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Preface

The fundamental theory that underlies the physicist’s description of the material
world is quantum mechanics – specifically Erwin Schrödinger’s 1926 formula-
tion of the theory. This theory also brought with it an emphasis on certain fields
of mathematical analysis, e.g., Hilbert space theory, spectral analysis, differen-
tial equations, etc., which, in turn, encouraged the development of parts of pure
mathematics.

Despite the great success of quantum mechanics in explaining details of the
structure of atoms, molecules (including the complicated molecules beloved of
organic chemists and the pharmaceutical industry, and so essential to life) and
macroscopic objects like transistors, it took 41 years before the most fundamental
question of all was resolved: Why doesn’t the collection of negatively charged
electrons and positively charged nuclei, which are the basic constituents of the
theory, implode into a minuscule mass of amorphous matter thousands of times
denser than the material normally seen in our world? Even today hardly any
physics textbook discusses, or even raises this question, even though the basic
conclusion of stability is subtle and not easily derived using the elementary
means available to the usual physics student. There is a tendency among many
physicists to regard this type of question as uninteresting because it is not easily
reducible to a quantitative one. Matter is either stable or it is not; since nature tells
us that it is so, there is no question to be answered. Nevertheless, physicists firmly
believe that quantum mechanics is a ‘theory of everything’ at the level of atoms
and molecules, so the question whether quantum mechanics predicts stability
cannot be ignored. The depth of the question is further revealed when it is realized
that a world made of bosonic particles would be unstable. It is also revealed by
the fact that the seemingly innocuous interaction of matter and electromagnetic
radiation at ordinary, every-day energies – quantum electrodynamics – should be
a settled, closed subject, but it is not and it can be understood only in the context

xiii



xiv Preface

of perturbation theory. Given these observations, it is clearly important to know
that at least the quantum-mechanical part of the story is well understood.

It is this stability question that will occupy us in this book. After four decades
of development of this subject, during which most of the basic questions have
gradually been answered, it seems appropriate to present a thorough review of
the material at this time.

Schrödinger’s equation is not simple, so it is not surprising that some inter-
esting mathematics had to be developed to understand the various aspects of the
stability of matter. In particular, aspects of the spectral theory of Schrödinger
operators and some new twists on classical potential theory resulted from this
quest. Some of these theorems, which play an important role here, have proved
useful in other areas of mathematics.

The book is directed towards researchers on various aspects of quantum
mechanics, as well as towards students of mathematics and students of physics.
We have tried to be pedagogical, recognizing that students with diverse back-
grounds may not have all the basic facts at their finger tips. Physics students
will come equipped with a basic course in quantum mechanics but perhaps will
lack familiarity with modern mathematical techniques. These techniques will
be introduced and explained as needed, and there are many mathematics texts
which can be consulted for further information; among them is [118], which we
will refer to often. Students of mathematics will have had a course in real anal-
ysis and probably even some basic functional analysis, although they might still
benefit from glancing at [118]. They will find the necessary quantum-mechanical
background self-contained here in chapters two and three, but if they need more
help they can refer to a huge number of elementary quantum mechanics texts,
some of which, like [77, 22], present the subject in a way that is congenial to
mathematicians.

While we aim for a relaxed, leisurely style, the proofs of theorems are either
completely rigorous or can easily be made so by the interested reader. It is our
hope that this book, which illustrates the interplay between mathematical and
physical ideas, will not only be useful to researchers but can also be a basis for
a course in mathematical physics.

To keep things within bounds, we have purposely limited ourselves to the
subject of stability of matter in its various aspects (non-relativistic and relativis-
tic mechanics, inclusion of magnetic fields, Chandrasekhar’s theory of stellar
collapse and other topics). Related subjects, such as a study of Thomas–Fermi
and Hartree–Fock theories, are left for another day.
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C H A P T E R 1

Prologue

1.1 Introduction

The basic constituents of ordinary matter are electrons and atomic nuclei. These
interact with each other with several kinds of forces – electric, magnetic and
gravitational – the most important of which is the electric force. This force
is attractive between oppositely charged particles and repulsive between like-
charged particles. (The electrons have a negative electric charge −e while the
nuclei have a positive charge +Ze, with Z = 1, 2, . . . , 92 in nature.) Thus, the
strength of the attractive electrostatic interaction between electrons and nuclei
is proportional to Ze2, which equals Zα in appropriate units, where α is the
dimensionless fine-structure constant, defined by

α = e2

h̄c
= 7.297 352 538 × 10−3 = 1

137.035 999 68
, (1.1.1)

and where c is the speed of light, h̄ = h/2π and h is Planck’s constant.
The basic question that has to be resolved in order to understand the existence

of atoms and the stability of our world is:

Why don’t the point-like electrons fall into the (nearly) point-like nuclei?

This problem of classical mechanics was nicely summarized by Jeans in 1915
[97]:

“There would be a very real difficulty in supposing that the (force) law 1/r2 held
down to zero values of r . For the force between two charges at zero distance
would be infinite; we should have charges of opposite sign continually rushing
together and, when once together, no force would be adequate to separate
them . . . Thus the matter in the universe would tend to shrink into nothing or
to diminish indefinitely in size.”

1



2 Prologue

A sensitive reader might object to Jeans’ conclusion on the grounds that
the non-zero radius of nuclei would ameliorate the collapse. Such reasoning
is beside the point, however, because the equilibrium separation of charges
observed in nature is not the nuclear diameter (10−13 cm) but rather the atomic
size (10−8 cm) predicted by Schrödinger’s equation. Therefore, as concerns
the problem of understanding stability, in which equilibrium lengths are of the
order of 10−8 cm, there is no loss in supposing that all our particles are point
particles.

To put it differently, why is the energy of an atom with a point-like nucleus
not −∞? The fact that it is not is known as stability of the first kind; a more
precise definition will be given later. The question was successfully answered
by quantum mechanics, whose exciting development in the beginning of the
twentieth century we will not try to relate – except to note that the basic theory
culminated in Schrödinger’s famous equation of 1926 [156]. This equation
explained the new, non-classical, fact that as an electron moves close to a nucleus
its kinetic energy necessarily increases in such a way that the minimum total
energy (kinetic plus potential) occurs at some positive separation rather than at
zero separation.

This was one of the most important triumphs of quantum mechanics!

Thomson discovered the electron in 1897 [180, 148], and Rutherford [155]
discovered the (essentially) point-like nature of the nucleus in 1911, so it took
15 years from the discovery of the problem to its full solution. But it took almost
three times as long, 41 years from 1926 to 1967, before the second part of the
stability story was solved by Dyson and Lenard [44].

The second part of the story, known as stability of the second kind, is, even
now, rarely told in basic quantum mechanics textbooks and university courses,
but it is just as important. Given the stability of atoms, is it obvious that bulk
matter with a large number N of atoms (say, N = 1023) is also stable in the
sense that the energy and the volume occupied by 2N atoms are twice that of N
atoms? Our everyday physical experience tells us that this additivity property, or
linear law, holds but is it also necessarily a consequence of quantum mechanics?
Without this property, the world of ordinary matter, as we know it, would not
exist.

Although physicists largely take this property for granted, there were a few
that thought otherwise. Onsager [145] was perhaps the first to consider this
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kind of question, and did so effectively for classical particles with Coulomb
interactions but with the addition of hard cores that prevent particles from
getting too close together. The full question (without hard cores) was addressed
by Fisher and Ruelle in 1966 [66] and they generalized Onsager’s results to
smeared out charges. In 1967 Dyson and Lenard [44] finally succeeded in
showing that stability of the second kind for truly point-like quantum particles
with Coulomb forces holds but, surprisingly, that it need not do so. That is,
the Pauli exclusion principle, which will be discussed in Chapter 3, and which
has no classical counterpart, was essential. Although matter would not collapse
without it, the linear law would not be satisfied, as Dyson showed in 1967 [43].
Consequently, stability of the second kind does not follow from stability of the
first kind! If the electrons and nuclei were all bosons (which are particles that
do not satisfy the exclusion principle), the energy would not satisfy a linear
law but rather decrease like −N7/5; we will return to this astonishing discovery
later.

The Dyson–Lenard proof of stability of the second kind [44] was one of
the most difficult, up to that time, in the mathematical physics literature. A
challenge was to find an essential simplification, and this was done by Lieb and
Thirring in 1975 [134]. They introduced new mathematical inequalities, now
called Lieb–Thirring (LT) inequalities (discussed in Chapter 4), which showed
that a suitably modified version of the 1927 approximate theory of Thomas and
Fermi [179, 62] yielded, in fact, a lower bound to the exact quantum-mechanical
answer. Since it had already been shown, by Lieb and Simon in 1973 [129, 130],
that this Thomas–Fermi theory possessed a linear lower bound to the energy, the
many-body stability of the second kind immediately followed.

The Dyson–Lenard stability result was one important ingredient in the solution
to another, but related problem that had been raised many years earlier. Is it true
that the ‘thermodynamic limit’ of the free energy per particle exists for an infinite
system at fixed temperature and density? In other words, given that the energy
per particle of some system is bounded above and below, independent of the size
of the system, how do we know that it does not oscillate as the system’s size
increases? The existence of a limit was resolved affirmatively by Lebowitz and
Lieb in 1969 [103, 116], and we shall give that proof in Chapter 14.

There were further surprises in store, however! The Dyson–Lenard result was
not the end of the story, for it was later realized that there were other sources
of instability that physicists had not seriously thought about. Two, in fact. The
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eventual solution of these two problems leads to the conclusion that, ultimately,
stability requires more than the Pauli principle. It also requires an upper bound
on both the physical constants α and Zα.1

One of the two new questions considered was this. What effect does Einstein’s
relativistic kinematics have? In this theory the Newtonian kinetic energy of an
electron with mass m and momentum p, p2/2m, is replaced by the much weaker√

p2c2 +m2c4 −mc2. So much weaker, in fact, that the simple atom is stable
only if the relevant coupling parameter Zα is not too large! This fact was known
in one form or another for many years – from the introduction of Dirac’s 1928
relativistic quantum mechanics [39], in fact. It was far from obvious, therefore,
that many-body stability would continue to hold even if Zα is kept small (but
fixed, independent of N ). Not only was the linear N -dependence in doubt but
also stability of the first kind was unclear. This was resolved by Conlon in 1984
[32], who showed that stability of the second kind holds if α < 10−200 and
Z = 1.

Clearly, Conlon’s result needed improvement and this led to the invention of
interesting new inequalities to simplify and improve his result. We now know
that stability of the second kind holds if and only if both α and Zα are not too
large. The bound on α itself was the new reality, previously unknown in the
physics literature.

Again new inequalities were needed when it was realized that magnetic fields
could also cause instabilities, even for just one atom, if Zα2 is too large. The
understanding of this strange, and totally unforeseen, fact requires the knowl-
edge that the appropriate Schrödinger equation has ‘zero-modes’, as discovered
by Loss and Yau in 1986 [139] (that is, square integrable, time-independent
solutions with zero kinetic energy). But stability of the second kind was still
open until Fefferman showed in 1995 [57, 58] that stability of the second kind
holds if Z = 1 and α is very small. This result was subsequently improved to
robust values of Zα2 and α by Lieb, Loss and Solovej in 1995 [123].

The surprises, in summary, were that stability of the second kind requires
bounds on the fine-structure constant and the nuclear charges. In the relativistic
case, smallness of α and of Zα is necessary, whereas in the non-relativistic case
with magnetic fields, smallness of α and of Zα2 is required.

1 If Z ≥ 1, which it always is in nature, a bound on Zα implies a bound on α, of course. The
point here is that the necessary bound on α is independent of Z, even if Z is arbitrarily small.
In this book we shall not restrict our attention to integer Z.
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Given these facts, one can ask if the simultaneous introduction of relativistic
mechanics, magnetic fields, and the quantization of those fields in the man-
ner proposed by M. Planck in 1900 [149], leads to new surprises about the
requirements for stability. The answer, proved by Lieb, Loss, Siedentop and
Solovej [127, 119], is that in at least one version of the problem no new con-
ditions are needed, except for expected adjustments of the allowed bounds for
Zα and α.

While we will visit all these topics in this book, we will not necessarily follow
the historical route. In particular, we will solve the non-relativistic problem
by using the improved inequalities invented to handle the relativistic problem,
without the introduction of Thomas–Fermi theory. The Thomas–Fermi story
is interesting, but no longer essential for our understanding of the stability of
matter. Hence we will mention it, and sketch its application in the stability of
matter problem, but we will not treat it thoroughly, and will not make further
use of it. Some earlier pedagogical reviews are in [108, 115].

1.2 Brief Outline of the Book

An elementary introduction to quantum mechanics is given in Chapter 2. It is a
thumbnail sketch of the relevant parts of the subject for readers who might want
to refresh their memory, and it also serves to fix notation. Readers familiar with
the subject can safely skip the chapter.

Chapter 3 discusses the many-body aspects of quantum mechanics and, in
particular, introduces the concept of stability of matter in Section 3.2. The
chapter also contains several results that will be used repeatedly in the chapters
to follow, like the monotonicity of the ground state energy in the nuclear charges,
and the fact the bosons have the lowest possible ground state energy among all
symmetry classes.

A detailed discussion of Lieb–Thirring inequalities is the subject of
Chapter 4. These inequalities play a crucial role in our understanding of stability
of matter. They concern bounds on the moments of the negative eigenvalues of
Schrödinger type operators, which lead to lower bounds on the kinetic energy of
many-particle systems in terms of the corresponding semiclassical expressions.
This chapter, like Chapters 5 and 6, is purely mathematical and contains analytic
inequalities that will be applied in the following chapters.

Electrostatics is an old subject whose mathematical underpinning goes back
to Newton’s discussion in the Principia [144] of the gravitational force, which
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behaves in a similar way except for a change of sign from repulsive to attrac-
tive. Nevertheless, new inequalities are essential for understanding many-body
systems, and these are given in Chapters 5 and 6. The latter chapter contains a
proof of the Lieb–Oxford inequality [125], which gives a bound on the indirect
part of the Coulomb electrostatic energy of a quantum system.

Chapter 7 contains a proof of stability of matter of non-relativistic fermionic
particles. This is the same model for which stability was first shown by Dyson
and Lenard [44] in 1967. The three proofs given here are different and very
short given the inequalities derived in Chapters 4–6. As a consequence, matter
is not only stable but also extensive, in the sense that the volume occupied is
proportional to the number of particles. The instability of the same model for
bosons will also be discussed.

The analogous model with relativistic kinematics is discussed in Chapter 8,
and stability for fermions is proved for a certain range of the parameters α

and Zα. Unlike in the non-relativistic case, where the range of values of these
parameters was unconstrained, bounds on these parameters are essential, as
will be shown. The proof of stability in the relativistic case will be an important
ingredient concerning stability of the models discussed in Chapters 9, 10 and 11.

The influence of spin and magnetic fields will be studied in Chapter 9. If
the kinetic energy of the particles is described by the Pauli operator, it becomes
necessary to include the magnetic field energy for stability. Again, bounds on
various parameters become necessary, this time α and Zα2. It turns out that zero
modes of the Pauli operator are a key ingredient in understanding the boundary
between stability and instability.

If the kinetic energy of relativistic particles is described by the Dirac operator,
the question of stability becomes even more subtle. This is the content of Chap-
ter 10. For the Brown–Ravenhall model, where the physically allowed states are
the positive energy states of the free Dirac operator, there is always instability
in the presence of magnetic fields. Stability can be restored by appropriately
modifying the model and choosing as the physically allowed states the ones that
have a positive energy for the Dirac operator with the magnetic field.

The effects of the quantum nature of the electromagnetic field will be inves-
tigated in Chapter 11. The models considered are the same as in Chapters 9
and 10, but now the electromagnetic field will be quantized. These models are
caricatures of quantum electrodynamics. The chapter includes a self-contained
mini-course on the electromagnetic field and its quantization. The stability and
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instability results are essentially the same as for the non-quantized field, except
for different bounds on the parameter regime for stability.

How many electrons can an atom or molecule bind? This question will be
addressed in Chapter 12. The reason for including it in a book on stability of
matter is to show that for a lower bound on the ground state energy only the
minimum of the number of nuclei and the number of electrons is relevant. A
large excess charge can not lower the energy.

Once a system becomes large enough so that the gravitational interaction
can not be ignored, stability fails. This can be seen in nature in terms of the
gravitational collapse of stars and the resulting supernovae, or as the upper mass
limit of cold stars. Simple models of this gravitational collapse, as appropriate
for white dwarfs and neutron stars, will be studied in Chapter 13. In particular,
it will be shown how the critical number of particles for collapse depends on
the gravitational constant G, namely G−3/2 for fermions and G−1 for bosons,
respectively.

The first 13 chapters deal essentially with the problem of showing that the
lowest energy of matter is bounded below by a constant times the number of
particles. The final Chapter 14 deals with the question of showing that the
energy is really proportional to the number of particles, i.e., that the energy per
particle has a limit as the particle number goes to infinity. Such a limit exists
not only for the ground state energy, but also for excited states in the sense that
at positive temperature the thermodynamic limit of the free energy per particle
exists.



C H A P T E R 2

Introduction to Elementary
Quantum Mechanics and Stability

of the First Kind

In this second chapter we will review the basic mathematical and physical
facts about quantum mechanics and establish physical units and notation. Those
readers already familiar with the subject can safely jump to the next chapter.

An attempt has been made to make the presentation in this chapter as elemen-
tary as possible, and yet present the basic facts that will be needed later. There
are many beautiful and important topics which will not be touched upon such as
self-adjointness of Schrödinger operators, the general mathematical structure of
quantum mechanics and the like. These topics are well described in other works,
e.g., [150].

Much of the following can be done in a Euclidean space of arbitrary dimension,
but in this chapter the dimension of the Euclidean space is taken to be three –
which is the physical case – unless otherwise stated. We do this to avoid confusion
and, occasionally, complications that arise in the computation of mathematical
constants. The interested reader can easily generalize what is done here to the
R
d, d > 3 case. Likewise, in the next chapters we mostly consider N particles,

with spatial coordinates in R
3, so that the total spatial dimension is 3N .

2.1 A Brief Review of the Connection Between Classical and
Quantum Mechanics

Considering the range of validity of quantum mechanics, it is not surprising
that its formulation is more complicated and abstract than classical mechanics.
Nevertheless, classical mechanics is a basic ingredient for quantum mechanics.
One still talks about position, momentum and energy which are notions from
Newtonian mechanics.

The connection between these two theories becomes apparent in the semi-
classical limit, akin to passing from wave optics to geometrical optics. In its
Hamiltonian formulation, classical mechanics can be viewed as a problem

8



2.1 Review of Classical and Quantum Mechanics 9

of geometrical optics. This led Schrödinger to guess the corresponding wave
equation. We refrain from fully explaining the semiclassical limit of quantum
mechanics. For one aspect of this problem, however, the reader is referred to
Chapter 4, Section 4.1.1.

We turn now to classical dynamics itself, in which a point particle is fully
described by giving its position x = (x1, x2, x3) in R

3 and its velocity v =
dx/dt = ẋ in R

3 at any time t , where the dot denotes the derivative with respect
to time.1 Newton’s law of motion says that along any mechanical trajectory its
acceleration v̇ = ẍ satisfies

mẍ = F(x, ẋ, t), (2.1.1)

where F is the force acting on the particle and m is the mass. With F(x, ẋ, t)
given, the expression (2.1.1) is a system of second order differential equations
which together with the initial conditions x(t0) and v(t0) = ẋ(t0) determine x(t)
and thus v(t) for all times. If there are N particles interacting with each other,
then (2.1.1) takes the form

mi ẍi = Fi , i = 1, . . . , N, (2.1.2)

where Fi denotes the sum of all forces acting on the i th particle and xi denotes
the position of the i th particle. As an example, consider the force between two
charged particles, whose respective charges are denoted by Q1 and Q2, namely
the Coulomb force given (in appropriate units, see Section 2.1.7) by

F1 = Q1Q2
x1 − x2

|x1 − x2|3 = −F2. (2.1.3)

If Q1Q2 is positive the force is repulsive and if Q1Q2 is negative the force
is attractive. Formula (2.1.3) can be written in terms of the potential energy
function

V (x1, x2) = Q1Q2

|x1 − x2| , (2.1.4)

noting that

F1 = −∇x1V and F2 = −∇x2V. (2.1.5)

As usual, we denote the gradient by ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).

1 We follow the physicists’ convention in which vectors are denoted by boldface letters.
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2.1.1 Hamiltonian Formulation

Hamilton’s formulation of classical mechanics is the entry to quantum physics.
Hamilton’s equations are

ẋ = ∂H

∂ p
, ṗ = −∂H

∂x
(2.1.6)

where H (x, p) is the Hamilton function and p the canonical momentum of
the particle. Assuming that

F (x) = −∇V (x) (2.1.7)

for some potential V then, in the case that the canonical momentum is given by

p = mv, (2.1.8)

Eq. (2.1.6) with

H = p2

2m
+ V (x) (2.1.9)

yields (2.1.1). The function

T ( p) = p2

2m
(2.1.10)

is called the kinetic energy function. A simple computation using Eq. (2.1.6)
shows that along each mechanical trajectory the function H (x(t), p(t)) is a
constant which we call the energy, E.

2.1.2 Magnetic Fields

Not in all cases is the canonical momentum given by (2.1.8). An example is the
motion of a charged particle of mass m and charge −e in a magnetic field B(x)
in addition to a potential, V (x). The Lorentz force on such a particle located at
x and having velocity v is2

FLorentz = −e

c
v ∧ B(x). (2.1.11)

2 We use the symbol ∧ for the vector product on R
3, instead of ×, since the latter may be confused

with x.
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The Hamilton function is then given by3

H (x, p) = 1

2m

(
p + e

c
A(x)

)2
+ V (x), (2.1.12)

where A(x), called the vector potential, determines the magnetic field (more
properly called the magnetic induction) B(x) by the equation

∇ ∧ A(x) = curl A(x) = B(x). (2.1.13)

The fact that an arbitrary magnetic field can be written this way as a curl is
a consequence of the fact that Maxwell’s equations dictate that all physical
magnetic fields satisfy

∇ · B(x) = div B(x) = 0. (2.1.14)

The parameter c in (2.1.12) is the speed of light, which equals 299 792 458
meters/sec.

The canonical momentum p is now not equal to mass times velocity but rather

mv = p + e

c
A(x). (2.1.15)

It is a simple calculation to derive the Lorentz law for the motion of an electron in
an external magnetic field using (2.1.6) with (2.1.12) as the Hamilton function.

The energy associated with this B field (i.e., the amount of work needed to
construct this field or, equivalently, the amount of money we have to pay to the
electric power company) is4

Emag(B) := 1

8π

∫
R3

|B(x)|2dx. (2.1.16)

The units we use are the conventional absolute electrostatic units. For further
discussion of units see Section 2.1.7.

3 We note that we use the convention that the electron charge equals −e, with e > 0, and hence
the proper form of the kinetic energy is given by (2.1.12). In the formula ( p − eA(x)/c)2/(2m),
which is usually found in textbooks, e denotes a generic charge, which can be positive or
negative.

4 The equation a := b (or b =: a) means that a is defined by b.
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Since the only requirement on A is that it satisfy (2.1.13) we have a certain
amount of freedom in choosing A. It would appear that the A has three degrees
of freedom (the three components of the vector A) but in reality there are only
two since B has only two degrees of freedom (because div B = 0). If we assume
that Emag(B) < ∞ (which should be good enough for physical applications) then
we can choose the field A such that (2.1.13) holds and

div A = 0 and
∫
R3

|A(x)|6 dx < ∞. (2.1.17)

A proof of this fact is given in Lemma 10.1 in Chapter 10. The condition
div A = 0 is of no importance to us until we get to Chapter 10. All results prior
to Chapter 10 hold irrespective of this condition. Its relevance is explained in
Section 10.1.1 on gauge invariance.

2.1.3 Relativistic Mechanics

It is straightforward to describe relativistic mechanics in the Hamiltonian for-
malism. The Hamilton function for a free relativistic particle is

Trel( p) := c
√

p2 +m2c2 −mc2, (2.1.18)

from which the relation between p and the velocity, v, is found to be

v = ∂Trel( p)

∂ p
= c p√

p2 +m2c2
. (2.1.19)

Note that |v| < c. We can, of course, include a magnetic field in this relativistic
formalism simply by replacing p by p + e

c
A(x).

A potential can be added to this Trel( p) so that the Hamilton function becomes

Hrel( p, x) = Trel( p) + V (x). (2.1.20)

Hamilton’s equations (2.1.6) then yield a mathematically acceptable theory, but
it has to be admitted that it is not truly a relativistic theory from the physical
point of view. The reason is that the theory obtained this way is not invariant
under Lorentz transformations, i.e., the equations of motion (and not merely
the solutions of the equations) are different in different inertial systems. We
shall not attempt to explain this further, because we shall not be concerned
with true relativistic invariance in this book. In any case, ‘energy’ itself is not
a relativistically invariant quantity (it is only a component of a 4-vector). We
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shall, however, be concerned with the kind of mechanics defined by the Hamilton
function Hrel in (2.1.20) because this dynamics is an interesting approximation
to a truly relativistic mechanics.

2.1.4 Many-Body Systems

There is no difficulty in describing many-body systems in the Hamiltonian
formalism – with either relativistic or non-relativistic kinematics. As an example,
consider the problem of N electrons and M static nuclei interacting with each
other via the Coulomb force. The electrons have charge −e, and are located
at positions X = (x1, . . . , xN ), xi ∈ R

3 for i = 1, . . . , N . The M nuclei have
charges eZ = e(Z1, . . . , ZM ) and are located at R = (R1, . . . , RM ) with Ri ∈
R

3 for i = 1, . . . ,M . Then the potential energy function of this system is
e2VC(X, R), with

VC(X, R) = W (X, R) + I (X) + U (R), (2.1.21)

where

W (X, R) = −
N∑
i=1

M∑
j=1

Zj

|xi − Rj | (2.1.22)

I (X) =
∑

1≤i<j≤N

1

|xi − xj | (2.1.23)

U (R) =
∑

1≤i<j≤M

ZiZj

|Ri − Rj | . (2.1.24)

The three terms have the following meaning: W (X, R) is the electron–nucleus
attractive Coulomb interaction, I (X) is the electron–electron repulsive inter-
action and U (R) is the nucleus–nucleus repulsive interaction. The total force
acting on the i th electron is thus given by

Fi = −e2∇xi
VC(X, R). (2.1.25)

The Hamilton function is the sum of kinetic energy and potential energy

H (X, P) = T (P) + e2VC(X, R), (2.1.26)
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where

T (P) =
N∑
j=1

p2
j

2m
, P = ( p1, . . . , pN ) (2.1.27)

in the non-relativistic case (or with the obvious change in the relativistic case). If
the nuclei are dynamic, one also has to add the nuclear kinetic energy, of course.

In the case of static nuclei, R are simply fixed parameters. We point out
that when we study stability of the quantum analogue of this system, it will be
essential to look for bounds that are independent of R.

2.1.5 Introduction to Quantum Mechanics

On atomic length scales, position and momentum can no longer describe the state
of a particle. They both play an important role as observables but to describe
the state of a quantum mechanical particle one requires a complex valued
function ψ : R

3 → C, called the wave function. In the remainder of the present
chapter we limit the discussion to a single particle. The discussion of N -particle
wave functions, ψ : R

3N → C is deferred to Chapter 3.
In order to fix the state of an electron one has to specify infinitely many

numbers (i.e., a whole function) – not just the six numbers p and x of classical
mechanics. The function x 	→ |ψ(x)|2 is interpreted as a probability density and
hence we require the normalization condition

∫
R3

|ψ(x)|2dx = 1. (2.1.28)

The classical energy is replaced by an energy functional, E(ψ), of the wave
function of the system:

E(ψ) = Tψ + Vψ, (2.1.29)

where

Tψ = h̄2

2m

∫
R3

|∇ψ(x)|2dx, (2.1.30)
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and

Vψ =
∫
R3

V (x)|ψ(x)|2dx. (2.1.31)

The functional Tψ is called the expectation value of the kinetic energy or, in
short, the kinetic energy of ψ . Similarly, Vψ is called the expectation value
of the potential energy or, in short, the potential energy of ψ . The constant h̄
(pronounced h-bar) is

h̄ = h

2π
= 1.055 × 10−27 grams cm2 sec−1,

where h = 6.626 × 10−27 grams cm2 sec−1 is a constant of nature called
Planck’s constant.

A comparison of (2.1.30) and (2.1.10) shows that the transition from classical
to quantum mechanics is accomplished by replacing the classical momentum p
by the operator −ih̄∇. We shall frequently denote −ih̄∇ by p. In this notation
we have

Tψ = 1

2m

∫
R3

|( pψ)(x)|2dx.

Note that for a complex vector v such as pψ(x), the quantity |v|2 denotes the
sum of the squares of the absolute values of the components.

Associated with the kinetic energy (2.1.30) is the operator, called the free
Hamilton operator, or simply the free Hamiltonian for brevity,

H0 = − h̄2

2m
� = − h̄2

2m

3∑
i=1

∂2

∂(xi)2
, (2.1.32)

and associated with E is the Hamiltonian

H = H0 + V

which acts on functions ψ by

(Hψ)(x) = − h̄2

2m
(�ψ)(x) + V (x)ψ(x). (2.1.33)
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The derivatives in (2.1.33) can be taken to be in the distributional sense.5 For
nice functions ψ

E(ψ) = (ψ,Hψ), (2.1.34)

where the inner product of f and g is defined by

(f, g) =
∫
R3

f (x)g(x)dx. (2.1.35)

(The notation f denotes the complex conjugate, sometimes also written as f ∗.)
Again, for nice functions ψ and φ,

(ψ,Hφ) =
∫
R3

ψ(x)(Hφ)(x)dx

=
∫
R3

(
h̄2

2m
(∇ψ)(x) · (∇φ)(x) + V (x)ψ(x)φ(x)

)
dx. (2.1.36)

One of the technical problems in quantum mechanics is that the left side of
(2.1.36) does not always make sense for arbitrary φ’s. For the purpose of this
book we shall always interpret (ψ,Hφ) as the right side of (2.1.36), which is
well defined if ψ and φ are in H 1(R3).6 Note that Tψ is always positive and is
always well defined for ψ ∈ H 1(R3). See [164].

Returning to the Coulomb law in (2.1.3), we see that the energy function for
a hydrogenic atom is given by

E(ψ) =
∫
R3

(
h̄2

2m
|∇ψ(x)|2 − Ze2

|x| |ψ(x)|2
)

dx (2.1.37)

5 The functions that appear in quantum mechanics are not always differentiable in the classical
sense. To define the following concepts rigorously it is important to know what a distributional
derivative is. These matters are discussed fully elsewhere, see, e.g., [118]. Nevertheless, the
reader who is willing to accept things on faith can just assume that all derivatives are classical
and will still be able to follow the presentation.

6 The most important spaces relevant for this book are L2(Rd ) consisting of functions f (x) such
that ‖f ‖2

2 := ∫
Rd |f (x)|2dx < ∞, and H 1(Rd ), which consists of functions that are square

integrable and whose distributional derivatives are also square integrable functions. Again, we
refer to [118] for further details.
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and the corresponding Hamiltonian is

H = − h̄2

2m
�− Ze2

|x| . (2.1.38)

We refer to this as a hydrogenic atom because it is the Hamiltonian for a one-
electron atom; hydrogen corresponds to the case Z = 1. It will be discussed
further in Section 2.2.2.

A convenient way of rewriting the kinetic energy of a function ψ ∈ L2(Rd)
(for any d ≥ 1) is via Fourier transforms. Recall that the Fourier transform of
a function ψ(x) is, formally, defined as7

ψ̂(k) =
∫
Rd

ψ(x)e−2πix·kdx. (2.1.39)

(We say ‘formally’ since the integral is absolutely convergent only if ψ ∈
L1(Rd). Nevertheless, ψ̂ is well defined for all ψ ∈ L2(Rd). See [118] for
details.) Then ψ is given in terms of the inverse Fourier transform as

ψ(x) =
∫
Rd

ψ̂(k)e2πix·kdk.

Recall also Plancherel’s identity,∫
Rd

|ψ(x)|2dx =
∫
Rd

|ψ̂(k)|2dk. (2.1.40)

The (non-relativistic) kinetic energy of a function ψ can then be expressed as∫
Rd

|∇ψ(x)|2dx =
∫
Rd

(2πk)2|ψ̂(k)|2dk. (2.1.41)

So any ψ ∈ L2(Rd) is also in H 1(Rd) if and only if the right side of (2.1.41)
is finite. Putting it differently, the operator p acts as multiplication by 2πk in
Fourier space, and ψ ∈ L2(Rd) is in H 1(Rd) if and only if |k|ψ̂(k) is in L2(Rd).

7 A different convention for the Fourier transform that is often used is ψ̂(k) =
(2π )−d/2

∫
Rd ψ(x)e−ix·kdx.
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Using Fourier space, it is straightforward to define the relativistic kinetic
energy (2.1.18) in the quantum case. Namely,

(ψ, c
√

p2 +m2c2 ψ) =
∫
R3

c
√

(2πk)2 +m2c2|ψ̂(k)|2dk. (2.1.42)

The space of L2(Rd) functions for which the right side of (2.1.42) is finite is
called H 1/2(Rd), for obvious reasons. Again, see [118] for further details.

Magnetic fields can be introduced in quantum mechanics in the same way
as in classical mechanics. The Hamilton function (2.1.12) of one particle in a
magnetic field becomes

H = 1

2m

(
p + e

c
A(x)

)2
+ V (x) (2.1.43)

in the quantum case, with p = −ih̄∇, as before. One can also consider magnetic
fields together with relativity, in which case the kinetic energy becomes

c

√(
p + e

c
A(x)

)2
+m2c2. (2.1.44)

The square root of a positive operator can be defined via the spectral theorem.
(See, e.g., [150].) Alternatively, it can also be defined in terms of the Green’s
function, or resolvent, [( p + (e/c)A(x))2 + t]−1 for t > 0. In fact, the formula

√
x = 1

π

∞∫
0

x

x + t

dt√
t

valid for x > 0, can be used to define the square root of any non-negative
operator, such as

(
p + e

c
A(x)

)2 +m2c2.

2.1.6 Spin

Elementary particles have an internal degree of freedom called spin which
is characterized by a specific number that can take one of the values S =
0, 1/2, 1, 3/2, . . . . (S = 0 is usually called ‘spinless’.) A particle with spin
S carries with it an internal Hilbert space of dimension 2S + 1, that is, its
wave function is an element ofL2(R3) ⊗ C

2S+1 =: L2(R3; C
2S+1). For example,

electrons are spin 1/2 particles and what this means is that the wave function is
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really a pair of ordinary complex-valued functions

ψ(x, σ ), σ = 1, 2. (2.1.45)

Another way of writing this is a two-component vector called a spinor

ψ(x) =
(
ψ1(x)
ψ2(x)

)
. (2.1.46)

The normalization condition is now given by∫
R3

〈ψ(x), ψ(x)〉dx = 1, (2.1.47)

where

〈ψ, φ〉 = ψ1φ1 + ψ2φ2 (2.1.48)

is the inner product on C
2.

In the absence of magnetic fields, the kinetic energy acts separately on each
of the two components of ψ in a manner similar to the normalization condition,
i.e.,

Tψ = Tψ1 + Tψ2 . (2.1.49)

The second formulation (2.1.46) is convenient for discussing spin 1/2 in terms
of the three Pauli matrices σ = (σ 1, σ 2, σ 3), with8

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0
0 −1

)
. (2.1.50)

The following relations are easily verified:

σ jσ k = −σ kσ j , for j �= k (2.1.51)

and

σ jσ k = iσ l, (2.1.52)

where the indices (j, k, l) are any cyclic permutation of the numbers (1, 2, 3).
Given a spinor we can form the three dimensional vector

〈ψ, σψ〉 = (〈ψ, σ 1ψ〉, 〈ψ, σ 2ψ〉, 〈ψ, σ 3ψ〉). (2.1.53)

8 The reader should not confuse the three Pauli matrices σ with the integers σ labeling the spin
components.
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In terms of the Pauli matrices, the angular momentum operators associated with
the electron spin are S = (h̄/2)σ . This is discussed in every standard quantum
mechanics textbook and is not important for us here.

In the presence of a magnetic field, the kinetic energy of an electron has to be
modified as9

1

2m

∫
R3

∣∣∣( p + e

c
A(x)

)
ψ

∣∣∣2 dx + μ0

∫
R3

〈ψ, σ · B(x)ψ〉dx. (2.1.54)

The constant μ0 is called the Bohr magneton and is given by

μ0 = h̄e

2mc
= 9.274 × 10−21erg gauss−1. (2.1.55)

The second term in (2.1.54) is called the Zeeman energy. Using the electron spin
operators, it can alternatively by written as the expectation value of (e/mc)S ·
B(x). It is very important in our daily lives since it is responsible for the
magnetization of a piece of iron.

The reader might wonder for which ψ and A the expression (2.1.54) is well
defined. If we assume that each component of the vector potential A is inL2

loc(R
3)

then the first term in (2.1.54) is defined for all those functions ψ ∈ L2(R3) with
(∂xj + i(e/h̄c)Aj )ψ ∈ L2(R3) for j = 1, 2, 3. They form a function space which
is denoted by H 1

A(R3). For further properties of this space see [118].
There is no difficulty in extending the above definition to the spin case. For any

spinor ψ with (∂xj + i(e/h̄c)Aj )ψ ∈ L2(R3; C
2) for j = 1, 2, 3, the following

expression makes sense and serves as a definition of the kinetic energy in
(2.1.54):

1

2m

∫
R3

∣∣∣σ ·
(

p + e

c
A(x)

)
ψ(x)

∣∣∣2 dx. (2.1.56)

If the vector potential A is sufficiently smooth, an integration by parts and the
use of the commutation relations (2.1.51) and (2.1.52) shows that the above
expression can be rewritten as (2.1.54). Thus the Zeeman-term is hidden in
(2.1.56). The advantage of (2.1.56) is that no smoothness assumption on A has
to be made. Moreover, the positivity of the kinetic energy is apparent from the
formulation (2.1.56).

9 For convenience, we use the same absolute value symbol for the length of a vector in C
2 or

C
2 ⊗ C

3 as we used earlier for the length of a vector in C
3.
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The Hamiltonian associated with (2.1.54) and (2.1.56) is given by

1

2m

(
p + e

c
A(x)

)2
+ μ0σ · B(x) = 1

2m

[
σ ·
(

p + e

c
A(x)

)]2
. (2.1.57)

This operator is called the Pauli operator10 and will be discussed in detail in
Chapter 9.

An important concept is gauge invariance. Physical quantities, like the
ground state energy, depend on A only through B. This can be seen as fol-
lows. If there are two vector potentials A1 and A2, with curl A1 = curl A2 = B,
then A1 = A2 + ∇χ for some function χ . This follows from the fact that a curl-
free vector field is necessarily a gradient field.11 We emphasize that this is true
only on the whole of R

3 and not on punctured domains, such as the exterior of an
infinitely extended cylinder. Gauge invariance of the HamiltonianHA means that

HA+∇χ = U (χ )HAU (χ )†,

where U (χ ) is the unitary multiplication operator ei(e/h̄c)χ (x), and U † denotes
the adjoint of U .

2.1.7 Units

Anyone who has studied electromagnetism knows that the problem of choosing
suitable units can be a nightmare. This is even more so when we want to include
h̄ and simultaneously make the system convenient for quantum mechanics.
One solution, favored by many physics texts, is to include all physical units
(m, e, h̄, c) in all equations. While this is certainly clear it is cumbersome and
somewhat obscures the main features of the equations.

Except for the gravitational constant G, which will be discussed in Chap-
ter 13, there are four (dimensional) physical constants that play a role in this
book. These are

� m = mass of the electron = 9.11 × 10−28 grams
� e = (−1)× charge of the electron = 4.803 × 10−10 grams1/2 cm3/2 sec−1

10 A closely related operator that is often used is the simpler Pauli–Fierz operator [64]. It is the
same as (2.1.57) except that the term (e2/2mc2)A(x)2 is omitted. This operator is not gauge
invariant (see Chapter 10) although it is useful when the A field is small. However, the absence
of the A2 term can, if taken literally, lead to instabilities.

11 A formula for χ is given by the line integral χ (x) = ∫ x
0 (A1 − A2) · ds.
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� h̄ = Planck’s constant divided by 2π = 1.055 × 10−27 grams cm2 sec−1

� c = speed of light = 3.00 × 1010 cm sec−1.

(Note that h̄ has the dimension of energy times time.) These are the conventional
cgs (centimeter, gram, second) electrostatic units. In particular, the energy
needed to push two electrons from infinite separation to a distance of r

centimeters is e2/r .
In our choice of units for this book we were guided by the idea, which really

originates in relativistic quantum mechanics, that the electron’s charge is the
quantity that governs the coupling between electromagnetism and dynamics
(classical or quantum, relativistic or non-relativistic). When e = 0 all the par-
ticles in the universe are free and independent, so one wants to highlight the
dependence of all physical quantities on e. To emphasize the role of e, we intro-
duce the only dimensionless number that can be made from our four constants –
the fine-structure constant:

α := e2/h̄c = 1/137.04 = 7.297 × 10−3.

We should think of h̄ and c as fixed and α as measuring the strength of the
interaction, namely the electron charge squared. Our intention is to expose the
role of e clearly and therefore we avoid using units of length, etc. that involve e
in their definition.

Next, we need units for length, energy and time, and the only ones we can
form that do not involve e are, respectively:

λC = h̄

mc
= 1

2π
× Compton wavelength of the electron = 3.86 × 10−11 cm

(2.1.58)
as the unit of length,

mc2 = rest mass energy of the electron = 8.2 × 10−7 ergs (2.1.59)

as the unit of energy, and

λC

c
= h̄

mc2
= 1.29 × 10−19 sec (2.1.60)

as the unit of time. In other words, we shall set h̄ = m = c = 1, and thus e = √
α.

These will be the units used throughout the book.
Thus, our quantum mechanical wave function ψ(x) equals λ

−3/2
C ψ̃( y) with

x being given in terms of the dimensionless y by x = λC y. The subsequent
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expressions will be written in terms of ψ̃ (which will henceforth be called ψ ,
and the dimensionless argument y will henceforth be called x).

In non-relativistic quantum mechanics (without magnetic fields) the speed of
light does not appear and then the ‘natural’ units of length and energy are the
Bohr radius and the Rydberg:

aBohr = h̄2/me2 = λC/α = 5.29 × 10−9 cm (2.1.61)

Rydberg = e4m

2h̄2 = 1

2
mc2α2 = 2.66 × 10−5 mc2. (2.1.62)

These units involve e, however. While they are ‘natural’ for chemistry and atomic
physics, they are not really the most convenient for dealing with relativistic
dynamics and with the interaction of particles with the electromagnetic field.
Thus, our unit of length, the electron Compton wavelength, is about 0.007 Bohr
radii and our unit of energy is about 19 000 Rydbergs. These units have the
advantage that e appears only in α and nowhere else.

Turning to units of the magnetic field, the equation for the Lorentz force
(2.1.11) fixes the unit of B. In these units, the energy required to create a
magnetic field B is given by (2.1.16). If we still want to use (8π )−1

∫ |B(x)|2dx
as the energy of the electromagnetic field in our new units, B/

√
h̄c has to have

dimension of length−2. From this it follows that the vector potential A/
√
h̄c has

the dimension of length−1. Thus, we choose

λ−1
C

√
h̄c as the unit for A

λ−2
C

√
h̄c as the unit for B.

The argument of both vector fields is the dimensionless quantity λ−1
C x.

Our unit for B is unnaturally large, for it is 3.77 × 108 Tesla or 3.77 × 1012

Gauss, where 1 Gauss equals 1 gram1/2 cm−1/2 sec−1, which is of the order of
the magnetic field on the surface of many neutron stars. By comparison, it is an
achievement to produce 10 Tesla = 105 Gauss in the laboratory.

Thus, for an atom with a single electron (i.e., a hydrogenic atom), our non-
relativistic Hamiltonian (in units of mc2, with x being the length in units of the
Compton wavelength and with p = −i∇) becomes

H = 1

2
p2 − Zα

|x| . (2.1.63)
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In these units (2.1.37) becomes

E(ψ) =
∫
R3

(
1

2
|(∇ψ)(x)|2 − Zα

|x| |ψ(x)|2
)

dx. (2.1.64)

Similarly, the ‘relativistic’ Hamiltonian becomes

H =
√

p2 + 1 − 1 − Zα

|x| . (2.1.65)

The kinetic energy (2.1.54), including the interaction with a magnetic field and
the energy of this field, becomes

1

2

∫
R3

∣∣(∇ + i
√
αA(x))ψ(x)

∣∣2 dx + 1

2

√
α

∫
R3

〈ψ(x), σ · B(x)ψ(x)〉 dx

+ 1

8π

∫
R3

|B(x)|2dx. (2.1.66)

The corresponding Hamiltonian is

H = 1

2

(
p +√

αA(x)
)2 +

√
α

2
σ · B(x) + 1

8π

∫
R3

|B(x)|2dx. (2.1.67)

2.2 The Idea of Stability

The expected value of the energy in a state ψ is E(ψ) and we can ask about its
range of values. Obviously E(ψ) can be made arbitrarily large and positive, but
can it be arbitrarily negative? (Recall that we are interested in normalized ψ ,
i.e.,
∫ |ψ |2 = 1.) The answer in the classical case is yes! That is, the function

H (x, p) is not bounded from below since −1/|x| can be arbitrarily negative
and p can be zero. Any classical Coulomb system with point charges (in which
the charges are not all positive or all negative) is an unlimited source of energy.
In contrast, the lowest energy of an electron in a quantum-mechanical atom is
finite – as we shall see. It is one Rydberg for hydrogen (Z = 1) and is of the
order of 104 Rydbergs in large atoms where Z ≈ 90.

As mentioned before, one could object that the nucleus is not really a point
particle and hence the Coulomb potential is not really an infinite energy source.
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However, the radius of a nucleus is about 10−13 centimeters, which must be
compared with the 10−8 centimeter radius of the hydrogen atom, i.e., the Bohr
radius. The distinction between a point nucleus and a 10−13 centimeter nucleus
would be significant only if energies of the order of 105 times the energy of
hydrogen played a significant role, which they do not. Such energies are effec-
tively ‘infinite’ on the scale we are concerned with. The somewhat astonishing
fact that an electron is forced to stay away from the nucleus (i.e., it is mostly to be
found at the Bohr radius instead of the nuclear radius) is one of the most impor-
tant features of quantum mechanics. Planck’s constant introduces a new length
scale, the Bohr radius and, concomitantly, introduces a scale of energy. This
scale of energy was not present in pre-quantum physics and it is one Rydberg.

Thus the question is raised whether quantum mechanics sets lower bounds on
the energy of electrons in atoms, i.e., is

E0 = inf

⎧⎨⎩E(ψ) :
∫
R3

|ψ(x)|2dx = 1

⎫⎬⎭ (2.2.1)

finite and, if so, what is its value? Note that if the infimum is a minimum (i.e.,
E0 = E(ψ0) for some ψ0) then E0 is the lowest energy value the system can
attain and is therefore called the ground state energy, and ψ0 is called a ground
state. We will call E0 the ground state energy even if the infimum in (2.2.1) is
not attained by any function ψ . Indeed, it is always the case that a minimum is
not attained if there are too many electrons in an atom (see Chapter 12).

The finiteness of E0 is stability of the first kind. That quantum mechanics
achieves this sort of stability is of great importance, for it resolves one of the
crucial problems of classical physics, and it will be discussed extensively in the
chapters to follow.

Assuming for the moment that E0 in (2.2.1) is attained for some ψ0, a simple
variational calculation leads (see Chapter 11 in [118]) to the (stationary, or
time-independent) Schrödinger equation for ψ0:

Hψ0 = E0ψ0. (2.2.2)

In general, E0 is not the only value for which Eq. (2.2.2) has a solution. There
are usually infinitely many of them and they are called the eigenvalues of H .
(See [118, Sects. 11.5, 11.6].) They label all the stationary states of the atom and
the difference between two eigenvalues determines the frequency of light which
is emitted when an electron falls from a higher stationary state to a lower one.
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In this book, we shall not be concerned with the question of whether E0 is an
actual eigenvalue of the Hamiltonian H , except for Chapter 12 on the ionization
problem. Even less will we be concerned with the existence of other stationary
states. Rather we investigate whether E0 is bounded (for stability of the first
kind) or bounded by the number of particles (for stability of the second kind,
which will be defined in Chapter 3, Section 3.2).

2.2.1 Uncertainty Principles: Domination of the Potential Energy by
the Kinetic Energy

Any inequality in which the kinetic energy Tψ dominates some kind of integral
of ψ (but not involving ∇ψ) is called an uncertainty principle. The histor-
ical reason for this strange appellation is that such an inequality implies that
one cannot make the potential energy very negative without also making the
kinetic energy large, i.e., one cannot localize a particle simultaneously in both
configuration and momentum space. The most famous uncertainty principle,
historically, is Heisenberg’s: For ψ ∈ H 1(Rd) and ‖ψ‖2

2 = (ψ,ψ) = 1,

(ψ, p2ψ) ≥ d2

4
(ψ, x2ψ)−1. (2.2.3)

The proof of this inequality (which uses the fact that ∇ · x − x · ∇ = d I in
R
d) can be found in many textbooks and we shall not give it here because

(2.2.3) is not actually very useful. The quantity (ψ, x2ψ)−1 is a poor indicator
of the magnitude of Tψ = (1/2)(ψ, p2ψ). If the particle is concentrated near
the origin, then Tψ is large, but ψ can easily be modified in an arbitrarily small
way (in H 1(Rd) norm, i.e., in such a way that both the difference between
the function and its modification and the gradient of this difference is small
in L2(Rd) norm) so that (ψ, x2ψ) becomes huge without (ψ, p2ψ) becoming
small. In other words, by a tiny modification ofψ , (ψ, x2ψ)−1 can be made small
even if Tψ is large. To see this, take any fixed function ψ and then replace it by
ψ y(x) = √

1 − ε2ψ(x) + εψ(x − y) with ε � 1 and | y| � 1. To a very good
approximation, ψ y = ψ but, as | y| → ∞, ‖ψy‖2 → 1 and (ψ y, x2ψ y) → ∞.
Thus, the right side of (2.2.3) goes to zero as | y| → ∞ while Tψ y ≈ Tψ does
not go to zero.

A much more useful inequality is Sobolev’s inequality. Recall the definition
of the Lp(Rd) norms

‖ψ‖p =
⎡⎣∫

Rd

|ψ(x)|pdx

⎤⎦1/p
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for 1 ≤ p < ∞. For p = ∞, one uses ‖ψ‖∞ = supx∈Rd |ψ(x)|. Any function
ψ whose gradient is in L2(Rd) and that vanishes at infinity (meaning that
the measure of the set where |ψ(x)| ≥ μ is finite for any μ > 0), with d ≥ 3
(these conditions are important), is automatically in L2d/(d−2)(Rd), although not
necessarily in any other Lp(Rd) space. There is the inequality

2 Tψ = ‖∇ψ‖2
2 =
∫
Rd

|∇ψ(x)|2dx ≥ Sd‖ψ‖2
2d/(d−2) (2.2.4)

for some positive constants Sd . For d = 3, the optimal constant is S3 =
3
4 (4π2)2/3. See [118, Chapter 8] for further information.

For d = 1 and d = 2, on the other hand, we have

2 Tψ ≥ S2,p‖ψ‖−4/(p−2)
2 ‖ψ‖2p/(p−2)

p for all 2 < p < ∞, d = 2 (2.2.5)

2 Tψ ≥ ‖ψ‖−2
2 ‖ψ‖4

∞, d = 1. (2.2.6)

Moreover, when d = 1 and ψ ∈ H 1(R1), ψ is not only bounded but it is also
continuous.

An application of Hölder’s inequality,∫
Rd

f (x)g(x)dx ≤ ‖f ‖p‖g‖q for 1 ≤ p ≤ ∞, p−1 + q−1 = 1,

to (2.2.4) yields, for any potential V ∈ Ld/2(Rd), d ≥ 3,

Tψ ≥ Sd‖ψ‖2
2d/(d−2) ≥ Sd(ψ, |V |ψ)‖V ‖−1

d/2. (2.2.7)

An immediate application of (2.2.7) is that

Tψ + Vψ ≥ 0 (2.2.8)

whenever ‖V ‖d/2 ≤ Sd , and thus stability of the first kind holds for such poten-
tials V .

A simple extension of (2.2.7) leads to a lower bound on the ground state
energy for V ∈ Ld/2(Rd) + L∞(Rd), d ≥ 3, i.e. for potentials V that can be
written as

V (x) = v(x) + w(x) (2.2.9)

for some v ∈ Ld/2(Rd) and w ∈ L∞(Rd). There is then some constant λ

such that h(x) := −(v(x) − λ)− = min(v(x) − λ, 0) ≤ 0 satisfies ‖h‖d/2 ≤
1
2Sd (we leave this as an exercise for the reader). In particular by (2.2.7)
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hψ = (ψ, hψ) ≥ − 1
2Tψ . Then we have

E(ψ) = Tψ + Vψ = Tψ + (v − λ)ψ + λ+ wψ ≥ Tψ + hψ + λ+ wψ

≥ 1

2
Tψ + λ− ‖w‖∞ (2.2.10)

and we see that λ− ‖w‖∞ is a lower bound to E0. Furthermore (2.2.10) implies
that the total energy effectively bounds the kinetic energy, i.e., we have

Tψ ≤ 2(E(ψ) − λ+ ‖w‖∞). (2.2.11)

So far we have considered the non-relativistic kinetic energy, Tψ =
(1/2)(ψ, p2ψ). Similar inequalities hold for the relativistic case. Because
| p| ≥

√
p2 +m2 −m ≥ | p| −m, it suffices to consider the ultra-relativistic

energyTψ = (ψ, | p|ψ). The relativistic analogues of (2.2.4)–(2.2.6) are (2.2.12)
and (2.2.13) below. There are constants S ′

d for d ≥ 2 and S ′
1,p for 2 ≤ p < ∞

such that

Tψ ≥ S ′
n‖ψ‖2

2d/(d−1), d ≥ 2 (2.2.12)

and

Tψ ≥ S ′
1,p‖ψ‖−2/(p−2)

2 ‖ψ‖2p/(p−2)
p for all 2 < p < ∞, d = 1. (2.2.13)

For d = 3, S ′
3 = (2π2)1/3 [118, Thm. 8.4].

The results of this section can be summarized in the following statement. In
all dimensions d ≥ 1, the hypothesis that V is in the space

non-relativistic

⎧⎪⎨⎪⎩
Ld/2(Rd) + L∞(Rd) if d ≥ 3

L1+ε(R2) + L∞(R2) if d = 2

L1(R1) + L∞(R1) if d = 1

(2.2.14)

relativistic

{
Ld(Rd) + L∞(Rd) if d ≥ 2

L1+ε(R1) + L∞(R1) if d = 1
(2.2.15)
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(for some ε > 0) leads to the following two conclusions:

E0 is finite

Tψ ≤ CE(ψ) +D‖ψ‖2
2

when ψ ∈ H 1(Rd) (non-relativistic) or ψ ∈ H 1/2(Rd) (relativistic) and for suit-
able constants C and D which depend only on V and not on ψ .

2.2.2 The Hydrogenic Atom

The hydrogenic atom is the simplest conceptually and computationally. It has
one electron and one nucleus with charge Z > 0 (the nucleus of real hydrogen
in nature is the proton, which has Z = 1). If we assume that the nucleus is fixed
at the origin x = 0, then the energy is given by (2.1.64) as

E(ψ) =
∫
R3

(
1

2
|(∇ψ)(x)|2 − Zα

|x| |ψ(x)|2
)

dx. (2.2.16)

The Coulomb potential V (x) = −Zα/|x| is in L3−ε(R3) + L∞(R3) for any
ε > 0, but not in L3(R3) + L∞(R3). Hence the hydrogenic atom is stable non-
relativistically as a consequence of Sobolev’s inequality, as discussed in the
previous section. In fact, it is well known that∫

R3

(
1

2
|(∇ψ)(x)|2 − Zα

|x| |ψ(x)|2
)

dx ≥ − (Zα)2

2

∫
R3

|ψ(x)|2dx, (2.2.17)

with equality if and only if ψ(x) = C exp(−Zα|x|) for some constant C ∈
C. In fact, this ψ can easily be shown to satisfy the Schrödinger equation
(−�/2 − Zα/|x|)ψ(x) = −(Zα)2ψ(x)/2, and since it is a positive function, it
must be the eigenfunction corresponding to the lowest eigenvalue. (See [118,
Section 11.10] for details; see also Corollary 3.1 in Section 3.2.4.)

An equivalent formulation of the inequality in (2.2.17) is

∫
R3

|∇ψ(x)|2dx
∫
R3

|ψ(x)|2dx ≥
⎡⎣ ∫

R3

|ψ(x)|2
|x| dx

⎤⎦2

(2.2.18)
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for all functions ψ ∈ H 1(R3), which is obtained by choosing Zα =
(
∫ |ψ |2)−1

∫ |ψ |2/|x| in (2.2.17). This inequality will be useful later in
Chapter 9.

The analysis in the previous section shows that the relativistic case is
borderline. That is, 1/|x| fails to be in L3(R3) + L∞(R3), although it is in
L3−ε(R3) + L∞(R3) for any ε > 0. We shall in fact see in Chapter 8 that there is
a critical value of Zα up to which there is stability, and beyond which stability
fails.
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Many-Particle Systems and Stability of the
Second Kind

The main purpose of this book is to study the ground state energies of quantum-
mechanical systems of particles interacting via electric and magnetic forces.
The present chapter defines the mathematical framework of the problem. We
shall define the kinds of wave functions that have to be considered and their
permutation symmetries. The ground state energy will be defined as a variational
problem, and the concept of stability of the second kind will be discussed.

3.1 Many-Body Wave Functions

3.1.1 The Space of Wave Functions

A wave function for N spinless particles is any function ψ : R
3N → C which

is in L2(R3N ) ∼=⊗N
L2(R3) with unit norm, i.e.,

‖ψ‖2
2 =
∫

R3N

|ψ(x1, . . . , xN )|2dx1 · · · dxN = 1. (3.1.1)

Here xi ∈ R
3 is the (spatial) coordinate of the i th particle. Our notation is

that subscripts label the particles, while particle coordinates are denoted by
superscripts, e.g., x1 = (x1

1 , x
2
1 , x

3
1 ). It is convenient to denote a point in R

3N by

X := (x1, . . . , xN ) (3.1.2)

and

dX := dx1 · · · dxN. (3.1.3)

An important historical point is to be noted here. It might have been thought
that the correct generalization forN particles is to useN functions of one variable
instead of one function of N variables. Such a ‘wrong turn’ did not happen
historically, which is, after all, remarkable. Nevertheless there are simple, but

31
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interesting and useful functions ofN variables that can be built out ofN functions
of one variable called determinantal functions and these will be discussed later.
They are important in an approximation to quantum mechanics called Hartree
and Hartree–Fock theories, which we will not discuss.

The interpretation ofψ is that |ψ(X)|2 = |ψ(x1, . . . , xN )|2 is the probability
density for finding particle 1 at x1, particle 2 at x2, etc. This interpretation
makes sense in view of condition (3.1.1). In the case of one particle, one might
be tempted to interpret |ψ(x)|2 as being proportional to a mass or charge density.
In the N -particle case this interpretation is impossible since ψ is not a function
of one variable. There is, however, a natural function of one variable associated
with ψ , namely, for x ∈ R

3,1

�ψ (x) =
N∑
i=1

�iψ (x), (3.1.4)

where

�iψ (x) =
∫

R3(N−1)

|ψ(x1, . . . , xi−1, x, xi+1, . . . , xN )|2dx1 · · · d̂xi · · · dxN

(3.1.5)

which, on account of (3.1.1), is the probability density of finding particle i at x.
The notation d̂xi means that the integration over the i th coordinate is omitted.
Obviously

∫
�iψ = 1. Thus �ψ (x) is interpreted as the total electron density at the

point x and is customarily called the single or one-particle density. It satisfies∫
R3

�ψ (x)dx = N. (3.1.6)

If the i th particle has electric charge ei the analogous charge density can be
defined as

Qψ (x) =
N∑
i=1

Qi
ψ (x), (3.1.7)

where

Qi
ψ (x) = ei�

i
ψ (x). (3.1.8)

1 Note that � is the particle density. It should not be confused with the mass density, which equals
the particle mass times �.
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For non-relativistic quantum mechanics it is also required that ψ has finite
kinetic energy, namely ψ is in H 1(R3N ), i.e., both ψ and each of the 3N com-
ponents of ∇ψ = (∇x1ψ, . . . ,∇xN

ψ) are functions in L2(R3N ). The gradient is
defined in the sense of distributions (see Chapter 6 in [118]). The kinetic energy
ψ is then defined to be

Tψ =
N∑
i=1

T i
ψ, (3.1.9)

where

T i
ψ = 1

2mi

∫
R3N

|(∇xi
ψ)(X)|2dX, (3.1.10)

and where mi is the mass of the i th particle. Recall that for our choice of units,
discussed in Section 2.1.7, the mass of an electron is 1. In the case of relativistic
quantum mechanics ψ need only be in H 1/2(R3N ). In this case the T i

ψ above are
replaced by

T i
ψ =

∫
R3N

(√
(2πki)2 +m2

i −mi

)
|ψ̂(K )|2dK (3.1.11)

(see Chapter 8 for more details), where K = (k1, . . . , kN ), and

ψ̂(K ) =
∫

R3N

ψ(X) exp
(
− 2πi

N∑
j=1

xj · kj
)

dX

denotes the Fourier transform of ψ .
Accordingly, the potential energy of ψ is defined to be

Vψ =
∫

R3N

V (X)|ψ(X)|2dX, (3.1.12)

where the function V (X) is the total potential energy function. In the case of a
molecule, V (X) is given by (2.1.21)–(2.1.24).

3.1.2 Spin

In addition to the spatial coordinates, x, a particle may also have internal degrees
of freedom. The most important of these is spin, but there could be others such
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as isospin, flavor, etc. For the problems addressed in this book the precise nature
of the internal states is not important and we shall, therefore, adopt the following
convention: If a particle has q internal states available to it we shall say that the
particle has q spin states and label them by the integer

σ ∈ {1, 2, . . . , q}.
Electrons have two spin states and these are conventionally designated by

σ = +1/2 or −1/2. Here, σ = 1 or 2 will be used, as stated above. From
the mathematical point of view it is interesting to retain an arbitrary q in our
formulation. This is due to the fact that the Pauli principle (explained below)
introduces interesting dependencies of various quantities on q. More than that,
by incorporating the q dependence explicitly we will be able pass from fermions
to bosons, as will be explained in the next subsection. Bosons will be seen to
correspond to q = N , the number of particles. For this reason alone it is worth
retaining the dependence on q.

Suppose there are N particles and the ith particle has qi spin states. A wave
function for these N particles can then be written as

ψ(x1, σ1, . . . , xN, σN ) (3.1.13)

where, for each choice of the sigmas (with 1 ≤ σi ≤ qi), the function in (3.1.13)
is an element of H 1(R3N ). Alternatively, ψ can be viewed as an H 1(R3N )-

function with values in C
Q with Q :=

N∏
i=1

qi . (This means simply that ψ can be

thought of as Q functions in H 1(R3N ), with σ1, . . . , σN furnishing the labeling
of these functions.) The set of these C

Q-valued functions will be denoted by

H 1(R3N ; C
Q), and it is isomorphic to

N⊗
i=1

H 1(R3; C
qi ). In analogy with (3.1.2)

the spins are collectively denoted by

σ := (σ1, . . . , σN )

and ∑
σ

:=
q1∑

σ1=1

· · ·
qN∑

σN=1

.

With this notation (3.1.13) can be conveniently written as ψ(X, σ ). Another
convenient notation is

zi = (xi , σi) and z = (z1, . . . , zN ) (3.1.14)
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and, for any function f (xi , σi),∫
f (zi)dzi :=

qi∑
σi=1

∫
R3

f (xi , σi)dxi . (3.1.15)

Using the above notation, (3.1.13) will sometimes be written as

ψ(z1, . . . , zN ) or ψ(z).

The replacement of the normalization condition (3.1.1) is

‖ψ‖2
2 :=

∑
σ

∫
R3N

|ψ(X, σ )|2dX =
∫

|ψ(z)|2dz = 1.

3.1.3 Bosons and Fermions (The Pauli Exclusion Principle)

As explained in the previous section, the coordinate of a particle is a point in
R

3 × {1, . . . , q}, i.e., a point x ∈ R
3 and a point σ ∈ {1, . . . , q}. The value of q

is a fixed property of the kind of particle, i.e., whether the particle is an electron,
proton or whatever. Recall the notation zj = (xj , σj ) for the j th particle.

It is a basic postulate of quantum mechanics that the allowed wave functions
for a given particle species must belong to some definite permutation symmetry
type which is characteristic of that species. There are two kinds of particles in
nature, called bosons and fermions. Bosons are characterized by the fact that
a wave function describing a system containing several identical bosons, e.g.,
positively charged pions, must be totally symmetric with respect to exchange
of any pair of boson coordinates. That is, if zi and zj are the space-spin variables
of two identical bosons,

ψ(. . . , zi , . . . , zj , . . . ) = ψ(. . . , zj , . . . , zi , . . . ).

Fermions, on the other hand, demand total antisymmetry of the wave functions.
That is,

ψ(. . . , zi , . . . , zj , . . . ) = −ψ(. . . , zj , . . . , zi , . . . ),

if zi and zj are the coordinates of identical fermions. The antisymmetry property
is usually rephrased by saying that fermions obey the Pauli exclusion principle.

Terminology: It is common in the physics literature to refer to the choice of
symmetry type as the statistics of the particles or of their wave function. More
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exactly, the requirement of symmetry under coordinate exchange is referred to
as Bose–Einstein statistics, named after S. N. Bose who analyzed the states
of photons (quantized particles of light) and A. Einstein who applied Bose’s
method to ordinary massive particles. The antisymmetry requirement is referred
to as Fermi–Dirac statistics, after E. Fermi and P. A. M. Dirac.

In general, one considers several species of particles simultaneously. There
is just one wave function describing such a system, and it has to be symmetric
with respect to exchange of particle coordinates corresponding to the same
species of bosons, and antisymmetric for particles corresponding to the same
species of fermions. For example, a wave function describing both positively and
negatively charged pions (which are bosons) has to be symmetric separately in
the coordinates corresponding to the positively and negatively charged particles,
but there is no symmetry requirement for exchange of coordinates corresponding
to different species.

In the following chapters, we will mostly be concerned with wave func-
tions describing electrons and different kinds of nuclei. While the electrons
are fermions (with q = 2), nuclei can be either fermions or bosons. Nuclei of
different charges are, in any case, independent, i.e., they belong to different
species.

A simple example of a symmetric function of N variables is ψ(z) =∏N
i=1 u(zi), where u is any function in L2(R3; C

q) of one variable, z.
The simplest example of an antisymmetric function is obtained by taking

any N functions ui(z) ∈ L2(R3; C
q), i = 1, . . . , N that are orthonormal, i.e.,∫

ui(z)uj (z)dz = δi,j . The N-particle wave function

ψ(z) = (N!)−1/2 det{ui(zj )}Ni,j=1 (3.1.16)

is antisymmetric and normalized. It is called a determinantal function, or
Slater determinant. The subspace of L2(R3N ; C

qN ) consisting of all antisym-
metric functions is denoted by

∧N
L2(R3; C

q), where
∧

stands for the anti-
symmetric tensor product. If {ui(z)}∞i=1 forms a basis for L2(R3; C

q) then all
the determinantal functions given by (3.1.16), using all possible choices of N of
the functions ui , form an orthonormal basis for

∧N
L2(R3; C

q).
Another fact of nature, which can only be explained using relativistic quantum

field theory, is that bosons have an odd number q of spin states (one says the
spin, defined to be q−1

2 , is an integer) and the fermions have q even, i.e., the
spin q−1

2 is 1/2, 3/2, etc. This will not be of any importance in our discussion,
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however, because this restriction is not mathematically natural in our context.
We shall consider all integers q in this book. In the literature one sometimes
comes across academic q = 1 fermions, which are called spinless fermions.
One can think of this as a situation in which the particles are q = 2 fermions,
but the wave functions are restricted to be those in which ψ = 0 unless all σj
are 1. In treating bosons here we shall only consider q = 1, but everything can
be easily generalized to arbitrary q.

3.1.3.1 The case q ≥ N

Suppose we have a Hamiltonian H that does not depend on spin. That is to
say, it acts on L2(R3N ), for example the Coulomb Hamiltonian, which will be
discussed in Section 3.2. This Hamiltonian can be extended in a trivial way to
H ⊗ I, where I is the identity on the spin space C

qN . It acts on L2(R3N ; C
qN ) ∼=

L2(R3N ) ⊗ C
qN .2

Consider now the case where q ≥ N , N being the number of particles. For
fermions with q spin states, the physical wave functions are totally antisymmetric
functions in L2(R3N ; C

qN ). We shall now show that for q ≥ N , this fermionic
system is equivalent to considering q = 1, i.e., the original Hamiltonian H on
L2(R3N ), without any symmetry restrictions on the wave functions, and without
any spin degrees of freedom. This can be seen as follows.

Take any function φ(x1, . . . , xN ) of N space variables, and let

ψ(z1, . . . , zN ) = 1√
N !

A [φ(x1, . . . , xN )f1(σ1) · · · fN (σN )],

where fi(σ ) = 1 for σ = i and 0 otherwise, and where A denotes total antisym-
metrization. That is,

A[χ (z1, . . . , zN )] =
∑
π∈SN

επχ (zπ(1), . . . , zπ(N )), (3.1.17)

where the sum runs over all permutations of the numbers 1, . . . , N , and επ = 1
for even permutations, and επ = −1 for odd permutations. The function ψ is
clearly an antisymmetric function in L2(R3N ; C

qN ), and it is not identically zero
if φ is not. In fact, the norm of ψ is the same as the norm of φ. This follows
from the fact that the functions fi form a set of orthonormal functions in C

q .

2 Note that
⊗N

C
q ∼= C

qN , not C
qN , i.e., the dimension is qN , not qN .
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Moreover, for the same reason

(ψ,H ⊗ Iψ) = (φ,Hφ)

if H is invariant under permutations. In particular, since φ was arbitrary, the infi-
mum of (ψ,H ⊗ Iψ) over all antisymmetric ψ equals the infimum of (φ,Hφ)
over all φ. We shall use this fact later when discussing stability of bosonic
systems.

We note that if H is permutation invariant, the φ that yields the lowest value
of (φ,Hφ) among all possible (normalized) functions can be taken to have a
definite symmetry type without loss of generality, just as an energy minimizing
state for a rotation invariantH can be taken to have a definite angular momentum.
‘Symmetry type’ refers to representations of the permutation group, i.e., to
the behavior of a function under permutations, and symmetric (i.e., bosonic)
and antisymmetric (i.e., fermionic) are but two examples of symmetry types.
There are other symmetry types than symmetric or antisymmetric but these
will not be used in this book. (For more information on representations of
the permutation group, we refer to any textbook on finite groups, e.g., [84].)
The energy minimizer need not be bosonic or fermionic, however. Indeed, for
systems with magnetic fields or systems under rotation it is known that the
energy minimizer is, in general, neither bosonic nor fermionic [162]. In the
absence of magnetic fields, the minimizer can be shown to be always bosonic;
we will show this in Corollary 3.1 on page 59.

3.1.4 Density Matrices

Given a normalized function ψ ∈ L2(R3N ; C
qN ) ∼=

N⊗
L2(R3; C

q) there is nat-
urally associated with it an orthogonal projection �ψ on L2(R3N ; C

qN ) whose
action on a function φ ∈ L2(R3N ; C

qN ) is given by

(�ψφ)(z) = (ψ, φ)ψ(z) (3.1.18)

with (ψ, φ) = ∫ ψ(z)φ(z)dz.3 Clearly �ψ�ψ = �ψ and �ψ is self-adjoint, i.e.,
(φ′, �ψφ) = (�ψφ

′, φ) for all φ and φ′. This �ψ has two other important

3 A notation that is often used is Dirac’s bra and ket notation �ψ = |ψ〉〈ψ |. In this notation the
inner product is given by 〈ψ |φ〉 instead of (ψ, φ), and the matrix elements of an operator H are
denoted by 〈ψ |H |φ〉 instead of (ψ,Hφ).
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properties:

(φ, �ψφ) ≥ 0 positive semidefinite,

Tr�ψ = 1 unit trace. (3.1.19)

The symbol Tr denotes the trace, which can be computed in any orthonormal
basis {φα} as

∑
α(φα, �ψφα). By choosing φ1 = ψ and the other φα to be

orthogonal to ψ , Eq. (3.1.19) is easily deduced.
The projection �ψ has an additional property. It has one eigenvector with

eigenvalue 1, namely ψ itself, �ψψ = ψ , and all other eigenvalues are zero. It
is easy to prove that any linear, self-adjoint operator� that is positive semidefinite
and has unit trace, and has one eigenvalue equal to 1 has the form (3.1.18). Theψ
appearing in (3.1.18) is the unit eigenvector of �, i.e., the ψ such that �ψ = ψ .

Any operator of the form (3.1.18) is called a pure state density matrix. A
general density matrix is any linear, self-adjoint positive semidefinite operator
with unit trace – the condition that 1 is an eigenvalue is dropped. In some sense
such an operator can be viewed as a generalization of the concept of a wave
function; this generalization is not only useful but it is actually forced upon us,
as will be seen shortly.

The two conditions (3.1.19) on a density matrix � will be written as

0 ≤ � ≤ I, Tr� = 1, (3.1.20)

where I is the unit operator, Iψ = ψ for allψ . The condition� ≤ I, which is an
easy consequence of Tr� = 1 and the condition � ≥ 0, means that (ψ,�ψ) ≤
(ψ,ψ) for all ψ . Condition (3.1.20) is a far stronger statement than simply that
� is a bounded operator. In fact (3.1.20) implies the eigenfunction expansion

� =
∞∑
j=1

λj�ψj
, (3.1.21)

where the functions ψj are an orthonormal basis for L2(R3N ; C
qN ) and the real

numbers λj , which are the eigenvalues of �, satisfy

λ1 ≥ λ2 ≥ · · · ≥ 0,
∞∑
j=1

λj = 1.

Also, �ψj = λjψj for each j . In other words, � is a convex combination of
pure state density matrices. The proof of (3.1.21) is left to the reader (or see,
e.g., [168, Thm. 1.4]).
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We say that � is an H1 density matrix if each ψj in (3.1.21) is in
H 1(R3N ; C

qN ) and if

∞∑
j=1

λj‖∇ψj‖2
2 < ∞,

with λj being the eigenvalues of �. Note that this is a stronger condition than
merely assuming that � maps L2(R3N ; C

qN ) into H 1(R3N ; C
qN ); this weaker

condition is
∑∞

j=1 λ
2
j‖∇ψj‖2

2 < ∞. Analogous definitions can be made for
H 1/2 density matrices.

Equation (3.1.21) also implies that � has a kernel function (which we also
denote by �), i.e.,

(�ψ)(z) =
∫

�(z, z′)ψ(z′)dz′. (3.1.22)

The self-adjointness implies that �(z, z′) = �(z′, z). To calculate �(z, z′) we
first note that in the simple case of a pure state �ψ , the kernel is obviously just
ψ(z)ψ(z′). Then from (3.1.20) and an easy proof using the dominated conver-
gence theorem to exchange limits and integrals, the following representation of
�(z, z′) can be obtained:

�(z, z′) =
∞∑
j=1

λjψj (z)ψj (z′). (3.1.23)

There is a technical point that has to be noted. Equation (3.1.22) does not define
the kernel function on the diagonal where z′ = z, i.e., �(z, z) is undefined for all
z = (X, σ ). The reason is that the set of points (X, X) in R

3N × R
3N is merely

a set of 6N -dimensional Lebesgue measure zero. Therefore, the ‘well known’
equation

Tr� =
∫

�(z, z)dz (3.1.24)

does not follow from (3.1.22). However, if we agree to define�(z, z) by (3.1.23),
namely

�(z, z) =
∞∑
j=1

λj |ψj (z)|2 (3.1.25)
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then (3.1.24) is true because

Tr� =
∞∑
j=1

λj

and each ψj is normalized. Note that (3.1.25) defines �(z, z) only for
almost every z, but that is sufficient for (3.1.24). The function �(z, z) on
(R3 × {1, . . . , q})N defined using (3.1.25) is called the diagonal part of the
density matrix �.

The eigenfunction expansion (3.1.21) is also important for defining energies
and expectation values of certain operators. In Sections 3.2.1 and 3.2.2 we shall
define, for any functionψ ∈ H 1(R3N ; C

qN ), an energy E(ψ) which is a quadratic
form in ψ and to which is formally associated an operator H (the Hamiltonian),
i.e., E(ψ) = (ψ,Hψ) in the sense discussed in (2.1.36). We now use (3.1.21) to
define the traces

TrH� = Tr�H :=
∞∑
j=1

λjE(ψj ) =: E(�). (3.1.26)

For unbounded operators H the expressions TrH� and Tr�H are not well
defined a priori but the right side of (3.1.26) is perfectly well defined (provided,
of course, that

∑
jλj |E(ψj )| < ∞.) The same notation (3.1.26) can be used to

define TrA� = Tr�A for any operator, A, formally associated with a quadratic
form A(ψ).

It is an obvious, but important consequence of (3.1.26) that

inf{E(ψ) : (ψ,ψ) = 1} = inf{E(�) : � is a density matrix}.
One can speak of � belonging to a certain permutation symmetry type. It

simply means that each ψj in (3.1.21) belongs to this type. In Section 3.1.3 it
was stated that the only physically relevant permutation types are the totally
symmetric (bosonic) or totally antisymmetric (fermionic) ones for each particle
species, and it will be assumed henceforth, unless otherwise stated, that �

belongs to a physical symmetry type.

3.1.5 Reduced Density Matrices

Assume, for simplicity, that the system under consideration contains only one
species of particles, either fermions or bosons. The generalization of the follow-
ing concepts to multiple species is obvious and left to the reader.
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If � is a physical (bosonic or fermionic) N -particle density matrix with kernel
�(z, z′) and if 1 ≤ k < N we can define the kernel of the k-particle reduced
density matrix to be

γ (k)(z1, . . . zk; z′1, . . . , z′k) =
N !

(N − k)!

∫
�(z1, . . . , zk, zk+1, . . . , zN ; z′1, . . . ,

z′k, zk+1, . . . , zN )dzk+1 . . . dzN.
(3.1.27)

Remarks 3.1. (1) The right side of (3.1.27) is formal (for the same reason
that the right side of (3.1.24) is formal) but it acquires a unique meaning if the
eigenfunction expansion (3.1.23) is used.

(2) Note that γ (k) is not normalized to have trace equal to one. Normalization
conventions other than N !/(N − k)! are often used in the literature.

(3) In (3.1.27) the variables zk+1, . . . , zN are integrated out. Because � is
bosonic or fermionic any other N − k variables could have been chosen. Also,
the ordering of 1, 2, . . . , k is arbitrary. Indeed, the correct definition of γ (k) when
� is neither bosonic nor fermionic is to take all these possibilities and add them
together with a weight 1 instead of N !/(N − k)!. When � is totally symmetric
or totally antisymmetric all these choices give the same result, and that is why
(3.1.27) is true in this physical case with the factor N !/(N − k)!. In the case
of several species of particles it is obvious how to define the reduced density
matrices for each species – or for a mixture of several species. In the interest
of keeping the notation simple, we shall resist the temptation to write down the
most general formula in the following treatment.

Example: For a determinantal wave function (3.1.16) the k-particle reduced
density matrix is expressed in terms of the u1, . . . , uN by

γ (k)(z1, . . . , zk; z′1, . . . , z′k) = k!
∑
τ

1√
k!

det
{
uτi (zj )

}k
i,j=1

1√
k!

det{uτi (z′j )}ki,j=1.

(3.1.28)

The sum runs over the
(
N

k

)
choices, denoted by τ , of k functions from among

the N given ones. In particular, the one-particle density matrix equals

γ (1)(z, z′) =
N∑
i=1

ui(z)ui(z′).
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For use later, we shall also write down the diagonal part of the two-particle
density matrix, also called the two-particle density, of a determinantal wave
function. It is given by

γ (2)(z1, z2; z1, z2) = γ (1)(z1, z1)γ (1)(z2, z2) − |γ (1)(z1, z2)|2. (3.1.29)

Associated with the kernel γ (k) is the operator γ (k), which acts on functions
of k variables in the obvious way by integration, i.e.,(
γ (k)ψ

)
(z1, . . . , zk) =

∫
γ (k)(z1, . . . , zk; z′1, . . . , z′k)ψ(z′1, . . . , z′k)dz′1 · · · dz′k.

It is called the k-particle reduced density matrix. It can also be written in
terms of the partial trace, Tr (N−k), as

γ (k) = N !

(N − k)!
Tr (N−k)�.

For our purposes, Tr (N−k) can be thought of simply as a mnemonic device for
(3.1.27), with the relation between kernel and operator given by (3.1.22).

As an operator, γ (k) has all the properties of a k-particle density matrix except
for the normalization

Tr γ (k) = N !

(N − k)!
.

To justify this statement it is necessary to verify that γ (k) is positive semidefinite.
For any φ ∈ L2(R3k; C

qk ), and with z(k) := (z1, . . . , zk), we have

(φ, γ (k)φ) =
∫

φ(k)(z(k)′)φ(k)(z(k))γ (k)(z(k), z(k)′)dz(k)dz(k)′

=
∞∑
j=1

λj

∫ ∣∣∣∣∫ φ(z(k))ψj (z(k), z(N−k))dz(k)

∣∣∣∣2 dz(N−k), (3.1.30)

and this is non-negative. (The reader is invited to prove, using the Schwarz
inequality, that these integrands are summable and that the interchange of the
order of summation and various integrations is justified by Fubini’s theorem.)

As a consequence of being self adjoint and trace class, the kernel γ (k) also has
an eigenfunction expansion

γ (k)(z(k), z(k)′) =
∞∑
j=1

λ
(k)
j fj (z(k))fj (z(k)′), (3.1.31)
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with λ
(k)
j ≥ 0, fj ∈ L2(R3k; C

qk ) orthonormal, and

∞∑
j=1

λ
(k)
j = N !

(N − k)!
.

We also note that (N−k)!
N! γ (k) is an H 1 density matrix if � is one.

The expansion (3.1.31) permits us to define γ (k) on the diagonal, i.e.,
γ (k)(z(k), z(k)) in analogy with (3.1.25). In particular, it should be noted that
the one-particle density �ψ defined in (3.1.4) is the diagonal part of γ (1).

An important application of partial traces is the definition of the spin-summed
density matrix. Consider the case of the one-particle density matrix γ (1),
which is a positive trace class operator on the one-particle space L2(R3; C

q) ∼=
L2(R3) ⊗ C

q . By taking the partial trace over the C
q part, one obtains a positive

trace class operator onL2(R3), which we shall denote as γ̊ (1). Explicitly, in terms
of kernels,

γ̊ (1)(x, x′) =
q∑

σ=1

γ (1)(x, σ ; x′, σ ). (3.1.32)

The trace of γ̊ (1) onL2(R3) is the same as the trace of γ (1) onL2(R3; C
q), namely∫

R3 γ̊
(1)(x, x)dx. The largest eigenvalue of γ̊ (1) may be larger than the largest

eigenvalue of γ (1); in fact, it is at most q times as big. We denote the largest
eigenvalue of γ (1) and γ̊ (1) by ‖γ (1)‖∞ and ‖γ̊ (1)‖∞, respectively. We thus have

‖γ̊ (1)‖∞ ≤ q‖γ (1)‖∞, (3.1.33)

a fact that will be useful later.
For the purpose of this book the most important of the γ (k) are γ (1) and, to

a much lesser extent, γ (2). The Hamiltonians H , or energy functionals E(·) we
shall consider in this book will have only one- or two-body terms in them. That
is, formally

H =
N∑
i=1

hi +
∑

1≤i<j≤N
Wij .

This notation is meant to suggest that h is an operator (or quadratic form) on
L2(R3; C

q), e.g., h = −�+ V (x), and
∑

ihi is simply
∑

i[−�xi
+ V (xi)]. For

the energy E(·), this translates into
∫

(
∑

i |∇xi
ψ |2 +∑iV (xi)|ψ |2)dz. Similarly,

W is an operator on L2(R3; C
q) ⊗ L2(R3; C

q). We then have the important



3.1 Many-Body Wave Functions 45

formula

E(�) = TrH� = Tr hγ (1) + 1

2
TrWγ (2). (3.1.34)

Again, the traces in (3.1.34) are defined by using the eigenfunction expansions
(3.1.31) for γ (1) and γ (2).4

Formula (3.1.34) raises a tantalizing possibility about computing the mini-
mum (or infimum) of E(�). Instead of considering all possibleN -particle density
matrices �, it suffices instead to consider all possible two-particle density matri-
ces γ (2). Trivially γ (1) can be obtained from γ (2) by

γ (1) = 1

N − 1
Tr (1)γ (2),

4 Some readers might be concerned about the following technical point. We have defined TrH�

via the eigenfunction expansion of �, and similarly we define Tr hγ (1) and TrWγ (2) via the
eigenfunction expansions of γ (1) and γ (2). It remains to check that these different expansions
give the same answer, and that (3.1.34) holds. For example, if γ (1) =∑i κiγui is the one-particle
density matrix of � =∑α λα��α

, is it true that∑
i

κi |ui(z)|2 =
∑
α

λα

∫
|�α(z, z2, . . . , zN )|2dz2 · · · dzN

for almost every z = (x, σ ) ∈ R
3 × C

q? The answer is yes, and can easily be seen as follows.
If V is a bounded, measurable function on R

3 × C
q ,

(ui, V γ (1) ui)

=
∑
α

λα

∫
ui(z)ui(z′)V (z)�α(z, z2, . . . , zN )�α(z′, z2, . . . , zN ) dz dz′ dz2 · · · dzN .

For almost every z2, . . . , zN , we have∑
i

∫
ui(z)ui(z′)V (z)�α(z, z2, . . . , zN )�α(z′, z2, . . . , zN ) dz dz′

=
∫

V (z)|�α(z, z2, . . . , zN )|2dz

and hence∑
i

κi

∫
V (z)|ui (z)|2dz =

∑
i

(ui, V γ (1) ui ) =
∑
α

λα

∫
V (z)|�α(z, z2, . . . , zN )|2 dz dz2 · · · dzN .

Fubini’s theorem justifies the interchange of integrals and sums. Since this is true for every
(bounded) V we arrive at the statement above. A similar argument applies to the two-particle
density and to the kinetic energy in (3.1.34).
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so that TrH� really only depends on γ (2). The difficulty is that we do not know
how to characterize the set of two-particle density matrices γ (2) that arise as
the reduction of some �. If we did, then the N-body problem would effec-
tively be reduced to a two-body problem. It is definitely not the case that every
self-adjoint positive semidefinite operator, γ, on L2(R3; C

q) ⊗ L2(R3; C
q) that

satisfies Tr γ = N (N − 1) arises from some � with the right symmetry. Some
useful necessary conditions are known (see, e.g. [78, 147, 31]) but a non-trivial
sufficient condition is not known. The quest for necessary and sufficient condi-
tions has been a topic of research for many years – called the N-representability
problem. We shall not mention it further here.

The only k for which the allowed k-particle reduced density matrices γ (k)

can be characterized simply is k = 1. A positive semidefinite operator γ on the
one-particle space L2(R3; C

q) with Tr γ = N will be called admissible if it is
the one-particle reduction of some density matrix � on the N -particle space.
The boson and fermion cases are very different and we give them separately. In
the boson case all such operators γ are admissible, but not all γ are admissible
in the fermion case.

Theorem 3.1 (Admissible One-Body Density Matrices for Bosons). Let γ be
a self-adjoint, positive semidefinite operator on L2(R3; C

q) with finite trace

Tr γ = N

for some integer N ≥ 1. Then there is a bosonic N -particle density matrix �

such that γ = NTr (N−1)�. Moreover, if N ≥ 2, � can be chosen to be a pure
state, i.e., � = �ψ for some ψ .

Proof. If N = 1 we simply take � = γ , so suppose N ≥ 2. Let {fj , λj }∞j=1 be
the orthonormal eigenfunctions and eigenvalues of γ . With the choice

ψ(z) := N−1/2
∞∑
j=1

λ
1/2
j

N∏
i=1

fj (zi)

one easily checks that ψ is normalized and that γ = NTr (N−1)�ψ .

The following is the analogue of Theorem 3.1 for fermions. It is due to
Coleman [31]. The conclusion (3.1.35) will be very important for us.

Theorem 3.2 (Admissible One-Body Density Matrices for Fermions). Let
γ satisfy the hypotheses of Theorem 3.1. Then there is a fermionic N -particle
density matrix� such that γ = NTr (N−1)� if and only if γ satisfies the additional
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condition

γ ≤ I. (3.1.35)

It is not true, in general, that � can be chosen to be a pure state. In particular,
whenever γ has N − 1 eigenvalues equal to 1 and at least N + 1 positive
eigenvalues then � cannot be pure.

Proof. We first prove that (3.1.35) suffices to insure the existence of a �. Let
λ1 ≥ λ2 ≥ . . . denote the eigenvalues of γ in decreasing order. By assumption,
0 ≤ λj ≤ 1 and

∑∞
j=1 λj = N . We can assume that λN+1 > 0, otherwise a

simple Slater determinant will satisfy the requirements. Note also that λN+1 ≤
N/(N + 1) < 1, since N ≥∑N+1

j=1 λj ≥ (N + 1)λN+1.
Let χ[1,N] be the characteristic function of [1, N], i.e., χ[1,N](j ) = 1 for 1 ≤

j ≤ N and χ[1,N](j ) = 0 for j > N . With ε = min{λN, 1 − λN+1}, we can write

λj = εχ[1,N](j ) + (1 − ε)fj

with

fj = 1

1 − ε

(
λj − εχ[1,N](j )

)
.

Then 0 ≤ fj ≤ 1, and
∑∞

j=1 fj = N .
We can now rearrange the sequence fj in decreasing order, and repeat the

construction. After M iterations, we see that λj can be written as

λj =
M∑
k=1

ckχk(j ) + RM
j ,

where χk is the characteristic function of some subset of N points in {1, 2, . . . },
and
∑M

k=1 ck ≤ 1. In fact, if εk denotes the value of ε in the kth iteration, we
have

ck = εk

k−1∏
j=1

(1 − εj ).

We can now distinguish two cases. If
∑∞

k=1 ck = 1, then limM→∞
∑∞

j=1 R
M
j =

0 and hence

λj =
∞∑
k=1

ckχk(j ).
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In particular, γ can be written as a convex combination of rank N projections.
If we take � to be the same convex combination of the rank 1 projections onto
the Slater determinants corresponding to the rank N projections, � will satisfy
all the requirements.

It remains to consider the case
∑∞

k=1 ck =: d < 1. The sequence RM
j con-

verges strongly to some sequence Rj as M → ∞, with the property that 0 ≤
Rj ≤ 1 − d and

∑∞
j=1 Rj = N (1 − d). That is, limM→∞

∑∞
j=1 |RM

j − Rj | = 0.
This follows easily from the dominated convergence theorem. For the following
reason one readily concludes that limk→∞ εk > 0. Let us reorder the sequence
RM
j /(1 −∑M

k=1 ck) in decreasing order and call the resulting sequence rMj . Since
0 ≤ rMj ≤ 1 and

∑
j r

M
j = N , we conclude that rMN+1 ≤ N/(N + 1), as we noted

earlier. Then 1 − rMN+1 ≥ 1/(N + 1), which implies that εk can only go to zero if
rMN goes to zero. But rMj converges, asM → ∞, to rj , which equals the sequence
Rj/(1 − d) rearranged in decreasing order. The numbers rj are ordered, lie
between 0 and 1, and sum toN . Hence rN > 0. This implies that limk→∞ εk > 0.

For arbitrary numbers 0 ≤ εj ≤ 1 and M ∈ N ∪ {∞},
M∑
k=1

εk

k−1∏
j=1

(1 − εj ) = 1 −
M∏
j=1

(1 − εk). (3.1.36)

A simple proof of this identity (due to Ya. Sinai) is to rewrite it as a telescopic
sum of the form

∑M
k=1(αk−1 − αk) = α0 − αM , where αk =∏k

j=1(1 − εj ) for
k ≥ 1 and α0 = 1. We apply this to our situation above and note that the left
side equals d when M = ∞. The right side equals 1, however, if the εk are not
summable which, in particular, is the case if limk→∞ εk > 0. This contradicts
the assumption that d < 1, and proves that (3.1.35) is indeed sufficient for
N -representability.

Remark 3.2. What we have really just shown is that every sequence of numbers
λj with 0 ≤ λj ≤ 1 and

∑∞
j=1 λj = N can be written as a convex combination

of characteristic functions of N elements. Since the latter are the extreme points
in this convex set, this fact follows from a general result known as Choquet’s
theorem. In finite dimensions, it goes back to Caratheodory and Minkowski [151,
Sect. 17]. For the infinite dimensional version, we refer the interested reader to
[166, Sect. I.5]. Instead of using this abstract result, however, we chose to give
the elementary explicit construction above.

We shall now prove the converse, namely that γ = NTr (N−1)� implies
(3.1.35), i.e. (φ, γ φ) ≤ (φ, φ) for all φ ∈ L2(R3; C

q).
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First, let us assume that � is pure, i.e., � = �ψ with (ψ,ψ) = 1.
Define the annihilation operator CN,φ : HN =∧N

L2(R3; C
q) → HN−1 =∧N−1

L2(R3; C
q) by

(CN,φψ)(z1, . . . , zN−1) = N1/2
∫

ψ(z1, . . . , zN )φ(zN )dzN. (3.1.37)

Clearly,

(CN,φψ,CN,φψ)HN−1 = (φ, γ φ). (3.1.38)

If χ is any function in HN−1 then one easily checks that

(χ,CN,φψ)HN−1 = (C†
N,φχ,ψ)HN

with C
†
N,φ : HN−1 → HN being the creation operator given by

(C†
N,φχ )(z1, . . . , zN ) = N−1/2A{χ (z1, . . . , zN−1)φ(zN )}. (3.1.39)

Here, A is the antisymmetrizer (3.1.17). A simple algebraic exercise shows that

CN+1,φC
†
N+1,φ + C

†
N,φCN,φ = (φ, φ)IN (3.1.40)

where IN is the identity on HN . Thus, returning to (3.1.38),

(φ, γ φ) = (ψ,C†
N,φCN,φψ)HN

= (φ, φ)(ψ,ψ)HN
− (ψ,CN+1,φC

†
N+1,φψ)HN

= (φ, φ) − (C†
N+1,φψ, C

†
N+1,φψ) ≤ (φ, φ). (3.1.41)

This is the desired goal. If � is not pure, we can apply (3.1.41) to each term in
(3.1.21) and then use

∑
jλj = 1.

To prove the last sentence of the theorem it suffices to find a γ satisfying
(3.1.35) but such that no pure �ψ exists for which γ = NTr (N−1)�ψ . First,
suppose N = 2 and that γ (1) has three non-zero eigenvalues and eigenfunc-
tions (1, f ), (μ, g), ((1 − μ), h) with 0 < μ < 1 and with f, g, h orthonormal
functions in L2(R3; C

q). All other eigenvalues are zero. Assume now that
γ (1) is the reduction of some �ψ . If we take φ = f in (3.1.41) then, since
(f, γ (1)f ) = (f, f ) = 1, it follows from (3.1.41) that C†

3,f ψ = 0. By (3.1.40),

C
†
2,f C2,f ψ = ψ. (3.1.42)
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The following explicit form of (3.1.42) is a consequence of the definitions
(3.1.37) and (3.1.39):

A
{
f (z2)

∫
ψ(z1, z′2)f (z′2)dz2

}
= ψ(z1, z2). (3.1.43)

Let 2−1/2f2(z1) denote the integral in (3.1.43). Since (f, f ) = 1, it follows that
(f2, f2) = 1. Then (3.1.43) reads

ψ(z1, z2) = 2−1/2 det{fi(zj )}2
i,j=1 (3.1.44)

with f1 = f . Moreover,

(f1, f2) =
∫

ψ(z1, z2)f (z1)f (z2)dz1dz2,

and this vanishes because f (z1)f (z2) is symmetric and ψ is antisymmetric; thus
(f1, f2) = 0 and (3.1.44) is correctly normalized. From (3.1.44), we find that
γ (1) has only two non-zero eigenvalues and eigenfunctions (1, f1) and (1, f2),
which contradicts the initial assumption of eigenvalues 1, μ, 1 − μ.

The same idea can easily be generalized to show that for any N , a pure state
�ψ cannot give rise to a γ (1) that has (N − 1) eigenvalues 1 and all the remaining
eigenvalues strictly less than 1.

3.2 Many-Body Hamiltonians

In this section, we will describe in detail some of the many-body Hamiltonians
whose ground state energy will be studied in this book. We also define what is
meant by stability of the second kind. We start with the case of static nuclei, and
consider the case of dynamic nuclei in Subsect. 3.2.2.

3.2.1 Many-Body Hamiltonians and Stability: Models with
Static Nuclei

The Coulomb Hamiltonian for N non-relativistic electrons interacting through
electrostatic forces with M static nuclei fixed at positions R1, . . . , RM ∈ R

3 is

HN,M = −1

2

N∑
i=1

�i + αVC(X, R). (3.2.1)
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The function VC(X, R) is the total Coulomb energy defined in Section 2.1.4,
Eqs. (2.1.21)–(2.1.24) and α := e2/h̄c ≈ 1/137 is the fine-structure constant.
The units are chosen as explained in Section 2.1.7. Note that the only free
parameters besides N and M are the nuclear charge numbers Z1, . . . , ZM .
Although they are integers in nature, we shall not assume that here.

A simple but important observation is that (3.2.1) is symmetric under permu-
tation of the electron labels. Hence it makes sense to restrict it to antisymmetric
wave functions, as appropriate for electrons. For ψ ∈∧N

i=1 L
2(R3; C

q) a totally
antisymmetric wave function of space-spin variables, we write the quadratic
form associated with HN,M as

EN (ψ) = (ψ,HN,Mψ) =
N∑
i=1

T i
ψ + αVψ (3.2.2)

(where T i
ψ and Vψ are defined in (3.1.10) and (3.1.12), respectively). Recall that

zi = (xi , σi) where xi ∈ R
3 and the spin index σi takes values in {1, . . . , q}.

In the case of electrons, q = 2 of course. If electrons were bosons we would
then consider (3.2.2) with ψ(z1, . . . , zN ) symmetric. The minimization problem
associated with (3.2.2) is now

EN (Z, R) := inf{EN (ψ) : ψ bosonic or fermionic, ‖ψ‖2 = 1, ψ ∈ H 1(R3N )}
(3.2.3)

with the obvious notationZ = (Z1, . . . , ZM ) and R = (R1, . . . , RM ).EN (Z, R)
is called the ground state energy. Note that for this problem the positions of
the nuclei are fixed parameters and therefore the repulsion U is unimportant for
the calculation of EN (Z, R), although it is crucial for questions such as binding
and stability of the second kind.

The conditionEN (Z, R) > −∞ for all distinct values of R1, . . . , RM is called
stability of the first kind. For non-relativistic Coulomb systems this kind of
stability is not very hard to prove. To see this, simply omit the positive repulsive
parts. The attractive parts can be studied one particle at a time; they satisfy the
stability conditions in Section 2.2.1, and hence stability of the first kind follows.
The estimate for EN (Z, R) obtained by this simple argument will depend on the
nuclear coordinates R. Our goal is to eliminate this dependence by defining the
absolute ground state energy to be

EN,M (Z) := inf
{
EN (Z, R) : R ∈ R

3N
}
. (3.2.4)
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With it we can define stability of the second kind, which says that

EN,M (Z) ≥ −�(Z)(N +M) (3.2.5)

for some number�(Z) that depends only onZ := max(Z1, . . . , ZM ). Obviously,
(3.2.5) is much harder to prove than stability of the first kind, forU (R) now plays
a decisive role. (Without U (R), the minimum energy would occur at Rk = 0 for
all k, and would hence be proportional to −N (

∑
k Zk)2 ∼ −NM2.) As we shall

see, stability of the second kind holds only for fermions.
As we mentioned in the prologue, the linear lower bound (3.2.5) is essential

for our understanding of ordinary matter, where a full glass of water has twice
the energy of a half-filled glass. Were the energy to grow by a larger power of
the number of particles, one could extract a huge amount of energy simply by
pouring one half-filled glass of water into another.

The relativistic analogue of (3.2.1) is given formally by

H rel
N,M =

N∑
i=1

(√
−�i + 1 − 1

)
+ αVC(X, R). (3.2.6)

The symbol
√−�i + 1 − 1 is defined by considering the quadratic form asso-

ciated with (3.2.6):

E rel
N (ψ) = (ψ,H rel

N,Mψ) =
N∑
i=1

T i
ψ + αVψ,

where T i
ψ is now defined in (3.1.11). Analogously to (3.2.3) we can define the

ground state energy of E rel
N (ψ) to be

Erel
N (Z, R) = inf{E rel

N (ψ) : ψ bosonic or fermionic, ‖ψ‖2 = 1, ψ ∈ H 1/2(R3N )}.
It is by no means clear that Erel

N (Z, R) is finite. In fact, as we shall see in
Chapter 8, even for the one electron, one nucleus case, Erel

1 (Z) is only finite
if Zα ≤ 2/π . From this we would expect that, provided Ziα ≤ 2/π for all
i = 1, . . . ,M and provided that the nuclei stay fixed and apart, stability of
the first kind should hold. In fact this is true (see Lemma 8.3 in Chapter 8)
independent of the statistics, Fermi or Bose. Stability of the second kind is
however a fairly deep result, relativistically. In addition it will turn out that a
bound on the fine structure constant α is also necessary to insure stability of the
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second kind. Stability requires an understanding of the problem in the extreme
relativistic limit where the mass of the electron no longer plays a role and can
be set equal to zero.

The reason that the extreme relativistic limit is relevant is the pair of
inequalities

| p| − 1 ≤
√

p2 + 1 − 1 ≤ | p|,
which are easily verified. Using the definition of the relativistic kinetic energy
via the Fourier transform (cf. (3.1.11)) one obtains the inequalities

Ẽ rel
N (ψ) −N ≤ E rel

N (ψ) ≤ Ẽ rel
N (ψ),

where

Ẽ rel
N (ψ) =

N∑
i=1

(ψ, | pi |ψ) + αVψ.

Thus the stability of the second kind of E rel
N (ψ) and Ẽ rel

N (ψ) are equivalent. Now
we note that by scaling ψ 	→ ψλ given by

ψλ(x1, σ1; . . . ; xN, σN ) = λ3N/2ψ(λx1, σ1; . . . ; λxN, σN ),

and also R 	→ λR,

Ẽ rel
N (ψλ) = λẼ rel

N (ψ). (3.2.7)

Thus,

Ẽrel
N (Z) = inf

ψ, R
{Ẽ rel

N (ψ) : ψ ∈ H 1/2(R3N ), ‖ψ‖2 = 1}

is either −∞ or zero. By (3.2.7), if Ẽ rel
N (ψ) < 0 for some ψ then Ẽrel

N (Z) = −∞,
while Ẽrel

N (Z) = 0 if and only if Ẽ rel
N (ψ) ≥ 0 for all ψ . Thus, the stability of

the first kind and of the second kind for E rel
N (ψ) are equivalent, and both are

equivalent to the statement that Ẽ rel
N (ψ) ≥ 0 for all ψ and all R.

In Chapter 10 we consider the effect of external magnetic fields

B(x) = curl A(x).

For spinless particles this entails replacing p by p +√
αA(x), i.e.

−� → (−i∇ +√
αA(x)

)2
(3.2.8)

in both the non-relativistic and relativistic cases. With the replacement (3.2.8)
the Hamiltonians (3.2.1) and (3.2.6) become HN,M (A) or H rel

N,M (A). It will
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turn out that the replacement (3.2.8) does not significantly affect the stability
of matter question. In the non-relativistic case, this is a consequence of the
diamagnetic inequality discussed in Chapter 4. The same holds in the relativistic
case but the situation is much more complicated and will be discussed in detail
in Chapter 8. We can generalize the notion of stability of the second kind (3.2.5)
by generalizing (3.2.4) to include B, i.e.,

EN,M (Z) = inf
B,R

{EN (Z, R, B) : R ∈ R
3M},

where EN (Z, R, B) is the ground state energy with field B. (By gauge invari-
ance, the ground state energy depends on A only through B.) Stability of the
second kind continues to hold for fermions, i.e., EN,M (Z) ≥ −�(Z)(N +M).

The situation is drastically changed if we allow the fermions to interact with
the magnetic field through their spin, i.e.,

HN,M → HN,M (A) −
√
α

4
g

N∑
i=1

σ i · B(xi), (3.2.9)

where g is the gyromagnetic ratio of the electrons – usually taken to be 2 – and
where σ = (σ 1, σ 2, σ 3) denotes the vector of Pauli spin matrices (see Chapters 2
and 10). Now, for any fixed R and Z, the last term in (3.2.9) allows us to drive
the energy to −∞ by letting B → ∞ in a suitable way. To correct this, and
restore stability of the second kind, we add one more term to the energy – the
magnetic field energy defined in (2.1.16)

Emag(B) = 1

8π

∫
R3

|B(x)|2dx.

Its role is similar to that of the nuclear repulsionU . Its inclusion prevents B from
becoming too large – provided Zα2 and α are both not too large, and 0 ≤ g ≤ 2.
This is similar to the requirements for stability in the relativistic case.

3.2.2 Many-Body Hamiltonians: Models without Static Particles

For all the results in the following chapters where stability of the second kind
for fermions is proved, the nuclei can be considered to be static. Their kinetic
energy is not needed for stability.

As we shall see, a Coulomb system of bosons with static nuclei is not stable
of the second kind. In the non-relativistic case the energy EN,M (Z) grows
as −[min(N,M)]5/3. One might think that by taking the kinetic energy of the
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nuclei into account, the instability can be ameliorated. This is in fact so if the
nuclei are fermions, but if they are also bosons the system is still unstable,
but not as badly. The energy only grows as −[min(N,M)]7/5. This will be
discussed in Chapter 7.

If both the positive and negative particles are dynamic, the wave functions are
now functions of X and R and the corresponding spin variables. The energy of
a non-relativistic system becomes

EN (ψ) → EN (ψ) +
M∑
j=1

T
j

ψ

where EN (ψ) is given in (3.2.2), and where T
j

ψ = (2μ)−1
∫ |∇Rj

ψ |2 is
the kinetic energy of the positive particles with coordinates R1, . . . , RM .
Their mass is denoted by μ > 0. Of course ψ is now in L2(R3(N+M)).
For simplicity neglecting the spin variables in the notation here, we
have ψ = ψ(x1, . . . , xN ; R1, . . . , RM ) and it satisfies appropriate symme-
try requirements separately for permutations of the coordinates x and R.
(Cf. Section 3.1.3.) That is, it is antisymmetric in the electron coordinates xi

and either symmetric or antisymmetric in the nuclear positions Ri depending on
the statistics of the nuclei.

Another model without static particles considered in this book is a relativistic
gravitating system. It consists of neutral particles of mass mn, e.g., neutrons,
which interact only via the gravitational attraction. A more thorough discussion
of the feasibility of such a model for neutron stars is given in Chapter 13. In any
case the Hamiltonian of this model is then given by

N∑
i=1

(√
−�i +m2

n −mn

)
−Gm2

n

∑
1≤i<j≤N

1

|xi − xj | ,

where G is the gravitational constant, which is

G = 6.674 × 10−8 grams−1 cm3 sec−2, (3.2.10)

as determined by Cavendish in 1798 [28].
In dimensionless terms (in units where the neutron mass is one) this expression

takes the form

N∑
i=1

(√
−�i + 1 − 1

)
− κ

∑
1≤i<j≤N

1

|xi − xj | (3.2.11)
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where κ = Gm2
n/h̄c is a dimensionless constant. If mn = mass of a neutron then

κ ≈ 7 × 10−37.

The smallness of κ is the reason why gravity can often be neglected, except in
very large systems.

The energy functional associated with (3.2.11) is given by

Egrav
N (ψ) =

N∑
i=1

T i
ψ − κ

⎛⎝ψ, ∑
1≤i<j≤N

1

|xi − xj |ψ
⎞⎠

with T i
ψ defined in (3.1.11). It cannot be expected that this functional is bounded

from below, in general. It has to be expected that beyond a critical N it becomes
unbounded from below. As it will turn out, this critical number,Nc, is the famous
Chandrasekhar mass limit; it will depend on the statistics and it will be smaller
for bosons than for fermions. The reader is referred to Chapter 13.

One might consider a similar model for white dwarfs but then one has to take
the electrostatic forces into account. The functional for a system of N electrons
and M nuclei (usually helium nuclei) of mass mn in units of the electron mass
and nuclear charge Z is given by

N∑
i=1

T
i,e
ψ +

M∑
j=1

T
j,n

ψ − (αZ + κm−1
n )

⎛⎝ψ, N∑
i=1

M∑
j=1

1

|xi − Rj |ψ
⎞⎠

+ (αZ2 − κ)

⎛⎝ψ, ∑
1≤i<j≤M

1

|Ri − Rj |ψ
⎞⎠

+ (αZ − κm−2
n )

⎛⎝ψ, ∑
1≤i<j≤N

1

|xi − xj |ψ
⎞⎠ . (3.2.12)

Here, e and n refer to electrons and nuclei respectively. The operator T i,e corre-

sponds to
√−�xi

+ 1 − 1 while T j,n corresponds to
√
−�Rj

+m2
n −mn.

The conclusion about stability in Chapter 13 will be largely the same as for
the neutron star model. There are still some open problems, however, which will
be discussed in Chapter 13.
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3.2.3 Monotonicity in the Nuclear Charges

We are interested in finding the ground state energy for a given number N of
electrons and a certain number M of nuclei with charges Z = (Z1, . . . , ZM ).
These nuclei might either be fixed at locations R = (R1, . . . , RM ) or dynamic,
in which case there are no fixed locations.

Recall that EN (Z, R) denotes the ground state energy in the fixed nuclear
case, and EN,M (Z) is the ground state energy in the case of dynamic nuclei. In
what follows, the form of the kinetic energy of the electrons and nuclei is not
important. What is important is the fact that the Hamiltonian depends linearly
on the nuclear charges. (Hence we have to exclude the case where the dynamic
nuclei are coupled to a magnetic field, since in this case the nuclear charge
appears in the kinetic energy in a non-linear way.)

Proposition 3.1 (Monotonicity in the Nuclear Charges). Assume that Zk ≤ Z

for all k = 1, . . . ,M . Then

EN (Z, R) ≥ min
R̃⊂R

EN ((Z,Z, . . . , Z), R̃). (3.2.13)

Moreover, if Zk ≤ Z̃k for all k = 1, . . . ,M , then

EN,M (Z) ≥ EN,M (Z̃). (3.2.14)

In other words, in the case of fixed nuclear locations R = (R1, . . . , RM ), a
lower bound is obtained by replacing each nuclear charge Zk by either 0 or
the common upper bound Z, and taking the minimum over all such choices.
In the dynamic case, even more is true, namely the energy is monotone non-
increasing in each nuclear charge. The usefulness of this proposition lies in the
fact that in order to prove stability of matter (of the first or second kind) it
is enough to consider the case of equal nuclear charges. This observation was
first made in [38, Lemma 2.3 et seq.]. We shall utilize this fact in the chapters
to come.

Proof. Each Zk appears linearly in the Hamiltonian, i.e., HN,M is an affine
(operator valued) function of Zk for fixed Zj , j �= k. Its ground state energy is
the infimum over (ψ,HN,M ψ) and hence is concave separately in Zk. (Note that
this does not mean that it is a jointly concave function.) For fixed values of Zj ,
j �= k, the minimum of EN (Z, R) over Zk ∈ [0, Z] is attained either at Zk = 0
or Zk = Z. By applying this argument to all the nuclear charges separately, we
end up with the statement (3.2.13).
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In the dynamic case, the same concavity argument applies. However, for fixed
Zj , j �= k, the energy EN,M (Z) can not be increasing for small Zk. If it were, the
energy could be lowered by setting Zk = 0 which, however, has the same effect
as moving the corresponding nucleus to infinity (which can be accomplished
with infinitesimal kinetic energy cost for the nucleus). Hence EN,M is less than
or equal to its value at Zk = 0, and hence must be monotone decreasing by
concavity. This proves (3.2.14).

3.2.4 Unrestricted Minimizers are Bosonic

For fermionic systems, the imposition of antisymmetry has a major impact on
the stability question. For bosons, however, the imposition of symmetry often
plays no role. One might as well minimize over all wave functions, irrespective
of symmetry. That this is so (in the absence of magnetic fields) is the content
of Corollary 3.1. When magnetic fields are present, the symmetry requirement
is important and not automatic, although one does not expect it to affect the
question of stability significantly.

The main result, Corollary 3.1, is a consequence of the following abstract
theorem.

Theorem 3.3 (Symmetry of Minimizers). Let E(ψ) be a (not necessarily
bounded) quadratic form onL2(RdN ) for some d (e.g., d = 3) with the properties
that

(a) E(ψ) ≥ c(ψ,ψ) for some constant c,
(b) E(ψ) ≥ E(|ψ |), where |ψ |(X) = |ψ(X)|,
(c) E(ψπ ) = E(ψ) for all permutations π ∈ SN permuting the N particles, i.e.,

ψπ (x1, . . . , xN ) = ψ(xπ(1), . . . , xπ(N )).

Then

E0 := inf{E(ψ) : (ψ,ψ) = 1} = inf{E(ψ) : (ψ,ψ) = 1, ψπ = ψ for all π}.

Proof. By assumption (a),E0 = inf{E(ψ) : (ψ,ψ) = 1} is finite. By assumption
(b) and the fact that (ψ,ψ) = (|ψ |, |ψ |), we can assume that ψ = |ψ | without
loss of generality when computing the infimum of E(ψ). The same is true
when computing the infimum over symmetric ψ , because |ψ | is symmetric
if ψ is symmetric. For given non-negative ψ , we write ψ = ψs + ψr , where
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ψs = (1/N !)
∑

π ψπ denotes the symmetric part of ψ and ψr is the remainder.
We note that ψs is also non-negative. Using assumption (c) we have5

E(ψ) = E(ψs) + E(ψr ) (3.2.15)

and, similarly,

(ψ,ψ) = (ψs,ψs) + (ψr,ψr ). (3.2.16)

Note that since (ψπ,ψπ ′) ≥ 0,

(ψs,ψs) ≥ 1

N !
.

In particular, ψs does not vanish identically. Since E(ψs) ≥ (ψs,ψs)E0 and
E(ψr ) ≥ (ψr,ψr )E0, we conclude that if ψ is a minimizer for E so is ψs/‖ψs‖.

If there is no minimizer, we can apply the same argument to a minimizing
sequence. That is, if ψ (n) is a sequence of non-negative normalized functions
with limn→∞ E(ψ (n)) = E0, then also limn→∞ E(ψ (n)

s )/(ψ (n)
s , ψ (n)

s ) = E0. This
proves the theorem.

Corollary 3.1 (Unrestricted Minimizers for Relativistic and Non-Relativistic
Systems are Positive and Bosonic). Consider an energy functional

E(ψ) = Tψ +Wψ,

corresponding to a Hamiltonian

H =
N∑
i=1

Ti +W (X)

with E(ψ) = (ψ,Hψ). Here Ti is either (2m)−1 p2
i , ψ ∈ H 1(RdN ) (non rela-

tivistic) or Ti =
√

p2
i +m2 −m,ψ ∈ H 1/2(RdN ) (relativistic). (Note that all

5 To see the equality in (3.2.15), consider first the sesquilinear form associated with E , given
by Ẽ(φ,ψ) = (4i)−1E(φ + iψ) − (4i)−1E(φ − iψ) + (1/4)E(φ + ψ) − (1/4)E(φ + ψ). We
can write Ẽ(ψs, ψr ) = (N !)−2

∑
π

∑
σ Ẽ(ψπ,ψ − ψσ ). Since Ẽ(ψπ,ψ − ψσ ) = E(ψ,ψπ−1 −

ψπ−1σ ), this can be further written as Ẽ(ψs, ψr ) = (N !)−2
∑

π

∑
σ Ẽ(ψ,ψπ−1 − ψπ−1σ ) = 0.

Hence E(ψs + ψr ) = Ẽ(ψs + ψr, ψs + ψr ) = Ẽ(ψs, ψs) + Ẽ(ψr,ψr ) = E(ψs) + E(ψr ). In
other words, the cross-terms vanish.
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the particles have the same mass.) The measurable function W is such that

Tψ +Wψ ≥ c(ψ,ψ)

for some constant c and all ψ in H 1 or H 1/2. Furthermore, W (X) is assumed
to be symmetric, i.e.,

W (x1, . . . , xN ) = W (xπ(1), . . . , xπ(N ))

for all permutations π ∈ SN .
Then E(ψ) satisfies all the assumptions of Theorem 3.3. In particular the

unrestricted infimum of E is the same as the infimum of E over non-negative
totally symmetric functions ψ .

Proof. First notice that Tψ ≥ T|ψ |. In the non-relativistic case, this simply fol-
lows from the fact that

|∇f (x)| ≥ |∇|f (x)||2

for almost every x, which holds for any function in H 1(Rd) [118, Thm. 7.8]. In
the relativistic case, one uses the integral formula [118, Sects. 7.11 & 7.12]

(f,
√
| p|2 +m2 f ) =

∫∫
Rd×Rd

|f (x) − f ( y)|2
|x − y|(d+1)/2

( m
2π

)(d+1)/2
K(d+1)/2(m|x − y|)dxd y

(3.2.17)

(with K the modified Bessel function of the third kind, which is non-negative)
and the fact that |f (x) − f ( y)| ≥ ||f (x)| − |f ( y)||. A proof of this formula for
m = 0 will be given in Lemma 8.1 in Chapter 8.

Moreover, Wψ = W|ψ |. That E(ψπ ) = E(ψ) is obvious. Hence the last state-
ment follows from Theorem 3.3.

Remark 3.3. The proof above would not work in the case of magnetic fields,
since the energy functional in this case does not decrease by taking the absolute
value of the wave function. In fact, a minimizer will not be positive in this case,
or even real. Moreover, the conclusion of the corollary itself does not hold,
in general, if magnetic fields are present. Minimizers need not be bosonic. In
fact, the bosonic symmetry requirement is essential for understanding vortex
formation in dilute Bose gases subject to homogeneous magnetic fields [162,
126].
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Remark 3.4. The corollary obviously generalizes to the case in which there
are several species of particles and T and W are separately symmetric in the
variables corresponding to each species. Then the ground state energy without
symmetry restrictions coincides with the energy in which all the species are
bosonic.
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Lieb–Thirring and Related Inequalities

4.1 LT Inequalities: Formulation

The non-relativistic versions of the inequalities discussed in this chapter were
invented in 1975 [134, 135] in order to give an alternative, simpler proof of the
stability of non-relativistic matter, first proved by Dyson and Lenard [44]. The
basic idea, as we said in Section 1.1, was to relate the stability of quantum-
mechanical Coulomb systems to the simpler Thomas–Fermi theory of Coulomb
systems, which was known to have the required stability properties.

These inequalities have many extensions and a sizable literature, and are
collectively known as Lieb–Thirring (LT) inequalities. While we do not follow
the Thomas–Fermi route to stability in this book, for reasons explained earlier,
the inequalities will, nevertheless, play an essential role in various aspects of the
relativistic and non-relativistic theories.

In this introduction we shall explain the various inequalities. The next section
gives their connection with kinetic energy inequalities, which was the original
1975 motivation. The rest of the chapter is devoted to proofs and can be skipped
by anyone interested only in applications. The proofs require a theorem about
traces of operators, which is given in an appendix to this chapter. The proofs
given here follow closely the discussion in [118, Chapter 12], except for the
theorem in the appendix to this chapter, which is only stated but not proved
in [118].

The LT inequalities concern the Schrödinger operator on L2(Rd), the space
of square-integrable functions of d variables. For our purposes, d = 3 is the
relevant case, but we may as well discuss all d ≥ 1. The inequalities depend
importantly on d. They are concerned with the sum of the γ th power of the
negative eigenvalues. For the application in later chapters, the sum of the negative
eigenvalues (that is, γ = 1) will be the most relevant, but we shall also have use
for other values of γ (in particular, γ = 0 and γ = 1/2).

62
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Quite a few mathematicians have devoted a lot of time to explore generaliza-
tions of the inequalities and bounds on the optimal constants. For instance, there
are generalizations to Riemannian manifolds. Only the Euclidean case will be
discussed here.

The Schrödinger operator on L2(Rd) is1

H = −�+ V (x) (4.1.1)

and the eigenvalue equation is

−�ψ(x) + V (x)ψ(x) = Eψ(x) (4.1.2)

with ψ ∈ L2(Rd). We assume that V is such that H is self-adjoint and bounded
from below. For this purpose is suffices that V satisfies the requirements in
(2.2.14), as explained in Section 2.2.1. The non-positive (i.e., negative or zero)
eigenvalues, if any, are labeled E0 ≤ E1 ≤ E2 ≤ · · · ≤ 0, repeated according to
multiplicity. There can be none, finitely many or infinitely many. They can be
defined via the variational principle, see, e.g., [118, Sect. 11.2 et seq.].

The LT inequalities bound power sums of the negative eigenvalues by integrals
of V−, the negative part of V . Recall that any function V can be written as

V (x) = V+(x) − V−(x) (4.1.3)

with

V+(x) = max{V (x), 0}, V−(x) = max{−V (x), 0}. (4.1.4)

With this convention, V−(x) ≥ 0. We assume that V− vanishes at infinity, i.e.,
the measure of the set where V−(x) ≥ t is finite for all t > 0.

4.1.1 The Semiclassical Approximation

Before presenting the inequalities let us discuss their ‘semiclassical’ interpre-
tation, which will make them more transparent and natural. According to the
semiclassical approach, which goes back to the earliest days of quantum mechan-
ics, each volume (2π )d in 2d-dimensional phase space (consisting of pairs of
points ( p, x) with p ∈ R

d and x ∈ R
d) can support one quantum state. (If we

restore Planck’s constant h then the volume is (2πh̄)d = hd .) This prescription

1 In this chapter, there is no factor 1/2 in front of the Laplacian, as there is elsewhere in the book.
This is the standard convention used by spectral theorists.
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can be quantified by using it to ‘calculate’ the number of negative (actually,
non-positive) eigenvalues by integration, as follows:∑

j≥0

|Ej |0 � (2π )−d

∫∫
Rd×Rd

�(− p2 − V (x))d pdx, (4.1.5)

where �(s) = 1 if s ≥ 0 and = 0 if s < 0. Our notation is that |Ej |0 = 1 even
if Ej is a zero eigenvalue. The integral in (4.1.5) can easily be evaluated by
first doing the p integration over the ball in R

d of radius
√
V−(x). This integral

is well known to be (see, e.g. [118, p.6]) [πd/2/�(d/2 + 1)] V−(x)d/2. From
this we conclude that the semiclassical approximation to the number of negative
eigenvalues is [(4π )−d/2/�(d/2 + 1)]

∫
Rd V−(x)d/2dx. Note that this quantity

does not depend on V+.
We can go further and ‘calculate’ power sums of the negative eigenvalues,∑
j |Ej |γ , for all γ ≥ 0, by integrating the function (2π )−d | p2 + V (x)|γ over

the subset of phase-space in which p2 + V (x) < 0. This is an easy exercise,
similar to the one just mentioned. One does the p integration first and finds the
semiclassical approximation∑

j≥0

|Ej |γ � Lcl
γ,d

∫
Rd

V−(x)γ+d/2dx (non-relativistic), (4.1.6)

where Lcl
γ,d in (4.1.6) is the non-relativistic ‘classical’ constant

Lcl
γ,d = (2π )−d

∫
Rd :| p|≤1

(1 − p2)γ d p

= �(γ + 1)

(4π )d/2 �(γ + 1 + d/2)
(non-relativistic). (4.1.7)

In a parallel fashion one can derive a semiclassical estimate for the negative
eigenvalues of the operator

H = (−�)s + V (x)

for any s > 0. The only other case that will be of interest in this book is
s = 1/2, which corresponds to the ‘ultra-relativistic’ Schrödinger operator
discussed in Section 2.2.1. Similarly to the non-relativistic case, we integrate
(2π )−d | | p| + V (x)|γ over the phase-space subset in which | p| + V (x) ≤ 0. The
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result is the semiclassical approximation∑
j≥0

|Ej |γ � Lcl
γ,d

∫
Rd

V−(x)γ+ddx (relativistic), (4.1.8)

where Lcl
γ,d is now the relativistic ‘classical’ constant

Lcl
γ,d = (2π )−d

∫
Rd :| p|≤1

(1 − | p|)γ d p = �(γ + 1)�((d + 1)/2)

π (d+1)/2�(γ + 1 + d)
(relativistic).

(4.1.9)

There are many theorems, which we shall not explore here, that state (under
some smoothness conditions on V ) that the formulas (4.1.6)–(4.1.9) are asymp-
totically exact for the potential λV as λ → +∞. The question we address here is
whether (4.1.6) and (4.1.8) can be turned into inequalities for arbitrary V , with
only the property that V− is in the appropriate Lp(Rd) space and without λ →
+∞. Naturally, we might expect that such inequalities will only hold with the
constants Lcl

γ,d on the right side replaced by some other constants Lγ,d . The fact
thatLcl

γ,d is valid asymptotically implies thatLγ,d can never be smaller thanLcl
γ,d .

An extension that will be important for us is the inclusion of a magnetic field.
That is, the replacement2

−� −→ (−i∇ + A(x))2 , (4.1.10)

where A is some vector field (with the physical interpretation that curl A(x)
equals the magnetic field B(x)). From the semiclassical perspective, the intro-
duction of A makes no difference; we replace p2 by ( p + A(x))2 but then we
can make the change of variables p → p − A(x) in the integration leading to
(4.1.6) and end up with the same result as before, namely Lcl

γ,d

∫
V

γ+d/2
− . This

independence of A(x) also appears in classical statistical mechanics and leads to
the observation of Van Leeuwen [182], in the early days of quantum mechanics,
that there is no orbital diamagnetism, classically, and, therefore, orbital diamag-
netism must be a quantum-mechanical phenomenon. It might be supposed that in
the inequalities we seek an allowance might be necessary for a small increase of
Lγ,d if one wants to have a value of Lγ,d that is independent of A. Nevertheless,
it is a fact that all presently known values of Lγ,d , both sharp ones and non-sharp
ones, hold for arbitrary A fields. The unknown sharp constants might have to

2 For notational convenience, we shall absorb the fine-structure constant α into A in this chapter,
and write p + A instead of p +√

αA.
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be modified to allow for an A field, but this will have to be decided by future
developments. The reason for this is that all known proofs use the resolvent
of −� in one form or another, and it is well known that this resolvent satisfies
a diamagnetic inequality. We shall discuss this further in Section 4.4.

It turns out that the desired inequalities can be achieved if and only if γ and
d satisfy certain conditions (stated in the theorems below). These conditions
are optimal, meaning that otherwise no inequality of the desired form can hold
with any fixed, finite value of Lγ,d . The necessity of γ > 0 for d = 1 and d = 2
in the non-relativistic case, for example, comes from the well known fact that
when d ≤ 2 any arbitrarily small, negative V always has at least one negative
eigenvalue. For d = 1, this negative eigenvalue is of the order λ2 if V is replaced
by λV for some small parameter λ, and hence an inequality of the desired form
can only hold if 2γ ≥ γ + 1/2, or γ ≥ 1/2.

4.1.2 The LT Inequalities; Non-Relativistic Case

We shall first discuss the LT inequalities in the non-relativistic case.

Theorem 4.1 (Non-Relativistic LT Inequality). Fix γ ≥ 0 and assume that
the negative part of the potential V− satisfies the condition V− ∈ Lγ+d/2(Rd).
Assume that A ∈ L2

loc(Rd ; R
d).3 Let E0 ≤ E1 ≤ E2 ≤ · · · be the non-positive

eigenvalues, if any, of (−i∇ + A(x))2 + V (x) in R
d . Then, for suitable d, defined

below, there is a finite constant Lγ,d , which is independent of V and A, such
that

∑
j≥0

|Ej |γ ≤ Lγ,d

∫
Rd

V−(x)γ+d/2 dx. (4.1.11)

This holds in the following cases:

γ ≥1

2
for d = 1,

γ > 0 for d = 2, (4.1.12)

γ ≥ 0 for d ≥ 3.

3 The space L2
loc(R

d ) consists of functions that are square integrable in any ball in R
d , but not

necessarily in the whole of R
d . The notation L2(Rd ; R

d ) means real-vector-valued functions
such that each component is in L2(Rd ).
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Otherwise, for any finite choice of Lγ,d there is a V that violates (4.1.11). We
can take

Lγ,d = (4π )−d/22γ γ

⎧⎨⎩
(d+γ )�(γ /2)2

2�(γ+1+d/2) if d > 1, γ > 0 or d = 1, γ ≥ 1,
√
π/(γ 2 − 1/4) if d = 1, γ > 1/2.

(4.1.13)

Remark 4.1. The fact that E0 > −∞ under the assumption on V stated in The-
orem 4.1 already follows from the discussion in Section 2.2.1, Eq. (2.2.14). The
necessity of the conditions (4.1.12) was explained at the end of Subsection 4.1.1.

The bounds (4.1.13) presented in this theorem are certainly not the best
available, and they can be improved. We list them since they can be obtained
relatively easily with the methods first used in 1975 [135], as shall be explained
below. These methods work only for γ > 1/2 in case d = 1, and γ > 0 in case
d ≥ 2, however. The extension to γ = 1/2 in the case d = 1 was done by Weidl
[185], and the sharp constant was obtained by Hundertmark, Lieb and Thomas
[94]. The γ = 0 case for d ≥ 3 was independently proved by Cwikel [35], Lieb
[112] and Rosenblum [152] and is now known as the CLR bound. Their proofs
are very different from each other and will not be presented here. Other proofs
were given later by Li and Yau [107], Fefferman [56] and by Conlon [33]. A
bound that is closely related to the CLR bound is in Corollary 4.2 on page 80.

The sharp (= optimal or best) value of Lγ,d is known in some cases (but not
in the physically most interesting case, γ = 1, where an upper bound on Lγ,d

will have to suffice for the present). In some cases Lγ,d = Lcl
γ,d and in others

Lγ,d > Lcl
γ,d . It is conjectured [135] thatL1,3 = Lcl

1,3. The best we have at present
(due to Dolbeault, Laptev and Loss [41]) is

L1,3 ≤ π√
3
Lcl

1,3 ≈ 1.814Lcl
1,3 ≈ 0.0123. (4.1.14)

In fact, it was shown in [41] that

Lγ,d ≤ π√
3
Lcl
γ,d for all γ ≥ 1 and for all d ≥ 1. (4.1.15)

We emphasize that the LT inequalities with these constants hold for arbitrary
magnetic vector potentials A. Moreover, [102, 2, 15]

Lγ,d = Lcl
γ,d for all γ ≥ 3/2 and for all d ≥ 1. (4.1.16)
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It is also known that Lγ,d > Lcl
γ,n if γ < 1 [88]. For some review articles see

[93, 102].
For γ = 0, the currently best known constant for d = 3, as obtained in [112],

is

L0,3 ≤ 6.87Lcl
0,3 = 6.87

1

6π2
= 0.116. (4.1.17)

As we shall now explain, this implies that

Lγ,3 ≤ 6.87Lcl
γ,3 (4.1.18)

for any γ ≥ 0.
We note that, in general, the ratio Lγ,d/L

cl
γ,d is decreasing in γ [2], i.e.,

Lγ,d

Lcl
γ,d

≥ Lγ+δ,d

Lcl
γ+δ,d

(4.1.19)

for any δ ≥ 0. To see this, one simply notes that for e ≤ 0 and δ > 0

|e|γ+δ = cγ,δ

−e∫
0

dλ λδ−1(e + λ)γ

for some constant cγ,δ. Hence

∑
j≥0 |Ej |γ+δ∫∫

p2+V (x)≤0

| p2 + V (x)|γ+δdxd p
=

∞∫
0

dλ λδ−1∑
j≥0, Ej+λ≤0 |Ej + λ|γ

∞∫
0

dλ λδ−1
∫∫

p2+V (x)+λ≤0

| p2 + V (x) + λ|γ dxd p
.

To obtain an upper bound on the right side, one can certainly take the supremum
over λ of the ratios of the integrands, which is less then Lγ,d/L

cl
γ,d by definition.

On the other hand, Lγ+δ,d/L
cl
γ+δ,d is the supremum of the left side over all V ,

and hence Lγ+δ,d/L
cl
γ+δ,d ≤ Lγ,d/L

cl
γ,d .

4.1.3 The LT Inequalities; Relativistic Case

We shall now discuss the relativistic case. Here, the Schrödinger operator is

H = |−i∇ + A(x)| + V (x), (4.1.20)

with corresponding eigenvalues.
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Theorem 4.2 (Relativistic LT Inequality). Fix γ ≥ 0 and assume that the neg-
ative part of the potential V− satisfies the condition V− ∈ Lγ+d(Rd). Assume
that A ∈ L2

loc(Rd ; R
d). Let E0 ≤ E1 ≤ E2 ≤ · · · be the non-positive eigenval-

ues, if any, of | − i∇ + A(x)| + V in R
d . Then, for γ > 0 in case d = 1, and

γ ≥ 0 in case d ≥ 2, there is a finite constant Lγ,d , which is independent of V
and A, such that

∑
j≥0

|Ej |γ ≤ Lγ,d

∫
Rd

V
γ+d
− (x) dx. (4.1.21)

We can take

Lγ,d = γ 2γ
(
d + γ

2

)
π−d/2−1/2 �( γ2 )2�( d+1

2 )

�(1 + d + γ )
. (4.1.22)

Using a different method from the one presented in the proof below, following
the method of [112], Daubechies [37] has shown that

L0,3 ≤ 6.08Lcl
0,3

in the relativistic case. In combination with the argument above this actually
implies that Lγ,3 ≤ 6.08Lcl

γ,3 for all γ ≥ 0. In particular,

L1,3 ≤ 6.08Lcl
1,3 = 6.08

24π2
= 0.0257. (4.1.23)

In contrast, our bound (4.1.22) for γ = 1 and d = 3 states that L1,3 ≤ 7π Lcl
1,3.

There is an LT inequality not only for −� and
√−� but for all powers (−�)s

with s > 0. Since we need only s = 1 and s = 1/2 we shall not discuss the other
cases here.

It will be noted that for relativistic mechanics it is necessary to consider
the operator Tμ( p) =

√
p2 + μ2 − μ for μ > 0. To handle this we can use the

simple facts that
√−�− μ ≤

√
−�+ μ2 − μ ≤ √−�. (4.1.24)

Since we are only interested in showing that the total energy is bounded above
and below by a constant times the particle number N , the presence of a term
μN is irrelevant. Nevertheless, one can ask if Theorem 4.2 can be improved to
take explicit account of Tμ( p) =

√
p2 + μ2 − μ. The answer is yes if the right
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side is replaced by the appropriate semiclassical expression

(2π )−d

∫∫
Tμ( p)+V (x)≤0

∣∣Tμ( p) + V (x)
∣∣γ dxd p. (4.1.25)

Note that for μ > 0 this expression is finite if and only if V ∈ Lγ+d(Rd) ∩
Lγ+d/2(Rd). Moreover, the corresponding Lieb–Thirring estimates hold only in
the non-relativistic range, i.e., for γ ≥ 1/2 at d = 1, γ > 0 at d = 2, and γ ≥ 0
at d ≥ 3. The reason for this is that Tμ( p) ≈ p2/(2μ) for small | p|, and hence the
low energy eigenvalues will be approximately equal to the non-relativistic ones.
Only at large values of | p| do relativistic effects become important. The effects of
positive massμwere analyzed by Daubechies in [37]. For d = 3, the best known
bounds for the number of eigenvalues of Tμ( p) + V is 10.33 times the semiclas-
sical expression ((4.1.25) with γ = 0) [70] and for the sum of negative eigen-
values it is 9.62 times the semiclassical expression ((4.1.25) with γ = 1) [37].

4.2 Kinetic Energy Inequalities

Let us focus on the case γ = 1 of the previous Section 4.1. The common setting
is that we have an operator of the form H = T + V and we know that the sum
of the negative eigenvalues of H is bounded below, as follows.

∑
j≥0

|Ej | ≤ L

∫
Rd

V−(x)pdx. (4.2.1)

In the cases of interest T is −� (p = 1 + d/2) or
√−� (p = 1 + d), but it

could be anything as far as the present section is concerned. Our goal is to use
(4.2.1) to bound T instead of the Ej . This was the bound used in [134, 135] to
relate the Schrödinger energy to the Thomas–Fermi energy.

Let ψ(x1, σ1, x2, σ2, . . . , xN, σN ) be any N -particle wave function of space-
spin (x ∈ R

d, σ ∈ {1, 2, . . . , q}). It is not necessary for our purpose here to
assume any symmetry properties. We are interested in the ‘kinetic energy’

Tψ :=
(
ψ,

N∑
i=1

Ti ψ

)
. (4.2.2)
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We assume that ψ is normalized, i.e., (ψ,ψ) = 1, and our goal is to bound Tψ

from below in terms of the one-body (spatial) density at x ∈ R
d given by

�ψ (x) :=
N∑
i=1

∑
σ

∫
R(N−1)d

|ψ(x1, σ1, . . . , xi−1, σi−1, x, σi, . . . , xN, σN )|2

× dx1 · · · d̂xi · · · dxN. (4.2.3)

Here, we use the same notation as in Chapter 3, Eq. (3.1.5), with d̂xi meaning
that integration is over all variables but xi . Note that ψ is arbitrary and Tψ has
nothing to do with any V ; the latter is introduced only as an aid in proving the
following bound.

For the following theorem it is necessary to introduce the largest eigenvalue
of the spin-summed one-particle density matrix of ψ . Recall from Chapter 3,
Section 3.1.5, that the one-particle density matrix γ

(1)
ψ of ψ is given as

γ
(1)
ψ (z, z′) =

N∑
i=1

∫
ψ(z1, . . . , zi−1, z, . . . , zN )

×ψ(z1, . . . , zi−1, z′, . . . , zN )dz1 · · · d̂zi · · · dzN. (4.2.4)

The spin-summed one-particle density matrix γ̊
(1)
ψ is then

γ̊
(1)
ψ (x, x′) =

q∑
σ=1

γ (1)(x, σ, x′, σ ). (4.2.5)

Its largest eigenvalue will be denoted as ‖γ̊ (1)‖∞. The one-particle density in
(4.2.3) is just �ψ (x) = γ̊

(1)
ψ (x, x).

Theorem 4.3 (Fundamental Kinetic Energy Inequality). With the kinetic
energy and the density as defined above, and assuming the inequality (4.2.1),
the kinetic energy of a normalized ψ is bounded as

Tψ ≥ K

‖γ̊ (1)
ψ ‖p′/p

∞

∫
Rd

�ψ (x)p
′
dx (4.2.6)
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where p′ = p/(p − 1) and

(pL)p
′
(p′K)p = 1. (4.2.7)

Moreover, inequality (4.2.1) and inequality (4.2.6) (with (4.2.7)) are equivalent.
The truth of (4.2.6) (with (4.2.7)) for all ψ implies the truth of (4.2.1) for all V .

Remark 4.2. For antisymmetric functions ψ , we have seen in Chapter 3, Sec-
tion 3.1.5, that ‖γ̊ (1)‖∞ ≤ q, and this fact will be crucial for our application in
the proof of stability of matter! We shall use (4.2.6) with qp

′/p in the denom-
inator. In general, ‖γ̊ (1)‖∞ ≤ N for any ψ because Tr [γ̊ (1)] = Tr [γ (1)] = N .
For bosonic wave functions, this inequality can be saturated for simple product
wave functions, ψ(x1, . . . , xN ) =∏N

i=1 φ(xi).

Remark 4.3. A slightly more general version of Theorem 4.3 also holds, in
which one considers more general density matrices � and not just rank one
density matrices as here; that is, one can replace ψ(z)ψ(z′) by �(z, z′). (Cf.
Section 3.1.4 in Chapter 3 for a discussion of density matrices.) We leave this
simple generalization to the reader.

Remark 4.4. If we take q = 1 and take ψ to be any determinantal function

ψ(x1, x2, . . . , xN ) = (N!)−1/2det{φi(xj )}Ni,j=1 (4.2.8)

where {φi}Ni=1 is any collection of N orthonormal functions in L2(Rd), then we
find that

�ψ (x) =
N∑
i=1

|φi(x)|2 and Tψ =
N∑
i=1

(φi, T φi) . (4.2.9)

In this case, ‖γ̊ (1)
ψ ‖∞ = 1.

Let us be very explicit and give the known value of p, p′ for d = 3 in
the non-relativistic and relativistic case, as well as best known value of K .
The following corollary follows from Theorems 4.1, 4.2 and 4.3, together
with the bounds (4.1.14) and (4.1.23) on the optimal constants in the LT
inequalities.
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Corollary 4.1 (Kinetic Energy Inequalities). For d = 3 and T = (−i∇ +
A(x))2, there is a K independent of N such that

Tψ ≥ K

‖γ̊ (1)
ψ ‖2/3

∞

∫
R3

�ψ (x)5/3dx (4.2.10)

for any ψ ∈ H 1
A(R3N ). In fact, K ≥ ( 3

π2

)1/3
Kcl and Kcl = 3

5 (6π2)2/3.
For d = 3 and T = | − i∇ + A(x)|, we have

Tψ ≥ K

‖γ̊ (1)
ψ ‖1/3

∞

∫
R3

�ψ (x)4/3dx (4.2.11)

for any ψ ∈ H
1/2
A (R3N ), with K ≥ (6.08)−1/3Kcl and Kcl = 3

4

(
6π2
)1/3

.

Proof of Theorem 4.3. Given ψ , we consider a one-body operator H = T + V ,
as above. We note that both T and V act only on the spatial part of a function
in L2(Rd ; C

q) and not on the spin variables. We then consider the N -body
operator

KN =
N∑
i=1

Hi,

acting on N -particle wave functions of space-spin. With the aid of the one-
particle density matrix γ

(1)
ψ , we can write the expectation value of KN as (see

Eq. (3.1.34) in Chapter 3)

(ψ,KNψ) = Tr [Hγ
(1)
ψ ] = Tr [Hγ̊

(1)
ψ ].

Here, we abuse the notation slightly, since the symbol Tr for the trace stands
for the trace over L2(Rd ; C

q) ∼= L2(Rd) ⊗ C
q in the second term, but for the

trace only over L2(Rd) in the third term. The fact that H is independent of spin
implies that the C

q trace affects only γ
(1)
ψ .

The minimum of Tr [Hγ̊ ] over all positive trace-class operators4 γ̊ with
‖γ̊ ‖∞ ≤ ‖γ̊ (1)

ψ ‖∞ is clearly given by the sum of the negative eigenvalues of H

4 Operators A such that Tr |A| = Tr
√
A†A < ∞.
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times ‖γ̊ (1)
ψ ‖∞. That is, the optimal choice for γ̊ is ‖γ̊ (1)

ψ ‖∞ times the projection
onto the negative spectral subspace5 of H . Hence

(ψ,KNψ) ≥ ‖γ̊ (1)
ψ ‖∞

∑
j≥0

Ej . (4.2.12)

A consequence of (4.2.12), together with (4.2.1), is that

(ψ, KN ψ) = Tψ +
∫
Rd

V (x)�ψ (x)dx

≥ ‖γ̊ (1)
ψ ‖∞

∑
j≥0

Ej

≥ −‖γ̊ (1)
ψ ‖∞ L

∫
Rd

V−(x)pdx. (4.2.13)

This holds for any normalized ψ . Now we make a special choice for V , which
will depend on the ψ being considered. We choose

V (x) = −C�ψ (x)1/(p−1), (4.2.14)

where C > 0 is some constant to be determined appropriately. From (4.2.13)
and (4.2.14) we have that

Tψ ≥ C

∫
Rd

�ψ (x)p
′
dx − ‖γ̊ (1)

ψ ‖∞LCp

∫
Rd

�ψ (x)p
′
dx. (4.2.15)

Obviously, we choose C to make the right side of (4.2.15) as large as possible,

C = (p ‖γ̊ (1)
ψ ‖∞ L)−p′/p, (4.2.16)

from which (4.2.6) and (4.2.7) follow.
Finally, to prove that (4.2.6) (with (4.2.7)) for all ψ implies the truth of (4.2.1)

take q = 1 and take ψ to be the determinant formed from all the eigenfunctions
corresponding to the negative eigenvalues of H = T + V (if there are infinitely
many negative eigenvalues just choose anyN of them and letN → ∞ at the end).
For this ψ , ‖γ̊ (1)

ψ ‖∞ = 1. We then have (using (4.2.6) and K = (pL)−p′/p/p′

5 For our H , this subspace consists of linear combinations of eigenfunctions with negative or zero
eigenvalues.



4.3 The Birman–Schwinger Principle and LT Inequalities 75

from (4.2.7))

∑
j≥0

Ej = Tψ +
∫
Rd

V (x)�ψ (x)dx

≥ K

∫
Rd

�ψ (x)p
′
dx −

∫
Rd

[(pL)1/pV−(x)][(pL)−1/p�ψ (x)]dx

≥ K

∫
Rd

�ψ (x)p
′
dx − 1

p′

∫
Rd

[(pL)−1/p�ψ (x)]p
′
dx − 1

p

∫
Rd

[(pL)1/pV−(x)]pdx

= −L

∫
Rd

V−(x)pdx.

The last inequality is Hölder’s inequality
∫
fg ≤ (

∫
f p)1/p(

∫
gp

′
)1/p′

followed
by ab ≤ ap/p + bp

′
/p′.

4.3 The Birman–Schwinger Principle and LT Inequalities

Our goal here is to prove (4.1.11) and (4.1.21) and, more generally, the analogous
inequality for H = (−�)s + V (x). We will only consider the case A = 0, and
explain the generalization to arbitrary A in Section 4.4.

The first step is to note that we may as well replace V = V+ − V− by the non-
positive potential −V−. The reason is that if we compare two operators H and
H̃ = (−�)s − V−(x) we see that H ≥ H̃ (in the sense that (φ,Hφ) ≥ (φ, H̃φ)
for all functions φ). This fact implies, by the variational min-max principle [118,
Sect 12.1], that the corresponding eigenvalues are related by Ej ≥ Ẽj for all
j . Therefore, since we are interested in bounding the eigenvalues from below
by − ∫ V p

− , which is independent of V+, we may as well omit the V+ term in V .
Henceforth, H = (−�)s − V−(x).

4.3.1 The Birman–Schwinger Formulation of the
Schrödinger Equation

The next step is to rewrite the Schrödinger equation for a negative eigen-
value −e as ((−�)s + e)ψ(x) = V−(x)ψ(x). If we now define φ(x) =√
V−(x)ψ(x) we obtain ((−�)s + e)ψ(x) = √

V−(x)φ(x), which implies that
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ψ = ((−�)s + e)−1 √V−(x)φ(x) or, equivalently,

φ = Keφ (4.3.1)

whereKe (called the Birman–Schwinger kernel [18, 157]) is the integral kernel
given by

Ke(x, y) =
√
V−(x)Ge(x − y)

√
V−( y), (4.3.2)

where Ge(x − y) is the integral kernel (or Green’s function) for the inverse
of the positive operator (−�)s + e. Explicitly, (Keφ)(x) = ∫

Rd Ke(x, y)φ( y)d y
and similarly for Ge.

The kernel Ge(x − y) is well known and is given by the inverse Fourier
transform

Ge(x − y) =
∫
Rd

1

|2πk|2s + e
exp
(
2πik · (x − y)

)
dk. (4.3.3)

While we will not need an explicit formula for Ge let us record the function
Ge(x) for the usual Laplacian (s = 1) and dimensions 1 and 3:

Ge(x) = 1

2
√
e

exp
(−√

e |x|) , d = 1, s = 1

Ge(x) = 1

4π |x| exp
(−√

e |x|) , d = 3, s = 1. (4.3.4)

Equation (4.3.1) says that when −e is a negative eigenvalue of H then 1 is an
eigenvalue of Ke. Although it is not a priori clear that φ = √

V−ψ is in L2(Rd)
we claim that it is; moreover, we claim that there is a one-to-one correspondence
between an eigenvalue −e of H and an eigenvalue 1 of Ke. This is important for
us because it enables us to reformulate the problem in terms of traces of powers
of Ke on L2(Rd).

From now on we will assume that s = 1, and comment on the general-
ization to s < 1 at the end of the proof. If ψ ∈ H 1(Rd) then φ = √

V−ψ
is in L2(Rd) by our assumptions on V , as explained in Section 2.2.1. If ψ

satisfies −�ψ − V−ψ = −eψ then clearly φ �= 0 since otherwise −�ψ =
−eψ which is impossible for an H 1 function. Moreover, Ke maps L2(Rd)
into L2(Rd) by the Hardy–Littlewood–Sobolev inequality [118, Thm. 4.3].
So φ is an L2(Rd) eigenfunction of an L2(Rd) → L2(Rd) operator. Con-
versely, if φ ∈ L2(Rd) satisfies Keφ = φ then, if we define ψ = (−�+
e)−1√V−φ, we have that (−�+ e)ψ = √

V−φ = √
V−Keφ = V−ψ . The
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fact that ψ ∈ L2(Rd) follows from (ψ, ψ) = (
√
V−φ, (−�+ e)−2√V−φ) <

e−1(
√
V−φ, (−�+ e)−1√V−φ) = e−1(φ, φ). Moreover, ψ �= 0 since other-

wise
√
V−φ would be zero and hence Keφ = 0. This one-to-one correspon-

dence between ψ and φ implies that the multiplicities of the eigenvalue −e of
−�− V− and the eigenvalue 1 of Ke are the same.

There is another important observation about (4.3.1) and (4.3.2). For any given
e > 0 the operator Ke has a spectrum of eigenvalues, which are all non-negative.
(Ke is compact and, moreover, Tr (Ke)m < ∞, for suitable m > 0, as we shall
see.) The observation is thatKe, as an operator, is monotone decreasing in e. That
is, if e < e′ then Ke −Ke′ > 0, as an operator inequality. This monotonicity is
true for any operator of the form (A+ e)−1 withA ≥ 0 since the difference is just
(e′ − e)(A+ e)−1(A+ e′)−1, which is clearly positive. Hence all the eigenvalues
of Ke are monotone decreasing in e. They are also easily seen to be continuous.6

These facts stated above are shown schematically in Figure 4.1 in which the
eigenvalues λj of Ke are plotted as functions of e. This figure immediately leads
to the following conclusion: For each number e > 0 we can define

Ne := number of eigenvalues of H less than or equal to −e,

including multiplicity, as usual. We can also define Be to be the number of
eigenvalues of Ke that are ≥ 1. Then

Ne = Be. (4.3.5)

4.3.2 Derivation of the LT Inequalities

Let γ > 0. To exploit (4.3.5) we write

∑
j≥0

|Ej |γ =
∑
j≥0

e
γ

j = γ

∞∫
0

eγ−1Ne de (4.3.6)

which is easily verified by integration by parts while noting that the derivative
of Ne is just a sum of unit delta-functions at the numbers ej .

6 The simplest way to see continuity is to note that 0 ≤ Ke −Ke′ ≤ [(e′ − e)/e′]Ke for 0 < e ≤ e′.
By the min-max principle [118, Thm. 12.1], the eigenvalues of Ke differ from the corresponding
eigenvalues of Ke′ by at most (e′ − e)/e′ times the norm (i.e., largest eigenvalue) of Ke.
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Figure 4.1: The eigenvalues λ0 ≥ λ1 ≥ · · · ofKe are schematically shown as a function
of e. Only the first five are shown here. The eigenvalues of the Schrödinger equation are
Ei = −ei and the ei are the values of e for which λi = 1.

On the other hand, Be is certainly ≤∑λj≥1 λ
m
j ≤ Tr (Ke)m for any number

m > 0. By Theorem 4.5 in the appendix to this chapter and (4.3.3),

Ne = Be ≤ Tr (Ke)
m

≤ Tr (V−)m/2(Ge)
m(V−)m/2

=
∫
Rd

V−(x)mGm
e (0) dx

=
⎛⎝ ∫

Rd

1

((2πk)2 + e)m
dk

⎞⎠∫
Rd

V−(x)m dx (4.3.7)

as long as m ≥ 1. The expression (
∫
. . .) on the right side is just Gm

e (0), as we
see from the analogue of (4.3.3) for the kernel Gm

e (x − y). This expression is
finite if and only if 2m > d, in which case it is, by scaling, Cd,me

−m+d/2 with

Cd,m =
∫
Rd

1

((2πk)2 + 1)m
dk = (4π )−d/2�(m− d/2)

�(m)
. (4.3.8)
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Unfortunately, when e−m+d/2 is inserted in (4.3.6) we obtain a divergent
integral either at e = 0 or at e = ∞, for any m. To remedy the situation
let us consider the potential We(x) = [V (x) + e/2]− = max{−V (x) − e/2, 0}
(which depends on the value of e under consideration in (4.3.6)). Clearly,We is in
Lγ+d/2(Rd) if V− is. Moreover, with Ne(V ) denoting the number of eigenvalues
of −�+ V which are ≤ −e, it is easy to see that

Ne(−V−) = Ne/2(−V− + e/2) ≤ Ne/2(−We) (4.3.9)

because We ≥ V− − e/2. Let us, therefore, replace e by e/2 and V− by We in
the right side of (4.3.7) and then insert the result in (4.3.6). We obtain

∑
j≥0

|Ej |γ ≤ γ Cd,m

∫
Rd

⎛⎝ 2V−(x)∫
0

eγ−1−m+d/2 2m−d/2 (V−(x) − e/2)mde

⎞⎠ dx

= (4π )−d/22γ γ m
�(m− d/2)�(−m+ γ + d/2)

�(γ + 1 + d/2)

∫
Rd

V−(x)γ+d/2 dx.

(4.3.10)

In order for (4.3.10) to be finite we have to require m to satisfy d/2 < m <

γ + d/2, so we choose m = (γ + d)/2. For d = 1 this choice is only greater or
equal to 1 if γ ≥ 1. Hence, if d = 1 and 1/2 < γ < 1, we choose m = 1. This
leads to the value given in Theorem 4.1 and concludes the proof of that theorem
(except for the case d = 1, γ = 1/2 and d ≥ 3, γ = 0).

The proof for s = 1/2, or any other s for that matter, proceeds in exactly
the same way and we leave the details for the reader. To obtain the con-
stants in (4.1.22), one chooses m = d + γ /2 in the relativistic case. This proves
Theorem 4.2 (except for the case d ≥ 2, γ = 0).

Remark 4.5. For γ = 1 and d = 3, our choice ofm ism = (γ + d)/2 = 2 in the
non-relativistic case. In this special case it is very easy to prove inequality (4.3.7)
without having to employ the general Theorem 4.5. In fact, using a simple
Schwarz inequality and Plancherel’s identity (2.1.40) we have

Tr (Ke)
2 =
∫∫

R3×R3

V−(x)V0( y)Ge(x − y)2dxd y ≤
∫
R3

V−(x)2dx
∫
R3

Ge( y)2d y

=
∫
R3

V−(x)2dx
∫
R3

1(|2πk|2 + e
)2 dk.
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This case is of particular relevance in the proof of stability of non-relativistic
matter discussed in Chapter 7.

4.3.3 Useful Corollaries

The special case γ = 0 in Theorem 4.1, the CLR bound, is not covered in the
foregoing proof. It is a bound onN0, the total number of non-positive eigenvalues
of −�+ V (x), and is valid only for d ≥ 3.

There is, however, a bound on Ne, the number of eigenvalues below −e,
which is valid in all dimensions when e > 0, and which will be useful later in
this book. Its proof is actually contained in the proof of Theorem 4.1 in the
previous subsection, and so we take linguistic liberties and call it a corollary.

Corollary 4.2 (Bound on Ne). Let d ≥ 1, γ > 0 and e > 0. Then Ne, the
number of eigenvalues of −�+ V (x) less than or equal to −e, is bounded by7

Ne ≤ 2γ

eγ

1

(4π )d/2

�(γ )

�(d/2 + γ )

∫
Rd

[V (x) + e/2]d/2+γ
− dx. (4.3.11)

Similarly, in the relativistic case, the number of eigenvalues of
√−�+ V (x)

below −e is bounded by

Ne ≤ 2γ

eγ

1

π (d+1)/2

�( d+1
2 )�(γ )

�(d + γ )

∫
Rd

[V (x) + e/2]d+γ
− dx. (4.3.12)

Corollary 4.2 is proved by combining (4.3.5), (4.3.7) and (4.3.9).
One more inequality that is easily derived from the proof of Theorem 4.1

(which even extends down to e = 0) is due to Birman [18] and Schwinger [157].
It is valid for d = 3 only.

Corollary 4.3 (Birman–Schwinger Bound). For e ≥ 0 and d = 3

Ne ≤ 1

(4π )2

∫∫
R3×R3

[V (x) + e]−[V ( y) + e]−
|x − y|2 dxd y (4.3.13)

≤ 1

4(4π )2/3

⎛⎝ ∫
R3

[V (x) + e]3/2
− dx

⎞⎠4/3

. (4.3.14)

7 We emphasize that e in (4.3.11) is the energy and not 2.718.
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Proof. We first consider the case e > 0. For 0 < ε < e, we use

Ne(V ) ≤ Nε(−[V (x) + e − ε]−).

According to Eq. (4.3.5), this latter quantity equals the number of eigenvalues
of √

[V + e − ε]−
1

−�+ ε

√
[V + e − ε]−

that are greater or equal to 1. For d = 3, the integral kernel of this operator is
given by (compare with (4.3.4))√

[V (x) + e − ε]−
√

[V ( y) + e − ε]−
exp
(−√

ε|x − y|)
4π |x − y| .

The number of eigenvalues greater or equal to 1 is certainly less than the sum
of the square of all eigenvalues. The latter is simply the square of the Hilbert–
Schmidt norm, which equals

1

(4π )2

∫∫
R3×R3

[V (x) + e − ε]−[V ( y) + e − ε]−
|x − y|2 exp

(−2
√
ε|x − y|) dxd y.

The exponential factor can simply be bounded by one. The remaining integral
is monotone in ε and converges to the right side of (4.3.13) as ε → 0.

The reason we cannot apply this argument directly for ε = 0 is the fact
that (4.3.5) does not hold, in general, for e = 0. To circumvent this prob-
lem and prove (4.3.13) for e = 0, consider a perturbation of V of the form
V (x) → V (x) − λW (x), where W (x) is a smooth and rapidly decaying func-
tion that is strictly positive. By the variational principle, the number of strictly
negative eigenvalues of the operator−�+ V − λW is greater or equal toN0(V ).
Hence

N0(V ) ≤ lim
λ→0

lim
e→0

Ne(V − λW ).

Applying the bound for Ne(V − λW ) above and using monotone convergence,
we arrive at the desired result.

Finally, the inequality (4.3.14) follows from (4.3.13) by an application of the
Hardy–Littlewood–Sobolev inequality, see [118, Thm. 4.3].

Compared with the CLR bound (Eq. (4.1.11) for γ = 0) the inequality in
(4.3.14) contains the 4/3 power of the dimensionless quantity

∫
V

3/2
− instead of

the first power. This might look like an innocent detail, but it can make a huge
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difference. In fact, if V is the sum of N widely separated pieces, the number
of bound states will roughly be the sum of the number of bound states for each
piece, and so will be proportional toN – notN4/3! The important point about the
LT inequalities is that there is no exponent outside the integral, for any γ ≥ 0,
and this confirms the intuition obtained from the semiclassical expressions. This
fact is crucial for the understanding of stability of matter, as will be discussed
in the chapters to follow.

4.4 Diamagnetic Inequalities

The proof of the Lieb–Thirring inequalities presented in the previous section
carries over to the magnetic case essentially without change. In particular,
Theorems 4.1 and 4.2 also hold, with the same constants, when −� is replaced
by (−i∇ + A(x))2 for some vector potential A(x). In fact, all the best presently
known constants in these inequalities are independent of A(x), since all the
proofs use the diamagnetic inequality in one way or the other. We shall explain
this inequality in the following.

Note, however, that the situation changes dramatically when spin is introduced
(cf. Section 2.1.6 and Chapter 9), since there can be cancellations between the
(−i∇ + A(x))2 term and the extra term σ · B. LT-type inequalities in this case
were given in [123, 47, 133, 25, 26, 169, 49, 50], but we shall not discuss them
here.

One formulation of the diamagnetic inequality is the fact that the integral
kernel of the resolvent of (−i∇ + A(x))2, i.e.,

1

(−i∇ + A(x))2 + e
(x, y)

for e > 0 is point-wise bounded above by the corresponding quantity for A = 0,
that is∣∣∣∣ 1

(−i∇ + A(x))2 + e
(x, y)

∣∣∣∣ ≤ 1

−�+ e
(x, y) = Ge (x − y) for all x, y ∈ R

d .

(4.4.1)

Obviously, (4.4.1) is enough to establish the LT inequalities. Its proof is due to
Simon [165]. We first consider the following Lemma.
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Lemma 4.1 (Kato’s Inequality). Let sgn(u) = ū/|u| if u(x) �= 0, and 0 oth-
erwise. Assume8 that A ∈ C1(Rd), u ∈ L1

loc(Rd) such that (−i∇ + A)2u ∈
L2

loc(Rd). Then9

−�|u| ≤ � sgn(u)(−i∇ + A(x))2u. (4.4.2)

For simplicity, we shall only prove this Lemma if u ∈ C2 and |u| ∈ C2. We
refer to [150, Chapter X.4] for the extension.

Proof. Since 2|u|∇|u| = ∇|u|2 = 2� ū∇u, we first note that

|u|∇|u| = � ū∇u = � ū(∇ + iA)u.

Taking the divergence of this equation, we obtain

|∇|u||2 + |u|�|u| = |(∇ + iA)u|2 +� ū(∇ + iA)2u.

By writing u as its absolute value times a phase, it is easy to see that

|(∇ + iA)u|2 ≥ |∇|u||2 (4.4.3)

This implies the statement of the lemma.

An immediate corollary of the inequality (4.4.3) is that

(ψ, (−i∇ + A(x))2ψ) ≥ (|ψ |,−� |ψ |) (4.4.4)

for any ψ ∈ H 1(Rd). The analogue in the relativistic case is

(ψ, | − i∇ + A(x)|ψ) ≥ (|ψ |,√−� |ψ |),
which can be obtained from Eq. (4.4.8) in the following theorem by a suitable
t → 0 limit. These inequalities show that the ground state energy of single
particle in a potential V is lowest when the magnetic field is absent.

With the aid of Kato’s inequality, we can now prove

Theorem 4.4 (Diamagnetic Inequality). Let A ∈ L2
loc(Rd ; R

d). Then, for e > 0
and for almost every x, y ∈ R

d ,∣∣∣∣ 1

(−i∇ + A(x))2 + e
(x, y)

∣∣∣∣ ≤ 1

−�+ e
(x, y). (4.4.5)

8 Ck consists of functions with continuous derivatives up to order k.
9 � z denotes the real part of a complex number z.
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Moreover, in the relativistic case,∣∣∣∣ 1

| − i∇ + A(x)| + e
(x, y)

∣∣∣∣ ≤ 1√−�+ e
(x, y). (4.4.6)

Similarly, for the heat kernel at t > 0,∣∣∣e−t(−i∇+A(x))2
(x, y)

∣∣∣ ≤ et�(x, y) (4.4.7)

and ∣∣e−t |−i∇+A(x)|(x, y)
∣∣ ≤ e−t

√−�(x, y). (4.4.8)

In the case without magnetic fields, the heat kernel can be computed explicitly
[118, Sects. 7.9 & 7.10]. In the non-relativistic case, it is given by

et�(x, y) = 1

(4πt)d/2
exp
(−|x − y|2/(4t)

)
,

whereas in the relativistic case it is

e−t
√−�(x, y) = �

(
d+1

4

)
π−(d+1)/2 t(

t2 + |x − y|2)(d+1)/2 .

Proof. By an approximation argument [167, Theorem 15.4], it is enough to
consider the case A ∈ C1. Thus, we can apply Kato’s inequality in Lemma 4.1.

The Green’s function

GA
e (x, y) = 1

(−i∇ + A(x))2 + e
(x, y)

satisfies the differential equation

(−i∇x + A(x))2GA
e (x, y) + eGA

e (x, y) = δ(x − y)

in the sense of distributions. If we multiply this equation by sgn(GA
e ) and use

Kato’s inequality (4.4.2), we obtain

(−�x + e) |GA
e (x, y)| ≤ δ(x − y)� sgn(GA

e (x, y)) ≤ δ(x − y). (4.4.9)

In particular, multiplying Eq. (4.4.9) by Ge( y′, x) and integrating over x, this
yields the desired inequality

|GA
e ( y′, y)| ≤ Ge( y′, y).

In order to prove the corresponding result in the relativistic case, we first note
that the diamagnetic inequality for the resolvent implies a corresponding result
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for the heat kernel. More precisely, since

e−B = lim
n→∞

(
n

n+ B

)n
the inequality (4.4.5) implies (4.4.7) for any t > 0. This diamagnetic inequality
for the heat kernel can then be extended to the relativistic case, using the fact
that

e−t | p| = 1√
π

∞∫
0

dλ√
λ
e−λ−t2| p|2/(4λ). (4.4.10)

This formula implies (4.4.8). From this bound one obtains the result (4.4.6) for
the resolvent by integrating over t , using that

1

Y
=

∞∫
0

dt e−tY

for Y > 0. We omit the technical details.

A natural way to view these domination questions is by means of functional
integrals, which can be defined for (−�)s for 0 < s ≤ 1. A very good discussion
of this is in Simon’s book [167].

4.5 Appendix: An Operator Trace Inequality

The following inequality about traces of operators is needed in order to bound
the traces of the Birman–Schwinger kernel that appear in the proof of the LT
inequalities. This inequality was originally proved in [135, Appendix B] with the
aid of a sophisticated theorem of Epstein [46]. Earlier, Seiler and Simon [160]
had proved the theorem using interpolation techniques when H = L2(Rd), A is
a convolution operator and B is a multiplication operator, which is the case we
actually need for application to the Birman–Schwinger kernel.

Subsequently, Araki [4] found a proof that was a bit longer but which used only
well known facts and which, therefore, can easily be given in a self-contained
fashion. We prove the theorem here using Araki’s method and refer the reader
to [4] for a generalization of the theorem.
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Theorem 4.5 (Traces of Powers). Let A and B be positive, self-adjoint opera-
tors on a separable Hilbert space H. Then, for each real number m ≥ 1,

Tr (B1/2AB1/2)m ≤ Tr Bm/2AmBm/2. (4.5.1)

Proof. Step 1: We will need the following little proposition. Suppose that a =
{a1 ≥ a2 ≥ a3 ≥ . . . } and b = {b1 ≥ b2 ≥ b3 ≥ . . . } are two infinite ordered
sequences of real numbers satisfying the condition a ≺ b , meaning that

n∑
j=1

aj ≤
n∑

j=1

bj for n = 1, 2, 3, . . . . (4.5.2)

Then
n∑

j=1

eaj ≤
n∑

j=1

ebj for n = 1, 2, 3, . . . . (4.5.3)

Remark 4.6. Inequality (4.5.3) can be rewritten in the following way: If λ and
σ are two (decreasingly) ordered sequences of non-negative numbers then

n∏
j=1

σj ≤
n∏

j=1

λj for all n = 1, 2, 3, . . .

=⇒
n∑

j=1

σj ≤
n∑

j=1

λj for all n = 1, 2, 3, . . . . (4.5.4)

Remark 4.7. This proposition holds with ex replaced by any monotone-
increasing, convex function. It was first proved by Hardy, Littlewood and Polya
in 1929 [85], but is often known as a theorem of Karamata, who proved it inde-
pendently in 1932 [98]. A nice proof, using ‘linearization’ is in [11, Sec. 28–30].
Another useful reference is [90]. The proof given here also works for all mono-
tone convex functions and is close to that in [98].

To prove (4.5.3) we write ex = ∫
R

(x − y)+eydy, where z+ := max{z, 0}. We
then see that (4.5.3) will follow for the function ex if we can prove the ana-
logue of (4.5.3) for the monotone-increasing, convex function x 	→ (x − y)+,
for each fixed real number y. But this is easy to do. We note the obvi-
ous fact that either

∑n
j=1(aj − y)+ =∑k

j=1(aj − y) for some k ≤ n or else∑n
j=1(aj − y)+ = (a1 − y)+ = 0. The case

∑n
j=1(aj − y)+ = 0 is trivial and
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otherwise
n∑

j=1

(aj − y)+ =
k∑

j=1

(aj − y) ≤
k∑

j=1

(bj − y) ≤
k∑

j=1

(bj − y)+ ≤
n∑

j=1

(bj − y)+,

(4.5.5)
which proves (4.5.3).

Step 2: Define the positive operators

X = Bm/2Am Bm/2 and Y = (B1/2A B1/2)m. (4.5.6)

We let λ denote the eigenvalues of X in decreasing order (followed by an infinite
string of zeros in case our matrices are finite dimensional). Similarly σ are the
eigenvalues of Y . Clearly, inequality (4.5.4) will prove our theorem if we can
show that

∏n
j=1 λj ≥∏n

j=1 σj for every n ≥ 1. To do this, consider the n-fold
antisymmetric tensor product

∧nH, and the operators � = X ⊗X ⊗ · · · ⊗X

and � = Y ⊗ Y ⊗ · · · ⊗ Y acting on this space. The largest eigenvalue of � is
exactly what we are looking for, namely

∏n
j=1 λj , and that of � is

∏n
j=1 σj . To

conclude our proof, therefore, we have to show that the largest eigenvalue of �
is not less than that of �.

Fortunately, � and � can be written in another way. Define α = A⊗
A⊗ · · · ⊗ A and β = B ⊗ B ⊗ · · · ⊗ B. Then, since ordinary operator prod-
ucts and tensor products commute, we have that

� = βm/2αmβm/2 and � = (β1/2αβ1/2)m, (4.5.7)

which is the form of the operators in our proposed inequality about the largest
eigenvalues for the particular case n = 1, except that the operators are different.
That is to say, A is replaced by α, B is replaced by β and the Hilbert space is
replaced by

∧nH.
With � and � as given in (4.5.7), for unknown, but positive operators α and

β, we only have to prove that the largest eigenvalues e� and e� satisfy e� ≥ e� .
Let us assume (after scaling) that e� = 1. This means that, as an operator,� ≤ I.
Our goal will be achieved if we can then infer that � ≤ I.

Now � ≤ I implies that αm ≤ β−m. Taking the mth root (for m ≥ 1) is
operator monotone,10 i.e., αm ≤ β−m implies that α ≤ β−1. We then have that

10 Note that although taking a root is operator monotone, taking powers ≥ 1 is not, in general.
The fact that x 	→ xp is operator monotone for 0 < p < 1 follows easily from the integral
representation xp = π−1 sin(pπ )

∫∞
0 tp(t−1 − (t + x)−1)dt , together with the observation that
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β1/2αβ1/2 ≤ β1/2β−1β1/2 = I. Hence, � = (β1/2αβ1/2)m ≤ I, and our proof is
complete.

Remark 4.8. We have actually proved more than (4.5.1), which refers to the
sum of all the eigenvalues. We have proved that the inequality holds for the
largest eigenvalue and for the sum of the n largest eigenvalues of each operator.

x 	→ −1/x is operator monotone. We refer to [17, 42] for more information on operator
monotone functions.



C H A P T E R 5

Electrostatic Inequalities

5.1 General Properties of the Coulomb Potential

The interaction energy of charged particles is described by the Coulomb poten-
tial, and the proof of stability of matter depends to a large extent on having good
estimates for the size of this interaction for systems with many particles.

From this point on, until the end of the book, we will restrict our attention to
the physical case of R

3. Many of the results have a natural extension to different
dimensions, but we shall not explore them here.

Charge distributions may be continuous or discrete and hence it is convenient
to consider them as Borel measures.1 The potential function � associated with
a Borel measure μ is defined by

�(x) =
∫
R3

1

|x − y|μ(d y). (5.1.1)

For a positive measureμ this expression is always well defined in the sense that it
might be +∞. If μ is a signed Borel measure, i.e., μ = σ − τ with σ, τ positive
Borel measures, the potential may not be well defined because of cancellation
problems. If, however, we assume that the positive measure ν = σ + τ is finite
in the sense that ∫

R3

1

1 + |x|ν(dx) < ∞, (5.1.2)

it is not hard to see that under such an assumption the potential �(x) is finite
almost everywhere, in fact it is in L1

loc(R3) (see [118, Chap. 9]). Note that
any signed measure can be written as the difference of two positive measures

1 For readers unfamiliar with measures, just think of μ(dx) as �(x)dx where � is some function
in L1

loc(R
3). See [118, Chapter 1].
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with disjoint support. We shall not use this fact, which is known as the ‘Hahn
decomposition’, in any way.

The Coulomb energy D(μ,μ) of a charge distribution μ is defined by

D(μ,μ) = 1

2

∫∫
R3×R3

1

|x − y|μ(dx)μ(d y). (5.1.3)

Again, this expression is well defined in the case where μ is positive. In the
following a charge distribution will be a Borel measureμ = σ − τ where both,
σ and τ are positive measures satisfying the condition (5.1.2) and, moreover,
both have a finite Coulomb energy. We do not require that σ and τ have disjoint
support. The following theorem shows that the expression (5.1.3) is well defined
for charge distributions.

The measures we are mostly concerned with are absolutely continuous, that
is, they are of the form μ(dx) = �(x)dx for an integrable function �. In this
case, we shall slightly abuse notation and use the symbol

D(�, �) = 1

2

∫∫
R3×R3

�(x)�( y)

|x − y| dx d y (5.1.4)

for the Coulomb energy of the corresponding measure.
Quite generally we define the interaction energy of two charge distributions

μ, ν by

D(μ, ν) = 1

2

∫∫
R3×R3

1

|x − y|μ(dx)ν(d y). (5.1.5)

Theorem 5.1 (Positive Definiteness of the Coulomb Potential). Assume that
μ is a charge distribution as defined above. Then 0 ≤ D(μ,μ) < ∞. Moreover,
for any two charge distributions μ and ν

D(μ, ν)2 ≤ D(μ,μ)D(ν, ν). (5.1.6)

Proof. A calculation (see, e.g. [118, 5.10(3)]) shows that

1

|x − y| =
1

π3

∫
R3

1

|x − z|2
1

| y − z|2 dz. (5.1.7)

(The fact that the two sides of (5.1.7) are proportional to each other follows
from the observation that they are both functions only of |x − y| and both are
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homogeneous of degree −1; the only thing that has to be worked out is the
constant π−3.) Hence, for any charge distributions μ,

D(μ,μ) = 1

2π3

∫
R3

⎡⎣∫
R3

1

|x − z|2μ(dx)

⎤⎦2

dz ≥ 0. (5.1.8)

It is easy to see that D(μ,μ) < ∞, since D(σ, σ ) and D(τ, τ ) are finite by
assumption. This fact, as well as inequality (5.1.6), follows from Schwarz’s
inequality and the representation

D(μ, ν) = 1

2π3

∫
R3

⎡⎣∫
R3

1

|x − z|2μ(dx)

⎤⎦⎡⎣∫
R3

1

|x − z|2 ν(dx)

⎤⎦ dz. (5.1.9)

Another fact about the Coulomb potential, which will be of great importance,
is Newton’s theorem. It states that outside a charge distribution that is rotation-
ally symmetric about a point x0, the associated potential looks as if the charge is
concentrated at the point x0. Recall that a measure μ is rotationally symmetric
with respect to a point x0 if for every measurable set A and any rotation R which
leaves x0 fixed,

μ(RA) = μ(A). (5.1.10)

Theorem 5.2 (Newton’s Theorem, [144, Thm. XXXI]). Let μ be a charge
distribution that is rotationally symmetric with respect to the origin. Then

�(x) = 1

|x|
∫

| y|≤|x|
μ(d y) +

∫
| y|>|x|

1

| y|μ(d y). (5.1.11)

Consequently, if, for some R > 0, μ({y : | y| > R}) = 0 then

�(x) = 1

|x|μ(R3) for |x| > R. (5.1.12)

Likewise, if μ({y : | y| < R}) = 0, then

�(x) = constant =
∫

| y|>R

1

| y|μ(d y) for |x| < R. (5.1.13)
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Proof. Since the measure μ is rotationally symmetric with respect to the origin,
so is the potential �, i.e., �(x) = �( y) whenever |x| = | y|. Thus, �(x) =
〈�〉(x) where 〈�〉(x) denotes the average of �(|x|ω) over the unit vector ω.
Using (5.1.1) this requires that we calculate the integral∫

S2

1

||x|ω − y|dω (5.1.14)

where dω is the uniform normalized surface measure on the unit 2-sphere. By
rotation invariance we can let the vector y point towards the north pole. Resorting
to polar coordinates, one is led to the calculable integral

1

2

1∫
−1

1

(|x|2 + | y|2 − 2|x||y|s)1/2
ds = min

{
1

|x| ,
1

| y|
}
. (5.1.15)

Formula (5.1.11) now follows.

5.2 Basic Electrostatic Inequality

When estimating the Coulomb potential of a collection of nuclei and electrons
one faces two essential difficulties. The first is that the potential is singular at
the location of the nuclei. The second, more serious one, is that the potential
can also be large away from the nuclei because there might be many nuclei. The
following electrostatic inequality, proved in [138, Lemma 1], disentangles these
two issues. It suffices for several of the proofs of stability in this book, but a
more sophisticated version turns out to be necessary for some stability results
concerned with the quantized electromagnetic field. That version, which uses
this basic version as input, will be given in Section 5.4.

To describe the inequality in detail we need the notion of a Voronoi cell with
respect to a collection of nuclei of equal charge Z located at points Rj . Let
R1, . . . , RM be M distinct points in R

3. Define the cell �j ⊂ R
3 by

�j = {x ∈ R
3 : |x − Rj | < |x − Ri |, for all i �= j}. (5.2.1)

Clearly �j is open and it is easily seen to be convex. Its boundary, ∂�j , is a finite
collection of segments of planes and, possibly, the point at infinity.
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Denote (half) the nearest neighbor distance of the nucleus located at Rj ∈ �j

by

Dj := 1

2
min
i �=j

|Ri − Rj |. (5.2.2)

This is the distance from Rj to ∂�j . The Coulomb potential felt by an electron
at the point x, generated by M nuclei of equal charge Z, is the negative of

W (x) = Z
∑
k

1

|x − Rk| ,

which is a harmonic2 function on the complement of all the Rj . In the following,
it will be important that all the nuclear charges be equal. Concerning the question
of stability of matter, this is not an important restriction, as noted in Section 3.2.3.

Define

D(x) = min{|x − Ri | : 1 ≤ i ≤ M}, (5.2.3)

and set

�(x) = W (x) − Z

D(x)
. (5.2.4)

In other words, for x ∈ �j , the number −�(x) is the value of the potential at the
point x due to all the nuclei outside the Voronoi cell �j . It is important to note
that � is a continuous function on R

3 (here we use the fact that all the nuclei
have the same charge Z). Although � is harmonic in each Voronoi cell, it is
not harmonic on the whole of R

3 since � is not differentiable on the boundary
of the Voronoi cells. Its derivative makes a jump as we go from one cell to a
neighboring cell.

An obvious connection between � and the Coulomb repulsion energy of
nuclei of equal charge Z is

Z2
∑
k<l

1

|Rk − Rl| =
1

2
Z
∑
j

�(Rj ). (5.2.5)

Our main concern is to estimate the potential energy of an electron, taking
into account all the other electrons and all the nuclei – except for the nucleus
in the cell in which the electron finds itself. The Coulomb repulsion among
the nuclei is included. The following theorem gives such an estimate. We will
utilize it later by essentially identifying the arbitrary measure μ that appears in
the theorem with the (smoothed) charge density of all the electrons.

2 A harmonic function ϕ is one satisfying �ϕ = 0. Equivalently, the average of ϕ over any sphere
equals the value of ϕ at the center of the sphere. See [118, Chapter 9].
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Figure 5.1: Example of Voronoi cells in two dimensions.

Theorem 5.3 (Basic Electrostatic Inequality). For any charge distribution
μ = μ+ − μ− with D(μ+, μ+),D(μ−, μ−) < ∞, and for any set of distinct
points R1, . . . , RM ∈ R

3,

D(μ,μ) −
∫

�(x)μ(dx) +
∑
k<l

Z2

|Rk − Rl| ≥
1

8

∑
j

Z2

Dj

, (5.2.6)

where � is defined in (5.2.4) and Dj in (5.2.2).

Proof. Our first goal is to find a charge distribution, ν, that generates the potential
�. That is to say,

�(x) =
∫
R3

1

|x − y|ν(d y) (5.2.7)
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or, equivalently,

−�� = 4πν. (5.2.8)

To this end, pick an infinitely differentiable function f of compact support, and
calculate∫

�(x)�f (x)dx =
∑
j

∫
�j

�(x)�f (x)dx

=
∑
j

∫
�j

div (�∇f )(x)dx −
∑
j

∫
�j

∇�(x) · ∇f (x)dx

=
∑
j

∫
∂�j

�(x)n̂j · ∇f (x)dS −
∑
j

∫
�j

∇�(x) · ∇f (x)dx,

where n̂j is the outward normal to ∂�j and dS denotes the two-dimensional
Euclidean surface measure on ∂�j . Since � and ∇f are continuous the sum of
all of the boundary integrals is zero. Furthermore,

−
∑
j

∫
�j

∇f (x) · ∇�(x)dx = −
∑
j

∫
�j

div(f∇�)(x)dx +
∑
j

∫
�j

f (x)��(x)dx

= −
∑
j

∫
�j

div(f∇�)(x)dx (5.2.9)

since � is harmonic in �j . Hence we have∫
R3

�(x)�f (x)dx = −
∑
j

∫
∂�j

f (x)n̂j · ∇�(x)dS. (5.2.10)

Note that this expression does not vanish since ∇� is not a continuous function.
The boundary ∂�j consists of two-dimensional planar segments each sepa-

rating �j from some other Voronoi cell �i (and possibly the point at infinity,
which we can ignore for the present since f has compact support and hence all
integrands have compact support). Note that on the right side of (5.2.10) each
boundary segment appears twice, once as the boundary of a Voronoi cell and
once as the boundary of its neighbor. The outward normals, however, point in
opposite directions. Therefore, if we insert (5.2.4) in the right side of (5.2.10)
we see that the contribution of W (x) for each segment cancels since W (x) is
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a differentiable function away from the Rj , and hence is differentiable in a
neighborhood of ∂�j . Thus (5.2.10) becomes∫

R3

�(x)�f (x)dx =
∑
j

∫
∂�j

f (x)n̂j · ∇ Z

D(x)
dS. (5.2.11)

Choose any two Voronoi cells �j and �k that share a planar segment. Since
every point on this segment has the same distance to the point Rk and Rj we
learn that the gradients of D(x)−1, one taken from the interior of �j and one
taken from the interior of �k and then evaluated on the segment, have the same
magnitude but opposite orientation, i.e.,

n̂j · ∇ 1

|x − Rj | = n̂k · ∇ 1

|x − Rk|
for all x on the segment. This allows us to rewrite (5.2.11) as∫

R3

�(x)�f (x)dx = 2Z
∫

∪j ∂�j

f (x)n̂j · ∇ 1

|x − Rj |dS. (5.2.12)

It follows from this formula that the measure ν that generates�(x) in the sense
of (5.2.7), (5.2.8) is a surface charge density concentrated on the planar part of
∪j ∂�j . On the segment joining the Voronoi cells �j and �k it has the magnitude

− Z

2π
n̂j · ∇ 1

|x − Rj | = − Z

2π
n̂k · ∇ 1

|x − Rk| .

Moreover, ν(dx) is positive, which follows from the fact that the Voronoi
cells are convex, and hence n̂j · (x − Rj ) ≥ 0 for all x ∈ ∂�j . Thus we have
achieved our first goal, to identify the measure ν in (5.2.7), (5.2.8).

For any measure μ(dx) we can write

D(μ,μ) −
∫

�(x)μ(dx) +
∑
k<l

Z2

|Rk − Rl|

= D(μ− ν, μ− ν) −D(ν, ν) +
∑
k<l

Z2

|Rk − Rl|

≥ −D(ν, ν) +
∑
k<l

Z2

|Rk − Rl| (5.2.13)

since D(μ− ν, μ− ν) ≥ 0 by Theorem 5.1.
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It remains to calculate D(ν, ν). First, note that

W (x) = Z
∑
j

∫
R3

δ( y − Rj )
1

| y − x|d y,

where δ is the Dirac delta-function, so that (5.2.7) implies that∫
R3 W (x)ν(dx) = Z

∑
j �(Rj ). We use this fact in the following way.

With the aid of (5.2.5),

D(ν, ν) = 1

2

∫
R3

�(x)ν(dx) = 1

2

∫
R3

W (x)ν(dx) − 1

2

∫
R3

Z

D(x)
ν(dx)

= 1

2

∑
j

Z�(Rj ) − 1

2

∫
R3

Z

D(x)
ν(dx)

=
∑
k<l

Z2

|Rk − Rl| −
1

2

∫
R3

Z

D(x)
ν(dx).

Next,

1

2

∫
R3

Z

D(x)
ν(dx) = −

∑
j

Z2

8π

∫
∂�j

1

|x − Rj | n̂j · ∇ 1

|x − Rj |dS,

which, by a straightforward calculation, equals

−
∑
j

Z2

16π

∫
∂�j

n̂j · ∇ 1

|x − Rj |2 dS =
∑
j

Z2

16π

∫
�c
j

�
1

|x − Rj |2 dx,

where �c
j is the complement of �j . Note the change of sign! Since

�
1

|x − Rj |2 = 2

|x − Rj |4 ,

we need only calculate a lower bound to the integral

Z2

8π

∫
�c
j

1

|x − Rj |4 dx. (5.2.14)

This is an integral over the complement of the Voronoi cell �j , which is a
set containing the half-space whose boundary plane touches the ball of radius
Dj centered at Rj (in fact the boundary of this half-space contains the planar
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segment separating �j from its nearest neighbor). Thus we get a lower bound
by just integrating (5.2.14) over that half-space. By shifting and rotating
coordinates we may assume that Rj = 0 and that the bounding half-plane is
parallel to the y–z plane. Hence

Z2

8π

∫
�c
j

1

|x − Rj |4 dx ≥ Z2

8π

∞∫
−∞

dz

∞∫
−∞

dy

∞∫
Dj

dx
1

(x2 + y2 + z2)2
= Z2

8Dj

,

which proves the theorem.

5.3 Application: Baxter’s Electrostatic Inequality

The basic inequality, Theorem 5.3, will now be applied to proving an inequality
of Baxter [10] that was originally proved very differently using some sophisti-
cated concepts of potential theory.3 The derivation from Theorem 5.3 given here
is due to Solovej (private communication).

In order to bound the Coulomb potential VC(X, R) from below, we would like
to apply Theorem 5.3 to a measure that is appropriate to N electrons, namely
μ(dx) =∑N

i=1 δ(x − xi)dx. Inequality (5.2.6) is of no use in this case, however,
because of the infinite self-energy of μ. What we are after here is an inequality
of the form (5.2.6), without these infinite self-energy terms. This is the content
of the following theorem.

Theorem 5.4 (Baxter’s Inequality). Let VC(X, R) be the Coulomb potential
of N electrons with coordinates xi ∈ R

3 and M nuclei with common nuclear
charge Z and with coordinates Rj ∈ R

3, as given in (2.1.21)–(2.1.24), namely

VC(X, R) =
∑

1≤i<j≤N

1

|xi − xj | −
N∑
i=1

M∑
j=1

Z

|xi − Rj | +
∑
k<l

Z2

|Rk − Rl| .

(5.3.1)

As before let �j denote the Voronoi cell belonging to Rj and let D(x) denote the
distance from x to the nearest nucleus; if x ∈ �j then D(x) = |x − Rj |. With

3 Baxter’s inequality in [10] did not have the positive term on the right side of (5.3.2).
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Dj half the nearest neighbor distance defined in (5.2.2), there is the inequality

VC(X, R) ≥ −(2Z + 1)
N∑
i=1

1

D(xi)
+ Z2

8

M∑
j=1

1

Dj

. (5.3.2)

Remark 5.1. This theorem says, in effect, that for a lower bound the electrostatic
interactions can be thought of as canceling each other except for the residual
interaction of each electron with its nearest nucleus. Note that (5.3.2) gives a
lower bound on the many-body potential VC in terms of a one-body potential
for the electrons. The striking feature of this inequality is that (N +M)2 terms
on the left side are bounded by only N +M terms on the right. A defect of this
theorem is that the Coulomb singularity on the right side has a weight 2Z + 1
instead of the expected Z. For non-relativistic matter, where stability holds for
all α and Z, this defect only amounts to a modified numerical constant in the
energy estimate, but for relativistic matter, where there is a critical value of
αZ ≤ 2/π for stability, the factor 2Z + 1 will yield an incorrect value for the
critical value of αZ. This defect will be remedied in the refined inequality in the
next section.

Proof. For simplicity, denote di = D(xi). Let μi(dx) = (d2
i π )−1δ(|x − xi | −

di/2)dx be the normalized uniform measure supported on a sphere of radius
di/2 centered at xi , and let μ =∑N

i=1 μi . (Note that we use di/2 and not di .) If
we replace the electron point charges by the smeared out spherical chargesμi, the
electrostatic interaction among the electrons is reduced because the interaction
energy between two spheres is less than or equal to that between two points.
This follows from Newton’s Theorem, which also implies that the interaction
between the smeared electrons and the nuclei is not changed, since the radius
di/2 is less than the distance of xi to any of the nuclei. Hence

VC(X, R) ≥
∑

1≤i<j≤N
2D(μi, μj ) −

M∑
j=1

∫
R3

Z

|x − Rj |μ(dx) +
∑
k<l

Z2

|Rk − Rl|

= D(μ,μ) −
M∑
j=1

∫
R3

Z

|x − Rj |μ(dx) +
∑
k<l

Z2

|Rk − Rl| −
N∑
i=1

1

di
.

(5.3.3)
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We have used that D(μi, μi) = 1/di . We shall show that the right side of (5.3.3)
is bounded from below by the right side of (5.3.2).

An application of Theorem 5.3 yields the lower bound

VC(X, R) ≥ −
N∑
i=1

⎛⎝∫
R3

Z

D(x)
μi(dx) + 1

di

⎞⎠+ Z2

8

M∑
j=1

1

Dj

. (5.3.4)

To finish the proof it suffices to show that for x in the support of μi , we have
D(x) ≥ di/2. This follows from the triangle inequality, which implies that for
any k

|x − Rk| ≥ |xi − Rk| − |xi − x| ≥ di − di/2 = di/2. (5.3.5)

In the last step, we used that |xi − Rk| ≥ di by definition, and |xi − x| = di/2
for x on the sphere centered at xi .

5.4 Refined Electrostatic Inequality

As remarked in the previous section, the lower bound in Theorem 5.4 has the
virtue of giving a lower bound to the many-body Coulomb potential VC in
terms of a one-body potential for the electrons, but it has the defect that the
Coulomb singularity has the wrong prefactor 2Z + 1 on the right side, instead
of the desired factor Z. This is of crucial importance when studying the stability
of relativistic matter. The following theorem, which remedies this defect, was
proved in [138, Thm. 6]. The price one has to pay is a slightly more negative
one-body potential in the Voronoi cells �j , but we emphasize the fact that the
singularities at the nuclei are unchanged, namely Z/|x − Rj |.

Theorem 5.5 (Refined Electrostatic Inequality). For 0 < λ < 1 let Wλ be the
function on R

3 whose value in the Voronoi cell �j is defined to be

Wλ(x) = Z

|x − Rj | +

⎧⎪⎨⎪⎩
1
2D

−1
j (1 −D−2

j |x − Rj |2)−1 for |x − Rj | ≤ λDj(√
2Z + 1

2

)
|x − Rj |−1 for |x − Rj | > λDj ,

(5.4.1)
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withDj defined in (5.2.2). Then, with X = (x1, . . . , xN ) and R = (R1, . . . , RM )
as before,

VC(X, R) ≥ −
N∑
i=1

Wλ(xi) + Z2

8

M∑
j=1

1

Dj

. (5.4.2)

Remark 5.2. The optimal choice of λ in (5.4.1) that makes Wλ as small as
possible is independent of X and R and depends only on Z. To see this, note
that the upper choice in (5.4.1) is increasing in |x − Rj | and the lower choice is
decreasing. Hence the optimal λ is determined by setting the two terms equal,
that is,

1

2(1 − λ2)
=

√
2Z + 1/2

λ
. (5.4.3)

In other words, one can take the minimum of the two choices in (5.4.1) and forget
about λ. (When |x − Rj | > Dj , but still in the Voronoi cell �j , the first choice
has to be interpreted as +∞ when taking the minimum.) When |x − Rj | ≥ Dj ,
Wλ(x) = (

√
Z + 1/

√
2)2/|x − Rj |.

Proof. In order to be able to employ Theorem 5.3, we shall first smear out the
electron charges in a definite (possibly non-spherical) way. This will decrease
the contribution of the electron–electron repulsion to the Coulomb energy, but
increase the electron–nuclear attraction. The measure μ(dx) will be taken to
be the sum of all the smeared charges of all the electrons. The term D(μ, μ)
will underestimate the interaction of two electrons, which is fine, but it will also
include a self-interaction term for each electron, which is not fine and which
will have to be subtracted. These subtractions form part of the terms in (5.4.1).
Another part of these terms arises from the fact that

∫
�(x)μ(dx) underestimates

the electron–nuclear interaction.
More precisely, we shall replace the point charge at xi by a charge distribution

νi which is defined as follows. We distinguish two cases, depending on whether
the distance of the electron xi to the nearest nucleus at Rj is bigger or smaller
than λDj .

Case 1. If |xi − Rj | ≤ λDj , the measure νi is supported on Si , the sphere
of radius Dj around Rj . Note that by definition Si lies in the Voronoi cell
�j . The charge νi is chosen in such a way that the potential created by νi
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equals |x − xi |−1 for all x with |x − Rj | > Dj , that is, for all x outside Si .
This property determines νi uniquely. Moreover, νi is a positive measure. This
follows from the fact that the function x 	→ |x − xi |−1 − ∫

Si
| y − x|−1νi(d y) is

superharmonic4 inside Si and vanishes at Si ; hence it is a non-negative function
whose normal derivative, which equals the surface charge by Gauss’s law, has
to be non-negative.5

The potential
∫
Si
| y − x|−1νi(d y) generated by νi can be evaluated explicitly.

For |x − Rj | ≥ Dj it is |x − xi |−1, while for |x − Rj | < Dj it is given by

Dj

|xi − Rj |
1

|x − x∗
i |

(5.4.4)

where x∗
i − Rj = (xi − Rj )D2

j /|xi − Rj |2. The point x∗
i is in fact obtained

from xi by spherical inversion. That is, the potential inside Si is the same as
the potential created by a point charge located at x∗

i outside Si with charge
Dj/|xi − Rj |.

The self-energy of νi is then easily computed to be

D(νi, νi) = 1

2|xi − x∗
i |

Dj

|xi − Rj | =
1

2Dj

1

1 − |xi − Rj |2/D2
j

. (5.4.5)

Case 2. If xi ∈ �j and |xi − Rj | > λDj , we choose Si to be the sphere centered
at xi with radius |xi − Rj |/ζ for some ζ > 1 to be determined later. Note that
Si does not necessarily lie entirely inside �j . The measure νi is again supported
on Si , but this time with uniform surface charge distribution. Its self-energy
therefore equals

D(νi, νi) = ζ

2|xi − Rj | . (5.4.6)

In both cases, νi is a positive measure, and∫
Si

νi(dx)

|x − y| ≤
1

| y − xi |

4 A function f is superharmonic if �f ≤ 0 in the sense of distributions. It is a theorem [118,
Thm. 9.3] that this is equivalent to the statement that for all x, f (x) is greater than or equal to
the average of f over any sphere centered at x.

5 In physics this charge distribution is called the screening charge. It is the charge on a perfectly
conducting grounded sphere that is induced by a unit charge located at a point xi inside the
conductor. In mathematics it is known as the harmonic measure corresponding to the point xi .
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for all y ∈ R
3. Using this twice,

2D(νi, νj ) =
∫∫
Si×Sj

νi(dx)νj (d y)

|x − y| ≤
∫
Sj

νj (d y)

|xi − y| ≤
1

|xi − xj | .

In particular, ∑
i<j

1

|xi − xj | ≥ D
(∑

iνi,
∑

iνi
)−∑

i

D(νi, νi). (5.4.7)

The self-energy terms are given in (5.4.5) in case 1 and in (5.4.6) in case 2,
respectively.

We now apply Theorem 5.3, which states that

D
(∑

iνi,
∑

iνi
)+∑

k<l

Z2

|Rk − Rl| ≥
N∑
i=1

∫
Si

�(x)νi(dx) + Z2

8

M∑
j=1

1

Dj

with � given in (5.2.4). In order to calculate
∫
Si
�(x)νi(dx) we again have to

distinguish the two cases given above.

Case 1. In this case, Si is entirely contained in some �j , and hence∫
Si

�(x)νi(dx) =
∑
k, k �=j

∫
Si

Z

|x − Rk|νi(dx) =
∑
k, k �=j

Z

|xi − Rk| ,

since all the Rk for k �= j are located outside Si .

Case 2. Writing �(x) = W (x) − Z/D(x) as in (5.2.4) and using the fact that
all the Rk lie outside Si by construction, we have∫

Si

�(x)νi(dx) =
M∑
k=1

Z

|xi − Rk| − Z

∫
Si

νi(dx)

D(x)
.

Recall that D(x) is the distance to the nearest nucleus defined in (5.2.3). Assume
that xi ∈ �j . We claim that for all x ∈ Si and all k

|Rk − x| ≥ |Rj − xi |
(

1 − 1

ζ

)
. (5.4.8)

This follows from the triangle inequality in (5.3.5), |Rk − x| ≥ |Rk − xi | −
|x − xi | = |Rk − xi | − |xi − Rj |/ζ . The fact that |Rk − xi | ≥ |Rj − xi |, by
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definition of Rj as the nearest nucleus, yields (5.4.8). In particular, D(x) ≥
|Rj − xi |

(
1 − 1

ζ

)
, and hence∫

Si

�(x)νi(dx) ≥ − Z

|Rj − xi |
1

ζ − 1
+
∑
k, k �=j

Z

|xi − Rk| . (5.4.9)

The last term is the desired interaction energy with all but the nearest nucleus,
and the first expression is an error term.

Altogether, we have shown that

VC(X, R) ≥ −
N∑
i=1

Z

D(xi)
+ Z2

8

M∑
j=1

1

Dj

−
N∑
i=1

Fλ(xi), (5.4.10)

where Fλ is given as follows. In case 1, i.e., when x ∈ �j and |x − Rj | ≤ λDj ,
we see from (5.4.5) that

Fλ(x) = 1

2
D−1

j (1 −D−2
j |x − Rj |2)−1.

In case 2, when x ∈ �j and |x − Rj | > λDj , it follows from (5.4.4) and (5.4.9)
that

Fλ(x) = 1

|x − Rj | (ζ/2 + Z/(ζ − 1)) .

In order to minimize this last term in case 2, we choose ζ = 1 +√
2Z. This

yields (5.4.2).
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An Estimation of the Indirect Part of the
Coulomb Energy

6.1 Introduction

In this chapter we shall bound the difference between the Coulomb energy
of a system of many electrons in a state ψ and the electrostatic energy of
the corresponding charge distribution �ψ . This difference is also known as
the indirect part of the Coulomb energy. Such a bound is not only rele-
vant for the discussion of stability of matter, but is of importance in other
areas such as density functional theory in quantum chemistry [51]. While the
results on this chapter will be used in one of our proofs of stability of non-
relativistic matter in the next chapter, they are not strictly needed for the proof,
and we shall give a different proof avoiding their use. A reader who is only
interested in the quickest proof of stability can skip this chapter. The results
will be of importance in the discussion of relativistic matter in Chapter 8,
however.

As explained in Chapter 3, a quantum mechanical system of N particles has a
state which, generally, is described by a density matrix. For our purposes here,
only the (spin summed) diagonal part of this density matrix is relevant. Also,
statistics does not play any role in this chapter; for our purposes here it does not
matter whether we are dealing with Bose, Fermi or mixed statistics. In fact, the
exchange energy defined below depends only on the N particle density (spin
summed, in case of spin).

We denote the N particle density as PN (x1, . . . , xN ). It should be thought of
as |ψ(x1, . . . , xN )|2 or, more generally, as

∑
σ |ψ(x1, σ1, . . . , xN, σN )|2 in the

case of non-zero spin, but that does not matter. The function PN is non-negative,
and we assume it to be normalized, as usual, as∫

R3N

PN (x1, . . . , xN )dx1 · · · dxN = 1. (6.1.1)

105
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For particles with charges ei , 1 ≤ i ≤ N , the electrostatic energy is defined by

IP =
∑

1≤i<j≤N
eiej

∫
R3N

PN (x1, . . . , xN )

|xi − xj | dx1 · · · dxN (6.1.2)

where ei is the charge of particle i; it is not assumed that all the ei are the
same, or that PN is a permutation symmetric function of the xi . For studying
the question of stability of matter, it is desirable to have a lower bound on IP in
terms of the single particle charge density, which is defined for each x in R

3 by

Q(x) =
N∑
i=1

Qi(x) (6.1.3)

and where the charge density of particle i is given by

Qi(x) = ei

∫
R3(N−1)

PN (x1, . . . , xi−1, x, xi+1, . . . , xN )dx1 · · · dx̂i · · · dxN.

(6.1.4)

As usual dx̂i means that the xi integration is omitted. Observe that Qi(x) is a
non-negative function with integral∫

R3

Qi(x)dx = ei (6.1.5)

(because of the normalization (6.1.1)). Hence the total charge is given by∫
R3

Q(x)dx =
N∑
i=1

ei. (6.1.6)

The electrostatic energy associated with the charge density Q(x) is given by
(compare with Eq. (5.1.3))

D(Q,Q) = 1

2

∫∫
R3×R3

Q(x)Q( y)

|x − y| dxd y (6.1.7)

and is called the direct part of the Coulomb energy. It is the classical Coulomb
energy associated with a ‘fluid’ of charge density Q. Since Q(x) ≥ 0, D(Q,Q)
is always well defined in the sense that it is either finite or +∞. Accordingly,
the indirect part of the Coulomb energy, denoted by EP , is defined by the
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equation

IP = D(Q,Q) + EP . (6.1.8)

Thus, EP is the difference between the true energy IP and the classical approxi-
mation D(Q,Q). Sometimes it is called the exchange plus correlation energy.
It is the aim of this chapter to give a lower bound on EP in terms of Q. We
emphasize again that our bound onEP holds for arbitrary normalizedN -particle
densities PN .

6.2 Examples

The first example comes from Hartree’s theory. Consider N spinless particles
(i.e. q = 1), each with the same charge e. Assume that they are not correlated,
in which case their wave function is given by a simple product

ψ(x1, . . . , xN ) = f1(x1) · · · fN (xN ), (6.2.1)

where each fi is in L2(R3) and normalized. If all the fi are the same, this would
describe bosons, but this is not important. The N -particle density in this case
would be

PN (x1, . . . , xN ) = |ψ(x1, . . . , xN )|2 = |f1(x1)|2 · · · |fN (xN )|2. (6.2.2)

A simple computation yields

Q(x) = e

N∑
i=1

|fi(x)|2 (6.2.3)

and

IP = D(Q,Q) − e2
N∑
i=1

D(|fi |2, |fi |2). (6.2.4)

Hence EP is the (negative) sum of the self-energies of the charge distributions
e|fi(x)|2 in this case.

Another example is provided by a Hartree–Fock wave function. Again the
charges are all taken to be equal to e. Then ψ is the antisymmetric function of
space and spin z = (x, σ ) given by a determinant

ψ(z1, . . . , zN ) = (N!)−1/2 det(φi(zj )) (6.2.5)
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where the functions φi are orthonormal in L2(R3; C
q). Using (3.1.28) and the

equation (3.1.29) for the two-particle density, one sees that for the corresponding
N -particle density

PN (x1, . . . , xN ) =
∑
σ

|ψ(z1, . . . , zN )|2

the indirect part of the Coulomb energy is

EP = −1

2
e2
∫∫ ∣∣γ (1)(z, z′)

∣∣2
|x − x′| dzdz′ (6.2.6)

where

γ (1)(z, z′) =
N∑
i=1

φi(z)φi(z′) (6.2.7)

denotes the one-particle density matrix of ψ . In this context EP is called the
exchange term.

An approximation to EP in terms of Q was computed in [40] using perturba-
tion theory, i.e. using the eigenfunctions of the kinetic energy operator (i.e. the
Laplacian) in a large cubic box �. One chooses the φi(z) to be a product of spin
and space wave function, i.e.,

φα,k(z) = χα(σ )
1√|�|e

2πik·x, (6.2.8)

where χα(σ ) with α = 1, . . . , q is an orthonormal basis in C
q , |�| denotes the

volume of �, and the allowed values of k are

k = n
|�|1/3

with n ∈ Z
3
+. (6.2.9)

A dimensional argument immediately shows that for |�| and N large, and with
� = N/|�| fixed,

EP = −Ce2q−1/3�4/3|�|. (6.2.10)

Closer inspection shows that C = 0.93.
Formula (6.2.10) suggests that in the general case, i.e., forN -particle densities

coming from antisymmetric functions of space and spin, EP given by (6.1.8)
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should be bounded below by

−Ce2/3q−1/3
∫
R3

Q(x)4/3dx (6.2.11)

for some suitable universal constant C. For the case where all the ei equal e,
(6.2.11) is correct provided the factor q−1/3 is omitted. That the value of q and
the Pauli principle play no role in the question of bounding EP in terms of Q
alone we shall show now.

Given any symmetric particle density PN (x1, . . . , xN ), it is easy to find func-
tions ψq ∈∧N

L2(R3; C
q) for q = 1, 2, 3, . . . each of which is antisymmetric

in the zi = (xi , σi) and such that all the functions ψq have the same N -particle
density PN . To see this, define a function θ (x1, . . . , xN ) to be antisymmetric in
the xi and independent of the σi , and to take only the values ±1. Consider the
function

ψq(z1, . . . zN ) = q−N/2
√
PN (x1, . . . , xN )θ (x1, . . . , xN ) (6.2.12)

which is antisymmetric and independent of the σi . Obviously we have∑
σ

|ψq(z1, . . . , zN )|2 = PN (x1, . . . , xN ) (6.2.13)

for each x1, . . . , xN , and for each value of q. Hence any symmetric N -particle
density PN can come from an antisymmetric wave function with arbitrary value
of q.

Thus, the best general estimate we could aim for is

EP ≥ −Ce2/3
∫
R3

Q(x)4/3dx (6.2.14)

with C being a universal constant. One might try to improve the constant in
the estimate by excluding certain symmetries for wave functions for example
symmetric (i.e. bosonic) functions. That this is impossible can be seen in a similar
fashion as above. Thus the Coulomb repulsion is insensitive to the symmetry
properties of a wave function and is therefore not able to see the spin. The
reason q entered in (6.2.11) was that the kinetic energy operator was taken into
account, i.e., changing q meant changing the ground state of the kinetic energy
operator and hence it meant changing Q(x). Our point is that when Q(x) is the
only available information then (6.2.14) is the best one can hope for. This is in
contrast to the kinetic energy which is sensitive to the symmetry properties of
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the spatial part of the wave function. In fact, as was shown in Chapter 4, a spin
dependent bound for the form

Tψ ≥ Cq−2/3e−5/3
∫
R3

Q(x)5/3dx (6.2.15)

can be obtained. The difference, i.e., the spin dependence of the kinetic energy
estimate and the spin independence of the exchange estimate, can be (somewhat
sloppily) rephrased by saying that only an off-diagonal operator (like the Lapla-
cian) can ‘see’ the symmetry properties of a wave function and therefore the
spin.

6.3 Exchange Estimate

The main theorem of this chapter is the following lower bound on EP . The
charges ei do not have to be equal to each other, but it is important that they are
all positive or all negative. Note that eiQi ≥ 0 by definition.

Theorem 6.1 (Exchange Estimate). LetPN be a normalized N-particle density.
Assume that the ei have the same sign for all 1 ≤ i ≤ N . Then the indirect term
EP of the Coulomb energy given by (6.1.8) satisfies the estimate

EP ≥ −C

⎛⎝ ∫
R3

( N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠1/2⎛⎝ ∫
R3

|Q(x)|4/3dx

⎞⎠1/2

, (6.3.1)

where C is some constant satisfying

C ≤ 1.68.

Here Q(x) and Qi(x) are given by the expressions (6.1.3) and (6.1.4). In case
all the ei equal a common value e then

EP ≥ −C|e|2/3
∫
R3

|Q(x)|4/3dx. (6.3.2)

Remarks 6.1.

(a) This theorem was originally proved in [111] with the aid of the Hardy-
Littlewood maximal function, with a bound on the constant C given by 8.52
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instead of 1.68. The improved constant was obtained by Lieb and Oxford in
[125]. Moreover, by numerically optimizing the smearing function μ in our
equation (6.6.9) below, it was shown in [29] that the Lieb–Oxford method
presented here can yield C < 1.636.

(b) Since the number of particles is fixed one might expect that the sharp constant
in (6.3.1) is N dependent. This is in fact true. In the case of one particle the
constant C1 can in principle be computed exactly. Since IP = 0 in this case,
EP = −D(Q,Q) and we have that

C1 = sup

{
D(Q,Q)∫
Q(x)4/3dx

: Q(x) ≥ 0,
∫

Q(x)dx = 1

}
. (6.3.3)

It is not difficult to see that C1 is finite (see item (f) below). The existence of
a maximizer was shown in [125]. The corresponding variational equation is
the Lane–Emden equation of order 3, which was studied in [179] and [76].
In particular, its solutions are tabulated. The result is

C1 = 1.092. (6.3.4)

This constant plays a role in the Chandrasekhar mass limit for gravitating
bodies (see Chapter 13). The Lane–Emden equation goes back to Lane [101]
in his study of gravitating gas spheres in the year 1870!

A lower bound for C2 was computed in [125]:

C2 ≥ 1.234 > C1 (6.3.5)

In general it is not hard to see that

CN ≤ CN+1, (6.3.6)

and we refer to [125] for details. The constant C in (6.3.1), which is valid
for all particle numbers, is the worst possible case, and we note (from the
above bound on C2) that the bound 1.68 cannot be improved very much.

(c) It is not clear if the (unknown) optimal constantC in the theorem is improved
by making the assumption that all the ei are equal. Our proof, however, does
not get simpler or better in the equal charge case.

(d) A slightly unpleasant feature of the bound (6.3.1) is that it does not just
depend on the total charge density Q(x), but rather on the individual charge
densities Qi(x).

(e) Note that there is no upper bound on EP in terms of the one-particle density
Q. Even for a nice, smooth Q, IP (and hence EP ) can be +∞. For example,
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if P2(x1, x2) = C exp(−|x1|2 − |x2|2)/|x1 − x2|2 then this is the case. This
example also shows why it is necessary that all charges have the same sign
in Theorem 6.1 for, otherwise, EP could be −∞.

(f) This last remark is of a more technical nature. Since EP is the difference
of two positive quantities and since the only assumption on PN is that it is
normalized, the reader might worry that EP is not well defined. Conceivably
IP and D(Q,Q) could both be infinity and yet EP , being the difference of
the two, is somehow finite. This does not affect the validity of Theorem 6.1
as the following reasoning shows. We can assume that

∫ |Q(x)|4/3dx < ∞
for otherwise there is nothing to prove. By the Hardy–Littlewood–Sobolev
inequality (see [118, Thm. 4.3]) we have that

D(Q,Q) ≤ C‖Q‖2
6/5 (6.3.7)

and by Hölder’s inequality

‖Q‖6/5 ≤
⎛⎝∫

R3

|Q(x)|dx

⎞⎠1/3⎛⎝∫
R3

|Q(x)|4/3dx

⎞⎠1/2

=
∣∣∣∣∣

N∑
i=1

ei

∣∣∣∣∣
1/3
⎛⎝∫

R3

|Q(x)|4/3dx

⎞⎠1/2

. (6.3.8)

Hence, whenever Q ∈ L4/3(R3) (so that the right side of (6.3.1) and (6.3.2)
is finite) D(Q,Q) is finite and EP is well defined. It might be +∞, but
never −∞.

The proof of Theorem 6.1 is contained in Sections 6.4–6.6. For simplicity,
we shall consider the case that all ei > 0 even though the main application of
Theorem 6.1 is to electrons for which ei = −e < 0. This is done to avoid writing
absolute values everywhere, but it is of no consequence since the only relevant
quantities are the products ekej > 0.

6.4 Smearing Out Charges

The first step in the proof of Theorem 6.1 is a generalization of a lemma originally
due to Onsager [145].
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Lemma 6.1 (Onsager’s Lemma). Consider N positive charges ei located at
distinct points x1, . . . , xN in R

3. For each 1 ≤ i ≤ N , let μxi
be a non-negative,

bounded, function that is spherically symmetric about xi , with
∫
μxi

(x)dx = 1.
Then for any non-negative, integrable, function � there is the inequality∑

i<j

eiej

|xi − xj | ≥ −D(�, �) + 2
N∑
i=1

eiD(�,μxi
) −

N∑
i=1

e2
i D(μxi

, μxi
). (6.4.1)

Proof. The functions μxi
being bounded guarantees that D(�,μxi

) and
D(μxi

, μxi
) are finite. We can assume that D(�, �) is not infinite, because if

it were infinite the right side of (6.4.1) would be −∞ and the lemma is trivial.
We know from Theorem 5.1 that D( · , · ) is positive definite and hence

D

(
� −

N∑
i=1

eiμxi
, � −

N∑
i=1

eiμxi

)
≥ 0 (6.4.2)

which implies that∑
i �=j

eiejD(μxi
, μxj

) ≥ −D(�, �) + 2
N∑
i=1

eiD(�,μxi
) −

N∑
i=1

e2
i D(μxi

, μxi
).

(6.4.3)

Sinceμxi
andμxj

are non-negative and spherically symmetric around the centers
xi and xj , we know from Newton’s Theorem (Theorem 5.2) that

D(μxi
, μxj

) ≤ 1

2

1

|xi − xj | (6.4.4)

which proves (6.4.1).

Remark 6.2. The point of the above lemma is that it estimates a quantity∑
i<j

eiej

|xi − xj | (6.4.5)

in which correlations are important by another one where the correlations among
the xi are not important. That is, the right side of (6.4.1) depends only on how
the points xi are distributed relative to �, but not relative to each other – as
opposed to the left side of (6.4.1).

Lemma 6.1 immediately allows us to get a lower bound for EP in terms
of the one-particle densities Qi(x) and Q(x) =∑N

i=1 Qi(x). Choosing � = Q,
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multiplying (6.4.1) by the N -particle density PN (x1, . . . , xN ) and integrating
we arrive at

IP ≥ − D(Q,Q) + 2
N∑
i=1

∫
R3

D(Q,μxi
)Qi(xi)dxi

−
N∑
i=1

ei

∫
R3

D(μxi
, μxi

)Qi(xi)dxi . (6.4.6)

The normalization
∫
PN (x1, . . . , xN )dx1 · · · dxN = 1 has been used here. If we

denote by δxi
the Dirac measure at the point xi we can write, in a somewhat

formal but illuminating fashion,
N∑
i=1

∫
R3

D(Q, δxi
)Qi(xi)dxi = D(Q,Q). (6.4.7)

Hence, by adding and subtracting we get from (6.4.6)

EP ≥ −F1 − F2 (6.4.8)

where

F1 = 2
N∑
i=1

∫
R3

D(Q, δxi
− μxi

)Qi(xi)dxi (6.4.9)

and

F2 =
N∑
i=1

ei

∫
R3

D(μxi
, μxi

)Qi(xi)dxi . (6.4.10)

Clearly F2 is positive. Observe that F1 is also positive (by Newton’s Theorem)
for any choice of the μxi

.

6.5 Proof of Theorem 6.1, a First Bound

In this section, we shall prove Theorem 6.1, but with a worse bound on the
constant C than the one stated in the theorem. In the next section we will explain
how to improve the method in order to obtain the better bound.

We start with the bound (6.4.8) proved in the previous section. In (6.4.9) and
(6.4.10) we are still free to choose the functions μxi

. It is clear that μxi
has

to depend on Qi for otherwise F1 would be quadratic in Qi and would not be
proportional to the 4/3 power of Qi .
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Let μ : R
3 → R be a non-negative bounded function satisfying

(a) μ is spherically symmetric about the origin,
(b)
∫

R3 μ( y)d y = 1,
(c) μ( y) = 0 if | y| > 1.

As already said, we assume, without loss of generality, that all ei are positive.
Given μ and some positive number λ, we choose the μxi

to be

μxi
( y) = λ3Q(xi)μ(λQ(xi)

1/3(xi − y)). (6.5.1)

Note that since Q is an integrable function, this is well defined for almost every
xi . Moreover, it is easily seen that the functions μxi

obtained in this way satisfy
the assumptions of Lemma 6.1.

The μxi
constructed in this way describes a charge distributed over a length

scale determined by the value of Q at xi . The factor λ could be set equal to one,
but we introduce it in order to optimize the resulting constant at the end.

If we denote

Rλ(a, r) = ar−1 − λa4/3φ(λa1/3r), (6.5.2)

where φ is the potential associated with μ, i.e.,

φ(|x|) =
∫
R3

μ( y)

|x − y|d y =
∫
R3

min

{
1

|x| ,
1

| y|
}
μ( y)d y (6.5.3)

(see Theorem 5.2), then a simple computation shows that

F1 =
∫∫

R3×R3

Q( y)Rλ(Q(x), |x − y|)dxd y. (6.5.4)

Moreover, since

D(μxi
, μxi

) = λ6Q(xi)
2
∫∫

R3×R3

μ(λQ(xi)1/3(xi − y))μ(λQ(xi)1/3(xi − z))

| y − z| d ydz

= λQ(xi)
1/3D(μ,μ) (6.5.5)

we find that

F2 = λD(μ,μ)
∫
R3

Q(x)1/3

(
N∑
i=1

eiQi(x)

)
dx. (6.5.6)
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In case ei = e for all i = 1, . . . , N , F2 is already of the desired form. Otherwise,
we use Hölder’s inequality to conclude that

F2 ≤ λD(μ,μ)

⎛⎝∫
R3

Q(x)4/3dx

⎞⎠1/4⎛⎝∫
R3

(
N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠3/4

. (6.5.7)

We concentrate onF1 and prove first a crude estimate which hopefully clarifies
what the choice of μxi

in (6.5.1) accomplishes. Since μ is non-negative and∫
μ( y)d y = 1, (6.5.3) shows that φ(r) ≤ r−1 which implies that Rλ(a, r) ≥ 0.

Further, since μ( y) = 0 for | y| > 1, we find again by (6.5.3) that Rλ(a, r) = 0
if λa1/3r > 1. Hence we have the simple bound

Rλ(a, r) ≤
{
ar−1 if λa1/3r ≤ 1

0 otherwise,
(6.5.8)

which implies that

F1 ≤
∫∫

λQ(x)1/3|x− y|≤1

Q(x)Q( y)

|x − y| dxd y. (6.5.9)

The restriction upon the integration in (6.5.9) obviously plays an important role.
To make use of it we resort to the following device. Write Q(x) = ∫∞

0 χα(x)dα
where χα is the characteristic function of the set {x : Q(x) ≥ α}, i.e.

χα(x) =
{

1 if Q(x) ≥ α,

0 otherwise.
(6.5.10)

Using this and Fubini’s theorem to change the order of integration, the right
side of (6.5.9) becomes

∞∫
0

dα

∞∫
0

dβ
∫∫

λQ(x)1/3|x− y|≤1

χα(x)χβ( y)

|x − y| dxd y

≤
∞∫

0

dα

∞∫
0

dβ
∫∫

λα1/3|x− y|≤1

χα(x)χβ( y)

|x − y| dxd y. (6.5.11)
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Where α ≤ β we bound the integrand from above by∫∫
λα1/3|x− y|≤1

χβ( y)

|x − y|dxd y =
∫
R3

χβ( y)d y
∫

|x|≤(λα1/3)−1

|x|−1dx

= 2π

λ2α2/3

∫
R3

χβ( y)d y (6.5.12)

and where α ≥ β we bound it by∫∫
λα1/3|x− y|≤1

χα( y)

|x − y|dxd y = 2π

λ2α2/3

∫
R3

χα( y)d y. (6.5.13)

Therefore (6.5.11) is bounded above by

2π

λ2

⎧⎨⎩
∞∫

0

dβ

β∫
0

dα
∫
R3

χβ( y)α−2/3d y +
∞∫

0

dα

α∫
0

dβ
∫
R3

χα(x)α−2/3dx

⎫⎬⎭
= 8π

λ2

∞∫
0

α1/3dα
∫
R3

χα(x)dx

= 6π

λ2

∫
R3

Q(x)4/3dx. (6.5.14)

Returning to (6.4.8) and using (6.5.7) we have that

EP ≥ −6π

λ2

∫
R3

Q(x)4/3dx

− λD(μ,μ)

⎛⎝∫
R3

Q(x)4/3dx

⎞⎠1/4⎛⎝∫
R3

(
N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠3/4

.

(6.5.15)

Maximizing the right side over λ yields the bound

EP ≥ −34/3

21/3
π1/3(D(μ,μ))2/3

⎛⎝∫
R3

Q(x)4/3dx

⎞⎠1/2⎛⎝∫
R3

( N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠1/2

.

(6.5.16)
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In order to minimize D(μ,μ), the optimal choice for μ is

μ( y) = 1

4π
δ(|y| − 1), (6.5.17)

in which case D(μ,μ) = 1/2. This yields

EP ≥ −34/3

2
π1/3

⎛⎝∫
R3

Q(x)4/3dx

⎞⎠1/2⎛⎝∫
R3

(
N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠1/2

.

(6.5.18)

Note that 34/3π1/3/2 ≈ 3.17.

6.6 An Improved Bound

One can improve the constant 3.17 in the bound (6.5.18) by replacing inequality
(6.5.8) by a more sophisticated treatment. Since Rλ(a, r) in (6.5.2) is continu-
ously differentiable we have, using the fundamental theorem of calculus, that∫

R3

Rλ(Q(x), |x − y|)dx =
∫
R3

dx

Q(x)∫
0

(
∂

∂α
Rλ

)
(α, |x − y|)dα (6.6.1)

and, again using the definition of χα in (6.5.10), this can be written as∫
R3

dx

∞∫
0

χα(x)

(
∂

∂α
Rλ

)
(α, |x − y|)dα. (6.6.2)

By inspection of (6.5.2) and (6.5.3), one easily sees that ∂Rλ

∂α
(α, r) is bounded

and hence we can write

F1 =
∫∫

R3×R3

Q( y)Rλ(Q(x), |x − y|)dxd y

=
∞∫

0

dα

∞∫
0

dβ
∫∫

R3×R3

χα(x)χβ( y)
∂Rλ

∂α
(α, |x − y|)dxd y. (6.6.3)

An upper bound is obtained by replacing ∂Rλ

∂α
by its positive part, which we

denote as
[
∂Rλ

∂α

]
+ = max{ ∂Rλ

∂α
, 0}.
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The right side of (6.5.11) can be recovered from (6.6.3) by replacing[
∂Rλ

∂α

]
+ (α, r) by the function r−1�(1 − λ1/3αr), where � is the Heaviside step

function

�(t) =
{

0 if t < 0

1 if t ≥ 0.
(6.6.4)

The integral
∫

R3 �(1 − λ1/3α|x|)|x|−1dx in (6.5.12) is now replaced by∫
R3

[
∂Rλ

∂α

]
+

(α, |x|)dx. (6.6.5)

To compute this integral observe that

Rλ(α, r) = λα4/3G(λα1/3r), (6.6.6)

where G(t) = 1
t
− φ(t) for t > 0, with φ(t) given in (6.5.3). Hence

∂Rλ

∂α
(α, r) = λα1/3

(
∂R1

∂α

)
(1, λα1/3r) (6.6.7)

and, therefore, (6.6.5) becomes

(λα1/3)−2
∫
R3

[
∂R1

∂α

]
+

(1, |x|)dx = (λα1/3)−2K(μ), (6.6.8)

where K(μ) depends only on μ. Following through all the steps in the previous
section with the corresponding replacements we end up with the following
estimate (compare with (6.5.16))

EP ≥ −3

2
[6K(μ)D(μ,μ)2]1/3

⎛⎝∫
R3

(
N∑
i=1

eiQi(x)

)4/3

dx

⎞⎠1/2⎛⎝∫
R3

Q(x)4/3dx

⎞⎠1/2

.

(6.6.9)

In the previous section, we chose μ to be a constant surface charge distribution
on the unit sphere which, by making a crude estimate on K(μ), yielded the
constant 3.17. Computing directly from formula (6.6.8) yields the constant 1.81.

By choosing μ more cleverly this constant can be improved. We choose μ

to be the uniform distribution of a unit charge smeared out in a ball instead
of a sphere, i.e., μ( y) = μ0( y) := (3/4π )�(1 − | y|). A computation of φ(r) in
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(6.5.3) yields

φ(r) =
{

3
2

(
1 − 1

3r
2
)

if 0 < r ≤ 1
1
2 if r ≥ 1,

(6.6.10)

and hence

Rλ(α, r) =
{
αr−1 − 3

2λα
4/3
(
1 − 1

3 (λα1/3r)2
)

if 0 ≤ r ≤ (λα1/3)−1,

0 if r ≥ (λα1/3)−1.
(6.6.11)

Therefore

∂R1

∂α
(1, r) =

{
1
r
(1 − r)(1 − r − r2) 0 ≤ r ≤ 1,

0 1 ≤ r .
(6.6.12)

This function is non-negative for 0 ≤ r ≤
√

5−1
2 and so

K(μ0) = 4π

(
59

60
− 5

12

√
5

)
= 0.6489. (6.6.13)

An elementary calculation shows that

D(μ0, μ0) = 3

5
(6.6.14)

and hence

C ≤ 1.68, (6.6.15)

which proves Theorem 6.1.
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Stability of Non-Relativistic Matter

With the necessary preliminaries in place we can now turn to proofs of stability
of matter. The simplest model of matter for which one wants to prove stability
of the second kind is the conventional non-relativistic Hamiltonian dating back
to the earliest days of quantum mechanics. It is also the first example for which
stability was proved; this was done by Dyson and Lenard in 1967 [44]. With the
aid of the inequalities proved in the previous chapters, the proof turns out to be
rather short.

One consequence of stability of the second kind is that matter is extensive, and
this connection will be explained in Section 7.5. Alternative proofs of stability
will also be briefly discussed. This chapter will conclude with a demonstration
that stability of the second kind does not hold for bosons.

In units described in detail in Section 2.1.7, the Hamiltonian under consider-
ation is

H = 1

2

N∑
j=1

(−i∇j +
√
αA(xj )

)2 + αVC(X, R), (7.0.1)

where α > 0 is the fine structure constant, and where VC(X, R) is the total
Coulomb potential energy, defined in (2.1.21),

VC(X, R) =
∑

1≤i<j≤N

1

|xi − xj | −
N∑
i=1

M∑
j=1

Zj

|xi − Rj | +
∑

1≤k<l≤M

ZkZl

|Rk − Rl| .

(7.0.2)

Here, N is the number of electrons, and there are M nuclei with charges Zj > 0
located at distinct points Rj . The magnetic vector potential A is an arbitrary
function in L2

loc(R3) with values in R
3.

If the interaction of the spin of the particles with the magnetic field is taken
into account, there is a contribution

√
αB · σ to the energy, as explained in

121
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Section 2.1.6. In this case, stability still holds, but only if one takes the energy of
the magnetic field into account. Even then, it will be necessary to have a bound
on Zα2 and α. The proof of stability is quite a bit harder in this case, and we
defer its discussion until Chapter 9.

7.1 Proof of Stability of Matter

Theorem 7.1 (Stability of Non-Relativistic Matter). Let Z = maxj {Zj }. For
all normalized, antisymmetric wave functions ψ with q spin states,

(ψ,Hψ) ≥ −0.231α2Nq2/3
(
1 + 2.16Z(M/N )1/3

)2
. (7.1.1)

We note that since N1/3M2/3 ≤ N +M , this yields the desired linear lower
bound. The importance of the linear dependence on the total number of particles
was explained in the Prologue and in Section 3.2.

The bound (7.1.1) is not optimal, in the sense that for N � M the lower
bound should depend only on M , whereas for N � M it should only depend on
N . We note that a bound depending only on N can be deduced from relativistic
stability discussed in Chapter 8, as explained in Remark 8.6. Moreover, a bound
that depends only on M can be deduced from Theorem 12.1 in Chapter 12,
where it is shown that the number of electrons that can be bound is at most∑M

j=1(2Zj + 1) ≤ (2Z + 1)M , that is, the ground state energy of H for N ≥
(2Z + 1)M is equal to the ground state energy withN equal to the largest integer
≤ (2Z + 1)M .

In the case of neutral hydrogen, Z = 1, M = N and q = 2, the bound (7.1.1)

yields 7.29 Rydbergs per nucleus as a lower bound. (Recall from Section 2.1.7

that in our units an energy of α2 is 2 Rydbergs.) In case the optimal constant in
the kinetic energy inequality (4.2.10) equals the conjectured semiclassical value

(3/5)(6π2)2/3, the bound could be improved to 4.90 Rydbergs for hydrogen.

Proof. We start by noting that without loss of generality, we may assume that
all the Zj equal a common value Z. This follows from the monotonicity of the
ground state energy in the nuclear charges, which was discussed in Section 3.2.3.
Thus we can assume that Zj = Z henceforth.
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According to Corollary 4.1 in Chapter 4, we have

1

2

⎛⎝ψ,∑
j

(−i∇j +
√
αA(xj ))2 ψ

⎞⎠ ≥ K

2
q−2/3

∫
R3

�ψ (x)5/3dx, (7.1.2)

with K ≥ (9/5)(4π2)1/3 ≈ 3.065. Here, �ψ denotes the particle density, defined
in (3.1.4). We point out that for this bound to hold, the antisymmetric nature of the
wave functions is essential. It allows us to bound the spin-summed one-particle
density matrix of ψ from above by q times the identity.

To obtain a lower bound on the Coulomb energy, we first employ the exchange
estimate of Theorem 6.1, which states that⎛⎝ψ, ∑

1≤i<j≤N

1

|xi − xj | ψ
⎞⎠ ≥ D(�ψ, �ψ ) − 1.68

∫
R3

�ψ (x)4/3dx, (7.1.3)

with D denoting the direct electrostatic energy (5.1.3). The electron–nuclear
interaction is(

ψ,

N∑
i=1

M∑
k=1

Z

|xi − Rk|ψ
)

=
M∑
k=1

∫
R3

Z

|x − Rk|�ψ (x)dx, (7.1.4)

so the total Coulomb energy is bounded below as

(ψ,VC ψ) ≥ D(�ψ, �ψ ) −
M∑
k=1

∫
R3

Z

|x − Rk|�ψ (x)dx

+U (R) − 1.68
∫
R3

�ψ (x)4/3dx. (7.1.5)

(Recall the definition of the nuclear repulsion energy U (R) in (2.1.24).)
A lower bound to the ground state energy of H can be obtained by combining

(7.1.2) and (7.1.5) and minimizing

ETFD(�) := K

2
q−2/3

∫
R3

�(x)5/3dx + αD(�, �) + αU (R)

−
M∑
k=1

∫
R3

Zα

|x − Rk|�(x)dx − 1.68α
∫
R3

�(x)4/3dx (7.1.6)
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under the condition that
∫

R3 �(x)dx = N . This is the Thomas–Fermi–Dirac
problem, which is extensively studied in [113]. The simpler Thomas–Fermi
functional (without the last term in (7.1.6)) will appear again in Section 7.3.

Instead of pursuing that route, it is simpler (for the purpose of our theorem)
to use the electrostatic inequality of Theorem 5.3, which implies that

D(�ψ, �ψ ) −
M∑
k=1

∫
R3

Z

|x − Rk|�ψ (x)dx + U (R) ≥ −
∫
R3

Z

D(x)
�ψ (x)dx,

(7.1.7)

where D(x) = mink |x − Rk| denotes the distance of x to the nearest nucleus.
The last positive term in (5.2.6) has been dropped for a lower bound, since it is
not needed for the following argument. In brief we are using the bound

(ψ,VC ψ) ≥ −1.68
∫
R3

�ψ (x)4/3dx −
∫
R3

Z

D(x)
�ψ (x)dx. (7.1.8)

The
∫
�

4/3
ψ term can be bounded via the Cauchy-Schwarz inequality as

∫
R3

�ψ (x)4/3dx ≤
⎛⎝∫

R3

�ψ (x)5/3dx

⎞⎠1/2⎛⎝∫
R3

�ψ (x)dx

⎞⎠1/2

≤ a

2

∫
R3

�ψ (x)5/3dx + N

2a
(7.1.9)

for arbitrary a > 0. With the choice a = Kq−2/3ε/(1.68α) for some 0 < ε < 1,
this implies the lower bound

(ψ,Hψ) ≥ −(0.84)2 2α2q2/3N

Kε
+ K

2
q−2/3(1 − ε)

∫
R3

�ψ (x)5/3dx

− Zα

∫
R3

1

D(x)
�ψ (x)dx. (7.1.10)

We pick b > 0 and write D(x)−1 as (D(x)−1 − b) + b. The contribution of
the last term to the integral in (7.1.10) is simply bN . Moreover, by minimizing
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over all non-negative functions �ψ (x), we find that

K

2
q−2/3(1 − ε)

∫
R3

�ψ (x)5/3dx − Zα

∫
R3

(
1

D(x)
− b

)
�ψ (x)dx

≥ −2 q

5

(
6

5K(1 − ε)

)3/2

(Zα)5/2
∫
R3

[
1

D(x)
− b

]5/2

+
dx. (7.1.11)

Recall that [ · ]+ denotes the positive part. Since[
1

D(x)
− b

]5/2

+
= max

1≤k≤M

[
1

|x − Rk| − b

]5/2

+
≤

M∑
k=1

[
1

|x − Rk| − b

]5/2

+
we can bound∫
R3

[
1

D(x)
− b

]5/2

+
dx ≤ M

∫
|x|≤1/b

(
1

|x| − b

)5/2

dx = 5π2

4
Mb−1/2. (7.1.12)

After choosing the optimal value of b, we thus obtain the lower bound

(ψ,Hψ) ≥ −(0.84)2 2α2q2/3N

Kε
−N1/3M2/3(Zα)2 18

5K(1 − ε)

(
π2q

4

)2/3

.

(7.1.13)

Finally, after optimizing over ε, we have

(ψ,Hψ) ≥ −2q2/3α2

K
N
(

0.84 + Z
√
D(M/N )1/3

)2
, (7.1.14)

where D = (9/10)π4/32−1/3 ≈ 3.287. As stated in Corollary 4.1, K ≥
(9/5)(4π2)1/3 ≈ 3.065. This yields (7.1.1).

7.2 An Alternative Proof of Stability

The proof of stability of non-relativistic matter given in the previous subsection
relied on three essential ingredients. One is the LT inequality, which relates the
kinetic energy of fermions to their density �ψ (x). The second is the estimate on
the indirect (or exchange) part of the Coulomb energy, which gives a lower bound
on the electron interaction in terms of the classical electrostatic energy of the
electron charge distribution. Finally, the electrostatic inequality of Section 5.2
relates the total classical electrostatic energy to the interaction energy of the



126 Stability of Non-Relativistic Matter

electrons to the nearest nucleus only. In the end, one has to deal with the �5/3

semiclassical energy, the negative �4/3 exchange estimate, and the negative
nearest neighbor electron–nucleus interaction.

One can eliminate the use of the exchange estimate in Section 7.1 by replacing
Theorem 5.3 by its corollary, Theorem 5.4. This is the most direct route to the
proof of stability, but it obscures the role of the non-classical exchange (or
correlation) energy, and it leads to slightly worse constants. The idea for this
route to stability is due to Solovej [173].

The electrostatic inequality of Theorem 5.4 implies that

VC(X, R) ≥ −(2Z + 1)
N∑
i=1

1

D(xi)

where D(x) = mink |x − Rk|, as before. We have dropped the positive last
term in (5.3.2), since it will not be necessary in the following. We shall write
again D(x)−1 = (D(x)−1 − b) + b for b > 0. The LT inequality in Theorem 4.1
implies that for antisymmetric functions with q spin states,

N∑
i=1

[
−1

2
�i − (2Z + 1)α

(
1

D(xi)
− b

)]

≥ −qL1,323/2α5/2(2Z + 1)5/2
∫
R3

[
1

D(x)
− b

]5/2

+
dx. (7.2.1)

The additional factor 23/2 results from the factor 1/2 in front of the
Laplacian, which is absent in (4.1.11). As explained in Section 4.1.2,
L1,3 ≤ π√

3
Lcl

1,3 ≈ 0.0123. After using the bound (7.1.12) on the last integral we
obtain the lower bound

H ≥ −qL1,323/2 5π2

4
(2Z + 1)5/2α5/2Mb−1/2 − (2Z + 1)αNb.

After inserting the optimal value of b, this yields

H ≥ −3

2
(5π2L1,3)2/3q2/3 [(2Z + 1)α]2 M2/3N1/3

≥ −1.073 q2/3 [(2Z + 1)α]2 M2/3N1/3. (7.2.2)
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In the case of neutral hydrogen, Z = 1, M = N and q = 2, this bound yields

30.52 Rydbergs per nucleus as a lower bound, which is about a factor 4 worse

than our previous bound.
We remark that the method for proving stability of matter given above can

be extended to yield a lower bound on H that depends only on N and not on
M . In order to do this, one must not drop the positive nearest-nucleus repul-
sion in Theorem 5.4, which we could afford to do above. This was shown in
[83, Thm. 3 of Part II]. Alternatively, one can use the stability of relativis-
tic matter to obtain such a bound, as explained in Remark 8.6 in the next
chapter.

7.3 Stability of Matter via Thomas–Fermi Theory

The electrostatic inequality of Theorem 5.3, together with the exchange esti-
mate of Theorem 6.1, allowed us to bound the total Coulomb potential energy
VC(X, R) from below by another kind of potential energy, which is just the sum
of one-particle terms corresponding to the attraction to the nearest nucleus. For
this latter potential energy it is then clear that binding between atoms does not
occur, and hence stability of the second kind reduces to stability of the first kind.
That is to say, in such a model it is clear that the lowest energy occurs when
the Voronoi cells are as large as possible, which occurs when the nuclei are
infinitely far apart. This reasoning is one of the key ingredients in the proofs of
stability of matter given in the previous two sections, the other being the kinetic
energy inequality in Corollary 4.1. In real life, atoms do bind together, of course,
but there is nothing wrong with a lower bound on the total energy obtained by
estimating the energy from below by a model that does not lead to binding.

There is another way of bounding the total energy from below by an expression
that prohibits binding. This is the original route taken by Lieb and Thirring in
[134] and uses the fact that binding between atoms does not occur in Thomas–
Fermi theory. Since we have already given a complete proof of stability of
non-relativistic matter in the previous section, we shall only give a brief account
of the proof via Thomas–Fermi theory here. Our exposition will not be complete,
since we refrain from proving the no-binding theorem. For details, we refer the
interested reader to [130, 108, 113].

The Thomas–Fermi functional has, as its motivation, a semiclassical approxi-
mation to the energy of quantum-mechanical system with particle density �(x).



128 Stability of Non-Relativistic Matter

It is given by

ETF(�) = 3

10
γ q−2/3

∫
R3

�(x)5/3dx −
M∑
j=1

Zjα

∫
R3

�(x)

|x − Rj |dx

+ α

2

∫∫
R3×R3

�(x)�( y)

|x − y| dxd y +
M∑
i<j

ZiZjα

|Ri − Rj | . (7.3.1)

The first term, with γ = (6π2)2/3, is the semiclassical approximation to the
kinetic energy, as explained in Chapter 4. It will be convenient not to fix γ but
rather keep it as an adjustable parameter, as will become clear below. We will
always assume that γ > 0, however.

If N denotes the number of electrons, the ground state energy in Thomas–
Fermi theory is given by

ETF(N,Z, R, γ ) = inf

⎧⎨⎩ETF(�) : � ∈ L5/3(R3), �(x) ≥ 0,
∫
R3

�(x)dx = N

⎫⎬⎭.
(7.3.2)

It has several remarkable properties.

� ETF(N,Z, R, γ ) = ETF(
∑

i Zi, Z, R, γ ) for all N ≥∑i Zi . That is, the
Thomas–Fermi energy can not be decreased by adding more electrons than
the total nuclear charge of the system. In fact, one can show that a minimizer
in (7.3.2) only exists for N ≤∑i Zi , not for larger N . The excess charge
simply moves to infinity, and the system stays neutral.

� ETF(N,Z, R, γ ) ≥ min
{∑M

i=1 E
TF(Ni, Zi, Ri , γ ) : Ni ≥ 0,

∑M
i=1 Ni = N

}
.

This is the no-binding theorem, since it says that moving the nuclei infinitely
far apart will lower the energy. Note that the Thomas–Fermi energy for a
single atom, ETF(N,Z, R, γ ), is independent of the nuclear position R.

� ETF(N,Z, 0, γ ) = Z7/3γ−1ETF(N/Z, 1, 0, 1). This simple scaling property
follows easily by scaling (7.3.1) appropriately.

In combination, these properties imply the lower bound

ETF(N,Z, R, γ ) ≥ γ−1ETF(1, 1, 0, 1)
M∑
i=1

Z
7/3
i ≥ γ−1ETF(1, 1, 0, 1)Z7/3M,

(7.3.3)
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which is stability of the second kind. A numerical computation shows that
ETF(1, 1, 0, 1) = −7.356α2.

The importance of the Thomas–Fermi functional for the problem of stability
of matter comes from the observation in [134] that the Thomas–Fermi energy
(for an appropriate value of γ ) is a lower bound to the quantum-mechanical
ground state energy. In fact, we already have all the necessary inequalities at our
disposal to show this.

The kinetic energy inequality (4.2.10) implies that the first term in the
Thomas–Fermi functional, with γ = 6(π2/2)1/3, is a lower bound to the kinetic
energy of N electrons. The Lieb–Oxford inequality1 (6.2.14), in combination
with a simple Cauchy–Schwarz estimate as in (7.1.9), then implies that

(ψ,Hψ) ≥ ETF(N,Z, R, 6(π2/2)1/3 − 5q2/31.68a/3) − 1.68
Nα2

2a
(7.3.4)

for any a > 0. By using (7.3.3) and optimizing over a one obtains the bound

(ψ,Hψ) ≥ −0.231 q2/3α2N

⎛⎝1 + 1.77

√√√√ 1

N

M∑
j=1

Z
7/3
j

⎞⎠2

. (7.3.5)

For the hydrogen gas, (7.3.5) implies a bound of 5.60 Rydbergs per atom,

which is slightly better than the one obtained in Theorem 7.1.

7.4 Other Routes to a Proof of Stability

In the preceding three subsections, we have given several proofs of stability of
non-relativistic matter with electrostatic forces. Historically, the first proof of
this fact was given by Dyson and Lenard in 1967. Subsequently, many other
proofs were given. None of these proofs, however, yields a bound on the optimal
constant (in the neutral case) that is as good as the one obtained in the previous
subsection using Thomas–Fermi theory and the Lieb–Oxford inequality. We
give a brief summary of some of the early work here.

1 In the original proof of stability of matter by Lieb and Thirring, the Lieb–Oxford bound was
not available. Instead, a weaker bound on the exchange energy of the form (

∫
�5/3)1/2(

∫
�)1/2

in place of
∫
�4/3 was used.
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7.4.1 Dyson–Lenard, 1967

The first proof of stability of non-relativistic matter was given by Dyson and
Lenard in 1967 [44]. This proof was one of the most complicated proofs ever
to appear in mathematical physics. For many years, it was regarded with awe,
like Onsager’s solution of the two-dimensional Ising model in 1944 [146]. The
key question that had to be addressed was how to bring in the Pauli exclusion
principle. In the proof by Lieb and Thirring, it is this principle that lies behind
the
∫
�5/3 bound on the kinetic energy. This is a global result. In the Dyson–

Lenard proof, in contrast, the Pauli principle is used locally to mandate that
for N ≥ 2 (spinless) fermions in a ball of radius �, the kinetic energy (with
Neumann boundary conditions) is at least (N − 1)/�2, since at most one such
fermion can be in the zero energy state.

The lower bound obtained in [44] yields about 1014 Ry per particle for a
hydrogen gas. This is, of course, an unrealistically large number and resulted
from the many different inequalities that had to be used.

7.4.2 Federbush, 1975

Federbush [55] realized that the methods of constructive quantum field theory
could be utilized to solve the stability problem. Although his paper is not very
transparent, it is much shorter than the original proof by Dyson and Lenard. An
estimate on the constant appearing in the inequality is not given, however.

7.4.3 Some Later Work

Other approaches for proving stability of non-relativistic matter were developed
by Fefferman [56] and Graf [79], although without estimates of the constant
in the inequality. In [56] results on extensivity of matter and properties of the
ground state density are also obtained by dividing space suitably into boxes. In
[79] the necessary electrostatic inequality is obtained by decomposing space into
a lattice of disjoint simplices and, by averaging over translations and rotations of
this lattice, a lower bound on the Coulomb energy is obtained by restricting the
Coulomb interaction to pairs of particles belonging to the same simplex. The use
of averaging to get a lower bound (but with cubes and only with the translational
and not the rotational averaging) goes back to [34]. Finally, the Pauli principle is
used locally in every simplex in the form of a lower bound on the kinetic energy
in terms of the 5/3 power of the particle number in the simplex.
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7.5 Extensivity of Matter

Suppose we have a non-relativistic Coulomb system composed of several species
of particles, of which the negative ones are fermions. The nuclei can be static
or dynamic. By Theorem 7.1 and Corollary 4.1 there are constants A ≥ 0 and
K > 0 such that

E(ψ) ≥ −AN and Tψ ≥ K

∫
R3

�
5/3
ψ (x)dx (7.5.1)

for any normalized ψ . In fact, K ≥ (9/10)(2π/q)2/3. Here E(ψ) is the energy
functional (ψ,Hψ), Tψ is the kinetic energy of the negative particles, and �ψ is
the density of the negative particles (see Eq. (3.1.4) in Chapter 3). There are N
electrons and M nuclei. The constant A depends on Z and the ratio M/N .

The following theorem shows that any wave function ψ with bounded energy
per particle is necessarily spatially extensive, in the sense that the particles
occupy a volume proportional to N .

Theorem 7.2 (Extensivity of Matter). Let ψ be any normalized function with
energy E = E(ψ), and let A and K be constants such that (7.5.1) holds.

(i) For each p > 0 there is a universal constant γp such that⎧⎨⎩ 1

N

∫
R3

�ψ (x)|x|pdx

⎫⎬⎭
1/p

≥ γpK
1/2
(√

E/N + A+
√
A
)−1

N1/3.

(7.5.2)
Thus, the average distance to the origin, 0 ∈ R

3, among all the particles
is at least as great as N1/3. Since the choice of the origin is arbitrary, we
can make the same statement relative to any point y ∈ R

3. The ‘volume of
matter’ is, therefore, proportional to the number of particles.

(ii) If � is any measurable set in R
3

1

N

∫
�

�ψ (x)dx ≤ K−3/5
(√

E/N + A+
√
A
)6/5
(

vol(�)

N

)2/5

. (7.5.3)

Thus, if � contains a non-vanishing fraction of the particles then vol(�)
has to be bounded below by a constant times N .

Remark 7.1. A special case of (7.5.2) was given in [135]. The general case
appeared in [108]. Inequality (7.5.3) is due to Thirring [178, Sect. 4.3.5].
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Proof. (i) First we derive an upper bound on the kinetic energy Tψ . Write

E = E(ψ) = λTψ + (1 − λ)Tψ + Vψ (7.5.4)

with 0 ≤ λ ≤ 1, and note that the last two terms are bounded below by
−AN/(1 − λ). This follows from the stability bound and scaling, i.e., the fact
that the kinetic energy has the dimension of the square of an inverse length and
the potential energy has the dimension of an inverse length. Thus we have

Tψ ≤ E

λ
+ AN

λ(1 − λ)
= E + AN

λ
+ AN

1 − λ
. (7.5.5)

Note that the right side of (7.5.5) tends to +∞ as λ approaches 0 or 1 since
E + AN > 0. Minimization of (7.5.5) with respect to λ yields the bound

Tψ ≤
(√

E + AN +
√
AN
)2

. (7.5.6)

With the second inequality in (7.5.1) we reach the basic inequality

K

∫
R3

�ψ (x)5/3dx ≤ Tψ ≤
(√

E + AN +
√
AN
)2

. (7.5.7)

Next, we assert the following general fact [108, p. 563] about functions �

from R
3 to R

+:⎛⎝ ∫
R3

�(x)5/3dx

⎞⎠p/2 ∫
R3

|x|p�(x)dx ≥ Cp

⎛⎝∫
R3

�(x)dx

⎞⎠1+5p/6

, (7.5.8)

for all p > 0. The sharp constant, Cp, is obtained by inserting �(x) = (1 −
|x|p)3/2 for |x| ≤ 1 and �(x) = 0 for |x| ≥ 1 into (7.5.8). This is a simple
exercise in the calculus of variations which we shall leave to the reader.

By combining (7.5.7) and (7.5.8), together with
∫
�ψ = N , we obtain (7.5.2)

with γp = C
1/p
p .

(ii) By Hölder’s inequality,
∫
�
�ψ ≤ (

∫
�

1)2/5(
∫
�
�

5/3
ψ )3/5 ≤ vol(�)2/5

(
∫

R3 �
5/3
ψ )3/5. Inequality (7.5.3) is now an immediate consequence of

(7.5.7).
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7.6 Instability for Bosons

7.6.1 The N 5/3 Law

If one allows the particles to have q = N different spin states, then the bound
(7.1.1) holds regardless of the statistics of the wave functions. This was discussed
in Chapter 3, Subsection 3.1.3.1. In particular, this shows that for bosons a lower
bound of the form −CN5/3 holds. This was already pointed out by Dyson and
Lenard [44] and an alternative proof was later given by Brydges and Federbush
[24]. The power 5/3 can be proved to be optimal in the case of infinitely massive
nuclei [110], and we shall show this here. That is, in the bosonic case also an
upper bound of this form holds. In particular, non-relativistic matter made out
of bosons is stable of the first kind, but unstable of the second kind. This is the
primary example of the distinction between the two kinds of stability.

Proposition 7.1 (N5/3 Instability for Bosons). Let Zi = Z for 1 ≤ i ≤ M .
There exists a normalized symmetric wave function ψ of N boson coordinates,
and positions R = (R1, . . . , RM ) of M nuclei in R

3, such that

E(ψ) = (ψ,Hψ) ≤ −Cα2Z4/3 min{N,ZM}5/3 (7.6.1)

for some constant C > 0 independent of all the parameters.

Proof. For simplicity, we shall assume that M = n3 for some integer n, and
N = ZM . In order to show the desired upper bound, we can use a trial function
of the form

ψ(x1, . . . , xN ) =
N∏
i=1

φλ(xi).

Here λ > 0 is a scaling parameter which will be optimized at the end. That is,
we fix some function g with

∫
R3 |g(x)|2dx = 1 and write

φλ(x) = λ3/2g(λx).

The energy of our trial function ψ is easy to calculate. We obtain

(ψ,Hψ) = Nλ2
∫
R3

|∇g(x)|2dx + λαW (N, R), (7.6.2)
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where

W (N, R) = 1

2
N (N − 1)

∫∫
R3×R3

|g(x)|2|g( y)|2
|x − y| dxd y

−ZN

M∑
k=1

∫
R3

|g(x)|2
|x − Rk|dx + U (R).

The nuclear repulsion U (R) is defined in (2.1.24). We want to show that we
can find an R such that W (N, R) ≤ −CZ2/3N4/3 for some constant C > 0. The
desired upper bound (7.6.1) then follows immediately from (7.6.2) by optimizing
over λ.

Choose g to be compactly supported, and divide the support of g into M cells
�k, 1 ≤ k ≤ M , such that∫

�k

|g(x)|2dx = 1

M
for all k. (7.6.3)

We place one nucleus in each cell �k, and average its position with respect to the
weightM|g(x)|2, restricted to�k. The average value ofW (N, R) is then equal to(

1

2
N (N − 1) − ZNM + 1

2
Z2M2

) ∫∫
R3×R3

|g(x)|2|g( y)|2
|x − y| dxd y

− 1

2
Z2M2

∑
k

∫∫
�k×�k

|g(x)|2|g( y)|2
|x − y| dxd y, (7.6.4)

which implies that W (N, R) is less or equal to this value for some choice of R
(because an average is never less than the minimum).

Under the assumption N = ZM , the first term in (7.6.4) is negative and can
be dropped for an upper bound. We are left with the problem of finding a lower
bound on the self-energy terms

1

2

∫∫
�k×�k

|g(x)|2|g( y)|2
|x − y| dxd y. (7.6.5)

Let rk denote the radius of the smallest ball containing �k. Then (7.6.5) is
certainly greater than the smallest possible self-energy of a charge distribution
of total charge 1/M confined to a ball of radius rk. It is well known that the
smallest self-energy occurs when the charge is uniformly distributed over
the boundary of the ball, and the minimal value equals (1/M)2/(2rk) [118,
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Section 11.15]. In particular,

1

2

∫∫
�k×�k

|g(x)|2|g( y)|2
|x − y| dxd y ≥ 1

2M2rk
.

Using Jensen’s inequality,2 M−1∑
k r

−1
k ≥ M(

∑
k rk)

−1. We thus have

1

2
Z2M2

∑
k

∫∫
�k×�k

|g(x)|2|g( y)|2
|x − y| dxd y ≥ 1

2
Z2M

1
1
M

∑
k rk

.

It remains to estimate (
∑

k rk)/M , the mean value of the radius of the smallest
ball containing �k. Note that we are free to choose the decomposition of the
support of g into the cells �k subject to the normalization constraint (7.6.3). It is
fairly obvious that for sufficiently regular g one can choose the decomposition
such that (

∑
k rk)/M ≤ CM−1/3 for some constant C > 0, which proves the

desired bound. In fact, in [110] the following explicit construction is given.
For x = (x1, x2, x3) ∈ R

3, let g(x) = f (x1)f (x2)f (x3) for some function f

supported in the interval [−1, 1]. Under the assumption that M = n3 for some
integer n, we can first decompose [−1, 1] into n intervals Ij with the property
that
∫
Ij
|f (t)|2dt = 1/n for all 1 ≤ j ≤ n, and take the �k to be products of

intervals. If �k is a rectangle with side lengths s, t and u, the radius of the
smallest ball containing �k is rk = (s2 + t2 + u2)1/2/2 ≤ (s + t + u)/2. Note
that the average value of s, t and u for all the �k equals 1/n = M−1/3. Hence

1

M

M∑
m=1

rk ≤ 3

2
M−1/3

in this case. This is precisely of the desired form.

7.6.2 The N 7/5 Law

The N5/3 instability is mitigated somewhat if the finite nuclear masses are taken
into account. The system is still unstable, but the energy goes as −CN7/5 in
this case. It was Dyson in 1967 [43] who proved that the energy was at least as
negative −CN7/5 for charged bosons, but it wasn’t until 1988 that a rigorous
lower bound of this form was demonstrated by Conlon, Lieb and Yau [34].
Finally, in 2004, the correct value of the constant C for large N , as conjectured
by Dyson, was proved as a lower bound by Lieb and Solovej [132], and as an

2 If f is a convex function and μ is a positive measure on R then
∫
f (x)μ(dx)/μ(R) ≥

f (
∫
x μ(dx)/μ(R)). See [118, Sect. 2.2].
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upper bound by Solovej in 2006 [172]. All these works consider the special
case of positive and negative charges of equal magnitude, and equal masses
of the particles. In principle, the analysis applies to a more general choice of
charges and masses, however. For simplicity, we will only discuss the simpler
case of equal masses and charges here. The Hamiltonian of the system under
consideration is given by

H = −1

2

N∑
i=1

�i +
∑

1≤i<j≤N

eiej

|xi − xj | (7.6.6)

where ej is either +1 or −1. Note that here N denotes the total number of
particles, both positive and negative. It follows from Theorem 3.3 that the infi-
mum of (ψ,Hψ) over all wave functions ψ is the same as the infimum over
wave functions that are symmetric in the coordinates of the positive and of the
negative particles. Hence Bose symmetry is not really relevant here and one
might as well forget all symmetry requirements. The ground state energy of H
is defined by minimizing not only over all wave functions ψ but also over the
values of ej = ±1.

If one accepts theN7/5 law then, by scaling, the system contracts to a diameter
N−1/5 because the kinetic energy has to be N× diameter−2. What is not so
obvious is that the potential energy can be made as negative as −N7/5. The
Coulomb energy of the average charge density, which is zero, vanishes and,
therefore, the Coulomb energy is entirely exchange-correlation energy in this
case. Thus, in order to achieve this very low energy, it is necessary to employ a
sophisticated wave function, namely the one suggested by Bogoliubov in 1947
[21].3 In the end, one would expect that the one-particle density of the particles
is given by some mean field equation. In fact, the density will be asymptotically
equal to the � that minimizes

1

2

∫
R3

∣∣∣∇√�(x)
∣∣∣2 dx − I0 α

5/4
∫
R3

�(x)5/4dx, (7.6.7)

3 A decade later Bardeen, Cooper and Schrieffer [7] used the fermionic analogue of this wave
function to explain superconductivity.
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under the condition that
∫

R3 �(x)dx = N . Here, I0 is Foldy’s constant [68]

I0 =
(

2

π

)3/4
∞∫

0

(
1 + t4 − t2

√
t4 + 2

)
dt = 23/2�(3/4)

5π1/4�(5/4)
≈ 0.5744, (7.6.8)

which we will explain below. Note that � is the total density of N/2 positively
charged and N/2 negatively charged particles.

If one defines �(x) = N−4/5�(N−1/5x)1/2, then
∫

R3 �(x)2dx = 1, and �

satisfies a Lane–Emden equation

−��(x) − 5

2
I0 α

5/4 �(x)3/2 + μ�(x) = 0

for some μ > 0. It is possible to prove that the minimizer of (7.6.7) is unique
up to translations [13, 100, 141, 189].

The proof that this is the correct large N asymptotics is very complicated.
Even the imprecise bounds found in [43] and [34] are very complicated, and
we will not attempt to reproduce them here. There are no simple proofs in this
subject, comparable to the stability of matter proofs for fermions presented in
the beginning of this chapter.

The constant I0 in (7.6.8) was derived by Foldy in 1961 [68]. He considered
a different problem in which there is only one species of bosons with negative
charge, free to move in a background charge of uniform positive density �. This
is also known as the jellium model; it will be discussed further in Section 14.7.
By a straightforward application of Bogoliubov’s 1947 procedure (using creation
and annihilation operators on Fock space), Foldy arrived at the formula

E0

N
≈ −I0 α

5/4 �1/4, (7.6.9)

which he conjectured to be asymptotically correct for large �. A lower bound of
this form, but with a different constant, was also proved in [34], and the correct
lower bound (7.6.9) for large � was proved in [131]. The corresponding upper
bound was derived in [172]. There is apparently no simple way to understand
the exponent 1/4 in (7.6.9). It is subtle quantum-mechanical correlation effect
and cannot be understood in classical terms.

The connection between the two problems was recognized by Dyson in his
paper in 1967 [43]. His considerations led to the energy minimization problem
in (7.6.7). We can make this plausible in the following way. The kinetic energy
consists of two parts. One is very local on a length scale of order �−1/3 and is
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responsible for the correlations among the particles. Second, there is a global
kinetic energy, which is not accounted for in the Foldy energy, which is the energy
of a homogeneous system. This extra envelope energy is simply (1/2)

∫ |∇√
�|2.

The potential energy is slightly more subtle. According to (7.6.9) the energy per
unit volume is −I0α

5/4�5/4 and hence one might expect that the second term
in the energy functional (7.6.7) should be 2I0α

5/4
∫

(�(x)/2)5/4dx. This is the
answer one would get in a mean-field picture in which the positively charged
particles form a uniform background for the negatively charged particles, and
vice versa. The truth is that at high density, the correlation energy can actually
be understood perturbatively. In the jellium case, the particles stay out of each
other’s way, and this gives rise to the Coulomb correlation energy. In the two-
component case, like charges will also stay out of each other’s way but, in
addition, they will prefer being close to the opposite charge. Both give a negative
Coulomb correlation energy. The point about the perturbation theoretic argument
is that the correlation energy for both these effects is the same, and both give
a negative contribution to the energy. If one accepts this argument, the total
correlation energy should contain the total �, and not �/2, as given by the
second term in (7.6.7).

Poetry aside, it is rigorously established in [132, 172] that the energy for large
N is given by minimizing (7.6.7).

One last remark. It would seem that the jellium problem should be easier than
the two component case. This is indeed so in the rigorous proofs in [130] and
[132], as well as in Dyson’s original heuristic arguments [43]. In [34], however,
where the correct exponents in the N dependence where first proved, it was
found that it was easier to prove the two-component case first, and derive the
jellium case from it.
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Stability of Relativistic Matter

8.1 Introduction

When electrons are treated relativistically the stability of matter question will
obviously be more delicate than in the non-relativistic case. The reason is that | p|
is much less than | p|2 when | p| is large. (Recall that | p| −m ≤

√
p2 +m2 −

m ≤ | p| so, for our purposes, we may as well consider just | p| instead of√
p2 +m2 −m for the kinetic energy of a particle of massm and momentum p.)

The premonition that this subject has significant dangers is borne out by the fact
that the stability of a single hydrogenic atom, which always occurs in the non-
relativistic case, is found to occur relativistically if and only if Zα ≤ 2/π .1

The implication for the many-body problem is, of course, that even stability
of the first kind requires that Zjα must be less than or equal to 2/π for every
1 ≤ j ≤ M . But is this enough? The surprising (or not so surprising, depending
on your point of view) fact is that a bound on α itself is needed, no matter how
small the maximal Zj might be. Recall from Section 3.2.1 that stability of the
first kind and stability of the second kind are equivalent for relativistic matter.

The fact that a separate bound on α is needed was unknown in the physics
literature, and is largely unknown in the physics community even to this day.
Given that α is below some critical value, is it true that stability will hold all
the way up to Zjα = 2/π for all j , independent of the number of nuclei (and
independent of α)? The answer is yes, and this was proved (in the absence of
magnetic fields) in 1988 [138]. This fact remains true in the presence of arbitrary
magnetic fields (ignoring the σ · B term), but it took two decades more to prove
it [71]. Section 8.7 contains a summary of known results and a short history of
the problem.

1 A bound Zα ≤ 1 is known to be needed for the Dirac theory of the hydrogenic atom, and the
need for a bound in both cases has the same origin. Cf. Chapter 10.

139
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The Hamiltonian under consideration, as described in Chapter 3, is

H =
N∑
i=1

T ( pi) + αVC(X, R), (8.1.1)

with VC given in (2.1.21). The kinetic energy is T ( p) =√
( p +√

αA(x))2 +m2 −m, including the possibilities that m = 0 or A = 0.
Before investigating stability of the Hamiltonian (8.1.1), we shall first study

the relativistic one-body problem in detail in Section 8.2. Sections 8.3 and 8.4
contain additional bounds which will be useful in the sequel. The proof of
stability of relativistic matter is given in Section 8.5. The proof given there
does not yield the best known results, but it has the virtue of being the most
simple and direct, and is the closest to being a natural generalization of the
proof of the stability of non-relativistic matter given in Section 7.1 in Chapter 7.
In particular, we do not give the rather complicated proof of stability up to
Zα = 2/π in the many-body case. An alternative proof, which will be important
later in Chapter 11, will be given in Section 8.6. We summarize the best known
results concerning stability of relativistic matter in Section 8.7.

Another question, which will be addressed in Section 8.8, is an upper bound
on the allowed values of α for which stability of relativistic matter holds. We
shall show that instability of the first kind really does occur if α is too large; the
requirement of a bound on α in Section 8.5 is not just an artifact of our proof
but actually reflects reality.

8.1.1 Heuristic Reason for a Bound on α Itself

As will be shown in the next section, stability requires a bound Zα ≤ 2/π for
each nucleus. This fact, alone, leads to the conclusion that α itself must be
bounded, as we now discuss heuristically. Indeed, it was shown in [38] that
one can create an arbitrarily negative energy using only one electron and many
nuclei if α is greater than a certain value of the order of unity, no matter how
small Z might be.

Imagine that we have M nuclei of charge Z and that Zα = ε � 1. Let M
be such that Mε ≈ 4/π . Thus, if we can bring the M nuclei together we will
create, effectively, a nucleus with Z′α ≈ 4/π and then one electron can have
an arbitrarily negative energy. (Recall that whatever energy bound we have is
supposed to be independent of the location of the nuclei.) What might prevent this
nuclear fusion from happening is the Coulomb repulsion of the nuclei. Suppose
the nuclei are located in a small ball of radius δ, in which case the nuclear
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repulsion energy is about C/δ with C = M2Z2α = M2(Zα)2/α ≈ (4/π )2 α−1.
This number will be small if α is large. In short, the effective repulsion, which
supposedly prevents collapse, will be small if α is large. This argument suggests
that if we regard Zα as fixed then an upper bound on α is needed because a
tiny value of Z can be offset by a large number of nuclei. It turns out that this
conclusion is correct, even if one does not believe the argument.

For two nuclei, with Zα = 2/π for each, this argument can be made rigorous,
in fact, as was done in [38]. This will be further discussed in Section 8.8 and
the requirement of an N -independent bound on α, first proved in [138], will be
proved there. In particular, the dependence of this bound on q, the number of spin
states of each electron, will be shown to be ∼1/q1/3. This, in turn, implies that
there is never stability of the first kind for relativistic bosons because N bosons
can be thought of as N fermions with q = N , as explained in Section 3.1.3.1.
(Recall that non-relativistic bosons are always stable of the first kind, but not the
second.)

8.2 The Relativistic One-Body Problem

Before discussing the problem of stability of matter with relativistic kinematics
we consider the corresponding one-body problem. Since | p| and 1/|x| both
scale like an inverse length, there is a critical coupling constant above which
even stability of the first kind fails.

In the non-relativistic case the relevant function space for one particle was
H 1(R3), namely functions f such that f (x) ∈ L2(R3) and |k|f̂ (k) ∈ L2(R3).
In the relativistic case under consideration here, the relevant space is H 1/2(R3),
namely f (x) ∈ L2(R3) and |k|1/2f̂ (k) ∈ L2(R3). This can be summarized as
(1 + |k|1/2)f̂ (k) ∈ L2(R3).

We start with the following simple observation.

Lemma 8.1 (Equivalent Form of Relativistic Kinetic Energy). For
f ∈ H 1/2(Rd), we have

(f, | p|f ) =
∫
Rd

|2πk||f̂ (k)|2dk

= 1

2
�

(
d + 1

2

)
π−(d+1)/2

∫∫
Rd×Rd

|f (x) − f ( y)|2
|x − y|d+1

dxd y.

(8.2.1)
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Remark 8.1. Part of the lemma is the assertion that the integral on the right is
well defined for anH 1/2 function, despite the apparent non-integrable singularity
|x − y|−(d+1).

Proof. The following proof is the same as in [118, Sect. 7.12]. For an alternative
proof, see [72, Lemma 3.1]. We first note that

(f, | p|f ) = lim
t→0

1

t
(f, (1 − e−t | p|)f ),

which follows by writing out the expectation values as integrals in Fourier space,
and using dominated convergence to justify the limit t → 0.

Recall that with our convention for the Fourier transform, the operator | p| =√−� acts via multiplication by 2π |k| in Fourier space. The inverse Fourier
transform of gt (k) = e−2πt |k| on R

d is given by [118, Sect. 7.11]

ĝt (x) = �

(
d + 1

2

)
π−(d+1)/2 t

(t2 + |x|2)(d+1)/2
, (8.2.2)

which can easily be obtained from the formula (4.4.10) in Chapter 4. It can also
be computed directly by elementary means. Hence

(f, (1 − e−t | p|)f ) = 1

2

∫∫
Rd×Rd

|f (x) − f ( y)|2 ĝt (x − y) dxd y.

The lemma follows by first dividing by t and then taking t → 0. The monotone
convergence theorem allows us to take the limit t → 0 of the integrand.

Remark 8.2. We record, for the reader’s possible interest, the analogous Fourier
transform of g(m)

t (k) = exp(−t
√

(2πk)2 +m2) in R
3 (see [118, Sect. 7.11] for

the general R
d case):

ĝ
(m)
t (x) = m2

2π2

t

t2 + x2
K2(m

√
x2 + t2), (8.2.3)

where K2 is the modified Bessel function of the third kind. Notice that (8.2.2)
and (8.2.3) have a nice Euclidean form (after multiplication by t−1), i.e., they
are functions only of the d + 1 dimensional distance

√
t2 + x2.

The representation (8.2.1) is useful for establishing the following inequality,
which can be interpreted as a relativistic uncertainty principle.
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Lemma 8.2 (Relativistic Hardy Inequality). Let d ≥ 2, and let f be a non-zero
function in H 1/2(Rd). Then there is the strict inequality

(f, | p|f ) > 2
�( d+1

4 )2

�( d−1
4 )2

∫
Rd

|f (x)|2
|x| dx. (8.2.4)

Moreover, the constant is sharp, i.e., for any bigger constant the inequal-
ity fails for some function in H 1/2(Rd). For d = 3 the constant in (8.2.4) is
2�(1)2/�(1/2)2 = 2/π .

Remark 8.3. This inequality goes back to Kato [99] and Herbst [89]. See
also [184, 12, 188, 72]. The non-relativistic analogue is Hardy’s inequality∫

Rd |∇f (x)|2dx ≥ [(d − 2)2/4]
∫

Rd |f (x)|2|x|−2dx for d ≥ 3.

Proof. For simplicity, we restrict our attention to the case d = 3, which will be
the relevant case for our considerations on stability of relativistic matter. For
general d , the proof works the same way, but the integrals involved are slightly
more complicated. See [89, 188, 72].

According to Lemma 8.1,

(f, | p|f ) = 1

2π2

∫∫
R3×R3

|f (x) − f ( y)|2
|x − y|4 dx d y, (8.2.5)

which we can write as

(f, | p|f ) = lim
ε→0

1

2π2

∫∫
R3×R3

|f (x) − f ( y)|2
(|x − y|2 + ε)2

dx d y. (8.2.6)

The purpose of ε is to avoid the singularity at x = y. The limit ε → 0 will be
taken at the end of the calculation.

We can write

|f (x) − f ( y)|2 = ||x|f (x) − | y|f ( y)|2
|x||y| + |f (x)|2

(
1 − |x|

| y|
)

+ |f ( y)|2
(

1 − | y|
|x|
)
. (8.2.7)
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Hence the integral in (8.2.6) can be written as∫∫
R3×R3

||x|f (x) − | y|f ( y)|2
(|x − y|2 + ε)2

dx
|x|

d y
| y| + 2

∫∫
R3×R3

|f (x)|2
(|x − y|2 + ε)2

(
1 − |x|

| y|
)

dxd y.

(8.2.8)
After performing the y angular integration, the second integral equals

8π
∫
R3

dx|f (x)|2
∞∫

0

dt
t(t − |x|)

(|x|2 − t2)2 + 2ε(|x|2 + t2) + ε2
. (8.2.9)

The t integral is non-negative and converges, as ε → 0, to the principle-value
integral

p.v.

∞∫
0

t(t − |x|)
(|x|2 − t2)2

dt = 1

2|x| . (8.2.10)

It is tedious but elementary to justify exchanging the x integration and the ε → 0
limit.

We conclude that

(f, | p|f ) − 2

π

∫
R3

|f (x)|2 1

|x|dx = lim
ε→0

1

2π2

∫∫
R3×R3

||x|f (x) − | y|f ( y)|2
(|x − y|2 + ε)2

dx
|x|

d y
| y| .

(8.2.11)
Since the right side is positive, this proves (8.2.4). The inequality is strict since
the right side of (8.2.11) is zero only if f (x) = c/|x|, which is not an H 1/2

function for c �= 0.
Note that the right side of (8.2.11) is finite for a compactly supported function

f that diverges like 1/|x| for small |x|, while
∫ |f (x)|2|x|−1dx would be infinite

for such a function. A simple limiting argument thus shows that if 2/π is replaced
by a larger number the inequality (8.2.4) cannot hold. The constant 2/π is,
therefore, sharp.

From Lemma 8.2 we conclude that the energy functional

(f, | p|f ) − Zα

∫
R3

|f (x)|2 1

|x|dx

for f ∈ H 1/2(R3) with
∫

R3 |f (x)|2dx = 1 is bounded from below (in fact, posi-
tive) for Zα ≤ 2/π , while it is unbounded for Zα > 2/π . The same is true if the
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mass is taken into consideration, i.e., | p| is replaced by
√

p2 +m2 −m, since

| p| −m ≤
√

p2 +m2 −m ≤ | p|. (8.2.12)

Hence, stability of the first kind holds for a relativistic hydrogenic atom if and
only if Zα ≤ 2/π .

8.3 A Localized Relativistic Kinetic Energy

Before we turn our attention to the problem of stability of matter in the relativistic
case, we state and prove a local version of the inequality (8.2) which will be
needed in the following. It is taken from [138, Theorem 7].

Lemma 8.3 (Localized Relativistic Kinetic Energy). Let B be a ball of radius
D centered at some w ∈ R

3. Then

1

2π2

∫∫
B×B

|f (x) − f ( y)|2
|x − y|4 dxd y

≥ 2

π

∫
B

|f (x)|2
|x − w|dx − 1

D

∫
B

Y (|x − w|/D)|f (x)|2dx,

(8.3.1)

where

Y (t) = 2

π (1 + t)
+ 1 + 3t2

π (1 + t2)t
ln(1 + t) − 1 − t2

π (1 + t2)t
ln(1 − t) − 4t

π (1 + t2)
ln t.

(8.3.2)

Note thatY (t) is non-negative, continuous and bounded for 0 ≤ t ≤ 1. Numer-
ical evaluation shows that Y (t) ≤ 1.57.

Proof. Without loss of generality, we can set w = 0 and D = 1. Let h be a
strictly positive function on [0, 1]. Similarly to (8.2.7), we can write

|f (x) − f ( y)|2 = h(|x|)h(|y|)
∣∣∣∣ f (x)

h(|x|) − f ( y)

h(|y|)
∣∣∣∣2

+ |f (x)|2
(

1 − h(|y|)
h(|x|)

)
+ |f ( y)|2

(
1 − h(|x|)

h(|y|)
)
.
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Using positivity of the first term, and performing the angle integration as in the
proof of Lemma 8.2, we obtain

1

2π2

∫∫
B×B

|f (x) − f ( y)|2
|x − y|4 dxd y

≥ 2

π

∫
B

dx |f (x)|2 p.v.

1∫
0

2t2

(|x|2 − t2)2

(
1 − h(t)

h(|x|)
)

dt. (8.3.3)

(Compare with the proof of Lemma 8.2, where the choice h(t) = 1/t was used.)
In the following, we will choose h(t) = 1/t + t . This particular choice is

motivated by the fact that the derivative of h at t = 1 vanishes. It is easy to see
that the potential on the right side of (8.3.3) is bounded at |x| = 1 only if h has
this vanishing derivative property. Upon evaluating the integrals, we find that

p.v.

1∫
0

2t2

(|x|2 − t2)2

(
1 − h(t)

h(|x|)
)

dt = 1

|x| −
π

2
Y (|x|),

which finishes the proof.

8.4 A Simple Kinetic Energy Bound

The following simple inequality gives a lower bound on the many-body kinetic
energy in terms of the kinetic energy of the square root of the one-particle
density. This bound has proved to be useful in several contexts. For δ = 2,
it was first discovered by M. & T. Hoffman-Ostenhof [92]. It works both in
the relativistic case and in the non-relativistic case, and uses the positivity
of the Fourier transform of exp(−t | p|δ) for 0 ≤ δ ≤ 2 [150, Example 2 in
Section XIII.12].2 Since exp(−t

√
| p|2 +m2) is also positive definite, it also

works in the relativistic case with non-zero mass. It applies to any many-particle
wave function, irrespective of the symmetry type. It is partly also a diamagnetic

2 In [150] this positivity of the Fourier transform of exp(−t | p|δ) is stated for 0 ≤ δ ≤ 2 for d ≥ 2
while it is only stated for 1 ≤ δ ≤ 2 in the case d = 1. With the help of Eq. (4.4.10), however,
the result in [150] can be easily extended to 0 < δ ≤ 2 for d = 1. For all d, a direct proof of the
positivity for δ = 1, the case of interest to us, can be obtained directly from the formula (4.4.10),
starting with the known positivity for δ = 2; further use of that formula will yield positivity for
δ = 1/2, 1/4, . . . .
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inequality, since the magnetic vector potential A appears only on the left side of
the inequality, not on the right.

Lemma 8.4 (Kinetic Energy Bound in terms of the Density). For 0 ≤ δ ≤ 2,
the bound(

ψ,

N∑
i=1

∣∣ pi +√
αA(xi)

∣∣δ ψ) ≥ (√�ψ, | p|δ √�ψ
)

(8.4.1)

holds for anyN -particle wave-functionψ ∈ Hδ/2(RNd) with density �ψ (defined
in (3.1.4), and any magnetic vector potential A. (The Pauli exclusion principle
plays no role here.)

Proof. We first consider the case A = 0. In terms of the one-particle density
matrix γ (1) of ψ (defined in Eq. (3.1.27)), Inequality (8.4.1) says in this case
that ∫

Rd

dk |2πk|δ
∫∫

Rd×Rd

dxd y e2πik·(x− y)
(
γ (1)(x, y) −√�ψ (x)�ψ ( y)

)
≥ 0.

(8.4.2)

Note that the positive definiteness of γ (1) implies that |γ (1)(x, y)|2 ≤
γ (1)(x, x) γ (1)( y, y) = �ψ (x)�ψ ( y), with equality for x = y, of course. Since
| p|δ = limt→0(1 − exp(−t | p|δ)/t , (8.4.2) follows if we can show that∫

Rd

dk e−t |2πk|δ
∫∫

Rd×Rd

dxd y e2πik·(x− y)
(
γ (1)(x, y) −√�ψ (x)�ψ ( y)

)
≤ 0

for all t > 0. But this inequality follows immediately from the fact that
exp(−t | p|δ) has a non-negative Fourier transform for 0 ≤ δ ≤ 2.

In order to extend the inequality to the magnetic case A �= 0, it is sufficient
to show that∫∫

R3×R3

gA
t (x, y)γ (1)(x, y)dxd y ≤

∫∫
R3×R3

g0
t (x, y)|γ (1)(x, y)|dxd y

≤
∫∫

R3×R3

g0
t (x, y)

√
�ψ (x)

√
�ψ ( y)dxd y, (8.4.3)
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where gA
t (x, y) denotes the integral kernel of the operator e−t | p+√

αA(x)|. This
inequality follows from the fact that |gA

t (x, y)| ≤ g0
t (x, y) for all x, y ∈ R

3 and
t > 0, which is stated in Theorem 4.4.

8.5 Proof of Relativistic Stability

In the relativistic case, the proof of stability of matter is more complicated than
in the non-relativistic case mainly for one reason: although the relativistic kinetic
energy dominates the Coulomb potential for small enough coupling, as shown in
Lemma 8.2, the semiclassical expression for the relativistic kinetic energy, which
was shown in Chapter 4 to equal

∫
�ψ (x)4/3dx, can not dominate the Coulomb

energy, −∫ �ψ (x)|x|−1dx. More precisely, among all non-negative densities �
with

∫
�(x)dx ≤ 1, say, the quantity E(�) = ∫ �(x)4/3dx − λ

∫
�(x)|x|−1dx is

not bounded from below, no matter how small λ is. If it were bounded, it would
have to be non-negative, for otherwise E(�) can be made arbitrarily negative by
rescaling �(x) 	→ γ 3�(γ x), which preserves

∫
�(x)dx but drives E(�) to −∞

as γ → ∞. But for any given �, E(�) can be made negative simply by replacing
�(x) by ε�(x) and choosing ε sufficiently small.

Simply mimicking the proof of stability of matter in the non-relativistic case
will not yield a proof in the relativistic case. The Coulomb singularity can not
be controlled by the semiclassical kinetic energy. As shown by Lieb, Loss and
Siedentop in [122] stability can, indeed, be proved in a somewhat similar way,
however, if part of the kinetic energy is bounded from below as in Lemma 8.4
above, and the remaining part is estimated via the Lieb–Thirring type bound
(4.2.11) in terms of the semiclassical expression. We will now explain this
method in detail, following closely the strategy in [122]. We repeat what was
already said in the introduction: This method does not yield the best results, but
it is the simplest route to a proof of relativistic stability.

For simplicity, we consider here only the case m = 0, i.e., the case of mass-
less particles. The necessary modifications for m > 0 will be discussed in
Remark 8.5. We note that in the absence of mass, all terms in the Hamil-
tonian scale like an inverse length. Hence, under the scaling transformation
ψ(X) 	→ γ 3N/2ψ(γ X), R 	→ γ R and A(x) → γ−1 A(γ x), H transforms to
γH for γ > 0. In particular, the ground state energy E0 of H satisfies (for all
N, M, α and all choices of the Zj )

E0 = 0 or E0 = −∞. (8.5.1)
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(As defined in Chapter 3, we understand E0 to be the infimum of (ψ,H ψ) over
all choices of ψ with the right symmetry, all choices of the nuclear coordinates
R and all vector potentials A.) This also means that stability of the first and the
second kind coincide in the relativistic case, as we said. This situation is not
changed by the introduction of a mass, as explained in Remark 8.5 below.

We shall offer two proofs of relativistic stability. Neither one gives optimal
results – which are recorded in Section 8.7. In this and the next section we shall
prove the following theorem.

Theorem 8.1 (Conditions for Relativistic Stability). Let m = 0. For any anti-
symmetric wave function ψ with q spin states, and any vector potential A,(

ψ,

N∑
i=1

∣∣ pi +√
αA(xi)

∣∣ ψ)+ α (ψ,VC ψ) ≥ 0

as long as three conditions are satisfied:

� Zα < 2/π,with Z = max{Zj }
� 1.68α < (1 − αZπ/2)Kq−1/3

�
(αZ)2α

[(1 − αZπ/2)Kq−1/3 − 1.68α]3

[
7.6245

(π
2

)4
+ 4π

]
≤ 1

2
(4/3)3.

(8.5.2)

Here, K is the optimal constant in the relativistic kinetic energy inequality
(4.2.11), which is known to satisfy K ≥ (6.08)−1/3 3

4 (6π2)1/3 ≈ 1.60. For this
value of K , the three conditions (8.5.2) are satisfied if

1

α
≥ Zπ

2
+ 2.2566 q1/3Z2/3 + 1.0307 q1/3. (8.5.3)

Remarks 8.4. We note that condition (8.5.2) is fulfilled, for any fixed value of
Zα < 2/π , if α is sufficiently small (α has to go to zero as Zα → 2/π ). On
the other hand, for the physical values q = 2 and α = 1/137, Ineq. (8.5.3) is
satisfied for all Z < 58.5 and hence stability holds for these parameter values.
This number should be compared with 2/(πα) ≈ 87.2, which will be achieved
later (see (8.7.1)).

Note that if 1.68α ≥ Kq−1/3 then the conditions of Theorem 8.1 cannot be
satisfied for any choice of Z ≥ 0.
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We can summarize the conclusions of Theorem 8.1 by saying that for any fixed
value of ν < 2/π there is an αc(ν) such that stability holds whenever Zα ≤ ν

and α ≤ αc(ν). Moreover, the lower bound on αc(ν) derived in Theorem 8.1
depends on q according to αc ∼ q−1 for large q. Although our lower bound on
αc(ν) unfortunately goes to zero as ν → 2π , we shall see in Section 8.7 that the
actual αc(ν) does not go to zero as ν → 2/π , even with an arbitrary magnetic
field. In Section 8.8 we shall see that the large q asymptotic behavior αc ∼ q−1

is, in fact, correct. This is not to be confused with the behavior of the critical α
for fixed Z (as opposed to fixed Zα), which is q−1/3, not q−1.

The heart of the proof of Theorem 8.1 is the following lemma, which will also
be useful later in Chapter 13.

Lemma 8.5 (Energy Bound with the Nearest Nucleus Potential). For fixed
R = (R1, . . . , RM ), let D(x) = minj |x − Rj |. Let ε and λ satisfy ε > πλ/2 >

0. For any normalized, fermionic wave function ψ ∈∧N
L2(R3; C

q), and any
vector potential A,(

ψ,

N∑
i=1

(
ε
∣∣ pi +√

αA(xi)
∣∣− λ

D(xi)

)
ψ

)
≥ −C

λ4q

(ε − πλ/2)3

M∑
j=1

1

Dj

,

(8.5.4)

with

C =
(

3

4

)3 [
7.63

(π
2

)4
+ 4π

]
1

4K3
(8.5.5)

and K as in Theorem 8.1. As before, Dj = (1/2) mink �=j |Rk − Rj | denotes half
the distance of Rj to its nearest neighbor nucleus. For K = (6.08)−1/3 3

4 (6π2)1/3

we have C = 1.514.

Proof. Without loss of generality we can set ε = 1. For 0 ≤ λ ≤ 2/π , we
split the kinetic energy into two parts, | p| = (1 − πλ/2)| p| + (πλ/2)| p|. After
applying the relativistic Lieb–Thirring inequality (4.2.6) to the first part and
Lemma 8.4 to the second, we obtain(

ψ,

N∑
i=1

∣∣ pi +√
αA(xi)

∣∣ ψ)

≥ (1 − πλ/2)Kq−1/3
∫
R3

�ψ (x)4/3dx + πλ/2
(√

�ψ, | p|,√�ψ
)
. (8.5.6)
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In order to reduce the problem with many nuclei to the one with just one
nucleus, and hence reduce the problem of stability of the second kind to stability
of the first kind, we have to localize the last term in (8.5.6). Note that the
M balls of radius Dj centered at Rj are non-overlapping. Hence Lemma 8.1
implies the lower bound(√

�ψ, | p|,√�ψ
) ≥ M∑

j=1

1

2π2

∫∫
|x−Rj |<Dj

| y−Rj |<Dj

∣∣√�ψ (x) −√�ψ ( y)
∣∣2

|x − y|4 dxd y. (8.5.7)

With the aid of Lemma 8.3, we can further bound the right side from below as(√
�ψ, | p|,√�ψ

)
≥

M∑
j=1

⎛⎜⎝ 2

π

∫
|x−Rj |≤Dj

�ψ (x)

|x − Rj |dx − 1

Dj

∫
|x−Rj |≤Dj

Y (|x − Rj |/Dj )�ψ (x)dx

⎞⎟⎠,
(8.5.8)

with Y defined in (8.3.2). After multiplying this inequality by πλ/2, we see that
the singularity of the right side at the nuclei is exactly λ/|x − Rj |, which is what
we want in (8.5.4). In fact, by combining the bounds (8.5.6)–(8.5.8) we obtain(

ψ,

N∑
i=1

∣∣ pi +√
αA(xi)

∣∣ ψ) ≥ λ

∫
R3

(
1

D(x)
+ U(x)

)
�ψ (x)dx

+ (1 − πλ/2)Kq−1/3
∫
R3

�ψ (x)4/3dx,

(8.5.9)

where U is a bounded function, which takes the value

U(x) =
{ −|x − Rj |−1 if |x − Rj | > Dj

−(π/2Dj )Y (|x − Rj |/Dj ) if |x − Rj | ≤ Dj

(8.5.10)

in the Voronoi cell �j = {x ∈ R
3 : |x − Rj | < |x − Rk| for all k �= j}.

We are left with deriving a lower bound on the two terms containing U
and �

4/3
ψ in (8.5.9). For convenience, let A = 4Kq−1/3(1 − πλ/2)/3. Using

Hölder’s inequality, it is easy to see that

3

4
A

∫
R3

�ψ (x)4/3dx + λ

∫
R3

U(x)�ψ (x)dx ≥ − λ4

4A3

∫
R3

|U(x)|4dx. (8.5.11)



152 Stability of Relativistic Matter

From the definition (8.5.10) of U we can bound∫
R3

|U(x)|4dx

≤
M∑
j=1

⎡⎢⎣( π

2Dj

)4 ∫
|x−Rj |≤Dj

Y (|x − Rj |/Dj )4dx +
∫

|x−Rj |≥Dj

1

|x − Rj |4 dx

⎤⎥⎦.
(8.5.12)

The last integral equals 4π/Dj . The first integral is∫
|x−Rj |≤Dj

Y (|x − Rj |/Dj )4dx = D3
j

∫
|x|≤1

Y (|x|)4dx ≈ 7.63D3
j . (8.5.13)

Hence we arrive at the lower bound

(8.5.11) ≥ − λ4

4A3

[
7.63

(π
2

)4
+ 4π

] M∑
j=1

1

Dj

,

which, in combination with (8.5.9), proves the lemma.

The estimate above can be improved slightly. In fact, the 4π in (8.5.5) can be
replaced by 3π , as argued in [122]. This can be achieved by an improved bound
on the integral in (8.5.12) in the region |x − Rj | > Dj , by taking into account
the restriction of x to the Voronoi cell �j . The same applies to Eq. (8.5.2) in
Theorem 8.1.

With the aid of Lemma 8.5, the proof of Theorem 8.1 is now quite short.

Proof of Theorem 8.1. As discussed in Section 3.2.3, we can assume that Zj =
Z for all 1 ≤ j ≤ M without loss of generality. To bound the potential energy
from below, we use the same strategy as in the non-relativistic case, Eq. (7.1.3)–
(7.1.8). In the relativistic case considered here it is important, however, to retain
the positive last term in (5.2.6). More precisely, by combining the electrostatic
inequality of Theorem 5.3 and the exchange estimate of Theorem 6.1, we obtain

(ψ,VCψ) ≥ −1.68
∫
R3

�ψ (x)4/3dx −
∫
R3

Z

D(x)
�ψ (x)dx + 1

8
Z2

M∑
j=1

1

Dj

.

(8.5.14)
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Here,Dj = (1/2) mink �=j |Rk − Rj | denotes half the distance of Rj to its nearest
neighbor nucleus and hence equals the distance of Rj to the boundary of �j ,
while D(x) is the distance from x to the closest nucleus, i.e., D(x) = minj |x −
Rj |.

In order to control the negative exchange term, we can apply the relativistic
kinetic energy inequality of Corollary 4.1, which implies that

1.68αq1/3

K

(
ψ,

N∑
i=1

∣∣ pi +√
αA(xi)

∣∣ ψ)− 1.68α
∫
R3

�ψ (x)4/3dx ≥ 0.

(8.5.15)
We are thus left with the problem of deriving a lower bound on(

ψ,

N∑
i=1

(
(1 − 1.68αq1/3K−1)

∣∣ pi +√
αA(xi)

∣∣− Zα

D(xi)

)
ψ

)
. (8.5.16)

Under the assumption that 1 − 1.68αq1/3/K > πZα/2 we can apply
Lemma 8.5 to conclude that

(8.5.16) ≥ −C
(Zα)4q

(1 − πZα/2 − 1.68αq1/3/K)3

M∑
j=1

1

Dj

, (8.5.17)

with C given in (8.5.5). In combination with (8.5.14) this proves positivity of
(ψ,Hψ) and hence stability as long as

C
(αZ)4q(

1 − αZπ/2 − 1.68αq1/3/K
)3 ≤ Z2α

8
,

which is equivalent to (8.5.2).

Remark 8.5. In the previous theorem, we proved stability of relativistic matter
in the massless case, in which the kinetic energy of particle of momentum p
is equal to | p +√

αA(x)|. As already pointed out in Eq. (8.2.12), the simple
inequality

√
p2 +m2 −m ≥ | p| −m shows that stability also holds in the case

of non-zero mass whenever it holds with zero mass. The bound on the energy
obtained in this way is not very good, however, at least in the case of small Zα.
It is simply −mN , which equals −N in our units. This is the rest mass energy
mc2 of all the electrons, which may be huge compared to the expected energy
which is of the order (Zα)2. A better bound can be obtained by including the
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mass in the appropriate Lieb–Thirring inequality, which was done in [37] (see
also [122].) See the discussion at the end of Section 4.1.

Remark 8.6 (Stability of Relativistic Matter Implies Stability of Non-Rela-
tivistic Matter). The elementary inequality

1

2
p2 ≥ a| p| − a2

2

which holds for any a > 0, allows one to deduce stability of non-relativistic
matter from stability of relativistic matter. If we choose a big enough such that
both α/a and Zα/a are small enough to satisfy the stability criteria of Theo-
rem 8.1, we conclude that the non-relativistic Hamiltonian (7.0.1) is bounded
from below by −(a2/2)N . Compared with Theorem 7.1, this has the advantage
of yielding a bound that depends only on N and not on M . We shall discuss this
question further in Chapter 12.

8.6 Alternative Proof of Relativistic Stability

In this section, we shall demonstrate an alternative proof of relativistic stability of
matter. It is closer to the proof in [138] and uses the refined electrostatic inequality
in Theorem 5.5 instead of using the simpler Theorem 5.3 and the Lieb–Oxford
inequality (6.2.14), which were employed in the proof in the previous section.
Although not yielding better stability bounds, this alternative method of proof
will turn out to be useful later in Chapter 11 when we discuss the stability of
non-relativistic quantum electrodynamics.

We proceed as in the proof in the previous section, but instead of using (8.5.14)
we use Theorem 5.5, which states that

(ψ,VC ψ) ≥ −
∫
R3

(
Z

D(x)
+ Fλ(x)

)
�ψ (x)dx + Z2

8

M∑
j=1

1

Dj

for any 0 < λ < 1, where Fλ(x) = Wλ(x) − Z/D(x) which, in the Voronoi cell
�j , takes the value

Fλ(x) =
⎧⎨⎩

1
2D

−1
j (1 −D−2

j |x − Rj |2)−1 for |x − Rj | ≤ λDj(√
2Z + 1

2

)
|x − Rj |−1 for |x − Rj | > λDj .

(8.6.1)
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After following the same steps as in the proof of Lemma 8.5 in the previous
section, we conclude that(

ψ,

(
N∑
i=1

∣∣ pi +√
αA(xi)

∣∣+ αVC

)
ψ

)

≥ − α4

4�3

∫
R3

|U(x) + Fλ(x)|4dx + Z2α

8

M∑
j=1

1

Dj

,

where � = (4/3)(1 − αZπ/2)Kq−1/3, and U is defined in (8.5.10). Using the
triangle inequality for the L4 norm, we have

∫
R3

|U(x) + Fλ(x)|4dx ≤

⎡⎢⎣
⎛⎝ ∫

R3

|U(x)|4dx

⎞⎠1/4

+
⎛⎝ ∫

R3

|Fλ(x)|4dx

⎞⎠1/4
⎤⎥⎦

4

.

The L4 norm of U was already estimated (8.5.12)–(8.5.13), where it was found
that ∫

R3

|U(x)|4dx ≤
[

7.63
(π

2

)4
+ 4π

] M∑
j=1

1

Dj

.

To bound the L4 norm of Fλ, we split the integral over each �j into a part where
|x − Rj | ≤ λDj and a part where |x − Rj | > λDj . For the former, we obtain

∫
�j∩{|x−Rj |≤λDj }

|Fλ(x)|4dx = π

4Dj

λ∫
0

t2

(1 − t2)
dt

≤ πλ

4Dj

λ∫
0

t

(1 − t2)
dt = πλ

24Dj

(
1

(1 − λ2)3
− 1

)
.

For the latter, we bound∫
�j∩{|x−Rj |≥λDj }

|Fλ(x)|4dx ≤
∫

{|x−Rj |≥λDj }
|Fλ(x)|4dx = 4π

λDj

(√
2Z + 1/2

)4
.
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Summing up the contributions of all the Voronoi cells, we conclude that∫
R3

|U (x) + Fλ(x)|4dx ≤ Aλ(Z)
M∑
j=1

1

Dj

,

where Aλ(Z) is given by

Aλ(Z) := π

([
λ

24

(
1

(1 − λ)3
− 1

)
+ 4

λ

(√
2Z + 1/2

)4
]1/4

+
[

7.63
π3Z4

16
+ 4Z4

]1/4
)4

.

Stability thus holds if

min
0<λ<1

Aλ(Z) ≤ Z2

8α3

(
4

3

)3
K3

q

(
1 − Zαπ

2

)3

. (8.6.2)

If we set q = 2 and α = 1/137, use the known bound K ≥ 1.60 and com-
pute the minimum over λ numerically, we have stability as long as 0.0014 <

Z < 43.3. If we invoke, in addition, the monotonicity argument explained in
Section 3.2.3 in Chapter 3, this method proves stability if 0 ≤ Zj < 43.3 for all
1 ≤ j ≤ M .

For later use in Chapter 11, we display explicitly the main inequality proved
in this section.

Lemma 8.6 (Improved Bound with the Nearest Nucleus Potential). Let α,
Z and q satisfy the stability condition (8.6.2). For all 0 < λ < 1, all vector
potentials A and all nuclear coordinates R = (R1, . . . , RM ),(

ψ,

N∑
i=1

(
1

α

∣∣ pi +√
αA(xi)

∣∣−Wλ(xi)

)
ψ

)
≥ −Z2

8

M∑
j=1

1

Dj

(8.6.3)

for all normalized, fermionic wave functions ψ ∈∧N
L2(R3; C

q). The function
Wλ is defined in (5.4.1).

8.7 Further Results on Relativistic Stability

The proof we have given of the stability of relativistic matter was chosen for its
simplicity and for its direct connection with the various fundamental inequalities
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proved in earlier chapters. The emphasis was on trying to present, to the extent
possible, a unified picture of non-relativistic and relativistic stability.

The actual historical path was quite different. As time went on better results
were obtained, and some of them will be discussed here. Indeed, it was only in
2007 that stability for values up to Zα = 2/π with arbitrary magnetic fields was
finally obtained by Frank, Lieb and Seiringer [71].

Perhaps the earliest result was that of Daubechies and Lieb [38] in 1983
that relativistic stability holds for one electron and M > 1 nuclei provided
Zjα ≤ 2/π for all j and α ≤ 1/3π . It was also shown that stability of the first
kind fails if α is large and M = 2 (and hence for N electrons and 2N nuclei).
This appears to be the first mention of the need for a bound on α, and we discuss
this M = 2 case further in the next section.

The first proof of stability for allN andM is Conlon’s [32] which gave stability
if Z = 1, q = 1 and α < 10−200. Despite this very poor constant, Conlon’s 1984
paper was a major achievement and showed that stability had an affirmative
solution – which was not beyond doubt at the time. His paper was followed in
1986 by Fefferman and de la Llave’s proof [60] of stability for Z = 1, q = 1
and α ≤ 1/(2.06π ).

In 1988 Lieb and Yau [138] proved two stability theorems. The simpler one
showed stability for all Zα < ν < 2/π and α < αc(ν), but with αc(ν) → 0
as ν → 2/π . This simpler proof can easily be extended (although this was not
stated explicitly) to include a magnetic field. The more complicated theorem was
valid all the way up to Zα = 2/π for α < 1/(47q), which includes the physical
case q = 2, α = 1/137. Unfortunately, the proof of this second theorem does
not generalize easily to include a magnetic field. The problem of modifying the
proof to include a magnetic field without weakening the Zα ≤ 2/π condition
was finally solved in [71], but at a price of reducing α: For the Hamiltonian

H =
N∑
i=1

∣∣ pi +√
αA(xi)

∣∣+ αVC(X, R), (8.7.1)

stability holds for all A(x) if Zα ≤ 2/π and qα ≤ 1

66.5
.

This just barely covers the physical case q = 2 and α = 1/137.
The 1996 paper by Lieb, Loss and Siedentop [122] is the one that takes the

simplifying track that we followed in Section 8.5.
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The necessity of α being small in all these results is not an artifact of the
method. This was already clear from the early result in [38], as was discussed
in Section 8.1.1. One can show that for α large enough, there is instability for
large enough M , irrespective of how small Zα might be. Since Z ≥ 1 in nature,
this result may not seem to be of practical importance (because the condition
Zα ≤ 2/π already implies the need for a bound on α, namely α ≤ 2/π ), but it
is important conceptually. It says that relativistic stability of matter necessarily
implies a bound on the value of the fine structure constant α. The instability for
large α was proved in two theorems in the Lieb–Yau paper [138], and we outline
these two results in Theorem 8.2 below, along with a summary of the known
stability theorems.

8.8 Instability for Large α, Large q or Bosons

The question addressed in this section is whether instability occurs if α is large
enough, regardless of what Zα > 0 might be. For one electron and one nucleus,
i.e., a hydrogenic atom, only Zα appears in the Hamiltonian and hence no
separate bound on α is needed for stability. The simplest non-trivial case to
consider, therefore, is one electron and two nuclei. As stated above, this was the
first case in which instability was noted [38]. Suppose the two nuclear charges
are separated by a distance R = |R1 − R2|. Let E(R) be the ground state energy
of

| p| − Z1α

|x − R1| −
Z2α

|x − R2| .

By scaling, E(R) = C/R for some constant C ≤ 0, depending on Z1α and
Z2α. Now, if (Z1 + Z2)α ≤ 2/π , then C = 0. If, however, (Z1 + Z2)α > 2/π ,
then C < 0, since we can find a wave function ψ with (ψ, | p|ψ) < (Z1 +
Z2)α(ψ, |x|−1ψ) and put the two nuclei arbitrarily close to the origin to make
the energy of ψ negative. As long as Z1α ≤ 2/π and Z2α ≤ 2/π , C is finite, as
can be easily deduced from Lemma 8.3.

In opposition to this negative energy C/R, which attracts the nuclei, there is
the nuclear repulsion, which equals

Z1Z2α

R
= (Z1α)(Z2α)

α

1

R
.

Hence, for fixed Z1α and Z2α, we can make α big enough so that this nuclear
repulsion is smaller than |C|/R. For this value of α, the ground state energy E0
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of one electron and two nuclei is thus negative. Hence E0 = −∞ by scaling, as
remarked earlier.

The same argument works for any number of nuclei. One electron will cause
instability (of the first kind) if α is too large. The number of nuclei needed
for instability will increase as Zα → 0 (because we require the total nuclear
charge

∑M
k=1 Zk to exceed 2/(πα)) but the important point is that there is a fixed

number αc such that instability always occurs (with sufficiently many nuclei)
when α > αc, regardless of how small the values of Ziα may be.

In combination, Theorem 8.1 in Section 8.5 together with its improvements
discussed in Section 8.7 state that the relativistic Hamiltonian (8.7.1) is stable,
i.e., non-negative, for all M, N and all magnetic fields if the condition

1

α
≥ Zπ

2
+ 2.2566 q1/3Z2/3 + 1.0307 q1/3

or the condition

qα ≤ 1

66.5
and Zα ≤ 2/π

is satisfied. For comparison with the following instability theorem, 8.2, it is
convenient to reformulate the stability conditions as follows. There is stability if
all of the following three stability conditions hold: For appropriate C > 0 and
C ′ > 0,

(1) Zjα ≤ 2/π for all j = 1, . . . ,M,

(2) (π2 Zjα)2α < C/q for all j = 1, . . . ,M,

(3) α < C ′q−1/3.

That this simple set of stability conditions (almost) correctly describes the true
state of affairs is the content of the next theorem, proved in [138, Thms. 3 and 4].

Theorem 8.2 (Conditions for Instability). There are constants D < 115120
and D′ < 128/(15π ) such that the Hamiltonian (8.1.1) is unstable of the first
kind for large enough N and M if one of the following three conditions



160 Stability of Relativistic Matter

holds:

(i) Zjα > 2/π for some j,
(ii) (π2 Zjα)2α > D/q for all j,

(iii) α > D′.

As will be demonstrated in the proof of Theorem 8.2, under condition (ii) it
suffices to have only q electrons to cause the collapse. Under conditions (i) and
(iii) only one electron is needed for instability!

The three instability conditions (i), (ii) and (iii) in Theorem 8.2 are (almost)
the negation of the three stability conditions (1), (2) and (3) displayed above,
except for the numerical values of the constants, and the factor q−1/3 in the third
condition. For fixed Z both the stability and the instability bounds show that the
critical α is of the order q−1/3 for large q. But if we want a bound that is uniform
in Z (valid for arbitrarily small Z) is the critical α of order 1 or of order q−1/3 ?
We conjecture that the former is correct.

We believe that the factor q−1/3 should actually not be part of the stability
condition (3); that is, α < C ′ for some constant C ′, together with stability
conditions (1) and (2), should be sufficient for stability. This is an open problem.
We note that if the Lieb–Oxford inequality used in the proof of Theorem 8.1,
Eq. (8.5.14), held with a factor q−1/3 multiplying the

∫
�4/3 term, our proof of

Theorem 8.1 would actually yield the condition α < C ′ instead of α < C ′q−1/3.
This factor would naturally occur from considerations of the homogeneous
electron gas; see the discussion in Chapter 6, Eq. (6.2.11). As noted there, a
general exchange inequality cannot hold with this factor q−1/3, however, but our
conjecture is that it holds with q−1/3 for the wave functions actually relevant for
causing instability.

Note that if we define αc(ν) as the critical value of α for stability to hold for
all Zα < ν, then the stability and instability results imply that αc(ν) ∼ 1/q for
large q, as mentioned in the Remark 8.4.

Proof of Theorem 8.2. We choose A = 0 and, without loss of generality, set
m = 0. Instability under condition (i) has already been shown in Section 8.2.

We shall now prove instability under condition (iii). We take only one species
of nuclei, i.e., we set Zj = Z > 0 for all j = 1, 2, . . . ,M . Recall that it suffices
merely to show that the energy can be made negative, after which it can be
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driven to −∞ by length scaling. For simplicity of the notation, we shall ignore
the spin degrees of freedom here. Alternatively, think of either q = 1 or all spin
components but one be zero. Pick a φ ∈ L2(R3) with ‖φ‖2 = 1 and with finite
kinetic energy, that is, τ = (φ, | p|φ) < ∞. Let N = 1. Then

(φ,Hφ) = τ − Zα

M∑
k=1

∫
R3

|φ(x)|2
|x − Rk|dx + Z2α

∑
1≤k<l≤M

1

|Rk − Rl| . (8.8.1)

For a given φ, we try to choose the nuclear positions Rk so as to make this
expression as small as possible. For an upper bound on the smallest possible
value, we can average the expression (8.8.1) over the nuclear positions, with
weight given by

∏M
k=1 |φ(Rk)|2. In this way, instability is established if it can be

shown that

τ − I
(
ZαM − 1

2
Z2αM(M − 1)

)
< 0,

where I denotes

I =
∫∫

R3×R3

|φ(x)|2|φ( y)|2
|x − y| dxd y.

For a given value of Z we can choose M such that |M − 1/2 − 1/Z| ≤ 1/2.
Then

−ZαM + 1

2
Z2αM(M − 1) = 1

2

(
Z2α

[
M − 1

2
− 1

Z

]2

− 1

4
Z2α − α(1 + Z)

)

≤ −1

2
α.

Instability thus occurs for α > 2τ/I. To obtain a numerical value for τ and I,
we choose φ(x) = π−1/2 exp(−|x|). Then τ = 8/(3π ) and I = 5/8, and hence
2τ/I = 128/(15π ).

Finally, we show that condition (ii) suffices for instability. We take N = q

electrons, and choose the wave function to be
∏N

i=1 φ(xi) times the totally
antisymmetric spin wave function given by χ (σ ) = (N!)−1/2det gi(σj )|Ni,j=1,
where gi(σ ) = δσ,i . With the same notation as above, the energy of this state is
given by

Nτ + αW (N, R)
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where

W (N, R) = −ZNα

M∑
k=1

∫
R3

|φ(x)|2
|x − Rk|dx

+Z2α
∑

1≤k<l≤M

1

|Rk − Rl| +
α

2
N (N − 1)I.

Here, the last term is the repulsive interaction among the electrons.
When discussing the instability of non-relativistic bosons in Chapter 7,

Section 7.6, we already encountered the expression W (N, R) and showed that
it is possible to choose the nuclear positions R in such a way that

W (N, R) ≤ −CZ2/3N4/3

for some constant C > 0 depending only on φ. Therefore, instability occurs if

qτ − CαZ2/3q4/3 < 0,

or

(Zα)2α >
( τ
C

)3 1

q
.

The numerical value for τ/C depends on the choice of φ. We refer to [138] for
details of an appropriate choice of φ and a careful calculation of the constant C
(which leads to the stated value of D).

We now turn our attention to relativistic stability for bosons. Recall that in
the non-relativistic case discussed in the previous chapter, bosonic particles are
unstable of the second (but not the first) kind, that is, the ground state energy
goes like −N5/3 in the case of static nuclei. In the relativistic case, the situation
is even worse, in the sense that even stability of the first kind fails for large
enough particle number.

Theorem 8.3 (Instability for Bosons). For every α > 0 and Z > 0 and for
sufficiently large M and N (depending on α and Z), the fundamental Hamilto-
nian (8.1.1) for N bosons is unstable of the first kind as long as Zj ≥ Z for all
1 ≤ j ≤ M .

Proof. As pointed out in Chapter 3, Section 3.1.3.1 and Corollary 3.1, the ground
state energy of N bosons is the same as the one for N fermions with q = N spin
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states for each particle. Hence by Theorem 8.2, condition (ii), there is instability
for each fixed Z and α if q = N is large enough.

Remark 8.7. The instability result in Theorem 8.3 refers to static nuclei. If
the nuclei have a finite mass and their kinetic energy is taken into account, the
stability situation is a little more subtle. The nuclei can be either bosons or
fermions. If they are fermions we can apply the stability theorem, 8.1, to the
positive nuclei instead of the negative bosons and see that stability is restored in
an appropriate parameter regime. On the other hand, if some of the nuclei are
bosons, then instability always occurs. This follows from the consideration of
the non-relativistic case in the previous chapter, where it was explained that the
energy of non-relativistic bosons goes like−N7/5 for largeN . To apply this to the
relativistic case one simply notes that | p| ≤ ( p2 + 1)/2, and hence the ground
state energy in the relativistic case is bounded from above by +N − CN7/5 for
some C > 0. It is thus negative for large enough N and, therefore, equals −∞
by scaling, as explained in the beginning of Section 8.5, Eq. (8.5.1).
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Magnetic Fields and the Pauli Operator

9.1 Introduction

In the preceding chapters we proved the stability of matter for electrons
(i.e., fermions) interacting with fixed nuclei, both relativistically and non-
relativistically. We showed that the proofs go through even in the presence
of magnetic fields, meaning that one can replace p by p +√

αA(x) for any
choice of the vector field A. Indeed, the diamagnetic inequalities discussed in
Section 4.4 show that the bounds obtained for the ground state energy can only
improve when A is included (but this does not imply that the true ground state
energy increases).

In real life the energy of matter actually decreases significantly when a field
is added and it can decrease to −∞ if the field is allowed to become arbitrarily
large. The reason is that the electron spins interact with the magnetic field, and
hence an additional term must be added to the kinetic energy to account for
this interaction. What prevents the field from becoming large, and the energy
becoming arbitrarily negative, is the positive self-energy of the field (i.e., the
energy needed to create the field). The goal is to show that the additional
negative interaction energy is balanced by the field energy and an ‘equilibrium’
is reached in which the total energy is finite. We shall see that this is achieved
if and only if α and Zα2 are not too large – even in the non-relativistic case.
Thus, the non-relativistic Hamiltonian we shall treat in this chapter mimics the
relativistic one we treated in the previous chapter in the sense that a bound on α is
needed.

Only the non-relativistic model of particles with spin in the presence of
magnetic fields will be treated in this chapter. The discussion of relativistic
electrons together with magnetic fields will be deferred to Chapter 10 where the
Pauli operator, treated here, will be seen to be the non-relativistic limit of the
Dirac operator.

164
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9.2 The Pauli Operator and the Magnetic Field Energy

We recall the definition of the Pauli one-body kinetic energy operator given in
Chapter 2, Eq. (2.1.45),

TA( p) = 1

2

∣∣σ · ( p +√
αA(x)

)∣∣2 = 1

2

(
p +√

αA(x)
)2 +

√
α

2
σ · B(x).

(9.2.1)

The wave functions on which this operator acts lie in L2(R3; C
2 ⊗ C

q). We
allow for q internal states (often called ‘flavors’) in addition to the two coming
from the spin 1/2 nature of the particles. In order words, a wave function
of one particle is a C

2 valued function (instead of the usual complex-valued
function) of z = (x, σ ), with x ∈ R

3 and 1 ≤ σ ≤ q, and the number of internal
states, altogether, is 2q. With this convention, we can write the quadratic form
corresponding to (9.2.1) as

(ψ, TA( p)ψ) = 1

2

∫ ∣∣( p +√
αA(x)

)
ψ
∣∣2 dz +

√
α

2

∫
〈ψ, σ · B(x)ψ〉dz.

(9.2.2)

As explained in Chapter 2, | · | stands for the norm of a vector in C
2, and 〈 · , · 〉

stands for the inner product on C
2. Recall that the sum over σ is contained in

the dz integral, as in (3.1.15).
We assume that A ∈ L2

loc(R3; R
3). The magnetic field B(x) is given as B(x) =

curl A(x), which has to interpreted in the sense of distributions if A is not
differentiable. We also assume that Emag(B) < ∞, i.e., B ∈ L2(R3; R

3). Recall
that we choose units such that the electron mass, h̄ and the speed of light all
equal 1.

When discussing the question of stability of matter for arbitrary magnetic
fields it is important to consider the energy cost of creating such a magnetic
field, namely the self-energy of B. As discussed in Chapter 2, Section 2.1.2, in
our units this self-energy is given by

Emag(B) = 1

8π

∫
R3

|B(x)|2dx. (9.2.3)

That is, when minimizing the energy over all possible wave functions ψ and
magnetic fields B(x), it is important to add the self-energy in order to obtain a
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finite result, as we shall see later. This was not necessary in Chapter 7, where
the σ · B term in the Hamiltonian was absent. The minimal energy defined in
this way is called the ground state energy of the system. Stability of the first
and second kind always refer to this energy of particles and field.

The last term in (9.2.1) can alternatively be written as
√
α

2
σ · B(x) = √

α
g

2
S · B(x)

where S = σ/2 is the electron spin, and g = 2 is the gyromagnetic ratio (or
Landé g factor) of the electron. It is possible to study the Pauli operator (9.2.1)
with a factor g/2 in front of the last term for general values of g, not just g = 2.
One observes the following, however

� The sign of g is important. If g < 0, it is not clear whether

1

2

(
p +√

αA(x)
)2 +

√
αg

4
σ · B(x) (9.2.4)

is positive for all magnetic fields B(x).
� For 0 ≤ g ≤ 2, the operator (9.2.4) can be written as a convex combination

of (9.2.1) and ( p +√
αA(x))2 and is thus positive. Moreover, by employing

this fact the analysis of stability of matter can be reduced to the g = 2 case.
Recall that in Chapter 7 we have shown the stability of matter in case g = 0,
for any values of Z and α and any magnetic field.

� For g > 2, (9.2.4) is not positive, in general. Even worse, the energy of one
electron and one nucleus can be driven to −∞ by increasing B, even if the
self-energy of the magnetic field is taken into account! There exist particles
in nature with g factors bigger than 2, or even negative. These are composite
particles, however, like protons (g = 5.6) which are made out of three quarks.
When analyzing the stability of matter with such particles, one can not ignore
their finite size and internal structure.

9.3 Zero-Modes of the Pauli Operator

An important role in our analysis will be played by zero-modes of the
Pauli operator (9.2.1), that is, a pair (ψ(x), A(x)) with ψ ∈ L2(R3; C

2) and
curl A(x) ∈ L2(R3; R

3) such that

σ · ( p +√
αA(x))ψ(x) = 0.
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Such a ψ is an eigenfunction of the Pauli operator (9.2.1) with eigenvalue 0.
In addition, we demand that the magnetic field energy (9.2.3) of B = curl A
be finite, and we stress that ψ must be square integrable. In other words, for
special magnetic fields there is a genuine normalizable (and, therefore, time-
independent) state with zero kinetic energy. Such a state does not exist when
A = 0, i.e., for the Laplacian alone. There is no non-zero f ∈ L2(Rd) such that
�f = 0.

The importance of zero-modes for stability was recognized in [74], but their
existence was uncertain. The first examples were given by Loss and Yau in [139]
and the first one cited in that paper was

√
α A(x) = − 3

(1 + x2)2

[
(1 − x2)w + 2(w · x)x + 2w ∧ x

]
(9.3.1)

where w = (0, 0, 1). The magnetic field in this case equals

B(x) = curl A(x) = 4

1 + x2
A(x). (9.3.2)

The corresponding spinor-valued function ψ ∈ L2(R3; C
2) with zero kinetic

energy is

ψ(x) = (1 + x2)−3/2 [1 + iσ · x]

(
1
0

)
. (9.3.3)

Many more zero-modes were found later [1, 48, 45, 6], but their complete
classification is still unknown.

Notice that, by scaling, any zero-mode gives rise to a one-parameter family
of zero-modes. This observation will be useful in the sequel. That is, if (ψ, A)
is a zero-mode then so is (ψλ, Aλ), for all λ > 0, where

ψλ(x) = λ3/2ψ(λx), Aλ(x) = λA(λx), (9.3.4)

and

Bλ(x) = λ2 B(λx), Emag(Bλ) = λEmag(B). (9.3.5)

The scaling of ψλ is chosen such that ‖ψλ‖2 = ‖ψ‖2.
As in the example above, the dependence on α is rather simple. If (ψ, Ã) is

a zero-mode for α = 1, then (ψ, α−1/2 Ã) is, by definition, a zero-mode for any
α > 0. Under this transformation B̃ also gets multiplied by α−1/2, and hence the
field energy Emag(B̃) gets multiplied by α−1.
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9.4 A Hydrogenic Atom in a Magnetic Field

Before studying the question of stability of matter with the Pauli operator in
full generality let us consider the simplest case of one electron in the field of
one nucleus of charge Z. In this case we shall already see that stability can only
hold if the field energy is taken into account. The Hamiltonian, including the
magnetic field energy, is given by

HA = TA( p) − Zα

|x| + Emag(B). (9.4.1)

The fact that the field energy is necessary to stabilize the system is an immedi-
ate consequence of the existence of zero-modes discussed in the previous section.
In fact, with (ψ, α−1/2 Ã) being a zero-mode of TA( p) and with (ψλ, α

−1/2 Ãλ)
scaled as in (9.3.4), we have

(ψλ,Hα−1/2 Ãλ
ψλ) = −Zα(ψλ, |x|−1ψλ) + Emag(α−1/2 B̃λ)

= −λZα(ψ, |x|−1ψ) + λ

α
Emag(B̃). (9.4.2)

Two things can be seen from this expression. First, if we omit the field energy,
we can drive the energy to −∞ by increasing λ to infinity. Second, Eq. (9.4.2)
shows that there is a critical value of Zα2 beyond which the infimum (over ψ
and A) of the total energy is −∞.

Our goal in this section is to show that the critical Zα2 is not zero. We follow
closely the discussion in [74]. In fact, we shall show the following.

Theorem 9.1 (Stability of Hydrogen for Small Zα2). Let HA be given in
(9.4.1). Under the condition that

Zα2 ≤ π

2

(
3

4

)3/2

(9.4.3)

we have

(ψ,HAψ) ≥ −(Zα)2(ψ,ψ)

for any ψ ∈ H 1(R3; C
2) and for any magnetic vector potential A(x).

Recall from (2.2.17) that if the Zeeman term σ · B is omitted the infimum of
(ψ,HAψ)/(ψ,ψ) (over all ψ and A) equals −(1/2)(Zα)2.
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The theorem states that a hydrogenic atom is stable if Zα2 is not too large.
For the physical value α = 1/137, the critical Z is seen to be at least as big as
α−2 π

2

(
3
4

)3/2 ≈ 19 160.
The following proof is somewhat convoluted, but at present there does not

seem to be any straightforward, simple path to the conclusion.

Proof. We can assume that (ψ,ψ) = 1. Since TA( p) ≥ 0, we have the lower
bound TA( p) ≥ ε TA( p) for any 0 ≤ ε ≤ 1. Moreover, σ · B(x) ≥ −|B(x)|.
Hence, for any ψ ∈ H 1(R3 ; C

2),

(ψ,HAψ) ≥
(
ψ,
[ε

2
( p +√

αA(x))2 − ε

2

√
α|B(x)| − Zα|x|−1

]
ψ
)
+ Emag(B).

For given |ψ |2, we can minimize the second and fourth terms with respect to
|B(x)|, which yields

Emag(B) − ε

2

√
α

∫
R3

|ψ(x)|2|B(x)|dx ≥ −αε2π

2

∫
R3

|ψ(x)|4dx.

On the other hand, the diamagnetic inequality (4.4.4) implies that

(ψ, ( p +√
αA(x))2ψ) ≥

∫
|∇|ψ(x)||2dx.

Thus, we are led to investigate a lower bound for the quantity

ε

2

∫
|∇|ψ(x)||2dx −

∫
Zα

|x| |ψ(x)|2dx − αε2π

2

∫
|ψ(x)|4dx. (9.4.4)

We are free to choose any ε between 0 and 1 to make this expression as large as
possible. For given ψ , the optimal choice of ε is

ε = min

{
1,
∫

|∇|ψ(x)||2dx
[

2απ
∫

|ψ(x)|4dx
]−1
}
. (9.4.5)

Two cases have to be distinguished. If
∫ |∇|ψ(x)||2dx ≥ 2απ

∫ |ψ(x)|4dx,
then ε = 1 and the expression (9.4.4) is bounded from below by

1

4

∫
|∇|ψ(x)||2dx −

∫
Zα

|x| |ψ(x)|2dx ≥ −(Zα)2
∫

|ψ(x)|2dx.

The last inequality is just the ground state energy of the hydrogen atom,
discussed in Section 2.2.2. In the contrary case, where

∫ |∇|ψ(x)||2dx <
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2απ
∫ |ψ(x)|4dx, the expression (9.4.4) becomes

1

8πα

(∫ |∇|ψ(x)||2dx
)2∫ |ψ(x)|4dx

−
∫

Zα

|x| |ψ(x)|2dx (9.4.6)

for our choice of ε in (9.4.5). The Sobolev inequality discussed in Chapter 2,
Eq. (2.2.4), states that

3

4
(4π2)2/3

(∫
|ψ(x)|6dx

)1/3

≤
∫

|∇|ψ(x)||2dx.

Using this and Schwarz’s inequality we obtain∫
|ψ(x)|4dx ≤

(∫
|ψ(x)|2dx

)1/2 (∫
|ψ(x)|6dx

)1/2

≤
(

4

3

)3/2 1

4π2

(∫
|ψ(x)|2dx

)1/2 (∫
|∇|ψ(x)||2dx

)3/2

.

In addition, from the ground state energy of the hydrogen atom we get(∫
|∇|ψ(x)||2dx

)1/2 (∫
|ψ(x)|2dx

)1/2

≥
∫ |ψ(x)|2

|x| dx

(see Eq. (2.2.18) in Chapter 2). Hence (9.4.6) is bounded from below by(
π

2α

(
3

4

)3/2

− Zα

)∫ |ψ(x)|2
|x| dx.

The condition
∫ |ψ(x)|2dx = 1 has been used. Under condition (9.4.3) the last

term is positive for any ψ , and hence (9.4.6) is positive.

The proof of Theorem 9.1 may not be the slickest possible, but it was his-
torically the first and has the virtue of using only well-known inequalities used
elsewhere in this book. The reader might wonder why we threw away the non-
negative term (1 − ε)TA( p) in the lower bound. What has been done, in fact, is
to control the dangerous σ · B term by an optimal combination of two methods;
one way is to use −ε|B| as a partial lower bound, and the other way is to use
−(1 − ε)( p +√

αA)2 as a lower bound on the remainder. The zero-modes of
TA( p) play an important role for the stability question. If (ψ, A) is a zero-mode,
then (ψ, TA( p)ψ) = 0 and hence nothing has been thrown away, in fact.

It was shown in [74] that the critical Zα2 is entirely determined by zero-
modes; that is, the minimum of the right side of (9.4.2) is zero when taken over
all zero-modes (ψ, A) when Zα2 is less than the critical value; it is −∞ beyond
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that value. The complete set of zero-modes is unknown, however, and therefore
the exact value of the critical Zα2 remains unknown.

9.5 The Many-Body Problem with a Magnetic Field

The stability of the hydrogen atom with Pauli kinetic energy and magnetic fields
was proved in [74] by Fröhlich, Lieb and Loss. The relation to zero-modes was
also observed there. For one nucleus and arbitrarily many electrons (the large
atom), as well as for one electron but arbitrary nuclei (and with a required bound
on α as well as on Zα2), stability was proved by Lieb and Loss in [117]. The
obvious next goal was to show stability for all N and M .

A solution to this problem was given by Lieb, Loss and Solovej in 1995
[123] for values of Zα2 and α that, while not quite as generous as the bound in
the previous section, were more than sufficient to cover all physical situations.
Earlier in 1995 Fefferman announced stability [57] for Z = 1 and sufficiently
small α; the proof in 1996 [58] does not contain quantitative values of the
constants.

The results in [123] were subsequently applied to the stability of matter
with quantized magnetic fields (Quantum Electrodynamics) in [27], a subject to
which we shall return in Chapter 11. The additional difficulty there is that the
field energy is a bit more complicated than (1/8π )

∫ |B|2, but this problem can
be overcome, as we shall see later.

Stability requires that Zα2 be sufficiently small (as is apparent from the one-
body problem), but it also requires that α itself be small (independent of Zα2).
Conditions for stability are given in Theorem 9.2, while the fact thatαmust not be
too large in order to have stability of the first kind is the content of Theorem 9.3.

Paper [123] contains three proofs of stability of the Pauli Hamiltonian, and
they are all remarkably short given what seemed earlier to be the difficult nature
of the problem. We shall give the first of these here because it most closely
utilizes the machinery already developed in this book. Another proof, which was
developed in [127], will also be given in this section (after Corollary 9.1), and
this is even shorter provided one uses a useful theorem of Birman and Solomyak
[20], which will be proved in the appendix to this chapter. Interestingly, the
numerical constants in the four proofs in [123, 127] (i.e., the required bounds
on Zα2 and α) are not very far from each other.

The Hamiltonian under consideration is

H =
N∑
i=1

TA( pi) + αVC(X, R) + Emag(B), (9.5.1)
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where TA( p) is the Pauli operator in (9.2.1) and the Coulomb potentialVC(X, R)
is given in Eq. (2.1.21). As explained in Section 9.2, the wave functions are
antisymmetric functions having 2q spin states.

Theorem 9.2 (Conditions for Stability). Let Z = maxj {Zj }, and let

1

κ
= Zπ

2
+ 2.26 (2q)1/3 Z2/3 + 1.03 (2q)1/3. (9.5.2)

The ground state energy of H in (9.5.1) satisfies

E0 ≥ −4N
α2

κ2
(9.5.3)

provided

2q α2

κ
≤ 8.62

√
3

8π2
. (9.5.4)

For the physical values α = 1/137 and 2q = 2, this theorem proves stability
of matter for Z ≤ 953.

First proof of Theorem 9.2. The first main ingredient in the proof of
Theorem 9.2 is the relativistic stability of matter proved in Theorem 8.1 in
the previous chapter. That is, for κ given in (9.5.2),

N∑
i=1

| pi +
√
αA(xi)| + κVC(X, R) ≥ 0. (9.5.5)

The Hamiltonian (9.5.1) is, therefore, bounded from below by

H ≥
N∑
i=1

(
TA( pi) −

α

κ
| pi +

√
αA(xi)|

)
+ Emag(B).

This is just a sum of one-body operators, plus the magnetic field energy. Let
h⊗ ICq be this one-body operator, namely

h = TA( p) − α

κ
| p +√

αA(x)|,

which acts on L2(R3; C
2). On the space of totally antisymmetric wave functions,

the lowest eigenvalue of
∑N

i=1(h⊗ ICq )i is equal to the sum of the lowest N
eigenvalues of h⊗ ICq .
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Letμ > 0, and writeh = −μ+ (h+ μ). The sum of the lowestN eigenvalues
of (h+ μ) ⊗ ICq is certainly bounded from below by the sum of all the negative
eigenvalues of (h+ μ) ⊗ ICq . The latter can be written as

−q

∞∫
μ

Ne(h)de,

where Ne(O) denotes the number of eigenvalues below −e of an operator O.
For any μ > 0, the Hamiltonian H is thus bounded from below as

−Nμ− q

∞∫
μ

Ne(h) de + Emag(B). (9.5.6)

Using the positivity of TA( p), we further estimate TA( p) ≥ (μ/e)TA( p) for
e ≥ μ. Moreover,

α

κ
| p −√

αA(x)| ≤ α2

2eκ2
( p +√

αA(x))2 + e

2
by Schwarz’s inequality. The parameter μ is at our disposal and we choose it to
be μ = 4(α/κ)2. Using, in addition, that σ · B(x) ≥ −|B(x)|, the operator h is
then bounded from below by

h ≥ he ≡ 3α2

2eκ2
( p +√

αA(x))2 − 2α5/2

eκ2
|B(x)| − e

2
.

To get an upper bound on the number of eigenvalues of he below −e, we can
use the CLR bound (the γ = 0 case of Theorem 4.1) to obtain

Ne(h) ≤ Ne(he) ≤ 2L0,3

∫
R3

[
4
√
α

3
|B(x)| − e2κ2

3α2

]3/2

+
dx. (9.5.7)

As usual, [t]+ = max{0, t} denotes the positive part. The factor 2 on the right
side results from the 2 spin states. Recall that the best known upper bound on
L0,3, given in Eq. (4.1.17), is L0,3 ≤ 0.116.

After integration over e, (9.5.7) becomes

∞∫
4(α/κ)2

de
∫
R3

[
4
√
α

3
|B(x)| − e2κ2

3α2

]3/2

+
dx

≤
∞∫

0

de
∫
R3

[
4
√
α

3
|B(x)| − e2κ2

3α2

]3/2

+
dx = π√

3

α2

κ

∫
R3

|B(x)|2dx.
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Consequently,

H ≥ −4
α2

κ2
N +

(
1

8π
− 2q L0,3

π√
3

α2

κ

)∫
R3

|B(x)|2dx.

Stability thus holds as long as (9.5.4) is satisfied.

For not too small Z our bound (9.5.3) is quite reasonable since the energy
should be of the order of (Zα)2. For small Z, however, the result is far from
optimal. The reason for this defect is that even if Z is very small (9.5.5) does not
hold for large κ . This is a consequence of the instability results for relativistic
matter in Theorem 8.2.

The previous proof uses the CLR bound, which was stated in Chapter 4,
Theorem 4.1, without proof. If one wanted to use only results proved in this
book, one could avoid the use of the CLR bound and use Corollary 4.2 instead.
The divergence of the bound in Corollary 4.2 for small e does not cause any
trouble here, since the integration in (9.5.6) is only over e ≥ μ anyway. The
bounds on Zα2 and α to ensure stability, obtained in this way, may turn out to
be worse, however.

For use later we shall explicitly display the following inequality, which is at
the heart of the proof of Theorem 9.2. We call it a corollary, although it is really
a corollary of the proof and not the theorem per se.

Corollary 9.1 (Stability with Restricted Field Energy). Let ψ ∈∧N
L2(R3; C

2q) be a normalized, antisymmetric N electron wave function,
whose density �ψ is supported in the set � ⊂ R

3 (which could be all of R
3), and

let κ > 0. If

2q α2

κ
≤ 8.62

√
3

8π2

then(
ψ,

N∑
i=1

[
TA( pi) −

α

κ
| pi +

√
αA(xi)|

]
ψ

)
+ 1

8π

∫
�

|B(x)|2dx ≥ −4N
α2

κ2
.

(9.5.8)

The point of this corollary is that all the bounds hold even if only the magnetic
field energy in the support of �ψ is utilized. An inspection of the proof of
Theorem 9.2 shows that only the magnetic field on this support is relevant.
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Inequality (9.5.8) will be important in Chapter 11, where the Pauli operator with
quantized electromagnetic field will be studied.

As promised above, we shall now give an alternative proof of Theorem 9.2.
It is taken from [127].

Second proof of Theorem 9.2. We start with the same observation as in the
beginning of the first proof. Namely, from stability of relativistic matter we
have

H ≥
N∑
i=1

(
TA( pi) −

α

κ
| pi +

√
αA(xi)|

)
+ Emag(B)

for κ given in (9.5.2). Since TA( p) ≥ 0, we can bound TA( p) from below as

TA( p) ≥ λ
√
TA( p) − λ2

4

for λ ≥ 0. Thus

H ≥ −Tr
[
λ
√
TA( p) − α

κ
| p +√

αA(x)|
]
−
− λ2

4
N + Emag(B).

The notation Tr [O]− simply stands for the sum of the absolute value of the
negative eigenvalues of a self-adjoint operator O. Likewise, Tr [O]p− is the sum
of the pth powers of the absolute value of the negative eigenvalues.

There is a useful inequality for traces of differences of fractional powers of
operators, which was proved by Birman and Solomyak in [20]. It says that

Tr [B − A]− ≤ Tr [B2 − A2]1/2
−

for positive operators A and B. For the convenience of the reader, we present a
proof of this inequality in the appendix to this chapter. As a result

Tr
[
λ
√
TA( p) − α

κ
| p +√

αA(x)|
]
−
≤ Tr

[
λ2TA( p) − α2

κ2
( p +√

αA(x))2

]1/2

−

Since σ · B(x) ≥ −|B(x)|,

λ2TA( p) − α2

κ2
( p +√

αA(x))2 ≥
(
λ2

2
− α2

κ2

)
( p +√

αA(x))2 − λ2

√
α

2
|B(x)|.

We shall choose λ >
√

2α/κ . The trace of the square root of the negative part
of this operator can be bounded with the aid of the LT inequality (Theorem 4.1
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for γ = 1/2). The result is

Tr

[(
λ2

2
− α2

κ2

)
( p +√

αA(x))2 − λ2

√
α

2
|B(x)|

]1/2

−

≤ L1/2,3
2q λ4α

4
(
λ2

2 − α2

κ2

)3/2

∫
R3

|B(x)|2dx. (9.5.9)

(Recall that there are 2q spin states.) Hence

H ≥ −λ2

4
N +

⎛⎜⎝ 1

8π
− L1/2,3

2q λ4α

4
(
λ2

2 − α2

κ2

)3/2

⎞⎟⎠∫
R3

|B(x)|2dx.

With the choice λ = √
8α/κ , stability is thus shown if

2q α2

κ
≤ 1

8π

33/2

16L1/2,3
. (9.5.10)

As explained in Chapter 4, Eq. (4.1.18), L1/2,3 ≤ 6.87Lcl
1/2,3 = 0.0683. With

this estimate, the right side of (9.5.10) turns out to be the same as the right side
of (9.5.4) up to four figure accuracy.

The two proofs give remarkably similar results! The second one is infinites-
imally better and shows stability in a slightly bigger parameter regime. For the
physical value of α and q, the first proof shows stability for Z ≤ 953, while the
second proof works for Z ≤ 954. This should be regarded as no more than a
coincidence, since there are ways to improve the results in both methods.

Finally, we show that small α is actually needed for stability. The following
theorem shows this and also shows that bosons are always unstable for any value
of Zα2 > 0. This is analogous to the relativistic case discussed in Section 8.8.

Theorem 9.3 (Conditions for Instability). There is a constant D > 0 such that
the Hamiltonian (9.4.1) is unstable of the first kind for large enough N and M

if one of the following two conditions hold:

(1) Zjα
2 > (π/2)(3/4)3/2 for some j,

(2) α > D/q1/2.
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Proof. The proof follows closely the corresponding proof of Theorem 8.2 in the
relativistic case, and is even simpler.

Instability under condition (1) has already been shown in Section 9.4. We shall
now prove instability under condition (2). Given the instability under condition
(1), it clearly suffices to consider the case Z ≤ q. Pick a zero-mode (ψ, α−1/2 Ã)
of the Pauli operator, with ψ ∈ L2(R3; C

2). We take N = q, in which case all
the electrons can be put in the stateψ (cf. the discussion in Section 3.1.3.1). That
is, we can take the wave function to be

∏q

i=1 ψ(xi) times a totally antisymmetric
function in spin space. If τ = Emag(B̃) denotes the magnetic field energy and I
denotes twice the self-energy of a charge distribution |ψ |2, i.e.,

I =
∫∫

R3×R3

|ψ(x)|2|ψ( y)|2
|x − y| dxd y,

the energy of the system is given by

τ

α
+ αI

2
q(q − 1) − Zα

M∑
j=1

∫
R3

|ψ(x)|2
|x − Rj |dx + Z2α

∑
1≤k<l≤M

1

|Rk − Rl| .

(9.5.11)

We can choose the nuclear positions Rk so as to make this expression as small
as possible. For an upper bound on the smallest possible value, we can average
the expression (9.5.11) over the nuclear positions (as we have done several times
before), with weight given by

∏M
k=1 |ψ(Rk)|2. In this way, the energy is negative

if

τ

α
+ Iα

2

(−2ZαMq + Z2M(M − 1) + q(q − 1)
)
< 0.

Since 0 < Z ≤ q, we can pick an M such that |ZM − q| ≤ 1/2. Then

−2ZαMq + Z2M(M − 1) + q(q − 1) = (ZM − q)2 − Z2M − q ≤ 1/4 − q.

Hence the energy is negative if

α2 >
2τ

I(q − 1/4)
.

Once the energy is negative, it can be driven to −∞ by length scaling. (See the
discussion at the end of Section 9.3.)
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9.6 Appendix: BKS Inequalities

As a convenience to the reader we give a proof of some cases of the inequalities
due to Birman, Koplienko, and Solomyak [19]. It is taken, with minor modifi-
cations, from [127, Appendix A]. The case needed in Section 9.5 corresponds
to p = 2 below, which was proved earlier by Birman and Solomyak in [20]. In
Section 9.5 we were interested in (B − A)−, but here we treat (B − A)+ to
simplify keeping track of signs. The proof is the same. Recall that X+ :=
(|X| +X)/2.

Theorem 9.4 (BKS Inequalities). Let p ≥ 1 and suppose that A and B are two
non-negative, self-adjoint linear operators on a separable Hilbert space such
that (Bp − Ap)1/p

+ is trace class. Then (B − A)+ is also trace class and

Tr (B − A)+ ≤ Tr (Bp − Ap)1/p
+ .

Proof. Our proof will use essentially only two facts: X 	→ X−1 is operator
monotone decreasing on the set of non-negative self-adjoint operators (i.e.,
X ≥ Y ≥ 0 =⇒ Y−1 ≥ X−1) and X 	→ Xr is operator monotone increasing
on the set of non-negative self-adjoint operators for all 0 < r ≤ 1. (See the
footnote on page 87.) Consequently,X 	→ X−r is operator monotone decreasing
for 0 < r ≤ 1. We refer to [17, Chapter V] for details on operator monotone
functions.

As a preliminary remark, we can suppose that B ≥ A. To see this, write
Bp = Ap +D. If we replace B by [Ap +D+]1/p then (Bp − Ap)+ = D+ is
unchanged, while X := B − A becomes [Ap +D+]1/p − A and this is bigger
than B − A because of operator monotonicity of the map X 	→ X1/p on positive
operators. Since the trace is also operator monotone, we can therefore suppose
that D = D+, i.e., Bp = Ap + Cp with A,B,C ≥ 0. Our goal, then, is to prove
that

Tr
[
(Ap + Cp)1/p − A

] ≤ Tr C, (9.6.1)

under the assumption that C is trace class.
To prove (9.6.1) we consider the operator X := [Ap + Cp]1/p − A, which is

well defined on the domain of A. We assume, at first, that Ap ≥ εp for some
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positive number ε. Then, by the functional calculus, and with

E := [Ap + Cp](1−p)/p and P := A1−p − E

we have

X = E[Ap + Cp] − A1−pAp = −PAp + ECp. (9.6.2)

Clearly, P ≥ 0 and 0 ≤ P ≤ ε1−p.
Let Y := ECp. We claim that Y is trace class. This follows from

Y †Y = CpE2Cp ≤ CpC2−2pCp = C2. Thus, |Y | ≤ C, and hence Tr Y =
TrCp/2ECp/2 ≤ TrC.

It is also true that P is trace class. To see this, use the integral representation
A1−p = c

∫∞
0 (t + Ap)−1t (1−p)/p dt for suitable c > 0. Use this twice and then

use the well known resolvent formula, which is

1

Ap + t
− 1

Ap + Cp + 1
= 1

Ap + t
Cp 1

Ap + Cp + t
.

In this way we find that

P = c

∞∫
0

(Ap + t)−1Cp(Ap + Cp + t)−1t (1−p)/p dt.

Since C is trace class, so is Cp, and the integral converges because of our
assumed lower bound on A. Thus, P is trace class and hence there is a complete,
orthonormal family of vectors v1, v2, . . . , each of which is an eigenvector of P .

Since X ≥ 0, the trace of X is well defined by
∑∞

j=1(vj ,Xvj ) for any com-
plete, orthonormal family. The same remark applies to ECp since it is trace
class. To complete the proof of (9.6.1), therefore, it suffices to prove that
(vj , PAp vj ) ≥ 0 for each j . But this number is λj (vj , Ap vj ) ≥ 0, where λj is
the (non-negative) eigenvalue of P , and the positivity follows from the positivity
of A.

We now turn to the case of general A ≥ 0. We can apply the above proof to
the operator A+ ε for some positive number ε. Thus we have

Tr
[
[(A+ ε)p + Cp]1/p − (A+ ε)

] ≤ Tr C. (9.6.3)

Let ϕ1, ϕ2, . . . be an orthonormal basis chosen from the domain ofAp. This basis
then also belongs to the domain of A and the domain of [(A+ ε)p + Cp]1/p for
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all ε ≥ 0. We then have

Tr X =
∑
j

(ϕj ,Xϕj ).

Note that a priori we do not know that the trace is finite, but since the operator
is non-negative this definition of the trace is meaningful. Operator monotonicity
of X1/p gives(

ϕj ,
[
[(A+ ε)p + Cp]1/p − (A+ ε)

]
ϕj
) ≥ (ϕj , (X − ε)ϕj ).

It therefore follows from (9.6.3), followed by Fatou’s Lemma [118, Lemma 1.7]
applied to sums, that

Tr C ≥ lim inf
ε→0

∑
j

(
ϕj ,
[
[(A+ ε)p + Cp]1/p − (A+ ε)

]
ϕj
)

≥
∑
j

lim inf
ε→0

(
ϕj ,
[
[(A+ ε)p + Cp]1/p − (A+ ε)

]
ϕj
)

≥ Tr X.
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The Dirac Operator and the
Brown–Ravenhall Model

10.1 The Dirac Operator

In the previous chapters we have seen that matter is stable of the second kind
if the negative particles are fermions with a fixed, finite number of ‘spin states’
per particle. We found, however, that stability requires a bound on the nuclear
charge Z and on the fine structure constant α. The non-relativistic

√
α σ · B(x)

Pauli interaction of the electron spin with the magnetic field required a bound
on Zα2 and on α, in addition to the compensating positive field energy

∫ |B|2.
Relativistic mechanics, on the other hand, in which | p +√

αA(x)|2 is replaced
by | p +√

αA(x)|, but without the Pauli term, required a bound on Zα and
on α.

The next chapter in the stability saga ought to be the combination of magnetic
interaction together with relativistic kinetic energy. Thus, we could consider
replacing the Pauli kinetic energy operator |σ · ( p +√

αA(x))|2 simply by its
square root |σ · ( p +√

αA(x))| or, if we wish to include the electron’s mass,
by
√

[σ · ( p +√
αA(x))]2 +m2 −m. This was actually considered in the early

days of quantum mechanics but was rejected for various reasons, one being that
this is not a local operator1 like the Laplacian �; moreover, it gives the wrong
spectrum for hydrogen.

The accepted relativistic generalization of Schrödinger’s kinetic energy oper-
ator −� was invented by Dirac in 1928 [39]. Unlike | p| it is a local operator; in
fact, it is a first order differential operator. For a particle of mass m it is given,

1 The notion of locality of an operator O means that the matrix elements (ψ,O φ) vanish for any
two functions ψ and φ of disjoint support. Hence any multiplication operator is local, including
the Coulomb potential. The non-relativistic kinetic energy is local, too, but not the relativistic
kinetic energy.

181
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in our units, by

DA = α · ( p +√
αA(x)) + βm (10.1.1)

where α = (α1, α2, α3) andβ are 4 × 4 matrices, satisfying the anticommutation
relations

αiαj + αjαi = 2 δij IC4, αiβ + βαi = 0, β2 = IC4 . (10.1.2)

(We hope the reader will distinguish α and α; the notation predates us.) A
particular representation, which we shall use in the following, is

αi =
(

0 σ i

σ i 0

)
, β =

(
IC2 0
0 −IC2

)
(10.1.3)

where σ i are the Pauli matrices defined in Eq. (2.1.50). The Hilbert space for one
particle has changed from L2(R3; C

2) to L2(R3; C
4). The operator p appearing

in (10.1.1) is p = (p1, p2, p3) = −i∇, as before.
The reason DA is like the square root of the Pauli operator TA in (9.2.1) is

easily seen by computing its square:

D2
A =
([

σ · ( p +√
αA(x))

]2 +m2 0

0
[
σ · ( p +√

αA(x))
]2 +m2

)
. (10.1.4)

The Dirac operator thus represents a sophisticated way of taking the square root
of the Pauli operator.

Note thatDA is not positive or even bounded from below. In fact, the spectrum
of DA and −DA are identical, since −DA = UDAU

† with

U =
(

0 IC2

−IC2 0

)
. (10.1.5)

In fact, under this unitary conjugation the αi and β change sign. Since D2
A ≥ m2

by (10.1.4), DA has no spectrum in the interval (−m,m).
The simplest case to consider is the one of just one particle without any

external potential, and without any magnetic field. The Hamiltonian is thenD0 =
α · p + βm and its ground state energy is−∞. To get around this problem, Dirac
proposed to consider only the positive energy subspace of D0, interpreting the
negative energy states to be ‘filled’.2 That is, the one-particle space L2(R3; C

4)

2 This consideration led Dirac to the prediction of antiparticles as unfilled ‘holes’ in the otherwise
filled subspace of negative energy states. These particles, called positrons, were discovered a
few years later.
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splits into a direct sum H+
0 ⊕H−

0 , where H±
0 denote the positive and negative

spectral subspaces of D0, respectively.3 On H+
0 , D0 is positive by definition, and

hence there is no stability issue for D0 alone.
The following explicit representation of H+

0 will be useful in the following.
Since the projection onto H+

0 is given by (I +D0/|D0|)/2, a function ψ in H+
0

has a Fourier transform of the form

ψ̂(k) =
(

u(k)
2πσ ·k√

(2πk)2+m2+m
u(k)

)
(10.1.6)

with u ∈ L2(R3; C
2). Conversely, for any such u the function (10.1.6) is in H+

0 .
The norm and kinetic energy are given by

(ψ,ψ) =
∫
R3

〈u(k), u(k)〉

⎛⎜⎝1 + (2πk)2(√
(2πk)2 +m2 +m

)2

⎞⎟⎠ dk

(10.1.7)

(ψ,D0ψ) = 2
∫
R3

〈u(k), u(k)〉 (2πk)2 +m2√
(2πk)2 +m2 +m

dk.

Here, 〈 · , · 〉 denotes the inner product in C
2.

In the special case m = 0, these formulas simplify to

(ψ,ψ) = 2
∫
R3

〈u(k), u(k)〉dk

(10.1.8)

(ψ,D0ψ) = 2
∫
R3

〈u(k), u(k)〉|2πk| dk.

We display them explicitly as they will be useful later in Section 10.5.

3 Up to now all the models in this book could be defined via quadratic forms, and it was not
necessary to talk about self-adjoint operators and their spectra. In connection with the Dirac
operator, however, the notion of spectral subspace is unavoidable, at least in the presence of
magnetic fields. Without magnetic fields one can just use the explicit representation (10.1.6)
for the space H+

0 , and no spectral theory is required. With magnetic fields, as discussed below,
no such explicit representation is available, however. For details on operator theory, we refer to
standard textbooks, e.g., [150, Vol. 1].
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10.1.1 Gauge Invariance

Like the Schrödinger operator ( p +√
αA(x))2, the Dirac operatorDA in (10.1.1)

is gauge invariant. This means that for any function χ there exists a unitary
operator U (χ ) such that

DA+∇χ = U (χ )DAU (χ )†.

In fact, U (χ ) is the multiplication operator ei
√
αχ(x) ⊗ IC4 . In particular, the

spectrum of DA does not change when the gradient of an arbitrary function is
added to the vector potential A, but the spectral subspaces do change. Note that
χ does not affect the magnetic field B, since curl ∇χ = 0.

One possible choice of gauge is div A(x) = 0. The following lemma shows
that if the magnetic field energy is finite, one can always find an A such that
curl A = B and div A = 0. In addition, A can be chosen to go to zero at infinity
in a weak sense; more precisely A ∈ L6(R3). These questions were touched
upon in Chapter 2, Section 2.1.2.

Lemma 10.1 (Coulomb Gauge). Assume that the vector field B is in
L2(R3; R

3), i.e., Emag(B) < ∞, and assume that div B(x) = 0 (in the sense
of distributions). Then there exists a unique A ∈ L6(R3; R

3) such that

curl A(x) = B(x) and div A(x) = 0 (10.1.9)

(again, in the sense of distributions).

Proof. If B̂(k) denotes the Fourier transform of B(x), we can take Â(k) =
(2πi|k|2)−1k ∧ B̂(k). Note that k · B̂(k) = 0 since div B = 0, whence (2πik) ∧
Â(k) = B̂(k), which is the same as saying that curl A(x) = B(x). Moreover,
k · Â(k) = 0, meaning that div A(x) = 0. Hence |k| Â(k) ∈ L2.

Sobolev’s inequality (2.2.4) will imply that A ∈ L6(R3) if we can show that
A goes to zero at infinity, in the weak sense that the measure of the set Sμ = {x :
|A(x)| ≥ μ} is finite for everyμ > 0. For any ε > 0, f̂ ε(k) = Â(k)�(|k| − ε) is
in L2(R3), where � is the Heaviside step function defined in (6.6.4); moreover,
Â(k)�(ε − |k|) is in L1(R3) and its Fourier transform is uniformly bounded
by
∫
|k|≤ε | Â(k)|dk ≤ Cε1/2‖B‖2, using Schwarz’s inequality. Choose ε small

enough such that Cε1/2‖B‖2 < μ/2. Then Sμ ⊂ {x : | f ε(x)| ≥ μ/2}, which
has finite measure since f ε ∈ L2.

Finally, to show uniqueness, note that if both A1 and A2 satisfy (10.1.9),
their difference is curl-free and hence must be the gradient of a function χ .
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Since div A1 − div A2 = div ∇χ = �χ is zero, χ is a harmonic function. But
the only harmonic function whose gradient goes to zero at infinity is the constant
function, and hence A1 = A2.

The particular gauge given by (10.1.9) is called the Coulomb gauge. The
condition that A goes to zero at infinity fixes A uniquely. This gauge plays
a particular role in quantum electrodynamics, as we shall see in the next
chapter.

We denote the set of vector potentials in the Coulomb gauge with finite
magnetic field energy by A, i.e.,

A := {A ∈ L6, div A = 0, curl A ∈ L2
}
.

In the Coulomb gauge (10.1.9), the field energy (2.1.16) can alternatively be
expressed as

Emag(B) = 1

8π

∫
R3

|∇A(x)|2dx,

where |∇A(x)|2 is short for
∑3

i=1 |∇Ai(x)|2. This follows from the fact that
|∇A|2 = |div A|2 + |curl A|2.

10.2 Three Alternative Hilbert Spaces

The many-body Hamiltonian for relativistic electrons in a magnetic field is
formally given by

H =
N∑
i=1

DA,i + αVC(X, R) + Emag(B) (10.2.1)

in analogy with the non-relativistic case. The sophisticated reader will notice
that this theory is not really relativistic. To make such a theory one would
have to assign a four-dimensional space-time coordinate to each electron just
as we assign a three-dimensional coordinate in non-relativistic theory. While
there have been many attempts to construct such a multiple time formalism no
totally satisfactory model of this kind exists. The true solution, as it is currently
understood, lies in the formalism of quantum field theory, in which only fields
exist and particles are regarded as excitations of the field. Despite these concerns
we shall continue to pursue the question of the stability of the Hamiltonian
described by (10.2.1).
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Although it is not truly relativistic, the Hamiltonian (10.2.1) is used in one
form or another in practical calculations of energies of atoms and molecules,
and remarkably accurate results have been attained with its use. It can not be
taken literally without some modification, however, for reasons we shall now
explain.

Since H in (10.2.1) is not bounded from below, its ground state energy
(defined as in the non-relativistic case as the infimum of (ψ,Hψ)/(ψ,ψ) over
all ψ �= 0) is not a useful concept. For N = 1, i.e., the hydrogenic atom, the
spectrum of H consists of discrete eigenvalues in the interval (−m,m) together
with continuous spectrum in its complement (−∞,m] ∪ [m,∞). These discrete
eigenvalues can be interpreted as electron bound states; we shall discuss this
further in Section 10.3 below. For N ≥ 2, however, the spectrum of H consists
of the whole real line without gaps, and eigenvalues would not normally be
expected to exist. This was observed by Brown and Ravenhall in [23, 16], and
results from particles in the positive energy subspace of the Dirac operator
interacting with particles in the negative energy subspace.

There are several alternative ways of addressing the question of stability, three
of which we shall discuss here.

10.2.1 The Brown–Ravenhall Model

A solution of the problem addressed above, proposed by Brown and Ravenhall
[23] on the basis of perturbation theoretic considerations, is to allow the elec-
tron wave functions to live only in the positive energy subspace of the Dirac
operator D0. This is in accordance with Dirac’s original suggestion that the
negative energy states are completely filled with fermions, and hence, by the
Pauli principle, only the positive energy states are available to the electrons.4 If
�+

0 denotes the projection onto the positive spectral subspace of D0, the ground

4 The Brown–Ravenhall model is also sometimes called the ‘no pair’ model for the following
reason. A more accurate model would have additional terms in the dynamics that cause electrons
in the filled negative energy sea to move to the positive energy subspace. The resulting ‘hole’
in the sea is an electron ‘antiparticle’ called a ‘positron’ and this is identified, physically, as a
particle. Thus, the missing terms ‘create’ an electron–positron pair, but the creation of a pair,
even if it were included in the model, would require the expenditure of a relatively large energy
(2mc2). The absence of such pair production effects is a defect of the model, but it is regarded
as a minor defect in the world of quantum chemistry, where 2mc2 is very much larger than other
energies under consideration.
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state energy in the Brown–Ravenhall model is thus

E0 = inf

{
(ψ,Hψ) : ψ ∈

N∧[
�+

0 L
2(R3; C

4)
]
, ‖ψ‖2 = 1, A ∈ A

}
.

Here, we choose to minimize over vector potentials in the Coulomb gauge
div A = 0. Although this may seem arbitrary, it is important for the following
reasons. The Brown–Ravenhall model is not gauge-invariant, since a gauge
change can not be incorporated into the wave function in the usual way by
the replacement ψ(x) 	→ ei

√
αχ(x)ψ(x), for this would generally take the wave

function out of the space �+
0 L

2(R3; C
4). Therefore, the energy does depend on

the choice of gauge in this model. The condition div A = 0 (together with the
restriction that A vanishes weakly at infinity) seems natural here, since without
it E0 would simply be −∞. In fact, for any ψ the energy could be driven to −∞
by adding λ∇χ to A for a suitable χ such that (ψ,α · ∇χψ) �= 0 and letting
λ → ∞.

Even with the Coulomb gauge condition, it is not obvious that the Brown–
Ravenhall model is stable. Indeed it is not – at least not for large enough N

regardless of how small α might be. This will be discussed in Section 10.5
below. It turns out that the Coulomb potential VC is irrelevant for the instability!

10.2.2 A Modified Brown–Ravenhall Model

In order to define a gauge-invariant model and at the same time ensure that the
kinetic energy of the electrons is always positive, one can define the relevant
electron subspace to be the positive energy subspace of DA, not D0. That
is, the Hilbert space now depends on the choice of the vector potential. The
resulting model is now gauge invariant. Because of this gauge invariance, it is
not necessary to work in the Coulomb gauge.

For this modified Brown–Ravenhall model, the ground state energy is

E0 = inf

{
(ψ,Hψ) : ψ ∈

N∧[
�+

AL
2(R3; C

4)
]
, ‖ψ‖2 = 1,

∫
|curl A|2 < ∞

}
.

Here, �+
A denote the projection onto the positive energy subspace of DA, i.e.,

�+
A = (DA + |DA|)/(2|DA|). The infimum is taken over wave functions ψ and

vector potentials A.
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The reader might object to the fact that the electron’s Hilbert space depends
on the magnetic vector potential A, a situation that we have not encountered
before. This connection between A and the state of the electron is not unnatural,
however, if we interpret the field A as one that is generated by the electrons
themselves. From this perspective, the elementary object is not a bare electron
but an electron dressed with its magnetic field, which in some ways is more
natural. We will encounter this situation again in the next chapter on quantized
electromagnetic fields.

It turns out that the modified Brown–Ravenhall model is stable provided α

and Zα are both not too large. This will be proved in Section 10.4.

10.2.3 The Furry Picture

It is possible to go one step further and include not only the magnetic vector
potential in the definition of the relevant electron space but also the one-particle
part of the Coulomb potential VC , i.e., the interaction energy between the
electron and the nuclei. That is, the electron Hilbert space is now the positive
energy subspace of

DA −
M∑
j=1

Zjα

|x − Rj | . (10.2.2)

This is sometimes referred to as the Furry picture (after W. Furry [75]). This
choice trivially leads to stability, since there are no negative terms left in the
energy. If the operator (10.2.2) has eigenvalues ≤ 0, one may want to include
the corresponding L2 eigenfunctions in the electron space.

The Furry picture is often employed in calculations, and there is some justi-
fication for it [142, 176]. The Hilbert space now depends on the positions of the
nuclei, however, but these are usually regarded as macroscopically determined
parameters in the problem and should not, therefore, influence the fundamen-
tal Hilbert space of the microscopic particles in the system. Since stability is
automatically ensured in this model, we have no need to discuss it further.5

5 The stability problem has not completely disappeared, however, since one still has to be able to
define the operator (10.2.2). To do so one needs that Zjα ≤ 1 if all the Rj are distinct. Compare
with footnote 6 on page 191.
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10.3 The One-Particle Problem

Before discussing the general many-body problem, let us first investigate the
case of one electron in the three different pictures described in the previous
section. We start with considering a single particle in a magnetic field, and later
discuss the hydrogenic atom.

10.3.1 The Lonely Dirac Particle in a Magnetic Field

Consider a single electron in the presence of a magnetic field with vector potential
A. In the Brown–Ravenhall model discussed above, the question of stability
already arises in this simple system. In fact, we shall show that the question of
stability depends on the value of α.

Recall that H+
0 denotes the positive spectral subspace of D0 = α · p + βm.

Lemma 10.2 (Stability Criterion for a Single Particle). There is a finite
critical value of α, denoted by αc, with 3π 2−4/3 ≤ αc < ∞, such that

inf
ψ,A

{
(ψ,DAψ) + Emag(B) : ψ ∈ H+

0 , ‖ψ‖2 = 1, A ∈ A}
is finite for α < αc and −∞ for α > αc.

Proof. The fact that αc < ∞ follows from scaling. We cannot, in fact, scale ψ

directly since this would take us out of H+
0 (which depends on m in a non-trivial

way). The terms p, A and Emag(B) all behave like an inverse length under scaling;
only m is scale independent. We can, however, use the representation (10.1.6)
for ψ ∈ H+

0 and scale the corresponding u by λ−3/2u( p/λ). For any fixed u,
pick an A such that (ψ,α · Aψ) < 0 for all small m. Rescale u according to
u( p) → λ−3/2u( p/λ), A(x) → λA(λx), and let ψ be given by (10.1.6). Then,
for small enough λ, (ψ,DAψ) + Emag(B) will be negative for α large enough.
The energy can then be driven to −∞ by letting λ tend to +∞. Note that in
the limit of large λ, | p| becomes large and hence the m in (10.1.6) becomes
irrelevant.

To show that αc > 0, we first note that for ψ ∈ H+
0 ,

(ψ,D0ψ) =
∫
R3

√
(2πk)2 +m2|ψ̂(k)|2dk, (10.3.1)



190 Dirac Operator and the Brown–Ravenhall Model

where |ψ̂(k)| denotes the Euclidean C
4 norm of the C

4 vector ψ̂(k). This can
be seen by simply noting that D0 = �+

0 |D0|�+
0 −�−

0 |D0|�−
0 , with �±

0 the
projections onto H±

0 , and using the fact that |D0|2 = p2 +m2, see Eq. (10.1.4).
Using (10.3.1) and Sobolev’s inequality (2.2.12) we thus obtain

(ψ,D0ψ) ≥ S ′

⎛⎝ ∫
R3

|ψ(x)|3dx

⎞⎠2/3

,

with S ′ = (2π2)1/3. Moreover, since α · A(x) ≥ −|A(x)|,

(ψ,α · A(x)ψ) ≥ −
∫
R3

|A(x)||ψ(x)|2dx ≥ −‖A‖6‖ψ‖2
12/5 ≥ −‖A‖6‖ψ‖3‖ψ‖2,

where we have used Hölder’s inequality in the last two steps. Finally, again using
the Sobolev inequality, but this time Eq. (2.2.4) for | p|2 instead of Eq. (2.2.12)
for | p|,

Emag(B) = 1

8π

∫
R3

|∇A(x)|2dx ≥ 3

8

(π
4

)1/3
‖A‖2

6.

Using ‖ψ‖2 = 1, the energy is then bounded from below by

(ψ,DAψ) + Emag(B) ≥ (2π2)1/3‖ψ‖2
3 −√

α‖A‖6‖ψ‖3 + 3

8

(π
4

)1/3
‖A‖2

6,

which is positive for all ψ and A as long as α ≤ 3π 2−4/3.

In the modified Brown–Ravenhall model, where the electron Hilbert space is
the positive spectral subspace of DA instead of D0, stability of a single particle
is not an issue, of course.

10.3.2 The Hydrogenic Atom in a Magnetic Field

Consider one Dirac particle in the Coulomb field of a nucleus of charge Z.
For simplicity, we set A = 0 for the moment. The appropriate Hamiltonian
describing this system is

H = D0 − Zα

|x| .

There are two ways to proceed. One is to try to find the spectrum of H on
the full Hilbert space L2(R3; C

4). This can actually be done explicitly, see,
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e.g., [16]. As long as Zα ≤ 1, one finds that there are discrete eigenvalues in the
interval [0,m), and these look very much like the spectrum of the non-relativistic
hydrogen problem with Hamiltonian −(1/2)�− Zα|x|−1, but shifted upward
by m. In addition, there is continuous spectrum on (−∞,m] ∪ [m,∞).6 As
long as Zα ≤ 1, there is no need to make an a priori restriction of the allowed
function space to the positive spectral subspace of D0. This is the approach
usually taken in the analysis of one-electron atoms. It corresponds to the Furry
picture discussed above. It has the conceptual disadvantage that the relevant
Hilbert space changes when someone moves a nucleus (although it has to be
admitted that many people do not regard this as a problem). The main point here
is that there is no simple variational (i.e., energy minimization) principle for H .
Even for the simple hydrogen atom with Zα ≤ 1 the ground state energy can
not be found by minimizing (ψ,H ψ) but only by an exact calculation of the
spectrum of H .7

An alternative approach is to consider the Brown–Ravenhall model, where
one restricts the allowed wave functions to the positive energy subspace of D0.
In this way, one has a variational principle for the ground state energy. Although
the spectrum of hydrogenic atoms does not come out quite as accurate as in the
first approach, the latter is much more suitable for an analysis of the stability of
matter. As a warm-up, let us apply this approach to hydrogenic atoms. That is,
we are looking for

E0 = inf
ψ∈H+

0 , ‖ψ‖2=1

[
(ψ,D0ψ) − Zα(ψ, |x|−1ψ)

]
. (10.3.2)

Lemma 10.3 (Stability of Hydrogen). There is a critical (Zα)c, with 2/π ≤
(Zα)c ≤ 4/π , such that E0 in (10.3.2) satisfies E0 > −∞ for Zα < (Zα)c and
E0 = −∞ for Zα > (Zα)c.

The value of the critical Zα can actually be computed explicitly. It is given
by (Zα)c = 2/(π/2 + 2/π ). Note that this number is bigger than 2/π but less

6 As long as Zα ≤ 1, H can be defined as a self-adjoint operator on a natural domain containing
all infinitely differentiable functions of compact support, as was recently proved by Esteban
and Loss [53]. Self-adjointness fails for Zα > 1. The existence of a critical value of Zα for
the Dirac Hamiltonian is analogous to the case of | p| discussed in Chapter 8 where the critical
value of Zα was 2/π .

7 In the one-particle case, there are min-max principles for the eigenvalues of the Dirac operator
in the interval (−m,m). See [80, 52].
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than 1. The computation of (Zα)c was a challenging problem which was solved
by Evans, Perry and Siedentop in [54]. Improved bounds on the energy were
later given in [181], and a generalization to the case of one-electron molecules
is in [5].

Proof. The fact that E0 is bounded from below as long as Zα ≤ 2/π follows
immediately from Lemma 8.2 in Chapter 8, together with the observation in
Eq. (10.3.1) that D0 acts as multiplication by

√
(2πk)2 +m2 on the Fourier

transform of functions in H+
0 .

Consider now the case Zα > 4/π . For any E < 0, we can find a function
ψ ∈ L2(R3; C

4) with ‖ψ‖2 = 1 such that

(ψ, |D0|ψ) − Zα

2
(ψ, |x|−1ψ) < E.

This follows again from Lemma 8.2 in Chapter 8, where it was shown that 2/π
is the critical coupling constant for stability of | p| − Zα|x|−1. Let ψ± denote
the projection of ψ onto H±

0 . We note that ‖ψ±‖2 ≤ 1. Then (ψ, |D0|ψ) =
(ψ+, |D0|ψ+) + (ψ−, |D0|ψ−) and, by Schwarz’s inequality,

(ψ, |x|−1ψ) ≤ 2(ψ+, |x|−1ψ+) + 2(ψ−, |x|−1ψ−).

We thus conclude that

(ψ+, |D0| − Zα|x|−1ψ+) + (ψ−, |D0| − Zα|x|−1ψ−) < E.

One of the terms on the left side has to be less than E/2. Without loss of
generality, we can assume it is the first term; if not, simply replace ψ by Uψ

with U given in (10.1.5) in order to exchange ψ+ and ψ−. Since E was arbitrary,
this shows instability for Zα > 4/π .

In combination, the results of this and the previous subsection imply the
following lemma concerning hydrogenic atoms in magnetic fields.

Lemma 10.4 (Hydrogen in a Magnetic Field). For both α and Zα small
enough,

inf
ψ,A

{
(ψ,DAψ) − Zα(ψ, |x|−1ψ) + Emag(B) : ψ ∈ H+

0 , ‖ψ‖2 = 1, A ∈ A}
(10.3.3)

is finite. If either α or Zα is too large, it is −∞.

We shall not trouble the reader at this point with precise estimates on the
critical parameters for the single electron but will turn our attention to the
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many-body problem instead. It will turn out that the Brown–Ravenhall model,
as defined using the positive spectral subspace of D0, is inherently unstable of
the first kind! This result is not unexpected since there is no positivity condition
available to control the N terms

∑
j αj · A(xj ). Historically, the instability was

first proved in [127] with the aid of the negative potential generated by M nuclei,
with M � 1. It was later realized by Griesemer and Tix [81] that the nuclei were
not needed! The αj · A(xj ) terms alone can cause collapse if N is large enough.
This analysis will be summarized in Section 10.5.

The modified Brown–Ravenhall model, where the electron Hilbert space is
defined as the positive spectral subspace of DA, turns out to be stable for α and
Zα small enough. We shall show this in the next section.

10.4 Stability of the Modified Brown–Ravenhall Model

The Hamiltonian for N electrons is

H =
N∑
i=1

DA,i + αVC(X, R) + Emag(B), (10.4.1)

withDA defined in (10.1.1) andVC the total Coulomb potential given in (2.1.21).
Let �+

A denote the projection onto the positive spectral subspace of DA, and let
H+

A = �+
AL

2(R3; C
4) denote the corresponding subspace. For N electrons, the

relevant Hilbert space is now

H =
N∧
i=1

H+
A

and the ground state energy is

E0 = inf
ψ,A

{(ψ,Hψ) : ψ ∈ H, ‖ψ‖2 = 1, A ∈ A} . (10.4.2)

As in the previous chapter, we could allow for spin degrees of freedom in
addition to the 4 naturally present in the one-particle space L2(R3; C

4), but we
shall refrain from doing so for simplicity. The choice of the Coulomb gauge,
i.e., div A = 0, in A is not important because of gauge invariance, which holds
in this model but which does not hold if one considers the positive spectral
subspace of D0 as the one-particle subspace, instead of the one of DA, as we do
here.
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The following theorem was proved by Lieb, Siedentop and Solovej in [127].

Theorem 10.1 (Stability of the Modified Brown–Ravenhall Model). Let
κ(q, Z) be given by

1

κ(q, Z)
= Zπ

2
+ 2.26 q1/3Z2/3 + 1.03 q1/3. (10.4.3)

Then E0 in (10.4.2) is non-negative for all N and M and nuclear positions
R1, . . . , RM as long as α < κ(2, Z) and

0.137α

(
1 − α2

κ(2, Z)2

)−3/2

≤ 1

8π
(10.4.4)

For the physical value of α ≈ 1/137, this proves stability for all Z ≤ 56.
For Z = 1, on the other hand, stability holds for all α ≤ 0.117. It is still an
open problem to show that stability holds up to the expected critical value
Z = 2α−1/(2/π + π/2) ≈ 124 for the physical value of α. A proof that stability
holds up to Z = 88 is given in [91].

The quantity κ(q, Z) in (10.4.3) is the same as in (9.5.2) in the previous chapter
and it is the lower bound on the critical value of α for stability of relativistic
matter obtained in Chapter 8, Theorem 8.1. As in the previous chapter on the
Pauli operator, that theorem will play a crucial role in the proof of Theorem 10.1.

The following proof follows [127] closely.

Proof. As in the proof of Theorem 9.2 in the previous Chapter 9, the first step
is to use the relativistic stability of matter, which states that

VC(X, R) ≥ −1

κ

N∑
i=1

| pi +
√
αA(xi)|

for all κ ≤ κ(q, Z) defined in (10.4.3). A priori, one might think that q = 4
here, but it is actually enough to use q = 2. This can be seen by the following
argument, which is due to M. Loss and is given in [127, Appendix B]. It turns
out that the spin-summed one-particle density matrix γ̊ (1) of any ψ ∈ H, defined
in (3.1.32), is bounded by 2 and not only by 4 as one might naively think. In fact,
since the unitary U in (10.1.5) maps the positive spectral subspace of DA to the
negative spectral subspace (and vice versa), the one-particle density matrix γ (1)

of ψ satisfies γ (1) + Uγ
(1)
ψ U † ≤ I, and hence

γ̊ (1) = Tr C4γ (1) = 1

2
Tr C4

(
γ (1) + Uγ (1)U †

)
≤ 2.
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The only place q enters in the proof of Theorem 8.1 on relativistic stability is
via the kinetic energy inequality in Corollary 4.1, which depends on the largest
eigenvalue of the spin-summed one-particle density matrix γ̊ (1). Since this largest
eigenvalue is bounded by 2 in the present case, the effective q is thus 2 and
not 4.

In this way, our stability problem reduces to finding a bound on the sum of
the negative eigenvalues of the one-particle operator

h = �+
A

(
DA − α

κ
| p +√

αA|
)
�+

A = �+
AS�

+
A,

where we denote

S = |DA| − α

κ
| p +√

αA|.

Like any self-adjoint operator, S can be decomposed into its positive and negative
parts. That is, it can be written as S = S+ − S−, with S± positive operators, and
S+S− = S−S+ = 0. If we neglect the positive part S+, the sum of the negative
eigenvalues of �+

AS�
+
A will only decrease, and hence

Tr h− ≤ Tr�+
AS−�+

A.

Note that USU † = S, with U given in (10.1.5). Hence also US−U † = S−.
Moreover, since U�+

AU
† = �−

A = I −�+
A, we have

Tr�+
AS−�+

A = 1

2
Tr S−.

The next step is to use the BKS inequality, Theorem 9.4. It implies that

Tr S− = Tr
[
|DA| − α

κ
| p +√

αA|
]
−
≤ Tr

[
|DA|2 − α2

κ2
| p +√

αA|2
]1/2

−
.

Recall that |DA|2 = [σ · ( p +√
αA)]2 +m2 = ( p +√

αA)2 +√
ασ · B +

m2. For an upper bound on the square root of the negative eigenvalues, we
can use m2 ≥ 0 as well as σ · B(x) ≥ −|B(x)|. Hence

Tr

[
|DA|2 − α2

κ2
| p +√

αA|2
]1/2

−

≤ Tr

[(
1 − α2

κ2

)
| p +√

αA|2 −√
α|B(x)|

]1/2

−
.



196 Dirac Operator and the Brown–Ravenhall Model

The LT inequality, Theorem 4.1 for γ = 1/2, implies that the latter trace is
bounded from above by

Tr

[(
1 − α2

κ2

)
| p +√

αA|2 −√
α|B(x)|

]1/2

−

≤ 4α

(
1 − α2

κ2

)−3/2

L1/2,3

∫
R3

|B(x)|2dx.

(The factor 4 comes from the C
4 part of the trace.)

Recall that we still have the positive magnetic field energy at our disposal,
namely (8π )−1

∫
R3 |B(x)|2dx. Non-negativity of the ground state energyE0 thus

holds as long as

2α

(
1 − α2

κ2

)−3/2

L1/2,3 ≤ 1

8π
.

As explained in Chapter 4,L1/2,3 ≤ 0.0683. Inserting this bound forL1/2,3 yields
(10.4.4).

10.5 Instability of the Original Brown–Ravenhall Model

In the previous section, we showed that the modified (gauge-invariant) Brown–
Ravenhall model is indeed stable of the second kind, if α is sufficiently small
(independent of N ). The original Brown–Ravenhall model, in contrast, is not
even stable of the first kind, as we shall see in this section.

As in the previous examples of instability, it was originally thought that the
negative part of the Coulomb interaction energy was necessary for instability
of the first kind [127]. Later it was realized by Griesemer and Tix [81] that the
nuclei were not needed. The instability is solely caused by the interaction of the
electrons with the magnetic field, that is, by the α · A term in the Dirac operator.
What they showed is the following.

Theorem 10.2 (Instability of the First Kind for the Original Brown–Raven-
hall Model). There is a constant C > 0, independent of m, N and α, such
that

inf
ψ,A

{(
ψ,

N∑
i=1

DA,i ψ

)
+ Emag(B) : ψ ∈

N∧
i=1

H+
0 , ‖ψ‖ = 1, A ∈ A

}
= −∞

as long as Nα3/2 ≥ C.
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In particular, the original Brown–Ravenhall model is unstable for any α > 0
and N large enough. This is true also with the inclusion of the Coulomb energy
VC , but we shall not consider this case here. The following proof of Theorem 10.2
is inspired by [81]. We shall be brief at some points and resist the temptation of
giving an estimate of the constant C. It was shown in [81] that C < 1.4 × 105.

Proof. The first point to note is that we can set m = 0. As discussed in the proof
of Lemma 10.2, it suffices to find a ψ ∈∧N H+

0 (for m = 0) and an A ∈ A
such that (ψ,

∑N
i=1 DA ψ) + Emag(B) < 0. The energy (with the m) can then be

driven to −∞ by scaling, since all the terms in the energy (except for m) scale
like an inverse length.

The strategy now is to find N orthonormal functions in H+
0 such that the

kinetic energy of the corresponding Slater determinant (defined in Chapter 3,
Section 3.1.3) has a kinetic energy proportional to N4/3, which is what would
be expected from semiclassics of relativistic electrons in a box of size 1 (see
Chapter 4, Section 4.1.1). Moreover, one tries to find a fixed A (independent of
N ) so that the expected value of

∑
j αj · A(xj ) is order N . The field energy is

then fixed, independent of N . If we multiply the chosen vector potentials A by
λ, the total energy is thus of the order N4/3 − const λ

√
αN + const λ2. With the

choice λ = c
√
αN for an appropriate c > 0, this becomes N4/3 − constαN2,

which is negative for α3/2N large enough, as claimed.
A possible choice is the following. Consider one-particle wave functions in

H+
0 of the form

φ =
(

u
σ · p
| p| u

)
,

where u(x, σ ) = f (x)δσ,1. We choose N orthonormal functions fn ∈ L2(R3) to
be theN lowest eigenfunctions of the Dirichlet Laplacian in a cubic box of length
1, multiplied by a factor ei� ·x for some � ∈ R

3. We assume that ‖fn‖2 = 1/2,
so that the corresponding φ’s are normalized to 1. The kinetic energy of the
Slater-determinant made up of these N functions is of the order N4/3 + |� |N .

The vector potential A we choose is one that is constant (in the z-direction)
inside the unit cube, and appropriately defined outside the unit cube so as to
make it divergence free and have finite magnetic field energy.8 The contribution

8 One way to imagine such a field is to consider a finite circular pipe though which water is
flowing, in such a way that the velocity field close to the portion near the central axis has a
constant magnitude and then decays smoothly to zero towards the boundary of the pipe. The
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of
∑

j αj · A(xj ) is then

2a
N∑
n=1

∫
R3

|f̂n( p)|2 p
3

| p|d p (10.5.1)

where a denotes the magnitude of A inside the unit cube. The expression
2
∑N

n=1 |f̂n( p)|2 is just the momentum distribution of the system which, for
large N , is approximately given by �(( p − � )/N1/3) for some fixed � with∫
�( p)d p = 1. If we choose |� |, which is at our disposal, to be equal to a large

number times N1/3, (10.5.1) is of the order aN , as desired. This concludes the
implementation of our strategy outlined above, and thus the proof.

10.6 The Non-Relativistic Limit and the Pauli Operator

The Hamiltonian with the Pauli kinetic energy considered in Chapter 9 is said
to be the non-relativistic limit of the models considered in this chapter. ‘Non-
relativistic limit’ in our units means that we let m → ∞ with fixed α. We shall
consider this limit in the three Hilbert spaces discussed in Section 10.2.

� The Furry Picture. For one particle in an external potential V , the Furry
picture simply means that we are looking at the positive spectrum of the full
Dirac operator DA + V . We look for a solution of the Schrödinger equation
(DA + V − E)ψ = 0, with ψ ∈ L2(R3; C

4). If we write

ψ(x) =
(
u(x)
�(x)

)
(10.6.1)

for u, � ∈ L2(R3; C
2), this equation becomes

σ · ( p +√
αA)�+ V u = (E −m)u

σ · ( p +√
αA)u+ V � = (E +m)�. (10.6.2)

For energiesE ≈ m+O(1) (for hydrogen,E ≈ m(1 − 10−5)), we can ignore
the term V � in the second equation for large m, and thereby obtain � ≈

velocity field of the water will be our A field. Now we bend the pipe into a torus, but keeping
part of it unbent. If the unit cube is inside the unbent part, the velocity field inside it will be
uniform, as desired.
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σ · ( p +√
αA)u/(2m). Inserting this into the first equation yields

1

2m

[
σ · ( p +√

αA)
]2
u+ V u = (E −m)u, (10.6.3)

which is the Schrödinger equation with the Pauli kinetic energy. For a precise
mathematical analysis in terms of convergence of the operators in resolvent
sense (and also higher order corrections) we refer to Thaller’s treatise [177,
Chapter 6].

� The Original Brown–Ravenhall Model. For large m, the lower component
of the wave function in the positive spectral subspace of D0 is related to
the upper one simply by � ≈ σ · pu/(2m), see Eq. (10.1.6). For functions
in the positive spectral subspace of D0, the Dirac operator D0 simply acts
as
√

p2 +m2 ≈ m+ p2/(2m). Hence (ψ,D0ψ) ≈ (u,m+ p2/(2m) u). The
expectation value of α · A in (10.6.1) equals

1

2m
(u, [(σ · p)(σ · A) + (σ · A)(σ · p)] u)

in this case. A simple computation shows that (σ · p)(σ · A) + (σ · A)
(σ · p) = p · A + A · p + σ · B. Hence we recover all the terms in the Pauli
operator, except for αA2/(2m).

The conclusion is that we recover the Pauli–Fierz model (discussed in the
footnote on page 21) as the non-relativistic limit of the Brown–Ravenhall
model, and not the true (gauge-invariant) Pauli kinetic energy. This defect is
closely related to the instability of the Brown–Ravenhall model discussed in
this chapter.

� The Modified Brown–Ravenhall Model. On the positive spectral subspace
of DA, the Pauli operator DA acts as |DA| =

√
[σ · ( p +√

αA)]2 +m2 ≈
m+ [σ · ( p +√

αA)]2/(2m). Hence we immediately recover the full Pauli
operator (10.6.3) in the large m limit of the modified model, thus remedying
the defect just mentioned.
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Quantized Electromagnetic Fields and
Stability of Matter

So far we have treated the magnetic field B as a (classical) external field, with
an energy Emag(B) = (8π )−1

∫ |B(x)|2dx. We would now like to broaden our
horizon and treat the electromagnetic field in its proper role as a dynamical
quantity. Moreover, we would like to go even further and quantize this field in
the canonical way, which will automatically give us the quantization of light, as
discovered by Planck in 1900 [149]. The Hilbert space for this revised quantum
mechanics will be larger than the L2 spaces considered before, and will involve
Fock space. The stability of matter questions will become more complicated in
some ways and will have to be revisited.

The ultimate version of quantum electrodynamics is even more complicated.
The number of electrons is not fixed, but fluctuates. Electrons are defined by
a quantized field and can be created and destroyed. We shall not venture into
this realm, however, and will continue to regard the electron number N as
fixed.

We begin with a review of electromagnetism, which the knowledgeable
reader can safely skip. A good reference for further details is Spohn’s treatise
[174].

11.1 Review of Classical Electrodynamics and its Quantization

11.1.1 Maxwell’s Equations

In classical electromagnetic theory, the interaction of charged particles is medi-
ated by fields, which is to say (possibly time-dependent) functions on R

3. There
are six in fact, consisting of two (three component) vector fields E(x) and B(x),
the electric field and the magnetic field. These satisfy the following equations,
known as Maxwell’s equations. With the notation ∂f (x, t)/∂t = ḟ (x, t), they

200
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are

div E = 4π� curl B = 4π j + Ė (11.1.1)

div B = 0 curl E = −Ḃ. (11.1.2)

The two equations (11.1.1) are the inhomogeneous Maxwell equations and the
two equations (11.1.2) are the homogeneous Maxwell equations. The function
� is the charge density and the vector-valued function j is the electric current
density. The two are related by the continuity equation

�̇ + div j = 0, (11.1.3)

which expresses the conservation of charge, that is, the fact that the total charge
is independent of time. If (11.1.3) did not hold, Maxwell’s equation would be
inconsistent because 4π�̇ = div Ė = −4π div j , since div curl B = 0. In our
case, the charges are point charges of electrons and nuclei, so � is a sum of δ
functions,

�( y) =
∑
i

Qiδ( y − xi) and j ( y) =
∑
i

Qi ẋiδ( y − xi), (11.1.4)

where Qi denotes the charge of particle i. Maxwell’s equations have to be
understood in the distributional sense (see [118]).

The fields E and B are generated by the moving charges xi(t), according to
(11.1.1). In turn, they yield the electromagnetic forces on the particles, which
are

Fi = Qi [E(xi , t) + ẋi ∧ B(xi , t)]. (11.1.5)

(The force on the particles is really ill-defined because of the self-interaction of
the particles, i.e., the interacting of a particle with the field it creates. One can
get around this difficulty by imagining the point charge to be smeared out a bit,
but we shall ignore this problem for the moment.)

The homogeneous Maxwell equations (11.1.2) are constraints on the possible
values of the fields which imply that the fields can be described economically
by introducing potentials. More precisely, for a scalar (real-valued) potential
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φ(x, t) and a vector potential A(x, t), we can define

E(x, t) = −∇φ(x, t) − Ȧ(x, t), B(x, t) = curl A(x, t),

(11.1.6)

and observe that Eqs. (11.1.2) are automatically satisfied. All fields E and B
satisfying (11.1.2) can be written in this way. This follows from the fact that any
divergence-free vector field can be written as a curl, and every curl-free vector
field as a gradient. The equations (11.1.1) become

−�φ − div Ȧ = 4π� (11.1.7)

and

∇ div A −�A + Ä = 4π j − ∇φ̇. (11.1.8)

Note that E and B do not determine A and φ uniquely. In fact, there is a huge
freedom in choosing the potentials. Namely, if A and φ are potentials giving rise
to fields E and B via (11.1.6), so do

A′(x, t) = A(x, t) −∇χ (x, t), φ′(x, t) = φ(x, t) + χ̇ (x, t) (11.1.9)

for an arbitrary function χ . One can thus impose restrictions on the potentials in
order to remove this ambiguity. Such restrictions are called gauge conditions.

Maxwell’s equations (11.1.7) and (11.1.8) simplify considerably in the
Coulomb gauge where div A = 0 for all times (compare with Section 10.1.1).
There is always a choice of A satisfying this gauge condition. Namely, for gen-
eral A and φ define χ by �χ = div A. Then obviously A′ and φ′ in (11.1.9)
give rise to the same fields E and B, and div A′ = 0 for all times.

In Coulomb gauge, the equations (11.1.7) and (11.1.8) become

−�φ = 4π� (11.1.10)

and

−�A + Ä = 4π j − ∇φ̇. (11.1.11)

The scalar potential φ is thus given by the instantaneous Coulomb potential

φ(x, t) =
∫
R3

�( y, t)
|x − y|d y. (11.1.12)
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Using the continuity equation (11.1.3), we see that

4π j − ∇φ̇ = 4π P j (11.1.13)

where P denotes the projection onto divergence-free vector fields. Explicitly,(
P j
)
(x, t) = j (x, t) + 1

4π
∇
∫
R3

div j ( y, t)
|x − y| d y (11.1.14)

or, in momentum space,

(
P̂ j
)i

(k, t) =
3∑

l=1

(
δil − kikl

|k|2
)
ĵ l(k, t). (11.1.15)

To summarize, in Coulomb gauge the scalar potential φ is explicitly given
by (11.1.12), and the vector potential A satisfies the equation

−�A + Ä = 4π P j . (11.1.16)

The fields E and B are given in terms of these potentials by (11.1.6).
Equation (11.1.16) can be interpreted as the evolution equation of coupled

harmonic oscillators, at each point x, driven by an external force. These harmonic
oscillators are decoupled in Fourier space, where (11.1.16) becomes

¨̂A(k, t) + |2πk|2 Â(k, t) = 4π P̂ j (k, t). (11.1.17)

For every k, this represents an independent harmonic oscillator with frequency
|k| (or angular frequency 2π |k|). Later on we shall quantize these harmonic
oscillators in the canonical way thus leading to Planck’s 1900 law [149], which
equates the energy of a photon of frequency 2π |k| with the excitation energy of
the corresponding harmonic oscillator. Note that the Coulomb gauge condition
becomes k· Â(k, t) = 0 in momentum space. That is, Â is perpendicular to the
direction of k. In particular, for each k there are only 2 independent degrees of
freedom, transverse to the direction of propagation k.

The electromagnetic field energy equals

1

8π

∫
R3

(
E(x, t)2 + B(x, t)2

)
dx. (11.1.18)
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This is the amount of work against the forces (11.1.5) to take well separated
massless infinitesimal charges at rest and bring them into the stated conditions of
position and velocity at time t . Using (11.1.6) and the Coulomb gauge div A = 0,
this energy, (11.1.18), becomes

1

8π

∫
R3

(
Ȧ(x, t)2 + (curl A(x, t))2) dx +D(�, �)

= 1

8π

∫
R3

(
˙̂A(k, t)2 + |2πk|2 Â(k, t)2

)
dk +D(�, �), (11.1.19)

where D(�, �) is the self-energy of the charge distribution �, as defined in
(5.1.4). The mixed term

∫ ∇φ · Ȧ disappeared by integrating by parts and using
the Coulomb gauge condition. If we want to interpret (11.1.17) as the equation
of motion of a harmonic oscillator of angular frequency 2π |k| and energy
given by the integrand in (11.1.19), then we have to identify (4π )−1 ˙̂A(k, t)
as the ‘momentum’ corresponding to the ‘position’ coordinate Â(k, t).1 The
electromagnetic field energy can thus be thought of as the energy of independent
harmonic oscillators, two for every momentum k corresponding to the two
transverse degrees of freedom.

11.1.2 Lagrangian and Hamiltonian of the Electromagnetic Field

The analogy with the harmonic oscillators suggests a way to derive a Hamiltonian
description of the electromagnetic field, and ultimately for the field plus the
matter. To do this systematically, we follow the standard route of first starting
with the Lagrangian point of view. With E and B given as in (11.1.6), the
Lagrangian is

L(φ, A, Ȧ) =
∫
R3

[
1

8π

(
E(x, t)2 − B(x, t)2

)
+ j (x, t) · A(x, t) − �(x)φ(x)

]
dx. (11.1.20)

1 This is not to be confused with the momentum of the electromagnetic field, which is proportional
to Poynting’s vector E ∧ B. The words ‘momentum’ and ‘position’ are used here merely to
make an analogy with an oscillating spring.
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It can be readily checked that the Euler–Lagrange equations for this Lagrangian
yield (11.1.1). While L involves the time derivative of one of the variables, A,
as it should, it does not involve involve the time derivative of the other variable,
φ. Consequently the Euler–Lagrange equation for φ is really just a constraint
equation, given by

−div
(
Ȧ + ∇φ

) = 4π�, (11.1.21)

which is the same as (11.1.7).
As already mentioned in the previous subsection, there is still some ambiguity

in the choice of A and, at this point, it is convenient to work in the Coulomb
gauge div A = 0. In particular, div Ȧ = 0, and hence Eq. (11.1.21) becomes
�φ = −4π�. The scalar potential φ is thus given by the instantaneous Coulomb
potential (11.1.12). Eliminating φ from the Lagrangian (11.1.20) with the aid of
(11.1.12) and again using div A = 0, the Lagrangian becomes

L(A, Ȧ) =
∫
R3

[
1

8π

(
Ȧ(x, t)2 − B(x, t)2

)+ j (x, t) · A(x, t)
]

dx −D(�, �).

(11.1.22)

The last expression is just the (instantaneous) electrostatic energy of the charge
distribution �. In case � is the sum of δ functions, as in (11.1.4), this energy is
really infinite owing to the infinite self-energy of a point charge. After subtracting
this infinite self-energy, the electrostatic energy becomes∑

i<j

QiQj

|xi − xj | . (11.1.23)

The scalar potential φ has thus been eliminated from the problem, and A is
the only dynamical variable. The canonically conjugate momentum to A is

Π = δL
δ Ȧ

= 1

4π
Ȧ.

The Hamiltonian corresponding to the Lagrangian L reads

H (A, Π) =
∫
R3

[
2π Π(x, t)2 + 1

8π
B(x, t)2− j (x, t) · A(x, t)

]
dx +D(�, �).

(11.1.24)

In particular, we recover the magnetic field energy Emag(B) = (8π )−1∫
R3 B(x)2dx. The reason that the additional Π2 term has not appeared so far is



206 Quantized Electromagnetic Fields

that we were always interested in minimizing the total energy, and for that pur-
pose one can set Π = 0, classically. This is analogous to minimizing p2 + V (x),
in which case V (x) is minimized and p = 0. When the field is quantized, it will
be important not to drop the Π2 term, as we shall see, just as it is important not
to drop the p2 term when minimizing the Schrödinger energy p2 + V (x). The
last term in (11.1.24) is the electrostatic energy in (11.1.23), after subtracting
the infinite self-energy.

This Hamiltonian description of the electromagnetic field and its interaction
with charges and currents is manifestly not relativistically invariant. It has to be
recomputed after each Lorentz transformation. Nevertheless, it seems to be the
only way to give a Hamiltonian formulation of the fields and their energies. It is
used, as we said, in actual calculations of the spectra of atoms and molecules.

There does exist a relativistically invariant formulation using the ‘Lorentz
gauge’ instead of the Coulomb gauge, in which φ(x) appears in addition to
A(x). In the Lorentz gauge there are constraints between φ and A, however,
which makes the theory complicated, especially when an attempt is made to
quantize it. Nevertheless, the Lorentz gauge is the most convenient one to use
for the perturbation-theoretic treatment of scattering of particles. The Coulomb
gauge is convenient for bound state problems, especially the calculation of the
ground state energy. A good discussion of the relationship of the two gauges
can be found in Heitler’s book [87, Chapter 1, see §6]. An early article that
established the importance of the Hamiltonian in the Coulomb gauge is Fermi’s
[63].

In the Coulomb gauge, which we use here, the div A = 0 condition means that
A is constrained to be transversal (meaning that in Fourier space k · Â(k) = 0
for every k). Hence there are only 2 degrees of freedom (the two transverse
polarization vectors) at each k point. The same applies to Π(x). Consequently,
since both A and Π are real-valued, we can represent them in terms of a complex
valued function a(k, λ) as

A(x) =
2∑

λ=1

∫
R3

1√|k| ελ(k)
(
e2πik·xa(k, λ) + e−2πik·xa(k, λ)

)
dk (11.1.25)

Π(x) = − i

2

2∑
λ=1

∫
R3

√
|k| ελ(k)

(
e2πik·xa(k, λ) − e−2πik·xa(k, λ)

)
dk.

(11.1.26)
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The polarization vectors ε1(k) and ε2(k) are orthonormal and orthogonal to k,
i.e., ελ(k) · k = 0. Their choice is not unique, of course. They can not be chosen
to be continuous functions of k, however (because one cannot ‘comb the hair on
a sphere’).2 In terms of this complex valued function a(k, λ), the magnetic field
B = curl A is expressed as

B(x) =
2∑

λ=1

∫
R3

2πi√|k|k ∧ ελ(k)
(
e2πik·xa(k, λ) − e−2πik·xa(k, λ)

)
dk.

(11.1.27)

It is convenient to factor out the terms 1/
√|k| and

√|k| in the integrands in
(11.1.25) and (11.1.26), respectively, since the field energy can then be simply
written as∫

R3

[
2π Π(x, t)2 + 1

8π
B(x, t)2

]
dx =

2∑
λ=1

∫
R3

2π |k||a(k, λ)|2dk. (11.1.28)

The fact that Π and A are canonically conjugate variables implies that the
Poisson brackets between a(k, λ) and a(k, λ) are given by

{a(k, λ), a(k′, λ′)} = δλλ′δ(k − k′)

{a(k, λ), a(k′, λ′)} = {a(k, λ), a(k′, λ′)} = 0. (11.1.29)

11.1.3 Quantization of the Electromagnetic Field

We now follow the standard rules of quantization. The canonical variables a(k, λ)
and a(k, λ) become operators a(k, λ) and a†(k, λ) on a Hilbert space, satisfying
the canonical commutation relations

[a(k, λ), a†(k′, λ′)] = δλλ′δ(k − k′)

[a(k, λ), a(k′, λ′)] = [a†(k, λ), a†(k′, λ′)] = 0. (11.1.30)

Also A and Π become operators on this Hilbert space. They are still given
by (11.1.25) and (11.1.26), with the functions a(k, λ) and a(k, λ) replaced
by the corresponding operators a(k, λ) and a†(k, λ), respectively. A natural

2 The lack of continuity can lead to spurious technical problems. One way to restore continuity
is to make use of an artificial third component ε3(k). See [73, 120].
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representation is in terms of Fock space [67]. It is given by

F =
⊕
N≥0

L2(R3; C
2)⊗

N
S

where L2(R3; C
2)⊗

N
S stands for the N -fold symmetric tensor product of

L2(R3; C
2), i.e., the totally symmetric square integrable functions of N vari-

ables. The sum runs over all non-negative integers N , which are interpreted as
photon numbers. For N = 0, L2(R3; C

2)⊗
0
S = C by definition. The correspond-

ing vector is called the vacuum, denoted by �. It is annihilated by all the a(k, λ),
that is,

a(k, λ)� = 0 for all k ∈ R
3 and λ ∈ {1, 2}.

A vector in F can be thought of as a sequence of functions

� = {ψ0 ∈ C, ψ1(k, λ), ψ2(k1, λ1, k2, λ2), . . . }.
The inner product on F is then

(�,�) =
∞∑

N=0

(φN,ψN ).

The annihilation operator a(k, λ) maps a function of N variables to a function
of N − 1 variables. Explicitly,(
a(k, λ)ψN

)
(k1, λ, . . . , kN−1, λN−1) =

√
NψN (k1, λ1, . . . , kN−1, λN−1, k, λ).

Their adjoints are called the creation operators, which act as(
a†(k, λ)ψN

)
(k1, λ1, . . . , kN+1, λN+1)

= √
N + 1S ψN (k1, λ1, . . . , kN, λN )δ(kN+1 − k)δλN+1λ

where S stands for the symmetrization operator, i.e.,

Sf (k1, λ1, . . . , kN, λN ) = 1

N !

∑
π

f (kπ(1), λπ(1), . . . , kπ(N ), λπ(N )),

the sum being over all permutations of the N variables. It can be readily checked
that a†(k, λ) is the adjoint of a(k, λ), and that the canonical commutation
relations (11.1.30) are satisfied.

Strictly speaking, a(k, λ) and a†(k, λ) are not operators but operator-valued
distributions. They can be made into bona fide (although still unbounded)
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operators by smearing them out with test-functions in the usual way. For-
mally, this means considering operators of the form

∫
R3 f (k)a(k, λ)dk instead

of a(k, λ), with f infinitely differentiable and of compact support. See [150,
Sect. X.7] for a proper definition. Alternatively, one could confine the electro-
magnetic field to a large but finite box, in which case the k values would become
discrete and the Fourier integral becomes a Fourier series. Then a(k, λ) is a
genuine operator.

In analogy with (11.1.28), the electromagnetic field energy is given by the
operator

Hf =
2∑

λ=1

∫
R3

2π |k| a†(k, λ)a(k, λ)dk. (11.1.31)

The precise analogue of the left side of (11.1.28) would actually have
(1/2)(a†a + aa†) in the integrand, which differs from (11.1.31) only by an
infinite constant, which is of no physical significance here. The choice (11.1.31)
corresponds to an energy scale in which the vacuum has zero field energy, which
is a natural condition.

In the absence of matter, the Hamiltonian (11.1.31) describes the full energy of
the quantized electromagnetic field. In particular, it reproduces Planck’s seminal
discovery [149] that the electromagnetic radiation field is quantized in terms of
photons, whose energy equals hν = hc|k| = 2π |k| in our units, where h =
2πh̄ = 2π and c = 1. Here, ν is the frequency and 1/|k| is the wavelength.
Moreover, the theory is linear in the sense that the energy of N photons is the
sum of the individual energies. This follows from (11.1.31), since Hf acts on a
� ∈ F by multiplying ψN by 2π

∑N
i=1 |ki |. It is noteworthy that the additivity

of the energy holds even if the photons have the same value of k. Different
values of k refer to different, independent oscillators, so it is not surprising that
the energies are additive; the additivity for photons with the same k-value is a
special property of the spectrum of harmonic oscillators.

The interaction of the electromagnetic field with matter is described by the
A field, which formally is given by (11.1.25). In the quantum case, this is not a
well-defined operator, however. This can already be seen by applying A(x) to
the vacuum �. Each of the three components of A(x)� is a one-photon state,
with photon wave function ελ(k)|k|−1/2. This is not a square-integrable function,
however! The integral over k diverges for large k, a phenomenon that is called
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ultraviolet divergence. Hence A(x) can not be defined as an operator on F .
Physically, this divergence is a consequence of the fact that we are looking at
a fixed x, which is what we need in order to describe the interaction of the
electromagnetic field with a point-particle located at x. If the particle were not a
point but rather had a charge density described by χ (x − x0), then the relevant
interaction would be∫

R3

A(x)χ (x − x0)dx =
2∑

λ=1

∫
R3

χ̂ (k)√|k|ελ(k)
(
e2πik·x0a(k, λ)

+ e−2πik·x0a†(k, λ)
)

dk. (11.1.32)

As long as χ̂ (k)|k|−1/2 is a square-integrable function, this expression yields a
well-defined operator.

The function χ̂(k) in (11.1.32) can be interpreted as an ultraviolet cutoff. It
satisfies χ̂(0) = 1 and |χ̂ (k)| ≤ 1 (since χ (x) ≥ 0 and

∫
χ (x)dx = 1). In the

following, it will be convenient to simply choose χ̂(k) = �(�− |k|) for some
� > 0.

11.2 Pauli Operator with Quantized Electromagnetic Field

For non-relativistic spin 1/2 particles in a quantized electromagnetic field, the
Hamiltonian resembles the one in Chapter 9, Eq. (9.5.1). It is given by

H =
N∑
i=1

[
σ i · ( pi +

√
αA(xi))

]2 + α VC(X, R) +Hf , (11.2.1)

and acts on the Hilbert space [
∧N

L2(R3; C
2)] ⊗ F , whereF denotes the photon

Fock space described in the previous section. The vector potential A(x) describes
the interaction between the radiation field and the particles. To simplify the
notation, we take the ultraviolet cutoff function χ (k) to be the characteristic
function of a ball of radius �. The vector potential is then

A(x) =
2∑

λ=1

∫
|k|≤�

1√|k|ελ(k)
(
e2πik·xa(k, λ) + e−2πik·xa†(k, λ)

)
dk. (11.2.2)
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The operators a†(k, λ) and a(k, λ) are the creation and annihilation operators of a
photon of momentum k and polarizationλ, satisfying the canonical commutation
relations (11.1.30). Recall that the field energy Hf is defined in (11.1.31).

The reader might wonder how Hf in (11.1.31) compares with the classical
field energy Emag(B) = (8π )−1

∫ |B(x)|2dx. Classically, there is no Π(x)2 term,
since we considered the B field to be time-independent. Treating the B field as
a dynamical variable, the field energy has the additional term 2π

∫ |Π(x)|2dx.
Naively one might think that the energy is now bigger because of this term,
and the problem of stability of matter should become simpler. Alas, this is not
the case. As remarked, Π2 plus B2 really gives a†a + aa†, which we have
abbreviated to 2a†a, thereby ignoring an infinite commutator.3 Thus, while
a†a continues to be positive, Hf is not necessarily bigger (and can be less)
than the classical field energy Emag(B). The problem of stability of matter
in QED becomes more complicated because Hf can be less than Emag(B).
An additional difficulty comes from the fact that Hf does not commute with
A(x).

The quantized field B(x) is now an operator on Fock space, parametrized by
x ∈ R

3, given by

B(x) =
2∑

λ=1

∫
|k|≤�

2πi√|k|k ∧ ελ(k)
(
e2πik·xa(k, λ) − e−2πik·xa†(k, λ)

)
dk.

(11.2.3)

This B field is the quantization of the classical field in (11.1.27). As we shall
see in Lemma 11.1, it is possible to obtain a lower bound on Hf in terms of the
integral of B(x)2 over a bounded set � ⊂ R

3. There will be an error term that is
proportional to the volume of � and to the fourth power of the ultraviolet cutoff
�, however.

The operators B(x) and A( y) all commute with each other, as explicit
calculation shows. A simpler way to see this is to introduce the operators
b(k, λ) = a(k, λ) + a†(−k, λ), which satisfy b†(k, λ) = b(−k, λ). Clearly, they
all commute with each other. If we choose the polarization vectors to satisfy

3 In a finite volume, where the k values are discrete, the commutator would not be infinite but
proportional to the volume.
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ελ(k) = ελ(−k) for all k, then B(x) can be written as

B(x) =
2∑

λ=1

∫
|k|≤�

2πi√|k|k ∧ ελ(k)e2πik·xb(k, λ)dk, (11.2.4)

and a similar expression holds for A(x). Therefore A(x) and B( y) are linear
combination of the operators b(k, λ) and hence commute.

The operators q(k, λ) = b(k, λ) + b(−k, λ) and q̃(k, λ) = i(b(k, λ) −
b(−k, λ)) are self-adjoint and thus have real spectrum. They all commute with
each other. (As mentioned above, these are strictly speaking only ‘operator-
valued distributions’, but we can regard them as genuine operators on a Hilbert
space if we discretize k so that Fourier integrals become sums.) We claim that
their joint spectrum is R

2. That is, there is a representation on Fock space in which
all these operators can be regarded as ordinary real numbers without restric-
tion (except, of course, that q(k, λ) = q(−k, λ) and q̃(k, λ) = −q(−k, λ)).
To see this, introduce the conjugate operators p̃(k, λ) = (1/4)[a(k, λ) −
a†(−k, λ) − a(−k, λ) + a†(k, λ)] and p(k, λ) = (i/4)[a(k, λ) − a†(−k, λ) +
a(−k, λ) − a†(k, λ)]. The pairs p, q and p̃, q̃ each satisfy the Heisenberg
commutation relations [p(k, λ), q(k′, λ′)] = −iδλ,λ′δ(k − k′) and they commute
otherwise.

If we put all this together we see that there is a representation of Fock
space (called the Schrödinger representation or ‘Q-space’, see [159] or [150,
Sect. 10.7]) in which the Fourier coefficients of A(x) and B(x) are independent
complex numbers. In other words, we can regard the A field and the B field as
arbitrary functions (subject to the condition that their Fourier transforms vanish
for |k| > �) with B = curl A. The field energy, however, involves Π, which is
composed of the conjugate operators, p and p̃, and which do not commute with
A and B. That is why the case of quantized fields is different from the classical
case. If the field energy were (8π )−1

∫
B(x)2dx instead of Hf , the quantum case

would simply reduce to the classical case.
The following lemma will be important when considering the question of

stability of matter for the Hamiltonian (11.2.1). As mentioned above, it allows
for bounding the field energy Hf from below in terms of the integral of B(x)2

over sets of finite volume. In this way, the problem of stability of matter with
quantized fields can be reduced to the classical case.
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Lemma 11.1 (Classical and Quantum Field Energy). For any function g ∈
L1(R3) with 0 ≤ g(x) ≤ 1

Hf ≥ 1

8π

∫
R3

|B(x)|2g(x)dx − 2π2�4
∫
R3

g(x)dx. (11.2.5)

This lemma was proved in [27, Lemma 3]. For a more general inequality of
this type, see also [119, Lemma B.1].

Proof. Write B(x) = C(x) + C(x)†, where C(x) denotes the part of B(x) in
(11.2.3) containing only the annihilation operators a(k, λ). Then

B(x)2 = [C(x) + C(x)†]2

= 4C(x)† · C(x) + 2[C(x),C(x)†] + [C(x) − C(x)†]2

≤ 4C(x)† · C(x) + 2[C(x),C(x)†].

The commutator [C,C†] means
∑3

i=1[Ci, Ci†]. It can be easily evaluated by
using the canonical commutation relations (11.1.30). It is independent of x, and
given by

[C(x),C(x)†] =
2∑

λ=1

∫
|k|≤�

(2π )2

|k| (k ∧ ελ(k))2dk

= 2(2π )2
∫

|k|≤�
|k|dk = (2π )3�4.

Moreover,∫
R3

C(x)† · C(x)dx = (2π )2
2∑

λ=1

∫
|k|≤�

|k|a†(k, λ)a(k, λ) ≤ 2πHf .

Since 0 ≤ g(x) ≤ 1 the rest is obvious.

Recall that in the case of classical magnetic fields, stability of matter for the
Pauli operator holds if and only if both α and Zα2 are small enough. This was
shown in Theorems 9.2 and 9.3 in Chapter 9. In the case of quantized fields, a
similar result holds, as we shall now describe.

The first proof of stability of the second kind for the Hamiltonian (11.2.1)
was given by Bugliaro, Fröhlich and Graf in [27]. They used Lemma 11.1 in
order to reduce the problem to the classical case, studied in Chapter 9. We shall
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follow a similar route in the proof of the following theorem about non-relativistic
stability.

Let β(Z) denote the maximal value of α such that the inequality (8.6.2) is
satisfied for q = 2. It was shown in Lemma 8.6 that the inequality(

ψ,

N∑
i=1

(
1

β(Z)
| pi +

√
αA(xi)| −Wλ(xi)

)
ψ

)
≥ −Z2

8

M∑
j=1

1

Dj

(11.2.6)

holds for all normalized, fermionic wave functions ψ ∈∧N
L2(R3; C

2) and all
0 < λ < 1. The function Wλ is defined in (5.4.1), and Dj is half the distance of
Rj to the nearest nucleus. Although Lemma 8.6 was formulated with classical
vector potentials, it holds with quantized vector potentials as well, since these are
equal to classical fields in the Schrödinger representation, as discussed above.
That is, (11.2.6) holds for ψ ∈ [

∧N
L2(R3; C

2)] ⊗ F , with A(x) the operator
defined in (11.2.2).

Inequality (11.2.6) will play a crucial role in the proof of the following
theorem.

Theorem 11.1 (Stability with the Pauli Operator and Quantized Fields). Let
Z = maxj Zj and assume that

α2 ≤ 4.31

√
3

8π2
β(Z), (11.2.7)

where β(Z) is defined just before (11.2.6). Let H be the Hamiltonian (11.2.1)
and let ψ ∈ [

∧N
L2(R3; C

2)] ⊗ F with (ψ,ψ) = 1. Then we have

(ψ,Hψ) ≥ −N

(
π2

4�2
+ Z +√

2Z + 1/2

�
+ α2

β(Z)2

)
− (4π )3

3
M�4�3

(11.2.8)
for any � > 0.

For the physical value α = 1/137, a numerical evaluation shows that our
stability criterion holds for all Z ≤ 854. (Compare with the case of classical
magnetic fields, where stability was proved in Theorem 9.2 for all Z ≤ 953.)

Proof. Without loss of generality we can assume again that Zj = Z for all
j = 1, 2, . . . ,M . This follows from the monotonicity of the ground state energy
in the nuclear coordinates, as discussed in Section 3.2.3. In fact, the result of
Proposition 3.1 applies equally well to the quantized field case.
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Let χ be a nice function on R+, with χ (t) = 1 for t ≤ 1, χ (t) = 0 for
t ≥ 2 and 0 ≤ χ (t) ≤ 1 in-between. For � > 0 let η1(x) = χ (minj |x − Rj |/�)
and η2(x) =

√
1 − η1(x)2. The function η1 is 1 within a distance � from

any of the nuclei, and 0 a distance 2� away from all the nuclei. Moreover,
|∇η1|2 + |∇η2|2 ≤ C�−2 for some constant C > 0. In fact, with the choice
χ (t) = cos((π/2)(t − 1)) for 1 ≤ t ≤ 2 the constant C can be taken to be
C = π2/4.

Using the fact that η2
1 + η2

2 = 1, it is easy to see that4[
σ · ( p +√

αA(x))
]2 = η1(x)

[
σ · ( p +√

αA(x))
]2
η1(x)

+ η2(x)
[
σ · ( p +√

αA(x))
]2
η2(x)

− |∇η1(x)|2 − |∇η2(x)|2. (11.2.9)

For a given ψ ∈ [
∧N

L2(R3; C
2)] ⊗ F and ij ∈ {1, 2} for 1 ≤ j ≤ N , let

ψi1···iN =∏N
j=1 ηij (xj )ψ . Using (11.2.9) we can write

(ψ,H ψ) =
2∑

i1=1

· · ·
2∑

iN=1

(
ψi1···iN , H ψi1···iN

)
−
(
ψ,
∑N

j=1

[|∇η1(xj )|2 + |∇η2(xj )|2] ψ) . (11.2.10)

The last term is bounded from below by −NC�−2(ψ,ψ).
We shall now derive a lower bound on

(
ψi1···iN , H ψi1···iN

)
for given values of

ij , 1 ≤ j ≤ N . We employ the improved electrostatic inequality of Theorem 5.5,
which states that

VC(X, R) ≥ −
N∑
i=1

Wλ(xi) + Z2

8

M∑
j=1

1

Dj

. (11.2.11)

Our choice for λ will be the optimal value given in (5.4.3). For this value,
Wλ(x) ≤ (Z +√

2Z + 1/2)/mink |x − Rk|, and hence Wλ(xj ) is bounded
from above by (Z +√

2Z + 1/2)�−1 if xj is in the support of η2, i.e., if
|xj − Rk| ≥ � for all 1 ≤ k ≤ M . In particular,

(
ψi1···iN ,W

λ(xj )ψi1···iN
) ≤ Z +√

2Z + 1/2

�
(ψi1···iN , ψi1···iN ) (11.2.12)

4 This is known as the IMS localization formula; see [36].
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if ij = 2. We shall use this bound for all the particles j with ij = 2. For the
particles j with ij = 1, we shall use (11.2.6) instead, which implies that

∑
j, ij=1

Wλ(xj ) ≤ Z2

8

M∑
k=1

1

Dk

+ 1

β(Z)

∑
j, ij=1

| pj +
√
αA(xj )|. (11.2.13)

By combining (11.2.11)–(11.2.13) and dropping the positive kinetic energy for
the particles with ij = 2, we obtain the bound

(ψi1···iN , H ψi1···iN ) ≥ (ψi1···iN , H̃i1,···iN ψi1···iN )

−N
Z +√

2Z + 1/2

�
(ψi1···iN , ψi1···iN ) (11.2.14)

with

H̃i1,···iN =
∑
j, ij=1

([
σ j · ( pj +

√
αA(xj ))

]2 − α

β(Z)
| pj +

√
αA(xj )|

)
+Hf .

(11.2.15)

Note that H̃i1,···iN acts non-trivially only on the variables zj = (xj , σj ) with
ij = 1.

Using Lemma 11.1, with g being the characteristic function of the set

� := {x ∈ R
3 : min

k
|x − Rk| ≤ 2�},

we conclude that

Hf ≥ 1

8π

∫
�

|B(x)|2dx − (4π )3

3
�4M�3.

After integrating out the variables zj with ij = 2, the one-particle density of
ψi1···iN for the particles j with ij = 1 is supported in the set �. Hence we can
apply Corollary 9.1 to conclude that

(ψi1···iN , H̃i1,···iN ψi1···iN ) ≥
(
−4N

α2

β(Z)2
− (4π )3

3
�4M�3

)
(ψi1···iN , ψi1···iN )

as long as (11.2.7) holds. This bound is valid for all values of ij , 1 ≤ j ≤ N . In
combination with (11.2.10) and (11.2.14), we arrive at (11.2.8)

We have thus proved stability for the Pauli Hamiltonian with quantized elec-
tromagnetic field, for suitable values of α and Zα2. It turns out that because
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of the ultraviolet cutoff � the bounds on α and Zα2 are actually not necessary
for stability of the second kind, i.e., stability holds for all values of α > 0 and
Z > 0. This was shown by Fefferman, Fröhlich and Graf [59] and, subsequently,
by Bugliaro, Fefferman and Graf [26]. The same would be true for classical mag-
netic fields in the presence of an ultraviolet cutoff. The proof of this fact utilizes
Lieb–Thirring inequalities for the Pauli operators which involve gradients of
B(x) and which are more complicated than the ones given in Chapter 4; a partial
list of references on this topic is in Section 4.4.

11.3 Dirac Operator with Quantized Electromagnetic Field

The next step is to consider the system discussed in Chapter 10, where the
kinetic energy is described by the Dirac operator. The difference now is that the
electromagnetic field is quantized. We expect the conclusions to be essentially
the same as before, and they will be, but significant questions of principle arise
because the field is not just a function on R

3 but it is an operator on Fock space.
Formally, the Hamiltonian of the system is given by

H =
N∑
i=1

DA,i + αVC(X, R) +Hf (11.3.1)

where DA,i = D0,i + αi · A(xi) is an operator that acts on L2(R3; C
4) ⊗ F . The

Dirac operator D0 is defined in (10.1.1), and we use the standard units where
m = 1. The Coulomb potential VC is defined in (2.1.21) in Chapter 2, and the
field energy Hf is given in (11.1.31) above. We note that the operators DA,i do
not act on different factors of a Hilbert space with tensor product structure (as
they did in the case of classical fields), but they still all commute. The reason
for this is that A(x) and A( y) commute for all x and y, as was explained after
Eq. (11.2.3). Also D0,i clearly commutes with A(xj ) for i �= j . Because of this
commutativity, it is possible to define the joint positive spectral subspace. That
is to say, all the projections �+

i onto the positive spectral subspace of DA,i

commute with each other, and hence
∏N

i=1 �
+
i , which does not depend on the

order in which the product is taken, is again a projection.
It thus makes sense to restrict the Hamiltonian to the joint positive spec-

tral subspace of all the DA,i , given by (
∏N

i=1 �
+
i )([
∧N

L2(R3; C
4)] ⊗ F). This

subspace is not trivial and, in fact, infinite dimensional, as shown in [119,
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Appendices C and D]. The resulting model is the quantized version of the mod-
ified Brown–Ravenhall model discussed in Chapter 10. The physical Hilbert
space for this model no longer has a tensor product structure, since there is only
one photon Hilbert space (the Fock space) which is shared by the N electrons. If
each electron had its private Fock space, things would be simpler. The electrons
are intimately connected to the photons and can not be separated from them.
In other words, in this model there is no such thing, even conceptually, as an
‘undressed electron’.

It is also possible to define the quantized analogue of the original Brown–
Ravenhall model, where the physical Hilbert-space for the electrons is taken to
be the positive spectral subspace of all the D0,i . In this case the physical Hilbert
space does have a tensor product structure, but this simplification comes with a
price; the model is unstable.

The conclusions concerning the stability of these two models with quantized
electromagnetic field are essentially the same as in the case of classical fields
discussed in the previous chapter, except for a modification of some of the
constants in the stability bounds.

The following stability criterion for the modified Brown–Ravenhall model is
proved by Lieb and Loss in [119]. It should be compared with the non-quantized
version in Theorem 10.1.

Theorem 11.2 (Stability of Modified B–R Model with Quantized Field). Let
κ = max{64.5, πZ} and η = min{4(κα)2, 1}. Assume that (κα)2 < η and

[ η − (κα)2 ]3/2 ≥ (0.060)8π η2α.

Let H be the Hamiltonian (11.3.1). Then

(ψ,Hψ) ≥
√

1 − ηN − 18

π
�N3/4M1/4

(
2π

6
√
η + (α/2)(

√
2Z + 2.3)2

27

)3/4

for all ψ ∈ (
∏N

i=1 �
+
i )([
∧N

L2(R3; C
4)] ⊗ F) with (ψ,ψ) = 1. In particular,

Z ≤ 42 is allowed for α = 1/137.

Although the proof of Theorem 11.2 in [119] does not touch upon concepts
not already seen in the previous chapters, it is rather lengthy and technical. We
shall not give it here, but refer the interested reader to the original work in [119]
instead.
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The fact that there is always instability for the original Brown–Ravenhall
model, as in Theorem 10.2 in the case of classical fields, was proved in [81] by
Griesemer and Tix. They were able to reduce the problem to the non-quantized
case by judicious use of coherent states of the field. These are states in Fock
space that are eigenstates of the annihilation operators. That is, for any complex
valued function η(k, λ), there is a coherent state �η ∈ F such that a(k, λ)�η =
η(k, λ)�η. In particular, (�η, A(x)�η) = Acl(x) for all x ∈ R

3 and(
�η,Hf �η

) = ∫
R3

[
2πΠcl(x)2 + 1

8π
Bcl(x)2

]
dx,

where Acl, Bcl and Πcl are the classical fields defined in (11.1.25)–(11.1.27)
with η(k, λ) in place of a(k, λ). The problem is thus reduced to the case of
classical fields.

Because of the presence of the ultraviolet cutoff, however, the model is actually
stable of the first kind. One way to see this is to use the operator inequality

A(x)2 ≤ 8�

3π
Hf + 2

π
�2 for all x ∈ R

3, (11.3.2)

which was proved in [119, App. B]. Its proof is similar to the proof of Lemma 11.1
using Schwarz’s inequality. Using operator monotonicity of the square root (cf.
the footnote on page 87), it follows from this that

N∑
i=1

αi · A(xi) ≥ −
N∑
i=1

|A(xi)| ≥ −N

√
8�

3π
Hf + 2

π
�2

and hence

Hf +√
α

N∑
i=1

αi · A(xi) ≥ −�

(
3

4
+ 2α

3π
N2

)
. (11.3.3)

The remaining part of the Hamiltonian is
∑N

i=1 D0,i , which is positive by defini-
tion. Even if one adds the Coulomb potential VC(X, R) the model is stable of the
first kind for small enough values of α and Zα; this follows from Theorem 10.1.

The model is always unstable of the second kind, however. This is our second
example of stability of the first but not the second kind. (The first was non-
relativistic charged bosons with E0 ≈ −N5/3.) In fact, by proceeding as in the
proof of Theorem 10.2 we see that even with an ultraviolet cutoff one can make
the energy as negative as −Cα�N2 for some constant C > 0. That is, the lower
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bound (11.3.3) is sharp except for the constant. (The fact that the bound is linear
in � follows from dimensional analysis. The only inverse length in the problem,
besides �, is the mass, which can without loss of generality be set equal to zero
when analyzing stability, since the βm term can raise or lower the energy at
most by mN .) We leave the details to the reader.

The various conclusions are summarized in the following tables borrowed
from [119].

Electrons defined by projection onto the positive subspace of D0, the free
Dirac operator

Classical or quantized field Classical or quantized field
without cutoff � with cutoff �
α > 0 but arbitrarily small. α > 0 but arbitrarily small.

Without Coulomb Instability of Stability of the first kind.
potential αVC the first kind Instability of the second kind

With Coulomb Instability of Instability of the second kind.
potential αVC the first kind Stability of the first kind when

both α and Zα are small enough

Electrons defined by projection onto the positive
subspace of DA, the Dirac operator with field

Classical field with or without cutoff �
or quantized field with cutoff �

Without Coulomb The Hamiltonian is positive
potential αVC

With Coulomb Instability of the first kind when either
potential αVC α or Zα is too large

Stability of the second kind when
both α and Zα are small enough
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The Ionization Problem, and
the Dependence of the Energy on

N and M Separately

12.1 Introduction

The results in the preceding chapters on stability of the second kind were mostly
of the form E0 > −C(N +M), where E0 denotes the ground state energy of
the system, and N and M are the number of electrons and nuclei, respectively.
It is obvious, however, that if N is very large or very small compared to M

the excess number of particles, positive or negative as the case may be, will
float away to infinity. In other words it ought to be possible to reformulate the
previous results as E0 > −C ′ min{N, M} for a suitable C ′ that depends only
on the nuclear-electron charge ratio Z.

In the relativistic case discussed in Chapter 8, the energy is actually non-
negative for suitable α and Z, independently of N and M . From this we con-
clude that also the non-relativistic energy can be bounded below by E0 > −CN

independent of M , as discussed in Remark 8.6. (For an alternative method, see
[83, Thm. 3 of Part II].) Also the results in Chapters 9 and 10 yielded bounds
of this form, since they rely in an essential way on the non-negativity of the
relativistic energy in Chapter 8. This answers half the problem, namely it gives
a bound on the energy of the correct form if M is larger than N .

In this chapter we shall deal with the other half of this problem, namely we
shall show that for many models the energy can be bounded from below by
M independently of N . More precisely, we shall show that if N > 2Ztot +M ,
where Ztot =

∑M
k=1 Zk is the total nuclear charge, one can remove the excess

electrons without raising the energy. In other words, a system consisting of
M nuclei having charges Zk cannot bind more than 2Ztot +M electrons; the
remaining electrons will move off to infinity. Consequently a bound of the
formE0(N,M) > −C(N +M) implies thatE0(N,M) ≥ E0(2Ztot +M,M) >
−2C(Ztot +M) independently of N . While the bound 2Ztot +M is far from
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what is expected (namely Ztot + const.M , see Section 12.3) it is adequate for
our purposes.

12.2 Bound on the Maximum Ionization

By the word ionization we mean negative ionization, namely N is such that

I := N − Ztot > 0. (12.2.1)

(For fixed nuclear positions and charges there is no bound on the possible positive
ionization other than −I ≤ Ztot, i.e., when N = 0.) We say that N electrons can
be bound if E0(N) < E0(N − 1), i.e., it is necessary to use some energy to
move one electron to infinity. The following upper bound on the number of
electrons that can be bound by a collection of nuclei applies to several of the
models considered in this book, but not all of them.

Specifically, we shall consider the cases in which the kinetic energy of the
electrons is given by one of the two forms:

� Non-relativistic

T = 1

2
( p +√

αA(x))2 (12.2.2)

� Relativistic

T =
√

( p +√
αA(x))2 +m2 −m (12.2.3)

for some m > 0.

As before, A denotes a (classical) magnetic vector potential. Different func-
tions of ( p +√

αA)2 could also be considered as kinetic energies, but we shall
not do so here. The cases we do not know how to handle are the Pauli and Dirac
operators studied in Chapters 9 and 10.1

1 In [161] the maximal ionization of atoms described by the Pauli Hamiltonian is studied, and it is
shown that a B dependent upper bound can be obtained. In contrast, the upper bound obtained
here for the cases (12.2.2) and (12.2.3) is independent of B.
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The many-body Hamiltonian for N electrons and M nuclei is

HN =
N∑
i=1

Ti + αVC(X, R), (12.2.4)

with VC given in (2.1.21). It acts on wave functions ψ ∈∧N
L2(R3; C

q) that
are antisymmetric functions of the space-spin variables. This antisymmetry
requirement is not important in the following, however, because the results in
this chapter apply equally well to bosons.

We shall consider the nuclei to be point-like and fixed.2 The bound on the
number of electrons that can be bound to the nuclei will actually hold for all
nuclear configurations, not merely the one minimizing the energy. Similarly,
we shall consider the magnetic vector potential A to be fixed. Hence we have
omitted the magnetic field energy Emag(B) in (12.2.4), which is not relevant to
the question addressed here.

The main result of this chapter is the following.

Theorem 12.1 (Bound on the Maximum Ionization). Let E0(N) denote
the ground state energy of HN in (12.2.4). If E0(N) < E0(N − 1) then N <

2Ztot +M .

Part of the celebrated HVZ Theorem, going back to the work of Hunziker,
van Winter and Zhislin [95, 183, 190], states that under the assumption E0(N) <
E0(N − 1) there really is an eigenvalue at the bottom of the spectrum of HN .
That is, there is a ψ ∈ L2 such that HNψ = E0(N)ψ . Since it will be useful
later, we state this as a separate lemma.3

Lemma 12.1 (Part of the HVZ Theorem). Assume that E0(N) < E0(N − 1).
Then there exists a ground state eigenfunction of HN in (12.2.4).

The lemma is intuitively very obvious, but a rigorous proof is lengthy and
complicated. We refer to [150] or [82].4 Lemma 12.1 is useful in the proof

2 For results on the model with dynamic nuclei and/or smeared out nuclei, see [114].
3 The full HVZ Theorem states that the essential spectrum of HN starts at the ground state energy

of HN−1. See [178] or [150, Vol. 4]. In particular, if E0(N ) < E0(N − 1), then E0(N ) is below
the essential spectrum and, therefore, is an eigenvalue.

4 In the relativistic case, Lemma 12.1 was proved in [106]. See also [140, 143] for the case of the
Brown–Ravenhall model.
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of Theorem 12.1, but is not absolutely necessary. At the end of the proof of
Theorem 12.1, we shall show how to avoid its use. We do this in order to give a
self-contained proof of Theorem 12.1, since we do not prove Lemma 12.1 here.

Theorem 12.1 actually holds under the weaker assumption that there exists
an eigenfunction corresponding to the lowest eigenvalue E0(N). That is,
N < 2Ztot +M holds in case a ground state eigenfunction exists, even in case
E0(N) = E0(N − 1). The theorem states that the maximal number of electrons
that can be bound by a collection of nuclei is strictly smaller that 2Ztot +M . In
particular H−− (a system of one proton and three electrons) does not exist (at
least in the approximation in which the nucleus is static). On the other hand, it
is a theorem of Zhislin [190] that if N < Ztot + 1 then the system is bound. For
completeness, we shall give a proof of this statement later in Theorem 12.2.

If we assume that B(x) decays to zero at infinity, then clearly E0(N) ≤
E0(N − 1) for all N since we can always place the additional electron arbitrarily
far from the nuclei with infinitesimal energy cost. The strictness of the inequality
is the crucial criterion for whether the system is bound or not.

For simplicity, we shall prove Theorem 12.1 only in the case that all the nuclear
charges are equal. We refer to [114] for the general case. For the application
of Theorem 12.1 to the question of bounding the ground state energy E0 from
below by −C min{N,M}, as discussed in the introduction to this chapter, we
can safely consider only the case in which all the nuclear charges Zj are equal
to some common value Z. This was pointed out in Subsection 3.2.3, where it
was shown that for any given configuration of nuclei positions and Zj ∈ [0, Z],
the lowest ground state energy is obtained when, for each j , Zj is either Z or
zero.

Proof of Theorem 12.1. First, let us prove the theorem under the assumption that
there is an eigenfunction ψ of HN corresponding to the eigenvalue E0(N). This
assumption is the content of Lemma 12.1 above but, since we do not include its
proof here, we shall explain how to avoid the use of this assumption at the end
of this proof.

The Schrödinger equation for ψ can be written as

0 = (HN − E0(N))ψ (12.2.5)

=
(
HN−1 + TN −

M∑
k=1

Zkα

|xN − Rk| +
N−1∑
i=1

α

|xi − xN | − E0(N)

)
ψ.
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Pick a strictly positive function φ on R
3 and multiply (12.2.5) by

ψ(z1, . . . , zN )/φ(xN ). Recall that z = (x, σ ) denotes space-spin variables, and
that ψ is antisymmetric in these variables. Since HN−1 ≥ E0(N − 1) > E0(N),
the operator HN−1 − E0(N) is non-negative on antisymmetric functions of the
variables z1, . . . , zN−1. Since it does not affect the zN variable, this implies that∫

ψ(z)
1

φ(xN )
((HN−1 − EN )ψ) (z)dz ≥ 0. (12.2.6)

Moreover, if φ is superharmonic (that is, �φ ≤ 0), the term with TN is
positive in view of the following lemma, which was inspired by unpublished
work of Benguria (see [113, p. 632]).

Lemma 12.2 (Positivity Property of T ). Let T be either one of the operators
(12.2.2) or (12.2.3). If φ is a non-negative superharmonic function, then

1

φ
T + T

1

φ
≥ 0

in the sense of quadratic forms. Equivalently, for any ψ ∈ L2(R3),
Re (ψ/φ, T ψ) ≥ 0.

Technicalities concerning the domain of definition of the operators shall be
blithely ignored here. We refer the interested to reader to [114].

We postpone the proof of this lemma, and conclude the proof of Theorem 12.1
first. After integration of all the zi we obtain from (12.2.5) and (12.2.6), with
the aid of Lemma 12.2 (and the fact that the real part of zero is zero) that∫

|ψ(z)|2 1

φ(xN )

(
−

M∑
k=1

Zk

|xN − Rk| +
N−1∑
i=1

1

|xi − xN |

)
dz ≤ 0.

Since |ψ |2 is symmetric in all the variables, this can be written as∫
|ψ(z)|2

(
− 1

φ(xN )

M∑
k=1

Zk

|xN − Rk|

+ 1

2

N−1∑
i=1

(
1

φ(xi)
+ 1

φ(xN )

)
1

|xi − xN |

)
dz ≤ 0. (12.2.7)

First, consider the case of an atom, i.e., M = 1 and R1 = 0. We choose
φ(x) = 1/|x|. By the triangle inequality, 1/φ(xi) + 1/φ(xN ) = |xi | + |xN | ≥
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|xi − xN |, and this inequality is strict except on a subset of R
3 × R

3 of measure
zero. Hence (12.2.7) yields

−Z + 1

2
(N − 1) < 0,

or N < 2Z + 1, as claimed.
Next, consider the molecular case with all nuclear charges taken to be equal,

i.e., Zk = Z for all k = 1, . . . ,M . We choose φ to be φ(x) =∑k |x − Rk|−1.
Then

1

φ(xi)
+ 1

φ(xN )
= φ(xi) + φ(xN )

φ(xi)φ(xN )

=
M∑
k=1

gk(xi)gk(xN ) (|xi − Rk| + |xN − Rk|),

where we let gk(x) = 1/(φ(x)|x − Rk|). Again, by the triangle inequality,
|xi − Rk| + |xN − Rk| ≥ |xi − xN |. Using the symmetry of |ψ |2, (12.2.7) then
becomes ∫

|ψ(z)|2
⎛⎝ M∑

k=1

∑
i �=j

gk(xi)gk(xj )

⎞⎠ dz < 2NZ.

The strictness of the inequality follows again from the fact that the above triangle
inequality is strict except on a set of measure zero.

For given k, we write
∑

i �=j gk(xi)gk(xj ) = |∑i gk(xi)|2 −∑i gk(xi)2. To
estimate the latter term from below, we can use the fact that

∑
k gk(xi) = 1

to conclude that
∑

k

∑
i gk(xi)2 ≤ N . For the first term, we use Schwarz’s

inequality ∣∣∣∣∣∑
i

gk(xi)

∣∣∣∣∣
2

≥ 2
N

M

∑
i

gk(xi) − N2

M2
.

Summing over k and using again that
∑

k gk(xi) = 1, we conclude that

M∑
k=1

∣∣∣∣∣∑
i

gk(xi)

∣∣∣∣∣
2

>
N2

M
.

In combination, we have thus shown that

N2

M
−N < 2ZN,

or N < M(2Z + 1), which is the desired bound.
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The case of unequal nuclear charges is slightly more complicated, and we
shall not give the details here, but refer the reader to [114]. It turns out that the
natural choice φ(x) =∑k Zk/|x − Rk| does not work, however. One rather has
to pick suitable positive numbers μk and choose φ(x) =∑k μk/|x − Rk|. For
a suitable choice of these numbers, one can then show that N < 2

∑
k Zk +M .

As promised, we shall now relax the assumption that there exists an eigenfunc-
tion of HN with eigenvalue E0(N). By hypothesis, E0(N) ≤ E0(N − 1) − 3ε
for some ε > 0. By definition of the ground state energy, there as a ψ such
that (ψ,HNψ) ≤ E0(N − 1) − 2ε. Since infinitely differentiable functions of
compact support are dense inH 1 andH 1/2 [118, Thms. 7.6, 7.14 & 7.22], we can
find a wave function ψε supported in the set |xi | ≤ Rε for suitable Rε > 0 such
that (ψε,HNψε) < E0(N − 1) − ε. Hence the Hamiltonian HN restricted to
such functions (that is, functions supported in a ball of radius Rε with Dirichlet
boundary conditions) has a ground state energy strictly less than E0(N − 1).
We can thus repeat the above proof with ψ being the ground state wave function
in a box (which always exists) and arrive at the same conclusion.

It remains to prove Lemma 12.2, which we shall do next. The proof is taken
from [114]; for an alternative proof, see [96].

Proof of Lemma 12.2. Consider first the non-relativistic case (12.2.2). For ψ ∈
L2(R3) and f (x) = ψ(x)/φ(x), we can write

(ψ/φ, T ψ) = 1

2

∫
R3

(
i∇f (x) +√

αA(x)f (x)
)

× (−iφ(x)∇f (x) − if (x)∇φ(x) +√
αA(x)φ(x)f (x)

)
dx.

(12.2.8)

With the aid of partial integration one checks that this equals

1

2

∫
R3

(
φ(x)| − i∇f (x) +√

αA(x)f (x)|2

−|f (x)|2(�φ(x) + i
√
αA(x)∇φ(x))

)
dx.

The last term drops out when the real part is taken, since both A and φ are real.
The other terms are positive by our assumptions that φ(x) ≥ 0 and �φ(x) ≤ 0.
This proves that Re (ψ/φ, T ψ) ≥ 0 in the non-relativistic case.
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To prove the lemma in the relativistic case, we start with the integral
representation

(B + 1)1/2 − 1 = B

π

∞∫
1

(t − 1)1/2 1

t(t + B)
dt.

The lemma thus follows if we can show that

Re (ψ/φ,
B

t + B
ψ) ≥ 0 (12.2.9)

for all t ≥ 1, and with B = ( p +√
αA)2 being twice the non-relativistic kinetic

energy. To see (12.2.9), let g = (t + B)−1ψ . Then(
ψ/φ,

B

t + B
ψ

)
= t(g/φ, B g) +

(
Bg,

1

φ
Bg

)
.

The last term is obviously positive, and the positivity of the real part of the first
term was shown before.

For simplicity of presentation we have ignored issues concerning domains of
operators here. The details are properly worked out in [114, Appendix A].

12.3 How Many Electrons Can an Atom or Molecule Bind?

This question, although not directly related to the stability of matter, is a fasci-
nating one, and we cannot resist the temptation to mention it here because, after
many attempts, it is still open! The inequality I < Ztot +M proved above is far
from optimal.

Numerical estimates and experimental observations of real atoms and
molecules in nature leads one to believe that the maximum ionization, I :=
N − Ztot should be at most cM with c about 1, or possibly 2, irrespective of
whether or not the nuclei are in their optimum locations. Atoms with I = 2 are
rare, if they exist at all.5 No one has been able to prove anything resembling
a theorem of this kind, except in the context of approximate theories, such as
Hartree–Fock theory [171] or Thomas–Fermi type theories [8, 113].

This question is closely related to several others: Why are the radii of
atoms (defined as the radius R such that

∫
|x|>R

�(x)dx = 1/2, with � the

5 We are discussing atoms and molecules in vacuum, not in water, where c can be significantly
larger, although still bounded.
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one-particle density of the ground state) more or less independent of Z? Why
is the ionization potential (given by E0(N = Z) − E0(N = Z + 1) ≥ 0) more
or less independent of Z? Why is the largest ionization potential among all
atoms in the periodic table less than the smallest electronegativity (given by
E0(N = Z − 1) − E0(N = Z) > 0) among all atoms? If this were not the case,
neutral atoms with high ionization potential would be bad neighbors and would
go around stealing electrons from innocent neutral neighbors.

The conjecture concerning the ionization potential and the electronegativity
implies that N 	→ E0(N) is convex at N = Z, i.e., 2E0(N = Z) ≤ E0(N =
Z − 1) + E0(N = Z + 1). It has been further conjectured that N 	→ E0(N) is
convex for all N . This, in turn, implies the even more ‘obvious’, but unproved
fact that if there is an eigenfunction for E0(N) then there is one for E0(N − 1).
That is to say, if a nucleus can bind N electrons can it bind N − 1? All of these
interesting questions are open ones, and we shall not discuss them further.

It is known that a theorem stating that I ∼ M would have to take explicit
account of the fact that electrons are fermions. Otherwise, if they were bosons,
the ionization is as large as I ∼ 0.21Z for an atom with large Z. It was shown
by Benguria and Lieb [14], for an atom, that I ≥ cZ as Z → ∞ with c being
determined by the solution to the Hartree equation, which is a certain non-linear
differential equation. Baumgartner [9] showed numerically that this equation
yields c = 0.21 and Solovej [170] found an upper bound which showed that
I = 0.21Z is the correct asymptotic formula. This bosonic result shows that con-
siderations of electrostatics alone cannot solve the problem. The Pauli exclusion
principle is essential!

On the other hand, the situation for fermions is not entirely hopeless. Prior
to the proof of Theorem 12.1 Ruskai [154] had proved that I < cZ6/5 and
Sigal [163] had proved that I < 18Z for atoms. Later, Lieb, Sigal, Simon
and Thirring [128] showed that I/Z → 0 as Z → ∞. Despite subsequent
improved quantitative estimates by Seco, Sigal and Solovej [158] and by
Fefferman and Seco [61] the problem remains basically unresolved. For realistic
atoms the 2Z + 1 bound of Theorem 12.1 is still the best so far. There is a long
way to go.

Another positive note, for both fermions and ‘bosonic electrons’, is a theorem
proved by Zhislin [190] which states that the number of electrons that can be
bound is at least as big as the total nuclear charge. It was originally proved in
the non-relativistic case without magnetic field, but it can be easily generalized
in the following way.
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Theorem 12.2 (Zhislin’s Binding Condition). Assume Emag(B) < ∞. If N <

Ztot + 1 then the ground state energyE0(N) of the Hamiltonian given in (12.2.4)
satisfies E0(N) < E0(N − 1). This holds both for fermions and for bosons. It
also holds for all fixed locations of the nuclei, not only for the energy minimizing
configurations.

It can be shown that the conclusion of this theorem also holds for mov-
able nuclei. By Lemma 12.1 the ground state of the N particle problem is an
eigenfunction when N < Ztot + 1. Thus, a physical atom (with Ztot an integer)
can bind at least Ztot electrons. A slight modification of the proof shows that
the N electron atom has infinitely many eigenfunctions (i.e., bound states) if
N < Ztot + 1.

Proof in the non-relativistic case. We shall give the proof in the case of
fermions; the case of bosons is completely analogous. Our proof will make
use of part of the HVZ Theorem, as formulated in Lemma 12.1. It is not as easy
as in the proof of Theorem 12.1 to give a proof that does not use this lemma.

We shall prove that if N < Ztot + 1 and if there is a ground state for N − 1
particles, then E0(N) < E0(N − 1). For N = 2, we merely have to show that
E0(1) < E0(0) = αU (R) in order to ensure the existence of a ground state for the
one-particle problem. (This follows from Lemma 12.1 above. In the one-particle
case, the proof is actually much simpler; see [118, Thm. 11.5].) This inequality
follows easily from the fact that one nucleus with an arbitrarily small positive
charge can bind an electron. The existence of a ground state for successively
larger N then follows by induction, using Lemma 12.1 at each step.

Hence we may assume that there exists a ground state of HN−1, with
energy E0(N − 1), which we denote by ψ . We assume that ψ is normal-
ized, i.e., ‖ψ‖2 = 1. We first show that for any R > 0 there exists a function
ψR ∈∧N−1

L2(R3; C
q) supported in the set |xi | ≤ R for all i = 1, . . . , N − 1,

with energy (ψ,HN−1 ψ) ≤ E0(N − 1) + c/R2 for some constant c > 0. For
this purpose, we pick a smooth function χ on R

3(N−1) that is supported in the
set |xi | ≤ R for all 1 ≤ i ≤ N − 1. It is straightforward to check that6

χ (X)2( pi +
√
αA(xi))

2 + ( pi +
√
αA(xi))

2χ (X)2

= 2χ (X)( pi +
√
αA(xi))

2χ (X) − 2|∇iχ |2 (12.3.1)

6 This is the same as the IMS localization method of (11.2.9).
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for i = 1, . . . , N − 1. Hence

E0(N − 1)(ψ, χ2ψ) = 1

2
(ψ, χ2HN−1ψ) + 1

2
(ψ,HN−1χ

2ψ)

= (χψ,HN−1χψ) −
N−1∑
i=1

(ψ, |∇iχ |2 ψ). (12.3.2)

We can pick χ such that |∇iχ |2 ≤ c/(2R2). Moreover, (ψ, χ2ψ) ≥ 1/2 for large
enough R. This proves that ψR = χψ/‖χψ‖ has the desired property.

Let φR ∈ L2(R3; C
q) be radial, normalized, and supported in the shell

R < |x| < 2R. We claim that we can choose φR in such a way that its
kinetic energy satisfies limR→∞(φR, T φR)R = 0. A possible choice is φR(z) =
δσ,1(2πR)−1/2 sin(π |x|/R)/|x| forR < |x| < 2R, and zero otherwise. To bound
the kinetic energy, we can simply use ( p +√

αA)2 ≤ 2( p2 + αA2). The p2

term yields c/R2. For the A2 term, we can use Hölder’s inequality to estimate
(φR, A2φR) ≤ cR−1(

∫
R≤|x|≤2R |A|6)1/3. If A ∈ L6(R3) the latter integral goes

to zero as R → ∞. It is no restriction to assume that A ∈ L6(R3) since this
property holds in the Coulomb gauge, as shown in Lemma 10.1, and we are free
to choose this gauge. This proves the claim.

Let ϒ denote the N particle wave function obtained by antisymmetrizing the
function ψR(z1, . . . , zN−1)φR(zN ), namely,

ϒ(z) = 1√
N

[
ψR(z1, . . . , zN−1)φR(zN )

−
N−1∑
i=1

ψR(z1, . . . , zi−1, zN, zi+1, . . . , zN−1)φR(zi)
]
. (12.3.3)

Using the locality7 of HN and the fact that φR and ψR have disjoint support, we
observe that

(ϒ,HN ϒ) = (ψR,HN−1 ψR) + (φR, T φR) − Ztot

∫
R3

|φR(z)|2
|x| dz

+
∫∫

R3×R3

|φR(z)|2�ψR
( y)

|x − y| dzd y.

7 For the notion of locality, see the footnote on page 181.
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Here,�ψR
denotes the one-particle density ofψR. We have assumed thatR is large

enough suchR > |Rk| for all the nuclear positions Rk. SinceφR is radial and sup-
ported in |x| > R, this implies that

∫ |φR(z)|2/|x − Rk|dz = ∫ |φR(z)|2/|x|dz
by Newton’s Theorem. Similarly, the last term equals (N − 1)

∫ |φR(z)|2/|x|dz.
Hence

(ϒ,HN ϒ) ≤ E0(N − 1) + N − 1 − Ztot

2R
+ (φR, T φR) + c

R2
.

Recall that limR→∞ R(φR, T φR) = 0. If N < Ztot + 1, we therefore see that
E0(N) ≤ (ϒ,HN ϒ) < E0(N − 1) for large R.

Proof in the relativistic case. The strategy is the same as in the non-relativistic
case. We shall briefly explain the main differences but leave the unilluminating
details to the reader.

The localization formula (12.3.2) is more complicated in the relativistic case
due to the non-locality of the kinetic energy. The localization error can still be
bounded by c/R2 independently of A, as long as R � 1/m. (The heuristics
behind this fact is that for momenta | p| � m, the relativistic kinetic energy
approximately equals the non-relativistic one.) This can be shown using the
same strategy as in [72, Lemma B.1], where the case m = 0 was considered (in
which case the localization error is ∼ 1/R).

The kinetic energy of the one-particle function φR can be bounded in the same
way as in the non-relativistic case, using the inequality

√
s +m2 −m ≤ s/(2m)

for s > 0.
As will be pointed out in the proof of Theorem 14.2 in Chapter 14, page 265,

locality of the one-body terms in the Hamiltonian is not necessary for the absence
of cross-terms when computing the expectation value of the Hamiltonian in the
antisymmetrized N -particle wave function. It is only needed for the two-body
terms. The rest of the proof goes through without essential change.
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Gravitational Stability of White Dwarfs
and Neutron Stars

13.1 Introduction and Astrophysical Background

Up to now we have been concerned with demonstrating the ‘Triumph of Quan-
tum Mechanics’, which is that the electrostatic forces between the electrically
charged particles that make up ordinary matter do not cause collapse (provided
the maximum nuclear charge Z and the fine-structure constant α are not too
large). The total energy is not only finite but it is proportional to the particle
number. Electric and magnetic forces conspire to cancel out to a comfortable
extent, but lurking in the background is a very, very much weaker force – gravity.
This force is additive, however, and there can be no cancellation as there is for
electric forces, but because it is so weak it becomes dominant only when N is
very large – of the order of the number of particles in a star, which is about 1057.

It was already realized shortly after the publication of Schrödinger’s equation
that a star would collapse under the influence of gravity if the kinetic energy
of the particles is treated relativistically and if the number of constituent par-
ticles exceeds a certain critical value; this critical value depends on Planck’s
constant, h.

There are two kinds of stars to consider. One is a star made of electrically
neutral particles called neutrons, and which is itself the residue of a collapsed
star. Its mass is typically of the order of 1–2 solar masses, but gravity squeezes
it to a radius of about 10–20 km. In contrast, the radius of our sun is roughly
one million kilometers.

The second kind is an ordinary star, but which has burned out, i.e., its nuclear
processes have finished. What is left is essentially a system of electrons and
nuclei close to its ground state, as noted by Fowler [69]. The temperature of
such stars can still be high enough for them to twinkle brightly, which is why we
can see them optically and which is why they are called ‘white’. But although
their masses are comparable to the mass of the sun they are tiny (about the
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size of Earth, but still much bigger than a neutron star) which is why they
are called ‘dwarfs’. Anderson [3] and Stoner [175] first noted that there is a
maximum possible mass of such a star now called the ‘Chandrasekhar mass’
after Chandrasekhar who put the calculation on a firm footing [30]. Beyond this
mass the star collapses under its own gravity. Indeed, a white dwarf can slowly
accrete matter from a companion star and, when its total mass exceeds about 1.4
solar masses, it collapses as a type Ia supernova.

Before studying the collapse, let us discuss, heuristically, the energy balance
for non-relativistic gravitating matter. If we have N fermions of mass m with
non-relativistic kinetic energy confined to a ball of radius R, the kinetic energy
will be approximately N5/3/(R2m), as we saw in Chapter 4. The gravitational
energy would be roughly −κN2/R, where

κ = Gm2

is the effective interaction constant and G is Newton’s gravitational constant
(3.2.10). The total energy is minimized when R ∼ N−1/3/(mκ). Owing to
the negative exponent −1/3, ‘a large star is smaller than a small star’. For
us the important point is that the energy is always finite and there is no collapse,
in the sense that the system is stable of the first kind. The system is not stable of
the second kind, since the energy grows like N7/3 for large N [105]. For neutron
stars, we can set m equal to the mass of neutrons which is much larger than the
mass of electrons.

The reason that white dwarfs are much larger than neutron stars is that there
are two masses to consider in the former case. There is the mass μ of the nuclei
(which is similar to the mass mn of a neutron) so that κ = Gμ2. The other is
the electron mass m, so that the dominant kinetic energy in the non-relativistic
regime isN5/3/(mR2). This is much larger than the kinetic energy ofN neutrons,
N5/3/(mnR

2). The balance is now when R ∼ N−1/3/(Gm2mn). In Section 13.2
we address the one-mass case. The two-mass case is discussed in Section 13.3.3.

Now let us discuss the effect of special relativity, which becomes important
for such dense systems. The kinetic energy p2/(2m) of the particles has to be
replaced by

√
p2 +m2 −m. For large N , the kinetic energy of a collection of

fermions confined to a ball of radius R will now only be N4/3/R, independent
of m > 0. The potential energy estimate given above remains the same and,
therefore, the system will collapse ifN is bigger than roughly κ−3/2. This critical
particle number depends on m only through κ and not through the kinetic energy√

p2 +m2 −m. The value of m in the kinetic energy is important, however, for
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calculating various properties of stars with mass below the critical one, such as
the radius.

The question we address here is whether κ−3/2 is really the correct critical
particle number for collapse. The collapse could conceivably occur with a smaller
N , in principle, because of the short-distance singularity of the interparticle
gravitational potential −κ/|xi − xj |. In fact, it does not do so. The heuristic
discussion given above turns out to give the correct answer.

13.2 Stability and Instability Bounds

In this section, we consider the simplest model of gravitating particles, in which
there is only one species of particles of mass m, which are either bosons or
fermions. As discussed in the introduction, it will be important that the kinetic
energy of the particles is relativistic. Since | p| −m ≤

√
p2 +m2 −m ≤ | p|, the

stability analysis, i.e., the question of the number of particles needed for collapse,
does not depend on the factor m in the kinetic energy (but m is important in the
potential energy), and hence we will simply use | p| as the kinetic energy of a
particle of momentum p in the following. The basic Hamiltonian is then

H =
N∑
i=1

| pi | − κ
∑

1≤i<j≤N

1

|xi − xj | (13.2.1)

with κ = Gm2 > 0. By scaling, the ground state energy E0 of H is either 0 or
−∞.

Theorem 13.1 (Stability of Gravitating Matter). The ground state energy of
the Hamiltonian (13.2.1) for N fermions with q spin states is, for small κ ,

E0 =
{

0 if N ≤ 0.594 κ−3/2q−1/2 + o(κ−3/2)

−∞ if N ≥ (9/2)33/4π κ−3/2q−1/2 + o(κ−3/2).

For bosons,

E0 =
{

0 if N ≤ 1 + 4κ−1/π

−∞ if N ≥ 1 + 128κ−1/(15π ).
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This theorem goes back to Lieb and Thirring [136], and the proof we give will
follow a similar strategy, with some simplification using results from Chapter 8.

The theorem shows that the critical particle number scales as κ−3/2 for small
κ in the fermionic case, and as κ−1 in the bosonic case. It is actually possible
to determine the precise asymptotic behavior of the critical particle number as
κ → 0. This will be explained in the next section.

Proof. Bosons. Upper Bound. For bosons, we simply take a product trial func-

tion of the form
∏N

i=1 φ(xi) for some φ ∈ H 1/2(R3). For such a wave function,
the energy equals

N (φ, | p|φ) − κ
N (N − 1)

2

∫∫
R3×R3

|φ(x)|2|φ( y)|2
|x − y| dxd y. (13.2.2)

The energy is thus negative if

κ >
2(φ, | p|φ)

N − 1

⎛⎝ ∫∫
R3×R3

|φ(x)|2|φ( y)|2
|x − y| dxd y

⎞⎠−1

.

Once the energy is negative, it can be driven to −∞ by scaling, as mentioned
above. If we choose φ(x) = π−1/2 exp(−|x|) as in the proof of Theorem 8.2, we
find (φ, | p|φ) = 8/(3π ) and

∫ |φ(x)|2|φ( y)|2|x − y|−1dxd y = 5/8. The sys-
tem is thus unstable if κ > 128/(15π (N − 1)).

Bosons. Lower Bound. We write the Hamiltonian (13.2.1) as

H =
∑

1≤i �=j≤N

(
1

N − 1
| pi | −

κ

2|xi − xj |
)
. (13.2.3)

For given xj , | pi | ≥ (2/π )|xi − xj |−1, as shown in Chapter 8, Lemma 8.2.
Hence H ≥ 0 if κ ≤ (4/π )/(N − 1).

Fermions. Upper Bound. As a trial function, we take the Slater determinant
of the N lowest eigenfunctions of the Laplacian in a cube of side length L,
with Dirichlet boundary conditions. The corresponding eigenvalues are given by
π2n2L−2 with n ∈ N

3. Since (φ, | p|φ) ≤ (φ, p2 φ)1/2 for anyφ with (φ, φ) = 1,
the kinetic energy is bounded from above by

q
∑
|n|<K

|n|π
L
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where K is the smallest number such that the number of points n ∈ N
3 with

|n| < K is bigger or equal to N/q. For large N , K ≈ (6N/πq)1/3, and hence

q
∑
|n|<K

|n|π
L

≈ 3

4

(
6π2

q

)1/3
N4/3

L
.

(Compare with Section 4.2.) Since all the particles are inside a cubic box of side
length L, |xi − xj | ≤

√
3L for all i �= j . Hence

−κ
∑

1≤i<j≤N

1

|xi − xj | ≤ −κ
N (N − 1)

2
√

3L
.

The total energy is thus negative under the assumption on N stated in the
theorem.

Fermions. Lower Bound. If ψ is either symmetric or antisymmetric then, for
1 ≤ L ≤ N and M = N − L,

(ψ,Hψ) = N

L
(ψ, H̃ψ), (13.2.4)

where

H̃ =
L∑
i=1

| pi | − λ

L∑
i=1

M∑
j=1

1

|xi − xj | + α
∑

1≤j<k≤M

1

|xi − xj | , (13.2.5)

and where λ and α have to satisfy the constraint

λLM − α

2
M(M − 1) = κ

2
L(N − 1). (13.2.6)

Equation (13.2.4) follows simply by counting the number of kinetic energy
and potential energy terms, given that these terms do not depend on which
particles are involved because of the symmetry assumption on the wave
function ψ .

For simplicity, let us introduce the notation Rj = xj+L for j = 1, . . . , M .
There is no kinetic energy for the R particles in (13.2.5), hence we can regard
them as fixed. We then derive a lower bound on H̃ acting on totally antisymmetric
functions of L variables only.

For fixed R1, . . . , RM , we introduce again the Voronoi cells �j , as in
Section 5.2. Similarly, let � : R

3 → (0,∞] denote the function which takes
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the value

�(x) =
∑
k, k �=j

1

|x − Rj | for x ∈ �j .

With D(x) = minj |x − Rj | as before, we can write

H̃ =
L∑
i=1

| pi | − λ

L∑
i=1

(
�(xi) + 1

D(xi)

)
+ α

∑
1≤k<l≤M

1

|Rk − Rl| .

The last term here is the same as in (5.2.5) for Z = 1.
Pick some 0 < ε < 1 and split the kinetic energy as | p| = ε| p| + (1 − ε)| p|.

On the space of antisymmetric functions, the operator

L∑
i=1

(
(1 − ε)| pi | − λ�(xi)

)
is bounded from below by q times the sum of the negative eigenvalues
of (1 − ε)| p| − λ�(x). From the relativistic LT inequality in Theorem 4.2,
together with the bound on the optimal constant in Eq. (4.1.23), it follows
that

L∑
i=1

(
(1 − ε)| pi | − λ�(xi)

) ≥ −0.0257
λ4q

(1 − ε)3

∫
R3

|�(x)|4dx.

To bound the latter integral, we first note that for x ∈ �j and Dj =
mink �=j |Rj − Rk|/2

�(x) =
∑
k, k �=j

∫
S2

d	

|x − Rk −Dk	|

where 	 is a vector of length 1 and d	 denotes the normalized surface measure
of the unit sphere S

2. (This is just Newton’s theorem.) Hence, by Schwarz’s
inequality, and for x ∈ �j ,

�(x)2 ≤ (M − 1)
∑
k, k �=j

∫
S2

d	

|x − Rk −Dk	|2 ≤ M

M∑
k=1

∫
S2

d	

|x − Rk −Dk	|2 .
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The last term is independent of j and is an upper bound valid in all of R
3. The

integral of |�(x)|4 is thus bounded by∫
R3

|�(x)|4dx ≤ M2
∑
k,l

∫
R3

dx
∫
S2

d	

|x − Rk −Dk	|2
∫
S2

d	′

|x − Rl −Dl	
′|2

= π3M2
∑
k,l

∫∫
S2×S2

d	 d	′

|Rk − Rl −Dk	 +Dl	
′| . (13.2.7)

The last equality uses Eq. (5.1.7). For k �= l, the last integral is just |Rk − Rl|−1

by Newton’s Theorem (since |Rk − Rl| ≥ Dk +Dl). Similarly, for k = l it is
D−1

k , which can be trivially bounded by 2
∑

j, j �=k |Rj − Rk|−1. Hence∫
R3

|�(x)|4dx ≤ 6π3M2
∑

1≤k<l≤M

1

|Rk − Rl| .

We are left with the task of finding a lower bound to

L∑
i=1

(
ε| pi | −

λ

D(xi)

)
. (13.2.8)

Assume that ε > πλ/2. It was proved in Chapter 8, Lemma 8.5, that (13.2.8) is
bounded from below by

−1.514
λ4q

(ε − πλ/2)3

M∑
j=1

1

Dj

.

Again noting that D−1
j ≤ 2

∑
k, j �=k |Rj − Rk|−1, this proves that

H̃ ≥
[
α − λ4 0.0257 q

(1 − ε)3
6π3M2 − λ4 6.056 q

(ε − πλ/2)3

] ∑
1≤k<l≤M

1

|Rk − Rl| .

(13.2.9)

We shall choose M large and λ and ε small. In this case, the third term
in square parentheses in (13.2.9) is negligible compared to the second term.
We choose α = σλ4M2 with σ = 0.0257 × 6π3q and λM = (N/2σ )1/3, with
λ � 1 and 1 � M � N . To leading order, the equation (13.2.6) then becomes

κ = 3

2
(2σ )−1/3N−2/3.
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In other words, we have shown that H ≥ 0 if N ≤ (2σ )−1/2(3/2κ)3/2 plus terms
of lower order for small κ .

13.3 A More Complete Picture

13.3.1 Relativistic Gravitating Fermions

As stated in the Introduction, a more accurate model uses the Hamiltonian

H =
N∑
i=1

(√
| pi |2 +m2 −m

)
− κ

∑
1≤i<j≤N

1

|xi − xj | (13.3.1)

with m > 0. As pointed out above, the critical value of N for stability does not
depend on m, since | p| −m ≤ √| pi |2 +m2 −m ≤ | p|. Other properties for
subcritical N , like the size of the star, for instance, will depend on m. In the limit
of small κ and large N one would expect that to leading order the energy and
particle density is exactly given by the semiclassical approximation, by which
we mean the following.

First, the gravitational energy is approximated by the classical energy of a
particle distribution described by �(x), given by

−1

2
κ

∫∫
R3×R3

�(x)�( y)

|x − y| dxd y = −κD(�, �),

where the same notation as in (5.1.3) is used. The lowest kinetic energy for a
given density function � in the semiclassical approximation is∫

R3

j (�(x))dx

where j is defined as

j (t) = q

(2π )3

∫
|k|<(6π2t/q)1/3

(√
|k|2 +m2 −m

)
dk.

(Compare with the discussion of the semiclassical approximation in
Section 4.1.1.) This integral can be evaluated explicitly. It is

j (t) = q

16π2

[
η(2η2 +m2)

√
η2 +m2 −m4 ln

(
η +
√
η2 +m2

m

)]
− tm,
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with η = (6π2t/q)1/3. For large t , j (t) ≈ (3/4)(6π2/q)1/3t4/3, whereas for small
t , j (t) = (3/10m)(6π2/q)2/3t5/3, which is exactly what we would expect in these
limits.

Altogether, the semiclassical energy functional is thus defined to be

Eclassical(�) =
∫
R3

j (�(x))dx − κD(�, �). (13.3.2)

Its infimum over all non-negative densities � with
∫

R3 �(x)dx = N is the semi-
classical energy Eclassical

0 (N, κ,m). It has the scaling property

Eclassical
0 (N, κ,m) = N4/3Eclassical

0 (1, κN2/3,mN−1/3).

From this one immediately deduces that, within the semiclassical approximation,
there is a critical value of κN2/3 for stability of the system. In other words, the
critical value of N , which we denote by Nc, equals a constant times κ−3/2, in
agreement with our bounds in Theorem 13.1.

There are two questions one would like to ask.

� Does the quantum-mechanical problem (13.3.1) lead to this semiclassical
minimization problem to leading order as κ → 0 and N → ∞, with Nκ3/2

fixed?
� Is there a minimizing � for Eclassical and is it unique (up to translations, of

course)?

It is easy to show that if a minimizing � for Eclassical exists, it satisfies the
variational equation

j ′(�(x)) =
⎡⎣κ ∫

R3

�( y)

|x − y|d y − μ

⎤⎦
+

(13.3.3)

where [ · ]+ denotes the positive part, and μ ≥ 0 is some constant, adjusted so
that
∫
�(x)dx = N .

The answer to both these questions is affirmative, as proved by Lieb and Yau
in [137]. The most difficult part in the proof of the correctness of Eclassical

0 is
the lower bound on the ground state energy of H in (13.3.1), and this follows
the method in our Theorem 13.1 except that the estimates are done much more
carefully in [137].



242 Gravitational Stability

With the aid of standard techniques in the calculus of variations it is not hard
to prove that there is a minimizer of Eclassical as long as N < Nc. The proof of
the uniqueness of a solution of the equation (13.3.3) for N < Nc is somewhat
non-standard and turns out to be rather involved.1 When N = Nc, there is also a
minimizer of Eclassical if we set m = 0, i.e., replace j (t) by (3/4)(6π2/q)1/3t4/3.
The solution of the corresponding variational equation (known as the Lane–
Emden equation) turns out to be unique up to translations and rescaling; that is,
one can replace �(x) by λ3�(λx + y) for any λ > 0 and y ∈ R

3.

13.3.2 Relativistic Gravitating Bosons

The situation for bosons is similar to the fermionic case discussed in the previous
subsection. The effective functional for small κ and large N is now the Hartree
functional

EHartree(�) =
(√

�,
(√

| p|2 +m2 −m
) √

�
)
− κD(�, �). (13.3.4)

It results by assuming that all the particles are in the same one-particle state
φ(x) = √

�(x)/N ,2 compare with Eq. (13.2.2). That is, the many-body wave
function is of the formψ(x1, . . . , xN ) =∏N

i=1 φ(xi). The Hartree energy, which
is the infimum of (13.3.4) over all non-negative � with

∫
R3 �(x)dx = N , has the

scaling property

EHartree(N, κ,m) = NEHartree(1, κN,mN−1).

This shows that the critical value of N , denoted again by Nc, now equals a
constant times κ−1, in accordance with our bounds in Theorem 13.1.

It was proved in [137] that the Hartree functional (13.3.4) correctly describes
the ground state energy of (13.3.1) for bosons in the limit κ → 0 and N → ∞

1 Equation (13.3.3) is treated in many physics textbooks, see, e.g., [30] or [186, Sect. II.3.4],
by converting it into a second order differential equation in the radial variable |x|. It is an
elementary fact that the resulting equation has a unique solution if the value of � at the origin
is specified, and textbooks tend to leave it at that. The difficult part of the proof in [137] is to
show that there can only be one such value for a given N .

2 It is not a restriction to assume that φ is non-negative, as we do here, since the representa-
tion (3.2.17) shows that replacing φ by |φ| can only lower the kinetic energy.
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with κN fixed. Moreover, there is a minimizing φ(x) = √
�(x) for EHartree as

long as N < Nc, which satisfies the Hartree equation(√
| p|2 +m2 −m

)
φ(x) − κ

∫
R3

|φ( y)|2
|x − y|φ(x) = −μφ(x).

Uniqueness of solutions to this equation is still an open problem, in general. For
small values of κ

∫ |φ(x)|2dx uniqueness was proved by Lenzmann [104].3

13.3.3 Inclusion of Coulomb Forces

In Section 13.2 we obtained bounds on the critical number of particles for
collapse of a gravitating system of either bosons or fermions. In the model con-
sidered there, there was only one kind of particle and the gravitational attraction
among them was proportional to κ = Gm2, where m is the mass of the parti-
cle. This model is appropriate for a neutron star (neglecting general relativistic
effects and nuclear forces, etc), in which case m equals the mass of a neutron
mn, which is approximately equal to the mass of a proton, namely ≈ 2000 in
our units (where the electron mass equals 1). The main conclusion was that the
critical particle number Nc is proportional to κ−3/2 since neutrons are fermions.

For the physical values of mn and G the resulting critical particle number is
roughly Nc ≈ 1057, and the mass of the neutron star, which is Ncmn, is of the
same order as the mass of our sun, but the neutron star is much smaller in size
(by a factor of 105). The main reason for this size difference, as mentioned in
Section 13.1, is the lack of electrons in neutron stars, which are very light but
produce a big pressure. If neutrons were bosons, Nc would be proportional to
κ−1, in which case Nc ≈ 1038, and Ncmn ≈ the mass of a mountain instead of
the mass of a star.

White dwarfs, on the other hand, can be thought of as consisting of a gas of
nuclei and electrons, and hence not simply of one species of electrically neutral
gravitating particles. The main gravitational energy in a white dwarf comes from
the nuclei, since they are much heavier than the electrons. The Pauli principle for
the electrons is responsible for the pressure that keeps the star from collapsing,
however, even in case the nuclei are bosons. An approximate model to consider

3 For the non-relativistic analogue of the Hartree equation, existence and uniqueness of solutions
was proved in [109].
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is the Hamiltonian (13.2.1) for the electrons, but with κ = G(μ/Z)2, however,
where μ and Z are the mass and charge of the nuclei. While this model is the one
usually employed, it ignores the fact that there are really two kinds of charged
particles which make different contributions to the energy.

In this section we show that a model in which there are electrons and nuclei
with both electrostatic and gravitational interactions is stable in essentially the
same parameter region as the simpler Hamiltonian (13.2.1) for just one species
of (neutral) particles, with effective coupling constant that is proportional to the
square of the mass per unit charge of the heavier particles. The presentation is
similar to the one in [136]. No attempt is made to evaluate the precise constants
as we did earlier.

The Hamiltonian for this model is given by

H =
N∑
i=1

(√
| pi |2 +m−m

)
+

M∑
k=1

(√
|Pk|2 + μ− μ

)

+
∑

1≤i<j≤N

α −Gm2

|xi − xj | +
∑

1≤k<l≤M

Z2α −Gμ2

|Rk − Rl| −
N∑
i=1

M∑
k=1

Zα +Gmμ

|xi − Rk| ,

(13.3.5)

where Pk and Rk denote the momenta and positions of the nuclei, which could
either be bosons or fermions. The charge and mass of the nuclei are Z and μ,
respectively. The electron mass m = 1 in our units, but for transparency we shall
retain it in our notation.

For stability, we have to assume that Zα +Gmμ ≤ 2/π , which, for physical
values, is satisfied for all nuclei with Z ≤ 87.

We shall also assume in the following that Z2α > Gμ2. This condition is
amply satisfied in practice, since Gμ2/(Z2α) ≈ 10−36 for all nuclei in the peri-
odic table. (In fact, μ/Z is roughly constant throughout the periodic table, since
atomic nuclei contain roughly as many neutrons as protons.)

For convenience, we define an effective nuclear charge to be

Zb =
√
Z2 − Gμ2

α

and an effective electron charge to be

Ze = Zα +Gmμ

Zbα
.
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Then H can be written as

H =
N∑
i=1

(√
| pi |2 +m−m

)
+

M∑
k=1

(√
|Pk|2 + μ− μ

)

+
∑

1≤i<j≤N

αZ2
e − κ

|xi − xj | +
∑

1≤k<l≤M

αZ2
b

|Rk − Rl| −
N∑
i=1

M∑
k=1

αZeZb

|xi − Rk| ,

(13.3.6)

with

κ = G
(
m+ μ

Z

)2
(

1 − Gμ2

Z2α

)−1

.

In practice, 2000 � μ/(Zm) � 6000, and hence κ ≈ Gμ2/Z2.
We choose some 0 < η < 1 and write H = HC +HG, where

HC = (1 − η)
N∑
i=1

(√
| pi |2 +m−m

)
+

M∑
k=1

(√
|Pk|2 + μ− μ

)

+
∑

1≤i<j≤N

αZ2
e

|xi − xj | +
∑

1≤k<l≤M

αZ2
b

|Rk − Rl| −
N∑
i=1

M∑
k=1

αZeZb

|xi − Rk|
(13.3.7)

and

HG = η

N∑
i=1

(√
| pi |2 +m−m

)
−

∑
1≤i<j≤N

κ

|xi − xj | .

The Hamiltonian HC contains only Coulomb forces. For appropriate values of
η, α, Ze and Zb it is bounded from below by −(1 − η)Nm, as was shown
in Chapter 8, Theorem 8.1. The nuclear kinetic energy is not needed for
this bound, and the statistics of the nuclei is irrelevant. If the nuclei hap-
pen to be fermions, the conclusion would hold even for η = 1 if Z is not
too big, by simply exchanging the role of the nuclei and the electrons in
Theorem 8.1.

The remaining part HG contains only gravitating particles; it is equal to
the Hamiltonian studied in Section 13.2, with an effective coupling constant
κ/η. In particular, this shows that the full Hamiltonian H in (13.3.5) is sta-
ble as long as κ ≤ const. N−2/3 (for appropriate values of Z and α). This
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result holds for fermionic electrons and nuclei of either statistics, boson or
fermion.

It remains an open problem to study the semiclassical limit N,M → ∞,
κ → 0 with Nκ3/2 fixed. In this limit, one expects the system to be described by
a semiclassical functional, which is more complicated than (13.3.2) because
of exchange terms resulting from the Coulomb interaction potentials (see
Chapter 6).



C H A P T E R 1 4

The Thermodynamic Limit for
Coulomb Systems

14.1 Introduction

In the previous chapters we established the fact that the ground state energy is
bounded below by a constant times the total particle number for a variety of
models of particles interacting via electrostatic and magnetic forces. The natural
next question would be whether it is strictly proportional to the particle number
for large particle number, that is, whether the limit of the energy per particle
exists. For the ground state energy it is actually easy to see that this is the case,
as we shall demonstrate in Section 14.2.

A more interesting question is what happens if we confine a large number of
particles to a large box, with the number of particles per unit volume, i.e., the
density �, fixed. This would describe, for instance, a gas or a liquid or even a solid
in a container. Again we expect the energy, in the limit of large system size, to
be equal to the particle number times some function of the density, independent
of the volume or the shape of the box. To make things even more realistic, one
can discuss the very same question at a positive temperature T > 0, in which
case the relevant quantity to look at is the free energy, i.e., the energy minus T
times the entropy. This general question of the existence of the thermodynamic
limit will be addressed in Section 14.3.

In the previous proofs of the stability of matter the main concern was the short
distance |x|−1 singularity of the Coulomb potential, and to show that it does not
cause the system to implode and have a very negative energy that grows faster
than the particle number. In contrast, it is the long distance |x|−1 nature of the
Coulomb potential that is the source of difficulty for proving the existence of a
thermodynamic limit. By confining the particles to a box they are prevented from
escaping from each other, and the danger is that the energy could be positive
and grow faster than the particle number. For instance, if we put only negatively
charged particles in a box of diameter L, the particles would stick to the walls

247
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of the container, and the energy would grow like N2/L = N5/3�1/3 for large N
and fixed �. Clearly, charge neutrality will be an essential input here, whereas
it was not before.

Another concern might be that even if the energy is bounded from above and
below by some constants times the particle number, the energy per particle still
might oscillate and not converge asN goes to infinity. Although this is physically
ridiculous it is a mathematical possibility that has to be addressed.

In the physically realistic case there are several kinds of particles to be con-
sidered. While there is only one negative particle of importance (the electron1),
there are several kinds of nuclei, some of which might be bosons and some
fermions. To simplify the discussion here we shall just take one kind of nucleus
of charge +Ze and mass μ. We emphasize, however, that the proof given here
can easily be generalized to include several species of particles, see [116].

The discussion begins with the thermodynamic limit for particles of inde-
terminate density in their ground state, i.e., with no confining box and free to
be where they like in R

3. This would be appropriate for the discussion of a
solid at very low temperature. Following that we shall give a quick review of
the essential principles of statistical mechanics needed for the formulation of
the thermodynamic limit at positive temperature and fixed density. The main
theorem concerns the existence of the thermodynamic limit of the free energy of
neutral Coulomb systems. The proof we shall give follows closely the original
work by Lebowitz and Lieb [103, 116]. Only the Hamiltonians without magnetic
field will be discussed. We remark that the corresponding question for matter
interacting with the quantized electromagnetic field is still an open problem.
Partial results in that direction were obtained in [121]. In Section 14.7 the ‘jel-
lium’ model is briefly discussed. In this model the nuclei are replaced by a fixed,
uniformly charged background, chosen to make the system charge neutral.

The astute reader will notice an important fact about all the systems under
consideration. Quantum mechanics plays no role in the proof except to provide
a lower bound to the energy that satisfies stability of the second kind. Thus, the
proofs go through for classical (i.e., non-quantum) statistical mechanics if there
is such a lower bound. Indeed, in the jellium model this is the case. We shall
briefly explain classical statistical mechanics in Section 14.4. For the model with
electrons and nuclei considered in the rest of this book, quantum mechanics is

1 There are other kinds of negative fermions, like the muon, but they are unstable and have a very
short lifetime.
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not needed, as shown by Onsager [145], if we impose a hard core condition that
|xi − Rj | ≥ a > 0 for all i, j . Quantum mechanics does have an effect on the
final energy, however.

14.2 Thermodynamic Limit of the Ground State Energy

Before considering the general problem of the thermodynamic limit for a given
density and temperature we first consider the simpler problem of the ground state
energy in an infinite volume. In the previous chapters, we have shown that this
ground state energy is bounded from below by a constant times the total particle
number. Here, we shall supplement this result by showing that the ground state
energy per particle actually has a limit as the number of particles goes to infinity.

In contrast to the general case discussed in the next section, charge neutrality
is not needed here. It was also irrelevant for the question of stability discussed
in the previous chapters.

For simplicity, we shall only consider systems without magnetic fields. We
shall also restrict our attention to just one species of nuclei. The extension to
more general situations is straightforward.

The Hamiltonian under consideration will be the same as in Chapters 7 and 8,
except that we allow for a finite nuclear mass and also take the nuclear kinetic
energy into account. It is given by

H =
N∑
i=1

Tm( pi) +
M∑
j=1

Tμ(Pj ) + αVC(X, R). (14.2.1)

The electrons have positions xi and momenta pi , while the nuclei have positions
Rj and momenta Pj . They can be either bosons or fermions. The kinetic energy
of the electrons is either of the form

Tm( p) = p2

2m
or Tm( p) =

√
p2 +m2 −m

withm > 0. The same choices apply to the kinetic Tμ(P) of the nuclei, with mass
μ instead of mass m. A special choice is μ = ∞, which means that the nuclei do
not move, but are fixed in some minimum energy configuration. The Coulomb
potential VC(X, R) is defined in (2.1.21), with Zj = Z for j = 1, 2, . . . ,M .

Let E0(N, M) denote the ground state energy of (14.2.1). We assume, as
usual, that the electrons are fermions. If they were bosons the ground state
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energy would grow as −N7/5, which implies that the thermodynamic limit
exists for bosons only in the sense that the energy per particle is −∞ in this
limit. Real electrons have q = 2, but our conclusions hold for any fixed, finite
q. In the relativistic case, we shall assume that Zα and α are appropriately
chosen for stability of matter to hold. Sufficient conditions for this are given in
Theorem 8.1.

Theorem 14.1 (Thermodynamic Limit of the Ground State Energy). Let
E0(N,M) denote the ground state energy of (14.2.1). Then E0 is subadditive,
that is

E(N1 +N2, M1 +M2) ≤ E(N1, M1) + E(N2, M2). (14.2.2)

Now let Nj and Mj for j = 1, 2, . . . be a sequence such that Nj +Mj → ∞
as j → ∞ and such that Nj/(Nj +Mj ) converges to some number η with
0 < η < 1. Then there is a function e(η) defined on (0, 1) such that

lim
j→∞

E0(Nj,Mj )

Nj +Mj

= e(η), (14.2.3)

regardless of the sequences Nj and Mj (provided Nj/(Nj +Mj ) → η). More-
over e is bounded and convex on (0, 1), i.e.,

e(λη1 + (1 − λ)η2) ≤ λe(η1) + (1 − λ)e(η2) (14.2.4)

for 0 ≤ λ ≤ 1.

Proof. The subadditivity (14.2.2) is a simple consequence of our being able
to use, as a variational function for the problem with N1 +N2 electrons and
M1 +M2 nuclei, a product function of the formψ1 ⊗ ψ2

y , whereψ1 is a function
for the N1 electrons and M1 nuclei, and similarly for ψ2. The subscript y ∈ R

3

indicates a translation of ψ2, i.e. ψ2
y(x1, x2, . . . ) ≡ ψ2(x1 + y, x2 + y, . . . ).

The expectation value of the Hamiltonian H converges, as y → ∞, to
(ψ1, Hψ1) + (ψ2, Hψ2). There is a small technical problem associated with
the product function ψ1 ⊗ ψ2

y , namely it will not necessarily have the right
permutation symmetry properties. This however can easily be corrected by
appropriately symmetrizing or antisymmetrizing this function, which will not
affect the limiting energy as | y| → ∞.

The assertion (14.2.3) is a direct consequence of (14.2.2) together with the
stability bound E0(N,M) ≥ A(N +M). To prove it we first note that there is
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also an upper bound of the formE0(N,M) ≤ B(N +M) for some finite number
B. In our case we can obviously take B = 0 but this upper bound can be deduced
from (14.2.2) alone by noting that E0(N,M) ≤ NE0(1, 0) +ME0(0, 1).

Since E0(N,M)/(N +M) is bounded, there are sequences (by passing to
subsequences if necessary) so that the limit in (14.2.3) exists. Now suppose that
there are two sequences (Nj,Mj ) and (N ′

j ,M
′
j ), both with the same limiting η,

such that limj→∞ E0(Nj,Mj )/(Nj +Mj ) < limj→∞ E0(N ′
j ,M

′
j )/(N ′

j +M ′
j ).

By going to a subsequence of (N ′
j ,M

′
j ) and appropriately relabeling the ele-

ments, we can assume that

N ′
j = LjNj + rj

for some sequence of integers Lj that goes to +∞ as j → ∞, and rj < Nj . If
we write

M ′
j = LjNj + δj

then limj→∞ δj/(LjNj ) = 0 (since both Nj/Mj and N ′
j /M

′
j converge to the

same ratio). By subadditivity and the upper bound on E0,

E0(N ′
j ,M

′
j ) ≤ LjE0(Nj,Mj ) + B(rj + δj )

and hence

lim
j→∞

E0(N ′
j ,M

′
j )

N ′
j +M ′

j

≤ lim
j→∞

E0(Nj,Mj )

Nj +Mj

.

This contradicts the assumption that the left side be strictly bigger than the right
side, and hence the two limits agree.

As for the convexity, we shall prove weak convexity, namely e( 1
2η1 + 1

2η2) ≤
1
2e(η1) + 1

2e(η2). This, together with the boundedness of e(η) easily implies
convexity (cf. [86, Thm. 1.11]). Let (N1

j ,M
1
j ) and (N2

j ,M
2
j ) be sequences con-

verging to η1 and η2, respectively. By (14.2.2),

E0(N1
j (N2

j +M2
j ) +N2

j (N1
j +M1

j ),M1
j (N2

j +M2
j ) +M2

j (N1
j +M1

j ))

≤ (N2
j +M2

j )E0(N1
j ,M

1
j ) + (N1

j +M1
j )E0(N2

j ,M
2
j ).

After we divide this inequality by 2(N1
j +M1

j )(N2
j +M2

j ), the left side converges
to e( 1

2η1 + 1
2η2), and the right side converges to 1

2e(η1) + 1
2e(η2).
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14.3 Introduction to Quantum Statistical Mechanics and
the Thermodynamic Limit

In the previous section we have discussed the existence of the thermodynamic
limit of the ground state energy of systems in infinite volume. We will now turn
our attention to systems that are confined to finite volumes and have positive
temperature. The Hamiltonian under consideration will be the same as in the
previous section. We shall consider only the neutral case here, i.e., N = MZ.

In order to define an operator restricted to functions that are supported on
some set � ⊂ R

3, we consider the quadratic form2

E(ψ) =
∫ ⎛⎝ N∑

i=1

Tm(2πki) +
M∑
j=1

Tμ(2πKj )

⎞⎠ |ψ̂(k, K )|2dk dK

+ α

∫
VC(X, R)|ψ(X, R)|2dX dR (14.3.1)

for ψ ∈ H 1(R3(N+M)) (in the non-relativistic case) or ψ ∈ H 1/2(R3(N+M)) (in
the relativistic case) with the property that ψ(X, R) = 0 if either xi �∈ � for
some i or Rj �∈ � for some j .

Under the assumption that E(ψ) ≥ −C(ψ,ψ) for all ψ , i.e., stability of the
first kind, there is a standard method (the Friedrichs extension) of defining
a corresponding operator H� such that E(ψ) = (ψ,H� ψ). We refer to [150,
Thm. X.23] for details. In the non-relativistic case, the operator H� is simply
given by (14.2.1) with Dirichlet boundary conditions on the boundary of �,
i.e., ψ = 0 on the boundary. Stability of the first kind always holds in the non-
relativistic case (Theorem 7.1) and it holds in the relativistic case as long as α
and Zα are not too large, as proved in Theorem 8.1 in Chapter 8.

For bounded �, the operator H� has discrete spectrum and a complete set
of eigenfunctions.3 Moreover, the eigenvalues of H� (including multiplicity)
increase fast enough so that e−βH� is trace-class for any β > 0, that is, we can

2 We shall slightly differ from the notation in previous chapters and use k for (k1, . . . , kN ) and
K for (K 1, . . . , KM ).

3 Spectral theory is not really needed here. We can define the partition function also by a variational
principle, see Remark 14.2.
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define the partition function Z(β,�,N,M) as

Z(β,�,N,M) := Tr e−βH� =
∑
E

e−βE, (14.3.2)

where the sum runs over all eigenvalues E of H� in the appropriate symmetry
class (Bose or Fermi). The positive parameter β equals 1/kBT , where kB equals
Boltzmann’s constant and T > 0 is the temperature.

Remark 14.1 (Spin and Symmetry). If the electrons have q spin states then
the electron coordinates should really be z = (x, σ ) as before. The spin plays no
essential role, however, and there is the following easy way to think about spin
in order to be able to concentrate only on the spatial variables xi . Just pretend
that there are q kinds of electrons and that each kind has q = 1. That is, there are
Ni particles of type i (with i = 1, . . . , q) and the allowed wave functions are
functions of N1, N2, . . . , Nq spatial variables that are separately antisymmetric
in each of the Ni variables. We can compute the partition function with given
numbers N1, . . . , Nq of particles of each type. After that the partition function
given in (14.3.2) is computed by summing over all choices of the Ni such
that
∑q

i=1 N
i = N . No combinatorial coefficients are needed – as there would

be if one tried to compute the partition function by summing over the various
symmetry types of the x variables that can arise from antisymmetry in the (x, σ )
variables. We thus see that it is only necessary to think of q species of ‘spinless’
fermions. For simplicity of notation we shall restrict our attention to q = 1 in
the sequel.

The following variational principle is essential for our proof of the thermody-
namic limit [153, Prop. 2.5.4].

Lemma 14.1 (Variational Principle for the Partition Function). Let H be
a self-adjoint operator that is bounded from below, with e−βH trace class. Let
{ψ1, ψ2 . . . } denote a set (finite or infinite) of orthonormal functions. Then

Tr e−βH ≥
∑
i

exp [−β(ψi,H ψi)].

In particular, Tr e−βH equals the supremum of
∑

i exp[−β(ψi,H ψi)] over all
(finite) sets of orthonormal functions.
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Proof. By convexity of the exponential function, (ψ, e−βHψ) ≥ exp[−β(ψ,
H ψ)] for any normalized function ψ . To see this, let Ei and φi denote the
eigenvalues and corresponding orthonormal eigenfunctions of H . Then

(ψ, e−βHψ) =
∑
i

e−βEi |(φi, ψ)|2 ≥ exp

[
−β
∑
i

Ei |(φi, ψ)|2
]

= exp[−β(ψ,H ψ)],

where we have used Jensen’s inequality4 for the convex exponential function,
as well as

∑
i |(φi, ψ)|2 = (ψ,ψ) = 1. Since Tr e−βH ≥∑i(ψi, e

−βHψi) if the
ψi are orthonormal (because the trace of a trace-class operator can be computed
in any orthonormal basis), the claim is proved.

Remark 14.2. The variational principle for the partition function can be written
as

Tr e−βH = sup
∑
i

exp [−βE(ψi)]

where the supremum is over all (finite) sets of orthonormal functions. Hence
it is not necessary to introduce the Hamiltonian operator in order to define the
partition function. The Hermitian quadratic form E(ψ) (defined in (14.3.1) for
the model under consideration) suffices.

The free energy for a finite domain � is defined as

F (β,�,N,M) := − 1

β
lnZ(β,�,N,M). (14.3.3)

The specific free energy is the free energy per unit volume, i.e.,

f (β,�,N,M) := F (β,�,N,M)/|�|. (14.3.4)

Here and in the following, | · | denote the volume or Lebesgue measure of a set
in R

d .
For the Hamiltonians (14.2.1), the specific free energy is bounded from below,

independent of the shape or the volume of the domain �. (In the relativistic case,

4 See the footnote on page 135.
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we have to assume that Zα < 2/π and α is small enough.) This can be seen
from the following consideration. From the stability of matter, Theorem 7.1 in
the non-relativistic case and Theorem 8.1 in the relativistic case, we see that, for
0 < ε < 1,

(1 − ε)
N∑
i=1

Tm( pi) + αVC(X, R) ≥ −C(N +M)

for some C > 0 and, in the relativistic case, for ε small enough. Hence H ≥
ε
∑N

i=1 Tm( pi) +
∑M

j=1 Tμ(Pj ) − C(N +M). In particular, from the variational

principle stated in Lemma 14.1, Z ≤ eβ(N+M)CTr exp[−βε
∑N

i=1 Tm( pi) −
β
∑M

j=1 Tμ(P j )]. It is easy to see that the latter trace is bounded from above by
eD(N+M) for some D > 0, see [153] or any other standard textbook on statistical
mechanics.

The thermodynamic limit concerns the behavior of f (β,�,N,M) as �

tends to R
3 in a suitable sense, and N and M tend to infinity as well, with

N/|�| and M/|�| converging to a finite non-zero value. In order to define what
is meant by ‘suitable sense’, we need the following definition.

Definition 14.1 (Regular Sequence). If� ⊂ R
d is an open set andh > 0, define

V (h;�) to be the measure of the set of points x ∈ � such that the distance of x
to �c, the complement of �, is less than or equal to h.

Forh < 0, letV (h;�) denote the measure of the points y ∈ �c whose distance
to � is less than or equal to −h.

A sequence of bounded open sets �j ⊂ R
d , j ∈ N, is said to be a regular

sequence if the following two conditions hold.

(1) The sequence is a Van Hove sequence, i.e., limj→∞ |�j | = ∞ and
limj→∞ V (h;�j )/|�j | = 0 for all fixed h ∈ R.

(2) The sequence satisfies the ball condition, i.e., if Bj is the smallest ball
containing �j then lim infj→∞ |�j |/|Bj | > 0.

The following theorem, which is the main result of this chapter, shows that
for a regular sequence of domains, the thermodynamic limit of the specific free
energy exists, and is independent of the sequence. It was proved in [103, 116].

Theorem 14.2 (Thermodynamic Limit of the Free Energy). Fix some β > 0
and� > 0, and consider a regular sequence of domains�j ∈ R

d , and a sequence
of integers Nj such that Nj/|�j | → � as j → ∞. With Mj = Nj/Z (i.e., in the
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neutral case), the limit

lim
j→∞

f (β,�j ,Nj ,Mj ) =: f̄ (β, �) (14.3.5)

exists and is finite. The limit function f̄ is independent of the sequence. It is a
convex function of � and a concave function of 1/β.

The convexity/concavity is important for it is the basis of thermodynamic
stability. Convexity in � means that the pressure (defined to be −f + �∂f/∂�)
is a non-decreasing function of �. (Squeezing a container increases the pressure.)
If this were not true the system would spontaneously implode.

Likewise, concavity in T = 1/(kBβ) means that the temperature increases as
the energy per unit volume, defined to be f − T ∂f/∂T , increases. If this were
not so then hot bodies would suck energy away from cold bodies.

Remark 14.3 (Spin and Symmetry, redux). As explained in Remark 14.1, spin
can be taken into account by considering the specific free energy of q species of
‘spinless electrons’, which will then be a function of q densities �i = Ni/|�|,
i = 1, . . . , q. In the thermodynamic limit, this function will be a jointly convex5

function of (�1, . . . , �q), and this can be proved in a similar way as convexity of
f̄ (β, �) in � in Theorem 14.2. It is also obviously a symmetric function of the q
variables �1, . . . , �q , which we denote by f̄ (β, �1, . . . , �q). It is easy to see that

f̄ (β, �) = inf∑
i �

i=�
f̄ (β, �1, . . . �q).

This follows from the fact that in the sum of the partition functions over different
ways of splitting N into q integers, only the largest summand survives in the
thermodynamic limit. In fact, the error that we make in f̄ when considering only
the largest contribution is at most q(β|�|)−1 lnN , since there are less than Nq

summands. In particular, from convexity and symmetry it follows that

f̄ (β, �) = f̄ (β, �/q, . . . , �/q).

Several generalizations of Theorem 14.2 are possible, as shown in [116], but
we shall not give the details here. These concern the following.

5 A function of q variables is jointly convex if f (λ�1 + (1 − λ)μ1, . . . , λ�q + (1 − λ)μq ) ≤
λf (�1, . . . , �q ) + (1 − λ)f (μ2, . . . , μq ) for 0 ≤ λ ≤ 1.
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� Non-neutral systems. The system does not have to be strictly neutral, but
the net charge has to be small enough. More precisely, as long as the net
charge Q is much less than N2/3, the resulting electrostatic energy does not
contribute in the thermodynamic limit. If Q = Q̄N2/3 it is necessary to make
the sequence of domains all have the same shape, e.g., a ball or an ellipsoid.
Then the limiting specific free energy equals f̄ (β, �) + �4/3Q̄2/(2C) where
C is the electrostatic capacity [118, Sect. 11.15] for the domain of the given
shape and with unit volume. If Q/N2/3 → ∞ then the specific free energy is
+∞ in the thermodynamic limit.

� Multiple species. Instead of having just one species of negative fermions and
one species of positive nuclei, multiple species can be accommodated. For
stability it is important that either all the negative or all the positive particles
be fermions.

� Short-range forces. In addition to the Coulomb forces among the particles,
one can include short-range potentials, meaning potentials of the formV (xi −
xj ) which are integrable at infinity. They may or may not include hard cores.
In this way one could take ionized atoms as the fundamental particles, or take
explicitly the form factor of the nuclei into account.

Historically, the problem of the thermodynamic limit was studied mainly for
systems with purely short range forces, such as hard sphere particles. Many
names are associated with this development, including Onsager, Van Hove,
Bogoliubov, Lee, Yang, van Kampen, Wils, Mazur, van der Linden, Griffiths,
Dobrushin, Sinai and especially Ruelle [153] and Fisher [65], who evolved what
came to be the canonical technique for proving the existence of the thermody-
namic limit in quantum and classical statistical mechanics. The main idea is
to prove that the specific free energy decreases with increasing volume, except
for terms of lower order. The thermodynamic limit is then established because
decreasing sequences have limits. Stability of the second kind makes its appear-
ance in the assertion that this limit is finite because the sequence is bounded
below.

The canonical technique in which big cubic boxes were packed with smaller
cubic boxes would not work for the long range Coulomb force. The neces-
sary modification was given in [116] where cubes were replaced by balls,
and the long-range interaction was ameliorated by the electrostatic screen-
ing given by Newton’s theorem, Theorem 5.2. The replacement of cubes by
balls led to the geometric problem of how to pack large balls by smaller balls
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efficiently. The solution of the problem is presented in Section 14.5. Apart
from this change from cubes to balls, and the resulting analytic complication
this change induces, the basic strategy remains that of the canonical method
mentioned above.

Recently an alternative proof of the thermodynamic limit (in the grand-
canonical ensemble) for Coulomb systems was constructed by Hainzl, Lewin
and Solovej [83]. The strategy there is different from the canonical approach; it is
shown that the specific free energy increases with volume, except for negligible
terms.

The proof of Theorem 14.2 will be given in Section 14.6. It will make essential
use of the ‘cheese theorem’ discussed in Section 14.5. Before explaining the
proof of Theorem 14.2 let us remind the reader of the definition of the partition
function in classical statistical mechanics.

14.4 A Brief Discussion of Classical Statistical Mechanics

As explained in Section 2.1, a classical mechanical system is described by
the Hamiltonian, which is now a real-valued function of the various momenta
P = ( p1, . . . , pN ) and positions X = (x1, . . . , xN ) of the particles. If there are
Nj particles of species j , with N =∑j N

j , the classical partition function for
particles in a domain � is

e−βF = Z = 1∏
j N

j !
h−3N

∫
R3N

dP
∫
�N

dX e−βH (P,X), (14.4.1)

where h is Planck’s constant. It plays the role of a normalization constant which
makes Z dimensionless. Formula (14.4.1) is suggested by taking a semiclassical
approximation of the quantum partition function (compare with the discussion
in Section 4.1.1). The factorial factors result from the quantum-mechanical
restriction to either symmetric or antisymmetric functions (bosons or fermions)
which reflects the indistinguishability of particles within the same species.

If H is of the form
∑

i p2
i /(2mi) + V (X), then the P integration can be

carried out and one obtains

Z =
N∏
i=1

(
2πmi

βh2

)3/2

Q (14.4.2)
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where

Q := e−β|�|f conf
:= 1∏

j N
j !

∫
�N

dX e−βV (X) (14.4.3)

is called the configurational partition function,6 and f conf is the configura-
tional part of the free energy per unit volume.

For an ideal gas, where V = 0, Q = |�|N/∏j N
j !, and hence, using

Stirling’s formula, the specific free energy F/|�| becomes

f̄ = 1

β

∑
j

�j
(

ln
β3/2h3�j

(2πmj )3/2
− 1

)
in the thermodynamic limit, wheremj denotes the mass of the particles of species
j , and �j is the density of these particles. For interacting systems, the existence
of the thermodynamic limit of the classical specific free energy f = F/|�| is
equivalent to the existence of the thermodynamic limit of the configurational
part f conf .

Let us now consider the Coulomb systems discussed in the rest of this book,
where the interaction potential is given in (2.1.21). For such systems, Q = +∞,
because of the attractive 1/|x| potential between electrons and nuclei. This
means that classically there is no stability of the first kind. On the other hand,
if we modify the potential slightly stability of the second kind can be obtained.
The way to do this was discovered by Onsager [145] who introduced a hard-
core condition. Let us imagine that there is some fixed radius a > 0 such that
V = +∞ unless |xi − Rj | ≥ a for all i, j . For this V , Q is finite and stability
of the second kind holds. This can be easily seen as follows. If |xi − Rj | ≥ a

for all i and j , we can replace the point charges at xi and Rj by smeared out
charges uniformly distributed over spheres of radius a/2. The electron–nucleus
attraction does not change under this replacement, whereas the interelectron and
internuclear repulsions decrease in case the particles are closer to each other
than a distance a. The total Coulomb energy (including the self-energy of all
the particles) is positive. Therefore V is bounded below by the negative of the
self-energy of the charge distributions, namely −(N +M)/a.

6 The configurational partition function is often defined with a prefactor |�|−N or 1 instead of
1/
∏

j N
j !.
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The existence of the thermodynamic limit for this classical hard-core Coulomb
gas can be shown in essentially the same way as the one in quantum case, which
we shall discuss in the sequel. To make the following proof work without
modifications one has to introduce also a hard-core constraint with respect to
the boundary of �; i.e., the electrons and nuclei have to stay away a distance
a/2 from the boundary of �. This does not affect the value of the specific free
energy in the thermodynamic limit, of course.

Another Coulomb system for which stability of the second kind holds both
classically and quantum mechanically is the jellium model, which we shall
discuss in Section 14.7. There we shall also explain in some detail the differences
between the proofs in the classical and quantum cases.

14.5 The Cheese Theorem

Our goal in this section is to prove that one can find a sequence of balls Bj ,
j = 0, 1, 2 . . . , in R

d of geometrically increasing radii, Rj = (1 + p)j with
p ∈ N, such that every ball Bj can be filled with nk = pk−1(1 + p)k(d−1) disjoint
copies of balls of radius Rj−k, with k = 1, 2, . . . , j . If we can do this then the
filling of the j th ball will be exponentially quick. More precisely, if Vj = σdR

d
j

denotes the volume of Bj then the unfilled volume fraction of Bj is

1 − V −1
j

j∑
k=1

nkVj−k = 1 −
j∑

k=1

pk−1(1 + p)k(d−1)

(
Rj−k

Rj

)d

= 1 −
j∑

k=1

pk−1(1 + p)k(d−1)(1 + p)−kd =
(

p

1 + p

)j
.

(14.5.1)

This sequence of balls will be called the standard sequence and will be used
not only to define a thermodynamic limit but also as a standard to show that an
arbitrary sequence of suitably behaved domains has the same thermodynamic
limit.

The next theorem shows that this sequence can be constructed if p is large
enough (p ≥ 9 for d = 2 and p ≥ 26 for d = 3). For convenience of exposition
we reverse the order by starting with a ball of radius 1 and then filling it with
balls of radii (1 + p)−j for all j ≥ 1. The theorem has come to be known as the
‘cheese theorem’ because it shows that a ball of unit radius can have its volume
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annihilated by carving out balls of ever smaller radius. After a few balls have
been cut out, the remaining domain looks like Swiss Emmenthaler cheese.

Theorem 14.3 (Cheese Theorem). Let p be a positive integer satisfying

1 + p ≥ (2d − 1)2
√
d + 2dσ−1

d (14.5.2)

(where σd denotes the volume of the unit ball in R
d). Let

rj = (1 + p)−j and nj = pj−1(1 + p)j (d−1).

It is possible to pack the unit ball in R
d with the disjoint union

⋃∞
j=1

(nj balls of radius rj ). It is also possible to pack the cube in R
d of volume

σd with the same set of balls.

Proof. The fundamental observation is this: Recall the definition of V (h;�) in
Definition 14.1. Let λZ

d denote the hypercubic lattice in R
d with side length

λ. The points in this lattice define hypercubes in R
d of volume λd , with the

property that the vertices of these hypercubes are contained in the lattice.
The number of hypercubes that are contained entirely in � is at least as large

as λ−d(|�| − V (λ
√
d;�)), where |�| is the measure of �. To see this, note that

the number of hypercubes entirely contained in � equals λ−d times their total
volume. The total volume occupied by these hypercubes is at least |�| minus
V (λ

√
d;�).

A simple corollary of this observation is that we can pack at least λ−d(|�| −
V (λ

√
d;�)) disjoint balls of diameter λ in �.

We prove the theorem for the unit ball; the proof for packing the cube of
volume σd is essentially the same. Starting with � equal to the unit ball, we
easily calculateV (h;�) = σd(1 − (1 − h)d) for 0 ≤ h ≤ 1, which is bounded by
V (h;�) ≤ σd((1 + h)d − 1) ≤ σdh(2d − 1). Setting λ1 = 2/(1 + p), we have
to check that n1 = (1 + p)d−1 is less than or equal to λ−d

1 (|�| − V (λ1

√
d;�)),

which follows immediately from (14.5.2) using the upper bound on V just
derived.

The next step is to insert n2 balls of radius r2 on a hypercubic lattice of size
λ2 = 2/(1 + p)2, and use the ‘fundamental observation’ to make sure that they
will fit. Having done so, we then insert n3 balls of radius r3 on a hypercubic
lattice of size λ3 = 2/(1 + p)3 and so forth. At each stage we have to calculate
V (λj

√
d;�j ), where�j is the cheese left after removing the balls in the previous

j − 1 steps. That is, �j is of the form � \⋃i Bi , where the Bi form a finite
collection of disjoint balls, namely nk balls of radius rk with k = 1, . . . , j − 1.
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We shall overestimate this volume by adding up the individual contributions
to V (λj

√
d;�j ) from � and the balls Bi , i.e.,

V (λj
√
d;�j ) ≤ V (λj

√
d;�) +

j−1∑
k=1

nkr
d
k V (−λj

√
d r−1

k ;�).

As before, we use V (h;�) ≤ V (−h;�) ≤ σdh(2d − 1) for 0 ≤ h ≤ 1. This
yields

V (λj
√
d;�j ) ≤ σd(2d − 1)λj

√
d

(
1 +

j−1∑
k=1

nkr
d−1
k

)

= σd(2d − 1)λj
√
d

(
1 + pj−1 − 1

p − 1

)
.

Moreover, |�j | = σd(1 −∑j−1
k=1 nkr

d
k ) = σd(p/(1 + p))j−1. The inequality

nj ≤ λ−d
j (|�j | − V (λj

√
d;�j )) thus holds if

1 ≤ 2−dσd

(
1 + p − (2d − 1)2

√
d

1 + p1−j (p − 2)

p − 1

)
.

Since p ≥ 2 and p1−j ≤ 1, this inequality holds if and only if it holds for j = 1,
that is,

1 ≤ 2−dσd

(
1 + p − (2d − 1)2

√
d
)

which holds true by the hypothesis (14.5.2).

As stated before, we want to consider a general sequence of domains and show
that the thermodynamic limit of the free energy is the same as for the standard
sequence. The following corollary of the cheese theorem will be important for
this purpose.

Corollary 14.1 (Filling General Domains by Balls). Let� ⊂ R
d be a bounded

open set. For p ∈ N satisfying (14.5.2), let Rj = (1 + p)j and nj = pj−1(1 +
p)j (d−1). Fix some J ∈ N. Then the following two properties hold.

(1) Let m denote the largest integer less than or equal to [ |�| − V ((1 + p)J

σ
1/d
d

√
d;�)]/(σd(1 + p)Jd). Assume that m > 0. Then � contains the dis-

joint union
⋃J−1

j=0 (mnJ−j balls of radius Rj ).
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(2) Let B be any domain containing �, and let � := B \�. Furthermore,
let μ denote the largest integer less than or equal to [ |�| − V (−(1 +
p)J σ 1/d

d

√
d;�) − V ((1 + p)J σ 1/d

d

√
d;B)]/(σd(1 + p)Jd). Assume that

μ > 0. Then� contains the disjoint union
⋃J−1

j=0 (μnJ−j balls of radius Rj ).

The first part of the corollary says that as long as the surface to volume ratio of
a domain is small, the domain can be packed very efficiently with balls from our
standard sequence, in fact with the same efficiency as the unit ball can be packed
with smaller balls. The second part says, in particular, that the complement of
the domain that lies inside a circumscribed ball can also be packed in a similar
fashion.

Proof. By the ‘fundamental observation’ explained in the proof of Theorem 14.3,
the domain � contains m disjoint cubes of volume σd(1 + p)Jd . According to
the last statement in the Cheese Theorem 14.3, these can be packed with balls
as stated.

The second part of the Corollary is proved in exactly the same way, noting
that V (h;�) ≤ V (−h;�) + V (h;B) for h > 0.

Corollary 14.1 will be applied to large domains � that are sufficiently regular
in the sense of Definition 14.1.

14.6 Proof of Theorem 14.2

To avoid unenlightening complications, we shall assume that Z is an integer, as
it is in nature.

14.6.1 Proof for Special Sequences

Pick an integer p for which the conclusion of the cheese theorem holds. For each
fixed density � > 0 we choose a special sequence of domains �j of increasing
volume, with j = 0, 1, . . . . This sequence will be the balls described in Sec-
tion 14.5, except that we choose the radii such that the number of nuclei in the
volumes are integers. Explicitly, �j is a ball with volume |�j | = Z(1 + p)3j /�,
and Mj = (1 + p)3j and Nj = Z(1 + p)3j . We denote the radius of �0 by r0,
i.e., (4πr3

0 )/3 = Z/�.
For j > 0, we decompose �j into a finite set of balls according to The-

orem 14.3. That is, �j contains nk = pk−1(1 + p)2k balls of radius rj−k =
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(1 + p)j−kr0 with k = 1, . . . , j . Let λk denote the fraction of the volume occu-
pied by the balls of size rj−k, i.e.,

λk = nk
r3
j−k

r3
j

= 1

p

(
p

1 + p

)k
. (14.6.1)

Note that
∑∞

k=1 λk = 1.
The fundamental inequality we would like to show is the following.

Lemma 14.2 (Recursion Relation for the Free Energy). Let fj = f (β,
�j ,Nj ,Mj ) and let λk be given in (14.6.1). Then

fj ≤
j∑

k=1

λkfj−k + c(1 + p)3λj+1 (14.6.2)

for some constant c > 0 (depending only on �).

Let us defer the proof of this lemma for the moment, and show how (14.6.2)
implies the existence of the limit of fj as j → ∞. Let dj be defined as

dj = fj −
j∑

k=1

λkfj−k. (14.6.3)

Note that (14.6.2) says that dj ≤ c(1 + p)3λj+1. The solution to the set of
equations (14.6.3) is

fj = dj + λ1

j−1∑
k=0

dk, (14.6.4)

which the reader can easily verify by induction, starting with j = 1. If we write

j−1∑
k=0

dk =
j−1∑
k=0

[
dk − c(1 + p)3λk+1

]+ c(1 + p)3
j−1∑
k=0

λk+1,

we can see that the limit as j → ∞ of this sum exists. In fact, the limit of
the last sum on the right exists (and is finite), and the limit of the first sum
on the right must exist since all the summands are non-positive. Moreover, it
must be finite since fj is bounded from below, uniformly in j . This implies that
limj→∞ dj = 0, and hence also fj in (14.6.4) has a limit, which is finite. It is at
this point that the stability of matter enters to show that the limit is finite instead
of −∞.
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We are left with the task of proving (14.6.2), which is the heart of the matter
and which is the reason for using balls as our fundamental domains.

Proof of Lemma 14.2. We shall employ the variational principle for the parti-
tion function in Lemma 14.1. The set of orthonormal functions will consist of
functions � that are products of functions ψα supported entirely in individual
balls, or in the complement of all the balls. The functions ψα will be of the right
symmetry type. Strictly speaking, � has to be appropriately (anti)symmetrized
among particles in different balls, but this will not have any effect, as we shall
see. The key idea is to place the particles in the individual balls in such a way
that the resulting state is invariant under rotations, in which case Newton’s the-
orem (Theorem 5.2 in Chapter 5) will imply that there is no average interaction
between different balls, as will be shown. If there were no interaction between
balls then (14.6.2) would be an equality.

We write �j as the union of balls labeled by b = 1, 2, . . . , and their com-
plement in �j , which we denote by �j . There are nk = pk−1(1 + p)2k balls
of radius rj−k = (1 + p)j−kr0. Let Nb be equal to � times the volume of the
ball number b (not to be confused with Nj ), and Mb = Nb/Z. The number of
particles in �j , the complement of the balls, is then Nγ = Nj −

∑
b N

b and
Mγ = Nγ /Z.

For every ball b, let ψb
α denote a set of orthonormal functions of Nb +Mb

particles supported in the ball b, with the correct permutation symmetry type.
Let  α denote the multi-index  α = (α1, α2, . . . ). As Nj -particle wave functions
on �j we choose products of the form

� α = ψγ
∏
b

ψb
αb ,

where ψγ is a fixed normalized function of Nγ +Mγ particles supported in
the complement of all the balls. Let S denote the operator that projects onto
the correct permutation symmetry type for all the Nj particles. We claim that
(S� α, S� α′) = 0 if  α �=  α′, and

(S� α,H S� α)

(S� α,S� α)
= (� α,H � α)

for the Hamiltonian (14.2.1). This claim follows from the fact that a permutation
(of either the electrons or the nuclei) either leaves all the particles in the same
domain, or it must move at least two particles out of their original domain. In
the latter case, the one-particle terms in the Hamiltonian have vanishing matrix
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elements between the original and the permuted function. The same is true for
the two-particle terms, simply because they are local.7 (For the one-particle
terms, locality is not needed, which is important in the relativistic case.)

In particular, the variational principle in Lemma 14.1 implies that

exp
[−β|�j |fj

] ≥∑
 α

exp [−β(� α,H � α)].

The expectation value of H can be written as8

(� α,H � α) =
∑
b

(ψb
αb,H ψb

αb ) + α

2

∑
b �=b′

∫∫
R3×R3

Qb
αb(x)Qb′

αb′ ( y)

|x − y| dx d y

+ (ψγ ,H ψγ ) + α
∑
b

∫∫
R3×R3

Qb
αb (x)Qγ ( y)

|x − y| dx d y, (14.6.5)

where Qb
α denote the charge density of ψb

α , defined in Eq. (3.1.8) in Chapter 3,
and likewise for Qγ . We note that

∫
Qb

α(x)dx = ∫ Qγ (x)dx = 0 because of
charge neutrality in all the balls.

Jensen’s inequality9 implies that∑
 α

exp [−β(� α,H � α)]

≥ e−βαW
∑
 α

exp
[
−β
∑

b
(ψb

αb,H ψb
αb ) − β(ψγ ,H ψγ )

]
,

whereW is the average value of the interaction between different domains, given
by

W =
∑
 α
ξ α

⎛⎝1

2

∑
b �=b′

∫∫
Qb

αb (x)Qb′
αb′ ( y)

|x − y| dx d y +
∑
b

∫∫
Qb

αb(x)Qγ ( y)

|x − y| dx d y

⎞⎠
(14.6.6)

with

ξ α = exp
[
−β
∑

b
(ψb

αb,H ψb
αb )
](∑

 α
exp
[
−β
∑

b
(ψb

αb,H ψb
αb )
])−1

.

Note that
∑

 α ξ α = 1.

7 For the notion of locality, see the footnote on page 181.
8 The symbols H in this equation et seq refer to different particle numbers, which should be clear

from the context.
9 See the footnote on page 135.
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Given the set of orthonormal functions ψb
α for a given ball b, we are at liberty

to replace them by a new set which is obtained from the original set by rotation
Rb of all the particle coordinates around the center of the ball. For this new
set, the expectation value of H stays the same, while all the Qb

α(x) change to
Qb

α(Rbx). The only effect of these replacements (one for each ball b) will be to
replace Qb

αb(x) by Qb
αb (Rbx) for all  α and all b in (14.6.6), while ξ α remains

unchanged.
The important point is that there is a choice of Rb such that W ≤ 0. This

follows from the fact that the average of W over all rotations of all the balls
equals zero. This is a consequence of Newton’s theorem, since all the terms in
(14.6.6) vanish for radial Qb. Note that for this argument it is not necessary for
Qγ to be radial.

We conclude that

exp
[−β|�j |fj

] ≥ exp
[−β(ψγ ,H ψγ )

]∏
b

(∑
α

exp
[−β(ψb

α,H ψb
α)
])

.

Since this inequality holds for any choice of the orthonormal functions ψb
α , the

variational principle in Lemma 14.1 implies that

exp
[−β|�j |fj

] ≥ exp

[
−β(ψγ ,H ψγ ) − β

j∑
k=1

nk|�j−k|fj−k

]
.

Since λk = nk|�j−k|/|�j | according to (14.6.1), this implies (14.6.2) with

c = 1

(1 + p)3λj+1|�j | (ψ
γ ,H ψγ ).

It is left to derive a uniform upper bound on c. The number of particles
Nγ in the complement �j equals �|�j |(1 + p)λj+1. Moreover, according to
the cheese theorem �j contains nj+1 = pj (1 + p)2(j+1) disjoint balls of radius
(1 + p)−1r0. We place the particles in these balls, with an average number of
�(4π/3)(1 + p)−2r3

0 per ball. By the same argument as above, we can arrange the
states such that the interaction between balls is negative. The energy (ψγ ,H ψγ )
is then bounded above by a constant (depending on �) times Nγ which, for
convenience, we write as a constant times Nγ (1 + p)2 = |�j |(1 + p)3λj+1.
This completes the proof.
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14.6.2 Proof for General Domains

We will now extend the analysis in the previous subsection to an arbitrary
regular sequence of domains �j . We choose the particle numbers Mj to be
as close to �|�j |/Z as possible, i.e., |Mj − �|�j |/Z| ≤ 1. Moreover, Nj =
MjZ because of neutrality. For this choice of particle numbers we shall show
that f (β,�j ,Nj ,Mj )/|�j | converges to the same number as for the standard
sequence of domains.

Pick an ε > 0, and choose J large enough such that for j ≥ J , fj , the specific
free energy of the standard sequence defined in the previous section, is within
ε of its limiting value as j → ∞, which we denote by f̄ (and whose existence
was proved above). Let K > J . According to Corollary 14.1, item (1), we can
pack mnK−j balls of radius (1 + p)j r0 into the domain �j , j = J, . . . , K − 1,
where m is the largest integer less than or equal to �(1 + p)−3K [|�j | − V ((1 +
p)K (4π/3)1/3

√
3;�j )].

The volume that is occupied by these balls equals

Vj = m

�
(1 + p)3K

(
1 −
(

p

p + 1

)K−J
)
.

Because of the assumption that�j is a Van Hove sequence,m/|�j | converges to
�(1 + p)−3K as j → ∞. We thus conclude that limj→∞ Vj/|�j | = 1 − (p/(1 +
p))K−J for fixed K and J .

Proceeding as in the previous subsection and using that fj ≤ f̄ + ε for J ≤
j ≤ K , we have

f (β,�j ,Nj ,Mj ) ≤ Vj

|�j | (f̄ + ε) + C

|�j | (Nj − �Vj )

for some C > 0 (depending only on � and p). The last term is the contribution
from the Nj − �Vj particles outside the balls. Note that Nj − �Vj equals �

times the volume of the domain plus or minus one particle. By putting these
particles into appropriate smaller balls, as explained at the end of the previous
subsection, their contribution to the free energy is easily seen to be proportional
to the total particle number in this domain.

We conclude that

lim sup
j→∞

f (β,�j ,Nj ,Mj ) ≤ (f̄ + ε)

(
1 −
(

p

p + 1

)K−J
)
+ C�

(
p

p + 1

)K−J

.
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Since K can be made arbitrarily large and ε is arbitrarily small, this proves that

lim sup
j→∞

f (β,�j ,Nj ,Mj ) ≤ f̄ .

For the lower bound, we proceed in a similar way, this time using item (2) of
Corollary 14.1. For given j , we choose Bj to be the smallest ball containing �j

and whose radius equals (1 + p)nr0 for some integer n. For fixed J < K chosen
as before, such that |fj − f̄ | ≤ ε for all j ≥ J , Bj \�j can be packed with
μnK−j balls of radius (1 + p)j r0, with j = J, . . . , K − 1, where μ equals
the largest integer less than or equal to �(1 + p)−3K [ |Bj \�j | − V (−(1 +
p)K (4π/3)1/3

√
3;�j ) − V ((1 + p)K (4π/3)1/3

√
3;Bj )]. The total volume of

these balls is now

Vj = μ

�
(1 + p)3K

(
1 −
(

p

p + 1

)K−J
)
.

We consider the free energy for the domain Bj with �|Bj | particles. Again by
putting the particles appropriately into the balls, we conclude that

|Bj |(f̄ − ε) ≤ |�j |f (β,�j ,Nj ,Mj ) + Vj (f̄ − ε) + C
(
�|Bj | −Nj − �Vj

)
.

The last term comes from particles outside �j and all the balls. It is important
that these particles also be placed appropriately in balls in order to make sure
that their Coulomb interaction with particles in the other domains vanishes.

The regularity of the sequence �j implies that (|Bj | − Vj )/|�j | → 1 −
(p/(1 + p))K−J as j → ∞. Moreover, (|Bj | + Vj )/|�j | ≤ C ′ for some con-
stant C ′ independent of j . Hence

lim inf
j→∞

f (β,�j ,Nj ,Mj ) ≥ f̄

(
1 −
(

p

p + 1

)K−J
)

− εC ′ − C�

(
p

p + 1

)K−J

.

Since K and ε are arbitrary, this concludes the proof of the fact that

lim
j→∞

f (β,�j ,Nj ,Mj ) = f̄

for any regular sequence of domains �j and appropriately chosen particle num-
bers satisfying |Mj − �|�j |/Z| ≤ 1.
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14.6.3 Convexity

For each fixed β and �, the specific free energy has a thermodynamic limit,
which does not depend on the chosen sequence of domains. We denote it by
f̄ (β, �). In this subsection, we shall show that f̄ is a convex function of � and
a concave function of 1/β.

We first show convexity in�. Fix 0 < λ < 1. We choose a sequence of domains
�j , such that every �j consists of two disjoint balls �1

j and �2
j of volume V 1

j

and V 2
j , respectively, with the property that

V 1
j

V 1
j + V 2

j

= λ for all j .

This sequence of domains satisfies the regularity condition of Definition 14.1.
Choose M1

j and M2
j such that |M1

j − �1V
1
j /Z| ≤ 1/2 and |M2

j − �2V
2
j /Z| ≤

1/2. Then ∣∣∣∣∣M1
j +M2

j

V 1
j + V 2

j

− λ�1 − (1 − λ)�2

∣∣∣∣∣ ≤ 1.

By locating N1
j particles in the ball �1

j and N2
j particles in the ball �2

j , we
conclude (using the variational principle and Newton’s theorem) that

f (β,�j ,N
1
j +N2

j ,M
1
j +M2

j ) ≤ λf (β,�1
j , N

1
j ,M

1
j )

+ (1 − λ)f (β,�1
j , N

1
j ,M

1
j ). (14.6.7)

All the three quantities converge in the limit j → ∞ to f̄ with the respective
densities. That is, in the limit j → ∞ (14.6.7) becomes

f̄ (β, λ�1 + (1 − λ)�2) ≤ λf̄ (β, �1) + (1 − λ)f̄ (β, �2).

This proves convexity of f̄ in �. In particular, f̄ is a continuous function of �,
since all bounded convex functions are continuous.

The concavity of f̄ in 1/β follows easily from the variational principle,
Lemma 14.1. Since ln

∑
i exp[−β(φi,Hφi)] is convex in β, lnZ is also convex

in β. Hence −β−1 lnZ is concave in 1/β, for every given domain and particle
number. The pointwise limit of concave functions is concave.
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14.6.4 General Sequences of Particle Numbers

In order to conclude the proof of Theorem 14.2, we still have to show that
f (β,�j ,Nj ,Mj ) converges to f̄ (β, �) for arbitrary sequences of particle num-
bers satisfying limj→∞ Nj/|�j | = �. Our main tool will be the monotonicity
of the free energy in the size of the domain.

For a given � and t > 0, let t � denote the scaled domain. The func-
tion t 	→ F (β, t �,N,M) is clearly monotone decreasing in t , by the varia-
tional principle, Lemma 14.1. In particular, since �j := Nj/|�j | ≤ �(1 + ε)
for ε > 0 and large enough j , we have F (β,�j ,Nj ,Mj ) ≤ F (β, [�j/(�(1 +
ε))]�j,Nj ,Mj ). (Note thatNj/[�j/(�(1 + ε))|�j |] = �(1 + ε), independently
of j .) The latter quantity, divided by |�j |, converges to (1 + ε)−1f̄ (β, �(1 + ε))
as j → ∞.

In particular,

lim sup
j→∞

1

|�j |F (β,�j ,Nj ,Mj ) ≤ 1

1 + ε
f̄ (β, �(1 + ε)).

In the same way one shows that

lim inf
j→∞

1

|�j |F (β,�j ,Nj ,Mj ) ≥ 1

1 − ε
f̄ (β, �(1 − ε)).

Since ε is arbitrary and f̄ is continuous in �, this proves the claim. Recall that
the continuity of f̄ follows from its convexity, which was shown in the previous
subsection.

14.7 The Jellium Model

The jellium model was invented by Wigner [187] as a simplified model of
a solid. In this model there is only one kind of particle and they move in a
fixed, uniform background of electric charge of the opposite sign. In Wigner’s
interpretation of the model the particles were nuclei and the background was
formed by the sea of electrons in a solid. In the absence of quantum mechanics
and the uncertainty principle the nuclei will locate themselves at positions that
minimize the total energy. Presumably they will form a regular lattice, but this
has never been proved. In the quantum case the particles can be expected to
form a lattice only when the density is small, so that the kinetic energy,

∫ |∇ψ |2,
will not get in the way of localization. A phase transition is supposed to occur
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from a smeared out state at high density to a localized lattice state at low
density.

Here, we shall continue with our previous convention and call the moveable
particles electrons. The background will have uniform positive charge density �

in some domain �. The number of electrons is N = � |�| for charge neutrality,
and they are confined to the domain �. The Hamiltonian is

H =
N∑
i=1

(
1

2
p2
i − αW (xi)

)
+ αI (X) + αC, (14.7.1)

where

W (x) = �

∫
�

1

|x − y|d y

I (X) =
∑

1≤i<j≤N

1

|xi − xj | ,

C = 1

2
�2
∫
�

∫
�

1

|x − y|dxd y = 1

2
�

∫
�

W (x)dx. (14.7.2)

This Hamiltonian is appropriate both in the classical and the quantum cases. In
the latter p2 is to be interpreted as −� with Dirichlet boundary conditions on
�.

Note that −�W (x) = 4π� for x ∈ � while −�W (x) = 0 for x /∈ �. If � is
a ball of radius R we can compute W . Namely, W (x) = π�(6R2 − 2|x|2)/3 for
|x| ≤ R, while W (x) = 4πR3�/(3|x|) for |x| ≥ R.

Even if we omit the kinetic energy term there is stability of the second
kind. This can be seen by replacing each charge −√

α at xi by the same charge
uniformly distributed in a small ball of radius r centered at xi . (Compare with the
discussion of the Onsager hard-core gas in Section 14.4.) By Newton’s theorem
the interaction of the small balls is smaller than |xi − xj |−1. The interaction
of the ball with the background is a little less negative than it is for a point,
but only a little. The reader can easily work out that the optimum value of r is
r = (3/4π�)1/3 and the energy is bounded from below by −0.9αN (4π�/3)1/3.
(For details of the calculation see [124].)



14.7 The Jellium Model 273

The existence of the thermodynamic limit of the free energy, in analogy with
our Theorem 14.2, was proved by Lieb and Narnhofer [124]. We shall content
ourselves with just outlining the essential new feature that has to be considered
for this system. This concerns the distribution of the particles into the subdomain
of a big ball that is not covered by smaller balls.

Before we do so, let us point out that this system is not thermodynamically
stable in the following sense. Theorem 14.2 states that the limiting free energy
is convex in � and concave in 1/β and we explained the physical significance of
these properties. While the concavity in 1/β will continue to hold in the jellium
model, the convexity in � will not hold, generally. The reason for lack of �
convexity is that the background is held fixed like the membrane of a drum. If it
were allowed to adjust itself by changing its size, and thereby its charge density,
in order to minimize f , then convexity would be restored.

Now we turn to the proof of the existence of the thermodynamic limit of the
specific free energy, the main point of which is to prove the limit, at fixed �,
for the standard increasing sequence of balls. For the standard sequence, we
shall give the complete proof in the classical case and remark on the necessary
modification in the quantum case at the end of this section.

Let us first discuss the classical case. We take a ball Bj and fill it with balls
Bj−1, . . . , B0 as before. There will be a certain part of Bj that is not covered by
the smaller balls and we call this region Dj . In each subdomain we put exactly
the right number of electrons so that the density is the given �, namely the
number of electrons equals � times the volume of the subdomain. This means
that in doing the configurational integral for the partition function, we integrate
only over that subset of �N where the number of particles in each subdomain
is precisely � times the volume of the ball. This obviously gives a lower bound
on Q. The number of ways we can distribute the particles in the subdomains
is the multinomial coefficient N ! divided by the product of the factorials of the
individual particle numbers in the subdomains.

The peculiar region Dj also contains electrons at density �. We have to
construct the filling this way, for if we had tried to put all the electrons into the
small balls, with none in Dj , the electrostatic energy of such a configuration
would be significantly too high, even for large j where the fraction of the volume
covered by the balls is very close to 1. In the proof of Theorem 14.2, we confined
these particles to smaller balls of size B−1. In the jellium case we can not do
that; the resulting Coulomb energy in Dj would be too big since the charge
distribution would then be far from uniform.
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If we could eliminate the Coulomb interaction among the different subdomains
we would obtain the following upper bound on the configurational free energy:

f conf
j ≤

j∑
k=1

λkf
conf
j−k + p λj φj (14.7.3)

where f conf
j is the configurational specific free energy for the domain Bj ,

and φj is the configurational specific free energy of Dj . Note that p λj =
1 −∑j

k=1 λk = |Dj |/|Bj |. The factorials of the particle numbers coming from
the permutations of the particles exactly compensate the denominators appearing
in the definition (14.4.3) of the configurational partition function.

We claim that Eq. (14.7.3) is valid even in the presence of the Coulomb
interactions between the different subdomains. The integral over configurations
of particles within each ball contains an average over rotations of any given
configuration. By Jensen’s inequality and convexity of the exponential function
(see the footnote on page 135) the average of the exponential function can be
bounded from below by the exponential of the average. Since all the subdomains
except for one (namely, Dj ) are neutral balls, the average over rotations of the
interaction energy between different subdomains is zero by Newton’s theorem.
In this way, we arrive at the fundamental inequality (14.7.3). We note that the
argument given here is the classical version of the argument in the quantum case
given in Lemma 14.2.

It remains to find an upper bound to φj . We shall show that (for large j )

φj ≤ �

β
(ln � − 1). (14.7.4)

This follows again from Jensen’s inequality, this time applying it to the integra-
tion over all configurations of the electrons in Dj . The average Coulomb energy
within Dj is negative when all the electrons are smeared out uniformly over Dj

(namely the number of electrons in Dj times the negative of the self-energy of a
single electron smeared out over Dj ), and hence the integral of the exponential
factor is bounded from above by |Dj |�|Dj |/(�|Dj |)!. An application of Stirling’s
formula yields (14.7.4).

By our previous analysis of inequalities of the type (14.7.3), we know that a
limit exists for f conf

j as j → ∞. This finishes the proof in the classical case for
the standard sequence. The proof for general sequences of domains and particle
numbers parallels that in Section 14.6. For details we refer the reader to [124].
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The proof in the quantum case has the same structure. The only new difficulty
comes from estimating φj , the specific free energy of Dj . We can not just
smear the electrons over the domain Dj , as we did in the classical case, for
two reasons. One is the Dirichlet boundary conditions on Dj which prevents
the particles from getting too close to the boundary of Dj , and the other is
the antisymmetry requirement on the allowed wave functions, which also raises
the kinetic energy. These are technical rather than conceptual problems and are
overcome in [124, Sect. 5.1].
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Lieb–Thirring bound for a magnetic Pauli Hamiltonian, Commun. Math. Phys.
187, 567–582 (1997). {page 82.}

[26] L. Bugliaro, C. Fefferman, and G. M. Graf, A Lieb–Thirring bound for a
magnetic Pauli Hamiltonian, II, Rev. Mat. Iberoamericana 15, 593–619 (1999).
{pages 82, 217.}

[27] L. Bugliaro, J. Fröhlich, and G. M. Graf, Stability of quantum electrodynamics
with nonrelativistic matter, Phys. Rev. Lett. 77, 3494–3497 (1996). {pages 171,
213.}

[28] H. Cavendish, Experiments to determine the density of the earth, Phil. Trans. R.
Soc. 88, 469–526 (1798). {page 55.}

[29] G. K.-L. Chan and N. C. Handy, Optimized Lieb–Oxford bound for the
exchange-correlation energy, Phys. Rev. A 59, 3075–3077 (1999). {page 111.}



Bibliography 281

[30] S. Chandrasekhar, The Maximum Mass of Ideal White Dwarfs, Astrophysical
Jour. 74, 81–82 (1931); see also On stars, their evolution and their stability,
Rev. Mod. Phys. 56, 137–147 (1984). {pages 234, 242.}

[31] A. J. Coleman, Structure of Fermion Density Matrices, Rev. Mod. Phys. 35,
668–686 (1963). {page 46.}

[32] J. G. Conlon, The ground state energy of a classical gas, Commun. Math. Phys.
94, 439–458 (1984). {pages 4, 157.}

[33] J. G. Conlon, A new proof of the Cwikel–Lieb–Rosenbljum bound, Rocky
Mountain J. Math. 15, 117–122 (1985). {page 67.}

[34] J. G. Conlon, E. H. Lieb, and H.-T. Yau, The N7/5 Law for Charged Bosons,
Commun. Math. Phys. 116, 417–448 (1988). {pages 130, 135, 137, 138.}

[35] M. Cwikel, Weak type estimates for singular values and the number of bound
states of Schrödinger operators, Ann. of Math. 106, 93–100 (1977). {page 67.}

[36] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators
with application to quantum mechanics and global geometry, Springer Texts
and Monographs in Physics (1987). {page 215.}

[37] I. Daubechies, An uncertainty principle for fermions with generalized kinetic
energy, Commun. Math. Phys. 90, 511–520 (1983). {pages 69, 70, 154.}

[38] I. Daubechies and E. H. Lieb, One-electron relativistic molecules with Coulomb
interaction, Commun. Math. Phys. 90, 497–510 (1983). {pages 57, 140, 141,
157, 158.}

[39] P. A. M. Dirac, The quantum theory of the electron, Proc. Roy. Soc. London A
117, 610–624 (1928). Part II, ibid. 118, 351–361 (1928). {pages 4, 181.}

[40] P. A. M. Dirac, Note on exchange phenomena in the Thomas atom, Proc. Camb.
Phil. Soc. 26, 376–385 (1930). {page 108.}

[41] J. Dolbeault, A. Laptev, and M. Loss, Lieb–Thirring inequalities with improved
constants, J. Eur. Math. Soc. 10, 1121–1126 (2008). {page 67.}

[42] W. F. Donoghue, Monotone Matrix Functions and Analytic Continuation,
Springer (1974). {page 88.}

[43] F. J. Dyson, Ground-state energy of a finite system of charged particles, J. Math.
Phys. 8, 1538–1545 (1967). {pages 3, 135, 137, 138.}

[44] F. J. Dyson and A. Lenard, Stability of matter I, J. Math. Phys. 8, 423–434
(1967); II, ibid. 9, 1538–1545 (1968). {pages 3, 3, 6, 62, 121, 130, 133.}

[45] D. M. Elton, New examples of zero modes, J. Phys. A 33, 7297–7303 (2000).
The local structure of zero mode producing magnetic potentials, Commun.
Math. Phys. 229, 121–139 (2002). {page 167.}

[46] H. Epstein, Remarks on two theorems of E. Lieb, Commun. Math. Phys. 31,
317–325 (1973). {page 85.}

[47] L. Erd´́os, Magnetic Lieb–Thirring inequalities, Commun. Math. Phys. 170,
629–668 (1995). {page 82.}

[48] L. Erd´́os and J. P. Solovej, The kernel of Dirac operators on S
3 and R

3, Rev.
Math. Phys. 13, 1247–1280 (2001). {page 167.}



282 Bibliography

[49] L. Erd´́os and J. P. Solovej, Magnetic Lieb–Thirring inequalities with optimal
dependence on the field strength, J. Stat. Phys. 116, 475–506 (2004).
{page 82.}

[50] L. Erd´́os and J. P. Solovej, Uniform Lieb–Thirring inequality for the
three-dimensional Pauli operator with a strong non-homogeneous magnetic
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