the eigenfunctions was necessary neither for the application of the moment method,
nor for the selection of the states because the symmetry is embedded in the chosen functions fi,j .

The states with N = 0 and N = 1 just considered do not add anything new to the one-dimensional
problems discussed earlier, except for the occurrence of one more subscript in the moments. The
states with N = 2 offer a much richer example as we will shortly see. Before proceeding, notice that
the denominator in equation (3.131) vanishes when i + j = N giving room for N + 1 degenerate
unperturbed states as i = 0, 1, . . . , N and j = N − i satisfy such condition. In the language of the
moment method, equation (3.131) will have N + 1 linearly independent solutions. We have already
seen that there is only one state when N = 0 and two states when N = 1, the latter belonging to
different classes: (e,o) and (o,e). In general, if N is even the degenerate states belong to either (e,e)
or (o,o); otherwise, they belong to either (o,e) or (e,o). When N = 2 there are three states; we first
consider the (o,o) case.
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Setting i = j = 1 in equation (3.128) we obtain

-EF1,1 = λ
(
aF5,1 + bF1,5 + 2cF3,3

)
, (3.140)

which suggests the intermediate normalization condition F1,1 = 1 that leads to

F1,1,m = δ0m (3.141)

and

Em = aF5,1,m−1 + bF1,5,m−1 + 2cF3,3,m−1 . (3.142)

In order to obtain Ep we need all Fi,j,m with m = 0, 1, . . . , p−1 and i, j = 1, 3, . . . , 4(p−m)+1.
The remaining two states belong to the class (e,e); consequently the perturbation couples them,

and have to be explicitly treated as degenerate. When (i, j) = (0, 0), (2, 0), and (0, 2) we have

−2F0,0 −-EF0,0 + λ
(
aF4,0 + bF0,4 + 2cF2,2

) = 0 , (3.143)

−F0,0 −-EF2,0 + λ
(
aF6,0 + bF2,4 + 2cF4,2

) = 0 , (3.144)

−F0,0 −-EF0,2 + λ
(
aF4,2 + bF0,6 + 2cF2,4

) = 0 , (3.145)

respectively. Subtracting twice equation (3.144) from equation (3.143) gives

-E(2F2,0 − F0,0)+ λ
[
a
(
F4,0 − 2F6,0

)+ b
(
F0,4 − 2F2,4

)+ 2c
(
F2,2 − 2F4,2

)] = 0 , (3.146)

and subtracting twice equation (3.145) from equation (3.143) yields

-E(2F0,2 − F0,0)+ λ
[
a
(
F4,0 − 2F4,2

)+ b
(
F0,4 − 2F0,6

)+ 2c
(
F2,2 − 2F2,4

)] = 0 . (3.147)

We arbitrarily choose the intermediate normalization condition

2F0,2 − F0,0 = 1 (3.148)

that leads to

-E = λ
[
a
(
2F4,2 − F4,0

)+ b
(
2F0,6 − F0,4

)+ 2c
(
2F2,4 − F2,2

)]
. (3.149)

Substituting equation (3.149) into equation (3.146) and dividing by λ we derive another useful
equation

[
a
(
2F4,2 − F4,0

)+ b
(
2F0,6 − F0,4

)+ 2c
(
2F2,4 − F2,2

)] (
2F2,0 − F0,0

)
+a (F4,0 − 2F6,0

)+ b
(
F0,4 − 2F2,4

)+ 2c
(
F2,2 − 2F4,2

) = 0 . (3.150)

We calculate the perturbation corrections to F0,0 from equation (3.143):

F0,0,m =
1

2

(
aF4,0,m−1 + bF0,4,m−1 + 2cF2,2,m−1 −

m∑
k=1

EkF0,0,m−k

)
(3.151)

and the perturbation corrections to F0,2 from the intermediate normalization condition (3.148):

F0,2,m = δm0

2
+ 1

2
F0,0,m . (3.152)

The general recurrence relation (3.131) with N = 2 provides all the remaining moment coefficients
Fi,j,m except F2,0,m which one obtains from equation (3.150). We expand all the moments in this
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equation in Taylor series about λ = 0 and collect the coefficients of each power of λ. By means
of equations (3.131), (3.151), and (3.152), we express every moment coefficient Fi,j,m in terms of
previously calculated ones and in terms of the only unknown F2,0,m which we then determine. The
equation of order zero is quadratic

4cF 2
2,0,0 + 18(b − a)F2,0,0 − c = 0 (3.153)

and admits two real roots

F2,0,0 = 9(a − b)± R

4c
, R =

√
81(b − a)2 + 4c2 (3.154)

that give rise to two sets of moment coefficients Fi,j,m which are the two independent solutions
mentioned above. The occurrence of multiple solutions was already anticipated in the discussion of
the general equation (3.91). The equations for perturbation orders greater than zero are linear in the
unknown moment coefficient F2,0,m. We do not show them here because they are rather complicated
and do not add anything relevant to the present discussion.

We finally obtain the energy coefficients from

Em = a
(
2F4,2,m−1 − F4,0,m−1

)+ b
(
2F0,6,m−1 − F0,4,m−1

)
+ 2c

(
2F2,4,m−1 − F2,2,m−1

)
. (3.155)

It is worth noticing that unlike the standard treatment of degenerate states in which the energy
coefficient is a root of a secular determinant (see Section 1.2.2), here it is one of the moments that
arises from a seemingly secular equation.

In the program section we show simple Maple procedures for the application of the moment
method according to the equations just discussed. Table 3.7 shows sample results for the states
considered above.

The moment method has recently been used to generate renormalized perturbation series for the
energies of two-dimensional anharmonic oscillators [39]. The main ideas underlining that approach
that yields highly accurate results may be easily understood by means of the theoretical development
above, and by the discussion of the renormalized series given in Chapter 6. The moment method
has also been applied to coupled Morse oscillators after expanding the potential-energy function
in a Taylor series about its minimum [43]. In this case the perturbation series appear to converge
for all the states considered. In Chapter 7 we will discuss the application of perturbation theory to
nonpolynomial potential-energy functions by means of a simple polynomial approach.

3.4.5 Relation to Other Methods: Modified Moment Method

The moment method is a quite general strategy that reduces to other procedures under particular
conditions. One such connection was already outlined above: if the complete set of vectors {fj }
is orthonormal, then the moment method gives rise to the standard textbook approach discussed

Moreover, it is not difficult to prove that the moment method yields the hypervirial
theorem. In fact, if we choose the vector f = Ŵ�, where Ŵ is a linear operator and � is an
eigenfunction of Ĥ , then, arguing as in Section 3.2:

〈(
Ĥ − E

)
f |�

〉
=
〈[
Ĥ , Ŵ

]
�|�

〉
= −

〈
�

∣∣∣[Ĥ , Ŵ †
]∣∣∣�〉 = 0 . (3.156)

The perturbation theory by the moment method discussed above does not yield the perturbation
corrections to the energy as functions of the quantum number of the unperturbed model. For this
reason it is less appealing than the method of Swenson and Danforth for the treatment of separable
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Table 3.7 Moment Method for the Two-Dimensional Anharmonic Oscillator

Ĥ = −∇
2

2
+ x̂2 + ŷ2

2
+ λ

(
ax̂4 + bŷ4 + 2cx̂2ŷ2

)
(Continued)

State N = 0 (e,e)

E1 = 3
4 a + 3

4 b + 1
2 c

E2 = − 21
8 a2 − 3

2 a c − 21
8 b2 − 3

2 b c − 3
4 c2

E3 = 333
16 a3 + 105

8 a2 c + 9
2 a b c + 111

16 a c2 + 333
16 b3 + 105

8 b2 c + 111
16 b c2

+ 11
4 c3

E4 = − 315
8 a2 b c − 333

2 a3 c − 3031
32 a2 c2 − 315

8 a b2 c − 1953
32 a b c2 − 373

8 a c3

− 30885
128 a4 − 333

2 b3 c − 3031
32 b2 c2 − 30885

128 b4 − 373
8 b c3 − 973

64 c4

F2, 0, 0 = 1
2

F2, 0, 1 = − 3
4 a − 1

4 c

F2, 0, 2 = 75
16 a2 + 33

16 a c + 9
16 b c + 11

16 c2

F2, 0, 3 = − 81
16 a b c − 1527

32 a3 − 105
32 c3 − 801

32 a2 c − 349
32 a c2 − 4 b2 c − 5 b c2

F2, 0, 4 = 165741
256 a4 + 16421

768 c4 + 16359
256 a2 b c + 5173

64 a b c2 + 11191
256 b3 c

+ 43859
768 b2 c2 + 49039

256 a2 c2 + 9669
256 a b2 c + 4433

96 b c3 + 30995
384 a c3

+ 98283
256 a3 c

State N = 1 (e,o)

E1 = 3
4 a + 15

4 b + 3
2 c

E2 = − 21
8 a2 − 9

2 a c − 165
8 b2 − 15

2 b c − 15
4 c2

E3 = 333
16 a3 + 315

8 a2 c + 45
2 a b c + 621

16 a c2 + 3915
16 b3 + 825

8 b2 c + 795
16 b c2

+21 c3

E4 = − 1575
8 a2 b c − 999

2 a3 c − 17913
32 a2 c2 − 2475

8 a b2 c − 15525
32 a b c2

− 3261
8 a c3 − 30885

128 a4 − 3915
2 b3 c − 31625

32 b2 c2 − 520485
128 b4 − 3845

8 b c3

− 10621
64 c4

F0, 3, 1 = − 15
4 b − 3

4 c

F0, 3, 2 = 27
16 a c + 585

16 b2 + 165
16 b c + 51

16 c2

F0, 3, 3 = −12 a2 c − 411
16 a c2 − 6255

32 b2 c − 2435
32 b c2 − 17655

32 b3 − 727
32 c3 − 405

16 a b c

F0, 3, 4 = 79509
256 a2 c2 + 1445

4 a c3 + 33573
256 a3 c + 39665

64 a b c2 + 127845
256 a b2 c

+ 48345
256 a2 b c + 1138875

256 b3 c + 501495
256 b2 c2 + 304115

384 b c3 + 2719395
256 b4

+ 160727
768 c4
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Table 3.7 (Cont.) Moment Method for the Two-Dimensional Anharmonic Oscillator

Ĥ = −∇
2

2
+ x̂2 + ŷ2

2
+ λ

(
ax̂4 + bŷ4 + 2cx̂2ŷ2

)
(Continued)

State N = 1 (o,e)

E1 = 15
4 a + 3

4 b + 3
2 c

E2 = − 165
8 a2 − 15

2 a c − 21
8 b2 − 9

2 b c − 15
4 c2

E3 = 3915
16 a3 + 825

8 a2 c + 795
16 a c2 + 45

2 a b c + 333
16 b3 + 315

8 b2 c + 621
16 b c2

+21 c3

E4 = − 2475
8 a2 b c − 3915

2 a3 c − 31625
32 a2 c2 − 1575

8 a b2 c − 15525
32 a b c2

− 3845
8 a c3 − 520485

128 a4 − 999
2 b3 c − 17913

32 b2 c2 − 30885
128 b4 − 3261

8 b c3

− 10621
64 c4

F3, 0, 1 = − 15
4 a − 3

4 c

F3, 0, 2 = 585
16 a2 + 165

16 a c + 27
16 b c + 51

16 c2

F3, 0, 3 = − 405
16 a b c − 411

16 b c2 − 17655
32 a3 − 727

32 c3 − 6255
32 a2 c − 2435

32 a c2 − 12 b2 c

F3, 0, 4 = 39665
64 a b c2 + 1138875

256 a3 c + 48345
256 a b2 c + 2719395

256 a4 + 160727
768 c4

+ 127845
256 a2 b c + 79509

256 b2 c2 + 1445
4 b c3 + 33573

256 b3 c + 501495
256 a2 c2

+ 304115
384 a c3

State N = 2 (o,o)

E1 = 15
4 a + 15

4 b + 9
2 c

E2 = − 165
8 a2 − 45

2 a c − 165
8 b2 − 45

2 b c − 63
4 c2

E3 = 3915
16 a3 + 2475

8 a2 c + 3825
16 a c2 + 225

2 a b c + 3915
16 b3 + 2475

8 b2 c

+ 3825
16 b c2 + 477

4 c3

E4 = − 12375
8 a2 b c − 11745

2 a3 c − 164175
32 a2 c2 − 12375

8 a b2 c − 106425
32 a b c2

− 25845
8 a c3 − 520485

128 a4 − 11745
2 b3 c − 164175

32 b2 c2 − 520485
128 b4

− 25845
8 b c3 − 80205

64 c4

F3, 1, 1 = − 15
4 a − 9

4 c

F3, 1, 2 = 585
16 a2 + 495

16 a c + 135
16 b c + 225

16 c2

F3, 1, 3 = − 17655
32 a3 − 4341

32 c3 − 18765
32 a2 c − 11805

32 a c2 − 375
4 b2 c − 165 b c2

− 2025
16 a b c

F3, 1, 4 = 639225
256 a2 b c + 68725

16 a b c2 + 3416625
256 a3 c + 2591685

256 a2 c2 + 191805
64 b c3

+ 389145
256 b3 c + 749635

256 b2 c2 + 2719395
256 a4 + 422333

256 c4 + 378075
256 a b2 c

+ 687835
128 a c3
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Table 3.7 (Cont.) Moment Method for the Two-Dimensional Anharmonic Oscillator

Ĥ = −∇
2

2
+ x̂2 + ŷ2

2
+ λ

(
ax̂4 + bŷ4 + 2cx̂2ŷ2

)

State N = 2 (e,e)

E1 = 21
4 a + 21

4 b + 5
2 c + 1

2 R

E2 = − 159
4 a2 − 9 c2 − 159

4 b2 − 27
2 b c − 27

2 a c +
(

2673
8 a b2 − 2673

8 b3 − 15
2 a c2

− 54 b2 c − 12 c3 − 15
2 b c2 + 2673

8 a2 b − 2673
8 a3 + 108 a b c − 54 a2 c

)
/R

F2, 0, 0 = 1
4

R
c
+ 1

4
9 a−9 b

c

F2, 0, 1 = 1
32

324 b2−270 a2+4 c2−54 a b−342 b c+354 a c
c

+ 1
32

(
3402 a b2 − 2916 b3

+ 24 a c2 + 3186 b2 c + 1944 a2 b − 2430 a3 + 8 c3 + 3186 a2 c − 6372 a b c
)
/(c R)

F0, 2, 0 = 1
2

F0, 2, 1 = 1
16

(3 a+c) R
c

1
16

27 a2−27 a b+9 a c−3 b c+2 c2

c

F0, 2, 2 = 1
32

432 a2 b+243 a b2−48 b c2−675 a3+9 a2 c−144 a b c−16 c3+39 b2 c
c

+ 1
32

(−1701 a2 b2 − 2187 a b3 − 84 a2 c2 + 108 b2 c2 − 72 a c3 + 81 a3 c

−1215 c b3 − 24 b c3 − 6075 a4 − 1377 a2 b c − 216 a b c2 − 32 c4 + 9963 a3 b

+ 2511 a b2 c
)
/(c R)

R = √81 (b − a)2 + 4 c2

models. However, the combination of the moment method with the method of Fernández and Castro
discussed in Chapter 2 overcomes this limitation, as we illustrate in what follows by means of a
simple one-dimensional problem:

Ĥ = Ĥ0 + V1(x), Ĥ0 = −1

2

d2

dx2
+ V0(x) . (3.157)

Choosing a function of the form

F(x) = A(x)�0(x)+ B(x)� ′0(x) , (3.158)

where A(x) and B(x) are two differentiable functions, and �0(x) is an eigenfunction of Ĥ0,

� ′′0 (x) = 2 [V0(x)− E0]�0(x) , (3.159)

we easily obtain

(
Ĥ − E

)
F =

[
(V1 −-E)A+ 2 (E0 − V0) B

′ − A′′

2
− V ′0B

]
�0

+
[
(V1 −-E)B − A′ − B ′′

2

]
� ′0 . (3.160)
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If

A′ = −B ′′

2
+ (V1 −-E)B , (3.161)

then the term containing � ′0 vanishes and

〈
�0

∣∣∣∣A
′′

2
+ (-E − V1) A+ 2 (V0 − E0) B

′ + V ′B
∣∣∣∣�
〉
= 0 , (3.162)

which is the master equation of the modified moment method.
As a particular example consider the anharmonic oscillator

V0(x) = x2

2
, V1(x) = λx2K, K = 2, 3, . . . . (3.163)

If B(x) = x2N+1, N = 0, 1, . . . , then

A(x) = −2N + 1

2
x2N + λ

2(N +K + 1)
x2(N+K+1) − -E

2(N + 1)
x2(N+1) , (3.164)

and equation (3.162) becomes

2(N + 1)FN+1 − N(4N2 − 1)

2
FN−1 − 2(2N + 1)E0FN + λ(2N +K + 1)FN+K

−(2N + 1)-EFN + (2N +K + 2)λ-E

2(N + 1)(N +K + 1)
FN+K+1 − -E2

2(N + 1)
FN+1

− λ2

2(N +K + 1)
FN+2K+1 = 0 , (3.165)

where

FN =
〈
�0

∣∣∣x2N
∣∣∣�〉 . (3.166)

Substituting N − 1 for N and expanding in Taylor series about λ = 0, we obtain

FN,i = 1

2N

[
(N − 1)[4(N − 1)2 − 1]

2
FN−2,i + 2(2N − 1)E0FN−1,i

− (2N +K − 1)FN+K−1,i−1 + 2N
i∑

j=1

EjFN−1,i−j

− 2N +K

2N(N +K)

i−1∑
j=1

EjFN+K,i−j−1 + 1

2N

i∑
j=1

Ej

i−j∑
m=1

EmFN,i−j−m

+ 1

2(N +K)
FN+2K,i−2

]
. (3.167)

In order to derive an expression for the energy we choose A = 1 and B = 0, which are consistent
with equation (3.161) and lead to

-EF0 = λFK . (3.168)
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Therefore, the intermediate normalization condition F0 = 1 leads to

F0,i = δ0i (3.169)

and

Ei = FK,i−1 . (3.170)

In order to obtain Ep we have to calculate FN,i for i = 0, 1, . . . , p − 1, N = 1, 2, . . . , (p − i)K .

It is not difficult to obtain the first perturbation corrections by hand. However, as the perturbation
order increases, the calculation becomes tedious and the use of computer algebra is necessary. We
have written a simple Maple program that we do not show here because it is quite similar to the
one already given for the method of Swenson and Danforth. However, Table 3.8 shows results for
the quartic anharmonic oscillator (K = 2) that the reader may find useful for testing. Because the
perturbation corrections to the energy are exactly those displayed in Table 2.3 we only show some
moment coefficients.

Table 3.8 Modified Moment Method for the Quartic Anharmonic Oscillator

Ĥ = − 1
2

d2

dx2
+ x̂2

2
+ λx̂4

F1, 0 = E0

F1, 1 = − 3
8 − 3

2 E0
2

F1, 2 = 3831
512 E0 + 485

64 E0
3 − 1

32 E0
5

F1, 3 = − 28719
2048 − 93385

768 E0
2 − 20285

384 E0
4 + 7

24 E0
6

F1, 4 = 1442295127
786432 E0

3 + 56302885
131072 E0

5 − 41323
16384 E0

7 − 259
49152 E0

9 + 3395500527
4194304 E0

F2, 0 = 3
8 + 3

2 E0
2

F2, 1 = − 67
16 E0 − 17

4 E0
3

F2, 2 = 1539
256 + 1707

32 E0
2 + 375

16 E0
4

F2, 3 = − 89165
128 E0

3 − 10689
64 E0

5 − 305141
1024 E0

F2, 4 = 9317949
1024 E0

2 + 587265
64 E0

4 + 87549
64 E0

6 + 1456569
2048

F3, 0 = 25E0
8 + 5E0

3

2

F3, 1 = − 945
256 − 885

32 E0
2 − 165

16 E0
4

F3, 2 = 594853
4096 E0 + 301195

1024 E0
3 + 15947

256 E0
5 + 5

64 E0
7

F3, 3 = − 491632143
131072 E0

2 − 221146647
65536 E0

4 − 7701
8192 E0

8 − 3750807
8192 E0

6 − 678272805
2097152
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3.5 Perturbation Theory in Operator Form

The approaches discussed above share the name of perturbation theory without wavefunction
because they do not take the eigenfunctions explicitly into account. However, the eigenfunctions
already appear in some way or another through expectation values or moments. We may even say
that those approaches are based on unusual representations in which a recurrence relation plays
the role of the Schrödinger equation, and a set of expectation values or moments is a substitute
for the eigenvector. On the other hand, the perturbation theory in operator form discussed in what
follows is a true perturbation theory without wavefunction because it only considers the Hamiltonian
operator [44]–[47].

Perturbation theory in operator form consists of an appropriate transformation of the Hamiltonian
operator

Ĥ = Ĥ0 + λĤ ′ (3.171)

by means of a unitary operator Û (λ):

K̂ = Û (λ)Ĥ Û(λ)† (3.172)

in such a way that
[
K̂, Ĥ0

]
= 0 . (3.173)

Consequently, the operators K̂ and Ĥ0 share a complete set of eigenvectors. If �0 is an eigenvector
of both Ĥ0 and K̂

Ĥ0�0 = E0�0, K̂�0 = E�0 , (3.174)

then � = Û†�0 is an eigenvector of Ĥ :

Ĥ� = Ĥ Û†�0 = Û†ÛĤ Û†�0 = EÛ†�0 = E� . (3.175)

Because we cannot obtain the transformation (3.172) exactly except for some simple models, we
apply perturbation theory to equations (3.172) and (3.173). To this end, we expand Û and K̂ in
Taylor series about λ = 0

Û =
∞∑
j=0

Ûj λ
j , K̂ =

∞∑
j=0

K̂jλ
j , (3.176)

where

Û0 = 1̂, K̂0 = Ĥ0 . (3.177)

There is no unique expression for Û ; one can choose, for example, a single exponential operator or
an infinite product of exponential operators [47]. All particular representations of the operator Û are
equivalent, though some of them may be more practical than others. Here we write

dÛ(λ)

dλ
= Ŵ (λ)Û(λ) , (3.178)
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where Ŵ is a yet unknown linear operator. Differentiating Û Û† = 1̂ with respect to λ, and taking into
account that dÛ†/dλ = Û†Ŵ †, one easily proves that Ŵ is antihermitian: Ŵ † = −Ŵ ; therefore

dÛ(λ)†

dλ
= −Û (λ)†Ŵ (λ) . (3.179)

It is our purpose to express the coefficients Ûj in terms of the coefficients Ŵj of the expansion

Ŵ =
∞∑
j=0

Ŵjλ
j . (3.180)

It follows from equation (3.178) that both sets of coefficients are related by

Ûj = 1

j

j−1∑
i=0

ŴiÛj−i−1 . (3.181)

Sometimes, the use of superoperators [48] simplifies the notation and facilitates the discussion. In
order to introduce them into the present perturbation approach in a natural way, consider an arbitrary
operator Â independent of λ. Taking into account that d(ÛAÛ†)/dλ = [Ŵ , ÛAÛ†] we define the

superoperators ̂̂U and ̂̂W as follows:

̂̂
UÂ = ÛAÛ†,

̂̂
WÂ =

[
Ŵ , Â

]
, (3.182)

so that

d

dλ

̂̂
UA = ̂̂W ̂̂UÂ . (3.183)

Superoperators are operators that apply to a vector space of linear operators [48]. By using them, we
do not obtain new results, but commonly the working equations become simpler. Since the operator

Â is arbitrary, it follows from equation (3.183) that ̂̂U (λ) satisfies

d
̂̂
U(λ)

dλ
= ̂̂W(λ)

̂̂
U(λ),

̂̂
U(0) = ̂̂1 , (3.184)

where ̂̂1 is the identity superoperator that we omit from now on. It is not difficult to verify that the
coefficients of the Taylor expansions

̂̂
U(λ) =

∞∑
j=0

̂̂
Ujλ

j ,
̂̂
W(λ) =

∞∑
j=0

̂̂
Wjλ

j (3.185)

are related by

̂̂
Uj = 1

j

j−1∑
i=0

̂̂
Wi
̂̂
Uj−i−1 , (3.186)

where ̂̂Wi Â = [Ŵi, Â] for any linear operator Â.
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It follows from equation (3.186) and from straightforward expansion of the transformation of the

Hamiltonian operator ̂̂U Ĥ = K̂ in a Taylor series about λ = 0 that

̂̂
H 0Ŵj = f̂j − (j + 1)K̂j+1, f̂j =

j−1∑
i=0

̂̂
Wi
̂̂
Uj−i Ĥ0 + (j + 1)̂̂UjĤ

′ , (3.187)

where we have substituted j + 1 for j and taken into account that ̂̂WjĤ0 = − ̂̂H 0Ŵj . Assuming
that f̂j is known, it only remains to solve the operator equation (3.187) for K̂j+1 and Ŵj . We can
formally write the solution as follows:

Ŵj = ̂̂H 0
−1
[
f̂j − (j + 1)K̂j+1

]
, (3.188)

provided that (j + 1)K̂j removes all the terms in f̂j that commute with Ĥ0. In this way equa-
tion (3.188) completely determines Ŵj and K̂j .

It is particularly easy to solve equation (3.188) when f̂j is a sum of eigenvectors of ̂̂H 0. The reason

is that if Â is an eigenvector of ̂̂H 0 with eigenvalue α = 0 ̂̂H 0 Â = αÂ, then ̂̂H 0
−1A = α−1Â.

Moreover, taking into account that exp(t ̂̂H 0)Â = exp(αt)Â we write

Ŵj = lim
t−→0

∫ t

exp
(
s
̂̂
H 0

)
f̂j ds , (3.189)

and then

K̂j+1 = 1

j + 1

(
f̂j − ̂̂H 0Ŵj

)
. (3.190)

These equations give the desired results if we calculate the integrals as follows:

∫ t

exp(αs)ds =
{

exp(αt)/α if α = 0
t if α = 0

. (3.191)

Notice that in this way the terms that commute with Ĥ0 (α = 0) vanish as t −→ 0. The use

of the exponential superoperator is practical if one plans to invert ̂̂H 0 by means of an appropriate
computer-algebra software.

It follows from equations (3.174) and (3.175) that the perturbation corrections to the eigenvalues
and eigenvectors of Ĥ are given by

K̂j�0 = Ej�0 , (3.192)

and

�j = Û
†
j �0 , (3.193)

respectively, where the operators Û
†
j are recursively determined by the adjoint of equation (3.181).

For example, the first three are

Û
†
0 = 1̂, Û

†
1 = −Ŵ0, Û

†
2 =

1

2

(
Ŵ 2

0 − Ŵ1

)
. (3.194)
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3.5.1 Illustrative Example: The Anharmonic Oscillator

According to our philosophy of choosing simple examples to illustrate the application of the
perturbation approaches discussed in this book, in what follows we consider the dimensionless
anharmonic oscillator

Ĥ = Ĥ0 + λx̂2M, Ĥ0 = 1

2

(
−D̂2 + x̂2

)
, (3.195)

where D̂ = d
dx

. The use of boson operators greatly facilitates the calculation because â and â† are

eigenvectors of ̂̂H 0. Substituting

x = 1√
2

(
â + â†

)
, D̂ = 1√

2

(
â − â†

)
(3.196)

the unperturbed Hamiltonian reads

Ĥ0 = â†â + 1

2
. (3.197)

Solving equation (3.188) for Ŵj and K̂j+1 is remarkably simple because f̂j is a polynomial function

Table 3.9 Perturbation Theory in Operator Form for the Anharmonic

Oscillator Ĥ = 1
2 (− d2

dx2
+ x̂2)+ λx̂4

Ŵ0 = 1
6

[(
â†
)4 − â4

]
+ 1

2

[(
â†
)3

â − â†â3
]
+ 3

4

[(
â†
)2 − â2

]

K̂1 = 3
2

(
â†
)2

â2 + 3â†â + 3
4

Ŵ1 = 1
24

[
â6 − (â†

)6]+ 3
8

[
â†â5 − (â†

)5
â
]
+ 33

8

[(
â†
)2

â4 − (â†
)4

â2
]

+ 15
16

[
â4 − (â†

)4]+ 33
2

[
â†â3 − (â†

)3
â
]
+ 171

16

[
â2 − (â†

)2]

K̂2 = − 17
4

(
â†
)3

â3 − 153
8

(
â†
)2

â2 − 18â†â − 21
8

Ŵ2 = − 1
128 â

10 + 1107
512 â8 − 43913

384 â6 + 97605
256 â4 + 2216529

512 â2 + 1
128

(
â†
)10

− 123
256

(
â†
)9

â + 1099
128

(
â†
)8

â2 − 1107
512

(
â†
)8 − 2221

128

(
â†
)7

â3 + 1099
16

(
â†
)7

â

− 25751
64

(
â†
)6

â4 − 46641
256

(
â†
)6

â2 + 43913
384

(
â†
)6 − 77253

16

(
â†
)5

â3

− 33081
64

(
â†
)5

â + 25751
64

(
â†
)4

â6 − 525399
32

(
â†
)4

â2 − 97605
256

(
â†
)4

+ 2221
128

(
â†
)3

â7 + 77253
16

(
â†
)3

â5 − 69567
4

(
â†
)3

â − 1099
128

(
â†
)2

â8

+ 46641
256

(
â†
)2

â6 + 525399
32

(
â†
)2

â4 − 2216529
512

(
â†
)2 + 123

256 â
†â9

− 1099
16 â†â7 + 33081

64 â†â5 + 69567
4 â†â3

K̂3 = − 10689
64

(
â†
)5

â5 − 267225
128

(
â†
)4

â4 − 498865
64

(
â†
)3

â3 − 1283085
128

(
â†
)2

â2

−3825â†â − 30885
128
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of the boson operators and, consequently, a linear combination of eigenvectors of ̂̂H 0. Taking into
account that

̂̂
H 0â = −â, ̂̂H 0â

† = â† , (3.198)

we easily prove that ̂̂H 0(â
†)mân = (m − n)(â†)mân, and ̂̂H 0

−1 (â†)mân = (m − n)−1(â†)mân if
m = n. Therefore, according to the discussion above, it is clear that we should choose K̂j+1 to
remove all the diagonal terms (â†)mâm from f̂j . In order to solve the equations of the operator
method, one has to be careful about the order of the noncommuting operators. For that reason,
keeping a given operator order facilitates the calculation. Here we adopt what is commonly called
normal order in which the powers of the creation operator â† appear to the left of the powers of the
annihilation operator â, as in the example above.

Table 3.9 shows the first few operators Ŵj and K̂j+1 for the anharmonic oscillator with M = 2.
Notice that each operator Ŵj is antihermitian as expected from the fact that Ŵ is antihermitian.
Because one-dimensional models do not exhibit degeneracy, the eigenvectors |n > of Ĥ0 are also
eigenvectors of K̂ . Taking into account that [49]

â|n >= √n|n− 1 >, â†|n >= √n+ 1|n+ 1 > , (3.199)

we easily calculate the perturbation corrections in terms of the harmonic oscillator quantum number
n according to equations (3.192) and (3.193). For example, the energy coefficients En,j given by
K̂j |n >= En,j |n > agree with those in Table 1.1.

Perturbation theory in operator form may take many different, though equivalent, forms. For
example, it is instructive to compare the present approach with an earlier one based on a partic-
ular representation of the unitary operator Û [47]. The reader may easily convince himself that
perturbation theory in operator form is far from being the most practical approach to treat sim-
ple quantum-mechanical models like the one-dimensional anharmonic oscillator (compare it, for
example, with the method of Swenson and Danforth discussed earlier in this chapter). However,
perturbation theory in operator form has certainly been the preferred approximate method for the
treatment of several problems of physical interest [50]–[52].

                          



Chapter 4

Simple Atomic and Molecular Systems

4.1 Introduction

In this chapter we apply some of the perturbation methods developed earlier in this book to simple
atomic and molecular systems. Such physically motivating models are worth a separate treatment and
a more detailed study. As illustrative examples we consider the Stark and Zeeman effects in hydrogen
and the hydrogen molecular ion in the Born–Oppenheimer approximation [53]. The Schrödinger
equation for the Stark effect in hydrogen is separable in parabolic coordinates and is suitable for
illustrating the application of the method of Swenson and Danforth, discussed in Chapter 3, to a
problem with separation constants other than those arising from the use of spherical coordinates. We
also treat the Stark effect as a nonseparable problem in spherical coordinates so that the reader may
compare both approaches. Although the latter coordinate system is not the most convenient for the
Stark effect in hydrogen, the resulting equation is suitable for the application of the moment method.

No coordinate system has yet been found that renders the Schrödinger equation for the Zeeman
effect in hydrogen separable. In Chapter 2 we have already treated the ground state of this problem
by means of the method of Dalgarno and Stewart and logarithmic perturbation theory. Here we apply
the moment method also to excited states providing interesting additional examples of the treatment
of both nondegenerate and degenerate states.

The hydrogen molecular ion in the Born–Oppenheimer approximation is separable in elliptical
(also called prolate spheroidal) coordinates [54]. However, we write the Schrödinger equation in
spherical coordinates and apply the moment method for nonseparable problems to obtain part of the
expansion of the electronic energies at large internuclear distances. This example differs from all
those discussed before in that the perturbation is not a polynomial function of the coordinates. For
this reason we have to expand it in a Taylor series in order to apply the moment method.

4.2 The Stark Effect in Hydrogen

4.2.1 Parabolic Coordinates

The Hamiltonian operator for the nonrelativistic isolated hydrogen atom in the coordinate repre-
sentation is

Ĥ0 = − h̄2

2m
∇2 − e2

r
, (4.1)
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where m is the reduced mass, r is the distance between the nucleus and the electron, and e > 0 and
−e are, respectively, the nucleus and electron charges. Accordingly, the dipole moment of the atom
is d = −er. If the electric field is directed along the z axis F = Fk, then the interaction energy is
H ′ = −d.F = eFz. Choosing γ = h̄2/(me2) and e2/γ = me4/h̄2 as units of length and energy,
respectively, and λ = Fγ 2/e = mγ 3Fe/h̄2 as a dimensionless perturbation parameter, then the
dimensionless Hamiltonian operator Ĥ = Ĥ0 + Ĥ ′ reads

Ĥ = −1

2
∇2 − 1

r
+ λz . (4.2)

As said before, the Schrödinger equation for this model is separable in parabolic coordinates ξ =
r − z ≥ 0, η = r + z ≥ 0, 0 ≤ φ = tan(y/x) < 2π . The inverse transformation

x = √ξη cos(φ), y = √ξη sin(φ), z = 1

2
(ξ − η) (4.3)

is suitable for straightforward application of the method in Appendix A that yields the Laplacian
operator

∇2 = 4

ξ + η

(
∂

∂ξ
ξ
∂

∂ξ
+ ∂

∂η
η
∂

∂η
+ ξ + η

4ξη

∂2

∂φ2

)
. (4.4)

Factorization of the solutions of the Schrödinger equation as �n1,n2,m(ξ, η, φ) = Fn1(ξ)Gn2(η)

exp(imφ)/
√

2π,m = 0,±1,±2, . . . , n1, n2 = 0, 1, . . . , leads to

(
− ∂

∂ξ
ξ
∂

∂ξ
+m

2

4ξ
−E

2
ξ + λ

4
ξ2 − ∂

∂η
η
∂

∂η
+ m2

4η
− E

2
η − λ

4
η2 − 1

)
Fn1(ξ)Gn2(η) = 0 . (4.5)

We split this equation into two one-dimensional parts

(
− ∂

∂ξ
ξ
∂

∂ξ
+ m2

4ξ
− E

2
ξ + λ

4
ξ2 − A

)
Fn1(ξ) = 0 , (4.6)

(
− ∂

∂η
η
∂

∂η
+ m2

4η
− E

2
η − λ

4
η2 − B

)
Gn2(η) = 0 , (4.7)

where the eigenvalues A and B are separation constants that satisfy A+B = 1. A pair of eigenval-
ues A(E, n1,m, λ) and B(E, n2,m, λ) completely determines the energy En1,n2,m(λ) as a root of
A(E, n1,m, λ)+ B(E, n2,m, λ) = 1. Notice that both equations (4.6) and (4.7) are of the form

(
− d

du
u
d

du
+ m2

4u
− E

2
u+ σλ

4
u2 − C

)
F(u) = 0 , (4.8)

where σ = 1 or σ = −1, respectively.
We are aware of two earlier applications of the method of Swenson and Danforth to this prob-

lem [55, 56]. We have tried variants of both, finally selecting an approach that in our opinion keeps
the best features of each. We outline it in what follows.

First rewrite equation (4.8) in a way that resembles the radial equation for a hydrogen atom with
a polynomial perturbation discussed in Chapter 3:

(
− d2

du2
+ m2 − 1

4u2
− E

2
+ σλ

4
u− C

u

)
u1/2F(u) = 0 . (4.9)
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In this way we can apply most of the well-known results for the central-field models. For example,
when λ = 0 we compare present eigenvalue equations with the radial equation for the hydrogen
atom and easily obtain

E0 = − A2
0

2k2
1

⇔ A0 = k1

√−2E0, k1 = n1 + |m| + 1

2
(4.10)

for equation (4.6), and similar expressions for equation (4.7) with B0, k2, and n2. It follows from
A0 + B0 = 1 that

E0 = − 1

2(k1 + k2)2
= − 1

2(n1 + n2 + |m| + 1)2
, (4.11)

which is the well-known energy of the isolated hydrogen atom. We can also proceed in a different
way taking into account that E0 has the same value in both equations mentioned above, and solving

E0 = − A2
0

2k2
1

= − (1− A0)
2

2k2
2

(4.12)

for A0. Only one of the two roots gives the correct result A0 = k1/(k1 + k2), as the other one is
unacceptable on physical grounds.

Consider the perturbed equation (4.9). Straightforward application of the hypervirial theorems as
in Chapter 3 yields

(j + 1)E

2
Uj + j

4

(
j2 −m2

)
Uj−2 +

(
j + 1

2

)
CUj−1

− σλ

4

(
j + 3

2

)
Uj+1 = 0 , (4.13)

where Uj =< uj >. When j = 0 this equation reduces to

E + CU−1 − 3σλ

4
U1 = 0 , (4.14)

where we have chosen the intermediate normalization condition U0 = 1. Allowing both E and C to
depend on λ, the Hellmann–Feynman theorem takes the form

∂E

∂λ
= −2

∂C

∂λ
U−1 + σ

2
U1 . (4.15)

Substitute the Taylor series

E =
∞∑
i=0

Eiλ
i, C =

∞∑
i=0

Ciλ
i, Uj =

∞∑
i=0

Uj,iλ
i (4.16)
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into the equations given above to derive

Uj,p = 2

(j + 1)E0

[
j

4

(
m2 − j2

)
Uj−2,p −

(
j + 1

2

) p∑
i=0

CiUj−1,p−i

− j + 1

2

p∑
i=1

EiUj,p−i + σ

4

(
j + 3

2

)
Uj+1,p−1

]
, (4.17)

U0,p = δ0p , (4.18)

U−1,p = 1

C0

(
−Ep + 3σ

4
U1,p−1 −

p∑
i=1

CiU−1,p−i

)
, (4.19)

Ep = 1

p

(
σ

2
U1,p−1 − 2

p∑
i=1

iCiU−1,p−i

)
. (4.20)

The calculation of the energy coefficients is similar to that in Chapter 3 for the perturbed Coulomb
problem. It is not difficult to verify that Ej is linear in Cj and nonlinear in the coefficients Ci with
i < j . Substitute

E0 = − A2
0

2k2
1

, Cj = Aj , A0 = k1

k1 + k2
, σ = 1 , (4.21)

and

E0 = − (1− A0)
2

2k2
2

, Cj = δj0 − Aj , σ = −1 (4.22)

to obtain two sets of energy coefficients EI
j and EII

j , respectively. Solve EI
j = EII

j , j = 1, 2, . . . ,

for Aj , and then substitute the result back into either EI
j or EII

j . The calculation is straightforward

because each equation EI
j − EII

j = 0 for j > 0 is linear in the only unknown Aj . In this way we
obtain both Aj and Ej in terms of the quantum numbers n1, n2, and m. In the program section we
show a set of simple Maple procedures for the calculation just described.

Table 4.1 shows the first coefficientsAj andEj in terms of the quantum numbers. For comparison
purposes we express the results in terms of

n = k1 + k2 = n1 + n2 + |m| + 1, q = k1 − k2 = n1 − n2 , (4.23)

which lead to simpler expressions. As far as we know, the most extensive calculation of analytical
perturbation corrections to the Stark effect in hydrogen has been carried out by a Maple program
running an algorithm based on algebraic methods [57].

4.2.2 Spherical Coordinates

Before discussing the particular case of the Stark effect in spherical coordinates, it is convenient to
consider the application of the moment method to a hydrogen atom with a more general perturbation
Ĥ ′:

Ĥ = −1

2
∇2 − 1

r
+ λĤ ′(r, θ, φ) . (4.24)
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Table 4.1 Method of Swenson and Danforth for the Stark Effect in Hydrogen in Parabolic
Coordinates

A1 = − 1
8 n

2
(
m2 − 1− 3 n2 + 3 q2

)
A2 = − 1

16 n
5 q

(−n2 + q2 − 6+ 6m2
)

A3 = − 1
256n

8
(−171 n4 − 622 n2 + 186 n2 q2 + 82m2 n2 + 30m2 + 390 q2 + 150m2 q2

−55+ 25m4 − 15 q4
)

A4 = − 1
512n

11 q
(
419 n4 + 1035m2 n2 + 15 n2 − 380 n2 q2 − 39 q4 + 300m4 + 285m2 q2

+2400m2 − 2700− 1335 q2
)

A5 = − 1
4096n

14
(−27024 n6 + 17135m2 n4 + 26892 q2 n4 − 333515 n4 − 425654 n2

+305550 n2 q2 + 240 q4 n2 + 112800m2 n2 + 3110m4 n2 + 5970m2 n2 q2 − 108 q6

−29663+ 3885 q4 + 4320m2 q2 + 6690m4 q2 + 975m2 q4 + 7467m4 + 21561m2

+298734 q2 + 635m6
)

A6 = − 1
8192n

17 q
(
223309 n6 + 2746578 n4 + 146382m2 n4 − 223639 q2 n4 + 1270579 n2

+12420m2 n2 q2 + 63 q4 n2 + 25275m4 n2 + 1847130m2 n2 − 2904900 n2 q2

−2344614+ 39774m4 + 2294490m2 + 23445m4 q2 + 978 q4 − 3190819 q2

+24390m2 q2 + 10350m6 + 267 q6 − 1458m2 q4
)

E1 = 3

2
n q

E2 = 1

16

(−17 n2 + 3 q2 − 19+ 9m2
)
n4

E3 = 3

32

(
23 n2 + 11m2 + 39− q2

)
q n7

E4 = 1

1024

(−5487 n4 − 1806 n2 q2 − 35182 n2 + 3402m2 n2 + 8622m2 − 16211− 5754 q2

+549m4 + 1134m2 q2 − 147 q4
)
n10

E5 = 3

1024

(
10563 n4 + 90708 n2 + 772m2 n2 + 98 n2 q2 + 59293− 21 q4 + 220m2 q2

+830m2 + 780 q2 + 725m4
)
q n13

E6 = 1

8192

(−547262 n6 − 685152 q2 n4 − 9630693 n4 + 429903m2 n4 − 22691096 n2

+25470m2 n2 q2 + 4786200m2 n2 − 7787370 n2 q2 − 390 q4 n2 + 16200m4 n2

−7335413+ 62100m2 q2 − 765m2 q4 − 1185 q4 − 7028718 q2 + 372 q6

+16845m4 + 36450m4 q2 + 6951m6 + 4591617m2
)
n16
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By means of the method developed in Appendix A we easily obtain the Laplacian in spherical
coordinates

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2 sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+ 1

r2 sin(θ)2
∂2

∂φ2
. (4.25)

In order to build an appropriate recurrence relation for the moments of the eigenfunctions of Ĥ
we choose the set of functions

fi,j,k,m = sin(θ)i cos(θ)j rk exp(−αr + ιmφ) , (4.26)

where i, j, k = 0, 1, . . . and m = 0,±1, . . . . To avoid confusion ι denotes the imaginary number.
It is not difficult to verify that

(
Ĥ − E

)
fi,j,k,m = (i + j)(i + j + 1)− k(k + 1)

2
fi,j,k−2,m

+ [α(k + 1)− 1]fi,j,k−1,m + m2 − i2

2
fi−2,j,k−2,m

− j (j − 1)

2
fi,j−2,k−2,m −.Efi,j,k,m + λĤ ′fi,j,k,m , (4.27)

where.E = E+α2/2. In order to obtain this equation we have systematically rewritten expressions
of the form sin(θ)i−2 cos(θ)j+2 as [sin(θ)i−2 − sin(θ)i] cos(θ)j .

The application of the moment method to this problem is straightforward if we can write Ĥ ′ as a
polynomial function of r and trigonometric functions of θ and φ. For simplicity, here we assume that
Ĥ ′ does not depend on φ, so that L̂z is a constant of the motion and m is a good quantum number.
This fact is reflected in that the subscript m does not change in the recurrence relation (4.27) and can
therefore be omitted.

We choose

α = 1

n
, n = 1, 2, . . . (4.28)

that makes the second term on the right-hand side of equation (4.27) vanish when k = n − 1
simplifying the problem. Therefore,

.E = E − E0 = E + 1

2n2
(4.29)

is the energy shift with respect to the energy of the isolated hydrogen atom E0 = −1/(2n2).
The recurrence relation (4.27) for the Stark effect becomes

(Ĥ − E)fi,j,k,m = (i + j)(i + j + 1)− k(k + 1)

2
fi,j,k−2,m

+ [α(k + 1)− 1]fi,j,k−1,m + m2 − i2

2
fi−2,j,k−2,m

− j (j − 1)

2
fi,j−2,k−2,m −.Efi,j,k,m + λfi,j+1,k+1,m . (4.30)

Notice that the subscript i changes in only one term that vanishes when i = |m|, and in that case the
moments of the eigenfunction �

Fj,k =
〈
fi,j,k,m|�

〉
, i = |m| (4.31)
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satisfy the recurrence relation

(i + j)(i + j + 1)− k(k + 1)

2
Fj,k−2 + k − n+ 1

n
Fj,k−1 − j (j − 1)

2
Fj−2,k−2

−.EFj,k + λFj+1,k+1 = 0 . (4.32)

Present moment method does not allow the simultaneous treatment of all the Stark states because
the Schrödinger equation is not separable in spherical coordinates. However, we can treat classes
of states determined by the relation between |m| and n [58]. With this purpose in mind we define
k = |m| + 1+ t, t = −1, 0, 1, . . . and

Gj,t = Fj,k−1 (4.33)

so that the recurrence relation (4.32) becomes

(i + j)(i + j + 1)− k(k + 1)

2
Gj,t−1 + k − n+ 1

n
Gj,t − j (j − 1)

2
Gj−2,t−1

−.EGj,t+1 + λGj+1,t+2 = 0 . (4.34)

Expanding the energy and the new moments in Taylor series about λ = 0

E =
∞∑
p=0

Epλ
p, Gj,t =

∞∑
p=0

Gj,t,pλ
p (4.35)

we obtain the master recurrence relation

Gj,t,p = n

k − n+ 1

[
k(k + 1)− (i + j)(i + j + 1)

2
Gj,t−1,p + j (j − 1)

2
Gj−2,t−1,p

+
p∑

q=1

EqGj,t+1,p−q −Gj+1,t+2,p−1


 (4.36)

valid for all the states discussed below.
We first consider states with |m| = n− 1 (k = n+ t). When j = 0 and t = −1 equation (4.34)

reduces to −.EG0,0 + λG1,1 = 0; therefore, if we choose the arbitrary normalization condition
G0,0 = 1, then we obtain a suitable expression for the energy: .E = λG1,1. We easily calculate all
the perturbation corrections to the energy and moments by means of equation (4.36) supplemented
with

G0,0,q = δ0q, Eq = G1,1,q−1 (4.37)

that come from the normalization condition and from the energy equation, respectively. The calcu-
lation of Ep requires the moment coefficients Gj,t,q with q = 0, 1, . . . , p− 1, j = 0, 1, . . . , p− q,
t = 0, 1, . . . , 2(p − q)− 1.

We next consider the states with |m| = n−2. Setting j = 1 and t = 0 we obtain.EG1,1 = λG2,2
that suggests the intermediate normalization conditionG1,1 = 1 leading to the simple energy equation
.E = λG2,2. When (j = 0, t = −1) and (j = 0, t = 0) we obtain two equations

1

n
G0,−1 +.EG0,0 − λ = 0, (n− 1)G0,−1 +.EG0,1 − λG1,2 = 0 (4.38)
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which lead to [
n(n− 1)G0,0 −G0,1

]
.E + [G1,2 − n(n− 1)

]
λ = 0 (4.39)

after elimination of the moment G0,−1 between them. Substitution of the expression for the energy
into equation (4.39) yields the secular equation[

n(n− 1)G0,0 −G0,1
]
G2,2 +G1,2 − n(n− 1) = 0 . (4.40)

Another useful equation arises when j = 1 and t = 1:

G1,0 = 1

n

(
1

n
−.EG1,2 + λG2,3

)
. (4.41)

The equations just derived enable the calculation of all the perturbation corrections to the energy
and moments for the states with |m| = n− 2. Expanding .E and the moments Gj,t in Taylor series
about λ = 0 we obtain

G1,1,q = δq0 , Eq = G2,2,q−1 , (4.42)

p∑
q=0

[
n(n− 1)G0,0,q −G0,1,q

]
G2,2,p−q +G1,2,p − n(n− 1)δ0p = 0 , (4.43)

and the master equation (4.36) with i = |m| = n− 2. It is not difficult to verify that the perturbation
equations (4.36) and (4.42) leave undetermined only the moment coefficients G0,0,p, p = 0, 1, . . . .
We obtain them from equation (4.43) which is quadratic in G0,0,0 when p = 0, and linear in G0,0,p
for all p > 0. For p = 0 we have

G0,0,0 = ± 1

n2
. (4.44)

Each sign corresponds to one of the two Stark states arising from degenerate unperturbed hydrogenic
states. In order to obtainEp we have to calculateGj,t,q for all q = 0, 1, . . . , p−1, j = 0, 1, . . . , p−
q + 1 and t = 1, 2, . . . , 2(p − q).

Table 4.2 shows energy coefficients for the two cases just discussed, where σ = ±1 selects each
of the two Stark states arising from degenerate unperturbed states with |m| = n − 2. We do not
show the simple Maple procedures used to obtain the results in Table 4.2, and it is left to the reader
to write them following the lines of other programs in the program section. The energy coefficients
in Table 4.2 agree with those obtained by means of an earlier application of the moment method [58]
Moreover, if we set (q = 0, |m| = n − 1), and (q = σ, |m| = n − 2), the energy coefficients of
Table 4.1 reduce to those in Table 4.2.

It is well known that the projection of the angular momentum along the field direction is a constant
of the motion (that is to say L̂z commutes with Ĥ ), and, consequently, m = 0,±1,±2, . . . is a good
quantum number. The moment method gives us another quantum number σ = ±1 to label some
pairs of Stark states. In parabolic coordinates we clearly have three quantum numbers: m, n1, and
n2, or, alternatively, m, n, and q. When comparing the results of Tables 4.1 and 4.2 we saw that
q = σ in the second case studied by means of the moment method. In spherical coordinates it is
customary to label the Stark states by means of the quantum numbers of the isolated hydrogen atom:
n = 1, 2, . . . , l = 0, 1, . . . , n − 1, and m = 0,±1,±2, . . . ,±l which may be suitable at low field
strengths. In the first case discussed above |m| = n − 1 = l and the Stark states correspond to the
hydrogenic 1s, 2p±1, 3d±2, etc. In the second case |m| = n− 2, and the two possible values of the
angular momentum quantum number l = n− 2, n− 1 show that the perturbation couples the pairs
of hydrogenic states (2s, 2p0), (3p±1, 3d±1), etc.
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Table 4.2 Moment Method for the Stark Effect in Hydrogen in Spherical Coordinates

States with |m| = n− 1
E2 j+1 = 0

E2 = − 1
8 n

4 (n+ 1) (4 n+ 5)

E4 = − 1
128 n

10 (n+ 1)
(
192 n3 + 933 n2 + 1550 n+ 880

)
E6 = − 1

1024n
16 (n+ 1)(

415522 n3 + 109013 n4 + 340000+ 821540 n+ 814928 n2 + 11776 n5
)

E8 = − 1
32768n

22 (n+ 1)
(
1104000000+ 2933036518 n3 + 1313502002 n4

+3189097200 n+ 4047270620 n2 + 4063232 n7 + 363981946 n5 + 57826285 n6
)

E10 = − 1
262144n

28 (n+ 1)
(
8246600607 n8 + 419168256 n9 + 6314922783568 n3

+3680066142092 n4 + 4868385352960 n+ 7167165224192 n2

+74557383526 n7 + 1474270752706 n5 + 406670914358 n6 + 1502988800000
)

States with |m| = n− 2

σ 2 = 1
E1 = 3

2 n σ

E2 = − 1
4 n

4 (n+ 5) (2 n− 1)

E3 = 3
16 n

7
(
41− 22 n+ 17 n2

)
σ

E4 = − 1
64 n

10
(
3537 n+ 28 n2 + 1125 n3 + 96 n4 − 1606

)
E5 = 3

256 n
13
(−6850 n+ 28086 n2 − 2222 n3 + 3015 n4 + 18963

)
σ

E6 = − 1
512n

16
(
5888 n6 + 120789 n5 + 182838 n4 + 1331475 n3 + 1353240 n+ 210794 n2

−346528)

E7 = 3
2048n

19
(
7828405+ 355761 n6 + 293230 n5 + 8203515 n4 + 4806230 n3

+23997287 n2 + 5413380 n
)
σ

E8 = − 1
16384n

22
(−20876640+ 3755981880 n+ 3505527310 n2 + 61889517 n7

+6653206413 n3 + 2396964444 n4 + 1677325062 n5 + 224958382 n6

+2031616 n8
)

E9 = 3
65536n

25 σ
(
24292851427+ 59251864516 n+ 126499280380 n2 + 600211882 n7

+86572048058 n3 + 74879641210 n4 + 18968318968 n5 + 9152464636 n6

+190178763 n8
)

E10 = − 1
131072n

28
(
209584128 n10 + 8665768863 n9 + 54208739210 n8

+1444091466972 n6 + 4992252806403 n5 + 8043191827530 n4

+12467418860376 n3 + 477827155350 n7 + 9247913436768 n2

+5395565208960 n+ 867032805376)
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4.3 The Zeeman Effect in Hydrogen

We have briefly discussed the Zeeman effect in hydrogen in Chapter 2 to illustrate the application of
the method of Dalgarno and Stewart and logarithmic perturbation theory to a nonseparable problem.
It was shown that the relevant part of the dimensionless Hamiltonian operator reads

Ĥ = −1

2
∇2 − 1

r
+ λr2 sin2 θ . (4.45)

Therefore, arguing as in the preceding section we obtain the recurrence relation

(
Ĥ − E

)
fi,j,k,m = (i + j)(i + j + 1)− k(k + 1)

2
fi,j,k−2,m

+ [α(k + 1)− 1]fi,j,k−1,m + m2 − i2

2
fi−2,j,k−2,m

− j (j − 1)

2
fi,j−2,k−2,m −.Efi,j,k,m + λfi+2,j,k+2,m , (4.46)

where we notice that the subscript j does not change if j (j − 1) = 0. We thus obtain two disjoint
sets of states, one for each value of j , j = 0 or j = 1, which plays the role of a quantum number.
With either choice the moments

Fi,k =
〈
fi,j,k,m|�

〉
(4.47)

satisfy the recurrence relation

(i + j)(i + j + 1)− k(k + 1)

2
Fi,k−2 + k − n+ 1

n
Fi,k−1 + m2 − i2

2
Fi−2,k−2

−.EFi,k + λFi+2,k+2 = 0 . (4.48)

In order to derive a moment recurrence relation that applies not only to individual states but also to
whole classes of them we define i = |m| + 2s, k = |m| + j + 1+ t , s = 0, 1, . . . , t = −1, 0, 1, . . . ,
and

Gs,t = Fi,k−1 . (4.49)

Consequently, equation (4.48) becomes

(i + j)(i + j + 1)− k(k + 1)

2
Gs,t−1 + k − n+ 1

n
Gs,t + m2 − i2

2
Gs−1,t−1

−.EGs,t+1 + λGs+1,t+3 = 0 . (4.50)

Expanding the new moments and the energy in Taylor series about λ = 0 we obtain a master equation

Gs,t,p = n

k − n+ 1

[
k(k + 1)− (i + j)(i + j + 1)

2
Gs,t−1,p + i2 −m2

2
Gs−1,t−1,p

+
p∑

q=1

EqGs,t+1,p−q −Gs+1,t+3,p−1


 (4.51)

that applies to all the cases studied here.
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We first consider states with j = 0. The simplest case is |m| = n − 1 because three terms
of equation (4.50) vanish when s = 0 and t = −1 giving a single expression for the energy
.EG0,0 = λG1,2 that suggests the intermediate normalization condition G0,0 = 1. We thus obtain
two additional expressions,

G0,0,q = δq0, Eq = G1,2,q−1 , (4.52)

to supplement the master equation (4.51). In order to obtain Ep we calculate all the moment
coefficients Gs,t,q with q = 0, 1, . . . , p − 1, s = 0, 1, . . . , p − q, and t = 0, 1, . . . , 3(p − q)− 1.

When |m| = n − 2 (j = 0) we cannot make three terms of the recurrence relation (4.50) vanish
simultaneously. Choosing (s, t) = (0,−1) and (s, t) = (0, 0) we obtain n−1G0,−1 + .EG0,0 −
λG1,2 = 0 and (n−1)G0,−1+.EG0,1−λG1,3 = 0, respectively. Removing G0,−1 from them we
obtain a useful expression for the energy: [n(n−1)G0,0−G0,1].E−[n(n−1)G1,2−G1,3]λ = 0.
The normalization condition n(n − 1)G0,0 − G0,1 = 1 leads to a simpler formula .E = λ[n
(n− 1)G1,2 −G1,3]. When s = 0 and t = 1 equation (4.50) becomes nG0,0 + n−1 +.EG0,2 −
λG1,4 = 0 from which we obtain G0,0. Summarizing, we have

G0,0 = 1

n

(
−1

n
−.EG0,2 + λG1,4

)
, (4.53)

G0,1 = n(n− 1)G0,0 − 1 , (4.54)

and

.E = λ
[
n(n− 1)G1,2 −G1,3

]
. (4.55)

Expanding the energy and moments in Taylor series about λ = 0 we obtain

G0,0,p = 1

n


−δp0

n
−

p∑
q=1

EqG0,2,p−q +G1,4,p−1


 , (4.56)

G0,1,p = n(n− 1)G0,0,p − δp0 , (4.57)

and

Ep = n(n− 1)G1,2,p−1 −G1,3,p−1 (4.58)

in addition to the master equation (4.51). In order to obtain the energy coefficient Ep we need Gs,t,q

with q = 0, 1, . . . , p − 1, s = 0, 1, . . . , p − q, and t = 1, 2, . . . , 3(p − q).
The states just discussed can be treated as nondegenerate because the perturbation does not couple

them. A different situation takes place when |m| = n−3. From the general recurrence relation (4.50)
for the moments we obtain the following equations

2

n
G0,−1 +.EG0,0 − λG1,2 = 0 (4.59)

(2n− 3)G0,0 +.EG0,2 − λG1,4 = 0 (4.60)

.EG1,2 + (2n− 4)G0,0 − λG2,4 = 0 (4.61)

(n− 2)G0,−1 + 1

n
G0,0 +.EG0,1 − λG1,3 = 0 (4.62)
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when (s, t) is respectively equal to (0,−1), (0, 1), (1, 1), and (0, 0). It is left to the reader to derive
the following working expressions

G0,0 = 1

2n− 3

(−.EG0,2 + λG1,4
)
, (4.63)

G1,2 = 2n− 4

2n− 3
G0,2 − 1 , (4.64)

.E = λ

(
2n− 4

2n− 3
G1,4 −G2,4

)
, (4.65)

and

1

2n− 3

[
G0,2

n(2n− 3)
+ n(n− 2)

2
G0,0 −G0,1

] [
(2n− 4)G1,4 − (2n− 3)G2,4

]

− n(n− 2)

2
G1,2 − G1,4

n(2n− 3)
+G1,3 = 0 , (4.66)

where equation (4.64) is simply an arbitrary normalization condition. Expanding those equations in
Taylor series about λ = 0 and using the master equation (4.51) with the appropriate values of |m|
and j we calculate all the energy and moment coefficients. In order to obtainEp we needGs,t,q with
q = 0, 1, . . . , p − 1, s = 0, 1, . . . , p − q + 1, and t = 2, 3, . . . , 3(p − q)+ 1. The coefficient of
order q of the expansion of equation (4.66) is linear in the moment coefficientG0,1,q when q > 0 and
quadratic in G0,1,0 when q = 0. The latter case yields the secular equation for the two degenerate
states coupled by the perturbation. The two roots are

G0,1,0 = (3− 2n)[8n2 − 24n+ 13± (2n− 3)
√

16n2 − 48n+ 41]
20n2(n− 1)(n− 2)

. (4.67)

We next consider the states with j = 1. The simplest case is |m| = n − 2 (the reader may
verify that one cannot obtain suitable working equations when |m| = n− 1). Choosing the arbitrary
normalization condition G0,0 = 1 we obtain the energy expression .E = λG1,2; consequently,

G0,0,p = δp0 , Ep = G1,2,p−1 . (4.68)

In order to obtain Ep we have to calculate Gs,t,q for q = 0, 1, . . . , p − 1, s = 0, 1, . . . , p − q, and
t = 0, 1, . . . , 3(p − q)− 1.

The case |m| = n− 3 exhibits no additional difficulty and is therefore left to the reader; however,
for the sake of completeness we show the main equations in what follows. We obtain all the energy
and moment coefficients from the master equation (4.51) and the additional expressions

G0,0,p = 1

n


−δp0

n
−

p∑
q=1

EqG0,2,p−q +G1,4,p−1


 , (4.69)

G0,1,p = n(n− 1)G0,0,p − δ0p , (4.70)

and

Ep = n(n− 1)G1,2,p−1 −G1,3,p−1 , (4.71)

where equation (4.70) is an arbitrary normalization condition. To obtain Ep we have to calculate the
moment coefficientsGs,t,q with q = 0, 1, . . . , p−1, s = 0, 1, . . . , p−q, and t = 1, 2, . . . , 3(p−q).
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Table 4.3 Moment Method for the Zeeman Effect in Hydrogen (Continued)

States with j = 0
|m| = n− 1

E1 = n3 (n+ 1)

E2 = − 1
6 n

7 (n+ 1)
(
12 n2 + 27 n+ 14

)
E3 = 1

18 n
11 (n+ 1)

(
1089 n3 + 21 n4 + 2048 n2 + 528+ 1700 n

)
E4 = − 1

1080n
15 (n+ 1)

(
926640+ 6072790 n3 + 3225070 n4 + 926235 n5 + 112320 n6

+6524514 n2 + 3789828 n
)

E5 = 1
16200n

19 (n+ 1)
(
17625600 n8 + 8634176720 n3 + 6675896034 n4 + 3380668050 n5

+1095766700 n6 + 207771075 n7 + 7126778904 n2 + 3419028000 n

+725587200)

E6 = − 1
3402000n

23 (n+ 1)
(
4902104138750 n8 + 678352208625 n9 + 43436736000 n10

+214608912662148 n3 + 203462151787266 n4 + 135522396155608 n5

+64417497299806 n6 + 21613830539000 n7 + 151582655926080 n2

+64403176052160 n+ 12418815628800)

|m| = n− 2

E1 = n2 (n+ 5) (n− 1)

E2 = − 1
3 n

6 (n− 1)
(
6 n3 + 75 n2 − 19 n+ 168

)
E3 = 4

9 n
10 (n− 1)

(
27 n5 + 585 n4 + 26 n3 + 3649 n2 − 1239 n+ 2772

)
E4 = − 1

540n
14 (n− 1)

(
56160 n7 + 1801575 n6 + 1698625 n5 + 24246755 n4 − 718497 n3

+48450030 n2 − 13165128 n+ 18230400
)

E5 = 1
4050n

18 (n− 1)
(
4406400 n9 + 191700675 n8 + 437243425 n7 + 4821233400 n6

+3564450084 n5 + 20437328903 n4 + 2324786331 n3 + 20035153782 n2

−3630669480 n+ 4191004800)

E6 = − 1
1701000n

22 (n− 1)
(
21718368000 n11 + 1211753064375 n10 + 4826789599625 n9

+52080472580500 n8 + 94399639455562 n7 + 424804836198743 n6

+372530794254741 n5 + 921146642791662 n4 + 272163391589592 n3

+511320228053040 n2 − 38324443075200 n+ 57774342528000
)
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Table 4.3 (Cont.) Moment Method for the Zeeman Effect in Hydrogen (Continued)

|m| = n− 3

E1 = R n2 + n2
(
n2 + 3 n− 7

)
E2 = − 1

2
(160 n4−592 n3+1316 n2−2159 n+1578) n6 R

16 n2−48 n+41

− 1
2
n6 (64 n6+432 n5−3388 n4+9823 n3−17665 n2+19583 n−9758)

16 n2−48 n+41

E3 = 1
6

(
79104 n8 − 515968 n7 + 2011136 n6 − 6258120 n5 + 14406296 n4 − 22747119 n3

+24278234 n2 − 16659692 n+ 5678856
)
n10 R/

(
16 n2 − 48 n+ 41

)2
+ 1

6n
10
(−36834072+ 129285956 n+ 18432 n10 − 176972205 n4 + 236171613 n3

−38200632 n6 − 219094386 n2 + 95404713 n5 + 11659552 n7 + 223488 n9

−2480640 n8
)
/
(
16 n2 − 48 n+ 41

)2
E4 = − 1

360n
14
(
596916429824 n8 − 4600155967690 n5 + 4256844241306 n2

+2849807540976 n6 + 404761711680− 6095473972271 n3 + 6079342696994 n4

+41872783360 n10 − 8039997440 n11 + 965099520 n12 − 1870253070144 n

−180350726656 n9 − 1470111015264 n7
)
R/
(
16 n2 − 48 n+ 41

)3
− 1

360n
14
(
13417446708816 n− 36823941120 n12 + 222705301760 n11

−995770429696 n10 + 2873733120 n13 + 153354240 n14

−62461978186622 n4 + 55210737998015 n3 − 36138167068989 n6

−34210809912178 n2 + 53134403287234 n5 + 20398070759667 n7

+3488722075408 n9 − 9476088954080 n8 − 2573851988160
)
/
(
16 n2 − 48 n+ 41

)3
R = ±√16 n2 − 48 n+ 41

States with j = 1
|m| = n− 2

E1 = n2 (n− 1) (n+ 1)

E2 = −n7 (n− 1) (2 n+ 3) (n+ 1)

E3 = 2
3 n

11 (n− 1) (n+ 1)
(
18 n3 + 63 n2 + 62 n+ 10

)
E4 = − 1

180n
15 (n− 1) (n+ 1)(

18720 n5 + 110565 n4 + 245390 n3 + 247915 n2 + 114162 n+ 26184
)

E5 = 1
1350n

19 (n− 1) (n+ 1)
(
1468800 n7 + 12700800 n6 + 46304000 n5 + 92453775 n4

+110837196 n3 + 82846915 n2 + 37353426 n+ 7488360
)

E6 = − 1
567000n

23 (n− 1) (n+ 1)
(
7239456000 n9 + 84514397625 n8 + 442123228750 n7

+1370327540750 n6 + 2804697695128 n5 + 3986041260369 n4

+3975789877658 n3 + 2681185159704 n2 + 1093513436880 n+ 203616662400
)
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Table 4.3 (Cont.) Moment Method for the Zeeman Effect in Hydrogen

|m| = n− 3

E1 = n2 (n+ 5) (n− 2)

E2 = − 1
2 n

6 (n− 2)
(
4 n3 + 47 n2 − 31 n+ 182

)
E3 = 1

6 n
10 (n− 2)

(
72 n5 + 1449 n4 − 1835 n3 + 12372 n2 − 12712 n+ 20856

)
E4 = − 1

360n
14 (n− 2)

(
37440 n7 + 1113435 n6 − 1269295 n5 + 17598810 n4

−29044904 n3 + 64577580 n2 − 62479176 n+ 59883840
)

E5 = 1
5400n

18 (n− 2)
(
5875200 n9 + 237147075 n8 − 127220525 n7 + 6124217100 n6

−10608481964 n5 + 38257425072 n4 − 59035205096 n3 + 83364260448 n2

−71175114720 n+ 48166185600)

E6 = − 1
1134000n

22 (n− 2)
(
14478912000 n11 + 750746768625 n10 + 343872883375 n9

+29610399572250 n8 − 40041106465976 n7 + 276011011998456 n6

−475002238895108 n5 + 1011743637657984 n4 − 1384404310926576 n3

+1481297714534400 n2 − 1112814105840000 n+ 581205028320000
)

Table 4.3 shows the first energy coefficients for all the states considered above in terms of the
principal quantum number n andR = ±√16n2 − 48n+ 41. Analytical expressions of greater order
are much longer and, most probably, of no use for the reader.

Having sufficient computer memory one easily calculates more analytic energy coefficients than
those shown in Table 4.3 by means of simple Maple procedures. In the program section we show
only the most difficult case (j = 0, |m| = n − 3); the reader may easily derive other cases by
straightforward modification of the main procedure given there. The calculation is considerably
faster and requires less computer memory if one sets the value of the principal quantum number
n = 1, 2, . . . for a given particular state.

Many authors have already calculated energy coefficients for the Zeeman effect in hydrogen and
surprisingly their results exhibit a good deal of disagreement as noticed in an earlier application of
the moment method [59]. We believe that the energy coefficients displayed in Table 4.3, which agree
with those in reference [59], are correct.

With respect to the calculation of energy coefficients the moment method is much simpler and
easier to apply than the method of Dalgarno and Stewart and logarithmic perturbation theory dis-
cussed in Chapter 2. The advantage of the moment method is particularly noticeable in the treatment
of excited states. Another powerful approach, which exhibits the additional advantage of producing a
more useful representation of the eigenfunctions, is the expansion of the perturbed state in a basis set
of unperturbed states, aided by an algebraic approach to calculate the necessary matrix elements sys-
tematically [12]. The algebraic approach is preferable if one is interested in the calculation of system
properties other than the energy; otherwise, the moment method leads to simpler programs [12].

Finally, we discuss the classification and labelling of states within the moment method. Notice
that we have made no explicit use of the well-known properties of the Zeeman states during the
calculation. The model Hamiltonian is invariant under the substitutions θ → −θ and θ → θ + π ,
and the eigenfunctions are either even or odd with respect to them. The functions chosen to construct
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the moments satisfy

fi,j,k,m(r,−θ, φ) =(−1)ifi,j,k,m(r, θ, φ) = (−1)|m|fi,j,k,m(r, θ, φ) , (4.72)

and

fi,j,k,m(r, θ + π, φ) = (−1)i+j fi,j,k,m(r, θ, φ) = (−1)|m|+j fi,j,k,m(r, θ, φ) . (4.73)

The symmetry of the functions fi,j,k,m(r, θ, φ) (determined by the values of j and |m|) has to match
the symmetry of the chosen Zeeman state in order to obtain a nontrivial recurrence relation for the
moments.

The unperturbed eigenfunctions are radial factors times the spherical harmonics Yl,m(θ, φ) that
satisfy Yl,m(−θ, φ) = (−1)|m|Yl,m(θ, φ) and Yl,m(θ + π, φ) = (−1)lYl,m(θ, φ) [40]. Therefore,
when λ = 0 we expect that l = |m| + j + 2u, u = 0, 1, . . . . For the class of states with j = 0 and
|m| = n− 1 we have l = |m| and; therefore, the Zeeman states arise from the hydrogenic ones 1s,
2p±1, 3d±2, . . . . When j = 0 and |m| = n − 2 we conclude that l = |m| and the Zeeman states
come from the hydrogenic ones 2s, 3p±1, 4d±2, . . . . The choice j = 0 and |m| = n− 3 gives room
for two possibilities, l = |m| and l = |m| + 2, and we have pairs of hydrogenic states (3s, 3d0),
(4p±1, 4f±1), . . . coupled by the perturbation. When j = 1 and |m| = n− 2 the unperturbed states
are 2p0, 3d±1, 4f±2, . . . . Finally, for j = 1 and |m| = n− 3 we have 3p0, 4d±1, 5f±2, . . . .

It is not difficult to apply the moment method to more general perturbations than those discussed
here. An example already studied is the hydrogen atom in parallel electric and magnetic fields [60].

4.4 The Hydrogen Molecular Ion

The hydrogen molecular ion is the simplest diatomic molecule having only one electron. Here
we consider some electronic states under the Born–Oppenheimer approximation that separates the
electronic and nuclear motions [53]. The dimensionless model Hamiltonian in this frozen-nuclei
approach reads

Ĥ = −1

2
∇2 − 1

rA
− 1

rB
, (4.74)

where rA and rB are the distances between the electron and protons A and B, respectively [61].
The Schrödinger equation for this model is separable in elliptical coordinates [61]; however, here

we choose spherical coordinates and apply the moment method for nonseparable problems because
it is particularly simple and straightforward for the naive perturbation approach developed below.
To this end we place the molecule along the z axis with proton A at the coordinate origin and proton
B at a distance R in the positive direction. Therefore, if r denotes the position of the electron with
respect to the coordinate origin, then rA = r = |r| and rB =

√
R2 − 2R cos(θ)+ r2, where θ is the

angle between r and the z axis. We rewrite 1/rB = C(β)/R, where

C(β) = 1√
1− 2β cos(θ)+ β2

, (4.75)

β = r/R, and expand C(β) as follows:

C(β) =
∞∑
j=0

Cj (cos(θ))βj . (4.76)
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The functions Cj (cos(θ)) are the well-known Legendre polynomials [62]. Taking into account that
[1+ β2 − 2β cos(θ)]C′(β) = [cos(θ)− β]C(β) one easily verifies that the functions Cj satisfy the
recurrence relation

Cj+1 = 1

j + 1

[
(2j + 1) cos(θ)Cj − jCj−1

]
(4.77)

and are therefore polynomials of the form

Cj =
j∑

i=0

Cj,i cos(θ)i . (4.78)

Moreover, the coefficients Cj,i satisfy

Cj+1,i = 1

j + 1

[
(2j + 1)Cj,i−1 − jCj−1,i

]
, (4.79)

where j = 0, 1, . . . , i = 0, 1, . . . , j , C0,0 = 1, and Cj,i = 0 if a subscript is negative. In the end
we have

1

rB
=
∞∑
u=0

λu+1ru
u∑

v=0

Cu,v cos(θ)v , (4.80)

where λ = 1/R is the perturbation parameter.
We apply the moment method as in the Stark effect discussed above. The recurrence relation for

the moments reads

(i + j)(i + j + 1)− k(k + 1)

2
Fj,k−2 + k − n+ 1

n
Fj,k−1 − j (j − 1)

2
Fj−2,k−2

−.EFj,k −
∞∑
u=0

λu+1
u∑

v=0

Cu,vFj+v,k+u = 0 , (4.81)

where i = |m|. In order to treat all the states with |m| = n− 1 simultaneously we define k = n+ t

and Gj,t = Fj,k−1. Arguing as in the case of the Stark effect we derive the master equation

Gj,t,p = n

k − n+ 1

[
k(k + 1)− (i + j)(i + j + 1)

2
Gj,t−1,p + j (j − 1)

2
Gj−2,t−1,p

+
p∑

q=1

EqGj,t+1,p−q +
p−1∑
u=0

u∑
v=0

Cu,vGj+v,t+u+1,p−u−1


 , (4.82)

the normalization condition

G0,0,p = δ0p , (4.83)

and the energy expression

Ep = −
p−1∑
u=0

u∑
v=0

Cu,vGv,u,p−u−1 . (4.84)
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Table 4.4 Moment Method for the Hydrogen Molecular Ion
States with |m| = n− 1

E1 = −1
E2 = 0

E3 = 1
2 n

2 (n− 1) (n+ 1)

E4 = − 1
8 n

4 (n+ 1) (4 n+ 5)

E5 = − 3
8 n

4 (n− 1) (n− 2) (n+ 2) (n+ 1)

E6 = 1
4 n

6 (n+ 1)
(
4 n3 + 14 n2 − 5 n− 28

)
E7 = 1

16 n
6 (n+ 1)

(
13 n5 − 49 n4 − 269 n3 − 121 n2 + 180 n− 180

)
E8 = − 1

128 n
8 (n+ 1)

(
384 n5 + 2181 n4 + 910 n3 − 7930 n2 − 1362 n+ 13572

)
E9 = − 1

128n
8 (n+ 1)

(
323 n7 − 1907 n6 − 15895 n5 − 14189 n4 + 44232 n3 + 44172 n2

−20160 n+ 20160)

E10 = 1
64n

10 (n+ 1)
(
704 n7 + 5668 n6 + 4744 n5 − 45013 n4 − 77061 n3 + 52830 n2

+38694 n− 150084)

n = 1 n = 2

E1 −1 −1

E2 0 0

E3 0 6

E4
−9

4
−78

E5 0 0

E6
−15

2
2400

E7
−213

4
−33888

E8
−7755

64
201552

E9
−1773

2
1835904

E10
−84759

16
−28483200

To obtain Ep we need Gj,t,q for q = 0, 1, . . . , p − 1, j = 0, 1, . . . , p − q − 1, and t = 0, 1, . . . ,
p−q−1. Table 4.4 shows analytical energy coefficients in terms of n and particular results for n = 1
and n = 2 suitable for comparison with expressions available in the literature. One easily obtains
more perturbation corrections by means of the Maple procedures shown in the program section.

There is a vast literature on the asymptotic expansion of the electronic energies of the hydrogen
molecular ion at large internuclear distances. Here we select References [63] through [65] where the

                          



4.4. THE HYDROGEN MOLECULAR ION 79

reader may find other relevant papers on the subject. Our results agree with those obtained earlier by
other authors after appropriate corrections. For example, the coefficient of order p of reference [65]
is (2/n)p times ours.

We could have chosen elliptical coordinates to separate the Schrödinger equation and apply, for
example, the method of Swenson and Danforth as in the Stark effect discussed above, thus obtaining
more general results valid for all states. However, we have preferred spherical coordinates and the
moment method because we think it is simpler to develop the working equations. The reader may
verify that the application of the method of Swenson and Danforth is straightforward although rather
more tedious.

According to the perturbation method just discussed, the asymptotic expansion for the electronic
energy of the ground state is

E(R) = −1

2
− 1

R
− 9

4R4
− 15

2R6
− · · · . (4.85)

However, a more careful analysis reveals the occurrence of exponential and logarithmic terms [64]–
[66] originated in the double-well nature of the problem [66]. Figure 4.1 (produced by Maple
plot3d command) clearly shows that the potential-energy function of the hydrogen molecular ion is
a double well. In order to plot the function in three dimensions we set y = 0. It is not surprising
that the exponential terms do not appear in the naive perturbation approach developed above because
functions of the form exp(−R/n) = exp[−1/(nλ)] and all its derivatives vanish as λ ↓ 0.

FIGURE 4.1
Dimensionless potential-energy function for the hydrogen molecular ion in the Born–
Oppenheimer approximation (y = 0, R = 3).
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4.5 The Delta Molecular Ion

A rigorous discussion of the perturbation expansion for the hydrogen molecular ion that accounts
for the exponential and logarithmic terms at large internuclear distances is beyond the scope of this
book. We do not even consider the perturbation treatment of simpler double wells in one dimension.
However, a pedagogical approach to the perturbation expansion of a one-dimensional, one-electron
molecule at large internuclear distances is possible for a simple, exactly solvable model. In the delta
molecular ion one simulates the Coulomb interaction by means of the much simpler delta interaction.
The dimensionless Schrödinger equation reads

� ′′(x) = 2[V (x)− E]�(x) , V (x) = −δ(x)− δ(x − R) , (4.86)

where δ(x) is the Kronecker delta function and R is the internuclear separation. The only properties
of this function that we need here are δ(x) = 0 if x �= 0, and

∫ ε

−ε
�(x)δ(x) dx = �(0) , ε > 0 . (4.87)

Notwithstanding the delta potential is a extremely short range interaction, it is commonly chosen as
a one-dimensional model for the Coulomb interaction [67].

Although the bound states of this model are well known, [67] in what follows we briefly show
how to obtain them for completeness. First of all notice that a square-integrable solution of the
Schrödinger equation (4.86) is of the form

�(x) =



A1 exp(kx) if x < 0
A2 exp(kx)+ B2 exp(−kx) if 0 < x < R

A3 exp(−kx) if x > R

, (4.88)

where k = √−2E and E < 0. We require that it be continuous at x = 0 and x = R:

�
(
0−
) = �

(
0+
)
, �

(
R−
) = �

(
R+
)
. (4.89)

Because the potential-energy function is singular at x = 0 and x = R the first derivative � ′(x) is
not continuous at those points as follows from the property (4.87) of the Kronecker delta function:

lim
ε→0

∫ ε

−ε
� ′′(x) dx = � ′

(
0+
)−� ′

(
0−
) = −2�(0) . (4.90)

Analogously, at x = R we have

� ′
(
R+
)−� ′

(
R−
) = −2�(R) . (4.91)

It is not difficult to obtain a suitable expression for the energy from equations (4.88)–(4.91) if
we proceed orderly. First, obtain A2 and B2 in terms of A1 from the two equations that give the
boundary conditions at x = 0. Second, rewrite the two equations giving the boundary conditions at
x = R conveniently and divide one by the other in order to remove A3. Finally, substitute the values
of A2 and B2 obtained previously, remove A1, and derive an equation solely in terms of k and R.
One easily rewrites the resulting equation as follows:

(k − 1)2 = exp(−2kR) . (4.92)
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The two roots of this equation

k± = 1± exp(−kR) (4.93)

give us the only two bound-state energies of the delta molecular ion in terms of R:

E± = −k
2±
2

. (4.94)

Notice that 0 < k− < 1 < k+ leads to E+ < −1/2 < E− < 0 and tells us that E+ is the ground-
state energy. Here we have not taken into account the parity of the eigenfunctions as in a previous
pedagogical treatment of this model [67]. Our simpler expression for the energy is suitable for the
application of perturbation theory to obtain an expansion at large internuclear distances.

When R → ∞ we obtain the approximation of order zero k±0 = 1. We then write k± ≈
k±0+ k±1, where k±1 is a small first-order correction to k±0, so that at first order we have 1+ k±1 ≈
1± exp[−(1+ k±1)R] ≈ 1± exp(−R) from which it follows that k±1 = ± exp(−R). In order to
make this procedure more systematic we substitute the expansion

k(σ ) =
∞∑
j=0

kjσ
j (4.95)

into

k(σ ) = 1+ σ exp(−kR) , (4.96)

and then solve for the coefficients kj term by term, and finally substitute the actual value of the
perturbation parameter σ = ±1. A straightforward calculation (greatly facilitated by Maple) yields

k± = 1± exp(−R)− R exp(−2R)± 3R2

2
exp(−3R)− 8R3

3
exp(−4R)+ · · · , (4.97)

from which it follows that

E± = −1

2
∓ exp(−R)+

(
R − 1

2

)
exp(−2R)± R

(
1− 3R

2

)
exp(−3R)

+ R2
(

8R

3
− 2

)
exp(−4R)+ · · · . (4.98)

At large internuclear distances the energies of the two bound states are almost degenerate, their
difference being

.E = E− − E+ = 2 exp(−R)+ · · · . (4.99)

This trivial model clearly shows that exponential terms take place in the expansion of the energies
of diatomic molecules at large internuclear distances. In this oversimplified example there is no
expansion in powers of λ = 1/R, and if we tried it we would find that all the coefficients vanish. On
the other hand, the perturbation expansion for the hydrogen molecular ion exhibits a series in powers
of 1/R in addition to exponential and logarithmic terms, [64]–[66] and we were able to obtain the
former by means of the moment method in the preceding section. Exponentially small energy gaps
like that in equation (4.99) are typical of double well potential-energy functions [66].

                          



Chapter 5

The Schrödinger Equation on Bounded Domains

5.1 Introduction

In this chapter we focus our attention on the Schrödinger equation with boundary conditions for
finite values of the coordinates. In particular, we first consider a particle in a box with impenetrable
walls that give rise to Dirichlet boundary conditions. Models with such features appear in many
branches of physics and chemistry, among which we mention the rate of escape of stars from clusters,
[68] the theory of solids, [69, 70] molecular interactions, [71] electrons in crystals within electric
fields, [72, 73] quantum wells, [74] and magnetic properties of metals [75]. This is just a sample
of the vast literature on the subject [32, 76, 77]. Here we restrict ourselves to simple nontrivial
one-particle systems in one and three dimensions.

In this chapter we also consider periodic boundary conditions. It is impossible to enumerate all
the physical problems that require the solution of the Schrödinger equation with such boundary
conditions. We only mention well-known models for the study of molecular rotation spectra that are
based on a variety of perturbed rigid rotors [78, 79]. For concreteness we concentrate on a particular
model and apply perturbation theory in the cases of weak and strong interaction.

5.2 One-Dimensional Box Models

We first consider a particle of mass m in a box with impenetrable walls at x = L1 and x = L2,
under the effect of a potential-energy function V (x) in L1 < x < L2. The state vector �(x)
vanishes outside the box where the potential-energy function is infinite and continuity requires that
�(L1) = �(L2) = 0. In the coordinate representation the Hamiltonian operator reads

Ĥ = − h̄
2

2m

d2

dx2
+ V (x) (5.1)

for all L1 < x < L2. By means of the change of variables

x = Lq + L1, �(q) =
√
L� (Lq + L1) , (5.2)

where L = L2 − L1 is the box length, we rewrite the Schrödinger equation for �(q) as
[
−1

2

d2

dq2
+ λv(q)

]
�(q) = ε�(q) , (5.3)
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where

λv(q) = mL
2

h̄2
V (Lq + L1) , ε = mL

2E

h̄2
. (5.4)

The solution �(q) satisfies the simpler boundary conditions �(0) = �(1) = 0.
In order to apply perturbation theory we choose

Ĥ0 = −1

2

d2

dq2
, Ĥ ′ = v(q) (5.5)

and expand

� =
∞∑
j=0

�jλ
j , ε =

∞∑
j=0

εjλ
j , (5.6)

where we omit explicit reference to the quantum number n. The solutions to the unperturbed equation

−1

2

d2

dq2
�0(q) = ε0�0(q) (5.7)

are

�0(q) =
√

2 sin(nπq), ε0 = n
2π2

2
, n = 1, 2, . . . . (5.8)

For simplicity we require that�j(0) = �j(1) = 0 for all j to be sure that the approximate solution
�(q) satisfies the appropriate boundary conditions at any perturbation order.

5.2.1 Straightforward Integration

In the particular case of the particle in the box just considered, the perturbation equations developed
in Chapter 1 take the form

(
d2

dq2
+ n2π2

)
�j = fj , j = 0, 1, 2, . . . , (5.9)

where f0 = 0, and

fj = 2v�j−1 − 2
j∑
k=1

εk�j−k, j > 0 . (5.10)

The method developed in Appendix B proves suitable for solving the set of inhomogeneous or-
dinary differential equations of second order with constant coefficients (5.9). A real solution of
equation (5.9) that satisfies the boundary condition at q = 0 is

�j(q) = Cj sin(nπq)+ 1

nπ

∫ q
0

sin
[
nπ

(
q − q ′)] fj (q ′) dq ′ , (5.11)

where Cj is an arbitrary integration constant. The boundary condition at the other end point
�j(1) = 0 determines the energy coefficient εj . The resulting equation is equivalent to the general
expression (1.10) for the energy coefficient of order j that in the present case takes the form

εj =
∫ 1

0
�0(q)v(q)�j−1(q)dq −

j−1∑
k=1

εk

∫ 1

0
�0(q)�j−k(q) dq . (5.12)
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To derive this equation from �(1) = 0 simply rewrite sin[nπ(1 − q ′)] as − cos(nπ) sin(nπq ′).
Finally, an appropriate normalization condition determines the remaining integration constant Cj ;
here we choose equation (1.11):

j∑
i=0

∫ 1

0
�i(q)�j−i (q) = δj0 . (5.13)

It is possible to derive exact analytical perturbation corrections from equation (5.11) for many
potential-energy functions v(q). Maple greatly facilitates the systematic calculation of the integrals
in equations (5.11) and (5.13), and we show a simple set of procedures for that purpose in the
program section. For example, a particularly simple class of perturbations is given by polynomial
potential-energy functions V (x) = V0 + V1x + V2x

2 + · · · + VMxM ; we consider some illustrative
examples in what follows.

The simplest case is the linear interactionV (x) = V1x that has proved suitable for the investigation
of the effect of electric fields on electrons in crystals [72, 73] and quantum wells [74]. Without loss
of generality we choose L1 = 0 and set

λ = mV1L
3

h̄2
, v(q) = q . (5.14)

Notice that the dimensionless perturbation parameter λ is given by the ratio of the maximum value
of the potential energy V1L to a kind of characteristic kinetic energy h̄2/(mL2). Moreover, it can
also be written as λ = (L/L0)

3, whereL0 = [h̄2/(mV1)]1/3 is a characteristic length for the particle
in the field.

Table 5.1 shows the first perturbation corrections to the energy and eigenfunction of the nth state in
terms of ω = nπ . One easily obtains many more by means of the Maple procedures in the program
section.

5.2.2 The Method of Swenson and Danforth

The application of the method of Swenson and Danforth to the particle in a box requires a careful
discussion. It is well known that all the zeros of a solution�(q) of the Schrödinger equation at finite
values of the coordinate are simple, because otherwise � vanishes everywhere. This conclusion
follows from the fact that if both �(q) and �′(q) vanish at q0, then all the derivatives of �(q)
vanish at that point. The method of Swenson and Danforth is based on the hypervirial theorem
< � | [Ĥ , Ŵ ] | � >= 0 as discussed in Chapter 3. This expression is valid provided that Ŵ�
belongs to the state space, which in the present case is given by differentiable functions that vanish at
q = 0 and q = 1. Because in the method of Swenson and Danforth we choose Ŵ = f (q̂)D̂+g(q̂),
then f (q) has to vanish at q = 0 and q = 1. If f (q) does not satisfy those boundary conditions,
we can still apply the method of Swenson and Danforth provided that we modify the hypervirial
relations [32]. Here we choose f (q) to satisfy the boundary conditions in order to keep the standard
form of the hypervirial theorem. All earlier applications of the approach were based on the modified
hypervirial theorem [32].

For polynomial potential-energy functions we choose f (q) = qj − q, j = 2, 3, . . . so that the
hypervirial relations developed in Chapter 3 become

2jε
〈
qj−1

〉
+ j (j − 1)(j − 2)

4

〈
qj−3

〉
− λ

〈
qjv′

〉
− 2jλ

〈
qj−1v

〉

− 2ε + λ 〈qv′〉+ 2λ < v >= 0 . (5.15)
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Table 5.1 Straightforward Integration of the Perturbation Equations for a Particle in a Box
with a Linear Interaction v(q) = q
ω = nπ
ε1 = 1

2

�1 =
√

2 (2 q−1) sin(ω q)
4ω2 −

√
2 q (q−1) cos(ω q)

2ω

ε2 = ω2−15
24ω4

�2 = −
√

2
(
ω4 − 20ω2 − 405+ 150 q ω2 − 150ω2 q2 + 30ω4 q4 − 60 q3 ω4 + 30 q2 ω4

)
sin(ω q)
240ω6 − 5

√
2 (q−1) q (2 q−1) cos(ω q)

24ω3

ε3 = 0

�3 = −
√

2
960(

70ω4 q4 − 140 q3 ω4 − 450ω2 q2 + 70 q2 ω4 + 450 q ω2 + 195− 75ω2 + ω4
)

(2 q − 1) sin(ω q)/ω8 +
√

2
480(

10ω4 q4 − 20 q3 ω4 + 10 q2 ω4 − 250ω2 q2 + 250 q ω2 − 50ω2 + 195+ ω4
)

(q − 1) q cos(ω q)/ω7

ε4 = −210ω2 + 1980+ ω4

288ω10

�4 =
√

2

241920

(
468720ω4 q4 + 1408050 q ω2 + 616770 q2 ω4 − 937440 q3 ω4

+900900ω2 − 13059900− 1408050ω2 q2 + 630ω8 q8 − 2520ω8 q7 + 3780ω8 q6

−2520 q5 ω8 − 47460ω6 q6 − 252ω8 q3 + 126ω8 q2 − 153300ω6 q4

+69300ω6 q3 + 142380 q5 ω6 + ω8 − 148050 q ω4 + 630ω6 q − 11550ω6 q2

+756ω8 q4 + 13020ω4 − 130ω6
)

sin(ω q)/ω12 +
√

2

1152(
18ω4 q4 − 36 q3 ω4 + 18 q2 ω4 − 438ω2 q2 + 438 q ω2 + 2235− 89ω2 + ω4

)
(q − 1) q (2 q − 1) cos(ω q)/ω9

As an illustrative example we consider a second-order polynomial

v(q) = αq + βq2 (5.16)

that accounts for most of the applications of physical interest of such oversimplified models. Arguing
as in Chapter 3 we easily derive the following equations

Q0,p = δ0p , (5.17)

Qj,p = 1

2(j + 1)ε0

[
j (1− j2)

4
Qj−2,p − 2(j + 1)

p∑
i=1

εiQj,p−i

+ (2j + 3)αQj+1,p−1 + 2(j + 2)βQj+2,p−1 + 2εp − 3αQ1,p−1
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−4βQ2,p−1

]
, j = 1, 2, . . . , (5.18)

εp = 1

p

(
αQ1,p−1 + βQ2,p−1

)
, (5.19)

where Qj,p, p = 0, 1, . . . are the perturbation corrections to the expectation value Qj =< qj >,
equation (5.17) is the normalization condition, and equation (5.19) follows from the Hellmann–
Feynman theorem. In order to obtain εp we needQj,s , s = 0, 1, . . . , p− 1, j = 1, 2, . . . , 2(p− s).

For the harmonic oscillator V (x) = kx2/2 we have

λ = mkL
4

h̄2
, v(q) = 1

2
(q − q0)

2, q0 = −L1

L
. (5.20)

Notice that in this case we can also write the dimensionless perturbation parameterλ either as the ratio
of a potential kL2 to a kinetic h̄2/(mL2) energy or as λ = (L/L0)

4, whereL0 = [h̄2/(mk)]1/4 is the
characteristic length of the oscillator. The harmonic oscillator is symmetrical when L2 = −L1 > 0,
in which case q0 = 1/2. Equations (5.17)–(5.19) apply to the general case provided that we add
q2

0/2 to the perturbation correction of first order.
The calculation of exact analytical perturbation corrections by means of equations (5.17)–(5.19) is

straightforward even by hand. However, if one is interested in relatively great perturbation orders, the
use of computer algebra becomes necessary. Table 5.2 shows some results in terms ofω = nπ and q0
obtained by means of a simple Maple program similar to those discussed earlier in Chapter 3. They
are valid for both symmetrical and nonsymmetrical harmonic oscillators and also for the inverted
ones (k < 0⇒ λ < 0).

In order to test the perturbation coefficients just obtained and estimate the rate of convergence of
the perturbation series, we compare the partial sums

SN =
N∑
j=0

εjλ
j (5.21)

with exact energies of excited states of the harmonic oscillator with the usual boundary conditions
�(±∞) = 0. For example, from its second excited state

�(q) =
(

2q2 − 1
)

exp
(
−q2/2

)
(5.22)

we obtain the dimensionless energy ε = 5/2 of the ground state of a harmonic oscillator v(q) = q2/2
in a symmetrical box with walls at L2 = −L1 = 1/

√
2. The third excited state

�(q) = q
(

2q2 − 3
)

exp
(
−q2/2

)
(5.23)

gives us the energy ε = 7/2 of the ground state of a harmonic oscillator in a box with walls at
L1 = 0 and L2 = √3/2 as well as of the first excited state of a harmonic oscillator in a box with
walls L2 = −L1 = √3/2. log(| ε−SN |) provides a reasonable measure of the rate of convergence
of the partial sums (5.21)). Figure 5.1 shows that the perturbation series for the first two cases just
mentioned converge rapidly. The numerical results for the third case exactly agree with those for
the second one, and do not add anything new to the present discussion. We appreciate that the rate
of convergence is slightly greater for the symmetric oscillator.
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Table 5.2 Method of Swenson and Danforth for the Dimensionless Bounded Harmonic

Oscillator Ĥ = −1

2

d2

dq2
+ (q − q0)

2

2

ω = nπ
ε0 = ω

2

2

ε1 = −q0

2
− 1

4ω2
+ 1

6
+ q0

2

2

ε2 =
− 1

24
q0 + 1

24
q0

2 + 1

90
ω2

+
5

8
q0 − 5

8
q0

2 − 5

24
ω4

+ 7

16

1

ω6

ε3 =
1 240 q0

2 + 1

945
− 1

240
q0

ω4
+

5

8
q0 − 5

8
q0

2 − 1

6
ω6

+
93

16
q0

2 − 93

16
q0 + 31

16
ω8

− 121

32

1

ω10

ε4 =
1

288
q0

4− 1

144
q0

3+ 1

2835
+ 139

24192
q0

2− 55

24192
q0

ω6

+
623

960
q0−

16

135
+35

24
q0

3 − 35

48
q0

4 − 441

320
q0

2

ω8

+
−55

4
q0

3 + 55

8
q0

4 + 683

160
+ 3149

128
q0

2 − 2269

128
q0

ω10
+

14573

128
q0 − 14573

128
q0

2 − 14573

384
ω12

+ 17771

256ω14

ε5 =
− 1

360
q0

3 − 397

518400
q0 + 7

66825
+ 1117

518400
q0

2 + 1

720
q0

4

ω8

+
−17291

11520
q0

2 + 15

8
q0

3 + 6491

11520
q0 − 223

2700
− 15

16
q0

4

ω10

+
101783

15120
+ 1617

32
q0

4 − 150293

3840
q0 − 1617

16
q0

3 + 344333

3840
q0

2

ω12

+
135121

192
q0 − 213601

192
q0

2 − 1635

4
q0

4 + 1635

2
q0

3 − 115501

720
ω14

+
938927

768
+ 938927

256
q0

2 − 938927

256
q0

ω16
− 1094647

512ω18

Q1, 0 = 1

2

Q1, 1 =
− 1

12
q0 + 1

24
ω2

+
−5

8
+ 5

4
q0

ω4

Q1, 2 =
− 1

120
q0 + 1

240
ω4

+
−5

8
+ 5

4
q0

ω6
+
−93

8
q0 + 93

16
ω8
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FIGURE 5.1
Rate of convergence of the perturbation series for the ground state of the symmetric (S) (L2 =
−L1 = 1/

√
2) and asymmetric (A) (L1 = 0, L2 = √3/2) harmonic oscillator in a one-

dimensional box.

5.3 Spherical-Box Models

A particle of mass m in a spherical box of radius R with an isotropic interaction potential proves
also to be an interesting model with physical applications. The stationary states are solutions to the
Schrödinger equation

[
− h̄

2

2m
∇2 + V (r)

]
�(r) = E�(r) (5.24)

with the Dirichlet boundary condition �(r) = 0 on the box surface r = |r| = R. The Schrödinger
equation (5.24) is separable in spherical coordinates because both the potential-energy function and
the box are spherically symmetric. One easily verifies that the radial factor of�(r) = χ(r)Yl,m(θ, φ)
satisfies the eigenvalue equation

[
− h̄

2

2m

(
d2

dr2
+ 2

r

d

dr

)
+ h̄

2l(l + 1)

2mr2
+ V (r)

]
χ(r) = Eχ(r) (5.25)

with the boundary condition χ(R) = 0. By means of the change of variables r = Rq, ϕ(q) =
R3/2χ(Rq) we derive the dimensionless equation

[
−1

2

(
d2

dq2
+ 2

q

d

dq

)
+ l(l + 1)

2q2
+ λv(q)

]
ϕ(q) = εϕ(q) , (5.26)

where

λv(q) = mR
2

h̄2
V (Rq), ε = mR

2E

h̄2
, (5.27)
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and the boundary condition becomes ϕ(1) = 0.
The particle in a spherical box provides an appropriate unperturbed model. In terms of the new

variable z = √2ε0q the eigenvalue equation (5.26) with λ = 0 becomes a Bessel equation [80]
[
z2 d

2

dz2
+ 2z

d

dz
+ z2 − l(l + 1)

]
4(z) = 0 , (5.28)

where 4(z) ∝ ϕ(z/√2ε0), and ε0 denotes the unperturbed dimensionless energy. Since 4(z) ∝
jl(z) = √[π/(2z)]Jl+1/2(z) [80] we conclude that the boundary condition ϕ(1) = 0 leads to

ε0 =
j2
ν,n

2
, (5.29)

where jν,n is the nth zero of Jν(z), and ν = l + 1/2.
In what follows we apply perturbation theory by means of two approaches discussed in Chapters 2

and 3.

5.3.1 The Method of Fernández and Castro

The method of Fernández and Castro developed in Chapter 2 is particularly simple when the
auxiliary functions A(q) and B(q) are polynomials. For this reason it is convenient to rewrite
equation (5.26) as

[
d2

dq2
+ 2(l + 1)

q

d

dq
− 2λv(q)+ 2ε

]
ϑ(q) = 0 , (5.30)

where ϑ(q) = q−lϕ(q). We then write

ϑ(q) = A(q)ϑ0(q)+ B(q)ϑ ′0(q) , (5.31)

where ϑ0(q) is a solution to the unperturbed equation
[
d2

dq2
+ 2(l + 1)

q

d

dq
+ 2ε0

]
ϑ0(q) = 0 (5.32)

with the boundary condition ϑ0(1) = 0. The auxiliary functions satisfy the equations

qA′′ + 2(l + 1)A′ − 4ε0qB
′ + 2q(:ε − λv)A = 0 ,

q2B ′′ − 2(l + 1)qB ′ + 2q2A′ + 2(l + 1)B + 2q2(:ε − λv)B = 0 , (5.33)

where :ε = ε − ε0 is the energy shift caused by the perturbation. We then expand the auxiliary
functions and the dimensionless energy in Taylor series about λ = 0

A(q) =
∞∑
j=0

Aj(q)λ
j , B(q) =

∞∑
j=0

Bj (q)λ
j , ε =

∞∑
j=0

εjλ
j , (5.34)

where A0 = 1 and B0 = 0. Straightforward substitution of the series (5.34) into equations (5.33)
leads to the perturbation equations for the coefficients Aj , Bj , and εj

qA′′j + 2(l + 1)A′j − 4ε0qB
′
j + 2q

j∑
i=1

εiAj−i − 2qvAj−1 = 0 ,

q2B ′′j − 2(l + 1)qB ′j + 2q2A′j + 2(l + 1)Bj + 2q2
j∑
i=1

εiBj−i − 2q2vBj−1 = 0 . (5.35)
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As an illustrative example we consider the isotropic harmonic oscillator with potential-energy
function V (r) = kr2/2 that leads to

λ = mkR
4

h̄2
, v(q) = q

2

2
. (5.36)

By inspection of the perturbation equations with the harmonic potential we conclude that

Aj(q) =
na,j∑
k=1

aj,kq
2k, Bj (q) =

nb,j∑
k=0

bj,kq
2k+1 , (5.37)

where na,1 = nb,1 = 1 and na,j = nb,j−1+ 2, nb,j = na,j−1+ 1 for all j > 1. The energy is given
either by the equations in Chapter 1 or by the boundary condition B(1) = 0 that leads to

bj,nb,j = −
nb,j−1∑
k=0

bj,k , (5.38)

which enables one to be removed of the unknown coefficients. Both the calculation procedure and
the corresponding Maple program are similar to those already discussed in Chapter 2. Table 5.3
shows analytical expressions in terms of ε0 and l. After appropriate modification, present results
agree with those obtained earlier by straightforward application of this approach to the isotropic
harmonic oscillator in a spherical box in a space of D dimensions [81].

5.3.2 The Method of Swenson and Danforth

In order to simplify the application of the method of Swenson and Danforth it is convenient to
transform the eigenvalue equation (5.26) into[

−1

2

d2

dq2
+ l(l + 1)

2q2
+ λv(q)

]
�(q) = ε�(q) , (5.39)

where the solution �(q) = qϕ(q) satisfies boundary conditions similar to those for the one-
dimensional box: �(0) = �(1) = 0. In this way we can apply all the perturbation equations
developed earlier by simply adding the centrifugal term l(l+ 1)/(2q2) to the potential-energy func-
tion λv(q). Arguing as before we easily derive the hypervirial relation

2jε
〈
qj−1

〉
+ (j − 1)

j (j − 2)− 4l(l + 1)

4

〈
qj−3

〉
− λ

〈
qjv′

〉

− 2jλ
〈
qj−1v

〉
− 2ε + λ 〈qv′〉+ 2λ < v >= 0 . (5.40)

As an illustrative example we consider the isotropic harmonic oscillator with dimensionless
potential-energy function v(q) = q2/2. Expanding the expectation values Qj =< q2j > and
the energy ε in Taylor series about λ = 0 in the usual way, we derive the following working equa-
tions:

Q0,p = δ0p , (5.41)

Qj,p = 1

2(2j + 1)ε0

{
j [4l(l + 1)− 4j2 + 1]

2
Qj−1,p − 2(2j + 1)

p∑
i=1

εiQj,p−i

+2(j + 1)Qj+1,p−1 + 2εp − 2Q1,p−1

}
, j = 1, 2, . . . , (5.42)

εp = 1

2p
Q1,p−1 . (5.43)
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Table 5.3 Method of Fernández and Castro for the Isotropic Harmonic Oscillator in a
Spherical Box

A0 = 1

B0 = 0

ε0 = jν, n
2

2

A1(q) = (1−2 l) q2

24 ε0

B1(q) = − q (q−1) (q+1)
12 ε0

ε1 = (−3+4 ε0+4 l (l+1))
24 ε0

A2(q) =
(−40 q6 ε0

2 + (−76 ε0 l + 80 ε02 + 20 l2 ε0 + 129 ε0
)
q4

+ (−40 ε02 + 80 ε0 l − 24 l3 − 12 l2 + 222 l − 40 ε0 − 105
)
q2
) / (

5760 ε03
)

B2(q) = − q (q−1) (q+1) (48 q2 ε0−20 ε0 l+12 l2+12 l−105−22 ε0)
2880 ε03

ε2 = (32 ε02+315−300 ε0+(−112 ε0−456) l (l+1)+48 l2 (l+1)2)
5760 ε03

A3(q) =
((−4984 ε03 + 560 ε03 l

)
q8 + (−13922 ε02 l + 756 l2 ε02 + 11424 ε03

+45207 ε02 − 280 l3 ε02
)
q6 + (− 7896 ε03 + 1008 ε0 l4 + 16800 ε02 l

+96408 ε0 l − 1680 ε03 l − 4128 l3 ε0 + 672 l2 ε02 − 138537 ε0 − 5496 l2 ε0

−56952 ε02
)
q4 + (− 259050 l − 2080 l5 − 2016 l2 ε02 + 31400 l2 − 74592 ε0 l

+60720 l3 − 7392 ε02 l + 8064 l3 ε0 + 20328 ε02 + 114345+ 1120 ε03 l

+35280 ε0 + 1456 ε03 + 4032 l2 ε0 − 3120 l4
)
q2
) / (

2903040 ε05
)

B3(q) = −q (q − 1) (q + 1)
(− 280 q6 ε0

3 + 7479 q4 ε0
2 + 560 q4 ε0

3 + 140 q4 ε0
2 l

+140 q4 ε0
2 l2 − 2296 q2 ε0

2 l + 3072 q2 ε0 l − 280 q2 ε0
3 − 280 q2 l2 ε0

2

+3072 q2 ε0 l
2 − 5310 q2 ε0

2 − 48384 q2 ε0 + 1284 ε02 + 1568 ε02 l

+560 l2 ε02 + 6348 ε0 l − 3480 l2 ε0 + 126 ε0 − 30360 l + 1040 l4 − 29320 l2

+2080 l3 − 1008 l3 ε0 + 114345
) / (

1451520 ε05
)

ε3 =
(
768 ε03 − 60480 ε02 + 351540 ε0 − 343035+ (31776 ε0 + 6912 ε02

+ 548460
)
l (l + 1)+ 4160 l3 (l + 1)3+(− 124560− 11968 ε0

)
l2 (l + 1)2

)/(
2903040 ε05

)
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In order to obtain εp we needQj,s for all s = 0, 1, . . . , p − 1, j = 1, 2, . . . , p − s.
Table 5.4 shows sample analytical expressions of perturbation corrections in terms of the un-

perturbed energy ε0. The Maple program that provided such results is similar to those for earlier
applications of the method of Swenson and Danforth. The dimensionless energy coefficients εj in
Tables 5.3 and 5.4 appear to be different simply because their terms are arranged differently.

The application of the method of Swenson and Danforth to a particle in a spherical box is straight-
forward when the potential-energy function is a polynomial with only even powers of the radial
coordinate. The reader may easily verify that problems arise when there are also odd powers. When
l = 0 the spherical models are similar to those in one dimension, and we can therefore apply the
approach already described above. On the other hand, when l > 0 one cannot calculate all the per-
turbation coefficients which result to be functions of the unknownQ−1,p that remain undetermined.
In what follows we show how to overcome such difficulty in the case of the Coulomb interaction,
and consider a hydrogen-like atom in a spherical box of radius R as an illustrative example. More
precisely, the potential-energy function inside the box is V (r) = −Ze2/r , where −e < 0 and
Ze > 0 are the electronic and nuclear charges, respectively.

The perturbation parameter and dimensionless potential-energy function read

λ = mRZe
2

h̄2
, v(q) = − 1

q
, (5.44)

respectively, where λ/Z is the radius of the box in units of h̄2/(me2). For concreteness, from now
on we choose Z = 1 (hydrogen atom) without loss of generality.

In this case the method of Swenson and Danforth does not apply, not even when l = 0, because the
hypervirial recurrence relations do not provide the perturbation coefficientsQ−1,p. We can however
overcome this problem by means of a Liouville transformation [82] of the Schrödinger equation for
the hydrogen-like atom into the Schrödinger equation for a harmonic oscillator.

The change of independent and dependent variables according to s = q1/2 andF(s) = �(s2)/√s,
respectively, transforms equation (5.39) into

[
−1

2

d2

ds2
+ L(L+ 1)

2s2
+ βs

2

2

]
F(s) = eF (s) , (5.45)

where

L = 2l + 1

2
, β = −8ε, e = 4λ . (5.46)

Since the boundary conditions are F(0) = F(1) = 0, the perturbation corrections to the energy in
Tables 5.3 and 5.4 give us the coefficients of the series

e(β) =
∞∑
j=0

ejβ
j =

∞∑
j=0

ej (−8ε)j = 4λ . (5.47)

Given λ we obtain the energy as a root of equation (5.47) after substituting a partial sum for the
series. We expect the perturbation series (5.47) to be more accurate the smaller the value of |ε|. In
particular, the box radii for which ε = 0 are given by just the first term

λl,n =
j2
ν,n

8
, ν = L+ 1

2
= 2l + 1 . (5.48)

In order to test the equations just derived, we consider states of the unbounded hydrogen atom
with radial nodes that provide exact results for the spherical-box model. For example, the 2s state
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Table 5.4 Method of Swenson and Danforth for the Isotropic Harmonic Oscillator in a
Spherical Box

ε0 = jν, n
2

2

ε1 = 1

6
+

1

6
l (l+1)−1

8
ε0

ε2 = 1

180 ε0
+
− 7

360
l (l+1)− 5

96
ε0

2 +
1

120
l2 (l+1)2− 19

240
l (l+1)+ 7

128
ε0

3

ε3 = 1

3780 ε02
+
− 1

48
+ 1

420
l (l+1)

ε0
3 +

31

256
+ 331

30240
l (l+1)− 187

45360
l2 (l+1)2

ε0
4

+
13

9072
l3 (l+1)3+ 3047

16128
l (l+1)− 173

4032
l2 (l+1)2− 121

1024
ε0

5

ε4 = 1 1

22680 ε03
+
−4 l (l + 1)

14175
− 1

135
ε0

4
+

683

5120
+ 1129 l2 (l + 1)2

907200
− 2083 l (l + 1)

201600
ε0

5

+
120671 l (l + 1)

1935360
+57719 l2 (l + 1)2

2419200
−14573

24576
−6967 l3 (l + 1)3

5443200
ε0

6

+
281 l4 (l + 1)4

777600
−85301 l (l + 1)

92160
+17771

32768
+198443 l2 (l + 1)2

691200
−5993 l3 (l + 1)3

259200
ε0

7

Q1, 1 = 1

45 ε0
+
− 7

90
l (l + 1)− 5

24
ε02

+
1

30
l2 (l + 1)2 − 19

60
l (l + 1)+ 7

32
ε03

Q1, 2 = 1

630 ε02
+
−1

8
+ 1

70
l (l + 1)

ε03
+

93

128
+ 331

5040
l (l + 1)− 187

7560
l2 (l + 1)2

ε04

+
13

1512
l3 (l + 1)3 + 3047

2688
l (l + 1)− 173

672
l2 (l + 1)2 − 363

512
ε05

Q1, 3 = 1

2835 ε03
+
− 32

14175
l (l + 1)− 8

135
ε04

+
683

640
+ 1129

113400
l2 (l + 1)2 − 2083

25200
l (l + 1)

ε05

+
120671

241920
l (l + 1)+ 57719

302400
l2 (l + 1)2 − 14573

3072
− 6967

680400
l3 (l + 1)3

ε06

+
281

97200
l4 (l + 1)4 − 85301

11520
l (l + 1)+ 17771

4096
+ 198443

86400
l2 (l + 1)2 − 5993

32400
l3 (l + 1)3

ε07

                          



5.4. PERTURBED RIGID ROTORS 95

of the dimensionless unbounded hydrogen atom

�(q) = q(2− q) exp(−q/2) (5.49)

is a solution of the hydrogen atom in a spherical box of radius λ = 2 with exact energy ε = −1/8.
Analogously, the 3s state

�(q) = q
(

27− 18q + 2q2
)

exp(−q/3) (5.50)

gives the energy ε = −1/18 of a hydrogen atom in a box of radius λ = (9 − 3
√

3)/2. For the
calculation we need the first zero of the Bessel function J1(z), which one either obtains from the
standard bibliography [83] or easily calculates by means of Maple. In the latter case we first expand
BesselJ (1, z) in a Taylor series to a sufficiently great degree, then convert it into a polynomial, and
finally obtain the desired zero by means of Maple root finder fsolve.

The convergence of the partial sums to the exact energy values indicated above confirms that the
perturbation coefficients in Table 5.4 for the harmonic oscillator and equation (5.47) are both correct.
The ground-state energy given in Table 5.5 for some values of λ improves results obtained previously
by means of perturbation theory and agrees with energy values coming from other methods. The
third column in Table 5.5 lists energy values obtained from a Taylor expansion of the eigenfunction
of equation (5.39) about q = 0

�(q) =
∞∑
j=0

cj (ε, λ)q
j+l+1 (5.51)

that is forced to satisfy the boundary condition at q = 1

N∑
j=0

cj (ε, λ) = 0 (5.52)

for sufficiently great values of N . Such nonperturbative results are a good test for the perturbative
ones.

5.4 Perturbed Rigid Rotors

The rigid rotor has proved to be a suitable approximate model for the study of purely rotational
molecular spectra [78, 79]. Fitting the energy levels of a polar rigid rotor in a classical external field to
appropriate microwave molecular spectra enables one to estimate molecular structure constants, such
as moments of inertia, [78, 79, 84] dipole moments, [78, 79, 84] and polarizability anisotropies [84,
85]. Such applications require sufficiently accurate energy levels in terms of the quantum numbers
and molecular structure constants. Rayleigh–Schrödinger perturbation theory is particularly useful
for this purpose because it produces analytical expressions for the rotational energies. For this
reason there has been great interest in the calculation of energy coefficients of both the weak-field
expansions [81, 85], [86]–[89] and the strong-field expansions [89]–[92].

There is a vast literature about the practical applications of the perturbed rigid rotor, and the
calculation of its energies and states by perturbation theory. We will not try to be exhaustive and
will just mention those works that are relevant to the present discussion. The reader may look up
additional references in those cited here.
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Table 5.5 Ground-State Energy of the
Hydrogen Atom in a Spherical Box for
Several Values of λ
λ Perturbation Theory Power Series

0.80 4.543380181 4.543380181
1.00 2.373990866 2.373990866
1.20 1.269315015 1.269315015
1.40 0.6471051144 0.6471051144
1.60 0.2713123126 0.2713123126
1.80 0.03255625279 0.03255625279
2.00 −0.1250000000 −0.1250000000
2.20 −0.2320333715 −0.2320333715
2.40 −0.3063980071 −0.3063980071
2.60 −0.3589782940 −0.3589782940
2.80 −0.3966665967 −0.3966665967
3.00 −0.4239672878 −0.4239672877
3.20 −0.4439029787 −0.4439029780
3.40 −0.458547621 −0.4585476156
3.60 −0.46935119 −0.4693511607
3.80 −0.4773435 −0.4773433863
4.00 −0.483266 −0.4832652506

For the sake of concreteness we restrict the discussion below to a linear rigid rotor under a
perturbation V (θ) that depends only on the polar angle θ . The unperturbed Hamiltonian operator is
Ĥ0 = Ĵ 2/(2I ), where Ĵ 2 is the angular momentum operator and I is the moment of inertia of the
rotating rigid body. The dimensionless Schrödinger equation in the coordinate representation for the
stationary states reads

[
− 1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
− 1

sin(θ)2
∂2

∂φ2
+ λv(θ)

]
�(θ, φ) = ε�(θ, φ) , (5.53)

where ε = 2IE/h̄2, λv(θ) = 2IV (θ)/h̄2, and λ is a perturbation parameter. When λ = 0 the
unperturbed energy is ε0 = J (J+1), where J = 0, 1, . . . is the rotational quantum number [78, 79].
The eigenvalue equation (5.53) is separable; writing�(θ, φ) = C(θ) exp(imφ),m = 0,±1,±2, . . .
we are left with an eigenvalue equation for C(θ):

[
− 1

sin(θ)

d

dθ
sin(θ)

d

dθ
+ m2

sin(θ)2
+ λv(θ)

]
C(θ) = εC(θ) . (5.54)

5.4.1 Weak-Field Expansion by the Method of Fernández and Castro

We first transform the Sturm–Liouville equation (5.54) into another one which is more suitable for
the application of the method of Fernández and Castro [81]. In terms of the new variable x = cos(θ),
equation (5.54) becomes

(
1− x2

)
χ ′′(x)− 2xχ ′(x)+

(
ε − m2

1− x2
− λv

)
χ(x) = 0 , (5.55)

where χ(cos(θ)) ∝ C(θ). In order to obtain simple polynomial solutions to the pair of coupled
equations occurring in the method of Fernández and Castro, it is necessary to remove the singular
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points at x = ±1 from equation (5.55). Close to the singular points the solution of equation (5.55)
behaves asymptotically as χ(x) ∼ (1 − x2)M/2, where M = |m|; consequently, writing χ(x) =
(1−x2)M/2�(x)we obtain a more convenient Sturm–Liouville equation for the new function�(x):(

x2 − 1
)
�′′(x)+ 2(M + 1)x�′(x)+ [M(M + 1)+ λv − ε]�(x) = 0 . (5.56)

If we now apply the method of Fernández and Castro with P(x) = (x2 − 1), Q(x) = 2(M + 1)x,
R(x) = M(M + 1) + λv − ε, and R0(x) = M(M + 1) − ε0, we obtain the following system of
perturbation equations:(

x2 − 1
)
A′′j (x) + 2(M + 1)xA′j (x)− 2R0(x

2 − 1)B ′j (x)− 2R0xBj (x)

+ vAj−1(x)−
j∑
k=1

εkAj−k(x) = 0 , (5.57)

(
x2 − 1

)
B ′′j (x) − 2(M − 1)xB ′j (x)− 2MBj(x)+ 2A′j (x)

+ vBj−1(x)−
j∑
k=1

εkBj−k(x) = 0 . (5.58)

In what follows we consider a polar diatomic molecule in an electric field as a particular interaction.
The Stark effect in a polar rigid rotor is of relevance to the study of molecular structure [78, 79] and
has consequently been discussed by several authors, [85]–[88], [90]–[92] among many others. If d
is the molecular dipole moment, and the electric field F is chosen to be along the z axis, then the
classical interaction between them is −dF cos(θ), where d = |d| and F = |F|. Its dimensionless
form reads λv(θ) = −λ cos(θ) = −λx, where λ = 2IdF/h̄2.

By simple inspection of equations (5.57) and (5.58) it is not difficult to convince oneself that the
solutions for the Stark effect are polynomial functions of the form

Aj(x) =
j∑
k=0

ajkx
k, Bj (x) =

j−1∑
k=0

bjkx
k . (5.59)

Before proceeding with the discussion of results it is worth noticing that the present application of
the method of Fernández and Castro to the perturbed rigid rotor is simpler than a previous one [81]
in which the solution of the perturbed Sturm–Liouville equation was written�(x) = A(x)�0(x)+
B(x)�′0(x). The more convenient form �(x) = A(x)�0(x) + B(x)P (x)�′0(x) leads to simpler
perturbation equations and to a simpler polynomial function Bj (x). Moreover, since the latter
expression of the perturbed function �(x) satisfies the boundary conditions �(±1) = 0, then the
exact perturbation corrections to the energy εj arise by simply requiring that Aj(x) and Bj (x) be
polynomial functions. The present implementation of the method of Fernández and Castro follows
the outline in Chapter 2 and the corresponding references listed there that are supposed to be an
improvement on an earlier treatment of the Stark effect in the rigid rotor [81].

The perturbation corrections to the energy and eigenfunction depend on M and ε0 = J (J + 1),
whereJ = M,M+1, . . . . The energy coefficients shown in Table 5.6 agree with those derived earlier
by other authors [81, 88]. For simplicity we have arbitrarily chosen the undetermined coefficients
aj0 = 0 for all j > 0, thus neglecting terms proportional to �0 which we may add later in order
to normalize the perturbed eigenfunction to unity. The Maple program that produced the results in
Table 5.6 is similar to those applications of the method of Fernández and Castro discussed earlier in
this book.
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Table 5.6 Method of Fernández and Castro for a Polar Linear Rigid
Rotor in an Electric Field

A1 = M x
2ε0

B1 = 1
2ε0

ε1 = 0

A2 = (−3M+2 ε0) x2

4 ε0 (−3+4 ε0)

B2 = − 3x
4 ε0 (−3+4 ε0)

ε2 = −3M2+ε0
2 ε0 (−3+4 ε0)

A3 = (−3 ε0M3−4 ε02M3−18M3−9 ε02M2+18M2 ε0+4 ε03M−8 ε02M+5 ε03) x

24 ε03 (−3+4 ε0) (ε0−2)

+ (2M ε0+6M−5 ε0) x3

24 ε0 (−3+4 ε0) (ε0−2)

B3 = −3M2 ε0−4 ε02M2−18M2+4 ε03−8 ε02

24 ε03 (−3+4 ε0) (ε0−2)
+ (ε0+3) x2

12 ε0 (−3+4 ε0) (ε0−2)

ε3 = 0

ε4 = (612 ε02+513 ε0−405)M4+(−504 ε03+90 ε02)M2+20 ε04+33 ε03

8 (−3+4 ε0)3 (4 ε0−15) ε03

5.4.2 Weak-Field Expansion by the Method of Swenson and Danforth

It is not difficult to apply the method of Swenson and Danforth to the Sturm–Liouville equa-
tion (5.54). However, in what follows we first transform it into a Schrödinger-like eigenvalue
equation in order to make direct use of the results of Chapter 3. The function�(θ) = sin(θ)1/2C(θ)
satisfies

[
− d

2

dθ2
+ α

sin(θ)2
+ λv(θ)− E

]
�(θ) = 0 , (5.60)

where

α = m2 − 1

4
, E = ε + 1

4
. (5.61)

If the potential-energy function v(θ) is even, then the eigenfunctions are either even or odd, and we
have to choose odd functions f (θ) in the method of Swenson and Danforth (refer to Chapter 3 for
more details) in order to obtain a nontrivial recurrence relation. In what follows we show that the
set of functions f (θ) = sin(θ)i cos(θ)j , i = 1, 3, . . . , j = 0, 1, . . . , is suitable for the application
of perturbation theory.

According to equation (3.16) a term of the form

2 sin(θ)−2f ′ + f
[
sin(θ)−2

]′ = 2(i − 1) sin(θ)i−3 cos(θ)j+1 − 2j sin(θ)i−1 cos(θ)j−1 (5.62)
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will appear in the recurrence relation, and we realize that if f (θ) = sin(θ) cos(θ)j , then no undesired
negative power of sin(θ) will occur.

When v(θ) = − cos(θ) the recurrence relation reads

− (j + 1)3

2
Cj+1 + j

(
j2 + 1

)
Cj−1 − j (j − 1)(j − 2)

2
Cj−3 + 2(j + 1)ECj+1

− 2jECj−1 + 2αjCj−1 − λ[(2j + 1)Cj − (2j + 3)Cj+2] = 0 , (5.63)

where

Cj =
〈
cos(θ)j

〉
=
∫ π

0
�(θ)2 cos(θ)j dθ , (5.64)

and C0 = 1 if the eigenfunction is normalized to unity. To these equations we add the Hellmann–
Feynman theorem dE/dλ = −C1.

From straightforward application of perturbation theory

E =
∞∑
k=0

Ekλk, Cj =
∞∑
k=0

Cj,kλ
k (5.65)

we easily obtain

Cj+1,p = 2

(j + 1)[4E0 − (j + 1)2]
[
j
(

2E0 − 2α − 1− j2
)
Cj−1,p

+ j (j − 1)(j − 2)

2
Cj−3,p + 2j

p∑
s=1

EsCj−1,p−s − 2(j + 1)
p∑
s=1

EsCj+1,p−s

+ (2j + 1)Cj,p−1 − (2j + 3)Cj+2,p−1
]

(5.66)

and

Ep = − 1

p
C1,p−1 . (5.67)

In order to obtain Ep we have to calculate Cj+1,q for all q = 0, 1, . . . , p − 1 and j = 0, 1, . . . ,
p−q−1, taking into account the normalization conditionC0,p = δ0p. The perturbation coefficients
for the energy and expectation values are given in terms ofM and

E0 = J (J + 1)+ 1

4
=
(
J + 1

2

)2

. (5.68)

Taking into account that the eigenvalue equation (5.60) is invariant under the transformation (λ, θ)→
(−λ, θ+π), it is not difficult to prove that ε2j+1 = 0, j = 0, 1, . . . , andCj,p = 0, j+p = 1, 3, . . . .
We briefly discuss this point in Appendix C.

Present straightforward application of the method of Swenson and Danforth to the perturbed linear
rotor is different from an earlier adaptation of that method for Sturm–Liouville equations [93]–[95].
The advantage of the approach given here is that the same eigenvalue equation (5.60) is suitable for
both weak and strong fields as we will shortly see.

The method of Swenson and Danforth is faster and requires less computer memory than the method
of Fernández and Castro. However, the former provides expectation values of chosen trigonometric
functions instead of the eigenfunctions, whereas the latter yields the eigenfunctions explicitly and is
therefore more suitable for the calculation of properties other than the energy.

Table 5.7 shows some moment and energy coefficients. One easily obtains many more by means
of Maple procedures similar to those given earlier for other applications of the method of Swenson
and Danforth. The energy coefficients agree with those in Table 5.6.
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Table 5.7 Method of Swenson and Danforth for the Polar Linear Rigid Rotor in an Electric

Field. Notice that ε2p+1 = 0, Cj,p = 0 for all p = 0, 1, . . . , and j + p = 1, 3, . . .

ε0 = J (J + 1)

ε2 = ε0−3M2

2 ε0 (4 ε0−3)

ε4 = (612 ε02+513 ε0−405)M4+(−504 ε03+90 ε02)M2+20 ε04+33 ε03

8 ε03 (4 ε0−3)3 (4 ε0−15)

ε6 =
((

1505952 ε03 − 306099 ε02 + 255150− 147840 ε05 − 249840 ε04 − 650025 ε0
)
M6

+ (−170100 ε02 + 177216 ε06 − 1057644 ε04 + 773550 ε03 − 63360 ε05
)
M4

+ (−42240 ε07 + 54360 ε05 + 5481 ε04 + 72336 ε06
)
M2 + 2848 ε07 + 576 ε08

−5180 ε06 − 5640 ε05
)
/
(
16 ε05 (4 ε0 − 3)5 (ε0 − 2) (4 ε0 − 15) (4 ε0 − 35)

)
ε8 =

((
162753806250− 620272839375 ε0 + 99436055625 ε02 + 2155215016800 ε03

−2376614966715 ε04 − 6957377280 ε08 − 198105678720 ε07

−370733751900 ε05 + 892218823200 ε06 + 3122058240 ε09
)
M8

+(− 159137055000 ε02 + 26535269376 ε09 − 1214163167616 ε07

+171499341312 ε08 + 1721754031248 ε06 + 924763108500 ε03

−1750322803500 ε04 + 570123095940 ε05 − 4896141312 ε010
)
M6

+(− 719148451464 ε07 + 337056493248 ε08 − 17097435648 ε010 + 17135363700 ε04

−13004234496 ε09 − 133846229790 ε05 + 412609935582 ε06 + 2108282880 ε011
)

M4 + (− 226652160 ε012 + 1541835000 ε06 + 14690097360 ε08 + 14470172100 ε07

−9888439680 ε09 + 2100188160 ε011 − 3219770880 ε010
)
M2 + 8235264 ε012

+228561696 ε010 − 990203130 ε07 − 1212854283 ε08 + 930530052 ε09

+1504256 ε013 − 155906432 ε011
)

/(
128 ε07 (4 ε0 − 3)7 (ε0 − 2) (4 ε0 − 15)3 (4 ε0 − 35) (4 ε0 − 63)

)

C1, 1 = −ε0 + 3M2

ε0 (4 ε0 − 3)

C1, 3 = (−612 ε02 − 513 ε0 + 405)M4 + (504 ε03 − 90 ε02)M2 − 20 ε04 − 33 ε03

2 ε03 (4 ε0 − 3)3 (4 ε0 − 15)

C2, 0 = 2 ε0 − 1− 2M2

4 ε0 − 3

C2, 2 = (252 ε0 − 45)M4 + (−200 ε02 + 174 ε0 − 90)M2 + 12 ε03 − 13 ε02 + 15 ε0
(4 ε0 − 3)3 ε0 (4 ε0 − 15)
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5.4.3 Strong-Field Expansion

The perturbation expansion in powers of λ is suitable for sufficiently weak interactions, and its
radius of convergence will be discussed in Chapter 6. In addition to the λ-power series it is also
possible to derive an expansion for large values of λ that we discuss in what follows. The stronger
the interaction, the deeper the potential well v(θ) as shown in Figure 5.2 for the dimensionless Stark
potential v(θ) = −λ cos(θ). When the interaction is sufficiently strong the system oscillates about
the minimum of v(θ) which we can approximate by its Taylor expansion in a way that resembles
the approach of small oscillations in classical mechanics. Although we discuss such polynomial
approximation in more detail in Chapter 7, we believe it appropriate to round off the present study
of perturbed rigid rotors with the treatment of strong interactions.

FIGURE 5.2
Dimensionless potential-energy function v(θ) = −λ cos(θ) for increasing values of λ.

For concreteness we consider a parity-invariant potential-energy function with a minimum at
θ = 0; that is to say, v(−θ) = v(θ), v′(0) = 0, and v′′(0) > 0. We expand it in a Taylor series about
the minimum

v(θ) =
∞∑
j=0

vj θ
2j . (5.69)

It is convenient to define the function

F(θ) = θ2

sin(θ)2
=
∞∑
j=0

Fjθ
2j . (5.70)

By comparing the Taylor series of both sides of sin(θ)2F(θ)/θ2 = 1 it is not difficult to prove that
the coefficients Fj satisfy the recurrence relation

Fj = δj0 +
j∑
i=1

(−1)i+1 22i+1

(2i + 2)!Fj−i (5.71)

which is useful to obtain them by means of computer algebra.
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Rewriting the eigenvalue equation (5.60) in terms of the new variable

q = θ√
ξ
, ξ = 1√

λv1
, (5.72)

we obtain 
− d2

dq2
+ q2 + α

q2
+
∞∑
j=1

(aj q
2j+2 + bjq2j−2)ξ j − e


� = 0 , (5.73)

where

e = ξ
(
ε + 1

4

)
− ξαF1 − λξv0, aj = vj+1

v1
, bj =

(
1− δj1

)
αFj . (5.74)

The Schrödinger equation (5.73) describes a harmonic oscillator with a power series perturbation
and accounts for the oscillation of the strongly hindered rotor about the minimum of the potential
well. On solving it by means of perturbation theory we obtain the eigenvalues as power series of the
perturbation parameter ξ :

e =
∞∑
j=0

ej ξ
j , (5.75)

where [30]

e0 = 2(2n+M + 1) , (5.76)

and n = 0, 1, . . . is a vibrational quantum number. Solving for ε we obtain the eigenvalues of
equation (5.54) as

ε = v0λ− 1

4
+ αF1 +

∞∑
j=0

ej (v1λ)
(1−j)/2 . (5.77)

It only remains to calculate the energy coefficients ej by means of any of the methods described in
previous chapters. For simplicity, here we choose the method of Swenson and Danforth. Straightfor-
ward application of the hypervirial and Hellmann–Feynman theorems, and expansion of the energy
e and the expectation valuesQN =< qN > in Taylor series about ξ = 0, yield

QN+1,p = 1

4(N + 1)

{
N
(

4N2 − 4m2
)
QN−1,p + 2(2N + 1)

p∑
k=0

ekQN,p−k (5.78)

−
p∑
j=1

[
2(2N + j + 2)ajQN+j+1,p−j + 2α(2N + j)(1− δj1)FjQN+j−1,p−j

]

 ,

ep = 1

p

p∑
j=1

j
[
ajQj+1,p−j + α

(
1− δj1

)
FjQj−1,p−j

]
. (5.79)

In order to obtain ep we need all the moment coefficients QN+1,s , s = 0, 1, . . . , p − 1, and N =
0, 1, . . . , p − s, whereQ0,s = δ0s .

By means of the equations just derived and a Maple program similar to those for earlier applications
of the method of Swenson and Danforth, one easily obtains as many perturbation corrections as
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Table 5.8 Energy of a Polar Rigid Rotor in a Strong Electric Field

K = 2n+M + 1 = 2J −M + 1

ε = −λ+ 3M2

8 − 3
8 +K

√
2
√
λ− 1

8 K
2 + K (−3+9M2−K2)

√
2

128
√
λ

− 34K2−102M2 K2+5K4+9−42M2+33M4

2048 λ

−K (−1722M2+813M4−1230M2 K2+405+410K2+33K4)
√

2
65536 λ3/2

+ 9
262144

(−54+ 1350M2K2 − 495M4K2 + 420M2K4 − 327K2 − 314M4 − 140K4

+ 286M2 + 82M6 − 7K6
)
/λ2 + · · ·

desired. Table 5.8 shows an analytical expression for the energy through order four in terms of the
quantum numbers J , M , and K = 2n + M + 1; the latter introduced with the only purpose of
comparing present results with earlier ones [91].

In order to match the weak- and strong-field series for a given state, one should just take into
account that J = M + n. Therefore, writingK = 2J −M + 1 we obtain the strong-field expansion
solely in terms of the rotational quantum numbers J andM = |m| [90].

In Chapter 6 we show that the radius of convergence of the weak-field perturbation series is nonzero
and increases with the quantum number J . On the other hand, the strong-field perturbation series is
divergent but still useful for sufficiently great values of λ provided that we truncate it properly. In
what follows we show that both series match smoothly at an intermediate point. As an illustrative
example we consider the ground state (M = 0, J = 0), and arbitrarily choose maximum perturbation
orders p = 20 and p = 5 for the weak-field (WF) and strong-field (SF) series, respectively.

FIGURE 5.3
Logarithmic absolute difference between the weak-field εWF and strong-field εSF series for
the dimensionless ground-state energy of a polar rigid rotor in an electric field of intermediate
strength.
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Figure 5.3 shows log |εWF − εSF | for an intermediate region 1.6 < λ < 1.9 where we clearly see
that both series match smoothly and even cross twice. If, for example, we use the weak-field series for
λ < 1.65 and the strong-field expansion for λ > 1.65, then we expect to obtain reasonable results for
all values of λwith the greatest error somewhere around the matching point. At λ = 1.65 the “exact”
(accurately calculated by a numerical method), weak-field, and strong-field dimensionless energies
are, respectively, εexact = −0.3975020830, εWF = −0.3972789054, and εSF = −0.397311692.
The percent error is 0.056 and 0.048 for the weak-field and strong-field series, respectively, and
must be smaller than these values for λ < 1.65 and λ > 1.65 where the former and latter series,
respectively, are expected to improve. We have obtained the “exact” results by means of an accurate
summation of the weak-field series in a way described in Chapter 6.

                          



Chapter 6

Convergence of the Perturbation Series

6.1 Introduction

In preceding chapters we developed several methods for solving the perturbation equations for the
time-independent Schrödinger equation and showed that it is sometimes possible to obtain as many
perturbation coefficients as desired for the energies and eigenfunctions. Except for some trivial cases
perturbation expansions are infinite power series like

∞∑
j=0

Ejλ
j , (6.1)

and we are faced with the problem of finding a number E(λ) which may be properly called the sum
of that series for a given value of λ. A rigorous discussion of such a subject is beyond the scope
of this book. However, in this chapter we briefly comment on some of the results and conclusions
derived by other authors keeping present contribution as simple as possible. Moreover, we mainly
concentrate on the practical aspect of obtaining accurate results from the perturbation series.

If the rate of convergence of the perturbation series is sufficiently great, we may obtain accurate
results without difficulty by summing all available terms. If, on the other hand, the series is divergent
or slowly convergent we may need an appropriate summation algorithm to obtain acceptable results.
For concreteness and simplicity we focus on the perturbation series for the energy.

6.2 Convergence Properties of Power Series

The investigation of the convergence properties of the series

∞∑
j=0

aj (6.2)

is based on the examination of its partial sums SN = a0 + a1 + · · · aN to find out whether or not
they tend to a finite limit as N →∞.

There are several well-known convergence tests that one may apply to a given series [96]. For
example, consider an infinite series (6.2) of positive terms such that

lim
j→∞

aj+1

aj
= L . (6.3)
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The ratio test states that if L < 1 the series converges, if L > 1 the series diverges, and if L = 1 the
test is inconclusive. Accordingly, the power series (6.1) converges for all values of λ satisfying [96]

|λ| < lim
j→∞

|Ej |
|Ej+1| . (6.4)

If we can prove that the power series (6.1) converges for all values of λ such that |λ| < R, then we
say thatR is the radius of convergence of the series. For example, the geometric series 1+λ+λ2+· · ·
converges to E(λ) = 1/(1− λ) for all |λ| < 1. In this case the radius of convergence is determined
by a singular point at λ = 1 where |E(λ)| becomes infinite. Although the function E(λ) is well
defined for all |λ| �= 1, the power series is meaningful only for |λ| < 1.

In general, we say that λ = λp is a pole of the function E(λ) of order n if A = limλ→λp

(λ − λp)
nE(λ) is a finite nonzero number for some positive integer n. We find that the function

E(λ) behaves approximately as A(λ−λp)
−n in the neighborhood of λp. The radius of convergence

of the geometric series considered above is determined by a pole of order n = 1 at λp = 1.
The power series

∞∑
j=0

(−1)j
(

1/2
j

)
λj = 1− λ

2
− λ2

8
− λ3

16
− · · · , (6.5)

where

(
a

j

)
denotes the combinatorial numbers, converges to

√
1− λ for all |λ| < 1. The radius

of convergence is in this case determined by a square-root branch point at λ = 1. To understand this
kind of singular point consider the simple function f (z) = z1/2 in the complex z plane. In polar
representation z = reiθ , where r = |z|. If we circle once around z = 0 we arrive at the same point
z′ = rei(θ+2π) = z but the value of the function f (z) differs from the initial one: f (z′) = −f (z).
In other words, f (z) is not single-valued. We have to circle twice around z = 0 in order that f (z)
returns its initial value. Consider the more general case f (z) = z1/n, where n is a positive integer.
Solving wn = z = reiθ for w we obtain wk = r1/neiθ/n+2ikπ/n, where k = 0, 1, . . . , n− 1, and the
solution w exhibits n branches. Starting at the kth branch and circling once around z = 0 we arrive
at the (k + 1)th branch: wk(θ + 2π) = r1/neiθ/n+2i(k+1)π/n = wk+1(θ). We say that the function
z1/n exhibits a branch point of order n at z = 0.

6.2.1 Straightforward Calculation of Singular Points from Power Series

We say that a function f (z) is analytic (also regular or holomorphic) in a given region of the
complex plane if it is differentiable and single-valued there [97]. The simplest nonanalytic functions
with algebraic singularities are of the form

f (z) = A (z− z0)
a , (6.6)

where a is not a positive integer. It is not difficult to obtain the coefficients of the Taylor series
f (z) = f0 + f1z+ · · · explicitly; however, it is more convenient for the discussion below to derive
a recurrence relation for them from the differential equation

(z− z0) f
′(z) = af (z) (6.7)

satisfied by the function (6.6). Notice that z0 is a regular singular point of the differential equa-
tion (6.7) [98]. Expanding both sides of equation (6.7) in a Taylor series we easily obtain

z0(j + 1)fj+1 + (a − j)fj = 0 . (6.8)
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It follows from this recurrence relation that limj→∞ |fj/fj+1| = |z0| is the radius of convergence
of the Taylor series.

We can rearrange (6.8) as a linear inhomogeneous equation with two unknowns: z0 and a. Sub-
stituting j −1 for j we obtain another linear inhomogeneous equation with the same two unknowns.
Solving the resulting system of two equations for z0 and a we obtain

z0 = fjfj−1

(j + 1)fj+1fj−1 − jf 2
j

, a = (j2 − 1)fj+1fj−1 − (jfj )
2

(j + 1)fj+1fj−1 − jf 2
j

. (6.9)

These expressions, which are exact only if fj are the coefficients of the Taylor expansion of the
function (6.6) about z = 0, are useful to estimate the position and exponent of an algebraic singular
point of an unknown functionE(λ) if sufficient coefficients of its Taylor expansion (6.1) are available.
To this end we simply substitute Ek for fk (k = j −1, j, j +1) into equations (6.9) and estimate the
limits of the right-hand sides as j increases. Such an improved ratio method and its variants prove
useful for the estimation of the positions and exponents of the singular points of many functions of
physical interest [99]–[103].

In most practical applications the function E(z) is real for real values of z; therefore, for complex
z we have E(z)∗ = E(z∗), and the singular points are either real or appear in complex conjugate
pairs z0, z∗0. The expansion coefficients Ej are real and thereby equations (6.9) are not suitable for
obtaining a complex singular point z0 = zR + izI . However, even in such a case we can apply
the same method provided that we choose a slightly different ansatz f (z). Taking into account that
(z− z0)(z− z∗0) = z2 − 2zRz+ |z0|2 we consider

f (z) =
(
z2 − 2zRz+ |z0|2

)a
(6.10)

that satisfies the differential equation(
z2 − 2zRz+ |z0|2

)
f ′(z) = 2a (z− zR) f (z) . (6.11)

Notice that z0 and z∗0 are regular singular points of the differential equation (6.11) [98]. Expanding
both sides of equation (6.11) in Taylor series we obtain a recurrence relation for the expansion
coefficients fj :

|z0|2(j + 1)fj+1 + 2zR(a − j)fj − 2afj−1 = (1− j)fj−1 . (6.12)

Substituting j − 1 and j − 2 for j we derive two additional equations, which together with equa-
tion (6.12) form a system of three inhomogeneous equations with three unknowns: zR , |z0|2 and a.
On solving it we obtain simple expressions for the unknowns in terms of the coefficients fk . We then
proceed as in the preceding case in order to estimate the exponent and position of a singular point of
an unknown function E(λ) from its Taylor expansion (6.1). This method is well known [99]–[103]
and we apply it to some particular problems later in this chapter.

The two methods just outlined provide only the singular points closest to origin that cause the
asymptotic behavior of the coefficients of the power series.

Because in all the practical examples discussed below we already know the exponent of the singular
point, in what follows we concentrate on this simpler case in which it is sufficient to solve a system
of two equations for the remaining unknowns zR and |z0|2, thus obtaining

zR = (j + 1)(j − 2a − 2)fj−2fj+1 + j (2a − j + 1)fj−1fj

2[(j + 1)(j − a − 1)fj−1fj+1 + j (a − j)f 2
j ]

,

|z0|2 = (j − a)(j − 2a − 2)fj−2fj + (j − a − 1)(2a − j + 1)f 2
j−1

(j + 1)(j − a − 1)fj−1fj+1 + j (a − j)f 2
j

. (6.13)
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The imaginary part of the singular points is given by |zI | =
√
|z0|2 − z2

R . These equations are exact
only for the Taylor coefficients fk of the ansatz (6.10). Substituting the coefficientsEk of an unknown
function E(λ) for fk we can estimate the position of the pair of complex conjugate singular points
closest to the origin of the λ plane provided the sequences (6.13) of zR and |z0| values converge as
j increases.

Equations (6.9) and (6.13) are suitable for obtaining the parameters that characterize algebraic
singular points because the coefficients Ek of a power series carry information about the singular
point closest to the origin. This information becomes more noticeable as k increases and determines
the asymptotic behavior of Ek . If the coefficients Ek reveal the asymptotic behavior at moderate
values of k, then the method gives accurate results with little computational effort; otherwise it
converges slowly, requiring calculations of large order that may be time consuming.

6.2.2 Implicit Equations

In quantum mechanics we commonly derive exact or approximate quantization conditions of the
form

Q(E, λ) = 0 (6.14)

that give the allowed values of the energy E in terms of a model parameter λ (or of a set of such
parameters). In what follows we concentrate on the case that λ is a perturbation parameter and obtain
the perturbation expansion (6.1) either from the standard formulas given in preceding chapters or
from the quantization condition (6.14).

The quantization condition (6.14) gives us either E(λ) or λ(E). In the latter case we can expand
λ about a given point E = Eb:

λ = λb +
∞∑
j=1

cj (E − Eb)
j , cj = 1

j !
djλ

dEj
(Eb) , (6.15)

where λb = λ(Eb). If

djλ

dEj
(Eb) = 0, j = 1, 2, . . . , n− 1,

dnλ

dEn
(Eb) �= 0 , (6.16)

then λ = λb + cn(E − Eb)
n + · · · and

E ≈ Eb + [(λ− λb) /cn]1/n (6.17)

in a neighborhood of λb. We see that equations (6.16) are sufficient conditions for a branch point of
order n at λ = λb.

Here we are interested in the most usual case n = 2. Differentiating the quantization condi-
tion (6.14) with respect to E, and taking into account that λ depends on E, we have

∂Q

∂E
+ ∂Q

∂λ

dλ

dE
= 0,

∂2Q

∂E2
+ 2

∂2Q

∂λ∂E

dλ

dE
+ ∂2Q

∂λ2

(
dλ

dE

)2

+ ∂Q

∂λ

d2λ

dE2
= 0 . (6.18)

Therefore, if

Q(Eb, λb) = 0,
∂Q

∂E
(Eb, λb) = 0,

∂Q

∂λ
(Eb, λb) �= 0,

∂2Q

∂E2 (Eb, λb) �= 0 , (6.19)

then E(λ) exhibits a square-root branch point (for a more detailed discussion see reference [104]).
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6.3 Radius of Convergence of the Perturbation Expansions

As discussed earlier in this book, perturbation theory provides approximate eigenvalues E(λ) of
a Hamiltonian operator Ĥ = Ĥ0 + λĤ ′ in the form of a power series (6.1). In order to understand
the origin of the singular points that determine its radius of convergence we consider some simple
trivial (exactly solvable) and nontrivial models below.

6.3.1 Exactly Solvable Models

In order to facilitate the study of the analytical properties of the eigenvalues E(λ) in the complex
λ plane, we first consider some exactly solvable time-independent Schrödinger equations.

Our first example is a Hamiltonian operator acting on a two-dimensional state space:

Ĥ = ε1|1 >< 1| + ε2|2 >< 2| + λ(V |1 >< 2| + V ∗|2 >< 1|) , (6.20)

where the real numbers ε1 and ε2 are the only two eigenvalues of Ĥ0 = ε1|1 >< 1| + ε2|2 >< 2|
and V is a complex number. Notice that Ĥ0 and Ĥ ′ = V |1 >< 2| + V ∗|2 >< 1| are, respectively,
diagonal and off diagonal in the orthonormal basis set {|1 >, |2 >}. A particular form of this
simple operator has already proved suitable to introduce concepts of finite-dimensional perturbation
theory [105]. The secular determinant |H− E1| = 0, where

H− E1 =
(

ε1 − E λV

λV ∗ ε2 − E

)
(6.21)

is the matrix representation of Ĥ − E1̂, gives us the characteristic equation

E2 − (ε1 + ε2) E + ε1ε2 − λ2|V |2 = 0 . (6.22)

The two roots of this equation are the two eigenvalues of Ĥ :

E1(λ) = ε1 + ε2

2
− R(λ), E2(λ) = ε1 + ε2

2
+ R(λ)

R(λ) = 1

2

√
%ε2 + 4λ2|V |2, %ε = |ε2 − ε1| . (6.23)

Each eigenvalue (6.23) exhibits a pair of complex conjugate square-root branch points λb, λ∗b
given by the zeros of %ε2 + 4λ2|V |2:

λb = i
�ε

2|V | . (6.24)

Because there is no other singular point closer to the origin (in fact, there are no other singularities)
the perturbation series

Ek(λ) =
∞∑
j=0

Ek,jλ
2j (6.25)

for k = 1, 2 converge for all |λ| < |λb|.
The curves E1(λ) and E2(λ) cross at the branch points taking the common real value

E (λb) = E
(
λ∗b
) = Eb = ε1 + ε2

2
. (6.26)
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Alternatively, we can view E1(λ) and E2(λ) as the two branches of a two-valued function.
Because E is a function of λ2, it is more convenient to choose ξ = λ2 as a variable instead of λ

itself. The characteristic equation (6.22) is a particular case of the quantization condition (6.14) that
gives either E(ξ) or ξ(E). In the latter case we have

ξ = 1

4|V |2
[
4 (E − Eb)

2 −%ε2
]
; (6.27)

therefore

∂ξ

∂E
(Eb) = 0⇒ ∂λ

∂E
(Eb) = 0 , (6.28)

and

∂2ξ

∂E2 (Eb) �= 0⇒ ∂2λ

∂E2 (Eb) �= 0 , (6.29)

which are particular cases of the conditions (6.16) for n = 2.
It is also instructive to consider the eigenvectors of Ĥ . A vector of the state space ' = b1|1 >

+b2|2 > is an eigenvector of Ĥ with eigenvalueE if the coefficientsbj satisfyb2 = (E−ε1)b1/(λV ).
The norm of the eigenvector reads

||'|| = √< '|' > = |b1|
√

1+ (E − ε1)2

λ2|V |2 , (6.30)

where we have explicitly assumed λ and E to be real. Notice that ||'|| vanishes when b1 = 0 or
when

(E − ε1)
2 + λ2|V |2 = 0 . (6.31)

Real values of λ do not satisfy this equation, but Eb,±λb are solutions. We conclude that the norm
of an eigenvector vanishes at the branch points.

Another simple illustrative example is the harmonic oscillator with a harmonic perturbation:

Ĥ = Ĥ0 + λĤ ′ = 1

2

(
− d2

dx2
+ x2 + λx2

)
, (6.32)

because one easily obtains the eigenvalues as functions of the perturbation parameter λ:

Ek(λ) =
√

1+ λ

(
k + 1

2

)
, k = 0, 1, . . . . (6.33)

All the eigenvalues collapse at the branch point λ = −1 which corresponds to a zero force constant.
In fact, when λ = −1 we have a free particle and no bound states; therefore, we do not expect a
perturbation theory for the point spectrum to apply in such a case. When λ < −1 the potential-energy
function is no longer a well but a barrier that does not support bound states. We will discuss barriers
and other such problems later in this book.

The two trivial examples studied so far exhibit perturbation series with convergence radii deter-
mined by square-root branch points on the complex λ-plane where two or more eigenvalues cross.
This situation is quite common in quantum mechanics as we will shortly see in other problems.

Many authors have resorted to exactly solvable models in their studies of perturbation series. In
particular the delta function has proved useful as a one-dimensional model of Coulomb interaction in
diatomic molecules with one electron, facilitating the understanding of the polarization expansion at
large internuclear distances [106]–[109]. We have briefly discussed the application of perturbation
theory to such problems in Chapter 4.
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6.3.2 Simple Nontrivial Models

As stated earlier, we will not attempt a rigorous study of the convergence properties of the pertur-
bation series in quantum mechanics. However, we outline some well-known mathematical results
that are necessary for the discussions and applications in this chapter.

Many textbooks state that the perturbation series for the eigenvalues and eigenvectors of the
operator Ĥ (λ) = Ĥ0 + λĤ ′ converge for a given value of λ if the perturbation λĤ ′ is sufficiently
smaller than the unperturbed part Ĥ0. However, it is not obvious what it means that one operator
is smaller than another. In order to discuss this point briefly, in what follows ||ϕ|| = √< ϕ|ϕ >

denotes the norm of a vector ϕ of the state space already introduced earlier. Suppose that E0 is an
isolated simple eigenvalue of Ĥ0, and that there are two real numbers a and b such that∥∥∥Ĥ ′*∥∥∥ ≤ a

∥∥∥Ĥ0*

∥∥∥+ b‖*‖ (6.34)

for all * in the state space. Under such conditions there is a unique eigenvalue E(λ) of Ĥ near E0,
and E(λ) is analytic in a neighborhood of λ = 0 in the complex λ plane [105, 110].

Before treating any nontrivial problem, we first show that the inequality (6.34) applies to the
exactly solvable models discussed in the preceding subsection. For example, choosing an arbitrary
vector * = c1|1 > +c2|2 > of the state space of the two-level model, we easily prove that
||Ĥ ′*|| = |V |||*||; therefore, any a ≥ 0 and b ≥ |V | satisfies equation (6.34).

The proof that the inequality (6.34) also applies to the perturbed harmonic oscillator (6.32) is
somewhat more laborious. For convenience we write p̂ = −id/dx, so that Ĥ0 = (p̂2 + x̂2)/2 and
Ĥ ′ = x̂2/2. Following the straightforward steps

(
p̂2 + x̂2

)2 = p̂4 + x̂4 + p̂2x̂2 + x̂2p̂2

= p̂4 + x̂4 + p̂
([

p̂, x̂2
]
+ x̂2p̂

)
+ x̂

([
x̂, p̂2

]
+ p̂2x̂

)

= p̂4 + x̂4 + p̂x̂2p̂ + x̂p̂2x̂ + 2i
[
x̂, p̂

]
= p̂4 + x̂4 + p̂x̂2p̂ + x̂p̂2x̂ − 2 (6.35)

we obtain (
p̂2 + x̂2

)2 + 2 = p̂4 + x̂4 + p̂x̂2p̂ + x̂p̂2x̂ . (6.36)

The commutator technique in equation (6.35) is well known and was used earlier by other au-
thors [111]. Taking expectation values on both sides of equation (6.36), and realizing that

〈
'

∣∣∣ÂB̂2Â

∣∣∣'〉 = ∥∥∥B̂Â'

∥∥∥2 ≥ 0 (6.37)

for any two hermitian operators Â and B̂, we conclude that
∥∥∥(p̂2 + x̂2

)
'

∥∥∥2 + 2‖'‖2 ≥
∥∥∥x̂2'

∥∥∥2
. (6.38)

Making use of the well-known inequality

|α| + |β| ≥
√
α2 + β2 (6.39)

that holds for any two real numbersα andβ, we rewrite equation (6.38) in the form of equation (6.34):
∥∥∥Ĥ0'

∥∥∥+ 1√
2
||'|| ≥

∥∥∥Ĥ ′'∥∥∥ . (6.40)
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Therefore, the theorem enunciated above tells us that the Rayleigh–Schrödinger perturbation series
for the perturbed harmonic oscillator (6.32) has a finite radius of convergence in agreement with the
conclusion drawn earlier from the exact eigenvalues (6.33).

The perturbed rigid rotor discussed in Section 5.4 is a suitable example of a nontrivial quantum
mechanical model that gives rise to perturbation series with finite radius of convergence. In this case
we have

Ĥ0 = − 1

sin(θ)

d

dθ
sin(θ)

d

dθ
+ m2

sin(θ)2
, Ĥ ′ = v(θ) . (6.41)

Assuming that

|v(θ)| ≤ vM, 0 ≤ θ ≤ π , (6.42)

one easily proves that
∥∥∥Ĥ ′'∥∥∥ =

√
< '|v(θ)2|' > ≤ vM ||'|| , (6.43)

and the inequality (6.34) is satisfied for any a ≥ 0 and b ≥ vM . According to the theorem above the
perturbation series for every state of the perturbed rigid rotor exhibits a finite radius of convergence.

In Section 5.4 we developed two methods for the calculation of the perturbation corrections to
the dimensionless energy ε in terms of M = |m| and ε0 = J (J + 1). It was shown there that when
v(θ) = − cos(θ) the energy coefficients of odd order vanish; therefore, we write

ε =
∞∑
j=0

ε2j λ
2j =

∞∑
j=0

fj z
j , (6.44)

where fj = ε2j and z = λ2. As argued above, we can obtain the position and exponent of the
algebraic singular point closest to the origin by means of equation (6.9). Table 6.1 shows sequences
of values of z0 and a given by equation (6.9) for the ground-state energy (M = 0, J = 0). We
see that the sequence of values of a appears to converge towards a = 1/2 suggesting that there is a
square-root branch point at a negative value of z = z0 = λ2

b. The fourth column of Table 6.1 shows
that a new sequence of values of z0 obtained with a = 1/2 clearly approaches the same limit point
estimated to be z0 ≈ −3.6080. We conclude that there are two complex conjugate branch points at
±λb, where λb = 1.8995i in agreement with previous calculations [99]–[101].

Table 6.2 shows similar results for the perturbation series with M = 0 and J = 1 (ε0 = 2). There
is no doubt that this state shares a common branch point with the ground state where they match. As
said above we can view them as two branches of the same two-valued function. What is surprising
is that the sequences of singularity parameters z0 and a for those states approach each other faster
than they approach their common limits. Notice that after a relatively small value of j they agree up
to the tenth digit.

Numerical calculations based on the perturbation series for the polar rigid rotor in a uniform elec-
tric field should be carried out carefully in order to remove vanishing denominators in the energy
coefficients. One should first substitute the appropriate value of M and simplify the resulting expres-
sions before substituting the value of ε0. In this way zeros of the numerator and denominator cancel
each other. The Maple command simplify produces perturbation corrections free from apparent
poles.

The method for the estimation of singular points from the perturbation series just described applies
only to the states with J = M and J = M + 1, and diverges in other cases. We do not know the
reason of such failure. Numerical calculation shows that each pair of states given by J = M and
J = M + 1, M = 0, 1, . . . , exhibits a common branch point closest to the origin.
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Table 6.1 Parameters of the Singular Point
Closest to the Origin Calculated from the
Perturbation Series for the Ground-State Energy of
the Polar Linear Rigid Rotator in a Uniform Electric
Field

j z0 a z0(a = 1/2)
1 −3.512417638 0.5707045109 −4.090909091
2 −3.556560626 0.5527415633 −3.686170213
3 −3.585821089 0.5326075288 −3.633209077
4 −3.596819366 0.5219724907 −3.619542326
5 −3.601477950 0.5161725703 −3.614468003
6 −3.603762887 0.5126933876 −3.612099210
7 −3.605027112 0.5104175963 −3.610814189
8 −3.605793807 0.5088247575 −3.610041506
9 −3.606292185 0.5076511427 −3.609541257
10 −3.606633893 0.5067517094 −3.609198974
11 −3.606878210 0.5060408867 −3.608954523
12 −3.607058873 0.5054651721 −3.608773879
13 −3.607196202 0.5049894780 −3.608636619
14 −3.607303017 0.5045898674 −3.608529882
15 −3.607387730 0.5042494624 −3.608445244
16 −3.607456041 0.5039560264 −3.608376998
17 −3.607511927 0.5037004735 −3.608321169
18 −3.607558228 0.5034759175 −3.608274917
19 −3.607597016 0.5032770442 −3.608236170
20 −3.607629833 0.5030996882 −3.608203387
21 −3.607657845 0.5029405378 −3.608175405
22 −3.607681946 0.5027969278 −3.608151329
23 −3.608130465

The Maple program for the calculation of branch points according to equation (6.9) is extremely
simple and we do not show it here.

In order to verify the results just obtained, in what follows we compare them with those produced
by the method of implicit equations outlined in Section 6.2.2. In order to apply this method we
need an appropriate quantization condition; here we choose the well-known secular determinant.
For brevity we denote the unperturbed eigenvectors by the kets |J,M >, where M = |m| and
J = M,M + 1, . . . . Taking into account that M remains fixed during the calculation because m is
a good quantum number, it is convenient to simplify the matrix notation by omitting M in the kets
and writing |i >= |M + i,M >, i = 0, 1, . . . .

Approximating the perturbed state ' as a finite linear combination of unperturbed states

' =
N∑
i=0

ci |i > (6.45)

we obtain the secular equation

N∑
j=0

(
Hi,j − εδi,j

)
cj = 0, Hi,j =

〈
i

∣∣∣Ĥ ∣∣∣ j 〉 , (6.46)
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Table 6.2 Parameters of the Singular Point Closest to
the Origin Calculated from the Perturbation Series for
the State with |m| = 0 and J = 1 of the Polar Linear
Rigid Rotator in a Uniform Electric Field

j z0 a z0(a = 1/2)
1 −5.237205912 −0.09233151889 −2.397260274
2 −3.508036512 0.5984940281 −3.754571777
3 −3.542837739 0.5746700583 −3.651913167
4 −3.594244744 0.5249681057 −3.620069394
5 −3.602136537 0.5151423911 −3.614298564
6 −3.603865496 0.5125097594 −3.612081181
7 −3.605025052 0.5104223879 −3.610814793
8 −3.605792052 0.5088289160 −3.610041753
9 −3.606292071 0.5076514372 −3.609541268
10 −3.606633909 0.5067516623 −3.609198972
11 −3.606878213 0.5060408775 −3.608954523
12 −3.607058873 0.5054651721 −3.608773879
13 −3.607196202 0.5049894782 −3.608636619
14 −3.607303017 0.5045898674 −3.608529882
15 −3.607387730 0.5042494624 −3.608445244
16 −3.607456041 0.5039560264 −3.608376998
17 −3.607511927 0.5037004735 −3.608321169
18 −3.607558228 0.5034759175 −3.608274917
19 −3.607597016 0.5032770442 −3.608236170
20 −3.607629833 0.5030996882 −3.608203387
21 −3.607657845 0.5029405378 −3.608175405
22 −3.607681946 0.5027969278 −3.608151329
23 −3.608130465

where [78, 112]

Hi,j = (M + i)(M + i + 1)δi,j − λ

[
i(i + 2M)

4(i +M)2 − 1

]1/2

δi−1,j

−λ
[
(i + 1)(i + 2M + 1)

4(i +M + 1)2 − 1

]1/2

δi+1,j = Hj,i . (6.47)

Because the matrix H of the Hamiltonian operator Ĥ is tridiagonal the secular equation (6.46)
becomes a three-term difference equation

Aici−1 + Bici + Ai+1ci+1 = 0, i = 0, 1, . . . , N , (6.48)

where

Bi = Hi,i − ε, Ai =



0 if i ≤ 0
Hi,i−1 if 0 < i ≤ N

0 if i > N

. (6.49)
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The determinant of the homogeneous system of N + 1 equations (6.48) with N + 1 unknowns ci is

DN =

∣∣∣∣∣∣∣∣∣∣∣

B0 A1 0 0 . . .

A1 B1 A2 0 . . .

. . .
. . .

. . . AN−1 BN−1 AN

. . . 0 AN BN

∣∣∣∣∣∣∣∣∣∣∣
. (6.50)

Expanding DN by minors along the last row, and then the coefficient of AN along the last column,
we obtain the following three-term recurrence relation [113, 114]

DN = BNDN−1 − A2
NDN−2 . (6.51)

Taking into account the initial conditions D−2 = 0, and D−1 = 1, we easily calculate the secular
determinants DN , N = 0, 1, . . . to any desired dimension. It is well known that the approximate
quantization condition DN(ε, λ) = 0 becomes increasingly accurate as N increases.

According to the discussion of Section 6.2.2, square-root branch points are simultaneous solutions
of the equations

DN (εb, λb) = 0,
∂DN

∂ε
(εb, λb) = 0 , (6.52)

provided that

∂DN

∂λ
(εb, λb) �= 0,

∂2DN

∂λ2 (εb, λb) �= 0 . (6.53)

We use Maple to obtain the determinants DN as analytical functions of ε and λ, and to solve
equations (6.52) numerically by means of the Newton–Raphson algorithm. Because Maple allows
us to predetermine a sufficiently great floating-point precision through the variable Digits, the results
of the final numerical step are supposed to be free from roundoff errors, and accurate up to the last digit
reported. Table 6.3 shows the root closest to the origin of equations (6.52) for m = 0 and increasing
values of N . Because of the remarkable rate of convergence we easily obtain accurate branch points
from determinants of relatively small dimension. The converged value of λ2

b agrees with the value
of z0 obtained from the perturbation series by the method of Section 6.2.1 (cf. Tables 6.1 and 6.2). It
is not surprising that the nonperturbative method based on the sequence of secular determinants DN

yields more accurate results. However, the method of the perturbation series is useful when there is no
other approach to the studied physical property. The agreement of these two completely independent
methods strongly supports the supposition that the radius of convergence of the eigenvalue ε(λ) is
determined by a square-root branch point.

Table 6.4 shows singularity parameters |λb| and εb = ε(λb) = ε(λb)
∗ = ε(λ∗b) for some states

with m = 0, 1, 2 which are more accurate than earlier results [113, 114].
Figure 6.1 shows λ(ε)2 for selected intervals of ε, calculated by means of secular determinants

and perturbation series. In the latter case we simply substitute the appropriate values of M = |m|
and J (in ε0 = J (J + 1)) for the two branches involved. We clearly see that each pair of energy
eigenvalues with quantum numbers J , J + 1 share a common branch point (minimum of the curve).
The curves that join states with J = M and J = M + 1 look simpler than those joining states with
J > M + 1. This noticeable difference may explain why the method of Section 6.2.1 diverges when
J > M + 1. The curve connecting the states with M = 0, J = 2, and J = 3 was not shown in
earlier discussions of the subject [113].

Maple greatly facilitates the calculation just discussed. The programs for the construction of the
perturbation series were described in the preceding chapter. The procedure that builds the secular
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FIGURE 6.1
Curves λ2 (ε) vs. ε connecting the states (M = 0, J = 0)− (M = 0, J = 1) (a), (M = 1, J =
1) − (M = 1, J = 2) (b), and (M = 0, J = 2) − (M = 0, J = 3) (c). Continuous lines are
results from secular determinants; broken lines and points come from perturbation theory.
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Table 6.3 Approximate Branch
Point Closest to the Origin for
States with m = 0 Obtained from
Determinants of Dimension N

N εb λ2
b

2 1.121754911 −3.621793885
3 1.118493345 −3.607856626
4 1.118508634 −3.607916830
5 1.118508607 −3.607916730
6 1.118508607 −3.607916730

Table 6.4 Branch Points for the Linear Rigid Rotor in an Electric Field

|m| = 0 |m| = 1 |m| = 2
εb |λb| εb |λb| εb |λb|

1.118508607 1.899451692 4.558778867 5.413699680 10.32081667 10.42885501
9.182711108 11.44693732 16.13759075 19.03665394 25.42076233 28.15827404
24.27433747 29.15703642 34.74306246 40.82876537 47.54188835 54.04029322

determinants is straightforward and we do not show it here. We use the Maple command fsolve to
obtain roots of one-variable functions, and a simple Newton–Raphson algorithm for two variables.
We do not show our Newton–Raphson procedure here because it is extremely naive and there may
be other more elaborate, automatic, and reliable Maple procedures available in the literature.

6.4 Divergent Perturbation Series

We say that a perturbation series is divergent when its radius of convergence is zero. Divergent
perturbation series are so common in quantum mechanics that some authors have stated that they are
more likely a rule than an exception. A rigorous discussion of divergent series is beyond the scope
of this book. We merely summarize some well-known results, and briefly discuss methods for using
divergent expansions in practical applications.

Some of the quantum-mechanical models discussed in earlier chapters lead to divergent series: for
example, the anharmonic oscillators and the Zeeman and Stark effects in hydrogen. In this chapter
we consider one-dimensional anharmonic oscillators as illustrative examples because they are the
simplest models, and we can easily calculate sufficient perturbation coefficients for the application
of summation methods.

We say that the series (6.1) is asymptotic to the function E(λ) as λ→ 0 if [98]

lim
λ→0

E(λ)−∑N
j=0 Ejλ

j

λN+1
= EN+1 . (6.54)
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6.4.1 Anharmonic Oscillators

In earlier chapters we calculated perturbation corrections for some one-dimensional anharmonic
oscillators. The most widely studied representative of this class of models is the quartic anharmonic
oscillator

Ĥ = −1

2

d2

dx2
+ x2

2
+ λx4 . (6.55)

The analytic properties of the singular perturbation theory for this problem have been studied, first by
means of approximate methods [115] and later in a more rigorous way [111]. It has been proved that
any eigenvalue E(λ) has a global third-order branch point at λ = 0. On the three-sheeted surface,
λ = 0 is not an isolated singularity because there are infinitely many branch points of order two
that accumulate towards origin. As a result the perturbation series is divergent, i.e., the radius of
convergence is zero and the λ-power series does not converge for any value of λ (no matter how
small it may be) [111, 115]. There are no real numbers a and b satisfying the inequality (6.34) for
all *.

The asymptotic behavior of the energy perturbation coefficients Ej for the ground state is [115]

Ej ∼ E
asymp
j = (−1)j+13j

√
6

π3/2
7(j + 1/2) . (6.56)

It follows from this expression that the radius of convergence of the perturbation series is zero:

lim
j→∞

|Ej |
|Ej+1| = 0 . (6.57)

Figure 6.2 shows the ratio Rj = Ej/E
asymp
j , where the exact perturbation coefficients Ej for the

ground-state energy were calculated by means of the method of Swenson and Danforth described in
Section 3.3.1. As j increases, this ratio slowly approaches unity.

FIGURE 6.2
Ratio Rj = Ej/E

asymp
j for the ground-state energy of the anharmonic oscillator.
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If λ is sufficiently small the sequence of partial sums

SN =
N∑
j=0

Ejλ
j , N = 0, 1, . . . (6.58)

for an asymptotic divergent series appears to converge as N increases, but after some value of N SN
clearly exhibits its divergent nature. However, it is commonly possible to obtain acceptable results
by appropriate truncation. If we assume that the error |E(λ) − SN | is of the order of magnitude
of the first neglected term |EN+1λ

N+1| then it is reasonable to choose the latter to be as small as
possible [98].

Figure 6.3 shows that the minimum of log(|Ej+1λ
j+1|) vs. j increases and moves to smaller j

values as λ increases. In other words, as λ increases we can sum less terms and obtain a less accurate
estimation of the energy.

FIGURE 6.3
log(|Ejλ

j |) for the ground state of the anharmonic oscillator.

Table 6.5 shows the optimum value ofN , the approximate energy calculated by perturbation theory
SN , the estimated error |EN+1λ

N+1|, and the exact result obtained by means of a nonperturbative
method [116]. Notice that |E(λ)−SN | is of the order of |EN+1λ

N+1| supporting the truncation rule
suggested above. It is clear from the results of Table 6.5 that the perturbation series for the ground
state of the anharmonic oscillator is useful only for sufficiently small λ values (say, λ < 0.05).

Table 6.5 Ground-State Energy of the Anharmonic Oscillator Ĥ = 1

2

(
p̂2 + x̂2

)
+ λx̂4

λ N Truncated Perturbation Series SN Estimated Absolute Error Exact

0.01 32 0.5072562045246011 0.3527780020 10−14 0.5072562045246028
0.02 16 0.514086399 0.5822940303 10−7 0.5140864273
0.04 7 0.526837 0.2060990198 10−3 0.5267339644
0.06 4 0.5369 0.2784570413 10−2 0.5383192923
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6.5 Improving the Convergence Properties of the Perturbation Series

We have just seen that divergent series are useful only for sufficiently small values of the pertur-
bation parameter. However, in many cases it is possible to improve the convergence properties of
the perturbation series and obtain valuable results for greater values of the expansion variable. We
discuss some examples in what follows.

6.5.1 The Effect of Ĥ0

The convergence properties of the perturbation series depend dramatically on the reference model
Ĥ0. Therefore, a judicious choice of this operator is mandatory in difficult cases. In what follows
we illustrate this important point by means of simple examples.

The method that we present here is quite general and flexible. It has been suggested by a recent
application of perturbation theory by means of a factorization method, [117] and has not been
sufficiently exploited as far as we know.

Given a Hamiltonian operator Ĥ we construct another operator

Ĥ(β) = Ĥ + (β − 1)Ŵ (β) , (6.59)

where Ŵ is an hermitian operator that depends on the new perturbation parameter β and can be
expanded in a Taylor series about β = 0:

Ŵ (β) =
∞∑
j=0

Ŵjβ
j . (6.60)

If we write

Ĥ(β) =
∞∑
j=0

Ĥjβ
j , (6.61)

where

Ĥ0 = Ĥ − Ŵ0, Ĥj = Ŵj−1 − Ŵj , j = 1, 2 . . . , (6.62)

and expand the eigenfunctions '(β) and eigenvalues E(β) of Ĥ(β) in Taylor series about β = 0

'(β) =
∞∑
j=0

'jβ
j , E(β) =

∞∑
j=0

Ejβj , (6.63)

then we can apply perturbation theory in the way outlined in Chapter 1. The coefficients of those
series are determined by the perturbation equations

(
Ĥ0 − E0

)
'j =

j∑
i=1

(
Ei − Ĥi

)
'j−i . (6.64)

If the series (6.63) converge for β = 1, they give us the eigenfunctions and eigenvalues of Ĥ

because Ĥ(1) = Ĥ . Thus, the problem reduces to selecting an operator Ŵ that facilitates solving
the perturbation equations (6.64) and that leads to perturbation series that converge for β = 1.
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The simplest case is given by Ŵj = 0 for all j > 0, so that Ŵ (β) = Ŵ0 is independent of β, and

Ĥ(β) = Ĥ0 + βĤ1, Ĥ0 = Ĥ − Ŵ0, Ĥ1 = Ŵ0 . (6.65)

As an illustrative example we choose the anharmonic oscillator (6.55) and

Ŵ0 = 1− ω2

2
x2 + λx4 = Ĥ1 ⇒ Ĥ0 = −1

2

d2

dx2
+ ω2x2

2
. (6.66)

The unperturbed model is a dimensionless harmonic oscillator with frequency ω that we may hope-
fully adjust in order to obtain perturbation series with better convergence properties.

This quite popular particular case of the method has proved to yield convergent renormalized
series with partial sums [118]

SN(ω) =
N∑
j=0

Ej (ω) . (6.67)

There are several ways to determine appropriate ω values. One of them is the principle of minimal
sensitivity [119] which is based on the fact that the eigenvalues and eigenfunctions of Ĥ(β = 1) = Ĥ

are independent of ω. Therefore, it is reasonable to look for ω values in the flattest part of the curve
SN(ω) vs. ω. From the Taylor series

SN(ω) = SN (ωN)+ ∂SN(ω)

∂ω

∣∣∣∣
ω=ωN

(ω − ωN)+ ∂2SN(ω)

∂ω2

∣∣∣∣
ω=ωN

(ω − ωN)
2

2
+ · · · (6.68)

we realize that ωN may meet the above condition if

∂SN(ω)

∂ω

∣∣∣∣
ω=ωN

= 0 (6.69)

and |(∂2SN/∂
2ω)(ωN)| is small.

The calculation of the perturbation coefficients Ej (ω) is straightforward by any of the methods
described in earlier chapters. Here we choose the method of Swenson and Danforth discussed in
Section 3.3.1 and easily calculate sufficient energy coefficients Ej by means of a program which is
just a slight modification of the one for the dimensionless anharmonic oscillator already given in the
program section. Table 6.6 shows results for the ground state of the anharmonic oscillator (6.55)
with λ = 0.06 which is the maximum λ value considered in Table 6.5. For each value of N we see
ωN , the partial sum SN(ωN), and log(|(∂2SN/∂ω

2)(ωN)|). There is no doubt that the renormalized
series converges towards the exact value indicated in Table 6.5. Moreover, the second derivative at
the optimum value of ω decreases with N showing that the curve becomes flatter as N increases.

It is worth noticing that the renormalized series is divergent for each fixedω value but the sequence
SN(ωN) already converges towards the exact eigenvalue. An alternative and illustrative way of
looking at this problem is through the truncation criterion discussed in Section 6.4.1. Given an ω

value we choose SN(ω) such that EN+1(ω) is the coefficient with the smallest absolute value, and
we assume that the error |E(1)− SN | must be of the order of |EN+1|. Obviously N is a function of
ω which is equivalent to saying that ω depends on N .

Table 6.7 shows values of ωN , N , and SN(ωN) for the anharmonic oscillator (6.55) with λ = 0.06.
The convergence of the sequence of selected partial sums seems to be smoother than when we apply
the principle of minimal sensitivity.

The λ value chosen in the two calculations above is rather small to convince someone that the
appropriate choice of Ĥ0 may be the cure for a divergent perturbation series. For this reason, in what
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Table 6.6 Renormalized Series and the Principle
of Minimal Sensitivity for the Ground-State Energy
of the Anharmonic Oscillator

Ĥ = 1

2

(
p̂2 + x̂2

)
+ 0.06x̂4

N ωN SN(ωN) log

∣∣∣∣∂
2SN

∂ω2
(ωN)

∣∣∣∣
1 1.146319568 0.5389144739 −0.311
2 No roots
3 1.226408495 0.5383219630 −2.22
4 No roots
5 1.300888395 0.5383192572 −3.87
6 1.292965589 0.5383192752 −4.49
7 1.400529907 0.5383192621 −4.45
8 1.324485680 0.5383192913 −5.48
9 1.495147674 0.5383192725 −4.76
10 1.357995526 0.5383192923 −6.52
11 1.583362711 0.5383192785 −5.00
12 1.392325919 0.5383192923 −7.56
13 1.666590777 0.5383192820 −5.21
14 1.431988690 0.5383192923 −8.50
15 1.426783737 0.5383192923 −8.98
16 1.481191656 0.5383192923 −8.92
17 1.446057835 0.5383192923 −9.50
18 1.531031398 0.5383192923 −9.14
19 1.467408165 0.5383192923 −10.14
20 1.579190627 0.5383192923 −9.33

Table 6.7 Renormalized Series and
the Criterion of Minimal Error for the
Ground States of Two Anharmonic
Oscillators

ωN N SN(ωN) log |εN+1|

Ĥ = p̂2 + x̂2

2
+ 0.06x̂4

1.00 4 0.5369183938 −2.56
1.10 6 0.5382677955 −3.99
1.20 8 0.5383187776 −6.00
1.30 11 0.5383192937 −8.55
1.40 14 0.5383192923 −11.7
1.45 18 0.5383192923 −13.4

Ĥ = p̂2

2
+ x̂4

2.0 2 0.6679687500 −2.91
3.0 18 0.6679862617 −8.08
3.5 35 0.6679862591 −10.78
4.0 58 0.6679862592 −14.03
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follows we consider the so-called strong-coupling limit of the anharmonic oscillator. As shown in
Appendix C, when λ→∞ the quartic potential completely dominates and we are left with the pure
quartic oscillator

Ĥ = −1

2

d2

dx2
+ x4 . (6.70)

If the renormalized series converges for this limit case, then we expect it to converge for all 0 < λ <

∞. In order to construct the renormalized series for this model we choose

Ĥ0 = −1

2

d2

dx2
+ ω2x2

2
, Ĥ1 = Ŵ0 = x4 − ω2x2

2
(6.71)

and obtain the perturbation series for the eigenvalues E(β) of Ĥ(β) = Ĥ0 + βĤ1 by means of
the method of Swenson and Danforth. Table 6.7 shows that the sequence of selected partial sums
converge towards the ground-state energy of the quartic anharmonic oscillator. As expected, the
rate of convergence is smaller than in the case λ = 0.06 but the results in Table 6.7 suggest that the
renormalized series is valid for all λ values.

The renormalized series is also suitable for excited states as shown in Table 6.8 for the quantum
numbers v = 10, 100, 1000, and 10,000. When v is sufficiently large, a precise determination of
ω is unnecessary because the renormalized series looks as if it were convergent for any value of
ω in a neighborhood of ωN . We have observed such behavior in the states with v > 10 shown
in Table 6.8. The eigenvalues in Table 6.8 agree with those obtained by a nonperturbative method
E[BBCK] [120] if we take into account that Epresent = 2−2/3E[BBCK] according to the scaling
arguments in Appendix C.

Table 6.8 Renormalized Series for Some
Excited States of the Quartic Oscillator

Ĥ = p̂2

2
+ x̂4

v = 10 v = 100
ωN N SN(ωN) ωN N SN(ωN)

4.0 7 31.65942243 8.0 30 643.1833913
4.1 13 31.65945673 40 643.1833914
4.2 20 31.65945647 50 643.1833914
4.3 23 31.65945648 60 643.1833914
4.4 28 31.65945648
4.5 34 31.65945648

v = 1000 v = 10000
ωN N SN(ωN) ωN N SN(ωN)

17.0 30 13774.25175 37.0 20 296579.3007
40 13774.25198 30 296579.3010
50 13774.25200 50 296579.3010
60 13774.25200 60 296579.3010

It is a great advantage of perturbation theory that the treatment of highly excited states offers no
more difficulty than the calculation of the ground state (at least for one-dimensional models). In
fact, Table 6.8 suggests that the convergence properties of the renormalized series are better for the
excited states than for the ground state. The reason for this behavior is well understood [121]. On
the other hand, other approximate methods become increasingly demanding as the quantum number
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increases. For example, the Rayleigh–Ritz variational method requires enlarging the basis set (and
thereby the matrix dimension), and numerical integration requires enlarging the variable interval
(and probably augmenting the number of mesh points to account for increasing oscillation in the
classical region).

It has been rigorously proved that the renormalized series for the eigenvalues of the anharmonic
oscillator (6.55) converges uniformly for all values of λ [122]. However, such proof does not apply
to other anharmonic oscillators of the form

Ĥ = −1

2

d2

dx2
+ x2

2
+ λx2K (6.72)

with K ≥ 3. Numerical investigation shows that the convergence properties of the renormalized
series deteriorate considerably as K increases. Table 6.9 shows results for some anharmonic oscil-
lators

Ĥ = −1

2

d2

dx2
+ x2K (6.73)

that are the strong-coupling limit of the corresponding operators (6.72) as outlined in Appendix C.

Table 6.9 Renormalized Series for
the Ground States of the Anharmonic

Oscillators Ĥ = p̂2

2
+ x̂2k

k = 3
ωN N SN(ωN) log |EN+1|
5.0 13 0.6804483108 −4.51
6.0 19 0.6804140173 −4.87
7.0 26 0.6804021439 −4.96
8.0 35 0.6803871123 −5.37
9.0 44 0.6803859985 −6.46
10.0 55 0.6803834400 −5.58

Exact 0.6807036117

k = 4
ωN N SN(ωN) log |EN+1|
9.0 20 0.7165926122 −2.53

10.0 24 0.7187959806 −2.51
11.0 30 0.7161607879 −2.92
12.0 34 0.7201431753 −2.62
13.0 40 0.7199124049 −2.70
14.0 46 0.7206521523 −2.75
15.0 52 0.7220714811 −2.77
16.0 58 0.7240192116 −2.78

Exact 0.7040487741

The truncated renormalized series for the ground states of the anharmonic oscillators (6.73) with
K = 3 and K = 4 do not appear to converge as indicated by the fact that the estimated error
|EN+1| does not decrease sufficiently fast as N increases. The “exact” results added to that table for
comparison were obtained by means of an accurate, reliable nonperturbative method [116]. In order
to calculate accurate eigenvalues of the anharmonic oscillators (6.73) with K ≥ 3 one has to resort

                          



6.5. IMPROVING THE CONVERGENCE PROPERTIES OF THE PERTURBATION SERIES 125

to appropriate summation methods [123]–[127] that certainly perform better on the renormalized
series than on the original perturbation series.

The choice Ŵ (β) = Ŵ0 provides the simplest possible realization of the method outlined above.
We have also tried a more general β-power series for Ŵ (β)which enables one to use a quasi-solvable
anharmonic oscillator as unperturbed Hamiltonian operator. A quantum-mechanical problem is said
to be quasi-solvable if one can solve the eigenvalue equation for just a few states. Because the
unperturbed model is not completely solvable we cannot solve the perturbation equations exactly
unless we choose the operator coefficients Ŵi conveniently. By means of the logarithmic perturbation
theory described in Chapter 2, and aided by Maple, we calculated a perturbation series proposed
recently [117] through larger order. As it did not appear to converge we decided not to show results
here because, in our opinion, they would not add anything relevant to the present discussion.

Another way of building convergent perturbation series consists of splitting the Hamiltonian
operator Ĥ into its diagonal ĤD and off-diagonal ĤN parts by means of a basis set of vectors
{|j >, j = 0, 1, . . . },

Ĥ = ĤD + ĤN , ĤD =
∑
j

|j >< j |Ĥ |j >< j |, ĤN =
∑
i

∑
j �=i
|i >< i|Ĥ |j >< j | . (6.74)

Since ĤD is exactly solvable we choose it to be the unperturbed model and ĤN to be the perturbation:
Ĥ (β) = ĤD + βĤN . At the end of the calculation we set the perturbation parameter β equal to
unity. Moreover, we can introduce adjustable parameters into the basis set to improve the convergence
properties of the resulting perturbation series, modifying the unperturbed part and the perturbation
more favorably. A particular example of this strategy is the so-called operator method in which the
splitting is carried out in terms of the generators of a Lie algebra [128]–[134].

To illustrate the application of this method we choose the anharmonic oscillators (6.73) which for
convenience we write in operator form as Ĥ = p̂2/2 + x̂2K , where p̂ = −id/dx. An appropriate
basis set with an adjustable parameter α is

{|n >α, n = 0, 1, . . . } , |n >α= Û |n > , (6.75)

where |n > is an eigenvector of p̂2 + x̂2, and Û is a unitary operator that generates a scaling
transformation (see Appendix C):

Û†x̂Û = α1/2x̂, Û†p̂Û = α−1/2p̂ . (6.76)

We write the matrix elements of Ĥ in terms of matrix elements of powers of p̂ and x̂ in the basis set
{|n >} as follows from

Hmn = α

〈
m

∣∣∣Ĥ ∣∣∣ n〉
α
=
〈
m

∣∣∣Û†Ĥ Û

∣∣∣ n〉 . (6.77)

Notice that if we write

Û†Ĥ Û = 1

2α

(
p̂2 + x̂2

)
+ αKx̂2K − x̂2

2α
(6.78)

the problem reduces to the calculation of the matrix elements of powers of x̂ which offers no difficulty
if we resort to the recurrence relation (1.55). Therefore, by means of a slight modification of one
of the Maple programs in the program section for Chapter 1, we easily carry out the calculation
described in what follows.

We expand the eigenvectors ' of Ĥ in terms of the chosen basis set

' =
∞∑
j=0

cj |j >α (6.79)
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and derive the perturbation equations for the energyE and the coefficients cj as indicated in Chapter 1.
For simplicity in this case we choose the intermediate normalization condition cn = 1 when E0 =
Hnn is the unperturbed energy of the state n, which we do not indicate explicitly by a subscript as
we did in Chapter 1. The reader may easily verify that the perturbation equations are

Ep =
∑
j �=n

Hnj cj,p−1, cn,p = δp0

ci,p = 1

E0 −Hii


∑

j �=i
Hij cj,p−1 −

p∑
s=1

Esci,p−s


 , i �= n , (6.80)

where p indicates the perturbation order.
As a pedagogical illustration of how the operator method yields perturbation series with im-

proved convergence properties we consider an exactly solvable problem already discussed above:
the harmonic oscillator with a harmonic perturbation given by equation (6.32). This simple model
was chosen some time ago for a test of the operator method, [130] and here we provide a more
straightforward argument. We already know that the Rayleigh–Schrödinger perturbation series for
the operator (6.32) converges only for |λ| < 1 in spite of the fact that there are bound states for
all λ > −1. In order to separate the diagonal and off-diagonal parts of Ĥ for the application of
the operator method we write p̂ and x̂ in terms of the creation and annihilation operators â† and â,
respectively. We easily obtain

ĤD = (1+ λ/2)
(
â†â + 1/2

)
, ĤN = λ

[
â2 +

(
â†
)2
]
/4 , (6.81)

so that

ĤD + βĤN = (1+ λ/2− λβ/2)p̂2/2+ (1+ λ/2+ λβ/2)x̂2/2 . (6.82)

Therefore, the eigenvalues are given by

E(β) = (v + 1/2)|1+ λ/2|
√

1− [λβ/(2+ λ)]2, v = 0, 1, . . . , (6.83)

which shows that the operator method converges for all |λ| < |2 + λ| (⇒ λ > −1) when β = 1;
that is to say, for all values of λ supporting bound states. At least for this trivial problem the
operator method certainly improves the convergence properties of the perturbation series even when
the scaling parameter α is arbitrarily chosen equal to unity.

As a more demanding test of the operator method, we consider the ground state of the anharmonic
oscillators (6.73) with K = 3 and K = 4 for which the renormalized series diverges as shown above
(for completeness we add the case K = 2). The results in Table 6.10 for several values of α do not
clearly suggest convergence, but show that the operator method is preferable to the renormalized
series in all those cases.

6.5.2 Intelligent Algebraic Approximants

There is a vast literature describing more or less successful methods for the summation of divergent
series. Some of the most popular are Borel and Padé approximants, [135, 136] continued fractions,
[135] and nonlinear transformations [137] among many others. Here we briefly discuss algebraic
approximants that have produced results of unprecedented accuracy for anharmonic oscillators and
other models [138].
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Table 6.10 Operator Method for the
Anharmonic Oscillators

Ĥ = p̂2

2
+ x̂2K

K = 2
α N SN(α) log |EN+1|

0.10 18 0.6874191200 −2.87
0.20 16 0.6679809935 −7.22
0.30 18 0.6679862592 −11.14
0.35 19 0.6679862592 −11.53
0.40 19 0.6679862596 −9.14

K = 3
α N SN(α) log |EN+1|

0.10 16 0.6866545682 −2.62
0.15 16 0.6806778711 −4.36
0.20 17 0.6807037650 −6.61
0.23 17 0.6807036225 −7.91
0.25 14 0.6807038117 −6.97

K = 4
α N SN(α) log |EN+1|

0.10 12 0.7112588258 −2.37
0.15 10 0.7034332514 −4.49
0.18 12 0.7040680092 −5.10
0.20 12 0.7040771959 −5.12
0.25 6 0.7050018759 −4.10

Suppose that we want to obtain meaningful values of the function E(λ) from its asymptotic
expansion (6.1). The simplest algebraic approximant is a rational function of the form

[M/N ](λ) = A(λ)

B(λ)
=
∑M

j=0 ajλ
j

∑N
j=0 bjλ

j
, (6.84)

where we choose the coefficients aj and bj in order to obtain as many terms of the series (6.1) as
possible. Notice that there are only M +N + 1 approximant coefficients at our disposal because we
can always remove one of them by simply dividing numerator and denominator by it. Therefore, we
can obtain M +N + 1 coefficients Ej :

[M/N ](λ) =
M+N∑
j=0

Ejλ
j +O

(
λM+N+1

)
. (6.85)

In some cases Padé approximants converge when we increase M and N conveniently, yielding
reasonable approximate values of E(λ) [135]. Notice that we can rewrite E = [M/N ] as a linear
equation A(λ)− B(λ)E = 0 which we solve for the approximate value of E.

If the function E(λ) is known to have branch points of order 2, then it is convenient to use a
quadratic approximant of the form A(λ)E2 +B(λ)E +C(λ) = 0, where A(λ), B(λ), and C(λ) are
polynomial functions of λ [138]. The two roots of the quadratic equation give us the two branches
of the function E(λ).
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The linear and quadratic approximants just mentioned are particular cases of algebraic approxi-
mants of the form

N∑
n=0

An(λ)E
n = 0 , (6.86)

where A0(λ), A1(λ), . . . , An(λ) are polynomial functions of λ. They prove suitable for the accurate
summation of divergent series to obtain the branches of multiple-valued functions [138].

In principle, one can construct many different algebraic approximants from the same set of per-
turbation coefficients Ej , so that there is great flexibility of choice for a given problem. This
freedom may become a drawback because it may require some extensive numerical calculation
to determine the most convenient sequence of approximants. For example, in the case of simple
quantum-mechanical anharmonic oscillators, different sequences of algebraic approximants give
different answers, and those with the correct large-coupling behavior (see Appendix C) prove to be
the most accurate [138]. It appears to be most important to have clear directions of how to construct
suitable algebraic approximants. Here we show how to address a wide class of problems.

Suppose that we can rewrite the unknown function E(λ) as

E(λ) = λaW
(
λ−b

)
, (6.87)

where a and b > 0 are known rational numbers, and W(ξ) is another unknown function. For
concreteness and simplicity in what follows we restrict to the most usual case a > 0.

It is our purpose to obtain approximate values ofE(λ) by means of an implicit equation of the form
Q(E, λ) = 0. We require that one of the roots of Q(E, λ) = 0 satisfies the expansion (6.1) through a
given order. Moreover, in order to take into account equation (6.87) we build Q(E, λ) to factorize as
Q(λaW, λ) = F(λ)G(W, λ−b), and assume that G(W, λ−b) = 0 may give us approximate values
of W(λ−b). In this way we expect to obtain accurate values of E(λ) for all λ having only the
expansion (6.1) which is valid for sufficiently small values of λ.

Algebraic approximants (6.86) are particularly simple implicit equations which for convenience
we rewrite as

A[M,N] =
M∑

m=0

N∑
n=0

Bmnλ
mEn . (6.88)

In order to construct approximants that factorize in the way indicated above, we substitute λaW for
E in equation (6.88) and require that m+ an = aN − bj , where j = 0, 1, . . . Jm ≤ (aN −m)/b.
More precisely, from all the possible algebraic approximants we choose those of the form

A[M,N] =
M∑

m=0

Jm∑
j=0

Amjλ
mEN−(m+bj)/a, Jm =

[
aN −m

b

]
, (6.89)

where [u] stands for the greatest integer smaller than or equal to the real number u. The new
coefficients Amj are related to the original ones Bmn by Amj = BmN−(m−bj)/a . The integers M and
N are independent except for the restriction N ≥ M/a necessary to have Jm ≥ 0 for all m. In order
to remove one degree of freedom we arbitrarily choose N to be the smallest integer greater than or
equal to M/a.

Substituting E = λaW into A[M,N] = 0 and dividing by λaN , the resulting implicit equation

M∑
m=0

Jm∑
j=0

Amjλ
−bjWN−(m+bj)/a = 0 (6.90)
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gives us W(λ−b). If

W(0) = lim
λ→∞ λ−aE(λ) (6.91)

exists, then we obtain it approximately as a root of the implicit equation

M∑
m=0

Am0W(0)N−m/a = 0 (6.92)

easily derived from (6.90). Moreover, if W(ξ) satisfies a formal Taylor expansion W0+W1ξ+· · ·+
Wnξ

n + · · · about ξ = 0, then we expect appropriate partial sums for

E(λ) = λa
∞∑
j=0

Wjλ
−bj (6.93)

to be valid for sufficiently large λ values. We say that the approximants (6.89) are intelligent because
their roots also satisfy (6.87) as follows from (6.90).

As said earlier we require that one of the roots ofA[M,N ] = 0 satisfies the Taylor expansion (6.1)
through a given order. Because one of the approximant coefficients is not independent we arbitrarily
set A00 = 1. Choosing the total number

M∑
m=0

Jm∑
j=0

1− 1 =
M∑

m=0

(Jm + 1)− 1 = M +
M∑

m=0

Jm (6.94)

of independent adjustable parameters appropriately we can force a root of the approximant to give
the λ-power series (6.1) exactly through order

P(M) = M − 1+
M∑

m=0

Jm . (6.95)

The derivation of the expressions that give the approximant coefficients Amj in terms of the
series coefficients Ek is rather tedious, but we show it here for completeness. We first rewrite the
approximant as

A =
M∑

m=0

λmPm(E), Pm(E) =
Nm∑
n=0

BmnE
n . (6.96)

It is convenient to introduce a cutoff function θ(x) which is zero if x < 0 and unity otherwise, and
rewrite the approximant as

A =
∞∑

m=0

θ(M −m)λmPm(E) . (6.97)

Writing

En =
∞∑
j=0

Cnjλ
j , (6.98)

                          



130 CONVERGENCE OF THE PERTURBATION SERIES

where C0j = δ0j and C1j = Ej , we have

Pm(E) =
∞∑
j=0

pmjλ
j , pmj =

Nm∑
n=0

BmnCnj . (6.99)

Therefore

A =
∞∑
k=0

λk
k∑

m=0

θ(M −m)pmk−m . (6.100)

A = 0 for all λ provided that

k∑
m=0

θ(M −m)

Nm∑
n=0

BmnCnk−m = 0 . (6.101)

Finally, taking into account the relation between n, m, and j , and between the approximant coeffi-
cients Bmn and Amj we obtain

min(k,M)∑
m=0

Jm∑
j=0

AmjCN−(m+bj)/a k−m = 0 . (6.102)

Substituting the expansion (6.1) into En = EEn−1 we obtain a recursion relation for the coefficients
Cnj :

Cnj =
j∑

i=0

Ej−iCn−1 i . (6.103)

If P(M) is the perturbation order, then we are left with a system of P(M)+1 linear inhomogeneous
equations (6.102) k = 0, 1, . . . , P (M) with P(M)+ 1 unknowns Amj (remember that A00 = 1).

As simple illustrative examples we consider one-dimensional anharmonic oscillators

Ĥ = −1

2

d2

dx2
+ x2

2
+ λxK . (6.104)

As shown in Appendix C the eigenvalues E(λ) of Ĥ satisfy equation (6.87) with a = 2/(K + 2) =
b/2. If K is even we arbitrarily choose N = (K + 2)M/2.

We first consider the quartic anharmonic oscillator (K = 4) for which a = 1/3 and b = 2/3 that
lead to Jm = [(N − 3m)/2] and N = 3M . From the perturbation series of order 5 for the ground
state we construct the approximant

A[2, 6] = E6 − 4921

14852
E4 − 2317

59408
E2 − 19497

7426
λE3 + 10131

14852
λE

+ 164997

237632
λ2 + 75

5056
. (6.105)

For each λ value the equation A[2, 6] = 0 has 6 roots, two of them real. The smallest real root
gives an approximation to the energy of the quartic anharmonic oscillator. We discard the other root
because it does not give the exact result E(0) = 1/2. Figure 6.4 shows a satisfactory agreement
between the smallest real root of the simple implicit equation A[2, 6] = 0, and the eigenvalue
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FIGURE 6.4
Ground-state energy of the anharmonic oscillator (6.55) calculated by means of the intelligent
approximant (6.105) (continuous line) and by a nonperturbative method (points).

calculated accurately by a nonperturbative method [116]. In what follows we show that the simple
intelligent approximant (6.105) gives reasonable results even for λ values much larger than those in
Figure 6.4.

Substituting λ1/3W for E in equation (6.105) and dividing the result by λ2 we obtain

W 6 − 4921

14852
W 4ξ − 2317

59408
W 2ξ2 − 19497

7426
W 3 + 10131

14852
ξW

+ 75

5056
ξ3 + 164997

237632
= 0 , (6.106)

where ξ = λ−2/3. As argued earlier in this chapter, when ξ = 0 (λ→∞) the implicit expression
resulting from (6.106) gives us an approximant for the ground state energy of the pure quartic
oscillator (equation (6.73) with K = 2). One of the roots of this approximant W0 = 0.668215
provides the ground-state energy with an error of 0.034%, clearly showing that equation (6.105) is a
good approach to the corresponding eigenvalue of the quartic anharmonic oscillator for all λ values
(even for λ→∞). Moreover, the simpler intelligent approximant A[1,6] proves to be more accurate
than other expressions built from perturbation series of order four [139, 140].

In order to test the convergence properties of the intelligent approximants we calculate the leading
coefficient W0 of the strong-coupling expansion for the anharmonic oscillators (6.104) with K = 4,
6, 8, given by a root of equation (6.92) with a = 2/(K + 2).

Table 6.11 shows that the rate of convergence of the intelligent approximants is remarkable for the
ground as well as highly excited states of the pure quartic oscillator. The converged eigenvalues agree
with those in Table 6.8 obtained earlier by means of the renormalized series. By simple inspection
of both tables one concludes that the rate of convergence is considerably greater for the intelligent
approximants than for the renormalized series.

Table 6.12 shows results for the pure sextic and octic anharmonic oscillators. The intelligent
approximants appear to converge in the former case but not in the latter one. We have been unable
to identify a convergent sequence from the roots of equation (6.92) (see 5th, 6th, and 7th columns in
Table 6.12) for the octic anharmonicity.
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Table 6.11 Convergence Rate of the Intelligent Approximants A[M, 3M] for

Several States of the Anharmonic Oscillator Ĥ = p̂2

2
+ x̂4

M P v = 0 v = 10 v = 100 v = 1000 v = 10000
1 1 0.7211247852 33.18593389 673.9051114 14432.11270 310743.9659
2 5 0.6682150331 31.65916791 643.1772376 13774.12177 296576.4973
3 10 0.6679536006 31.65945459 643.1833908 13774.25199 296579.3007
4 17 0.6679862615 31.65945648 643.1833914 13774.25200 296579.3010
5 25 0.6679862592 31.65945648 643.1833914 13774.25200 296579.3010
6 35 0.6679862592 31.65945648 643.1833914 13774.25200 296579.3010

Table 6.12 Convergence Rate of the Intelligent Approximants for the Ground

States of the Anharmonic Oscillators Ĥ = p̂2

2
+ x̂K with K = 6 and K = 8

K = 6 A[M, 4M] K = 8 A[M, 5M]
M P E P E

1 2 0.5993203292 2 0.5897586004
2 7 8 0.4554075304
3 14 0.6593272643 16 0.4277561778 0.6561496492
4 23 0.6807661937 27
5 34 0.6807031149 40 0.4663678730 0.6864498896
6 47 0.6807048473 56 0.4592557841 0.5707878070 0.8107106475
7 62 0.6807036615

The intelligent approximants are suitable for obtaining the strong-coupling expansion (6.93). For
example, we can rewrite the Hamiltonian operator (6.55) as

Û†Ĥ Û = λ1/3
[
−1

2

d2

dx2
+ 1

2
λ−2/3x2 + x4

]
(6.107)

by means of the equivalent transformation discussed in Appendix C. Choosing the quadratic term as
a perturbation, and ξ = λ−2/3 as a perturbation parameter we obtain the expansion

E(λ) = λ1/3
∞∑
j=0

Wjλ
−2j/3 . (6.108)

The calculation of the coefficients Wj proceeds as follows: first substitute Wλ1/3 for E in the
approximant A[M,N], then divide it by λM , and, finally, substitute ξ for λ−2/3, in order to obtain a
polynomial function of W and ξ :

min{M,[N/3]}∑
m=0

[(N−3m)/2]∑
j=0

Amjξ
jWN−3m−2j = 0 . (6.109)

Equation (6.106) is a particular case of this expression which is a particular case of (6.90). If we
substitute the truncated expansion W0 +W1ξ +W2ξ

2 + · · · +Wnξ
n for W we obtain a polynomial

function of ξ . Setting each of its coefficient equal to zero we extract the expansion coefficients Wj

term by term.
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Table 6.13 shows the coefficients Wj , 1 ≤ j ≤ 5, for the ground and excited states; the leading
coefficient W0 is given in Table 6.11. The coefficients W0 and W1 increase with the quantum number
because they are respectively an eigenvalue of the pure quartic oscillator and the expectation value
〈x2〉/2. The next coefficient W2 appears to approach a finite nonzero value as the quantum number
increases. This curious and interesting behavior of W2 is not well known because most of the
calculations of the strong coupling series for the anharmonic oscillators have been restricted to the
ground state [116, 125, 127], [141]–[144]. The absolute values of the remaining coefficients decrease
with the quantum number suggesting an increasing radius of convergence. Present coefficients Wj

are related to earlier ones W ′j [141, 144, 145] by means of the transformation Wj = 2−2(j+1)/3W ′j
which follows from the scaling arguments discussed in Appendix C.

Table 6.13 Strong-Coupling Series for the Anharmonic Oscillator Ĥ = p̂2

2
+ ξ

x̂2

2
+ x̂4

P W1 W2 W3 W4 W5

v = 0

0.1247530653 0 −0.1450431970 10−2 0.2708825696 10−3 0
5 0.1434473426 −0.8477670177 10−2 0.7551679354 10−3 −0.6175925863 10−4 0.2377454709 10−5

10 0.1437221947 −0.8785810015 10−2 0.1190188239 10−2 −0.9174251401 10−3 0.1870527091 10−2

17 0.1436687775 −0.8627560060 10−2 0.8182047111 10−3 −0.8242677907 10−4 0.8068340550 10−5

25 0.1436687832 −0.8627565683 10−2 0.8182088855 10−3 −0.8242919997 10−4 0.8069484300 10−5

35 0.1436687830 −0.8627565841 10−2 0.8182088741 10−3 −0.8242921887 10−4 0.8069494581 10−5

v = 10

1 1.160790617 0 −0.5201558690 10−3 0.1907145983 10−4 0
5 1.285488559 −0.1170313526 10−1 0.9055091205 10−4 0.1827544018 10−5 −0.1106049773 10−6

10 1.285402347 −0.1168532870 10−1 0.8833622063 10−4 0.2034299068 10−5 −0.1261223438 10−6

17 1.285401386 −0.1168501615 10−1 0.8827429329 10−4 0.2043545272 10−5 −0.1272375932 10−6

25 1.285401385 −0.1168501552 10−1 0.8827411300 10−4 0.2043586236 10−5 −0.1272451861 10−6

35 1.285401385 −0.1168501553 10−1 0.8827411537 10−4 0.2043585982 10−5 −0.1272451412 10−6

46 1.285401384 −0.1168501550 10−1 0.8827411803 10−4 0.2043585800 10−5 −0.1272451427 10−6

v = 100

1 5.234510168 0 −0.1155679066 10−3 0.9405426049 10−6 0
5 5.794717030 −0.1169307698 10−1 0.2008458603 10−4 0.8882862735 10−7 −0.1197338502 10−8

10 5.794317915 −0.1167509893 10−1 0.1959442465 10−4 0.9895203040 10−7 −0.1367717608 10−8

17 5.794317840 −0.1167509278 10−1 0.1959411962 10−4 0.9896348006 10−7 −0.1368068196 10−8

25 5.794317849 −0.1167509313 10−1 0.1959412671 10−4 0.9896336791 10−7 −0.1368066423 10−8

35 5.794317844 −0.1167509284 10−1 0.1959411923 10−4 0.9896349738 10−7 −0.1368068317 10−8

46 5.794317842 −0.1167509276 10−1 0.1959411788 10−4 0.9896350056 10−7 −0.1368068043 10−8

v = 1000

1 24.22394697 0 −0.2497338533 10−4 0.4391918791 10−7 0
5 26.81631188 −0.1169279518 10−1 0.4339177809 10−5 0.4150472515 10−8 −0.1208946558 10−10

10 26.81448429 −0.1167499026 10−1 0.4234161483 10−5 0.4619742513 10−8 −0.1379841062 10−10

17 26.81448396 −0.1167498447 10−1 0.4234099352 10−5 0.4620247175 10−8 −0.1380175162 10−10

25 26.81448390 −0.1167498565 10−1 0.4234065495 10−5 0.4619314054 10−8 −0.1382752428 10−10

35 26.81448396 −0.1167498444 10−1 0.4234099260 10−5 0.4620247302 10−8 −0.1380175139 10−10

v = 10000

1 112.4038887 0 −0.5381967605 10−5 0.2039771776 10−8 0
5 124.4329670 −0.1169279230 10−1 0.9351259981 10−6 0.1927647361 10−9 −0.1210043192 10−12

10 124.4244875 −0.1167498913 10−1 0.9124960890 10−6 0.2145578100 10−9 −0.1381081866 10−12

17 124.4244859 −0.1167498327 10−1 0.9124826986 10−6 0.2145811763 10−9 −0.1381415151 10−12

25 124.4244857 −0.1167498262 10−1 0.9124807799 10−6 0.2145864061 10−9 −0.1381556080 10−12

35 124.4244858 −0.1167498314 10−1 0.9124825886 10−6 0.2145812126 10−9 −0.1381414873 10−12

It has been proved that the perturbation series for any eigenvalueW(ξ) of the Hamiltonian operator

Ĥ = −1

2

d2

dx2
+ 1

2
ξx2 + x4 (6.110)
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has a finite radius of convergence determined by a pair of the so-called Bender and Wu branch
points [111, 115]. Two eigenvalues become degenerate at every one of those square-root branch
points, some of which have been accurately calculated by means of nonperturbative methods [146,
147]. It is our purpose to show that intelligent approximants are suitable for obtaining Bender and
Wu branch points ξb. Such a calculation is an even more demanding test of a perturbation method
than the accurate determination of the coefficients of the strong-coupling expansion. We start from
the transformation of an intelligent approximant A[M,N] into a polynomial function of W and
ξ equation (6.109). Consequently, A[M, 3M] = 0 becomes a quantization condition of the form
Q(W, ξ) = 0 from which we obtain square-root branch points as indicated in Section 6.2.2.

Table 6.14 shows Bender and Wu branch points calculated from intelligent approximants of in-
creasing perturbation order P . They correspond to crossings between pairs of eigenvalues (v =
0, v = 2), (v = 1, v = 3), (v = 2, v = 4), and (v = 3, v = 5). Although convergence is rather
slow, we clearly see that our sequences approach the branch points calculated by accurate nonper-
turbative methods [146, 147]. The latter values of Wb and ξb were multiplied by 2−2/3 and 22/3,
respectively, in order to compare them with the present ones. We could not obtain all the branch
points reported by Shanley [146, 147]; it is not clear to us whether the failure was due to the algebraic
approximants or to our rather primitive numerical root finding algorithm. Suffice to say that we do
not try to give accurate Bender and Wu branch points but to test intelligent approximants built from
divergent series at singular points of E(λ).

Another interesting application of the intelligent approximants is the calculation of the energies
of metastable states. For the sake of concreteness consider the anharmonic oscillator (6.104) with
K = 4 and λ < 0. The potential-energy function is unbounded from below as shown in Figure 6.5,

FIGURE 6.5
Potential-energy function V (x) = x2/2− x4/40.

and therefore supports no bound state. The eigenfunctions satisfy the boundary conditions

'(x)→ exp

(
i

√
2|λ|
3
|x|3

)
as |x| → ∞ , (6.111)

which correspond to outgoing waves in both channels (x < 0 and x > 0), only for discrete complex
values of the energy E. The real and imaginary parts of E are commonly interpreted as the position
and width, respectively, of a resonance, the latter being related to the lifetime of the metastable state.
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Table 6.14 Bender and Wu Branch Points of the Anharmonic

Oscillator Ĥ = p̂2

2
+ ξ

x̂2

2
+ x̂4 for Pairs of States with Quantum

Numbers v and v + 2
v = 0

P Wb ξb

35 0.2630428496+ 1.624594658i − 6.624501579+ 3.576330437i
46 0.2889000800+ 1.876309615i − 6.669345055+ 3.445029671i
59 0.2617508958+ 1.852538472i − 6.658672632+ 3.444746306i
73 0.2547451096+ 1.849390225i − 6.657061544+ 3.444280112i
89 0.2545953206+ 1.849466123i − 6.657055939+ 3.444246366i
106 0.2546068447+ 1.849473621i −6.657058696+ 3.444247072i

Shanley 0.2546072144+ 1.849472732i − 6.657058631+ 3.444247225i

v = 1

P Wb ξb

35 1.200465709+ 4.979841203i − 7.909214963+ 6.369208765i
46 1.263430140+ 4.974064781i − 7.916591583+ 6.386014949i
59 1.265137461+ 4.973918388i − 7.916826785+ 6.386354390i
73 1.265141090+ 4.973873844i − 7.916820032+ 6.386360110i
89 1.265136142+ 4.973871821i − 7.916819326+ 6.386359686i
106 1.265135846+ 4.973873892i − 7.916819519+ 6.386359449i

Shanley 1.265135800+ 4.973873648i − 7.916819487+ 6.386359463i

v = 2

P Wb ξb

35 2.530479106+ 8.281701739i − 8.980053030+ 8.859695343i
46 2.658342737+ 8.439401379i − 9.065073467+ 8.847819213i
59 2.640928270+ 8.450766476i − 9.064697852+ 8.842465234i
73 2.649060188+ 8.454160591i − 9.066174055+ 8.843304710i
106 2.648977207+ 8.454181256i − 9.066163981+ 8.843293687i

Shanley 2.649031393+ 8.454111313i − 9.066162551+ 8.843307413i

v = 3

P Wb ξb

59 5.177125194+ 11.67311958i − 10.09069392+ 12.75585928i
73 4.304386970+ 12.23652612i − 10.13632596+ 11.02995502i
89 4.299380545+ 12.23424907i − 10.13550858+ 11.02965413i
106 4.299887277+ 12.23487423i − 10.13563744+ 11.02961991i

Shanley 4.299828498+ 12.23480418i − 10.13562445+ 11.02962218i
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In order to obtain resonance energies of the anharmonic oscillator mentioned above, we simply
select convergent sequences of roots of A[M, 3M] = 0 for negative values of λ. Table 6.15 shows
the remarkable rate of convergence of the one obtained from the perturbation series for the ground
state (v = 0) for λ = −0.025.

Table 6.15 Convergence of Intelligent
Approximants to a Resonance of the
Anharmonic Oscillator

Ĥ = 1

2
(p̂2 + x̂2)− 1

40
x̂4

P E (v = 0)
1 0.4800747778
5 0.4791200094

10 0.4791144844
17 0.4791167889− 0.7289308712×10−5 i

25 0.4791168180− 0.7282280620×10−5 i

35 0.4791168182− 0.7282385091×10−5 i

46 0.4791168182− 0.7282386678×10−5 i

59 0.4791168182− 0.7282386684×10−5 i

73 0.4791168182− 0.7282386684×10−5 i

In the program section we show a collection of simple procedures for the construction of intelligent
approximants for the anharmonic oscillator (6.104) withK = 4. One must keep in mind that they are
just the starting point of the calculations described in this section, which must be explicitly carried
out according to the equations given above.

There are many methods for the summation of divergent or slowly convergent perturbation series
that have not been mentioned in this section. The reader may look up some of them in the literature
cited. It is not our purpose to be exhaustive on this subject which we leave at this point.

                          



Chapter 7

Polynomial Approximations

7.1 Introduction

We call polynomial approximation a particular form of perturbation theory based on the expan-
sion of a nonpolynomial potential-energy function in a Taylor series about a conveniently chosen
coordinate point, in a way similar to the approach known as small-amplitude oscillation in clas-
sical mechanics. This approximate method commonly gives more accurate results for deep wells
and energies close to the minimum of the potential-energy function. Throughout this chapter we
discuss several polynomial approximations, including the celebrated large-N expansion and its vari-
ants [148].

7.2 One-Dimensional Models

For simplicity we begin our discussion with a simple one-dimensional model in the coordinate
representation

Ĥ = − h̄2

2m

d2

dx2
+ V (x), −∞ < x <∞ , (7.1)

where the potential-energy function V (x) exhibits a single minimum Ve at x = xe and supports
bound states. Except for these conditions, the potential-energy function is arbitrary.

It is convenient to work with a dimensionless Hamiltonian operator as in preceding chapters.
To this end we define a dimensionless coordinate q = x/γ , where γ is an arbitrary length unit,
a dimensionless energy ε = mγ 2E/h̄2 and a dimensionless potential-energy function v(q) =
mγ 2V (γ q)/h̄2. The dimensionless Hamiltonian operator is

Ĥ = mγ 2

h̄2
Ĥ = −1

2

d2

dq2
+ v(q) . (7.2)
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7.2.1 Deep-Well Approximation

In order to apply the polynomial approximation we define a new dimensionless coordinate z =
(q − q0)/β, where β is an arbitrary parameter. On expanding v(q) in a Taylor series around q0

v(q) =
∞∑
j=0

vj (q − q0)
j , vj = 1

j !
djv

dqj

∣∣∣∣
q=q0

(7.3)

the Hamiltonian operator becomes

Ĥ = 1

β2


−1

2

d2

dz2
+ β2v0 + β3v1z+ β4v2z

2 +
∞∑
j=3

vjβ
j+2zj


 . (7.4)

Notice that

vj = mγ j+2

h̄2

1

j !
djV

dxj

∣∣∣∣
x=x0

, x0 = γ q0 . (7.5)

If v2 >0 we can view equation (7.4) as a harmonic oscillator with a power-series perturbation.
Although the exact eigenvalues are independent of q0 and β, these parameters affect the rate of
convergence of the perturbation series. Another degree of freedom that is relevant to the construction
of the perturbation series is the way we collect and group the terms of the perturbation into polynomial
contributions. We will discuss these points later; for the time being we keep the approach as
straightforward and simple as possible, setting the adjustable parameters beforehand.

At first sight it seems most reasonable to choose q0 to be the value of the coordinate at the
minimum of the well so that the linear term of the Hamiltonian operator (7.4) vanishes because
v1(q0) = v′(q0) = 0. We also set

β =
(

1

2v2

)1/4

=
(

h̄2

2mγ 4V2

)1/4

, (7.6)

and define a new dimensionless Hamiltonian operator

ĥ = β2
(
Ĥ− v0

)
= −1

2

d2

dz2
+ 1

2
z2 +

∞∑
j=1

bjβ
j zj+2 , (7.7)

where β plays the role of a perturbation parameter and

bj = vj+2

2v2
= Vj+2γ

j

2V2
. (7.8)

The eigenvalue equation ĥ� = e� gives us the dimensionless energies

e = mγ 2β2(E − V0)

h̄2
, (7.9)

from which we easily recover the eigenvalues E of Ĥ . Notice that h̄2/(mγ 2β2) = h̄ω, where

ω =
√

2V2

m
(7.10)
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is the classical frequency of a harmonic oscillator with force constant 2V2.
The perturbation coefficients ej of the dimensionless energy series

e =
∞∑
j=0

ejβ
j (7.11)

depend on the potential coefficients bj and on the unperturbed energy

e0 = ν + 1

2
, ν = 0, 1, . . . . (7.12)

The net effect of the scaling transformation described in Appendix C that substitutes −z for z
is the substitution of −β for β in the dimensionless Hamiltonian operator ĥ as follows from
βj (−z)j+2 = (−β)j zj+2. Since the states of one-dimensional models are nondegenerate we con-
clude that e(−β) = e(β), from which it follows that e2j+1 = 0. Therefore, the energy series for the
eigenvalues of Ĥ are of the form

ε = v0 + 1

β2

∞∑
j=0

e2jβ
2j (7.13)

and those for Ĥ read

E = V0 + h̄ω
(
e0 + e2β

2 + e4β
4 + · · ·

)
. (7.14)

The first term in this equation is the classical energy of a particle at rest at the bottom of the well, the
second term is the quantum-mechanical energy of a harmonic oscillation about this minimum, and
the remaining contributions are anharmonic corrections to this oscillatory motion. In other words,
the perturbation series (7.14) looks very much like successive quantum-mechanical corrections to
a classical approach. This point of view is reinforced by the fact that the perturbation parameter
β is proportional to h̄1/2 and decreases with the mass of the particle. However, this seemingly
semiclassical approach differs markedly from the WKB method [149] in that the accuracy of the
perturbation series (7.14) decreases with the vibrational quantum number.

The dimensionless potential coefficients bj , and, consequently, the dimensionless energy correc-
tions ej , are invariant under the substitution of CV (x) for V (x). Only V0, ω, and β depend on C

in equation (7.14). As C increases, β decreases and the convergence properties of the perturbation
series (7.14) improve. If V (x) describes a finite potential well, then the depth of CV (x) increases
with C. For this reason, and that given earlier, we decided to call the present approach “deep-well
approximation” instead of, say, “semiclassical expansion” in spite of the fact that in some cases the
well may become increasingly shallower as the perturbation parameter decreases.

One easily calculates the dimensionless energy coefficients e2j by means of any of the methods
outlined in earlier chapters. For example, the application of the method of Swenson and Danforth
discussed in Section 3.3 is straightforward and we choose it for the calculations described below
because we are not interested in the eigenfunctions. The reader may easily derive the necessary
equations following the lines indicated in Section 3.3 and write a simple Maple program by a
straightforward modification of that one shown in the program section. Table 7.1 shows the first
energy coefficients in terms of e0 and the potential coefficients bj .

As shown in Section 3.3, the method of Swenson and Danforth gives us perturbation series for the
expectation values

Zk =
〈
zk

〉
=
∞∑
j=0

Zk,jβ
j . (7.15)
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Table 7.1 Energy Coefficients of the Deep-Well Expansion for an Arbitrary Potential-Energy
Function

e2 = − 15
4 e0

2 b1
2 − 7

16 b1
2 + 3

8 b2 + 3
2 b2 e0

2

e4 = − 705
16 e0

3 b1
4 − 1155

64 e0 b1
4 + 459

16 e0 b1
2 b2 + 225

4 b1
2 b2 e0

3 − 95
8 b1 e0 b3 − 35

2 b1 b3 e0
3

− 67
16 e0 b2

2 − 17
4 b2

2 e0
3 + 25

8 b4 e0 + 5
2 b4 e0

3

e6 = 7335
16 b1 b2 e0

2 b3 + 116325
64 b1

4 b2 e0
4 − 23865

32 b1
3 e0

2 b3 − 9765
16 b1

3 b3 e0
4

− 62013
64 b1

2 e0
2 b2

2 − 24945
32 b1

2 b2
2 e0

4 + 8535
32 b1

2 b4 e0
2 + 2715

16 b1
2 b4 e0

4

− 1365
16 b1 b5 e0

2 − 315
8 b1 b5 e0

4 + 5667
128 b1 b2 b3 − 885

16 b2 b4 e0
2 − 165

8 b2 b4 e0
4

− 209055
256 e0

2 b1
6 − 115755

128 e0
4 b1

6 + 131817
1024 b1

4 b2 − 14777
256 b1

3 b3 − 40261
512 b1

2 b2
2

+ 6055
256 b1

2 b4 − 1155
128 b1 b5 + 1707

32 e0
2 b2

3 + 375
16 b2

3 e0
4 − 945

128 b2 b4 − 315
16 b3

2 e0
4

− 1085
32 b3

2 e0
2 − 1107

256 b3
2 + 245

16 b6 e0
2 + 35

8 b6 e0
4 + 315

128 b6 − 101479
2048 b1

6

+ 1539
256 b2

3 + 2415
8 b1 b2 b3 e0

4 + 239985
128 e0

2 b1
4 b2

According to the scaling transformation discussed in Appendix C we have〈
(−z)k

〉
(β) = (−1)kZk(β) = Zk(−β) (7.16)

so that Zk,j = 0 if j + k is odd. This property is a useful test for the program.
In the case of a parity-invariant potential-energy function V (−x) = V (x) it is convenient to

proceed in a slightly different way exploiting the fact that only even powers of x appear in the Taylor
expansion of V (x). We define q = √βz and expand v(q) around q = 0

v(q) =
∞∑
j=0

vjβ
j z2j , (7.17)

where

vj = 1

(2j)!
d2j v

dq2j

∣∣∣∣
q=0
= mγ 2j+2

h̄2
Vj , Vj = 1

(2j)!
d2jV

dx2j

∣∣∣∣
x=0

. (7.18)

We apply perturbation theory to

ĥ = β(Ĥ− v0) = −1

2

d2

dz2
+ 1

2
z2 +

∞∑
j=1

bjβ
j z2j+2 , (7.19)

where bj = vj+1/(2v1). From the eigenvalues of Ĥ

ε = v0 + 1

β

∞∑
j=0

ejβ
j , (7.20)
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we obtain the energies

E = V0 + h̄ω

∞∑
j=0

ejβ
j (7.21)

exactly as in the preceding case. Table 7.2 shows the first perturbation corrections ej in terms of e0
and the dimensionless potential coefficients bj .

Table 7.2 Energy Coefficients of the Deep-Well Expansion for a Parity-Invariant
Potential-Energy Function

e1 = 3
8 b1 (1+ 4 e0

2)

e2 = − 67
16 e0 b1

2 − 17
4 e0

3 b1
2 + 25

8 e0 b2 + 5
2 b2 e0

3

e3 = 1707
32 e0

2 b1
3 + 375

16 e0
4 b1

3 − 885
16 b1 b2 e0

2 − 165
8 b1 b2 e0

4 + 1539
256 b1

3 − 945
128 b1 b2

+ 315
128 b3 + 245

16 b3 e0
2 + 35

8 b3 e0
4

e4 = − 89165
128 e0

3 b1
4 − 10521

64 b1 e0 b3 − 2205
8 b1 b3 e0

3 + 29555
32 b1

2 b2 e0
3 + 117281

256 e0 b1
2 b2

− 305141
1024 e0 b1

4 − 10689
64 e0

5 b1
4 − 189

4 b1 b3 e0
5 + 3129

16 b1
2 b2 e0

5 − 19277
256 e0 b2

2

− 4145
32 b2

2 e0
3 − 393

16 b2
2 e0

5 + 5607
128 b4 e0 + 945

16 b4 e0
3 + 63

8 b4 e0
5

As a first illustrative example we consider the Morse potential-energy function [150]

V (x) = D
[
1− exp(−αx)]2

, (7.22)

where D > 0 is the depth of the potential well and α determines the range of the interaction (greater
α shorter range and vice versa). This anharmonic oscillator proves to be a simple two-parameter
model for the study of vibrational properties of diatomic molecules. Figure 7.1 shows the shape of
V (x) for two values of D and α. The Schrödinger equation for this model is exactly solvable when
−∞ < x <∞, and the energies are given by [150]

E = h̄ω

(
e0 − h̄ωe2

0

4D

)
, (7.23)

where

ω =
√

2D

m
α . (7.24)

Choosing γ = 1/α the dimensionless potential-energy function turns out to be v(q) = B(1 −
e−q)2, where B = mD/(h̄2α2), and the energy is E = Dε(B)/B. According to equation (7.6) the
perturbation parameter is β = (2B)−1/4. Moreover, since V2 = Dα2 the frequency (7.10) appearing
in the perturbation expansion (7.14) agrees with equation (7.24). A straightforward calculation shows
that all the perturbation corrections to the dimensionless energy vanish except e0 and

e2 = −1

2
e2

0 . (7.25)
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FIGURE 7.1
Morse potential-energy function for D = 5, α = 1 (continuous line), D = 5, α = 2 (broken
line), and D = 3, α = 1 (points).

Therefore, the resulting perturbation series E = h̄ω(e0+ e2β
2) gives the exact result (7.23) because

β2 = h̄ω/(2D). Notice that the energies of the Morse oscillator approach those of the harmonic
oscillator as the well depth increases because the perturbation parameter β is proportional to D−1/4.

One may think that perturbation theory also gives the exact eigenfunctions, but it is not the case
because the perturbation series for them do not terminate. In order to illustrate this point Table 7.3
shows the first coefficients of the perturbation series for the expectation values 〈z〉 and 〈z2〉. None
of these series terminate although some coefficients vanish as discussed above.

Another interesting exactly solvable model is given by the potential-energy function

V (x) = − A

cosh(x/α)2
, A, α > 0 (7.26)

shown in Figure 7.2 for two values of A and α. The exact eigenvalues are given by [151]

E = −4A

(
1

2

√
1+ u2 − e0u

)2

, u = h̄

2α

√
1

2mA
. (7.27)

In this case we choose γ = α so that v(q) = −B/ cosh(q)2, where B = mα2A/h̄2, and
E = Aε(B)/B. According to the general equations given above for a parity-invariant potential-
energy function, the perturbation parameter is β = 1/

√
2B = 2u and perturbation theory yields

E = −A+ A

√
2

B

∞∑
j=0

ej (2B)
−j/2 . (7.28)

It is not difficult to verify that the perturbation series (7.28) agrees with the Taylor expansion of
the exact energy about u = 0. Table 7.4 shows perturbation coefficients obtained by means of the
method of Swenson and Danforth.

The function
√

1+ z2 exhibits a pair of complex-conjugate square-root branch points at z = ±i.
Consequently, the Taylor expansion of the exact energy (7.27) about u = 0 converges for u < 1, and
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Table 7.3 Perturbation Corrections
to the Expectation Values 〈z〉 and 〈z2〉
of the Morse Oscillator

Z1, 0 = 0

Z1, 1 = 3
2 e0

Z1, 2 = 0

Z1, 3 = 5
96 + 7

8 e0
2

Z1, 4 = 0

Z1, 5 = 3
32 e0 + 5

8 e0
3

Z2, 0 = e0

Z2, 1 = 0

Z2, 2 = 7
32 + 23

8 e0
2

Z2, 3 = 0

Z2, 4 = 43
72 e0 + 109

36 e0
3

Z2, 5 = 0

Table 7.4 Perturbation
Coefficients for the Energies
Supported by the
Potential-Energy Function

V (x) = − A

cosh( x
α
)2

e1 = − 1
8 − e0

2

2

e2 = e0
8

e3 = 0

e4 = − e0
128

e5 = 0

e6 = e0
1024

the perturbation series (7.20) for β < 2. Surprisingly, this radius of convergence is large enough for
the calculation of critical constants; that is to say, particular values of β such that E = 0. It follows
from the exact expression for the energy (7.27) that the critical constants are given by

uν = βν

2
=

√
1

(2ν + 1)2 − 1
, ν = 1, 2, . . . . (7.29)
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FIGURE 7.2
Potential-energy function V (x) = −A/ cosh(x/α)2 for A = 2, α = 1 (continuous line), A = 2,
α = 1/2 (broken line), and A = 3, α = 1 (points).

Since βν < 2 for all ν ≥ 1 we can calculate them by means of the perturbation series. However,
taking into account that each root of E(β) = 0 is double, it is advisable to look for a root of
dE/dβ = 0 instead.

Table 7.5 shows that a positive root of

d

dβ


2β

N∑
j=0

ejβ
j − 1


 = 0, N = 2, 3, . . . (7.30)

converges towards the exact value β1 = 1/
√

2 when e0 = 3/2. This is the most unfavorable case
because βν decreases with ν.

The radius of convergence of the deep-well series for the model (7.26) is unusually large. We
have applied the method to a Gaussian well of the form

V (x) = −A exp
(
−αx2

)
, A, α > 0 , (7.31)

obtaining poorer results for the energies and failing to estimate the critical constants. However, in
principle the deep-well approximation can be improved by a more judicious choice of the arbitrary
parameters. We will discuss this point later in this chapter.

7.2.2 Weak Attractive Interactions

The reader may wonder why we obtained critical constants of the model (7.26) with ν = 1, 2, . . . ,
but not with ν = 0. The reason is that such a critical constant does not exist because there is a ground
state with negative energy for all values of B > 0. In fact, the Taylor series for ε(B) about B = 0
clearly shows that the dimensionless ground-state energy approaches zero from below as B tends to
zero:

ε(B) = −2B2 + 8B3 − 40B4 + 224B5 + · · · . (7.32)
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Table 7.5 Critical
Constant β1 Obtained
from the Perturbation
Series for the
Hyperbolic Well

N β1

2 0.7150377815
3 0.7150377815
4 0.7064548587
5 0.7064548587
6 0.7071722752
7 0.7071722752
8 0.7070998079
9 0.7070998079

10 0.7071075521
11 0.7071075521
12 0.7071066940
13 0.7071066940
14 0.7071067912
15 0.7071067912
16 0.7071067800
17 0.7071067800
18 0.7071067813
19 0.7071067813
20 0.7071067812

Exact 0.70710678120

It is not possible to obtain this expansion by means of a polynomial approximation, and we have
to resort to a different form of perturbation theory that we show in what follows for the sake of
completeness.

It is our purpose to outline a method that produces perturbation expansions for weak attractive
interactions. Consider the dimensionless Schrödinger equation

�′′(q)+ 2ε�(q) = 2λv(q)�(q) . (7.33)

It has been proved that if
∫ ∞
−∞

(
1+ q2

)
|v(q)| dq <∞ , (7.34)

then there is a bound state for all small positive λ if and only if
∫ ∞
−∞

v(q) dq ≤ 0 . (7.35)

Moreover, if
∫ ∞
−∞

exp(α|q|)|v(q)| dq <∞ (7.36)

for some α > 0 then the energy ε(λ) is analytic at λ = 0 [152].
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Taking into account the asymptotic behavior of the square-integrable eigenfunctions

�(q)→
{
CL exp(kq), q →−∞
CR exp(−kq), q →∞ , k = √−2ε (7.37)

we conclude that

lim|q|→∞�′(q) = 0 (7.38)

is the appropriate boundary condition when ε = 0. Since ε → 0− when λ→ 0+ the general solution
of the Schrödinger equation in this limit is �0(q) = c00 + c01q which satisfies equation (7.38)
provided that c01 = 0. Without loss of generality we choose c00 = 1.

In order to obtain an appropriate expression for the solution of the Schrödinger equation we
consider the general integration formulas developed in Appendix B. Viewing equation (7.33) as an
ordinary differential equation with an inhomogeneous term f (q) = 2λv(q)�(q) we have

�(q) = c1 exp(−kq)+ c2 exp(kq)

+ λ

k

∫ q

qi

{
exp

[
k
(
q − q ′

)]− exp
[−k (q − q ′

)]}
v
(
q ′
)
�

(
q ′
)
dq ′ , (7.39)

where qi is an arbitrary coordinate point. When q →−∞we require that the coefficient of exp(−kq)
vanishes, and obtain

c1 = λ

k

∫ −∞
qi

exp
(
kq ′

)
v
(
q ′
)
�

(
q ′
)
dq ′ ; (7.40)

analogously, when q →∞ we have

c2 = −λ
k

∫ ∞
qi

exp
(−kq ′) v (

q ′
)
�

(
q ′
)
dq ′ . (7.41)

Substituting equations (7.40) and (7.41) into (7.39) and rearranging the result we finally obtain

�(q) = −λ
k

∫ ∞
−∞

exp
(−k ∣∣q − q ′

∣∣) v (
q ′
)
�

(
q ′
)
dq ′ . (7.42)

In particular, when q = 0 we have an appropriate expression for the energy:

k

λ
�(0) = −

∫ ∞
−∞

exp
(−k ∣∣q ′∣∣) v (

q ′
)
�

(
q ′
)
dq ′ . (7.43)

We easily obtain the perturbation series for the eigenfunction and energy from equations (7.42)
and (7.43), respectively. We solve equation (7.42) iteratively:

�j(q) = −λ
k

∫ ∞
−∞

exp
(−k ∣∣q − q ′

∣∣) v (
q ′
)
�j−1

(
q ′
)
dq ′ , (7.44)

where j = 1, 2, . . . and �0(q) ≡ 1 which is an appropriate starting point for sufficiently small λ.
At each iteration step we expand

�j(q) =
j∑
i=0

�j,i(q)λ
i + · · · , (7.45)

k =
j∑
i=1

kiλ
i + · · · , (7.46)
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where we explicitly indicate those perturbation coefficients calculated previously. Notice that equa-
tion (7.46) takes into account that k = 0 when λ = 0. We then substitute these series into equa-
tion (7.43), expand both sides to order j , and solve for the next coefficient kj+1.

For example, substituting �(q) = �0(q) into equation (7.43) and expanding both sides to λ0 we
obtain

k1 = −
∫ ∞
−∞

v
(
q ′
)
dq ′ . (7.47)

The first iteration of equation (7.42) yields

�1(q) = −λ
k

∫ ∞
−∞

exp
(−k ∣∣q − q ′

∣∣) v (
q ′
)
dq ′

= 1+ λ

[∫ ∞
−∞

∣∣q − q ′
∣∣ v (

q ′
)
dq ′ − k2

k1

]
+ · · · . (7.48)

From the expansions of the left- and right-hand sides of equation (7.43) to order λ, respectively,

k

λ
�1(0) = k1 + k1λ

∫ ∞
−∞

∣∣q ′∣∣ v (
q ′
)
dq ′

−
∫ ∞
−∞

exp
(−k ∣∣q ′∣∣) v (

q ′
)
�1

(
q ′
)
dq ′ + · · · (7.49)

= k1 + k1λ

∫ ∞
−∞

∣∣q ′∣∣ v (
q ′
)
dq ′

− k2λ− λ

∫ ∞
−∞

∫ ∞
−∞

∣∣q − q ′
∣∣ v(q)v (

q ′
)
dq dq ′ (7.50)

we conclude that

k2 = −
∫ ∞
−∞

∫ ∞
−∞

∣∣q − q ′
∣∣ v(q)v (

q ′
)
dq dq ′ . (7.51)

We obtain contributions of higher order exactly in the same way. However, we leave the discussion
at this point because the procedure soon becomes tedious. The perturbation expansion for weakly
attractive potentials has received some attention [152]–[155] and a few more energy terms are already
available [154].

We easily derive weak- and strong-coupling expansions for the Gaussian well v(q) = − exp(−q2):

ε(λ) = −πλ2 + 8.885765874λ3 + · · · , (7.52)

ε(λ) = −λ+
√

2λ

2
− 3

16
−
√

2

256
√
λ
+ 7

2048λ
+ · · · , (7.53)

respectively, by means of the method just described and the deep-well approach given earlier. We
have obtained analytical and numerical expressions of k2 by means of Maple, but we only show the
latter here.

7.3 Central-Field Models

In what follows we consider a particle of mass m under the effect of a spherically symmetric
potential V (r). Arguing as in Section 3.3.2 we first separate the Schrödinger equation in spherical
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coordinates, then define dimensionless coordinate q = r/γ , potential-energy function v(q) =
mγ 2V (γ q)/h̄2, and energy ε = mγ 2E/h̄2 in the usual way, and finally make the radial part look
like a one-dimensional model:

Ĥ�(q) = ε�(q), Ĥ = −1

2

d2

dq2
+ u(q), u(q) = l(l + 1)

2q2
+ v(q) (7.54)

in order to apply the method of the preceding section. As usual, l = 0, 1, . . . is the angular momentum
quantum number. In order to apply the polynomial approximation we expand the effective potential-
energy function u(q) about a coordinate point q0:

u(q) =
∞∑
j=0

uj (q − q0)
j (7.55)

The variable domain 0 ≤ q < ∞ and the boundary condition at origin �(0) = 0 do not pose a
problem for the application of the method developed for one-dimensional models because the change
of variable z = (q − q0)/β maps q = 0 onto z0 = −q0/β which tends to −∞ as β → 0. In this
case it is convenient to select the perturbation parameter λ = β/q0, where q0 is the minimum of
u(q) and, thereby, a root of

q3
0v
′ (q0) = l(l + 1) . (7.56)

Notice that a perturbation expansion about λ = 0 is consistent with the preceding discussion on
the left boundary condition, and that we can choose β = 1/(2u2)

1/4 as in the nonsymmetric one-
dimensional model.

The operator ĥ is given by equation (7.7) except that

bj = uj+2q
j

0

2u2
, (7.57)

and the series for the eigenvalues of Ĥ read

ε = u0 + 1

β2

∞∑
j=0

e2j λ
2j . (7.58)

When q0 is the minimum of u(q) as in equation (7.56), the resulting polynomial approximation
proves suitable for the treatment of Lennard–Jones potentials by means of perturbation theory [156].

The calculation of analytical perturbation coefficients ej through the methods discussed in Chap-
ters 2 and 3 is straightforward, specially if one resorts to Maple. The first three nonzero corrections
are exactly those in Table 7.1 provided that the potential coefficients bj are given by equation (7.57).

We have already seen that the application of approximate methods to exactly solvable models is
most instructive. Here we choose the Kratzer oscillator [157, 158]

V (r) = −C1

r
+ C2

r2
, C1, C2 > 0 , (7.59)

which resembles the potential-energy function of a diatomic molecule. Choosing the length unit
γ = h̄2/(mC1), and defining B = mC2/h

2, we obtain

u(q) = − 1

q
+ l(l + 1)+ 2B

2q2
. (7.60)
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One can solve the Schrödinger equation for the Kratzer oscillator in many different ways [157, 158].
To facilitate the discussion below we define an effective real quantum numberL satisfyingL(L+1) =
l(l + 1) + 2B, so that we can resort to the solutions of the hydrogen atom. It is well known that
every eigenfunction behaves as �(q) ≈ qL+1 sufficiently close to origin. Because L+ 1 has to be
positive for all l ≥ 0, the only acceptable root is

L = −1

2
+

√
(l + 1/2)2 + 2B . (7.61)

The eigenvalues of the Kratzer oscillator are given by [157, 158]

ε = − 1

2(ν + L+ 1)2
, (7.62)

where ν = 0, 1, . . . is the radial quantum number.
The parameters of the deep-well approximation for this simple model are q0 = L(L+1), β = q

3/4
0 ,

and λ = q
−1/4
0 ; therefore, the accuracy of the series is expected to increase with L. Taking into

account that u0 = −1/(2q0) we obtain

ε = −λ
4

2
+ λ6

∞∑
j=0

e2j λ
2j , (7.63)

where the coefficients e2j are given in Table 7.1 with

bj = (−1)j (j + 1)

2
. (7.64)

Figure 7.3 shows the effective potential-energy function u(q) for three values of L(L+ 1). Notice
that the well becomes shallower as L increases so that the name “deep-well approximation” is not
the most appropriate in this case.

FIGURE 7.3
Effective potential-energy function u(q) = −1/q+L(L+1)/(2q2) forL(L+1) = 1 (continuous
line), 2 (broken line), and 3 (points).
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In order to obtain the perturbation expansion (7.63) from the exact result (7.62) we define the
parameter ξ = 1/(L+ 1) and solve L(L+ 1) = λ−4 = (ξ−1 − 1)ξ−1 for ξ :

ξ = 2λ2

λ2 +√4+ λ4
. (7.65)

Substituting this result into

ε = − ξ2

2(1+ νξ)2
(7.66)

we obtain ε as a function of λ. Its Taylor expansion about λ = 0 gives us exactly the perturbation
series (7.63) in terms of e0 = ν + 1/2.

This example allows us to study the convergence properties of the deep-well approximation. The
exact dimensionless energy ε exhibits a pole at Ls = −ν − 1 [see equation (7.66)], and square-
root branch points at λ2

s = ±2i [see equation (7.65)]; therefore, we expect the perturbation series
converge for all λ2 < 1/

√
ν(ν + 1) if ν > 0, and for all λ2 < 2 when ν = 0. It is clear that the

radius of convergence decreases with the radial (vibrational) quantum number ν. Fortunately, there is
considerable room for improving the convergence properties of the perturbation series. For example,
if we choose ξ to be the perturbation parameter, then the radius of convergence of the perturbation
series is 1/ν > 1/

√
ν(ν + 1) if ν > 0, and we obtain the exact result when ν = 0. Moreover, if

C2 = 0 in the Kratzer oscillator (7.59), then the expressions given above are unsuitable to treat s
states because L = l = 0 and the perturbation parameter λ is undefined. In such a case the variable
ξ is certainly more convenient. Even better choices are possible as discussed later in this chapter.

7.4 Vibration-Rotational Spectra of Diatomic Molecules

The theoretical study of molecular properties is commonly based on the Born–Oppenheimer
approximation that separates the motions of electrons and nuclei because of their considerably
different masses [159]. Provided that such an approach is valid, one can model the vibration-
rotational spectrum of a diatomic molecule by means of a Schrödinger equation for the motion of
the nuclei under a potential V (R), where R is the internuclear distance. This equation is separable
in spherical coordinates, and in the case of an electronic state 1/+ we are left with a radial equation
of the form [160]

Ĥ� = E�, Ĥ = − h̄2

2m

d2

dR2
+ h̄2J (J + 1)

2mR2
+ V (R) , (7.67)

wherem is the reduced mass of the nuclei, J = 0, 1, . . . is the rotational quantum number, and�(R)
satisfies the boundary condition �(0) = 0. We assume that V (R) has a minimum at the equilibrium
internuclear distance R = Re, and supports bound states.

One of the aims of molecular spectroscopy is to determine the form of V (R) as accurately as
possible from the vibration-rotational spectrum. To this end one needs a suitable expression for the
bound-state energies in terms of appropriate potential parameters. If we applied the perturbation
method of the preceding section, then the value of V (R) and its derivatives at a coordinate point
RJ that depends on the rotational quantum number would appear in the Hamiltonian operator ĥ.
Because spectroscopists are more interested in what they call molecular parameters at equilibrium
(that is to say, values of V (R) and its derivatives at Re), we then resort to a different approach in
what follows.
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The molecular parameters at equilibrium appear naturally in the perturbation method if we expand
the potential-energy function in a Taylor series about Re:

V (R) =
∞∑
j=0

Vj (R − Re)
j . (7.68)

In order to facilitate the calculation we define dimensionless coordinate q = (R − Re)/(λRe),
potential-energy function v(q) = mR2

e λ
2V (R)/h̄2, and energy ε = mR2

e λ
2E/h̄2, where

λ =
(

h̄2

2mR4
eV2

)1/4

(7.69)

is a dimensionless parameter. We can rewrite λ as

λ =
√

2B

h̄ω
, (7.70)

where the rotational constant B and the oscillator frequency ω are, respectively, given by

B = h̄2

2mR2
e

, ω =
√

2V2

m
. (7.71)

For most molecules λ is sufficiently small to be chosen as perturbation parameter.
If we substitute the definitions above into the Taylor expansion of the dimensionless potential-

energy function we finally obtain

v(q) = v0 + 1

2
q2 +

∞∑
j=1

ajλ
jqj+2, v0 = V0

h̄ω
, aj = Vj+2R

j
e

2V2
. (7.72)

We apply perturbation theory to the eigenvalue equation ĥ� = e� for the dimensionless Hamiltonian
operator

ĥ = 1

h̄ω

(
Ĥ − V0

)
− JB = −1

2

d2

dq2
+ 1

2
q2 +

∞∑
j=1

λjpj (q) , (7.73)

where

JB = J (J + 1)λ2

2
= J (J + 1)B

h̄ω
, (7.74)

and

pj (q) = (−1)j (j + 1)JBq
j + ajq

j+2 . (7.75)

The first term in the right-hand side of this equation comes from the Taylor expansion of the centrifugal
part of the radial Schrödinger equation (7.67). This example shows a different way of grouping the
anharmonic terms into perturbation contributions. We mentioned earlier that this practice is an
additional degree of freedom in the construction of perturbation series by means of polynomial
approximations, and we will come back to it later in this chapter.
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Straightforward application of perturbation theory to ĥ� = e� gives us the perturbation series
e = e0 + e2λ

2 + · · · , where e0 = ν + 1/2, ν = 0, 1, . . . , and e2j+1 = 0, as argued before. The
perturbation series for the dimensionless energy ε = E/(h̄ω) reads

ε = v0 + JB +
∞∑
j=0

e2j λ
2j . (7.76)

Table 7.6 shows e2 and e4 obtained by means of the method of Swenson and Danforth discussed in
Section 3.3. We do not provide more corrections because their length increases considerably with
the perturbation order and because one easily obtains as many of them as desired by means of a set of
simple Maple procedures similar to those shown in the program section for anharmonic oscillators.
Many energy coefficients were obtained before in order to study molecular spectra [160].

Table 7.6 Perturbation Corrections to the Vibration-Rotational Energies of Diatomic
Molecules

e2 = −2 JB2 + (6 a1 + 3) e0 JB +
(
− 15

4 a1
2 + 3

2 a2

)
e0

2 − 7
16 a1

2 + 3
8 a2

e4 = (12+ 8 a1) JB
3 +

(
−54 a1 − 57

2 − 54 a1
2 + 24 a2

)
e0 JB

2

+
[(

90 a1
3 − 9 a2 + 15 a3 + 30 a1 − 78 a1 a2 + 45 a1

2 + 15
2

)
e0

2 + 15
8 − 9

4 a2 + 21
4 a1

2

+ 15
4 a3 + 21

2 a1
3 + 7

2 a1 − 23
2 a1 a2

]
JB

+
(
− 35

2 a1 a3 + 225
4 a1

2 a2 − 705
16 a1

4 − 17
4 a2

2 + 5
2 a4

)
e0

3

+
(

25
8 a4 − 95

8 a1 a3 + 459
16 a1

2 a2 − 67
16 a2

2 − 1155
64 a1

4
)
e0

The first three terms v0+JB+e0 in equation (7.76) give the electronic, rotational, and vibrational
energies (in units of h̄ω) according to the simplest model of a rigid rotor and a harmonic oscillator.
The remaining polynomial function of e0 and JB accounts for anharmonic effects, vibration-rotation
coupling, and centrifugal stretching [160].

In order to compare present perturbation expansion with those in the preceding section we consider
the same exactly solvable model studied earlier: the Kratzer oscillator, which for convenience we
write as

V (R) = D

(
−2

Re

R
+ R2

e

R2

)
. (7.77)

The exact dimensionless energies are

ε = − λ2C2

2(ν + L+ 1)2
, (7.78)

where C = 2mR2
eD/h̄

2 and

L =
√
(J + 1/2)2 + C − 1

2
. (7.79)

The reader may easily verify that the perturbation parameter is λ = C−1/4.
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There are two types of singular points in the complex C plane: a pole of order two at Cs,1 =
ν(ν + 1) − J (J + 1) and a branch point at Cs,2 = −(J + 1/2)2. Comparing |Cs,1| and |Cs,2| we
conclude that the radius of convergence of theλ2-power series is 1/(J+1/2) ifν <

√
2(J+1/2)−1/2

and 1/
√
ν(ν + 1)− J (J + 1) otherwise.

Taking into account that v0 = −1/(2λ2) we obtain the perturbation series

ε = − 1

2λ2
+ JB +

∞∑
j=0

e2j λ
2j . (7.80)

One easily derives the coefficients ej of the Kratzer oscillator by substitution of the appropriate
potential parameters aj into the general expressions in Table 7.6 (Maple facilitates it). In order to
test the results of perturbation theory we expand the exact expression

λ2ε = − 1

2
(
e0λ2 +√

1+ 2JBλ2 + λ4/4
)2

(7.81)

in a Taylor series about λ = 0 and compare the coefficients.

7.5 Large-N Expansion

The most popular polynomial approximation is the large-N expansion which consists of expanding
the eigenvalues of the Schrödinger equation forN dimensions in powers of 1/N (or a related variable)
and then substituting the required value of N [148]. In order to illustrate this approach we consider
the Schrödinger equation for a central-field model which is separable in hyperspherical coordinates.
After removal of the N − 1 angular variables and appropriate transformation of the resulting radial
equation we are left with a dimensionless eigenvalue problem of the form Ĥ� = E�, where [148]

Ĥ = −1

2

d2

dr2
+ u(r), u(r) = (k − 1)(k − 3)

8r2
+ V (r) , (7.82)

k = N + 2l, and l = 0, 1, . . . is the angular momentum quantum number. The boundary condition
at origin is �(0) = 0.

Following the polynomial approximation discussed above we define a new variable q = (r −
r0)/(βr0), where β and r0 are to be determined, and consider

β2r2
0 Ĥ = −

1

2

d2

dq2
+ (k − 1)(k − 3)β2

8(1+ βq)2
+ β2r2

0V (r) . (7.83)

We write the Taylor expansion of the potential-energy function as follows

β2r2
0V (r) = β2r2

0

∞∑
j=0

Vj (r − r0)
j

= β2r2
0V0 + β3r3

0V1q + β4r4
0V2q

2 +
∞∑
j=1

Vj+2 (r0β)
j+4 qj+2 . (7.84)
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If k is sufficiently large the terms proportional to k2 dominate in the centrifugal term. Therefore we
write its Taylor expansion as follows:

β2r2
0
(k − 1)(k − 3)

8r2
= (k − 1)(k − 3)β2

8

∞∑
j=0

(−1)j (j + 1)(βq)j

= (k − 1)(k − 3)β2

8
−k

2β3q

4
+3k2β4q2

8
+k

2

8

∞∑
j=1

(−1)j (j + 3)βj+4qj+2

+ (3− 4k)β2

8

∞∑
j=1

(−1)(j + 1)βjqj . (7.85)

We choose r0 in such a way that the coefficient of q in the potential plus centrifugal term is zero to
the leading term in k:

4r3
0V1

k2
= 1 . (7.86)

It gives the location of the minimum of the effective potential-energy function

Veff (r) = V (r)+ k2

8r2
. (7.87)

From the coefficient of the quadratic term to the leading order in k we define an oscillator frequency
ω as

β4
(

3k2

8
+ r4

0V2

)
=

(
3

8
+ r4

0
V2

k2

)
= ω2

2
, (7.88)

provided that β = 1/
√
k.

In this way we obtain the following operator

Ĥ = r2
0β

2Ĥ − (k − 1)(k − 3)β2

8
− r2

0β
2V0

= −1

2

d2

dq2
+ ω2

2
q2 +

∞∑
j=1

(
ajq

j+2 + bjq
j
)
βj +

∞∑
j=1

cj q
jβj+2 , (7.89)

where

aj = (−1)j

8
(j + 3)+ Vj+2

k2
r
j+4
0 ,

bj = − (−1)j

2
(j + 1), cj = 3

8
(−1)j (j + 1) . (7.90)

Notice that we have substituted 1/
√
k for β only in some places, leaving β unchanged in others where

it will play the role of a perturbation parameter. (We finally setβ = 1/
√
k in the resulting perturbation

series.) In this way the Hamiltonian operator (7.89) exactly agrees with the one commonly used by
other authors [148].

If we apply perturbation theory to the eigenvalue equation Ĥ� = E�with perturbation parameter
β, we obtain a perturbation series of the form

E =
∞∑
j=0

E2jβ
2j , E0 = (ν + 1/2)ω (7.91)
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because the coefficients of odd order vanish as argued earlier in this book. Finally, the energy reads

E = V0 + (k − 1)(k − 3)

8r2
0

+ 1

r2
0β

2

∞∑
j=0

E2jβ
2j . (7.92)

A simple scaling argument shows that the actual perturbation parameter is not β but λ = β/
√
ω.

In fact, the change of variable q = z/
√
ω enables us to rewrite the Hamiltonian operator as Ĥ = ωĥ,

where

ĥ = −1

2

d2

dz2
+ 1

2
z2 +

∞∑
j=1

λj
(
aj

ω2
zj+2 + bj

ω
zj

)
+
∞∑
j=1

cjλ
j+2zj . (7.93)

If we apply perturbation theory to the eigenvalue equation ĥ� = e� we obtain the series

e =
∞∑
j=0

e2j λ
2j (7.94)

in terms of which the energy reads

E = V0 + (k − 1)(k − 3)

8r2
0

+ 1

r2
0λ

2

∞∑
j=0

e2j λ
2j . (7.95)

Table 7.7 shows the coefficients E2 and E4 in terms of the potential parameters aj , bj , and cj .
Coefficients of higher order are increasingly more complicated to be shown there, but one easily
obtains as many of them as desired by means of a simple Maple program similar to those described
earlier. Here, we have chosen the method of Swenson and Danforth discussed in Section 3.3.
The perturbation corrections in Table 7.7 account for most of the results obtained earlier by other
authors [148].

Table 7.7 General Energy Coefficients of the Large-N Expansion

ε2 = −
1
2 b1

2+ 3
8 a2+b2 e0

ω2 + −3 a1 b1 e0− 7
16 a1

2+ 3
2 a2 e0

2

ω4 − 15
4

a1
2 e0

2

ω6

ε4 = −b1 c1+c2 e0+ 3
8 b4

ω2 + (− 7
8 a1 b3 − 3 b1 b3 e0 − 15

8 b1 a3 + b1
2 b2 + 25

8 a4 e0 − 1
2 b2

2 e0

+ 3
2 b4 e0

2 − 3
4 a2 b2 − 3 a1 c1 e0)/ω

4 + (− 15
2 a1 b3 e0

2 + 9 a1 e0 b2 b1 + 6 b1
2 a2 e0

− 15
2 b1 a3 e0

2 − 3 a2 b2 e0
2 − 95

8 a1 e0 a3 + 5
2 a4 e0

3 + 23
4 a1 a2 b1 − a1 b1

3 + 7
4 a1

2 b2

− 67
16 a2

2 e0)/ω
6 + (− 27

2 a1
2 b1

2 e0 − 35
2 a1 a3 e0

3 + 459
16 a2 a1

2 e0 + 39 a1 a2 e0
2 b1

+15 b2 e0
2 a1

2 − 17
4 a2

2 e0
3 − 21

4 a1
3 b1)/ω

8

+−45 a1
3 b1 e0

2+ 225
4 a1

2 a2 e0
3− 1155

64 e0 a1
4

ω10 − 705
16

a1
4 e0

3

ω12

In order to understand the relevant features of the large-N expansion we apply it to an exactly
solvable model as we did before with other approximations. In this case we choose the hydrogen

                          



156 POLYNOMIAL APPROXIMATIONS

atom in N dimensions. When V (r) = −1/r we have Vj = (−1/r0)
j+1, r0 = k2/4, and ω = 1/2.

Therefore, equation (7.92) becomes

E = −2β4 − 8β6 + 6β8 + 16β6
∞∑
j=0

E2jβ
2j , (7.96)

where E0 is given in equation (7.91), and E2 and E4 follows from straightforward substitution of the
particular values of the potential coefficients aj , bj , and cj into the expressions of Table 7.7. It is
not difficult to verify that the perturbation series (7.96) agrees with the Taylor expansion of the exact
result

E = − 2

[2(e0 − 1)+ k]2 = −
2β4

[1+ 2(e0 − 1)β2]2 (7.97)

where e0 = 2E0 = ν + 1/2.
It is not difficult to prove that the large-N expansion for the hydrogen atom converges for all

β2 <
1

|2ν − 1| ⇒ k > |2ν − 1| ; (7.98)

that is to say, the radius of convergence decreases with the vibrational quantum number ν = 0, 1, . . .
as in previous examples. The radius of convergence of the large-N expansion for a Kratzer oscillator
(which we can view as a generalization of the Coulomb interaction) was already discussed some
time ago [161].

In order to apply the approach developed in Section 7.3 to the radial equation in N dimensions,
we write r = r0(1+ ξq) and choose r0 to be the minimum of U(r) = (k− 1)(k− 3)/(8r2)+V (r),
which is given by

4r3
0V1

(k − 1)(k − 3)
= 1 . (7.99)

If

ξ =
[

3(k − 1)(k − 3)

4
+ 2V2r

4
0

]−1/4

=
(

3r3
0V1 + 2V2r

4
0

)−1/4
, (7.100)

then the coefficient of q2 equals unity. Notice that the large-N expansion and the deep-well approx-
imation lead to different expressions of both r0 and the perturbation parameter, which agree when
k→∞.

In order to appreciate the difference between both expansions more clearly we apply the deep-
well approximation to the hydrogen atom in N dimensions. A straightforward calculation shows
that r0 = (k − 1)(k − 3)/4 and ξ = r

−1/4
0 , and it follows from equation (7.98) that the perturbation

series converges for all

ξ2 <
2√|2ν − 1|(|2ν − 1| + 1)

< 2 (7.101)

provided that there is no other singular point. There is, however, another singularity coming from
the transformation between the perturbation parameters:

k = −1

2
+ 2

ξ2

√
1+ ξ4/4 . (7.102)
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Since ξ = 0 is not a singular point of E as one easily verifies by substituting equation (7.102)
into equation (7.97), then we are left with the branch point ξ4

b = −4 which tells us that the Taylor
expansion of the square root converges for all ξ2 < 2. Since this radius of convergence is greater
than the one in equation (7.101), we conclude that both perturbation series converge for the same
values of k (although the rate of convergence may be different).

In order to compare the deep-well approximation and the large-N expansion we apply both to
a quantum-mechanical model with potential-energy function V (r) = r . When N = 3 we have to
solve a radial equation of the form (7.82) with

u(r) = r + l(l + 1)

2r2
. (7.103)

Notice that the deep-well approximation does not apply to s states because u(r) has no minimum
when l = 0. On the other hand, the large-N series is based on an expansion about the minimum of the
effective potential-energy function (7.87) which already exists for all values of l because k = 3+2l.
In order to compare the results of both approaches we choose l = 1. Figure 7.4 shows u(r) for
three values of l. In the selected case l = 1, u(r) is a single well that supports bound states for all
E > u0 = 21/3 + 2−2/3.

FIGURE 7.4
Effective potential-energy function u(r) = r + l(l + 1)/(2r2).

We compare the convergence properties of different perturbation series by means of a logarithmic
error defined as the logarithm of the absolute value of the first term neglected in the partial sum,
which we calculate by means of the method of Swenson and Danforth discussed in Section 3.3.
For concreteness consider the eigenvalue with ν = 0. Figure 7.5 shows that neither the deep-well
approximation nor the large-N expansion converge, and that the latter gives better results if we apply
the truncation criterion discussed in Chapter 6. In fact, from a deep-well approximation of order 16
and a large-N expansion of order 34 we obtain the best estimatesE = 2.66782 andE = 2.66782947,
respectively, while the exact result provided by the Riccati–Padé method [162] isE = 2.667829483.

The conclusion just drawn appears to be at variance with earlier calculations on Lennard–Jones
potentials which suggest that at low perturbation orders the deep-well approximation is more accu-
rate even than the shifted large-N expansion (an improved version of the large-N expansion to be
discussed later in this chapter) [156]. In order to investigate whether the relative accuracy of those
approaches is model dependent, we consider the Lennard–Jones interactions in what follows.
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FIGURE 7.5
Logarithmic error for the deep-well approximation and large-N expansion for the bound-state
energy with ν = 0 and l = 1 supported by V (r) = r .

A general j − n Lennard–Jones potential-energy function is of the form

V (r) = D

j − n

[
n
( re
r

)j − j
( re
r

)n]
, (7.104)

where j > n, re is the equilibrium distance, and D > 0 is the well depth. This potential-energy
function may support bound states for−D < E < 0. Notice that the Kratzer oscillator is a particular
case of (7.104) with j = 2 and n = 1. The dimensionless energy and potential-energy function read
ε = mr2

e E/h̄
2 and

v(q) = mr2
e V (req)

h̄2
= η2

j − n

(
n

qj
− j

qn

)
, (7.105)

respectively, where η2 = mr2
e D/h̄

2. For comparison purposes, here we choose one of the examples
considered by the authors who proposed the deep-well approximation [156]: j = 12, n = 6, and
η = 50

√
2; its shape can be seen in Figure 7.6.

Figure 7.7 shows the rate of convergence of the deep-well approximation and large-N expansion
for several s states which we have purposely chosen because l = 0 is expected to be the most
unfavorable case for both methods. The behavior of the perturbation series agrees with our earlier
investigation on the much simpler Kratzer oscillator: both perturbation series appear to converge
with an almost identical rate for all the states considered, and their convergence rate decreases with
the radial quantum number ν. Table 7.8 shows dimensionless energies E/D = ε/η2 for the selected
states. It is worth noticing that the smallest perturbation order P (also given in Table 7.8) at which
the last digit becomes stable is exactly the same for both series, and that the perturbation eigenvalues
agree with the most accurate numerical calculation available [163].

From the results above one may be tempted to conjecture that the deep-well approximation and
the large-N expansion for a given state of a Lennard–Jones model exhibit the same nonzero radius of
convergence which decreases with the radial quantum number ν; assumption that already applies to
the particular case of the Kratzer oscillator as shown above. However, the methods for the estimation
of the convergence radius of a power series discussed in Section 6.2.1 fail to predict the location
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FIGURE 7.6
Dimensionless Lennard–Jones potential energy function v(q) = (η2/6)(6/q12 − 12/q6) for
η = 50

√
2.

Table 7.8 Eigenvalues
ε

η2
of the Schrödinger Equation with the Dimensionless

Lennard–Jones Potential-Energy Function v(q) = η2

6
(

6

q12
− 12

q6
), η = 50

√
2

ν = 0 ν = 5
P Polynomial Large-N P Polynomial Large-N

Approximation Expansion Approximation Expansion

6 −0.9410460320 −0.9410460320 18 −0.4698229102 −0.4698229102

Exact −0.941046 Exact −0.469823

ν = 10 ν = 15
P Polynomial Large-N P Polynomial Large-N

Approximation Expansion Approximation Expansion

28 −0.1857237018 −0.1857237018 44 −0.04646991136 −0.04646991136

Exact −0.185724 Exact −0.046470

and exponent of the singular points. It may therefore happen that the deep-well and large-N series
for the Lennard–Jones potential just discussed are slowly divergent. A more detailed and rigorous
investigation is necessary in order to draw a convincing conclusion on this point.

7.6 Improved Perturbation Series

It is worth summarizing the most noticeable differences between the deep-well approximation and
the large-N expansion. First, one expands the potential-energy function around different coordinate
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FIGURE 7.7
Logarithmic error for the deep-well approximation (line) and large-N expansion (points) for several s states
supported by the dimensionless Lennard–Jones potential of Figure 7.6.
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points: the minimum of u(r) (equation (7.82)) in the deep-well approximation, and the minimum of
Veff (r) (equation (7.87)) in the large-N expansion. For this reason it is possible to apply the latter
and not the former when u(r) does not exhibit a minimum. Second, although in both approaches the
reference model or unperturbed Hamiltonian is a harmonic oscillator, the corresponding oscillator
frequencies are different. Third, the grouping of the perturbation terms that is noticeably different
comes from the use of different perturbation variables.

All in all, the difference between the deep-well approximation and the large-N expansion comes
from the three degrees of freedom available for the construction of perturbation series by means of
a polynomial approximation. In the most general case we may try to obtain the eigenvalues of a
quantum-mechanical problem by application of perturbation theory to a Hamiltonian operator of the
form

Ĥ = −1

2

d2

dq2
+ ω2

2
q2 +

∞∑
j=0

λjpj (q) , (7.106)

where p0(q), p1(q), . . . are polynomial functions of q that one conveniently chooses in order to fit
the potential-energy function and centrifugal term for a given value of λ.

Those appear to be the main degrees of freedom at our disposal if we restrict to the harmonic
oscillator as the unperturbed model. However, the lack of clear guidelines for setting them con-
veniently makes the task a complicated and tedious process of trial and error. For this reason the
methods commonly used to improve the convergence properties of the polynomial approximations
try to reduce the degrees of freedom to one adjustable parameter.

In what follows we briefly consider straightforward ways of improving the convergence properties
of the polynomial approximation. We simply give the main ideas and show some results, but it is
not our purpose to provide rigorous proofs of convergence which in most cases are not available.

7.6.1 Shifted Large-N Expansion

In the preceding section we obtained the radius of convergence of the large-N expansion for
the hydrogen atom in N spatial dimensions. It follows from equation (7.97) that if we expand the
energy in powers of 1/[2(e0 − 1) + k] instead of in powers of 1/k we obtain the exact result with
just one term and all the corrections are zero. This is the basis for the celebrated shifted large-N
expansion [148, 164] that follows from the change of expansion parameter from β = 1/

√
k to

β = 1/
√
k, k = k − a, where a is a real number. If in the case of the hydrogen atom we choose

a = −2(e0 − 1), then E = −2β
4

and all the remaining coefficients of the β
2
-power series vanish.

Since the actual variable of the large-N expansion for the energy is β2, we conclude that the net
effect of shifting k is the Euler transformation

β2 = β
2

1+ aβ
2
, β

2 = β2

1− aβ2
. (7.107)

In order to apply the shifted large-N expansion to a general central-field model we rewrite the
radial Hamiltonian operator (7.82) as

Ĥ = −1

2

d2

dr2
+ u(r), u(r) = (k + a − 1)(k + a − 3)

8r2
+ V (r) , (7.108)

and expand u(r) in powers of β = 1/
√
k exactly as we did before for the large-N expansion. The

resulting effective potential

Veff (r) = V (r)+ k
2

8r2
(7.109)
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exhibits a minimum at r0 given by

4r3
0V1

k
2
= 1 , (7.110)

and the Hamiltonian operator reads

Ĥ = r2
0β

2
Ĥ − (k − 1)(k − 3)β

2

8
− r2

0β
2
V0= −1

2

d2

dq2
+ω

2

2
q2

+
∞∑
j=1

(aj q
j+2 + bjq

j )β
j +

∞∑
j=1

cj q
jβ

j+2
, (7.111)

where

ω2 =
(

3

4
+ 2r4

0
V2

k
2

)
, (7.112)

and

aj = (−1)j

8
(j + 3)+ Vj+2

k
2
r
j+4
0 ,

bj = − (−1)j (a − 2)(j + 1)

4
, cj = (a − 1)(a − 3)(−1)j (j + 1)

8
. (7.113)

Notice that when a = 0 these equations reduce to those above for the large-N expansion.
Straightforward application of perturbation theory to Ĥ� = E� gives us a series similar to

equation (7.91) with β instead of β. The coefficients E2j are functions of the potential parameters
aj , bj , and cj identical to those for the case a = 0, the first of which are given in Table 7.7. The

optimum value of a is customarily chosen in such a way that the coefficient of β
−2

that appears
when we rewrite the expansion of the energy

E = V0 + k
2 + (2a − 4)k + (a − 1)(a − 3)

8r2
0

+ 1

r2
0β

2

∞∑
j=0

E2jβ
2j

(7.114)

in terms of β

E = V0 + 1

8r2
0β

4
+ 2a − 4+ 8E0

8r2
0β

2
+ (a − 1)(a − 3)+ 8E2

8r2
0

+ E4

r2
0

β
2 + · · · (7.115)

vanishes. There is a good reason for this prescription: if a is given by

a = 2− 4E0 = 2− 2(2ν + 1)ω , (7.116)

then the shifted large-N expansion gives the exact energies of the hydrogen atom and harmonic
oscillator in N dimensions [148, 164].

In order to realize how much the shifting just mentioned improves the convergence properties
of the perturbation series we consider a case in which the large-N expansion fails badly. For this
purpose it is sufficient to choose the state l = 0, ν = 5 supported by the potential-energy function
V (r) = r . Figure 7.8 shows the logarithmic error defined above for the large-N expansion and for
its shifted version. It is evident that the former series diverges whereas the latter appears to converge.
Even if the shifted large-N expansion proved to be divergent, we would still obtain reasonable results
from it by means of the truncation criterion discussed in Chapter 6.

                          



7.6. IMPROVED PERTURBATION SERIES 163

FIGURE 7.8
Logarithmic error for the large-N and shifted large-N perturbation series for the state l = 0,
ν = 5 supported by V (r) = r .

7.6.2 Improved Shifted Large-N Expansion

The shift given by equation (7.116) has become quite popular and has been routinely used to
obtain satisfactory results for many quantum-mechanical models [148]. However it is suitable only
for perturbation approximations of low order. When one takes into account perturbation terms of
sufficiently large order, then the shift given by equation (7.116) leads to divergent series, and a
different criterion for selecting the optimum shift is necessary. A successful prescription is to set a
so that EP = 0, and calculate the eigenvalue by means of a partial sum of order P [165]–[167]. This
choice of a, which is inspired in the truncation criterion discussed in Chapter 6, corrects most of the
problems encountered in earlier applications of the shifted large-N expansion [148].

In order to compare results for different values of the free parameter a, we consider the ground-
state energy of the Schrödinger equation with the potential-energy function V (r) = 27/2r , already
chosen in earlier discussions of the shifted large-N expansion [165]. Figure 7.9 shows results for
the shifted large-N expansion and for its improved version with a given by E10 = 0, E40 = 0, and
E60 = 0. The peaks at P = 10, 40, and 60 are finite (instead of −∞) simply because the logarithm
of the perturbation terms has been purposefully calculated with low numerical precision. Notice that
the shifted large-N expansion is the most accurate at sufficiently low perturbation order. However,
as we add more perturbation terms the value of a given by EP = 0 is preferable.

In Table 7.9 we give the best estimate of the eigenvalue obtained from a partial sum of order M
determined according to the truncation criterion proposed in Chapter 6. In the case of the improved
shifted large-N expansion we omit the term of order P forced to be zero by the choice of a. Notice
that the greater the value of P , the more negative the value of a, and the greater the order M of
the optimum partial sum. When there are more than one real root of EP = 0 we arbitrarily choose
the smallest (most negative) one. By means of the smallest root of E60 = 0 and the partial sum of
order 58 we obtain the ground-state energy with ten-digit accuracy (with respect to the exact result
obtained by means of the powerful Riccati–Padé method [162]).

It is worth noticing that the shifted large-N expansion and its variants are based on just one
adjustable parameter that clearly modifies the expansion point r0 and the frequencyω of the harmonic
oscillator. Allowing more degrees of freedom will certainly result in perturbation series with better
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FIGURE 7.9
Logarithmic error for the perturbation series for the ground state of V (r) = 27/2r .

Table 7.9 Ground-State Energy Supported by the

Potential-Energy Function V (r) = 2
7
2 r

P M a E

Shifted Large-N
Expansion 20 0.267949192 9.3526

Improved Shifted
Large-N Expansion 10 28 −1.656887641 9.3524301

20 26 −2.212808322 9.3524295
30 32 −2.618371270 9.3524297
40 42 −2.922963203 9.35242966
50 44 −3.211017542 9.35242965
60 58 −4.848680852 9.352429642

Exact 9.352429641839

convergence properties but will at the same time make the calculation more complicated, especially
if we lack sound criteria for setting the optimum values of the adjustable parameters.

7.7 Born–Oppenheimer Perturbation Theory

The starting point of a typical quantum-mechanical treatment of a molecule is the Born–
Oppenheimer approximation that consists of the separation of the electronic and nuclear degrees
of freedom. In this way one simplifies the problem considerably and makes it computationally more
tractable. The first such approach was based on perturbation theory [168] but later a more convenient
strategy was proposed [169] which was rapidly adopted by most researchers, becoming an important
part of the routine theoretical treatment of molecules [53, 159].
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The perturbation approach to the separation of electronic and nuclear degrees of freedom resembles
the polynomial approximation discussed in this chapter. For this reason we briefly discuss it in the
present section under the name of Born–Oppenheimer perturbation theory. The original perturbation
method is rather cumbersome making it considerably difficult for the derivation of moderately large
perturbation orders [168]. This fact motivated the development of a more systematic procedure to
facilitate the calculation [170].

The application of the Born–Oppenheimer perturbation method to a system composed of an arbi-
trary number of light and heavy particles is straightforward [170]. However, in order to concentrate
on the main ideas and avoid the diversion which may possibly arise from the notation required for
the description of many degrees of freedom, we consider here a system of only two coordinates:

Ĥ = − h̄2

2m

∂2

∂x2
− h̄2

2M

∂2

∂X2
+ V (x,X) . (7.117)

This model describes the one-dimensional motion of a light particle of mass m and position x and a
heavy particle of mass M >> m and position X.

In the first step we derive a dimensionless Hamiltonian operator Ĥ = mL2Ĥ /h̄2, where L is
a length unit. Defining dimensionless coordinates q = x/L and Q = X/L, and a dimensionless
potential-energy function v(q,Q) = mL2V (Lq,LQ)/h̄2, we obtain

Ĥ = −1

2

∂2

∂q2
− m

2M

∂2

∂Q2
+ v(q,Q) . (7.118)

The dimensionless Schrödinger equation reads Ĥ< = E<, where E = mL2E/h̄2 and E is an
eigenvalue of Ĥ . In order to apply the polynomial approximation to the slow motion of the heavy
particle define

Q = Q0 + βy , (7.119)

where y is a new coordinate and the parameters Q0 and β of the transformation will be determined
later on.

Expanding the potential-energy function about Q0

v(q,Q) =
∞∑
j=0

vj (q)(Q−Q0)
j =

∞∑
j=0

vj (q)(βy)
j (7.120)

the dimensionless Hamiltonian operator becomes

Ĥ = −1

2

∂2

∂q2
− m

2Mβ2

∂2

∂y2
+ v0 + v1βy + v2β

2y2 + · · · . (7.121)

In order to simplify the notation we define the kinetic energy operators

T̂q = −1

2

∂2

∂q2
, T̂y = −1

2

∂2

∂y2
. (7.122)

The kinetic energy and the harmonic term for the slow motion will appear at the same perturbation
order if m/(Mβ2) = β2 that leads to

β = (m/M)1/4 . (7.123)
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In order to apply perturbation theory we expand the dimensionless Hamiltonian operator as

Ĥ =
∞∑
j=0

Ĥjβ
j , (7.124)

where

Ĥ0 = T̂q + v0, Ĥ1 = v1y, Ĥ2 = T̂y + v2y
2,

Ĥj = vjy
j , j > 2 . (7.125)

Straightforward application of perturbation theory to the Schrödinger equation with this expansion
of the Hamiltonian operator proves to be rather lengthy requiring great ingenuity to figure out how to
combine the perturbation equations to obtain suitable results [168]. For this reason, in what follows
we develop more convenient equations for the application of perturbation theory.

We first define the Hamiltonian operator

Ĥq = T̂q + v(q,Q) (7.126)

that depends on the coordinate Q parametrically. Strictly speaking equation (7.126) represents a
family of Hamiltonian operators, one for each value of Q. In the Born–Oppenheimer approximation
the eigenvalues of Ĥq are effective potential-energy functions for the slow motion

Ĥq�(q,Q) = U(Q)�(q,Q) . (7.127)

For the sake of simplicity we assume that the chosen eigenvalueU(Q) is nondegenerate and normalize
�(q,Q) to unity for all values of Q:

〈�|�〉q =
∫

�(q,Q)2 dq = 1 , (7.128)

where the subscript in the ket |〉q indicates integration over q. Notice that without loss of generality
we choose �(q,Q) to be real.

We define a function of the coordinate for the slow motion

f (Q) = 〈�|<〉q (7.129)

and a correlation function

F(q,Q) = <(q,Q)− f (Q)�(q,Q) (7.130)

which is orthogonal to � with respect to q:

〈�|F 〉q = 0 . (7.131)

This correlation function vanishes identically if the state function <(q,Q) is exactly factorizable as
f (Q)�(q,Q), which, in general, does not occur. The function F(q,Q) is therefore a measure of
such a factorization and satisfies the differential equation (Ĥ− E)F = f (E −U)�− β2T̂y�f . We
rewrite T̂y�f = �T̂yf − [�, T̂y]f , where [�, T̂y] is a formal notation for the commutator

[
�, T̂y

]
= �T̂y − T̂y� = 1

2

(
∂2�

∂y2
+ 2

∂�

∂y

∂

∂y

)
. (7.132)
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The differential equation for F(q,Q) becomes
(
Ĥ− E

)
F = �

(
E − U − β2T̂y

)
f + β2

[
�, T̂y

]
f . (7.133)

Applying the bra q < �| to equation (7.133) from the left, and taking into account equations (7.127),
(7.128), and (7.131) we conclude that (E − U − β2T̂y + β2〈�|[�, T̂y]〉q)f = β2〈�|T̂y |F 〉q .
Differentiating equation (7.128) with respect to y once and twice we obtain

〈
�
∣∣∂�
∂y

〉
q

= 0,

〈
�
∣∣∂2�

∂y2

〉
q

= −
〈
∂�

∂y

∣∣∂�
∂y

〉
q

, (7.134)

respectively. Therefore, the differential equation for f (Q) reads
(
Ĥy − E

)
f (Q) = −R(Q) , (7.135)

where

Ĥy = β2T̂y + U(Q)+W(Q) (7.136)

and

W(Q) = β2

2

〈
∂�

∂y

∣∣∂�
∂y

〉
q

≥ 0, R(Q) = β2

(
1

2

〈
∂2�

∂y2

∣∣F
〉
q

+
〈
∂�

∂y

∣∣∂F
∂y

〉
q

)
. (7.137)

By means of equation (7.135) we can rewrite equation (7.133) as follows:
(
Ĥ− E

)
F = �Wf + R + β2

[
�, T̂y

]
f . (7.138)

In order to apply perturbation theory to the equations above we need the following expansions:

Ĥq =
∞∑
j=0

Ĥq,j β
j , Ĥq,j = Ĥj − T̂yδj2 , (7.139)

�(q,Q) =
∞∑
j=0

�j(q)β
jyj , (7.140)

U(Q) =
∞∑
j=0

Ujβ
jyj , (7.141)

W(Q) =
∞∑
j=0

Wjβ
j+2yj−2 , (7.142)

R(Q) =
∞∑
j=0

Rj (y)β
j+2 , (7.143)
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F(q,Q) =
∞∑
j=0

Fj (q, y)β
j , (7.144)

Ĥy =
∞∑
j=0

Ĥy,j β
j , Ĥy,j = T̂yδj2 + Ujy

j +Wj−2y
j−4 . (7.145)

Notice that ∂�/∂y and ∂2�/∂y2 are of order β and β2, respectively. Therefore, W0 = W1 =
R0 = 0, so that W and R are at least of order β4 and β3, respectively. Because the right-hand side
of equation (7.138) is at least of order β3 we can choose F0 = F1 = F2 = 0. It therefore follows
from equation (7.137) that R1 = R2 = R3 = 0, and

R4 =
〈
�1

∣∣∂F3

∂y

〉
q

(7.146)

may be the first nonzero coefficient of the expansion (7.143).
Consider the perturbation coefficients of equation (7.135):

k∑
j=0

(
Ĥy,j − Ej

)
fk−j = −Rk−2 , (7.147)

where Rk−2 = 0 if k < 6. The solution of the perturbation equation of order zero (U0 − E0)f0 = 0
is

U0 = E0 . (7.148)

From the equation of first order (U1y − E1)f0 = 0 we obtain

U1 = E1 = 0 , (7.149)

which states that Q0 is a stationary point of U(Q):

∂U

∂Q
(Q0) = 0 . (7.150)

The equation of second order (Ĥy,2−E2)f0 = 0 is the eigenvalue equation for the harmonic oscillator
Ĥy,2 = T̂y + U2y

2; therefore

E2 = (ν + 1/2)
√

2U2, ν = 0, 1, . . . , (7.151)

and f0 is the corresponding eigenfunction. It is clear that the present approach applies provided that
U2 > 0; that is to say, if Q0 is a minimum of U(Q).

It is not difficult to verify that the perturbation equations (7.147) of order k = 3, 4, and 5 are
identical to those for a harmonic oscillator perturbed by anharmonic terms of the form βU3y

3 +
β2(U4y

4 + W2) + β3(U5y
5 + W3y). The inhomogeneous term in equation (7.147) appears at

sixth order. According to equation (7.146) we need F3 in order to obtain R4. It follows from
equation (7.138) that F3 is a solution of

(
Ĥ0 − E0

)
F3 =

(
Ĥq,0 − U0

)
F3 = �1

∂f0

∂y
. (7.152)
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Since < �0|�1 >q = 0 we can formally write

F3 =
(
Ĥq,0 − U0

)−1
�1

∂f0

∂y
, (7.153)

so that

R4 =
〈
�1

∣∣ (Ĥq,0 − U0

)−1
�1

〉
q

∂2f0

∂y2
= −2KT̂yf0 , (7.154)

where

K =
〈
�1

∣∣ (Ĥq,0 − U0

)−1
�1

〉
q

. (7.155)

The reader can easily verify that the perturbation equations (7.147) with k ≤ 6 follow from the
eigenvalue equation

Ĥeff f = Eeff f , (7.156)

where the effective Hamiltonian operator Ĥeff given by

Ĥeff =
(

1− 2Kβ4
)
T̂y + U2y

2 + βU3y
3 + β2

(
U4y

4 +W2

)

+ β3
(
U5y

5 +W3y
)
+ β4

(
U6y

6 +W4y
2
)

(7.157)

is accurate through order β4. Finally, the eigenvalue of Ĥ through order six results to be

E ≈ U0 + β2Eeff . (7.158)

The coefficients of the perturbation series for the eigenfunction

< =
∞∑
j=0

<jβ
j (7.159)

are given by

<j =
j∑

k=0

�ky
kfj−k + Fj . (7.160)

Suppose that we want to derive an approximate expression for the transition integral 〈<|d|< ′〉,
where d = c1x + c2X is the dipole moment of the system and < and < ′ are initial and final
states, respectively. In order to carry out this calculation by means of perturbation theory we rewrite
d = c1L(q + αβy)+ c2LQ0, where α = c2/c1. Therefore

〈
<|d|< ′〉 =

∞∑
j=0

〈
<|d|< ′〉

j
βj , (7.161)

where

〈
<|d|< ′〉

j
= c1L


 j∑
k=0

〈
<k|q|< ′j−k

〉
+ α

j−1∑
k=0

〈
<k|y|< ′j−1−k

〉 . (7.162)
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The leading term

〈
<|d|< ′〉0 = c1L

〈
�0|q|�′0

〉
q

〈
f0|f ′0

〉
y

(7.163)

is proportional to the well-known Frank–Condon overlap integral 〈f0|f ′0〉y .
It is worth noticing that we could approximately separate the eigenvalue equation with two degrees

of freedom into two one-dimensional eigenvalue equations so that the energies result to be eigenvalues
of an effective Hamiltonian operator for the slow motion. In the case of an actual molecular system
we obtain equations for the electrons (light particles, rapid motion) and the nuclei (heavy particles,
slow motion), and the molecular energies are the eigenvalues of a nuclear effective Hamiltonian
operator [170]. The treatment of systems with many degrees of freedom closely parallels the much
simpler example considered here, which we have solved in detail for pedagogical purposes. We
point out that the approach just discussed is of practical value only in the case of many degrees of
freedom [170].

One of the main reasons for discussing the early Born–Oppenheimer approximation here is that
it does not appear to be widely known. Although the polynomial approximations in perturbation
theory (specially the large-N expansion and its variants) are quite popular, nobody seems to think
of the early Born–Oppenheimer method as an example in which the polynomial approximation is
restricted to some properly selected degrees of freedom.

It is instructive to apply the Born–Oppenheimer method to an exactly solvable model. The
eigenvalues of the dimensionless Hamiltonian operator

Ĥ = −1

2

∂2

∂q2
− β4

2

∂2

∂Q2
+ 1

2

(
q2 +Q2

)
+ λqQ (7.164)

are

E = (ν + 1/2)
√
ξ+ +

(
ν′ + 1/2

)√
ξ− , (7.165)

where ν, ν′ = 0, 1, . . . , and

ξ± = 1+ β4

2
± 1

2

√
(1− β4)2 + 4λ2β4 . (7.166)

In order to verify if the Born–Oppenheimer perturbation theory applies, we solve the eigenvalue
equation (7.127) with

v(q,Q) = 1

2

(
q2 +Q2

)
+ λqQ = 1

2
(q + λQ)2 + 1− λ2

2
Q2 , (7.167)

which gives us

U(Q) = ν + 1

2
+ 1− λ2

2
Q2 . (7.168)

We see that U(Q) will have a minimum at Q = Q0 = 0 if λ2 < 1. In agreement with this result
notice that the dimensionless force constant ξ− is positive only if λ2 < 1.

The convergence radius of the Born–Oppenheimer perturbation series is determined by a pair of
complex conjugate branch points that are roots of (1−β4)2+ 4λ2β4 = 0. Solving this equation for
β4 we obtain

β4
b = 1− 2λ2 ± 2λi

√
1− λ2 (7.169)
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and the radius of convergence is |βb|4 = 1; that is to say, the series converges for all β4 = m/M < 1.
We can exactly express the solutions of most of the equations of the Born–Oppenheimer method

for the present trivial problem in terms of the eigenvalues e = ν + 1/2 and eigenfunctions χ of the
harmonic oscillator

ĥ = −1

2

d2

du2
+ u2

2
, ĥχ(u) = eχ(u) . (7.170)

For example,

�(q,Q) = χ(q + λβy) , (7.171)

from which it follows that ∂�/∂y = λβ(dχ/du), and

W(Q) = λ2β4

2

〈
dχ

du

∣∣dχ
du

〉
u

= −λ
2β4

2

〈
χ
∣∣d2χ

du2

〉
u

= λ2β4

2

(
ν + 1

2

)
. (7.172)

In the same way ∂�/∂β = λy(dχ/du) so that

�1 = λ
dχν(q)

dq
= λ√

2

(√
νχν−1 −

√
ν + 1χν+1

)
, (7.173)

where we have explicitly indicated the harmonic oscillator quantum number ν = 0, 1, . . . . One
easily obtains the result in equation (7.173) writing d/dq in terms of creation and annihilation boson
operators [49]. Since Ĥq,0 = ĥ with u = q and U0 = ν + 1/2, we obtain K = λ2/2, and the
effective Hamiltonian operator

Ĥeff =
(

1− λ2β4
)
T̂y + 1− λ2

2
y2 + λ2β2

2

(
ν + 1

2

)
(7.174)

is a harmonic oscillator with mass 1/(1− λ2β4) and force constant 1− λ2; consequently

Eeff =
(
ν′ + 1

2

)√
(1− λ2)(1− λ2β4)+ λ2β2

2

(
ν + 1

2

)
, (7.175)

where ν′ = 0, 1, . . . .
Finally, the approximate energy reads

E ≈
(

1+ λ2β4

2

)(
ν + 1

2

)
+ β2

(
ν′ + 1

2

)√
(1− λ2)(1− λ2β4) . (7.176)

According to our discussion above this approximate expression should be accurate to order six. The
radius of convergence of the Taylor expansion of equation (7.176) about β = 0 is 1/

√|λ| > 1
(remember that |λ| < 1 in order to have bound states). Through order six we have

E ≈
(
ν + 1

2

)
+

(
ν′ + 1

2

)√
(1− λ2)β2

+
(
ν + 1

2

)
λ2β4 − 1

2

(
ν′ + 1

2

)
λ2

√
(1− λ2)β6 +O

(
β10

)
. (7.177)

The Taylor expansion of the exact eigenvalue (7.165) about β = 0 gives the same result through
order six, except that the first neglected term is of order β8. This difference is not surprising because
the Born–Oppenheimer perturbation theory developed above is accurate through order six.

In Figure 7.10 we compare the exact ground-state energy (ν = ν′ = 0) of the model (7.164) with
the approximate expression (7.176) and the series (7.177) for two values of λ. The two approximate
expressions are almost identical and their accuracy decreases as β increases as expected. Moreover,
the accuracy of the approximate results also decreases with λ.
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FIGURE 7.10
Ground-state energy of model (7.164) for two values of λ. The exact result, the approximate
expression (7.176), and the series (7.177) are, respectively, given by a continuous line, a broken
line, and points.

                          



Chapter 8

Perturbation Theory for Scattering States in One
Dimension

8.1 Introduction

In this chapter we briefly discuss the straightforward application of perturbation theory to scattering
states of one-dimensional quantum-mechanical models. It is not our purpose to give an account of the
methods commonly used to treat realistic problems but simply to show that some of the approaches
developed for bound states can also be applied to scattering states. With that purpose in mind we
consider simple one-dimensional models in which the interactions are nonzero only in finite regions
of space. The reason for this restriction is that the calculation is much simpler.

8.2 On the Solutions of Second-Order Differential Equations

Two functions u(x) and v(x) are said to be linear dependent when there exists two nonzero
constants c1 and c2 such that

c1u(x)+ c2v(x) = 0 (8.1)

for all values of x. Differentiating equation (8.1) with respect to x we obtain

c1u
′(x)+ c2v

′(x) = 0 . (8.2)

We can view equations (8.1) and (8.2) as a system of two linear equations with two unknowns c1
and c2. The determinant of such a system is the Wronskian

W(u, v) = uv′ − u′v . (8.3)

If W(u, v) is nonzero for some value of x, then the only solution of the system of homogeneous
linear equations is c1 = c2 = 0, and the functions are linearly independent. If, on the other hand,
W(u, v) is zero for all values of x, then there are solutions for nonzero values of c1 and c2, and the
functions are linearly dependent.

Suppose that u(x) and v(x) are two solutions of the second order differential equation

Y ′′(x) = F(x)Y (x) . (8.4)
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If we multiply v′′(x) = F(x)v(x) by u(x) and u′′(x) = F(x)u(x) by v(x) and subtract, we conclude
that the Wronskian is independent of x:

(
uv′ − u′v

)′ = d

dx
W(u, v) = 0 . (8.5)

Therefore if W(u, v) is zero for a given value of x, then it is zero everywhere, and the solutions u(x)
and v(x) of the differential equation (8.4) are linearly dependent.

If W(u, v) �= 0 then

Y (x) = C1u(x)+ C2v(x) (8.6)

is a general solution of the differential equation (8.4). Taking into account thatW(u, u) = W(v, v) =
0 we easily prove that C1 and C2 are given by

C1 = W(v, Y )

W(v, u)
, C2 = W(u, Y )

W(u, v)
. (8.7)

Notice that all the Wronskians in this equation are independent of x by virtue of the argument given
above.

The practical value of the Wronskians in quantum mechanics was already pointed out some time
ago [171].

8.3 The One-Dimensional Schrödinger Equation with a Finite Interaction
Region

In what follows we consider a particle of mass m moving in a one-dimensional space under the
effect of a force which is nonzero only in a finite region (xL, xR). The time-independent Schrödinger
equation reads

− h̄2

2m
� ′′(x)+ V (x)�(x) = E�(x) , (8.8)

where

V (x) =



0 if x < xL
VC(x) if xL < x < xR
0 if x > xR

. (8.9)

If VC(x) is continuous in (xL, xR) then |VC(x)| has a maximum V0 there.
As we did so many times in preceding chapters, we first define dimensionless coordinate q =

(x − xL)/L, potential-energy function V(q) = V (Lq + xL)/V0, and energy ε = E/V0, where
L = xR − xL and V0 play the role of units of length and energy, respectively. Notice that 0 < q < 1
and |V(q)| ≤ 1. In this way the problem reduces to solving the dimensionless Schrödinger equation

�′′(q) = 2a2[V(q)− ε]�(q) , (8.10)

where the dimensionless parameter

a =
√
mL2V0

h̄2
(8.11)
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is a measure of the potential strength.
The solution to the dimensionless Schrödinger equation for positive energy is

�(x) =



�L(q) = ALuL(q)+ BLvL(q) if q < 0
�C(q) = Au(q)+ Bv(q) if 0 < q < 1
�R(q) = ARuR(q)+ BRvR(q) if q > 1

, (8.12)

where

uL = exp (ikLq) , vL = exp (−ikLq) , uR = exp (ikRq) , vR = exp (−ikRq) , (8.13)

and u(q) and v(q) are two linearly independent solutions of the Schrödinger equation with the
potential-energy function VC(q) = VC(Lq + xL)/V0. In the present case

kL = kR = a
√

2ε (8.14)

but we keep the notation sufficiently general so that the results apply to other situations as well.
We obtain four of the six coefficients AL, BL, A, B, AR , and BR from the equations given by the

continuity conditions at q = 0 and q = 1, where the potential-energy function is discontinuous:

�L

(
0−
) = �C

(
0+
)
, �′L

(
0−
) = �′C

(
0+
)
,

�C

(
1−
) = �R

(
1+
)
, �′C

(
1−
) = �′R

(
1+
)
. (8.15)

In order to solve the system of linear equations (8.15) for the chosen coefficients we systematically
apply the Wronskian as in equation (8.7). For example, we obtain AL and BL in terms of A and B

as follows:

AL = W(vL, u)0

W(vL, uL)0
A+ W(vL, v)0

W(vL, uL)0
B, BL = W(uL, u)0

W(uL, vL)0
A+ W(uL, v)0

W(uL, vL)0
B , (8.16)

where the subscript indicates that the functions are calculated at the point q = 0. Analogously, at
q = 1 we write

A = W(v, uR)1

W(v, u)1
AR + W(v, vR)1

W(v, u)1
BR, B = W(u, uR)1

W(u, v)1
AR + W(u, vR)1

W(u, v)1
BR . (8.17)

Notice that equations (8.16) and (8.17) apply to any problem that we separate in three different
spatial regions. The only requirement is that the pairs of functions (uL, vL), (u, v), and (uR, vR) are
linearly independent solutions in each region.

Since V(q) and ε are real then �(q)∗ is also a solution to the Schrödinger equation (8.10), and
the Wronskian

W
(
�,�∗

) = 2i (�∗�′) , (8.18)

which is proportional to the current density, is independent of x. It follows from this equation that

|AL|2 − |BL|2 = |AR|2 − |BR|2 . (8.19)

If the flux of particles moves from left to right, then BR = 0 and the transmission and reflection
coefficients T = |AR/AL|2 andR = |BL/AL|2, respectively, satisfy the flux conservation condition
T + R = 1.
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On substituting equations (8.13) into equations (8.16) and (8.17) we obtain AL and BL in terms
of AR; in particular

AR

AL

= 2ikL exp(−ikL)W(u, v)1

D
,

D = [
u′(0)+ ikLu(0)

] [
v′(1)− ikLv(1)

]
− [v′(0)+ ikLv(0)

] [
u′(1)− ikLu(1)

]
. (8.20)

In order to calculate the transmission coefficient, we have to solve the Schrödinger equation with
the potential-energy function VC(q) and obtain two linearly independent solutions u(q) and v(q).
If we require that u(q0) = 1, u′(q0) = 0, v(q0) = 0, and v′(q0) = 1, then W(u, v) = 1 and the
functions u and v are linearly independent. In such a case the transmission coefficient results to be
T = 4k2

L/|D|2. However, when we solve the Schrödinger equation approximately W(u, v) is close
to but not exactly equal to unity and we therefore prefer to estimate T as

T =
∣∣∣∣AR

AL

∣∣∣∣
2

=
∣∣∣∣2kLW(u, v)1

D

∣∣∣∣
2

. (8.21)

Resonance states are a particular class of scattering states leading to outgoing waves in all chan-
nels [172]. In the case of the one-dimensional models treated here, the boundary conditions are
AL = BR = 0 which determine complex values of the energy with precise physical interpretation.
The real part of such energies are the resonance positions and their imaginary parts the resonance
widths: E = ER − i"/(2h̄).

In this chapter we show how to apply perturbation theory to the Schrödinger equation in the
interaction region.

8.4 The Born Approximation

It is not difficult to derive the Born series for one-dimensional scattering models from the inte-
gration formulas of Appendix B. For simplicity and concreteness consider the Schrödinger equa-
tion (8.8), where the potential-energy function vanishes as |x| → ∞. As usual, we define di-
mensionless coordinate q = x/L, energy E = mL2E/h̄2, and potential-energy function λw(q) =
mL2V (Lq)/h̄2, in terms of an arbitrary unit of length L. We have purposely introduced a perturba-
tion parameter λ because we are going to consider weak interactions.

We can view the dimensionless Schrödinger equation

�′′(q)+ 2E�(q) = 2λw(q)�(q) (8.22)

as a particular case of those discussed in Appendix B with f (q) = 2λw(q)�(q); therefore, the
general solution reads

�(q) = C1 exp(−ikq)+ C2 exp(ikq)− iλ

k

∫ q

qi

exp
[
ik
(
q − q ′

)]
w
(
q ′
)
�
(
q ′
)
dq ′

+ iλ

k

∫ q

qi

exp
[
ik
(
q ′ − q

)]
w
(
q ′
)
�
(
q ′
)
dq ′, k = √2E , (8.23)

where qi is an arbitrary coordinate point. This solution satisfies the boundary conditions

�(q)→ exp(ikq)+ BL exp(−ikq), q →−∞; �(q)→ AR exp(ikq), q →∞ (8.24)
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provided that

C1 + iλ

k

∫ −∞
qi

exp
(
ikq ′

)
w
(
q ′
)
�
(
q ′
)
dq ′ = BL , (8.25)

C2 − iλ

k

∫ −∞
qi

exp
(−ikq ′)w (q ′)� (q ′) dq ′ = 1 , (8.26)

C1 + iλ

k

∫ ∞
qi

exp
(
ikq ′

)
w
(
q ′
)
�
(
q ′
)
dq ′ = 0 , (8.27)

C2 − iλ

k

∫ ∞
qi

exp
(−ikq ′)w (q ′)� (q ′) dq ′ = AR . (8.28)

Taking into account equations (8.26) and (8.27) we easily rearrange equation (8.23) in a more compact
form:

�(q) = exp(ikq)− iλ

k

∫ ∞
−∞

exp
(
ik
∣∣q − q ′

∣∣)w (q ′)� (q ′) dq ′ . (8.29)

Moreover, it follows from equations (8.25)–(8.28) that

BL = − iλ
k

∫ ∞
−∞

exp
(
ikq ′

)
w
(
q ′
)
�
(
q ′
)
dq ′ , (8.30)

AR = 1− iλ

k

∫ ∞
−∞

exp
(−ikq ′)w (q ′)� (q ′) dq ′ . (8.31)

In order to compare the results of this section with those of the preceding one, it should be taken into
consideration that here we have arbitrarily chosenAL = 1 to derive the customary integral equations
for the application of the Born approximation [173].

If the interaction is weak, we try an approximate solution in the form of a perturbation series

�(q) =
∞∑
j=0

�j(q)λ
j (8.32)

which we substitute into equation (8.29) to derive a recurrence relation for the coefficients:

�j(q) = δj0 exp(ikq)− i

k

∫ ∞
−∞

exp
(
ik
∣∣q − q ′

∣∣)w (q ′)�j−1
(
q ′
)
dq ′ (8.33)

that leads to the well-known Born approximation [173, 174].
In the first iteration we have �0(q) = exp(ikq) and

BL ≈ − iλ
k

∫ ∞
−∞

exp
(
2ikq ′

)
w
(
q ′
)
dq ′ , (8.34)

AR ≈ 1− iλ

k

∫ ∞
−∞

w
(
q ′
)
dq ′ . (8.35)

Notice that this approach is not restricted to a potential-energy function that vanishes outside a finite
region, but it is necessary that w(q) be integrable over all the range of values of q.
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8.5 An Exactly Solvable Model: The Square Barrier

The square barrier is one of the simplest models commonly chosen to illustrate the tunnel effect
in most textbooks on quantum mechanics [175]. We easily solve the Schrödinger equation because
VC(x) = V0 > 0 is independent of x. It is customary to consider the two cases E < V0 (ε < 1) and
E > V0 (ε > 1) separately. In the former we have u(q) = cosh(kq) and v(q) = sinh(kq)/k, where
k = a

√
2(1− ε), whereas u(q) = cos(k′q), v(q) = sin(k′q)/k′, and k′ = a

√
2(ε − 1) hold for the

latter. The transmission coefficient is therefore given by

T = 4ε(1− ε)

4ε(1− ε)+ sinh(k)2
, ε < 1 , (8.36)

T = 4ε(ε − 1)

4ε(ε − 1)+ sin(k′)2
, ε > 1 . (8.37)

It is not difficult to verify that both expressions give exactly the same result when ε = 1 (E = V0):

T = 2

2+ a2
. (8.38)

In principle it is not necessary to use two expressions for the transmission coefficient because any
of them applies to both situations. For example, when ε > 1 we write k = ik′ and equation (8.36)
becomes equation (8.37). However, we have written the transmission coefficient in terms of two
formulas for clarity.

In what follows we apply two different perturbation expansions to the exact result (8.36), (8.37).
When E >> V0 we expand the transmission coefficient given by equation (8.37) in a V0-power
series. A straightforward calculation shows that

T = 1− sin(α
√

2E)2

4E2
V 2

0 +
[
α
√

2 sin(2α
√

2E)

8E5/2
− sin(α

√
2E)2

4E3

]
V 3

0 + · · · , (8.39)

where α =
√
mL2/h̄2 = a/

√
V0. In this case the unperturbed model is the free particle and the

whole interaction is chosen to be the perturbation.
In the first iteration, the Born approximation developed in the preceding section gives us

T = |AR|2 = 1+ α2V 2
0

2E
+ · · · , (8.40)

which does not agree with equation (8.39). However, if we calculate the transmission coefficient as
T = 1− |BL|2, we obtain the first two terms of equation (8.39). Notice that |AR|2 + |BL|2 > 1 in
the first iteration because the Born approximation violates unitarity or conservation of flux [173].

If we assume that a is a small parameter we can expand the transmission coefficient in a Taylor
series about a = 0; both expressions (8.36), (8.37) give exactly the same perturbation series in
powers of a2:

T = 1− a2

2ε
+ 4ε2 − 4ε + 3

12ε2
a4 − 32ε4 − 64ε3 + 152ε2 − 120ε + 45

360ε3
a6 + · · · . (8.41)

The first two terms of this perturbation series would resemble the Born approximation (8.40) if it were
not for the sign of the second term. It is at first sight surprising that we obtain qualitatively different
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results from what appears to be the same expansion. In order to bring both results to agreement
notice that we can rewrite the Born approximation AR ≈ 1 − iξ , ξ = a/kL, as AR ≈ 1/(1 + iξ)

keeping the same order of accuracy. From this expression we already obtain the first two terms of
the series (8.41): T ≈ 1/(1+ ξ2) ≈ 1− ξ2.

It follows from equation (8.38) that the radius of convergence of the series (8.41) for ε = 1 is
determined by a pair of conjugate imaginary poles as = ±i

√
2. We have calculated the roots of the

Taylor expansion of 1/T about a = 0 for sufficiently great order, and it seems that for other values
of ε the zero closest to origin in the complex a2 plane is always real and negative. This calculation
is straightforward if one resorts to the Maple commands taylor and fsolve/complex. Therefore, we
can easily obtain the radius of convergence of the perturbation expansion (8.41) in terms of ε as
follows: substitute b = a2 in the inverse of any of the exact expressions (8.36) or (8.37), find the
real roots of the resulting equation for given value of ε (using Maple command fsolve, for example),
and select the one closest to origin bs = a2

s . Figure 8.1 shows the radius of convergence rc = |as |2
as a function of ε for the square barrier and for a parabolic barrier to be discussed later on in this
chapter. It is worth noticing that we easily obtain the radius of convergence of the perturbation series
for T from the roots of the perturbation series for 1/T (or from the zeros of the denominator D in
equation (8.20)). In this way we can determine the radius of convergence of perturbation series for
models that are not exactly solvable.

FIGURE 8.1
Radius of convergence |as |2 of the perturbation series in powers of a2 for the transmission
coefficient for the square and parabolic barriers.

8.6 Nontrivial Simple Models

8.6.1 Accurate Nonperturbative Calculation

In order to test the results of perturbation theory we compare them with those provided by a simple
accurate nonperturbative calculation based on a power series approach.
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The dimensionless Schrödinger equation (8.10) for 0 < q < 1 is Y ′′(q) = F(q)Y (q), where
F(q) = 2a2[V(q)− ε]. If the Taylor series about a point 0 < q0 < 1,

F(q) =
∞∑
j=0

Fj (q − q0)
j , (8.42)

converges for all 0 ≤ q ≤ 1, then we try a similar Taylor expansion for any solution Y (q):

Y (q) =
∞∑
j=0

Yj (q − q0)
j . (8.43)

The recurrence relation

Yn+2 = 1

(n+ 1)(n+ 2)

n∑
j=0

Fn−j Yj , n = 0, 1, . . . (8.44)

yields the coefficients of the series (8.43) in terms of Y0 and Y1. The choices Y0 = 1, Y1 = 0 and
Y0 = 0, Y1 = 1 give us two independent solutions u(q) and v(q), respectively. Since such series
converge for q = 0 and q = 1 we obtain the transmission coefficient from equation (8.21) and use
this result to test the perturbation calculation.

An alternative approach is to make use of the Maple command dsolve with the option
type = numeric to obtain the linearly independent solutions and their derivatives at q = 0 and
q = 1, and substitute them into equation (8.21). We show a simple procedure for this calculation in
the program section.

8.6.2 First Perturbation Method

In what follows we discuss the application of perturbation theory to the Schrödinger equation in
the interaction region. In order to simplify the notation we will omit the subscript in �C(q) and
VC(q) hoping that it may not be confusing.

The simplest perturbation approach consists of choosing the whole interaction as a perturbation.
Consequently, we write

�′′(q) = 2a2[λV(q)− ε]�(q) (8.45)

and expand

�(q) =
∞∑
j=0

�j(q)λ
j . (8.46)

Substituting this expansion into equation (8.45) and collecting powers ofλ, we obtain the perturbation
equations

�′′j (q)+ k2
L�j (q) = 2a2V(q)�j−1(q), j = 1, 2, . . . (8.47)

that are inhomogeneous ordinary differential equations with constant coefficients that we easily solve
hierarchically by means of the method developed in Appendix B. At each perturbation order we have
to calculate

�j(q) = 2a2

kL

∫ q

0
sin[kL(q − t)]V(t)�j−1(t) dt, j = 1, 2, . . . . (8.48)
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Notice that we have chosen the lower limit of the integral so that �j(0) = �′j (0) = 0, which results
in �(0) = �0(0) and �′(0) = �′0(0). At the end of the calculation we set the dummy perturbation
parameter λ equal to unity.

We substitute uj (q) and vj (q) for �j(q) in the equations above and obtain the perturbation
series for the functions u(q) and v(q), respectively, that we substitute into equation (8.21) for the
transmission coefficient T . If we choose the functions u(q) and v(q) such that

u(0) = 1, u′(0) = 0, v(0) = 0, v′(0) = 1 , (8.49)

then

u0(q) = cos (kLq) , v0(q) = sin(kLq)

kL
. (8.50)

This perturbation method applies only when ε > 1 > |V(q)| because we have assumed that the
interaction is a small perturbation.

In order to test our perturbation equations we apply them to the square barrier and compare the
results with the exact ones. In this case V(q) = 1 in the interaction region. A straightforward
calculation yields

u(q) = cos(θ)+ λ
aq sin(θ)√

2ε
+ λ2

[
aq sin(θ)

4ε
√

2ε
− (aq)2 cos(θ)

4ε

]
+ · · · (8.51)

v(q) = sin(θ)

a
√

2ε
+ λ

[
sin(θ)

2aε
√

2ε
− q cos(θ)

2ε

]
+ · · · , (8.52)

where θ = a
√

2εq. We do not show terms of higher order because they become increasingly
complicated. The calculation is straightforward and Maple greatly facilitates it. In order to verify
equations (8.51) and (8.52) we compare them with the Taylor expansions of the exact functions

u(q) = cos
[
a
√

2(ε − λ)q
]
, v(q) = sin[a√2(ε − λ)q]

a
√

2(ε − λ)
(8.53)

about λ = 0. We do not discuss this perturbation method any further because it is not practical.

8.6.3 Second Perturbation Method

In order to develop a perturbation method that applies to all values of ε we choose the square
barrier as the unperturbed model and write

V(q, λ) = 1+ λ0V(q), 0V(q) = V(q)− 1 , (8.54)

so that V(q, 0) = 1 and V(q, 1) = V(q) in the interaction region.
For simplicity we treat the cases ε < 1 and ε > 1 separately. The perturbation equations for the

former case are

�′′j (q)− k2�j(q) = 2a20V(q)�j−1(q), j = 1, 2, . . . , k = a
√

2(1− ε) , (8.55)

and according to the results in Appendix B we obtain the corrections to u(q) and v(q) as follows:

�j(q) = 2a2

k

∫ q

0
sinh[k(q − t)]0V(t)�j−1(t) dt , (8.56)
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where

u0(q) = cosh(kq), v0(q) = sinh(kq)

k
(8.57)

satisfy the boundary conditions (8.49).
The solutions for ε > 1 read

�j(q) = 2a2

k

∫ q

0
sin[k(q − t)]0V(t)�j−1(t) dt , (8.58)

where

u0(q) = cos(kq), v0(q) = sin(kq)

k
, k = a

√
2(ε − 1) . (8.59)

Taking the limit k→ 0 in any of the cases above we obtain the equations for ε = 1:

�j(q) = 2a2
∫ q

0
(q − t)0V(t)�j−1(t) dt , (8.60)

where

u0(q) = 1, v0(q) = q (8.61)

satisfy the boundary conditions (8.49).
As a simple nontrivial example we choose the parabolic barrier

V (x) =
{

0 if |x| > L

V0(1− 4x2/L2) if |x| < L
(8.62)

that leads to the dimensionless potential-energy function

V(q) =
{

0 if q < 0 or q > 1
4q(1− q) if 0 < q < 1

. (8.63)

We have calculated several perturbation corrections using Maple but only the lowest order contri-
butions are simple enough to be shown here. We have

u(q) = cosh(kq)+ λa2
{

2q(q − 1) cosh(kq)

k2

−
[
q(3− 6q + 4q2)

3k
+ 2(q − 1)

k3

]
sinh(kq)

}
+ · · · (8.64)

v(q) = sinh(kq)

k
+ λa2

{[
1− 2q + 2q2

k3
+ 2

k5

]
sinh(kq)

−
[
q(3− 6q + 4q2)

3k2
+ 2q

k4

]
cosh(kq)

}
+ · · · (8.65)

for ε < 1,

u(q) = 1− λa2 q
2(3− 4q + 2q2)

3
+ · · · (8.66)

v(q) = q − λa2 q
3(5− 10q + 6q2)

15
+ · · · , (8.67)
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for ε = 1, and

u(q) = cos(kq)+ λa2
{

2q(1− q) cos(kq)

k2

−
[
q(3− 6q + 4q2)

3k
+ 2(1− q)

k3

]
sin(kq)

}
+ · · · (8.68)

v(q) = sin(kq)

k
+ λa2

{[
2

k5
− 1− 2q + 2q2

k3

]
sin(kq)

+
[
q(3− 6q + 4q2)

3k2
− 2q

k4

]
cos(kq)

}
+ · · · (8.69)

for ε > 1. Notice that we obtain the case ε > 1 by substituting ik for k in the case ε < 1 as argued
earlier for the square barrier.

It is instructive to discuss the form of the transmission coefficient for the simplest case ε = 1.
Through terms of second order we have

T = 8a2

4a2(a2 + 2)− 8a4(a2 + 5)λ/15+ 4a4(6a2 + 5)(2a2 + 35)λ2/1575+ · · ·
= 2

2+ a2
+ 4a2(a2 + 5)

(a2 + 2)2
λ+ 2a2(−350+ 85a2 + 36a4 + 16a6)

1575(a2 + 2)3
λ2 + · · · , (8.70)

where, as expected, the first term of the λ-power series is the transmission coefficient for the square
barrier. It must be kept in mind that the rational approximation always gives better results than the
power series because the convergence radius of the latter is determined by (usually complex) zeros
of the denominator that do not affect the accuracy of the former.

We do not discuss this approach any further because we think that the third perturbation method
developed below deserves more attention than the two just outlined.

8.6.4 Third Perturbation Method

Analytical calculation of perturbation corrections of sufficiently great order based on Maple pro-
cedures for the methods in the preceding sections is time and memory consuming. The remarkably
simple form of the Taylor expansion about a = 0 of the transmission coefficient for the square
barrier equation (8.41) suggests that it is worth trying a perturbation approach based on such a series.
Fortunately, it is not difficult to develop such a method; we simply choose β = a2 as perturbation
parameter in the dimensionless Schrödinger equation (8.10) or, equivalently, we introduce a dummy
perturbation parameter λ, as in the preceding methods, and write

�′′(q) = 2λa2[V(q)− ε]�(q) . (8.71)

According to Appendix B the solutions to the perturbation equations

�′′j (q) = 2a2[V(q)− ε]�j−1(q), j = 1, 2, . . . (8.72)

are given by the simple formula

�j(q) = 2a2
∫ q

0
(q − t)[V(t)− ε]�j−1(t) dt, j = 1, 2, . . . , (8.73)

where u0(q) = 1 and v0(q) = q. The calculation is therefore as simple as the particular case ε = 1
in the second perturbation method above.
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It is not difficult to prove that the perturbation series for the eigenfunction �(q) converges uni-
formly in q ∈ (0, 1) for all values of a and ε. It is sufficient to prove that the series of positive terms
|�j(q)| converges in that interval [96]. We first notice that 2a2|V(q)− ε| ≤ k2 = 2a2|1− ε|, and
that

∣∣�j(q)
∣∣ ≤ k2

∫ q

0
(q − t)

∣∣�j−1(t)
∣∣ dt . (8.74)

By straightforward application of this recursive inequality to �0(q) = u0(q) = 1 we conclude
that |uj (q)| ≤ (kq)2j /(2j)!. Analogously, if follows from �0(q) = v0(q) = q that |vj (q)| ≤
k2j q2j+1/(2j + 1)!. Therefore the series with terms |uj (q)| and |vj (q)| converge for all q and

∞∑
j=0

∣∣uj (q)∣∣ ≤ cosh(kq),
∞∑
j=0

∣∣vj (q)∣∣ ≤ sinh(kq)

k
, (8.75)

where the equality holds for the square barrier. Since the perturbation series for u(q) and v(q)

converge for all a, ε, and q, then the present perturbation theory gives the transmission coefficient
as accurately as desired by means of equation (8.21).

To test our perturbation equations and Maple program we have verified that they already yield
the perturbation series in equation (8.41) for the square barrier. In what follows we show results for
the parabolic barrier introduced above; that is to say, V(q) = 4q(1 − q) for 0 < q < 1 and zero
elsewhere.

The calculation is straightforward, and the simple Maple procedure shown in the program section
allows one to obtain perturbation coefficients of sufficiently great order. The first terms of the linearly
independent solutions are

u(q) = 1− a2q2
(
ε − 4q

3
+ 2q2

3

)
+ a4q4

[
ε2

6
− 8εq

15

+
(

16

45
+ 14ε

45

)
q2 − 8q3

21
+ 2q4

21

]
+ · · · (8.76)

v(q) = q − a2q3
(
ε

3
− 2q

3
+ 2q2

5

)
+ a4q5

[
ε2

30
− 2εq

15

+
(

8

63
+ 26ε

315

)
q2 − 16q3

105
+ 2q4

45

]
+ · · · . (8.77)

These functions are exact at q = 0, and the perturbation series converge at q = 1 for all values
of a and ε. Substituting them into equation (8.21), and keeping terms of second order in λ (fourth
order in a), we obtain the transmission coefficient

T = ε

ε + 2a2/9+ (8/105− 4ε/45) a4 + · · ·
= 1− 2a2

9ε
+ 4(35− 54ε + 63ε2)a4

2835ε2
+ · · · . (8.78)

The rational approximation is valid for all values of a and ε because the perturbation series for the
functions u(q) and v(q) converge as proved above. On the other hand, the radius of convergence of
the power series is limited by the zeros of the denominator (poles of T ). Notice, for example, that
the former gives the correct result T = 0 when ε = 0 but the latter is singular for this value of ε,
failure that shares with the Born approximation [173]. We have explicitly shown the power series in
equation (8.78) for a purely pedagogical reason, but in order to obtain reasonable numerical results
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we directly substitute the perturbation series for the functions u(q) and v(q) into equation (8.21)
and calculate T by means of the resulting rational expression.

In Figure 8.1 we show the radius of convergence rc = |as |2 of the perturbation series (8.78)
obtained from the zero of 1/T closest to the origin of the a2 complex plane. The curves rc(ε) for
the parabolic and square barrier (both of the same height V0) are similar except that the former is
greater.

Although the perturbation series for the linearly independent solutions converge for all values of
a and ε, the rate of convergence depends on the values of these parameters. We calculate the rate of
convergence of the rational perturbation approximation to T as log(|T exact − T PT |/T exact ), where
T exact is given by any of the accurate nonperturbative methods discussed above in Section 8.6.1. In
Figure 8.2 we appreciate that the rate of convergence decreases as either a or ε increases, and that
the effect of the former is more noticeable as it is the actual perturbation parameter.

For completeness in Figure 8.3 we show the transmission coefficient for the parabolic barrier for
three values of a. The perturbative and nonperturbative methods give exactly the same results but
the latter are faster for great values of a.

An interesting application of the perturbation method is the calculation of resonance energies as
roots of the denominator |D|2 of the transmission coefficient T . Perturbation theory provides an
analytical expression for |D|2 in terms of a and ε. For a given value of a we solve |D|2 = 0 for
ε for increasing values of the perturbation order till convergence. Figure 8.4 shows the real and
imaginary parts of the complex root for the square and parabolic barriers. Of the two complex
conjugate roots we arbitrarily choose the one with (ε) < 0. Only energies with positive real parts
should be interpreted as resonances, which appear for sufficiently large values of a. Although one
of the barriers is smooth and the other exhibits sharp edges, the behavior of the root as a function of
a is quite similar.

In principle, one can apply this perturbation approach to one-dimensional models supporting
bound states. We do not discuss such a case here but leave it as an interesting exercise for the reader.

8.7 Perturbation Theory for Resonance Tunneling

In what follows we briefly illustrate a straightforward application of perturbation theory to a
particle penetrating a barrier that is not restricted to a finite coordinate interval as in the preceding
examples. More precisely, we assume that the potential-energy function V (x) is positive definite,
vanishes as |x| → ∞, and exhibits a single maximum at x = x0. In particular we are interested in
resonance states �(x) that satisfy the boundary conditions

�(x)→
{

AL exp(−iKx) if x →−∞
AR exp(iKx) if x →∞ , (8.79)

whereK =
√

2mE/h̄2 [172]. That is to say, we have outgoing waves in both channels. If we choose
only incoming waves we obtain exactly the same resonance energies. Because the set of complex
values of the energy that satisfy such boundary conditions is discrete, their calculation resembles
that of bound-state energies.

As usual, we define dimensionless coordinates q = x/γ , energy ε = mγ 2E/h̄2, and potential-
energy function v(q) = mγ 2V (γ q)/h̄2 in terms of an appropriate length unit γ , so that we are left
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FIGURE 8.2
Rate of convergence log(|T exact−T PT |/T exact ) of the rational perturbation approach to the transmission coefficient
for a parabolic barrier. P is the perturbation order.
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FIGURE 8.3
Transmission coefficient for the parabolic barrier for three values of a.
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FIGURE 8.4
Complex root of the denominator of the transmission coefficient T for the square (A) and
parabolic (B) barriers.
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with the dimensionless Hamiltonian operator

Ĥ = mγ 2

h̄2
Ĥ = −1

2

d2

dq2
+ v(q) . (8.80)

In order to apply the polynomial approximation developed in Section 7.2.1 we expand

v(q) =
∞∑
j=0

vj (q − q0)
j , vj = 1

j !
djv

dqj

∣∣∣∣
q=q0

(8.81)

about the maximum q0 = x0/γ of v(q) (notice that in this case v2 < 0). We then introduce a
perturbation parameter β by means of a second change of variable z = (q − q0)/β, and obtain the
dimensionless Hamiltonian operator

ĥ = β2
(
Ĥ− v0

)
= −1

2

d2

dz2
+ 1

2
z2 +

∞∑
j=1

bjβ
j zj+2 , (8.82)

where β = (2v2)
−1/4 is a complex number, and the coefficients bj = vj+2/(2v2) are real.

We apply perturbation theory to the dimensionless Schrödinger equation ĥ� = e� in the usual
way and obtain

� =
∞∑
j=0

�jβ
j , e =

∞∑
j=0

e2jβ
2j , e0 = n+ 1

2
, n = 0, 1, . . . , (8.83)

from which it follows that

ε = v0 +
∞∑
j=0

e2jβ
2j−2 (8.84)

as discussed in Section 7.2.1. Notice that the energy corrections e2j are real and that β2 is purely
imaginary; consequently, the terms with j odd are real and those with j even are imaginary.

As in the case of bound states considered in Section 7.2.1, we treat symmetric potential-energy
functions v(−q) = v(q) in a slightly different and more convenient way. In this case the maximum
occurs at q = 0 and the Taylor expansion of the barrier reads

v(q) =
∞∑
j=0

vjq
2j , vj = 1

(2j)!
d2j v

dq2j

∣∣∣∣
q=0

. (8.85)

By straightforward application of perturbation theory to ĥ� = e�, where

ĥ = β
(
Ĥ− v0

)
= −1

2

d2

dz2
+1

2
z2+

∞∑
j=1

bjβ
j z2j+2 ,

z = q√
β
, bj = vj

2v2
, β = 1√

2v1
, (8.86)

we obtain a perturbation series of the form

ε = v0 +
∞∑
j=0

ejβ
j−1 . (8.87)
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The energy coefficients ej are real because the potential parameters bj are real, and the value of the
perturbation parameter β is purely imaginary because v1 < 0. Again the terms with j odd are real
and those with j even are imaginary.

Any of the methods developed in Chapters 2 and 3 is suitable for obtaining the perturbation
series (8.83) or (8.87). In particular, the methods of Dalgarno and Stewart and Fernández and Castro
clearly show that every perturbation correction to the eigenfunction �j is a polynomial function
times the Gaussian function exp(−z2/2), and therefore square integrable in −∞ < z < ∞. The
application of such methods is straightforward as the reader may easily verify; on the other hand,
it is not obvious at first sight that the method of Swenson and Danforth developed in Chapter 3 is
suitable for this problem because the Hamiltonian operator ĥ is not hermitian (remember that β is
complex). For this reason we discuss the latter approach with some detail in what follows.

In order to apply the method of Swenson and Danforth we introduce the c-product

(f |g) =
∫ ∞
−∞

f (z)g(z) dz , (8.88)

which is a complex number with finite modulus if the complex-valued functions f (z) and g(z) are
square integrable [176]. Notice that (f |f ) cannot play the role of a norm because it is a complex
number; however we can normalize f (z) so that (f |f ) = 1. The advantage of the c-product is that
the hypervirial and Hellmann–Feynman theorems

(
�

∣∣∣[ĥ, Ŵ]∣∣∣�) = 0,
∂e

∂β
(�|�) =

(
�

∣∣∣∣∣
∂ĥ

∂β

∣∣∣∣∣�
)

, (8.89)

respectively, are valid provided that Ŵ is a linear operator. The reader may easily prove them by
simply repeating the arguments given in Section 3.2. Consequently, it makes sense to define the
complex moments Zk = (�|zk|�) normalized as Z0 = 1, and expand them in powers of β:

Zk =
∞∑
j=0

Zk,jβ
j . (8.90)

The application of the method of Swenson and Danforth is therefore straightforward following the
lines indicated in Section 3.3.1 [177].

It is always instructive to apply approximate methods to exactly solvable models. In this case we
choose the Eckart barrier [178]

v(q) = A exp(q + qm)

1+ exp(q + qm)
+ B exp(q + qm)

[1+ exp(q + qm)]2 , qm = ln

(
A+ B

B − A

)
, (8.91)

where B > |A|. This potential-energy function exhibits a maximum v0 = (A+B)2/(4B) at q = 0,
and is symmetric about q = qm = 0 when A = 0. Figure 8.5 shows the Eckart barrier v(q) for three
values of A.

It is not difficult to solve the Schrödinger equation with the Eckart potential in terms of hy-
pergeometric functions and obtain the transmission and reflection coefficients in terms of gamma
functions [178]. Setting the appropriate coefficients of the exact solution equal to zero, in order to
have only outgoing or incoming waves, we obtain the resonance energies [177]

ε± =
{[√

8B − 1± (2n+ 1)i
]2 + 8A

}2

32
[√

8B − 1± (2n+ 1)i
]2 , (8.92)
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FIGURE 8.5
Dimensionless Eckart barrier for B = 50 and three values of A.

where n = 0, 1, . . . .
The polynomial approximation yields the perturbation series (8.84), where

β =
[
− 8B3

(B2 − A2)2

]1/4

. (8.93)

However, it is easier to study the convergence properties of the closely related expansion in powers
of 1/
√
B, which we easily derive from equation (8.92) either by hand or, much faster and more

easily, by means of the Maple command series:

ε = B

4
∓ ie0

√
B

8
−4e2

0 + 1

32
+ A

2
± ie0

64

√
2

B
+A

2

4B
± i
√

2e0A
2

4B3/2
± i
√

2e0

2048B3/2
+ · · · . (8.94)

When A = 0 all the resonance energies (8.92) exhibit the same branch point at Bs = 1/8 and
the series (8.94) converge for all B > 1/8. When A �= 0 there are two singular points B1s = 1/8
and B2s = −n(n + 1)/2, so that the series (8.94) converge for all B > 1/8 when n = 0 and
for all B > n(n + 1)/2 otherwise. As it usually happens with the polynomial approximation, the
radius of convergence decreases with the quantum number n. A straightforward way of testing the
perturbation method described above is to expand the β-perturbation series in powers of 1/

√
B and

compare the result with equation (8.94). To this end the Maple command series proves extremely
useful. In particular, notice that this further expansion is not necessary when A = 0 because
β2 = ±i(8/B)1/2, from which we conclude that the perturbation series (8.87) converges for all
|β| < √8.

As a simple nontrivial example we choose the Gaussian barrier

V (x) = V0 exp
[
−(x/γ )2

]
, (8.95)

where V0 > 0 and γ > 0 determine the strength and range of the interaction, respectively. The
dimensionless Hamiltonian operator reads

Ĥ = −1

2

d2

dq2
+ A exp

(
−q2

)
, A = mγ 2V0

h̄2
. (8.96)
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Table 8.1 shows the first coefficients of the perturbation series (8.87), where v0 = A and β =
1/
√−2A. The Maple programs for the calculation of tunnel resonances and for the application of

the deep-well approximation are identical, and one obtains them by straightforward modification
of the Maple procedures in the program section that illustrate the implementation of the method of
Swenson and Danforth.

Table 8.1 Coefficients of the Perturbation Series for the
Resonances of the Gaussian Barrier

e1 = − 3
32 − 3

8 e0
2

e2 = − 1
768 e0 − 11

192 e0
3

e3 = 141
16384 − 1

6144 e0
2 − 85

3072 e0
4

e4 = 300383
11796480 e0 + 91

294912 e0
3 − 4351

245760 e0
5

e5 = − 9
2097152 + 265567

5242880 e0
2 + 343

589824 e0
4 − 38633

2949120 e0
6

Figure 8.6 shows that the perturbation series for the Gaussian barrier is divergent. However, for
sufficiently large values ofAwe obtain reasonable results by means of the truncation criteria adopted
in Section 6.4. In order to obtain the exact resonances necessary for the calculation of the logarithmic
error displayed in Figure 8.6, we resorted to the practical Riccati–Padé method [162]. In principle
one can improve the accuracy of the perturbation series for resonances by means of the methods
discussed in Section 6.5 for bound states.

FIGURE 8.6
Logarithmic errors log |[Re(εexact ) − Re(εapprox)]/Re(εexact )| (continuous line) and
log |[Im(εexact ) − Im(εapprox)]/Im(εexact )| (broken line) for the resonance of the Gaussian
barrier with e0 = 1/2 in terms of the perturbation order P .

                          



Chapter 9

Perturbation Theory in Classical Mechanics

9.1 Introduction

Although the title of this book refers only to quantum mechanics, in this chapter we outline the
application of perturbation theory in classical mechanics. It is not our purpose to give a thorough
account of the subject that may be found in other books [179, 180], but simply to show that some of
the approaches developed in preceding chapters for quantum systems are suitable for classical ones
with just slight modifications. We hope that this fact may facilitate a unified teaching of perturbation
methods in undergraduate and graduate courses. We first consider the simplest perturbation expan-
sion that applies when the amplitude of the motion is sufficiently small. This approach is based on
the Taylor expansion of the nonlinear force (or the anharmonic potential-energy function) around the
origin and resembles the polynomial approximation in quantum mechanics discussed in Chapter 7.
We obtain the perturbation series for the trajectory of a particle moving in a one-dimensional space
under the effect of an arbitrary nonlinear conservative force, and the perturbation series for the period
of the motion. Straightforward integration of the perturbation equations gives rise to secular terms
that one easily removes by appropriately scaling the frequency. We choose the simple pendulum
as an illustrative example. Most of that discussion is based on an appropriate modification and
adaptation of a recent pedagogical article on the subject [181].

Later, we concentrate on Hamilton’s equations of motion that allow the development of pertur-
bation theory in operator form that is reminiscent of the interaction picture in quantum mechanics,
already discussed in Section 1.3.1. We explicitly consider secular and canonical perturbation theories
using one-dimensional anharmonic oscillators as illustrative examples.

Finally, we show that it is easier to obtain the canonical perturbation series for separable models by
means of a simple approach based on the hypervirial and Hellmann–Feynman theorems that closely
resemble the method of Swenson and Danforth discussed in Section 3.3.

9.2 Dimensionless Classical Equations

Throughout this book we have transformed physical equations into dimensionless mathematical
equations before solving them either exactly or approximately. In this chapter we proceed exactly in
the same way with the classical equations of motion. For simplicity we consider a one-dimensional
motion and point out that the treatment of more degrees of freedom follows exactly the same lines.

For concreteness consider a particle of mass m moving along a one-dimensional trajectory x(t)
with velocity ẋ(t) = dx(t)/dt , under the effect of a conservative force F(x) = −dV (x)/dx. From
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the Lagrangian

L(ẋ, x) = m
2
ẋ2 − V (x) (9.1)

we obtain the conjugate linear moment px = ∂L/∂ẋ = mẋ and the Hamiltonian function

H (px, x) = pxẋ − L (ẋ, x) = m
2
p2
x + V (x) . (9.2)

In order to obtain dimensionless equations of motion we define dimensionless coordinate q = x/L
and time s = ωt + φ, where L, ω, and φ are arbitrary length, frequency, and phase, respectively.
The dimensionless Lagrangian and Hamiltonian read

L̃ (q̇, q) = L (ẋ, x)
mω2L2

= q̇
2

2
− v(q) , (9.3)

H̃ (p, q) = p2

2
+ v(q) , (9.4)

respectively, where q̇ = dq(s)/ds, v(q) = V (Lq)/(mω2L2), and p = ∂L̃ /∂q̇ = q̇ = px/(mωL).
The equations of motion

mẍ = F(x) = −dV (x)
dx

(9.5)

become

q̈ = f (q) = −dv(q)
dq

(9.6)

with the initial conditions

Lq(φ) = x(0), ωLq̇(φ) = ẋ(0) . (9.7)

9.3 Polynomial Approximation

Consider Newton’s second law of motion (9.5) with initial conditions x(0) and ẋ(0) at t = 0,
and assume a bounded trajectory: |x(t)| < ∞ for all t . Without loss of generality we place the
coordinate origin at the stable equilibrium position, so that F(0) = 0 and F ′(0) < 0. If F(x) is
analytic at x = 0 we expand it in a Taylor series:

F(x) =
∞∑
j=1

Fjx
j , Fj = 1

j !
djF

dxj

∣∣∣∣
x=0

. (9.8)

Choosing ω = √−F1/m we can write the dimensionless equation of motion (9.6) as

q̈(s)+ q(s) =
∞∑
j=1

ajL
jq(s)j+1, aj = −Fj+1

F1
. (9.9)
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If the amplitude of the motion is sufficiently small, then it is reasonable to look for a solution in
the form of a perturbation series

q(s) =
∞∑
j=0

qj (s)L
j , (9.10)

sometimes called the straightforward expansion [182]. In order to facilitate the application of per-
turbation theory to equation (9.9) we rewrite the sum as follows

∞∑
j=1

ajL
jq(s)j+1 =

∞∑
j=1

Gj(s)L
j , (9.11)

where the coefficientsGj(s) are nonlinear functions of the coefficients qj (s). We obtain the former
systematically by means of the following equations:

Gn =
n∑
j=1

ajqj+1,n−j , n = 1, 2, . . . , (9.12)

where qj+1,k denotes one of the coefficients of the series,

qj+1 =
∞∑
k=0

qj+1,kL
k , (9.13)

that satisfy the recurrence relation

qj+1,k =
k∑
i=0

qiqj,k−i . (9.14)

Notice that q1,k = qk , and q0,k = δ0k . For example, the first two coefficients Gj(s) are

G1(s) = a1q0(s)
2, G2(s) = 2a1q0(s)q1(s)+ a2q0(s)

3 . (9.15)

It follows from the equation of motion (9.9) and from the expansions (9.10) and (9.11) that the
coefficients qj (s) are solutions to the differential equations

q̈j + qj = Gj, j = 0, 1, . . . , (9.16)

where G0 = 0. If we arbitrarily choose q0(0) = 1, q̇0(0) = 0, qj (0) = 0, and q̇j (0) = 0 for all
j > 0 (that is to say q(0) = 1 and q̇(0) = 0), then the solutions to the perturbation equations take a
particularly simple form. According to the integration formulas developed in Appendix B we have
q0(s) = cos(s), and

qj (s) =
∫ s

0
sin
(
s − s′)Gj (s′) ds′ (9.17)

for all j > 0. This choice may not be the most convenient way of taking into account arbitrary
initial conditions x(0) and ẋ(0), because once we have a sufficiently great numberN of perturbation
coefficients qj (s)we should obtain the undetermined parametersL andφ from the rather complicated
equations

N∑
j=0

qj (φ)L
j+1 = x(0), ω

N∑
j=0

q̇j (φ)L
j+1 = ẋ(0) . (9.18)
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If, for example, we choose qj (s) exactly as above for j > 0 (so that equation (9.17) remains
unchanged) but q0(s) = A cos(s) + B sin(s), and φ = 0, then we simply have A = x(0)/L and
B = ẋ(0)/(ωL). However, we prefer the simpler form of q(s) for the discussion below, which does
not require the initial conditions explicitly.

In the program section we show a set of simple Maple procedures for the application of the
polynomial approximation just described with any form of q0(s). When q0(s) = cos(s) the first two
perturbation corrections to the trajectory are

q1(s) = a1

[
1

2
− 1

3
cos(s)− 1

6
cos(2s)

]

q2(s) = −a
2
1

3
+ 58a2

1 + 9a2

288
cos(s)+ a

2
1

9
cos(2s)

+ 2a2
1 − 3a2

96
cos(3s)+ 10a2

1 + 9a2

24
s sin(s) . (9.19)

The unbounded term s sin(s) in the correction of second order is incompatible with a bounded motion.
Such secular terms are well known in perturbation theory and are commonly removed by means of,
for example, the Lindstedt–Poincaré technique [182] that we discuss later in this chapter.

9.3.1 Odd Force

The equations developed above apply to any nonlinear forceF(x) provided thatF1 < 0. However,
if F(x) is an odd function of x it is convenient to proceed in a different way in order to derive a more
efficient algorithm. In such a case we write the Taylor expansion as

F(x) =
∞∑
j=1

Fjx
2j−1, Fj = 1

(2j − 1)!
d2j−1F

dx2j−1

∣∣∣∣
x=0

, (9.20)

and realize that the resulting equation for q(s)

q̈(s)+ q(s) =
∞∑
j=1

ajL
2j q(s)2j+1, aj = −Fj+1

F1
(9.21)

suggests the perturbation parameter λ = L2. Writing

q(s) =
∞∑
j=0

qj (s)λ
j , (9.22)

and proceeding as before one obtains the same perturbation equations (9.16), except that the inho-
mogeneous termsGj are different. The reader may easily derive the appropriate equations for their
systematic calculation, and verify that the first two of them are

G1 = a1q
3
0 , G2 = 3a1q

2
0q1 + a2q

5
0 . (9.23)
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Straightforward application of equation (9.17) shows that

q1(s) = a1

[
1

32
cos(s)− 1

32
cos(3s)+ 3

8
s sin(s)

]

q2(s) = 69a2
1 + 128a2

3072
cos(s)− 3a2

1 + 5a2

128
cos(3s)

+ 3a2
1 − 8a2

3072
cos(5s)+ 3a2

1 + 10a2

32
s sin(s)

− 9a2
1

256
s sin(3s)− 9a2

1

128
s2 cos(s) , (9.24)

where we see secular terms in the contributions of first and second order.

9.3.2 Period of the Motion

From the perturbation expansion for q(s) we easily obtain a perturbation expansion for the period
τ . For all t we have x(t + τ) = x(t), so that q(s + τ ′) = q(s), where τ ′ = ωτ , and, in particular,
q(τ ′) = q(0) = 1. The perturbation expansion for τ ′ is

τ ′ =
∞∑
j=0

τ ′j λj , τ ′0 = 2π , (9.25)

in terms of the perturbation parameter λ chosen to be λ = L or λ = L2 in either of the two
cases discussed above (expansions (9.8) or (9.20), respectively). Straightforward differentiation of
q(τ ′) = 1 with respect to λ yields

∂q

∂λ

(
τ ′
)+ q̇ (τ ′) ∂τ ′

∂λ
= 0 (9.26)

and

∂2q

∂λ2

(
τ ′
)+ 2

∂q̇

∂λ

(
τ ′
) ∂τ ′
∂λ
+ q̈ (τ ′)

(
∂τ ′

∂λ

)2

+ q̇ (τ ′) ∂2τ ′

∂λ2
= 0 . (9.27)

When λ→ 0 these two equations lead to

τ ′1 = lim
s→2π

[
q1(s)

q̇0(s)

]
, (9.28)

and

τ ′2 = lim
s→2π

[
2q2(s)+ 2q̇1(s)τ

′
1 + q̈(s)τ ′21

2q ′0(s)

]
, (9.29)

respectively. Substituting the expressions of qj (s) derived earlier we obtain [181]

τ ′1 = 0, τ ′2 =
π

12

(
10a2

1 + 9a2

)
(9.30)

for the general case, and

τ ′1 =
3π

4
a1, τ

′
2 =

π

128

(
57a2

1 + 80a2

)
(9.31)

for an odd force.
Proceeding in the same way we obtain perturbation corrections of higher order; aided by Maple

we have derived the results shown in Table 9.1.
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Table 9.1 Perturbation Series for the Period

Arbitrary Force

τ1 = 0

τ2 = 3
4 π a2 + 5

6 π a1
2

τ3 = − 1
2 a1 π a2 − 5

9 a1
3 π

τ4 = 275
96 π a1

2 a2 + 57
128 π a2

2 + 385
288 π a1

4 + 7
4 π a1 a3 + 5

8 π a4

τ5 = − 35
8 π a2 a1

3 − 385
216 π a1

5 − 8
3 π a3 a1

2 − 35
32 π a2

2 a1 − 3
10 π a3 a2 − 5

6 a1 π a4

τ6 = 63
80 a3

2 π + 35
64 a6 π + 10535

1536 π a1
2 a2

2 + 8435
768 π a1

4 a2 + 315
1024 π a2

3

+ 175
32 a1 a2 π a3 + 49

64 π a2 a4 + 385
96 π a1

2 a4 + 371
48 a1

3 π a3 + 15
8 a1 a5 π

+ 103565
31104 π a1

6

τ7 = − 4445
256 a1

3 a2
2 π − 875

512 a1 a2
3 π − 21

32 π a3 a2
2 − 763

48 π a2 a1
2 a3 − 275

96 a2 a1 a4 π

− 385
48 a1

3 a4 π − 71995
3456 π a1

5 a2 − 539
36 a1

4 a3 π − 85085
15552 a1

7 π − 119
40 a1 a3

2 π

− 1
2 a4 a3 π − 3

14 a2 a5 π − 335
84 a1

2 a5 π − 35
32 a6 a1 π

τ8 = 1425
256 a1 a2 π a5 + 2550625

49152 π a1
4 a2

2 + 18865
1024 π a2 a1

2 a4 + 28847
512 π a2 a1

3 a3

+ 24661
2048 π a2

2 a1 a3 + 2683
384 π a1 a3 a4 + 223265

16384 π a1
2 a2

3 + 30345
131072 π a2

4

+ 6551545
663552 a1

8 π + 1197
512 π a2 a3

2 + 1401
2048 π a2 a6 + 52661

3840 π a1
2 a3

2

+ 16615
3072 π a1

2 a6 + 4535
384 a1

3 π a5 + 182875
9216 π a1

4 a4 + 153769
4608 π a1

5 a3

+ 4919915
110592 π a1

6 a2 + 515
1536 π a4

2 + 3335
4096 π a2

2 a4 + 63
128 a8 π + 385

192 a1 a7 π

+ 99
64 a5 a3 π

Odd Force

τ1 = 3
4 π a1

τ2 = 57
128 a1

2 π + 5
8 π a2

τ3 = 49
64 π a1 a2 + 315

1024 a1
3 π + 35

64 a3 π

τ4 = 1401
2048 π a1 a3 + 30345

131072 π a1
4 + 515

1536 π a2
2 + 3335

4096 a1
2 π a2 + 63

128 a4 π

τ5 = 8965π a1 a2
2

12288 + 27335 a1
3 π a2

32768 + 24255 a1
2 π a3

32768 + 3201π a1 a4
5120 + 1243π a2 a3

2048

+ 231 a5 π
512 + 193347 a1

5 π
1048576

τ6 = 1770195
2097152 a1

4 π a2 + 448805
393216 a1

2 π a2
2 + 403165

524288 a1
3 π a3 + 22449

32768 a1
2 π a4

+ 4751
8192 π a1 a5 + 43935

32768 π a1 a2 a3 + 18165
65536 a3

2 π + 5127969
33554432 a1

6 π + 16285
73728 a2

3 π

+ 1147
2048 a4 π a2 + 429

1024 a6 π

τ7 = 188475
262144 a1

3 π a4 + 84115
131072 a1

2 π a5 + 1112895
524288 a1

2 a2 a3 π + 31179
57344 π a1 a6

+ 137935
196608 π a1 a2

3 + 14263095
16777216 a1

5 π a2 + 1636985
1048576 a1

3 π a2
2 + 13198185

16777216 a1
4 π a3

+ 20495
16384 π a1 a4 a2 + 325425

524288 π a1 a3
2 + 8439

16384 a4 a3 π + 120835
196608 π a2

2 a3

+ 35002539
268435456 π a1

7 + 6435
16384 a7 π + 12865

24576 a2 a5 π
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9.3.3 Removal of Secular Terms

In what follows we briefly review the Lindstedt–Poincaré technique for removing unbound secular
terms [182]. For concreteness we apply this straightforward procedure to the expansion (9.8) showing
that equation (9.17) is also useful for that purpose.

If we define q(s) as before, where s = √γωt+φ, the dimensionless equation of motion becomes

γ q̈(s)+ q(s) =
∞∑
j=1

ajL
jq(s)j+1, aj = −Fj+1

F1
. (9.32)

Substituting the perturbation series (9.10), and

γ =
∞∑
j=0

γjL
j , (9.33)

we obtain

q̈0 + q0 = 0, q̈j + qj = Gj −
j∑

m=1

γmq̈j−m . (9.34)

The Lindstedt–Poincaré technique consists of choosing the coefficients γj in such a way that the
right-hand side of equation (9.34) is free from terms that, being solutions of the homogeneous
equation ÿ (s) + y(s) = 0, give rise to unbound terms after integration [182]. Since G1 does not
contain such terms we set γ1 = 0. At second order we choose

γ2 = −
(

5a2
1

6
+ 3a2

4

)
(9.35)

to remove the term proportional to cos(s) from

G2 = 1

12

(
3a2 − 2a2

1

)
cos(3s)− a

2
1

3
cos(2s)+

(
5a2

1

6
+ 3a2

4

)
cos(s)− a

2
1

3
. (9.36)

The resulting correction of second order is periodic:

q2(s) = −a
2
1

3
+ 58a2

1 + 9a2

288
cos(s)+ a

2
1

9
cos(2s)

+ 2a2
1 − 3a2

96
cos(3s) . (9.37)

9.3.4 Simple Pendulum

As an illustrative example consider the equation of motion for the simple pendulum [183]

θ̈ = F(θ) = −g
l

sin(θ) , (9.38)

where l is the pendulum length, θ is the angle subtended with respect to the equilibrium position,
and g is the gravitational acceleration. If we apply the method developed above with x = θ and
m = 1 we have an expansion like (9.20) because the force is an odd function of θ . Since F1 = −g/l
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and F2 = g/(6l), we have a1 = 1/6, and a2 = −1/120 that we substitute into equation (9.31) and
obtain

τ ′1 =
π

8
, τ ′2 =

11π

1536
(9.39)

which agree with the first terms of the expansion of the integral representation of the period of the
pendulum [183].

9.4 Canonical Transformations in Operator Form

9.4.1 Hamilton’s Equations of Motion

We consider a classical dynamical system described by a set of generalized coordinates q =
(q1, q2, . . . , qn) and conjugate momenta p = (p1, p2, . . . , pn). The trajectory in phase space is
given by Hamilton’s equations of motion

q̇j = ∂H

∂pj
, ṗj = − ∂H

∂qj
, j = 1, 2, . . . n , (9.40)

where H = H(q,p, t) is the Hamiltonian [184]. Wherever necessary we explicitly indicate the
dependence of q and p on the initial conditions q0 and p0 at a given time (say t = 0) as q = q(q0,
p0, t) and p = p(q0,p0, t), respectively.

The velocity of change of a general function F(q,p) is given by

∂F

∂t
=

n∑
j=1

(
∂F

∂qj
q̇j + ∂F

∂pj
ṗj

)
=

n∑
j=1

(
∂F

∂qj

∂H

∂pj
− ∂F

∂pj

∂H

∂qj

)
= {F,H }[q,p] , (9.41)

where {F,H }[q,p] denotes the well-known Poisson bracket [185]. In general, for any two functions
F(q,p) and G(q,p) we write

{F,G}[q,p] =
n∑
j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
. (9.42)

In particular, the coordinates and momenta satisfy{
qi, pj

}
[q,p] = δij . (9.43)

9.4.2 General Poisson Brackets

It is convenient for our purposes to generalize the Poisson brackets for an arbitrary set of 2n
variables x = {x1, x2, . . . , xn, xn+1, . . . , x2n} as

{F,G}x =
n∑
j=1

(
∂F

∂xj

∂G

∂xn+j
− ∂F

∂xn+j
∂G

∂xj

)
. (9.44)

We can rewrite this equation in a more compact form in terms of the antisymmetric matrix

J =
(

0 1
−1 0

)
, (9.45)
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where 0 and 1 are the n× n zero and unit matrices, respectively [185]. One easily verifies that

{F,G}x =
2n∑
i=1

2n∑
j=1

Jij
∂F

∂xi

∂G

∂xj
, (9.46)

where Jij denotes the element in the ith row and j th column of J. In particular,

{
xi, xj

}
x
= Jij . (9.47)

Consider the set V = {A,B,C, . . . } of differentiable functions of x. The Poisson brackets satisfy

{A,B} ∈ V , (9.48)

{A,B + C} = {A,B} + {A,C} , (9.49)

α{A,B} = {αA,B} = {A, αB} , (9.50)

{A,A} = 0⇒ {A,B} = −{B,A} , (9.51)

{A, {B,C}} + {C, {A,B}} + {B, {C,A}} = 0 , (9.52)

where α is a complex number. These equations define a Lie algebra [48]. One easily proves the
properties (9.48)–(9.51), but the proof of Jacobi’s identity (9.52), although straightforward, is rather
tedious [185]. However, using Maple we can easily verify Jacobi’s identity for particular cases. In
the program section there is a set of simple procedures for that purpose.

9.4.3 Canonical Transformations

A change of variables

yj = yj (x), j = 1, 2, . . . , 2n (9.53)

is said to be canonical if {yi, yj }x = {xi, xj }x = Jij . Expanding the Poisson bracket for any two
functions F(y) and G(y), and using the chain rule we easily prove that

{F,G}x =
2n∑
i=1

2n∑
j=1

∂F

∂yi

∂G

∂yj

{
yi, yj

}
x
. (9.54)

This equation states that

{F,G}x = {F,G}y , (9.55)

provided that the transformation (9.53) is canonical.
Given a differentiable function F(x) we define an operator

F̂ =
2n∑
i=1

2n∑
j=1

Jij
∂F

∂xi

∂

∂xj
, (9.56)

such that F̂G = {F,G}x for any differentiable functionG(x). In what follows we consider a change
of variables y = y(x, λ) depending on a parameter λ in such a way that y(x, 0) = x, and

∂yi

∂λ
= Ŵyi , (9.57)
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where Ŵ is the operator generated by a differentiable functionW(x, λ) according to equation (9.56).
By means of equation (9.57) and the chain rule it is not difficult to show that

dF(y)
dλ

= {W,F }x = ŴF . (9.58)

Assuming that (d/dλ)(∂F/∂xi) = (∂/∂xi)(dF/dλ) we easily prove that

d

dλ
{F(y),G(y)}x = {{W,F },G}x + {F, {W,G}}x = {W, {F,G}}x , (9.59)

where we have used Jacobi’s identity in order to derive the second equality.
We denote the transformation x→ y with generator W(x, λ) and parameter λ as

yi(x, λ) = TW (xi, λ) = T̂W (λ)xi , (9.60)

where the transformation operator T̂W is a solution to the differential equation

d

dλ
T̂W = Ŵ T̂W , T̂W (0) = 1̂ . (9.61)

Differentiating the equation T̂W T̂
−1
W = T̂ −1

W T̂W = 1̂, which defines the inverse T̂ −1
W of T̂W , with

respect to λ we easily obtain

d

dλ
T̂ −1
W = −T̂ −1

W Ŵ, T̂ −1
W (0) = 1̂ . (9.62)

It follows from equation (9.58) and the initial condition y(x, 0) = x that

F(y) = F
(
T̂Wx

)
= T̂WF (x) . (9.63)

Analogously, from equation (9.59) we have

{F(y),G(y)}x = T̂W {F(x),G(x)}x , (9.64)

which shows that the transformation (9.60) is canonical:
{
yi, yj

}
x
= T̂W

{
xi, xj

}
x
= T̂WJij = Jij . (9.65)

For this reason we can write

dyi

dλ
= {W, yi}x = {W, yi}y =

2n∑
j=1

Jji
∂W

∂yj
, (9.66)

which is equivalent to

dyi

dλ
= − ∂W

∂yi+n
,
dyi+n
dλ
= ∂W
∂yi

, i = 1, 2, . . . , n . (9.67)

These expressions give Hamilton’s equations of motion as a particular case whenW = −H , λ = t ,
y = (q,p), and x = (q0,p0).

If W is independent of λ we have

T̂W (λ) = exp
(
λŴ
)
, T̂W (λ)

−1 = exp
(
−λŴ

)
. (9.68)
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It is left to the reader to prove that in this particular case the function W(x) is invariant under the
canonical transformation of variables x→ y: W(y) = W(x). The exponential operator (9.68) may
be expressed as a Taylor series about λ = 0:

T̂W (λ) =
∞∑
k=0

λk

k! Ŵ
k . (9.69)

The operator form of the canonical transformation just outlined provides a useful expression for
the solution of the inhomogeneous differential equation

d

dλ
Y (x, λ) = Ŵ (x, λ)Y (x, λ)+ F(x, λ) (9.70)

with a given initial condition Y (x, 0). Choosing Y (x, λ) = T̂WK(x, λ), we easily solve the resulting
differential equation for K(x, λ) dK/dλ = T̂ −1

W F obtaining

Y (x, λ) =
∫ λ

0
T̂W (λ)T̂W

(
λ′
)−1

F
(
x, λ′

)
dλ′ + T̂W (λ)Y (x, 0) . (9.71)

The operator form of canonical transformations based on Lie algebras offers some advantages over
the more familiar canonical transformation commonly used in classical mechanics [185], and has
been extensively studied by several authors [186]–[191]. An interesting physical application would
be as follows: suppose that x = (q,p) is a vector in phase space, and that y = y(x, λ) is a new set
of generalized coordinates and conjugate momenta. The equations of motion for the Hamiltonian in
the new variables H̃ (y) = H(x(y)) = H(x) read

ẏi = {yi,H(x)}x =
{
yi, H̃ (y)

}
y
. (9.72)

A convenient choice of the transformation may lead to simpler equations of motion.

9.5 The Evolution Operator

We can view the solution x = {q,p} of Hamilton’s equations of motion (9.40) as a canonical
transformation x = x(x0, t) depending on the parameter λ = t and write

x = T̂H (t)x0,
d

dt
T̂H (t) = −Ĥ T̂H (t), T̂H (0) = 1̂ . (9.73)

This expression of the trajectory in phase space is reminiscent of the evolution of the state vector in
quantum mechanics discussed in Section 1.3.

If the Hamiltonian is independent of time we easily obtain an explicit formal expression for the
evolution operator: T̂H (t) = exp(−tĤ ), whereH(x) = H(x0) [185]. However, even in this simpler
case we are not able to derive exact analytical solutions to Hamilton’s equations of motion, except
for particular models. The substitution of the expansion T̂H = 1̂ − tĤ + (tĤ )2/2 + . . . for the
exponential operator yields a Taylor series for x about t = 0.
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9.5.1 Simple Examples

In what follows we consider Hamiltonian functions

H = p2
x

2m
+ kMxM (9.74)

that we easily transform into their dimensionless form

H = mω2L2
(
p2

2
+ qM

)
(9.75)

by means of the change of variables already introduced above: x = Lq, px = mωLp, s = ωt ,
where the arbitrary length L and frequency ω satisfy

kML
M−2

mω2
= 1 . (9.76)

In the case of the harmonic oscillator M = 2 it is preferable to choose k2/mω
2 = 1/2 so that

H = mω
2

2

(
p2 + q2

)
. (9.77)

Later on, we apply perturbation theory to the anharmonic oscillator,

H = p2
x

2m
+ mω

2x2

2
+ kMxM , (9.78)

that we may rewrite as

H = mω2L2
(
p2

2
+ q

2

2
+ λqM

)
, λ = kML

M−2

mω2
. (9.79)

Although we believe that one should always transform physical equations into dimensionless math-
ematical expressions, we will sacrifice our philosophy in this chapter to facilitate comparison of
present results with those of other authors.

One of the simplest models is given by the Hamiltonian H(q, p) = p2/(2m) + f q, where m
and f are real numbers, which applies, for example, to a particle of mass m under the effect of a
gravitational field (f = mg). In this case the expansion of the exponential operator T̂H yields the
exact result

q = exp
[
−tĤ (x0)

]
q0 = q0 + p0t

m
− f t

2

2m

p = exp
[
−tĤ (x0)

]
p0 = p0 − f t (9.80)

because the series terminate when Ĥ 3q0 = 0 and Ĥ 2p0 = 0 [185].
Another interesting example is the harmonic oscillator

H(q, p) = p2

2m
+ mω

2q2

2
, (9.81)

where m and ω are, respectively, the mass and frequency. The exact solution is

q = q0 cos(ωt)+ p0

mω
sin(ωt), p = p0 cos(ωt)−mωq0 sin(ωt) . (9.82)
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As discussed above, the application of the expansion of the time evolution operator T̂H =
exp[−tĤ (x0)] to a given function of the initial coordinates and momenta F(x0) leads to the Taylor
series of F(x) about t = 0. For example, in the case of the harmonic oscillator the expansion

(
1̂ − tĤ (x0)+ t

2

2
Ĥ (x0)

2 − t
3

6
Ĥ (x0)

3 + t4

24
Ĥ (x0)

4− . . .
)
q0

= q0 + p0t

m
− ω

2q0t
2

2
− ω

2p0t
3

6m
+ ω

4q0t
4

24
+ · · · (9.83)

exactly agrees with the Taylor series of q in equation (9.82) about t = 0.
By means of canonical transformations we may obtain new dynamical variables that render the

equations of motion simpler. For example, if a function z(q, p) satisfies Ĥ z = ϑz, where ϑ is a
complex number, then without much thinking we realize that z = z0 exp(−ϑt). Notice that what
we are actually doing is seeking for eigenfunctions of the operator Ĥ .

Taking into account that in the case of the harmonic oscillator Ĥq = −p/m and Ĥp = mω2q,
we conclude that the simplest eigenfunctions of Ĥ are linear combinations of the coordinate and
momentum: z = c1q + c2p. A straightforward calculation shows that there are two solutions given
by

a = c1

(
q + ip

mω

)
, ϑ = iω; b = 1

2c1
(imωq + p), ϑ = −iω , (9.84)

where c1 is an arbitrary complex number. Notice that the transformation (q, p)→ (a, b) is canonical
because {a, b}[q,p] = 1. We arbitrarily choose c1 = √mω/2 so that

a =
√
mω

2

(
q + ip

mω

)
, b = i

√
mω

2

(
q − ip

mω

)
= ia∗ . (9.85)

The inverse transformation is

q = 1√
2mω

(a − ib) =
√

2

mω
�(a), p =

√
mω

2
(b − ia) = √2mω�(a) . (9.86)

In terms of these new variables the equations of motion have the simpler form ȧ = −iωa and
ḃ = iωb so that one easily obtains the solutions

a = a0 exp(−iωt), b = b0 exp(iωt) . (9.87)

The pairs of alternative initial conditions (a0, b0) and (q0, p0) relate each other exactly in the same
way as (a, b) and (q, p) do, namely, through equations (9.85) and (9.86). Taking this fact into
account, one easily recovers the solution (9.82) from equation (9.87). In terms of the new variables
the Hamiltonian becomes

H(q(a, b), p(a, b)) = −iωab = ω|a|2 = ω |a0|2 . (9.88)

In order to express the canonical transformation just discussed in operator form, we consider the
functions

K0(a, b) = ab
2
, K+(a, b) = a

2

4
, K−(a, b) = b

2

2
(9.89)

and their corresponding operators

K̂0 = 1

2

(
b
∂

∂b
− a ∂

∂a

)
, K̂+ = a

2

∂

∂b
, K̂− = −b ∂

∂a
. (9.90)
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We expect the canonical transformation to be given by the product of exponential operators Û =
exp(βK̂−) exp(αK̂+) exp(θK̂0). Taking into account that

K̂0a = −a
2
, K̂+a = 0, K̂−a = −b ,

K̂0b = b

2
, K̂+b = a

2
, K̂−b = 0 (9.91)

it is not difficult to verify that

Ûa = exp(−θ/2)(a − βb), Ûb = exp(θ/2) [(1− αβ/2)b + αa/2] . (9.92)

The reader may find detailed discussions of the application of exponential operators in most books
on Lie algebras [4, 7]. If we require that q = Ûa and p = Ûb, then it follows from equations (9.92)
and (9.86) that α = −i, β = i, and θ = ln(2mω); that is to say:

Û = exp
(
iK̂−

)
exp
(
−iK̂+

)
exp
[
ln(2mω)K̂0

]
. (9.93)

The inverse transformation is given by the operator

Û−1 = exp
[
− ln(2mω)K̂0

]
exp
(
iK̂+

)
exp
(
−iK̂−

)
, (9.94)

where K̂0, K̂+, and K̂− have exactly the same form (9.90) except that a and b are replaced with q
and p, respectively, so that a = Û−1q, and b = Û−1p.

9.6 Secular Perturbation Theory

If we cannot solve the equations of motion for the Hamiltonian

H(x, t) = H0(x)+ λH ′(x, t), x = (q,p) (9.95)

exactly, but we expect λH ′ to be just a small correction to the known dynamics of H0, then we may
resort to perturbation theory. Here we present this approximate method in a way that closely resem-
bles perturbation theory in the interaction picture of quantum mechanics outlined in Section 1.3.1.
Expanding the trajectory in phase space as

x =
∞∑
j=0

x(j)λj , (9.96)

and taking into account the equations of motion for the Hamiltonian (9.95), we obtain the following
differential equation for the coefficients x(j)

ẋ(j) = −Ĥ0x(j) − Ĥ ′x(j−1), j = 0, 1, . . . , (9.97)

where x(−1) = 0. Because each of these equations is a particular case of equation (9.70), the solutions
are

x(0) (x0, t) = T̂H0(t)x0

x(j) (x0, t) =
∫ t

0
T̂H0

(
t − t ′) x̂(j−1) (x0, t

′)H ′ (x0, t
′) dt ′, j > 0 , (9.98)
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where T̂H0(t) = exp[−tĤ0(x0)]. Notice that the approximate solution satisfies the initial conditions
at every perturbation order because x(0)(x0, 0) = x0 and x(j)(x0, 0) = 0 for all j > 0. We
calculate the corrections recursively for j = 1, 2, . . . , taking into account that T̂H0(t)F (x0, t) =
F(T̂H0(t)x0, t) = F(x(0)(x0, t), t), where x(0)(x0, t) is the known unperturbed trajectory. The
problem reduces to the calculation of the integral in equation (9.98).

This straightforward perturbation theory is called secular because the corrections x(j) commonly
exhibit unbounded (secular) terms in the case of bounded motion [189]. We have already discussed
this point earlier in this chapter for the polynomial approximation.

9.6.1 Simple Examples

In what follows we consider weak perturbations of the well-known dynamics of the harmonic
oscillator

H0(q, p) = p2

2m
+ mω

2q2

2
(9.99)

that gives rise to the trajectory in phase space given by equation (9.82). In the program section
we show a set of simple Maple procedures for the application of perturbation theory according to
equation (9.98). As a particular example we consider a cubic perturbation H ′(q, p) = q3 that
makes the resulting potential-energy function a well with a barrier of height V (qm) = m3ω6/(54λ2)

at qm = −mω2/(3λ). Figure 9.1 (a) shows this potential-energy function and V (qm) for arbitrary
values of m, ω, and λ < 0. In order to shorten the size of the results we substitute the particular
initial condition p0 = 0. For example, the first two corrections to the trajectory are

q(1) = q2
0

2mω2
[cos(2ωt)+ 2 cos(ωt)− 3]

q(2) = q3
0

16m2ω4
[3 cos(3ωt)+ 16 cos(2ωt)+ 29 cos(ωt)+ 60ωt sin(ωt)− 48] .(9.100)

Notice the secular term t sin(ωt) that makes |q(2)| grow unboundedly even for initial conditions
leading to periodic motion.

The polynomial approximation discussed in Section 9.3 and the secular perturbation theory in
operator form give exactly the same result. To obtain the trajectory for the cubic oscillator from the
former approach we set F1 = −mω2, F2 = −3λ, and Fj = 0 for all j > 2 in equation (9.8), so
that a1 = −F2/F1 = −3λ/(mω2), and aj = 0 for all j > 1 in equation (9.9). By straightforward
inspection of equations (9.19) and (9.100), one easily verifies that Lj+1qj (ωt) and λjq(j)(t) agree
for j = 1, 2 provided that L = q0.

It is instructive (and also a suitable test for the equations and programs) to consider the perturbation
H ′(q, p) = mω2q2/2, because it enables us to compare the perturbation series with the Taylor
expansion of the exact solution obtained by substitution of ω

√
1+ λ for ω in equation (9.82).

Present secular perturbation theory in operator form closely resembles the application of pertur-
bation theory to the Heisenberg equations of motion in quantum mechanics discussed in Section 1.3.
It is instructive to compare classical and quantum-mechanical results. For that purpose we consider
dimensionless anharmonic oscillators of the form

H = p
2

2
+ q

2

2
+ λqM,M = 3, 4, . . . . (9.101)

Table 9.2 shows q(1) and q(2) for M = 3 and q(1) for M = 4, obtained by means of the Maple
program mentioned above with m = ω = 1. Comparing them with the corresponding quantum-
mechanical expressions in Table 1.2 we realize that the former are formally identical with the real
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FIGURE 9.1
Potential-energy functions V (q) = mω2q2/2− |λ|q3 (a) and V (q) = mω2q2/2− |λ|q4 (b), and
their barrier heights V (qm).

parts of the latter. The imaginary parts of the quantum-mechanical results arise in the process of
ordering the noncommutative coordinate and momentum operators according to the rule [q̂, p̂] = i
and have no classical counterpart.

9.6.2 Construction of Invariants by Perturbation Theory

The total rate of change of a function F(q,p, t) with time is

dF

dt
=
(
∂F

∂t

)
q,p

+ {F,H }[q,p] . (9.102)
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Table 9.2 Secular Perturbation Theory in Operator Form for the

Dimensionless Anharmonic Oscillators H = p
2

2
+ q

2

2
+ λ qM

M = 3

q(1) = q0 p0 sin(2 t)− 2 q0 p0 sin(t)+
(
−p2

0
2 +

q2
0
2

)
cos(2 t)

+ (2p2
0 + q2

0

)
cos(t)− 3p2

0
2 −

3 q2
0

2

q(2) = (2p3
0 − p0 q

2
0

)
sin(2 t)+

(
15 t q3

0
4 + 15 t q0 p

2
0

4 + 5p3
0

16 +
65p0 q

2
0

16

)
sin(t)

+
(

9p0 q
2
0

16 − 3p3
0

16

)
sin(3 t)+ (q3

0 + 4 q0 p
2
0

)
cos(2 t)

+
(
− 15 t p3

0
4 − 55 q0 p

2
0

16 − 15 t p0 q
2
0

4 + 29 q3
0

16

)
cos(t)

+
(
− 9 q0 p

2
0

16 + 3 q3
0

16

)
cos(3 t)− 3 q3

0

M = 4

q(1) =
(

3 q2
0 p0
8 − p3

0
8

)
sin(3 t)+

(
− 21 q2

0 p0
8 − 9p3

0
8 −

3 t q3
0

2 −
3 t q0 p

2
0

2

)
sin(t)

+
(
− 3 q0 p

2
0

8 + q3
0
8

)
cos(3 t)+

(
3 t q2

0 p0
2 + 3 t p3

0
2 −

q3
0
8 +

3 q0 p
2
0

8

)
cos(t)

A function I (q,p, t) is called an invariant if dI/dt = 0; that is to say, if(
∂I

∂t

)
q,p

= {H, I }[q,p] = Ĥ I . (9.103)

The reader may easily verify that with just a change of sign in the main equation, the method
outlined above proves suitable for constructing invariants by means of perturbation theory according
to equation (9.103) [192].

9.7 Canonical Perturbation Theory

In what follows we outline a classical perturbation theory free from secular terms which we
present in a way that closely resembles the perturbation theory for operators in quantum mechanics
discussed in Section 3.5. Canonical perturbation theory has been known for a long time and widely
applied to numerous problems in classical mechanics. Here we just mention some references [186]–
[189], [193]–[195] where the interested reader may look up others. In order to illustrate the main
ideas underlying canonical perturbation theory, we choose a simple anharmonic oscillator in one
dimension.

Consider the HamiltonianH(q, p) = H0(q, p)+λH ′(q, p), whereH0 corresponds to a harmonic
oscillator and the perturbationH ′ is a polynomial function of q andp. If the degree of the polynomial
H ′ is greater than two, then the dynamical problem is nonlinear.

The complex variables a and b defined in equation (9.85) considerably simplify the application of
canonical perturbation theory exactly as the creation and annihilation operators are suitable for the
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application of perturbation theory for operators in quantum mechanics. We explicitly indicate this
change of dynamical variables as

H̃ (a, b) = ÛH(a, b) = H(q(a, b), p(a, b)) = H̃0(a, b)+ λH̃ ′(a, b), (9.104)

where H̃ 0(a, b) = −iωab as in equation (9.88).
The aim of the approach is to find a change of variables

a(A,B) = T̂ A, b(A,B) = T̂ B (9.105)

with inverse

A(a, b) = T̂ −1a, B(a, b) = T̂ −1b (9.106)

such that the transformed Hamiltonian depends onA and B only through H̃0(A,B) = −iωAB; that
is to say:

T̂ H̃ (A,B) = H̃
(
T̂ A, T̂ B

)
= K

(
H̃0(A,B), λ

)
. (9.107)

Notice that H̃0(A,B) is a constant of the motion:

d

dt
H̃0(A,B) =

{
H̃0,K

}
= 0 . (9.108)

The equations of motion for the new dynamical variables A and B are

Ȧ = ∂K
∂B
= −i9A, Ḃ = −∂K

∂A
= i9B , (9.109)

where 9 = ω(∂K/∂H̃0) is a constant of the motion because it is a function of H̃0. Therefore, the
solutions are given by

A = A0 exp(−i9t), B = B0 exp(i9t) , (9.110)

where A0 and B0 are appropriate initial conditions at t = 0.
Later on we will show that the Hamiltonian for the harmonic oscillator in terms of the action J is

H̃0 = Jω, so that 9 = ω(∂K/∂H̃0) = ∂K/∂J is one of Hamilton’s equations for the action-angle
variables [196].

In order to express the canonical transformation in a more familiar way we write q and p in terms
of a new coordinateQ and conjugate momentumP instead of the complex variablesA andB. Taking
into account equation (9.92) we write

Q = ÛA, P = ÛB . (9.111)

It is not difficult to verify that we have carried out the following transformations of the Hamiltonian

K
(
H̃0, λ

)
= T̂ H̃ = T̂ ÛH = K

(
ÛH0, λ

)
= ÛK (H0, λ) , (9.112)

from which it follows that

K (H0(Q, P ), λ) = H(q(Q,P ), p(Q,P )) = Û−1T̂ ÛH(Q,P ) . (9.113)
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Accordingly, the canonical transformation of the coordinate and momentum is

x = Û−1T̂ Ûy, y = Û−1T̂ −1Ûx, (9.114)

where x = (q, p) and y = (Q, P ).
The transformed Hamiltonian K is commonly said to be in (Birkhoff–Gustavson) normal

form [186, 188, 189], [193]–[195]. In practice it is not possible to obtain the normal form ex-
actly (except for some trivial problems), and one resorts to an approximation. In what follows we
show how to obtain the normal form as a perturbation series:

K
(
H̃0, λ

)
=
∞∑
j=0

Kj

(
H̃0

)
λj , K0 = H̃0 . (9.115)

We choose a transformation operator T̂ given by equation (9.61) with an operator Ŵ to be determined
by perturbation theory. By straightforward substitution of the power series

T̂ =
∞∑
j=0

λj T̂j , T̂0 = 1̂ , (9.116)

Ŵ =
∞∑
j=0

λj Ŵj , (9.117)

into equation (9.61), we obtain a recurrence relation for the operator coefficients T̂n in terms of the
operator coefficients Ŵj :

T̂n = 1

n

n−1∑
j=0

Ŵj T̂n−j−1 . (9.118)

Exactly in the same way we derive a recurrence relation for the coefficients of the expansion of the
inverse operator

T̂ −1 =
∞∑
j=0

λj
(
T̂ −1

)
j
,
(
T̂ −1

)
0
= 1̂ (9.119)

from equation (9.62) as follows:

(
T̂ −1

)
n
= −1

n

n−1∑
j=0

(
T̂ −1

)
n−j−1

Ŵj . (9.120)

The expansion of equation (9.107) in a perturbation series leads to

T̂nH̃0 + T̂n−1H̃
′ = Kn (9.121)

that we rewrite as follows:

̂̃
H 0Wn =

n−1∑
j=0

Ŵj T̂n−j H̃0 + (n+ 1)T̂nH̃
′ − (n+ 1)Kn+1 = Fn − (n+ 1)Kn+1 . (9.122)
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Notice that at the nth step the unknowns are Wn and Kn+1 because

Fn =
n−1∑
j=0

Ŵj T̂n−j H̃0 + (n+ 1)T̂nH̃
′ (9.123)

contains terms already calculated previously.

In order to obtain those unknowns we simply take into account that ̂̃H 0a
jbk = i(j − k)ωajbk .

On choosing Kn+1 so that Fn − (n+ 1)Kn+1 is free from diagonal terms ajbj we can apply

̂̃
H 0
−1ajbk = ajbk

(j − k)ωi , j �= k (9.124)

to obtain

Wn = ̂̃H 0
−1 [Fn − (n+ 1)Kn+1

]
. (9.125)

An alternative way is to write

(̂̃
H 0 + α

)−1 =
∫ 0

−∞
exp
[
t
(̂̃
H 0 + α

)]
dt, α > 0 , (9.126)

and to take into account that (̂̃H 0 + α)−1Kn+1 = Kn+1/α because ̂̃H 0Kn+1 = 0. Therefore, if we
define

Wn(α) =
∫ 0

−∞
exp
[
t
(̂̃
H 0 + α

)]
Fn dt , (9.127)

we have

Kn+1 = 1

n+ 1
lim
α→0

αWn(α) , (9.128)

and

Wn = lim
α→0

[
Wn(α)− (n+ 1)Kn+1

α

]
. (9.129)

These expressions are suitable for the systematic application of computer algebra because we

can easily program the effect of exp(t ̂̃H 0) on any function of a and b as exp(t ̂̃H 0)G(a, b) =
G(a exp(iωt), b exp(−iωt)).

It follows from inspection of equation (9.114) that we can express the operators Û and T̂ either
in terms of q and p or in terms ofQ and P , omitting explicit reference to the intermediate complex
variables a, b, A and B. Proceeding in this way greatly facilitates programming the equations for
the transformation. It is worth noting that the canonical transformations in operator form (9.114)
give both the direct and inverse change of variables, y(x) and x(y), explicitly. On the other hand,
the traditional canonical transformations known in classical mechanics since long ago [185], and
widely applied to many problems of current interest [197]–[199], give implicit expressions. In fact,
the traditional canonical transformation for the simple anharmonic oscillator discussed here is given
by a generating function F2(q, P ) = qP + S(q, P ) as

Q = q + ∂S(q, P )
∂P

, (9.130)

P = p − ∂S(q, P )
∂q

. (9.131)
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Consequently, to obtain Q(q, p) and P(q, p) explicitly, we should first solve equation (9.131)
for P(q, p) and substitute it into (9.130) to derive Q(q, p). This approach is considerably more
cumbersome than the operator form of the canonical transformations, and in the end both yield the
new coordinate and momentum as perturbation series:

Q = q +
∞∑
j=1

Qj(q, p)λ
j , P = p +

∞∑
j=1

Pj (q, p)λ
j . (9.132)

In the program section we show a set of simple Maple procedures for the systematic application
of canonical perturbation theory according to the equations above. Choosing the cubic and quartic
perturbations H ′ = q3 and H ′ = q4, respectively, as illustrative examples we obtain the results in
Table 9.3. If we substitute λ = f/6 and λ = f/24 in the cubic and quartic cases, respectively, our
results through second order agree with the expressions derived recently by means of the traditional
canonical transformations [199]. It is straightforward to generalize the equations given above in
order to treat anharmonic oscillators in more than one dimension [194].

In closing this section we mention that we can entirely omit the intermediate transformation to
the complex variables a and b, because equations (9.127)–(9.129) are valid for any set of variables.
If, for example, we choose q and p, this approach offers no difficulty because we know the effect of

exp(t ̂̃H 0) on them. Although in this way we bypass the transformations Û and Û−1 the resulting
procedure is slower because the integrals are more complicated.

9.8 The Hypervirial Hellmann–Feynman Method (HHFM)

The simplest and most efficient way of obtaining the canonical perturbation series for separable
classical models is based on the hypervirial and Hellmann–Feynman theorems [200]. This approach
is reminiscent of the method of Swenson and Danforth discussed in Section 3.3 that facilitates the
application of perturbation theory in quantum mechanics. In order to apply the HHFM we have
first to present the classical problem in a way that closely resembles a quantum-mechanical one,
and develop the classical counterparts of the hypervirial and Hellmann–Feynman theorems given in
Section 3.2.

For simplicity and concreteness, we consider the periodic motion of a one-dimensional model
with Hamiltonian

H(q, p) = p2

2m
+ V (q) . (9.133)

The time average of a function F(q, p) is given by

F = 1

τ

∫ τ

0
F(q(t), p(t)) dt , (9.134)

where τ is the period of the motion. In particular,

dG

dt
= {G,H } = 1

τ
[G(τ)−G(0)] = 0 (9.135)

is the classical hypervirial theorem. Choosing G(q, p) = f (q)p we obtain

2Ef ′ − 2f ′V − fV ′ = 0 , (9.136)
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Table 9.3 Canonical Perturbation Theory in Operator Form for

H = p2

2m
+ mω

2 q2

2
+ λ qM (Continued).

M = 3
K1 = 0

K2 = − 15
4

H0
2

ω6 m3

K3 = 0

K4 = − 705
16

H0
3

ω12 m6

K5 = 0

K6 = − 115755
128

H0
4

ω18 m9

Q1 = q2

mω2 + 2 p2

m3 ω4

Q2 = 7
16

q3

m2 ω4 − 77
16

q p2

m4 ω6

Q3 = 53
16

q4

m3 ω6 + 465
16

q2 p2

m5 ω8 + 115
8

p4

m7 ω10

Q4 = − 28869
512

q p4

m8 ω12 + 4795
512

q5

m4 ω8 − 12869
256

q3 p2

m6 ω10

Q5 = 317095
512

q2 p4

m9 ω14 + 25571
64

p2 q4

m7 ω12 + 51131
256

p6

m11 ω16 + 22183
512

q6

m5 ω10

Q6 = − 12574859
8192

q3 p4

m10 ω16 − 7575957
8192

q p6

m12 ω18 − 1496055
8192

q5 p2

m8 ω14

+ 1474623
8192

q7

m6 ω12

P1 = − 2 q p
mω2

P2 = 43
16

q2 p

m2 ω4 − 17
16

p3

m4 ω6

P3 = − 55
8

q p3

m5 ω8 − 16 q3 p

m3 ω6

P4 = − 2949
256

q2 p3

m6 ω10 + 4171
512

q4 p

m4 ω8 − 10389
512

p5

m8 ω12

P5 = − 50485
256

q5 p

m5 ω10 − 16811
256

q p5

m9 ω14 − 1185
4

q3 p3

m7 ω12

P6 = − 3274377
8192

p7

m12 ω18 − 2213997
8192

q6 p

m6 ω12 − 3978499
8192

q4 p3

m8 ω14

− 6691551
8192

q2 p5

m10 ω16

W0 = − 1
12

√
2 (9 q2 p+p3+i (9q p2+q3))

(mω)(3/2) ω

W1 = 3
16

8 (q3 p+p3 q)+i (p4−q4)

m3 ω5
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Table 9.3 (Cont.) Canonical Perturbation Theory in Operator Form for

H = p2

2m
+ mω

2 q2

2
+ λ qM

M = 4

K1 = 3
2

H0
2

m2 ω4

K2 = − 17
4

H0
3

m4 ω8

K3 = 375
16

H0
4

m6 ω12

K4 = − 10689
64

H0
5

m8 ω16

K5 = 87549
64

H0
6

m10 ω20

K6 = − 3132399
256

H0
7

m12 ω24

Q1 = 5 q3

8mω2 + 9 q p2

8m3 ω4

Q2 = − 77
128

q5

m2 ω4 − 461
64

q3 p2

m4 ω6 − 493
128

q p4

m6 ω8

Q3 = 949
1024

q7

m3 ω6 + 56423
1024

q3 p4

m7 ω10 + 37731
1024

q5 p2

m5 ω8 + 19257
1024

q p6

m9 ω12

Q4 = − 3471229
32768

q p8

m12 ω16 − 8237815
16384

q5 p4

m8 ω12 − 1422157
8192

q7 p2

m6 ω10

− 3434637
8192

q3 p6

m10 ω14 − 56829
32768

q9

m4 ω8

Q5 = 957363
262144

q11

m5 ω10 + 721934803
131072

q5 p6

m11 ω16 + 841618031
262144

q3 p8

m13 ω18

+ 169181199
262144

q p10

m15 ω20 + 488103927
131072

q7 p4

m9 ω14 + 205785691
262144

q9 p2

m7 ω12

Q6 = − 35117705
4194304

q13

m6 ω12 − 230944788423
4194304

q5 p8

m14 ω20 − 102328046375
4194304

q9 p4

m10 ω16

− 7267119483
2097152

q11 p2

m8 ω14 − 58263714797
1048576

q7 p6

m12 ω18 − 51873744571
2097152

q3 p10

m16 ω22

− 17331036841
4194304

q p12

m18 ω24

P1 = − 15 q2 p

8mω2 − 3p3

8m3 ω4

P2 = 835
128

q4 p

m2 ω4 + 371
64

q2 p3

m4 ω6 + 131
128

p5

m6 ω8

P3 = − 4227
1024

p7

m9 ω12 − 24943
1024

q6 p

m3 ω6 − 29109
1024

q2 p5

m7 ω10 − 53025
1024

q4 p3

m5 ω8

P4 = 1335299
8192

q2 p7

m10 ω14 + 3000483
8192

q6 p3

m6 ω10 + 6642697
16384

q4 p5

m8 ω12 + 3049571
32768

q8 p

m4 ω8

+ 652835
32768

p9

m12 ω16

P5 = − 27973029
262144

p11

m15 ω20 − 94246393
262144

q10 p

m5 ω10 − 596711177
262144

q8 p3

m7 ω12

− 551855349
131072

q6 p5

m9 ω14 − 416637985
131072

q4 p7

m11 ω16 − 265471245
262144

q2 p9

m13 ω18

P6 = 151826257737
4194304

q8 p5

m10 ω16 + 27329970085
2097152

q10 p3

m8 ω14 + 13856811429
2097152

q2 p11

m16 ω22

+ 45562683987
1048576

q6 p7

m12 ω18 + 104791019465
4194304

q4 p9

m14 ω20 + 5863791911
4194304

q12 p

m6 ω12

+ 2566494119
4194304

p13

m18 ω24

W0 = − 8p3 q+8 q3 p+i (q4−p4
)

16m2 ω3

W1 = − 9p5 q−9 q5 p+i (99 q4p2+99 q2 p4+q6+p6
)

24m4 ω6
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where E = H is the energy of the motion. In addition to the different meaning of the expecta-
tion values, this expression differs from the quantum-mechanical one in equation (3.16) in a term
proportional to h̄2 that arises from the noncommuting properties of the coordinate and momentum
operators.

In order to obtain the classical Hellmann–Feynman theorem, we suppose that the potential-energy
function depends on a parameter λ: V = V (q, λ). The action is [196]

J = 1

2π

∮
p dq = 1

π

∫ q2

q1

√
2m(E − V ) dq , (9.137)

where the first integral is taken along the periodic trajectory, and the turning points q1 and q2 in
the second integral are roots of V (q1, λ) = V (q2, λ) = E. Equation (9.137) gives the energy as a
function of λ and J that we keep constant. Differentiating equation (9.137) with respect to λ, and
taking into account that p(q1) = p(q2) = 0 and ∂J/∂λ = 0, we obtain

p (q2)
∂q2

∂λ
− p (q1)

∂q1

∂λ
+
∫ q2

q1

∂p

∂λ
dq =

∫ q2

q1

(
∂E

∂λ
− ∂V
∂λ

)
q̇−1 dq

= 1

2

∮ (
∂E

∂λ
− ∂V
∂λ

)
q̇−1 dq = 1

2

∫ τ

0

(
∂E

∂λ
− ∂V
∂λ

)
dt = 0 , (9.138)

which becomes the classical Hellmann–Feynman theorem

∂E

∂λ
= ∂V
∂λ

. (9.139)

This expression is identical to the quantum-mechanical Hellmann–Feynman theorem in equation (3.7)
except for the different meaning of the expectation value.

9.8.1 One-Dimensional Models with Polynomial Potential-Energy Functions

For simplicity, in what follows we consider anharmonic oscillators with polynomial potentials

V (q, λ) = mω
2

2
q2 + λqM, M = 3, 4, . . . (9.140)

as simple nontrivial illustrative examples. We will obtain the perturbation series for the energy

E(J, λ) =
∞∑
i=0

Ei(J )λ
i (9.141)

in terms of a fixed value of J that resembles the quantum number of the quantum-mechanical models.
The coefficient E0(J ) is the energy of the harmonic oscillator for the same value of the action. In
this case the calculation of the integral in equation (9.137) is straightforward giving

J = E0

ω
. (9.142)

Because the potential-energy function of the anharmonic oscillator is a polynomial function of q, it
is convenient to choose

f (q) = qN−1, N = 1, 2, . . . (9.143)
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so that equation (9.136) becomes

2(N − 1)EQN−2 −mω2NQN − λ(2N +M − 2)QN+M−2 = 0 , (9.144)

where

QN = qN . (9.145)

Substituting the perturbation expansion

QN =
∞∑
i=0

QN,iλ
i (9.146)

and the energy series (9.141) into the hypervirial equation (9.144), we obtain a recurrence relation
for the perturbation coefficients:

QN,p = 1

mNω2


2(N − 1)

p∑
j=0

EjQN−2,p−j − (2N +M − 2)QN+M−2,p−1


 . (9.147)

The Hellmann–Feynman theorem

∂E

∂λ
= QM (9.148)

provides a necessary relationship between the coefficients of the series (9.141) and (9.146):

Ej = 1

j
QM,j−1, j = 1, 2, . . . . (9.149)

We can obtain all the perturbation corrections to the energy and averages QN from
equations (9.147) and (9.149). It follows from Q0 = 1 that the initial condition is Q0,p = δp0. In
order to obtain Ep we have to calculate QN,j for all j = 0, 1, . . . , p − 1, and N = 1, 2, . . . , (p −
j)(M−2)+2. Notice that equations (9.147) and (9.149) are so similar to their quantum-mechanical
counterparts in Section 3.3.1 that one easily writes a set of Maple procedures for the classical models
by slight modification of the quantum-mechanical ones already given in the program section.

Aided by Maple we calculate as many analytical perturbation corrections as desired. Table 9.4
shows results for the cubic (M = 3) and quartic (M = 4) perturbations as illustrative examples.
Writing the Hamiltonian of the anharmonic oscillators in dimensionless form the reader may easily
verify that the actual perturbation parameter is β = λm−M/2ω−(M+2)/2, and that the energy coeffi-
cients satisfy Ej(m,ω) = ωEj (1, 1)m−Mj/2ω−(M+2)j/2. Notice that if M is odd, then E2j+1 = 0
andQN,i = 0 ifN+ i is odd as already discussed in preceding chapters for the quantum-mechanical
counterpart.

The HHFM and the operator method discussed earlier give exactly the same canonical perturbation
series for the energy becauseE0 = H0. However, the HHFM is much faster and is therefore preferable
when one is interested in the calculation of perturbation corrections to the energy of sufficiently large
order. The main disadvantage of the HHFM is that it only applies to separable models and that it
does not give the new coordinate and momentum explicitly.

9.8.2 Radius of Convergence of the Canonical Perturbation Series

The singularity of E(J, λ) closest to the origin in the complex λ plane determines the radius of
convergence of the canonical perturbation series. Apparently it is possible to locate this singularity

                          



218 PERTURBATION THEORY IN CLASSICAL MECHANICS

Table 9.4 Canonical Perturbation Theory for the Anharmonic

Oscillators H = p2

2m
+ mω

2 q2

2
+ λ qM by Means of the

Hypervirial Hellmann–Feynman Method (Continued)
M = 3

E0 = ω J
E1 = 0

E2 = − 15
4

E0
2

m3 ω6

E3 = 0

E4 = − 705
16

E0
3

m6 ω12

E5 = 0

E6 = − 115755
128

E0
4

m9 ω18

Q1, 0 = 0

Q1, 1 = −3 E0
m2 ω4

Q1, 2 = 0

Q1, 3 = −45 E0
2

m5 ω10

Q1, 4 = 0

Q1, 5 = − 19035
16

E0
3

m8 ω16

Q2, 0 = E0
mω2

Q2, 1 = 0

Q2, 2 = 15 E0
2

m4 ω8

Q2, 3 = 0

Q2, 4 = 6345
16

E0
3

m7 ω14

Q2, 5 = 0

if one simply assumes that the series converges as long as the potential-energy function supports the
action J [200]. For simplicity we illustrate this argument by means of the simple oscillators with
polynomial potentials V (q) = mω2q2/2+ λqM , M = 2, 3, 4, . . . .

The exact expression of the energy of the harmonic oscillator M = 2

E(J, λ) = ωJ
√

1+ 2λ

mω2
(9.150)

exhibits a singular point at λs = −mω2/2, and we realize that there is no bounded motion when
λ < λs ; therefore the argument applies to this trivial example.

In the case of an even anharmonic perturbation M = 4, 6, . . . , the action J is supported for all
λ > 0 because the potential is an infinite well. If, on the other hand, λ is negative, then the potential-
energy function exhibits two symmetrical maxima V (qm) at q = ±qm and there will be no periodic
motion for E > V (qm) (see Figure 9.1 b for an example). Therefore, there is a critical negative
value λ = λc for which E(J, λc) = V (qm) as depicted in Figure 9.1 b.

We can obtain an exact expression of λc for the quartic case that we conveniently rewrite as
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Table 9.4 (Cont.) Canonical Perturbation Theory for the

Anharmonic Oscillators H = p2

2m
+ mω

2 q2

2
+ λ qM by Means of

the Hypervirial Hellmann–Feynman Method

M = 4

E1 = 3
2

E0
2

m2 ω4

E2 = − 17
4

E0
3

m4 ω8

E3 = 375
16

E0
4

m6 ω12

E4 = − 10689
64

E0
5

m8 ω16

E5 = 87549
64

E0
6

m10 ω20

E6 = − 3132399
256

E0
7

m12 ω24

Q2, 0 = E0
mω2

Q2, 1 = −3 E0
2

m3 ω6

Q2, 2 = 85
4

E0
3

m5 ω10

Q2, 3 = − 375
2

E0
4

m7 ω14

Q2, 4 = 117579
64

E0
5

m9 ω18

Q2, 5 = − 612843
32

E0
6

m11 ω22

Q6, 0 = 5E0
3

2m3 ω6

Q6, 1 = − 165
8

E0
4

m5 ω10

Q6, 2 = 3129
16

E0
5

m7 ω14

Q6, 3 = − 31983
16

E0
6

m9 ω18

Q6, 4 = 2742687
128

E0
7

m11 ω22

V (q) = mω2q2/2− |λ|q4. We have

qm = ω
2

√
m

|λ| . (9.151)

From the critical-point condition

E = V (qm) = |λc| q4
m (9.152)

we obtain

E − V (q) = |λc|
(
q2 − q2

m

)2
(9.153)
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and

J =
√

2m|λc|
π

∫ qm

−qm

(
q2
m − q2

)
dq =

√
2m2ω3

6π |λc| (9.154)

that suggests the radius of convergence

|λc| =
√

2m2ω3

6πJ
. (9.155)

The potential for an odd anharmonic perturbation M = 3, 5, . . . , exhibits a barrier at qm > 0 if
λ < 0 or at qm < 0 if λ > 0. Therefore, for a given value of the action J there is a critical value λc of
λ such that E equals the top of the barrier V (qm) indicated in Figure 9.1 a. The simplest illustrative
example is V (q) = mω2q2/2− |λ|q3 because we can obtain λc exactly. In this case

qm = mω
2

3|λ| , V (qm) =
|λ|q3

m

2
, (9.156)

and the critical condition E = V (qm) leads to

E − V (q) = |λc| (q − qm)2
(
q + qm

2

)
, (9.157)

and

J =
√

2m|λc|
π

∫ qm

− qm2
(qm − q)

√
q + qm

2
dq = m3ω5

15π |λc|2 , (9.158)

which suggests the radius of convergence

|λc| =
√
m3ω5

15πJ
. (9.159)

Strictly speaking, the argument given above tells us that the perturbation series diverges when
|λ| > |λc|, but in principle there could be a singular point λs closer to the origin that would make
the convergence radius of the perturbation series to be smaller than |λc|. Only for the harmonic
oscillator we are certain that λc = λs as follows from equation (9.150). In order to verify if there
were singular points satisfying |λs | < |λc| for the anharmonic oscillators (9.140) we resorted to the
numerical method developed in Section 6.2.1 and obtained both λs and the exponent a. From the
energy coefficients through order P = 200 for dimensionless anharmonic oscillators (m = ω = 1)
with M = 3, 4, 5, and 6 we constructed the sequences for the location and exponent of the singular
point assuming an algebraic singularity as in the harmonic case. Although the sequences did not
appear to converge, they yielded results close to the ones predicted by the argument above.

In any case the radius of convergence of the classical perturbation series is nonzero in contrast with
the quantum-mechanical counterpart. This fact has been taken into account in recent discussions
and applications of methods for improving the convergence properties of the quantum-mechanical
perturbation series [121].

9.8.3 Nonpolynomial Potential-Energy Function

If the potential V (x) is not a polynomial function of the coordinate x we apply perturbation theory
by means of a polynomial approximation similar to that discussed above in Section 9.3. We suppose
that V (x) has a minimum at x = xe and choose the energy origin such that V (xe) = 0. We therefore
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have V ′(xe) = 0 and V ′′(xe) = k > 0, where k is the force constant that we write in terms of the
mass m and frequency ω = √k/m. Expanding V (x) about its minimum we have

H = p2

2m
+ mω

2q2

2
+
∞∑
j=1

Vj+2λ
jqj+2 , (9.160)

where q = x − xe, p = mẋ = mq̇, Vj = (1/j !)(djV/dxj )x=xe , and λ is a dummy perturbation
parameter that we set equal to unity at the end of the calculation.

We easily apply the HHFM to the perturbed harmonic oscillator in equation (9.160), and expand
both the energy and time averages QN = qN in the λ-power series. Proceeding exactly as in the
case of the polynomial interactions discussed above we obtain the following recurrence relation for
the perturbation corrections to the time averages:

QN,i = 1

mω2N


2(N − 1)

i∑
j=0

EjQN−2,i−j −
i∑
j=1

(2N + j)Vj+2QN+j,i−j


 . (9.161)

In addition to it, the Hellmann–Feynman theorem gives us an expression for the perturbation
corrections to the energy:

Ei = 1

i

i∑
j=1

jVj+2Qj+2,i−j . (9.162)

From these two expressions and the initial conditionQ0,j = δ0j , we obtain the perturbation correc-
tions Ei+1, QN,i for all i = 0, 1, . . . , p − 1, N = 1, 2, . . . , p − i + 2. One easily writes a Maple
program for this problem by slight modification of the one in the program section for the method of
Swenson and Danforth.

As an interesting illustrative example, we choose the Morse oscillator given by the anharmonic
potential

V (x) = D
[

1− exp

(
−x − xe

γ

)]2

, (9.163)

whereD is the depth of the potential well, xe is the equilibrium coordinate, and γ is a length parameter
that determines the range of the interaction. Substituting the Taylor coefficients

Vj = D
[
δj0 + (−1)j

j !γ j (2
j − 2)

]
(9.164)

into equations (9.161) and (9.162) we obtain the perturbation corrections shown in Table 9.5. Notice
that exactly as in its quantum-mechanical counterpart discussed in Section 7.2.1, the perturbation
series for the energy reduces to just two terms:

E = E0 − E2
0

4D
= Jω − J

2ω2

4D
, (9.165)

where ω = √2D/(mγ 2). Solving for J we obtain

J (E) = 2D

ω

(
1+

√
1− E

D

)
=
√

2mDγ 2

(
1+

√
1− E

D

)
. (9.166)
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Table 9.5 Hypervirial Hellmann–Feynman Method for the
Classical Morse Oscillator

E0 = ω J
E1 = 0

E2 = − 1
4
E0

2

D

E3 = 0

E4 = 0

E5 = 0

E6 = 0

Q1, 1 = 3LE0
4D

Q1, 2 = 0

Q1, 3 = 7
32

E0
2 L

D2

Q1, 4 = 0

Q1, 5 = 5
64

E0
3 L

D3

Q1, 6 = 0

Q1, 7 = 31
1024

E0
4 L

D4

Q1, 8 = 0

Q1, 9 = 63
5120

E0
5 L

D5

Q2, 1 = 0

Q2, 2 = 23
32

E0
2 L2

D2

Q2, 3 = 0

Q2, 4 = 109
288

E0
3 L2

D3

Q2, 5 = 0

Q2, 6 = 1117
6144

E0
4 L2

D4

Q2, 7 = 0

Q2, 8 = 1639
19200

E0
5 L2

D5

Q2, 9 = 0
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The other root of equation (9.165) leads to an unphysical negative frequency, whereas from equa-
tion (9.166) we obtain the well-known result [196]:

9(E) = ∂H
∂J
= ∂E
∂J
= ω

√
1− E

D
=
√

2mDγ 2

√
1− E

D
. (9.167)

Surprisingly, perturbation theory provides a simple way of obtaining the exact action and frequency
for the Morse oscillator. Exactly as discussed in Section 7.2.1 for the quantum-mechanical case,
the energy series has a finite number of terms in contrast with the perturbation expansions for the
averages QN which do not terminate.

Table 9.5 shows that E2j+1 = 0 and QN,i = 0 if N + i is odd, which follows from the fact that
λ appears in the Hamiltonian only in terms of the form λjqj+2, exactly as in the application of the
polynomial approximation in quantum mechanics discussed in Section 7.2.1.

9.9 Central Forces

As an example of application of the HHFM to classical separable models, in what follows we
consider a system of two particles that interact by means of central forces. The potential V (r)
depends on the distance r between the particles, and the Lagrangian in spherical coordinates for the
relative motion reads

L = m
2

[
ṙ + r2θ̇2 + r2φ̇2 sin(θ)2

]
− V (r) , (9.168)

where m is the reduced mass. The Hamiltonian function is given by

H = 1

2m

[
p2
r +

p2
θ

r2
+ p2

φ

r2 sin(θ)2

]
+ V (r) (9.169)

in terms of the momenta

pr = mṙ, pθ = mr2θ̇ , pφ = mr2φ̇ sin(θ)2 . (9.170)

It follows from the equations of motion that pφ and p2
θ + p2

φ/ sin(θ)2 are independent of time.
It is well known that in the case of central forces the angular momentum L = r×p is a constant of

the motion, and one easily verifies that L2 = r2p2 − (r · p)2, where L = |L|, r = |r|, and p = |p|.
Taking into account that r · p = rpr we conclude that

H = 1

2m

(
p2
r +

L2

r2

)
+ V (r) . (9.171)

Comparing equations (9.169) and (9.171) we realize that L2 = p2
θ + p2

φ/ sin(θ)2.
The equation of motion for the variable r is

ṗr = L2

mr3
− V ′(r) . (9.172)

Taking into account equations (9.171) and (9.172) we easily obtain

d

dt
rNpr = 2NErN−1 − (N − 1)L2

m
rN−3 − 2NV rN−1 − rNV ′ , (9.173)

where E = H is the energy, which is also a constant of the motion. It is clear that we can apply
the HHFM exactly as in the one-dimensional case if we simply substitute the effective potential
L2/(2mr2)+ V (r) for V in the equations above.
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9.9.1 Perturbed Kepler Problem

For concreteness we concentrate on the potential

V (r) = −A
r
+ λrK , (9.174)

which we view as a perturbed Kepler problem when A > 0.
Substituting equation (9.174) into equation (9.173), and arguing as in the one-dimensional case

discussed earlier, we easily derive the hypervirial relation

2NERN−1 − (N − 1)L2

m
RN−3 + (2N − 1)ARN−2 − (2N +K)λRN+K−1 = 0 , (9.175)

where RN = rN . As before, we expand the energy and time averages in the λ-power series

RN =
∞∑
j=0

RN,jλ
j , E =

∞∑
j=0

Ejλ
j , (9.176)

the Hellmann–Feynman theorem ∂E/∂λ = RK leads to

Es = 1

s
RK,s−1, s = 1, 2, . . . , (9.177)

and the initial condition R0,s = δ0s follows from R0 = 1.
When K > 0 we substitute N + 1 for N in equation (9.175), and expand it in a λ-power series

obtaining the following recurrence relation for the perturbation corrections

RN,s = 1

2(N + 1)E0

[
NL2

m
RN−2,s − (2N + 1)ARN−1,s

−2(N + 1)
s∑
j=1

EjRN,s−j + (2N +K + 2)RN+K,s−1

]
(9.178)

valid for N �= −1. We obtain R−1,s from the expansion of equation (9.175) with N = 1:

R−1,s = − 2

A
Es + (K + 2)RK,s−1 . (9.179)

In order to calculateEp we have to obtain RN,s for s = 0, 1, . . . , p−1, N = 1, 2, . . . , (p− s)K by
means of equation (9.178), andR−1,s from equation (9.179), taking into account the initial condition.

When K < −2 we substitute N + 3 for N in equation (9.175) and expand it in a λ-power series
to obtain

RN,s = m

(N + 2)L2

[
(2N + 5)ARN+1,s + 2(N + 3)

s∑
j=0

EjRN+2,s−j

−(2N +K + 6)RN+K+2,s−1

]
(9.180)

valid when N �= −2. In order to obtain R−2,s we make use of the Hellmann–Feynman theorem as
∂E/∂L = LR−2/m, which leads to

R−2,s = m
L

∂Es

∂L
. (9.181)
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The calculation ofEp requiresRN,s for all s = 0, 1, . . . , p−1,N = −3,−4, . . . , (p−s)(K+2)−2
that follow from equation (9.180), and R−2,s from equation (9.181).

In order to round off the discussion above we only need an expression of the unperturbed energy
E0 in terms of the actions

Jr = 1

2π

∮
pr dr, Jθ = 1

2π

∮
pθ dθ, Jφ = 1

2π

∮
pφ dφ = pφ . (9.182)

It is well known that

E0 = −mA
2

2J 2
, (9.183)

where J = Jr + Jθ + Jφ = L+ Jr [200, 201].
The calculation for positive and negative values of K is straightforward even by hand; however,

if one needs results of high perturbation order it is advisable to resort to computer algebra. It is
not difficult to write a set of simple Maple procedures for the application of the HHFM following
the lines indicated in Section 3.3.2 for the quantum-mechanical counterpart. In Table 9.6 we show
results for K = 1 and K = −3 which were obtained earlier by the same method [200].

The HHFM is most probably the simplest and most efficient method for the calculation of canonical
perturbation series for separable classical systems [200], and is a straightforward transcription of the
quantum-mechanical method of Swenson and Danforth discussed in Section 3.3.
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Table 9.6 Hypervirial and Hellmann–Feynman Method for

Classical Models with Central Forces: H = p2

2m
− A
r
+ λ rK

(Continued).

K = 1

E0 = −mA2

2 J 2

E1 = −L2+3 J 2

2Am

E2 = 1
8

3L4 J 2−7 J 6

m3 A4

E3 = 1
16
−10L6 J 4−7L4 J 6+33 J 10

m5 A7

E4 = 1
64

84L8 J 6+90L6 J 8+99L4 J 10−465 J 14

m7 A10

E5 = 1
64
−198L10 J 8−264L8 J 10−364L6 J 12−465L4 J 14+1995 J 18

m9 A13

R1, 0 = 1
2
−L2+3 J 2

Am

R1, 1 = 1
4

3L4 J 2−7 J 6

m3 A4

R1, 2 = 1
16
−30L6 J 4−21L4 J 6+99 J 10

m5 A7

R1, 3 = 1
16

84L8 J 6+90L6 J 8+99L4 J 10−465 J 14

m7 A10

R1, 4 = 1
64
−990L10 J 8−1320L8 J 10−1820L6 J 12−2325L4 J 14+9975 J 18

m9 A13

R−1, 0 = Am

J 2

R−1, 1 = 1
2
−L2+3 J 2

A2 m

R−1, 2 = 1
2

3L4 J 2−7 J 6

A5 m3

R−1, 3 = 1
16
−70L6 J 4−49L4 J 6+231 J 10

A8 m5

R−1, 4 = 1
32

420L8 J 6+450L6 J 8+495L4 J 10−2325 J 14

A11 m7
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Table 9.6 (Cont.) Hypervirial and Hellmann–Feynman Method for Classical Models with

Central Forces: H = p2

2m
− A
r
+ λ rK

K = −3

E1 = m3 A3

L3 J 3

E2 = 1
4

3A4 m5 L2−6A4 m5 LJ−15A4 m5 J 2

L7 J 5

E3 = 1
4
−15A5 m7 L3−27A5 m7 L2 J+45A5 m7 LJ 2+105A5 m7 J 3

L11 J 6

E4 = 1
64

(−126A6m9 L5 + 405A6m9 L4 J + 3540A6m9 L3 J 2 + 5490A6m9 L2 J 3

−6390A6m9 LJ 4 − 15015A6m9 J 5
)
/
(
L15 J 8

)
E5 = 1

64

(
1008A7m11 L6 + 3465A7m11 L5 J − 4599A7m11 L4 J 2 − 49050A7m11 L3 J 3

−74610A7m11 L2 J 4 + 63945A7m11 LJ 5 + 153153A7m11 J 6
)
/
(
L19 J 9

)

R1, 0 = 1
2
−L2+3 J 2

Am

R1, 1 = 1
4

3L4 J 2−7 J 6

m3 A4

R1, 2 = 1
16
−30L6 J 4−21L4 J 6+99 J 10

m5 A7

R1, 3 = 1
16

84L8 J 6+90L6 J 8+99L4 J 10−465 J 14

m7 A10

R1, 4 = 1
64
−990L10 J 8−1320L8 J 10−1820L6 J 12−2325L4 J 14+9975 J 18

m9 A13

R−1, 0 = Am

J 2

R−1, 1 = −3 A2 m3

L3 J 3

R−1, 2 = −3m5 A3 L2+6m5 A3 LJ+15m5 A3 J 2

L7 J 5

R−1, 3 = 1
4

75m7 A4 L3+135m7 A4 L2 J−225m7 A4 LJ 2−525m7 A4 J 3

L11 J 6

R−1, 4 = 1
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(
378m9A5 L5 − 1215m9A5 L4 J − 10620m9A5 L3 J 2 − 16470m9A5 L2 J 3

+19170m9A5 LJ 4 + 45045m9A5 J 5
)

/
(
L15 J 8

)
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Since we are not experts but simply naive Maple users, our programs may not be efficient or elegant.
However, the reader may profit from the fact that our procedures are just straightforward translations
of the equations developed in the different chapters of this book into simple Maple code. The
procedures given below are not foolproof, but if they are executed as indicated, they certainly
produce the results displayed in the tables and figures of this book.

Programs for Chapter 1

1) Calculation of perturbation corrections to the energies and stationary states of the anharmonic
oscillator (1.54) with M = 4.
Kronecker delta function δij :

delta:=proc(i,j) if i = j then 1 else 0 fi end:
Calculation of the matrix elements Q(m, j, n) = 〈m|qj |n〉 in the harmonic oscillator basis set
according to equation (1.55):

Q:=proc (m,j,n) option remember;
if n=0 then delta(m,n) else
expand(sqrt(n/2)*Q(m,j−1,n−1) +sqrt((n+1)/2)*Q(m,j−1,n+1))
fi;
end:

Matrix elements of the dimensionless perturbation in the harmonic oscillator basis set H1(m, n) =
〈m|Ĥ′|n〉:

H1:=proc(m,n) option remember;
Q(m,4,n);
end:

Cutoff function used to force Cn+j,n,s = 0 if |j | > 4s:
cut:=proc(j,p)
if abs(j)<=4*p then 1 else 0 fi;

end:
Calculation of the perturbation corrections En,p and Cmn,p according to equations (1.10), (1.12),
and (1.13). For convenience we write c[j, n, s] = Cn+j,n,s

PT:=proc(n,P)
local i,j,k,p,s; global e,c;
e[n,0]:=n+1/2;
for j from −4*P to 4*P do c[j,n,0]:=delta(j,0) od;

229
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for p from 1 to P do
e[n,p]:=expand(sum( ’H1(n,n+k)
*c[k,n,p−1]*cut(k,p−1) ’, ’k ’=−4..4)
−sum( ’e[n,s]*c[0,n,p−s] ’, ’s ’=1..p−1));
for j from −4*p to 4*p do
if j=0 then
c[0,n,p]:=−1/2*sum( ’c[i,n,s] *c[i,n,p−s]*cut(i,s)*cut(i,p−s) ’,
’i ’=−4*p+4..4*p−4) ’, ’s ’=1..p−1);
else
c[j,n,p]:=1/j*(sum( ’e[n,s]*c[j,n,p−s]*cut(j,p−s) ’, ’s ’=1..p)
−sum( ’H1(n+j,n+k)*c[k,n,p−1]*cut(k,p−1) ’, ’k ’=j−4..j+4))
fi;
od;
od;
end:

Perturbation corrections to the matrix elements 〈�m|q̂k|�n〉 calculated according to equation (1.17).
Qpert:=proc(m,k,n,P)
local s,p,j:
PT(m,P):
PT(n,P):
for p from 0 to P do
simplify(sum(’sum(’sum( ’c[i,m,s] *c[j,n,p−s]*cut(i,s)*cut(j,p−s)
*Q(m+i,k,n+j) ’, ’i ’=−4*s..4*s) ’
’j ’=−4*(p−s)..4*(p−s)) ’, ’s ’=0..p)):
od:
end:

To calculate the perturbation corrections En,s for s = 0, 1, . . . , P simply execute PT (n, P ), where
P must be a positive integer, and n may be either a positive integer indicating a particular state (n =
0, 1, . . . ) or just a generic variable name. The perturbation correction of order P for 〈�n|q̂k|�n+j 〉
is given by Qpert(n,k,j,P) where k, j , and P must be integers and n may by either an integer or a
generic variable name.

Programs for Chapter 2

2) Method of Dalgarno and Stewart for the ground state of hydrogen in a uniform magnetic field.
Construction of the factor functions Fj (r, u) according to equation (2.23)

funF:=proc(j)
local i,k:global F,c,r,u:
if j<0 then F[j]:=0 elif j=0 then F[j]:=1 else
F[j]:=sum( ’sum( ’c[j,i,k]*r ˆi ’, ’i ’=0..3*j)*u ˆ(2*k) ’, ’k ’=0..j):
fi:
end:

Substitution of the factor functions into equation (2.22) and calculation of their coefficients
eqj:=proc(j)
local i,i1,i2,ind,sol: global c,e,F,u,r,equ:
equ:=simplify(−(1/2)*diff(funF(j),r$2)−(1/r)*diff(funF(j),r)
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+((u ˆ2−1)/(2*r ˆ2))*diff(funF(j),u$2)
+(u/rˆ2)*diff(funF(j),u)+diff(funF(j),r)
+rˆ2*(1−uˆ2)*funF(j−1)−sum(’e[i]*funF(j−i) ’, ’i ’=1..j)):
equ:=collect(equ,[u,r]):
for i1 from 2*j by −2 to 0 do
for i2 from −2 to 3*j do
ind:=indets(coeff(coeff(equ,u,i1),r,i2)):
if ind <>{} then
sol:=solve({coeff(coeff(equ,u,i1),r,i2)},ind[1]):
assign(sol):
equ:=collect(equ,[u,r]):
fi:
od:
od:
e[j]:=e[j]:
end:
norma:=proc(j)
local i,k,ind,nor,sol: global psi,F,c,r,u:
psi[0]:=sqrt(2)*exp(−r):
for k from 1 to j do
psi[k]:=F[k]*exp(−r):
nor:=int(int(sum(’psi[i]*psi[k−i] ’, ’i ’=0..k)*r ˆ2 ,r=0..infinity),u=−1..1):
ind:=indets(nor):
if ind <>{} then
sol:=solve({nor},ind):
assign(sol):
fi:
F[j]:=collect(simplify(F[j]),[u,r]):
od:
end:

The procedure below calls the other ones to calculate the perturbation corrections to the energy and
eigenfunction through order k. To this end simply execute PT(k), where k is a positive integer.
However, if one only needs perturbation corrections to the energy it is sufficient to call eqj(1), eqj(2),
. . . , eqj(k).

PT:=proc(k)
local j:
for j from 1 to k do
eqj(j):
norma(j):
od:
end:

3) Method of Fernández and Castro for the dimensionless anharmonic oscillator Ĥ = (-d2/dq2 +
q2)/2+ λq4

Construction of the functions Ak and Bk according to equation (2.58)
funciones:=proc(k)
local j,i: global A,B,a,b,alpha,beta,q:
alpha[0]:=0: beta[0]:=0:
alpha[1]:=1: beta[1]:=1:
for j from 2 to k do
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alpha[j]:=beta[j−1]+3:
beta[j]:=alpha[j−1]+1:
od:
if k=0 then
A[k]:=1:B[k]:=0 else
A[k]:=sum( ’a[k,i]*q ˆ(2*i) ’, ’i ’=1..alpha[k]):
B[k]:=sum( ’b[k,i]*q ˆ(2*i+1) ’, ’i ’=0..beta[k]):
fi:

Construction of the perturbation equations of order k = 1, 2, . . . followed by calculation of the
coefficients aki and bki starting with the coefficient of the largest coordinate power down to zero.

eqk:=proc(k)
local j,i,n1,n2,n,ind,ind1,sol:
global A,B,a,b,equ1,equ2,e,q:
for j from 0 to k do
funciones(j) :
od:
equ1:=diff(A[k],q$2)+2*(q ˆ2−2*e[0])*diff(B[k],q)+2*q*B[k]
+2*(e[1]−q ˆ4)*A[k−1]+2*sum( ’e[j]*A[k−j] ’, ’j ’=2..k):
equ1:=collect(simplify(equ1),q):
n1:=degree(equ1,q):
equ2:=diff(B[k],q$2)+2*diff(A[k],q)+2*(e[1]−q ˆ4)*B[k−1]
+2*sum( ’e[j]*B[k−j] ’, ’j ’=2..k):
equ2:=collect(simplify(equ2),q):
n2:=degree(equ2,q):
while equ1 <> 0 or equ2<>0 do
if n1>=n2 then
ind:=indets(coeff(equ1,q,n1)) minus {e[0]}:
if ind <>{} then
sol:=solve({coeff(equ1,q,n1)},ind1):
assign(sol):
equ1:=collect(simplify(equ1),q):
n1:=degree(equ1,q):
fi:
else
ind:=indets(coeff(equ2,q,n2)) minus{e[0]}:
if ind <>{} then
sol:=solve({coeff(equ2,q,n2)},ind1):
assign(sol):
equ2:=collect(simplify(equ2),q):
n2:=degree(equ2,q):
fi:
fi:
od:
A[k]:=collect(simplify(A[k]),q):
B[k]:=collect(simplify(B[k]),q):
end:
In order to obtain perturbation corrections through order P simply execute eqk(1), eqk(2), . . . ,

eqk(P).
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Programs for Chapter 3

4) Method of Swenson and Danforth for the dimensionless anharmonic oscillator Ĥ = (-d2/dx2 +
x2)/2+ λx2K .

delta:=proc(i,j) if i = j then 1 else 0 fi end:
Modified Heaviside function

trunca:=proc(x) if x < 0 then 0 else 1 fi end:
Global variable K for the power of the perturbation; for example,

K:=2:
for the quartic perturbation.
Calculation of perturbation corrections through order P according to equations (3.24), (3.23),
and (3.26). Simply execute PT(P):

PT:=proc(P)
local i,j,m: global X,e,K:
for i from 0 to P−1 do
X[0,i]:=delta(0,i):
for j from 1 to (P−i)*(K−1)+1 do

X[j,i]:=simplify(1/(2*j)*((j−1)/2*(4*(j−1) ˆ2−1)*X[j−2,i]
+2*(2*j−1)*sum( ’e[m]*X[j−1,i−m] ’, ’m ’=0..i)
−trunca(i−1)*2*(2*j+K−1)*X[j+K−1,i−1])):
od:
e[i+1]:=1/(i+1)*X[K,i]:
od:
end:

5) Moment method for the lowest energies of two-dimensional anharmonic oscillators Ĥ = −∇2/2+
(x2 + y2)/2+ λ(ax4 + by4 + 2cx2y2).

trunca:=proc(i) if i<0 then 0 else 1: fi: end:
delta:=proc(i,j) if i=j then 1 else 0: fi: end:

Calculation of perturbation corrections to the energy and moments of the ground state according to
equation (3.133), (3.131), and (3.137):

PT0:=proc(p)
local i,j,m,k: global F,e,a,b,c:
for m from 0 to p−1 do
for i from 0 by 2 to 4*(p−m) do
for j from 0 by 2 to 4*(p−m) do
if i=0 and j=0 then F[i,j,m]:=delta(m,0) else
F[i,j,m]:=simplify(1/(i+j)*(i*(i−1)/2*F[i−2,j,m]+j*(j−1)/2*F[i,j−2,m]
+trunca(m−1)*sum( ’e[k]*F[i,j,m−k] ’, ’k ’=1..m)
trunca(m−1)*(a*F[i+4,j,m−1]+b*F[i,j+4,m−1]+2*c*F[i+2,j+2,m−1]))):
fi:
od:
od:
e[m+1]:=simplify(a*F[4,0,m]+b*F[0,4,m]+2*c*F[2,2,m]):
od:
end:

We do not show the procedures for the two excited states with N = 1 and for the state N = 2 (o, o)

because they are similar to the one just given. On the other hand, the procedure for the coupling
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degenerate states N = 2 (e, e) is noticeably different from the one above, and for that reason it is
already shown below:

PT2ee:=proc(p)
local i,j,m,k,sol: global F,e,a,b,c,R:
for m from 0 to p−1 do
for i from 0 by 2 to 4*(p−m)+2 do
for j from 0 by 2 to 4*(p−m)+2 do
if i=0 and j=0 then
F[0,0,m]:=1/2*trunca(m−1)*(a*F[4,0,m−1]+b*F[0,4,m−1]
+2*c*F[2,2,m−1]−sum( ’e[k]*F[0,0,m−k] ’, ’k ’=1..m)):
F[0,0,m]:=simplifica(F[0,0,m])
elif i=0 and j=2 then
F[0,2,m]:=delta(m,0)/2+1/2*F[0,0,m]:
elif i=2 and j=0 and m=0 then
F[2,0,0]:=1/(4*c)*(9*(a−b)+R):
elif i+j>2 then
F[i,j,m]:=1/(i+j−2)*(i*(i−1)/2*F[i−2,j,m]+j*(j−1)/2*F[i,j−2,m]
+trunca(m−1)*sum( ’e[k]*F[i,j,m−k] ’, ’k ’=1..m)
−trunca(m−1)*(a*F[i+4,j,m−1]+b*F[i,j+4,m−1]+2*c*F[i+2,j+2,m−1])):
fi:
F[i,j,m]:=simplifica(F[i,j,m]):
od:
od:
if m>0 then
sol:=sum( ’(F[0,0,m−k] −2*F[2,0,m−k])*(a*F[4,0,k]+b*F[0,4,k]
+2*c*F[2,2,k]−2*a*F[4,2,k]−2*b*F[0,6,k]
−4*c*F[2,4,k]) ’, ’k ’=0..m)+a*F[4,0,m]+b*F[0,4,m]
+2*c*F[2,2,m]−2*a*F[6,0,m]−2*b*F[2,4,m]−4*c*F[4,2,m]:
sol:=simplify(sol):
F[2,0,m]:=solve(sol,F[2,0,m]):
F[2,0,m]:=simplifica(F[2,0,m]):
fi:
e[m+1]:=2*a*F[4,2,m]+2*b*F[0,6,m]
+4*c*F[2,4,m]−a*F[4,0,m]−b*F[0,4,m]−2*c*F[2,2,m]:
e[m+1]:=simplifica(e[m+1]):
od:
end:

One easily identifies equations (3.151), (3.152), (3.154), (3.131), a coefficient of the Taylor expansion
of equation (3.150), and equation (3.155). Here R stands for the root in equation (3.154).
The procedure below substitutes 81 ∗ (b − a)2 + 4 ∗ c2 for R2 in order to simplify the equations,
but it does not substitute the value of R and its negative powers because that would make the results
more complicated.

simplifica:=proc(f)
local grado,f1,numera,denomi,j,dd2:
dd2:=81*(b−a) ˆ2+4*c ˆ2:
f1:=simplify(f):
numera:=numer(f1):denomi:=denom(f1):
grado:=degree(numera):
for j from grado by −1 to 2 do
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if type(j,even) then
numera:=simplify(subs(R ˆj=dd2 ˆ(j/2),numera)):
else
numera:=simplify(subs(R ˆj=dd2 ˆ((j−1)/2)*R,numera)):
fi:
od:
end:

Programs for Chapter 4

6) Method of Swenson and Danforth for the Stark effect in hydrogen in paraboloidal coordinates.
delta:=proc(i,j) if i=j then 1 else 0 fi end:
trunca:=proc(x) if x<0 then 0 else 1 fi end:

Calculation of the perturbation coefficients Ei in terms of the perturbation coefficients Aj according
to equations (4.17)–(4.20). Here s and e stand for σ and E, respectively.

PT:=proc(p)
local i,j,l,U: global s,e,A,m:
for i from 0 to p−1 do
U[0,i]:=delta(0,i):
U[−1,i]:=1/A[0]*(−e[i]+trunca(i−1)*3*s/4*U[1,i−1]−sum( ’A[l]*U[−1,i−l] ’, ’l ’=1..i)):
for j from 1 to p−i do
U[j,i]:=simplify(2/((j+1)*e[0])*(j*(m ˆ2−j ˆ2)/4*U[j−2,i]
−(j+1/2)*sum( ’A[l]*U[j−1,i−l] ’, ’l ’=0..i)
−trunca(i−1)*(j+1)/2*sum(’e[l]*U[j,i−l] ’, ’l ’=1..i)

+trunca(i−1)*s*(j+3/2)/4*U[j+1,i−1])):
od:
e[i+1]:=1/(i+1)*(s*U[1,i]/2−2*sum( ’l*A[l]*U[−1,i+1−l] ’, ’l ’=1..i+1)):
od:
end:

Construction of the sets of coefficients EI
j and EII

j according to the substitutions (4.21) and (4.22),

calculation of Aj from EI
j −EII

j = 0, and substitution of the results into EI
j . Simply execute PT(p)

followed by extract(p).
extract:=proc(p)
local i,j,j1,E1,E2,k1,k2:
global A,e,n,q,s:
for j from 1 to p do
E1[j]:=subs(e[0]=−A[0] ˆ2/(2*k1 ˆ2),s=1,e[j]):
E2[j]:=subs({e[0]=−(1−A[0]) ˆ2/(2*k2ˆ2),A[0]=1−A[0],s=−1
,seq(A[j1]=−A[j1],j1=1..j)},e[j]):
od:
A[0]:=k1/(k1+k2):
k1:=(n+q)/2:
k2:=(n−q)/2:
A[0]:=simplify(A[0]):
for j from 1 to p do
A[j]:=−subs(A[j]=0,E1[j]−E2[j])/diff(E1[j]−E2[j],A[j]):

                          



236 MAPLE PROGRAMS

A[j]:=simplify(A[j]):
e[j]:=E1[j]:
e[j]:=simplify(e[j]):
od:
end:

7) Moment method for the Zeeman effect in hydrogen: case j = 0, | m |= n− 3.
trunca:=proc(i) if i<0 then 0 else 1 fi: end:
delta:=proc(i,j) if i=j then 1 else 0 fi: end:

Calculation of energy and moment coefficients in terms of the unknown G0,1,0 = g according to
equations (4.63), (4.64), (4.51), (4.66), and (4.65). In particular, notice that secq is equation (4.66)
and sec0 stands for the secular equation.

PT3:=proc(p)
local s,t,q,j,m,l,i,k,secq: global G,e,n,sec0,g:
j:=0:m:=n−3:
G[0,1,0]:=g:
for q from 0 to p−1 do
G[0,0,q]:=simplify(1/(2*n−3)*(trunca(q−1)*G[1,4,q−1]
−trunca(q−1)*sum( ’e[l]*G[0,2,q−l] ’, ’l ’=1..q))):
for s from 0 to p−q+1 do
i:=n−3+2*s:
for t from 2 to 3*(p−q)+1 do
i:=n−3+2*s:
if s=1 and t=2 then
G[s,t,q]:=simplify((2*n−4)/(2*n−3)*G[0,2,q]−delta(q,0)):
else
G[s,t,q]:=simplify(n/(k−n+1)*((k*(k+1)
−(i+j)*(i+j+1))/2*G[s,t−1,q]
+(i ˆ2−m ˆ2)/2*G[s−1,t−1,q]+trunca(q−1)*sum( ’e[l]*G[s,t+1,q−l] ’, ’l ’=1..q)
−trunca(q−1)*G[s+1,t+3,q−1])):fi:
od:
od:
secq:=simplify(1/(2*n−3)*sum( ’(G[0,2,l]/(n*(2*n−3))
+n*(n−2)/2*G[0,0,l]−G[0,1,l])*((2*n−4)*G[1,4,q−l]
−(2*n−3)*G[2,4,q−l]) ’, ’l ’=0..q)−n*(n−2)/2*G[1,2,q]−G[1,4,q]/(n*(2*n−3))+G[1,3,q]):
if q=0 then
sec0:=secq:
else
assign(solve({secq},G[0,1,q])):fi:
e[q+1]:=simplify((2*n−4)/(2*n−3)*G[1,4,q]−G[2,4,q]):
od:
end:

Substitution of the root (4.67) of the secular equation so that simplifications take place.
prepara:=proc()
global R1,g:
R1:=RootOf(z ˆ2−16*n ˆ2+48*n−41,z):
g:=(3−2*n)/(20*n ˆ2*(n ˆ2−3*n+2))*(8*n ˆ2−24*n+13+(2*n−3)*R1):
end:

Simplification of the results by substitution of R for the square root.
simplifica:=proc(f)
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global R1,R,g:
subs(RootOf(z ˆ2−16*n ˆ2+48*n−41,z)=R,simplify(f)):
end:

Execute first PT(p), where p is a positive integer, then prepara(), and finally apply simplifica(f) to
the chosen perturbation coefficient f to be simplified.
8) Moment method for the hydrogen molecular ion

trunca:=proc(i) if i<0 then 0 else 1 fi: end:
delta:=proc(i,j) if i=j then 1 else 0 fi: end:

Coefficients of the expansion of the potential-energy function according to equation (4.79)
coeC:=proc(M)
local i,j: global C:
C[0,0]:=1:
for j from 0 to M−1 do
for i from 0 to j+1 do
C[j+1,i]:=1/(j+1)*((2*j+1)*trunca(i−1)*C[j,i−1]
−j*trunca(j−i−1)*C[j−1,i]):
od:
od:
end:

Perturbation corrections to the energy and moments according to equations (4.82)–(4.84).
PT2:=proc(p)
local t,q,j,m,l,i,k,u,v: global G,e,n,C:
coeC(p−1):
i:=n−1:
for q from 0 to p−1 do
for j from 0 to p−q−1 do
for t from 0 to p−q−1 do
k:=n+t:
if j=0 and t=0 then G[j,t,q]:=delta(q,0) else
G[j,t,q]:=simplify(n/(k−n+1)*((k*(k+1)
−(i+j)*(i+j+1))/2*G[j,t−1,q]+j*(j−1)/2*G[j−2,t−1,q]
+trunca(q−1)*sum( ’e[l]*G[j,t+1,q−l] ’, ’l ’=1..q)
+trunca(q−1)*sum(’sum( ’C[u,v]*G[j+v,t+u+1,q−u−1] ’, ’v ’=0..u) ’, ’u ’=0..q−1))):
fi:
od:
od:
e[q+1]:=−simplify(sum(’sum( ’C[u,v]*G[v,u,q−u] ’, ’v ’=0..u) ’, ’u ’=0..q)):
od:
end:

Programs for Chapter 5

9) Straightforward integration of the perturbation equations for the particle in a box with a perturbation
trunca:=proc(x) if x<0 then 0 else 1 fi end:

Construction of the perturbation corrections to the eigenfunction by straightforward integration as
indicated in equation (5.11). Determination of the perturbation correction to the energy εj from
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.j(1) = 0. Normalization of the approximate eigenfunction order by order according to equa-
tion (5.13). PT(v,p) gives the perturbation corrections through order p for the interaction v(q) in
terms of ω = nπ .

PT:=proc(v,p)
local i,j,f,norma: global Fi,e,omega,q,q1,C:
Fi[0]:=sqrt(2)*sin(omega*q):
for j from 1 to p do
f[j]:=subs(q=q1,2*v*Fi[j−1]−2*trunca(j−1)*sum( ’e[i]*Fi[j−i] ’, ’i ’=1..j)):
Fi[j]:=C[j]*sin(omega*q)
+1/omega*int(sin(omega*(q−q1))*f[j],q1=0..q):
e[j]:=simplify(solve(subs(q=1,Fi[j]),e[j]),{sin(omega)=0,cos(omega) ˆ2=1}):
e[j]:=factor(e[j]):
norma:=simplify(sum(’int(Fi[i]*Fi[j−i],q=0..1) ’, ’i ’=1..j),
{sin(omega)=0,cos(omega) ˆ2=1}):
C[j]:=solve(norma,C[j]):
Fi[j]:=factor(subs(sin(omega*q)=1,cos(omega*q)=0,Fi[j]))*sin(omega*q)
+factor(subs(sin(omega*q)=0,cos(omega*q)=1,Fi[j]))*cos(omega*q):
od:
end:

Programs for Chapter 6

10) Intelligent approximants for the anharmonic oscillator Ĥ = p̂2/2+ x̂2/2+ λx̂4. It is supposed
that one has previously calculated the perturbation coefficients Ej

delta:=proc(i,j) if i=j then 1 else 0 fi end:
Order of the perturbation series required by A[M, 3M]

PO:=proc(M)M−1+sum(’floor((3*M−3*m)/2) ’, ’m ’=0..M) end:
Calculation of the coefficients Ckj according to equation (6.103).

C:=proc(k,j)
local i: global e,C:
option remember:
if k=0 then delta(k,j) elif
k=1 then e[j]: else
sum( ’C(k−1,i)*e[j−i] ’, ’i ’=0..j):
fi:
end:

Equations (6.101) to be solved for the approximant coefficients Amj .
equa:=proc(o,M,N)
local m,j,o1: global e,A:
o1:=min(o,M):
A[0,0]:=1:
expand(sum(’sum( ’A[m,j]*C(N−3*m−2*j,o−m) ’,
’j ’=0..floor((N−3*m)/2)) ’, ’m ’=0..o1)):
end:

Intelligent approximants with unevaluated coefficients Amj

apro:=proc(M,N)
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local m,j,m1: global aprox,e,la,A:
A[0,0]:=1:
m1:=min(M,floor(N/3)):
aprox:=sum(’sum( ’A[m,j]*la ˆm*e ˆ(N−3*m−2*j) ’,
’j ’=0..floor((N−3*m)/2)) ’, ’m ’=0..m1):
end:

Calculation of the coefficients Amj and construction of approximants
aproxi:=proc(M,N)
local aes,naes,sol: global e,la,aprox,A:
uneva(M,N):
aes:=indets(apro(M,N)) minus {la,e}:
naes:=nops(aes):
print(‘Perturbation order = ‘,naes−1):
if e[naes−1]=evaln(e[naes−1]) then ERROR(‘Execute PT‘) fi:
sol:=solve({seq(equa(j,M,N),j=0..naes−1)},aes):
assign(sol):
end:

Implicit equations (6.109) for W(g)

strong:=proc(M,N)
local m,j,m1: global apros,W,g,A:
m1:=min(M,floor(N/3)):
apros:=sum(’sum( ’A[m,j]*g ˆj*W ˆ(N−3*m−2*j) ’,
’j ’=0..floor((N−3*m)/2)) ’, ’m ’=0..m1):
end:

Unevaluation of the approximant coefficients for subsequent calculation
uneva:=proc(M,N)
local m,j,m1: global aprox,e,la,A:
A[0,0]:=1:
m1:=min(M,floor(N/3)):
for m from 0 to m1 do
for j from 0 to floor((N−3*m)/2) do
A[m,j]:=evaln(A[m,j]):
od:
od:
end:

Programs for Chapter 8

11)Transmission coefficient calculated by means of equations (8.21). The arguments of the procedure
are the function F(q) = 2a2[V(q)− ε], the variable q, and the initial point q0.

TMaple:=proc(F,q,q0)
local Nu,De,u0,u1,v0,v1,Du0,Du1,Dv0,Dv1,solu,solv,u,v,equ,eqv:
global T,a,e:
equ:=diff(u(q),q,q)=F*u(q):
eqv:=diff(v(q),q,q)=F*v(q):
solu:=dsolve({equ,u(q0)=1,D(u)(q0)=0},u(q),type=numeric):
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solv:=dsolve({eqv,v(q0)=0,D(v)(q0)=1},v(q),type=numeric):
u0:=subs(solu(0),u(q)):u1:=subs(solu(1),u(q)):
v0:=subs(solv(0),v(q)):v1:=subs(solv(1),v(q)):
Du0:=subs(solu(0),diff(u(q),q)):
Du1:=subs(solu(1),diff(u(q),q)):
Dv0:=subs(solv(0),diff(v(q),q)):
Dv1:=subs(solv(1),diff(v(q),q)):
Nu=8*a ˆ2*e*(Du1*v1−u1*Dv1) ˆ2:
De=(2*a ˆ2*e*(v1*u0−u1*v0)−Du1*Dv0+Dv1*Du0) ˆ2
+2*a ˆ2*e*(Dv1*u0−Du1*v0+u1*Dv0−v1*Du0) ˆ2:
T:=Nu/De:
end:

12) Calculation of the transmission coefficient by means of the third perturbation method (a2-power
series). The procedure is a straightforward translation of equations (8.21) and (8.73).

PT3:=proc(P)
local j,t,k:
global a,Vc,e,u,v,T,q,Su,Sv,DSu,DSv,u0,u1,v0,v1,Du0,Du1,Dv0,Dv1,Nu,De:
u[0]:=1:v[0]:=q:
for j from 1 to P do
u[j]:=2*a ˆ2*int((q−t)*subs(q=t,(Vc−e)*u[j−1]),t=0..q):
v[j]:=2*a ˆ2*int((q−t)*subs(q=t,(Vc−e)*v[j−1]),t=0..q):
od:
Su:=sum( ’u[j] ’, ’j ’=0..P):
DSu:=diff(Su,q):
Sv:=sum( ’v[j] ’, ’j ’=0..P):
DSv:=diff(Sv,q):
u0:=1:Du0:=0:v0:=0:Dv0:=1:
u1:=subs(q=1,Su):
v1:=subs(q=1,Sv):
Du1:=subs(q=1,DSu):
Dv1:=subs(q=1,DSv):
Nu=8*a ˆ2*e*(Du1*v1−u1*Dv1) ˆ2:
De=(2*a ˆ2*e*(v1*u0−u1*v0)−Du1*Dv0+Dv1*Du0) ˆ2
+2*a ˆ2*e*(Dv1*u0−Du1*v0+u1*Dv0−v1*Du0) ˆ2:
T:=Nu/De:
end:

Programs for Chapter 9

13) Polynomial approximation.
delta:=proc(i,j) if i=j then 1 else 0 fi end:

Coefficients of the perturbation series for qj obtained according to the recurrence relation (9.13):
Q:=proc(j,k)
local i: global q:
if j=0 then delta(k,0) elif
j=1 then q[k] else
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sum( ’Q(1,i)*Q(j−1,k−i) ’, ’i ’=0..k):
fi:
end:

Coefficients of the perturbation series for G(s) according to equation (9.12):
G:=proc(n)
local j:global q,a:
sum( ’a[j]*Q(j+1,n−j) ’, ’j ’=1..n):
end:

Coefficients of the perturbation series for G(s) in the case of an odd force:
Godd:=proc(n)
local j:global q,a:
sum( ’a[j]*Q(2*j+1,n−j) ’, ’j ’=1..n):
end:

Coefficients for the perturbation series for the right-hand side of equation (9.34), where g[j] stands
for γj :

GLP:=proc(j)
local m,temp,gj: global g,s,q:
g[j]:=gj:
temp:=collect(combine(G(j)
−sum(’g[m]*diff(q[j−m],s$2) ’, ’m ’=1..j),trig),[sin,cos]):
g[j]:=solve(coeff(temp,cos(s)),gj):
subs(gj=g[j],temp):
end:

Unperturbed trajectory (one can substitute other cases)
q[0]:=cos(s):

Perturbation corrections through order n to the trajectory for the three cases discussed in Chapter 9:
arbitrary force F(x) (case=anything), odd force F(x) (case=odd), and Lindstedt–Poincaré method
for arbitrary F(x) (case=LP). PT(case,n) gives results in terms of arbitrary coefficients aj :

PT:=proc(case,n)
local j,s1,Gloc: global q,s:
for j from 1 to n do
if case=odd then
Gloc:=Godd(j) elif case=LP then
Gloc:=GLP(j) else
Gloc:=G(j)
fi:
q[j]:=int(sin(s−s1)*subs(s=s1,Gloc),s1=0..s):
q[j]:=collect(simplify(combine(q[j],trig)),[sin,cos]):
od:
end:

Taylor series for arbitrary and odd forces. Execute this procedure before PT(case,N) when interested
in a particular model. It produces the appropriate coefficients aj ; for example, f = −(g/l) sin(q)
for the simple pendulum.

force:=proc(f,case,N)
local j,f1,F: global a:
f1[0]:=f:
F[0]:=subs(q=0,f1[0]):
if case=odd then
for j from 1 to 2*N+1 do
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f1[j]:=diff(f1[j−1],q)/j:
od:
for j from 1 to N+1 do
F[j]:=subs(q=0,f1[2*j−1]):
a[j−1]:=−F[j]/F[1]:
od:
else
for j from 1 to N+1 do
f1[j]:=diff(f1[j−1],q)/j:
od:
for j from 1 to N+1 do
F[j]:=subs(q=0,f1[j]):
a[j−1]:=−F[j]/F[1]:
od:
fi:
end:

Perturbation series for the period by systematic application of the argument leading to equations (9.30)
and (9.31). Execute after PT(case,N):

period:=proc(N)
local j,fun:global tau:
fun:=subs(s=s+sum( ’tau[j]*lambda ˆj ’, ’j ’=1..N),
sum(’q[j]*lambda ˆj ’, ’j ’=0..N)):
for j from 1 to N do
tau[j]:=limit(solve(simplify(subs(lambda=0,
diff(fun,lambda$j))),tau[j]),s=2*Pi):
od:
end:

14) Test of Jacobi’s identity (9.52).
Construction of a set of 2N variables {qj , pj , j = 1, 2, . . . N}.

vars:=proc(N)
local i:global q,p:
q:=seq(q.i,i=1..N):p:=seq(p.i,i=1..N):
end:

Definition of the Poisson bracket according to equation (9.42)
c:=proc(a,b,q,p)
local n:
n:=nops(q):
sum(’diff(a,op(j,q))*diff(b,op(j,p))−
diff(b,op(j,q))*diff(a,op(j,p)) ’, ’j ’=1..n):
end:

Jacobi identity for the set of variables chosen above. Execute Jacobi() to obtain an expression that
simplifies to zero (simplify(Jacobi())):

Jacobi:=proc()
c(A(q,p),c(B(q,p),C(q,p),q,p),q,p)
+c(C(q,p),c(A(q,p),B(q,p),q,p),q,p)
+c(B(q,p),c(C(q,p),A(q,p),q,p),q,p):
end:

15) Secular perturbation theory in operator form.
Poisson bracket {a, b}[q,p] for arbitrary functions a(q, p) and b(q, p)
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c:=(a,b,q,p)−> diff(a,q)*diff(b,p)−diff(a,p)*diff(b,q):
Trajectory for the harmonic oscillator equation (9.99)

q[0]:=q0*cos(w*t)+p0*sin(w*t)/(m*w):
p[0]:=p0*cos(w*t)−m*q0*w*sin(w*t):

Calculation of the perturbation correction of order j + 1 from the perturbation correction of order j
according to equation (9.98), where h1 stands for H ′.

plus1:=proc(f,h1)
local s,q0ts,p0ts: global m,w,t,p0,q0:
q0ts:=q0*cos(w*(t−s))+p0*sin(w*(t−s))/(m*w):
p0ts:=p0*cos(w*(t−s))−m*q0*w*sin(w*(t−s)):
int(t=s,[q0=q0ts,p0=p0ts],c(f,h1,q0,p0)),s=0..t):
end:

Calculation of the first N perturbation corrections by repeated application of equation (9.98). For
example, execute PT(qˆ3,N) for the cubic perturbation, where N is a positive integer.

PT:=proc(h1,N)
local j: global w,t,plus1,q,p:
for j from 1 to N do
q[j]:=combine(expand(plus1(q[j−1],h1)),trig):
q[j]:=collect(q[j],[sin,cos]):
p[j]:=combine(expand(plus1(p[j−1],h1)),trig):
p[j]:=collect(p[j],[sin,cos]):
od:
end:

16) Canonical perturbation theory in operator form. Notice that we omit explicit reference to the
intermediate complex variables a, b, A, and B which at each step we simply call q and p.

c:=(a,b,q,p)−> diff(a,q)*diff(b,p)−diff(a,p)*diff(b,q):
Transformation Ûx, equation (9.86)

Uq:=(q−p*I)/sqrt(2*m*w):
Up:=sqrt(m*w/2)*(p−q*I):

Transformation Û−1x, equation (9.85)
U1q:=sqrt(m*w/2)*(q+I*p/(m*w)):
U1p:=sqrt(m*w/2)*(q*I+p/(m*w)):

Transformed harmonic oscillator H̃0, equation (9.88)
H0:=−I*w*q*p:

Effect of the operator coefficient T̂n on a given function f according to equation (9.118)
T:=proc(f,n)
local j: global W:
if n=0 then f else
1/n*sum( ’c(W[j],T(f,n−j−1),q,p) ’, ’j ’=0..n−1):
fi:
end:

Effect of the operator coefficient (T̂ −1)n on a given function f according to equation (9.120)
T1:=proc(f,n)
local j: global W:
if n=0 then f else
−1/n*sum( ’T1(c(W[j],f,q,p),n−j−1) ’, ’j ’=0..n−1):
fi:
end:
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Calculation of perturbation corrections Kj+1(q, p), Wj(q, p), Qj+1(q, p), and Pj+1(q, p), for
j = 0, 1, . . . n− 1. Notice how we extract the diagonal terms qkpk from Fj to construct Kj+1, and
then calculate Wj according to equation (9.124) in the text.

canpt:=proc(H1,n)
local j,f,tmp,L: global Uq,Up,U1q,U1p,K,W,P,Q:
for j from 0 to n−1 do
f:=sum( ’c(W[i],T(H0,j−i),q,p) ’, ’i ’=0..j−1)+(j+1)*T(H1,j):
tmp:=expand(subs(q=q*L,p=p/L,f)):
K[j+1]:=1/(j+1)*coeff(tmp,L,0):
tmp:=expand(tmp−(j+1)*K[j+1]):
W[j]:=limit(int(subs(L=exp(I*w*t),tmp),t),t=0):
Q[j+1]:=expand(subs([q=U1q,p=U1p],T1(Uq,j+1))):
P[j+1]:=expand(subs([q=U1q,p=U1p],T1(Up,j+1))):
od:
end:

For a perturbation H ′ = qM we simply execute canpt(Uq ˆM,n).

Programs for the Appendixes

17) Laplacian in Curvilinear Coordinates
The reader may easily identify equations (A.7) and (A.8) in the procedure below:

with(linalg):
g:=proc(xvar,yvar)
local xvar1,i,j,n,e: global G,invG:
n:=nops(yvar):
xvar1:=vector(xvar):
for i from 1 to n do
e[i]:=map(diff,xvar1,yvar[i]):
od:
G:=array(1..n,1..n):
for i from 1 to n do
for j from 1 to i do
G[i,j]:=simplify(evalm(transpose(e[i])&*e[j])):
G[j,i]:=G[i,j]:
od:
od:
invG:=evalm(1/G):
end:

The arguments of the procedure are two ordered lists xvar =[x1(y), x2(y), . . . xN(y)] and yvar
= [y1, y2, . . . yN ], and the program produces the matrix g = G and its inverse g−1 =invG.
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Laplacian in Curvilinear Coordinates

In several chapters of this book we make use of the Laplacian in different curvilinear coordinates.
Some of them are standard, and one finds the necessary expressions in any book on mathematics or
quantum mechanics [202, 203]. But when one is interested in a particular set of coordinates that is
not so widely used, one should derive the Laplacian oneself. A general expression for the Laplacian
in arbitrary orthogonal curvilinear coordinates is available in many books [202, 203]. However, this
is not the case of nonorthogonal coordinates because they are not so frequently required. In addition
to this, such scarcely available derivations of the Laplacian in arbitrary curvilinear coordinates are
typically awkward, requiring special tensor notions and notation [204]. For all these reasons we
believe it worthwhile to show a simple and straightforward (although not rigorous) derivation of the
Laplacian in arbitrary curvilinear coordinates. We believe that the discussion below is even simpler
than a recent pedagogical treatment of the subject [205]. However, the reader who is not interested
in the details of the derivation may go directly to the recipe at the end.

Let x = {x1, x2, . . . , xN } and y = {y1, y2, . . . , yN } be sets of Cartesian and curvilinear coordi-
nates, respectively. The volume element is given by

dx1dx2 . . . dxN = ||J||dy1dy2 . . . dyN , (A.1)

where J is the Jacobian matrix with elements [206]

Jij = ∂xi

∂yj

, (A.2)

|A| denotes the determinant of a square matrix A, and |a| the absolute value of the scalar a. Taking
into account that

∂xi

∂xj

=
N∑

k=1

∂xi

∂yk

∂yk

∂xj

= δij (A.3)

we conclude that the matrix elements of the inverse J−1 are

(
J−1

)
ij
= ∂yi

∂xj

. (A.4)

We want to express the Laplacian operator

∇2 =
N∑

i=1

∂2

∂x2
i

(A.5)

in terms of the curvilinear coordinates y.
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Any vector in Rn can be written as a linear combination of the Cartesian unit vectors ci :

r = x1c1 + x2c2 + · · · + xN cN , (A.6)

so that ci = ∂r/∂xi . Analogously, we define N curvilinear vectors

ei = ∂r
∂yi

, i = 1, 2, . . . , N . (A.7)

Although the Cartesian vectors form an orthonormal basis set with respect to the standard scalar
product ci · cj = δij , the curvilinear vectors are not necessarily orthogonal, and we define a metric
matrix g with elements

gij = ei · ej , i, j = 1, 2, . . . , N . (A.8)

Notice that gij is symmetric and

gij =
N∑

k=1

∂xk

∂yi

∂xk

∂yj

=
N∑

k=1

Jki

(
JT
)

jk
, (A.9)

where JT denotes the transpose of the Jacobian matrix. Since g = JT J, then |g| = |J|2 > 0, and we
can write the volume element as

dx1dx2 . . . dxN =
√|g|dy1dy2 . . . dyN . (A.10)

The scalar product of two functions �(x) and �(x) that belong to a quantum-mechanical state
space is

∫
. . .

∫
�∗� dx1dx2 . . . dxN =

∫
. . .

∫
�∗�

√|g| dy1dy2 . . . dyN . (A.11)

Straightforward integration by parts, taking into account that the state functions vanish at the bound-
aries of the coordinate space, shows that

∫
. . .

∫
�∗∇2� dx1dx2 . . . dxN = −

∫
. . .

∫
∇�∗ · ∇� dx1dx2 . . . dxN

= −
∫

. . .

∫
∇�∗ · ∇�

√|g| dy1dy2 . . . dyN , (A.12)

where

∇�∗ · ∇� =
N∑

i=1

∂�∗

∂xi

∂�∗

∂xi

=
N∑

i=1

N∑
j=1

N∑
k=1

∂�∗

∂yj

∂�∗

∂yk

∂yj

∂xi

∂yk

∂xi

=
N∑

j=1

N∑
k=1

∂�∗

∂yj

∂�∗

∂yk

(
J−1

)
ki

(
JT
)−1

ij
=

N∑
j=1

N∑
k=1

(
g−1

)
jk

∂�∗

∂yj

∂�∗

∂yk

. (A.13)

Another integration by parts gives us
∫

. . .

∫ (
g−1

)
jk

∂�∗

∂yj

∂�∗

∂yk

√|g| dy1dy2 . . . dyN

= −
∫

. . .

∫
�∗

[
∂

∂yj

(
g−1

)
jk

√|g|∂�∗

∂yk

]
dy1dy2 . . . dyN . (A.14)
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Finally, comparing both sides of
∫

. . .

∫
�∗∇2�

√|g| dy1dy2 . . . dyN

=
N∑

j=1

N∑
k=1

∫
. . .

∫
�∗

[
∂

∂yj

(
g−1

)
jk

√|g|∂�∗

∂yk

]
dy1dy2 . . . dyN , (A.15)

and taking into account that the state vectors � and � are arbitrary, we conclude that

∇2 = 1√|g|
N∑

j=1

N∑
k=1

∂

∂yj

(
g−1

)
jk

√|g| ∂

∂yk

, (A.16)

which is the desired expression. Present proof of equation (A.16) is not rigorous because it requires
functions � and � that vanish at the boundaries of the coordinate space, while ∇2 applies to any
twice differentiable function. However, in our opinion this lack of rigor is greatly compensated by
the remarkable simplicity of the argument which we hope will satisfy most readers.

When the curvilinear vectors are orthogonal we say that the corresponding coordinates are orthog-
onal. In this simpler case gij = giδij , (g−1)ij = δij /gi , and |g| = g1g2 . . . gN . Most coordinates
used in physical applications (Cartesian, spherical, cylindrical, etc.) are orthogonal. In such cases
the Laplacian (A.16) reduces to a sum of diagonal terms.

Finally, we give the promised recipe to derive the Laplacian in curvilinear coordinates. It suffices
to have the expression of either the direct x(y) or inverse y(x) transformation because J(x → y) =
J−1(y → x). For concreteness we assume the former and proceed as follows:

a) Obtain the curvilinear vectors according to equation (A.7).
b) Calculate the metric matrix g according to equation (A.8).
c) Obtain the determinant and inverse of g.
d) Construct the Laplacian according to equation (A.16).
The reader may convince himself that this procedure is simpler than others. At least, it is easy to

write a simple and general Maple program. In the program section we show a short procedure that
performs the calculation according to the recipe above.

It is worthwhile to notice that equation (A.16) is valid even for a subset of curvilinear coordinates
{y1, y2, . . . , yM}, M < N . For example, if we consider x = {r sin(θ) cos(φ), r sin(θ) sin(φ),
r cos(θ)} and y = {θ, φ}, we obtain

∇2 = 1

r2 sin(θ)

[
∂

∂θ
sin(θ)

∂

∂θ
+ 1

sin(θ)

∂2

∂φ2

]
= − L̂2

h̄2r2
, (A.17)

where L̂2 is the square of the quantum-mechanical angular momentum. This expression of the
Laplacian is suitable for the rigid rotors discussed in Section 5.4 [207].
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Ordinary Differential Equations with Constant
Coefficients

In several chapters of this book we need the solutions of ordinary differential equations with con-
stant coefficients. Such equations are relevant to many branches of physics and chemistry, and are
discussed in most introductory courses on mathematical analysis. In this appendix we develop a
simple and straightforward algorithm which generalizes common approaches to that mathematical
problem [208, 209].

In order to simplify the notation we write the differential operator D̂ = d/dx. The starting point
of our method is the simple identity

exp(rx)D̂ exp(−rx)Y (x) =
(
D̂ − r

)
Y (x) (B.1)

that enables us to integrate the first-order differential equation
(
D̂ − r

)
Y (x) = f (x) (B.2)

very easily:

Y (x) = exp(rx)

[
C +

∫ x

exp
(−rx′

)
f
(
x′
)

dx′
]

, (B.3)

where C is an arbitrary integration constant.
In order to treat differential equations of any order we define the set of functions

Ys(x) =
s∏

j=1

(
D̂ − rj

)
Y (x) =

(
D̂ − rs

)
Ys−1(x), s = 1, 2, . . . , Y0(x) = Y (x) , (B.4)

where r1, r2, . . . , rs are arbitrary (in general complex) numbers. Arguing as before we integrate
equation (B.4) and obtain Ys−1 in terms of Ys as follows:

Ys−1(x) = exp (rsx)

[
Cs +

∫ x

exp
(−rsx

′)Ys

(
x′
)

dx′
]

. (B.5)

This simple equation is the main result of this appendix.
A general inhomogeneous ordinary differential equation of order n with constant coefficients aj

is of the form

L
(
D̂
)

Y (x) = f (x), L
(
D̂
)
=

n∑
j=0

aj D̂
j , (B.6)
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where we choose an = 1 without loss of generality. We can factorize the differential operator L(D̂)

as

L
(
D̂
)
=

n∏
j=1

(
D̂ − rj

)
, (B.7)

where r1, r2, . . . , rn are the roots of the characteristic equation L(r) = 0. According to the definition
given in equation (B.4) we have Yn(x) = f (x), and in order to obtain Y0(x) = Y (x) we simply apply
equation (B.5) for s = n, n− 1, . . . , 1. Present algorithm is particularly suitable for the application
of computer algebra. We do not show a general Maple program here because we are concerned only
with the case n = 2 that we discuss in what follows.

It is sufficient for our purposes to consider a differential equation of second order

Y ′′(x)+ a1Y
′(x)+ a0Y (x) = f (x) (B.8)

that leads to a quadratic characteristic equation

r2 + a1r + a0 = 0 , (B.9)

which we easily solve to obtain its two roots r1 and r2. Straightforward application of the general
recipe outlined above gives us

Y (x) = C1 exp (r1x)+ C2 exp (r1x)

∫ x

exp
[
(r2 − r1) x′

]
dx′

+ exp (r1x)

∫ x ∫ x′
exp

[
(r2 − r1) x′ − r2x

′′] f (x′′) dx′′ dx′ . (B.10)

Integration by parts enables us to reduce the double integral in equation (B.10) to a single one. To
this end it is convenient to consider the cases of equal and different roots separately.

When r1 = r2, we easily rewrite equation (B.10) as

Y (x) = (C1 + C2x) exp (r1x)+
∫ x (

x − x′
)

exp
[
r1
(
x − x′

)]
f
(
x′
)

dx′ . (B.11)

On the other hand, when r1 �= r2 we have

Y (x) = C1 exp (r1x)+ C2

r2 − r1
exp (r2x)

+ 1

r2 − r1

∫ x {
exp

[
r2
(
x − x′

)]− exp
[
r1
(
x − x′

)]}
f
(
x′
)

dx′ . (B.12)

In some chapters of this book we face an example of the latter case given by a1 = 0 and a0 = ω2.
Because the roots of equation (B.9) are r1 = −r2 = iω (we choose ω > 0 without loss of generality),
we rewrite equation (B.12) as

Y (x) = C sin(ωx)+ C′ cos(ωx)+ 1

ω

∫ x

sin
[
ω
(
x − x′

)]
f
(
x′
)

dx′ , (B.13)

where the constants of integration C and C′ are related to C1 and C2 in a straightforward way.

                          



Appendix C

Canonical Transformations

In this appendix we give a brief account of canonical transformations [48] that considerably facilitate
the discussion of several subjects covered by this book. In particular we are interested in canonical
transformations of the form

B̂A(α) = Û−1
A (α)B̂ÛA(α), ÛA(α) = exp

(
−αÂ

)
, (C.1)

where Â and B̂ are two linear operators. Notice that

B̂A(0) = B̂ . (C.2)

One easily proves that canonical transformations preserve commutators; that is to say
[
B̂, Ĉ

]
= D̂ ⇒

[
B̂A, ĈA

]
= D̂A . (C.3)

In particular, if Â is antihermitian Â† = −Â and α is real, then ÛA is unitary Û
†
A = Û−1

A .
Many equations regarding canonical transformations take considerably simpler forms in terms of

superoperators [48]. For example, if we define the superoperator ̂̂A as

̂̂
AB̂ =

[
Â, B̂

]
(C.4)

we easily prove that

dn

dαn
B̂A = ̂̂AnB̂A = Û−1

A
̂̂
AnB̂ÛA (C.5)

and can formally write

B̂A = exp
(
α
̂̂
A
)

B̂ . (C.6)

By repeated application of the rule

Û−1
A B̂nÛA = Û−1

A B̂ÛAÛ−1
A B̂n−1ÛA (C.7)

we conclude that

Û−1
A B̂nÛA =

(
Û−1

A B̂ÛA

)n = B̂n
A . (C.8)

Operator differential equations like (C.5) with the initial condition (C.2) are suitable for obtaining
explicit expressions of canonical transformations. In what follows we consider a few simple cases
that are useful in this book.
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1) If [Â, B̂] = a, where a is a scalar, then

B̂A = B̂ + aα . (C.9)

2) If [Â, B̂] = bB̂, where b is a scalar, then

B̂A(α) = exp(bα)B̂ . (C.10)

In particular, notice that

B̂A(πi/b) = Û−1
A (πi/b)B̂ÛA(πi/b) = −B̂ . (C.11)

3) If ̂̂A2
B = ω2B̂, where ω is a constant, then

B̂A(α) = cosh(ωα)B̂ + sinh(ωα)

ω

̂̂
AB̂ . (C.12)

When ω2 < 0 we rewrite this equation in a more convenient form:

B̂A(α) = cos(|ω|α)B̂ + sin(|ω|α)

|ω|
̂̂
AB̂ . (C.13)

If we apply Û−1 to the Schrödinger equation

Ĥ� = E� (C.14)

from the left, we obtain

Û−1Ĥ� = Û−1Ĥ Û Û−1� = EÛ−1� . (C.15)

If Ĥ is invariant under the canonical transformation

Û−1Ĥ Û = Ĥ , (C.16)

then Û−1� is an eigenfunction of Ĥ with eigenvalue E. If this eigenvalue is not degenerate then
Û−1� ∝ �.

A particularly useful canonical transformation is the so-called scaling or dilatation. Consider
dimensionless coordinate and momentum operators x̂ and p̂, respectively, which satisfy [x̂, p̂] = i,
and construct the unitary operator

ÛA = exp
(
−αÂ

)
, A = i

2

(
x̂p̂ + p̂x̂

)
, (C.17)

where α is a real parameter. Taking into account that [Â, x̂] = x̂, and [Â, p̂] = −p̂, then we
conclude from Case 2 above that

x̂A = eαx̂, p̂A = e−αp̂ . (C.18)

Moreover, if V (x) is an analytic function of x at x = 0, and we apply the result in equation (C.8) to
the Taylor series of V (x) around x = 0, we conclude that

Û
†
AV

(
x̂
)
ÛA = V

(
x̂A

)
. (C.19)
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Consequently, the scaling transformation of the Hamiltonian operator

Ĥ = p̂2

2
+ V

(
x̂
)

(C.20)

reads

ĤA = p̂2
A

2
+ V

(
x̂A

)
. (C.21)

An interesting particular case is given by α = iπ because the scaling transformation simply
changes the sign of the operators: x̂A = −x̂, p̂A = −p̂.

As an illustrative example consider the anharmonic oscillator

Ĥ (a, b, λ) = a p̂2 + b x̂2 + λ x̂k , (C.22)

where a, b, λ, and k are chosen so that this operator supports bound-state eigenvalues E(a, b, λ).
First of all notice that E(a, b, λ) = cE(a/c, b/c, λ/c). It follows from the results above that

Û
†
AĤ (a, b, λ)ÛA = Ĥ

(
a e−2α, b e2α, λ eαk

)
= e−2αĤ

(
a, b e4α, λ eα(k+2)

)
; (C.23)

consequently,

E(a, b, λ) = E
(
a e−2α, b e2α, λ eαk

)
= e−2αE

(
a, b e4α, λ eα(k+2)

)
. (C.24)

This argument due to Symanzik [210] proved useful in the study of the analytic properties of the
eigenvalues of anharmonic oscillators [111].

On choosing e2α = λ−2/(k+2) equation (C.24) becomes

E(a, b, λ) = λ2/(k+2)E
(
a, b λ−4/(k+2), 1

)
, (C.25)

which suggests that the eigenvalues of the anharmonic oscillator can be expanded as

E(a, b, λ) = λ2/(k+2)
∞∑

j=0

ejλ
−4j/(k+2) . (C.26)

It has been proved that this series already exists for k even and exhibits finite convergence radius [111].
The leading coefficient e0 is an eigenvalue of the anharmonic oscillator Ĥ (a, 0, 1) = ap̂2 + x̂k .

The scaling transformation also proves useful to relate the eigenvalues of anharmonic oscillators
with different parameters. For example, starting from E(1/2, 0, 1) = E(1, 0, 2eα(k+2))/(2e2α), and
choosing e2α = 2−2/(k+2), we prove that E(1/2, 0, 1) = 2−k/(k+2)E(1, 0, 1).

If the Hamiltonian operator Ĥ (λ) depends on a parameter λ, its eigenfunctions and eigenvalues
will also depend on λ Ĥ (λ)�(λ) = E(λ)�(λ). Suppose that Ĥ (0) supports discrete states and that
there is a canonical transformation such that

Û−1Ĥ (λ)Û = Ĥ (−λ) . (C.27)

It follows from Ĥ (−λ)�(−λ) = E(−λ)�(−λ) and equation (C.27) that

Ĥ (λ)Û�(−λ) = E(−λ)Û�(−λ) . (C.28)

This equation tells us that Ej(−λ) = Ek(λ) for some pair of quantum numbers j and k; in particular,
Ej(0) = Ek(0). If the spectrum of Ĥ (0) is nondegenerate we conclude that j = k, and the Taylor
expansion of Ej(λ) about λ = 0 will have only even terms:

Ej(λ) =
∞∑
i=0

Ej,2iλ
2i . (C.29)

Throughout this book we show several quantum-mechanical problems that exhibit such a feature.
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