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1 Introduction
One of the most important goals of physics is to come up with theories which
successfully predict observable physical phenomena. But even when a theory is
successful in the empirical sense, there remain many questions to be answered.
What, if anything, does a successful predictive algorithm tell us about the way
the world is? What ontology does the theory suggest? How does the theory
relate to other successful physical theories? How does it relate to our own expe-
riences? What does the theory tell us about familiar concepts like space, time,
and matter?
In attempting to answer these questions, we are engaging in what is known

as foundations of physics. Quantum foundations is the branch of foundations of
physics that relates to quantummechanics, the physical theory developed in the
early twentieth century which applies to phenomena at very small scales.While
there are certainly interesting foundational problems to be addressed for all of
our major physical theories,1 quantum foundations has attracted an unusual
amount of attention because there seems to be something uniquely puzzling
about quantum mechanics. Most famously, there exists no consensus about
the physical interpretation of the predictive algorithm that quantum mechan-
ics gives us, and many of the alternatives under consideration paint a picture
of a physical world which is radically different from the classical world of our
pre-quantum imaginings.
Although there is a significant intersection between foundational questions

and the traditional domain of philosophy, quantum foundations is distinct from
the philosophy of quantum mechanics in that the two fields typically involve
different methodological approaches. One of the important innovations made
by Bell in proving his famous theorem, which we will discuss in Section 3,
was that it is possible to address foundational questions in a quantitative way
by means of mathematical proof, and subsequently the field of quantum foun-
dations has applied similar quantitative approaches to many other conceptual
questions. It is this mathematical approach which makes quantum foundations
a branch of physics rather than philosophy – although of course researchers in
quantum foundations have many interests in common with their peers in the
philosophy of quantum mechanics, and the field can be understood as sitting at
the intersection of physics, maths, and philosophy.
Before we go further, we should address head-on the not uncommon view

that making empirical predictions is the only goal of physics, and that it is

1 For an overview of some interesting problems in the foundations of special and general relativ-
ity, seeMaudlin (2012); for statistical mechanics, see Sklar (1993); and for classical mechanics,
see Sklar (2012).



2 The Philosophy of Physics

therefore pointless to worry about interpretations or to ask any of the other
conceptual questions with which quantum foundations is concerned. As a first
response, we observe that many people with an interest in science are driven not
only by the desire to make predictions but also by the desire to understand how
the world works, and quantum foundations exists in part to satisfy this intel-
lectual thirst. Of course it is true that we can never be completely certain that
the conclusions we reach in this endeavour are correct, but then one can never
be completely certain that one’s predictive theories are universally correct
either.
Furthermore, quantum foundations would be important even if the only

purpose of science were to make predictions, because thinking deeply about
the nature of quantum mechanics and coming to a better understanding of
the physical reality from which it arises is likely to lead to progress on out-
standing problems in physics. This is particularly important right now because
many physicists have come to believe that fundamental physics is in a state of
stagnation, with little meaningful progress having been made in the last few
decades (Hossenfelder 2018). It seems entirely possible that this has arisen
because physicists never properly got to grips with what quantum mechan-
ics tells us about the world, and therefore all subsequent physics has been
based on an improper understanding of the earlier theory, leading us into
a dead end. Thus quantum foundations is not merely an exercise in intel-
lectual curiosity – it may be the best hope we have of breaking out of the
impasse that physics seems to have found itself in. After all, many historic
advances in physics have resulted from thinking deeply about conceptual
questions; for example, Einstein’s theory of special relativity is the result
of asking foundational questions about the nature of time and simultaneity
(Einstein 1905).
This Element offers a short tour through some important topics in quan-

tum foundations. The next section introduces the basics of quantum mechanics
together with some ideas and notation that we will use throughout this Element.
Since the motivating principle of quantum foundations is to address conceptual
questions with mathematical methods, in Sections 3, 4, and 5 we introduce an
important mathematical result from the field and then discuss the conceptual
issues linked to it. In Section 6 we give a brief summary of some other areas
of quantum foundations that due to considerations of space cannot be covered
in detail here. Finally, in the concluding section, we give an assessment of the
current state of quantum foundations and make some suggestions about what
its future might look like.
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2 Preliminaries
2.1 What Is Quantum Mechanics?

Quantum mechanics has its origins in a number of apparently minor prob-
lems that puzzled physicists in the late nineteenth and early twentieth centuries.
One of these was the ‘black-body problem’, which was solved by Max Planck
in 1900 using the hypothesis that energy is radiated and absorbed in discrete
packets known as quanta. Another was the ‘photoelectric effect’, for which Ein-
stein proposed a similarly quantum solution in 1905. Subsequently, in 1913,
Niels Bohr came up with a quantised theory of atomic structure to explain
Ernest Rutherford’s experimental observations. These early quantum ideas
were developed over the first half of the twentieth century by physicists such as
Schrödinger, Heisenberg, Born, von Neumann, Dirac, Pauli, Hilbert, and many
others, and the theory that emerged has become known as quantummechanics.2

Quantum mechanics is in many ways more a methodological prescription
than a concrete scientific theory (Gell-Mann 1980, Nielsen and Chuang 2011),
since it sets out a mathematical framework for the construction of physical
theories that must be supplemented with detailed experimental work to deter-
mine which specific mathematical objects represent the actual physical systems
whose behaviour we would like to predict. However, the field of quantum foun-
dations is largely concerned with this abstract structure rather than with any
specific realisation of it, and hence for us it is sufficient to regard quantum
mechanics as being characterised by the following four postulates (Nielsen
and Chuang 2011) (see Strang (2016) for an introduction to the linear algebra
terminology used in these postulates):

1. To every physical system we ascribe a Hilbert space,H , known as the state
space of the system.3 At any given time, the system is completely described
by its state vector, which is a unit vector j i in the state space.

2. Closed quantum systems evolve by unitary transformations.4 In particular,
a closed quantum system can be associated with a fixed Hermitian opera-
tor5 H, and the time evolution of the state of the system is then given by
Hj .t/i D i„ dj .0/i

dt (i.e., the Schrödinger equation).

2 See Lindley (2008) for an engaging account of the early history of quantum mechanics.
3 A Hilbert space is a complex vector space equipped with an inner product.
4 Aunitary transformation is a transformation that preserves the value of the inner product; unitary
operators U satisfy U�U D I, where U� denotes the conjugate transpose of U and I denotes
the identity operator.

5 A Hermitian operator is an operator that is equal to its own conjugate transpose.
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3. Ameasurement is described by a projectivemeasurement, which is a Hermi-
tian operator on the state space of the system. The projective measurement
can be decomposed into a set of operators fPmg sum to the identity operator,
each associated with a measurement outcome. When a system is prepared
in the state j i and the measurement fPmg is performed, the probability of
obtaining the outcome associated with Pm is equal to Tr.Pmj ih j/, where
Tr.::/ denotes the trace and j ih j denotes the outer product of the state
vector j i with itself; after this result has been obtained, the state of the
system is Pmj i

p
Tr.Pmj ih j/

.
4. When we combine two physical systems, the state space for the resulting

composite system is the tensor product of the individual state spaces; if we
combine n systems prepared in states j 1i, j 2i , ... , j ni, the resulting joint
state is j 1i ˝ j 2i ˝ :::˝ j ni.

2.1.1 Quantum States

Let’s consider an example. Take a quantum system with a Hilbert space of
dimension two, such as a particle that can have spin pointing up or down. We

will write the state ‘spin up’ as the vector

"
1
0

#
or equivalently the ket j0i and the

state ‘spin down’ as the vector

"
0
1

#
or equivalently j1i. The inner product of the

vectors j i and j�i, written as h�j i, is given by multiplying each entry in j i

by the conjugate transpose of the corresponding entry in j�i, so for example we
have h0j1i D 1�0C0�1 D 0. By convention, quantum states are normalised
so that for any state j i, h j i D 1.
Suppose we apply some measurementM D fP0;P1g to the system when it is

in state j0i. The measurement operators P0 and P1 are both represented by 2�2
matrices. One possible measurement we can perform on this system is a spin
measurement, where the operator P0 D j0ih0j is associated with the property
‘spin up’ and the operator P1 D j1ih1j is associated with the property ‘spin
down’. If we perform this measurement when the system is in state j0i, the
probability of obtaining the outcome ‘spin up’ is Tr.P0j0ih0j/, which can be
rearranged to h0jP0j0i D h0j0ih0j0i which equals 1 due to the normalisation
of quantum states. So the probability of obtaining the outcome ‘spin up’ when
the system is in the state ‘spin up’ is equal to 1, and a similar calculation shows
that the probability of obtaining the outcome ‘spin down’ when the system is
in the state ‘spin down’ is equal to 1, exactly as we would expect.
Now if this were a classical system, then spin up and spin down would

be the only possibilities for the state. But because this is a quantum system,
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the state can also be a vector like

" 1p
2
1p
2

#
or, in quantum-mechanical notation,

1p
2
.j0i C j1i/. In this state, the particle’s spin is neither up nor down; it is an

equal superposition of both, and when we measure its spin the probability of
getting a ‘spin up’ result is Tr.P0

1p
2
.j0i C j1i/ 1p

2
.h0j C h1j//; which comes

out to 0:5. That is, we have a 50 per cent chance of getting the result up and
a 50 per cent chance of getting the result down. Superpositions like this allow
a continuous range of states between ‘spin up’ and ‘spin down’. Note that by
applying the formula in postulate three, we find that after the result ‘spin up’
is obtained, the system will always be in the state j0i; which corresponds to
‘spin up’, so even if the particle did not have a definite state of spin before the
measurement, after the measurement it is in the ‘spin up’ state corresponding
to the observed measurement outcome.
If this were a classical system, then we would always be able to find out

its state with certainty, provided we were able to perform sufficiently sensi-
tive measurements. But in quantum mechanics, this is no longer true. That is,
given two arbitrary quantum states  1,  2, it will not always be possible to
find a measurement fM1;M2g such that if we perform this measurement when
the system is in state  1; we are guaranteed to get outcomeM1, and if we per-
form the measurement when the system is in state  2; we are guaranteed to
get outcome M2. Usually, the best we will be able to do is to come up with
a measurement fM1;M2g such that if we perform this measurement when the
system is in state  1; we get outcome M1 with some probability p1, and if we
perform this measurement when the system is in state  2; we get outcome M1

with probability p2 < p1. Thus, when we do perform the measurement and get
outcomeM1; we will be able to conclude that it is more likely the state was  1

rather than  2.
However, there are certain sets of states for which it is possible to find distin-

guishing measurements. In particular, this is the case for any set of states that
are all orthogonal to each other, where we say two states jai and jbi are orthog-
onal if their inner product is zero, i.e. hajbi D 0. In real vector spaces with two
or three dimensions, ‘orthogonal’ means the same as ‘perpendicular’, and in
other vector spaces, it can be thought of as a generalisation of that notion. The
states j0i and j1i in our example are orthogonal, since h0j1i D 0, and indeed
they can be perfectly distinguished by the spin measurement fP0;P1g, since we
will always get the outcome ‘spin up’ when the system is in state j0i and we
will always get the outcome ‘spin down’ when the system is in state j1i.
The fact that quantum states in general cannot be perfectly distinguished

poses obvious practical challenges when it comes to performing and analysing
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quantum experiments, since it means we must draw our conclusions from the
statistical ensemble of the results over a large number of experiments, rather
than the result of any individual experiment. This is also a first indication that
quantum states may have properties quite unlike classical states, and in forth-
coming sections we will see that this is borne out in a variety of interesting
ways.

2.1.2 Mixed States and Density Operators

On the face of it, the postulates we have set out suggest that the state of a quan-
tum system must always be describable by a state vector in some Hilbert space.
But, in fact, there are two ways in which we can obtain different types of states
within this formalism. First, we can select a state from among a set of states
fj iig with some set of probabilities fp. i/g, giving rise to a probabilistic mix-
ture � D

P
i p. i/j iih ij; this is known as a proper mixture ( d’ Espagnat

1971, Busch et al. 1996). Second, we can take two systems A;B in an entan-
gled state  (see Section 3) and then throw away the information about the
state of A, leaving B in a reduced state � D TrA.j ih j/; this is known as
an improper mixture (d’ Espagnat 1971, Busch et al. 1996). Happily, it turns
out that these two methods of preparation give rise to exactly the same type
of mathematical object – to wit, a density matrix, a positive Hermitian matrix
of trace one. States that can be represented as state vectors are known as ‘pure
states’, and these states can also be represented as density matrices, since the
state vector j i corresponds to the density matrix j ih j, whereas states that
can only be written as density matrices and have no state vector representation
are known as ‘mixed states’.
From the original four postulates set out in Section 2.1, we can derive state-

ments about the behaviour of density matrices. The set of possible evolutions
is expanded to include all evolutions that can be obtained by appending some
other system to the original system and then applying a unitary evolution as
described in postulate two to the whole, which leads to the set of all completely
positive trace-preserving (CPTP) maps6; the set of possible measurements is
expanded to include all measurements that can be implemented by appending
an extra system to the original system and applying a projective measurement
as defined in postulate three to the whole, which leads to the set of all positive
operator valued measures (POVMs). A POVM is a set of positive semi-definite

6 A completely positive trace-preserving map is an operator which does not change the trace of
the matrices that it acts on (this is the ‘trace-preserving’ property), such that if we take the tensor
product of this operator with the identity matrix and apply the result to a positive semi-definite
matrix, the resulting matrix will still be a positive semi-definite (this is the ‘completely positive’
property).
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operators7 fKng that sum to the identity operator; the probability of obtaining
the result associated with the operator Kn when we the measured system has
density matrix � is given by Tr.Kn�/, which is similar to the corresponding for-
mula for a projective measurement. In postulate three, we were also able to give
a formula for the state that a system will be in after a projective measurement,
but unfortunately, this cannot be done for POVMs, because any given POVM
can be implemented in a number of different ways and the post-measurement
state depends on the particular implementation (Nielsen and Chuang 2011,
Paris 2012, Landau and Lifshitz 2013). In fact, this is true of projective mea-
surements as well (for example, sometimes in a projective measurement the
state being measured is destroyed!), but postulate three provides a simple, natu-
ral update rule that works inmost situations and is widely accepted as canonical.
By contrast, for POVMs there is no such simple, canonical approach.
It should be noted that since the ideal of pure states, unitary operators, and

projective measurements can seldom be perfectly realised in the laboratory,
in real applications we are mostly dealing with mixed states, CPTP maps,
and POVMs, rather than pure states, unitary transformations, and projective
measurements (de Muynck 2007).
We pause at this point to reinforce that the pedagogical approach of

deriving the existence of density matrices, CPTP maps, and POVMs from
the four postulates set out in Section 2.1 – an approach known as the
‘Church of the Larger Hilbert Space’, (Timpson 2008) – is not entirely
uncontroversial. There are also advocates of the ‘Church of the Smaller Hilbert
Space’ who contend that the density matrix should be thought of as the fun-
damental object of quantum mechanics and that we have no reason to suppose
that quantum systems cannot be in mixed states without being derived from
either a larger pure state or a probabilistic mixture of pure states (Dürr et al.
2005, Allori et al. 2013, Weinberg 2014). We will not comment further on
this question here, but we observe that the choice between the two Churches is
closely related to the interpretational questions discussed in Section 5.

2.2 Ontological Models
A large part of the field of quantum foundations is concerned with understand-
ing the nature of the reality fromwhich quantummechanics arises. Since we are
interested in finding mathematical ways of addressing conceptual questions, it
is necessary to have an appropriate mathematical framework in which to pose

7 A matrixM is said to be positive semi-definite if for any vector v with n entries, v� � M � v is
positive or zero. (v� here denotes the conjugate transpose of v.)
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our questions, and the framework which is most commonly used for this pur-
pose is the ontological models approach. In its modern form, this approach
was first put forward and developed by Rob Spekkens, but the motivating
ideas for the formalism had been floating around in the field for some time
previously, and thus for the sake of continuity we will prove Bell’s theorem
(see Section 3) using the ontological models framework, although Bell’s result
predates Spekkens’ work and was originally proved using slightly different lan-
guage. The Spekkens contextuality theorem in Section 4 and the PBR theorem
in Section 5 will also be expressed using ontological models, since they were
originally parsed in that framework.
The core of the ontological models approach is very simple: we suppose that

any quantum system has a real underlying state, known as its ‘ontic state’. The
ontic state is determined by how the system was prepared and by any subse-
quent transformations which have been applied to it, and when measurements
are made on the system, the results of those measurements can depend only
on its ontic state. It is important to reinforce that the ontic state is not assumed
to have anything to do with the quantum state – it might contain all the same
information as the quantum state, or less information, or more information.
And of course the ontological models approach is sufficiently general that we
may attempt to make ontological models of theories which are not at all like
quantum mechanics and which may not even have a concept of ‘state’.
Mathematically, these ideas are represented as follows. For a given system,

we suppose that there exists a space ƒ of possible ontic states �. To each
preparation procedure P which can be performed on the system, we assign a
probability distribution pP over ontic states, such that pP.�/ gives the probabil-
ity that the system will end up in the ontic state � when we perform procedure
P; to each transformation T which can be applied to the system, we assign a
column-stochastic matrix T8 describing how the distribution over ontic states
is affected by this transformation; and to each measurement M which can be
performed on the system and every possible outcome O of that measurement,
we assign a response function �M;O such that �M;O.�/ gives the probability that
outcome O will occur when we perform measurementM on a system which is
in ontic state �.
Suppose now that we aim for our ontological model to be capable of repro-

ducing the empirical results of quantum theory. This imposes a number of
constraints on the space of ontic states ƒ, distributions pP, transformations T
and response functions �M;O. For example, suppose we perform a preparation

8 A column-stochastic matrix is a matrix containing only non-negative real values such that the
columns of the matrix all sum to 1.
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procedure P which, according to quantum mechanics, prepares the quantum
state j i, and then we perform ameasurementMwith outcomesM1;M2 which,
according to quantummechanics, is represented by the POVM fO1;O2g: quan-
tum mechanics tells us that the probability of obtaining outcome M1 is equal
to Tr.O1j ih j/. In order for our ontological model to reproduce this result,
it must be the case that the probability of obtaining a given ontic state � times
the probability of obtaining outcome M1 to measurement M when the system
is in state �, summed over all �, gives Tr.O1j ih j/. That is:

X
�

pP.�/�M;M1.�/ D Tr.O1j ih j/

And if the set of ontic states is infinite, the sum becomes an integral:Z
pP.�/�M;M1.�/ D Tr.O1j ih j/

It is clear that imposing this requirement for all possible quantummechanical
preparations andmeasurements places very strong limitations on an ontological
model, and much of the progress in quantum foundations over the last 50 years
has essentially been concerned with following up the consequences of these
limitations and attempting to understand what properties an ontological model
must have if it is to faithfully reproduce quantum mechanics. The idea is that
this will give us leading a better understanding of what the reality underlying
quantummechanics must look like in order to produce the empirical results that
we have observed.
An important question about the ontological models approach concerns what

exactly an ontic state should be ascribed to.We have said that every system is to
be assigned an ontic state, but what is a ‘system’ in this context? For example,
if we perform a joint preparation on two quantum systems and then separate
them, should we assign separate ontic states to each of the particles, or a single
joint state to both? We will see in Section 3 that there are good reasons to use
a single joint state in at least some such cases, but this is not obvious before
we start on the work of analysing quantum mechanics. Clearly, then, the onto-
logical models approach has a certain vagueness, but this is actually a feature,
not a bug: the whole idea is to have a framework general enough to encompass
many different hypotheses about what the reality underlying quantum mechan-
ics might look like, and in order to achieve this it is important not to be too
prescriptive.
It should also be reinforced that one can make use of the formalism of onto-

logical models without necessarily interpreting it as an attempt at a faithful
representation of reality – indeed, Spekkens himself prefers to regard it as a
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classification schemawhich enables us to give precise mathematical definitions
for concepts like contextuality (Spekkens, n.d.) (see Section 4). Nonetheless, it
seems to be the case that within quantum foundations this formalism or some-
thing close to it is often regarded as a description of reality and perhaps as the
only possible way of describing reality – for example, in Leifer and Pusey
(2017), it is claimed that any model in which correlations are not explained by
appeal to ontic states should not really be regarded as a realist model at all.
Indeed we shall see that the view of reality enshrined in the ontological models
formulation is so ubiquitous in quantum foundations that most of the important
results of the field make sense only in that context.

2.3 Quantum Field Theory
Because particles in scattering experiments are frequently accelerated almost to
the speed of light, it is not possible to neglect relativistic effects in the descrip-
tion of scattering experiments, and therefore in order to do particle physics
accurately, it is necessary to make some adjustments to standard quantum
mechanics. There exists a relativistic formulation of quantummechanics where
the Schrödinger equation is replaced by the Klein-Gordon and Dirac equations,
but it turns out that this is not sufficient to allow us to study particle physics,
because both non-relativistic and relativistic quantum mechanics are defined
only for scenarios that can be described by a finite, constant number of degrees
of freedom, whereas in particle physics it is necessary to describe fields with an
infinite number of degrees of freedom and scattering processes in which parti-
cles may be created or destroyed. Thus, in order to apply quantum mechanics
to this realm, it has been necessary to create an extension of the theory accom-
modating an infinite number of degrees of freedom. This extension, which has
become known as quantum field theory, allows us to model successfully almost
all features of elementary particle physics – gravity alone, among the funda-
mental forces, still resists being cast in this form (Peskin and Schroeder 1995,
Lancaster and Blundell 2014).
One might ask at this juncture why anyone should persist in studying the

foundations of quantum mechanics when quantummechanics has already been
supplanted by a more advanced theory. A first answer is that quantum field the-
ory is essentially the result of applying quantum mechanics to a new domain
and following up the varied and sometimes unexpected consequences, so the
underlying principles of quantum field theory are very close to the underlying
principles of quantum mechanics and one might expect that most of the inter-
esting conceptual issues that arise in quantum field theorywill already appear in
quantum mechanics. Moreover, quantum field theory has many mathematical
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complexities that do not exist in standard quantum mechanics and actually is
not yet a consistent and complete theory, which makes foundational questions
much more difficult to answer and even to pose (Kuhlmann 2018). That said,
it is important to be aware of the relativistic theory and to keep in mind that
any conclusions we might draw from the study of quantum foundations must
ultimately be understood in a relativistic context. In the course of this Element
we will see that some of the cornerstones of the field may indeed have a quite
different significance when considered in this light.

3 Bell’s Theorem and Non-locality

3.1 Bell’s Theorem
Consider the following experimental procedure:

1. Two quantum systems are prepared together, then one system is sent to
experimenter A and the second system is sent to experimenter B, the
two experimenters being located at some spatial separation.

2. At a pre-arranged time, experimenter A chooses one of two possible
measurements MA

1 and MA
2 and performs this measurement on their

system. MA
1 and MA

2 each have two possible outcomes, which will be
labelled by 1 and �1.

3. Likewise, experimenter B chooses one of two possible measurements
MB

1 and MB
2 and performs this measurement on their system. MB

1 and
MB

2 each have two possible outcomes, which will be labelled by 1 and
�1.

Using the ontological models framework, we suppose that the original
joint preparation gives rise to an ontic state � from some set of ontic states
f�g, with preparation probabilities p.�/. For any pair of measurements
.MA

i ;MB
j / W i; j 2 f0; 1g; we can define response functions p.s; tj�;MA

D

i;MB
D j/, which give the probability of obtaining the two results s; t

when measurements .MA
i ;MB

j / are performed and the joint ontic state is
�. We may also define response functions on the individual systems, so
for example the response function pA.sj�;MA

D i;MB
D j;OB

D t/ gives
the probability that experimenter A obtains outcome swhenmeasurements
.MA

i ;MB
j / are performed and the joint ontic state is � and experimenter B

obtains outcome t. (We condition on B obtaining outcome t in case it is
possible to for B’s result to alter the post-measurement joint ontic state �.)
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Let us now suppose that any correlation between the results obtained
by experimenters A and B is local – that is, that the result of the measure-
ment made by experimenter A must depend only on their own choice of
measurement and the original joint ontic state �, so the response functions
pA.sj�;MA

D i;MB
D j;OB

D t/ can be written as pA.sj�;MA
D i/ with

no dependence on B’s choice of measurement or outcome; likewise for the
response functions for experimenter B. The ontological model is therefore
factorisable as follows:

p.s; tj�;MA
D i;MB

D j/ D pA.sj�;MA
D i/pB.tj�;MB

D j/

Let E�.i; j/ be the expectation value of the product of the two mea-
surement results when the measurements .MA

i ;MB
j / are performed and the

joint ontic state is �. Then let E.i; j/ be the average of this expectation
value over all the ontic states, weighted by the preparation probabilities,
i.e. E.i; j/ D

R
� p.�/E�.i; j/. We can then define what is known as the

CHSH quantity:

S D jE.0; 0/C E.0; 1/C E.1; 0/ � E.1; 1/j

Let S� D jE�.0; 0/C E�.0; 1/C E�.1; 0/� E�.1; 1/j be the value of S
conditional on some particular joint ontic state �: Then, since the absolute
value of the average of a quantity cannot be greater than the average of its
absolute value, we have

S �

Z
�

p.�/S�

The factorisability condition implies that the expectation values for the
two measurements likewise factorise; if A�.i/ is the expectation value of
experimenter A’s outcome when they perform measurement MA

i and the
joint ontic state is �, and likewise for B�. j/, then

E�.i; j/ D A�.i/B�.j/

Thus, for any �,

S� D jA�.0/B�.0/C A�.0/B�.1/C A�.1/B�.0/ � A�.1/B�.1/j

� jA�.0/B�.0/C A�.0/B�.1/j C jA�.1/B�.0/ � A�.1/B�.1/j
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D jA�.0/jjB�.0/C B�.1/j C jA�.1/jjB�.0/ � B�.1/j

� jB�.0/C B�.1/j C jB�.0/ � B�.1/j

where at the second line we have used the triangle inequality, i.e. the fact
that for any real or imaginary numbers a and b it is always the case that
ja C bj � jaj C jbj, and at the last line we have used the fact that the
measurement outcomes are labelled by �1 and 1 and thus the expectation
values A�.i/;B�.i/ must all lie between �1 and 1, so jA�.0/j � 1.
Now observe that jB�.0/CB�.1/j C jB�.0/�B�.1/j equals two times

the maximum of jB�.0/j and jB�.1/j (if you are not convinced, try a few
examples), and since both these expectation values must likewise be less
than or equal to one, we have that

S� � 2

Since this holds for any �; it must also hold for the average over � and
hence

S � 2

3.2 Non-locality
It is a basic fact of our experience that our actions affect only those objects
which are spatially co-located with us at the time of the action, and that we
can influence more distant objects only by means of some mediating physical
process – so, for example, we cannot communicate ideas instantaneously to
people on the other side of the world, and are instead forced to take recourse
to some mediating physical process such as putting a letter in the post. Further
examination of the macroscopic world seems to bear out the conjecture that
this constraint applies quite generally across the classical world, and therefore
in classical physics it was more or less taken for granted that there could be no
action at a distance.9

But in the world of quantum mechanics, it seems this simple observation
might no longer hold. Look back at the fourth postulate of quantum mechanics
in Section 2.1 – it tells us that if we prepare the parts of a composite system
independently and then combine them, the resulting joint state will be a tensor
product of states on the individual parts of the system. But it is possible to
produce other types of joint states, for example by applying a unitary operation

9 Though there exist a few interesting exceptions – see Hesse (1955).
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to two systems at once, or performing a measurement on both of them together,
and in some cases the result of such a procedure will be an entangled state,
i.e. a state which can no longer be written as the tensor product of states on
the individual subsystems. Such composite systems have global properties that
cannot be reduced to separate properties of the individual subsystems (Wiseman
2006, Maudlin 2011, Nielsen and Chuang 2011), which was not a state of
affairs that ever arose in classical physics and which opens up the possibility
of genuine action at a distance.
It might be tempting to suppose that entanglement is no more than a quirk

of our choice of mathematical representation, but in 1964 John Bell showed
that its existence has profound physical consequences (Bell 1964, Bell 1966,
Shimony 2013). To do so, Bell studied ‘local hidden variable models’ – that is,
models in which all correlations between measurements on different systems
can be traced back to correlations between hidden variables of the systems that
were established during a local interaction at some point in their common past.
Bell’s theorem, which we prove in Box 3.1, states that in any such model, given
two systems and two different measurements fMA

1 ;MA
2 g, and fMB

1 ;MB
2 g for each

of the two systems respectively, each of these four measurements having two
possible outcomes labelled byC1 or�1, if E.i; j/ denotes the expectation value
of the product of the two measurement results when we perform MA

i and MB
j

on the two systems respectively, then the following inequality, known as the
CHSH inequality,10 must be satisfied:

jE.0; 0/C E.0; 1/C E.1; 0/ � E.1; 1/j � 2 (3.1)

But there exist entangled quantum systems exhibiting correlations that vio-
late this inequality, and therefore quantummechanics cannot be fully explained
by any local hidden variable model (Clauser et al. 1969). Moreover, the
existence of these correlations has been verified by rigorous experiments suc-
cessively eliminating larger and larger numbers of possible loopholes (Aspect
et al. 1981, Kielpinski et al. 2001, Hensen et al. 2015), so it seems that unless
we wish to eschew a realist description of nature altogether, we are forced to
postulate some kind of ‘spooky action at a distance’ (Einstein et al. 1935) to
explain the correlations.
To appreciate the significance of this result, it is important to distinguish the

quantum correlations from more familiar sorts of distant correlations. In his

10 Bell originally proved a related but different inequality, but the CHSH inequality originally
proved by Clauser, Horne, Shimony, and Holt (Clauser et al. 1969) is more commonly used
in modern quantum foundations research, and hence we employ it here and throughout this
Element.
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essay ‘Bertlmann’s Socks and the Nature of Reality’ (Bell 1987), Bell explains
this by analogy to socks. Suppose I take a pair of socks from a drawer, separate
them without looking at them, and then send one sock to Japan and another
to Brazil. My colleagues in Japan and Brazil open their packages at the same
time and immediately report their results to me: lo and behold, both socks are
red! Of course, there is nothing mysterious about this distant, instantaneous
correlation – it occurs because the socks were paired up before being sepa-
rated, i.e. it can be accounted for in terms of local interactions in the past. But
Bell’s theorem shows that there exist correlations in quantummechanics which
cannot be explained in this way: no matter how much information is shared
between the two quantum systems in the Bell experiment at the time when they
are together, it is not possible to achieve the kind of coordinated measurement
results exhibited by quantum mechanics using only that shared information.
The mathematics seems to be telling us that the choice of measurement on one
particle must instantaneously influence the state of the other particle, even if
the measurements are made almost simultaneously at very distant locations.

3.3 Relativity
The emergence of Bell’s theorem caused a great deal of consternation within
the physics community, and not only because it does violence to our everyday
intuitions. For Bell’s theorem also puts quantum mechanics in tension, if not
outright contradiction, with another very important and well-established area of
physics – Einstein’s theories of Special and General Relativity (Einstein 1920,
Sartori 1996).
Special and General Relativity were developed around the same time as

quantum mechanics, but they cover an entirely different domain: while quan-
tum mechanical effects largely occur at the microscopic scale, Special and
General Relativity are theories of space and time and are most easily observed
in very large-scale experiments. Both theories have a wide array of interest-
ing and varied consequences, but for our present purposes, two are particularly
important. First, relativity tells us that it is impossible to send a signal faster than
light (the ‘no-signalling principle’), and second, relativity tells us that there is
no such thing as absolute simultaneity. That is, given two spatially separated
points a; b, then if some event A takes place at a, there is no fact of the mat-
ter about what is happening at b at the same time as A. Observers in different
‘reference frames’, i.e. moving at different speeds relative to one another, will
come to different conclusions about which event at b is simultaneous with A,
and none of them will have any better claim to validity than any of the others.
Indeed, if we place a clock Cb at b, then for any time t as measured by Cb such
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that a beam of light produced at b when clock Cb read t could not have reached
a before event A, and also a beam of light produced at a at the same time as
event A could not have reached b by the time that Cb reads t, then there exists
some frame of reference in which Cb reads t at the same time as event A.
This is problematic for quantum mechanics, because it means that in a rel-

ativistic context it makes no sense to say that a measurement on one particle
instantaneously influences the state of some other spatially separated particle,
since there is no objectively correct way to say which times are ‘instanta-
neous’ for the two distant locations. Indeed, for certain configurations of distant
measurements, we can change the temporal ordering between the two mea-
surements by simply changing reference frames, so there cannot even be a
well-defined causal account of the sequence of events: in one reference frame,
the measurement on particle A instantaneously changes the state of particle B,
and in another reference frame the measurement on particle B instantaneously
changes the state of particle A. So these instantaneous influences are not even
well-defined in a relativistic context, and yet Bell’s theorem seems to tell us
that they must occur in nature.
Of course, contradictions between theories are not necessarily regarded as

an evil by physicists: contradictions provide opportunities for empirical tests
that distinguish between the two theories, and that means progress. But in
a further infuriating twist, it turns out that quantum mechanics also obeys a
constraint known as the no-signalling theorem, which tells us that perform-
ing transformations or measurements on one part of an entangled system never
changes the state of the other part in a way that can be used for information
transfer (Walleczek and Grössing 2014). Now, the quantum-mechanical and
special relativistic no-signalling constraints are not identical, and neither one
implies the other: the relativistic no-signalling principle does not rule out infor-
mation transfer via measurements on entangled systems in cases where one
measurement is sufficiently close in time and space to the other, while the
quantum-mechanical no-signalling theorem has nothing to say about whether
an object can physically travel faster than light. Nonetheless, in practical terms
the fact that quantum mechanics is non-signalling ensures that it does not make
any empirical predictions that contradict relativity, which means we cannot use
the incompatibility between the theories to design an experiment which will
simply tell us that one is right and the other is wrong. Instead, we are faced
with a more difficult situation where both theories work perfectly in their own
domains, yet we have no coherent story about the sort of universe in which they
could both by true.
One possible response to this situation is to adopt a form of anti-realism –

either as an explicit philosophical position, or implicitly by taking the ‘shut
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up and calculate’ approach favoured by some physicists. Proponents of this
approach say that as long as there is no empirical contradiction between the
theories, it is not the task of physics to understand what sort of underlying
reality could be compatible with them both. This, of course, is unlikely to be
satisfactory to anyone who has come to quantum foundations out of an interest
in understanding how the world really is, but it is short-sighed even for people
who take a purely empiricist point of view, because one of the major outstand-
ing problems of physics is to find a theory which unifies quantum mechanics
and general relativity, and addressing what seems to be an irresolvable conflict
between their underlying principles is likely to be a good way to make progress
on this point (Hardy and Spekkens 2010).

3.3.1 Superdeterminism

One way of resolving this conflict is to insist that Bell’s theorem does not
after all imply that the world is non-local. After all, the violation of the CHSH
inequality by quantum mechanics proves only that one of the assumptions that
goes into the derivation of the inequality must be wrong, so perhaps we can
keep locality and reject some other assumption instead. A promising candidate
is the assumption known as ‘statistical independence’ – that is, the assumption
that the value of the hidden variable� describing the joint state of the composite
system is independent of the choices made by the experimenters about which
measurements to perform (Horne et al. 1993, Hossenfelder and Palmer 2020).
At first, the idea of statistical independence being violated seems very

startling, since in physics we normally assume that experimenters are external
to the system being experimented on and can make free choices about which
experiments to perform. But it should be kept inmind that the freedom of choice
that we attribute to experimenters was only ever an idealisation: in real life,
experimenters are physically embodied and their choices have physical causes
which could in principle be correlated with the systems they are measuring.11

Thus it is perfectly coherent to suppose that the experimenters’ choices and the
hidden variable � could in fact have some joint physical cause which lies in
their common past (or perhaps in their common future – see Section 3.3.3).
Nonetheless, one might worry that violations of statistical independence

would threaten the possibility of doing science at all, since statistical inde-
pendence plays a crucial role in much of our ordinary scientific reasoning

11 Of course anyone who espouses mind-body dualism (Robinson 2017) will not agree with this,
and thus mind-body dualists may be less likely than others to find the rejection of statistical
independence compelling, but mind-body dualism does not seem to be a particularly popular
view among modern physicists.
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(Clauser et al. 1969). For example, consider a scenario where we can choose
to perform a measurement determining whether a system has property A, or to
perform a measurement determining whether a system has property B, but we
cannot perform both measurements on the same system. Say we perform the
same preparation procedure P 100,000 times, then check for property A on half
of the resulting system, and check for property B on the remaining half. If all
50,000 of our A-measurements yield a negative result, we would be inclined to
conclude that procedure P never produces a system with property A. However,
if statistical independence does not hold, it could be the case that there’s some
‘joint physical cause’ which arranges that whenever we measure A the system
does not have property A, but whenever we measure B; the system does have
property A. Thus the violation of statistical independence allows for all sorts
of conspiratorial behaviour which would seem to undermine the possibility of
scientific knowledge.
However, it should be kept in mind that this is not the first time we have

been confronted with putative features of the world which seemed to threaten
the integrity of the scientific method – for example, Einstein famously objected
to the possibility of non-locality on the grounds that if we accepted this sugges-
tion, ‘physical thinking in the familiar sense would not be possible’ (Einstein
1948). Yet it has not proven to be impossible to formulate meaningful physi-
cal theories which include spatial non-locality, because the non-local relations
between events are governed by laws which enable us to identify regularities
in patterns of dependence even between spatially separated events. Likewise,
in principle it would not be impossible to move forward with a theory which
allows for violations of statistical independence, provided that the resulting
relationships still exhibit regularities of the right kind.
The rejection of statistical independence is particularly associated with

‘superdeterminism’ ( Bell 1985, Hossenfelder and Palmer 2020), referring
to hidden variables theories which are local and deterministic and which get
around Bell’s theorem by violating statistical independence. A deterministic
theory is one in which all outcomes of a measurement can be predicted with
certainty, provided that we have sufficiently precise information about the ini-
tial conditions; classical physics is deterministic,12 but quantum physics in its
standard form is not, and some proponents of hidden-variable theories have
hoped to use hidden variables as a way of bringing determinism back. The asso-
ciation between locality and determinism is partly historical: in Bell’s original
work, he showed that any theory which is both local and deterministic must
obey a certain inequality which is violated by quantum mechanics (Bell 1966),

12 Apart from in very special cases (Hoefer 2016).
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so violating statistical independence was then seen as a way to rescue the possi-
bility of local deterministic hidden variable theories. But later versions of Bell’s
theorem, such as the version we proved in Box 3.1, showed that any local the-
ory, whether deterministic or not, must obey an inequality which is violated
by quantum mechanics, and this means that strictly speaking it is locality and
not determinism that needs rescuing by the rejection of statistical independence
(Clauser et al. 1969, Buttereld 1992).
Nonetheless, there is logic to the continued association between determinism

and locality, because special and general relativity are local13 determinis-
tic theories, and it seems almost as hard to see how a deterministic theory
could be unified with an indeterministic one as to see how a local theory
could be unified with a non-local one (Seevinck 2010). By proposing that
the theory underlying quantum mechanics may be both local and determinis-
tic, superdeterminism removes both fundamental incompatibilities at once, and
its proponents argue that it therefore offers new hope of reconciling quantum
mechanics and relativity (Hossenfelder and Palmer 2020).

3.3.2 Temporal Non-locality

A different approach to resolving the tension between quantum mechanics and
relativity is to accept the existence of spatial non-locality and observe that
the root of the incompatibility with relativity lies not in non-locality per se
but rather in the assumption that the non-local influences must occur instan-
taneously, which makes no sense in a relativistic context. But, after all, why
should the non-local influence be instantaneous? In making this demand, we
are assuming that although the influence of the measurement of one particle on
the state of the other may be non-local in space, it must still be local in time: we
remainwedded to the notion that the past can influence the future only via infor-
mation carried in mediating states that evolve forwards in time. If on the other
hand we simply say that the choice of measurement on one particle directly
influences the outcome of the measurement on the second particle, wherever
and whenever that measurement occurs, then the apparent contradiction with
relativity goes away. And indeed this is to be expected, because insisting on
temporal locality while allowing spatial non-locality means that we are treat-
ing space and time in entirely different ways, and it is hardly surprising that

13 That is, they are local in the sense that they do not allow for action-at-a-distance. Arguably there
is a sense in which General Relativity is not local in the traditional sense; see Section 3.3.2 for
details.
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this leads to contradictions with relativity given that one of the key messages
of relativity is that space and time are very closely related.14

Temporally non-local approaches to quantummechanics have not been well-
explored, perhaps because physicists tend to think of the universe as a kind of
computer which takes as input an initial state and then evolves it forward in
time in a temporally local way (Wharton 2015). However, it is straightforward
to describe a few forms that such approaches might take. For example, a theory
might be temporally non-local by postulating non-Markovian laws, meaning
that the results of a measurement at a given time can depend on facts about ear-
lier times, even if there is no record of those facts in the state of the world at the
time of the measurement. Note that this type of temporal non-locality makes
sense only if the state of the world at a given time does not give us complete
information about the past – in classical physics, for example, the entire past
and entire future can be inferred from the present state of the world together
with the laws of evolution, so classical physics cannot exhibit this sort of tem-
poral non-locality. Alternatively, a theory might be temporally non-local by
being global, meaning that the course of history is determined “all at once” by
external, atemporal laws of nature. In such a theory, the result of a measurement
at a given time can depend on global facts even if there is no record of those
facts in the state of the world immediately prior to the measurement, and there-
fore events at different times can have a direct influence on one another without
any mediation. Furthermore, an event at a given time will usually depend not
only on events in the past but also on events in the future, so retrocausality (see
Section 3.3.3) emerges naturally within this global picture.
The second type of temporal non-locality is particularly promising for sev-

eral reasons. First, we already have working examples of such theories, since
even classical mechanics can be written in a ‘Lagrangian’ formulation in which
the path taken by a system is determined by optimising a quantity called the
Lagrangian over the whole path (Brizard 2008). Quantum mechanics can also
be given a Lagrangian formulation in which quantum amplitudes are calcu-
lated by taking a sum over an infinity of possible trajectories (MacKenzie
2000). Thus global theories need not be regarded as novel or challenging – they
have been present in physics all along, although for a variety of reasons these
Lagrangian formulations have not usually been taken seriously as a possible
description of reality.
Second, if our options for reconciling relativity and quantum mechanics

are either to restore locality by denying statistical independence or to adopt
a global approach, arguably the latter is a better match for general relativity.

14 See (Adlam 2018b) for a more extended introduction to temporal non-locality.
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For although general relativity does not allow any instantaneous action at a
distance, it is also not really ‘local’ in the sense of classical physics, because
a solution to the Einstein Field equations of general relativity is not a state of
the world at a single time but rather an entire history of the universe. Thus the
Einstein Field equations are in fact a paradigm example of a temporally non-
local law of nature, which gives us reason to be optimistic about the prospects
of uniting a temporally non-local version of quantum mechanics with relativity
(Adlam 2018b).

3.3.3 Retrocausality

Another assumption that goes into the derivation of Bell’s theorem is that
there is no retrocausality – that is, measurement results depend only on facts
about the past, not the future. Retrocausality first became a topic of interest in
quantum foundations when it was observed that allowing backwards causality
gives us a way to explain the violation of Bell’s inequality without recourse
to non-locality (Price 1994; Goldstein and Tumulka 2003): the correlations
between the measurement results are mediated not by ‘action-at-a-distance’ but
by information that propagates backwards in time from the moment after the
measurements at which all the information about the measurements is brought
back together. One might object that here we are saving one classical intu-
ition only by virtue of sacrificing another, so it is not clear that much progress
has really been made – but since spatial non-locality is one of the major rea-
sons for the tension between quantum mechanics and relativity, introducing
retrocausality might seem like a cost worth paying to get rid of it.
The case for retrocausality became stronger when Price put forward an argu-

ment that any time-symmetric ontology satisfying certain conditions must be
retrocausal (Price 2010). Now one might think that really any time-symmetric
theory which incorporates forward causality must also incorporate backward
causality, but this does not seem to be the case in classical physics, which has
completely time-symmetric laws but which we understand in terms of causal-
ity which goes only forward in time. However Price used a particular optical
experiment to demonstrate that the discreteness of quantum mechanics makes
it different in this regard: if the theory is time-symmetric, an experimenter who
controls the angle of the polarizer in this experimentmust have a certain amount
of control over the state of the input photon, and therefore their choices must
have a retrocausal influence on the state of the photon prior to its entering the
polarizer.
Price’s argument, however, works only if we suppose that the state of the

photon before or after entering the polarizer is an element of reality that can
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be subject to a retrocausal influence, so it applies only to  -ontic interpreta-
tions of quantum mechanics (see Section 5). It also depends on the existence
of wavefunction collapse or some other form of discreteness (see Section 5.2),
so it does not apply to the Everett interpretation (see Section 5.5.2) or the de
Broglie Bohm interpretation (see Section 5.5.3). To get around these short-
comings, the argument was later generalised by Pusey and Leifer (Leifer and
Pusey 2017), who replaced the assumption that the quantum state is real with
the assumption of �-mediation, which they state as follows: ‘any correlations
between a preparation and a measurement made on a system should be medi-
ated by the physical properties of the system’. This assumption allows them
to use the ontological models approach in their analysis – or, rather, a gener-
alisation of the ontological models approach, since in its original formulation
the ontological models approach did not allow the possibility of retrocausality.
Working within this approach, and using the assumption of no-retrocausality
in much the same way as locality is used in the proof of Bell’s theorem, they
are able to prove that a theory which obeys �-mediation and a specific sort of
time symmetry, and which does not exhibit retrocausality, must obey a tempo-
ral analogue of the CHSH inequality. But in quantum mechanics this temporal
inequality is violated, so it seems that we must accept retrocausality if we want
time symmetry and �-mediation.
Interestingly, �-mediation is essentially what we referred to in the previous

section as temporal locality, so what the Pusey-Leifer result proves is that if we
insist on temporal locality and also time-symmetry, then some of the temporally
local mediation that establishes temporal correlations must proceed backwards
in time instead of forwards. Thus we are not immediately forced by this argu-
ment to accept that time-symmetry implies retrocausality: we might instead
regard it as yet another nail in the coffin of temporal locality, since if temporal
locality does not even allow us to hold onto classical intuitions about the direc-
tion of causality and/or time-symmetry, we have one less reason to continue
insisting upon it.
On the other hand, as we observed in Section 3.3.2, a large class of tem-

porally non-local theories would naturally incorporate retroausality anyway.
It is helpful here to make a distinction between two types of retrocausal theo-
ries. First, we have retrocausal theories where there are two distinct ‘arrows’ of
causality, one carrying information forward in time and the other carrying infor-
mation back in time. A good illustration of this is the two-state vector formalism
(Aharonov et al. 2014), which is a proposed interpretation of quantummechan-
ics in which we have both the usual forwards-evolving quantum state and also
an additional backwards-evolving quantum state, so thatmeasurement results at
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a given time are determined by the interaction of the forwards and backwards-
evolving states at that time. The transactional interpretation of quantum theory
(Cramer 1986), where the quantum state is complemented with a conjugate
state which evolves backwards in time and interacts with the ordinary state in
a ‘Wheeler-Feynman handshake’, is also a theory of this type. This is also the
kind of retrocausality that is invoked in popular accounts of time travel, leading
to what is known as the ‘grandfather paradox’, i.e. the objection that if back-
wards time travel were possible a time traveller could go back in time and kill
their own grandfather. Of course, positing the existence of retrocausality is not
at all the same as suggesting the possibility of time travel, but nonetheless con-
ceptual problems of the same genre do arise for this type of retrocausality – for
if we have to accomodate causal arrows from both the past and the future, then
in order to avoid paradoxes of the grandfather type, it is important to impose
strong constraints on the initial and final conditions of the universe and on the
types of interactions which can occur in between (Black 1956), and this sort of
fine-tuning is generally looked upon with suspicion by physicists.
But there is a second type of retrocausality – the type discussed in Section

3.3.2 which emerges from global theories postulating laws which apply to the
whole of spacetime all at once. In such a theory, events at a given time are
certainly in some sense ‘caused’ by future events, since each part of the history
is dependent on all other parts of the history, but there are no distinct forwards
and backwards arrows and hence no problem of ensuring agreement between
past and future causes, so we do not need to worry about causal paradoxes.
Furthermore, as we noted in Section 3.3.2, this sort of retrocausality is familiar
to us from the Lagrangian formulations of classical and quantum physics, so
we already have a good understanding of how to formulate such theories.
However, the quantum foundations community does not usually distinguish

between these two types of retrocausality, which causes some confusion –
many of the objections (Black 1956, Friederich and Evans 2019) that have
been raised against retrocausal interpretations of quantum theory are largely
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Figure 3.1 Schematic diagram of the composition of two processes
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concerned with the problem of conflicting causal arrows and thus apply primar-
ily to the first type of retrocausality, so in some cases people may be arguing
at cross-purposes.

3.4 The Limits of Quantum Non-locality
Leaving aside the issue of compatibility with relativity, there are many other
interesting questions to be asked about the nature of non-locality in quantum
mechanics. For example, if non-local influences really exist, why are they so
limited? They cannot, for example, be used to perform signalling, which makes
it feel rather as if nature has deliberately conspired to hide non-locality from us.
One way of addressing this question is to observe that if it were possible to

perform signalling using quantum correlations, then it would be possible to set
up closed causal loops. For example, suppose Alice and Bob are in possession
of two pairs of devices .X1;X2/ and .Y1;Y2/ such that X1 can perform faster-
than-light signalling to X2 and Y1 can perform faster-than-light signalling to Y2,
then consider the set-up shown in Figure 3.1: Alice reads a bit value from the
output of device X1 and then inputs it to device Y2, so that Bob can read its value
from the output of device Y1 and then input it to deviceX2, meaning that it is sent
to Alice and emerges as the output of device X1. The value of this bit has thus
come out of nowhere – it has no cause outside the loop. It would be possible to
avoid this conclusion by supposing that the universe has a preferred reference
such that signalling is possible only in the preferred reference frame, since then
signalling would be possible in only one direction between A and B so the
construction of a loopwould be impossible. However, it is a key postulate of the
theory of special relativity that the universe has no preferred reference frame,
so we have good reasons from outside quantum mechanics for rejecting this
possibility. Thus if we believe that nature should not allow closed causal loops,
and that the universe has no preferred reference frame, we can explain why the
laws of nature should not allow signalling (Arntzenius 1994, Maudlin 2011).
On the other hand, it is not immediately obvious why nature should not

allow closed causal loops to exist, provided that they do not lead to any actual
contradictions (Berkovitz 2002). After all, quantum mechanics is commonly
supposed to be intrinsically random, which means that the outcomes of mea-
surementsmust frequently come out of nowhere, having no cause for their exact
value. It may be, therefore, that to make this argument work we may need to
make a stronger claim – for example, that the universe is deterministic in some
generalised sense,15 which would imply a prohibition on values coming out of
nowhere in this way.

15 See Adlam (2018a) for more details on this approach.
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However, even if we can explain the absence of signalling by an argument
of this kind, there’s a further twist – for it turns out that quantum mechanics is
not the most non-local theory which is compatible with no-signalling. This fact
emerged via the work of Popescu and Rohrlich on non-local boxes (Rohrlich
and Popescu 1995) – that is, sets of hypothetical devices which accept inputs
and produce outputs which may be correlated in any mathematically describ-
able way. Popescu and Rohrlich described a specific pair of boxes, now known
as ‘PR boxes’, which cannot be used to perform signalling but which can be
used to produce a value of 4 for the CHSH quantity defined in equation 3.1.
But it has been shown by Tsirelson that no arrangement of quantummechanical
systems can produce a value greater than 2

p
2 for the CHSH quantity (Tsirelson

1980), so the PR boxes exhibit a stronger form of non-locality than quantum
mechanics.
We know, therefore, that the world is more local than it would need to be sim-

ply in order to avoid the possibility of signalling, and this has prompted a search
for further constraints which might explain the limits on quantum non-locality.
One interesting proposal is known as ‘information causality’ (Pawlowski et al.
2009). Consider the following operational task: experimenter A receives a ran-
dom string ofN bits, a0a2::aN�1, and experimenter B receives an integer value v
in the interval Œ0; 1; :::N�1�. A sends B a total ofm classical bits without know-
ing the value that B has received; B is then required to make a guess ˇ for the
value of the bit in position v of A’s string. We allow that A and Bmay share any
number of quantum resources prepared in advance of the task, though they may
not exchange any quantum systems after the task begins. Information causal-
ity imposes a constraint on the probability of Bob successfully completing this
task, which we express in the language of ‘mutual information’, a measure from
classical information theory which quantifies the correlation between two vari-
ables.16 Denote by I.aK W ˇjv D K/ the mutual information between bitK in A’s
string and B’s guess ˇ, conditional on B receiving the valueK; then information
causality requires that

X
K

I.aK W ˇjv D K/ � m

That is to say, information causality requires that the total amount of infor-
mation that experimenter B is able to access about A’s string, over all the
different strategies that might be used to get information, should not be larger
than the number of classical bits that A sends. Thus it is a sort of generalised

16 See (Thomas and Cover 2006) for more details on classical information theory and mutual
information.
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no-signalling constraint on the total amount of information that agents have
access to under different counterfactual conditions.
Pawlowski et al. (2009) showed that the violation of the Tsirelson bound

implies that information causality is not satisfied. Thus, if we are willing to
accept information causality as a fundamental constraint on physical reality,
we have an explanation for the gap between the quantum and classical no-
signalling bounds. Of course, opinions will vary on the idea of information
causality as a fundamental physical constraint: the principle may have a plau-
sible air, but it certainly is not logically impossible that the world should have
failed to obey information causality, and so one might argue that the putative
explanation is incomplete without some proposal for an underlying ontology
which explains why information causality must necessarily be satisfied in the
actual world.
We also know that information causality cannot be the complete explanation,

because although it lets us derive the correct bound in this particular case, it
does not suffice to derive the full set of quantum correlations. In particular, it is
known that there exists a set of ‘almost quantum correlations’ which is bigger
than the set of quantum correlations, but which satisfies information causality
(as well as various other principles that have been proposed to explain this gap)
(Navascués et al. 2015). So although principles like information causality offer
tantalising hints, as yet we have no complete answer to the question of why the
non-locality of quantum mechanics is limited in the specific way that it is.

4 The Kochen-Specker Theorem and Contextuality

4.1 The Kochen-Specker Theorem
We will show that there exists a set of measurements on a four-
dimensional quantum system which is not consistent with deterministic
non-contextuality.
Although quantum systems are defined on complex Hilbert spaces, it is

sufficient for us to exhibit a set of operators on a real Hilbert space, since
a real Hilbert space can always be mapped to a complex Hilbert space.
Thus we will work with a real four-dimensional Hilbert space, where each
vector represents an operator.
Each set of four orthogonal vectors in this real Hilbert space sums to the

identity and thus defines a possible measurement (recall from Section 2.1
that a measurement is defined as a set of positive operators that sum to the
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identity). Let us try to find an assignment of the values 0, 1 to the vectors
in this space which is consistent with deterministic contextuality.
Consider the following table:

(0,0,0,1) (0,0,1,0) (1,1,0,0) (1,-1,0,0)
(0,0,0,1) (0,1,0,0) (1,0,1,0) (1,0,-1,0)
(1,-1,1,-1) (1,-1,-1,1) (1,1,0,0) (0,0,1,1)
(1,-1,1,-1) (1,1,1,1) (1,0,-1,0) (0,1,0,-1)
(0,0,1,0) (0,1,0,0) (1,0,0,1) (1,0,0,-1)
(1,-1,-1,1) (1,1,1,1) (1,0,0,-1) (0,1,-1,0)
(1,1,-1,1) (1,1,1,-1) (1,-1,0,0) (0,0,1,1)
(1,1,-1,1) (-1,1,1,1) (1,0,1,0) (0,1,0,-1)
(1,1,1,-1) (-1,1,1,1) (1,0,0,1) (0,1,-1,0)

There are 36 entries in this table, taken from a set of 18 vectors with
every vector appearing exactly twice. In each row, we have a set of 4
orthogonal vectors, so determinism implies that our value assignmentmust
give the value 1 to exactly one entry in each row, i.e. 9 entries in total.
But contextuality implies that each vector must be assigned the same

value wherever it appears in the table, and therefore the number of entries
assigned the value 1 must be equal to two times the number of vectors
assigned the value 1, which cannot be an odd number.
We have found a contradiction, and therefore no value assignment for

this set of vectors can obey both determinism and contextuality. This
demonstrates that deterministic contextuality cannot hold universally for
quantum mechanics.

4.2 Deterministic Contextuality
What exactly do we learn when we perform a measurement on a system? In
classical physics, the answer seems relatively straightforward: we learn about
the properties of the system. For example, when we perform a measurement to
determine the charge of a particle we take it for granted that the particle has one
of the properties ‘positive charge’, ‘negative charge’, or ‘neutral charge’, and
that it cannot have more than one of these properties, so measuring its charge
is a simple matter of finding out which property it has.
But it turns out that this simple view of measurement is no longer tenable

in the quantum world. Recall from section 2.1.2 that a quantum measure-
ment is represented by a POVM, i.e. a set of positive semi-definite operators
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which sum to the identity. This has the immediate consequence that for quan-
tum systems of dimension greater than two, an operator may appear in more
than one measurement. We give an example below of two measurements for
a quantum system of dimension three which both contain the measurement
operator A:17

Measurement 1:

fA D j0ih0j;

B D j1ih1j;

C D j2ih2jg

Measurement 2:

fA D j0ih0j;

D D
1
2
.j1i C j2i/.h1j C h2j/;

E D
1
2
.j1i � j2i/.h1j � h2j/g

Now if measurement results in quantum mechanics correspond to pre-
existing properties of systems, as they are assumed to do in classical physics,
then for any measurement on a given quantum system, there must be exactly
one operator in that measurement which corresponds to a property that the
system definitely has, such that we will be certain to obtain the correspond-
ing measurement outcome if we perform this measurement; likewise all the
other operators must correspond to properties that the system definitely does
not have, such that wewill definitely not obtain the correspondingmeasurement

17 By convention, the kets j0i; j1i; j2i correspond to three orthogonal vectors, e.g.241
0
0

35 ;
240
1
0

35 ;
240
0
1

35. Using this representation, it is straightforward to see that for each of

these two measurements, the three operators given are positive semi-definite and sum to the

identity matrix

241 0 0
0 1 0
0 0 1

35, so they satisfy the conditions for valid POVMs.
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outcomes if we perform this measurement. Moreover, if a given operator corre-
sponds to a property which the system definitely has, then we must also obtain
the corresponding measurement result if we perform any other measurement
which includes that operator. Mathematically, we can express this condition by
saying that for any given set of measurements on a quantum system it must be
possible to assign the values 1 and 0 to all the operators included in this set, such
that eachmeasurement includes exactly one operator with value 1. This require-
ment is commonly known as ‘non-contextuality’, and a theory which fails to
obey it is said to exhibit ‘contextuality.’ (Held 2014). However, we will hence-
forth use the term ‘deterministic (non)-contextuality’ for this concept, in order
to distinguish it from a related form of contextuality discussed in Section 4.3.
The Kochen-Specker theorem (Kochen and Specker 1975) says that there

exist sets of measurements on quantum systems of dimension greater than two
such that the assignment of values 0 and 1 required for deterministic non-
contextuality cannot be achieved. Kochen and Specker originally proved this
using a set of 117 operators on a three-dimensional quantum system, but sim-
pler proofs have subsequently been put forward, and in Box 4.1 we have given
a proof using only 18 vectors due to Cabello, Estebaranz, and Garcia-Alcaine
(Cabello et al. 1996). As a result of this theorem, we know that quantum
mechanics does not in general obey deterministic contextuality, and this has
forced physicists to rethink the relationship between quantum measurement
outcomes and underlying features of reality. Whatever it is that measurement
outcomes tell us about the world, they do not always tell us about properties
that systems definitely have, at least not for quantum systems of dimensions
greater than two.
To understand more precisely the way in which quantum mechanics fails

to conform to our classical intuitions, it is helpful to note that deterministic
contextuality can be decomposed into two parts. First, there is the idea that
measurement outcomes represent stable underlying facts about systems, and
second, there is the idea that measurement outcomes are deterministic – that
is, given perfect knowledge of the underlying state of the system, we should
be able to predict with certainty the outcome of any measurement on it. In
mathematical terms, the first idea leads to the requirement that an operator must
be assigned the same value everywhere it appears, while the second idea leads
to the requirement that we should assign only values 0 and 1.
Yet quantum mechanics itself is not a deterministic theory, and although the

question of how the probabilities produced by quantum mechanics should be
interpreted remains a vexed question (see Section 5), one influential view is
that these probabilities reflect fundamental indeterminacies in nature. If this is
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indeed the case, then it will be fruitless to look for deterministicmodels of quan-
tum theory – rather we should be allowing the values assigned to operators to
range between 0 and 1, reflecting the probabilities of obtaining the correspond-
ing outcome when we perform a measurement containing that operator. This
suggests that there may be a way out of the Kochen-Specker theorem: we could
reject the requirement of determinism but retain the idea that measurement out-
comes represent the same underlying properties no matter which measurement
they appear in.

4.3 Spekkens Contextuality

4.3.1 The Spekkens Contextuality Theorem

Wewill work within the ontological models paradigm, employing an onto-
logical model to represent quantum mechanics. We make two additional
stipulations about the model:

1. Consider two preparation procedures P and Q such that there exists a
measurement distinguishing between these preparations with certainty;
then the associated probability distributions �P.�/ and �Q.�/ must be
non-overlapping, i.e. there is no ontic state to which they both assign a
non-zero probability.

(This follows from the requirement that an ontological model for
quantum mechanics should be able to reproduce all the empirical pre-
dictions of the theory – since if there were some ontic state � to which
both distributions assigned a non-zero probability, then when we per-
formed one of these preparations and got state � the distinguishing
measurement would sometimes give the ‘wrong’ result, in contradic-
tion with the stipulation that it distinguishes the two preparations with
certainty.)

2. For two preparations P andQ, consider a composite preparation proce-
dure where we perform preparation P with probability p and prepara-
tionQwith probability 1�p. The resulting distribution over ontic states
is given by p�P.�/ C .1 � p/�Q.�/ and likewise for more complex
convex sums.
(Here we are simply assuming that probabilities over ontic states com-
pose with other probabilities in the usual way – so, for example, if
preparation P has probability 0.3 of preparing state �, and preparation
Q has probability 0.8 of preparing state �, then if we flip a fair coin,
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then perform P if the result is heads, and Q if the result is tails, the
overall probability of producing � should be 0:5 � 0:3 C 0:5 � 0:8.)

Let us now consider a set of six possible preparations which give rise
to six different pure quantum states:

P1 W  1 D j0i

P2 W  2 D j1i

P3 W  3 D
1
2

j0i C

p
3
2

j1i

P4 W  4 D

p
3
2

j0i �
1
2

j1i

P5 W  5 D
1
2

j0i �

p
3
2

j1i

P6 W  6 D

p
3
2

j0i C
1
2

j1i

Then let Pi;j W i; j 2 f1; 2; 3; 4; 5; 6g be the composite preparation proce-
dure where either preparation Pi or Pj is performed with equal probability.
Likewise let Pi;j;k W i; j; k 2 f1; 2; 3; 4; 5; 6g be the composite preparation
procedure where Pi, Pj or Pk is performed with equal probability.
Each of these preparation procedures gives rise to a mixed state, as

described in Section 2.1.2; and in fact, the six states have been selected
such that all of the preparations P1;2, P3;4, P5;6, P1;3;5; and P2;4;6, give rise
to the same mixed state, 1

2 j0ih0j C
1
2 j1ih1j.

Let us suppose this ontological model is preparation non-contextual.
Then every way of preparing the mixed state 1

2 j0ih0j C
1
2 j1ih1j

must give rise to the same probability distribution �.�/ over
ontic states. Using stipulation 2, it follows that this probabil-
ity distribution can be decomposed in the following different
ways:

�.�/ D
1
2
�P1.�/C

1
2
�P2.�/
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�.�/ D
1
2
�P3.�/C

1
2
�P4.�/

�.�/ D
1
2
�P5.�/C

1
2
�P6.�/

�.�/ D
1
3
�P1.�/C

1
3
�P3.�/C

1
3
�P5.�/

�.�/ D
1
3
�P2.�/C

1
3
�P4.�/C

1
3
�P6.�/

Now observe that states  1 and  2 are orthogonal, which means there
exists a measurement which distinguishes them with certainty. Thus the
probability distributions �P1 and �P2 are non-overlapping, which means
that �P1 � �P2 D 0, where the dot denotes the inner product; likewise for
the pairs .3; 4/ and .5; 6/.
Let us now consider the values of the probability distributions�P1 :::�P6

at some fixed �. Since �P1 ��P2 D 0, and since all the entries in these vec-
tors are probabilities and therefore cannot be negative, either �P1.�/ or
�P2.�/must be zero, and likewise for�P3.�/; �P4.�/ and�P5.�/; �P6.�/.
Suppose we have �P1.�/ D �P3.�/ D �P5.�/ D 0; then from our
fourth decomposition of � we infer that �.�/ D 0. Suppose we have
�P1.�/ D �P3.�/ D �P6.�/ D 0; then by combining the third and fourth
decompositions of �; we find that 1

2�P5.�/ D
1
3�P5.�/, which is possi-

ble only if �P5.�/ D 0, and therefore again we have �.�/ D 0. From
the symmetry of the problem, it is straightforward to see that any other
assignation of zeroes will also yield �.�/ D 0.
Since this argument did not depend on the value of �, it follows that

�.�/ D 0 for any �. But then � is not a probability distribution at all and
so it cannot represent the mixed state 1

2 j0ih0j C
1
2 j1ih1j. We have derived

a contradiction; it follows that quantum mechanics cannot be represented
by a preparation non-contextual ontological model.

To investigate the possibility of non-deterministic non-contextuality, let
us consider a generalised notion of contextuality developed by Spekkens
Spekkens (2005). The idea behind Spekkens’s approach is that when we try
to understand what quantum mechanics says about the world, it is natural to
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suppose that any situations which are operationally equivalent should corre-
spond to the same underlying reality, and thus should be represented identically
in an ontological model. Here, two situations are understood to be operationally
equivalent if they always lead to the same experimental statistics – so, for
example, two preparation procedures are operationally equivalent iff for any
measurement procedure we might perform after the preparation, either prepa-
ration procedure will yield the same outcome probabilities. This is essentially a
form of Occam’s razor – all else being equal, we should avoid introducing com-
plications into our ontological hypotheses that do not appear in the operational
statistics we are trying to explain.
In particular, suppose a measurement outcome Oi appears in two differ-

ent measurements M1 D fOg;Oh;Oig and M2 D fOi;Oj;Okg. We can write
down an ontological model in which Oi is associated with the two response
functions �M1;Oi and �M2;Oi for these two measurements. Then observe that
from each of these measurements we can obtain a measurement fOi; I � Oig

by combining outcomes j; k or g; h into a single outcome and discarding any
information about which one occurs. Clearly, the response functions associ-
ated with Oi are not changed by this post-processing, so Oi is still represented
by the same response functions �M1;Oi and �M2;Oi in the corresponding com-
posite measurements. But these two ways of performing the measurement
fOi; I � Oig are operationally equivalent (that is to say, the probabilities for
Oi and I � Oi will always be the same no matter which of these ways we
choose to implement the measurement), and therefore if we are to associate
operationally equivalent situations with the same underlying reality, the two
ways of performing the measurement should be represented in the ontologi-
cal model by the same set of response functions. It follows that we must have
�M1;Oi D �M2;Oi . That is to say, for a system in an ontic state �, the probability
of obtaining the result Oi should be the same no matter whether we are per-
forming measurementM1 orM2. So the principle that operationally equivalent
procedures should have the same ontological representation can be understood
as the non-deterministic generalisation of the idea that each measurement out-
come represents the same underlying property no matter which measurement
it occurs in.
Spekkens formalised this idea using the ontological models framework,

which enabled him to distinguish three different forms of contextuality:

1. Preparation contextuality: an ontological model is preparation non-
contextual if for any set of preparation procedures which all produce the
same quantum state, all the procedures are represented by the same proba-
bility distribution over ontic states; otherwise it is preparation contextual.
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2. Transformation contextuality: an ontological model is transformation
non-contextual if for any set of transformations which are all associated
with the same quantum completely positive map, all the transformations are
represented by the same column-stochastic matrix in the ontological model;
otherwise it is transformation contextual.

3. Measurement contextuality: an ontological model is measurement non-
contextual if for any set of measurement outcomes which are all associated
with the same quantum positive operator, all the measurement outcomes
are represented by the same response function in the ontological model;
otherwise it is measurement contextual.

It is important to note that according to these definitions, contextuality is
a property of an ontological model and not of the empirical theory which the
ontological model is supposed to reproduce. This means we cannot simply say
that quantum mechanics is or is not preparation/transformation/measurement
non-contextual in this sense. However, Spekkens showed that no ontological
model which is preparation non-contextual or transformation non-contextual
can reproduce all the empirical results of quantum mechanics (the proof for the
case of preparation contextuality is given in Box 4.3.1), and thus we are able to
say that the reality underlying quantummechanics must certainly be contextual
in this particular sense. However, we do know that it is possible to construct
a measurement non-contextual ontological model by taking the ontic states to
be given by the pure quantum states and the response functions to be given by
the usual quantum probabilities (this is the Beltrametti-Bugajski model) (Bel-
trametti and Bujaski 1995), so it remains possible that the reality underlying
quantum mechanics is non-contextual when it comes to measurements.

4.4 Graph Theory and Contextuality
In a different direction, the recent work of Cabello, Severini, and Winter
(Cabello et al. 2014) has uncovered an intriguing connection between quan-
tum contextuality and graph theory. It is possible to represent a ‘contextuality
scenario’, i.e. a set of measurement operators fMig for a given quantum system,
as an ‘exclusivity graph’, G, where every measurement operator is a vertex v
of the graph and the edges E of the graph connect variables which may be
simultaneously measured. We define a probabilistic model for such a graph by
assigning nonnegative real numbers pv 2 Œ0; 1� to the vertices v in such a way
that for any edge E of the graph,

P
v2E pv � 1. Models for a contextuality sce-

nario that obey deterministic contextuality, known as non-contextual hidden
variable (NCHV) models, are probabilistic models in which every value pv is
equal to 0 or 1.
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Trivially, it is always possible to find a valid NCHV model for any con-
textuality scenario – for example, we can simply assign the value 0 to all
vertices. However, the situation changes if we stipulate that the set of vertices
of the graph includes every possible outcome for every measurement in the sce-
nario, giving what we will describe as a maximal contextuality scenario. Since
the sum of the probabilities for all possible outcomes to a measurement must
always be one, a valid probabilistic model for a maximal scenario must satisfy
8E

P
v2E pv D 1, and anNCHVmodel must assign the value 1 to exactly one

vertex in each edge. It is not always possible to find even one model fulfilling
these constraints: indeed, the Kochen-Specker theorem may be expressed in
this language as the statement that there exist maximal contextuality scenarios
which can be realised by quantum-mechanical measurements for which there
exists no valid NCHV model.
For both maximal and sub-maximal contextuality scenarios, we can quan-

tify the amount of contextuality exhibited by a model for the scenario by the
expectation value of the witness operator † WD

Pq
iD1 pi, where pi is the prob-

ability that we will obtain the outcome i if we perform some measurement for
which i is a possible outcome, and we sum over all the vertices (Emerson et al.
2013). It can be shown (Cabello et al. 2014) that the expectation value of† for
any valid NCHV model is bounded above by the independence number ˛.G/
of the exclusivity graph.18 On the other hand, in models where the vertices
are assigned probabilities derived from a quantum-mechanical representation
in terms of density operators and projective measurements, the witness oper-
ator is instead upper bounded by the Lovasz number �.G/ of the exclusivity
graph.19 Finally, in models which obey no constraint other than exclusivity
– the requirement that the sum of the probabilities assigned to a set of mea-
surement elements such that any two elements in the set are adjacent, and
hence simultaneously measurable, is no greater than 1 – the witness operator is
upper bounded by the fractional packing number vF.G/ of the graph.20 Now the

18 The independence number of a weighted graph G is the largest sum of weights assigned to an
independent set, i.e. a set such that no two two vertices in the set are adjacent (Bondy andMurty
1976).

19 The Lovasz number of a graph G with weights fpvg is defined as
P

v pvxv; where fxvg is a set
of real numbers such that

P
v xv

.a1v/2
jjavjj2

� 1 for any orthogonal labelling favg (where av1 denotes
the first entry in the vector av and jjavjj denotes the magnitude of the vector av). An assignation
of vectors to the vertices of a graph G is an orthonormal labelling iff the vectors representing
vertices i and j are orthogonal whenever i and j are not adjacent in G.

20 The fractional packing number of a q-vertex graph G with weights fpvg is equal to
max

P
i2f1;2:::qg piqi where we maximise over all choices of nonnegative numbers qi subject

to the constraint that for any clique C of G,
P

i2C qi � 1. A clique of a graph is a set of its
vertices such that any two distinct vertices in the set are adjacent.
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independence number, Lovasz number, and fractional packing number do not
in general coincide: in general, we have ˛.G/ � �.G/ � vF.G/ and this
suggests two interesting questions: first, why is quantum mechanics more con-
textual than any NCHV theory, and second, why is quantum mechanics not as
contextual as exclusivity would allow? These questions may recall the discus-
sion in Section 3.4, where we saw that quantum mechanics is more non-local
than any theory which obeys locality but less non-local than no-signalling
would allow – it is quite common in quantum foundations to come across
scenarios of this kind, where quantum mechanics is non-classical but not as
non-classical as it could be, which suggests that there may exist some further
constraints on quantum mechanics that we have not yet got a handle on.

4.5 Contextuality and Quantum Computation
Another interesting application of contextuality is the suggestion that it may be
responsible for the computational power of quantum mechanics (Howard et al.
2014). It has been known for some time that a computer using quantum sys-
tems rather than classical ones to perform calculations would be significantly
more powerful than ordinary classical computers (at least, for certain specific
types of computations, such as factoring large prime numbers and simulating
quantum systems). But there exist a number of obstacles to getting quantum
computing working in the real world, many resulting from the fact that that
random noise tends to introduce errors in quantum computations. To overcome
this, we use ‘fault-tolerant’ quantum computing, with logical encodings that
make algorithms resistant to error – for example, we might perform the same
computation in parallel many times and select as our final answer the result
obtained by the largest number of computations.
There exist special sets of ‘stabilizer’ preparations, transformations andmea-

surements which can be implemented transversally. An operation is said to
be transversal if it always couples a subsystem of a code block to the corre-
sponding subsystem in other code blocks. This means that an error in a given
subsystem can only propagate to corresponding subsystems in other blocks,
so transversal operations can easily be implemented in a simple fault-tolerant
way (Eastin and Knill 2009). But, unfortunately, we cannot construct all pos-
sible quantum operations out of stabilizer operations alone, and indeed the
Gottesman-Knill theorem proved that all stabilizer operations can be efficiently
simulated by a classical computer (Gottesman 1998, Cuaro 2015), whichmeans
that none of the special non-classical power of quantum computing is accessible
if we limit ourselves to stabilizer operations. However, it is possible to achieve
full quantum computing with stabilizer operations if we also have access to a
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special set of non-stabilizer states, i.e. states which cannot be prepared using
stabilizer operations alone. These special states are sometimes known as ‘magic
states.’ (Bravyi and Kitaev 2005).
Note that the set of states which can be used for this purpose cannot simply be

identified as the set of non-stabilizer states. There exists a set of states known as
PSIM, which includes all the stabilizer states but also some non-stabilizer states,
such that quantum computation using stabilizer operations supplemented only
with states from PSIM can always be simulated efficiently by classical comput-
ers – meaning that no state in PSIM can be used as a magic state (Aaronson and
Gottesman 2004, Mari and Eisert 2012). The non-stabilizer states in PSIM are
known as ‘bound magic states’ since their magic properties cannot be put to
use (Veitch et al. 2012).
So what makes the magic states so special? One possible answer was put

forward by Howard, Wallman, Veitch, and Emerson (Howard et al. 2014),
who used the graph-theoretic ideas in Section 4.4 to derive a set of contex-
tuality inequalities that must be satisfied by any state which can be given an
NCHV model for these stabilizer measurements. (As we saw in Section 4.2,
contextuality of the NCHV type can be defined only for states of more than
two dimensions, and therefore these inequalities are relevant only for sys-
tems of more than two dimensions.) They then showed that for all dimensions
greater than two, every state which does not belong to PSIM violates one of their
contextuality inequalities, whereas no state in PSIM violates any contextuality
inequality defined using only stabilizer measurements. It follows that in greater
than two dimensions, contextuality relative to the stabilizer measurements is
necessary for a state to be magic.

5 The PBR Theorem and the Measurement Problem

5.1 The PBR Theorem
Consider the following experimental procedure:

1. Two quantum systems are sent to two experimenters in two separate
spacetime locations.

2. Each experimenter flips a coin: if the result is heads, they prepare their
system in state j0i, and if the result is tails, they prepare their system in
state jCi D

1p
2
.j0i C j1i/. This gives four possible joint states:

Heads, heads : HH D j0i ˝ j0i

Heads, tails : HT D j0i ˝ jCi
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Tails, heads : TH D jCi ˝ j0i

Tails, Tails : TT D jCi ˝ jCi.
3. The two systems are brought together and the four-outcome projective

measurement fA;B;C;Dg is performed, where:

A D
1
2
.j0i ˝ j1i C j1i ˝ j0i/.h0j ˝ h1j C h1j ˝ h0j/

B D
1
2
.j0i ˝ j�i C j1i ˝ jCi/.h0j ˝ h�j C h1j ˝ hCj/

C D
1
2
.jCi ˝ j1i C j�i ˝ j0i/.hCj ˝ h1j C h�j ˝ h0j/

D D
1
2
.jCi ˝ j�i C j�i ˝ jCi/.hCj ˝ h�j C h�j ˝ hCj/

where j�i D
1p
2
.j0i � j1i/, the state orthogonal to jCi.

Now, the probability of obtaining outcome A to this measurement when
the joint state is HH is given by Tr.A.j0i ˝ j0i/.h0j ˝ h0j// D Tr. 12 .j0i ˝

j1i C j1i ˝ j0i/.h0j0i ˝ h1j0i C h1j0i ˝ h0j0i/.h0j ˝ h0j/ D 0, since j0i

and j1i are orthogonal, meaning that h0j1i D 0.
Likewise, it can be shown that there is zero probability of obtaining

outcome Bwhen the joint state isHT, there is zero probability of obtaining
outcome C when the joint state is TH is zero, and there is zero probability
of obtaining outcome D when the joint state is TT.
Now suppose that there is some overlap between the set of ontic states

associated with quantum state j0i and the set of ontic states associated
with quantum state jCi. That is, there exists some ontic state � such that
there is non-zero probability for a system to end up in ontic state � when
we prepare the quantum state j0i, and also non-zero probability for the
system to end up in ontic state � when we prepare the quantum state jCi.
Then suppose that the above experimental procedure is performed, and

both experimenters get the result heads and thus prepare the quantum state
j0i, and on this occasion both quantum systems end up in the ontic state �.
When we perform the final measurement on this system, we cannot obtain
outcome A, because the joint state is HH. So the probability of obtaining
the result A when the ontic state is �; � is zero.
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Now suppose that both the experimenters get the result tails and on this
occasion both quantum systems end up in the ontic state �. By running the
same argument again, we conclude that the probability of obtaining the
result D when the ontic state is �; � is zero. Then by considering the cases
where the experimenters get (heads, tails) or (tails, heads), we conclude
that when the joint state is �; � there is also zero probability of obtaining
the result B and zero probability of obtaining the result C. So there is no
measurement outcome which is allowed to occur when the ontic state is
�; � – but after all, the measurement must have some outcome, so we have
obtained a contradiction.
It follows that there cannot be any overlap between the set of ontic states

associated with quantum state j0i and the set of ontic states associated with
quantum state jCi if we are to reproduce the empirical results of quantum
mechanics.
However, we need to prove this not only for the two specific states j0i

and jCi but for any possible pair of quantum states  0 and  1. To do this,
we generalise the above procedure so that instead of randomly preparing
two systems in state  0 or  1, we randomly and independently prepare
n systems in one of these two states, giving a joint state j x1i ˝ j x2i ˝

:::˝ j xni with x1; x2:::xn 2 f0; 1g. Then we show that for any two states
 0 or  1, for large enough n there exists a measurement with 2n outcomes
where each outcome has probability zero on at least one of the possible
states. j x1i ˝ j x2i ˝ ::: ˝ j xni. It follows that there cannot be any
overlap between the set of ontic states associated with  0 and  1.
Thus there cannot be any overlap between the set of ontic states asso-

ciated with any distinct pair of quantum states, so the quantum state must
be an ‘element of reality’.

5.2 The Measurement Problem
What exactly happens when we perform a measurement? In classical physics, a
measurement is a physical process like any other physical process: it is assumed
that the measuring device, the system under measurement, and even the per-
son performing the measurement could all in principle be modelled within the
theory. And indeed it seems important that this should be so, for if a physical
theory cannot explain how we obtain the measurement results which constitute
our evidence for the theory, then it hardly seems reasonable to say that the evi-
dence gives us reason to believe that the theory is true or even approximately
true.



40 The Philosophy of Physics

But in quantum mechanics, once again, the situation is more complicated.
To see this, look back at postulate three in section 2.1, which is sometimes
known as the ‘Born rule’. In simple terms, it says that before we perform a
measurement a quantum system may be in a state which is a superposition
of all the possible measurement outcomes, but when the measurement is per-
formed the state instantaneously changes to a state associated with just one of
the measurement outcomes. This process is commonly known as the ‘collapse
of the wavefunction’. (The term ‘wavefunction’ means more or less the same
as ‘quantum state’.)
This means, first of all, that in quantum mechanics measurement cannot be

regarded as simply an act of passive observation: performing a measurement
will usually change the state of the system, so we must account for the effect
of measurements when we consider the evolution of systems over time. But
this is not so revolutionary, for even in classical physics the idea that we could
measure systems without affecting themwas always an idealisation – for exam-
ple, to determine an object’s position by looking at it we have to bounce light
rays off it, and this will inevitably change the position of the system slightly,
although the effect will be indiscernible unless the system is very small. How-
ever, in classical physics the ways in which our measurements affected the
systems under measurement could still be modelled by the same physics as
we would use to describe systems not under observation: classically, the effect
of collisions with light rays on the momentum of a small particle is the same
whether or not those light rays are being used by someone to observe it. But
in quantum mechanics, this is not the case, because the ‘collapse’ process that
occurs in measurement does not occur under any other circumstances. Thus
it seems that in quantum mechanics, measurement cannot be understood as a
physical process like any other physical process: it is a special category all of
its own.
This is a highly unsatisfactory state of affairs, because the notion of ‘mea-

surement’ is not a precise one. Should we say that a measurement necessarily
involves a human experimenter? But this seems too anthropocentric – we surely
do not want to say that the fundamental laws of nature contain special clauses
just for humans. Should we say instead that measurement requires only a
conscious observer? But then we will need to say something about what con-
sciousness is and where its borders lie, which is a notoriously difficult problem.
Or does wavefunction collapse result from a specific sort of physical inter-
action, which occurs in the processes that we refer to as measurements but
may also occur in processes which do not involve any experimenter or con-
sciousness? If that is so we ought to be able to say something about what that
interaction is and ideally find ways to put the hypothesis to the test.
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This difficulty is known as the ‘measurement problem’ and many people
working in the foundations of physics believe that it represents a serious epis-
temological crisis for quantum mechanics (Wallace 2007): we still have no
coherent story about how we actually come to obtain the measurement results
which are our evidence for the theory, and in the absence of such a story we can
hardly claim to have a complete theory. This crisis has prompted many attempts
to solve themeasurement problem by proposing some specific hypothesis about
the reality underlying quantum mechanics which explains what actually goes
on in a measurement; such a hypothesis is known as an interpretation of quan-
tum mechanics. But the problem of finding a satisfactory interpretation of
quantummechanics has proven surprisingly intractable, and certainly at present
there exists no single interpretation which could be regarded as a consensus
view.
It should be noted that some practising physicists feel that the measurement

problem is not of great importance, arguing that all interpretations of quantum
mechanicsmake the same predictions and therefore it is not the job of physicists
to decide between them.We discussed in Section 1.1 why it may be a mistake to
neglect foundational questions in this way, but we must also take issue with the
contention that all interpretations of quantum mechanics make the same pre-
dictions. The name ‘interpretation’ is misleading in this regard, because many
interpretations of quantum mechanics are not really interpretations at all: they
are specific hypotheses about real physical mechanisms in the world, and thus it
is likely that with sufficient ingenuity and experimental sophistication we will
one day be able to find ways to distinguish experimentally between them.21

For example, we will see in Section 5.5.3 that novel predictions have already
beenmade by proponents of the de Broglie-Bohm interpretation, although there
is not yet sufficient evidence to verify (or falsify) these predictions. Further-
more, it may well be the case that some particular interpretation of quantum
mechanics will one day lead us to come up with a successor theory to quantum
mechanics which itself makes novel empirical predictions, and finding empir-
ical confirmation for such a successor theory would surely count as a kind of
indirect confirmation for the interpretation that prompted it.

21 That said, there are some ‘interpretations’ which do indeed seem to be interpretations rather than
physical hypotheses – for example, the Copenhagen Interpretation (Faye 2019) and Quantum
Bayesianism (Fuchs 2010), which wewill not cover in detail here, seem to fall into this category.
It might be argued that the Everett interpretation belongs to the same class, but the Everett
approach does at least make a concrete assertion about the nature of reality and there have been
gestures made towards the possibility of empirical tests for it (Deutsch 2011, Barrau 2014),
though it is not clear that such tests could ever be conclusive.
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5.3 The Reality of the Quantum State
It is useful to distinguish two broad categories of interpretations of quantum
mechanics. First, we have  -ontic views, which take the quantum state to be
an element of reality, and second,  -epistemic views, which regard the quan-
tum state as merely representing a probability distribution over some sort of
underlying hidden variables. This distinction can be made precise within the
ontological models picture, where it is usual to say that the quantum state is
an element of reality according to a given ontological model if and only if in
that model there exists no ontic state � which is compatible with two different
quantum states – that is, it is not the case that for some ontic state � and for two
different quantum states  ; 0, a system which is in quantum state  might be
in the state � but a system which is in quantum state  0 might also be in the
state � (Harrigan and Spekkens 2010). This definition makes sense, as if every
possible quantum state is associated with its own set of ontic states and these
sets never overlap, then quantum states definitely represent something real in
the world and are not just a description of our beliefs about ontic states.
 -ontic approaches may be further divided into  -complete models, where

the quantum state is the only fundamental reality and everything else in the
world is somehow derived from it, and  -supplemented models, where the
quantum state is an element of reality but there are also some other hidden vari-
ables which are equally real. In the ontological models picture, a  -complete
model would identify the ontic state with the quantum state, and a  -complete
model would identify the ontic state with the quantum state together with some
additional information (Harrigan and Spekkens 2010).
The  -ontic approach may initially seem very natural, as it is tempting to

imagine the wavefunction as a field defined over spacetime just like an elec-
tromagnetic field. However, things are a little more complex than this, because
the wavefunction is not defined on physical spacetime – it lives in configura-
tion space. That is to say, the wavefunction of an n-particle system is defined
on a 3n-dimensional space, every point of which corresponds to some possi-
ble configuration of the n particles in ordinary spacetime (Chen 2019). Thus
naive realism about the wavefunction would seem to entail that configuration
space is the fundamental reality and four-dimensional spacetime is emergent
from this underlying reality, which makes the -ontic approach rather less nat-
ural. Moreover, this approach is likely to become problematic when we move
to quantum field theory, since in QFT particles are not fundamental and their
positions are not precisely defined, so the configuration space representation is
no longer available.
Conversely, the  -epistemic approach may initially seem rather counter-

intuitive – after all, when we ascribe a state to a system in classical physics
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we take ourselves to be describing the way things really are in the world, and
it is natural to suppose that the quantum states are similar. But  -epistemic
approaches have a number of very attractive features: perhaps most impor-
tantly, if the quantum state is not a real physical entity then wavefunction
collapse is not a real physical process, and this makes the measurement prob-
lem significantly more tractable. Usually, this idea is cashed out by claiming
that the wavefunction represents an observer’s beliefs or knowledge about a
quantum system, and therefore in a ‘wavefunction collapse’ all that happens
is that the observer updates their beliefs based on the measurement result
(Leifer 2014) – wavefunction collapse is really nothing more than good old
Bayesian updating (Stone 2013). Furthermore, it has been shown by Spekkens
that  -epistemic models can provide convincing explanations for some of the
puzzling features of quantummechanics. Spekkens (2007) sets out a toy model
for a two-dimensional quantum system, featuring four possible ontic states
and an epistemic restriction requiring that we can only ever have half of the
information required to specify the ontic state, so for example if we know
the x-coordinate of the state we can never know the y-coordinate. Spekkens
demonstrates that this simple model is able to reproduce a number of features
of quantum mechanics, such as the indistinguishability of non-orthogonal pure
states, the no-cloning theorem,22 and the fact that that mixed states in quantum
theory have more than one decomposition into a convex sum of pure states.
Generalisations of this toy model have been put forward for larger dimensions
( Schreiber and Spekkens 2008), and it has been shown that for odd dimen-
sions, the generalised Spekkens toy model perfectly reproduces the stabilizer
segment of quantum mechanics (see Section 4.5) (Leifer 2014). However, as
yet there exists no epistemic model of this type which can reproduce all of
quantum theory.

5.4 The PBR Theorem
The debate between  -ontologists and  -epistemicists was given new life by
a recent theorem due to Pusey, Barrett, and Rudolph which has become known
as the PBR Theorem (Pusey et al. 2012). In this theorem, it is shown that for
any two quantum states  0 and  1, if we have a sufficiently large collection
of quantum systems all prepared in either state  0 or  1, then there exists a
measurement such that each outcome has probability zero for some possible
combination of the states  0 and  1. But if there were some probability of

22 The no-cloning theorem states that given a single copy of an unknown pure quantum state, we
can never perform an operation which with certainty produces two perfect copies of the original
state.
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producing the same ontic state � when either  0 or  1 were prepared, then in
some cases the measuring devices would not be able to tell which set of states
had been prepared, so there would be some possibility of obtaining an outcome
which, according to quantum mechanics, has probability 0. This means that
in an ontological model which correctly reproduces the empirical results of
quantum mechanics there can never be two quantum states  0,  1 which are
compatible with the same ontic state, and therefore the quantum state is an
element of reality according to the ontological models definition.
This result was hailed in some quarters as a conclusive argument for the psi-

ontic approach (Reich 2011), but others have raised objections (Leifer 2014).
Particular criticism has been directed at one of the assumptions necessary to
prove the PBR theorem – the Preparation Independence postulate, which states
that the ontic state for two systems prepared separately can be written as the
product of two separate ontic states. This postulate does seem quite plausible,
since we tend to think that if two systems are prepared separately they should
not have global properties that cannot be reduced to local properties of the indi-
vidual systems. However, Emerson, Serbin, Sutherland, and Veitch (Emerson
et al. 2013) argue that this assumption is not justified by the empirical facts,
since they have come up with a way to construct models where independently
prepared systems do indeed have such global properties but the global prop-
erties do not interfere with local experiments. They put forward an explicit
 -epistemic model which has such global properties and show that this model
is able to circumvent the PBR theorem,meaning that if we are willing to believe
in the existence of such special global properties we are not forced to accept
the conclusion of the PBR theorem.
Furthermore, note that that the PBR theorem was proved in the context of

the ontological models approach, and therefore it builds in from the start the
assumption that measurement results can depend on preparation procedures
only via information carried forward by some mediating state, i.e. the assump-
tion of temporal locality. Thus what the PBR theorem proves is that if the world
is temporally local, the information carried forward in time by that mediating
state must be all the same information contained in the quantum wavefunc-
tion. The theorem does not, for example, rule out the possibility that there is no
mediating state, and instead themeasuring device can tell which preparation has
been performed via a direct, temporally non-local influence between the prepa-
ration and the measurement. In other words, although the PBR theorem does
prove that it is necessary to have all the information present in the wavefunc-
tion in order to accurately reproduce the predictions of quantum mechanics,
of course it cannot tell us that this information must necessarily be carried
forwards in time by a mediating state.
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This observation offers a hint to a way in which the dispute between
 -epistemicists and  -ontologists might ultimately be resolved. The  -
epistemicists want to say that the wavefunction is just a summary of our beliefs
in order that wavefunction collapse can be understood as merely a process
of belief-updating; the  -ontologists rejoinder that measurement results must
depend on something real, and therefore the wavefunction must be real. But
most people would accept that the past is real – so why not let measurement
results be determined directly by the past in a temporally non-local fashion,
without any mediating state? Thus the  -epistemicists get their way, since
wavefunction collapse turns out to be just a process of updating our beliefs
about what the future will look like based on what we know about the past, but
proponents of the  -ontic view also get their way, since measurement results
are determined by something real – the past. So it may be that we have been
offered a false dilemma: perhaps in the end we will not really have to make a
choice between the  -ontic and  -epistemic pictures after all.

5.5 Interpretations of Quantum Mechanics
Let us now pass to a discussion of three particularly significant approaches to
the interpretation of quantum mechanics. Far more interpretations have been
proposed than we could possibly cover in these pages, but the three discussed
below are particularly prominent and have been developed to a high degree of
sophistication.23

5.5.1 Spontaneous Collapse Models

One popular class of interpretations are known as spontaneous collapsemodels.
The motivating idea is to remove the problematic category of ‘measurement’
from our physical laws by postulating that wavefunction collapse is a spon-
taneous process that occurs in quantum systems everywhere, regardless of
whether or not they are being measured (Ghirardi et al. 1986a). For exam-
ple, in the GRW model, systems are subject to localisations around specific
positions. The localisations occur at randomly distributed times according to
a Poisson distribution with mean frequency f. For a collection of n particles,
a localisation of particle i at position x is modelled by acting on the n-particle

23 Superdeterminism and retrocausality, which we discussed in Sections 3.3.1 and 3.3.3, are some-
times also regarded as ‘interpretations’ of quantummechanics, although arguably they are better
thought of as properties which interpretations might have – for example, the two-state vector
formalism is a specific example of a retrocausal interpretation (Aharonov and Gruss 2005).
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wavefunction with a collapse operator given by a normalised Gaussian function
centered around the location x:

ƒi.x/ D
1

.2��2/3=2
expŒ�

1
2�2 .Qi � x/2� (5.1)

Here,Qi is the position operator for particle i and � is a parameter controlling
how tightly the resulting wavefunction is localised about x. After being acted
on by this operator, the wavefunction is strongly concentrated about position
x – i.e. the system is now effectively localised at a unique position, so it is no
longer in a spatial superposition.
The probability distribution for the location of the collapse Xi of particle i is

given by the expectation value of the collapse operator:

p.Xi 2 dx1/ D h jƒi.x/j idx1 (5.2)

Here,  is the n-particle wavefunction immediately prior to the collapse.
This equation has the consequence that localisations occur with higher proba-
bility at those places where, according to the standard quantum formalism, the
particle is more likely to be found if a measurement is performed.
Now the key observation for the collapse approach is that macroscopic

objects such as people and measuring devices are made of enormously large
numbers of entangled particles, and it follows from standard quantum mechan-
ics that if the wavefunction of one particle spontaneously collapses, the
wavefunctions of all particles entangled with it will also collapse. So as long
as f is sufficiently large, for any macroscopic object and any given interval of
time, the probability that at least one of its particles will undergo a wavefunc-
tion collapse in that time is very close to 1, meaning that macroscopic objects
are effectively guaranteed to be in single definite states at all times. But indi-
vidual quantum particles or small collections of quantum particles can still be
in superposition states for long periods of time, and therefore we are still able
to observe quantum phenomena which result from the existence of superpo-
sition states for microscopic particles (Ghirardi et al. 1986a, Bell 2004). We
can adjust the parameters of the model to ensure that macroscopic systems are
found in definite states with a high degree of certainty, while small collections
of particles are still able to exist in superposition states – the values suggested
in (Ghirardi et al. 1986a) are f D 10�16s�1 and � D 10�7m, which means that
a macroscopic system undergoes a collapse on average every 10�7 seconds,
but a single microscopic system will only collapse on average every hundred
million years! Specific experimental results may place further constraints on
these parameters, and discussion of the appropriate values for them is ongoing
(Adler 2006; Toroš and Bassi 2018).
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One possible difficulty for collapse theories is the ‘problem of tails’ (Shi-
mony 1990). This arises because if the wavefunction collapse is expressed
mathematically by an expression like 5.1, it follows that after a collapse the
wavefunction will be very strongly peaked around some specific location but
will nonetheless be non-zero everywhere else too. Thus the collapse alone is
not enough to give us the definite macroscopic world that we are looking for –
we need to add some specification of what it means in wavefunction terms for
an object to have a definite macroscopic location. One proposal, known as the
‘fuzzy link’, says that an object is located in a particular region of configura-
tion space as long as enough of its wavefunction is located in that region; but
due to the way that configuration space grows for composite objects, this has
the unfortunate consequence that we could come across a set of nmarbles such
that each individual marble is in a particular box but the full set of n marbles
is not in the box, which seems in defiance of common sense. An alternative
proposal is the mass-density link, where we associate the wavefunction with
a mass-density over spacetime, then say that the object is in a region if it has
a sufficiently high mass density over that region. This proposal gets rid of the
difficulty with composite objects and thus seems a more satisfactory answer
to the problem of tails, although it may be subject to other objections (Lewis
2004).
Themass-density proposal also offers one possible way of thinking about the

ontology of the GRW approach: we suppose that in addition to a wavefunction
there also exists a continuous field of matter over spacetime, whose density at
a given point is obtained by integrating over the absolute value of the n-particle
wavefunction in the following way:

m.x; t/ D

nX
iD1

mi

Z
dq1:::dqnı.x � xi/j t.q1:::qn; t/j2 (5.3)

Here,mi is the mass of particle i, qi is the position of particle i, and t.x1:::xn; t/
is the n-particle wavefunction at time. (Allori et al. 2008). Alternatively, we
could take it that the wavefunction is the only fundamentally real thing and
everything else in the universe supervenes on it, making the model  -ontic
and  -complete.
However, both of these proposals are subject to a major problem: they appear

to be inconsistent with relativity, since the wavefunction collapses everywhere
instantaneously and this requires us to define a preferred reference frame for it
to collapse on (Ghirardi et al. 1986b). Thus a promising alternative approach
makes the spontaneous collapse theory compatible with relativity by getting
rid of the wavefunction altogether and moving to an ontology which consists
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entirely of the collapse events, sometimes known as ‘flashes’. This idea, orig-
inally proposed by Bell (2004), was developed in detail by Tumulka (2006).
In this Lorentz invariant version of the theory for n non-interacting particles,
we take as initial data one flash for each particle and a wavefunction obeying
the Dirac equation, and then the theory defines a probability distribution for
the locations of the next n flashes (one for each particle) and a prescription for
determining a new wavefunction based on the location of these flashes. So we
can generate a set of flashes by choosing at random from the correct distribu-
tion, updating the wavefunction, and then continuing to iterate this procedure
to obtain a random series of flashes for each particle. A version for interacting
particles was subsequently given in ref (Tumulka 2020).
The reason that the flash ontology solves the problem with relativity is that

the flashes occur only at individual spacetime points and thus we no longer have
a spatially extendedwavefunctionwhichmust collapse in some particular refer-
ence frame. But there is an important caveat: as Gisin and Esfeld have observed
(Esfeld and Gisin 2013), Tumulka’s GRW flash model is not consistent with
relativity if we insist on a causal account where the flashes that have happened
in the past influence which flashes occur in the future, because changing refer-
ence frames will change the temporal ordering of the flashes and thus no such
causal account can be consistent across different reference frames. Therefore
we can achieve the desired reconciliation with relativity only by ‘renouncing
an account of the coming into being of the actual distribution of the flashes’ and
instead ‘considering possible entire distributions of flashes’. That is, in order to
achieve reconciliation with relativity we are forced to move to a global, tempo-
rally non-local approach, which is of course to be expected given the discussion
in Section 3.3.2 about the impossibility of having both spatial non-locality and
temporal locality in a relativistic context.
Since we arrived at the GRW flash approach by removing the wavefunc-

tion from our ontology, one might expect that this would automatically be a
 -epistemic approach: in this picture, reality is simply composed of ‘a constel-
lation of flashes’ (Bell and Aspect 2004), as Bell poetically put it. However,
it should be noted that if one tried to express the GRW flash model in the
ontological models framework, the ontic state would have to include the quan-
tum state, because the quantum state is used to calculate the probabilities for
the flashes. So the standard ontological models definition of the  -ontic/ -
epistemic distinction (Harrigan and Spekkens 2010) would have us say that
the flash approach is  -ontic, even though this is explicitly a picture in which
the wavefunction is not part of the ontology. This apparent disagreement arises
from the fact that the definitions of  -ontic/ -epistemic within the ontologi-
cal models framework assume that the past can influence the future only via
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the mediation of ontic states, and therefore these definitions are not straight-
forwardly applicable in contexts such as the flash model where, if we follow
Gisin and Esfeld, we must take it that events at one time can directly influence
events at other times without the relationship being mediated by a state. In such
a context, we might be well-advised to replace the  -ontic  -epistemic classi-
fication with the category of ‘primitive ontology’ – that is to say, the ‘stuff’ on
which the physical world of our experience is supposed to supervene (Allori
et al. 2008). In the GRW flash picture, there is certainly a sense in which the
wavefunction is real, since it is the wavefunction which determines the distri-
bution of flashes, but the ordinary physical objects of our experience supervene
directly on the flashes and not on the wavefunction, so the wavefunction is not
a part of the primitive ontology.

5.5.2 The Everett Interpretation

The Everett interpretation is in some ways the exact opposite of the GRW
flash model, since Hugh Everett’s proposal was that we should simply get rid
of wavefunction collapse and retain only the well-understood mechanism of
the wavefunction’s temporal evolution (Everett 1957). The basic equations of
the Everett approach are therefore just the usual equations of unitary quantum
mechanics (i.e. quantum mechanics without wavefunction collapse) (Wallace
2012).
The Everett interpretation has the advantage of simplicity, but the appar-

ent disadvantage that if the wavefunction does not collapse then the branches
associated with all the possible results of a measurement persist even after the
measurement has occurred, so the theory predicts that all measurement out-
comes will always occur! But Everett had a straightforward response to this:
indeed, all measurement outcomes do always occur, but to an observer it will
seem as though only one outcome occurs, because there are different observers
in different branches of the wave-function and each one of them sees a different
but singular outcome. The Everett interpretation is thus sometimes referred to
as the ‘many-worlds’ interpretation, since it is as if the world branches intomul-
tiple different worlds every time a quantummeasurement is performed – though
this terminology is a little misleading, because all the ‘worlds’ are branches of a
single quantum wavefunction and so, in some sense, they all belong to a single
world (Wallace 2012).
As for the GRW approach, there are several proposals for how we ought to

think about the ontology of the Everett interpretation. The simplest option is to
say that the primitive ontology includes only the wavefunction itself (making
the model  -ontic and  -complete). Adherents of this approach argue that the
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wavefunction alone is already capable of accounting for our empirical expe-
rience and therefore adding anything else to the ontology is an unnecessary
complication. However, there remain open questions about how to recover the
ordinary world of our experience from this very abstract picture (Chen 2019).
Alternatively, there is also a mass-density version of the Everett interpretation,
defined similarly to the mass-density version of GRW: we suppose the prim-
itive ontology consists of a continuous distribution of matter over spacetime,
and for an n-particle system, the density of matter at a point is obtained by inte-
grating over the absolute value of the n-particle wavefunction in configuration
space:

m.x; t/ D

nX
iD1

mi

Z
dq1:::dqnı.x � xi/j t.q1:::qn; t/j2 (5.4)

Here, mi is the mass of particle i, qi is the position of particle i, and
 t.x1:::xn; t/ is the n-particle wavefunction at time t. Note that unlike in the
GRW version of the mass-density picture, the Everettian wavefunction never
collapses and therefore we will end up with distinct, non-interacting ‘branches’
of the mass density, each containing different observers who are aware only of
the branch that they occupy.
Perhaps the biggest problem for the Everett approach is the question of how

to make sense of the probabilistic predictions of quantum theory. The idea that
each observer only sees the outcome in their own branch explains why we only
observe one measurement outcome, but does not say anything about why we
see some particular outcome or sequence of outcomes rather than any other
(Greaves 2007). This is problematic because we derive and confirm our sci-
entific theories by performing sequences of measurements and assuming that
the sequence of outcomes we observe tells us something about the underlying
theory that gave rise to those outcomes – that is, we suppose that the observed
sequence is highly probable according to the laws of the theory, so we can draw
conclusions about those laws based on the observed relative frequencies. But
Everettian quantummechanics predicts that all possible sequences of outcomes
do actually occur, so there is no straightforward way to make sense of the claim
that the sequence we have seen is highly probable according to the laws of the
theory, and thus it seems that in such a world no scientific theory could ever be
regarded as empirically confirmed. So if we believe the world is Everettian we
should not believe that quantum mechanics itself has any empirical confirma-
tion! But the idea that the world is Everettian is derived from the assumption
that quantum mechanics is a correct theory, and so it appears that this way of
thinking about quantum mechanics is self-undermining (Kent 2009, Adlam
2014).
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A more formal way of putting this argument uses the fact that observing
a measurement outcome in an Everettian universe is usually regarded as giv-
ing us only self-locating information – that is, information about where we
are in the world rather than new information about the world as a whole
(Vaidman 1998, Sebens and Carroll 2016). After all, we already knew prior
to the measurement that every outcome would occur and that there would be
a version of us observing each outcome. Moreover, many accounts of rational
belief-updating uphold the relevance-limiting thesis, which states that learning
self-locating information should not cause us to update any non-self-locating
beliefs, because we have not learned anything we did not already know about
the world as a whole (Halpern and Tuttle 1993, Meacham 2008, Titelbaum
2008). If this thesis is accepted, it follows that self-locating information can
not ever serve as empirical confirmation for a scientific theory (since empiri-
cal confirmation is supposed to give us grounds to update our non-self-locating
beliefs about the laws of nature), and therefore in an Everettian world, measure-
ment results could not possibly serve as empirical confirmation for a scientific
theory (Adlam 2014).
To get around this objection, the Everettian needs to propose a way in

which probabilities for measurement outcomes can be made meaningful even
in a world in which all possible outcomes occur. One common suggestion is
that these probabilities can be understood as the probabilities for the observer
to end up in a particular branch, witnessing some particular outcome. But
this is not really feasible, because in fact the observer ends up in all of the
branches – before the measurement there is one observer, afterwards there is a
plurality of observers, and there is no fact of the matter about which single post-
measurement observer corresponds to the pre-measurement observer (Wallace
2012).
A more sophisticated approach is advocated by the Oxford-school

Everettians led by David Deutsch and David Wallace, who have proposed a
decision-theoretic approach to Everettian probabilities (Wallace 2012, Deutsch
2016). This method takes inspiration from decision theory, where there is a
representation theorem showing that if an agent’s preferences satisfy certain
constraints of rationality (for example, an agent who prefers option A to option
B and option B to option C should also prefer option A to option C), then we
can define a utility function describing how much value they attach to the pos-
sible outcomes of their actions, and a credence function describing how likely
they judge the possible outcomes of their actions to be, such that the agent
always behaves as if they are choosing the course of action which maximises
the expected utility of their outcomes according to this utility function and cre-
dence function. Classical decision theory says nothing about what these utility
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and credence functions should be, since this is understood to be a matter of
agents’ personal preference.
Deutsch and Wallace apply this idea in the quantum context and take it one

step further: they demonstrate that if a person in an Everettian world has prefer-
ences which satisfy an expanded set of rationality constraints, their behaviour
can be modelled mathematically using a utility function and a credence func-
tion, and that their credences will necessarily be equal to the values derived
from the quantum mechanical Born-rule. This is supposed to prove that any
rational person in an Everettian world would adopt the Born rule values as their
credences. Then if we accept the famous ‘Principal Principle’ due to Lewis,
which states that probabilities are just those things which play the role of cre-
dences in the behaviour of rational agents (Lewis 1980), it follows that the
Born rule values are probabilities, so we have found a way to define mean-
ingful probabilities for measurement outcomes even in this world where all
outcomes occur.
This result is undoubtedly very ingenious, but there is still a great deal

of debate around whether it succeeds in solving the Everettian probability
problem. One concern is that the ‘rationality constraints’ imposed as part of
the proof do not seem rationally compelling to everyone. In particular, the
constraints assume that a rational agent cares only about events occurring in
individual branches of the wavefunction and has no interest in the form taken by
the global wavefunction containing all the branches – but given that this global
wavefunction is part of the ontology of the Everett interpretation, agents surely
have a right to care about it, just as they have a right to care about anything else
in the world. It is true that only in-branch facts can directly affect an agent’s
experience, but surely we are not constrained by rationality to care only about
things that directly affect us? Surely selfishness is not prescribed by rationality
(Price 2008)? Similarly, Albert argues that there cannot be a uniquely rational
way of assigning preferences, because we can always come up with alterna-
tives – for example, perhaps an agent might care more about branches where
their future selves are fatter, because there is more of them to be concerned
about on those branches! This may sound odd but it is not actually incoherent,
and therefore, Albert argues, it cannot be the case that agents in an universe are
rationally compelled to organise their preferences in the way that Deutsch and
Wallace suggest (Albert 2010).
A further problem is that it is not clear the decision-theoretic probabilities

are the right kind of probabilities to be used in theory confirmation. For even if
we grant that the decision-theoretic argument does prove that it is rational for
agents in an Everettian universe to behave as if the Born rule values are proba-
bilities, and thus that it is rational for Everettian agents who have seen the same
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sequence of measurement results as we have to behave as if they believe that
quantum mechanics is correct, this does not imply that quantum mechanics is
correct or likely to be correct. After all, there are agents in other branches of
the universe who have seen other series of measurement results and who have
behaved equally rationally in forming completely different beliefs – the deci-
sion theoretic argument has done nothing to reassure us that we are the agents
in the branch of the world which happens to contain the ‘right’ sequence of
results to get at the correct underlying theory. To reinforce this, Kent gives a
simple example of a toy world where the preference-based probabilities over
sequences of outcomes defined by the Deutsch-Wallace method are different
from the ‘true’ probabilities defined by the number of agents who see vari-
ous sequences, arguing that in such a world the Deutsch-Wallace probabilities
would lead the inhabitants to confirm the wrong theories (Kent 2010). So there
are still significant concerns about whether the decision-theoretic probabili-
ties can solve the problem of confirmation, and this remains one of the key
challenges for proponents of the Everett interpretation.

5.5.3 The de-Broglie-Bohm Interpretation

The final approach we will consider in detail is the de Broglie-Bohm the-
ory. This interpretation is in some ways akin to the Everettian one – it is
likewise  -ontic, and it likewise denies that wavefunction collapse is a real
process. However, the de-Broglie Bohm approach is  -supplemented, as in
addition to the wavefunction it postulates a set of n particles which are guided
through spacetime by the wavefunction, according to the following ‘guidance
equation’:

dqk
dt
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Here, qk is the position of particle k, mk is the mass of particle k, „ is Planck’s
constant divided by 2� , and  is the usual quantum mechanical n-particle
wavefunction, which evolves as usual according to the Schrödinger equation.
This is the simplest first-order evolution equation for the positions of the par-
ticles that is compatible with the Galilean and time-reversal covariance of the
Schrödinger equation (Durr et al. 1992).
The motivating idea here is that it is the positions of the particles which we

find out about during quantum measurements, and thus measurements always
have a single definite outcome since the de Broglie-Bohm particles cannot be
in superpositions, though their paths are influenced by all the branches of the
wavefunction and there is never any wavefunction collapse (Holland 1995).
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The feasibility of this interpretation rests on the ingenious observation that
although we can make quantum measurements of all sorts of different quan-
tities – charge, spin, and so on – in the end, every measurement finishes with
some observer making a note of the position of an indicator on a dial (or some
other more complicated display) and therefore, in the end, every quantummea-
surement is a measurement of position. Thus in order for us to have a definite
measurement result, it is enough that the de Broglie Bohm particles have a
definite position.
In order to understand why an appearance of wavefunction collapse can

emerge from this picture despite the fact that the de Broglie-Bohm wavefunc-
tion never collapses, it is helpful to define the conditional wavefunction of a
quantum system. Note that the Bohmian approach postulates there is just one
universal wavefunction, so Bohmian mechanics will be applicable to subsys-
tems of the universe only when we can define a subsystem wavefunction which
can be considered approximately isolated from the rest of the universal wave-
function. To do so, let us first divide all the de Broglie-Bohm particles in the
universe into the set X of particles associated with the system S, and the set Y
consisting of all the other particles. Let the conditional wavefunction of S at a
given time be given by the wavefunction of the entire universe conditioned on
the actual configuration of the particles in Y at that time. Now, the conditional
wavefunction will not in general evolve according to Schrödinger’s equation.
But in special cases where the universal wavefunction can bewritten in the form
‰u D  S.x/�:S.y/C‰?.x; y/, where �:S.y/ and‰?.x; y/ are associated with
macroscopically distinct states of the universe, and the actual configuration of
the particles in Y belongs to the support of �:S.y/, then  S.x/ is equal to the
conditional wavefunction of S and it will evolve according to Schrödinger’s
equation while the system is suitably isolated. In particular, immediately after
a measurement of S it is clear that the systemwill always be in this special form,
where the macroscopically distinct states in question correspond to the possible
outcomes of the measurement and �:S.y/ is associated with the outcome which
actually occurs. Thus, after the measurement, the effective wavefunction S.x/
is automatically equal to the wavefunction associated with the measurement
outcome which has just occurred – that is, the effective wavefunction has ‘col-
lapsed’ even though there is no actual collapse in the universal wavefunction
(Dürr et al. 2004).
It should be noted that de Broglie-Bohm approach, like the spontaneous col-

lapse approaches, has serious difficulties with relativity. This is because the
guiding equation of de Broglie-Bohm theory tells us that when we have a col-
lection of de Broglie-Bohm particles, the velocity of any one of the particles
at a given time depends on the value of the full multi-particle wavefunction at
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that time; and if the particles are spread out in space, in order to define their
collective wavefunction we have to be able to say what counts as ‘the same
time’ for all these spatially separated points. But relativity, of course, tells us
there is no fact of the matter about simultaneity for spatially separated points,
so it looks as if the relativistic version of the de Broglie-Bohm theory will not
be well-defined. A number of proposals have been made to get around this
difficulty – for example, we can simply add in a preferred reference frame in
which to define what counts as ‘the same time’, avoiding conflict with relativity
by making the preferred reference frame undetectable. One might object that
this seems a little arbitrary and sits poorly with the relativist denial of absolute
space, but Dürr et al. (2014) shows how to extract a preferred reference frame
in a covariant way from the wavefunction itself; this Machian move24 allows
us to have a preferred reference frame without the need for absolute space,
making the approach more compatible with relativistic thinking. An alterna-
tive is to follow the lead of the GRW flash picture and declare that only the
particles are part of the primitive ontology – the wavefunction is to be under-
stood as a nomic feature of the universe which governs the behaviour of the
particles without actually being a physical entity in and of itself (Dürr et al.
1995, Goldstein and Teufel 1999). This obviates us of the need to identify a
preferred reference frame since the different definitions of ‘at the same time’
do not affect the behaviour of the particles and therefore these different choices
can be regarded as merely a redundancy of the mathematical representation.
A further difficulty for the de Broglie-Bohm approach concerns the dual

role played by the wavefunction. We have seen that the wavefunction acts as
a guiding field for the de Broglie-Bohm particles, but in order for this pre-
scription to produce results which align with standard quantum mechanics, it
is also necessary that at the start of any experiment the probability distribution
over various possible spacetime configurations of the de Broglie-Bohm parti-
cles is equal to the distribution given by taking the squared absolute value of
the wavefunction at each point in configuration space. This seems suspiciously
coincidental, since prima facie there is no reason that the guiding field and the
spacetime probability distribution could not be completely independent (Dürr
et al. 1995). However, there is a possible answer to this objection, arising from
the observation that the quantum mechanical evolution laws have the property
of equivariance – that is to say, if the spacetime probability distributionmatches
the magnitude of the wavefunction at some time, then it will also match the
magnitude of the wavefunction at all future times. Using equivariance, it is

24 Ernst Mach was a physicist and philosopher who famously conjectured that inertial reference
frames are determined by the distribution of matter in the universe (Brown and Lehmkuhl 2016).



56 The Philosophy of Physics

possible to show that for nearly all initial distributions of the de Broglie-Bohm
particles, as temporal evolution goes on the particles will naturally move closer
and closer to the wavefunction magnitude distribution, and by the present time,
their distribution will be sufficiently close to it as to be indistinguishable (Durr
et al. 1992). An alternative approach employs an analogue of the Boltzmann
H-theorem to suggest that quantum probabilities arise dynamically in a simi-
lar way to thermal probabilities in ordinary statistical mechanics (Valentini and
Westman 2005).
Using this sort of account there is no conspiracy required to get the de

Broglie-Bohm particles in the right places, as they will naturally move to the
wavefunction magnitude distribution, even if they were distributed very dif-
ferently at the start of time. Furthermore, these proposals are quite exciting,
because if they are correct, there might exist empirical evidence for them –
for example, cosmologists might be able to find signs that quantum processes
in the early universe did not quite conform to the same laws that we observe
today, due to the de Broglie-Bohm particles not yet having reached the wave-
function magnitude distribution (Valentini 2010). Thus the de Broglie Bohm
interpretation can claim to make empirical predictions which might distinguish
it from other interpretations, in contradiction with the prevailing view that all
interpretations of quantum mechanics are empirically equivalent.

6 Further Topics in Quantum Foundations
We have so far discussed three issues of particular importance in the field of
quantum foundations, but of course, there are many further interesting ques-
tions addressed by the field which we are not able to cover in detail. In this
section, we give a brief survey of several other branches of quantum foun-
dations, and suggest resources which the interested reader could use to learn
more.

6.1 Operational Theories
In the previous section, we discussed ‘interpretations’ of quantum mechanics –
that is, attempts to understand quantum mechanics by proposing some under-
lying physical picture. Alternatively, we can take a more top-down approach:
quantum mechanics can be thought of as simply one possible theory out of
an ensemble of possible theories. This idea is usually parsed in the language
of ‘operational theories’, with each theory defined as a quadruple .P;M;T; p/,
where P is the set of possible preparations, M is the set of possible measure-
ments, T is the set of possible transformations, and the function p.OjMx;Ty;Pz/

gives the probability of obtaining outcome O when we perform preparation Pz
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followed by transformation Ty followed by measurement Mx (Abramsky and
Heunen 2012). Nearly all theories can be written down in this form, since no
mention is made of states, systems, particles, waves, or any other kind of unob-
servable object – we require only that the theory has a concept of preparation,
transformation, and measurement. Thus by thinking of quantum mechanics as
an operational theory we are in a position to compare it to a wide range of
other theories and to ask why the world should in fact be governed by quantum
mechanics, rather than some other operational theory.
The most ambitious way of answering this question is to propose a set of

postulates – i.e. constraints on possible operational theories – and show that
quantum mechanics is the only theory which obeys all of these postulates.
Obviously, it will be possible to achieve this if we are an allowed an unlimited
number of very specific postulates, but the hope is that it can be done using a
small number of quite general postulates which have some intuitive plausibil-
ity, so that the postulates can be said to ‘explain’ quantum theory in some sense.
Several suggestions for such postulates have been put forward – for example,
Masanes and Muller have shown that quantum theory can be derived from the
following five postulates (Masanes and Müller 2011):

1. In systems that carry one bit of information, each state is characterised by a
finite set of outcome probabilities.

2. The state of a composite system is characterised by the statistics of mea-
surements on the individual components.

3. All systems that effectively carry the same amount of information have
equivalent state spaces.

4. Any pure state of a system can be reversibly transformed into any other.
5. In systems that carry one bit of information, all mathematically well-defined

measurements are allowed by the theory.

The operational framework has also been put to other interesting uses. For
example, one of the most intriguing properties of quantum entanglement is the
fact that it is ‘monogamous’ – that is, there is a trade-off between the amount
of entanglement that a given quantum system can share with other systems. In
particular, if a given system A is maximally entangled with some system B, then
it cannot share entanglement with any other system (Koashi andWinter 2004).
The usual quantitative expression of the monogamy of entanglement employs a
quantity known as concurrence (Coffman et al. 2000), but while concurrence is
a mathematically tractable measure of entanglement, its physical interpretation
is not straightforward (Toner 2009, Seevinck 2010), and therefore it has been
found useful to study monogamy in a more general context by defining it in
an operational way. In the operational framework, we can define monogamy in
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purely observational language by treating it as a constraint on the possible sets
of correlations which can be obtained from measurements on distinct systems
(Toner and Verstraete 2006, Toner 2009). This enables us to compare quantum
monogamy to monogamy properties exhibited by other possible theories in the
space of operational theories (Barrett 2007): in particular, it is known that all
non-signalling theories obey a monogamy bound ensuring that if some set of
measurements .A;A0/ and .B;B0/ on two fixed systems Sa; Sb are capable of
jointly violating the CHSH inequality 3.1, then no set of measurements .C;C0/

on any other system Sc combined with the same set of measurements .A;A0/ on
system Sa can violate the analogous CHSH inequality with B replaced every-
where byC (Toner 2009). Wemight therefore hope that monogamy in quantum
theory can be fully explained by the constraints arising from no-signalling.
However, using the operational framework, it can be shown that the region
of tripartite correlations which can be achieved by measurements on entangled
quantum systems is actually smaller than the region which can be achieved
in a general theory constrained only by no-signalling (Toner and Verstraete
2006). It remains an open question as to whether some other physical principle
might explain the gap between the quantum and no-signalling bounds: again,
this problem is similar in form to the problem of explaining the gap between the
quantum and no-signalling bounds on non-locality that we saw in Section 3.4,
and the problem of explaining the gap between the quantum and exclusivity
bounds on contextuality that we saw in Section 4.

6.2 Resource Theories
One intriguing recent development in quantum foundations involves thinking
about properties of quantum mechanics in terms of resource theories.
To define a resource theory, we specify a set of ‘free’ states and a set of ‘free’

operations; then states which cannot be produced from the free states using the
free operations are ‘resource’ states relative to the relevant operational restric-
tion. For example, in the resource theory of entanglement, the free states are
the separable states (the states with no entanglement), and the free operations
are all those which involve only local operations and classical communication
(LOCC) (Shahandeh 2019). Suppose we have two quantum systems A and B
which are in a separable state and which are in different spatial locations: it
turns out that the only states we can produce from this initial state using LOCC
are other separable states,25 which means that all non-separable states are a
resource in this theory. Furthermore, we can use the resource states to perform

25 Note that LOCC does not permit bringing the two particles together and performing joint oper-
ations on them – if such operations are permitted, then it is of course possible to produce an
entangled state.
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operations which are not free, as in the procedure known as entanglement swap-
ping: if we are given a second pair of systems A0;B0 which are in an entangled
state, each of which is co-located with one of the original pair of systems, we
can perform a local measurement on A;A0 and another local measurement on
B;B0, with the result that A0 and B0 are no longer entangled but A and B are now
entangled (PZukowski et al. 1993).
Resource theories like this give us a mathematically precise framework in

which to study some of the puzzling features of quantum mechanics. In par-
ticular, using a resource theory lets us quantify how useful a particular state
is relative to a given restriction, and this leads to a meaningful way of quanti-
fying properties of quantum states such as entanglement. For example, given
a set of entangled mixed states, the resource theory of entanglement helps us
determine how many of the more useful pure entangled states we can extract
from these states using only LOCC. Indeed, it turns out that there are certain
sorts of mixed states, known as ‘bound entangled states’, which are entangled
but which cannot under any circumstances be used to obtain pure entangled
states using only LOCC, so the resource theory is important in helping us to
distinguish between mixed states that are useful and mixed states that are not
useful relative to this particular operational constraint (Shahandeh 2019).
An exciting recent application of the resource theory framework is to quan-

tum computing. In the resource theory of stabilizer computation (as discussed
in Section 4.5), the stabilizer operations are the free operations, and the magic
states are the resources (Veitch et al. 2014). Since magic states can only be
produced by non-stabilizer operations, there is a lot of noise in the production
process, meaning that we end up producing impure mixed states rather than
the pure magic states that we need for quantum computation. However, these
impure states can be converted to a smaller number of pure magic states using
stabilizer operations, and the resource formalism enables us to pose and answer
questions about this process – for example, given a number of impure mixed
states, how many magic states (if any) can we produce from them using only
stabilizer operations? In addition to their theoretical interest, these questions
are of great practical importance for people engaged in the project of building
real-world quantum computers.

6.3 The Role of the Observer

Consider the following experimental procedure. It involves four experi-
menters: A and B, who are in two separate labs, and C and D, who are
outside the labs and can perform measurements on the two laboratories,
including the experimenters A and B themselves.
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1. Experimenter A performs a measurement on a quantum system Swhich
is prepared in a state such that the measurement gives result H with
probability 1

3 and T with probability 2
3 . If the result is H, A prepares a

particle P in the state j1i, and if the result is T, A prepares P in the state
1p
2
.j0i C j1i/. A then sends P to experimenter B, who is in a separate

lab.
2. Experimenter B performs the measurement fj0ih0j; j1i h1jg on system

P. This means that Bwill definitely obtain the result j1i h1j if they have
been sent a system P prepared in the state j1i.

3. ExperimenterC performs ameasurement on the lab containingA, using
a measurement which includes a measurement element projecting onto
the state jokCi D

1p
2
.jHHi � jHTi/, where jHHi is the state of the lab

if A obtained the result H to their measurement, and jHTi is the state of
the lab if A obtained the result T to their measurement.

4. ExperimenterD performs ameasurement on the lab containingB, using
a measurement which includes a measurement element projecting onto
the state jokDi D

1p
2
.jB1i � jB0i/, where jB0i is the state of the lab if

B obtained the result j0i to their measurement and jB1i is the state of
the lab if B obtained the result j1i to their measurement.

Suppose now that all four experimenters analyse the experiment using
standard quantum theory, thus coming up with a set of predictions. Each
experimenter can also analyse the experiment from the point of view of
each of their fellow experimenters, assuming that everyone else is also
using quantum theory correctly. We suppose that each experimenter adds
all the predictions they ascribe to their fellow experimenters to their own
set of predictions – which is reasonable, since presumably everyone who
correctly applies the same scientific theory to the same experiment must
come up with the same (correct) predictions.

� Suppose experimenter A obtains the result T in their measurement of
S, and thus sends B a particle P in the state 1p

2
.j0i C j1i/. If A now

writes down the measurement performed by B as a unitary operation
on the joint state of the particle P and the rest of the lab including B
themself, the resulting state of the lab when P is in state 1p

2
.j0i C j1i/

is orthogonal to the vector jokDi. So A concludes that experimenter D
will definitely not obtain the result jokDi.

� Suppose B obtains the result 0 in their measurement. They therefore
infer that A has obtained the result T, since if A had obtained H, the
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particle would have been prepared in state j1i and the outcome of
the measurement would then definitely have been j1i h1j. They there-
fore ascribe to A the prediction that experimenter D will definitely not
obtain the result jokDi, and therefore they add this to their own set of
predictions.

� Suppose C now obtains the result jokCi in their measurement. If C now
writes down the measurements performed by A and B as a unitary oper-
ation on the initial state of the particle S and the rest of the two labs
including A and B themselves, the resulting state of the two labs is
orthogonal to the state jokCi˝jB1i.C therefore concludes that since they
obtained the result jokCi to their measurement, B cannot have obtained
result 1 to their measurement, so B must have obtained result 0 in their
measurement. C will therefore ascribe to B the prediction that experi-
menterDwill definitely not obtain the result jokDi, so they will add this
to their own set of predictions.

� Suppose C now tells D that they have obtained the result labelled jokCi

in their measurement. Following the reasoning in the previous step, D
will ascribe toC the prediction thatDwill definitely not obtain the result
jokDi, so they will add this to their own set of predictions.

This reasoning shows that if D learns that C has obtained the result
jokCi, D will then predict that their own measurement will certainly not
have the result jokDi. But if instead of following the reasoning above D
carries out a full quantum-mechanical analysis of the above experiment,
treating the two laboratories as quantum systems which can exist in super-
position states, they will predict that it is possible for C to obtain outcome
jokCi and D to obtain outcome jokDi; so D can make two different and
inconsistent predictions merely by considering the experiment from dif-
ferent points of view. Thus we have shown that quantum mechanics is not
self-consistent.

In Section 5 we saw that observers seem to play a special role in quantum
theory, since the act of performing a measurement results in a non-linear evo-
lution which does not occur anywhere else in quantum mechanics. This special
role was famously highlighted by Wigner in the form of the ‘Wigner’s Friend’
thought-experiment (Wigner 1961), where an experimenter inside a box per-
forms a measurement on a quantum particle initially prepared in the state
1p
2
.j0i C j1i/, and observes a result ‘0’, then concludes that the system is now

in the state j0i. A second experimenter outside the box who does not know
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the outcome of the measurement must assign the joint system of the particle
and friend the state 1p

2
.j0ij0Fi C j1ij1Fi/, where j0Fi is the state of the friend

which corresponds to ‘having observed the outcome 0’ and j1Fi is the state cor-
responding to ‘having observed the outcome 1’. Only when the second observer
opens the box and learns the outcome of the measurement will they update the
state to j0ij0Fi. Wigner argues that since the observer inside the box can report
having a conscious state of knowledge that the state was j0i before the box was
opened, we must in this case conclude that the state was j0i all along, but on
the other hand, if the measurement had been made by an inanimate measuring
device which simply recorded its result, the device could remain in a superposi-
tion until the box is opened, since it is not able to report that it was in a definite
state before the opening of the box. Wigner thus argued that the wavefunction
collapse must have something to do with consciousness.
This argument has a certain force – it undoubtedly shows up the existence

of some confusion around the role of observers in quantum theory – but it
does not lead to any obvious contradiction, since we saw in Section 5.5.2
that there’s a credible approach to quantum mechanics which implies that a
conscious observer may be in a superposition of two conscious states. Fifty
years later, however, Frauchiger and Renner took the idea further by deriving
a genuine contradiction (Frauchiger and Renner 2018). They came up with
a specific experiment, involving two experimenters in boxes and two further
experimenters observing from the outside, and imagined how the experimenters
outside the boxes might reason if they tried to understand the experiment from
the point of view of the experimenters in the boxes, and vice versa. Frauchiger
and Renner showed that if everyone is assumed to apply quantum mechanics
correctly, then under certain circumstances one of the outside experimenters
will conclude that one of the inside experimenters must predict with cer-
tainty an opposite outcome to the one which has actually occurred. That is,
if a quantum mechanical system contains an experimenter making calculations
using quantum mechanics correctly, then quantum mechanics predicts that this
experimenter will sometimes make the wrong predictions! This seems pretty
disastrous for quantum mechanics – what sort of theory predicts that its own
predictions will be wrong?
Of course, this disaster is for the moment only theoretical, because exper-

imenters of the kind that Frauchinger and Renner describe cannot currently
be performed: it is very difficult to keep more than a few particles at a time
in a superposition state, and current technology certainly is not adequate to
keep human beings made up of many millions of particles in superpositions.
Nonetheless, from a foundational point of view, the result certainly seems con-
cerning. That said, one might think that the criticism made by Frauchinger



Foundations of Quantum Mechanics 63

and Renner is not really fair, since the quantum-mechanical description of the
experiment which predicts that it is possible for both C and D to obtain the
outcome 0 is one which assumes that the laboratories can exist in a superposi-
tion of two measurement outcomes, but standard quantum mechanics includes
the Born Rule, which tells us that the wavefunction collapses whenever a mea-
surement is made and therefore this sort of superposition state is not physically
possible. Rather than exposing a new contradiction in quantum mechanics,
then, one might think that the Frauchiger-Renner result is simply a new way of
stating the measurement problem: experimenters in quantum mechanics can-
not be described as quantum systems, because quantum measurements are a
special sort of process which cannot be modelled in the same way as the rest
of quantum mechanics.
Nonetheless, Frauchinger and Renner’s result has important consequences.

As they point out, unitary quantum mechanics – that is, quantum mechanics
without wavefunction collapse – is very frequently applied to domains out-
side the realm of microscopic experiments. For example, cosmologists often
apply unitary quantummechanics to calculations about black holes and the cos-
mic microwave background, assuming implicitly that it remains valid in these
domains. But if quantum mechanics cannot be used consistently to describe
observers then clearly it cannot be universally valid, so there is no obvious
reason we should expect cosmology to obey unitary quantum mechanics. Of
course, there might turn out to be some resolution of the measurement prob-
lem which has the consequence that unitary quantum mechanics is universally
valid after all, but perhaps we should be wary of assuming universal validity
so readily without any attempt at justification.

7 The Future of Quantum Foundations
As we have seen in this short and incomplete tour, the field of quantum foun-
dations has made great advances since the time of Bell’s theorem. However,
there is still a surprising lack of consensus around questions like non-locality,
contextuality, and the reality of the wavefunction, and one might well feel that
the central mysteries of quantum mechanics remain intact and the project of
interpreting it remains incomplete. Everyone working in the field will natu-
rally have their own thoughts about the reason for this lack of progress, but we
would like to make a suggestion which returns to the point made in Section
3.3.2: it seems highly unlikely that any theory which is both spatially non-local
and temporally local can ever be reconciled with relativity, and so there should
be a strong presumption in favour of either dispensing with spatial non-locality,
for example by explicitly denying the assumption of statistical independence,
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or accepting temporal non-locality. We suggest that one or both of these possi-
bilities must be taken up if quantum foundations is to make significant further
progress.
Of course, some people working in the field might argue that statistical inde-

pendence and temporal locality are no more than harmless simplifications.
After all, the usual mathematical formulation of quantum mechanics is tempo-
rally local and upholds the assumption of statistical independence, so it might
seem reasonable for us to retain these assumptions while we attempt to address
the foundational problems of quantum mechanics, even if we accept that once
wemove to a relativistic context we will probably have to discard at least one of
them. But this defence is inadequate, because temporal locality and statistical
independence are so deeply woven into the way in which quantum founda-
tions is usually done that the field’s major results will take on very different
meanings once these assumptions are abandoned. After all, Bell’s theorem, the
Kochen-Specker theorem, the Spekkens contextuality theorem, the PBR theo-
rem, the Pusey-Leifer retrocausality theorem, and many other important results
that we have not had time to cover are all derived within the ontological models
framework, which presupposes temporal locality and statistical independence
and which does not really make sense without those assumptions. Indeed, it
is the founding principle of the ontological models approach that the result of
a measurement of a quantum system depends wholly on the ontic state of the
system at the time of the measurement, and there is no way to use the formal-
ism without this assumption of temporal locality, since the whole purpose of
this method of analysis is to understand what information must be contained in
the ontic state in order to reproduce the empirical results of quantum mechan-
ics, which will be impossible if we allow that the results of measurements may
depend on something other than the ontic state. Likewise, there does not seem
to be any way to use the ontological models framework without the assump-
tion of statistical independence, since the framework is set up in such a way that
any response function can be applied to any underlying state and we have no
mechanism for introducing any dependence between the underlying state and
the choice of response function. This means that many of the most important
results of quantum foundations depend crucially on a pair of assumptions that
almost certainly cannot both hold in the real world.
This problem also pervades most current work on the interpretation of quan-

tum mechanics: for example, the de Broglie-Bohm and spontaneous collapse
models in their standard forms both obey temporal locality and statistical
independence, and thus, as we might expect, great difficulties have been
encountered in the attempt to make them compatible with relativity. On the
other hand, the GRW flash approach offers a promising example of what a
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temporally non-local interpretation of quantummechanics might look like, and
proves the point that when we adopt temporal as well as spatial non-locality,
there is no longer any problem with relativity.26

Indeed, there seem to be many exciting possibilities for the future of quan-
tum foundations once we come to grips with the assumptions that are getting in
the way of progress. As we saw in Section 3, superdeterminism, retrocausality,
and temporally non-local approaches have all been coming to greater promi-
nence in the field, and it is to be hoped that these new ideas might finally lead
us to solving the puzzles of quantum mechanics which have now persisted for
more than a century. That said, as we saw in the discussion of the two forms
of retrocausality in Section 3.3.3, it is easy for old ways of thinking to creep
into these new conceptual frameworks, so care will have to be taken not to sim-
ply repeat old mistakes in a new language. New mathematical and conceptual
tools will no doubt have to be developed for these brave new worlds, but no
doubt much of our existing methodology will be applicable in some way – for
example, since the operational framework makes no mention of states or tem-
poral evolution, it is suitable to be used in the description of theories which are
temporally non-local and/or retrocausal and/or superdeterministic: Oreshkov
and Cerf (2016) have already set out a way of generalising the framework
which does not depend on a predefined time or causal structure, thus giving
us the mathematical resources to deal with theories that might contain indefi-
nite causal order, causal loops or other structures that do not fit into our familiar
notions of time and causality. Similarly, resource theory formulations also offer
a new way of thinking about scientific theories without presupposing temporal
locality or a direction of time.
Quantum foundations might also draw useful lessons from areas of physics

which have attempted to face head-on the problem of uniting quantummechan-
ics and relativity. Quantum field theory and quantum gravity are not yet
complete and consistent, so it would be premature to abandon quantum founda-
tions altogether in favour of studying the foundations of these newer theories,
but research in quantum foundations could profitably make use of some of the
knowledge that has been accrued regarding the interaction of quantummechan-
ics with relativity. Similarly useful insights are coming out of the new field of
relativistic quantum information, which studies the interplay between quantum

26 It is not straightforward to say whether the Everett interpretation obeys temporal locality and/or
statistical independence, since space, time and probability are so very different from our usual
concepts of them in the Everettian context; it is also not straightforward to say whether or not
the Everett view is compatible with relativity.
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information and relativity (Kent 2013, Edward Bruschi et al. 2014, Lind-
kvist et al. 2015, Bruschi et al. 2016). Putting quantum mechanics back in its
real-world relativistic context might shed new light on some of the concep-
tual problems studied in quantum foundations, and seems a more promising
approach if our aim is to understand what sort of mechanisms could underpin
quantum mechanics in the actual universe in which we live.
Of course, this is only the present author’s perspective on the future of quan-

tum foundations; other researchers will have other ideas, and perhaps by this
stage the reader will be drawing their own conclusions! We hope at least to
have made a convincing argument that quantum foundations is important for
both intellectual and practical reasons, and that many exciting directions within
the field are yet to be fully explored.We encourage interested readers to explore
further using the books and papers that have been referenced throughout this
text.
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