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Preface
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T. sleator, and H. stroke for trying out at least part of my lecture notes on students at other 
institutions and B. C. Regan, D. Demille, L. Hunter, P. Drell, J. Welch, and i. Ratowsky for their 
support and friendship. i am sincerely grateful to Vince Higgs, editor at Cambridge University 
Press, for his crucial encouragement and support. i also thank sara Werden at Cambridge 
University Press in new York, and Jayashree, project manager, and her co-workers at newgen 
in Chennai, india, for their unfailing courtesy and expert professionalism.

Finally, i am profoundly grateful to my older son, David, for his unswerving support during 
dark times for both of us. This book is dedicated to the memories of three who are no longer 
with us: my wife, Ulla, younger son, Lars, and nephew, Bill.
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1.1 What this book is about

Quantum mechanics is an extraordinarily successful theory. The quantum mechanical descrip-
tion of the structures and spectra of atoms and molecules is virtually complete, and in prin-
ciple, this provides the basis for understanding all of chemistry. Quantum mechanics gives 
detailed insight into many thermal, electrical, magnetic, optical, and elastic properties of con-
densed materials, including superconductivity, superfluidity, and Bose-Einstein condensation. 
Quantum mechanics underlies the theory of nuclear structure, nuclear reactions, and radioac-
tive decay. Quantum electrodynamics (QED), an outgrowth of quantum mechanics and special 
relativity, is a very successful and detailed description of the interaction of charged leptons 
(i.e., electrons, muons, and tau leptons) with the electromagnetic radiation field. More gener-
ally, relativistic quantum field theory, the extension of quantum mechanics to relativistic fields, 
is the basis for all successful theoretical attempts so far to describe the phenomena of elemen-
tary particle physics.

We assume that you, the reader, have some elementary knowledge of quantum mechanics 
and that you know something about the historical development of the subject and its main 
principles and methods. We take advantage of this background, after a brief  mathematical 
review in Chapter 2, by stating the rules of quantum mechanics in Chapter 3. An advantage 
of this approach is that all the rules are set forth in one place so that we can focus on them. 
In Chapter 3 we also describe application of the rules to several real physical situations, most 
significantly experiments with photon polarizations. Following some development of wave 
mechanics (Chapter 4), we illustrate the rules with additional examples (Chapter 5). We then 
develop the theory further in subsequent chapters, giving as many examples as we can from the 
physical world.

Our choice of topics is determined to a large extent by diverse student needs. Some students 
plan a career in theoretical physics, but most will work in experimental physics or will use 
quantum mechanics in some other branch of science or technology. Many will never take a 
subsequent course in elementary particle physics or quantum field theory. Yet most students 
want to know, and should know, something about the most interesting and important modern 
developments in quantum physics, even if  time or preparation does not permit going into full 
detail about many topics. Thus, in addition to standard material, which can be found in a large 
number of existing textbooks, we include discussions of Bell’s inequality and photon polariza-
tion correlations, neutron interferometry, the Aharonov-Bohm effect, neutrino oscillations, the 
path integral method, second quantization for fermions, the stability of matter, quantization 
of the electromagnetic radiation field, the Casimir-Polder effect, the Lamb shift, the adiabatic 
theorem and geometric phases, relativistic wave equations and especially the Dirac equation, 
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Introduction2

the Dirac field, elementary QED, and a lengthy chapter on quantum mechanics of weak inter-
actions, including an introduction to the electroweak standard model. The choice of topics is 
also influenced by my background and experience: I was trained as an experimentalist and have 
spent my entire research career in experimental physics.

The rules of quantum mechanics are remarkably successful in accounting for all experi-
mental results to which they have been applied. However, because of the unique way in which 
probabilistic concepts appear, particularly in one rule (the so-called collapse postulate), con-
troversy about the foundations of quantum mechanics has existed from the very beginning, 
and it continues today [see, e.g., Laloe (2012)]. Indeed, if  we insist that quantum mechanics 
should apply not only to a microscopic system such as an electron or an atom but also to the 
macroscopic apparatus employed to measure that system’s properties and the environment 
that is coupled to the apparatus, the collapse postulate is in conflict with another essential rule 
that describes how an isolated quantum mechanical system evolves continuously in time. This 
thorny issue is called the quantum measurement problem, and it has troubled many thoughtful 
persons, including two of the great founders of quantum theory, Albert Einstein and Erwin 
Schroedinger, and in more recent times the distinguished physicists John S. Bell and Stephen L. 
Adler, among many others. A summary of the quantum measurement problem and of several 
attempts to resolve it is given in Chapter 25.

Before we start, let us remark briefly on notation and units. Throughout this book, when the 
symbol e refers to electric charge it means the magnitude of  the electronic charge, a positive 
quantity. The actual charge of the electron is –e. If  we refer to a nonspecific electric charge that 
might or might not be e or –e, we use the symbol q.

It is not practical for us to work with a single system of units. Instead, we try to employ 
units that are most appropriate for the topic at hand. Initially, this may seem confusing and 
discouraging to the student, but it is a fact of  life that a practicing physicist must learn to be 
conversant with several different unit systems. For the most part, we use Heaviside-Lorentz 
units (hlu system) for general discussions of  nonrelativistic quantum mechanics. The hlu and 
cgs systems are the same, except that if  a given electric charge has numerical value qcgs in 
the cgs system, it has the value q qhlu cgs= 4π  in the hlu system, and similarly for currents, 
magnetic moments, electric dipole moments, and other electromagnetic sources. On the other 
hand, if  a given electric field has numerical value Ecgs in the cgs system, it has numerical value 
E Ehlu cgs= / 4π  in the hlu system, and similarly for magnetic fields and scalar and vector 
potentials. We employ atomic units (defined in Section 8.5) for atomic and molecular physics 
and natural units for relativistic quantum mechanics and field theory, with hlu conventions 
for electric and magnetic sources and fields. (This natural unit system is defined in Section 
15.7 and is used extensively in Chapters 19–24). Although Système International (SI) units are 
familiar to many students and are convenient for practical engineering and technology, they 
are awkward and inconvenient for quantum mechanics, especially for relativistic quantum 
mechanics, so we avoid them.

1.2 A very brief summary of the antecedents of quantum mechanics

Although the invention of  quantum mechanics occurred in the remarkably short 
time interval from 1925 through 1928, this burst of  creativity was the culmination of  a  

 

  

 

 

 

 

  

 

  

 

 

 

 



1.2 A very brief summary of the antecedents of quantum mechanics3

twenty-five-year gestation period (1900–1925). During that era, the failures of  classical 
physics to account for a wide range of  important physical phenomena were revealed, and 
the need for radical new explanations of  these phenomena became increasingly evident. In 
the following paragraphs we briefly summarize some of  the most important achievements 
of  the period from 1900 through 1925. [For a detailed history, see Jammer (1966)]. Here and 
in the rest of  this book we encourage the reader to pay attention to the interplay between 
experiment and theory that has been so essential for the invention and development of 
quantum mechanics.

The question of how to account theoretically for the frequency spectrum of black-body radi-
ation had been discussed in the last decades of the nineteenth century, but it gained urgency 
by 1900 because of accurate measurements of the spectrum by a number of experimentalists, 
notably H. Rubens and F. Kurlbaum. In that era, the energy per unit volume per hertz of 
black-body radiation at frequency ν in a cavity at absolute temperature T was predicted by the 
classical Rayleigh-Jeans formula to be

 u
k T

c
B

ν
πν

= −( )8 2

3
Rayleigh Jeans formula  (1.1)

where kB is Boltzmann’s constant, and c is the velocity of light. This formula not only disagreed 
with the observations of Rubens and Kurlbaum, but when integrated over all frequencies, it led 
to the nonsensical conclusion that the total energy of radiation in a cavity of any finite volume 
at any finite temperature is infinite. Max Planck (1900) introduced the quantum of action h in 
late 1900 to obtain a new formula1 for uν:

 u
h
c h k TB

ν
π ν

ν
= ( ) −

8 1
1

3

3 exp
( ’ )Planck s law  (1.2)

Planck’s law agrees with experiment, and in the limit where k T hB / ν  , it reduces to the 
Rayleigh-Jeans formula. Planck later called his great achievement an act of desperation, and 
for some years after 1900, he struggled without success to find an explanation for the existence 
of h within the laws of classical physics.

Albert Einstein  recognized the significance of Planck’s law more deeply than Planck himself. 
Einstein was thus motivated to suggest a corpuscular description of electromagnetic radiation 
(Einstein 1905). He proposed that the corpuscles (later called photons) have energy E = hν, 
where ν is the radiation frequency, and he employed this idea in his theory of the photoelectric 
effect. Convincing experimental evidence was obtained in support of this theory by a number 
of investigators, most notably Robert Millikan, in the decade following 1905 (Millikan 1916). 
Nevertheless, many physicists found it difficult to reconcile the idea of discrete photons with 
the highly successful and universally accepted wave theory of classical electromagnetism. Thus 
Einstein’s corpuscular description gained adherents only very slowly. However, in 1923, Arthur 
H. Compton made careful observations of x-ray–electron scattering, and he gave a success-
ful kinematic description of this scattering (now called the Compton effect) by considering 
the relativistic collision of a photon with an electron, where both are regarded as particles 

1 The presently accepted value of h, now called Planck’s constant, is h = 6.62606957(29) × 10–27 erg·s.

 

  

 

 

 

  

 

 

 

 

 

 

  

 



Introduction4

(Compton 1923). Compton showed that a photon not only carries energy E = hν but also linear 
momentum; that is,

 p
h
c

=
ν

 (1.3)

His results finally convinced the community of physicists to accept wave-particle duality for 
electromagnetic radiation. What we mean by this duality is that electromagnetic radiation has 
wavelike properties or particlelike properties depending on what sort of observation is made.

The specific heats of  solids presented a problem somewhat related to that of  the black-body 
spectrum. In 1819, these specific heats were predicted classically by DuLong and Petit to be 
a constant independent of  temperature. However, by the end of  the nineteenth century, it 
became clear that while measured specific heats agree with the DuLong-Petit law at relatively 
high temperatures, they tend toward zero as T → 0. This behavior was explained by Einstein 
(1911) and in more detail by Peter Debye (1912) as well as by Max Born and Theodore von 
Karman (Born and von Karman 1912, 1913). Their theory, which invoked quantization of 
lattice vibrations of  solids, was a natural outgrowth of  the early quantum theory of  black-
body radiation.

Ernest Rutherford used the results of alpha-particle scattering experiments to propose the 
nuclear atom model (Rutherford 1911). Needless to say, an atom in this model consists of a 
massive and very compact nucleus about which atomic electrons circulate in orbital motion. 
According to classical physics, such electrons should radiate electromagnetic waves because 
of their centripetal acceleration, and a simple classical estimate shows that they should lose 
energy and spiral into the nucleus in times of order 10–15 s. However, atoms are stable, so it is 
obvious that the classical description is very wrong. In 1913, Niels Bohr recognized this, as well 
as the fact that no combination of fundamental constants in classical physics can yield a natu-
ral length scale for an atom, whereas 4πh2/mee2 ≈ 10–8 cm does provide such a scale. (Here me is 
the electron mass, and e is the magnitude of electron charge in the hlu system.) Employing the 
concepts of quantized stationary (nonradiating) orbits and radiative transitions between them, 
where h plays a crucial role, Bohr constructed his model of atomic hydrogen (Bohr 1913). He 
thereby successfully accounted for the frequencies of optical transitions in atomic hydrogen 
and in singly ionized helium. His model quickly gained wide acceptance in part because of con-
vincing supportive evidence from the experiments of James Franck and Gustav Herz (Franck 
and Herz 1914). Here electrons from a thermionic source were accelerated in an evacuated tube 
containing a low density of atomic vapor (e.g., sodium, potassium, thallium, mercury, etc.). If  
the electron kinetic energy was sufficiently low, only elastic collisions between electrons and 
atoms occurred. However, if  the electron kinetic energy was high enough to excite a transition 
from the ground state of an atom to an excited state, the electron suffered an inelastic collision 
with corresponding energy loss, and fluorescence was observed as the excited atom decayed 
back to the ground state.

Bohr’s model was elaborated by Arnold Sommerfeld (1916), who derived a formula for the 
fine-structure splittings in hydrogen and singly ionized helium by applying quantization condi-
tions to classical Keplerian orbits of the electron and by including an important relativistic cor-
rection. Sommerfeld’s formula agreed (albeit fortuitously) with spectroscopic observations of 
the fine structure and thus the Bohr-Sommerfeld model was taken seriously for about a decade 
as a plausible way to understand atomic structure.

 

 

 

 

 

  

 

 

 

 

 

  

 

 

  



1.2 A very brief summary of the antecedents of quantum mechanics5

The fund of experimental data concerning atomic spectra grew very rapidly in the first 
decades of the twentieth century, thanks to the efforts of many optical and x-ray spectrosco-
pists. Attention naturally was drawn to the problem of assigning Bohr-Sommerfeld quantum 
numbers to hundreds of newly observed energy levels in scores of atoms. Of special interest 
were the quantum numbers of atoms in their ground states because this was obviously related 
to the role of atomic structure in building up the periodic table. Here Edmund C. Stoner made 
a valuable contribution in October 1924 by publishing an authoritative classification of such 
quantum numbers (Stoner 1924). Stoner’s conclusions came to the attention of Wolfgang 
Pauli, who used them to formulate the extremely important exclusion principle at the end of 
1924 (Pauli 1925).

Observations and analyses of the Zeeman effect played an especially significant role in the 
elucidation of atomic energy level quantum numbers. Following Peter Zeeman’s pioneering 
measurements of the splitting of sodium spectral lines in a magnetic field (Zeeman 1897), 
Henrik A. Lorentz gave what appeared to be a correct theoretical explanation based on classi-
cal electrodynamics in the same year (Lorentz 1897). This was called the normal Zeeman effect. 
However, as more observations with higher resolution were carried out on many spectral lines 
in various atoms, it became apparent that the normal Zeeman effect is the exception rather than 
the rule. Instead, the anomalous Zeeman effect is typical, in which more complicated patterns 
of level splittings occur. For years, the anomalous Zeeman effect remained a mystery because 
all efforts to explain it failed. Finally, the puzzle was resolved with invention of the concept of 
electron spin by George Uhlenbeck and Samuel Goudsmit in November 1925 (Uhlenbeck and 
Goudsmit 1925, 1926). Earlier in 1925, Ralph Kronig had conceived of the same idea, but he 
was discouraged by adverse criticism and withdrew his proposal. [For a brief  history of elec-
tron spin, see Commins (2012).]

Next we turn to the phenomenon of wave-particle duality for material particles (i.e., elec-
trons, protons, atoms, etc.). First, let us recall relation (1.3) between momentum and frequency 
established by Compton for the photon. Employing the familiar expression λ = c/ν relating 
wavelength and frequency, we see that (1.3) implies

 λ =
h
p

 (1.4)

In 1923, Louis de Broglie (1923, 1924) made the extremely important suggestion that each 
material particle is associated with a wave such that if  the momentum of the particle is p, 
the wavelength of the corresponding “matter” wave is also given by (1.4). Fragmentary 
experimental evidence supporting de Broglie’s hypothesis was already available in 1921 from 
results obtained by C. Davisson and C. H. Kunsman on the scattering of electrons from a 
nickel surface (Davisson 1921). By 1927, Davisson and L. Germer (1927) and, independently,  
G. Thomson and A. Reid (Thomson and Reid 1927; Thomson 1928) provided convincing evi-
dence for relation (1.4) from electron diffraction experiments. Since then, the validity of (1.4) 
for material particles has been demonstrated precisely in many different experiments using a 
variety of material particles (e.g., neutrons and neutral atoms) as well as electrons.

Even in the absence of any formal quantitative theory, it is natural to assume that a particle 
is most likely to be located where the amplitude of its corresponding de Broglie wave packet 
is large. However, if  the momentum and hence the wavelength are reasonably well defined, the 
wave packet must extend over many wavelengths, in which case the position of the particle is 

 

 

  

 

 

 

 

 

   

 

 

 

 

 

 

  

 

 

 



Introduction6

quite uncertain. Conversely, if  the position is well defined, the wave packet must be confined 
to a small region of space, and therefore, it must be a superposition of components with many 
different wavelengths. Hence the momentum is very uncertain. The de Broglie relation (1.4) 
thus implies that it is impossible to determine simultaneously and precisely the position and the 
conjugate momentum of a particle.

This qualitative statement is made more precise by the uncertainty principle, which was for-
mulated by Werner Heisenberg (1927) from consideration of a variety of thought experiments 
in which one tries to measure the position and momentum of a particle but where relation 
(1.4) applies not only to the particle in question but also to a photon that might be used in the 
measurement process. According to the uncertainty principle, the uncertainties Δx and Δpx 
associated with a simultaneous measurement of coordinate x and conjugate momentum px, 
respectively, satisfy the inequality

 ∆ ∆x px ≥


2
 (1.5)

where ћ = h/2π. Although in classical mechanics the state at any given time of an isolated sys-
tem of N particles, each with f degrees of freedom, is determined by specifying Nf generalized 
coordinates and Nf corresponding generalized momenta, the uncertainty principle tells us that 
this specification cannot be done precisely. A coordinate and the corresponding momentum are 
incompatible observables.

Intuitively, it is clear that because not only material particles but also photons obey the de 
Broglie relation (1.4), there should be an uncertainty principle for the electromagnetic field. 
Indeed, this is so (Jordan and Pauli 1928), although the uncertainty relation for electromag-
netic field components is more complicated than for nonrelativistic material particles. We need 
not be concerned with such complications here. The main point for our present discussion is 
that the classical prescription for specifying a state of the electromagnetic field at any given 
time, by giving each component of the electric and magnetic fields at every point in space, can-
not always be achieved.

It is easy to see from the de Broglie relation and the uncertainty principle that the Bohr-
Sommerfeld model has a fatal defect, for in that model one starts in any given situation by 
finding the possible classical orbits of an electron or electrons and then selects from those 
orbits the ones that satisfy the Bohr-Sommerfeld quantization conditions. However, given the 
incompatibility of coordinate and conjugate momentum, and specifically the uncertainty rela-
tion (1.5), such orbits are in general not observable and indeed have no meaning, especially 
for states such as a ground state, that have small quantum numbers. In fact, looking back 
on the Bohr-Sommerfeld model from the viewpoint of quantum mechanics, and using the 
Wentzel-Kramers-Brillouin (WKB) approximation, one can show that the Bohr-Sommerfeld 
quantization conditions are valid only in the limiting case in which the potential energy varies 
very slowly over distances comparable with the linear dimensions of an electron wave packet  
[see, e.g., equation (9.18)].

Although the Bohr-Sommerfeld model was recognized for this and other reasons to be 
defective and was eventually replaced by quantum mechanics, it turned out that the Bohr-
Sommerfeld quantum numbers did not have to be discarded wholesale; rather, some of these 
numbers could be retained if  given new interpretations and new names. Consequently, after 
quantum mechanics was invented, the results of many analyses of atomic and molecular 

 

 

 

 

 

 

 

 

 



1.2 A very brief summary of the antecedents of quantum mechanics7

spectra carried out before 1925 could be salvaged, including most interpretations of Zeeman-
effect data, Stoner’s very useful contribution, and the exclusion principle itself.

We have seen in this section that deep and broad flaws appeared in the classical picture of 
the atomic world in the first quarter of the twentieth century. These flaws were so fundamental 
and serious that it would be necessary to replace the entire classical edifice with a radically dif-
ferent theory – quantum mechanics. It should be no surprise that these radically new concepts 
required a new mathematical language that was quite different from the mathematical language 
of classical physics. It turned out that the natural mathematical language of quantum mechan-
ics is the theory of linear vector spaces and, in particular, Hilbert spaces. Therefore, before we 
discuss the rules of quantum mechanics in Chapter 3, we review and summarize some of the 
most important features of Hilbert spaces in Chapter 2.

  

 

 



8

In this chapter we summarize the most important definitions and theorems concerning Hilbert 
spaces that are relevant for quantum mechanics. Much of the material that follows is quite ele-
mentary and is probably well known to most readers. We discuss it mainly to establish a com-
mon language and notation. The reader will notice as we proceed that our standards of rigor 
are low and would be scorned by a proper mathematician. For example, we omit any discussion 
of convergence when considering infinite-dimensional spaces.

2.1 Linear vector spaces

A linear vector space S consists of certain elements u v, , … called vectors together with a 
field of ordinary numbers (sometimes called c-numbers) a, b, c, .… In quantum mechanics, the 
latter are the complex numbers, and we deal with complex vector spaces. The vectors u v, , … 
and the numbers a, b, c, … satisfy the following rules:

1. Vector addition is defined. If  u v and  are members of S, there exists another vector w , 
also a member of S, such that

 w u v= +  (2.1)

2. Vector addition is commutative.

 u v v u u v+ = + for all ,  (2.2)

3. There exists a null vector 0  or simply 0 such that

 u u u u+ = + =0 0 for any  (2.3)

4. Multiplication of a vector u  by any c-number a is defined.

 u a u’ =  (2.4)

 is in the same “direction” (along the same ray) as u .
5. The following distributive law holds.

 a u v a u a v+( ) = +  (2.5)

Mathematical Review2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.4 Unitary spaces: The scalar product9

2.2 Subspaces

A vector space may contain subspaces. A subspace is a subclass of  the space, itself  having 
the properties of  a vector space. For example, ordinary Euclidean 3-space contains as sub-
spaces all the straight lines passing through the origin and all the two-dimensional planes 
that pass through the origin. All subspaces possess the null vector in common. They may 
or may not possess other vectors in common. If  they do not, they are said to be orthogonal 
subspaces.

2.3 Linear independence and dimensionality

Vectors u u un1 2, ,...,  are by definition linearly independent if  and only if  the equation

 a u a u a un n1 1 2 2 0+ + + =  (2.6)

has no solution except for the trivial solution

 a a an1 2 0= = = =  (2.7)

Suppose that in a certain space S there are n linearly independent vectors u u un1 2, ,..., , 
but any n + 1 vectors are linearly dependent. Then, by definition, the space is n-dimensional. 
The number n may be finite, denumerably infinite, or even continuously infinite. In most of 
the following discussion, we pretend that the space in question has finite n, but the results 
we obtain can be extended in a natural way to the other two cases. Particular problems 
associated with infinite dimensionality will be dealt with as we come to them (see, e.g., 
Section 2.14).

In an n-dimensional space where n is finite, n linearly independent vectors u u un1 2, ,...,  
are said to span the space or form a basis for the space. This means that any vector w  can be 
expressed as a linear combination of the ui ; that is,

 w a ui i
i

n

=
=
∑

1

 (2.8)

where the ai are complex numbers.

2.4 Unitary spaces: The scalar product

A unitary space is one in which for any two vectors u v,  the scalar product u v|  is defined as 
a complex number with the following properties:

1. u v v u| |= , where the bar means complex conjugate (thus u u|  is real).
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2. u av a u v| | .=  Thus,
 

au v v au a u v| | * |= =
 

 where the asterisk means complex conjugate.
3. u v w u v u w| | |+ = + .
4. u u u| > =0 0 unless .

We also use the following terminology:

 u u u u u u| |= = norm of length of  

Also, if  w u w u u w≠ ≠ =0 0 0, , | , but   and  are said to be orthogonal.

2.5 Formation of an orthonormal basis: Completeness –  
definition of Hilbert spaces

Given a set of linearly independent vectors u u un1 2, ,...,  in a unitary space, we can construct 
an orthonormal basis as follows: form the unit vector

 φ1
1

1 1

=
u

u u|
 (2.9)

Next, form

 φ φ2 2 1= +a u b  (2.10)

with a, b chosen so that φ φ φ φ1 2 2 20 1| | .= = and  That is,

 φ φ φ1 2 1 2 0| |= + =a u b  (2.11)

which yields b a u= − φ1 2|  and thus

 φ φ φ2 2 1 1 2= − a u u|  (2.12)

with a chosen so that φ φ2 2 1| = . Next, define φ3  by

 φ φ φ φ φ3 3 1 1 3 2 2 3= − − a u u u′ | |  (2.13)

with a′ chosen to normalize φ3 , and so on. The result of this Schmidt process is a basis of 
orthogonal unit vectors (orthonormal vectors) φ φ1 ,..., .n

A set of basis vectors in a unitary space is said to be complete if  any vector in the space 
can be expressed as a linear combination of the basis members. For finite-dimensional vec-
tor spaces, any set that spans the space is complete. If  the space has infinite dimensionality, 

 

 

 

 

 

 

 

 

 

 

 

 

 



2.6 Expansion of an arbitrary vector in terms of an orthonormal basis11

questions of limits and convergence arise. We ignore such questions and content ourselves with 
the following simplified definition of a Hilbert space: it is a unitary space where even if  the 
dimensionality is infinite, it is still possible to form a complete basis.

2.6 Expansion of an arbitrary vector in terms of an orthonormal basis

Suppose that the φi , i = 1, …, n, form a complete orthonormal basis in an n-dimensional 
Hilbert space. (Here we assume that n is finite or denumerably infinite. If  the dimension is con-
tinuously infinite, we must replace sums by integrals, indices i, j, … by continuous parameters, 
and each Kronecker delta by a Dirac delta function. This is explained in Section 2.14). An arbi-
trary vector w  can be expressed as a linear combination of the φi , that is,

 w ai i
i

n

=
=
∑ φ

1

 (2.14)

Then we have

 φ φ φ δj i
i

j i i
i

ij jw a a a| |= = =∑ ∑  

where δij is a Kronecker delta. Hence we can write

 w wi
i

i= ∑ φ φ |  (2.15)

The scalar product of two arbitrary vectors v w,  can be expressed in terms of their expansion 
coefficients as follows: let

 w ai i
i

n

=
=
∑ φ

1

 

and

 v bj j
j

n

=
=
∑ φ

1

 

Then

 v w b a b a b aj
i j

i j i j
i j

i ij i i
i

| |*

,

*

,

*= = =∑ ∑ ∑φ φ δ  (2.16)
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2.7 The Cauchy-Schwarz inequality

Consider any two vectors u v, . We now prove the following important inequality attributed 
to Schwarz but actually discussed first by Cauchy:

 u u v v u v| | | ≥
2

 (2.17)

where equality is achieved only if  u a v=  for some constant a. To prove (2.17), let

 u a v bi i i i= =∑ ∑φ φand  

where the φi  form a complete orthonormal basis. Then

 u v a b a bi
i j

i j j

2
= ∑ *

,

*  

and

 u u v v a a b bi i
i j

j j= ∑ *

,

*  

Thus

 u u v v u v a b a b a b Pi j
i j

i j j i− = −( ) ≡∑2
* *

,

 (2.18)

Because i, j are dummy indices in the sum on the right-hand side of (2.18), we can inter-
change i and j, which yields

 u u v v u v a b a b a b Qj i
i j

j i i j− = −( ) ≡∑2
* *

,

 (2.19)

Thus

 

u u v v u v P Q a b a b a b a bi j j i
i j

i j j i− = +( ) = −( ) × −( )∑2 1
2

1
2 ,

                                                   = − ≥∑1
2

2
a b a bi j j i

i j,

0
 (2.20)

and equality is achieved only if  a b a bi j j i=  for all i, j, which would imply u v= const .
The reader will readily see that the Cauchy-Schwarz inequality is a generalization of the fol-

lowing simple inequality for two vectors in Euclidean 3-space: the absolute value of the scalar 
product of these two vectors is less than or equal to the products of their lengths, and equality 
is achieved if  and only if  the angle between these two vectors is zero. Several other inequalities 

  

 

 

 

 

 

 

 

 

 



2.10 The adjoint operator13

of importance in quantum mechanics are derived in Appendix A. These are of particular value 
for analyzing the stability of matter, which is discussed in Section 14.1.

2.8 Linear operators

An operator A transforms a vector u  into another vector v . It achieves a mapping of the 
vectors in the space S. We write v A u= . An operator is linear if  and only if  it satisfies the 
following conditions:

 Aa u aA u A u v A u A v= +( ) = +and  

for any vectors u v, . The expression AB u  means operate first on u  with B: w B u= . Then 
operate on w  with A: v A w= . If  for all u AB u BA u, , =  we write A B AB BA, .[ ] ≡ − = 0  
Then A and B are said to commute. It is easy to think of operators that do not commute. For 
example, in three-dimensional Euclidean space, B could be a rotation about the x-axis and A a 
rotation about the y-axis.

2.9 Inverse of a linear operator

If  w A u= , consider the operator A–1 such that u A w= −1  for all u . A–1 is the inverse of 
A, and

 AA A A I− −= =1 1  

where I is the identity operator, which has the property I u u u=  for all . Not all operators 
have inverses: those that do are called nonsingular, and those that don’t are singular. For exam-
ple, consider a projection operator P that maps all vectors r in three-dimensional Euclidean 
space onto their projections in the xy-plane. P is obviously singular – it has no inverse.

If  A, B, and C are nonsingular operators and A = BC, how can we express A–1 in terms of 
B–1 and C–1? Clearly,

C–1B–1BC = I
Hence we must have A–1 = C–1B–1.

2.10 The adjoint operator

While discussing the scalar product of two vectors, we could have introduced the idea of a 
dual vector space with vectors u  in one-to-one correspondence with vectors u  in the original 
space. Let A be a linear operator in the original space. We also may consider the application 
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of operator A to a dual vector u . The latter operation is defined by requiring that for any two 
vectors u v,  ,

 u A v u A v( ) = ( )  (2.21)

where the left-hand side is the scalar product of u A with v , and the right-hand side is the 
scalar product of u  with A v . Given this equality, it is not necessary to write the parentheses, 
so we drop them in what follows. Now suppose that A u w= . The operator that transforms 
u w into  is called the adjoint of A and is denoted by the symbol A†: u A w† = . For our 

purposes, it is unnecessary to distinguish between the concepts of adjoint and Hermitian con-
jugate, so we shall henceforth call A† the Hermitian conjugate of A.

Because v w w v| |= , we have

 v A u u A v| | | |= †  (2.22)

Also, we can easily show that (AB)† = B†A† as follows: let w A u x B v= =† . and  Then

 w x u AB v x w v B A u| | | | | |= = = † †  

It follows from (2.22) that

 AB B A( ) =† † †  (2.23)

A is said to be self-adjoint or Hermitian if  A A= †. For a Hermitian operator A,

 v A u u A v| | | |=  (2.24)

For example, the expression u u  is a Hermitian operator. For any w v, , we have

 w u u v u w v u v u u w| | | | | |= =  

2.11 Eigenvectors and eigenvalues

In general, if  v A u= , then v  is in a different direction than u . However, there might exist 
certain vectors u u1 2, ,…, called the characteristic vectors or eigenvectors of A, that have the 
property

 A u ui i i= λ  (2.25)

where the λi are c-numbers called the eigenvalues of A. The collection of all the λi for given A is 
called the eigenvalue spectrum of A. We now prove a theorem that is simple but very important 
for quantum mechanics.

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



2.12 Projection operators and completeness15

The eigenvalues of a Hermitian operator are real, and the eigenvectors are mutually 
orthogonal.

Proof: Let A u un n n= λ . Then

 u A u u un n n n n| | |= λ  (2.26)

Now take the complex conjugate of both sides of (2.26). Noting that u A u u A un n n n| | | |=  
and that u un n|  is always real, we see that λn also must be real. Furthermore,

 u A u u um n n m n| | |= λ  (2.27)

and

 u A u u u u un m m n m m m n| | | |*= =λ λ  (2.28)

However, the left-hand sides of (2.27) and (2.28) are equal; therefore,

 λ λm n m nu u−( ) =| 0  (2.29)

Thus, if  λm ≠ λn, u um n| = 0. So far we have proved that the eigenvalues of  a Hermitian 
operator are all real and that the eigenvectors corresponding to distinct eigenvalues are 
orthogonal. However, we can also consider all the eigenvectors that belong to the same eigen-
value λ. Suppose that there exist k such linearly independent “degenerate” eigenvectors. These 
form a k-dimensional subspace Sk of  the original vector space because any linear combina-
tion of  such eigenvectors is also in Sk. The basis of  Sk may now be rendered orthonormal by 
the Schmidt process. Thus all eigenvectors of  a Hermitian operator are orthogonal or can be 
made so.

2.12 Projection operators and completeness

Consider a vector space S with a complete orthonormal basis consisting of vectors ui , i = 1, …, 
n. As stated previously, completeness means that an arbitrary vector w  can be expressed as

 w u u wi
i

n

i=
=
∑

1

|  (2.30)

The Hermitian operator P u ui i i=  is a projection operator or projector that acts on w  to 
give the component of w  along the direction of ui . From (2.30) the sum of all these projec-
tors is the identity operator

 u u P Ii
i

n

i i
i

n

= =
∑ ∑= =

1 1

 (2.31)
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Equation (2.31) is known as the completeness relation. For a vector space with continuously 
infinite dimensionality, the basis vectors are labeled by one or more continuous parameters λ, 
and the completeness relation is written as

 λ λ λ∫ =d I  (2.32)

2.13 Representations

In (2.30), the complex numbers u wi |  represent vector w  with respect to the basis ui . If  the 
vector space dimension is finite or denumerably infinite, these numbers can be arranged in a 
column matrix as follows:

 

u w

u w
1

2

|

|

...















 (2.33)

Similarly, we can expand a dual vector in terms of the basis of dual vectors ui ; that is,

 v v u ui
i

i= ∑ |  (2.34)

The row matrix

 v u v u| | ...1 2( )  (2.35)

represents v  in this basis. The scalar product v w|  is obtained by multiplying the column 
matrix of (2.33) on the left by the row matrix of (2.35) according to the usual rule.

Next, consider an operator A. We write

 A IAI u u A u ui i j
i j

j= = ∑ | |
,

 (2.36)

The complex numbers u A ui j| |  form a square matrix that represents A with respect to the 

basis of vectors ui . Suppose that each ui  is an eigenvector of a Hermitian operator Q, with 
corresponding eigenvalue qi; that is,

 Q u q ui i i=  

The matrix that represents Q with respect to the basis ui  is obviously diagonal, and the 
diagonal elements are the eigenvalues q1, q2, .… A convenient way to write Q is as follows:

 

 

 

 

 

 

 

 

 

 

 



2.14 Continuously infinite dimension: The Dirac delta function17

 

Q IQI u u Q u u

u q u u u

i
i j

i j j

i j
i j

i j j

= =

=

∑
∑

,

,

| |

|             

              = ∑q u ui
i

i i

 (2.37)

2.14 Continuously infinite dimension: The Dirac delta function

As we have seen in (2.32), the completeness relation for a space with continuously infinite 
dimension is

 I d= ∫ λ λ λ  

where λ is a continuous parameter that labels the basis states. (For simplicity, we assume here 
that λ is a single parameter.) Consider an arbitrary vector u . We write

 u I u u d= = ∫ λ λ λ  

and thus

 ′ = ′∫λ λ λ λ λu u d  (2.38)

The quantity f(λ) = λ u  is a continuous function of λ of  functional form determined by u .  
Thus (2.38) can be written as

 f f d′( ) = ′ ( )∫λ λ λ λ λ  (2.39)

To determine ′λ λ , we introduce the (one-dimensional) Dirac delta function. Strictly 
speaking, the delta function δ( )x y−  is not a proper function at all but rather a distribution: it 
is defined by its effect when multiplied by another function f x( ) in an integral; that is,

 f y f x x y dx( ) ( ) ( )= −
−∞

∞

∫ δ  (2.40)

However, we can think heuristically of the delta function as a Gaussian or some other sharply 
peaked function taken in the limit as we reduce its width to zero while at the same time keeping 
the area under its curve equal to unity. The delta function has the following properties:

 δ( )x y x y− = ≠0 if   (2.41)
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d f x

dx
f x

d
dx

x y dx
n

n
x y

n
n

n

( )
( ) ( ) ( )

= −∞

∞

= − −[ ]∫1 δ  (2.42)

 f x g x dx
f x
g x

i

xi
i

( ) ( )
( )δ [ ] =

∂ ∂∫ ∑  (2.43)

where in (2.43) the xi are the real roots of g(x). A useful integral representation of the delta 
function is obtained from the Fourier integral theorem. Here δ ω( ) is the Fourier transform of 
the function F t( ) ;= 1  that is,

 δ ω
π

ω( ) lim=
→∞

−
∫

1
2 T

i t

T

T

e dt  (2.44)

Equation (2.44) also can be written as

 δ ω
π

ω
ω

( ) lim
sin

=
→∞

1
T

T
 (2.45)

Another useful representation of the delta function is

 δ ω
π

ω
ω

( ) lim
sin

=
→∞

1 2

2T

T
T

 (2.46)

Comparing (2.45) with (2.46), we obtain the formula

 δ ω δ ω δ2 0( ) ( ) ( )=  (2.47)

Now, returning to (2.39) and comparing it with (2.40), we see that

 ′ = − ′( )λ λ δ λ λ  (2.48)

This is to be compared with the orthonormality relation for a discrete set of basis vectors:

 φ φ δi j ij=  

2.15 Unitary transformations

The choice of a complete basis set for a vector space is not unique. For example, in three-
dimensional Euclidean space we can choose as a basis the unit vectors ˆ, ˆ, ˆi j k  that lie along 
the x, y, and z directions, respectively. However, we can equally well choose three other unit 
vectors obtained from ˆ, ˆ, ˆi j k  by, for example, making an arbitrary rotation about the origin. 
Consider a space S spanned by the complete orthonormal set of vectors ui  and also spanned 

 

 

 

 

 

 

 

 

 

 



2.15 Unitary transformations19

by a different complete orthonormal set ′ui . Let the one-to-one mapping from the set ui  to 
the set ′ui  be achieved by an operator U; that is,

 U u u i ni i= ′ = 1,...,  (2.49)

Then we also have

 u U ui i
† = ′  (2.50)

Now

 U UI U u u u ui i
i

i i= = = ′∑ ∑  (2.51)

and

 U IU u u U u uj j
j

j j
† † †= = = ′∑ ∑  (2.52)

Hence

 

UU u u u u u u

u u I

i
i j

i j j i
i j

ij j

i i
i

†

, ,

|= ′ ′ = ′ ′

= ′ ′ =

∑ ∑
∑

δ

       
 

where the last step follows because the set ′ui  is complete. Therefore,

 UU U U I† †= =  (2.53)

or, equivalently,

 U U† = −1  (2.54)

An operator with this property is called unitary. Unitary transformations are impor-
tant in quantum mechanics because they are norm-preserving: if  ′ =u U u , then 
′ ′ = =u u u U U u u u| | | |† .
Next, consider some operator A such that A u v= , whereas U u u= ′  and U v v= ′ . 

There is some operator A′that transforms ′u  into ′v . What is the relationship between A′and 
A? We have

 ′ ′ = = = = ′−A u v U v UA u UAU u′ 1  

Thus

 ′ = =−A UAU UAU1 †  (2.55)

This formula gives the transformation rule for operator A under unitary transformation U. 
For Hermitian operators, this has the following consequence: consider a Hermitian operator 
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H that has a complete set of orthonormal eigenvectors hi  with corresponding eigenvalues  
ηi; that is,

 H h hi i i= η  

As noted previously, H can be written as

 H h hi
i

i i= ∑η  (2.56)

Now consider another orthonormal basis in the same space consisting of the vectors ui . In 
general, the matrix of H with respect to this new basis is not diagonal. However, there is a 
related operator H′ the matrix of which is diagonal in the new basis. It is easily found as fol-
lows: we write

 ′ = = =∑ ∑H UHU u h H h u u ui i j
i j

j i
i

i i
†

,

| | η  (2.57)

Comparing (2.56) with (2.57), we see that H is a weighted sum of projectors in the hi  basis, 
whereas H′ is a weighted sum of projectors in the ui  basis. The weights are the same in both 
cases: they are the eigenvalues of H, which are also the eigenvalues of H′.

Suppose that we do not know the eigenvalues ηk of  operator H  that appear in H h hk k k= η ,  
but we do know the elements of the nondiagonal matrix; that is,

 H u H uij i j=  (2.58)

How can we find the eigenvalues η? We write

 H h H u u h hk j
j

j k k k= =∑ η  

Thus

 u H u u h u hi j
j

j k k i k∑ = η  (2.59)

This can be written as

 H I X−( ) =η 0  (2.60)

where X is a column matrix of elements u hi k , and H I−η  is a square matrix in the ui  basis. 
Expression (2.60) is a system of n homogeneous linear equations in n unknowns that has a 
solution if  and only if  the determinant of the coefficients (i.e., the determinant of H I−η ) 
vanishes.1 For finite n, the left-hand side of the equation

1 Det H I−( )η  is called the secular determinant because equations such as (2.60) have been used since Euler’s time in 
celestial mechanics to calculate secular (long-period) perturbations of planetary orbits.
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 det( )H I− =η 0  (2.61)

is a polynomial in η; thus, when we find the roots of that polynomial, we have found the 
eigenvalues.

2.16 Invariants

Under a unitary transformation U, we have seen that A A UAU→ ′ = −1. However, certain quan-
tities associated with A remain invariant as follows:

The •	 trace of  a matrix is defined as the sum of its diagonal elements. As is well known, the 
trace of a product of matrices is invariant under cyclic permutation of those matrices. Thus

 tr tr tr tr′( ) = ( ) = ( ) = ( )− −A UAU U UA A1 1  

Therefore, the trace of any Hermitian matrix, diagonal or not, is the sum of its diagonal 
elements, and this sum remains invariant when the matrix is diagonalized by a unitary 
transformation.

The determinant is also an invariant because:•	

 
det( ) det( ) det( ) det( )

det det
′ =

( ) ( )
−

−

A U A U
U U
 



1

1            = det detA A( ) = ( )  

2.17 Simultaneous diagonalization of Hermitian matrices

We now encounter another elementary theorem of linear algebra that is very important in 
quantum mechanics:

Two Hermitian matrices A, B are diagonalized by the same unitary transformation U if and only 
if A and B commute.

Proof: Consider ′ =A UAU † and ′ =B UBU †. First, suppose that A′ and B′ are both diagonal. 
Then they obviously commute. Hence

 
AB U A UU B U U A B U U B A U

U B UU A U
= ′ ′ = ′ ′ = ′ ′

′ ′

− − − −

− −

1 1 1 1

1 1      = 
     = BA

 

Therefore, if  A and B are diagonalized by the same unitary transformation, they commute. 
Conversely, suppose that AB = BA. Then ′ ′ = ′ ′A B B A  because

 
UABU UAU UBU A B

UBAU B A

− − −

−

= = ′ ′
= = ′ ′

1 1 1

1             
 

 

 

 

 

 

 

 

 

 

 



Mathematical Review22

Then, by the rule for matrix multiplication, we have for any i, k

 ′ ′ = ′ ′∑ ∑A B B Aij
j

jk in
n

nk  (2.62)

We can always find a unitary transformation that diagonalizes any given Hermitian matrix. 
Thus we choose U so that A′ is diagonal. Then (2.62) becomes

 ′ − ′( ) ′ =A A Bii kk ik 0  (2.63)

If  all the eigenvalues of  A are distinct, then the factor in parentheses on the left-hand side 
of  (2.63) is nonzero for i ≠ k, in which case ′ =Bik 0, so B′ is also diagonal. It remains to 
analyze the case where some of  the eigenvalues of  A are the same. Thus consider a par-
ticular eigenvalue λ of  A that is m-fold degenerate. Associated with λ there is an m × m 
diagonal submatrix λIm  of  A′ (where Im is the m × m identity matrix), and there is also an  
m × m Hermitian submatrix of  B′ that is in general nondiagonal. However, we can always 
find a further unitary transformation V on the submatrix of  B′ that brings it to diagonal 
form, and because V I V Im mλ λ† = , we do not disturb the diagonal form of  A′. Thus, finally, 
we have proved that if  and only if  A and B commute, they are simultaneously diagonalized 
by the same unitary transformation.

2.18 Functions of an operator

How can we define a function f of  an operator A? In almost all situations of interest for quan-
tum mechanics, A is a Hermitian operator with a complete set of eigenstates un  and

 A u un n n= λ  

where the λn are the eigenvalues of A. As shown previously, A can be written as

 A u un
n

n n= ∑λ  

We define f(A) by the formula

 f A f u un
n

n n( ) = ( )∑ λ  

Alternatively, f(A) can be defined by the power-series expansion of f; that is,

 f A a An
n( ) = ∑  (2.64)

where the an are numerical coefficients. For example,

 exp( )
!

A
n

A
n

n=
=

∞

∑ 1

0

 (2.65)
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We must be careful about the order of noncommuting operators when constructing functions 
of two or more operators. For example, consider the expression

 e BeA A−  (2.66)

where A and B are two operators that do not necessarily commute. We now show that

 e Be B A B A A B A A A BA A− = + + [ ]  + [ ]   +[ , ]
!

, ,
!

, , ,
1
2

1
3

   (2.67)

This identity is very useful for many applications in quantum mechanics. To demonstrate it, 
consider the function

 f e BeA A( )λ λ λ= −  (2.68)

where λ is a continuous parameter. Differentiating both sides of (2.68), we have

 
∂
∂

= − = [ ]− − −f
e ABe e BAe e A B eA A A A A A

λ
λ λ λ λ λ λ,  (2.69)

Differentiating once again, we obtain

 
∂
∂

= [ ] − [ ] = [ ] − − −
2

2

f
e A A B e e A B Ae e A A B eA A A A A A

λ
λ λ λ λ λ λ, , , ,  (2.70)

and so on. Inserting these derivatives into the MacLaurin expansion

 f f f fλ λ λ( ) = ( ) + ′ ( ) + ′′ ( ) +0 0
1
2

02

!
  (2.71)

and setting λ = 1, we obtain the result (2.67). Note that if  A B f B, , ( ) ,[ ] = =0  λ  whereas if  
A B C, ,[ ] =  where C is a c-number, f(λ) = B + λC.

Next, consider a unitary operator U ( )ε  that differs infinitesimally from the identity I; 
that is,

 U I i Kε ε( ) = −  (2.72)

Here ε is a real parameter that is small enough that we can neglect quantities of order ε2 in what 
follows, and K is another operator. K must be Hermitian for the following reason:

 
I U U I i K I i K

I i K K

= = +( ) −( )
+ −( )
† †

†

ε ε
ε  =

 (2.73)

Let x n= ε be a finite real quantity obtained by multiplying n factors of ε together. We can take 
the limits n →∞ →, ε 0 in such a way that x is fixed. Also let U x( ) be the following unitary 
transformation:

 U x U I i
x
n

K ixK
n

n

( ) = ( ) = −





= −( )∏ →∞
ε lim exp  (2.74)
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Here we see that a unitary transformation of this type can be expressed as the exponential of 
a Hermitian operator.

Problems for Chapter 2

2.1. (a) A skew-Hermitian operator A is defined by the property A A† = − . Prove that A can 
have at most one real eigenvalue (which may be degenerate).

(b) Prove that the commutator A B AB BA,[ ] ≡ −  of  two Hermitian operators A B,  is skew-
Hermitian or zero.

(c) Show that the equation A B iqI,[ ] = , where q is a real constant and I is the identity matrix, 
cannot be satisfied by any finite-dimensional Hermitian matrices A, B.

2.2. Consider the functions u x xn
n( ) =  with n = 0, 1, 2, .… These form a basis for a vector space 

consisting of all real analytic functions of x on the real line in the interval − ≤ ≤ +1 1x . From 
the functions u x xn

n( ) = , we can form an orthonormal basis of functions φn x( ) by means of the 
Schmidt process. Here we define the scalar product of two “vectors” f x g x( ), ( ) by

 f g f x g x dx=
−∫

1
2 1

1
( ) ( )  

Find the orthonormal basis functions φn n, , , , . = 0 1 2 3  What well-known functions are these?

2.3. Let f x g x( ), ( ) be two real functions. Show that

 f x dx g x dx f x g x dx
x

x

x

x

x

x
2 2

2

1

2

1

2

1

2
( ) ( ) ( ) ( )∫∫ ∫≥ 





 

This is the Cauchy-Schwarz inequality for real integrals.

2.4. (a) Let G and H be two Hermitian operators, and assume that the eigenvectors of  
each form a complete orthonormal set. Show that if  G, H each have positive eigenvalues,  

then tr GH( ) > 0 .

(b) Let H be a Hermitian operator, the eigenvectors of which form a complete orthonormal 
set and the eigenvalues of which are all positive. Prove that for any two vectors u , v ,

 u H u H u Hv v v
2
≤  

Also prove that tr H( ) > 0.

2.5. Prove that if  u  is a vector in a Hilbert space and A is a Hermitian operator on that 
space, then

 A u
u A u

u u
u A w= + ∆  

where w  is some vector orthogonal to u , and ∆A A A= −2 2
.
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2.6. Let A be a Hermitian operator with a complete set of eigenvectors n  and asso-
ciated eigenvalues λn. Suppose that there are two Hermitian operators B, C such that 
A B A C B C, , , , .[ ] = [ ] = [ ] ≠0 0 but  Prove that

(a) At least one of the eigenvalues of A must be degenerate.
(b) If  B C iq,[ ] = , where q is a real constant, the entire spectrum of A is degenerate, and the 

degeneracy is of infinite degree.

2.7. Show that if  a linear operator A satisfies any two of the following conditions, it also satis-
fies the remaining condition:

A is Hermitian
A is unitary
A I2 =

2.8. Show that if  a matrix M is idempotent, that is, M2 = M, and it is not the identity matrix, 
then its determinant is zero.

2.9. Show that det( ) exp ( )e AA = [ ]tr , and state the condition or conditions that must hold for 
matrix A so that your proof is valid.

2.10. Show that if  A is an arbitrary 2 × 2 matrix, then

 A A A A I2 = ( ) −tr  det  

where I is the 2 × 2 identity matrix. This is a special case of the well-known Cayley-Hamilton 
theorem for N × N matrices.

2.11. Two matrices A, B satisfy the following equations:

 A AA A A I B A A2 0= + = =† † †  

(a) Show that B B2 = .
(b) Obtain explicit expressions for A and B in a representation in which B is diagonal, assum-

ing that B is nondegenerate. Can A be diagonalized in any representation?

2.12. Consider four linearly independent nonsingular Hermitian N × N matrices Ai, i = 1 2 3 4, , , , 
that satisfy the relations

 A A A A Ii j j i ij+ = 2δ  

where I is the N × N identity matrix. Show that N must be an even number greater than 2.

2.13. The three 2 × 2 Pauli spin matrices

 σ σ σx y

i

i
=






=
−





=
−







0 1

1 0

0

0

1 0

0 1z  

play an important role in many areas of quantum mechanics. The σx y z, ,  and the 2 × 2 identity 
matrix

 I =






1 0

0 1
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together span the four-dimensional vector space of all 2 × 2 matrices. It is easy to verify from 
Pauli spin matrices that

 σ σ σx y z I2 2 2= = =  

and also that

 σ σ σx y zi=  

and cyclic permutations. These two relations can be combined into the following 
compact form:

 σ σ δ ε σi j ij ijk kI i= +  

where δ ij  is a Kronecker delta, and εijk is the completely antisymmetric unit 3-tensor. Here 
εijk = +1 for ijk = 1 2 3, ,  and even permutations thereof; εijk = −1 for odd permutations of 1, 2, 3; 
and εijk = 0 whenever two or more of the indices ijk are equal.

The Pauli spin matrices shown earlier constitute the “standard” representation of the Pauli 
matrices. Another representation is obtained by writing

 ′ = −σ σx y z a y zU U, , , ,
1  

where U is a unitary 2 × 2 matrix. Because there are an infinite number of possible unitary 2 × 
2 matrices, there are an infinite number of representations of the Pauli spin matrices.

(a) Show that it is impossible to construct a nonvanishing 2 × 2 matrix that anticommutes 
with each of the three Pauli matrices.

(b) Show that it is impossible to find a representation of the Pauli matrices where all three are 
real or where two are pure imaginary and one is real.

(c) Let us define σ = + +σ σ σx y zi j kˆ ˆ ˆ , where, as usual, ˆ, ˆ, ˆi j k  are unit vectors along the x-, y-, 
and z-axes, respectively, in Euclidean 3-space. Let A, B be any two vector operators that 
commute with σ. Show that the following identity holds:

 σ σ σ   A B A B A B= + ×i  

(d) Let n̂ be a unit vector in an arbitrary direction in Euclidean 3-space and θ  an arbitrary 
angle. Show that

 exp( ) cos sini I iσ σ





n nθ θ θ= +  

The preceding two identities are important in many quantum mechanical applications.

2.14. Let A(x) be an operator that depends on the continuous parameter x, and let dA dx/  be 
the derivative of A(x) with respect to x. Note that A and dA dx/  do not necessarily commute. 
Derive the following identity:

 e
d
dx

e i
i

n
A

dA
dx

iA iA

n

n

n−

=

∞

( ) = −( )
+( )









∑ 10 !
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where A B B A B A B A B A A B0 1 2{ } = { } = [ ] { } = [ ] , , , , , ,   and so on.

2.15. Sum rules are frequently very useful in atomic, nuclear, and particle physics. We give some 
examples of sum rules and their application to physical situations in a problem in Chapter 16. 
For now, we are concerned with a mathematical identity that is useful for calculating sum rules. 
Consider two Hermitian operators H and A. H is the Hamiltonian of a physical system (e.g., an 
atom), and n En,   are a typical eigenvector and corresponding eigenvalue of H: H n E nn= .  
A is any Hermitian operator other than H. We are interested in evaluating the following sum 
in closed form:

 S E E n A k k A np k n
p

k

= −( )∑ †  

where p is a nonnegative integer.

(a) By employing the identity

 e Ae A it H A it H H AiHt iHt− = + [ ]+ ( ) [ ]  +,
!

, , ...
1
2

2
 

where t is a real variable, show that for any given eigenvector n  of  H,

 S n A A np p= †  

and where A H Ap p≡  −, 1  with A A0 = .

(b) Show that

 n A A n n A A np m p m
† †= −  

where m p≤  is a nonnegative integer, A A Hm m
† † ,=  −1 , and A A0

† †= .

2.16. Starting from equation (2.40), obtain the results (2.44), (2.46), and (2.47).
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3.1 Statement of the rules

When the rules of quantum mechanics were formulated, they expressed a revolutionary break 
with the past. Because they were something totally new, they could not be derived from the old 
principles of classical theoretical physics, which, as we saw in Chapter 1, gave no predictions or 
erroneous predictions for many experimental results. Instead, the rules of quantum mechanics 
had to be obtained by intuition and inspiration from experimental results.

The first fundamental concept we encounter in formulating the rules is that of a dynamical 
system. As in classical physics, this usually means an isolated system such as a free electron, free 
neutron, free molecule, and so on. However, if  we assume that quantum mechanics has general 
validity, it also must apply to macroscopic systems containing vast numbers of particles, and 
as a practical matter, it is impossible to isolate a macroscopic system from environmental influ-
ences, except in very special circumstances.

A dynamical variable or observable is a quantity associated with the system that can be mea-
sured. Some examples are position of a particle, linear momentum, orbital angular momen-
tum, energy, and electric charge, all of which have classical analogues. However, in quantum 
physics, there are also many observables with no classical analogues, such as intrinsic spin, 
parity, isospin, lepton number, baryon number, and so on.

Next we come to the concept state of a system. Because in quantum mechanics we deal with 
probabilities of  experimental outcomes, this phrase refers to an ensemble of  which the sys-
tem in question is a member. What sort of  ensemble? Not a real collection of  electrons that 
are somewhat similar to an electron of  interest, as in a beam of electrons emitted from a hot 
filament, but rather an ideal ensemble with an infinite number of  members consisting of  the 
system in question and mental copies of  it, all prepared in exactly the same way by some suit-
able experimental procedure. The mathematical characterization of  the state of  the system is 
equivalent to a complete list of  instructions for carrying out this experimental preparation.

Bearing these remarks in mind, we come to the first rule:

Rule 1: A dynamical system corresponds to a Hilbert space in such a way that a definite state of 
the system corresponds to a definite ray in the space.

The state is said to be u  if  it corresponds to the ray in the direction of vector u . Because mul-
tiplication of u  by an arbitrary complex number results in another vector ′u  associated with 
the same ray, it is assumed that ′u  also describes the same state. Even if  we choose a definite 
norm for u , it is still uncertain by an arbitrary phase factor; thus two vectors in the Hilbert 
space differing only by a phase factor correspond to the same physical state. Given any two 
vectors u v,  associated with distinct states, we may form

The Rules of Quantum Mechanics3 

 

 

 

 

 

    

 



3.1 Statement of the rules29

 w u v= +  (3.1)

which is also in the Hilbert space and therefore corresponds to another possible state of the 
system. For this reason, Rule 1 is frequently called the linear superposition principle. Note that 
although the absolute phases of two state vectors have no physical meaning, once those phases 
are chosen, the relative phase of the two vectors added together as in (3.1) does have meaning 
and can be of crucial importance.

An isolated quantum mechanical system can evolve with time, and this variation with time, 
which is sometimes called unitary evolution, is assumed to be continuous and causal. (For 
example, the spin magnetic moment of an electron precesses continuously and causally in an 
external magnetic field.) Let the state at some initial time t0 be u t0( ) , and at some later time 
let it be u t( ) . We assume that there exists a continuous and linear time-development operator 
U t t( , )0  that transforms u t0( )  into u t( )  for t > t0; that is,

 u t U t t u t( ) ( , ) ( )= 0 0  (3.2)

We require that the norm of u  be independent of time so that probability is conserved, a point 
that will be clarified shortly. Hence U must be unitary. Furthermore, for very small t – t0, U 
must differ only infinitesimally from the identity if  it is to be continuous. Thus we write

 U t t t I iK t( , )0 0+ = −δ δ  

where K is Hermitian. Because U is dimensionless, K must have the dimension of inverse  
time = frequency. It is also intuitively clear that K should contain the fundamental constant , 
which has dimension action = energy × time. Thus we assume that

 U t t t I
i

H t0 0+( ) = −δ δ,


 (3.3)

where the Hermitian operator H, which has the dimension of energy, is the Hamiltonian of the 
system. Inserting (3.3) in (3.2), we obtain

 u t t I
i

H t u t( )0 0+ = −



 ( )δ δ



 

Now we drop the subscript and divide both sides of this equation by δt  to arrive at

 H u t i
u t

t
( )

( )
=

∂
∂

  (3.4)

which is the well-known time-dependent Schroedinger equation. Equation (3.2) may be 
employed once again in (3.4) to obtain

 i U t t u t HU t t u tt∂ ( )  =( , ) ( , ) ( )0 0 0 0  
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which implies

 
∂
∂

= −
t
U t t

i
HU t t( , ) ( , )0 0


 (3.5)

If, as is often the case, the Hamiltonians at two different times commute (i.e., if  H t H t( ), ( )1 2 0[ ] =  
for any t t1 2, ), then it is easy to integrate both sides of (3.5) to obtain

 U t t
i

H t dt
t

t

( , ) exp ( )0

0

= − ′ ′












∫


 (3.6a)

and, if  H is independent of the time,

 U t t
i

H t t( , ) exp ( )0 0= − −





 (3.6b)

However, if  the Hamiltonians at different times do not commute, (3.6a) must be 
replaced by

 U t t
i

H t dt
t

t
( , ) exp ( )0

0

= − ′ ′



∫
+

 (3.7)

where the subscript + means that operators are time-ordered; that is, an operator at an earlier 
time stands to the right of one at a later time. This is visualized by expanding the exponential 
in a power series:

 
exp ( ) ( ) ( )− ′ ′





= − ′ ′ + 



∫ ∫

+

i
H t dt I

i
H t dt

i
H t d

t

t

t

t

  

0 0

2

1 t H t dt
t

t

t

t

1
0 0

1∫ ∫ ′ ′( )

                                                         − 



 ( ) ′∫ ∫

i
H t dt H t dt H

t

t

t

t



3

2 2 1 1
0 0

2
( ) (t dt

t

t
) )′ +∫

0

1


 

The derivation of this power series and details concerning time ordering are given in Section 
23.1. The foregoing discussion of unitary evolution is summarized as follows:

Rule 2: An isolated quantum state evolves continuously and causally in time, as described by the 
equation

 u t U t t u t( ) ( , ) ( )= 0 0  (3.8)

where

 U t t
i

H t dt
t

t

( , ) exp ( )0

0

= − ′ ′












∫
+



 (3.9)
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and H is the Hamiltonian operator, which is Hermitian. The content of (3.9) is also expressed by 
the time-dependent Schroedinger equation

 H u t i
u t

t
( )

( )
=

∂
∂

  (3.10)

We next come to the concept of measurement. In quantum mechanics, this means interac-
tion of the system in question with a second system, called the apparatus. Often the latter is a 
complicated macroscopic piece of laboratory equipment with many degrees of freedom, and 
most of these degrees of freedom are coupled in an uncontrollable way to the environment. 
Usually the apparatus contains a recording device, such as a pointer on a dial, or a counter that 
can be read and noted by a human, and usually this recording device and much of the rest of 
the apparatus is described to an adequate approximation by classical laws. (However, we must 
always keep in mind that quantum mechanics should apply to the apparatus and to the envi-
ronment.) In a measurement, we assume that the apparatus is initially prepared in a “ready” 
state. Then, as a result of interaction with the system, something happens to the apparatus so 
that a record is left of the event of interest. Because many degrees of freedom of the appara-
tus are coupled uncontrollably to the environment, this change in the apparatus is irreversible. 
Thus, although the equations describing the evolution of an isolated quantum system are time-
reversal-symmetric in almost all cases, the irreversibility inherent in the measurement process 
defines a unique sense of time in quantum mechanics.

Because a measurement generally disturbs the system, it leads to a change of state; thus the 
state vector u  is transformed by the measurement into some other vector v . We know that 
such a transformation is produced by applying some operator to a vector u . Therefore, it is 
natural to associate each observable with an operator on the Hilbert space. For simplicity, we 
confine ourselves to linear operators. Furthermore, the result of any physical measurement is 
always a real number. Because the eigenvalues of Hermitian operators are real, it is reasonable 
to make the following assumption:

Rule 3: Each observable of a system is associated with a Hermitian operator on the Hilbert space 
of the system. We assume that the eigenstates of each observable form a complete set.

We also assume the following:

Rule 4: The result of any given measurement of an observable is an eigenvalue of the corresponding 
Hermitian operator.

Next, let us consider the results obtained when we make repeated measurements of the same 
observable A on a system that has always been prepared in the same way, in state u , prior to 
the measurement. The mean value A A≡  of  those measurements of A is a real number, which 
clearly must depend linearly on operator A and on the ray defined by u  but not on the norm 
of u . Thus it is reasonable to assume that

Rule 5: The average A A≡  of a number of measurements of A is

 A A
u A u

u u
≡ =

| |

|
 (3.11)
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This is frequently called the expectation value of  A. Now either u  is an eigenstate of A or it is 
not. If  it is, u Ai i i i= =φ φ λ φ, where . Then

 A
Ai i

i i
i= =

φ φ
φ φ

λ
| |

|
 (3.12)

The mean-square deviation of measurements of A in this case is

 
∆2 2 2 2

2 2 0

= − = −

− =

A A
AAi i

i i
i

i i

φ φ
φ φ

λ

λ λ

| |

|
    =

 
(3.13)

Therefore, in this case, all measurements give the same result: λi. The other possibility is that 
u  is not an eigenstate of A. Because the eigenstates of A form a complete set, we can always 

express u  as a superposition of the φi ; that is,

 u ui i= ∑ φ φ |  

Thus

 A
u A u

u u

u

u

i i j j

i j

i i
i

i
i

= =∑
∑
∑

| | | |

|

|

|,

φ φ φ φ λ φ

φ

2

2  (3.14)

This is interpreted as follows:

Rule 6: The quantities u i| φ  are regarded as probability amplitudes, and p ui i= | φ 2
 is 

assumed to be the probability for achieving result λi  on a given measurement

 A
p

p

i i
i

i
i

=
∑

∑

λ
 

Rule 6 is where probability first appears in quantum mechanics. In all other applications of 
probability (e.g., in medical statistics, gambling, and classical statistical mechanics), actual 
events are assumed to be deterministic, and probability enters only because we do not have 
complete information about these events. However, we assume that such information could be 
obtained, at least in principle. For example, consider classical kinetic theory applied to a gas 
of N hard spheres in a container. According to Newtonian mechanics, if  we could specify the 
position and momentum of each hard sphere at time t = 0, and if  we knew all the forces, then it 
would be possible in principle to calculate the motion of each hard sphere for all future times, 
including collisions of the spheres with one another and with the walls. Of course, if  N >> 1, 
such a calculation would be prohibitively lengthy and difficult, and as a practical matter, we 
could not know all the initial conditions. Thus, for all practical purposes, we must be content 
with a statistical description.
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In quantum mechanics, probability appears in a different way. Certain observables, for exam-
ple, a coordinate and its conjugate momentum, are incompatible, which means that it is impos-
sible in principle to determine them simultaneously and precisely.

Because in general a measurement disturbs the system, it is natural for us to ask: What 
becomes of the state vector as the result of measurement of observable A? This question is 
addressed by the next rule.

Rule 7: A measurement of observable A resulting in eigenvalue λi projects the state vector 
from u  to that subspace of the Hilbert space associated with λi . If the eigenvalue is 
nondegenerate, the subspace is just a single eigenstate φi  associated with λi. If u  is already 
an eigenstate of A, it is not changed by the measurement. If u  is not an eigenstate of A, then 
in the nondegenerate case it “collapses” to φi  with probability u i| φ 2

.

Rule 7 is called the collapse or state-vector reduction postulate. The change in state that occurs 
here is stochastic and nonlinear, as opposed to the deterministic and linear evolution that 
appears in Rule 2. In fact, Rules 2 and 7 are incompatible if  we insist that quantum mechan-
ics should describe not only an isolated microsystem (e.g., an electron or an atom) but also 
the experimental apparatus used to observe that system and the environment surrounding 
that apparatus. This is the as-yet-unresolved quantum measurement problem (also called the 
macroscopic objectification problem) discussed in Chapter 25.

Rule 7 implies the following concerning the measurement of two observables A, B. Suppose 
that we measure observable A and obtain the result λi. The measurement throws the system 
into the eigenstate φi  of  A that corresponds to λi. Suppose that this is immediately followed by 
a measurement of B. If  A B,[ ] = 0, then A and B are simultaneously diagonalized by the same 
unitary transformation. Thus φi  is also an eigenstate of B, which means that measurement of 
B does not disturb the system further; it remains in state φi . Thus an immediately subsequent 
measurement of A is certain to give the result λi. However, if  A B, ,[ ] ≠ 0  the φi  are not in gen-
eral eigenstates of B. In this case, a measurement of B projects the system from φi  to some 
eigenstate of B. Here it is not certain that a subsequent measurement of A will yield the same 
result as the first one.

If  [A, B] = 0, A and B are said to be compatible. Otherwise, they are incompatible. If  A, B, C, 
… form a complete set of commuting (compatible) observables, then we know everything there 
is to know about the state of the system when we specify the eigenvalue of each of A, B, C, … 
for that state. This is called a complete set of  quantum numbers for the state.

Assuming that u t u t( ) | ( ) = 1, the expectation value of an observable A is 
A A u A u= = | | ,  and
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where the third term on the right-hand side arises from the explicit dependence on time, if  any, 
of A. Employing H u i u u H i ut t= ∂ = − ∂  and , we obtain from (3.15)
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We have assumed in (3.16) that u t( )  is time dependent (the Schroedinger picture), but it 
is possible to carry out a unitary transformation S (itself  time dependent) to a new basis in 
which u  is constant, and all the time dependence is carried by the operators. (This is called the 
Heisenberg picture). Because u t U t t u t( ) ( , ) ( )= 0 0 , it is clear that we should choose

 S t t U t t
i

H t dt
t

t
( , ) ( , ) exp0 0

0

= = − ′( ) ′











∫†

†



 (3.17)

In the Heisenberg picture we have ′ = =A SAS U AU† † . Thus

 
dA
dt i

A H
A
t

′ = ′[ ]+ ∂ ′
∂

1


,  (3.18)

which is called the Heisenberg equation.

3.2 Photon polarizations

We now illustrate the foregoing rules by considering some experiments that can be performed 
with visible light. The apparatus consists of a light source, a detector consisting of an ordi-
nary photomultiplier connected to an amplifier and an ammeter or a counter, some optical 
attenuators, and linear and circular polarizers and analyzers. We start with an intense beam of 
coherent light directed along the z-axis. The situation is then well described by classical elec-
tromagnetic theory. First, we insert a linear polarizer, assumed ideal, in the path of the beam 
(Figure 3.1).

After the polarizer, the light beam has definite polarization, with electric vector parallel to 
the polarizer axis and given by

 E = −[ ]E0
ˆ exp ( )i i kz tω  (3.19)

where E0 is the electric field amplitude, î  is a unit vector in the x-direction, k c= ω /  is the wave 
number, and ω  is the angular frequency of the light beam, which is assumed to be monochro-
matic. The intensity of the beam is proportional to E0

2 .
Next, we insert a second linear polarizer (called an analyzer). Its plane is also normal to 

the z-axis, but the analyzer polarization axis x′ makes an angle θ with respect to the x-axis 
(Figure 3.2).

Light emerging from the analyzer is polarized along the x′ axis, and the electric field ampli-
tude is ′ =E E0 0 cosθ. Thus the intensity measured at the detector is proportional to E0

2 2cos .θ
We can easily perform other well-known polarization experiments of classical optics. For 

example, we might insert a quarter-wave (λ/4) plate after the first polarizer (Figure 3.3).
The “fast” (f) and “slow” (s) axes are indicated in Figure 3.3. One has

 ˆ ˆ ˆ ˆ ˆ ˆi f s j s f= +( ) = −( )1

2

1

2
  

 

 

 

 

 

 

  

 

 



3.2 Photon polarizations35

Light beam

Polarizer

Analyzer

Pol axis

x'

y'

θ E'

x

y z

 Figure 3.2 Light beam directed along the z axis through a linear polarizer and an analyzer.
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 Figure 3.3 Light beam passing through a quarter-wave plate.
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 Figure 3.1 Light beam directed along the z axis through a linear polarizer.
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Suppose that light entering the quarter-wave plate is in a state of linear polarization described 
by the unit vector ˆ / ˆ ˆi f s= ( ) +( )1 2 . As the traveling light wave proceeds through the plate, a 
phase difference develops between the ˆ ˆf s and  components because the latter correspond to 
different indices of refraction. The result is that light emerging from the λ/4 plate is in a polar-
ization state described by the complex unit vector 1 2/( ) +( )f is

 , which apart from an unim-
portant overall phase factor is the same as

 ˆ ˆ ˆε+ = +( )1

2
i ij  (3.20)

Here the electric vector rotates in the sense of a right-handed screw as the light propagates 
in the +z-direction. Thus the light beam has positive helicity. (In the confusing language of 
classical optics, it is left circularly polarized. The latter is defined by the sense of rotation of the 
electric vector according to an observer looking into the oncoming beam.) By rotating the orig-
inal linear polarizer so that its polarization axis is along the y-axis while keeping the λ/4 plate 
in the orientation of Figure 3.3, we could have produced a light beam with negative helicity, 
described by the unit vector

 ˆ ˆ ˆε− = −( )1

2
i ij  (3.21)

Now we pass from the domain of classical optics to the quantum regime by reducing the 
intensity of the original light beam until the detector registers individual photons, one at a 
time. At first, we employ only one linear polarizer, oriented along the x-axis as in Figure 3.1. 
In this case, every photon emerging from the polarizer is in the same polarization state: x . If  
the polarizer had been oriented along the y-axis instead, the polarization state of the emerg-
ing photons would have been y . Ignoring all variables that characterize the light beam except 
for polarization, we have a two-dimensional Hilbert space spanned by only two orthonormal 
state vectors that we can choose as x  and y . The Hermitian operators corresponding to the 
polarizer oriented along the directions x, y are ˆ ˆP Px yx x y y= =and , respectively. We 
suppose that with only a single linear polarizer present, as in Figure 3.1, we obtain an average 
of N counts per second at the detector.

Next, we insert the analyzer (Figure 3.2), but initially we choose the angle θ = 0 so that 
the primed and unprimed axes coincide. Because the polarizer and analyzer are assumed to 
be ideal, there is no absorption, and the average counting rate is still N per second, and the 
polarization state of photons emerging from the analyzer is still x . To state this in other 
words, the Hermitian operator for the analyzer oriented along x is ˆ ˆA P x xx x= = . Because 

x A x x x x xx| | | | = = 1, the photon beam suffers no loss of intensity in passing through 

the analyzer.
Next, we rotate the analyzer about the z-axis, making θ ≠ 0. We observe that the average 

counting rate is reduced from N to N′ = n cos2 θ. Evidently some photons are not being trans-
mitted by the analyzer, and those that are transmitted must be in a new polarization state ′x  
that is a superposition of the states x y and . In addition to ′x , there must exist an orthog-
onal state ′y .
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Because the relative phase of the states x y,  is arbitrary, we can choose the phase so that

 
′ = ′ + ′ = +
′ = ′ + ′ = − +

x x x x y y x x y

y x x y y y y x y

| | cos sin

| | sin cos

θ θ
θ θ

 (3.22)

The Hermitian operator corresponding to the analyzer oriented along the x′-axis is 

Â x xx′ = ′ ′ , and x A x x x x xx| | | | cos

′ = ′ ′ = 2 θ.

If  we consider a given photon with polarization state x  between the polarizer and the ana-
lyzer, can we predict in advance whether it will be transmitted by the analyzer? According to 
the rules of quantum mechanics, we cannot. We can only calculate the probability of trans-
mission, and it is cos2 θ . Rejection by the analyzer is equivalent to projection of x  onto ′y , 
which occurs with probability sin2 θ .

The choice of basis states for our two-dimensional Hilbert space is arbitrary and a matter 
of convenience. We have chosen the linear polarization states x y, , but we could equally well 
have chosen the helicity eigenstates, namely,

 
+ = +( )

− = −( )

1

2
1

2

x i y

x i y
 (3.23)

If  we set up an experiment with a linear polarizer aligned along x followed by a λ/4 plate as in 
Figure 3.3, photons emerging from the linear polarizer would be in the state

 x = + + −( )1

2
 (3.24)

After the λ/4 plate, the normalized photon polarization state would be + . We show later 
that the states + −,  correspond to photon angular momentum ±, respectively, with respect 
to the direction of propagation (see Appendix C).

3.3 Polarization correlations, locality, and Bell’s inequalities

We now discuss two-photon polarization correlation experiments that have actually been per-
formed and that bear on significant questions concerning the rules of quantum mechanics. 
Such experiments and their interpretations have stimulated controversial debate since the pub-
lication of an important paper by Einstein, Podolsky, and Rosen (1935). Our presentation 
here must anticipate later discussions of atomic physics and the quantum theory of angular 
momentum, but only in such an elementary way that there should be no serious difficulties for 
the reader. We consider an optical experiment involving the calcium atom, which has 20 elec-
trons arranged in the following shells in the ground state:

 1 2 2 3 3 42 2 6 2 6 2s s p s p s[ ]  (3.25)
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In (3.25) we place the symbols for the innermost 18 electrons in square brackets to emphasize 
that these electrons form an inert spherically symmetric inner core with zero angular momen-
tum. For present purposes, all the relevant properties of calcium are determined by the two 
outermost valence electrons. In the ground state, they are both in the 4s shell (orbital angular 
momentum equal to zero). In addition, the spins of these two electrons are opposed, so the net 
electron spin S in the ground state is also zero. We designate the ground state by the symbol

 ( )4 2 1
0s S  

In general, the superscript on the S (1 in this expression) refers to the total spin multiplic-
ity 2S + 1, whereas the capital letter S (not to be confused with spin S) signifies that the total 
orbital angular momentum is L = 0. If  this capital letter were P, D, …, it would signify that the 
total orbital angular momentum is L = 1, 2, …, respectively. The subscript refers to the total 
angular momentum J, where J = L + S. In addition to the ground state, we consider several 
excited states of calcium, shown in Figure 3.4.

In the experiment of interest, calcium atoms are prepared in the 4 2 1
0p S( )  excited state, and 

they decay via the intermediate 4 4 1
1s p P( )  state to the ground state by spontaneous emission of 

two successive visible photons γ γ1 2, . The initial and intermediate state mean lifetimes are only 
a few nanoseconds. The goal is to observe the polarizations of γ γ1 2,  in coincidence (i.e., where 
the relative timing of the two detectors is arranged to ensure that both photons are radiated by 
the same atom) and also where the two photons are emitted in opposite directions along the 
z-axis (Figure 3.5).

For simplicity, we assume in what follows that each polarizer is ideal in the sense that it 
transmits 100 percent of the “right” polarization and 0 percent of the “wrong” polarization. 
We also assume that each detector is 100 percent efficient. Actual polarizers and detectors fall 
short of these ideals, and appropriate corrections must be made, but for present purposes, we 
can ignore such complications.

Because the initial and final atomic angular momenta are Ji = Jf = 0, the two photons must 
carry off  zero total angular momentum. Thus, if  γ1 is in a helicity eigenstate + , the helicity 

4s4p1P1

4p2     1S0

4s2     1S0

Photon #1

Photon #2

 Figure 3.4 Relevant calcium energy levels.
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state of γ2 also must be +  because the linear momenta of the photons are in opposite direc-
tions. Similarly, if  γ1 is in helicity eigenstate − , the state of γ2 also must be − . Thus the fol-
lowing two-photon state vectors satisfy the requirements imposed by conservation of angular 
momentum and are possible a priori:

 + + − −1 2 1 2, ,  (3.26)

Which of these is the actual state vector, or is it some combination of the two? To answer 
this question, we need additional information pertaining to the spatial inversion symmetry 
(called the parity) of the initial and final atomic states. If  under inversion of spatial coordi-
nates x x y y z z→ − → − → −( ), ,  a state remains invariant, it is said to have even or positive 
parity, whereas if  the state changes sign, it has odd or negative parity. It can be shown that a 
nondegenerate eigenstate of an inversion-symmetric Hamiltonian must have definite parity, 
even or odd (see Section 6.4). One can also show that the parity of a multielectron atomic state 
is −( )∑1

i , where  i  is the orbital angular momentum of the ith electron, and the sum is taken 
over all electrons. From this one can see that the parities of the initial and final atomic states 
in Figure 3.4 are both even. Because parity is known to be conserved in electromagnetic inter-
actions, the two-photon polarization state also must have even parity. However, under spatial 
inversion, the linear momentum of a photon reverses, but its angular momentum does not; 
hence its helicity reverses. Therefore, under a parity transformation, each of the two-photon 
polarization states in (3.26) transforms to the other state. Thus the positive-parity two-photon 
polarization state must be

 ψ = + + + − − 
1

2
1 2 1 2, ,  (3.27)

where we have included a factor of 2 1 2− /  for normalization. A state such as ψ  in (3.27), which 
consists of a sum of two or more product states and which cannot be expressed as a single 
product state, is called entangled.

Source

Polarizer #1

Polarizer #2

Detector #1

Detector #2

γ #1

γ #2

 Figure 3.5 Photons γ1, γ2 propagating in opposite directions.
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Because we are interested in the linear polarizations of γ1,2, we rewrite (3.27) in terms of lin-
ear polarization states by employing the expressions

 ± = ±1 1 1
1

2
x iy  (3.28)

and

 ± =2 2 2
1

2
x iy  (3.29)

[In (3.29), the   sign on the right-hand side takes into account the fact that the momentum 
of γ2 is directed along the –z-axis]. Substituting (3.29) and (3.28) into (3.27), we obtain

 
ψ = +( ) −( ) + −( ) +( )

= +

1

2 2
1

2

1 1 2 2 1 1 2 2

1 2 1 2

x iy x iy x iy x iy

x x y y    
 (3.30)

Now we are ready to consider several important questions.
1. Is photon γ 1 in a state of definite linear polarization? If  this were so, then the counting rate 

of detector 1 by itself  (without concern for detector 2) would depend on the angular orienta-
tion of polarizer 1. However, experiment shows that the counting rate for photons γ1 passing 
through polarizer 1 is independent of the angular orientation of polarizer 1 and is half  the rate 
detected when polarizer 1 is removed from the apparatus. Quantum mechanics accounts for 
this as follows: let us orient polarizer 1 along the x′-axis. Then passage of γ1 through polarizer 
1 is associated with application of operator ˆ

’P x xx1 1 1= ′ ′  to ψ ; that is,

 ′ ′ = ′ + ′ x x x x x y1 1 1 2 1 2
1

2
| cos sinψ θ θ  (3.31)

Thus the probabilities for obtaining the two distinct results ′ ′x x x y1 2 1 2,   are predicted by quan-
tum mechanics to be ½ cos2 θ, ½ sin2 θ, respectively. Because at the moment we are not inter-
ested in the polarization of γ2, we must add these probabilities to obtain the total probability 
that γ1 is transmitted through polarizer 1. Obviously, this total probability is ½, independent 
of θ; hence photon 1 has no definite linear polarization. By a similar argument, photon 2 has 
no definite polarization.

2. What is the coincidence counting rate when photon γ1 passes through polarizer 1 oriented 
along axis x′, whereas photon γ2 passes through polarizer 2 oriented along x? Experiment shows 
that this rate is ½ cos2 θ times the coincidence rate when both polarizers are removed and where 
θ is the angle between axes x and x′. Quantum mechanics accounts for this result by application 
of the projection operators ˆ ˆ

’P Px x2 1 and  to ψ ; that is,
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Hence, according to quantum mechanics, the probability of coincidence is

 pC =
1
2

2cos θ  (3.32)

in accord with the experimental result.
We have just seen that no matter what the angular orientation of polarizer 1, the probabil-

ity that photon γ1 is transmitted through this polarizer is ½. Similarly, the probability that γ2 is 
transmitted through polarizer 2 is ½, independent of the orientation of polarizer 2. However, 
the experimental results [and (3.32)] also tell us that if  polarizers 1 and 2 are both oriented 
along the same axis (say, the x-axis) and a specific γ1 is observed to pass through polarizer 1, we 
can predict with certainty that the corresponding γ2 will also pass through polarizer 2. This is 
true even if  polarizers 1 and 2 are separated by a very large distance.

Now it is plausible to assume that if  the separation between polarizers is very large, 
whatever happens at polarizer 1 (be it transmission or rejection of  γ1), can have no physical 
effect at polarizer 2, and vice versa. This is called the locality assumption, and it seems rea-
sonable to assume it provisionally and to consider the consequences. This same assumption 
was made by Einstein, Podolsky, and Rosen in their discussion of  a thought experiment 
different in detail from the present experiment but equivalent as far as the main points are 
concerned.

If  polarizers 1 and 2 are both aligned along x, and γ1 is observed to pass through polarizer 
1 – and locality is valid – then because the passage of  γ1 through polarizer 1 cannot affect the 
conditions for transmission of  γ2 through polarizer 2, γ2 must have possessed x linear polari-
zation before it arrived at polarizer 2. The same conclusion also should apply when the roles 
of  γ1 and γ2 are reversed: if  a particular γ2 passes through polarizer 2 and locality is valid, 
we can be certain that the corresponding γ1 possessed x linear polarization before it reached 
polarizer 1. Therefore, because the probability of  transmission of  photons γ1 through polar-
izer 1 is ½, no matter what the orientation of  polarizer 1 (and similarly for photons γ2 and 
polarizer 2), locality implies that some γ1, γ2 pairs are endowed with x-polarization from 
birth (although this assignment is evidently random from pair to pair), whereas an equal 
number are endowed with y-polarization. In other words, acceptance of  locality implies 
that there is a random but deterministic “hidden variable” in the two-photon system that 
fixes what the polarization of  each photon in a given pair must be. According to quantum 
mechanics, no such statement is possible because no assumption about locality is made, and 
all that we can know about the polarizations of  γ1, γ2 is contained in ψ  of  equation (3.30).

J. S. Bell (1966) made a very important contribution to this discussion by showing that the 
assumption of locality, which implies the existence of a deterministic (if  random) hidden vari-
able, can be put to experimental test. Bell proved that if  a local hidden variable description were 
in fact operative, it would necessarily imply results for various correlation experiments that are 
in conflict with the predictions of quantum mechanics. Specifically, for the two-photon polari-
zation correlation experiment in calcium that we have just analyzed, any local-hidden-variable 
theory would yield the following inequality (derived in Appendix B):
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where R0 is the coincidence rate with both polarizers removed, R θ( ) is that with both polarizers 
in place, and as usual, θ  is the angle between the polarizer axes. However, from (3.32) we see 
that according to quantum mechanics,
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It is obvious from (3.34) that the quantum mechanical prediction conflicts with Bell’s inequal-
ity (3.33). As already stated, the experimental results agree with quantum mechanics. The first 
definitive results on calcium were obtained by S. J. Freedman and J. F. Clauser (1972). A simi-
lar experiment using mercury instead of  calcium was performed several years later by E.S. Fry 
and R. C. Thompson (1976) with results in agreement with those of  Freedman and Clauser.
Very elegant and precise observations were subsequently made by A. Aspect and coworkers 
(Aspect 1982) and, since then, by many other experimenters using systems other than calcium 
and a variety of  experimental techniques. Although there still exist some minor caveats, the 
results of  these experiments enable us to conclude that for a hidden-variable description to 
account for the experimental results we have described, it would have to be nonlocal in char-
acter. Of course, quantum mechanics itself  is nonlocal because a measurement of  the polar-
ization of  either photon of  the γ1, γ2 pair implies instantaneous collapse of  the state ψ  in 
(3.30).

3.4 Larmor precession of a spin ½ particle in a magnetic field

Although we have not yet discussed the quantum theory of angular momentum, most readers 
know that for a particle of spin ½ (e.g., an electron, proton, or neutron) the spin operator is

 S =


2
σ  (3.35)

where σ= + +σ σ σx y zi j kˆ ˆ ˆ, and σx y z, ,  are the Pauli spin matrices

  σ σ σx y z

i

i
=






=
−





=
−







0 1

1 0

0

0

1 0

0 1
 (3.36)

 

 

 

 

  

 

 

 

   

 

 

 



3.4 Larmor precession of a spin ½ particle in a magnetic field43

They have the following properties:

1. Each σi (i = x, y, z) is Hermitian.
2.

     
tr σ i( ) = 0  (3.37)

3.
         

σ σ δ ε σi j ij ijk kI i= +  (3.38)

In the second term on the right-hand side of (3.38), εijk is the completely antisymmetric unit 3 
tensor, with values +1 for ijk = 1, 2, 3 or cyclic permutations thereof; –1 for ijk = odd permuta-
tions of 1, 2, 3; and 0 when any two of the indices ijk are the same. Thus σ σ σ σ σx y y x zi= − = ,  
with similar expressions obtained by cyclic permutation of x, y, and z.

The electron, proton, and neutron each have a magnetic dipole moment associated with their 
spin. The electron-spin magnetic dipole operator is

 
μ σe s

B s
Bg

g
= − = −

µ µ


S
2  

(3.39a)

where μB = eћ/2mec = 9.27408 × 10–21 erg/G is the Bohr magneton in cgs units, and gs = 2(1 + 
ae). The factor 2 arises naturally from Dirac’s equation in relativistic quantum mechanics. The 
quantity ae is a small (but very important) quantum electrodynamic correction that we need 
not be concerned with at present. In Heaviside-Lorentz units, the formula for the Bohr magne-
ton is the same, μB = eћ/2mec, but the numerical value is larger by a factor 4π  simply because 
in hlu system the Bohr magneton is measured in erg/ G 4π( ). The proton-spin magnetic dipole 
operator is

 
μ σp p

N p
Ng

g
= =

µ µ


S
2  

(3.39b)

Here μN = (me/mp)μB is the nuclear Bohr magneton, and gp/2 = 2.79 is a numerical factor that 
accounts for the experimentally observed proton magnetic moment. The Hamiltonian for the 
interaction of the proton’s spin magnetic moment with an external magnetic field B is

 

H
g

p
p

N= − = −μ σ B B
2

µ

 

(3.40)

To investigate the behavior of the spin in a constant field B, we start with equation (3.16), here 
applied to the ith component of S:
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 (3.41)

where we employ the repeated index summation convention. Written in vector notation, 
(3.41) is
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d

dt p

S
B= ×μ  (3.42)

The quantity on the right-hand side of (3.42) is the torque on S  in field B, and (3.42) simply 
means that the expectation value S  follows the classical Newtonian equation torque equals 
rate of change of angular momentum.

Taking into account that μp = (gp/ћ)μNS and defining ω = (gp/ћ)μNB ≡ γB, we rewrite (3.42) in 
the useful alternative form

 
d

dt

S
B S S= − × = − ×γ ω  (3.43)

This implies that S  precesses around B with angular frequency ω, as shown in Figure 3.6.
If  B = B0k̂  is in the z-direction and at time t = 0, S  is in the x-direction, the precession cone 

half-angle is Θ = π/2, and the precession cone becomes a circle in the xy-plane. We consider 
how the state vector evolves in time as S  precesses. The operator σz has two eigenvectors

 χ χ+ −=





=





1

0

0

1
and  

corresponding to eigenvalues ±1, respectively (i.e., spin “up” and spin “down” respec-
tively), with respect to the z-axis. It is easy to show that the eigenvectors of σx are 
χ χ χ χ+ − + −+( ) −( )/ /2 2 and   with eigenvalues ±1, respectively. Thus, at t = 0,

 ψ χ χ
( )0

2

1

2

1

1
=

+
=






+ −  

To find ψ ( )t  for t > 0, we use the time-development operator

θ

<S>

B

 Figure 3.6 Schematic diagram showing precession of the expectation value of a spin vector about a magnetic field.
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ψ ψ

ψ ω σ ψ

( ) ( , ) ( )

exp ( ) exp (

t U t
i

Ht
i t

z

=

= −





= 





0 0

0
2

      


0

2 2
0

1

2

2

)

cos sin

/

/

      

      

= +



 ( )

=
−

I
t

i
t

e

e

z

i t

i t

ω σ ω ψ

ω

ω 2







 (3.44)

When t = π/ω, S  lies along –x, and

 ψ =
−






i

2

1

1
 

After a full period of precession when t = 2π/ω, S  has returned to its initial orientation 
along x, but

 ψ ψ( ) ( )t =
− 




= −

1

2

1

1
0  

In general, one can show that a rotation of 2π about any axis causes a sign change in a half-
integral spin function (see Chapter 7). For example, if  the initial state is χ+, a rotation of the 
spin about the y-axis by angle β yields the state χ β χ β+ −( ) + ( )cos sin2 2 . For spin ½, this phe-
nomenon has been demonstrated experimentally (see Section 5.5).

3.5 The density operator

In many circumstances, we do not have sufficient information to say that a physical system is in 
a single quantum state. Nevertheless, we may be able to deduce useful conclusions by employ-
ing the density operator, which is somewhat analogous to the density in phase space in classical 
statistical mechanics. In this section we introduce the main properties of the density operator 
and show how it is applied to the description of photon polarizations.

Suppose that there exists a complete orthonormal set of states ui , and for a given physical 
system, we know only enough to assign a probability gi < 1 that any given ui  is occupied by 
the system of interest. We are then dealing with what is called a statistical ensemble. The den-
sity operator is defined as1

 ρ = ∑ g u ui
i

i i  (3.45)

where gi
i
∑ = 1. The density operator has the following properties:

1 In the definition of ρ , it is not always necessary that the various ui  be mutually orthogonal.
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1. It is Hermitian: ρ ρ† .=
2. If  we define a generalized expectation value of any observable A as

A g u A uj
j

j j= ∑ | |

 then

 A tr A tr A= ( ) =ρ ρ( )  (3.46)

 To prove (3.46), we write

 

A g u A u

g u A u g A u u t

j
j

j j

j
i j

j i i j j
i j

i j j i

=

= = =

∑
∑ ∑

| |

| | | | | |
, ,

     φ φ φ φ r Aρ( )
 

 In the special case A = I, (3.46) reduces to

 trρ = 1 (3.47)

3.     tr ρ2 2 1( ) = ≤∑ gi
i

 (3.48)
 

Proof:

ρ2 2= =∑ ∑g g u u u u g u ui
i j

j i i j j i
i

i i
,

|

 The inequality in (3.48) becomes an equality only in the special case where a single prob-
ability g corresponding to a single state u  is equal to unity and all other gi vanish. In this 
special case, ρ = u u , ρ ρ2 = , and ρ  is said to be idempotent, and the density-operator 
description of quantum mechanics becomes equivalent to the conventional state-vector 
description.

4. If  each state ui  is an energy eigenstate with energy eigenvalue Ei and the system in  
question is in thermal equilibrium with a heat bath at absolute temperature T, then from 
elementary statistical mechanics,

 g
E kT

Zi
i=

−( )exp /
 (3.49)

where Z E kTi
i

= −( )∑ exp /  is the partition function. Here the free energy F is

 F U TS kT nZ= − = −   (3.50)

where U g Ei i
i

= ∑  is the average energy, and S is the entropy. From (3.50), we have
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S k nZ U T

k g n
e

Z

k g ng

i
i

E kT

i
i

i

i

= +

= − 





= −

∑
∑

−







/
/

  

  

 (3.51)

 We can generalize result (3.51) by defining the dimensionless von Neumann entropy of an 
arbitrary statistical ensemble as

 S nNv tr= − ( )ρ ρ  (3.52)

 where  n n g u ui
i

i iρ ≡ ( )∑ .

5. If  the system Hamiltonian is H, then 

H u i u t u H i u ti i i i= ∂ ∂ = − ∂ ∂ / /and

Thus from (3.45) we have

 
d
dt i

H
ρ ρ= [ ]1



,  (3.53)

 which is the equation of motion of the density operator. It is similar to the Heisenberg 
equation for an observable A that has no explicit time dependence, except for the fact that 
the sign of the commutator is opposite in the two equations.

6. The representative of ρ  with respect to a given basis of states φi  in an n-dimensional 
Hilbert space is an n × n matrix called the density matrix M. In the pure-state case where 
ρ = u u  with u ai i

i

= ∑ φ  and where the ai are expansion coefficients, the elements 
of M are

 M a aij i j= *  (3.54)

 As is well known, the set of all n × n matrices forms an n2-dimensional vector space. Thus, if  
the Hilbert space is two-dimensional, as is the case for spin ½ or for photon polarizations, 
one can express any density matrix as a linear combination of four linearly independent  
2 × 2 matrices. It is convenient to choose the latter in a standard way:

 I
i

ix y z=






=






=
−





=
−







1 0

0 1

0 1

1 0

0

0

1 0

0 1
σ σ σ  (3.55)

 Hence an arbitrary 2 × 2 density matrix M can be written as

 M aI b c dx y z= + + +( )1
2

σ σ σ  (3.56)
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 where a, b, c, and d are numerical constants. Assuming that tr M( ) = 1, and making use of 
(3.37) and tr( )I = 2, we have a = 1. Next, because M is a scalar under rotation in coordinate 
space, the coefficients b, c, and d must constitute the x, y, z components, respectively, of a 
vector P. Hence we can write

 M I= +( )1
2

Pσ  (3.57)

and therefore

 M I I2 21
4

1
4

2= +( ) = + +( )P P P P   σ σ σ σ  (3.58)

Now, employing the repeated index summation convention, we have

 

σ σ P P = =

= +( ) =

σ σ σ σ

δ ε σ
i i j j i j i j

ij ijk k i j

P P PP

I i PP              P 2
I

 (3.59)
from which it follows that

 M I2 21
4

1
1
2

= +( ) +P Pσ  (3.60)

 Recalling that M2 = M for a pure state, and comparing (3.57) and (3.60), we see that  
|P| = 1. In other words, P p= ˆ  is a unit vector for a pure state.

The density matrix M for a statistical ensemble of polarization states is the weighted sum of 
pure polarization state density matrices Mi :

 
M I M g Ii

i
i

i
i= +( ) = = +( )∑ ∑1

2
1
2

P p• ˆσ σ
 

It follows that P p= ∑ gi
i

iˆ ; hence, if  the various p̂i  are oriented in different directions, we must 

have |P| < 1 for a statistical ensemble. Because the only experimentally accessible quantities 
related to polarization of a beam of light are the components of P, and because for a statistical 
ensemble there are in general many ways to choose the weights gi and/or the directions of the 
p̂i  to form a given P, the individual gi, p̂i  cannot in general be determined by experiment, even 
in principle, for a statistical ensemble.

To describe photon polarizations explicitly, let + = +1 2 x iy   be represented by 

the 2-spinor 
1

0





 and − = −1 2 x iy   be represented by 
0

1





. Then x  and y  are 

represented by

 
1

2

1

1





−





and
1

2

i

i
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respectively. Using this representation, we give a few examples of density matrices as follows:

Pure state •	 + . M I kz=




( ) = 




= +( ) =

1

0
1 0

1 0

0 0
1
2

σ ;    p 

Pure state •	 − . M I kz=




( ) = 




= −( ) = −

0

1
0 1

0 0

0 1
1
2

σ ;   p 

Pure state: Linear polarization along the •	 x′-axis, where ′ = +x x ycos sin :θ θ
ρ θ θ θ θ

θ θ θ θ
= ′ ′ = + +
= + +

x x x y x y

x x y y x

cos sin cos sin

cos sin cos sin   2 2 y y x

M
i

+( )
=






+

−
−





+

−1
2

1 1

1 1
1
2

1 1

1 1 2
2 2cos sin cos sinθ θ θ θ

1 1

1 1

1 1

1 1

1
2

2 2

−




−

−
−
















= + +( )    I x ycos sinθσ θσ p  = +cos sin2 2θ θi j

 Here note that whereas the polarization axis and p̂ are both in the xy-plane, they are inclined 
at angles θ and 2θ, respectively, with respect to the x-axis. This is not surprising when we real-
ize that there is no physical distinction between linear polarization along any direction and 
linear polarization in the opposite direction. Thus, for example, the density matrices should 
be, and are, identical for linear polarization along x and along –x.
Statistical ensemble: Incoherent mixture of right and left circular polarization (unpolarized •	
light):

 
ρ = + +( ) + − −( )

=





+






=

1
2

1
2

1
2

1 0

0 0
1
2

0 0

0 1
1
2

M I P = 0
 

Problems for Chapter 3

3.1. Consider a spin-½ particle S that interacts with a “measuring apparatus” that is another 
spin-½ particle A. At time t = 0, A is in the state

 
1

0





A

 

and S is in the state

 
a

b
S






 

where a, b are two complex numbers, with a b
2 2

1+ = . During the time interval 0 ≤ ≤t T , S 
and A are coupled by means of the interaction Hamiltonian
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 H g tz
S

y
A=

1
4

σ σ ( )  

where g t( ) is a continuous real function that is nonzero only for 0 ≤ ≤t T  and satisfies

 g t dt
T

( ) =∫ π
0

 

Also, σ σz
S

y
A,  are Pauli spin matrices that refer to S and A, respectively, and thus commute 

with one another. Find the state vector for the combined system S, A at time T.

3.2. Consider the density matrix for a particle of spin ½ and magnetic moment μ in a magnetic 
field, where the Hamiltonian is

 
H g= −

1
2

µσB
 

and where g is a constant. Using the equation of motion of the density operator, find the motion 
of the polarization vector p̂ = σ , and compare it with the classical equation of motion of a 
spinning magnetic dipole in a magnetic field.

3.3. An electron and a positron can form a bound system called a positronium (Ps). In the 
ground 1 0S  state, a positronium atom decays by annihilation of e+ and e– to two photons with 
equal and opposite linear momenta in the positronium rest frame. Each photon has energy 
E ≈ =0 511.  MeV electron rest energy because the binding energy of the positronium atom is 
negligible by comparison. Because in the ground state, the positronium atom has zero total 
angular momentum, the two photons carry off  zero total angular momentum. Furthermore, as 
can be shown from equations 20.65 and 22.11–22.14, the parity of the positronium ground state 
is odd, which means that under spatial inversion the state vector changes sign.Because parity is 
conserved in the annihilation process, the parity of the two-photon final state is also odd.

(a) Consider a photon emitted along +z and another emitted along –z. Show that the two-
photon final state is of the form

 ψ = + + − − − 
1

2 1 2 1 2
 (1)

where +
1 2,

 signify a positive-helicity photon emitted along ±z, and −
1 2,

 denotes a nega-

tive-helicity photon emitted along ±z. How are the linear polarizations of the two photons 
correlated?

(b) Because the polarization correlation of the two annihilation photons is somewhat anal-
ogous to that of the two photons in the calcium experiment described earlier in this chapter, 
it seems at first that observation of the polarization of these annihilation photons could yield 
another significant test of Bell’s inequality. However, the only practical way to detect polari-
zation of 0.5-MeV gamma rays is by Compton scattering. This was actually done in an early 
experiment by Wu and Shaknov [Phys. Rev. 77, 136 (1950)], where the correlation in the planes 
of polarization of the annihilation photons (k k1 2, ) in 1S0 positronium decay was detected by 
Compton scattering at a scattering angle θ = 90o (Figure 3.7). It can be shown that at θ = π/2, 
each scattered photon has energy E/2, and the probability that an annihilation photon becomes 
a Compton-scattered photon is proportional to
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 1 8
2+ ′( )ˆ ˆε ε  (2)

where ˆ, ˆε ε ′  are unit vectors in the direction of annihilation and scattered photon linear polar-
ization, respectively.

The plane defined by the k vectors of a given incident and scattered photon pair (e.g., the 
plane defined by k k1 1, ′) may be rotated through an angle θ  with respect to the plane defined 
by k k2 2, ′. Using expression (2), and the symmetry of the two-photon final state, show that the 
coincidence rate for detection of the two scattered photons is proportional to

 R( ) cosθ θ= −1
8

13
2  (3)

In deriving this result, it is essential to recognize that the scattering processes 1 1 2 2→ ′( ) → ′( ) and  
are mutually incoherent. Why is this so?

(c) Unfortunately, the analyzing power in this positronium experiment is insufficient to test 
Bell’s inequality: the factor 8/13 in equation (3) is too small. To see this, consider Bell’s inequal-
ity given in expression (3.33) of this chapter for the calcium experiment and for the angles θ = 
π/8 and θ = 3π/8. For the Wu-Shaknov experiment, the appropriate modification of (3.33) is

 R R
3
8 8

1
2

0
π π




− 




− ≤  (4)

Check the numbers to show that the quantum mechanical result (3) does not violate the local 
hidden-variable inequality (4).

3.4. Consider three particles described by the wave function

 ψ = −f u u u( , , )( )r r r1 2 3 1 2 3 2v v v1 3  

where the spatial wave function f ( , , )r r r1 2 3  is such that the particles are widely separated, and 
the spin states u and v are eigenstates of σz satisfying

 
σ σ σ
σ σ σ

x y z

x y z

u u i u u
u iu

= = =
= = − = −

v v
v        v      v v

 

k2

k1
90°

90°

k'1

k'2

Ps

θ

 Figure 3.7 Orientation of the vectors k1,2, k’1,2 in the Wu-Shaknov experiment.
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(a) Verify that

 σ σ σ ψ σ σ σ ψ σ σ σ ψ ψ1 2 3 1 2 3 1 2 3x y y y x y y y x= = =  (1)

that

 σ σ σ ψ ψ1 2 3x x x = −  (2)

and that the four operators σ σ σ σ σ σ σ σ σ1 2 3 1 2 3 1 2 3x y y y x y y y x( ) ( ) ( ), , , and σ σ σ1 2 3x x x( ) commute.

(b) Show that

 σ σ σ σ σ σ σ σ σ σ σ σ1 2 3 1 2 3 1 2 3 1 2 3x y y y x y y y x x x x( )( )( ) = −( )  (3)

(c) The following argument seems very convincing. We may measure either σ σx y or  for each 
particle without disturbing the other particles. Let the results of these measurements be called 
mx and my, respectively. From (2), we can predict with certainty that if  σx is measured for all 
three particles, the result must be

 m m mx x x1 2 3 1= −  (4)

Therefore, the value of σx can be predicted with certainty for any one of the particles by mea-
suring σx for the other two particles. From (1), we can also predict with certainty the value of 
σx on any one particle by measuring σ y on the other two particles:

 m m mx y y1 2 3 1= +  (5)

and by cyclic permutation,

 m m my x y1 2 3 1= +  (6)

and

 m m my y x1 2 3 1= +  (7)

However, the product of equations (4) through (7) gives a contradiction:

+1 = –1

What error was made in our assumptions and/or logic?

3.5. In this problem we consider a thought experiment proposed in 1993 by L. Hardy. It illus-
trates the peculiar and counterintuitive nature of entangled states in a different way than the 
usual Bell’s inequality experiments. Hardy’s thought experiment makes use of a source S and 
two detectors DL and DR (L, R for left, right, respectively; Figure 3.8).

Each detector has two modes 1, 2 determined by the position of  a switch KL,R. Each detec-
tor is equipped with a light that can flash either green or red. An experimental trial begins 
when the observer presses a button that launches a pair of  correlated particles from source 
S; one particle goes to the left, and the other to the right. After they have been emitted from 
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the source but before they arrive at their respective detectors, the observer flips one coin to 
determine the position of  KL and another to determine the position of  KR. The arrival of 
a particle at DL is indicated by the flashing of  a green or red light there, similarly for the 
arrival of  the other particle at DR. The outcome of  a given trial is specified by giving the 
positions of  the two switches and the colors of  the lights that flashed; for example, (1G2R) 
signifies that KL was in position 1 and DL flashed green, whereas KR was in position 2 and 
DR flashed red.

The observer repeats the experiment, recording the outcome for each trial, and finds the fol-
lowing results after many trials:

i. When both switches are in position 1, both lights never flash red: 1R1R never occurs.
ii. When the switches are in different positions, both lights never flash green: 1G2G and 2G1G 

never occur.
iii. In a nonzero fraction of the trials, 2G2G does occur.

It is tempting to make the following classical analysis: something in the common origin of 
the particles must be responsible for the observed correlations. Because the switches KL,R are 
not set until after the particles leave the source, whatever features the particles possess cannot 
depend on how the switches are set. Also, we can safely assume that DL can only respond to the 
particle on the left, whereas DR can only respond to the particle on the right. Then, because any 
trial could be a 12 or a 21 trial, whenever one of the particles is such as to allow a type 2 detec-
tor to flash green, the other particle must be such as to make a type 1 detector flash red. This 
follows from (ii). Then, in any of the occasional 22 trials where both detectors flash green, both 
particles must be of the variety to make a type 1 detector flash red. In other words, had both 
switches been set to position 1 in these trials, the outcome 1R1R would have been observed. 
However, according to (i), 1R1R is never observed. Thus there is no way to explain the results 
by a classical argument.

However, it is indeed possible in principle to set up such an experiment and to get the results 
(i), (ii), and (iii), but we must use quantum mechanics to describe the two-particle system. 
Because we never obtain the outcome 1R1R, we can assume that the two-particle quantum 
state is of the form

 ψ α β γ= + +1R1G 1G1R 1G1G  (1)

with α β γ, , and  constants where α β γ2 2 2
1+ + = .

1 2 1 2

Light Light
DL DR

S

KL KR

 Figure 3.8 Schematic diagram of Hardy’s thought experiment.
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(a) Show that because 1G2G and 2G1G never occur, we must have

 
α γ
β γ

2G 1R 2G 1G

2G 1R 2G 1G

+ =
+ =

0

0
 (2)

(b) It must be possible to express 2G  as a linear combination of the states 1G  and 1R . 
Also, 2R  must be an orthogonal linear combination of the same states:

 
2 1 1 1

2 1 1 1

1 2

1 2

G G R

R G R

= + −
= − − +

q q

q q

/

/
 (3)

where 0 < q < 1. Show that because outcome 2G2G sometimes occurs, that is, 

2 2 0
2

G G ψ = ≠p ,  it follows that

 
p

q q
q

=
−
−

2 2

2

1
1
( )

 
(4)

(c) Show that when p is maximized in (4), the probabilities of the various outcomes are given 

in Table 3.1, where z = −( )5 1 2/ .

Table 3.1 Probabilities for various outcomes 
in Hardy’s thought experiment.

1G1G             
G1R              
R1G              

z
z
z

3

21
1 2

1 0
1 0
1
1

R1R              
G2G             
G2R             z
R2G             
R2R             
G1G             0

2G

z
z

3

41
2

1R             
R1G             
R1R             
G2

z
z
z

3

4

2
2
2 G            

G2R            
            

z p
z

R G z
R R

5

4

4

2
2 2
2 2

=

            z
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4.1 The de Broglie relation

In Chapter 1 we mentioned the de Broglie relation

 



= =
λ
π2 p

 (4.1)

which implies that the position of a particle and its conjugate momentum are incompatible 
observables. Let us define the operators for position q and momentum p in one spatial dimen-
sion as ˆ, ˆq p , respectively. Because ˆ ˆq p and  are incompatible, they do not commute. Now the 
commutator of two Hermitian operators is always anti-Hermitian; thus

 ˆ, ˆq p iB[ ] =  

where B is a Hermitian operator. The simplest choice for B is a real constant with dimension 
of action, and as we shall see, the choice B =  yields agreement with the de Broglie relation. 
Indeed, a convenient starting point for the entire development of wave mechanics is the funda-
mental commutation relation

 ˆ, ˆq p i[ ] =   (4.2a)

in one spatial dimension or, more generally,

 ˆ , ˆx p ii j ij  = δ  (4.2b)

where i, j =1, 2, 3 for three spatial dimensions. We now proceed with the development of wave 
mechanics from (4.2a), starting with the uncertainty principle.

4.2 The uncertainty principle

Consider any two observables A and B that satisfy A B i,[ ] = . If  we measure both observ-
ables simultaneously, what is the minimum combined uncertainty ΔAΔB? First form two new 
Hermitian operators

 
A A A

B B B
0

0

= −
= −
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Then

 ∆A A A A( ) = − =2 2 2
0
2  

and similarly, ∆B B( ) =2
0
2 . We are interested in a simultaneous measurement of A B0

2
0
2 and , 

which means that we must calculate the expectation values of both quantities with respect to 
the same state u , which we assume is normalized to unity. Hence

 ∆ ∆A B u A A u u B B u( ) ( ) =2 2
0 0 0 0  

From the Cauchy-Schwarz inequality, we have

 ∆ ∆A B u A A u u B B u u A B u( ) ( ) = ≥2 2
0 0 0 0 0 0

2
 

Now

 A B A B B A A B B A0 0 0 0 0 0 0 0 0 0
1
2

1
2

= +( ) + −( )  

The first term in parentheses on the right-hand side is one-half  the anticommutator A B0 0,{ } of  
A0 and B0, and A B0 0,{ } is a Hermitian operator. Its expectation value is therefore a real num-
ber α. Thus

 ∆ ∆A B i( ) ( ) ≥ + ≥2 2 2
21

4 4
α 



 

Hence

 ∆ ∆A B( )( ) ≥ 
2

 (4.3)

which implies that

 ∆ ∆q p ≥


2
 (4.4)

We are often concerned with the time-energy uncertainty relation as well; that is,

 ∆ ∆E t ≥


2
 (4.5)

This means that measurement of the energy of a system to precision ∆E  requires a time greater 
than or equal to  / ( ).2∆E  Relation (4.5) also applies to an excited state of an atom, mole-
cule, nucleus, or elementary particle that decays spontaneously with mean lifetime τ. Because 
τ  is finite, the excited-state energy cannot be sharp; instead, it must have a natural width 
∆E ≈  / ( ).2τ  This is discussed in more detail in Chapter 16.

 

 

 

 

 

 

 

 

 



57 4.3 Eigenvalues and eigenvectors of q ̂, p ̂

Intuitively it seems that (4.5) should be closely related to (4.3), yet it obviously has a 
somewhat different status because A and B are operators, whereas in quantum mechanics 
t is not an operator but a parameter. Nevertheless, we can derive (4.5) by essentially the 
same method that led to (4.3) as follows: let A be any observable that is not explicitly time 
dependent, but in place of  B, choose the Hamiltonian H. In this case, B0  is replaced by 
H H H H E0 = − = − . Using the Cauchy-Schwarz inequality just as we did in deriving (4.3), 
we arrive at the inequality

 ∆ ∆A H u A H u( ) ( ) ≥ [ ]2 2 21
4

,  (4.6)

Now we recall equation (3.16), which expresses the time derivative of the expectation value of 
an observable A in terms of the commutator of A with the Hamiltonian. If  A has no explicit 
time dependence, (3.16) yields

 u A H u i
d A

dt
,[ ] =   (4.7)

Substituting (4.7) in (4.6) and taking the square root of both sides of the resulting equation, 
we obtain

 ∆ ∆H T⋅ ≥


2
 

where ∆T  is defined as

 ∆
∆

T
A

d A

dt

=  

Qualitatively, ∆T  is the time required for the expectation value of A to change by an amount 
comparable with the root-mean-square (rms) dispersion in A. Thus ∆T  is the shortest time 
required for a significant change in A . Of course, there may be many observables A associated 
with the system of interest, and ∆T  is not necessarily the same for all of them. However, it is 
reasonable to assume that the smallest of the times ∆T  should be the characteristic time for the 
system to evolve substantially from its initial state.

4.3 Eigenvalues and eigenvectors of ˆ ˆq p, 

To analyze the eigenvalues and eigenvectors of ˆ, ˆq p , we first consider some arbitrary operator 
A q pˆ, ˆ ( ) that is a function of ˆ, ˆq p  defined by a power-series expansion; that is,

 A a q pmn
mn

m n= ∑ ˆ ˆ  
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where the amn  are constants. Now

 ˆ, ˆ ˆq p ni pn n[ ] = −


1  (4.8a)

which is easily shown by induction, starting with the basic commutation relation (4.2a). 
Similarly,

 ˆ, ˆ ˆp q mi qm m[ ] = − −


1  (4.8b)

Employing (4.8a), we have

 ˆ, ˆ ˆ
ˆ

q A i na q p i
A
pmn

mn

m n[ ] = =
∂
∂∑ −

 

1  (4.9a)

and, similarly,

 ˆ,
ˆ

p A i
A
q

[ ] = −
∂
∂

  (4.9b)

Now consider the eigenvectors q  and associated eigenvalues q that appear in the equation

 q̂ q q q=  (4.10a)

Similarly, consider

 p̂ p p p=  (4.10b)

It is useful to define the unitary translation operator S x( ), where x is an arbitrary real number 
with dimension of length

 S x
i

x p( ) exp= −







  

(Note that because x is a real number, it commutes with p̂.) From (4.9a), we have

 ˆ, ( )
( )
ˆ

( )q S x i
S x

p
xS x[ ] = ∂

∂
=  (4.11)

Applying both sides of (4.11) on the left to an eigenvector q , we obtain

 ˆ ( ) ( ) ˆ ( )qS x q S x q q xS x q− =  

which yields

 ˆ ( ) ( )q S x q q x S x q  = +( )    (4.12)

Comparing (4.12) to (4.10a), we see that S x q( )  is also an eigenvector of  q̂, with 
 eigenvalue q x+ . Because x is an arbitrary real number, this implies that the spectrum of  
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eigenvalues of  q̂ is continuous and covers the entire real line. A similar remark applies to 
the eigenvalues of  ˆ.p

4.4 Wave functions in coordinate and momentum space

Because q̂ and p̂ are observables, we assume that their eigenvectors each form a complete set, 
which means that

 q q dq I=∫  

and

 p p dp I∫ =  

Thus, for any state vector Ψ , we can write

 Ψ Ψ= = ( )∫ ∫q q dq q q dqψ  (4.13)

Here ψ ( )q q= Ψ  is the coordinate wave function; it represents Ψ  in coordinate space. 
Multiplying both sides of (4.13) on the left by ′q , we obtain

 ′ = ′( ) = ′ ( )∫q q q q q dqΨ ψ ψ  

Therefore,

 ′ = − ′( )q q q qδ  

where δ q q− ′( ) is the one-dimensional Dirac delta function. In addition to the coordinate 
 representative of Ψ , we also consider the momentum representative

 Ψ Ψ= = ( )∫ ∫p p dp p p dpφ  

where φ( )p  is the momentum space wave function. What is the relationship between ψ  and φ?  
We have

 ψ φ( )q q q p p dp= = ( )∫Ψ  (4.14)

and

 φ ψ( )p p p q q dq= = ( )∫Ψ  (4.15)
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We now use the commutation relation ˆ, ˆq p i[ ] =  to show that

 q p eipq=
1

2π
/  

which implies that (4.14) is a Fourier integral transform and (4.15) is its inverse. We 
start with

 q p q
q p

i
p

i
qp q p q pq p= [ ] = − 

ˆ, ˆ
ˆ ˆ

 

1
 

This can be written as

 

q p
qp
i i

q pq p

i
q pq

1
1

1

−




= −

= − ′

 



ˆ ˆ

ˆ ˆ                      q q p dq

i
q p q q q p dq

∫

∫

′ ′

= − ′ ′ ′ ′                     
1


ˆ

 (4.16)

To analyze the latter expression, note that for small ∆ ′q ,

 S q
q

i
I

q
i

( ) exp∆
∆ ∆

′ = ′





≈ + ′p p







 

and

 q S q q q q q q q
q

i
q p q( )∆ ∆

∆
′ ′ = ′ + ′ = ′ + ′

′


  

This implies that

 q p q i
q q q q q

q
i

q
q qˆ ( )′ =

′ + ′ − ′
′

=
∂
∂ ′

− ′ 

∆
∆

δ  (4.17)

Substituting (4.17) into the last integrand in (4.16), we obtain

 
q p

qp
i

q q p
q

q q dq1−




= − ′ ′

∂
∂ ′

− ′ ′∫


δ( )

                      =
∂
∂ ( ) = +

∂
∂q

q q p q p q
q

q p
 

which reduces to

 
∂
∂

=
q

q p
i

p q p
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Integrating this equation, we arrive at

 q p C
i

qp= ⋅ 





exp


 

The constant of integration C is determined by normalization; that is,

 

p p p p p q q p dq

C
i

q p p dq

′ = − ′ = ′

= − ′





∫
∫

δ( )

exp ( )          

    

2



     = − ′( )2
2π δ p p C

 

Thus C
2 12= −( )π . Because we can choose otherwise arbitrary phases so that C is real and 

positive, we arrive at the result

 q p eipq=
1

2π
/  

Thus

 ψ
π

φq p e dpiqp( ) = ( )
−∞

∞

∫
1

2 

/  (4.18)

 φ
π

ψ( ) /p q e dqipq= ( )
−∞

∞
−∫

1

2 

  (4.19)

These formulas are easily generalized to three spatial dimensions; that is,

 

ψ
π

φr p r( ) =
( )

( )∫
1

2
3 2

3



 

/
/p pe di

 

(4.20)

 

φ
π

ψp r r( ) =
( )

( )∫ −1

2
3 2

3



 

/
/ .e dip r

 

(4.21)

With the aid of the foregoing Fourier transforms, we can superpose plane-wave states of defi-
nite momentum to construct an arbitrary wave packet in coordinate space, and conversely, we 
can start with such a wave packet and resolve it into plane-wave states. Equations (4.18) and 
(4.19) or (4.20) and (4.21) imply the de Broglie relation.

4.5 Expectation values of operators in coordinate  
and momentum representation

Consider a state Ψ Ψ Ψ with = 1. For any operator A, we have
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 A q q A q q dqdq q q A q q dqdq= ′ ′ ′ = ′ ′ ′∫∫ ∫∫Ψ Ψ ψ ψ*( ) ( )  

Suppose that A A q a qn
n

n= = ∑( ) .   Then

 ′ = ′ = ′ −∑ ∑q A q a q q q q q a qn
n

n
n

n

nˆ ( )δ  

Hence

 A q q A q q dqˆ * ( ) ( )( ) = ( )∫ψ ψ  

where A q a qn
n( ) = ∑  is an ordinary function of the real variable q.

Suppose, instead, that A is a function of p̂, for example, A p= ˆ . Recalling (4.17), we have

 ′ =
∂
∂

− ′q p q i
q

q q| | ( )

 δ  

Thus

 
ˆ * ( ) ( ) ( )

* ( )
( )

p i q
q

q q q dqdq

i q
q

q

=
∂
∂

− ′








 ′

−
∂
∂

∫∫



ψ δ ψ

ψ ψ

′

    = ∫ dq
 

Similarly, in three dimensions, one has

 p r r r
= − ∇∫i dψ ψ*( ) ( ) 3  

In other words, in Cartesian coordinates, the ˆ , ,px y z  are represented by the differential opera-
tors − ∂ ∂ ∂ ∂ ∂ ∂( )i x y z , , . By similar reasoning, in momentum space, the position operator in 
Cartesian coordinates takes the following form:

 r  → ∇ =
∂
∂

∂
∂

∂
∂







i i

p p pp
x y z

, ,  

In a curvilinear coordinate system, the differential operators representing the various com-
ponents of p are more complicated [see, e.g., Leaf (1979)]. Let the curvilinear coordinates be 
q q q1 2 3, ,( ) with base vectors e e e1 2 3, ,( ). A small displacement is given by d dqn

nx e= , where we 
use the repeated index summation convention. Let the metric tensor be gij , and J g= , where 
g gij= det( ), and J is the Jacobian for the volume element in the curvilinear coordinate system. 
It can be shown that

 p i
q J

J
qn n n

= −
∂
∂

+
∂
∂









1
 (4.22)
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and that this operator is Hermitian. In almost all applications, one employs an orthogonal set 
of curvilinear coordinates, in which case the components of the metric tensor are

 g h g h g h11 1
2

22 2
2

33 3
2= = =  

and gij = 0 for i j≠ . Here J h h h= 1 2 3. For example, for spherical polar coordinates,

 
q r q q
h h r h r

1 2 3

1 2 31
= = =
= = =

θ φ
θsin

 

and

 J r= 2 sinθ  

Thus (4.22) yields

 

p i
r r

p i

p i

r = −
∂
∂

+





= −
∂
∂

+





= −
∂
∂







1

1
2θ

φ

θ
θ

φ

cot  

4.6 Choosing the Hamiltonian. The Schroedinger wave equation

How do we formulate the quantum-mechanical Hamiltonian for a given physical system, and 
once that is accomplished, how do we recover the well-known Schroedinger wave equation 
from the formalism we have developed so far? We begin by considering the simple classical 
Hamiltonian for motion of a nonrelativistic particle in one spatial dimension; that is,

 H
p
m

V qc
c

c= + ( )
2

2
 

We replace the classical variables q pc c,  by the quantum-mechanical operators ˆ, ˆq p , respectively, 
to arrive at the quantum-mechanical Hamiltonian

 H
p
m

V qQM = +
ˆ

( ˆ)
2

2
 

We now employ the latter in the time-dependent Schroedinger equation; that is,

 H
p
m

V q iQM Ψ Ψ Ψ= +





=
ˆ

( ˆ)
2

2
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Multiplying this on the left by q , we obtain

 
1

2
2

m
q p q V q i q iˆ ( ˆ)Ψ Ψ Ψ+ = =





ψ  

Now, employing the completeness relation, we have

 

q V q q V q q q dq

V q q q q dq

( ) ( )

( ) ( )

 Ψ Ψ= ′ ′ ′

= ′ ′ ′ ′

∫
∫                

 

ψ

               

               

= ′ − ′ ′ ′
=
∫V q q q q dq

V q

( ) ( ) ( )

( )

δ ψ
ψ ( )q

 

Also from the completeness relation and (4.17), we obtain

 

1
2

1
2

2

m
q p

m
q p q q p q q dqdqˆ ˆ ˆ ( )Ψ = ′ ′ ′′ ′′ ′

= −

∫∫ ψ

                   


2

2m q
q q

q
q q q dq dq

∂
∂ ′

− ′










∂
∂ ′′

′ − ′′








 ′′ ′ ′′∫∫ δ δ ψ( ) ( ) ( )

                   

    

=
∂
∂ ′

− ′









∂ ′
∂ ′

′∫


2

2m q
q q

q
q

dqδ ψ
( )

( )

               = −
∂
∂



2 2

22m
q

q
ψ( )

 

Thus we obtain the familiar Schroedinger wave equation

 − ′′ + =






2

2m
V q iψ ψ( )  

In more complicated situations, but when the system still has a classical analogue, we start with 
the following basic considerations in classical mechanics. There a physical system is described 
by generalized coordinates qi and generalized velocities ∂ ∂q ti / . (From now on, we drop the 
subscript c for classical variables unless it causes confusion to do so.) The kinetic energy T is 
a well-defined function of these coordinates and velocities, and it obeys Lagrange’s equations; 
that is,

 
d
dt

T
q

T
q

Q
i i

i

∂
∂

−
∂
∂

=


 

where the Qi are generalized forces. Frequently, the latter may be derivable from an ordinary 
potential V; that is,

 Q
V
qi

i

= −
∂
∂

 

where V depends on the qi but not on the qi . In this case, we obtain
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d
dt

T
q

T
q

V
qi i i

∂
∂

−
∂
∂

= −
∂
∂

 

These equations can be rewritten in terms of the Lagrangian L T V= −  as

 
d
dt

L
q

L
qi i

∂
∂

−
∂
∂

=


0  (4.23)

However, it may happen that the potential (now called U) has a velocity-dependent part. If  we 
can write

 Q
d
dt

U
q

U
qi

i i

=
∂
∂

−
∂
∂

 (4.24)

then by redefining the Lagrangian as L = T – U, we once again obtain equation (4.23). We also 
define the generalized (canonical) momenta by

 p
L
qi

i

=
∂
∂ 

 

and the classical Hamiltonian by

 H q p Lc i
i

i= −∑   

Consider a classical observable Ac that can be expressed as a function of the coordinates qi, the 
momenta pi, and the time t. Then

 
dA
dt

A
q

q
t

A
p

p
t

A
t

c c

i

i c

i

i c

i

=
∂
∂

∂
∂

+
∂
∂

∂
∂









 +

∂
∂∑  (4.25)

However, Hamilton’s equations are

 
∂
∂

=
∂
∂

= −
H
p

q
H
q

pc

i
i

c

i
i   

Substituting these in (4.25), we obtain

 

dA
dt

A
q

H
p

H
q

A
p

A
t

A H

c c

i

c

i

c

i

c

i

c

i

c c

=
∂
∂

∂
∂

−
∂
∂

∂
∂









 +

∂
∂

= { }

∑

     , +
∂
∂
A
t
c

 (4.26)

where A Hc c,{ } is a Poisson bracket. Equation (4.26) resembles the Heisenberg equation (3.18). 
More generally, there is almost always a strong similarity between the Poisson bracket of any pair 
of classical canonical variables and the commutator of the corresponding  quantum-mechanical 
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operators. For example, consider the Poisson bracket of the canonical coordinate qj  and the 
canonical momentum pj . It is

 q p
q

q
p
pj k

j

i

k

ii
jk,{ } = ∂

∂
∂
∂

=∑ δ  

whereas the corresponding commutator is

 ˆ , ˆq p ij k jk  = δ  

The similarity is so general that it is usually understood as a rule: to obtain the commutator 
from the Poisson bracket, multiply the latter by i, and change the {} to [].1 The general rule for 
obtaining the quantum-mechanical Hamiltonian is as before: write the classical Hamiltonian 
in terms of the canonically conjugate coordinates and momenta, and then replace these by the 
corresponding quantum operators.

We now consider an important example: a particle of mass m and electric charge q in an 
external electromagnetic field. In classical electrodynamics, the Lorentz force in cgs or hlu 
units is

 F B= + ×





q
c

E 1
v  (4.27)

The electric field E  and magnetic field B can be expressed in terms of the scalar potential Φ 
and vector potential A; that is,

 E = −∇ −
∂
∂

Φ
1
c t

A
 

 B A= ∇×  

Substituting these expressions in (4.27) and employing the identity

 v v v× ∇×( ) = ∇( ) − ∇( )A A A   

we obtain the ith Cartesian component of the Lorentz force; that is,

 Fi
i

i
i

i

q
x c

A
A
t c x

= −
∂
∂

− ∇( ) +
∂
∂






+

∂
∂









Φ 1 1
v v 

A
 (4.28)

However,

 
dA
dt

A
A
t

i
i

i= ∇( ) +
∂
∂

v  

1 However, the rule is not universally valid. See D. Giulini, “That Strange Procedure Called Quantization,” in Aspects of Quantum Gravity: 
From Theory to Experimental Search, D. Giulini, C. Kiefer, and C. Lammerzahl, eds. (Berlin: Springer Verlag, 2003).
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Thus (4.28) becomes

 F q
x c

dA
dt c xi

i

i

i

= −
∂
∂

− +
∂
∂







Φ 1 1
v

A
 (4.29)

Comparing (4.29) with (4.24), we see that F is derivable from the velocity-dependent 
potential

 U q
q
c

= −Φ vA  

Hence the Lagrangian is

 L T U T q
q
c

= − = − +Φ vA  

and

 p
L
x

T
x

q
c

Ai
i i

i=
∂
∂

=
∂
∂

+
 

 (4.30)

The first term on the far right-hand side of (4.30) is called the mechanical momentum or kinetic 
momentum, whereas pi itself  is the canonical momentum.

The Hamiltonian is

 

H x p L

x
T
x

q
c

T q
q
c

x
T
x

c i i

i
i

i
i

= −

=
∂
∂

+ − + −

=
∂
∂

∑
∑

∑







 





    

    

v vA AΦ

− +T qΦ

 (4.31)

Often T is a homogeneous quadratic function of  the velocities, in which case (4.31) 
becomes

 H T T q
m

x y z qc = − + = + +( ) +2
2

2 2 2Φ Φ    (4.32)

From (4.30), each component of canonical momentum is

 p mx
q
c

A i x y zi i i= + = 1 2 3, , , , for  

We write (4.32) in terms of the canonical momentum p as follows:

 H
m

q
c

t q tc = − ( )





+ ( )1
2

2

p A r r, ,Φ  (4.33)
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Thus, in coordinate representation, the quantum-mechanical Hamiltonian is

 H
m

i
q
c

q= − ∇ −





+
1

2

2

 A Φ  (4.34)

and the time-dependent Schroedinger wave equation is

 H
m

i
q
c

q i
t

ψ ψ ψ ψ
= − ∇ −





+ =
∂
∂

1
2

2

 A Φ  (4.35)

In the following sections we develop some consequences of this very important equation. 
Before we do, however, let’s note something quite obvious: no argument by analogy from clas-
sical mechanics can tell us how to construct terms in the quantum Hamiltonian that have no 
classical analogue. For example, if  a particle with charge q and mass m also has intrinsic spin (a 
nonclassical observable) and as a consequence a spin magnetic moment, then, at least in non-
relativistic quantum mechanics, we must add a term to the Hamiltonian in (4.34) to account 
for the interaction of that spin magnetic moment with an external electromagnetic field. Such 
nonclassical terms can only be found by intuition (guessing), from appeals to symmetry, and 
from experimental clues.

4.7 General properties of Schroedinger’s equation:  
The equation of continuity

Because r r r r r

n n d= ∫ψ ψ*( ) ( ) 3  for any value of n, ρ ψ ψ= *  is the probability density for 

finding the particle of interest, and ρ τd  is the probability of finding the particle in volume dτ . 

Because the particle should be somewhere, we should always require ρ τd =∫ 1. It’s not always 

possible to normalize the wave function in this manner, for example, when the wave function 
is a plane wave extending over all space. However, this difficulty is only an apparent one. In 
reality, the wave is always bounded in space (although it may extend over a very large region). 
When we replace it by a plane wave, we are making a convenient approximation and saying that 
the momentum spread is negligible for the problem in question.

How does the probability density vary with time? We write the Schroedinger equation (4.35) 
as follows:

 
−

∇ + ∇ + ∇ ( )+ + =
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2

2 2

22 2 2 2m
i q
mc

i q
mc

q
mc

q iψ ψ ψ ψ ψ ψA A
A

Φ  (4.36a)

The complex conjugate equation is

 
−

∇ − ∇ − ∇ ( )+ + = −
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2 2

22 2 2 2m
i q
mc

i q
mc
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q iψ ψ ψ ψ ψ ψ* * * * * *A A
A

Φ  (4.36b)
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Multiplying (4.36a) by ψ * and (4.36b) by ψ , and subtracting the latter equation from the 
former, we obtain

 
− ∇ − ∇( ) + ∇ + ∇( ) 

 

2
2 2

2 2m
i q
mc

ψ ψ ψ ψ ψ ψ ψ ψ* * * *A A

                    + ∇ ( ) + ∇ ( )  =
∂
∂

( ) =
∂
∂

i q
mc

i
t

i
t



   

2
ψ ψ ψ ψ ψ ψ ρ

* * *A A
 (4.37)

Now ψ ψ ψ ψ ψ ψ ψ ψ* * * *∇ − ∇( ) = ∇ ∇ − ∇( )2 2
 , and

 ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ* * * * *∇ ( )+ ∇ ( ) = ∇ ( ) − ∇ + ∇( )    A A A A A2  

Thus, defining the probability current density as

 j A= ∇ − ∇( ) −

2mi
q

mc
ψ ψ ψ ψ ψ ψ* * *  (4.38)

we see that (4.37) reduces to

 ∇ +
∂
∂

= j
ρ
t

0  (4.39)

which is the equation of continuity. It is analogous to the equation of continuity for electric 
charge and current densities in classical electrodynamics. Whereas that equation implies con-
servation of charge, (4.39) implies conservation of probability, no matter how ψ  changes with 
time. If  A = 0, (4.38) reduces to

 j = ∇ − ∇( )

2mi
ψ ψ ψ ψ* *  (4.40)

In the classical Hamiltonian (4.34), the canonical momentum is not uniquely defined because 
the electromagnetic potentials are themselves not unique: with an arbitrary real scalar function 
χ, we can always make a gauge transformation; that is,

 
Φ Φ Φ→ ′ = +

∂
∂

→ ′ = −∇

1
c t

χ

χA A A
 (4.41)

This transformation leaves the electric and magnetic fields invariant. It is easy to verify that in 
quantum mechanics, Schroedinger’s equation (4.35) is covariant with respect to gauge trans-
formations in the following sense: if  we make the replacements given in (4.41) and also replace 
ψ ψ ψ χ by ′ = − ( ) exp ,i q c  then ′ψ  satisfies

 
1

2

2

m
i

q
c

q i
t

− ∇ − ′





′ + ′ ′ =
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 A ψ ψ ψ
Φ  
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The probability current density j in (4.38) remains invariant in this transformation. Finally, we 
consider the Schroedinger equation (4.35) in the important case where A and V = qΦ are inde-
pendent of time. We try a solution of the form ψ r r, ( )t u f t( ) = ( )  and obtain
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Dividing both sides of this equation by uf, we have
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The left-hand side of  (4.42) is a function of  r only, and the right-hand side is a  
function of  t only; hence both must be equal to a constant, which is the energy E. In fact, 
we have

 




f
f

i
E= −  

which yields f t f e iEt( ) ( ) /= −0 . Thus
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which is the time-independent Schroedinger wave equation. Because the constant f ( )0  can be 
absorbed in u, ρ ψ ψ= =* *u u, which is independent of the time. Therefore, ∇ = j 0, so there 
is no net flow of probability into or out of any closed volume. In other words, a state of well-
defined energy is a stationary state.

Equation (4.43) is an eigenvalue equation for the Hermitian operator 1 2
2

m ih q c( ) − ∇ − ( ) A  
on the Hilbert space of spatial wave functions u( ).r  Hence solutions u corresponding to distinct 
values of E are orthogonal, and degenerate solutions corresponding to a common eigenvalue 
E can be rendered orthogonal by the Schmidt process. Of course, here orthogonality means  

that if  u and u′ are two distinct solutions, then u u d* ′ =∫ τ 0. Furthermore, the solutions 

u iE tn n exp /−( ) form a complete set. This means that any solution ψ  of  the time-dependent 
Schroedinger equation (4.33) for time-independent potentials A and V can be expressed as a 
superposition of the u iE tn n exp /−( ); that is,

 ψ r r, exp /t c u iE tn
n

n n( ) = ( ) −( )∑   

It is easy to show that for time-independent potentials, the coefficients cn appearing in the sum 
are independent of r and of t.
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4.8 Galilean invariance of the Schroedinger wave equation

To describe any natural phenomenon in classical or quantum physics, one needs a reference 
frame. Inertial reference frames possess a special property in classical physics – in such a frame, 
a body subject to no external forces describes uniform rectilinear motion. Given one such 
frame F, we can form another F ′ by moving with constant velocity v in the x-direction with 
respect to F. Assuming that the origins of F and F ′ coincide at t = 0 and that all motions are 
nonrelativistic, the coordinates of a space-time point in F′ are related to those of the same 
space-time point in F by the Galilean transformation

 

′ = −
′ =
′ =
′ =

x x t
y y
z z
t t

v

 (4.44)

If  the Schroedinger equation is to have general validity in nonrelativistic quantum mechanics, 
its form must be the same in both frames; in other words, the wave equation must be covariant 
with respect to Galilean transformations. We now work out the consequences of this covari-
ance using one spatial dimension for simplicity.

Let the Schroedinger equations (including a scalar velocity-independent potential V) be
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and
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 (4.46)

in frames F and F ′, respectively. It is natural to require that probabilities for physical processes 
be the same in both frames. Then, because the Jacobian of the transformation (4.44) is unity, 
probability densities also must be the same. In other words, we must have

 ψ χ( , ) ( , )x t x t
2 2= ′ ′  

which implies

 ψ χ( , ) ( , )( , )x t e x tig x t= ′ ′′ ′  (4.47)

where g is a real function. To find g, we substitute (4.47) into (4.45) and rewrite the derivatives 
in (4.45) in terms of x′, t′ using
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After some simple algebra, this yields
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 (4.48)

Comparison of (4.48) with (4.46) yields
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 (4.50)

However, when (4.49) is taken into account, (4.50) simplifies to
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Thus, from (4.49) and (4.51), we obtain
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For example, consider a free particle with definite momentum p in the x-direction as observed 
in F. The wave function ψ  is

 ψ
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 (4.53)

Comparing (4.52) with (4.53), we see that the general forms of the wave functions ψ χ and  are 
the same. However, to go from (4.52) to (4.53), it is necessary not only to make the replace-
ments x x t t→ ′ → ′,   but also to make the replacement p p m→ − v.

This reveals a profound difference between de Broglie waves and waves in classical mechanics. 
As a classical example, consider water waves propagating in the +x-direction with straight parallel 
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wave fronts on the ocean surface. Let the wavelength be λ according to an observer O in frame F 
who employs coordinates x and t. Now consider another observer O′ in frame F ′ who flies over 
the ocean surface with nonrelativistic velocity v in the +x-direction with respect to F. The latter 
employs coordinates ′ = −x x vt, ′ =t t but still observes the same wavelength λ. However, if  two 
such observers describe a de Broglie wave propagating in the +x-direction, and if the momentum 
in frame F is p, the momentum in frame F′ is ′ = −p p mv ; hence the wavelength is

 ′ =
−

=
−

λ λh
p m m

p
v v

1
 

4.9 Ehrenfest’s equations and the classical limit

We have shown previously that if  A is an observable that does not depend explicitly on the time, 
and u  is a state of the system of interest that is normalized to unity, then
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These are known as Ehrenfest’s equations. They are obviously analogous to the corresponding 
equations of classical mechanics; that is,

 p Fcc cV= −∇ =  

where Fc is a force, and

 q vc cm
= =

1
 

When are Ehrenfest’s equations identical to the classical equations of motion, and when do 
they represent something different? If  the two sets of equations are identical, then q p ,  play 
the same roles as q pc c, , respectively, which means that
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 (4.54)

Under what circumstances is (4.54) valid? Suppose that V is a continuous and differentiable 
function. Then we can write the expansion

 V V a a a( ) ( )q q q q q q qc c c c= + −( ) + −( ) + −( ) +0 1 0 2 0
2

3 0
3

q   

where the an are numerical coefficients, and q0 is a constant vector. Meanwhile,
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and
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Comparing (4.55) with (4.56), we see that for q p
,  to describe a classical orbit, V must 

vary sufficiently slowly over the entire wave packet that terms of third and higher order can be 
ignored in its Taylor expansion. For example, consider the electron in a hydrogen atom. For 
each stationary state with low principal quantum number n, the spatial wave function extends 
over a region of space in which the Coulomb potential varies rapidly, so terms of third and 
higher order in the Taylor expansion of V cannot be ignored. Hence a wave packet constructed 
from a superposition of stationary states with low n values cannot resemble a particle that 
describes a classical Bohr orbit. For very large principal quantum numbers, the electron wave 
packet can be confined to a region of space over which the potential varies slowly, and the pic-
ture of a classical Bohr orbit becomes more realistic.

Problems for Chapter 4

4.1. Starting from the basic commutation relation ˆ, ˆq p i[ ] =  and using mathematical induction, 
show that ˆ, ˆ ˆq p ni pn n[ ] = −



1 and ˆ, ˆ ˆp q mi qm m[ ] = − −


1, where n m≥ ≥2 2,  are positive integers.

4.2. Let ˆ ˆq p and  be position and momentum operators, respectively, in one dimension, and let 
f q pˆ, ˆ( ) be an operator that can be expressed as a power series in ˆ ˆq p and . What uncertainty 
relation holds for ˆ ?q f and  That is, what is ∆ ∆q f⋅ ?

4.3. The Heisenberg uncertainty relation for a coordinate and its conjugate momentum

 

 

 

 

 

 

 



Problems for Chapter 475

 ∆ ∆x p ≥


2
 

is derived from the commutation relation x p i,[ ] =  with the aid of the Cauchy-Schwarz 
inequality. From consideration of the conditions that must be satisfied for that inequality to 
become an equality, show that the minimum uncertainty wave packet must be a Gaussian.

4.4. The magnetic field B B B= +1 2 produced by a free electron is partly due to its motion ( )B1  
and partly due to its intrinsic spin magnetic moment ( )B2 . To determine the magnetic moment 
of a free electron from a measurement of the field strength produced by it, two conditions must 
be satisfied:

 ( )a B B2 1>>  

(b) The electron must be localized in a region ∆r that is much smaller than the distance r to the 
point of observation.

Show that the simultaneous satisfaction of these two conditions is incompatible with the 
uncertainty principle.

4.5. In a Stern-Gerlach experiment, one prepares a beam of particles with rather well-defined 
momentum (e.g., in the z-direction) and imposes an inhomogeneous magnetic field (in the 
y-direction). The beam initially consists of equal numbers of atoms with magnetic moments 
along ±y. The inhomogeneous magnetic field causes the force

 F
B

yy
y= ±

∂
∂

µ  

which deflects the partial beams with magnetic moment µ µ> <0 0 ( ) up (down), respectively 
(Figure 4.1).

Pole tip

Pole  tip

Lines of force

Beam (out of page)

x

y

z

Figure 4.1  Schematic diagram of Stern-Gerlach experiment. The magnet extends for a considerable length in the z-direction.
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By measuring the beam deflection, one can determine the magnetic moment. Using the 
uncertainty principle, show that it is impossible to measure the spin magnetic moment of the 
free electron by this method. (It has been measured very precisely by other methods.)

4.6. As mentioned in Problem 2.5 in Chapter 2, for any Hermitian operator A and any state ψ  
of  unit norm, it can be shown that

 A A Aψ ψ ψ= + ∆ 1  (1)

where ψ ψ1 0= . Thus, for any two Hermitian operators A, B,

 A A A Aψ ψ ψ= + ∆ 1  (2)

and

 B B B Bψ ψ ψ= + ∆ 1  (3)

where ψ ψ ψ ψ1 1 0A B= = .
(a) Show that

 A B i A B A B, Im[ ] = 2 1 1∆ ∆ ψ ψ  (4)

and

 A B A B A B A B, Re{ } = +2 2 1 1∆ ∆ ψ ψ  (5)

(b) Show that (4) yields the uncertainty principle for A, B and that (5) yields the inequality

 ∆ ∆A B A B A B≥ { } −
1
2

,  (6)

4.7. (a) Consider a physical system in state ψ 0( )  at time t = 0 and for which the energy E is 
not exact but has some constant indeterminacy ∆E . How much time T is required for the sys-
tem to evolve from ψ 0( )  to a state ψ ( )T  such that ψ ψ( )T  and 0( )  are orthogonal? From 
the time-energy uncertainty relation, it is easy to guess the approximate answer: T E  ∆( ). In 
this problem, use the relation that has already been mentioned in Problem 4.6 and in Problem 
2.5, namely,

 A A Aψ ψ ψ ψ ψ= + =∆ 1 1 0with  

to show that

 T
E

≥
π

2∆
 (1)

You may find it useful to start with consideration of d dt t/ ψ ψ0
2

( ) ( ) .
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(b) Show that for a spin magnetic moment precessing in the xy-plane about a uniform magnetic 
field in the z-direction,

 T
E

=
π

2∆
 

4.8. In quantum mechanics, it is sometimes useful and convenient to employ the Wigner dis-
tribution function, also known as the phase-space distribution (PSD) function. Let ψ ( , )x t  be 
a coordinate-space wave function that satisfies the time-dependent Schroedinger equation; 
that is,

 −
∂
∂

+ =
∂
∂

1
2

2

2m x
V x i

t
ψ ψ ψ

( )  (1)

Here we use one space dimension for simplicity and choose units where  = 1. The correspond-
ing PSD function is defined as

 W x p t x y t x y t e dyipy( , , ) * , ,= +( ) −( )∫
1 2

π
ψ ψ  (2)

Here x pand  are both c-numbers, but they can still be interpreted as coordinate and conjugate 
momentum, respectively, without violating the uncertainty principle.
(a) Show that the probability density in coordinate space is

 ρ ψ( , ) ( , ) ( , , )x t x t W x p t dp= = ∫2
 (3)

(b) Show that the probability density in momentum space is

 σ φ( , ) ( , ) ( , , )p t p t W x p t dx= = ∫2
 (4)

Here φ( , )p t  is the momentum wave function corresponding to ψ ( , )x t .
(c) Let W x p t W x p t1 2( , , ), ( , , )  be two PSD functions corresponding to two independent wave 
functions ψ ψ1( , ), ( , )x t x t 2 , respectively. Show that

 ψ ψ π1 2

2

1 22= ∫∫W x p t W x p t dxdp* ( , , ) ( , , )  (5)

4.9. This problem concerns the density operator

 ρ = ∑ g u ui
i

i i  

The density matrix

 M g u ujk i
i

j i i k= ∑ φ φ  
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represents ρ  with respect to a particular orthonormal basis φ{ } . Often it is useful to choose 
for that basis the eigenvectors of the coordinate operator, in which case the density matrix for 
a single spatial dimension becomes

 M x y g x u u y g x yi
i

i i i
i

i i( , ) ( ) ( )*= =∑ ∑ ψ ψ  (1)

where ψ  is a coordinate wave function. Sometimes we encounter a continuous probability 
distribution g a( )  instead of discrete probabilities gi . Then the sum in (1) is replaced by an 
integral over the continuous parameter a; that is,

 M x y g a x a y a da( , ) ( ) ( , ) * ( , )= ∫ ψ ψ  (2)

In this problem, we consider a particular example of (2) that can be worked out exactly. Let us 
assume that the wave function ψ ( , )x a  is a Gaussian of fixed width displaced from the origin 
by amount a; that is,

 ψ
π

( , ) exp
( )

/x a
s

x a
s

=
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−
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2 42 1 4

2

2
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and that the displacement a is described by a Gaussian probability distribution
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2 22
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2πσ σ
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where s and σ  are positive real constants. Show that
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Here z with 0 1≤ <z  is a convenient parameter that characterizes the magnitude of σ /s .
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5.1 The neutron interferometer

For our next illustration of  the rules, we consider experiments that have been performed with 
an interferometer and collimated beams of  free neutrons generated in a reactor. A typical 
 neutron kinetic energy in such a beam is of  order 0.03 eV, which corresponds to a veloc-
ity v ≈ 3.7 × 105 cm/s and a de Broglie wavelength λ ≈ 10–8 cm. The interferometer, shown in 
Figure 5.1, is fabricated from a single crystal of  pure silicon, originally in the form of a right 
circular cylinder about 10 cm long and 8 cm in diameter. Portions of  the cylinder are cut away 
to leave three “wings” A, B, and C. The silicon atoms in one wing, though separated from 
those in the adjacent wing by several centimeters, form part of  an essentially perfect lattice 
that includes all three wings. The interatomic lattice spacing is a ≈ 10–8 cm, comparable with 
the neutron de Broglie wavelength, and the lattice is approximately 109 atoms in length.

The neutron beam, with collimated cross-sectional area ≈ 1 cm2, strikes the interferometer 
as shown in Figure 5.2. One finds experimentally that for a given incident neutron momentum, 
two beams (I and II) emerge from wing A if  and only if  the angle of incidence θ ≈ 0 35.  rad  is 
chosen correctly within the narrow range δθ ≈ × −5 10 6  rad. The existence of beams I and II 
could be demonstrated by placing detectors at points F and G. Moreover, the waves associated 
with beams I and II are coherent, with definite relative phase, a fact that can be demonstrated 
by bringing the two beams I ″ and II′ together to interfere in wing C so that interference effects 
are observed at detector D. We emphasize that the coherence mentioned here pertains to inter-
ference between different portions of an individual neutron wave packet. The wave packets of 
distinct neutrons are, of course, mutually incoherent.

To understand how the interferometer works, we first consider scattering of a neutron by a 
single silicon nucleus (Figure 5.3).

Although the incident neutron de Broglie wave is really a packet, it is described well enough 
for present purposes by a plane wave. The silicon nucleus is a localized short-range force cen-
ter, and the scattered neutron wave is spherically symmetric. However, there are many silicon 
nuclei in the perfect rigid lattice, and the scattered spherical wave from each of these has a 
definite relative phase. These waves therefore interfere very much as electromagnetic waves do 
when scattered from individual rulings of a diffraction grating. In fact, the silicon crystal is a 
three-dimensional diffraction grating for the neutron wave. It is not difficult to show that the 
scattered waves interfere constructively only when the Bragg condition, familiar from x-ray  
diffraction, is satisfied; that is,

 sinθ λ
=

2a
 (5.1)

Further Illustrations of the Rules of Quantum Mechanics5
 

 

 

 

 

 

 



Further Illustrations of the Rules80

(In the present case, the relevant scattering planes PP ’ are as indicated in Figure 5.2, and the 
scattering is actually of the Laue type.)

To analyze the situation simply but in a way that retains the essential features, we describe 
the incident neutron wave by the expression

 ψ χi y zik y ik z= +( )exp  (5.2)

Here χ is a two-component spinor describing the neutron spin, we have ignored a time-
 dependent factor and an overall multiplicative constant k ky z/ tan= θ , and the y origin of 

z

y

θ

A B C

D

P P'

F

G

S

I I'

II II'
Incident
beam

I"

 Figure 5.2 Top view of neutron beams in the neutron interferometer.

End view Side view

Top  view

A B C

 Figure 5.1 Sketch of the single-crystal silicon neutron interferometer.
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coordinates is chosen to coincide with a crystal plane. We follow the consequences of  (5.2) by 
writing

 exp( ) cos sinik y k y i k yy y y= ( ) + ( )  

In this expression, the cosine standing wave has a large amplitude and the sine standing wave 
vanishes at each crystal plane. The effect of the Laue scattering is thus to shift the relative phase 
of these two partial waves as the net wave propagates through the crystal. Therefore, at the exit 
of wing A we have

 

ψ χ β

χ β

= + + 

= +( )
exp( ) ( ) sin

exp( )

ik z cos k y i k y

ik z
e e

z y y

z i i   
2

1 k y i ik y

I II

y ye e+ −( ) 
= +

− −β

ψ ψ

1

   

 (5.3)

where

 ψ χ χβ
I

i ik z ik y ik z ik ye e e ue ez y z y = +( ) =
2

1  (5.4)

 ψ χ χβ
II

i ik z ik y ik z ik ye e e ve ez y z y = −( ) =− − −

2
1  (5.5)

and where ß is the phase shift – a real number. Thus we obtain two coherent waves ψ I II,  
that propagate in the directions indicated in Figure 5.2. A similar analysis occurs for each 

Scattered  wave

Incident
wave

 Figure 5.3 Scattering of a plane neutron wave by a silicon nucleus.

 

 

 

 

 

 



Further Illustrations of the Rules82

of  the beams I and II at wing B. Beam I splits into two coherent parts, of  which one is 
beam I′:

 ψ χI
ik z ik yvue ez y

′ = −  (5.6)

whereas beam II also divides into two parts, one of which is beam II′:

 ψ χ χ
β

II

i
ik z ik y ik z ik y

e
ve e wve ez y z y

′ =
−( )

=
1

2
 (5.7)

Between wings B and C we may introduce a phase shifter S in the path of beam I′ (see Figure 5.2). 
The effect of S is represented quite generally by a multiplicative factor a ei⋅ δ , where a and δ are 
real numbers with 0 1≤ ≤a ; that is,

 ψ ψ ψδ
′ ′′ ′→ = ⋅I I

i
Ia e  (5.8)

Beams I″ and II′ now undergo Laue scattering in wing C, and each produces a component that 
enters detector D. The contribution from I ″  at D is

 ψ χ δ
′′ ( ) = ⋅I

i ik y ik zD wvua e e ey z  

whereas the contribution from beam II ′  at D is

 ψ χII
ik y ik zD uwv e ey z

′ = ⋅( )  

Thus the net wave function at D is

 ψ χ δD wvu e e a eik y ik z iy z( ) = ⋅ + ⋅( )1  (5.9)

The counting rate of detector D is proportional to the probability density ψ ( )D
2
 for the neu-

tron at D and is thus proportional to

 P = + ⋅ = + + ⋅1 1 2
2 2a e a aiδ δcos  (5.10)

P  is analogous to the relative intensity as a function of relative optical path length in a Mach-
Zehnder interferometer in classical optics. For example, if  a = 1 (no absorption at S but only a 
phase shift), P  varies from 4 to 0 as δ  varies from 0 to π.

When S is a magnet, the situation is particularly interesting. The magnetic field strength 
can be chosen so that a neutron spin (with spin magnetic moment equal to –1.91 nuclear Bohr 
magnetons) precesses through an angle of 2π in S. As shown in Section 3.4, this implies that χ 
is replaced by −χ  in beam I ″; that is, a = 1 and δ π= . Hence we have destructive interference 
between beams I″ and II′ resulting in P = 0. Observation of this effect constitutes a good exper-
imental demonstration of the change of sign in the spin function associated with a 2π  rotation 
of spin-½ spinors (Werner et al. 1975).

Another interesting way to shift the relative phase of beams I′ and II′ is illustrated in 
Figure 5.4; it also has been observed. Here the beams I, I′, II, and II′ are arranged in a vertical 
plane with I′ and II horizontal, and the difference in height between them equal to y.

 

 

 

 

 

 

 

 



5.2 Aharonov-Bohm effect83

Schroedinger’s wave equation for a particle in an external scalar potential that depends only 
on the time is

 − ∇ + =






2
2

2m
V t iψ ψ ψ( )  (5.11)

Let ψ( , ) ( ) ( )r rt f F t= . Then  F F i V t= ( ) +1 ( ) const, so

 F t F
i

V t dt
t

( ) ( )exp ( )= −








∫0

0
 (5.12)

In the present example, V m gyg= , where mg is the neutron gravitational mass, and g is the 
acceleration of gravity at Earth’s surface. Note that in (5.11), m is the neutron inertial mass. Of 
course, according to the principle of equivalence, m mg= . The phase difference between beams 

I′ and II′ observed at detector D is ∆φ = −( )m gyL vg /  , where v is the neutron velocity.

5.2 Aharonov-Bohm effect

This quantum-mechanical effect, discussed by Ehrenberg and Siday (1949), Aharonov and 
Bohm (1959), and Furry and Ramsey (1960) and first observed by Chambers (1960), is an 
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 Figure 5.4 Neutron interferometer oriented for detection of gravitationally induced phase shift.
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interesting counterintuitive manifestation of the electromagnetic vector potential A. Figure 5.5 
illustrates a setup for observation of the effect.

It includes a source of  electrons and a pair of  slits S1, S2 that split each electron wave packet 
into two coherent portions ψ ψ1 2,  that meet and interfere at screen S. In the region between, 
there is a long thin magnetized whisker (labeled W) that acts like an ideal solenoid, provid-
ing a confined magnetic induction field B perpendicular to the page, with total flux Φ. Inside 
the whisker, ψ ψ1 2 and  are negligible, and wherever ψ ψ1 2 and  are significantly different from 
zero, B is negligible. Nevertheless, the interference fringes shift whenever B is changed, reveal-
ing a phase difference between ψ ψ1 2 and  equal to −e cΦ  . This happens even though the 
electron does not encounter B directly and there is no Lorentz force. How can we explain the 
effect?

We begin by recalling the time-dependent Schroedinger wave equation for an electron with 
charge –e in an external vector potential A and where the scalar potential vanishes; that is,

 
1

2

2

m
i

e
c

i− ∇+





= 

A ψ ψ  (5.13)

Let us assume that when A = 0, the solution ψ 0 to (5.13) satisfying fixed boundary conditions is 
known. We now show that if  A is independent of the time, the solution to (5.13) satisfying the 
same boundary conditions but including A is

 ψ ψr r A
r

r

, , expt t
ie
c

d( ) = ( ) −







∫0

0




  (5.14)

where A
r

r






0
∫ d  is a line integral from some fixed point r0 to the point r of  interest.
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ψ2

 Figure 5.5 Schematic diagram of apparatus for observing the Aharonov-Bohm effect.
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To demonstrate (5.14), we first consider the expression
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 (5.15)

Note that on the right-hand side of the first line there are two terms proportional to A that 
 cancel one another. We now apply the operator 1 2m i e c( ) − ∇ + ( )  A r( )  to the last line of 
(5.15). In the same way as in (5.15), this yields
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which completes the proof.
We now apply (5.14) to the wave packets ψ1 2,  in Figure 5.5. When there is no B field, let 

these wave packets be ψ ψ10 20, , respectively. Then, when B is present, we have at point P on the 
screen

 ψ ψ1 10

1

=
−




∫exp
ie
c

d
C





A  (5.16)

 ψ ψ2 20

2

=
−




∫exp
ie
c

d
C





A  (5.17)

where C1,2 are the paths of integration shown in Figure 5.5. Thus

 ψ ψ ψ ψ1 2

1

10 20+ =
−





+

−






∫ ∫exp exp

ie
c

d
ie
c

d
C

















A A


  (5.18)

where the loop integral indicates integration around the closed path (C2–C1). Now, from 
Stokes’ theorem,

 A A B



 







d n dS n dS= ∇× = =∫∫ ∫ ˆ Φ  

is the magnetic flux enclosed by the loop (C2–C1). Thus the intensity at the screen is 
proportional to

 ψ ψ ψ ψ1 2
2

10 20

2

+ = +
−





exp
ie
c
Φ  (5.19)
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Obviously, the interference term in this expression depends on Φ, and the phase shift is

 δ =
−e

c
Φ


 (5.20)

We note that Φ does not depend on the precise choice of path. For example, in Figure 5.5 we 
could have chosen any path C1′ instead of C1 so long as the loop integral around C1–C1′ 

contains no flux. Also, the quantity A






d =∫ Φ  is independent of the choice of gauge for 

A because under a gauge transformation, A A A→ ′ = −∇χ, where χ is some scalar function. 
However, the line integral of the gradient of any scalar function around a closed path is zero.

5.3 A digression on magnetic monopoles

In ordinary electrodynamics, there are free electric charges (electric monopoles); however, 
although there is no known prohibition against free magnetic charges (magnetic monopoles), 
there is no experimental evidence for their existence. Despite this lack of evidence, interest in 
magnetic monopoles persists. In this section we want to discuss some of the properties of mag-
netic monopoles that follow from very simple classical considerations and then show how their 
possible existence is connected to the Aharonov-Bohm effect.

To begin, consider a magnetic monopole g and an electric charge e separated by a distance a 
(Figure 5.6). We now show, as was first done by J. J. Thomson in 1900, that the angular momen-
tum in the field generated by g and e is directed along the line from e to g, and the magnitude 
of this angular momentum is independent of the magnitude of a.

In Heaviside-Lorentz units, the electric field at point of observation Q is E = e rr 4 3π , and 
the magnetic field at Q due to g is B = gR/4πR3. The momentum density in the electromagnetic 
field at Q is

 P B r R= × =
( )

×
1 1

4
2 3 3c c

eg
r R

E
π

 

However, R = r – a; thus

 P r a= −
( )

×
1

4
2 3 3π c

eg
r R

 (5.21)

The angular momentum density in the field is
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 (5.22)
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Let us denote the total angular momentum of the field by S; it is usually called the spin of  the 
eg pair. Because by symmetry only the component of j parallel to a makes a contribution to S, 
we have

 

S j a= =

+ −

∫ ∫

∫
∞



d
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c
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R
rdr d

rdr
a d
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θ θ

θ θ
8

2

3
3

0

3

2 2

sin

sin
     = 

r cos
/θ

π

( )∫ 3 2
0

 (5.23)

Thus S is not only parallel to a but, as can easily be verified by making the substitution x = r/a 
in the integrand, |S| is independent of a. Evaluation of the integral involves some effort, but 
we can avoid this by making a very elementary calculation to determine the magnitude of S 
(Figure 5.7).

In Figure 5.7, consider two electric charges e/2 on opposite sides of g. By symmetry, the 
angular momentum in the field (the spin of the e/2:g:e/2 triplet) is zero. Now, move the upper 
electric charge e/2 on the indicated semicircular arc to the lower charge in time T at constant 
speed v = πR/T, where R is the arc radius. The Lorentz force on the moving charge in the 
 magnetic field due to g is out of the page, and it has the magnitude

 F
e

c
B

e
c

R
T

g
R

= =
2 2 4 2

v π
π

 

To keep the moving charge in the plane of the page, we must exert an equal and opposite 
force ′ = −F F . The torque about the vertical axis due to F′ is directed upward, and it has 
magnitude

 τ φ φ= ′ =R F
e
c

g
T

sin sin
8

 

We integrate this torque to find the total change in the angular momentum; that is,

 ∆S dt
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c T
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8 400 v
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 Figure 5.6 Vectors for describing the field of the monopole-charge pair

 

 

 

 

 



Further Illustrations of the Rules88

Thus the final angular momentum is directed from the two superposed charges e/2 to g, and it 
has magnitude

 S
eg

c
=

4π
 (5.24)

Because spin is quantized and the smallest nonzero value of spin is  / 2, we might guess that

 
eg
c
= 2π  

and therefore that

 g
c

e
e

= =
2

2
π

α


 (5.25)

where

 α
π

= =
e

c

2

4
1

137 036 .
 

is the dimensionless fine-structure constant. This is an interesting conclusion, but so far it is just 
based on a guess, and we should find a more convincing argument. For this purpose, consider a 
hypothetical Aharonov-Bohm experiment illustrated in Figure 5.8. Two electron packets origi-
nate at P0 and meet again to interfere at P, which is diametrically opposed to P0. The paths C1 
and C2 are semicircular arcs that together define the equator of a sphere. At the center of the 
sphere we place a magnetic monopole g. From the symmetry of this arrangement, it is obvious 
that there cannot be any observable phase shift δ due to the presence of g. Nevertheless, it is 
instructive to calculate (in spherical polar coordinates) the vector potential associated with the 
magnetic field B R= g R4 3π  of  the monopole.

φ
R

v

e/2

e/2

g

 Figure 5.7 Semi-circular path of charge e/2
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We have

 B
g
R R

A A
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= = ∇×( ) =
∂( )

∂
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2π θ

θ
θ φ

φ θA
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 (5.26)

Symmetry about the polar axis allows us to set the second term on the right-hand side of (5.26) 
to zero. We then integrate (5.26) to obtain

 A
g
R

k
φ π

θ
θ

=
−

4
cos

sin
 (5.27)

where k is a constant of integration. Thus, in the equatorial plane, A gk Rφ π= 4 , and the line 

integral A






d∫  taken once around the equator (starting and ending, for example, at P0 in 

Figure 5.8) must be the total flux through the loop. Because the total flux emanating from g is 
g, half  of which is in the northern and half  in the southern hemisphere, k must be ±1. If  we 
choose k = –1, Aϕ has a singularity at θ = 0, whereas if  we choose k = +1, Aϕ has a singularity at 
θ = π. The only way to avoid a singularity is to “patch” two different vector potentials together, 
for example, as follows:
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At θ π= /2, either A1 or A2 can be chosen, with the result that at the equatorial plane Φ = ± g 2.  
The resulting Aharonov-Bohm phase shift is δ = ± ge c2 . This is obviously an absurd and 
ambiguous result unless
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= − + π  (5.28)
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 Figure 5.8 Split electron wave packet travels from P0 to P along semi-circular paths C1, C2 in field of magnetic monopole g located at center of circle.
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where n is an integer. Equation (5.28) implies that

 g
n c
e

ne
= =

2
2

π
α



 (5.29)

For n = 1, (5.29) is the same result as (5.25). The foregoing considerations show how possible 
values of g and e are not independent. In fact, the existence of just one magnetic monopole 
in the universe would imply that electric charge is quantized (as all electric charges appear 
to be).

5.4 Neutrino mixing and oscillations

According to present understanding, all matter (with the possible exception of dark matter) 
consists of two fundamental types of spin-½ objects – leptons and quarks. The known leptons 
fall into three families, also known as generations or flavors:

 
ν ν

µ
ν
τ

µ τe

e− − −



















 (5.30)

Each generation consists of a neutrino (νe, νμ, ντ) and a charged lepton (e–, μ−, τ−). Although 
the charged leptons experience gravitational, weak, and electromagnetic interactions, the neu-
trinos evidently participate only in gravitational and weak interactions. For each lepton, there 
is a corresponding antilepton; for example, corresponding to the electron, there is the positron, 
and corresponding to the neutrino νe, there is an antineutrino νe.

What experimental facts distinguish one neutrino flavor from another? It is found exper-
imentally that when a charged pion decays by weak interaction to a muon and a neutrino, 
that is,

 π µ νµ
+ +→  (5.31)

the neutrino so produced (named νμ) can induce the reaction

 ν µ+ → + −n p  (5.32)

but not the analogous reactions

 ν + → + −n p e  (5.33)

and

 ν τ+ → + −n p  (5.34)

Meanwhile, neutrinos from the decay π ν+ +→ e e  are called νe because they can induce reaction 
(5.33) but not (5.32) or (5.34). These and similar findings are summarized by the empirical 
law of lepton number conservation as follows: we define a lepton number Le to be Le = +1 for 
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e– or νe, Le = –1 for e e
+  or ν , and Le = 0 for all other particles. We also define lepton numbers 

Lμ and Lτ in an analogous way for the second and third generations, respectively. Before 1998, 
it appeared to be an experimental fact with no known exceptions that each lepton number is 
conserved in all reactions. For example, the positive muon decays as follows:

 µ µ
+ +→ e eν ν  

Here Lμ = –1, Le = 0 for both the initial and final states, so both numbers are conserved in the 
decay. By contrast, although the decay

 µ γ+ +→ e  

would be consistent with conservation of energy, linear momentum, and angular momentum, 
this decay does not occur (the branching ratio is less than 4 × 10–11). Here neither Le nor Lμ is 
conserved.

The following question arises concerning neutrinos: Do they have mass, or are they, like 
photons, strictly massless particles that travel with the speed of light? And there is a related 
question that arises as follows: the neutrino states that participate in weak interactions by 
which neutrinos are created or absorbed are called weak-interaction eigenstates and are denoted 
by the symbols

 ν ν ν ν ν νµ τ µ τe e  

and each such state is associated with definite values of Le, Lμ, and Lτ. However, if  neutrinos 
have nonzero mass, are the weak-interaction eigenstates associated with definite mass, or is it 
possible that a state associated with definite mass is some linear combination of weak-interaction 
eigenstates? (Roughly speaking, this is analogous to the following: we can speak about photon 
linear polarization eigenstates x y, , but neither is an eigenstate of angular momentum in the 
z-direction. The latter are the helicity eigenstates + −, , each of which is a linear combination 
of x y and .)

What is the motivation for asking the italicized question in the last paragraph? We do not 
go into details here, but we assure the reader that there are very good reasons for asking the 
question, not the least of which is that an analogous “mixing” effect is known to occur in the 
quark sector. Here, in order to illustrate the fundamental rules of quantum mechanics, we only 
discuss the consequence of assuming that such neutrino mixing does occur. (In fact, the exper-
imental evidence since 1998 for neutrino mixing is very convincing.) For simplicity, we confine 
ourselves to just two lepton generations and assume that there are two distinct neutrino states, 
denoted by ν ν1 2, , associated with definite and distinct masses m1 and m2, respectively; that 

each such state is a linear combination of the weak-interaction eigenstates ν νµe  and ; and 

that these two linear combinations are mutually orthogonal. Clearly, we are once again deal-
ing with a two-dimensional Hilbert space, the basis for which can be ν ν1 2,  or, alternatively, 

ν νµe , . Assuming that each of these states has unit norm, there is some unitary transfor-

mation that takes us from one basis to the other, and this is described quite generally by the 
equations
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ν θ ν θ ν
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 (5.35)

where θ is the mixing angle. It is convenient to represent the states ν ν1 2,  by the spinors 

1

0

0

1









, , respectively. Then an arbitrary linear combination of these states

a bν ν1 2+  is represented by the spinor ψ =





a

b
. Transformation from the basis 

ν ν ν νµ1 2, , to the basis e  is accomplished by the unitary matrix

 U =
−





cos sin

sin cos

θ θ
θ θ

 (5.36)

Thus ′ =ψ ψU , where ′ψ  is expressed in terms of the ν νµe ,  basis.

Now suppose that a neutrino has well-defined linear momentum p. Then, according to the 
well-known formula of special relativity, a neutrino state of definite mass m must have definite 
energy

 E m c c= +2 4 2 2p  

Actually, it is convenient in what follows to choose units where  = =c 1, in which case the pre-
ceding formula becomes

 E m= +p2 2  

Furthermore, in all practical experiments with neutrinos, the first term inside the square root 
is always much larger than the second term (i.e., the neutrino kinetic energy always greatly 
exceeds its rest energy). Hence we can make the following expansions for the energies E1, E2 
associated with states ν ν1 2, , respectively:
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 (5.37)

In the ν ν1 2,  basis, the Hamiltonian is
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 (5.38)

 

 

 

 

 

 



5.4 Neutrino mixing and oscillations93

where ω = −( ) = −( ) ≅ −( )E E m m m m E1 2 1
2

2
2

1
2

2
22/ /4 /4p . From now on we ignore the first term 

on the right-hand side of the last line of (5.38) because it produces no observable effects. Thus 
H = ωσ3.

In the ν νµe ,  basis, the Hamiltonian is

 

′ = =
−







= +

−H UHU 1
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ω
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θ θ
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(5.39)

where n 

= +sin cos .2 2θ θi k  The time evolution of ′ψ  is then given by
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(5.40)

Suppose that at time t = 0, the neutrino is created as νe. Then ′ =





ψ ( )0
1

0
, and (5.40) 

becomes

 ′ =
−

−






ψ
ω θ ω

θ ω
( )

cos cos sin

sin sin
t

t i t

i t

2

2
 (5.41)

Thus the transition probability from ν νµe  to  is

 P
m
E

teν ν θµ→( ) = 





sin sin2 2
2

2
4
∆

 (5.42)

where ∆m m m2
1
2

2
2= − . Because the neutrinos in all these experiments are highly relativistic, 

they travel a distance L ct≅  in time t. However, recalling that c = 1 in the present units, we 
replace t by L to obtain

 P
m
E

Leν ν θµ→( ) = 





sin sin2 2
2

2
4
∆

 (5.43)

This formula describes neutrino oscillations. For such oscillations to occur,

1. The mixing angle must satisfy the condition 0 2< <θ π / .
2. The masses m1 and m2 must be different.

As we have mentioned, the experimental evidence is now very convincing that neutrino mix-
ing and oscillations occur. Clearly, the transformation ν νµe →  described by (5.43) and the 
 general phenomenon of neutrino oscillations involving all three generations imply that the lep-
ton numbers Le, ,µ τ  are not separately conserved.
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Problems for Chapter 5

5.1. We show in Section 5.3 that the angular momentum S in the electromagnetic field associ-
ated with an electric charge e and a magnetic monopole g has magnitude eg/(4πc) (independent 
of the distance between e and g) and is directed from the charge to the monopole. In this clas-
sical problem, which may give you some insight into the behavior of a charge-monopole pair, 
we consider the nonrelativistic motion of a point charge e of  mass m in the magnetic field of 
a fixed (i.e., extremely massive) monopole g. It is convenient to place g at the origin and define 
the position of e as r(t).

(a) Let L be the orbital angular momentum of e with respect to the origin. Show that the speed 
v of  e is constant, that L • S = 0, and that J = L + S is a constant of the motion. Also show 
that if  r0 is the distance of the closest approach of e to the origin and we choose t = 0 when this 
distance is achieved, then

 r r v t2
0
2 2 2= +  

(b) Choose spherical polar coordinates with J along the polar axis and r the position vector of 
e. Show that

 cosθ =
+
b

b v r2 2
0
2

 

where b eg mc= − /( )4π . Because θ  is constant, the orbit of e lies on a cone with vertex at the 
origin, symmetry axis J, and half-angle θ .

(c) At remote times in the past, when e is approaching g but still far away, choose the initial 
value of the azimuthal angle φ = 0. Show that

 φ

π

θ
( )

tan

sin
t

Arc
vt
r=

+
2 0  

5.2. Figure 5.9 shows a hypothetical experiment somewhat analogous to that employed in 
the Aharonov-Bohm effect. A source S emits a succession of  electrons. Each electron wave 
packet is split into two coherent parts ψ ψ1 2,  by slits S1, S2. Wave packet ψ ψ1 2 ( ) passes 
through a long conducting tube T T1 2( ), respectively. While each packet is well inside its 
respective tube, a voltage difference ∆V  is applied to the tubes by means of  a battery and 
a switch for a time t. The battery is disconnected well before either packet emerges from 
its tube. The packets meet at detector D. How does the intensity of  the resulting wave at D 
depend on ∆V  and t?

5.3. Whereas the Aharonov-Bohm (AB) effect concerns the wave function of a charged par-
ticle in the presence of a vector potential A, the Aharonov-Casher (AC) effect (Aharonov and 
Casher 1984; Cimmino et al. 1989) is related to the behavior of a neutral particle with a spin 
magnetic moment (e.g., a neutron) that moves in an electric field. The AC effect has actually 
been demonstrated experimentally by means of a neutron interferometer in a setup shown 
schematically in Figure 5.10.
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A neutron wave is split into two coherent parts at P, one of which takes path C and the other 
C′. These parts are reunited at Q. Normal to the page is an effective line charge with charge per 
unit length λ that generates a cylindrically symmetric electric field E . Find the effective non-
relativistic Lagrangian that describes the motion of the neutron in this field. This Lagrangian 
should be linear in E  and should contain the neutron mass, velocity, and spin magnetic moment 
µn. Show that the phase shift between the two neutron waves at Q arising from λ is

 δ λµ
= ± n

c
 

with ± for neutron spin up (down).

5.4. This problem concerns neutrino oscillations. Using the two-component model of neu-
trino oscillations, we demonstrate the following result in Section 5.4: if  a neutrino with linear 
momentum p is created at time t = 0 in the state νe , the probability P

eν νµ→  that it will be found 

in the state νµ  at a time t > 0 is given by the formula

 P
m
p

t
eν νµ

θ→ = sin sin2 2
2

2
4
∆

 (1)

S

S1

S2

T1

T2

D

Switch

∆V

 Figure 5.9 Schematic diagram of Aharonov-Bohm-like experiment described in Problem 5.2.
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P Q

 Figure 5.10 Schematic diagram of apparatus for observing Aharonov-Casher effect

 

 

 

 



Further Illustrations of the Rules96

where θ  is the mixing angle defining the unitary transformation between weak-interaction 

eigenstates ν νµe ,  and mass eigenstates ν ν1 2, ; that is,

 
ν θ ν θ ν
ν θ ν θ νµ

e = −
= +

cos sin

sin cos
1 2

1 2

 

Also, ∆m m m2
1
2

2
2= − , and in (1) we employ units where  = =c 1. Because in all practical cases 

the neutrino is ultrarelativistic, we can write p = E and t = L/c = L, where L is the linear dis-
tance from the point of origin.

(a) Show that in units where ∆m2 is measured in eV2/c4, L is in kilometers and E is in GeV, (1) 
becomes

 P
m

E
L

eν νµ
θ→ = 





sin sin
.2 2

2

2
1 27∆

 (2)

(b) Formulas (1) and (2) and the entire discussion of Section 5.4 refer to neutrino oscillations in 
vacuum. When neutrinos pass through matter, there is an additional feature that must be con-
sidered. This happens because matter contains electrons, and these electrons interact with the 

state νe  but not with the state νµ  to produce virtual intermediate vector bosons W–. It can be 

shown that this results in the following change in the Hamiltonian H′ of  equation (5.35):

 ′ =
−






⇒

−




H ω

θ θ
θ θ

ω
θ θ
θ θ

cos sin

sin cos

cos sin

sin cos

2 2

2 2

2 2

2 2 
+

NGF

2
3σ  (3)

where N is the electron number density, GF is Fermi’s weak interaction coupling constant, 
ω = ( )∆m E2 4/ , and we have reverted to units where  = =c 1. If  you do not know about weak 
interactions, don’t worry – just accept (3) as given and consider what follows as an exercise in 
quantum mechanics.

Show that when the new term proportional to N is included in (3), the Hamiltonian matrix 
is no longer diagonal in the basis ν ν1 2, . Instead, show that the new basis in which the 
Hamiltonian is diagonal is ν ν1 2m m, , where

 
ν θ ν θ ν
ν θ ν θ νµ

e m m m m

m m m m

= −
= +

cos sin

sin cos
1 2

1 2

 (4)

and

 tan
sin

cos
2

2

2
2

θ ω θ

ω θ
m

FNG
=

+
 

Note that even if  θ were small, θm  could be large: θ πm = 4  if  N GF= − 2 2ω θcos / . A neu-
trino born near the center of the Sun as νe passes through a region of very large but rapidly 
decreasing electron density in its flight outward. When it encounters a density that satisfies 
the last condition, the probability for transformation into a νµ  is enhanced. This is called the 
Mikheyev-Smirnov-Wolfenstein (MSW) effect; (Wolfenstein 1978).
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6.1 Free-particle green function. Spreading of free-particle wave packets

An arbitrary free-particle wave packet can be synthesized by superposing plane waves. Using 
one spatial dimension for simplicity, we consider how such a wave packet evolves with time. Let 
the state vector at time t = 0 be Ψ 0( ) . Then the initial wave function in coordinate space is

 ψ ( , ) | ( )x x0 00 0= Ψ  

At a time t ≥ 0, we have

 ψ( , ) | ( , ) | ( ) | exp | ( )x t x U t x
i p

m
t= = −











0 0
2

0
2

Ψ Ψ




 (6.1)

where, as usual, p̂ denotes the momentum operator in one dimension. We expand Ψ 0( )  in 
plane-wave states of definite momentum; that is,

 Ψ Ψ( ) | ( ) ( , )0 0 0= =∫ ∫p p dp p p dpφ  

Then (6.1) becomes

 

ψ φ( , ) | exp | ( , )

exp

x t x
i p

m
t p p dp

i p

= −










−

∫






2

2

2
0

2
        =

m
t x p p dp

i
px

i p
m

t







= 





−

∫ | ( , )

exp exp

φ

π

0

1

2 2

2

       


 



∫ φ( , )p dp0

 

(6.2)

Now

 φ
π

ψ( , ) exp ( )p
i

px x dx0
1

2
0 0 0= −



∫





 

Substitution into (6.2) yields

 ψ
π

ψx t dp
i

p x x
p t
m

x, exp ( , )( ) = −( ) −











−∞

∞

−∞

∞

∫∫
1

2 2
00

2

0
 

dx0  (6.3)
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Frequently, it is useful to write (6.3) as follows:

 ψ ψ( , ) , ; , ,x t G x t x x dx= ( ) ( )
−∞

∞

∫ 0 0 0 00 0  (6.4)

where

 G x t x
i

p x x
p t
m

dp0 0 0

2

0
1

2 2
, ; , exp( ) = −( ) −











−∞

∞

∫π 

 (6.5)

is the free-particle Green function for the Schroedinger equation. It is clear from (6.4) and/or 
(6.5) that in the limit as t → 0, G x t x x x0 0 00, ; , ( ).( )→ −δ  For t > 0, the integral on the right-
hand side of (6.5) is easily evaluated by completing the square in the exponent of the integrand; 
that is,

 
p t
m

p x x
m

p
m x x

t

m x x

t

2

0
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2

0
2

2
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2 2
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Hence
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t
it
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p
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2
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1
2 2 2

, ; , exp exp( ) = −( )











− −
−( )

π  

2

t
dp























−∞

∞

∫  

With use of

 exp −( ) =
−∞

∞

∫ iap dp
ia

2 π
 

this becomes

 G x t x
m
i t

im x x

t0 0
0

2

0
2 2

, ; , exp( ) = −( )









π  

 

The initial time need not be t = 0. If  instead it is t0, then

 G x t x t
m
i T

im x x

T0 0 0
0

2

2 2
, ; , exp( ) = −( )









π  

 (6.6)

where T t t= − ≥0 0.This is readily generalized to three spatial dimensions; that is,

 G t t
m
i T

im

T0 0 0

3 2
0

2

2 2
r r

r r
, ; , exp

/

( ) = 



−( )









π  

 (6.7)
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Note that Schroedinger’s equation for a free particle

 ∇ =
∂
∂

2 2ψ ψm
i t

 (6.8)

is similar to the diffusion equation of classical transport theory; that is,

 ∇ =
∂
∂

2 1
u

D
u
t

 (6.9)

Where, for example, u is the concentration of dissolved matter in some solvent, and D is the 
diffusion coefficient. We need only replace D by i m / 2  in (6.9) to obtain (6.8). Thus it should 
be no surprise that the Green function for diffusion is related to G0 in (6.6) or (6.7) by the same 
substitution.

As an example of the application of (6.6), we consider the Gaussian wave packet

 ψ
π

x
a

x
a0

2 1 4
0
2

2
0

1

2 4
, exp/( ) =

( )
−





 (6.10)

The mean-square dispersion in x0 is

 
∆x x x

x x x dx

0

2

0
2

0
2

0
2

0
2

0

2

0

0

0

( )  = −

= = ( )
−∞

∞

∫                ψ , = a2
 

Hence, at t = 0, the root-mean-square (rms) dispersion in x0 is

 ∆x a0 0( ) =  

The momentum-space wave function at t = 0 is easily found to be

 φ
π

p
a a p

, exp
/

0
2 2

2

1 4 2 2

2
( ) = 




−





 

 

which yields

 ∆p
a

0
2

( ) = 

 

Therefore,

 ∆ ∆x p0 0 0
2

( ) ( ) =



 (6.11)

Thus (6.10) is a minimum-uncertainty packet. In fact, it can be shown that if  (6.11) holds, the 
corresponding wave packet is necessarily Gaussian (see Problem 4.3). Now, employing (6.6) 
with (6.10), we calculate the time evolution of ψ. The result is
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 ψ
π

( , ) exp/ /x t
a i t ma

x
a i t m

=
( ) + ( ) 

−
+ ( )











1

2

1

2 4 21 4 1 2

2
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which yields

 ψ
π

( , ) expx t
a t ma

x

a t m a
2

2 2

2

2 2 2 2 2

1

2 2 2 4
=

+ ( )





−
+ ( ) 

















 (6.12)

From (6.12) it is evident that

 ∆x t a
t

m a
( ) = +2

2 2

2 24


 (6.13)

Clearly, the narrower the packet is at t = 0, the faster it spreads for finite t of  either sign. This 
can be understood intuitively: the original packet of width a contains momentum components 
up to p a  / 2 , and a particle with such momentum and mass m moves a distance t ma/ 2  
in time t. Of course, although ∆x is time dependent, ∆ ∆p p= ( )0  is independent of t. Equation 
(6.13) is only a special example of the following general result: ∆x( )2

 is a quadratic function of 
time for any arbitrary square-integrable free-particle wave packet.

6.2 Two-particle wave functions: Relative motion  
and center-of-mass motion

We now consider two particles with masses m1,2 and coordinates r1,2, respectively, and assume 
that their interaction is described by a central potential V ( )r r1 2−  that depends only on the 
distance between the particles. Working in one spatial dimension for simplicity, we write the 
Schroedinger equation

 −
∂
∂

( ) − ∂
∂

( ) + −
 

2

1

2

1
2 1 2

2

2

2

2
2 1 2 1 2 12 2m x

x x t
m x

x x t V x x x xψ ψ ψ, , , , ( ) , 2 ,t i
t

( ) = ∂
∂



ψ
 (6.14)

It is useful to define the relative coordinate x and the center-of-mass coordinate X by

 x x x= −1 2  

 X
m x m x

m m
=

+
+

1 1 2 2

1 2

 

Then

 
∂
∂
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∂
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∂
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∂
∂
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∂
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and, similarly,

 
∂
∂

= −
∂
∂

+
+

∂
∂x x

m
m m X2

2

1 2

 

Rewriting (6.14) in terms of x and X and doing simple algebra, we obtain

 −
∂
∂

( ) − ∂
∂

( ) + ( ) ( ) = ∂
∂

 



2 2

2

2 2

22 2µ
ψ ψ ψ ψ

x
x X t

M X
x X t V x x X t i

t
, , , , , ,  (6.15)

where µ = +m m m m1 2 1 2/( ) is the reduced mass, and M m m= +1 2. Equation (6.15) possesses 
solutions of the form ψ φ χx X t x t X t, , , ,( ) = ( ) ( ), where

 −
∂
∂

+ =






2 2

22µ
φ φ φ

x
V i  (6.16)

and

 −
∂
∂

=






2 2

22M X
i

χ χ  (6.17)

The equation of relative motion (6.16) contains the potential, which in some cases is associ-
ated with bound states φ. Equation (6.17) describes free-particle motion of the center of mass. 
These conclusions are easily generalized from one to three spatial dimensions.

6.3 A theorem concerning degeneracy

In one dimension, the time-independent Schroedinger equation is

 ′′ + − ( ) =u u U x uε 0  

where ε = 2 2mE /   and U x mV x( ) ( ) /= 2 2
 . Consider two solutions u and w corresponding to 

the same energy; that is,

 ′′ − ( ) = −u U x u uε  (6.18)

 ′′ − ( ) = −w U x w wε  (6.19)

and assume that U x( ) is real and finite for all x. Multiplying (6.18) by w, (6.19) by u, and sub-
tracting one of the resulting equations from the other, we obtain

 wu uw′′ − ′′ = 0  

Integrating this equation once, we have
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 wu uw′ − ′ = const  (6.20)

If  u w x x= = = ∞ = −∞0 at  and/or at , the constant on the right-hand side of (6.20) is zero, 
and w u= const . When one has two linearly independent solutions corresponding to the same 
eigenvalue, these solutions are degenerate. In the present case, however, w is proportional to u; 
thus we have only a single nondegenerate solution u. Because both u and u* are solutions and 
u is nondegenerate, we must have

 u cu= *  (6.21)

where c is a constant. Taking the complex conjugate of both sides of (6.21), we obtain

 u c u c u* * *= = 2
 

hence c i= exp( )θ , where θ  is an arbitrary real constant. Thus u must be real (apart from 
the arbitrary constant phase factor). A bound-state wave function is one that vanishes at 
x x= +∞ = −∞ and at . The foregoing theorem implies that in a one-dimensional potential that 
is finite everywhere, every bound-state wave function is nondegenerate and real.

6.4 Space-inversion symmetry and parity

A potential is space-inversion symmetric if  V V( ) ( ).r r= −  A Hamiltonian with such a poten-
tial is itself  symmetric: H H( ) ( )r r= − . We now investigate the eigenvalue equation for such a 
Hamiltonian. We have H u Eu( ) ( ) ( )r r r=  and H u Eu( ) ( ) ( ).− =r r r  Replacing r by –r in this last 
equation, we obtain

 H u Eur r r( ) −( ) = −( )  

Therefore, u u( ) ( )r r and −  are both solutions for the same eigenvalue E. If  u is nondegenerate, 
we must have

 u cur r( ) = −( )  

where c is a constant. Replacing r by –r, we see that c2 = 1, and therefore, c = ±1. Thus each 
solution must have definite parity; that is,

c = +1:  u(r ) = +u(–r )  Positive (even) parity
c = −1:  u(r ) = –u(–r )   Negative (odd) parity

Every bound state in a symmetric one-dimensional potential that is finite everywhere is nonde-
generate and therefore has definite parity, either even or odd. In the next few sections we discuss 
several elementary examples in one-dimensional wave mechanics that illustrate the foregoing 
theorems and several other principles of interest.
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6.5 Potential step

The potential step is shown in Figure 6.1. Here U = –U0 for x < 0 and U = 0 for x ≥ 0.
Suppose that ε > 0. Then, writing k U k1

2
0 2

2= + =ε ε,  , we have

 
x u k u
x u k u
< ′′ =
> ′′ =

− −

+ +

0 0
0 0

1
2

2
2

:
:

+ 
+ 

 

where u-, u+ are the solutions for x x< >0 0,  , respectively. The general forms of these 
solutions are

 u Ae Beik x ik x
−

−= +1 1  

and

 u Ce Deik x ik x
+

−= +2 2  

If  a wave is incident from the left, we may set A = 1 and D = 0. In this case, there is a wave 
reflected back to the left at x = 0 (B ≠ 0) and a wave transmitted to the right at x = 0 (C ≠ 0). 
The coefficients B, C are determined by the boundary conditions at x = 0, which are that 
u x u x( ) ( ) and ′  must be continuous. Thus we obtain

 
u B C u

u ik B ik C u
− +

− +

( ) = + = = ( )
′ ( ) = −( ) = = ′

0 1 0

0 1 01 2 ( )
 

Hence

 u e
k k
k k

eik x ik x
−

−= +
−
+

1 11 2

1 2

 

and

 u
k

k k
eik x

+ = +
2 1

1 2

2  

The probability current density for the incident wave is
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e ik e ik e e

k
m

p
m
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The reflected probability current density is

 j
k k
k k
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We define the reflection coefficient as

 R
j
j

k k
k k

l≡ =
−
+







ref

inc

1 2

1 2

2

 (6.22)

The transmitted probability current density is

 j
k

k k

k
mtrans =

+( )
4 1

2

1 2
2

2

 

and the transmission coefficient is defined as

 T
j
j

k k

k k
≡ =

+( )
trans

inc

4 1 2

1 2
2  (6.23)

From (6.22) and (6.23) we see that R T+ = 1, which obviously must hold for conservation of 
probability. In the limit as ε = →k2

2 0, R T→ →1 0 and . However, when ε → +∞ =,  k k1 2 and 
R T= =0 1, . 

There is another linearly independent solution where the incident wave comes from the right. 
Here A = 0, D = 1, and

 B
k

k k
C

k k
k k

=
+

=
−
+

2 2

1 2

2 1

2 1

 

It is easy to show that in this case T k k k k= +( )4 1 2 1 2
2
, just as in (6.23). This is analogous to 

reflection of a normally incident electromagnetic wave at a plane vacuum-dielectric interface. 
There also the transmission coefficient is the same no matter what the direction of the incident 
wave. The theorem of Section 6.3 does not apply to the example just discussed because neither 
of the two solutions vanishes at ±∞ .

Next, consider the potential step of Figure 6.1, with − < <U0 0ε . In this case, we write 
k2

2 0= − >ε , and the Schroedinger equations become

x

U = – U0

U = 0

0

 Figure 6.1 Potential step
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x u k u
x u k u
< ′′ =
> ′′ − =

− −

+ +

0 0
0 0

1
2

2
2

:
:

 + 
 

For an incident wave exp( )ik x1  from the left, we have

 
u e Be
u Ce

ik x ik x

k x
−

−

+
−

= +
=

1 1

2
 

Application of the boundary conditions yields

 C
k

k ik
B

k ik
k ik

=
+

=
−
+

2 1

1 2

1 2

1 2

 

which result in

 u
k

k ik
k x

k
k ik

k x− = +
−

+
2 21

1 2
1

2

1 2
1cos sin  

and

 u
k

k ik
e k x

+
−=

+
2 1

1 2

2  

Here we have a standing wave in the classically allowed region (x < 0) and an exponentially 
decaying amplitude in the classically forbidden region (x > 0). In the present example, where 
− < <U0 0ε , the theorem of Section 6.3 is applicable.

6.6 One-dimensional rectangular barrier

For the one-dimensional barrier shown in Figure 6.2, let k k U1
2

2
2

00 0= > = − >ε ε and . The 
Schroedinger equations for regions I, II, and III are
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Assuming a wave incident from the left, we have the solutions
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where B, C, D, and S are constants. By employing the boundary conditions and straightforward 
algebra, we find

 S
ik k e

e k ik e k ik

ik a

k a k a
=

+( ) − −( )
−

−

4 1 2

2 1
2

2 1
2

2

2 2

 

Obviously, when a S k a→ → >>0 1 12, . ,  For  S becomes

 S
ik k

k ik
e eik a k a≈ −

−( )
− −4 1 2

2 1
2

1 2  

The transmission coefficient in this case is

 T S
k k

k k
e k a= =

+( )
−2 1

2
2
2

1
2

2
2 2

216
2  

This example is an elementary illustration of barrier penetration.

6.7 One-dimensional rectangular well

As an elementary example of the parity theorem of Section 6.4, we consider the potential 
and energy illustrated in Figure 6.3. Writing k k U2

2
1
2

0= − = +ε ε,  , we have the Schroedinger 
equations:

 
I,III:
II:       

′′ − =
′′ + =

u k u
u k u

2
2

1
2

0
0

 

Because the bound-state solutions must have even or odd parity, we need only consider the 
solutions in regions II and III and the boundary conditions at x a= /2. In region II, the even 
solutions are of the form

I II III

U = 0

U = U0

ε

–a/2 a/2

 Figure 6.2 Rectangular potential barrier
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 u A k xII,even = cos 1  

and the odd solutions are of the form

 u B k xII,odd = sin 1  

In the limit where U0 →∞, u x a= ≥0 2 for / . In this case, the even-solution eigenvalues are 
determined by the condition

 cos
k a1

2
0




=  

Hence the possible energies are given by

 ′ = + =
+( )







ε ε π π π π

U
a a a

n

a0

2

2

2

2

2

2

2
9 25 2 1

, , ,..., ,...  

Meanwhile, the odd-solution eigenvalues, determined by the condition

 sin
k a1

2
0




=  

are given by

 ′ = + =ε ε π π π
U

a a a0

2

2

2

2

2

2

4 16 36
, , ,...  

In order of increasing energy, the solutions alternate between even and odd parity. The quali-
tative character of these solutions remains the same even if  we distort the shape of the well 
considerably.

Now, returning to the finite rectangular well of Figure 6.3, we have for the lowest-energy 
solution

I II III

–U0

0

–a/2 a/2

ε

 Figure 6.3 Rectangular potential well: ε < 0
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x

a
u A k x

x
a

u Be k x

< =

> = −

2

2

1

2

: cos

:     
 

Imposing the boundary conditions at x = a/2, we obtain

 A
k a

B
k a

cos exp1 2

2 2
= −





 (6.24)

and

 − = − −





k A
k a

k B
k a

1
1

2
2

2 2
sin exp  (6.25)

Division of (6.25) by (6.24) yields the condition

 tan
k a k

k
1 2

12
=  

or

 tan
ε

ε
a U2

0

4
1= −  

With the substitution ω ε2 2 4= a , this becomes

 tanω
ω

= −
U a0

2

24
1  (6.26)

The solutions to this transcendental equation are displayed in Figure 6.4 as the intersections of 

y y f U a= = = ( ) −tan ( )ω ω ω and 0
2 24 1. Note that a solution exists for any value of U a0

2 ;  
thus, no matter how shallow the well, there is always at least one bound state. The energy of the 
first odd-parity solution is determined by the transcendental equation:

 cot ( )ω ω= − f  

and no solution to this equation exists unless U a0
2≥ ( )π / . Thus, if  the well is sufficiently shal-

low, there is no odd-parity bound state.
Next, we consider the finite rectangular well for positive energy, as in Figure 6.5. Here it is 

convenient to define k U k1
2

0 2
2= + =ε ε,  . If  we choose a wave exp ik x2( ) incident from the left, 

the solutions are
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Making use of the boundary conditions, we find, after some algebra, that the transmission 
coefficient is

 T S

k a
k k

k k
k a

= =

( ) + +( ) ( )

2

2
1

1
2

2
2 2

1
2

2
2

2
1

1

4
cos sin

 (6.27)

In Figure 6.6 we plot T versus εa U a2
0

2 100 for = . The sequence of maxima and local minima 
in T provides an elementary example of resonance in scattering.
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 Figure 6.4 y = tan ω (heavy curve) and y = f(ω) for U0a2/4 = 1, 10, 100, 1,000.
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 Figure 6.5 Rectangular potential well: ε > 0
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6.8 Double wells

Figure 6.7 shows a double well with infinitely high walls. Two obviously degenerate solutions u1 
and u2, with even and odd parity, respectively, are also shown. The theorem of Section 6.3 does 
not apply here even though u1 and u2 both vanish at ±∞ because the potential barrier between 
the two wells is infinitely high.

Because u1 and u2 are degenerate, any linear combination of these solutions is also a solution 
with the same energy. In particular,

 u u u+ = +( )1

2
1 2  

and

 u u u− = −( )1

2
1 2  

correspond to a particle localized in the left or right well, respectively. If  we make the barrier 
between the left and right wells finite, as in Figure 6.8, the solutions u u1 2,  are no longer degener-
ate, and it is easy to see by going to the limit where the central barrier disappears that E E2 1> .

We can still form
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 Figure 6.6 Transmission coefficient for the potential well of Figure 6.5 with U0a2 = 100 , plotted as a function of εa2
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 u x t u x e u x eiE t iE t
±

− −( ) = ( ) ± ( ) , / /1

2
1 2

1 2   

but because E E1 2≠ , neither u u+ − nor  is a stationary state. Instead, whereas u x u x+ −( ) ( ), , ,0 0  
describe a particle that is more or less localized in the left (right) well, respectively, the particle 
tunnels to the opposite well and back again with an oscillation period T E E= −( )2 2 1π  in 
each case. Such oscillations, frequently called quantum beats, occur whenever one has a coher-
ent superposition of two or more states with different energies. Such beats have widespread 
and diverse physical manifestations. We have already seen two important examples (Larmor 
precession in Section 3.4 and neutrino oscillations in Section 5.4). In what follows, we give two 
additional examples.

6.9 Ammonia molecule

In the NH3 molecule, three hydrogen atoms are located at the vertices of  an equilateral tri-
angle, and the nitrogen atom oscillates back and forth on a line perpendicular to the plane 
of  the triangle (Figure 6.9a). The effective potential seen by the nitrogen atom is sketched in 
Figure 6.9b. The stationary states of  ammonia do not correspond to N on one side (u+) or the 
other side (u–) of  the plane defined by the equilateral triangle but rather to the symmetric and 

u1

u2

 Figure 6.7 Ground state wave functions in a double rectangular well of infinite height
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N

H

H

H

 Figure 6.9 a) Sketch of ammonia molecule (NH3) b) Sketch of potential energy for nitrogen motion along axis perpendicular to plane defined by 
hydrogen atoms

u1

u2

 Figure 6.8 Sketch of lowest symmetric wave function (u1) and antisymmetric wave function (u2) for a rectangular well of infinite height with  
symmetric finite rectangular barrier.

 

 



6.10 Hydrogen molecular ion113

antisymmetric combinations u u1 2, , respectively, of  u u+ −, . The first MASER (a forerunner of 
all LASERs), invented in 1954 by C. H. Townes and coworkers, was a molecular beam appa-
ratus that used a transition between a pair of  states u u1 2,  of  NH3 at a frequency of  approxi-
mately 24 GHz.

6.10 Hydrogen molecular ion

An analogous situation occurs in the H2
+ molecule. We first consider a hydrogen atom in the 

ground state and also an isolated proton separated from the atom by a very large distance 
R. The electronic wave function is ψ L N r a= −( )exp 1 0 , where r1 is the distance between the 
electron and the proton in the initial atom; a m ee0

2 24= π /  is the Bohr radius; and N is a 
normalization constant. The potential seen by the electron is plotted in Figure 6.10a, and the 
wave function ψ L  is plotted on the left side of Figure 6.10b. However, another solution ψ R  also 
exists: it corresponds to the electron centered about the second proton.

When the distance R is very large, we can form the essentially degenerate symmetric and 
antisymmetric solutions

 
ψ ψ ψ

ψ ψ ψ

S L R

A L R

= +( )

= −( )

1

2
1

2

 

If  R is decreased sufficiently so that there is overlap of ψ ψL R and , ψ ψS A and  are no longer 
degenerate; instead, the electronic energy of ψ ψA S is greater than that of . The total energy of 
the molecule, which includes the Coulomb repulsion energy of the two protons in addition to 
the electronic energy, is sketched in Figure 6.11.

R

a)

b)

ψL ψR

 Figure 6.10 a) Sketch of potential energy for electron motion in Coulomb field of two widely separated protons b) Sketch of ground state electronic 
wave function along internuclear axis
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6.11 Periodic potentials: Bloch’s theorem

Periodic potentials of the form V x V x a( ) ( )= + , where a is a real constant, are obviously of 
importance in condensed-matter physics, where one deals with the properties of crystalline sol-
ids. Let us assume that we have such a potential, in which case the Hamiltonian is also periodic: 
H x H x a( ) ( )= + . Let ψ ( )x  be an energy eigenfunction satisfying

 H x x E x( ) ( ) = ( )ψ ψ  

and let T be the translation operator such that

 T x x aψ ψ( ) = +( )  

T is clearly unitary, and also

 

TH x x TE x ET x

E x a H x a
( ) ( ) = ( ) = ( )

+( ) = +( )
ψ ψ ψ

ψ ψ                  = x a

H x T x

+( )
( ) ( )                 = ψ

 

Thus T H,[ ] = 0, which implies that the eigenstates of H are also eigenstates of T. Let the eigen-
values of T be λ; that is,

43210
R/R0

A

S
E=0

 Figure 6.11 Sketch of lowest symmetric (S) and antisymmetric (A) energies for H2
+ plotted as a function of internuclear separation R in units of 

equilibrium internuclear separation R0. Coulomb repulsion energy of the protons is included.
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 T x xψ λψ( ) = ( )  

and define k by λ = exp( )ika . Then, because T is unitary, k must be real. Defining

 u x ikx xk ( ) = −( ) ( )exp ψ  

we have

 

u x a e e x a

e e T x
k

ikx ika

ikx ika

+( ) = +( )
= ( )

− −

− −

ψ
ψ               

               

               

= ( )
= ( )

− −e e e x

u x

ikx ika ika

k

ψ
 

Hence u xk ( ) is periodic, and ψ ( )x  can always be expressed as

 ψ x e u xikx
k( ) = ( )  (6.28)

This result is known as Bloch’s theorem, and the expression on the right-hand side of (6.28) is 
frequently called a Bloch wave. Note that − ≤ ≤π π/ /a k a  is a sufficient range for k because 
k k a and + 2π /  yield the same eigenvalue exp( ).ika

A simple and useful example of the foregoing is the Kronig-Penney model, where

 V x V x na
n

( ) = −( )
=−∞

∞

∑ 0δ  

and V0 is a positive constant. We seek a solution of the form (6.28) with energy E. In the region 
0 < <x a, V = 0 and

 ψ = + −Ae Beiqx iqx  

where E q m= ( ) 2
2 . Thus

 u A i q k x B i k q x= −( )  + − +( ) exp exp  

The usual boundary conditions determine A, B, and q. After straightforward algebra, we 
find that

 cos cos
sin

ka qa
maV qa

qa
= + 0

2


 

Let us define

 f y y
maV y

y
( ) = +cos

sin0

2


 (6.29)
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Then values of q y a= /  are allowed for which f y( ) ≤ 1 (see Figure 6.12). The permissible 
energies are values E q m= ( ) 2

2 , for which q is allowed. This is a simple example of energy 
bands.

6.12 Particle in a uniform field

We now consider the motion of a particle of mass m in a uniform force field. This could be a 
charge q of  mass m in a uniform electric field or a particle of mass m in a uniform gravitational 
field with gravitational acceleration g. Choosing the latter as an example, we have the time-
independent Schroedinger equation

 
− ∂

∂
+ =



2 2

22m y
mgy E

ψ ψ ψ  

Making the substitutions α β= =2 22 2 2mE gm ,  , we obtain

 
∂
∂

+ −( ) =
2

2
0

ψ α β ψ
y

y  (6.30)

With the change of variable z y= −( )−β β α2 3/ , (6.30) is transformed to the Airy differential 
equation; that is,

5

4

3

2

1

0

–1

f(
y)

–15 –10 –5 0 5 10 15
y

 Figure 6.12 f y maV( ) from equation (6.29) with  is plotted versu0
2 4( ) = s y.  The allowed values of q y a= /  are those for which f y( ) .≤1  

The permissible energies (energy bands) are values E q m=( )

2 2 2/  for which q is allowed.
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∂
∂

− =
2

2
0

ψ ψ
z

z  (6.31)

a regular solution of which is the Airy function defined for z ≥ 0; that is,

 

ψ

ψ

z Ai z
z

I z I z

z

( ) = ( ) = 




− 













−( )

−3
2
3

2
31 3

3 2
1 3

3 2
/

/
/

/

= −( ) = 




− 











−Ai z

z
J z J z

3
2
3

2
31 3

3 2
1 3

3 2
/

/
/

/

 (6.32)

where J zν ( ) is an ordinary Bessel function of order ν, and I z i J izν νπν( ) = − ( )exp( / )2 . The 
Airy function is plotted in Figure 6.13.

For large z, the following asymptotic formulas are useful:

 Ai z
z

z−( )→ +





1 1 2
3 41 2 1 4

3 2

π
π

/ /
/sin  (6.33)

 Ai z
z

z
( )→ −( )1

2

2 3
1 2

3 2

1 4π /

/

/

exp
 (6.34)

Thus the solution to the time-dependent Schroedinger equation for energy E is
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 Figure 6.13 The Airy function.
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 ψ y t Ai
m g

y
E

mg
e iEt,

/

/( ) = 





−


















−2 2

2

1 3



  (6.35)

It is instructive to consider the same problem from the viewpoint of the principle of equiva-
lence, which states that a uniform gravitational field is equivalent to an accelerated frame of 
reference. By making the transformation

 ′ = − +

′ =

y y y gt

t t

0
21

2  

from frame F with coordinates (y, t) to frame F ′ with coordinates (y’, t’ = t), we eliminate the 
gravitational force. Writing the time-dependent Schroedinger equation in terms of the new var-
iable y′, we obtain

 −
∂
∂ ′

+ ′ + −





=
∂
∂ ′

+
∂
∂











2 2

2 0

2

2 2m y
mg y y

gt
i gt

y t
ψ ψ ψ  (6.36)

Because there is no force in the accelerated frame, we try a solution to (6.36) of the form

 ψ λ( , ) ( , ) ( , )′ = ′ ′y t u y t ei y t  (6.37)

where u y t( , )′  is a solution to the free-particle equation

 −
∂
∂ ′

=
∂
∂





2 2

22m
u

y
i

u
t

 (6.38)

Substituting (6.37) in (6.36), carrying out some algebra, and setting y E mg0 = / , we arrive at

 u y t Ai
m g

y
gt

i
mgt

y
m

′( ) = 





′ −

















′ −, exp
/

2
2

2

2

1 3 2

 

g t2 3

3














  (6.39)

The wave packet (6.35) in frame F and the free-particle packet (6.39) in frame F′ appear at first 
sight to pose a paradox. In frame F, a classical particle accelerates downward with accelera-
tion g, but solution (6.35) to the Schroedinger equation for definite energy E is stationary: the 
corresponding probability density is time independent, and the probability current density is 
zero. On the other hand, in the accelerated frame, a classical particle is stationary, but the free-
particle wave packet u y t( , )′  of  (6.39) accelerates. [Furthermore, u(y′,t) does not spread as time 
elapses, but because u is not square integrable, this does not contradict the principle, stated in 
Section 6.1, that the mean square dispersion in the coordinate of any square-integrable free-
particle packet must increase quadratically with time.]

The resolution of the apparent paradox becomes clear when we realize that to obtain a wave 
packet in frame F that behaves like a classical accelerating particle, we must create a superposi-
tion of solutions (6.35) over a range of E values. If  this were done and we were then to trans-
form to the accelerated frame F′, we would obtain a square-integrable free-particle packet that 
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did not accelerate, and the mean square dispersion in y’ would grow quadratically with time. 
For example, see Problem 6.5.

6.13 One-dimensional simple harmonic oscillator

6.13.1 Hamiltonian, eigenvectors, and eigenvalues

The simple harmonic oscillator plays a central role in the development of quantum mechanics 
and quantum field theory and is the single most important topic in this chapter. We begin with 
the classical Hamiltonian

 H
p
m

m
qc = +

2 2
2

2 2
ω

 

where mω 2 is the spring constant, and q and p are the classical coordinate and momentum, 
respectively. Replacing the latter by the corresponding quantum-mechanical operators ˆ, ˆq p , 
which satisfy

 ˆ, ˆq p i[ ] =   

we obtain the quantum Hamiltonian

 H
p
m

m
q= +

ˆ
ˆ

2 2
2

2 2
ω

 (6.40)

It is convenient to make a scale change by the substitutions

 ˆ ˆ ˆ ˆ
/ /

Q
m

q P
m

p= 





= 





ω
ω 

1 2 1 2
1

and  (6.41)

which result in the new commutation relation

 ˆ , ˆQ P i  =  (6.42)

Expressing the Hamiltonian (6.40) in terms of these new operators, we have

 H P Q= +( ) =



ω ω
2

2 2ˆ ˆ H  (6.43)

where

 H = +( )1
2

2 2ˆ ˆP Q  
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At this point, one could solve Schroedinger’s wave equation in coordinate space by the con-
ventional methods of ordinary differential equations to find the bound-state wave functions 
and corresponding energy eigenvalues, and this is done in many older texts. However, it is 
more instructive to treat the problem algebraically, as we do in what follows, by defining the 
destruction operator a and the creation operator a†; that is,

 a Q iP= +( )1

2
ˆ ˆ  (6.44)

and

 a Q iP† ˆ ˆ= − 
1

2
 (6.45)

These defining formulas, together with (6.42), easily lead to

 a a, †[ ] = 1  (6.46)

and

 H = + = +a a N† 1
2

1
2

 (6.47)

where N a a= † . From (6.46), we also obtain

 N a a aa aa a a,[ ] = − = −† †  (6.48)

and

 N a a, † †[ ] =  (6.49)

Let n  be a nonnull eigenvector of N with corresponding eigenvalue n; that is,

 N n n n=  

At this initial stage, we can only say that n must be a real number. However, defining u a n= ,  
we have

 n N n u u n n n= =| |  

Therefore, n = 0 if  u  is a null vector; otherwise, n must be positive. On the other hand, we can 
apply (6.48) to n ; that is,

 Na n aN n a n n a n= − = −( )1  

and this implies that a n  is also an eigenvector of N, with eigenvalue n – 1. Repeating this 
argument, we find that a n a n2 3, ,... are eigenvectors of N with eigenvalues n – 2, n – 3, …, 
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respectively. This, in turn, implies that we eventually arrive at a negative eigenvalue of N, which 
we have shown is impossible, or there is some ′ = −n n k where k is a nonnegative integer and 
a n′ = 0. In the latter case, the eigenvalue corresponding to ′n  is ′ =n 0, as has been dem-
onstrated. Here negative eigenvalues are avoided because further applications of a continue 
to yield the null vector. We conclude that the eigenvalues of N must be zero and the positive 
integers. That this list of integers extends to infinity is seen by applying (6.49) to n . The latter 
implies that a n†  is also an eigenvector of N with eigenvalue n + 1, and this process also can be 
repeated, yielding arbitrarily large positive-integer eigenvalues. Finally, from (6.43) and (6.47), 
we see that the energy eigenvalues are

 E n nn = +





=
1
2

0 1 2 3ω , , , , ...  (6.50)

6.13.2 Normalization of eigenstates

We next consider normalization of the eigenvectors n . Let us begin by choosing 
0 0 0 1 such that | = . Defining 1 0= a† , we have

 11 0 0 0 0 0 0 0 0 1= = + = =aa a a† †  

Next, we define 2 1 2 1= ( )a† . Then

 2 2
1
2

1 1
1
2

1 1
1
2

11 1= = + =aa N†  

Next, we define 3 1 3 2= ( )a† . Then, by a similar argument, we find that 3 3 1= . In gen-
eral, we have

 

n
n

a n

n n
a n

n
a n

= −

=
−

( ) −

=

=

1
1

1

1
2

1
0

2

†

†

†

( )
...

!

    

    

   

 

(6.51)

Similarly,

 
1

0
n

a nn

!
=  (6.52)

From (6.51) and (6.52) it is easy to show that

 ′ = ′ −n a n n n n
1 2

1
/

,δ  (6.53)

 

 

  

 

 

 

 

 



Further Developments in One-Dimensional Wave Mechanics122

and

 ′ = +( ) ′ +n a n n n n
† /

,1
1 2

1δ  (6.54)

6.13.3 Wave functions in coordinate representation

The coordinate wave functions corresponding to states n u Q Q nn are ( ) = . To find the 

explicit forms of these functions, we recall that a Q iP0 1 2 0 0= ( ) +( ) =ˆ ˆ . Also recalling that 

in coordinate representation, p̂ → − ∇i , and taking into account the scale change of (6.41), 
we have

 Q
Q

u Q+
∂
∂







( ) =0 0  

The normalized solution of this differential equation is

 u Q e Q
0 1 4

21 2( ) = −

π /
/  (6.55)

From (6.45) and (6.51), we also obtain

 u Q
n

Q
Q

u Qn
n

n

( ) = −
∂
∂







( )1

2
0

!
 (6.56)

In Figure 6.14a–e we plot u Q Q nn ( ) , , , , . versus  for = 0 1 2 3 4  Obviously, the even-parity func-
tions (n = 0, 2, 4, …) alternate in energy with the odd-parity functions (n = 1, 3, 5, …).

6.13.4 Harmonic oscillator and Heisenberg equation

We have seen that if  A is an operator in the Schroedinger representation, the corresponding 
operator in the Heisenberg representation is ′ = = −( )A U AU U iHt† , exp / . where   Also, if  A 
has no explicit time dependence, ′A  satisfies the Heisenberg equation

 
dA
dt i

A H
′ = ′[ ]1



,  

We apply the latter to ′ =a U aU†  to get

 
da
dt i

a H
i

a N i a N
′ = ′[ ] = ′ +











 = − ′[ ]1 1

2





, , ,
ω ω  

Because N commutes with the Hamiltonian, we have

 
a N U aUN NU aU

U a N U U aU a

′,
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[ ] = −
= [ ] = = ′

† †
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Hence da dt i a′ = − ′ω , and similarly, da dt i a′ = ′† †ω . Integrating these equations, we obtain

 ′ ( ) = ′ ( ) =− −a t e a e ai t i tω ω0        (6.57)

and

 ′ ( ) = ′ ( ) =a t e a e ai t i t† † †ω ω0  (6.58)

Now

 ˆ ˆ† †′ = ′ + ′( ) ′ = ′ − ′( )Q a a P
i

a a
1

2 2
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 Figure 6.14 (cont.)
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Thus

 ˆ cos ˆ sin ˆ′ ( ) = ′ ( ) + ′ ( )Q t tQ tPω ω0 0  

and

 ˆ cos ˆ sin ˆ′ ( ) = ′ ( ) − ′ ( )P t tP tQω ω0 0  

Taking into account the scaling relations (6.41), we finally obtain

 ˆ ˆ cos ˆ sin′ ( ) = ′ ( ) + ′ ( )q t q t
m

p t0
1

0ω
ω

ω  (6.59)

and

 ˆ ˆ cos ˆ sin′ ( ) = ′ ( ) − ′ ( )p t p t m q t0 0ω ω ω  (6.60)

It can be seen that these relations are exactly the same as the analogous relations for the classi-
cal harmonic oscillator variables qc and pc.

6.13.5 Oscillating wave packets: Classical limit for the harmonic oscillator

We usually think of a classical harmonic oscillator as a localized mass that oscillates back and 
forth about the origin. On the other hand, each n  state is stationary, with a probability den-
sity ρn = u Qn ( ) 2

 that is constant in time, exhibiting no motion. Clearly, then, a state Ψ( )t  that 
describes classical simple harmonic motion cannot be a single n  state but must be an appro-
priate superposition of n  states formed in such a way that the associated probability density 

ρ = Q Ψ
2
 executes simple harmonic oscillation about the origin.

In fact, we can construct such a coherent state Ψ( )t  by displacing the ground state 0  from 
the origin in one-dimensional coordinate space and then following its time evolution. The dis-
placement s (along the Q axis and of arbitrary magnitude) is achieved by means of the trans-
lation operator

 S s iPs
s

a a( ) = −( ) = −( )





exp exp

2
†  (6.61)

Formula (6.61) is inconvenient because the noncommuting operators a a and † both appear 
in the exponent on the right-hand side. Thus, as a first step toward our goal of constructing 
Ψ( ) ,t  we write (6.61) in a more convenient form by employing two theorems, the first of 

which was already discussed in Section 2.17 as follows: let A and B be two operators that do 
not necessarily commute. Then

 e Be B A B A A BA A− = + [ ]+ [ ]  +,
!

, , ...
1
2

 (6.62)

If  A B C,[ ] = , where C is a c-number, (6.62) reduces to
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 e Be B CA A− = +  

In this case, the second theorem states that

 e e e
A B

eA B B A C+ − − −= − [ ]






=exp

,
/

2
2  (6.63)

To prove (6.63), write F e e eA B B Aλ λ λ λ( ) = +( ) − − , where λ is a continuous parameter. Then

 
∂ ( )
∂

= +( ) ( ) − ( ) −+( ) − +( ) +( ) − −
F

A B F e Be F e e Ae eA B A B A B B B B
λ

λ
λ λλ λ λ λ λ λ e A−λ  

However,

 e Be B CA B A Bλ λ λ+( ) − +( ) = +  

and

 
e e Ae e e e A C e eA B B B B A A B B Aλ λ λ λ λ λ λ λλ+( ) − − − +( ) − −= +( )
                                   = + −( ) =λ λCF A C F AF

 

Therefore,

 
∂ ( )
∂

= −
F

CF
λ

λ
λ  

Because F ( ) ,0 1=  F λ( ) is a c-number for any λ , and in fact,

 F
Cλ λ( ) = −





exp 2

2
 

Thus, setting λ = 1, we obtain (6.63). Application to the right-hand side of (6.61) yields the 
desired convenient formula for S; that is,

 S s
s s

a
s

a( ) = −











−





exp exp exp
2

4 2 2
†  (6.64)

which we now use to displace 0 . Bearing in mind that a 0 0= , we have
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/0 0

1

2
02 4
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∑S s e
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                          = 
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2 4
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2
/
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 (6.65)

The probability of finding Ψ( )0  in a particular state n  is
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 p n
n

s s
n

n

= ( ) = 





−





Ψ 0
1

2 2

2 2 2

!
exp  (6.66)

This is a Poisson distribution with mean value

 n
s

=
2

2
 (6.67)

and rms dispersion

 ∆n n n n
s

= − = =2 2

2
 (6.68)

To determine the time evolution of Ψ , we write

 

Ψ Ψt U t US s

s
U

s
a U

( ) = ( ) ( ) = ( )

= −











,

exp exp

0 0 0

4 2

2

       † † †
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U

s
a U Uexp

2
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 (6.69)

Now
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Also,
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However,
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where the product on the right-hand side contains k factors. Thus
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and similarly,
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Furthermore, multiplying (6.57) and, similarly, (6.58) on the left by U  and on the right by U †,  
we obtain
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 Ua U a e i t† † †= − ω  

and

 UaU aei t† = ω  

Therefore, (6.69) can be written
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 (6.70)

Now,
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1

2
a e ae a a t i a a ti t i t† † †cos sin− −( ) = −( ) − +( ) ω ω ω ω

                                       = − +( )i P t Q tˆ cos ˆ sinω ω
 

Therefore, (6.70) becomes
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2 2 4 0sin / sin cosω ω ω( ) − − 

 

This yields the coordinate-space wave function

 ψ ω ω ω ωQ t Q t e e e Q ei t i s t isQ t isP t, / sin / sin cos( ) = ( ) = − ( ) − −Ψ 2 2 42
0  

with corresponding probability density

 ρ ψ ωQ t Q t Q e isP t, , cos( ) = ( ) = −2 2

0  (6.71)

Thus, as is obvious from the right-hand side of (6.71), the coherent wave packet oscillates back 
and forth about the origin with amplitude s and angular frequency ω, retaining the shape of 
the ground-state wave packet as time elapses. Such behavior is unique to the simple harmonic 
oscillator.

To appreciate the significance of the foregoing for description of the simple harmonic oscil-
lator in the classical limit, it is instructive to work out a numerical example. From (6.67), the 
energy of the state n n=  that contributes most to the coherent wave packet is

 E n
s s

n = +




= +




≈  ω ω ω1

2 2
1
2 2

2 2

 

where in the last step we assume that s >> 1. Because Q m q= ( )ω /
/



1 2
, it is convenient to 

express s as
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 s
m

d= 





ω


1 2/

 

where d is the amplitude of simple harmonic motion in ordinary (cgs) units. Thus we have

 E
m

d
m d

n ≈ =



ω ω ω
2 2

2
2 2

 

This is the classical energy of a mass point m executing simple harmonic motion with  
angular frequency ω and amplitude d. For example, consider a classical oscillator with m = 1 
g, d = 1 cm, and ω = 1 rad/s. Then

 E
s

n = =
1
2 2

2


 

which implies that

 s = ≈ ×
1

3 1013



 

as well as

 n
s

= ≈ ×
2

26

2
5 10  

and

 ∆n n= ≈ ×2 1013  

Although ∆n >> 1 in this example, the fractional spread in n is extremely small; that is,

 
∆n
n

≈ × −4 10 14  

Thus the classical energy, while not exactly sharp, is defined to a precision better than one part 
in 1013. Hence, in this example, the classical description of simple harmonic motion is accurate 
for all practical purposes.

6.13.6 Shape invariance and potentials with exact solutions

There are not many one-dimensional attractive potentials for which exact analytic eigenfunc-
tions are known, and only a few of these are relevant to real physical situations. Nevertheless, 
it is worth our while to summarize a generalization of the harmonic oscillator creation and 
destruction operators that allows us to generate one or more new potentials and their associ-
ated exact solutions from a known potential and its exact solutions. For this purpose, consider 
a Hamiltonian with potential V x− ( ) and known bound-state eigenfunctions u u0 1, ,... with corre-
sponding energies E E0 1, ,..., the latter arranged in increasing order. For convenience, we choose 
the zero of energy, so E0 0= . Then, in units where  = =m 1, we have
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 −
∂
∂

+ ( )





=−
1
2

0
2

2 0x
V x u  (6.72)

Hence V u u− = ′′0 02 , so we can write
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u
u− = −

∂
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We now define two differential operators
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0

0
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and †  (6.73)

that are the analogues of the harmonic oscillator destruction and creation operators, respec-
tively. It is easy to verify that H A A− = † . Also, defining H AA+ = †, it is easy to show that

 H H
x

u
u+ −= −

∂
∂

′





0

0

 

We now define a superpotential W x( ) by

 W x
u
u

( ) = − ′1

2
0

0

 

From the foregoing relationships, the next five equations follow immediately:
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 V x W
W
x− ( ) = −

∂
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2 1
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and

 V x W
W
x+ ( ) = +

∂
∂

2 1

2
 

Now we show that except for E0 0= , the eigenvalues of H H− + and   are identical. Recall that 
H u E un n n− = , and let the analogous eigenvalue equation for H+ be H Fn n n+ =v v . Then
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H Au AA Au

A A Au
AE u

n n

n

n

+ ( ) =
= ( )
=

†

†               
               n

n nE Au               = ( )
 

which implies that Aun is an eigenstate of H+ with eigenvalue En. Similarly,

 H A A AA A F F An n n n n n− ( ) = = =† † † † †v v v v  

hence A n
†v  is an eigenstate of H− with eigenvalue Fn. Also Au0 0= . Thus, although the shapes 

of the potentials V V− + and  are generally quite different, their eigenvalue spectra are the same 
(with the exception of E0 0= ), and these spectra are said to be shape invariant. The method is 
illustrated by the following simple example of the square-well potential with infinite walls:

 
V x x

V x x

( ) = ≤

( ) = +∞ >

0
2

2

    
π

π  

The eigenfunctions and corresponding energy eigenvalues are, of course, known as follows:

In the last column of the table we list the shifted energy that occurs when we make the 
replacement V(x) → V–(x) = V(x) – ½. With the understanding that all remarks apply to the 
region x ≤ π /2, the superpotential is

 W
u
u

x= − ′ =
1

2

1

2
0

0

tan  

Thus the new potential is

 V W W x x x+ = + ′ = +( ) = +2 2 2 21

2

1
2

1
2

tan sec tan  

The eigenstates of H+ are v  v  v  0 1 1 2 2 3= = =Au Au Au, , ,  and so forth. Because

n Eigenfunctiona Energy Shifted 
Energy

0 cos x 1/2 0
1 sin 2x 4/2 3/2
2 cos 3x 9/2 8/2
.
.
.
2k cos(2k + 1)x (2k +1)/2 2k(k +1)

sin 2nx 2n2 2n2 – 1/2

aNot normalized.
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 A
x

u
u x

x=
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− ′




=

∂
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+





1

2

1

2
0

0

tan  

we have
 v x0

2= const • cos  

 v x x1 const= • sin cos2  

and so on. Sometimes it is useful to iterate the process by treating V+ + δ  as a new V−, where δ  
is a suitable energy shift.

6.14 Path integral method

Because the Schroedinger equation

 − ∇ + =
∂
∂





2
2

2m
V t i

t
ψ ψ ψ

( , )r  (6.74)

is first order in time, it is possible to find ψ r,t( ) for all t > t0 if  we are given ψ r0 0,t( ) for all r0. 
The relationship between ψ r,t( ) and ψ r0 0,t( ) can be expressed in terms of a Green function G 
and an integral equation. In one spatial dimension, we have

 ψ ψ( , ) ( , ; , ) ( , )x t G x t x t x t dx= ∫ 0 0 0 0 0  (6.75)

In the special case of a free particle, we have already found G = G0 [see Section 6.1, equation 
(6.5)]. To obtain G when a potential V is present, we introduce the path integral method, which 
was initiated by P. A. M. Dirac in the 1930s, independently described by E. Stueckelberg and 
developed by R. P. Feynman. For most problems in quantum mechanics, the actual calculation 
of a wave function from (6.75) or its generalization to three spatial dimensions using the path 
integral method is more complicated than straightforward integration of the Schroedinger 
equation by analytical and/or numerical methods. The path integral method is especially 
unsuited to bound-state problems or to problems involving particles with spin. However, it is 
useful in many scattering problems for developing general insights into the connection between 
quantum mechanics and classical mechanics and in quantum statistical mechanics. Finally, 
when suitably generalized, the path integral method plays an important role in the formulation 
of modern field theories.

To begin our discussion of the path integral method, we divide the time interval t–t0 in (6.75) 
into n + 1 small intervals ε as shown in Figure 6.15 and define
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Using the completeness relation repeatedly, we write
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 (6.76)

Noting that ψ ( , ) ( )x t x t0 0 0 0= Ψ , we see that (6.75) and (6.76) yield

 G x t x t dx dx dx x x x xn n n
iH

n
iH( , ; , ) e e0 0 1 1 1 1 0= ∫ ∫∫ − +

− −
 

 ε ε/ /  (6.77)

where x xn+ =1 . Because ε  is infinitesimal, we write: U e iHiH( ) /ε εε= ≈ −− 

1 / , and we assume 
that H can be expressed as a power series in operators x̂  and p̂. Thus we have
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with similar expressions for all the other factors in the integrand of (6.77). Thus we obtain
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 (6.78)

In many cases of interest, the Hamiltonian can be written as

 H x p
p
m

V xk k
k

k,( ) = + ( )
2

2
 

An important exception occurs when there is a velocity-dependent potential, as in electrody-
namics, but we ignore that case for present purposes. Then (6.78) becomes
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The n + 1 integrals over the momenta are readily evaluated by completing the square in each 
exponent, just as in Section 6.1. We thus have
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Hence (6.79) becomes
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 (6.80)

In the limit as ε → →∞0 and n , x x dx dtj j j−( )−1 /  becomes /ε , and the sum in the exponent of 
(6.80) becomes the integral
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x

V x dt Ldt S
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x


2

2
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′

 

where L is the Lagrangian and S is the action. Thus, finally, we have
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where
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 (6.82)
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x0                                                               x

 Figure 6.15 The time interval t − t0 divided into n + 1 equal sub-intervals of magnitude ε
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It is easy to show that for the special case of the free particle, (6.81) reduces to (6.6) of 
Section 6.1.

What is the meaning of (6.81)? It states that we should construct the action, multiply it by 
i /,  exponentiate, and then integrate over all values of x x xn1 2, ,..., . A given choice of x x xn1 2, ,...,  
corresponds to a given path between fixed end points x x0  and . Another choice of x x xn1 2, ,...,  
corresponds to another path with the same end points. Thus integration over all values of 
x x xn1 2, ,...,  means summation of exp i S( )  over all paths between x x0  and , which is illus-
trated in Figure 6.16.

In classical mechanics, the action S is always very large compared with . Thus exp i S( )  
generally oscillates very rapidly when we go from one path to a nearby path. Contributions 
from neighboring paths thus tend to cancel, except in the immediate vicinity of that path, 
where S takes an extreme value (most often a minimum). Hence the classical path is the path 
of least action. In quantum mechanics, S is comparable with , and exp i S( )  varies slowly 
from one path to another. Therefore, many paths contribute to G. The reader will see that we 
have formulated a way to calculate the propagation of matter waves in nonrelativistic wave 
mechanics according to Huyghens’ principle. Similar considerations are relevant in the tran-
sition from geometric optics to wave optics, where the principle of least action is replaced by 
Fermat’s principle.

Before proceeding further, we note that the Green function can be expressed in a useful 
alternative form. Suppose that the eigenstates of the Hamiltonian are Φn  with correspond-
ing eigenvalues En and spatial wave functions φn nx x( ) = Φ . Using the completeness relation, 
we have

t0

t1

t2

t= tn+1

 tn

tn-1

x0                                                                x

P1

P2

  Figure 6.16 The Green function is the sum over all paths of exp i S( )  . Two paths P1,2 are shown.
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Thus the Green function is
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n, ; , exp *
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( ) ( )∑


φ φ  (6.83)

Of course, in (6.83), Σ may mean integration over a continuous parameter and/or summation 
over discrete values.
Now let us look more carefully at the action; that is,
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The change in S that occurs when we change from a given path to a closely neighboring 
path is
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Here δx means variation of the path by an independent infinitesimal amount for each value of 
τ  subject to the constraint that the end points of the path at t0 and t are fixed. Equation (6.84) 
may be rewritten as follows:
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 (6.85)

The second term on the right hand side of (6.85) is the integral of a derivative, and it vanishes 
because δ δx t x t( ) = ( ) =0 0. Thus,
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 (6.86)

Also, for the classical path, δSc = 0. Because this holds for arbitrary variations δx, we 
must have
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for the classical path. Of course, equation (6.87) is Lagrange’s equation (the classical equation 
of motion), and it is obeyed on the classical path but not in general on other paths. Denoting 
the classical path by xc τ( ), we specify another path by x x yc( ) ( ) ( )τ τ τ= + , where y t y t( ) ( ) .0 0= =  
The action for this path is
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Here the first integral on the right-hand side is the classical action Sc, and the second integral 
vanishes because its integrand, after partial integration of the first term, is
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We now integrate (6.88) over all paths with fixed end points x t x t0 0( ), ( ) to obtain the Green 
function. In this sum over paths, the classical path is fixed, and only y varies. Hence
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 (6.89)

where the inferior and superior limits of integration are written to indicate that y t y t( ) ( )0 0= =  
for all paths, and
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If  ∂ ∂2 2V x/  is a constant, all terms of order y3 and higher vanish in the integrand of (6.90). 
Then, because y t y t( ) ( )0 0= = , the sum over all paths in (6.89) depends only on t t0  and  and can 
be expressed as F t t, 0( ), where the form of the function F depends on V. Thus

 G F t t
iSc= ( ) 





, exp0


 (6.91)
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We now give three examples where (6.91) applies.

The free particle

We already know the Green function for a free particle: it is given by (6.6). The Lagrangian is 
L mx= 

2 2/ , and on the classical path, mx = 0. It is easy to show from this that

 S
m x x

t tc =
−( )
−( )2

0
2
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Thus (6.91) yields
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 (6.92)

Comparison with (6.6) yields

 F t t
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i t t0 0
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,( ) =
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 (6.93)

Particle in a Uniform Field 

Here the Lagrangian is L m x mgx= ( ) −2 2
 , and the classical equation of motion is x g= − . 

Assuming that t0 0= , we easily obtain
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t
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As for F t( , )0 , it is the same as for a free particle because ∂ ∂ =2 2 0V x/ . Therefore,
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Harmonic oscillator

Once again, we assume that  t0 0= . The Lagrangian is L m x x= ( ) −( )2 2 2 2
 ω ,  and the classical 

equation of motion is x x+ =ω 2 0. Thus, on the classical path,

 x A B= +cos sinωτ ωτ  

where A x B x x t t= = −( )0 0 and cos / sinω ω . From this it is straightforward to show that the 
classical action is
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Now G satisfies the Schroedinger equation
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It follows that
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 (6.96)

However, it is easy to verify that the left-hand side of (6.96) is zero. Thus
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 F
t

=
const •

sin
ω

ω
 

In the limit where ω → 0, F must reduce to F0. Therefore, we finally obtain
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im

x x
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x x
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 (6.97)

We return to the path integral method and apply it to the theory of scattering in Chapter 18.

Problems for Chapter 6

6.1. Prove that ∆x( )2
 is a quadratic function of time for any arbitrary square-integrable free-

particle wave packet.
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6.2. In this one-dimensional scattering problem for the Schroedinger equation, a particle of 
mass m has energy E > 0. There is a potential barrier of  arbitrary shape V(x) such that V(x) 
≠ 0 only in the interval a x b< < . Prove that the transmission coefficient is the same whether 
the particle is incident on the barrier from the left or the right.

6.3. A particle of mass m and energy E is confined in the potential well

 
V

a
x

a

V x
a

= − ≤ ≤

= +∞ >

0
2

2

       
2  

Find the average force exerted by the particle on the wall at x = a/2, and compare your result 
with that expected in classical mechanics. Hint: First work out the problem for a potential well 
of finite depth; then take the limit as the depth becomes infinite.

6.4. A particle of mass m is confined in the potential

 V x k x x( ) = −∞ < < ∞3 2/
 (1)

where k m= 2 2
 . The bound-state energies E E E E0 1 2 3< < < < ...  can be calculated accu-

rately by solving Schroedinger’s equation numerically. Now consider a particle of mass m 
bound in the potential

 
V x x

V x kx x
( ) = ∞ <
( ) = >

       0

03 2/
 (2)

with k as before. What are the energy eigenvalues for this potential, expressed in terms of the 
energy eigenvalues for the potential in (1)?

6.5. The Green function for a particle in a uniform gravitational field is

 G x T x
m
i T

im x x

T
g x x T

g T
′( ) = ′ −( )

− ′ +( ) −









, ; , exp0

0
2

0

2 3

0
2 2 12π  















 (1)

where g is the gravitational acceleration. Suppose that at t = 0 the initial wave function is

 ψ
π

x
a

x
a0

2 1 4
0

2

2
0

1

2 4
, exp/( ) =

( )
−





 (2)

where a is a constant. Find the wave function ψ ( , )′x T  that evolves from ψ ( , )x0 0 , and show 
that it describes a wave packet that undergoes uniform acceleration g. Find the corresponding 
wave function in the accelerated reference frame by making the appropriate Galilean transfor-
mation. Discuss the spreading of these wave functions.

6.6. Here we study a simple one-dimensional quantum-mechanical system that resembles the 
hydrogen molecular ion. A particle of mass m is in a potential

 V x V x a x a( ) = −( ) + +( ) 0 δ δ  
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where V0 0< .

(a) Find the expression that determines the bound-state energy for even-parity states, and 
determine graphically how many even-parity bound states exist.

(b) What is the wave function for the lowest even-parity bound state? Sketch this function for 
large, intermediate, and small a.

(c) Repeat parts (a) and (b) for odd parity. For what values of V0 is there at least one such 
bound state?

(d) Find the even- and odd-parity binding energies for m V a0
2>>  . Explain physically why 

these energies move closer together as a →∞.

6.7. Here we consider a Schroedinger Hamiltonian that depends on a continuous real param-
eter λ so that the time-independent Schroedinger equation reads

 H E( ) ( ) ( ) ( )λ ψ λ λ ψ λ=  

(a) Show that

 
∂
∂

=
∂
∂

E H
λ

ψ
λ

ψ  (1)

where we assume that ψ  is normalized to unity. The simple and useful result (1) is known as 
the Feynman-Hellmann theorem.

(b) Find a one-dimensional potential V(x) that gives bound states with energy eigenvalue sepa-
rations (splittings) that are independent of particle mass. Hint: Use the Feynman-Hellmann 
theorem, and consider the quantity

 
d xp

dt

ˆ ˆ
 

where ˆ ˆx p and  are the coordinate and momentum operators, respectively.

6.8. A one-dimensional harmonic oscillator is in the nth quantum state. Prove that

 ∆ ∆x p n= +





1
2
  

6.9. (a) A one-dimensional harmonic oscillator is in the normalized state

 ψ ( )t A B= = +0 0 10 0  

at time t = 0, where A0 and B0 are constants. Find the values of A0 and B0 that maximize 
ψ ψ( ) ( ) ,0 0Q  and find the latter quantity for these values of A0 and B0.

(b) Find ψ ( )t > 0  and ψ ψ( ) ( )t Q t  in the Schroedinger picture.

(c) Find ∆Q Q Q2 2 2= −  as a function of t.

6.10. In Section 6.13.5 we show that displacement of the one-dimensional oscillator ground state 
0  from the origin leads to a coherently oscillating wave packet. Use the time-development 
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operator and the displacement operator to show that the same is true for any oscillator station-
ary state n .

6.11. Using the creation-destruction operator method, find the energy levels and wave func-
tions of a two-dimensional harmonic oscillator with potential

 V m x y= +( )1
2 0

2 2 2ω  

Find the degeneracy of each level. Write out the wave functions of the ground state and each 
of the first excited states. Identify the latter with eigenstates of angular momentum in the 
z-direction.

6.12. A particle of charge e and mass m is in a uniform magnetic field B in the z-direction. 
Choose the vector potential to be axially symmetric, and find the energy eigenvalues and eigen-
states by the method of creation and destruction operators. Classically, a charged particle in a 
uniform magnetic field in the z-direction executes uniform motion along the z-axis and circular 
motion in the xy-plane. The center of the circle is not determined from the equation of motion 
but from initial conditions. How do you make the correspondence between the classical situ-
ation just described and the quantum-mechanical solution? Calculate the degeneracy per unit 
area in the xy-plane of the lowest-energy solution for motion in the xy-plane.

6.13. Employing completeness of the one-dimensional simple harmonic oscillator eigenstates 
n  and the parity of their corresponding spatial wave functions u xn ( ) , show that the parity 

operator P applicable to all one-dimensional spatial wave functions ψ ( )x  can be written in the 
explicit form

 P i N= ( )exp π  

where N is the one-dimensional simple harmonic oscillator number operator.

6.14. In discussions of the quantized simple harmonic oscillator, the concept of a squeezed 
state is interesting and useful, especially with regard to nonlinear optics, quantum limits on 
noise, and so on. In this problem we try to develop an elementary understanding of squeezed 
states. Consider the operator

 S r
r

a a( ) exp= −( )



2

2 2†  

where r is a real parameter, and a Q iP a Q iP= ( ) +( ) = ( ) −( )1 2 1 2 and †  are the usual sim-
ple harmonic oscillator destruction and creation operators.

(a) Show that S(r) is unitary and that it can be written as S r S S( ) = =1 2 , where

 S r irQP S r irPQ1 2= ( ) ( ) = −( ) ( )exp exp exp exp/2 /2  

(b) In the coordinate representation Q Q P i Q→ → − ∂ ∂, / , show that S1 can be written as

 S e r
z

r
1

2=
∂
∂







/ exp  
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where z nQ=  .

(c) Apply this operator to the ground-state wave function u Q Q0
1 4 2( ) exp/= −( )−π /2  to obtain a 

new wave function χ0 ( )Q . Compare ∆ ∆Q P and  for the two functions u0 0 and χ .

(d) Find how the quantity ∆ ∆Q P  varies with time. Do this by using the Green function for 
the harmonic oscillator [see equation (6.97)] to calculate the time development of the squeezed 
coordinate wave function. Also follow an analogous procedure for the corresponding squeezed 
momentum wave function.

(e) Consider two independent simple harmonic oscillators described by the operators a,a† and 
b,b†, where a a b b a b a b, , , , .† † †[ ] = [ ] = [ ] = [ ] =1 0 and  Let

 a X iP b Y iPX Y= +( ) = +( )1

2

1

2
 

Again working in coordinate representation, show that the operator T r r ab a b( ) exp ( )= −[ ]† †  
squeezes one mode at the expense of the other. It may be helpful to use the new coordinates

 x x y x x y1
1 2

2
1 22 2= −( ) = +( )− −/ /  

What are the coordinate and momentum uncertainties at time t = 0?

6.15. A particle of unit mass moves in a certain one-dimensional potential V–(x). The bound 
states u u u E E En n0 1 0 1, ,..., , ,..., have energies , respectively, in order of increasing energy. It is 
known that u N h xp

0 0= ( )sec β , where N0 is a normalization constant, and β  and p > 0  are 
real parameters.

(a) Find the superpotential W(x).

(b) Find V– and its supersymmetric partner V+.

(c) Show that V– is shape invariant, and obtain a general formula for the En. What restriction 
applies to p so that there exist n bound states?

(d) Find u1 up to a normalization constant.

(e) Use the result obtained in (c) to discuss the potential V V h x= − ( )0
2sec β , where V0  is a 

positive constant, and show that its bound-state eigenvalues for m = = 1 are given by

 E n
V

n = − − +( ) + +
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β
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7.1 Transformations and invariance

Consider a physical system in state u  as described by observer O in reference frame F. We 
perform a transformation T  that might be a rotation, a translation, a Lorentz boost, or a spa-
tial inversion. We may think of transforming the system itself, for example, by rotating it (this 
is called the active case), or we may leave the system intact and transform to a new reference 
frame F′ with observer O′ (this is the passive case). In either case, the state vector after the trans-
formation is no longer u ; it becomes some other state ′u . We write

 T u u  = ′  (7.1)

The square brackets on the left-hand side of (7.1) are inserted to emphasize that T  is not an 
operator on the Hilbert space but an actual transformation.

We are particularly interested in transformations that leave the laws of nature invariant. It 
is important to be clear exactly what we mean by such invariance. Suppose that in addition to 
the initial state u  we also consider an observable A with eigenstates φi  and corresponding 
eigenvalues λi ; that is,

 A i i iφ λ φ=  

We know that when the system is initially prepared in state u  (assumed to be normalized  

to unity), the probability of achieving result λi on any given measurement of A is p ui i= φ
2
. 

Under T, not only u  but also the φi  are modified; that is,

 T φ φi i  = ′  

Invariance of the laws of nature under transformation T  means that the probabilities must be 
the same before and after the transformation. Thus we require that

 φ φi iu u
2 2
= ′ ′  (7.2)

Now, corresponding to each transformation T, we assume that there exists some operator T on 
the Hilbert space

 T u u T i i= ′ = ′φ φ  

The Theory of Angular Momentum7 
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Hence we can write (7.2) as

 φ φi iu T T u
2 2
= †  (7.3)

which implies that T T I† = ± . If  T T I† = + , then T is unitary, which is the case that occurs 
most frequently. It applies to all transformations that can be built up continuously from those 
that differ only infinitesimally from the identity, such as rotations, spatial displacements, time 
displacements, and proper Lorentz transformations. It even applies to some discrete transfor-
mations such as spatial inversion and charge conjugation. If  T T I† = − , the operator T is said 
to be antiunitary. We will see in Chapter 22 that the time-reversal transformation corresponds 
to an antiunitary operator. For the present, however, we confine ourselves to the unitary case, 
and in fact, for almost all this chapter we specialize to rotations. Thus, instead of a general-
ized transformation T  that corresponds to a generalized unitary operator T, we are concerned 
almost exclusively with a rotation R about some axis in three-dimensional Euclidean space 
corresponding to a unitary rotation operator R. Our rotations will always be active (rotation 
of the system rather than the reference frame) unless otherwise noted.

7.2 Rotation group: Angular-momentum operators

The set of all rotations R in three-dimensional Euclidean space forms a group that is in one-
to-one correspondence (is isomorphic to) the group SO(3) of all real orthogonal 3 3×  matrices 
with determinant equal to plus unity. Thus we shall frequently refer to a given R by its cor-
responding matrix in SO(3). Corresponding to each rotation R, there is also an operator R 
on the Hilbert space of physical states. Hence the operators R also form a group [but it is not 
necessarily isomorphic to SO(3), as we shall see].

A given rotation is specified by the angle of rotation and the axis about which it occurs (in 
particular, by a unit vector n̂ along this axis). The expression

 R R Rˆ ˆ ˆn n n3 2 13 2 1θ θ θ( ) ( ) ( ) 

means “first rotate about n̂1 1 by angle θ , then rotate about n̂2 2 by angle θ , then rotate about 
n̂3 3 by angle θ , and so on.” The corresponding operator is

 R R Rn n nˆ ˆ ˆ3 2 13 2 1θ θ θ( ) ( ) ( )  

which means “first operate with Rn̂1 1θ( ), then with Rn̂2 2θ( ), then with Rn̂3 3θ( ), and so on.”
We now consider a rotation about some axis n̂ by an infinitesimally small angle ε. Then R 

differs only infinitesimally from the 3×3 identity matrix, and the corresponding R differs only 
infinitesimally from the identity operator I. Thus we can write

 R I
i

Jn nˆ ˆε ε( ) = −


 (7.4)

Jn̂  is defined by (7.4) and is often called the generator of  Rn̂ .ε( )  Jn̂  has the same dimensions 
as  (energy × time = action = angular momentum), and Jn̂  is frequently called the angular 
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momentum operator for axis n̂. Because R is unitary, Jn̂  is Hermitian. A finite rotation by angle 
θ about axis n̂ can be built up from a succession of infinitesimal rotations (7.4) as follows: let 
θ ε= n . Then

 

R R R R

I i J

n n n n

n

n

ˆ ˆ ˆ ˆ

ˆ

θ ε ε ε
ε

( ) = ( ) ( ) ( )

= −









          
 

Taking the limit as n → ∞ → and ε 0 and employing the identity

 lim
n

n

xx
n

e
→∞

−−





=1  

we obtain

 R
i

Jn nˆ ˆexpθ θ( ) = −







 (7.5)

In most of the discussions to follow, it is convenient to choose units where  = 1, in which case 
(7.5) becomes

 R i Jn nˆ ˆexpθ θ( ) = −( )  (7.6)

7.3 Commutation relations for angular-momentum operators

Once the operators Jn̂  are defined as in (7.4), the entire quantum theory of angular momentum 
follows not from any other quantum-mechanical assumptions or assertions but merely from 
the geometric properties of three-dimensional Euclidean space, in particular, from the fact that 
rotations about different axes do not commute. To illustrate this, we consider four successive 
infinitesimal rotations as follows:

1. Rotation about x by angle ε:

 Rx ε ε ε
ε ε

( ) = − −
−















1 0 0

0 1

0 1

2

2

/2

/2

 

2. Rotation about y by angle ε:

 Ry ε
ε ε

ε ε
( ) =

−

− −















1 0

0 1 0

0 1

2

2

/2

/2
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3. Rotation about x by angle –ε:

 Rx −( ) = −
− −















ε ε ε
ε ε

1 0 0

0 1

0 1

2

2

/2

/2

 

4. Rotation about y by angle –ε:

Ry −( ) =
− −

−















ε
ε ε

ε ε

1 0

0 1 0

0 1

2

2

/2

/2

In these matrices and in what follows, we retain terms of order ε2 but discard terms of order 
ε3 and higher. Now, carrying out simple algebra, we calculate the product of all four matrices 
to obtain

 R R R R Ry x y x z−( ) −( ) ( ) ( ) = −












 = −( )ε ε ε ε

ε
ε ε
1 0

1 0

0 0 1

2

2 2  (7.7)

There is a corresponding relationship between rotation operators; that is,

 R R R R Ry x y x z−( ) −( ) ( ) ( ) = −( )ε ε ε ε ε2  (7.8)

Now, using (7.6), we express each of these operators in terms of the Jn̂  to order ε2; that is,

 
I i J J I i J J I i J Jy y x x y y+ −





+ −





− −


ε ε ε ε ε ε1
2

1
2

1
2

2 2 2 2 2 2


− −





I i J Jx xε ε1
2

2 2

                                                  = I i Jz+( )ε2

 

We multiply out the four factors on the left-hand side, paying attention to the order of the 
operators and discarding all terms of order ε3 and higher. Thus we find

 J J J J J J iJx y y x x y z− =   =,  (7.9)

Similarly, by cyclic permutation, we have

 J J iJy z x,  =  (7.10)

and

 J J iJz x y,[ ] =  (7.11)

The last three relations are expressed by the single formula

 J J i Ji j ijk k,  = ε  (7.12)
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where εijk is the completely antisymmetric unit 3-tensor, and we use the repeated index summa-
tion convention. If, instead, we start with (7.5), where  is written explicitly, (7.12) becomes

 J J i Ji j ijk k,  = ε   (7.13)

The important commutation relations (7.12) and (7.13) form the basis for the entire quantum 
theory of angular momentum.

7.4 Properties of the angular-momentum operators

It is convenient to define the operators J J iJx y± = ±  and to rewrite the commutation relations 
(7.12) in terms of them. We have

 J J J iJ J iJ J Jz x y z y x± ±[ ] = ±  = − =, ,    (7.14)

and

 J J J iJ J iJ i J J i J J Jx y x y y x x y z+ −[ ] = + −  =   −   =, , , , 2  (7.15)

We also define the operator

 J 2 2 2 2= + +J J Jx y z  (7.16)

It is easy to verify that

 J J J J J Jx y
2 2 1

2
+ = +( )+ − − +  (7.17)

Thus, from (7.15), we obtain

 J 2 1= + +( )− +J J J Jz z  (7.18)

and

 J 2 1= + −( )+ −J J J Jz z  (7.19)

Let the eigenstates of J 2  be called j . Then, using the repeated index summation convention 
for i = 1, 2, 3 = x, y, z, we have

 j j j J J j w wi i i iJ 2 0= = ≥  

where w J ji i= , and we have used the fact that Ji is Hermitian. Because the eigenvalues of 
J 2  are nonnegative, we can call them j(j + 1) with j ≥ 0; that is,
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 J 2 1 0j j j j j= + ≥( )  (7.20)

Now J 2  commutes separately with Jx, Jy, and Jz. For example, from (7.14) and (7.18) 
we have

 

J J J J J J J

J J J J J J J J J
z z z

z z z

,J 2[ ] = −
= −( ) + −

− + − +

− + − + − +             J J J
J J J J

z− +

− + − +

( )
= − =             0

 

and similarly, J Jx y, , .J J2 2 0[ ] =   =  Thus we can form simultaneous eigenstates of J 2  and one 
of the three operators J J Jx y z, , . and  Choosing Jz for this role and naming the eigenvalue of Jz 
as m, we have

 J 2 1jm j j jm= +( )  (7.21a)

and

 J jm m jmz =  (7.21b)

Of course, if   is exhibited explicitly, these equations become

 J 2 2 1jm j j jm= + ( )  (7.22a)

and

 J jm m jmz =   (7.22b)

Note that because J J J Jx z y z, , ,[ ] ≠   ≠0 0 and  the j m,  are not in general eigenstates of 

J Jx y or . We now determine the possible values of j and m. From (7.14), we have

 
J J jm J jm J J jm

m J jm
z z+ + +

+

= +
= +( )              1

 (7.23)

and

 
J J jm J jm J J jm

m J jm
z z− − −

−

= − +
= −              ( )1

 (7.24)

Thus J jm J jm+ − and   are each eigenstates of Jz  with eigenvalues m ±1, respectively. Also, 
because J J+ −,  each commute with J 2 , J jm J jm+ − and  are each eigenstates of J 2  with 
eigenvalue j j( )+1 . Hence we can write

 J jm C j mjm
± ±= ±, 1  (7.25)
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where it remains to determine the coefficients C jm
± . From (7.18) and (7.19), we have

 J J jm j j m m jm− + = + − +[ ]( ) ( )1 1  (7.26)

and

 J J jm j j m m jm+ − = + − −[ ]( ) ( )1 1  (7.27)

Multiplying each of these last two equations on the left by jm  and normalizing each of the 
states jm  to unity, we have

 jm J J jm j j m m− + = + − +( ) ( )1 1  (7.28)

and

 jm J J jm j j m m+ − = + − −( ) ( )1 1  (7.29)

Now, the left-hand side of (7.28) is zero only if  J jm+ = 0; otherwise, it is positive. Similarly, 
the left-hand side of (7.29) is positive unless J jm− = 0. Therefore, we have

 m m j j+( ) ≤ +( )1 1  (7.30)

and

 m m j j−( ) ≤ +( )1 1  (7.31)

On the other hand, for given j and starting with a particular value of m, we can apply J+ 
repeatedly to generate states j m j m, , , ,+ +1 2 . Thus we eventually violate inequality (7.30) 
unless the maximum value of m is equal to j, in which case further application of J+ results in 
the null vector. Furthermore, starting with m jmax = , we may apply J− repeatedly to generate 
the states j j j j, , , ,...− −1 2 , thus eventually violating inequality (7.31) unless m jmin = − , in 
which case this process also terminates. To summarize, inequalities (7.30) and (7.31) require 
that for given j, m is restricted to the 2 1j +  values

 j j j j j, , , ..., ,− − − + −1 2 1  

This condition is satisfied if  and only if  j is integral or half-integral

 j = 0
1
2

1
3
2

, , , , ...  

As for the coefficients C jm
± , it is clear from (7.28) and (7.29) that

 C j j m mjm
± = +( ) − ±( )2

1 1  
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Furthermore, we are free to choose the phases of the orthogonal states j m,  so that the coef-
ficients C jm

±  are all real and positive. Thus, finally, we obtain

 J jm j j m m j m+ = + − + +( ) ( ) ,1 1 1  (7.32)

and

 J jm j j m m j m− = + − − −( ) ( ) ,1 1 1  (7.33)

7.5 Rotation matrices

We now consider an arbitrary rotation about the origin in three-dimensional Euclidean space. 
It is convenient to decompose this rotation in a standard way into three successive rotations 
through the Euler angles α, β, and γ, as shown in Figure 7.1.

As Figure 7.1 shows, the net rotation can be expressed as

 R R R Rn̂ Z u zθ γ β α( ) = ( ) ( ) ( )  (7.34)

However, because for any matrix M the application of an orthogonal transformation with 
matrix Q results in

 ′ = −M QMQ 1  

we have

 R R R RZ u z uγ β γ β( ) ( ) ( ) ( )−= 1  (7.35)

and

 R R R Ru z y zβ α β α( ) = ( ) ( ) ( )−1  (7.36)

Substituting (7.35) and (7.36) into (7.34) and taking advantage of the fact that rotations about 
the same axis commute, we obtain

 

R R R R R R

R R R
n̂ u z u u z

z y z

θ β γ β β α
α β

( ) = ( ) ( ) ( ) ( ) ( )
= ( ) ( )

−

−

1

          1 1α γ β β α
α β

( )  ( ) ( ) ( )  ( )
= ( ) ( )

−R R R R

R R R
z u u z

z y           z γ( )
 (7.37)

In (7.37), the net rotation is expressed in terms of the space axes, which are far more convenient 
to employ than the axes z, u, and Z of  (7.34). Also note that the order of Euler angle rotations 
in (7.37) – γ, then β, and finally α – is the reverse of that in (7.34).
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Because there exists a correspondence between actual rotations R in three-dimensional 
Euclidean space and rotation operators R in Hilbert space, (7.37) yields the following result:

 
R R R R

iJ iJ i
n z y z

z y

ˆ

exp exp exp

θ α β γ
α β

( ) = ( ) ( ) ( )
= −( ) −( ) −          Jzγ( )  (7.38)

Now consider a physical system initially in state jm . Rotation of the system about axis 
n̂ through angle θ results in the new state ′ = ( )ψ θR jmn̂ . We expand ′ψ  in a complete set 
of angular-momentum eigenstates ′ ′j m,  as follows:

 R jm j m j m R jm
j m

= ′ ′ ′ ′∑
’, ’

 (7.39)

However, because R commutes with J2, the only terms in the sum that contribute are those for 
which j′ = j. Thus the sum in (7.39) runs only over m′; that is,

 R jm jm jm R jm
m j

j

= ′ ′
′=−
∑  (7.40)

a)

b) c)

z

x

y

x'
y'=u

z

Z

x'

u

x"

Z

x"
X

Y

u

β

 Figure 7.1  An arbitrary rotation about the origin can be decomposed into successive rotations through the Euler angles α, β, and γ. In parts (a)–(c), 
x, y, and z are axes fixed in space, whereas X, Y, and Z are axes fixed in the rotated object (body axes). (a) Rotation by angle α about z 
changes x to x′ and y to y′ = u. (b) Rotation by angle β about u changes z to Z and x′ to x ″. (c) Rotation by angle γ about Z changes x ″ to X 
and u to Y.
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The coefficients in this expansion

 D jm e e e jmm m
j iJ iJ iJz y z
′

− − −( ) = ′, , ,α β γ α β γ  (7.41)

constitute the elements of the unitary 2 1 2 1j j+( ) × +( ) rotation matrix. Because jm  and jm′  
are both eigenstates of Jz , we can write (7.41) as follows:

 D e dm m
j i m m

m m
j

′
− ′ +

′( ) = ( ),
( )

,, ,α β γ βα γ  (7.42)

where

 d jm e jmm m
j iJy
′

−( ) = ′, β β  (7.43)

We now consider as examples the rotation matrices for j j= =1 2 1/  and .

j = 1/2

For j = 1/2, there are two jm  states: m m= + = −1/2 and  1/2. It is convenient to represent 
these by the column spinors

 χ+ =



1 2

1

0/        (7.44)

and

 χ− =



1 2

0

1/  (7.45)

In this representation, it is obvious that

 Jz z= =
−







1
2

1
2

1 0

0 1
σ  (7.46)

From (7.32) and (7.33), we also have

 J J+ +




=









=

0

1

1

0

1

0
0  

and

 J J− −




=









=

1

0

0

1

0

1
0     

Clearly, the matrix representations for J± are

 J+ =






0 1

0 0
 (7.47)
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and

 J− =






0 0

1 0
 (7.48)

from which it follows that

 J J Jx x= +( ) = =




+ −

1
2

1
2

1
2

0 1

1 0
σ  (7.49)

and

 J
i

J J
i

iy y= −( ) = =
−



− +2

1
2

1
2

0

0
σ  (7.50)

Hence the matrix

 d m e mm m
iJy

′
−( ) = ′,

/1 2 1
2

1
2

β β  

is

 exp cos sin
cos sin

sin cos
−




= ⋅ − ⋅ =

−




i I iy y

β σ β σ β
β β

β β2 2 2
2 2

2 2












 (7.51)

Thus the full rotation matrix for j = 1/2 is

 D
e e

e
m m

i i

i
′

− +( ) − −

−

( ) =
−

,
/

/ ( )/

( )/

, ,
cos sin

si

1 2

2 2

2

2 2α β γ

β βα γ α γ

α γ n cos/β βα γ

2 2
2ei +( )

















 (7.52)

The set of all such matrices for the full range of parameters α, β, and γ is the group SU(2) of 
2 2×  unitary matrices with determinant equal to plus unity. This is an example of a Lie group, 
named after the nineteenth-century Norwegian mathematician Sophus Lie, who made system-
atic investigations of the properties of continuous groups.

Obviously, there is a close relationship between the groups SU(2) and SO(3), but it is 
not a one-to-one correspondence (isomorphism) because of  the appearance in (7.52) of  the 
half-angles α β γ/2, /2, and /2. A given rotation in Euclidean 3-space (specified by α β γ, ,  and )  
and the corresponding SO(3) matrix are unchanged if  any of  the angles α β γ, ,  and  are incre-
mented by 2π . However, any single such increment results in the replacement of  the matrix 
in (7.52) by its negative. Thus there are two distinct matrices in SU(2) for each matrix in 
SO(3).
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Consider a particle with j = 1/2 (e.g., an electron, proton, or neutron), and suppose that ini-
tially it has spin “up” along the z-axis; that is,

 χ =





1

0
       

We now rotate the spin about the y-axis through angle β by applying the matrix in (7.51) to χ.  
The result is

 ′ =

















χ

β

β

cos

sin

2

2

 (7.53)

Thus, when β π χ χ= ′ = −2 , .  Note that this double-valuedness has already been discussed in 
Sections 3.4 and 5.1, and in the latter section, a direct experimental demonstration of the phe-
nomenon by means of neutron interferometry was described.

j =1

Here we have three states (m =1, 0, –1) that are conveniently represented by the 3-spinors

 χ χ χ1 0 1

1

0

0

0

1

0

0

0

1

=














=














=












−  

In this representation, we clearly have

 Jz =
−















1 0 0

0 0 0

0 0 1

 (7.54)

Also, for this representation, (7.32) and (7.33) yield

 J+ =

















0 2 0

0 0 2

0 0 0

 (7.55)

and

 J− =

















0 0 0

2 0 0

0 2 0

 (7.56)
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from which it follows that

 Jx =














1

2

0 1 0

1 0 1

0 1 0

 (7.57)

and

 J

i

i i

i
y =

−
−















1

2

0 0

0

0 0

 (7.58)

From (7.58) we can calculate the rotation matrix dm m′ ( ),
1 β  by writing the power-series 

expansion

 exp
! !

−( ) = + −( ) + −( ) + −( ) +i J I i J i J i Jy y y yβ β β β2
2

2 3
3

3

2 3
  (7.59)

It is easy to verify that in the present representation,

 Jy
2 1

2

1 0 1

0 2 0

1 0 1

=
−

−















 (7.60)

and J Jy y
3 = . Hence (7.59) can be written in closed form as

 exp sin cos−( ) = − + −( )i J I iJ Jy y yβ β β2 1  (7.61)

Substituting (7.58) and (7.60) into (7.61), we obtain

 dm m′ ( ) =

+( ) − −( )

−

−

,

cos sin cos

sin cos sin1

1
2

1
1

2

1
2

1

1

2

1

2
1
2

1

β

β β β

β β β

cos sin cosβ β β( ) +( )

























1

2

1
2

1

 (7.62)

Wigner (1959, chap. 15) has derived the following general formula for Dm m
j
′ ( ), , ,α β γ , valid for 

any j:

 
D

j m j m j m j m

j m k jm m
j k

k
′ ( ) = −( ) + − + −

− −( ) +∑, , ,
( )!( )!( )!( )!

!(
α β γ 1

′ ′
m k k k m m

e eim im

j m m k

′ ′− + −

× 








− ′ −
+ ′− −

)! !( )!

cos sinα γ β β
2 2

2 2





+ − ′2k m m
 (7.63)

 

 

 

 

 

 

  

 



7.6 Magnetic resonance: The rotating frame – Rabi’s formula157

In (7.63), k ranges between the larger of the numbers 0 and m′ – m and the smaller of the 
 numbers j – m and j + m′ so that all the factorials are nonnegative. It can be seen from (7.63) 
that for all half-integral j, the correspondence between the unitary matrices D and the 3 3×  
matrices of SO(3) is 2:1, whereas for all integral j, it is 1:1.

Therefore, if  we denote any state with integral angular momentum by u , any state with 
half-integral angular momentum by w , and the rotation operator for a rotation about any axis 
by 2π with the symbol R2π , then R u u R w w2 2π π= = − and . At the same time, it is phys-
ically reasonable to assume that for any observable A whatsoever, including the Hamiltonian, 
R AR A2 2

1
π π

− = . (This does not contradict the experimental result discussed in Section 5.1.) It 
follows that

 u A w u R R AR R w u A w= = − =−
2 2 2

1
2 0π π π π

†  

Hence the relative phase η between the states u w and  in the superposition ψ η= +u e wi  
is unobservable. This is an example of what is called a superselection rule.

7.6 Magnetic resonance: The rotating frame – Rabi’s formula

Magnetic resonance, a very important experimental method that is widely employed in physics, 
chemistry, biology, and medicine, provides an instructive example of some of the ideas devel-
oped so far in this chapter. The magnetic resonance technique was invented by I. I. Rabi at 
Columbia University in 1937 (with help from C. Gorter of the Netherlands and clarification 
by the teenager J. Schwinger). Rabi and coworkers at Columbia used the method in atomic and 
molecular beam experiments to measure nuclear spins and moments, Zeeman and Stark effects, 
hyperfine structure splittings, and other properties of atoms, molecules, and nuclei. E. Purcell 
at Harvard and F. Bloch at Stanford independently succeeded in applying nuclear magnetic 
resonance (NMR) to bulk samples shortly after the end of World War II. Important advances 
were made in the early 1950s by many investigators, notably by N. F. Ramsey in atomic/molec-
ular beam magnetic resonance and by E. L. Hahn in NMR. Since then, the method continues 
to develop in many diverse directions. Here we confine ourselves to a discussion of magnetic 
resonance for spin-½ particles and specifically the proton.

Magnetic resonance experiments typically make use of the magnetic field

 B = ′( ) − ′( )



 +B t i t j B k1 0cos sinω ω    (7.64)

which consists of a constant component B0 in the z-direction and a component of magnitude 
B1 that rotates in the xy-plane with angular frequency ω′. (For particles where the spin and 
magnetic moment are antiparallel, B1 is chosen to rotate in the opposite sense.) As we discussed 
in Section 3.4, the equation of motion in the laboratory frame for the expectation value of the 
proton spin in a magnetic field is

 

d

dt

S
B

B S S

= ×

= − × = − ×

µ

ωγ  

(7.65)
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where ω = ( ) ≡gp N µ γB B , and B is given by (7.64) in the present discussion. In a frame F′ 
that rotates with B1 about the z-axis (i.e., rotates with angular velocity ω′ with respect to the 
laboratory frame), the time derivative, denoted by ∂ ∂S / t, is related to d S /dt by a well-
known kinematic formula originally obtained by Euler; that is,

 

∂
∂

= − ′ ×

= − + ′( ) ×

S S
S

S
t

d

dt
ω

ω         γB
 

(7.66)

In the rotating frame F′, B1 is a constant vector. Also, from (7.66), because ω′ is oriented in 
the –z-direction, the effective z-component of the magnetic field is

 B B0 0 0
1 1

,eff = − ′( ) = − ′( )
γ

γ ω
γ

ω ω  (7.67)

where ω γ0 0= B . Thus the resultant effective magnetic field in F′ is as shown in Figure 7.2. In 
the rotating frame, S  precesses about Beff with angular frequency

 Ω = = + − ′( )γ γ ω ωB Beff
2

1
2

0
2

 (7.68)

Also, if  S  is oriented along the +z-axis at t = 0, the precession cone half-angle Θ is given by

 sinΘ = =
( ) + − ′( )

B
B

B

B

1 1

1
2

0
2

eff

γ

γ ω ω
 (7.69)

The precession cone is illustrated in Figure 7.3.

Because S  lies along the z-axis at t = 0, ψ ( )0
1

0
=





; (m = +1/2). However, at time t > 0, S
 

lies along OC in Figure 7.3; hence S  tips downward by angle β with respect to the z-axis, and 

therefore, ψ ( )t  contains a component proportional to 
0

1





; (m = −1/2). From (7.53), it is clear 

that the probability of finding the proton with m = −1/2 at time t (which we call the transition 
probability P1 2 1 2/ /→− ) is

 P1 2 1 2
2

2/ / sin→− =
β

 

However, from Figure 7.3,

 
sin sin

sin sin

β φ
2

1
2 2

2

= = =

=

AC

OA

AB

OA

AP

OA
t

        Θ
Ω

 (7.70)

 

 

 

 

 

 

 

 



7.6 Magnetic resonance: The rotating frame – Rabi’s formula159

Thus we obtain

 

P
t

B

B
B

1 2 1 2
2 2

1
2

1
2

0
2

2

2/ / sin sin

sin

→− =

=
( )

( ) + − ′( )

Θ
Ω

        
γ

γ ω ω
γ 1

2
0

2

2
( ) + − ′( )





ω ω t
 (7.71)

A B C

Beff

P

O

β

θ

φ

 Figure 7.3  Sketch of the precession cone. OP is the direction of Beff in rotating frame F′. S  lies along OA (vertically upward) at time t = 0, but S  
precesses about OP and is aligned along OC at time t > 0. Thus OC is tipped downward by angle β with respect to OA. The precession 
angle is φ=Ωt.

B0

B0,eff

Beff

B1

ω'/

θ

 Figure 7.2 Magnetic field vectors in the rotating frame.
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This is the well-known Rabi flopping formula of magnetic resonance (Rabi 1937; Ramsey 
1956, chap. V). If  the applied frequency ω′ is set equal to ω0 (the resonance condition), (7.71) 
becomes

 P
B t

1 2 1 2 0
2 1

2/ / sin→− ′ =( ) = 





ω ω γ
 (7.72)

Here B0,eff in Figure 7.2 is reduced to zero, Beff = B1, and Θ = π/2. Thus the precession cone 
becomes a circle on resonance. If  the rotating field is turned on at t = 0 and off  again at 
t B= π γ 1  (a π pulse), the resulting transition probability is unity at resonance. In Figure 7.4 
we plot P1 2 1 2/ /→−  versus applied frequency for a π pulse.

Rabi’s formula (7.71) can be generalized to apply to any value of  J, integral or half-integral, 
by using a formula originally derived for another purpose by E. Majorana (1932). Equation 
(7.71) also can be derived directly from Schroedinger’s time-dependent equation H iψ ψ= 

 . 
Here we obtain two first-order linear differential equations that couple the upper and lower 
components of  ψ . These two equations can be reduced to a single second-order differential 
equation, for example, for the lower component. This can be solved subject to the initial 
conditions to yield (7.71). Although this is a useful elementary exercise in solving differential 
equations, it does not provide the same insight as the geometric method we have employed 
in the foregoing discussion.
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(ω'–ω0)/(γB1)

 Figure 7.4 Transition probability versus applied frequency for a π pulse, from Rabi’s formula (7.71).

 

 

 

 

 



7.7 Orbital angular momentum161

7.7 Orbital angular momentum

In classical mechanics, a particle with linear momentum p and position r relative to some origin 
O has orbital angular momentum L r p= ×  with respect to O. In quantum mechanics, we adopt 
the same definition for L, but now r and p are noncommuting operators. In units where  = 1, 

we have x L x zp xp izy x z, ,  = −[ ] =  and cyclic permutations thereof. Hence

 x L i xi j ijk k,  = ε  (7.73)

Also, p L p zp xp ipx y x x z z, ,  = −[ ] = . Thus

 p L i pi j ijk k,  = ε  (7.74)

Finally, L L yp zp zp xp iyp ixp iLx y z y x z x y z, ,  = −( ) −( )  = − + = . Hence

 L L i Li j ijk k,  = ε  (7.75)

The latter implies that L is a quantum-mechanical angular-momentum operator with all the 
usual properties; that is,

 L2 1   

 

m m= +( )  (7.76)

 L m m mz  

  

=  (7.77)

 L m m m m± = + − ± ±   

   

( ) ( ) ,1 1 1  (7.78)

and so on. However, for orbital angular momentum, there is an addition restriction:  must be 
integral. To explain this, we define the operators

 
a x ip b y ip

c a ib d a ib

x y= +( ) = +( )
= +( ) = −( )

1

2

1

2
1

2

1

2
    

 

Then a a b b c c d d, , , ,† † † †[ ] = [ ] = [ ] = [ ] = 1, and c d c d, , .[ ] = [ ] =† 0  Also, it is easy to verify that

 L i b a a b d d c cz = − = −( )† † † †  (7.79)

From the theory of the simple harmonic oscillator (see Section 6.13.1), we know that the eigen-
values of d d c c† † and of  are the nonnegative integers. Hence the eigenvalues m



 must be inte-
gral, which implies that  is also integral.
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It is frequently useful to write L in coordinate representation and to employ spherical polar 
coordinates; that is,

 
x r
y r
z r

=
=
=

sin cos
sin sin
cos

θ φ
θ φ
θ

 

Then

 L i x
y

y
x

iz = −
∂
∂

−
∂
∂






= −

∂
∂φ

 (7.80)

Defining ψ




m  to be the coordinate representative of 


,m , we see that (7.77) and (7.80) imply

 ψ θ φ
 

 



, ,m m
imf e= ( )  (7.81)

where f m


, θ( ) is a function to be determined. Now

 L2 1= + +( )− +L L L Lz z  

and

 L e ii
±

±= ±
∂
∂

+
∂
∂







φ

θ
θ

φ
cot  (7.82)

Therefore,

 L2
2

2

2

1 1ψ
θ θ

θ
θ θ φ

ψ




 , ,sin
sin

sin
(m l ml

= −
∂
∂

∂
∂






+

∂
∂









 = +1) ,ψ l m



 (7.83)

Substitution of (7.81) into (7.83) yields the associated Legendre differential equation; that is,

 
∂

∂( )
∂

∂( )








 + + −





=
cos

sin
cos

( )
sinθ

θ
θ θ

2
2

2
1 0

f m
f 

  (7.84)

This equation possesses a solution that is analytic for all values of θ: the associated Legendre 
polynomial Pm



 ( )θ . Thus we obtain

 ψ θ φ
  

 



, , ( )m m
m imN P e=  (7.85)

where N m


,  is a normalizing factor. A standard choice for the latter [see equation (7.88)] yields 
the spherical harmonics

 ψ θ φ
π

θ φ
 









 









, ,
!

!m
m m imY

m

m
P e= ( ) = + −( )

+( ) ( )2 1
4

 (7.86)
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here defined for m


≥ 0, and

 Y Ym m m
 







− = −( ) ( )1 *  (7.87)

The spherical harmonic normalization and orthogonality condition is

 Y Y dm m
mm  ’ *′

′ ′( ) =∫ Ω δ δ  (7.88)

where d d dΩ = sinθ θ φ. The first few spherical harmonics are

 Y0
0 1

4
=

π
 (7.89)

 

Y e

Y

Y e

i

i

1
1

1
0

1
1

3
8
3

4
3

8

= −

=

=− −

π
θ

π
θ

π
θ

φ

φ

sin

cos

sin

 

 

 (7.90)

and

 

Y e Y e

Y

i i
2
2 2 2

2
2 2 2

2
1

15
32

15
32

= =

= −

− −

π
θ

π
θφ φsin sin               

15
8

15
8

5
4

3
2

1
2

2
1

2
0 2

π
θ θ

π
θ θ

π
θ

φ φsin cos sin cos

cos

 e  ei -iY

Y

− =

= −





 (7.91)

7.8 Addition of angular momenta: Vector coupling coefficients

A physical system with angular momentum operator J may consist of two parts with angular 
momentum operators J J1 2 and ; that is,

 J J J= +1 2  (7.92)

The hydrogen atom in the ground state provides an example because the electron and proton 
both have spin-½. In what follows, we assume that in addition to the usual commutation rules 
satisfied separately by J J1 2 and , we also have

 J Ji j1 2 0,  =  (7.93)
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which means that each component of the angular momentum of one subsystem can be 
measured without disturbing any component of the other subsystem. Given (7.93), we can 
form simultaneous eigenstates of J J1

2
1 2

2
2, ,J Jz z and , which are denoted by j m j m1 1 2 2 . For 

given j j1 2, , the eigenstates jm  of  J 2  and Jz  can be expressed as linear combinations of the 
j m j m1 1 2 2 ; that is,

 jm j m j m j m j m jm
m m

= ∑ 1 1 2 2 1 1 2 2

1 2,

 (7.94)

The coefficients j m j m jm1 1 2 2  are elements of a unitary matrix and are called vector coupling 
coefficients or Clebsch-Gordan coefficients. Knowledge of the properties of these coefficients 
and an understanding of how to use them are essential for the analysis of many important 
problems in quantum mechanics. We now summarize the most important of these properties.

1. Application of the operator J J Jz z z= +1 2  to both sides of (7.94) yields

 m m m j m j m j m j m jm
m m

− −( ) =∑ 1 2 1 1 2 2 1 1 2 2

1 2

0
,

 (7.95)

Because the product states j m j m1 1 2 2  are linearly independent for different values of m m1 2, ,  
(7.95) implies that

 m m m j m j m jm− −( ) =1 2 1 1 2 2 0  

Hence, if  j m j m jm1 1 2 2 0≠ , we must have m m m= +1 2; consequently, the sum on the 
right-hand side of  (7.94) is actually over one variable only, for example m1, in which case,
m m m2 1= − .

2. Consider the scalar product

 
′ ′ =

= ′ ′ ′ ′
′ ′

′

′ − ′( ) ′∑
j m jm

j m j m j j m j m j

j j m m

m m

m m m

δ δ, ,

,

 1 1 2 1 1 1 1 21
1 1

− ′( ) −( ) −( )m m m m mj j m j jm1 1 12 1 1 2
 

(7.96)

Because j m j m m m1 1 1 1 1 1
′ = ′δ ,  and j m m j m m m m m m1 1 2 1 1 1

′ − ′( ) −( ) = ′− ′ −δ , , (7.96) reduces to the 

orthogonality relation

 ′ =∑ ′j m j m j m j m j m jm
m

j j1 1 2 2 1 1 2 2

1

δ ,  (7.97)

Actually, the vector coupling coefficients are real up to a common arbitrary phase factor. Thus 
we can write

 ′ = ′j m j m j m j m j m j m1 1 2 2 1 1 2 2  (7.98)

3. The following inverse relation holds:

 j m j m j m j m jm jm
j

1 1 2 2 1 1 2 2= ∑  (7.99)
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This is easily shown by multiplying both sides of (7.99) by j m j m j m1 1 2 2 ′ , summing over m1, 
and using (7.97).

4. A second orthogonality relation

 j m j m jm j m j m jm
j

m m m m1 1 2 2 1 1 2 2 1 1∑ ′ ′ ′ = ′ ′δ δ, ,  (7.100)

is easily shown from (7.99).
5. Assuming that j j1 2≥ , the possible values of j are

 j j j j j j j= + + − −1 2 1 2 1 21, , ...,  

Proof: Given j1 and j2, the maximum values of m1 and m2 are j1 and j2, respectively. Thus the 
maximum value of m and therefore of j is j1 + j2. The state j j j m j j= + = +1 2 1 2,  can be 
expressed in only one way in terms of j m j j m j1 1 1 2 2 2, ,= = ; that is,

 j j j j j j j j1 2 1 2 1 1 2 2+ + =,  (7.101)

In other words, the single-vector coupling coefficient in this case is +1. There are 2 11 2( )j j+ +  
separate mJ states belonging to the multiplet j j j= +1 2. In particular, we consider m j j= + −1 2 1. 
The state j j j j1 2 1 2 1+ + −,  is a linear combination of j j j j j j j j1 1 2 2 1 1 2 21 1, ,− − and .  
Because these last two product states are orthogonal, there is a second linearly independent 
combination of them that must correspond to j j j m j j= + − = + −1 2 1 21 1, . The entire multi-
plet of states with j j j= + −1 2 1 has 2 1 11 2( )j j+ − +  separate m components. Continuing in this 
manner, we construct the multiplets j j j= +1 2 , j j1 2 1+ − , and so on until we have exhausted all 
independent linear combinations of j m j m1 1 2 2 , the total number of which is ( )( ).2 1 2 11 2j j+ +  
Because

 2 1 2 1 1 2 1 2 1 2 11 2 1 2 1 2 1 2( ) ( ) ( ) ( )( )j j j j j j j j+ +[ ] + − +[ ]⋅⋅⋅ − +[ ] = + +  

we conclude that j j jmin = −1 2.
6. The vector coupling coefficients are real and can be generated recursively. Instead of giv-

ing a general proof, we illustrate this and some other properties with three examples.

We first consider the case j j1 2 1= = /2 and introduce the notation α β=





=





1

0

0

1
, . (Here we 

must not confuse the spinors α β,  with the Euler angles α β, !) There are two possible values of 
j: j m= = −1 1 0 1 with , ,  and j m= =0 0 with . Obviously,

 j m= = =1 1 1 2, α α  (7.102)

Recalling (7.33), we apply the lowering operator J J J− − −= +1 2  to both sides of (7.102) and 
divide both sides of the resulting equation by 2 to obtain

 10
1

2
1 2 2 1= +( )α β α β  (7.103)
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To find 1 1,− , we may apply the lowering operator J J J− − −= +1 2  once again to both sides of 
(7.103) or simply rotate the states on both sides of (7.102) about the y-axis through π  radians. 
This yields

 1 1 1 2− = β β  (7.104)

The state 0 0,  must be a linear combination of α β β α1 2 2 and 1  that is orthogonal to (7.103). 
Thus, apart from an arbitrary overall phase, we have

 00
1

2
1 2 1 2= −( )α β β α  (7.105)

This result also can be obtained by starting with the linear combination

 00 1 2 1 2= +a bα β β α  

where a and b are coefficients to be determined, and applying the raising operator [see equa-
tion (7.32)] or the lowering operator to both sides. Because J± =0 0 0, , we must have a = –b; 
furthermore, normalization requires a b2 2 1+ = . Hence a b= − = −2 1 2/  with a specific choice of 
overall phase.

Note that the three j = 1 states [(7.102) through (7.104)] are symmetric with respect to 
exchange of spinors 1 and 2, whereas the j = 0 state is antisymmetric. This is an additional gen-
eral property of vector coupling coefficients for j j1 2= : the j j j= −2 2 21 1, ,  … multiplets are 
symmetric under exchange of j j1 2 and , whereas the 2 1 2 31 1j j− −, ,  … multiplets are exchange 
antisymmetric.

Our next example concerns j j1 21= =, 1/2, for which j = 3/2 or 1/2. We start with

 
3
2

3
2

11
1 2= α  (7.106)

and apply the lowering operator to both sides to obtain

 
3
2

5
2

3
2

1
2

3
2

1
2

2 10 11
1 2 1 2− = +α β  

which gives

 
3
2

1
2

2
3

10
1
3

11
1 2 1 2= +α β  (7.107)

Further applications of the lowering operator yield

 
3
2

1
2

1
3

1 1
2
3

10
1 2 1 2− = − +α β  (7.108)
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and

 
3
2

3
2

1 1
1 2− = − β  (7.109)

Next, consider the j = 1/2 doublet. The state j m= =1/2, 1/2  must be orthogonal to (7.107). 
Hence, with a conventional but arbitrary choice of overall phase, we have

 
1
2

1
2

1
3

10
2
3

11
1 2 1 2= −α β  (7.110)

To find the vector coupling coefficients for j m= =1/2 -1/2, , we can apply the lower-
ing operator to both sides of (7.110), or we can rotate the states on both sides of (7.110) 
about the y-axis by π radians. Recalling (7.51) and (7.62), we note that under this rotation, 
11 1 1 10 10→ − → − → → −, , ,   and α β β α. Hence we obtain

 
1
2

1
2

1
3

10
2
3

1 1
1 2 1 2− = − + −β α  (7.111)

As a final example, consider j j1 2 1= = . In this case, the possible multiplets are

 
j
j
j

=
=
=

2
1
0

(a quintuplet) 
 a triplet)
 (a singlet)

(  

The vector coupling coefficients for j = 2 are generated in a straightforward manner by repeated 
application of the lowering operator, starting with the state j m, ,= 2 2 ; that is,

 

22 11 11

21
1

2
11 10 10 11

20
1

6
11 1 1 1 1 11 2 10 10

1 2

1 2 1 2

1 2 1 2 1

=

= + 

= − + − +
2

1 2 1 2

1 2

2 1
1

2
1 1 10 10 1 1

2 2 1 1 1 1

 

− = − + − 

− = − −

 

The state j m= =1 1,  must be orthogonal to 21 ; hence, with an arbitrary choice of overall 
phase, we have

 11
1

2
11 10 10 11

1 2 1 2
= −   (7.112)

Application of the lowering operator to both sides of (7.112) yields

 10
1

2
11 1 1 1 1 11

1 2 1 2
= − − −   (7.113)
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Note that no term proportional to 10 10
1 2

 appears on the right-hand side of (7.113); this is 
consistent with the fact that the j = 1 states are antisymmetric with respect to exchange of j1 and 
j2. The third member of the triplet is

 1 1
1

2
10 1 1 1 1 10

1 2 1 2
− = − − −   (7.114)

Finally, the state j m= =0 0,  must be orthogonal to j m= =2 0,  and j m= =1 0, . It is easy 
to show that

 00
1

3
11 1 1 1 1 11 10 10

1 2 1 2 1 2
= − + − −   (7.115)

which is obviously symmetric with respect to the exchange of j1 and j2.
7. 3-j Symbols. Certain symmetries of the vector coupling coefficients are conveniently 

expressed in terms of the Wigner 3-j symbol

 
j j j

m m m
1 2 3

1 2 3







 (7.116)

which is defined as follows:

 
j j j
m m m

j j m j m j m
j j m1 2 3

1 2 3
3

1 2
1 1 2 2 3 31 2 11 2 3




= −( ) +( ) −− − − /

 (7.117)

It can be shown that an even permutation of the columns of a 3-j symbol leaves its value 
unchanged; that is,

 
j j j

m m m

j j j

m m m

j j j

m m m
1 2 3

1 2 3

3 1 2

3 1 2

2 3 1

2 3 1






=





=






 (7.118)

but an odd permutation of the columns of (7.116) or replacement of the lower row of (7.116) 
by − − −m m m1 2 3, ,  is equivalent to multiplication of (7.116) by ( )− + +1 1 2 3j j j .

8. General formula for vector coupling coefficients. A general formula for the vector coupling 
coefficients has been derived in a variety of ways by Wigner (1959), by Schwinger, and by 
Racah (1942); that is,

 
j m j m jm

j j j j j j j j j j

j
m m m1 1 2 2

1 2 1 2 1 2

1

1 2

2 1
=

+ + − − + − + +
+

( )( ) ( ) ( )
δ ,

! ! !

+ + +

−
+ − + −

( )






× ( ) ( ) ( ) ( )∑

j j

j m j m j m j m

n

n

2

1 2

1 1 1 1 2 2 2 2

1 !

! ! !

/

 1
( ) ( ) ( )[ ]

( ) ( ) ( )
+ −

+ − − − − + − −

! ! !

! ! ! !

/
j m j m

n j j j n j m n j m n j j

1 2

1 2 1 1 2 2 2 1 1 2+ + − − +( ) ( )m n j j m n! !

 (7.119)

Here the sum is over all values of the integer n for which none of the factorials is negative. 
Unfortunately, (7.119) is quite complicated for use in most practical applications. However, 
tables of vector coupling coefficients are found in many standard textbooks and in the “Particle 
Physics” booklet published every few years by the American Institute of Physics.
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9. The Clebsch-Gordan series and its inverse. Rotation matrices and vector coupling coeffi-
cients are related by the following useful formula, called the Clebsch-Gordan series:

 D D j m j m jm j m j m jm D
m m

j
m m
j

j
1 1

1

2 2

2
1 1 2 2 1 1 2 2′ ′ ′( ) ( ) = ′ ′ ′∑α β γ α β γ, , , , m m

j ( , , )α β γ  (7.120)

In the sum on the right-hand side of (7.120), j runs from j j j j1 2 1 2+ − to . The inverse 
formula is

 D j m j m jm j m j m jm Dm m
j

m m
m m

m m
j

′
′
′

′( ) = ′ ′ ′∑α β γ, , (
,
,

1 1 2 2 1 1 2 2

1 1
2 2

1 1

1 α β γ α β γ, , ) ( , , )Dm m
j
′2 2

2  (7.121)

Equation (7.121) can be used to generate rotation matrix elements for higher j from known 
values of rotation matrix elements for lower j.

7.9 Definition of irreducible spherical tensor operators

In many physical problems, it is advantageous to express the relevant quantities in such a way 
that their rotational symmetry is emphasized. For example, whereas the position vector in 
Cartesian coordinates is

 r = + +xi yj zkˆ ˆ ˆ  

it is often more convenient to write it as follows:

 

r = −
− +( ) −( )

−
−( ) − +( )

+

= −
− +( )

x iy i ij x iy i ij
zk

x iy
2 2 2 2

2

 

ˆ ˆ ˆ ˆ
ˆ

ˆ( ε −

− −

−
−( )

+

= − − +

1 1 0

1 1 1 1 0 0
2

) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ

ˆ ˆ ˆ

x iy
z

r r r

ε ε

ε ε ε

 (7.122)

where r x iy r z r x iy( ) ( ) ( ), ,1 0 12 2= − +( ) = = −( )−   and  are proportional to the spherical 
harmonics Y Y Y1

1
1
0

1
1, , − , respectively, and are said to be the components of the rank-one irre-

ducible spherical coordinate tensor. More generally, consider a collection of 2L+1 operators 
TL

M , where L is a fixed nonnegative integer and M L L L= − −, ,...,1 . By definition, the TL
M  are 

components of an irreducible spherical tensor of rank L if  under a rotation with operator R,

 RT R D TL
M

M M
L

M
L
M− = ∑1

’
′

′  (7.123)

This transformation rule is obviously analogous to that for the spherical harmonics; that is,

 RY D YL
M

M M
L

M
L
M=

′
∑ ′

′  (7.124)
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Irreducible spherical tensors of rank 0 and 1 are called scalars and vectors, respectively. 
Irreducible spherical tensor operators of half-integral rank do not exist – and for a very good 
reason. See, for example, Problem 11.3.

Consider two irreducible spherical tensors P X Q YL
M

L
M

1

1

2

2( ) ( ) and , where X and Y are the vari-
ables on which P and Q depend. Then it can be shown that

 T X Y L M L M LM P QL
M

L
M

M M
L
M( , )

,

= ∑ 1 1 2 2 1

1

1 2

2

2  (7.125)

is an irreducible tensor of rank L, where L L L L L L L= + + − −1 2 1 2 1 21, , ...   , . This com-
bination rule is obviously analogous to the rule for combining angular-momentum states 
L M L M1 1 2 2 and ,  to form states LM . A special case of (7.125) occurs when L L1 2=  and 

L = 0; that is,

 T X Y L M L M P QL
M

M
L

M
0
0

1 1 1 1 00
1

1

1

1

1,( ) = −∑ −  (7.126)

Substitution of L M L M L
L M

1 1 1 1 100 1 2 11 1− = −( ) +−
 into (7.126) yields

 

T X Y
L

P Q
L

M
L
M

M
L

M
0
0

1

1

2 1
1

1

1

1

1

1

1

1

1,( ) = −( )
+

−( )

=
−

∑ −

               
( )

+

L

L
I

1

2 11

 

where

 I P Q
M

L
M

M
L

M= −( ) ≡∑ −1 1

1

1

1

1

1 P Q  (7.127)

is the scalar product of the tensors P and Q. For example, suppose that L1 = L2 = 1.Then

 

P
P iP

Q
Q iQ

P
P iP

Q
Q iQ

P P

x y x y

x y x y

1
1

1
1

1
1

1
1

1
0

2 2

2 2

= −
+

= −
+

=
−

=
−

=

− −     

z zQ Q                1
0 =

 

and (7.127) becomes

 
I P iP Q iQ P iP Q iQ P Q

P Q P

x y x y x y x y z z

x x y

= − − −( ) −( ) − −( ) − −( ) +
+

1
2

1
2

  = Q P Qy z z+
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7.10 Commutation rules for irreducible spherical tensors

We now show that

 J T MTz L
M

L
M,[ ] =  (7.128)

 J T L L M M TL
M

L
M

+
+[ ] = +( ) − +( ), 1 1 1  (7.129)

 J T L L M M TL
M

L
M

−
−[ ] = +( ) − −( ), 1 1 1  (7.130)

First, consider an infinitesimal rotation about the z-axis; that is,

 R T R D Tz L
M

z M M
L

L
M

M

ε ε ε( ) ( ) = ( )−

′
∑1 0 0′

′, ,  (7.131)

Because D e iMM M
L iM

M M M M′ ( , , ) ( )ε δ ε δε0 0 1= ≈ − ′− ′
′ ′ , (7.131) gives

 I i J T I i J i M Tz L
M

z L
M−( ) +( ) −( )ε ε ε 1  

Comparing the left- and right-hand sides of this expression to order ε, we obtain (7.128).
Let us make an infinitesimal rotation about y instead; that is,

 I i J T i J d Ty L
M

y M M
L

M
L
M−( ) +( ) = ( )′

′

′∑ε ε ε1  (7.132)

Now

 

d LM I i J LM

i
i

LM J LM LM J LM

M M
L

y

M M

′

′ + −

( ) = ′ −

= − ′ − ′(
ε ε

δ ε
            

2
)

= − −( )′ + ′ + − ′ −            δ ε δ δM M
LM

M M
LM

M MC C
2 1 1, ,

 

Comparing the left- and right-hand sides of (7.132), we obtain

 i J T C T C Ty L
M LM

L
M LM

L
M,  = −( )+

+
−

−1
2

1 1  (7.133)

Similarly, an infinitesimal rotation about x yields

 J T C T C Tx L
M LM

L
M LM

L
M,[ ] = +( )+

+
−

−1
2

1 1  (7.134)

Combining (7.133) and (7.134), we arrive at (7.129) and (7.130).
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The angular-momentum operators themselves form an irreducible spherical tensor of rank 
one; that is,

 

J
J iJ

J J

J
J iJ

x y

z

x y

1

0

1

2

2

= −
+

=

=
−

−

  

 (7.135)

and the commutation rules [(7.128)–(7.130)] can be expressed as

 J T MTL
M

L
M

0 ,[ ] =  (7.136)

 J T L L M M TL
M

L
M

1
11

2
1 1, ( ) ( )[ ] = − + − + +  (7.137)

 J T L L M M TL
M

L
M

−
−[ ] = + − −1

11

2
1 1, ( ) ( )   (7.138)

7.11 Wigner-Eckart theorem

Let us multiply both sides of (7.128) on the left by ′ ′j m  and on the right by jm . This yields

 ′ −( ) ′ ′ = ′ ′m m j m T jm M j m T jmL
M

L
M  

Hence ′ ′ ≠j m T jmL
M 0 only if  ′ = +m m M . Next, we do the same thing with both sides of 

(7.129) and (7.130). This yields the recursion relations

 C j m T jm C j m T j m C j m T jmjm
L
M jm

L
M LM

L
M





′
± ±

±′ ′ − ′ ′ ± = ′ ′, ,1 1 1  (7.139)

Equations (7.139) are analogous to the following recursion relations for the vector coupling 
coefficients:

 C jmLM j m C j m LM j m C jmLM j mjm jm LM




’ , , ’ ’′ ′ − ± = ± ′ ′± ±1 1 1  (7.140)

This implies that the matrix element ′ ′j m T jmL
M  is proportional to the following correspond-

ing vector coupling coefficient:

 ′ ′ = ′ ′ ′j m T jm j T j jmLM j mL
M

L|| ||  (7.141)
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where the proportionality factor ′j T jL|| || , called the reduced matrix element, depends on 
j L j, ,  and ′  but is independent of  m M m, ,  and ′ . Equation (7.141) is the Wigner-Eckart the-
orem, one of  the most important results in the quantum theory of  angular momentum. Its 
significance stems from the fact that it separates the matrix element into a factor (the reduced 
matrix element) containing the specific dynamical features of  the operator T and a factor 
(the vector coupling coefficient) that is geometric in nature and is solely related to rotational 
symmetry.

7.12 Consequences of the Wigner-Eckart theorem

7.12.1 Selection rules

It follows immediately from (7.141) that the condition ′ ≠j m T jmL
M’ 0 requires not only

 m M m+ = ′  (7.142)

but also the triangle rule; that is,

 ′ = + ′ = + − ′ = −j j L j j L j j L, ,1  ...,  (7.143)

Thus, for example,

A tensor of zero rank can only connect states of the same •	 j.
A tensor of the first rank can only connect states with •	 ′ = ′ = ±j j j j or 1, but it cannot con-
nect j j= ′ =0 0 to .
A tensor of the second rank can only connect states such that •	 ′ = ± ±j j j j,  , and 1 2, but it 
cannot connect states with j j j j j j= ′ = = ′ = = ′ =0 1 2 1 0, / , ,  or , or vice versa.

7.12.2 Static moments

The diagonal matrix element of an irreducible tensor is

 jm T jm jmL jm j T jL L
0 0= || ||  (7.144)

For example, TL  might be the magnetic moment operator μ (a first-rank tensor). In this case, 
because jm jm m j j10 1= +/ ( ) , (7.144) becomes

 jm jm
m

j j
j jzµ µ=

+( )
|| ||

1
 (7.145)

In particular, when m j= , the matrix element on the left-hand side of (7.145) is by definition 
the magnetic moment μ (i.e., the quantity found in tables). Thus
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 j j
j j

j
|| ||µ µ=

+( )1
 

and therefore

 jm jm
m
jzµ µ=  (7.146)

Next, consider (7.144) in the case L = 2. Here, for example, we might be dealing with the elec-
tric quadrupole moment operator Q. Because

 jm jm
m j j

j j j
20

3 1

2 1 1 2 3

2

=
− +( )

− + +( )( )( )
 (7.147)

(7.144) yields

 jm Q jm
m j j

j j j
j Q j2

0
23 1

2 1 1 2 3
=

− +( )
− + +( )( )( )

|| ||  

The quadrupole moment Q listed in tables is

 Q jj Q jj
j j j

j j j
j Q j≡ =

− +( )
− + +

2
0

23 1

2 1 1 2 3( )( )( )
|| ||  (7.148)

Thus

 jm Q jm
m j j

j j j
Q2

0
2

2

3 1

3 1
=

− +( )
− +( )  (7.149)

Equation (7.149) implies that a particle cannot possess a quadrupole moment unless j ≥ 1.

7.12.3 Projection theorem for static moments: The Lande g-factor

An electron has spin S and orbital angular momentum L, and these add to form the total angu-
lar momentum J = L + S. The total magnetic moment is

 µ µ µ= + = − +( )S L B sg gµ S L


 (7.150)

In the semiclassical vector model of atomic physics that preceded quantum mechanics, J, L, 
and S were regarded as ordinary vectors, not operators. Because g gs ≠ 

, µ  and J were not col-
linear, and μ was resolved into two components, one parallel and the other perpendicular to 
J; that is,

 µ µ µ= + ⊥
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According to the vector model, only µ


 contributed to the expectation value of µ  because the 
contribution of µ⊥ averaged to zero; hence, through a clever but mysterious argument, the 
effective magnetic moment turned out to be

 µ = −gJ Bµ J  

where gJ  is the Lande g-factor; that is,

 g
j j

j j s sJ = +
+( ) +( ) + +( ) − +( ) 1

1
2 1

1 1 1   (7.151)

With the aid of a corollary to the Wigner-Eckhart theorem known as the projection theorem, 
we can sweep away the debris of the old vector model and give a clear derivation of the Lande 
g-factor. The projection theorem states that if  T M

1  is any first-rank tensor, then

 jm T jm
m

j j
j j1

0

1
=

+( )
|| ||J T  (7.152)

where J T  is the scalar product of  the first-rank tensors J and T. First, we shall assume (7.152) 
and use it to derive the Lande g-factor; then we shall derive (7.152) from the Wigner-Eckart 
theorem. We start with the magnetic moment operator defined in (7.150). From (7.152), 
we have

 

jm jm
m

j j
j j

m
j j

j

z

B

µ

µ

=
+

= −
+

( )
|| ||

( )
||

1

1

J

L

µ

                   + S L S

L L S

( ) ( )

= −
+









g g j

m
j j

g j

s

B

+

+

||

( )
||                   

1
2µ ( ) + ( ) || || || .j g j js S L S2 + 

 
Now

 

j j

j j s s

j j j j

|| || ( )

|| || ( )

|| || || ||

L
S

L S J L S

2

2

2 2 2

1

1
1
2

= +
= +

= − −

 



                    =
1
2

1 1 1j j s s( ) ( ) ( )+ − + − +[ ] 

 

Therefore,

 

jm jm
m

j j

g
j j s s

z
Bµ µ

= −
+

+ + + − +



( )

( ) ( ) ( )
1

1 1 1
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+
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The Lande g-factor gJ is defined by

 jm jm g jm J jm g mz J B z J Bµ µ µ= − = −  

Thus we obtain

 g
j j

g
j j s s

g
j j s s

J s=
+

+ + + − +




+

+ + + −1
1

1 1 1
2

1 1
( )

( ) ( ) ( ) ( ) ( ) (


    +













1
2

)
 (7.153)

Now g g as e

= = +1 2 1 and ( ), where ae  is a small quantum electrodynamic correction. If  we 
ignore ae , (7.153) yields the desired result (7.151).

We now prove the projection theorem (7.152). Consider the first-rank tensor consisting of 
the angular-momentum operators themselves; that is,

 J J J1 0 1, , −  

We know that ′ ′ = ′ ′j m J jm m j j m m0 δ δ . On the other hand, the Wigner-Eckart theorem gives

 jm J jm
m

j j
j J j0

1
=

+( )
|| ||  

Hence

 j J j j j|| || ( )= +1  (7.154)

For any first-rank tensor T M
1 , we have

 J T = −( ) = −( )   + −( )∑ ∑ ∑− − −1 1 11 1 1
µ

µ
µ

µ µ

µ
µ

µ µ µ

µ
µJ T J T T J,  (7.155)

However, the commutation relations [(7.136)–(7.138)] imply that the first sum on the right-
hand side of (7.155) vanishes. Thus

 J T = −( ) = −( )∑ ∑− −1 11 1
µ

µ
µ

µ µ µ

µ
µJ T T J  (7.156)

Therefore,

 

jm J jm jm J T J jmM M

j m
j

′ = − ′

= −

−∑J T ( )

( )

1

1

1

1 1

µ µ
µ

µ

µ

µ
               

2 2

1 1 1 1 1 2 2 2 2

m

Mjm J j m j m T j m j m J jm∑ ′ −µ
µ

 

Now

 jm J j m j m M jm j jM j j′ = ′ +1 1 1 11
1 1δ , ( )  
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 j m J jm jm j m j jj j2 2 2 22
1 1µ δ µ= +, ( )  

whereas

 jm T jm jm jm j T j1 1 2 2 1 11− = −µ µ || ||  

Thus

 
jm J jm

j j jm M jm jm jm jm jm j T
M

m m

′
= + − ′ −∑

J T

( ) ( ) ||
, ,

1 1 1 1 1
1 2

1 2 1 2
µ

µ
µ µ 1 || j  (7.157)

For the vector coupling coefficients to be nonzero, we require

 
m m
m m
m M m

+ =
− =
+ = ′

µ
µ

2

2 1

1

 

The first two of these relations imply that for given µ, m m1 2 and  are fixed; hence

 
jm J jm

j j jm M jm j T j j m jm jm j m
M′

= + ′ − + −∑
J T

( ) || || ( ) , , , ,1 1 1 1 11
µ

µ
µ µ µ + µ  

Because jm j m j m jm1 1 1µ µ µ µµ, ( ) , , ,+ = − + − , the sum over µ reduces to unity by ortho-
normality of the vector coupling coefficients. Hence we finally obtain

 
jm J jm j j jm M jm j T jM′ = + ′J T  

                         

( ) || ||1 1 1

 = + ′j j jm T jmM( )1 1

 (7.158)

In particular, if  M = 0, then ′ =m m, and we recover (7.152).

7.12.4 Emission and absorption of radiation and the Wigner-Eckart theorem

This is the most important domain for application of the Wigner-Eckart theorem. We illustrate 
by means of a simple example: a hydrogen atom (with a spinless electron for simplicity), where 
we suppose that initially the atom is in the 2p state with m



= −1 0 1, , . or  The atom decays 
spontaneously to the 1s state (with m



= 0). We want to calculate the probabilities for emission 
of the photon at various angles with respect to the z-axis for various photon polarizations. 
Each transition probability W is proportional to M

2
, where M is a matrix element (sometimes 

called an amplitude); that is,

 M n m T n m m= = = 



100 21;γ  (7.159)
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Here n m m



= 21  is the initial atomic state, n m = 100,γ  is the final state consisting of the H 
atom in the ground state and the emitted photon, and T is the transition operator. The latter 
is related to the Hamiltonian describing the interaction between the atomic electron and the 
radiation field, and we study it in detail in Chapter 16. For the present, we merely state what 
can be shown: T is a scalar (rotationally invariant) operator that conserves parity, and it can be 
expressed as a sum of products of irreducible tensors S KL L and ; that is,

 T S K S KL
L

L
M

M L

L

L
L
M

L
M= = −( )

=

∞

=−=

∞
−∑ ∑∑

1 1

1  (7.160)

where SL refers only to the atom, and KL refers only to the radiation. The right-hand side of 
(7.160) is frequently called the multipole expansion. Inserting (7.160) into (7.159), we obtain

 M S m K
M

M L

L

L
L
M

a L
M

r
= −( )

=−=

∞
−∑∑ 1 100 21 0

1

γ  (7.161)

Here the first matrix element in each product refers only to the atom (subscript a), whereas the 
second refers only to the radiation (subscript r). In the latter matrix element, 0  refers to the 
initial vacuum state of the radiation field (no photons present). This state is spherically sym-
metric (rotationally invariant).

According to the Wigner-Eckart theorem,

 100 21 1 0 0 0 1S m m L M SL
M

L= , , , ,  

In this expression, the vector coupling coefficient vanishes unless L M m= = −1, . Hence the 
double sum in (7.161) reduces to just one term.

 M S m Km m
a

m
r

= − − −( )1 100 21 01 1γ  (7.162)

This implies, again, from the Wigner-Eckart theorem, that the photon must carry off  one 
unit of angular momentum, with z projection equal to m. Thus we state formally by the Wigner-
Eckart theorem what we know intuitively: angular momentum is conserved in the decay.

Returning to (7.159), we consider M in the special case where the photon momentum is along 
the +z-axis and the photon helicity is positive. Let M be called A in this special case; that is,

 A z T
a a

= ( ) +( ) ( )+100 211 0; ;γ  (7.163)

Here conservation of angular momentum requires that m = +1. Some other cases of special 
interest are as follows:

 B z T
a a

= ( ) −( ) ( )−100 211 0; ;γ  (7.164)

 C z T
a a

= ( ) −( ) −( )+100 21 1 0; ;γ  (7.165)
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 D z T
a a

= ( ) +( ) −( )−100 21 1 0; ;γ  (7.166)

The quantities A, B, C, and D are related to one another by simple symmetry considerations 
as follows: let Ry π( ) be a rotation by π about the y-axis, and let P be the parity transformation 
operator. Because T is invariant under rotations and spatial inversions, we have

 

A z R R TR R
a y y y y a

= ( ) +( ) ( ) ( ) ( )  ( ) ( )
=

+
− −100 211 0

100

1 1; ;γ π π π π

  ( ) −( ) −( )
=

+a a
z T

C

; ;γ 21 1 0

  

 (7.167)

Also, because P
a a

211 211( ) = − ( ) , where P is the parity operator,

 

A z P PTP P

z T
a a

a a

= ( ) +( ) ( ) ( )
= − ( ) −( ) ( )

+
− −

−

100 211 0

100 211

1 1; ;

;

γ

γ  ;0

  = −B

 (7.168)

and

 

D z P PTP P

z T
a a

a

= ( ) +( ) ( ) −( )
= − ( ) −( ) −(

−
− −

+

100 21 1 0

100 21 1

1 1; ;

;

γ

γ  )
= −

a

C

;0

  

 (7.169)

Hence

 A B C D= − = = −  (7.170)

Now consider a new axis z′ inclined with respect to z by angle θ. What is the amplitude for 
emission of a photon with positive (or negative) helicity and momentum along z′ if  the initial 
atomic state has m = 1, 0, or –1 with respect to the original z-axis? We write

 

′ = ( ) ′( ) ( )
= ( ) ′( ) −( ) −( )

±

±
−

M z T m

z R R

a a

a y y

100 21 0

100 1

; ;

;

γ

γ θ θ     TR R m

z TR m

y y a

a y

−

±

−( )  −( ) ( )
= ( ) ( ) −( ) ( )

1 21 0

100 21

θ θ

γ θ

;

;     
a

;0

 (7.171)

Now, in the standard representation where the orbital angular-momentum states 
 = = −1 1 0 1; , ,m  are represented by

 1 1

1

0

0

1 0
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1

0

1 1

0

0

1
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we have

 R my −( ) =

+ −

−

−
−

θ

θ θ θ

θ θ θ

θ

21

1
2

1

2

1
2

1

2

1

2
1

2
1

2

cos
sin

cos

sin cos sin

cos
sin

cosθ θ1
2

21

+

























m  

Inserting this last expression into the right-hand side of (7.171) and carrying out simple alge-
bra, we obtain the entries in Table 7.1.

The total emission rate for given initial m, regardless of photon helicity, is obtained by sum-
ming over both helicities and integrating over the solid angle. We thus find that for each m, the 
total emission rate is proportional to 8 3

2π( ) A . Of course, each initial m state must have the 
same decay rate. Otherwise, we could start out with an “unpolarized” sample of atoms in the 2p 
state, that is, with an equal population in each m level. Then, after some time, these populations 
would be unequal. In this way, a particular direction in space would be singled out, contrary to 
our general notion that space is isotropic.

Next, suppose that we have an ensemble of 2p atoms with initial populations in the m = −1 0 1, ,  
states of a b c, , , respectively. Then the rates of emission in direction z′ with positive (negative) 
photon helicity are proportional to

 
+

+





+ +
−





−

 Helicity:    

 He

a
b

c
1

2 2
1

2

2

2

2
cos

sin
cosθ θ θ

licity:    a
b

c
1

2 2
1

2

2

2

2−





+ +
+





cos
sin

cosθ θ θ
 

In particular, if  a b c= =  (unpolarized initial sample), the rates for each helicity are the same, 
and they are independent of θ . In this case, the radiation is unpolarized and isotropic.

Table 7.1 Relative probabilities for photon emission along z’

Initial        Relative probability for emission along m z ′
( )w.r.t.             Helicity                   Helicitz + y 

   
               1 cos          1 cos

 

2 2

−

+ +( ) −( )1
4 4

2 2
A A

θ θ

      0               sin                 sin

   

2 2
A A

2 2

2 2
θ θ

               1 cos         1 cos       
2 2− −( ) +( )1

4 4

2 2
A A

θ θ
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In the foregoing we have been able to derive everything of  interest (except for the constant 
A itself) from symmetry considerations alone, which include use of  the Wigner-Eckart the-
orem, properties of  rotation matrices, and rotational as well as parity invariance of  T. To 
obtain the constant A, we need more than symmetry; detailed dynamical considerations are 
necessary.

7.13 SU (n)

SU(n) is the group of all n×n unitary matrices U for which detU = +1. We have seen in this 
chapter that the quantum theory of angular momentum is based on the group SU(2). The lat-
ter is also important for the concept of isospin, discussed in Section 11.10. SU(3) plays a very 
significant role in particle physics. Here we outline some of the main properties of SU(n) that 
are relevant for these physical applications.

We start with the fact that any unitary matrix U can be written U eiH= , where H is a Hermitian 
matrix. It is convenient to express H as a linear combination of standard linearly independent 
matrices Fj j= 1

2 λ ; that is,

 H Fj
j

j
j= =α α λ1

2
 (7.172)

Here the α j  are numerical parameters, and we use the repeated index summation convention. 
Because detU = +1,

 tr( )λ j = 0  (7.173)

In general, there are n2 linearly independent n n×  matrices; however, the number of such trace-
less matrices λ j  is n2 1− . One simple (nonunique) prescription for finding the λ j  is to start with 
the n – 1 diagonal matrices; that is,

 

1 0 0

0 1 0

0 0 0

−



































...

1

3

1 0 0 0

0 1 0 0

0 0 -2 0

0 0 0 0

...





...  

Next, we form the n n2 2−( ) /  off-diagonal matrices with 1 in a given off-diagonal position, 1 in 
the transposed position, and zeros elsewhere, and we also form analogous matrices with –i in 
the given off-diagonal position, i in the transposed position, and zeros elsewhere. Altogether 
these matrices satisfy the conditions

 
tr
tr

λ
λ λ δ

j

j k jk

=
=
0

2
 

For n = 2, there are three λ  matrices.
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 λ λ λ1 2 3

0 1

1 0

0

0

1 0

0 1
=







=
−





=
−







i

i
 

Of course, these are just the Pauli spin matrices, and the Fj j= 1
2 λ  satisfy the commutation 

relations

 F F i Fi j ijk k,  = ε  (7.174)

familiar for the spin operators from the theory of angular momentum. Relations (7.174) are 
satisfied not only by 2 2×  matrices (the fundamental representation) but also by matrices of 
dimension 2 1 2 1J J+( ) × +( ), with J = 1, 3/2, 2, … . In the fundamental representation we intro-
duce two types of spinors:

1. Covariant or column spinors:

 ψ
ψ
ψ

=






1

2

 (7.175)

which transform according to the rule

 ′ =ψ ψi i
k

kU  (7.176)

2. Contravariant or row spinors:

 φ φ φ= ( )1 2  (7.177)

which transform as follows:

 φ φk i
i
kU′ = †  (7.178)

A covariant 2-spinor is transformed to a contravariant 2-spinor and vice versa with the aid 
of the completely antisymmetric unit tensors ε εij

ij and . For example, φ ε φi ij
j=  is a covariant 

spinor of the form

 φ
φ
φ

=
−






2

1

 (7.179)

Higher representations of SU(2) are built up systematically from the fundamental representa-
tion by forming tensor products of the basic 2-spinors and then by symmetrizing and antisym-
metrizing. Here we make use of an important theorem, not proved here, that states that once 
a multispinor has been broken into parts with different permutation symmetries, it has been 
decomposed uniquely into irreducible representations of SU(n). For example, in SU(2), con-
sider the tensor product of two covariant spinors ψ η and ; that is,

 ψ η ψ η ψ η ψ η ψ ηi j i j j i i j j i= +( ) + −( )1
2

1
2

 (7.180)
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On the left-hand side of (7.180) there are four distinct quantities because i j,  independently 
take the values 1, 2. On the right-hand side, the first (symmetric) term has three independent 
elements and corresponds to J = 1 in the theory of angular momentum. The second term is 
nonzero only if  i j≠ ; it consists of one component and corresponds to J = 0. Symbolically, 
we write

 2 2 3 1⊗ = +  (7.181)

In the theory of angular momentum, it is unnecessary to employ covariant spinors of the form 
(7.179). However, for isospin, we frequently need to construct multiplets with antiparticles as 
well as particles, and here (7.179) is necessary.

In SU(3), there are eight distinct matrices λi , two of which are diagonal; that is,

 

λ λ λ1 3

0 1 0

1 0 0

0 0 0

0 0

0 0

0 0 0

1 0 0

0 1 0

0 0 0

=














=
−













= −





2

i

i
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=
−













=

λ λ

λ

4 5

6

0 0 1

0 0 0

1 0 0

0 0

0 0 0

0 0

0 0 0

0 0 1

0 1 0

i

i















=
−















=
−















λ

λ

7

0 0 0

0 0

0 0

1
3

1 0 0

0 1 0

0 0 2
8

i

i

 (7.182)

Writing Fj j= 1
2 λ  as before, we obtain the commutation relations for the Fj  matrices by 

explicit computation from (7.182); that is,

 F F if Fi j ij
k

k,  =  (7.183)

where the SU(3) structure constants fij
k  are given in Table 7.2.

It is easy to verify the following relations:

 f fij
k

ji
k= −  (7.184)

and

 f f f f f fij k
m

ki j
m

jk i
m











+ + = 0  (7.185)

These relations and the structure constants are representation independent. For a number of 
applications, it is also useful to define the following operators:
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T F iF T F

U F iF U F F

V F iF V

±

±

±

= ± =

= ± = − +

= = −

1 2 3 3

6 7 3 3 8

4 5 3

1
2

3
2

     

    

1
2

3
23 8F F−

 (7.186)

Nine new operators are defined here, but only eight are independent because T U V3 3 3 0+ + = .

Problems for Chapter 7

7.1. (a) A simultaneous eigenstate of J2 and Jz is denoted by jm . Show that the expectation 
values of Jx and Jy for this state are zero.
(b) Show that if  any operator commutes with two components of an angular-momentum oper-
ator, it must commute with the third component.
(c) Can states of a system be found for which the root-mean-square (rms) deviations 
∆ ∆ ∆J J Jx y z, ,  and  are simultaneously zero?
(d) In units where  = 1 , show that

 ∆ ∆J J Jx y z⋅ ≥
1
2

 (1)

and cyclic permutations.
(e) Show that

 ∆ ∆J J Jx y z( ) + ( ) ≥2 2
 (2)

Table 7.2 Nonzero SU(3) structure constants

i j k fij
k             

   2   3       1
1   4   7      1/2
1  

1

 5   6     1/2
2   4   6      1/2
2   5   7      1/2
3   4 

−

  5      1/2
3   6   7     1/2

4   5   8     
3
2

   7   8  

−

6    
3
2
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(f) For a state jm , show that the inequalities (1) and (2) become equalities if  and only if  
m j m j= − = or .

7.2. (a) In Section 7.6, we discussed magnetic resonance. There we showed by means of the 
rotating coordinate method that if  a particle with spin-½ and gyromagnetic ratio γ µ= g N / is 
initially in the state m = +1 2/  and is exposed for a time t to the magnetic field

 B = −[ ]+B x t y t B z1 0ˆ cos ˆ sin ˆω ω  (1)

then the probability for a transition to the state m = −1 2/  is given by Rabi’s formula; that is,

 P
B

B
B

t
1 2 1 2

1
2

1
2

0
2

2
1

2
0

2

2/ / sin→− =
( )

( ) + −( )
( ) + −( )





γ
γ ω ω

γ ω ω  (2)

where ω γ0 0= B . Derive (2) by solving Schroedinger’s equation H iψ ψ= 

 , where 

H = −( ) γ 2 σ B  and ψ =










a t

b t

( )

( )
 with a b( ) , ( ) .0 1 0 0= =  (Thus Schroedinger’s equation is 

really two coupled first-order differential equations.)
(b) A particle initially in the state J m= =1 0,  and with gyromagnetic ratio γ is exposed to the 
magnetic field described in (1). Using the rotating coordinate method and the rotation matrix 
for J = 1, find the transition probabilities to arrive in the states m = ±1 .

7.3. We know that in coordinate representation, the eigenfunctions of the orbital angular 
momentum operators L2, Lz are the spherical harmonics. What are the eigenfunctions of these 
operators in momentum representation?

7.4. Find the magnetic moment in nuclear magnetons of the following nuclei, assuming that the 
spin-magnetic moments of the proton and neutron are µ µp n= = −2 79 1 91. , . , respectively.
(a) 15N: Here one proton in a p1 2/  state is missing from an otherwise complete shell.
(b) 17O : Here one neutron in a d5/2 state exists outside closed shells.
(c) What would the magnetic moment of the deuteron be for each of the states

 3
1 1 1S P D3 3  

7.5. The nuclear reaction 2 3 4H H He n+ → +  is frequently used as a practical source of fast 
neutrons. Most commonly, one has a beam of deuterons (spin 1) at an energy of about 100 
keV impinging on a solid target containing tritium nuclei (spin ½). The latter are at rest in the 
laboratory frame. At this energy, the relative momentum of the deuteron and triton is so low 
and the range of nuclear forces so short that the orbital angular momentum of relative motion 
is  = 0. Thus, a priori, the total angular momentum of the compound nuclear state could 
be J J= =1/2 or 3/2. In fact, however, the reaction of interest occurs in the J = 3/2 channel. 
Assume this and also that the neutron has spin ½, the alpha particle has spin 0, and parity 
is conserved in this strong interaction. Show that if  the incoming deuterons are polarized in 
the spin state m = +1, then the neutron relative intensity angular distributions are given by the 
formulas
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S
S
+

−

= +
=

( ) cos
( ) sin
θ θ
θ θ

1 3
9

2

2
 

where θ  is the polar angle, and S±  refer to the relative intensities of the ms = ± 1
2  neutron 

waves with respect to the z-axis. Because these angular distributions are distinct, the outgoing 
neutrons are in general polarized.

7.6. In this chapter we mention the Clebsch-Gordan series and its inverse. One of these two 
useful formulas is

 D D j m j m jm j m j m jm Dm m
j

m m
j

j
m1 1

1

2 2

2
1 1 2 2 1 1 2 2’ ’, , , , ’ ’ ’α β γ α β γ( ) ( ) = ∑ ’ ( , , )m

j α β γ  (1)

In the sum on the right-hand side of (1), j runs from j j j j1 2 1 2+ −to| | . The other formula is

 D j m j m jm j m j m jm Dm m
j

m m
m m

m m
j

’
’,
’,

’, , ’ ’ ’ (α β γ( ) = ∑ 1 1 2 2 1 1 2 2

1 1
2 2

1 1

1 α β γ α β γ, , ) ( , , )’Dm m
j

2 2

2  (2)

(a) Starting from the definition of the rotation matrices and the vector coupling coefficients, 
derive these formulas.
(b) Use (1) or (2) to derive the Dm m

J
′
=1  from the Dm m

J
′
=1 2/ .

(c) From (1) and/or (2) derive the addition theorem for spherical harmonics; that is,

 Y Y Ym

m

m
 









0
1 1 2 20

4
2 1

θ π θ φ θ φ, , ,*( ) =
+

( ) ( )
=−
∑  

where θ  is the angle between the rays defined by θ φ θ φ1 1 2, , and 2 .
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8.1 General properties of solutions to Schroedinger’s wave equation

We now consider some general properties of solutions to

 − ∇ + =


2
2

2m
V Eψ ψ ψ  (8.1)

assuming throughout this chapter, unless otherwise noted, that V r r( ) → →∞0 as . The spec-
trum of eigenvalues E in (8.1) may be discrete and/or continuous. A solution ψ  corresponding 
to a discrete eigenvalue E is normalizable; that is,

 ψ τ2
1∫ =d  (8.2)

Thus ψ → 0 more rapidly than r−3 2/  as r →∞, and ψ  is therefore a bound state. A solution cor-
responding to E in the continuous spectrum is not normalizable, and in this case ψ  extends to 
infinity.

A state with E < 0 necessarily belongs to the discrete spectrum because E T V= + , where 
T is the kinetic energy operator, and T > 0. Thus, although V r r( ) → →∞0 as , V E< < 0,  
and therefore, ψ  must be a bound state. Conversely, the existence of a single bound state implies 
that V < 0 in some finite region of space.

The character of important physical problems is quite different for the two cases E < 0 and 
E > 0. For bound states, our usual goal is to solve (8.1) analytically or numerically, subject to 
the boundary condition ψ → →∞0 as r , to find the discrete eigenvalues E < 0 and the corre-
sponding eigenfunctions. These theoretical results are most often compared with experimental 
data obtained by spectroscopic techniques. When E > 0, we are usually interested in collisions 
between two or more particles or scattering of an incident particle (projectile) by a force cen-
ter (target). Here the initial wave function and the initial kinetic energy E > 0 of the projectile 
are specified in advance. Interaction between the projectile and the force center generates an 
outgoing scattered wave, the radial probability current density of which can be measured at a 
detector located a macroscopic distance from the force center. At that large distance, the poten-
tial has fallen to zero; thus we are interested in calculating the asymptotic properties of the 
scattered wave as a function of E and the scattering angle or angles. These calculations yield 
a theoretical scattering cross section that one tries to compare with the results of scattering 
experiments. In many cases, this offers the only practical means to gain useful knowledge about 
the interaction between the projectile and the target.

Wave Mechanics in Three Dimensions:  
Hydrogenic Atoms8
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8.2 Power-law potentials

Consider a potential with the property that as r V kr s→ → − −0,  , where k and s are positive 
constants. Suppose that there is a bound state with wave function centered at r = 0 and with 
spatial extent of approximately r0 . Then ∆p r≈ / 0 and T mr≈ ( )

2
0
2/ 2 , whereas V k rs≈ − / 0 . 

If  s > 2, E T V= +  becomes arbitrarily large and negative for sufficiently small r0. In other 
words, the energy E has no finite lower bound. If  s < 2, the discrete spectrum does possess a 
finite lower bound. The case s = 2 requires special treatment (see Problem 8.3).

Next, consider a potential with the property that as r V kr s→∞ → − −,  . Suppose that we have 
a wave function that is localized in a shell-like region between r0  and r0 + ∆ , where ∆  r0 . (For 
example, this might correspond to a particle with large orbital angular momentum in an attrac-
tive central potential.) Here ∆ ∆ ∆p T m≈ ≈ ( ) /  and /2 22 , whereas V k rs≈ − / 0 . Imagine that 
we increase r0, keeping Δ/r0 fixed. Then, if  s < 2, E must be negative for sufficiently large r0. 
Thus there exist bound states with ψ  having appreciable size in some region arbitrarily far from 
the origin. In other words, there are bound states with arbitrarily small negative E and hence 
an infinite number of bound states reaching a limit point at E = 0. On the contrary, for s > 2, 
there is a last bound state with finite negative E.

8.3 Radial Schroedinger equation for a central potential

We have already seen in Section 6.2 that if  two particles at positions r r1 2,  with masses m1, 
m2 interact through a central potential V r r1 2−( ), the Schroedinger equation reduces to 
two separate wave equations, one describing free-particle motion of  the center of  mass, 
that is,

 R
r r

=
+m m
M

1 1 2 2  

where M m m= +1 2, and another, that is,

 − ∇ ( )+ ( ) ( ) = ∂
∂





2
2

2µ
u t V r u t i

u
t

r r, ,  (8.3)

describing the relative motion of the two particles. Here µ = m m M1 2 /  is the reduced mass, and 
r r r= −1 2 . In (8.3), it is obviously convenient to employ spherical polar coordinates

 
x r
y r
z r

=
=
=

sin cos
sin sin
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θ φ
θ φ
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 (8.4)
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for which the Laplacian is

 ∇ =
∂
∂

∂
∂






+

∂
∂

∂
∂













 +2

2
2

2 2 2

1 1 1
r r

r
r r rsin

sin
sinθ θ

θ
θ θ φ

∂
∂

2

2

     

 (8.5)

From (7.83), we have

 L2
2

2

2

1 1ψ
θ θ

θ
θ θ φ

ψ= −
∂
∂

∂
∂






+

∂
∂









sin

sin
sin

 (8.6)

Thus the time-independent Schroedinger equation for relative motion in the central potential 
V r( ) is

 
∂ ( )

∂
+

∂
∂

− + − ( )  =
2

2 2
2

2

2 1 2
0

ψ θ φ ψ ψ µ ψ
r

r r r r
E V r

, ,
L



 (8.7)

This equation is simplified by separation of variables. We write ψ θ φ= R r Y m( ) ( , )


 and use 
L2 1Y Ym m

 

 = +( )  to obtain the radial Schroedinger equation

 ′′ + ′ + − ( ) + +( )




















=R

r
R E V r

r
R

2 2 1

2
0

2

2

2

µ
µ

  

 (8.8)

where the prime signifies differentiation with respect to r. It is often convenient to make the 
substitution χ( ) ( )r rR r=  in (8.8), which yields

 ′′ + −( ) =χ µ χ2
0

2


E Veff  (8.9)

where

 V V r
reff = ( ) + +( )  

2

2

1

2µ
 (8.10)

The second term on the right-hand side of (8.10) is called the centrifugal potential. If  V r( ) →∞  
more slowly than r−2 as r → 0, R( )0  is finite, and χ( ) .0 0=  Also, for such a potential, the second 
term on the left-hand side of (8.9) is dominated at small r by the centrifugal potential when 
 > 0; that is,

 ′′ ≈
+( )χ χ

  1
2r

 

This implies that for small r, χ → →+a r R a r






1, , where a


 is a coefficient.
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8.4 Virial theorem

The virial theorem relates T  and V  for a bound state ψ  in a central potential V r( ). Let A 
be any observable. Then, because H Eψ ψ= ,

 ψ ψ ψ ψAH HA E E A− = −( ) = 0  (8.11)

We choose A = r p  and write H V r= ( ) +p2 2µ ( ). Then, using the repeated index summation 
convention, we have

 

r
p

p,
2

2
1

2
1

2

µ µ

µ









 = −( )x p p p p p x p

x p

i i k k k k i i

i              = k k i k k i ip p p p x p

i
i T

−( )

= =             




µ
p2 2

 

(8.12)

Also,

 r p ,V r i r
V
r

( )  = −
∂
∂

 (8.13)

Employing (8.12) and (8.13) in (8.11), we obtain

 2 T r
V
r

=
∂
∂

 (8.14)

If  V kr s= − − , we have r V r sV∂ ∂( ) = − , and (8.14) yields

 T
s

V+ =
2

0  (8.15)

This together with E T V= +  gives

 T
s

s
E= −

−2
 (8.16)

and

 V
s

E=
−
2

2
 (8.17)

For the important special case of the Coulomb potential (s = 1), we thus obtain

 T E V E= − = 2  
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8.5 Atomic units: Bound states of a hydrogenic atom  
in spherical coordinates

We next consider the possible states of an electron bound in the Coulomb field of a nucleus 
with atomic number Z and infinite mass. Obviously, this is one of the most important problems 
in wave mechanics. Here and in all of atomic and molecular physics, atomic units are far more 
convenient than cgs, Heaviside-Lorentz, or SI units. In atomic units,

One unit of mass = electron mass = •	 me = 9.108 ×10–28 g.
One unit of length = Bohr radius = •	 a m ee0

2 2 95 2917 10= = × −
 .  cm, where e is in cgs units.

One unit of velocity = •	 αc e= = ×2 82 1877 10 .  cm/s , where c = velocity of light in vacuum 
= 2.9979 × 1010 cm/s.

Thus

One unit of time = •	 a c0
172 4189 10α = × −.  s.

Because m a ce = = =0 1 1 and α , we have

One unit of electric charge = •	 e = × −4 8029 10 10.  esu.
One unit of action = •	 = 1.0544 × 10–27 erg ⋅ s.
One unit of energy = •	 e a2

0 27 2/  eV  2 R .H= =.
One unit of electric field = •	 e a/  V/cm.0

2 95 142 10= ×.

We note in passing that in relativistic quantum mechanics it is convenient to choose  
“natural” units for which m ce = = = 1. The unit of energy in this system is m ce

2 0 511= .  MeV. 
Furthermore, within the natural unit system it is convenient to employ Heaviside-Lorentz units 
(hlu) for electromagnetic quantities and, in particular, for electric charge. Here e ehlu cgs= 4π , 
and because α π= = −e chlu

2 14 137 036 .  is dimensionless, we have

One unit of electric charge in natural units = •	 e = 4πα .

This unit system is discussed in detail in Section 15.7.
In spherical polar coordinates and atomic units, the radial Schroedinger equation for an 

electron bound in the potential V Z r= − /  is

 ′′ + ′ + + −
+( )







 =R

r
R E

Z
r r

R
2

2
2 1

0
2

 

 (8.18)

with E < 0. In the limit of very large r, (8.18) reduces to

 ′′ + =R ER2 0  

which has the solutions

 R r= ±exp( )ε  (8.19)

where ε = − >( ) ./2 01 2E  For bound states, we must choose the minus sign in (8.19); thus we try 
solutions to (8.18) of the form
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 R r f r r( ) = ( ) −( )exp ε  (8.20)

where we require f(r) to vary slowly for large r. Substitution of (8.20) in (8.18) yields

 ′′ + −





′ +
−




−

+( )







 =f

r
f

Z
r r

f2
1

2
1

0
2

ε ε  

 (8.21)

At very small r, we know that f is proportional to r; thus we substitute the power series

 f r a r=
=

∞

∑ ν
ν

ν 0

 (8.22)

in (8.21). This yields

 a r Z rν
ν ν

ν
ν ν ε ν    

 +( ) + +( ) − +  − + +( ) − { }+ − + −

=

1 1 2 12 1

0

( )
∞

∑ = 0  (8.23)

We set the coefficient of each power ν  of  r equal to zero for ν > 0. This yields the recursion 
relation

 
a

a

Zν

ν

ε ν
ν ν−

=
+( ) −

+( ) + +( ) − +( )1

2
1 1



   

 (8.24)

Either the series on the right-hand side of (8.22) terminates at a largest value of ν, or it does 
not. If  it does not, (8.24) yields

 lim
ν ν ν

ε
ν→∞ −=

+ +
a a

2
1 1



 

and thus

 aν

νε
ν

=
( )
+ +( )

+ +

const




2

1

1

!
 

This would result in f r= const • exp( )2ε ; hence R r→ const • exp( )ε  for large r, which is imper-
missible. Hence the series on the right-hand side of (8.22) must terminate with νmax = − −n  1,  
where n, the principal quantum number, is a positive integer. This requires that for given n, 
max = −n 1. It also requires that ε = Z n/ , which implies

 E
Z
nn = −

2

22
 (8.25)

This is the well-known Balmer formula (in atomic units) for the bound-state energies of  an 
electron in the Coulomb potential –Z/r. Because for given n the quantum number  can take 
the values 0, 1, 2, … , n – 1, (8.25) implies that for given n the states with these values of   
are all degenerate. This phenomenon, sometimes called accidental degeneracy, is not at all 
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accidental but is a manifestation of  an interesting symmetry that is special for the Coulomb 
potential and the three-dimensional harmonic oscillator (see Section 8.7). It is also related 
to the fact that Schroedinger’s time-independent wave equation for the Coulomb potential 
can be separated not only in spherical polar coordinates but also in parabolic coordinates 
(see Section 8.6).

To find the bound-state radial eigenfunctions, we return to (8.24) and make the substitution 
Z n= ε to obtain

 
a

a
nν

ν
ε ν

ν ν−

= −
− −
+ +( )1

2
2 1




 (8.26)

Defining ρ ε= =2 2r Zr n/ , we employ (8.26) and (8.22) in (8.20) to arrive after straightforward 
manipulations at

 R c e F nρ ε ρ ρρ( ) = × ( ) − − −( ) + −2 1 2 2
3 2 2/ / , ,

   (8.27)

where c is a normalization constant, and

 F a b x
a
b

x
a a

b b
x, ,

! !
( ) = + +

+( )
+( ) +1

1

1

2 1
2
  (8.28)

is the confluent hypergeometric function. It can be shown that the following formula is equiv-
alent to (8.27):

 R c
n

n e Ln= −
( )
+( ) +( ) − −( ) ( )−

+
+

2
2 1 1

3 2

2
2 2 1

ε
ρ ρρ

/

/

!
! !



 





  (8.29)

where Ln+
+


2 1( )ρ  is an associated Laguerre polynomial defined by

 L
d

d
Lλ

µ
µ

µ λρ
=  (8.30)

where

 L e
d

d
eλ

ρ
λ

λ
λ ρ

ρ
ρ= ( )−  (8.31)

is a Laguerre polynomial. It also can be shown by straightforward integration that the normal-
ization coefficient in (8.27) and (8.29) is

 c
n

n n
=

+
+

− −
1

2 1 1 2( )!
( )!

( )!





 (8.32)
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In atomic units, the first few bound-state radial functions are as follows:
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R Z
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/ 2
27
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5 2
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5 2
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=

= −


−

−
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/
/
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=

−

−

e

R Z r e

Zr

Zr

/

/ /
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32
7 2 2 34

81 30

 (8.33)

The mean values of various powers of r for hydrogenic wave functions

 r
r R r dr

R r dr
k

k
n

n

=

∞

∞

∫
∫





2 2

0

2 2

0

 (8.34)

are useful quantities in the analysis of many physical problems. These can be evaluated by 
explicit use of (8.27) or (8.29) in straightforward calculations. One finds

 r
Z

n= − +( ) 
1

2
3 12

   (8.35)

 r
n
Z

n2
2

2
2

2
5 1 3 1= + − +( )    (8.36)

 r
Z
n

− =1
2

 (8.37)

 r
Z

n
− =

+( )
2

2

3 1 2 /
 (8.38)

 r
Z

n
− =

+( )( )
3

3

3 1  /2 +1
 (8.39)

The probability density at the origin for  = 0 (s) states is also a useful quantity; that is,

 ψ
π

0
0

2 3

3
( ) =

n

Z
n

 (8.40)

The analysis we have outlined in this section was first carried out by Erwin Schroedinger in 
1926. Since then, several algebraic methods have been developed for solving the bound-state 

 

 

 

 

 

 

 

 

 

 



8.6 Hydrogenic bound states in parabolic coordinates195

Coulomb problem, but they do not appear to be simpler, more transparent, or more useful 
than Schroedinger’s original method.

8.6 Hydrogenic bound states in parabolic coordinates

We have already noted that Schroedinger’s equation with V Z r= − /  is separable in parabolic 
as well as spherical polar coordinates and that this fact is related to the accidental degeneracy. 
Parabolic coordinates are defined as

 

ξ θ
η θ
φ φ

= + = +( )
= − = +( )
=

r z r

r z r

1

1

cos

cos  (8.41)

The surfaces of constant ξ η( ) are confocal paraboloids of revolution with the origin as focus 
and opening in the direction of negative (positive) z, respectively. In parabolic coordinates, 
Schroedinger’s equation in atomic units with V Z r= − /  is

 
1 1

4 2

2

2ξ η ξ
ξ ψ

ξ η
η ψ

η ξη
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φ ξ η+
∂
∂

∂
∂






+

∂
∂

∂
∂















 +

∂
∂

+ +
+

E Z







 =ψ 0  (8.42)

We try a solution to (8.42) of the form

 ψ ξ η φ= ( ) ( ) ≥±u u e mim
1 2 0  (8.43)

Multiplying both sides of (8.42) by ( )ξ η+  and making the separation of variables, we obtain 
the following ordinary differential equations:

 
d
d

du
d

E Z
m

u
ξ

ξ
ξ

ξ
ξ

1
1

2

1
1
2 4

0





+ + −






=  (8.44)

and

 
d

d
du
d

E Z
m

u
η

η
η

η
η

2
2

2

2
1
2 4

0





+ + −






=  (8.45)

where Z Z Z1 2+ = . By means of the substitutions x = εξ and

 u e fm
1

2 2
1= ( )−εξ ξ ξ/ /  (8.46)
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with ε = −2E  as before, we arrive at

 x
d f
dx

m x
df
dx

Z m
f

2
1

2

1 1
11

1
2

0+ + −( ) + −
+





=
ε

 (8.47)

This equation has the solution

 f L xn m
m

1 1
= ( )+  (8.48)

where

 n
Z

m1
1 1

2
1= − +( )

ε
 (8.49)

must be a nonnegative integer so that f1 remains finite at large x. Similar results are found for 
u2. Then, defining

 n n n m= + + +1 2 1  (8.50)

and solving (8.49) for ε , we once again obtain the Balmer formula

 E
Z
n

= −
2

22
 (8.51)

The normalized eigenfunctions in parabolic coordinates for m ≥ 0 are

 ψ
π

φ

n n m

ime

n

n n

n m n m
1 2

1
1 2

2
1 2

1

3 2

2

3, ,

/ /

/

! !

! !
=

( ) ( )
+( )  +( ) 

±

/
/ ( )/ /( )2

3 2 2 2
1 2

ε ξη εξ εηε ξ ηm m
n m
m

n m
me L L+ − +

+ +( ) ( )  (8.52)

In general, these functions are asymmetric with respect to the plane z = 0; for n n1 2>  ( )n n1 2< ,  
most of the electron charge distribution is in the half-space z > 0 ( )z < 0 , respectively.

Any single eigenstate in spherical polar coordinates with given n m, ,  can be expressed as a 
linear combination of eigenstates in parabolic coordinates, where the latter satisfy the condi-
tion n n n m1 2 1+ = − − . Conversely, a single eigenfunction in parabolic coordinates with given 
n n m1 2 0, , ≥  and sign of the exponent ±imφ can be expressed as a linear combination of eigen-
functions in spherical coordinates. One can verify that just as in the case of spherical polar coor-
dinates, there are n2 distinct degenerate eigenfunctions in parabolic coordinates for a given n.

8.7 Bound states of hydrogenic atoms and O(4) symmetry

We have mentioned that the accidental degeneracy associated with the Coulomb Hamiltonian 
is a manifestation of an underlying symmetry. It is useful to start our discussion of that sym-
metry by considering the motion of a unit point mass in the potential V Z r= − /  according to 
nonrelativistic classical mechanics. We know that every bound orbit is an ellipse with the force 
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center at one focus. Let the semimajor axis and the eccentricity of the ellipse be a and e, respec-
tively (Figure 8.1).

It is easy to show that the total energy for such an orbit is

 E
Z
a

= −
2

 (8.53)

independent of the eccentricity and that the orbital angular momentum with respect to the 
force center is a constant vector L perpendicular to the orbit plane of magnitude

 L = ( ) −( )Za e
1 2 2 1 2

1
/ /

 (8.54)

There is an additional conserved vector M0, named the Runge-Lenz vector after two twentieth-
century physicists, although it has been known since the eighteenth century and was discussed 
by Laplace and Hamilton, among others. It is defined as

 M L
r

0 = × −p Z
r

 (8.55)

By making use of L r p= ×  and the equation of motion

 
d
dt

Z
r

p
= = −r

r
3

 

it is easy to show that d dtM0 0/ = . It is also easy to see that M L0 0 = ; hence M0 lies in the orbit 
plane (in fact, along the major axis). Its magnitude is found most easily by considering the case 
where r is maximum (apogee); thus, where r a e= +( )1  and r•p = 0. We find

 M0 = Ze  (8.56)

2ae

F                                                F'

r

b

a

 Figure 8.1  Bound orbit of a unit point mass in the potential V Z r= − /  according to nonrelativistic classical mechanics. The orbit is an ellipse with the 
force center at focus F. If the semimajor and semiminor axes are labeled a and b, respectively, the eccentricity is e a b a= −2 2 / , the total 
energy is E Z a= − /2 , and the orbital angular momentum is a constant vector perpendicular to the plane of the orbit with magnitude 
L = −( ) ( )/ /Za e1 2 2 1 21 .
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and it is convenient to rescale the Runge-Lenz vector by defining

 M M M= = −
a
Z E0 0

1
2

 (8.57)

Then

 L M L M+( ) = + = −( ) + =2 2 2 2 21Za e Zae Za  

which implies that

 E
Z
a

Z Z
= − = −

+( )
= −

+( )2 2 2

2

2

2

2 2L M L M
 (8.58)

This classical expression resembles the Balmer formula [(8.25) and (8.51)] for the bound-state 
energies of a hydrogenic atom and suggests that we try to identify n2 in the Balmer formula with 
an eigenvalue of a quantum-mechanical operator defined in place of L2 + M2.

To this end, we return to (8.55) and try to construct a Hermitian quantum-mechanical 
operator analogous to M0. Noting that p L L p p L×( ) = − × ≠ ×†

, we define the Hermitian 
operator as

 M L L0
1
2

= × − ×( ) −p p
r

Z
r

 (8.59)

Then, making use of the commutation relations x L i x p L i pi j ijk k i j ijk k, ,  =   =ε ε and  [see 

(7.73) and (7.74)] and H Z r= −p2 2/ / , we obtain the following results after straightforward 
algebra:

 M0 0,H[ ] =  (8.60)

 M L0 0 =  (8.61)

and

 M M0 0
2 22 1 = +( ) +H ZL  (8.62)

Once again, we rescale, this time by means of the definition

 M M= −
1

2 0E
 (8.63)

The following commutation rules may then be verified by direct calculation:

 M M i Li j ijk k,  = ε  (8.64)
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and

 M L i Mi j ijk k,  = ε  (8.65)

which hold in addition to the usual relations

 L L i Li j ijk k,  = ε  (8.66)

These relations suggest that we introduce a fourth fictitious Euclidean coordinate x4 as well as 
the corresponding fictitious momentum p4 such that

 x p i i ji j ij, , ,...,  = =δ 1 4  (8.67)

and

 

L x p x p
L x p x p
L x p x p
M x p x p
M x p x p

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

1 1 4 4

2 2 4 4

= −
= −
= −
= −
= − 2

3 3 4 4 3M x p x p= −

 (8.68)

It is also convenient to define the operators I L M K L M= +( ) = −( )/  and /2 2 . These satisfy 
the relations

 I I L M L M i L M i Ii j i i j j ijk k k ijk k, ,  = + +  = +( ) =1
4

1
2

ε ε  (8.69)

and, similarly,

 K K i Ki j ijk k,  = ε  (8.70)

Because L and M each commute with H, I and K do also; furthermore, I Ki j,  = 0 for all i 

and j. Thus the eigenstates of H are simultaneously eigenstates of I2 and of K2 with eigenvalues 
I I K K+( ) +( )1 1 and , respectively, where I K, ,= 0  1/2, 1, 3/2, ...  . In fact, because M L = 0 , 
we have I K2 2= ; hence, recalling (8.62) and (8.63),

 
I K I L M

L

2 2 2 2 2

2

2
1
2
1
2

1

+ = = +( )

= −




−                      

H
E

H
E

Z
E

−








2

2

 (8.71)

Therefore,

 E
Z

I
= −

+( )
2

2
2 2 1

 (8.72)
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Because the possible values of I are 0, ½, 1, 3/2, … , we may define the principal quantum 
number as n I= +2 1, which is consistent with the usual definition n = +max 1. Thus we see that 
(8.72) is the Balmer formula.

The foregoing analysis was first carried out by W. Pauli in 1926 at about the same time that 
Schroedinger solved the bound-state problem by the conventional analytical method. Pauli’s 
analysis reveals the O(4) symmetry of the Coulomb Hamiltonian, which is so-named because 
L2 + M2 is a generalization to four-dimensional Euclidean space from L2 in three dimensions.

Coulomb wave functions for E > 0 are discussed in Chapter 18 in connection with 
scattering.

Problems for Chapter 8

8.1. The radial equation for the H atom can be transformed into the radial equation of a two-
dimensional isotropic harmonic oscillator. To do this, we replace r by λρ2 /2, where λ  is a con-
stant to be determined. Also we write R r Fn, ( ) ( )



= ρ ρ/ .
(a) Show that F ( )ρ  obeys the radial equation of a two-dimensional harmonic oscillator of 
frequency

 ω λ= −2 2 E
m

 

with angular momentum 2 1 +  and energy 2 2e λ , where E is the energy of the hydrogen level.
(b) Deduce the Balmer formula for hydrogen energies, and deduce their degeneracies.
(c) Construct the normalized ground-state wave function of hydrogen by this procedure.

8.2. The deuteron is a bound state of a proton and a neutron and is the simplest compound 
nucleus. We construct a useful elementary theoretical model of the deuteron by assuming 
that the short-range attractive force between proton and neutron is derived from the central 
potential

 V r V r a( ) = − −( )0 exp /  (1)

where V0 and a are positive constants.
(a) Consider the radial Schroedinger equation for  = 0 and this potential. Change variables 
from r z r a to = −( )exp / ,2  and show that Bessel’s equation results. From an analysis of the 
boundary conditions on ψ  as a function of z, derive the following requirement for the existence 
of a bound state:

 V a
mp

0
2

21 45
≥

. 

 (2)

where mp is the proton mass.
(b) Because at low energies the attractive force between two nucleons arises from pion exchange, 
it is reasonable to choose for a the Compton wavelength of the pion a = × −1 4 10 13.  cm.  
In this case, what does (2) yield for V0 in mega-electron-volts (MeV)?
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(c) In the reasonable first approximation that the low-energy neutron-proton attractive force is 
central, experiment shows that the magnitude of this force is strongest when the spins of the 
nucleons are parallel. Indeed, the only bound state of the deuteron is 3S1, where the neutron 
and proton spins couple together to give a total spin S = 1, whereas the orbital angular momen-
tum of relative motion is L = 0. When the spins are antiparallel, the force is weaker, and it turns 
out that the 1S0 state is not bound.

However the central force approximation is not exactly valid. There is a small contribution 
to the potential arising from a noncentral “tensor” component. The primary experimental evi-
dence for this is the deuteron’s nonzero electric quadrupole moment, which reveals that there 
must be a small admixture of the state 3D1 in the nuclear wave function. The value of the quad-
rupole moment implies that the probabilities of finding the deuteron in the 3D1 (3S1) state are 
w w= − =0 04 1 0 96. , . , respectively.

Given these facts, employ an argument involving a generalization of the Lande g-factor to 
show that the magnetic moment of the deuteron is

 µ µ µ µ µ µD p n p n Nw= + − + −





3
2

1
2

 

where µN  is the nuclear Bohr magneton, and

 
µ µ
µ µ

p N

n N

=
= −

2 79274
1 91314
.

.
 

are the proton, neutron spin magnetic moments, respectively. Check your answer against the 
experimental value of the deuteron magnetic moment

 µ µD = 0 857438. N  

Note that in first approximation, a nuclear magnetic moment is the vector sum of the spin 
magnetic moments of the individual protons and neutrons and the magnetic moments arising 
from the orbital motion of the protons. There is no contribution from orbital motion of the 
neutrons because a neutron has no net charge.

8.3. A particle of mass m moves in the attractive potential

 V r
q
r

( ) = −
2

 

where q is a real positive constant, and we employ units where m = = 1. Analyze the solutions 
to the Schroedinger equation and show that when q ≤ + +( )1

8
1

2 1  , there are no bound states 
and when q > + +( )1

8
1

2 1  , there is an infinite number of bound states with no finite lower 
bound to the energy.

8.4. A particle of mass m is bound in the potential V r m r( ) = 1
2

2 2ω  (isotropic three- dimensional 
harmonic oscillator). Show that the Schroedinger equation can be separated not only in 
Cartesian coordinates but also in cylindrical coordinates and in spherical polar coordinates. 
Find the degeneracy of each energy level. Find the eigenfunctions in spherical coordinates cor-
responding to the energy level that has a degeneracy of 10.
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8.5. Consider bound states in a spherically symmetric potential V r( ) such that V r( ) →∞  more 
slowly than 1/r2 as r → 0. We know that the one-dimensional radial Schroedinger equation is

 ′′ + =χ χf r( ) 0  (1)

where

 f r E V r
r

( ) = − ( ) − +( )









2 1

22

2

2

µ
µ

  

 

and as was shown in Section 8.3,

 lim χ =
→

+a r
r





0

1  

where a


 is a constant.
(a) Multiply (1) by r rq ′ ( )χ , where q ≥ −2, and integrate both sides from ε  to ∞, where ε  is a 
positive infinitesimal that we shall momentarily set equal to zero. Making use of the fact that 
χ χ and ′ go to zero sufficiently rapidly at ∞ for bound states, and employing integration by 
parts several times, show that when ε → 0, the following result is obtained:

 2 1 2
1
2

1 2
2 2

2
1 3



 

+( ) = − + ′ + −( ) −( )−
− −a qr f r f q q q rq

q q qδ ,  (2)

(b) Use (2) with q = = 0 to obtain a relation between ψ ( )0
2
 and ∂ ∂V r/ .

(c) Use (2) with q = 1 to derive the virial theorem.
(d) For the case of the Coulomb potential, show that (2) can be used to obtain useful formulas 
for r p , where p is any positive integer, and to obtain useful recursive formulas for r p  from 
r−2  when p = − − >3 4 0, , ... and  . [Note that equation (2) is not sufficient by itself  to yield 
r−2 .]

8.6. (a) Consider a bound-state wave function ψ( )r  with corresponding probability density 
ρ ψ ψ= *  and probability current density

 j = ∇ − ∇( )

2mi
ψ ψ ψ ψ* *  

Assume that ρ  satisfies the condition

 ρr n× =∫ ˆ ds 0  (1)

where the quantity on the left-hand side of (1) is a surface integral taken over a surface at ∞,  
and n̂ is a unit normal vector to the surface. Show that the expectation value of the orbital 
angular-momentum operator L is

 L r j= ×∫m dτ  (2)
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where the integral on the right-hand side of (2) is a volume integral taken over all space.
(b) Now, considering the description of a particle with spin-½ in nonrelativistic quantum 
mechnics, let us assume that ψ φ χ= ( )r , where φ  is a bounded spatial wave function and χ  is 
a two-component spinor. We write the expectation value of the spin operator as

 

S = ∫


2
ψ ψ τ* σ d

 

(3)

Show that

 

ψ ψ ψ ψ ψ ψ ψ ψ* * * *σ σ σ σ= × ∇× ( )  − ∇[ ]+ ∂
∂

( ) 
=
∑1

2
1
2

1
2 1

3

r r
x

x
ii

i

 

(4)

and show that the last two terms on the right-hand side of (4) make no contribution to the 
integral in (3). Thus, in analogy to (2), (3) can be written as

 S r j= ×∫m dS τ  (5)

Here jS , the spin current density, is jS S= ∇×V , where

 

VS m
=


4
ψ ψ* σ

 

(6)

(c) Calculate the spin current density in atomic units for the 22s1/2, ms = 1/2 state of atomic 
hydrogen.
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9.1 Variational method

Very few Hamiltonians in quantum mechanics are exactly solvable, and therefore, approxima-
tions must be used to treat most problems of physical interest. We start with the variational 
method. Consider a Hamiltonian H with a spectrum of discrete energy eigenvalues En arranged 
in ascending order E E E0 1 2< < < and with corresponding eigenfunctions un, where the lat-
ter form a complete orthonormal set; that is,

 u un m nm= δ  

Although the energies may be known from experiment, the eigenfunctions are usually not 
known because the Hamiltonian is too complicated to solve exactly. Let us approximate the 
ground-state wave function by a trial function ψ λ( ) that depends on one or more continuous 
real parameters λ. Because the un  form a complete set, we have

 

ψ ψ ψ ψ

ψ

ψ ψ ψ

H u u H u u

E u

E u E

n n m
n m

m

n
n

n

n
n

=

≥ =

∑

∑

∑

,

             =
2

0

2

0

 

Thus, for any trial function ψ  whatsoever, we have

 
ψ ψ

ψ ψ
H

E≥ 0  (9.1)

and equality is achieved only when ψ = u0. Suppose that we choose a definite functional form 
for the wave function ψ  in terms of the parameter(s) λ. Then we vary λ and seek a minimum 
on the left-hand side of (9.1). When that minimum is found, we have obtained the best trial 
function of that particular functional form.

To give a trivial example, we consider the ground state of a hydrogenic ion of atomic number 
Z. Of course, in this particular example, we know the energy E Zs1

2= − /2 (in atomic units), and 
we also know the wave function

 u
Z

es
Zr

1

3 1 2

= 





−

π

/
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However, suppose that we did not know the wave function but were only able to guess that it is 
exponential in form; that is,

 ψ λ
π

λ= 





−
3 1 2/

e r  

where we have included the first factor so that ψ  is normalized to unity. We now calculate 
ψ ψH .

 ψ ψ ψ ψ τ ψ ψ τH d Z
r

d= − ∇ −∫ ∫
1
2

12* *  

The integrals are easily evaluated, with the following result:

 ψ ψ λ λH Z= −
2

2
 (9.2)

Taking the derivative of this expression and setting it equal to zero, we find that ψ ψH  
reaches the minimum –Z2/2 when λ = Z .

The variational method has many important applications, some of which are discussed in 
subsequent chapters and their problems. However, the method has a fundamental limitation: 
even a rather poor trial function can yield a close upper bound on the experimentally deter-
mined ground-state energy. Thus achievement of the latter does not necessarily indicate that we 
have a good trial-wave function. The reason is as follows: suppose that the discrepancy between 
ψ  and u0 is of first order in a small quantity δ ; that is,

 ψ δ= + ⋅ ′u u0  

where u u u u0 0 1= ′ ′ =  and ′ =u u0 0. Then

 
ψ ψ δ δ

δ δ δ

H u u H u u

u H u u H u u H u u H

= + ⋅ ′ + ⋅ ′

= + ′ + ′ + ′
0 0

0 0 0 0
2

            * ′u
 

In this expression, the terms in δ δ*  and  vanish because of the orthogonality of u′ and u0; 
hence, although the error in ψ  is of first order in δ , the error in ψ ψH  is only of second 
order in δ .

9.2 Semiclassical (WKB) approximation

We next consider the Wentzel-Kramers-Brillouin (WKB) approximation, which was actually 
discussed in a classical context, long before quantum mechanics, by Liouville and Rayleigh. 
The method is useful for finding approximate solutions to the time-independent Schroedinger 
equation in situations where the potential varies slowly over distances comparable with the 
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wavelength. To introduce the WKB method and show how it is applied, we need only one spa-
tial dimension. Thus we start with the Schroedinger equation

 
d
dx

k x
2

2
2 0

ψ ψ+ ( ) =  (9.3)

where k x m E V x2 22( ) = ( ) − ( )  , and we try a solution of the form

 ψ x eif x( ) = ( )  (9.4)

Substitution of (9.4) in (9.3) yields

 if f k x′′ − ′ + ( ) =2 2 0  (9.5)

If  k2 is a constant, (9.5) has the solution

 ′ = ±f k  (9.6)

with f ″ = 0; hence ψ = ±e ikx. If  k x( ) varies very slowly, we expect that the first term on the left-
hand side of (9.5) should be much smaller in magnitude than the other two terms, even if  it 
is no longer zero. Hence (9.6) still should be approximately correct; therefore, ′′ ≈ ± ′f k . Thus, 
from (9.5), a better approximation for f′2 is

 
′ = ± ′

= ± ′





f k ik

k i
k
k

2 2

2
2

1     
 (9.7)

This yields

 ′ = ± ± ′ ≈ ± + ′
f k i

k
k

k i
k
k

1
22

 (9.8)

Integrating both sides of (9.8), we obtain

 if i k dx k≈ ± −∫
1
2

ln( )  (9.9)

Hence

 ψ ≈
− ( ) 

± − ( ) 




∫

A

m E V x

i
m E V x dx

2
21 4/ exp



 (9.10)

where A is a constant. The analysis that yielded (9.9) can be iterated further, resulting in cor-
rection terms of higher order. However, for most applications of physical interest, such terms 
are of negligible importance.

Result (9.10) is justified only if  the second term on the right-hand side of (9.9) is much smaller 
in magnitude than the first. However, this is not the case in the immediate neighborhood of 
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the classical turning point, where k x( ) ,= 0  and thus the WKB approximation fails at that 
location.

Equation (9.10) really describes two independent solutions. An actual wave function in the 
WKB approximation is an appropriate linear combination of the two solutions with coef-
ficients determined by boundary conditions. For example, consider how the WKB approxi-
mation (9.10) is applied to a situation where the classically allowed region E V x> ( ) lies to the 
right of x = 0 in Figure 9.1.

If  we assume that E V x< ( ) for all x < 0, ψ → 0 as x1  increases; hence, recalling Section 6.3, 
ψ  must be nondegenerate and real apart from an arbitrary phase factor. Thus, for x0 0> , (9.10) 
implies

 ψ α= +








∫

A
p

p dx
x

1 2
0

1 0

/
sin



 (9.11)

where p x m E V x( ) = − ( ) 2 , and α  is a real constant. To determine α , we compare (9.11) 

with the asymptotic form of the exact solution for a linearized potential in the neighborhood 
of x = 0. By this we mean that a sufficiently small value of x0 is chosen so that V(x0) may 
be replaced by a linear function with the slope and intercept of V(x) at x = 0, but x0 is large 
enough so that the solution for the linear potential reaches its asymptotic form [recall equation 
(6.33)]. Clearly, these two conditions can be satisfied simultaneously only if  V(x) varies suffi-
ciently slowly.
Thus we assume that V(x) is replaced by V x E F x0 0( ) = − , where F V x x0 0= −∂ ∂ =/ . Then

 ′′ + − ( )  = ′′ + =ψ ψ ψ ψ2 2
0

2 0 2 0
m

E V x
m

F x
 

 

The substitution z mF x x= ( ) ≡2 0
2 1 3


/ β  yields the Airy differential equation

 
d
dz

z
2

2
0

ψ ψ+ =  (9.12)

x1              0                 x0

V(x)

E

 Figure 9.1 Sketch of a one dimensional potential V(x)with energy E such that the classically allowed region is x ≥ 0.
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The asymptotic solution to (9.12) is given by (6.33); that is,

 ψ π
= +





const
z

z
1 4

3 22
3 4/

/sin  (9.13)

and it is easy to verify that 2
3

3 2
00

1 2z m E V x dx
x

/ = ( ) − ( ) ∫ . Comparing (9.13) with (9.11), 

we thus obtain

 ψ π
x

p x
p dx

x

0

0 0

1
4

0

( ) =
( )

+








∫

const
sin



 (9.14)

If  the classically allowed region lies to the left of x = 0 as in Figure 9.2, similar 
considerations yield

 ψ π
x

A

p x
p dx

x

1

1

01
4

1

( ) =
( )

+








∫sin



 (9.15)

Furthermore, from the asymptotic properties (6.34) of the Airy function in the classically for-
bidden region, we obtain

 ψ x
A

p x
p dx

x

2

2 02

1 2

( ) =
( )

−








∫exp



 (9.16)

where the constant A is the same in (9.15) and (9.16).
We now show that the WKB approximation yields the Bohr-Sommerfeld quantization con-

dition for a potential well with classical turning points x x1 2,  and a classically allowed region 
x x x1 2< < , as shown in Figure 9.3.

From (9.14) and (9.15) we have

 ψ π π
x

A

p x
p dx

A

p x
p dx

x

x

x

x

( ) =
( )

+








 =

′

( )
+








∫ ∫sin sin
1

4
1

4
1

2

 

  (9.17)

V(x)

E
x1                                             x2

 Figure 9.2 Sketch of a one dimensional potential V(x) with energy E such that the classically allowed region is x ≤ 0.
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Because p dx p dx p dx
x

x

x

x

x

x2

11

2∫ ∫∫= − , (9.17) yields the conditions A Am= − ′( )1  and

 p dx m
x

x

= +



∫

1
2

1

2

π  (9.18)

where m is a nonnegative integer. Result (9.18), the quantization condition from the old Bohr-
Sommerfeld model, is reasonably accurate if  V varies slowly compared with the wave function 
of interest.

The WKB method provides a useful (if  rather complicated) approximate formula for hydro-
genic radial wave functions when the principal quantum number is large: n1 and also n . 
Here we start with the radial equation in atomic units; that is,

 
d
dr

Z
n

Z
r r

2

2

2

2 2

2 1
0

χ χ+ − + −
+( )







 =

 

 (9.19)

The quantity in brackets, k r2 ( ), is positive between the classical turning points r1 2, ; that is,

 r
n
Z

n
Z

n1 2

2
2 1, = ± − +( )   (9.20)

In the region r r r1 2< < , the normalized WKB approximation for χ is

 

χ
π

≈ − −
+( )











− −
+( )

−

Z
n

Z
r

Z
n

l

r
Z
x

Z
n

l2 2 1 2
3

2

2

2

2

1 4
2

2

2
/2 1/2

/

sin
x

dx

Z
n

Z
r

Z
n

l

r

r

r

2

3

2

2

2

2

1

4

2 2

1

+














− −
+( )











∫
−

π

π
 = 

1/2
/4

2 2

2

2
2

2 2
2cos arcsinZr

Z r
n

l n
Zr n

n n l
− − +( ) +

−

− +( )
















1/2

1/2





− +( ) − +( )
− +( )















      

1/2
1/2

1/2
l

n
Zr

Zr l

n l
arcsin

2

2 2
+ − −( )






n  1

2
π

 (9.21)

x1                                x                      x2

E

V(x)

 Figure 9.3 One dimensional potential well V(x) with energy E such that classically allowed region is x1 ≤ x ≤ x2.
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Another well-known example of the WKB method concerns penetration of a potential bar-
rier of arbitrary shape (Figure 9.4). Here the only restriction is that the barrier must be suffi-
ciently high and/or wide that the probability of penetration is small.

Let two waves u and v corresponding to the same energy E be incident from the left and right, 
respectively. Because each is reflected almost entirely by the barrier, we have a nearly perfect 
standing wave in region I (x < x1), and the same is true in region II (x > x2), where we write

 v
i p

i
p dx

i i
p dx

i

x

x x

x

x x

II = +








 − − −






> >

∫ ∫
1

2 4 4
2

2

2

2

exp exp
 

π π















 (9.22)

Now a small fraction of u is transmitted through the barrier, resulting in the following compo-
nent traveling to the right in region II:

 u
C

p

i
p dx

i

x

x x

II = −










>

∫exp


π
4

2

2

 (9.23)

Inclusion of the phase factor exp( / )−iπ 4  costs no loss of generality because we have not yet 
restricted the complex coefficient C. We know that uv vu′ − ′ = const  and from (9.22) and (9.23) 
that the constant is −iC / . Now we continue the solutions u, v into the region III. From (9.22) 
and the connection between (9.15) and (9.16), we obtain

 v
p

p dx
x x

x

III = −










<
∫

1

2

1

2

2

exp


 (9.24)

Note that the magnitude of this solution decreases as x decreases. Meanwhile, the general form 
for u in region III is

 u
C

p
p dx

x x

x

III =
′ 









<
∫exp

1

2

2



 (9.25)

V(x)

I                              III                              II

E
x1                                       x2

 Figure 9.4 One dimensional potential barrier with classically allowed regions I, II and classically forbidden region III.
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the magnitude of which increases as x decreases. The coefficient C ′ is determined from the 
requirement uv vu iC′ − ′( ) = −

III
/ ; we find that ′ = −C iC . As for u in region I, because it is a 

nearly perfect standing wave, we write

 u
A

p
p dx

x x

x

I = +










<
∫sin

π
4

1

1

 (9.26)

Consequently, from (9.15) and (9.16),

 u
A

p
p dx

x

x x

III = −










>

∫
2

1

1

1

exp


 (9.27)

Comparing (9.25) with (9.27) and making use of 
x

x x

x

x

x x

x

1

1

1

2

2

2>

<∫ ∫ ∫= − , we obtain

 C i
A

p dx
x

x

= −








∫2

1

1

2

exp


 

Hence the transmission coefficient for barrier penetration in the WKB approximation is

 T p dx
x

x

= −








∫exp

2

1

2



 (9.28)

9.3 Static perturbation theory

This is the most important general approximation method for time-independent problems. The 
basic approach was first introduced in the nineteenth century by Rayleigh for problems in 
classical physics and was developed for quantum mechanics by Schroedinger. We start with 
a zeroth-order Hamiltonian H0 for which the eigenvalues En0  and corresponding eigenstates 
n0  are known. The latter are assumed to form a complete orthonormal set. The Hamiltonian 

is then modified by adding a perturbing term λ ′H , where λ  is a small parameter. We wish 
to determine the eigenstates n  and corresponding eigenvalues En of  the new Hamiltonian 
H H H= + ′0 λ . To achieve this goal by successive approximations, we expand E nn  and  in 
powers of λ; that is,

 E E E En n n n= + + +0 1
2

2λ λ   (9.29)

 n n n n= + + +0 1
2

2λ λ   (9.30)
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This yields

 
H H n n n

E E E nn n n

0 0 1
2

2

0 1
2

2

+ ′( ) + + +( ) =
+ + +( )

λ λ λ
λ λ



               0 1
2

2+ + +( )λ λn n 

 (9.31)

Equating terms with equal powers of λ  on both sides of (9.31), we obtain

 H E nn0 0 0 0−( ) =  (9.32)

 H E n E H nn n0 0 1 1 0−( ) = − ′( )  (9.33)

 H E n E H n E nn n n0 0 2 1 1 2 0−( ) = − ′( ) +  (9.34)

In the kth equation of this system, nk , which always appears only on the left-hand side, is 
expressed in terms of the previous orders of approximation n nk k− −1 2, ,..., which always appear 
only on the right-hand side. The left-hand side of the kth equation for k > 0 is not altered if  we 
subtract any multiple of n0  from nk . Hence we can replace nk  by ′ = −n n n n nk k k0 0 , 
which gives ′ =n nk 0 0 for all k > 0. From now on we adopt the ′nk  as our corrections to n0  
and drop the primes. Hence we have n n n n n n0 0 0 1 0 21 0= = = =, . but   To find En1, we 
first consider the case where the n0  are nondegenerate. Here multiplication of both sides of 
(9.33) on the left by n0  immediately yields

 E n H nn1 0 0= ′  (9.35)

On the other hand, suppose that there exist s degenerate eigenvectors

 n n n s
0
1

0
2

0
( ) ( ) ( ), , ...,  

all of which correspond to the eigenvalue En0  of  H0. In this case, the first-order energy shifts 

caused by H′ are the eigenvalues of the s s×  matrix n H ni j
0 0
( ) ( )′ . In many cases, at least some 

of these eigenvalues are distinct; in other words, at least some of the degeneracy is lifted by 
imposition of the perturbation H′ in first order. However, some degeneracy may remain and be 
removed only in second or higher order.

Once again assuming the nondegenerate case for simplicity, we multiply both sides of (9.33) 
on the left by a zero-order eigenstate m0  that is distinct from n0 . Taking advantage of orthog-
onality, we obtain

 m n
m H n

E Em n
0 1

0 0

0 0

=
′

−
 (9.36)

Now, multiplying both sides of (9.36) by m0 , summing over all m n0 0≠ , and using n n0 1 0= ,  
we arrive at
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 n m m n m
m H n

E Em n m n n m
1 0 0 1 0

0 0

0 00 0 0 0

= =
′

−≠ ≠
∑ ∑  (9.37)

which gives the first-order correction to n0 . Next we consider the second-order equation 
(9.34). Taking the scalar product of both sides with n0 , we obtain

 E n H nn2 0 1= ′′ .  (9.38)

Substitution of (9.37) into (9.38) then yields

 E
m H n

E En
n mm n

2

0

2

0 00 0

=
′

−≠
∑  (9.39)

The general methods just described can be extended to third and higher order, but we have 
already obtained the formulae needed for most physical applications.

Problems for Chapter 9

9.1. A one-dimensional potential V(x) satisfies the conditions

 V x x( ) < −∞ < < ∞0  

and

 lim
x

V x
→±∞

( ) = 0  

Use the variational method with a trial function of the form ψ λ= −( )N xexp 2 , where N is a 
normalization factor and λ  is a real parameter, to show that V x( ), no matter how weak, always 
has at least one bound state.

It can be shown that any negative two-dimensional potential that vanishes at infinity also has 
at least one bound state, but the same statement does not hold in three dimensions.

9.2. Consider a spherically symmetric potential V(r) that vanishes at infinity and for 
which there is at least one bound state. Use the variational method to show that the lowest 
bound state has no nodes and is therefore nondegenerate. You may assume that the lowest- 
bound-state wave function is spherically symmetric.

9.3. In Section 8.4 we derived the virial theorem from the equation

 0
1

= = [ ]d
dt i

Hr r



p p,  

 

 

 

 

 

 

 

 

 

 



Time-Independent Approximations214

which holds for any bound state of the Hamiltonian H. An alternative and related derivation 
of the virial theorem proceeds from the following considerations: the functional

 H T V
m

d V r d= + = ∇ +∫ ∫


2
2 3 2 3

2
ψ ψr r( )  

is minimized by choosing ψ r( ) that satisfies Schroedinger’s equation. Under the norm-
 preserving transformation ψ ψr r( ) → ( )a a3 2/ , H H a→ ( ) . However, the extremum property 
mentioned earlier requires that

 
d
da

H a
a

( )
=
=

1
0  

Show that this yields the virial theorem. How is the scale change ψ ψr r( )→ ( )a a3 2/  related to 
the operator rp?

9.4. A particle of unit mass is subject to the one-dimensional potential

 V x x( ) = 4 4  

in units where  = 1. It can be shown that the lowest bound state has energy E0 1 060362= .  and 
the first excited state has energy E1 3 799673= .  to eight significant figures.

Using the variational method, estimate E0 with a trial function of the form

 ψ α
0

2 2

2
= −





N
x

exp  

and estimate E1 with a trial function of the form

 ψ α
1

2 2

2
= ′ −





N x
x

exp  

9.5. This problem concerns a generalization of the usual variational method. It leads to a lower 
as well as an upper bound on the energy of a bound state of a system. Unfortunately, it is not 
easy to apply in practical situations. Consider a bound system with states ui  and energies Ei. Let 
v be a normalized trial function, and define

 
E v Hv d

D Hv Hv d

=

= ( ) ( )
∫
∫

*

*

τ

τ
 

Prove that there exists some bound state i  such that

 E D E E E D Ei+ − ≥ ≥ − −2 2  

9.6. Just how good is the WKB approximation for bound states? This problem may give you 
some idea. Consider a bound state with energy E in the one-dimensional potential well V(x) 
shown in Figure 9.5. We know from the WKB approximation that
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x1 x2

E

V(x)

 Figure 9.5 One dimensional potential well V(x) with energy E such that classically allowed region is x1 ≤ x ≤ x2.

 p x dx m
x

x

( ) = +



∫

1

2 1
2

π  (1)

where m = 0, 1, 2, … and p E V x= − ( ) 2µ .

(a) Let V x V x V x kxa( ) ( ) ( )= − = and  for x ≥ 0, where k and a are positive real numbers. Show 
from (1) that

 E k C a
m

m
a

a a a a

= 



 ( ) +













+( )
− +( ) +( )

2 2
2

2 2 2
2

2
1
4

/

/ /µ


 (2)

where

 C a
a

a

a

( ) =
+











2
3
2

1

1

πΓ

Γ
 (3)

(b) For a =1, 2 2 2µ = k  , the exact solutions are Airy functions. We tabulate a few of the corre-
sponding exact eigenvalues for odd m below. Compare these values with the approximate WKB 
eigenvalues computed by you from (2).

m Exact eigenvalue
1 2.33811
3 4.08795
5 5.52056
7 6.78671
9 7.94413
11 9.02265
13 10.04017

(c) Compare the approximate result (2) with the exact result for the one-dimensional simple 
harmonic oscillator (a = 2).
(d) Let k = 4, a = 4, µ = = 1, as in Problem 2. Compare the approximate result (2) with 
the following very accurate eigenvalues resulting from numerical solution to the Schroedinger 
equation:
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E
E
E

0

1

2

1 060362
3 799673
7 455703

=
=
=

.

.
.

 

Here you may wish to use the following values of the gamma function:

 
Γ

Γ

1
4

3 6256099

3
4

1 2254167







=







=

.

.
 

9.7. Consider the wave function for a bound state in a potential well with classical turning 
points x1 < x2. In this problem we use the WKB approximation and also ignore the small con-
tribution to the normalization integral that comes from the regions x x x x< >1 2 and . Thus, for 
a symmetric potential, we assume that

 ψ 2

0

2 1
2

x

dx∫ =  

Using the WKB approximation, treating the energy quantum number n as a continuous variable, 
and making a reasonable approximation in the evaluation of a certain integral, show that

 ψ
π

µ π
0

1 2
2

2 2( ) ≈
∂
∂







 E
E
n

n

n

n cos  (1)

and

 ′ ( ) ≈
( ) ∂

∂






ψ
µ

π
π

0
2

2
2

3 2

3
1 2 2

/

/ sin


E
E
n

n
n

n  (2)

Compare (1) or (2) with what is obtained in the exact solution for the one-dimensional simple 
harmonic oscillator for the states n = 3 and n = 4.

9.8. When a very intense electric field F in vacuum is applied normal to the surface of a 
metal and directed toward the surface, electrons are ejected from the metal (this is called field 
emission). In a simple but reasonably effective model of the phenomenon (Figure 9.6), con-
duction electrons in the metal are confined to a potential well of depth µ φ+  that exists for all 
x < 0 up to the metal-vacuum interface at x = 0. The conduction electrons form a Fermi gas 
at zero temperature, filling all levels up to the Fermi potential µ. The work function φ φ= e 0  
of  the metal is typically 4 to 5 eV. For all x > 0, there exists a potential energy V eFx= + −µ φ .  
Field emission occurs because conduction electrons can tunnel through the potential barrier 
and thus escape from the metal. Employing the WKB approximation to calculate the transmis-
sion coefficient T through this barrier and assuming that essentially all escaping electrons have 
energy E ≈ µ, show that

 T
F

≈ − ×





exp .
/

6 8 107 0
3 2φ
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where φ0 is in electron volts and F is in volts per centimeter. The field emission current is 
proportional to T.

9.9. According to the WKB approximation (equation [9.28]), the transmission coefficient for 
barrier penetration in one spatial dimension is

 T e
m

V x E dxG

x

x

= = − ( ) −












− ∫exp
/ /23 2 1 2

1

2



 (1)

This formula can be used to estimate the transition probability per unit time for alpha decay 
by a heavy nucleus. We picture the alpha particle as originally bound to the nucleus in a rectangu-
lar potential well of radius R A≈ × −1 5 10 13 1 3. /  cm, where A is the nuclear mass number. Outside 
the well there is a positive potential V r Ze r( ) = 2 42 π  arising from the repulsive Coulomb force 
between the final nucleus of atomic number Z and the alpha particle (Figure 9.7). In (1), m = 
6.7 × 10–24 g is the alpha-particle mass.
(a) Using equation (1) with x R x r R1 2 2= = >,   and ignoring the very minor contribution of 
orbital angular momentum of the alpha particle to the effective potential for r R>  so that 
V r Ze reff ( ) = 2 42 π , evaluate G analytically in (1).
(b) The transition probability per unit time Γ for alpha decay can be estimated as the prod-
uct of  T and the rate ρ  at which the alpha particle strikes the outer boundary of  the nucleus 
because of  its motion with velocity v0 within the nucleus. Assuming that v0 ≈ 109 cm/s, esti-
mate Γ and compare your results with the following experimental data for alpha-radioactive 
decays:

Initial nucleus Final nucleus Alpha energy Trans. Prob./s

90
232 Th 88

228 Ra 4.011 MeV Γ = × − −1 73 10 18.  s 1

90
230 Th 88

226 Ra 4.687 MeV Γ = × − −3 01 10 13.  s 1

90
228 Th 88

224 Ra 5.427 MeV Γ = × − −1 178 10 8.  s 1

90
226 Th 88

222 Ra 6.34 MeV Γ = × − −4 26 10 4.  s 1

0 x

E = µ + φ

E = µ

E = 0

V = µ + φ – eFx

 Figure 9.6 Schematic diagram of potential V(x) and energy levels for calculation of field emission. Shaded region: filled electron levels.
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9.10. A three-dimensional isotropic harmonic oscillator of charge q is perturbed by an electric 
field of strength E in the positive z direction. Calculate the change in energy and the induced 
dipole moment for each energy level by solving the problem exactly. Show that if  the polariz-
ability α  of  the oscillator is defined as the ratio of the induced electric dipole moment to E, the 
change in energy is −αE 2 /2. Next, carry out the same calculations with second-order perturba-
tion theory, and compare your result with the exact solution.

9.11. A system of three spin-1/2 particles has the Hamiltonian

 H A B C= + +S S S S S S1 2 2 3 3 1    

where A, B, and C are constants. Find the energies of the stationary states and their 
degeneracies.

9.12. In Section 9.3 we developed conventional Rayleigh-Schroedinger static perturbation the-
ory (RSPT). In Chapter 6, Problem 6.7 we mention the Feynman-Hellmann theorem. Actually, 
a generalization of the latter theorem provides an alternative derivation of the formulas of 
RSPT, and this is the subject of this problem. Consider a Hamiltonian H( )λ  with eigenvectors 
n( )λ  and associated eigenvalues En ( )λ , all of which depend on a continuous real parameter 

λ; that is,

 H n E nnλ λ λ λ( ) ( ) = ( ) ( )  (1)

We assume for simplicity that the eigenstates n  form a discrete orthonormal set

 n m nmλ λ δ( ) ( ) =  (2)

Hence

 n H m Enm m= δ  (3)

0

V(r)

E

r2                       r

0                       R

 Figure 9.7 Energy and potential energy diagram for calculating alpha decay by means of the WKB approximation.

 

 

 

 

 

 



Problems for Chapter 9219

(a) Differentiate both sides of (3) with respect to λ , and take into account (1) and (2) to 
show that

 δ
λ λnm

m
n m nm

E
n

H
m E E a

∂
∂

−
∂
∂

= −( )  (4)

where

 a a n
m

nm mn= − =
∂
∂

*

λ
 (5)

(b) A special case of (4) is the original Feynman-Hellmann theorem; that is,

 n
H

n
En∂

∂
=
∂
∂λ λ

 (6)

Differentiate both sides of (6) with respect to λ, and use (4), completeness of which 
implies that

 
∂
∂

=
≠
∑n

a mmn
m nλ

 (7)

and Hermiticity of ∂ ∂H λ  (and higher derivatives of H) to show that

 
1
2

2

2

2

2

2
∂
∂

−
∂
∂






=

−≠
∑E

n
H

n
h

E E
n nm

n mm nλ λ
 (8)

where

 h n
H

mnm =
∂
∂λ

 

(c) To apply (4), (5), and (8) to RSPT, assume that

 
H H H
E E E E
n n n n

n n n n

= + ′
= + + +
= + + +

0

0 1
2

2

0 1
2

2

λ
λ λ
λ λ





 

and save only the leading terms to recover the first- and second-order energy shifts and the first-
order change in the wave function in nondegenerate RSPT.

9.13. In Section 9.3 we introduced Rayleigh-Schroedinger static perturbation theory (RSPT). 
This problem concerns a somewhat different form of static perturbation theory developed by 
Brillouin and Wigner (BWPT). Although not used very often, BWPT does have advantages for 
certain problems.
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(a) As in Section 9.3, let the unperturbed eigenvalue equation be H n E nn0 0 0 0= . For each 
n0 , define the operator

 Q I n n m mn
m n

0

0 0

0 0 0 0= − =
≠
∑  (1)

Show that H Qn0 0
0,  = .

(b) The perturbed eigenvalue equation is

 E H n H nn −( ) = ′0  (2)

Using the result of part (a), show that (2) can be written as

 Q n R H nn n0
= ′  (3)

where

 R E H Q
m m

E En n n
n mm n

= −( ) =
−

−

≠
∑0

1 0 0

0
0

0 0

 (4)

(c) We choose the normalization n n0 1= . Thus, from (3), we obtain

 n n Q n n R H nn n= + = + ′0 00
 (5)

Show that solution of (5) by iteration yields

 n n
m m H n

E E

m m H k k H n

E E E En mm n n m n km

= +
′

−
+

′ ′
−( ) −( )≠

∑0
0 0 0

0

0 0 0 0 0

0 00 0 0 ≠
≠

∑ +
n

k n
0

0 0

  (6)

(d) To find the perturbed energies, we return to (2) and take the scalar product of both sides 
with n0 . Show that this yields

 E E n H n
n H m

E En n
n mm n

= + ′ +
′

−
+

≠
∑0 0 0

0 0

2

00 0

  (7)

Note that the denominator of the second term on the right-hand side of (7) is E En m− 0 . Thus 
the perturbed energy En  appears on both sides of (7). When the latter equation is truncated at 
any finite order, we then have a polynomial equation to solve for En .
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In this chapter, we employ static perturbation theory to analyze the fine structure, hyperfine 
structure, Zeeman effect, and Stark effect in atomic hydrogen and the hydrogenic ions He+, Li2+, 
and so on. We also discuss the van der Waals interaction between hydrogen atoms. Calculations 
of these effects have major intrinsic importance, and they provide very good illustrations of 
perturbation theory. Moreover, the same or similar methods are used in the theory of many-
electron atoms and in nuclear, elementary-particle, and condensed-matter physics.

Our starting point is the zero-order nonrelativistic Hamiltonian for an electron in the 
Coulomb field of a nucleus with infinite mass and atomic number Z. In atomic units,

 H
r0

2

2
= −

p Z
 (10.1)

As we know, the bound-state eigenvalues are given by the Balmer formula; that is,

 E
Z
nn = −

2

22
 (10.2)

Hence, as noted previously, the zero-order states with  = −0 1,...,n  for given n (e.g., 2s, 2p or 
3s, 3p, 3d) are degenerate.

10.1 Fine structure of hydrogenic atoms

The zero-order Hamiltonian (10.1), while a very good approximation for many purposes, 
does not account for a number of significant details. One very important feature that must be 
included is electron spin. The enlargement of Schroedinger’s nonrelativistic wave mechanics 
by the inclusion of electron spin was largely due to Pauli (1927) and is known as the Pauli-
Schroedinger theory. Here we introduce the electron-spin operator S ad hoc and define the total 
electronic angular momentum operator J by

 J L S= +  (10.3)

Because the electron-spin eigenvalue is s = 1/2, possible j eigenvalues are 
j j= ± > = =  1 0 0/2 for  and 1/2 for .1 We label the energy eigenstates in standard spectro-
scopic notation by the expression

 n s
j

2 +1
  

Applications of Perturbation Theory: Bound States  
of Hydrogenic Atoms10

1 It is customary to employ lowercase letters to describe hydrogenic quantum numbers but uppercase letters for total 
angular momenta in many-electron atoms.
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Thus we have the states

 

...
, , , ,

,
/ / / / /

/ /

3 3 3 3 3
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2
1 2

2
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2
3 2

2
3 2

2
5 2

2
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2
1 2

s p p d d

s p
( ) ( ) ( )
( ) , /

/

2

1

2
3 2

2
1 2

p

s
( )

( )
 

In the absence of perturbations, all the n j mj, , ,  and  states of a given n would be degenerate. 
However, experiment shows that states of a given n and  but different j are actually separated 
by fine-structure splittings. For example, Figure 10.1 shows the fine structure of the n = 2 levels 
of 4He+.

Fine structure is a relativistic effect that can be treated in a consistent way only by means of 
the Dirac relativistic wave equation, to be discussed in later chapters. However, at this stage, 
we can give a partial explanation of fine structure by grafting two heuristically derived pertur-
bations of comparable significance and relativistic origin onto the nonrelativistic zero-order 
Schroedinger theory.

Z   /32 = 175 GHz4 2

Z     /1284 2

Zero order
2s, 2p

22 s1/2

22 p1/2

22 p3/2

12 s1/2

S = 14.04
    GHz

3Z2/8 = 40.8 eV

 Figure 10.1 n = 1 and 2 energy levels of 4He+ (not to scale). Note the fine-structure splitting between 2  and 22
3/2

2
1/2p p  states. S is the Lamb shift, a 

quantum-electrodynamic effect that requires quantum-field theory (and specifically renormalization) for its description.
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The first perturbation, which does not involve electron spin, is a relativistic correction to the 
kinetic energy operator. In relativistic mechanics, the energy of a particle of rest mass m and 
momentum p is

 E p c m c= +2 2 2 4  (10.4)

Expanding this expression for p mc , we obtain

 E mc
p
m

p
m c

= + − +2
2 4

3 22 8
  (10.5)

The first term on the right-hand side of (10.5) is the rest energy, a constant. The second is the 
nonrelativistic kinetic energy

 T
p
m

=
2

2
 

and the third is the relativistic correction to the kinetic energy

 − = −
p

m c
T
mc

4

3 2

2

28 2
 (10.6)

With m chosen as the electron mass, (10.6) yields the following perturbation Hamiltonian in 
atomic units:

 H T1

2
2

2
= −

α
 (10.7)

where α = = −1 137 036 1/ ( . )c  is the fine-structure constant. From (9.35), the first-order energy 
shift due to H1 is

 
∆E n T n n H V n1

1
2

2
2

0
2

2 2
( ) = − = − −( )α α

   

                                   = − − +






α2
2 2

22
2

1
E E V Z

rn n 

 (10.8)

Employing the virial theorem, which gives V En= 2


, the Balmer formula (10.2), and

 
1
2

2

3r
Z

n
=

+( ) 1/2
 

we see that (10.8) becomes

 ∆E
Z

n
n

1
1

4 2

42
3
4

( ) = −
+







α
 1/2

 (10.9)

This formula reveals that the accidental degeneracy for states of the same n and different  is 
lifted in first order by the perturbation H1. An analogous effect occurs for a classical mass point 
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describing an elliptical orbit in an attractive 1/r potential. There the Runge-Lenz vector is an 
invariant in the nonrelativistic limit, but when special relativity is taken into account, the semi-
major axis precesses around the center of force in the orbit plane.

The second perturbation is the spin-orbit effect, which we introduce by the following heu-
ristic semiclassical argument. Consider a laboratory reference frame in which there exists an 
electric field E  and in which an electron moves with velocity v. In the electron rest frame there 
exists a magnetic field

 B =
×

= ×γ γαE Ev
v

c
 

where γ = − −( ) /1 2 1 2v /2 c . In that rest frame, the equation of motion for the electron spin is

 
∂
∂

= ×
S

B
t sµ  

where µs s B sg g= − = −µ αS S /2 is the spin magnetic moment. An energy of  interaction 
u s= −µ B  corresponds to this equation of  motion. Suppose further that the electron is in 
a hydrogenic atom so that E = ( )Z r3 r. is the Coulomb field of  the nucleus in the laboratory 
frame. In such a field, the electron continually undergoes acceleration; hence the rest frame 
is not an inertial frame but instead rotates with a certain angular velocity ωT with respect to 
the laboratory frame. Thus the equation of  motion for the electron spin in the laboratory 
frame is

 
d
dt t T
S S

S=
∂
∂

+ ×ω  

The interaction energy in the laboratory frame, corresponding to the latter equation of 
motion, is

 U u T= + S ω  (10.10)

Now, because

 B r r p L= × = × =
Z
r

Z
r

Z
r

α γ α α
3 3 3

( )v  

we have

 

u = − =µs sg
Z

r
 B S L

α2

32
1

 

(10.11)

This is called the spin-orbit interaction for the obvious reason that it contains the factor S L . 
The correction term SωT  was first analyzed by L. H. Thomas (1926, 1927a; see also Jackson 
1998). Thomas showed that (10.11) must be replaced with

 
H U u g

Z
rso T= = + =S S L ω eff

α2

32
1

 
(10.12)

 

 

 

 

 

 

 

 

 

 



10.1 Fine structure of hydrogenic atoms225

where

 g g gs seff = −
+

≈ − =
2

1
1 1

γ
γ

 

Here γ ≈ 1 because the nonrelativistic limit is a good approximation for the electron in a hydro-
genic atom unless Z 1. Thomas’ derivation is somewhat subtle and lengthy, and because 
this entire subject is in any case treated more correctly by means of the Dirac equation, we do 
not present the derivation here. Rather, we assume (10.12) with geff = 1 and proceed with the 
consequences.

From J = L + S, we have J L S L S2 2 2 2= + +  ; thus

 H
Z

rso =
− −α2

3

2 2 2

2
1

2
J L S

 (10.13)

For a state with definite j, ℓ, and s = 1/2, the first-order energy shift due to Hso is

 ∆E
Z

r
j j s s

so
( ) ( ) ( ) ( )1

2

32
1 1 1 1

2
=

+ − + − +α  

 (10.14)

We employ

 
1

13

3

3r
Z

n
=

+ +  ( )( )1/2
 (10.15)

to obtain

 ∆E
Z j j s s

nso
( ) ( ) ( ) ( )

(
1

4 2

34
1 1 1

=
+ − + − +

+
α  

  1/2)( +1)
 (10.16)

This formula gives an accurate account of the fine-structure splitting between two states of 
the same n and  ≠ 0 but different j, provided that Z is not too large. (If  Z 1, a modified for-
mula derived from the Dirac equation must be used.) For illustration, we consider the states 
2 22

3 2
2

1 2p p/ / and . According to (10.16), the difference in energies between these states is

 δ α
=

− −



 − − −
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=
Z 4 2

32
α

 (10.17)

which is 175 GHz in He+. Recalling Figure 10.1, we see that result (10.17) agrees with 
experiment.

The situation is more subtle for s-states ( ) = 0 . Here (10.16) appears ambiguous because the 
numerator and denominator on the right-hand side both vanish. Actually, (10.15) is strictly 
correct only in the limit of zero nuclear size. For a real nucleus, r−3  is finite for s-states, 
albeit very large, and thus ∆Eso

( ) .1 0=  However, for s-states and only for s-states, there is an 
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 additional effect, first calculated from the Dirac equation by C. G. Darwin, grandson of the 
great  nineteenth-century naturalist Charles Darwin. It is given by

 ∆E
Z

nDarwin for  only= =
4 2

32
0

α
  (10.18)

Unfortunately, there is no elementary intuitive explanation for the Darwin term; its origin must 
be deferred until we take up the Dirac equation. This effect, together with the contribution 
∆E1

1( ) in (10.9), shifts the energy of n s2
1 2/  just enough to leave it degenerate with n p2

1 2/  in the 
present level of approximation. Indeed, combining (10.9) with (10.14) for  ≠ 0 or (10.18) for 
 = 0, we obtain the energy shift

 ∆E
Z

n j n
= −

+
−







4 2

32
1 3

4
α

1/2
 (10.19)

which depends on j but does not contain  explicitly. However, the degeneracy of n s2
1 2/  and 

n p2
1 2/  states is removed by an additional effect: the Lamb shift, first measured for n = 2 in H 

and He+ by W. E. Lamb and coworkers in the years 1947–1951. Here the 22
1 2s /  state is displaced 

upward, and 22
1 2p /  is slightly shifted downward, resulting in splittings of 1.058 GHz in hydro-

gen and 14.04 GHz in He+ (see Figure10.1). The Lamb shift actually affects all s-states (and to 
a much smaller extent p, d,…-states as well) and not just in hydrogenic atoms but also in other 
atoms. The phenomenon is not accounted for by the standard Dirac theory of the hydrogen 
atom; to calculate it, one needs the technique of renormalization in quantum electrodynamics. 
We postpone a discussion of the Lamb shift until Chapter 17.

Note that for hydrogenic atoms (H, He+, Li++, and so on), all the perturbations described 
in this section are proportional to Z 4 2α  in leading order. Thus all these effects are of order 
Z 2 2α  compared with the zero-order energy given by the Balmer formula, and while they are 
quite small for hydrogen, they grow rapidly with Z . Even for a neutral many-electron atom, 
the spin-orbit effect for a valence electron becomes very large and significant for high Z. This 
is discussed in more detail in Chapter 12.

10.2 Hyperfine structure of hydrogen

The most important interactions in an atom are the Coulomb interactions between the elec-
trons and the nuclear charge. [The latter charge is sometimes called the nuclear monopole (E0) 
moment.] However, additional couplings exist between the electrons and higher magnetic and 
electric multipole moments of the nucleus. These couplings are responsible for hyperfine struc-
ture (hfs) observed in atomic spectra. If  the nucleus has spin I ≥ 1/2, it can possess a magnetic 
dipole moment µI . Also, if  J ≥ 1/2, a nonzero magnetic field Be is generated at the nucleus from 
electron spin and orbital motion. The coupling of µI  to Be causes magnetic dipole (M1) hfs, 
which is the most significant contribution to hfs. If  I ≥ 1, the nucleus can possess an electric 
quadrupole (E2) moment, and if  J ≥ 1, the electronic charge distribution generates a nonzero 
electric field gradient at the nucleus. The coupling of the quadrupole moment and the elec-
tric field gradient produces an additional (E2) hfs energy shift. Smaller still but observable 
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nonetheless in a few cases is magnetic octupole (M3) hfs, which requires I J≥ ≥3/2, 3/2. Note 
that static moments E0, E2, E4, … and M1, M3, … are allowed, but static moments E1,  
E3, … and M2, M4, … are forbidden by space-inversion and time-reversal symmetries, a point 
to be discussed later.

In this section we confine ourselves to a discussion of M1 hfs in the hydrogen atom. Here the 
perturbation Hamiltonian is

 Hhfs p e= −µ B  (10.20)

where µ p pg= µN I  is the proton spin magnetic moment operator. Let the position of the elec-
tron with respect to the nucleus be re , and define r r= − e . Now 

 B Ae e= ∇×  (10.21)

where in atomic units

 A
r

e
e

er r
=

×
= − ×∇





µ
µ

3

1
 (10.22)

In the analysis of hyperfine structure, there is a fundamental difference between s-states and 
states with ℓ > 0. For s-states, the wave functions of which are spherically symmetric and non-
zero at the origin, calculation of Be requires special attention because Ae is singular at r = 0. No 
such difficulty occurs for states with ℓ > 0 because these wave functions vanish at the origin. In 
the latter case, we can assume that r ≠ 0 when using (10.21) and (10.22) to find Be. We start our 
analysis with the simpler case ℓ > 0. The identity

 ∇× × = ∇ − ∇( )+ ∇ − ∇( ) ( ) ( ) ( )a b a b b a b a a b     

and the fact that the electron spin magnetic moment µs is a fixed quantity independent of the 
coordinates imply that the magnetic field Bes generated by µs is
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(10.23)

The second term on the right-hand side of (10.23) vanishes for r ≠ 0, and the first term is
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In addition, there exists a contribution µ


/r3 to Be
>0 arising from orbital motion of the elec-

tron, where µ


= − = − ×( )µ µB B eL r p . Altogether for  > 0 we have

 B
r r

e
s s

r r r






> ( ) = ( )
− +0

5 3 3
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3 µ µ µ
 (10.25)
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We now turn our attention to s-states and make use of the following picture: let an imaginary 
sphere be centered on the proton, with radius R larger than the proton radius but much smaller 
than the Bohr radius a0. Because R a 0 ,

 ψ ψns e nsr( ) = ( )0  

is an excellent approximation for the spatial wave function at all points inside the sphere. 
Outside the sphere, ψ ns er( ) does vary with re when the latter becomes comparable with a0, but 
in any event, ψ ns er( ) is spherically symmetric everywhere. Because the electron has a spin mag-
netic moment, there exists a magnetic moment density or magnetization

 M ( ) ( )r re s ns e= µ ψ 2
 

Using subscripts i and o to denote the interior and exterior of the sphere, respectively, we note 
that inside the sphere of radius R, the magnetization is uniform with value

 Mi s ns= ( )µ ψ 0
2

 

Outside the sphere, Mo is spherically symmetric everywhere, although it also varies with re when 
the latter becomes comparable with a0. Thus Mo gives no contribution to Be(0); however, from 
elementary magnetostatics, we have
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(10.26)

Taking (10.25) and (10.26) into account, we write the hfs Hamiltonian (10.20) as
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(10.27)

The first bracketed term on the right-hand side of (10.27) is sometimes called the contact 
interaction. In the Dirac theory, the derivation of (10.27) is actually more transparent, as we 
will see in Chapter 21. Equation (10.27) was first derived by E. Fermi in 1930 using the Dirac 
theory.

We now calculate the first-order hyperfine energies of s-states in hydrogen. Noting that

 µ p p
p

p B
e

p

g
m

g
m
m

= =
α µ

2
I I  

where gp = 5 58.  and I is the nuclear spin, and employing the contact interaction term in (10.27), 
we obtain

 ∆E ns g g
m
m

ns nsp s B
e

p
hfs
( )1 2 38

3
( ) = ( )π µ δ r I S  (10.28)

 

 

 

 

 

 

 

 

 

 

 

 



10.2 Hyperfine structure of hydrogen229

In atomic units, ns ns nδ π3 31r( ) =  and µ αB = /2. Thus (10.28) becomes

 ∆E ns ahfs
( )1 ( ) = I S  (10.29)

where

 a
n

g g
m
mp s

e

p

=
2

3 3
2α  (10.30)

The total atomic angular-momentum operator, including nuclear spin, is defined as F =  
I + J. Also, i = 1/2 for the proton, and j = s = 1/2 for the s-states; thus f = 1 or 0. The f = 1 
multiplet contains three components: mF = 1, 0, and –1, whereas the f = 0 state is a singlet 
with mF = 0. In the absence of  hfs interaction, all four components are degenerate. However, 
because

 I S =
+ − + − +

=
+

−
f f i i s s f f( ) ( ) ( ) ( )1 1 1

2
1

2
3
4

 

(10.29) yields
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 (10.31)

for a hyperfine splitting between f = 1 and f = 0 of

 δ α= =a
n

g g
m
mp s

e

p

2
3 3

2  (10.32)

Note that even when Hhfs is included, the three mF components of f = 1 remain degenerate in the 
absence of an external magnetic field. However, when such a field is imposed, the degeneracy is 
lifted by the Zeeman effect, to be discussed in the next section.

The hyperfine transition between f = 1 and f = 0 in the ground state of hydrogen is used in 
high-precision atomic clocks and is also extremely important in radioastronomy, where it is 
observed in absorption and emission. The quantity a = 1.4204 GHz (wavelength = 21 cm) has 
actually been measured to a precision of more than 12 significant figures using hydrogen maser 
techniques and is one of the most accurately determined physical quantities. For a precise 
comparison between theory and experiment, (10.32) with gs = 2 is not accurate enough. The 
most important correction to a is the g-factor anomaly ae  in g as e= +2 1( ). In addition, there are 
small but important effects resulting from finite proton mass, proton recoil, relativistic electron 
motion, and so on. When all these corrections are included, theory and experiment agree, but 
the theoretical uncertainty, about 1 part per million (1 ppm), is much larger than the experi-
mental uncertainty.
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The hyperfine energies of states with  > 0 are derived from the second bracketed term on 
the right-hand side of (10.27). Assuming that g gs = =2 1,



, it can be shown with the aid of the 
Wigner-Eckart theorem (see Section 7.12) that
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 (10.33)

10.3 Zeeman effect

In the presence of an external magnetic field B = B z0 ˆ, the Hamiltonian for a hydrogenic 
atom is

 

H
e
c

Z
r

H H g gfs s B p N= +
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µ µp A S B I Bhfs  

 

(10.34)

where H H H Hfs so= + +Darwin 1  and the external vector potential A can be chosen as

 A = −( )B
xy yx0

2
ˆ ˆ  

to give B A= ∇× . Ignoring the distinction between the reduced mass μ and me, we expand the 
first term on the right-hand side of (10.34)
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= + +( ) +e
   (10.35)

Because ∇ =A 0, p A A p A A p   = − ∇ =i . Also,

 A p = −( ) =B xp yp B Ly x z0 02 2  

where L r p= ×( ). Thus (10.34) becomes

 H H H H g g gfs hfs B s B p N= + + + + − +0

2
2

2

  µ µ µ α
L B S B I B A  (10.36)

Here H m Ve0
2 2= ( ) +p , and g



= 1 is the orbital g-value. Later in this section we discuss the 
final term on the right-hand side of (10.36). For the present, we ignore it and concentrate on 
the remaining perturbing terms. In particular, for the ground state of hydrogen, we are con-
cerned with the Zeeman effect of the hyperfine structure and thus with the third, fifth, and sixth 
terms of (10.36). Here the perturbing Hamiltonian is

 ′ = + −H a g B S g B Is B z p N zI S µ µ0 0  (10.37)

 

 

 

 

 

 

 

 

  

 

 



10.3 Zeeman effect231

Defining the positive constants k g B k g Bs B p N1 0 2 0= =µ µ and , where k k1 2 , we write 
(10.37) as

 
′ = + −

= +[ ]+ + −+ − − +

H a k S k I
a

I S I S aI S k S k

z z

z z z z

I S 1 2

1 22
    I

 (10.38)

In the absence of H′, the ground-state components f mF= = −1 1 0 1 ( , , ) and f = 0, mF = 0 are 
degenerate. Hence we may choose any convenient orthonormal linear combinations of these 
components as a basis for the perturbation matrix of H′. We arbitrarily choose the four basis 
states:

 u s e p e p e p e p1  α α β β α β β α, , ,   { }  (10.39)

where u1s is the spatial wave function, and as usual, α (β) signifies spin up (down). With rows 
and columns in the same order as (10.39), the perturbation matrix is

 ′ =

+
−

−
−

− +
+

− −
+
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 (10.40)

The eigenvalues

 λ1
1 2

4 2
= +

−a k k
 (10.41)

and

 λ− = −
−

1
1 2

4 2
a k k

 (10.42)

correspond to the f = 1 states α α β βe p F e p Fm m ( =1) and  ( = ),−1  respectively, and are linear in 
B0  with opposite slopes. To find the other two eigenvalues, we diagonalize the 2 2×  submatrix 
in the lower right-hand corner of (10.40). Its secular determinant is
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which yields

 λ +





=
+





+
a k k a
4 2 4

2
1 2

2 2

 (10.43)

We define x k k a= +( )1 2 /  and find from (10.43) that the two eigenvalues are

 λ± = − ± +
a a

x
4 2

1 2  (10.44)

Because x is proportional to B0, we have λ λ+ −=( ) = =( ) = −B a B a0 00 0 3/4, /4. Thus λ± =( )B0 0  
obviously correspond to the states f m f mF F= = = =1 0 0 0, , , , and  respectively. When 
0 1< x , 1 12 2+ ≈ +x x /2; hence, for small x, λ± vary quadratically with x. However, when 
x1, 1 2+ ≈x x and λ± are linear in x with opposite slopes. Figure 10.2 shows the four eigen-
values plotted as a function of B0.

It remains to find the eigenvectors corresponding to λ±. These can be expressed as

 ψ α β β α± ± ±= +a x b xe p e p( ) ( )  (10.45)

The coefficients a x b x± ±( ), ( ) are found from the eigenvalue equation
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 Figure 10.2 Zeeman effect of the hyperfine structure of the 12s1/2 state of hydrogen.
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and from the normalization condition a b± ±+ =2 2 1. We obtain
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x x
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/  (10.46a)

and

 b
x x

x x
± =

− +( )
+ +( )









1

1 1

2

2
2 1 2/  (10.46b)

These coefficients are plotted versus B0 in Figure 10.3.
Note that when x = 0, a a+ −

−= = 2 1 2/  and b b+ −
−= − = 2 1 2/ , but when x a1 1 0, , a  and + → →−  

whereas b b+ −→ → −0 1 and . These relations have a simple physical meaning. When B0 is small 
(x1), the electron and proton spins are much more tightly coupled with one another by 
the hyperfine interaction than they are with the weak external field. Thus neither m mI J nor  
is a good quantum number; only f and mF are well defined. For large B0 (x1), the reverse is  

–0.5

0.0

0.5

10008006004002000

B0, gauss

a–, b+

a+

b–

 Figure 10.3 Coefficients a b and  ± ± plotted versus B0.
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true: electron and proton spins separately precess about the strong external field, so neither f 
nor mF is a good quantum number, but mI and mJ become well defined.

The Zeeman effect for other hyperfine levels in hydrogen or in a multielectron atom is cal-
culated according to similar principles. The main task is to diagonalize a perturbation matrix 
such as (10.40). For I = 1/2 and any J or for J = ½ and any I, the matrix can be reduced to 
block diagonal form, where the submatrices are 2 2× ; hence only quadratic equations appear. 
In more complicated cases, the perturbation matrix is most easily diagonalized numerically by 
computer.

The Zeeman effect of fine-structure levels is calculated by the same method. For example, 
consider the n = 2,  = 1 states of 4He+. Here the nuclear spin is zero, and there is no hyperfine 
structure. From (10.36), the relevant portion of the perturbing Hamiltonian is

 ′ = + +H H g gfs B s B

 µ µL B S B  (10.47)

and apart from an additive constant, Hfs = ( )α2 3 L S  in atomic units. The 6 6×  perturbation 
matrix H′ for  = =1 1, s /2 is easily diagonalized.

Finally, we consider the last term on the right-hand side of (10.36); that is,

 H
B

x yQ = = +( )α α2
2

2
0
2

2 2

2 8
A  (10.48)

This term is responsible for the quadratic Zeeman effect. It does not depend on S, L, J, or I 
and therefore does not cause any splittings between different magnetic sublevels of a zero-order 
eigenstate with given values of n and . Because x y r2 2 22+ = /3 for s-states, the first-order 
energy shift in atomic units is

 ∆E
B

rQ
( )1

2
0
2

2

12
=

α
 (10.49)

Employing the formula

 r
n
Z

n2
2

2
2

2
5 1 3 1= + − +( )    (10.50)

we see that although ∆EQ
( )1  is very small for ordinary magnetic fields and low principal quan-

tum numbers, it grows roughly in proportion to n4  and thus becomes significant for n1. This 
is important in the case of a Rydberg atom, which is an atom (from almost anywhere in the 
periodic table) in which a valence electron is excited to a very high-lying state. The nucleus and 
remaining electrons form a compact core with effective charge Zeff = 1, and the wave function 
of the valence electron is essentially hydrogenic with n1.

The positive-energy-shift quadratic in B0 implies negative magnetic susceptibility; thus HQ is 
directly related to diamagnetism. As is well known, this phenomenon arises from Lenz’s law: if  
we apply an external magnetic field to an atom or a group of atoms by increasing the field from 
zero, the electron(s) experience a changing magnetic flux while the field is increasing. Thus, by 
Faraday’s law, an electromagnetic force (emf) is generated that causes the electronic orbital cur-
rents to change. These incremental orbital currents generate an incremental magnetic field that 
is always opposite in direction to the applied field and generally much smaller in magnitude. 
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For illustration, we calculate the diamagnetic correction to the applied magnetic field at the 
origin of a hydrogen atom in its ground state. Such corrections are significant in high-precision 
nuclear magnetic resonance experiments and not merely for atomic hydrogen.

To start, we recall from equation (4.76) that in the presence of a vector potential A, the prob-
ability current density in atomic units for an electron is

 j A= ∇ − ∇( )+1
2i

ψ ψ ψ ψ α ψ ψ* * *  

The electromagnetic current density is

 j j AEM = − =
−

∇ − ∇( ) −e
i
1

2
ψ ψ ψ ψ α ψ ψ* * *  (10.51)

In (10.51), only the second term on the right-hand side is important for diamagnetism; thus, 
in what follows, we ignore the first term. The electromagnetic current density generates a new 
vector potential according to the well-known formula

 ′ ( ) = ′( )
− ′

′ = −
′( ) ′( )
− ′

′∫ ∫A r
j r
r r

r
A r r

r r
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1 3 2 3

c
d dEM α

ρ
 (10.52)

where ρ ψ ψ= * . The magnetic field generated by this vector potential is

 ′ ( ) = ∇× ′ ( ) = − ′
− ′

× ′( ) ′( ) ′∫B r A r
r r

r r
A r r rα ρ2

3
3d  

Hence, at the origin,

 ′ ( ) = −
′ × ′( )

′
′( ) ′∫B

r A r
r r0 2

3
3α ρ

r
d  (10.53)

Because A r ′( ) = ( ) ′ − ′( )B x y y x0 2 ˆ ˆ ,

 ′ × ′( ) = − ′ ′( ) − ′ ′( ) + ′ + ′( ) r A r
B

x z x y z y x y z0 2 2

2
ˆ ˆ ˆ  (10.54)

Only the third term on the right-hand side of (10.54) makes a nonzero contribution to the 
integral in (10.53). For the 1s state of hydrogen, it yields
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 (10.55)

As anticipated, the diamagnetic correction to the applied magnetic field B is proportional 
to B but in the opposite direction, and because α 2 51 78 10/3 = × −. , it is much smaller than B 
itself.
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10.4 Stark effect

We next consider an atom in a uniform external electric field E. The electrostatic potential due 
to E is Φ = −Er, and the resulting perturbation Hamiltonian is

 H eS = Er  (10.56)

Figure 10.4 is a plot of HS  plus the Coulomb potential energy along the direction of E. The 
plot reveals that, strictly speaking, no bound states can exist for the H atom in this potential 
(and more generally, no bound states can exist for any atom or molecule in an external electric 
field) because of the possibility of tunneling. To be sure, such tunneling is altogether negligi-
ble for low-lying states of typical atoms or molecules because in that case the internal electric 
fields experienced by the valence electrons are of the order 109 to 1010 V/cm, whereas laboratory 
electric fields do not exceed 105 to 106 V/cm. However, tunneling is observable in Rydberg atom 
experiments where n1.

The Stark effect in hydrogen can be analyzed in parabolic coordinates [see, e.g., Bethe (1957, 
pp. 228–240)], but for most purposes, especially where many-electron atoms are concerned, it 
is more practical to employ the usual spherical polar coordinates. In what follows we confine 
ourselves to spherical coordinates and to relatively weak electric fields where perturbation the-
ory in lowest nonvanishing order is appropriate. Ignoring spin, we consider a nondegenerate 
zero-order state ψ . Then, to first order, the energy shift due to (10.56) is
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 Figure 10.4 H rS − −1 plotted along the electric field direction. Bound states can tunnel to the left.

   

 

 

 

 

 



10.4 Stark effect237

The quantity −e ψ ψr  is the expectation value of the electric dipole moment operator and is 
frequently referred to as a permanent electric dipole moment. However, because the zero-order 
Hamiltonian is space-inversion symmetric, ψ  has definite parity; that is, P ψ ψ= ± , where 
P is the parity operator with P P P P P I† = = =−1 2  and PrP-1 = –r.
Thus

 ψ ψ ψ ψ ψ ψ ψ ψr r r r= = ± ± = − =PP PP P P    0  

Therefore, there is no first-order Stark energy shift for a nondegenerate state. In other 
words, a permanent electric dipole (E1) moment for a nondegenerate state is forbidden by 
 space-inversion symmetry (and similar considerations rule out permanent E3, E5, … and M2, 
M4, … moments). Hence we must go to second order in perturbation theory to obtain a non-
zero Stark energy shift

 

∆E
n

E ES
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eE r ψ

 

(10.57)

where E0 is the zero-order energy corresponding to ψ , and the sum in (10.57) is taken over 
all zero-order states n  except for ψ . If  ψ  is the ground state, E En0 <  for all n; hence the 
ground-state energy of any atom always decreases in proportion to E 2. It is convenient to 
define the polarizability2 α  by

 ∆ES
( )2 21

2
= − αE  (10.58)

We now make a crude order-of-magnitude estimate of ∆ES
( )2  and thus of α  for a typical atom. 

If  n  and ψ  are low-lying states of opposite parity that differ in  by unity, n r aψ  0. Also, 
E E e an0

2
0−  / . Hence

 ∆E
e a
e a

aS
( )2

2 2
0
2

2
0

0
3 2

 − −
E E

/
 

Thus α  a0
3 in magnitude (α  is roughly the atomic volume). Incidentally, the neutron, a neu-

tral particle of nonzero spatial extent, also has polarizability roughly equal to its volume 
αn  (10 13−  cm)3.This has been observed experimentally.

The first-order change in ψ  induced by H eS = E  r  is

 

δ ψ ψ ψ
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≡ − =
−∑e n
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E En n
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r
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(10.59)

Henceforth, in employing atomic units and choosing the direction of E to be the z-axis, we 
write (10.59) as

 δ ψ
ψ

η=
−

=∑E
n n z

E Enn 0

E  

2 The symbol α is used here to avoid confusion with the fine-structure constant α and the spinor α =
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where

 η
ψ

= −
−∑

n n z

E Enn 0

 

The state η  satisfies the equation

 H E n n z
n

0 0−( ) = −∑η ψ  (10.60)

where the sum is over all states n  except for ψ . However, ψ ψz = 0; hence the sum can be 
taken over all the eigenstates of H0. Because these states form a complete set, (10.60) reduces 
to the following equation in coordinate representation:

 H E z0 0−( ) = −η ψ  (10.61)

To illustrate the use of (10.61), we choose ψ  to be the ground state of hydrogen. Then (10.61) 
becomes

 − ∇ − + = − −1
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1 1
2
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re r
/

cos  (10.62)

It is clear from symmetry that η must be a superposition of states with 


= =1 0 and m  and 
therefore that the angular part of η must be Y1

0. Substituting η = f r Y( ) 1
0 into (10.62) and solv-

ing the resulting radial Schroedinger equation, we obtain
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r e r  (10.63)

Therefore, from (10.57), the second-order energy shift in atomic units is
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In cgs units, this result is

 ∆ES s a2
0
3 21

9
4

( ) = −( ) E  (10.64)

which implies that the ground-state polarizability is α = 9
2 0

3a . The 2p state makes the largest 
single contribution (~66 percent) to (10.64).

First-order Stark energy shifts do occur in certain circumstances. Consider a simple model 
in which there are two degenerate zero-order states u v and  of opposite parity and where we 
impose two perturbations, H z HS = ′′E  and . In the u v,  basis, the diagonal matrix elements 
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of HS  vanish, that is, E Eu z u v z v= = 0, but we assume that E Ev z u u z v w= ≡ ≠ 0. 
We also assume that only the diagonal matrix elements of ′′H  are nonzero; that is, 
u H u v H v′′ = ′′ = −∆ ∆/2 and /2, where ∆  is very small compared with the energy spac-

ings between u v or  and all other states. Thus the perturbation matrix is
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The eigenvalues of this matrix are

 λ± = ± +
∆
2

1 2y  (10.65)

where y w= 2 /∆ . When y1, these eigenvalues vary quadratically with E, but if  y1, they 
become linear in E. The eigenvectors corresponding to λ± are

 ψ ± ± ±= +a y u b y v( ) ( )  (10.66)

where

 a
y

y y
± =
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+ ± +( )
1 1

1 1

2

2 2
2

 (10.67)

and

 b
y

y y
± =

+ ± +( )2 2
2

1 1
 (10.68)

When y1(weak electric field), a b+ +≈ ≈1 0,  , and a b− −≈ ≈0 1, ;  hence ψ+ ≈ u  and ψ− ≈ v .  
On the other hand, when y1 (strong electric field) a b±

−
±

−→ ± →2 21 2 1 2/ /,  . In this linear 
Stark-effect limit, ψ +

−→ +( )2 1 2/ u v  and ψ −
−→ −( )2 1 2/ v u .

As an example of the foregoing, we let u v and  be the 2s and 2p, m


= 0 states of hydro-
gen, respectively, and we ignore electron and nuclear spins, thus neglecting the complications 
resulting from fine and hyperfine structure. The 2s state is actually shifted upward slightly with 
respect to the 2p state by the Lamb shift (recall the quantity ∆  in our model calculation), and 
it can be shown that w p m z s= = = −E E2 0 2 3,



 in atomic units.
The foregoing two-level model is useful for understanding a phenomenon that occurs fre-

quently in polar molecules and is often observed in chemistry and molecular spectroscopy. 
In such molecules, the energy splittings between adjacent spin-rotational states of opposite 
parity are often so small that a very modest external electric field is sufficient to cause a linear 
Stark effect. In such circumstances, it is often said (not altogether correctly) that the molecule 
 possesses a “permanent” electric dipole moment.
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10.5 Van der Waals interaction between two hydrogen atoms

It is known from countless observations that at distances R a 0 , two atoms experience a 
weak mutually attractive force. If  R a a< ≈0 0137/α , this force is derivable from a potential 
that varies as R−6 and is called the van der Waals interaction.3 With almost no calculation, we 
can give a qualitative explanation of  this interaction as follows: although in the absence of  an 
external electric field the expectation value of  the electric dipole moment of  a hydrogen atom 
in its ground state is zero, the instantaneous electric dipole moment pε is not zero because the 
electron and proton are separated by a finite distance. This fluctuating dipole moment gener-
ates a fluctuating electric field that varies as E  p Rε / 3. A second hydrogen atom at distance 
R experiences this field, and from second-order perturbation theory, it suffers a change in 
energy

 ∆E a
p
R

= − ≈ −
1
2

2
0
3

2

6
α εE  

Because p eaε ≈ − 0, we have

 ∆E e
a
R

≈ − 2 0
5

6
(atom-atom interaction)  (10.69)

In a similar way, consider the electric field E = −e/R2  at an atom due to an electron at distance 
R a 0 . The resulting energy shift is

 ∆E e
a
R

≈ − 2 0
3

4
(electron-atom interaction)  (10.70)

Also, consider an atom at a distance R a 0  from a perfectly conducting plane. In this case, the 
image charges are perfectly correlated with the atomic charges, and it can be shown that first-
order perturbation theory is operative. Thus the interaction energy is

 ∆E
p
R

e
a
R

≈ − ≈ −ε
2

3
2 0

2

3
(atom-plane conductor interaction)  (10.71)

Now we seek to understand the atom-atom van der Waals interaction more quantitatively. Our 
starting point is Figure 10.5, in which the coordinate labels of the electrons and protons in two 
H atoms are given.

Neglecting the kinetic energies of the two protons, we write the Hamiltonian of this two-
atom system as

 H H H= + ′0  

where the zero-order Hamiltonian is

3 When R a 137
0
, the van der Waals interaction is attenuated by retardation.
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 H
p p

r r0
1
2

2
2

1 22 2
1 1

= + − −






 (10.72)

and the perturbing Hamiltonian is

 ′ = + − −H
R r r rA B

1 1 1 1
 (10.73)

From Figure 10.5 we see that

 
r R r
r R r
r R r r

A

B

= +
= − +
= + −

2

1

2 1

 

Hence

 ′ = +
+ −

−
+

−
−

H
1 1 1 1

2 1 2 1R R r r R r R r
 (10.74)

Now we use the expansion ( ) /1 1 31 2 2+ = − + −−x x x/2 /8  to write

 

1 1

1
2

1 1
2

3

2 2
2

2
2

2

2

3 5 2
2

R r r R

r R
r R

+
=

+ +

= − + ( ) −

R
R

r
R

R R R





           R r2
2
2



 −

 

with similar expressions for 1 2 1R r r+ −  and 1 1R r− . Thus (10.74) becomes

r

R

e1

e2

p2p1

r1

r2
rA

rB

 Figure 10.5 Diagram of coordinates for calculation of van der Waals interaction between two hydrogen atoms.

 

 

 

 

 

 



Applications of Perturbation Theory242

 

′ =

+ −
−( )

+ −( )  − −( ){ }
H

R

R R R
R

1

1 1
2

32 1

3 5 2 1

2 2
2 1

2
    

 

r r R
r r R r r





   

    

− + − ( ) −





− − −

1 1
2

3

1 1
2

3

2

3 5 2
2 2

2
2

1

3 5

R R R
R r

R R R

r R
r R

r R
r







1
2 2

1
2

R( ) −



R r

 

This expression simplifies considerably because a number of terms cancel. Choosing the z-axis 
along R, we obtain to sufficient accuracy

 ′ =
+ −

H
x x y y z z

R
1 2 1 2 1 2

3

2
 (10.75)

Because the zero-order wave function is ψ0 1 1 1 2= ( ) ( )u us sr r , the first-order energy shift due to 
(10.75) is

 ∆E
R

u x u u y u u z us s s s s s
( )1

3 1 1

2

1 1

2

1 1

21
2 0= + −



 =  

which vanishes because x, y, and z are odd-parity operators. Hence we must go to second 
order; that is,

 ∆E
n H

E Enn

( )2
0

2

0

=
−∑
′ ψ

 (10.76)

In (10.76), the states n  are all the bound and continuum states for which each H atom has  = 1.  
Thus, whereas E0 1= − − = −1/2 1/2 , En = − − = −1/8 1/8 1/4 if  both atoms are in the 2p state, 
En = − −1/8 1/18 if  one is in 2p and the other is in 3p, and so forth. Hence En ≥ −1/4 for all n in 
(10.76); consequently,

 ∆E n H
n

( )2
0

24
3

≥ − ′∑ ψ  

Although this last sum is carried over all p states of both atoms, it can be extended to all eigen-
states of H0 because for states other than p states of both atoms, the matrix elements are zero. 
Thus, by completeness, we obtain

 ∆E H( )2
0

2
0

4
3

≥ − ′ψ ψ  (10.77)

From (10.75), we have

 ′ = + + +[ ]H
R

x x y y z z2
6 1

2
2
2

1
2

2
2

1
2

2
21

4 cross-terms  
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The cross-terms contribute nothing to the matrix element in (10.77). Also,

 x y z r2 2 2 21
3

= = =  

Therefore, (10.77) yields

 ∆E
R

r( )2
6

2 24
3

6
9

≥ −  (10.78)

For the 1s state of hydrogen, r2 3= . Hence we arrive at

 ∆E
R

( )2
6

8
≥ −  

or in hlu

 ∆E
e a

R
( )2

2
0
5

6
2≥ −

π
 (10.79)

Also, it can be shown by a straightforward but tedious variational calculation that

 ∆E
e a

R
( ) .2

2
0
5

6

1 625
≤ −

π
 (10.80)

Finally, we remark that a person ignorant of quantum mechanics but with a knowledge of 
classical electricity and magnetism and acquainted with the fact that atoms experience a weak 
long-range van der Waals attraction might conclude that the latter is a new fundamental force 
of nature. Of course, we can see clearly with the aid of quantum mechanics that the van der 
Waals interaction is not really fundamental but is a residual higher-order manifestation of the 
Coulomb interaction. There is an analogous situation in nuclear physics. In 1935, long before 
the quark model and quantum chromodynamics appeared on the scene, H. Yukawa proposed 
that the exchange between nucleons of what we now know are pi mesons is the fundamen-
tal interaction that binds nucleons together in a nucleus. These days, however, we know that 
the Yukawa interaction is a higher-order manifestation of something more fundamental: the 
exchange of gluons between quarks.

Problems for Chapter 10

10.1. The deuterium atom ground state is 12
1 2S / . The nuclear spin is I = 1, and the nuclear 

magnetic moment is 0.857438 nuclear Bohr magnetons. Calculate the hyperfine splitting and 
Zeeman energies of all magnetic sublevels F and mF in an external magnetic field of 200 G. 
Please give numerical results.

10.2. The sodium atom ground state is 32
1 2S / . The nuclear spin of the only stable isotope  

(A = 23) is I = 3/2, and the nuclear magnetic moment is 2.2175 nuclear Bohr magnetons. The 
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hyperfine splitting in the ground state is 1,772 MHz. Calculate the Zeeman energies of all 
 magnetic sublevels F and mF in an external magnetic field of 500 G. Please give numerical 
results.

10.3. The bound system of one electron and one positron is called positronium. It is a hydrogen-
like atom in which the positron takes the place of the proton. Positronium differs from normal 
hydrogenic atoms in several ways:

The reduced mass is •	 µ = me /2.
The spin magnetic moment of the positron is exactly equal in magnitude but opposite in sign •	
to that of the electron, whereas the typical nuclear magnetic moment is approximately 1,000 
times smaller.
The electron and positron can annihilate each other, yielding two (singlet ground state) or •	
three photons (triplet ground state). The lifetimes for these annihilation processes in zero 
external magnetic field are

 
τ
τ
= ×
= ×

−

−

1 25 10
1 4 10

10
0

7
1

.

.
 s  state

 s            state

1

3

S
S

 

The triplet and singlet states are separated by a fine-structure splitting

 ∆expt  Hz= ×2 034 1011.  (1)

(a) There are two contributions to the theoretical value of this splitting:

 ∆ ∆ ∆theo = +1 2  

∆1 arises from the usual “contact” interaction and is given by Fermi’s formula. ∆2 has no ana-
logue in ordinary atomic physics. It arises from the fact that the electron and positron can anni-
hilate one another, and its explanation thus requires quantum electrodynamics. It can be shown 
that the effective Hamiltonian yielding ∆2 is

 H
e

m ce
Sann. =







( )2
2

1
3π δ δ

r  (2)

Here δS1 is a Kronecker delta that vanishes unless the positronium is in the triplet state. Employ 
(2) and the Fermi formula to calculate ∆ , and compare your result with ∆expt in (1).
(b) Calculate the Zeeman effect of the fine structure, and find the spin function for each of the 
magnetic substates as a function of magnetic field B. Also show how the lifetime of each of the 
sublevels is modified at B = 104 G. Please give numerical results.

10.4. Figure 10.6 shows the ground 62
1 2P /  and excited 72S1/2 states of the 205Tl atom (nuclear 

spin I = 1/2). The hyperfine splittings a a and ′  within these states are also shown. Figure 10.6 
is not to scale: actually, a E/∆ = × −2 6 10 5.  and ′ = × −a E/∆ 2 6 10 6. . Of course, the thallium atom 
has other levels as well, but in this problem we assume that the levels shown in Figure 10.6 are 
the only relevant ones.
(a) Suppose that an electric field E = E0 ẑ  is applied to this atom in its ground state. Explain 
why the 6 12

1 2P F/ , =  states mF = −1 0 1, , and  undergo the Stark shifts indicated in Figure 10.7. 
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In particular, give an estimate of the ratio of the “tensor” Stark shift to the “scalar” Stark shift, 
that is, the ratio ′δ δ/ .
(b) Now suppose that in addition to the electric field E, a weak magnetic field B = +B z B yz yˆ ˆ  
is applied. Assume that B By z  and that we can ignore the very small Zeeman shift in the 
F mF= =1 0,  level (which is proportional to Bz

2). Show that the difference between the energies 
of the F mF= = ±1 1,  levels is

 λ λ
δ+ −− = +

− ′





+2 11

2
2

1
2 2

k
k

k ’
small terms  (1)

where k B k BB z B y1 23 3 2= =µ µ, ,  and we assume that k k2
2

1
2 2 1− ′δ  .

10.5. This problem is concerned with the “no-crossing” theorem. Consider a zeroth-order 
Hamiltonian H0 with orthonormal eigenstates u u1 2, ; that is,

 
H u E u

H u E u
0 1 1 1

0 2 2 2

=
=

 

a'

a

∆E

F=1

F=0

F=1

F=0

72  P1/2

62  P1/2

 Figure 10.6 Energy level diagram for the thallium atom, not to scale.

= 0                                                           0

F=1

m=–1 m=0 m=1 m=–1 m=0 m=1

'

 Figure 10.7 Quadratic Stark effect in the hfs of the ground state of thallium (not to scale).
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We now impose a perturbation V(x) that depends on a single continuous real parameter x. 
When V is present, the total Hamiltonian is

 H H V x= +0 ( )  (1)

and

 H u E u=  (2)

where

 u c x u c x u= ( ) + ( )1 1 2 2  (3)

(a) Take the scalar product of both sides of (2) with u u1 2 and with . The resulting two linear 
equations possess a solution only if  a certain determinant vanishes. From this, show that one 
obtains two possible energies

 E E E V V E E V V V± = + + +( ) ± − + −( ) +
1
2

1
2

41 2 11 22 1 2 11 22
2

12
2

 (4)

where V V u V u i jij ji i j= = =* , , , . with 1 2  Equation (4) says that there are two separate ener-

gies that become the same (level crossing) when the discriminant vanishes. Now both the terms 
inside the square root are nonnegative; hence level crossing can occur only if  both terms vanish 
simultaneously. Because we have only one parameter x, it is in general impossible to achieve 
this. However, it may happen that V12  vanishes identically because u u1 2 and  have differ-
ent symmetries. In this case, the discriminant in (4) can vanish for some value of x, and level 
crossing can occur.
(b) As an example of the foregoing, consider the Zeeman effect of the hyperfine structure of 
an atom with nuclear spin I J= =3 1/2 and .  Assume that the nuclear magnetic moment is 
positive and very small compared with the electronic magnetic moment. Sketch the Zeeman 
energy-level diagram schematically (not necessarily to scale) but show the correct ordering of 
the energy levels for the following cases:

External magnetic field •	 B = 0

•	 µJ B   hyperfine energy

•	 µ µI JB B  hyperfine energy 

•	 µI B  hyperfine energy

What implications does the result of part (a) have for your diagram?
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11.1 Identical particles in classical and quantum mechanics

All electrons have the same intrinsic properties: mass me, charge –e, spin s =1/2, and spin mag-
netic moment μ. Except for their trajectories and spin orientations, different electrons are iden-
tical and cannot be distinguished in any way. If  classical mechanics governed the motion of 
electrons, the fact that they are identical would not be important because the trajectory of each 
and every electron (i.e., its position and momentum) could be specified perfectly, at least in 
principle. Thus, for example, in a collision between two electrons, we could follow each parti-
cle’s trajectory and keep track of them separately.

However, in quantum mechanics, this is not always possible because there is no such thing as 
a precisely defined trajectory. Instead, we can only specify the wave function of a group of iden-
tical electrons. As a result, unless the electrons are well separated spatially, the fact that they 
are identical has very significant consequences. Of course, the same remarks hold for protons, 
neutrons, and any other type of identical particles.

11.2 Symmetric and antisymmetric wave functions

Consider two identical particles with coordinates r1, r2 (these coordinates could include spin) 
and wave function ψ r r1 2,( ). Let us exchange the particles by employing a permutation operator 
P12; that is,

 P12 1 2 2 1ψ ψr r r r, ,( ) = ( )  (11.1)

Because P I12
2 = , the operator P12 has the following properties:

 P P P12 12 12
1= = −†  (11.2)

Any observable A associated with the two identical particles must be symmetric in the vari-
ables that describe these particles, and A therefore must be left invariant under the exchange 
of particles. Otherwise it would be possible to distinguish between the two particles, and they 
would not be identical. An example of a symmetric observable is the following Hamiltonian:

 H
m

V0
1
2

2
2

1 22 2
= + + −( )p p

r r
m

 (11.3)

Identical Particles11
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A convenient way to state that any observable A is left invariant under the exchange is to say 
that A commutes with P12; that is,

 P A P A12 12
11 2 1 2( , ) ( , )− =  (11.4)

Now suppose that ψ r r1 2,( ) satisfies the Schroedinger equation

 H E( , ) , ,1 2 1 2 1 2ψ ψr r r r( ) = ( )  (11.5)

where the Hamiltonian H is not necessarily H0 in (11.3). Applying P12 on the left to both sides 
of (11.5) and using (11.4) with A = H, we have

 H E( , ) , ,1 2 2 1 2 1ψ ψr r r r( ) = ( )  (11.6)

From (11.5) and (11.6), we see that ψ r r1 2,( ) and ψ r r2 1,( ) are both eigenfunctions of H(1,2) 
corresponding to the same eigenvalue E. Hence these two wave functions are either linearly 
independent and thus degenerate or else ψ ψr r r r1 2 2 1, ,( ) = ( )c , where c is a constant. In the latter 
case, we can exchange the two particles once again to obtain

 ψ ψ ψr r r r r r2 1 1 2
2

2 1, , ,( ) = ( ) = ( )c c  

which implies that c2 = 1 and thus c = ±1. Let u( , )r r1 2  be an unsymmetrized solution to (11.5). 
When c = +1, we have the symmetric solution

 ψ S u u= +[ ]1

2
1 2 2 1( , ) ( , )r r r r  (11.7)

and when c = −1, we have the antisymmetric solution

 ψ A u u= −[ ]1

2
1 2 2 1( , ) ( , )r r r r  (11.8)

and these are the only nondegenerate solutions to (11.5).
Suppose instead that we have N > 2 identical particles. Once again, any observable A per-

taining to these particles, including the Hamiltonian H, must be symmetric under any number 
of particle pair exchanges. Now N particles can be permuted in N! ways, including the iden-
tity permutation, and each permutation is equivalent to a succession of pair exchanges, there 
being N!/2 even and N!/2 odd permutations corresponding to even and odd numbers of pair 
exchanges, respectively. From an unsymmetrized N-particle eigenfunction u N( , ,..., )r r r1 2  we can 
construct the symmetric wave function

 ψ S i N
i

N

N
u P= ( ) 

=
∑1

1 2
1!

, ,...,
!

r r r  (11.9)

and the antisymmetric wave function

 ψ εA i i N
i

N

N
u P= ( ) 

=
∑1

1 2
1!

, ,...,
!

r r r  (11.10)
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where εi = ±1 for even and odd permutations, respectively. Among the N! different orthogonal 
linear combinations of the u Pi Nr r r1 2, ,...,( ) , only ψ ψS A and  are nondegenerate solutions.

It is an extremely important experimental fact, with no known exceptions, that if  the identi-
cal particles have integral spin, the wave function is always symmetric with respect to exchange, 
whereas if  the particles have half-integral spin, the wave function is always antisymmetric. In 
the former case, the particles obey Bose-Einstein statistics (and are called bosons); in the latter 
case, they obey Fermi-Dirac statistics and are called fermions.

The time-dependent many-particle Schroedinger equation

 H iψ ψ= 

  (11.11)

ensures that a solution with one type of symmetry at some initial time preserves that sym-
metry at later times because, given that H is exchange symmetric, ψ  has the same exchange 
symmetry as ψ.

The connection between spin and statistics is not just empirical. Pauli (1940) completed 
the work begun by others when he demonstrated that the spin-statistics connection must 
hold given certain very reasonable assumptions in conventional Lorentz-invariant  relativistic 
 quantum-field theory. (Actually, Pauli showed that given these assumptions, an exchange-
 symmetric wave function made up of identical fermions would lead to a contradiction, as 
would an exchange antisymmetric wave function composed of identical bosons.) No one has 
yet found a convincing argument based only on nonrelativistic quantum mechanics and simple 
reasoning to arrive at this profound result.

11.3 Composite bosons and composite fermions

Consider the 2
4 He nucleus, which consists of two protons (Z = 2) and two neutrons (N = 2). 

Given two such nuclei, we can exchange them by exchanging one proton and one neutron at a 
time. Because this involves an even number of identical fermion exchanges, the wave function 
for two 2

4 He nuclei is symmetric, and the 2
4 He nucleus is thus a composite boson. On the other 

hand, an 2
3 He nucleus is a composite fermion. The argument is easily extended to a neutral 

atom with atomic number Z and mass number A. If  Z is even and A is odd or vice versa, the 
atom is a composite fermion, but if  Z and A are both even or both odd, the atom is a compos-
ite boson. For example, the neutral atoms 1

1 3. ,H  2
4 He, 37 11

23
37

85 87
55

133Li  Na  Rb  and Cs, , ,,  are bosons, 
whereas 12 H, 2

3 He  and Li,3
6,  are fermions.

11.4 Pauli exclusion principle

Suppose that in a certain approximation we can ignore the interactions between N identical 
fermions. Then the Hamiltonian reduces to a sum of one-particle Hamiltonians of identical 
functional form; that is,

 H H H H N N= ( ) + ( ) + + ( )0 1 1 0 2 2 0p r p r p r, , ,  (11.12)
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For example, if  we could ignore the Coulomb interactions between N electrons in an ion of 
nuclear charge Ze, the Hamiltonian would be

 H
m

Ze
r m

Ze
r m

Ze
re e

N

e N

= −





+ −





+ + −




p p p1
2 2

1

2
2 2

2

2 2

2 2 2



 

When the Hamiltonian can be expressed as in (11.12), a particular solution to the Schroedinger 
equation before antisymmetrization can be written as a product of one-particle eigenstates of 
H0; that is,

 u w w wq q q NN
= ( ) ( ) ( )

1 21 2r r r  (11.13)

where ri is a “coordinate” label (which can include spin) for the ith electron, and the qi , i = 1, 
…, N, label the quantum numbers of the one-particle wave function w (the latter is frequently 
called a one-particle orbital). Antisymmetrizing by inserting (11.13) in (11.10), we obtain

 ψ =

( ) ( )
( ) ( )

( ) ( )

1
1 1

2 2

1

1

1

N

w w

w w

w w

q q N

q q N

q q NN N

!

r r

r r

r r

 

 

   

 

 (11.14)

This is frequently called a Slater determinant, although Dirac first described the expression in 
(11.14). Because a determinant always vanishes if  two rows or two columns are equal, we see 
that the orbitals must be distinct if  ψ is to be nonzero; that is, no two single-partical orbitals w 
can have the same quantum numbers, including spin. This is the Pauli exclusion principle (which 
was actually discovered by W. Pauli at the end of 1924, one year before the invention of wave 
mechanics.) We emphasize that the exclusion principle only has meaning in the approximation 
where interactions between identical fermions can be neglected, whereas the antisymmetriza-
tion principle for identical fermions as embodied in (11.10) has a more general meaning. No 
restriction analogous to the Pauli principle applies for bosons. An unlimited number of bosons 
with the same single-particle quantum numbers are possible. For example, an arbitrarily large 
number of noninteracting photons can exist in the same electromagnetic field mode, so a mono-
chromatic radio wave can have arbitrarily large intensity.

11.5 Example of atomic helium

We now consider some features of atomic helium that illustrate the antisymmetrization princi-
ple as well as other points of interest. Figure 11.1 shows several bound states of neutral helium 
(HeI) as well as the ground state and ionization limit of He+ (HeII).

We now write the Hamiltonian for the two electrons in HeI in the approximation where the 
nucleus has infinite mass and we ignore relativistic effects and magnetic interactions between 
the electron spins; that is,
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 H
Z
r

Z
r

= − ∇ − ∇ − − +
−

1
2

1
2

1
1
2

2
2

1 2 1 2r r
 (11.15)

We regard

 H
Z
r

Z
r0 1

2
2
2

1 2

1
2

1
2

= − ∇ − ∇ − −  (11.16)

as a zeroth-order Hamiltonian and treat

1s2s

–2.90365

–2.14597

1s3s
–2.06127

–2.00

0.00

He  II

He I

1 2s1/2

1S0

1S0

1S0

3S1

1P1

1P1

3S1

3P2,1,0

3P2,1,0

1s3p

1s3s 
–2.06869

1s3p

1s2p
–2.12383

1s2p
–2.133165

1s2s 
–2.17523

1s2

 Figure 11.1 Some energy levels of atomic helium (not to scale). Following the customary notation, we write HeI for neutral helium and HeII for He+. 
Energies are given in atomic units; thus the 12s1/2 ground state of HeII has energy E = –Z2/2 = –2.00. The bound states of HeI form two 
independent systems, singlet and triplet, with no allowed intercombination transitions between them.
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 ′ =
−

H
1

1 2r r
 (11.17)

as a perturbation. The zero-order unsymmetrized wave function for the ground state is

 
u s w w

s s

0
2

1 1 2 2

1 1 1 1 2 2

1( ) = ( ) ( )
= ( ) ( )

r r

r r            φ χ φ χ

 

where χ1 2,  are spinors for electrons 1 and 2, respectively. Because the spatial parts φ of  the 
single-particle orbitals w are the same, the Pauli principle requires the spinors χ1 2,  to be differ-
ent. Thus the antisymmetrized ground-state zero-order wave function is

 ψ φ φ α β α β
0 0

2
1 1 1 2

1 2 2 11
2

= ( ) = ( ) ( ) −
u s s sr r  (11.18)

In (11.18), the spin function is in fact the J = 0 combination of two electrons with spin-½; 
hence the ground state of HeI is a 1 0S  state. The zero-order energy of this state is

 E s
Z Z

Z0
2

2 2
21

2 2
4( ) = − − = − = −  (11.19)

However, the experimentally determined energy is Eexpt(1s2) = –2.90365. We account for this 
large discrepancy shortly.

Several excited states of HeI are also shown in Figure 11.1. These are labeled by their config-
uration (1s2s, 1s2p, 1s3s, …) and by the usual spectroscopic notation for angular momentum 
(1S0, 3S1, 3P2,1,0, …). Note that these energy eigenstates of HeI form two independent systems: 
singlet and triplet. There are no allowed intercombination transitions between these systems. 
Note also that for a given configuration, a triplet level always lies lower in energy than the cor-
responding singlet level, and the energy difference is roughly three orders of magnitude larger 
than would be expected as a result of the magnetic interaction between electron spins. For 
example, 1s2s 3S1 lies lower than 1s2s1S0 by 0.797 eV = 0.0293 atomic units. On the other hand, 
the spin-spin magnetic energy is crudely estimated as

 ∆E B
r r

B
mag   µ µ µ µ

1 21
1 2

3

2

3
 

In atomic units, µ αB
2 2= /4 and r ~ 1; hence ∆Emag /4 α 2 51 3 10. × − . The actual cause of the 

very large singlet-triplet splitting is an effect of crucial importance for all of atomic and molec-
ular physics and for many aspects of condensed-matter physics as well. In what follows, we set 
ourselves two goals:

Calculation of the (1•	 s2 1S0) ground-state energy with reasonable accuracy, and
Explanation for the large singlet-triplet energy splittings.•	

 

 

 

 

 

 

 

 



11.6 Perturbation-variation calculation of the ground-state energy of helium253

11.6 Perturbation-variation calculation of the  
ground-state energy of helium

From (11.16), the first-order energy shift is
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where θ  is the angle between r1 and r2. Thus
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 (11.20)

Because P d
 0 02

π
θ θ θ δ∫ ( ) =cos sin , (11.20) becomes

 ∆E s Z r e dr r e dr r eZr
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 (11.21)

By exchanging the dummy variables r1 and r2, the second double integral on the right-hand side 
of (11.21) can be written

 I Z r e dr r e drZr

r

Zr
2

6
1
2 2

1

0

2
2

216 1

1

2= −
∞ ∞

−∫ ∫  (11.22)

It is clear from Figure 11.2a that I2 in (11.22) is obtained by integrating along a given vertical 
strip and then adding up the strips, but this is equivalent to integrating along a horizontal strip 
as in Figure 11.2b and then adding up these strips as we do in the first double integral (I1) on 
the right-hand side of (11.21). Therefore, I1 = I2, and
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 (11.23)

Combining (11.23) with (11.19) for Z = 2, we obtain

 E E0
1 4

5
4

11
4

2 75+ = − + = − = −∆ ( ) .  (11.24)

Because Eexpt = –2.904, ∆E ( )1  is too large a correction. The result (11.24) is improved by using 
the variational method. For the ground state of helium, we choose the trial function

 ψ λ
π

λ= − +( ) 
3

1 2exp r r  (11.25)

where λ, the effective nuclear charge, is now considered a variable parameter. This is physically 
reasonable because one electron experiences not only the nuclear charge but also the charge of 
the other electron. From (11.25), we find

 H H H Z= + ′ = − +0
2 2

5
8

λ λ λ  (11.26)

Hence

 
∂
∂

= − +
H

Z
λ

λ2 2
5
8

 

which vanishes for λ = −Z 5/16. Inserting this value in (11.26), we obtain

r2 r2

r1 r1

a) b)

 Figure 11.2 Diagrams (a) and (b) illustrate two different ways to evaluate the double integral I2 in equation (11.22).
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 H Z= − −





5
16

2

 (11.27)

For helium (Z = 2), this result, namely,

 H
helium

= − −





= −2
5

16
2 8477

2

.  (11.28)

is much closer to the experimental value than our original approximation (11.24). The varia-
tional method can be improved further by using a more complicated wave function with more 
parameters; for example, see Problem 11.1. The most sophisticated variational calculations of 
the helium ground-state energy yield results that differ from experiment by less than 1 ppm [see, 
e.g., Kinoshita (1957) and Peckeris (1958)].

The approximation (11.27) improves as Z increases for helium-like ions with Z > 2, as can 
be seen in Table 11.1.

In the case of the hydrogen negative ion H– (Z = 1), our calculation (11.27) yields

 H = − −





= −1
5

16
0 4726

2

.  

This is more positive than the ground-state energy of a neutral H atom and an electron at ∞, 
which is –1/2. Thus our simple variational calculation suggests that H– has no bound state, but 
experiment shows that a bound state actually exists: E = –0.528. To reveal this, we need a better 
trial function with more parameters (Bethe and Salpeter 1957, p. 154). Also see Problem 11.1. 
Although the variational method yields the most accurate ground-state energy for helium, it 
does not provide us with the best ground-state wave function. Here it is better to use Hartree’s 
self-consistent field method (see Section 12.2).

11.7 Excited states of helium: Exchange degeneracy

We now consider the 1s2s configuration, ignoring at first the Coulomb perturbation H′ of  
(11.17). From the exclusion principle, the zeroth-order wave functions take the general form

Table 11.1 Binding energy of the last electron in various helium like ions,  
calculated from equation (11.27).

Ion Z Binding Energy of Last Electron, eV

Calculated Observed

He 2 23.3 24.5
Li+ 3 74.1 75.6
Be2+ 4 152.2 153.6
C4+ 6 390 393
O6+ 8 737 738
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 ψ
φ χ φ χ
φ χ φ χ

=
1

2

1 2

1 2
1 11 1 12

2 21 2 22

s s

s s

( ) ( )

( ) ( )
 (11.29)

where χ12 means “spinor 1 for electron 2,” and so forth. Because in each case the spinor can be 
α β or , there are four degenerate Slater determinants:

 

ψ φ α φ α
φ α φ α

φ φ φ

1
1 1 1 2

2 1 2 2

1 2 2

1

2 1 2

1 2

1

2
1 2

=

= −

s s

s s

s s

( ) ( )

( ) ( )

( ) ( )   s s( ) ( )1 21 1 2φ α α[ ]
 (11.30)

 ψ φ φ φ φ β β2 1 2 2 1 1 2
1

2
1 2 1 2= −[ ]s s s s( ) ( ) ( ) ( )  (11.31)

 

ψ φ α φ α
φ β φ β

φ φ α β

A
s s

s s

s s

=

=

1

2 1 2

1 2

1

2
1 2

1 1 1 2

2 1 2 2

1 2 1

( ) ( )

( ) ( )

( ) ( )   2 2 1 1 21 2−[ ]φ φ β αs s( ) ( )

 (11.32)

 ψ φ φ β α φ φ α βB s s s s=
1

2
1 2 1 21 2 1 2 2 1 1 2( ) ( ) ( ) ( )−[ ]  (11.33)

However, because any linear combination of degenerate eigenfunctions is another eigenfunc-
tion corresponding to the same eigenvalue, we are free to replace ψ ψA B and  by the linear 
combinations

 
ψ ψ ψ

φ φ φ φ α β β α

3

1 2 2 1 1 2 1 2

1

2
1 2 1 2

2 2

= +( )

=
−[ ] +[ ]

A B

s s s s   
( ) ( ) ( ) ( )

 (11.34)

and

 
ψ ψ ψ

φ φ φ φ α β β α

4

1 2 2 1 1 2 1 2

1

2
1 2 1 2

2 2

= −( )

=
+[ ] −[ ]

A B

s s s s   
( ) ( ) ( ) ( )

 (11.35)

We see from (11.30), (11.31), (11.34), and (11.35) that ψ1 2 3, ,  form three components of a J = 1 
(triplet) system with antisymmetric spatial wave function and symmetric spin functions. On the 
other hand, ψ 4 is a J = 0 (singlet) state with antisymmetric spin function and symmetric spatial 
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function. Of course, in each case, the total wave function including space and spin variables is 
antisymmetric.

We now include the electron-electron Coulomb interaction H′, a perturbation that lifts the 
degeneracy. Our choice of ψ1 2 3 4, , ,  as a basis is fortunate because the perturbation matrix is diag-
onal in this representation. In fact, ′ = −H r12

1 does not affect spin variables, so the triplet terms 1, 
2, 3, which all have the same spatial wave function, remain degenerate. We have

 ψ ψ φ φ φ φ1 2 3 12
1

1 2 3 12
1

1 2 1 2

2
31

2
1 2 2 1, , , , ( ) ( ) ( ) ( )r r ds s s s

− −= −[ ]∫∫ r1 3
2d r  (11.36)

and

 ψ ψ φ φ φ φ4 12
1

4 12
1

1 2 1 2

2
3

1
3

2
1
2

1 2 2 1r r d ds s s s
− −= +[ ]∫∫ ( ) ( ) ( ) ( ) r r  (11.37)

These can be written as

 ψ ψ1 2 3 12
1

1 2 3, , , ,r J K− = −  (11.38)

and

 ψ ψ4 12
1

4r J K− = +  (11.39)

where J (the Coulomb integral) and K (the exchange integral) are given by

 J r d ds s= ∫∫ −φ φ1
2

2
2

12
1 3

1
3

21 2( ) ( ) r r  (11.40)

and

 K r d ds s s s= ∫∫ −φ φ φ φ1 2 12
1

1 2
3

1
3

21 1 2 2( ) ( ) ( ) ( ) r r  (11.41)

Obviously, J is always positive, but K is also positive, as can be seen from the following: let 
ρ φ φ= 1 2s s. Then

 K d d
r

= ∫ ∫τ ρ τ ρ
1 2

12

1
2

( )
( )

 (11.42)

Now consider any potential function Φ  that satisfies Poisson’s equation, which in hlu is,

 ∇ = −2Φ ρ  (11.43)

Then, as we know from electrostatics, a formal solution to (11.43) is

 Φ( )
( )

1
1

4
2

2
12

= ∫π
τ ρ

d
r

 

Hence (11.42) can be written
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 K d d= = − ∇∫ ∫
1

4
1 1

1
41

2
1π

ρ τ
π

τ( ) ( )Φ Φ Φ  

Integrating the last expression by parts, we obtain

 K d d= ∇ ∇ − ∇ ∇( )∫ ∫
1

4
1

41 1π
τ

π
τΦ Φ Φ Φ   (11.44)

The first integral on the right-hand side of (11.44) is obviously positive. The second integral 
may be converted to a surface integral by Gauss’ theorem, and it vanishes because ρ → 0 rap-
idly as r1 →∞.

Evaluations of J (11.40) and K (12.41) proceed by techniques similar to those already 
employed to arrive at (11.23). A straightforward (and naive) calculation using hydrogenic 
orbitals for φ φ1 2s s,  yields

 K = 





=
4

27
0 0219

2

.  atomic unit  

and thus a 1
0

3
1S S−  splitting of 2 0 0438K = .  atomic unit As we have noted, the actual split-

ting is 0.0293 atomic unit. Thus our naive calculation is not very accurate; it overestimates 
the effect by a factor of approximately 1.5. However, it gives the correct order of magnitude, 
and this is the important point here: the calculation reveals the qualitative explanation for the 
large singlet-triplet splitting. The latter arises from the Coulomb repulsion between the two 
electrons. Because the singlet state has a symmetric spatial wave function, the electrons can get 
close together, whereas in the triplet case, the spatial wave function is antisymmetric, and the 
electrons are kept far apart. Thus the Coulomb repulsion energy is higher for the singlet state. 
In other words, although the actual spin-spin magnetic dipole interaction energy is very small, 
the Pauli principle generates a very strong effective spin-spin interaction through the Coulomb 
interaction, even though there are no spin operators in the Hamiltonian (11.15). Similar con-
siderations are important for understanding complex atoms, covalent molecular bonding, the 
stability of metals, and ferromagnetism.

11.8 Matrix elements of determinantal wave functions

In previous sections we have used the conventional language of many-particle wave functions 
to introduce some very important concepts: the antisymmetrization principle for identical fer-
mions, the related Pauli principle, and exchange degeneracy. Unfortunately, continued use of 
this conventional language for real calculations with many identical fermions can be very cum-
bersome, especially when we encounter a macroscopic number of fermions, as often occurs in 
astrophysics or condensed-matter physics. Moreover, in relativistic phenomena involving, for 
example, electrons and positrons, we frequently meet situations in which particles are created 
and destroyed. The conventional language of many-particle antisymmetrized wave functions is 
not well suited to such situations.
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There exists an alternative language, called second quantization, that involves no new phys-
ical principles but merely requires a change in notation. This permits a radical simplification 
of many calculations and lends itself  very well to situations where many particles are involved 
and/or where particles are created and destroyed. (We put the word merely in italics because 
notation is important: it can affect our thinking in profound ways.)

As a preparation for discussing second quantization, it is useful to obtain some general 
results concerning matrix elements of operators between Slater determinants. [We have already 
seen equations (11.36) and (11.37), which are specific examples.] Consider the general matrix 
element

 M F d dB A N= ∫ψ ψ† x x1  (11.45)

where F is some operator, xi  denotes the space-spin coordinates of the ith fermion, and ψ A B,  
are two Slater determinants; that is,
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Note that in ψ A we permute the quantum numbers, whereas in ψ B  we permute the particle 
coordinates. We assume that the individual orbitals are orthonormal; that is,

 u u dxi j ij
†∫ ( ) ( ) =x x δ  

and similarly for the wi. Insertion of the preceding expressions for ψ A B,  in (11.45) yields
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1 1

ε
 (11.46)

where each sum has N ! terms. On the right-hand side of the second line of (11.46) we set j = Qi 
in the product over j. This is legitimate because Qi runs over all N when i does. Hence
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    u Q Fw Q di i PQi
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* x x x( ) ( )
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∏

1

 (11.47)

Now ε ε εQ P PQ= , Q ix  is a dummy variable, and F, like all observables, is symmetric in the fer-
mion coordinates. Hence we can label the coordinates as follows:

 Q i ix x→  (11.48)
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Note that the quantum-number labels are not affected in (11.47) when we make the name 
change for the coordinate dummy variables. Also, we can sum over all permutations PQ for 
given Q, thus covering all permutations P. Therefore,

 M
N

u Fw dPQ i i PQi i i
i

N

PQQ

= ( ) ( )









=
∏∫∑∑1

1!
*ε x x x  (11.49)

The quantity in square brackets on the right-hand side of (10.49) is independent of Q; hence 
we have N! identical terms in the sum over Q. Therefore, M can be written

 M u Fw dP
P

i
i

N

i Pi i i= ( ) ( )∑ ∏∫
=

ε *

1

x x x  (11.50)

where we have relabeled PQ with P.
For almost all applications, F takes one of three possible forms:

1. F = 1. Here F = 0 because of orthogonality of the single-particle orbitals unless there 
exists a permutation P such that u wi Pi=  for all i. This can happen for only one permutation 
P, and we can order the w’s so that it is the identity permutation. In this case, F = 1. We 
assume in what follows that the w’s are ordered in this way.

2. F f j
j

N

=
=
∑

1

, where fj is a one-body operator acting on the fermion with coordinate xj. For 

example, f j could be the kinetic energy operator f j j= − ∇1
2

2. It is straightforward to obtain 
the following results:

 If  u wi i≠  for more than one i ,

 F = 0  (11.51)

 If  u wi i≠  for just one i  but u wj j=  for all j i≠ , then

 F i f i u fw di i= = ∫ † ( ) ( )x x x.  (11.52)

 If  u wi i=  for all i , then

 F i f i
i

= ∑  (11.53)

3. F g i j
i j

=
>
∑ ( , ) is a two-body operator, where, for example, g i j e i j,( ) = −( )2 4π x x  is the 

electrostatic interaction between electrons i and j. Because in all cases an observable is sym-
metric with respect to exchange of any pair of fermions, we always have g i j g j i( , ) ( , )= ,  
whether or not F is the electrostatic interaction. The following results are obtained quite 
easily:

 If  u wi i≠  for more than two i,
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 F = 0  (11.54)

 If  u w u w u wi i j j k k≠ ≠ = and but   for all k except i j, , then

 F ij g ij ij g ji= −  (11.55)

where

 ij g mn u u g w w d di j m n= ( )∫∫ † †( ) ( ) , ( ) ( )x y x y x y x y  (11.56)

If  for a single i , u wi i≠  but for all j i u wj j≠ =,  , then

 F ij g ij ij g ji
j i

= − 
≠
∑  (11.57)

where the sum is over all values of j except j i= . 
If  u wi i=  for all i,

 F ij g ij ij g ji
i j

= − 
<
∑  (11.58)

where the sum is over all pairs.

11.9 Second quantization for fermions

We begin a discussion of second quantization by recalling that the Hamiltonian for N identi-
cal noninteracting fermions is a sum of single-particle Hamiltonians identical in form, as in 
(11.12); that is,

 H H i i
i

N

= ( )
=
∑ 0

1

p x,  (11.59)

A particular antisymmetrized solution to the many-particle Schroedinger equation with this 
Hamiltonian is the Slater determinant

 ψ =

( ) ( )
( ) ( )1

1 1

2 2

1

1

N

w w

w w

w

q q N

q q N

!

... ...

... ...

... ... ... ...

x x

x x

q q NN N
wx x1( ) ( )... ...

 (11.60)

where each of the single-particle orbitals w is normalized to unity. (Although we should be 
aware that a general antisymmetrized solution to the Schroedinger equation for N particles is 
a linear combination of N×N Slater determinants, in what follows we can make the essential 
points by assuming that ψ is just a single Slater determinant.)
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Now consider all the possible distinct single-particle orbitals w (distinct meaning that no two 
of them have exactly the same quantum numbers). We can arrange these orbitals in a list with 
index j = 1, 2, …, K, where each j corresponds to a different set of quantum numbers. Of course, 
this list can be infinitely long: K = ∞. Each Slater determinant ψ can be expressed as follows:

 ψ ψ= ( )x x x1 2 1 2, ,..., ; , ,...,N Kn n n  (11.61)

where the numbers nj (with j = 1, … , K) are occupation numbers. Each nj has only two possi-
ble values: nj = 1 if  the orbital is occupied, meaning that it appears in the Slater determinant, 
or nj = 0 if  the orbital is vacant, meaning that it does not appear in the Slater determinant. 
For example, suppose that the first, fifth, and sixth orbitals are occupied and all others are 
vacant. Then

 ψ x x x1 2 3

1 1 1

5 51 0 0 0 1 1 0
1

3

1 2 3

1 2, , ; , , , , , , ,...
!

( ) =
( ) ( ) ( )
( ) ( )

w w w

w w w

w w w
5

6 6 6

3

1 2 3
( )

( ) ( ) ( )
 

Clearly, one Slater determinant is distinguished from another by specifying the occupation num-
bers for all the orbitals; we can describe any Slater determinant, no matter how large or small, by 
giving these numbers. In fact, we can think of a Slater determinant as the space-spin representa-
tive of an abstract vector Ψ  in Fock space,1 where Ψ  is specified by the occupation numbers

 Ψ = n n1 2, ,...  

Let us consider the manifold of such vectors in Fock space for all possible values of n n nK1 2, ,..., .  
One such vector is the vacuum state 0 , where all the occupation numbers are 0. We assume 
that this state is normalized to unity; that is, 0 0 1= . Let us also assume that there is a creation 
operator bj

† corresponding to the jth orbital that, when applied to the vacuum state, results in 
the state where nj = 1 and all other occupation numbers are zero; that is,

 b nj j
† 0 1= =  (11.62)

Corresponding to this creation operator, we also assume a destruction or annihilation operator 
bj that performs the reverse function; that is,

 b nj j = =1 0  (11.63)

For comparison, we recall the simple harmonic oscillator creation and destruction operators 
a a† ,and  respectively (see Section 6.13). Those operators satisfy the commutation relation

 a a, †[ ] = 1  (11.64)

For the harmonic oscillator, one defines a number operator N a a= † , and it follows from (11.64) 
that the eigenvalues of N are 0, 1, 2, 3, …. As we see in Chapter 15, the quantum theory of 

1 Named after V. Fock (USSR), who was one of the originators of these concepts in the early 1930s.

 

 

 

 

  

 

 

 

 

 

 

 

 

 



11.9 Second quantization for fermions263

the simple harmonic oscillator is readily adapted to quantization of the various modes of the 
electromagnetic radiation field. Here we define operators a aj j and †, which are destruction and 
creation operators, respectively, for photons in the jth mode. Just as for the single oscillator, 
N a aj j j= †  is the photon number operator for the jth mode, and from the relation

 a aj k j k, ,
†  = δ  (11.65)

it follows that the eigenvalues of N j are 0, 1, 2, 3, …. Thus we can have 0, 1, 2, 3, … photons in 
any given mode. In other words, photons are bosons.

Returning now to our theory of many identical fermions, the operator N b bj j j= †  is also 
interpreted as a number operator, but its eigenvalues can only be 0 or 1. Therefore, the opera-
tors b bj k and † cannot satisfy the algebra given by (11.65). What is their algebra? The solution 
is readily found when we consider the analogy between our present problem and the theory of 
angular momentum for a single particle of spin-1/2. In the latter case, there are two orthonor-
mal states, spin up u  and spin down d , with respect to a z-axis. Also, there is a raising oper-
ator S+  and a lowering operator S−  such that

 

S d u

S u d

S u S d

+

−

+ −

=
=
= = 0

 

In the representation where

 u d= =





= =





α β
1

0

0

1
 

we have

 S S+ −=






=






0 1

0 0

0 0

1 0
 

From this we see the obvious correspondence:

Fermion System  Spin-1/2 System

Occupied orbital ⇔ 1

0





Vacant orbital ⇔ 0

1





bj
†

⇔ S+ =






0 1

0 0

bj ⇔ S− =






0 0

1 0
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It is also easy to verify that

 S S S S I+ − − ++ =  (11.66)

where I is the 2 × 2 identity matrix. From (11.66) we can easily guess that the appropriate alge-
bra for the jth orbital is

 b bj j, †{ } = 1  (11.67)

where {·} stands for anticommutator. We now adopt the following defined rules governing the 
relations between creation and destruction operators for different orbitals:

 

b b

b b

b b

j k jk

j k

j k

,

,

,

†

† †

{ } =
{ } =
{ } =

δ

0

0

 (11.68)

With these definitions, it is possible to translate all the results that are contained in conven-
tional wave-function language into Fock-space form. To this end, we define a fermion field 
operator as follows:

 Φ x x( ) = ( )∑w bα
α

α  (11.69)

as well as the Hermitian conjugate field operator

 Φ† † †x x( ) = ( )∑w bβ
β

β  (11.70)

Any Slater determinant can now be expressed as follows:

 ψ x x x x1 1 1
1

0,..., ; ,...,
!

N K Nn n
N

( ) = ( ) ( )Φ Φ Ψ  (11.71)

Rather than give a general proof of this result, we demonstrate it for the special case of two 
particles where for example, one has the Slater determinant; that is,

 ψ = −[ ]1

2
1 1 2 2 2 1 1 2

!
( ) ( ) ( ) ( )w w w wx x x x  (11.72)

The corresponding Fock-space vector is Ψ = b b2 1 0† † . Thus, from (11.71), we get

 
1

2
0

1

2
0 01 2 1 2 2 1

!
( ) ( )

!
( ) ( )

,

Φ Φ Ψx x x x= ∑w w b b b bα β
α β

α β
† †  (11.73)

However,
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0 0 0 0

0

2 1 2 2 1

2

b b b b b b b bα β α β β

β

δ

δ

† † † †= −( )
=                      δ δ δα α α α β β1 1 2 2 1 1 0−( ) − −( ) −( )b b b b b b† † †

                      = −δ δ δ δα β α β1 2 2 1

 

Substituting the last expression into (11.73), we recover (11.72). The general proof of (11.71) 
proceeds in a similar way.

Next we consider the matrix element F F d d N= ∫ψ ψ† x x1  of  the operator F fii

N
=

=∑ 1
, 

where the fi are one-body operators. We have already seen in (11.53) that F i f i
i

N
=

=∑ 1
. We 

now show that in second-quantization form

 F f d= ∫Ψ Φ Φ Ψ† ( ) ( ) ( )x x x x  (11.74)

To this end, we write (11.74) as

 F b b w f w d= ∑ ∫Ψ Ψβ α
α β

β α
†

,

† ( ) ( ) ( )x x x x  

The vectors b bα βΨ Ψ and  are null vectors or mutually orthogonal unless α β= = i , where 
i  corresponds to an occupied orbital; hence (11.74) and (11.53) are equivalent. An important 
example of (11.74) is the total energy E of  N noninteracting fermions; that is,

 E H d= ∫Ψ Φ Φ Ψ† ( ) ( ) ( )x x x x0  (11.75)

where H0 is the single-particle Hamiltonian as in (11.59).
Next, suppose that there are pairwise interactions between the N fermions, and we are con-

cerned with the matrix element (11.58); that is,

 g ij g ij ij g ji g d dij
i j i j

ij
i j

N
> < >
∑ ∑ ∫ ∑= −  = ψ ψ† x x1  

We now show that this can be expressed in second-quantization form as

 g g d dij
i j>
∑ ∫∫= ( ) ′( ) ′ ′( ) ( ) ′

1
2

3 3Ψ Φ Φ Φ Φ Ψ† † ( , )x x x x x x x x  (11.76)

We start with
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Φ Φ′( ) = ′( ) ( )

= ′( )
=

∞

=

∞

∑∑x x w x w x b b

w x

( ) α β
βα

α β

α

00

                w x b b w x w x b bβ
β

α

α
α β α β

β αα
α β( ) + ′( ) ( )

=

−

=

∞

= +

∞

=

∞

∑∑ ∑∑
0

1

0 10

                = ′( ) ( ) − ′( ) ( )
=

−

=

∞

= +

∞

=
∑∑ ∑w x w x b b w x w xα β
β

α

α
α β α β

β αα0

1

0 10

0

1

0

∞

=

−

=

∞

∑

∑∑= ′( ) ( ) − ′(

b b

w x w x b b w x

β α

α β
β

α

α
α β α                ) ( )

= ′( ) ( ) − ′( )
=

−

=

∞

∑∑ w x b b

w x w x w x

β
α

β

β
β α

α β β

0

1

0

                w x b bα
β

α

α
α β( ) 

=

−

=

∞

∑∑
0

1

0

 (11.77)

Here we use b bα β,{ } = 0 in the second line for α β=  and in the third line for α β≠ , we change 

the order of summation over α β,  for the second term in the fourth line, and we interchange the 
dummy variables α β,  for the second term in the fifth line. Similarly,

 Φ Φ† † † † † † †x x w x w x w x w x b( ) ′( ) = ( ) ′( ) − ( ) ′( ) 
=

∞

=

−

∑∑ ρ σ σ ρ
σρ

σ

ρ
00

1

bσ
†  

Hence

 

1
2

1
2

Ψ Φ Φ Φ Φ Ψ

Ψ Ψ

dx dx x x g x x x x

b b b b

′ ′ ′( ) ′

=

∫∫

=

† ( ) ( ) , ( ) ( )†

† †   ρ σ α β
σ 00

1

0

1

0

∞

=

−

=

−

=

∞

∑∑∑∑
× ′ ′ −

ρ

σ

β

α

α

ρ σ σ ρ       dx dx w x w x w x w† † †( ) ( ) ( ) † ( ) ( , ) ( ) ( ) ( ) ( )′  ′ ′ − ′ ∫∫ x g x x w x w x w x w xα β β α

 (11.78)

Because of the restrictions on the sums and the orthogonality of the number eigenstates, only 
terms with σ α ρ β= = and  contribute to (11.78). Thus (11.76) is demonstrated. The Coulomb 
interaction between pairs of electrons, where g ex x x x− ′( ) = − ′( )2 4π , is an instance where 
(11.76) can be used. The second-quantization formalism is applied to an important physical 
problem involving this interaction in Section 14.2.

11.10 Generalizations of exchange symmetrization and  
antisymmetrization

11.10.1 Isospin

There are many situations in elementary particle and nuclear physics where certain particles are 
so similar that they can usefully be treated as identical, even though they are not. For example, 
experiment shows that nuclear forces are charge independent; that is, the strong force between 
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two neutrons of given relative momentum and spin orientation is the same as between a proton 
and a neutron or (if  we neglect the Coulomb interaction) between two protons. Also, the pro-
ton and neutron differ in mass by hardly more than one-tenth of 1 percent. Therefore, in many 
circumstances, it is a good approximation to treat the proton and neutron as two different 
charge states of the same particle, the nucleon. The situation is analogous to the two distinct 
spin states of a particle of spin-½; that is,

 α β=






=






1

0

0

1
 for spin up  for spin down  

To pursue the analogy, the concept of isospin has been invented, in which we form the following 
two-component isospinors in “charge space”:

 p n=






=






1

0

0

1
 

Just as the angular-momentum spinors α β,  can be transformed in various ways with the aid 
of the spin operators

 

S

S i

S i

z z

x y

x y

=

= +( )
= −( )

+

−

σ

σ σ

σ σ

/2 
1
2
1
2

 

so analogous isospin operators can be defined for transforming the isospinors p, n; that is,

 

t

t i

t i

z z=

= +( )

= −( )

+

−

τ

τ τ

τ τ

/2
1
2
1
2

1 2

1 2

 

where τ i is a 2 × 2 Pauli isospin matrix. Just as in the theory of angular momentum, we can 
build up a state with any nonnegative integral or half-integral value of J by combining states of 
spin-½ in various ways, so we can combine states of isospin-½ (nucleon states) in various ways 
to construct states with any nonnegative integral or half-integral value of isospin T (nuclear 
states).

If  two or more nucleons are treated as identical particles, the wave function describing them 
in a compound nucleus must refer not only to space and spin variables but also to isospin, 
and the total wave function must be antisymmetric with respect to exchange. For example, 
consider the 3He nucleus, which consists of two protons and one neutron (ppn). In a reason-
ably good approximation (the nuclear shell model), we may treat the motion of each nucleon 
as if  it occurred in an effective central potential. Here the orbital angular momentum  i  of  
each nucleon is a good quantum number. In fact, for the ground nuclear state of 3He, it is 
known that  i = 0 for each nucleon. Thus the nuclear spin I is entirely due to the spins of the 
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constituent nucleons, and for 3He it is I = 1/2. There are two independent ways to construct a 
state with I mI= =1/2  1/2,  from three nucleons with spin-½:

 χ α β α β αA = −( )1

2
1 2 2 1 3  (11.79)

 χ α β α β α α α βS = +( )




−

1
3

1

2

2
31 2 2 1 3 1 2 3  (11.80)

In (11.79), we form the j = 0 state of the first two nucleon spins and couple it to the third 
nucleon spin. This state is antisymmetric with respect to exchange of the first two spins. In 
(11.80), we form the j mj= =1 0 1, ,  combinations of the first two spins and couple them to 
α β3 3, , respectively, as in (7.110). The state χS is symmetric with respect to exchange of the first 
two spins.

Now 3He and 3H, the latter of which consists of a proton and two neutrons, form an isospin 
doublet (T = 1/2) with mT = ±1/2, respectively. In exact analogy to (11.79) and (11.80), there are 
two independent ways to construct a T mT= =1/2  1/2,  isospin state from three nucleons:

 ηA p n p n p= −( )1

2
1 2 2 1 3  (11.81)

 ηS p n p n p p p n= +( ) −
1
6

2
31 2 2 1 3 1 2 3  (11.82)

The spin-isospin function for 3He, which must be completely antisymmetric with respect to 
exchange, is easily constructed from (11.79) through (11.82). It is

 
ψ χ η χ η

α β α β α

3

1 2 3 1 2 2 1 3

1

2
1

6

He  1/2

        

, m

p p n

I S A A S=( ) = −( )

= −( ) + −( ) + −( ) p n p n p p1 2 3 3 1 1 3 2 1 2 3 2 3 3 2 1α β α β α α β α β α 

(11.83)

A similar formula gives the spin-isospin function of 3H. Now 3H is beta-radioactive; that is,

 3 3H He→ + +−e eν  

To work out all the details of this beta transition theoretically, one needs (11.83) and its ana-
logues for 3H and mI = −1/2.

11.10.1 Fermion-Antifermion States

The positronium atom provides an entirely different example. It consists of an electron and 
a positron in a bound state. The electron and positron can be treated as identical particles 
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in states of equal and opposite electric charge. Hence the positronium wave function can be 
written as

 ψ ψ ψ ψ= space spin charge  

Here ψspace is the spatial wave function of relative motion of e e+ − and ; it is symmetric with 
respect to exchange of these two particles if  the orbital quantum number  is even and antisym-
metric if   is odd. The spin function is symmetric if  the total spin is S = 1 and antisymmetric if  
S = 0. The total wave function must be antisymmetric with respect to exchange; hence ψcharge is 
symmetric if   +S  is even and antisymmetric if   +S  is odd. One usually says that the charge 
parity of  positronium is −( ) +

1
 S

. The ground state of positronium consists of two separate fine-
structure components, 1 0S  with charge parity +1 and 3 1S  with charge parity –1. A positronium 
atom decays when the electron and positron annihilate to form two or more photons. In this 
electromagnetic interaction, charge parity is conserved. Also, it can be shown that the charge 
parity of a system of n photons is −( )1 n

. Thus an 1 0S  positronium atom can only decay to an 
even number of photons (2, 4, …), whereas an 3 1S  positronium can only decay to an odd num-
ber of photons (3, 5, …).

11.10.2 Isospin of Pi Mesons

The pi mesons π π π+ −, ,0  and  have zero spin and nearly equal masses  
[m c m c( ) . ; ( )π π± = =139 6 1350 MeV/   MeV/2 2 ]. The relatively small mass difference is thought 
to be due to electromagnetic interaction, in the absence of which the pions would form a perfect 
isospin triplet. In that approximation, the total wave function of two pions can be written as

 ψ ψ ψ= space charge  

and because pions are bosons, ψ  must be symmetric with respect to exchange. As before, the 
spatial wave function is symmetric (antisymmetric) for even (odd) , respectively. Therefore, so 
is ψ charge. Because each pion has isospin T = 1, the isospin of two pions can be T = 2, 1, or 0 a 
priori. However, T = 2 and T = 0 are symmetric with respect to exchange, and T = 1 is antisym-
metric, just as in the theory of angular momentum. Hence a two-pion state with even  must be 
a linear combination of T = 2 0, , whereas if   is odd, T = 1.

Problems for Chapter 11

11.1. In Section 11.6 we calculate the ground-state energy of helium-like atoms by using the 
variational method with the simple trial function

 ψ λ
π

λr r1 2

3

1 2, exp( ) = − +( ) r r  (1)

This calculation can be improved substantially by using instead the following trial function 
with parameters s, :λ
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 ψ λr r1 2, exp( ) = − +( ) > <N sr r  (2)

where r r> = 1 if  r r1 2>  and r r> = 2 if  r r2 1> . Note that

 sr r
s

r r
s

r r> <+ =
+

+( ) + −
−

1
2

1
21 2 1 2  

(a) Show that N in (2) is given by

 N
s s

s s
=

+( )
+ +( )

λ
π

6 3 5

2 2

1

2 10 5 1
 (3)

(b) Show that the expectation value of the kinetic energy of the two electrons is

 T T
s

1 2

2
21

2
+ =

+ λ  (4)

(c) Show that the expectation value of the potential energy of interaction of the electrons with 
the nucleus is

 − + = − +( )Z
r r

Z s
1 1

1
1 2

λ  (5)

(d) Show that the expectation value of the electron-electron interaction energy is

 
1 1 4 1

10 5 112
2r

s s s
s s

=
+ +
+ +

( )( ) λ  (6)

To minimize the tedium of routine calculation for obtaining results (3) through (6), you may 
use the following relevant integrals:

 r sr dr r r dr
s s

s

r

1
2

1

0

1 2
2

0

2 2 6

2

3
2 2

1
16

1 5 10

1

1

exp exp−( ) −( ) =
+ +∞

∫ ∫λ λ
λ +( )











s

5  (7)

 r sr dr r r dr
s

s s

r

1

0

1 1 2
2

0

2 2 5 2 42 2
1

16
1 4

1

1∞

∫ ∫−( ) −( ) =
+
+( )

exp expλ λ
λ

 (8)

 r sr dr r r dr
s s

s s

r

1
2

0

1 1 2

0

2 2 5

2

3
2 2

1
16

1 4 6

1

1∞

∫ ∫−( ) −( ) =
+ +

+
exp expλ λ

λ ( )4  (9)

(e) From (4) through (6), the total energy as a function of λ  and s  is
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 E s
s

Z s
s s s

s s
λ λ λ λ,

( )( )( ) = +
− +( ) + + +

+ +

2
2

2

1
2

1
1 4 1

10 5 1
 (10)

Minimize this function with respect to λ  to show that the resulting value of λ  is

 λ0

2

2 2

1 10 4 5 1

1 10 5 1
=

+( ) −( ) + −( ) + 
+( ) + +( )

s Z s Z s Z

s s s
 (11)

and

 E s
s Z s Z s Z

s s s
λ0

2 2 2

2 2 2

1 10 4 5 1

2 1 10 5 1
,( ) = −

+( ) −( ) + −( ) + 
+( ) + +( )

 (12)

For Z = 1 (the hydrogen negative ion) and for Z = 2 (the helium atom), plot or tabulate 
E s s( , )λ0  versus  to find the minimum E s E sλ λ0 0 0, , .( ) ( ) of  You should find

 
Z s E s

Z s

= = = ( ) = −
= = =

1:

2:

λ λ
λ

0 0 0 0

0 0

0 9144 0 4598 0 506

1 85623 0 81

. . , .

. . 7 2 872730 0E sλ , .( ) = −
 

The Z = 1 result for E is significant: because it is less than –1/2, it shows that the H– ion has a 
bound state. The most sophisticated variational calculations of H– yield E = −0 528. . For Z = 
2, the value achieved for E  is much closer to Eobs = −2 90365.  than E = −2 8477.  calculated with 
the simplest variational wave function given in equation (1).

11.2. The configurations of virtually all bound states of the helium atom are of the form 1s n ( ).  
According to first-order perturbation theory, the energy difference between singlet and triplet 
terms of a given configuration is ∆E K= 2 , where K is the exchange integral. Using hydro-
genic orbitals with Z = 2 for 1s and Z = 1 for np, calculate the exchange integrals for the 
1s2p and 1s3p configurations of atomic helium, and thus estimate the energy splitting between 
the 1 3P P and  states for these configurations. Compare with the experimental values of these 
splittings, which in atomic units are

 
∆
∆

E s p
E s p

( ) .
( ) .
1 2 0 00933
1 3 0 00294

expt

expt

=
=  

Explain why the agreement between calculation and experiment is better for 1 3s p  than for 
1 2s p.

11.3. We have noted that the operator associated with any observable must be symmetric with 
respect to exchange of the coordinates of the particles it affects. This implies that for any 
observable A, all matrix elements of the form Ψ ΨS AA  must vanish, where ΨS A,  are sym-
metric (antisymmetric) wave functions, respectively. In Chapter 7 we introduced the concept 
of an irreducible spherical tensor operator TL

M . Why must the rank L of  any TL
M  always be 

integral and never half-integral?

11.4. (a) Equation (11.83) describes the wave function of the 3He nuclear ground state with 
mI = 1/2. Write the analogous equation for the nuclear ground state of 3H.
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(b) One requires matrix elements of the operators t tii iz i+ +∑ ∑ and 3 σ
1

 between 3H and 3He 
nuclear states to calculate the vector and axial vector amplitudes, respectively, for the beta 
decay 3H → 3He + e– + νe .  Here the sums are over all nucleons in the nucleus. Using (11.83) 
and its analogue for 3H, calculate these matrix elements.
(c) Consider the nuclear beta decay 10

19
9
19Ne F→ + ++e eν . To a good approximation, the ini-

tial nucleus 19Ne I T Tz= = =( )1/2, 1/2, 1/2  consists of two protons and one neutron, each 
with zero orbital angular momentum, outside an inert 16O core. When this nucleus decays 
to 19F I T Tz= = = −( )1/2, 1/2, 1/2 , one of the “valence” protons transforms into a neutron. 
To a good approximation, the final 19F consists of two neutrons and a proton, each with zero 
orbital angular momentum, outside the 16O core. Calculate the matrix elements of the opera-

tors t tii izi i− −∑ ∑ and 3 σ  for this beta decay, assuming that mI = 1/2  for initial and final 

nuclei. Also estimate the nuclear magnetic moments of 19Ne and 19F

11.5. Consider three pions in a state with angular momentum J = 0. This state can be con-
structed from the orbital angular momentum 



 of  relative motion of the first two pions and the 
orbital angular momentum L of  the third pion about the center of mass of the three-pion sys-
tem. Find the possible isospin multiplets of the three-pion system, and show that even values 
of  = L must correspond to odd values of total isospin T, whereas odd values of  = L must 
correspond to even values of T.

11.6. In a preliminary way by 1909 and more accurately by 1938 it was established that the ratio 
of charge to mass for beta rays and for ordinary atomic electrons is the same. Also, the charges 
of beta rays and atomic electrons were shown to be the same by 1940. Despite this, it was pos-
sible for a time to maintain the idea that beta rays and electrons are not identical particles but 
only very similar ones, until some decisive (and not very well-known) experiments were done 
in the period 1948–1950. Try to construct the principle of such an experiment using your own 
knowledge and intuition, and only then refer to Goldhaber (1948) and Davies (1951).
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12.1 Central field approximation: General remarks

In principle, the many-particle Schroedinger equation with Coulomb interactions and spin 
should provide a good description of atomic structure. However, whereas exact solutions are 
known for hydrogenic atoms (one electron), and there exist excellent special approximation 
methods for two-electron systems (helium and helium-like ions), the situation is quite different 
for three or more electrons. Here we must resort to the central field approximation (CFA), where 
it is assumed that each electron in an N-electron atom moves in an effective central potential V  
that arises from the nuclear charge and a suitable effective charge distribution due to the other 
N – 1 electrons.

The CFA and the antisymmetrization postulate are the two cornerstones of the theory of 
atomic structure, which gives a remarkably accurate quantitative account of thousands of pre-
cise experimental results and is one of the most important triumphs of quantum mechanics. 
Our discussion of the CFA is as follows: in this section we confine ourselves to an overall 
survey and qualitative remarks. Then we briefly sketch how the CFA is carried out in practice 
by means of the Hartree, Hartree-Fock, Thomas-Fermi, and related methods. Finally, we con-
sider the principal, and very important, corrections to the approximation.

If  each electron in an N-electron atom moves in an effective central potential, then taking 
into account the exclusion principle, the N-electron wave function may be written as a Slater 
determinant1; that is,

 ψ

φ χ φ χ

φ χ

=
1

1 1 1 1 1 11 11 1

1

N

n m n m N N

n mN N N

!

( ) ( )

( )

 



 



 

   

   

r r

r N n m N NNN N N1  





φ χ( )r

 (12.1)

Because V  is central, the spatial part φ of  each one-electron orbital can be expressed as a prod-
uct of a radial function and a spherical harmonic

 φn m j n j
m

ji i i i i i

iR r Y r
 





r( ) = ( ) ( )ˆ  (12.2)

Atomic Structure12

1 Strictly speaking, in the CFA, one does not require the same central potential for all electrons but merely for all 
electrons in the same shell.
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The principal quantum number ni  is defined so that the number of radial nodes in R for finite 
rj  is ni i− − 1, as in hydrogen. For very small rj ,

 V r
Z
rj

j

( ) → −  (12.3)

whereas for very large rj ,

 V r
Z N

rj
j

( )
( )

→ −
− +1

 (12.4)

because a given electron is exposed to the full nuclear charge when it is close to the nucleus, but 
the nuclear charge is screened by the remaining N – 1 electrons when the given electron is far 

from the origin. Thus, as rj  increases, V  falls to zero more rapidly than the Coulomb poten-

tial arising from the unscreened nuclear charge. Hence there is no accidental degeneracy, and 
single-electron orbitals with the same n have energies that increase with .

Even from this very elementary consideration, we can gain a rudimentary understanding of 
the ground-state electronic configurations of atoms (the periodic table). Adding electrons one 
by one, we first fill the 1s shell with two electrons, then the 2s shell with two more, then the 2p 
shell with six, then the 3s shell with two more, and then the 3p shell with six more. Thus we 
arrive at argon (Z = 18). Two additional electrons go into the 4s shell to yield potassium (Z = 
19) and then calcium (Z = 20). However, beyond this point, experiment shows and CFA calcu-
lations predict that less energy is required to fill the 3d shell than the 4p shell. In fact, there is a 
competition between 4s and 3d, as can be seen in Table 12.1 from the ground-state configura-
tions of the first transition group of elements. Notice in particular that in Cr and Cu there is 
only one 4s electron, whereas the other elements in this group have a complete 4s shell.

Starting with Z = 31, we fill the 4p shell with six electrons and then the 5s shell with two 
more. At this point we again encounter competition between ns and (n – 1)d shells in the sec-
ond transition group, followed by np. To summarize, the shells are filled in the following order, 
with  ≤ 3 in all cases:

Table 12.1 Ground-state configurations of the first transition elements

Z Element Ground-state configuration

21 Sc 1s2…4s23d
22 Ti 1s2…4s23d2

23 V 1s2…4s23d3

24 Cr 1s2…4s3d5

25 Mn 1s2…4s23d5

26 Fe 1s2…4s23d6

27 Co 1s2…4s23d7

28 Ni 1s2…4s23d8

29 Cu 1s2…4s3d10

30 Zn 1s2…4s23d10
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1s, 2s, 2p, 3s, 3p, (4s, 3d), 4p, (5s, 4d), 5p, (6s, 4f, 5d), 6p, (7s, 5f, [6d])
It is well known that the chemical properties of a neutral atom depend on the electrons in the 
outer shell(s); elements with similar outer shells are similar physically and chemically. They 
also have similar patterns of excited-state energy levels. Here are just a few examples:

The noble gases with complete •	 p shells are very similar:

Ne(2p6), Ar(3p6), Kr(4p6), Xe(5p6), Ra(6p6)

These also resemble helium (1s2), which has no p electrons but only a complete 1s shell.

The alkali metals with a single (•	 n + 1)s electron after a completed np shell are very similar:

Na(2p63s), K(3p64s), Rb(4p65s), Cs(5p66s), Fr(6p67s)

These also resemble Li(2s23s) and even in some respects H(1s).
The halogens each lack one electron to complete a •	 p shell:

F(2p5), Cl(3p5), Br(4p5), I(5p5), At(6p5)
Group II elements•	

Be(1s22s2) and Mg(1s2…3s2)

are very similar. The next electron would be np. Ca(… 4s2), Sr(… 5s2), and Ba(… 6s2) are 
very similar. The next electron would be (n – 1)d or, in the case of Ba, (n – 2)f. Zn(… 3d104s2), 
Cd(… 4d105s2), and Hg(… 5d106s2) are very similar.

The noble metals Cu, Ag, and Au all have the structure […(•	 n – 1)d10ns) and are similar.
The metals with one •	 p electron outside a completed d shell are similar:

Ga(… 3d104p), In(… 4d105p), Tl(… 5d106p)

12.2 Hartree’s self-consistent field method

We now turn to actual implementation of the CFA and start with the method developed by D. 
R. Hartree (1928). Here the many-electron wave function is assumed to be

 ψ φ φ= ( ) ( )1 1r r N N  (12.5)

Thus exchange antisymmetry is ignored, and the Pauli principle is taken into account merely 
by restricting the number of electrons that can have a spatial orbital associated with a given 
shell (two in 1s, two in 2s, six in 2p, etc). A Hartree calculation starts with an assumed set of 
zero-order spatial orbitals φ

i i
( ) ( )0 r , i =1, …, N. These are obtained from intelligent guesswork 

or from the Thomas-Fermi model (described later). The following potential is computed from 
these orbitals:
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d i Ni
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ikk i
k= − +

( )
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≠

φ
τ

( )

,...,
0 2

1
r

 (12.6)

Here the first term on the right-hand side is obviously the potential energy of interaction of 
the ith electron with the nucleus, whereas the sum represents an electrostatic interaction of the 
ith electron with the remaining N – 1 electrons, where the charge density of the kth electron 

is assumed to be − φk k
( ) ( )0 2

r  in atomic units. The next step is to replace Vi by its average over 

angular coordinates; that is,

 V V V di i i i→ = ∫
1

4π
Ω  (12.7)

This is where the CFA is made. We now have a set of N differential equations for the next 
approximation to the φi ; that is,

 − ∇ + = =
1
2

12 1 1 1 1
i i i i i iV i Nφ φ ε φ( ) ( ) ( ) ( ) ,...,  (12.8)

These are solved numerically to find the φi
( )1  and their corresponding eigenvalues εi

( )1 . The entire 
process is then repeated with as many iterations as necessary to yield a potential, orbitals, and 
eigenvalues that are self-consistent with the desired precision. To explain the meaning of the 
eigenvalues εi , we multiply (12.8) on the left by φi

* and integrate over τ i using the normalization 
condition

 φ τi id∫ =
2

1  

This yields

 T V
r

d di i
k i

ik
i k

k i
i+ + =∫∫∑

≠
,nuc

φ φ
τ τ ε

2 2

 (12.9)

Here Ti is the kinetic energy of the ith electron, and the bar indicates that a spherically sym-
metric average has been performed, as described earlier. Thus –εi  is approximately the energy 
required to remove the ith electron from the atom in question to infinity. (It is not exactly the 
removal energy because the self-consistent field of the resulting ion is slightly different from 
that of the original atom.) Summing (12.9) over all N electrons, we get

 ε
φ φ

τ τi
i

k i

ik
i kT V

r
d d∑ ∫∫∑= + +nuc

pairs

2
2 2

 (12.10)

Meanwhile, the total electron energy in the Hartree central field approximation is
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 E T V
r

d dk i

ik
i k= + + ∫∫∑nuc

pairs

φ φ
τ τ

2 2

 (12.11)

Notice the factor of 2 that is present in (12.10): it means that we have counted the energy of the 
electron-electron Coulomb interaction twice in summing over all eigenvalues εi .

The simplest application of the Hartree method is to the ground state of helium. Here we 
only need a single Hartree equation

 − ∇ ( ) − ( ) +
′( )

− ′
′













( ) = ( )∫
1
2

2 3φ φ
φ

φ εφr
Z
r

r
r

d r r
r r

r
’

 (12.12)

because both spatial orbitals pertain to the 1s shell, and each may be written as φ φ= 1s. Also, in 
the present case, V is already spherically symmetric, and there is no need to make an angular 
average.

When (12.12) is solved numerically by iteration, we find H = –2.86168 atomic units, which 
is somewhat better than the result obtained by the simplest variational method [see equation 
(11.28)] but not as good as that from the most sophisticated variational treatments. The main 
virtue of Hartree’s method for the helium ground state is not that it gives a good value of the 
energy but rather that it gives quite a good wave function.

12.3 Hartree-Fock method

Although Hartree’s equations were originally obtained intuitively, they can be derived using 
the variational method. A substantial improvement is made when, in addition, determinantal 
wave functions are employed. This is the Hartree-Fock method, actually developed by V. Fock 
(1930) and J. Slater (1930). We start with the Hamiltonian

 H
Z
r ri
ii iji j

= − ∇ −





+∑ ∑

<

1
2

12  

Here the first sum on the right-hand side is a sum of one-body operators fii∑ , whereas the 

second sum is a sum of two-body operators giji j<∑ . Using the determinantal wave function

 ψ =
( ) ( )

( ) ( )

1
1 1 1

1
N

w w

w w

N

N N N
!

...

... ... ...

...

x x

x x

 

where xi  denotes the space-spin coordinates of the ith electron, we construct ψ ψH  with the 
aid of equations (11.53) and (11.58); that is,
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 E H i f i ij g ij ij g ji
i i j

= = + − ∑ ∑
<

ψ ψ  

This is an energy functional that depends on the values of the orbitals w(x). We vary each of 
these orbitals and thus vary E subject to the constraints

 w w di j ij
†∫ ( ) ( ) =x x x δ  

These constraints are incorporated into the calculation in the usual way by employing a set of 
Lagrange multipliers. By demanding that E reach an extreme value, which can be shown to be 
a minimum, we thus obtain a set of N Hartree-Fock equations

 

− ∇ ( ) − ( ) + ( )







 ( )∫∑

1
2

1
1
2

1
1

1 2
12

2

2

1w
Z
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w d
r

w wi i j
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ir r r rτ

        − ( ) ( )







 ( ) = ( )∫∑δ τ ε( , ) *m m d

r
w w w wsi sj j i

j
j i i2

12
2 2 1 1

1
r r r r

 (12.13)

These equations differ from the corresponding Hartree equations because they contain an 
additional term on the left-hand side; that is,

 − ( ) ( )







 ( )∫∑

≠

δ τ( , ) *m m d
r

w w wsi sj j i
j i

j2
12

2 2 1
1

r r r  

Note in particular how the indices i j,  appear in this last expression. In the Hartree-Fock 
method, the effective potential energy of a given electron is generated by interaction with

The nucleus;•	
All the electrons having spin opposite to that of the given electron; and•	
A charge distribution of electrons having the same spin as the given electron.•	

This last charge distribution adds up to one less than the total number of electrons in this spin 
state. Effectively, it is as if  the given electron carried a “hole” with it. The potential energy in 
the Hartree-Fock method is systematically lower than that in the Hartree method because of 
exchange.

The procedure for solving the Hartree-Fock equations is similar to that for the Hartree case. 
One chooses an initial Slater determinant, calculates the effective potential, makes a spherically 
symmetric average (which for  ≤ 3 is a very mild approximation), solves the resulting differen-
tial equations numerically, and thus obtains a new Slater determinant. The process is repeated 
until the results are self-consistent to desired precision. This method and modern variants of it 
employing more than one configuration and/or relativistic wave equations are very powerful, 
and they usually yield impressively accurate numerical results. See, for example, the excellent 
monograph by Johnson (2007).
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12.4 Thomas-Fermi model

This is a relatively simple approach to the CFA that makes use of easily comprehended physical 
ideas, provides valuable intuitive insights about atomic structure, and leads directly to poten-
tials that can be used in Hartree-Fock calculations or are even employed effectively in their 
own right (Thomas 1927b; Fermi 1928). The basic idea is that if  the number of electrons in a 
given atom is sufficiently large, we can divide the atom into various volume elements, where in 
each volume element the electrostatic potential varies rather slowly and thus can be approxi-
mated as a constant, whereas the electrons in that volume element are sufficient in number to 
be in statistical equilibrium because of their Coulomb interactions. Hence they can be treated 
as a degenerate Fermi gas. This approximation obviously fails in the immediate vicinity of the 
nucleus, where the electrostatic potential varies rapidly, and it also fails at very large distances 
from the nucleus, where the electron density approaches zero. Nevertheless, it is remarkably 
effective even for atomic numbers Z as small as 10 or so.

We start with a gas of “free” electrons in the absence of a potential. (In fact, they must inter-
act with one another to some extent so that equilibrium can be established, but we assume that 
this interaction is very feeble.) According to Fermi-Dirac statistics, the number of free electrons 
per unit volume with momentum p in range d3p at temperature T is

 dn
p dp

E

k TB

=
−( )







 +

1

1
2 3

2

π µ

exp

 (12.14)

where E is the electron energy, and µ is the chemical potential. Thus the electron number 
density is

 n
p dp

E

k TB

=
−( )







 +

∞

∫
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1
2 3

2

0π µ
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 (12.15)

and the kinetic energy per unit volume (assumed here to be nonrelativistic) is

 ε
π µ

=
−( )







 +

∞

∫
1

2
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2 3
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0m
p dp
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e
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exp

 (12.16)

For an atom in laboratory conditions, the electrons are highly degenerate, and the actual tem-
perature of the surroundings is orders of magnitude less than the Fermi temperature. Thus we 
can make the approximation T → 0, in which case the Fermi distribution

 f
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k TB

=
−( )
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becomes

 
f E
f E

F
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= <
= >

1
0

for 
 for 

µ
µ  

and where µ µF T= =( )0 . Hence, at T = 0, we have

 n p dp
pF

pF

= =∫
1

32 3
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2 3
0π π 

 (12.17)

and
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= = =∫
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/ /
/  (12.18)

where p mF e F= 2 µ  is the Fermi momentum (the maximum momentum of an electron in the 
zero-temperature gas).

Now suppose that a given electron is no longer free but has potential energy V r e( ) = − Φ ,  
where Φ , assumed to be central, is the electrostatic potential due to the nucleus and all the 
electrons. Then the energy of an electron is

 E
p
m

e
e

= −
2

2
Φ  

and the maximum value of this energy is

 E
p
m

eF
F

e
max = = −µ

2

2
Φ  (12.19)

In an atom, Φ , n, and hence pF all depend on r. However, µF  must be independent of r for sta-
tistical equilibrium. This is so because it is a general principle of statistical mechanics that for 
two systems to be in equilibrium, not only their temperatures but also their chemical potentials 
must be equal. We can apply this principle to two successive annular shells of electrons, one 
between r – dr and r, the other between r and r + dr. Employing (12.17) in (12.19), we obtain
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2 3 2 3
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Φ Φ  

or

 n
m ee=
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2 3 0
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/

/

π 

Φ  (12.20)

Poisson’s equation gives an additional relation between n and Φ0; that is,

 ∇ = ∇ = − ( )2 2
0

3Φ Φ ne Zeδ r  (12.21)
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On the right-hand side of (12.21), the first and second terms are due to the electron charge dis-
tribution and the nucleus, respectively. For r > 0, we combine (12.20) and (12.21) to obtain

 ∇ =
( )2

0

3 2

2 3 0
3 2

2

3
Φ Φe

m ee
/

/

π 

 (12.22)

For very small r, Φ0 4( ) .r Ze r→ π  Thus it is convenient to define a new function φ( )r  by

 Φ0 4
( ) ( )r

Ze
r

r=
π

φ  (12.23)

where φ( )0 1= . Substitution of (12.23) into (12.22) yields
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 (12.24)

This equation is simplified by writing r ax= , where x is a dimensionless parameter, and a is a 
constant with dimension of length, defined by

 a
a

Z
Z a=

( )
= −

3

2
0 885

2 3
0

7 3 1 3
1 3

0

π /

/ /
/.  (12.25)

Thus (12.24) becomes

 
d
dx x

2

2

3 2

1 2

φ φ
=

/

/
 (12.26)

with the boundary condition φ( )0 1= . This is the Thomas-Fermi differential equation. It is non-
linear, and as a practical matter, it must be solved numerically. [Not so many years ago a rather 
complicated analytic solution was discovered (Esposito 2002) in the papers of E. Majorana, 
the brilliant and reclusive Italian physicist who disappeared under mysterious circumstances 
in 1938. Majorana had found the solution while he was Fermi’s student in the late 1920s.] 
Solutions are conveniently divided into three classes, as shown in Figure 12.1. Note that in all 
cases, d dx2 2 0φ / >  for φ > 0 , so all three types of solutions curve upward.

We now show that solutions of types II and III correspond to a neutral atom and a positive 
ion, respectively. Suppose that an atom with N electrons that contains a nucleus with atomic 
number Z has a finite radius R0 within which all the charge is contained. Then φ( )R0 0= , and

 N nr dr
R

= ∫4 2

0

0

π  (12.27)
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Using (12.20), (12.23), and (12.25), we rewrite (12.27) as

 N Z x dx
x

= ∫ 1 2

0

3 2
0

/ /φ  (12.28)

where R ax0 0= . Employing (12.26) in (12.28), we obtain

 
N
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x dx
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= ′ − +

∫ φ

φ φ
0

0 0 0

0

1  ( ) ( )

 

or, because φ( )x0 0= ,

 
N
Z

x x− = ′ ( )1 0 0φ  (12.29)

Hence, if  ′ <φ ( )x0 0 (solution type III), we have N Z< , a positive ion. If  N Z=  (neutral atom), 
the solution must go asymptotically to zero as x0 →∞, for if, on the contrary, x x0 0 0′ =φ ( )  and 
φ( )x0 0=  at finite x0, the solution would be identically zero, as can be seen by making a Taylor 
expansion of φ about x0 and employing (12.26). Because for a neutral atom n r( ) and Φ( )r  both 
vanish at infinity, we must have µF = 0. However, in the case of a positive ion, n R( )0 0= , but 
Φ( )R0 0> , so µF < 0.

Although negative ions do exist in nature, the binding of the last electron(s) to a neutral 
atom for such ions is due to subtle polarization effects, and these cannot be accommodated in 
the Thomas-Fermi model, which does not describe negative ions.

It is easy to verify that 144/x3 is a solution to (12.26), although it does not satisfy the bound-
ary condition φ( )0 1= . However, it can be shown that the neutral-atom solution is asymptotic 
to 144/x3 for very large x. Because n x= ( )const / φ 3 2/

, we see that for very large x, this implies 
that n r∝ −6 in the Thomas-Fermi model. This is a shortcoming of the model because in a 

x

I

II
III

 Figure 12.1 The three types of solutions to the Thomas-Fermi equation: (1) ϕ(x) > 0 for all x (an atom under pressure as in a Coulomb lattice), (2) 
asymptotic to the x-axis at x = ∞ [a neutral atom ′φ (0) 1.588071= − ], and (3) intersects x-axis for finite positive x (a positive ion).
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neutral atom the electron density at very large distances from the nucleus actually drops expo-
nentially to zero. Also, the relation n x= ( )const / φ 3 2/

 implies that n diverges at the origin, but in 
reality, the electron density at the nucleus is finite.

Let us consider how various quantities of physical interest scale with Z in the Thomas-Fermi 
model. From (12.25), we see that the length scale varies as Z-1/3. This means that although the 
charge distribution goes gradually to zero as r →∞ , we may define a radius R within which 
exists a certain fixed fraction of the charge, and R is proportional to Z-1/3. From this we deduce 
the following:
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Φ Φ
Φ
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∝

Z R Z 4 3/

E / thusR ZE ∝ 5 3/  

Also, because the wavelength λ  of  an electron with maximum kinetic energy is inversely pro-
portional to pF, λ ∝ ∝− −Z R Z2 3 1 3/ / ., whereas  Thus λ /R Z∝ −1 3/ , and this gives an intuitive 
explanation for why the Thomas-Fermi approximation improves with increasing Z. It can be 
shown that the approximation becomes exact in the limit Z →∞.

We now give an important application of the Thomas-Fermi model, saving other examples 
for later discussion and for the problems. Let us consider the total energy of all the electrons in 
a neutral atom of atomic number Z. First, we calculate the kinetic energy E1, starting with the 
kinetic energy density. In atomic units,
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=

3
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we have
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The integral in (12.31) can be evaluated in two different ways as follows:
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and
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Comparing the last lines of (12.32) and (12.33), we obtain

 J dx≡ ′ = − = − ′ = =
∞

∞

∫ ∫φ φ2
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1 58807 0 4537( ) . .  (12.34)

Hence (12.31) becomes
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Next we consider the potential energy of interaction between the electrons and the nucleus; 
that is,
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Finally, we consider the potential energy of interaction of the electrons with one another; 
that is,

 E
n n

d d3
3 31
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r r
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This may be evaluated by the same method employed to calculate the expectation value of 
r r1 2

1− −
 for the ground state of atomic helium (recall Section 11.6). After straightforward 

manipulations, one finds
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Therefore, from (12.35), (12.37), and (12.38), the total energy is
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 (12.39)

The result E E= − 1 expresses the virial theorem for the Thomas-Fermi model. The numerical 
value given in (12.39) is in fair but not perfect agreement with experimental determinations of 
the total electronic energy of atoms. The discrepancy is due mainly to the breakdown of the 
Thomas-Fermi approximation in the immediate vicinity of the origin. At r = 0, the Thomas-
Fermi electron number density is infinite, whereas in reality, n is finite. A correction to E for 
this effect is proportional to Z Z6 3 2/ =  (Scott 1952; Schwinger 1980). Another correction, pro-
portional to Z5/3, arises from two distinct physical effects. One is exchange (Dirac 1930), and 
the other is that even for electrons that are neither very close to the nucleus nor very far distant 
from it, the variation in potential energy with r is not totally negligible in any given small vol-
ume (Schwinger 1981). When these corrections are included, the agreement between calculated 
and experimental values of the total electronic energy is improved considerably.

The Thomas-Fermi method can be applied not only to atoms but also to nuclei, molecules, 
solids, and matter at extremely high densities (as in white dwarf and neutron stars). However, 
one can show that within the Thomas-Fermi approximation, the energy of two isolated atoms 
or a separated atom and molecule is always less than the energy of a molecule formed from 
these entities (Teller 1962; Lieb 1973), so molecular binding cannot be explained by the approx-
imation. This is not so surprising: the Thomas-Fermi model works well for the great bulk of 
electrons in the core of the atom but not for the outermost electrons, which are the ones that 
participate in the formation of chemical bonds.

12.5 Corrections to the central field approximation: Introduction

The theory as outlined so far suffers from two major deficiencies. First, we have averaged

 
1
rijpairs

∑  

so as to obtain a central field, but this so-called electrostatic interaction term in the Hamiltonian 
is clearly not central in general. Second, we have ignored the spin-orbit interaction. However, 
the latter grows in significance roughly in proportion to Z2 for atoms in a given periodic table 
group (e.g., the alkali atoms or the halogen atoms; see Figure 12.3). For large Z, the spin-orbit 
effect is very significant.

For the moment, we confine ourselves to fairly light atoms (Z < 40 or so), where the spin-
orbit effect is still small enough that we can concentrate on the electrostatic interaction and 
treat the spin-orbit effect as a minor perturbation. (This is called the Russell-Saunders or L-S 
coupling scheme). The zero-order Hamiltonian is
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Let us consider which operators of physical significance commute with this Hamiltonian. First, 
J ,H[ ] = 0 even if  the spin-orbit interaction is included because J is the total electronic angular 

momentum, and H is rotationally invariant. Next, consider the orbital angular momentum 
operator for the ith electron Li. We now show that this operator does not commute with H but 
that the total electronic orbital angular momentum L does commute with H. For simplicity, 
we give the proof for a two-electron atom; the extension to more than two electrons is shown 
similarly. We write L L L= +1 2 . Then
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Similarly,

 L
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r r
2

2 1

1 2
3,H i[ ] = −

×
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Thus

 L,H[ ] = 0  (12.41)

Furthermore, S,H[ ] = 0, which follows from the fact that J and L separately commute with H. 
One might be tempted to assert that the individual electron-spin operators also commute with 
H because the latter does not contain the operators Si explicitly. However, we must take into 
account the antisymmetrization principle: although it does not appear in the Hamiltonian, it 
gives rise to an effective spin-spin coupling from the Coulomb interaction, as was mentioned 
in Chapter 11.

To summarize, if  we ignore the spin-orbit interaction, S S L Li i= =∑ ∑
i i

 and  separately 

commute with H, as does J. Therefore, energy eigenstates simultaneously have definite values 
of J, L, and S. Our next task is to determine the possible values of J, L, and S for a given con-
figuration and establish reasons for energy ordering of states of given J, L, and S.

12.6 Theory of multiplets in the Russell-Saunders scheme

In the CFA, the energy of an atom is determined solely by the configuration (assignment of n,  
values to individual orbitals). Thus there is in general a great deal of degeneracy in each con-
figuration. To see this, consider a given  shell that can contain up to N0 2 2 1= +( )  electrons. 
Suppose that in fact it contains n0 < N0 electrons. For example, if   = 1 (p shell), N0 = 6. For 
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carbon, we have two equivalent p electrons, so n0 = 2. For nitrogen, n0 = 3; for oxygen, n0 = 4; 
and so on. The first electron may be placed in any one of the N0 orbitals, the second in N0 – 1, 
the third in N0 – 2, and so forth. Therefore, a priori, there are

 
N

N n
0

0 0

!
!−( )  

possibilities. However, some of these are equivalent because the electrons are indistinguishable. 
Thus we must divide by the number of ways n0! that the electrons can be permuted among 
themselves, so the degeneracy is

 g
N

n N n

N

n
=

−( ) =






0

0 0 0

0

0

!
! !

 (12.42)

For example,
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Thus, in the CFA, there are 15 degenerate states associated with the ground configuration of 
carbon, 210 for iron, and so on. However, because of the electrostatic interaction, the potential 
is not truly central, and much of this degeneracy is lifted. Because L, S, and J are still good 
quantum numbers, all states with given L, S, and J remain degenerate (they form a term), but 
terms with distinct values of L, S, and J in general have distinct energies. (The word multiplet 
is reserved for states with given L and S. Here there can sometimes be several values of J. For 
example, the ground multiplet of oxygen is 3P, which consists of the terms J = 2, 1, and 0.) We 
have already seen the simplest example in Chapter 11: in helium, the 1s2s configuration has a 
degeneracy of 4, and it breaks up into two distinct terms
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We now use the Pauli principle to determine which multiplets correspond to a given 
configuration.

1. If  an atom contains only closed shells (e.g., the rare gas atoms and the Group II elements 
Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg), the Pauli principle requires a pairing off  of spins and 
orbital angular momenta to give S = 0, L = 0. Thus we must have a 1S0 ground state.
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2. If  there is one electron outside closed shells, the total spin S (=1/2) and the total orbital 
angular momentum L are that of the valence electron. Thus we obtain the following ground 
states:

 
H, Li, Na, K, Rb, Cs, Fr: 
Ag, Au: 
Ga, In, Tl: 

2
1/2

2
1/2
2

S
S

P1/2

 

 Note that for Ga, In, and Tl we have written J = 1/2 for the ground state. In fact, we need 
some knowledge of the spin-orbit interaction to determine that J = 1/2 has lower energy 
than J = 3/2.

3. Atoms that lack just one electron to complete a shell (e.g., the halogens, which have five 
equivalent p electrons) may be treated as having one “hole,” and the total spin and orbital 
angular momentum are that of the hole. Thus the halogen ground states are 2P3/2 (once 
again, J is determined from knowledge of the spin-orbit interaction).

4. If  there are two electrons in the outermost incomplete shell, we employ the following the-
orem: the wave function describing these electrons, which must be antisymmetric with 
respect to exchange, can always be written as a product of a spatial part and a spin part. If  
the spatial part is symmetric, the spin part is antisymmetric, and vice versa. The proof of 
this theorem is exactly the same as for the 1s2s configuration in helium (see Section 11.7), 
and we do not repeat it. For example, consider carbon, which has two equivalent p  =( )1  
electrons. The possible values of S are 1 and 0, whereas the possible values of L are 2,1, and 
0. A priori, we may form the multiplets 3D, 3P, 3S, 1D, 1P, and 1S. However, because of the 
symmetry properties of vector coupling coefficients, L = 0, 2 are symmetric spatial states, 
whereas L = 1 is antisymmetric. Also, S = 1 is a symmetric spin state, whereas S = 0 is anti-
symmetric. Therefore, the multiplets 3D, 3S, and 1P are excluded, and we are left with the 
multiplets

 3  (9 states)  (5 states)  (1 state)P D S1 1  

for a total of 15 states. The theorem also may be used if  we have two equivalent holes in 
an incomplete shell. Thus the conclusions we have just arrived at for carbon also apply for 
oxygen, which has two equivalent  = 1 holes.

5. If  there are more than two equivalent electrons, it is no longer possible to factor the wave 
function into space and spin parts with opposite exchange symmetry. However the multip-
lets can be enumerated in a systematic if  somewhat laborious way by constructing a table. 
We illustrate with the example of three equivalent p electrons in Table 12.2.

The columns of the table are labeled

 m m m m m m M M L Ss s s L S  1 2 3 1 2 3, , , , , , , , ,         and  

We start by entering in the first row the maximum possible values of m i , i =1, 2, 3. For three 
equivalent p electrons, this would be +1, +1, +1, yielding ML = 3. Now each of the msi can only 
be ±½. However, because m m m

  1 2 3= = , no two of the msi  can be the same. Therefore, we 
cannot have a state with ML = 3. Hence we cannot form an L = 3 multiplet; the largest possible 
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value is L = 2. Accordingly, we try to construct a state with ML = 2 (the next row in the table). 
As can be seen, this is possible provided that not all values of ms are the same; hence for this 
particular state, we have MS = ½. Therefore, this line of the table corresponds to a 2D multiplet, 
which has altogether 10 distinct states. Because the total degeneracy of a p3 configuration is 20, 
we must identify 10 more states. In the next lines of the table we write out those configurations 
associated with ML = 1. It can be seen that there are two independent possibilities. One linear 
combination must correspond to the 2D, ML = 1 state. The orthogonal combination must be 
the ML = 1 component of a new multiplet with MS = ½ and hence S = ½. This is obviously 2P 
and contains altogether 6 states. It remains to identify 4 of the 20 states. To this end, we start 
to write out the lines of the table corresponding to ML = 0. It can be seen that there is one state 
with MS = 3/2. Because MS = 3/2 did not occur in any of the previous lines, it must be asso-
ciated with L = 0, S = 3/2 (a 4S3/2 term with four states). We have now identified all 20 states, 
and it is unnecessary to fill in any more lines of the table. To recapitulate, a p3 configuration 
contains the multiplets 2D, 2P, and 4S. This method can be extended in a routine way to more 
complicated cases.

Now that we have a procedure for constructing the possible multiplets of a given configura-
tion, how are they to be ordered in energy? There are several rules, named after the German 
spectroscopist F. Hund, who worked in the early decades of the twentieth century and arrived 
at the rules empirically.

Hund’s first rule: Terms with the highest spin multiplicity lie lowest in energy.
This owes its origin to the same phenomenon that causes 3 1S  to lie lower than 1 0S  in helium. 

Recall that the spatial wave function of the two electrons in 3 1S  is antisymmetric; thus the prob-
ability that both electrons are found in the same small region of space is vanishingly small. 
Hence the average value of the repulsive interaction 1/r12 is much smaller than for 1 0S , where 
the spatial wave function is symmetric. More generally, given a many-electron configuration, 
a multiplet with large S has a more antisymmetric spatial wave function than a multiplet with 
small S.

Hund’s second rule: For multiplets of the same S, those with higher L lie lower in energy.
For given spin, multiplets with larger L tend to have electrons farther apart than those with 

smaller L. Several simple examples of these rules are provided by carbon, oxygen, and nitro-
gen. In carbon and oxygen, 3P lies lowest, followed by 1D and then 1S. In nitrogen, the ground 
multiplet is 4S, followed by 2D and then 2P. However, whereas Hund’s rules provide a useful 
general guide, they are not always valid. Configuration mixing and other effects do alter the 
energy ordering of multiplets in many cases.

Table 12.2 Multiplet table for p3

ml1 ml 2 ml3 ms1 ms2 ms3 ML MS L S

1 1 1
1 1 0 + – + 2 1/2 2 1/2
1 1 –1 + – + 1 1/2 2 1/2
1 0 0 + – + 1 1/2 1 1/2
1 0 –1 + + + 0 3/2 0 3/2
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12.7 Calculation of multiplet energies in the L-S coupling scheme

Quantitative calculations of multiplet splittings are not trivial, even for relatively simple atoms. 
The basic approach is to start with the CFA, assume only a single configuration, and use first-
order perturbation theory with the Slater sum rule. We illustrate with the 1s22s22p2 configura-
tion, for which we have already shown that the distinct multiplets are 3 1P D S, , . and 1  Our goal 
is to calculate the first-order energy shifts; that is,

 

∆
∆

E P LM SM H LM SM L S

E D LM SM H LM SM
L S L S

L S L S

( )

( )

,1 3

1 1

1 1( ) = ′ = =

( ) = ′    L S
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= =

( ) = ′ = =
2 0

0 01 1
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,( )∆    

 

where H′ is the electrostatic interaction. In general, a multiplet component LM SML S  is 
constructed as a linear combination of Slater determinants containing electrons with differ-

ent m mi si

,  values such that m M m Mii L sii S∑ ∑= = and . For example, in the case of two 

equivalent p electrons, consider the state L M S ML S= = = = =2 2 0 0 2 2 0 0, , , , , , , which is 
one component of the 1D multiplet. In this particular case, there is only one possible Slater 
determinant, which corresponds to the values

 m m m ms s 1 2 1
1

2 2
1

21 1= = = + = −  

This Slater determinant is conveniently denoted by the symbol (1+, 1–). Thus we have

 2 2 0 0 1 1, , , ( , )= + −  (12.43)

The remaining components of the 1D multiplet are easily found by applying the lowering oper-
ator L L L− − −= +1 2  to both sides of (12.43)
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 (12.44)

We see that the coefficients in the transformation from the ( , )m mi si

 basis to the (LMLSMS) 
basis are vector coupling coefficients. Similarly, we could express the components of the 3P 
multiplet, as well as the 1S state, as linear combinations of Slater determinants. However, it is 
not necessary to make all this effort because there are several features that simplify the prob-
lem. The first is that in the absence of external magnetic and electric fields, all M ML S,  compo-
nents of a given multiplet have the same energy. Thus, to calculate ∆E ( )1  for a given multiplet, 
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it is sufficient to calculate it for just one choice of M ML S, . Now, as we have just seen, the 1D 
component 2 2 0 0, , ,  is expressed as the single Slater determinant (1+, 1–). Similarly, the 3P 
component 1 1 1 1 1 0, , , ( , )= + +  is just a single Slater determinant. Hence we have

 
∆
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E D H

E P H

( )

( )

, ,

, ,

1 1

1 3

1 1 1 1

1 0 1 0

( ) = + −( ) ′ + −( )
( ) = + +( ) ′ + +( )  (12.45)

The 1 0S  state is not a single Slater determinant; it is a linear combination of the determinants 
(1+, –1–), (1–, –1+), and (0+, 0–). However, for given M ML S, , we can use the fact that the trace 
of the H′ submatrix is invariant under the unitary transformation from the ( , )m mi si

 basis to 
the (LMLSMS) basis. In particular, for M ML S= = 0, we have

 ∆ ∆ ∆E S E D E P( ) ( ) ( ) , , ,1 1 1 1 1 3 1 1 1 1 0 0( ) + ( ) + ( ) = + − −( ) + − − +( ) + + −( )  (12.46)

where we employ the shorthand

 0 0 0 0 0 0+ −( ) ≡ + −( ) ′ + −( ), , ,H  

and similarly for the other Slater determinants. Substituting (12.45) in (12.46) and transposing, 
we obtain

 ∆E S( ) , , , , ,1 1 1 1 1 1 0 0 1 1 1 0( ) = + − −( ) + − − +( ) + + −( ) − + −( ) − + +( )  (12.47)

We have just employed a simple application of the Slater sum rule. Equations (12.45) and 
(12.47) reveal that our problem is reduced to calculation of the diagonal matrix elements of the 
electrostatic interaction for the Slater determinants: (1+, 1–), (1+, 0+), (1+, –1,–), (1–, –1+), 
and (0+, 0–).

We now discuss the procedure for calculation of such matrix elements. First of all, it can be 
shown from (11.58) that, in general, the matrix element can be expressed as

 ij r ij ij r ji
i j

12
1

12
1− −

<

− ∑  (12.48)

where the sum is over all pairs of electrons in the incomplete shell. (Note that we are ignoring 
the contribution of the complete shells to the electrostatic energy; it is an additive constant 
common to all the multiplets in question.) In (12.48), the first and second terms in square 
brackets are the direct and exchange contributions, respectively. A general form for each matrix 
element in (12.48) is

 12 3412
1

1 1 1 1 2 2 2 2 12
1

3 3 3 3 4 4 4 4r n m m n m m r n m m n m ms s s s
− −=    

   

, ,  (12.49)

The angular and spin parts of this expression are
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Now
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Inserting this in (12.50), we obtain
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Each integral of  three spherical harmonics is usually expressed in a standard way as 
follows:

 Y Y Y d
k

m m c m mm
k

m k
 

 ’
’* , , , ,∫ =

+
′ −( ) ′ ′( )µ

π
δ µΩ

2 1
4

 (12.53)

where the ck are tabulated coefficients defined by (12.53), and  , ,′  and k  are constrained by 
the triangle rule. Taking all this into account and including the radial portion, we find that 
(12.49) becomes
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Further standard notations are employed when the initial and final states are the same, as is the 
case for our diagonal matrix elements
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Thus, in (12.48),

 
ij r ij ij r ji

a m m F n n m mk
i i j j

k
i i j j si sj

12
1

12
1− −− =

( ) ( ) −      

 

δ ,( ) ( ) ( ) ∑ b m m G n nk
i i j j

k
i i j j

k

   

 

 (12.56)

 

 

 

 

 

 

 



12.8 Spin-orbit interaction293

We now return to the specific problem of evaluating the matrix elements in (12.45) and (12.47). 

Making use of Table 12.3 for coefficients c m mk
i i j j 

 

( ) and carrying out straightforward alge-

bra, we obtain
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E P F F
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1 1 0 2
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25
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( ) = +

( ) = −

( ) = +

 (12.57)

Only F2 contributes to the splittings between multiplets. To evaluate F2, we need radial wave 
functions, which can be obtained from the Hartree-Fock model. However, even without knowl-
edge of radial functions, (12.57) enables us to predict the ratio of the multiplet splittings

 R
S D
D P

≡
−
−

=
1 1

1 3
1 5.  (12.58)

This result does not agree very well with experiment. The reason is that splittings due to the 
electrostatic interaction are comparable in magnitude to the splittings between different con-
figurations (Figure 12.2). Thus the assumption of a single configuration in the Slater sum rule 
calculation is not realistic; to improve the agreement between theory and experiment, one must 
take into account configuration interaction.

12.8 Spin-orbit interaction

In the CFA, description of the spin-orbit interaction in a complex atom is quite similar to that 
in hydrogen (recall Section 10.2). Suppose that the ith electron in an N-electron atom moves 

Table 12.3 Partial list of coefficients ck 

k

 mli mlj 0 1 2

ss 0 0 1 0 0
sp 0 ±1 0 − 1 / 3 0

0 0 0 1 / 3 0
sd 0 ±2 0 0 1 / 5

0 ±1 0 0 − 1 5/
pp ±1 ±1 1 0 − 1 25/

±1 0 0 0 3 25/
±1 1 0 0 − 6 / 25
0 0 1 0 4 / 25

Note: When there are two ± signs, the two upper or the two lower 
signs must be employed together.

 

 

 

 

 

 

 



Atomic Structure294
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 Figure 12.2 Energies of low-lying multiplets of the isoelectronic sequence C, N+, O2+, F2+. Assuming the single configuration 1s22s22p2 and calculating 
the multiplet splittings by first-order perturbation theory using the Slater sum rule, one predicts that R = [E(1S) – E(1D)]/[E(1D) – E(3P)] 
= 1.50. The observed values of R for C, N+, O2+, F2+ are shown in the figure. The discrepancies between theory and experiment arise from 
neglect of neighboring configurations, which are in fact quite close in energy to the multiplets of interest. To show this, we include the 
1s22s2p3 5S level for each member of the isoelectronic sequence.

in a central electrostatic potential Φ( )ri . Then, if  this electron described uniform motion, the 
magnetic field in its rest frame would be
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The spin-orbit interaction of the ith electron is given by the phenomenological expression

 H g
r ri

so

i i
i i

( ) = −
∂
∂eff

α 2

2
1 Φ

S L  

where, following Thomas’ analysis, the noninertial nature of  the ith electron rest frame 
is compensated by replacing gs ≈ 2 with geff = gs – 1 ≈ 1. The total spin-orbit interaction 
Hamiltonian is

 H so
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S L  (12.60)

where
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 (12.61)

It is intuitively obvious that for electrons in closed shells, the individual terms in the sum in 
(12.60) cancel in pairs, leaving no net contribution. However, there is a residual spin-orbit 
effect for electrons in unfilled shells, and for a given periodic table group, it increases approxi-
mately as Z2. This dependence may be understood from (12.61) and the Thomas Fermi model, 
which tells us that because r scales as Z-1/3 and Φ as Z 4 3/ , ξi scales as Z 2. In Figure 12.3, we plot 
the fine-structure splittings (spin-orbit effect) versus Z on a log-log scale for several groups 
of atoms. These data show that for a given periodic table group, fine-structure splittings are 
indeed approximately proportional to Z2.

We first confine ourselves to fairly light atoms, where L-S coupling is a good approximation, 
and the spin-orbit effect can be treated as a perturbation. Using the Wigner-Eckart theorem, 
we now show that diagonal matrix elements of H so( ) in the LSJMJ representation are propor-
tional to those of the operator L•S. We write
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Now

 LM SM H LM SM LM SM LM SML S
so

L S i
i

N

L S i i L S′ ′ = ′ ′
=
∑( ) ξ

1

L S  (12.63)

However,

 LM SM LM SM LM LM SM SML S i i L S L i L S i S′ ′ = ′ ′L S L S   

and also Li and Si are first-rank tensor operators. Thus we have
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and

 SM S SM SM m SM S S SS i
m

S S S i′ = ′( ) 1  (12.65)

where m = –1, 0, or 1. We also know that in general

 jM J jM j j jM m jMm′ = + ′( ) ( )1 1  

which implies that
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 (12.66)
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 Figure 12.3 Fine-structure splittings. Plot of log ΔE versus. Log Z for the following cases:
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 (12.67)

Thus (12.62) becomes
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∑ i
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N

ξ
( )1 1

 (12.68)

The sum over i is a numerical constant that we call A. Thus (12.68) becomes

 

LSJM H LSJM A LSJM LSJMJ
so

J J J
( ) = L S

                           =
A

J J L L S S
2

1 1 1+( ) − +( ) − +( ) 
 

 (12.69)

This result implies the Lande interval rule, which states that the splitting between terms with J 
and J – 1 within a given multiplet is proportional to J. For example, in a 3P multiplet, the pos-
sible values of J are 2, 1, and 0. The interval rule predicts that

 R
E J E J

E J E J
=

=( ) − =( )
=( ) − =( ) =

2 1

1 0
2  (12.70)

How well is the interval rule obeyed? Consider Table 12.4, which lists atoms having two equiv-
alent p electrons in the outer shell and a 3P ground multiplet.

Only in silicon is R in moderately good agreement with the simple prediction of (12.70). In 
the very light carbon atom, the discrepancy is due to relativistic effects. In the heavier atoms, 
and especially in Sn and Pb, L-S coupling is no longer a good approximation.

Another example is shown in Table 12.5. The ground configuration of iron is 1 4 32 2 6s s d ,  
and the ground multiplet is 5D (L = S = 2). The various terms in this multiplet, in order of 
increasing energy, are J = 4, 3, 2, 1, 0. (This ordering is inverted because the incomplete shell 
is more than half  full – a general rule for fine-structure splittings.) The energies are given 
in cm–1.

If  the interval rule were obeyed exactly, all the numbers in the last column would be the 
same. Here agreement with the interval rule is good but not perfect. Calculations of the factor 
A are facilitated by use of the Slater sum-rule technique. We refer the reader to Condon and 
Shortley (1953) for a detailed discussion of this question.

We now turn to consideration of the spin-orbit effect in heavy atoms, where it is no longer a 
minor perturbation but a very major effect (see Figure 12.4).

In heavy atoms, neither L nor S is a good quantum number, but only J. For illustration, 
we consider mercury (Hg), where Z = 80. Within the CFA, the ground configuration is 
1 5 62 10 2s d s , and most of the low-lying excited states have configurations in which one of the 
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6s electrons is promoted to a higher orbital (6p, 7s, 5d, etc.). If  L-S coupling were valid, we 
could describe the ground state as 6s2 (1S0) and the terms with the 6s6p configuration as 6s6p 
(1P1) and 6s6p (3P2,1,0). These states are in fact labeled this way, but it is misleading. Let us focus 
our attention on the 3P1 level. Once produced, an atom in this state decays to the ground state 
by emission of a photon at 254 nm, with a mean lifetime τ = 10–7 s. The transition probability 
per unit time for this decay ought to be much smaller (for reasons that will be explained in a 
later chapter); hence τ should be orders of magnitude longer. The answer to the puzzle is that 
L-S coupling is not legitimate because of the large spin-orbit interaction. Thus what we label 
as a 3P1 state is really a J = 1 state with the following major components: (S = L = 1: 3P), (S = 
0, L = 1, 1P), and (S = 1, L = 0,3S). In particular, the 1P component, which enters into the wave 
function with a coefficient of several percent, has a very large matrix element for decay to the 
1S ground state.

In the limit where the spin-orbit effect is large and the electrostatic interaction can be ignored 
to zeroth order, it is most convenient to employ the representation in which each individual Li 
and Si couple to form a Ji, and these are added together to give the total J. This is called the 
j-j coupling scheme. The procedure for finding the possible j-j multiplets, given a specific con-
figuration, is described in chapter 10 of Condon and Shortley (1953). The L-S and j-j schemes 
are, of course, both limiting cases; more generally, it would be desirable to find a representa-
tion that diagonalizes the Hamiltonian and contains both electrostatic and spin-orbit effects. 
Unfortunately, this intermediate coupling scheme, discussed in chapter 11 of Condon and 
Shortley (1953), is quite complicated in most cases.

Table 12.4 Fine structure splittings for atoms with 2 equivalent p electrons,  
(3P ground multiplet)

Atom Z E( )3
0P E( )3

1P E( )3
2P R

C 6 0.00 16.4 cm–1 43.5 1.65
Si 14 0.00 77.15 223.31 1.89
Ge 32 0.00 557 1410 1.53
Sn 50 0.00 1692 3428 1.03
Pb 82 0.00 7819 10650 0.36

Table 12.5 Spin-orbit splittings in the ground 5D multiplet of iron

J E(J) E(J) – E(J – 1) E( ) ( )J E J J− −[ ] −1 1

4 0.000 — —
3 415.934 –415.934 –104.0
2 704.001 –288.067 –96.0
1 888.126 –184.125 –92.1
0 978.068 –89.942 –89.9

 

 

 

 



Problems for Chapter 12299

Problems for Chapter 12

12.1. The Thomas-Fermi differential equation (12.26) and the Thomas-Fermi formula (12.40) 
for the total energy of a neutral atom can be derived by starting with the energy functional

 E n c n d Ze
n
r

d
e n n

d d[ ] = − + ′
− ′

′∫ ∫ ∫∫5 3 2
2

2
/ ( ) ( )τ τ τ τr r

r r
 (1)

36200

36118

J=5/2

J=3/2
3/2    35161

1/2    34160

26478

7792.7

0.00

7s   2 S1/2

6p   2 P3/2

6p   2 P1/2

7p   2 P

6d   2 D

 Figure 12.4 Low-lying energy levels of atomic thallium (Tl), Z = 81, approximately to scale. Note the very large fine-structure splitting between the 
two lowest levels.
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where c me= ( ) ( )3 105 3 4 3 2/ /π  , the first term on the right-hand side of (1) is the kinetic energy, 
and the second and third terms are the potential energies of interaction of the electrons with 
the nucleus and with one another, respectively. Here n is an as-yet-undetermined function of r. 
We want to find n by using the calculus of variations to minimize E n[ ] subject to the constraint 

Z n d= ∫ τ.

(a) Consider the auxiliary functional

 h n c n d Ze
n
r

d
e n n

d d n d[ ] = − + ′
− ′

′ − ( )∫ ∫ ∫∫ ∫5 3 2
2

2
/ ( ) ( )τ τ τ τ λ τr r

r r
 (2)

where λ  is an undetermined multiplier. Vary h by making arbitrary small variations in n. Show 
that the condition δh = 0 yields the Thomas-Fermi differential equation with µF = 0  for a neu-
tral atom. It can be shown that the extremum of h found this way is in fact a minimum. Hence 
the minimum energy with respect to arbitrary variations in n is given by (12.40).

(b) The condition Z n d= ∫ τ  is left invariant if  we replace n r( ) by β β3n r( ), where β  is a posi-

tive real parameter. Show that when this replacement is made, E E E E E→ ( ) = + +β β β β2
1 2 3. 

Using this expression and the fact that E β( ) is minimized when β →1, obtain the viral theorem 
for the Thomas-Fermi model.

12.2. In Chapter 10 in an analysis leading to equation (10.55), we discuss the diamagnetic 
correction to the magnetic field at the nucleus of  a hydrogen atom. Use the Thomas-Fermi 
model to calculate a similar diamagnetic correction at the nucleus for a neutral atom with 
Z 1.

12.3. Consider a simple one-dimensional hydrogen atom that obeys the equation

 −
∂
∂

− ( ) =
1
2

2

2

ψ δ ψ ψ
x

Z x E  (1)

Here the Coulomb potential is replaced by −Z xδ( ).
(a) Find the ground-state energy and wave function and verify that

 T E V= − = −
1
2

 

(b) Now consider the one-dimensional helium atom, which obeys

 H x x
x x

Z x Z x x x Eψ ψ ψ δ ψ δ ψ δ ψ1 2

2

1
2

2

2
2 1 2 1 2

1
2

1
2

, ( ) ( )( ) = −
∂
∂

−
∂
∂

− − + −( ) = ψ  (2)

where x1 and x2 are the coordinates of the two electrons. First, treat the δ( )x x1 2−  term as a 
perturbation, and find the ground-state energy to first order. Compare with three-dimensional 
helium.
(c) Employ the variational method to improve the result of (b). Use a trial function analogous 
to that employed in the text for three-dimensional helium (recall Section 11.6). Find the best 
value of H , and compare it with three-dimensional helium.
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(d) This is the main part of the problem. Still referring to the Hamiltonian of (2), consider the 
Hartree self-consistent field solution Ψ Φ Φ( , )x x x x1 2 1 2= ( ) ( ) for the ground state. Show that

 −
∂
∂

− ( ) ( ) + =
1
2

2

2
3Φ

Φ Φ Φ
x

Z x xδ ε  (3)

where H x x= − −2 1 2ε δ( ) . Find the normalized analytic solution to (3) and thus show that

 H Z
Hartree

= − −





−
1
4

1
48

2

 (4)

Compare this result with the results obtained in (b) and (c). This model is interesting because 
it yields an exact analytic solution to the Hartree problem, with results that are very similar to 
those obtained numerically for three-dimansional helium.

12.4. (a) List the multiplets that can be constructed from the configuration ( )( )ns n d′ 2, and 
order them according to Hund’s rules.
(b) Find the possible multiplets for the configuration ( )nd 7.

12.5. Find the linear combinations of Slater determinants that make up the 2
3 2 1 2P P/ / and 2  

states constructed from three equivalent  = 1(p) electrons.

12.6. In very heavy atoms, the spin-orbit interaction is so strong that the L-S coupling scheme 
breaks down. Here it is more appropriate to use the j-j coupling scheme, in which the orbital 
and spin angular momenta of a given electron couple to form the angular momentum j of  that 
electron, and the various j’s are coupled together to form the total J. A similar situation exists 
in the nuclear shell model, where spin-orbit coupling can be so strong that the j-j coupling 
scheme is necessary. Suppose that n equivalent electrons in an atom, each with the same value 
of j, are in a partially filled shell and that all the other electrons are in closed shells with zero 
resultant angular momentum. Taking into account the Pauli principle, what are the possible 
values of J that can result? This question can be answered methodically by constructing a table 
that is somewhat analogous to the multiplet tables in the L-S coupling scheme (see Section 
12.6). In the present case, we label the table columns as

 m m m M Jj j jn J1 2   

To satisfy the Pauli principle, no two values of mj can be the same.
(a) Find the possible values of J for n =3, j = 5/2.
(b) Find the possible values of J for n =4, j =7/2. In this case, you should find that two values 
of J can each be realized in two independent ways.
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13.1 The Born-Oppenheimer approximation

Even the simplest diatomic molecule is difficult to analyze quantitatively because there is 
more than one force center, so we cannot use the central field approximation (CFA). However, 
one essential feature does exist that permits considerable simplification, as was recognized by  
M. Born and J. R. Oppenheimer (Born and Oppenheimer 1927): the nuclei are much more mas-
sive than the electrons and therefore move much more slowly. To see how the Born-Oppenheimer 
approximation is implemented, we consider the Schroedinger equation

 ∆ ∆e N eV R
Z Z

R
Eψ ψ ψ ψ ψ+ + ( ) + =1 2  (13.1)

where ∆ ∆e Nψ ψ and  are the electronic and nuclear kinetic energy terms (written schematically 
here), R is the internuclear separation, and V Re ( ) is the potential energy of interaction of the 
electrons with one another and with the nuclei. The last term on the left-hand side of (13.1) is 
the Coulomb repulsion energy of the two nuclei (where Z1 2,  are the nuclear electric charges in 
atomic units), and E is the total energy of the molecule. The first step in the Born-Oppenheimer 
approximation is to ignore the nuclear kinetic energy. Then Z Z R1 2 /  is a constant, whereas the 
electronic wave function ψ e R( ) depends on R as a parameter and satisfies the Schroedinger 
equation

 ∆e e e e e eR V R R E R Rψ ψ ψ( ) ( ) ( ) ( ) ( )+ =  (13.2)

where the electronic energy E Re ( ) is not a real number but rather a real function of the param-
eter R. In principle, we can solve (13.2) to find E Re ( ) and ψ e R( ) for each value of R. Once this 
is done, we form the quantity

 V R E R Z Z Re( ) = ( ) + 1 2  (13.3)

which is called the molecular potential energy. In the next level of approximation, we go back to 
(13.1) and include the nuclear kinetic energy

 ∆ ∆N e eV R
Z Z

R
Eψ ψ ψ ψ ψ+ + ( ) +





=1 2  (13.4)

We also assume that ψ ψ ψ= e N  is a product wave function. Then (13.4) becomes

Molecules13
 

 

 

  

  

 

 

 

 



13.1 The Born-Oppenheimer approximation303

 ψ ψ ψ ψ ψ ψe N N e N e NV R E∆ + ( ) =  

Dividing both sides of this equation by ψ e, we obtain

 ∆N N N NV R Eψ ψ ψ+ ( ) =  (13.5)

This equation reveals that the nuclear motion is determined by the molecular potential energy 
V R( ). For bound molecular states, V R( ) generally has the shape shown in Figure 13.1.

In first approximation, the nuclei describe two distinct types of motion in V(R)

Vibration about the equilibrium position (stretching mode along the internuclear axis)•	
Rigid-body (dumbbell) rotations with two degrees of freedom•	

We now make some rough but useful estimates of the electronic, vibrational, and rotational 
energies. A molecule, like an atom, has a linear size of approximately 1 Bohr radius (1 atomic 
unit). Thus, from the uncertainty principle,
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 Figure 13.1 Typical shape of a molecular potential energy curve corresponding to a bound state. R0, the value of R at which V(R) is minimum, is also the 
equilibrium separation between the nuclei to a good approximation. D is the dissociation energy.
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Hence a typical molecule, like a typical atom, has electronic energies of order 1 atomic unit  
(≈ 10 eV). If  the molecular diameter is of order unity, then the width of V(R) and the equilib-
rium nuclear separation R0 are also of order unity. Because V(R) is approximately parabolic 
in the neighborhood of R0, the vibrational motion is approximately that of a simple harmonic 
oscillator with energies

 E M xvib ≈ ω 2 2  (13.6)

where x is the oscillator displacement, M is the nuclear mass, and ω  is the oscillator angular 
frequency. When x becomes large x →( )1 , the molecule becomes sufficiently distorted that it 
dissociates, and this requires an electronic excitation energy Ee ≈ 1. Thus we have Mω 2 1≈ ; that 
is, vibrational energy splittings are of order

 ω ω= =
1

1 2M /
 (13.7)

Next we consider rigid-body rotations of the nuclei, which are characterized by an orbital 
angular momentum quantum number K. The kinetic energy of rotation is

 E
I

K K

MRrot = ≈
+( )K 2 2

0
22

1

 

where I is the moment of inertia. Because  = 1 and R0 ≈ 1, the separation between adjacent 
rotational states for small K is
 

Erot ≈ M–1 (13.8)
Thus, to summarize,

 E E E M Me : : : :/
vib rot ≈ − −1 1 2 1  (13.9)

Even for the lightest diatomic molecules H , H2
+

2( ), M ≈ 103. This justifies a posteriori the 
approximation scheme of Born and Oppenheimer.

13.2 Classification of diatomic molecular states

Because the force on a molecular electron is noncentral, the electronic orbital angular momen-
tum operator L does not commute with the Hamiltonian; consequently, there is no definite 
orbital angular momentum eigenvalue L. However, a diatomic molecule is axially symmetric 
about the internuclear axis z; therefore, Lz commutes with the Hamiltonian, and M, the eigen-
value of Lz, is well defined. Electronic states of the molecule are classified by Λ = M  as

 Σ Π ∆, , , ...  

according to whether Λ = 0, 1, 2, …, respectively. The capital Greek letters Σ, Π, Δ, and so on 
are used in place of the Latin letters S, P, D, and so on that we employed to describe orbital 
angular momenta in atoms.

 

 

 

 

 

 

 

 

 



13.3 Analysis of electronic motion in the hydrogen molecular ion305

Consider any plane that contains the internuclear axis, and reflect the electronic wave func-
tion through this plane. If  we ignore possible parity violating effects due to the weak interac-
tion (and these are exceedingly small in any case), this reflection does not affect any physically 
observable property of the molecule. On the other hand, under the reflection, M M→ −  in the 
case of Π, Δ, … states. Thus each Π, Δ, ... state is twofold degenerate. However, Σ states are not 
degenerate; reflection through the plane either leaves the electronic wave function unchanged 
(an Σ+ state) or changes the sign of the wave function (an Σ– state). There exists an additional 
symmetry for homonuclear diatomic molecules: the electronic Hamiltonian is symmetric with 
respect to inversion about the midpoint between the two nuclei. Hence, according to the parity 
theorem of Chapter 6, nondegenerate solutions ψ  are either even (g for gerade in German) or 
odd (u for ungerade) under reflection about the midpoint. Thus we have the states

 

1 2
1 2
1 2
1 2

Σ Σ
Σ Σ
Π Π
Π Π

g g

u u

g g

u u

± ±

± ±

, , ...
, , ...
, , ...
, , ...

 

where here the numbers 1, 2, … simply label the states in order of increasing energy.

13.3 Analysis of electronic motion in the hydrogen molecular ion

We now consider in some detail the electronic wave functions and energies for the simplest of 
all molecules: H2

+. This is important because some of the features revealed here can be general-
ized to yield an understanding of the covalent bond in H2 and more complicated diatomic mol-
ecules.1 Figure 13.2 shows the prolate spheroidal coordinates that are convenient for describing 
H2

+. The Schroedinger equation can be separated in these coordinates and solved exactly for 
each fixed value of R (Bates et al. 1953). The resulting eigenfunctions are expressed as

 ψ λ µ φ λ µ φ, ,( ) = ( ) ( )L M eim  (13.10)

where

 λ µ=
+

=
−r r

R
r r

R
a b a b  

and φ is an angle of rotation about the internuclear axis.
In Figure 13.3 we show the exact energies obtained in the calculation by Bates, Ledsham, 

and Stewart for the lowest σ and π states as a function of R. (Note that lowercase Greek letters 
are used to denote H2

+ states.)
We consider the lowest σ solutions at the two extremes R = 0 and R = ∞, as well as at finite 

R. For R = ∞, we obviously have a proton and a hydrogen atom separated by infinite distance. 
The electron could be centered on the first proton with wave function

1 In our discussions of binding forces in diatomic molecules in this chapter, we ignore the very feeble van der Waals 
interaction (discussed in Section 10.6).
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 ψ
π1 1 2

1
= −

/
e ra  (13.11)

or it could be centered on the second proton with wave function

 ψ
π2 1 2

1
= −

/
e rb  (13.12)

Because ψ1 and ψ2 are degenerate at R = ∞ with energy Ee = − 1
2, any linear combination of 

these solutions is also a solution with the same energy. Thus we can form the solutions

 ψ σ ψ ψ
π

1
1

2

1

2
1 2g

r rR e ea b, = ∞( ) = +( ) = +( )− −  (13.13)

and

 ψ σ ψ ψ
π

1
1

2

1

2
1 2u

r rR e ea b, = ∞( ) = −( ) = −( )− −  (13.14)

It can be seen from Figure 13.3 that at any finite R, the 1σg solution has lower energy than the 
1σu solution. In Figure 13.4 we plot the 1σg and 1σu solutions along the internuclear axis for 
various values of R. These plots clearly reveal how 1σg gradually transforms from (13.13) at R 
= ∞ to the 1s state of He+ with energy E = –2 at R = 0. Meanwhile, 1σu changes from (13.14) to 
the 2p state of He+ (with energy E = –½) at R = 0.

When the Coulomb repulsion energy 1/R of  the two protons is added to the energies of 
Figure 13.3, we obtain the molecular potential energy curves of Figure 13.5. From this figure it 
is clear that H2

+ is stable in the 1σg state with a dissociation energy D = 0.1 atomic unit.
Qualitatively, binding occurs for 1σg because the probability is high to find the electron in the 

region between the two protons. Here the potential energy of interaction between the electron 
and the two protons is large and negative. This can be seen in Figure 13.6, where we plot the elec-
tronic potential energy along the internuclear axis for various values of R. This phenomenon is 

µ = constant

λ = constant
ra

rb

R

 Figure 13.2 Prolate spheroidal coordinates for the hydrogen molecular ion: λ is constant on ellipsoids of revolution with the protons at the two foci, 
whereas μ is constant on the conjugate hyperboloids of revolution. (Reprinted with permission from Quantum Theory of Matter, 2nd ed., 
by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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very general and occurs for more complex diatomic molecules and in particular for H2, where 
low energy is associated with large probability for both electrons to be located in the region 
between the nuclei (i.e., in an exchange-symmetric spatial state). Because of the Pauli principle, 
this requires the two-electron spin function to be antisymmetric: a singlet. Thus, although in 
the 1s2s configuration of atomic helium the triplet state lies lower, for H2 and indeed for most 
(but not all) diatomic molecules, the lowest electronic state is 1Σ.

13.4 Variational method for the hydrogen molecular ion

Although the electronic Schroedinger equation for H2
+ has been solved analytically for any fixed 

R, it would be extremely difficult and impractical to generalize this method to the case of H2 or 
more complex molecules. Therefore, we seek a reasonably accurate but simpler approach that 
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 Figure 13.3 Lowest electronic energies (in atomic units) of H2
+  as a function of internuclear distance R from the exact calculation for fixed nuclei by 

Bates, Ledsham, and Stewart. (Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The 
McGraw-Hill Companies, Inc.)
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 Figure 13.4 The 1σg and 1σu wave functions of H2
+  plotted along the internuclear axis for various nuclear separations. (Reprinted with permission 

from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)

can be generalized. To this end, we recall (13.13), which describes the 1σg state at R = ∞. This solution is a linear 
combination of atomic orbitals (LCAO) with effective nuclear charge α = 1 in

 ψ α α= ∞( ) +[ ]− −N e er ra b  (13.15)
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where N is a normalization factor. (Do not confuse this α with the fine-structure constant or 
the spin-½ spinor!) When R → 0 and hence ra,b → r, we have a solution with effective nuclear 
charge α = 2

 ψ = ( ) −N e r0 2  (13.16)

This suggests that we try a solution of the form

 ψ σ α α1 g
r rN R e ea b( ) = ( ) +[ ]− −  (13.17)

where α is chosen at each R to minimize the energy by means of the variational method. We 
first consider the normalization constant N(R). Here we must evaluate the integral

 I N r r r r da b a b= = −( ) + −( ) + − −( ) − ∫2 2 2 2exp exp expα α α α τ  (13.18)
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 Figure 13.5 Molecular potential energy curves for H2
+  obtained by adding the nuclear repulsion energy 1/R to the exact solution curves of Figure 13.3. 

(Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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The first and second integrals are easily done in spherical polar coordinates centered on pro-
tons a and b, respectively. The third integral must be calculated in prolate spheroidal coordi-
nates. The result is

 I e R
R

Sr= + + +













 ≡ +( )−2

1 1
3

2
1

3

2 2

3

π
α

α α π
α

α  (13.19)

Hence

 ψ σ α
π

α α1
2 1

3

g
r r

S
e ea b( ) =

+( ) +[ ]− −  (13.20)

We now consider E R He ( ) = ψ ψ , where
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 Figure 13.6 Potential energy of electron along internuclear axis in H2
+  for various internuclear separations. Energy levels of 1σg,u are also shown. The 

shaded band indicates the range of energies of the higher levels shown in Figure 13.3. (Reprinted with permission from Quantum Theory of 
Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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 H
r ra b

= − ∇ − −
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1 12  

It can be shown that
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and that

 − − = ( )1 1
2r r

F R
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α α  (13.23)
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It is easy to verify that F F1
1

2 20 0 2( ) = ( ) = − and . Therefore, because α(0) = 2,

 T V Ee0 2 0 4 0 2( ) = ( ) = − ( ) = −  

Also, F F1
1

2 2 1∞( ) = ∞( ) = − and . Because α(∞) = 1, this yields

 T V Ee∞( ) = ∞( ) = − ∞( ) = −1
2

1
21  

These results agree with the exact solution. At finite R ≠ 0, we have

 E F R F Re = ( ) + ( )α α α α2
1 2  (13.25)

It is convenient to employ the new variable w R= α , in terms of which (13.25) is written

 E F w F we = ( )  + ( ) α α α α2
1 2  (13.26)

Now, calculating ∂ ∂Ee / α  and setting it equal to zero, we obtain after simple algebra
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 α = −
+ ∂
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+ ∂
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F w
F
w

F w
F
w

2
2

1
12

 (13.27)

This yields α as a function of R, which is plotted in Figure 13.7.
With α determined, we calculate Ee(R) from (13.25). The result is shown in Figure 13.8 

together with the exact solution and with the case where α = 1 is held fixed (LCAO). Clearly, 
the variational energy curve is very close to the exact solution.

2
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R

 Figure 13.7 The variational parameter α plotted versus R for H2
+ . (Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. 

Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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 Figure 13.8 Comparison of variational, exact, and LCAO energies for the 1σg state of H2
+ . (Reprinted with permission from Quantum Theory of Matter, 

2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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13.5 Molecular orbital and Heitler-London methods for H2

Because the variational method for H2
+ is successful, it seems natural to try to extend it to H2. 

Let us assume that a given electron has a spatial wave function

 g
S

a b=
+( ) +( )1

2 1
 (13.28)

where

 a e b er ra b= 





= 





− −α
π

α
π

α α
3 1 2 3 1 2/ /

 (13.29)

It therefore seems reasonable to construct the following wave function for two identical 
electrons:

 ψ
α α
β β

α β α β
1 2

1

2

1 2

1 2
1 2

2
1 2

1 2

1 2 2 1,( ) =
( ) ( )
( ) ( ) = ( ) ( ) −g g

g g
g g  (13.30)

This is obviously an S = 0 (singlet) combination of the two electron spins. It is easy to see 
that in the limit R → 0, (13.30) becomes the 1  2 1

0s S  wave function of atomic helium in the 
approximation where electron-electron correlations are neglected. The next step is to calculate 
E Hα ψ ψ( ) =  using (13.30) and

 H
r r r r ra a b b

= − ∇ − ∇ − − − − +
1
2

1
2

1 1 1 1 1
1
2

2
2

1 2 1 2 12

 (13.31)

where the coordinates employed in (13.31) are as shown in Figure 13.9.
Calculation of E(α) using (13.30) and (13.31) and minimization for each value of R yield the 

result shown in Figure 13.10, in which the 1/R Coulomb repulsion of the protons is included. 
The figure shows a serious disagreement between the experimentally determined molecular 
potential energy and that calculated by this variational molecular orbital method. The dis-
agreement is particularly severe for large R.

Why have we failed badly here when essentially the same method worked so well for H2
+? We 

can readily see the answer by considering (13.30) in the limit of large R. In that case, S → 0, 
and we have

 g g a a b b a b a b1 2
1
2

1 2 1 2 1 2 2 1( ) ( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )   (13.32)

In (13.32), a a( ) ( )1 2  corresponds to both electrons centered on proton a and none on proton b 
(i.e., a hydrogen negative ion H– and a proton), whereas b b( ) ( )1 2  corresponds to both electrons 
centered on proton b and none on a (also a hydrogen negative ion and a proton). Only the third 
and fourth terms on the right-hand side of (13.32) correspond to two neutral hydrogen atoms. 
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However, a ground-state hydrogen molecule always dissociates into two H atoms and never 
into a hydrogen negative ion and a proton: the latter would cost too much energy.

This problem is remedied by eliminating the terms a a b b( ) ( ) ( ) ( )1 2 1 2 and  so that we obtain 
the two-electron spatial wave function

 ψ space const1 2 1 2 1 2,( ) = ( ) ( ) + ( ) ( ) a b b a  (13.33)

which was originally proposed by W. Heitler and F. London (Heitler and London 1927). As 
before, we can fix α = 1 as in the LCAO solution for H2

+, or we can vary α to minimize E at 
each R. The latter was first done by Wang (1928) and by Rosen (1931), with further improve-
ments by many authors [see, e.g., James (1933, 1935)]. Figure 13.11 shows the results obtained 
by Rosen for the energy.

The variational parameter α of  Wang and Rosen is plotted versus R in Figure 13.12. Note 
that at R = 0, α = =1 6875 27. /16. This is not difficult to understand, for when R → 0, the H2 
molecule becomes a helium atom as far as the electrons are concerned. We have only to recall 
the simple variational calculation that we did on the ground state of helium [see Section 11.6 
and equation (11.27)] to obtain the factor 27/16.

We now return to the original molecular orbital spatial function that appears in 
(13.30). It is

 g g
S

a a b b a b a b1 2
1

2 1
1 2 1 2 1 2 2 1( ) ( ) =

+( ) ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( )   (13.34)
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 Figure 13.9 Coordinates for description of the electrons and protons in the H2 Molecule.
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 Figure 13.10 Ground-state energy of H2 as a function of R: (a) molecular orbital calculation based on (13.30); (b) experimentally determined energy curve. 
(Reprinted with permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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It is also of interest to consider the function u(1)u(2), where

 u
S

a b=
+( ) −( )1

2 1
 

We have

 u u
S

a a b b a b b a1 2
1

2 1
1 2 1 2 1 2 1 2( ) ( ) =

+( ) ( ) ( ) + ( ) ( ) − ( ) ( ) − ( ) ( )   (13.35)

From (13.34) and (13.35) we can form the linear combinations

 g g u u a b b a1 2 1 2 1 2 1 2( ) ( ) − ( ) ( ) = ( ) ( ) + ( ) ( ) const (Heitler-London)  (13.36)

and
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 Figure 13.11 Electronic energy in H2 : Heitler-London method, as calculated for α = 1 (LCAO), and by variational approach (Rosen). (Reprinted with 
permission from Quantum Theory of Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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 Figure 13.12 Variational parameter α plotted versus R from Wang and Rosen calculation of H2. (Reprinted with permission from Quantum Theory of 
Matter, 2nd ed., by John C. Slater; copyright 1968, The McGraw-Hill Companies, Inc.)
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 g g u u a a b b1 2 1 2 1 2 1 21( ) ( ) + ( ) ( ) = ( ) ( ) + ( ) ( ) const (ionic)  (13.37)

both of which correspond to spin singlets. In addition, we can construct the following 
combinations:

 1 1 1 2 1 2 1 2 1 2σ σg u g u u g a b b a triplet: const( ) ( ) − ( ) ( ) = ( ) ( ) − ( ) ( )   (13.38)

and

 1 1 1 2 1 2 1 2 1 2σ σg u g u u g a a b b singlet: const( ) ( ) + ( ) ( ) = − ( ) ( ) + ( ) ( )   (13.39)

We have already seen that the Heitler-London function (13.36) corresponds to the ground 
1

1Σg
+( ) electronic state, which dissociates to two 1s H atoms with electron spins opposed. The 

triplet function (13.38) corresponds to an unbound electronic state 3 Σu
+( ), which dissociates to 

two 1s hydrogen atoms with parallel electron spins. The two remaining singlet functions are 
associated with excited (unbound) electronic states, each of which dissociates to an H– ion and 
a proton (Figure 13.13).

13.6 Valency: An elementary and qualitative discussion  
of the chemical bond

We have indicated that in the hydrogen molecule, binding can only occur when both electrons 
have a high probability of being located in the region between the nuclei. This requires the two 
electrons to be in an exchange-symmetric spatial state. Because of the Pauli principle, this, in 
turn, implies that the two-electron spin function must be antisymmetric: the spins must be 
opposed. The following general principle is suggested:

g1
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u
+

u
+

1

1

1

3

g2
+

H– + p

H + H

 Figure 13.13 Schematic diagram (not to scale) of low-lying electronic states of H2 described in text.

 

 

 

 

 

 



13.6 Valency: An elementary and qualitative discussion of the chemical bond317

Atoms can only combine to form stable molecules if the spins of their shared valence electrons 
are opposed.

This is perhaps the single most powerful principle in all of chemistry, and it explains a great 
deal about the nature of the chemical bond. In what follows, we give a number of elementary 
examples.

Normally, hydrogen gas is in the form of molecular hydrogen, not atomic hydrogen. However, 
in several relatively recent experiments, a gas of electron-spin-polarized atomic hydrogen has 
been created. These atoms do not combine to form molecular hydrogen because the 3 Σu

+ state is 
not bound (recall Figure 13.13). However, if  either inadvertently or deliberately a spin-polar-
ization relaxation mechanism is introduced, the atoms do combine, sometimes with explosively 
destructive results. Consider next the interaction between a hydrogen atom and a helium atom 
in their ground states. The spins of the two electrons in the helium atom are opposed to one 
another. Thus, regardless of whether the electron spin in the hydrogen atom is up or down, it 
must encounter an electron with parallel spin in helium. Therefore, there is no bound state of 
the HHe system. Similarly, two normal helium atoms cannot form a bound state. More gener-
ally, because all the inert gas atoms in their ground states have closed electron shells with spins 
paired off, they do not show any chemical activity.

It is convenient to define the valency as an integer equal to twice the net electronic spin of an 
atom. Obviously, the valency of each rare gas atom is zero, whereas the valency of a hydrogen 
atom, and of the alkali atoms Li, Na, K, Rb, Cs, and Fr in Group I of the periodic table, is 
unity.

Group II atoms (Be, Mg, Ca, Sr, Ba, etc.) have an s2 ground configuration, with zero valency. 
However, there exists an sp configuration with valency equal to 2, relatively close to the ground 
configuration. The energy difference between sp and s2 is more than repaid when an alkaline 
earth atom combines with another atom or atoms: thus the principal valency of alkaline earth 
elements is 2.

Elements of Group III have ground configuration s2p, which would give a valency of unity. 
However, the configuration sp2 is relatively close, and here it is possible for the total spin to 
be S = 3/2, which gives a valency of 3. The lighter members of this group (B and Al) are only 
tervalent, whereas the heavier members are both univalent and tervalent (e.g., consider the 
compounds TlCl and TlCl3).

Group IV atoms (C, Si, etc.) have ground states s2p2 3P with spin of unity and hence a valency 
of 2. However, for the light atoms in this group, and especially for carbon, the state sp3 5S with 
spin of 2 and hence valency of 4 lies relatively close to the ground state (see Figure 12.2). Thus 
carbon is mainly quadrivalent, which enables it to form an enormous number of compounds. 
The heavier members of Group IV are increasingly bivalent.

Atoms of Group V, for example, nitrogen, have the ground state s2p3 4S3/2 with a total spin 
of 3/2; these are therefore tervalent (e.g., consider ammonia NH3). However, there exists the 
configuration s2p2s′, where one of the electrons is promoted to a higher s orbital (s′). Although 
the energy of this orbital is quite large, it is possible for the valency of nitrogen to be 5 in some 
cases, for example, in HNO3.

Group VI elements have the ground state s2p4 3P with total spin of unity and hence a valency 
of 2. The lightest member of the group, oxygen, is solely bivalent. However, for the heavier 
members, the excited configurations s2p3s’ and s2p2s’p’ yield valencies of 4 and 6, respectively. 
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Thus, for example, one has the compounds H2S, SO2, and SO3, where sulfur has valencies 2, 4, 
and 6.

The halogens (Group VII) have s2p5 ground states with spin ½, which yields a valency of 
unity, and this is the only valency exhibited by fluorine. However, excited configurations of the 
heavier halogens yield valencies of 3, 5, and 7. For example, one has HCl (valency of 1), HClO2 
(valency of 3), HClO3 (valency of 5), and HClO4 (valency of 7).

Similar qualitative remarks are useful for understanding a great deal about chemical com-
pounds of transition metals (with incomplete d shells) and rare earths (with incomplete f 
shells).

It is well known to every student of elementary chemistry that molecules have a definite and 
sometimes very complex spatial structure. This arises from the fact that valencies are often 
associated with definite directions in space. We begin with a simple example: the tervalent 
nitrogen atom. As we know, the ground state is 1s22s22p3 4S3/2. Because the total orbital angular 
momentum is L = 0, we must have ML = 0, which means that each of the p electrons must have 
a different value of m



. We thus have the states
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 (13.40)

where the last two states are independent linear combinations of the degenerate m


= ±1 states. 
The probability distributions for the first two functions in (13.40) are indicated schematically 
in Figure 13.14.

Clearly, the directions where these three electronic wave functions yield maximum probabil-
ities are mutually orthogonal. We are therefore led to expect that the chemical bonds involving 
tervalent nitrogen should be at right angles to one another. In fact, the NH3 molecule forms 
a tetrahedron, where the angles between the NH bonds are 107° × 3. This is larger than 90o 
because of the mutual repulsion of the hydrogen atoms.

Phosphorus, arsenic, antimony, and bismuth are similar to nitrogen: they all have ground 
states with p3 configurations and L = 0. Thus one expects that their bonds are also mutually 
orthogonal. Indeed, in PH3, the angles are 93° × 3.

More than one bond can exist between two given atoms. For example, consider the two car-
bon atoms in ethylene (C2H4), with one carbon displaced relative to the other along the z-axis 
(Figure 13.15).

Here each carbon is quadrivalent. Two of the electrons from each carbon are shared with two 
H atoms. This leaves two more to be shared with the other carbon. One from each carbon can 
have an orbital of the form pz  in (13.40). These form a σ bond, as shown in Figure 13.16a. 
Here the charge overlap is substantial, as indicated by the shaded region. The other pair of 
electrons is oriented along x or y, with symmetry axes in planes perpendicular to z. These elec-
trons form a π bond (Figure 13.16b), which is considerably weaker than a σ bond because the 
charge overlap is much smaller.
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Two ground-state nitrogen atoms are joined together with a triple bond (one σ bond, a πx 
bond, and a πy bond). Hence N2 is one of the most strongly bound diatomic molecules.

Atomic oxygen has the ground configuration np4. To form the molecule O2, we employ three 
of the p electrons from each atom to form a σ bond and πx,y bonds as in N2. What should we do 
with the fourth p electron in each atom? The smallest cost in energy (minimum Coulomb repul-
sion) occurs if  we keep them as far apart as possible. This occurs in a spatially antisymmetric 

combination of a p px y and a  orbital. The corresponding spin function is symmetric; hence 

the O2 electronic ground state is 3 Σ, contrary to the general rule that almost all diatomic molec-
ular electronic ground states are 1Σ .

Let us return to Figure 13.16a, which is a schematic representation of a σ bond. It is evident 
that we could improve the charge overlap and consequently the strength of this bond if  we 
could make each orbital asymmetric, as shown in Figure 13.17.

z

x

 Figure 13.14 Schematic diagrams showing orientation of pz, px orbitals.

H H

HH

C C

 Figure 13.15 Diagram of ethylene: C2H4. Each carbon atom is quadrivalent and shares single bonds with two hydrogen atoms and a double bond with 
the other carbon.

a) b)

σ bond

π bond

 Figure 13.16 Schematic diagrams showing charge overlap: a) σ bond , b) π bond.
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Such an asymmetry occurs if, for example, we mix an s orbital with a p orbital. Consider the 
lithium atom, which has the ground configuration 1s22s. A 2p orbital has higher energy than 
2s, but the cost in energy is more than regained in better charge overlap in the σ bond between 
two lithium atoms to form the Li2 molecule. The orbital in question is 2 2s pz+ λ • , where the 
optimal value of λ  is approximately 0.3. This mixing of orbitals is called hybridization.

For our final example, we consider H2O. Although the ground configuration of oxygen is 
1s22s22p4, considerable hybridization occurs in the H2O molecule for the six electrons with n = 2.  
Let us assume that this hybridization is perfect and form the four orthogonal combinations
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where s = −( ) /4 1 2π , and the p functions are given by (13.40). It is easy to show that the absolute 
squares of the four functions 1 2 3 4, , , and  are maximum along the directions defined by 
the vectors
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respectively, and that the angle between any two of these vectors is Θ = −( ) =−cos .1 1 3 109 47o.  
Given the six electrons, we can place two along any one of these directions, two along any 
other, and one each along the third and fourth directions. Each of these last two electrons 
forms a bond with a hydrogen atom. Therefore, according to this picture, the angle between 
the two hydrogen bonds in H2O should be 109.47°. In fact, this angle is 104.5°. The agreement 
is reasonably good, and the residual discrepancy arises from the fact that the hybridization 

Asymmetric orbital

Enhanced σ bond with
pair of asymmetric orbitals

 Figure 13.17 Schematic diagrams illustrating asymmetric (hybrid) orbitals.
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between 2s and 2p orbitals is not perfect. Note that the two “arms” of H2O that do not have 
hydrogen bonds still have two electrons each, which are capable of attracting a proton from 
another H2O molecule. Thus any given water molecule can be linked to four others in a chain 
(a polymer). However, the links in this chain are weak and easily disrupted by thermal motion. 
Hence the physical properties of liquid water are strongly temperature dependent, especially 
near 0°C. For example, the density of liquid water reaches a maximum at 4°C.

13.7 Nuclear vibration and rotation

Let the nuclei have masses M1 and M2, and let their relative position vector R have polar coor-
dinates R, θ, and φ. The Schroedinger equation of relative motion of the two nuclei is

 − ∇ + ( ) =


2
2

2µ
ψ ψ ψN N NV R E  (13.42)

where µ = +( )M M M M1 2 1 2 . As a practical matter, one finds that the potential energy curves 
for low-lying bound electronic states can be described quite accurately by the Morse function

 V R V e eR R a e R R a( ) = −( )− −( ) − −( )
0

2 0 02 /  (13.43)

which has three independent parameters V0, R0, and a. The shape of the Morse function is 
shown in Figure 13.1. Equation (13.42) can be separated in spherical coordinates to yield

 ψ
χ

θ φN K
MR

R
Y K=

( ) ( ),  

where

 − + ( ) =


2 2

22µ
χ χ χd

dR
W R E  (13.44)

with
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R
( ) = ( ) +
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2

2

1

2µ
 (13.45)

and K = 0, 1, 2, …. . As usual, we require χ( ) .0 0=  If  K is not too large, the shape of W(R) also 
resembles the curve of Figure 13.1. Because we are interested in small oscillations about the 
minimum of this curve, we expand W about its minimum R1

 W R W K R R b R R c R R( ) = + −( ) + −( ) + −( ) +0 0 1
2

1
3

1
41

2
  (13.46)
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(Note that R1 = R0 only when K = 0.) If  the terms in b and c are neglected and the range of R 
is extended to –∞, (13.44) becomes the Schroedinger equation for a one-dimensional harmonic 
oscillator. In a better approximation, the b and c terms are treated as perturbations on the oscil-
lator. A straightforward but tedious calculation shows that to lowest order in b and c,
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 (13.47)

where v = 0, 1, 2, … . Assuming V(R) to have the form (12.43), it can be shown that to second 
order in v + 1/2 and K(K + 1),
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The second term on the right-hand side of (13.48) describes centrifugal stretching of the equi-
librium position. The right-hand side of (13.49) contains the equilibrium energy −V0, the first-
order rotational energy, and the second-order rotational energy. Equation (13.50) describes the 
change in stiffness due to stretching. If  we limit ourselves to the first two terms on the right-
hand side of (13.47), neglect the second-order rotational energy in (13.49), and keep only the 
first term on the right-hand side of (13.50), we obtain
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= − + +
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ω
µ

 (13.53)

where ω µ= 2 0
2V a . Equation (13.53), which is a good approximation for small to moder-

ate values of v and K, tells us that the energy shift with respect to –V0 associated with nuclear 
motion contains two parts: the vibrational part and the rigid-body rotational part. Their 
 magnitudes are roughly as described in (13.9).
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13.8 Quantum statistics of homonuclear diatomic molecules

By definition, the two nuclei in a homonuclear diatomic molecule are identical; hence the 
two-nucleus wave function must be exchange symmetric if  the nuclei are bosons or exchange 
antisymmetric if  they are fermions. Now, in the approximation that leads to (13.53), the two-
nucleus wave function including spin can be written as

 ψ ψ ψ ψN = vib rot spin  (13.54)

The function ψ vib is always symmetric with respect to exchange. The exchange symmetry of the 
rotational function is (–1)K; hence, if  the nuclei are bosons, the spin function is antisymmetric 
if  K is odd and symmetric if  K is even. If  the nuclei are fermions, the spin function is anti-
symmetric if  K is even and symmetric if  K is odd. To illustrate, we consider H2, which has two 
protons (fermions), and D2, which has two deuterons (bosons). First, with regard to H2, each 
proton has spin-½. Thus the total nuclear spin can be I = 1 (exchange-symmetric triplet) or  
I = 0 (exchange-antisymmetric singlet). Therefore, if  I = 1, K must be odd, whereas if  I = 0, K 
must be even. At low temperatures, H2 gas can be formed in the singlet state (para-hydrogen) or 
in the triplet state (ortho-hydrogen). Either of these gases can persist for a long time in a con-
tainer before relaxing to thermal equilibrium (a mixture of the two). Disregarding nuclear spin 
for the moment, one can show that the rotational partition function would be

 Z K e e e eK K

K
rot = +( ) = + + + +− +

=

∞
− − −∑ 2 1 1 3 5 71

0

2 6 12Θ Θ Θ Θ( )
  (13.55)

where Θ = 2
0
22µR k TB . At very low temperatures, Θ1, and the sum on the right-hand side 

of (13.55) converges rapidly. If  one has ortho-hydrogen, the terms in (13.55) with even K are 
missing, and the partition function including nuclear spin is

 Z ortho e e( ) = + +( )− −3 3 72 12Θ Θ
  (13.56)

where the extra factor of 3 arises from the spin statistical weight. If  the gas is para-hydrogen,

 Z para e( ) = + +−1 5 6Θ
  (13.57)

These distinct partition functions yield very different specific heats at low temperature for the 
two gases. Interpretation of the measured specific heats by D. Dennison (1927) was important 
because it led to the discovery of proton spin.

In the case of D2, each nucleus has spin 1, so the total nuclear spin can be 2 (symmetric), 1 
(antisymmetric), or 0 (symmetric). Thus, for I = 2 or 0, K must be even, whereas if  I = 1, K must 
be odd. Finally, for the molecule HD, there are no restrictions on K because the proton and the 
deuteron are not identical particles.
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Problems for Chapter 13

13.1. This problem illustrates the Born-Oppenheimer approximation. Consider a-one dimen-
sional “H2

+ molecule” containing one light “electron” of mass m connected to two heavy “pro-
tons” each with mass M by two identical springs, each of unstretched length a and spring 
constant k. The Hamiltonian is

 H
p
M

p
M

p
m

k
x x a x x a= + + + − −( ) + − −( )





1
2

3
2

2
2

2 1
2

3 2
2

2 2 2 2
 (1)

(a) Find the normal modes of these coupled oscillators and thus obtain the exact quantized 
energy levels of this system.
(b) Starting once again from (1), fix the distance between the protons at R, and find the energy 
spectrum En(R) of the electron as a function of R.
(c) Now employ En(R) as a potential energy of interaction between the protons, and solve for 
the proton energies by doing the calculation in the proton center of mass frame. Compare your 
result for the total energy to that of part (a). How does the discrepancy depend on m/M?

13.2. (a) Derive (13.19) from (13. 18).
(b) Fill in the steps leading from (13.20) to (13.21) with (13.22).
(c) Show how (13.20) yields (13.23) with (13.24). It may be helpful to make use of the following 
integrals:

 

y e dy
n e
a

ax
ax

n

f d
R

n ay

x

ax

n

n

−
∞ −

+∫

∫

= + + +
( )











( ) =

!
!

, ,

1

3

1 

λ µ φ τ
8 1

1

10

2
2 2d d f dφ µ λ µ φ λ µ λ

π

−

∞

∫ ∫∫ ( ) −( ), ,

 

where λ, μ, and φ are prolate spheroidal coordinates defined in Section 13.3.

13.3. Starting from (13.26) for Ee expressed in terms of the functions F1 and F2 as given by 
(13.22) and (13.24), respectively, derive the result (13.27).

13.4. We have seen that when two H atoms in their ground states combine to form a hydrogen 
molecule, the possible electronic states of that molecule are 1SS SS and 3 . What are the possible 
electronic states of the following diatomic molecules formed from separated atoms in their 
ground states?

N2 O2 Cl2 HCl CN TlF

Confine your solution to statements concerning possible values of Λ, that is, Σ, Π, and so on;, 
possible spin multiplicities, that is, singlet, triplet, and so on; and the number of independent 
states of each type. Do not concern yourself  with which of these states are even or odd with 
respect to reflection through a plane containing the internuclear axis or which homonuclear 
molecular states are of the form g or u. (The arguments concerning these latter points are 
somewhat subtle, and for lack of space, we do not discuss them in this chapter.)
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14.1 Stabilities of the first and second kind: The thermodynamic limit

Ordinary matter is stable, a remarkable fact of nature that often goes unappreciated. Why don’t 
the electrons, which are attracted to the nuclei by Coulomb forces, collapse into those nuclei, 
yielding matter with densities many orders of magnitude greater than are actually observed? 
Classical physics gives no answer to this question. Quantum mechanics does provide a satisfac-
tory answer, but when we go beyond the one-electron atom and consider many-electron atoms 
or many atoms in bulk matter, the analysis leading to the answer is not easy. The first such 
analysis, given by F. Dyson and A. Lenard (Dyson and Lenard 1967; Lenard and Dyson 1968), 
was extremely lengthy and difficult. A simpler and more effective analysis was constructed by 
E. Lieb and W. Thirring in the 1970s, and this was improved in recent decades by Lieb and 
collaborators, as well as by other investigators [see, e.g., Lieb (1976) and Lieb and Seiringer 
(2010)]. However, even these efforts are far too lengthy, intricate, and subtle for a detailed 
exposition in this book. Hence, in what follows, we limit ourselves to a brief  and superficial 
summary of their achievements.

The stability-of-matter problem encompasses three different concepts:

1. Stability of the first kind
2. Stability of the second kind
3. Existence of a thermodynamic limit for the total energy of a system of particles

We consider each of these in turn.
A system of electrons and nuclei interacting by means of Coulomb forces has stability of the 

first kind if the lowest bound state has finite rather than infinite negative energy. The simplest 
such system is a hydrogenic atom, consisting of a single electron and a single nucleus with 
atomic number Z. In classical physics, a mass point bound to an inverse square force center 
can have an orbit arbitrarily close to the origin and thus an energy that is arbitrarily large and 
negative. Hence there is no finite lower bound to the energy. According to quantum mechanics, 
there is a finite lower bound given exactly for the nonrelativistic hydrogenic atom by the Balmer 
formula: E Zs1

2 2= −  in atomic units. If  we did not know the Balmer formula, we could try to 
estimate the lower bound from the Heisenberg uncertainty principle using a very well-known 
argument as follows: suppose that the electron in the atom is limited to a spatial region of 
linear size ∆x so that the potential energy is of order −Ze x2 ∆ . The Heisenberg uncertainty 
principle states that

 ∆ ∆p x ≥


2
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Therefore, the electron kinetic energy must be at least of order 2 2m xe∆ , so the total 
energy is

 E
m x

Ze
xe

≈ −


2

2

2

∆ ∆
 

This is minimized when ∆x Zm e a Ze≈ ≈

2 2
0 , and the corresponding minimum energy is 

E Z e a Z≈ − = −2 2
0

2 in atomic units.
However, this argument is flawed because it fails to account for the possibility that the wave 

function might have two or more widely separated lobes. Furthermore, if  we consider a many-
electron atom or a system of many electrons and nuclei, we find that the Heisenberg uncer-
tainty principle (which is derived from the Cauchy-Schwarz inequality) is not an effective tool. 
Instead, it is far better to use an uncertainty principle obtained from two other mathematical 
inequalities, one due to Hölder and the other due to Sobolev. These are derived in Appendix A. 
Hölder’s integral inequality is

 f d g d fg dp
p

q
q

τ τ τ∫ ∫ ∫( ) ( ) ≥
1 1/ /

 (14.1)

where f and g are nonnegative real functions of x, y, z, d dxdydzτ = , the integrations are over 
all space, and p and q are two positive real numbers satisfying the condition

 
1 1

1
p q
+ =  

Note that when p q= = 2, Hölder’s integral inequality reduces to the Cauchy-Schwarz integral 
inequality

 f d g d fg d2 2
2

∫ ∫ ∫≥ ( )τ τ τ  

Sobolev’s integral inequality in three dimensions is

 ∇( ) ≥ ( )∫ ∫F d C F d
2 6 1 3

τ τ
/

 (14.2)

where F is a real differentiable function of x, y, z, C is a positive constant, d dxdydzτ = , and 
both integrals are carried out over all space. As shown in Appendix A, (14.2) yields the follow-
ing lower bound on the electron kinetic energy in the hydrogen atom:

 T D dC≥ ∫ ρ τ1
5 3/  (14.3)

where D mC e= ( ) ( )3 10 6 2 2 3 2π /
 , and ρ ψ1

2= . This leads to the following lower bound on the 
energy in atomic units: E Z≥ −3 21 3 2/ . The precise value of the latter bound is not important. 
Instead, the main point is that (14.3), in which the inequality for the kinetic energy is expressed 
in terms of an integral of the 5/3 power of the probability density, is of a form that can be gen-
eralized to apply to an N-electron atom.
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The electronic wave function for such an atom is antisymmetric with respect to exchange of 
any pair of electrons. It can be written

 ψ σ σx x1 1, ..., ; , ...,N N( )  

where x j j and σ , j N= 1, ..., , are the spatial and spin coordinates, respectively, for the jth elec-
tron. Assuming that ψ  is normalized to unity, we write the expectation value of the kinetic 
energy as

 T
N

d d
N

d dN N= − ∇ = ∇∫ ∫2 21
2

1 1

2

1ψ ψ τ τ ψ τ τ† ... ...  

In addition, it is convenient to define

 ρ ψ σ σ τ τN N N NN d dx x x x( ) = ( )∫ , , ..., ; , ..., ...2 1

2

2  (14.4)

where the integral on the right-hand side is taken over all spatial coordinates except x . The 
quantity ρN x( ) is a single-particle electron density function and is analogous to the electron 
density n in the Thomas-Fermi model. Integration of both sides of (14.4) with respect to x  
yields

 N dN= ∫ ρ τ  

[For a hydrogenic atom, N = 1, and (14.4) reduces to ρ ψ1
2= .]

In 1975, Lieb and Thirring showed that for an N-electron atom,

 T
D
q

dC
N≥ 



 ∫

1
4

2 3

2 3
5 3

π
ρ τ

/

/
/  (14.5)

where q is the spin statistical weight (in other words, the maximum number of fermions that 
can have the same single-particle spatial orbital). Of course, for electrons, q = 2. [The factor of 
( ) /4 2 3π −  on the right-hand side of (14.5) has no fundamental significance but only resulted from 
a number of steps in the original derivation of Lieb and Thirring. Subsequent mathematical 
improvements have brought this factor much closer to unity.]

The significance of (14.5) becomes clear if  we assume that ρN x( ) is zero outside a certain 
finite volume V. Although this is not strictly true in any real situation because ρN  goes to zero 
exponentially for large x, it is an excellent approximation if  V is sufficiently large Then, by 
Hölder’s inequality,

 ρ τ ρ τ τN N

VV V

d d d
N
V

5 3

5 3 2 3
5 3

2 3
/

/ /
/

/
≥












=∫∫ ∫

−

 

which implies that T  increases with N at least as fast as N5/3. This result, essential for what 
follows, is valid because the electronic wave function is antisymmetric. It would not be true for 
bosons.
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We now address the questions: what is stability of the second kind, and what does it mean to 
speak of a thermodynamic limit? Consider an ordinary macroscopic object of a size found in 
a laboratory, such as a lump of copper. Its energy E and its volume V are extensive quantities. 
That is, if  we were to double the number of particles N N→ 2 , then to very high precision, the 
volume and energy also would double: V V E E→ →2 2 and . In the absence of such extensiv-
ity, ordinary matter could not have any of the commonplace properties that are familiar from 
elementary physics and chemistry. For example, if  the energy were not extensive, the specific 
heat of the lump of copper would depend on its size. More dramatically, an enormous release 
of energy would result whenever we tried to join two macroscopic samples of matter together, 
or it would be impossible to have any bound macroscopic objects in the first place.

Energy and volume are generally extensive if  we can ignore gravitational forces within an 
object. When gravitational forces become important, as in a star, extensivity fails. In a typical 
star, a good fraction of the energy is gravitational potential energy, which is of order −GM R2 / , 
where G is Newton’s constant, M is the mass, and R is the radius. In this case, neither the energy 
nor the volume is proportional to the total number of particles in the star. Although inverse 
square (Coulomb) forces govern the interaction of electrons and nuclei in ordinary objects of 
laboratory size, there are two signs of electric charge. Because ordinary macroscopic objects are 
always very nearly electrically neutral, Coulomb forces are very effectively screened, and thus 
extensivity of V and E holds to an excellent approximation when gravity can be neglected.

If the energy of a very large number of N electrons and M nuclei is extensive, that is, if 
E N cM∝ +( ) in the limit of very large N + cM, where c is a constant, then one says that the 
energy is extensive in the thermodynamic limit. The system has stability of the second kind if a 
lower bound exists on the energy of the form

 E f Z N cMmin ( )( )= − +  

where f(Z) is a positive function that may depend on the atomic number Z of the nuclei but does 
not depend on N or M.

Stability of the second kind and existence of the thermodynamic limit for the energy have 
in fact been derived from quantum mechanics by the authors mentioned earlier. A remarkable 
result emerges in the course of this derivation: for a system of electrons and nuclei, stability of 
the second kind and existence of the thermodynamic limit only hold because electrons obey 
Fermi-Dirac statistics. A macroscopic object consisting solely of bosons with equal and oppo-
site charges, with Coulomb interaction, cannot exist.

There are several ways to derive stability of the second kind. One route starts from the 
kinetic-energy bound (14.5) for an N-electron atom and makes use of the Thomas-Fermi model 
to extend it. Here one employs a result we have already mentioned in Section 12.4: within the 
Thomas-Fermi approximation, the energy of any two isolated atoms or isolated atom and mol-
ecule is always less than the energy of a molecule formed from these constituents. The result of 
the derivation is a bound on the nonrelativistic energy of N electrons and M nuclei of charges 
Z ej , where j M= 1, ..., , all interacting by Coulomb forces. In atomic units, one obtains

 E q N
N

Z j
j

M

≥ − +










=
∑0 231 1 1 77

12 3 7 3

1

2

. ./ /  (14.6)
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Recall that q is the spin statistical weight (q = 2 for electrons and for protons). When (14.6) is 
generalized to the case q = N, it applies to bosonic matter, and we thus obtain a lower bound 
to the energy, which is

 E CNboson ≥ − 5 3/  (14.7)

where C is a constant. However, although (14.7) is a lower bound, in recent years it has been 
shown that for the special case where the bosons all have equal masses and positive and nega-
tive charges of equal magnitude, E CNboson = − 7 5/  in the limit of large N. Hence, for bosons, one 
has neither stability of the second kind nor a thermodynamic limit for the energy.

In this brief  summary we have confined ourselves to nonrelativistic particles interacting 
solely by means of Coulomb forces. However, the analyses of stability carried out by Lieb and 
others have been extended in recent years to include relativistic motion, the effects of magnetic 
fields, and coupling of charges to the radiation field (Lieb and Seiringer 2010).

14.2 An application of second quantization: The stability of a metal

A typical metal consists of a crystal lattice with positive-ion cores at the vertices and a Fermi 
sea of conduction electrons. We discuss it here for several reasons: First, it provides a practical 
illustration of the stability of matter. Second, the analysis that follows affords a good exercise 
in second quantization. Finally, allowing our sample of metal to become astronomical in size 
so that gravitational forces become important, we see very easily (in Section 14.3) what happens 
when extensivity fails. We shall employ the jellium model, in which the positive-ion cores are 
replaced by a smooth continuum of inert positive charge, just enough to balance the negative 
charge of the conduction electrons. This approximation is simple enough so that our calcu-
lation is relatively straightforward, but it retains the essential features of a real metal. In the 
jellium model we imagine that our sample of metal occupies a large cube of edge L and volume 
v = L3, and it has N conduction electrons with total charge –Ne. We assume that there exists in 
addition a smooth positive continuum of total charge Ne, so that the total charge is zero. Thus 
the positive charge density is

 ρ+ =
Ne
v

.  (14.8)

The total energy of the metal is:

 E E E E= + ++ − int  (14.9)

where E+  is the energy of the positive charges, E- is the energy of the electrons, and Eint is the 
energy of interaction of the positive charges with the electrons. As we shall see, E+  and Eint are 
easy to calculate. E−  consists of two parts:

 E T V− = +  
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where E T0 ≡  is the expectation value of the electron kinetic energy and ∆E V≡  is the 
expectation value of the potential energy, which arises from electron-electron Coulomb inter-
actions. From the viewpoint of Fermi-Dirac statistics an ordinary metal is essentially at zero 
temperature; (in other words, the actual temperature is orders of magnitude less than the Fermi 
temperature). Thus to a good approximation:

 E N F0
3
5

= µ  (14.10)

where µF , the “Fermi energy,” is proportional to the 5/3 power of the electron density. ∆E  is 
the only portion of E that requires some effort to calculate. We shall find that ∆E  consists of 
two parts: ∆ ∆ ∆E E E= +1 2 . The first part ∆E1 cancels E E+ + int. The remaining part ∆E2 is the 
“exchange” contribution. Its form, not easily guessed intuitively, results from a subtle interplay 
of quantum mechanics and the anti-symmetrization principle. We shall find that ∆E2 per elec-
tron is negative and that it varies as the 4/3 power of the electron density. When E E0 2 and ∆  are 
combined we obtain stable equilibrium at reasonably realistic values of energy E and electron 
number density.

Let us start with E+ . It is:
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 (14.11)

To deal with this integral, we insert an integrating factor exp ’− −( )η x x  in the integrand, carry 
out the integration, then take the limit as η → 0. While this appears illegitimate on mathemat-
ical grounds, there is good physical justification for it: in real matter the Coulomb potential of 
any ion core or electron is always screened to some extent by the surrounding charges. Thus 
(14.11) becomes:
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 (14.12)

Next we calculate Eint in a similar way:
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 (14.13)

 

 

 

 

 

 



14.2 An application of second quantization: The stability of a metal331

Combining (14.12) and (14.13) we have:

 E E
N e

+ + = −int .
2 2

22vη
 (14.14)

We do not worry at this stage about the dependence of this expression on η; it will become clear 
later. For now, we proceed to calculate ΔE. The formula we need for this purpose is (11.76). In 
the present application, the Fock state is the Fermion ground state F , in which all occupation 
numbers are unity up to the Fermi energy µF ; beyond this, all occupation numbers are zero. 
Also, in each of the four field operators, the single-particle orbital w has the form

 w
v

ei x
k

k
, /α αχ= ⋅1

1 2
 (14.15)

which is a product of a plane wave and a spin-½ spinor χ. Here k can take any value allowed 
by the boundary conditions (periodic boundary conditions at the cube surfaces), whereas α 
can have only two values (1 and 2 for spin up and spin down, respectively). Also, for ease of 
integration, we make the usual replacement
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Taking all this into account in (11.76), we obtain
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It is convenient to rewrite the integral in (14.16) as
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 (14.17)

where y x x= ′ − . The first integral on the right-hand side of (14.17) is

 d e vi3 1 2 3 4 1 2 3 4x k k k kk k k k x+ − −( ) = + +( )∫ • ,δ  (14.18)

Because this requires that

 k k k k1 2 3 4+ = +  (14.19)

the sum in (14.16) is really carried out over only three vectors. It is convenient to change our 
notation slightly and to represent the various k vectors on a diagram (Figure 14.1).
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Here we define

 
k k q
k p q
k p

1
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= −
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and thus from (14.19), k4 = k. The second integral I on the right-hand side of (14.17) is most 
easily evaluated by employing spherical polar coordinates with the polar axis along q = k2 – k3; 
that is,
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Thus (14.16) becomes

 ∆E
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This can be simplified further by noting that
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q

k4 = k k3 = p

k1 = k – q k2 = p + q

 Figure 14.1 Diagram of the momenta appearing in equation (14.16).
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At this point it is convenient to consider separately the contributions to ΔE that arise from 
q q= ≠0 0 and . Starting with q = 0, we have

 

∆E
e

F b b b b Fq k p p k
k p

=( ) = ∑0
2

2

1 2 2 1

1 2
v

          

2 ,
,η α α α α

α α

, , ,

,

† †

 

       
v

        

2
,

= − ∑e
F b b b b F

2

1 2 1 2

1 2
2 η α α α α

α α

k p k p
k p

, , , ,

,

† †

 

         
v 2

,

= − −( )e
F b b b b F

2

1 1 2 1 2 22 η
δ δα α α α α αk k p k p p

k
, , , , , ,

† †

 p
α α1 2,

∑

 (14.22)

where in the last line we have used anticommutation relations. Recalling that

 Nk k k k k k, , , , , ,α α α α α α1 1 1 2 2 2= =b b N b b† †and  

we see that (14.22) becomes
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Combining this with (14.14), we obtain

 E E E
Ne
L+ + + =( ) = −int ∆ q 0

2

2

3 2η
 (14.24)

This represents an energy per electron of − e L2 3 22 η . When we take the limit as L → ∞ and  
η → 0 in such a way that Lη is kept constant, this residual energy per electron vanishes. Thus 
we conclude that

 E E E+ + + =( ) =int ∆ q 0 0  (14.25)

We now return to (14.21) and consider the contribution ∆E q ≠( )0 . Here we can set η = 0; 
that is,

 ∆E
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The only nonzero contributions to the sum occur for p = k – q. From Figure 14.1 we see 
that this implies exchange: k1 = k3 and k2 = k4. Also, the sum in (14.26) is carried over 
only two vectors (e.g., k and q), and the sum over two spin indices reduces to a sum over 
just one:

 

 

 

 

 

 



The Stability of Matter334

 

∆E
e

q
F b b b b F( ) , , , ,q

k q
k k q k k q≠ =

≠
− −∑0

2
12

2
0

1

1 1 1 1v

      

 ,
α

α α α α
† †

          
v

 

= −
≠

− −∑e
q

F b b b b F
2

2
0

1

1 1 1 12
1

 k,q
k k k q k q

α

α α α α, , , ,
† †

                
v

= −
≠

−∑e
q

F N N F
2

2
0

1

1 12
1

 k,q
k k q

α

α α, ,

 (14.27)

This may be rewritten as

 ∆E
e
v q

k kF F( )
,

q k k q
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12
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θ θ  (14.28)

where k pF F=  , where pF  is the Fermi momentum, and θ( )x = 1 if  x > 0, whereas θ( )x = 0 if  
x < 0. We now replace the sums in (14.28) by integrals using the substitutions
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Thus (14.28) becomes
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The integrals in (14.29) are easily evaluated by means of the simple geometric construction shown 
in Figure 14.2. Two spheres, each of radius kF, are separated by a distance |q|. The vectors k and 
k – q are constrained by the theta functions to meet in the region where the two spheres overlap. 
Therefore, the integral over k in (14.29) is just the volume of this overlap region; that is,
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k k-q
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 Figure 14.2 Geometric construction for evaluation of the integrals in equation (14.29)
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Inserting (14.30) in (14.29), we obtain

 ∆ ∆E E
e v

kF2

2

4
40

16
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π
 (14.31)

From Fermi-Dirac statistics, we have
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N
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3 2 1 3
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π  (14.32)

Thus our final result for ΔE2 is

 ∆E
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 (14.33)

Including the electron kinetic energy at zero temperature from Fermi-Dirac statistics, we obtain 
the total energy of the metal
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 (14.34)

It is convenient to write the electron number density as

 n
N
v a re

s

= =
3

4
1

0
3 3π

 (14.35)

where a m ee0
2 24= π  is the Bohr radius, and rs is a dimensionless parameter. Thus (14.34) 

becomes
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r r

N
e

as s

= −






1 105 0 458
42

2

0

. .
π

 (14.36)

where the first and second terms on the right-hand side correspond to E0 and ΔE2, respectively. 
We take the derivative of E with respect to rs and set it equal to zero to find the position of 
stable equilibrium; that is,

 rs = 4 83.  (14.37)

Substitution of (14.37) into (14.35) and (14.36) yields n Ee  and  at equilibrium; that is,

 ne = × −1 43 1022 3.  cm  (14.38)

and

 E N
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a
N= − = −0 047
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1 28

2

0

. .
π

 eV •  (14.39)
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First, note that (14.39) is consistent with the general bound (14.6). Second, considering the 
crude simplicity of the jellium model, the results in (14.38) and (14.39) agree reasonably well 
with measured parameters for some metals (e.g., the alkali metals; see Problem 14.3). That said, 
there are two basic limitations to the calculation we have just completed. First, the discrete ion 
cores were replaced by a smooth continuum of positive charge. This defect is remedied in more 
sophisticated calculations. Next, we employed first-order perturbation theory to calculate ΔE. 
This procedure is usually reliable when the first-order correction is very small compared with 
the zeroth-order energy. However, in the present case ΔE and E0 have comparable magnitudes 
in the vicinity of equilibrium. Thus substantial corrections are expected, and they do occur 
when the next order of perturbation is included. Nevertheless, the foregoing calculation does 
give a reasonably good description of the electron density and binding energy of a metal.

14.3 Some astrophysical consequences

For very hot stars, radiation pressure is the dominant mechanism resisting gravitational crush. 
In stars with moderate temperatures and densities, such as the Sun, ideal gas pressure is most 
important. However, for white dwarf stars, electron degeneracy pressure dominates, and as an 
application of the results of the previous section, it is degeneracy pressure that we now want to 
consider. To make our main point in the simplest possible fashion, we consider the following 
thought experiment: let us start with a lump of iron the size of a cannonball and at absolute 
zero temperature, and let us add atoms one by one, always maintaining mechanical (i.e., hydro-
static) equilibrium. Does the lump grow in size indefinitely, or does it reach a maximum radius 
and then shrink as we gradually add mass? In fact, we shall find that at first the density of the 
lump remains constant, so the radius R grows in proportion to M1/3. However, eventually, our 
lump of metal reaches the size of an astronomical object, and gravitational forces become 
appreciable. At this point, pressure ionization begins to liberate electrons that were bound in the 
ion cores; eventually, all the electrons are ionized. Also, gravitational forces squeeze the central 
portion of the sample to higher and higher densities until the radius begins to decrease. As we 
see momentarily, for a considerable range of masses in this regime, R M∝ −1 3/ , but eventually 
R decreases much more rapidly, going to zero at a certain critical mass MC. These stages are 
illustrated schematically in Figure 14.3.

To reduce the problem to its essentials, we make three simplifications. First, we idealize the 
metal as a lump of jellium. Second, we replace all factors of order unity (such as 35/3, π4/3, etc.) 
by unity. Third, we replace differential equations by difference equations. It turns out that these 
simplifications do not seriously invalidate our argument.

Before we begin, we need to establish the condition for hydrostatic equilibrium in the pres-
ence of Newtonian gravity. This is a simple exercise in classical mechanics. Consider a spherical 
object with radius R, total mass M, and mass density ρ( )r  (Figure 14.4). We focus on a small 
cylinder of cross-sectional area A located between r and r + dr. Its volume is dV drdA= , and 
its mass is dm r drdA= ρ( ) . The radial force on the cylinder consists of three parts: the pressure 
forces on the two ends and the gravitational force on dm; that is,

 F P r dA P r dr dA
GM r r

r
drdAr = ( ) − +( ) −

( ) ( )ρ
2

 (14.40)
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where M r( ), the mass interior to r, is related to ρ( )r  by

 
∂ ( )

∂
= ( )M r

r
r r4 2π ρ  

and G is Newton’s constant. At hydrostatic equilibrium, Fr = 0; hence (14.40) yields

 
∂ ( )

∂
= −

( ) ( )P r

r
G

M r r

r

ρ
2

 (14.41)

This is the equation of hydrostatic equilibrium for a star.

ln M

RJ

MJ

R = const•M1/3

R = const•M–1/3

MC

ln R

 Figure 14.3 Schematic diagram (not to scale) showing the dependence of radius on mass for a cold lump of matter. RJ is the maximum radius, and MJ is 
the corresponding mass.

dA

r

r + dr

R

 Figure 14.4 Diagram of a star, indicating various quantities that appear in equation (14.40).
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Because we have agreed to replace differential equations by difference equations, we use 
ρ ≈ M R/ 3, and rewrite (14.41) as

 P G
M
R

≈
2

4
 (14.42)

From (14.34), the total kinetic and electrostatic energy in a lump of metal at zero 
temperature is
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The pressure is
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Now N v n Z Am me p p= = ≈ρ ρ , where A is the mass number, Z is the atomic number, and mp 
is the proton mass. Hence, from (14.42) and (14.44), we have
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Rearranging this equation, we obtain
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 (14.46)

If  e Gm Mp
2 4 3 2 34 1π / /( )  i.e., if M e G mp

2 3 2 24 1π( ) ( )





/
, then
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a M

mp

≈ 0
1 3

1 3

/

/
 (14.47)

Of course, this means that the density ρ ≈ m ap / 0
3 is constant: the volume is extensive. Here our 

sample is relatively small in mass, and Coulomb forces are much more important than gravity. 

On the other hand, if  M e G mp

2 3 2 24 1π( ) ( )/
, then (14.46) implies that

 R
e a

Gm Mp

≈
2

0

5 3 1 34π / /
 (14.48)

Here gravity is much more important than Coulomb forces, and the pressure is supplied almost 
entirely by nonrelativistic electron degeneracy. [In other words, the kinetic-energy term on the 
right-hand side of (14.45) is much more important than the exchange-energy term.] Obviously, 
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(14.47) and (14.48) apply to the two portions of the curve that have constant positive and 
 negative slopes, respectively, in Figure 14.3. Also, it is clear from the preceding remarks that MJ 
in Figure 14.3 must be approximately

 M
e

G m
gJ

p

≈ 





≈
2 3 2

2
30

4
1

10
π

/

 (14.49)

and from (14.46), RJ ≈ 5 × 109 cm. These numerical values correspond roughly to the mass and 
radius, respectively, of the planet Jupiter: MJupiter = 1.90 × 1030g, and RJupiter = 7.14 × 109 cm.

We now return to the case M MJ , where (14.48) applies. As we add atoms one by one 
in this regime, the density increases in proportion to M2, and as it does, the electron Fermi 
momentum pF also increases. Eventually, p m cF e≈ , in which case the electrons are no longer 
nonrelativistic. Let us carry this situation to the limit where the electrons are ultrarelativis-
tic. Then, according to zero-temperature Fermi-Dirac statistics, the electron kinetic-energy 
density is
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Thus the pressure is
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Again employing (14.42), we obtain
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Because we have R-4 on both sides of this equation, a solution can be found for only one value 
of the mass; that is,

 M M
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1
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/

 solar mass  (14.51)

We have just given a crude derivation of the Chandrasekhar limit on the mass of cold white 
dwarf stars [see, e.g., Chandrasekhar (1939)]. Finally, it is interesting to compare (14.49) with 
(14.51). We see that the ratio of the mass of “Jupiter” to the Chandrasekhar mass is

 
M
M

J

C

≈ α3 2/  (14.52)

where α π= =e c2 4 1 137 036 .  is the fine-structure constant.
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Problems for Chapter 14

14.1. Work through the steps between equations (A.30) and (A.33) of Appendix A.

14.2. Suppose that bulk matter consisted entirely of bosons with energy

 E
e

a
N= −

2

0

7 5

4π
/  

where N is the number of particles, with equal numbers of positive and negative charges. 
Consider two separate samples of bulk matter, where N is Avogadro’s number for each sample. 
Estimate the energy released when these two samples are brought together, and compare it with 
the energy released when an equal number of 235U nuclei undergo fission.

14.3. In this problem we are concerned with the simple model of a metal discussed in 
Section 14.2.
(a) Compare the result (14.38) for electron-number density with experimental data for the fol-
lowing metals in solid form:

Li, Na, K, Rb, Cs, Cu, Au

(b) Use results (14.38) and (14.39) to calculate the metal bulk modulus at the equilibrium value 
rs = 4 83. . A numerical result is requested.

14.4. In this problem you are asked to make simple estimates of the type described in 
Section 14.3.
(a) Estimate the radius R of  a star of one solar mass (M = 2 × 1033g) that has a mass density 
of ordinary nuclear matter. It may be useful to employ the following formula for the radius of 
a nucleus:

 R AN = ×1 4 10 13 1 3. - /  cm  

where A is the nuclear mass number (the number of neutrons plus protons in the nucleus).
(b) A star with this large density usually consists for the most part of free neutrons. For the 
purposes of this part of the problem, assume that the star in question consists entirely of free 
neutrons. Using the equation of hydrostatic equilibrium, and assuming that the pressure is 
entirely nonrelativistic neutron degeneracy pressure, estimate the equilibrium radius of this 
model star. How does your answer compare with that in part (a)?

14.5. In Section 14.3 we give a crude argument resulting in an approximate expression for the 
Chandrasekhar mass MC [equation (14.51)]. This problem concerns a proper derivation of 
Chandrasekhar’s equation, which yields MC.
(a) From kinetic theory, we know that the pressure in any gas, relativistic or nonrelativistic, is 
P vp= 1

3 , where v and p are the speed and momentum of a particle, respectively, and   
denotes an average over all the particles. For a completely degenerate electron gas at zero tem-
perature, show from Fermi-Dirac statistics that this yields

 P
m c z dz
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where x p m cF e= , pF  is the Fermi momentum,

 A
m c

c
e= = ×
4 5

2 3
22

24
6 01 10

π
.  

and

 f x x x x x( ) = −( ) +( ) + ( )−2 3 1 32 2 1 2 1/
sinh  (2)

(b) Let ne  be the electron-number density, and write the mass density as

 ρ µ= e p em n  (3)

where mp is the proton mass, and µe is equal to unity for hydrogen but otherwise approximately 
equal to 2. From Fermi-Dirac statistics, show that

 ρ = Bx3  (4)

where
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m c me e p

e= = ×
3 3

2 3
5

3
9 82 10

µ
π
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.  

Employing the equation of hydrostatic equilibrium
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as well as (1) and (4), show that
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where y x= +1 2 .
(c) Let y y= 0φ, where y x0 0

21= + , x x r0 0= =( ), and φ( )r = =0 1. Also, let r a= η, where η is a 
dimensionless parameter, and
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G By
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With these variable changes, show that (6) becomes
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which is Chandrasekhar’s equation. The function φ η( ) runs from φ( )0 1=  to φ η( ) .1 01= y  The 
radius of the star corresponds to η1, where x = 0.
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(d) Show that the mass of the star is

 M
A
G B

= − 
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∂







4
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2

1

π
π

η φ
η η

/

 (9)

In (9) y0 does not appear explicitly, but M  is a function of y0 because of the dependence of φ on 
that quantity, as seen in (8). Also, M > 0 because ∂ ∂ <φ η/ 0 at η1. The limiting mass MC occurs 
for y0 →∞. Numerical integration of (8) in this case yields

 M MC e= −5 75 2. µ   

Because µe = 2 is a good approximation, we finally have

 M MC = 1 44.   

Chandrasekhar’s theory, as outlined in this problem, is based solely on Newtonian gravitation 
and zero-temperature Fermi-Dirac statistics for the electron gas. To make the theory more real-
istic, corrections must be applied to account for the Coulomb exchange interaction and general 
relativistic, finite temperature, inverse beta decay, and nonuniform electron-density effects.
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15.1 Hamiltonian form of the classical radiation field

We begin this chapter with the classical theory of radiation, which is derived from Maxwell’s 
equations in vacuum

 ∇ =E ρ  
(15.1a)

 
∇ =B 0

 
(15.1b)

 
∇× = +

∂
∂

B j
1 1
c c t

E  

(15.2a)

 
∇× = −

∂
∂

E 1
c t

B
 

(15.2b)

where ρ and j are the free charge and current densities, respectively, and we employ Heaviside-
Lorentz units (hlus). In general, we can express E  and B in terms of scalar and vector poten-
tials; that is,

 E = −∇ −
∂
∂

Φ
1
c t

A
 (15.3)

 B A= ∇×  (15.4)

The potentials are not unique because we can always make a gauge transformation; that is,

 ′ = +
∂
∂

Φ Φ
1
c t

χ
 

 ′ = −∇A A χ  

where χ is an arbitrary real scalar function. Under this transformation, the electric and mag-
netic fields remain invariant; that is,

 E E′ = −∇ ′ −
∂ ′
∂

= −∇ −
∂
∂

=

′ = ∇× ′ = ∇× =

Φ Φ
1 1
c t c t

A A

B A A B
 

Photons15 

 

 

 

 

 

 

 

 

 

 

 

 



Photons344

We rewrite (15.1a) and (15.2a) in terms of the potentials Φ and A. Using (15.3) and (15.4), we 
obtain

 ∇ − = − −
∂
∂

∇ +





2
2

1 1 1
Φ Φ Φ

c c t c




ρ A  (15.5)

and

 ∇ − = − + ∇ ∇ +





2
2

1 1 1
A A

c c c




A j Φ  (15.6)

In a class of gauges collectively called Lorenz gauge,1 we choose the function χ so that

 ∇ + =

A
1

0
c
Φ  (15.7)

In Lorenz gauge, (15.5) and (15.6) become

 ∇ − = −2
2

1
Φ Φ

c
 ρ  (15.8)

and

 ∇ − = −2
2

1 1
A A

c c
 j  (15.9)

respectively. As is well known, the following retarded potentials are solutions to the inhomoge-
neous wave equations [(15.8) and (15.9)]:
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π
 

where ′ = − ( ) − ′t t c1 r r  is the retarded time. One important advantage of Lorenz gauge is that 
the gauge condition (15.7) is invariant under Lorentz transformations. That is, if  we find a set 
of potentials that satisfy (15.7) in one inertial frame and then go to another inertial frame by 
means of a Lorentz transformation, the potentials in the new frame also satisfy (15.7).

We might instead choose to employ Coulomb gauge, defined by the condition ∇ =A 0. In 
Coulomb gauge, (15.5) becomes Poisson’s equation ∇ = −2Φ ρ. It has the solution

1 Named for the Danish physicist L. V. Lorenz (1829–1891), not to be confused with the Dutch physicist H. A. Lorentz 
(1853–1928).
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 Φ r
r

r r
r,

,
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π
ρ

 (15.10)

If  the charge distribution is bounded, then at large distances from this distribution, Φ in 
(15.10) goes to zero at least as fast as r–1. At present, we are interested in electromagnetic 
radiation fields far from their charge-current sources. For example, this could be the elec-
tromagnetic waves radiated by the Sun or a more distant star, the radio waves miles from 
a transmitting antenna, or the thermal radiation inside a cavity with reflecting walls. In 
all such circumstances, we can ignore Φ in Coulomb gauge, in which case (15.6) with j = 0 
becomes

 ∇ − =2
2

1
0A A

c
  (15.11)

with the supplementary condition ∇ =A 0. Equation (15.11) is the homogeneous vector wave 
equation. An arbitrary solution to this linear partial differential equation satisfying specific 
boundary conditions can be built up as a superposition of certain fundamental solutions satis-
fying the same boundary conditions by Fourier synthesis. This is analogous to the synthesis of 
a complicated standing wave on a violin string from the superposition of the various harmon-
ics. We write the fundamental solutions to (15.11) as

 A r rk k k k, , ,,α α αεt c t A( ) = ( ) ( )

0  (15.12)

where k is the wave vector, and ˆ ,ε αk  is the polarization vector, with k •ˆ ,ε αk  = 0 because ∇ =A 0.  
Also, α = 1 2,  because there are two independent polarization states in the plane perpendicu-
lar to k (these could be linear polarizations or circular polarizations). Inserting (15.12) into 
(15.11), we obtain

 c A
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c Ak k k k, ,α α∇ − =2 0
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α
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 (15.13)

Because the left-hand side of (15.13) is a function of r only, whereas the right-hand side is a 
function of t only, both must be equal to a constant. Hence

 ∇ + =2 0 2 0 0A k Ak k  (15.14)

and

 c ck k, ,α αω+ =2 0  (15.15)

where k c= ω / . Equation (15.14), also called the wave equation, has fundamental solutions in 
Cartesian coordinates of the form
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 A e i
k

k r0 = ± ⋅  

or

 Ak
0 = cos sink r k r   

for traveling waves or standing waves, respectively. Equation (15.15) is the equation of a classi-
cal harmonic oscillator. We see presently that this harmonic oscillator plays an important role 
in quantization of the electromagnetic field.

Let us divide all space into a lattice of cubes of edge L and require that A satisfy periodic 
boundary conditions on the surfaces of each cube. We do this so that we can deal with a denu-
merable infinity of electromagnetic modes rather than a continuum of such modes. (We shall 
see that all results of physical interest are independent of L, which is chosen just for conve-
nience.) Now we express a general solution of (15.11) as a superposition of fundamental solu-
tions of the traveling-wave type as follows:

 A r k k
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k
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/

, , ,
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ε α α α
α

  (15.16)

The periodic boundary conditions restrict k = + +k i k j k kx y z
ˆ ˆ ˆ  to the values

 k
n

Lx y z, ,
, ,=

2 1 2 3π
 

where n n n1 2 3 0 1 2, , , , ,...= ± ± , but not all n1,2,3 are simultaneously zero. The distinct solutions are 
orthogonal in the following sense: integrating over the volume of one cube, we have
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   (15.17)

In (15.16) we have expanded an arbitrary vector potential in plane traveling waves. Alternatively, 
we could have expanded A in plane standing waves (appropriate for a rectangular cavity with 
perfectly reflecting walls) or in spherical waves and so on. In Chapter 16 we see why and how 
one would employ spherical waves (also see Appendix C).

Now consider the energy stored in the field in volume V = L3. From Maxwell’s theory and 
in hlus, this is
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(15.18)

Let us express (15.18) in terms of the coefficients c tk ,α ( ). We have
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Therefore,
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From this expression, and making use of (15.17), we find
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Similarly,
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and after straightforward manipulations, this yields

 B B k k k k k
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Combining (15.20) and (15.22), we see that (15.18) becomes
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c

c= ∑2
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2ω
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,  (15.23)

At this stage it is convenient to make the following change of variables:
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In terms of the new variables, (15.23) is

 H P Q= ( ) + ( )
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α α
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ω  (15.24)

By expressing the Hamiltonian for the classical radiation field in this form, we see that it is a 
sum of harmonic oscillator Hamiltonians, one for each mode characterized by k and α. We can 
now guess how to quantize the radiation field: simply quantize each harmonic oscillator.

15.2 Quantization of the radiation field in Coulomb gauge

Recalling our treatment of the simple harmonic oscillator in Section 6.13, we make the follow-
ing substitutions:

 Q Qk k,

/

,α αω
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1 2
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 P Pk k,
/

,α αω0 1 2= ( )  

Then (15.24) becomes

 H P Qa a= +( )∑ ω
α 2

2 2
k k

k
, ,

,

 

The transition from classical to quantum theory is accomplished by replacing the classical 
variables Q Pk k, ,α α and  by quantum-mechanical operators with the same names that satisfy the 
commutation relations

 Q P ik k, , , ,,α α α αδ δ′ ′ ′ ′  = k k  

It is also convenient to define the annihilation (destruction) operators

 a Q iPk , , ,α α α= +( )1

2
k k  

and the corresponding creation operators

 a Q iPk k, , ,α α α
† = −( )1

2
k  

These satisfy the commutation relations

 a ak k k k, , , ,,α α α αδ δ′ ′ ′ ′  =
†  (15.25)

Furthermore, following exactly the same path as we did for the simple harmonic oscillator, we 
define a number operator for each mode; that is,

 N a ak k k, , ,α α α= †  

These operators have the following properties:

1. The eigenstates of Nk,α  are the nk,α  with eigenvalues nk,α= 0, 1, 2, 3, … .
2. A state nk,α  is said to consist of nk,α photons, all of which have the same wave vector k 

and polarization denoted by α. The state nk,α  can be generated from the vacuum state 0  
(which contains no photons) by repeated application of the creation operator ak,α

† ; that is,

 n
n
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k
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,
,

!
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α
α

α
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0†  

Similarly, photons are destroyed by application of ak,α; that is,

 a n n nnk k k, , , ,α α α α
= −

k
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3. The Hamiltonian can be expressed as follows:

 H N= +



∑ ω α

α
k

k
,

,

1
2

 

Thus the energy stored in the radiation field is distributed in discrete parcels in the various 
modes: if  nk,α photons exist in the k, α mode, the energy in that mode is

 nk k,α ω+





1
2
  

Even when no photons are present, there still exists the zero-point energy ω αk, /2. Because 
there are infinitely many modes, and the total energy is obtained by summing over all modes, 
the total zero-point energy in the radiation field is infinite. This is the first of a number of 
problems that we encounter in formulating a quantum-field theory. We return to the zero-
point energy for a more detailed discussion in the next section.

4. The operators a ak k, ,,α α
†  are obviously the quantum-mechanical counterparts of c ck k, ,

*, ,α α  
respectively. It is easy to see that when we make the transition from classical to quantum 
theory,

 c
c

a
c
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*

,α α α αω ω
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2 2

2 2
c   †  

Thus the classical expressions (15.16), (15.19), and (15.21) for A, E, and B, respectively, go 
over to the following operators in quantum theory:
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Note that each of these operators is time independent (the Schroedinger picture). However, 
we can go to the Heisenberg picture, where

 a a e a a ei t i t
k k k k, , , ,α α

ω
α α

ω→ →− † †  

and where the operators A, E, and B are time dependent.
5. The momentum in the field can be interpreted in terms of the momenta of the field quanta 

(photons). In classical electrodynamics, the momentum in the field is
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 P B= ×∫
1
c

dE τ  (15.29)

Substituting (15.27) and (15.28) into (15.29), integrating over V and making use of orthog-
onality as in (15.17), and doing some routine algebra, we obtain

 P
k

k
k k k k k k k k= + + +( )∑ − −



2,
, , , , , , , ,

α
α α α α α α α αa a a a a a a a† † † †  (15.30)

In this last expression, we must sum over all possible values of k; thus, if  a given vector k0 
is included in the sum, the opposite vector –k0 is also included. By adding up these contri-
butions in pairs and taking into account the commutation rules, we see that the third and 
fourth types of terms on the right-hand side of (15.30) give no net contribution. Thus, using 
the commutation rule (15.25), we obtain
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αN N  

This means that each photon in mode k, α has momentum k  as well as energy kc. From 
the relation

 E p c m c2 2 2 2 4= + γ  

we conclude that in the present theory, photons must have zero rest mass. In fact, if  photons 
did possess nonzero rest mass, it would be necessary to modify Maxwell’s equations in a fun-
damental way (see Section 15.8).

15.3 Zero-point energy and fluctuations in the field

We have noted that a state of the radiation field can be specified by giving the number of pho-
tons in each k, α mode; that is,

 ψ = n n n1 2 3, , ,...  

The vacuum state is that state where all the occupation numbers are zero. Assuming that we 
can normalize this state to unity, that is, 0 0 1= , we now calculate the expectation value of 
various physical quantities in the vacuum state, starting with the electric field E . From (15.27), 
we have
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Because 0 0 0 0 0a ak k, ,α α= =† , we obtain 0 0 0E = . This is a very reasonable result 

because there is no preferred direction in three-space associated with the vacuum state. In 
fact, the existence of such a direction would constitute a violation of spatial isotropy. Next, we 
consider
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In this expression, only terms of the form 0 0a ak k, ,α α
†  make a nonzero contribution. Hence
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A similar result 0 0 1 2 3B B = ( )∑L kω
αk ,

 is obtained for the magnetic field. Because the sum 

on the right-hand side of (15.31) must be carried out over an infinite number of modes, that 
sum diverges, so we have

 0 0 0 0E E = = ∞B B  

Thus the mean square dispersion of the electric or magnetic field in the vacuum state is

 
ΔE E E E E

E E
( ) = −

= = ∞

2
0 0 0 0 0 0

0 0

 

          
 

This result should not be surprising because we know that
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In other words, the infinite zero-point energy and infinite fluctuations of E  and B are 
equivalent.

We next consider how rapidly the zero-point energy sum diverges. To this end, we first deter-
mine the number of modes with angular frequency between ω and ω + dω. This is actually a 
quantity of major importance that we shall refer to repeatedly. First, consider the number Z of  
modes with k less than or equal to a fixed value k0. Because in general for a mode with specified 
k we have
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and for each choice of the triplet of numbers n1,2,3 there are two independent polarizations, Z 
is twice the number of ways that we can form integers n1,2,3 such that
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2≡ + + . For sufficiently large n, Z is just twice the volume of a sphere of radius 

n; that is,
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where ω = k c0 . Hence the number of modes between ω and ω + dω is

 
dZ
d

d
V d

cω
ω ω ω

π
=

2

2 3
 (15.32)

Thus the zero-point energy summed over all modes is

 
 ω

π
ω ω
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3∑ ∫≈

V
c

d  (15.33)

which diverges in proportion to ω4. Let’s now imagine that instead of carrying the integral 
to arbitrarily high frequency, we cut it off  at some upper limit ωmax = 2πc/λmin, where λmin is a 
“shortest length.” Then the total zero-point energy per unit volume ε ωEM V= ( )∑1 2   is

 ε π
λEM

c
≈

2 2

4



min

 

Is there a reasonable physical choice for λmin? The classical radius of  the electron
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π
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is far too large because we know from many experiments that quantum electrodynamics is 
valid to distances smaller by orders of magnitude than r0 . Many physicists believe that λmin is 
the Planck length R, defined as the Compton wavelength of a particle of mass M such that 
its gravitational self-energy and relativistic rest energy are comparable. Employing Newton’s 
constant G, we have
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and thus

 M
Rc
G Mc

c
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which yields
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In this case, εEM would be

 εEM
c
G
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2
11410



 erg/cm3  (15.34)

If such an enormous energy density actually existed, it would be necessary to include it in the 
Friedmann equation of general relativity that describes the expansion of the universe accord-
ing to the big bang cosmological model. However, this would yield a description of the Hubble 
expansion that is grossly in contradiction with known facts. Indeed, observations made since 
1998 of the luminosity of type Ia supernovas with known redshifts lead to the conclusion that the 
Hubble expansion is accelerating, and this is consistent with the existence of an all-pervasive dark 
energy density εD that is approximately 120 orders of magnitude smaller than εEM in (15.34).

This enormous discrepancy suggests several possibilities. Perhaps εEM is very nearly canceled 
by zero-point energies of the opposite sign arising from other fields, as proposed in speculative 
supersymmetric models. But why should the cancellation be so nearly perfect yet not complete? 
Alternatively, the whole concept of zero-point energy might be wrong: it might be a math-
ematical artifice without physical reality – a manifestation of something deeply wrong with 
quantum-field theory, and εD might be due to something else entirely. However, the possibility 
that there is no zero-point energy does not seem reasonable because we have persuasive exper-
imental evidence that the zero-point energy of the EM field actually exists, and this evidence is 
from the Casimir-Polder effect.

15.4 The Casimir-Polder effect

In Chapter 10 we learned that there exists an attractive van der Waals interaction between two 
ordinary nonrelativistic polarizable atoms separated by a distance R (e.g., two H atoms in the 
ground state). Essentially this occurs as follows: an isolated atom has, on average, no electric 
dipole moment. However, at any given instant, either one of the atoms (e.g., atom 1) has a 
dipole moment, which gives rise to a fluctuating dipolar electric field. Such a field induces a 
dipole moment on atom 2, and the interaction of dipoles 1 and 2 is the van der Waals potential. 
For a R a a0

1
0 0137  α − = , we found from second-order perturbation theory that the van der 

Waals potential energy is

 U
e a
Ra a− ≈ −0
2

0
5

6
 (15.35)
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The restriction R a< −α 1
0 occurs because the quasi-static electric field generated by the fluctu-

ating dipole 1 takes time T R c= /  to propagate from atom 1 to atom 2, whereas the “natural 
time” for motion of an electron in an atom is τ ≈ a ac0 . To avoid retardation effects that wash 
out the van der Waals potential, we require T  τ .

We also learned that there is a van der Waals interaction between an atom and a perfectly 
grounded conducting plane. Here the instantaneous atomic dipole sets up an image dipole; this 
time the two dipoles are perfectly correlated, and the interaction energy (now nonvanishing in 
first-order perturbation theory) is

 U
e a
Ra w− ≈

−0
2

0
2

3
 (15.36)

where R is now the distance between the atom and the plane. Here again we require R a< −α 1
0 

to avoid retardation effects.
However, in addition to the ordinary van der Waals effect, there is an entirely new feature 

arising from quantization of the radiation field. According to the theory just developed in 
preceding sections, the atoms (and the conducting planes) should exist in a space pervaded by 
fluctuating electric fields associated with zero-point energy. A fluctuating zero-point electric 
field at atom 1 must induce a fluctuating electric dipole moment in atom 1. Of course, we can 
Fourier analyze these fluctuations into sinusoidal oscillations. Furthermore, we know from ele-
mentary electricity and magnetism that an oscillating dipole generates its own radiation field. 
This radiation field will interact with atom 2, and the energy of interaction should be described 
by a new potential (originating entirely from zero-point energy) that yields a correction to the 
ordinary van der Waals potential.

For various practical reasons, this correction to the van der Waals interaction for two iso-
lated atoms is very difficult to observe. However, the same kind of argument ought to apply 
to the interaction between an atom and a perfectly conducting grounded plane or to the inter-
action between two uncharged macroscopic conductors. In fact, it turns out that the force of 
attraction between an atom and a plane grounded conductor can be measured experimentally, 
as can the force of attraction between two uncharged plane parallel conductors. These exten-
sions of the van der Waals interaction, known as the Casimir-Polder effect (Casimir 1948) are 
demonstrations of the reality of zero-point energy.

Let’s now see how to calculate the Casimir-Polder effect [see, e.g., Spruch (1978, 1996)]. In 
order to bring out the main points as simply and clearly as possible, we give only order-of-
magnitude estimates rather than precise calculations. The one exception is precise calculation 
of the force of attraction between two plane parallel uncharged conductors, which appears as 
Problem 15.3 at the end of this chapter. Imagine two isolated objects 1 and 2 separated by a 
distance r. Each object is polarizable: if  an electric field exists, each object acquires an induced 
electric dipole moment p; that is,

 p r p r1 1 1 2 2 2= ( ) = ( )α αE E, ,t t   

where α1 2,  are the polarizabilities of objects 1 and 2 respectively, and E  is the fluctuating electric 
field that exists even when no photons are present. Now consider the energy U of  dipole 1 due 
to the radiation field E21 generated by fluctuating dipole 2. It is

 U p≈ − 1 21E  
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However, from elementary radiation theory, we know that the radiation-field component with 
frequency ω generated by an oscillating dipole is

 E21

2

2 2≈
ω
c r

p  

Hence the contribution to the energy from this frequency component is

 U p p
c r

t t
c r

≈ − = − ( ) ( )1 2

2

2 1 2 1 2

2

2

ω α α ω
E Er r, ,  

This expression describes the contribution of one mode with frequency ω, but we are interested 
in the total contribution to the energy from all modes; that is,

 U L t t
c r

d
c

≈ ( ) ( )∫3
1 2 1 2

2

2

2

3
α α ω ω ω

ω ωE Er r, ,  (15.37)

The integral is very difficult to evaluate if  we include arbitrarily high frequencies, but on phys-
ical grounds, it is reasonable to cut off  the integration at a maximum frequency ωmax ≈ c/r. 
The reason is that for much higher frequencies, E Eω ωr r1 2, ,t t( ) ( )  oscillates rapidly and does 
not contribute effectively to the integral in (15.37). For frequencies much lower than ωmax, 
L t t V3

1 2
2E E Eω ω ωr r, ,( ) ( ) = ≈  , so (15.37) becomes

 U
c r

d
c r

≈ ∫ α α ω ω1 2

5

5

/


 (15.38)

This formula will now be employed to draw conclusions concerning the following 
interactions:

1. Electron-electron
2. Electron-atom
3. Atom-atom
4. Atom-wall
5. Wall-wall

These are distinguished from one another by different products of polarizabilities α α1 2. We 
obtain a rough estimate of the polarizability in each case by resorting to a classical harmonic 
oscillator model of an electron in an atom. Here the electron is imagined to be bound to the 
nucleus with a restoring force F m xe= − ω0

2 . If  an external oscillating electric field is applied to 
the atom with applied frequency ω, the electron motion is described by

 m x m x e ee e
i t

+ = −ω ω
0
2

0E  

We try a solution of the form x x ei t= 0
ω  and obtain

 x
e

me
0

0
2 2 0=
−
−( )ω ω
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The electric dipole moment is

 p ex
e

me

= − =
−( )0

2

0
2 2 0ω ω

E  

and the polarizability at frequency ω is

 α ω
ω ω

( ) =
−( )

e
me

2

0
2 2

 (15.39)

If  ω ω0  , which is an appropriate approximation for an ordinary atom when ω < c/r, 
we have

 α
ω

=
e

me

2

0
2

 

Now ω0 can be determined from the requirement that ω0
2

0≈ e a , which is a typical atomic 
energy. Hence

 α =
( )

=
e

m e a
a

e

2

2
0

2 0
3



 (15.40)

This agrees with what we learned in Chapter 10 when studying the Stark effect: typical atomic 
polarizabilities are indeed α ≈ a0

3. We now proceed to consider the various interactions listed 
earlier.

Electron-Electron

The dominant interaction between two electrons is the Coulomb interaction

 U
e

rCoulomb =
2

4π
 

However, there exists a small “retarded potential” correction, given by the integral in (15.38), 
with α1 2,  determined by setting ω0 = 0 in (15.39); that is,

 α α
ω1 2

2

2
= = −

e
me

 (15.41)

Inserting these in (15.38) and integrating, we obtain
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e

m c r
a

r
e
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e
− ≈ − = − 
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3
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2

2

21 α
 

Of course, this is only a crude estimate of an effect that would require considerable effort to 
calculate accurately, but it is basically correct, and the same goes for the estimates that follow.
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Electron-Atom

For r a α −1
0, the interaction energy of an electron and a polarizable atom is given by the fol-

lowing ordinary van der Waals result:

 U
e a
re a− ≈ − ≈ −0 2
2

0
3

4
αatomE  (15.42)

For r a> −α 1
0, we employ (15.40), and for the atom and electron polarizabilities, we employ 

(15.41). Then (15.38) yields

 U
e a
re a− ≈ −α
2

0
4

5
 (15.43)

It may be possible to distinguish between (15.42) and (15.43) in future experiments with 
Rydberg atoms.

Atom-Atom

In this case, as we have noted, the ordinary van der Waals interaction is described by the 
approximate formula (15.35). For r a> −α 1

0, we employ (15.40) for both atomic polarizabilities 
to calculate the integral in (15.38). This yields the Casimir-Polder contribution

 U c
a
r

a
r

e a
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Atom-Wall

Here the ordinary van der Waals interaction is described by the approximate formula (15.36). 
To estimate the Casimir-Polder contribution, we replace the conducting wall with a large con-
ducting sphere of radius z and place the atom at a distance 2z from the center of the sphere. 
The polarizability of the atom is given by (15.42); that of the sphere is z3 from elementary elec-
tricity and magnetism. Inserting these in (15.38) and evaluating the integral, we obtain

 U c
a
z

a
z

e a
za w− ≈ − = − 
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2
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Wall-Wall

To make an estimate in this case, we imagine two identical conducting spherical shells of radius 
z with centers separated by 3z. Then, because the polarizability of each is z3, (15.38) yields

 U
c
zw w− ≈ −


 

Now the surface area of each sphere is 4 2πz . Thus the energy per unit area is

 u
c

z
≈ −



3
 (15.44)
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This expression should also be valid for the energy per unit area associated with a pair of 
uncharged parallel plane conductors separated by a distance z. Therefore, from (15.44), we 
obtain an estimate of the force of attraction per unit area between these conductors; that is,

 F
u
z

c
z

= −
∂
∂

≈ −


4
 

Let us try to understand why such a force exists from a slightly different but equivalent viewpoint. 
We know that by choosing L3 sufficiently large, we can have modes of arbitrarily long wavelength 
(low frequency) in free space. This is true whether we expand the vector potential in plane trav-
eling waves, in plane standing waves, or in terms of any other complete set of orthogonal vector 
waves. However, if we now introduce a pair of plane parallel conductors separated by a finite dis-
tance z, it is no longer true that modes of arbitrarily long wavelength can exist. In fact, it is impos-
sible to have any standing waves with half-wavelengths larger than z in the direction normal to the 
plates. Thus the zero-point energy sums (15.33) for the two cases – free space and space occupied 
by the pair of uncharged plates – are both infinite but differ by a perfectly definite and calculable 
finite amount because of the difference in low-frequency modes. A straightforward calculation 
(see Problem 15.3) yields the following refinement of (15.44) for the energy per unit area:

 u
c

z
= −

π 2

3720


 

The first accurate measurements of the effect were reported in 1997 by Lamoreaux (Lamoreaux 
1997, 2012). Since then, it has also been measured accurately by several other groups of experi-
menters [see, e.g., Bressi (2002)].

15.5 Blackbody radiation and Planck’s law

Consider electromagnetic radiation in thermal equilibrium at temperature T. What is the 
average number of photons in a given mode at frequency ω? We recall that a given mode is 
described as if  it were a one-dimensional harmonic oscillator. Thus we are led to consider the 
average excitation of such an oscillator at temperature T. According to statistical mechanics, 
its partition function is
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Thus the average occupation number is
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 (15.45)
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where x k TB= −( )exp ω / . Equation (15.45) can be written

 n
x

x
x

x
x

x
x

x
x

n

n
=

∂
∂ = −

∂
∂

−( ) =
−

∑
∑

ln 1
1

 

Thus

 n

k TB

=





−

1

1exp
ω

 (15.46)

From this expression it is easy to find the energy per unit volume in the field between frequen-
cies ω and ω + dω. We multiply n  from (15.46) by the energy ω  of  each photon and by the 
number of modes per unit volume between ω and ω + dω; that is,

 ε ω ω
ω

ω ω ω
π

( )
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d
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2 3


    

This gives Planck’s law for the spectral energy density ε(ω) as

 ε ω ω
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The total energy per unit volume in all frequencies is
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 (15.47)

where

 a
k
c
B= = × − − −π 2 4

3 3
15

15
7 56 10



.  erg cm  deg3 4  

is the Stefan-Boltzmann constant. The blackbody radiation exerts a pressure p that is obtained 
from elementary kinetic theory by thinking of the radiation as a relativistic photon gas in 
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which each photon carries momentum k  as well as energy ω. For any ultrarelativistic gas, 
one has p = ε /3; thus, for blackbody radiation,

 p aT=
1
3

4  (15.48)

Next, we calculate the entropy of blackbody radiation from the thermodynamic identity

 TdS dU pdV= +  

where U V= ε  is the energy, and V is the volume. From (15.47) and (15.48) we obtain

 
TdS d VaT

aT
dV

aT dV aVT dT

= +

= +

( )4
4

4 3

3
4
3

4      
 

or

 dS aT dV aVT dT= +
4
3

43 2  

Comparing this expression with
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we obtain
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Integration of either of these expression yields

 S aT V=
4
3

3  

Therefore, in an isentropic (constant-entropy) expansion, sometimes called an adiabatic 
expansion, VT 3 remains constant. This requires that

 ε = = −aT V4 4 3const • /  
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15.6 Classical limit of the quantized radiation field

Because the quantized radiation field is described as a collection of quantized harmonic oscil-
lators, one for each mode, we can make the transition to the classical limit for the radiation 
field by recalling how this is done for the simple harmonic oscillator (SHO). In Chapter 6 we 
discussed the coherent state ψ , which is obtained by displacing the SHO ground state from 
the origin by amount s. We found that ψ  is a superposition of number n eigenstates, that the 
probability of obtaining a definite n value in state ψ  is given by a Poisson distribution, and 
that the mean value of n is proportional to s2. Also, ψ  oscillates coherently about the origin 
in such a way that for sufficiently large values of s, it displays all the properties we normally 
associate with a classical harmonic oscillator.

It is intuitively clear that we should follow a similar path for the radiation field. To make the 
writing as simple as possible, we consider just one radiation field mode so that it is not nec-
essary to write sums over k, α or exhibit the latter quantities repeatedly. We also recall from 
Section 6.13.5 that

 ψ ω ωt e e
s

n
e as i t

n

n
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( )− −

=
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−∑2 4 2

0 2

1
0/ /

!
†  

We now assume that the classical vector potential for the mode in question is

 A A k r k r
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L
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ψ ψ
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/3 2

2

2


 †  (15.49)

To evaluate this expression, we must calculate the matrix elements ψ ψa  and ψ ψa† . 

We have
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n
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Now
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Thus (15.50) is
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This can be generalized slightly by noting that it’s not necessary to start the coherent state with 
a maximum displacement at t = 0. Instead, we can include a phase factor

 a
s

e i tψ ψω φ= − +

2
( )  

Then, because ψ  is normalized to unity, we have

 ψ ψ ω φa
s

e i t= − +

2
( )  (15.51)

Similarly,

 ψ ψ ω φa
s

ei t† ( )= +

2
 (15.52)

Furthermore, n s= 2 /2; hence (15.51) and (15.52) can be written

 ψ ψ ω φa n e i t= − +1 2/ ( )  (15.53)

and

 ψ ψ ω φa n ei t† / ( )= +1 2
 (15.54)

Substitution of (15.53) and (15.54) into (15.49) yields

 A k rc L
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c
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/

/ε
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ω φ
3 2

1 2
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  (15.55)

From (15.55), we obtain the following expressions for Ec and Bc:
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c t L
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1 2A
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(15.56)

and

 B k rc
k
L

n t= −
×

− −( )
ˆ ˆ

sin
/

/ε ω ω φ
3 2

1 2
   (15.57)

We emphasize that the phase φ in these expressions is associated with oscillation of the coher-
ent state. We cannot associate a definite phase with a photon number eigenstate.

When is classical electromagnetic theory legitimate; that is, when are we permitted to use 
(15.55)–(15.57)? A sensible criterion for a given mode is that the time average of E Ec c•  over 
one period of oscillation, which we denote by E Ec c• , should be much greater than the contri-
bution of this mode to 0 0E E• . From (15.56), we have

 E Ec c L
n



=
ω

2 3
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whereas from (15.31), we have

 0 0
2 3

E E 

single mode
=

ω
L

 

Thus, for the classical description to be valid for any given mode, the mean number of photons 
in that mode must be much greater than unity.

In most real observations and/or experiments, we usually deal with N photons distributed 
over a range of modes. Let us suppose that these modes are in the frequency range ω ω δω to +  
so that the relevant number of modes is L c3 2 2 3ω δω π . In this case, the classical description is 
valid when

 
N
L c3

2

2 3
>>

ω δω
π

 

In the limit ω → 0 (static electric and/or magnetic field), the classical description is always 
valid.

15.7 Digression on special relativity: Covariant description  
of the radiation field

We now provide a short summary and review of special relativity so that we can write the equa-
tions of electrodynamics in covariant form. According to special relativity, all inertial frames 
are equivalent, and the laws of nature take the same form no matter which inertial frame they 
are expressed in. Maxwell’s theory is assumed to be the correct description of electromagnetic 
wave propagation, and the velocity of light c is the same in all inertial frames.

In special relativity, an event (the emission or absorption of an infinitely short light pulse) 
occurs at a single space-time point and is defined by the spatial coordinates x = x, y, z and the 
time t or x ct0 = . The contravariant coordinate 4-vector of this event with respect to a particu-
lar inertial frame is defined as

 x x x x x xµ = ( ) = ( )0 0 1 2 3, , , ,x  

It is also useful to define the covariant coordinate 4-vector xµ by

 x x x x ii
i

0
0 1 2 3= = − = , ,  

The metric tensor is

 g gµν
µν= =

−
−

−
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We convert a contravariant 4-vector to its covariant counterpart, or vice versa, by means of the 
transformations

 x g x x g xµ µν
ν ρ ρσ

σ= =  

where the repeated index summation convention is assumed here and in what follows.
The interval between two events x Xµ µ and  is defined as s, with

 
s x X x X x X x X

x X x X

2 0 0 2 1 1 2 2 2 2 3 3 2= −( ) − −( ) − −( ) − −( )
−( ) −( )   = µ µ

µ µ

 

Choosing event X µ  to be at the origin, we have

 s x x2 = µ
µ  (15.58)

It follows from the invariance of the velocity of light and the homogeneity and isotropy of 
space-time that the quadratic form (15.58) is invariant under linear transformations from one 
inertial frame to another (Lorentz transformations). These are classified as inhomogeneous 
or homogeneous according to whether or not a shift in the origin of 4-space accompanies the 
transformation. For our purposes, only the homogeneous transformations are necessary. Each 
homogeneous Lorentz transformation is described by an orthogonal matrix aµ

ν  with

 x a xµ µ
ν

ν′ =  

The orthogonality of the transformation matrix is expressed by the relation

 a aµ
ν

ν
σ

µ
σδ=  

The matrix of the transformation inverse to aµ
ν  is

 g g a aρµ
σν µ

ν ρ
σ=  

The homogeneous Lorentz transformations are further classified as proper (det )a = +1  or 
improper (det )a = −1 . The proper transformations include spatial rotations, for example,
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They also include Lorentz boosts, for example,
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The improper Lorentz transformations include, for example, spatial inversion, with

 a =
−

−
−



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

The totality of homogeneous Lorentz transformations forms a group. Any set of four quanti-
ties V µ is called a 4-vector if  it transforms like xµ  under a Lorentz transformation; that is,

 V a Vµ µ
ν

ν′ =  

Examples include

j cµ ρ= , j  Electromagnetic current density
Aµ = Φ, A   4-vector potential

p
E
c

µ = , p  4-momentum of a particle

The scalar product of two 4-vectors A B,  is

 A B A B A B A B = = = −µ
µ µ

µ 0 0 A B  

This is invariant under a Lorentz transformation. Thus, for example,

 p p
E
c

m cµ
µ = − = −( )

2

2 0
2
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and

 j A c
c

µ
µ ρ= −
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are invariants. Also,

 ∂ ≡
∂

∂
=

∂
∂

∇



µ µx c t

1
,  

whereas

 ∂ ≡
∂
∂

=
∂
∂
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,  

Thus
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∂
∂

+ ∇ = ( )µ
µ ρ

j
t

 j 0 Equation of continuity  

and

 ∂ =
∂
∂

+ ∇ = ( )µ
µA

c t
1

0
Φ

A Lorenz gauge condition  

are invariant conditions. Also,

 ∂ ∂ = ∂ ∂ =
∂
∂

−∇µ
µ µ

µ 1
2

2

2
2

c t
 

is an invariant operator. A set of 16 quantities that transform in the following way is called a 
contravariant second-rank tensor:

 ′ =T a a Tρσ ρ
µ

σ
ν

µν  

We can also form covariant tensors and mixed tensors; that is,

 T g g T T g Tρσ ρµ σν
µν ρ

σ σν
ρν= =  

The electromagnetic field tensor

 F A Aµν µ ν ν µ= ∂ − ∂  

is an important antisymmetric second-rank tensor. It can be written as a 4×4 matrix

 F
B B

B B

B B

x y z

x z y

y z x

z y x

µν =
− −
− −
− −



















0

0

0

0

E E E
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We now recall the first and third Maxwell equations expressed in terms of the potentials
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 ∇ − = − −
∂
∂

∇ +





2
2

1 1 1
Φ Φ Φ

c c t c




ρ A  (15.59)

 ∇ − = − + ∇ ∇ +





2
2

1 1 1
A A j A

c c c




Φ  (15.60)

Equations (15.59) and (15.60) are written as follows in covariant notation:

 ∂ ∂ − ∂ ∂( ) =µ
µ ν ν

µ
µ νA A

c
j

1
 

Reversal of the order of partial differentiations in the second term on the left-hand side yields 
the important relation

 ∂ =µ
µν νF

c
j

1
 (15.61)

The 4-vector potential Aµ becomes an operator analogous to A in Coulomb gauge [recall equa-
tion (15.26)] when the radiation field is quantized. We write this new operator in Lorenz gauge 
and in the Heisenberg picture as follows:

 A
L

c
a e a e

k
k

ik x
k

ik x
µ

ε
µ ε εω

ε= +( )∑ − ⋅1
23 2

2

/
,

, ,
. †  (15.62)

where εµ  is a polarization 4-vector, k x t⋅ = −ω k r , and the Lorenz gauge condition implies 
that k k⋅ ≡ =ε εµ

µ 0. Note that while we have until now employed a vector potential A with two 
independent polarization components for each mode, both transverse to the direction of prop-
agation, there are four components of the 4-vector εµ  in (15.62). Two of the latter can be con-
sidered orthogonal to k; one is longitudinal (collinear with k ), and one is timelike. However, 
when we deal with the emission and absorption of real photons, it turns out that the effects 
due to the longitudinal and timelike components cancel one another, and thus the two vector 
potentials A and Aµ are consistent.

Finally, in relativistic quantum mechanics, it is convenient to employ natural units,, where 
 = = =c me 1. These units, which will be useful in Chapters 19–24, imply that

Unit of length = electron Compton wavelength = 


e
em c

= = × −3 86 10 11.  cm.

Unit of mass = me = × −9 11 10 28.  g.
Unit of velocity = c = ×2 998 1010.  cm/s.

Unit of time = 


m ce
2

211 287 10= × −.  s.

Unit of energy = m ce
2 0 511= .  MeV.

In the Heaviside-Lorentz system, α π= = −e c2 14 137 036 ( . ) . Thus e = =4 0 303πα . . Note 
that in natural units, because c = 1, energy has the same dimension as mass and as inverse 
length and inverse time.
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15.8 The possibility of nonzero photon rest mass

It is known from observations that the mass of the photon mγ  is less than 1.5×10–51 g, which is 
approximately 24 orders of magnitude smaller than the electron mass. This is consistent with 
quantization of the electromagnetic field starting from Maxwell’s equations, a procedure that 
must yield mγ = 0. However, we cannot exclude the possibility that some future experiment 
might reveal mγ ≠ 0, in which case it would be necessary to modify Maxwell’s equations. How 
would this be done? We start with the first and third of Maxwell’s equations expressed in terms 
of A and Φ in Lorenz gauge; that is,

 ∇ − = −2
2

1
Φ Φ

c
 ρ  (15.63)

 ∇ − = −2
2

1 1
A A j

c c
  (15.64)

A plane-wave solution to (15.63) or (15.64) with ρ = =j 0 is proportional to ei t( )k r −ω , where 
k c= =k ω / . The latter expression is a relation between energy and momentum; that is,

 E kc pc= = = ω  (15.65)

valid for mγ = 0. If  we had mγ ≠ 0, it would be necessary to amend (15.65) as follows:

 E p c m c2 2 2 2 4= + γ  

or, equivalently,

  

2 2 2 4 2 2 2ω γ= +m c c k  

To accommodate this new relation, we revise (15.63) and (15.64) to read

 

∇ − = − +






∇ − = −






2
2

2

2
2

2

1

1 1

Φ Φ Φ
c

m c

c c

m c









ρ γ

γA A j + A

 (15.66)

which are equivalent to the following covariant equation, first described by Proca in 1930:

 ∂ ∂ + =µ
µ ν ν νκA A

c
j2 1

 (15.67)

where κ γ= m c/. To see if  this modification holds in another gauge, we go back to the more 
general equation (15.61) and append the mass term, just as in (15.67); that is,
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 ∂ ∂ − ∂ ∂ + =µ
µ ν

µ
ν µ ν νκA A A

c
j2 1

 (15.68)

Applying ∂ν on the left to both sides of (15.68), we obtain

 ∂ ∂ ∂ − ∂ ∂ ∂ + ∂ = ∂ν µ
µ ν

ν µ
ν µ

ν
ν

ν
νκA A A

c
j2 1

 

Because the order of partial differentiations in the first two terms on the left-hand side of this 
equation may be rearranged at will, and because μ and ν are both repeated indices and there-
fore dummy indices in these two terms, the latter terms cancel one another, and we are left with 
the condition

 ∂ = ∂ν
ν

ν
νκ

A
c

j
1

2
 

Now the electromagnetic current density satisfies the equation of continuity ∂ =ν
νj 0; hence we 

also require the Lorenz gauge condition ∂ =ν
νA 0. This means the following: if  the photon mass 

is strictly zero, we have the freedom to choose any gauge, but if  the photon mass is nonzero, 
no matter how small, that gauge freedom is lost because of current conservation, and we are 
restricted to Lorenz gauge.

Finally, we consider (15.66) in the static limit; that is,

 ∇ − = −2 2Φ Φκ ρ  (15.69)

Suppose that we have a point charge q at the origin. Then ρ δ= ( )q 3 r . Thus, for r ≠ 0, (15.69) 
becomes ∇ − =2 2 0Φ Φκ . The solution to this equation is obviously spherically symmetric and 
is easily seen to be

 Φ =
−q r
r4π

κexp( )
 

Thus the Coulomb potential of a point charge is replaced by a Yukawa potential. The quan-
tity κ −1 has the dimension of length: it is the Compton wavelength of the massive photon. We 
have mentioned that the experimental upper limit on the photon mass is about 10 24−  me. The 
corresponding value of κ −1 is 1.5×1013 cm, about the distance from the Earth to the Sun. In the 
physics of weak interactions, there exist massive vector bosons (W±, Zo) that play roles some-
what analogous to the role of the photon in electromagnetic interactions. The masses of these 
bosons are

 m c m cW Z= =80 3 91 2. . GeV/  GeV/2 2  

The corresponding values of κ −1 are

 κ κ− ± − − −( ) = × ( ) = ×1 16 1 162 47 10 2 17 10W Zo. . cm  cm  

These lengths are much smaller than the proton radius, which is approximately 10–13 cm.
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Problems for Chapter 15

15.1. Consider the expressions for the operators E and B  of  the quantized electromagnetic 
radiation field in the Heisenberg picture.

(a) Calculate the commutators

 Ei jt B tr r, , ,( ) ′( )   (1)

 E Ei jt tr r, , ,( ) ′( )   (2)

Hint: At a certain stage in your calculation, convert a sum to an integral, and make use of the 
delta function.

(b) Using the expression for the Hamiltonian of the radiation field

 H d= +( )∫
1
2

2 2E B τ  

and the result of part (a), calculate the commutators of E and B with H, and employ 
Heisenberg’s equation to obtain Maxwell’s third and fourth equations in the absence of charge 
and current densities.

15.2. In how many ways N can we choose the integers n n n1 2 3, ,  such that n n n n1
2

2
2

3
2 2+ + ≤  for 

given n, when n1 2 3, ,  can be positive or negative integers, excluding n n n1 2 3 0= = = ? To derive the 
important formula (15.33) for the number of modes in the radiation field, we used the follow-
ing approximation:

 N n=
4
3

3π
 (1)

How good is this approximation? To find out, write a short computer program to calculate N  
exactly, and compare your result with (1) for n = 1 50 to .

15.3. In this problem, we calculate the Casimir force of attraction between two uncharged par-
allel conducting plates separated by distance d. Consider a very large cubical box of volume V 
= L3 with perfectly conducting walls. Place a plane conducting plate P parallel to one wall at a 
distance d L  from that wall. The total zero-point energy in the box is the sum of the contri-
butions from the volume of width d and the remaining volume of width L – d; that is,

 U U Ud L d= + −  

We are interested in the difference Δ between U and the zeropoint energy U0 that would have 
existed if  the conducting plate had not been introduced. U0 is, of course, the zero-point energy 
of the original cubical box. We have

 Δ = − −( )−U U Ud L d0  (1)
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To calculate U UL d−  and 0, it is sufficient to employ the usual formula for the number of modes 
between ω and ω + dω and replace each sum over all modes by an integral. Thus the contribu-
tion U UL d0 −( )−  is equal to an integral over ω (called J for short) multiplied by L d2 . If  we could 
carry out the same procedure for Ud , it would also be equal to JL d2 , and then Δ  would be zero. 
However, in Ud , we cannot replace the sum Σ over all modes by J because modes with a suffi-
ciently small component of k in the direction of normal to plate P are cut off. Hence we have

 Δ Σ= −( )J L d2  (2)

(a) Employ the Euler-Maclaurin sum formula

 
f n f x dx f N f f N f

NN

( ) = ( ) − ( ) − ( )  + ( ) − ( ) ∫∑
− 1

2
0

1
12

0
0

0

1
1 1( ) ( )

                   − ( ) − ( )  + (( ) ( )1
720

0
1

30 240
3 3 5f N f f N( )

,
) − ( )  −f ( )5 0 

 (3)

where f d f dxj j j( ) ≡ / , to evaluate Σ − J  and thus derive the result

 Δ = −
π 2

3
2

720
c
d

L  (4)

This yields an energy per unit area of

 
Δ
L

c
d2

2

3720
= −

π 

 (5)

and from this one immediately obtains the force of attraction per unit area. Here are several 
hints:

To calculate • Σ − J , one should employ standing waves, appropriate in the presence of con-
ducting walls.
Are there two possible polarization states for all allowed values of • k, or is there one special 
mode or class of modes for which only one polarization contributes?
It appears at first that • Σ  and J  are both infinite because of the divergent contribution of 
high-frequency (short wavelength) modes. However, this is not a real problem because for 
sufficiently high frequencies, plates constructed from any real conducting material become 
transparent. How would this be incorporated into the calculation?

(b) Consider two large uncharged parallel plane sheets of copper, each of thickness 1 mm and 
initially at rest and separated by a gap of 1 mm. These sheets are attracted to one another 
because of the Casimir force, the value of which can be found from equation (5). Estimate the 
time it takes for the two sheets to come in contact.

15.4. Consider thermal radiation at absolute temperature T, which is described by Planck’s law. 
If  k T m cB e≈ 2  or greater (where me  is the electron rest mass), then electron-positron pairs can 
be created from two or more photons in the radiation field. Also, e e+ − and  can annihilate to 
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form two or more photons. Thus, at sufficiently high temperature, we can have an electron-
positron gas in thermal equilibrium with the radiation field.

(a) Using Fermi-Dirac statistics, find the number densities of electrons and positrons as a func-
tion of T in the two limits k T m c k T m cB e B e 

2 2 and , assuming thermal equilibrium in 
each case.

(b) Again assuming thermal equilibrium, find the entropy of the system photons plus electron-
positron pairs when k T m cB e

2 .

15.5. In Section 15.8 we discuss the modifications of Maxwell’s equations that would be nec-
essary if  photons had nonzero rest mass. In particular, we show that current conservation 
requires that A and Φ  satisfy the Lorenz gauge condition

 ∇ +
∂
∂

=A
1

0
c t

Φ
 (1)

In covariant form, this is

 ∂ =µ
µA 0  (2)

The radiation field Aµ  can be expressed as a superposition of plane-wave solutions in the usual 
way; that is,

 A
L

c
a e a ek

ik x
k

ik x
µ µ ε εω

ε= +( )∑ − ⋅ ⋅1
23 2

2

/

 †  (3)

where εµ  is a polarization 4-vector satisfying ε εµ
µ * = 1 , and also k x t⋅ = −ω k x , whereas 

a ak kε ε and †  are destruction and creation operators, respectively, in the Heisenberg picture.

(a) Consider a massive photon in its rest frame. Let the spin of this particle be along the 
z-direction. Find the four components of εµ . What if  the spin lies along –z? What if  the parti-
cle is “linearly” polarized along the z-direction?

(b) Consider the case where the spin lies along ±z . Now make a Lorentz transformation to a 
frame in which the photon moves along z with speed v. What are the four components of εµ  
now? Do the same thing for the case where the particle is linearly polarized along z. Pay special 
attention to the latter case in the limit where the kinetic energy of the massive photon is much 
larger than its rest energy.

15.6. We show in Section 15.8 that if  the photon has rest mass, the static Coulomb potential in 
hlus of a point charge q is replaced by the Yukawa potential

 Φ( )r
q e

r

r

=
−

4π

λ
 

where λ = m cphoton  . In such a world, conducting bodies could still exist, within which the 
electrostatic field E = −∇Φ must vanish. However, Poisson’s equation and Gauss’s law are 
modified, and if  a charge Q is placed on a conductor, only a portion of it remains on the sur-
face, and the remainder is distributed throughout the volume.
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(a) Find the modifications of Poisson’s equation and Gauss’s law, and show that the volume 
charge density in a conductor must be the same from one spatial point to another regardless of 
the shape of the conductor.

(b) Consider a solid conducting sphere of radius a with total charge Q. Find the potential 
everywhere, and find the ratio of volume charge to surface charge.
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16.1 General form of the Hamiltonian in Coulomb gauge

It is intuitively clear that the Hamiltonian for a system of charged particles and radiation must 
consist of three parts: one for the radiation, another for the particles, and a third for the inter-
actions between the radiation and the particles; that is,

 H H H H= + +radiation particle interaction  (16.1)

If  no charged particles are present, the electromagnetic field consists solely of transverse waves 
(the pure radiation case). However, if  charges and currents are present, the electromagnetic 
field also has longitudinal (static and quasi-static) components. We begin our discussion by 
considering the energy UEM  of  the electromagnetic field in this more general case; that is,

 U d xEM = +( )∫
1
2

2 2 3E B  

In Coulomb gauge, we first consider the term
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c t c t
d x∇
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∂



















∫ Φ 
A A1

2

2

3

 (16.2)

Because in Coulomb gauge ∇ = −2Φ ρ, we have
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1
2

1
2

3 3 2 3∇ ∇ = ∇ ∇( ) − ∇∫ ∫ ∫Φ Φ Φ Φ Φ Φ d x d x d x

                       = ∇ ∇( ) +∫ ∫
1
2

1
2

3 3
 Φ Φ d x d xρφ

 (16.3)

The first term on the far right side of (16.3) can be converted to a surface integral by Gauss’s 
theorem, and assuming that the charge distribution is bounded, this surface integral vanishes. 
Next consider
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c t
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c t
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−
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A A A
 (16.4)

Interaction of Nonrelativistic Charged  
Particles and Radiation

16

In this chapter we use Heaviside-Lorentz units unless otherwise noted.

 

 

 

 

 

 

 

 

 

 

 



16.1 General form of the Hamiltonian in Coulomb gauge375

Both terms on the right-hand side of this equation vanish, the first by virtue of Gauss’s  theorem 
and the second because ∇ =A 0  in Coulomb gauge. Thus, defining

 E⊥ = −
∂
∂

1
c t

A
 

which is the transverse part of E, we see that (16.2) reduces to

 
1
2

1
2

1
2

2 3 2 3 3E Ed x d x d x∫ ∫ ∫= +⊥ ρΦ  (16.5)

The radiation Hamiltonian is

 H d xradiation = +( )⊥∫
1
2

2 2 3E B  (16.6)

with E⊥ = −( ) ∂ ∂( ) = ∇ ×1 c tA B A and . Because in Coulomb gauge

 Φ x d( ) =
′( )

− ′
′∫

1
4

3

π
ρ x
x x

x  

we can write the second term on the right-hand side of (16.5) as

 V d d= ′
− ′

′∫∫
1
2 4

3 3ρ ρ
π
( ) ( )x x

x x
x x  (16.7)

V is often called the instantaneous Coulomb interaction, and because it is expressed entirely in 
terms of the particles and does not refer explicitly to the field, we place it in Hparticle rather than 
in Hradiation. If  we have N-point particles at locations x1, …, xN, V becomes

 V
q qi j

i ji j

=
−>

∑1
4π x x

 (16.8)

which is the familiar sum over all pairwise Coulomb interactions. In particular, for just two 
particles,

 V
q q

=
−

1 2

1 24π x x
 (16.9)

Finally, we consider the effect of the vector potential A on the charged-particle Hamiltonian. 
We learned in Chapter 4 that in the presence of A, the following modification is required:
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where the pi are canonical momenta, and we have used ∇ =A 0  to obtain the last line. Taking 
all the foregoing into account, we have

 H
m

Vi

ii
particle = +∑ p2

2
 (16.10)

 H
q

m c
q
m ci

i
ii

interaction = − −




∑ A p A

2

2
2

2
 (16.11)

 H d xradiation = +( )⊥∫
1
2

2 2 3E B  (16.12)

In Chapter 15 we already learned how to quantize Hradiation in Coulomb gauge. If  in addition 
there are external static or quasi-static electric and/or magnetic fields, these can be treated 
classically, and the interactions of  the particles with these fields are described according 
to rules we have learned previously and are easily included. If  the particles have spin and 
associated spin magnetic moments, these interact with the magnetic field (radiation and/
or static and quasi-static) by means of  the additional phenomenologic Hamiltonian term; 
that is,

 H gi
B

i
ispin = ∑ 





µ
S B  

where   applies for a particle with positive (negative) magnetic moment. When we discuss 
 relativistic wave equations, in particular, the Dirac equation, it will be seen that the spin con-
tribution arises naturally.

Equation (16.11) should be used with caution because in it the interaction Hamiltonian 
is expressed in terms of  the vector potential A, which is not unique because it can be 
altered by a gauge transformation, even within the Coulomb gauge condition. Although 
for the calculations of  various physical phenomena considered in this and following chap-
ters (16.11) and its relativistic generalization are legitimate, uncritical use of  (16.11) with-
out due regard for the requirements of  gauge invariance yields incorrect answers in certain 
situations.

For the moment, let us ignore the interaction term (16.11). In this case, because there is 
no coupling of particles to the fields, eigenstates of the Hamiltonian are product eigenstates; 
that is,

 u u u i
E

t= −



particle radiation exp



 (16.13)

where E is the total energy of the particles plus the radiation field, uparticle  is a particle eigen-

state, and uradiation  is a photon number eigenstate. Such a product eigenstate is not very inter-
esting because in the absence of interaction, neither the particle quantum numbers nor the 
photon occupation numbers can change with time.
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16.2 Time-dependent perturbation theory

When Hint (we call it H′ from now on) is included in the Hamiltonian, the resulting effects are 
usually too complicated to calculate exactly. Instead, we have to employ a method of succes-
sive approximations called time-dependent perturbation theory, which is formulated as follows: 
consider a Hamiltonian consisting of two parts

 H H H= + ′0  (16.14)

and suppose we know the eigenstates un  and corresponding eigenvalues En of  H0 exactly. [In 
our discussion of electrodynamics, the un  would be the product eigenstates in (16.13).] We 
want to study the time-dependent Schroedinger equation

 H iψ ψ= 

  (16.15)

where H is the complete Hamiltonian, given by (16.14). We first express ψ  as a superposition 
of the eigenstates of H0 with time-dependent coefficients; that is,

 ψ ω= ( ) −( )∑a t u i tn n
n

nexp  (16.16)

where ωn nE= / . Substituting (16.16) into (16.15), we obtain

 H H a t u i t i a i a u i tn n
n

n n n n n
n

n0 + ′( ) ( ) −( ) = −( ) −( )∑ ∑exp expω ω ω
  

which yields

 a t H u i t i a t u i tn n
n

n n n
n

n( ) ′ −( ) = ( ) −( )∑ ∑exp expω ω
  (16.17)

The eigenstates un  form a complete orthonormal set. For convenience, we assume that they 
are discrete so that we can write

 u um n nm= δ  

Multiplying (16.17) on the left by um , we obtain

 



a
i

a H em n
n

mn
i tmn= − ′∑ ω  (16.18)

where ′ ≡ ′ = −H u H umn m n mn m n and ω ω ω . Equations (16.18) (one for each value of m) form 
a system of coupled differential equations that are equivalent to (16.15), and so far, no approxi-
mations have been made.

Except for a small number of very simple systems, equations (16.18) are too complicated 
to solve exactly. Thus, assuming that at t = 0, a ti ( )= =0 1 for some i and an i≠ =( )0 0, we try to 
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solve (16.18) by approximating the a tn ( ) on the right-hand side by their initial values. Thus we 
replace (16.18) by

 



a
i

H em mi
i tmi= − ′ ω  (16.19)

In many cases of interest, H′ is independent of time. [This includes the interaction of a charge 
with the radiation field in the Schroedinger picture, as given in (16.11).] Then (16.19) can be 
integrated immediately to yield

 a
i

H
e

i
H

e
m mi

i t

mi
mi

i t

mi

mi mi

= − ′
−

= ′
− ( )

 

ω ω

ω ω
1 1

First order  (16.20)

It may happen that for given m, ′ =Hmi 0; nevertheless, it may be possible to obtain am ≠ 0 in 
second order. To see this, replace m by n in (16.20), and use (16.20) in (16.18) to obtain
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i

H e
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e

i H H

m mn
n

i t ni

ni

i t

mn ni

nin

mn ni= − ′
′ −( )

= − ′ ′

∑ ω ω

ω

ω

1

    ∑ −( )e ei t i tmn miω ω
 (16.21)

where ω ω ω ω ω ω ω ω ωmi mn ni m n n i m i= + = − + − = −( ) ( ) . Integrating (16.21) with the initial 
condition am ( )0 0= , we have

 a
H H e e

m
mn ni

nin

i t

mn

i t

mi

mn mi

= ′ ′ −
−

−



∑

  ω ω ω

ω ω1 1
(Second order)  (16.22)

In many practical applications, the only significant terms in (16.22) are those in which energy is 
conserved between the initial state i and the final state m. In these cases, it is usually possible to 
ignore the first set of terms on the right-hand side of (16.22), which then becomes

 a
H H e

m
mn ni

inn

i t

mi

mi

= ′ ′ −



∑

 ω ω

ω1
(Second order)  (16.23)

Comparing (16.20) with (16.23), we see that both expressions contain the factor

 
1− ei t

mi

miω

ω
 

However, in (16.20), the first-order matrix element appears; that is,

 M Hmi1 = ′  (16.24)

whereas in (16.23) there is the second-order matrix element; that is,

 M
H Hmn ni

inn
2 = ′ ′∑

ω
 (16.25)
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The analogy with first- and second-order static perturbation theory is obvious.
From (16.20) or (16.23), we obtain the transition probability a tm ( )

2
; that is,

 a t
M t

m
mi

mi( ) = 





2
2

2 2
24

2 ω
ω

sin  (16.26)

Although this formula is useful in some circumstances, we are most frequently interested in the 
transition probability to a group of states m with a density (number of states per unit energy) 
ρ(E). For example, consider an atom in an excited state that decays by spontaneous emission 
of a photon. The final state consists of the atom in its ground state and the emitted photon. By 
conservation of energy (and we see presently that this is not assumed a priori but emerges from 
the formalism we have constructed), the photon energy must be equal to the energy difference 
between initial and final atomic states. However, even with this restriction, also restricting the 
photon polarization to a definite value, and fixing the direction of photon emission within a 
very small solid angular uncertainty, the number of possible photon modes in most practical 
cases turns out to be extremely large. In this situation, we are interested in the transition prob-
ability summed over all relevant modes.

From (16.26), the transition probability to a band of states between energy E and E + dE is

 dP
M t

E dE
mi

mi=












2

2

2
2

2

2


ω
ω ρsin ( )  (16.27)

However, dE d mi= ( )2 2 ω . Therefore, (16.27) can be written

 dP
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 (16.28)

Consider the factor f in square brackets on the right-hand side of (16.28). Writing x tmi= ω /2,  
we have

 f
t x

x
=

π
sin2

2
 (16.29)

The function sin2 2x x/  equals unity for x =0 but drops rapidly to zero for x 1. Hence, for 
any value of t, f t= /π  when ωmi = 0, but for any fixed ωmi ≠ 0, f t→ → ∞0 as . In fact, from 
equation (2.46),

 lim lim
sin

t t

mi

mi

mf
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t
→∞ →∞
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 (16.30)
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Thus, for sufficiently large t, we can write (16.28) as

 dP
t M E

dmi mi= 











2

2 2

2π ρ
δ ω ω( )



 (16.31)

Instead of dP, it is more useful to discuss the differential transition probability per unit time 

dW dP dt= . Making use of the formula g x ax dx a g x dx( ) ( ) = ( ) ( )∫ ∫δ 1 , we thus obtain

 dW
M E

E E dE=
( )

−( )2
2π ρ

δ


initial final  (16.32)

The total transition probability per unit time is obtained by integrating dW  over all E; that is,

 W M E= ( )2 2π ρ


 (16.33)

Formulas (16.32) and (16.33) are known as Fermi’s golden rule, although they were first 
described by Dirac. Of course, we must be careful to apply these well-known and very useful 
formulas only within their domain of validity. Because x tmi= ω /2, it is clear that for extremely 
short times we need a large ωmi to generate a moderate value of x. In this case, replacement of 
f by the delta function is not always a good approximation. When t is extremely long, replace-
ment of the an in (16.18) by their initial values appears very suspicious because the an surely 
must evolve from their initial values as time elapses.

However, we shall see that the latter problem can be dealt with effectively in almost all prac-
tical cases.

16.3 Single-photon emission and absorption processes

16.3.1 Electric Dipole Transitions

We now apply the results of the preceding sections to calculate single-photon emission and 
absorption processes in atoms. Our starting point is Fermi’s golden rule, with M the first-order 
matrix element of

 ′ = +H
e

m c
e

m c
g

e e
s

BA p + A S B





2

2
2

2
µ

 (16.34)

from (16.11) with q e= − . Actually, the term in A2 cannot contribute to a single-photon process 
because the latter requires a matrix element linear in a photon creation or destruction operator, 
whereas A2 contains terms with pairs of creation and/or destruction operators. Also, we ignore 
the spin term in (16.34) for the moment. Thus we have

 ′ =H
e

m ce

A p  (16.35)
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with

 A
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α α α

†  (16.36)

Consider emission of a single photon in mode kα  by an atom that is initially in the state ia  
and finally in the state fa . Clearly, only one term in (16.36) can yield a nonzero matrix ele-
ment for such a process; it is the term in akα

† . If  there are n photons in the mode kα  in the initial 
state, the matrix element is
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 (16.37)

Now

 n a n n+( ) = +( )1 1
k k k kα α α α

†  

Thus (16.37) becomes
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e

m c L
c

n f e i
e

a
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aemission = +( ) −1
2

1
3 2

2
1 2

/

/







ω
εk r p  (16.38)

where we have dropped the subscript kα. The quantity n + 1 has the following significance: 
n refers to stimulated emission, but even when n = 0, we still have a factor of unity, which 
accounts for spontaneous emission.

By a similar argument, we find the matrix element for stimulated absorption; that is,

 M
e

m c L
c

n f e i
e

a
i

aabsorption = ( )1
23 2

2
1 2

/

/







ω
εk r p  (16.39)

Note that in the matrix element for absorption there is a factor n( )1 2/
 instead of n +( )1

1 2/
.

The factor f e ia
i

a
− k r

ε̂ p  in (16.38) is an integral over the atomic coordinates of 
the form

 ψ ε ψfa
i r

iae d*∫ − k p r





3  

Let R be the radius of the region over which the electronic wave function is appreciably differ-
ent from zero, and let λ  be the photon wavelength. If  λ  R, then k r 1 for all r ≤ R; hence 
we can replace exp −( )ik r  by unity (the long-wavelength approximation).

The factor exp −( )ik r  arose in the first place because we chose to Fourier analyze the radi-
ation field in Cartesian coordinates, which yields plane waves. For atomic, nuclear, or elemen-
tary particle emission and absorption processes, it would obviously be more natural to solve 
the vector wave equation
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 ∇ − =2
2

1
0A A

c
  

in spherical polar coordinates centered on the radiating system. Although it is simpler to retain 
Cartesian coordinates, let us summarize very briefly the main features of vector spherical wave 
solutions, leaving details for Appendix C. Divergence-free vector spherical waves are con-
structed from solutions to the scalar wave equation in spherical coordinates. As is well known, 
the latter solutions are of the form g kr Y m

 

( ) ( )θ φ, , where the g


 are appropriate linear com-
binations of the spherical Bessel functions j kr n kr

 

( ) ( ) and . Such combinations can be con-
structed to describe outgoing waves (the spherical Hankel functions h j in

  

1( ) = + ), incoming 
waves (the spherical Hankel functions h j in

  

2( ) = − ), or standing waves described entirely by 
the j



. In any of these cases, the vector spherical waves consist of two distinct types: magnetic 
(m) and electric (e) multipoles. Each multipole mode is characterized by two distinct indices L 
and M (in addition to the wave number k). The permissible values of L are 1, 2, 3, …, and the 
possible values of M for a given L are –L, …, L. For any given L, M, the electric field ELM

m( ) of  
a magnetic multipole is purely transverse (it has no radial component), but the magnetic field 
BLM

m( )  does have a radial component. In fact, in the near-field zone (where kr 1), BLM
m( )  becomes 

like a magnetostatic field of multipolarity L, M, and in this region it greatly dominates over 
ELM

m( ) . For electric (e) multipoles, the situation is opposite: there the magnetic field BLM
e( )  is trans-

verse everywhere, but ELM
e( )  does have a radial component, and in the near-field zone it becomes 

like an electrostatic L,M –pole field that greatly dominates over BLM
e( ) .

The plane running waves that result from Fourier analysis of the radiation field in rectangu-
lar coordinates form a complete set for given k: any arbitrary divergence-free solution to the 
vector wave equation can be expressed as a superposition of such plane running waves. The 
same remarks hold for the e and m vector spherical waves: together they form a complete set. 
It follows that we can express a plane running electromagnetic wave as a superposition of m 
and e vector spherical waves summed over L and M. In this “multipole” expansion, the lead-
ing term is electric dipole (E1); it dominates over all others when kr 1. Thus the expressions 
long-wavelength approximation and electric dipole approximation are equivalent.

Now, returning to the matrix element f ia aε̂ p  in the E1 approximation, we note that

 r r
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p, ,H
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i
me e

atom[ ] =








 =

2

2


 (16.40)

Hence
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Consequently, in the long-wavelength approximation, (16.38) becomes
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where we have used ω ωif
a = , which follows from conservation of energy. Thus, from (16.32), the 

differential transition probability per unit time for spontaneous emission is

 dW
e
L

f i da a=
π ω ε ρ

2

3

2

2
ˆ
r  (16.42)

Now the number of modes between ω ω ω and + d  for photons radiated into solid angle dΩ 
with given polarization is
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Hence (16.42) becomes

 dW
e

c c
d

c
d= =

2 3

2

2 3

2

2

4 2 2π
ω
π

ε α
π

ω ε


ˆ • ˆ •r rΩ Ω  (16.44)

The quantity
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is the scalar product of two first-rank tensors, where ε̂  refers to the radiation field, and r refers 
to the atom. Applying the Wigner-Eckart theorem to r, we have

 j m r j m j m M j m j r jf
a

f
a M

i
a

i
a

f f i i f i, , , , , ,( ) = 1  (16.45)

The vector coupling coefficient on the right-hand side of (16.45) implies that m M mf i+ =  and 
that j j j jf i f i= = ± or 1, but ji = 0 cannot go to j f = 0. The last conditions are summarized 

by stating that these quantum numbers must obey the triangle rule: ∆ j ji f1( ). Also, r is an odd-
parity operator, which implies that the parities of the initial and final atomic states must be 
opposite; that is,

 π πi f = −1  (16.46)

As a specific example of  an E1 transition, we calculate the transition probability per unit 
time for spontaneous decay of  the 2p state of  a hydrogenic atom of  nuclear charge Ze 
to the 1s state. Here we include electron spin but ignore nuclear spin. The relevant wave 
functions are
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where, as usual, α β and  are up, down spin-½ spinors, respectively. For the transition 
m mji jf= → =1/2 1/2, we have
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In the case m mji jf= → = −1/2 1/2,
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In each transition, there are two possible polarization states a priori. These are shown in 
Figure 16.1.

We have
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 Figure 16.1 Vectors k , , ε ε 1 2  that describe an emitted photon.
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and
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In atomic units,
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In atomic units, the total decay rate from 22
1 2P mj/ , = 1/2 is obtained from (16.54) as
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Employing (16.52) through (16.54) and ω = 3
8

2Z  in (16.55), we obtain

 W Z= 
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8

4 3α  (16.56)

Because W is a transition probability per unit time, it has dimension (time)–1. Therefore, to find 
W in ordinary units, we must multiply the right-hand side of (16.56) by αc a/ 0 . The result is 
called the spontaneous-emission decay rate A; that is,
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Note the Z4 dependence, which arises from a factor Z–2 in the square of the matrix element and a 
factor Z6 in ω3. Result (16.57) agrees with experiment, as do A coefficients for other allowed transi-
tions in hydrogenic atoms (all of which can be calculated exactly). Table 16.1 lists some of them.

The same principles are involved in calculating allowed E1 transition rates for more com-
plex atoms, and results of the same order of magnitude are expected: A ≈ α ω3 3 in atomic units. 
However, because radial-wave functions are known only approximately for complex atoms, the 
A coefficients are correspondingly uncertain. For the alkali atoms and a few others, one can 
achieve precisions of 1 to 5 percent with considerable computational effort using the Hartree-
Fock and related methods.

A beam of light incident on an atom can cause stimulated emission and/or absorption. We now 
calculate the rate for this process in the allowed approximation, starting from (16.38) for stimu-
lated emission and (16.39) for stimulated absorption. Replacing the factors exp( )±ik r  by unity, 
writing n + 1 ≈ n for n1, and following the same line of argument as given for spontaneous 
emission in earlier paragraphs, we obtain for the differential transition probability per unit time

 dW
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α ω ε̂r Ω  (16.58)

Suppose that we have a beam of light with intensity I d d00 ω Ω, where I00  is the intensity per unit 
angular frequency per steradian, with dimensions erg cm–2 s–1 rad–1 s sterad–1. Clearly,
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We employ (16.59) to rewrite (16.58) as

 dW I d=
( )
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2
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π α

ε




ˆ r  

Table 16.1 E1 Spontaneous emission probabilities in hydrogen in 108 s–1

Initial Final n = 1 2 3

2s np — — —
2p ns 6.25 — —
3s np — 0.063 —
3p ns 1.64 0.22 —
3d np — 0.64 —
4s np — 0.025 0.018
4p ns 0.68 0.095 0.030
4p nd — — 0.003
4d np — 0.204 0.070
4f nd — — 0.137
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The total intensity per unit angular frequency in the beam of light is I I d0 00≡ Ω. Thus we 
obtain the following useful formula for the transition probability per unit time for stimulated 
emission or absorption:

 W I= ( )2
2

0

2
π α ε





ˆ r  (16.60)

16.3.2 Magnetic dipole and electric quadrupole transitions

Now consider the effect of the next term in the expansion of exp( )±ik r  in the matrix elements 
(16.38) and (16.39). The spontaneous emission matrix element is
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We write
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Now p x x p ii j j i ij= − δ , and in Coulomb gauge, ki j ijε̂ δ = 0. Thus (16.62) can be written
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For the moment, we confine our attention to the second term on the right-hand side of 
(16.63):
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where L is the electron orbital angular momentum operator. Inserting this into (16.61), we 
obtain
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At this point we recall the spin term in (16.52), which we have neglected until now; that is,
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Noting that
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we calculate the matrix element of ′H S( ) in the long-wavelength approximation (i.e., we replace 
the exponential factors in B by unity). Thus

 ′ = − ×H ig
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m c L
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S
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e
f i
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1

23 2







ω ψ ε ψ• S  (16.67)

Combining (16.65) and (16.67), we obtain the magnetic dipole (M1) matrix element

 ′ = − × +( )H M i
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 • L S  (16.68)

The quantity ˆ ˆ •k gs× +( )ε L S  is a scalar product of two first-rank tensors, where ˆ ˆk × ε  refers to 
the radiation field and L S+ gs  refers to the atom. From this we immediately conclude that M1 

transitions, like E1 transitions, satisfy the selection rules m M mf i+ =  and ∆ j ji f1( ). However, 

L S+ gs , unlike r, is an even-parity operator (L S+ gs  is an axial vector, whereas r is a polar vec-
tor). Thus an M1 transition connects initial and final atomic states of the same parity; that is,

 π πi f = +1  (16.69)

For example, allowed M1 transitions occur in atoms between hyperfine components of a given 
state or between fine-structure components (e.g., between n p2

3 2/  and n p2
1 2/  levels in hydrogen), 

or between mJ components of a state with given J. The selection rules just stated also allow 
an M1 transition between 2 12

1 2
2

1 2s s/ / and  states in hydrogen. In the nonrelativistic limit, the 
M1 matrix element in this case is zero because the radial-wave functions are orthogonal. The 
matrix element is actually nonzero because of relativistic corrections, although it is exceedingly 
small. (The chief  mechanism for decay of the 2s state of hydrogen in the absence of perturbing 
electric fields is emission of two electric dipole photons, with a spontaneous emission mean life-
time of 1/8 s.) Forbidden M1 transitions similar to that just mentioned for 2s-1s in hydrogen do 
occur and have been observed in the alkali atoms (e.g., 7s-6s in cesium) and in thallium.

Let us compare the matrix elements for allowed M1 and E1 transitions of similar frequen-
cies. From (16.68) and (16.41), we have
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Next, we return to (16.63) and consider the term
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which is responsible for electric quadrupole (E2) transitions. Employing the identity
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we have
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Thus the matrix element for spontaneous emission of E2 radiation is
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In (16.71) we have included a term 1
3

2ˆ ˆk ri j ijε δ  that gives no contribution to the matrix ele-
ment because kε̂ = 0. This is done to make the quadrupole tensor x x ri j ij− 1

3
2δ  an irreducible 

second-rank tensor. Because this tensor operator has even parity, the selection rules for E2 
radiation are as follows: ∆( ) .j ji f i f2 1 and π π = +  Comparing (16.71) with an E1 matrix ele-
ment (16.41) of comparable frequency, we have
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Taking ω α≈ = = −1 10
1, ,  and a c  in atomic units, we see that E2 amplitudes, like M1 ampli-

tudes, are typically of order α compared with E1 amplitudes in atomic transitions. The same 
scaling does not hold for gamma-ray transitions in nuclei.

16.4 Damping and natural linewidth

We now recall our original formulation of time-dependent perturbation theory, where
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We have shown that the system of differential equations
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is equivalent to (16.72). Suppose that, as before, the initial conditions are

 a ai n i0 1 0 0( ) = ( ) =≠  

We have described how the first-order approximation consists of replacing all the an in (16.73) 
by their initial values, which results in the equations
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Clearly, this approximation must fail for sufficiently long times because ai  decreases from its 
initial value of unity, and the other an  increase from zero. We now see how to improve the 
approximation substantially by assuming that a ti ( ) takes the form

 a t ti ( ) exp= −





γ
2

 (16.74)

where γ γ γ γ= +1 2 1 2i  and ,  are real numbers (Weisskopf and Wigner 1930). With this substitu-
tion, the amended equations are
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We integrate (16.75) subject to an ( )0 0=  to obtain
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and insert (16.77) into (16.76) to obtain
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Typically, we might have an atom in some initial excited state ia that decays by spontaneous 
emission to a final state n consisting of the atom in final state fa and a photon with energy ε 
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in range dε and with density of states ρ(ε). In this case we replace the sum in (16.78) by an 
integral

 γ ρ ε ε
ε γ

= ( )
′ − − −



















−

2
1

2
2

i
d

H
i

E i t

E

in if
a

if
a





exp

ε γ−
∫

i


2

 (16.79)

It is impossible to solve this integral equation exactly because γ appears not only on the left-
hand side but also in a complicated integrand on the right-hand side. However, we can find an 
approximate solution by ignoring γ in the integrand. Then
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In the factor
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the first term on the right-hand side of (16.81) is associated with γ 2. One finds that γ 2 is a small 
energy shift in level ia due to its coupling with the radiation field. We return to this for a more 
detailed discussion in Chapter 17. However, for the moment, we ignore this term and concen-
trate on the second term on the right-hand side of (16.81), which is associated with γ 1. We make 
use of the following relations:
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we see from (16.80) that in the limit as t → ∞ ,
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Thus γ 1 is just the total transition probability per unit time as given by the golden rule. This is 
reasonable because given the expression
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we have
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which is a very plausible expression for the transition probability per unit time out of state ia .  
The existence of “damping,” as expressed by the factor exp( )−γ 1t , implies that in the transi-
tion between states i fa a and  with energies E Ei

a
f
a and , the emitted photon energy is somewhat 

uncertain. To see this, we go back to (16.77) and ask for the transition probability (not the 
transition probability per unit time) to a state n consisting of an atom in state fa and a photon 
with frequency ω in range dω. This is
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In the limit of large t, this becomes
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Because in most applications ′ ( )Hni
2

 and ρ ω  are slowly varying functions in the neighborhood 
of ω ω= if

a , we conclude that the photon frequency is distributed about ωif
a  in a Lorentz distri-

bution; that is,
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 (16.84)

with full width at half  maximum (FWHM) equal to γ . In other words, state ia  does not 
have a sharp energy Ei

a but rather a natural energy width Γ = = γ 1 A, where A is the total 
 spontaneous emission decay coefficient for ia . For example, A = × −6 25 108.  s 1 for the 2 1p s→  
transition in hydrogen. Thus Γ/  rad/s  MHz = × =6 25 10 1008.  is the frequency uncertainty of 
the 2p state.
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16.5 Approximate character of the exponential law of decay

In the preceding section we discussed the “exponential” law of spontaneous decay, which 
appears in so many contexts (e.g., decay of radioactive nuclei, spontaneous decay of elemen-
tary particles, and spontaneous emission of photons by atoms, molecules, and nuclei in excited 
states) that it appears to be a fundamental law. However, we have seen that in fact it is not fun-
damental but rather emerges from a succession of subtle approximations in time-dependent 
perturbation theory. The approximate nature of the exponential decay law also can be seen 
from the following general argument: suppose that at time t = 0 a system is prepared in state 
w . For example, w  could describe a nucleus that has not decayed. At time t, the state vector 
is U t w iHt w, exp /0( ) = −( )  in the Schroedinger picture. The probability that the nucleus 
has not decayed at time t is

 P t A t( ) ( )= 2
 (16.85)

where A t w e wiHt( ) ./= −   Let us express w  in terms of the eigenstates of the Hamiltonian 

H; that is,

 w u u wn n= ∑  

where H u E un n n=  (in fact, the eigenvalue spectrum could be continuous, and the last sum 
could be an integral). Then
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where η δE u w E En
n

n( ) = −( )∑ 2
 is called the spectral function. (If  the energy spectrum is 

continuous, the last sum becomes an integral, and η can be a continuous function of E.) We 
see from (16.86) that A(t) is the Fourier transform of the spectral function. In the special case 
where the spectral function is Lorentzian, that is,
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we find from a simple contour integration that
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where E0 0= = ω γ and Γ . However, if  η deviates from Lorentzian shape, A(t) is not 
 exponential. In particular, because the energy spectrum of any real physical system must have 
a finite lower bound Emin, we require η = 0 for E < Emin, and this implies that there must be some 
deviation from the exponential decay law. At sufficiently long times, the decay is slower than 
exponential (Khalfin 1958). Experimental evidence for this deviation has been found (Rothe 
et al. 2006).

16.6 Second-order processes: Scattering of light by an atomic electron

We now consider processes in which two photons are involved. These include two-photon 
absorption, two-photon emission as in the decay 2s-1s in hydrogen, and absorption of one pho-
ton with emission of another (e.g., Raman effect, photon scattering). We shall discuss photon 
scattering in some detail, but before considering the quantum-mechanical aspects, it is worth 
our while to analyze it classically by assuming that the atom consists of a classical electron 
bound harmonically to a fixed nucleus. Here electron motion is described by the equation

 m m me e e x x x F+ + =γ ω0 0
2  (16.89)

where −meω0
2 x is the harmonic restoring force, −meγ 0 x is a damping force, and F is an external 

force. Suppose that an atom at the origin is exposed to a plane electromagnetic wave of fre-
quency ω . Assuming the electron motion to be nonrelativistic so that the force term − ×e c( ) /v B  
can be neglected and writing E = −E0 ẑe i tω , we have

 m z m z m z e ee e e
i t

 + + = − −γ ω ω
0 0

2
0E  (16.90)

We try a solution of the form z z e i t= −
0

ω , which yields

 z
e
m ie

0
0

0
2 2

0

1
= −

−( ) −
E

ω ω ωγ
 (16.91)

A classical accelerated charge radiates energy at the instantaneous rate

 S
e a

c0

2 2

3

2
3 4

=
π

 

where a z= −ω 2  is the acceleration. The average of S0 over any number of complete periods is

 S
e

c
z0

2 4

3 0
1
3 4

= −ω
π

2 1 erg s  (16.92)

Meanwhile, the intensity of radiation in the incoming plane wave is

 P
c

= − −

2 0
2 1E  erg cm  s2  (16.93)

 

 

  

 

 

 

 

 

 

 



16.6 Second-order processes: Scattering of light by an atomic electron395

The ratio σ ≡ S P0 /  has dimension of length squared and is called the scattering cross section. 
From (16.91) through (16.93), we obtain

 σ π ω
ω ω ω γ

=
−( ) +

8
3 0

2
4

0
2 2 2 2

0
2

r  (16.94)

where r e m ce0
2 2 134 2 8 10= ≈ × −π .  cm  is the classical electron radius. We now consider three 

 separate cases of (16.94):

1. Rayleigh scattering: ω ω 0 .
2. Resonance fluorescence: ω ω≈ 0 .
3. “Free” electron (Thomson) scattering: ω ω 0 .

Rayleigh Scattering

When ω ω 0 ,

 σ π ω
ω ω ω γ

π ω
ω

=
−( ) +

≈
8
3

8
30

2
4

0
2 2 2 2

0
2

0
2

4

0
4

r r  (16.95)

The well-known ω 4  dependence is characteristic of scattering of sunlight by dust grains in the 
atmosphere and is responsible for the blueness of the sky and the redness of sunsets.

Resonance fluorescence: ω ω≈ 0

Here ω ω ω ω ω ω ω ω ω0
2 2

0 0 0 02− = +( ) −( ) ≈ −( ). Hence

 

σ π ω
ω ω ω γ

π ω
ω ω ω ω γ

π

=
−( ) +

≈
−( ) +

=

8
3

8
3 4

2

0
2

4

0
2 2 2 2

0
2

0
2 0

4

0
2

0
2

0
2

0
2

r r

  
3

4

0
2 0

2

0
2 0

2r
ω

ω ω γ−( ) +

 (16.96)

The cross section exhibits a characteristic Lorentz shape in the neighborhood of ω0.

Free Electron Scattering: ω ω 0

Here σ π≈ ( )8 3 0
2r , which is a constant, the Thomson scattering cross section. In fact, it is the 

nonrelativistic limit of the Compton scattering cross section.
Now we study the same problem in quantum mechanics. Imagine an incoming photon beam 

with n photons in mode ki iα  and an initial atomic state ia . We want to calculate the probability 
per unit time that one of the ki iα  photons is scattered into the mode k f fα  (i.e., one ki iα  photon 
is destroyed and one k f fα  photon is created) while the atom simultaneously ends up in the state 
fa. We ignore the spin term and write the perturbation Hamiltonian as

 ′ =H
e

m c
e

m ce e

A p + A

2

2
2

2
 (16.97)
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Because we want to create one photon and destroy another, we employ the A•p term in 
 second order and the A2 term in first order. Let us begin with the latter. The first-order matrix 
element is

 

′ = −

=

H
e

m c
f n i n

e
m c

fi
e

a i i f f a i i

e

( ) ;( ) ; ;1
2

2

2

2
1

2

k k A A kα α α

        
2 3

21
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1

L
c

f na i
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′

−
′ ′

∑
k
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k

α
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ωω
ε ε

α
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;( )               i f f
i i

a i ia a e a a e i n; ;† ( ) † ( )k kk k
k k r

k k
k k rα αα α α α′ ′
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− − ′+ 

        = 





−e
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c
f e i

e i f
i f a

i
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2

2

1 2

3

2

2
1/

( )ˆ ˆ





ω ω
ε ε k k ri f

 (16.98)

In the long-wavelength approximation,

 f e i e f i ea
i

a
i

a a
i

f ia a

( ) ( ) ( )
,

k k r k k R k k Ri f i f i f− − −= =   δ  

where R is the location of the atomic center of mass. Therefore, in this limit, the A2 term 
contributes only when i fa a= , in which case the initial and final photons have the same 
energy but not necessarily the same direction. The change in photon momentum is permit-
ted by atomic recoil, which is not taken into account explicitly in this calculation because we 
assume that the atomic nucleus has infinite mass.

It is convenient in what follows to employ a different form of (16.98) that has identical con-
tent. Assuming i fa a= , ω ω ωi f= ≡ , and R = 0, we have

 ′ =H
e

m
n
Lfi

e

i f
( )

/
1

2 1 2

32








ω
ε ε  (16.99)

Now
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 (16.100)

In addition, we have

 p x= [ ]m
i

He
a



,  (16.101)

Substitution of the last relation into (16.100) and some rearrangement yield

 ′ = +( )∑H
e n

L
Efi i in ni f f in ni i

n
ni
a

a

( )
/

1
2 1 2

32


 

 

 



ω
ε ε ε εx x x x   (16.102)
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where E E Eni
a

n
a

i
a= − . We use (16.102) momentarily, but for now, we consider the contribution 

of the term e m ce( ) A p  in second order. In general, the second-order matrix element is

 M
H H

E
fn ni

inn
2 =

′
∑  

In the present case, we have two types of intermediate states, associated with Figure 16.2a 
and b.

In Figure 16.2a, the intermediate state consists of the atom in state na , n – 1 photons in 
mode ki iα , and no photons in mode k f fα . However, in Figure 16.2b, there are n photons in 
mode ki iα  and one photon in mode k f fα  in the intermediate state. Denoting the photon energy 
by ε , we have the following contribution from the A•p term in second order:

 ′ =
′ ′

+
+

′ ′
−∑ ∑H

H H

E

H H

Efi
fn ni

in
a

fn ni

in
a

( )2
µ µ ν ν

ε ε
 (16.103)

where

 ′ =H
e

m c L
c

i nfn
e

a f a
µ

ω
ε1

23 2

2

/





 p  (16.104)
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 p  (16.105)

 ′ =H
e

m c
n
L

c
i nfn

e
a i a
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ω
ε

1 2

3 2

2
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/

/





 p  (16.106)

 ′ =H
e

m c L
c

n ifn
e

a f a
ν

ω
ε1

23 2

2

/





 p  (16.107)

ia kf
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ia kf

ia ki ia ki

t

         a)                                  b)

 Figure 16.2 Second order diagrams showing 2 types of intermediate states.
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Inserting (16.104) through (16.107) into (16.103) and employing the identity (16.101), we find, 
after some algebra, that

 ′ =
( )

+
+

( )
H

e n
L

E

E

E

Efi
ni
a

in
a

f in ni i
ni
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in
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/
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2 1 2
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i in ni f
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x x  (16.108)

We now combine (16.108) with (16.102) to obtain
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x x  (16.109)

In the case of Rayleigh scattering, ε  Eni
a  for any n. Thus we can employ the expansions
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E Eni
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to write (16.109) as follows:
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∑  

However, because the atomic states form a complete set, that part of the sum proportional to 
ε  on the right-hand side of this expression vanishes. Thus

 M
e n

L Eni
a

f in ni i i in nitotal
Rayleigh = − +

2 1 2

32
1ε ε ε ε ε

/


 

 

 x x x x  f( )∑  (16.110)

The transition probability per unit time is given by the golden rule; that is,

 dW M d=
2 2π ρ


 

where

 d
L

c
dρ ω

π
=

3 2

3 38 

Ω  

for radiation of a final photon of given polarization into solid angle dΩ. Thus, from (16.110), 
we have

 dW
n

cL
d

ni
a f in ni i i in ni f= +( )∑α ω

ω
ε ε ε ε
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3
4

2
1 ˆ ˆ ˆ ˆ

   x x x x Ω  (16.111)

The incoming photon flux is J cn L= / 3, and the differential cross section is
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 d
dW

J c
d

ni
a f in ni i i in ni fσ α ω

ω
ε ε ε ε= = +( )∑

2

2
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2
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   x x x x Ω  (16.112)

Let us make an order-of-magnitude estimate of the sum in (16.112). It is approximately a0
2

0/ω ,  
where ω π0

2
0≈ e a/4 . Therefore,
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 (16.113)

This is consistent with the classical result (16.95) for Rayleigh scattering. We next turn to 
Thomson scattering, where ε  Eni

a . Here the second-order contribution (16.108) is very small, 
so we ignore it and consider only the first-order contribution (16.99). We have

 dW r
nc
L

di f= 0
2

3

2
ˆ • ˆε ε Ω  

Hence

 d r di fσ ε ε= 0
2

2
ˆ • ˆ .Ω  (16.114)

It is easy to show that when this expression is summed over final polarizations, the  quantity 

ˆ • ˆε εi f

2
 contributes the factor cos cos sin2 2 2θ φ φ+ , where θ φ and  are the scattering angles 

(between ki and kf). Integrating over all angles, we obtain the total cross section

 σ π
=

8
3 0

2r  (16.115)

which agrees with the classical result.
Finally, we consider the case of resonance fluorescence, where the energy of the incom-

ing photon is very nearly equal to the energy difference between a particular excited atomic 
state na  and the ground state ia . Clearly, the A2 contribution can be neglected here, and in 
(16.108), we need to consider only a single one of the second type of terms on the right-hand 
side. Hence

 M
e n

L

E

E
f in ni i

ni
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⇒ −
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Actually, in the vicinity of resonance, it is important to take into account the natural width of 
the state na, which is done by making the following replacement in the denominator of the last 
factor in (16.116):

 E E
i

ni
a

ni
a− → − −ε ε Γ

2
 

From this we obtain the differential cross section using methods that are now familiar; that is,

 d
c

df in i inσ α ε ε ω

ω ω γ=
−( ) +

2

2

2 2 0
4

0
2

2

4

ˆ ˆ
 x x Ω  (16.117)

It is easy to show that this resembles the classical result (16.96).

Problems for Chapter 16

16.1. In Chapter 7 we discussed magnetic resonance and derived Rabi’s formula [equa-
tion (7.71)] for the transition probability from the state m = +½ to the state m = –½ for a 
particle (e.g., a proton) of spin-½ and magnetic moment µ = g Bµ S  in the magnetic field 

B = ( ) − ( )



 +B t i t j B k1 0cos sinω ω 

. Treat the same problem by first-order time-dependent per-

turbation theory, where the interaction of the magnetic moment with the static magnetic field 
B z0 ˆ is considered to be the zeroth-order Hamiltonian, whereas the interaction with the rotating 
field B1 is the perturbation. Compare your result with the exact solution.

16.2. Consider two particles of spin-½ coupled by an interaction of the form

 ′ = ( )H a t S S1 2  

where a(t) is a smooth function of time that approaches zero as t  becomes very large and has 
appreciable size a0 only for t T< /2.
(a) Assume that at large negative t the system is in the initial state (1: spin up; 2: spin down). 
Calculate without approximations the state at very large positive t. Show that the probabil-
ity of  finding the system in the state (1: spin down; 2: spin up) depends only on the integral 

a t dt( )
−∞

∞

∫ .

(b) Calculate the transition probability P( , , )+ − → − +  by first-order time-dependent perturba-
tion theory, and compare your result with that of part (a).
(c) Now assume that in addition, the two spins are coupled to an external magnetic field B in 
the z-direction by the Zeeman interaction

 H B S Sz zZeeman = − +( )γ γ1 1 2 2  

where γ 1 2,  are two distinct constants. Also assume that a a t T= −( )0
2 2exp / . Again, use first-

order time-dependent perturbation theory to calculate P( , , )+ − → − + . How does the result 
depend on B for fixed a0 and T?
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16.3. Calculate the free-space spontaneous emission decay rate for the 1 1 02
1 2s F F/ = → =( ) 

magnetic dipole transition (1,420 MHz) in atomic hydrogen.

16.4. Ignoring electron spin, calculate the free-space spontaneous emission decay rate for the 
single photon 3 2d s→  electric quadrupole transition in atomic hydrogen. Compare your result 
with the rate for the single photon 3 2d p→  electric dipole transition. What is the angular dis-
tribution of emitted photons in the 3 2d s→  transition if  the initial state is 



= =2 1,m ?

16.5. The following interesting phenomenon occurs with electrons orbiting in a storage ring. 
Even though the electrons are initially unpolarized, they gradually acquire a polarization P 
perpendicular to the plane of the ring. It can be shown that

 P t P e t t( ) = −( )−
0 1 0/  

where P0 8 5 3 0 9238= = .  is the maximum polarization, and

 t
e

m c Re
0

2 5

2 2 3

1
5 3
32

=







−

π
γ

 

in Heaviside-Lorentz units, where γ = −( )−
1 2 2 1 2

v c/
/

 and R is the orbit radius. The exact deriva-
tion of these results is lengthy and difficult, but one can give a simple and intuitive approximate 
derivation that forms the subject of this problem.
Here we imagine an electron describing a classical planar orbit in a uniform magnetic field 
B with speed v in the laboratory frame. We transform to the instantaneous rest frame of  the 
electron, where the electron experiences a magnetic field B ′ and also an electric field E ′. 
Because the electron possesses a spin magnetic moment, there exist two magnetic energy 
states in field B ′ that are separated by a frequency difference ω . An electron in the upper 
state can spontaneously emit a magnetic dipole photon and end in the lower state. The tran-
sition probability per unit time for this process can be calculated from the formalism we have 
developed in this chapter. When we transform back to the laboratory frame, this transition 
probability per unit time is altered by a well-known factor familiar from special relativity. Fill 
in the details to show that according to this approximate treatment, the maximum polariza-
tion is 100 percent and

 t
g e

m c R
s

e
0

5 2 5

2 2 3

1

192
=







−

π
γ

 (1)

where gs ≈ 2 is the electron spin g value, and we assume that the electron is ultrarelativis-
tic. According to (1), what is the electron energy in the laboratory frame if  t0 1=  hour and 
B = 104  G?

In this approximate treatment, we have combined a classical description of the electron orbit 
with a quantum-mechanical description of spontaneous emission. This inconsistency is what 
causes the discrepancy between the exact and approximate results.

16.6. In this problem we consider possible mechanisms for spontaneous decay of  the 22
1 2s /  

state in a hydrogenic atom (H, He+, Li2+, etc.). Recall that the 22
1 2s /  state lies above the 22

1 2p /  
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state by the Lamb shift, which in hydrogen is S = 1 058,  MHz. The Lamb shift scales roughly 
as Z4.
(a) Although angular momentum and parity selection rules do not prohibit a magnetic dipole 
transition 2 1 12

1 2
2

1 2s s M/ /→ +  photon, the matrix element for this process vanishes in the 
 nonrelativistic limit because of the orthogonality of the nonrelativistic 2s and 1s radial-wave 
functions. When relativity is taken into account (via the Dirac equation), the M1 matrix elem-
ent no longer vanishes but is now proportional to Z 2 2α . How does the M1 transition rate ΓM1 
scale with Z?
(b) The 22

1 2s /  state can decay by electric dipole emission to the 22
1 2p /  state, but the transition 

rate ΓE1 is negligible because the Lamb shift is so small. Calculate ΓE1 explicitly, including its Z 
dependence and assuming that the Lamb shift scales as Z4.
(c) The principal mode of decay of 2s in the absence of external electric fields is by two-photon 
emission to the ground 1s state. Each photon is E1, and the intermediate atomic states in this 
second-order process are all the discrete and continuum p states. The 22

1 2p /  state gives only a 
very minor contribution compared with that of all the other p states combined. The rate for 
this process for hydrogenic atoms is

 Γ2 1
68E Z≈ − s 1  

Explain the Z6 dependence. Note that for hydrogen, the M1 rate is much smaller; that is,

 ΓM H1
1

2( ) ≈ ( )−
 days  

(d) In the presence of a static external electric field E = Ez, the lifetime of the 2s state is short-
ened by admixing of p states because of the Stark effect. Here the 22

1 2p /  state plays a dominant 
role. Why? Neglecting other p states, let the atomic wave function for mj = 1/2 be written

 ψ t a t u
iE t

a t u
iE t

s s
s

p p
p( ) = ( ) ( ) −





+ ( ) ( ) −
2 2

2
2 2

2r rexp exp
 





 

where the coefficients a as p2 2 and  satisfy the coupled differential equations
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 (1)

Here γ = × −6 108  s 1 is the A-coefficient for decay of 22
1 2p / , and we assume that 2s would have an 

infinitely long lifetime if  the Stark coupling Hamiltonian H′ were zero. Solve these equations 
for a weak electric field to show that the 2s state decays with the rate

 ΓStark =
+

3

4

2
0
2 2

2
2 2

γ
γ

e a
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What external electric field in volts per centimeter is required to give a decay rate by this mech-
anism that is comparable with the decay rate by two-photon emission? Your answer should 
reveal that the metastability (long lifetime) of the 2s state of hydrogen is severely compromised 
even by very weak external electric fields.

16.7. This problem concerns sum rules, which are very useful in the general analysis of 
 radiation by atoms, molecules, nuclei, and so on. Before we proceed with the problem, we give 
an example of a sum rule. Define the x oscillator strength of a transition between two atomic 
states n and k as

 f
m

k x nkn
x e kn=

2 2ω


 

and similarly for y and z. Also define f f f fkn kn
x

kn
y

kn
z= + + . Then the single-electron oscillator 

strength sum rule (otherwise known as the Thomas-Reich-Kuhn sum rule) is

 f f fkn
x

k
kn
y

k
kn
z

k
∑ ∑ ∑= = = 1  

where the sum is taken over all states k including the continuum, and n is a given state. For 
example, the 1s-2p x-oscillator strength for hydrogen is 0.4162 by explicit computation. Thus 
the sum of the x-oscillator strengths for transitions from the ground state to all other states 
including the continuum must be 1 – 0.4162 = 0.5838. Now for the problem. Show that

(a) x n x nkn
k

2 2∑ =

(b) fkn
x

k
∑ = 1

(c) ωkn
k

kn
e

kn
x

k

x
m

p2 2

2

21∑ ∑=

where px is the linear momentum along x.
(d) Show that if  state n is spherically symmetric, (c) becomes

 ωkn
k

kn
e

nx
m

E n V n2 2 2
3∑ = −( )  

(e) ωkn
k

kn
e

x
m

n
V
x

n3 2

2

2

22∑ =
∂
∂



(f) Show that if  state n is spherically symmetric, (e) becomes

 ω π ρkn
k

kn
e

x
e

m
n r n3 2

2

2

2
3∑ =


( )  

where ρ is the probability density.

16.8. Consider the experimental arrangement shown in Figure 16.3, where an ensemble of 
atoms with 1S0 ground state is located in a small volume centered at the origin and is exposed 
to a beam of circularly polarized photons. These are absorbed in a transition to an excited 1P1 

 

 

 

 

 

 

 



Interaction of Nonrelativistic Charged Particles and Radiation404

state. The entire experiment takes place in a magnetic field B in the z-direction. Because the 
light is circularly polarized, the excited atoms are initially polarized along the ±x-direction. 
However, the polarization vector precesses with frequency ω (proportional to B) in the xy-
plane because the excited atom has a magnetic moment. The excited atom also has a finite 
mean lifetime τ γ= −1 for spontaneous decay.
When the atom decays, it may emit a photon into the very small solid angle subtended by a 
detector that lies along the y-axis. We arrange the detector to contain an ideal circular polar-
ization analyzer so that only positive-helicity photons are detected. Show that the detector 
registers a signal proportional to

 I = ±
+

−
+( )

3
2

2
2 42 2 2 2γ

ω
γ ω

γ
γ ω

 

where we employ ± for positive (negative) helicity of incoming photons. This practical method 
for measuring the lifetimes of a considerable number of excited atomic states is called the 
Hanle effect. Analogous methods are used to study the decays of polarized muons in g – 2 
experiments, the Garwin-Lederman experiment, and so on.

16.9. Consider an intense laser beam of very narrow bandwidth tuned to one-half  the fre-
quency corresponding to the separation between the 12

1 2s /  and 22
1 2s /  hyperfine components of 

atomic hydrogen. An experiment is carried out to excite the 22
1 2s /  state by two-photon absorp-

tion starting from the 12
1 2s /  state. Of the possible transitions

 

F F
F F
F F
F F

= → =
= → =
= → =
= → =

0 0
0 1
1 0
1 1

 

which are forbidden, and why?

Detector

Circ. pol. analyzer

x

y

z  

B

Incident light beam
circ. polarized

 Figure 16.3 Experimental arrangement for observing the Hanle effect.
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17.1 Lamb shift

Recall the Hamiltonian for charges, radiation, and their interaction; that is,

 H H H H= + + ′particle radiation  (17.1)

If  we could somehow turn off  H′, the bound-state energies of a hydrogen atom would be given 
by the following Balmer formula:

 E
n

e m
n



= −
( )

1
2 42

0
4

0
2 2π

 (17.2)

where m0  and e0 are the bare mass and bare charge, respectively, of the electron in the make-
believe world where there is no H′. Of course, there is no way to determine m0  or e0 because H′ 
is always present. However, this does not mean that there are no observable manifestations of 
the shifts in electron mass and charge caused by H′.

Let us consider the relative energy shift of the 22
1 2 1 2s p/ / and 22  states, which are degener-

ated in the Pauli-Schroedinger theory and in the Dirac theory, prior to the introduction of 
H′. When H′ is included, the degeneracy is removed: the 22

1 2s /  level is shifted upward, the 
22

1 2p /  is shifted very slightly downward, and the measured splitting between them is the Lamb 
shift S = 1 058,  MHz. The experimental discovery and careful measurement of this shift by W. 
E. Lamb and coworkers (Lamb and Retherford 1947; Lamb 1951) and theoretical efforts to 
explain it by H. Bethe, V. Weisskopf, R. Feynman, F. Dyson, J. Schwinger, and others in the 
years 1947–1951 were extremely important steps in the development of modern quantum elec-
trodynamics. We now try to understand this shift in the simplest possible way. First of all, we 
assume something that is very nearly true: that the splitting S arises entirely from the upward 
shift of the 22

1 2s /  state. This assumption means that if  H′ did not exist, the zeroth-order energy 
of 2s would be that of the physical 2 1 2p /  state. (By physical, we mean the energy of 2 1 2p /  calcu-
lated using the experimental values of m ee  and ). Thus

 2 2 2 21 2 1 2 1 2 1 2p H e m p s H e m sp e p e/ / / /, ,( ) = ( )  (17.3)

where the subscript p is shorthand for particle. Thus, given our assumption, the Lamb shift is

 
S E s H e m s

E s H e m s s H e m

s p e

s p p e

= − ( )
= − ( )



 − (

2

2 0 0

2 2

2 2 2

obs

obs  

,

, , ) − ( )



2 2 20 0s s H e m sp ,

 (17.4)
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Now it can be shown that only a very small fraction of the Lamb shift arises from the difference 
between e and e0 (charge renormalization). The great bulk of the effect is due to the difference 
between m and m0. Thus, ignoring the effects of charge renormalization, we simplify our cal-
culation by replacing (17.4) with

 S E s H e m s s H e m s s H e m ss p p e p≈ − ( )



 − ( ) − ( )



2 0 02 2 2 2 2 2obs , , ,  (17.5)

However,

 2 2 2 2 2
2 2

20

2 2

0

s H e m s s H e m s s
m m

sp e p, ,( ) − ( ) ≈ −
p p

 (17.6)

because the potential energy V e r= − 2 4π  does not contain the mass, and the remaining small 
contributions to Hp (spin-orbit effect, etc) are of negligible significance in the present problem. 
The right-hand side of (17.6) is the energy shift ∆E free  of  a nonrelativistic free electron averaged 
over the 2s state. Therefore, (17.5) can be written

 S E Es s= −∆ ∆2 2
free  (17.7)

where ∆E E s H e m ss s p2 2 02 2= − ( )obs , .

Each of the energy shifts ∆ ∆E Es s2 2 and free is obtained in lowest approximation by employing 
the A p•  term in second-order of static perturbation theory. Such an approach would appear to 
be valid only if  the energy shift in each case is quite small. When we calculate these shifts using 
a nonrelativistic description of the electron and with the long-wavelength approximation, we 
find that each shift is extremely large. Indeed, each diverges linearly when we integrate over all 
possible intermediate photon energies. However, as we shall see, in the difference ∆ ∆E Es s2 2− free , 
the linear divergences cancel, and only a much milder logarithmic divergence remains. If  the 
nonrelativistic approximation is replaced by a proper relativistic analysis, each of the shifts 
∆ ∆E Es s2 2 and free diverges only logarithmically, and ∆ ∆E Es s2 2− free is finite. Unfortunately, the rel-
ativistic treatment is complicated and beyond the scope of this book. Thus we content our-
selves with the nonrelativistic calculation (Bethe 1947). It is much simpler and reveals the main 
features of the effect.

We begin by calculating ∆E s2 . According to second-order perturbation theory, it is given by

 ∆E
H H
E Es

in ni

i nn
2 = ′ ′

−∑  (17.8)

and this is represented by the diagram of Figure 17.1. Here the state i  is the 2s state of hydro-
gen with no photons present, whereas the states n  are all hydrogenic states that can be con-
nected to the 2s state by the operator p [all discrete and continuum  = 1 ( )p  states] and all states 
of the radiation field with one photon. Thus (17.8) can be written

 ∆E
e

m c
c
L

L
c

n e

E Es
e n

a

i
a

a

2

2
2

3

3 2

3 3

2

2
1

8
=




 −∫∑






ω
ω

π

−ik
air pε̂

n
a

d d
− ε

ε Ω  (17.9)
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where ε ω=   is the energy of the “virtual” photon, and ε̂  is its polarization. If  we replace 
exp −( )ik r  by unity (the long-wavelength approximation), then (17.9) becomes

 ∆ ΩE
m c E E

n i d ds

e i
a

n
a

n
a a

a

2 2 2

21
4

=
( ) − −∫∑π

α ε
ε

ε εˆ
p  (17.10)

For any given na, we can integrate over all photon solid angles by choosing the vector 
p pni a an i≡  to lie along a polar axis, in which case

 ˆ sinε π θ θ ππ

z d d
2 3

0

2
8
3∫ ∫= =Ω  

Hence (17.10) becomes

 

∆E
m c E E

ds

e i
a

n
a in ni

na

2 2

2
3

=
( ) − −∫∑π

α ε
ε

p p ε
 

(17.11)

It is easy to see that the integral in (17.11) diverges linearly with ε. However, although we have 
assumed the long-wavelength approximation in the interest of simplicity, it breaks down at 
energies of order ε α≈ ≈m ce

2 3 700,  eV, where the photon wavelength is comparable with a0. 

For larger photon energies, the factor exp( )−ik r  oscillates very rapidly, and n e ia
−ik 



r pε̂  

goes to zero. Therefore, it is very sensible to cut off the divergent integral in (17.11) by assum-
ing a superior limit of

 εmax = = ×m ce
2 55 10  eV  

ia

ia

na photon

 Figure 17.1 Lowest order self-energy diagram for calculation of Lamb shift
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We now want to turn our attention to ∆E free, but first let us consider the energy shift of a free 
nonrelativistic electron of fixed momentum p due to H′. Once again, we use static perturbation 
theory with the Ap  term in second order. The matrix element ′Hni  is

 

′ =

=

− −∫H
L

e
m c

c
L

e e e dni
e

i ii1
2

1
3 2

2

3
3

/
//



 

 

ω
εp r r p rp r′ k 


     
1

23 2

2

L
e

m c
c

e
/ ,







ω
δ ε′ −p p k p

 

(17.12)

where p′ is the momentum of the electron in the intermediate state. Employing steps similar to 
those used in going from (17.9) to (17.11), we obtain

 ∆E
m c

d

m m
e

e e

( )
( ) ( )

free, p p
p p k

=
− − −

∫
2

3
2 2

2
2

2 2π
α ε ε

ε

 (17.13)

Now

 
p p k

p k
2 2 2 2

2 2 2m m m
k
me e e e

−
−( )

− = − −






ε ε  

The first term on the right-hand side of this equation is approximately ε p m ce( ), which is very 
small compared with ε because the momentum of a nonrelativistic electron is small compared 
with m ce . The second term on the right-hand side has magnitude ε ε m ce

2( ), which is much 
smaller than ε if  ε  m ce

2 . Hence it is a good approximation to replace the entire denominator 
in the integrand of (17.13) by −ε , in which case we obtain

 ∆E free
m c

d
m ce e

( , ) maxp p p= −
( )

= −
( )∫

2
3

2
32

2
2

2

π
α ε

π
α ε  (17.14)

Next, we average ∆E free, p( ) over the 2s state, thereby obtaining

 ∆E
m c

d
e

in ni
na

free = −
( ) ∫∑2

3 2π
α εp p  (17.15)

Now, taking the difference between (17.11) and (17.15), we obtain
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( ) −
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Because εmax >> Eni
a  for all p states that contribute anything appreciable, we replace 

(17.16) with

 S
m c

E n
E

e

ni
a

in ni
n ni

a
a

=
( )

( ) 



∑2

3
1

2

α
π

ε
p p 

max  (17.17)

The logarithmic factor in the sum of (17.17) varies extremely slowly with n. Hence it is conve-
nient to define

 

 



n E
E nE

E
ni
a ni

a
ni
a

in ni

ni
a

in ni

≡
( )

( )
∑
∑

p p

p p
 (17.18)

The quantity Eni
a  is evaluated numerically by explicit calculation from hydrogenic wave func-

tions, and it turns out to be 8 32 42 2
0. Z e a/ π( ) virtually independent of whether i refers to the 1s 

state, the 2s state, and so on. Accepting this, we concentrate on the sum in the denominator of 
the right-hand side of (17.18). For the 2s state, it is

 
2 2 2 2s H n n s s n n H sa a a a a ap p p p, ,[ ] = − [ ]∑ ∑ 

                        = − [ ] 
1
2

2 2s H sap p ,
 (17.19)

Employing p,H i Va[ ] = − ∇ , we find for any hydrogenic state ψ

 S
m c

V n
E

e ni
aψ

α
π

ψ ψ=
( )

∇
3

2

2
2



εmax  

Now ∇ = ( )2 2 3V Ze δ r  for a hydrogenic atom of nuclear charge Ze. Thus

 S
m c

Ze n
E

e ni
aψ

α
π

ψ ε
=

( )
( )

3
0

2

2
2 2



max  (17.20)

The wave function vanishes at the origin unless ψ  is an s state, which explains why there is no 
shift for the 2p1/2 state in the nonrelativistic approximation. For the ns state,

 ψ
πns

Z
n a

0
2 3

3
0
3

( ) =  (17.21)

Therefore, we obtain

 S
Z
n

e
a

n
Ens

ni
a

=
4
3 4

3 4

3

2

0

α
π π

ε


max  (17.22)

As mentioned previously, it is plausible to assume that εmax = m ce
2 , and this is verified by the 

complete relativistic calculation. Employing this and the numerical value of Eni
a  already men-

tioned and inserting n = 2, one obtains from (17.22)
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 S Hs2 1 040( ) ,=  MHz  (17.23)

which is to be compared with the experimental value

 S Hs2 1 058, ,obs  MHz( ) =  (17.24)

The discrepancy between (17.23) and (17.24) is removed when higher-order perturbations, rela-
tivistic corrections, the small shift of the 2p1/2 state, the vacuum polarization (charge renormal-
ization) effect, and other small effects are taken into account. In the years since Lamb’s historic 
achievement, the Lamb shift has been measured accurately in the ground state of hydrogen, 
in the n = 2 states not only of hydrogen and deuterium but also of He+ and hydrogenic ions 
with large Z, and in several other systems and states. Agreement with sophisticated theoretical 
calculations is excellent.

We have sketched the main features of Bethe’s nonrelativistic calculation of the Lamb shift. 
Whereas neglect of retardation and the apparently rather arbitrary choice of εmax = m ce

2  are 
questionable features, this calculation is basically correct, and it shows that the Lamb shift is 
essentially a low-energy nonrelativistic phenomenon.

17.2 Adiabatic approximation:  The geometric phase

Consider a physical system in initial state n  where the spacing between energy levels n and 
k is E En k nk− = ω . Suppose that this system is exposed to a perturbing Hamiltonian ′H t( ) 
that is a function of t. Also suppose that H′ varies slowly with t, by which we mean that H′ 
contains only those Fourier components with frequencies ω  such that ω ω nk for given n and 
all possible k n≠ . Then we expect intuitively that H′ will not induce transitions between states 
n k and . Instead, the system should remain in initial state n , which is now a function of t,  

as is its corresponding energy E tn ( ). For example, consider a particle with spin and an asso-
ciated spin magnetic moment in an external magnetic field. We know that if  the field varies 
rapidly, transitions can occur between various magnetic quantum-number (m) levels. However, 
if  the magnetic field varies slowly (in magnitude and/or direction), then we expect that transi-
tions between various m states should not occur. Instead, the spin direction should follow the 
direction of the magnetic field adiabatically. [Here adiabatic simply means that transitions out 
of state n t( )  do not occur.]

We now try to make these ideas more precise by starting with the time-dependent Schroedinger 
equation; that is,

 H t t i
t

t( ) ( ) =
∂
∂

( )Ψ Ψ  (17.25)

with

 Ψ t a t r t
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E t dtr
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where the r t( ) , which satisfy

 H t r t E t r tr( ) ( ) = ( ) ( )  (17.27)

are assumed to be orthonormal and, for simplicity, nondegenerate as well as discrete. 
Substitution of (17.26) into (17.25) with use of (17.27) yields the result

  



a r a r
i

E t dtr r
r

r

t

+( ) − ′( ) ′








 =∑ ∫exp

0

0  

We multiply this equation on the left by k  to obtain

  



a a t k r
i

E E dtk r
r

r k

t

= − ( ) − −( ) ′








∑ ∫exp

0

 (17.28)

To obtain a useful expression for k r k r  with ≠ , we differentiate both sides of (17.27) with 
respect to t

 
∂
∂

+ ( ) = +
H
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r H t r E r E rr r



  

and multiply this equation on the left by k . Thus we obtain

 k r

k
H
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∂
∂
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≠  (17.29)

and therefore (17.28) becomes
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 (17.30)

We now obtain an estimate of ak by assuming that all quantities on the right-hand side of 
(17.30) (which have already been assumed to vary only slowly with time) are now assumed to 
be constant in time. (This is the adiabatic approximation.) It includes the replacement of all the 
ar including ak by their initial values

 ar rn→ δ  

Hence we obtain

 



a

k
H
t

n

i t k nk
nk

nk≈ −

∂
∂

−( ) ≠
ω

ωexp  

 

 

 

 

 

 

 

 



Further Topics in Perturbation Theory412

Integration of both sides of this equation yields
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We see that in the adiabatic approximation, ak oscillates with an amplitude roughly equal to 
the change in the matrix element of the Hamiltonian over time interval ∆t kn≈ π ω/  divided by 
the energy difference E Ek n− . For a sufficiently slowly varying Hamiltonian, the amplitude of 
ak does indeed become extremely small.

Now consider once again the example of a particle with a spin magnetic moment in a slowly 
varying magnetic field. Suppose that the tip of the magnetic field vector traces a closed path in 
space in time T subtending a certain solid angle Ω with respect to its origin. We now show that 
the quantum state describing the particle (which has magnetic quantum number m) acquires a 
corresponding phase increment; that is,

 γ = −mΩ  (17.31)

This is called the geometric phase or Berry’s phase after the British physicist Michael Berry, who 
made substantial contributions to this topic several decades ago. The geometric phase is wholly 
distinct from the usual dynamical phase.

Actually, the geometric phase appears in many and diverse physical situations and is not lim-
ited to a spin magnetic moment in a magnetic field, nor is it even limited to quantum mechan-
ics. (For example, it can be shown that the slow precession of the plane of oscillation of a 
Foucault pendulum in classical mechanics involves a geometric phase.) Hence, in the discussion 
that follows, we take a general point of view and consider a Hamiltonian that depends on a 
number of parameters R t R t1 2( ), ( ), ...  . It is convenient to think of these parameters as defining 
a vector R(t) in parameter space. Next we consider the eigenstates of H and label them with 
the symbol m; that is,

 H t m E mmR( )  =  (17.32)

Of course, the eigenstates m  and associated eigenvalues Em as well as the Hamiltonian are 
functions of R(t). Suppose that at t = 0 the system of interest is in one such state m . Then the 
state at some later time can be expressed as
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 ψ γ= −





∫m
i

E dt em

t
iexp

 0

 (17.33)

where the second and third factors on the right-hand side contain the dynamical and geomet-
ric phases, respectively. To find γ, we once again make use of the time-dependent Schroedinger 
equation as follows:

 H iψ ψ= 

  

or

 E m
i

E dt e i
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t
i

E m i m
i
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t
i

m mexp exp−






=
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0

γ γ t e
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i
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γ  

which yields

 
γ m i m=  (17.34)

We take the scalar product of both sides of (17.34) with m  and use m m = 1 to obtain

 
γ = i m m  (17.35)

Note that because m m = 1, m m m m m m  = = −* ; hence m m  is imaginary and there-
fore γ is real. Also, because m  depends on time through its dependence on R(t), we can write 
(17.35) as

 



γ = − ∇Im m m R  (17.36)

where by ∇m  we mean the vector in parameter space with components

 
∂
∂

∂
∂

m

R

m

R1 2

, , ...  

Now suppose that R traces a closed curve in parameter space, arriving back at its original value 
at time T. Then, from (17.36), the increment in γ is

 γ = − ∇∫Im m m d


 R  (17.37)

In three-dimensional parameter space, this loop integral is converted into a surface integral by 
Stokes’ theorem; that is,

 γ = − ∇× ∇∫Im m m d σ  (17.38)

where, as usual, the latter integral is taken over a surface bounded by the closed curve traced 
by R. Because
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∇× ∇ = ∇ × ∇ + ∇×∇

= ∇ × ∇
m m m m m m

m m                    
 

(17.36) becomes:

 γ = − ∇ × ∇∫Im m m d σ  (17.39)

We now use the completeness relation for the eigenstates of the Hamiltonian to write

 γ = − ∇ × ∇( )∫∑Im m M M m d
M

 σ  (17.40)

We remind ourselves that M refers to any of the eigenstates of the Hamiltonian, whereas m 
refers to a particular eigenstate. When M = m, the integrand on the right-hand side of (17.40) 
vanishes because ∇ = − ∇m m m m . Therefore, (17.40) can be written

 γ = − ∇ × ∇( )∫∑
≠

Im m M M m d
M m

 σ  (17.41)

Now we develop a useful alternative form for the integrand in (17.41). Let us take the gradient 
of both sides of H m E mm= . This yields

 ∇ + ∇ = ∇ + ∇H m H m E m E mm m  (17.42)

We take the scalar product of both sides of (17.42) with M m≠ ; that is,

 M H m M H m E M m E M mm m∇ + ∇ = ∇ + ∇  

or, because M m = 0,

 M m
M H m

E Em M

∇ =
∇
−

 (17.43)

Therefore, (17.41) can be written as

 γ = −
∇ × ∇

−( )∫∑
≠

Im
m H M M H m

E E
d

m MM m
2  σ  (17.44)

At this point we return to the case of a particle with spin magnetic moment kS (where k is a 
constant and S is the spin operator) in a magnetic field B. Here the Hamiltonian is

 H k= − S B  

hence ∇ = −H kS . Now, because S is a first-rank tensor, the sum in (17.44) is restricted to terms 
for which M m= ±1, and in each such term the denominator of the integrand in (17.44) is
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 E E k Bm M−( ) =2 2 2  

Thus, contracting the sum over states in (17.44), we obtain

 
γ = −

×
∫Im

k m m

k B
d

2

2 2

S S
 σ

 
(17.45)

We recall from the commutation relations for angular momentum operators that S S×  is not 
zero; in fact,

 S S S S iSx y y x z− =  

Thus, choosing a local coordinate system so that the magnetic field is oriented along the local 
z-axis at each point in space, which is also normal to dσ, and noting that S m m mz = , we see 
that (17.45) yields

 γ σ
= − = −∫m

d
B

mz

2
Ω  (17.46)

Equations (17.44) and (17.46) are the main results of interest. Referring to (17.46), let the mag-
netic field remain constant in magnitude, but let it describe a cone with opening half-angle θ .  
Then the solid angle subtended after one cycle is Ω = −2 1π θ( cos ), and the corresponding 
increment in geometric phase is

 ∆γ π θ= − −( )2 1m cos  (17.47)

17.3 Sudden approximation

In the preceding section we considered Hamiltonians that depend on external parameters that 
vary very slowly. By this we mean that if  the time dependence of the Hamiltonian is Fourier 
analyzed, the component frequencies are all much smaller than the frequencies corresponding 
to energy differences between eigenstates of the Hamiltonian. In this adiabatic limit, no transi-
tions occur between the various eigenstates.

Now we consider the opposite extreme, where the Hamiltonian H changes rapidly over a 
very short period of time. During this small time interval, the wave function ψ  cannot change 
very much, for otherwise its time derivative would be enormous in magnitude; hence, from the 
time-dependent Schroedinger equation, the same would be true of Hψ . In fact, in the limit of 
a discontinuous change in H at time t = 0, the wave function immediately before t = 0 must be 
equal to the wave function immediately after t = 0: ψ ψ( ) ( )0 0− = + .

Suppose that the initial Hamiltonian is H with eigenstates un  and corresponding energies En, 
and let us assume that prior to t = 0, the system of interest is in one such state un . After t = 0,  
let the Hamiltonian be H′, with eigenstates wn  and corresponding eigenvalues Fn. Then, 
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 immediately after t = 0, the wave function is still un , but this is not an eigenstate of H′. 
Instead, it is a superposition of the eigenstates of H′; that is,

 ψ 0 +( ) = = ∑u w w un m
m

m n  (17.48)

Thus the probability pm of  finding the system in the state wm  at time t = 0+ is

 p w um m n=
2

 (17.49)

For example, consider an atom with a beta-radioactive nucleus of atomic number Z. Suppose 
that beta decay occurs at t = 0. The beta ray (electron) and antineutrino depart rapidly from 
the atom in a time that is very short compared with the periods of atomic electron motion. 
Thus, from the point of view of an atomic electron, all that happens is a sudden change of 
the nuclear charge from Ze Z e to ( )+1 . In the new nuclear Coulomb field, the atomic electron 
wave function is the same immediately after the decay as it was before, but, of course, the new 
Hamiltonian is different.

17.4 Time-dependent perturbation theory and elementary  
theory of beta decay

Nuclear beta decay was the first observed example of a weak interaction, and it has a long and 
interesting history. The first serious and successful attempt to describe beta decay theoretically 
was made by E. Fermi in 1934, and his work is the basis of all further theoretical developments 
in the study of weak interactions. For the moment, we consider beta decay as an elementary 
application of the golden rule of time-dependent perturbation theory.

The simplest beta decay is that of the free neutron

 n pe e→ −ν  

Here a neutron at rest decays to a proton, an electron, and an antineutrino. The final state 
consists of three particles, but because the proton is very massive compared with the electron 
and antineutrino, the latter two particles carry off  essentially all the released energy. This can 
be seen as follows: by conservation of linear momentum,

 p p pp e+ + =ν 0  

in the neutron rest frame. Hence the proton linear momentum must be comparable with that of 
the electron. Thus the proton kinetic energy is approximately

 KE p
e

p

p
m

≈
2

2
 (17.50)
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However, in neutron decay, as in most other beta decays, the electron kinetic energy is of order 
1 MeV, comparable in order of magnitude with the electron rest energy m ce

2 . Thus p m ce e≈ , 
and (17.50) becomes

 KE p
e

p

e

p
e

m c

m
m
m

m c≈
( )

≈
2

2

2
 (17.51)

This shows that the proton kinetic energy is of order m me p/ ≈ −10 3 compared with the electron 
(or antineutrino) kinetic energy, which are themselves roughly comparable. Therefore, it is a 
good approximation to ignore the proton kinetic energy entirely, in which case we need only 
consider the electron and neutrino motions in the final state. From the golden rule, the differ-
ential transition probability per unit time is

 dW H
d d

E Efi
e

e= ′
( ) ( )

− −( )












2

2 2

2 3

3

3

3

π
π π

δν
ν



 

p p
∆  (17.52)

Here the first two factors in the square brackets refer to the electron and antineutrino densities 
of states, whereas the delta function accounts for conservation of energy. Also, ∆ = 1 3.  MeV is 
the difference in rest energy between neutron and proton. To a good approximation, the matrix 
element is just a constant. Hence, apart from constant factors,

 dW p dp p dp E Ee e e= − −( )2 2
ν ν νδ ∆  (17.53)

Furthermore, because in units where c = 1,

 p dp E m E dEe e e e e e
2 2 2= −  

 p dp E dEν ν ν ν
2 2=  

where in the last expression we ignore a very minute neutrino mass, we have

 dW E m E dE E dE E Ee e e e e= − − −( )2 2 2
ν ν νδ ∆  (17.54)

In almost all beta decay experiments, one does not observe the outgoing neutrino. Thus, to 
obtain an expression that can be compared with experiment, we integrate (17.54) over neutrino 
energies, thereby eliminating the delta function to obtain

 dW E m E E dEe e e e e= − −( )





2 2 2∆  (17.55)

The factor in square brackets in (17.55) is the electron energy spectrum function (apart from a 
constant factor and uncorrected for “final state” Coulomb interaction with the proton).
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Problems for Chapter 17

17.1. In this problem we calculate the geometric phase γ for a simple harmonic oscillator with 
the Hamiltonian

 H P x Q x= −( ) + −( )





ω
2

2 22

2

1

2
 (1)

where Q and P are the operators for position and momentum satisfying Q P i,[ ] = , and x1 and 
x2 are slowly varying real parameters that, over the course of a cycle, specify a closed curve in 
the x x1 2 plane.
(a) Making use of the identity

 e Be B A B A A BA A− = + [ ]+ [ ]  +,
!

, ,
1
2

  

show that

 H D H D a a= ( ) ( ) = −( ) −( ) +





α α ω α α0
1
2

† † *  (2)

where

 D a aα α α( ) = −[ ]exp † *  (3)

 
a Q iP a Q iP x ix

H a a

= +( ) = −( ) = +( )

= +





1

2

1

2
1
2

1 2

0

†

†

α

ω
 (4)

The eigenvalues and eigenstates of H0 are, of course, ω n +( )1
2  and n , respectively. The cor-

responding eigenstates of H are the coherent states n D n, ( ) .α α=
(b) According to (17.37), the geometric phase for coherent state n,α  is given by the 
formula

 
γ α α

α α
n n n d

n D D n d

= − ∇

= − ( )∇ ( )
∫
∫

Im , ,

Im
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R   †
 (5)

Show that
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∂
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Thus show that for any n, (5) yields

 γ = −( )∫ x dx x dx2 1 1 2


 (7)

What is the geometric interpretation of the integral on the right-hand side of (7)?

17.2. Figure 17.2 is a schematic diagram (not to scale) of an experimental setup. A well-
 collimated atomic beam is directed along the y-axis from point P to point Q. Each atom has 
total angular momentum J = ½, and the atomic magnetic moment in the J mJ= =1

2
1

2,  state 
is −µB . The beam velocity is v = 104 cm/s. Along the entire beam length there is a homogeneous 
magnetic field in the z-direction Bz = 0.2 G. Two single-turn circular coils, each of radius a = 
10 cm, generate a magnetic field along the y-axis. The currents in the two coils are opposed, 
and the magnitude of each current is I = 0.016 A. Two parallel conducting plates, separated by 
distance d = 0.2 cm, are charged to potentials ±V, where V = 10,000 V. The length of the plates 
is L = 100 cm. Distance Y is much larger than a, so the magnetic fields due to the circular coils 
at P and Q are negligible.

At point P, each atom is in the following state in its own rest frame:

 ψ P JJ m= = = + −( )1

2
1/2 1/2 1/2 1/2, ,  

At point Q, the rest frame state is

 ψ φ φ
Q

i ie e= + −( )−1

2
1/2 1/2 1/2 1/2, ,  

Estimate the value of that part of the phase φ that reverses with the electric field between the 
plates. If  you use the adiabatic approximation, justify it.

17.3. In this problem we consider a physical example that can be solved analytically and that 
illustrates the adiabatic limit, the sudden approximation limit, and the entire range between. A 
beam of neutral atoms with J = ½ moves along the positive z-axis with velocity v, and for all 

Y L Y

x y

z

I

I

a

P Q

d

+V

–V

 Figure 17.2 Schematic diagram of experimental setup described in Problem 17.2
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z < 0, each atom is in the state mJ = + 1
2 . A magnetic field B is applied, which takes the follow-

ing values along the z-axis:

 

z B z

z L B z
z

L
x

z
L

z L

< =

≤ ≤ = +





>

0:     

:

:    

B

B

0

00

ˆ,

ˆ cos ˆ sin ,
π π

 B = −B z0 ˆ.

 

Each atom possesses a magnetic moment; hence the Hamiltonian of interaction with the mag-

netic field is H = − = −µ σ B Bµ . Let ω π ω µ= =v/  /L B, ,0 0   and Ω = + ( )ω ω0
2 2 4 . Also, let 

the spin wave function be

 ψ =
( )
( )











+

−

a z

a z
 

Assume that at z = 0, a a+ −= =1 0,  and . Show that

 a z L
L

v+ =( ) = ω
2Ω

Ω
sin  (1)

 a z L
L

v
i

L
v− =( ) = +cos sin

Ω
Ω

Ωω0  (2)

Discuss the behavior of the solutions (1) and (2) in the adiabatic limit and in the sudden-
approximation limit. Also, plot a z L+ =( ) 2

 for the range

 0 1 10
0

. ≤ ≤
ω
ω

 

17.4. The tritium nucleus undergoes beta decay

 3 3H He→ + +−e eν  

The maximum electron kinetic energy in this allowed beta decay is 18.6 keV.
(a) Calculate the probability that the resulting 3He+ ion is in each of the 1s, 2s, 2p states. Use 
the sudden approximation, and justify it.
(b) What modification in the shape of  the beta decay spectrum occurs near the end point 
(place of  maximum electron kinetic energy) if  the antineutrino is assumed to have a mass of 
2 eV/c2?
(c) To see how difficult it would be to observe such a mass from an experiment using tritium 
decay, calculate the fraction of decays that would occur for which the electron kinetic energy 
is within 5 eV of the end point, assuming that the neutrino rest mass is actually zero. (In this 
problem, use the analysis of the beta decay spectrum discussed in Section17.4, which ignores 
the Coulomb interaction of the outgoing beta particle with the final nucleus. In tritium beta 
decay, this Coulomb effect actually distorts the beta spectrum considerably.)
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18.1 Typical scattering experiment

Scattering experiments and the information gained from them are of  very great importance 
in many areas of  physics, especially elementary particle and nuclear physics. The literature 
devoted to the theoretical and experimental aspects of  scattering is enormous, and there are 
a number of  monographs that give a very detailed account of  scattering theory [see, e.g., 
Goldberger and Watson (1964) and Newton (1982)]. Our intention in this chapter is to sum-
marize some of  the most important topics in scattering theory as simply as possible. Only very 
few scattering problems permit exact quantum-mechanical analysis; therefore, approximation 
methods are necessary. The most important of  these for both nonrelativistic and relativistic 
collisions is the Born approximation, which receives considerable attention in this and later 
chapters.

Scattering experiments can be done with colliding beams of particles or with a beam of 
projectiles incident on a fixed target. The main features of a typical fixed-target experiment are 
shown schematically in Figure 18.1. The projectile beam is usually well collimated, and the pro-
jectiles are usually prepared with reasonably well-defined momentum Pz along the beam axis 

(z) so that ∆P P P Pz z x y z  and , . Interaction between the projectile and target wave packets 

generates an outgoing scattered wave, which is observed with a detector that subtends a small 
solid angle dΩ at the target, is oriented at angles θ φ and  with respect to the z-axis, and is at 
a macroscopic distance r from the target. The distance r is many orders of magnitude greater 
than the range of the projectile-target interaction, and r is usually at least several orders of 
magnitude greater than the collimated transverse width of the projectile beam.

The experimenter measures the number of particles dND scattered into the detector per unit 
time. This quantity can be expressed in terms of the flux F0  of  projectiles, the number density 
n0 of  target particles, the effective volume VT  of  the target, the detection efficiency εD , the solid 
angle dΩ subtended by the detector at the target, and the differential scattering cross section 
σ θ φ( , ); that is,

 dN F n V dD T D= ⋅ ⋅ ⋅ ⋅ ( )0 0 ε σ θ φΩ ,  (18.1)

It is clear from (18.1) that σ θ φ( , ), which has dimension (length squared), is the radial prob-
ability current of scattered particle per unit solid angle and per target particle divided by the 
probability current of the incident particle. The total cross section is

 σ σ θ φT d= ( )∫ , Ω  

Scattering18 
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The differential and total cross sections are the fundamental quantities that characterize the 
interaction between projectile and target, and it is the job of scattering theory to calculate 
σ θ φ( , ) and σT  from assumptions about this interaction.

There are two distinct approaches to analysis of  a scattering event: time dependent and 
time independent. In the former, each projectile is treated as a localized wave packet, the time 
evolution of  which is calculated with the time-dependent Schroedinger equation and, in par-
ticular, with the aid of  a time-dependent Green function. In Section 6.1 we constructed the 
free-particle Green function, and in Section 6.14 we saw that a more general time-dependent 
Green function, which includes the effect of  a potential, can be constructed with the path 
integral method. The latter is developed further for analysis of  scattering in Section 18.6.

The time-independent approach is simpler and easier to employ, is adequate for most appli-
cations, and for the most part is the method we use in this chapter. It is based on the fact, 
already mentioned, that the incoming projectiles are prepared in a well-collimated beam with 

reasonably well-defined momentum Pz along the beam axis so that ∆P P P Pz z x y z  and , . 

Hence the spatial wave function of the incident projectile can be approximated as a plane 
wave. The effects of scattering on this plane wave are calculated with the time-independent 
Schroedinger equation.

Scattering can be elastic or inelastic. In elastic scattering, the target and projectile have no 
internal degrees of freedom, or if  they do, these degrees of freedom are not excited by the col-
lision. Thus, in elastic scattering, there is no loss or gain of kinetic energy E. Inelastic scatter-
ing does involve excitation of internal degrees of freedom of the target and/or projectile, and 
thus the kinetic energy of relative motion is generally altered. Inelastic scattering includes the 
possibility (sometimes called reaction scattering) that the very identity of the reactants is trans-
formed by the collision; for example,

 π π0 + → + +p n  

Collimator

Incident
wave r

Scattered wave

Detector

Target

z

 Figure 18.1 Schematic diagram of a typical scattering experiment.
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 e e+ − + −+ → +µ µ  

 d n+ → +3H He4  

We show later that whereas a collision can be purely elastic, it cannot be purely inelastic. In 
other words, if  the cross section for an inelastic scattering channel is nonzero, the cross section 
for elastic scattering also must be nonzero.

18.2 Amplitude for elastic potential scattering

We start with elastic potential scattering of spinless particles, which is the simplest case, and 
we use the time-independent method. Here we assume that the interaction between a pro-
jectile of mass m1 and a target particle of mass m2 is described by a potential V ( )r  that falls 
off  sufficiently rapidly as r increases. It is convenient to work in the center-of-mass frame, 
where we consider the scattering of a particle with reduced mass μ by a fixed-force center. 
Because the relative momentum is p k=   and the energy of relative motion is E k= 2 2 2/( )µ , 
the Schroedinger equation is

 ∇ +( ) ( ) = ( ) = ( )2 2
2

2
k V Uψ µ ψ ψr r r



 (18.2)

We are interested in the asymptotic solution to this equation at a distance from the origin so 
large that U ( )r  is negligible. This solution can be expressed as

 ψ θ φ= + ( )e f
e
r

ikz
ikr

,  (18.3)

where the first term on the right-hand side represents the incident wave, whereas the second 
term describes the outgoing scattered wave. It is easy to see that (18.3) is in fact a solution to 
(18.2) for U = 0 in the limit of large r:

 ∇ ( )




= − + × ( )2 2

3

1
f

e
r

k f
e
r r

e
ikr ikr

ikrθ φ, angular factors  

Note before we go further that the extension of the incoming “plane wave” eikz in the trans-
verse (x,y)-directions is assumed to be large compared with the range of the potential but small 
compared with θminr, where θmin is the smallest polar angle that can be measured in a practical 
apparatus. This requirement is always easily achieved in real experiments.

All interesting information concerning the scattering is contained in the scattering ampli-
tude f ( , )θ φ . Let us calculate the outgoing radial probability current density jr at the detector 
and compare it with the incident probability current density jinc. Ignoring interference terms 
between the incident and scattered wave, which is legitimate if  we choose rθ δ , where δ  is the 
collimated radius of the incident beam, we have
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where v k=  / .µ  Meanwhile,
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i

e
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e e
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e vikz ikz ikz ikz
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∂
∂
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∂

( )




=− −
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Thus

 
j

j

f

r
r

inc

=
( )θ φ, 2

2
 

The total probability current radiated into solid angle dΩ per unit incident current and for an 
individual scattering center is thus

 
f

r
r d f d

2

2
2 2Ω Ω=  

Therefore,

 σ θ φ θ φ, ,( ) = ( )f
2

 (18.4)

Hence the cross section is completely determined from the scattering amplitude.

18.3 Partial wave expansion of the scattering amplitude for  
a central potential

If  V V r= ( ) is a central potential, we have axial symmetry about z, and thus ψ  can be expressed 
as a sum of products of radial functions and Legendre polynomials; that is,
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 (18.5)

where

 χ χ
 

 

" + − ( ) − +( )







 =k U r

r
2

2

1
0  (18.6)

Because U r r( ) and −2 approach zero as r →∞ , we try a solution to (18.6) of the form
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 χ α


= ( )












± ∫e g r drikr

r

r

exp
0

 (18.7)

where α is a constant. Substitution of (18.7) into (18.6) results in the equation

 g ikg g U r
r

2
2

2
1

0± + ′ − ( ) − +( )
=

 

 (18.8)

It is useful to distinguish between the Coulomb potential U r c r( ) = / , where c is a constant, and 
all other potentials of physical interest, which approach zero more rapidly than 1/r as r →∞. 
For the Coulomb potential, (18.8) yields

 g
c
ikr

O r→ + ( )−

2
2  

Hence

 χ α


= 





±e
ic
k

rikr exp ln
2

 

Thus, for Coulomb scattering, to be discussed in detail in Section 18.5, the phase of χ


 varies 
logarithmically with r at large distances. For potentials that approach zero more rapidly than 

1/r as r →∞, g r dr
r

r
( )

0
∫  converges and χ



→ ±( )const exp ikr  for large r. Considering only the 

latter potentials for the moment, we see that the asymptotic form of χ


 can be written quite 
generally as

 χ δ π








→ + −





A
k

krsin
2

 (18.9)

where A
 

 and δ  are constants, and δ


 is real. Thus, from (18.5), we have
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 (18.10)

Our next step is to expand the free-particle wave function exp( )ikz  in a sum of products of 
radial functions and Legendre polynomials. With the substitutions k E2 2 22= µ /  and ρ = kr, 
the radial Schroedinger equation for a free particle is
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 (18.11)

This second-order differential equation has two linearly independent solutions: the spherical 
Bessel functions j n

 

( ) ( ).ρ ρ and  The first few of these functions are
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 (18.12)

and
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 (18.13)

These functions take the following limiting forms:

 lim
( )!!
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( )!!

ρ ρ
ρ ρ ρ

ρ→ → +( )→
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 (18.14)
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j n
 

 

2 2
 (18.15)

Note that while each j


 is regular at the origin, each n


 diverges there. Because the wave function 
of a free particle with definite energy and orbital angular momentum is regular at the origin, 
it must take the form

 ψ θ φ θ φfree constr j kr Y m, , ,( ) = ( ) ( )
 

 (18.16)

For fixed k, these functions form a complete set, and therefore, it is possible to express a free-
particle plane wave exp ( )ik r  as a linear combination of spherical waves (18.16). To find the 
coefficients in this linear combination, we first choose a coordinate system where k is parallel 
to the z-axis. Then exp ( )ik r  becomes exp(ikz), which is independent of φ and therefore may 
be expressed as

 e e i B j Pikz i= = +( ) ( ) ( )
=

∞

∑ρ θ ρ θcos cos2 1
0







  

 (18.17)

To determine the B


, we expand both sides of (18.17) in powers of ρ θcos ; that is,
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and
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(18.19)

For given  < n, the highest power of cosθ  in (18.19) is  < n. For given  > n, the lowest power of 
ρ  in (18.19) is  > n. Therefore, in (18.19), only  = n contributes to ( cos )ρ θ n  in (18.18). Hence
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and thus
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 (18.20)

Note that it is sometimes convenient to use the spherical harmonic addition theorem
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where θ  is the angle between k and r, to rewrite (18.20) as

 e i j kr Y Yi m

m

mk r 



 









= ( ) ( ) ( )
=

∞

=−
∑ ∑4

0

π * k r  

Now employing

 lim
sin

ρ
ρ

ρ π

ρ→∞
( )→

−





j




2
 

in (18.20) evaluated at large r, inserting the latter in (18.10), and transposing, we obtain
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P cosθ  (18.21)

The left-hand side of (18.21) contains only an outgoing wave (proportional to eikr); hence the 
coefficient of e ikr−  must vanish for each  on the right-hand side. This implies that A ei



= δ  and 
therefore that

 f
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e Piθ θδ( ) = +( ) −( ) ( )
=

∞

∑1
2

2 1 1
0

2






 cos  (18.22a)
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or, alternatively,

 f
k

e Piθ δ θδ( ) = +( ) ( )
=

∞

∑1
2 1

0





 

 sin cos  (18.22b)

In this important result, called the partial wave expansion of the scattering amplitude, the latter 
is completely characterized by the real phase shifts δ



. A number of significant consequences 
follow immediately from (18.22a) or (18.22b); namely,

1. The asymptotic wave function is

 ψ θ δ= + ( ) = − −( )



 +( )−∑e f

e
r ikr

e e e Pikz
ikr

i ikr ikr1
2

1 2 12








 cosθ( )  (18.23)

This formula reveals that in elastic scattering, the presence of the potential U has no effect 
on the incoming partial waves and only causes a phase shift but no change in the magnitude 
of each outgoing partial wave. Therefore, for each , the incoming radial probability current 
density is just balanced by the outgoing radial probability current density: the net radial 
probability current density is zero.

2. The differential cross section is
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The total cross section is obtained by integrating over the entire solid angle; that is,
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In this integration,
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sin  (18.24)

Comparison of (18.24) with (18.22) for θ = 0 yields the optical theorem

 σ π
T k

f= ( )4
0Im  

3. In (18.24), we may think of each partial wave  as contributing its own partial cross section; 
that is,
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 σ σT =
=
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where
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Obviously,
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≤ +( )4
2 1

2k
 (18.26)

no matter how strong the potential is.
4. Recalling the radial equation
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where s


 is the function to which χ


 reduces when there is no scattering (when U = 0). For 
given  and sufficiently large r, the inequalities

 k
r

U2
2

1
>

+( )
+

 

 

and

 k
r

2
2

1
>

+( ) 

 

are always satisfied. Thus for sufficiently large r, ′′ < ′′ <χ χ
   

0 0 and s s , and from (18.27), 
if  U < 0, ′′ < ′′ <χ χ

   

s s 0. Thus, in the case of an attractive potential, χ


 is “pulled in” 
toward the origin relative to s



; in other words, δ


 is positive. Conversely, if  the potential is 
repulsive, the phase shifts are negative.

We now generalize this formalism to include the possibility of inelastic scattering. First, we 
note that the coefficients of the outgoing waves in (18.23) must be reduced in magnitude to 
account for diversion of scattered probability current from the elastic channel to one or more 
inelastic channels. Thus

 lim cos
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i ikr ikr

ikr
e e e P
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must be replaced by
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 lim cos
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ikr ikr

ikr
e e P

→∞
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=

∞
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 (18.28)

where η


< 1 in the presence of inelastic scattering. To obtain the scattered wave, we subtract 
the incoming wave

 lim cos
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ikz
ikr ikr

e
e e

ikr
P

→∞ =

∞ −
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( )∑ 2 1
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θ  

from (18.28), which yields

 f
ik

Pel θ η θ( ) = +( ) −( ) ( )
=

∞

∑1
2

2 1 1
0



 



cos  (18.29)

Now, forming fel θ( ) 2
, integrating over the solid angle, and making use of the orthogonality of 

Legendre polynomials, we arrive at the revised elastic scattering cross section

 σ π ηel = +( ) −
=

∞

∑k2

2

0

2 1 1





 (18.30)

The reaction cross section (i.e., the inelastic cross section for a particular channel) is deter-
mined by the number of particles removed from the incoming beam per second; in other words, 
it is obtained from the net inward probability current density through a sphere of radius r cen-
tered on the target calculated from (18.23). We thus obtain

 σ π ηinel, 

= +( ) −( )k2

2
2 1 1  (18.31)

From (18.30) and (18.31), we see that if  σ el, = 0, we must have η


= 1, which implies σ inel, = 0  
as well. However, if  η



= −1, σ inel , = 0, but σ πel, .


= ( ) +( ) ≠4 2 1 02k  When η


= 0, σ inel, reaches 
its maximum for given k, and σ σ πel inel, , .

 

= = ( ) +( )k2 2 1

18.4 s-Wave scattering at very low energies: Resonance scattering

The partial wave expansion is especially useful in cases where only a few  values contribute. In 
particular, if  V r( ) has very short range, only the  = 0 partial wave is significant (s-wave scatter-
ing). This is so because only j kr0 ( ), among all the j



, is nonzero at the origin

 lim
!!r

j kr
kr

→
( )→ ( )

+( )0 2 1





 (18.32)

It is easy to see from (18.32) that for fixed k and a potential of finite range b, the contribution 
of partial waves with  > 0  must be negligible if  kb1.
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For s-wave scattering, the total cross section is

 σ π δ=
4

2
2

0k
sin  (18.33)

Because σ remains finite when k → 0, we have

 
sin2

0

2

0
2

2

2δ δ
k k

a k→ = ( )   

The quantity a k k( ) = −δ0 /  obviously has the dimension of length and is called the scattering 
length. At very small k, the radial wave function χ = rR immediately outside the range of force 
is proportional to sin( )kr kr+ +δ δ0 0 . If  the force is repulsive, the phase shift is negative; 
hence a k( ) > 0. This is illustrated in Figure 18.2a. If  the potential is attractive, the scatter-
ing length can be either negative or positive. These possibilities are illustrated in Figure 18.2b 
and c.

Although we have defined a k k( ) = −δ0  for very small k, it is convenient to define the scat-
tering length for arbitrary k as

 a k
k

( ) = −
1

0tanδ  (18.34)
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 Figure 18.2 (a) Repulsive potential V: a(k) > 0. (b) Attractive potential V: a(k) < 0: unbound state. (c) Attractive potential V: a(k) > 0: bound state.
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The total cross section is expressed in terms of a(k) as

 σ π δ π
δ

π
= =

+





=

+ ( )

4 4 1
1

4
1

2
0

2 2 2
0 2

2

sin
cotk k k

a k

 (18.35)

Thus the total cross section as a function of k2 is completely determined if  we know a(k) as a 
function of k. Before proceeding with this general discussion of s-wave scattering, we illustrate 
the points just made with two elementary examples.

First, consider a particle of energy E k m= 2 2 2  incident on an attractive square-well poten-
tial, where V V r b= − <0  when  and V = 0 for r b> . We assume that the de Broglie wavelength of 
the projectile is much larger than the range of the potential b. Hence kb1, so we can confine 
ourselves to s-wave scattering. Then the one-dimensional radial Schroedinger equation is

 
′′ + +( ) = <

′′ + = >

χ χ

χ χ

2
0

2
0

2 0

2

m
E V r b

m
E r





       

                 b
 

Making the substitutions k mE U mV k U2 2
0 0

2 2
02 2= = = + , , ,  and 2κ  we have

 ′′ + = <χ κ χ2 0 r b  (18.36)

 ′′ + = >χ χk r b2 0       (18.37)

Because χ( )0 0= , the solution to (18.36) is χ κi A r= sin , where A is a constant and subscript i 
means “interior.” The solution to (18.37) is χ δe B kr= +sin( )0 , where B is a constant, δ0 is the 
s-wave phase shift, and subscript e means “exterior.” Because the radial-wave function χ and 
its derivative must be continuous at r = b, we have

 A b B kbsin sinκ δ= +( )0  (18.38)

and

 κ κ δA b kB kbcos cos= +( )0  (18.39)

Division of (18.38) by (18.39) yields

 tan tankb
k

b+( ) =δ
κ

κ0  

We solve for tanδ0 to obtain

 tan
tan tan

tan tan
δ κ κ

κ κ0 =
−

+
kb b b kb

b kb b kb
 (18.40)

Because kb1,

 tan
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tan
δ

κ κ
κ κ
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−( )
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kb b b

b kb b
 (18.41)
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If  κ πb 2, we can use the approximation tan .κ κ κa b b≈ + ( )3 3  Then, neglecting the second 
term in the denominator on the right-hand side of (18.41), we have

tan sinδ δ0
2

03≈ ( ) ≈kb kb

in which case the total cross section for s-wave scattering is

 
σ π δ

π κ

=

≈ ( )

4

4
9

2
2

0

2
4

k
b

b

sin

   
 

If  κ πb /2 but U k0
2

 , then κ 2
0≈U , in which case

 σ π
= ( )4

9

2

0
2 2b

U b  

Hence, in this regime, the cross section is proportional to U0
2. If  κ π π πb ≈ 2 3 2 5, , ,2, and so on  

the first term in the numerator and the second term in the denominator of the right-hand side 
of (18.40) become dominant. In this case,

 tanδ0
1

1≈
kb
  

so

 sin2
0 1δ ≈  

and

 σ π
≈

4
2k

 

These maxima (resonances) in σ  for U b0
2 2 24 9 4≈ π π, , correspond to the appearance of 

successive  = 0 bound states.
Equation (18.41) reveals that σ → 0 when tanκ κb b≈ . This explains the Ramsauer-

Townsend effect in low-energy-electron rare gas atom scattering. We summarize this example 
by plotting the variation of  σ  versus κb  over a large range in Figure 18.3. Here, in order to 
visualize various features clearly, we have chosen kb = 0.2 and calculated σ π δ= ( )4 2 2

0k sin  
from (18.40).

Second, consider scattering by a hard sphere. Let V = ∞ for r b V r b≤ = > and  for 0 . Then 
χ


= ≤0 for r b, and χ


/r  is a linear combination of j kr n kr
 

( ) ( ) and  for r > b. Because χ


 
must be continuous at r b= , we have

 χ
     

r C r n kb j kr j kb n kr r b( ) = ( ) ( ) − ( )  ≥( )  (18.42)

where C


 is a constant. Using (18.15), we write the asymptotic form of (18.42), namely,
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 χ π π




 

 

→ ( ) −




+ ( ) −
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n kb kr j kb krsin cos
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 (18.43)

and we compare this with the general asymptotic form

 χ δ πδ

 





→ + −





e
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to obtain
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Thus the total scattering cross section is
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2 1

2
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2
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 (18.44)

If  kb1, the wavelength λ π= 2 k  of  the incident and scattered waves is much larger than b, 
and then only the first few terms of the sum in (18.44) are significant. Using (18.14), it is easy 
to evaluate the factors in square brackets in (18.44) and thus to show that when kb1,
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b/

 Figure 18.3 σ / 2b  versus κ πb /  for s-wave scattering from an attractive square well potential with kb = 0.2 . Note the resonances at 
κ π πb = / 2,3 / 2, ... , which correspond to the appearance of successive s-wave bound states. Also note that the cross section 
vanishes at κ πb ≈ 1.45 ,… (the Ramsauer-Townsend effect).
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 (18.45)

For comparison, the cross section for scattering of a classical pointlike projectile by a hard 
sphere of radius b is σ πclassical = b2 . The extra factor of approximately 4 in σ σ σT = +0 1 revealed 
by (18.45) occurs because of the wave nature of quantum-mechanical scattering, in which there 
are diffraction effects.

We now continue with our general discussion of s-wave scattering. If  inelastic as well as elas-
tic scattering occurs, we must employ the parameter η δ

0
2 0= e i . This can be written as

 η δ
0

2 0

1

1
= =

( ) −

( ) +
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Thus the cross section for elastic scattering is
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whereas the inelastic cross section is

 σ π η π
inel = −( ) = −

( ) −

( ) +
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1 1
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 (18.47)

If  a(k) is real, we have only elastic scattering. Then it is obvious from (18.46) that σ el  reaches a 
maximum when 1/a(k) goes to zero. Suppose that the energy at which this happens is E0. Then 
we can write the Taylor expansion
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where Γ s is defined by

 
2 1

0

k d
dE as E EΓ
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=

 (18.48)

Note that because the right-hand side of (18.48) is a constant, Γ s is proportional to k. If  
( )E E− 0  is sufficiently small, we may neglect higher-order terms in the Taylor expansion, in 
which case (18.46) becomes
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Suppose instead that a k( ) is complex. We write 1 a k i( ) = +α β , where α β and  are both real. 
Then (18.47) becomes

 σ π
inel =

( )
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1
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 (18.50)

In addition, now let the energy E0 have a small imaginary part; that is,

 E i r
0 0 2
= −ε Γ

 

where ε0  and Γr  are both real. (This would happen if  spontaneous decay could occur from 
the level with energy E0 to some lower state.) In this case, the first-order Taylor expansion 
becomes
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In (18.51), we must take into account the fact that

 
d

dE a
k

ik
E s

1 2

0







= +
Γ

α  (18.52)

is also complex (here Γ s  and α  are both real). From (18.51) and (18.52), we have
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and
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Thus the inelastic cross section becomes
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ε α α
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In many applications it turns out that α is a very small quantity. Then we may ignore the term 
α ε( )E − 0  in (18.54) in the neighborhood of resonance, in which case (18.55) simplifies to
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−( ) +
+( )k

E E

r s
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4

Γ Γ
Γ Γ

 (18.56)

where Er r s= + ( )ε α0 4Γ Γ  is the shifted resonance energy. Also, the elastic scattering cross 
section becomes

 σ π
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2
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4

Γ
Γ Γ

 (18.57)

Equations (18.56) and (18.57) are very useful in a wide variety of situations. They are usually 
called the Breit-Wigner resonance relations.

18.5 Coulomb scattering

We now consider scattering by the potential V r Z Z e r( ) ,= ( )1 2
2 4π  where Z e Z e1 2 and  are the 

electric charges of the projectile and target, respectively. This problem is most conveniently 
analyzed in parabolic coordinates (recall Section 8.6) where, as usual, the z-axis is the direction 
of the incoming projectile. Schroedinger’s equation is
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 n
Z Z e

k
Z Z e

v
= =1 2
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4 4
µ

π π 

 (18.59)

If  the potential were absent, the solution to (18.58) would be exp(ikz). With the potential 
present, we try to construct a solution that differs from exp(ikz) by an outgoing wave. Thus 
we write

 ψ η= ( )e fikz  (18.60)

Substitution of (18.60) into (18.58) reveals that f  indeed depends only on η and satisfies the 
ordinary differential equation

 η η′′ + −( ) ′ − =f ik f nkf1 0  (18.61)

This second-order equation has two linearly independent solutions. We choose the solution 
that is regular at η = 0; that is,

 f cF in ik= −( ), ,1 η  (18.62)

where c is a constant, and F is the confluent hypergeometric function. For large x, the asymp-
totic form of F a b x( , , ) is

 

lim , , ln( )

x

a xF a b x
b

b a
e

a a b

x

b

→∞
− −( ) = ( )

−( ) +
+ −( )

+










+
( )

Γ
Γ

Γ

1
1



Γ a
e

a b a

x
x a b x

( ) +
−( ) −( )

+








+ −( ) ln( ) 1

1


 

Thus the asymptotic form of (18.60), normalized to unit incident flux, is
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Here
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ni i iC θ θ

θ η π( ) = 
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2
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2
0

sin
exp ln sin  (18.64)

is the scattering amplitude, and

 η0 1= +( )Arg inΓ  (18.65)

We now consider the most important features of (18.63).
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1. In order that the leading terms of both square brackets dominate, we require that

 
n

k r z

2

1
−( )   

This, in turn, requires that kr and k(r – z) be large (i.e., θ  must not be too small). In any 
real experiment, this restriction is not of practical significance because θ  is in any case large 
enough that the detector is not sensitive to the incoming beam.

2. The differential scattering cross section is
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 (18.66)

This is the famous Rutherford formula, originally derived from classical mechanics. One 
can also calculate σ θC ( ) and obtain result (18.66) by means of the Born approximation, to 
be discussed later.

3. Next, we examine the behavior of ψ at the origin. For any r, we have

 ψ θπ θ= +( ) −
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Because F in( , , )− =1 0 1 and Γ Γ*( ) ( )1 1+ = −in in , this yields
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There are several limiting cases of interest for this important formula:
a. Z Z1 2 0>  (repulsive force), and n  1 (low velocity). Here,

 ψ π π0
22 2( ) ≈ −n

v
e n  (18.68)

This case is of particular interest for nuclear reactions between one nuclide (Z1) and another 
(Z2) at low relative kinetic energy and where the reaction can only occur by the  short-range 
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weak or strong interaction when the nuclei come in contact with one another. Here the 
reaction cross section is proportional to ψ ( )0

2
 as given by (18.68), and it is therefore inhib-

ited by the Coulomb barrier, expressed by the factor exp( )−2πn . This situation occurs in 
stellar interiors, where the kinetic energies of relative motion of nuclides engaged in ther-
monuclear reactions are frequently in the range 1–10 keV.
b. Z Z1 2 0>  (repulsive force), and n  1 (high velocity)

 ψ 0
12( ) ≈
v

 

c. Z Z1 2 0<  (attractive force), and n 1 (low velocity)

 ψ
π

0
22( ) ≈

n

v
 

d. Z Z1 2 0<  (attractive force), and n 1 (high velocity)

 ψ 0
12( ) ≈
v

 

4. The Coulomb scattering wave function can be expressed as a sum of spherical partial waves; 
that is,
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One can also write the scattering amplitude AC ( )θ  as a sum over  values; that is,
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cos  (18.69)

where η


= + +arg ( )Γ 1 in .
5. Ordinarily we think of k as a real quantity, but for some purposes it is interesting to con-

sider it as a complex variable. In particular, let k iZ N= / , where N is a positive integer; 
choose Z Z Z1 21= − =,  ; and employ atomic units with µ = 1. In this case, n Z k iN= − =/ , 
and E Z N= − 2 22 , which is just the Balmer formula once again, where N denotes the prin-
cipal quantum number. In (18.69), we have

 e
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N
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1

1
η






=
+ −( )
+ +( )

Γ
Γ

 (18.70)

Because Γ( )z  is an analytic function of z with poles at z = − − −0 1 2 3, , , ,..., we see that AC  has 
poles at  = −0 1 1, ,...,N , which correspond to the possible bound states with given N.
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18.6 Green functions:  The path integral method and  
Lippmann-Schwinger equation

We noted in Chapter 6 that because the time-dependent Schroedinger equation is first order in 
t, it is possible to obtain a wave function ψ r,t( ) at a given r and time t t≥ 0 from the values of 
ψ r0 0,t( ) at all r0 and at time t0  by means of the integral equation

 ψ ψr r r r r, , ; , ,t G t t t d( ) = ( ) ( )∫ 0 0 0 0
3

0  

where G t t( , ; , )r r0 0  is the Green function. In Section 6.14 we discussed the path integral method 
for obtaining this Green function. There, working in one spatial dimension for simplicity, we 
found that

 G x t x t dx
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2
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where m x V d
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t
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0
( ) − ∫  τ  is the action S, and dx[ ]∫  denotes a sum over all paths with end 

points ( , ) ( , )x t x t0 0  and . We were able to find G by explicit evaluation of the path integral in 
a few simple cases: the free particle, a particle in a uniform gravitational field, and a simple 
harmonic oscillator. The free-particle Green function G0  that we found by the path integral 
method is, of course, identical to G0  as calculated in Section 6.1.

Now we want to develop a method of successive approximations for determining the Green 
function in the case of an arbitrary potential, and we wish to apply this method to scattering 
problems. This is the time-dependent approach to scattering. Once again, we find it conve-
nient to employ the path integral technique, and we initially use one spatial dimension for 
simplicity.

We start by focusing on the term V ds
t

t

0
∫  in the action, where s is a timelike dummy variable 

of integration. The expansion
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enables us to separate the Green function into a series of terms

 G G G G= + + +0 1 2   

where
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is the free-particle Green function,

 G x t x t
i

ds dx
i m

x d V x s
t

t

1 0 0
2

2
0

, ; , exp ,( ) = − [ ]
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 τ  (18.72a)

is a first-order correction, and so on. We evaluate G1 by writing out the path integral on the 
right-hand side of (18.72) explicitly. Dividing the time interval t t− 0 into the usual ( )n +1 ε  slices 
as in Section 6.14 and writing s tj= , we have
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(18.72b)

where in the last expression on the right-hand side we have changed the label x xj  to ′. This 
yields

 G x t x t
i

ds dx G x t x s V x s G x s x
t

t

1 0 0 0 0 0

0

, ; , , ; , , , ;( ) = − ′ ′( ) ′( ) ′∫ ∫
−∞

∞



,t0( )  (18.73)

A simple graphic interpretation can be given to G G0 1 and to . G0  is the Green function (kernel) 
that allows a particle to propagate freely from u x t0 0 0= ,  to u x t= , , and this is illustrated in 
Figure 18.4a. From (18.73), we interpret G1 as follows:

A particle propagates freely from •	 u0 to u x s1 = ′( , ): [the kernel G x s x t0 0 0′( ), ; , ].
The particle is scattered by potential •	 V x s′( ), .
The particle propagates freely from •	 u1 to u: [the kernel G x t x s0 , ; ,′( )].
These three steps are illustrated in Figure 18.4b. The product of the three associated factors, 

integrated over all possible values x′ and s and multiplied by −i /  is G1.

u                      u                                  u

u0 u0 u0

u1

u1

u2

a) G0 b) G1 c) G2

 Figure 18.4 Schematic diagrams for the Green functions G0, G1, G2. Time advances in the upward direction.
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Similarly, the following expression is obtained for G2:
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 (18.74)

The form of this expression should be intuitively clear from the preceding discussion. The 
only subtle point is the absence of a factor of (2!)–1 on the right-hand side of (18.74). This is so 
because we require G u u0 2 1 0( , ) =  if  t t1 2> . The interpretation of G2 is illustrated in Figure 18.4c. 
Extensions to G3, G4, and so on follow a similar pattern and are straightforward.

Because the symbols u u1 2 and  represent dummy variables of integration, the expansion
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can be written as
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∫





 (18.75)

Now the factor in square brackets on the right-hand side of (18.75) is G u u( , )0 . Thus (18.75) is 
the integral equation

 G u u G u u
i

G u u V u G u u du, , , ,0 0 0 0 1 1 1 0 1( ) = ( ) − ( ) ( ) ( )∫


 (18.76)

Also, because

 ψ ψu G u u u dx( ) = ( ) ( )∫ , 0 0 0  

we have

V

t0 t

 Figure 18.5 Diagram illustrating gradual turn-on and turn-off of scattering potential.
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 ψ ψ ψ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )u G u u u dx
i

du G u u V u G u u u dx= −∫ ∫∫0 0 0 0 1 0 1 1 1 0 0


0  (18.77)

Now, in any scattering experiment, we can think of  t0  as a time in the remote past when 
the incoming projectile wave packet is still distant from the target, and the effect of  the 
potential V is negligible. We can also think of  t as a time in the far future when the inter-
action between projectile and target has been completed, and the potential is once again 
negligible. Thus we can imagine a graph of  the potential as in Figure 18.5, where V turns 
on gradually at some time between t0 0 and  and then turns off  gradually at some time 
between 0 and t .

If  the scattering is elastic, then the energy E associated with ψ ( )u  is the same as that associ-
ated with ψ ( )u0 . We can thus write
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−





 

where φ φ0  and  are called the in and out spatial wave functions, respectively.
Inserting these expressions in (18.77), we obtain
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 (18.78)

Now φ φ( ) ( )x x x x= =Ψ Ψ and 0 0 , where Ψ Ψ0  and  are in, out state vectors, respec-

tively. Also, G u u x e xiH t t
0 1 1

0 1( , ) ( )/= − −  , where H p0
2 2= ˆ µ is the free-particle Hamiltonian. 

Thus (18.78) can be written

 x x
i
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t
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which implies that

 Ψ Ψ Ψ= − −( ) − 
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∫0 0 1 0 1 1
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i E H t t V t dt

t





exp ( ) / ( )  (18.79)

where V̂0 is the potential written in operator form, and we have chosen t0 = −∞. In (18.79) we 
have freed ourselves from the coordinate representation. In the integral on the right-hand side 
of (18.79), let us make the change of variable T t t= − 1. Then the integral becomes
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 I
i i

E H T V t T dT1 0

0

0= − −





−
∞

∫
 

exp ( ) ( )  

To account for the slow time variation of V̂0, we write ˆ ( ) ˆ /V t T Ve T
0 − = −ε , where V̂  is the poten-

tial operator evaluated at times when the projectile and target are in full interaction, and ε is a 
positive real infinitesimal. Then I1 is easily evaluated,1 and (18.79) becomes

 Ψ Ψ Ψ= +
− +0

0

1
E H i

V
ε

ˆ  (18.80)

This is the important Lippmann-Schwinger equation, which contains the operator

 E H i− +( )−0
1ε  

We now employ the Lippmann-Schwinger equation to establish the connection between the 
time-dependent view of scattering, which is characterized by (18.75) through (18.77), and the 
time-independent view. Returning to three spatial dimensions, we multiply (18.80) on the left 
by r  and use the completeness relation on the right-hand side to obtain

 r r r r r rΨ Ψ Ψ= +
− +

′
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U dˆ  (18.81)

Now consider the factor in parentheses in the integrand on the right-hand side of (18.81). It is
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where ′ = ( )ε µ ε2 2
  is also a positive infinitesimal. The integral
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(18.82)

is evaluated by choosing polar coordinates in k′ space with R r r= − ′  along the polar axis; 
that is,

1 The choice ˆ ( ) ˆ /V t T Ve T
0 − = −ε   makes evaluation of  I1 easy, but it appears to be quite arbitrary. However, it can 

be shown that the choice of  any function of  T that goes very gradually to zero as T →∞  yields the same result 
for I1.
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where ′′ = ′ε ε 2k . The integrand in this last integral has a simple pole at ′ = + ′′k k iε . Contour 
integration in the complex k′ plane with the contour of Figure 18.6 and use of Cauchy’s theo-
rem yields

 G r r
r r

r r

, ′( ) = −
− ′

− ′1
4π

eik

 (18.84)

which is frequently called the time-independent Green function. From (18.81), we have

 φ φ φ( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′ ′∫0
3G  U d  (18.85a)

At this point, we change the names of the wave functions of interest to conform with our ear-
lier notation: φ ψ φ ψ0 0( ) ( ), ( ) ( )r r r r→ → . Then (18.70) is rewritten as

 ψ ψ ψ( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′ ′∫0
3G  U d  (18.85b)

Now ψ 0 describes a free particle and therefore satisfies the equation ∇ +( ) =2 2
0 0k ψ , whereas 

∇ +( ) =2 2k Uψ ψ( ) ( ) ( )r r r . Applying the operator ∇ +( )r k2 2  on the left to both sides of (18.85b), 
we have

 U k U dr( ) ( ) ( , ) ( ) ( )r r r r r r rψ ψ= ∇ +( ) ′ ′ ′ ′∫ 2 2 3G   

k-i "

k-i "-(        )

 Figure 18.6 Contour in the complex k′ plane for the evaluation of the integral in (18.83).
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which implies that

 ∇ +( ) ′ = − ′( )r k2 2 3G ( , )r r r rδ  (18.86)

18.7 Potential scattering in the Born approximation

The starting point for developing the Born approximation in time-independent scattering the-
ory is the integral equation (18.85b). It is solved by iteration: we repeatedly substitute for ψ ( )′r  
in the integrand of (18.85b), its value given by the left-hand side; that is,

 ψ ψ ψ ψr r r r r r r r r r r( ) = ( ) + ′ ′( ) ′( ) ′( ) + ′′ ′ ′′( ) ′′( ) ′∫ ∫0
3

0
3d U d UG G, , ′( )



r  (18.87)

or
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(18.88)

In (18.88), the leading term on the right-hand side is the free wave (zeroth Born approxima-
tion), the first two terms together give the first Born approximation, the first three terms the 
second Born approximation, and so on. The right-hand side of (18.88) is frequently called the 
Born series or the Neumann series.

In the first Born approximation, we have

 ψ ψ
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ψ( ) ( )r r
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r r r
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∫0 0
31
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e
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ik

  (18.89)

r'

r-r'

r

O

Region D

 Figure 18.7 Vectors r, r′ in calculation of scattering amplitude in first Born approximation.
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We are interested in asymptotic values of ψ ( )r  far from the region D of  interaction between 
projectile and target (as in Figure 18.7).

Thus r r ′ ; hence

 r r
r r

r r− ′ = −
⋅ ′ + ′ ≈ − ′r
r

r
r

r1 2
2

2

2
ˆ
  

where r̂  is a unit vector along r. We use this approximation in the exponential factor in the 
integrand of (18.89), but it is sufficient to approximate the denominator of the integrand by 
r–1. Thus we obtain

 ψ
π
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e
r

e e U dikz
ikr

ikz ik1
4

3

r   (18.90)

Let k0 and k be the incident and scattered wave vectors, respectively. Then 
kz k′ = ′ ′ = ′ ′k r r r k r0    and ˆ . Hence (18.90) becomes

 ψ
π
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i U dikz
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4
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   (18.91)

where  q k k= −( )0  is the momentum transfer. For elastic scattering, k k= 0 , and as 
Figure 18.8 shows, q = ( )2 20k sin .θ

From (18.91), the scattering amplitude in the first Born approximation is
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 (18.92)

Apart from a constant factor, f ( )θ  is just the Fourier transform of the potential V with 
respect to q.

k

k0

q

θ /2

θ /2

 Figure 18.8 Diagram showing vectors k0, k, and q = k0 − k and the scattering angle θ.

 

 

 

 

 

 

 



18.9 Coulomb scattering in the first Born approximation449

18.8 Criterion for the validity of the Born approximation

We write the first Born approximation (18.89) in the form

 ψ ψ= +eikz
1  

Clearly, this approximation is valid only if  the second term on the right-hand side is much 
smaller in magnitude than the first, that is, if  ψ1 1 . Now

 ∇ + =2
1

2
1ψ ψk Ueikz  (18.93)

We try to find a solution to this equation of the form ψ1 = geikz . Substitution of the latter 
expression into (18.93) yields

 e g ike
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Ueikz ikz ikz∇ +
∂
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If  k is sufficiently large, the second term on the left-hand side greatly dominates over the first, 
and we can neglect the latter. In this case, we obtain
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which yields

 ψ1 = − ≈ −∫
i

e Vdz
i

e Vdikz ikz

 v v
 

where d is the range of the potential, V  is a suitable average of V over this range, and v /= k µ 
is the projectile velocity. Then the requirement ψ1 1  implies

 V
d



v
 (18.94)

For scattering of a fast electron by an atom with atomic number Z, we have d a≈ 0 and 
V Ze a≈ 2

04π . Thus the criterion (18.94) becomes v c Z α . This criterion is easily satisfied 
for low and moderate values of Z but obviously becomes impossible to satisfy when Zα  is 
comparable to unity. The criterion is obviously more easily satisfied for scattering of a massive 
projectile (e.g., muon, proton, etc.) by an atom.

18.9 Coulomb scattering in the first Born approximation

Let us consider the Yukawa potential
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where λ  is a real parameter, and Z e Z e1 2,  are the charges of the projectile and target, respec-
tively. The scattering amplitude for this potential is
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 (18.95)

In the limit of vanishingly small λ , (18.95) yields the scattering amplitude for the Coulomb 
potential; that is,

 f
Z Z e

k
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sin
θ µ

π θ
= − ( )

2
4

1
4 2

1 2

2

2

2 2


 (18.96)

The foregoing procedure is flawed mathematically because the radial integral in (18.95) is not 
defined when λ = 0. However, as we mentioned in Chapter 14, the calculation is reasonable 
on physical grounds. In any real Coulomb scattering experiment, the Coulomb potential gen-
erated by a target (e.g., a nucleus) is screened by the charges of surrounding matter to some 
extent; hence a “Coulomb” potential actually can be approximated by the Yukawa form with 
some extremely small and undetectable but nevertheless nonzero λ .

Equation (18.96) yields the differential cross section for Rutherford scattering; that is,

 σ θ θ
π θ

( )
sin

= ( ) = 



 ( ) ( )f

Z Z
E

e2 1 2
2 4

2 44 4

1
2

 (18.97)

where E k= 2 2 2µ for a nonrelativistic projectile. Note that (18.97) is exactly the same result 
that was obtained from classical mechanics by Rutherford and is also identical to the exact 
cross section derived in equation (18.66). How can the first Born approximation yield the same 
cross section for Coulomb scattering as the exact solution to Schroedinger’s equation? The 
explanation is quite subtle and requires a careful definition of the scattering amplitude when 
higher-order terms are included in the Born approximation (Holstein 2007).

18.10 Elastic scattering of fast electrons by atoms in the  
first Born approximation

The scattering of a fast electron from an atom of atomic number Z is an interesting and 
instructive example that can be treated in the first Born approximation. We start with the scat-
tering amplitude
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 f
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e V de iθ
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q r r r  (18.98)

where V is now the potential energy of interaction of the projectile electron with the nucleus 
and the atomic electrons. Because
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we can write
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Now

 V e d V e d V e di i ir r r rq r q r q r( ) ∇( ) = ∇ ∇( ) − ∇ ∇∫ ∫ ∫2 3 3 3  

   (18.99)

By Gauss’s theorem, the first integral on the right-hand side of (18.99) can be converted 
to a surface integral that vanishes if  the volume this surface encloses has sufficiently large 
radius. Also,

 − ∇ ∇ = − ∇ ∇( ) + ∇∫ ∫ ∫V e d e V d e V di i i
 

  q r q r q rr r r3 3 2 3  (18.100)

and once again, the first integral on the right-hand side of (18.100) vanishes by Gauss’s 
theorem. Hence
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( ) = ∇( )∫2 2 2
2 3



q r r  (18.101)

However, from Poisson’s equation,

 ∇ = ( ) − ( ) 2 2 3V e Zδ ρr r  (18.102)

where the first term on the right-hand side refers to the nucleus, whereas ρ  is the atomic elec-
tron number density, with

 ρ d Z3r =∫  (18.103)

for a neutral atom. Substitution of (18.102) into (18.101) yields
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where

 F e diq r rq r( ) = ( )∫  ρ 3  (18.105)
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is called the form factor of  the atomic electron charge distribution. The differential cross 
section is
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 (18.106)

Let R be the radius over which ρ  is significantly greater than zero. When qR  1, it is useful to 
expand Z F− ( )q  in a power series as follows:

 Z F Z d i d d− = −( ) − ( ) + ( )
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q r q r r q r rρ ρ ρ3 3 2 31

2
    (18.107)

The first term in parentheses on the right-hand side of (18.107) vanishes because of (18.103). 
The second term also vanishes because in ρ ψ= 2

 the atomic wave function ψ  has definite par-
ity. [Indeed, every term in the series on the right-hand side of (18.107) with an odd power of q 
vanishes for the same reason.] The term in square brackets is Zq r2 2 /6, which yields

 f Z
r

a
( )θ =

2

03
 (18.108)

which is independent of the scattering angle. Thus the singularity in Rutherford scattering 
at q = 0 [recall (18.97)] does not appear in the first Born approximation when a fast electron 
scatters from a neutral atom. The physical explanation for this is very simple. The singular-
ity in Rutherford scattering occurs at θ = 0, which is equivalent to an extremely large impact 
parameter. However, when an electron passes a neutral atom at a very large distance, it sees no 
potential whatever in first approximation because the nuclear potential is canceled by that of 
the atomic electrons.

The form factor F can be determined experimentally from detailed measurements of the 
scattering cross section as a function of q. From (18.107), this yields

 −
∂
∂

==
F
q

Z
rq2 0

2
2

6
 (18.109)

Hence one can determine the root-mean-square (rms) charge radius of the atomic electron 
distribution from experimental scattering data. A similar method has been used in high-energy 
physics with relativistic electrons as projectiles to determine the mean-square charge radius of 
the proton (0.8×10–13 cm), as well as the mean-square charge radius of other nuclei.

The total cross section for electron-atom scattering in first Born approximation is obtained 
from (18.106) by integrating over all angles. Making the change of variable q k= ( )2 2sin θ , we 
easily obtain

 σ π
=

−( )
∫

8

0
2 2

2

3
0

2

a k

Z F

q
dq

k

 (18.110)
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Because for very small q, (Z – F)2 is of order q4, whereas for very large q F → 0, the integral 

Z F q dq−( )





∞

∫ 2 3

0
 is finite; hence, at large k, σ  is proportional to 1/E.

For atomic hydrogen, the density ρ  and the form factor F are easily calculated exactly from 
the ground state wave function; that is,

 ψ
π

= −1

0
3

0

a
e r a/  

We obtain

 F q
a q

( ) =
+





1

1
4

0
2 2 2  (18.111)

Substitution of (18.111) into (18.106) with Z = 1 yields
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a a q
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2 2 2
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2 2 4  (18.112)

For atomic helium, use of the simplest ground-state variational wave function2 yields a cross 
section that agrees reasonably well with experiment. In the case of more complex atoms, the 
Thomas-Fermi and Hartree methods are useful, and more precise results are obtained at the 
expense of additional computational complexity by including exchange (i.e., the Hartree-Fock 
method).

18.11 Connection between the Born approximation and  
time-dependent perturbation theory

It is intuitively clear that the Born approximation is closely related to perturbation theory. We 
now show that these two approaches are equivalent by demonstrating that the Born approx-
imation and the golden rule of time-dependent perturbation theory lead to exactly the same 
results for nonrelativistic elastic scattering. The first Born approximation gives

 
d d f d

e Vi i f

σ σ θ θ
µ
π

= =
−( )

( ) ( )

(

Ω Ω2

2

2 44
                    =



k k r r r) d d3
2

∫ Ω
 (18.113)

On the other hand, the golden rule yields the following transition probability per unit time:

2 Recall Section 11.6.
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 dW V E f=
2 2π ρ


( )  (18.114)

where the matrix element is V V df i= ( ) ( )∫ψ ψ* r r r3 , and

 ψ ψi
i

f
i

L
e

L
ei f= =

1 1
3 2 3 2/ /

k r k r


and  

Also, for a nonrelativistic final projectile,

 ρ
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=
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=
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Hence (18.114) becomes

 dW
L

e V d
L p di fi f= −( )∫

2 1
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3 3

π µ
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Ω

 

The differential cross section is d dW jσ = / , where j p Li= /( )µ 3  is the incident probability cur-
rent density. Thus we obtain

 d e V d
p

p
di f

i

i fσ µ
π

= −( )∫
2

2 4
3

2

4 

k k r r r( ) Ω  (18.115)

Because p pi f=  for elastic scattering, (18.115) and (18.113) are indeed identical.

18.12 Inelastic scattering in the Born approximation

The equivalence of (18.115) and (18.113) for elastic scattering suggests that the Born approxi-
mation can be extended to describe inelastic scattering. Here we limit ourselves to a target, but 
not a projectile, with internal degrees of freedom. The target can be excited by interaction with 
the passing projectile, and the final energy of the projectile thus is less than its initial energy. 
Let E E En0 0 and >  be the internal energies of the target before and after the scattering event, 
respectively, and let u un0  and  be the initial and final wave functions of the target corresponding 
to these energies, respectively. Then conservation of energy requires

 E E k kn i f− = −( )0

2
2 2

2


µ
 (18.116)

Also, for inelastic scattering, the integral in (18.115) is replaced by

 T e u Vu d di
n= ∫∫ q r r *

0
3 τ  (18.117)

where
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 q k k f= − = + − =
=
∏i i f i f i
i

N

q k k k k d d2 2 2

1

2 cosθ τ τand  (18.118)

where N is the number of particles in the target, d iτ  is the volume element corresponding to the 
ith particle, and V  is the potential energy of interaction of the projectile with each target par-
ticle. For inelastic scattering of a fast electron from a neutral many-electron atom with atomic 
number Z,

 V
Ze

r
e

ii

Z

= − +
−=

∑
2 2

14 4π π r r
 (18.119)

Here the first term on the right-hand side describes interaction between the projectile electron 
and the nucleus (the latter located at the origin), whereas the remaining terms refer to the 
interaction of the projectile with Z atomic electrons. In fact, because the many-electron wave 
functions u un0  and  are orthogonal, the first term on the right-hand side of (18.119) does not 
contribute to (18.117).

The general procedure for analyzing fast electron-atom inelastic scattering is illustrated by 
consideration of electron scattering from a hydrogen atom, where, ignoring the first term on 
the right-hand side of (18.119), we have from (18.117)
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 (18.120)

The integral on the right-hand side of the last line is frequently called the transition form factor 
Fn(q), and from (18.115), the differential cross section is
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 (18.121)

When qR1, where R is the atomic radius, we can expand the exponential in the integrand of 
(18.120); that is,

 e ii rq q r

≈ +1  

The leading term in this expansion contributes nothing to Fn because of the orthogonality of 
u un  and 0. The next term does contribute if  the selection rules for an allowed electric dipole 
transition are obeyed for a transition between u0 and un. If  qR ≈ 1 or qR1, this restriction on 
un is relaxed. For example, consider the transition form factors for a hydrogen atom excited by 
a fast electron in the following two cases:
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These formulas show that when qa0 1 , F Fs p2 2 ; however, when qa0 1≈ , F Fs p2 2≈ .

We return to the Born approximation in later chapters.

Problems for Chapter 18

18.1. This problem concerns some general properties of the phase shifts appearing in (18.22a) 
for scattering from a central potential V r( ).

(a) What is the largest possible total cross section if  all phase shifts vanish for  > L?

(b) Let U r V r( ) ( )= [ ]2 2µ   and assume that U r r s( ) → ⋅ −const  for large r. Use the WKB 
approximation to show that if  s > 1 1 and   ,

 δ µ






 

− 



2 2k

V
k

 

Thus show that σ total is finite if  s > 2. If  2 1> >s , the total cross section is infinite. Is this 
due to large or small impact parameter scattering? In the real world, how are such infinities 
avoided?

18.2. Determine the phase shift δ0 for scattering from the potential V r V r a( ) exp( / )= − −0 . What 
is the connection between δ0 and the spectrum of bound states with  = 0?

18.3. Consider the Coulomb scattering of two identical fermions of charge Ze , for example, 
electrons. Show that in the CM frame the cross section to obtain either particle scattered into 
angle θ  within small solid angle dΩ is

 d
Z
E

e
Q dσ θ

π θ
θ θ

( )
( ) sin

tan tan= + ±
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2

4

2
4

4 2

16 4
1

2

1
2

2
2

Ω  

where Q n n= ( ) { }cos tan  2 2θ , ± refers to total spin 1 (0), and n Z e v= 2 2 4π . How is this 

differential cross section reconciled with the Rutherford formula for scattering of two identical 
electrons in the classical limit? What modifications would be required if  we were describing the 
scattering of two identical bosons?

18.4. For Coulomb scattering of two positive charges Z e Z e1 2, , we show [equation (18.67)] that 
the square of the wave function for relative motion takes the following value at the origin:
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 ψ π π( ) exp0
2

2
2 = −( )n

n
v

(Gamow’s formula)  

where n Z Z e v= >1 2
2 4 0π , and where the relative velocity v is assumed to be nonrelativistic: 

v = c. This formula has an important application in astrophysics – to thermonuclear reactions 
in stellar interiors. Suppose that one has an ionized gas with bare nuclei of atomic numbers Z1 
and Z2 and number densities n1 and n2, respectively, at temperature T. The rate λ of  thermonu-
clear reactions per cubic centimeter between these species is proportional to ψ ( )0

2
1 2n n v. Show 

that to a good approximation

 λ = −
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T2 3
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2
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1 3/
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and kB is Boltzmann’s constant, whereas μ is the reduced mass of the two reactants. Also show 
that practically all the reactions occur in a narrow band of energies at

 E E Z Z c k TB= = 



0 1 2

2

2 3

2

π α µ
/

 

What is E k TB0 /  for the proton-proton reaction at the center of the Sun, where T = 1.2×107 K? 
Your result should reveal that almost all pp reactions in the Sun are generated with protons that 
are far out on the high-energy tail of the relative-velocity Maxwell distribution.

18.5. In this problem we consider the photoelectric effect in hydrogen. A photon with fre-
quency ω has k along z and linear polarization along x. The photon is absorbed by a hydrogen 
atom at the origin, initially in the 1s ground state. The final state consists of a proton (the recoil 
of which we neglect) and an ionized electron with energy

 E
k

m
m vf

e

e= =


2 2 2

2 2
 

and final state wave function uf. We assume that

 m c m ce e
2 2 2α ω    

(That is, the photon energy is much larger than the binding energy of the ground-state H atom 
but much less than the electron rest energy.) Use the Born approximation to show that
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and that the total cross section is

 σ π α
π ω

=






2
3 8

18
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7 2
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/

 

18.6. In this lengthy and very important problem we analyze the connection between scattering 
in classical mechanics and quantum mechanics.

(a) A classical particle in a central potential V r( ) moves in a plane, and its motion is described 
by the usual plane polar coordinates r,φ . Let J be the angular momentum with respect to the 
force center at the origin, and let ri i,φ  be the initial values of r,φ . Show that

 φ φ µ= −
∂
∂

− ′[ ] −
′

′∫i

r

r
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dr
i
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and that the scattering angle is given by
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J
r
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where ± refers to a repulsive (attractive) potential, and r0  is the largest root of 

2 2 2µ E V r J r−[ ] − ( )( ) . Thus show that the differential cross section is
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where b J v J p= =µ 0  is the impact parameter, and v0 is the initial velocity. Note that d dbθ < 0, 
so the differential cross section in [(3) and (4)] is positive.

(b) In quantum mechanics, we seek δ


 in the asymptotic solution
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of  the equation
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Show that in the WKB approximation,
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where

 F r E V r
r

( ) ( )= −[ ] −
+





2

1
2

2

2
µ



 

and r0 is the largest root of F2.

(c) The goal of this part of the problem is to show that for large  and in the WKB approxima-
tion, the scattering amplitude for nonforward scattering θ ≠( )0  is
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To arrive at (6), first prove that

 2 1 2 1





+( ) ( ) = −∑ P cos ( cos )θ δ θ  (6a)

which is infinite at θ = 0 but zero for θ ≠ 0. Thus, for θ ≠ 0, the usual partial-wave expansion of 
the elastic scattering amplitude yields
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ik

i P( ) exp cosθ δ θ= +( ) ( ) ( )∑1
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Next, show that for      1 1 1, , ,  and θ π θ−( )
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 (6c)

Hint: Start with the Legendre differential equation and make the substitution 
χ θ θ θ( ) sin cos= ( )P



. This should lead you to the result
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θ α

θ
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where A and α  are coefficients. To determine these coefficients, consider the connection 
between the Legendre polynomial P



(cos )θ  and the Bessel function J0
1

2 +( ) θ  that exists for 
large  and small θ . Use of (6c) in (6b) and conversion of the sum to an integral yield (6).

(d) The exponentials in the integrand of (6) oscillate rapidly except near the extremum of the 
exponents as a function of  . The main contribution to the integral thus comes from the neigh-
borhood of this extremum (the stationary-phase approximation). Show that the extremum 
occurs when the following condition is fulfilled:

 2 1   
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Show that (7) is the same condition as (2). Thus, assuming the WKB approximation and  1,  
the classical and quantum scattering angles are the same.

(e) The classical and quantum-mechanical differential cross sections are also the same. To see 
this, assume that (7) holds for  = 0 . Then, making a Taylor expansion, we have
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Thus show that if  A( ) , 
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 0
3
4

 (9)

The absolute square of (9) gives the differential cross section, which is the same as in (4).

(f) What is the difference between quantum-mechanical scattering for large   in the WKB 
approximation and classical scattering? The essential difference appears in forward scattering. 
Let’s assume that the phase shifts are large for  < 1  but small for   1,  where 1 = ka  and 
a is the radius of some sphere. Then

 f
ik

i P dθ δ θ( ) ≈ ( ) −  ( )∫
1

2
2 2 1

0

1

 







exp cos  (10)

For small angles, show that the P


 vary only slowly with  . Thus destructive interference elimi-

nates the contribution of the exp( )2iδ


 to the integral in (10). From this, show that

 f
ia

J kaθ
θ

θ( ) ≈ ( )1  (11)

where J1 is the first Bessel function. It follows that
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Compare this to Fraunhofer diffraction of light around a black sphere of radius a [see, e.g., 
Jackson (1998)].
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19.1 General remarks on relativistic wave equations

We now attempt to extend quantum mechanics to the relativistic domain. It would seem only 
natural to start by searching for an appropriate relativistic single-particle wave equation (or 
equations) to replace the Schroedinger equation. In fact, one finds that the form of the relativ-
istic equation depends on the spin of the particle; that is,

Spin-0:   Klein-Gordon equation
Spin-½:   Dirac equation
Massive spin-1: Proca equation

It is important to study these one-particle equations and their solutions in detail because by 
doing so we gain insight into many significant physical phenomena. However, no matter what 
the spin, if  we pursue a single-particle relativistic quantum theory far enough, we encounter 
fundamental inconsistencies, and the theory breaks down. The essential reason for this failure 
is that whereas energy is conserved in special relativity, mass is not conserved, and particles can 
be created and destroyed in real physical processes; for example,

 
e e

e
p n

e

+ −

− −

−
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→
+ → +

2 3

0

γ γ
µ ν ν
π π

µ

, ,...
 

and so forth. Obviously, no single-particle theory is capable of accounting for such phenom-
ena. Therefore, at a certain stage, we are forced to abandon the single-particle approach and 
go over to a many-particle relativistic quantum theory in which particles can be created and 
destroyed. This is relativistic quantum field theory, a discipline that we can only begin to study 
in this book.

19.2 The Klein-Gordon equation

In nonrelativistic mechanics, the energy of a free particle is E p m= 2 2 . To obtain the 
Schroedinger equation for a free spinless particle, we make the well-known substitutions

 E i
t

i→
∂
∂

→ − ∇ and p  (19.1)

Special Relativity and Quantum Mechanics:  
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which give

 − ∇ =
∂
∂





2
2

2m
i

t
ψ ψ

 

In relativistic mechanics, the energy of a free particle is

 E p c m c= +2 2 2 4  (19.2)

Using the substitutions of (19.1) in (19.2), we obtain

 i c m c



ψ ψ= − ∇ +2 2 2 2 4  (19.3)

In coordinate representation, it is difficult to interpret the operator on the right-hand side of 
(19.3). Thus, instead of (19.2), we try

 E p c m c2 2 2 2 4= +  (19.4)

Again employing (19.1), we obtain

 i
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2

2 2 2 2 4ψ ψ ψ  
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2
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1
c t

mcψ ψ


 (19.5)

This is the Klein-Gordon equation for a free spinless particle. Actually, it was first obtained by 
Schroedinger in 1926 before he developed the nonrelativistic equation that bears his name. In 
natural units (recall Section 15.7), (19.5) is written as

 ∂ ∂ +( ) =µ
µ ψm2 0  (19.6)

Plane-wave solutions to (19.5) are readily found:
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exp exp
i

Et
i

p x






p r
 

(19.7)

where

 E c m c2 2 2 2 4= +p  

and thus

 E c m c= ± +p2 2 2 4  (19.8)

Thus there is a negative-energy solution as well as a positive-energy solution for each p. It 
would seem at first that we should simply discard the negative-energy solution as unphysical. 
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Indeed, as long as we consider a free particle, defined initially to be in a positive-energy state, 
this would be perfectly legitimate because there is no mechanism by which a transition could 
occur to a negative-energy state. However, suppose that the particle of interest has electric 
charge q and we impose an external electromagnetic potential. The Klein-Gordon equation 
then must be altered by the usual replacements

 E E q
q
c

→ − → −Φ and p p A  

to become

 i q c i
q
c

m ct ∂ −( ) = − ∇ −





+Φ 2 2

2

2 4ψ ψ ψA  (19.9)

or in covariant notation and natural units

 ∂ +( ) ∂ +( ) + =µ µ
µ µ ψ ψiqA iqA m2 0  (19.10)

The solution to this equation can always be expressed as a superposition of free-particle solu-
tions, but only if  the latter form a complete set, and this requires inclusion of the negative-
energy solutions, which therefore cannot be discarded.

For the nonrelativistic time-dependent Schroedinger equation, we were able to define a non-
negative probability density ρ ψ ψS = *  and a probability current density jS that satisfy the equa-
tion of continuity

 ∇ +
∂
∂

= jS
S

t
ρ

0  

We attempt to follow the same procedure for the Klein-Gordon equation. First, multiply 
(19.10) on the left by ψ * ; that is,

 ψ ψ ψ ψµ µ
µ µ

* *∂ +( ) ∂ +( ) + =iqA iqA m2 0  (19.11)

Next, take the complex conjugate of (19.10) and multiply by ψ ; that is,

 ψ ψ ψ ψµ µ
µ µ∂ −( ) ∂ −( ) + =iqA iqA m* *2 0  (19.12)

We subtract (19.12) from (19.11) to obtain

 ∂ ∂ − ∂ +( ) =µ
µ µ µψ ψ ψ ψ ψ ψ* * *2 0iqA  (19.13)

This may be interpreted as an equation of continuity for the probability four-current density 
jµ; that is,
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Aµ µ µ µψ ψ ψ ψ ψ ψ= ∂ − ∂ +







2
2* * *  (19.14)

 

 

 

 

 

 

 

 

 



Special Relativity and Quantum Mechanics464

In (19.14) we exhibit  and c explicitly and choose an overall multiplicative factor so that the 
present definition of j agrees with that obtained earlier in the nonrelativistic Schroedinger the-
ory. Equation (19.14) implies that for the Klein-Gordon equation, the probability density is

 ρ ψ ψ ψψ ψ ψ= −[ ] −i
mc

q
mc



 

2 2 2
* * *Φ

 (19.15)

Of course, for a free particle, Φ = 0, in which case

 ρ ψ ψ ψψfree = −[ ]i
mc


 

2 2
* *  (19.16)

It can be shown that in the nonrelativistic limit, where all significant momentum components 
in a free-particle wave packet satisfy p  mc, (19.16) reduces to ρ ψ ψ ψ ψfree = −+ + − −

* * * , where 
the plus and minus signs refer to positive- and negative-energy contributions, respectively. If  
we ignore the negative-energy contribution, then in this nonrelativistic limit ρfree reduces to the 
familiar probability density associated with the Schroedinger equation. However, in general, 
ρfree as given by (19.16) is not necessarily positive, and thus it makes no sense to employ it as a 
probability density for a single particle. This fundamental difficulty arises because the Klein-
Gordon equation is second order in the time, so ρfree contains first-order time derivatives. The 
problem does not arise for the nonrelativistic Schroedinger equation, which is first order in 
the time.

Because of this difficulty, the Klein-Gordon equation was discarded for some years, during 
which the Dirac equation (Dirac 1928 a, b) was thought to be the only valid single-particle 
relativistic wave equation. However, it was ultimately discovered that there are also profound 
difficulties associated with the Dirac equation when it is employed in a single-particle theory. 
Such difficulties are overcome only by constructing a many-particle Dirac field, the quanta of 
which have spin-½. In 1934, W. Pauli and V. Weisskopf showed that the Klein-Gordon equa-
tion can also be used in a field theory, in which the quanta are massive spin-0 (scalar) particles. 
In this theory, when ρ and j are multiplied by e, they become the charge and current densities, 
respectively, of the field quanta. The fact that ρ  can be negative then causes no difficulty: scalar 
particles with both signs of charge appear.

Problems for Chapter 19

19.1. The probability density for the free-particle Klein-Gordon equation is

 ρ ψ ψ ψ ψ
KG =

∂
∂

−
∂
∂







i
mc t t


2 2
*

*

 

Show that in the nonrelativistic limit (and where we neglect negative-energy solutions),
ρ ψ ψKG → * .

19.2. Consider the lowest bound state of a particle of mass m that satisfies the Klein-Gordon 
equation for a spherically symmetric square well of radius a and well depth V0. Employ units 
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where  = =c 1, and assume that the orbital angular momentum of the particle is  = 0. Find 
V0 in terms of a and m for each of the following two cases:

(a) The particle energy is E m=  (the bound state just appears).

(b) The particle energy is E m= − .

Can a well-behaved bound state exist with E m< − ?

19.3. Consider the one-dimensional potential step

 
V x
V V x

= <
= + ≥

0 0
00

      
 

A plane-wave solution to the Klein-Gordon equation ψ ω= −( ) exp i kx t  is incident from the 
left. Find the reflection and transmission coefficients for the three cases

 
V E mc
E mc V E mc
E mc V

0
2

2
0

2

2
0

< −
− < < +
+ <

 

What pathologic features are associated with case 3?
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20.1 Derivation of the Dirac equation

In 1928, P. A. M. Dirac obtained the very important equation that bears his name (Dirac 1928a, 
b). His original line of argument, though outmoded, is very instructive, so we temporarily sus-
pend our skepticism about the feasibility of a single-particle theory and retrace Dirac’s steps as 
follows: the Klein-Gordon equation for a single particle presents fundamental difficulties because 
it is second order in the time. This suggests that we should find a new equation that is first order 
in the time. In special relativity, the spatial coordinates and the time should appear in a symmet-
ric way in any physical equation, so we require that the new equation should be first order in the 
spatial derivatives as well. Furthermore, the wave function should satisfy not only this first-order 
equation but also the Klein-Gordon equation because the latter merely expresses the relation

 E c m c2 2 2 2 4= +p  

An analogous situation appears in classical electrodynamics, where Maxwell’s equations are 
first order in the spatial and time derivatives, and in addition, each component of E  and B 
satisfies a second-order wave equation. This can happen because the various components of 
E  and B are coupled together in Maxwell’s equations. This suggests that the wave function ψ 
has several (N) components and that we are really dealing with a set of N coupled first-order 
relativistic wave equations. For a free particle, these can be written quite generally as

 
1

0
11

3

1c t x
imcm

k
mn

n

N

k

n

k

mn

n

N

n

∂
∂

+
∂
∂

+ =
== =
∑∑ ∑ψ α ψ β ψ



 (20.1)

where m N= 1,..., , and α βk
mn mn and  are coefficients to be determined. Homogeneity and isot-

ropy of space-time suggest that these coefficients should be dimensionless constants that are 
independent of r and p and commute with the latter quantities. Assuming this, we can write 
(20.1) more compactly by introducing the four N×N matrices α βk  and  and the vector

 α = + +α α α1 2 3
ˆ ˆ ˆi j k  

as well as the notation

 ψ

ψ
ψ

ψ

=



















1

2

...

N
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Then (20.1) can be written

 
1

0
c t

imc∂
∂

+ ∇ + =
ψ ψ βψα



 (20.2)

The corresponding Hermitian conjugate equation is

 
1

0
c t

imc∂
∂

+ ∇ − =
ψ ψ ψ β

†
† † † †




α  (20.3)

where ψ ψ ψ ψ† * * *, ,...,= ( )1 2 N .
We now construct an equation of continuity as follows: multiply (20.2) on the left by ψ †, 

multiply (20.3) on the right by ψ, and add the two resulting equations. We then obtain

 
1

0
c t t

imcψ ψ ψ ψ ψ ψ ψ ψ ψ βψ ψ β ψ†
†

† † † † † †∂
∂

+
∂
∂






+ ∇ + ∇ + −( ) = 



α α  

or

 
1

0
c t

imc∂
∂
( ) + ∇ + ∇ + −( ) =ψ ψ ψ ψ ψ ψ ψ β β ψ† † † † † †

 



α α  (20.4)

This suggests the equation of continuity

 ∇ +
∂
∂

= j
ρ
t

0  (20.5)

provided that we choose

 α α† †= =and β β  (20.6)

Then (20.5) is satisfied with

 ρ ψ ψ= †  (20.7)

and

 j = cψ ψ†α  (20.8)

The probability density in (20.7) is indeed nonnegative and of the familiar form. However, we 
shall see that the probability current density (20.8) has some subtle features that are not so easy 
to understand.

We must still exploit the requirement that each component of ψ should satisfy the Klein-
Gordon equation. To do this, we write the Dirac equation

 
1

0
c t

imc∂
∂

+ ∇+





=α


β ψ  
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and multiply on the left by the operator

 
1
c t

imc∂
∂

− ∇ −





α


β  

to obtain

 
1

0
2

2

2

2 2

2
2

c t
imc m c

i j i j j j j
∂
∂

− ∇ ∇ − +( )∇ +





=α α βα α β β ψ
 

 (20.9)

In (20.9), we can write

 α α α α α αi j i j i j j i i j∇ ∇ = +( )∇ ∇
1
2

 

because ∇ ∇ = ∇ ∇i j j i. For (20.9) to reduce to the Klein-Gordon equation, we require that

 α α α α δi j j i ij I+ = 2  (20.10)

 βα α βj j+ = 0  (20.11)

and

 β2 = I  (20.12)

where I is the N×N identity matrix. Equations (20.10)–(20.12) are the fundamental algebraic 
relations for the α, β matrices that determine the entire structure of the Dirac theory. Some 
immediate consequences are as follows: from (20.11), we have

 βα α β α βj j jI= − = − ⋅  (20.13)

Thus

 det det det( ) det detβ α α β  j jI= −  (20.14)

None of the determinants in (20.14) vanish because all the matrices are nonsingular, which 
follows immediately from (20.10) and (20.12). Hence det( )− = +I 1. Because det( ) ( )− = −I N1 , N 
must be an even number. Furthermore, from (20.11), we have

 α βα βj j j− = −1 (No summation on index )  (20.15)

Taking the trace of both sides of (20.15), we have

 tr tr tr trj j j jα βα α α β β β− −( ) = ( ) = ( ) = − ( )1 1  (20.16)

so tr β( ) = 0 and, similarly, tr jα( ) = 0 for each j.

 

 

 

 

 

 

 

 

 

 



20.3 Covariant form of the Dirac equation469

20.2 Hamiltonian form of the Dirac equation

Equation (20.2) is easily written in the form

 H iψ ψ= 

  (20.17)

provided that we define the free-particle Dirac Hamiltonian as

 H i c mc= − ∇+ α 2β  (20.18)

20.3 Covariant form of the Dirac equation

To proceed further with our understanding of the Dirac equation, it is very convenient to 
employ new matrices γ γ γ γ γµ = 0 1 2 3, , ,  defined as follows:

 γ β0 =  (20.19a)

 γ γ α α γi
i i i= = − =0 0 1 2 3, ,  (20.19b)

Because γ γ0 0= † and α αi i= †, we immediately obtain the useful relations

 γ γi i† = −  (20.20a)

 γ γ γ γµ µ0 0† =  (20.20b)

Also, multiplying (20.2) on the left by iγ 0, we have

 i
x

i
mcγ ψ ψ ψ0

0
0

∂
∂

+ ∇ − =γ 


 (20.21)

or

 i
x

mcγ ψ ψµ
µ

∂
∂

− =


0  (20.22)

In natural units, and defining the convenient shorthand ∂ ≡ ∂γ µ
µ , this is

 i m i mγ ψ ψµ
µ∂ −( ) = ∂ −( ) = 0  (20.23)
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which is the free-particle Dirac equation in covariant form. Recalling that γ γ0 0† =  and γ γi i† = − ,  
we take the Hermitian conjugate of (20.21); that is,

 −
∂
∂

+ ∇ − =i
x

i
mcψ γ ψ ψ

†
† †

0
0 0



γ  (20.24)

We multiply this equation on the right by γ 0, make use of γ γ γ γi i0 0= − , and define the Dirac 
conjugate wave function as ψ ψ γ= † 0 to obtain the Dirac conjugate equation

 i
x

mc∂
∂

+ =
ψ γ ψ

µ
µ



0  (20.25)

or in natural units

 i m i m∂ + = ∂ +( ) =µ
µψγ ψ ψ 0  (20.26)

It is also convenient to rewrite the probability density and probability current density in terms 
of the γ  matrices; that is,

 j = = =c c cψ ψ ψ γ ψ ψ ψ† †α γ γ0  

and

 j c c c0 0= = =ρ ψ ψ ψγ ψ†  

which combine to yield

 j cµ µψγ ψ=  (20.27)

The equation of continuity (20.5) is written in covariant form as

 ∂ =µ
µj 0  (20.28)

The fundamental relations [(20.10)–(20.12)] are also expressed conveniently in terms of the 
gamma matrices. Employing (20.19a) and (20.19b), we obtain

 γ γ γ γµ ν ν µ µν+ = 2g I  (20.29)

where, as usual, µ ν and  run from 0 through 3.

20.4 A short mathematical digression on gamma matrices

Before we apply the Dirac equation to physical problems, we familiarize ourselves with some 
mathematical properties of the γ  matrices. We can form new matrices by multiplying two or 
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more γ  matrices together. Taking into account the fundamental anticommutation relation 
(20.29) and also including the identity matrix, we find that the total number of distinct matri-
ces is 16, denoted collectively as the Γk k, ,..., ;= 1 16  that is,

 

                                           
              

I
                                             γ γ γ γ

γ γ
0 1 2 3

1i 2 2 3 3 1 1 0 2 0                                    i i i iγ γ γ γ γ γ γ γ     
                                    5 5 5

iγ γ
γ γ γ γ γ γ

3 0

0 1 2           
                                 

5γ γ
γ γ γ γ

3

5 0 1 2= i γ 3

 (20.30)

Note that in the fourth line of (20.30) we can write γ γ γ γ γ γ γ γ γ γ0 5 1 2 3 1 5 0 2 3= = −i i,  , and so 
forth.

We now list without proof several useful mathematical relations for the Γk that can be derived 
by straightforward algebra.

1. Γ Γ Γk m
km

n
kma a i= = ± ±, where  or 1 , and given k, n is distinct for each distinct m.

2. Γ Γk m I= ±  if  and only if  k m= .
3. Γ Γ Γ Γk m m k= ± .
4. If  Γ Γk kI tr≠ ( ) =, . 0
5. The Γk are linearly independent. Thus they can be 4×4 matrices, and we shall assume that 

this is indeed the case. Earlier we proved that N must be an even number, but it cannot be 
2 because there are only four linearly independent 2×2 matrices. The choice N = 4 is not 
directly related to four space-time dimensions. Rather, N = 4 is connected to the fact that 
the Dirac equation applies to particles of  spin-½ and that there are negative-energy and 
positive-energy solutions to the Dirac equation. Because the Γk span the space of  all 4×4 
matrices, any arbitrary 4×4 matrix X can be expressed as a linear combination of  the Γk; 
that is,

 X xk
k

k

=
=
∑ Γ

1

16

 

6. Any matrix X that commutes with all four γ µ  is a multiple of the identity.
7. Given two sets of 4×4 matrices γ γµ µ, ′, both of which satisfy the fundamental law,

 γ γ γ γµ ν ν µ µν+ = 2g I  

 γ γ γ γµ ν ν µ µν′ ′ + ′ ′ = 2g I  

 there exists a nonsingular matrix W such that

 γ γµ µ′ = −W W 1  

 A specific choice of the γ µ  constitutes a representation. Although an infinite number of 
representations are possible, as a practical matter, only a small number are used. We first 
consider the standard representation.
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20.5 Standard representation: Free-particle plane-wave solutions

Returning to the matrices α,β , we note that the fundamental relations (20.10)–(20.12) are sat-
isfied by the nonunique choice

 α
σ

σ
=






= =
−







0

0

0

0
0β γ

I

I
 (20.31)

This is the standard (Dirac-Pauli) representation, in which

 γ α
σ

σ
= =

−






γ 0
0

0
 (20.32)

and

 γ γ γ γ γ5 0 1 2 3
0

0
= =







i
I

I
 (20.33)

In (20.31)–(20.33), the σ are the 2×2 Pauli spin matrices, and I is the 2×2 identity matrix. Using 
the standard representation, we now consider the free-particle Hamiltonian of (20.18); that is,

 H i c mc
mc i c

i c mc
= − ∇+ =

− ∇
− ∇ −






 

 

 

α
σ

σ
2 0

2

2
γ  (20.34)

We seek plane-wave solutions to H iψ ψ= 

  of  the form

 ψ = ⋅ −





u
i

Etexp ( )


p x  (20.35)

where u
u

u
A

B

=






 is a four-component spinor, and uA B,  are each two-component spinors that 

might depend on p and E but are independent of x and t. Given (20.34) and (20.35), H iψ ψ= 

  
yields

 E mc u c uA B−( ) =2 σ p  (20.36)

 E mc u c uB A+( ) =2 σ p  (20.37)

We try ua =





1

0
. Then (20.37) yields

 u
c

E mc

p

p ipB
z

x y

=
+ +





2

 (20.38)
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If  instead we try uA =





0

1
, we obtain

 u
c

E mc

p ip

pB
x y

z

=
+

−
−





2

 (20.39)

Each of these two linearly independent solutions corresponds to positive energy (E > 0), as can 
be seen by taking the limit p → 0 in (20.36). In addition, there are two linearly independent 
negative-energy solutions (E < 0):

 u u
c

E mc

p

p ipB A
z

x y

=





=
− +







1

0 2
 (20.40)

and

 u u
c

E mc

p ip

pB A
x y

z

=





=
−

−
−







0

1 2
 (20.41)

To write all this in a standard form, we define ε = E , make use of standard normalization fac-
tors, and revert to natural units where  = =c 1, to obtain:

 ψ
ε

εI II x
V

m
u i p x t E, , exp ,( ) = ⋅ −( )  >

1
01 2         (20.42)

 ψ
ε

εIII IV x
V

m
u i p x t E, , exp( ) = ⋅ +( )  <

1
03 4         (20.43)

where

 

u
m

m
m

1 2 2, =
+

+













±

±

ε
χ

ε
χσ  p

 (20.44)
and

 

u
m

m
m3 4 2, =

+ −
+













±

±

ε
ε

χ

χ

σ  p

 (20.45)

with χ χ+ −=





=





1

0

0

1
 and . The four 4-spinors u1,2,3,4 are mutually orthogonal; that is,

 u u
mr s rs

† = δ ε
 (20.46)
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An example of (20.46) is

 

u u
m

m m
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1 1 2
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=
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=
+
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† σ σ p p
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=
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As in the case of the Klein-Gordon equation, we cannot discard the negative-energy solutions 
because they are needed for completeness. However, by means of the charge conjugation trans-
formation (to be discussed later), it will be seen that the negative-energy solutions (e.g., for an 
electron) are transformed into positive-energy solutions (for a positron). In the following sec-
tion we prove that the Dirac equation applies to particles of spin-½. It thus turns out that ψI 
and ψIII correspond to spin-up along the z-axis, whereas ψII and ψIV correspond to spin-down.

20.6 Lorentz covariance of the Dirac equation

In classical electrodynamics, consider Maxwell’s equations in a given inertial frame with space-
time coordinates x and where the electric and magnetic fields are E( ) ( )x x and B , respectively. 
Now make a Lorentz transformation to a new inertial frame with space-time coordinates x′. 
Maxwell’s equations take the same form in both inertial frames: they are covariant with respect 
to Lorentz transformations. However, the electric and magnetic fields themselves are generally 
not the same in the two frames: E E′( ) ( )′ ≠x x  and ′ ′ ≠B B( ) ( )x x . Similarly, if  Dirac’s equa-
tion is to be a valid relativistic wave equation, we must require it to be covariant with respect to 
Lorentz transformations, but we should not expect that the wave functions in the two inertial 
frames are the same.

To make this point precise, consider a frame F with observer O and space-time coordinates 
x. Suppose that, according to O, the free-particle Dirac equation is

 m i
x

x−
∂

∂






=γ ψµ
µ

( ) 0  (20.47)

with solution ψ(x). In another inertial frame F′ with coordinates ′ =x a xν ν
µ

µ , another observer 
O′ describes the same physical situation by means of wave function ψ′(x′), which satisfies

 m i
x

x−
∂

∂ ′






′ ′ =γ ψν
ν

( ) 0  (20.48)
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Lorentz covariance of the Dirac equation means that we require the gamma matrices to be the 
same in (20.47) and (20.48).

Now let us assume that there is a nonsingular transformation S that relates ′ ′ψ ψ( ) ( )x x to ;  
that is,

 ′ ′ = ′ =ψ ψ ψ( ) ( ) ( )x ax S x  (20.49)

From homogeneity and isotropy of space-time, we assume that S does not depend on the 
space-time coordinates. We apply S on the left to (20.47), giving

 mS x iS S
x

S xψ γ ψµ
µ

µ µ( ) −
∂

∂
( ) =−1 0  

and obtain

 m x iS S
x

x′ ′ −
∂

∂
′ ′ =−ψ γ ψµ

µ
( ) ( )1 0  (20.50)

From ′ =x a xν ν
µ

µ , we have

 
∂

∂
=
∂ ′
∂

∂
∂ ′

=
∂

∂ ′x
x
x x

a
xµ

ν

µ ν
ν

µ ν
 

Therefore, (20.50) becomes

 m x iS S a
x

x′ ′ −
∂

∂ ′
′ ′ =−ψ γ ψµ ν

µ ν
( ) ( )1 0  (20.51)

We require (20.51) and (20.48) to be the same equation. Thus we must have

 S S aγ γµ ν
µ

ν− =1  (20.52)

Multiplying (20.52) on the left by S −1 and on the right by S, we obtain the alternative 
equation

 S S a− =1γ γν ν
µ

µ  (20.53)

In what follows, we consider three important examples of (20.53): rotations about a given spa-
tial axis, Lorentz boosts, and spatial inversion.

Rotation of the System about the z-Axis by Angle θ
Here the matrix is

 a =
+

−



















1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

θ θ
θ θ
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We first consider an infinitesimal rotation where

 a =
−



















1 0 0 0

0 1 0

0 1 0

0 0 0 1

θ
θ

 (20.54)

Here we ignore terms of order θ2. Thus S differs from the identity only by terms of order θ , 
so we try

 
S I i T

S I i T
= −
= +−

θ
θ1

 

Employing (20.54) in (20.53) and discarding all terms of order θ2, we obtain

 

γ θγ γ θ γ γ
γ θγ γ θ γ γ

γ

1 2 1 1 1

2 1 2 2 2

3

+ = − −( )
− = − −( )

=

i T T

i T T
T          0 −

= −
γ

γ γ
3

0 0

T
T T          0 

 

It is easy to verify that these conditions are satisfied by T i= +( )2 1 2γ γ , and thus

 S Iinfinitesimal = +
1
2

1 2γ γ θ  (20.55)

For a finite rotation about the z-axis, we thus have:

 S = 





exp
1
2

1 2γ γ θ  (20.56)

Now

 γ γ
σ

σ
σ

σ
σ

σ
1 2 1

1

2

2

3

3
3

0

0

0

0

0

0
=

−




 −





= −






≡ −i iΣ  (20.57)

Therefore, (20.56) can be written

 S
i

I i= −




= −exp cos sin

2 2 23 3Σ Σθ θ θ
 (20.58)

More generally, for a rotation of angle θ about an axis defined by the unit vector n̂,

 S I i n= −cos sin
θ θ
2 2

Σ  (20.59)

From (20.59), we draw the important conclusion that solutions to the Dirac equation trans-
form under spatial rotations as particles of spin-½. Thus, although electron spin is attached ad 
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hoc to the nonrelativistic Schroedinger theory to give the Pauli-Schroedinger theory, it emerges 
naturally from the Dirac equation.

Lorentz Boost along the z-Axis with Velocity β
Here

 a =

−

−



















γ βγ

βγ γ

0 0

0 1 0 0

0 0 1 0

0 0

 

It is convenient to define cosh u u= =γ βγ and sinh . Then

 a

u u

u u

=

−

−



















cosh sinh

sinh cosh

0 0

0 1 0 0

0 0 1 0

0 0

 

For small u, cosh sinh .u u u≈ ≈1 and  Thus

 a

u

u

=

−

−



















1 0 0

0 1 0 0

0 0 1 0

0 0 1

 (20.60)

As was the case for an infinitesimal rotation, here S also differs only infinitesimally from the 
identity, so we try

 
S I iuK

S I iuK
= −
= +−1

 

Making use of (20.53) and (20.60), we then obtain

 
γ γ γ γ γ
γ γ γ γ γ

0 0 0 0 3

3 3 3 3 0

+ −[ ] = −
+ −[ ] = −

iu K K u

iu K K u
 

It is easy to verify that these equations are satisfied by

 K
i i

= − = −
2 2

0 3
3γ γ α  (20.61)

For finite u, this yields

 S
u

I
u u

== −




= −exp cosh sinh

2 2 23 3α α  (20.62)
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More generally, if  we have a Lorentz boost along some spatial axis defined by unit vector n̂ 
with speed β ,

 S I
u

n
u

= −cosh sinh
2 2

α    (20.63)

Note that in (20.63), because α is Hermitian, we have S S S† = ≠ −1. Hence S is not unitary. 
This is due to the fact that under a Lorentz boost, a spatial volume element does not remain 
invariant (there is Lorentz contraction). Hence ψ†ψ is also not invariant under the Lorentz 
transformation.

In the preceding section we presented four linearly independent plane-wave solutions to the 
Dirac equation for arbitrary 3-momentum p [recall equations (20.42)–(20.45)]. We could have 
found such solutions for a particle at rest (p = 0) and then applied the transformation S of  
(20.63) to obtain the results (20.42)–(20.45).

Spatial Inversion

Here

 a =
−

−
−



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (20.64)

Thus (20.53) yields γ γ γ γi iS S S S= − =− −1 0 1 0 and , which imply

 S = γ 0  (20.65)

20.7 Bilinear covariants

Additional useful conclusions can be drawn from (20.53). Starting with ′ =ψ ψ( ) ( )ax S x , 
we have

 ′ ′ ′ ′ = ′ ′ ′ ′
=

ψ ψ ψ γ ψ
ψ γ ψ

( ) ( ) ( ) ( )
( ) (

x x x x
x S S

†

† †

0

0                 x)
 

In each of the three cases discussed in the preceding section (i.e., rotations, Lorentz boosts, and 
spatial inversion), S S†γ γ0 0= , as is easily verified. Therefore,

 ′ ′ ′ ′ =ψ ψ ψ ψ( ) ( ) ( ) ( )x x x x  (20.66)
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In other words, ψψ  is an invariant (or scalar) under Lorentz transformations. Next,

 

′ ′ = ′ ′
=
= −

ψ γ ψ ψ γ γ ψ
ψ γ γ ψ
ψ γ γ

µ µ

µ

†

† †

†

0

0

0 1

           
           

S S
S µ

µ
σ

σ
ψ

ψγ ψ
S

a           
                  

=
 (20.67)

where we have used (20.53). Equation (20.67) reveals that ψγ ψσ  is a 4-vector. Because ψγ ψσ  
changes sign under spatial inversion, it is more appropriate to call it a polar 4-vector. Next, 
defining

 σ γ γ γ γµν µ ν ν µ= −( )i
2

 (20.68)

we have

 

′ ′ =

= −− − −

ψ σ ψ ψ γ σ ψ

ψ γ γ γ γ

µν µν

µ ν ν

† †

†

S S
i

S SS S S S

0

0 1 1 1

2
             S S

a a

−[ ]
=

1γ ψ

ψσ ψ

µ

µ
α

ν
β

αβ             
                  

 (20.69)

This means that ψσ ψαβ  is a second-rank (antisymmetric) tensor. Next, consider

 ′ ′ = − −ψ γ γ ψ ψ γ γ ψµ µ5 1 5 1S SS S  (20.70)

If  we have a proper Lorentz transformation (rotation or boost), S is a sum of products of 
two gamma matrices, in which case S Sγ γ5 5= . However, for a spatial inversion, S = γ 0, so 
S Sγ γ5 5= − . Thus, under proper Lorentz transformations, ψγ γ ψµ5  is a 4-vector, but under spa-
tial inversion, it remains invariant. In other words, ψγ γ ψµ5  is an axial 4-vector. Finally, ψγ ψ5  
is invariant under proper Lorentz transformations, but it changes sign under spatial inversion: 
it is a pseudoscalar. To summarize,

 

ψψ
ψγ ψ
ψσ ψ

ν

µν

               Scalar
           Polar 4-vector

         Second-rank (antisymmetric) tensor
Axial 4-vψγ γ ψµ5 ector

            Pseudoscalarψγ ψ5

 

These properties play an important role in later discussions of electromagnetic and weak inter-
actions. For the present, we mention just one very simple consequence. For a free particle at rest 
(where E m=  and = 0p ), the following relations are obviously true:

 u ur s rs r= δ η  (20.71)

 

 

 

 

 

 



The Dirac Equation480

where

 
η
η

r

r

r
r

= + =
= − =

1 1 2
1 3 4

 for 
 for 

,
,

 

Because uu is an invariant, (20.71) remains true for a free particle with arbitrary momentum.

20.8 Properties and physical significance of operators in Dirac’s theory

In the nonrelativistic Pauli-Schroedinger theory, the spin operator S = σ /2  and the orbital angu-
lar momentum operator L r p= ×  independently commute with the free-particle Hamiltonian 
H m= p2 2/ . However, neither S nor L commutes with the Dirac free-particle Hamiltonian. 
For the spin operator, we have

 

1
2

1
2
1
2

4Σ Σ

Σ

i i j j

i j j

H p m

p

, ,

,

[ ] = +( ) 

=  

α γ

α              
 

Now α γ γj j j= =5 5Σ Σ ; hence

 

1
2

1
2

5

5

Σ Σ Σ

Σ

i i j j

ijk k j

H p

i p

, ,[ ] =  
=

γ

ε γ              
              = i pijk k jε α

 

Therefore,

 S p,H i[ ] = − ×α  (20.72)

Also,

 
L H L p

i p
i i j j

ijk k j

, ,[ ] =  
=

α
ε α           

 

Hence

 L H i,[ ] = ×α p  (20.73)

Thus, although neither S nor L commutes with the free-particle Dirac Hamiltonian, J = L + S 
does commute with H; that is,

 J ,H[ ] = 0  (20.74)

 

 

  

 

 

 

 

 

 

 



20.8 Properties and physical significance of operators in Dirac’s theory481

Next, we consider various properties of the position, momentum, and velocity operators. Here 
it is convenient to employ the Heisenberg picture, where an operator A with no explicit time 
dependence satisfies the Heisenberg equation

 
dA
dt

i
A H= − [ ]



,  (20.75)

To keep the discussion general, we do not assume an explicit form for H at present but merely 
require that

 H c m c2 2 2 2 4= +p  (20.76)

Thus what follows applies to any relativistic wave equation and not just to the Dirac equation. 
Setting  = =c 1 and employing one spatial dimension for simplicity, we have

 x H x p ip, ,2 2 2[ ] = [ ] =  (20.77)

and

 i
dx
dt

ix x H xH Hx= = [ ] = − ,  (20.78)

Thus

 ixH xH HxH = −2  

and

 iHx H x HxH = − +2  

Combining these last two equations and using (20.77), we obtain

 ixH iHx ip + = 2  (20.79)

However,

   x iHx ixH= −  (20.80)

Hence

  x iHx ip= −2 2  (20.81)

and

  x ixH ip= − +2 2  (20.82)

Differentiating both sides of (20.82) and recalling that for a free particle H and p are constant 
operators, we have
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  x i xH= −2   (20.83)

This equation may be integrated immediately to yield

  x t x e iHt( ) ( )= −0 2  (20.84)

It is important to maintain the order of the operators on the right-hand side of (20.84) because 
x H and  do not commute. Had we used (20.81) instead of (20.82), we would have obtained

  x t e xiHt( ) ( )= 2 0  (20.85)

Substitution of (20.84) into (20.82) yields

 − = −−2 0 22ixH x e ipiHt
 ( )  

or

  x t pH
i

x e HiHt( ) ( )= +− − −1 2 1

2
0  (20.86)

As (20.86) reveals, the velocity operator x t( ) has two parts. The first is the constant 
operator pH −1 and is familiar intuitively from classical relativistic mechanics, where 
v p E pc E= =/  /  in ordinary units)( 2 . However, there is a second part that oscillates extremely 
rapidly and is called zitterbewegung (“jittery motion” in German). For a particle of mass m, 
the zitterbewegung has an angular frequency of at least 2 2 2m mc= /, which corresponds to a 
frequency of order 1021 Hz for an electron. The physical origin of zitterbewegung is as follows: 
to measure the velocity of a particle, we must determine its position at two different times; 
then we know its average velocity in the interval between. However, because of the uncertainty 
principle, a rather precise determination of the position renders the momentum, and thus 
the energy, correspondingly uncertain. If  sufficiently large values of the energy are attained, 
the particle is relativistic, in which case we can expect all values of the velocity between –c 
and +c superimposed on an average velocity of pc E2 / . Moreover, if  the particle of interest is 
sufficiently relativistic, various multiparticle processes can occur, and the very validity of the 
single-particle relativistic wave equation is lost. Thus we can say that the zitterbewegung is a 
manifestation of this breakdown.

Result (20.86) is valid for any relativistic wave equation. Now, however, we return to the 
Dirac equation. Here, because the free-particle Hamiltonian is H m= +α γ p 4 , we have

 x i x pi i j j i= −   =, α α  (20.87)

Because the eigenvalues of the matrix αi are ±1, the eigenvalues of the velocity operator are 
also ±1 (±c if  c is exhibited explicitly). Given (20.86), this result should not surprise us. We also 
note that because α αi j and  do not commute for i j≠ , different components of the velocity 
do not commute. Finally, because αi connects positive- and negative-energy wave functions, an 
eigenstate of velocity cannot also be an eigenstate of energy and momentum.

 

 

 

 

 

 

 

 

 



Problems for Chapter 20483

Problems for Chapter 20

20.1. Suppose that there are two spatial dimensions instead of three. What form would the 
Dirac matrices and Dirac equation take in this case?
20.2. At some instant of time (say, t = 0), the normalized Dirac wave function for a free electron 
is known to be

 ψ ( , ) expx 0
1

=























V

a

b

c

d

ip zz



 

where a, b, c, and d are independent of the space-time coordinates and satisfy

 a b c d
2 2 2 2

1+ + + =  

(a) Find the probabilities for observing the electron with

•	 E > 0, spin up
•	 E > 0, spin down
•	 E < 0, spin up
•	 E < 0, spin down

(b) Construct the normalized Dirac wave functions for E > 0 plane waves that are eigen-
states of the helicity operator h = =Σ Σ 

p p/ p . Evaluate the expectation values of 
Σ Σ  

ˆ ˆ ˆp p p and .γ γ γ0 5= −

(c) Construct the normalized Dirac wave function for an E > 0 transversely polarized plane 
wave whose propagation and spin Σ( )  directions are along the positive z- and positive x-axes, 
respectively. Evaluate the expectation values of Σ Σ1

0
1 and γ .

20.3. Let γ µ  be the transpose of γ µ . Then

    γ γ γ γµ ν ν µ µν+ = 2g I  

Thus there exists a nonsingular matrix S such that

 γ γµ µ= −S S 1  

Find S if  the γ µ  are in the standard representation.

20.4. In the Pauli-Dirac (standard) representation,

 ψ
ψ
ψ

=






A

B

 

  

 

 

 

 

 



The Dirac Equation484

In the Weyl representation,

 ′ =
+
−







ψ
ψ ψ
ψ ψ

1

2
A B

A B

.  

(a) Find the gamma matrices ′γ 0 1 2 3 5, , , ,  in the Weyl representation, and find the matrix S that 
yields

 ′ = −γ γµ µS S 1  

(b) Consider the free-particle Dirac equation, which is really four coupled linear equations. 
Write these in the Weyl representation, and show that in the limit of zero mass these become 
two decoupled sets of two linear equations. Discuss the role of particle helicity for these two 
sets of equations.

20.5. In units where  = =c 1, the Dirac free-particle Hamiltonian is

 H m= +α p β  (1)

and in the standard representation

 α
σ

σ
=






0

0
  (2)

and

  β =
−







I

I

0

0
 (3)

The α  matrices are sometimes called odd because they connect the upper two components of 
a four-component Dirac wave function to the lower two components of another such func-
tion. Other odd matrices are γ 5  and  matricesγ  in the standard representation. The matrices 
β γ= 0 , Σ , and the 4×4 identity matrix are called even because in the standard representation 
they only connect the upper two components to one another and the lower two components 
to one another. Sometimes it is useful to employ the Foldy-Wouthuysen (F-W) transformation 
(Foldy and Wouthhuysen 1950) to obtain a representation in which the free-particle Dirac 
Hamiltonian is expressed entirely in terms of the even matrix β . This problem is concerned 
with the F-W transformation.
(a) Define the operator

 
U

m

m
=

+ +
+

ε β
ε ε

α p
2 ( )  

(4)

where ε = + +p2 2m , and α and β  are given by (2) and (3), respectively. Show that U  is unitary 
and that

 U HU H† = ′ = βε  (5)
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H′ is the Hamiltonian in the F-W representation.
(b) For discussions of a free particle of well-defined momentum, it is often convenient to work 
in momentum space rather than coordinate space. Here the coordinate operator is defined as

 x i
pi

i

=
∂
∂

 (6)

Using the Heisenberg equation and the F-W representation, show that the velocity operator is

 x
p

i
i= β

ε
 (7)

Note that no zitterbewegung appears here, which appears to be a great advantage. However, a 
price must be paid. Consider the operator Xi  in the original representation, which becomes xi  
in the F-W representation. Xi turns out to be very complicated; that is,

 

X UxU

x
i

i
p
m m

i i

i i
i i

=

= + −
+

−
×( )
+

†

( ) ( )
    

2 2 22ε
βα β

ε ε ε ε
α Σ
 p p

 

(8)

The main use of the F-W transformation is its application to problems involving interaction of 
an electron with an external electromagnetic field near the nonrelativistic limit. Here the F-W 
transformation can be applied iteratively to eliminate odd operator terms in a Hamiltonian to 
any desired level of precision. [For example, the F-W transformation is a systematic way of car-
rying out the two-component reduction of the Dirac equation for a hydrogenic atom to second 
order and thus to obtain the result given in Section 21.5, equation (21.29).]
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21.1 The Dirac equation

We now consider the Dirac equation for a spin-½ particle with electric charge q when external 
electromagnetic potentials are present. As in the case of the Klein-Gordon equation, we make 
the replacements

 
E E q i c

x
q

q
c

i
q
c

→ − = ∂
∂

−

→ − = − ∇ −

Φ Φ



0

p p A A
 

which are equivalent to the replacements

 ∂ → ∂ +µ µ µ
iq
c

A


 (21.1a)

or, in natural units,

 ∂ → ∂ +µ µ µiqA  (21.1b)

Sometimes the right-hand side of (21.1a) or (21.1b) is called the covariant derivative Dμ. The 
Dirac equation now reads

 m i iqA m i D− ∂ +( )  = −  =γ ψ γ ψµ
µ µ

µ
µ 0  (21.2)

21.2 The second-order equation

It is useful to derive a second-order equation that is similar to the Klein-Gordon equation for a 
spin-0 particle of charge q. Operating on (21.2) on the left by m i iqA+ ∂ +( ) γ ν

ν ν , we obtain

 m i iqA m i iqA+ ∂ +( )  − ∂ +( )  =γ γ ψν
ν ν

µ
µ µ 0  

which yields

Interaction of a Relativistic Spin-½ Particle with an 
External Electromagnetic Field21
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 m iqA iqA2 0+ ∂ +( ) ∂ +( )  =γ γ ψν µ
ν ν µ µ  (21.3)

Now

 
γ γ γ γ γ γ γ γ γ γ

σ

ν µ ν µ µ ν ν µ µ ν

νµ µν

= −( ) + +( )
= − +

1
2

1
2

        i g I
 (21.4)

Substitution of (21.4) into (21.3) gives

 m iqA iqA i iqA iqA2 0+ ∂ +( ) ∂ +( ) − ∂ +( ) ∂ +( )  =ν ν
ν ν

νµ
ν ν µ µσ ψ  (21.5)

Because σνµ  is antisymmetric with respect to interchange of ν µ and , the last term on the left-
hand side of (21.5) can be written

 

− +( ) ∂ +( ) − ∂ +( ) ∂ +( ) 

= ∂

i
iqA iqA iqA iqA

q
A

2

2

σ ψ

σ

νµ
ν ν µ µ µ µ ν ν

νµ
ν µ

∂

+ ∂ − ∂ − ∂( )
= ∂ − ∂ 

=

ν µ µ ν µ ν

νµ
ν µ µ ν

νµ
νµ

ψ

σ ψ

σ ψ

A A A

q
A A

q
F

2

2

( ) ( )
 

Therefore, (21.5) becomes

 m iqA iqA
q

F2

2
0+ ∂ +( ) ∂ +( ) +





=ν ν
ν ν

νµ
νµσ ψ  (21.6)

or, as is easily verified,

 
m iqA iqA q iq2 0+ ∂ +( ) ∂ +( ) − +  =ν ν

ν ν ψΣ B α E
 

(21.7)

The first two terms on the left-hand side of (21.6) or (21.7) are the same as those that appear in 
the Klein-Gordon equation for a spin-0 particle of charge q, but the remaining term in (21.6) 
is unique to a particle of spin-½.

21.3 First-order two-component reduction of Dirac’s equation

Now we return to the Dirac equation (21.2) for a particle with definite energy E. Choosing 

the standard representation and writing ψ
ψ
ψ

=






A

B

, where ψ ψA B and  are both two-component 

spinors, we have
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E m q q

E m q q
A B

B A

− −( ) = −( )
+ −( ) = −( )

Φ
Φ

ψ ψ
ψ ψ

σ
σ




p A
p A

 (21.8)

Defining W E m q i q= − = − = − ∇ − and ππ p A A  and substituting these quantities into (21.8), 
we obtain

 W q A B−( ) =Φ ψ ψσ π  (21.9)

and

 W m q B A+ −( ) =2 Φ ψ ψσ π  (21.10)

We write (21.10) as

 ψ ψB AW m q= + −( )−2
1Φ σ π  

and substitute the latter equation into (21.9) to obtain

 W q W m qA A−( ) = + −( )−Φ Φψ ψσ π σ π 2
1

 (21.11)

In the nonrelativistic limit, W q m− Φ ; hence

 W q m
m

W q

m
− +( ) = −

−

( )
+−Φ

Φ
2

1
2 2

1

2   (21.12)

In the lowest (first-order) approximation, we retain only the first term on the right-hand side of 
(21.12), in which case (21.11) becomes

 W q
mA A−( ) =Φ ψ ψ1

2
σ πσ π   (21.13)

Now

 

σ πσ π π π σ π π
π π σ

   

 

ψ ψ
ψ

A A

A

i

q

= + ×( )
= + ∇×( )                  

  

A
                = +( )π π σ q AB ψ  

Thus, for an electron where q = –e, (21.13) becomes

 

1
2

2

m
e e g W

e
A A s B A Ap +( ) − + =A S Bψ ψ µ ψ ψΦ 

 
(21.14)

where gs = 2. Note that the latter quantity arises naturally from the Dirac theory. As men-
tioned in earlier chapters, the actual gs value, determined by experiment, is

 gs = 2 1 0011596( . )  (21.15)
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The departure of the factor in parentheses from unity is mainly caused by quantum electrody-
namic (radiative) effects.

21.4 Pauli moment

As is well known, certain spin-½ particles have very anomalous spin magnetic moments; 
that is,

 µ κ= e
Mc


2
 

where M is the particle mass, and κ deviates far from unity. For example,

 µ µproton neutron= = −2 79
2

1 91
2

. .
e
m c

e
m cp p

 

 

(the latter even though the neutron charge is zero). To describe this, we seek a covariant and 
gauge invariant if  admittedly phenomenologic modification of Dirac’s equation (21.2), which 
reduces in the nonrelativistic limit to

 

1
2 2

2

M
q

e
Mc

qA A A Ap A B−( ) − + =ψ ψ ψ ψκ 

σ Φ W
 

(21.16)

where q is the particle charge (qneutron = 0). To find the appropriate modification to (21.2), we 
can argue intuitively as follows: consider the quantity γ ψµ µA  appearing in (21.2). Because 
ψγ ψµ

µ and A  are both polar 4-vectors, ψγ ψµ
µA  is a scalar. We can form another scalar involv-

ing the spin-½ particle and the electromagnetic field, namely, ψσ ψµν
µνF , which suggests that 

we try the following modification to (21.2):

 M i iqA k F− ∂ +( ) +  =γ σ ψµ
µ µ

µν
µν 0  (21.17)

where k is an appropriate constant. Just as in our previous discussion of equations (21.6) and 
(21.7), (21.17) can be rewritten as

 
M i iqA k ik− ∂ +( ) − +  =γ ψµ

µ µ 2 2 0Σ α B E
 

(21.18)

Once again we employ the standard representation to write (21.18) as two coupled equations 
in ψ ψA B and ; that is,

 

W q k ik

W M q k ik
A B

B

− −( ) = −( )
+ − +( ) = +(

Φ
Φ

2 2

2 2 2

σ σ π σ
σ σ π σ

  

  

B
B

ψ ψ
ψ

E
E )ψA  

As before, we ignore W q k− +Φ 2 σ B compared with 2M in the second of these equations
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ψ ψB AM
ik≅ +( )1

2
2σ π σ E

 
and substitute this into the first equation to obtain

 
W q k

M
ik ikA A− −( ) = −( ) +( )Φ 2

1
2

2 2σ σ π σ σ π σ    B ψ ψE E
 

(21.19)

We now consider two special cases of (21.19), namely,

1. Φ = =0 0,  E . Here (21.19) becomes

 

W
M

k

M
k

q
M

A A A

A A

ψ ψ ψ

ψ ψ

= +

= + −





1
2

2

2
2

2

2

σ πσ π σ

π
σ

  



B

B       
 

From this we see that the particle has a spin magnetic moment

 µ = −
q
M

k
2

2  

in natural units. By appropriate choice of k, we can have any magnetic moment we like. If  
this is so, why should we insist on the value gs = 2 for the electron that emerges from the 
unmodified Dirac equation, as in (21.14)? There is a compelling reason: the unmodified 
Dirac equation description is renormalizable, whereas the Pauli moment description with 
k ≠ 0 is not renormalizable. To arrive at this conclusion, however, we need more than single-
particle relativistic quantum mechanics. Quantum field theory is required.

2. B = ≠0 0,   for the neutron.E  Now (21.19) becomes

 

W
m

i iA
n

n n Aψ µ µ ψ= +( ) −( )1
2

σ σ p pE E

 

(21.20)

It can be shown that for a slow neutron moving in the Coulomb field of an electron, (21.20) 
leads to the following effective Schroedinger equation (with  = =c 1):

 − ∇ + ( ) =
1

2 2
2 3

m
e
mn

A
n

n
A Aψ µ δ ψ ψr W .  (21.21)

Experiments show that in the scattering of slow neutrons, the Foldy potential

 V
e
m

n

n

= ( )µ δ
2

3 r  

actually exists.
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21.5 Two-component reduction of Dirac’s equation  
in the second approximation

We now return to (21.11) with q = –e, appropriate for an electron; that is,

 W e W m eA A+( ) = + +( )−Φ Φψ ψσ π σ π 2
1

 (21.22)

In an earlier discussion of the expression

 W e m
m

W e

m
+ +( ) = −

+

( )
+−Φ

Φ
2

1
2 2

1

2   (21.23)

we employed only the first term on the right-hand side to arrive at the Pauli-Schroedinger 
equation (21.14) with gs = 2. We now improve the approximation by including in addition the 
second term on the right-hand side of (21.23). We are interested in particular in the motion of 
the electron in the hydrogen atom. Accordingly, we set A = 0 and choose Φ = ( )Ze r/ 4π . Then 
(21.22) yields

 
W e

m
W e

mA
e e

+( ) = −
+





Φ
Φψ ψσ σ p p A

1
2

1
2  

(21.24)

In what follows it is necessary to be careful about normalization. Here our starting point is the 
requirement that

 
ψ ψ ψ ψ ψ ψ† † †( )∫ ∫= + =d dA A B B

3 3 1r r
 (21.25)

Because ψ ψB e Am≈ ( )σ p 2 ,  we have ψ ψ ψ ψB B A e Am† † ,≈ ( )p2 24 ; hence, to sufficient precision, 
(21.25) can be written

 ψ ψA
e

Am
d† 1

4
1

2

2
3+







=∫
p

r  

Defining u mA A e A= = + ( ) Ωψ ψ1 82 2p , we then have

 u u dA A
†∫ =3 1r  (21.26)

Now (21.24) may be rewritten as

 H W eA Aeffψ ψ= +( )Φ  

Hence

 H u W e uA AeffΩ Φ Ω− −= +( )1 1  
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and thus

 Ω Ω Ω Φ Ω− − − −= +( )1 1 1 1H u W e uA Aeff  

which is
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8
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1

2
1

8
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2

2

2
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−






= −
p

p p
p

Am m
W e

m m
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e e e e

σ σ 

Φ p p2

2

2

28
1

8m
W e

m
u

e e
A







+( ) −






Φ
 

(21.27)

We now expand the left hand- and right-hand sides of (21.27) and retain only terms up to and 
including those of order p4 (which are of relative order α2 compared with the leading terms). 
We discard terms of order p W p p4 4 6, , , Φ  and so on. After straightforward algebra, this yields

 
p p

p p p p
2 4

3 2
2 2

2 8 8
2

m
u e u

m
u

e
m

u u u Wu
e

A A
e

A
e

A A A A− − − − −( ) =Φ Φ Φ Φσ σ   (21.28)

Now

 
σ σ σ σ σ σ     



p p p p p p

p p

Φ Φ Φ
Φ

u u u

u
A A A= ( ) +
= ( )                   A A Au i u+ + ( ) × Φ Φp p p2 σ

 

Thus, finally, (21.28) becomes

 Wu
m

u e u
m

u
e
m

u
e
m

uA
e

A A
e

A
e

A
e

A= − − − ∇( )×  − ∇( )p p
p

2 4

3 2 2
2

2 8 4 8
Φ Φ Φσ   (21.29)

Reading (21.29) from left to right, we identify the various terms:

1. W  is the total energy minus the rest energy.
2. p2 2/ me is the ordinary nonrelativistic kinetic energy.
3. −eΦ is the ordinary Coulomb potential energy.
4. − p4 3/8me  is the relativistic correction to the kinetic energy.

5. −( ) ∇( ) ×  = ( )( ) ×( )e m Ze m re e4 8 12 2 2 3σ Φ p S r pπ  is the spin-orbit interaction term, 
which has a nonzero expectation value only for states with  ≠ 0.

6. −( ) ∇( )e me8 2 2Φ  is the Darwin term, which has a nonzero expectation value only for states 
with  = 0.

In Section 10.2 we gave a heuristic derivation of terms 5 and 6. Here we see that these terms 
and the Darwin term (term 6) arise naturally from the Dirac equation. The expectation value 
of the Darwin term for s states is calculated in the usual manner by first-order perturbation 
theory using Pauli-Schroedinger wave functions; that is,
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e
m

u
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m
u u

Z
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e
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e
ns ns− ∇ = ( ) =

8 2 22
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4 4

3
Φ

π δ α
r  (21.30)

in natural units. The fine-structure energy shift due to terms 4, 5, and 6 combined is
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 ∆E
Z

n j n
= −

+
−







4 4

32
1 3

4
α

1/2
 (21.31)

21.6 Symmetries for the Dirac Hamiltonian with a central potential

We now embark on a discussion that leads to the exact solution to the Dirac equation for 
the Coulomb potential. We start with the Dirac Hamiltonian for a central potential in 
natural units

 H V= + +αp m rγ 4 ( )  (21.32)

and we first concern ourselves with the various operators of physical significance that commute 
with H.

First,

 J L= +
1
2

Σ  

We have already shown that J commutes with the first two terms on the right-hand side of 
(21.32). We also know that L and Σ separately commute with V. Thus J ,H[ ] = 0.

Second,

 

K = −





γ 0 1
2

Σ J

 
To prove that K H,[ ] = 0, we start with

 

1
2

1
2

0 0 0γ γ γ, ,H[ ] = [ ] =α α p p

 

(21.33)

Now

 
γ γ γ

γ

0 0 0

0

Σ α Σ α α Σ
Σα α

     

 

J p J p p J
p p

,[ ] = −
= +                  Σ( )J  (21.34)

However,

 
Σα α Σ Σα α Σ α Σ

α α Σ
    



p p p p p
p p

+ − +
= − × +
= 2

2 2                   i
 

Also,

 α Σ Σ= =γ γ5 5  

Hence (21.34) can be written
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γ γ γ γ γ0 0 5 0 52 2Σ Σ Σ Σ   J p J p J,H i[ ] = − ×( ) +  

(21.35)

Also,

 Σ Σ Σ   p J p J p J= + ×i  

Therefore,

 

γ γ γ γ γ0 0 5 0 52 2
2

Σ
Σ

  J p J p L,H[ ] = + = +





 
However, p•L = 0. Thus

 
γ γ γ γ0 0 5 0Σ Σ α  J p p,H[ ] = =

 
(21.36)

Comparing (21.36) with (21.33), we see that K H, .[ ] = 0  In addition, K ,J[ ] = 0, which can be 
seen as follows:

 
K = +




= +( )γ γ0 01

2
1
2

1Σ Σ Σ Σ  L L--
 

Thus

 

J L L L
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, , ,
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          ]+ [ ]γ 0
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Now

 

L L L
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i i j j j k ijk i

i j j

L i L i

L

L Σ Σ

Σ Σ

ε
1
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1
2 

 = = − ×( )i L iijk k j i
ε Σ Σ L

 
Therefore, K ,J[ ] = 0. It follows that we can construct simultaneous eigenstates of H, J   2, Jz, 
and K. We already know that the possible values of j are ½, 3/2, 5/2, and so on. What are the 
possible eigenvalues of K (which are conventionally called −κ)? We have
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1 1

1 2 1
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(21.37)

Also,

 J L L L L2 2

2 2
3
4

= +





+




= + +

Σ Σ
Σ•   (21.38)
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Thus

 J 2 2 1
4

= −K  

and therefore

 κ 2 1
1
4

= + +j j( )  

Hence

 κ = ± +





j
1
2

 (21.39)

Now, in the standard representation, let an eigenfunction of H, J  2, Jz, and K be ψ
ψ
ψ

=






A

B

. 
Then

 
Kψ

ψ
ψ

κ
ψ
ψ
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+( )
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1 0

0 1- σ
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B  
or

 σLψ κ ψA A= − +( )1  
(21.40)

and

 σLψ κ ψB B= −( )1  
(21.41)

These imply that
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≡ +( )   (21.42)

and
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Table 21.1 Eigenvalues of the operators J2, Jz, K,  
and L2 for states ψA, ψB

   Operator  Eigenvalue                 

                                                            
         

ψ ψA B

J 2                                        
      

j j j j( ) ( )+ +1 1
                                                     J m mz

                                            
     

σL+ −1 κ κ
                                   

____
L2 1 1   A A B B+( ) +( )

_____________________________
    1/2:           κ = + = +j jA 1/2   1/2
    1/2 :          1/2   1/



 

B

A B

j
j j j

= −
= − +( ) = − = +κ 2

 L2

2
1
2

1ψ κ ψ ψB B B B Bj= +





−












≡ +( )   (21.43)

where  A B and  are defined by (21.42) and (21.43), respectively. When κ = +j 1/2, the last 
two equations yield  A Bj j= + = −1 2 1 2/  and / . However, when κ = − +( )j 1/2 , we have 
 A Bj j= − = +1 2 1 2/  and / . We summarize what has been learned so far in Table 21.1.

Neither ψ ψA B nor  is an eigenfunction of Lz  or ∑z because neither of these operators com-
mutes with H. Instead, we may express each of the functions ψ ψA B and  as a radial function 
times an angular-momentum function in the form of a two-component spinor that has well-
defined j, m, and κ but is a superposition of eigenstates of Lz and Sz; that is,

 ψA j
mig r

A
= ( )Y



 (21.44)

and

 ψB j
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 (21.45)

where
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Y Yθ φ 2
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and
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m
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/ ,θ φ  (21.47)

Here the square-root factors are vector coupling coefficients with the same conventional choice 
of phases as in Chapter 7 [see, e.g., equations (7.110) and (7.111)].
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21.7 Coupled radial equations

The radial functions ig r f r( ) ( ) and  are found by solving the Dirac equation for a specific poten-
tial V r( ). To see how this is done, we start with the coupled Dirac equations
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It is convenient in what follows to employ the identity
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which holds because σ σ σ  r r r r= + × =r i r2 2 . Thus we have

 

σ σ σ σ

σ σ

σ

   

  



p r r p

r r p r p

r

= ( )

= + ×( )

= −

1

1

1

2

2

2

r

r
i

r
i

      

      r
r

i
∂
∂

+





σL

 

Therefore, we obtain
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(21.49)

and
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(21.50)

Furthermore, Λ ≡ σr̂ , the scalar product of an axial 3-vector and a polar 3-vector, is a pseu-
doscalar operator. When applied to Y j

m, it gives another angular eigenfunction of the same j 
and m but of opposite parity. In fact, it is easy to verify that with our choice of phases in (21.46) 
and (21.47),
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For example, we apply the operator Λ to Y1 2 0
1 2
/ ,
/ :
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Thus (21.49) and (21.50) become
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(21.51)

and
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(21.52)

respectively. Substitution of these expressions into (21.48) yields the coupled radial equations
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Frequently it is convenient to employ the substitutions F r rf r G r rg r( ) ( ) ( ) ( )= = and  to obtain 
the alternative radial equations
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21.8 Dirac radial functions for the Coulomb potential

For the attractive Coulomb potential V r Ze r Z r( ) ,= − = −2 4π α  (21.55) and (21.56) become
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For very large r, ∂ ∂ → − ∂ ∂ → +F r m E G G r m E F/  and /( ) ( ) . Thus we have
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which yield the solutions
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where λ = −( ) /m E2 2 1 2,

 a a
E
m

a a
E
m1 21 1= − − = + +  

and a is a constant. Making the substitution ε = E m/ , we try to form solutions F and G that 
are valid for all r by writing
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where for large r, φ φ2 1 . In terms of the new variable ρ λ= 2 r , (21.57) and (21.58) yield
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We try solutions of the form

 φ ρ ρ φ ρ ργ
ν

ν

ν
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ν

ν
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0
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= =
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∞

=

∞
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In general, it is impossible to have f and g finite everywhere. However, we can retain the usual 
requirement for bound states that

 f g r dr
2 2

0

2+( )
∞

∫  

is finite. Substituting (21.63) into (21.61) and (21.62) and equating terms with equal powers of 
ρ , we obtain the following relations:

 γ ν κν ν ν+ +( ) = − +( )−u a a w b1  (21.64)
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 γ ν κν ν+ −( ) = −( )u b w a  (21.65)

where w Z u w= − =α ε ε1 2  and , so w u Z2 2 2 2− = α . In particular, because a−1 does not exist, 
(21.64) and (21.65) reduce to the following relations for ν = 0 :

 
γ κ

κ γ
+( ) + +( ) =
−( ) − −( ) =

u a w b

w a u b
0 0

0 0

0

0
 

(21.66)

This pair of homogeneous linear equations has a solution only if  the determinant of the coef-
ficients vanishes and hence that

 γ κ α2 2 2 2= −Z  

and thus

 γ κ α= ± −2 2 2Z  

However, the requirement that f g r dr
2 2

0

2+( )∞

∫  is finite means that γ > −1/2, so we choose 

the positive root

 γ κ α= −2 2 2Z  (21.67)

Returning now to the general equations (21.64) and (21.65), we eliminate bν  to obtain the 
relation
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 (21.68)

If  the first sum in (21.63) contains an infinite number of terms, then ν  can be arbitrarily large. 
In this case, (21.68) yields
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ν ν→∞ −

→
a

a 1
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which implies that φ ρ
1 → conste  and thus that G F and  grow like eρ /2 for large ρ . Because this 

is incompatible with the requirement that f g r dr
2 2

0

2+( )∞

∫  be finite, we require that the sums 

in (21.63) each terminate after a finite number of terms. Then, in the numerator of the right-
hand side of (21.68) there exists a nonnegative integer ν = ′n  such that

 ′ = − =
−
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Zγ αε

ε
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1 2
 (21.69)

Furthermore, if  ′ =n 0, the second of equations (21.66) implies that a0 0= , in which case we 
must have b0 0≠  so that F and G do not vanish identically. In this case, the first of the equations 
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(21.66) requires that κ < 0; that is: κ = − +( )A 1 . The quantity n′ plays the same role here that 
the radial quantum number n nr = − − 1 played in the Schroedinger theory. Now we introduce 
the principal quantum number

 n n k= ′ +  (21.70)

where k j n= = + =κ 1 1 2/2 , , ...,  and n = 1 2 3, , , ... . Then, from (20.69), we obtain
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Thus the electron binding energy W E m= −  is
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 (21.72)

This formula gives a correct description of the energy levels of a hydrogenic atom of any Z 
such that Zα < 1, including fine structure but not including hyperfine structure, radiative cor-
rections (e.g., Lamb shift, anomalous part of the electron spin magnetic moment), or finite 
nuclear size. Expanding (21.72) for small Z, we obtain
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  (21.73)

The reader will recognize the first term on the right-hand side from the Balmer formula and 
the second (fine-structure) term that we earlier obtained from the two-component reduction in 
second order [see equation (21.31)]. The various energy levels are classified in Table 21.2.

For n = 1 (the ground state), (21.71) yields the energy
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m Z=
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2 2

α
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α  (21.74)

Although the binding energy W E m= −  is small for Zα 1, it increases in magnitude as Z  
increases. For example, for heavy atoms such as Pb (Z = 82), the 1s electrons (K shell) are so close 
to the nucleus that screening effects due to the other electrons are very small, and the K-shell 
electrons can be treated as hydrogenic to a good approximation. Because Zα = ≈82 137 0 6/ . ,  
we must employ (21.74) rather than the Balmer formula to calculate the energy. If  atomic 
nuclei did exist for Z ≈ 137, we would have hydrogenic orbitals with W m→ − . The solutions to 
the Dirac equation take on a different character when the limit Zα = 1 is passed. For example, 
when k = 1, γ α= −1 2 2Z  becomes imaginary.

We now turn to the Dirac eigenfunctions, the general formula for which is quite complicated 
[see, e.g., Bethe and Salpeter (1957), pp. 69–70]. The ground-state function is
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(21.75)

where χ is a two-component spinor with χ χ† = 1, and
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 (21.76)

The exponential factor in (21.75) is the same as in the Schroedinger theory. However, there is 
also the factor

 Z r
Zα α( ) − −1 12 2

 (21.77)

which diverges as r → 0. This factor reaches the value e = 2 718. ... when r is

 r
Z Z

= −
− −







1 1

1 1 2 2α α
exp  

For Zα 1, this is

 r
Z Z

≈ −





1 2
2 2α α

exp  

The effect is thus totally negligible because of the finite nuclear size for Zα 1. However, for 
large Zα, the effect is significant. For example, the radius of the 82

208Pb nucleus is approximately 
7.1 × 10–13 cm. At this radius, the factor in (21.77) is approximately 2.45. The peculiar singular-
ity at r = 0 is a feature of all j = ½ hydrogenic bound states.

Next, we consider the “small” component ψ B  in (21.75). As we have already shown, it cor-
responds to B = 1 (a p angular wave function). According to (21.75), it has the following  
magnitude relative to ψ A:

Table 21.2 Quantum numbers of the lowest states of atomic hydrogen  
in the Dirac theory

n n     j                           B′ κ  A Spectros. notation   ______________________________________________Parity πA____
1    1/2   0      1     0       1             12− s1 2/                        +
2    1/2   1      1     0       − 1             2                       +
2    1/2   1  

2s1 2/

     +1     1       0             2                  2 p1 2/     
2    3/2   0      2     1       2             22

−
− p3/2                       

3    1/2   2      1     0       
_

− 1             3                        +2s1 2/
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1 1

2

2 2− −
≈

Z
Z

Zα
α

α
 

for Zα 1. For hydrogen, this contribution is indeed very small (of order α /2 ≈ 0 0036. ). 
However, for heavy atoms such as mercury, thallium, and lead, where Zα ≈ 0 6. , the “small” 
component is comparable in magnitude to the “large” component. The consequences are sig-
nificant for various observable effects, such as hyperfine structure, x-ray spectra, atomic screen-
ing in the Coulomb corrections to nuclear beta decay, and parity nonconservation due to the 
neutral weak interaction.

In Figures 21.1 through 21.4 we plot the functions G and F for low-lying hydrogenic states 
with Z = 82. We see from these figures that except for the behavior at extremely small distances, 
G is quite similar to the nonrelativistic radial function rR.

21.9 Perturbation calculations with Dirac bound-state wave functions

How do we calculate the Zeeman effect; the Stark effect; hyperfine splittings; emission and 
absorption of photons; and other physical effects using the Dirac theory? The answer is that we 
use perturbation theory in very much the same way as with Schroedinger or Pauli-Schroedinger 
wave mechanics. In fact, in some respects, the Dirac theory is simpler. We now illustrate with 
two important examples.

21.9.1 Hyperfine structure

Here the most important case is magnetic dipole (M1) hyperfine structure, where the magnetic 
dipole moment of a nucleus with nonzero spin interacts with the spin and orbital magnetic 
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 Figure 21.1 Hydrogenic radial functions G, F, and rRnonrel for the 12
1/ 2s  state, Z = 82. The abscissa is r in units of  / m ce .
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 Figure 21.2 Same as Figure 21.1 but for the 22
1/ 2s  state.
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 Figure 21.3 Same as Figure 21.1 but for the 22
1/ 2p  state.
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dipole moments of an unpaired atomic electron. In nonrelativistic quantum mechanics, the M1 
hyperfine Hamiltonian for hydrogen was given in Chapter 10 as

 

H
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3 5
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µ µ µ µ µ



   



r
r r µ
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0











>  

(21.78)

Here µ p p Ng= µ I  is the proton nuclear magnetic moment, where µN pe m c=  2 , gp = 5 58. , and 
I  is the proton spin (with I = 1/2). Also, µ µs  and 



 are the electron spin and orbital magnetic 
moments, respectively. The separation of Hhfs into three distinct contributions, as shown in 
(21.78), reflects the fact that in the nonrelativistic theory, electron spin does not arise naturally 
but is grafted onto the theory in an ad hoc manner.

In the Dirac theory, the Hamiltonian in natural units for a relativistic electron in a Coulomb 
field and a magnetic field is
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= + + −α α p A γ α0

 
(21.79)

We treat the second term on the right-hand side of (20.79) as a perturbation and write

 H H H= + ′0  
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 Figure 21.4 Same as Figure 21.1 but for the 22
3/ 2p  state.
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 ′ =H eαA  (21.80)

For the case of M1 hyperfine structure,
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×
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4 43 2π π
ˆ

.
 (21.81)

It can be shown (see Problem 21.5) that to lowest order in α , (21.81) yields the following result 
in natural units for the M1 hyperfine splitting in the ground state of hydrogen:

 δ α=
2
3

4g g
m
mp s

e

p

 (21.82)

In atomic units, this is

 δ α=
2
3

2g g
m
mp s

e

p

 

which is the same result obtained by the nonrelativistic calculation in equation (10.32).

21.9.2 Emission and absorption of photons

The emission or absorption of photons by a nonrelativistic atomic electron was discussed at 
length in Chapter 16. There we saw that the interaction Hamiltonian takes the form

 H
e

m c
e

m c
g

e e
s

B
int = + +A p A S B





2

2
2

2
µ

 (21.83)

where A is the radiation field vector potential in Coulomb gauge, and B A= ∇× . The term in 
A2 makes no contribution for single-photon emission and absorption processes but does play 
a role when two photons are involved, as in Rayleigh scattering. The third term, involving 
the coupling of the electron spin to B, is added purely phenomenologically because the elec-
tron spin itself  has no natural explanation in nonrelativistic quantum mechanics. In the Dirac  
theory, (21.83) is replaced by the perturbation Hamiltonian

 ′ =H eαA  (21.84)

in natural units. Here it is convenient to describe the radiation field A in vector spherical waves 
rather than the plane waves employed in Chapter 16. The properties of vector spherical waves 
are summarized in Appendix C. One finds that A consists of two distinct types of terms: mag-
netic multipole and electric multipole. Magnetic multipole terms take the form

 A Y
  



( ) ( )m Mj kr= const  (21.85)

where YJ
M

m

m
mm m JM Y

 



θ φ ε θ φ, , , , ,’( ) = ′ ( )
′=−
∑ 1

1

1

 is a vector spherical harmonic with
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and j


 is a spherical Bessel function. Electric multipole terms take the form
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,

/
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+
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1
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1

M  (21.86)

When  = 1, (21.86) becomes

 A1

1 2

2 1 2

1 2

0 1 0
1
3

2
3

( )
/

,

/

,
e M Mj j= − 





+ 
















const Y Y


 (21.87)

In the long-wavelength limit, only the second term on the right-hand side of (21.87) is impor-

tant because j kr j kr0 21 0( )→ ( )→ and   for kr 1. Also Y1 0 1 4,
M

M= ( )π ε ; hence in the long-

wavelength limit

 A1
( )e → const ε  

Thus we have

 ′ =H const αε̂  (21.88)

This is reduced to a simpler form by noting that

 r H r p ii i j j i, ,0[ ] =   =α α  

Hence (20.88) can be written

 ′ = [ ]H Hconst r ˆ,ε 0  

which is familiar from Chapter 16.

Problems for Chapter 21

21.1. Show that the rate for an electron in the ground state of the hydrogen atom to radi-
ate and fall into empty negative-energy states in the energy interval − −m c m ce e

2 22 to  is 
approximately
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α

π

6 2
810

m ce



≈ − s 1  

21.2. Consider an electron in a uniform and constant magnetic field B along the z-axis. Assuming 
that gs = 2, show that the energy eigenstates are given by the formula

 E m c c p ne cBe z
2 2 4 2 2 2= + +   

where n is an integer. Compare with the analogous nonrelativistic formula.

21.3. In Section 21.4 we discussed the way in which a spin-½ particle with an anomalous spin 
magnetic moment is described by a Diraclike equation with a Pauli moment term. It can be 
shown that the interaction of the Pauli moment with an external magnetic field B is described 
by the following interaction Hamiltonian:

 ′ = −H µγ 0 ΣB  

where the magnetic moment operator is µ= µΣ. Consider a relativistic neutron moving in a 
homogeneous magnetic field B. In zeroth order, we assume that the neutron is a free particle 
with constant 3-momentum p v= m γ  and energy E m= γ  (in units where  = =c 1). Now we 
want to calculate the additional energy ∆E  associated with inclusion of H′ as a first-order  
perturbation. Show that

 
∆E = − −

+






χ γ
γ

χ† µ
1

µ vv B
 (1)

where the zero-order free-particle Dirac wave function is

 

ψ
χ

χ
=

+

+













−( ) 
E m

E
E m

i Et
2

σ p p rexp

 
Equation (1) can be interpreted as the expectation value (for the large-component spinor χ) of 
the interaction

 − −
+







µ µ
γ

γ1
 vv B  (2)

If  µ  is the magnetic moment of the neutron in its rest frame and B is the magnetic field in the 
laboratory frame, how do we interpret the quantity in parentheses in (2)?

(b) In Section 21.4 we discussed the Pauli moment and obtained equation (21.20). We also 
mentioned that (21.21) can be derived from (21.20). Fill in the steps in this derivation, in the 
course of which you will have to make some approximations. Please justify the latter: they are 
in fact legitimate.
21.4. (a) Discuss in detail how the number of nodes (number of zeros for 0 < < ∞r ) of the 
radial functions G r F r( ) ( ) and  of the hydrogen atom Dirac solutions are related to the quan-
tum numbers n j, , and .

(b) Which hydrogenic bound states satisfy the condition F r G r( ) ( )= const , and why?
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21.5. Calculate the magnetic dipole hyperfine splitting for the 12s1/2 state of  hydrogen  according 
to the Dirac theory, assuming that the hyperfine perturbation Hamiltonian is as given in 
(21.81). Show that the splitting between the F F= =1 0 and  levels in zero external magnetic 
field is

 E F E F
m

g g gf dr c
p

s p( ) ( ) ( )= − = = − = =
∞

∫1 0
2

3
1

0

α
  

Evaluate the integral using the radial wave functions ig and f for the 12
1 2s /  state, and keep terms 

only to lowest nonvanishing order in α . Compare your result with that for the nonrelativistic 
calculation [see, e.g., equation (10.32)].
21.6. In this problem we consider some consequences of the possibility that the electron might 
have a small intrinsic electric dipole moment (EDM). The present experimental upper limit on 
the electron EDM is 8.7 × 10–29 e cm, where e = 4.8 × 10–10  esu is the unit of electronic charge 
in cgs. (Baron et al, 2014). The existence of a measurable (although extremely small) EDM is 
suggested by current speculative theories (e.g., various types of supersymmetric theories) that 
attempt to go beyond the standard model. The EDM, like the electron’s spin magnetic moment, 
would be proportional to the electron spin itself. An electron EDM d can be incorporated for-
mally into Dirac’s equation in a gauge-invariant, proper-Lorentz invariant way as follows:

 i ieA i
d

F meγ ψ σ γ ψ ψµ
µ µ

µν
µν∂ +( ) − − =

2
05  (1)

where we employ units with  = =c 1. The term in d is analogous to the Pauli moment term 
discussed in Section 21.4 (21.17) except that in equation (1), σ µν  is replaced by iσ γµν 5.

(a) Show that (1) yields the following effective Dirac Hamiltonian for the electron:

 H H H= + ′0  

where

 
H e m e0

0= +( ) + −α  p A γ Φ
 

(2)

and

 
′ = − +( )H d iγ 0 Σ α E B

 (3)

(b) Show that H′ is odd under space inversion symmetry (parity = P) and time reversal (T). 
Thus an EDM cannot exist unless parity and time reversal invariance are both violated.

(c) Consider an atomic electron, as in hydrogen. Suppose that B = 0 and that the electrostatic 
potential Φ consists of two parts:

 Φ Φ Φ= +i e  

where Φi  is the internal (atomic) contribution, whereas Φe  is an external potential corre-
sponding to a uniform external electric field Ee = −∇Φe .  Writing E E E= +i e ,  we separate H′ 
into two parts
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 ′ = ′ + ′H H H1 2  

where

 
′ = − ′ = − −( )H d H d1 2

0 1Σ Σ E E and γ
 

Only ′H1  contributes in the nonrelativistic limit. Let ψ 0  be an eigenstate of H0 .  Show that 
if  H′ is treated as a perturbation on H0, the first-order energy shift arising from ′H1  vanishes. 
This result is called Schiff’s theorem.
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22.1 Dirac negative-energy sea

The single-particle Dirac theory is a major improvement over the Pauli-Schroedinger theory, 
but as we have mentioned previously, it and all other single-particle relativistic theories contain 
serious difficulties and contradictions. Here are some examples:

1. The one-dimensional step problem was discussed in Chapter 6 as an elementary example of 
reflection and transmission of de Broglie waves in nonrelativistic quantum mechanics. Let 
V = 0 for x < 0 and V V= + 0 for x ≥ 0. In the nonrelativistic case, if  a plane wave is incident 
from the left with energy E V> 0, part of the incident wave is reflected and part is transmit-
ted at the step, but if  V E0 > , the incident wave is completely reflected, and there is no trans-
mitted wave. The same problem may be studied with relativistic particles, for example, with 
the Klein-Gordon equation or the Dirac equation. In either of these cases, one finds that 
when V E0 >  and V0 is sufficiently large, there is once again an oscillatory transmitted wave 
(which has a negative probability density.) This phenomenon is known as the Klein paradox. 
It cannot be resolved within the single-particle framework.

2. Consider the problem of the lowest bound-state solution to the Dirac equation for an attrac-
tive spherically symmetric square-well potential. For fixed well radius, we can examine the 
binding energy as a function of well depth: V = –V0. If  V0 < 2mc2, the wave function outside 
the well goes to zero exponentially as r increases, just as we expect. However, if  V0 > 2mc2, 
the wave function outside the well becomes oscillatory. This is closely related to the Klein 
paradox, and it cannot be explained sensibly within the single-particle theory. Similarly, the 
behavior of bound-state solutions to Dirac’s equation for the Coulomb potential becomes 
pathologic if  Zα > 1.

3. We have seen that there exist negative-energy solutions to the Dirac equation and that these 
solutions cannot be disregarded. If  so, why can’t a positive-energy electron in the ground 
state of a hydrogen atom emit a photon and make a transition to one of these negative-
energy states? Using techniques we have already developed, it is not difficult to calculate 
the probability per unit time W for such a transition. For example, if  the final electron has 
energy in the range − −m c m ce e

2 22 to , one finds that W ≈ −108 1 s . According to this picture, 
all ordinary atoms ought to be very unstable and ought to disintegrate with the emission of 
photons with energies of approximately 1 MeV or more.

How do we resolve these fundamental difficulties, all of which are obviously related to 
negative-energy states? In 1930, Dirac proposed that positive-energy electrons don’t decay  
to  negative-energy states because all the latter states are filled, and the exclusion principle pro-
hibits the coexistence of two or more electrons in the same state. At first, this idea seems pre-
posterous because it requires a negative-energy electron sea with an infinite negative energy 
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density and infinite negative charge density everywhere. Perhaps one might overcome these 
difficulties, at least superficially, by arguing that a uniform energy density should not have 
any observable effects on a local scale, and neither should a uniform charge density. However, 
another serious objection is that relativistic wave equations describing bosons of spin 0, 1, … 
also exhibit negative-energy solutions. Obviously, Dirac’s idea doesn’t work for such particles 
because they are not subject to the exclusion principle, so how do we account for them?

Ignoring these worrisome questions, we consider what happens if  a negative-energy electron 
in the Dirac sea with momentum –p and spin –s absorbs a photon or photons and acquires pos-
itive energy. Then we would not only have an electron with positive energy but also a vacancy 
or hole in the negative-energy sea – the absence of a negative-energy electron. No observation 
could distinguish this hole from the presence of a positively charged electron (a positron) with 
positive energy, momentum +p, and spin +s. An observer would describe this phenomenon as 
the transformation of a photon or photons into a positive-energy electron-positron pair. The 
reverse process also could occur: the positive-energy electron could emit one or more photons 
and drop down into the negative-energy sea, thus filling the hole. An observer could equally 
well describe this as the annihilation of a positive-energy electron-positron pair by photon 
emission.

Once we start thinking this way, however, it seems only natural to reinterpret the negative-
energy electron solutions as positive-energy positron solutions, thereby getting rid of the 
 objectionable concept of the negative-energy sea altogether. Indeed, this can be done, as we see 
in the next section. However, a price must be paid – we must abandon the single-particle theory 
and instead embrace the idea of a many-particle relativistic quantum theory, where particles 
can be created and destroyed.

22.2 Charge-conjugation symmetry of the Dirac equation

We now see how the negative-energy electron solutions to the Dirac equation can be reinter-
preted as positive-energy positron solutions. We start with the Dirac equation for an electron 
in an external electromagnetic field; that is,

 m i e Aψ γ ψ γ ψμ
μ

μ
μ− ∂ − = 0  (22.1)

Now, recognizing that the Aμ are real quantities, we take the complex conjugate of (22.1)

 m i e Aψ γ ψ γ ψμ
μ

μ
μ

* * ** *+ ∂ − = 0  (22.2)

We show momentarily that one can construct a matrix C such that

 C Cγ γ γ γμ μ0 0 1( ) ( ) = −−*  (22.3)

Assuming this, we apply Cγ 0 on the left to both sides of (22.2) to obtain

 m C i C C C e C C A Cγ ψ γ γ γ γ ψ γ γ γ γ ψμ
μ

μ
μ

0 0 0 1 0 0 0 1 0* * ** *( ) + ( ) ( ) ∂ ( ) − ( ) ( )− − ( ) = 0  
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Use of (22.3) simplifies this last equation to

 m i e A C− ∂ +( ) =γ γ γ ψμ
μ

μ
μ

0 0*  (22.4)

Comparison of (22.4) with (22.2) shows that both are Dirac equations for particles of the same 
mass but opposite charge. In other words, ψ γ ψC C= 0 * is the solution charge conjugate to ψ . 
It remains to find an explicit form for C  (which is representation dependent). In the standard 
representation, where

 

γ γ γ
γ γ γ
γ γ γ
γ γ γ

0 0 0

1 1 1

2 2 2

3 3 3

= =
= = −
= − =
= = −

*

*

*

*









 

(22.3) may be rewritten as

 C Cγ γμ μ− = −1  (22.5)

which has the solution C i C C= = − = −−γ γ2 0 1 †. Therefore, up to an arbitrary phase factor, the 
solution charge conjugate to ψ is

 ψ γ ψC i= 2 *  (22.6)

To introduce the charge-conjugation transformation, we have just examined the Dirac 
equation for an electron in an external electromagnetic field. However, now that we have 
the result (22.6), we can study its consequences for the free-particle solutions listed as 
follows:

 

ψ ε
ε

ε

ε1
1

2

1

0

1

0

p
p

p x( ) = +
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V

m
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i i t
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1

V
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(22.7)
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ε
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1
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(22.8)
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(22.9)
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ψ ε
ε

ε
ε4

1
2

0

1
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1

p

p

p x( ) = +
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+
V

m m
i i

σ

exp t
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u i i t( ) = +( )1
4 exp p x ε

 

(22.10)

For example, we employ (22.6) to find the charge conjugate of ψ1 p( ); that is,

 

ψ γ ψ ε
ε ε1

2
1

1
2

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
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Therefore,

 
ψ ψε

1
1 2

4 4C
i i tV u e ep p pp x( ) = −( ) = −( )− −( )/ 

 

(22.11)

Similarly,

 ψ ψ2 3C p p( ) = − −( )  (22.12)

 ψ ψ3 2C p p( ) = − −( )  (22.13)

 ψ ψ4 1C p p( ) = −( )  (22.14)

In (22.11), ψ 4 −( )p  describes an electron with energy −ε , 3-momentum –p, and spin down 
along z. However, from (22.11), it also can be regarded as describing a positron with energy +ε ,  
3-momentum +p, and spin up along z. All the foregoing is summarized in Table 22.1.

From now on we mention negative-energy electron solutions to the Dirac equation only 
incidentally because these have been reinterpreted as positive-energy solutions for positrons, 
as described by the spinors v1,2 in Table 22.1. Before we proceed further, we summarize various 
properties of the u and v spinors that are needed in our future discussions and that are easily 
derived from previous work. Note the convenient shorthand a a≡ γ μ

μ, which can be employed 
for any 4-vector a.

 p m u ps−( ) =( ) 0  (22.15)

 p m v ps+( ) =( ) 0  (22.16)

 u p p ms ( ) −( ) = 0  (22.17)
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 v p p ms ( ) +( ) = 0  (22.18)

 u p u p
ms s ss

† ( ) ( ) =′ ′δ ε
 (22.19)

 v p v p
ms s ss

† ( ) ( ) =′ ′δ ε
 (22.20)

 u p u ps s ss′ ′=( ) ( ) δ  (22.21)

 v p v ps s ss′ ′= −( ) ( ) δ  (22.22)

 u p v ps s′ =( ) ( ) 0  (22.23)

One more important remark may be made at this stage concerning charge-conjugation sym-
metry and in particular any electrically neutral spin-½ particle (e.g., the electron neutrino νe).  
Here, even in the presence of an external electromagnetic field, both ψ and ψC obviously sat-
isfy the same Dirac equation. This leads to the possibility that the particle of interest and 
its charge conjugate are identical. Because this possibility was first discussed for neutrinos 
by E. Majorana in 1937, one speaks of possible self-charge-conjugate neutrinos as Majorana 
neutrinos. So far no experiment has ruled out the possibility that neutrinos of each flavor are 
of this form.

22.3 A digression on time-reversal symmetry

The Dirac equation exhibits an additional symmetry under time reversal. Before we discuss it, let 
us consider some general properties that the operator T corresponding to a time-reversal trans-
formation must possess. Consider some physical process, which might be a collision between 
particles, for example, e e+ − + −+ → +μ μ , or a spontaneous decay, for example, n p e e→ + +− ν .  
Imagine that we could make a motion picture of the process that begins before the process takes 
place and ends after it is completed. Now imagine that we run the motion picture backwards. 
In the reversed motion picture we see initial and final states interchanged and the spins and 
linear momenta of all the particles reversed. This is what we mean by a time-reversal transfor-
mation. Now consider the interaction Hamiltonian that describes the initial process and others 

Table 22.1 Properties of standard positive energy e−, e+ spinors

       Spinor Particle Energy Momentum                           

                                

z Spin

        u e1 p( ) −                     ++

        

ε p                    
u2 p( )                                  +                    e− ε p                   −

( ) = −( )v u e1 4p p                        +    +                    ε p                    +
v u2 3p p( ) = − −( )                         +                    e+ ε p                   −
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related to it. If  the probability of each initial process is the same as that of its  time-reversed 
counterpart, we say that the interaction Hamiltonian is time-reversal invariant.

It should be clear from these remarks that T must satisfy the following requirements:

 TxT x− =1  (22.24)

 TpT p− = −1  (22.25)

 TJT J− = −1  (22.26)

where x, p, and J are the usual operators for position, linear momentum, and angular momen-
tum, respectively. We also want the commutation relations satisfied by these operators as well 
as the time-dependent Schroedinger equation to be preserved under the time-reversal transfor-
mation. However, given (22.24)–(22.26), this means that T  must be an antiunitary operator. To 
see this, consider, for example, the angular-momentum commutation relation

 J J J J iJx y y x z− =  

We apply the time-reversal transformation to both sides of this relation to get

 T T T T T T T T T T T TJ J J J i Jx y y x z
− − − − − −( )( ) − ( )( ) = ( )( )1 1 1 1 1 1  

Taking (22.26) into account, we see that this is

 J J J J i Jx y y x z− = − −T T 1  (22.27)

which requires: T Ti i− = −1 . Thus T  must be antiunitary, which means that T = TK , where T is 
a unitary operator, and K is the complex conjugation operator, which acts on every complex 
number to its right.

Bearing this in mind, we return to the Dirac equation for a particle of mass m and charge q 
in an external electromagnetic field; that is,

 
m t i t q t t i t q t ttψ γ ψ γ ψ ψ ψ( ) ( ) ( ) ( ) ( ) ( ) ( )′ − ∂ ′ + ′ ′ − ∇ ′ − ′ ′ =′

0 0 0Φ γ γ A
 

(22.28)

Here we have chosen units where  = =c 1, not written the dependence of ψ on the spatial 
variable r for brevity, and labeled the time variable by t′. With the substitution t t= − ′, (22.28) 
becomes

 
m t i t q t t i t q t ttψ γ ψ γ ψ ψ ψ( ) ( ) ( ) ( ) ( ) ( ) ( )− + ∂ − + − − − ∇ − − − − =0 0 0Φ γ γ A

 
(22.29)

Now imagine that at time t = 0 we perform a time reversal on the charges and currents  
that generate Φ and A. Because the charges remain invariant but the currents reverse, we have 
Φ (–t) = Φ(t) and A A( ) ( )t t= − − . Thus (22.29) becomes

 
m t i q t t i q t ttψ γ ψ ψ( ) ( ) ( ) ( ) ( )− + ∂ +[ ] − − ∇ −[ ] − =0 0Φ γ γ A

 
(22.30)

We now apply T = TK  from the left to both sides of (22.30). Noting that Φ and A are real func-
tions, we obtain
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mT t iT T iq t T t iT T i iq t Ttψ γ ψ ψ* * * *( ) ( ) ( ) ( )*− − ∂ +[ ] − + ∇ −[ ]− −0 1 1Φ γ  A ( )− =t 0

 
(22.31)

This is a Dirac equation for the wave function ′ = −ψ ψ( ) ( )*t T t  provided that the following 
conditions are satisfied:

 
T T
T T

γ γ0 1 0

1

*

*

−

−

=
= −γ γ

 (22.32)

In the standard representation, we have

 γ γ γ γ γ γ γ γ0 0 1 1 2 2 3* * * *= = = − =3  (22.33)

Thus, in the standard representation, a solution to equations (22.32) is

 T T= η γ γ1 3  (22.34)

where ηT  is an arbitrary phase factor. It is easy to show from (22.34) that the time-reversal 
transformation reverses the spin and 3-momentum of a free-particle spinor but does not 
change its energy.

22.4 Construction of the Dirac field operator

We have emphasized repeatedly that a plausible relativistic quantum theory must account for 
the fact that particles can be created and destroyed. As we stated in Section 11.9, the method of 
second quantization is well suited to calculating processes involving the creation and destruc-
tion of fermions. Therefore, if  we wish to construct a sensible relativistic theory of electrons 
and positrons, it is only natural that we should join second quantization and the Dirac theory 
together. That is our goal in this section.

We start with a general fermion field operator, defined as in Section 11.9 by

 Φ( , ) ,x xt t b= ( )∑φα
α

α  (22.35)

where φα x,t( ) is a single-particle wave function with quantum numbers collectively described 
by the index α, and bα is the corresponding destruction operator. In the case of the Dirac the-
ory of relativistic electrons, we initially choose φ to be the free-particle plane-wave solutions 
ψ r tx, ,p( ), with r = 1, 2, 3, 4 [recall equations (22.7)–(22.10)]. Then, using the symbol Ψ x,t( ) 
to denote the Dirac field operator, we have

 Ψ x p p
p

p x,t
V

m
u e e b

r
r

i i t
r

r( ) = ( ) ( )
=

−∑∑ 1

1

4

ε
η ε  (22.36)

where the spinors ur p( ) are defined in (22.7)–(22.10), and η η1 2 3 41 1, ,= + = − and . In view of our 
discussion of charge-conjugation symmetry in Section 22.2, we know that the single-particle 
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negative-energy electron solutions ψ 3 4,  are equivalent to positron solutions with positive energy. 
In fact, we have the replacements

 
u v

u v
4 1

3 2

−( )→ ( )
− −( )→ ( )

p pp

p p

: positron with momentum , spin up

: positron with momentum , spin downp
 

We can also define new creation and destruction operators

 
d b

d b
1 4

2 3

†

†

p p

p p

( ) = −( )
( ) = − −( )  

Here, for example, b4 −( )p  destroys a negative-energy electron with spin down and momen-
tum –p, but this is equivalent to creation of a positron of positive energy with momentum p 
and spin up [creation operator d1

† p( )]. With the changes just mentioned, (22.36) becomes

 Ψ x p p p p
p
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m
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s
s

ip x
s s

ip x
s( ) = ( ) ( ) + ( ) ( ) 

=

− ⋅ ⋅∑∑ 1
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2

ε
†  (22.37)

where p x t⋅ ≡ −ε p x . The Dirac field operator Ψ of  (22.37) is quite complicated: it is a func-
tion of x and t, it is a 4-component spinor, and it contains destruction operators for electrons 
and creation operators for positrons.

In addition to Ψ, we also have the Dirac conjugate field operator

 Ψ x p p p p
p

,t
V

m
u e b v e d

s
s

ip x
s s

ip x
s( ) = ( ) ( ) + ( ) ( ) 

=

⋅ − ⋅∑∑ 1
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2

ε
†  (22.38)

The creation and destruction operators satisfy the following anticommutation relations, the 
origins of which were explained in Section 11.9:
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 (22.39)

The Dirac field operator, being a linear superposition of solutions to the Dirac equation, is also 
a solution; that is,

 m i− ∂( ) =γ μ
μ Ψ 0  (22.40)

whereas

 i m∂ + =μ
μγΨ Ψ 0  (22.41)
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From equation (11.75) we know that the Hamiltonian field operator can be expressed as

 H H d= ∫Ψ Ψ†
0

3 x  (22.42)

where H i m i m0
0 0= − ∇+ = − ∇+( )α γ γ γ  is the free single-particle Dirac Hamiltonian. Using 

(22.37) and (22.38), we obtain
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(22.43)

In this expression, there are four categories of terms involving

1. b†b terms
2. b†d † terms
3. db terms
4. dd † terms

We consider each of the four sets separately, beginning with category 1. Here, when we inte-
grate over x, we obtain
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V
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′=x p p x
p p

( )
,

 δ  

Thus the double sum over p p, ′  is reduced to a single sum and also ei t( ’ )ε ε− = 1 because ′ =ε ε . 
Therefore, in category 1, we obtain the following contribution to H:
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(22.44)

Now

 

γ  p p p+( ) ( ) = − +( ) ( )
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u
s sγ ε

γ ε
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0                          s p( )
 

because p m us−( ) ( ) =p 0 (the Dirac equation). Thus (22.44) becomes
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 (22.45)

where N b bs s s
− ( ) = ( ) ( )p p p†  is the number operator for electrons with momentum p and spin s. 

In category 2, integration over x yields p p= − ′. However, we then obtain the factor
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 u vs s
† −( ) ( ) =p p 0  

Hence there is no contribution from terms of category 2; similarly, there is no contribution 
from terms of category 3. Finally, we consider category 4. Integration over x yields the follow-
ing contribution:
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v
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(22.46)

Note the quantity −γ  p  that comes from − ∇ −i e iγ  p x. Now

 
− +( ) ( ) = + − ( ) = − ( )γ  p p p pm v p m v vs s s( )γ ε γ ε0 0

 
Therefore, (22.46) becomes

 − − ( ) ( )  = − − ( ) ∑ ∑ +ε ε1 1d d Ns s
s

s
s

†

, ,

p p p
p p

 (22.47)

Combining (22.45) with (22.47), we finally obtain the total Hamiltonian

 H N Ns s
s

= ( ) + ( ) − − +∑ ε p p
p

1
,

 (22.48)

A similar calculation shows that the electric charge operator, defined as

 Q e d= − ∫Ψ Ψ† 3 x  (22.49)

can be written as

 Q e N Ns s
s

= − ( ) − ( ) + − +∑ p p
p

1
,

 (22.50)

The first two types of terms on the right-hand side of (22.48) are easy enough to understand: 
because Ns

± ( )p  are number operators for electrons and positrons, respectively, those terms 
represent the energies of real electrons and positrons. However, −∑ ε  is an infinite negative 
energy. Similarly, the first and second sets of terms on the right-hand side of (22.50) represent 
the charges of real electrons and positrons, respectively, whereas −( )∑ e  is an infinite negative 
charge. These third terms in (22.48) and (22.50) play a role that is somewhat analogous to the 
zero-point energy of the radiation field, which we encountered in Section 15.3. Now the chief  
practical value of the Dirac field and the quantized radiation field is to facilitate calculation of 
various real physical processes such as electron-electron scattering, electron-photon scattering, 
pair production, bremsstrahlung, and so forth. In all such calculations, the zero-point energy 
of the radiation field, the infinite negative energy appearing in (22.48), and the infinite negative 
charge appearing in (22.50) play no role, and they may thus be ignored. The formal procedure 
for discarding such terms is called normal ordering, and we briefly describe its implementation 
for electrons and positrons in the next paragraphs.
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We first separate the Dirac field (22.37) and the Dirac conjugate field (22.38) into their 
 positive- and negative-frequency parts, defined as follows:
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Here, to the right of each formal expression, we have rewritten it in simple schematic fashion 
to bring out the main point as clearly as possible in what follows. Now, exhibiting the row and 
column indices α β,  explicitly, we write the bilinear form Ψ Ψα αβ βF , where F is a 4 × 4 matrix, in 
terms of positive- and negative-frequency parts; that is,

 Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψα αβ β α αβ β α αβ β α αβ β α αβF F F F F= + + ++( ) +( ) −( ) +( ) +( ) −( ) −( ) Ψβ
−( )  (22.51)

where

 Ψ Ψα αβ β α αβ β
+( ) +( ) → ( )∑F db v F u   (22.52a)

 Ψ Ψα αβ β α αβ β
−( ) +( ) → ( )∑F b b u F u  †  (22.52b)

 Ψ Ψα αβ β α αβ β
+( ) −( ) → ( )∑F dd v F v  †  (22.52c)

 Ψ Ψα αβ β α αβ β
−( ) −( ) → ( )∑F b d u F v  † †  (22.52d)

Because of the 1 in each combination dd d d† †= −1  of destruction and creation operators in 
(22.52c), it is the latter term that causes the undesirable negative infinities in the energy and the 
charge, as we have seen in the preceding paragraphs. These negative infinities are eliminated by 
making the change

 Ψ Ψ Ψ Ψα αβ β β α αβ
+( ) −( ) −( ) +( )→ −F F   

so that (22.51) is replaced by the normally ordered form

 Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψα αβ β α αβ β α αβ β β α αβ α αβF F F F F= + − ++( ) +( ) −( ) +( ) −( ) +( ) −( ) Ψβ
−( )  (22.53)
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22.5 Lagrangian formulation of electromagnetic and  
Dirac fields and interactions

It is often useful to formulate a field theory such as Maxwellian electrodynamics or the the-
ory of  the Dirac field in terms of  the principle of  least action. Let us introduce a field φ μ( )x ;  
initially, this field could be quite general and not necessarily related to electromagnetism 
or the Dirac theory. The properties of  the field are determined by its Lagrangian density; 
that is,

 L L= ∂( )φ φν,  (22.54)

For the physical applications of interest to us, it is sufficient to assume that L depends on the 
field and its first space and time derivatives but not on higher derivatives. We form the action 
by integrating the Lagrangian density over space-time; that is,

 S d x= ∂( )∫L φ φν, 4  (22.55)

Variation of φ at each space-time point in some arbitrary manner results in a change in S; 
that is,

 

δ δ φ φ

φ
δφ

φ
δ φ

ν

ν
ν

S d x

d x

= ∂( )

=
∂
∂

+
∂

∂ ∂( ) ∂( )









∫

∫

L

L L

, 4

4     
 (22.56)

Because δ φ δφν ν∂( ) = ∂ ( ), the second term in the integrand on the right-hand side of (22.56) 
can be written
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δφ  (22.57)

The integral over all space-time of the first term on the right-hand side of (22.57) can be 
expressed as a surface integral via a generalized Gauss’s theorem. This vanishes if  we assume 
that δφ → 0 on the infinitely large surface. Hence

 δ
φ φ

δφν
ν

S d x=
∂
∂

− ∂
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∂ ∂( )





















∫

L L 4  

The Lagrangian density is constrained by the condition that S has an extreme value, that is, 
that δS = 0. Because δφ is arbitrary, this implies that
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which is called the Euler-Lagrange equation. For a multicomponent field φλ , where λ = 1 2, ,..., 
there is one Euler-Lagrange equation for each component; that is,
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− ∂
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∂ ∂( )








 =
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φ φλ

ν
ν λ

0  (22.58b)

We now apply these general ideas to the case of the electromagnetic field, which has four com-
ponents Aλ , λ = 0, …, 3. Thus (22.58b) becomes
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 =
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A Aλ

ν
ν λ

0  (22.59)

We seek a Lagrangian density L  such that equations (22.59) are the same as the field equa-
tions, here written in natural units

 ∂ =μ
μν νF jEM,  (22.60)

A straightforward calculation starting from (22.59) shows that this is achieved with

 L L L= +EM int  (22.61)

where

  LEM = −
1
4

F Fμν
μν   (22.62)

and

 Lint = − j AEM
μ

μ  (22.63)

Frequently, Lint of  (22.63) is called the minimal interaction Lagrangian density. In classical 
mechanics one defines the Hamiltonian from the Lagrangian as follows:

 H q
qi

i i

=
∂
∂

−∑ 



L
L  

In an analogous way, we define the Hamiltonian density H  in terms of the Lagrangian density 
L. For L of  (22.61), we have

 H
L

L=
∂

∂ ∂
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∂
∂

−
A

A

t
t

  (22.64)

which yields

 H H H= +EM int  (22.65)
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where

 H EM = +( )1
2

2 2E B  (22.66a)

and

 H int EM= j Aμ
μ (22.66b)

Now we turn our attention to the Dirac field. We have seen that the electron-positron field 
operator in the Heisenberg picture is

 Ψ x p p p p
p

,t
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m
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s s
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s

s

( ) = ( ) ( ) + ( ) ( ) − ⋅ ⋅
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1

2

ε
†  (22.67)

It is natural to ask if  a Lagrangian density LD can be formulated for Ψ Ψ and  and, if  so, 
whether the Dirac equation

 m i− ∂( ) =γ μ
μ Ψ 0  (22.68a)

and the Dirac-conjugate equation

 i m∂ + =μ
μγΨ Ψ 0  (22.68b)

can be considered as Euler-Lagrange equations for LD with Ψ Ψ,  regarded as independent com-
ponents of the field. Indeed, this is the case. An appropriate expression for LD is

 LD i m i m= ∂ −( ) − ∂ +( )1
2

1
2

Ψ Ψ Ψ Ψ Ψγ γμ
μ μ

μ  (22.69)

It is easy to verify that with this Lagrangian density, the Euler-Lagrange equations
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μ

0    (22.70a)

 
∂
∂
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∂ ∂( ) =
L LD D

Ψ Ψμ
μ

0  (22.70b)

are just (22.68a) and (22.68b), respectively.

22.6 U(1) gauge invariance and the Dirac field

A phase transformation

 Ψ Ψ Ψ Ψ Ψ Ψ→ ′ = → ′ = −e ei iα α  (22.71)
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where α  is real, is called a U(1) gauge transformation [U(1) because eiα  is a 1×1 unitary matrix]. 
If  α  is a constant, the transformation is said to be global; if  α  varies from one space-time point 
to another, one has a local gauge transformation. For many purposes it is sufficient to consider 
the case where α  is infinitesimal. Here we can make the replacements

 e ii± → ±α α1  

and thus

 δ α αΨ Ψ Ψ Ψ Ψ Ψ Ψ Ψ= ′ − = = ′ − = −i i  (22.72)

The variations of (22.72) produce a change in the Dirac Lagrangian density (22.69) that is 
found to be

 δ γ αμ
μLD = − ∂Ψ Ψ  (22.73)

If  α is a constant, δLD = 0. In other words, LD  is invariant under global U(1) gauge transfor-
mations. If  α α μ= ( )x  is a function of the space-time coordinates, δLD ≠ 0. Hence LD  is not 
 invariant under local U(1) gauge transformations. However, that invariance is restored if  we 
add the interaction Lagrangian (22.63) to LD ; that is,

 L L′D D q A= − Ψ Ψγ μ
μ  (22.74)

provided that whenever we make the transformation (22.72), we also change the vector poten-
tial Aμ as follows:

 A A A
qμ μ μ μα→ ′ = − ∂
1

 (22.75)

The latter is obviously an ordinary gauge transformation of the electromagnetic 4-potential. A 
convenient way to write L′D is to replace the partial derivatives in (22.69) by covariant deriva-
tives; that is,

 LD i D m iD m= −( ) − +( )1
2

1
2

Ψ Ψ Ψ Ψ Ψγ γμ
μ μ

μ  (22.76)

where here and henceforth we drop the prime, and

 
D iqA

D iqA

μ μ μ

μ μ μ

Ψ Ψ

Ψ Ψ

≡ ∂ +( )
≡ ∂ −( )  (22.77)

It is easy to show that each covariant derivative transforms in the same way as its correspond-
ing field in the transformation (22.72). That is,
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δ α

δ α
μ μ

μ μ

D i D

D i D

Ψ Ψ

Ψ Ψ
( ) = ( )
( ) = − ( )  (22.78)

The foregoing analysis reveals the close connection between the minimal electromagnetic 
 interaction and local U(1) gauge invariance of the Dirac Lagrangian density. When the same 
general principle is extended to the SU(2) group, it has profound consequences in the standard 
model of electroweak interactions. This is discussed in Chapter 24.

Problems for Chapter 22

22.1. In the standard (Pauli-Dirac) representation, calculate the effect of the time-reversal 
transformation T = TK  on a free-particle Dirac wave function with spin up along the z-axis 
and positive energy. Show that this time-reversal transformation has the effect of reversing the 
spin and the 3-momentum but not the energy.

22.2. Carry out the calculation that leads from (22.49) to (22.50).

22.3. Show that the Euler-Lagrange equations (22.59) for the electromagnetic Lagrangian den-
sity of (22.61) with (22.62) and (22.63) are the same as the electromagnetic field equations 
(22.60).

22.4. Using (22.64), derive (22.65) with (22.66a) and (22.66b) from (22.61) with (22.62) and 
(22.63).

22.5. Given the Dirac Lagrangian density (22.69), show that the Euler Lagrange equations 
(22.70a) and (22.70b) are the Dirac equations (22.68a) and (22.68b), respectively.

22.6. Starting with the Dirac Lagrangian (22.69) and the infinitesimal gauge transformations 
(22.72), derive (22.73).

22.7. Show that under the gauge transformations (22.72), the covariant derivatives transform 
as is indicated in (22.78).
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23.1 Interaction density: The S-matrix expansion

A state of the combined system of electromagnetic and electron-positron fields is specified by 
the numbers of photons in various modes k, α  and the numbers of electrons and positrons in 
each momentum-spin state p, s. These occupation numbers can change with time only through 
the interaction between the electrons and positrons on the one hand and photons on the other. 
The general Hamiltonian, including interaction, takes the following form:

 H H H Htotal particle radiation= + + int  (23.1)

Here H dint = ∫H int
3 x , and the interaction Hamiltonian density H int for an electron is given 

in natural units by

 H Lint = − = = −int j A e AEM
µ

µ
µ

µγΨ Ψ  (23.2)

Given this form, there exists a standard procedure for calculating physical processes that is 
called covariant perturbation theory. We shall try to explain it in simple terms. Several essential 
elements have already been worked out in previous chapters, for example, in Section 18.6, but 
we need to restate the problem in appropriate language.

In the Schroedinger picture, imagine some initial state φi
S t( )= −∞  where the superscript S 

means Schroedinger and the subscript i specifies the initial occupation numbers of photons, 
electrons, and positrons. We imagine that the interaction turns on adiabatically at some remote 
but finite time t < 0 and then gradually turns off  again at some large but finite time t > 0. 

We are interested in the probability amplitude for a transition to a final state φ f
S t( )= +∞  in 

which at least one of the occupation numbers has changed. We assume that there exists a time-
 development operator U t t( , )0  such that

 φ φi
S

i
St U t t t( ) ( , ) ( )= 0 0  

In the limits t t0 → −∞ → +∞,  , U t t( , )0  is called the S-operator, and its matrix elements consti-
tute the S-matrix. Our goal is to calculate the matrix element

 A t t Sfi f
S

i
S

f
S

i
S= = +∞( ) = +∞( ) = +∞( ) −∞( )φ φ φ φ  (23.3)

In (23.1), let us regard H Hparticle radiation+  as a zeroth-order Hamiltonian

 H H H0 = +particle radiation  (23.4)

Interaction between Relativistic Electrons,  
Positrons, and Photons23
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and let us make a unitary transformation from the Schroedinger picture to a new interaction 
picture defined by

 φ φ= eiH t S0  (23.5)

We also define H by

 H e H H eiH t iH t= +( ) −0 0
0 int  (23.6)

Differentiating both sides of (23.5) with respect to time, we have
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0         int )
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I

0 0 φ
φ         

 (23.7)

where

 H e H eI
iH t iH t≡ −0 0

int  (23.8)

Equation (23.7) determines the time dependence of φ  in the interaction picture. If  HI  were 
zero, the interaction picture would reduce to the Heisenberg picture because in that case φ  
would be constant in time.

Consider the time-development operator in the interaction picture. We have

 φ φ( ) ( , ) ( )t U t t t= 0 0  

Differentiation of this expression yields

 i t i U t t t H U t t tt t I∂ = ∂ =φ φ φ( ) ( , ) ( ) ( , ) ( )0 0 0 0  

Hence

 i U t t H U t tt I∂ =( , ) ( , )0 0  

We integrate this equation subject to the initial condition U t t I( , )0 0 = ; that is,
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Taking the limits t t→ ∞ → −∞, 0 , we have

 S I i H t dt i H t dt H t dtI I I

t

= − ( ) + − ( ) +
−∞

∞

−∞

∞

−∞
∫ ∫ ∫1 1

2
1 1 2 2

1

( ) ( )   (23.9)

which is called the S-operator expansion and is another form of the Born series. Now consider 
the double integral

 I H t dt H t dtI I

t

2 1 1 2 2

1

= ( ) ( )
−∞

∞

−∞
∫ ∫  (23.10)

The region of integration is illustrated in Figure 23.1. In Figure 23.1a, we first integrate on a 
strip from t t t2 2 1= −∞ = to ; then we add up the contributions from all the strips. However, the 
same result is achieved if  (as in Figure 23.1b) we integrate along a given strip from t t1 2=  to 
t1 = +∞ and then add up all these strips.

Referring to Figure (23.1b), we write

 I dt dt H t H t
t

I I2 2 1 1 2

2

=
−∞

∞ ∞

∫ ∫ ( ) ( )  

Because in this double integral both t1 and t2 are dummy variables of integration, their labels 
can be interchanged, that is, t t1 2↔ , so I2 becomes

 I dt dt H t H t
t

I I2 1 2 2 1

1

=
−∞

∞ ∞

∫ ∫ ( ) ( )  (23.11)

t2 t2
t2=t1 t2=t1

t1 t1

a) b)

 Figure 23.1 Diagrams a and b show two equivalent ways to evaluate integral I2 of equation (23.10).
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Combining (23.10) and (23.11), we obtain

 I dt dt T H t H tI I2 1 2 1 2
1
2

= { }
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∞

−∞

∞

∫ ∫!
( ), ( )  

where T H t H tI I( ), ( )1 2{ } is called the time-ordered product and is defined by
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 (23.12)

The definition of the time-ordered product can be extended to cover n factors of HI . Thus we 
finally obtain S in the useful form
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23.2 Zeroth- and first-order amplitudes

We now consider the S-matrix element
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 (23.14)

The zeroth-order term in (23.14) is

 A Ifi f i fi
( )0 = ∞( ) −∞( ) =φ φ δ  (23.15)

It is of no great interest because it corresponds to no change in occupation numbers: nothing 
happens. We thus go on to the first-order term
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where H I e A= − Ψ Ψγ µ
µ , and the free field operators Ψ Ψ, ,  and Aµ are in the Heisenberg  

picture; that is,

 A
V

a e a ek ik x ik x
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α
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α
α α

π
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ε= +( )∑ − ⋅ ⋅1 2
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†  (23.17)
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 Ψ x p p p p
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E

u e b v e ds
ip x

s s
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1

2
†  (23.19)

and where, as usual, k x t p x Et⋅ = − ⋅ = −ω k x p x  and . Separating the field operators into 
their positive- and negative-frequency parts and using normal ordering, we have
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 (23.20)

Each of the eight terms in (23.20) corresponds to a different type of first-order process, and 
each term is represented by a Feynman diagram in Figure 23.2. Such diagrams, named for 
Richard Feynman, who first employed them, are exceedingly useful and convenient for con-
structing quantum electrodynamic amplitudes not only in first order but, more important, in 
second and higher orders. In what follows, we seek to explain the rules for constructing ampli-
tudes directly from diagrams and also to show how one calculates transition probabilities and 
cross-sections from the amplitudes.

In each diagram, time increases upward, an electron line is solid with an arrow pointing 
forward in time, a positron line is also solid with an arrow pointing backward in time, and a 
photon is represented by a dashed line. In each and every Feynman diagram of any order in 
quantum electrodynamics, two fermion lines and a photon line meet at a vertex. For example, 
Figure 23.2a represents photon emission by a free electron. Here an electron with 4-momen-
tum p, spin s is destroyed at the vertex, whereas an electron with 4-momentum p′, spin s′, 
and a photon (k′, α′) are created at the same vertex. Figure 23.2b represents the absorption 
of  photon ( , )k α , the destruction of  electron (p, s), and the creation of  electron (p′, s′). In 
Figure 23.2c, a positron (p, s) is destroyed, whereas a positron (p′, s′) and a photon ( , )k α  are 
created at the vertex (even though positron lines have arrows pointing backward in time), and 
so on.

Before proceeding further, it is important to note that because of energy-momentum 
 conservation, none of the eight first-order processes can occur! For example, consider 
Figure 23.2a: emission of a photon by a free electron. Energy-momentum conservation 
requires that ′ + ′ =p k p. In the rest frame of the initial electron, momentum conservation 
requires that ′ = − ′p k  and thus that the final electron energy is ′ = +E me

2 2ω , where ω = ′k  
is the final photon energy. Energy conservation then requires that m me e= + +2 2ω ω , but this 
relation cannot be satisfied for any ω ≠ 0. Analogous prohibitions hold for the other first-order 
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 processes. Nevertheless, we can learn valuable lessons from the first-order processes. Consider 
Figure 23.2a, where the initial and final states are

 φ φ α γi ps p s k−∞( ) = ( ) ∞( ) ′ ′( ) ′ ′( )− −f =   ,  

From (23.20), the first-order amplitude is
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(23.21)

a)                                                                      b)

c)                                                                      d)

e)                k'                                                    f)

e–(p')                   k'                                           e–(p')

e–(p)                                                               e– (p)              k

e+(p')                          k'                                 e+(p')

e+(p)                                                               e+(p)               k

+(p  )

e–(p  )1

e e–(p1 2)

e+(p  )2

e+(p'  )2 e–(p'  )1

e–(p'  )1e+(p'  )2

k

g)                k'

h)

k

 Figure 23.2 Feynman diagrams for first-order processes in quantum electrodynamics.
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Of all the terms in the six-fold sum on the right-hand side of (23.21), only that single term 
contributes, for which

 p p p p k k s s s s2 1 1 2 1 1= ′ = = ′ = ′ = = ′α α  

And, consequently,
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1 1
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′ ′ ′ ′

α α α α
† †

† †

→ =

→ b b bp s ps ps′ ′
† † 0 1=

 

In the limit V → ∞, the four-dimensional integral in (23.21) is

 exp i p k p x d x p k p′ + ′ −( )  = ( ) ′ + ′ −( )∫ 

4 4 42π δ  (23.22)

We thus obtain the result

 A a
m

E V
m

EV V
p k p Mfi a

( ) ( )1 4 41
2

2( ) =
′

′ + ′ −( )
ω

π δ  (23.23)

where Ma, the Feynman amplitude, is

 M ieu ua p s ps= ′ ′ ′εα  (23.24)

The case in Figure 23.2b, photon absorption by a free electron, is described by

 A b
m

E V
m

EV V
p k p Mfi b

( ) ( )1 4 41
2

2( ) =
′

′ − −( )
ω

π δ  (23.25)

with

 M M ieu ub a p s ps= = ′ ′ εα  (23.26)

For the case in Figure 23.2c, emission of a photon by a free positron, the initial and final 
states are

 φ φ α γi ps p s k−∞( ) = ( ) ∞( ) ′ ′( ) ′ ′( )+ +f =   ,  

The calculation of A cfi ( ) is analogous to that of A afi ( ), but this time the matrix element of 
fermion creation and destruction operators is

 − = −0 0 1d d d dp s p s ps ps′ ′ ′ ′
† †  

where the minus sign originates from the third term on the right-hand side of (23.20). Thus we 
obtain

 A c
m

E V
m

EV V
p k p Mfi c

( ) ( )1 4 41
2

2( ) =
′

′ + ′ −( )
ω

π δ  (23.27)
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where

 M iev vc ps p s= − ′ ′ ′εα  (23.28)

Note that in addition to the overall sign change, the ordering of the spinors is reversed com-
pared with the case in Figure 23.2a: vps corresponds to the incoming positron that is destroyed 
at the vertex, whereas vp s′ ′ corresponds to the outgoing positron created at the vertex. The 
arrow pointing backward in time on the diagram reminds us of this reversal. In the case in 
Figure 23.2d, photon absorption by a free positron, the sign of Md  is also negative. The signs 
of Me f g h, , ,  cannot be determined as easily as for the cases M Ma b c d, , and , but it can be shown 
that in cases e, f, g, and h we can consistently choose the signs to be positive.

In (23.23), (23.25), and (23.27) we have deliberately written Afi
( )1  in a standard form. In 

addition to M, the right-hand sides of (23.23), (23.25), and (23.27) each contain a factor 
m EV  for each external fermion line, a factor 1 2ωV  for each external photon line, and the 

4-momentum conservation factor ( )2 4 4π δ P Pi f−( ), where Pi f,  are the total 4-momenta of the 
initial (final) state.

The Feynman amplitude M always contains a factor ieγ µ  for each e e− −γ  or e e− +γ  vertex, a 
factor −ieγ µ  for each e e+ +γ  vertex, a factor εµ  for each external (incoming or outgoing) pho-
ton line, a column spinor u for each incoming electron line, a row spinor ′u  for each outgoing 
 electron line, a row spinor v  for each incoming positron line, and a column spinor ′v  for each 
outgoing positron line. The association of these quantities with vertices and external e and 
photon lines is generally valid and forms part of a set of Feynman rules for constructing ampli-
tudes directly from the corresponding diagrams for higher-order processes.

23.3 Photon propagator

Because each first-order amplitude in QED is zero because of  energy-momentum conserva-
tion, we must go to second or higher order in the S-matrix expansion to describe any real 
physical process. The order of  a diagram is the same as the number of  its vertices; hence 
in second order there are two vertices, which must be connected by at least one internal 
photon or fermion line. Derivations of  the Feynman rules for internal photon and fermion 
lines, starting from basic field-theoretic considerations, are quite lengthy and complicated. 
We now give those derivations in this and the following section. First, we calculate the 
amplitude for electron-electron scattering in lowest nonvanishing order, and in so doing, 
we derive the rule for an internal photon line in this particular case. It is given in (23.51) 
and (23.52). We trust that after the derivation is digested, the reader will accept the general 
validity of  the rule.

To start, we recall that in Coulomb gauge and in natural units, the total Hamiltonian for 
charged particles, radiation, and their interaction is
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(23.29)
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Here the radiation field is expressed solely in terms of the transverse vector potential A, and the 
instantaneous Coulomb interaction is expressed entirely in terms of the charge densities; that is,

 V d d=
( ) ′( )
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1

8
3 3

π
ρ ρx x

x x
x x′  (23.30)

In lowest order, the interaction between two electrons is proportional to the product of 
their charges. Therefore, in the amplitude for electron-electron scattering, the instantaneous 
Coulomb interaction contributes in first order, whereas the last term on the right-hand side 
of (23.29) contributes in second order. These two contributions turn out to be of comparable 
significance. We begin with the instantaneous Coulomb interaction. Let the initial and final 
two-electron states be

 
φ
φ

i

f

p s p s b b

p s p s b b

= =
= ′ ′ ′ ′ = ′ ′

1 1 2 2 1 2

1 1 2 2 1 2

0

0

,

,

† †

† †  (23.31)

The first-order amplitude is
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where ρ γ ρ γx x x x x x, , , , , ,t e t t t e t t( ) = − ( ) ( ) ′( ) = − ′( ) ′( )Ψ Ψ Ψ Ψ0 0 and . The Dirac fields are
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Consider the various terms in the sum
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To save writing for the moment, we suppress all quantities except for the creation and destruc-
tion operators; that is,
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Of the 16 types of terms that result from multiplying out the four factors in parentheses, only 

the quantity A b b b bfi ps p s p s p s
( )1 1 2 12→ ′ ′ ′ ′ ′′ ′′ ′′′ ′′′∑ † †  contributes to e e− − scattering. It yields
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 (23.33)

The matrix elements of the creation and destruction operators are
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Thus (23.33) becomes
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(23.34)

Evaluating the integral over t and taking advantage of the symmetry of the remaining inte-
grand under the interchange of variables x x↔ ′, we obtain
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(23.35)

To complete the integrations, we let y x= ′ − x. Then the first integral on the right-hand side of 
(23.35) becomes
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where q p p= − ′1 1. Similarly, the second integral in (23.35) is
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where ′ = − ′q p p2 1. Therefore, (23.35) can be written as
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(23.38)

The two terms on the right-hand side of (23.38) are direct and exchange terms. Recall that 
their relative minus sign arises because of the antisymmetry of the two-electron wave function, 
which is accounted for by the anticommutation relations satisfied by the electron creation and 
destruction operators.

Now consider the j•A contribution in second order. The amplitude is
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Equation (23.39), written in full, is
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The vector potential factor in (23.40) is

 
0 0

0 0

1 2 2 1

2 1 2 1

A x A x t t

A x A x t t

i j

j i

( ) ( ) <

( ) ( ) >       
 

Note that there are no photons in the initial or final state. For t t2 1< ,
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where τ = −t t1 2 . Similarly, for t t2 1> ,
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ω

ε λ ε λ
λ

ωτ

k

k x xk kˆ , ˆ ,   (23.42)

To evaluate the sums in (23.41) and (23.42), we express ω ωτ− ±1e i  as a contour integral. Consider 
Figure 23.3 and the integral

 I
e dz

z i z i
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=
− +( ) + −( )

−

−∞

∞

∫
τ

ω δ ω δ
 (23.43)

where δ  is a positive real infinitesimal. Using Figure 23.3, we evaluate I by contour integration, 
choosing contour C′ for τ < 0 and contour C for τ > 0 so that in each case the integrand is expo-
nentially damped on the arc.

From Cauchy’s theorem, we have
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Now, replacing 1 1 2
3 3V d

k
( ) ( )



∑ ∫by π k  in (23.41) and (23.42), we obtain
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 Figure 23.3 Contours for evaluation of integral I defined in (23.43).
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Let us define a 4-vector q such that q z= ( , )k . Because ω 2 2= k , we have q2 = z2 – ω2; hence
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The right-hand sides of  (23.44) and (23.45) are identical except for the interchange of  x x1 2 and .  
Ultimately, we integrate over x x1 2 and  with other factors in the integrand that are symmet-
ric with respect to this interchange. Thus we can make the interchange in (23.45), which 
renders (23.44) and (23.45) identical. Returning to (23.40), we employ (23.44) and (23.45) 
to obtain
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In the first term of (23.46), the integrations give
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with a similar expression for the second term. Note that because of the delta functions, 
4-momentum is conserved at each vertex, which is a universal feature of covariant perturba-
tion theory. With the new definitions q p p q p p= − ′ ′ = − ′1 1 2 1 and , (23.46) becomes
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 (23.47)

It remains to evaluate the sum in (23.47). Let q define a z-axis. Because εq = 0 , we can choose 
one of the two possible unit vectors ε along x and the other along y. Hence

 
P ≡ = +∑u u

q
u u

q
u u u u u u u u2 2 2 1 1 2 2

1
2 1

1
1 2

2
2 1

2
1

1 1
′ ′ ′ ′ ′ ′γ γ





ε ε γ γ γ γ
λ

( )

=                                           
1

2 2 2q
u u u′ γ  1 1 2

3
2 1

3
1′ ′ ′γ u u u u u−( )γ γ

 (23.48)

 

 

 

 

 

 



Interaction between Relativistic Electrons, Positrons, and Photons540

or, more generally,

 P
q

u u u u u u u u= −
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2 2 2 1 1 2 2 2 1 1′ ′ ′ ′γ γ γ γ  
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q q  (23.49)

However, γ q = − =γ 0 0
1 1 0q q u qu and ’ . Therefore,
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with a similar expression for the exchange term. We now combine the Coulomb interaction and 
j A  contributions by substituting (23.50) in (23.47), recalling (23.38), and making use of
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This gives the final result for electron-electron scattering in lowest nonvanishing order; that is,
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where
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Result (23.52) is represented by the Feynman diagrams of Figure 23.4.
From (23.52) we extract two general results to add to the list of Feynman rules:

Each internal photon line is associated with a photon propagator factor•	

 −i
g

q
µν
2

 

If  two identical fermions are in the final state, there is a relative minus sign between the direct •	
and exchange amplitudes.

p'1

p1 p2

p'2 p'1 p'2

 q                                                          q'

p1 p2

 Figure 23.4 Feynman diagrams for electron-electron (Møller) scattering in lowest order.

 

 

 

 

 

 

 



23.4 Fermion propagator541

The photon propagator can be understood as the Fourier transform in momentum space of the 
Green function for the inhomogeneous wave equation. Here we recall the discussion in Section 
18.6. Consider the inhomogeneous wave equation of electrodynamics in Lorenz gauge

 ∂ ∂ =µ
µ ν νA x j x( ) ( )EM  

Following the discussion in Section 18.6, we try to express A xν ( ) in terms of a solution A xν
( ) ( )0  

to the homogeneous wave equation and an integral involving a Green function; that is,

 A x A x i G x x j x d xν ν ν( ) = − ′ ′( ) ′∫( ) ( ) ( , )0 4EM  

Applying ∂ ∂µ
µ  to both sides of this equation, where the derivatives are with respect to x and 

taking into account that ∂ ∂ =µ
µ νA( )0 0, we obtain
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This implies that
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We now Fourier transform both sides of the latter equation. Writing
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which yields f q i q( ) = − 2 .

23.4 Fermion propagator

We now derive the lowest-order amplitude for electron-positron annihilation to two photons. 
The result is given in (23.70) and (23.71). In the course of the derivation, we obtain a rule for 
an internal electron line that is valid not just for this particular case but valid in general. Let 
the initial and final states be

 φ φ α αi fp s p s k k= =+ + − −, ,1 1 2 2  

The amplitude is
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Including in (23.53) only those contributions from the normally ordered current densities that 
can annihilate an electron and a positron, we obtain

 

A e d x d x k k A x A xfi

t t

= − ( ) ( )∫ ∫
>

2 4
1

4
2 1 1 2 2 1 2

1 2

0α α γ γµ ν αβ
µ

ρσ
ν,

          0 1 1 2 2 1Ψ Ψ Ψ Ψ Ψ Ψα β ρ σ α β
( ) ( ) ( ) ( ) ( ) ( )+ + − + + +( ) ( ) ( ) ( ) ( )−x x x x x x1 2 2

1 1 2

( ) ( ) ( )
( ) ( )

− +

− + +

Ψ Ψ

Ψ Ψ Ψ
σ ρ

α β ρ

( ) ( )

( ) ( ) ( )

x x

x x x          + ( ) ( ) ( ) ( ) ( ) ( )+ − + + +− + + − −Ψ Ψ Ψ Ψ Ψσ β α ρ σ
( ) ( ) ( ) ( ) ( ) ,x x x x x p s p s2 1 1 2 2

 (23.54)

The photon part of this matrix element is
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 (23.55)

The first and second terms in the parentheses are the direct and exchange terms, respectively. 
The plus sign between them is a manifestation of the fact that photons are bosons. Concerning 
the electron-positron part of the matrix element in (23.54), the third and fourth terms give zero 
by operating on 0 | from the right. The remaining part is

 γ γαβ
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The ordering of fermion fields in the first term of (23.56) can be rearranged as follows:
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Also, the contribution of the second term in (23.56) to (23.54) is
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Because α β ρ σ µ ν, , , , ,  and  are all dummy indices and x x1 2 and  are dummy variables, we can 
make the exchanges ρσ αβ µ ν↔ ↔ ↔, ,  and x x1 2 in (23.58) to obtain
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Therefore, defining θ τ τ θ τ τ( ) = > ( ) = <1 0 0 0 if  and  if , we arrive at
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Using the completeness relation, where the n  form a complete set of states of the e e+ − field, 
we write (23.61) as follows:
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 (23.62)

The only nonzero matrix elements in this expression are those for which n = 0 (the vacuum 
state). Thus (23.62) is
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 (23.63)

The factor on the last line of (23.63) is called the vacuum expectation value of  the time-ordered 

product 0 01 2T x xΨ Ψβ ρ( ), ( ){ } . It can be expressed as follows, where we make the replace-

ment V d
p

− −→ ∫∑1 2 3 32/ ( )π p :
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Later in this chapter [see (23.94) and (23.96)], we show that
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Making use of these expressions in (23.64), we arrive at

 

0 0
1

2
1

21 2 3
3

1

1 2 1 2T x x d
E

e e

t

i iE t tΨ Ψβ ρ π
θ

( ),
( )

(

( )( ){ } = ∫ −( ) − −p p x x

− + −( )
+ ∫ − −( ) + −

t m E

d
E

e e ti iE t t

2
0

3
31

2
1

2
1 2 1 2

)

( )
(( )

γ

π
θ

βργ 



p

p p x x
2 1

0− − +( )t m E) γ βργ p

      
 

(23.65)

 

 

 

 

 



Interaction between Relativistic Electrons, Positrons, and Photons544

In the last line on the right-hand side, we replace p by –p, which does not change the sign of the 
integral. As a result, (23.65) becomes
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(23.66)

The factor in curly brackets in the integrand of (23.66) is conveniently expressed by a contour 
integral. Temporarily, let the 4-vector p be p = ω, p, where ω  is a variable quantity, and con-
sider the integral
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where E m= + +p2 2  is a fixed quantity, and ε  is a real positive infinitesimal. We write 
E i E i E i2 2− − = − −( ) − +( )ω ε δ ω δ ω , where δ  is another real positive infinitesimal, and we 
use the contours shown in Figure 23.5.
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 Figure 23.5 Contours for I.
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The result for I  is
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Therefore, with τ = −t t1 2, the factor in curly brackets in (23.66) is I i2π ; hence
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Now employing (23.67), (23.63), (23.60), and (23.55), we have
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(23.68)
The integrals over x x1 2 and  yield
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The delta functions in (23.69) imply conservation of 4-momentum at each vertex. Finally, 
 integration over p yields the lowest-order amplitude for e e+ − annihilation to two photons
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with
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and where p p k p k p p k p k= − = − + ′ = − = − +− + − +2 1 1 2 and . M is represented by the Feynman 
diagrams in Figure 23.6.
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The foregoing calculation yields two new Feynman rules:

For each internal spin-½ fermion line, there is a factor•	

 i
p m

p m

+
−2 2

 

Note that for an internal fermion line there is no distinction between fermion and •	
antifermion.
If  two identical photons appear in the final state, the direct and exchange amplitudes have •	
the same sign.

23.5 Summary of Feynman rules obtained so far for QED

As we have already suggested, the nth-order S-matrix amplitude Afi for given initial and final 
states has the following general form:
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m

E Vfi
n

f i
i f

( ) ( ) ( )= − ∏∏2 4π δ
final
fermions

initial
fermions
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photons

final
photons

∏ ∏  (23.72)

The Feynman amplitude M in (23.72) is the sum of Feynman amplitudes (with due regard for 
relative signs) from all topologically distinct diagrams of nth order. The individual M ampli-
tudes are constructed according to the following rules:

1. For each incoming e− line, there is a column spinor ups.
2. For each outgoing e− line, there is a row spinor up s’ ’.
3. For each incoming e+ line, there is a row spinor vps.
4. For each outgoing e+ line, there is a column spinor vp s’ ’.
5. For each incoming or outgoing photon, there is a factor εµ .
6. For each e e− −γ  vertex or e e− +γ  vertex, there is a factor ieγ µ .
7. For each e e+ +γ  vertex, there is a factor −ieγ µ .
8. For each internal photon line, there is a factor −ig qµν

2 , where q is the 4-momentum of the 
internal line.

p                                                            p'

p– p+ p– p+

k2 k1 k2 k1

 Figure 23.6 Feynman diagrams for e e+ − annihilation in lowest order.
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 9. For each internal electron line, there is a factor

 i
q m

q m

+( )
−2 2

 

10. Four-momentum is conserved at each vertex. (We postpone to the following section a dis-
cussion of what happens in the case of internal loops.)

11. If  two identical fermions appear in the final state, the direct and exchange amplitudes have 
opposite signs.

12. If  two (identical) photons appear in the final state, the direct and exchange amplitudes have 
the same sign.

23.6 Survey of various QED processes in second order

In addition to electron-electron scattering and e e+ − annihilation, which we discussed in Sections 
23.3 and 23.4, respectively, the following second-order processes are of interest:

Electron-positron (•	 Bhabha) scattering (see Figure 23.7). Because an electron and a posi-
tron are distinguishable, we do not have an exchange diagram here. Instead, as shown in 
Figure 23.7b, there is a so-called annihilation diagram. The Feynman amplitude for Bhabha 
scattering is

 M e u i u
ig

q
v i v v i u

ig

q
u i= ( ) −

−( ) + ( ) −
′

( )2
1 1 2 2 2 2 1 2 1’ ’ ’γ γ γ γµ µν ν µ µν ν v2’









  (23.73)

•	 e e+ − + − + −→ µ µ τ τ or  by single-photon exchange (see Figure 23.8). The muons µ µ− +,  and 
the tau leptons τ τ− +,  are close relatives of e e− +,  and interact with photons in the same way, 
except that in all formulas we must make the appropriate replacements of electron mass me 

by muon mass m cµ =( )106 MeV/ 2  or tau mass m cτ =( )1 777,  MeV/ 2 . The sole lowest-order 

(annihilation) diagram is Figure 23.8. We calculate the cross section in Section 23.9.
Compton scattering (see •	 Figure 23.9). Here a photon (kε) collides with an electron (ps), 
resulting in a final state consisting of a photon (k′, ε′) and an electron (p′s′). The Feynman 
amplitude is

 M e u i
i q m

q m
i u u i

i q m

q m
ip s ps p s= ′( )

+( )
−

( ) + ( )
′ +( )

′ −
′2

2 2 2 2’ ’ ’ ’ε ε ε ε( )












ups  (23.74)

Pair production by two photons (see •	 Figure 23.10). Photons ( , ) ( , )k k1 1 2 2α α and  convert to 
an electron-positron pair. The Feynman amplitude is

     v +M e p s p s p su i
i p m

p m
i u i

i p m
= − − + + − −( )
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−

( ) ( )
′ +( )

′
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p m

i p s
2 2 2−
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+ +ε v  (23.75)

 

 

 

 

 

 

 

 

 

 

 



Interaction between Relativistic Electrons, Positrons, and Photons548

Coulomb (Mott) scattering of an electron by a nucleus (see •	 Figure 23.11). The lowest order 
for Mott scattering is actually second order (Figure 23.11a). However, if  we ignore nuclear 
recoil, the nucleus generates a fixed Coulomb potential, and the amplitude reduces to first 
order. This is just Rutherford scattering, except for corrections due to the electron’s relativ-
istic motion, which were first analyzed by N. Mott in 1929. We calculate the Mott scattering 
cross section in Section 23.8.
Bremsstrahlung (see •	 Figures 23.12 and 23.13). Here an electron scatters from a nucleus and 
emits a photon. In reality, the lowest nonvanishing order is third, as seen in Figure 23.12. 
However, as in Mott scattering, it is often sufficient to ignore the nuclear recoil, in which case 
the nucleus merely acts as the source of a static Coulomb potential. Thus, in effect, we have 
the second-order diagrams of Figure 23.13.
Pair production in a Coulomb field (see •	 Figure 23.14). Here an energetic incoming photon 
interacts with a nucleus to generate an electron-positron pair. The diagrams are analogous 
to those of bremsstrahlung in Figure 23.13. For photons of very high energy, this is the most 
important mechanism for absorption of a beam of radiation in its passage through matter.
Second-order self-energy diagrams (see •	 Figure 23.15). Figure 23.15a and b represents the 
second-order self  energy shifts due to mass and charge, respectively. For the internal loops 
shown here, conservation of 4-momentum at each vertex is not sufficient to fix the 4-momenta 
q k and  in Figure 23.15a or the 4-momenta q′ and p′ in Figure 23.15b. Instead, it is necessary 
in each case to integrate over all 4-momenta, satisfying the conservation law at each vertex. In 
particular, it can be shown that the Feynman amplitude corresponding to Figure 23.15a is

 M
e

d k u
ig

k

i p k m

p k m
ups ps= −

( )
− − +( )

−( ) −











∫

2

4
4

2 2 22π
γ γα αβ β  

which diverges for large •	 k . There is also a divergent integral associated with the case in 
Figure 23.15b. These infinities are dealt with by renormalization. We have given an elemen-
tary discussion of that topic in Section 17.1, but a more detailed treatment is beyond the 
scope of this book.

Finally, the disconnected second-order diagram of Fig. 23.16 contributes nothing to observ-
able transition probabilities, cross sections, or static energies.

e–(p'1)

e–(p1) e+(p2) e–(p1) e+(p2)

e+(p'2) e–(p'1) e+(p'2)

q                                                        q'

   a)                                     b)

 Figure 23.7 Electron-positron scattering in lowest order: (a) direct diagram; (b) annihilation diagram.
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e–(p1) e+(p2)

+(p'2) –(p'1)

 Figure 23.8 Annihilation diagram for e e+ − + −→ µ µ .

k'                 p'               k'                                        p'

p                  k                                        p                                        k

 Figure 23.9 Lowest-order diagrams for Compton scattering.

p+

k1 k2 k1 k2

p– p+ p–

p                                                         p'

 Figure 23.10 Lowest-order diagrams for pair production by two photons.

Z

Z

a)                                        b)

e– e–

 Figure 23.11 (a) Mott scattering of an electron by a nucleus (Z), second order. (b) Mott scattering with no nuclear recoil (first order). In this approximation, 
the nucleus generates a static Coulomb field.
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Z Ze– e–

 Figure 23.12 Lowest-order diagrams for bremsstrahlung. The heavy solid line represents a nucleus with atomic number Z.

Z

Z

e– e–

a)                                              b)

 Figure 23.13 Second-order diagrams for bremsstrahlung where nuclear recoil is neglected.

Z                                                                                              Z

e+ e+e– e–

 Figure 23.14 Second-order diagrams for pair production in a Coulomb field, where nuclear recoil is neglected.

q=p-k                                    p'=k'-q' q'

p                                                         k'

p                                                         k'

k

a)                                                 b)

 Figure 23.15 Second-order self energy diagrams.
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23.7 Transition probabilities and cross sections

The transition probability corresponding to the amplitude of (23.72) is

 P A P P
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EV V
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i f jj
fi→ = = −  ∏ ∏2

4 4
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2
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2
( ) ( )
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π δ
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 (23.76)

Now
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where T t t= − 0. Thus the transition probability per unit time is
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 (23.77)

As in past discussions, we are usually interested in the transition probability per unit time to a 
group of final states, so we must multiply (23.77) by a phase-space factor

 V
d f

3

32

p

( )π
 

for each final fermion and each final photon. Thus the transition probability per unit time 
becomes
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 (23.78)

Next, suppose that we are interested in the cross section for some scattering process, for 
example, A B C D+ → + . For definiteness, we assume here that all the initial and final par-
ticles are fermions. The modifications if  some are photons are obvious. The differential cross 
section is

 d
d

j
V
v

dσ = =
Γ

Γ  

 Figure 23.16 Disconnected second-order diagram.
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where j v V= /  is the probability current density, with v the relative velocity of A and B. Thus
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 (23.79)

The differential cross section dσ  is an area in the plane perpendicular to the line between A and 
B; hence it is invariant under Lorentz boosts along this line. It is convenient to go to the rest 
frame of B, where v E E mA A A B B= =p  and . In any other Lorentz frame obtained by a Lorentz 
boost along the line between A and B,

 m p p m mB A A B A Bp → ( ) −

2 2 2  

where pA and pB are the 4-momenta of A,B. Thus (23.79) can be written as
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 (23.80)

Formulas (23.78) and (23.80) are very useful in practical calculations of physical processes, and 
we refer to them repeatedly in what follows.

23.8 Coulomb scattering of a relativistic electron: Traces of  
products of gamma matrices

We mentioned that scattering by a fixed Coulomb potential can be treated as a first-order 
 process. The amplitude is

 A ie d x x x A xfi f i
( ) ( ) ( ) ( )1 4= ∫φ γ φµ

µΨ Ψ  (23.81)

Let the initial and final states be φ φi fe p s e p s= ( ) = ( )− −
1 1 2 2, , and , respectively. The vec-

tor potential in the present case is
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Inserting (23.82) in (23.81), we see that only a single term contributes; that is,
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Because e e ei p p x i i E E t2 1 1 2 1 2−( ) −( ) − −( )= p p x , the integral on the right-hand side of (23.83) is

 

e
d x e dt

e
d

i p p x
i E E t

i( )
( )

2 1

1 2

1 2
4 3

−
− −

−( )
∫ ∫∫=




x x
x

p p x

                      = −
−( )

∫2 1 2
3

1 2

πδ( )E E
e

d
i p p x

x
x



 

The integral over x has been discussed previously [see Section 18.9, equation (18.95)]. Let q = 
p1 – p2. Because E1 = E2, we have p p1 2= ; hence q p= ( )2 21 sin θ , where θ  is the scattering 
angle. From (18.95), we have
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Therefore,
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Now δ δ δ δ π( ) ( ) ( ) ( )E E E E E E T2 1
2

2 1 2 10−[ ] = − = − /(2 ). Thus the transition probability per 
unit time to a group of final states is
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and the differential cross section is
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Next, we evaluate M u u0
2

2
0

1
2≡ γ . It is useful to consider the more general form

 M u Fu0 2 1=  

where F is an arbitrary 4×4 matrix. Then
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Here we replace γ γ0 0F F†  by  in the last line because F  can always be expressed as a sum of 
products of γ  matrices, and γ γ γ γµ µ0 0† = . Equation (23.86) can be written
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 (23.87)

where in the last line each of the factors in parentheses is a 4×4 matrix. First consider the 
matrices u u1 1 and u u2 2. We start with an electron at rest and with spin up along z. Then
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This can be written as
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Now Σ3 = ŝΣ, where ŝ is a unit vector in the direction of the spin expectation value (in the pre-
sent case, along +z). Thus, for an arbitrary spin direction, we can write (23.88) as
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(23.89)

Now we make a Lorentz transformation to a frame in which the electron has nonzero linear 
momentum p. In this case, m pγ 0 → , but what about γ 0 ŝΣ ? Here we define a 4-vector sµ that 
reduces to 0,s in the rest frame. Hence s s s p = − =1 0 and , and because the scalar product of 
two 4-vectors is an invariant, the last two relations hold in any Lorentz frame. For the special 
case of a Lorentz boost along the z-axis that yields a particle momentum p = =0 0, , p mz βγ , 
we have
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Thus
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In the general case where p is in an arbitrary direction, this yields
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Now we return to γ 0 ŝΣ . This quantity can be written as
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In the frame where the particle is moving, this last quantity becomes γ 5 s . Consequently,
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When we reverse the spin, all components of s change sign. Hence
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If  we sum over both signs of spin, we obtain
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Similarly, for positron spinors, one can show that
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We now return to (23.87)
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which is the trace of a sum of products of gamma matrices. At this point we digress to prove 
some general theorems about such traces that are useful in calculations of many transition 
probabilities and cross sections.

1. The trace of a product of an odd number of gamma matrices is zero.

Proof: Because γ 5 2( ) = I , we can always write
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5                     γ γ γ γα β σ... 5( )
 

where the last step follows because the trace of a product of matrices is unchanged when these 
matrices are cyclically permuted. Now move the γ 5 on the far right to the far left by permut-
ing it with each gamma matrix in turn. For each such permutation, we obtain a factor of (–1); 
hence, for an odd number of gamma matrices, the trace is equal to its negative, and therefore 
it vanishes.

2.  tr tr tr g I gγ γ γ γ γ γµ ν µ ν ν µ µν µν( ) = +( ) = ( ) =
1
2

4  (23.98)

3. A corollary of (23.98) is

 tr ab a b( ) = 4   (23.99)

4.  tr g g g g g gγ γ γ γα β ρ σ αβ ρσ αρ βσ ασ βρ( ) = − +4 4 4  (23.100)

Proof:
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Therefore,

 γ γ γ γ γ γ γ γ γ γ γ γ γ γα β ρ σ β ρ σ α αβ ρ σ αρ β σ ασ β ρ+ = − +2 2 2g g g  (23.101)

We now take the trace of both sides of (23.101) and use (23.98) to obtain (23.100).

5.  tr i( )γ γ γ γ γ εα β ρ σ αβρσ5 4= −  (23.102)

where ε αβρσ  is the completely antisymmetric unit 4-tensor.
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Proof: If  αβρσ = 0123 in (23.102), we have tr i itr I i−[ ] = − = −( ) ( )γ 5 2 4 . Any even permutation 
of the numbers 0, 1, 2, 3 obviously yields the same result, and any odd permutation changes 
the sign. If  any two of the indices αβρσ  take the same value, this results in a trace of the 
general form tr( )γ γ γµ ν 5  that vanishes. If  all four of the indices are the same, we have tr( )γ 5 ,  
which also vanishes. If  three of the indices are the same, we obtain a trace of an odd num-
ber of γ  matrices, which also vanishes.

We now return to our calculation of the differential cross section for Coulomb scattering of 
a relativistic electron, which is given by (23.85); that is,
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If  we average over initial spin polarizations (equivalent to the assumption of an unpolarized 
incoming electron beam) and sum over final polarizations (equivalent to the assumption that 
the detector is equally sensitive to both final polarization states), then
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Because the trace of a product of an odd number of gamma matrices is zero, this expression 
reduces to
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Now tr m m tr I mγ 0 2 2 24( )



 = ( ) = , and from (23.100),
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Hence
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We insert (23.105) into (23.85), write p p p2
2

2 2 2 2d E d E= , and integrate over the delta func-
tion to obtain
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Because E E1 2= , we have p p1 2= ; thus
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where θ  is the scattering angle, and v E= p / . Thus (23.106) becomes
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or, finally,
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This formula, which we derived using the first-order approximation in the S-matrix expansion 
(first-order Born approximation), is called the Mott scattering formula for a relativistic electron 
in a Coulomb potential. It is a modification of the nonrelativistic Rutherford formula that we 
obtained earlier by two methods:

1. Exact solution of the nonrelativistic Coulomb scattering problem [see Section 18.5, equa-
tion (18.66)].

2. First Born approximation solution to the nonrelativistic Coulomb scattering problem [see 
Section 18.9, equation (18.97)]. That result is
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Ω  (23.108)

It is easy to see that (23.108) and (23.107) become identical in the nonrelativistic limit,  
where v E m→ →0 and .

One can solve the Dirac equation exactly to find the wave function of an unbound relativistic 
electron or positron in the Coulomb potential. [See, e.g., Bethe (1957, pp. 71–76)]. The formula 
for dσ  is complicated but can be simplified by expanding in powers of Zα. For Zα 1, we 
ignore all terms in this expansion beyond the first two and thus obtain
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  (23.109)

for scattering from a positively charged nucleus, where the ±  sign applies for an electron (posi-
tron). The leading term is identical to the right-hand side of (23.107). Because of the ± sign in 
the second term, the electron and positron cross sections are not identical.
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23.9 Calculation of the cross section for e e+ − + −→ µ µ

We give another illustration of calculation methods by working out the cross section for the 
reaction e e+ − + −→ µ µ , which is frequently used in high-energy storage-ring experiments. The 
lowest-order Feynman diagram is given in Figure 23.8. In storage rings, the e e+ − and  usu-
ally (but not always) have the same energies E me  and equal and opposite linear momenta; 
that is,
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The amplitude is
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where, except for an unimportant phase factor,
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To calculate the cross section, we employ formula (23.80):
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In many practical experiments, the incoming electron and positron beams are unpolarized, and 
the detectors do not discriminate between different muon spin states. To describe such experi-
ments, we average over initial spins and sum over final spins. Thus
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where, as usual, summation over repeated indices is implied. Now consider the traces

 T e tr
m p

m

m p

m
e

e

e

e

λν λ νγ γ( ) =
−( ) +( )











2 1

4 4
 (23.113)

and
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Assuming that the electron and positron kinetic energies are very large compared with their 
rest energies, we ignore both me in the numerator of (23.113). Then, employing (23.100), we 
obtain

 T e
p p g p p p p
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λν λ ν ν λ

( ) =
− −( )1 2 2 1 2 1
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 (23.115)

However, we cannot ignore either mµ  in the numerator of (23.114). Thus T σρ µ( ) is
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Multiplying (23.115) by (23.116) and carrying out the algebra, we find
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We now insert (23.117) into (23.80) and integrate over p2′. Because in the CM frame p1= p2, the 
integral
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Next, we integrate over ′E1  to obtain
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where now ′ = ′ = = =E E E E E1 2 1 2 . Thus
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Let the scattering angle between ′p p1  and 1 be θ . Inserting the relations (23.119) into (23.118), 
making use of p p1 1≈ ′ =E E and β , where β  is the muon velocity, and integrating over the 
solid angle with
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we arrive at

 σ πα β β= −( )
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 (23.120)

In the limit where the muons become relativistic, β → 1 and
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where s = 4E2 is the square of the total energy available from e+ and e– in the CM frame. Of 
course, for symmetric colliding beams, the CM frame and the lab frame are identical.

23.10 Further discussion of second-order QED processes

We conclude this chapter with a brief  summary of the cross sections for several of the sec-
ond-order processes. The Feynman amplitude for Moller scattering is given in (23.52). In the 
 ultrarelativistic limit, the differential cross section is derived from that amplitude and given by 
the following formula, expressed in terms of the center-of-mass energy E and scattering angle 
θ and where we average over initial polarizations and sum over final polarizations:
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 (23.122)

The first and second terms on the right-hand side of (23.122) arise from the direct and exchange 
terms in (23.52), respectively, whereas the third term is due to interference between those terms.

The Feynman amplitude for Bhabha scattering is given in (23.73). The differential cross sec-
tion in the ultrarelativistic limit is
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 (23.123)

The Feynman amplitude for Compton scattering in lowest nonvanishing order is given in 
(23.74). Usually we are interested in the scattering of a beam of photons by matter, so we 
describe Compton scattering in the laboratory frame, where the initial electron is at rest. Here 
conservation of energy and momentum yield Compton’s kinematic formula relating the ener-
gies ω ω, ′ of  the initial and final photon to the scattering angle θ  of  the final photon; that is,

 ′ =
+ −

ω ω
ω θ1 1
me

( cos )
 (23.124)
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The differential cross section is obtained by a straightforward but tedious calculation from 
(23.74) and is given by the famous Klein-Nishina formula. Averaged over initial spins and 
summed over final spins, that formula is
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where ˆ ˆε ε and ′  are the polarizations of the incident and scattered photons, respectively. In the 
limit of low-incident photon energy, (23.124) reveals that ′ →ω ω/ 1 , and thus (23.125) reduces 
to the Thomson scattering cross section; that is,
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Problems for Chapter 23

23.1. Suppose that the Coulomb potential transformed relativistically like a scalar rather than 
as the zeroth component of a 4-vector. Show that the shape and energy dependence of the dif-
ferential scattering cross section for Mott scattering would change at high energies, although 
there would be no modification in the nonrelativistic limit.

23.2. An electron initially moves along the z-axis and has helicity h = +1. It undergoes Coulomb 
scattering into a final state where it moves along z′ (which makes an angle θ  with respect to z). 
What is the probability that the electron has positive helicity along z′? (There are two ways to 
solve this problem: one is rather complicated, and the other is very easy.)

23.3. This problem concerns several important features of charge-conjugation symmetry. 
Before we pose the problem, we note the following points:
(a) Only a neutral particle or a set of particles with no net charge (not merely electric charge 
but also baryonic, leptonic, and so on charge) can be in an eigenstate of the charge conjugation 
operator C because that operator reverses the signs of all charges, electric and otherwise.
(b) If  we assume that the electromagnetic interaction is charge-conjugation invariant, then 
because its Lagrangian density is L = e AΨ Ψγ µ

µ, if  eΨ Ψγ µ  changes sign under charge con-
jugation, we must also have CA C Aµ µ

− = −1 . Prove that eΨ Ψγ µ  is indeed odd under charge 
conjugation.
(c) As we know, Aµ  is a linear function of the destruction and creation operators a ak kα α and † ;  
therefore, because CA C Aµ µ

− = −1 , we must have

 Ca C a Ca C ak k k kα α α α
− −= − = −1 1† †  

A photon number eigenstate nkα  is created by application one or more times of the operator 
akα

†  to the vacuum state 0 . Let us agree to define the vacuum as an eigenstate of C with eigen-
value c = +1. Then the charge-conjugation eigenvalue of a state with n photons is c n= −( )1 .
(d) Although an electron and a positron are not identical particles, we can generalize the 
antisymmetrization principle by thinking of them as identical particles in different charge 
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states. This intuitive idea is made more rigorous by a straightforward analysis based on the 
 anticommutation rules for the creation operators b d† † and . For the purposes of this problem, 
we shall simply assume that this generalization of the antisymmetrization principle is valid. 
Then the wave function describing an electron and a positron must be antisymmetric under 
interchange of spatial coordinates, spins, and charges.
Use statements (c) and/or (d) to show that if  the electromagnetic interaction is charge-
 conjugation invariant,
(e) Any nonzero amplitude in quantum electrodynamics, to any order of perturbation theory, 
that is represented by a Feynman diagram with no external fermion or antifermion lines must 
have an even number of external photon lines. (This is called Furry’s theorem.)

23.4. It is intuitively obvious that the first-order amplitude for scattering of a positron by the 
Coulomb field of a nucleus with charge Ze is equal in magnitude but opposite in sign to the 
amplitude for scattering of an electron with the same spin and momentum from the same 
nucleus.
(a) Prove this statement.
(b) From considerations of charge-conjugation invariance, show that the interference terms 
between the first- and second-order amplitudes are also opposite in sign for e– and e+ scattering 
by the same nucleus. Thus e– and e+ Coulomb scattering cross sections differ significantly for 
scattering from a heavy nucleus.

23.5. Employing the Feynman rules we have learned in this chapter, set up the Feynman 
amplitude for bremsstrahlung in the limit where nuclear recoil is neglected, as illustrated in 
Figure 23.13a and b.

23.6. Starting from the Feynman amplitude for two-photon annihilation of an electron and 
positron given by (23.71), one can calculate the total cross section. In the limit where the elec-
tron and positron have very low relative velocity β , that cross section, averaged over electron 
and positron spins, is

 σ π
β

=
r0

2

 

where r a0
2

0= α , and a0  is the Bohr radius. Use this formula for σ  to calculate the mean life-
time of the 1

0S  state of positronium, and check your answer against the observed value

 τ 1
0
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24.1 The Four interactions: Fundamental fermions and bosons

At the present state of knowledge 
ν ν
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µ τe
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, ,  and , four distinct physical interactions 

are known: gravitation, electromagnetism, and the strong and weak interactions. Two classes 
of objects, presently recognized as fundamental, participate in these interactions: the funda-
mental fermions and the fundamental bosons. The fermions, in turn, consist of two classes: 
the leptons and the quarks, both with spin-½, whereas the bosons include the photon (called 
a vector boson because it has spin of unity); the intermediate vector bosons W+, W–, and Z; 
the eight gluons (also vector bosons); and the scalar Higgs boson. In these introductory para-
graphs we give a brief  review of their most important properties.

24.1.1 The leptons

There are three known generations of leptons
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 (24.1)

and for each lepton listed in (24.1) there is a corresponding antiparticle ν ν νµ τe , ,  and e+ + +, ,µ τ .  
The neutrinos experience only weak and gravitational interactions and have zero electric 
charge. Earlier (Chapter 5) we noted that since 1998, convincing experimental evidence has 
been found for neutrino oscillations and mixing. This implies that each of the neutrino weak 

interaction eigenstates ν ν νµ τe , ,  and  is a linear combination of neutrino mass  eigenstates 

ν ν ν1 2 3, ,  and , and the latter states are associated with distinct (albeit very small) non-
zero masses. Within present experimental accuracy, all neutrinos are created left-handed (spin 
opposed to momentum), whereas antineutrinos are created right-handed (spin parallel to 
momentum). This striking fact is a manifestation of parity violation (discussed in more detail 
later).

The electron, muon, and tau lepton all have electric charge –e and experience electromag-
netic as well as weak and gravitational interactions. According to all experimental evidence, the 
muon and tau lepton are just heavy copies of the electron; that is,

 m c m c m ce = = =0 511 106 1 777. , MeV/  MeV/  MeV/2 2 2
µ τ  
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24.1 The Four interactions: Fundamental fermions and bosons565

In Chapter 5 we defined the generational lepton numbers L L Le , ,  and µ τ , and we noted that 
all experimental evidence prior to the discovery of neutrino mixing and oscillations was con-
sistent with conservation of each of these numbers in all known interactions. For example, 
generational lepton number conservation would be violated if  the following decay occurred:

 µ γ− −→ e  (24.2)

In fact, this decay has never been observed, and the branching ratio for it is less than 4×10–11, 
although it is allowed by conservation of energy, angular momentum, and statistics. This par-
ticular decay illustrates a situation in which generational lepton number would be violated, but 
overall lepton number L L L Le= + +µ τ  would be conserved. We can also contemplate pro-
cesses in which overall lepton number conservation is violated. An example is neutrinoless 
double beta decay ββ0( ) ; that is,

 Z N Z N e e, ,( )→ + −( ) + +− −2 2  (24.3)

which has never been observed but is actively searched for in present-day experiments. We know 
of three lepton generations, but could there be more? Experiments at the large electron-posi-
tron collider (LEP) at CERN showed that this is impossible unless the leptons in the additional 
generation or generations are very massive ( ).m c> 45 GeV/ 2  No convincing explanation has 
yet been given for why there are just three lepton generations, and no convincing calculation of 
the mass of any of the leptons has yet been presented.

24.1.2 The quarks

There are also three generations of quarks
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and corresponding to each there is an antiquark: u d c s t b, , , , ,  and . Quarks experience 
strong as well as electromagnetic, weak, and gravitational interactions. The electric charges of 
u c t, ,  and  are each 2e/3, whereas those of d, s, and b are each –e/3. We also define the baryon 
number B; that is, B = +1/3 for each quark, and B = –1/3 for each antiquark. Baryon number is 
conserved in all known interactions, but this conservation law might break down at some level.

Quarks possess color charge, a degree of freedom of fundamental significance for the strong 
interaction that does not exist for the leptons. Each quark can exist in three distinct internal 
states, arbitrarily called the color states red (R), green (G), and blue (B), whereas each antiquark 
can exist in three distinct anticolor states R G B, ,  and . These are new degrees of freedom in 
addition to charge, mass, and spin. The color properties of quarks are described by the symme-
try group SU(3), which is the group of all 3×3 unitary matrices with determinant equal to plus 
unity. The physical theory in which this group is employed (the modern theory of strong inter-
actions) is called quantum chromodynamics (QCD). It was invented in 1974, has had impressive 
success, and is generally considered to be the correct theory of strong interactions, at least 
within the energy range accessible to experiment at present.

The various strongly interacting particles (hadrons) fall into two broad classes: the bary-
ons (p, n, Λ, …), which have half-integral spin, and the mesons ( π π± ±, , , ...0 K ), which have 
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integral spin. In earlier decades it was thought that at least some of the baryons and mesons are 
fundamental objects. However, starting in the early 1960s, it became evident that hadrons are 
composite objects composed of quarks (and/or antiquarks). In particular, a meson consists of 
a “valence” quark-antiquark pair (together with an “ocean” of virtual quark-antiquark pairs). 
The valence quark composition of several mesons is as follows:
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For all the mesons just listed, the quark and antiquark are in an 1
0S  state (in an approximate 

nonrelativistic description). Such mesons have zero net quark-antiquark spin, zero orbital angu-
lar momentum for quark-antiquark relative motion, and thus zero total angular momentum. 
They thus resemble the positronium atom in its ground state. The Dirac theory tells us that the 
intrinsic parity of a fermion-antifermion pair is negative because Pψ γ ψ( ) ( )x x= −0 , and posi-
tive-energy antifermion spinors are equivalent to negative-energy fermion spinors. Thus all the 
mesons just mentioned have odd intrinsic parity (JP = 0–). The φ ψ= = =ss J cc bb, / , and ϒ  
are examples of mesons where the quark-antiquark pair forms an 3

1S  state.
A baryon consists of three valence quarks and an ocean of virtual quark-antiquark pairs. 

For example, the valence quark content of several baryons is as follows:
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Each of the baryons just listed has spin-½ and belongs to a grouping called the metastable 
baryon octet, which is a multiplet of the approximate symmetry group SU(3)F (F for flavor). 
Flavor SU(3) is distinct from the more fundamental SU(3) associated with color.

The baryon number of each baryon is B = +1. The corresponding antibaryon, in which each 
quark is replaced by the corresponding antiquark, has baryon number B = –1. Note that the 
baryon number of any meson is zero and that there is no law of conservation of mesons: they 
can be created and/or destroyed in any numbers. When quark and antiquark combine to form a 
meson or when three quarks form a baryon, they do so in such a way that the resulting hadron 
has no net color: hadron states are color-SU(3) singlets.

Although leptons are observed as free objects, no one has ever observed a free quark, and 
there are good reasons to believe that quarks must forever remain confined inside hadrons. The 
force between quarks, while quite weak at short distances (asymptotic freedom), increases with 
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separation, and it appears that an infinite amount of energy would be required to separate two 
quarks by an infinite distance. When this is attempted, new quark-antiquark pairs are formed 
from the vacuum, and the net result is the production of new hadrons rather than the liberation 
of individual quarks.

24.1.3 The photon

As we have discussed at length, the photon is the quantum of the electromagnetic radiation 
field. It has unit spin (the electromagnetic field is a vector field), and it has zero mass. We have 
learned that the Coulomb force between two charged particles arises from the exchange of 
virtual photons. In lowest order of perturbation theory, this is represented by the Feynman 
diagram of Figure 24.1.

The simpler process of photon emission or absorption by a free electron cannot occur because 
of energy-momentum conservation, but it is still useful to consider because it is represented 
by a primitive diagram (Figure 24.2) from which all more complicated diagrams in quantum 
electrodynamics are constructed.

The Coulomb potential varies with distance as 1/r. This is a manifestation of the fact that 
the photon rest mass is zero. Were it greater than zero, the Coulomb potential would take the 
Yukawa form
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where

 λ γ=
m c



 

Quantum electrodynamics is a highly successful theory. Not only can one calculate any quan-
tum electrodynamic (QED) process (Compton scattering, bremsstrahlung, Møller scattering, 
etc.) accurately to lowest nonvanishing order, but there is a consistent and successful procedure 
for calculating higher-order corrections. It is true that, in general, such higher-order correc-
tions involve divergent integrals, but these divergences are removed once and for all by charge 
and mass renormalization. Although the renormalization process contains questionable math-
ematical procedures, it achieves remarkable successes: calculations of the Lamb shift and the 
anomalous magnetic moments of the electron and positron agree with the results of high-
precision experiments. There can be little doubt of the essential validity of renormalization 
in QED.

 Figure 24.1 Single-photon exchange between two charged particles.
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24.1.4 Intermediate vector bosons W Z±±  and 0 : The Higgs boson

Whereas the photon mediates the electromagnetic interaction, W ±  vector bosons mediate the 
charged weak interaction, and Z0 vector bosons mediate the neutral weak interaction. For 
example, muon decay is represented by the Feynman diagram (Figure 24.3), whereas the neu-
tral weak reaction

 ν νµ µ+ → +− −e e  

is represented by Figure 24.4.
The vector bosons W± and Z0 are analogous to the photon, but there are important dif-

ferences. First, W± carry electric charge, whereas the photon carries no charge, electrical or 
otherwise. Second, W± and Z0 are massive: mW = 80.3 GeV/c2 and mZ = 91.2 GeV/c2. A W or Z 
decays by semiweak interaction; that is,
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 (24.5)

 

Z
e e

→
→
→
→

+ −

+ −

+ −

νν

µ µ
τ τ

  
  
  
    

 (24.6)

Figure 24.5 is a typical diagram for a semiweak decay.
Because m mW e , there is no prohibition against the first-order process illustrated in 

Figure 24.5 or the analogous processes listed in (24.5) and (24.6). As in quantum electrody-
namics, diagrams such as Figure 24.5 serve as building blocks for constructing higher-order 
weak interaction diagrams such as Figures 24.3 and 24.4.

The nonzero masses of W± and Z0 mean that the weak interactions, unlike the electromag-
netic interaction, have short range. The finite rest mass causes serious problems for creating 
a renormalizable theory. If  one simply starts with a QED-like Lagrangian and adds a mass 
term, all the attractive features of QED, such as renormalizability and satisfaction of unitarity 

 Figure 24.2 The primitive electron-electron-photon vertex of QED. It is the basic building block for all QED Feynman diagrams. The coupling strength of 
this primitive vertex is e = 4πα .

 

 

 

 

 

 

 

 

 



24.1 The Four interactions: Fundamental fermions and bosons569

in scattering amplitudes, are spoiled. Another way had to be found to impart mass to the W 
and Z bosons. The solution was found independently by S. Weinberg and A. Salam in 1967–
1968 in an unexpected and curious way by means of the Higgs mechanism. Their theory (the 
electroweak standard model) predicts that at least one massive scalar Higgs boson must exist. 
Experimental evidence for the Higgs boson, with mass m cH = 126 GeV/ 2, has been found at the 
Large Hadron Collider in Geneva in 2012. We discuss the standard model in more detail later.

24.1.5 The Gluons

The eight gluons, like the photon, have zero rest mass, zero electric charge, and unit spin, but 
unlike the photons or W and Z bosons, they carry color charge as follows:

e e–

W–

 Figure 24.5 First-order diagram for the semiweak decay W e− −→ νe .

e–

e–

Z0

 Figure 24.4 νµ −
−e  scattering by Z0 exchange.

                     e e–

W–

–

 Figure 24.3 Muon decay occurs by virtual W– exchange.
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Because of color charge, gluons experience nonlinear self-interactions that have no analogue 
in QED. These lead to unique and peculiar properties of QCD, such as quark confinement in 
hadrons and the formation of gluon bound states (which are called glueballs).

24.2 A Brief history of weak interactions: Early years

We now give a historical sketch of the development of ideas about the weak interaction. We 
hope that this will enable the reader to place modern theoretical and experimental achieve-
ments in an appropriate perspective. Our story begins in 1896 with the discovery of radio-
activity by Becquerel. In the first decade of the twentieth century, it was recognized that in 
beta-radioactivity, a nucleus emits an electron: nuclear beta decay was the first weak process 
observed. In 1914, James Chadwick demonstrated that the energy spectrum of the electrons in 
beta decay is continuous. Rutherford and others suggested that this might happen because the 
emitted electron loses energy stochastically by interaction with atomic electrons. However, in 
1927, Ellis and Wooster performed calorimetric measurements of the energy released in beta 
decay and showed that the energy deposited in the calorimeter is

 E N Etotal =  

where N is the number of decays, and E  is the average energy (not the total energy) of the 
beta spectrum. They thereby eliminated Rutherford’s suggestion and created a crisis that left 
only two possible resolutions: either energy is not conserved in beta decay (which was in fact 
suggested by Bohr in 1928) or a third particle is also emitted in addition to the beta particle 
and the recoiling nucleus. This suggestion was made by Pauli in 1930 and again in 1933. In 
order to be consistent with Ellis and Wooster’s results, the third particle would have to be elec-
trically neutral and have extremely feeble interactions with surrounding matter to avoid being 
absorbed in the calorimeter. By the time Pauli made his suggestion the second time in 1933, the 
neutron had been discovered, nuclei were correctly understood to be composed of protons and 
neutrons, and Pauli’s particle (now assumed to have half-integral spin and soon to be named 
the neutrino by Fermi) was necessary not only for energy conservation but also for conservation 
of angular momentum and statistics.

24.3 Fermi’s theory of beta decay

Directly stimulated by Pauli’s idea, Enrico Fermi created a theory of beta decay in a few days 
at the end of 1933 (Fermi 1934). Fermi constructed his theory by analogy with quantum 

 

 

 

 

 

 

 

 

 

 

 

 

  



24.3 Fermi’s theory of beta decay571

electrodynamics, which was quite new at the time. In QED, as we know, the Lagrangian density 
describing the interaction between an electron and the electromagnetic field is

 L = − =j A e AEM
µ

µ
µ

µγΨ Ψ  (24.7)

Because j Aµ
µ and  are both polar 4-vectors, L  is a scalar. As we have noted many times previ-

ously, one of the simplest conceivable processes in QED is emission of a photon by a free 
electron (see Figure 24.2). Although this cannot occur because of energy-momentum conser-
vation, it is still useful conceptually as a starting point in Fermi’s theory for consideration of 
neutron decay (Figure 24.6).

In Fermi’s theory, the 4-vector Aµ in QED is replaced by the 4-vector g eµν
ν

νγΨ Ψ , and Ψ Ψe eγ µ  
in QED is replaced by the 4-vector Ψ Ψp nγ µ . Thus, as is apparent from Figure 24.6, this the-
ory assumes that four fermions interact at a single space-time point. (Later on we see that this 
description is really appropriate as the low-energy limit of an intermediate boson description 
in which the diagram for neutron beta decay is Figure 24.7.)

Fermi’s beta-decay Lagrangian density is

 Lβ
µ

µ νγ γ= −
GF

p n e
2
Ψ Ψ Ψ Ψ  (24.8)

Here the factor 2–1/2 appears merely for historical reasons; GF (the Fermi constant) is a coupling 
constant obtained by fitting to experimental data, and it is found to be

 G mF p= × − −1 03 10 5 2.   (24.9)

e                 p              e–
e

e                                                  n

 Figure 24.6 Analogy between emission of a photon by a free electron and neutron beta decay in Fermi’s theory.

p                          e–
e

W–

n

 Figure 24.7 Lowest order Feynman diagram for neutron beta decay by W- exchange.
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in units where  = =c 1.
Shortly after Fermi created his theory, positron emission in beta decay was discovered, and 

several years later, electron capture was observed. These are readily accommodated in Fermi’s 
theory by adding to (24.8) a Hermitian conjugate term

 Lβ
µ

µ ν
µ

ν µγ γ γ γ= − + 
GF

p n e n p e
2

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ   (24.10)

In 1936, G. Gamow and E. Teller pointed out that there are other ways to construct a scalar 
beta-decay Lagrangian density from the Dirac fields for neutron, proton, electron, and neu-
trino (Gamow and Teller 1936).We only have to recall that under a Lorentz transformation,

•	 ΨΨ is a scalar (S).
•	 Ψ Ψγ µ  is a polar vector (V).
•	 Ψ Ψσ µν  is a second-rank tensor (T).
•	 Ψ Ψγ γµ 5  is an axial vector (A).
•	 Ψ Ψγ 5  is a pseudoscalar (P).

While Fermi’s Lagrangian density is the scalar product of two polar vectors (V•V), Gamow 
and Teller noted that there was no reason a priori to exclude the possibility of such terms as 
S•S, T•T, A•A, and P•P. Thus the matrix element for beta decay could be written as

 M
G

C O O dF
i

i
p i n e i= ( )( )

=
∑∫∑

2
3

S,V,A,T,P
nucleons

ψ ψ ψ ψν x  (24.11)

where the ψ’s are single-particle Dirac wave functions, O Ii = , , , , ,γ σ γ γ γµ µν µ 5 5  for i = S, V, T, 
A, P, respectively, and the integration is carried out over the nuclear volume. The coupling con-
stants Ci could only be determined by experiments, but in 1936, Gamow and Teller already rec-
ognized that in nuclear beta decay the total energy imparted to the leptons very rarely exceeds a 
few MeV. Thus the recoiling final nucleus is always nonrelativistic in the rest frame of the initial 
nucleus. In the standard representation,

 I
I

I

I

I

I

I
=






=
−







=
−






=






0

0

0

0

0

0

0

0
0

5γ γγ
σ

σ
 

whereas a Dirac four-component wave function is written

 ψ
χ

φ χ
=

=
+













σp
E m

 (24.12)

and χ φ and  are the large and small two-component wave functions, respectively. In the non-
relativistic limit, φ becomes negligible, and because the matrix γ5 couples large and small 
 components, we have

 ψ γ ψp n
5 0→ (NR limit)  (24.13)
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so	 the	 P•P	 (pseudoscalar)	 term	 in	 (24.11) is negligible. Furthermore, in the nonrelativistic 
limit,

 ψ γ ψ ψ ψ χ χp n p n p n
0 = →† †  

and

 ψ ψp nγ → 0  

Hence the nucleon factor in the V•V term in (24.11) reduces to

 χ χp nI†  (24.14)

which	is	the	same	as	the	nucleon	factor	in	the	S•S	term.	Also,	in	the	nonrelativistic	limit,

 ψ γ γ ψp n
0 5 0→  

whereas

 ψ γ ψ χ χp n p nγ σ5 → †  (24.15)

which	is	thus	the	nucleon	factor	in	the	A•A	term	in	(24.11),	just	as	it	is	for	the	T•T	term.	Now,	
under spatial rotations, I is an invariant, but σ is a first-rank tensor. Thus, from the Wigner-
Eckart theorem, the angular-momentum selection rules for nuclear spin in allowed beta decay 
are as follows:

For S and V: •	 ΔJ = 0.
For A and T: •	 ΔJ = 0, ±1, but Ji = 0 → Jf = 0 is forbidden.

In 1936, it was already known that there are certain allowed beta decays for which ΔJ = 1 
and others for which ΔJ = 0. This implied that whereas V and/or S might contribute, there 
must also be some contribution from A and/or T. However, a complete solution to the problem 
of the beta-decay constants in (24.11) would have to wait 22 years, and then it came from an 
unexpected direction.

24.4 Universal Fermi interaction: Discovery of new particles

In the meantime, there were other new discoveries. In 1935, H. Yukawa proposed a meson 
theory of nuclear forces, also in analogy with QED. Yukawa noted that the nucleon-nucleon 
force is short ranged and suggested that it is mediated by exchange of a scalar (or pseudoscalar) 
meson, which would necessarily have a rest mass of approximately 100–200 MeV/c2. In 1937, 
Anderson and Neddermeyer discovered the muon in cosmic rays, and at first it was thought 
to be Yukawa’s meson. However, during World War II and in very difficult circumstances in 
Nazi-occupied Rome, Conversi, Pancini, and Piccioni demonstrated conclusively by simple 
experiments that the muon could not possibly have strong interactions. This important result 
became generally known immediately after the conclusion of the war, presenting a mystery that 
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was resolved only when the pion (the real Yukawa particle) was discovered in cosmic rays in 
1947 by a British group. Within several years, K mesons and hyperons also were discovered in 
cosmic rays. Meanwhile, the mean life of the muon and the rate of capture of negative muons 
by nuclei had been measured. By 1949, it was apparent that muon capture and decay are very 
similar to beta decay, governed as they are by essentially the same coupling. Thus the idea of a 
universal Fermi interaction gradually began to emerge.

In the early 1950s, the properties of pions, kaons, and hyperons were systematically inves-
tigated with new and powerful accelerators. These machines were able to generate far more 
events in well-controlled conditions than was possible with cosmic-ray observations. Thus, by 
1953, the remarkable properties of the neutral K meson system (strangeness oscillations and 
regeneration) had been discovered and the theory worked out by Gell-Mann, Pais, Nishijima, 
and others.

24.5 Discovery of parity violation

In 1954, a peculiar problem involving K mesons became apparent. This was the τ θ−  puzzle. 
Here, evidently, were two positively charged mesons, θ and τ, each with the same charge, mass, 
and zero spin. (Do not confuse the name τ for this meson, which is old and has been discarded, 
for the name of the τ lepton.) It was observed that θ decayed to two pions

 θ π π→ + 0  

where the final state has even parity, whereas τ decayed to a three-pion final state with odd 
parity

 τ π π π→ + + −  

How could two particles exist that were identical in all respects but decayed to states of dif-
ferent parity? If, as almost everyone assumed, the weak interactions conserve parity, the τ θ−  
puzzle seemed inexplicable. However, while studying this problem, T. D. Lee and C. N. Yang 
realized that there was no experimental evidence to warrant the assumption of parity conserva-
tion in weak interactions. They proposed that parity is violated (Lee and Yang 1956) and that τ 
and θ are really the same particle (as indeed they are; it is now called K +). Most important, Lee 
and Yang proposed a variety of practical ways in which the question of parity nonconservation 
in weak interactions could be investigated.

Within several months, and directly stimulated by Lee and Yang’s new ideas, C. S. Wu of 
Columbia University and her collaborators at the National Bureau of Standards (Wu et al. 
1957) observed parity violation in the beta-decay asymmetry of polarized 60Co nuclei. Almost 
immediately thereafter, R. Garwin, L. Lederman, and G. Weinreich (Garwin et al. 1957) 
reported observations of parity violation in the chain of decays
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24.5 Discovery of parity violation575

By definition, parity is conserved in a decay or scattering process A if  and only if  A and the 
process A′ obtained from A by spatial inversion have the same probability. For example, con-
sider the decay

 µ ν νµ
+ +→ e e  (24.16)

observed in the rest frame of the muon. Because the final state consists of three particles, the 
positron energy spectrum is continuous, with the shape sketched in Figure 24.8. The maximum 
positron energy (E0 ≈ 52 MeV) occurs when the positron linear momentum p is balanced by 
linear momenta –p/2 for each of the neutrinos. Consider decay of a µ+ at rest with spin polar-
ized along +z in a case where the positron has energy in the vicinity of E0. Experiment shows 
that such positrons are emitted mainly in the +z direction and that they have helicity h e( )+ = +1.  
Conservation of linear momentum requires the two neutrinos to be emitted in the negative 
z-direction, and conservation of angular momentum requires these neutrinos to have opposite 
helicities. In fact, experimental observations of pion decay, beta decay, and so on show that one 
always has h h( ) , ( )ν ν= + = −1 1  (Figure 24.9a).

A spatial inversion is equivalent to a mirror reflection in a plane and a rotation by 180° 
about an axis normal to the plane, and because the laws of  nature are invariant under rota-
tions, we may investigate the question of  parity invariance by considering the mirror reflection 
alone. A reflection through the xy-plane containing the muon reverses the linear momenta 
of  the positron and the neutrinos but leaves all the angular momenta along z unaffected; 
thus this reflection results in h e( )+ = −1 and a reversal of  the orientation of  positron linear 
momentum with respect to muon spin, which are never observed (Figure 24.9b). Thus parity 
is violated.

Alternatively, we can perform a charge-conjugation transformation on the process 
µ ν νµ
+ +→ e e  of  Figure 24.9a. This results in the decay µ ν νµ

− −→ e e  but does not alter the 
momenta and spins (and thus the helicities) of  Figure 24.9a. We thus have the situation 
shown in Figure 24.9c. However, experiment shows that in the decay µ ν νµ

− −→ e e , h e( )− = −1,  
and the electron is emitted mainly in the –z-direction; thus the decay shown in Figure 24.9c 
is never observed. Hence not only parity (P) but also charge conjugation (C) invariance are 
violated.

Finally, note that the combination CP of  a parity (P) and a charge-conjugation (C) transfor-
mation on the decay of Figure 24.9a results in the decay of Figure 23.9d, which is observed with 
the same probability. Thus CP invariance is valid for the decays µ ν νµ µ

± ±→ e e e( ) ( ). However, as 

N(e+)

E0

 Figure 24.8 Sketch of positron energy spectrum in the decay μ+ → e+vevμ̄
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was discovered in 1964 and will be discussed later, CP invariance does break down in other 
weak decays.

24.6 The V-A Law

The discovery of parity violation resulted in vigorous experimental activity that culminated 
within less than two years in a generalization of Fermi’s theory, called the V-A law. This was 
enunciated independently by Sudarshan and Marshak, Feynman and Gell Mann, Sakurai, and 
Gershtein and Zeldovitch in 1958. Here it was proposed that the Lagrangian density for charged 
weak interactions (these were the only type known at the time) takes the following form:

 LW
FG

J J= −
2

σ
σ†  (24.17)

Observed             Not observed           Not observed              Observed

a)                               b)                                  c)                                d)

e+

e+

e–

e–

                                                     

+                             +                           –                           –

e

e

e

e

P

C

CP

 Figure 24.9 Diagrams illustrating linear momenta and spins of the decay products in the decays μ+ → e+vevμ̄, μ− → e−vēvμ, when the positron or 
electron energy is near its maximum value. Cases a) and d) are observed, cases b) and c) are never observed.

 

 

 

 

 

 

 



577 24.6 The V-A Law

where J J Jσ σ σ= +,hadronic ,leptonic is a charged weak current density containing both vector and 
axial-vector parts; that is,

 J V Aσ σ σ= −  

Thus

 
LW

F

F F

G
V A V A

G
V V A A

G
V A A

= − −( ) −( )

= − +( ) + +

2

2 2

σ σ
σ σ

σ
σ

σ
σ

σ
σ

σ

† †

† † † †    V σ( )
 (24.18)

The first term in parentheses in the second line of (24.18) is a true scalar, whereas the second 
term in parentheses is a pseudoscalar. The appearance of both scalar and pseudoscalar terms 
in the Lagrangian density is a necessary and sufficient condition for parity-violating effects.

Including the τ lepton and its associated neutrino, which were still undiscovered in 1958, the 
leptonic charged weak current density in the V-A law is

 J e elept
σ σ

ν µ
σ

νµ τ
σ

ντγ γ γ γ γ γ= −( ) + −( ) + −( )Ψ Ψ Ψ Ψ Ψ Ψ1 1 15 5 5  (24.19)

As for Jσ ,hadronic, it clearly must contain a term proportional to

 D Uγ γσ ( )1 5−  (24.20)

where D and U are Dirac fields for the down and up quarks, respectively. This is neces-
sary in order to account for nuclear beta decay and charged pion decay. However, it was 
known even in the 1950s that there are “strangeness changing” weak decays, for example, 
K pe e

+ + −→ →π µ ν νµ
0 0 and Λ , where it is now known that an up quark transforms into a 

strange quark or vice versa. (By definition, the strangeness of  a hadron is the number of s  
quarks minus the number of s quarks contained in the hadron.) Thus the hadronic charged 
weak current density also must have a component proportional to

 S Uγ γσ ( )1 5−  

N. Cabibbo (1963) found that many features of hadronic decays could be accounted for by 
assuming that the hadronic charged weak current density takes the form

 
J D U S U

D
C C

C

σ σ σθ γ γ θ γ γ,had

         

= −  + − 
=

cos ( ) sin ( )1 15 5

γ γσ ( )1 5− U
 (24.21)

where D D SC C C≡ +cos sinθ θ  and the Cabibbo angle θC ≈ 13° is an empirically determined 
parameter. In other words, the quark state participating in the charged weak interaction is 
neither pure d nor pure s but a linear combination of the two. (The origin of θC has still not 
been explained satisfactorily in terms of more fundamental quantities.) Cabibbo’s hypothesis 
accounted for the relative coupling strength of strangeness-conserving and strangeness-vio-
lating baryon semileptonic decays, for the ratio of leptonic decay rates of charged pions and 
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kaons, for the ratio of vector coupling strengths in beta decay and muon decay, and for other 
important features of the charged weak interaction. Eventually, Cabibbo’s hypothesis was gen-
eralized to take into account weak transformations of the heavy quarks. When this was done, 
there emerged three Cabibbo angles instead of one and, in addition, a phase, all contained in 
the 3×3 Cabibbo-Kobayashi-Maskawa (CKM) matrix. This is discussed in more detail later. 
The recent experimental results on neutrino oscillations and mixing imply that a somewhat 
analogous matrix is necessary for the lepton sector.

Although the form (24.21) for the hadronic charged weak current density appears straight-
forward, to apply it to the calculation of real processes such as nuclear beta decay, hyperon 
decay, and so on, we must construct matrix elements of this current operator between initial 
and final hadron states. Here we encounter a difficult problem: hadrons are complex objects in 
which strong interactions are going on all the time, and this has consequences for the effective 
weak coupling constants. For example, the amplitude for neutron beta decay in the V-A law 
turns out to be

 M
G

u u g u vF C
p n e e= − −

cos
( ) ( )

θ γ λγ γ γρ
ρσ

σ
ν

2
1 15 5

   (24.22)

where λ= 1.26 is determined from experiment. The point here is that while the strength of the 
vector portion of the hadronic charged weak current is conserved (not renormalized by strong 
interactions), the axial current is not conserved, and its coefficient is 1.26 rather than unity.

Let us explain the physical meaning of the factor γ γσ ( )1 5−  by considering the leptonic por-
tion of the right-hand side of (24.22). First of all,

 I I I−( ) = − + ( ) = −( )γ γ γ γ5 2 5 5 2 52 2  

Therefore,

 

u I v u I I v

u

γ γ γ γ γ γσ σ−( ) = −( ) −( )

=

5 0 5 51
2
1
2

†

                      †

†

I I v

I u

−( ) −( )

= −( ) 

γ γ γ γ

γ γ

σ5 0 5

5 01
2

                      γ γ

γ γ γ

σ

σ

I v

I u I v

−( )

= −( ) −( )

5

5 51
2

                      

 

Also, because
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E m
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±
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we have

 

( )I u const
E m

E m

− =
−

+






− −
+
























±

±

±

γ
χ

χ

5

1

1

σ

σ





p

p


 

(24.23)

where the ± sign refers to spin up (down). The polarization of a sample of electrons from beta 
decay along an axis parallel to the electron momentum is given by

 P
I u I u I u I u

I
=

−( )  −( )  − −( )  −( ) 
−(

+ + − −γ γ γ γ

γ

5 5 5 5

5

† †

)  −( )  + −( )  −( ) + + − −u I u I u I u
† †

γ γ γ5 5 5
 (24.24)

From (24.23), we have

 

I u I u
E m

−( )  −( )  = −
+





± ± ± ±γ γ χ χ5 5

2

1
† †const

      



σ p

                                    const= +
+

 1 2
2

2

p p

( )E m E +




m  

Thus (24.24) becomes

 
P E m

E m

E m

E m E m E m
=

−
+

+
+

= −
+

+ + + −

2

1
22

2

2

p

p
p

( )

( )

( ) ( )( )

                          = − = −
p

E
v
c

 

where in the last step we have exhibited the velocity of light explicitly. A similar analysis per-
formed on the antineutrino spinor ( )I v− γ 5  reveals that the antineutrinos are right handed. 
Also, in nuclear beta decay the polarization of emitted positrons is P e v c( ) /+ = + .

24.7 Difficulties with Fermi-type theories

The V-A law, supplemented by Cabibbo’s hypothesis, provided a very good phenomenological 
account of the observed charged weak interactions in the 1950s and 1960s within the frame-
work of first-order perturbation theory (= Born approximation). However, it was nothing more 
than a generalized version of Fermi’s original theory, and thus it suffered from the same funda-
mental difficulties as the latter – difficulties that were already recognized in the 1930s. In order 
to see the problem in the simplest possible way, we consider the following scattering reaction:

 ν νe ee e+ → +− −  
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which is predicted to exist in the V-A law and to be accounted for by the Lagrangian term 

−( )G J JF
e e2 σ

σ† .,  Suppose that the energy E of  the incoming neutrino is much greater than 

that of the electron rest mass. Then we can argue on purely dimensional grounds that the cross 
section must be of order G EF

2 2  as follows: because the scattering amplitude is proportional to 
GF , the cross section must be proportional to GF

2 . However, in natural units, GF
2  has dimensions 

of (energy)–4 = (mass) –4 = (length)4, whereas the cross section itself  has dimensions of (length)2 
= (energy) –2. Thus the cross section must be expressible as GF

2 2× ( )energy . In the limit where 
E me , there is no other energy scale in the problem than the energy E of  the neutrino. Thus 
we expect that the cross section is of order G EF

2 2 . In fact, a rather easy explicit calculation start-
ing from the V-A law shows that

 
d
d

G
EFσ

πΩ
=

2

2
2  (24.25)

On the other hand, we can express a differential cross section as the absolute square of a scat-
tering amplitude f ( )θ , and the latter can be expanded in partial waves as

 f
E

J M PJ
J

J( ) (cos )θ θ= +



=

∞

∑1 1
20

 

where MJ is the amplitude of the Jth partial wave. This formula is a generalization of the well-
known partial wave expansion for nonrelativistic potential scattering [see equations (18.22a) 
and (18.22b)]. In a theory of the Fermi type, only the J = 0 partial wave enters because we have 
a contact interaction of zero range. Therefore,

 
d
d

f
E

M
σ θ
Ω
= =( )

2

2 0
21

4
 (24.26)

However, unitarity (conservation of probability) requires that MJ ≤ 1 for each J. Thus unitar-
ity requires

 
d
d E

σ
Ω
≤

1
4 2

 (24.27)

Obviously, (24.25) and (24.27) are in contradiction when

 E
GF

≥






≈
π

2
300

1 2/

 GeV  (24.28)

Thus our first-order calculation of the cross section fails completely at energies of order GF
−1 2/ . 

We naturally might suppose at first that this difficulty arises from neglect of higher-order cor-
rections and that if  these were included, the cross section might level out and remain within the 
bounds imposed by unitarity. However, calculation shows that the second-order diagram of 
Figure 24.10 yields a divergent result.

In quantum electrodynamics one also encounters divergent integrals corresponding to 
higher-order diagrams. However, the divergences are removed to all orders by mass and charge 
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renormalization. In the present case (Figure 24.10), we may attempt to eliminate the divergence 
by an analogous procedure, but when we go to the next higher order, a new and more severe 
divergence is encountered that requires new normalization constants. When all diagrams are 
taken into account, it is found that an infinite set of renormalization constants is required. In 
short, theories of the Fermi type are not renormalizable.

24.8 Naive intermediate boson theory of charged weak interaction

Is it possible to avoid the difficulties associated with Fermi-type theories by replacing the 4-fer-
mion contact interaction by an intermediate boson theory of charged weak interactions? In 
view of the success of quantum electrodynamics and the plausibility of Yukawa’s meson the-
ory of nuclear forces, it seemed very reasonable and indeed compelling in the late 1950s that the 
charged weak interaction should proceed by exchange of charged intermediate vector bosons 
W ± , which would necessarily be quite massive because the weak interaction has a very short 
range. The idea was even suggested in passing by E. Fermi and discussed at greater length by 
O. Klein in the 1930s.

Let us try to construct a theory of charged weak interactions in the simplest possible manner 
by employing such bosons. We choose muon decay µ ν νµ

− −→ e e  as an example. According to 
the V-A law, the amplitude (apart from a phase factor) is

 M V A
G

u u uF
e e−( ) = −( )  −( ) 2

1 15 5
νµ

σ
µ σ νγ γ γ γ v  (24.29)

In a W-boson theory, the lowest-order diagram is that of Figure 24.11.
The amplitude corresponding to Figure 24.11 is constructed as follows: we need a vertex 

factor at each lepton-lepton-W-vertex and a propagator factor for the internal W line. Let us 
assume that each vertex factor is of the form
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  Figure 24.10 Second order Feynman diagram for e−ve scattering in the V-A theory.

 

 

  

 

 

 



The Quantum Mechanics of Weak Interactions582

where g is a semiweak coupling constant to be related to GF  in what follows. We also need a prop-
agator factor for the internal W– line, and we obtain it by an argument resembling that given for 
the photon propagator at the end of Section 23.3. In electrodynamics, the field equation is

 ∂ = ∂ ∂ − ∂ ∂ =µ
µν

µ
µ ν

µ
ν µ νF A A jEM  (24.30a)

Let φν be a vector field analogous to Aν except that the quanta associated with φν (the 
W-bosons) have nonzero mass mW . Recalling (15.68), we see that the appropriate field equa-
tion for φν is

 ∂ ∂ − ∂ ∂ + =µ
µ ν

µ
ν µ ν νφ φ φm JW

2  (24.30b)

where Jν  is the charged weak current density that generates the field φ. Applying the operator 
∂ν on the left on both sides of (24.30b) and rearranging the order of partial differentiations, 
we obtain

 ∂ ∂ ∂ − ∂ ∂ ∂ + ∂ = ∂µ
µ

ν
ν

ν
ν

µ
µ

ν
ν

ν
νφ φ φm JW

2  (24.31)

Because the indices µ ν and  are both repeated in the first two terms on the left-hand side of 
(24.31), they are dummy indices. Hence these two terms cancel, yielding

 ∂ = ∂ν
ν

ν
νφ 1

2m
J

w

 (24.32)

If  the current were conserved (if  ∂ =ν
νJ 0), then (24.32) would require ∂ =ν

νφ 0 as well. However, 
in contrast to the case in electrodynamics, ∂ ≠ν

νJ 0 because the axial portion of the current is 
not conserved. Thus, using (24.32) in (24.30), we obtain

 ∂ ∂ + = + ∂ ∂






µ
µ ν ν νµ ν µ

µφ φm g
m

JW
W

2
2

1
 (24.33)

We now employ the Fourier integral transformations

 φν ν( ) ( )x f k e d kik x= ∫ −  4  (24.34)

e–
e

W–

–

  Figure 24.11 Lowest order Feynman diagram for the decay μ− → e−vēvμ in the naive intermediate vector boson theory.

 

 

 

 

 

 

 



24.8 Naive intermediate boson theory of charged weak interaction583

and

 J x j k e d kik xµ µ( ) ( )= ∫ −  4  (24.35)

Substitution of (24.34) and (24.35) in (24.33) yields

 − +( ) = −




∫ ∫k m f k e d k g

k k
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For this equation to be valid generally, the integrands must be equal, so
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k k
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−
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 (24.36)

This yields the W-boson propagator

 −
−

−
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g
k k
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µν
µ ν
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and thus the amplitude M W( ) is

 M W i
g

u u
g

k k
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k m
uW

w
e e( ) = −( ) 

−

−
−( )

2

5

2

2 2 58
1 1νµ

λ
µ

λσ
λ σ

σ
νγ γ γ γ v   (24.37)

where k p p p pe e= − = +µ νµ ν  is the 4-momentum transfer. Now it was already known in the 
1950s that if  the W-boson were to exist, it would have to be quite massive because the weak 
interaction has a very short range (indeed, subsequently, its mass was found to be 80 GeV/c2). 
On the other hand, the momentum transfer in muon decay is small because the muon mass is 
only 106 MeV/c2. Therefore, to a very good approximation, in (24.37) we may ignore k2 in the 
denominator and k k mWλ σ / 2  in the numerator. In this approximation, (24.37) becomes

 M W
ig
m

u u u
W

e e( ) = −
−( )  −( ) 

2

2
5 5

8
1 1νµ

λ
µ λ νγ γ γ γ v  (24.38)

which, except for the phase factor, is equivalent to (24.29), provided that we make the 
identification

 g m GW F= 25 4 1 2/ /  (24.39)

Thus it is clear that instead of employing a Fermi-type theory, we could readily describe all 
the usual low-energy charged weak interactions by intermediate boson exchange. However, we 
must still see if  the grave difficulties of the Fermi theory associated with violation of unitarity 
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and nonrenormalizability are circumvented. If  we were to calculate the amplitude for neutrino-
electron scattering in lowest order with W exchange, we would find that in the partial wave 
expansion of the scattering amplitude there are now many partial waves. The partial cross 
section associated with each partial wave grows logarithmically with energy; thus unitarity is 
again violated at sufficiently high energy. (The unitarity limit is violated even more strongly in 
the cross sections for such processes as

 ν ν+ → +[ ]+ −W W
longitudinal polarization

 

as we see later.) Furthermore, higher-order corrections diverge strongly because of the k k mWλ σ / 2  
term in the W propagator numerator. Thus the naive intermediate boson theory of charged 
weak interactions is also unacceptable.

24.9 The GIM mechanism

Despite these difficulties, it seemed plausible in the 1960s that not only the charged weak inter-
action should be mediated by W± bosons but also that there should exist neutral weak interac-
tions mediated by a neutral massive vector boson. However, there was another major problem: 
at the time, no neutral weak interactions were observed. Experiments revealed that the decay

 KL
0 → + −µ µ  (24.40)

proceeds with a branching ratio of less than 10–8, a very perplexing result in view of the fact 
that the analogous charged decay

 K + +→ µ νµ  (24.41)

is fully allowed with a branching ratio of 63 percent. According to the quark model, these 
allowed and forbidden decays should be represented by Figure 24.12a and b, respectively. The 
K + is a bound state of us ; when it decays as in (24.41), the u transforms to an s by W+ emission 
(or the s  transforms to a u ), and the remaining quark-antiquark pair annihilates. The nearly 
negligible decay rate for (24.40) is accounted for by small radiative corrections. This implies 
that, unlike the transition u s→ , the transition d s→  is forbidden.

The nearly vanishing probability for decay (24.40) seemed even more puzzling when 
it was recognized that even if  for some reason the lowest-order amplitude described by 
Figure 24.12b should turn out to be zero, there still should be a second-order charged weak 
contribution, as shown in Figure 24.13a, where the Cabibbo factors are displayed at their 
respective vertices.

The key to the solution of this puzzle is the charmed quark c (first proposed in 1964 and 
observed for the first time in 1974). In 1970, Glashow, Iliopoulos, and Maiani (GIM) pro-
posed that although, according to Cabibbo’s hypothesis, the u quark is coupled with the linear 
combination

 d d sC C C= +cos sinθ θ  
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in the charged weak interaction, the c quark is coupled with the orthogonal linear 
combination

 s d sC C= − +  cos Csinθ θ  

Thus, in the GIM framework (Glashow et al. 1970), the Hermitian conjugate charged hadronic 
weak current is written as

 J U C
D

S
C C

C C

λ λ
θ θ
θ θ

γ γ†
cos sin

sin cos
= ( ) −







−( )





1 5  (24.42)

With this formulation we can readily understand why there is no second-order charged weak 
contribution to the rate of decay (24.40). The reason is that along with Figure 24.13a, there 
is an additional second-order diagram (Figure 24.13b), and the amplitudes corresponding to 
these two diagrams cancel in the limit where c and u quarks have the same mass. To explain the 
vanishing first-order neutral weak amplitude associated with Figure 24.12b, GIM proposed 
that the neutral weak hadronic current density takes the following form (where we suppress 
space-time indices):

 UU CC DD SS UU CC D D S SC C C C+ + + = + + +  

The significance of this expression is that it contains no cross-terms DS SD or . Thus one 
expects no neutral weak interactions in which a d quark transforms to an s quark or vice versa 
and also no transitions in which u c→  or vice versa.

24.10 CP Violation and the CKM matrix

We now come to the phenomenon of CP violation, which was discovered experimentally in 
1964 and remains a very important only partially solved problem today. We start by describing 
the basic properties of neutral K mesons, which are of special interest because of the peculiar 
particle mixture properties of the K K0 0−  system. Mesons K K0 0 and  are charge conjugates 
of one another and possess definite strangeness +1 and –1, respectively. (The valence quark 

+ + –

W                                              Z

s                        u                   s                         d

K+ KL
0

a)                                               b)

  Figure 24.12 Pre GIM concepts of lowest-order Feynman diagrams for: a) K+ → μ+vμ  b) KL0 → μ+μ−.
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compositions of K K0 0 and  are ds ds and , respectively). It is appropriate to think in terms of 

the states K K0 0 and , which describe these particles at rest, when discussing the strong and 

electromagnetic interactions, which conserve strangeness. However, neither K K0 0 nor  pos-
sesses definite mass or a definite decay lifetime because the charged weak interactions do not 
conserve strangeness. It is useful to imagine a fictitious world in which the weak interactions 

are “turned off,” and K K0 0 and  are degenerate eigenstates of the strong and electromag-

netic interaction Hamiltonian. Then any independent linear combination of K K0 0 and  is 

also an eigenstate of this zero-order Hamiltonian. When the weak interaction is “turned on,” 
the appropriate linear combinations (called K KL S

0 0 and  for long and short, respectively) are 
those states with definite (and unequal) lifetimes and masses. These states do not have definite 
strangeness.

The short-lived KS
0 (mean lifetime 0.89 × 10–10 s) decays in only two significant modes: 

π π π π+ −  and 0 0. Each of these final states has CP eigenvalue +1. On the other hand, there are 
many known modes of decay for KL

0 (mean lifetime 5.17 × 10–8 s), including the fully allowed 
decay to π π π+ − 0, a final state that is predominantly an eigenstate of CP with eigenvalue –1. In 
1957, L. D. Landau and others suggested that although C and P are separately violated in weak 
interactions, CP is a valid symmetry for all interactions. This was indeed in accord with all 
experimental results at the time. If  it is assumed to be true, then in light of the foregoing remarks, 
K KL S

0 0 and  would be eigenstates of CP with eigenvalues –1 and +1, respectively. Now

 CP K K CP K K0 0 0 0= − = −  

where the negative signs appear because K K0 0 and  each have negative intrinsic parity. Hence, 
with the assumption of CP conservation, we would have

 K K KS
0 0 01

2
= −( )  (24.43)

                                                       

W– W–W+ W+

u                                                     c

v                                                     v

 cos C C C Csin –sin cos 

d                 s                                  d              s

a)                                                  b)

  Figure 24.13 Second-order charged weak interaction Feynman diagrams for the decay KL0 → μ+ μ− according to the GIM model.
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 K K KL
0 0 01

2
= +( )  (24.44)

According to this, the decays K KL L
0 0 0 0→ →+ −π π π π and  would be strictly forbidden. However, 

in 1964, J. Cronin, V. Fitch, and coworkers (Christenson et al. 1964) discovered that these 
decays actually occur with small but finite probability. Thus expressions (24.43) and (24.44) are 
incorrect, and it turns out that they must be modified as follows:

 K K KS
0

2

0 01

2 1
1 1=

+
+ − −





( )
( ) ( )

ε
ε ε  (24.45)

 K K KL
0

2

0 01

2 1
1 1=

+
+ + −





( )
( ) ( )

ε
ε ε  (24.46)

where ε  is a small complex parameter determined from many precise experiments to be  
given by Re( ) . , ( ) .ε ε= × =−1 62 10 43 73  Arg o.

CP violation also has been observed in recent years in the decays of  B B0 0  meson pairs, 
where B bd B bd0 0= = and . The results of  all K K B B0 0 0 0 and CP violation experiments so 
far are consistent with a phenomenological description given by Kobayashi and Maskawa 
almost four years before discovery of  the third quark generation (Kobayashi and Maskawa 
1973). This is expressed in terms of  the unitary 3×3 Cabibbo-Kobayashi-Maskawa (CKM) 
mixing matrix. In this description, one writes the Hermitian conjugate charged weak current 
of  quarks as

 J P UNL L
λ λγ† =  (24.47)

where PL and NL are separate column vectors of left-handed quark fields with electric charges 
+2/3e, –1/3e, respectively; that is,

 P

u

c

t

N

d

s

b
L

L

L

L

=














=














 (24.48)

Here left-handed means that each three-component quark column vector is preceded by the 
projection operator ( )1 5− γ /2, and

 U

U U U

U U U

U U U

ud us ub

cd cs cb

td ts tb

=














 (24.49)

is the CKM mixing matrix, a generalization of the 2×2 GIM (Cabibbo) mixing matrix. Most 
generally, a complex 3×3 matrix contains 3 × 3 = 9 complex numbers or 18 real parameters. The 
unitary condition U U I† =  imposes nine constraints and one overall phase is arbitrary, so the 
number of independent real parameters in U would at first appear to be 8. However, the relative 
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phases of u, c, t and d, s, b are completely arbitrary. Thus four degrees of freedom remain in U, 
and most generally it cannot be a real orthogonal 3×3 matrix, which is characterized by only 
three independent real angles. Instead, we need three Cabibbo angles θ θ θ12 23 13, ,  and  and an 
additional real parameter δ, which is interpreted as a CP-violating phase. In standard notation, 
U is written as

 U

c s c s e

s c c s s e c c s s s e

i

i= − − −

−c12 13 12 13 13

12 23 12 23 13 12 23 12 23 13

δ

δ i

i i

s c

s s c c s e c s s c s e c c

δ

δ δ
23 13

12 23 12 23 13 12 23 12 23 13 23 13− − −















 (24.50)

where c sij ij ij ij= =cos sinθ θ and , and i, j = 1, 2, 3, are generation labels. It can be shown that all 
CP-violating amplitudes in neutral K and B meson decays are proportional to

 J s s s c c c= 12 13 23 12 13
2

23 sinδ  (24.51)

It can also be shown that CP-violating effects vanish in the limit where any two quarks with the 
same electric charge (e.g., u and c or d and s) have the same mass; this is due to cancellations in 
the sum over diagrams containing all quark generations. Various observations of CP violation 
in K- and B-meson decays yield the value

 δ = 1.05 ± 0.24 radians (24.52)

Thus δ is a large phase, but J ≈ 3 × 10–5 is a very small quantity because of the small values of 
s12, s13, and s23.

Although all experimental results on CP violation obtained to date are consistent with the 
formulation we have just described, we cannot say that we understand CP violation, and most 
physicists familiar with the phenomenon consider it to be one of the major unsolved problems 
in modern quantum physics. For example, we do not know how to calculate any of the entries 
in the CKM matrix from first principles.

24.11 Invention of the standard electroweak model

The most important development in the modern history of weak interactions was the inven-
tion of the standard electroweak model. This theory was created independently by S. Weinberg 
(Weinberg 1967) and A. Salam (Salam 1968), was proved to be renormalizable by G. ‘t Hooft 
and M. Veltman (‘t Hooft and Veltman 1971a, b), and has been verified by numerous precise 
experiments in the decades that have followed. The theory is based on an intricate combination 
of subtle ideas, and its complete exposition is beyond the scope of this book. In this section we 
first give a superficial and heuristic summary of the most significant points, and then we give 
more details in Sections 24.12–24.16.

The single most important principle assumed in construction of the theory is that its 
Lagrangian density is invariant under certain local gauge transformations. We have seen in 
Section 22.6 that in quantum electrodynamics the principle of local U(1) gauge invariance 
applied to a single Dirac field is equivalent to the familiar minimal coupling of the current 
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density jEM
µ  and the electromagnetic field Aμ. The gauge quanta that arise here are the massless 

photons.
In 1954, C. N. Yang and R. Mills (Yang and Mills 1954) proposed an important generaliza-

tion of this idea to local SU(2) gauge transformations on an isodoublet field. An isodoublet 

Dirac field Ψ can be expressed as Ψ
Ψ
Ψ

=






1

2

, where the component fields Ψ Ψ1 2 and  are asso-

ciated with quanta having electric charges that differ by unity. For example, Ψ Ψ1 2 and  could 
refer to the electron-neutrino and electron fields, respectively, or to the up and down quark 
fields, respectively. Prior to the introduction of a mechanism for differentiating their masses, 
one can regard the quanta associated with Ψ Ψ1 2 and  to be particles of the same mass, identical 

in all respects except for their electric charge. From this viewpoint, Ψ
Ψ
Ψ

=






1

2

 closely resembles a
 

two-component spinor in the theory of angular momentum. An SU(2) transformation on such 
a spinor is equivalent to a rotation that mixes the components of Ψ Ψ1  and 2 with one another 
and/or generates opposite-phase shifts in Ψ Ψ1  and 2. This is to be contrasted with a U(1) gauge 
transformation, which shifts the phases of both fields Ψ Ψ1  and 2 by the same amount.

The local gauge invariance principle in the Yang-Mills theory gives rise to massless vector 
quanta with electric charges +1, –1, and 0. Eventually, it was realized that attractive possibili-
ties are thus suggested for the weak interactions. Might the Yang-Mills quanta be identified as 
charged and neutral intermediate vector bosons? The difficulty is that the real weak bosons are 
massive, whereas the Yang-Mills quanta are massless. This defect cannot be repaired simply 
by adding a mass term to the Yang-Mills Lagrangian density; if  we do this, we are back to the 
naive vector boson theory with all its grave defects. Another way had to be found to impart 
mass to the Yang-Mills quanta.

At this point, another idea appeared that seemed at first quite unrelated to the problems 
just discussed but ultimately played a direct role in their solution. This idea was related to the 
phenomenon of spontaneous symmetry breaking, which is a situation in which the Lagrangian 
density of a field theory possesses a certain symmetry not shared by the ground or vacuum state 
of the system. We introduce the phenomenon by means of an example from classical mechan-
ics, first studied by Euler, that involves elastic instability. Consider a thin cylindrical metal rod 
of length L and radius R. The rod is fixed in bearings attached to clamps at both ends, and the 
clamps are fixed to a vertical wall, as shown in Figure 24.14. The upper clamp can slide up or 
down in the wall; the lower clamp cannot move. The clamps are designed with bearings so that 
the rod can rotate freely in them about the z-axis, much as an automobile crankshaft rotates in 
its fixed main bearings.

Suppose that we apply a compressional force F directed along the rod axis (z-axis) as in 
Figure 24.14a. Let the deflections of the rod in the x- and y-directions as a function of z be 
X z Y z( ) ( ) and , respectively. The boundary conditions for the clamped rod are

 
X X L
X X L X dX dz

( ) ( )
( ) ( )
0 0
0 0
= =

′ = ′ = ′ =  

with similar conditions on Y. It can be shown from the theory of elasticity that the conditions 
for equilibrium are
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0

+ =

+ =
 (24.53)

where E is Young’s modulus, and I R= ( )π 4 4. Obviously, if  F is very small (Figure 24.14a), 
the equilibrium condition is that the rod is straight: we have the solutions X(z) = Y(z) = 0, 
and the rod is stable against small perturbations from straightness. Now we increase F until it 
surpasses a certain critical value FC. Then the rod becomes unstable against a small transverse 
perturbation, and it bends to form a new equilibrium shape (Figure 24.14b). Although in gen-
eral the deflection is large and equations (24.53), which are valid for small deflections, cannot 
be applied to Figure 24.14b, these equations still can be used to find FC, the force required for 
neutral stability. It is not difficult to show that such a solution with X z( ) ≠ 0 is

 X z
z

L
( ) sin= const • 2 π

 

which corresponds to F IE LC = 4 2 2π / .

F < FC F ≥ FC

x             y

z

a)                                  b)

  Figure 24.14 The heavy line represents the metal rod, fixed in two clamps.
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We now consider small transverse oscillations of the rod about its equilibrium position. 
When the rod is straight, it can be shown that the eigenfrequencies ω  for small oscillations are 
given by the formula

 cos coshkL kL = 1 

where k EI= ( )ω µ1 2
0

1 4/ /
/ , and µ0 is the mass per unit length. Obviously, when the rod is straight, 

the frequency spectrum is the same for small oscillations in any plane containing the z-axis. 
When the rod is bent (Figure 24.14b), we can also have small oscillations. However, the char-
acteristic frequencies are different. In particular, the frequencies for oscillations in the plane of 
bending are not the same as in the perpendicular direction. Indeed, because the rod can rotate 
freely about the z-axis in the clamp bearings (like a crankshaft), the lowest frequency of oscil-
lation in the direction perpendicular to the plane of bending is zero.

To summarize, the Lagrangian of this system is axially symmetric. It contains a continuous 
parameter: the compressional force F. For small values of F, the lowest energy state of the 
system, which we can call the ground state, also has axial symmetry (the rod is straight). For  
F > FC, the system, when perturbed infinitesimally, jumps to a new ground state in which the 
axial symmetry is broken (bent rod). This new state is degenerate: it is but one of an infinite 
number of possible states because the rod can be bent in any plane containing the z-axis. Small 
oscillations about the original axially symmetric ground state themselves have axial symmetry, 
but this is not true of the bent rod.

We now return to spontaneous symmetry breaking in field theory. In place of  the rod 
deflection X(z) or Y(z), we consider a quantum field φ µ( )x  with a Lagrangian density pos-
sessing a certain symmetry and depending on a continuous parameter (the analogue of  the 
compressional force FC). For certain values of  the parameter, the ground or vacuum state 
of  the field possesses the symmetry of  the Lagrangian density. However, if  the parameter 
exceeds a certain critical value, the symmetry is spontaneously broken in the ground state, 
which becomes degenerate. Small oscillations are analogous to the appearance of  particles, 
the relationship between their energy and momentum being expressed in terms of  mass. In 
general, the mass of  the particles will differ for the symmetric ground state, on the one hand, 
and for the degenerate ground state(s) in which the symmetry is spontaneously broken, on 
the other hand.

For application to the standard model, one considers a complex isodoublet scalar field 
(with four real component fields). The Lagrangian density contains a continuous parameter 
µ2 . For µ2 0> , the ground state of  the system possesses the full symmetry of  the Lagrangian 
density, and the quanta that appear are four real scalar bosons of  identical positive mass 
μ. However, for μ2 < 0, the symmetry is broken in the ground state, and we obtain one sca-
lar quantum with positive mass (the Higgs boson) and three massless scalar bosons (the 
 latter are the analogues of  the vanishing lowest frequency of  small oscillation in the direc-
tion perpendicular to the plane of  bending of  the rod). These massless scalar bosons are 
called Goldstone bosons after the author who first pointed out that for theories of  this type, 
a massless scalar field always appears for each degree of  freedom in which the symmetry is 
 spontaneously broken.
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Because there is no experimental evidence for such Goldstone bosons, it would appear that 
we have introduced a new problem with no physical relevance instead of  solving our exist-
ing problems. However, if  we now modify the Lagrangian density of  the complex isodoublet 
scalar field so that it is invariant under local SU(2) × U(1) gauge transformations (and this is 
done by changing partial derivatives in the Lagrangian density to the appropriate covariant 
derivatives), the situation is radically altered. In addition to four scalar quanta, we now have 
four vector gauge quanta [corresponding to three from SU(2) and one from U(1)]. Moreover, 
when µ2  is chosen to be negative to give spontaneous symmetry breaking, the Goldstone 
bosons disappear, and the three degrees of  freedom to which they correspond appear as addi-
tional (longitudinal polarization) degrees of  freedom, one for each of  three gauge quanta. 
The appearance of  longitudinal polarization in a vector field is equivalent to mass, so we 
obtain three massive gauge quanta with charges +1, –1, and 0. These are identified as the 
charged and neutral weak vector bosons. Thus two fundamental difficulties – the appearance 
of  Goldstone bosons and the problem of imparting masses to the weak gauge bosons – very 
neatly cancel one another. The fourth vector quantum remains massless and is identified as 
the photon. Of the four original scalar bosons, only the single massive Higgs boson survives. 
Another outcome of this analysis is that the three massive gauge fields and the Higgs field 
possess unique and specific nonlinear interactions with one another that have interesting and 
important physical implications and are an inevitable consequence of  this type of  theory, 
which is called non-Abelian.

The next step was to introduce leptons and quarks and couple them to the gauge fields. The 
choices here were very much constrained by the requirement that the new theory reproduce 
the known and valid results of electrodynamics and the V-A law for low-energy charged weak 
interactions. Thus the V-A law, which contains specific predictions concerning P and C viola-
tion, was inserted “by hand” into the new theory. One might argue that this is unsatisfactory 
because a fundamental theory of weak interactions ought to explain why the striking phe-
nomena of parity violation and charge-conjugation symmetry violation occur. On the other 
hand, the fermion–gauge field couplings are determined in this manner not only for electro-
dynamics and the charged weak interactions but also for a whole new class of neutral weak 
interactions, which were unknown at the time the theory was created. In the years 1973–1981, 
detailed observations of neutral weak couplings in neutrino-nucleon, neutrino-electron, and 
electron-nucleon scattering and in low-energy atomic physics began to verify the predictions 
of the Weinberg-Salam electroweak model in detail. This culminated in the early 1980s in the 
first direct observations of the W Z±  and 0 bosons, followed in the early 1990s by extremely 
precise observations of Z 0 bosons at the large electron-positron collider (LEP) at CERN, with 
similar observations at the Stanford Linear Accelerator Center (SLAC), together with precise 
measurements of W ±  properties at Fermilab. Virtually all the results obtained in these experi-
ments are in excellent agreement with predictions of the standard model. In Section 24.17 we 
summarize many of the Feynman rules that emerge from the Lagrangian density of the stan-
dard electroweak model.

There remains the question of the fermion masses. In the standard electroweak theory, this is 
dealt with by introduction of a gauge-invariant fermion-fermion-Higgs coupling of the Yukawa 
type, but it remains to be seen whether this portion of the theory is valid. As for the Higgs 
boson itself, persuasive experimental evidence for its existence, with mass m cH = 126 GeV/ 2, 
was obtained at the CERN Large Hadron Collider in 2012.
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24.12 Essential features of the Yang-Mills theory

24.12.1 Review of U(1) gauge invariance in quantum electrodynamics

To set the stage for our discussion of the Yang-Mills theory, we recall that in Section 22.6 we 
were concerned with a single Dirac field Ψ (and its Dirac-conjugate field Ψ) governed by the 
Lagrangian density

 L = ∂ −( ) − ∂ +( )1
2

1
2

Ψ Ψ Ψ Ψ Ψi m i mγ γµ
µ µ

µ  (24.54)

We sought the change δL in this Lagrangian density when an infinitesimal gauge transforma-
tion was made described by the following equations:

 δ α δ αΨ Ψ Ψ Ψ= = −i i  (24.55)

We found that

 δ γ αµ
µL = − ∂Ψ Ψ  (24.56)

If  α  is a constant, then δL = 0. In other words, L  is invariant under global U(1) gauge trans-
formations. If  α α µ= ( )x  is a function of the space-time coordinates, δL ≠ 0, and L  is not 
invariant under local U(1) gauge transformations. However, that invariance is restored if  we 
include the interaction Lagrangian (22.63)1; that is,

 Lint = = −e A j AΨ Ψγ µ
µ

µ
µ EM  (24.57)

provided that whenever we make the transformation (24.55), we also change the vector poten-
tial Aμ as follows:

 A A A
eµ µ µ µα→ ′ = + ∂
1

 (24.58)

The combination L L+ int is

 LD i D m iD m= −( ) − +( )1
2

1
2

Ψ Ψ Ψ Ψ Ψγ γµ
µ µ

µ  (24.59)

where the covariant derivatives D Dµ µΨ Ψ and  are defined as

 
D ieA

D ieA

µ µ µ

µ µ µ

Ψ Ψ

Ψ Ψ

≡ ∂ −( )
≡ ∂ +( )  (24.60)

1 Remember that e > 0 and the charge of the electron is –e.
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The covariant derivative is important because, as is very easy to verify, under the infinitesimal 
gauge transformation (24.55) it transforms in the same way as the field itself; that is,

 δ αµ µD i DΨ Ψ( ) =  (24.61)

 δ αµ µD i DΨ Ψ( ) = −  (24.62)

To complete the Lagrangian density of quantum electrodynamics, we add the radiation 
portion

 Lrad = −
1
4

F Fµν
µν  (24.63)

which is gauge-invariant.
Sometimes it is convenient to employ the following relations, which are easily derived from 

the definitions (24.60) and F A Aµν µ ν ν µ≡ ∂ − ∂ :

 D D D D ieFµ ν ν µ µν−( ) = −Ψ Ψ  (24.64)

 D D D D ieFµ ν ν µ µν−( ) =Ψ Ψ  (24.65)

24.12.2 SU(2) gauge transformations

We now consider a Dirac field with two isospin components:

 Ψ
Ψ
Ψ

=






1

2

 (24.66)

where Ψ Ψ1 2 and  are each Dirac fields with four space-time components, but they describe 
particles with different electric charge. For example, we might have

 Ψ Ψ=






=




−

νe

e

u

d
or  

We want to consider infinitesimal SU(2) gauge transformations on this field; that is,

 δ δΨ Ψ Ψ Ψ= = −i iε ε t t  (24.67)

where ε = + +ε ε ε1 2 3
ˆ ˆ ˆi j k, ε1 2 3, ,  are three real infinitesimals, and

 t = + +( )1
2 1 2 3τ τ τˆ ˆ ˆi j k  (24.68)
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where

 τ τ τ1 2

0 1

1 0

0

0

1 0

0 1
=






=
−





=
−







i

i 3  (24.69)

are the Pauli (isospin) matrices. If  the quantities εi  depend on the space-time coordinates, we 
have a local SU(2) gauge transformation. Once more, we want to investigate the change in the 
Lagrangian density

 L = ∂ −( ) − ∂ +( )1
2

1
2

Ψ Ψ Ψ Ψ Ψi m i mγ γµ
µ µ

µ  (24.70)

but now we make the transformation (24.67). Following steps similar to those that led to (24.57) 
and making use of the equation of continuity once again, we find

 δ γ µ
µL = −( ) ∂Ψ Ψt  ε  (24.71)

We try to compensate for this by adding an interaction Lagrangian density of the form

 LI g= − Ψ Ψγ µ
µt A  (24.72)

where g is a new SU(2) coupling constant, and the Aµ  form a triplet of gauge fields, each with 
four space-time components.

In quantum electrodynamics, the vector potential transforms according to rule (24.58) in an 
infinitesimal U(1) gauge transformation. What is the corresponding rule for the Aµ  in the infin-
itesimal SU(2) gauge transformation? To find it, we start with the covariant derivatives

 D igµ µ µΨ Ψ= ∂ +( )A t  (24.73)

 D igµ µ µΨ Ψ Ψ= ∂ − A t  (24.74)

and require that they transform in the same way as the respective fields; that is,

 δ µ µD i DΨ Ψ( ) = ( )εt  (24.75)

 δ µ µD i DΨ Ψ( ) = − ( )εt  (24.76)

Substituting (24.73) in (24.75), we obtain

 δ δµ µ µ µ∂( ) + ( ) = ∂ +( )Ψ Ψ Ψig i igA t t A t  ε  (24.77)

However,

 δ δµ µ µ µ∂( ) = ∂ ( ) = ∂ ( ) + ∂Ψ Ψ Ψ Ψi iε ε t t  (24.78)
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Also,

 δ δ µA t A t t tμ μ   Ψ Ψ Ψ( ) = ( ) + iA ε  (24.79)

Substituting (24.78) and (24.79) into the left-hand side of (24.77) and comparing both sides of 
the resulting equation, we arrive at

 
δ µ µ µ µA t t tA t A t t     ( ) = − ∂ ( ) + −( )1

g
iε ε ε

 (24.80)
Now we make use of the SU(2) commutation relation

 t t i ti j ijk k,  = ε  

to simplify the last term on the right-hand side of (24.80). This yields the result

 δ µ µ µA A= − ∂ − ×( )1
g

ε ε  (24.81)

On the right-hand side of (24.81), the first term is analogous to that obtained in the U(1) case 
in (24.58): g e replaces − . However, the second term is entirely new; it arises because we are 
dealing with SU(2) matrices that do not necessarily commute. One refers to this essential new 
feature by stating that Aµ  is a non-Abelian gauge field.

The next step is to formulate a gauge invariant “radiation” Lagrangian density analogous 
to Lrad = − 1

4 F Fµν
µν  of  quantum electrodynamics. It is convenient to start with relations analo-

gous to (24.64) and (24.65); that is,

 D D D D igµ ν ν µ µν−( ) =Ψ ΨE t  (24.82)

 D D D D igµ ν ν µ µν−( ) = −Ψ ΨE t  (24.83)

where Eµν  is analogous to Fµν . Employing (24.73) in (24.82) and carrying out some simple 
algebra, we find

 E A A A Aµν µ ν ν µ µ ν= ∂ − ∂ − ×( )g  (24.84)

The cross-product term on the right-hand side of (24.84) is, once again, a manifestation of 
the non-Abelian nature of the gauge field Aµ . With (24.84), the gauge invariant “radiation” 
Lagrangian density LYM = − 1

4 E Eµν
µν  contains not only the zeroth-order term similar to that 

of quantum electrodynamics

 − ∂ − ∂( ) ∂ − ∂( )1
4

µ ν ν µ
µ ν ν µA A A A  (24.85)

but also terms of order g, namely,
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g
4

∂ − ∂( ) ×( ) + ×( ) ∂ − ∂( ) 
µ ν ν µ

µ ν µ ν
µ ν ν µA A A A A A A A   (24.86)

and a term of order g2, namely,

 − ×( ) ×( )g2

4
A A A Aµ ν

µ ν  (24.87)

To summarize, let us compare the quanta of the Yang-Mills field Aµ  to photons, which are the 
quanta of the electromagnetic field Aµ. There are similarities, but there are also important dif-
ferences. First, the similarities: the Yang-Mills quanta and the photon all have zero mass, and 
it can be shown that the Yang-Mills theory, like QED, is renormalizable. As for the differences, 
the Yang-Mills quanta, described by the combinations

 − +( ) −( )1

2

1

2
1 2 3 1 2A iA A A iAµ µ µ µ µ  

have electric charges +e, 0, –e, respectively, whereas the photon carries no charge, electrical 
or otherwise. Also, the terms (24.86) and (24.87) in LYM  have no analogue in electrodynamics. 
Such terms give rise to self-interaction of the Yang-Mills quanta, with Feynman diagrams hav-
ing 3-boson vertices from (24.86) and a 4-boson vertex from (24.87).

As we have mentioned, the Yang-Mills quanta appear to be attractive candidates for the charged 
and neutral weak intermediate vector bosons. However, the latter are massive, whereas the Yang 
Mills quanta are massless. Thus a way must be found to impart mass to the Yang-Mills quanta 
without spoiling renormalizability. In the following section we try to explain how this is done.

24.13 Spontaneous symmetry breaking and the Higgs mechanism

The standard model makes use of the simplest possible solution to the problem of intermedi-
ate vector boson masses. This solution employs a complex isodoublet scalar field φ with self-
interaction. However, in order to introduce the ideas as simply and clearly as possible, we start 
with a complex isosinglet scalar field with Lagrangian density

 L = ∂ ∂ − −ν
νφ φ µ φ φ λ φ φ* * *( )2 2  (24.88)

and only afterward do we go on to the complex isodoublet case. In (24.88), µ is the mass of a 
field quantum, and λ  is a real positive number that characterizes the strength of the self-inter-
action term, which is the last term on the right-hand side of (24.88). If  λ  were equal to zero, the 
Euler-Lagrange equations for φ φ and * would yield the Klein-Gordon equations

 
∂ ∂ + =
∂ ∂ + =

ν
ν
ν

ν

φ µ φ
φ µ φ

* *2

2

0
0

 

With λ > 0, we search for the field configuration that yields the lowest field energy (this is, by 
definition, the vacuum). This is analogous to finding the configuration of  stable equilibrium 
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for the metal rod of  Figure 24.14. Of course, the field is an operator, and it is the expecta-
tion value of  the field that we are speaking of, but for brevity we shall describe the field as if  
it were an ordinary function. To calculate the field energy, we need the Hamiltonian density, 
which is

 
H

L L
L= ∂

∂
∂ ∂( ) + ∂

∂
∂ ∂( ) −

= ∇ ∇ + ∂ ∂ + +

t
t

t
t

φ
φ

φ
φ

φ φ φ φ µ φ φ λ φ φ

*
*

* * * *   

0 0 2 ( )2
 (24.89)

Because the first two terms in the second line of (24.89) are always positive unless φ is a con-
stant (in which case those terms vanish), it is clear that the lowest energy of the field is obtained 
when φ is a constant, independent of the space-time coordinates. In this case, only the last two 
terms on the right-hand side of (24.89) remain

 V y y= +µ λ2 2  (24.90)

where y = ≥φ φ* 0. If  µ2 0> , the minimum of V occurs for y = 0, in which case V = 0. Now we 
vary the parameter µ2, allowing it to become negative. This is analogous to varying the external 
force F in the case of the cylindrical rod (Figure 24.14). For negative values of µ2 (analogous to 
F > FC), we find the minimum of V by differentiating V with respect to y and setting the result 
equal to zero. Here we obtain

 y =
−µ

λ

2

2
 

and thus

 φ µ
λ

θ
vac =

− 2

2
ei  (24.91)

where θ  is an arbitrary real number between 0 2 and π . Each φvac is analogous to a ground state 
of the rod when F > FC. Thus choice of a particular θ  is analogous to choice of a particular 
vertical plane containing the bent rod. We choose θ  = 0, and thus the vacuum state is

 φ µ
λ0

2

2
=

−
 (24.92)

By making such a choice, we break the symmetry of the Lagrangian. Of course, in the example 
of Figure 24.14, an external perturbation must determine that the rod bends in one particular 
plane rather than another. The same is true for the complex scalar field.

Now we allow the field to vary with the space-time coordinates by a very small amount about 
the vacuum state. This is analogous to small transverse oscillations of the rod. We write

 
φ φ φ φ

φ φ

= + +[ ]

= +( ) + 

0 1 2

1 2

1

2
1

2

( ) ( )x i x

v i  
 (24.93)
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where φ1 2,  are two infinitesimal real fields, and v = 2 0φ . Substituting (24.93) into the Lagrangian 
density (24.88), we obtain

 L = ∂ −( )∂ +( ) − +( ) +



 − +( ) +1

2 2 41 2 1 2

2

1
2

2
2

1
2

2
2ν

νφ φ φ φ µ φ φ λ φ φi i v v



2
 

We expand this expression, noting that because v2 /= −µ λ2 , the coefficients of the terms in 
φ φ1  and 2

2 vanish. Discarding a constant term, we obtain

 L = ∂ ∂ + ∂ ∂ + + +
1
2

1
2

01 1 2 2
2

1
2

2
2

1
3

1
4

1
ν

ν
ν

νφ φ φ φ µ φ φ φ φ φ φ( ) ( , ,terms in 2
2 ,...)  (24.94)

This Lagrangian density contains two real scalar fields: φ φ1 2 and . The mass associated with φ2 is 
zero. This is analogous to the fact that in the direction perpendicular to the page in Figure 24.14b 
the lowest frequency of oscillation is zero. The mass associated with φ µ1

2 1 22 0 is ( ) /− > . The 
field φ1 is analogous to the small oscillations of the bent rod in Figure 24.14b in the plane of 
the paper.

The appearance of zero-mass quanta associated with φ2 is a general phenomenon. As we 
mentioned, Goldstone showed in 1960 that whenever one has a scalar field theory with a con-
tinuous global symmetry [in the present example it is the U(1) global symmetry associated with 
the factor eiθ ] and whenever spontaneous symmetry breaking occurs, there emerge as many 
zero-mass scalar fields (Goldstone bosons) as there are degrees of freedom in which the symme-
try is broken.

However, something new and important emerges if  we make the Lagrangian density invari-
ant under local as opposed to global gauge transformations. As we know, invariance of the 
Lagrangian density under a local U(1) gauge transformation is achieved by replacing the par-
tial derivative by an appropriate covariant derivative. Thus, in place of (24.88), we write

 L = − − ( ) −D D f fν
ν

αβ
αβφ φ µ φ φ λ φ φ* * *2 2 1

4
 (24.95)

Here we introduce a U(1) gauge field Bν  analogous to the electromagnetic vector potential by 
defining the covariant derivatives as

 
D i

g
B

D i
g

B

ν ν ν

ν ν ν

φ φ

φ φ

* *= ∂ − ′





= ∂ + ′





2

2

 (24.96)

where ′g 2 is a coupling constant. We also include a gauge-invariant radiation term, which is 
the last term on the right-hand side of (24.95).

We know that the field can be expressed as

 
φ φ φ φ

φ φ

= + ( ) + ( ) 

+( ) + 

0 1 2

1 2

1

2
1

2

x i x

v i  =
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where φ1 2,  are infinitesimal real fields that depend on the space-time coordinates and are every-
where very small compared with v. We rewrite φ as

 φ φ φ
φ

φ φ
= +( ) +

+








 ≈ +( ) +





1

2
1

1

2
11

2

1
1

2v
i

v
v

i
v

 

and thus we see that φ is a real quantity 1 2 1φ +( )v  multiplied by a phase factor 
exp i v i vφ φ2 21( ) ≈ + ( ) that varies from one space-time point to another. Now we can make an 
arbitrary local U(1) gauge transformation on φ that leaves the Lagrangian density of (24.95) 
invariant, provided that we make the appropriate accompanying gauge transformation on Bν . 
We choose the transformation so that

 φ φ φ φ φ→ ′ = −




= +( )1

1

2
2

1i
v

v  

and simultaneously, B Bν ν→ ′. Thus the Lagrangian density becomes

 L = ∂ − ′ ′





+( ) ∂ + ′
′





+( ) + + ( )1
2 2 21 1

2
1
2ν ν

ν νφ φ µ φi
g

B v i
g

B v  − ′ ′
1
4

f fαβ
αβ  (24.97)

where we have dropped a constant term and where ( ) contains terms in φ φ1
3

1
4 and . Now

1
2 2 2

1
21 1 1 1∂ − ′ ′





+( ) ∂ + ′
′





+( ) = ∂ ∂ +ν ν
ν ν

ν
νφ φ φ φi

g
B v i

g
B v

′
′ ′ + +

g
B B v v

2
2

18
2ν ν φ φ( )1

2

Thus we have

 L = ∂ ∂ + + + ′ − + ′1
2 8

1
4 8

21 1
2

1
2

2 2

1
ν

ν
ν

ν
αβ

αβ
ν

νφ φ µ φ φ(...) (
g v

B B f f
g

B B v
2

+ φ1
2 )  (24.98)

In this expression, where we have dropped the prime on the gauge field B because it is no longer 
needed, the right-hand side contains the kinetic energy term, the mass term, and higher-order 
self-interaction terms for φ1, the gauge field B mass term with

 m
g v

B =
′
2

 (24.99)

and the by now familiar radiation term, and a term that describes higher-order interactions 
of the gauge field with the φ1 field. This reformulation of the Lagrangian density, in which the 
massless Goldstone boson field φ2 disappears and the gauge field simultaneously acquires mass, 
is the Higgs phenomenon, and it is the crucial step.

Our discussion is still incomplete because we have not yet included SU(2) gauge transfor-
mations. To do this, we replace the complex isosinglet scalar field by a complex isodoublet 
scalar field
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 φ
φ φ
φ φ

=
+
+







1 2

3 4

i

i
 (24.100)

where φ1 2 3 4, , ,  are real scalar fields. In addition, we modify the covariant derivatives to read

 

D i
g

i
g

Bν ν ν νφ φ† †= ∂ − − ′



2 2

A τ

 

(24.101)

 

D i
g

i
g

Bν ν ν νφ φ= ∂ + + ′



2 2

A τ

 

(24.102)

where g is the SU(2) coupling constant, and the Aν  form a triplet of gauge fields. The Lagrangian 
density, modified from (24.84), now reads

 

L = ( )( ) − − ( ) − −D D f fν ν
αβ

αβ
αβ

αβφ φ µ φ φ λ φ φ† † †2 2 1
4

1
4

E E

 

(24.103)

We now repeat the steps already carried out with the complex isosinglet scalar field. First, we 
seek the field configuration that gives the lowest energy (the vacuum state). We assume that this 
vacuum state is isotropic in space-time; thus we assume that for it the A and B fields are zero. 
Next, just as before, we assume that the vacuum state of the scalar field must be a constant 
independent of the space-time coordinates so that derivative terms do not contribute to the 
Hamiltonian density. And finally, just as before, we vary the parameter µ2, letting it become 
negative so that the vacuum state of the field is nonzero. Following steps previously taken, we 
find that one of the many possible degenerate vacuum states is

 φ
η0

0
=





 (24.104)

where η µ λ= − 2 2 . The next step is also analogous to what we have done previously: we intro-
duce real infinitesimal scalar fields φ1 2 3 4, , ,  that depend on the space-time coordinates and write

 φ
φ φ

η φ φ
=

+( )

+ +( )



















1

2
1

2

1 2

3 4

i

i
 

A convenient way to do this is to write

 

φ
η σ η σ= ( )
+














≈ +( )

+















exp i I iθ θ t t

0

2

0

2

                                      =
−

+ −
















1
2

2 2

1 2

3

( )i

i

θ θ η

η σ θ η

 

(24.105)
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where θ σ1 2 3, ,  and  are four infinitesimal real fields, all depending on the space-time coordinates. 
It is clear from (24.105) that we have obtained φ by starting with the real field

 
0

2
η σ
+















 (24.106)

and transforming it by means of the local SU(2) gauge transformation defined by θ1 2 3, , . However, 
because the Lagrangian density is invariant under local SU(2) and U(1) gauge transformations, 
we can carry out the inverse transformation on φ to form (24.106) as long as we regauge the 
vector fields A suitably. In this manner we eliminate the Goldstone fields θ1 2 3, ,  and simulta-
neously impart mass to three of the four vector fields.

To see how this works in detail, we calculate the covariant derivative of φ; that is,

 

D i
g

i
g

B

i
g

A i
g

B i
g

A

ν ν ν ν

ν ν ν ν

φ φ= ∂ + + ′





=
∂ + + ′ −

2 2

2 2 23 1

A τ

      
iA

i
g

A iA i
g

A i
g

B

2

1 2 32 2 2

0

2

ν

ν ν ν ν ν
η σ

( )

+( ) ∂ − + ′















 +















=
−( ) +





∂ − +





+
      

i
g

A iA

i
g

A i
g

B

2 2

2 2 2

1 2

3

ν ν

ν ν ν

η σ

η σ’ 























 

(24.107)

Similarly, the covariant derivative of φ† is the row isospinor

 D i
g

A iA i
g

A i
g

Bν ν ν ν ν νφ η σ η σ† ,= − +[ ] +





∂ + − ′





+
2 2 2 2 2

1 2 3 









 (24.108)

Combining (24.107) with (24.108), writing out explicitly the remaining terms of the Lagrangian 
density (24.103), and dropping an unimportant constant term, we obtain the following expres-
sion for L  in terms of the four gauge fields and the field σ  (now and henceforth called the Higgs 
field)

 

L = ∂( ) ∂( ) + + +

+ −( ) +( )

1
2 2 8

4

2 2
2

3
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α
α

α α
α α
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η

σ µ
η

σ

g
A iA A iA + − ′





− ′













 +





−

A
g
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B A
g
g

B
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2

2
1
4

α α
α α
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αβ

η σ

−
1
4

E Eαβ
αβ



 (24.109)

At this point it is convenient to define the weak mixing angle θW  by
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′ =

g
g Wtanθ  (24.110)

At the present state of our knowledge, the standard model does not give us a way to calculate 
θW ; it must be determined from experiments. Employing (24.110), we write

A
g
g

B A
g
g

B A B
W

W W3 3 2 3
1

α α
α α

α αθ
θ θ− ′





− ′




= −( )

cos
cos sin cos sinθ θα α

W WA B3 −( )  (24.111)

It is also convenient to define the orthogonal linear combinations

 Z A BW Wα α αθ θ= −cos sin3  (24.112)

and

 A A BW Wα α αθ θ= +sin cos3  (24.113)

as well as

 W W A iAα α α α
− += = −( )† 1

2
1 2  (24.114)

 W W A iAα α α α
+ −= = +( )† 1

2
1 2  (24.115)

With these newly defined quantities, the second line on the right-hand side of (24.109) 
becomes
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W W W W Z Z
W

2

2
2

2
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2 2α
α

α
α

α
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θ
η ησ σ+ + − −+ +







+ +





† †

cos
 (24.116)

The terms proportional to the constant η2 in (24.116) are the mass terms for W Z±  and 0. 
We have

 m W
g

( )± =
η
2

 (24.117)

and

 m Z
mW

W

( ) =
cosθ

 (24.118)

The remaining terms in (24.116) involve trilinear and quadrilinear couplings of the gauge fields 
to the Higgs field. Also, by using (24.112)–(24.115), we can rewrite the last two terms of (24.109) 
in terms of the electromagnetic field tensor (now labeled Aαβ instead of F αβ), the Z-boson field 
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tensor Zαβ, and the W ±  field tensors W ±αβ. Also, using the notation A A Aαβ α β β α≡ ∂ − ∂  and car-
rying out straightforward algebra, we find that (24.109) is transformed to

L = ∂( ) ∂( ) + + +

+ +( + + − −

1
2 2 8

2

2 2
2

3
2

2
4

2

α
α

α
α

α
α

σ σ µ σ µ
η

σ µ
η

σ

   
m

W W W WW † † ) +
+ +





+( ) ++ + − −

m
Z Z

g g
m W W W W

g

Z

W

2

2
2

2

2

2

8 2 8

α
α

α
α

α
ασ σ

θ
   † †

cos W
Z

g
m Z Z

W W W W Z Z A A

σ σ α
α

αβ
αβ

αβ
αβ

αβ
αβ

αβ
α

2

2
1
4

+






− + + ++ + − −   † † β

αβ
α β α β

αβ α β
α β

( )

+ × + × − × ×( )      
g g
4 4

2

( )A A A A A A A A A A  

 (24.119)

On the right-hand side of (24.119), the first line is the Higgs sector: kinetic energy, mass term, 
and cubic and quartic self-interaction terms. The second line contains the W and Z mass 
terms. The third line gives the trilinear and quadrilinear Higgs-W and -Z couplings. The fourth 
line contains the zeroth-order gauge field radiation terms. Note that the electromagnetic field 
appears in the usual way, i.e., − 1

4 A Aαβ
αβ , but there is no photon mass term anywhere in this 

Lagrangian density. Finally, the fifth line contains the trilinear and quadrilinear vector boson 
couplings.

To conclude this section, we go back to the covariant derivative

 
D i

g
i

g
Bν ν ν νφ φ= ∂ + + ′



2 2

A τ
 

and concentrate our attention on the terms ig A ig B2 23 3( ) + ′( )ν ντ . Making use of the linear 
transformation inverse to that given in (24.112) and (24.113) and the definition tan ,θW g g≡ ′/  
we obtain

 
ig

A
ig

B i
I

g A
ig

W W W W2 2 2 23 3
3

3ν ν ντ τ θ θ τ θ θ+ ′ =
+





+ −sin cos sin tan I Z( ) ν  (24.120)

The first term on the right-hand side of (24.120) represents the electromagnetic contribution to 
the covariant derivative. Here I +( )τ3 2/  is the electric charge projection operator: when applied 
to the upper component of an isodoublet, it yields that component, but when applied to the 
lower component, it gives zero. Taking into account the fact that for the upper component of 
the isodoublet scalar field, which has electric charge +e, the covariant derivative for electro-
magnetic interactions is

 D ieAν ν ν= ∂ +  

we arrive at a very important result

 g eWsinθ =  (24.121)
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24.14 The lepton sector

The next step in construction of the standard model is to incorporate the leptons. We start with 
the first generation; that is,

 E
e

e=




−

ν
 

As we have mentioned, experiments show that in the charged weak interaction it is the left-
handed components of these fields that participate; that is,

 
ν γ ν

γ

eL e

Le e

= −

= −

1
2

1

1
2

1

5

5

( )

( )
 

These experiments include, but are not limited to, observation of the polarization of electrons 
and positrons emitted in nuclear beta decay and muon decay, polarization of positive and neg-
ative muons in pion decay, asymmetries in the angular distribution of electrons and positrons, 
and neutrinos emitted in beta decays of polarized nuclei and similar charged weak interaction 
phenomena. Observations of these phenomena formed the experimental basis for the V-A law 
of 1958.

The νeL Le and  are transformed into one another by W W+ − or  emission or absorption. We 
can say that under SU(2) gauge transformations, νe e and − form a left-handed isodoublet

 E
eL

eL

L

=




−

ν
 

This can be expressed somewhat formally as follows: consider an infinitesimal SU(2) gauge 
transformation

 δΨ Ψ= iεt  

We can also define a chiral SU(2) gauge transformation

 δ γ5
5Ψ Ψ= i ηt  

where η1 2 3, ,  are three real infinitesimals. The algebra of the generators is as follows:

 

t t i t

t t i t

t t i t

i j ijk k

i j ijk k

i j ijk

,

,

,

  =

  =

  =

ε

γ ε γ

γ γ ε

5 5

5 5
k

 (24.122)

It is convenient to define left- and right-handed generators by the following formulas:
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L t

R t

i i

i i

= −( )

= +( )

1
2

1

1
2

1

5

5

γ

γ
 

Then it is easy to show that relations (24.122) can be rewritten as

 

L L i L

R R i R

L R

i j ijk k

i j ijk k

i j

,

,

,

  =

  =

  =

ε

ε

0

 

Thus EL is a weak isodoublet under SU(2) transformations generated by the Li. On the other 
hand, the right-handed components νeR Re and  do not participate in charged weak interac-
tions, so under SU(2)L transformations, these fields remain invariant – in other words, they are 
isosinglets. All this is a convenient formal way of inserting the known facts about parity viola-
tion in the charged weak interaction into the theory without explaining these facts in terms of 
anything more basic.

Next, what about U(1)? Let us define a column vector

 Χ =



















ν

ν

eL

L

eR

R

e

e

 

and a diagonal 4×4 matrix Y called weak hypercharge. Y is introduced so that we can conve-
niently describe various weak isodoublets and isosinglets that have different electric charges. 
Let the charge of a given particle be written as Qe. Then we have

 

E
Q

e Q
Q e Q

u Q

d Q

L
eL

L
eR R

L

L

=
=
= −( )







= = −

=( )
= −

ν
ν

( )
( ) ( )

/

/

0

1
0 1

2 3

2 3( )






 

and so forth.
An infinitesimal U(1) transformation on Χ  can be written

 δ αΧ Χ= i Y  

Taking into account both SU(2) and U(1) local gauge transformations, we then have a covari-
ant derivative of the form

 D ig i
g

B Yµ µ µ µΧ Χ= ∂ + + ′





A L
2

 (24.123)

Once again, we focus our attention on the A3 and B terms. Recalling (24.120) and (24.121), 
we write
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 igA L
ig

YB i L
Y

eA ig L
Y

W W W3 3 3 32 2 2ν ν ν θ θ θ+ ′ = +





+ −


cos sin tan


Zν  (24.124)

The first term on the right-hand side of (24.124) refers to the electromagnetic interaction; in 
this term, L Y Q3 + =/2 ˆ  is the electric charge operator, the eigenvalues of which are the electric 
charges of the various components of Χ  in units of e. From the formula

 Y Q L= −2 3( )  

we determine the weak hypercharge Y, as indicated in Table 24.1.
We can now write all the covariant derivatives explicitly; that is,

 D E ig i
g

B EL Lµ µ µ µ= ∂ + − ′





A L
2

 (24.125)

 D eR eRµ µν ν= ∂  (24.126)

 D e ig B eR Rµ µ µ= ∂ − ′( )  (24.127)

Given these covariant derivatives, we construct the Lagrangian density for the lepton fields. 
The interaction terms are of interest here. Using (24.124), we obtain

 

LI e e
g

e W
g

e Wfirst gen

  

= − −( )  − −( ) − +

2 2
1

2 2
15 5γ γ ν ν γ γµ

µ
µ

µ

           

             

− −( ) 

+

g
Z

g
W

e e4
1

4

5

cos

cos

θ
ν γ γ ν

θ

µ
µ

W
We e Z

e e e A

γ θ γ

γ

µ
µ

µ
µ

1 4 2 5− −( ) 

+ [ ]
sin

              

 (24.128)

In (24.128), the first line on the right-hand side describes the charged weak coupling of the 
leptons to W±; the second and third lines contain the neutral weak couplings of neutrino and 
electron, respectively, to Z, and the fourth line is the electromagnetic interaction.
Nature gives us three lepton generations. This mysterious fact is built into the Lagrangian 
density without further explanation by adding to (24.128) analogous terms for the second and 
third generations.

Table 24.1 Table of charge, weak isospin, and hypercharge for 
leptons of first generation

Q L3 Y

νeL 0 ½ –1
eL –1 –½ –1
νeR 0 0 0
eR –1 0 –2
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We have already noted that g eWsinθ = , and also [in equation (24.39)] that

 g G mF W
2 5 2 22= /  

Combining these two formulas, we obtain

 m
G

c
W

F W W

2
2

2

22

1 37 5
=






=
( )πα

θ θsin

.

sin

 GeV/ 2

 (24.129)

Diverse experiments establish that sin2 θW  varies slightly with momentum transfer. For exam-
ple,sin . .2 0 2312 0 00015θW = ±  at 91 GeV/c2. Using this value, (24.129) yields m cW = 79 3 2.  GeV/ .  
Before comparing theory with the experimentally determined mass, one must correct (24.129) 
for various radiative effects. When this is done, good agreement is obtained between theory 
and experiment: mW = 80.3 GeV/c2. We also recall the prediction m mZ W W= / cosθ . When this 
formula is used and radiative corrections are applied, good agreement is obtained with the 
experimental value mZ = 91.2 GeV/c2. On the other hand, sin2 θW = 0.2397 ± 0.0012 at 0.16 
GeV/c2, which is a value more appropriate for relatively low-energy experimental data.

24.15 The quark sector

The coupling of quarks to charged and neutral intermediate vector bosons is handled in a 
similar way. For simplicity, we consider for the moment just the first quark generation with one 
Cabibbo angle. Then, assuming that

 
u

d
L

CL







 

forms a weak left-handed isodoublet, whereas u dR CR and  are weak isosinglets, we construct 
Table 24.2 to find the weak hypercharge Yq in terms of the electric charge Qq and the weak iso-
spin quantum number L3q according to the formula Y Q Lq q q= −2 3( ).

Following steps similar to those in the lepton case, we obtain the following Lagrangian den-
sity for interaction of these quark fields with the vector boson fields:

Table 24.2 Table of charge, weak isospin, and  
hypercharge for quarks of first generation

 Qq L3q Yq

uL 2/3 ½ 1/3
dCL –1/3 –½ 1/3
uR 2/3 0 4/3
dCR –1/3 0 –2/3
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sin W dZ

e u u d d            Aµ

 (24.130)

We now generalize (24.130) to include three quark generations, taking into account the CKM 
matrix. Here the first term of the right-hand side of (24.130) becomes

 − ( ) −( )















g

u c t

U U U

U U U

U U U

d

s

b

ud us ub

cd cs cb

td ts tb
2 2

1 5  γ γµ













+Wµ  

and the second term on the right-hand side of (24.130) is similarly modified. Of course, the 
CKM matrix itself  is purely empirical; nothing in the standard model tells us how to calculate 
the various entries in the CKM matrix.

The Lagrangian density has now grown to very large size. It contains the Higgs kinetic energy, 
Higgs mass, Higgs cubic and quartic interaction terms, vector boson mass terms, Higgs–vector 
boson interactions, and vector boson radiation terms. It also contains charged and neutral 
weak interactions, as well as electromagnetic interactions, of the leptons and quarks. We have 
not even included the lepton or quark kinetic energy terms, nor have we discussed a gauge-
invariant and renormalizable prescription for including leptonic and quark masses through 
coupling to the scalar field.

The reader undoubtedly recognizes by this stage how complicated this construction has 
become and how much has been inserted by assumption without explanation. First, we 
assumed a particular form of the Higgs mechanism, based on spontaneous symmetry break-
ing in a complex isodoublet scalar field. Although the Higgs mechanism could not be simpler, 
it could be much more complicated, and there could be more than one Higgs boson. Second, 
we assumed parity violation in the charged weak interaction in the V-A form and built it into 
the theory with the assumption of weak left-handed isodoublets and right-handed isosinglets 
for leptons and quarks. In a similar vein, the three generations of leptons, as well as of quarks, 
and the CKM matrix are inserted “by hand” without any explanation of their origin. Thus the 
standard model is not a fundamental theory. Nevertheless, it constitutes a remarkable advance 
in our knowledge and understanding of elementary particle physics.

24.16 Summary of Feynman vertex factors in the electroweak 
standard model

In what follows, we summarize the Feynman vertex factors for the standard model that we 
subsequently employ in examples of weak interactions. Note from Chapter 23 that an overall 
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factor of −( )i n
 appears in the amplitude of nth order in the S-matrix expansion. Because a 

Feynman diagram of nth order has n vertices, a convenient way to keep track of the factor of 
−( )i n

 is to include a factor of −i  that multiplies the relevant coupling constant in each vertex 
factor. In QED, the coupling constant is −e, so each vertex of the following type has the factor 
ieγ µ :

1. 

 ieγ µ  (24.131)

This factor also applies if  e− is replaced by µ τ− − or . If  in (24.131) e– is replaced by a u, c, t 
quark, the vertex factor becomes − 2

3 ieγ µ . If  the replacement is a d, s, b quark, the vertex 
factor is 1

3 ieγ µ .
2. 

 −ieγ µ  (24.132)

3. 

 
ig

W4
1 5

cos
( )

θ
γ γµ −  (24.133)

e–

e–

 Figure 24.15 e−e−γ  vertex

e+

e+

 Figure 24.16 e+e+γ  vertex

Z

v

v

 Figure 24.17 vvZ  vertex
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4. 

 
−

−
ig

W4
1 5

cos
( )

θ
γ γµ  (24.134)

5. 

 
ig

W
W4

1 4 2
5cos

sin
θ

γ θ γµ −( ) −   (24.135)

If  e– is replaced by a u, c, t quark, the vertex factor becomes

 
−

−




−









ig

W
W4

1
8
3

2
5cos

sin
θ

γ θ γµ  (24.136)

If  in (24.135) the replacement is a d, s, b quark, the vertex factor is

 
ig

W
W4

1
4
3

2
5cos

sin
θ

γ θ γµ −




−







  (24.137)

6. 

 
−

−( ) − 
ig

W
W4

1 4 2 5

cos
sin

θ
γ θ γµ  (24.138)

e–

e–

Z

 Figure 24.19 e−e−Z vertex

Z

v

v

 Figure 24.18 v̄v̄Z vertex

e+

e+

Z

 Figure 24.20 e+e+Z vertex
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7. 

 
−

−( )ig

2 2
1 5γ γµ  (24.139)

If  in the first diagram ν  is replaced by qi (u,c,t) and e– is replaced by qj (d,s,b), the vertex 
factor becomes

 
−

−( )ig
U

W

ij
2 2

1 5

sinθ
γ γµ  (24.140)

where Uij is the CKM matrix.
8. 

 
−

−( )ig

2 2
1 5γ γµ  (24.141)

9.

e+

W+ W–

v e+

v

 Figure 24.22 e+vW  vertices

W+ W–

k1 k2

k

Z, 

 Figure 24.23 W+W−Z, W+W−γ  vertices

e–

e–

v

v

W+ W –

 Figure 24.21 e−vW  vertices
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This is the 3-vector–boson vertex. Its vertex factor is derived from (24.86) and has the 
following form:

 V ig k k g k k g k k gW

W
αβγ α βγ γ αβ β

θ
θ

=






−( ) − + + +
cos

sin
( ) ( )1 2 1 2 2 12 2 γα   (24.142)

where cos sinθ θW W( ) is employed for ZWW γWW( ), respectively, and k k k, ,1 2 are 4-momenta 
with k k k= +1 2 . If  k is an internal line and k1 2,  are external lines, the diagram is described by

 −
−

−
−i

g
k k
m

k m
V i

g
k

VZ

Z

σα
σ α

αβγ
β γ

σα

αβγ
β γε ε ε ε

2

2 2 1 2 12 2or  (24.143)

for ZWW γWW( ) , respectively.
The standard electroweak model also has 4-vector–boson vertices, lepton-lepton-Higgs 

vertices, quark-quark-Higgs vertices, and so on, but these are not given here. The rules  
summarized in this section are sufficient for the illustrative calculations of the next section.

24.17 Illustrative calculations of electroweak processes

24.17.1 The decays W e e
− −→ ν  and Z Z Z qq→ → →+ −ν ν

 

 , ,  and 

These are the simplest physical processes in the electroweak model because they are just semi-
weak interactions with one vertex. We first consider some simple facts concerning the decay 
W e e

− −→ ν . The W, like the photon, has spin unity. Suppose that the W at rest is polarized with 
its spin along the +z-direction. Experiment shows that the electron is emitted primarily in the 
backward direction (along the –z-axis); in fact, the angular distribution of electron momentum 
is proportional to

 f θ θ θ θ( ) = − = +( ) − ( )( cos ) cos cos1 1 22 2  

where θ  is the usual polar angle between the electron momentum and the z-axis. This is 
 represented schematically by Figure 24.24.

By conservation of  linear momentum, the electron and antineutrino 3-momenta must be 
equal and opposite in the W rest frame. Because the W −  has spin unity, conservation of  angu-
lar momentum demands that both the electron and the antineutrino are polarized along +z. 
Thus the electron spin and its linear momentum are opposed. In other words, the electron 
has negative helicity (is left-handed), whereas the antineutrino has positive helicity (is right-
handed).
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The starting point of our calculation is the invariant amplitude obtained from (24.139); 
that is,

 M W e
ig

u ve e( )− −→ =
−

−ν ε γ ν
2 2

1( )5  (24.144)

To calculate the electron angular distribution, we recall that the differential transition  
probability per unit time in the W  rest frame is

 d p p m
m
E

m
E m

d d
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e

e W

eΓ = + −( )( )
( ) ( )

2
1

2 2 2
4 4

3

3

3

3

2π δ
π πν

ν

ν

νp p
 (24.145)

Here
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m
e e

e

2
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5 58 2
1

2
1=

+
−( ) −

−( )







 ε γ ε γ γ γν ν

ν

*  (24.146)

Note that in the W rest frame, ε µ reduces to a unit 3-vector ε. We choose

 ε =
+ˆ ˆi ij

2
 

which corresponds to the spin of the W in the +z-direction. Because the electron and antineu-
trino are both ultrarelativistic, we can ignore their masses in the numerators on the right-hand 
side of (24.146). Thus the trace is

W–

e–

ve

 Figure 24.24 Schematic diagram of spins and momenta in the decay W e e
− −→ ν . The electron is emitted in the backward direction relative to the 

W spin.
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 (24.147)

It is convenient to write T T T= −1 2, where T2 contains the γ 5 and T1 does not. Then
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 (24.148)

Also, in the W rest frame and where we ignore the masses of the emitted leptons, E E Ee = =ν  
and p p Eeν θ3 3= − = − cos . Therefore,

 T E1
2 28 1= +( )cos θ  (24.149)

It remains to calculate the trace

 T tr p p p p ip p ip pe e e e2
1 1 2 2 2 1 1 2 5≡ + + −( ) γ γ γ γ γ γ γ γ γν ν ν ν  (24.150)

We have previously shown that

 tr iγ γ γ γ γ εα β ρ σ αβρσ5 4( ) = −  

where εαβρσ  is the completely antisymmetric unit 4-tensor. The latter is equal to +1 when the 
indices are 0123 or even permutations thereof, equal to –1 for odd permutations of 0123, and 
equal to zero if  any two indices are the same.

Hence
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0231 0132
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= −
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    p E
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216
( )

=    cosθ
 (24.151)

Combining (24.151) and (24.149) and inserting the result into (24.153), we obtain for 
(24.145)

 d
g
m

p p m d d
W

e W eΓ = − + −( )1
32

1
2

2
2 4 3 3

π
θ δ ν ν( cos ) p p  (24.152)
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which gives the expected electron angular distribution. Integration over pν  with 

δ ν ν
3 3 1p p pe d+( ) =∫  yields
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 (24.153)

where we have used g m GW F
2 28 2= . Integration over the electron solid angle yields the total 

decay rate

 Γ W e
G

me
F

W
− −→( ) =ν

π6 2
3  (24.154)

Because the masses of µ τ and  leptons are also very small compared with mW, these formulas 
are valid to a good approximation for all three decay branches: W − −→ 



ν .
A very similar calculation yields the decay rates for the transitions 

Z Z Z qq→ → →+ −ν ν
 

 , ,  and . We only have to replace the vertex factor of (24.139) by 
those given in (24.133)–(24.138). Thus we obtain

 Γ = +( )G
m a bF

Z
24 2

3 2 2

π
 (24.155)

where a and b are given in Table 24.3.
The total transition rate is given by

 Γ Γ Γ Γ Γtotal = + + ++ −3 3 6 9νν
 

uu dd  (24.156)

Here each of the first two terms on the right-hand side has a factor of 3 for three lepton flavors. 
The third term has a factor of 3 for three quark colors and a factor of 2 for two quark flavors 
(u, c); the top quark mass is too large for participation here. Finally, the last term does have 
three flavors (d, s, b) and three colors. The observed natural width of the Z-boson is 2.490 ± 
0.007 GeV, in very good agreement with the numerical value of Γtotal calculated from (24.156). 
From this we conclude that there are three and only three flavors of neutrinos with masses 
much less than mZ/2.

Table 24.3 Values of a, b for various Z0 decay modes

a b

νν 1 1
 

+ − 1 – 4 sin2θW 1

uu 1
8
3

2− sin θW 1

dd 1
4
3

2− sin θW 1
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24.17.2 Decay of the charged pion: π ν→ 



 (often called π
2  decay)

This is the simplest weak decay involving a hadron. First, we give some basic experimental facts. 
The mean lifetime of a charged pion is τ π ± −( ) = ×2 603 10 8. s, and the various decay modes are 
shown in Table 24.4.

Why is the branching fraction for π e2 so small compared with that for π µ2? This can be 
understood intuitively from Figure 24.25, which shows a π + at rest at the origin, which decays 
to a charged lepton + that is emitted in the +z-direction. Conservation of linear momentum 
requires that the neutrino be emitted in the opposite direction. Because the helicity of a neu-
trino emitted in a weak process is always h ν( ) = −1, and because the pion has spin zero, con-
servation of angular momentum requires that the positive lepton also have negative helicity 
h +( ) = −1, and experiment shows that this is the case.

However, the expected helicity of a positive lepton emitted in a charged weak decay 
is +v/c according to the V-A law. Because the masses of the relevant particles are 
m c m cπ µ+ = =139 57 105 66. , . , MeV/   MeV/2 2  and m ce = 0 511.  MeV/ 2, the muon in π µ2 decay is 
quite nonrelativistic (it has kinetic energy of approximately 5 MeV) and is thus rather easily 
forced into the wrong helicity state, but the electron in π e2 decay is very relativistic (kinetic 
energy of approximately 69 MeV) and is thus forced into the wrong helicity state only with 
extreme reluctance.

In the decay π ν− −→ 



, the V-A law yields the following amplitude:

 M
G

u JF= − ( ) −

2
1 05 

γ γ πλ
ν λ( )v had †

 (24.157)

Even for the comparatively simple pion, the effects of strong interaction are so complicated 
and uncertain that it is very difficult to calculate the hadronic portion of the matrix element in 
(24.157) from first principles. The best we can do in an elementary treatment such as this one is 
to place restrictions on its possible form with the aid of symmetry. Proper Lorentz invariance 
requires that M be a linear combination of a scalar and a pseudoscalar. Because the leptonic 
factor in (24.157) is a vector plus an axial vector, the hadronic matrix element must be a vec-
tor, an axial vector, or a linear combination of the two, and it must be constructed from the 
available kinematic quantities. Because the pion is a pseudoscalar particle, the only available 
kinematic quantity is the 4-momentum transfer q p p= +

 ν . Thus we write
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 (24.158)

Table 24.4 Branching fractions for decay modes of 
the charged pion

Decay mode                Branching fraction
µ νµ
+                                99.9877%

e                         +νe         1.23 10
                            1.03 1

4×
×

−

+π ν0e e 0 8−
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where fπ  is a numerical constant called the pion decay constant that characterizes the effects of 
strong interactions. We do not have a precise, convincing way to calculate fπ , but for present 
purposes, we let it be determined by experiment. [Note that because the pion is pseudoscalar 
and qλ  is a polar 4-vector, it is the axial portion of Jλ

had( )† that is operative here.] Substitution 
of (24.158) into (24.157) yields

 M
G

f u p pF
C= +( ) −

2
1 5π ν νθ γcos ( )

  

v  (24.159)

Now recalling equations (22.16) and (22.17), we have

 u p m u
   

=  

and

 p v p v m vν ν ν ν ν νγ γ γ( ) ( ) ( )1 1 1 05 5 5− = + = − + ≈  

Hence (24.159) becomes
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e+ , +
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e , 

 Figure 24.25 Diagram illustrating momenta and spins of decay products in the decay π+ → ℓ+vℓ
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where
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Hence (24.160) becomes
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  (24.161)

The transition probability per unit time in the pion rest frame is
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Integrating over p


, we obtain
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Thus we obtain the ratio
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This result, when corrected for radiative effects, agrees very well with the experimental branch-
ing ratio. Finally, comparison of (24.163) with the experimentally determined mean life of π ± 
yields f mπ π= 0 94. .

24.17.3 How the neutral and charged weak interactions fit together

Here we discuss as an example the following weak reaction:

 ν νe e W W+ → + −
longit. pol.
+

longit. pol.  (24.165)

It is interesting because its amplitude according to the naive charged vector boson theory 
violates unitarity, whereas unitarity is restored to lowest nonvanishing order by adding the 
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effect of neutral weak interactions as prescribed by the standard electroweak model. (In higher 
orders, we also need additional contributions involving the Higgs boson.) For various practi-
cal reasons, an experiment to observe this reaction would be extremely difficult or impossible 
to perform, but we can still think about it. To begin, we remind ourselves what longitudinal 
polarization means. We know that if  a vector boson has rest mass, it has a rest frame. In that 
frame its polarization 4-vector εµ  reduces to a unit 3-vector that we assume lies along the 
z-axis; that is,

 ε µ =



















0

0

0

1

 (24.166)

Also, in the rest frame, the boson 4-momentum kµ reduces to

 k

mw

µ =



















0

0

0

 (24.167)

Now we make a Lorentz boost to a frame where the boson has velocity β , also in the z-direction. 
The Lorentz transformation matrix for this boost is

 a =



















γ βγ

βγ γ

0 0

0 1 0 0

0 0 1 0

0 0

 

Applying a to the 4-vectors in (24.166) and (24.167), we obtain the 4-polarization and the 
4-momentum of the moving boson

 ε

βγ

γ

γ

βγ

=



















=



















0

0

0

0
k mW  

In the limit where the boson is ultrarelativistic, β →1 and

 ε µ µ=
1

m
k

W
W  (24.168)

Now consider reaction (24.165) in lowest nonvanishing order in the charged weak interaction. 
The Feynman diagram is Figure 24.26.

In this figure, q is the 4-momentum of the internal electron line. Recalling that 4-momentum 
is conserved at each vertex, we have
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 p q k p q k1 2= + = − ++ −  (24.169)

The amplitude corresponding to Figure 24.26 is easily written down from (24.139) and (24.141); 
that is,

 M
ig

v
i q m

q m
ig

ua
e

e

=
−

−( )
+( )
−( )












−

−( )− +
2 2

1
2 2

15
2 2
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Here v u and  are spinors referring to the antineutrino and neutrino, respectively, ε−  and ε+ 
refer to the outgoing W– and W+, respectively, and the factor in square brackets is the elec-
tron propagator associated with the internal electron line. The right-hand side of (24.170) can 
be simplified as follows: first, we ignore the electron mass in the denominator because q2 is 
extremely large in the ultrarelativistic limit. Then we use (24.168) to obtain
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1 1( ) ( )γ γ  (24.171)

Now, using (24.169) and noting from the Dirac equation that

 vp p u2 10 0≈ ≈  (24.172)

and also recalling that

 1 1 1 1 05 5 5 5−( ) −( ) = +( ) −( ) =+ +γ γ γ γm k m ke e  

we see that (24.171) becomes
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 (24.173)

k– k+

W– W+

e

q

ve ve

p2 p1

 Figure 24.26 Lowest order charged weak interaction Feynman diagram for the reaction ve + v̄e → W+
long pol + W−

long pol
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Employing (24.173), it is easy to show that the cross section due to this amplitude alone is 
proportional to E2 and thus violates unitarity at sufficiently large E. To avoid this difficulty, 
as already mentioned, we must include another diagram, the amplitude of which cancels the 
amplitude in (24.173) at large energy. We know that neutral weak interactions exist, and in 
particular, we have the neutrino-neutrino-Z0 vertex (24.133) and the 3-boson ZWW vertex 
(24.142). Thus we consider the diagram in Figure 24.27.

The amplitude corresponding to this diagram takes the following form:
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 (24.174)

where k k k+ −+ = , and we have assumed (24.168) for k k+ − and . After straightforward algebra, 
(24.174) is simplified in the limit of very large k2 to the following expression:

 M i
g
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vq u Mb
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a= − − = −
2

2
5

4
1( )γ  (24.175)

Thus amplitudes M Ma b and  indeed cancel to lowest nonvanishing order in the high-energy 
limit, preserving unitarity to lowest nonvanishing order.

24.17.4 Parity nonconservation in atoms

According to the standard electroweak model, an atomic electron interacts with the nucleus 
and with other electrons of the atom not only by Coulomb interaction (photon exchange) but 
also by neutral weak interaction (Z0 exchange). To describe photon exchange in atomic physics, 
one employs the ordinary atomic Hamiltonian H0. Because it commutes with the parity opera-
tor, its eigenstates (the usual atomic stationary states) have definite parity, even or odd. Now 
consider the neutral weak interaction between an atomic electron and the nucleus. Because the 
electronic neutral weak current and the nuclear neutral weak current each have vector and axial 

k– k+

W– W+

k       Z

             ve ve

p2 p1

 Figure 24.27 Lowest order neutral weak interaction Feynman diagram for the reaction ve + v̄e → W+
long pol + W−

long pol
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vector components, the effective Hamiltonian H′ describing their interaction has both scalar 
and pseudoscalar parts; that is,

 ′ = +H H HS P  

where H HS P and  are expressed schematically as

 H V V A A H AV V AS e N e N P e N e N + +  

HS commutes with the parity operator and causes energy shifts so small that they cannot be 
distinguished in any practical experiment from effects due to H0 itself  because of small uncer-
tainties in the latter that exist even in the case of atomic hydrogen. However, because HP does 
not commute with the parity operator, it perturbs an eigenstate ψ 0  of H0 by admixing small 
amounts of states φn

0  of opposite parity to ψ 0 , and its effects can be and have been observed. 
According to first-order static perturbation theory,

 ψ ψ ψ φ
φ ψ
ψ φ

0 0 0
0 0

0 0
→ = +

−∑ n
n

n P

n

H

E E( ) ( )
 (24.176)

Of the two terms in H H HP P P= +( ) ( )1 2 , where H AV H V AP e N P e N
( ) ( ),1 2
  , HP

( )1  is by far the 
most important, especially for atoms where the atomic number is Z 1. There are several 
reasons for this. First, as we see from (24.135), the electron-electron-Z0 vertex factor is pro-
portional to γ θ γµ 1 4 2 5− −( )sin W . Thus the vector portion Ve of  the electronic neutral weak 
current is much smaller than the axial portion Ae because of the quantity (1–4sin2θW) ≈ 0.04. 
Next, as will be shown momentarily, the vector portion VN  of  the nuclear neutral weak current 
is proportional to

 Q Z NW W= − −( sin )1 4 2 θ  (24.177)

where Z and N are the atomic number and neutron number, respectively. The quantities 
Z N and  in QW reflect the fact that because the electronic wave function is spread out over a 
volume much larger than that of the nucleus, the contributions of the individual protons and 
neutrons add up coherently to yield VN. By contrast, the axial nuclear neutral weak current is 
generated from the spins of the nucleons, which tend to cancel in pairs, leaving at most two 
unpaired nucleon spins and almost always no more than one such spin. Thus HP

( )2  is weaker than 
HP

( )1  by a factor of approximately Z W
− −( )1 21 4sin θ . In what follows, we ignore H HS P and ( )2 ,  

concentrate our attention on HP
( )1 , and derive the form of the latter.

We start by writing the Hamiltonian density H P
( )1  for the interaction by Z exchange between 

the electron axial current and the up (or down) quark vector current, in the limit of extremely 
small momentum transfer; that is,
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Here e, u, and d are field operators for the electron, up quark, and down quark, respectively, 
and the various factors in (24.178) are obtained from (24.135), (24.136), (24.137), and the Z 
propagator in the limit of extremely small momentum transfer. Now
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Also, the valence quark compositions of a proton and a neutron are uud ddu( ) ( ) and , 
 respectively. Thus, from the factors multiplying u u d dγ γµ µ and  in (24.178), we obtain

 
− −




+ −




= − −( )2 1

8
3

1
4
3

1 42 2 2sin sin sinθ θ θW W W for each proton

 for each neut− −




+ −




= +1

8
3

2 1
4
3

12 2sin sinθ θW W ron
 

Therefore, summing over all nucleons in the nucleus, we obtain the factor QW  defined in 
(24.177). Finally, because the protons and neutrons in the nucleus are nonrelativistic, 
we have

 ψ γ ψ χ χ ψ ψp n p n p n p n p n p n, , , , , ,
0 0≅ →† γ  

where the χ p n,  are large two-component nucleon wave functions. Thus we obtain the following 
effective single-electron Hamiltonian:
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2 2
= ( )ρ γr  (24.181)

where ρ r( ) is the nucleon probability density with ρ d 3 1∫ =r . In the limit of a point nucleus, 

ρ δr r( )→ ( )3 . Also, taking into account that electronic wave functions ψ φ0  and n
0 in (24.176) 

can be written as
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where χ η and n are the corresponding large components, we see that the matrix element 

φ ψn PH0 1 0( )  in (24.176) is
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If  the atomic electron in question is nonrelativistic, we can replace E  by me. Thus the last for-
mula reduces to
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(24.182)

From this we see that χ and the gradient of ηn  (and/or vice versa) must be nonzero at the 
origin; otherwise, the matrix element vanishes. In other words, single-electron orbitals of the 
form s p1 2 1 2/ /,  are required.

Note that for such orbitals, the matrix element in (24.182) scales a bit more steeply than Z3. 
One factor of Z arises (approximately) from QW; another from the gradient operator; and still 
another from the delta function. In addition, there are relativistic corrections. Thus, although 
atomic parity violation effects are extraordinarily small for light elements, they increase rapidly 
with Z, and they have been measured at the 1 percent level of precision in heavy atoms such as 
Cs (Z = 55, 62S1/2 ground state) and Tl (Z = 81, 62P1/2 ground state).

Problems for Chapter 24

24.1. In the very last stages of stellar evolution, the cores of certain stars reach temperatures of 
the order of 1010 K. At such high temperatures the thermal radiation field generates electron-
positron pairs. Consequently, the following weak interactions occur:

 e e e e
+ − → ν ν ν ν ν νµ µ τ τ  (1)

This has a profound effect on the final stages of stellar evolution because the neutrinos, once 
generated, depart from the star without further interaction, thus robbing it of vast quanti-
ties of energy. In this problem we make a crude but effective order-of-magnitude estimate of 
the energy converted to νν  pairs per unit volume per unit time in stellar material at 1010 K 
by  reaction (1) and compare it with the energy density stored in the radiation plus electron-
positron field at the same temperature. This yields an estimate of the time scale for evolution 
due to neutrino losses. Let

 Q vn n E E= +( )+ − + −σ  (2)

be the energy generated per unit volume per unit time in neutrino-antineutrino pairs. Here σ  
is the cross section for reaction (1), v is the relative velocity of e e+ − and , n n+ −=  is the number 
density of positrons (and of electrons), and E±  are their energies.

Employing natural units, use a dimensional argument to obtain σ , use Fermi-Dirac statis-
tics for k T m cB e

2 to obtain n±, and replace each energy in the resulting formula (2) by k TB  
to obtain the estimate

 Q G k TF B≈ ( )2 9
 (3)

Now compare this result with the thermal energy density in the radiation plus e± field to obtain 
the time scale t for evolution due to neutrino losses. You should find

 t ≈ 10 s  
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For comparison, note that the time scale for evolution of the Sun is ≈1010 years = 3×1017 s.

24.2. In Section 24.6 we show that according to the V-A law, electrons in beta decay have lon-
gitudinal polarization P = –v/c, whereas antineutrinos have P = v/c ≈ 1.
(a) Show that in positron beta decay, P e v c P e( ) / ( ) .+ = + ≈ − and ν 1
(b) Suppose that instead of the V-A law, nature chose an S-P law (S = scalar, P =  pseudoscalar). 
What would be the polarizations of e e

−  and ν  in electron beta decay?

24.3. In this problem we consider the beta decay of polarized neutrons

 n pe e→ −ν  

Our starting point is the effective Feynman amplitude

 M
G

u u u vF C
p n e= − −

cos
( ) ( )

θ γ λγ γ γµ
µ ν

2
1 15 5

  (1)

It can be shown that if  time-reversal invariance is valid, λ  must be real. However, no experi-
ment can ever establish that the imaginary part of λ  is exactly zero, so we shall assume in this 
problem that λ  might have a small imaginary part. Also, even if  λ  is real, it departs from unity 
only because of strong interaction effects in the nucleon; if  these effects were absent, we would 
have λ = 1.

Let us consider an experiment in which we employ polarized neutrons but do not observe the 
polarization of any of the final particles (so we can sum over all final polarization states). Show 
that the transition rate is proportional to
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(2)

Here ˆ ˆp sν  and n  are unit vectors in the direction of the antineutrino linear momentum and 
neutron spin, respectively, and ve is the electron velocity in units of the velocity of light.

The second term in (2) describes the antineutrino-electron momentum correlation. In a typi-
cal beta decay experiment, it is impractical to observe the neutrino directly, but this correlation 
can be detected by observing the momentum of the recoil nucleus in coincidence with the elec-
tron and making use of conservation of linear momentum. This correlation does not involve 
the neutron spin and can be observed with an unpolarized sample of initial neutrons. It is also 
not a parity-violating effect because it involves the scalar product of two polar vectors.

The third term in (2) describes the electron beta decay asymmetry. It requires polarized neu-
trons, and it is a parity-violating effect because it is proportional to the scalar product of a 
polar vector and an axial vector.

The fourth term in (2) describes the antineutrino beta decay asymmetry. It also violates 
 parity and is detected by observation of the recoil nucleus in coincidence with the electron.

The fifth term in (2) violates T but not P and is detected by correlating observations of the 
recoil nucleus in coincidence with the electron with the direction of neutron spin. Measurements 
of this term yield the best experimental limits on T violation in beta decay.

[Hint for the solution of this problem: The recoiling proton is very nonrelativistic in the rest 
frame of the neutron. Take advantage of this to simplify the matrix element in (1) and the 
resulting evaluation of traces.]
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24.4. Muonium is a hydrogenic atom in which the proton is replaced by a positive muon. There 
are two ways in which a muonium atom can disintegrate. The muon can decay

 µ ν νµ
+ +→ e e  

or the positive muon can capture the atomic electron, which we can assume is in the 12
1 2s /  state; 

that is,

 µ ν νµ
+ − →e e  

Let the symbols 1 and 2 refer to ν νµ  and e respectively. Making use of the formula for the total 
muon decay rate (in natural units)

 Γ µ ν ν
πµ

µ+ +→( ) =e
G m

e
F
2 5

3192
 

and the algebraic formula

 tr p p tr p peµ
λ

σ
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σγ γ γ γ γ γ γ γ γ γ γ γ( ) ( ) ( ) ( )1 1 1 15
1 5 4 2

5
4 5 4− +  − +  = 64 2 1p p p peµ  

show that the ratio of the rates for the two processes is
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π αµ
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where α  is the fine-structure constant. R is in fact a very small number, so the capture rate is 
quite negligible.

24.5. In Section 24.12.2 we discussed the Yang-Mills analysis of infinitesimal SU(2) gauge 
transformations on an isodoublet Dirac field Ψ . Such transformations are characterized by 
the formulas

 
δ δΨ Ψ Ψ Ψ= = −i iε ε t tand

 
(1)

The Lagrangian density for the Dirac field and its conjugate is invariant under local SU(2) 
gauge transformations if  we include an interaction with a triplet of gauge fields analogous to 
the electromagnetic vector potential and collectively denoted by the symbol Aµ . We show with 
equation (24.81) that the change in Aµ  resulting from the infinitesimal gauge transformation 
described by (1) is

 δ µ µ µA A= − ∂ − ×( )1
g

ε ε  (2)

How would we modify (2) if  the gauge transformation were finite; that is,

 Ψ Ψ Ψ Ψ Ψ Ψ→ ′ = ( ) → ′ = −( )exp expi iε ε t t  

(b) Fill in the steps that lead from (24.73) to (24.84).
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24.6. In Section 24.17.3 we considered the reaction

 ν νe e W W+ → ++ −
longit pol longit pol  (1)

and showed that in the ultrarelativistic limit the amplitude associated with Figure 24.26 
becomes

 M
ig
m

vq ua
W

= − +
2

2 54
1( )γ  (2)

We also remarked in Section 24.17.3 that the amplitude associated with Figure 24.27 is
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and we mentioned that in the ultrarelativistic limit, Mb reduces to

 M i
g
m

vq u Mb
w

a= − − =
2

2
5

4
1( )γ  (4)

Because of the cancellation, unitarity is preserved to this order of perturbation theory.
(a) Fill in the steps leading from (3) to (4).
(b) Consider the analogous reaction

 e e W W− + − ++ → +longit pol longit pol  (5)

In this case there are three 2-vertex Feynman diagrams. Draw these diagrams, labeling the 
various 4-momenta and 4-polarizations carefully. Use the Feynman rules for the standard elec-
troweak model given in Section 24.16 to construct the amplitudes corresponding to the three 
diagrams, and show that these amplitudes cancel in the ultrarelativistic limit, thereby once 
again preserving unitarity to this order in perturbation theory.

24.7. In this problem, we ignore CP violation, which is a small effect, and write
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We also make use of the experimentally determined total decay rates
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and the experimentally determined mass difference Δm m m cL S= − = × − −5 34 109 2.   s 1
 . 

Consider an experiment in which a beam of neutral K mesons is formed by some strong inter-
action collision process. The K beam is assumed to have velocity β  in the laboratory frame and 
to consist of particles in the state K 0  at initial time t = 0.
(a) Find the state vector at time t > 0  as measured in the kaon rest frame. Your answer 
should be expressed in terms of the state vectors K KS L

0 0 and  and the quantities β , t, 
γ γK K mS L

0 0( ) ( ), ,  and Δ . Your answer should reveal damped oscillatory behavior, and when 
t is sufficiently large, the state vector should become proportional to KL

0 . The phenome-
non exhibited here is called strangeness oscillations, and it is somewhat analogous to neutrino 
oscillations.
(b) Let the beam of particles pass through a slab of matter after having traveled in vacuum 
for a sufficiently long time that the particles are in the state KL

0 . Noting that the scattering 
amplitudes for K K0 0 and  on matter nuclei are the complex numbers a b and ,  respectively, 
with b a , show that the beam emerging from the slab of matter contains a considerable 
KS

0  component. This phenomenon is called regeneration.

24.8. In the absence of atomic parity nonconservation, the 1s and 2s states of atomic hydrogen 
both have even (positive) parity, so no electric dipole (E1) transition can occur between them. 
However, when atomic parity nonconservation is taken into account, there is a very small but 
nonzero E1 matrix element connecting these states. Using equations (24.176) and (24.182), 
calculate this matrix element for atomic deuterium. You may assume that the sum in (24.182) is 
dominated by a single term, for which the energy denominator is the Lamb shift for deuterium: 
1,059 MHz.
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25.1 Statement of the problem

The quantum measurement problem can be explained rather simply in terms of a thought 
experiment designed for observation of the eigenstates of Jz for a spin-1/2 particle. As we know, 
this system is described by a two-dimensional Hilbert space with two orthonormal state vectors 
α βS S and  for spin up and down, respectively, with respect to the z-axis. We assume that the 
measuring apparatus also obeys quantum mechanics, although it is macroscopic. For reliable 
measurements, the apparatus must satisfy the following requirements:

The apparatus is prepared in a “ready” state •	 Φ0  at the beginning of a measurement.
The system and the apparatus interact for a certain time interval •	 T.
If  at •	 t = 0 the system-apparatus state vector is

 Ψ Φ( )0 0= ⊗αS  (25.1)

then at t T= ,

 Ψ Φ Φ( ) ( , ) ’ ( )T U T TS S= ⊗( ) = +0 0α α  (25.2)

whereas if

 Ψ Φ( )0 0= ⊗βS  (25.3)

then

 Ψ Φ Φ( ) ( , ) ’ ( )T U T TS S= ⊗( ) = −0 0β β  (25.4)

 where U(T, 0) is a deterministic unitary time-evolution operator governing the interaction 
of system and apparatus, and Φ± ( )T  are apparatus states that are generally macroscop-
ically distinguishable (i.e., they refer to different positions of a pointer on a dial or different 
arrangements of indicator lights on a counter, etc.).

The requirements we just stated contain the essential features of many experiments that have 
actually been performed, for example, the Stern-Gerlach experiment and countless variants 
of it.

The Quantum Measurement Problem25 
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So far there is no difficulty, but now suppose that we prepare the system with initial state 
vector

 ψ α βS S Sa b0( ) = +  (25.5)

where a and b are both nonzero, and  a b2 2
1+ = . Then the system-apparatus state vector at 

t = 0 is

 Ψ Φ( )0 0= + ⊗a bS Sα β  (25.6)

and because the Schroedinger equation H iΨ Ψ= 

  is linear, the system-apparatus state vec-

tor at time T must be

 Ψ Ψ Φ Φ( ) ( , ) ( ) ( ) ( )T U T a T b TS S= = ′ ⊗ + ′ ⊗+ −0 0 α β  (25.7)

which is an entangled state of the system and apparatus. This presents a serious problem 
because superpositions of macroscopically distinguished apparatus states, such as those that 
appear on the right-hand side of (25.7), are never observed. For example, we never observe a 
pointer that is simultaneously at two different places on a dial. One always observes

 Φ Φ+ −( ) ( )T Tor  (25.8)

Furthermore, if  both a and b are nonzero, we cannot predict ahead of time which of the states 
in (25.8) will be obtained on a given measurement; we can only assign a probability for a spe-
cific outcome. The contradiction between deterministic unitary evolution described by (25.7), 
which leads to a superposition of macroscopically distinguishable states and the nonlinear and 
stochastic state-vector reduction of (25.8), is one important part of the quantum measurement 
problem.

However, there is more to the problem: nothing in the standard rules of quantum mechanics 
tells us when it is appropriate to employ deterministic unitary evolution and when we should 
use state-vector reduction. For example, let us label our spin-½ particle as system 1 (S1) and the 
apparatus described earlier as apparatus 1 (A1). Then we could consider (S1+A1) as another 
system (S2) that could be measured by another apparatus (A2). This would shift the bound-
ary between unitary evolution and collapse. Or we could attempt to measure the properties of 
system (S3) = (S2 + A2) with still another apparatus (A3), which shifts the boundary further. 
There is no obvious reason why this process cannot be iterated indefinitely, and we are left with 
the unanswered question: at what point in the chain should we give up unitary evolution and 
employ state-vector reduction?

Before discussing the problem further, we illustrate the foregoing thought experiment by 
means of a simple mathematical model M. For the system, we use the usual representation; 
that is,

 α βS

S S

=





=





1

0

0

1S  (25.9)
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As for the apparatus, although it has macroscopically distinguishable final states, we simplify it 
as much as possible in a schematic description by assuming that

 Φ0

1

0
=





A

 (25.10)

and

 Φ Φ+ −( ) =






( ) =






T T
A A

1

0

0

1
 (25.11)

It can be seen in this simple model that the apparatus also behaves like a particle with 
spin-½. The requirements (25.11) are achieved by the following system-apparatus interaction 
Hamiltonian:

 H I I g txA zS= −( ) −( )1
4

σ σ ( )  (25.12)

where σ σxA zS and  are Pauli spin matrices referring to the apparatus and system, respectively 
(each σ iA commutes with every σ jS), whereas g(t) is nonzero only in the interval 0 ≤ ≤t T  and 
satisfies

 g t dt
T

( )
0
∫ = π  

To see that H in (25.12) is the desired Hamiltonian, we write the time-development operator

 U T
i

H t dt
i

I I
T

xA A zS S( , ) exp ( ) exp0
40

= −








 = − −( ) −( )



∫



π σ σ  (25.13)

and expand the far right-hand side of (25.13) in a power series. Because

 σ σ σ σxA A xA xA A xA AI I I−( ) = − + = − −( )2 2 2 2  

and, similarly,

 σ σzS S zS SI I−( ) = − −( )2
2  

we have

 
U T I I I

I
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= − −( ) −( )

= + + −( )

σ σ

σ σ σ σ           
 (25.14)

 

 

 

 

 

 

 

 



25.2 Is there no problem?633

Now let

 Ψ( )0
1

0
=
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 (25.15)

as in (25.6). Then, applying U, we obtain
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 (25.16)

as in (25.7). We will find it helpful to refer to this model M in the discussion that follows.
The quantum measurement problem has generated a very extensive (and often controversial) 

literature, which is surveyed with admirable clarity in Laloe (2012). There are many diverse 
proposals for resolving the problem. Broadly speaking, these fall into three categories:

1. There is no problem. We have set up false difficulties by giving an oversimplified description 
of the measurement process.

2. The interpretation of the rules of quantum mechanics must be changed to resolve the quan-
tum measurement problem, but this can be done in ways that are empirically indistinguish-
able from the standard theory.

3. Deterministic unitary evolution is only an approximation. The time-dependent Schroedinger 
equation must be modified to include a term that is both nonlinear and stochastic, and/
or quantum mechanics must be modified in more fundamental ways. Such a modification 
could have testable observational consequences, at least in principle.

We now consider each of these categories.

25.2 Is there no problem?

Have we set up false difficulties by giving an oversimplified description of  the measurement 
process? Many persons who believe that there is no problem argue that in any scientific 
experiment the apparatus is almost always a complex macroscopic piece of  equipment with 
many degrees of  freedom, most of  these degrees of  freedom are coupled uncontrollably to 
the environment, and such couplings have generally existed for a long time before the start 
of  any measurement at t = 0. Consequently, it is unrealistic to describe the apparatus at 
t = 0 in terms of  a well-defined ready state Φ0 . Even if  we permit such a state Φ0 , the 
couplings between the apparatus and the environment cannot be ignored in the time inter-
val 0 ≤ ≤t T . Many model calculations [see, e.g., Zurek (1982) and Joos (1999)] and several 
experimental studies [see, e.g., Brune (1996)] have shown that decoherence occurs in this 
time interval. This means that the relative phases of  various apparatus macro states such as 
Φ Φ+ −( ) , ( )t t  become completely scrambled by couplings to the environment. Thus, with 

reference to (25.7), whereas
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 Φ Φ Φ+ −= =( ) ( )0 0 0  

so that

 Φ Φ Φ Φ+ − = =( ) ( )0 0 10 0  

nevertheless,

 Φ Φ Λ
+ −

−≈( ) ( )t t e t  (25.17)

where Λ−1 is a decoherence time. Because in virtually all real experimental situations Λ−1
T , 

any definite phase relation between the two state vectors on the right-hand side of (25.7) is oblit-
erated long before t = T, and in general, there are no observable interference effects between 
these two states.

It has been claimed [see, e.g., Anderson (2001) and Tegmark and Wheeler (2001)] that when 
these complications are taken into account, the quantum measurement problem disappears. 
However, this view is not justified. Concerning the apparatus initial state, no calculation has 
ever been presented that shows how collapse follows from any detailed assumptions about the 
initial state. On the contrary, a generalized discussion of the initial (and final) states of the 
apparatus, given by Bassi and Ghirardi (2000) and expanded by Grubl (2002) shows that the 
basic notions presented in Section 25.1 are still valid (even if  they are oversimplified) so far as 
they concern the apparatus initial state.

The development of decoherence during the time interval 0 ≤ ≤t T  of  the measurement pro-
cess can be represented schematically in model M or in other models by the disappearance of 
off-diagonal matrix elements in the apparatus density matrix. (The latter is obtained from the 
full density matrix describing system-apparatus entanglement by tracing over system states.) 
For example, if  in (25.16) we have a b= = 1/ 2 , then if  there were no decoherence, the appara-
tus density matrix would be

 M TA( ) =






1
2

1 1

1 1
 

but decoherence causes the off-diagonal elements of this matrix to vanish, with the result

 M TA( ) =






1
2

1 0

0 1
 (25.18)

Now it is certainly true that the latter matrix represents an incoherent statistical mixture of 

the apparatus states 
1

0










A A

 and 
0

1
 with equal probabilities. However, this does not support 

the contention that decoherence solves the quantum measurement problem because MA(T) 
in (25.18) also represents an incoherent statistical mixture with equal probabilities of  the 
states
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and each of the latter states is a superposition of macroscopically distinguishable states. Indeed, 
infinitely many different combinations of apparatus states correspond to the same density 
matrix in (25.18). Thus, despite decoherence, we must still introduce a separate probabilistic 
collapse postulate to explain the fact that in any given measurement we obtain only one or the 
other of the two states. These points have been emphasized very clearly in Adler (2003, 2004), 
Schlosshauer (2004), and Bassi (2000, 2003). See also Fine (1969, 1970), Brown (1986), Albert 
(1992), Bub (1997), and Barrett (1999). Despite significant belief  to the contrary, decoherence 
does not solve the quantum measurement problem.

Next, we consider the following question.

25.3 Can interpretation of the rules of quantum mechanics be 
changed to resolve the quantum measurement problem, and can this 
be done so that the modified theory is empirically indistinguishable 

from the standard theory?

All proposals in this category have a common feature: in the absence of possible future experi-
mental results that would falsify quantum mechanics itself, these proposals are themselves not 
falsifiable. Here we briefly summarize just a few of the many ideas that have been suggested.

The Ax-Kochen Proposal (Ax and Kochen 1999)

In conventional quantum mechanics, a ray in a Hilbert space is identified with the state of a 
system; hence any vector belonging to this ray, regardless of its phase, corresponds to the same 
state. Ax and Kochen proposed that instead, the ray should be identified with the quantum 
ensemble, and the phase of the vector should be identified with an individual member of the 
ensemble. In this scheme, if  the a priori distribution of phases is assumed to be uniform, then 
an alternative quantum theory can be set up in such a way that the probabilities of experimen-
tal outcomes follow the rules of conventional quantum mechanics.

Bohmian Mechanics 

Although the results of  photon polarization correlation experiments rule out local hidden-
variable theories (with minor caveats), one example of  a hidden-variable theory that evades 
this restriction and has been worked out in some detail is Bohmian mechanics (Bohm 1952). 
This scheme is designed to resolve the quantum measurement problem for macroscopically 
distinguishable states. Here the new variables are the “hidden” positions xi of  the particles, 
which are injected into the theory in addition to the usual generalized coordinates qi that 
appear in the wave function. In fact, whereas in conventional quantum mechanics we may 
say that spatial coordinates and linear momenta play an equal and balanced role, in Bohmian 

 

 

 

  

  



The Quantum Measurement Problem636

mechanics the spatial coordinates have a special privileged role. The rules of  this proposal are 
as follows:

1. The state of a physical system S at an initial time t0 is given by the wave function

 ψ q q q1 2 0, ,..., ;n t( )  (25.19)

together with the positions x x x1 0 2 0 0t t tn( ) ( ) ( ), ,...,  of  all the particles of S.
2. The evolution of the wave function is governed by the Schroedinger equation; that is,

 i
t

t
H tn

n

∂ ( )
∂

= ( )ψ
ψ

q q q
q q q1 2 0

1 2 0

, ,..., ;
, ,..., ;  (25.20)

3. The equations of motion for the xi are

 
d
dt m
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q q
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( )∇ ( )

Im
* , ,..., ; , ,..., ;

, ,...
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ψ
1 2 1 2

1 2 , ;q
q xn t

i i
( )

=

2  (25.21)

In this scheme, the Schroedinger equation (25.20) is first solved subject to the initial conditions. 
Then the solution is inserted into (25.21) to solve for the hidden variables xi. Because this pro-
cedure yields definite values of xi as a function of t, each of the particles always has a definite 
position; thus macroscopic objects have a definite location in space, and the quantum measure-
ment problem is avoided.

In Bohm’s theory, consider an ensemble of physical systems, each described by the wave 
function

 ψ q q q1 2, ,..., ;n t( )  (25.22)

Let each member of the ensemble contain n particles, the positions of which are

 x x x1 2, ,..., n  

and let these positions vary from one member of the ensemble to the next. Assume that the 
probability distribution of these positions is given at t0 by

 ρ ψx x x x x x1 2 0 1 2 0

2
, ,..., ; , ,..., ;n nt t( ) = ( )  (25.23)

Then it can be shown that the particles in the ensemble follow trajectories such that at any later 
time t

 ρ ψx x x x x x1 2 1 2

2
, ,..., ; , ,..., ;n nt t( ) = ( )  (25.24)

Thus Bohmian mechanics is equivalent to nonrelativistic quantum mechanics with respect to 
its predictions concerning particle positions. However, the scheme encounters major problems: 
despite decades of effort by its adherents [see, e.g., Durr et al. (1992)], it has not been possible 

 

 

 

 

 

 

 



25.3 Can interpretation of the rules of quantum mechanic be changed637

to incorporate spin into the theory in a convincing way, and there has been no success in con-
structing a relativistic version of the theory. In particular, there does not seem to be a consistent 
way to quantize the electromagnetic field to obtain photons.

Two Dynamical Principles

Here one accepts the statements that quantum-mechanical systems are governed by determin-
istic linear evolution and that the measurement process is nonlinear and stochastic. How, then, 
can we deal with the problem stated in Section 25.1 that the boundary between these two con-
tradictory principles is so shifty and arbitrary?

F. London and E. Bauer (1939) and, subsequently, E. Wigner (1967), believing that both 
principles must be accepted, thought it necessary to go to the extreme end of the chain of 
observation and to assume that state-vector reduction does not happen until the consciousness 
of the observer intervenes. Many difficult questions arise here, and most of them cannot be 
answered given the present state of our knowledge.

1. How can we understand the phenomenon of consciousness in terms of physical-chemical 
processes in the brain?

2. Computerized robots can manipulate an experiment and record data. They also have mem-
ory and can “learn.” Should we consider such robots as intermediate parts of the appara-
tus, or do they qualify as conscious beings at the end of the chain?

3. Does anyone seriously believe that consciousness can affect physical laws?

The Many-Worlds Hypothesis

The advocates of this idea assume that deterministic unitary evolution is the only correct prin-
ciple. They propose to avoid the quantum measurement problem by assuming that all parts 
of the state vector, for example, both terms on the right-hand side of (25.7), are realized as 
follows: each time an interaction occurs that leads to a superposition of macroscopically dis-
tinguishable states, the universe splits into replicas of itself, each replica corresponding to one 
of the terms in the superposition [see, e.g., De Witt and Graham (1973)]. It seems that there are 
major problems in this proposal. For example, because any given result of a measurement can-
not be predicted in advance, the split itself  must have a stochastic element. Why should this be 
any more acceptable than the collapse postulate? One must assume that there is no possibility 
of communication between one universe and another, and it is difficult to understand how this 
assumption is any more acceptable than the collapse postulate. Another major problem follows 
from the remark by J. S. Bell: “Are we not obliged to admit that measurement-like processes are 
going on more or less all the time, more or less everywhere?” If  we take Bell’s remark seriously, 
as it appears that we must, then the process of replication would have to be continuous and 
also would necessarily include replication of the conscious mind of the observer, so we have 
not only a many-worlds hypothesis but also a many-minds hypothesis. One wonders how the 
many-worlds hypothesis could ever be falsifiable and, if  it is not falsifiable, whether it can be 
considered science.

Finally, we consider the following questions discussed in Section 25.4.

  

   

  



The Quantum Measurement Problem638

25.4 Is deterministic unitary evolution only an approximation? Should  
the time-dependent schroedinger equation be modified? Might such  

modifications have testable observational consequences?

The successes of quantum mechanics may generate strong psychological pressure on most con-
temporary physicists to believe that the theory is complete and correct or at most requires some 
relatively minor adjustments to its interpretation. However, this is not the first time in history 
that a major scientific theory was thought to be perfect. Newtonian mechanics was so consid-
ered for about 200 years before it was extended by special and general relativity and then sup-
planted in the micro world by quantum mechanics. Now we realize that Newtonian mechanics, 
while very useful, is valid only in a restricted domain where velocities are much less than the 
velocity of light, gravitational fields are weak, and actions are much larger than . Will future 
physicists recognize that present-day quantum mechanics is also an approximate theory, valid 
merely in a restricted domain? In fact, there are a number of deep unresolved problems in 
quantum mechanics and quantum field theory that give us reason to think that it might be just 
an approximation, albeit an excellent one for all practical purposes so far. In addition to the 
quantum measurement problem and the well-known problem of incorporating gravitation into 
quantum theory, here are just two additional difficulties:

Classical mechanics is understood to be a limiting form of quantum mechanics, but we start •	
with Poisson brackets of various classical variables and then translate them into commu-
tation rules for the corresponding quantum variables. It seems unsatisfactory to derive the 
rules of the more fundamental theory from the rules governing its less fundamental limiting 
form. Perhaps the rules for quantization (and an explanation for the existence of ) might 
emerge naturally in a more fundamental theory.
Quantum field theory contains infinities that arise from the local nature of  commutation •	
and anticommutation relations connecting components of  quantum fields. In the calcula-
tion of  higher-order corrections to certain physical phenomena by means of  perturbation 
theory, infinities are removed by the technique of  renormalization. An important example 
involving renormalization is calculation of  the Lamb shift in the spectrum of atomic hydro-
gen, which yields a result in excellent agreement with experiment. However, renormaliza-
tion is based on a questionable mathematical procedure in which one subtracts one infinite 
quantity from another to obtain a well-defined finite remainder. One might hope that in 
a more fundamental nonlocal theory, all the infinities and such mathematical procedures 
could be avoided.

Any far-reaching attempt to construct a more fundamental theory resolving all the problems 
of quantum mechanics faces great difficulties, especially because there are at present no obvi-
ous experimental guideposts. Nevertheless, some authors have given considerable thought to 
this task: they include S. L. Adler (2004) and G. ‘t Hooft (1988, 1997, 1999, 2002, 2003). A less 
ambitious goal is to modify nonrelativistic quantum mechanics to remove the contradiction 
between deterministic unitary evolution and nonlinear stochastic collapse. Because collapse 
is encountered in almost every experimental measurement, many authors in the last several 
decades have concentrated their efforts on modifying unitary evolution.The list includes Pearle 
(1976, 1984, 1989); Ghirardi, Rimini, and Weber (1986); Ghirardi, Pearle, and Rimini (1990); 
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Gisin (1984, 1989); Diosi (1988a, b, 1989), and Percival (1994); and many of these efforts have 
been described in the detailed review by Bassi and Ghirardi (2003).

Here the following question arises: if  we set out to modify the deterministic linear Schroedinger 
equation, would it be sufficient to replace it with a stochastic linear equation or with a deter-
ministic nonlinear equation, or is it necessary to find an equation that is both stochastic and 
nonlinear? Gisin (1989) has shown that nonlinearity requires stochasticity, and the reverse is 
also true [Bassi and Ghirardi (2003)]. Thus it appears necessary to modify the Schroedinger 
equation by adding stochastic and nonlinear features.

Bearing this in mind, we briefly summarize the main ideas of Ghirardi, Rimini, and Weber 
(1986), who developed a scheme called quantum mechanics with spontaneous localization 
(QMSL). Here the following goals have been set:

QMSL must be constructed in such a way as to guarantee a definite position in space to •	
macroscopic objects.
The modified dynamics must have little impact on microscopic objects so as to avoid conflict •	
with the results of large numbers of precise experiments, but at the same time it must essen-
tially eliminate the superposition of different macroscopic states of macro systems. Hence 
there must be an “amplification” mechanism when going from the micro to the macro level.

Their theory is thus constructed with the following assumptions:

Each particle of a system of •	 n distinguishable particles experiences, with mean rate λi, a sud-
den spontaneous localization process, where i refers to the ith particle.
In the time interval between two successive spontaneous processes, the system evolves accord-•	
ing to the usual Schroedinger equation.
The sudden spontaneous process (called a •	 hit in what follows) is a localization described by

 ψ
ψ

ψ ψ
→ x

i

x
i

x
i

1 2/  (25.25)

Here ψ ψx
i

x
iL= , where Lx

i  is the localization operator; that is,

 L ex
i q xi= 





−( ) −( )α
π

α
3 4

2 2
/

 (25.26)

and the probability density for a hit at x is assumed to be P xi x
i

x
i( ) = ψ ψ .

The localization process works as shown by the following example: consider a superposition 
of two one-dimensional Gaussian functions, one centered at position –a and the other at +a; 
that is,

 ψ γ γ( )x
N

e ex a x a= +( )−( ) +( ) −( ) −( )1 2 22 2

 (25.27)

where N is a normalization factor. Suppose that a 1 11 2 1 2α γ/ / , which means that the dis-
tance between the two Gaussians is much greater than the localization amplitude, which is, in 
turn, much greater than the width of either Gaussian. Now consider a hit centered at a. The 
wave function changes as follows:
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 ψ ψ α γ γ α( ) ( )x x
N

e e ea
a

a x a x a→ = +( )− −( ) +( ) − +( )  −( )1 2 2 22 2 2

 (25.28)

Thus the Gaussian centered at –a is exponentially suppressed relative to the other term, the 
width of which remains essentially unchanged. The new wave function describes a particle that 
is well localized around +a. Because a hit is more likely to occur where the probability to find 
a particle is greater, the probability of a hit at x = 0 is very small; if  it does occur, the effect on 
the wave function (25.27) is quite negligible.

If  a single particle suffers a hit, its wave function ψ changes into the wave function ψx. 
Because we do not know where the hit occurs but only the probability for it to occur around x, 
the pure state is transformed into the statistical mixture
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ψ ψ
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 (25.29)

It can be shown that this implies the following equation for the time evolution of the one-
particle density operator ρ :

 
d t

dt i
H t t T t

ρ ρ λ ρ ρ( )
, ( ) ( ) ( )= [ ] − − [ ]{ }1



 (25.30)

This master equation, which in effect replaces the time-dependent Schroedinger equation and 
is of central importance for QMSL, differs from the equation of motion for the density matrix 
in standard quantum mechanics because it includes the term proportional to λ . The nonlinear 
contribution is, of course, the quantity λ ρT ( ).

It is found that if  λ is chosen so that a typical microsystem (e.g., an electron or an H atom) 
undergoes a spontaneous localization once every 1016 s ≈ 3×108 years, then no known experi-
mental result in atomic, nuclear, condensed-matter, or elementary particle physics appears to 
be contradicted, but the quantum measurement problem is avoided. An additional attractive 
feature of this scheme is that it does not introduce any new hidden variables (as is done in 
Bohmian mechanics); rather, QMSL relies on conventional notions of state vectors as rays in 
Hilbert space.

A continuous stochastic version of QMSL, applicable to systems of identical particles and 
known as continuous spontaneous localization (CSL), was developed by Pearle (1989) and by 
Ghirardi, Pearle, and Rimini (1990). This and related models are discussed in Adler (2004) and 
Bassi and Ghirardi (2003). Various experimental tests of spontaneous localization have been 
suggested, but so far none appear to be viable.

In conclusion, although many interesting suggestions have been made for overcoming the 
quantum measurement problem, it remains unsolved. We can only hope that some future 
experimental observation may guide us toward a solution.
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A

A.1 The Arithmetic Mean–Geometric Mean Inequality and Some 
Consequences

Let a a a m1 2 2, ,...,  be 2m positive real numbers, where m is a positive integer. Then
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with equality only if  a a1 2= . Similarly,
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with equality only if  a a a a1 2 3 4= = = . Repeating this same procedure m times, we have
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 (A.1)

Now suppose that n is any integer less than 2m. Let b a b an n1 1= =, ...,   and
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Then
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Thus, for any n,
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or

 a a a An
n

1 2
1

  ( ) ≤/
 (A.3)

Expression (A.3) states that the geometric mean is always less than or equal to the arithmetic 
mean, and equality of these means occurs only when all the numbers a are the same. If  a b ci i i, ,  
with i n= 1,...,  are three sets of positive numbers, then from (A.3) we have

 a b c a b ci i i
i

n

i

n

i

n

i i i
i

n

=== =
∑∑∑ ∑





≤ + +( )
111

1 3

1

1
3

/

 (A.4)

This is easily generalized to the following inequality for integrals:

 f d g d h d f g h dτ τ τ τ∫∫∫ ∫( ) ≤ + +( )
1 3 1

3

/
 (A.5)

where f, g, and h are nonnegative real functions, and d dxdydzτ = . Also, if  a, b, and c are three 
real numbers, we have

 ( ) ( ) ( )a b b c c a− + − + − ≥2 2 2 0  

so

 a b c a b c ab bc ca2 2 2 2 2 21
3

2 2 2+ + ≥ + + + + +( )  

or

 a b c a b c2 2 2 21
3

+ + ≥ + +( )  

Hence, employing (A.5), we obtain

 f g h d f g h dxdydz f d g d h d2 2 2
1 31

3
3+ + ≥ + +( ) ≥ ( )∫ ∫ ∫∫∫τ τ τ τ

/
 (A.6)

A.2 Hölder’s Inequality

Consider two real nonnegative numbers u and w. We now show that

 uw
p

u
q

wp q≤ +
1 1

 (A.7)

where p q and  are two positive real numbers satisfying
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1 1

1
p q
+ =  (A.8)

Because (A.7) is obviously satisfied when u w= =0 0 or , we prove (A.7) in what follows for 
uw > 0. Also, if  (A.7) holds, then

 ut wt uwt
p

u t
q

w tp q p q1 1 1 1/ / = ≤ +  (A.9)

for any t, and conversely, (A.9) implies (A.7). Thus, in what follows, we restrict ourselves to 
values of u and w such that uw = 1. We then wish to show that

 
1 1

1
p

u
q

wp q+ ≥  

Consider the function

 f u w
p

u
q

wp q( , ) = +
1 1

 

To minimize f subject to the constraint uw = 1, we write

 h u w f u w uw( , ) ( , )= − λ  

where λ  is an undetermined multiplier. Then

 

∂
∂

= −

∂
∂

= −

−

−

h
u

u w

h
w

w u

p

q

1

1

λ

λ
 

These partial derivatives vanish when λ = =u wp q and hence when u wp q p q+ += = 1 and when 
u w= = 1. Thus the minimum value of f is f ( , )1 1 1= , so inequality (A.7) is demonstrated.

Now let us make the replacements; that is,

 u
u

u

w
w

w

i

i
p

i

n p
i

i
q

i

n q→






→




= =

∑ ∑
1

1

1

1/ /  

where the u wi i and  are nonnegative real numbers with at least one ui > 0  and at least one 
wi > 0. Then
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Summing these inequalities over i from 1 to n, we obtain

 
u w

u w
p q

i i
i

n

i
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i

n p

i
q

i

n q
=

= =

∑

∑ ∑











≤ + =1

1

1

1

1

1 1
1/ /  

Hence we obtain Hölder’s inequality

 u w u wi i
i

n

i
p

i

n p

i
q

i

n q

= = =
∑ ∑ ∑≤











1 1

1

1

1/ /

 (A.10)

Let f x y z g x y z( , , ) ( , , ) and  be two nonnegative real functions of x, y, z. Then (A.10) is easily 
generalized to give Hölder’s integral inequality; that is,

 f d g d fg dp
p

q
q

∫ ∫ ∫( ) ( ) ≥τ τ τ
1 1/ /

 (A.11)

When p q= = 2, (A.11) reduces to the Cauchy-Schwarz integral inequality; that is,

 f d g d fg d2 2
2

∫ ∫ ∫≥ ( )τ τ τ  (A.12)

A.3 Sobolev’s Inequality in Three Dimensions

A differentiable function F x y z( , , ) can be written as

 F x y z
F r y z

r
dr

x

( , , )
( , , )

=
∂

∂−∞
∫  

and we have the obvious inequality

 F x y z F r y z dr g y zr( , , ) ( , , ) ( , )≤ ∂ ≡
−∞

∞

∫ 1  

Repeating this in y and in z, we obtain

 F x y z g y z g x z g x y( , , ) ( , ) ( , ) ( , )
3

1 2 3≤  (A.13)

where g x z F x s z ds g x y F x y t dts t2 ( , ) ( , , ) ( , ) ( , , )= ∂ = ∂
−∞

∞

−∞

∞

∫ ∫ and 3 . From (A.13) we obtain

 F d g y z g x z g x d∫ ∫≤
3 2

1 2 3

/
( , ) ( , ) ( ,y)τ τ  

 

 

 

 

 

 

 

 

 

 

 



Appendix A645

However,

 

g y z g x z g x y d g y z g x z g x y dx dydz1 2 3 1 2 3( , ) ( , ) ( , ) ( , ) ( , ) ( , )∫ ∫ ∫= 



τ

≤ 





≡
∫ ∫∫g y z g x z dx g x y dx dydz

Q

1 2 3

1

( , ) ( , ) ( , )  

where the last step follows from the Cauchy-Schwarz integral inequality (A.12). Now, by 
another application of the latter inequality,

 

Q dz g x z dx dy g y z g x y dx

dz g x z

1 2 1 3

2

= ( )





≤

∫∫ ∫∫( , ) ( , ) ( , )

( , )    dx g y z dy g x y dxdy

Q
∫∫ ∫ ∫∫

≡
1 3

2

( , ) ( , )  

and by a third application of the Cauchy-Schwarz inequality,

 Q g y z dydz g x z dxdz g x y dxdy Q2 1 2 3 3≤ ≡∫∫∫∫∫∫ ( , ) ( , ) ( , )  

Thus

 F x y z d F d F d F dx y z( , , )
/ / /

∫ ∫∫∫





≤ ∂ ∂ ∂( )3 2 2 3 1 3
τ τ τ τ   

Combining this last inequality with (A.6), we obtain

 F d F F F dx y z
3 2 2 3 2 2 2/ /

τ τ∫ ∫( ) ≤ ∂( ) + ∂( ) + ∂( )  (A.14)

If  in the calculation just completed we had replaced F by F s, where s > 0, we would have 
obtained the following inequality:

 F d s F F F F ds s
x y z

3 2 2 3
1 2 2 2/ /

τ τ∫ ∫( ) ≤ ∂( ) + ∂( ) + ∂( )−  (A.15)

We now employ Hölder’s integral inequality (A.11) on the right-hand side of (A.15); choosing 
s p p= −2 3/ ( ), we obtain

F d
p
p

F F F dp p
x y z

p
2 3 3 2 2 3 2 2 2

22
3

/( ) / / /
−∫ ∫( ) ≤

−
∂( ) + ∂( ) + ∂( )






τ τ




 ( )−( ) − ∫

1
3 3 3

1/ /p
p p q

q

F dτ  (A.16)

where q p p= −/ ( )1 . Let us choose p = 2, in which case q = 2 and s = 4. Then (A.16) becomes

 F d F d F d
6 2 3 2 1 2 6 1 2

4τ τ τ∫ ∫ ∫( ) ≤ ∇( )
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or

 ∇( ) ≥ ( )∫ ∫F d C F d
2 6 1 3

τ τ
/

 (A.17)

where C is a positive constant. Equation (A.17) is Sobolev’s inequality in three spatial dimen-
sions, expressed in a form that is useful for applications to quantum mechanics.

A.4 Application of Sobolev and Hölder Inequalities to Hydrogenic Atoms

Now consider the Hamiltonian for a hydrogenic atom with atomic number Z. In atomic units, 
we have

 H
Z
r

= − ∇ −
1
2

2  

Of course, we know that the ground-state wave function is

 ψ
π1

3 2

1 2s
ZrZ

e= −
/

/
 

and the ground-state energy is E Zs1
2 2= − / . However, in what follows we ignore these well-

known facts and try to bound the ground-state energy from below, simply by using Sobolev’s 
inequality (A.17). Now the expectation value of the kinetic energy for any given wave function 
ψ  with unit norm is

 T d d= − ∇ = ∇( )∫ ∫
1
2

1
2

2 2ψ ψ τ ψ τ  

Thus (A.17) implies that

 2
2 6

1 3
T d C d= ∇( ) ≥ ( )∫ ∫ψ τ ψ τ

/
 (A.18)

or

 ∇( )



 ≥∫ ∫ψ τ ψ τ2 3

3 6d C d  (A.19)

By varying ψ , we try to find the “sharpest” (i.e., the smallest) value of C, which we shall call 
C0. Thus we write
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B

d

d
= =

∇( )



∫
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ψ τ
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K reaches an extreme value (which can be shown to be a minimum) when

 
δ δA
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B
B

=  

that is, when
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=∫

∫
∫
∫

2
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ψδψ τ

ψ ψ τ

ψ δψ τ

ψ τ

d
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d
 

This relation is satisfied if

 ∇ = −2 53ψ αψ  (A.20)

where α  is a constant. Assuming spherical symmetry, (A.20) becomes

 
1

3
2

2 5

r r
r

r
∂
∂

∂
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= −

ψ αψ  

With the substitution u r= ( )3
1 2α /

, we obtain the equation

 
1

2
2 5

u u
u

u
∂
∂

∂
∂






= −

ψ ψ  

which has the solution:

 ψ
α

=
+

=
+

1

1
3

1

12 2u r
 (A.21)

Employing (A.21) in (A.19), we obtain

 K C
r dr

r
= = ( )

+( )












=
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∫0
3 3

2

2 3
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2
4

3 4
1

27
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α π
α

π
 

Hence

 C0

4 3

3
2

5 4779= 





=
π /

.  

and the sharpest Sobolev inequality for the kinetic energy is

 T
C

d≥ ( )∫0 3
1 3

2
ρ τ

/
 (A.22)

where ρ ψ= 2
.
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The expectation value of the potential energy for the hydrogenic atom is

 V Z
r

d= − ∫
ρ τ  

Thus the energy functional is

 
E ρ

ρ τ ρ τ ρ

[ ] = +

≥ ( ) − = [ ]∫ ∫
T V
C

d Z
r

d h         0 3
1 3

2

/  (A.23)

We want to minimize h ρ[ ] by varying ρ  subject to the constraint ρ τd =∫ 1. Thus we employ an 

undetermined multiplier λ  and consider

 h
C

d Z
r

d d1
0 3

1 3

2
ρ ρ τ ρ τ λ ρ τ[ ] = ( ) − −∫ ∫ ∫

/
 

Making arbitrary small variations of ρ , we see that an extreme value of h1 is reached when

 δ
ρ δρ τ

ρ

δρ τ λ δρ τh
C d

Z
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d d1
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3
2 32

0=
( )

− − =∫
∫

∫ ∫/  

This implies that
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I
Z
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0 2

2
0ρ λ− − =  (A.24)

where

 I ≡ ( )∫ ρ3
2 3/

 

Because ρ ρ≥ =
→∞

0 0 and lim
r

 is required for a bound state, (A.24) gives the following result after 

a routine calculation:
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1 2/

/
/

/

Z
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Z
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                                          r
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>
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2

 (A.25)

and

 h
Z

Z= − = −
2

3
0 6667

2
2.  (A.26)
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Thus Sobolev’s inequality yields the lower bound (A.26) on the ground-state energy, a bound 
that is not too far from the actual energy E Zs1

2 2= −( ).
There is a weaker but more useful inequality than (A.18). We recall Hölder’s inequality 

(A.11) and choose f g p= = =ρ ρ, , ,/  2 3 3  and q = 3 2/  to obtain

 ρ τ ρ τ ρ τ3
1 3

2 3 3 2 2 3
5 3∫ ∫ ∫( ) ( )



 ≥d d d

/
/ / /

/  

The second integral on the left-hand side of this expression is just unity because we assume that 
ψ  is normalized. Hence

 ∇( ) ≥∫ ∫ψ τ ρ τ
2

5 3d D d/  (A.27)

where D is a positive constant. Inequality (A.27) plays an important role in analysis of the sta-
bility of matter, discussed in Section 14.1. Let us find the sharpest value of D by writing

 D K0 = { }min  

where

 K =
∇( )

−∫
∫ ∫

ψ

ψ
λ ψ

2

10 3

2

/
 

and, as before, λ  is an undetermined multiplier used to account for the normalization 
constraint. Then

 δ
δψ ψ

ψ

ψ

ψ
δψ ψ λ ψδψK = −

∇
−

∇( )

( )
−∫

∫
∫
∫

∫ ∫2
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3

2
2

10 3

2

10 3
2

7 3

/ /

/
  (A.28)

Setting δK = 0 , we obtain the following nonlinear PDE after a few steps of algebra:

 ∇ + =2 7 35
3

2
3

ψ ψ ψA
B

A/  (A.29)

where

 A B= ∇( ) =∫ ∫ψ ψ
2

10 3/  

Again assuming spherical symmetry, we define φ ψ= r . Then (A.29) yields

 
d
dr

A
B r

A
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2

7 3
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3

φ φ φ+ =
/

/
 (A.30)
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We make the additional substitutions r ax b= =,  φ χ, where

 a
A

b
B
A

= 





=
3

2
2 3

5

1 2 1 4 1 2

3 4

3 4

1 2

/ / /

/

/

/
 

to find after a few steps of algebra that (A.30) becomes

 
d
dx x
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2

4 3

1
χ χ χ
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/

 (A.31)

with the boundary conditions χ χ( ) .0 0= ∞( ) =  The same analysis also shows that
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/

 (A.32)

Numerical integration of (A.31) with use of (A.32) yields

 D0 9 578= .  

Thus

 T
D

d d≥ = ∫∫0 5 3 5 3

2
4 789ρ τ ρ τ/ /.  (A.33)

It is convenient to replace the number 4.789 in (A.33) by the slightly small\r number 
DC = ( ) =3 6 4 55782 2 3π /

./10  because DC appears naturally in an analysis that can be generalized 
to the case of many electrons. Consider a perfect nonrelativistic Fermi gas of electrons at zero 
temperature. The number density of this gas is

 n
q

p dp
q

p
p

F

F

= =∫2 62 3
2

0
2 3

3

π π 

 

where q is the spin statistical weight (q = 2 for electrons), and pF is the Fermi momentum. The 
kinetic energy density is

 

ε
π π

= =∫
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m
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q
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/ /π 

         =
4 5578

2 3
5 3.

/
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q
n

 

where we employ atomic units in the last line. Thus DC is the numerical coefficient that would 
multiply n5 3/  to yield the kinetic energy density in atomic units if  the spin statistical weight 
were q = 1.
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We now outline steps similar to those that led to (A.26). For a hydrogenic atom, the energy 
functional satisfies the following inequality:

 E ρ ρ τ ρ τ ρ[ ] ≥ − = [ ]∫ ∫D d Z
r

d hC
5 3/  (A.34)

Once again we introduce an undetermined multiplier λ  and write

 δ ρ δρ δρ λ δρh D Z
rC1

2 30
5
3

= = − −∫ ∫ ∫/  

After some routine algebra, this yields the following lower bound on the hydrogenic atom 
ground-state energy:

 h
Z

Z= − = −
3

2
0 7211

1 3 2
2

/

.  (A.35)

that is only slightly weaker than the lower bound (A.26).
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B

Here we derive Bell’s inequality as applied to the calcium two-photon polarization correla-
tion experiment described in Section 3.3. For simplicity, we limit ourselves to the case of ideal 
polarizers, which transmit 100 percent of the right polarization and 0 percent of the wrong 
one. Actual laboratory polarizers fall short of this ideal, and significant corrections thus must 
be made. However, the essential idea is clearly revealed in the present simplified case. We also 
assume that each detector operates with 100 percent efficiency.

We consider an ensemble of two-photon pairs and discuss the consequences of assuming 
that the result of each coincidence measurement is determined by the value of a local hidden 
variable u corresponding to each pair. We associate with the ensemble a distribution function 
ρ( )u  that gives the probability that a particular pair has the value u. This function is normal-
ized to unity; that is,

 ρ u du( ) =∫
Γ

1  (B.1)

where Γ is the space of the hidden variable (or variables). Let A ua,( ) and B u( , )b  refer to signals 
in detectors 1 and 2, respectively. Here a b and  are unit vectors describing the orientations of 
polarizers 1 and 2, respectively. Quantities A and B are defined as follows: if  photon 1 passes 
through polarizer 1, it registers a count in detector 1. In this case we have A ua,( ) = +1. If  pho-
ton 1 is rejected by polarizer 1, we have A ua,( ) = –1. Similar remarks hold for B in the case of 
photon 2. Note that A is assumed to depend only on a and B only on b. In other words, the 
outcome in one detector does not depend on the conditions that apply in the other polarizer. 
In this way we restrict ourselves to a local hidden variable theory.

Let us define the correlation function P( , )a b  that determines the coincidence rate as a func-
tion of a and b; that is,

 P u A u B u dua b a b, ( ) , ,( ) = ( ) ( )∫ ρ
Γ

 (B.2)

We have

 

P P u A u B u A u B u dua b a c a b d c, , ( ) , , , ,( ) − ( ) = ( ) ( ) ± ( ) ( ) ∫ ρ
Γ

1

                               − ( ) ( ) ± ( ) (∫ ρ( ) , , , ,u A u B u A u B ua c d b
Γ

1 )  du

      

 

Therefore,
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P P A u B u A u B u dua b a c a b d c, , , , , ,( ) − ( ) ≤ ( ) ( ) ± ( ) ( ) ∫ ρ(u)

     
Γ

 1

                          + ( ) ( ) ± ( )∫ ρ( ) , , , ,u A u B u A u B
Γ

a c d b 1 u du( ) 
      

 

which yields

 P P A u B u A u B u dua b a c d c d b, , , , , ,( ) − ( ) ≤ ± ( ) ( ) ± ( ) ( ) ∫ ρ(u) 2     
Γ

 

It follows that

 P P P Pa b a c d c d b, , , ,( ) − ( ) ≤ ± ( ) ± ( )2  

Hence

 − ≤ ( ) − ( ) + ( ) + ( ) ≤2 2P P P Pa b a c d c d b, , , ,    (B.3)

and also

 − ≤ ( ) − ( ) − ( ) − ( ) ≤2 2P P P Pa b a c d c d b, , , ,  (B.4)

At this point it is convenient to divide the space Γ into the following sectors:

 

Γ Γ
Γ Γ
Γ Γ
Γ Γ

= = + = +
= = + = −
= = − = +
=

++

+−

−+

−−

if 
if 
if 
if

A B
A B
A B

1 1
1 1
1 1

,
,
,

 A B= − = −1 1,

 

Also, we define

 P u duij

ij

a b
a b

,
,

( ) = ( )
( )
∫ ρ

Γ

 

Then it is clear that

 P P P P Pa b a b a b a b a b, , , , ,( ) = ( ) + ( ) − ( ) − ( )++ −− +− −+  (B.5)

and also

 1= ( ) + ( ) + ( ) + ( )++ −− +− −+P P P Pa b a b a b a b, , , ,  (B.6)

It is also convenient to define P P1 2a b( ) ( ) and  as the probabilities of joint passage of the pho-
tons when one of the polarizers (2, 1 respectively) is absent. It is easy to see that

 P P P1 a a b a b( ) = ( ) + ( )++ +−, ,  (B.7)
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and

 P P P2 b a b a b( ) = ( ) + ( )++ −+, ,  (B.8)

It follows from (B.5)–(B.8) that

 P P P Pa b a b a b, ,( ) = ( ) − ( ) − ( ) +++4 2 2 11 2  (B.9)

Then, after some algebra, (B.3), (B.4), and (B.9) yield

 − ≤ ( ) − ( ) + ( ) + ( ) − ( ) − ( ) ≤++ ++ ++ ++1 01 2P P P P P Pa b a c d c d b d b, , , ,  (B.10)

Recalling that all transmitted photons are assumed to be detected, we express the quantities 
in (B.10) as follows:

 P
R

R++ ( ) = ( )
a b

a b
,

,

0

 

 P
R

R1
1

0

a
a( ) = ( )

 

 P
R

R2
2

0

b
b( ) = ( )

 

where R0 is the coincidence rate with both polarizers removed, R(a, b) is that with both polar-
izers in place, and R R1 2a b( ) ( ) and  are the coincidence rates with polarizer 2 (1) removed, 
respectively.

Merely because of axial symmetry and quite apart from any detailed theory, R1 a( ) must be 
independent of a, and R2 b( ) must be independent of b. Also, R(a, b) can only depend on the 
relative orientation of a and b: R R( , ) ( )a b a b=  . Taking all this into account, we see that (B.10) 
can be written as

 − ≤
( )

−
( )

+
( )

+
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− − ≤1 0
0 0 0 0

1

0

2

0

R
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R
R

R
R

a b a c d c d b   

 (B.11)

The unit vectors a, b, c, and d are all in the same (xy) plane. We define the angles between them 
as in Figure B.1, and we also define φ φ φ φ4 1 2 3= + + . Then (B.11) can be rewritten as
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−
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+
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+
( )

− − ≤1 01
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0

1
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φ φ φ φ
 (B.12)

According to quantum mechanics,
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and also

 
R
R

R
R

1
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1
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= =  (B.14)

Thus, defining the function
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− −  (B.15)

we see that according to quantum mechanics,

 GQM φ φ φ φ φ φ φ φ φ1 2 3 1 2 3 1 2 31
1
4

2 2 2
1
4

2, , cos cos cos cos( ) = − + + +( ) − + +( )   (B.16)

We find the extreme values of this function by differentiating with respect to the independent 
variables φ φ φ1 2 3, ,  and  and setting the results equal to zero. Thus we find that GQM reaches an 
extreme value when

 φ φ φ π π
1 2 3 8

3
8

= = = or  

We therefore make use of inequalities (B.12) at these specific angles. Noting that, by definition, 
the angle between polarization vectors cannot exceed π / 2, we obtain from (B.12)
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and
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Thus, in particular,
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and
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Adding (B.19) and (B.20), we obtain
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which finally yields Bell’s inequality for the calcium two-photon polarization correlation exper-
iment; that is,
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According to quantum mechanics,
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Obviously, the quantum-mechanical values violate Bell’s inequality (B.21).
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 Figure B.1 Angles ϕ1,2,3 are defined by the unit vectors a, b, c, and d.

 

 

 

 

 

 



657

C 

To introduce the subjects of this appendix, we consider the rotational symmetry of a gen-
eral vector field V(r). A rotation in three-dimensional space corresponds to a 3×3 orthogonal 
matrix M; let us apply this matrix to V(r). Then at position r  the rotated field ′ ( )V r  is

 ′ ( ) = ( )−V r V rM M 1  (C.1)

Suppose that M corresponds to an infinitesimal rotation by angle ε about the z-axis. Then, to 
order ε,

 M M=
−













= −
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1 0
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1 0
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Hence

 M x y i y x j zk− = + + − +1r ( ) ( )ε ε    

and

 ′ ( ) = ′ + ′ + ′V r V i V j V kx y z
ˆ ˆ ˆ  

where, from (C.1),
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Writing Taylor expansions in ε for each of these quantities and discarding all terms of order ε2 
and higher, we obtain
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Appendix
Spin of the Photon: Vector Spherical Waves
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Now we define an angular momentum operator Jz in the usual way as the generator of the 
infinitesimal rotation; that is,

 ′ = −( ) ≈ −V V Vexp ( )i J i Jz zε ε1  (C.3)

Comparing (C.3) with (C.2), we see that

 J L Sz z z= +  (C.4)

where Lz is the usual orbital angular momentum operator

 L i x
y

y
xz = −

∂
∂

−
∂
∂







 (C.5)

and

 S ikzV V= ×ˆ  (C.6)

By cyclically permuting the coordinates, we generalize (C.4) to read

 J L S= +  (C.7)

where

 L r= − ×∇i  (C.8)

and

 S = + +S i S j S kx y z
ˆ ˆ ˆ  

with

 S i i S i j S i kx y z= × = × = ×   ˆ ˆ ˆ  (C.9)

Equation (C.7) expresses the fact that the angular momentum operator for a vector field is the 
sum of an orbital contribution L and an additional contribution S, which has the attributes of 
spin. It is easy to verify that each component of L commutes with every component of S. It is 
also easy to show from (C.9) that the eigenvectors of Sz are

 χ χ χ1 0 1
1

2

1

2
= − +( ) = = + −( )−

ˆ ˆ ˆ ˆ ˆi i j k i i j   (C.10)

with eigenvalues 1, 0, and –1, respectively, and that

 S V V2 2=  (C.11)

Comparing (C.11) with the eigenvalue equation S V V2 1= +S S( ) , we see that the spin S of  
a vector field must be S = 1. These general remarks apply to the vector potential A of  the 
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radiation field in Coulomb gauge. They imply that the quantum of the radiation field, the pho-
ton, has a spin of unity.

Because L and S commute, we can employ the standard methods for adding angular momenta 
to build up vector eigenstates of J2 and Jz, denoted by YJ

M


, from the eigenfunctions of orbital 
angular momentum (the spherical harmonics Y m



) and the spin eigenfunctions of (C.10). The 
quantities YJ

M


 are called vector spherical harmonics and are given by the formula

 YJ
M

m
m

mm m JM Y
 

θ φ χ θ φ, , , , ,’( ) = ′ ( )
′=−
∑ 1

1

1

 (C.12)

where the , , , ,m m J M1 ′  are vector coupling coefficents with m m M+ ′ =  (see Table C.1). 
Possible values of J are   + −1 1, ,  and  for  > 0, and possible values of M range from −J J to .

The vector spherical harmonics play a significant role in solutions to the homogeneous vec-
tor wave equation in spherical polar coordinates; that is,

 ∇ +( ) =2 2 0k A  (C.13)

where we assume the time dependence exp( )−i tω  and the condition ∇A= 0 in Coulomb gauge. 
We begin with a simpler equation: the homogeneous scalar wave equation in spherical polar 
coordinates

 ∇ +( ) =2 2 0k w  (C.14)

We have seen in Section 18.3 that fundamental solutions of (C.14) take the form

 w r g r Y m( , , ) ( ) ,θ φ θ φ= ( )
 

 (C.15)

where the g r
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 (C.16)

Table C.1 Vector coupling coefficients appearing in equation (C.12)
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The latter equation has two independent solutions: the spherical Bessel functions 
j kr n kr
 

( ) ( ) and . The spherical Hankel functions

 h kr j kr in kr
  

( ) ( ) ( ) ( )1 = +  (C.17)

and

 h kr j kr in kr
  

( ) ( ) ( ) ( )2 = −  (C.18)

describe outgoing (incoming) spherical waves, respectively.
We want to construct divergence-free solutions to the vector wave equation (C.13) starting 

from solutions (C.15) to the scalar wave equation. First we try

 F1 = ∇w  (C.19)

F1 is indeed a solution to (C.13): ∇ = ∂ ∂ ∂ = ∂ ∂ ∂ = − ∂ = −2
1

2 2
1F w w k w k Fj i i j j i i j j . However, 

∇ ≠ ∇× = ∇×∇ =F F1 10 0 and w , whereas ∇ = ∇× ≠A A0 0 and . To find the explicit form of 
F1, we employ the following well-known gradient formula that can be derived with the aid of 
the Wigner-Eckart theorem:

 ∇[ ] = −
+
+







−





+
++f r Y

d
dr r

f rm m( ) ( )
/

,  







 



1
2 1 2 1

1 2

1Y






+
+



−

1 2

1
1

/

, ( )Y
 



m d
dr r

f r  (C.20)

Here f r( ) is any continuous function of r. Using the identities
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in (C.20), we obtain

 F Y Y1

1 2

1 1

1 2

1 1
1

2 1 2 1
=

+
+







+
+








+ + − −k g gm m







     

/

,

/

,











 (C.21)

We next try

 F r L2 = − ×∇ =i w w  (C.22)

We now show that F2 is a transverse divergence-free solution to (C.13). First, it is obvious 
that r F 2 0=  (F2 is transverse) from the definition F r L2 = − ×∇ =i w w. Next, ∇ +( ) =2 2

2 0k F  
because ∇ +( ) = ∇ +( )2 2

2
2 2k k wF L , and the operator ∇2 contains radial derivatives that com-

mute with L and also a term proportional to L2/r2. However, L2 commutes with each compo-
nent of L, and therefore it commutes with L. Thus ∇ = ∇ = −2 2 2L L Lw w k w .
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Finally,∇ =F2 0 because

 
∇ = − ∂ ∂( ) = − ∂( )∂ + ∂ ∂ F2 i x w i x w x wi j k ijk i j k j i k ijkε ε

                                    = − ∂ + ∂ ∂( )i w x wij k j i k ijkδ ε
 

The first term in the last expression is zero because εijk = 0 whenever two indices are the same. 
The second term vanishes because εijk is antisymmetric, whereas ∂ ∂i k  is symmetric with respect 
to exchange of indices i and k.

With the aid of (C.12) and Table C.1, it can be shown that

 F r Y2 1= − ×∇ = +( )i w g r M
 

 

( )  (C.23)

There is one additional type of divergence-free solution to the vector wave equation (C.13); 
that is,

 F F L3 2= ∇× = ∇× w  (C.24)

By means of the gradient formula and other manipulations similar to those already described, 
it can be shown that
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Y
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1
M  (C.25)

The most general divergence-free vector potential is a linear combination of quantities F2 and 
F3 given by (C.23) and (C.25).

Now consider a vector potential A of  the form F2. Given the time dependence e i t− ω , the elec-
tric field is E = ik A and is also transverse and of the form F2. The magnetic field B = ∇× A is 
then of the form F3, which is not transverse. For given  and M , E  and B  are said to form a 
magnetic multipole and are denoted by the symbols E

 M
m

M
m( ) ( ) and B . The nomenclature derives 

from the behavior of the fields close to the origin (where kr 1). There B resembles a quasi-
static magnetic  − pole  field and greatly dominates over the electric field. Another term used 
to describe this arrangement of fields is TE for “transverse electric.” From (C.23) and (C.12) 
and the fact that the parity of w is that of the spherical harmonic Y m



, namely, −( )1 

, we see that 
the vector potential and electric field of a magnetic multipole field have parity ( )−1 , whereas 
the magnetic field has parity ( )− +1 1 .

Suppose instead that the magnetic field is of form F2 (transverse). Then, because ∇× = −B ikE, 
the electric field and the vector potential are of form F3. Such an arrangement for given  and M  
is called an electric multipole field, for which the following symbols are used: E

 M
e

M
e( ) ( ) . and B  Here 

the magnetic field has parity ( )−1 , whereas the vector potential and electric field have parity 
( )− +1 1 . An electric multipole is so named because in the near-field region, E

M
e( )  is like that of 

a quasi-static  − pole electric field, which greatly dominates in magnitude over the magnetic 
field.
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fermion field operator, 264
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Fermi’s golden rule, 380
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geometric phase, 1, 412–415
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bound states, 570
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free particle, 97, 98, 138, 422
harmonic oscillator, 138
particle in uniform field, 138, 140
time dependent, 422
time dependent scattering, 441
time independent scattering, 446
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SU(2), 154, 181
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group II elements, 275
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Hahn, E. L., 157
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Hamilton’s equations, 65
Hanle effect, 404
Hardy, L., 52
harmonic oscillator, 141, 142

2-d, 142
EM field mode, 358
geometric phase, 418
number operator, 348
quantization of EM field, 346

Harmonic Oscillator, 119–132
osc. wave packet, 125–129
Eigenstate Normalization, 121–122
Wave Functions, 122

Hartree, D.R., 275
Hartree-Fock method, 273, 277–278, 386
Hartree method, 273, 275–277

helium ground state, 277
total electron energy, 276

Heaviside-Lorentz units, 2
Heisenberg equation, 34, 47, 65
Heisenberg Equation, 122
Heisenberg picture, 34, 367, 528, 531
Heisenberg, W., 6
helicity, 575
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Exchange Degeneracy, 255
Ground State Energy, 253

Herz, G., 4
hidden variable, 41
Higgs mechanism, 569
Higgs Mechanism. See Electroweak Standard Model
Hilbert space, 7, 8
Hilbert Space 

Definition, 10–11
hlu system, 2
Hölder’s inequality, 644, 649
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Hund, F., 289
Hund’s rules, 289
hydrogen atom 

maser, 229
hydrogenic atom 

accidental degeneracy, 192
Balmer formula, 192
diamagnetic correction, 235
Dirac theory, 226, 228
fine structure, 221
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O(4) symmetry, 196
parabolic coordinates, 195, 236
radial wave functions, 194

Hydrogenic Atom 
Spherical Coordinates, 191

hydrogen molecular ion, 113, 140
variational method, 312

Hydrogen Molecular Ion, 305–312
hydrogen molecule 

Heitler-London method, 313
molecular orbital method, 313

hydrogen negative ion 
bound state, 271

hyperfine structure, 221
contact interaction, 228

Hyperfine Structure 
Hydrogen, 226–230

hyperfine structure of hydrogen 
Dirac theory, 503

hyperons, 574

idempotent matrix, 25
identical particles, 247
identity operator, 13
interaction picture, 528
intercombination transitions, 252
intrinsic parity 

fermion-antifermion pair, 566
Irreducible spherical tensor operators,  

169–172
Irreducible Spherical Tensor Operators 

Commutation Rules, 171
isospin, 28, 266–268

pions, 269, 272
isospinor, 267

Jammer, M., 3
jellium model, 329
j-j coupling scheme, 298

K mesons, 574
kinetic momentum, 67
Klein-Gordon equation, 461, 466, 486

potential step, 465
scalar field theory, 464

Klein-Gordon Equation, 461–464
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Kronig-Penney model, 115

Kunsman, C. H., 5
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Lagrange’s equations, 64
Lagrangian, 65
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Laue scattering, 81
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Lenard, A., 325
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leptons 

three generations, 564, 565
lepton number, 28

conservation, 90, 565
generational, 565

Lie, S., 154
Lieb, E., 325
linear independence, 9
linear superposition principle, 29
Lippmann-Schwinger equation, 445
locality, 41
London, F., 637
long wavelength approximation, 381
Lorentz force, 66
Lorenz gauge, 344, 367, 368, 369
Lorentz, H. A., 5
Lorentz transformation 

homogeneous, 364
improper, 364
inhomogeneous, 364
proper, 364

L-S Coupling Scheme 285 
Multiplet Energies, 290
Theory of Multiplets, 286–289

M1 transition 
forbidden, 388
hydrogen, 401

M1 transitions, 387–388
Mach-Zehnder interferometer, 82
magnetic dipole transitions. See M1 transitions
magnetic monopole, 94
Magnetic Monopole, 86–90
magnetic resonance 

Rabi’s formula, 160
rotating frame, 158

Magnetic Resonance, 157–160
Majorana, E., 160, 281, 515
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metric tensor, 363
Millikan, R., 3
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momentum operator 
curvilinear coordinates, 62

Morse function, 321
Mott, N., 548
MSW effect, 96
muon, 564, 573

natural units, 2, 367
Neumann series. See Born series
neutrino 

flavor, 90
Majorana, 515
mass eigenstates, 91, 564
mixing, 91
oscillations, 564
weak interaction eigenstates, 91, 564

neutrino oscillations, 1, 93
Neutrino Oscillations, 90
neutron interferometry, 1, 79
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noble gases, 275
noble metals, 275
no-crossing theorem, 245
normal ordering, 531
nuclear atom model, 4
nuclear beta decay, 416
nuclear Bohr magneton, 43

observable, 28
symmetric, 247

observables, incompatible, 6, 55
one-particle orbital, 250
operator 

adjoint, 14
angular momentum, 146
antiunitary time reversal, 516
creation, 120, 348
destruction, 120, 348
electric field, 349
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function of, 22
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Hermitian conjugate, 14
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inverse, 13
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isospin, 267
linear, 13
magnetic field, 349
non-singular, 13
one-body, 260, 265
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self-adjoint, 14
singular, 13
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time development, 29
total atomic angular momentum, 229
translation, 58

two-body, 260
unitary, 19
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Properties in Dirac Theory, 480–482
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parity violation. See weak interactions:parity 

nonconservation
Particle in Uniform Field, 119
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Pauli principle. See exclusion principle
Pauli spin matrices, 25, 42, 50, 472
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Time Dependent, 377–380
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photon polarizations, 1
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Schroedinger picture, 34, 527
Schroedinger, E., 2, 194
Schwinger, J., 405
second quantization, 1, 259
Second Quantization 

Fermions, 261–262
Stability of a Metal, 329–336

secular determinant, 20n. 1
secular equation, 20
Semi-Classical Approximation. See WKB 

Approximation
semiweak interaction, 568
SI units, 2
Slater determinant, 250, 259, 261, 262, 264, 273
Slater, J., 277
S-matrix amplitude 

zeroth order, 530
S-matrix element, 530
Sobolev’s inequality, 646, 649
Sobolev’s integral inequality, 326
sodium atom, 243
Sommerfeld, A., 4
S-operator expansion, 529
spatial inversion symmetry, 39
specific heats of solids, 4
spherical Bessel functions, 425
spherical harmonics, 162
spin 

electron, 5, 42, 221, 252, 383, 476
neutron, 42
nuclear, 228, 323
proton, 42, 157, 323

spin current density, 203
spin-orbit interaction, 224, 226, 285
Spin-Orbit Interaction 

Complex Atom, 298
spin-statistics connection, 249
spontaneous emission, 381, 383
spontaneous emission decay rate. See A coefficient
spontaneous symmetry breaking, 589

example of elastic instability, 589
square matrix 

representation of operator, 16
squeezed state, 142
stability of a metal 

exchange contribution, 330
stability of matter, 1

Chandrasekhar limit, 339
equation of hydrostatic equilibrium, 337
extensivity, 328
Fermi-Dirac statistics, 328
planet Jupiter, 339
stability of first kind, 325
stability of second kind, 328
thermodynmaic limit, 328

Stability of Matter, 325–329
Failure of Extensivity in star, 336–339

Stark effect, 503
first order, 238
hydrogen, 2s state, 402
linear, 239

Stark Effect, 236–239
stationary state, 70
statistical ensemble, 45
Stefan-Boltzmann constant, 359
Stern-Gerlach experiment, 75
stimulated absorption, 381, 386, 387
stimulated emission, 381, 386, 387
Stoner, E.C., 5, 7
storage ring 

electron polarization, 401
strangeness oscillations, 574
SU(3) structure constants, 183
SU(n), 181
subspace, 9, 15, 33
Sudden Approximation, 415–416
sum rules, 27, 403
superpotential, 130
superselection rule, 157
s-wave scattering 

hard sphere, 433
square well potential, 432

tau lepton, 564
tau-theta puzzle, 574
Teller, E., 572
thallium atom, 244
thermodynamic identity, 360
Thirring, W., 325
Thomas, L.H., 224, 279
Thomas-Fermi differential equation, 281, 299, 300
Thomas-Fermi model, 273, 328

diamagnetic correction, 300
negative ions, 282
neutral atom, 282
positive ion, 282
scaling laws, 283
total electron energy, 283–285
virial theorem, 285

Thomas-Fermi Model, 279–285
Thomas-Reich-Kuhn sum rule, 403
Thomson, G., 5
Thomson, J.J., 86
Thomson scattering, 395, 399
Thomson scattering cross section, 562
time development operator, 527
time ordering, 30. See time-ordered product
time-development operator, 29
time-energy uncertainty relation, 56
time-ordered product, 530
Townes, C.H., 113
trace, 21

of product of gamma matrices, 556–557
transmission coefficient, 104, 106, 109, 140
triangle rule, 383
Two Photon Processes, 394–400

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Index680

Uhlenbeck, G., 5
uncertainty principle, 6, 55, 75, 76, 77, 303, 325, 326, 482
unitary evolution, 30
unitary space, 9, 10

vacuum polarization, 410
valency 

definition, 317
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