LEONARD EISENBUD |
State University of New York
at Stony Brook

THE
CONCEPTUAL |
FOUNDATIONS OF
QUANTUM
MECHANICS

Published for
The Commission on College Physics

D

@ VAN NOSTRAND REINHOLD COMPANY

| New York Cincinnati Toronto London Melbourne



Van Nostrand Reinhold Company Regional Offices:
New York . Cincinnati Chicago Millbrae  Dallas

Van Nostrand Reinhold Company International Offices:
London Toronto Melbourne ’

. Copyright ©1971 by Litton Educational Publishing, Inc.
Library of Congress Catalog Card Number: 77-1644717
All rights reserved. No part of this work covered by the
copyright hereon may be reproduced or used in any form or by any means —
graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage retrieval systems — without
written permission of the publisher.

Manufactured in the United States of America

Published by Van Nostrand Reinhold Company
450 West 33rd Street, New York, N.Y. 10001

Published éimultaneously in Canada by
Van Nostrand Reinhold Ltd. -

15 14 13 12 11 10 9 8 7 6 5 4 3 21

No generous mind stops within itself. Its pursuits
are without limit; its food is wonder, the chase,
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Preface

There are two complementary methods, broadly speaking, used by
authors to communicate physics. In the first of these, the “formal
method,” the manipulatory skills relating to the subject matter of
interest are emphasized. It is tacitly assumed that a mastery of the
techniques required to solve the standard problems will lead automati-
cally and rapidly to an understanding of the physical meanings of the
techniques and their products. In the second, the “conceptual
method,” physical meanings are investigated carefully with little atten-
tion to technique. Once the basic concepts are clearly understood, or so
_ it is assumed, manipulative skills will take care of themselves. Graduates
of the formal method calculate easily (at least on textbook problems) .
but often they know not what they compute. The conceptual method,
on the other hand, produces philosophical wranglers who can tear
subtle ideas to shreds but who are unable, perhaps, to draw-a fresh -
conclusion from even the most fruitful stock of ideas.

This book, as its title intimates, makes use of the conceptual method'
and shares in the weaknesses and, hopefully, also in some- of-the
strengths of that method. The book is not (and this negation deserves
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PREFACE

empbhasis) a text designed to teach the theory of quantum mechanics; at
the end of the book we shall be only at the edges of the formal
structure and explicit content of the theory. It is not possible to learn
from this book how to solve even the simplest of the problems of
quantum mechanics.

But considerable care and attention is given in what follows to an
analysis of the physical meaning and conceptual consequences of the
Heisenberg principle (Chapters 4, 5, and 6) and, in particular, to a close
examination of the incompatibility of pairs of observables. In Chapters

7 and 8, the effects of the concept of incompatibility on the meanings

?»
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of “measurement,” “property,” ‘“state,” “indeterminism,” etc. are
studied. An important step beyond what may reasonably be inferred
from the Heisenberg principle is taken in Chapter 9, where the
existence and great significance of “probability amplitudes” are dis-
cussed. But we refrain even after this fairly considerable preparation from
going on to the implicitly promised land. The structure of quantum
‘mechanics is not formulated here and its explicit content for classical
observables is not given. To repeat what has already been emphasized,
this book is not intended as an exposition of quantum mechanical
theory.

To whom and for what, then, is the book of value? Two dlstmct
groups may profit from it. Students who have been exposed to highly
formal expositions and are only too painfully aware that they know not
what they compute may find answers to some of their questions in the

following pages. And those blocked from the normal paths which lead

to the quantum mechanics by lack of mathematical skills may be able
to get here at least a partial understanding of some of the significant
ideas of a most important and fascinating theory.

This book is a revised and expanded version of the monograph I
wrote while a member of the Conference on the New Instructional
. Materials in Physics. The Conference was held at Seattle in the summer
of 1965 under the auspices of The Commission on College Physics and
the University of Washington. The materials produced at the Con-
ference were subsequently given limited publication by the University
of Washington Press. I am indebted to The Commission on College

Physics and the University of Washington Press for permission to make

use of portions of the monograph in the preparation of this book.
It is a pleasure to acknowledge my extensive debts to Professor

viii
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Walter C. Michels. It was at his suggestion that I undertook to revise
and expand my monograph for publication in the Momentum Series. 1
owe him thanks also for his careful and able editing of my manuscript.

I can best remember again the many who helped me at the Seattle
Conference by quoting the last paragraph of the preface to my
monograph. “I wish to thank Walter C. Michels and Ernest Henley for
their helpful comments and criticisms. I am grateful also to Jack
Ludwig and Ralph Caplan for showing me that it is easier to read

English than Academese; the numerous changes they suggested greatly

improved the style of the monograph. My thanks are due also to the
officers of The Commission on College Physics and the University of

- Washington for their support and assistance during the pleasant,

stimulating and productive months of the ‘Writing Conference.’
LEONARD EISENBUD
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1 The Failure of

Classical Theory

N

“For what, by nature and by training,
We loved, has little strength remaining.”

W. H. Auden

Between Newton’s pioneering construction of classical mechanics in
the seventeenth century and Maxwell’s development of the electro-
magnetic field in the nineteenth century, classical physics — or perhaps
better, deterministic physics —had met with no experiences that
challenged its fundamental concepts. Naturally there were at the close
of the classical period problems aplenty, but their solutions were seen
as possible within the boundaries of existing theory. But between 1895
and 1925, penetration into the realm of microphysics — the physics of
the “elementary” constituents of matter and radiation — uncovered
numerous phenomena that stubbornly resisted interpretation within the
classical conceptual framework. The conflict during this period between
theory and observation rocked the very foundations on which classical
theory had been built. It was found that to build a successful theory of
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THE CONCEPTUAL FOUNDATIONS OF QUANTUM MECHANICS

microphysical processes — the quantum mechanics — it was necessary
to eliminate or modify several classical assumptions that for centuries
had been considered essential to any scientific theory.

The great difficulties that classical theory faced may be appreciated
from the following brief review!. In classical mechanics some of the
" quantitative properties with which we normally deal (such as energy

and angular momentum) are continuously variable. Experiments such as

those of Franck and Hertz and of Stern and Gerlach indicate, however,
that dynamical properties that are continuously variable in classical
theory are sometimes limited to discrete sets of values, ie., are
“quantized,” in microphysical systems. Thus the internal energy or the
magnetic moment of a bound atomic system is not continuously
variable but may take on only discrete sets of “possible” values.
Similarly, the total energy in any sample of radiation of frequency v is
found to be an integral multiple of the “photon energy” hv. Such
quantized dynamical properties find no comfortable place within
classical theoretical structures.

Bohr attempted to graft quantization to classical physics by im-
posing restrictive principles and thereby to limit the possible motions of

LIt is assumed that the reader has studied the following topics at a level of
treatment maintained in courses in general physics. The topics are listed in the
order of their importance for the work of this monograph:

(a) Photoelectric and Compton effects; experiments and photon interpretation.

(b) Classical diffraction and interference phenomena; experiments and interpre-
tation by Huygen’s principle.

(¢) Rutherford model of atoms and Bohr theory of the hydrogen atom (circular
orbits).

(d) Electron beam experiments for the measurement of electron charge and mass.

(¢) Franck-Hertz and Stern-Gerlach experiments; interpretation in terms of
quantization.

(f) Elementary features of radioactive decay.

(g) Polarization of radiation.

(h) Blackbody radiation.

(Quantization and the constant 4 first appeared in physics in Planck’s treatment

of blackbody radiation. Much can be learned from an analysis of different

physical interpretations of Planck’s theory. Unfortunately, the background

required for an understanding of such an analysis is likely not to be available to

the students for which this monograph is designed.)

A list of references where treatments of the foregoing topics may be found are

listed at the end of the book. Numbers appearing in brackets throughout this

volume are intended to guide the reader to this list of references.
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THE FAILURE OF CLASSICAL THEORY

“an atomic system to a subset of the motions permitted by classical

theory. The early results achieved by the application of Bohr’s
ingenious quantization rules were encouraging. But the resulting theory
was incomplete and internally inconsistent. Its successes were few and
its failures glaringly evident.

If, for example, an atomic system has ohly a limited set of motions,
and these have quite different energies, how does it change its energy
from. one to another permitted value in processes of emission or
absorption of radiation — or in collisions with other material systems —
without taking on intermediate values? Does the photon, in an emission
process, simply spring into existence with a simultaneous and discon-
tinuous change in the energy of an atom? If so, what determines when
this disruptive event occurs? And so on. The marriage of classical
mechanics to restrictive principles for the purpose of producing quanti-
zation was, after an all too brief honeymoon, forced, unstable, and
quarrelsome.

Electromagnetism had its own troubles. Maxwell’s theory provided
no home for the photon; consequently, it could give no description of
the phenomena associated with the photoelectric and Compton effects
[1,2,3,4,5,6,7,8, and Note *] . The predictions of electromagnetic
theory were in conflict with Rutherford’s model of the atom in which
electrons are assumed to move in orbits about a central nucleus;
radiation from the accelerated motion of an- orbiting electron would
drain energy rapidly from the atom and the electron would spiral down
into the nucleus in a time of the order of 10™'? seconds! Classical
theory could provide no explanation whatever of the remarkable
stability of atomic properties. How, for example, is it possible for
atoms to maintain fixed properties indefinitely, despite the numerous
collisions they suffer as a result of thermal agitation? :

Classical theory never quite learned to get along with either the
quantization of radiation in photons, or the quantization of various
properties of material systems, although it managed a somewhat uneasy
relationship for a while. Toward the so-called wave-particle dualism,
however, classical theory showed an enduring antipathy. Since early in
the nineteenth century when the diffraction properties of radiation

* See bottom of footnote 1.
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‘were extensively observed, it was supposed that light (later recognized
as electromagnetic radiation) was propagated as a transverse wave. The
long argument between particle and wave theories which had gone on
since  Newton’s time (Newton, it will be remembered, advocated a
particle theory) seemed to be settled by the phenomena of diffraction
and interference for which only the wave theory had a convincing
explanation. Maxwell’s highly successful electromagnetic theory of
radiation served to deepen the belief that radiation must be regarded as
a wave phenomenon. But it seemed to be impossible to explain the
photoelectric and Compton effects by means of a wave theory. Indeed
these effects appeared to be understood far more easily on the
assumption that radiation consists of entities (photons) that are more
like particles than waves.
‘ When the study of the emission, absorption, and scattering of
. radiation by atoms and electrons made clear the significance of the
photon characteristics of radiation, physicists were faced with a

disturbing dilemma. If radiation consists of photons, how can diffrac-

tion be explained? If the diffraction phenomena indicate that light is a
wave, how can the particlelike properties of radiation (photoelectric
. and Compton effects) be understood?
~ Concern with the issues raised by the existence of both the wavelike
and particlelike properties of radiation deepened considerably when it
was found, quite unexpectedly, that precisely the same issues arise in
the analysis of electron behavior. From the time of its discovery at the
end of the nineteenth century, the electron had been considered to be a
very good approximation to a Newtonian point particle and many
observations were, of course, consistent with this assumption. But when
it was discovered that in the transmission of a beam of electrons
through a crystal, diffraction patterns of the same character as those
previously observed with X rays were produced, it became clear that
electrons were not to be so sharply differentiated from radiant energy,
as had previously been supposed [1, Chapter 5; 5, Chapter 6; 8, Chapter
4;15, 16] . The need for a consistent theory that could comprehend the
so-called dualistic (wave-particle) behavior of electrons and radiation
became painfully obvious.

The diffraction of electrons and the particlelike properties of
radiation indicated that far more than mere patchwork would be

4
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required to construct a consistent theory of microphysical phenomena.

Fortunately, at almost the same time" that the electron diffraction was
observed, Heisenberg, Schrédinger, Dirac and others were groping
toward the formulation of a remarkably successful theory — the quan- .
tum mechanics — to replace the now badly mauled classical theories of
matter and radiation. .
In the course of the construction of the new quantum mechanics it
became clear that certain of the tacit assumptions of classical physics,
though entirely consistent with experience in “macrophysics,” are
simply wrong in the microphysical realm. To obtain a consistent theory
of microphysical systems it was necessary to make revolutionary
changes in several of the assumptions on which the structure of classical
theory is based. It is not now our object to recount yet again the many
failures of classical theory but to describe the conceptual shift, the
alteration in basic assumptions, that is required for an understanding of
the behavior of the elementary constituents of matter and radiation? .

2An epit\bme of the discussion to follow is presented in Sectioh 9.1. The
reader may find it helpful to use this epitome as a guide to the structure of
the monograph. :
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2 Consequences of a
Mistrust of Theory

“Prohibit sharply the rehearsed response.”’

W. H. Auden

The -interpretation of experimental observations on microphysical
systems depends heavily on theory. If we do not have an adequate
theory — and classical theory is certainly not adequate in the realm of
microphysics — such interpretations are necessarily suspect. Properties
of microsystems are usually “observed” by interactions with complex
macroscopic apparatus that produce scintillations on a screen, clicks in
a counter, vapor droplets in a cloud chamber, readings on various kinds
of meters, etc. The raw observations are interpreted by chains of
theoretical argument; but if the applicability of the theory employed
for analysis is uncertain, the interpretations are also uncertain.

Suppose, for example, that a certain sample of radiation, when
passed through a diffraction grating, is deflected on passage by an angle
6. The observation of the angle of deflection is generally interpreted as
a measurement of the wavelength of the radiation; the wavelength, A, is

6

calculated [9, 10, 11] from

CONSEQUENCES OF A MISTRUST OF THEORY

A=dsin, 2-1)
where d is the spacing between the lines of the grating. Also, since
radiation in free space has the speed ¢ (speed of light), the deflection is
further interpreted as a measurement of the frequency, », by the use of

v v= Y (2-2)
But the distance between crests of a waveform in space has not been
measured and the number of oscillations per second of the wave field at
a point has not been counted. Instead, a theory that the incident
radiation is a wave phenomenon has been assumed; from the theory
together with the measurement of the angle of deflection, 6, and the
line separation, d, the wavelength (Eq. 2-1) and frequency (Eq. 2-2) of
the radiation are deduced.

However, it is clear from the photoelectric and Compton effects, as
well as from a variety of other observations, that photons are not
correctly described by a wave theory. Since it is precisely the wave
theory that permits us to infer a wavelength from a measurement of 6,
its application in this instance is at least doubtful. But whatever it
measures, the deflection through 6 of the incident radiation tells us
something quite definite about the radiation.

From a knowledge of ¢ and d, we can predict the energy of the
electrons released by the photoelectric effect. Thus it is known from
experiment that the energy transfer, AE, per photon, is

AE = he/d sin 6 (2-3)

(which is just Av, of course, with v given by Eqgs. 2-1 and 2-2). Also, the
characteristics of the diffraction patterns produced by crystals, slits,
etc., vary smoothly with the angle 6 through which the radiation is
deflected by the grating. The deflection 6 tells us something very
important about the radiation, but unless a correct theory justifies the
association, we cannot assert that the deflection measures a wavelength,
or a frequency.

Of course, it is possible that the wavelength and frequency as
determined by Egs. 2-1 and 2-2 have significance in relation to a theory
which does correctly describe the behavior of photons. But at this

7
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prequantum mechanics stage of our discussion, in which we recognize
the failure of the wave theory of radiation and have as yet no adequate
theory with which to replace it, we are certainly free to question
whether the numbers A, v, derived from 6 by Egs. 2-1 and 2-2 have
anything whatever to do with the physical properties of radiation.

Consider a second example. Early this century, Rutherford recog-
nized that the distribution of the charges within atoms could be
explored (“observed”) through the study of the scattering of energetic
o particles by matter. If it is assumed that the forces that deflect an «
particle when passing an atom are electrostatic, the character of the
scattering by matter is determined by the arrangement of the charges
within the atoms of which the scatterer is constructed.

Geiger and Marsden (in Rutherford’s laboratory) investigated the
general characteristics of « particle scattering by means of an arrange-
ment such as that shown schematically in Fig. 2-1. The scatterers they
used consisted of sheets of heavy metals which were thin enough to
_permit most of the incident a particles to go through the scatterer
“without sensible deflection. The observations consisted in counting at
various angles relative to the direction of the incident beam the number

* of scintillations produced on a zinc sulfide screen by the arrival of
scattered a particles. To Rutherford’s considerable surprise, Geiger and
Marsden discovered that a small, but far from negligible, fraction of the
a particles were scattered through angles larger than 90°.

Analysis of the experiments indicated that these large angle scatter-
ing events could not have arisen from a number of successive small

_angle deflections; apparently an energetic « particle (with millions of
electron volts of kinetic energy) could be deflected through a large

N SOLID ANGLE MICROSCOPE
N AN SUBTENDED BY .
N />/‘ SCINTILLATOR -~
N AQX//// SCINTILLATOR
N i
N [} o8-
\\ // g
N d
SOURCE OF l I h 7 L —_— e —
o PART.CLS»G-—'-—I‘——-——-—' i
COLLIMATING SCATTERER

SLITS

Fig. 2-1.  Schematic of Rutherford Experiment.

CONSEQUENCES OF A MISTRUST OF THEORY'

angle as the result of a collision with a single atom of the scattering
material. :

Rutherford realized that the observations of Geiger and Marsden
could not be explained by the atom models then under consideration.
In 1911, he proposed a new model [12], the.now well-known nuclear
or planetary model, which provides a source for thé strong forces
required to produce the large deflections suffered by a particles in
passing through matter. It was assumed that the positive charge re-
quired to balance the negative charges of the planetary electrons of the
atom is concentrated in a nuclear core of diameter several orders of
magnitude smaller than the diameter of the atom and that the nuclear
core contains essentially the entire atomic mass. The electrons were
assumed to move in orbits about the core under the influence of the
attractive forces between the positive nuclear core and the negative
electrons. ‘

With this model, Rutherford calculated the form of the distribution
of the scattered « particles that would result if real atoms corresponded
to his model. Geiger and Marsden [13] undertook to check his predic-
tions by a painstaking quantitative study of the scattering of « particles
of various energies by sheets of different heavy metals. The agreement
of experiment with theory left nothing to be desired. Effectively it had
been “‘observed” that atoms have a structure like that of the model
Rutherford created. )

Despite the many difficulties posed by the model (e.g., the electrons
must radiate energy in their motions about the nucleus, according to
electromagnetic theory, and spiral very rapidly down into the nucleus),
it was clearly necessary to take it seriously. Its acceptance was complete
when the atomic theory of Bohr, which is based on Rutherford’s
model, proved so fruitful. (Bohr’s first paper and the results of the
work of Geiger and Marsden that verified Rutherford’s predictions were
both published in 1913.) The small, positively charged, massy nuclear
core first imagined by Rutherford remains toddy at the center of

-theories of atomic structure.

Naturally, Rutherford assumed in his calculations that the motion
resulting from a collision of an a particle with an atom could be
described by Newtonian mechanics. His model specified the form of the
force law to be used in the classical equations of motion. However,
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since éxperience in microphysics indicates that it is doubtful whether
classical conceptions are applicable to atomic processes, the validity of
Rutherford’s “observations” of the nuclear core of the atom is open to
serious question. Perhaps a model of the atom very different from that
imagined by Rutherford together with a correct theory of microphysi-
cal processes would duplicate his predictions. Such coincidences are no
doubt rare but they are not unknown. As it happens, the quantum
mechanics — a successful theory of microphysics — together with the
physical assumptions introduced by Rutherford leads to exactly the
same scattering distributions as those obtained from classical theory®.
We are being led away from the point, however, by the intrinsic interest
of the story. For our present purposes it is essential to note only the
strong interplay between theory and experiment in Rutherford’s “ob-
servation” of the nuclear core of the atom.

The point needs no reiteration. Other examples abound. What we

conclude is that in the realm of microphysics, where measurement is .

necessarily indirect, our concepts derive from a close interweaving of
theory with observation. In this combination, the role of theory grows
as investigation goes on. Ultimately, theory becomes so familiar that we

hardly realize its importance in the interpretation of observation. The
" deflection of radiation by an angle, 6, on passing through a grating is
almost automatically interpreted as a measurement of wavelength, and
the role of theory in the measurement is almost forgotten. When theory
fails, however, the familiar connections between its constructs and what
is observed are broken. We must then return to naked observations and
their observed interrelations, and try to build from them new and
successful theoretical structures.

The task is enormously difficult. Thinking without preconceptions is
probably impossible. Our very language has been conditioned by our
experiences with macroscopic phenomena and, consequently, may be ill
adapted to the needs of microphysics. The sheer task of describing raw

1 This most happy coincidence between the results of quantum mechanics and
classical mechanics for the scattering distribution occurs only for the inverse
square law of force. For other force laws, the predictions of the two theories may
differ considerably. It is amusing to speculate on how long the development of
atomic physics might have been held up if the two theories had led to markedly
different scattering distributions for the inverse square law of force.

10
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observation is awkward and toilsome. Thus we say we are “observing”
the diffraction of electrons when actually we are reading meters con-
nected to certain pieces of physical apparatus and measuring the inten-
sity pattern on a photographic plate. But the very use of the term
“diffraction” commits us to thinking in terms of a wave theory and
conjures up images not at all connected with what is observed.

.This leads us into a bind: If we stick to the language of pure
observation, discussion becomes ponderous and inordinately weari-
some; if we proceed rapidly through the introduction of theoretical
constructs, the risk of misconception and error is large. In spite of its
dangers, though, the latter course must be chosen. We shall use, for
example, derived quantities, such as the A and v in Egs. 2-1 and 2-2, but
try at the same time to keep in mind the experimental and
mathematical procedures by which these quantities are obtained. One
must try to avoid thinking of A and v as the wavelength and frequency
of some physical wave. These symbols refer to- quantities which are
obtained from raw observations by easy computations; they are used
because they help to express, in a simple way, observed relations among
phenomena.

In our effort to shake loose from the grip of classical conceptions,
we have probably overemphasized the extent of the failure of classical
theory. Electromagnetic theory certainly correlates a vast set of obser-
vations on the properties of radiation. Many characteristics of atomic
systems — e.g., the normal Zeeman effect — may be mterpreted success-
fully by means of Newtonian mechanics. The Bohr theory of the
hydrogen atom, a classical theory to which a restrictive rule is added,
enjoyed many successes. Though many fundamental classical concep-
tions are inadequate for the needs of microphysics, it is beyond
question that a correct theory of entities on the atomic scale (electrons,
atoms, photons, etc.) must overlap classical descrlptlons in some way.

11



3 Properties of
Electrons, Photons;

The De Broglie
Relations

“Does he wear a turban, a fez, or a hat; ,
. Does he sleep on a mattress, a bed, or a mat?’

Edwa.:d Lear

It is not our purpose to review all the observations on microphysical
~ entities in order to expose those interpretations that are tainted by
unwarranted use of classical concepts; most of such a review would
teach us little. Many conclusions about the microphysical realm are
consistent with so great a variety of experiments, or are so largely
independent of theoretical interpretation, that they are hardly subject
to doubt.

It is obvious that the entities named electrons play an important role
in atomic constitution. We know that the charge, e, and rest mass, m, of
the electron [5,8] are

e=—48-10""%su=_16-10"" coulombs

m=91-10"%8gm.

PROPERTIES OF ELECTRONS, PHOTONS; THE DE BROGLIE RELATIONS
The energy, E, for free electrons is related to the moméntum, D, by
E=p*[2m (E<< mc?; nonrelativistic approximation), (3-1a)
E=c[p* +(mc)?1* (relativistic). (3-1b)

The velocity, v, of free electrons is found to be related to the

- momentum as in classical mechanics:

v=p/m W<<Lc) (3-2)
v/(1 —v*/c®Y? =p/m (relativistic)

Electron beams are deflected under the influence of laboratory-

‘produced electric and magnetic fields'. The deflections may be

computed using Newton’s second law F = dp/dt with

F=e [E+"2H] | C(33)

where E, H are the electric and magnetic fields at the location of the
electron.

Photons may be interpreted as the elementary constituents of
radiant energy; they are uncharged and are transmitted in free space
with the velocity of light. On interaction with material systems
(electrons, atoms, etc.), they transfer specific quantities of momentum
and energy. The relation between these quantities is found to be

E=cp. (34)

This relation follows from Eq. 3-1b if we set m = 0; consequently the
photon is said to be an entity with zero rest mass.

The possible energy values for photons range over an infinite
continuum. It is found that photons to which one may assign a
“frequency,” v, have a uniquely correlated energy given by '

E=hv (3-52)

! The word “laboratory” here means that the experiments are conducted ona
macroscopic scale with macroscopic controls. The Newtonian concept of force
loses its meaning for electron “motions™ on a microscopic scale (see Chapter 6).

13
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(where h, of course, is Planck’s constant). By the use of Eq. 34 and the
relation Av = ¢, we have

p =Efc=hv/c=h/\.?

Photons exhibit properties associated with the term “polarization.” 3

The angular momentum carried by circularly polarized photons has
been measured and found to be A/27.

It is important to recognize that a photon of “frequency” v is as
indecomposable as an electron. Just as we never find parts of an
electron, we never find photons of a given frequency (i.e., photons
which are deflected by the same angle 6 in a given grating) with a
fraction of the energy hv. All efforts to cut a photon into parts each
with the same “frequency” but with fractions of the energy hv have
failed. Like electrons, photons may suffer energy changes in collision
processes (e.g., the Compton effect), but in such changes the
“frequency” is also altered. ,

Most of the properties we have discussed for electrons and photon
enter into conservation laws. A multitude of observations are consistent
with the assumption that the general conservation laws — for energy,
momentum, angular momentum, charge —are valid in the micro-
physical realm. These conservation laws make it possible to give clear
meanings to the measurements of conserved quantities, meanings which
are independent of the nature of more detailed theory.

3.1 The de Broglie Relations. Both electrons and photons (indeed
all “particles”) produce “diffraction effects” under suitably arranged
conditions. The diffraction effects are similar in some respects to those
produced by classical waves and may be described, in part, by a classical
wave theory. An examination of the diffraction effects indicates that
the “wavelength” which must be employed by the classical wave theory

2 properties of energy and momentum are attributed to classical electro-
magnetic fields. However, the energy and momentum are interpreted as spread
continuously over the field. One speaks, in the theory, of energy, momentum
densities, and of the flow of energy, momentum across surfaces. In the interaction
with matter of a wave of frequency v (and this quantity has an unambiguous
meaning in the theory), energy and momentum are continuously transferred
rather than in the lumps Av, A/ as in the photon picture.

3 Electrons also have properties analogous to the polarization properties of

photons; these properties are referred to by the name “spin.” We do not wish now
" to enter into a discussion of the spin properties of electrons.
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to describe the observations is related  to the observed momentum of
 the incident beam of electrons or photons by

| A=hlp ‘ (3-6a)
. We shall have occasion to. associate a “frequency,” v, as well as a
wavelength, A, with electrons of momentum p; this “frequency” (which

- will not be intg:rpreted as the number of oscillations per second of a
ph_ysical wave) may be related to the electron energy by

‘ v=Efh ' (3-6b)
Thus the relations 3-6a, 3-6b between E, p, and », A hold for photons
and for electrons.

The equations

A=h/p v=Ejfh, (3-6¢)

“which connect the “particle /properties” p, E with the “wave

properties” A, v, are generally known as the “de Broglie relations.”
Some years before the observation of electron diffraction, de

Broglie, in his doctoral thesis, suggested that the properties of electrons

might be understood better on the assumption that the electron

-constituted a wave phenomenon of some kind [14]. He assumed that

the wavelength and frequency of his “electron waves” are related to the
energy and momentum of electrons in exactly the same way as the
wavelength and frequency of photons are related to- their momentum
and energy. De Broglie published his theory in 1924. His conceptions
were ‘considered rather fanciful until, about a year later, Schrddinger
took them up and extended them into his system of “Wave Mechanics.”
It was not until 1927 that the phenomenon of electron “diffraction”
was observed and the relation \ = h/p, first suggested for electrons by
de Broglie, was confirmed [15, 16]. .

_ That the de Broglie relations hold for such dissimilar entities as
electrons and photons is most remarkable.. These relations express
compactly ‘the connection between ﬁge wavelike propefties associated
with X, », and the particlelike properties associatpd with E, p. Note in -
particular that the connection involves the new constant 4. The
magnitude of & determines the conditions under which the wavelike
properties of electrons will be important (see Chapters 5 and 6).

_ 4 See footnote 2, this chapter.
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The measured value of & is
h=662-10727 erg - sec
=4.14- 10715 eV - sec.

We find from Eq. 3-6¢, on setting p =+/2mE, (for electrons with
nonrelativistic energies) that

A=123E7* [AeV)”] (37

(& = angstrom; eV = electron volts). Thus, for scattering centers with
separations of the order of an angstrom —such spacings occur in
crystals — diffraction effects are large for the full range of electron
energies below 10° eV. For electron energies of the order of 10° eV,
however, the wavelength is approximately 0.01A; hence diffraction
effects about objects of atomic dimensions (of the order of an
angstrom) will be small and the electrons will appear to behave like
particles. For photons the relation £ = hv = hc/X leads to

E=12-10*\71(eV A). (3-8)

For visible radiation with A= 5000 angstroms, the photon energy is
roughly 2 eV. An energy transfer of this magnitude has significant
effects for atoms; consequently, the particlelike nature of visible
radiation is important in atomic processes. For smaller wavelengths —
X rays, v rays — the particlelike nature of photons becomes more
pronounced. If we consider, however, radiation in the microwave region
with X ~ 10® angstroms (= 1 cm), the photon energy is only 10™* eV.
In the normal processes of transmission and reception of such radiation
the photon character of the radiation would be difficult to observe®.

5 It is worth recalling that it is not always an easy matter to determine
whether a given process which transmits energy is more suitably described as a
stream of particles or as a wave process. The debate that began in Newton’s time
over the character of light went on for more than a century. Newton, on failing to
detect diffraction effects, favored a particle theory of light and his hunch was
backed by most physicists of his time. The issue appeared to be settled against
Newton’s view eatly in the nineteenth century by the work of Young and Fresnel
on diffraction. However, after the photon characteristics of radiation were
discovered, it was recognized that the nature of light was not yet fully
_ understood.
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4 An Analysis of
Electron Diffraction

“But whether that be true or no
The Devil any of you know.”

Samuel Butler

Perhaps the most surprising of all the strange phenomena that have
been observed in the microphysical realm are those associated with the
so-called wave-particle dualism. It is in this area that classical concepts
fail most clearly. A detailed analysis of certain diffraction and
interference phenomena will clarify and isolate this faiture. _

A typical experiment on the diffraction of electrons [8, 15,16,17,
18] is arranged as shown in Fig. 4-1. An electron source — say a hot
filament similar to that used in radio tubes — is put behind a pair of
plates in which there are circular holes with diameter of the order of
millimeters (a macroscopic dimension).. The plates are separated by
about 10 cm; between the filament and the first plate a potential
difference of the order of several hundred volts is maintained. Some of
the electrons that are “boiled” out of the heated filament find their way

17
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CRYSTAL SCATTERER

ELECTRON &)__ Al il _ _ _ _f _ _ _ _
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Fig. 4-1. Schematic of electron diffraction experiment.

through the hole in the first plate; in transmission from the filament to
the plate the electrons are subject to a fairly uniform accelerating field
and gain an energy of say 100 electron volts. The electrons that get
through the hole in the second plate constitute a well-collimated beam.
The number of electrons per second entering this beam may be
controlled by a variety of devices. ‘

The . energy distribution and the geometric characteristics of the
beam of electrons that emerge from the accelerating system may be
directly tested. Suppose that the experimental arrangement determines
the energy to an accuracy of 1%. Since p =+/2mkFE, the momentum
magnitude is accurate to about 0.5%. The size of a cross section of the
beam may be examined at various distances from the exit hole by
examining the effects of the beam on a photographic plate. This cross
section is found to vary with distance (to within the accuracy of the
observation) as one would expect on the assumption that electrons
move on straight line paths (Fig. 4-2). It is easily seen that the angle,
(in radians), of the conical region in which the electrons are found is
given approximately by the ratio, d/s, of the hole diameter, d, to the
plate separation, s. For the demonsions, d ~ 1 mm, s ~ 10 cm, this
angle is 107° radian. Thus the transverse component (ie., the

Y. [

Z AXIS

SOURCE — -

CROSS SECTION ™ ~
OF BEAM

Fig. 4-2.  Angular spread of electron beam.
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Fig. 4-3. Transverse component of electron momentum.

component in the plane perpendicular to the direction of the electron
beam) of the momentum of an electron is less than about 103 Do,
where p, = \/2mE is the average value of the component of the
momentum along the direction of the beam (Fig. 4-3).

On the axis of the electron beam produced as described above, a thin
section of a crystal is placed. A photographic plate is put at a
convenient distance, D, from the crystal along the direction of the
electron beam; D may be of the order of 10 cm. When the filament is
hot, electrons emerge from the accelerating system, strike the crystal
and suffer deflections. The photographic plate serves as a detector for
the location of the electrons in a plane transverse to the beam. A
photograph of the pattern that appears on the plate in an experiment of
this sort (if a powder target rather than a single crystal is used) is shown
in Fig. 4-4.

The character of the pattern produced on the photographic plate is
independent of the intensity of the incident electron beam; if the
number of electrons per second is cut by a fraction f and the time of
the exposure of the photographic plate is increased by the factor f ~*
(so that the total number of electrons recorded on the plate is kept
constant), the picture produced is unchanged. The same general pattern
is found on the photographic plate if a beam of X rays (photons) of
suitable wavelength is employed in place of the electron beam (Fig.
4-5). The form of the observed pattegn depends on the structure of the
crystal scatterer employed in the expériment.

If the arrangement and spacings of the atoms within the crystal ae
known, the pattern observed on the photographic plate. ¢
calculated by assuming that the incident beam may be replaced
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Fig. 44. Photograph of the diffraction pattern produced by passing a beam of
electrons through a sample of aluminum powder. The electron wavelength
employed was 0.15 A. (Courtesy Film Studio, Education Development Center,
Inc.) : .

plane wave propagating in the direction of the beam with a wavelength
given by the de Broglie relation, h/p, = h/(2mE)” where E is the
incident energy of the electrons. In the calculation, one simply assumes
that each atomic site is the source of a secondary wave that emerges
radially from the atom (Fig. 4-6). It is found that constructive
interference of the waves from the numerous atomic sites occurs only
at the positions at which the darkening of the plate is ohéerved.

We have described the electron diffraction experiment essentially as
it was first performed by Davisson and Germer and by Thomson. For
the purposes of the analysis to follow we shall consider the experiment
-in an idealized form. The incident beam in this experiment is assumed
to have well-defined energy and momentum and a cross section such as
shown in Fig. 4-7. We replace the crystal by a plate on which narrow
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Fig. 4-5. Photograph of the diffraction pattern produced by passing a beam of
X-rays (A=0.71 A) through a sample of aluminum powder. (Courtesy Film
Studio, Education Development Center, Inc.)

slits are cut out. The geometry of these slits and the arrangement of the
detector (a photographic plate and a sheet of scintillating material or an
electron counter) is shown in Fig. 4-7. An experiment with an
arrangement of this kind, in which laboratory manufactured slits were
used, was performed relatively recently by Jonsson [19], who used slits
with a width 7 = 0.2 micron and spacing A= 1.5 microns. His
photographs of the diffraction patterns produced by a single slit and by
a double slit are shown in Figs. 4-8 and 4-9. The observed patterns are-
similar to the patterns obtained by the diffraction of light [9, 10, 11].
The observations are deducible from a classical wave theory in which
the wavelength employed is A = k/p, where p is the momentum of the
incident electrons. If a single slit rather than a double slit is used, the
first minimum occurs at a position P (see Fig. 4-10) such that the
distances from the two edges of the slit to P differ by a wavelength. It is
‘ 21
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Fig.4-6.  Scattering of an incident wave from an atomic site.
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Fig. 4-7. Idealized diffraction experiment.

Fig. 4-8. “Photographs of double slit and resulting diffraction pattern in
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T6nsson’s experiment. From Jénsson, Zeitschrift fiir Physik, 161, 454, 1961
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Fig. 49. Photographs of double slit and resulting diffraction pattern in
Jonsson's experiment. Also from Jonsson, Zeitschrift fir Physik, 161, 454,1961.

easily seen from the figure that 8 = N7 (for small §) so that the
distance OP =~ D(A/7). (The general structure of the intensity pattern
predicted by the wave theory is shown in Fig. 4-10.) When two slits are
used in the experiment, a succession of maxima and minima are
produced as a result of the interference of the waves emerging from the
separate slits. If the slit widths are small compared with the separation,

SINGLE SLIT
{MAGNIFIED)

INTENSITY
PATTERN

Fig. 4-10.  Single-slit diffraction.
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Fig. 4-11. Double-slit interference.

A, the slits may be treated as line sources. The position of the first
maximum of the intensity (off the central maximum) is at a point Q
(Fig. 4-11); the distances from the two slits to Q differ by a wavelength.
Thus OQ =~ D(M\A). If A is of the order of 57, several maxima and
minima are obtained in the two-slit pattern covering the region of the
central maximum obtained with a single slit.

Remember that the structure of the patterns produced in these
experiments is independent of the intensity of the incident beam.
Therefore, one may use a beam so weak that the probability of an
electron’s being within a centimeter of the slit at any instant is 103 or
less. In other words, the diffraction experiments may be performed
under conditions such that there is a negligibly small probability that
more than one electron at a time will be near the slits.

So far there seems to be no argument against considering the
electron as a manifestation of some sort of wave motion. However, the
wa¥e model breaks down completely as soon as we consider what
happens at the detector. If a scintillating screen is used instead of a
photographic plate, each electron produces at the screen a well-
localized §cintillation‘ while successive electrons appear to fall more or

! Recall that in an observation of an electron we always find a whole electron
.or none at all; a fraction of the electron charge or mass is never observed.
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less at random on the screen. Thus an electron does not produce a
diffraction pattern; the patterns are formed from the distribution on
the detector of a large number of electrons. The intensity at some
position on the photographic plate is proportional to the number of
electrons that are deflected into this position. The diffraction pattern,
in short, is not the property of one electron but of an ensemble of
similarly prepared electrons. Classical wave theory does not predict this
feature of our observations.

When we take into account the indivisibility of an electron, the
structure of the two-slit pattern presents a paradox. Since the electron
cannot be divided, it presumably must pass through one or the other of
the two slits. Surely the open character of the slit through which the
electron does not pass cannot affect the path the electron takes in
getting to the detector’. We conclude, therefore, that the two-slit
pattern should be exactly the same as that which would be produced if
we exposed a photographic plate for a time T with only the “a” slit
open and then, for the same period, with only the “b” slit open.

The pattern observed with both slits open, however, is very different
from that obtained by superposing two single-slit patterns (see Fig.
4-12). The difference between the result predicted (on the assumption
that each electron goes through one or the other of the slits) and the
pattern observed may be shown rather dramatically by putting a
counter at the first minimum of the two-slit pattern (Fig. 4-11). With
both slits open, few counts per second are recorded; if one of the slits is
closed, however, the counting rate increases! On the basis of the
foregoing argument, the closing of a slit could never increase the
counting rate for any position of the counter. Apparently something
very much like an interference effect occurs; to obtain interference we
must have influences simultaneously from both slits; i.e., the electron
must somehow get through both slits. But presumably the electron is an
indivisible entity and cannot go through two separated slits. -The
paradox appears to be unshakable. ,

It could be considered ridiculous simply to guess at what is going on
as the electron passes a double slit. Under the conditions of the

2 The diffraction pattern is wholly independent of the nature of the “opaque”
materials which form the slit, or of the distribution of the materials in the opaque
regions. :
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Fig. 4-12. Comparison of sum of two single-slit patterns with double-slit
pattern.

diffraction experiment, different electrons reach the detecting screen at
very different points. We have as yet no idea of what determines
where any particular electron that gets through the slits will be found at
the detector. Why don’t we arrange to observe the passage of the
electron? By suitable observations we could determine definitely
.whether an electron can or cannot somehow get through both slits and
how the electrons which enter the slits along different paths are
deflected.

Sadly, it is impossible to observe the precise path of an electron® (as
Chapter 6 will show). Suppose, however, we try for the moment
something a little less ambitious. In the experimental arrangement of
Fig. 4-7, an incident beam with a width, ¢, of the order of a millimeter
is used whereas the slit width, 7, and the slit separation, d, are orders of
magnitude smaller; the incident beam simply blankets the slits. Why not
wse a .beam narrow by comparison with the width 7 and arrange to
move it across the slits? We could then have electrons pass an edge or

3 Approximate electron paths are ob
pictures. The limitations on the observab
and in Chapter 6.

served in cloud and bubble chambér
ility of electron path is explained below
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the middle of one of the slits and see where such well-aimed electrons
reach the detector.

No doubt the reader has already noticed the errors on which the
foregoing suggestion is based. If we try to aim the electrons accurately
by the use of narrow slits, new diffraction effects are introduced. A pair
of very narrow aligned slits does not determine a correspondingly
narrow beam for the electrons. If the openings in the accelerating plates
are narrow and a detecting screen is placed at the position of the
diffraction slits, we do not find a geometric image of the slit on the
second accelerator plate just as we do not find geometric images of the
slits a, b in our diffraction experiment. The diffraction phenomenon
severely limits our ability to aim electrons.

Indeed we employ openings in the accelerator plates with relatively
large dimensions (= 1 mm) to avoid introducing significant diffraction
effects in the incident beam. For electrons with energies of the order of
volts and a slit width of about a millimeter, the angle through which the
emerging electrons are spread by diffraction effects is about 107¢
radian (= N/7) (Fig. 4-7), a small angle compared with the spread, &,
(see Fig. 4-2) arising from the geometry of the slits. :

‘Let us consider a different experiment. We noted that the
interference phenomenon could not be understood at all if it was
assumed that the electron passed either slit a or slit b, but never both.
The issue raised by this consideration may be investigated. Immediately
behind slits a and b, place detectors A, B capable of “observing™ the
passage of an electron. The detectors must be such that if slit a is closed
detector A never responds, while if a is open and b closed each electron
that passes is detected. Obviously the same must be true if we
interchange a, A with b, B in the foregoing. (An example of a pair of
detectors with these properties is considered in Section 5.1. See, in
particular, Fig. 5-5.) ' c

We assume again that the incident beam is so weak that two
electrons are never simultaneously in the immediate neighborhood ef
the slits. If in the course of the passage of the electron beam, ’fhe'A, B
detectors never (or rarely) respond “simultaneously” —i.e., thhm,a?;
interval short by comparison with the average interval betweer}’ti}g’:
arrival of successive electrons in the beam — it must be concludef% t?lat
each electron either gets through a or through b. Simultaneous passage
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of an electron through both slits would be indicated by a response of
both A and B to the passage of a single electron.

This experiment — the diffraction experiment with the A, B
detectors —is possible in principle, but forbiddingly difficult in
practice. It has never been performed. However, a wide range of
experience indicates that an electron is never detected simultaneously
at two separate positions. Suppose then that in this “Gedanken
experiment” (or pencil-and-paper experiment) the detectors A, B never
respond simultaneously; i.e., the electrons are indeed found either
behind a or behind b. Under these circumstances, surely the pattern
observed on the photographic plate must consist of the simple
superposition of two single-slit patterns.

Fortunately for our peace of mind, there is good reason to believe
that in the experiment using detectors, the pattern that would be
observed (if the experiment could be done) is a superposition of two
single slit patterns. The process of observing position — as the next
chapter will show — cannot be performed without influencing the
electron. The experiment with the detectors is physically different from
the experiment without them. The analysis in Section 5.1 will show
that if detectors are arranged to change the electron’s properties as little
as is possible (consistent with the requirement that a response of A
cannot occur if slit a is closed), the pattern produced at the
photographic plate becomes roughly a simple superposition of two
single-slit patterns. In the experiment with detectors, then, the results
are consistent with éxpectation.

Notice that the observation of the electron passage does not help us
to understand the normal two-slit pattern. The presence of the
detectors radically alters the distribution produced on the photographic
plate. To understand the ordinary two-slit diffraction we are forced to
the peculiar assumption that, in the normal experiment, the electrons
somehow are influenced by both slits (i.e., get through both slits)
despite the fact that a determination of location always discovers the
electron at one or the other of the two slits. Reasons for believing that
this idea constitutes more than a simple confession of complete defeat
will be advanced in Chapters 6 and 7.

Effects similar to those described above arise frequently in the
microphysical realm. With a certain experimental arrangement an
interesting phenomenon is observed. If, however, we attempt to
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examine the processes that give rise to the phenomenon of interest, we
discover that the examination alters the previous observations rad-
ically®. Nature seems determined to prevent us from discovering some
of her secrets.

We do not appear to have come near our destination — an
understanding of the two-slit interference experiment — but perhaps
the scenery along the way has been interesting. Note in particular the
following two very remarkable features of the diffraction phenomena:

1. The diffraction pattern is not a property of a single electron but

~ rather the property of a large collection (ensemble) of electrons.

2. The laws of nature conspire to prevent us from examining the
details of the processes that occur in the diffraction experiment. We
cannot arrange, for example, both to produce the two-slit pattern and
to know with certainty how each electron gets through the slits.

More can be learned from an examination of the one-slit diffraction
pattern (Fig. 4-10). The component of momentum along the incident
direction of the electron is not altered in its passage through the rigid
slit. By using the arrangement pictured in Fig. 4-13, we could prove
that the electrons which reach the detector are deflected on passing the
diffracting slit by some angle 0 (of course, the openings in the
collimating plates must be large — say about a millimeter wide — so as
not to produce further diffraction). The y component of the "
momentum after deflection by 6 (Fig. 4-14) is p, tan 8 R p, sin 0,
where p, is the incident electron momentum. From previous work (see
Fig. 4-10) we know that the bulk of the deflections experienced by an
ensemble of electrons in passing the slit lic between the limits, +6’,
where 6’ is given by

sin 6’ = A7

(A = h/py and 7 is the slit width). Hence the y components of the

momenta of the electrons after passage range roughly between ipg taq
0"; also p, tan §'R p, sin ' = p, (A/7). . ,

Now we do not know and cannot follow in detail (for.the same ,
reasons that prevented our closer examination of the formation of the_

two-slit pattern) how any one electron will be deflected in passing the”

slit. The foregoing analysis shows that after passage of an electron we

4 Students should not be surprised by such effects. They ofteélesc;:’nplglhlé
(perhaps justly) that frequent tests of their knowledge tend to roy. the -
knowledge they may have acquired. _
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Fig. 4-13.  Change of electron momentum on passing slit.

Fig. 4-14. The y-component of momentum after passing slit.

can only assert that the y component of momentum is found
somewhere within the range +p, A/7 which, since A = h/po, is th/7. Thus
we cannot predict with precision what the value of the measured ¥y
component of an electron which gets through the slit will be. We shall
indicate the uncertainty® or dispersion of the Y component of the

S The “uncertainty” is defined as the root mean square of the deviation from
the m;a;n vaflue. If the distribution of the Y component of the momentum for an
ensemble of electrons diffracted by the slit is w@y), ie., if wp,)dp,, i

le ectr , Le., p,, is the
probability of finding the component p,, in the intervz{l dpy, then thév uncjértainty

is
Apy = [fw(p))(py —py)*dpy] *

wher.e 17 is_ tl_l_e mean value of Py in the distribution. In the case we are
considering, pPy= 0.
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momentum by Ap,,; its value is roughly Rh/r. Note that 7 also
measures an uncertainty. We do not know where a single electron will
come through the slit but obviously it must be found on observation at
the plane of the slit somewhere within the width 7; 7 then roughly
determines an uncertainty in the y component of position of an
electron in passage through the slit. Setting 7= Ay, the uncertainty in
the y component of position, we have Ap,, 2 h/Ay, or

AyAp, X h. @1)

This result may be summarized as follows: If an electron of known
momentum passes a slit of width Ay, we can only predict the y
component of the momentum after passage to within an uncertainty
Apy,, where Ay and Ap,, are related by (4-1). For an electron with an
energy of the order of 100 eV (2A ~ 1 A), the uncertainty Ap,
introduced in passage through a slit of macroscopic size (say Ay =~
1 mm) is negligible by comparison with the momentum p, = /2mE, we
have Apy/po = h/poAy = NAy ~ 1073/107! = 1077. But if Ay is of
the order of angstroms, the uncertainty A p,, is of the same order as p, -
itself!

Eq. 4-1 suggests that if we arrange to determine a component of the
position of an electron, we can do so only at the expense of our prior
knowledge of the corresponding component of the momentum. If this
implication of our work is generally true it is of enormous significance.
To make a prediction in classical mechanics we must be given “initial
conditions”; for a single particle these conditions are the position and
momentum. If we cannot know both the position and momentum of
the particle our mechanics loses its power to predict. Now Eq. 4-1
follows essentially from the de Broglie relation, X = &/p, and the
meaning of \ in relation to diffraction effects. Do the de Broglie
relations imply basic limitations on our capacity to determine the
position and momentum of an electron simultaneously? This question
is examined in the next chapter.
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5  Heisenberg’s Principle
of Indeterminacy

“0, swear not by the moon, the inconstant moon.”

William Shakespeare

We want to measure both the position and momentum of an
electron. Let’s try to make the problem as simple as we can. Suppose
that the momentum has already been measured and that after the
measurement the electron is “free” so that the electron momentum
does not change with time. The assumption of momentum conservation
is surely as safe as any that can be made in physics. If the measured
component along the x axis has the value p,, then a subsequent
measurement of the x component of momentum is certain to yield the
value p,. All that now remains is to measure the position by procedures
that do not change the measured momentum or, if the position
measurement does alter the momentum, to measure the position in
such a way that both the position and the momentum are known after
the measurement.

To make the position measurement we shall use a microscope. The
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Fig. 5-1.  Position measurement with a microscope.

stage of the microscope is illuminated with radiation of some definite
wavelength, A, directed along an axis perpendicular to the axis of the
microscope (Fig. 5-1). A fluorescent screen that scintillates when a
photon of wavelength A falls upon it is placed in the microscope so that
an image of an object illuminated by the radiation is formed on the
screen. We observe the fluorescent screen through the eyepiece.

If we are lucky we discover, after a period of watching, a
scintillation at some point P on the screen. This effect results from the
scattering of a photon in the incident radiation by the electron into the
microscope. From the observed location of the scintillation we must
determine the location of the electron at the time the radiation was
scattered. Of course, the scattering event will change the previously
measured electron momentum so that we must also determine, if
possible, the new value of the momentum of the electron after the
measurement.

As is known, a point source of radiation does not produce a point
image in a microscope [10, Chapter 4]. Diffraction effects lead to an
image that is spread over a small circular region. The radius of this
circular image depends on the diameter, d, of the objective lens (see
Fig. 5-2) and the wavelength of the radiation from the point source.
The first minimum of the diffraction pattern formed on the i;nage
plane for a point source of radiation occurs at a distance r from the
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center of the pattern. Roughly speaking, this minimum is formed where
the paths of the radiation that pass through opposite ends of a diameter
of the objective (see the dotted paths in Fig. 5-2) differ by a
wavelength. )

It is not difficult to show [10, Chapter 4] that the angle subtended by
the image area of radius 7 at the objective lens is given by

8§ =Nd, (5-1)

where d is the diameter of the objective lens. It must be realized that
the extended image of a point source is produced by a large number of
photons striking the image plane at well-defined points (or, more
exactly, regions small compared with the area of the image). In the
observation of a single scintillation, a single photon is detected at, say,
P. However, photons scattered from a range of different locations may
also give rise to scintillations at P. Thus (see Fig. 5-3), the scintillation
at P might have arisen from a photon emitted from sources at S; or S,,
or from any point between S; and S,. The observation of a scintillation
at P implies that the photon was scattered from some point along the
axis within the range A x, (Fig. 5-3). This uncertainty in the location of

~ the point at which the electron scattered the photon is approximately
f8, where f is the focal length of the objective and 8 is given by Eq.
5-1. Consequently,

Ax ~ \(f/d). (5-2)

Consider now the change produced in the electron momentum when
the photon that reaches P is scattered by the electron. This process
(Compton effect) may be described by assuming that the incident
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Fig. 5-2.  Image of a point source in a microscope.
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photon is a particle with momentum A/ and energy E = hv (v =¢/N),
and that momentum and energy are conserved in the collision. To get
into the microscope the photon must be scattered into a cone of angle
6 (Fig. 5-4). Thus the components of the momentum of the scattered
photon along the x axis lie between * (%/X) sin 6. (We neglect the
change of X in the collision.) Also, sin § ~ tan 6 = d[2f. Since the total
momentum of electron and photon is conserved we may conclude that
the momentum after the observation lies between p, + k/A (d/2f) and
po — h/\ (d[2f), where po is the measured momentum before the
scattering. The uncertainty in the x component of the momentum of
the electron after collision is, therefore,

hd
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For the product of the uncertainties in position and momentum we
find

Ax Ap, ~ (\f/dY(h/Nd[f) = h, (549

which is just what was found from the analysis of the single-slit
diffraction (Eq. 4-1). The uncertainties in the position and associated
momentum component of the electron as measured by the microscope
are inversely related. If we arrange to make Ax small (by making A
small or @ large), Ap, gets large. Similarly, if Ap, is made small (by
making X large 6 small), Ax becomes correspondingly large. If the
position of an electron with an energy of the order of tens or hundreds
of electron volts is to be determined within an uncertainty of
macroscopic size (say Ax ~ 1mm = 107 A), the uncertainty in p
specified by (4-1) is negligible. Using Eqgs. 4-1, 2-6, and 2-7,

Apxlpx = hl(pxAx) = NAx = 123/(E” Ax)~12.3/(10 - 107) ~ 1077,

This implies, of course, an enormously precise determination of p.
If, however, we wish to determine the position of an electron within an
uncertainty as large as an atom (Ax ~ 1 A), the uncertainty in p,, is of
the order of p,.

- The relation 4-1, first derived by Heisenberg [20, 21] through an
analysis of the observation of position with a microscope and other
modes of position, momentum measurement, is known as the Heisen-
berg uncertainty relation. Heisenberg’s discussion of the uncertainty
relation contributed greatly to an understanding of the physical
meaning of the formal structure of quantum mechanics. The mathe-
matical formalism of quantum mechanics was discovered in 1925 by
Heisenberg, Schrodinger, and Dirac but it took about two years of
intensive study after this discovery to appreciate the full physical
significance of the new formalism!.

It is an interesting feature of the historical development of quantum
mechanics that the mathematical structure of the theory was invented before its
physical interpretation was completely understood. One would expect a new
theory to grow out of new physical insights into the nature of phenomena, with
the mathematical structure built afterwards to give precise quantitative expression
to these insights. Some of the reasons for the reversed order in the case of the
quantum mechanics are considered in Chapters 6, 7, and 8.
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Of course, the failure of the microscope method does not imply by
itself that a precise simultaneous measurement of position and
momentum is impossible. Perhaps the desired measurements can be
made by other methods. However, the analyses of all proposed devices
for making the measurements — a number of most ingenious methods
have been investigated — lead uniformly to Heisenberg’s relation (4-1).
These investigations suggest strongly that the limitation specified by the
uncertainty relation expresses a general law applicable not only to
electrons and photons but to all microphysical entities.

In the argument leading to Eq. 5-4, a wave theory was used to obtain
the position uncertainty?, Ax, while to obtain the momentum
uncertainty, Ap,, a particle theory of the collision of a photon with
the electron was employed. This admixture of wave and particle
considerations occurs in the analysis of every method designed to
measure position and momentum.

Naturally, a paper-and-pencil analysis of a measurement presupposes
some theoretical foundation. Exactly what are the theoretical assump-
tions employed? They are simply the de Broglie relations with the
following interpretation: In processes of energy and momentum -
transfer, electrons and photons (as well as other microphysical entities)
are to be treated as particles, while in processes of transmission between
spatially separated interactions they are to be treated as waves. All
relevant observations are consistent with this interpretation of the de
Broglie relations.

5.1 Supplement to Chapter 4. In our investigation of the two-slit
diffraction experiment we postponed consideration of the effects
attendant on observations designed to determine whether the electron
goes through slit a, slit b, or possibly in some manner, through both
(see Fig. 4-7). Suppose we arrange devices capable of detecting a passing
electron in front of the slits (see Fig. 5-5). To be specific, suppose that
we have a source S emitting radiation of wavelength, A, (between the
diffracting slits and the detectors in the arrangement of Fig. 4-7) which. .

2The diffraction in the microscope was analyzed by a wave theory. -
Remember, however, that this theory does not describe all the features of t!le ]
diffraction of photons. :
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Fig. 5-5.  Observation to determine through which slit an electron passes.

illuminates both slits. We have also a pair of microscopes, M, and My,
which are focused on the regions in front of the slits. The microscopes
are to be arranged so that the detection of an electron by M, (or M)
implies that the electron was in the neighborhood of slit a (or slit b). Of
course, we arrange that if the electron beam is off, no photons can be
scattered into the microscopes.

To be able to distinguish between the passage of an electron through
slit a or slit b, we must be sure that the detection of a photon in
microscope M, cannot be interpreted as rising from the scattering of a
photon by an electron in the neighborhood of slit b. Consequently the
microscopes must be capable of locating electrons within an uncer-
tainty Ay smaller than the separation, d, between the slits. Such
measurements give rise to an uncertain change in the momentum of the

ectron; the uncertainty in the y component of the momentum
introduced by the observation is

Ap, =h/AyS h/d.

This momentum uncertainty along the y axis implies an uncertainty,
A8, in the direction taken by the electron after passage through the slit.
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This angular uncertainty, A8, is roughly Ap,/p, where p may be taken
as the magnitude of the incident momentum. Thus, making use of the
de Broglie relation, A = i/p,

Af ~ Apy/p ~ hf(p Ay) S h/(pd) = Nd.

But the angular separation at the slits of successive maxima in the
interference pattern when the detectors are absent (see Fig. 4-11) is also
Nd. We have, therefore, A9 S 6, where 6 is the angular separation
(measured from the slits) of successive maxima in the normal two-slit
pattern. In determining locations by the microscope, we introduce a
new directional uncertainty (superimposed on the directions taken by
the electrons after getting through the slits) of such size as to smear out
the characteristic structure of the two-slit pattern. Thus, when the
interference experiment is performed with instruments capable of
determining which of the two slits the electron passes in its path from
source to detector, the characteristic two-slit interference pattern is .
blurred and the pattern obtained is like the superposition of ‘two
single-slit diffraction distributions.

6.2 Continuation: Heisenberg’s Principle.  Assume now that the
Heisenberg relation (4-1) expresses a fact of nature — i.e., that the laws
of physics make it impossible to know both the momentum and
position of an electron with uncertainties smaller than those permitted
by Eq. 4-1. What consequences follow? Can the uncertainty relation
help us see how a rational theory of microphysical processes might be
formulated?

One consequence is immediate, of obvious importance, and indepen-
dent of further theoretical assumptions. In principle, either the position
or the momentum of an electron can be measured with arbitrary
accuracy. The accuracy within which both properties can be known
simultaneously, however, is limited by Eq. 4-1. Suppose that the
momentum of an electron has been measured precisely; according to
the Heisenberg relation, the position at which the electron will be
found on measurement cannot be predicted. However, in an exact
observation of position the electron is found at some definite location .
(after which the result of a momentum measurement cannot be-
predicted). The point of all this is that the Heisenberg relathn or
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Heisenberg principle, implies that it is not possible to arrange initial
conditions so as to be able to predict the results of all possible
observations that might be made on an electron. If position (or
momentum) is known, the result of an exact momentum (or position)
measurement is unpredictable. If position and momentum are known
within the uncertainties Ax and Ap,, the result of either an exact
position measurement or an exact momentum measurement cannot be
predicted, although a precise measurement of position will yield a result
somewhere in the range Ax or, if momentum is measured precisely, its
value will be found in the range Ap,.

This unpredictability of the properties of an electron may remind us
of the unpredictable features noted in the study of diffraction
phenomena. Equipment could not be arranged to ensure that an
electron that gets through the slits will arrive at some particular point
on the detecting screen. The Heisenberg principle suggests that the
indeterminate behavior of electrons encountered in the diffraction
study is by no means peculiar to the phenomenon of diffraction.
Indeterminate behavior, it would seem, must be expected throughout
the realm of microphysics. But how can one possibly have a science for
indeterminate — i.e., unpredictable — behavior?

The diffraction studies of Chapter 4 suggest an answer. The positions
at which individual electrons appear on the detecting screen in the
diffraction process cannot be predicted. Or, put in another way, the
diffraction apparatus cannot be arranged so that every electron in the
incident beam will arrive at the same point on the detecting screen.
However, and this is the crucial consideration, the distribution of
position at the detector, i.e., the diffraction pattern, can be predicted.
If 20 physicists perform the diffraction experiment at different places
and different times, they all find the same pattern. The nature of the
electron source, the manner of detection, and the methods used for
producing the incident beam have no influence on the pattern.
Whenever and however an incident beam with a given well-defined
momentum is incident on a given crystal scatterer, the same distribu-
tion in position at the detector is found; the incident momentum
uniquely determines the final distribution. It is clearly possible to
predict not the locations of single electrons but the distribution in
position of a large collection or ensemble of electrons.
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In effect, a theory of microphysical processes must have a statistical
character. In general, only statistical properties (i.e., ensemble prop-
erties) rather than the properties of single entities are determinate in
the realm of microphysics. Often a somewhat loose use of language
obscures this fact. We have already explained what is meant when we
speak of the wave property of electrons as exhibited in the diffraction
experiments. It is not a single electron with definite momentum that is
similar to a wave but, rather, a large ensemble of electrons all with
definite momentum.

An additional example of the determinate properties of ensembles of
microphysical entities will be helpful. A free neutron undergoes
spontaneous transformation into a proton with the emission of an
electron and a neutrino. It is said that the “half-life” of a neutron is 12
minutes. This is a statement not about individual neutrons but about
ensembles of neutrons. If, initially, we have a set of neutrons (at rest),
some transform before one minute has passed while others have

_ stubbornly refused to change into protons even after a lapse of an hour.

We cannot predict precisely when any individual neutron will change to
a proton, but regardless of the prior h1story of the neutrons collected in
an ensemble, half the ensemble will be transformed into protons at the
end of 12 minutes. The term “half-life,” obviously, is an ensemble
property.

Let us summarize briefly. The Heisenberg principle 1mp11es that
there is an irreducible indeterminateness in the behavior of micro-
physical systems. Experimental conditions cannot be arranged to ensure
the outcome of all observations. However, the behavior of suitably
prepared ensembles is found to be regular and lawful.

1



6  Interpretations of the
Heisenberg Principle

“All things counter, original, spare, strange,
Whatever is fickle, freckled (who knows how?)
With swift, slow; sweet, sour, adazzle, dim;”

Gerard Manley Hopkins

The physical meaning of the Heisenberg principle is not obvious
from its content. It may be interpreted several different ways. Two
classical attitudes toward the principle are sketched in Subsections 6.1
and 6.2. An interpretation that breaks sharply with classical concep-
tions — the interpretation that leads to quantum mechanics — is intro-
duced in Section 6.3.

6.1 Classical Statistics. If we accept the principles of classical
theory, it is natural to argue that even if the simultaneous position and
momentum cannot be measured to better than the accuracy indicated
by the Heisenberg relation (4-1), nevertheless the electron must have, at
~each instant, both a well-defined position and a well-defined momen-
.tum. In other words, the uncertainty principle does not in itself prevent
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us from considering the electron as a Newtonian particle. The
wave-particle dualism and its consequence, the Heisenberg principle,
merely imply, in this classical view, that the position and the
momentum of an electron cannot be measured simultaneously.

But since position and momentum are the initial conditions required
to predict the path of an electron, accurate prediction is rendered
impossible and the motion of an electron is necessarily uncertain. We
may, however, try to make statistical predictions by the methods of
statistical mechanics. When we deal with a sample of a gas, we do not
know, for practical reasons, the positions and momenta of the
molecules that constitute the gas. Nevertheless, relations between such
statistical properties as the pressure and the temperature of the gas, for
example, can be derived.

When an object subject to some set of conditions is studied by the
methods of statistical mechanics — whether it is a sample of a gas or a
single electron —a large ensemble of objects of the same kind (all
subject to the same conditions) rather than a single object is considered.
The ensemble may be a theoretical entity (as in the case of a gas
sample, since we do not collect for study 10° or so samples of the gas)
or a natural entity, as is often the case in microphysics where
observations on a single system (atom, electron) are impractical, while
observations on large collections of these systems are relatively simple.
In any case we attempt to calculate, or observe (if a physical ensemble
is available), the distribution of the properties of interest over the
whole ensemble rather than the properties of a single object.

We review the statistical method for treating a single electron (now
considered as a Newtonian particle) moving in one dimension. It will be
useful for this purpose to introduce a “phase space” diagram (Fig. 6-1).
A point in this diagram (a ‘“‘state point”) represents a single electron,
with position as given on the abscissa and momentum as given on the
ordinate. Suppose our electron to be subject to an external force of
some kind. The motion of the electron is completely determined once
its position and momentum at some time, say ¢ =0, are given. BOth
position and momentum change, in general, under the influence of the'
external force and hence the state point in the phase space diagram
traces out a definite path. )

When we have imperfect knowledge about the initial state of the
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Fig. 6-1. Phase space diagram for motion of a point particle in one dimension.

electron we introduce an ensemble of electrons, with each electron
having some definite position and momentum, so as to represent the
range of possible initial conditions that are consistent with the available

information; i.e., each electron in the ensemble chosen has a chance of |

being the electron we wish to study. An ensemble is represented in the
phase-space diagram by a large number of points, each of which is a
state point for a single electron.

Figure 6-2 shows a phase-space representation of an ensemble that
could be used to study the motion of an electron (in the statistical
sense) if all that is known is that the uncertainty in x is Ax about the
neighborhood of x,, the uncertainty in p is Ap about the momentum
Do, and the x and p distributions are uncorrelated. (Absence of
correlation means that the distribution of the points along the p axis is
the same for every chosen value of x within the range Ax.)

pT
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Fig. 6-2.  Representation of an ensemble of electrons in phase space.
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From the assumed initial ensemble and the laws of motion the
position of all state points at any later time and the distributions inx,
p, or any other dynamical variable of interest can be calculated. Thus
the initial (¢ = 0) characteristics of the ensemble determine the average
value of the position in the ensemble at time ¢, the uncertainty in
position at ¢, etc.

The Heisenberg principle asserts that when measurements are made
as accurately as possible, there remain position and momentum
uncertainties Ax, Ap such that AxAp ~h. Therefore, to make a
statistical analysis of the motions of an electron, it must be replaced by
an ensemble of electrons with a phase space representation like that of
Fig. 6-2. (We use an uncorrelated distribution since observations can tell
us nothing about possible correlations.) Note that the Heisenberg
principle says that no matter how the position and momentum of an
electron are measured, the ensemble of phase-space points required for
statistical treatment must cover an area in phase space roughly of
magnitude h(= AxAp). \

It seems highly improbable that the foregoing classical statistical
theory could solve the conceptual problems raised by microphysical
observations. The phenomena of quantization would still require the
addition of restrictive rules of some kind (as in the theory of Bohr).
The introduction of such rules would lead to the same objections as
were generated by the Bohr theory (see Chapter 1). The difficulties are
more apparent if we consider the wavelike properties of electrons. How,
for instance, could a statistical theory handle the two-slit diffraction
experiment? The theory considers electrons to be classical particles;
each electron would be pictured as going through one or the other of
the two slits. Thus the theory could only lead to the false prediction
that the two-slit pattern is a simple superposition of two one-slit
patterns.

6.2 Hidden Variables. The Heisenberg principle implies that the
behavior of electrons is indeterminate. What is the cause of this
indeterminacy? Are we to understand that on the microphysical level
there is an essential play of chance or, to paraphrase Einstein, that
“God plays dice with elementary phenomena”? “Chance” is merely a- -

word we use when we try to hide our ignorance. Surely (says the
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classical physicist) the position at which each electron hits the screen in
a diffraction experiment is uniquely determined by some specific set of
conditions, even if we have not yet discovered exactly what these
conditions are.

Macrophysical systems may seem to have an indeterminate behavior
if we o not take into consideration all the details of their structure.
Suppose, for example, that we have a set of boxes all with the same
dimensions and all of the same mass containing differently oriented
gyroscopes with different angular momenta. Under external torques
of the same magnitude and direction (relative to the box geometry),
different boxes will exhibit different responses. An observer who is able
to examine only the outside features of this collection of boxes might
claim that they are identical but that their behavior is indeterminate. A
physicist who made such an interpretation without even thinking that
the boxes might be systems with different internal properties would be
a simpleton. We who know about the internal gyros have no difficulty
in explaining the variation in the behavior of the different boxes.
Obviously if we do not know and control all the variables on which the
behavior of a set of systems depends, the same external influences may
lead to different consequences simply because the different systems
have different internal properties.

Might this not be the origin of the indeterminacy implied by
Heisenberg’s principle? We don’t really know in any direct sense what
an electron is. When a photon registers in the microscope we speak of a
“position” measurement. From the “position” measurement alone it is
not possible to predict the result of a subsequent “momentum”
observation. But might there not be as yet unknown measurable
properties — i.e., hidden variables (corresponding to the gyros in the
example above) — which, if measured together with “position,” would
enable us to predict the result of a subsequent “momentum”
measurement with precision and certainty?

It is impossible to prove or disprove the existence of the hidden
variables needed to make the behavior of microphysical entities
determinate!. As yet, however, no one has turned up any trace of such

1t was shown by von Neumann [22], with the aid of certain rather general
and apparently harmless assumptions, that hidden variables are inconsistent with
the results of quantum mechanics. For many years it was believed that his
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hidden properties. It is only the brute fact of the appearance of
indeterminacy in the behavior of microphysical systems that suggests
the existence of hidden variables. But the proof of a pudding, it is said
is in the eating. More than 40 years ago (1925), a highly successfui
nondeterministic theory (qrantum mechanics) of microphysical
systems was formulated. In all the work which has gone on since 1925
no evidence for the existence of hidden variables that might serve t(;
reestablish determinism has been found.

6.3 A Nonclassical Interpretation of the Heisenberg Principle. The
Heisenberg principle states that the exact simultaneous values of the
position and momentum of an electron cannot be observed. Recall also
that the motion of electrons in diffraction processes is not observable;
it could not even be determined through which of two slits each
electron passes without completely changing the resulting diffraction
pattern. Now the concepts of simultaneous position and momehtum,
and of a path through one slit or another derive from the conception of
an electron as a classical (Newtonian) particle. Are there other features
of the mental images we form of microphysical processes that are
unobservable? From the Heisenberg principle it follows that a large
number of the concepts of classical physics have no observational
counterpart in the realm of microphysics. ' :

Suppose we wished to observe the path or orbit of the electron ina ,
hydrogen atom. To measure the path we must determine the positions
of the electron at a number of successive instants. Since the atom has a
diameter of about 1 angstrom, any meaningful position measurement
must be made with an uncertainty, Ax, of no more than about 0.1
angstrom. By the Heisenberg relation such a position measurement

“proof” showed that hidden variables could not exist. But any theorem is no
more thap an expression of the hidden content of the assumptions on which it is
based. With a slight change in von Neumann’s assumptions, J. S. Bell [Rev. Mod.
Phy S. 38, 447 (1966)] showed that it is possible for hidden variables to be
consistent with the statements of quantum mechanics. Unfortunately we cannot
pursue these questions further in this brief introduction. Interested readers will
find a discussion of present attitudes toward the problem of hidden variables (as
well as of other issues relating to the conceptual foundations of quantum. -
?;gg}h{;x)nics) in a recent review article: Ballentine, R. E., Rev. Mod. Phys. 42,358
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introduces an uncertain change in the electron’s momentum of about
h/Ax, where Ax ~107° cm. A momentum change of this magnitude
corresponds to a change in energy which is about 10 times the
ionization energy of hydrogen. Thus the first measurement of the
sequence required to determine the electron’s orbit is almost certain to
ionize the atom. In principle we may determine the position of the
electron (with arbitrary accuracy) in the atom at some time, but we
cannot observe the electron path.

A further deduction may be made from this example. In the analysis
of the impossibility of observing the orbit we noted that the position
measurement resulted in the possibility of a large and uncertain transfer
of energy to the atom (corresponding to an uncertain alteration in
momentum). This suggests that the exact energy of the atom and the
position of its electron cannot be known simultaneously. Suppose the
energy has been measured. After the measurement (we assume energy
conservation) the energy is constant. Hence we should know both energy
and position if the position can be measured without change, or with a
determinate change, of the energy. The Heisenberg principle implies
that these requirements cannot be met. The measurement of the
position will alter the energy of the system in a manner that we cannot
completely control. By analogous considerations it could be shown that
the energy and momentum of an electron in an atom cannot be known
simultaneously. It appears that our inability to measure pairs of
variables simultaneously is by no means limited to the position,
momentum pair. Indeed, our findings suggest that simultaneous
measurability of quantities is the exception rather than the rule in
microphysics.

In classical mechanics the concepts of velocity and acceleration play
important roles. Force is related directly to acceleration, and the force
on an object is measured by observing, in one aspect or another, the
acceleration the force induces. But at the level of atomic dimensions,
velocities, accelerations and, consequently, forces are unobservable?.

21f the position components at £, ¢, are x,, X,, then the average velocity in
the interval 75 — 71 is (x5 — x1)/(#, — £;). For this average velocity to be a
reasonable approximation of the electron velocity in the interval 7, — ¢, the
distance x, — x; must be small compared with the distance over which the
wvelocity changes markedly; thus x, — x; must be considerably smaller than an
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We have considered how the Heisenberg principle (deduced from the
de Broglie relations) affects the observability or measurability of
features of classical mechanical systems. Classical electromagnetic
concepts may be investigated in the same spirit. We shall not attempt an
analysis here but simply quote results [21]. The analysis shows that
electric and magnetic fields cannot be measured simultaneously with
accuracy. To predict (by classical theory) the development in time of
an electromagnetic field, it is necessary to know both fields at the same
time. Our inability to measure the fields simultaneously thus undercuts
the possibility of prediction in electromagnetism in the same way that
our inability to measure position and momentum simultaneously
prevents prediction for mechanical systems.

Consider a somewhat different consequence of the Heisenberg
principle. When we think of an “electron” we are likely to generate a
mental picture of a tiny object which has a definite location in space
and is either at rest or moving in some direction with a definite speed
relative to a coordinate frame. Is the physical electron an entity that
corresponds to this picture? Maybe it is. But we cannot establish the

atomic diameter, since in moving across an atomic diameter the velocity must
change sign. Take x, — x; ~ 0.1 angstrom. To obtain a measure of this difference
within about 10% accuracy, the positions x;, x, must be known with
uncertainties no larger than 0.01 angstrom. Such accurate position measurements
lead to large and uncertain momentum and energy changes. For a position
accuracy of 0.1 angstrom, we calculated that the associated energy uncertainty is
about 10 times the ionization energy; for an accuracy in position of 0.01
angstrom, the momentum uncertainty is increased by a factor of 10 and, since the
energy depends on the square of the momentum, the energy alteration can be as
large as (100)(10) = 1000 times the energy required for ionization. Clearly the
atom will be ionized in the first position measurement and our effort to obtain
the velocity of the electron in its orbit fails completely. Since acceleration is the
rate of change of velocity and velocity is not measurable, neither is acceleration.
Moreover, force, which is determined by the acceleration it produces, cannot be
measured.

The preceding remarks refer to electrons within atoms. If, as in many electron
beam experiments (see the next to the last paragraph of this section), it is
sufficient to measure position to an accuracy of about a millimeter (rather than
107® mm as is required to obtain the path within an atom), the concepts of path,
velocity, acceleration, and force can be given approximate meanings. Anyone who
has seen tracks of electrons in cloud chambers or photographic emulsions has had
visible proof that the concept of electron path is sometimes meaningful.
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truth of the picture by observation. Our mental model implies that the
electron is an entity capable of having both a precise position and a
precise momentum. But since position and momentum cannot be

measured simultaneously and exactly, we cannot prove that the

electron can have both a precise position and a precise momentum
simultaneously3. :

It is possible to go considerably further in the direction taken by the
foregoing paragraphs. However, a sufficient number of instances have
been cited to indicate that only a remarkably small subset of classically
meaningful properties are observable in microphysical phenomena.

What are we to make of all these examples of our incapacity to
observe and measure? It is depressing to think of so many failures. But
before we go off to cry in our beer about our many deficiencies, it is
worth reflecting that the failure to observe an expected phenomenon
does not necessarily imply an incapacity of some kind; it may be that
the phenomenon just wasn’t there to be observed.

Let us return then to the usual optimism of physicists and deny

failure. Instead of looking upon the Heisenberg principle as an indicator
of incapacity we shall boldly assume that an electron is an entity that
simply does not have an exact simultaneous position and momentum.
(To avoid its frequent repetition, the awkward phrase “exact simultane-
ous position and momentum” will be designated by “X”.) On our new
assumption, the words “an electron with the property X is as
meaningless as the phrase “a square of radius 7.” This assumption seems
harmless enough — after all, the analysis of diffraction phenomena in
Chapter 4 indicated clearly that an electron is not a simple Newtonian
particle — but it contains packages of dynamite.

Consider an electron that has been prepared with a precise
momentum; our assumption forces the conclusion that this electron
does not have a position. For if the electron with definite momentum is
located somewhere, then it has both position and momentum
simultaneously (even though the position is unknown); i.e., the electron

3When the restrictions of the Heisenberg principle are not significant, position
and momentum can be measured with enough accuracy as to make a particle
model of the electron and a good approximation. Such a model, for example, is
used in the interpretation of experiments designed to measure the charge-to-mass
ratio of the electron.
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has the property X, and this, by the assumption introduced above, is
impossible. An argument of the same kind would show that an electron
with a definite position does not have a momentum property. Clearly,
if X is not an electron property, electrons do not have -positions or
momentum under all circumstances.

Itis not difficult to invent situations with features analogous to those
of the preceding paragraph. For example, a plane string figure cannot
have simultaneously both a precise “radius” and a precise “side length.”
If the string figure is a circle it has a radius but it does not have a
property of side length; if, however, the figure is a square then it has an
exact “side length” but it does not have a radius. For a second example,
consider certain motions of an infinitely long, stretched string. If the
motion is characterized by an exact wavelength, no meaning is
associated with the idea of a sharp location of the wave; when the
wavelength is exact the wave is infinite in extent (Fig. 6-3a). When,
however, a sharply defined pulse (Fig. 6-3b) travels down the wire, the
position of the disturbance (at some instant) has a fairly well-defined
meaning, but the string has no precisely assignable wavelength.

However, the problem posed by the -assumption that X does not
exist for electrons has features the examples above fail to encompass.
There is no reason to doubt that, whatever the circumstances, a
position (or momentum) measurement can always be made successfully
on an electron. We are consequently led to what seems an absurd

A
EQUILIBRIUM
POSITION OF WIRE
oo -
\-,/ U \_/ \/ \ .

Fig. 6-3a.  The deflection of a wire at some instant during a motion. At this
instant, the motion has a wavelength but not a location property.

EQUILIBRIUM POSITION OF WIRE
- J!L pd -

—>| ' [¢—INDEFINITENESS OF LOCATION

Fig. 6-3b.  The deflection of the same wire as that of Fig. 6-3a at some instant’
in a different motion. The disturbance has a fairly well-defined location but has
no wavelength property.
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conclusion: Although an electron with precise momentum cannot be
said to have a position, nevertheless a suitable measurement will find
the electron at some definite position (the words “position” and
“momentum” may be interchanged). For classical physics such a
conclusion is nonsensical; it simply is not possible to measure a
property that an object does not have. For example, no one would
dream of measuring the wavelength of a classical particle; the
measurements that can be made on such a particle could never lead to a
wavelength. Similarly it is not possible to find on observation a wave
with a precise wavelength at a sharply defined location®.

The ideas developed above, if disturbing, are nevertheless not
without attractive features. In the two-slit diffraction experiment
(Chapter 4), both slits appear to have an influence on the behavior of
the electrons that get through; the two-slit pattern is quite different
from the sum of two single-slit patterns. If the electron always has a
sharply defined (even if unknown) location, it seems to be impossible
to understand how an electron can “know” whether the slit through
which it does not pass is open or closed.

Recall that the incident electrons in the diffraction experiments
must have well-defined momentum. By the assumption considered in
the previous paragraphs, the electrons in the incident beam do not have
a sharp location. It is therefore at least conceivable that both slits play a
role in the transmission process. Of course these thoughts do not
constitute a theory of the diffraction experiments; they simply indicate
that certain of the paradoxes considered in Chapter 4 can be avoided if
position is not always a meaningful property of electrons.

Is it possible, however, to conceive that an electron does not always
have a definite location even though a measurement of position will
always discover it at some place? The training we have all had from
birth in macrophysics makes this idea very difficult to accept; it is in
fundamental conflict with deeply held presuppositions about the
meanings of the concepts of “measurement” and “property.” Unless
these presuppositions can be shown to be false, the assumption that
electrons cannot have a precise simultaneous position and momentum
must be abandoned. -

40n the plane string figure of radius 7 it is senseless to measure “side length.”
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The classical assumptions relating to the concepts of measurement
and property are criticized in the next chapter, where it is shown that
the ideas developed in the preceding paragraphs are neither internally

-inconsistent nor controvertible by observation. For our present

introductory purposes the following brief but suggestive remarks must
suffice. In an accurate position measurement, strong interactions occur
between the electron and the apparatus employed to effect the
measurement. In the microscope method (Chapter 5), for example, an
energetic photon must be scattered off the electron; the more accurate
the measurement, the more energetic the photon must be. Just how the
rough treatment suffered by an electron in the course of measurement
modifies its characteristics cannot be known. All that we have available
are observable manifestations — scintillations, counts — from which
properties are inferred. Immediately after a position measurement on

an electron with momentum p, which locates the electron at a definite

position, a second position measurement is certain to find the electron
at the same position; after the first measurement, therefore; the
electron is said to “have” a position property (see Chapter 7). (After -
the measurement the electron no longer has a momentum property.)
But by the very .comstruction of the statement, it is impossible to
establish by observation that just prior to the position measurement the
electron had the location at which it was subsequently discovered®.
It is useful to recall that the central object of theory is to provide a
set of general rules from which the observable relations among
phenomena may be deduced. No theory legitimately can be asked to do
more. Certainly theories need not be required to make statements
about imagined but unobservable features of phenomena. Anyone who
would assert that electrons are red but that the property of redness is
unobservable, and then would go on to wonder how the redness of

5 An extension of the example of the string figure provides a rough analogy.
Obviously the figure cannot simultaneously have an exact “radius” and an exact
“side length.” If it has a radius then it does not have a side length. Suppose,
however, that when a measurement of side length is made, an interaction between
the observing apparatus and the string occurs which forces the figure into.a .
square. Then the side length is measurable on a circular figure even though peior -
to the measurement the figure does not have the measured proptj-rt)”-, In the course-.
of measurement the figure gains a “‘side length” and loses a “radius.
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electrons influences other unobservable properties of microphysical
phenomena would be considered slightly mad.

There may, however, be good reasons for the introauction of
unobservable properties into theoretical considerations. If, without
affecting the predictive power of a theory, we can make it simpler, or
applicable to a wider range of observable phenomena, or more
beautiful, by introducing unobservable features, why not do so? No one
is bothered, for example, by the unobservability of the “inside” of a
completely closed box or the widely used but unobservable concept of
continuity. Equally, when theory fails, as classical theory fails in the
realm of microphysics, its imagined but unobservable aspects may be
cut away if there is reason to believe that the excision will permit the
construction of a more successful or more beautiful theory. We need
not remain enslaved to concepts of classical theory, no matter how
successful they are for macrophysics, if they are unobservable in the
vastly different realm of microphysics®.

The Heisenberg principle shows us how to escape from the tight
chains of the classical system of thought without danger of conflict
with experience. If an aspect of classical theory is unobservable we are
free to try to modify it or even to junk it altogether. Of course a
declaration of freedom from unobservable classical concepts does not
constitute a theory; it remains to be seen whether the new freedom
conferred by the Heisenberg principle will help us to find a useful
theory of microphysical processes.

The thoughts of the past several paragraphs have been qualitative.
The Heisenberg principle contains, however, a quantitative aspect that
has not yet been taken into account. The principle says much more
than that “precise position and momentum cannot be observed
simultaneously.” It tells us that the product of the uncertainties in

SNowadays we are accustomed to think so familiarly of atoms and electrons
that we tend not to appreciate the enormous change in orders of magnitude that
occur when we pass from the macrophysical to the microphysical realms. Normal
macrophysical magnitudes are: length ~ 1 cm; mass ~ 1 g; time interval ~ 1 sec;
charge ™~ 1 microcoulomb. The factors which convert these macromagnitudes to
proper microphysical magnitudes (for atoms) are 1078 for length, 10727 for
mass, 10716 for interval, 1013 for charge. To get some impression of the
difference a factor such as 1027 can make, note that 1027 meters is equal to 100
biuion light years, a distance about 10 times the size of the universe.
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Fig. 64. Deflection of an electron beam by an electric field. In such
experiments, classical concepts provide quite accurate predictions.

position and momentum cannot be made smaller than
h~6+10"27 gcm?[sec”. For electrons with energy of the order of
hundreds of electron volts (or smaller) and position uncertainties of the
order of atomic dimensions, the restrictions imposed by the Heisenberg
principle are very important; the classical notion of simultaneous
position and momentum is unobservable even in the sense of a rough
approximation. ‘
But consider an experiment on the deflection of electrons in an
electric field by means of the apparatus shown schematically in Fig.
6-4. We may suppose the source and accelerating plates to be those used
in the diffraction experiment (Fig. 4-1). A pair of plates between which
an electric field may be generated is arranged so that when no field is
present the electron beam passes between the plates and is detected at
O. When the field is turned on, the electrons arrive at P. The magnitude
of the electric field and the geometry of the apparatus are chosen so
that the deflection, OP, is several centimeters. In the discussion of the
diffraction experiment if was shown that the momentum of the
electrons in the beam is determined to within an uncertainty of about

7This refers to one component of position and momentum. For each of the
three orthogonal components the relation is the same. However, the x component
of position and any orthogonal component of momentum are measurable
simultaneously. Thus, if we locate an electron ina volume A V=Ax Ay * Az,
the uncertainties in the components of momentum A p,, Ap,,, A p, are such that
AxAp AyApyAzAp, ~h3jie., AV(ApyAp,Ap,) ~h3.

The “phase space” (see Subsection 6.1) for an electron in three dimensions isa
six-dimensional coordinate frame. In this “space” a point describes the three
components of position and the three components of momentum of an‘ electro:z;
The Heisenberg principle states that location within a (six-dimensional) *“volume
in phase space is unobservable if the “volume” is smaller than n3.
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0.5% of the value of the momentum; the diffraction from 1 mm slits
is negligible so that position in the x, y plane is determined to within a
millimeter. For all the purposes of the observations to be made in the
experiment, the position and momentum are both quite well defined
(i.e., percentage errors are small). Under these conditions the whole set
of classical conceptions that are unobservable in the microscopic realm
can be given quite accurate meanings. The path of the electron beam
may be observed (naturally location measurements will be made with
an accuracy Ax ~ 1 mm), the velocity and acceleration of the electrons
may be measured with accuracy sufficient for our objectives, and
Newtonian mechanics may be used to describe (approximately) the
course of the motion®.

The foregoing complex of considerations may be brought together in
a new interpretation of the Heisenberg principle. When the restrictions
implied by AxAp~ h are effectively negligible (as in the example
above), classical dynamical concepts have approximate significance. But

in the realm of microphysics —i.e., where the restrictions of the

uncertainty relations are important, as they clearly are for electrons in
atoms — many classical ideas lose even approximate meaning. In
particular, microphysical entities such as electrons do not have the
property of exact simultaneous position and momentum.

In the construction of a new theory of microphysical phenomena
the Heisenberg principle may be used to free us from the constrictions
of imagined but unobservable classical concepts. However, the new
theory must be capable of showing that classical concepts have an
approximate validity wherever the restrictions imposed by AxAp ~ h
are unimportant. The role played by Planck’s constant, A, in this
interpretation is interesting. It provides a quantitative measure by
which we judge whether a particular experiment or phenomenon may
be interpreted classically (in some approximate seuse), or whether we
are free to try to develop a theoretical description of a nonclassical
character.

$Many of the electron properties given in Chapter 3 are obtained by
experiments in which classical conceptions are applicable.
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7 Dynamical Properties
of Microsystems

“Imagination is often at war with reason and with fact.”

Benjamin Jowett

We must be careful about trying to make even a small change in a
tightly organized structure; the attempt often leads to almost complete
reconstruction. The alteration of a sentence in the middle of a
paragraph, for example, may infuriatingly necessitate extensive rework-
ing of several pages of manuscript. Similarly the changes in classical
modes of thinking requjred by the nonclassical interpretation of the
Heisenberg principle effectively force us to re-examine and reconstruct
a number of the concepts on which classical physics is based to make
them useful for the description of microphysical processes.

There are two coupled pairs of ideas that we wish to examine:
“determinism” and “state” and “measurement” and “property.” We
have noted that from the Heisenberg principle it follows that
microphysical processes are indeterminate. Does not .indeterminacy
mean the complete absence of lawfulness? What is the meaning of a
theory for systems with indeterminate behavior? What sort of structure
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can such a theory have? These questions and others related to them will
be examined in Chapter 8.

From the nonclassical interpretation of the Heisenberg principle
proposed in the last section, we drew a seemingly paradoxical
conclusion: The electron need not always have a position even though a
precise measurement of the electron’s location always discovers it in
some definite place. In short, it is possible to measure a property
(position) of the electron that the electron does not have. In certain
circumstances, then, it is incorrect and misleading to assert that the
electron under consideration is located anywhere at all; a search,
nevertheless, will find it at some definite place.

These ideas are wholly at odds with classical thought in which
measurement simply reveals the properties the system objectively
possesses. We have seen that certain pairs of properties (e.g., position
and momentum of an electron, electron position and energy of a

hydrogen atom, etc.) cannot be measured simultaneously. Some .

qualitative understanding of this fact follows from the realization that
in microphysical measurements there are generally strong interactions
between system and apparatus of measurement which modify the
measured system in an indeterminate manner. But if we follow the
ideas of Subsection 6.3 we shall not interpret the failure to find
simultaneous properties as a failure to discover the existing properties
of a system, but rather as an indication that the system simply does not
have the property pairs in question. This feature of microphysics is also
in conflict with classical conceptions. A

Clearly the ideas of “property” and “measurement” do not have the
same meanings in microphysics that they enjoy in classical physics. A
re-examination of these ideas and the formulation of concepts
appropriate for the consideration of microphysical systems is essential
_if the confusion that results from the unconscious application of
classical ideas is to be avoided. A number of questions require answers.
What is meant by the phrase “the electrons in this beam have a definite
momentum,” or, in more general terms, by “the system S has the
property ¢'’? How are the properties of microphysical systems
discovered? Can a system have unobservable properties such as
simultaneous position and momentum for an electron? What, if
anything, is the meaning of an unobservable property?
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7.1 Objective Properties. In microphysics, the fundamental class-
ical assumption of objective physical properties of systems fails. The
basis for this assumption and the reasons for its failure are sketched
below.

As I write I cannot see Mars but, though I don’t know where it is, I
believe that Mars is “out there” somewhere. On what observational
grounds is this belief justifiable? How can I know that Mars has a
position if I don’t know where to find it? Similar questions are often
raised in beginning courses in philosophy. “How,” the old chestnut
goes, “do I know that the tree in my garden is still there when ’'m not
looking at it, or feeling its bark, or otherwise observing it? How do I
know that the properties I see when I look at the tree are still ‘out
there’ when I no longer give it attention?” The very structure of these
questions makes it impossible to establish by observation either of the
statements: “All the properties of the tree remain unchanged even
when I'm off on a trip,” or “all properties of the tree disappear or
change in some unknown way when I'm not around to look at it.”
Despite my inability to establish the facts, however, I happily continue
to believe that the tree placidly remains in my garden when I'm not
observing it'. :

My attitude may be partially rationalized, perhaps, as follows. I have
a theory that is consistent with all my observations of the tree; it is the
simplest consistent theory I know. For example: Whether or not I look
at the tree I know that on any sunny day I can find shade in its
neighborhood; since the tree has some dead branches which may fall in
a strong wind, I take care not to be in its neighborhood on windy days.
In short, there is no aspect of my experience in conflict with the
assumption that the tree \is “out there” whether or not it is
observed — i.e., that the tree has what philosophers call an “objective
existence.” In essence, the same remarks may be made in reference to
our original question about the location of Mars. The assumption of the
existence of “objective properties” may be justified, for macrophysical
objects, in the same way that the objective existence of the tree is
justified. '

! In fact, unless one is a professional philosopher, any other belief carries yvith
it the danger of getting oneself committed.
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Our belief in the objective properties of stones, trees, dogs, etc. rests
in part on the fact that they may be observed without altering their
properties in the course of observation. Could I be so sure of the
objective existence of my tree if after each momentary glance at it the
tree sprouted a new branch, or withered, or changed its species?
Probably not. Clearly our general belief in the objective properties of

the entities of our experience is based on the assumption that these -

entities may be observed without modifying their properties.

But the arguments that justify the assumption of objectively existent
properties are simply invalid in the realm of microphysics. An old joke
says that no Irishman is so poor that there isn’t another Irishman who

can live well on his leavings. Similarly, classical physics assumes (but

not as a joke) that there is no physical system, however small, but what
there isn’t another one with which the first may be observed without
changing its properties. The preceding sections suggest that this
assumption is false in the realm of microphysics. For example, an

observation of position within an accuracy of 0.1 A on a free electron

with a kinetic energy of 10 eV necessarily has cataclysmic consequences
for the electron; the measurement may alter the energy by hundreds of
electron volts. If the process of observing a tree produced changes such
as a cyclone striking the tree might make, the processes of tree
observation and accurate electron position measurement would have
analogous features.

A more subtle example of the modification of properties by the
_process of observation may be drawn from the diffraction experiments
described in Chapter 4. Observation of whether each electron passes slit
a or slit b (Fig. 4-7) cannot be effected without completely changing

“the two-slit pattern obtained when no observation of electron passage is
made. Clearly, not all the measurable properties of microphysical
entities can be observed “gently.”

The argument for objective properties based on the consistency of
theory also fails. No adequate theory of the behavior of electrons is
consistent with the assumption that the electron always has a location.
In fact, that assumption gets us into trouble by leading to the false
expectation of a two-slit interference pattern consisting of a simple sum
of two single-slit patterns. Since the assumption of an objective location
property leads to difficulties and since, by the nature of the question, it
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cannot be known that an electron always has a meaningful location
property, a continued insistence that the electron must always be at
some well-defined place can only be interpreted as a form of
masochism. Remember that with the unobservable creations of our
imagination we are free to do whatever is useful or comforting.

Thus the classical arguments for the existence of unknown objective
properties fails for microphysical systems. The assumption that an
electron, for example, must always have some position or some
momentum and hence simultaneous position and momentum must be
avoided despite the fact that a position (or momentum) measurement
will always reveal some definite result.

7.2 Measurement and Property. To “know” a property of a
system implies the knowledge of the outcome of a specific experiment
on the system, namely that experiment which constitutes a measure-
ment of the property. When the system is brought into interaction with
an instrument capable of distinguishing the presence or absence of the
property, the instrumental response will indicate that the system has
the considered property. Note that each property is associated with a
measuring instrument or mode of observation by which the presence of
the property may be tested. To know a property then is to know the
response to the associated apparatus for the measurement of the
property if system and apparatus are brought into interaction.

With one important modification this conception of property can be
carried over into microphysics. Instead of single systems our considera-
tions will be applied to large ensembles of systems; for the most part we
shall speak of the propegties of ensembles. The reasons for this shift will
appear in the work of this and the following section. Obviously it is
related to the indeterminacy in the behavior of single microphysical
systems and the regular behavior of suitable ensembles.

Naturally the large ensembles that are to be the objects of our
considerations will not be composed of mixtures of such different
systems as free electrons, uranium nuclei, cats, and dogs; instead they
will be ensembles of systems of the “same kind” — hydrogen atoms, or
methane molecules, etc. Each ensemble of interest will be characterized
by a set of fixed or static (time independent) properties (e.g., system
composition) that are the same for all the systems included in the -
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ensemble. Naturally this does not imply that all systems in an ensemble
with given fixed properties (systems of the same kind) are necessarily
identical in all measurable properties. Systems of the same kind will
differ in their so-called dynamical or variable properties. Our main
concern is with these dynamical properties in ensembles of systems of a
given kind.

We wish then to examine with care and detail the meaning for
microphysics of the assertion: The systems (all of the same kind) in a
given ensemble have a certain dynamical property ¢’ (say). As we have
seen, to know a property means first of all to know the outcome of a
suitable measurement or test for the property. The test will consist, in
general, of some arrangement of apparatus, directions for arranging an
interaction between the apparatus and the systems to be observed, and
a specification of two classes of observable responses that result from
the interaction of the apparatus and the observed system. The two

response classes may be labeled “yes” and “no” (or “y” and “n”). We

mean by a “test instrument for property g"” — the test will be indicated
by the symbol 7 (q') —the apparatus, the method for arranging
interaction, and the specification of the “yes” and “no” responses. For
example, the test for the property, “the x component of position of an
electron is x" with uncertainty Ax,” might consist of a microscope, a
source of illumination, directions for location and orientation of the
microscope and the sources, and the specification of the “yes” and
“no” responses as the appearance of a scintillation within (yes) or
outside (no) a specific area on a screen. The apparatus Z(q") forms a
part of the definition of the property q’.

The systems in an ensemble will be said to have property g’ if, and
only if, it is certain that the application of the test Z(q') to every
system in the ensemble will result in a “yes” response. This definition is
empty, however, unless it is possible to produce ensembles of systems
with property ¢', i.e., to prepare collections of systems such that the
interaction of each system in the collection with J(g") results in a
“yes” tesponse. The process of producing an ensemble with the
property g’ will be called “preparation” or “preparatory measurement”
of property q'. In general, a preparation. also requires physical
apparatus, methods for its disposition, and specification of classes of

62

DYNAMICAL PROPERTIES OF MICROSYSTEMS
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Fig. 7-1. A preparatory measurement for photon energy

“yes” and “no” responses. For example, an ensemble of photons may
be prepared with the property, “the energy of each photon is 2 eV
within an uncertainty of 0.1 eV” by directing a beam of radiation at a
grating (Fig. 7-1) and selecting, by means of a suitable arrangement of
slits, only the photons that are deflected by a particular angle ¢ (within
an uncertainty A9). Here the “yes” response is successful passage of the
slits, the “no” response is failure to pass the slits>. An apparatus that
prepares an ensemble with property ¢’ will be designated by the symbol °
#2(q'). Both a preparation, 2(q'), and a test, 7(q’), are essential to
the determination of the meaning of the property g'. The property is
undefined if no preparation, 2(q"), exists for a presumed test - @,
or if no test exists for a presumed preparation, 2(q'). Note that a test
process looks backward; there need be no interest in the properties of
the tested systems after the test is over. (The photoelectric effect, for
example, could be used in a test for the energy of photons. In the test
the photons are absorbed, and no photon properties remain.) In the
process of preparation, however, we look to the future; the property of
the systems after preparation is of concern. For this reason the #(g")
process is also called a “predictive measurement.”

Often the same instrument may serve both as a test and as a
preparation of a property ¢'; an instrument of such versatility will be

2 Quite frequently prephrations in microphysics have characteristics similar to
those of this example. An apparatus that prepares g’ transmits only systems that
test successfully for ¢'; transmission is the “yes” response.
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Fig. 7-2. Diagrammatic representation of a measurement instrument .#(q"). The
incident ensemble, &, is separated into ensembles FA SR A0 N1\ ,N,(Y,),N(” are
the numbers of systems in the ensembles, &, & W) &)y The &) ensemble

(XS TN

consists of systems that produced Y responses in.#(q"). By definitiorll the &
ensemble has property q'. .#(q) is also a test instrument for property g ; a system
that produces a “p” response on interaction with .#(q") is said to exhibit g on
test.

called a “measurement” and designated by the symbol .#(g")*. We shall
assume that an ./ instrument exists for every definable system
property. A useful diagrammatic representation of an .#(g") instrument
is shown in Fig. 7-2.

Consider the test of an ensemble which does not have the property
q' with 7 (¢"). If the systems were classical, none of the systems would
produce a “yes” response; if the systems, by hypothesis, do not have aq
property they will not test for ¢’. In microphysics we have a wider set
of possibilities. We may have ensembles such that no system produces
the “yes” response in a J(q') test. But there are also ensembles in
which sometimes the response to the test for ¢’ is “yes” and sometimes
“no.” If this behavior were found for classical systems, one would
conclude that some of the systems have the property ¢’ and the others
do not. For microphysical systems, however, this interpretation is
dangerous and is to be avoided in general. In the two-slit interference
experiment, we began with an ensemble of electrons prepared with a
certain momentum. If we test for position at the slits, we always
discover an electron at either one or the other of the two slits. The

3 The definition of a property as formulated in preceding paragraphs in terms
of 7 and 2 instruments is incomplete. The reader may enjoy discovering its
ambiguities and supplying the details needed for its completion. The definition in
terms of # instruments, however, is unambiguous. Although .# instruments are
convenient for theoretical considerations, and are sometimes useful in the
laboratory, most experimental investigations employ preparation (#) and test
() instruments.
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Fig. 7-3.  Definition of property ¢’ by means of .#(q’) instruments.

ensemble then does not have a well-defined position at either slit. But it
is improper, as we have argued in previous sections, to conclude that
the ensemble consists of electrons with a location property at either
one slit or the other.

If some but not all systems of a given ensemble produce a “yes”
response in 7(q') we shall say simply that these systems “exibited the
q' response on test,” However, we must avoid the conclusion (which may
in special cases be true) that the systems that tested successfully for ¢’
in fact had the property g’ before the test.

The consideration of the foregoing paragraphs may be summarized
in the following definitions:

(a) “A system may have a property ¢ or “property g’ is
measurable” means: There exists an instrument .#(g") such that
whenever systems interact successively with two such instruments
(M1(q"), #2(q") — see Fig.7-3) every system that produces response
“yes” in . ,(q") also produces response “‘yes” in .#,(q"); if N systems"
are incident on .#, (q") and N, (%) systems produce response ‘“‘yes,” all
these systems produce response “yes” on interaction with .4, (g")*.

(b) “A system with a gifen ‘history’ has the property ¢’ means:
In a large number of previous experiments it has been found that every
system (of the same kind) with the given “history” produces a “yes”
response on interaction with an .#(q") instrument; i.e., the specific
“history” constitutes a preparation of property q'.

Several implications of these definitions are worth noting explicitly:

(1) An unobservable property has no meaning. A property is defined
for a system only if instruments that prepare and test the property are
given. Often the Heisenberg principle is formulated in terms of the idea

4 Unless the property ¢' does not change with time, the interaction with .4,
must follow immediately after the completion of the interaction with #;.
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of unobservable properties; thus it is said that the simultaneous precise
position and momentum of an electron is unobservable. It may be
useful to formulate the principle again without resort to this objection-
able idea. ]

The Heisenberg Uncertainty Principle. For every real number x' (or
p,') and every positive number Ax (or Apy) an electron may have the
property, “the x component of position (or momentum) is x' (orpy)
within an uncertainty Ax (or Ap,) for arbitrary magnitude of the
uncertainty.” There exists no preparation capable of producing an
ensemble with both an x component of position (for any x') with an
uncertainty Ax and an x component of momentum (for any p,')
within an uncertainty Ap, if the product AxAp, is less than a
quantity of the order of Planck’s constant, 4.

(2) From the observation of a “yes” response in a test (or
“measurement”) of property ¢, it does not follow that the system had
the property ¢’ just prior to its interaction with the test apparatus; the
system may be said to have had property g’ before a test only if its
history prior to the test constitutes a preparation of ¢'. Many errors of
interpretation stem from a failure to distinguish between the meanings of
“asystem had property g'” and ‘“‘a system exhibits property g’ on test.”

(3) The meaning of sentences such as “the electron does not always
have a location property” may be clarified. Suppose that experiments
on many ensembles of electrons prepared with property q' (“q’
ensembles™) reveals that the electron position property, x' (x compo-
nent), is distributed over a range larger than D in every ¢’ ensemble’. In
other words, in any ¢’ ensemble, different values of x’ are found in tests
on different electrons, and the difference between the largest and
smallest position values is always greater than D. It follows from
preceding definitions that in ¢’ ensembles, electrons do not have the
property “location within a range d <D”; q' ensembles with the
additional property, “location within range d,” simply do not exist®.

The complex abstractions required for the general definition of
“property” have surprisingly elementary exemplifications. Let’s follow

" 5 See Subsection 7.5 for a definition of the phrase, “distribution of position in
an ensemble.”
6 For example, in ensembles with momentum uncertainty A py. electrons do
not have a position property with uncertainty A x unless Ax Ap, >h.
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Fig. 7-4. Newton's measurement of color properties. \

Newton in his discovery of the property of color. Newton was led, by
considerations into which we need not delve (every student of physics
must read his fascinating “Opticks”), to pass light from the sun through
a prism and to observe its spectrum. No doubt many men had noticed
the appearance of color when cut glass was illuminated. But Newton
went a step further; he selected a small range of the colors produced by
one prism (i.e., the radiation deflected by well-defined angle, 8) by
means of slits (Fig. 7-4) and passed this range of color through a second
prism. In passing through the second prism the light was not spread out
again as the original light from the sun had been spread into a spectrum
by the first prism./Instead, the deflection in the second prism was again
just @', the angle through which the selected radiation had been,
deflected originally. By these observations Newton had discovered a.
“property” of light.

The first prism (with the slit arrangement defining a deflection 6")
constitutes the process of selection the apparatus 2(8'); the secornid
(with the same slit arrangement) is the test, 7(0"). Both £(8") and
F(0") consist of the same equipment, i.e., the arrangement is also an
A(0"). The “yes” response in both is passage through the slits defining
deflection 6'. Newton discovered that any radiation with a “yes”
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response in #; (6")leads to a “yes” response in .#, (8") (see Fig. 7-4).
It is the whole set of these observations which permits us to speak of a
property of radiation; the property in question may be formulated as
“deflection by 8',” or by the associated “color” as judged by eye, since
the deflection angle and color are correlated.

The complexity of the definition of a dynamical property indicates
that the discovery of properties is no simple matter. As an example of
the difficulty, let’s try to find a dynamical property of electrons by
imitating Newton. Suppose a beam of electrons is produced by the
“procedures used in diffraction experiments and directed on a film of
material which transmits and scatters the incident electrons. From the
scattered electrons, those deflected by an angle ' are selected for
consideration. Do the electrons so prepared have a “property”
" distinguished by their deflection through 0'? The answer is yes if an A
apparatus exists such that all electrons scattered through 6' produce

~“yes” responses in /. Since a measurement, .#, with the desired .

property is not known, the preparation does not determine a property
of electrons. ’

It is the business of experiment to search out all observable
properties of a system and to discover all the correlations among them.
Thus, for example, it is found that photons with the property,
“deflection, 8', by a particular prism,” also have definite energy.
Therefore, the property, “deflection by 6’ in the prism,” implies the
property “a definite energy E',” or “measurement of ' by the prism”
is equivalent to a “measurement of the energy £ '

A very different type of correlation is frequently met. In the
" diffraction experiment we first produce an ensemble of electrons with a
well-defined momentum property (Fig. 4-1). The fluorescent screen (or
photographic plate) is a device which tests for a range of position
properties on those electrons of the ensemble that get through the slits
placed between the source and the screen. Electrons (prepared with the
same momentum) are found at different locations on the screen. We do
1ot, therefore, have a unique correlation between the initial momentum
property and a tested position property. However, there is a well-
defined correlation between the initial momentum and the distribution
in the tested positions —i.e., between the initial momentum and the
diffraction pattern. Indeed, most of the correlations that are discovered
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%n the realm of microphysics are of this general character. It is
important to recognize that the position distribution does not have
meaning for a single electron with definite momentum but is a
characteristic of an ensemble of electrons prepared initially with
definite momentum. .

Theory must provide a set of general rules by which the observable
correlations among properties may be deduced. Thus, theory should be
able to predict the correlation between deflection, 6, in a prism and
photon energy, E', or to predict the correlation between incident
momentum and the distribution in position that appears on a
photographic plate in a diffraction experiment (given the geometrv of
the apparatus). However, theory need not describe imagined but
unobservable features of any process; theory need not tell us, for
example, how the ensemble of electrons in the incident beam gets
through the slits in the process of forming a diffraction pattern.

7.3 Incompatibility. The Heisenberg principle states that it is
impossible to prepare an ensemble with position and momentum
uncertainties (Ax, Ap,) such that AxAp, is less than h (approxi-
mately). This principle suggests (Section 5) that many other pairs of
properties — e.g., location of the electron in a hydrogen atom, within
Ax~0.1A and an exact energy property of the atom — are not
simultaneously measurable. We have not yet had occasion to mention
microphysical properties that can be measured simultaneously. Ex-
amples are easily discovered.

An electron may be located in space and this location may be
converted into components along three chosen axes; thus the compon-
ents x', ', z' of the position of an electron are simultaneously
measurable. Similarly, the direction and magnitude of the momentum
of an electron may be measured [e.g., by the arrangement employed to
produce the incident beam (Fig. 4-1) in the diffraction experiments].
From the direction and magnitude, the three perpendicular components
of momentum along the axes of a chosen coordinate frame are easily
obtained. Less trivially, the x component of position and y component
of momentum may be measured together. A somewhat different
example — not quite as trivial as it may seem at first sight — is afforded
by the pair of properties “position located in a segment Ax”.and
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Fig. 7-5. An example of simultaneously measurable properties.

“position located in a segment 8x,” where §x is inside the Ax segment
(Fig. 7-5). A measurement of the property “location in 8x is
simultaneously a measure of “location within Ax.” For any electron
with the “8x” property I am certain to get a “yes” response if I test for
the “Ax” property’ (i.e., if I am certain of finding, on test, a location
within 8x, it is certain that I shall find, on test, location within Ax).
Properties which can be measured simultaneously are said to be
compatible. The properties q', 7', of a system, are compatible if it is
possible to prepare an ensemble of such systems that have simultan-
eously the properties g', r'; this means that it is certain that if a test for
q' is made by J(q"), a “yes” response is obtained and a similar
statement is true of tests for 7.

The existence of compatible properties is hardly surprising; classical
ideas lead us to expect compatibility. For a Newtonian particle exact
position and exact momentum are compatible; in classical theory
electric and magnetic fields are compatible. If, on classical assumptions.
a system has a property, ', and on observation a property, 7', is
observed, then properties ¢’ and ' are compatible. For classical theory
tacitly assumes that the measurement of 7' on a system with property g’
can be made with such care as not to change gq'; after the r'
measurement (preparation), the system has properties ¢’ and r'. (We
assume that the 7' measurement is made immediately following the
measurement of 7'.) .

‘When an ensemble of systems prepared in some manner is such that
on test for ¢’ no system produces a “‘yes” response, it is said that the
ensembld does not have the property q'. A property q" is said to be
exclusive to (or to exclude) a second property g’ if no ensemble with

7 This example indicates the nature of the ambiguity referred to in footnote 6
of this chapter. On an ensemble with property, “location in 5x,” tests for the
property, “location within Ax,” are certain to produce “yes” response although
this is not a test for the property possessed by the ensemble.
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property ‘{,” has the property q'; ie., whenever an ensemble has
property q" & is certain that ¢" will not be exhibited on test. It appears
to .be a physical fac’f that whenever a property " is exclusive to ¢, then
q is exclusive to ¢" — the relation of exclusiveness is symmetric. Thus
we may speak of ¢’ and ¢” as an exclusive pair of properties. The
relation of exclusiveness is well known both in classical physics and in
microphysics. Two different electron position properties are exclusive;
if an electron is at a position x' it is certain that it is not at x” if
x"#x'. Similarly, two different energy values (of a hydrogen atom,
say) are exclusive. In general, both in classical physics and micro-
physics, any two distinct values of a given variable such as position
momentum, energy, angular momentum, etc., are exclusive (see
Section 7-4). :

In classical theory, measurement without disturbance of the proper-
ties of the measured system is assumed to be possible. On systems with
property r', any second property s’ is either never found on
measurement or sometimes found. If “never,” then 7', s' are exclusive.
If “sometimes,” then there exist systems with both 7’ and s properties;
ie., the ', s’ properties are compatible. Clearly, then, any two
properties, in classical theory, are either compatible or exclusive.

For microphysical systems, however, there are pairs of properties
that are neither compatible nor exclusive. Certainly a position x' of an
electron and a momentum p’ are not compatible; by the Heisenberg
principle it is impossible to prepare an electron with both exact
position and exact momentum properties! But neither are these
properties exclésive. On an ensemble of electrons at a definite position,
some electrons with a definite momentum p’ may be found on test.
Pairs of microphysical properties that are neither compatible nor
exclusive will be called incompatible. Any exact position property is
incompatible with any exact momentum property. It is easily seen from
the symmetry of the relation of exclusion that incompatibility must
also be a symmetric relation; if g’ is incompatible with 7', then 7' is
incompatible with ¢’ and we may speak of a pair ¢q’, 7' of incompatible
properties.

The fact that pairs of microphysical properties may be incompatible —
neither simultaneously measurable nor exclusive — constitutes the central
difference between classical expectation and microphysical experience.
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In microphysics incompatibility is a far more frequently met relation
between properties than is compatibility. Some examples of incom-
patible properties were indicated in Chapter 6. No exact electron
position property is compatible with an exact energy property E' for
the hydrogen atom (classically there is a set of position properties
compatible with E and a second set exclusive to E'). Any two
components along distinct axes of the angular momentum of a system
are incompatible (classically they are compatible). The properties “total
energy E” and “potential energy greater than E" are mcompat1b1e
(exclusive classically) in microphysical systems. The pairs x, p
(position, momentum properties) are compatible for any values of x,p

8 SYSTEMS g ENSEMBLE a’ r’ ENSEMBLE
—— olg’) > m(r) p———>

Y !

Fig. 7-6. Diagrammatic representations of the meanings of compatible,

exclusive, and incompatible properties.

Fig. 7-6a. Compatible Properties. The .#(¢') and .#(') instruments may be

mterchanged The ensemble transmitted by the second instrument - systems with
“‘yes” responses in both instruments - has both ¢’ and ' properties.

8 SYSTEMS ) q “ENSEMBLE NO SYSTEMS
—_—> m(q’) » Mmg”) F=c———-

TRANSMITTED

Fig. 7-6b. Exclusive Properties. None of the systems in the ¢’ ensemble

produces a “yes” response in.#(q"). N
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—> mig) > mis’}) >

Y '

Fig. 7-6¢. In(:ompatible Properties. Some, but not all, of the systems in the ¢’
ensemble produce ‘“‘yes” responses in .4 (S) and form an s ensemble. However,
this ensemble does not have the property ¢'.
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in classical physics, and always incompatible in microphysics. Different
polarization properties (of radiation), which are treated in classical
physics as exclusive, are generally incompatible; special pairs of
polarization properties, however, are exclusive. Two linear polarizations
polarized in orthogonal planes are exclusive, as are also left and right
circular polarizations.

The three types of relations — compatible, exclusive, and incom-
patible — that have been discussed above are represented diagram-
matically in relation to measurement instruments in Fig. 7-6.

7.4 Observables. In the laboratory, tests for specific properties,
such as energy E' or position in Ax about x', etc., are less common
pethaps than experiments designed to ‘“‘measure” the “energy,” or
“position,” etc., of an entity. It is necessary to understand what is
meant by “energy,” “position,” in such expressions and to know what
is implied by their “measurement.”

Usage is not firmly fixed but, if no qualifications are specified, “an
energy (or position, etc.) measurement on a system” generally means a
simultaneous test for all the exact energy (position, etc.) properties the
system may have. The “energy” of electrons in a beam might be
“measured,” for example, by the apparatus illustrated in Fig. 7-7. An
electron incident on the photomultiplier produces a pulse that is
displayed on the cathode ray tube of the oscilloscope; from the
“height” h' of the observed pulse a unique energy value E' is
determined. It is useful to consider this instrument as a test apparatus
for any of the energy properties that it “measures.” The instrument has
the following characteristics: If an ensemble prepared with energy E’ is
incident upon the apparatus, each electron produces a pulse of height

PULSE HEIGHT

‘ | PROPORTIONAL -
S TO ELECTRON
p— | AMPLIFIER ENERGY
—T> [ 2N}
ELECTRON  PHOTOMULTIPLIER 00O
BEAM OSCILLOSCOPE

Fig. 7-7. An instrument for testing a range of the energy properties of
electrons. -
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K'; electrons in any ensemble with a property exclusive to E' never
produce a pulse of height 4" In the language of Section 7.2, height
' is the “yes” response, and the set of heights other than %’ is the class
of “no” responses for the property E'. Each of the responses of the
instrument — each height —is a “yes” response for one of a set of
exclusive properties, the different energy properties of electrons.

The foregoing example illustrates the general characteristics of an
instrument that can test simultaneously for a set of exclusive
properties — say the set of n properties, {q(‘), q(z) .. .q(")}. The
instrument must be capable of n+ 1 responses (or response classes)
RM R R™ R' where R®) is the “yes” response for the
property q(k) and all the other responses comprise the “no” class for
this property (k may take any value from 1 to n). The response R'toa
system means that none of the properties of the set {q(l), q(z), A
q(”) } is exhibited®. As with the tests described in Subsection 7.2, the
observation of a response R® does not in itself imply that the system
tested had (before the test) the property qD.

It has been noted that the words “energy,” “position,” etc. (in
“energy measurement,” “position measurement,” etc.) refer to sets of
exclusive properties — all exact energy properties, all exact position
properties, etc. These sets of properties are called “observables”; the set
of all energy properties (of an electron, say), x', x”, . . . is the position
observable, x, of an electron®. The property sets belonging to
observables have two characteristic features: (1) The different proper-
ties in the set are mutually exclusive; (2) if all the properties in the set
constituting an observable are tested simultaneously on a system, some
one property in the set is certain to be exhibited (e.g., if tests for all
possible positions are made simultaneously on an electron, the electron
is certain to be “found” somewhere). Any set of properties that
satisfies condition (2) is said to be “complete.”

The foregoing considerations suggest a general definition: any set of
properties — say q(l), q(2), ...—of a system that are (1) mutually
exclusive and (2) complete, is called an observable, g, of the system. An

8 A photographic plate, for example, tests simultaneously for the set of
positions at which the active grains of the plate are located.
9 In classical physics it is customary to call such sets of properties “‘variables”

(eg., “%nergy variable,” *“‘position variable™).
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Fig. 7-8. Schematic representation of a measurement instrument for an
observable g consisting of a complete set of exclusive properties: g(1),
q(2), N q(n).

instrument that can test simultaneously for all the properties in
observable g will be called a “test of observable g’ and denoted by
T(@)'°.

If a test instrument J(g) for an observable, g, is such that after a
test exhibiting any one of its properties — say q(i) — the tested system
has the property ¢, the instrument will be said to be a measurement
of ¢ and will be denoted by .#(q). Such an instrument not only can
test for g, but can be used to prepare systems with any of the
properties in the observable. Figure 7-8 provides a diagrammatic
representation of an .#(gq) instrument* * . ' '

Two observables, g and r, are called “compatible observables” if the
pairs of properties g 1D (¢ any property of g, r¥) any property of
r) are either compatible or exclusive! 2. (For any two observables, 7, s,
not all the pairs, r®_ s can be exclusive. (Why not?) Two compatible
observables, g, r, uniquely determine a third observable (denoted by “q
& ) consisting of the set of all the compatible pairs q(i), r(j), that may
be formed from g and r. Two observables, say g, s, are said to be
“incompatible observables” if among the pairs q(i), s9) | at least one is

10 pioure 7-7 illustrates a J(E) instrument for the observable E (energy of -
electron). Examples of observables other than those already mentioned are easily
invented; the pair of properties “position to the left of a given plane” and
“position to the right of, or on, the plane” constitutes an observable. Any two
exclusive polarization properties, e.g., right and left circular polarizations, form an
observable.

11 A spectroscope is an example of a measurement instrument for the
observable, “energy of photons.”

12 Qyr definitions imply that all classical observables (variables) are

compatible.
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an incompatible pair. Obviously the position and momentum observ-
ables are incompatible; in this case no two position and momentum
properties are compatible. Momentum and any polarization observable
(for photons) are compatible. Indeed, every momentum property is
compatible with every polarization property, i.e., photons may be
psepared with any definite momentum and any polarization property.
Two polarization observables, however, are incompatible. This fact
follows from the observation that it is impossible to prepare photons
which have two polarization properties simultaneously.

In classical physics the “dependence of an observable on time” is
frequently used to describe the “motion” of a system; e.g., a motion of
a free particle in one dimension is described by a function, x(2), which
specifies the “position” of the particle at each instant, . Although the
meaning of x(¢) is clear, the phrase, “dependence of an observable on
time” is ambiguous. An observable is a set of properties (complete and
exclusive) for systems of a definite kind, and the definition of an
observable makes no reference to time. Therefore, the phrase quoted
above is nonsense if interpreted literally. An observable has meaning for
all systems of the same kind while functions such as x(¢) refer to a
particular system in a particular motion. The function x(¢) tells us what
property (in the set constituting observable x) the particular system
under consideration has at any definite time; at ¢’ the system has
property x', at ¢, the property x”, etc., where, at the different times,
we are concerned with the properties in the observable x. We shall call a
function, gg(f), which tells us the property in q that the system S has at
time ¢, for a range of different times, the “motion of g” in S (often we
shall use g(7) instead of gs(#), but the fact that the function refers to a
particular system, rather than systems of a certain kind, should be kept
in mind.

The system properties that have been considered so far are
properties at some time instant. It is possible in classical physics to
define properties of a more complex character. Consider, for example
(for classical “particles”), the property, “position x' now and position x",
¢ seconds later.” A whole motion, as described by x(), is also a system
property. Such properties may be tested and prepared. The test for a
motion x(t), consists of a succession of tests of the position observable at
a large number of closely spaced intervals. Also, as is known from
classical mechanics, if a motion, x(f), is observed on a particle, other
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particles of the same kind can be prepared — by selecting the position
x(0) and the velocity v(0) that the motion x(t) has at i= 0 — so that all
the suitably prepared particles have the same motion.

In microphysics, however, motions of observables are not, in .
general, system properties. Consider an electron. Suppose that ,the
position observable is measured at some instant, £ =¢°, and again at ¢".
The position properties exhibited, say, are found to be x°, x'. By a
large extension of the number of measurements over a succession of
instants, the function x(f) can, in principle, be tested, but let us restrict
ourselves for the moment to the consideration of the pair of propertiés:
x° at £°, and x" at #'. Is this “composite property” a system property?
The test of the putative property is clear; it consists of (x°) at £° and
J(x') at ¢'. Beside the test, however, a preparation is required. But
electrons cannot be prepared so that a test 7(x°) at £° and 7 Hatt
are both certain to succeed (“yes” responses in both tests). We can
prepare property q° at 1°. To arrange that ¢’ at ¢’ is also certain, the
electrons with property ¢° must be selected for some additional
property that is compatible with x°. In classical physics the additional
property is the velocity, or momentum. An additional property for
electrons that is compatible with x°, such that when x° and the
a’dditional property are prepared the electron is certain to test for x' at
t' does not exist. If, now, we consider a motion — a large set of x
properties at a large number of instants — the problem is greatly mag-
nified. In general, microphysical systems cannot be prepared so that it is
certain that they will execute specific motions. This simply reflects the
observation that the behavior of microphysical systems is indeterminate.

Microphysical and classical theories, clearly, must have very signifi-
cant differences. In classical physics, theory attempts to derive the
motions of observables, i.e., functions such as x(¢), from simpler system
properties (the position and velocity at =0, say) and general laws.
Microphysical theory has no interest in “motions” of “observables”
since such motions are not system properties. Functions, such as x(¢),
which play so large a role in classical physics, are without precise
meaning in microphysics.

7.5 Distributions. Because of the indeterminate characteristics of
microsystems, the objects of most interest in microphysics are not
single systems but ensembles of systems. In effect, “indeterminacy”
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means that regular, repeatable behavior in single systems is not found.
Tnsembles are used to investigate relations among the statistical
properties of systems. Examples of interesting statistical regularities
have been noted: In diffraction experiments the “distribution in
position” of the detected electrons forms a definite pattern; in
radioactive decay of neutrons the fraction of the number of neutrons
remaining after time ¢ is a definite exponential function of . Clearly,
ensembles and their statistical properties are of importance for
microphysical investigations. :

The central concept in statistics is that of the distribution of an
observable. For the study of microphysics it is necessary to understand
not only the meanings of microphysical “property” and “observable”
but also the general characteristics of distributions in microphysical
ensembles. Because of the differences between classical and micro-
physical concepts of property, the meaning of a *distribution” for
mierophysical ensembles is not quite the same as it is for classical
ensembles.

.Distributions in Classical Ensembles. A distribution is defined
relative to a particular ensemble and a particular observable — say
ensemble & and observable q. Examples are: (1) The distribution in
“height” (observable) in the “set of all 20-year old males in New York
State” (ensemble); (2) the distribution in “heads, tails” (this pair of
properties forms the observable) in the “set of a thousand pennies”
(ensemble); (3) the distribution in position (observable) of the
“molecules in a container at time ¢ (ensemble)! . To avoid needless
complication it is useful to suppose that the observable, g, with which
we are concerned is “discrete,” i.e., that the observable consists of an
enumerable set of properties — for instance, qgM, 4@, ..,
¢™. . 1% (The set may be finite or infinite.) Let N be the number of
systems in & and V&) the number of systems in & with property q®.

T3 Note that ensemble properties may change in time as in example 3; time has
no significance, however, in relation to example 2.

14 The restriction to discrete observables is not a very significant one. A
continuous observable containing a continuous range of properties is always an
idealization and cannot be measured with complete precision. If the x component
of position, for example, is measured with an accuracy of about A, the observable
that is measured is composed (in a rough sense) of a set of nonoverlapping
intervals of size A covering the whole x axis. This observable is discrete.
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The number designated by the symbol { g(*) &} is defined by:
q®16}=N ®)/N = fraction of the systems with property ¢® in &.

(7-1) .

®) =YN® =1 N '
2418} =ENOIN = NINO =F=1, (7-2)

Note that

where the sum over k is extended over all the properties in g. The set of
f;)a,c,tions { q(k)'| &} for k=1, 2, etc., specifies the “distribution of q in

The set of numbers { ¢®)| &} for k=1, 2,...n...may be
considered as a function defined on the domain consisting of the
properties in the observable g; the ensemble determines, for each g(¥)
a unique number, { g*| &}. The function so defined is the distributior;
function for g in &. This function will be denoted by {ql&}; the value
of this function at the property ¢ is {g(*¥)| &}. Thus the “distribu-
tion of qing ” and the “function {g|&}” have the same meaning; both
specify the association of the number {q(k){cf} to the property ¢(*)
(k=1,2,etc.). : '

The number {g(®)|&}, the fraction of the systems in & with
property g(¥), is also the probability that a system chosen at random
from & has property q(*). Clearly the probability of choosing any
particular system from the ensemble is 1/N; since N® systems in &
have property q(¥), the probability that the system has q® is
N®/N={q0)|&}. Therefore, the function, {ql &}, is also called the
probability distribution of g in &. (Examples of several {ql&}
fupctions are displayed, in graphical form, in Fig. 7-9.)

Fortunately it is not necessary to measure the observable q on all the
entities (systems, objects) in a large ensemble, &, to obtain the
distribution {q| &}. No one would measure, for example, the heights of
all 20-year-old males in the United States to obtain a distribution
function. It is sufficient to make measurements on a relatively small,
but randomly selected, “sample” of systems from & (the sample is a
“subensemble” of &; we denote it by &). The distribution function,
{q1&,}, obtained by measurement on the sample, will not, in general,
be equal to the “true” distribution {g| &}. By taking a sufficiently large
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sample, however, we can expect that the sample distribution will
resemble the true distribution closely (or, more accufatetly, .the
probability that sample distributions differ from ensemble distributions
by more than a given small error can be made small). Even when the
sample is “suffieiently large,” it may still be only a small part f’f the
original ensemble. (We shall not be concerned here with the question of
how large a sample must be to achieve a particular level of accuracy or
confidence in the distribution.) .
Distributions in Microphysical Ensembles. The developfnent in ‘the
preceding paragraphs cannot be directly apPIiec.i to microphysical
ensembles. In general, and particularly if nothing is kr{own about‘the
preparation of the ensemble, no clear meaning can be given to the idea
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that a system in the ensemble has one or another of the set of
properties in a microphysical observable, ¢ (see Sections 7-1, 7-2). To
be sure, a test for ¢ on a system in & is certain to “exhibit” one or
another of the properties in ¢, but this does not imply that the system
had the property it exhibits (on test) before the test was made. If all
the systems in & are tested, the number NK) of the systems that
exhibit ¢ may be counted for each of the properties in g, and these
numbers may be used to define a distribution function as in the
classical case.

But what use can be made of the function so obtained? Just after
the test we are left with an ensemble quite different, in general, from
the one just before the test. Though the number {gk|#£} is obviously
the probability of observing in & the property q(¥), on test, this
information is of no use since the original ensemble (&) no longer
exists. (Of course the systems remain; & has been changed into an -
ensemble with different properties.) -

However, these difficulties are avoided easily. A sample,” & o
consisting of a small fraction of the ensemble &, is selected at random.
Even though & is only a small part of & we assume that the number of
systems, Vg, in &5 is “large” (the meaning of “large” will be explained a
little later). By test for g on &, the number, N(¥) of the systems in
&, that exhibit property q(k) can be counted and the fractions
N, B Ng={q®)| &} computed. When the number, N, is “large,” an
increase in the size of the tested sample is unlikely to change materially
the distribution function that is obtained. Stated another way, if several
samples of “sufficiently large” size are used, — say &,, &,, etc — dis-
tribution functions, {gl&}, {ql&,2}, etc., differ so little that they
may be considered for practical purposes as equal (i.e., the differences

. constitute tolerable errors). Since we are now concerned with matters

of principle, we are free to assume that the ensemble is so large that
satisfactory distribution functions can be measured on samples (con-
taining “large” numbers of systems) that are negligibly small by
comparison with the parent ensemble. (This would be true, for
example, if the sample contained ~1078N systems, where N is the
number of systems in &.)

The. number of systems affected by the measurement is so small
compared with the total number in & (by assumption) that the

81



THE CONCEPTUAL FOUNDATIONS OF QUANTUM MECHANICS

ensemble directly after the test is still essentially the same as the
ensemble just prior to the test (the interval Az, between “just prior”
and “just after,” is assumed to be zero). The distribution on the sample,
then, is a distribution function for the ensemble ‘€. Its meaning is best
expressed in terms of probabilities. The value of the distril}utiOﬂ
function at g(¥), ie., {g(¥)| &}, is the probability of finding, directly
after the tests that measure {g*)|&} , the property g™, in a test for g
ona system\selected at random from &. Note that if g(¥) is measured
when an observable, g, is tested on a single system, no inference can be
drawn about the property that will be exhibited in a second test of g
immediately afterwards. (A test may even destroy the system tested;
e.g., a test for photon energy may involve the absorption .Of the
photon.) Tests generally modify the system tested in an unpredictable
way. But a “distribution of ¢” in an ensemble may be measured
without changing the “distribution of g.” Hence distribution functions
(but not system properties) may be considered to have an “objective”
meaning.

If two observables, g, r, are incompatible, it is impossible to test for
both observables simultaneously. However, it is easy to see that the
distributions in the observables, g, 7, can be measured simultaneously.
Simply make the measurements for {gl&} and for {rl&} on different
samples drawn from &. Clearly it is possible, in principle, to measure
the distributions of any set of observables on & at the same time. Note
that “simultaneous distributions in incompatible observables™ is mean-
ingful, but that “distribution in two incompatible observables™ is not.

If the systems in ensemble & have property q(¥), ie., & has been
prepared by a 2 (q(*)) instrument, the distribution in ¢ is given by

{q(") |&} =1 (all systems in & exhibit q®on test)

{g?1&Y=0 (i#k)(no system in & exhibits g9 ontest) (7-3)

Such a distribution is said to be “sharp” or “dispersion-free” (see
Fig=#9b). In other words, if the distribution of observable q is sharp in
&, then the systems in & all have one property of the set g. We need not
speak separately of “ensembles with specific properties” on the one hand
and distributions in observables on the other. That an ensemble has a
specific property may be indicated by stating that the distribution in an
observable containing that property is sharp. Consequently all the
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measurable features of an ensemble are known if the distributions in all
the observables measurable on the systems in the ensemble are known.
Therefore. two ensembles, & &, such that

{alé1} ={q16,}

for all observables g are said to be equivalent.

The time dependence of the distribution of an observable can be
measured on an ensemble that changes its properties in time. Select
distinct samples &', ", &", etc., from the ensemble given at £ = £°;
measure the distribution of ¢ at ¢' on &', the distribution of g at #" on
&", etc. Notice that no system is subjected to more than one
measurement (&', ", etc., contain no system in common). Conse-
quently the distribution at " (say) is a characteristic of the ensemble
initially prepared at ¢ = ¢° after the time interval " — £° (during which
the ensemble was undisturbed). The measurements at ¢ do not
influence the results of measurements at later times'S. If the samples
&', 8", etc., together compromise only a small fraction of the total
number of systems in the ensemble, the time dependence of the
distribution may be measured without affecting the normal develop-
ment of the ensemble. '

The distributions in microphysical observables have many of the
pleasing characteristics that are enjoyed by classical observables.
Classical observables can be measured without changing the properties
of a system, they are simultaneously measurable (compatible), and the
motion of an observable can be measured without changing it in the
course of measurement. None of these characteristics applies to
microphysical observables; all apply to distributions of microphysical
observables. These considerations suggest that distributions of observ-
ables will play, in microphysical theory, the important roles played by
observables in classical theory.

Average Value; -Uncertainty. Just how much information we may
need about a distribution of an observable depends on the character of °

15 Compare the measurement of the time dependence of a distribution with
the measurement of the time dependence of an observable (i.e., the “motion of an
observable”) on a system (Subsection 7.4). In the latter case, successive
measurement of g at t" reflects not only the properties of the system prepared at
£° but also the disturbances introduced by measurements at ¢, '
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the questions we seek to answer. Often it is sufficient to know merely
" “that tests are effectively certain to discover positions in a definite range
about some particular position. For a rough and often useful
characterization of a distribution, the “distribution parameters,”
“average value” and “uncertainty” (defined below) are employed.
(1) Average value (mean value, expectation value) of observable g in &.
.This is a physical magnitude denoted by {g|&}, or by the
abbreviation § (when there is n® ambiguity about the & to which it
refers); it is defined by

{716y=Y4% (™ 1 &} (74)
k

(the sum is over the properties in g). The ¢(*¥) in the product
d*){q®)| &} is a physical magnitude — a quantitative measure of the
property, g(¥), in some specific set of units. The average value is
expressed in the units used in the measure of g(¥) (angstroms, electron

volts, etc.). Since {g¥)| &} = M®)/N (see Eq. 7-1) we have from Eq. 74 -

_ 1
@ley=g2a®N ®. (7-43)

_(2) Uncertainty (dispersion, root meagsquare deviation) of g in &.
. This is a physical magnitude with the units of g(¥) (or ) which is
denoted by {Agl &}, or by the abbreviation Aq it is defined by

{816} =™ —gy{e® 161" (7-5)
k
Substitution of N®/N for {g®| &1 leads to
(416} = (2@ -'N)* {7-53)
P

For distributions of the sort shown in Fig. 7-10a, the probability of
finding observable g (on test) with values in the range g + Aq is of the
order of one. The parameters, average value and uncertainty, provide a
rough picture of the distribution. The average value and uncertainty
provide a very poor characterization, however, of the distribution
shown in Fig. 7-10b.

" Thk distributions in all observables can be measured simultaneously;
consequently the distribution parameters (average value, uncertainty)
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Fig. 7-10. Examples of the relation of the parameters “average value” g and
“dispersion” Ag to distributions. In the distribution of ¢ in &, (Fig. 7-10a) the
parameters provide a rough description of the distribution; in the case of &y
(Fig. 7-10b), however, the general character of the distribution is not described by

q,4q.

may also be measured simultaneously. Though x and p are not
simultaneously measurable on an electron with precision (i.e., simul-
taneous x and p is not an electron property), the average values X, p in
any ensemble may be known simultaneously and precisely. In fact, the
time dependences of the average values of all observables ¥(#), p(?), etc.,
in a given ensemble are measurable, objective properties of ensembles.
These average values have, relative to ensembles of systems, many of the
characteristics the functions x(¢), p(f), etc., of classical physics have
relative to a single system.
If the distribution of ¢ in & is sharp, ie., if & has one of the
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properties g® in g, it follows from Egs. 7-4 and 7-5, with the use of
Eq. 7-3, that § = g%, & g = 0 (& has property gy ).

It is not difficult to see that if the uncertainty of ¢ in an ensemble
is zero, € must have one of the properties in . Thus an ensemble has a
property contained in observable, g, if, and only if, Ag =0.

Suppose that measurements of the properties in observable g are
themselves inaccurate to within, roughly, a range of §. The results of
measurements on an ensemble with property ¢(¥) will be distributed,
because of the inaccuracy of observation, within the interval between
g% — 8 and g* + 8. On the other hand, if a second ensemble (of the sort
shown in Fig. 7-10a) has an average value close to q(¥) (say in the
interval g¥ — 8/2 and g + 8/2) and has an uncertainty, Ag, less than 3,
the distribution in the results of measurements will differ little from the
distribution obtained for the ensemble with property g(¥). Thus, by
measurements of g with “error’” §, ensembles with an exact property
(i.e., ensembles with Ag = 0), and ensembles with uncertainties Ag<$

~ are indistinguishable.

In our discussions of the Heisenberg principle, the symbols Ax, Ap,
were used to indicate roughly the ranges of position and momentum
over which the position or the momentum of an electron, prepared by
some given method, would be found on observation. These symbols
correspond (again roughly) to the uncertainties in x and p, (as defined
by Eq. 7-5) in an ensemble of electrons prepared by the given method.
The Heisenberg principle can be given an exact formulation in terms of
uncertainties defined by Eq. 7-5 (see Section 9.5).

Intermediate Measurements on Classical and Microphysical
Ensembles. The following considerations illustrate an error that is
frequently made in the analysis of microphysical observations.

Let & be an ensemble!® prepared in some specific way. Our problem
is to determine, if possible, the distribution {y|&} with the aid of the
following information. In measurement of the g observable on en-
sembles of the kind & (i.e., ensembles prepared by the same procedures
used in the preparation of &), only two properties g, ¢ are
observed with the given probabilities {q(1)[&}, {g(?)1&}. The two
ensembles into which & is divided on measurement of g with properties

16 For simplicity, assume that the ensemble is independent of time.
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gV, g(?) have known distributions in y which are designated by
{(7laM}, {»lg®}.

The problem seems almost trivially simple. The ensemble & contains
two subensembles with properties g(1), g(2); in these subensembles the
distributions in y are known. The probability of y in & is therefore the
probability of ¢?) in & multiplied by the probability of y in the g
ensemble plus a similar probability relating to the q(2) ensemble;

1= 1 gV 163 +{y1¢dP}Hg?P 16 } (classical).
(7-6)

This argument is correct for classical ensembles; it is false (in
general) for microphysical ensembles. Its falsity may be established by
experiment (see example below). The error consists in the assumption
that & is composed of subensembles with properties g, q(2). But, in
general, measurement on systems result in changes of their properties.
The measurement of ¢!, q® on & does not imply'”’ that, prior to
the measurement, the systems in the ensemble have either property
gV or q(®). The given information is essentially irrelevant for the
determination of the distribution of y in &.

The argument leading to Eq. 7-6 (classical) was used in Chapter 4 in
an effort to analyze the two-slit diffraction pattern (se¢ Fig. 4.7). If the
properties, a = “location behind slit a”, = “location behind slit b” (a
and f are exclusive properties), are measured on the ensemble of electrons
that pass the slits, equal numbers of electrons are found with the
properties « and B, i.e., {al&}={Bl&}=1%. If slit a is open and b is
closed, all electrons that pass the slit system have the property o; ifais
closed and b is open, they all have property B. The distributions {yla}
or {y|B}, where y is a position component on the photographic plate,
ie., the oneslit patterns when the electrons have property a, or
property f, may be observed. By the argument leading to Eq. 7-6
(classical) it is concluded that the two-slit distribution should be (& is
the ensemble in two-slit case)

1 1
r1e3={yla}5+{y b}
17 These objections do not apply to classical ensembles. In classical physicsa

measurement reveals the property possessed by a system.
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i.e., the two-slit pattern, according to Eq. 7-6, is a sum of single-slit
patterns. Observation shows that this conclusion is false.

Clearly the distinction that must be made between “a system has a
property g(¥)”” and “a system exhibits, on test the property q(*)”" is of
great importance in microphysics. Because the two phrases have the
same meaning in classical physics the difference between them is easily
overlooked; the consequences of this oversight are often catastrophic.
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8  Determinism and
State;
Statistical Determinism

“He is no wise man that will quit a certainty for an uncertainty.”

Samuel Johnson

A clear appreciation of the significance of the classical concepts
of “determinism” and “state” is essential for an understanding
of the modifications re*quired to adapt them to the needs of micro-
physics.

8.1 The Principle of Determinism and the Classical Concept of
State. Classical physics tacitly assumes that physical systems obey

" the principle of determinism; in effect, “like conditions produce like

consequences and unlike consequences can only follow from unlike
conditions.” It is the principle of determinism that leads to the
expectation that acorns will always grow into oaks and not, on
occasion, into maple trees, mulberry bushes, or tulips, and to the
inference that the oaks and tulips in the park did not all develop from
acorns. In the technical language of physics, the principle asserts that
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when two physical systems have identical properties' at some time, fo,
and are subject to the same external conditions as viewed from the
individual systems, they will be alike in all properties at any later time,
t,; also, if two systems (under the given conditions) are different at 7,
they must have been different at ¢,. Two ideal classical pendulums, e.g.,
of the same length, and started at rest with the same deflections ' from
the equilibrium position, will have the same displacement at any later
time. (If, however, the two pendulums have different deflections at ¢,
they cannot both have been at rest with the same deflection at any
previous time.) In classical physics, an isolated system, i.e., a system
shielded from all variable external influences® always has a definite set
of properties at an instant (even if they are unknown), and its
development in time is completely determinate. An isolated system
cannot choose different courses of development, just as the acorn
cannot choose to become a giant redwood. This feature of deterministic
development enables astronomers to predict the occurrence of eclipses

in the distant future from a knowledge of the present properties of the -

solar system.

" Different systems of the same kind (same “fixed properties”) may
have different “motions.” The word “state” is used to specify a
particular motion from among all the possible motions of a system. For
example, the two pendulums just referred to are in the same state of
motion. A third pendulum started with the same displacement but with
an initial velocity différent frot zero has a different state of motion.

The word “state” is also used, not as a direct description of the whole-

motion, but to specify the particular set of dynamical properties
possessed by a physical system at some instant. Thus the state of a
pendulum is specified at an instant by giving the deflection and the
velocity of its bob at that instant. By the principle of determinism the

I Naturally, the identical properties must be internal to the two systems.
Different external properties, such as location in different spatial regions, are
assumed to be without effect. Examples of internal properties are: the distance
between two mass points in the system, the relative velocity of two mass points,
the internal energy (as against the kinetic energy of the center of the mass
motion — an. external property — which depends on the velocity relative to the
frame of reference), etc.

2Pperhaps no system except possibly the whole universe is completely isolated.
But a high degree of isolation of systems can often be achieved in the laboratory
and somegdines occurs naturally (e.g., the solar system).
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specification of the state of a system at some instant is equivalent to
the specification of the motion of the system in time; two systems in
the same state at 7, must have identical motions, i.e., they have the
same state of motion®.

Clearly two systems (of the same kind) are in the same state if they
are alike in all internal dynamical properties. But how many is “all”?
How, in practice, can we be certain whether two systems are alike in all
their properties without a theory and without, perhaps, even a
knowledge of the constitution of the systems?

An example will clarify these questions and indicate how they may
be answered. Suppose I am given a collection of simple harmonic
oscillators (one-dimensional) all of which have a moving mass, m, and
spring constant, k. Let’s pretend I know nothing whatever about these
systems to begin with, except that they are all of the same Kind.
Suppose that after many investigations I have discovered various
observables — in particular, an energy observable, a location observable
(the distance of the oscillating mass relative to the equilibrium position
of the oscillator), and a momentum observable (the momentum of the
moving mass in a frame of reference in which the equilibrium position
of the oscillator is at rest). My object is to discover what properties my
systems need have in common at some instant to assert that they are
“in the same state.” _

The investigation may be started many different ways. I begin, say,
with the energy observable. Since systems in the same state must be
alike in all properties, they must certainly have the same energy.
Therefore I select, by an energy measurement, a large number of
systems with the same energy property, E', and observe whether a
second property — location, for instance —is the same for all the
selected systems. Tests show that the systems that are alike (uniform,
homogeneous) in the energy property are variable in location. Systems
with the same energy E', then, are not in the same state. To reduce the
observed variability, I select a set of systems with the same energy, E',
and the same location, x’ (this is always possible according to classical

3A motion is described completely by the set of functions g(z), r(?), ete.,
which specify the dependence of all system-observables on time. The equivalence
of “state at an instant” and “state of motion” means that the system properties
q(t"), r(t"), etc., at instant ¢’ uniquely determine the functions q(@),r(0), etc.
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theory) and observe whether all these systems have the same
momentum® .

Only two momentum values are found and these differ only in sign.
In other words, when systems have the same energy and location
properties, they also have the same “magnitude-of-momentum” prop-
erty; the magnitude of momentum is uniquely determined by the
energy and location properties already measured® . .

My general strategy is easily summarized (Fig. 8-1). Whenever
variability in an observable g is discovered (i.e., measurements reveal the
properties q',q", etc., belonging to the observable g) in a set of systems

with certain properties 7', s', I seek a new set in which the variability in

q is also eliminated. Since, for example, oscillators with energy, E',
location, x', vary in the sign () of the momentum (let k designate the
observable “sign of momentum™), I proceed by selecting a set of

systems homogeneous in E', x", and 'S

I can no longer go on quite as before since I only know how to -

measure energy, location, and momentum. Therefore I test whether
systems vary in some property — again, say, location—at a later time, 7,
(i.e., I investigate whether the systems are in the same state by testing
whether the given properties uniquely determine the motion). I find
that all systems have the same location property at #,. Similar tests
made at various times’of both location and momentum properties
indicate that systems with properties E', x', k' at ¢, are the same in any
. Al

41t must be imagined that the momentum measurement is made immediately

after a system is prepared with the chosen energy, £ ', and location, x'.

5 All these results are obvious from the theory of the oscillator. The energy, E,
is related to the displacement, x, and momentum, p, by

E=p*2m+ kx2/2

Hence,

x =t\/2E[k — p2/mk, p=%\/2mE — mkx2.

Thus x is not determined by E alone, but p is determined to within a sign by £
and x.

6Note that K is a nonquantitative observable with only two properties
(designated by the symbols + and —). The symobls E’, x' designate specific
energy, location properties; similarly k', which may be either + or —, indicates a
particular property of the sign of momentum observable. E' or x' may be
spegified by numbers related to appropriate units;e.g., E "=3.0joules,x’ =5 cm.
Qbviously k' has no corresponding numerical expression.
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Fig. 8-1. Diagram of procedure for discovering state sets of properties
(classical).

property measured at any time (see Fig. 8-1), I conclude, therefore, that
systems with the same energy, location, and sign of momentum, at
some time, are in the same state; i.e., all properties at o are the same in
a set of systems if each system has the properties E’, x" and «'. Similar
investigations would show that a set of systems homogeneous in x'
(location) and p' (momentum) are in the same state and that, if
p = k' [2mE' — mk(x)*]”, systems with the properties x', p', and
systems with properties E', x', k', are in the same state.

Suppose that in the initial investigations of the system I had failed to
discover a momentum property. After selecting a set of systems
homogeneous in energy and position at f,, I could test whether they
are. in the same state by making location measurements at later times. I
would discover that location at ¢, is not the same for all systems. Using
the principle of determinism, I would then infer that the systems
differed in some property at t,. Note that the principle of determinism
directs a search for additional properties. Unless a group of properties
are found such that systems homogeneous in these properties are the
same in all known properties at all times, the principle of determinism
asserts that more properties are discoverable.

For many natural systems, sets of properties which uniquely
determine system states may be found by procedures similar to those
sketched above. The number of state variables required for a system
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may depend on the nature of the properties that are investigated, the
accuracy of measurement, and the length of the time period over which
measurements.are made. An inctease in the level of accuracy or of the
time period under consideration may require an extension of the set of
properties required for the specification of state.

Two useful technical definitions may be understood by reference to
the foregoing example. A set of properties, ', such as x', p’ or £', X',
k', is called a set of state properties (“state set”), for systems of kind
S , if, whenever different S systems have the same properties, u’,” at
some instant, all properties of the S systems are the same at all times;
i.e., different systems with the same state properties, «', are in the same
state. A set of properties, v, is called an independent set of state
properties if v’ is a set of state properties, and no property in the set v
is uniquely determined by the remaining properties in the set®.

Suppose someone came to you and said, “You’re a student of
-physics. Perhaps you can help me. In the next room I have a simple
harmonic oscillator with a mass, m, and spring constant, k. Exactly how
far will the mass be from its equilibrium position at two o’clock this
afternoon?” You could not, of course, give an answer. You might
explain that physics never gives answers to questions such as the one
proposed; a knowledge ’of system constitution is not sufficient to
permit a prediction of a dynamical property of the system. “What
“else,” he may then ask, “must I tell you to enable you to answer my
question?” A sufficient answer is “any set of state properties of the
oscillator at some definite time.”

TThe symbols ', v", w’ will be used to denote sets of properties.

8For oscillators, the properties energy, location, and sign of momentum form
an independent set of state properties. No two of these properties uniquely
determines the third. Location and momentum is a second independent set of
state properties. Energy and location properties are independent (the energy
property does not uniquely determine the location property of an oscillator), but
this pair is not a set of state properties. Energy, location, and momentum
magnitude are dependent properties since momentum magnitude is uniquely
determined by the energy and location. A set of state properties for the simple
harmonic oscillator is “energy, location, momentum magnitude, momentum
sign™; these properties are not independent since momentum magnitude is
ugiguely determined by the energy and momentum. Note that if any property is
onfitted from an independent set the remaining group is not a set of state
properties.
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This answer illustrates the central significance of the state concept.
The determinate connections among phenomena that are discoverable
by experiment or predictable by theory are:

(1) The connections between a set of independent state properties at
some time and the properties dependent upon the state set at the same
time (e.g., the relation between x, p for the oscillator and the energy of
the oscillator; see footnote 8).

(2) The connection between state properties at some time and any
property at another time (e.g., given Xo and p, for the oscillator at £,
there is a unique x; at 7, which may be known experimentally or
calculated from the laws of motion).

The exact predictions of physics are essentially of this form: If the
set of independent state properties of system S at to isu', then, at ¢,
property ' will be found”. In short, prediction of all system properties '
is possible only if a set of state properties (i.e., the state of the system)
is known.

8.2 The Principle of Statistical Determinism. It is easy to see that
the classical concept of state cannot play a role in microphysics. The
concept is wholly dependent on the principle of determinism, and
microphysical phenomena simply are not governed by this principle. A -
number of examples of the indeterminate behavior of microphysical
entities were cited in previous sections. The location at which an
electron in a diffraction experiment will arrive at a detecting screen
cannot be controlled. If we set up two single-slit diffraction experi-
ments, it is impossible to prepare an electron in each apparatus so as to
be certain that both will arrive at their respective detecting screens at
the same relative position (Fig.8-2). It is impossible, similarly, to
prepare two neutrons to ensure that both will turn into protons at the
same time. In other words, we cannot prepare two electrons or two
neutrons in the same state (in the classical sense).

If we insist on the absolute validity of classical determinism, we
must conclude that the electrons and neutrons in the foregoing

9Note, however, that a complete set of state propexties is not always requir&}d
for prediction. For example, the properties E',x', of an oscillator — which dp I:;Ot
form a set of state properties — uniquely determine the momentum magnitude,
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1 .
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Fig. 8-2. An impossible experiment. Electrons behind the entrance slit cannot
be so prepared as to determine their positions at the detector.

examples had different properties in their initial preparations, since
differences in final behavior imply differences in initial properties. In
short, the principle of classical determinism leads back to the
hypothesis of hidden variables. Reasons for rejecting this hypothesis
were considered in Chapter 6.

From the existence of incompatibility, one may show that classical
determinism cannot hold im microphysics; if classical determinism were
true, no system properties could be incompatible. Suppose it were
possible to prepare a set of electrons so that they were in the same state
(in the classical sense). Let x (the x component of position) be tested
on half the ensemble, and p, (the x component of momentum) be
tested on the other half. Since all systems are, by assumption, in the
same state, all systems in the half tested for x must exhibit the same
position —say x' —and all systems in the other half must exhibit
the same momentum — say p,'. (Systems are in the same classical state
only if responses to identical tests are identical.) But these results imply
that both x and p, have “sharp” distributions in the original ensemble
(Section 7.5); i.e., the ensemble was prepared with both an exact
position and an exact momentum property. The existence of such a
preparation implies further that the measured properties are com-
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patible. Since the same argument may be applied to any set of
observables, it is clear that if it is possible to prepare systems in classical
states, then all the properties of the systems are compatible.

The indeterminate character of the behavior of microphysical
systems has been emphasized repeatedly earlier in this volume. The
concept of incompatibility is, of course, closely related to indeter-
minacy. The incompatibility of two properties means that when an
ensemble of systems has one of the properties of the incompatible pair,
the results of tests for the second property are necessarily indeter-
minate. This microphysical indeterminacy implies naturally that the
classical concept of state, depending as it does on the principle of
determinism, is inapplicable in microphysics.

The behavior of microphysical systems, though clearly indeterminate
in some features, is far from chaotic. In complete chaos, experiment
could discover no regular relations among phenomena, and all theory
could tell us is “Your guess is as good as mine.” Many regular and
determinate relations have been described in the preceding sections. We
have noted that definite diffraction patterns can be produced
repeatably despite the indeterminacy in the behavior of individual
electrons; radioactive substances exhibit definite half-lives. Many other
regularities are obvious. The spectrum of hydrogen observed today
contains the same lines Balmer measured many years ago. A gas of
hydrogen molecules has well-defined, stable properties. And so on.
Obviously a great deal of regularity may be found in microphysical
behavior despite the appearance of indeterminacy; theory has much to
“explain.” ‘

In all physics (macro- and micro-), observable regularities are of the
form: “If the object (entity, ensemble) of interest has certain
properties, then some other properties of the object will be observed,”
or, more explicitly, ‘certain directly observable macroscopic
phenomena will be produced when tests are made with suitable
apparatus on objects with the specified properties.” Ot, put in a differ-
ent way: “If physical apparatus is arranged in some definite way, then
certain other manifestations will be observed when tests are made.”

If, for example, a classical pendulum is started from rest with a
deflection 6, then we shall find that deflections larger than 6' never
occur. If the electron momentum of the incident beam in a diffraction
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experiment is sufficiently well defined in magnitude and direction, then
a characteristic diffraction pattern is produced. In short, all observable
regularities have an “if , then > structure.

It has been shown that in classical physics the blank after “if ” must
(in general) be filled in with a set of state properties: If a certain state is
prepared, then some other property will be found. Is it possible to give
a similar characterization for the contents of the blank after “if ” for
microphysical systems? The answer is yes; the necessary content of the
blank after “if” may be discovered by examining more closely the
implications of the existence of determinate relations in microphysics.

In classical physics, the concept of state depends essentially on the
principle of determinism. Because this principle is invalid in micro-
physics, so too is the concept. Now the principle of determinism
expresses, in effect, the existence of precise, determinate relations

. among observations. But such relations also occur in microphysics. This
suggests that it should be possible to formulate a principle for
microphysical processes which plays the same role relative to the
regularities of microphysics that the classical principle of determinism
plays in classical physics.

Although we cannot predict where a single electron will appear on a
detecting screen in a diffraction experiment, we can certainly predict

-the diffraction patterns that are produced in experiments such as the

one described in Fig. 4-1. Two diffraction experiments with different
apparatus (but both with the arrangement shown in Fig. 4-1), and
different ensembles of electrons (but with the same large total number)
produce indistinguishable patterns. Similarly, the exact time at which a
radioactive nucleus will experience a transformation cannot be con-
trolled or predicted, but the fraction of the initial number of nuclei
which remain after a lapse of time, #, is the same for different
ensembles of radioactive nuclei of the same kind. These observations
are typical; along with the indeterminate behavior of single systems,
determinate (regular, repeatable) behavior of ensembles of these.
systems is observed. This suggests that a principle of determinism holds
in microphysics, not for single systems, but for suitable ensembles of
systems.

Diffraction experiments reveal the determinate relation: If an
enseinble of electrons is formed (e.g., by the use of the source and

DETERMINISM AND STA'I;E; STATISTICAL DETERMINISM

accelerating plates as in Fig. 4-1) with a well-defined momentum, then
the distribution in position of the electrons over the plane of the
detecting screen forms a definite and reproducible pattern. Similarly,
from observations on neutron decay, we can conclude: If an ensemble
of free neutrons is prepared, then the fraction of the initial number of
neutrons that remain after interval, ¢, is a definite and reproducible
exponential function of ¢. These regular relations have the general
structure: If certain conditions are true of an ensemble of micro-
physical systems, then the distribution function of some observable has
a definite form.

It is now possible to discern the content of thé microphysical
principle for which we are searching. To distinguish it from its classical
counterpart and to suggest its general character it is called the Principle
of Statistical Determinism. The classical and microphysical principles
may be given parallel formulations.

Classical Principle of Determinism: It is always possible to find a set
of properties — generally many different sets — such that whenever two
systems are alike (at #,) in all the properties of the set, they are also
alike in any property (at o or any time #,). If two systems differ in any
property at ¢;, then they must have been different in some property (or
properties) at a previous time #o.

Microphysical Principle of Statistical Determinism: It is always
possible to find a set of compatible properties — generally many
different sets — such that whenever two ensembles of systems are alike
(at 1,) in all the properties of the compatible set, then the distribution
in any observable is the same in both ensembles (at zo or any later time
t1); if two ensembles exhibit different distributions in any observable at
t,, then the ensembles must have been different in some property at a
previous time o' °.

10For brevity, a number of obvious but necessary stipulations have been
omitted. The systems are of the same kind; between £y and t;, such external
influences as may affect the system are presumed to be identical for both systems
(or all the systems in the two ensembles). Observation is not permitted on the
ensembles in the interval between o and 7; since observations produce, in
general, large and uncertain property changes. If the same observations are made
on both ensembles (in the fg, f; interval), the distributions observed at #; are
again the same for both ensembles but, in general, the distributions so obtained

are different from those found if the intermediate observation is omitted (see the
discussion of the intermediate measurement in Section 7.5).
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A very long and possibly dangerous inductive leap is necessary to get
from the few examples of determinate statistical relations mentioned in
previous paragraphs to the grand generalities of the principle of
statistical determinism. But a theory must presuppose a deterministic
principle of some kind, and the one formulated above is at least
consistent with the microphysical observations we have analyzed. The
new principle may be considered as a generalization of the classical
principle of complete determinism; if we replace “the distribution of
any observable is the same...,” with “the distribution of any
observable is sharp, and is the same . ..,” the resulting statement has
exactly the meaning of classical determinism. Thus, in accepting the
new principle, the possibility of complete determinism is not ruled out
since no restriction is imposed on the character of the distributions in
the ensemble to which the microphysical principle refers.

In any event, a principle of determinism does not so much state an
obvious truth as specify an open program. The crucial question is: Can
laboratory observations be fitted naturally, i.., without the constant
addition of ad hoc assumptions or new and as yet unobserved
properties, into a theoretical structure based on statistical determinism?
One can only say that the theory of quantum mechanics, which
incorporates the principle of statistical determinism, has been highly
- successful in the realm of microphysics. As yet, there is no evidence
that suggests the invalidity of the principle. (But remember that after
two centuries of ‘successful application of classical determinism,
experience in microphysics forced its abandonment.)

8.3 The Microphysical Concept of State. It is readily seen that the
classical state concept defined in Section 8.1 is closely related to the
classical principle of determinism (D). The set of properties referred to
in D is a state set of properties; according to D, whenever systems are
alike at some instant in the properties of a state set, they are alike in all
properties at any time — i.e., the systems are in the same state (or state
of motion). o :

It is natural to define the state concept for microphysics so that it
relates to the principle of statistical determinism, S.D., exactly as the
classical concept relates to D. Any set of properties, then, of the kind

A
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referred to in S.D., will be called a “state set” of properties for the .
systems composing the ensemble' ! .

According to the S.D. principle, all ensembles that have the same
state sets at some instant are equivalent at any later time (the
distributions in these ensembles are alike in all observables). Just as the
“motion of a system” in classical physics means simply the time
dependence of its observables, the “motion of an ensemble” means the
time dependence of the distributions of its observables. Consequently
the principle of statistical determinism may be expressed: Ensembles
with the same state sets of properties have the same motions.

An ensemble with a state set of properties is called a state ensemble.
Different ensembles with the same state sets are said to be in the same
state! 2; therefore, ensembles in the same state are equivalent. The term
“state,” clearly, has been defined for ensembles and not for single
systems. When, however, an ensemble is known to be in some particular
state, no complications arise if each system in the ensemble is said to be
in that state. Note that for such systems, a known state set of
properties is possessed by the system, ie., these properties are certain
to be found on test. ’

11The number of properties required to make up a state set for systems of
some kind depends on what properties are chosen. For an ensemble of hydrogen
atoms, the property “energy = —13.6 eV” is, by itself, a state set (note that a
state set may be composed of a single property); a particular set of components of
the position of the electron, x*,y', ', is also a state set (subject to the limitations
of footnote 13 of this chapter). However, no state set x', ', z' defines the same
state as the property “E ' = -'13.6 eV”’; the two state sets are incompatible.

Clearly the properties contained in a state set are compatible. If observables q,
7, ..., are such that all the compatible sets of properties q.r,...,formed from
these observables are state sets, the observables g, 7, . .., are said to constitute a
“complete set of compatible observables.” The sets of observables (for hydrogen
atoms): “The components x, ¥, Z of the vector from proton to electron,” of
“energy, angular momentum magnitude, 2 component of angular momentum,”
are complete (subject to the conditions referred to above).

121, the literature of quantum mechanics, the term “pure state” is used
instead of the unmodified word “state.” The adjective, “pure,” adds no content
to the term; it is employed for emphasis as is the word “honest” in “honest
truth.” Generally, phrases such as “honest truth” are used when the “truth” is
doubtful or when one expects doubt from a listener. I imagine that the word
“pure” in the term “pure state” implies that the ensemble really is in 2 state even
if (on classical principles) it does not much look like one.
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It is useful to have special notations for state sets and state
ensembles. That an ensemble & is a state ensemble will be indicated by
writing | & ] ; similarly, if a set of properties u' is a state set, we denote
the set by the symbol [u'] (or simply by u' when no confusion is
possible). Thus, after it is established that a pair of properties q.7,eg.,
constitute a state set, we shall write [g', 7] instead of ¢, #'. All
ensembles with the same state set of properties [u'] are equivalent
(they differ, as ensembles, only in the numbers of systems they
contain); consequently, they may be denoted by the same symbol. We
shall use |u'] to denote any ensemble with the state set [u']. The
distribution function of an observable, s, in a state ensemble, |u'] ">,
will be indicated by the symbol {s| u'].

This distribution, it will be recalled, is a function defined over the
domain of the properties in the observable s. The symbols introduced
above and a few others, together with their meanings, are collected in
Table 8-1.

TABLE 8-1

(a) A “state set of properties " (also “state properties™) {
(b) A “state ensemble & |
(c) An “ensemble with the state set [u']” |
(d) “Distribution of observable s in | u']” {
(e) “Probability of property s’ in |z']” {
(f) “‘Probability of state set [v'] in |u']” [
(g) “Ensemble prepared initially in state {u'] after interval £.” |

With the help of the definitions of Table 8-1, the principle of
statistical determinism may be expressed as follows: “The time-depen-
dent distribution {s|u’; #] (where s is any observable) is uniquely
determined by the state set [u'] prepared at ¢ = 0.” More simply, the
motion of an ensemble is uniquely determined by the initial state set
fu']. All statistical properties testable on a state ensemble are
- predictable from a knowledge of the state properties with which the
ensemble is prepared. Note in particular that the history of an ensemble
(or of its component systems), before its preparationA as a state
ensemble, has no influence on its statistical properties after the

13 « ey s
Often “‘state [Yu] is used; also somewhat inconsisteatly the phrase
“ensbmble in state [ u'].” ’
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Fig. 8-3. Example of equivalent state ensembles [p'] with different prior
histories.

preparation. By the S.D. principle, all ensembles with the same state
properties are necessarily equivalent (see Fig. 8-3 for an example).
From these considerations it is obvious that the blank after “if” in the
“if , then » statements of microphysics must contain a state
set of properties and the blank after “then” may contain any testable
statistical property.

It is known, for example, that the set of properties of hydrogen
atoms, “energy £ ', angular momentum magnitude ', z component of
angular momentum m,’” constitute a set of state properties’ . These
properties are ‘“‘constants of motion —ie., they do not change with
time. Consequently, a state ensemble with properties [E 1, my']
remains a state ensemble with the same properties at any later time.
Thus the distributions in all other observables are independent of time
and no reference need be made to the time at which a distribution is
measured. Such ensembles, or states, are called “stationary.”

In the state ensemble (of hydrogen atoms) |E', 1 ' m,'], observ-
ables such as 7, the electron proton distance, My, the x component of
the angular momentum have specific distributions that depend para-
metrically on the state properties £ ' 1', m,'. In the case of the
diffraction experiments of Chapter 4, the incident ensemble is

14Gpin properties and the interaction of the atom with th’e elecﬂom@etic
field are neglected in these statements. Also, only the “internal’ properties of the

hydrogen atom are considered.
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characterized by the properties, “px =0,p," =0, p, = po; “these
constitute a state set of properties for electrons. This state set
determines a unique distribution function {y | p'] of the observable y
(distance from axis of apparatus transverse to the beam and perpendic-
ular to the slits — see Fig. 4-7), which describes the observed diffraction
pattern.

Our last example illustrates time dependence. Consider an ensemble
at =0 of N “normal neutrons” at rest. The characterization of a
system as a neutron at rest specifies a state set of properties. The
neutrons spontaneously undergo transformation. The probability that
any neutron retains its initial state properties at time ¢ is found by
observation to be a definite exponential function of the time.

In principle, state sets of properties for systems of some kind may be
discovered experimentally by procedures similar to those used to find
classical state sets (Section 8.1; see Fig. 8-1). Naturally, as in the
classical case, it is necessary to know how to measure a variety of
observables on the systems under consideration (Chapter 7). Suppose
that instruments that measure observables [, m, g, r, s . . . are available,
i.e., we have instruments, #([), #(m), etc. We choose an observable,
say g, and prepare a collection of ensembles with different prior
histories but all with the property g'. The different ensembles are tested
for equivalence by measuring the distributions in all other known
observables and the time dependence of these distributions. If the
distribut?ons in all ensembles prepared with property g’ are the same at
all times, we conclude that property g’ is a state set —since ¢’
determines all statistical properties —and that an ensemble with
property ¢’ is in state | g']. If, however, in different ensembles with
property q', the distributions of some observable s are not all identical,
q' is not a state set of properties. The principle of statistical
determinism then assures us that there exist properties (or at lease one
property) compatible with and independent of ¢’ ' .

Let 7' be such a property. Ensembles with both ¢’ and r’ properties
are prepared and tested for equivalence. If ensembles with properties q,
' are equivalent whenever, wherever, and however they are found, then

) 15The terms “dependent” and “independent,” as applied to compatible
migrophysical properties have the same meanings as in classical physics. However,
for-classical properties, there is no need to add the adjective “compatible.”
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[¢', 7] is a state set and an ensemble with this pair of properties is in
the state | g', ']. If the properties ¢', # do not constitute a state
set —i.e., if ensembles with this pair of properties are not necessarily
equivalent — then further independent and compatible properties exist. -
The general form of the process is clear. Until equivalent ensembles are
achieved, properties independent of and compatible with those already
employed are added. The principle of statistical determinism assures us
that this procedure, if sufficiently extended, will always lead to a state
set of properties. (The procedure outlined above is summarized in Fig.
8-4.)

The concept of a state ensemble may be illuminated through a
consideration of the related ideas of “homogeneity” and “indecom-
posability” as applied to ensembles. An ensemble is said to be
homogeneous or, equivalently, indecomposable if no matter how it is
divided into subensembles (but without in the process changing the
statistical properties of the total ensemble), the subensembles are all .
equivalent (same statistical properties) to each other and to the original
ensemble. Homogeneity, then, implies that all ensemble parts are
equivalent with the whole.

Obviously an ensemble of men half 5 feet in height and half 6 feet in
height is inhomogeneous. We can divide it into two subensembles of
5.foot men and 6-foot men that are clearly inequivalent with each other
and with the parent ensemble. It is easy to see that in classical
ensembles, homogeneity implies complete identity of the systems

-composing the parent ensemble. For if some observable g is distributed

in the parent ensemble, we can divide it into subensembles with

{7’ COMPATIBLE WITH q*)

HOMOGENEOUS
HOMOGENEOUS IN g IN g/
SYSTEMS § l GIATE
220 %% mig” g/ r) ——— L
(UNKNOWN la’) EsT) {qr) T ey ENsemLe (g7 7]
PROPERTIES)
k ¢ DISTRIBUTED 1 17 ¢ DISTRIBUTIONS OF

(TESTED ON SMALL)

SUBENSEMBLE ALL OBSERVABLES

IDENTICAL AT ALL £
TEST ON SMALL)
SUBENSEMBLES

Fig. 84. Diagram of procedure for discovering state sets of properties
(microphysical). Compare with Fig. 8-1.
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different properties ¢', "', etc. without change in any of the individual
system properties. The subensembles and the parent ensemble are
certainly inequivalent since they differ in the distribution of the ¢
observable. Thus homogeneity and system identity are equivalent
characterizations for classical ensembles. It follows that classical
systems in a homogeneous ensemble are all in the same state.

Microphysical ensembles cannot be prepared with the property of
identity, i.e., so that the results of arbitrary test measurements are the
same for all systems in the ensemble. This again expresses the
indeterminacy manifested in the behavior of microphysical systems or,
. _equivalently, the existence of incompatible properties. Nevertheless, as
in classical theory, the concepts of state and ensemble homogeneity
have the same effective meaning: State ensembles are homogeneous and
conversely. Suppose we have a state ensemble prepared with the state
properties ¢', r'. Since the q', ¥ properties are a state set, all ensembles
with these properties are equivalent. Consider now any decomposition
of the ensemble in which the total ensemble (collection of subensem-
bles) after decomposition remains equivalent to the original state
ensemble. Since the distributions of the properties g’, r' in the original
ensemble are sharp, they must be sharp also in the subensembles.
Otherwise, the distributions in g’,7" in the subensembles could not be
the same as the distributions in the parent ensemble. Hence, each
subensemble is a state ensemble characterized by the ¢,7' properties,
and they jare all equivalent and also equivalent to the parent ensemble.
State ensembles, therefore, are homogeneous or indecomposable.

We shall not now try to extend the argument further to show also
that homogeneous ensembles are state ensembles. In both classical
physics and microphysics it is a fact that the concept of state may be
defined in terms of the homogeneity or indecomposability of en-
sembles. For classical theory in which all properties are compatible, the
homogeneous ensemble consists of a collection of systems identical in
all properties. In microphysics, which is characterized by the presence
of incompatible properties, the tested properties of systems in a
homogeneous (state) ensemble are distributed in general.

In the sense that there is no way in which they may be
discriminated, the systems in a homogeneous ensemble may be
considered to be alike. In this sense the indeterminacy in system
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behavior of which we have repeatedly spoken is irreducible; like
systems in a homogeneous ensemble produce, in general, unlike results
on test'®. '

An ensemble that is not a state ensemble is called a “mixture.”
Mixtures are inhomogeneous — i.e., decomposable. If | #'] and | 4"'] are
two state ensembles containing, e.g., N " and N "' systems, the collection
of N' + N " systems in the two ensembles forms a new ensemble which
is a mixture of the {#'] and | #"] ensembles. By measurement of the
observable u on the mixture, it can be decomposed into the component
state ensembles. Naturally all mixtures are decomposable.

A number of the concepts that have been introduced are illustrated
in the following example. Consider an ensemble, &, of photons in a
monochromatic unpolarized beam of radiation. This ensemble is
decomposable and therefore a mixture. By passing the radiation
through suitable polarizing materials, we can divide the original
ensemble into subensembles linearly polarized along the x and
y axes; let these subensembles be indicated by &, and &), and
the ensemble consisting of these two subensembles taken together by
&+. After the decomposition, &+ remains equivalent to &. The -
probability of any specific state of polarization in both & and & + is one
half. However, &, and &, are clearly inequivalent and inequivalent to
&. The probability of linear polarization along x, for example, is 1 in
&y, 0 in &, and % in & or &+ Thus the original ensemble is
decomposable and a mixture.

Attempts to subdivide &, by splitting the linearly polarized beam
into parts with different polarization do not lead to decomposition;
after splitting into different states of polarization, the total ensemble is
not equivalent to &y. The &, ensemble as it happens is indecompos-
able and hence a state ensemble.

The microphysical concept of state is subtle and easily misinter-
preted. Clear differences between the classical and microphysical state

161f one takes the position that unlikeness in test implies prior unlikeness in
the systems tested and that, therefore, the microphysical state ensembles are not
truly homogeneous, one appeals effectively to the principle of complete
determinsim. On this view, microphysical processes are incompletely controlled
but are otherwise deterministic and classical. Some of the consequences of this
position were examined in Sections 6.1 and 6.2.
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concepts are easily distinguished. Since, in classical physics, system
properties have objective meaning, any system is always in a state
whether or not its properties are known. It is not true, however, that
any ensemble of microphysical systems with the same fixed properties
"is a state ensemble. Moreover, the statement, “A single microphysical
system is in some state although its state properties are unknown” is
without testable meaning or, more bluntly, is meaningless'”.

It may be shown that any mixture ensemble (i.e., not a state
ensemble) is equivalent to an ensemble obtained by putting together,
with appropriate weights, a number of different state subensembles. It
is possible, however, to produce equivalent mixtures (ensembles with
the same statistical properties) by composing quite different state
subensembles. For example, unpolarized radiation may be formed from
an equal mixture of orthogonal linear polarizations or by the equal
mixture of right and left circular polarizations. Consequently, it cannot
be said that every mixture is formed of some unique combination of
states (this may be said of “classical mixtures,” i.e., ensembles of
classical systems in different “objective” states). Classically, if two
systems are alike in all their properties they are in the same state.
However, if two microphysical ensembles are equivalent, they certainly
need not be in the same state. Equivalent mixtures are easily produced.
If two ensembles are in the same state.they are necessarily equivalent;
but the equivalence of two ensembles does not even imply that they
have been formed by the same mixtures of state ensembles.

.. 17The sentence quoted has exactly as much meaning as: “There are numerous
physical bodies all about us that experience no interactions whatever with the
eatities of which we are capable of having any knowledge.”
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9  Probability

Amplitudes,
The Superposition
Principle

“Errors, like straws, upon the surface flow. ,
He who would search for pearls must dive below.”

John Dryden

9.1 Introduction. It is the object of physical theory to formulate
laws which give explicit content to the general statements of the
principle of determinism on which the theory is based. According to
the principle of statistical determinism the statistical properties of an
ensemble are uniquely defined by the state properties with which the
systems in the ensemble have been prepared. Thus if an ensemble is
prepared in state |u'], the probability of finding any other state
property v’ on test is a uniquely defined number which is designated by
[v' |4'] (see Table 8-1). Put another way, the state |u'] uniquely
defines the distributions in all observables at the time of preparat%on of
[u'] or at any later time at which observation is made. It. is the
function of theory to provide general rules by means of which the
determinate probabilities or distributions may be computed from a
knowledge of the state properties that characterize the ensemble. ’
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The differences between the requirements on microphysical theory
and classical theory are worth noting even at the risk of some
repetition. In classical physics, the state properties at some instant
determine all’ other properties. In microphysics, state properties at an
instant do not determine uniquely the incompatible properties at that
instant but only the probabilities that these properties will be observed
on test. In classical dynamics, we require the connections only between
state properties at different times. These connections are established
through the ordinary differential equations of classical mechanics and

the partial differential equations of electromagnetism. Microphysical

theory, however, must connect the state properties of an ensemble at
some instant with the distributions in all observables (or the probability
of any specific property) at the same instant or at any later time.

From the work of the preceding paragraphs and Chapter 8, it is
natural to expect probability distributions to play a role in micro-
physical theory similar to the role of state variables in classical theory.
We might reasonably guess that the basic equations of the theory would
connect probability distributions rather than state variables. Like many
other “reasonable” guesses, this one is wrong. The quantum mechanics
formulates equations for intermediate mathematical elements, the
so-called “probability amplitudes,” rather than for the probabilities
directly.

Now this is not the place nor is there space available for even a
cursory sketch of the structure of the theory of quantum mechanics.
However, the probability amplitude concept is of overwhelming
importance for the form and structure of the theory and cannot be
omitted from even a brief consideration of its conceptual foundations.

A more extended analysis of our much overworked interference
experiment of Section 4 will serve to introduce the concept of
probability amplitude.

9.2 The Interference of Electrons. The form of the distribution of
the electrons at the detecting plane (Fig. 4-7) in the electron
interference experiment considered in Chapter 4 can be calculated by
the use of a “‘wave model.” The electrons of incident momentum p, are
replaced in imagination by a plane wave of wavelength X\ = i/p, (the
nature of the wave is immaterial) and the resulting intensity (squared
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amplitude) of the wave at the plane of the detector is computed by the
use of Huygens’ principle. The distribution of the wave intensity
obtained this way is of the same form as the observed distribution of
the electrons. It is pethaps worth repeating that the wave picture does
not, despite this relation between the wave intensity and the observed
distribution, provide an adequate theory of the diffraction and
interference phenomena. Individual electrons appear at specific but
indeterminate positions at the detector and are not spread out as is the
intensity of the diffracted wave.

Although it is unnecessary in the calculation of the wave intensity to
specify what it is that is waving, it is essential that the wave theory
employed be linear and that the wave intensity be proportional to the
square of the amplitude. By virtue of the linearity, the solution of the
wave equation for the two slit system can be obtained by adding the
solutions for two simpler cases: slit a open and b closed, and slit b open
and a closed. In consequence, it is natural to consider the wave
amplitude at Q (Fig. 4-11) as the sum of amplitudes arising from slit a
and slit b separately, and to express the wave amplitude at Q (denoted
by ¥(Q)) in the form

Q) = C4xa(Q) + Coxp (Q) (o-1)

where C,, Cp, are the amplitude of the wave at the two slits and x,(Q),
xp(Q) are the amplitudes for the solutions representing the single slit
cases (with unit amplitude at each slit). The intensity at Q, 7(Q), is
then!

I(Q) = | Y(Q) I> =1CaXa + Coxo I°
=1Ca Plxa P +1Co Plxpl* + 2Re Cp* X *Coxp - (9-2)
Note that | C,|? « I, is the intensity at slit a; | x, |* « I,(Q) is the

intensity at Q for unit amplitude at a (with b closed) etc. With these
notations Eq. 9-1 becomes

Q) =1, - I,(Q) +1Iy - [(Q) + 2Re C,* X *CoXp-  (9-22)

1Complex amplitudes are used to describe both the magnitudes and pha_ses of
wave oscillations. The real intensities are the absolute squares of the amplitudes.
The symbol *+ means “complex conjugate of.”
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The last term is the “interference” term which is characteristic of wave
theories.

The interpretation of the interference experiment in terms of a
“particle” picture leads, it will be recalled, to the following argument.
The electrons pass either slit a or slit b. (It is this seemingly obvious
thought which is false and invalidates the argument on which it is
based.) If an electron passes a there is a probability P,(Q) that it will
arrive at Q; there is a corresponding probability Py,(Q) that it will get to
Q if it comes through b. By this argument we reach the false conclusion
that the probability of reaching Q is simply the sum of the probabilities
of arriving at Q via the two slits separately:

P(Q)=P, * P,(Q) +Py * P,(Q) (classical), (9-3)

where P,, P, are the probabilities of passage through a, b. Egs. 9-3 and
9-2a are alike, if probabilities and intensities are identified, except for
the interference term. But note that, most remarkably, Egs. 9-3 and 9-1
have the same structure; they are identical in form and differ only in
the interchange of probabilities and amplitudes.

Now there are no physical waves (so far as anyone knows) associated
with the phenomena of electron diffraction and interference. The wave
picture must be considered as a mathematical fiction by which the
probability distribution of the electrons at the detector may be
computed. Neither do the amplitudes used in the theory define the
amplitude of any physical oscillation nor does the square of the
amplitude determine an intensity flux or an energy density of some
physicadl activity. The square of the amplitude determines only a
probability; hence the amplitude of the wave can be described
legitimately only as a probability amplitude. In our example, the
relevant amplitudes combine in a simple manner; the structure of their
combination as given by Eq. 9-1 is just of the form expected, but
unrealized, for classical probabilities (Eq. 9-3). The amplitudes have
simple additive properties that are unshared by the probabilities:
compare Eq. 9-1 with Eq. 9-2a (with intensities interpreted as
probabilities).

. These considerations raise the following general question: Do there
exist, below the level of the probabilities that must be computed by
microphysical theory, associated probability amplitudes which satisfy
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linear equations (as in the wave theory used in the analysis of the
interference experiment) and for which relations similar to Eq. 9-1 are
true? The quantum mechanics makes the wide ranging assumption that
the answer to this question is yes.

The significance of this assumption cannot be overemphasized; it
effectively defines the mathematical form of the quantum mechanics.
But we are overreaching ourselves. The general assumptions involved in
the concept of probability amplitude must be stated before we can go
on to more detailed considerations of its consequences.

9.3 Probability Amplitudes. To perceive the general meaning
behind the special relations that apply to the case of electron
interference, it is useful to summarize again the arguments leading to
Egs. 9-1 and 9-3, and to express the ideas involved with the help of a
more general (also, unfortunately, a more cumbersome) notation.

In the derivation of Eq. 9-3, it was incorrectly assumed that the
incident electrons go through either slit a or slit b. In consequence, the
ensemble of electrons employed in the experiment — which we now

- designate by | po] (see Table 8-1) — may be considered as a mixture of

two subensembles, designated by |a], | b], consisting of electrons that
pass through slit a or slit b. The relative weights of the {a], 1b]
properties are given, naturally, by the probabilities, [ |1po], [b1Po],
of passage through slits @, b for the electrons that reach the detector.
(Obviously [z |po] + [b1po] = 1; this expresses the assumption that
every electron that reaches the detector gets through one slit or the
other.) The relation implied by our classical picture of electrons may be
expressed symbolically by? ‘

lpo] =lal [alpe] +1B][bIpo]. )

This may be read: The ensemble |po] is a mixture of |a], |b]
ensembles with relative weights [ | po] and [b | po]. It follows — and
this feature completely defines the significance of Eq. 9-4 — that the

2The ensembles indicated by |pol, la], and |b] are assumed. to have the same
number NV of systems. Then la] [2lpo] describes an ensemble with the property @
(i.e., passage through slit a) containing N [alpo] systems, etc.
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probability of positic;n Q in [po] can be obtained from the
probabilifies of Q in | 2] and | b]:

[0170] = [Qlal [¢1po] + [Q1B] [Blpo]  (classical) (9-5)

(this is just Eq. 9-3 in our new notation). It has often been emphasized
both in this and in foregoing chapters that this relation is false as is also
the classical picture of the electron on which it is based.

Application of the wave theory to the interference experiment led to
the determination of probabilities (proportional to wave intensities) as
the absolute squares of underlying wave amplitudes. We shall, in what
follows, designate the amplitude associated with-any probability of the
form [v' |u'] by the symbol @' |u’); thus the amplitude for the
probability [Q | po] is (Qlpo). Since the absolute squares of ampli-
tudes® are probabilities, we have

[ TuY 2= td]. (9-6)

In the wave description of the electron interference experiment, the
amplitude describing the system can be expressed as the sum of two
amplitudes relating respectively to the contributions of slit a and slitb.
If we denote the wave characterizing the whole system by | po), and the
waves for the case with only slit a, slit b open by | a), | b),* the relation
between | po), | @), | b) may be expressed by

1pe) = laY{alpe) + | B) (blpy). -7

The full wave | po) is the superposition of partial waves with certain
amplitudes @ | po), b 1po); Ka|po)l> and Kb |po)P determine the
probabilities [a | po], [b1po] that the electrons in the incident beam
pass slits a, b. The superposition of waves described by Eq. 9-7 implies
that the amplitude for the property Q in | py) can be expressed in terms
of the amplitudes for Q in the |2 ), | b ) partial waves:

(Qlpe)=(Qla){aipy) +{Q 1B (bipe). (9-8)

. 3Questions concerning the normalization of the amplitudes so that they
provide true probabilities rather than quantities proportional to probabilities have
been neglected. To consider them would add complicating details and perhaps
obscure the central ideas.

4Just as the ensembles |pg], la], |b] have the same numbers of systems the
waves |po), |a), |b) are assumed of equal integrated intensity.
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The remarkable formal similarity between the classical expréssions
(Egs. 94 and 9-5) and the wave-theoretic expressions (Egs. 9-7 and 9-8)

~cries out for attention. The latter relations, which provide a correct

picture of the electron distribution (given by KQ | po)P*), are obtained
from the former simply by replacing probabilities with the associated
amplitudes.

These special relations for the case of electron diffraction are easily
generalized. Consider an arbitrary ensemble | '] (in place of | po]). Let
w be some state-observable® , incompatible with the state property u',
where the w-observable consists of the set of exclusive state properties
Wi, Wa,.... (The w properties, in the example of electron inter-
ference, correspond to location at slit a and slit b. The relative
simplicity of this example arises from the fact that the w observable
contains only two exclusive properties). The probability of observation
of wy in the u' state is [wy | #'] and since on observation every system
must exhibit some w property,

T (wilul =1
Kk

On a classical (and false) interpretation of the property concept, in
which properties that are observable are assumed to be objectively
existent, the | u'] ensemble must be considered as a mixture of | wg]
subensembles with the relative weights [wy | «']. This relation may be
expressed symbolically by

lu'] = Z lwg] [welu']  (classical). (9-9)
k

It follows from this incorrect relation that the probability of any
property v’ in the | #'] ensemble is related to the probabilities of v'in
the various | wy ] subensembles:

'lu'] = 2" wl [welu'l  (classical). (9-10)
k

Clearly Egs. 9-9, 9-10 correspond to a generalization of Egs. 94, 9-5.
The classical results 99, 9-10 are false. In the case of the
interference experiment we saw that a probability amplitude could be

5 Any complete set of compatible observables may be used to define the basis
states. For the case of the hydrogen atom, the w-observables may be chosen as the
position of the electron relative to the proton or the set of compatibie ob-
servables, energy, angular momentum magnitude, and the z component of the
angular momentum. (See Section 8.3)
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associated with each probability and that correct relations between
amplitudes are obtained from Egs. 999 and 9-10 by substituting
amplitudes for probabilities throughout. Quantum mechanics makes the
extraordinarily fecund assumption that this feature of the interference
experiment holds generally. The theory makes the following Assump-
tion on Probability Amplitudes: Associated with each pair of state
properties u', v', there exists not only a determinate probability,
fv' 1u'], but also an associated probability amplitude @’ | «) such that

[v'lu'l = IwTuhH1? (9-11)
and that these amplitudes satisfy the system of relations
W'y =Z W' T we) (wg Lu') (9-12)
* :

This result is obtained by substituting amplitudes for probabilities in
Eq. 9-10 for any choice of state observable w. Since Eq. 9-12 holds for
any state property v’ it may be expressed in a “‘symbolic” form similar
to Eq. 99:

'y = Zlwe) (wg lu') (9-13)

This “symbolic” equation has no other meaning than that the
amplitude of an arbitrary state property v’ in the state with property u’

. ca’n be formed from a combination of the amplitudes of v'in wy, states,
@' lwg), as in Eq. 9-12. Thus the expression given by Eq. 9-13 is not so
much an equation as a rule for creating equations.

On test for w in a u'-ensemble, the various wy properties are found
w,ith probabilities [wy | «']. This does not imply, however, that the
u-ensemble can be considered as a collection or mixture of these
w,k-ensemble_s. But relations 9-12, 9-13 show that the properties of the
u state are in fact closely and simply related to the properties of the
wy states that are found by measurement of w on the ' ensemble.
These relations are governed, however, by the probability amplitudes
{wy |u') rather than, as classically expected, by the probabilities
[wi | &']. All probability amplitudes for the u' state can be obtained,
according to Eq. 9-13, from a fixed linear combination of the
amplitudes of the wy states where the coefficients in the linear
combination are the probability amplitudes for wy in the 4’ state
(Wk,l u). The “latency” rather than the objectivity of the wk’
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properties in the u'-state results, it. appears, in the change of the
classical Eq. 9-10 into the quantum mechanical Eq. 9-12, where Eq.
9.12 derives from Eq. 9-10 by the substitution of amplitudes for
probabilities.

Because of Eq. 9-13, it is natural to speak of a state with property u'
as consisting of a linear combination of wy states with the coefficients
{wy | u). This language is useful if the sharp restrictions on its meaning
are clearly understood. Of course it does not mean that the state
ensemble | u'] is a “linear combination of state ensembles” } wi}. No
meaning has been or will be assigned to the phrase “linear combination
of ensembles.” Nor does it mean, as has been repeatedly emphasized,
that the state | #'] is some mixture of | w] ensembles (which is simply
false). All that is meant by the assertion that a u' state is a linear
combination of the wy states with certain coefficients is that all the
amplitudes of the u’ state are linear combinations of the amplitudes of
the wy states with fixed coefficients. The meaning of Eq. 9-13 is
completely covered by Eq. 9-12, which holds for any property v.

These considerations indicate that it is useful to refer to states in two
different ways. State ensembles have been designated by symbols such
as | u']. But the linear relations between states expressed by Eq. 9-13
refer not to ensembles but to the description of states in terms of
amplitudes. For this reason it is convenient to use the new symbol, | #",
for the designation of a state with property u'; in a wholly formal sense,
the relation of the state | «’) to the amplitudes v'l ") is similar to the
relation of the ensemble |u'] to the probabilities [v'lu']. Whenever
state amplitudes and their relations are under consideration, states will
‘be designated (somewhat abstractly) by the symbols | u"), | wg ), etc.

It seems natural to assume that states may not only be analyzed into
combinations of wy-states as in Eq. 9-13 but also (as in classical wave
theory) that all linear combinations of given states are also possible
states of the system. This somewhat obscure statement may be clarified
by the following considerations. Suppose | Y1) and | ¥} are states of
the system. These states are completely defined if the amplitudes
(i | ¥y), (u' | ¥y) are given for arbitrary state properties u'. Consider
now the set of numbers obtained by linearly combining the amplitudes
(' | ¥, (u' | ¥p) with the fixed coefficients ¢y, ¢z, for all u' proper-
ties, i.c., the numbers (' | Y1)y +<u' [ Y2)ez. Our assumption is that .
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these numbers (for arbitrary ¢y, ¢, | Y1) | ¥,)) are the ' amplitudes
for some states ¥, i.., there exists a state | ) with amplitudes (u' | ¥}
for which

(u'l ll/)'_‘(u'l\[/l)(:l +<u,lw2>02. (9-143)

In consequence,i it is natural to express the relation between | ¢ and

[ ¥1), | ¥2) by
by=1y1dey + 1¥) e, (9-14)

and to say that the state | {) is formed of a linear combination of states
[, 1 ¥2)

The assumption that linear combinations of states are also states of
the system constitutes a principle of superposition. In linear wave
theory a similar principle applies: Any linear combination of two wave
motions determines a possible wave motion. But in quantum mechanics
the principle applies to probability amplitudes rather than to the
physical displacements considered in classical theories of wave motion.
As a result, the conclusions that may be drawn from the superposition
principle in quantum mechanics are quite different from those of
classjcal theory. If, for example, there are two motions of a string with
energies £, E,, then a specific linear combination of these motions
describes another motion of the string with some different energy, say
E. In the quantum mechanics, however, the superposition of two states
with the energy properties £, , E, produces a state in which the energy
property does not have any definite value. The state so formed is
characterized by a property which is incompatible with the energy
observable. In this superposed state an energy measurement will yield
E, or E, with probabilities given by the absolute squares of the
amplitudes in the linear combination. ‘ ‘

It may be worth interpolating here that although the principle of
statistical determmlsm implies the existence of a definite probablhty
[v'1u] of finding v' on test of the ensemble | '] (for any choice of v,
u"), neither this principle nor any of the work of prior chapters prov1des
methods by which the probability associated with any particular pair of
state properties can be computed. Similarly the work of this chapter,
which posits the existence of probability amplitudes, introduces no
method by which the amplitudes associated with a particular pair of
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states may be computed. The amplitude concept carries us considerably
forward, however, by virtue of the relations given by Egs. 9-12 and 9-14;
from a knowledge of certain amplitudes, others may be calculated. But
these relations alone remain insufficient for the determination of
amplitudes and hence of probabilities.

9.4 State Representatives. Experience indicates, in many partic-
ular mstances that a remarkable symmetry exists between the pair of
properties u v’ that specify the probability [v'lu']): ‘the probability of
measuring v’ on a u'-ensembile is found to be equal to the probability of
measuring #' on a v'-ensemble. In the quantum mechanics, this
symmetry is assumed to be universally true: For arbitrary pairs of state
properties u', V',

[ V'] =" 1u]. (9-15)

This, together with the previous amplitude assumptions, implies a
corresponding symmetry property for amplitudes (which we state
without proof): .

' 1oy=' lu'* (9-16)

The interchange of the state properties converts an amplitude number to
its conjugate complex. With the help of Eq. 9-16, Eq. 9-12 may be
expressed as

W'y = 2w 10 ) *wy Lu'), 9-17)
k

which indicates that the amplitudes { v'lu") for any pair of states may
be calculated if the wy-amplitudes for the states in question are known.
In consequence, the problem of finding the amplitudes for all pairs of
states is reduced to that of finding, for an arbitrarily chosen
w-observable, the wy amplitudes for all states. The remaining ampli-
tudes may then be obtained from Eq.9-17.

All amplitudes and hence all statistical statements concerning
measurements are determined, according to Eq. 9-17, once the
wy-amplitudes of all states are known. The wy.-amplitudes for a state,
therefore, may be considered as a numerical characterization or
“representation” of that state, the set of numbers (w, 1 u'),{wplu’) .
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which defines a function wlu') over the domain of the exclusive
properties wy, w,, . . . in state observable w, is called the “w-representa-
tive of the u' state” or the “representative of the u' state in the
w-basis.” '

The principle of superposition implies, moreover, that any function
of w (more accurately, a function defined on the domain of the
properties of w) may be considered as the representative of some state.
If a function f has the value f; at state property wy, a state |¢) (say)
may be formed as a linear combination of |wy) states with coefficients
fx; for |, then, the w-representative is the function f(f = (w!q))).6

The absolute square of the value of the w-representative of the u'
state at the property wy (Iwglu"|?) is the probability of finding wy
on test in a ' ensemble. From the w-representatives of states ¢’ and v/,
the probability of the measurement of v’ in a u'-ensemble can be
obtained; it is the absolute square of the amplitude given by Eq. 9-17.

Before we go on, it is worth noting that all probability amplitudes
can be obtained, at least in principle, from laboratory measurements of
probabilities. Clearly the measurement of the probability of finding v’
on test of a u'-ensemble determines the absolute value of (V'lu'); by
Eq. 9-12:

' Ko'lu )= 1% (9-18a)

By physical measurements on ensembles, therefore, the absolute values of
all the complex amplitudes are easily found. However, for the complete
determination of an amplitude, its complex “phase” as well as its absolute
‘value is required. The phases may be obtained from the solutions of the

6 An important (if secondary) restriction on the choice of f has been omitted.
Since the absolute squares of amplitudes are probabilities and since some property
in w must be found on test (some location, or some energy, etc., is certain to be
observed), it follows that for any state |¢)

1= 2wl o] = ZWwrl @) 12 = Z| £
Subject to this normalization condition any function f may be considered as the
w-representative of some state.

Suppose that an f does not satisfy this Jproperty (is not normahzed) and that
b f =K. Then a properly normalized f is easily obtained from f: f'= (). It
is .sometimes convenient to work with representatives that are not normalized;
these provide “relative” rather than “absolute” probabilities.
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large system of equations obtained by taking the absolute squares of
Eq. 9-17 for all pairs of states:

Ko'luY12=[D'lu'] = I%(wklv')*(wk lu') 12 (9-18)

In these equations the left sides are determined by observation and
we may assume that the absolute values of all the amplitudes have
already been determined by use of Eq. 9-18a; the remaining unknowns
are the phases of the numbers (wylv"), Wy lu’). Now the number of
equations defined by Eq. 9-18 (for all u',v") far exceeds the number of
the unknown phases. In general, a system having more equations than
unknowns has no solution unless the number of independent equations

" in the set is less than or equal to the number of unknowns. Essentially,

the assumption that amplitudes exist with the properties given in
Subsection 9.3 is equivalent to the assumption that the equations in the
system specified by Eq. 9-18 are sufficiently interdependent to
guarantee that they are consistent and therefore solvable for the
amplitudes.

The sketch above indicates how amplitudes may be obtained by
means of measurements of probabilities. The laws of quantum
mechanics provide equations for the calculation of amplitudes and, at
least for simple systems, it is far easier to calculate amplitudes than to
measure them. But for systems whose properties are not completely
known (nuclei, elementary particles), or systems of such complexity
that the equations of theory cannot be solved with sufficient accuracy,
the determination of amplitudes by means of probability measurements
is often the object of laboratory experiments.

At the beginning of this chapter, it was remarked that it is
“reasonable” to expect that microphysical theory would formulate
equations for the determination of probabilities of the type [v'I «'],but
that this expectation was unrealized. It will come as no surprise now
that the theory of quantum mechanics formulates equations for
amplitudes rather than for probabilities. In a sense, the descriptions of
the relations between states provided by the amplitudes and by the

_probabilities are equivalent; the amplitude determines the probabilities

and, as shown in the previous paragraphs, the probabilities determine
amplitudes. But by means of the amplitudes, the relations which exist
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between states can be expressed by means of simple linear combina-
tions. The amplitudes exhibit the presence of a powerful principle of
superposition and indicate that the basic equations that are to be
formulated by the theory have that most desirable of properties,
linearity. For these good and sufficient reasons the equations governing
amplitudes are vastly simpler than the equations for probabilities.
Unfortunately it will not be possible, in this short introduction to
underlying concepts, to describe the general laws of quantum
mechanics which permit the theoretical derivation of the probability
amplitudes in specific cases.

It has been shown that all amplitudes are effectively known if the
representatives of all states in some particular basis are known. For this
reason the equations of quantum mechanics are often formulated to
provide representatives of states in a basis which is convenient for the
problem in hand. The basis most frequently employed is that first used
by Schrodinger in his papers on “wave mechanics”; this basis consists,
for an electron in one dimension (x), of a set of states each with a
definite location property (if electron spin is neglected). For each
location, x', there is a state which we may designate by |x') in which a
test measurement is certain to discover the position x'. The representa-
tive of a u' state in this basis is a function of position (x|u), the
so-called “Schrddinger wave function” for the state |u"). The fact that
the basis states form a continuum rather than a discrete set (as was
assumed in the basis wy, w,, ... wy ...) forces a conceptually
unimportant modification in the formalism of the preceding pages;
sums are merely replaced by integrals so that in place of Egs. 9-13,9-17
we have

lu'y= [ ix)(x tu')dx. (9-13a)
@' u'y=f{x oY ¥(x lu'Ydx. (9-17a)

Also, the quantity {w'ju’}> is not the probability of the precise
location x' in state u’, but the “probability density” at x’ (so that for a
sufficiently small Ax the probability of finding the electron within the
internal Ax in the neighborhood of x'v is [&'|u#"?Ax). Schré-
dinger’s equations for the x-amplitudes have the form of linear
differential equations. One simple example must suffice; the equation
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for the amplitude (x!p" — i.e., for the amplitudes of a state with the
definite momentum p’ — is

d
T i TNy = ! ] 7 )
ih o UxIpD=pxIpM). 9-19)

In Heisenberg’s original paper, where the mathematical structure of
quantum mechanics was first presented, equations were formulated in
terms of representatives in a discrete set of basis states defined by a
quantized energy observable. In this basis the equations for amplitudes
constitute a system of linear algebraic equations rather than
Schrodinger’s differential equations. The large difference in the forms
of the theories of Heisenberg and Schrodinger prevented for only a
brief period a recognition of their basic identity. The superificial
differences in the two formulations were seen to reflect merely a
difference in the choice of an underlying basis. '

9.5 Motions of Ensembles and States. The number [v'lu'], it will
be recalled, is the probability of finding property v on test in an
ensemble which, at the time of test, has the property u'. However these
are not the only probabilities in which we have an interest. Ensembles
prepared with some specific property will, in general, undergo changes
in time. Electrons will move from place to place (more accurately, the
distribution in position will change in time), atoms will emit radiation,
nuclei will undergo transformation, etc. We are interested naturally in
the dynamical laws which govern how a state ensemble of systems of
some kind, prepared initially with a property u', changes its statistical
properties in time. Effectively, this means that we wish to determine
probabilities such as [v'lu’;7] (see Table 8-1), the probability of testing
for v’ in an ensemble prepared initially with property u' after a lapse of
time . We have seen that the amplitudes play a most important role in
relation to the determination of the quantities [v'u']. It is natural to
ask what implications the concepts of probability amplitude and
superposition have for the general dynamical problem posed above.

The concept of amplitudes was formed by consideration ‘of the

TIntegration of this differential equation yields &lp"y = C exp (ip'x/h) where C
is an arbitrary integration constant.
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classical theory of wave motions. It is natural to follow this model still
further for the considerations of time-dependent motions. The classical
theory is deterministic; consequently, a specific state of the system
(wave) develops in time to another state of the system. It will be
~ assumed that this relation is also true in microphysics: In the course of
time states change into states and not into mixtures. The state fu")
after a lapse of time ¢ will be denoted by |u';) and the w-representa-
tive of this state, a numerical time-dependent function of w, by
wiu';0). In the Schrodinger representation (with w = x), this amplitude
becomes a time-dependent function of position.

The principle of superposition for classical linear wave theory asserts
that arbitrary linear combinations of wave motions are also possible
motions. For a string along the x axis capable of displacement along the
y axis, the possibility of the motions (solutions of the wave equation)
y1(x,t) and y,(x,f) implies that the string can also have the class of
motions defined by y(x,f) = ¢1y1(x,7) + c,¥,(x,?) for all values of ¢y,
¢3. In the quantum mechanics a similar principle is assumed. If,
therefore, two states, initially specified by properties #', u”, for
instance, which separately develop in time to states |u';), |u"; 0, then
the state given initially by lu')c’ + |u")¢" (with arbitrary coefficients ¢,
¢") will develop in time to lu';6)c’ + [u" ;0"

In classical wave theory it is generally the case that special motions
exist in which the spatial and time dependence “separate.” In these
motions there is a fixed amplitude at each position modulated by a
harmonic time dependence of definite frequency (standing vibrations in
a string, for example). For the analysis of a wave motion with
prescribed initial conditions, it is often useful to express the motion as
a combination of these special motions.

We cannot now go into the proof of the fact that our hypotheses on
time-dependence imply that, for closed systems, a set of special states
that have a harmonic dependence on time also exist in quantum
mechanics no matter what the nature of the system. In particular, the
following result may be established: For any system there must exist an
observable E with properties F,, E, . .. such that the states with
properties £ must depend on time according to the simple law,

| Bty = | Ey)e 2mivit, (9-20)
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where vy, is the frequency of the oscillation in the state |Ey). In these
very special and remarkable states, the probability of finding any
property v’ on test is totally independent of time. This probability is,
by use of Eq. 9-20,

W' 1Eg;t] = Ko' 1 Eg; 012 = Ko | Eg)e2 @kt 2
= KU'IEk) 2= [U'lEk] .

The probability of observing v’ in the Ejy state after any time ¢ is
equal to the probability of observing v' immediately after the
preparation of the Ey state. Because of this constancy in the properties
of Ej states (or ensembles) these states are said to be statlonary It is
not difficult to show (but the proof is omitted) that the distribution of
this special observable E in any state (or mixture) does not change with
time, although distributions in other observables are time-dependent.
This constancy in time obviously expresses a conservation law of great
generality. '

It would be hard at this stage to avoid the guess that the E
observable can be identified with the total system energy. This identifi-
cation is suggested in the first instance by the de Broglie relation
E = hv, which connects frequency and energy. By further extensions of
the theory it may be shown that F is indeed the energy of the system
and that the frequency vy is precisely that given by the de Broglie
relation: v, = Ey /h.

From the foregoing it follows that the dynamical problem of
quantum mechanics is completely solved once methods for the deter-
mination of the representatives of states in the E basis, (£ [}, and the
possible values of the energy of the system E,, E;, etc. are known
Suppose that an ensemble has been prepared initially in state u'. This
can be expressed as a linear combination of Ej, states:

lu')= EIEk)(Ek |u,).

. From the time-dependent principle of superposition it follows that

lu'st)=Z\Ep)eiEktR(Ey lu')
5o that the amplitude of v'in ju';2) is
W1y = BB W) e BRI (B lu'). (9-21)
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The absolute square of 'lu’;#) is the probability [v'lu';t] of finding v’
in the ensemble prepared with property u' after an interval ¢. The right
side of the equation above contains only the representatives of u', v in
the E-basis and the possible energy values of the system.

9.6 The Motion of Free Electrons. Classical linear wave theory has
been used extensively as a guide in the formulation of our assumptions
about probability amplitudes. Consequently, it is perhaps not very
surprising that probability amplitudes provide a description of the
«wavelike” properties of microphysical entities (electrons, protons,
etc.). Indeed the considerations of this section developed from an
analysis of the phenomenon of electron interference which consisted of
little more than the interpretation of classical wave amplitudes as
probability amplitudes. That the concepts developed above are also
applicable to the “particlelike” properties of electrons is by no means
obvious. Their applicability may be illustrated by an analysis of the
simplest of all microphysical systems —a free electron in one dimen-
sion.

The observables of major interest for our purposes are the position x
and momentum p of the electron® The Heisenberg principle implies
that x and p are incompatible. Each of these observables is complete by
itself — ie. there is no other classical property independent of x (or of

- p) which is compatible with x (or with p). This fact may be derived
from the general laws of quantum mechanics which endow the open
mathematical framework constructed in this section with explicit
content. Since electrons may be found at any specific location x' or
with any momentum p', each of these observables specifies a
continuum of basis states; members of these continua, for specific
values x', p’ of position, momentum, will be denoted by 1xy, Ip".

For reasons that will be given later it is convenient to work in the
p-basis. By our assumptions on probability amplitudes, every state ofa
free electron can be represented by a p-amplitude, and every function
of p, considered as a p-amplitude, determines uniquely some state of
the electron. Therefore, let Y/(p) be some function of p chosen at will and
let |y designate that state for which the p-amplitude is Y(p); all properties
oNhe state designated by [{) are completely determined by the assump-

8Electron spin and other relativistic effects are neglected.

126

PROBABILITY AMPLITUDES; THE SUPERPOSITION PRINCIPLE

tion @I¥) = Y(p). The statistical properties of all state ensembles of free
electrons may be therefore surveyed by investigating how these propet-
ties depend on the choice of the function ¥(p). Fortunately, we need
not be concerned here with the difficult problem of determining what
state property is implied by a given Y(p) or how an ensemble in the
state with p-amplitude Y(p) may be prepared.

The distribution of p in state |} is easily obtained since this state
has been defined by its amplitudes in the p-basis: [plY] = Kl =
{W(p)I*. To obtain the distribution in position it is necessary to calcu-
late &|y). Eq. 9-17, after replacement of u' by ¢, v by x, wby p and
(because of the continuous nature of the p observable) the sum by an
integral, yields )

(xlyy=[{xIp)Y{pl¥)dp. (922)

Hence the x-amplitude for [{) can be obtained from its p-amplitude if
the x-amplitudes of all p states are known.

Unfortunately our assumptions on amplitudes do not suffice for
their explicit determination. The laws which permit the calculation of
amplitudes are outside the scope of the considerations of the mono-
graph. However, the (x|p) amplitudes can be all but guessed by a
consideration of de Broglie’s assumption that a wave of wavelength &/p
is to be associated with a particle of momentum p. Surely the ampli-
tude of this wave, to which no direct physical meaning is attached, can
be no more than a probability amplitude. This idea (along with others
of lesser importance) suggests that the x-amplitude describing a state of
momentum p should be

(x|p)=(2m)elP*/7 (9-23)

a harmonic wave with wavelength h/p. The factor (2n)™* is a norma-
lizing factor which is chosen to make the resulting probability distribu-
tion in x “true” rather than “relative.” Naturally this result may be
derived, not merely guessed, from the laws of quantum mechanics. (The
amplitude of (9-23) is in fact a solution of Schrodinger’s Eq (9-19).) Eq.
922, with the substitution of the result 9-23, now permits the
calculation of the x-amplitude and, naturally, the distribution in posi-
tion for any state with a given p-amplitude. It is worth noting that Egs.
9.22 and 9-23 indicate that the x-amplitude is a linear combination
of the simple harmonic waves given by Eq. 9-23 with the coefficients
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ply». From this fact it is not difficult to see that the range of the
- distribution in x is inversely correlated with the range of the distribu-
tioninp. If (pl ¢ is different from zero over a “narrow” range of p, then
¢ 1Y) is a superposition of a group of waves with little difference in
wavelength; consequently these waves will superpose constructively
over a “broad” range of x. A broad range in p, on the other hand, implies
a correspondingly large range in A; in this case constructive interference
of the component waves can be managed over only a small range in x.
From the amplitude @|y)=Y(p) that defines state |y) and the
calculated x-amplitude (|y), the distributions in x and p, [xi¥],
[p1¥], are easily obtained. From these the average values of momentum
and position p,X and the uncertainties Ap,Ax for a y-ensemble may be
derived (Chapter 7). A detailed analysis of the connection established
by Eq. 9-22 between the x and p distributions shows that for any
state —i.e., any choice of Y(p) — the uncertainties in the x and p
distributions are related by the inequality

AxAp >h/2;

this provides a quantitative expression of the uncertainty principle.

It is not difficult to determine the time-dependence of the ampli-
tudes and consequently the time-dependence of the distributions in any
state. For free electrons, the energy and momentum are related by
E =p?2m (where m is the electron mass). Consequently, states with a
definite miomentum are also states with definite energy and, therefore,
have a simple harmonic dependence on time (it is for this reason that
the p-basis is more convenient than the x-basis); by Eq. 9-20

Ip'st)y=|p'YeiE't/A with E' = (p")?/2m.
After alapse of time the state

Y= 1pX{plydp
becomes

1y ;6= [ IpYe Bt (p Y)Y dp (E=p*/2m),
so that

CAx sy = f{xlipYe iEHA (ply)dp. 9-29)
This mtegral may be evaluated (in principle) once {ply) is given.
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Because the momentum states are also energy states, the distribution
in momentum as well as of the energy is constant in time (see earlier in
this section). In particular, the average value p of the momentum and
the uncertainty Ap are constant (momentum is conserved). This is not
the case for the distribution in position. It follows from Eq. 9-24 that
the dependence of the average value of position on time is given by

X(#) =X+ (p/m)t,

(x is the avergae value of position in the initially prepared state and p is
the constant average value of momentum) and that the uncertainty Ax
is a quadratic function of time. Note that the average value of position
moves with constant velocity p/m; this velocity is related to the average
value of momentum exactly as the classical velocity of a particle is
related to its momentum. As the average value moves with constant
velocity the distribution spreads, and Ax becomes arbitrarily large for
sufficiently large ¢.

It is possible to choose states, by suitable choice of Y(p), with Ap/p
small (say ~1073) but yet with Ap large enough (i.e. with p sufficiently
large) to permit a Ax which is macroscopically small (say ~1072 cm).
Within macroscopic errors of observation electrons described by such a
state will behave, over time intervals customary in laboratory experi-
ments, like free classical particles. If observations are not too accurate
they will be consistent with the assumption that the electrons in the
ensemble are prepared with position X and momentum p, that the
momentum is constant, and that the electrons move with velocity p/m.
The spread of the distribution of x over the course of a normal
laboratory experiment is insufficient to upset this picture. Thus, despite
the radical incompatibility of position and momentum, it is possible to
describe the particlelike properties of electrons within a formalism
constructed on the basis of the concept of probability amplitudes.
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10 Summary and
Comment

“And, no matter what sort of Hell hath popped,
Let not the constant h be dropped.”

Leonard Bacon

10.1 Epitome. A first reading of a set of new ideas often results in

confusion, especially if the organization of that set is complex. Each -

new concept requires detailed study; the successive focusing of atten-
tion on small parts makes it difficult to perceive the design of the
whole. But clearly, an approximation to an understanding of the whole
is what is desired. A summary may help clarify the structure and intent
of the material that has been presented.

Since classical theory fails so completely in the realm of micro-
physics, it is obvious that the conceptual tools it provides for the study
of microphysical entities cannot be trusted. However, before the in-
adequacy of classical conceptions became evident, many microphysical
observations were interpreted classically. It is important, therefore, in a
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fundamental review of microphysical observations and concepts, to
differentiate clearly between classical interpretation of microphysical
phenomena and the brute facts of observation (Chapter 2).

Obviously re-examination of all classical interpretations of experi-
ments in microphysics cannot be undertaken. Fortunately, a number of

- the properties of electrons and photons are obtained by methods that

are hardly subject to doubt (for the most part by the application of.
general conservation laws that are verified in the realm of micro-
physics); some of these properties are listed in Chapter 3. Of particular
importance for the work of this monograph are the de Broglie relations;
their experimental confirmation and the observational significance of
their terms are examined in Section 3.1.

The central argument of the book begins in Chapter 4 with a study
of the so-called “wave-particle dualism.” Examination of “diffraction”
and “interference” experiments located the deficiencies of both wave
and particle pictures of electrons and photons, and exhibited a number
of curious consequences of the de Broglie relations:

(1) The motions of single electrons cannot be observed in detail;
even the simple observation of whether an electron passes one or
another of two slits cannot be effected without marked changes in the
phenomena manifested when observation is not made.

(2) The regularities in observed microphysical processes apply to
ensembles rather than single systems; it is an ensemble of electrons
rather than a single electron that produces a diffraction pattern.

(3) There exists a basic incompatibility between the observables,
“glectron position” and “electron momentum,” expressed by the
Heisenberg uncertainty principle (Chapter 5). The degree or measure of
this incompatibility is given, roughly, by Planck’s constant, k. For
processes in which & may be considered “small,” microphysical be-
havior may be described by classical methods. )

In Chapter 6, alternative interpretations of the consequences of the
de Broglie relations are examined. Two classically based sugges-
tions — the use of classical statistical methods, and the assumption of
the existence of “hidden variables” that might restore classical deter-
minism — are rejected as unsatisfactory. A continued analysis of further
consequences of the de Broglie relations leads to the realization that
there is hardly a feature of the classical picture of motion that is
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observable in those microphysical processes for which 4 is not negli-
gible. Velocities, accelerations, forces, and paths, all concepts of pri-
mary importance in classical physics, simply cannot be observed in the
microphysical realm when the limitations of the Heisenberg principle
. are significant. It is in this realm that microphysical behavior exhibits a
paradoxical character. Our incapacity to observe classical properties
seems to make the achievement of an understanding of microphysics
" very difficult, if not impossible.

This hardship stimulated a perception of fundamental significance.
The deepening gloom caused by the recognition of so broad an
incapacity to learn more about microphysical processes gave way to
renewed optimism with the realization that what is truly unobservable
requires no explanation and, indeed, may not even exist. This thought
frees us from the prison of the classical conceptual system; while we
struggled ineffectually to bend the bars at the prison window, the door
was opening to a new and revolutionary interpretation of the
Heisenberg principle. The Heisenberg principle does not represent a
limitation on our capacity to observe but rather a limitation on the
validity of the classical conceptual scheme! In this interpretation the
concepts derived from macrophysical experience are useful, and appear
to have precise content only because in macroprocesses the quantity, A,
is wholly negligible.

Revolutions, no matter how soundly based, well intentioned, and
essential to continued progress, are highly destructive in their initial
phases. If a revolution is to succeed, it must look quickly to the
replacement of those institutions that performed essential services in

" the. old regime with new ones that are consistent with revolutionary
goals. Unless the vitally needed reconstruction is possible within the
new system, the revolution must fail. The new interpretation of the
Heisenberg principle undermined a number of the concepts on which
every scientific structure was believed to rest (Chapter 6).

After the chains that bound thought to classical ideas were broken,
it .was found that the classical concepts of “system property” and
“state,” on which classical scientific structures had been based, were in
aeed of either extensive repair or complete replacement. Unless con-
cepts were created to do the work normally required of the “property”
and “state” concepts in classical physics, a consistent theory of micro-
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physics, founded on the new interpretation of the Heisenberg principle,
could not be formulated. Chapters 7 and 8 constitute a sketch of the
required creations. They indicate that meanings, closely allied to but
essentially different from classical meanings, can be assigned to the
concepts of “property” and “state,” and that with these new meanings
there remain no apparent internal contradictions in the conceptions
required for a reconstruction of theory.

In the course of redefining the “property” and “state” concepts,
two ideas of central significance for the character and content of
microphysical theory were singled out for close examination: “incom-
patible properties” and “statistical determinism.” The complex of fea-
tures related to the words “indeterminacy” and ‘“‘unobservability,” so
characteristic of microphysical phenomena, may be traced to the rela-
tion of incompatibility between pairs of microphysical properties
(Chapter 7). This new relation of incompatibility forms a bridge be-
tween the sharply differentiated relations of “compatibility” and “ex-
clusiveness” that are familiar in classical physics. It is the incompati-
bility of observable properties that causes classical interpretation to fail
so completely in microphysics. '

The principle of statistical determinism (like the corresponding
classical principle of determinism), is an inductive generalization based
on the observation of the regular and lawful behavior of ensembles (for
the classical case, single systems) of suitably prepared microphysical
systems (Chapter 8). Although the behavior of individual microsystems
is indeterminate, relations between the properties of ensembles may be
definite and reproducible. The principle of statistical determinism
makes possible the construction of consistent ideas of “state” and
“state properties,” and characterizes the general form of law and
prediction in the realm of microphysics.

The measurement of a state observable w on a state ensemble |u']
converts the ensemble into a mixture of subensembles, each charac-
terized by one of the state properties in w. The fraction of systems in
the w; subensemble is just the probability, [wilu'], of finding wy in
l«'). This consideration suggests the existence of a relation of some
kind between the statistical properties of the u state and the statistical
properties of the wy states which result on measurement of the
observable w.
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On a classical (and incorrect) interpretation of the property concept,
which assumes the objective existence of any measurable property, the
relation between the u' and wy ensembles is obvious: The u’ ensemble
is simply a mixture of wy ensembles with the relative weights [wylu'].
In this view (Subsection 9.2), the probability of measuring v’ in |u'] is
linearly related to the probabilities of the measurement of v in the
separate wy states:

'] =2 ' lwe] [we lu']  (classical) (9-10)
K

The falsity of this classically based result has been stressed repeatedly
(Chapters 4, 7, and 9).

The relation between states postulated in quantum mechanics is
quite different from Eq. 9-10. The structure of this new relation is
suggested by the application of the classical theory of linear fields to
the analysis of microphysical experiments. In this theory a field motion
is described by amplitudes of some kind (e.g., the displacement of a
string). Because of the linearity of the theory, particular field ampli-
tudes can be expressed as linear combinations of component field
amplitudes. Such a classical theory may be used for the interpretation
of certain microphysical experiments if the squared amplitudes are
interpreted not as classical intensities but as probabilities. (For this
reason the amplitudes when used for microphysical considerations are
called probability amplitudes.) These considerations suggest the possi-
bility of a connection between microphysical states in terms of proba-
bility amplitudes of the same form as that which occurs in the classical
theory of fields. The theory of quantum mechanics assumes that a
probability amplitude exists for each pair of state properties — for the
V', u' properties the amplitude (a number) is denoted by @'lu’) (read:
the amplitude of property v’ in state u") — such that [w'lu)* = [v'|u']
and

Wlu'y= il(v'lwk)(wklu'). (9-12)

This relation states that the amplitudes of any property in the u’ state
can be expressed as a linear combination of the amplitudes of that
property in the wy, states into which ' is decomposed by observation
of' w. The coefficients in this combination, however, are not the
probabilities [wylu'] but the probability amplitudes wilu'). It is of
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interest to note that Eq. 9-12 can be obtained from the incorrect
classical result (Eq. 9-10) by substituting amplitudes for probabilities
throughout.

The assumption of the general validity of (Eq. 9-12) is of great
importance for the mathematical structure of quantum mechanics. In
Chapter 9, various consequences of the existence of probability ampli-
tudes and of the relations Eq. 9-12 are examined.

10.2 The Laws of Quantum Mechanics. This book is concerned
not with the content but with the underlying conceptions of quantum
mechanics. Our work specifies the questions that microphysical theory
must answer but does not describe the theory from which explicit
answers may be derived. A detailed presentation and analysis of this
theory may be found in the many texts on quantum mechanics; space
limitations prevent a full treatment here. It seems unreasonable,
however, to close our development of the subject without at least a
brief sketch of the remarkable and beautiful theory that has been built
on the foundations examined in Chapters 7, 8, and 9.

To describe the additional assumptions or laws that, together with
the assumptions on amplitudes of Chapter 9, complete the theory of
quantum mechanics, an important new concept, the “linear operator
associated with an observable,” must be introduced. An observable, s, it
will be recalled, is characterized by the set of its possible values or the
“spectrum of the observable,” and the states! in which the observable
has a definite value (the “proper states of the observable”). From the
spectrum of an observable and the associated proper states, a linear
operator S belonging to or associated with the observable s may be
constructed® For our present purposes the technical procedures for the

1The state concept used here is not that of the state ensemble but the
mathematical state of Chapter 9. A state | Y, it will be recalled, is defined by its
various amplitudes or by its representation in some basis. Any state may be
expressed as a linear combination of other states. In particular, it is meaningful to
multiply states by numbers and to add them.

2 A function f associates to each number x in some domain another number
f(x). Similarly an operator S associates with each state | ) of a system another
state of the system which may be designated by S |y). The operator § is
completely defined if the state S | Y is specified for each state | Y. A function f
is linear if flax) = af({x) and f{x +y) =f(x) + f{y). Similarly an operator S is linear
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construction of operators from observables (which, incidentally,
depend critically on the amplitude concept of Chapter 9) and the many
ways that operators may be mathematically formulated need not con-
cern us. Of importance is simply the fact that the spectrum and proper
states of an observable uniquely determine the associated operator and,
conversely, that the operator determines the spectrum and proper states
of the associated observable. The introduction of operators involves no
new physical concepts. But operators provide more than merely com-
pact instruments for the description of observables; they form the
microphysical analogs of the “dynamical variables” of classical theory
and it is to this fact that they owe their theoretical importance.
Definitions may be given for the multiplication of an operator by a
number and the addition of operators and products of operators. In the
resulting algebra of operators all the rules of ordinary algebra hold
except the commutative rule: the products SR and RS of two operators
need not be equal — i.e., R and S need not “commute.”
~ The way in which operators are defined in terms of the proper states
and spectra of observables directly implies that operators constructed
from compatible observables commute and that operators constructed
from incompatible observables do not. Consequently, if the operators
R, S belonging to observables r, s are given, it is a simple matter to
determine whether the observables are compatible or incompatible. If
the operators commute they are compatible; if not they are incom-
patible. However, once the operators for a pair of observables are
supplied, much more can be derived than such qualitative features as
compatibility or incompatibility. The possible values of the observables
r, s and the amplitudes (representatives) of the proper states may be
obtained. In particular the amplitudes (s;lrg) for all pairs of possible
values of s and r and, hence, the associated probabilities [s;lrx] can be

iFS{ciY) =ciSIY} and S{I Y + | P3=S|Y)+ S| P. Thus if the states
STY), S1X), S| @ are given the state associated by S with any linear combination
of | {), | . | ¢ can be determined. Since any state is a linear combination of a set
of basis states a linear operator is completely defined when it is defined for a set
of basis states. The operator S associated with observable s is defined by the
associations 8 | 55) = sg | 55, (k=1,2,...) where sg is a possible value of the
observable s and the | S are the states in which s is certain to have the value sz.
Since any state can be expressed as a linear combination of the | sz) states these
associations completely define S.
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computed. It follows that all the properties of a microphysical system
can be derived once the operators that are associated with the obser-
vables measurable on that system are known.

In the theory of quantum mechanics, laws are formulated which
specify the operators that are to be associated with observables that
have classical descriptions. Consider, to begin with, the observables x, p,
the components of position, momentum along some axis, of an entity
(electrons, protons, neutrons, etc.) on which these observables are
measurable. Let the unknown associated operators be X, P. By the
Heisenberg principle, x and p are incompatible; consequently, the X, P
operators do not commute. Since the “degree” of incompatibility (this
“degree” is measured by the precision with which x and p are simul-
taneously measurable) is determined by Planck’s constant, one must
expect that the difference between XP and PX will involve this con-
stant. The theory of quantum mechanics assumes the operators for the
position and momentum observables are related by:

XP — PX = ifi. ' (10-1)

(Other arguments into which we cannot go here may be adduced to
suggest the truth of Eq. 10-1, but ultimately this relation must be taken
as a primary assumption of the theory.) It is a remarkable fact that this
relation, together with the natural assumption that both x and p have
infinite continuous spectra of possible values, effectively determines the
structures of both the X and P operators. From Eq. 10-1 the amplitudes
& | p) and the expression Ax Ap >7/2 for the uncertainty principle
may be derived. It is through the law expressed by Eq. 10-1, perhaps
the most important of all the laws of quantum mechanics, that
Heisenberg’s uncertainty principle is inserted into the structure of the
theory.

Any two components of position (or of momentum) are assumed to
be compatible. Compatibility is also assumed for any component of
position and an orthogonal component of momentum. Finally all
observables belonging to one “particle” are assumed to be compatible
with observables relating to another. The operators associated with
these compatible pairs of observables therefore commute. The operator
relations implied by these statements together with Eq. 10-1 specify the
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operators for all the Cartesian components of the position and
momentum observables.

Any classical observable may be expressed as a function of the
position and momentum variables. Thus, the third component of the
angular momentum is given by ms = Xx;p,—X2D,, the energy of a
one-dimensional oscillator by e = p*2m + kx%2, etc. What operators
are to be associated with such observables? The answer to this question
requires an additional assumption: Effectively, it is assumed that if
observables r, s are described by operators R, S, then the observable
classically defined by r + s is associated with the operator R + S. By the
use of this assumption, the operators for classical observables such as
ms and e can be expressed in terms of the previously specified position
and momentum operators. In most simple cases the operators are
formed by the substitution of the known X, P operators for the
corresponding variables in the classical expressions for the observables.
Thus the operator associated with the mjs observable is M3 =
X, P,—X, Py, and that for the energy of a one-dimensional oscillator is
E=P*2m+%kX 2.

Note that the scheme developed above provides operators only for

_observables that have a classical expression in terms of position and
momentum variables. Many nonclassical observables have been dis-
covered in microphysical studies; the most familiar example is that of
spin: For nonclassical observables no general rules for the theoretical
formation of associated operators is known. Operators must be
designed or invented for such observables to provide a fit between
theory and observation.

Once the operator for e, for instance, hasbeen specified in terms of
the X, P operators (E = P?[2m +kX?%2), it is possible to determine the
spectrum of e and to calculate amplitudes such as (x| ey, {p e and,
hence, the distribution of x or p in states with the energy value e, etc.
By means of the work of Section 9.5, moreover, it is possible to
determine the time dependence of arbitrary states of the oscillator.

The mathematical form of the theory of quantum mechanics may
now be summarized. The existence of the linear relations between
gtates formulated in Egs. 9-12,9-13 permit the description of observ-
ables by associated linear operators. The operators that describe classi-
cal observables can be constructed theoretically by the use of the
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fundamental law expressed by Eq. 10-1 and subsidiary rules. No similar
rules exist for nonclassical observables; the associated operators must be
obtained by other means. Once the mathematical operators for all the
observables of a microphysical system are known, the measurable
properties of the system may be deduced.

10.3 Consequences of a Successful Theory of Microphysics. The
development of quantum mechanics and the associated conceptual shift
from classical thought constitutes one of the most exciting of the many
intellectual adventures recorded in the history of civilization. The
construction of a theory that describes the properties of the con-
stituents of bulk matter represents, however, much more than an
achievement in pure thought. The importance of the theory for chemis-
try is obvious; the quantum mechanics provides chemistry with a
complete theoretical framework. Developments in the chemistry of
large molecules has made possible the recent exciting discoveries in
biology relating to the structure of the gene. It would seem that
biologists, equipped now with a powerful theory of atomic and mole-
cular processes, are only just short of a physical understanding of living
organisms. ' -

The numerous technological, and hence social and political, conse-
quences of quantum mechanics are rapidly changing the very character
of our lives. The “bomb” is no doubt the most widely known technical
achievement made possible by a knowledge of microphysical theory,
but, hopefully, by no means the most important®.

Although the work in microphysics during the 45 years since the
discovery of quantum mechanics far exceeds (in volume) the work of
all previous physics, it is likely that we are still far from a full
appreciation of its content and significance.

3 The probability of establishing communication with beings on planets
belonging to other solar systems in our galaxy (it is believed that many solar
systems have planets which enjoy conditions favorable to the formation and
evolution of life) depends critically on what estimate is made of the durability of
technical civilizations with scientific capacities as good or better than our own. If
societies with a knowledge of quantum mechanics and its many consequences are
viable and persist, without loss of technical capacity, for millions of years, then it
is likely that there ar¢ many technical civilizations in our galaxy with the
instruments needed to send us meaningful signals. If, however, societies with
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10.4 Critical Notes. Some physicists find quantum mechanics
psychologically unsatisfactory despite its great success in explaining
observed microphysical relations and in predicting new ones. Quantum
mechanics does not “explain,” and we appear to be unable to observe,
what happens to an electron in the course of passing a slit in a
diffraction experiment. Instead, the theory specifies merely the distri-
bution in position of an ensemble of electrons at a detecting screen. In
accepting the successful and revolutionary concepts of indeterminacy
and incompatibility, physics gives up the effort to provide a “picture”
of “objective reality” and limits itself to what some regard a relatively
menial task — the prediction of the results of observations.

Consider, for example, the question, “What is an electron?” In the
early sections of this chapter both the classical “wave” and “particle”
models of an electron were rejected, for neither provides a satisfactory
description of all features of diffraction experiments. A fair number of
words have been devoted to describing what the electron is not, but the
reader will search unsuccessfully through the constructive considera-
tions of Chapters 6, 7, and 8 for the sentence: “Thus we see that the
electron is . .. .” The observable phenomena produced by electrons are
“described by quantum mechanics in great detail, but to a request fora
short description of an electron the theory can only reply: “The
electron is an entity with a certain set of observable properties; among
these there exist well-defined statistical relations.” This answer is not
likely to excite the response, “Oh! So that’s what an electron is.”

Because of the indefiniteness of the statistical descriptions in the
new theory and because of the failure of quantum mechanics to
““describe phenomena in terms of the objective characteristics of
microsystems, a few of the great contributors to the theory, including

developed technologies are inherently unstable and are likely to destroy
themselves, either by the powerful weapons that an understanding of micro-
physics makes possible or perhaps merely through a decay of spirit after a period
of stressless living in technological abundance, then the chance that two such
societies should coexist in the galaxy is negligible. During the period we on this
planiet are ready to communicate, there would be no one out there to whom we
could.successfully talk.

The detectioh of intelligent signals from interstellar space would not only have
enormous intrinsic interest but would he very reassuring as regards the future
existence of our own civilization.
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Einstein, Schrodinger, and de Broglie, remained dissatisfied. As yet,

~ however, no successful alternative to quantum mechanics has been

discovered and most physicists believe that further advances 1n theory
will not lead back to classical concepts. In fact, there is a general
tendency to examine critically various classical presumptions that are
still retained in quantum mechanics. The meaningfulness, eg., of
arbitrarily small space-time intervals has been questioned. Are distances
of the order of 107!6 cm observable, or time intervals of 1072% sec (in
10725 sec a photon travels about 107'* cm)? If not, are there new

- constants that determine limitations on the meaning of small intervals

in the same sense that # measures the limitations on the concept of
simultaneous position and momentum?

The future of physics cannot, of course, be predicted. However, the
character of current theoretical investigations suggests that, as penetra-
tion into. the microphysical domain goes on — with investigations into
the interiors of “elementary” particles, and with the study of processes
involving energy transformations of billions of electron volts —new -
revolutions will carry physics ever further from classical concepts.

10.5 Conceptual Revolutions in Physics. The history of physics
includes three major conceptual revolutions. The work of the seven-
teenth century which, with the publication of Newton’s monumental
Principia, gave to physics its distinctive character, revised earlier con-
cepts of “motion,” “force,” and ‘“mass.” Einstein’s theory led to
radical changes in concepts of “space,” “time,” and “gravitation.”
Quantum mechanics revised concepts of “gystem property” and “deter-
minism.”

These revolutions have several characteristics in common. In each
case, certain observations appear to face existing theory with insuper-
able difficulties; within the reigning system of concepts the problems
set by these observations appear to have no solution. Instead of plan-
ning a painful and diligent search for new features of nature which
might make solutions possible within old patterns of thought, the new
theory lightly bypasses the problems and frames its concepts and
axioms so that the offending observations are introduced into its very
foundations. Instead of continuing to lose the game to nature, the
physicist tries changing the rules of play. It takes great genius, however,
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to invent new rules that make for playable, profitable, and interesting
games.

. Before the time of Galileo and Newton, men had struggled for
centuries to “explain” the motion of an arrow after it leaves a bow, or
the motion of a pebble after it leaves a sling. Accepted theory, largely
Aristotelian, claimed that motion without a mover is unthinkable.
What, then, pushed the arrow along in its flight? Newton does not
answer this question; he simply assumes, in his first law, that objects
“paturally” maintain motion. The feature of motion that is significant
for Newton is not constant velocity, but changes in velocity —i.e.,
acceleration.

Within classical conceptions of space and time, the implications of
the Michelson, Morley experiment (and many others) are paradoxical.
How can the speed of light be independent of the motion of an
observer? Einstein does not answer this question; instead, he takes the
constancy of the velocity of light as one of the axioms of his theory.
His. great achievement is his proof that with this axiom a self-consistent
theory that preserves the principle of relativity is possible. To build the
constancy of the velocity of light into the theory required, however,
highly significant tevisions in classical concepts of space and
time.

The application of classical theory to microphysics appeared to be
blocked by the complex of observations associated with the words
“wave-particle dualism.” How could electrons appear to behave some-
times like waves and sometimes like particles? To classical theory,
electron behavior seemed simply schizophrenic. Quantum mechanics
does not “explain” the apparent duality. Instead, the dualism is inter-
preted as reflecting the inadequacy of the conceptual scheme under-
lying classical theory, and a new conceptual framework, within which
the apparent dualism fits in a natural manner, is sought. By means of
changes in the concepts of “determinism” and “property,” together
with important theoretical inventions, it is possible to construct a
consistent theory into which the wave-particle characteristics of micro-
physical entities can be fitted. The construction has been costly; to
athieve it many cherished habits of thought had to be sacrificed. “But,”
as the saying goes, “the recompense is ample.”
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The experiments that reveal the nonclassical characteristics of
microphysical phenomena are described, at various levels of sophistica-

tion and detail, in a large and rapidly growing number of books. The
following is a partial list.

1. Introduction to Modern Physics, by C.H. Blanchard, C.R.
Bumett, R.G. Stoner, and R.L. Weber (Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1963).

. Atomic Physics, by M. Born (Hafner, New York, 1962).
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(McGraw-Hill Book Company, Inc., New York, 1961).

5. Introduction to Modern Physics, by F. K. Richtmeyer, E. H.
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New York, 1955).

6. Introduction to Atomic and Nuclear Physics, by H. Semat
(Rhinehart, New York, 1954).

7. Quantum Mechanics, by S. Tomonaga (Interscience Publishers,
New York, 1962), Vol 1, chapters 1, 2, and 3.
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[

NOTE:

References 5 and 7 are on a somewhat more advanced level than the
others. Reference 5 gives considerable detail about the physical
arrangements and observational results of experiments; it contains
many references to original papers. Reference 7 is especially recom-
mended for the acuity of the physical insights it provides into the
significance of various microphysical observations; its discussion of
blackbody radiation is most instructive.

All of the general references listed above contain sections or chapters
devoted to the photoelectric and Compton effects. See reference 5 for
references to the literature.
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