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Preface 

In this final volume I have tried to present the subject of statistical mechanics 
in accordance with the basic principles of the series. The effort again entailed 
following Gustav Mahler's maxim, "Tradition = Schlamperei" (i.e., filth) 
and clearing away a large portion of this tradition-laden area. The result is a 
book with little in common with most other books on the subject. 

The ordinary perturbation-theoretic calculations are not very useful in 
this field. Those methods have never led to propositions of much substance. 
Even when perturbation series, which for the most part never converge, can 
be given some asymptotic meaning, it cannot be determined how close the 
nth order approximation comes to the exact result. Since analytic solutions 
of nontrivial problems are beyond human capabilities, for better or worse 
we must settle for sharp bounds on the quantities of interest, and can at most 
strive to make the degree of accuracy satisfactory. 

The last two decades have seen successful and beautiful treatments of many 
fundamental issues-I have in mind the ordering ofthe states (2.1), properties 
of the entropy (2.2), noncommutative ergodic theory (3.1), the proof of the 
existence of the thermodynamic functions (4.3), and the mathematical 
analysis of Thomas-Fermi theory (4.1.2), which provides an understanding 
of the stability of matter. The day is surely not far off when most of the 
remaining holes in the conceptual structure of quantum statistical mechanics 
will have been filled in and the questions that are not satisfactorily answered 
today will be added to the list of achievements. 

The successful completion of this course of mathematical physics in a 
reasonable time required the fortunate conjunction of several circumstances. 
As with volume III, I had active support from several collaborators, and in 
particular I am greatly obliged to B. Baumgartner, H. Narnhofer, A. Pflug, 
and A. Wehrl. Countless other colleagues have helped indirectly by coping 
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vi Preface 

with other time-consuming duties for me. The English edition has again 
greatly benefited from the critical reading of B. Simon. The working con
ditions at the University of Vienna were invaluable for the completion ofthis 
project. Last but not least, the frictionless collaboration of Springer-Verlag 
in Vienna and my secretary and calligrapher F. Wagner enabled the books 
to appear quickly and at a reasonable price. 

I am aware that the uncompromising way of mathematical physics is 
not the easiest. Yet I feel that it has been one of the greatest intellectual 
accomplishments of our era to cast the laws of Nature in a clear mathematical 
form with rigorously deducible consequences. No amount of labor is too 
high a price to have paid for this. Let me conclude by also acknowledging 
and expressing my thanks to the reader who has borne with me to the end of 
the course. 

Walter Thirring 
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Systems with Many Particles 1 

1.1 Equilibrium and Irreversibility 

Macroscopic bodies act in an irreversible and deterministic manner 
in contrast with the reversible and indeterministic character of the 
underlying laws of quantum physics. How can the apparent contra
diction be understood? 

We have learned to describe systems of finitely many particles with an 
algebra d of observables, and information about the systems with a state W 

on the algebra (cf. (III: 2.2.32». As our main goal is the study of everyday 
matter, our framework will be that of nonrelativistic quantum theory. For 
the purposes of contrast, or of aiding intuition, we shall also have occasion 
to call upon classical mechanics, where states are measures on phase space, 
and extremal states are point measures. In either framework time-evolution 
can be represented as an automorphism a -+ at for a E d in the Heisenberg 
picture. If desired, time-dependence can alternatively, in the Schrodinger 
picture, be put upon the state: W -+ WI> such that wt(a) = w(at). If the algebra 
is Abelian (classical mechanics), then the point of an extremal state moves 
along a classical trajectory in phase-space. 

In our earlier experience, systems of N particle are so complex for large 
N that it becomes impossible to reach precise, quantitative conclusions. It 
turns out, however, that the theoretical analysis again simplifies in the limit 
N -+ 00. Many properties become independent of the exact number of 
particles and other detailed characteristics of the physical system, somewhat 
in analogy to what happens in the central limit theorem of probability theory. 
This may seem peculiar at first; we have always had d = ~(.Yf), .Yf a 
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separable Hilbert space, and time-evolution was given by a unitary group 
on :Ye. What, then, appears so special about a many-particle system? Just 
that the information contained in a pure state about a many-particle system 
is so overwhelming that it would be too ambitious to employ the whole of 
8I(:Ye) for the observables. Actual measurements could never be made on 
more than a few observables, so 8I(:Ye) has to be cut down to size. For instance, 
suppose that a device is only equipped to observe one particle at a time, and 
is unable to detect correlations between particles. Then, rather than taking 
the entire tensor product of the individual particles as the algebra of observ
ables, it is reasonable to regard .91 as a single factor. Accordingly, many 
states differing on 8I(:Ye) reduce to the same state when restricted to d. (The 
classical situation is similar; the restriction of 

is 

f d3qz ... d3qN d3pz '" d3pN w(x 1,···, PN), 

so whole cylindrical regions of phase-space reduce to a single restricted 
state.) As a consequence large portions of the space of states on 8I(:Ye) are 
quite similar from the point of view of the reduced algebra d. If, in the 
Schrodinger picture, the state W t travels throughout the space of states, then 
its restriction takes on a certain value with a very high probability, unless 
prevented by some constants of the motion. This most probable state is called 
the equilibrium state over d. 

The irreversible tendency toward equilibrium has always aroused wonder, 
especially as the basic equations of dynamics are invariant under reversal of 
the motion (III: 3.3.18). We have even seen in classical mechanics that the 
trajectory of any point on a compact energy surface returns arbitrarily close 
to its initial position (I: 2.6.13). In quantum theory the Hamiltonian H of a 
system confined to a finite volume has purely discrete spectrum. If 8j and 
Ij) denote the eigenvalues and eigenvectors of H, then the time-dependence 
of an observable a is given by 

wtCa) = L cjck exp(it(8j - 8k»<Jlalk), 
j, k 

where the state W is represented by the vector Lj cjlj). The state wt(a) is now 
an almost-periodic function of t; if the sum is finite, and the 8j are rationally 
dependent, then it is actually strictly periodic. At any rate, to arbitrarily good 
accuracy, wt(a) again becomes nearly w(a) after some sufficiently long delay. 
The trouble is that the recurrence times are so unimaginably long that they 
have no physical relevance. Suppose, for instance, that there are N distinct 
energy differences Wj' The recurrence time can then be estimated as follows. 
The factors exp(iwj t) can be pictured as N clocks with hands moving at N 
different rates. The question is how long it takes for a certain configuration 
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of clock faces to reappear to within some angular accuracy I1cp. The con
figuration in the space of angles has measure (l1cp/2n)N, so the recurrence time 
is on the order of (l1cp/2n)-N/ro, where the reciprocal angular velocity l/ro 
is an average of the l/roj . Even for just N = 10, l/ro = 1 sec., and (l1cp/2n) = 
1/100, so that W t returns to W to within 1 % accuracy, the recurrence time is 
1020 sec., which is much longer than the age of the universe. 

The approach to equilibrium is connected to a loss of information; to be 
more precise, information does not get lost, but only less accessible. We 
have seen that when the wave-packet of a free particle spreads (III: 3.3.3), 
I1x grows linearly with time, although the state remains pure and thus has 
maximal information content. The observable with least deviation from the 
mean is, however, not x(t) but x(O) == x(t) - pt. 

This behavior can be seen even in classical motion if a minimal spread of 
the support of the probability distribution function in phase space is hypo
thesized to account for quantum effects. If, say, the initial probability density 
pep, q) is concentrated on a part of the energy shell {(q; P)IPl S P S P2} and 
is not pointlike, and it moves freely on a torus, then it eventually fills the 
energy shell densely with a "fuzzy" distribution. Faster particles overtake 
the slower ones, as bicycles racing in a stadium start packed closely together 
but later draw apart and eventually spread around the whole track (see 
Figure 1). 

The ergodic hypothesis has figured importantly in the history of statistical 
mechanics; it is the assumption that the trajectory of almost every point 
winds densely around the energy'shell in phase space, so that the time average 
can be replaced with the average over the energy shell. On the one hand this 
requires more than is necessary, since it suffices to fill a sufficiently typical 
part ofthe energy shell, the average on which equals the average on the whole 
shell for the reduced algebra of observables. On the other hand, although 
macroscopic measurements last much longer than the collision time, they 
last much less than the recurrence time, so one does not wait for the whole 
energy shell to be sampled. We shall discuss examples in which the 
equilibrium state is actually attained by the state in a reasonable time after 
reduction to one particle. 

A pictorial description of the situation is as follows. The information 
about a subsystem (i.e., the opposite of the entropy, to be defined later) as a 
function on the space of states of the total system consists mainly of a plain 
with few hills and still fewer mountains. The larger the total system, the 
further apart the prominences. Even if a path begins on a peak, it soon 
descends to the plain, and there is only the slightest probability that it will 
ascend another mountain in any conceivable time. The time of descent to the 
plain and the recurrence time are of completely different orders of magnitude. 
It takes only the time corresponding physically to a few collisions to descend 
to a level near that of the plain, whereas the other mountains lie in the un
fathomable distance. This means that equilibrium is reached long before the 
immense recurrence time required to wind throughout the space of states; 
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-

Figure 1 The motion of the density in phase space for a free particle on a torus. 
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generally, a path soon reaches states that can not be distinguished from 
equilibrium because of the limits of our measuring abilities. Of course, there 
is still the question of how one happened, at the beginning, to be at the top 
of the mountain, but that brings up the one of how the current state of the 
universe came about and is outside the scope of this book. 

Another puzzle is the apparent causal behavior that classical thermo
dynamics prescribes for macroscopic bodies. According to the arguments 
that have been advanced, one would rather suspect that the fluctuations of the 
observables are increased by the loss of information. This is actually true for 
microscopic variables like the positions and momenta of individual particles. 
However, if only the so-called macroscopic observables are considered, that 
is, roughly what was accessible to the more primitive experimental arts of an 
earlier epoch, then deterministic features arise. Their origin is simply that 
statistically independent quantities are being averaged: if a = (l/N)I.f= I aj' 
where w(aia) = w(ai)w(a) for i # j, then 

(i1a)2 = ~2 [w(I. (ajak)) - I. w(a)w(ak)] = ~2 .t (i1ay. 
j,k j,k j-l 

Thus i1a ~ N- 1/2, and for sufficiently large N the deviations from the average 
are negligible. We shall learn that in the quantum-theoretical formalism such 
an a approaches a multiple of the identity operator as N ---> 00. The limiting 
coefficient depends on the representation of the algebra. 

Let us verify the phenomena described above in two explicitly soluble 
models. Of necessity they will lack some of the complications arising in 
reality, but they exhibit the important features. They are embryonic forms 
of systems of fermions and bosons. 

The Chain of Spins (1.1.1) 

Let the algebra of observables of the total system be generated by 6 j' 

j = 1, ... , N, where each 6 j is a copy of the usual Pauli matrices 6. Instead 
of Cartesian components we use a == aZ and a ± == (aX ± iaY)/2, which satisfy 
the commutation relations 

[aj' an = ±(jjk2ak±, 

[at, a k ] = (5 jk a k . ( 1.1.2) 

The chain is closed by the identification of 6 j +N with 6 j , and the Hamiltonian 
that determines the time-evolution will be assumed to be of the form 

N N-l N 

H = B I. flja j + I. I ajaj+nB(n). (1.1.3) 
j=l n=l j=l 

The physical meaning of this is that the spins are coupled with magnetic 
moments flj to an external magnetic field B, and in addition there is an 
Ising-like spin-spin interaction with the nth neighbor. The strength B(n) of 
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this interaction is a function that can be specified later, and the periodicity 
allows us to assume Ben) = 0 for n > N/2. If the contributions to Hare 
denoted as in 

(1.1.4) 
n 

then the Hk commute with one another and with the (Jj. They are therefore 
constant in time, and the time-evolution of (J + and (J - = «(J +)* can be 
calculated easily from the relationship 

f«(J)(J+ = (J+f«(J + 2), 

which follows from (1.1.2). We find 

(J:(t) = «(J;(t))* = (J:(O) eXP{2i{BPk + ~ £(n)«(Jk+n + (Jk-n)]} 

(1.1.5) 

= (J:(O) exp(2itBpk) n (cos 2(£(n) + i(Jk+n sin 21£(n))(cos 2t£(n) 

+ i(Jk-n sin 2t£(n)), ( 1.1.6) 

where aCt) = exp(iHt)a exp( - iHt). 
The time-evolution consists of Larmor precession in the external field and 

a kind of diffusion along the chain due to the spin-spin interaction. Suppose 
that the state at t = 0 is pure and has the form of a product, where the spins 
have a 3-component sand (J: has phase (Xk: 

Then 

NI2 

f(t) = n (cos 2t£(n) + is sin 2t£(n)). ( 1.1.8) 
n =- 1 

If N is finite, thenfis almost periodic, and if N = 00, thenf(t) will generally 
tend to zero as t ~ 00 (supposing that Ben) tends to zero in such a way that 
the infinite product makes sense). To make this more explicit, let us consider 
the special case s = 0 and Ben) = r n - 1• If N = 00, then f satisfies the 
equation 

00 f(2t) 
f(t) = n cos rnt = --. 

n=l cost 
( 1.1.9) 

Since f is an entire function, this functional equation and the condition 
1(0) = 1 determine f uniquely-differentiate (1.1.9) to get the Taylor series 
of! Since the function (sin t)/t satisfies (1.1.9), it equals! Hence, as N ~ 00, 
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the expectation value of a± approaches zero. For finite N it follows from 
(1.1.9) that 

. _ NI2 _ n _ sin t [sin t2- NI2 ]-1 
fN(t) - TI cos 2 t - - 2- N12 

n~ 1 t t 
(1.1.10) 

Therefore, as discussed earlier, the recurrence time 2NI2 In grows exponentially 
with N, while the time it takes to reach equilibrium is independent of N. 

To summarize, we have ascertained that for N = 00 the initially pure 
state of the algebra reduced to one spin tends as t -> 00 to < a) = s, < a ±) = 0, 
which corresponds to a mixture: 

<G) = Tr(PG), 
exp( -rw) 

p = , 
Tr exp( -1]a) 

tanh1]=s. (1.1.11) 

Even though the expectation values of the at go to zero, their fluctuations 
remain nonzero, since ak+ ai: = (1 + ak)/2 is constant. The average magneti
zation 

1 
MN(t) = - L Gk(t) 

N k 
(1.1.12) 

works differently. In the state (1.1.7) of our example, <M~) = s, whereas 
<M"&) is O(N- 1/2), provided either that the initial phases are disordered or 
that the at get out of phase after a while because the J.1.k differ. The latter 
situation can in fact be undone by a sudden reversal of B, in the spin-echo 
effect. If N =00, the diffusion caused by suitable sen) is irreversible, and 
limt~oo <M!(t» = O. At t = 0 the fluctuations are O(N- 1/ 2 ) and remain at 
this magnitude for all time: If a: (t)a,( (t) is calculated by multiplying together 
two expressions of the form (1.1.6), then it should be recalled that a 2 = 1. 
However, if the function sen) falls off sufficiently rapidly with n, then the a2 

terms make little difference for large k - k', and the argument given earlier 
for the deviations of statistically independent quantities remains valid. 

Chain of Oscillators (1.1. 13) 

Now represent the total system by pOSitIOns and momenta q1"'" qN, 
P1, ... , PN, such that [qj, Pk] = ib jk , and let the time-evolution be determined 
by 

N 

H = L !(P7 + (qj - qj+ Y)· (1.1.14) 
j~ 1 

This Hamiltonian contains interactions only between nearest neighbors, and 
the chain can be closed by the condition of periodicity qj+N = qj' Pj+N = Pj. 
The masses and force constants have been set to 1, which amounts to measur
ing the time in units of the natural period of oscillation. The equations of 
motion are 

(1.1.15) 
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With a periodic extension of the variables, ~1' ... , ~ZN' such that 

~Zn = Pn, (1.1.16) 

they are put into the form 

~j = ~j+1 - ~j-I· (1.1.17) 

The variables ~n satisfy 
~ v 

C;n+ZN = Sn, I ~Zn+l = o. 

Recall that the Bessel functions satisfy the recursion formula jn = 
(In-I - I n+ d/2; as a consequence we see that the solution of the initial-value 
problem is 

00 

(n(t) = I ~k(0)Jk-n(2t). (1.1.18) 
k= - 00 

Remarks (1.1.19) 

1. Since 1 Jv(z) 1 - Iz/vllvl as Ivl-- CIJ, the sum over k in (1.1.18) converges 
for, say, bounded {~k(O)}. 

2. If N < CIJ, then (1.1.18) still holds provided that (k+ ZN(O) = ~k(O). 
3. Since the equations of motion are linear, the classical and quantum time

automorphisms are identical. 
4. There are still N constants of motion with the variables ~: 

ZN 

Ik = I ~j(j+n' 
j= 1 

k = 1, ... , N. 

With the auxiliary condition that Ln SZn+ 1 = 0, only N - 1 of the 
constants are independent, and we find that In I Zn+ 1 = O. If N = ::1:;, then 
Ik remains significant classically, provided that {~d E [z. 

In order to have a useful framework for discussing the questions that will 
arise as in these two examples, it is convenient for technical reasons to make 
use of the Weyl algebra (cf. (III, 93.1». With one particle, the Weyl algebra 
consists of the operators W(r + is) = exp(i(pr + qs», r, s E IR, along with 
their linear combinations and norm-limits. A state on the Weyl algebra is 
uniquely characterized by the function E(r, s) == (exp(i(pr + qs»). We shall 
only concern ourselves with coherent states (III: 3.1.13), which are of the 
form W(ZI) 1 u), where 1 u) is a Gaussian function, the width of which deter
mines the ratio between L1p and L1q. Since 

(ul W(r + is)lu) = exp [ - ~ (wr z + :) l 
it follows that 

dZ w 
(L1p)Z = - drz In E1r.s=0 = 2' 
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The expectation value in the more general state W(ZI) I u) can be calculated 
according to (III: 3.1.2; 1) as 

<W(zl)ul W(z) I W(ZI)U) = <ul W( -ZI)W(Z)W(Z')lu) 

= <ul W(z)lu) exp[~ Im(z*z' - Z*IZ)] 

= exp [ - ~ (wr2 + :) + i(rs' - rls)]. (1.1.20) 

Thus, the quantities !1p and !1q are the same as with I u), but the expectation 
values of p and q are now s' and -r'. 

Let us return to the issue of how the restriction of the many-particle state 
to a subsystem evolves in time. The operators exp[i(r~o(t) + S~l (t))], which 
describe the momentum of a single particle and its position relative to its 
neighbor, are useful to this end. Since [~o(t), ~l(t)] = i, they form a Weyl 
system. A state characterized by 

(exp[i n=~00(~2nrn + ~2n+1Sn)]) = exp [ -~n=~oo (wr~ + ~) 
+ i(rns~ - r~Sn)] 

can be regarded as the generalization of (1.1.20). 

Remarks (l.l.22) 

(1.1.21) 

1. The exponent on the left is a linear combination of Pk and qk' as appropriate 
for a Weyl system for several particles, yet the variables ~2n and ~2n+ 1 

are not pairs of canonically conjugate variables, since [~2n' ~2n-1] -=f. o. 
Thus (1.1.21) is not simply the tensor product of coherent states of a tensor 
product of Weyl systems. 

2. The significance of (1.1.21) is once again that the variables ~2n (resp. ~2n + 1) 
all have deviation wand expectation values s~ (resp. 1/wand - r~). 

With (1.1.21), the desired state on the one-particle system turns out to be 

E(r, s) == < exp(i(r~o(t) + s ~1 (t»» 

= (exp(i n=~ 00 [~2n(0)(rJ 2n + sJ 2n-1) + ~2n+ 1 (O)(rJ 2n+ 1 + sJ 2n)])) 

_ ~ { 1( 2 21) - exp n='-:oc; -4 w(rJ2n + SJ2n - 1) + (rJ 2n +1 + sJ2n ) ~ 

( 1.1.23) 
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The sums can be evaluated by recourse to the formulas 

'" L J 2i2t)J2n +/2t) = -!-(boj + J j (4t», j E 71, 
n= - 00 

'" L J2n+l(2t)JZn+l+i2t) = !(boj - Ji4t», (1.1.24) 
n= - 00 

which are derived in Problem 2. As t ~ 00, only the terms withj = 0 remain. 
Moreover, it can be seen from the integral representations and the Riemann
Lebesgue lemma that the contributions linear in the J k go to zero as t ~ 00. 

In all, we get 

(1.1.25) 

Remarks (1.1.26) 

1. The limiting state corresponds to the mixture E = Tr p W(z), p = 
exp[ -11(pi + qi)]/Tr exp[ -11(pi + qm, coth 11 = (w + l/w)/2 (Problem 
3). As w ~ 1, that is, for minimal mean-square deviation, 11 ~ 00, and the 
state becomes pure. With larger mean-square deviations, w #- 1, 
(w + l/w)/2 > 1, the limiting state is a mixture. 

2. Whereas at t = 0 the ratio of Ap to Aq is w Z , they become equal as t ~ 00, 

i.e., their ratio, 1, becomes the one defined by H. This corresponds to equal 
amounts of kinetic and potential energy. 

3. The reason that the existence of the constants (1.1.19; 4) does not prevent 
the onset of equilibrium is again the choice of the initial state. Of course, 
equilibrium can not occur if the system starts off in an eigenstate of a 
normal mode of oscillation. 

These few remarks will serve as our first orientation to irreversible 
phenomena. We have already studied an example of an irreversible phenom
enon in volume II, the emission of light. It is always important to take the 
limit N ~ 00 before t ~ 00, as in a finite volume the light returns to the point 
of emission, and the behavior is almost periodic rather than irreversible. 
The next section will deal with how the energy is affected by the first limiting 
process. 

Problems (l.l. 27) 

1. Calculate the entropy S(t) = - Tr p(t) In p(t) for one spin, wherefis given by (1.1.9). 

2. CalculateI:= - 00 J 2n(X)J 2"+ ix) and I:= - 00 J 2n+ l(X)J 2n+ 1 + j(x). 

3. Show that the density matrix p has the property stated in (1.1.26; 1). 
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Solutions (1.1.28) 

1. Since Tr p(t) = 1, the density matrix is of the form p(t) = 1 + c(t) . G. Let c(t) = 
1 c(t) I, which ~ 1. The eigenvalues of p(t) are 1 ± c(t), so 

2. 

3. 

[
1 + c(t) 1 + c(t) 1 - c(t) 1 - c(t) ] 

S(t) = - -2- 1n -2- + -2- ln -2- . 

Because Tr (Jj(Jj = 2b jj , we find c(t) = 1<G), and therefore c(t) = (S2 + 
(1 - s2)f4(t»1/2. Observe thatfis not monotonic, and hence that S does not increase 
monotonically from 0 to its equilibrium value, 

- --In -- +--In -- . [ 1 + s (1 + s) 1 - s (1 - s)] 
2 2 2 2 

exp[~ (t - D] = n=~oo tnJn(z). 

Putting Z = x + y yields 

. I (jJ/x + y) = exp[~ (t - ~)] exp[~ (t - ~)] 
J= - 00 2 t 2 t 

= (~tkJk(X»)(~tIJI(Y») = j=~ootj n=~oo In(x)Jj_.(y), 

so J/x + y) = 'L.""=-ooJn(x)Jj-n(y), which is the addition theorem of Schllifli and 
Neumann. Putting y = -x and changingj to -j then yields 'L.J.(x)Jn+ /x) = bjo , 

and with y = x, there results 

'fJn(x)J - j-n(x) = L (_I)n+ jJn(x)Jn+ /x) = J _/2x) = (-I)jJ j(2x), 
n n 

from which formulas (1.1.24) follow. 

00 

Tr exp[ -tj(PI + qi)] = L exp[ -tj(l + 2n)] 
n=O 

and 
o 

( 
02 02 ) otj Tr exp[ - tj(p2 + q2)] 

<p2 + q2) = - -or-2 - -OS-2 E(r, s) = - -=T-r -ex-p-=[-_-tj--:-(p-'2'+-q-:;"2)=-=]-

lead to the result. 

1.2 The Limit of an Infinite Number of Particles 

The first issues to confront for large systems are what happens to 
macroscopic properties like energy and volume as N -+ 00. 

The models examined in § 1.1 were only caricatures of reality. We shall now 
determine the physical properties of large bodies. The first question is how 
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the volume V has to vary as N --+ 00, in order to ensure that the potential and 
kinetic energies will be comparable in magnitude and that the interaction 
between the particles is correctly accounted for. In particular, when are E 
and V normal, extensive quantities proportional to N? In order to fix our 
ideas, we shall pay particular attention to certain special cases, large atoms 
and macroscopic or cosmic objects. The dominant force is then electrostatic, 
except that in cosmic matter gravity also has a decisive effect. Heuristic 
arguments will sometimes be adduced in this section for guidance in finding 
which quantities have limits as N --+ 00 in these systems. 

Free Particles (1.2.1) 

We begin with a consideration of noninteracting particles confined to a box 
of side R. The energy consists of the quantum-mechanical zero-point energy 
plus a thermal component proportional to the temperature T. As we are 
only interested in the dependence on N for large N, we set h = k = m = 1. 
As explained in (III: 1.2.11) the zero-point energy of a system of fermions is 
_(L1p)2 _ (L1X)-2, where L1x is about RN- 1/3 , since the volume available 
per fermion is only R3jN. We arrive at 

N 5 / 3 

E = 2R2 + ~NT. (1.2.2) 

If the two contributions are to remain comparable as N --+ 00, and if T goes 
as Nt for some power t, then R must be - N 1/3 -tI2, and EN- 1 - t will tend 
to a limiting value. The type of interaction will determine the value of t at 
which the limit is nontrivial and thus of physical interest. For this to happen 
the kinetic and potential energies have to remain of the same order of 
magnitude. 

Bosons do not have the solitary temperament, so L1x may be set equal to 
R. The energy is then on the order of 

N 3 
E = 2R2 + zNT. (1.2.3) 

If the two contributions are to have the same dependence on N and we make 
T - Nt, then R - N- t12 and E - N t+ 1. If it is insisted that Tremain 
constant and R - N 1/3, then E - N, but the zero-point energy drops below 
the thermal energy. The exact calculation for free bosons in fact reveals that, 
with a fixed particle density and below a critical temperature, a certain 
fraction A(T) > 0 of the particles are to be found in the ground state with 
Eo - N 1/3, and thus N may be replaced with (1 - A(T))N. This makes this 
usual limit also nontrivial. 
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Large Atoms (1.2.4) 

The Hamiltonian of a large atom (with e2 = 1) is 

H ~ (IP;l2 ZI 1-1) "I 1-1 = i~1 -2- - Xi + i':j Xi - Xj , (1.2.5) 

which can, if one wishes, be confined in a box. Recall that in volume III we 
figured out that if T = 0 and Z = N, the energy is about N S/3/2R 2 - N 2e2/R, 
which has a minimum about _tN7/3 fur R '" N- 1/ 3• Therefore, in the limit 
N -+ 00 we should expect to set t = 1. In §4.1 it will not only be proved that 
these limits converge, but even that the Thomas-Fermi theory becomes 
exact in that limit. The problem can thus be solved in the limit N -+ 00, 

though the solution is not suitable for a direct numerical comparison of 
theory and experiment. Since there are corrections of about N - 1/3, 10 % 
accuracy can not be expected for N ;S 103 • On the other hand, relativistic 
effects become significant when N '" 102• The kinetic energy is then'" N 4 / 3 /R 
and if Ze2 > 1 the energy is no longer bounded below. Hence the picture 
that emerges of a large atom is only an idealization, but at least one with 
many instructive aspects. 

Systems of bosons depend on N in a different way. They all settle into the 
ground state, and with Z '" N the radius goes as N- 1 and the energy as N 3 • 

The limits of EN- 3 and N 3 p(xN) would be expected to exist, where p is the 
one-particle density distribution. For thermal effects to remain significant, 
T must be chosen '" N 2 • This problem is mostly of academic interest, and the 
convergence of the quantities mentioned above has not yet been proved. 

Jellium (1.2.6) 

Like an atom, jellium consists of particles repelling one another with a 
Coulomb force and immersed in the field of an external charge distribution. 
The difference is that the charge distribution is not concentrated at a point, 
but rather homogeneously spread with density ~ through a box A (A will 
also sometimes denote the volume of A). It can be regarded as a model of 
highly compressed matter, with the homogeneous background charge 
coming from fast-moving electrons, and the particles with explicit coordinates 
being the nuclei. It is nevertheless often used to describe electrons in a metal, 
although it is rather far-fetched to speak of the assemblage of ions as a 
homogeneous background. The Hamiltonian is 

N Ip·12 N ~ f 
H = Jl --t- + i~j IXi - Xjr 1 - i~1 U(Xi) + 2" A d3xU(x), (1.2.7) 

where U(x) = ~JAd3x'/lx - xii. For the system to be neutral, ~JAd3X = N. 
The electrostatic energy of the background has been added in so that the 
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potential energy will remain bounded below by N(RN- 1/ 3)-1, where R 
is the linear dimension of A. The proof of this relies on the well-known fact 
of electrostatics that the Coulomb repulsion of two homogeneously charged 
spheres is less than or equal to that of two point charges at their centers-the 
inequality occurs when they overlap. Now imagine blowing the charged 
particles up to homogeneously charged spheres of radius a, and let 

( 4na3) - 2 f d3x d3x' - = U·.(a) 
3 Ix-xdsa Ix - x'i IJ' 

Ix'-x}lsa 
( 1.2.8) 

Then H may be written in the form 

Contribution r:t. is positive, since it is of the form 

J dx dx' 
I x - x'i p(x)p(x'), 

and 1/0' has a positive Fourier transform. It is easy to show (Problem 1) that 
fJ :;::: - (2n/5)~a2 N, equality holding provided that all the spheres lie within 
A, and y = (N /2)(6/5a), the self-energy of homogeneously charged spheres. 
As discussed earlier, b :;::: O. The lower bound -N«2n/5)~a2 + (3/5a)) is 
optimized at a = (3/4n~)1/3 == rs , which is precisely the radius at which the 
sum of the volumes of the spheres equals that of A. This computation leads 
to the 

Lower Bound for the Energy (l.2.10) 

N IPil 2 9 N 
H:;::: L --~-. 

i=12 10rs 

Remarks (1.2.11) 

1. Nothing has yet been assumed about the shape of A or the statistics of the 
particles. In particular, if A is spherical, then by Problem 2, 

N ~ f N N 9 N 2 - L U(xJ + - d3xU(x) S -3 L IXil2 - ~-, 
i = 1 2 A 2R i = 1 lOR 

where equality holds if Xi E A for all i. 
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2. Despite its great generality, the numerical accuracy of the bound (1.2.10) 
is surprisingly good. If Xi are the sites of a simple, face-centered, or body
centered cubic lattice, computer studies have been made of the limit as 
N -+ 00 of the potential energy over N r s- 1, yielding respectively the values 
- 0.880, - 0.895, and - 0.896 [3]. 

Lower bounds for H depending on the particle statistics may be derived 
from (1.2.10). The energy of free fermions is, as seen earlier, ~N5/3/R2 ~ 
Nrs- 2, and with the aid of the more precise proportionality factor, 

-2 -I) 0.81 + 
H 2: N(l.1rs - 0.9rs 2: - 4.4 N for all rs E IR (1.2.12) 

for spin-! particles. Even if the volume and consequently rs are treated as 
variables, the resultant lower bound is ~ N. We shall discover later that with 
no more than first-order perturbation theory we can obtain an upper bound 
not much different from (1.2.12): the Pauli exclusion principle makes the 
electrons stay at a distance rs apart, and this correlation imitates the ener
getically favorable configurations of (1.2.11; 2). Since the minimizing radius 
rs does not depend on N, in this model E ~ Nand R ~ N 1(3, so the exponent 
t of (1.2.1) equals zero. 

A very different picture emerges of bosons. With the kinetic energy (1.2.3) 
we find, ignoring precise coefficients, that 

N 1/ 3 N 
H 2: ~2- --. 

rs rs 
(1.2.13) 

The minimizing rs is ~N-2/3, and so E ~ N 5 /3. 

Remarks (1.2.14) 

1. It is uncertain whether the lower bound ~ N 5/3 displays the correct 
dependence on N. Upper bounds obtained with trial functions include 
more kinetic energy since the particles have to be correlated in order to 
attain a sufficiently negative potential energy. Until recently it was only 
possible to show that E < _CN7/5 [1]. 

2. If the background charge is concentrated at discrete points of a lattice, 
then trial functions can be thought up that show E < - cN 5 / 3 , and thus 
in this case the energy in fact goes as N 5 / 3 [2]. 

3. So far only the electrostatic energy has been accommodated in the back
ground, and minimized according to the density ~. If the background 
consists of electrons, then its zero-point energy must also be calculated. 
In a jellium of deuterium atoms, which are bosons, the energy turns out 
to be ~ N: The background density prevents them from collapsing, and 
for fixed rs (1.2.13) is on the order of N. 
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Real Matter (1.2.15) 

Real matter consists of positive and negative point-particles interacting with 
a Coulomb force, so 

H = i IPil 2 + I eiej 

i = 1 2mi i > j I Xi - X j I 
(1.2.16) 

for particles confined to a bo~ of volume A '" R3. We shall often particularize 
to the situation wherein all negative particles are identical with m = I e I = 1 
and all positive particles are identical with mass M and charge Z. Provided 
that Z is not so large that relativistic effects become significant, (1.2.16) gives 
a reasonably accurate description of ordinary matter. We therefore expect 
to find that E '" - N for R '" N 1/3. 

The proof of this fact, known as the "stability of matter," has to be deferred 
to §4.3. At this point we shall make do with several 

Remarks (1.2.17) 

1. Roughly speaking, the difficulty is that the double sum for the kinetic 
energy contains '" N 2 terms, so many cancellations are needed for the 
result to be only '" N. If, as in the gravitating system to be described 
shortly (1.2.19), all the contributions are of like sign, then cancellations 
certainly do not occur. Similarly, if the total charge Q == Ii ei is '" N 2/ 3 +£ 

and the system is restricted to a region oflinear dimension R '" N 1/3 , the 
energy fails to be extensive. The electrostatic energy Q2 / R is 5, N only if 
Q 5, N 2 /3• 

2. Even requiring that Q = 0 will not guarantee that I E I '" N if all the 
particles are bosons. To prove this, rewrite (1.2.16) (with M = Z = 1) as 

N- I -12 N+ I + 12 
H = L ~ + L ~ + L I Xi- - xj-I- 1 + I I X: - X; 1- 1 

i=l 2 ~=l 2 i>j ~>f3 

"I - +1- 1 - L.., Xi - X~ , (1.2.18) 
i,a 

where N+ = N- for a neutral system. Now take the expectation value in 
a state with 'II + ® 'II -, where 'II ± are the trial functions that led to 
E '" - N 7/5 for Bose-jelli.um. Although the particles are correlated, the 
charge density is homogeneous, as for instance 

I'P+I_ Llxi- - X:I-11'P+) = - ¢I f _d3~ . 
\ i, ~ i A I Xi X I 

The last term in (1.2.28) is therefore equivalent to - Li U(xi-) - L U(x:) 
+ 2(¢/2)J d3xU(x), and there results the sum of the energies ofthe positive 
and negative Bose-jellia. The expectation value is consequently about 
-N7/5, which is an upper bound to the energy by the min-max principle 
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(III: 3.5.21). This "instability," which corresponds to the ground-state 
energy being nonextensive and the spatial contraction of many-particle 
aggregates of charged bosons, does not imply that individual atoms con
sisting of oppositely charged bosons would be unstable. A single, non
relativistic atom of He4 with its electrons subjected to Bose statistics (but 
with their original mass and charge) would have the same ground-state 
energy as real He\ since the two-particle ground-state wave-function is 
symmetric in the spatial coordinates. The lesson here is that experience 
with two-electron molecules is not a trustworthy guide to the problem of 
the stability of matter: Since the Pauli exclusion principle makes no 
difference, the two electrons might just as well be bosons, but a system of 
many bosons would be unstable, whereas a many-fermion system is 
stable. 

3. Since He3 is just as stable as He4 , stability is not a matter of the type of 
statistics of one of the kinds of charge-carrier. Moreover, the relevant 
energy is always measured in Rydbergs, using the electronic mass, so 
matter should remain stable even in the limit of infinite nuclear masses. 

4. It could be argued heuristically that the potential energy should go as 
- N 4 /3 R - 1, since each charge sees an opposite charge at a distance 
RN- l /3, while charges further away should be screened. If this is added to 
the kinetic energy N S/3 R - 2 of fermions or N R - 2 of bosons, the minimum 
is respectively - -N at R - N 1/3 or - _NS/ 3 at R _ N- 1/ 3• 

5. In relativistic dynamics the kinetic energy is -Ipl - l/~x, so the system 
is softer. The heuristic arguments would evaluate the total energy of 
bosons as -N/R - e2N4/3/R, which is unbounded below when N is 
sufficiently large. Whereas nonrelativistic energies are always semibounded 
for any fixed N, it may happen that the relativistic energy goes to - 00 for 
sufficiently large, but still finite, values of N. 

6. The instability of a Coulomb system of bosons has nothing to do with the 
long range of the l/r potential, but comes from its short-range features. If 
the singularity is chopped off by changing the potential to Vex) = 
(l - exp( - w))/r, the system of bosons also becomes stable: Since the 
Fourier transform of V is 

_ 4nJ12 

V(k) = Ik1 2(lk1 2 + J12) > 0, 

with I ei I = e, we find that 

1 f d3k - 1 . 12 1 N 2 V = .L. eiej V(Xi - x) = -2 (2 )3 V(k) 4 exp(lk· x)ej - -2 .L ei V(O) 
'>J n J ,=1 

so H is bounded below by - eN. It could be argued that nuclei have a 
form factor, and that if J1 is taken as the reciprocal of the nuclear radius, 
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then V would be a more realistic potential than llr. This would lead to a 
simple proof of stability, but it misses the real point. Since the Rydberg, 
which is measured in electronvolts (eV), is determined by the mass of the 
electron, it is the kinetic energy of the electrons rather than the size of the 
nuclei that matters most for stability. The lower bound from the size of 
the nuclei alone would be "" - N MeV. 

Cosmic Bodies (1.2.19) 

The ilr potentials in an object with gravitationally interacting particles are 
all attractive, so the situation is drastically different. The ground state of the 
Hamiltonian 

(1.2.20) 

goes as _N7/3 for fermions. By the now familiar argument, E "" N S/3IR 2 -

N 2IR, which has its minimum value"" _N- 7/3 for R "" N- 1/ 3. This can 
easily be translated into an exact upper bound by the use of trial functions 
localized in [R3. Lower bounds are harder to come by, since energetically 
more favorable possibilities have to be ruled out. In this case there is an easier 
way: Write 

(1.2.21) 

so that each hi is the Hamiltonian of an atom with electrons having no 
Coulomb repulsion. Particle number i stands for the atomic nucleus, as it has 
no kinetic energy, and the others are electrons, with mass N - 1 and potential 
-I Xi - Xj 1- 1/2. According to (III: 4.5.15) it follows that hi ;::: - cN4 /3 , and 
indeed the result is a 

Bound for the Energy of Gravitating Fermions (1.2.22) 

c = 0(1). 

Remarks (1.2.23) 

1. Fermi statistics were not fully taken into account, since we have only anti
symmetrized with respect to N - 1 particles when filling the energy 
levels. Since complete anti symmetrization restricts the set of admissible 
functions further, (1.2.22) is at any rate a lower bound. 

2. The limit as N --+ 00 in this case exists with the scaling behavior t = t of 
(1.2.1), as in (1.2.4). This does not mean that the limit with t = t fails to 
exist for ordinary matter, but only that it is trivial. The potential energy 
goes to zero and the particles remain free. 

3. If the particles are bosons, then they can all be put into the ground state, 
and E "" - N 3• The radius of the ground state then goes as N - 1. 

4. The Hamiltonian (1.2.20) was for the discussion of electrically neutral 
particles; if they are instead charged, then K must be replaced with 
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K - eiej' If we bear normal matter in mind, the gravitational force comes 
from the protonic mass, and in units where the mass of the proton is 1, 
K/e2 ", 10- 36• Inequality (1.2.22) then afortiori provides a lower bound, 
since 

~ L Ip;l2 + L eiej + ~ L Ip;l2 _ L K 

2 i 2 i > j I Xi - X j I 2 i 2 i > j I Xi - X j I 
~ - 2cee4N - 2CK2N7f3. 

The number of particles determines which N -dependence dominates. 
Gravity begins to win out when N '" (e2/K)3/2 '" 1054, which is about the 
mass of Jupiter, and the energies of larger heavenly bodies are controlled 
mainly by gravitation. A concrete consequence is that the atoms get 
squashed and turn into a plasma of nuclei and electrons. This inequality 
provides a more rigorous foundation for the heuristic considerations of 
(II: 4.5.1). 

We shall see in §4.2 that the system (1.2.20) can be solved in the limit 
N ~ 00, as the Thomas-Fermi theory becomes exact. Thomas-Fermi theory 
provides an idealization of stars, various corrections again being needed to 
make it realistic. In particular, if N '" 1057 relativistic effects become impor
tant. As with atoms with Z > 137, the Hamiltonian is unbounded below, 
which leads to a catastrophe. Nonetheless, Thomas-Fermi theory reflects the 
thermodynamic properties of stars rather well. 

This section concludes with Table 1 displaying the many possibilities: 

Table 1 The N-dependence of the kinetic energy K and the potential energy V when 
N is large. 

K V Rmin E(Rmin) 

{Bose N/R2 _N4/3/R N- 1/ 3 - N 5 / 3 

{ <1,"ri, Fermi N 5 /3/R 2 _N4/3/R N 1/3 -N 

Nonrelativistic 

{Bose N/R2 _N2/R N- 1 _N3 
gravitational 

Fermi N 5 /3/R 2 _N2/R N- 1/ 3 _N2 /3 

r~ 
N/R _N4/3/R 0 -00 

{ <1",,,, ~'mU N 4/3/R _N4/3/R } 0 -00 

Relativistic or 00 or 0 . 
Bose N/R _N2/R 0 -00 

gravitational { . 
N 4/3/R _N2/R 0 FermI -00 

t If Rmin tends to + 00 more rapidly than N 1/3, then the kinetic energy per particle, 
N 1/3/R, becomes arbitrarily small, eventually ~ m, and the system is nonrelativistic. 
Hence Rmin certainly can not increase faster than N 1/3• Which energy breaks the stale-
mate depends on the strength of the charge. If Z < 137, the kinetic energy wins out, and 
if Z > 137, the potential energy wins out. 
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Problems (1.2.24) 

1. Calculate the p and y of (1.2.9). 

2. Verify (1.2.11; 1). 

Solutions (1.2.25) 

1. 

y: r d
3
x d3~' = fr2 dr dQr'2 dr' dQ' I [ ,:: 1 e(r' - r) + ::1 e(r - r')] ~ 

Jlxl,;alx-xl n.m r r 2n+ 1 
Ix'l,;a 

. Y~(Q)Y~*(Q') = s: s: r2 dr r'2 dr,(e(r'r~ r) + ~(r; r'))(4n)2 

2a5 
= 15 (4n)2. 

p: r d3Xd 3x,(_1 __ 1) = r .. , + f .... 
Jlxl,;a Ix - x'i Ix'i JI"I.I,,'I,;a 1"I';a 

x'eA Ix'l;::.a 

The second integral equals 0, as can be seen by expanding I x - x' 1- 1 in spherical 
harmonics. The first integral equals -(2na2/5)(4na3/3) if {x': Ix'i :0; a} c A, and is 
otherwise greater than or equal to this. 

2. V(x;):o; -(3N/2R) + (N/2R)(lx;l2/R2), equality holding for IXil < R. The self
energy of the background charge is 3N2/5R. 

1.3 Arbitrary Numbers of Particles in Fock Space 

The properties of large systems should not depend on the exact 
number of particles, so it is convenient to use a representation with a 
variable number of particles. 

We are used to dealing with atomic systems on .Yf'n, the n-particle Hilbert 
space. As it is impossible to count the particles in a large system, it is con
venient to regard the number N of particles as an observable capable of 
assuming various values. Accordingly, we shall study Fock space 

(1.3.1 ) 
n=O 

as the foundation for later analysis. The space .Yf' 0 is one-dimensional and 
spanned by the vacuum vector 10). If the particles under consideration are 
either all bosons or all fermions, then .Yf' n is either the n-fold symmetric or 
totally anti symmetric tensor product of .Yf'1 = L 2(1R3, d3x) with itself, which 
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will be denoted ..no 1 ® ..no 1 ® ... ® ..no 1 or ..no 1 /\ ..no 1 /\ ... /\ ..no 1. If h, 
j = 1, 2, ... , is a complete orthonormal set of functions on ..no 1, then tl:J.e 
vectors I hI ® h2 ® ... ® h) or respectively I hI /\ h2 /\ ... /\ h) are a 
basis for ..non. In the latter case all thejk are to be taken different. For bosons 
the same f's can be collected together and written as I Ii:, ... , Jj~>, with 
Lknk = N. The C* algebra generated on the individual..non of the boson Fock 
space by the symmetrized Weyl operators 

~ exp[i ~ (rnjXj + SnJP)], 

where (nl' ... ' nn) is a permutation of (1, ... , n), will be called the Weyl 
algebra, and is represented reducibly on ..no F-all bounded functions of N 
alone belong to the commutant of the representation. 

The irreducible field algebra on ..no F turns out to be invaluable for the 
many-body problem: 

Definition (1.3.2) 

Let Ifl' f2,···> == If 1 ® f2· . . >, and define the creation and annihilation 
operators a*(f) and a(f) by linear extension of 

a(fm) I Jj:, ... , Ii~> = c5mj,FtI Ii: - 1, Jj~, ... , Jj~> 
+ c5mh~IIi:, In-t,···, Ii~> + ... 
+ c5mjk~1 Jj:, Jj~, ... , Jj~-1 > (for bosons), 

a(f, ) I t. /\... /\ t. > = c5 . I t. /\... /\ t. > - c5 . I t. /\ t. /\... /\ t. > m J 11 J In m} 1 J J2 J In mJ2 J 11 J J 3 J In 

+ ... + ( -1t+ 11 hi' ... , hn-'> (for fermions), 

a*(fm) I Jj:, ... , I'}~> = c5mj, jn;+l If'}: + 1, I'}~, ... , I'};> 
+ c5mh jn;+lIf'}:, I'}tt,···, I'};> + ... 
+ c5mjk Jn,;+!If'}:, ... , I'j;+l> 

+ (1 - J/mj } ImJj:, ... , Jj;> (for bosons), 

a*(fm) I hI /\ ... /\ hn> = 11m /\ hI /\ ... /\ h) (forfermions), 

and a(oci + fig) = oca(f) + fia(g) foriand g E ..no1• 

Remarks (1.3.3) 

1. The prototypes of the a's for bosons are the a and a* of a harmonic 
oscillator (III: 3.3.5; 2), and for fermions they are the matrices a± of 
(1.1.2). The formal analogy is not just superficial; the operators a(f) 
show up when one quantizes coupled oscillators and then passes to a 
continuous limit, in the procedure known as field quantization, or second 
quantization. 
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2. Formally, the a's satisfy the commutation or anticommutation relations: 

[a(f), a*(g)] = (f I 9 ) (the scalar product on Jt' 1), 

[a(f), a(g)] = 0 for bosons, 

a(f)a*(g) + a*(g)a(f) == [a(f), a*(g)] + = (fIg), 

[a(f), a(g)] + = 0 for fermions. 

Conversely, (1.3.2) can be derived from the commutation relations and 
a(f) I 0) = O. The commutation relations are invariant under unitary 
transformations of the jj, so (1.3.2) is independent of the choice of the 
basis. In the spirit of the GNS Construction, vector states may be identified 
with operators: 

or 

I f n, fnk) - (I 1)-1/2 *(r )n, *(r )nkIO) 
j,' ... , ik - n 1 .•.. nk • a J j, ... a J ik ' 

I jj, 1\ ... 1\ jjk) = a*(jj,) ... a*(jjJ I 0). 

3. As in (III: 3.1.10; 2) the commutation relations reveal that the operators 
a(f) are unbounded. To get a C* algebra, it is necessary to use the bounded 
operators exp[i(oca(f) + oc*a*(f»]; the algebra they generate is called 
dB· 

4. The anticommutation relations for fermion fields are the same as those of 
()±, for which reason their a(f) are bounded: Ila(f)'P112 + Ila*(f)'P11 2 = 
<'PI(a*(f)a(f) + a(f)a*(f)'P) = UIf)II'P11 2, so IlaU)11 ~ Ilfll· 
Because <Ola(.f)a*(f)IO) = Ilf11 2, this means IlaU)11 = Ila*U)11 = 
II f II· The operators a(f) generate a C* algebra d F, which is the norm
closure of the polynomials in a and a*. 

5. It follows from Remark 4 that the mapping f -+ a*(f) is an isometric 
homomorphism of the Banach-space structure of Jt'1 to that of d F. (The 
mapping f -+ a(f) is continuous but antilinear, that is, a().I + f,lg) = 
A *a(f) + Jl*a(g).) For every unitary transformation V E fJ4(Jt' 1) there is a 
linear transformation a(f) -+ a(V f), which can be extended to an auto
morphism u: 

u(a(fl) ... aUk)a*(g 1) ... a*(g) = 
= a(Vfl) ... a(Vfk)a*(Vg 1)··· a*(Vg). (1.3.4) 

In particular, for every strongly continuous unitary group Vet) there is a 
norm-continuous group of automorphisms Ut on d F (i.e., the mapping 
t -+ urea) from IR to fJ4(Jt' F) is continuous in norm for all a). Therein lies a 
difference from the Weyl algebra, for which, although the free time
evolutionexp[i(rp + sx)] -+ exp[i(rp + sex + pt»] is strongly continuous 
in t, it is not continuous in norm. The time-evolution on dB is also not 
continuous in norm, so the property of continuity can not be expressed 
without reference to a representation. In this regard the field algebra of 
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fermions is much the nicer, owing ultimately to its being modeled on the 
matrices 

Fermion fields will consequently be preferred when investigating more 
problematic cases. 

6. The algebras .91 F and dB may be thought of as constructed from local 
algebras .91 A' containing only those a(f) and a*(f) for which supp f c A. 
Clearly, .91 A c .911\' when A c N. Since Yf 1 is the norm-closure of 
U Ae 1J;l3 L 2(A, d 3x), .91 F equals the norm-closure of U Ae 1J;l3 .91 A' 

7. It is common for annihilation operators to be introduced at single points, 
for which formally [a(x), a*(x')] = b3(x - x'), a(f*) = J d3xa(x)f(x), 
a*(f) = J d3x ' a*(x')f(x'). Although a(x) is densely defined as an operator, 
it is not closeable, so a*(x) exists only in the sense of a quadratic form and 
not as an operator (Problem 8). The object a*(x) is called an operator
valued distribution. 

8. Since a annihilates a particle and a* creates one, the spaces Yf n are not 
invariant subspaces of Fock space. It can in fact be shown that .91 F and 
dB are irreducibly represented on YfF (Problem 1). The algebra d F is 
said to be quasilocal. 

Remark (1.3.3; 5) implies that such things as translations and free time
evolution correspond to norm-continuous one-parameter groups of auto
morphisms on .91 F' The question arises as to whether they can be presented 
as strongly continuous, one-parameter unitary groups on Yf F' If the repre
sentation called for is just like the GNS representation of (III: 2.3.9) with the 
vacuum 10) as a cyclic, and also invariant, vector, then the answer is yes 
(however, see Problems 6 and 7): 

The Unitary Representability of the Automorphism (1.3.5) 

Let ug be a group of automorphisms of a C* algebra d, w be an invariant state 
(i.e., w(uia» = w(a)for all g), and 1tw be the representation constructed with w. 
Then the group of automorphisms has a unique unitary representation Ug on 
the Hilbert space Yf F, such that 

1tw(uia» = Ug 1tw(a)U;;l, UqO = 0, (1.3.6) 

where 0 is the cyclic vector. 

Proof 

If we let Ug1tw(a)O = 1tw(uia»O, then the Ug thereby defined satisfies the 
stated requirements. It is unique, since if there existed another U 9 with the 
same properties, then it would follow that (Ug U;; 1 - 1)0 = 0, Ug U;;l E 

1t(d)'. Now, because 0 is cyclic for 1t(d), it separates 1t(a)', and therefore 
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09 U;; 1 = 1 (cf. Problem 5). (Separating means that for a' E n(d)" a'ln) = 0 
implies a' = 0.) D 

Remarks (1.3.7) 

1. If the group is topological and the realization as a group of automorphisms 
is weakly continuous, then U 9 is strongly continuous, 

II(Ug - 1)nw(a)nI1 2 = 2w(a*a) - w(a*uia)) - w(ug(a*)a) -+ 0 

asg approaches the identity. 
2. Our representation of d F (1.3.2) is a nw such that w(a) = (0 I a I 0) for 

a E d F • Therefore n is the vacuum vector 10) ,and is invariant under the 
transformations brought up in (1.3.3; 5). It follows that the Euclidean 
group and free time-evolution can be represented by strongly continuous 
unitary groups of operators on Fock space. They consequently have 
self-adjoint generators (Problem 2), which are, however, not bounded. 
Even the operators U 9 do not belong to d F' To prove this fact we shall 
make use of 

Definition (1.3.8) 

The C* algebra obtained by closing the even polynomials in a and a* in 
norm is denoted d G' The norm-closure of the polynomials having the same 
number of a's as a*'s in each summand is dE' 

Remarks (1.3.9) 

1. d F :::J d G :::J dE' In the Fock representation, dE = {N}' n d F • 

2. Because[ab,c] = a[b,c]+ - [a,c]+b = a[b,c] + [a,c]b, if dEdAG 

and c E d x , A n A = 0, then Ed, c] = o. 

Asymptotic Commutativity (1.3.10) 

Let V(t) E fJD(L 2\R3)) be a one-parameter, unitary group of operators with 
absolutely continuous spectrum, such that V(t) -'" 0 as t -+ 00, and let ut(a(f)) == 
a(V(t)f). Then limt _ co II [a, ut(b)] II = Ofor all a E d G and b E d F ; this state 
of affairs is described by saying that d G is asymptotically Abelian with respect 
to ut • 

Proof 

First note that II [a(f), ut(a*(g))] + II = II [a*(f), u,(a(g))] + = I (V(t)g I f)1 -+ 0 
as t -+ 00. If d is an even polynomial and c is any polynomial in a(f) and 
a*(g), then with Remark (1.3.9; 2) it follows that the commutator vanishes 
asymptotically. Because the algebraic operations are continuous in norm, 
this extends to d G and d F' - D 
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Corollaries (l.3.11) 

1. Since the generators of the spatial translation group and the free time
evolution have purely continuous spectrum, for them Vet) ~ 0, and the 
appropriate commutators involving them go to zero. 

2. The corresponding one-parameter groups of unitary operators on Fock 
space, U t E !J8(YfF), can not belong to d F. Since every U t commutes with 
N, it must belong to dE' and hence II [Up ut,(a)] II < e for all e E IR+, 
a E dF,and sufficiently large t'. Note that II Ut Ut,aUt-: 1 - Ut,aUt-: 1Ut ll = 
II UtaU; 1 - all which obviously can not be arbitrarily small for all t. It is 
even true that d F (\ UtUt = Uo. 

3. Since d F is irreducible, d~ = ~(YfF) (III: 2.3.4), so Ut is certainly 
attainable as the strong limit of elements of d F, or even dE' 

Remarks (1.3.12) 

1. Since commuting observables are jointly diagonable, and hence can be 
measured simultaneously, if V is a group of translations, this implies that 
measurements separated by a large spatial distance do not interfere with 
each other. The local character of the algebra is important for this, and it 
does not apply to the Weyl operators, as exp[i(rp + sx)] and 
lima~oo exp[i(r'p + s'(x + a»] do not commute. Even the bicommutant 
d~ in the Fock representation is not asymptotically Abelian-for instance, 
the generators of the Euclidean group belong to the strong closure of d F 

and are constant with respect to the free time-evolution but do not 
commute. Therefore A~ is not asymptotically Abelian with respect to free 
time-evolution. 

2. The point of (1.3.10) for the time-evolution is that as time passes the 
disturbance due to a measurement diffuses so widely that local observables 
are not affected at much later times. This does not apply to the observables 
x and p, as p and x + pt fail to commute even at large t. Observe that we 
have as yet proved commutativity only for free time-evolution; the 
question of whether it also holds for more realistic time-evolutions 
remains open. 

3. This phenomenon does not occur for compact groups like the rotations; 
for them U is a sum of finite-dimensional representations, for which it is 
impossible that U ~ 0. 

Global Observables (l.3.13) 

The particle-number operator N was defined in (1.3.1). It is unbounded and 
thus ¢~(Yf F), which ~ d F' Its domain of self-adjointness is 

DN = {I/Io EB 1/11 (£) ... (£) I/In EB··· E YfF: J1 n2 II I/In II 2 < CXJ}-
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Moreover, unitary gauge transformations Vert) = exp(iNrt) E &6(Yl' F) also 
do not belong to d F, but can be attained as strong limits of elements of dE' 
In the Fock representation, 

Vert) = ~~~ exp(irt Jl a*(ij)a(ij)), 

where {ij} is an orthonormal basis. Although Vert) does not depend on the 
basis, it can only be defined in certain representations. 

Remark (1.3.14) 

Since N is conserved in all of the systems treated here, it is not physically 
possible to measure the relative phase of states of different N. This means 
that N creates a superselection rule in the sense of (III: 2.3.6; 7), and the 
algebra of observables should, properly speaking, be {N}' = d'F,. The 
representation of this algebra on Yl' F is reducible, as its commutant is 
{N}" =1= {A' I}. 

Observables at a Point (1.3.15) 

One frequently considers the particle density and current at a point, 

p(x) = a*(x)a(x) = L a*(ij)a(fk)fj(x)fk(X), 
j, k 

. 1 
J(x) = - -2 . (a*(x)Va(x) - (Va*(x))a(x)) 

ml 

= L a*(ij)a(h)(f. (fj(x)V hex) - (V f1(X))h(X))). 
j.k ml 

The h in these formulas must be chosen as an orthonormal basis of C1 

functions, in which case these observables are densely defined as quadratic 
forms. They are not, however, closeable: Their restrictions to Yl'l are the 
quadratic forms of 

1 
t/J*(x)t/J(x) and -. (t/J*(x)Vt/J(x) - (Vt/J*(x))t/J(x)), 

2ml 

the former of which is recognizable as the prototype of this phenomenon as 
encountered in (III: 2.5.18; 3). Matrix elements with, say, p(x) may be 
understood as distributional limits of matrix elements of the bounded 
operators a*(f)a(f) as f -+ (j3(X). Similarly, the continuity equation p + 
V . j = 0 holds at least for matrix elements if, evolving freely in time, 
if = - !1f12m. 
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Problems (1.3.16) 

1. Show that the representations of .91 F and dB on £1, are irreducible. 

2. Construct the generators of free time-evolution and of translation. 

3. Find dense domains of definition for the quadratic forms p(x) and j(x). 

4. Define the number of particles in the volume V, Nv = Iv d3xp(x), as an unbounded, 
self-adjoint operator. 

5. Ford c f!IJ(JIt') and n E JIt', show that n is cyclic ford iffn separates .91'. 

6. The mapping a -+ b: b(f) = a(f) + L(f) is an automorphism ilL of the Bose algebra 
whenever L is a linear, but not necessarily continuous, functional. Show that ilL is 
unitarily implementable on £1" i.e., there exists aU L E f!IJ(£1,) such that 1 = Ul U L = 
U L Ul and U La(f)Ui. 1 = b(f), iff L is continuous, which means that it can be 
written as L(f) = (p I f) for some p E Jftl. 

7. Let b(f) = a(<I>f) + a*(iJi f), <1>, 'I' E f!IJ(JIt'l), <I> invertible. Show 

(i) that a -+ b is an automorphism of the Bose (resp. Fermi) field algebra if 

(f)(f)* =+= '1''1'* = 1 = <1>*<1> =+= ('1'*'1')', 

<1>'1" =+= '1'<1>' = ° = ('1'*<1»' =+= '1'*<1>, 

where iJi = '1'*'; and 

(ii) that it can be represented as a unitary operator on Jlt'F iff <1>-1'1' E ~ z{JIt'l)' 

8. Show that although the a(x) of (1.3.3; 7) is densely defined, it is not closeable, and 
the domain of definition of its adjoint a*(x) contains only the zero vector. 

Solutions (1.3.17) 

1. Let b be an operator such that [b, a(f)] = [b, a*(f)] = ° for allf E £F. From the 
commutation relations of (1.3.3; 2) and a(f)IO) = 0, it follows that <0Ia(f1)'" 
a(fm)ba*(gl)'" a*(g.) 10) = <OlbIO)· <0Ia(f1)'" a*(g.) 10), which implies that 
<xlbx) = <0IbI0)lIxI1 2 on a dense set, and therefore b = <OlbIO) ·1. 

2. With Theorem (1.3.5) and the fact that the Jf.. are invariant, by reasoning as in 
(1.3.13) we find that the two generators are 

~~~ ~ f V fj(x) . V n(x)a*(fj)a(/;) d3x 

and 

s-lim i I f V fj(x)!,.(x)a(f,J d3x, 
M ..... oo k,i 

where the strong limit is defined as in (III: 2.5.8; 3). Formally, these can be written as 
J d3xVa*(x)· Va(x) and i J d3xa*(x)Va(x). 

3. For p(x), linear combinations offL a*(fj) I 0) with continuousfj. For j(x), the!,. have 
to be continuously differentiable. 
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4. Ny = Li.ka*COa(f,JSyd3xjj(x)h(x), 0 ~ Ny ~ N, is a Hermitian operator on 
DN (1.3.13), and hence the domain of its Friedrichs extension contains DN. 

5. "If": Let P be the projection onto the orthogonal complement of {aln)} for a E d. 
Then P E d' and Pin) = 0, so P = O. 
"Only if": Let a' Ed', a'ln) = O. Then a'aln) = 0 for all a E d, which implies 
that a' = 0 on a dense set, so a' = O. 

6. The mapping a ---> b is unitarily implement able on JtF iff there exists a vector lOb) E JtF 
such that bU) lOb) = 0 for anf E Jt'1.lt is clear that the existence of U implies that of 
lOb) = UIO). On the other hand, the mapping 

i= 1 i= 1 

where aj = a(fi), bj = be};), and {};} is an orthonormal basis, defines a unitary 
operator U, since this set of vectors is total. (Every vector is cyclic for an irreducible 
representation.) If L is not continuous, then ker L is dense in Jt'1' and therefore 
aU)IOb) = 0 for a dense set off's. This implies that lOb) = 10) and thus that L == 0, 
which is continuous. Therefore lOb) ¢ Jt' F' If, however, LU) = (g I f), g E Jt'1, it is 
possible to choose fl = g/llgll. Because a exp[ -a*llgll] = exp[ -a*llgllJ(a - IlglI), 
the vector lOb) = exp[ -a!llgll] 10) formany satisfies bk lOb) = (ak + bklllgll) lOb) = o. 
It is also normalizable provided that 

00 I 
00> <0 I exp[ -llglla l] exp[ -llglla!lIO) = L -2 Ilgf'n! = expllgl12, 

.=0 (n!) 

so <ObIOb) < 00 if IIgl1 2 < 00. 

7. (i) In matrix notation, for b = <l>a + 'Pa*, (i) must hold: 1 = [b, b*h = <1><1>* + 
'1''1'*, and 0 = [b, bl" = <1>'1" + '1'<1>'. Written as block matrices, this becomes 

( <I> 'I' ) ( <1>* 
'1'*' <1>*' + '1'* 

+'Pt) _ 
<l>t - 1. 

For invertibility it is necessary that 

( ;;* +<I>~t) ( 'P~t <I>~t) = 1, 

which produces the second line of the conditions. 
(ii) The Fock vacuum lOb) satisfies 0 = (<I>-lb)kIOb) = (ak + Mk1at)IOb)' where 

M = <1>-1'1'. Because [a, a*Ma*] = 2Ma*, it can be written formally as lOb) = 
c exp[ -a*Ma*/2]10). (Observe that by (i), M = Mt (resp. M = _Mt).) To 
determine the normalization constant c, we shan calculate 

<01 exp[ -taNa] exp[ -ta*Ma*] 10) 

when M = ± Mt, N = ± Nt, [M, N*] = 0 and M and N are for the moment 
real. They can then simultaneously be put into the normal forms 

C n, n,.J C m, m, .) 
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and respectively 

n,J (-m, m, -m, m, J 
with real, orthogonal transformations. The transformations preserve the commu
tation relations of the field operators, so we may use this basis to calculate 

(Olexp[-~aiJ exp[- ml aT2J10) = I (nnlm/~n (2n)! = (1 - nlml )-1/2 
2 2 n=14(n.) 

and, respectively, for fermions, 

(01 exp[ -n la2 a l] exp[ -mlaTaiJIO) = 1 + nlm l . 

Therefore, 

(01 exp[ -!aNa] exp[ -!a*Ma*]IO) = I.J (1 - n i m i )-1/2 = (Det(~ ~) r 1/2 

and, respectively, 

I.J (1 + nimi) = (Det(~ ~) f2. 

This can be continued analytically to complex matrix elements, and, in particular, 
in our case, 

ICI2(Det(~* ~)rl/2 = 1. 

The determinant is finite for M E ~ 2' Observe that in the case ofbosons, 1l>*1l> 2': 1, 
and so Il> = V(Il>*Il»I/2 is always invertible. The result for fermions is valid for M 
acting on either even or odd dimensional spaces. 

8. The dense domain of definition of a(x) consists of vectors with continuous, bounded 
1's. For example, for fermions, 

a(x)lfjl A ... A ii) = JJJx) I JJ2 A ... Afj) - JJ2(x)IJJI A JJ3 A ... A Jj) + ... 
+ (-l)n+IJJn(x)IJJI A'" Afj). 

The operator a(x) is not closeable. Suppose that J;.(x') = exp[ -I x - x' 12 A.]; then 
I J;.) -> 0 as A. -> 00, but a(x) I JA ) = 10) -1+ O. Formally, a*(x) creates a particle with 
wave-functionJ(x') = b3(x - x'). Since this is not normalizable, a*(x) makes every 
vector I JJk A ... A JJn) infinitely long. 

1.4 Representations with N = 00 

Systems ofN particles are represented on a Hilbert space that is the 
tensor product of N Hilbert spaces for single particles. The infinite 
tensor product opens the door to the new mathematical features of 
field theory. 
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The scalar product on an N -fold tensor product of spaces Yf 1 was defined 
multiplicatively by 

N 

<xix) = TI (xilxi), Xi E Yf 1· (1.4.1) 
i= 1 

If N = 00, the vectors I X) that can be used in this formula are initially only 
those for which the infinite product converges. The product might well 
converge to ° even though (Xi I X;) > ° for all i. In order to form the quotient 
space with respect to the zero vectors, it will first be necessary to form the 
equivalence class not only of vectors with some factor zero but also containing 
the vectors for which the product 

00 

converges to zero. On the quotient space, (1.4.1) defines a separating norm, 
so the space can be completed to a Hilbert space Yf, with the linear structure 
defined in the usual way. 

This does not yet, however, suffice to define the scalar product of different 
vectors Ix) and I y). Though only vectors such that (xd x;) = (yd y;) = I for 
all i need to be considered, there are still two possibilities, namely 

00 

(I) n I(Xily;)I--> c > 0, 
i= 1 

and 

00 

(II) n I(Xily;)I--> 0, 
i= 1 

where --> means unconditional convergence. In case (II), TI~ 1 (Xi I y;) --> ° as 
well, and the vectors may be considered orthogonal. Possibility (I), on the 
other hand, does not guarantee that TIi (Xi I y;) converges. If (x j I y) = 
exp(icp) I (Xj I y) I, then their product is said to converge ifnot only ni I (Xi I yJ I 
but also Ii I CPi I converges. One now encounters the convention that vectors 
may be deemed orthogonal whenever Ii ICPil--> 00 (case (Ib». Let us thus 
agree on a 

Definition of the Scalar Product (1.4.2) 

<xly) = c provided that TI (xily;) --> c #- 0, (case (Ia»; 

<xly) = ° provided that TI (xilyJ --> ° (case (II), or in the 
i 

divergent sense (Ib». 
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Remarks (l.4.3) 

1. It is easy to see that the scalar product this defines on Yf obeys all the rules 
of the game. 

2. The space Yf 1 has been assumed separable, yet even if Yf 1 = 1[:2, the larger 
space Yf is nonseparable. Let In) E 1[:2 be defined such that (n I n) = 1, 
(nleTln) = n E [R3, Inl2 = 1, and In) = In) ® In) ® .... Then (nln') = 1 
if n = n' and is otherwise 0, showing that there is an uncountable ortho
normal system of vectors. 

3. Possibilities (la) and (I) create equivalence relations between vectors, 
because the convergence of TIi (Xi I yJ and TIi (Yi I zJ implies that of 
TIi (Xi I zJ, and, likewise, that of TIi I (Xi I yJ I and TIi I (Yi I zJ I implies that of 
TIi I (Xi I zJ I (Problem 2). It is accordingly necessary to distinguish between 
strong (la) and weak (I) equivalence classes: 

(la): TI' (xd Yi) ~ c =f. 0, (I): TI' l(xiIYi)I--+ C > 0. 
i i 

The symbol TI' means that any finite number of factors ° are to be left 
out. The equivalence classes span linear subspaces, so Yf can be de
composed into (uncountably) many weak equivalent classes, for which 
vectors of different classes are orthogonal. Each weak equivalence class 
can be further decomposed into mutually orthogonal strong equivalence 
classes. Since the latter differ only by phase factors within a given weak 
equivalence class, they contain the same physical information. 

Representations of,r;1 on Infinite Tensor Products (1.4.4) 

For the reasons stated in §1.1 and §1.3 we shall be interested in the algebra 
generated by the operators f?d(YfJ, More precisely, let d be the algebra 
generated by f?d(Yfd ® 1 ® 1 ... , 1 ® !Jl(Yf2) ® 1 ... , etc., and let d" be 
its strong (= weak) closure. The first thing to notice is that an element a of 
d sends no vector of Yf out of its strong equivalence class; since other than a 
finite number of entries there is always an infinite 1 ® 1 ® 1 ... , nothing 
alters the convergence of TI~ 1 (Xi I yJ, The representation of d on Yf is 
consequently reducible to a high degree; every strong equivalence class is an 
invariant subspace. The formation of the weak closure changes nothing, since 
(xlany) = ° for Ix) and IY) in different equivalence classes, and if an ~ a, 
then clearly (xlay) = 0. Thus every strong equivalence class provides a 
representation of d and of d", and it is a peculiarity of the infinite tensor 
product that these representations are inequivalent so long as they arise from 
different weak equivalence classes. 

Example (l.4.5) 

Return to the simple case of (1.4.3; 2), and define eTj ' n = aj , and al in 
analogy with (1.1.2) such that aj-In) = I-n), at I-n) = In), at In) = 
aj-I - n) = 0. Let d be the algebra generated by aj and al, j = 1, 2, ... , let 
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nn be its representation on the strong equivalence class of 10), and define 
d n == nn(d). The representation is constructed like the Fock representation, 
the operators nn(an corresponding to creation and annihilation operators 
and 10) to the vacuum: nn( a f) I 0) = 0 for all j. The vectors nn( a;; ... a;;') 10) 
are total for the (strong) equivalence class, and the representation .91" is 
irreducible (likewise for d~ a fortiori). 

Remarks (1.4.6) 

1. These representations of the a's are always equivalent on finite tensor 
products; the Hilbert space constructed with the GNS procedure contains 
every vector I Of), in contrast to the infinite case, where the a's never send 
vectors out of equivalence classes, which, however, contain no vectors 
I Of) with Of of. O. 

2. The mean magnetization 

exists as a strong limit, so s E d~. As N - CfJ the commutator of this 
observable with any element of the algebra goes to zero in the norm 
topology, so s is in the center of d~. In any irreducible representation, s 
must be a multiple of the identity, and is thus the same as 0, its expectation 
value in the state 10). If 0 of. Of, then nn and nn' are inequivalent: If there 
existed a unitary transformation U mapping the equivalence classes of 0 

and Of onto each other and such that Unn(crj)U- 1 = nn'(cr,), then this 
could be extended to a transformation of the strong closures d~ and 
d~" and when applied to s it would imply that UoU - 1 = Of. This is 
impossible, since two different multiples of the identity can not be unitarily 
related. 

3. On the space Yf there exists a unitary transformation sending 10) to 10f). 
Let nj = Mjknk, MMt = 1; then the transformation 10) - I Mo)(on every 
factor of 10») is clearly the unitary transformation that brings this about. 
Upon restriction to an equivalence class, its action is 

Unn(a)U- 1 = nn(ak)Mkj , 

in contrast to the previous U, and so it creates an isomorphism between 
nn(d) and nn,(d). 

4, Within a given representation the rotation 

nn(a) - nn(ak)Mkj 

represents an automorphism of the C* algebra generated by the a's, and 
as such it preserves norms. Yet it can not be extended continuously to the 
weak closure. If there were such an extension, then n j . 1 - nk M kj , 1, but 
A·l is invariant under every automorphism, Consequently, in the repre-
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sentation space of 1tn there exists no unitary transformation U - I1tn ( a j) U = 

Mjk1tiak), as it would extend to 1tn(d)". Formally, it would turn In) into 
I nf), but there is no vector I nf) in the representation space of 1tn (cf. 
Problems (1.3.16; 6) and (1.3.16; 7)). 

5. Let M(t) be a one-parameter group of rotations on ~3-for definiteness 
about the 3-axis-and let U(t) be its representation on Yf as discussed in 
Remark 3. On a formal level, L= 1 aj could be regarded as the generator 
of the group. The unitary operators U(t) map the equivalence class of 
I n) into itself only if n points in the 3-direction, and in that case the 
restriction of U(t) to this equivalence class belongs to d~. Although it is 
not possible to define Li= 1 aj densely, Li= 1 (aJ - 1) is essentially self
adjoint in the representation 1tn on the dense set specified in (1.4.5) and is 
the generator of the rotations about the 3-axis. In other representations 
there is no workable definition of this operator, as all its matrix elements 
are infinite. It is natural to ask at this point what the generator of U(t) 
looks like. It turns out, though, that U(t) has no generator: By Stone's 
theorem (III: 2.4.24) the existence of a generator is equivalent to strong 
continuity of U(t), but U(t) is not even weakly continuous, for if n does 
not point in the 3-direction, then (nl U(t) I n) = 1 ift = 0 and is otherwise 
O. It is true that the mapping t -+ U(t) is weakly measurable, but the 
generalization of Stone's theorem for weakly measurable groups works 
only on separable Hilbert spaces. 

6. "Local" rotations of m spins are generated by Lj=l aJ and always exist. 

The representations of the a's on the individual strong equivalence classes 
studied until now have all been irreducible, and correspond to GNS con
structions using a pure state (cf. (III: 2.3.10; 5)). We shall also see in (2.1.6; 5) 
that mixed states likewise correspond to vectors in a larger Hilbert space on 
which the algebra is represented reducibly. That space is the tensor product 
of the irreducible representation space with another Hilbert space. The key 
fact to bear in mind when constructing such representations of the a's is that 
the infinite tensor product is no longer associative; for instance ([:4 ® ([:4 ® 
([:4 ® ... = «([:2 ® ([:2) ® «([:2 ® ([:2) ® «([:2 ® ([:2) ® ... i= ([:2 ® ([:2 ® 
([:2 ® ... : The vector 

fi [G) ® (~) + (~) ® (~)J ® fi [(~) ® (~) + (~) ® (~)J ® ... 

on the left has no counterpart on the right. For this reason we shall not simply 
take the tensor product ofthe space examined in Example (1.4.5) with another 
Hilbert space, but shall instead proceed as follows. 

Thermal Representations (1.4.7) 

If there is only one spin, i.e., d is generated by 1 and a, then the GNS represen
tation using the state given in (1.1.11) becomes a reducible representation on 
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(;4: ned) = .?4«(;2) ® 1, nCO") = 0" ® 1, ned)' = 1 ® .?4(1[2), Z = ned) n 
ned)' = {Ct ·1}, 

o = (~) ® (~)P; s + G) ® G)P' 0< s < 1, 

<0") = <010"0) = (0,0, s). 

Despite being reducible (d' i= {IJ(' 1}), this representation is a factor (its 
center is Z = {Ct ·1}). Accordingly, when passing to infinitely many spins we 
consider the representation on (;4 ® 1[4 ® (;4 ® . .. constructed with 
o ® 0 ® 0 ® .... We find, analogously, that 

ned) = (&6'(1[2) ® 1) ® (96(CZ) ® 1) (8) ... , 

ned)' = (1 ® 96(CZ» ® (1 ® &6'(1[2» ® ... + weak limits 

n(d)" is the weak closure of d, and Z = {IJ( ·1}, 

which is a reducible factor representation. 

Remarks (1.4.8) 

1. This representation is not equivalent to any of those found in (1.4.5); as 
mentioned above, the vector 0 ® 0 ® 0 ® ... has no counterpart in the 
earlier representations nn' since the corresponding functional in nn would 
then be strongly continuous. The state defined by 0 ® 0 ® 0 (8) ... on 
d. 

«crh . Ol)(crh · O2) ... (crh · Ok» = skn1n~ ... n" 

is a (norm) continuous linear functional, and therefore extensible to the 
whole C* algebra generated by d, but it still need not be strongly con
tinuous in a representation: For instance, in the representation using nn' 

2N 1 + 0" .. ° 
PN = TI I 

i~N 2 

converges strongly to 1, but <PN ) = «1 + snZ)/2t ---> 0 i= 1. Recall that a 
refinement of the topology on the range space or a coarsening of the 
topology on the domain space may destroy the continuity of a mapping. 

2. The fact that with only one spin, < cr) = Tr cr exp( -1]0" 3)/Tr exp( - 1]0" 3), 

might mislead one into thinking that for infinitely many spins, in the 
notation of (1.1.1), 

<.) = Tr· p, 

What goes wrong is that 

exp( -l} L~~l a) = 0 
Tr exp( -l} L~~la) 

as N ---> 00. 
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3. In the thermal representation (1.4.7) it is of course possible to write 
< . > = Tr . Po., where Po. is the projection onto the cyclic vector, but 
Po.¢d". 

Decomposition of the Representations (1.4.9) 

Because of the analogy between a± and the operators a and a* for fermions, 
the phenomena we have discussed are also characteristic of systems of 
infinitely many fermions.1t is not so important that the a's commute whereas 
the a's anticommute; the distinction can be gotten around with the right 
transformation. For a system of bosons the individual factors of the tensor 
product are already infinite-dimensional, which causes additional complica
tions. In either case there are a great number of inequivalent representations; 
the uniqueness theorem (III: 3.1.5) for finite systems does not hold any 
more. Thus it would be desirable to find a point of view that organizes them 
somehow. The concept of a factor was introduced in (III: 2.3.4), as an algebra 
with a trivial center, Z = {Co( ·1}. On a finite-dimensional space it amounts to 
a direct sum of equivalent irreducible representations. The first step in any 
decomposition is to collect the equivalent irreducible representations together 
in factors and then write the whole representation as a sum of various factors. 
In the finite-dimensional case this appears as shown in Figure 2. 

It will be observed that the projections onto the space Je ik of the 
irreducible representations belong to n(d)' and the projections onto the 
spaces Jei of the factors belong to the center. Both n(d) and n(d)' map 

£2 
,--__ ~J..'-__ ---., 

£22 

1t j(d) 

1t j (d) 

1t(d): 
1tj(d) 

1t2(d) 

~ .. 

Figure 2a The representation of d in matrix form. 



36 

ned)': 

1 Systems with Many Particles 

Jfl Jf2 
(r--------AI... _______ ....,'r-----A'----~, 

all 

all 

all 

all 

a2l 

a2l 

a 21 

a21 

a 12 
a l2 

a12 
a l2 

an 

a22 

an 

a 22 0 

.. 

a •• 

a •• 

a •• 

a.n 

bll b12 
bll bl2 

0 
b21 bn 

a ik , bik' ... E IC b21 bn 

Jf l Jf2 
rr-----~A~--------\rr----~A~--___ ~ 

a 
a 

a 
a 

a 
a 

a 
a 

Z = ned) n ned)': 
a 

a 
a 

a 

b 
b 

b b 

'. 

Figures 2b, c The representation of .91' and the center Z in matrix form. 
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Yfi into itself. The elements of the center become multiples of the identity 
when projected onto Yf i ; they can assume different values only on different 
Yf i • The decomposition into factors is thus uniquely fixed by Z and conse
quently by n(d). The further decomposition into irreducible representations 
is not likewise fixed; some arbitrariness is connected with the spaces Yf ik • If, 
for example, Yf 1 = Yf 11 ® en = Yf 11 ® el EE> Yf 11 ® e2 EE> ... EE> Yf 11 ® en' 
then the choice of the basis {e;} for en remains free, since the space is the same 
for every choice of orthogonal basis. Different bases correspond to the 
different maximally Abelian subalgebras of n(d)' that they diagonalize. 

The passage to an infinite dimension requires the generalization of sums 
to integrals. The spectral theorem (III: 2.3.11) states that a Hermitian 
operator a E B1(Yf) may be represented as a multiplication operator on some 
space L 2 (dp., Sp(a». If there is degeneracy, then a spectral value oc E Sp(a) is 
associated not with a single complex number but with a many-dimensional 
Hilbert space Yfa.. If v(oc) denotes the component of v E Yf in Yfa., then the 
scalar product on Yf can be written as 

<vlw) = f dp.(oc)<v(oc)lw(a». 

The action of a on v is (av)(oc) = ocv(oc). The center Z = n(d) n n(d)' is a 
commutative algebra, and its elements may be simultaneously diagonalized, 
and so any Z E Z may be written as (zv)(oc) = f(oc)v(oc), where f assigns a 
complex number to oc. Any element a of d can then be represented by 
[n(a)v](oc) = na<a)v(oc), na.(a) E B1(Yfa.), and bE n(d)' ~ (bv)(oc) = b(oc)v(oc), 
b(oc) E B1(Yf a.), [b(oc), na.(a)] = 0 for all a E d. In a finite number of dimensions 
every Yfa. can be written Yfa. = Yf~1) ® Yf~2>, nid) = B1(Yf~l» ® IJI"(2), and 
b(oc) is of the form IJI"(I) ® b, b E B1(Yf~2». This is as far as the finite-dimen
sional analogy goes; it will not be possible to write every factor na. in the form 
B1(Yf) ® I. 

Classification of Factors (1.4.10) 

We pause now to take stock of the factors, which will function as basic 
building blocks. The possibility that comes to mind first for a preliminary, 
rough classification is to define a trace. In (III: 2.3.19) the trace was defined 
as a mapping from d + , the positive operators, to ~ +, and it was extended to 
a linear mapping from the trace class rtf 1 (Yf) to C. The trace is discontinuous 
in all topologies weaker than the trace topology given by 11·111' It may even 
occur that the only element of an algebra d in the trace class is the zero 
operator, as for example with the factor B1(Yf) ® I, where 1 is the identity 
on an infinite-dimensional space. In this case there is plainly the possibility 
of defining a trace by <I>(a ® 1) = Tr 1 a, which has all the necessary proper
ties. This observation suggests an abstract 
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Definition of the Trace (1.4.11) 

Let .91+ be the positive cone of a strongly closed algebra .91, i.e., a von 
Neumann algebra. A trace is a mapping <1>: .91 + ~ iR+ with the following 
properties. 

(ii) for all a E .91 + and all unitary 
UEd. 

The trace <I> is said to be 

faithful, if <I>(a) = 0 and a E .91 + <::> a = 0; 
finite, if <I>(a) < 00 for all a E .91 + ; 

semifinite, if for all a E .91 + there exists a nonzero b < a such that 
<I>(b) < 00; 

normal, iffor every increasing filter (see (III: 2.2.21)) Fe ,91 + with 
supremum s, <I>(s) = SUpuEF <I>(a). 

Examples (1.4.12) 

1. <I>(a) = 0 for all a E .91 +. The trace is unfaithful, finite, and normal. 
2. <1>(0) = 0, <I>(a) = 00 for all a #- O. The trace is faithful, not semifinite, and 

normal (purely infinite). 
3. Let .91 be the n x n matrices and <I>(a) = Tr a. The trace is faithful, finite, 

and normal. 
4 . .91 = ~(Yl'), .Yt infinite-dimensional, and <I>(a) = Tr(a). The trace is 

faithful, semifinite, and normal. 
5 . .91 = ~(Yl' l)EB ~(Yl' 2), <I>(a EF> b) = IX Tr a + f3 Tr b, IX and f3 E /R+. The 

trace is faithful only if IX and /3 are nonzero and finite only if the Yl'i are 
finite-dimensional. In all cases it is semi finite and normal. (Note that 
although <I> is invariant under unitary transformations belonging to .91 
for IX #- /3, it is not invariant under all unitary transformations in 
~(Yl' 1 EF> Yl' 2)') 

6. Let .91 be the algebra of multiplication operators L OO(/R, dp,) on L 2(/R, dfl), 
and <I>(a) = J dfl(x)a(x)p(x) for some non-negative, measurable p. If 
p > 0 a.e., then <I> is faithful; if p E U(/R, dfl), then <I> is finite; and if 
p < 00 a.e., then <I> is semi finite. In all cases the trace is normal. 

7. Let .91 be the algebra of multiplication operators [00 on /2, and <I>(a) = 
limi_oo ai when the limit exists, and otherwise let the trace be defined by 
linear extension with the Hahn-Banach theorem. The trace is finite and 
neither faithful nor normal: If F = {(aJ, where ai = 1 for finitely many i 
and otherwise = O}, then s = (ai = 1), and <I>(s) = 1, but <I>(a) = 0 for all 
aEF. 
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Remarks (1.4.13) 

1. Property (ii) may be replaced with (ii)': <I>(aa*) = <I>(a*a) for all a E .91 
(Problem 3). 

2. It can be shown in generalthat {a E .91 +: <I>(a) < oo} consists ofthe positive 
elements of a two-sided self-adjoint ideal .IIq" onto which <I> can be ex
tended as a linear form (also denoted <1». It is discontinuous in every 
topology that is strictly coarser than the one defined by the norm Ilallq, = 
<I>«a*a)1/2). All continuous linear functionals on.ll q, with this topology are 
ofthe form a ~ <I>(ab), a E .IIq" bEd (Problem 4), and nonzero for b i= 0. 

3. Property (ii) implies for a E.IIq, and any unitary u E .91 that <I>(ua) = 
<I>(au). Moreover, since every element of .91 is a linear combination of 
unitary operators, <I>(ab) = <I>(ba), a E .IIq" bEd. 

4. The requirement of normality originates in the theory of integration, 
where monotonic convergence can be permuted with integration. The 
trace can consequently be regarded as a generalization of the integral to 
noncommutative integrands. 

5. If <I> is normal, then .91 may be written as .91 = .91 1 EB .912 EB .913 , where 
<1>1 .... , is faithful and semifinite, <1>1 .... , = 0, and <1>1 .... 2 is purely infinite 
(Problem 5). As we shall be interested solely in normal traces and shall 
ignore the trivial cases of Examples 1 and 2, we may confine our attention 
to faithful, semifinite traces. 

The ordering of operators induces an ordering of traces, whereby <I> :::; '¥ 
shall mean <I>(a) :::; '¥(a) for all a E .91 +. For the ordering of the trace there 
is a theorem on 

The Form of a Dominating Trace (l.4.14) 

Let <I> and '¥ be normal, semifinite traces on a von Neumann algebra d. Then 
<I> :::; '¥ iff there exists bEd n .91', ° < b :::; 1, such that <I>(a) = '¥(ab) for 
all a. 

Proof 

Let .11'1' be the ideal on which '¥ < 00, given the norm Iiall = '¥«aa*)1 /2). 
The mapping a ~ <I>(a) is then a continuous linear form on .11'1', and by 
Remark (1.4.13; 2) it is '¥(ab) for some bEd. To prove that bEd', observe 
that for all a E .IIq,andc E .91,0 = <I>(ac - ca) = '¥(acb - cab) = '¥(a[c,b]), 
so, according to (1.4.13; 2), [c, b] = 0. 0 

Corollary (l.4.15) 

Any two faithful, normal, semifinite traces on the same factor are proportional. 
More specifically, if <1>1 and <1>2 are two such traces, then <1>1 < <1>1 + $2 and 
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<1>2 < <1>1 + <1>2. Since the center of the factor consists of multiples of the 
identity, <1>; = Ai<l>l + <1>2), ° < Ai < 1, so <1>1 = ,11,12 1<1>2. 

Because the trace is essentially unique on any factor, it may be asked 
whether the trace of a projection is an integer c, which would allow a reason
able definition of the dimension of the subspaces onto which they project. 

The Types of Factors (1.4.16) 

Factors of Type I 

The range of the trace of the projections of factors of type I is c E Z +, and 
they are of the form ~(.1t') ® 1, with .1t' separable, i.e., a sum of identical 
copies of an irreducible algebra of operators. The trace is given by <I>(a ® 1) = 
c Tr a, and if the dimension of.1t' is n, then it is finite for n < 00 and not finite 
but only semifinite for n = 00. This creates a distinction between subtypes 
In and 100 • 

Factors of Type II 

On Factors of Type II there is a semifinite, normal, faithful trace the range of 
which when applied to the projections is either [0, 1] or IR +. Depending on 
whether the trace is finite or only semi finite, one distinguishes between 
subtypes III and 11 00 • An example of type III is the algebra of infinitely many 
spins (1.1.2) represented with the GNS construction using the state 
<1>: <1>(1) = 1, <I>(n (1) = 0«(1.4.8) with s = 0). This state has the properties 
of a trace; commutativity (1.4.l1(ii» holds trivially, and this representation 
is a factor. Since the factor is obviously not isomorphic to anything of the 
form ~(£,;) ® 1, n < 00, and the trace is finite, it must be of type Ill. It is 
reducible but not of type I, since it can not be written as a direct sum of 
identical irreducible algebras. Type 1100 factors are of the form type 100 ® 
type Ill' where the trace is defined multiplicatively on the tensor product. 

Factors of Type III 

They have no normal, faithful, semifinite trace. The infinite spin algebra 
(1.1.2) again provides an example, this time with the GNS representation 
using the state (1.1.11) with s #- 0, in other words (1.4.8). 

Remarks (1.4.17) 

1. The type with the properties familiar from finite matrices is I, while types 
II and III are less intuitive. All three types occur in the GNS representation 
of the spin algebra with a state of the form (1.1.11), 100 with s = 1, III with 
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s = 0, and III with 0 < S < 1. To the malicious delight of many mathe
maticians the initial impression that type III is the rule for infinite systems 
has panned out with the passage of time. Types I and II turn out to be 
peripheral possibilities. 

2. It was ascertained in (III: 2.3.6; 5) that factor representations with 
maximally Abelian subalgebras are irreducible. As a result, representations 
of types II and III have no maximally Abelian subalgebras. 

3. If a factor includes an irreducible subrepresentation, then a semifinite, 
normal trace can be defined on it, mapping the projections to a discrete 
set of values, and it must therefore be of type I. It was remarked in 
(III: 2.3.10; 5) that the GNS construction yields an irreducible represen
tation iff the state it builds on is pure. This means that no vector in the 
Hilbert space of a representation of type II or III corresponds to a pure 
state on the algebra. 

4. Any operator a of an algebra of type III is of course bounded, so Tr pa is 
well defined for any p E «j 1 (Jr), only p can not come from the algebra, 
which contains no element of a trace class (other than 0). 

Let us end the section by recapitulating the physical significance of the 
new mathematical phenomena that make an appearance in infinite systems. 

1. Inequivalent Representations 
Since vectors that differ globally are always orthogonal, globally different 
situations lead to inequivalent representations. Within a given represen
tation different elements of the algebra produce vectors that differ only 
locally. 

2. Non-normal States 
Expectation values with a vector of a different, inequivalent representation 
constitute a state on the algebra, but one that fails to be strongly con
tinuous with respect to the original representation, and hence it is not 
normal. They are representations of different global circumstances, and 
thus assign different values to global observables like densities, which are 
only defined with strong limits. 

3. Factors 
Whereas ned) describes microscopic observables, n(d)" covers macro
scopic observables as well. Factors associate certain numerical values to 
the global observables lying in the center n(d)" n ned)' -factors are the 
macroscopically pure states. In factors, Khinchin's ergodic, theorem 
applies to them, stating that these global quantities exhibit no fluctuation. 
Even if vectors of a factor are pure with respect to this subalgebra, they 
may produce mixed states. The ground state is associated with type I, 
finite temperature with type III, and infinite temperature with type II. 

4. Unitary Representation of the Time-Evolution 
If the algebra changes globally as time passes, then a representation may 
change at any moment into an inequivalent representation, and it is not 
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possible to represent the time-evolution with a group of unitary trans
formations within the representation. Yet if the representation is based 
on a time-invariant state, then the other vectors of the representation 
differ only locally, and thus do not change in time, from the global point 
of view. This establishes the possibility of a unitary time-evolution. 

Problems (1.4.18) 

1. Show that with vectors Ix(1», ... , Ixln» and AI"'" An E C, Definition (1.4.2) implies 
that I;,kAt Ak(Xli) I Xlk» 2': 0, (Hint: it suffices to show this for the case where the 
I Xli)~ are strongly equivalent. Prove that I;,kAt Ak TI7= 1 (xy) I X~k») 2': ° for any Nand 
take the limit N -+ 00,) 

2, (i) Show that Ix) and I y) are equivalent iff I;l1 - (x;! y;)1 < 00 and weakly 
equivalent iff Ii II - l(x;ly;)11 < 00, 

(ii) Conclude from (i) that the slrong of Ix) strong Iy) has all the properties of an 
equivalence relation, namely reflexivity, symmetry, and transitivity. (Hint: use 
the inequality 11 - (xlz)l:s; 4[11 - (xly)1 + 11 - (ylz)I], which holds for 
unit vectors. This 4 is a generous constant.) 

(iii) Show that Ix) - Iy) iff there exists a sequence {!pj} such that IX)slr~g 1/), 
Ii) == exp(i!PI)IYI) ® exp(i!p2)(lyz) ® .... 

(iv) Show that weak is also an equivalence relation. 

3. Show that condition (ii) of the definition of the trace (1.4.11), i.e., <1>(a) = <1>(UaU- I ), 

may be replaced with: <1>(a*a) = <1>(aa*) for all a in a von Neumann algebra d. 

4. Show that for a faithful, normal, semifinite trace <1>, all continuous linear forms on 
a E A" may be written as a -+ <1>(ab) for some bEd. (Hint: use the inequality 
I <1>(ab) I :s; <1>(labl):5: Ilbll<1>(lal).) 

5. Show that with any normal trace <1>, d can be written d = d I EEl d z EEl d 3, where 
<1>[.1'11 == 0, <1>[.1'12 is faithful and semifinite, and <1>[.1'13 is purely infinite. (Use the following 
corollaries of von Neumann's density theorem (III: 2.3.24; 4): 

(I) Let A c d be a strongly closed, two-sided ideal. Then A contains a projection 
operator P such that P E .w n d' and P 2': Q for all projection operators 
QEA. 

(II) Let % be a two-sided ideal and suppose a is in the positive part of the weak 
closure of %. Then there exists an increasing filter c%+ having a for its 
supremum.) 

Solutions (1.4.19) 

1. The n x n matrix 
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is Hermitian and non-negative, and is thus a sum of projections, i.e., matrices of the 
form 

This implies 

(xyl I xjkl) = I hli*hL 
lj= 1 

and 

N 

I AtAk IT (xjilI xjkl) = I AtAk I hl'*hi'··· W*h~N ;:0: 0, 
i,k i,k 11 ..... iN 

sInce 

I AtAkhl'* ... h~N = I I Akhi' ... hiNI2 ;:0: O. 
i. k k 

2. (i) follows from the theory of infinite products [12l 
(ii) To prove the inequality, choose a basis for the subspace spanned by Ix), Iy), and 

Iz) such that they correspond to the vectors (rx, P, 0), (1, 0, 0) and (y, b, r:), where 
Irxl2 + ItW = lyl2 + Ibl2 + lel2 = 1. Then (xly) = rx*, (ylz) = y, (xlz) = 
rx*y + P* b. II - rx*y - fj* b I s 11 - rx*y I + I fj II b I s 211 - rx I + 211 - y I + 
(I -lrxI2)1/2(1 _lyI2)1/2 s 2(11 - rxll/2 + II - YII/2)2 s 4[11 - rxl+ 11 - yll 
The reflexivity and symmetry of the equivalence relation are trivial, and transi
tivity follows from (i) together with the inequality. 

(iii) =:>: Choose <Pj = -arg(xjly). 
<= : This is trivial. 

(iv) follows from (ii) and (iii). 
3. (ii)=:>(ii'): With a polar decomposition, a = Vial, where a*a = lal2 = V*VlaI 2, 

aa* = VlaI 2V*. Let vIt", be the trace-class ideal: a E vIt", =:> a*a E vIt", and aa* E vIt", 
=:> Va*a E vIt"" since V = w-lim'lo a(lal2 + e)-1/2 Ed, which, with Remark (1.4.13; 
3) implies <1>(V*Va*a) = <1>(Va*aV*). 
(ii') =:> (ii): Let a ;:0: O. <1>(UaU- I) = <1>(Ua l /2al /2U*) = <1>(a l /2U*Ua l /2) = <1>(a), and 
every operator is a linear combination of positive operators. 

4. To prove the inequality, let a and b be non-negative. <1>(ab) = <1>(a l /2ba l /2) s II b II <1>(a), 
since for any a and b, al /2ba l /2 S al/21Ibllal /2. Thus I <1>(abW s <1>(la* II b 1)<1>(1 a II b* I) 
and is consequently s Illblll<1>(la*I)lllb*III<1>(lal) = IlbI1 2<1>(laI)2, in which the 
Cauchy-Schwarz inequality I <1>(ab) 12 s <1>(aa*)<1>(bb*) (see (III: 2.2.20; 1» was used 
in the form 1<1>(abW = 1<1>(Ulal VlblW (with the polar decompositions a = Ulal 
and b = Vlbl). This = 1<1>(lbII/2UlaII/2IaII/2VlbII/2)12 s <1>(lbll/2UlaII/2 x 

lal l/2U*lbl l /2). <1>(lbll/2V*laII/2Iall/2Vlbll/2) = <1>(lbl Ulal U*)<1>(Vlbl V*lai) = 

<1>(lblla*I)<1>(lb*llal). Now let ab = Wlabl; then <1>(labl) = <1>(W*ab) s IlbW*11 x 
<1>(lal) s Ilbll<1>(lal). The first part of the inequality follows from I <1>(ab) I = I <1>(ab· 1)1 
s 11111<1>(1 ab I) = <1>(1 ab I)· 

It is a corollary of the inequality that the norm of the mapping a -> <1>(ab) is II b II. 
This allows .91 to be identified with a closed subspace of vIt~. To see that .91 = vIt~, 

first suppose a E .~;. Then the mapping .91 -> C: b --> <1>(ab) is normal, entailing 
ultraweakly continuous (see (2.1.4», which implies that for any a E vIt"" b -> <1>(ab) is 
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ultraweakly continuous. Because of the inequality again, the norm of this mapping 
is <D( I a I), which implies that A <p can be imbedded isometrically and isomorphically 
in the predual .91*, i.e., the space of ultraweakly continuous linear functions. Thus 
A <p C .9'/*. We shall see in (2.1.3) and (2.1.4) that 'fo'l = .~(Yf)* and 'fo'1' = :?8(Yf). Since 
.9'/ is ultraweakly closed, .9'/.L = 'fo'i/'fo't with 'fo't = {p E 'fo'l : Tr pa = 0 for all a Ed}, 
so .9'/ = ('fo' d'fo't )*. Therefore A~ C (.w' *)* = .91, which implies .4t~ = .9'/. 

Remark: A <p is dense in .91* but not in general closed. 

5. For more about types I and II, see Chapter I, §3 of [4]. The set {a E .91+: <D(a) = O} 
is the positive part of a two-sided ideal.1. Let A be the trace class, let. rand .li be 
the strong closures of . V and A, and P I arid P 2 be respectively the largest projections 
they contain (see Corollary I). The Hilbert space Yf can be decomposed as .Yt; EB 
Yfz EB Yf3, where Yfl == PlY{' .1tz == (P z - PI)Yf, Yf3 == (\ - Pz)Yf in which case 
.w' = .w'1 EB.w' z EB .w' 3' where .91; == ·w'I#" since P I and P z belong to .w' !l .w". 

It is obvious that <t>ld1 = O. To see that <D1dz is semi finite, apply Corollary II: 
Let a E Ji+ \ A + ; then there exists an operator b E A +, b :s; a, such that <D(b) > O. 
The remaining claims are trivial. 
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2.1 The Ordering of the States 

The heuristic concepts of purer and more chaotic states can be made 
mathematically precise with reference to a lattice structure of the 
classes of equivalent density matrices. 

States are by definition (III: 2.2.18) normed, positive linear functionals on 
an algebra d of observables. If the dimension of the underlying space is 
finite, .91 = .CJ6(t::n), then all linear functionals are of the form d 3 a ~ Tr pa 
== (p I a), p E .CJ6(t::n), and .CJ6(t::n) is its own dual space. The inequality of 
(1.4.18; 4), 

l(pla)1 ~ Ilallllpl11' IIpl11 = Tr(p*p)1/2 

then holds, and is optimal in the sense that 

sup l(pla)1 = Iiall, 
IIplI, = 1 

sup l(pla)1 = Ilp111' 
Iiall = 1 

(2.1.1) 

(2.1.2) 

If the dimension of .Ye is infinite, the inequality applies initially to the 
operators of finite rank (cf. (III: 2.3.21)), denoted G or G1, depending on 
whether the norm II II or II 111 is used. In these topologies continuous, linear 
functionals are of the form 

G 3 a ~ Tr pa with II pill < 00 

or 

G1 3a ~ Tr pa with Ilpll < 00. 

45 
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The linearity and continuity of the functionals thus defined are obvious, 
and it can be seen as follows that all functionals with these properties are 
of that form. By what was said earlier, a linear functional on lff determines 
the restriction of an operator p to any finite-dimensional subspace. To 
guarantee that l(pla)1 s eIIall for all aElff or l(pla)1 s ellall! for all aElff t , 

by (2.1.2) it is necessary to ensure that Ilpll! or respectively Ilpll is bounded. 
If the spaces lff and lff 1 are now completed, becoming the Banach spaces 
CI} and Cl}1, of (III: 2.3.21), then their dual spaces are unaffected-the dual 
spaces of a space and of a dense subspace are the same. The state of affairs 
is analogous to that of [0, It, and [CO, the spaces of sequences (x;) satisfying 
respectively limi_ co Xi = 0, Li I x;! < 00, and SUPi I Xi I < 00: 

Duality for the Subspaces of 98(,It) (2.1.3) 

Cf* = Cf 1 , CI}! = &6(£), where CI} and &6(£) are given the norm II II, and 
Cf 1 the norm II 111' These norms on Cf 1 and [16(£) produce the strong top
ology on the dual spaces, as can be seen from a comparison of (2.1.2) with 
(III: 2.1.21). 

The Banach space CI} is thus not reflexive, so .'1l(£)* is strictly larger than 
Cl}1' If a Banach space lff is nonreflexive, then the same is true of lff*, lff**, 
etc.: Let a E lff** but a ¢ lff. The functional w: e + Aa ~ A defined on {E + Aa} 
can be extended continuously to lff** by the Hahn-Banach theorem. 
Therefore, W E lff***, but wlc = O. Hence CI} 1 and .'1l(£) are also not reflexive; 
&6(£)* is strictly larger than CI} l' All trace-class operators provide linear 
functionals on the bounded operators by a ~ Tr pa, and these linear 
functionals are even continuous if .'1l(£) is equipped with a weaker topology 
than the one from II II: If the neighborhood basis is defined by 

U p,ia) = {a' E &6(£): ITr pea - a') I < f:}, (2.1.4) 

and p ranges only over lff, then this is the weak topology. If p is allowed to 
range over CI} 1, then it is known as the ultraweak topology, and is genuinely 
finer than the weak topology but coarser than the II II-topology. The linear 
functionals a ~ Tr pa for p E CI} 1 are, however, obviously continuous if 
.'1l(£) has the ultraweak topology. These functionals have in addition the 
property of normality (III: 2.2.21): the order of taking weakly continuous 
linear functionals and suprema over bounded sets can be interchanged, since 
by Vigier's theorem (III: 2.3.24; 11) the supremum is the limit of a strongly, 
and therefore also weakly, convergent sequence. Since the weak and ultra
weak topologies are equivalent on bounded sets, normality carries over to 
ultraweakly continuous, linear functionals. A somewhat deeper theorem 
([4], I, §4, Theorem I) states that these include all normal linear functionals 
on &6(£). We summarize by stating the 
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Characterization of Normal States (2.1.5) 

The following properties are equivalent for a state w on ~(£): 

(i) w is normal {III: 2.2.21); 
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(ii) w is given by a density matrix P such that w(a) = Tr pa, p ~ 0, Tr p = 1; 
(iii) w is ultraweakly continuous. 

Remarks (2.1.6) 

1. The density matrices form a norm-closed, convex subset of the unit sphere 
of rtf 1 , the trace-class operators with the trace norm II 111. 

2. If the system is classical, then instead of ~(£) there is an Abelian von 
Neumann algebra, and we are familiar with the normal traces in the guise 
of probability measures. Specifically, on the L 00 functions on phase space 
they are of the form p(p, q) dO, dQ being Liouville measure (I: 3.1.2; 3), 
p E U, P ~ 0, f dQp = 1. Yet it may be that Ipl = sUPP.q Ip(p, q)1 /. I: 
Suppose that XA is the characteristic function of a set A such that Q(A) == 
f dQXA < 1; then an example is furnished by p = XA/Q(A). 

3. All states constructed with a vector of £ are pure, normal, and even 
weakly continuous-the density matrix for them is a one-dimensional 
projection. Conversely, anyone-dimensional projection yields a pure 
state on ~(£). 

4. The spectrum of a density matrix is discrete, as it is in the trace class (and 
hence compact). The sum of the eigenvalues Pi is 1. 

5. The density matrix can be thought of as a combination of the vectors that 
diagonalize it, or as a pure state on a larger Hilbert space £g == £ ® £, 
in which ~(£) is imbedded as ~(£) ® 1. The vector of £g correspond-

ing to p = Li U) 01 Pi is Li I j) ® I j) JP; (cf. (1.4. 7». If £ is separable, 
then the weak topology on £ 9 induces the ultraweak topology of ~(£) 
on ~(£) ® 1. 

6. The normal states are weak-* dense in the positive unit sphere of 
~(£)* (see (III: 2.1.19», but are a proper subset rather than the whole 
of it. Hence they are not also weak-* compact. 

Traces offer many advantages for doing calculations, owing to the com
mutativity property (1.4.13; 3). Inequalities for ordinary numbers often 
extend to traces, even when noncommutativity prevents them from extending 
directly to operators. Some of these inequalities will be used frequently 
later, and so are listed below. It will always be assumed that whatever the 
trace is taken of belongs to the trace class, though many of them have the 
generalization that if the lesser side of an inequality becomes infinite, then 
so does the greater side. For greater flexibility general forms are presented, 
while the name attached refers to the original version. The symbol Tr will 
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always mean the trace on PJJ(Jf'). These inequalities apply trivially to factors 
of type I, and many also apply to type II. 

Basic Inequalities (2.1. 7) 

1. Peierls's Inequality. Let k be a convex function from IR to IR+ and {I i)} 
be a not necessarily complete, orthonormal set. Then 

Trk(a) =supIk«ilali». 
liD} i 

2. Convexity. Let k be a convex function from IR to IR and 0 ~ oc ~ 1. 
Then 

Tr k(oca + (1 - oc)b) ~ oc Tr k(a) + (1 - oc) Tr k(b). 

3. The Peierls-Bogoliubov Inequality. Let k be a strictly monotonically 
increasing, convex, differentiable function IR --+ IR (and thus the inverse 
function k- 1 exists), and suppose k/k' is convex. Then 

k-1(Tr k(oca + (1 - oc)b» ~ ock-1(Tr k(a» + (1 - oc)k-1(Tr k(b». 

4. Monotony. If m is a monotonically increasing function IR --+ IR, 

a ~ b ~ Tr mea) ~ Tr m(b). 

5. Klein's Inequality. Let f, g, and h be functions IR --+ IR such that for all 
oc E Sp a, fJ E Sp b, and Ck E IR, 

Then 

Tr I cdia)gk(b)hk(a) ~ o. 
k 

6. Holder's Inequality. Suppose that kl and k2 are convex, strictly mono
tonic functions IR --+ IR, the mapping (oc, fJ) --+ kl1(oc)k21(fJ) is concave, 
and Jf' has dimension N < 00. Then 

I~ Tr abl ~ kl1(Tr ~ k 1(l a l»)k2 1 (Tr ~ k2(lb l»). 

7. The Cauchy-Schwarz Inequality. I Tr(ab)2 I ~ Tr a*abb*. 
8. Lieb's Theorem. Let a and b be non-negative, a, b, C E PJJ(Jf'), and 

o ~ oc ~ 1. Then the functions a --+ Tr exp(c + In a) and (a, b) --+ 
Tr a~cbl-~c* are concave. 

Proof 

1. By the spectral theorem and lensen's inequality, for any unit vector 
Ii), (ilk(a)li) ~ k«ilali», and therefore Ii (ilk(a)li) ~ Lik«ilali». 
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Equality holds if the I i) are eigenvectors of a. It suffices to take the 
supremum over finite sets {I i)}. 

2. Let I i) be the eigenvectors of Ci.a + (1 - Ci.)b. By PeierIs's inequality, 

Tr k(Ci.a + (1 - rx)b) = L k(Ci.<ilali) + (1 - rx)<ilbli») 
i 

~ rx L k«ilali») + (1 - rx) L k«ilbli») 
i i 

~ rx Tr k(a) + (l - rx) Tr k(b). 

Note that the inequality k(rxa + (1 - a)b) ~ rxk(a) + (1 - rx)k(b) can be 
false in the sense of operator ordering. 

3. If k/k' is convex, then for sequences of numbers {fJd and {yd, 

by Problem 2. Hence, as with Inequality 2, 

k- 1(Tr k(Ci.a + (1 - Ci.)b)) = k-l(~ k(a<ilali) + (1 - a)<ilbli»)) 

~ ak-l(~ k«ilali»)) 

+ (l - rx)k-l(~ k«ilbli»)) 

~ rxk- \Tr k(a)) + (1 - rx)k-l(Tr k(b)), 

using Inequality 1 again. 
4. If a ~ b, then the min-max principle implies for their ordered eigenvalues 

that ai ~ bi' so Ii mea;) ~ Ii m(b;). Once again, the inequality mea) ~ 
m(b) may fail for operators. 

5. Let ai and bi be the eigenvalues of a and b, and cij be the scalar product of 
the eigenvectors of a with those of b. Then 

Tr I cki'k(a)gk(b)hk(a) = I lcijl2 I cki'k(ai)gk(b)hk(a;) ~ o. 
k i,j k 

6. Let ai and bi be the ordered eigenvalues of I a I and I b I, and let I i) denote 
the eigenvectors of a. By the min-max principle (III: 3.5.21), 

i 

Tr ab = L <ilalD (jlbl i) ~ I (ai - ai+l) I <kllbllk) 
i,j i k = 1 

i 

:S; L (ai - ai+ 1) L bk = L aibi' 
i k= 1 i 
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The inequality 

~ itl k11(ai)k 2 1({3i) ~ kl1(~ itlai)k21(~ it/), 

for ai == kl (ai) and {3i == k2(b;) 

is just the assumption of concavity. 
7. By the Cauchy-Schwarz inequality (III: 2.2.20; 1) for states, 

ITr ababl 2 ~ Tr abb*a* Tr b*a*ab = (Tr a*abb*? 

The order of the operations is important; it is not true in general that 
Tr(ab)2 ~ Tr a*ab*b. 

8. The proof of this rather deep proposition in the noncommutative case 
is too laborous to be repeated here~see [5]. 0 

Corollaries (2.1.8) 

1. For any orthonormal system {I i)}, {3F(H) == -In Tr exp( - {3H) 
~ -In Li exp( -{3<iIHli»). 

2. The function H --> Tr exp( - {3H) is convex. 
3. In fact, even H --> In Tr exp( - {3H) is convex, so F(H) is concave. By 

recourse to (%a) Tr f(H + aV)la=O = Tr V!,(H), and the fact that F is 
majorized by any tangent, one finds that 

F(Ho) + <V)H ~ F(Ho + V) ~ F(Ho) + <V)Ho' 

where <a)H = Tr a exp( - {3H)/Tr exp( - {3H). 

4. HI ;::-: H2 => F(H I) ;::-: F(Hz). 
5. If k is convex, then Tr(k(a) - k(b) - (a - b)k'(b» ;::-: 0, so 

Tr(a In a - a In b - (a - b» ;::-: 0, too. If fl(a) = So da'g(a') and f2({3) 
= sg d{3'g-I({3'), then by Young's inequality, a{3 ~ flea) + f2({3), and 
therefore Tr ab ~ Tr fl(a) + Tr fzCb). In particular, if P and q are ;::-: 1 
and related by lip + llq = 1, and a and b are nonnegative, then Tr ab 
~ (lip) Tr aP + (llq) Tr bq. 

6. With kl(a) = aP, kzC{3) = {3Q, Corollary 5 can be improved to Tr ab ~ 
(Tr I a IP)IIP(Tr I b Iq)l/q; since this no longer involves N, it also holds when 
N = 00. By iteration, . 

1 1 
where L ~ = -, p, Pi ;::-: 1. 

i Pi P 

As P --> 00, Iiali p --> Iiall, so ITr abl ~ IlallTrlbl; the trace class is a two
sided ideal of f3U(Yf) (cf. (III: 2.3.20; 3)). 
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7. If a and b are Hermitian, then Tr(ab)2 :s; Tr a2b2, a = a*, b- I = b*: 
I Tr(ab)2 I :s; Tra2 . By iterating this, I Tr(ab)2P I :s; Tr(abb*a*)2 P -

1 = 

Tr(1 a 121 b21)2P - 1 :s; ... :s; Tr I a 12P I b 12P• Because of the Trotter product 
formula exp(a + b) = s-limn .... oo (exp(a/n)exp(b/n)t (see (III; 2.4.9)), 
I Tr exp(o:a + f3b) I :s; Tr I exp(o:a) II exp(f3b) I, for 0:, f3 E C, and initially for 
Hermitian operators of finite rank. It then extends to exp(o:a + f3b) E 

ge I (£'), exp(o:a) E gel (£'), exp(f3b) E gee£') and thereby yields a general
ization of Corollary 3 known as the Golden-Thompson-Symanzik 
inequality [6], exp( -f3<V)Ho) :s; Tr exp[ -f3(Ho + V - F(Ho))] :s; 
<exp( -f3V)Ho' 

8. The tunctIOn (a, b) -+ lim"to Tr(l/o:)(a - al-aba) = Tr a(ln a - In b) if 
convex. 

Our next task is to give the density matrices an ordering that indicates 
which of two p's corresponds to the more chaotic state. The ordering must 
of course be independent of the basis, and so it can depend only on the 
eigenvalues Pi' If the eigenvalues are thought of as ordered by their magni
tudes, then pure states are associated with sequences (1,0,0, ... ), i.e., with 
the greatest possible first eigenvalue. Because I~ I Pi = 1, two density 
matrices might not be strictly ordered by the natural ordering of Hermitian 
operators. However, by the min-max principle (III: 3.5.21), 

n 

pen) == I Pi = sup TrJt"nP, 
i= 1 Yf'n 

which permits the following 

Definition of the Ordering of the Density Matrices (2.1. 9) 

A density matrix p is said to be more mixed, or more chaotic, than P if pen) 
:s; pen) for all n. In symbols, p ~ P (or P ~ p). 

Remarks (2.1.1 0) 

1. This clearly defines a preordering of the density matrices, i.e., P ~ P; 
and if P ~ P and p ~ p, then P ~ p.lftwo density matrices are equivalent, 
that is, P ~ P and p ~ P, then Pi = jj;, and so they are related by p = 
VpV*. If the space is finite-dimensional, then V can be chosen unitary, 
and otherwise it is only an isometric mapping (Ker p)~ -+ (Ker p)1.; 
if Dim Ker P "# Dim Ker p, then it has no unitary extension. 

2. If the equivalent density matrices are classed together, then (2.1.9) gives 
the classes a lattice structure, characterized by the sequences of numbers 
{pen)}. The sequence {min(p(n), pen))} yields the equivalence class of 
the purest states more mixed than either P or p. The concave hull of 
max(p(n), pen)) with respect to n characterizes the most mixed states 
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purer than either p or p. The sequences thus defined are positive, increas
ing, and concave in n, and tend to 1 as n -t 00 (or equal 1 when n = Dim J't'). 
Their successive differences are therefore decreasing sequences of positive 
numbers summing to 1, which correspond to an equivalence class of 
density matrices. The lattice contains a class of purest elements, namely 
the extremal states. If the dimension of J't' is finite, then there is also a 
most mixed state with p = IIDim £, but if it is infinite, there is none. 

3. The ordering and convexity are compatible on the space of states in the 
sense that if p ::1 /1 and p ~ v then p ~ rJ./1 + (1 - rJ.)v for 0 S rJ. S 1: 

sup Tr.1Fn(rJ./1 + (1 - rJ.)v) S rJ. sup Tr.1Fn /1 + (1 - rJ.) sup Tr.1Fn v s p(n). 

4. Since the operators p(n) are suprema of the weakly continuous functions 
Tr.1FnP' they are weakly lower semicontinuous. Moreover, it will be 
shown later (2.4.19; 1) that sequences of density matrices converging 
weakly to a density matrix are convergent even in the trace norm. Hence 
the maps p -t p(n) are actually weakly continuous, and the limit belongs 
to the same mixing class. 

5. The ordering of the density matrices is not total-for instance 

are not related by it. 

Examples (2.1.11) 

1. In the SchrOdinger picture the time-evolution of a system is given by 
p -t p, == U(t)pU-1(t), which shows that density matrices remain in 
their equivalence classes. 

2. The time-average (liT) g dtp, is more mixed than the original density 
matrices. This operation involves combinations and weak limits, which 
can only make density matrices more chaotic. 

3. If the time-evolution of a density matrix is a linear transformation of the 
eigenvalues, p;{t) = Mik(t)piO), then for Tr p = 1 and p ~ 0 it must be 
true that Li Mik = 1 for all k, and Mik ~ 0 for all i and k. If, for finite 
dimension N, it is also required that the chaotic state Pi = liN be station
ary for all i, then, moreover, Lk Mik = 1 for all i. The matrix M is then 
said to be doubly stochastic. Such matrices clearly form a convex set, 
and are consequently convex combinations of the extremal elements by 
the Krein-Milman theorem. The extremal elements have entries Mik = 0 
or 1, and so 1 = Li Mik = Lk Mik implies that each row and each column 
has exactly one 1; this makes them permutation matrices, mapping any 
p to an equivalent p. Therefore, p(t) ~ p(O), as p(t) is a convex combina-
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tion of p's equivalent to p(O). This kind of time-evolution thus increases 
the mixing. Its differential version pet) = Mp(O) is a master equation 
Pi = Lk Wik(Pk - Pi), where Wsatisfies Li Wik = Li ltki' 

4. If an observable has one-dimensional projections Pi' then the state is 
immediately converted to p == Li PiPPi when the observable is measured. 
Once it is perceived that the kth eigenvalue has been measured, p becomes 
Pk' The first stage of the measurement increases the mixing of the state, 
p ~ p. This follows from the min-max principle: If Pili) = Ii), then 

n 

pen) = L (ilpli) ::;;; pen) = sup TrKn p. 
i=l Kn 

The second stage makes the state pure. This can be interpreted in that the 
interaction with the measuring apparatus extracts information, which 
unmixes the state upon transmission to the human mind. 

5. The "coarse-grained" density matrix jj == Li P)"i' A.i = Tr pPi, is more 
mixed than Li PiPPi by Problem 1, and a fortiori p ~ p. 

6. Suppose that the function k is convex from IR+ to IR+ and k(O) = 0; 
then clearly the smaller eigenvalues are suppressed to a greater degree 
in k(p). In fact, p ~ k(p){fr k(p) by Problem 3, and the resulting 
states are purer. In particular, if k(x) = xP'/P, /3' > /3, then 
exp( - /3H){fr exp( - /3H) ~ exp( - /3' H){fr exp( - /3' H). The physical sig
nificance is that the mixing of the canonical density matrices is greater 
at higher temperatures. 

We have seen that convex combinations of U pU- 1 and weak limits 
increase the mixing of p. This exhausts the possibilities: 

Theorem (2.1.12) 

p ~ p iff p is in the weakly closed convex hull of {Up U- l }. 

Remark (2.1.13) 

The weak closure of {a E gr(JIf), IIail = 1} is {a E f!r(JIf), IIall::;;; 1}, 
and density matrices may converge weakly to zero. This means that the 
set of density matrices is not closed, which causes technical difficulties 
in the proof, which is put off to Problem 4 for that reason. 

Corollary (2.1.14) 

If P ~ p, then for any convex function k, Tr k(p) ::;;; Tr k(p). 
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Proof 

If P = "D Ci UiPUi-l, 0 ~ Ci ~ 1, Li Ci = 1, and the sum is finite, then by the 
convexity inequality (2.1.7; 2), Tr k(p) ~ Lici Trk(UiPUi- l ) = Trk(p). 
Moreover, P --+ Tr k(p) is weakly lower semicontinuous, so the limiting 
case of an infinite sum is likewise bounded by Tr k(p). 0 

Corollary (2.1.14) gives rise to the possibility of defining mappings of 
the density matrices to the real numbers, monotonic with respect to the 
ordering ~, and so enables the degree of disorder to be measured. For 
instance, if k(p) = p2, then Tr k(p) can equal 1 only for pure states, and is 
otherwise smaller. The next section will discuss some other properties 
distinguished by the function - k(p) = - P In P used to define the entropy. 
For now, note that the converse of (2.1.14) is also true: 

Theorem (2.1.15) 

P ~ P iff for every convex function k, Tr k(p) ~ Tr k(p). 

Proof 

Because of (2.1.14), we need only show that if P ¥! p, then there exists a 
function k such that Tr k(p) ~ Tr k(p). Let m be the first integer such that 
PI + P2 + ... + Pm > PI + P2 + ... + Pm' and let k(x) = (x - Pm), when 
x ~ Pm' and otherwise O. Then k(PI) = PI - Pm' ... , k(Pm) = Pm - Pm = 0 
= k(Pm+l) = k(Pm+2) = .... By assumption, PI + P2 + ... + Pm-l ~ 
PI + P2 + ... + Pm-I, SO Pm > Pm' which implies kePi) = Pi - Pm > 0 for 
all i ~ m. Therefore, Tr k(p) = PI + P2 + ... + Pm - mPm < PI + P2 + 
... + Pm - mPm ~ Tr k(p). 0 

Since expectation values in mixed states are averages of different spectral 
values, they do not reach the extremes of the spectrum so easily. This 
observation creates a new way to define the ordering relationship. 

Theorem (2.1.16) 

(i)p~p¢> supTrUpU-Ia~ sup TrUpU-Ia forallaEgrC1l'), 
U U 

U*=U-I U*=U-I 

(ii) P ~ P ¢> inf Tr U pU-Ia ~ inf Tr U pU-Ia for all a E gr(Jt'). 
U U 

U*=U-I U*=U-I 

Proof 

See Problem 5. o 



2.1 The Ordering of the States 55 

Corollary (2.1.17) 

Let(llpa)2 == Tr pa2 - (Tr pa)2 = inf .. Tr p(a - AY. Thenp ~ pimpliesthat 

inf llu pu -.a ~ inf llu pu - ,a for all a. 
u u 

This means that if one is interested in the least deviation lla of a within 
the equivalence classes of p and p, then it is smaller for the state that is less 
mixed. 

The various aspects of the relationship can be summarized as follows: 

Conditions for Density Matrices to be Compared (2.1.18) 

The ordering relationship p ~ p is equivalent to each of the following: 

(i) 
(ii) 

(iii) 

(iv) 

p(n) ~ p(n) for all n; 
~ - l' ~ U U- 1 0 ~ - 1 U- 1 - U*· p-w-lm",L.,ici", i",P i", ,Ci", > 'L.,iCi",- , i", - i",' 

Tr k(p) ~ Tr k(p) for every concave function k; 

~up Tr Up~U-la ~ ~up Tr UpU-1a a EfJ6+(Jf) U- 1 = U*. 
mf ~mf ' , 
u u 

Problems (2.1.19) 

1. Let Pi be pairwise orthogonal projections of dimensions ni < 00 and Ii Pi = 1. 
Show that Ii (l/ni)Pi Tr PiP ~ Ii PiPPi· 

2. Let k(x) > 0, k' > 0, k" > 0, k/k' convex. Show that the mapping (PI"'" P.) 
-+ k-I(D; I kePi)) of IR' to IR is convex. (Hint: note that: (i) A mappingf(PI' ... , P.) 
is convex if X"(O) ~ 0, where X is the function X(t) = f(PI + ult, ... , P. + u.t) 
and (UI' ... , u.) and (PI"", P.) are arbitrary. (ii) If the function K(tJ)/tJ increases 
monotonically, then K(Ii tJi) ~ It K(tJi), tJi > 0.) 

3. Let k be a convex, monotonically increasing function, k(x) ~ 0 for x ~ 0, and 
k(O) = O. Show that p ~ k(p)/Tr k(p). 

4. Show that p ~ p = P E Conv{U pU I }weak. 

(i) Let ff(p) = {a ~ 0: a is compact, and IXI + ... + IX. S pen) for all n, where 
lXi are the eigenvalues in increasing order}. Show that ff(p) is convex and weakly 
compact. 

(ii) Let tS'(p) = {a E ff(p): IXI = PI> ... , IX. = P., IX. + I = ... = 0 or lXi = pJor all i}. 
Show that tS'(p) contains the extremal points of .Yr(p). • 

(iii) Show that tS'(p) c {UpU I}weak. 
(iv) Finish the proof by applying the Krein-Milman theorem: Every compact, 

convex set equals the closure of the convex hull of its extremal points. 

5. Prove Theorem (2.1.16). 
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Solutions (2.1.20) 

1. Let dll(U) be the invariant measure on the compact group U(n), normalized to 1. 
For all aE.'?6(C"), 11<r;n(I/n)Tra = JdIlUaU-I, since the right side is invariant 
under all U and hence proportional to liP' and Tr J dllUaU- 1 = Tr a. Similarly, 

~PTr Pp + (1 - P)p(l- P) = f dllpUppUp l 

= f dllpUp(PpP + (I - P)p(1 - P»U p l , 

if the operators Up vary over the unitary transformations of .Yf equaling I on 
(I - P).Yf. Therefore, (l/n)P Tr Pp + (I - P)p(1 - P) £': PpP + (I - P)p(1 - P), 
which proves the claim by iteration. 

2. (i) is trivial, and (ii) follows from 

Now let X(t) == k- I(L k({3i + u;t». The function X(t) is convex iff X"(t):?: O. 
[k'(X)]3X" = [k'(x)] 2 [Li Ufk"({3i)] - k"(X) [Li uik'({3iW (where X == X(O), X" == X"(O», 
so it remains to show that [k'(X)]2 Li U;k"(f3i) :?: k"(X)[Li Uik'(f3i)Y By the Cauchy-

Schwarz inequality, [Li Ui k'(f3;)]2 = [Li Ui jk"(f3i) Jk'(f3Y /k"(f3i)] 2 :s:; [Li Ufk"(f3i)] 
X [Li k'(f3Y /k"(f3i)]' and the desired inequality is certainly satisfied if tf;(X) == 

k'(d /k"(X) :?: Li k'(f3i)2/k"(f3i) = Li tf;(f3;). By (ii), this is the case if K(b)/b increases 
monotonically, where K is defined by bi = k(f3i), K(b i) = tf;(f3;). Finally, K(b)/b 
increases monotonically = k'2/kk" increases monotonically = k/k' is convex. 

3. If 0 :s:; x :s:; y, then x = (x/y)y + (I - (x/y»O, and hence k(x) :s:; (x/y)k(y), yk(x) :s:; 
xk(y). Consequently 

i.e., 

Remark: If k is concave, then p :"!: k(p)/Tr k(p). 

4. (i) By (2.1.10; 3) the set %(p) is convex. Moreover, IXI + ... + IX" = sUPKn TrKna 
is weakly lower semicontinuous in a, so %(p) is weakly closed and, since 
Iiall = IXI :s:; PI = Ilpll :s:; Tr p = 1, also weakly compact. 

(ii) By considering all the possibilities, one realizes that it is possible to write any 
a E %(p) as IXPI + (l - IX)P2, 0 < IX < 1, with Pi E ."ff(p), unless a E 6'(p). 

(iii) Let a=D~IPill,i)(1,il,p=LPiI2,i)<2,il, where {Il,i)} and {12,i)} 
are two orthonormal systems. Let U 12, i) = 11, i), U l ll, n + i) = 11, n + I - i) 
for 1 :s:; i :s:; I - 1, UIII, i) = 11, i) otherwise. a = s-lim l _ oo UI U pU- I UI- I. 
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(iv) By the Krein-Milman theorem, %(p) = Convgv(CT)Weak = Conv{UpU-t}weak 
(by (iii», and P E %(p), if P ~ p. 

5. By a replacement of a with a + Iiall if necessary, a may be assumed positive. Then 
Tr pa = supn Tr pln)a, pin), where the pin) have the eigenvalues Plo P2, ... , Pn, 0, 0, .... 
The changes of the orders of operation in what follows are justified for the pin), 
and the suprema can also be interchanged: 

(i) =<>: Let IX t ~ 1X2 ~ ... be the decreasing sequence of eigenvalues of a and 1X00 be 
the upper boundary of CTess(a) (to be understood in the sense analogous to (III: 
3.5.21». If p = I p;!i)<il, then 

Tr pa = Ipi<ilali) = (Pt - P2)(1lall) + (P2 - P3)[(1lall) + <2IaI2)] + ... 
:::;; (Pt - P2)lX t + (P2 - P3)(lX t + 1X2) + ... = I PilXi, 

and sup Tr U pU-1a = I PilXi' 

I PilXi = Pt(lX t - 1X2) + (Pt + (2)(1X 2 - 1X3) + ... + 1X00 

:::;; Pt(lXt - 1X 2) + (Pt + Pz)(1X2 - 1X3) + ... + 1X00 = I PilXi' 

<= : Choose an n-dimensional projection for a and use the min-max principal. 

The proof of (ii) is similar. 

2.2 The Properties of Entropy 

The information about a system in a mixed state is incomplete. The 
entropy is a measure of how far from maximal the information is. 

In statistical physics, entropy is not an observable in the sense of an operator 
on Hilbert space, but rather a property of the state of the system, measuring 
the lack of our knowledge as expressed in the specification of the state. This 
section will consider what sorts of conditions single out a particular measure 
of this lack of knowledge and will see what conclusions can be drawn from it. 

A primary requirement would be monotony with respect to the ordering 
introduced in the preceding section (we consider only normal states). In 
other words, a density matrix that is more mixed should have more entropy, 
which we denote S: p ~ p ~ S(p) ;:::: S(p). This leaves many possibilities open 
for the definition; every monotonic function of the trace of a concave 
function of p would satisfy this requirement (cf. (2.1.14». A further reasonable 
requirement is the additivity of the entropies of independent systems. If 
their combination is represented on the tensor product of their Hilbert 
spaces, this means 

S(p' ® p") = S(p') + S(p"). (2.2.1) 
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The two requirements together do not yet quite determine S uniquely. The 
whole one-parameter family of 

(X-Entropies (2.2.2) 

1 
S~(p) = -1 -In Tr p~, 

-0( 

satisfy the general 

Properties of Entropy (2.2.3) 

(i) 0 ~ S~(p) ~ In dim :Yf; 
(ii) P ~ p => Sip) ~ Sip); 

(iii) Sip' ® p") = Sip') + Sip"); 
(iv) If p = P/dim P, P = p 2 = P*, then Sip) = In dim P. 

(In particular, S~(p) = 0 iff p is a pure state, and S~(p) = In dim :Yf iff 
p is the chaotic state l/dim :Yf.) 

Proof 

(i) If 0( > 1, then Li pi ~ (Li Pi)~ = 1, and if 0( < 1, then Li Pi = 1 
~ (Li pnl/~. This shows the left side of the inequality, and the right 
follows from (iv) and (ii). 

(ii) The function p~ is concavefor 0( < 1 and convex for 0( > 1. The logarithm 
is monotonic, and the 1 - 0( accounts for the sign (see (2.1.18(iii)). 

(iii) Tr(p' ® P"Y = Tr[(p'Y ® (p"YJ = Tr(p')~ . Tr(p7· 
(iv) If n = dim P, then S~(p) = (1/(1 - O()) In(nn-~). D 

The entropy can be fixed uniquely by a more stringent assumption of 
additivity (2.2.1), with which monotony emerges as a consequence rather 
than a separate axiom: 

Characterization of the von Neumann Entropy (2.2.4) 

The only entropy satisfying the following conditions is S(p) = - Tr p In p 

(i) S(p) is a continuous function of the eigenvalues of p; 

(ii) s(t ~) = In 2; 

N 

(iii) If P = ffi P.P., 
.=1 n=1 n 

o ~ Pi ~ I, Tr p. = I, 
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then, regardless of the dimension of .Yfn, S(p) = L~=l PnS(Pn) + S(p), 
where p is the diagonal matrix on en having eigenvalues Pn' 

Remark (2.2.5) 

1. Since the representation should make no difference, S can only depend 
on the eigenvalues. It certainly does not seem unreasonable to demand 
continuity. 

2. Condition (ii) is a normalization. 
3. If all the .Yfn in condition (iii) have the same dimension and all Pn are 

equal, then .Yf = .Yf 1 ® en, and (iii) reduces to (2.2.1). This generaliza
tion of (2.2.1), which makes possible an inductive proof, has the following 
interpretation: Suppose a system consists of two subsystems, one described 
by en and the other having several variants according to the position of 
the state vector of the first in en. Then the entropy of the total system is 
just the sum of the entropy of the first subsystem and those of the second, 
averaged according to their probabilities. 

4. The formula S = - Tr P In P can be justified in the spirit of Boltzmann 
as follows. Let the state corresponding to P be realized as a vector of a 
reducible representation of the algebra .xl of observables consisting of N 
identical representations. The ensemble described by P can be thought of 
as having been subjected to a sequence of N measurements, where Pi is 
N;/N, Ni being the number of times the eigenvector ei has been measured. 
The Hilbert space is.Yf =E8f= 1 .Yfj, where the spaces.Yfj are all identical 
and are spanned by {eJ. The observables are represented as a direct sum 
of N identical representations. With the use of doubled indices, this can 
be written as .Yfj =E8r;l ei,j' A P of rank r and with Pi = N;/N, 
i = 1, ... , r, is represented by the vector 

1 -- (ell + el 2 + ... + el N + e2 N + 1 + ... + e2 N +N + ... fo" ,1,1 ,1 2 

of .Yf. If the ei are chosen from other spaces .Yfj' the same state results, 
and there are clearly W == N !/ni N i ! different vectors for the same p. 
If the numbers Ni are large enough, then In W ~ N In N - Li Ni In Ni = 

- N Ii Pi In Pi' so (lIN) In W ..... - Tr P In p. Assuming that every vector 
of .Yf is assigned the same probability, S turns out to be roughly the 
logarithm of the probability of the configuration, and there is an identi
fication: the most mixed state = the state of greatest entropy = the 
most probable state. 

5. S(p) = lim~""l Sip), yet if the dimension is infinite, then S(p) may become 
+ 00. However, Properties (2.2.3) remain valid in this limit, and apply 
to S as well. 
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6. A particular consequence of (2.2.3(ii)) is that S(ap + (1 - a)U pU- 1 ) 

~ S(p). More generally, (2.1.7; 2) implies that the mapping p -+ S(p) is 
concave: S(api + (1 - a)pz) ~ as(PI) + (1 - a)S(pz). This means that 
the entropy of a mixed state is greater than the constituent entropies 
weighted as in the mixing. If p = Ln PnPn' ° ~ Pn ~ 1, Ln Pn = 1, then 
the inequalities 

necessarily follow (Problem 4). They are optimal in the sense that equality 
holds on the left if all Pn are equal, and on the right if all Pn have disjoint 
support, by (2.2.4(iii)). 

7. Although by (2.2.3(iv)) all the S~ are the same with the chaotic state, 
with the canonical state P = exp( - [3(R - F([3))), Tr exp( - [3R) = 

exp( - [3F([3)), they are different (Problem 6). 

Proof of (2.2.4) 

We write S(PI' Pz, ... ) for S(p). 

(a) Let yt' = U. Then S(1) = 0, because on ez, Sept> pz) = PIS(l) + 
pz S(I) + S(PI, pz)· 

(b) Let yt' = en, fen) == S(1ln, lin, ... , lin), and let n = mtmz. We write 
en = em! EB em! EB ... EB em! and use (iii) with 

The solution of this equation is fen) = C In n, and the normalization 
(ii) makes C = 1. Other solutions are excluded by the continuity require
ment (Problem 1). 

n m - 11 

~~ 

(c) f(m) = s(~,~, ... ,~,~, ... ,~) 
m m m m m 

= - fen) + -~ f(m - n) + S -, -~ , n m - n (n m - n) 
m m m m 

so by step (b), 

S (;, 1 - ;) = - ; In ; - (1 - ;) In (1 - ;). 
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This holds initially only for integers nand m, and then by continuity 
holds generally, S(PI, pz) = - If= I Pi In Pi' 

(d) The rest of the proof proceeds inductively: with e+ I = e EB c, 
PI = 1 - Pn, pz = Pn, 

S(PI, Pz, ... , Pn-l, Pn) = (1 - Pn)SC ~I p/ ... , /::_-~J + PnS(l) 

+ S(1 - Pn' Pn) 
n-I p. 

= - I Pi In --' - - Pn In Pn 
j= I 1 - Pn 

n 

-(1 - Pn)ln(1 - Pn) = - I Pi In Pi' 0 
j= I 

The Classical Entropy (2.2.6) 

For a classical density pJx, p) on phase space the entropy would be defined 
as - J dOPel ln Pel' This is not a priori positive-definite; for instance Pel 

= X(A)/O(A) as in (2.1.6; 2) leads to - J dOX In X = In O(A), which is negative 
if O(A) < 1. It is easy to see that this entropy also depends on the measure 
of volume in phase space. There are many ways to associate a density Pel 

with a density matrix P or vice versa. 
The most useful such expressions are obtained with a method of A. Wehrl, 

in which for a given density matrix P one calculates expectation values in 
coherent states, and, conversely, a classical density is used to mix coherent 
states. The coherent states W(z)lu) == Iz) of (III: 3.1.13) can be generalized 
for functions u that are even and normalized, but not necessarily Gaussian. 
The state Iz) has the wavefunction exp(ik· x)u(x - q) if z = q + ik E CdN, 

which is the phase space for N particles in a physical space of dimension d. 
It is easy to check that z = <zlxlz) + i<zlplz) still holds and that the 
states are complete, J d2Ndz(2n) - Nd I z)<z I = 1. 

The Density Matrix and the Phase-Space Density (2.2.7) 

If to an N-particle density matrix P we associate the phase-space density 
Pelz) = <z I P I z), and to a classical density fez) on phase space we associate 
the density matrix Pqu = J dOzf(z) Iz) <z I, dO~ = (2n)- NddZNz, then 

P ~ 0, Tr P = 1 => 0 ~ Pcl(Z) ~ 1, 

f~ 0, f dOzf(z) = 1 => 0 ~ Pqu ~ 1, Tr Pqu = 1. (2.2.8) 
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Proof 

Positivity is trivial, and the connection between the trace and the phase
space integral follows from the n-dimensional version of a formula of 
(III: 3.1.14; 1): 

1 = f dQ~lz)<zl => Tr a = ~ <ilali) = ~ f dQ~<ilz)<zlali) 
= f dQ~<zlalz). 

Conversely, Tr S dQzf(z)lz)<zl = Id dQ~f(z)l<zli)12 = S dQz./(z), since 
<z I z) = 1. The denominator (2n)dN in dQ~ reveals that the phase-space 
volume is measured in units of h rather than h = h/2n = 1. D 

Inequalities for the Classical and Quantum-Mechanical Entropies (2.2.9) 

(i) S(p) ::;; - S dQ~ Pel(z) In Pel(z) == SJp); 
(ii) - S dQ~ fez) In fez) ::;; S(pqu)' 

Remarks (2.2.10) 

1. Inequality (i) implies that the Pel of (2.2.7) always has more entropy than 
S(p). This classical entropy is therefore always positive; the density Pel 
defined in (2.2.7) can never be so concentrated as to make the classical 
entropy negative, and indeed Pel::;; 1. 

2. It can also be shown that this classical entropy equals 1 if P is extremal, 
and otherwise it is greater than 1 [32]. 

3. If a quantum-mechanical density is associated with a classical density f 
by mixing the coherent states with f, then Inequality (ii) states that the 
quantum-mechanical entropy is greater than the classical entropy. The 
latter may even tend to - 00, for instance if f tends to a delta function. 

4. Inequality (ii) shows that the continuous analogue of the last inequality 
of (2.2.3; 6) is false: S( I z)<z I) = 0, and in this case the inequality goes 
in the other direction, with the replacements Pn --+ fez), In --+ S dQ~: 

- fdQ~f(z)lnf(z)+ fdQ~f(Z)S('Z)<z')::;; S(fdQ~f(Z)'Z)<z'). 
5. If the particles are identical, states must be either symmetrized or anti

symmetrized according to the statistics. For bosons this is accomplished 
most easily with the aid of the creation operator 

a! == a*(exp[ik· xJu(q - x», 
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with which 

So, with identical bosons, when the trace is taken the volume of the 
classical phase space has to be divided by n !. The states are not yet normal
ized to norm 1. 

(zl,···, Z"'IZ1'···' ZN) = L (± It fI (zilzp,) == DPer «zilzk», 
p i=l et 

where P 1, ••• , P n is a permutation of 1, ... , n, because the coherent 
states are not orthogonal: 

(z'l z) = f ddX exp[ix . (k - k')]u*(x - q')u(x - q). 

These determinants and permanents crop up along with dn~ in the 
calculations of expectation values, making them more laborious. 

6. Since these inequalities are valid for coherent states with a great degree of 
arbitrariness in u, they can be optimized by varying u. 

Inequalities (2.2.9) will follow from a lemma of Berezin on the 

Relationship between the Trace and the Phase-Space Integral (2.2.11) 

Let K be a convex function and suppose a* = a. Then 

(i) Tr K(a) ~ .f dn~K«zlalz»); 
(ii) J dn~ K(f(z») ~ Tr K(a), where a = J dn~f(z) I z) (z I, K(a) E Ct, and f 

is a measurable function eN -+ ~. 

Proof 

(i) As noted in the proof of Peierls's inequality, (IK(a)l) ~ K«lal») for 
expectation values in an arbitrary vector, so 

Tr K(a) = f dn~(zIK(a)lz) ~ f dn~K«zlalz»). 

(ii) If I j) denotes an eigenfunction of a, then 

Tr K(a) = ~ K«jlalj») = ~ K(f dn~f(z)I(Zlj)12) 

:-:;; ~ fdn~l(zlj)12K(f(Z)) 

= f dn~K(f(z)). o 
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Proof of (2.2.9) 

The function x In x is convex, and for the concave function -x In x the 
inequalities for convex functions are reversed. 0 

The additivity of the entropy when P = PI ® P2 generalizes to an in
equality when P is not in the form of a product. To cover general PI and P2 
requires the 

Definition of Partial Traces (2.2.12) 

Let Yf = Yfl ® Yf2 . The partial traces Tr I and Tr 2 are defined by 
Tr1,2a=Lj(j'aU)E~(~,I) for any aEC6'I(Yf), where {U)} is any 
complete orthonormal set in J't;. 2' 

A consequence of this is the 

Subadditivity of the Entropy (2.2.13) 

Let P1,2 = Tr2.1 p. Then S(p) :::; S(PI) + S(P2)' 

Remarks (2.2.14) 

1. If P = PI ® P2, then P1,2 = Trz. 1 P and by (2.2.3(iii» equality holds in 
(2.2.13). 

2. The partial traces reproduce the reduced density matrices used in §1.1. 
At that time we noticed that the reduction entailed a loss of information. 
Inequality (2.2.13) indicates that there is less information in PI and P2 
than in the original p. 

3. If ct. -# 1, then the ct.-entropies Sa (2.2.3) are not subadditive (Problem 2). 
It is consequently not necessarily true that PI ® P2 ~ p. 

4. Subadditivity allows axiom (iii) of (2.2.4) to be replaced [7] with 
(iii (a» S(p) = S(V*pV) for all isometries V; and 
(iii (b» S(p):::; S(PI) + S(P2), equality holdingiffp = PI ®P2' 

Proof 

By Klein's inequality (2.1.7; 5), Tr a In a - Tr a In b ?: Tr (a - b). Put 
a = P and b = PI ® P2 and note that In PI ® P2 = In PI ® 1 + 1 ® In P2' 

o 
Corollary (2.2.15) 

Consider a sequence of ever larger systems on the tensor product Yf", 
n = 1,2,3, .... Suppose that the density matrices Pn are compatible so that 
when reduced to a subsystem they always become the density matrix of the 
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smaller system: Pm = Trn-mPn, m:5 n. If an = -(l/n)Tr Pn In Pn' then 
nan :5 mam + (n - m)an- m. In particular, a2n :5 an' and hence the limits 
limn .... 00 an = infn an must exist and be ~O. Although the entropy itself 
does not tend to a limit as the size of the system gets arbitrarily large, the 
specific entropy does. 

It will be asked by how far (2.2.13) misses equality. More precisely, it 
might be supposed that the entropy of a united system is always greater 
than that of any single one of its parts. Surprisingly, this is not necessarily so 
with quantum statistics; P could be a pure state, thus having entropy zero, 
while the Pi correspond to mixtures. This is the case that arose in the discus
sion of the time-evolution in §L1; the additional information contained in P 
has to do with the correlations between the subsystems. The correlations 
are precisely pinned down in 

Lemma (2.2.16) 

Let P be pure; then Pl and P2 have the same spectrum with the same multi
plicities, except possibly for an eigenvalue at O. 

Proof 

See Problem 3. o 

Corollary (2.2.17) 

If P is pure, then S(Pl) = S(P2)' Our information about the subsystems is 
correlated, so they possess the same amount of disorder. 

In this case, S(p) = S(Pl) - S(P2); more generally there is a 

Triangle Inequality (2.2.18) 

IS(Pl) - S(P2) I :5 S(p) :5 S(Pl) + S(P2)' 

(Lieb and Araki [8J). 

Remarks (2.2.19) 

1. This inequality has no classical analogy; a counterexample is provided 
by a P with S(p) < 0 but S(Pl) = S(P2)' 

2. Even if the entropy of a subsystem can be greater than that of the whole 
system, the triangle inequality reveals that it can not exceed the sum of 
the total entropy and the entropy.of the complementary subsystem. 

3. Astonishingly, the classical entropy (2.2.9) of a quantum-mechanical 
density matrix is monotonic; it is always larger for the whole than for a 
part: Scl(P) ~ SctCP1)' (For the proof see Problem 5.) 
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Proof 

According to Remark (2.1.6; 5), P may be regarded as a pure state Pl23 
on a large Hilbert space Jlfl ® Jlf2 ® Jlf3 , for which P = Tr3 P123. Let 
P3 = Tr'2 P123' P23 = Trl P123; then by Corollary (2.2.17), S(p) = S(P3), 
S(PI) = S(P23)· Because of subadditivity, S(PI) = S(P23) ::;; S(P3) + S(P2) 
= S(p) + S(P2), and along with the same thing with 1 and 2 interchanged, 
this yields the left inequality of (2.2.18). 0 

An ideal measurement leaves the system in a pure state, reducing the 
entropy to O. For this reason, S(p) may be regarded as a measure of the 
amount of information to be gained by an ideal measurement. The difference 
S(p) - S(PI) specifies how much more information a measurement of the 
total system can yield than a measurement of a subsystem. Inequality (2.2.18) 
bounds this relative information gain by S(P2): 

With quantum statistics the difference can be either positive or negative. 
If P is pure, so that the greatest possible information about the total system 
is available, but P1 is a mixture, then more information can be obtained by 
measuring the subsystem. On the other hand, there are some inequalities 
for this entropy difference that are analogous to those of the classical entropy: 

Inequalities for the Entropy Difference (2.2.20) 

Let Pl23 be given on Jlfl ® Jlf2 ® Jlf3, and Pl2 = Tr3 P123' PI = Tr2 P12, 
etc. Then 

(i) S(p 12) - S(p 1) is concave in P 12; 
(ii) S(P13) - S(P1) + S(P23) - S(P2) ;;::: 0 (Lieb and Ruskai [8]); and 

(iii) S(PI23) - S(P2) ::;; S(PI2) - S(P2) + S(P32) - S(P2)· 

Remarks (2.2.21) 

1. Proposition (i) implies that mixing increases the relative information gain. 
In particular, the relative information gain is a monotonic function in Pl2 
with the ordering introduced in (2.1.9). 

2. If Roman numerals are used to denote the systems corresponding to the 
Hilbert spaces Jfi, then Inequality (ii) implies that more information can 
be obtained by measuring I u III and II u III than I and II. If #2 is 
one-dimensional, so S(P2) = 0 and S(P23) = S(P3), then this proposition 
reduces to (2.2.18). 
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3. Inequality (iii) is subadditivity for the entropy difference. The information 
content of I u II and III u II relative to II is greater than that of 
I u II u III relative to II. 

Proof 

(i) Let P12 = rxP'l2 + (1 - rx)P~2' Pl = rxP'l + (1 - rx)p'{. Then 

-S(P12) + rxS(P'12) + (1 - rx)S(P~2) + S(Pl) - rxS(Pl) - (1 - rx)S(pl) 

= rx Tr 12 P12[ln Pl2 - In P~2 - In Pl + In P'l] 
+ (1 - rx) Tr12 p'l2[In Pl2 - In P~2 - In Pl + In P'1l 

== rxA.' + (1 - rx)Il". 

If a = - PH 0 - In Tr exp( - PH 0) and b = - pV, then because of 
(2.1.8; 3) and Tr exp(a) = 1, exp(Tr b exp(a)) ~ Tr exp(a + b), so with 
a = Inp12,b = [ ... ], wefindexp(ll) ~ Tr12 exp(ln P12 -In Pl + Inp'l)' 
Therefore, with Lieb~s theorem (2.1.7; 8), 

exp(rxll' + (1 - rx)Il") ~ rx exp(Il') + (1 - rx)exp(Il") 

~ rx Tr12 exp(ln Pl2 - In P1 + In P'l) 

+ (1 - rx) Tr12 exp(ln P12 - In P1 + In pI) 

~ Tr12 exp(ln Pl2 - In Pl + In(rxp'l 
+ (1 - rx) In pm = Tr12 exp(ln P12) = 1. 

(ii) Since Pik and Pi can be expressed linearly in Pl23, part (i) makes the 
left side concave in Pl23' The minimum is consequently attained when 
Pl23 is pure. But by Corollary (2.2.17), in this case S(P13) = S(P2) and 
S(P23) = S(P1), and the minimum is zero. 

(iii) Choose a pure P1234 on Jfft23 ®~, such that Tr4P1234 = P123' Then 
by Corollary (2.2.17), S(Pl23) + S(P2) - S(P12) - S(P23) = S(P4) + 
S(P2) - S(P12) - S(Pl4) which is ~O by (ii). 0 

These general inequalities for density matrices reflect mixing properties 
of the entropy like those used in phenomenological thermodynamics, and 
thereby provide a deeper foundation for those classical rules. 

Nearly as important as the entropy differences is the 

Relative Entropy (2.2.22) 

S(ulp) == Tr p(ln P - In 0'), 

for which 

(i) S(ulp) ~ 0; 

p, 0' ~ 0, Tr P = Tr 0' = 1, 

(ii) thefunction (0', p) -+ S(ulp) is strictly convex and lower semicontinuous; 
(iii) S(u ® 'rIp ® 'r) = S(ulp)for any density matrix 'r; and 
(iv) S(u1Ip1) ~ S(u I p)for Jf = Jf1 ® Jf2, (0'1, P1) = TriO', p). 
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Proof of the Properties of the Relative Entropy 

(i) This was shown in the proof of subadditivity (2.2.13). 
(ii) Convexity follows from (2.1.7; 8) when ('J. --+ O. The function is lower 

semicontinuous because S (CT I p) can be written as the supremum of a 
set of continuous functions (Problem 7). 

(iii) S(CT ® ,Ip ® ,) = Trl2 P ® ,[(In p) ® 1 + 1 ® In, 

- (In CT) ® 1 - 1 ® In ,J 
= Trl p(ln P - In CT)Tr 2 , = S(CTlp)· 

(iv) As in Problem (2.1.19; 1), write PI ® l/d2 = J dp,U 2PU2 \ d2 = dim Yt;, 
and similarly for CT. By (iii) and (ii), 

S(CTllpl) = S (CT I ® :JPI ® :J 

Since d2 drops out of the expression, this proof for d2 < 00 extends to 
the infinite-dimensional case. 0 

Remarks (2.2.23) 

1. If CT is the canonical density matrix CT = exp( - f3H)/exp( - f3F), and the free 
energy is F = - r 1 In Tr exp( - f3H), then S( CT I p) = f3(Tr pH - F) 
- S(p). If a free energy F(p) == Tr pH - f3- 1S(p) is ascribed to p, then 
S(CTlp) = F(p) - F. The relative entropy S(CTlp) measures the difference 
from the canonical free energy F(CT) = F, which always lies lower because 
of (i). 

2. By Property (ii), mixing and passing to limits bring the free energy closer 
to the canonical free energy. 

3. Property (iii) states that the difference from the canonical free energy is 
the same for PI and p if there are two independent subsystems 1 and 2, 
where p = PI (8) P2,and P2 is the canonical density matrix of system 2. 

4. If a subsystem is weakly coupled, H 12 ::;;: HI ® 12 + II ® H 2, i.e., 
exp( - f3(H I - F I» ::;;: Tr I exp( - f3(H 12 - F U», then its difference from 
its canonical free energy is always less than that of the whole system. The 
analogous argument for the entropy only leads to S(PI) ::; S(p) + In d2 , 

which already follows from (2.2.5; 3). 

A final matter to investigate is how sensitive S is to small changes in p. 
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Theorem (2.2.24) 

The mapping rei ~ ~+: P ~ S(p) is lower semicontinuous in the trace-norm 
topology ofre 1. 

Remarks (2.2.25) 

1. The set re 1 is topologized with the trace norm II Ill. If a sequence {PN} 
converges in this topology to p, then S(p) is at most limN-+oo S(PN). 
However, we shall see in (2.4.19; 1) that for density matrices all topologies 
between the trace topology and the weak topology are equivalent. 

2. Continuity does not occur, because in every II Ill-neighborhood of P 
there are density matrices with arbitrarily much entropy. This follows 
directly from concavity, 

S(~ PN + (1 - ~)p) 2! ~ S(PN) + (1 - ~ )S(P). 

Let S(p) = 0, and S(PN) = N 2 ; then S«l/N)pN + (1 - l/N)p) 2! N, 
although 

so the density matrices converge to p. The two terms in the expression 
(l/N)pN + (1 - (l/N»p, however, can not be comparable in the sense 
of (2.1.9); that would contradict (2.1.10; 4), by which the limit of a 
sequence of equivalent density matrices can not be purer than the elements 
of the sequence. 

3. The mappings rei ~ ~+: P ~ Sip), IX> 1 are continuous (see below). 
4. By lower semicontinuity the sets Sn == {p: S(p) ~ n} are closed, and by 

Remark 2 they are nowhere dense. This means that the set Un Sn of p's 
of finite entropy is of the first category, the topological analogue of a null 
set. In this sense the entropy is almost always + 00. 

Proof 

Because Tr p" = lip II: ~ Ilpll"-l . Ilp111' the mapping of re 1 to ~+: p ~ Sip) 
is continuous. As the supremum of a set of continuous functions, S(p) = 
sup,,> 1 S,,(p) is lower semicontinuous. D 

The failure of S(p) to be continuous does not diminish its usefulness. The 
density matrices p of very large S have their eigenvalues Pi spread so far 
apart that the average of the energy diverges. 
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The Continuity of the Entropy at Finite Energy (2.2.26) 

Suppose that H ~ 0 and Tr exp( - PH) < 00 for some P > O. If the density 
matrices having Tr pH < 00 are topologized with the norm IlpIIH 
= Tr p(1 + H), then S(p) is a continuous mapping ~ H -+ IR +, where ~ H 

= {pE~l' IlpliH < oo}. 

Proof 

According to Remark (2.2.23; 1), S(p) = p(Tr(pH) - F) - S(alp), where 
a = exp( - pH)/exp( - PF). The function Tr pH is continuous in the II IIH
topology, and - S( a I p) is upper semicontinuous, because the II II H-topology 
is finer than the trace topology. Since S(p) is lower semicontinuous in the 
trace-norm topology, it is also lower semicontinuous in II IIH' and hence 
continuous in II IIH' 0 

Problems (2.2.27) 

1. (i) Show for the functions f(n) == S(l/n, ... , lin) that limn~oo [f(n) - f(n - l)J 
= O. 

(ii) Conclude from (i) that the only solution of the equation f(mn) = f(m) + f(n) 
is of the form f(n) = C In n, supposing that S is continuous according to 
(2.2.4(i». 

2. For IX #- I, show that the IX-entropies S. of (2.2.2) are not subadditive. 

3. Prove Lemma (2.2.16). 

5. Show that Scl(PI) s SCl(P) if Yf = Yfl ® Yf2' where .1li are one-particle Hilbert 
spaces, particles 1 and 2 are distinguishable, PI = Tr2 p, and Sclp) is defined as in 
(2.2.9). 

6. Calculate S.(exp( - f3[H - F(f3)J), where exp( - f3F(f3» = Tr exp( - PH). 

7. Show that S( 0" I p) is lower semicontinuous. Hint: use 

(i) S(O"lp) = SUPO<l<1 SiO"lp), Slalp) == (1/A)(S(Ap + (1 - A)o") - AS(p) 
- (1 - A)S(O"» ~ 0; 

(ii) if a ~ 0 then Tr a = supn Pna, Pn ---> 1, is an increasing sequence of finite
dimensional projections; and 

(iii) the operator inequalities (III: 2.2.38; 11), 
to show that the function s(x) == -x In x is concave for operators, i.e., 
s(Aa + (1 - A)b) ~ A.s(a) + (1 - A)s(b) for all a, bE !Jl(Yf). 

8. Prove the formula for the identity operator in (2.2.10; 5). 
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Solutions (2.2.28) 

1. (i) Let dn = fen) - fen - 1) and on = S(1ln, 1 - (lIn». Because S is continuous, 
On ~ O. 

. dn-l+···+dz 
fen - 1) = dn- I + ... + dz = dn = On +, 

n 
N N 

L(ndn+dn-I+···+dz)= Ln(}n, 
n=2 "=2 

N 1 N 1 N-l 
~ dn = N ~ n On => dN = ON - N(N _ 1) ~ nOn' 

"-2 "-2 n-2 

1 
IdN - oNI ~ --sup On + sup On for all N ~ 2, which => lim dN = 0, 

N - 1 n n?jN 

because supn on < CIJ and limn~oo on = O. 
(ii) It suffices to show that limn~ 00 f(n}/ln n = f(no}/ln no (for any fixed no ~ 2); 

because f(nk) = kf(n) this implies that fen) = (f(no)/In no) In n for all n ~ 2. 
Define g(n) = fen) - (f(no)/In no) In n; then it suffices to show that g(n)/ln n ~ O. 
Let n = n1nO + 11, with 0 ~ 11 ~ no. Because g(no) = 0, g(n) = L~;;'~8k + 
g(n1nO)' where 8k == g(k + 1) - g(k» = Lk 8k + g(n1)' Now let n1 = nzno 

+ Iz; then g(n) = g(nz) + L7=1 LY=-Ol 8nj +;, etc. After ko < In njln no steps, 
nko < no, and therefore g(n) = Lk ek. The sum has fewer than noko summands, 
and therefore lim g(n)/ln n = O. since 8k ~ O. 

2. Let .Yf = (;z ® (;z and P = (Pik,j/), where Pik,jl = Oijoklrik; rll = pq + e, r12 = 
p(l - q) - e, rZ1 = (1 - p)q - 8, rzz = (1 - p)(l - q) + e with 0 < p, q < 1, 
p, q #- 1. Since P is diagonal, this allows Sip) to be read off with no further ado: 
If e = 0, then P = PI ® pz, 

pz = Tr I P = (q 0). o 1 - q 

If S.(p) were ~ SiPl) + S.(pz), then the function g(l:) == (pq + £)" + (p(1 - q) - ey 
+ ((1 - p)q - £)" + ((1 - p)(1 - q) + e)" would have an extremum at I: = 0, but 
g'(O) #- 0 if ()( #- 1. 

3. Let Ix) E £; ® YCz. I x) = Li.k Cik I i) 1 ® I k)z, where {Ii) l} and {Ik)z} are ortho
normal sets in £! and Yt;; respectively, and P = Ix) (x I. 

Trzlx)(xl = Trz L Cik Cftl i)l1(j1 ® Ik)zz(11 
ijkl 

= L Cik Cftl i)l1(jlokl = L Cik Cjkli)l1(jl, 
ijkl ijk 

which implies that the positive eigenvalues ofTrz Ix) (x I are the same as those of the 
matrix CC*, where C = (Ci). A similar argument shows that the positive eigenvalues 
ofTrl Ix><xl are the same as those ofC*C and thus ofCC*. 

4. Let AiPi = ai; then the proposition is equivalent to S(Li ai) ~ Li Sea;) for all 
ai E ~i. Since In x is monotonic as an operator function (III: 2.2.38; 11), if ak ~ 0, 
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then In ai ::;; In(Ii a), which implies all2(ln a;)al l2 ::;; ai l2(ln Ii a)al I2 , and therefore 
Ii Tr(ai In ai) ::;; Tr[(Ii ai) In(Ii ai)]. 

5. PI(ZI) == <zllpllzl) = Ii <ZI ® e;lpizi ® ei) ;::.: <ZI ® z21plzi ® Z2) == P(ZI, Z2), 
since {e;l may be chosen to be an arbitrary basis. Therefore 

6. 
1 1 

S. = --In Tr exp( -rxfJ(H - F(fJ») = -- [F(rxfJ) - rxF(fJ)]. 
I-rx rx-l 

As rx -+ I, S -+ 8F(fJ)/8fJ 

7. (i) The function AS, is concave in A, because 

S(rx(Ala + (1 - AI)P) + (1 - rx)(A2a + (1 - A2)P» 

;::.: rxS(Al a + (1 - AI)P) + (1 - rx)S(A2a + (1 - )'2)P), 

so 

d 
S(alp) = -, ASAI,=o = sup S,. 

dll. 0<,<1 

(ii) This is the normality of the trace. 
(iii) The operator concavity of -x In x = SO' (l - rx/(x + rx) - x/(1 + rx»drx is 

equivalent to the operator convexity of 1/(x + 1), and it suffices to show con
vexity with rx = t: 

1 1 1 4 1 1 
-----< + - <--+--
(A + B)/2 + 1 - 2(A + 1) 2(B + 1) A + 1 + B + 1 - A + 1 B + 1 

4 
-----------~~--(B + l)-1/2(A + I)(B + 1)-1/2 + 1 

::;; (B + 1)1/2(A + 1)-I(B + 1)1/2 + 1. 

Since 4/(x + 1)::;; (l/x) + 1 for all x E IR+, this is also valid for positive operators. 
Therefore, (I/A) [s(Aa + (1 - A)p) - A.s(a) - (1 - A)S(p)] ;::.: 0, which implies 
S(alp) = suP. sUPO<,<l (1/A) Tr P.[s(Aa + (1 - A)p) - As(a) - (l - A)S(p)J, 
and s(p) is continuous in finite dimensions. This also provides a new proof of 
the lower semicontinuity of S(p). 

8. The right side of the equation clearly leaves the number of particles invariant. Hence 
the formula is shown by 

fdzi ... dZN 

<fb··.,jNI N!(2n)dN IZI"",ZN)<ZI"",ZNlgI,···,gN) 
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2.3 The Microcanonical Ensemble 

Insight into the fundamental thermodynamic laws is gained by 
investigating the chaotic state below the energy surface. 

73 

Two trains of thought are usually followed to justify regarding the equilibrium 
state as predominating for macroscopic systems. Like Boltzmann, one can 
investigate the time-evolution of a system and show that most states tend to 
equilibrium. Alternatively, one can follow Gibbs and examine an ensemble 
of identical copies of the system and identify states of scanty information 
with equilibrium states. The set of problems connected with the first pro
cedure is the subject of the next chapter, while in this section we shall study 
systems for which the only information concerns the energy. If it is known 
that the energy does not exceed some maximum value Em, then, as remarked 
in (2.1.10; 2), the most mixed state containing no further information cor
responds to the 

Microcanonical Density Matrix (2.3.1) 

p = ®(Em - H)/Tr ®(Em - H), { I for x ~ 0 
®(x) = 0 for x < 0' 

where Em ~ 81 == the lowest eigenvalue of H. Its 

Entropy and Average Energy (2.3.2) 

Are 

S = In Tr ®(Em - H), E = exp( - S)Tr H®(Em - H). 

Remarks (2.3.3) 

1. The discontinuous function e of a self-adjoint operator is defined with the 
spectral representation of the operator. 

2. It is assumed that H is bounded below and that uess(H) is empty, so the 
traces in (2.3.2) are finite. 

3. The entropy S is a discontinuous function of Em, and has no well-defined 
inverse. On the other hand, E may be construed as a function of S, as 
shown in Figure 3. The function E(S) increases monotonically. 

4. By the min-max principle, E(S) is also given by E(S) = 
exp( -S)inf.lt"n TrJf"n H, where Yt,; is an n-dimensional subspace of D(H) 
and n = exp(S). It is consequently a concave function of all parameters 
on which the dependence of H is concave. 
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s E 

In 3 

In 2 

E 

Figure 3 The thermodynamic functions for a finite system. 

5. By Property (2.2.3(iv», all ct-entropies Sa lead to the same S (2.3.2), 
which can be identified as the entropy of phenonemological thermo
dynamics. 

6. It will be seen shortly that in the systems under consideration here the 
density of states increases so rapidly with the energy that in the limit of 
an infinite system, any density matrix p '" 0(E - H) - 0(E(1 - e) - H) 
yields the same entropy density for all e > O. 

The further properties of E(S) follow from the special form of the 
Hamiltonian, 

N Ipd2 
HN = ;~1 2m; + ;~j vex; - x), 

where v is assumed bounded relative to the kinetic energy. It will be most 
convenient to deal with the quadraticform associated with HN (cf. (III: 2.5.18; 
2». The quadratic-form domain Q(HN) consists of functions !/J such that 
L; (l/2m;) S 1 V;!/J 12 < 00 and with some other restrictions from the boundary 
conditions. The formula of Remark (2.3.3; 4) then holds with JIl,; c Q(H N)' 
The boundary conditions we shall choose are Dirichlet conditions on the 
surface of a volume V c [R3, which mean specifically that: .tt' c U(VN) 
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and t/lla(YN) = O. The Hilbert space Yf is L 2(VN) if the particles are distin
guishable, and if they are identical bosonsor fermions, then Yf must be 
restricted to functions of the appropriate symmetry. The energy can be 
treated as a function of S, V, and N, and its dependence on V is described 
by the following theorem. 

MonotolJY of the Energy (2.3.4) 

If V' ::::> V, then 

E(S, V', N) :<=;; E(S, V, N). 

Proof 

This follows from (2.3.3; 4) because Q(H(V'»::::> Q(H(V», where ::::> is 
intended in the sense of the natural imbedding, i.e., functions t/I such that 
t/llov = 0 are set to 0 in V' \ v. D 

Subadditivity generalizes this monotony when particles in separated 
volumes do not repel one another. 

Subadditivity of the Energy (2.3.5) 

If VI (') V2 = 0 and V(Xi - x) :<=;; 0 for all Xi E VI' Xj E V2, then 

E(SI + S2, VI U V2, Nl + N2) :<=;; E1(SI' VI' N 1) + E(S2, V2, N 2). 

Proof 

This again follows from (2.3.3; 4), since the right side results from taking 
the infimum over a subspace of Q(H), which consists of tensor products of 
exp(S 1) vectors, for which N 1 particles lie within the volume VI, with 
exp(S 2) vectors having N 2 particles within V2 • The tensor products have 
to be symmetrized or antisymmetrized if there are Bose or Fermi statistics. 
However, since symmetrization does not affect the expectation values of 
(2.3.5) when the functions have disjoint supports, (2.3.5) IS independent 
of the statistics. D 

The existence of limy .... 00 EIV can be derived from the subadditivity, 
though it is rather difficult to go beyond the restriction v :<=;; O. This problem 
will have to be investigated later for each of the systems discussed in §1.2, 
and for now convergence will simply be assumed. The condition is satisfied 
trivially for free particles (v = 0). To draw conclusions like those of (2.2.15), 
assume that V is a cube, the volume of which will also be fearlessly denoted 
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V E IR+. If eight cubes are packed together as a single cube of double the side, 
then (2.3.5) implies 

E(8S, 8 V, 8N) S 8E(S, V, N). 

Assuming in addition that there exists A E IR+ such that 

HN ~ -AN forallNEZ+, 

the limit 

lim 8- VE(8 VS, 8vV, 8VN) = inf 8- VE(8 VS, 8vV, 8VN) 
Z+3\'---+OO 

(2.3.6) 

(2.3.7) 

exists. This allows the passage to an infinite system, for which the energy, 
entropy, and particle densities are defined by EIV = c, SIV = IT, and N IV = p. 

The Thermodynamic Limit of the Energy Density (2.3.8) 

c(IT, p) = inf 8- VpE(8 vITp-1, 8vp-l, 8V). 

z+ 3 V 

Remarks (2.3.9) 

1. Equation (2.3.7) guarantees that c > - 00, so the infimum always exists; 
but (2.3.8) is only of interest when there is a well-defined limit, for only 
then is it certain that the thermodynamic properties do not depend on 
the exact number of particles. Even if the limit exists, as in the case of 
(2.3.6), it does not guarantee that the resulting c is nontrivial. If, say, the 
particles can be distinguished (which does not invalidate the general 
conclusions), then classically, 

and 

Em 
E=----

1 + 2/3N 

Therefore, as N ~ 00, 

E 3 p5/3 
- = - -----Z-/3 exp(~ITp -1) ~ o. 
V 2ne N 

The familiar result obtains only with the replacement exp(S) ~ 
(liN!) exp(S) to account for the particles being identical. A later calcula
tion of c( IT, p) will reveal that (2.3.8) is then not without content. 

2. Though the result has been derived only for cubes, the limit clearly exists 
for other shapes if they are not too different from cubes. 
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3. The effect of dilatations on the kinetic energy (cf. (III: 3.3.21; 8) and 
(III: 4.1.4» of free particles implies, moreover, that 

E(S, V, N) = exp(2r)E(S, exp( -3r)V, N). 

Hence the one-parameter family of limits 

lim 8- v(1-2r)E(8 vs, 8v(I-3r)v, 8VN) 
v .... 00 

exist (cf. (1.2.1». Ordinarily, the limit is taken with r = 0, and quantities 
proportional to N, like E, S, and V, are described as extensive, while 
N -independent quantities like 8, p, and a are called intensive. The existence 
of some limit is important, for, whatever it may be like, it enables precise 
propositions to be formulated. In reality systems are large but still 
finite, but if a quantity converges as N -+ 00 the limit may be expected 
to be attained for practical purposes when, say, N = 1024. Indeed, it 
will be shown in realistic situations that the limit is sometimes attained 
to O(N- 1/6 ), which is sufficient accuracy for macroscopic bodies. There 
are various ways to interpret the limit N -+ 00. As has been done here, the 
system may be thought of as becoming larger and larger, or, alternatively, 
the atoms may be imagined smaller and smaller with their number in the 
fixed volume of the container being increased at the same time. 

Since monotony and convexity survive pointwise limits, there are the 
following 

Properties of the Energy Density (2.3.10) 

For the function IR+ x IR+ -+ IR+: a, P -+ 8(a, p), 

(i) 8 increases monotonically in a: 
(ii) p- 18(ap, p) increases monotonically in p; 

(iii) 8 is convex in (a, p); 
(iv) moreover,for free particles, 8(a, p) = p5/3f(a/p). 

Proof 

Property (i) holds as remarked in (2.3.3; 3), and Property (ii) follows from 
Theorem (2.3.4). From subadditivity (2.3.5), 

8(!(al + (2), !(PI + P2» ~ !(8(al, PI) + 8(a2' P2», 

which implies (iii), and (iv) follows from (2.3.9; 3). o 
Remarks (2.3.11) 

1. Since N E 7L+, S E In 7L+, 8 is at first defined only on the dense set for 
which ap- I is a power of (In z)/2, z E 7L+. It extends continuously to IR, 
because monotony and concavity with the coefficient! imply uniform 



78 2 Thermostatics 

continuity. There are discontinuous functions that are concave with 
coefficient t, such as 

f(x) = {x' x ratio~al, 
0, otherwIse, 

for which the equation f(rxx) = rxf(x) holds for all rational rx. However, 
this can not occur if the function is monotonic. The extension then in 
addition satisfies the inequality 

8(rxO"I + (1 - rx)0"2' rxPl + (l - rx)P2) :::; rx8(O"1o PI) + (1 - rx)8(0"2' P2) 

for all rx E ~, 0 :::; rx :::; 1. 

2. Subadditivity (2.3.5) is sufficient but not necessary for Property (iii); 
(2.3.5) may be violated if the interaction is partially repulsive, which is a 
necessary assumption or H N ~ - AN when the particles interact. 
However, if the potential goes to zero rapidly enough at infinity, the 
correction to (2.3.5) on any finite region is a surface effect, so the convexity 
of the energy density is still guaranteed in the thermodynamic limit. 
On the other hand, the special form (2.3.8) is crucial, and in §4.2 it will 
be seen that convexity (2.3.10(iii)) is violated in gravitating systems, 
although (2.3.5) is valid. 

3. Since the limiting function is continuous, Dini's theorem ensures that 
the monotonic limit (2.3.8) is uniform on compact sets. 

4. Let H be defined so that inf 8 = O. Since 8 is convex in 0", unless 8 == 0, 
there exists a 0"0 such that 8 is strictly monotonic in 0" for all 0" > 0"0. 

There is consequently an inverse function 0"(8, p) (see Figure 4), which is 
concave and monotonically increasing in 8. 

5. As long as 0" is strictly monotonically increasing in 8, the density matrices 

P = 0(Em - H)exp( - S) 

e (J 

L-______ ~-------------(J 

Figure 4 The thermodynamic functions for an infinite system. 
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and 

Po = (0(Em - H) - 0(Em - Vb - H»exp( -S,» 

yield the same entropy densities in the limit N -+ 00: 

ao = lim ~ In Tr(0(Em - H) - 0(Em - Vb - H» 
V-oo V 

= a(£, p) + lim ~ In(1 - exp[ - V(a(£, p) - a(£ - b, p»]) = a. 
V-oo V 

79 

This means that as N -+ 00 most of the states crowd just under the energy 
surface with arbitrarily high density. 

6. For some systems a(£) is constant for £ greater than some £1' in which 
case p and PI) may have different entropies. Consider for example N 
spins in an external field «1.1.3) with £ = 0). The density of states 
(%E)exp[S(E)] is invariant under a -+ - a and thus an even function 
in E. This makes Tr Po a decreasing function of Em when Em + b > 0, 
which is impossible for Tr p (see Figure 5); Definition (2.3.1) rules 
negative temperatures out. 

7. The number of energy levels below Em is exp(Na/p), which is immense 
for macroscopic bodies, N ~ 1024. It would never be possible to isolate 
the energy levels completely-their widths are on the order of (macro
scopic time) - 1, which is much larger than their spacing. Systems will 
later be idealized as infinite, having continuous energy spectra, which 
comes closer to reality than does the fiction of a discrete spectrum. 

After this first exposure to these ideas, let us consider two systems the 
interaction between which is so weak that it can be neglected in comparison 
with other energies. They are to be considered as parts of a larger system 
with .Ye = .Yl; ® ~, H = H 1 + H 2' The question is how the energy and 
entropy are shared by the two subsystems. Even though H is a sum, the 
microcanonical density matrix (2.3.1) is not in the form of a product 
p = P1 ® P2, and we will have to see how the entropy of this state can 
nonetheless be additive for independent, macroscopic systems. Assume to 

u' 

......a.. __ -.L ___ e 
~~ ____ ~ ____ -L_ e 

Figure 5 Inequivalence of the microcanonical ensembles for spins in a magnetic field. 
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this end that the systems are large and that the sequence (2.3.8) converges 
and has all the necessary kinds of continuity so that e = E/ V can be regarded 
as a continuous variable for the purposes of integration and differentiation. 
For the problem at hand and other estimates we shall need 

Lemma (2.3.12) 

Let er(e) ~ ° and be concave on [0, 1], and er(l) = 0, - 00 < er(O) < 0; this 
implies that er is nondecreasing and that there exists an eo, 0 < 1>0 ~ 1, such 
that er' == er'(l>o) > O. Then 

1 - exp( - Vler(O)I) II ( 1 - exp( - Vl>oer') 
Vler(O) I ~ 0 de exp Ver(I») ~ 1 - 1>0 + Ver' . 

Proof 

By assumption (see Figure 6), 

(l - l»er(O) ~ er(l» ~ {O ( ) , 
- 1>0 - I> er 

for 1>0 ~ I> ~ 1 
for 0 ~ I> ~ 1>0. 

r---------------~--_z~~r__ e 

0'(0) 

O'(e) 

Figure 6 Bounds for the concave function 0"(8). 

Corollaries (2.3.13) 

1. If er is concave but not necessarily negative, then the formula 

o 

f V dl> exp(Ver(I») = exp(VO') fdl> Vexp(V(er(l» - 0'» with 0' = arr:::her(l» 
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can be used instead, since - 00 < (i < 00 unless U == ± 00. By an applica
tion of the lemma, possibly after subdivision of the region of integration, 

1 Jb lim -In d8 V exp(V(u(8) - (i» = 0. 
v .... oo V a 

Thus only the maximum value of U contributes in the infinite limit: 

1 Jb lim -In Vd8 exp(Vu(8» = sup U(8) = (i(81) = sup (i(8). 
v .... oo V a a';;e,;;b a';;e,;;b 

2. Remark (2.3.11; 5) leads one to expect that Em and E may become equal 
for large systems. More precisely, if U is concave in 8, du/d8 > 0, 
limv .... oo (E - Em)/V = 0. This follows because E may be written as 

E = exp( - S)Tr H0(Em - H) = LErn dE' E' a~' Tr 0(E' - H)exp( - S) 

fErn 
= Em - 0 dE' Tr 0(E' - H)exp( - S). 

With 80 = 1 and E' = 8 V the lemma now implies that the last integral is 
0(1), whereas Em '" V. 

3. We next calculate exp(S(E» = Tr 0(E - H 1 - H 2), Hi ~ 0, as V = 

V1 + V2 -+ 00 with Vi/V fixed. Because of the assumption of subadditivity, 

1 
U1,v,(8) == V1 In Tr1 0(V18 - H 1) 

is concave in 8 and increases monotonically to U 1 (8). Let E 2 [n] denote the 
ordered sequence of eigenvalues of H 2' If the entropies are considered as 
functions of the maximum energy, which leads to the same function in the 
limit V -+ 00 because of Corollary 2, then n may be identified with exp S, 
and EiS2) == E2[exp(S2)] becomes the function introduced in (2.3.3; 3). 
With E = 8V, 

U(8) = lim ~ In Tr 0(E - H1 - H 2 ) 
v .... oo V 

1 exp(S2(E» 

= lim -In L exp(Sl(E - E2 [n]». 
v .... oo V n=l 

Now regard n as a continuous variable, and interpolate E2 [n] linearly. 
Since the integrand decreases monotonically, the sum L~~~S2(E» .•. lies 
between JeXP(S2(E)) dn ... and feXP(S2(E))+ 1 dn . .. and the evaluation of the o . 1 , 

error is unnecessary, since exp(S2(E» '" exp(l023). With the variables 
U2 = (l/V2)ln n, U(8) can be written as 
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Now note that (J2 --+ a - bS2(J2) is concave if h:::::: 0, (JI,V, is concave 
and increasing, and that (concave, increasing) 0 concave = concave. This 
allows the lemma to be applied, to show 

[ VI ( V V2 ) V2 ] = sup -V (Jl - S - - S2(J2) + -(J2 . 
0:$<12:$<12(e) VI VI • V 

The interchange ofthe limit V --+ 00 and the supremum is justified because 
S2,V,(J2) increases monotonically in (J2 for all V2, and since (JI,V,(S) 
likewise increases in s, it decreases in (J 2, and consequently the first term 
in the brackets [ ] converges uniformly on compact sets to 

(J2 --+ (JI - S - - Sz(J2) . ( V V2 ) 
VI VI 

Although the concavity of (J is preserved in the limit V --+ 00, strict 
concavity, which is needed to guarantee that the maximum is attained 
at only one point, may break down. A lack of strict concavity means that 
there is a phase transition, and will be examined in detail later. If, however, 
(Jls;) are strictly concave and continuously differentiable, then the result of 
Corollary 3 can be improved upon and the additivity of the entropies 
demonstrated. 

Equilibrium Condition (2.3.14) 

Let (Jls;) = lim v, ~oo (l/l';) In Tr 0(l';s; - H;) be strictly concave and con
tinuouslydifJerentiable,lime~o(J'(s) = ooandlimv~oo l';/V == IJ(;,IJ(I + 1J(2 = 1. 
Then 

where S; are determined uniquely by 

Remarks (2.3.15) 

1. The energy densities can equally well be regarded as functions of the 
entropy densities, which reformulates the equilibrium condition as 

a a 
-~-SI(JI) = ;;--Si(J2) and IJ(I(JI + 1J(2(J2 = (J. 
oa 1 V(J2 
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2. Convexity of e(u) is equivalent to concavity of u(e), which is equivalent 
to the number of states below Em not increasing faster than exponentially 
with the energy. This is not a general property of quantum-mechanical 
systems, and has to be checked in individual cases. A simple counter
example is the hydrogen atom, for which En '" -1/n2, exp(S(En» '" n3 , 

where n is the principal quantum number, and therefore 

2) aE 2 2 a2E 4 2 
E", -exp( -3S , as'" 3 exp( -3S) > 0, as2 '" -g exP( -3S) < 0. 

In such cases there may be many solutions of the equilibrium condition 
(see Figure 7). 

3. Condition (2.3.14) implies that the energy is apportioned between the 
two systems so as to maximize the total entropy. From the point of view 
of e(u) this means distributing entropy so as to minimize the total energy. 
As a consequence, the subadditivity inequality (2.3.5) becomes an equality 
in the limit V -+ 00. 

4. If ei(u) E C2, then at the minimum, e'UrJ.1 + e'2/rJ.2 ~ 0, where e" = a2e/ou2. 
Then by Problem 4, at the minimum, l/e" = rJ.de'{ + rJ.2/e'2. 

If the total system consists of a system immersed in a thermal reservoir, 
then the system of interest is not affected by the fine details of the reservoir, 
but only by aU2/ae2, which not only determines aUt/ael, but also equals 
aulae, because 

:e (rJ. 1U1(e 1(e» + rJ.2U2(:2 - :: e1(e»)) 

= u2(eie» + rJ.l ~: (ul(el(e» - u2(e2(<:»), 

where 

e rJ. 1 
e2(e) == - - - e1(e), 

rJ.2 rJ.2 

and the latter term vanishes because of (2.3.14). This is the justification for 

----------------------u1 
e2 not convex 

Figure 7 Uniqueness of the equilibrium temperature. 
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Definition (2.3.16) 

The temperature is 

Remarks (2.3.17) 

o£ 
T=-. oa 

1. The temperature has the dimension of energy in units where Boltzmann's 
constant k is set to 1. 

2. The temperature is always positive with the microcanonical p (2.3.1), 
but p,\ gives the spin system of (2.3.11; 6) a negative temperature at 
E > O. 

3. The concavity of a means that the specific heat at constant volume, 

V-1C == = ~ = d£ (dT)-l T 
N Cy dT da da d2£/da2 

is positive. In particular, by Remark (2.3.15; 4), the heat capacity (at 
constant volume) Cy = V· 1/£" of the total system is the sum of the heat 
capacities V;. 1M of the subsystems. The condition of stability £~/ril 

+ £~/ri2 ~ 0 implies that two systems of negative specific heat can not 
coexist in equilibrium. Heat transferred from the hotter system to the 
colder one would make the hot one hotter and the cold one colder. 
Large temperature fluctuations would arise, making the situation unstable. 
If only subsystem 1 has negative specific heat, while that of subsystem 2 is 
positive, then the heat capacities must satisfy I C 1 I > C 2: The transfer 
of heat from 1 to 2 would warm subsystem 1 less than 2, so 2 would im
mediately cool off by transferring heat back to 1, making the temperature 
equilibrium between the subsystems stable. This means that the tem
perature of a system of negative specific heat should be taken with a small 
thermometer, and never with a large thermal reservoir. 

Now allow the wall between the subsystems to be slowly moveable. The 
energy as a function of V acts as a potential energy for the wall, just as the 
electron energy acted as the potential for the atomic nuclei in the Born
Oppenheimer approximation in volume III. Stable equilibrium occurs when 
the total volume V is apportioned so as to minimize the energy. Let V2 = 

V - V1, and look for 

E(S, V, Nl + N 2 ) = inf (El(St. V1, N 1) + E 2(S - Sl, V - V1, N 2 )). 
OS;S,S;S 
Os;y,s;y 

(2.3.18) 

In the cases of interest here, E depends differentiably on V even for finite 
systems, and E -+ 00 if V -+ O. Hence the infimum is attained within the 
interval 0 < V1 < V, and is determined by the 
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Equilibrium Condition (2.3.19) 

For E of (2.3.18), the equilibrium volume VI satisfies 

oEI OE21 
oVI = oV2' V2=V-V,' 

Remarks (2.3.20) 

1. Because the energy is monotonic (2.3.4), with the boundary conditions 
t/l1{JV = 0, it follows that oE/oV < 0, and so (2.3.19) definitely has a soIi.l
tion VI' At that minimum, 

oE OEI OE21 
oV = oVI = oV2 V2=V-V.' 

and 

02El + 02E2 > 0 (02E)-1 = (02El)-1 (02E2)-1 an an -, OV2 ovi + an . 
2. With other boundary conditions it may not be true that oE/oV < O. 

For example, if a hydrogen atom is confined to a sphere on the surface 
of which dt/ll{Jv = 0, then E = Eoo - IXV- 1/3 , so oE/oV > O. This kind of 
boundary condition can be approximately realized physically with a very 
strong ()' potential. The lesson of this is that it is necessary to verify the 
hope that in infinite systems the pressure (see (2.3.21» satisfies P == 
-oE/oV;;::: O. It is not guaranteed that 02E/oV2 ;;::: 0 even with the 
boundary condition t/l1{JV = 0, which makes the proof of the convexity of 
e(O', p) all the more important for real matter. 

3. Since oE/oVls = -oE/oSlvoS/oVIE, another interpretation of (2.3.19) 
is that the condition 0(SI(E1, VI) + S2(E2, V - V1»/OV1 = 0 determines 
VI; that is, the volumes arrange themselves to maximize the total entropy. 

Analogous to (2.3.16) is 

Definition (2.3.21) 

The pressure is P == - oE/o V. In the limit V --+ 00 it becomes 

oe oe ( 00' 00') 
P = - e + p op + 0' 00' = T 0' - e oe - p op . 

Remarks (2.3.22) 

1. For realistic systems it can be shown how the pressure defined in (2.3.21) 
arises from the forces exerted by the system on the wall [9J. 

2. The equilibrium condition states that the pressures of the two subsystems 
are equal, with the same value as the total system has. 
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3. Remark (2.3.20; 1) implies for the compressibility 

that 

VI V2 
K=-V K1 +-V K2 ' 

4. For the systems to be stable against displacements of their interface, their 
volumes and compressibilities must be related by (Kl V1)-1 + (K2 V2)-1 
~ O. For reasons like those of (2.3.17; 3) it is not possible for two systems 
of negative compressibility to coexist, because the pressure of one system 
would increase with its volume and force that of the other one down. If 
only subsystem 1 has negative compressibility, then a necessary con
dition for stable equilibrium is VI ~ V2 · K2/ I K 11. The increase of pressure 
in subsystem 1 when it expands is then less than that of2 when it contracts. 
If VI is large enough in comparison with V2, then subsystem 2 undergoes 
a large relative compression and exerts more pressure back on 1 than 
1 exerts on 2. The volumes adjust in the other direction and stable 
equilibrium is established. 

Consider finally what happens to the particle configuration if the sub
systems can exchange particles to maximize the entropy. Formally, this 
means that the Hilbert space is 

N 

:YE = EB Jf'N"v, ® Jf'N2 ,V2' 
N,=1 

and the quantity to be calculated is 
N 

Tr 0(E - H) = L exp(S(N d)exp(S(N - N d)· (2.3.23) 

In the limit V --+ 00, N --+ 00, Vi/V --+ OCi> NJVi --+ Pi' if S is concave in N, then 
arguments like those made earlier yield 

u(p) = sup (OCIUl(Pl) + OC2U2(P2))' (2.3.24) 
~,p, + ~2P2 = P 

If the functions U;(Pi) are nice, we obtain the 

Equilibrium Condition (2.3.25) 

Let u;(p;) be strictly concave and continuously differentiable. Then u(p) = 

OCIUl(Pl) + OC2U2(P2), where Pi are determined uniquely by the conditions 
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Remarks (2.3.26) 

1. For a given B and a given p, the six variables Bi , Pi' (Xi satisfy the three 
equations (XIBl + (X2B2 = B, (XIPl + (X2P2 = p, (Xl + (X2 = 1. The three 
variations bE, b V, and bN corresponding to the equilibrium conditions 
are not independent, because SeE, V, N) is of the special form 
VO"(E/V, N/V), and there is one equation too few to fix six variables. 
Suppose for simplicity that the two subsystems are identical, 0" 1 = 0"2 = 0"; 

then because of the concavity, the maximum of (Xl o"(Bl> Pl) + (X2 0"(B2' P2) 

is assumed when Bl = B2 = B, Pl = P2 = p, and (Xl = 1 - (X2 is not 
determined by (2.3.25) and can be specified arbitrarily. Equality of the 
temperatures and the chemical potentials (see (2.3.27» suffices to guarantee 
that the pressures are equal. After the onset of equilibrium, the wall 
allowing the exchange of energy and particles no longer exerts any force, 
and can be placed anywhere. 

2. It is still possible to minimize the energy instead of maximizing the 
entropy. But this does not furnish a new stability condition, since if 
OB/OO" > ° the concavity of(B, p) --+ o"(B, p) is equivalent to the convexity of 
(0", p) --+ B(o", p) (Problem 2). Besides Cv > ° and K> 0, this requires 
that 

or, in terms of the adiabatic expansivity 

(X2 > Cv K/ T. 

This amounts physically to the requirement of stability under a simul
taneous change in the entropy and volume, related by 

The equilibrium condition (2.3.25) requires the chemical potentials 
of the subsystems to be equal, if they are defined as with (2.3.26; 2) by 
minimizing the energy: 

Definition (2.3.27) 

The chemical potential is 



88 2 Thermostatics 

Remarks (2.3.28) 

1. The intuitive meaning of the temperature is the amount of energy it 
would take to raise the system from the quantum number n to en (e = 
2.718 ... ). Analogously, the chemical potential is the energy increase when 
a particle is added to the system without changing V or S. 

2. Although Tand P are always positive with the assumptions and boundary 
conditions that have been postulated, J1. can in general have either sign. 
Because the density of states increases with N, the eSth eigenvalue may 
decrease with N even if H z o. 

In phenomenological thermodynamics entropy increases if the energy, 
volume, or particle number increases, according to the relationship 
T dS = dE + P dV - J1. dN. As we have seen, some of these differentials are 
well defined only in the thermodynamic limit, and are then considered as 
intensive properties. For future convenience, we collect the 

Interrelationships among the Thermodynamic Properties (2.3.29) 

Gloss 

AS 
T = oa' 

= as = _ T oa 
J1. op op' 

The sense of the partial derivatives is that, of the two variables on which a 
function has been regarded as depending, the one not written explicitly is to 
be held fixed. In any doubtful case the fixed argument will be indicated 
explicitly. 

Remark (2.3.30) 

Without knowledge of the Hamiltonian nothing can be said about the values 
the thermodynamic functions can assume. In (2.3.11; 6) there was an example 
in which s(a) was even bounded above. If the function s(a) is convex and 
asymptotically linear, then there is a maximum temperature. This is quite 
possibly the case realized in Nature, and Tmax = 140 MeV. In a model to be 
investigated shortly (2.3.32; 2), the function s(a) has a kink, so T skips over 
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certain values. It depends on the system whether the minimum entropy ao 
defined in (2.3.11; 4) equals zero as postulated in the third law of thermo
dynamics. For instance, with a system consisting of N spins without energy 
® a system with entropy N a, the total entropy divided by N equals a + In 2, 
and when a --+ ° the total entropy is the In 2 left over. It is true that the ground 
state of this system is degenerate, but it is also easy to find examples with 
nondegenerate ground states for which the third law fails, simply by taking 
the previous Hamiltonian EEl a one-dimensional system with a lower energy 
level. The resulting ground state is simple, but that has no effect on what 
happens as N --+ 00. 

It has been seen that the concavity of the function aCe, p) is at the root of 
thermodynamic stability. Concavity is jeopardized when a is maximized 
with respect to all of its parameters-the supremum of a set of concave 
functions is not necessarily concave, in contrast to the infimum. However, 
there is a useful 

Lemma on the Envelope of a Set of Concave Functions (2.3.31) 

If aCe, a) is jointly concave in e and a, then aCe) = sup~ aCe, a) is concave in e. 

Picture of the Proof 

Think of the silhouette of a concave mountain slope and of a mountain with 
hollows. 

Formal Proof if aCE, ex) E C2(K) 

With this assumption, the maximum is attained at a point aCe), aCe) = 
aCe, aCe)), and 

daCe) 
a ie, aCe)) = 0= a _0 + -- a __ = 0. 

, ,~O de ,~~ 

Then 

Since a,~~ ~ ° and a,ua,~~ - (a,E~)2 ~ 0, d2a/de2 ~ 0. If a,~~ = 0, it follows 
that a,~.(e, aCe)) = 0, and therefore a,u = a,u ~ 0. (For the proof without 
the assumption that aCe, a) E C2, see Problem 3.) 0 

If the entropy is maximized with respect to parameters in the absence of 
joint concavity, then thermodynamic stability may be lost, and it will be 
necessary to reconsider the foregoing assumptions. 
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Examples (2.3.32) 

1. Model of a star 
Consider N classical particles in a container V and attracting each other 
pairwise only within some Vo c V. Suppose the potentials are constant 
in Vo and _N- 1, to ensure that E be extensive. 

N 1 N 

HN = i~1 Ipil2 - N i'~ /vo(xi)Xvo(x), 

(x = {I for x E Vo 
Xvo) 0 otherwise. 

With indistinguishable particles, the volume of phase space below the 
energy surface, 

exp(S(E, V, N» 

= ~! f d3Npd3Nxe(E - it11Pil2 + ~ i,~/VO(Xi)XVO(X)) 

can be calculated exactly, because the integrand is piecewise constant. 
Let No be the number of the Xi in Vo. Then 

exp(S) = 0 L 1 0 
VNn3N/2 (V )N-NO (E + N2/N)3N/2 

(3N/2)! -NES;Nfis;N2 Vo No!(N - No)! 
N 

- L exp(S(E, V, N; No». 
No= 1 

Only the dependence on E matters, so let E = s· N, p = N/V = 1, 
NoiN == (x, (max(O, _S»1/2 :::; (X :::; 1. Then it remains to evaluate 

O"(s) = sup lim ~ S(N e, N, N; (XN) == sup O"(e, (X), 
a N-oo a 

and with the help of Stirling's formula, 

O"(e, (X) = i In(e + (X2) - (X In (X - (1 - (X)ln(1 - (X) + F(1 - (X) + constant, 

F = In(~ - 1). (2.3.33) 

A calculation of the derivatives yields 

0" = ~ 0"" = ~ + In(~ - 1) - F, " e + (X2' , e + (X2 (X 

- 3(X 3s - 3(X2 1 
0",." = (e + (X2)2' O",IXIl = (e + (X2)2 - (X(1 - (X). 
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The maximum is achieved on the curve 

2 30c 
e(oc) = -oc + F _ In(l/oc _ 1)' 

and the ranges of values of the variables are such that I' + OC2 ~ 0, so 
only the branch of F > In(1/oc - 1) comes into consideration. Because 

(I' - 1'1 (oc))(e - e2(oc)) 
a.~~ = - (I' + O(2)2OC(1 _ oc) , 

1'1.2 = 320C (1 - ioc ± ~J1 - l1OC/3), 

a(e, oc) is concave in oc except when 1'2 < I' < 1'1' The sign of de/doc = 
-a,~Ja,~£ changes in the interval 1'2 < I' < 1'1' so three values of oc belong 
to a single 1', and the maximum needed is the greater of the two. Joint 
concavity requires that 

and implies I' ~ 30c - 4oc2• If e(oc) lies in this range of values, then the 
system has positive specific heat, and otherwise not (see Figure 8). Indeed, 

behaves as a function of I' as shown in Figure 9. The physical significance 
is that if energy is removed, the temperature falls until a certain fraction 
of the particles reside in Vo, which causes the system to start heating back 
up. If most of the particles are eventually in Vo, then they behave normally 
again. The system can be thought of as a normal system with 

a(e, p) = pG In I' - 4ln p) 

put into contact with a peculiar system with 

a(e, p) = p(~ In(e + p2) - 4ln p) - Fp. 

If the energy is apportioned between them according to 

£1 

- -i(oc In oc + (l - oc) In(1 - oc))), 

then the entropy becomes exactly that of (2.3.33). 

2. Model of a Ferromagnet 
This problem is quantum-mechanical, but its analysis soon begins to 
resemble that of Example 1, for which reason we shall boldly plunge on 
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T 

Figure 9 T(e) in Example (2.3.32; 1). 
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to the estimates without wasting time about epsilon tic details. The 
Hamiltonian of (1.1.3) is modified to 

N 1 N 

H = B~::a·\Z) - - L (J .• (J. 

j=l J N i.j=l' J' 

which contains a magnetic field in the z-direction and a spin-spin 
interaction favoring parallel spins. The strength of the interaction 
is the same for all pairs and must be ~ liN for H to be ~ N. The mean 
magnetization MN can be introduced as before, HIN = BM~) - M N • M N , 

and it was shown in (III, §3.2) that the two parts of H can be diagonalized 
simultaneously. If the eigenvalues of M~) are mz and those of MN . MN 
are m(m + 2IN), 0 ::; m ::; 1, - m ::; mz ::; m, then mz and m are always 
multiples of liN spaced 21N apart. To calculate Tr 0(E - H) it is also 
necessary to find the multiplicities of the eigenvalues: If m = 1, then all 
spins must be parallel, and for one ofthese vectors, mz = 1. There are now 
N vectors with mz = 1 - 21N, corresponding to the N possible ways to 
flip one spin. One of those possibilities has m = 1 (apply M- to the 
previous vector) and the others must have m = 1 - 21N. The general 
rule is that of the (~) vectors with mz = 1 - 2r1N, C~l) of them have 
m > 1 - 2r1N, and the remaining 

( N) (N) N ! (N - 2r + 1) 
r - r - 1 = r!(N - r + 1)! 

have m = 1 - 2r1N. This means that the number of vectors with the 
eigenvalues (m, mz ) is 

N!(Nm + 1) J 2 2m 
«NI2)(l - m))!«NI2)(1 + m) + I)! ~7C(1 - m2 )N m + 1 

x exp{N[ln 2 - C ~ m) In(l + m) - C ~ m) In(l - m)]} 

The last step used Stirling's formula x! ~ (xleY fox, which is justified 
only for m < 1 even when N ~ 1, but in the limit being taken the contri
butions from the boundaries ofthe summation region are inconsequential. 
Since the integrand is a continuous function, as N --. 00 the sum 
L~=o I:::. = -m··· can be replaced with the integral (N 12)2 Sb dm S'~m dmz···, 
and with c = EIN this leaves 

II dm 
exp(S(c)) = N 3 / 2 --

o m + 1 

x exp{N[ln 2 - C ~ m) In(l + m) - C ~ m) In(l - m)]} 

x f~m dmz0(c + m2 - Bmz)· (2.3.34) 
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Therefore the domain (!J of integration is {(m, mz): 0 :::; m :::; 1, 
-m :::; mz :::; m} n {(m, mz ): mz :::; (e + m2 )IB}. TheentropySisobviously 
even in B, so we may restrict consideration to B ;;::: 0 (see Figure 10). 

Since the exponential function decreases rapidly with m, the appro
priate generalization of Lemma (2.3.12) makes a = limN _ oo SIN sensitive 
only to mo == infm.mz EL1l m (the exponent in (2.3.34) decreases monotoni
cally in m): 

mo = 0(-e)(J~2 -e -~). 
a = In 2 - i0( -e) [(1 + mo) In(1 + mo) + (1 - mo) In(1 - mo)], 

(2.3.35) 

if e ;;::: - 1 - B, and is otherwise O. Since a is concave but decreasing 
in mo, the concavity in e remains to be verified: 

-I da 0(-e) 1 + mo 
T = de = 4(B2/4 _ e)I /2 In 1 _ mo ;;::: 0, 

d2 a 0( -e) 
- T 2c = de 2 = ----

8 

x - - - e In + -,--.....,..,.--,--,-,---= [ ( B2 ) - 3/ 2 1 + mo 2 ] 

4 1 - mo (B 2/4 - e)(l - m~) . 

(2.3.36) 
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T 

e 

~~--------------------------~B 

Figure 11 The surface of states in T - e - B-space. 

In a lucky break, the positive term in the brackets [- . oJ is always greater 
than the negative one, and Cv is always positive. If -1 > -1 - B ~ G ~ 0, 
then Tincreases continuously from ° to 00 . The heat capacity Cv increases 
from ° to a maximum value and then falls back to 0. If B = 0, then T 
reaches the value 2 for G = 0, at which Cv has risen to l Afterwards, T 
jumps up to 00 and Cv falls back to ° (see Figure 11). 

Thus if B = ° and T < 2, the thermal motion is no longer strong 
enough to counter the ordering tendency of H, and a spontaneous 
magnetization rno appears. As no direction is preferred, the thermal 
expectation value I Tr pM I remains 0. We shall learn later that as N -. 00 , 

the GNS representations of the u's constructed with p become integrals 
over all directions of thermal representations (1.4.7). If B > 0, then 
Tr pM points in the z-direction, and rno grows smoothly from ° to 1 as 
T decreases. 

The interactions in these examples could have been replaced with average 
fields. This is typical of forces of long range like gravity. If the long-range 
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forces neutralize each other-for instance if they are electric-then the 
system is basically the sum of its parts, i.e., it can be decomposed into parts 
in such a way that the entropy, energy, volume, and particle number are all 
additive. In that case the maximum entropy is concave. 

Thermodynamic Stability of Decomposable Systems (2.3.37) 

For an arbitrary function (J, 

n 

iJ(8, p) == sup sup L rxi(J(8;, Pi), 
n Kn i= 1 

where 

is jointly concave in its two variables. 

Proof 

Let 8 = Y8' + (1 - y)8", P = YP' + (1 - y)p". Divide (rxi) into (rx;) and (rx7), 
and take the supremum over K n , and K n ,,: 

{ I n' n' n' } 

K n, == (rx;), (8;), (p;) i~1 rx; = y, i~1 rx;8; = 8', i~1 rx;p; = P' , 

K n" == {(rx7), (87), (pnl i~1 rx;' = 1 - y, J1rx;'8;' = e", i~1()c;'P7 = p'} 

Since this is only a particular division, 

iJ(8,p) 2 :,~~ K~,~t(~rx;(J(8;'P;) + ~rx7(J(87'P;'») 
= yiJ(8', p') + (1 - y)iJ(8", p"). 0 

Remark (2.3.38) 

The construction (2.3.37) gives the concave envelope of (J, but nothing 
guarantees that iJ is strictly concave. If (J is linear, then iJ = (J, and (J is of the 
form of Example (2.3.32; 1). The convex part of the curve gets bridged by a 
straight line, as shown in Figure 12. 

The function iJ is simply rx(J(81) + (1 - rx)(J(82) in the intervening region 
where 8 = rx81 + (1 - rx)82 for fixed 81 and 82. An interpretation is that the 
system consists of two phases in this region, having energies 81 and 82' 
and the temperature remains constant as the total energy varies, while the 
proportions of the phases present change. This suggests a 
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Figure 12 The region of negative specific heat. 

Rough Definition of the Thermodynamic Phases (2.3.39) 

2 Thermostatics 

The extreme points ofthe concave function aCe, p) correspond to pure phases, 
and in the regions of coexistence of more than one phase the function a is 
not strictly concave. 

Examples (2.3.40) 

1. If the graph of aCe, p) shows a belt-like region the curvature of which 
vanishes in only one direction, then two phases coexist in its interior. 
The sides of the belt correspond to pure phases and the end to a critical 
point (see Figure 13): 
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rml l~ 
Figure 13 The region of coexistence of two phases. 

2. In the usual solid-liquid-gas phase diagram, the triple point occurs in a 
region at which the curvature of CT(S, p) vanishes in both directions 
(Figure 14): 

Remarks (2.3.41) 

coexistence of 
solid and gas 

gas 

... critical point 

coexistence of gas and liquid 

Figure 14 Regions of coexistence. 

1. The sum, in the sense of (2.3.37), of many copies of Example (2.3.32; 1) 
produces a concave ii, since the convex part lies below the phase
transition line. Some concave pieces of the curve are also bridged over, 
and are known as metastable phases, which arise in superheated stars and 
supercooled gases. They have positive specific heats and are locally 
stable (see Figure 15): 

2. Gibbs's phenomenological phase rule states that whenever a material 
has two coexisting phases, there is always a one-parameter family of 
coexisting phases described by T(IX) and Jl(IX). Three coexisting phases 
can only exist at discrete values of (T, Jl). This is exactly what went on in 
(2.3.40; 1) and (2.3.40; 2), where the parts that are flat in one direction 
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/ 
/ CO' > 0, metastable 
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Figure 15 Stability of the regions of (2.3.32 ; 1). 

are two-dimensional, but is not a consequence of concavity alone; for 
instance the function (J = -f'pP-q, P > q + 1 > 1, has a straight line 
segment only if f, = 0, but is nonetheless concave in (f" p). 

3. A quadruple point of a substance would be a flat rectangle in the energy 
surface. The nonexistence of quadruple points does not follow from 
concavity, but amounts to the assumption that the flat pieces of the energy 
surface form a simplex. If they do not form a simplex, then the ratio of the 
phases in the mixture is not even necessarily determined by f, and p: 

21c;l3 
lLJ4 

o = t(1 + 3) = te2 + 4). 

At this point we have no arguments that would show that quadruple 
points do not occur, and in fact it is easy to construct models with 
quadruple points by taking the sum of two independent systems each of 
which has a phase transition. We shall have to take the issue up anew in 
(3.2.12; 2). 
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Problems (2.3.42) 

1. Show that if o{e, p) is concave,. then (E, N, V) -+ S(E, N, V) is concave. 

2. Show that for e,<1 > 0, a(e, p) is concave iff e(a, p) is convex. 

3. Without assuming differentiability, show that if a(e, IX) is concave, then O'(e) = 

sUPa a(e, IX) is concave. 

4. Prove the relationship Vie" = Vde'j + V2M of (2.3.15; 4). 

Solutions (2.3.43) 

1. For simplicity assume that a is twice differentiable. Then 

(I,u -ea, .. - pa,£p 

a,pp - ea,£p - pa,pp 

-ea, .. - pa,£p -ea,£p - pa,pp e2p, .. + 2epa,£P + p2a,pp 

Observe that the concavity of S is equivalent to D2S ::;; 0, which means that D2a ::;; 0 
and det D2S ::;; O. However, D2S = 0 because the mapping A -+ S(AE, AN, AV) is 
affine. 

2. The function a is concave iff the concave hull r = {(x, y, z) = I A,{X;, y;, Zi), 
(x;, y;, z)e r, 0::;; Ai::;; 1, Ii Ai = 1} of the graph r = {(x, 8, p): x = a(e, p)} lies 
completely below r. However, looked at from the other side, r is also the graph of the 
inverse function I:(a, p), except that "below" becomes "above" and vice versa. 

3. Let 8 = yel + (1 - 1')82, and choose IXI,2 so that SUPa a(8i, IX) = a(e;, IX), i = 1,2, 
or at least comes arbitrarily close to equality. 

4. 

sup a(e, IX) ~ a(ye l + (1 - y)e2, YIXI + (1 - y)1X2) 
« 

~ ya(e l, IX I ) + (1 - y)a(1)2' 1(2) 

= yO'(e l ) + (1 - y)cT(e2)' 

, ,(va- Vial) '" (V VI ')" , V e2 
el(al) = e2 V2 => alI>I = V2 - V2 al e2 => al = V2 1:'1 + e2 ~/V2' 

2.4 The Canonical Ensemble 

The M axwell-Boltzmann distribution arises from the state of a system 
in contact with a thermal reservoir. If the system is large, this state is 
indistinguishable from that of the microcanonical ensemble. 
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In the preceding section it was shown that the entropy of two large sub
systems without interaction is additive. The entropy was always defined 
with the micro canonical density matrix (2.3.1), but when the density matrix is 
restricted to a subsystem, 

Tr2 0(E - HI - H 2 ) 
PI = T 0( ) == exp(S(E - Hd)(fr1 exp(S(E - HI))' r ~ E-HI -H2 

(2.4.1) 

it appears quite different. It will now be shown that PI does not depend on 
the nature of the second system if it is infinitely large (a thermal reservoir). 
We shall also find out that this so-called canonical density matrix is equiva
lent to the microcanonical density matrix if the system is large. The con
vergence of PI as the second subsystem becomes infinitely large is described 
by 

Lemma (2.4.2) 

Suppose that the concave, increasing functions (l/V)S(E) == av(E/V) and 
their derivatives converge uniformly on some neighborhood of e = E/V to a 
function aCe) E C1 and to a'(e). Then as V -+ 00, 

exp[Vav«E - H 1)/V)] exp( - HI a' (e)) 
Pv == -+ Tr exp[Vav«E - H 1)/V)] Tr exp( -H1a'(e)) 

in the trace norm, provided that exp( - HI a' (e)) is of the trace class f6' l' 

Remarks (2.4.3) 

1. As in (2.3.13; 2), E and Em can be identified. 
2. A priori, SeE) has been defined only for discrete values. We assume that 

it can be interpolated with a concave, strictly increasing, continuously 
differentiable function. 

3. The facts aess(H) = 0 and H ~ 0 do not suffice to make exp( - f3H) E '(j 1; 

Sp(H) could be 7L+ and the eigenvalues n E 7L+ could have mUltiplicity 
n". More assumptions are needed than (2.3.3; 2). 

4. The significance of the lemma is that temperature is the only property of 
a reservoir in the infinitely large limit that enters into the reduced density 
matrix. The reduced density matrix has the canonical form regardless 
of the structure of the reservoir, when the energy of interaction can be 
neglected. 

Proof of (2.4.2) 

With Trl 0(El - HI) = exp(SI(E 1)), Tr 0(E - HI - H 2 ) 

J dEl exp(S(E - E 1) + SI(El))S~(El)' Pv can be written as 

exp{V[av(e - (H dV)) - av(e)]} 
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Because of concavity, if HI 20, then Hla~(e) S V[ay(e) - ay(e - (HdV)] 
S Hla~(e - (HdV» (see Figure 16). 

The assumption that a converges uniformly then makes 
V[ay(e - (H dV)) - ay(e)] converge uniformly to -HI a'(e) on compact 
sets in Sp(H d. Moreover, there exist V' and P such that for all V> V', 
there is an operator inequality, exp[V(ay(e - (H dV» - ay(e))] 
S exp( - PH 1)' In the spectral representation of H b exp[V(av(e - (H d V) 
- ay(e))] ~ exp( - H la'(e» in the strong topology, by the Lebesgue domi
nated convergence theorem. If the operator on the right belongs to ~1 ' 

then by the dominated convergence theorem again, 

Tr exp[ -H1a'(e)] = f dEl exp[SI(E 1 ) + In S'I(E 1 ) - E 1a'(e)] 

!~n: f dEl eXP{SI(E 1 ) + In S~(EI) 

The proof is completed by appealing to the theorem (Problem 1) that strong 
convergence of density matrices implies convergence in the trace norm. 0 

Corollaries (2.4.4) 

1. Since py converges in the sense of the strong topology of 88(£)* (cf. 
(2.1.2», Tr pya ~ Tr a exp[ - P(H 1 - F)] for all a E 88(£ I), where 
P == a'(e), exp( -PF) = Tr exp( -PHI)' 

2. Because of Theorem (2.2.24), S(exp[ -P(H 1 - F)]) S limv--> ao S(py). 



104 2 Thermostatics 

Recall that the microcanonical state is the most mixed state below Em. 
The canonical state instead satisfies 

The Maximum Principle for the Canonical Entropy (2.4.5) 

Let p = exp( - pH)(fr exp( - pH)and let p be any density matrix such that 
Tr pH = Tr pH. Then S(p) ;;:: S(p). 

Remarks (2.4.6) 

1. Proposition (2.4.5) states that with a given average energy, the canonical 
state has the greatest possible entropy. The proposition does not work for 
all oc-entropies Sa., so it can not be improved to the statement that p ~ p. 

2. According to inequality (2.1.7; 2), since x -+ -x In x is strictly concave, 
S is a strictly concave function on the convex set of density matrices p 
such that Tr pH = E. This means that the maximum is unique, and there 
can not even be local maxima elsewhere. 

3. Not all Sa.(p) are equal with the canonical p: Sa. = P(F(ocP) - F(P»/(oc - 1). 
4. This maximum principle is sometimes invoked as the motivation for the 

canonical density matrix, without appealing to the micro canonical state. 
5. The free energy satisfies the inequality F(p) ;;:: F(p) without the assump

tion that Tr pH = Tr pH. 

Proof 

Proposition (2.4.5) follows directly from Remark (2.2.23; 1). o 

The canonical partition function Z == Tr exp( - PH) is easier to work 
with than the microcanonical partition function, because it does not involve 
discontinuous functions; if the dimension is finite, it is even an entire function 
of p. If the dimension is infinite, then exp( - PH) is required to belong to 
C(J 1, so the spectrum of H must be bounded below and extend to + 00. 

This, however, means that exp( - PH) ¢ C(J 1 for P < 0, so the most that can 
be hoped for is analyticity in C+ == {x + iy: x > O}. For the cases of interest, 
there is in fact a proposition on 

The Analyticity of the Partition Function of Finite Systems (2.4.7) 

Let exp( - PH 0) E C(J 1 for all P > 0 and suppose V is e-bounded with respect 
to Ho (cf. (III: 3.4.1». Then the mapping C x C+ -+ C: (oc, P) -+ 

Trexp[ -P(Ho + ocv)] is analytic, and (%oc) Tr exp[ -P(Ho + ocv)]Ia.=o = 
- Tr pv exp[ - PH 0]. 
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Remarks (2.4.8) 

1. Since the operator H 0 + exv is not normal when ex is nonreal, the ex
ponential function has to be defined. This can be done as in (2.1.8; 7) 
or by integrating the resolvent, 

i dz exp( - (3z) 
exp[-{3(Ho+exv)]= -2 '(H )' 

c 1tI o+exv-z 

in which the integration contour runs through the region of analyticity 
(cf. (III: 3.5.13)) so that the integral converges in norm. 

2. The next task is to make sense of Tr exp[ - (3(Ho + av)] and show that it 
belongs to CIJ 1 for (ex, (3) E C X C+. If ex, (3 E ~ X ~+, then this follows 
from Ho + exv ~ Ho/2 - C(ex), e;xp(-{3Ho)EClJ1, and the observation 
that if 0 < a < bE CIJ 1 then a E ClJ 1• If ex and {3 are complex, then Corollary 
(2.1.8; 7) can be appealed to for I Tr exp( exa + (3b) I ~ Tr I exp( exa) II exp({3b) I, 
with exp(a) and exp(b) Hermitian, and in particular ITr exp[ -aHo - bv 
+ i(cHo + dv)] ~ Tr exp( -aHo - bv) for all real a, b, c, and d. 

3. The proposition implies that the free energy F = - TIn z can have 
singularities only at the zeros of Z. If (ex, (3) E ~ X ~+ then Z > 0, so F 
is analytic in a neighborhood of ~ x ~+. In addition, Corollary (2.1.8; 3) 
states that -In Z is concave in ({3, ex(3) E ~ X ~+, so F is concave in 
(T, exiT) (cf. (III: 3.5.24». The equation iJFliJex = (v) generalizes the 
Feynman-Hellmann formula (III: 3.5.19; 2). 

Proof 

See Problem 2. o 

Since the exponential function is convex, the free energy can be bounded 
in terms of phase-space integrals by means of (2.2.11), and the upper bound 
of (2.2.11) can be improved upon with Corollary (2.1.8: 7). 

The Connection with the Classical Free Energy (2.4.9) 

Let 

N 

H = L Ip;i2 + v(x), exp( - (3F) = Tr exp( - (3H) < 00, 
i= 1 

and 
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Then 

u 

where 

Remarks (2.4.10) 

1. The function vex) contains the interaction between the particles, as well as 
a possible external field. It must even account for the box confining the 
system, as the Hilbert space is L 2(jR3N). 

2. The proposition shows that quantum effects can only increase the free 
energy, either with a kinetic zero-point energy or a smeared-out effective 
potential. 

3. The particles have been assumed distinguishable; the modifications 
needed for indistinguishable particles will be discussed below. 

4. Countless attempts at expansions in h have been made in the literature, 
but the results are not conclusive because rigorous bounds on the higher
order contributions have not been obtained. 

5. If h is not set to 1, the dimensionless volume in phase space becomes 
d3NX d3Nph- 3N, rather than d3NX d3Nph- 3N. 

Proof 

The lower bound for F. By Corollary (2.1.8; 7), 

Tr exp[ - f3(H 0 + v)] ~ Tr exp( - f3H o)exp( - f3v) 

= f d3NX(xl exp( -f3Ho)lx) exp( -f3v(x», 

and it was observed in (III: 3.3.3) that exp( - f3H 0) has the integral kernel 

( 1 )3N12 f d3Np ( N 2) 
K(x, x) = 4nf3 = (2n)3N exp -f3k~l IPkl . 

The upper bound for F follows immediately from (2.2.11), for (zllpI2Iz) 
= (1m Z2) + J dxlVul 2. 0 

Example (2.4.11) 

The one-dimensional harmonic oscillator; u(x) = exp( -bx2/2)/..:;;c, H = 

p2 + W2X2, 

00 exp( - wf3) 
Tr exp( -f3H) = L exp[ -f3w(2n + 1)] = 1 _ (-2 13)' 

n=O exp w 

2( 2 1 ) b 
Vu = w x + 2b + 2' 
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which has the minimum W 2X 2 + w when b = w. Since 

fOO dp dx 2 2 2 1 
-00 ~ exp[ -f3(p + w x )] = 2wf3' 

the bounds (2.4.9) yield the inequalities 

exp( - (1./2) exp( - (1./2) 1 
--=---< <-

(I. - 1 - exp( -(I.) - (I.' 
(I. == 2wf3E ~+. 

The interest in the bounds (2.4.9) is mainly academic, since the particles 
in real physics are either fermions or bosons. In addition to multiplying the 
volume element of the phase-space integral by liN!, the generalization for 
indistinguishable particles entails an effective interaction that vanishes 
as mT -+ 00, and is repulsive for fermions and attractive for bosons. 

Bounds on F for Indistinguishable Particles (2.4.12) 

Suppose that 

1 N 

H = -2 L Ipd2 + v(x l ,···, xN), 
m ;=1 

exp[ -f3FclH)] = (21t) 31NN! f d3Nx d3Np exp[ - f3H(Pl,···' PN, Xl' ... , xN)], 

and that F iH) and F iH) equal - Tin Tr exp( - f3H), where the trace is taken 
over the symmetric (resp. antisymmetric) tensor product of the one-particle 
spaces. Then 

Fc1(H) ::;; F F(H) ::;; Fcl(h + VF), 

Fcl(H + VB) ::;; F iH) ::;; Fc1(h), 

where the function h(p;, Xi) is the expectation value qf H in the symmetrized 
(resp. antisymmetrized) states of(2.2.10; 5): 

h( ) _ (Zl,···, zNIHlzl,···, ZN) 
Zl"'" ZN - , 

(Zl,···, zNlzt> ... , ZN) 

If the coherent states are chosen with u(x) = exp( -mTlxI2/2), then the 
effective potentials are 

{ 
( -mTlx, - X.1 2) 1 

Tln2.Lexp(-mTlx;-xk I2) if sup .L.exp ; J ::;;"2' 
V - ,*k J '*J F-

00 otherwise; 

and 
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Proof 

The lower bounds. For one particle in x-space (see (III: 3.3.3», 

( -fJIPI2) I _ (mT)3/2 (-mTlx - X112) 
(xl exp 2m Ix) - 2n exp 2 ' 

so in the properly symmetrized or antisymmetrized basis, if there are N 
particles, then 

= _1 (mT)3NI2" (1)P (-mT Li IXi - XPY) 
N! 2n ~ ± exp 2 . 

The sum over permutations amounts to just a permanent or determinant of 
the form <Zl'"'' zNlzl"'" ZN), by (2.2.10; 5). It is therefore ;::: 1 or, 
respectively, :S 1, since the length of a vector is increased or, respectively, 
decreased when acted upon by aJ with II f II = 1: 

IlaJI )11 2 = <lafaJI) = < I ) ± <laJafl> ~ < I ). 

For fermions, Det«z;i Zk» ::s; 1, whereas for bosons the permanent has an 
upper bound from Problem 4, Per«z;i Zk» :s exp[Li, k I <z;i Zk) I], The rest 
of the proof is similar to that of the lower bound of (2.4.10): 

Tr exp[ -fJ(Ho + v)] :s Tr exp( -fJHo) exp( -fJv) 

= N!(~n)3N f d3NX d3Npexp[ -fJ(Ho(Pt,···, PN) + v(x t ,···, X N»] 

Per ( (m 2 )) x Det exp - 2 I Xi - X j I T 

:s N! (~n)3N f d3Nx d3Np exp [ - fJ( H o(Pt, ... , PN) + v(x t , ... , XN) 

_ T{~XP( - Li.j(mT/2)lxi - XjI2)}) 1 
The upper bounds. Since the symmetrized and antisymmetrized coherent 
states are not normalized, 

Per >-
<Zl"'" zNlzl"'" ZN) == n(z) =Det «Z;iZk» ~ 1, 

the normalization has to be accounted for in (2.2.11(i»: 

Tr k(a) ;::: f dnzn(Z)k( <Z~~~Z>). 
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For bosons the inequality follows now from n(z) ~ 1. For fermions, with 
u(x) = exp( -mTlxI2j4), it is necessary to estimate Det(l + K), where 

K .. = {exp( -(mTj2)l x i - XjI2), i =1= j 
'1 0, i = j. 

Since 

we find 

In Det«zilzj») = In Det(1 + K) = Tr In(l + K) 

Finally, 

Remarks (2.4.13) 

= f Tr K n (-l)"+l ~ Tr K2 f ~ 
n=2 n n=O n + 2 

1 2 
~ In 1 _ IIKII Tr K 

< {In 2 Tr K2 for IIKII ~! 
- 00 otherwise. 

Tr K2 = L exp[ -mTlxi - xj /2]. 
i*j 

o 

1. If mind Xi - Xj / == b > 0, then IIKII ~ b- 3 S;:o drr2 exp( -r2mTj2) ~ 
exp( -mTb2j2), so VF can be replaced with a hard-core potential with a 
radius depending on T and energy'" N. 

2. The ranges of the potentials VB and VF are approximately the thermal 
wavelength, i.e., the wavelength of a particle with kinetic energy 3Tj2, 
so when the particles are about this close together, as in a degenerate 
quantum gas, the bounds spread wide apart. 

In closing, let us study the limit N --+ 00 in the framework of the canonical 
ensemble. Not only the reservoir but also the subsystem will be made 
infinite at the same time, and we wish to know whether the free energy 
density FjV tends to a limit cp. This should be the case whenever this limit 
exists microcanonically. Then the issue is how to recover the microcanonical 
quantities from knowledge of cp: 

Theorem (2.4.14) 

Suppose that, with H ~ 0, av(8, p) = (ljV) In Tr e(V8 - H) converges 
uniformly on compact sets to a concave function a(8, p) and is bounded above 
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by a function see, p) such that 0 = *0' p) = lim,~ oo see, p)/e, when V is big 
enough. Writing as usual {3 = liT, then 

lim (- T In Tr exp( - {3H») = in.f(e - T(J(e, p» == ({J(T, p). 
V~ oo V I 

Remarks (2.4.15) 

1. Since (J is concave, it has a right derivative, 

(J' == lim«(J(e + b, p) - e(e, p»~. 
bto u 

The infimum is attained at the point e(T, p) for which (J'(e(T, p), p) = li T 
(see Figure 17). If (J' has a discontinuity, jumping over the value l i T, then 
e(T, p) is the point at which the jump takes place. The usual thermodyna
mic relationship ({J(T, p) = e(T, p) - T(J(e(T, p), p) holds for the free 
energy. 

2. The function {3({J is a Legendre transform (!l'«(J»({3) = inf, ({3e - (J(e» . 
The transformation !l' has the following properties: 

(i) !l' 0 !l' produces the concave envelope of any function so !l' 0 !l' 
= Ion concave functions; 

(ii) !l' maps a linear piece of a concave function to the point of a corner 
and vice versa; 

(iii) !l' maps the set of strictly concave, continuously differentiable 
functions into itself. By Property (i), 

(J(e) = inf({3e - !l'«(J)({3» = inf e - ({J(T). 
P T T 

3. If (J(e) is strictly concave and continuously differentiable, then by Problem 
3 the limit V -+ 00 and the derivative by {3 can be taken in either order. 

q 

q(e) 

~~ __ -L __ -L ______ ~ ___ e 
-_.,.'" __ ~I e 

qJ 

Figure 17 The geometric meaning of the free energy. 
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The energy and entropy densities calculated with the canonical density 
matrix are 

and 

. H exp( -f3H) a 1 
lIm Tr - = - lim - -In Tr exp( - f3H) 
v-oo V Tr exp( -f3H) v-oo af3 V 

2 a q> 
= - T aT T = q> + Trr 

lim T s( exp( -f3H) ) = f. _ q> 
v-oo V Tr exp( - f3H) , 

which are obviously identical to the microcanonical energy and entropy 
densities. This fact is known as the equivalence of the ensembles. 

4. The concavity of rr in f. is a necessary condition for the ensembles to be 
equivalent, since the specific heat in the canonical ensemble, 

af. 132 a2 
aT = V af32 In Tr exp( - f3H) 

is automatically positive by Corollary (2.1.8; 3). 
5. The bounding function s is necessary to ensure that 

lim sup(TO"v(f., p) - f.) = sup(TO"(f., p) - f.); 
V--+ 00 E 

without it, TO"v(f.) - f. = 1 - (1 - f./V)2 is a counterexample. 

(The assumption that H ~ 0 is a normalization.) 

Proof 

foo a 
Tr exp( - f3H) = dE exp( - f3E) - Tr e(E - H) 

o aE 

= 13 Loo 
dE exp[ - f3E + SeE)] 

= f3V exp[ - f3Vq>v(T, p)] 

x Loo df. exp[ - f3V(f. - Trrv(f.) - q>v)] , 

where 

q>v(T, p) = inf(f. - Trrv(e, p)). 
< 
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If V is taken large enough, then the infimum lies between 0 and 80: 80 -

Ta{80' p) = O. By assumption the functions ay converge uniformly on this 
compact interval, so lpy(T, p) --+ lp(T, p). A modification of Lemma (2.3.12) 
shows that the contribution of the integral to lp is negligible in this limit. This 
step uses the assumption to ensure that for all T > 0 the exponent is domi
nated by - f3E for large E, so that the dominated convergence lemma 
applies. 0 

Several general properties of the Legendre transform of a can be deduced 
from those of the microcanonical energy density (2.3.10), and are listed 
below: 

Properties of the Free Energy Density (2.4.16) 

1. As the infimum of a set of linear functions, lp(T, p) is concave in T. If 
H ~ 0, then lp(T, p) ~ 0, and lp(O, p) = O. 

2. The function lp(T, p) is convex in p, because f(x, y) being convex in 
(x, y) implies that infx f(x, y) is convex in y (see (2.3.31)). 

3. p-llp(T,p) is an increasing function of p, since Trexp(-f3H) is an 
increasing function of V when Nand 13 are fixed. 

4. T-1lp(T, p) is a decreasing function of T, since for H ~ 0, exp( - f3H) 
is a decreasing function of 13. 

Remark (2.4.17) 

Although convexity survives the thermodynamic limit, the analyticity 
(2.4.8; 3) of F is less hardy. The zeros of Z may approach the real axis as the 
system is made infinite, causing discontinuities in the derivatives of lp. 
Example (2.3.32; 2) can be modified to a degenerate BCS model, with 

N 1 N 
H = B "a\z) - - " «(}' .. (}'. - a!z)a(Z») 

L.J NL.' J 'J' 
j=l i,j=l 

This Hamiltonian has the eigenvalues N(Bm z - m(m + 2/ N) + mn, and, 
as in (2.3.34), 

lp(T, B) = inf (_m2 + (mz + ~)2 _ ~2 - Ta(m)) , 
OslmzlsmSl 

l+m 1-m 
a(m) = In 2 - -2-ln(1 + m) - -2-ln(1 - m). 

The infimum with respect to mz is attained at max{ -B/2, -m}, assuming 
B ~ O. If mz = - B/2, then setting the derivative by m to zero leads to the 
equation 

meT) = tanhCiT )). 
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T 

m. = -m(T, B) 
2 1"'""'--::--__ <p = - Bm(T, B) - Tu(m(T, B)) 

B 
m =--

• 2 

B2 
<p = -m(T)2 - - - Tu(m(T)) 

4 

113 

L-----------------------------------~~B 
Figure 18 The free energy in Example (2.2.32; 2). 

If mz = -m, then instead of this, the mlmmlzmg value is meT, B) = 
tanh(B/T). The two different possibilities give critical temperatures 

( ) = {B/arctanh(B/2) 
Tc B - 0 

ifO<B<2, 
if2 ~ B. 

Figure 18 depicts q>(T, B). The values of m and mz are continuous at the 
transition point, but their derivatives are not. The function q> remains 
continuous along with its first derivatives-the derivatives by m and mz 

vanish-but the second derivatives of q>(T, B) are discontinuous at T = 7;,(B). 
Such properties as the specific heat display the discontinuity characteristic 
of a phase transition. 

Problems (2.4.18) 

1. Let p. and p be density matrices for which P ...... p. Show that Tr / p. - p / -+ O. 
(Hint: use the following lemma: If p is a density matrix and Q a projection such that 
Tr pQ < 8, then for all a E (Ji(ff), /Tr pQa / < IIallJe.) 
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2. Prove (2.4.7) by applying Hartogs's theorem: If f(zl, Z2) is separately analytic in 

z 1 and Z2, then it is jointly analytic. Also observe that the trace is a continuous 
mapping ~ 1 ---> C, where ~ 1 has the norm 11·111' 

3. Suppose <pv(e) is a sequence of concave functions converging pointwise to <pee). 
Let <pv,,(e) and <P~,l denote the right and left derivatives of <pv(e), and likewise for 
<p;(e) and <p;(e). Show that for all e, 

<p;(F.):o; lim inf <P~.,(F.):o; lim sup <p~,le) :0; <p;(e), 

and that if <Pv and <p are differentiable at the point f., then lim <p~(e) = <p'(8). 

4. Show that I Per(zi I Zk) I :0; exp Li,k I (Zi I Zk) I· 

5. Find a function of x and y that is convex in each variable separately but not jointly 
convex. 

Solutions (2.4.19) 

1. Lemma: P = L CdXi)(Xil, where Ci :2: 0, Li Ci = 1, and {x,} is an orthonormal basis. 
Then 

Tr pQ = L Ci(xiIQxi) = L e;IIQxil1 2 < I:, 

ITr pQal = IL e;(QxilaXi)1 :0; Iiali' L cillQxil1 < IlaI10;, 

since by the Cauchy-Schwarz inequality, 

Proof of the proposition: For any finite-rank operator a, Tr Pna ---> Tr pa, and 
Tr Pn(l - a) ---> Tr p(l - a). Now let P be the projection onto the first N eigenvalues 
of p and choose N such that Tr p(l - P) < e. Then 

Tr(pn - p)a = Tr Pn(l - P)a + Tr(l - P)PnPa + Tr(pn - p)PaP 
+ Tr(PpP - p)a. 

Tr(p. - p)PaP < e11PaP11 < I:llall 

for sufficiently large n, since all topologies are equivalent on the finite-dimensional 
space Pf!I(Jf')P, and Tr(Pn - p)PaP ---> O. ITr(PpP - p)al :0; IlallTr(1 - P)p < 
Iiall . e. Tr Pn(1 - P) ---> Tr p(l - P) < e, which implies that for n large enough, 
Tr p.(1 - P) < 2e. Hence, by the lemma, 

ITr pil - P)al < fillall, 

ITr(1 - P)p.Pal = ITr pil - P)a*PI :0; filla*PII :0; filial!. 

Consequently, 

I Tr(Pn - p)al < (2f. + 2fi) Iiall, 

Trlpn - pi = sup ITr(pn - p)al < 2e + 2fi· 
II_II :51 
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2. U(a, fJ) == exp[ -fJ(Ho + av)] E~I 

(i) Analyticity (=complex differentiability) in fJ: 

II U(a, fJ + fJi - U(a, fJ) + (Ho + av)U(a, f3)111 

~ II (u(a,~) - 1 + (Ho + av»)u( a,~) 1111u( a,~) III - 0 

as fJ' - 0, since U is a II'II-convergent integral of II'II-analytic functions and 
therefore a II'II-analytic mapping, C x C+ - f14. 

(ii) Analyticity in a: 

U(a + a', fJ) - U(a, fJ) = - fJa' f drU(a + a', fJ(l - r ))vU(a, rfJ), 

IIU(a + a', fJ(l -,»vU(a, ,fJ)111 ~ IIU(a + a', fJ(l - ,»11 

when t ~ , ~ 1. If 0 ~ , ~ 1. then the first factor has to be divided up. This 
shows that the mapping C x C + - f14 1 : (a, fJ) - U(a, fJ) is analytic, and 
therefore the mapping C x C+ - C: (a, fJ) - Tr U(a, fJ) is analytic, because the 
trace is continuous and linear f141 - C, and thus also analytic. 

3. Concavity yields (l/e')«jIv(e + e') - (jIv(e» ~ (jIyje) ~ (jIy,l(e) ~ (\/e')«jIv(e - e') 
- (jIv(e)) for all e' > 0, and the statement follows from this with the limits 
lim.·~o limv~<Xl' 

N 

4. Per(zilzk) ~ Perl(zilzk)1 = L TI I (zdzp,)I ~ TI (1 + l(zdz)l) 
P i=1 (i, j) 

f() h · . ( 0 -1). . . 5. x, y = -xy. T e Hessian matrIX IS not posItIve. 
-I 0 

2.5 The Grand Canonical Ensemble 

The thermodynamic junctions are easier to calculate explicitly if the 
constraint of a fixed number N of particles is dropped. It is physically 
realistic for a system coupled to a reservoir of particles. 

This section will investigate the situation of a system with a reservoir with 
which it can exchange particles as well as heat. As in (2.3.23), the underlying 
Hilbert space is taken as 

N 

EB ~N"V, ® ~N-N"V2' 
N,=O 
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and the Hamiltonian is 

N 

H = EB (HI(VI , N I ) + Hz(Vz, N - N I »· 
N,=O 

We consider the limit as N --+ 00 and Vz --+ 00, and begin by collecting the 
immediate generalizations of some of the results of § 2.4. Proofs will not be 
given, as they entail only slight modifications of the earlier ones. 

Convergence of the Reduced Density Matrix (2.5.1) 

Suppose that the concave, increasing functions 

and their derivatives converge uniformly on a neighborhood of e: = Ez/Vz and 
p = Nz/Vz to a(e:, p), aa/ae:, and aa/ap. Then with V = VI + Vz, N = 
NI + N z, 

in the trace norm. 

Remarks (2.5.2) 

1. The symbol Tr z denotes the trace in the second factor of 

N 

EB YfN,. v, ® YfN- N,. V2' 
N,=O 

so in the limit N --+ 00, HI(Nb VI) operates on I~,=OYfN'.v,. This 
operator on the Hilbert space of an indefinite number of particles is most 
conveniently written in terms of the field operators (1.3.2). 

2. The values of 11 for which exp[ - fJ(H - IlN)] E ~ I depend on the problem. 
If, for instance, 

-In TrlJf'N, exp[ -fJHI(NI )] > -cNI , 

then the trace exists whenever Re fJll < - c. 

Many of the results of §2.4 may be reformulated for the grand canonical 
ensemble merely be replacing Hwith H - IlN. An example is 
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The Principle of Maximum Entropy (2.5.3) 

Let p be a density matrix such that Tr pH = Tr PGCH, Tr pN = Tr PGcN. 
Then S(PGd ~ S(p). 

If system 1 is now taken infinitely large, presupposing the extensivity 
following from H > - N" then TjV times the logarithm of the grand 
canonical partition function has a limit, which may be identified as the 
pressure, with reference to (2.3.29). 

The Thermodynamic Limit (2.5.4) 

If the assumptions of(2.4.14) are satisfied. then 

lim T In Tr exp[ - fJ(H - J.lN)] 
y .... oo V 

= :~~ ~ In N~O exp[ -IW( ~y( T, ~) - J.lN) ] 

= sup(J.lP - ~(T, p)) = peT, J.l). 

Remarks (2.5.5) 

1. The supremum is attained where the right derivative 

lim (~(T, P + 6) - ~(T, p))6- 1 = J.l, 
dlO 

unless J.l is on an endpoint of the interval on which peT, J.l) is defined. 
This means that with (2.3.29), J.l can be identified with 

~;Iq = ~;IT -T ~;IT = ~;IT' 
Because 

J.lP - ~ = P as I + (J as I - s = P, ap q a(J p 

the grand canonical partition function turns out to be exp(PVjT). We 
shall also speak of P as the pressure when the system is finite, although it 
does not exactly agree with the definition as the force per area on the waIl. 

2. As before, the ensembles are equivalent, on account of the identities 

s = T ~P I - P = J.lP - T ~~ I - J.lP + ~ = ~ + T(J, 
uT MIT uT p 

T(J = S - J.lP + P. 

Observe that the grand canonical averages of NjV and HNjV approach 
P and s, and that the entropy density of PGC equals (J. 
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Properties of the Pressure (2.5.6) 

1. The function (T, f.l) ...... P is convex, since it is the supremum of convex 
functions. 

2. The pressure increases with f.l, since it is the supremum of increasing 
functions. 

3. If H - f.lN ;?: 0, then T - 1 P is an increasing function of T, since 
exp[ - P(H - f.lN)] is a decreasing function of p. 

The grand canonical ensemble is particularly useful for identical particles, 
and allows the thermodynamic functions of bosons or fermions interacting 
with an external field to be evaluated more explicitly. For this purpose, we 
write the Hamiltonian and the particle number in terms of the field operators 
(1.3.2) and our orthogonal basis Um}, as 

H = fn a!an[f d3xVf!(x) . Vfn(x) + f!(X)J,,(X)V(X)] 

== L a!an<fmlhlfn), 
m.n 

m 

(2.5.7) 

where h = Ipl2 + v(x) is the one-particle Hamiltonian, and am stands for 
aUm). If h has pure-point spectrum with eigenvalues Em' and fm are taken as 
the eigenvectors associated with Em' then 

Tr exp[ - P(H - f.lN)] = Tr exp[ - P ~ a!am(Em - f.l)]. (2.5.8) 

Taking the trace leads to easily computed sums, since a*a has the eigen
values 0 and 1 for fermions and 0, 1,2, ... , for bosons. In these cases, PF 

and P B become 

T 
Piz) = -Pi-z) = - Iln(1 + zexp(-pEm», 

Vm 
(2.5.9) 

where z == exp(pf.l) is known as the fugacity. When written in terms of the one
particle Hamiltonian h = 1 P 12 + V(x) and the trace tr on the one-particle 
space L 2(~3), 

The Pressure of Fermions or Bosons in an External Field (2.5.10) 

becomes 

T 
PF(T, z) = V tr In(l + z exp( -Ph» = -PiT, -z). 
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Remarks (2.5.11) 

1. In the limit z --+ 0, PiT, z) = PiT, z) = z(T/V) Lm exp( -pem), which 
corresponds to very dilute matter, for which both Bose and Fermi 
statistics become the same (Boltzmann statistics). 

2. If h ~ ° and exp( - Ph) E C(l1, then the singularities of exp(P) occur 
where z = - exp(Pe~ < -1, m = 0, 1, 2, . . .. The function exp(P) is 
analytic in z until the singularities are reached, i.e., the power series in z 
converges. The analytic function PF(T, z) describes all three kinds of 
statistics. Fermi statistics correspond to z = exp(p/T) > 0, Boltzmann 
statistics to z --+ 0, and Bose statistics to -exp(eo) < z < ° (see Figure 19). 

It is easy to calculate expectation values as well as the partition function: 

(jmm' 
<a!am,) == Tr a!am, exp[ -P(H - J1.N + PV)] = exp[p(em _ J1.)] ± 1 

(2.5.12) 
Since everyone-particle vector If) E L 2(1R3) can be expanded in eigenvectors 
of h, and when restricted to L2(1R3), ajal equals PI = If) <fl, the informa
tion about the one-particle observables is contained in the 

Effective One-Particle Density Matrix (2.5.13) 

One-particle expectation values are given by P1 = (exp[p(h - J1.)] ± 1)-1 
with the formula <ajaI) = Tr P1PI = <flp11f). The density matrix P1 
has the properties 

Tr P1 = N, 
and 

° {I for fermions 
< P1 < -- - N for bosons. 

poles Boltzmann Fermi 

Figure 19 Singularities of P in the complex z-plane. 
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Remarks (2.5.14) 

1. The number N is defined by (Lm a! am) = tr[exp{p{h - /1» ± 1rl. If it 
is preferred to deal with these more understandable variables of the 
canonical ensemble, then this can be taken as the equation determining /1. 

2. Similarly, (H) = tr Plh, etc. 
3. If a reduced density matrix on the one-particle phase space is defined 

with coherent states (cf. (2.2.7) with (2.2.10; 5», p(x, p) = (a:az ) = 
(z I P I I z ), then the properties of P I generalize as 

and 

f d3Xd3p -
(2n)3 p{x, p) = N, 

( ) {
1 for fermions 

O<px,p < -
- - N for bosons. 

This shows that the exclusion principle of fermions has the effect of 
reducing the maximum value N of p{z) allowed in quantum mechanics 
to 1. 

As well as the one-particle observables, global properties like (H) and P 
can be calculated with PI' and even the many-particle entropy can be expres
sed in terms of PI: 

The Effective One-Particle Entropy (2.5.15) 

VP 
S(PGd = - Tr PGC In PGC = T + P(H - /1N ) 

[ h-/1 ] 
= tr ± In(1 ± exp[ - P(h - /1)]) + P exp[p(h _ /1)] ± 1 

= -tr[PI In PI ± (1 + PI) In(1 + PI)]. 

Remarks (2.5.16) 

1. The part in addition to the normal - tr P In P in S reveals that the many
particle system has increased disorder. The addition shows up in the 
entropy of a spin-t density matrix, 

S(~ 1 ~ p) = -P In P - (1 - p) In(1 - p), 
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where P is the probability for spin-up, and in the entropy of an oscillator, 

s( -x{ x x' .J) ~ -p In p + (1 + p) In(1 + p), 

where 

00 x 
P = L npnn = -1 -

n=O - X 

is the expectation value of the number of phonons. 
2. In accordance with the maximum-entropy principle (2.5.3), the one

particle Pl (2.5.13) is the P E ~ 1 (L 2(~3)) that maximizes 

PV T = -tr[p In P ± (1 =+= p) In(1 =+= p) + pP(h - Il)] 

(Problem 4). Also, on a formal level, 

V bPI o = - T -. = P(h - Il) + In Pl - In(1 =+= Pl) 
(jp p=p, 

=> Pl = [exp[p(h - Il)] ± 1rl. 

The density matrix Pl describes the distribution of bosons or fermions. 
Its significance is brought out most clearly in the classical limit. 

Classical Bounds for the Pressure of Particles in External Fields (2.5.17) 

With notation like that of (2.2. 7), let 

h = Ipl2 + vex) = f dQzf(z)lz)(zl, h(z) = (zlhlz), 

p(z) = Tra:azPGC = (zl[exp[p(h -Il)] =+= l]- l lz) = (ZIPllz), 

where v is such that all expressions appearing are well defined. Then, with 
z = q + ip,forbosons, 

-f dQz In(1 - exp[ - P(h(z) - Il)]) ::; PP(P, J1.) V 

::; -f dQz In(1 - exp[ _P(lpI2 + v(q) - Il)]), 

PP(P, 1l)V::; f dQz In(1 + p(z)), 
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and for fermions, 

f dQz In(1 + exp[ - P(h(z) - 11)]) :::;; PP(P, 11) V 

:::;; f dQz In(1 + exp[ - P(f(z) - 11)]), 

-f dQz In(1 - p(z)) :::;; PP(P, 1l)V. 

In analogy with (2.4.9), one gathers that 

and 

where 

and 

v(x) = f vU(q)lu(x - qW d3q, 

and u is an arbitrary vector of U(1R3) such that IIul12 = 1 and IIVul12 < 00. 

Proof 

Bosons. The first two inequalities are the analogues of(2.4.12), where the lower 
bound relies on (2.2.11) with the convex function x ~ -In(1 - exp( -x)). 
The upper follows from Corollary (2.1.8: 7) if it is borne in mind that h - 11 
must be positive, so Ilexp[ - (h - 11)] II < 1, and the series 

-In(1 - exp[ - P(h - 11)]) = f exp[ - np(h - 11)] 
n=l n 

converges in the norm 11·11. It must even converge in the norm 11·111, since it 
was assumed that -In(1 - exp[ - P(h - 11)]) E ~ 1, and the series is mono
tonic. With recourse again to (2.4.9), each term is bounded by 

- f dQil/n)exp[ _np(lpI 2 + V(q) - 11)], 

which also converges by assumption. Since all terms are positive, Ln and 
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J dnz can be interchanged. The final inequality follows from the concavity 
of the function x -+ In(1 + x): 

-(zlln(1 - exp[ -f3(h -1l)])lz) = (zlln(1 + Pl)lz) ~ In(1 + (Zlpllz» 

implies that 

- tr In(1 - exp[ - f3(h - II)]) ~ f dnz In(1 + p(z». 

Fermions. The first two inequalities again come from (2.2.11) with the convex 
function x -+ In(1 + exp( -x», and the last one is a consequence of the 
convexity of x -+ -In(1 - x). D 

Remarks (2.5.18) 

1. If x > 0, then (exp(x) ± 1)-1 is convex, and if x < 0, then it is concave. 
For bosons, x > 0, and so 

p(z) = (zl(exp[f3(h -II)] -1)-llz) ~ (exp[f3(h(z) -II)] _1)-1. 

The analogous inequality for fermions is true only if h - II > 0. 
2. InProblem3itisshownthat(zl(-~)lz) = Ip12+ K,K = J d3xIVu(xW, 

where z = q + ip, and on the other hand, -~ = J dnilpl2 - K)lz)(zl. 
Similarly, (zlvlz) = J d3xlu(x - qWv(x) = viq), and v = J dnzvU(q) 
x Iz)(zl, if v(x) = J d3qlu(x - qWVU(q). What goes on with the lower 
bound is thus that the classical Hamiltonian h is increased by the kinetic 
energy K of u, and the potential is smeared out by convolution with I u 12. 
With the upper bound the classical Hamiltonian is reduced by K and the 
potential is unsmeared. If v is of slow enough variation that even for u 
with small K, VU(q) is approximately equal to viq) = (z I v I z), then the 
bounds draw close together. 

3. In the very dilute limit of (2.5.11; 1) the bounds produce the classical 
result, if the indistinguishablity of the particles is accounted for by a 1/ N! 
in the phase space: 

( PV) ~ 1 f 3 3 exp - = L. -, d Xl ... d PN 
T N=O N. 

x exp[ - f3( I Pl12 + ... I PN 12 + V(Xl) + ... + V(XN) - Nil)] 

= exp[exp( - f3(FcI - II»)], 

so by (2.5.4), 

PV f T = d3xd3pexp[ -f3(lpI2 + v(x) -II)] = N, 

which is the ideal gas law. Unless exp(f3(h - II» ~ 1, the statistics matter. 
They are built into the bounds, but the indeterminacy relation forces the 
bounds apart. 
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4. In the classical limit, in which Inequalities (2.5.17) become equalities, 
P1(X, p) = (exp[ _P(lpI2 + V(x) - Jl)] ± 1)-1 is the density on phase 
space that optimizes 

PV f T = S(P1) - P(h - Jl) == - dQz[P1(Z) In P1(Z) 

± (1 + P1(Z» In(1 + PI(Z» + PI(z)P(h(z) - Jl)] 

(Problem 4). 
5. If, more generally, P is a density matrix of the many particle system on 

Fock space, and 

and 

are the associated one-particle density matrix and density, then it follows 
from (2.5.3) and (2.5.15) that 

S(p) = - Tr P In P ~ -tr[PI In PI ± (1 + PI) In(1 + PI)] 

~ -f dQz[p(z) In p(z) ± (1 + p(z» In(1 + p(z»], 

where the H in (2.5.3) is taken as the second quantization of (1/P) 
x [1n(1 + PI) - In PI], and Jl is set to O. The first inequality becomes an 
equality with PGC' which is the density matrix of greatest entropy for a 
given one-particle density matrix Pl' The second inequality follows from 
(2.2.11), since 

x -+ - [x In x ± (1 + x) In(1 + x)] 

is concave with the upper signs for 0 < x < 1 and with the lower signs for 
x < O. 

The extent of the validity of the classical picture will be delineated through 
a series of examples. 

Free Bosons and Fermions in a Box with Soft Walls (2.5.19) 

With a harmonic potential v(x) = all x 12 , the N -particle Hamiltonian is 
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containing harmonic forces between the particles and a harmonic force 
acting on the center of mass. As before (cf. (2.4.11) and (2.5.18; 1», let z = 
q + ik and u(x) = exp(-wlxI2/2): h(z) = Ikl2 + w21ql2 + 3w, f(lzl) = 
Ikl 2 + w21ql2 - 3w.Because 

fd3k d3 
=+= (2n)3q In(1 =+= exp[ _P(lkI2 + w2 1ql2 - Jl)]) 

= ~ ~ ( 1)' exp(vpJl) 
± (2 )3 L.. ± 4' 

W .=1 V 

(2.5.17) implies 

T3 
± (2W)3 Fi±(exp[p(Jl - 3w)]) ~ In Tr: exp[ -P(H - JlN)] 

T3 
~ ± (2W)3 F4(±exp[p(Jl + 3w)]), 

(2.5.20) 
where 

The result can be calculated exactly in this case, since the eigenvalues are 
em = 3w + 2w(ml + m2 + m3), mE (:Z+)3, and so 

=+= L In(1 =+= exp[ - p(em - Jl)]) 
m 

= ± f (± It exp[vp(Jl - 3w)] [(1 - exp( -2pWV»-3 - 1]. .= 1 V 

The bounds draw together to this value in the limit w -+ O. This limit is 
related to the limit V -+ 00, since the average of, for instance, I x 12 is ,..., T/w2. 
Accordingly, we eliminate w in favor of the effective volume V = (nT)3i2/w3 

and take the limit V -+ 00. Then with z = exp(PJl), (2.5.20) yields 

T S/2 

PiT, z) = ± 8 3/2 Fi±z). 
F n 

(2.5.21) 

Remarks (2.5.22) 

1. As w -+ 0, the potential v goes to zero pointwise, and the density (2.5.14; 3) 
on phase space turns into the well-known Bose or Fermi distribution, 

p(x, p) = [exp(p(lpI2 - Jl» =+= lrl. 

2. The energy spectrum of this example resembles that of a massless particle 
in a box {x: Ix;! < L/2}, E = (Pi + P~ + p~)1/2, Pi = min/L, m E (Z+)3. 
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In the limit L --+ 00, this E produces the same pressure up to a constant as 
(ml + m2 + m3)w, when w is identified with niL. Then 

PB(T, z) = ± T 4 F 4(±z)n-3 . 
F 

A Box with Hard Walls (2.5.23) 

Now suppose that the potential vL(x) 2': 0 is significantly smaller than I/L 2 

for I Xi I < L/2 but increases exponentially as soon as I Xi I > L/2. Since 
what happens should not depend on the precise form of VL , only certain 
bounds will be imposed on VL . Because of the monotonic property, all the 
steps up to (2.5.17) and (2.5.18; 1) proceed as before.t 

y~ cp(x)cp(y)cp(z) $; vL(x) $; y~ cp(x)cp(y)cp(z), 0 < y_ < y+, 

cp(x) = exp( -~L) cosh(ex), 

,Al2 f"oo dx' exp( -bX,2)cp(X + x') = exp(~:)cp(X)' 
so for the other bound, 

cp(x) = Loooo dx exp(-bx'2) exp ( - ~:)cp(X' + X).;V·2. 

The x-space portion of the calculation of L~=l (-I)V+l[exp(vf3p)/v] 
x J dnz exp( -f3vg(z», where g(z) = fez) or respectively h(z) (cf. (2.5.17) 
and (2.2.11», leads to 

J oo 2 Joo dv 
dx exp( -B± cosh ex) = --: ~ exp( -B± v) 

- 00 C 1 V v-I 

8+==0 ~ (In _1 + 0(1») 
c B± 

with B ± = Y ± f3 exp[ ± e2/4b - eL/2]), since it is being evaluated in the 
limit V = L3 --+ 00. If a sequence (VL(X»L~oo of wall potentials has bounds 
of the above-mentioned form with eeL) = o(L) and In(f3y±(L» = o(e(L)· L), 
then 

2 1 (' 2 
- In - = 1 =+= -- - - In f3y + 
cL B± 2bL cL -

converges to 1 for both bounds. The p-integral is the same as in (2.5.19), 
and so, finally, 

T 5 / 2 

PB(T, z) = ± -8 3/2 F 5 /2(±z). 
F n 

(2.5.24) 

t From this point until right before (2.5.24), + and - will indicate upper and lower bounds for 
the potential due to the wall rather than Bose and Fermi statistics. 
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Remarks (2.5.25) 

1. This is the same result as that of summing over all the eigenvalues of a 
free particle in a box with Dirichlet boundary conditions on the wall 
(Problem 5). The bounds (2.5.17) show that in very large part it is only 
the total volume of V that matters, rather than its detailed form. 

2. The nature of the wall is expressed by F 5/2 in (2.5.23) and F 4 in (2.5.21). 
For lower densities, z ~ 1, they coincide, as Frr = z + 0(Z2). 

The Thermodynamic Functions of Free Particles (2.5.26) 

All the thermodynamic functions can be obtained from peT, z), so (2.5.24) 
will allow the gaps left by (2.3.10) to be filled in, and the functions can be 
written down explicitly. We shall investigate the limiting cases where Z --> 00, 

Z --> 0, and z --> -1, corresponding to the extremes of Fermi, Boltzmann, 
and Bose statistics. The limits z --> 00, -1 are what is referred to as a 
degenerate gas. By Problem 1, F has the asymptotic forms 

= ~-\ 

/r--= ~-o ---» - ((~) + (z + lKG) 

-F5/i -z) ---~ z - Z2. 2- 5/2 

\ 
Z ----+ x; 

'-------> 4 [2 n2 
] -- - (In Z)5/2 + - (In Z)1/2 3Jn 5 4 ' 

(2.5.27) 

where ((0") is the Riemann zeta function, 

00 1 
((0") = L a = Fa(1), 

v= 1 V 
O"E C, Re 0" > 1. 

The zeta function has an analytic continuation to the punctured complex 
plane {O" Eel 0" # I}. In the three limits, 

P 
T 

Bose T 3 / 2 

8n3/2 [((~) + (z - lKG)] 

2B Boltzmann T 3/2 

3T - ) 8n3/2 z(1 ± z· 2- 5/ 2) 

~ :~: G (In z)''' + :' (In Z)'I'l (2.5.28) 
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so, writing 

2 a 1 3 3 5/2 1 
8B = T ~T T PiT, z) = 1:PiT, z) = ±1:T F5/i±z)-m, 

F U F F 8n 

_ a 1 _ 3/2 _1_ 
PB - z~ T PiT, z) - ± T F3/i±z) 8 3/2' 

F uZ F n 

T 3/2 

CTB = ± 8 3/2 GF5/i±z) - In zF3/i±z)], 
F n 

(2.S.29) 

to the lowest nonvanishing order, 

Bo T 3/2 ese zC(t) 8n3/ 2 

T 3/2 
Boltzmann (1 2- 3/2) 

P = I 8n3/2 z ± z . 

~ T'" (I )3/2 T 3
/
2 (I )-1/2 

6n2 n z + 48 n z , (2.S.30) 

T 3/2 
Bose 5 5 e 8n3/2 1:Ch) 

T 3/ 2 
Boltzmann 5 

CT = I 8n3/2 (1:Z - z In z) 

\F. T 3/ 2 ~--(I )1/2 12 n z . (2.S.31) 

When expressed in terms of the more intuitively appealing variables P and T, 

Bose 

2 Boltzmann 

P~3'~L P T (" ideal gas") 

Bose 

Boltzmann 5 p8n3 /2 T 3 /2 exp(S/2) 
1:P - pIn T 3/2 = pIn p8n3/ 2 

(2.S.32) 
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Remarks (2.5.33) 

1. As z ~ 0, (2.5.32) gives the classical result (2.3.9; 1) with an additional 
factor liN! in the volume of phase space. If Vp denotes the volume available 
in the one-particle phase space, and the liN! is incorporated into the 
general definition, then 

leads to 

S"'ln- ~ 1 (V.)N 
N! h3 

S Vp 
- '" In
N Nh 3 • 

On the other hand, in configuration space and with units for which 
h = m = 1, (2.5.32) informs us that S '" In VT31Z I N. Since T - liZ equals 
the thermal de Broglie wavelength A. with these units, the following rule 
of thumb applies to the entropy: Entropy per particle = In{volume of 
phase space per particle, as measured in h3 } = In {volume of configuration 
space per particle, as measured in A. 3 }. 

2. Fermions have a zero-point energy Eo = Yeo left over when T ~ 0, 
where eo == (6nZp)5/3/1Onz, and a zero-point pressure 21'0/3. Because 

4(1' - eo)l/Z 
T= 6(nZp)1/6 ' 

it is also possible to write 

(f= (1'1'0 -I) liZ fo' 
showing that the number M of states in the interval [Eo, E] is 

M ~ exp{N(:o - 1 r/Z flo}· 
For example, in an atomic nucleus the kinetic energy is Eo ~ N· 20 MeV, 
so with a fixed kinetic excitation energy DE = E - Eo the number 
of states in the interval is ",exp 2ft JDEI20 MeV. If DE", 1 MeV, 
then for N = 20 there are about eZ, i.e., 7 or 8, states; whereas if N '" 200, 
then the number increases to about e6.5 '" 0.5 x 103• This is in agreement 
with the experimental observation that the density of the energy states 
of heavy nuclei is on the order of (e V) - 1. 

3. If the energy of the ground state is redefined to zero, then z must be less 
than 1 for bosons-otherwise by (2.5.12) no == <atao> = z/(1 - z) is 
either infinite or negative. Because F 3IZ(z) < ,G) when 0 < z < 1, it 
follows from (2.5.29) that T> 7;, == (8n 3IZpl'<!»2/3. On the other hand, 
no can be made arbitrarily big by taking z close enough to 1. The difficulty 
with this is that the two limits z ~ 1 and V ~ 00 have to be taken jointly 



130 2 Thermostatics 

if the density has been fixed. If z(V) = 1 - 1/po V and T < 7;;(p), then 

T 3/2 

P = Po + '(~) 8n3/2' 

T 5
/
2 T [1 ] P = je = '(~) 8 3/2 = lim -In Tr exp - - (Hv - Ilv(T, p)N) , 

n V~<Xl V T 

with 

lim Ilv(T, p) = 0 for all T:::; 7;;(p), 
V~<Xl 

T 3/2 

(J = ~'G) 8n3/2 ' 

This shows that a nonzero fraction Po/p = 1 - (T/7;;)3/2 of the particles 
reside in the ground state and contribute nothing to the energy, 
pressure, or entropy (provided H is replaced with H - Eo). The number 
of particles in the first excited state, n1 = 1/(Z-1 exp(p/L 2) - 1) '" L 2, 

is rather large, but nt/V -+ O. For similar reasons, the relative mean
square deviation (~n;)2 /<ni)2 remains positive for no as V -+ 00, but 
goes to zero for the higher states. The specific heat 

cv = :~I 
V.N 

is continuous at 7;; and oCv/oT is discontinuous (Problem 2). If T = 7;;, 
then the choice of Po has to depend on V. 

4. The values 11 = 0 and z = 1 apply to a situation where N is not conserved, 
such as a gas of photons or phonons (cf. (2.5.22; 2». It is easy to calculate 
Tr exp( - PH) with the H of (2.5.7). The pressure P = - cp, and 

OP/ =_ocp/ =11=0 
op T op T ' 

so the compressibility is infinite. The system behaves much like a gas at 
the condensation point, the vacuum state, i.e., no particles, being analogous 
to the condensed state. It therefore has e = (J = P = V = 0, and the 
system can be compressed into the vacuum. The entropy density (J is 
then simply the quantity ~s/ ~v of the Clausius-Clapeyron equation which 
simply assumes the form 

:~Ip = (J. 

Since P = - cp, Theorem (2.4.14) implies that this equation holds identi
cally. The quantities efT ~ p ~ (J depend only on T and correspond to a 
particle of energy T in each wavelength cube. Consequently, entropy;;;; 
particle number ~ energy/To 
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Particles in a Magnetic Field (2.5.34) 

The Hamiltonian was given in (III: 3.3.5; 3): 

H = Ip - eAI2 = P~ + 2eB(a*a + !). 

The boundary conditions are that the wave-function must vanish at X3 = ° 
and X3 = L, the 3-axis pointing along B, so the eigenvalues of P3 are 
nm/L, m = 1, 2, 3, .... The center x of the orbit is confined to 1 x 12 = 
(2/eB)(g + !) < R2 in the plane perpendicular to B, so the geometry is 
cylindrical. The "wall potential" 00 . E>(lxI2 - R2) confining the particle is 
not a multiplication operator by a real-valued function V(x l , X2), but rather 
a function of the operator 

representing the sum of a two-dimensional harmonic oscillator in the 
Xl - x2-plane and the xrcomponent of the angular momentum. The 
construction of such a momentum-dependent wall potential will be left to the 
ingenuity of the experimentalists. By (III: 3.5.3; 3), 1 X 12 is quantized so that 
g is a whole number, and a*a has the eigenvalues n = 0, 1,2, .... As L ---) 00, 

the sum L:~et/2 L~= 1 L:'=o turns into 

Joo L 00 R2eB _ VeB Joo 00 

dp3- L -2---2 2 dP3 L' 
o n n=O n 0 n=O 

where V denotes the volume of the cylinder. The classical bounds amount 
to the replacement 

in which all magnetic effects are swept away. We have to resort to the exact 
expression (2.5.9), with which the grand canonical partition functions 
becomes 

eB Joo 00 

fJPf(z) = + 2n2 0 dP3 n~o In(l + Z exp[ - f3(p~ + eB(2n + 1»]) 

T 3/2 00 (±ZY veBfJ 
= ± 8n3/2 V~l ~ sinh veBf3' 

(2.5.35) 

where the B in P B denotes Bose statistics as usual and has nothing to do 
F 

with the magnetic field B. This reveals right away that, as in (2.3.33; 2), 
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an arbitrarily weak magnetic field ruins the phase transition of the Bose gas, 
since for any T. 

o T3j2 OCJ (±z)" eBf3 p: = z oz f3P: = ± -8n-3-/2 V~l -v-1-/2- -,si-n---:h-v-eB-----:-f3 

can get arbitrarily big as z -+ exp(f3Eo) = exp(f3eB). This happens because 
the particles are free to move only parallel to B and are trapped in orbits in 
the direction perpendicular to B even though the radius of the cylinder goes 
to infinity. The system acts as though confined to a cylinder only the length 
of which tends to 00, and in one dimension there is no Bose condensation. 
If the magnetic energy eB is much less than the thermal energy T, then the 
next correction to the foregoing result is '" B2 : 

f3P: -+ ± ~~/: [FS1i±Z) - ~ e:rFl/2(±Z)} (2.5.36) 

If this is used to calculate the magnetization per volume in the limit B -+ 0 
with T fixed, 

oPB 1 ( ) m = _F = - I (XIP2 - X 2 Pl - eB(xi + xD) 
oeB V all 

particles 

(2.5.37) 

then with (2.5.26) and the formula Fa-iz) = (z(djdz)tFa(z) (see (2.5.20)), 
its limits in the three extreme cases of the different statistics are 

Bose 

L 
m ) 

\ ,,,., 
Remarks (2.5.39) 

-eB·oo 

eB 
--p 

3T 

(2.5.38) 

1. The negative sign indicates diamagnetism, which is to be expected 
quantum-mechanically: By Lenz's law the classical orbits rotate in the 
direction with negative L z • However, a current appears in the other 
direction when particles bounce off the wall of the box (see Figure 20). 

With classical statistics the circulating currents cancel out at every 
point of the interior, leaving only a current circulating along the surface, 
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Figure 20 Classical trajectories of particles in a box with a magnetic field. 

which is exactly compensated for by the "reflected" current, since the 
partition function 

f d3x d3p exp[ - PI p - A(xW] = f d3x d3p exp( - Plpl2) 

is completely independent of B. This means that if either p is fixed and 
T -+ 00 or T is fixed and p -+ 0, then m tends to O. Diamagnetism is 
therefore a characteristically quantum-mechanical effect; if the sum 
L;:'=O is replaced with an integral SO' dn, and 2n + 1 becomes 2n, which 
is in essence the limit h -+ 0, then P becomes independent of B (a theorem 
of Bohr and van Leeuwen). 

2. In quantum theory, states with negative L z are energetically favored 
(III: 3.3.21; 4), so a quantum gas is diamagnetic. The reason that the 
magnetization m of a completely degenerate Bose gas tends to 00 is that 
P fails to be analytic at z = 1, B = O. This topic will shortly be discussed 
in more detail. 

3. Since P depends only on R2 L, 

o 0 
R oR P = 2L oL P, 

i.e., the pressure remains isotropic. 

In order to make sense of the limit of degenerate Bose gas, let PIl = In z, 
and write 

PP B _ T3!2 f exp[ - pv(eB - 11)] 2eBpv 
V - 8n3/2 v = 1 VS/ 2 1 - exp[ - 2eBpv] , 

_ T 3/2 ~ exp[ - pv(eB - 11)] 2eBpv 
p - 8n3/2 v~l v3i2 1 - exp[ -2eBpv] ' 

T 3/2 00 exp[ - pv(eB - 11)] 
m = - p + 4n3/2 II v3!2(1 - exp[ _ 2eBpv])2 

x [1 - exp[ -2eBpv] (1 + 2eBpv)], (2.5.40) 
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without expanding in B. The convergence of the series for m and p in (2.5.40) 
(by domination for B ;;::: 0 with /l fixed) implies that 

lim meT, /l, B) = 0 
B~+O 

for all fixed T > 0 and /l < O. Yet if B --+ 0 with T fixed and /l < 0 then all 
the densities p are less than CmT3i2/8n3/2 , as in (2.5.33; 3). If T s 'Fc(p) 
(see (2.5.33; 3», then the limits B --+ 0 and /l--+ 0 must again be appro
priately coordinated. Since for B > 0 and for all values p > 0 and T > 0 
there exists a unique /leT, p, B) < eB such that limB~o /leT, p, B) = 0 for 
T s 'Fc(p», and since the series for m + p from (2.5.40) also converges uni
formly in B on an interval containing /l = eB, the limit B --+ 0 can be taken 
term by term. This yields 

~~ meT, p, B) = -Po = -P[1 - ('Fc~p)r/2l 
provided that T s 'Fc(p) (cf. (2.5.33; 3». If T;;::: 'Fc(p) then the limit is zero as 
observed earlier. 

Remarks (2.5.41) 

1. The physical interpretation of this result is that in the limit B --+ 0 only 
the particles in the ground state contribute to the magnetization. The 
ground state has Lz = -1, so for B = 0 the contribution to m is simply 
the sum of L z over the particles in a unit volume in the ground state. 

2. The notation B is perhaps misleading, since it stands only for the external 
field and not for that due to the system itself. Actually, the field due to the 
system has to be taken into account, as it screens B throughout the 
interior of the system. 

Black-Body Radiation in Partial (i.e., Anisotropic) Equilibrium (2.5.42) 

If the particles are massless, as in (2.5.22; 2) and (2.5.33; 4), and they have a 
density matrix like PGC but containing only states in a certain dilatation
invariant part D of p-space, then we can still write 

r d3p 
qJ = T J

D 
(2n)31n(1 - exp[ -Plpl]) = -cT\ 

where the constant c depends on D (but not on T).lt is then still true that 

e = 3P = -3qJ = iTO" = 3cT4. 
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A realistic example of this situation is sunlight falling on the earth, for which 
essentially all the p-vectors come from the direction of the sun. The constant 
c is reduced by a factor "" 10- S, the solid angle subtended by the sun, in 
comparison with the isotropic equilibrium value with D = 1R3. Once the 
radiation is made isotropic without changing e significantly by the time it 
reaches the earth, T is lowered by a factor of about 10- 5/4, from "" 60000 K 
to "" 3000 K. At the same time, (j = 4e/3 T is increased by this factor of 20. 
It is consistent with an increase in the total entropy that this physical process 
creates highly ordered structures with little entropy; their decrease of en
tropy is nothing compared with the gigantic increase of the radiation entropy. 
About 1020 photons per cm2 arrive from the sun each minute, and this times 
20 is the entropy increase/cm2-min. In an hour this comes to roughly the 
total entropy of a cubic centimeter of matter for each square centimeter of 
ground, so, for example, a newly planted forest could grow to a height of 10 
meters over a summer without violating the second law of thermodynamics. 
The sun thus expends entropy as well as energy. Although isotropic black
body radiation at 3000 K would be just as energetic, the energy would be 
unusable for the creation oflife (as would be the case as the universe subsided 
into heat death). 

The grand canonical ensemble determines the expectation values of 
field operators as well as the thermodynamic functions. Equation (2.5.12) 
showed how to calculate quadratic expressions involving the field operators, 
and quartic expressions for particles in an external field can easily be calcu
lated in the same way, 

<a!ajaj'am·) = (bmm·bjj' ± bmj'bjm.)(exp[p(em - Jl)] + 1)-1 
x (exp[p(ej - Jl)] + 1)-1 

= <a!am·) <ajaj') ± <a!aj') <ajam.). (2.5.43) 

Remark (2.5.44) 

If the mean-square deviations of the occupation numbers are calculated in 
this way, then 

«a!am)2) - <a!am)2 = <a!am)(1 ± <a!am»· 
Independent particles would follow a Poisson distribution law wen) = 
exp( -n)nn/n! for which the mean-square deviation would equal the 
expectation value of the occupation number. The deviation is greater 
with Bose statistics and less with Fermi statistics, which can be interpreted 
as meaning that bosons have a tendency to bunch up and fermions to keep 
at a distance. 

In elementary quantum mechanics a state was characterized by the 
expectation values of the Weyl operators (cf. (III: 3.1.2; 1», and likewise 
now the complete determination of the state requires the expectation value of, 
say, exp[i J d3x(a(x)f*(x) + a*(x)f(x»] for all f E CO'(1R3). The best way 
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for this to be calculated in the grand canonical ensemble for particles in an 
external field makes use of coherent states. In Problem 6 it is shown that 

Tr exp[ - pwa*a] exp[i(a*IX + aIX*)] 
Tr exp[ - pwa*a] 

= exp [ -IIXI2G + exp(p~) _ 1)] if [a, a*] = 1. 

Therefore: 

The Grand Canonical State for Bosons in an External Field (2.5.45) 

is 

Example (2.5.46) 

Free bosons in a cube of volume V = L 3, with periodic boundary conditions. 
Let 

and 

I d3X 
av(k) = 312 exp( - ik . x)a(x), 

v L 

a f = L L - 3/2](k)av(k), ](k) = f d3x exp(ik· x)f(x), 
k E «21t/L)i!')3 

for fE L2(V). Then because w = Ik12, 

<exp[i(aj + ar)]) = exp[- L L -31](kW (-21 + (PI~12) - )J. 
kE«21t/L)i!')3 exp z 

A more convenient expression in the calculation of ordered products is 
exp[i Lm a!IXm] exp[i Lm amIX!]. Its expectation values can be read off from 
the formula exp(A + B) = exp A exp B exp<![B, A]), which holds provided 
that [A, [A, B]] = [B, [A, B]] = 0, which in this case is in accordance with 
the Weyl relations (III: 3.1.2; 1): 

The Generating Function for Ordered Products (2.5.47) 

(exp[i ~ a!IXm] exp[i ~ am IX! ]) = exp [ - ~ I IXm 12 exP(pL) - J 
== E(IX;, IXt), 
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which can be written 

<exp(iaj) exp(iaJ» = exp( -<flpd» 

with the use of PI from (2.5.13). 
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The expectation values of polynomials in the field operators can be 
obtained by differentiating the generating function by !Y. or !Y.*. Note that all 
the factors within a given exponent of (2.5.47) commute, so nothing prevents 
the exponential functions from being differentiated: 

where P stands for any permutation of (1,2, ... , n). 
We have been confronted again with a permanent, and it is easy to 

understand that the analogous expression for fermions contains ( -It and 
thus involves a determinant. The - z in the denominator is also turned 
into + z, but there are no other changes. Linear extension covers the cases of 
expectation values of products of arbitrary ar, which are most conveniently 
written in terms of the one-particle density matrix PI' as before: 

The Grand Canonical Expectation Value of an Ordered Product (2.5.48) 

<aj, ... ajnag, ... agn·) = c).n' :;~~(<'filplgj»' 

This section will conclude with a further investigation into the thermo
dynamic limit of the grand canonical state of a system of particles in an 
external field. Such a state will exist under the circumstances in which PI, v 
converges weakly, as for example with free particles, for which: 

The Grand Canonical State of an Infinite System (2,5.49) 

where p > 0, and for bosons, 0 ::; z < 1, or for fermions, z > O. 
It was noticed in (2.5.33; 3) that with bosons at T < r;, = (8n 3 / 2 p/,(~»2j3, 

the limits V -+ 00 and z -+ 1 have to be taken jointly in order to have a given 
density p. This does not make the sum in (2.5.46) converge to the integral in 
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(2.5.49); rather, if z = 1 - 1/po V, then the term with k = 0 survives 
separately: 

lim ~ L IJ(kW(1 - (l/po V» 
V-+ao V ke«21t/L)Z)3 exp(PlkI2) - 1 + (l/po V) 

2 f d3k IJ(k)1 2 
-+ Po IJ(O) I + (2n)3 exp(PlkI2) - 1 . 

This formula is justified if f E L 2(1R3) with compact support, which makes 
J E L 2(1R3) (l CO'(1R3), so the integrand remains integrable even at k = O. 
Therefore we have: 

The Grand Canonical State in Bose Condensation (2.5.50) 

lim <exp(iaj) exp(ia f»Jl,z= l-(l/poV) 
V-+ao 

Remarks (2.5.51) 

1. If T < 7;" then the grand canonical state of the Bose field algebra differs 
from the canonical state, which can be calculated as 

f21t d 
x 0 2: exp[2i.}Po" Re(J(O) exp(itp»] 

for T < 7;, [13]. 
2. Other than for bosons at T < 7;" the representations in the individual 

factors are thermal (1.4.7). According to Remark (1.4.17; 1) the factors 
are of type III in the infinite system. They form a reducible representation 
n, the tensor product n1 ® n2 of two Fock-like representations of the 
field algebra (cf. (1.4.7»: 

n(af) = n1(a J(p) ) ® 1 J + exp[ _P(lpI2 - Jl)] + 1 

+ (_l)N ® n2(a* J*(p) ), 
Jexp[p(lpI2 - Jl)] + I 

where afN = (N + 1)af.1t is straightforward to verify that 

<aj, ... ajnag,' .. agn,) = <Q1 ® Q 2 In(aj.)··· n(agn,)IQ1 ® Q2)' 
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3. For bosons at T < 7;, there is no factor representation; the analogue of the 
mean magnetization s (1.4.6: 2) is 

ao == w-hm a6, where a6 == - d3xa(x). . 1 f 
Y-+oo V y 

All bounded functions of ao lie in the center of the von Neumann algebra 
n(d)". Now 

<a6na~> = (a}(o))" (aJ~(O)r Elf=o, 

so for instance <aD> = 0, <a6ao> = Po. Thus ao is not represented as a 
multiple of the identity. 

4. The canonical state (2.5.51; 1) is an integral over states OJ", for which the 
exponent in the generating function 

OJiexp(iAa6) exp(iAao)) = exp(2iA50 cos q» 

is linear in A E IR. These states produce factor representations: 

n",(ao) = 50 exp( - iq» . 1. 

5. If a term va(a6 - 50 exp( - iq> ))*(a6 - 50 exp( - iq>)) with 0 < IX < 1 
is added to the local Hamiltonian H y , then the k = 0 component of 
f3H y becomes f3va(a6 - 5oexp(-iq»)*(a6 - 5oexp(-iq»). As will 
become more apparent below, the thermodynamic functions are un
changed for all 0 < T :::; 7;,(p) in the limit V -+ 00 if we set z( V) == 1 and 
Po = p(1 - (T/7;,(p))3/2) (cf. (2.5.33; 3)). Because 

and 

Tr{exp[ -f3Va(a6 - 50 exp( -iq»)*(a6 - 50 exp( -iq>))] 

x exp(lf(0)a6 *) . exp(lf*(0)a6)} 
= Tr[exp( - f3Va a6*a6) exp(lf(0)a6*) exp(lf*(0)a6)] 

x exp(2i50 Re(j(O) exp(iq») 

Tr[exp( - f3vaa6*a6)· exp(lf(0)a6*)· exp(lf*(0)a6)] 
Tr exp( -/waa6*a6) 

= exp[ - IJ(OW/f3Va + O(:a)] 

(see Problem 6), in the limit V -+ 00 the perturbed grand canonical 
state reduces to OJ"" the integrand of the canonical state in the decom
position (2.5.51; 1), since the contribution to the generating function 
from the components of H y with k "# 0 is not affected by the extra term. 
Since the exponent in this generating function is linear in](O) and ]*(0), 

nco. (ao) = 50 exp( - iq» . 1. 
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This shows that w'" is a factor state, and the density of the particles in the 
ground state is represented by the (dispersionless) multiplication operator 
Po . 1. Although the assumption that rJ. > 0 is essential (the limit state is 
not changed by perturbations bounded uniformly in V), the bound 
rJ. < 1 only serves to illustrate that a surface effect is enough to single out 
any given pure phase from a mixture as the limit V --+ 00 is taken. 

This example appears at first only academic from the physical point of 
view. Since constant phases of the wave-functions are not observable pro
perties, at least for free particles, the Bose algebra should be replaced with the 
gauge-invariant subalgebra Iff, i.e., the subalgebra invariant under the auto
morphism induced by f --;+ exp(icp)f All the states w'" are the same on the 
subalgebra, and the phase mixture of the ground state is not observable. 
However, these phases do have experimental consequences in super
conductors, in the Josephson effect. 

Problems (2.5.52) 

1. Calculate the asymptotic forms of F S/2(z) (for z ---> 1 use zF~(z) = Fu-1(z), Fu(l) = 

(0"». 

2. Calculate the heat capacity per particle of an ideal Bose gas at constant density, as 
well as its derivative by the temperature. 

3. Verify (2.5.18; 2). 

4. Show the maximum properties of(2.5.16; 2) and (2.5.18; 4). 

5. Calculate PB and PF for particles in a box. Show that the result agrees with (2.5.24) 
in the limit V ---> 00. 

6. Calculate Tr exp[i(a*a + aa*)] exp[ - {.ia*a]jTr exp[ - {.ia*a], assuming that 
[a, a*] = 1. 

Solutions (2.5.53) 

z ---> 1: FS/2(z) ~ FS/2(1) + (z - !)F~/2(l) + ... = m) + (z - !K@ + ... 

z ---> ex; : Let a = In z > 0 

f' dtjt In(l + exp( -t + a» = f.' dtjt+; In(! + exp( -t» 

2 foo = - dt(t + a)3!2(l + exp(t»-l 
3 _, 

_ ~ [f' - 3/2 - f' dt(a - t)3/2 foo dt(t + a)3/2J 
- dt(a t) ! t + 1 t 

3 0 0 +e 0 +e 

2 [f' 'foo dt«(t + a)3/2 - 1 t - r:x 1
3/2)J = - dt(a - t)3!2 + + O(exp( -a»; 

3 0 o! + exp(t) 
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2. 

because 

and 

fOO dtta-l 
I ) = (1 - 21 - a)r(aK(a), 

o + exp(t 

with ,(2) = rr2/6, [(2) = 1, it follows that 

e= 

which implies 

"2 T ~/2 F 5/z{Z), T> 7;" I.e., 0 < Z < 1, 
8rr 

{

3 5/ 2 1 . 

} T 5/ 2 8rr
1
3/ 2 ((i), T::::;; 7;" i.e., Z = 1, 

T > 7;, ,i:e., 0 < Z < I, 

T::::;; 7;" i.e., z = 1, 

because of the formula F 3/z{Z) = 8rr3 / 2pT- 3/2 for T> 7;,. The function y is con
tinuous at T = 7;, and equals (15/4)(~)gG) = 1.93, and as T -> 00, F a(z) - 2 

_ 8rr 3/2pT- 3/2, and 

Y _ 15 _ 1_ T 3/ 2Z _ 2 _.u _ 2 = 4 
4 8rr3 / 2 p 4 4 4 ",' 

With the expansion F 5/2(2) = 2.363t3/2 + 1.342 - 2.612t - 0.730t2 .. . , where t == 
-In z, valid for z ::s I, and the recursion formula 

there results 

Fa_1(exp(-t» = -(d/dt)Fiexp(-t», 

-t--------- -30 
I 
I 
I 
I 
I 
I 

--~----------~-------------------T 7;, 
Figure 21 Specific heat of an ideal Bose gas. 
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3. If the wave-function of I z) is exp(ik . x)u(x - q) with u real-valued, then <z II pl21 z) 
= S d3xliku(x - q) - Vu(x - q)1 2 = Ikl 2 + S d3xlVul2. At the same time, the 
expectation value of S dQzlz)<zllkI2 in a normalized I/J equals 

Jd3qd3klkl2 J 
---3 ._- d3x d3x'I/J*(x) exp(ik· x)u(x - q) exp( - ik . x')u(x' - q)l/J(x') 

(2n) 

= J d3q "d3xV(I/J*(x)u(x - q» . V(u(x - q)l/J(x» 

= J d3xIVI/J(x)12 + J d3q I Vu(q) 12, 

because the mixed terms drop out in the q integration. Therefore, 

J dQzlz)<zllkI2 = Ipl2 + J dQzlz)<zl J d3qlVul2. 

4. Klein's inequality (2.1.8; 5) with K(p) = pin p ± (l += p) In(l += p), K'(p) = 
- In(ljp += 1) and p = [exp(p(h - J1» ± 1]-1 leads to 

Tr[K(p) - K(p) + (p - P){J(h - J1)J :2: 0, 

proving (2.5.16; 2). In the classical case, i.e., p = p(z), h = h(z), P = P(z) = 

all being real, 

K(p(z» - K(p(z» + (p(z) - P(z»{J(h(z) - J1) :2: 0 

for all z, and consequently (2.5.18; 4). 

5. Particles in a box. If the shape of the box is a parallelepiped with sides L l , L 2 , and L 3 , 

and the wave-functions satisfy Dirichlet boundary conditions, then the eigenvalues 
are 

f, = n2 m l + ~ + 1112 ( 
2 2 2) 

m Li L~ L~' 

Consequently 

j3VPB(z) = += I In(l += zexp(-{Jl:m», 
F m;= 1 

and in the thermodynamic limit Li -> ct:; the sum over mi becomes LI . L2· Li2n)-2 

x S;;'dr.0 ... ,so 

Pf(T, z) = += T 5/2(2n)-2 {D dtj/ In(1 += z exp( - t» = ± T 5/2 8ni3/2 F 5/2( ± z). 

6. Because exp A exp B = exp(A + B) exp(HA, BJ) = exp B exp A exp[A, BJ for 
[A, BJ = c· 1, the coherent states (2.2.6) with I u) = 10), a 10) = 0, can be written 

(a*z) (-IZI2) Iz) = exp j2 10) exp -4- . 
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As in Remark (III: 3.1.14; I), with exp(-f3a*a)f(a*)IO) = f(a* exp(-f3))IO) it 
follows that 

Tr exp(cw*) exp( -1X*a) exp( - f3a*a) 

f dz (az*) (a*z) (-IZI2) = 2n <01 exp fi exp( -1X*a) exp( - f3a*a) exp(lXa*) exp fi 10) exp --2-

= f ~~ <01 exp[a(~ - IX*) ] exp[exP( - f3)a*(~ + IX) }O) exp( - ~ZI2) 

= f ~~ exp[ - I ~12 (I - exp( - 13)) + exp( - f3) (~ (Z*IX - ZIX*) - IIX 12) J 

=exp[-11X12 1 J/(I-eXP(-f3)), 
exp(fJ) - 1 

so by changing IX to ilX, 

<exp[i(a*1X + alX*)J) = <exp[lXa* - lX*aJ) = <exp(lXa*) exp( -1X*a) exp( -111X1 2) 

= eXP[-.11X1 2(! + 1 .)J. 
2 exp(f3) - 1 
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3.1 Time-Evolution 

Whereas small systems evolve almost periodically in time, large 
systems appear chaotic and their time-evolution mixes the observables 
thoroughly. 

The framework for this discussion will be an algebra .91 of observables with a 
strongly continuous time-automorphism and a time-invariant state p. 
In the GNS representation the invariant state is made into a vector In), 
and the time-automorphism is represented as a unitary group of operators 
U = {exp(iHt)}, Uln) = In). The time-evolution then extends to the 
weak closure .91". If the representation is reducible, then it may occur that 
U ¢ .91", even if U t- 1 dU t c d. The von Neumann algebra 

f7l == {d U U}", f7l' = .91' n U', 

generated by .91 and U is known as the covariance algebra and will figure 
prominently in what follows. If the only invariant elements of .91' are of the 
form (1. 1, then it is all of .@(.1f), as f7l' = (1. 1 = f7l" = f7l = gg(.1f). 

An initial orientation to the various possibilities can be obtained by 
looking at some 

Examples (3.l.l) 

1. Classical dynamical systems. The Abelian algebra .91 of COO functions 
a(p, q) on the phase space T*(M) is a special case of the general schema. 
If dll is a probability measure on T*(M), then the elements a E .91 

144 
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are represented as multiplication operators on the Hilbert-space. 
L 2(T*(M), dJ-l). The advantage of the Hilbert-space approach to classical 
mechanics is that it ignores exceptional trajectories making up null sets. 
If a time-invariant measure dJ-l, such as the Liouville measure dql ... dP3N 
is restricted to a time-invariant region a of finite volume and normalized, 
then the time-evolution a(p, q) -+ a(p(t), q(t» is represented unitarily on 
L 2(0, dJ-l). It can be written formally as U t = exp( - iht), where h = iLxH 
is the Liouville operator (1:2.2.25; 1), and this unitary group of trans
formations extends to the von Neumann algebra .91" = L 00(0, dJ-l). Of 
course U t does not belong to .91", which is maximally Abelian, .91" = 
.91' = fZ. The algebra ~ is all of fJI(Jft') if and only if the system is ergodic, 
for then the only time-invariant functions are constant almost everywhere, 
and are thus the constant functions of L 00(0, dJ-l). 

2. A single spin in a magnetic field, cf. (1.1.1): 

.91 = fJI(C 2 ) = {I, a, a±}", p(.) = ((~) 1·1 G), 
Ut = exp(iB(1 - a)t) .91' = fZ =~' = {a· I}, .91" = .91 = ~. 

Observe that while there is only one invariant vector, there is a second 
pure invariant state, <m 1·1 ?). 

3. A single spin in a magnetic field, in a thermal representation (1.4.7): 

.91 = {I, a, a±}" ® I, p(.) = <01·10), 

0= fP(~) ® (~) + R(~) ® (~). 
.91' = I ® {I, 1', 1'±}", U, = exp(iB(1' - a)t), 

.91" = .91, fZ = {a ·I}, ~' = I ® {I, 1'}", ~ = {I, a, a±}" ® {I, ,}". 
This factor representation on C4 has a two-dimensional invariant subspace 
and a five-dimensional manifold of invariant states. Two of these are 
pure states corresponding to noninvariant vectors. Notice that the formal 
equation h = - Ba has to be normalized not only with a constant but 
also by B, E .91', to ensure that U I a) = 10). With a different choice of the 
basis for C4 , a can also be written as (A) ® (A), which makes the representa
tion n of.91 somewhat more complicated (cf. (2.5.51; 2»: 

n(a±) = )1 ~ S a± ® I _ ( -I)" ® )1 ~ S ,+, 

l+s l-s ~ 
n(a) = -2-a ® I - I ® '-2- + vi - S2 {a- ® ,- + a+ ® ,+}. 

It is easy to verify the algebraic relationships 
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4. An infinite, interacting spin system. Consider the model of a ferromagnet 
(2.3.32; 2) in the limit N -+ 00. It is not hard to discover that the thermal 
expectation values converge to those with the vector 

as with a type-III representation (1.4.7). The quantities 

s = <a) = -tanh BerrP, Berr = B - 2s, 

are to be determined self-consistently, for the interaction can be written 
as 

If now N -+ 00, the first term on the right describes the fluctuations and 
becomes negligible compared with - 2< a) Ii ai' and the commutators 
of H approach those of Berr Ii ai' Berr = -Z<a) (cf. (1.1.11». The time
evolution is accordingly given by 

U t = (8) exp(iBerrCrj - a)t). 
j 

The Hilbert space Yf contains infinitely many invariant vectors, viz., 
all the ones that differ from n in the replacement of finitely many factors 
with an invariant vector from Example 3. Since Beff depends on p, the 
time-automorphisms on representations with different P are different. 
Therefore there is not any automorphism of the algebra .91 generated 
by the a's on the sum of two representations with different p. Although 
an isomorphism of ned), as a subalgebra of .94(Yf,,), is given by 

(Lt(n(d» = U~j,fJ2n(d)(U~I,fJ2)-1 

with 

it is not an automorphism, since there are times t at which IXt(n(d» =F 
ned). The smallest subalgebra of .94(.n;;) for which (IXt)teiJ;! becomes a group 
of automorphisms "is clearly Ut IXt(n(d». If B = 0 and T < 2, then 
there is such a sum, or even an integral. There are nonzero solutions to the 
equation Berr = 2 tanh PBerr , but nothing favors any direction. Expecta
tion values are averages over the unit sphere of expectation values with 
Berr = oBerr , by means of which the representation takes on the form 

ned) = r donned), JS2 
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where nn is specified by (1.4.7) with a == (0" n). The time-evolution on 
nn(d) is the rotation aj(t) = (exp(tR)tPa1 having the matrix 

R = Beff (-~3 ~3 
n2 -n1 

However, as the strong limit of (ljN) "'[.7= 1 O'j as N ~ 00, n is contained in 
n(d)" and lies in the center of this algebra but is not a multiple of 1. 
It is constant in time, and the n-dependent time-evolution of the a's can 
be viewed as an automorphism of n(d)". 

5. Free fermions. The algebra .91 is generated by the field operators a f 
(1.3.2), and as in (1.3.3; 5) the free time-evolution 

f(p) ~ exp( -ilpI2 t)f(p) == ft(p), 

provides a group of automorphisms on .91: af ~ aft' The thermal state 
(2.5.49) is clearly invariant in time and leads to a unitary time-evolution 
Ut = exp( - iHt). In order to tell the type of the representation, we can 
write it in a form like the one in Example 3. Let 101,2) be two Fock 
vacua and n1,iaf) be the representations formed with 101,2)' Then 
with the tensor product 

we get 

n(a(f)) = n1 (a( J(p) )) ® I 
)1 + exp( _P(lpI2 - )1)) 

+ (-It ® n2 (a*( J*(p) )), 
)1 + exp(p(lpI2 - )1)) 

where aN = (N + l)a (cf. (1.3.13)). It can be verified that 

<aJ,'" atag,'" ag) = <0 I n(aJ,) .,. n(ajJn(ag,)··. n(ag)IO), 

so this representation is equivalent to the thermal representation with 
infinitely many spins. Consequently, if T > 0, then it is a factor of type III. 
The local field operators in momentum space can be used to write H" as 

H" = f(~:~3IPI2{nl(a*(p)a(p)) ® I - I ® nia*(p)a(p))}. 

The operator a*a differs from the usual one not only in that the infinite 
zero-point energy of field theory has been subtracted off, but also in the 
removal of an operator of .91'. 

The Time-Evolution of Open Systems (3.1.2) 

It seems illusory to consider every single local property of a large system as 
belonging to the algebra of observables. It is certainly true that practically 
anything can be measured, but not all at once, and putting the system into a 
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state that is dispersionless with respect to a maximally Abelian subalgebra 
is actually impossible. In reality only fairly small subsystems get measured, 
so it is of practical interest to divide the total system into the subsystem that 
is observed, called an "open" system, and all the rest, acting as a reservoir. 
Accordingly, let Je = Jes ® YtR and let TrS+R, Trs, and TrR be the traces on 
yr, JrS, and JeR · The time-evolution Ut will mix JrS and JeR , so it does not 
create an automorphism of !1l(Jes). However, if the initial state postulated 
can be factorized and written in terms of a density matrix p ® w, then a time
evolution 't: ~(JrS) ~ ~(JrS) can be defined for the open system in the 
Heisenberg picture, or the dual time-evolution for the density matrices 
,r ~ 1 (Jes) ~ ~ 1 (Jes) can be defined in the Schrodinger picture. If 
a E g(J(Jes) ® 1, then the time-dependence of the expectation values can be 
written as 

(a(t) == Trs+R(p ® w)U -rCa ® 1)Ut = Trsp,rCa) = Trs,i(p)a, 

where by definition 

!t(a) == TrR(1 ® w)U -rCa ® 1)Un 

!i(p) = TrRUrCp ® w)U -to 

Note that the states transform with Ui = U -t rather than Ut. 

Properties of the Time-Evolution of the Subsystem (3.1.4) 

The operators 't and ,i are 

(3.1.3) 

(i) one-parameter, strongly continuous families of completely positive 
linear mappings; 

(ii) not groups: !tl 0 't2 -=f. 'tl + t2; 
(iii) not isomorphisms of the algebra: !tCa· b) -=f. !tCa)· !tCb). 

Equality holds in (ii) and Ciii) only if U t factorizes. 

Gloss (3.1.5) 

A linear mapping <1>: ~(Je) ~ ~CJe) is said to be n-positive iff <I> ® 1 acting 
on ~(Je) ® ~(lCn): a ® M ~ <I>(a) ® M is positive for all M E ~(cn), i.e., 
it maps the cone of positive elements of ~(Je) ® ~(cn) into itself. The 
mapping <I> is completely positive iff it is positive for all n = 1, 2, .... It can 
be shown [14] that all completely positive mappings are obtained by taking 
tensor products of positive operators, composing with unitary operators, 
and then taking partial traces, just as in the construction of 't and !i- The 
completely positive mappings form a semi group with respect to composition. 
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Examples (3.1.6) 

1. The classical harmonic oscillator 
The observables are chosen as the position coordinates q, so 

TrS+ R -+ f dp dq, TrR -+ fdP, TrS -+ f dq. 

Let p(q) = n- 1/2 exp( - (q - qO)2) be the probability distribution function 
of the coordinates and w(P) = n- 1/2 exp( -(p - PO)2) be that of the 
momenta. The time-evolution of the total system, q(t) = q cos t + P sin t, 
p(t) = P cos t - q sin t, induces 

7:1(q) = q cos t + Po sin t, 

7::(p) = n- 1/2 exp[ -(q - qo cos t - Po sin t)2] 

on the subsystem. However, 7:1 is not an isomorphism, 

since w is not free of fluctuations. The choice of equal widths for p and w, 
as with quantum-mechanical coherent states, causes a rigid oscillation 
of p. If, instead, w(P) = (j(p - Po), then there would be a periodic focusing 
and defocusing of p, 

*( ) _ exp[ -(q - qo cos t - Po sin t)2 cos- 2 t] 
7:1 P - r::. . 

v 7t cos t 

2. Quantum-mechanical coupled oscillators. 
Let us return to the chain of oscillators (1.1.13) and take ~o and ~1 as 
the open system. Instead of the pure state (1.1.21), suppose the system is 
in a thermal state 

As in (2.5.53.6), 

Tr exp[ -'1«p - p)2 + (q - q)2)] exp[i(pr + qs)] 
Tr exp[ - '1«P _ p)2 + (q _ q)2)] 

[ r2 + S2 '1 ] 
= exp - 4 tanh 2" + i(pr + qs), (3.1.7) 
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so this state is a Gibbs state with harmonic forces centered at s', - r'. 
Under the time-evolution (1.1.18), the expectation values of the Weyl 
operators of the open system are 

<exp i(r~o(t) + S~l(t))> = exp{~ {-ttanh~ [(rJ Zn + sJZn+1)Z 

+ (rJ Zn +1 + sJzn)Z] + is~(rJzn + sJ Zn - 1) 

- ir~(r J Zn + 1 + sJ 2n) } }-

At time t the subsystem is in a state of the form (3.1. 7) with 

s~(t) = L (s~(O)J 2n(t) - r~(O)J 2n+ 1 (t)), 

r~(t) = L(r~(0)J2n(t) - S~(0)J2n-l(t)). 
n 

The average values s~(t), r~(t) move classically as in Example 1. They 
converge to zero, but not monotonically. 

3. Coupled spins 
Consider spin 1 of the chain (1.1.1) as the open system and the infinitely 
many others as the thermal reservoir. The coupling constants ten) are 
chosen as in (1.1.9). The initial state 

PI = ±(l + at exp( -i'Y.) + ai exp(i'Y.)), 

w = TI ±(1 + a: exp( - i'Y.) + a;: exp(i'Y.)), 
k*l 

«1.17) with s = 0) evolves as 

( sin2 t ) 
ri(p) = ± 1 + -tZ- [a+ exp( - i('Y. + 2Et) + a- exp(i('Y. + 2Et)] 

if N ~ 00. The state P oscillates as it approaches the equilibrium state 
±.t as T ~ 00. 

Remarks (3.1.8) 

1. The failure of the time-evolution r or r* to be a group is due to the effect 
of the system on the reservoir and the reaction of the reservoir on the 
system. The reaction influences the system at later times, so (%t)ri(p) 
depends on rs*(p) not only for s = t but for all sst, i.e., on its whole 
history. The time-evolution of the density matrix of the reservoir can be 
written down formally and substituted into the equation for (%t)ri(p), 
The resulting master equation is an integrodifferential equation for P 
including the memory effects just mentioned. 

2. The requirement of complete positivity of the time-evolution is not a 
mere technicality but a genuine restriction, and it even has some experi-
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mentally verifiable consequences. For instance, its implications for the 
motion of a spin in a thermal reservoir have been confirmed experi
mentally [15]. 

The retrospective effects of (3.1.8; 1) disappear in certain limiting cases, 
so the time-evolution r becomes a semigroup. The limits involve the time
scale or the coupling constants. The most understandable case is that of a 
simplified version of electrodynamic radiative reaction of volume II, §2.4. 

Example (3.1.9) 

Model of Brownian motion 
We modify Example (1.1.13) to take a single harmonic oscillator in three 
dimensions as the system and represent the rest of the system, functioning as a 
reservoir, as a continuous scalar field <l>(x). Suppose initially that the oscillator 
is coupled to an averaged field J d3x<l>(x)c(x), c E CO'(~3), and later take the 
limit c(x) -+ yl5(x), y E R We shall study the quantum-theoretical time
evolution from the outset; since the equations of motion are linear it agrees 
with the classical time-evolution. If Q, P and <l>(x), I1(x) are the canonically 
conjugate coordinate and field variables, then the Hamiltonian is 

Hs = !(P2 + w6 Q2), 

H R = ! f d3 x{I1(X)2 + 1 V<l>(x) 12}, 

H' = f d3xc(x)<l>(x)Q. 

The resulting equations of motion, 

(:t22 - Ll ) <l>(x, t) = c(x)Q(t), 

(:t22 + W6 )Q(t) = f d3x<l>(x, t)c(x), 

can be integrated immediately with Green's formula (II: 1.2.36). This is 
the trivial case of a scalar field on ~4, so with the Green function 

D(x, t) = l5(r - t) 
4nr 

(II: 2.2.7), the solution of the initial-value problem is 

<l>(x, t) = f d3x'(<l>(x', O)b(x - x', t) + <i>(x', O)D(x - x', t» 

+ f d3x' 1dt'D(X - x', t - t')c(x')Q(t') 
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--~--~~~~~+----------x 

t - 2R 

.. 
support of c(x) 

Figure 22 The domain of influence of F reaction' 

for all t > 0, where <i> = ofJ>jot, etc. Hence the force exerted by the field 
on the oscillator is 

f d3xfJ>(x, t)c(x) = F fie1d (t) + F reaction (t), 

Ffield(t) = f d3x d3x'c(x)(fJ>(X', O)i>(X - X', t) + <i>(X', O)D(x - X', t» 

f d3Xd3X' 
Fre.ction (t) = 4 c(x)c(x')Q(t - Ix - x'l)e(t - Ix - x'I)· 

nix - x'i 

In the reaction force Freaction (t), Q(t') contributes only for t - 2R ::; t' ::; t 
if c(x) = ° for all x such that I x I > R (see Figure 22). 

Now if c(x) --+ 2fiy6(x), so R --+ 0, then the retrospective effects dis
appear, and when the expansion 

Q(t -Ix - x'l) = Q(t) -Ix - x'IQ(t) + tlx - x'1 2Q(t) _ ... 

is substituted into F reaction, 

Freaction (t) --+ bw2Q(t) - y2Q(t). 

The quantity bw2 is the formally infinite integral y2 S(d3xd3x'jlx - x'l) 
x b(x)b(x'), so the limit c(x) --+ yb(x) must be taken jointly with a change in 

w6. If 052 == W6 - bw2 , then the equation of motion becomes 

(02 0) ot 2 + 052 + 2r ot Q(t) = Ffield (t), 
y2 

r = 2' t;:::: 0. 

For a thermal state with <fJ>(x,O» = <<i>(x,O» = 0, <Ffie1d (t» = 0, and 
the time-evolution of the expectation value of Q for t ;:::: ° is 

( ( r.) sin wt) <Q(t» = exp(-rt) <Q(O» coswt + ;:;smwt + <Q(O»~ , 
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provided that ro2 == (jj2 - r 2 > O. The expectation values of the canonical 
variables (Q(t» and (Q(t» then evolve according to a symplectic semi
group, 

(Q(t» 
r. 

cos rot + - sm rot 
ro 

sin rot 
(Q(O» 

= exp( -rt) 

(Q(t» - (ro + ~) sin rot cos rot - E sin rot (Q(O» 

The time-evolution of an open system is not generally a unitary trans
formation of the density matrix, and so the entropy of a subsystem is not 
necessarily constant. Nothing can be said a priori about the sign of the 
change in entropy; the system might start off hotter than the reservoir 
and lose entropy as the temperature equalizes. However, the relative entropy 
introduced in (2.2.22) turns out to be a Liapunov function [16] for the 
time-evolution (3.1.3). 

The Decrease of the Relative Entropy (3.1.10) 

For the time-evolution .* of (3.13), 
S(r;"(a)lr;"(p» ::;; S(alp). 

Proof 

With Definition (2.2.22) and the unitary in variance, 
R R (iv) 

S(Tr U -Ia ® roU,ITr U -IP ® roU,) ::;; S(U -Ia ® roU,1 U -IP ® roU,) 
(""") 

= S(a ® rolp ® ro) ~ S(alp). 0 

Remarks (3.1.11) 

1. The relative entropy is always positive, and in the special case of (2.2.23; 1), 
it is f3 times the difference between the free energy of the state P and the 
free energy at equilibrium. Its decrease reflects the tendency of the system 
to equilibrium. 

2. Monotony in time cannot be claimed if r/l +/2 =1= r/2 0 r /l • In Example 
(3.1.9) friction returned the oscillator monotonically to its rest-point, 
owing to the semigroup property, which was in turn a consequence of 
the absence of retrospective effects. The general fact is 

Monotony of the Relative Entropy with a Dynamic Semigroup (3.1.12) 

If r /l +/2 = r/2 0 r /l for all tl and t2 ;?: 0, then r , is said to be a dynamical semi
group. The function S(r;"(a) I r;"(p» is then a monotonically decreasing function 
oft. 
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Proof 

This is a direct consequence of (3.1.10). o 

Remarks (3.1.13) 

1. Because S( 0" I p) 2 0, the limit of S( r:( 0") I r:(p)) as t -+ 00 exists. 
2. It cannot yet be claimed that the free energy approaches its equilibrium 

value as t -+ 00; S(O"jp) might stop at some positive value and never fall 
to zero. 

3. The apparent asymmetry in the direction of time comes from the re
quirement of (3.1.3) that the initial state factorizes. Starting at t < 0, the 
later state at t = ° is factorized, so the relative entropy increases. 

4. If the dynamical semigroup is governed by a master equation of the type 
of (2.1.11 ; 3), then S(p) increases monotonically. 

That finishes the orientation toward various phenomena connected with 
the time evolution. Let us now return to more global questions of time
dependence. The problem, put concisely, is that a finite system the Hamil
tonian of which has pure point spectrum {s;} has observables whose expecta
tion values <a(t) = Lj,k ajk exp(i(sj - Sk)t) are almost-periodic functions, 
as superpositions of periodic functions. Only the average over time makes 
sense; the time-limit exists only for infinite systems the Hamiltonians of 
which have absolutely continuous spectra. Although in actuality only finite 
systems come under observation, the recurrence times are so long that they 
are indistinguishable from infinite systems within the times of relevance 
to human beings. In any event, the first issue to settle is how to define the 
time-average of a function f(t) E C(IR), the set of bounded, continuous 
functions on IR. The obvious guesses would be 

;~~ 2~ f~T dtf(t) or !~~~ f:oo dt exp( -sltl)f(t), 

but these limits do not converge for such functions as sin(ln( I t I + 1)) E C(IR). 
Any suitable average would have to be linear, positive, and invariant under 
displacements in time. Every invariant state on the C* algebra C(IR) has 
the right qualifications, and the existence of many invariant states on 
C(IR) means that there are many possible time-averages. There is thus 
no question whether a time-average exists, but it is not unique. 

The Time-Average of an Observable (3.1.14) 

Let '1 be an average over C(IR) and t -+ at be a weakly continuous mapping 
IR -+ gH(,y'f) such that Ilatll :::;; Ilaoll for all t. Then the average '1(a) is defined 
by 

<xl'1(a)ly) = '1«xla t ly») forallx,YE~ 
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Remarks (3.1.15) 

1. Since II1«xlat ly»)1 ::; Ilxll'llyll' Ilaoll, this sesquilinear form defines a 
bounded operator l1(a). 

2. In the Schrodinger picture, the average 11(0') of a state a on the algebra 
generated by the operators at is defined by I1(O')(a) = YJ(O'(at))· 

Examples (3.1.16) 

1. If at = exp( - iHt) == Vet), then YJ(V) = Eo == the projection onto the 
eigenvectors of H with eigenvector O. 

Proof 

(i) <xIEoYJ(V)y) = I1<Eoxl Vty) = <xIEoY) = EoYJ(V) = Eo· 
(ii) <xl V(to)I1(V)y) = l1<xl V(t + to)Y) = <xll1(V)y) = 

V(to)YJ(V) = YJ(V) = EoYJ(V) = I1(V) = Eo by part (i). D 

2. at = V(t)aV- 1(t), where Vet) has pure point spectrum. If the projections 
onto the eigenspaces are E;, then l1(a) = 'D EiaEi· 

Proof 

Take matrix elements with the eigenvectors of H and note that 
l1(exp(iat)) = 0 for all 11 and all a E IR different from O. D 

Remarks (3.1.17) 

1. In these examples the concrete averages (1/2T) S?:. T dt exp(iHt) and 
(e/2) S~ 00 dt exp( - e I t I) exp(iHt) converge strongly (Problem 1). Hence 
Eo belongs to V" as well as V'. 

2. In the Schrodinger picture the time-average of a vector I x) is defined by 
IYJ(x) == YJ(V(t)lx») = Eolx).1t can be characterized as the vector with 
the least norm in the convex hull of its trajectory {V(t) Ix), t E IR} (Problem 
2). It is not, however, true in general for the state O'(a) = <xlalx) formed 
with Ix) that YJ(O')(a) = <11(x)lall1(x). 

3. There is no definition of YJ(a) independent of the representation; since 
limT_oo (liT) S6 dtat belongs only to the weak closure of the algebra, 
YJ may send operators out of their C* algebra. Our representations will 
usually be such that the time-automorphism at can be implemented 
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unitarily, and the image of Eo will contain a cyclic vector for sI. If the 
averages l1(a) belong to sI', then they are determined uniquely by 

since Eo£ separates sI' (Problem 5). However, as will be seen in (3.1.22; 
4), l1(a) in general depends on the representation. 

4. The time-average may be nonunique if f(t) converges, as t --+ + 00 and 
t --+ - 00, but to different values. This situation is familiar to us from 
scattering theory. Whenever the time-average of a function f is unique, 
it agrees with the "concrete average" 

1 fT lim -2 dtf(t), 
T-+oo T -T 

a foo !~~ 2: -00 dt exp( -altl)f(t), 

or even 

1 fT lim - dtf(t). 
T-+oo T 0 

These averages exist in classical ergodic theory, in which the Liouville 
measure on phase space provides the invariant cyclic vector. Some 
ergodic systems will be defined later, and for them Eo is one-dimensional, 
projecting onto the cyclic vector. This projection is then constant on the 
energy shell, so the time-average Eo aEo equals the average over the energy 
shell. 

5. The point spectrum of H can be turned into a continuum by an arbitrarily 
small perturbation, so averaging over time focuses unduly on the exact 
form of H, since 11 is quite different depending on whether the spectrum 
is pointlike or continuous: If in the spectral representation of H the 
operator a on the subspace belonging to aac has a continuous integral 
kernel, then 11 projects this part of a to 0, and by Remark 2 only its point
spectrum part remains (cf. (I: 3.3.4; 6». 

6. Pure states of classical systems are points in phase space, and averages 
over pure states are averages over classical trajectories. 

7. If the spectrum of H is pure point and nondegenerate, then every normal, 
invariant state can be written as the time-average of a pure state. Normal, 
invariant states are of the form 

a(a) = Lc;(xdalx;), 0 ~ Ci ~ 1, L Ci = 1, Hlx;) = ail x;); 
i i 

so 
a(a) = <xll1(a)lx), x = L~lx;). 

i 

Although the canonical state p = exp( - P(H - F» is an average over 
the trajectory of a pure state, it is certainly not true that every averaged 
pure state is the canonical state. 



3.1 Time-Evolution 157 

Our reasoning until this point has applied indifferently to all sorts of 
quantum systems, but not all quantum systems exhibit thermodynamic 
behavior. An isolated atom is rather like a frictionless perpetual-motion 
machine; only large systems are dissipative. The concept introduced in 
(1.3.10) of asymptotic commutativity turns out to be a useful characteristic 
of dissipative systems. If the local observables are asymptotically Abelian 
with respect to the time-automorphism IXI' that means that local perturba
tions dissipate through the system as time passes. Of course, this is possible 
only if H has continuous spectrum, and hence only if the system is infinite. 
We shall remain with Definition (1.3.10), although many of its consequences 
can be derived with weaker assumptions. Definition (1.3.10) applies to a 
system of free fermions, but it has not been possible to prove that even 
weakened versions of it apply to more realistic, interacting systems. It is 
trivial that classical systems are asymptotically Abelian, and (1.3.10) means 
roughly that asymptotically Abelian systems behave classically on a macro
scopic time scale. 

Properties of Asymptotically Abelian Systems (3.1.IS) 

Let d be an asymptotically Abelian C* algebra with respect to a group of 
automorphisms a -+ at, and let OJ be an invariant state having a representation 
on a Hilbert space £ with a cyclic vector In). Then, abbreviating d' = 

7rw(d)', etc., 

1. the invariant elements of d belong to d'; 
2. the invariant elements of d' lie in the center (i.e., [lA' = d' n U' = lJ(d') 

is a subalgebra of the center d' n d"), and so [lA' = lJ(d"); 
3. Eo d" Eo is maximally Abelian in Eo ~ where Eo is the projection onto the 

invariant vectors of £; and 
4. if (J produces a factor (i.e., the GNS representation 7r,id) and 7r,,(d), 

constructed with the cyclic vector n" generate all of :11(£», then 

lim «(J(atb) - (J(at)(J(b» -+ 0, 
t- ± 00 

Remarks (3.1.19) 

1. Neither Eo nor Eod"Eo necessarily belongs to d". Moreover, Eod"Eo 
may fail to be an algebra, and the somewhat loose phrasing of Property 3 
is intended to mean that the algebra generated by Eo d" Eo is the same as 
its com mutant. 

2. The point of (3.1.1S) is that invariant elements such as time-averages 
and time-limits form an Abelian algebra, and thus equal its center. 
Factor states are pure when restricted to the center, and are therefore 



158 3 Thermodynamics 

characters (see Definition (III : 2.2.25», which explains why they factorize 
in time-limits and time-averages. 

Proof 

1. [a, b] = limr_ oo [ar, b] = 0 for all invariant a E d and all bEd. 
2. By Property 3, Eo~Eo = Eod"Eo is maximally Abelian and so equal 

to (Eo~Eo)'Eo. Since Eo E~, (Eo~Eo)'Eo = Eo~'Eo [17], and therefore 
Eo~' Eo = Eo(~' n ~)Eo. Since I Q) separates d', the equation Eo a' Eo = 
a'Eo determines everya' E~' uniquely, so a' E~. However, ~ n~' is 
d" n d' n U', because Un d' = {I}. 

3. The set Eo d Eo must be Abelian, as otherwise some commutator would 
fail to vanish as t --+ ± 00 : 

'1r[at> b] = 0 = '1rEo(aU,b - bU _,a)Eo = 0 

= [Eo aEo, Eo bEo] = 0 for all a, bEd. 

Hence Eo d" Eo = (Eo d Eo)" is also Abelian, and in fact maximally 
Abelian, as otherwise EoaEo would be - 1 on a subspace of dimension 
greater than one for all a E d , and I Q) = Eo I Q) would not be cyclic. 

4. For every b E n,,(d) there exist two operators b l and b2 such that b2 1 Qa) = 
bjlQa) = 0 and b = l<QalbIQa) + b l + b2 . This is obvious for finite 
matrices: 

A- 0 

A- 0 

A- + + D 

D 
A-

b A. ·1 + b l + h 2 

and it carries over to 24(£). Then a(a,b) - a(a,)a(b) = a([at> bl])' 
If a produces a factor, then b l can be approximated with a finite sum 

i= I 

and Li a([a" dJdD tends to 0 as t --+ ± 00 by Definition (1.3.10). Although 
the subalgebra of 24(£) generated by na(d) u naCd)' is only strongly 
dense, operators with these properties can be approximated even in the 
norm sense ([18] , V.1.4), which justifies these conclusions. 0 

The set of invariant states is convex, so any invariant state is a convex 
combination of the extremal points of the set or a limit of such combinations. 
As the purest among the time-invariant states, the extremal elements deserve 
a special term: 
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Definition (3.1.20) 

An invariant state is ergodic, or extremal invariant, if it can not be written as 
a convex combination of other invariant states. 

Remarks (3.l.21) 

1. In classical dynamics an invariant submanifold .AI' of phase space cor
responds to an invariant state (= measure) 1l,K' = Oi dqi 1\ dpi,K', which 
is ergodic if .AI' cannot be decomposed into invariant pieces with strictly 
positive measures Il..v. 

2. A classical system is said to be ergodic if the surface of the energy shell 
p(p, q) = c5(E - H(p, q)) exp( - S(E)) corresponds to an ergodic state. 

3. Every time-invariant state is a sum or integral of ergodic states, so it is 
tempting to interpret the ergodic states as the pure phases of the system. 
Mixtures would then be incoherent superpositions in the sense of quantum 
theory rather than coexisting, spatially separated phases. With any 
reasonable definition of pure phases, the decomposition into ergodic 
states should be unique, and the set of time-invariant states must be a 
simplex. This is indeed the case for asymptotically Abelian systems, 
which follows from the observation that !7t' = .91' n rUt}' is Abelian: 
As was seen in (1.4.9) and (III: 2.3.24; 2), every Abelian subalgebra of.9l' 
corresponds to a unique decomposition of a state w; if {PJ, Li Pi = 1, 
are the orthogonal projections of this algebra, and 

w(Pia) 
wi(a) = w(P) for all a E .91, 

provided that w(Pi) > 0, and is otherwise arbitrary, then w = ~:>{iWi' 
A.i = w(Pi) and 1tw = EBi 1tWi ' where 1tWi acts on PiJt'w' Now if w is invariant 
and is to have a decomposition into other invariant states, then the 
projections Pi must belong to .91' n {U t }', and in fact the extremal states 
correspond to the minimal projections. Since .91' n {U t }' c~, the 
decomposition into ergodic states is never as fine as the factor decompo
sition. Hence if a factor representation is given by the invariant state w, 
it is necessarily ergodic. 

Ergodicity in fact singles out the desired properties. This is shown by the 

Characterization of the Ergodic States (3.1.22) 

Let .91 be an algebra that is asymptotically Abelian in time, p an invariant 
state on .91, and In) the vector of the state p in the GNS representation. 
T hen the following conditions are equivalent: 

1. p is ergodic; 
2. !7t' = {oc· I}; 
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3. given any decomposition p = J a df.1(a) and a f.1-measurable mean '1, '1(a) = p 
almost everywhere for f.1; 

4. 11 (a) = I . p( a) for all a E ,91 and all invariant means '1; 
5. (dud')n U' = {a·I}; 
6. Eo = IQ><QI; 
7. p is a unique, invariant, normal state on 1!p(d)"; 
8. '1(p(abt)) = p(a)p(b) for all a and bEd and all invariant means 11. 

Remarks (3.1.23) 

1. If the quantum system is finite, H has pure point spectrum, with eigen
vectors {I x;)}. As we have learned, the invariant states are of the form 
a ~ Li C;(Xi 1 ax;), so the extremal invariant states are of the form a ~ 
<xii ax) and therefore pure. If the system is either infinite or classical, 
then ergodic does not imply pure. For example, the state of free fermions 
(2.5.49) produces a factor and is therefore ergodic, but d' is isomorphic 
to d and thus different from {a· I}. It will be discovered later that this 
is the normal situation for equilibrium states. 

2. According to (III: 2.3.10; 5), Condition 2 means that p is a pure state on 
fll, and can also be written as fll n fll' = {a· I}; in particular, every 
factor state is ergodic. 

3. Condition 3 can be sharpened for classical systems with Birkhoff's 
ergodic theorem, according to which almost every trajectory fills the 
energy shell densely. In this case, with the decomposition into pure 
states, the Cesaro mean exists; l1(a) is wmeasurable, and the order of 11 
and J df.1 can be reversed. 

4. By Condition 4 the time-average of operators in this situation is unique 
and a multiple of the identity. More particularly, the classical time
average of any set of positive p-measure is spread out over the whole 
support of p. Hence the time-average of states with a density function 
equals the equilibrium state. Since averaged observables are multiples 
of the identity, they exhibit no deviation. 

5. The implication of Condition 5 for classical dynamics is that if the system 
is ergodic, then every measurable, time-independent function is constant 
on the energy shell. Note that (d u d')" might contain additional 
time-invariant operators; for instance, for a factor this set is ~(..1f) and 
therefore also contains U. 

6. Condition 6 implies that 1 is a simple eigenvalue of U. 
7. By Condition 7, all the other eigenvectors of U lead to the same state as p. 

Classically, the eigenfunctions cp(p, q) must always have 1 cp 12 constant 
independently of p and q. Thus ergodicity does not make it impossible 
for the spectrum to be purely pointlike, but only prevents 0 from being a 
degenerate eigenvalue of H. The extra word "normal" of Condition 7 
is important. In Example (3.1.1 ; 5) of free fermions, equilibrium states at 
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different temperatures from that of the specified representation are 
invariant in time, but not normal. This means classically that different 
energy shells have disjoint support. 

8. Condition 8 means that the autocorrelation function p(abr) - p(a)p(b) 
has time-average O. Also, according to Condition 4 the expectation 
values of operators in states of the form a I 0) have the same time-averages 
as those with the state p. Since the states a I 0) are dense, the time-average 
of every normal state is p. This is a sort of converse to Condition 3, in so 
far as I1(a) = P for all a's that are pure and normal (as states on 1tp(d)"). 
It may happen that the set of such a's is empty (cf. (1.4.17; 3», and some 
non-normal, pure states converging to something other than the equili
brium state will make their appearance later. 

Proof 

1 => 2: Let t E ~', 0 < t < 1; then the vector lOp) associated with P in the 
GNS representation is cyclic for ~ and therefore separates ~'. 

With lOp), 

so if 

and 

then P = API + (1 - A )P2 has a genuine decomposition into 
invariant states. 

2 => 1: Let P = A. PI + (1 - A )P2' where 0 < A < 1. Then according to 
(III: 2.3.24; 2) there exists atE 1tid)' such that 0 ~ t ~ 1 and 
PI(a) = <OpltOp)-I<OplatOp) for all aEd. If PI is invariant, 
then t is in ~', and it follows from Condition 2 that P = PI = P2' 

2<=>4: ~':::> {I1(a): aEd}. (Cf. (3.1.18; 2).) 
1 => 3: The state P = J adjl(a) is invariant in time, so p(a) = J djl(a)I1(a(a». 

Therefore P = J djl(a)I1(a), and, since P is an extremal invariant, 
it equals the invariant state I1(a) almost everywhere in jl. 

3 => 1: Suppose that P is not ergodic. Then there exist invariant states 
PI "# P2 such that P = API + (1 - A )P2' This is a special case of a 
decomposition with Pi = I1(Pi) "# p, so Condition 3 would be 
violated. 

2 <=> 5: The invariant elements of d and d' compose ~'. 
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6=> 1: Suppose that P =API + (1 -A)P2; then by (III: 2.3.24; 2), PI is 
of the form PI(a) = <QpltQp)-I<tl/2Qplatl/2Qp) for aEd, and t 
is in nid)' (l U~ if PI is invariant. Condition 6 implies that I t l / 2Qp) ex 
IQp), because It l / 2Qp) E EoYr. so P = PI = Pz' 

6 => 8: 1J(p(abt )) = 1J«QlaUt bIQ») = <QlaEobIQ) = p(a)p(b). 
7 => 6: If there existed a second invariant vector I Q'), then all vectors 

~IQ) + ~IQ') for 0 :s; IY. :s; 1 would give rise to the same 
state, but by Property (3.1.18; 3), since the algebra is maximally 
Abelian on the subspace, this would mean that I Q) = I Q'). 

4 => 7 and 8: W invariant => W = 1J(w) => 1J(w)(a) = pea). 
8 => 4: From 1J([bt , c]) = 0 it follows that p(ac)p(b) = 1J(p(acbt )) = 1J(p(abt c)), 

so the matrix elements of p(b) . 1 and 1J(b) are equal on a dense set. 
o 

Examples (3.l.24) 

1. The only possible ergodic states on classical systems are those con
centrated on b(E - H(p, q)); otherwise d would contain the additional 
invariant F(H), contradicting Condition 4. Let us examine a chain of N 
coupled oscillators (1.1.14). The Hamiltonian can be written in terms of 
action and angle variables K j (see (I: 3.3.3) and (I: 3.3.14)) and ({Jj E TI 
as 

N 

H = LWjKj, 
j= I 

and the time-evolution is ({Jj -+ ({Jj + Wjt. If N > 1, the state ~ b(E - H) 
is not ergodic, although the state ~ TIj b(Kj - c;) concentrated on TN 
is, provided that the angular velocities Wj are rationally independent 
(cf. (I: 3.3.3)). To understand why, observe that the operator h on L2(TN) 
introduced in (3.1.1; 1) arises when K j is interpreted as the displacement 
operator, the eigenvalues of which are 2nn, n E 7L. The spectrum of h 
is therefore purely pointlike, with eigenvalues 2n Lj Wjnj. If the Wj are 
rationally independent, then the eigenvalue 0 (all nj = 0) is nondegenerate 
and otherwise it is degenerate. According to (3.1.22; 6) this is a criterion 
for ergodicity. This example is also useful for illustrating the other 
criteria. For instance, Condition 4 states that every invariant L 00 function 
is constant almost everywhere on TN. Roughly speaking, a function 
assuming one value on half the trajectories and a different value on the 
other half is not measurable. 

2. Of the quantum-mechanical examples of (3.1.1), only the free fermions 
(3.1.1; 5) fall within the category covered by (3.1.22), as the others are 
not asymptotically Abelian. Since (3.1.1; 5) has a factor state, it is ergodic 
according to Condition 5. If we go through the other criteria, we notice 
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that Condition 8 holds in the sharpened form lim,-+ ± <Xl p(ab,) = p(a)p(b) 
for all a and bEd. This means that normal states approach p not only 
in the mean, but also actually in the limit t -+ ± 00. The situation is as 
described intuitively in §1.1, where the states converge to the equilibrium 
state. 

Even though Example 1 is ergodic, it does not exhibit the sort of behavior 
appropriate for a thermodynamic system. The time-evolution is a rigid 
displacement in TN, and this sub manifold does not get thoroughly mixed. 
States like those given by pieces of TN do not converge as t -+ 00; only their 
means converge. Example 2 conforms better to the notion of a thermodynamic 
system, which suggests sharpening some of Criteria (3.1.22) as much as 
possible, by replacing the time-average with the time-limit. 

Definition (3.1.25) 

An invariant state on an asymptotically Abelian system is called mixing iff 
one of the following equivalent conditions is satisfied: 

4'. w-lim,-+ ± <Xl n/a,) = 1 . p(a) for all a E d (The weak limit is that of the 
GNS representation); 

6'. Ut~ ±oo IQ)<QI; 
8'. lim, .... ± 00 p(ab,) = p(a)p(b). 

Remarks (3.1.26) 

1. By Condition 4', every operator converges to its equilibrium value and 
its deviation goes to zero. Hence, in the Schrodinger picture every normal 
state approaches the equilibrium state p. In classical dynamics prob
ability distributions of normal states are described by functions-i.e., 
not by <5 distributions-and so they spread out through all of p. 

2. Criterion 6' is satisfied if the spectrum of U is absolutely continuous 
other than the eigenvalue associated with I Q). In any case, I Q) must be 
the only eigenvector. 

3. Concerning Condition 8', we have learned that for a factor the correlation 
functions vanish automatically as t -+ ± 00. Therefore, for factors ergodic 
is equivalent to mixing. In general it is only true that mixing implies 
ergodic. It is also not true to say that mixing implies a factor, since there 
are classical mixing systems. However, it will be shown in the next section 
that in quantum theory equilibrium states are mixing iff the algebra is a 
factor. In the case of free particles with the spatial translations, as the 
group of automorphisms with respect to which their algebra of observables 
is asymptotically Abelian, this reasoning implies that the spatial correla
tion function goes to zero for factors. 



164 3 Thermodynamics 

4. If a state is a limit of pure states, then it is mixing: If (J is pure and (Jt --+ P 
then p(abtc) - lims_ex> (J(asbs +tcs) + !ims_ ex> (J(ascs)(J(bt+s) - p(ac)p(b) = 
o. A pure state is a factor state, so (3.1 .18 ; 4) applies, showing that p(abt c) --+ 

p(ac)p(b). The converse is not true in general, since the pure states into 
which p is decomposed need not converge as t --+ ± 00. For example, the 
pure states for classical systems are points in phase space, which will keep 
moving forever. 

Proof of the Equivalence in (3.1.25) 

8' <::> p(abtc) = p(a[bp cJ) + p(acbt) --+ p(ac)p(b) <::> 4', and p(atb) = p(aVtb), 
hence 6' <::> 8'. 0 

Classical systems that mix are of necessity complicated, and it requires a 
rather demanding example to show that the concept of (3.1.25) is not empty: 

Motion on a Surface of Constant, Negative Curvature (3.1.27) 

The ergodic system (3.l.24; 1) is not mixing; the spectrum of V t is purely 
discrete. This agrees with the perception that displacements in T2 do not 
mix its parts together: 

To produce mixing we need a somewhat geometrically irregular configura
tion; fortunately, as will now be demonstrated, it suffices to have a surface of 
constant negative curvature. The construction of the example makes use of 
the following more abstract reformation of (3.1.24; 1). Treat [R2 as a two
dimensional group and the trajectory as a one-dimensional subgroup, and 
consider its image in the quotient space T2 = [R2 jZ2. Conservation of 
angular momentum gets lost, and the trajectory can be dense in T2. The 
present example will have an energy shell that is diffeomorphic to the 
Lorentz group SO(2, 1), and the trajectory will be a one-parameter subgroup. 
In order to destroy the other constants of the motion and have an energy 
shell of finite volume, map the space to SO(2, l)j~, where ~ is a discrete 
subgroup of SO(2, 1). The dynamics furnishes a unitary representation 
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VI = exp(mt) of a one-parameter subgroup of SO(2, 1), but, unlike with 1R2, 
V has only absolutely continuous spectrum other than the point 1, and so the 
system is mixing by (3.1.26; 2). 

We realize these ideas in a classical system the Lagrangian of which is 
quadratic in the velocities. The motion thus proceeds in the absence of 
forces, but the invariance under SO(2, 1) brings about some unusual signs. 
The extended configuration space is the submanifold of 1R3 for which 

(xix) == xi + x~ - x5 = -1. (3.1.28) 

If x denotes the derivative of x by the proper time t, then the Lagrangian 
is 

L = 1(xlx). 
The constraint (3.1.28) enters into the Euler-Lagrange equations through 
a Lagrange multiplier, 

(3.1.29) 

and there are the following constants: 

(xix) = -1, (xix) = 0, (xix) = 1 (3.1.30) 

(which normalize t). The three-dimensional manifold defined by the con
stants corresponds to the energy shell (recall that the configuration space 
is two-dimensional and the phase space is four-dimensional), and on it is 
the SO(2, I)-invariant Liouville measure 

(3.1.31) 

There are also three constants associated with the angular momentum, 

(3.1.32) 

which are connected by an algebraic relationship, 

(Ill) = -(x Ix)(x Ix) = 1. 

One dimension is left for the trajectory. Because (Ii I x) = 0, the projection 
of the trajectory onto configuration space is the intersection of the hyper
boloid (3.1.28) with a plane passing through the origin and making an angle 
less than 45° with the xo-axis (see Figure 23). 

The energy is only apparently indefinite; Xo can be eliminated, and then 

·2 + ·2 + (. .)2 L = Xl X2 X l X2 - X2 X l 

xi + x~ + 1 

describes motion in the Xl - x2-plane without forces, but with a positive 
effective mass that depends on the position. 

The indefinite scalar product (·1·) and consequently also the formalism 
that has been developed are invariant under SO(2, 1). The group SO(2, 1) 



166 

------- ----------

trajectory 

/ 
/ 

/ 
/ 

/ 

/ --.1----
---

3 Thermodynamics 

/ plane through the origin 

/ ---/ __ ----- X2 

~-----
--------

Figure 23 The trajectory in configuration space. 

acts transitively on the energy shell (3.1.30), and every point can be written 

{x, x} = {M(1 , 0, 0), M(O, 1, O)} (3.1.33) 

for some ME SO(2, 1). It is easy to see that M is determined uniquely, 
and this creates the diffeomorphism between the energy shell and SO(2, 1) 
that was mentioned above. Accordingly, every trajectory can be obtained by 
making Lorentz transformations of the group generated by 

[
cosh t sinh t 0] 

M(t) = sinh t cosh to. 
001 

The most convenient construction of the discrete subgroup makes use of 
the isomorphism between SO(2,1) and SL(2, [R)/ {l, -1}, since 2 x 2 
matrices are easier to handle than 3 x 3 matrices. The source of this iso
morphism, like that of SO(3) = SU(2, C)/{1, -1}, lies in the observation 
that 

G ~) E SL(2, [R), i.e., (a, p, y, D) E [R4: aD - py = 1, (3.1.34) 
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produces the Lorentz transformation x ---> x' by 

(X~ ~ x~ I X;l I) = (tI. (3)(XO + X 2 Xl )(tI. Y). (3.1.35) 
Xl Xo - X 2 Y (j Xl Xo - X2 f3 (j 

It is necessary to take the quotient by the center {1, -1}, since the Lorentz 
transformations corresponding to the matrix mE SL(2, IR) and - mare 
the same. It is not hard to come up with discrete subgroups of SL(2, IR), such 
as 

~ = {(~ ~) E SL(2, IR): tI., f3, y, (j integers}-

Now let us investigate the motion on the quotient space no = SO(2, 1)/~ ~ 
SL(2, 1R)/{1, -1}/~. Unlike the case of T2, the quotient space is not a 
group, since ~ is not a normal divisor, though for our purposes this does 
not matter. Thus no is the energy shell (3.1.30), on which points are identified 
if they are transformed into each other by ~. For the trajectory this means 
that if it goes out one end of the domain of periodicity it reappears at the 
other. Conservation of angular momentum breaks down, leaving the 
possibility that the trajectory fills no densely. 

To get a clearer picture of no we have to find out what corresponds to 
the square 0 S qJl' qJ2 S 1 of the earlier example, that is, a region containing 
no points equivalent under ~, but for each boundary point of which there is 
a z -# 1 of ~ mapping it to another boundary point. The subgroup ~ is 
generated by the matrices 

the latter of which is the reflection (x l' x 2) ---> ( - Xl' - X 2)' It is therefore 
possible to restrict attention to the upper half plane {X2 > O} in configura
tion space and choose a region symmetric about the x2-axis. The boundary 
curves can be obtained by transforming the x2 -axis with the matrices 

of SL(2, IR). They have the parametric representation 

h ± = {Xll: (x~ ~ x~ I 0 ,) 
Xl Xo - X2 

= (01 ±i1)(}1 + XO~ + x2 0 )( 1 0) } 
}1 + x~ - x 2 ±i l' X 2 > 0 ; 

(3.1.36) 
note that 
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A 

------ X, 

Figure 24 

so x~ = ±t(I/x'l - 3x'J). The projection of no onto configuration space 
looks as depicted in Figure 24, where the lines A indicate the identifications. 

The identification of the boundary points by <6 D means that if the 
trajectory leaves through one side, it reappears at the corresponding point 
of the other side (see Figure 25). 
Now we are in a position to verify that the measure of no with dn (3.1.31) 
is actually finite. This follows from 

fd3X(i[(XIX)](i[(XIX) - 1] == F(x, x) < 00 

and 

F(-l) fd3X(i[(X1X) + 1] < 00, 

where the integral runs over the region bounded by (3.1.36) . 

...... _-/ 
Figure 25 
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The time-evolution is controlled by the unitary group 

Ut = exp(mt), m _ oM I - at t=o' 

where the anti-Hermitian operator m is one of the generators of SO(2, 1). 
If the other two generators are combined into m± == m1 ± m2' then m± 
satisfy the commutation relations 

Em, m±] = ±m± and [m+, m_] = 2m. 

Note that in contradistinction to SO(3), this time (m±)* = -m±. This 
fact will be crucial, since the generators of SO(3) have purely discrete spectra. 
Instead ofSO(2, 1), let us now examine the simpler two-parameter subgroups 

U ±(a, t) = exp(am±) exp(tm) 

with the multiplication law 

U ±(a, t)U ±(a', t') = U ±(a + exp( ± t)a', t + t'). 
Because [m+, m_] = 2m, the operators U +(a, 0) and U _(a, 0) generate 
the whole group, and U(t) = U +(0, t) = U _(0, t). 

Next consider the representation (3.1.1; 1) of classical dynamics on 
Jt' = L2(QO' dQ). Not just Un but in fact all of SO(2,1) is represented 
unitarily on Jt' by f(x) ~ f(Mx), and we shall now reduce this representation 
according to the irreducible representations of the subgroups U ±. We 
start by observing that U ±(a, 0) is a normal divisor, and the factor groups 
U ±(a, t)/U ±(a, 0) are isomorphic to IR. Hence there are irreducible, one
dimensional representations of the type 

I: U ±(a, t) = exp(iAt), AE IR. 

In addition it is readily seen that U ± can also be represented on L2(1R, dx) 
by 

II: [U + (a, t)tP](x) = exp(iaeX)tP(x + t), tP E L\IR, dx), 

and similarly for U _. It can be shown [19] that these possibilities exhaust 
the irreducible representations of SO(2, 1), so, decomposing into the irre
ducible representations of U ± , 

L 2(QO' dQ) = Jt': Ee Jt'1i = Jt'i Ee Jt'ii· 
On the subspaces Jt'1i and Jt'ii the operator U(t) acts as a translation on 
U(IR, dx), and thus its spectrum is continuous. A discrete spectrum could 
only be found on Jt': n Jt' i, but every vector tP of Jt': n Jt'i satisfies the 
equation 

U +(a, O)tP = tP = U _(a, O)tP. 
Since U +(a, 0) and U _(a, 0) together suffice to generate all of SO(2, 1), tP is 
invariant under the action of every group element. Since the group acts 
transitively on Qo, tP must be a constant. Because Q o has finite measure, 
any constant function belongs to L 2(QO' dQ), so the situation is like that of 
(3.1.26; 2). Unless the quotient by fZ is taken, U has no point spectrum, as 
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constant functions would not be integrable. In sum the argument is that the 
system is mixing because the spectrum of U consists of a single nondegenerate 
eigenvalue 1 and an absolutely continuous portion. This is in contrast to the 
motion on the torus, for which the spectrum of U t was purely discrete, and the 
system was only ergodic, not mixing. 

Example (3.1.3 7) 

The quantum-mechanical example of an infinite system of free fermions was 
seen to be mixing. Despite the absence of interaction, a local perturbation 
spreads out to infinity through the diffusion of free wave-packets. From 
among the characterizations of ergodic states (3.1.22), let us look in part
icular at the third. It holds in the sharper form of (3.1.26; 4); the grand 
canonical state (2.5.49) is the time-limit of a pure state. The proof of this 
fact uses the transformations 

at(f) = bt([3f) + bi(Jl - 1[312f*) 

and 

(3.1.38) 

We have directly taken up the realistic case of spin-t fermions, where i and 1 
indicate the direction of the spin that the field operator describes. In F ourier
transformed space [3 is a function k -+ [3(k): ~3 -+ {z E C: IzI2 ~ I}, and [3f 
is the function [3(k)f(k). In x-space [3 is a convolution. It is straightforward 
to verify that the a's satisfy the usual commutation relations (1.3.3; 2), 

[at(f), aTCg)] + = [a~(f), ai(g)] + = (fIg), 

[at(f), at(g)] + = [at(f), a~(g)]+ = [at(f), at (g)] + = [a~(f), a~(g)]+ = 0, 
(3.1.39) 

supposing that the b's satisfy the commutation relations. Clearly the a's 
and the b's generate the same C* algebra. The expectation values of the a's 
in the Fock state 10) (1.3.2) for the b's: bt(f)IO) = b ~(f)10) = 0, are 

f d3k 
<Olat(f)at(g)IO) = <Ola~(f)ai(g)IO) = (2n)31[3(kWf*(k)g(k), 

- <0 I at(f)a ~(g) 1 0) = <0 la ~(f)at(g) 1 0) 

= f(~:~3 f*(k)g*(k)[3(k)Jl - I [3(kW ; 

(3.1.40) 

The state 10) was seen to be pure in (1.3.16; 1). Under the time-evolution 
f(k)-+exp(-itlkI 2 )f(k), the quantity -<Olata~IO) = <Ola~atIO) goes 
to ° as t -+ ± 00 by the Riemann-Lebesque lemma. If 

[3(k) = (1 + exp( - [3(lkI2 - I1m- l / 2 , 
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then in the limit t -+ ± 00 the generalization of the state (2.5.49) for spin 
t is all that is left over. 

Remarks (3.1.41) 

1. The limit of a pure state is clearly not always an equilibrium state; other 
functions could be chosen for f3(k). 

2. Since the thermal representation of free fermions (3.1.1; 5) is a factor 
of type III, the pure state 10) associated with the thermal representation 
cannot be normal (cf. (1.4.17; 3)). Likewise, any other states of the latter 
formed with different f3(k) are not normal because of (3.1.22; 7), even 
though they are invariant. 

3. The state given by 10) is not invariant in time, and in this representation 
the time-evolution is certainly not a unitary group (cf. (1.3.16; 7)). If it 
were, then the time displacement Tt: a -+ at would be weakly continuous 
and hence extensible to n(d)" , which would lead to a contradiction: 
de is asymptotically Abelian with respect to the spatial translation 
Tx , so in the representation with the translation-invariant state 10), 
limlxl-+oo Txa = 1· (OlaIO) for all a E de. Since Tx commutes with 
Tl'itwouldfollowthatlimx-+ oo TxTt(a) = 1· (OlatIO) = limx-+oo Tt Tia) = 

1· (OlaIO), which would then imply that the state (01,10) would be 
invariant in time. 

Problems (3.1.42) 

1. (i) Prove von Neumann's statistical ergodic theorem, (l/2T) S~T exp(iHt) dt -+ Eo. 
(Show that on all vectors of the form x = exp(iHs)y - y, y E..n'; SE IR, we have 
(1/2T) S~ T exp(iHt)x dt -+ O. Let Jt'i be the closed linear hull of these vectors, 
and note that the same fact applies to all x E J'f!. Finally, show that J'ft = 
{x: exp(iHs)x = x for all s} = EoYt.) 

(ii) Show similarly that (e/2) S~ 00 exp( -e I t I) exp(iHt) dt -+ Eo· 

2. Show that in the Schr6dinger picture the time-average of a vector x has the following 
characterization: ,.,(x) is the vector ofleast norm of the norm-closed, convex hull of 
{U(t)x}, denoted :£. (Hint: see the example given earlier for ,.,(x) E:£. Show (i) 
that:£ contains a unique vector ~ ofleast norm; (ii) that ~ is invariant under all U(t); 
and (iii) that :£ contains no other fixed point.) 

3. Show that fL = {IX' I} iff w(ab) = w(a)w(b) for all WE d*, a E d, and bE fL. 

4. Show that for a classical system, if there exists a constant f(p, q) not of the form 
IX • 1, then p is not ergodic. 

5. Show that a set E c J'f is a totalizer for d iff E separates d'. (Cf. (III: 2.3.4); a total
izer is a set E such that dE is dense in J'f, and separating means that a'E = 0 => a' 
= 0.) 
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6. Boson states of the form (2.5.49) with <!Ipg) = J d3kp(k)j*(k)g(k), ° s p(k), are 
factor states and consequently mixing. Express such a state as a time-limit of a pure 
state (cf. (3.1.37)). 

Solutions (3.1.43) 

1. (i) If x = exp(iHs)y - y, then 

112~ fT exp(iHt)x dtll = 112~ {(+. exp(iHt)y dt - r:+s exp(iHt)y dt}11 

Isillyll 
s~~ ..... o. 

T 

Because 11(l/2T) J~T exp(iHt) dtll s 1, this holds for all x E J'tf. 
xEYrt=(xlexp(iHs)y - y) = (exp(-iHs)x - xly) = ° forallYEYr 

= exp(iHs)x = x for all 5 = Eox = x 

by the spectral theorem. 
(ii) It suffices to show that 8 Jg' exp( -a) exp(iHt) dt ..... Eo, which will follow if 

8 Sg' exp( -a) exp(iHt)x dt ..... ° for vectors x = exp(iHs)y - y. 
This integral equals 

8 exp(8S) f) exp( -at) exp(iHt)y dt - 81" exp( -8t) exp(iHt)y dt 

= (exp(8S) - 1)8 f' exp( -8t) exp(iHt)y dt - f, r exp( -a) exp(iHt)y dt ..... 0, 
s ° 

since 118 Jg' exp( - 81) exp(iHt)y dtll s Ilyll· 
2. (i) Let A = inf{llxll: x E Jf} There exists a sequence {x n } in .:g' such that Ilxnll ..... A. 

By the parallelogram law, 

xn is a Cauchy sequence, so it has a limit ~. If Ilxll = WI, then 

Ilx ; ~r = !(llxI1 2 + W12) -llx; ~r sO, which implies that x = ~. 
(ii) II V(t)~11 = WI => V(t)~ = ~. 

(iii) Suppose that I] is a second fixed point. For all f, > 0, there exist ;'1' ... , i. n and 
i:" ... , ;.;,. such that Ii ;'i = Ii i.; = 1, with i'i' i.; ;::: 0, and there exist t" ... , tn 
and (1' ... , t;,. such that if V == i' 1 V(t ,) + ... + i' n V(tn), and W == i.', V(t'1) + ... 
+ i.;" V(t;"), then II Vx - ~II < 8, and II Wx - 1]11 < 8. However, then 

II~ - 1]11 s II~ - VWxl1 + IjVWx - 1]11 = IIW~ - VWxl1 + IjVWx - VI] II 

s IIWllllVx - ~II + IIVllllWx -1]11 < 28, 

so ~ = 1]. 

Remark: The strong and weak closures of a convex set are identical. 
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3. =0>: This part is trivial. 
<=: Let PI and P2 be projections in:!Z, such that PI.l Pl , and let wr) = w(Pr ), 

a j = Pja, b j = Pjb for i = 1,2. Ifw = aWl + (1 - a)wl, then 

w(ab) = aw(al)w(b l ) + (1 - a)w(al )w(b2 ) 

#- (aw(a l ) + (1 - a)w(al»(aw(b l ) + (1 - a)w(bl »· 

4. Let j(p, q) = inf(1, If(p, q)l) (if necessary multiply f by a suitable constant to 
ensure that J is not identically 1). Then dp is the sum of two invariant states, 

dp = W + J) dp + t(1 - j) dp. 

5. =0>: Let a' Ed'. a' E = ° =0> a' .91 E = 0=0> a' = ° on a dense set, which implies that 
a' = 0. 
<=: Let E.l be the orthogonal complement of dE. Then dE.l = E.l' so the projection 
P.l onto E.l belongs to d', but P.lE = 0, so E does not separate .91'. 

6. In a Fock representation of the free fields b, b(k) I 0) = 0, write 

a(k) = JP(k)b*(k) + Jl + p(k)b(k), 

and 

a*(k) = JP(k)b*(k) + Jl + p(k)b(k). 

These operators a likewise satisfy the commutation relations 

and 

Hence 

a(k)a*(k') - a*(k')a(k) = b(k - k'), 

(Ola(k)a*(k')IO) = b(k - k')p(k), 

(Ola(k)a(k')IO) = b(k - k')JP(k)Jl + p(k). 

(laf,a:,IO) = f dkp(k)j*(k)g(k), 

(Olaf,ag,IO) = f dk exp(2i lkI 2t)JP(k)JI + p(k)j*(k)g*(k); 

this last integral goes to zero as t ~ ± 00 by the Riemann-Lebesgue lemma, and 
therefore its time-average is zero. The analogous fact holds for the higher correlation 
functions, so the time-average ofthe pure F ock state 10) is ofthe form (2.5.49). 

3.2 The Equilibrium State 

In the course of time the Maxwell-Boltzmann distribution has proved 
more and more fundamental, and has become deeply rooted in the 
mathematical description of infinite quantum systems. 
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With a certain normalization of H the canonical state has the form w(a) = 

Tr exp( - {3H)a, as we have seen. The appearance of the Hamiltonian H in 
both the time-evolution and the state creates all sorts of important connec
tions between them. To avoid technical complications at first we shall 
concentrate only on the finite-dimensional case. The commutativity of the 
trace gives rise to a symmetry between the representation of the algebra and 
its commutant. 

The GNS Representation of ~«(:n) with a Faithful State (3.2.1) 

Let d = ~«(:") be given the inner product <a I b) = Tr a*b so that it becomes 
a Hilbert space isomorphic to (:"2, and define 

Then 

n: d -+ ~«(:"2): n(a)lb) = lab), 

n': d -+ ~((:"2): n'(a)lb) = Iba*), 

J: (:"2 -+ (:"2: Jib) = Ib*). 

(i) n is afactor representation (*-isomorphism); 
(ii) n' is a *-antiisomorphism, i.e., 

n'(ab) = n'(a)n'(b), n'(Aa) = An'(a), n'(a*) = (n'(a»*, 

n'(a + b) = n'(a) + n'(b» with n'(d) = n(.>i)'; 

(iii) the conjugate-linear operator J preserves norms and J2 = 1; 
(iv) In(d)J = n'(d), In'(d)J = ned); 
(v) let w be a faithful state, that is, if a > 0, then w(a) > 0, so by (2.1.5(ii», 

w(a) = Tr pa = <JP I a I·jf;">, p > 0, Tr p = 1. The vector I JP) is 

cyclic and separatingfor nand n', i.e., n(a) I JP) = 0 ~ a = O. Hence the 
GNS representation using w is unitarily equivalent to n. 

Proof 

The isomorphism and antiisomorphism properties are obvious. 

(ii) n'(a)n(b)lc) = n'(a)lbc) = Ibca*) = n(b)n'(a) I c), and therefore 
n'(d) c ned)'. On the other hand, if BE ned)' then B 11) is I b*) for 
some bEd. Hence 

Bla) = Bn(a) I 1) = n(a)BI1) = n(a)lb*) = n(a)n'(b) I 1) = n'(b)la) 

for all a E d, so B = n'(b) and n'(d) = ned)'. 
(i) Let n(a) E ned)'. Then by part (ii) it equals n'(b*) for some b. Hence 

n(a)lc) = lac) = n'(b*)lc) = Icb), so ac = cb for all cEd, and 
therefore a = b = IX' 1. Thus ned) is a factor. 
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(iii) IIJla)11 2 = Tr aa* = Tr a*a = Illa)112, and J2 = 1 since b** = b. 
(iv) In(a)Jlb) = In(a)lb*) = Jlab*) = Iba*) = n'(a)lb) => In(a)J 

n'(a) => n(a) = In'(a)J, because j2 = 1. 
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(v) Sincep-l exists,la) may be written as Ibjp) = n(b)ljp),b = ap-1 /2, 

which shows that jp is cyclic for n. If Pi > ° are the eigenvalues of p, 
then in the diagonal representation of p, 

Iln(a)ljp)11 2 = Tr pa*a = L Pilaikl2 = 0, 
i. k 

which implies that aik = 0, and similarly for n'. By (III: 2.3.1 0; 6) np is 
equivalent to n. 0 

Remarks (3.2.2) 

l. An anti-isomorphism came up once before, in the reversal of the motion 
(III: 3.3.18), and J is like the conjugate-linear operator 0' (3.3.19; 2). 

2. The representation n, being a finite-dimensional factor of type I, is of the 
form n(a) = a (8) lien, so n'(a) is llc" ® a*. 

Consider next how to represent the time-evolution a ~ at = exp(iht) 
a exp( - iht). At first thought it might be represented 'by exp(in(h)t), but this 

would not leave the cyclic vector I jp) invariant. The correct way to proceed 
is as in Example (3.1.1; 3). 

The Time-Evolution on .?4(IC") (3.2.3) 

The unitary representation (1.3.5) of the time-evolution a ~ at on the invariant 
state a ~ Tr pa, p = exp( -[3h), is given by V t = exp( -iHt), H = n(h) -
n'(h). It satisfies the following: 

(i) JHJ = -H, JVrl = V t; 

(ii) V -iP12 n(a) I jp) = In(a*)ljp); 

(iii) <jpln(a)n(b)ljp) = <jpln(b)n(aip)ljp). 

Proof 

It is immediately clear that exp(iHt)n(a) exp( - iHt) = n(at). Moreover, 

exp(iHt) I jp) = I exp(iht) exp( - [3h) exp( - iht) = I jp). 

(i) This follows from (3.2.1(iv)). 

(ii) V_ifJ/2n(a)ljp) = V-ifJl2la exp(-[3hI2) = lexp(-[3hI2)a) 
Jla* exp( -[3hI2) = In(a*)ljp). 

(iii) Tr exp( - [3h)ab = Trexp( - [3h)a exp([3h) exp( - [3h)b = Trexp( - [3h)ba ip . 

o 
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Remarks (3.2.4) 

1. The density matrix P was written simply as exp( - {3H) under the assump
tion that h had been redefined by the addition of a multiple of the identity 
so that Tr exp( - {3h) = 1. This affects neither the time-evolution nor H. 

2. Note that J does not reverse the direction of time. 
3. The operator p = exp( -h) is always positive. Conversely, if p > 0 

(i.e., all eigenvalues Pi > 0), then In p = - h is well defined. This shows 
that groups of automorphisms and faithful states are bijectively related. 
There is a special term for their relationship. 

The Modular Automorphism (3.2.5) 

For each faithful state w on &6'(Cn) there is a unique one-parameter group of 
automorphisms "I: a -+ al such that 

(i) w is invariant in the sense that w(al) = w(a). 
(ii) w satisfies the Kubo-Martin-Schwinger (KMS) condition, w(ab) = 

W(bai)· 
(iii) there exists an anti-isomorphism nw(d) -+ Jnw(d)J onto nw(d)' such 

that 

U -i/2 n(a) In) = In(a*) In), 
where I n) is the cyclic vector and UI is the unitary operator representing 
"I in the GNS representation with w. 

If the dimension of the Hilbert space is now infinite, but the state is still 
given by a density matrix p = exp( - {3h), then there are a few technical 
difficulties to clear up. 

The Temporal Correlation Functions of Finite Quantum Systems (3.2.6) 

If the time is made complex, then in general 

ax + iy == exp«ix - y)h)a exp( -(ix - y)h) 

is unbounded, and hence does not belong to the algebra. However, we shall 
continue to use this notation, as this operator will never act on anything 
outside its domain of definition. 

(i) Continuity in the strip -{3:::;; 1m t:::;; O. w(atb) = <nlaexp( -iHt)bln), 
and if t is complex, then by (3.2.3(ii», bin) is in the form domain of 
exp(yH) for y ~ - {3. In a spectral representation it is apparent that the 
vector exp(yH/2)bln) is norm-continuous in y, so p(atb) is norm
continuous in t. 
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(ii) Boundedness in the strip - 13 :::;; 1m t :::;; O. Let H = n(h) - n'(h) as in 
(3.2.3), so HI n) = O. Because 

ax+iy = exp«ix - y)H)a exp( -(ix - y)H), 

Iw(ax+iy b)12 = l<nlax exp(yH)bln)12 

:::;; <n I ax exp(yH)a: I n)<n I b* exp(yH)b In). 

The function <n I a exp(yH)a* I n) is positive and, because 

fj2 
oy2 <nlaexp(yH)a*ln) = IIHexp(yH/2)a*ln)112 ~ 0, 

convex, achieving its maximum at y = 0 or y = - 13. It is clear that 
w(aa*) :::;; Ila11 2, but even at the lower edge it is bounded, as shown by 

w( aip/2 a'!: iP/2) = Tr exp( - f3h) exp(f3h/2)a* exp( - f3h)a exp(f3h/2) 

= Tr exp( - f3h)aa* :::;; Ila11 2 , 

since Tr exp( - f3h) = 1. Therefore 

I w(atb) I :::;; Ilallllbll for - 13 :::;; 1m t :::;; O. 

(iii) Analyticity in the strip - 13 < 1m t < O. The function w(atb) is not 
differentiable on the real axis for generic a's, but only for complex 
times within the strip. The proof is similar to that of (2.4.7) and will 
not be repeated here. The relationship w(ab) = W(baiP)' named for 
Kubo, Martin, and Schwinger, which follows from the in variance 
of the trace, can be continued analytically to the strip: The functions 
w(at b) and w(bat) are analytic respectively in - 13 < 1m t < 0 and 
0< 1m t < 13, where they satisfy the KMS condition w(atb) = w(bat+iP)' 
which determines the value of w(at b) at y = - 13 as w(ba) (see Figure 26). 

(iv) The physical significance of the KMS condition. For a finite system the 
canonical state with p = exp( - f3H) is not an eigenstate of the energy. 
The modular Hamiltonian (also denoted H) has In) as an eigenvector, 
HI n) = o. This operator H is not generally bounded below; however, 
the KMS condition distinguishes positive energies because of the 
positive sign of 13. The energy spectrum of n(a) I n) for a = a* Ed 
consists predominately of positive energies, 

fOO dt 
f(E) == <n In(a)<5(H - E)n(a) I n) = _ 00 2n exp(iEt)p(ata) 

fOO dt 
= -2 exp(iEt)p(aat+iP) 

-00 n 

= exp(f3E)<nln(a)<5(H + E)n(a)ln), 
and therefore 

f(E) 
f( - E) = exp(f3E). 
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t plane 

,+iP w(ba,+iP) = w(a,b) w(ba,) bounded 

1m t = 0 

w(a,b) w(a,b) bounded 

Figure 26 The connection between w(ba,) and w(a, b) on their domain of analyticity. 

It is thus not possible to remove arbitrary amounts of energy from a 
system in equilibrium, even though I n) is not its ground state. 

(v) Analytic operators. If the dimension of the space is finite, the mapping 
t --+ at is analytic, and thus so is t --+ w(a,b). If it is only known that h is 
semibounded, this is not necessarily the case, and the question arises of 
which a's are analytic in t. One way to construct such elements of d is 
to average over time, 

aU) == J~oo dt'a(t')f(t')· 

If the Fourier transform 1 E C(j2, and supp 1 c [ -IX, IX], then f(t) is 
analytic and satisfies the estimate 

. exp(1X I y I) 
If(x + zy)l:::;; (1 + x 2 ) y, where y = (2n)-1/2(111111 + 111"111)' 

The time-translate of aU), 

't(aU» = roooo dt' a(t')f(t' - t), 

is then an entire function in t such that II, x + il aU» II :::;; ny II a II exp( IX I y I ). 
It is easy to see from the continuity of" that the set;; of such regularized 
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a's (for variable I and IX) is dense in d in norm. Within the set .sJ it is 
always possible to continue analytically with controlled growth. 

If we now think about an infinite system, the density matrix 

exp( - [3H)/Tr exp( - [3H) 

no longer makes sense. However, the characterization of certain states made 
in (3.2.5(ii» may continue to work in the infinite limit. 

Definition (3.2.7) 

Given a C* algebra d with a continuous time-automorphism a ...... at, 
a state w on the algebra is called a KMS state with respect to temperature 
1/[3 whenever the functions t ...... w(atb) and t ...... w(bat) can be continued 
analytically to the strips - [3 < 1m t < 0 and, respectively, 0 < 1m t < [3, 
and are continuous on the closures of the strips, where they satisfy the 
condition 

Examples (3.2.8) 

1. Free fermions. The grand canonical state (2.5.49) is KMS with respect to 
the combination of free time-evolution and gauge transformations, 

It(k) = exp[it( 1 k 12 - {t)]l(k). 

First, note that clearly 

( *) f d3 k l*(k - 2 P afaOiP = (2n? )g(k)exp[ -[3(lkl - J1)] 

x (1 __ ---=-:--:~1-____,_=--_) 
exp[[3( 1 k 12 - J1)] + 1 

and likewise 

p(a;afiP) = f(~:~3l*(k)g(k) exp[[3(lkI 2 
- J1)]CXP[[3(lk/ _ J1)] + 1) 

= p(afa;). 

(If I and g are arbitrary functions in L2, then in general It and p(afa:') 
have maximal analytic continuations only into the upper half-plane 
{z = t + iyly > O},andp(a;af,)onlyintotheregion{z = t + iyly < [3}. 
However, if either 1 or g has compact support, for example, then the 
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maximal analytic continuation of any of the expressions above is in 
fact an entire function.) The proof of the KMS property of p for arbitrary 
elements of the algebra will not be given here, because of the amount of 
combinatorics it requires. The gauge transformation makes an appearance 
because of the extension of the state to the whole field algebra. If one 
deals only with the gauge-invariant algebra of observables dE (1.3.14), 
then the automorphism r does not depend on J1, so it is identical to the 
free time-evolution. 

2. Free bosons. Let Wcp be the equilibrium state of the field algebra of the 
free Bose gas at temperature I/fJ and density p (see (2.5.51; 4)), which 
appears as the integrand in the decomposition of the canonical limiting 
state in (2.5.51; 1). (The decomposition is nontrivial iff P > Pe(fJ)-see 
also (2.5.33; 3).) The field algebra of the bosons is generated by the 
operators 

and the free time-evolution of the observables will be extended to the 
field algebra by WJ -+ WJ,' 

j,(k) = exp[it( 1 k 12 - J1)]j(k). 

(The quantity J1 = J1(p) is a unique but not invertible function.) Then 
A(f, g, t) == wiWJ WgJ is the continuous boundary value of an analytic 
function of z = t + iy on the strip 0 < y < fJ, t E IR, viz., 

~ _ {f d3k [ - 2 - 2 (1 1 ) 
A(f, g, z) = exp - (2n)3 (I f(k) 1 + 1 g(k) 1 ) 2 + exp[fJ( 1 k 12 - J1)] _ 1 

+ j*(k)g(k)exp[iz(lkI2 - J1)](1 + eXP[fJ(lk/ - J1)] - 1) 
+ g*(k)j(k) exp[ -iz(lkI2 - J1)] (exp[fJ(1 k/ _ J1)] - I)]} 
x exp{2iJ P - Pe(fJ) e(p - Pe(fJ)) Re[(J(O) + g(O)) exp(icp )]}, 

and the KMS condition is satisfied: w(ab_ t) = w(atb) = w(bat+ iP)' 

lim A(f,g,t + iy) = wcp(Wg,WJ) = wcp(WgWJ ,) = A (g,f, -t) 
y~+fJ 

= lim A(g,f, - t + iy). 
y~+O 

It follows from P < Pe(fJ) that J1(p) < 0, so in this situation f and 9 can 
be arbitrary elements of L 2. However, J1(p) = 0 for all P ;;:: Pe(fJ), so Wcp 
must be restricted, for example, to the algebra generated by the WJ 
with f ELl n L 2. For general f and 9 it is not possible to extend A(f, g, z) 
analytically beyond the strip described above. However, if the support 
of either f or 9 is compact, then A(f, g, z) is an entire function of z. 
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Properties of a KMS state w (3.2.9) 

1. A KMS state w is invariant in time. 
2. When extended to 1tw(d)", w remains KMS. 
3. If w is faithful (as a positive functional), then 1tw is faithful, and vice versa. 
4. !!Z = 1tw(d)' n 1tw(d)" consists of time-invariant elements. 
S. The KMS states for any fixed {3 form a weak-* compact, convex set. 
6. If w is an extremal KMS state, then 1tw is a factor. 
7. For any w, there exists a unique time-evolution under which w is a KMS 

state. 

Remarks (3.2.10) 

1. According to (1.3.5), if w is invariant in time, then on 1tw we can write 
a_t = UtaUt- 1, and the time evolution, when extended to 1tw(d)", 
transforms this algebra into itself: an -+ a = an( - t) = Utan Ut- 1 -+ 

UtaUt- 1 E 1tw(d)". 
2. Of course, the extension of w to 1tw(d)" with cyclic vector I 0) is w(a") = 

(0 I a" I 0) for all a" E 1tw(d)". Property 2 means that this state is KMS 
with respect to the time-evolution defined earlier on 1tw(d)". 

3. According to (III: 2.3.10; 3), 
Kerw = {aEd:w(a) = O} 

:::I % ;: {aEd: w(a*a) = O} 

:::I Ker 1tw = {a E .91: w(b*a*ab) = 0 for all bEd}, 

and the statement that w is faithful means that % = {O}. Property 3 thus 
means that if Ker 1tw = {O}, then % = {O}, so 10) is a separating vector 
for 1tw(d): 1tw(a)IO) "# 0 for all1tw(a) "# O. (Speaking field-theoretically, 
no operator annihilates the vacuum.) If the algebra is simple, and hence 
has only faithful representations, then all KMS states are also faithful. 

4. If the system is asymptotically Abelian, then qt' = !!Z. The center !!Z 
contains the macroscopic observables, which are therefore constant in 
time in this case. 

S. By Property 5, convex combinations and weak limits of KMS states 
(at a given {3) are KMS states. 

6. In a finite system, with .91 = fJl(JIf), Ut = exp(iHt), there is only one 
normal KMS state. At t = 0 the condition is that 

Tr pab = Tr pb exp( - {3H)a exp({3H) = Tr exp( - {3H)a exp({3H)pb 

for all b, which means that pa = exp( - {3H)a exp({3H)p for all a, so 
exp({3H)p Ed', and thus p = exp( - {3H). Since the convex set of KMS 
states is compact, any KMS state may be decomposed into extremal 
KMS states. If the system is asymptotically Abelian, then according to 
Remark 6 a decomposition into extremal KMS states is the same as a 
decomposition into elements of the center (defined as a decomposition 
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into factors (1.4.9», which is the same as a decomposition into extremal 
invariant states. In the characterization of ergodic states (3.1.22; 2) 
we learned that a factor state is not decomposable into invariant states, 
and thus a fortiori not decomposable into KMS states. Conversely, 
it is now being claimed that it is always possible to decompose a KMS 
state w further into other, extremal KMS states, if nw is not a factor. 
This means that the extremal KMS states are ergodic and, as factors, 
even mixing. Since the decomposition by the center is unique, so is the 
decomposition into extremal KMS states. Hence the set of extremal KMS 
states is a simplex. 

7. If the time-evolution is given, then there can be one or more KMS states 
(see Problem 2). In contrast, by Property 7, if w is given, then there is a 
unique time-evolution for which it is KMS. 

Proof of (3.2.9) 

1. Let b = 1; the function peat) = p(at+ iP) can be continued analytically 
to all ofC and is periodic in 1m t. Since it is bounded in a strip, it is bounded 
throughout C and therefore constant. It follows that p is time-invariant. 

2. This proposition follows from a more general one to be stated later 
(3.2.13). 

3. If a E %, then w(a*a) = 0, which implies that for all b, w(ba) = 0 (by 
Cauchy-Schwarz), which means that for all band c, 0 = w(cipba) = 

w(bac), and therefore a E Ker 1!w. 

4. Suppose c E:!l': w(atc) = w(at+iPc). As in Proposition 1, it can be con
cluded that w(atc) is constant in t. If a is replaced with ab, it follows that 
w(atcbt) = <nlaUtcu -tbln) is constant for all a and b, so c is constant. 

5. Convexity is trivial. If Wn converges in the weak-* sense to w, then for all 
a E d, bEd and t E C, the quantities wnCatb) converge to w(atb) and are 
dominated by 1!yllallllbll explXllmtl. Consequently, the limit is holo
morphic throughout C and satisfies w(at_ipb) = w(bat). As in Problem 1, 
this relationship remains valid for norm-limits of a's in the strip 0 S 
1m t S {3, and can thus be extended to all of d (and, by Property 2, 
to all of d"). 

6. Unless 1!w is a factor, :!l' contains a nontrivial projection P. Therefore w 
can be decomposed into a combination of w1(a) = w(Pa)/w(P) and 
w2(a) = w«1 - P)a)/w(1 - P), and both Wi are KMS states: w(Patb) = 

w(atPb) = w(Pbat+iP )' 
7. Suppose that rt and it are distinct automorphisms under which w is a 

KMS state. Then if a is entire with respect to r, and b is entire with respect 
to i, it follows that 

F(t) == w(i_t(rtCa»· b) = w(rt(a)· itCb» = w(it(b)· rt+iP(a» 

= w(rt+iP(a)· it+iP(b» = F(t + i{3). 

This fact implies that F is constant, so rand i have the same action on .91 
and hence on st. 0 
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The foregoing conclusions suggest an interpretation of the decomposition 
into extremal KMS states as a decomposition of an equilibrium state into 
its pure phases. Yet it will be apparent from examples that these pure phases 
are not necessarily identical to physical phases. Property 6 together with 
Remarks (3.1.26) ensures that these states have mixing properties, meaning 
that local perturbations eventually die out, and equilibrium gets re
established. The canonical states were characterized earlier as the states of 
greatest entropy at a given energy, and the evolution towards them can be 
thought of as a tendency toward greater entropy. On the other hand, if the 
system is infinite, it is not the total entropy that is finite, but rather the average 
entropy, which is unaffected by local perturbations. If a state is normal 
when restricted to a local algebra (1.3.3; 6), then it is possible to define the 
local entropy, which will then tend to its equilibrium value. It is not, however, 
claimed that it increases monotonically to that value. 

The diagram in Figure 27 collects together the various properties of 
asymptotically Abelian systems in invariant states and shows their con
nection with the time-evolution. It will be shown later (3.3.17) that the 
spectrum of H is ordinarily the whole real line (- 00, 00). The spectral 
properties stated then include the supposition that the systems that we shall 
be concerned with have neither dense point spectrum nor singular continuous 
spectrum. 

spectrum 
ofU 

Qonly 
eigenvalue with ¢= 

eigenvalue 1 

1 is a simple eigenvalue, 
and the rest of the spectrum 
is absolutely continuous ,;'=it, 

state ergodic I ~, ==== mixing I <= I extremal KMS 

,/ 
I factor I 

/ 
corre~ation II'I(w(a b» = w(a)w(b) 1<== I' (b) ( ) (b) functions .. / / . ,lrr 00 w at = w a w 

covariance algebra fJIt': 
c :!Z; for KMS = :!Z 

~ 
I fJIt' = {a ·l}i 

Figure 27 Implications among the ergodic properties. 
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Examples (3.2.11) 

1. Free fermions. Consider a system of n kinds of free fermions, described 
by the field operators a~,f' a = 1, ... , n. The algebra sf E of observables 
will be taken to consist only of polynomials containing an equal number 
of a~ and a: for any a, in accordance with Definition (1.3.8). In other 
words it contains the densities and currents of the particles. The state 
is taken as the product of the grand canonical states (2.5.49), i.e., 

<a*t f' ... a*t f' at gl ... at gl a! f2 ... a! f2 az g2 ... 
, 1 ,tnt' 1 ,n1.1' 1 • m2 ,1 

aZ,gr.,2 aj,f'i ... an,gn,) = TI Det<gfI p1!j), 
~ 

It is KMS with respect to the automorphism a~,f" --+ a~,f"(t)' 

lit) = exp(itlkIZ)la. 
2m~ 

Observe that for this automorphism of the algebra of observables there is 
an n-parameter family of KMS states. They can be parametrized by the 
chemical potentials {t~, and, as factor states, they are extremal. A general 
KMS state at a given {3 is an integral over them with some probability 
measure on the {t~, which corresponds to the mixture of phases posited 
in the usual procedure known as Gibbs's phase rule. As remarked in 
(2.3.41), with a variable {3 and n types of matter having only one phase, 
there is an n + I-dimensional manifold of states. 

2. Bose condensation. If P > Pe({3), then the canonical state (2.5.51; 1) may 
be written as an integral f6" (d<p/2n)w<p over the factor states 

w<p(exp(iaj) exp(iaf)) 

[ f d3k Il(kW . - .] 
= exp - (2n? exp({3lkIZ) _ 1 + 2150 Re(f(O) exp(l<p)) . 

These states are KMS with respect to the transformation l(k)--+ 
exp(i I k IZt)j(k), and are consequently extremal KMS states. They describe 
the coexistence of two phases, the normal phase with particle density 
J d3k[exp({3lkI Z) - lr t (2n)-3 and a condensed phase of density Po. 
The latter phase still depends parametrically on the argument <p of ao, 
and so for fixed {3 there are two parameters, Po and <p, to specify the extremal 
KMS states. These extremal KMS states are not the same as the phases 
of Gibbs's phase rule. Although different phases of a substance are co
existing if {t = 0 and 0 < T < ~, the condensed phase makes its appear
ance not as a single, pure phase, but rather as combination of infinitely 
many pure phases, differing in their values of the "hidden parameter" <p, 
which has no effect on the thermodynamic functions (2.5.33; 3). In this 
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way the decomposition into extremal KMS states is finer than the phase 
decomposition of (2.3.39) into extremal points of the concave function 
u( e, p). If the field algebra is confined to its even part .91 E (in the F ock 
representation, .91 E = .91 B n {N},), then all the W tp become the same 
state. This is apparent when it is observed that gauge transformations 
'ttp: Wf ~ Wexp(itp)f transform the wtp into one another: (wtp a 'ttp.)(Wf ) 

= wtp+tp.(Wf ). The restriction to.91 Emakes 'ttp' the identity, so wtp = wtp+tp" 
Recall that for asymptotically Abelian systems the decomposition into 
extremal KMS states is unique according to (3.2.9; 6); the extremal states 
form a simplex. In contrast, we were not able to adduce any theoretical 
reasons for why the flat pieces of u(e, p) had the structure of a simplex. 

3. A model of a ferromagnet. The time-evolution of Example (2.3.33; 2) 
was investigated in (3.1.1; 4). We found that if B = 0 and T < 2, it was no 
longer an automorphism of the spin algebra .91 = {aJ, but rather of the 
strong closure 'Tt(.9I)". The state 

s = tanh(2{3s), 

is KMS with respect to this time-evolution. In each of the factors 'Ttn it is 
a rotation about the axis D at angular velocity 4s. For example, if D points 
in the z-direction, then u+(t) = exp( -4ist)u+ and 

(1+u) 1+s 
(a+a-) = 2 = -2- = (a-aip) = exp(4{3s)(a-a+) 

1 - s 
= exp(4{3s) -2-' 

because s(1 + exp(4{3s)) = exp(4{3s) - 1. The individual factors 'Ttn thus 
give rise to extremal KMS states, corresponding to spontaneous magnet
ization in the direction D. Again, from the physical point of view this model 
would be described as having one magnetized phase, whereas the de
composition into extremal KMS states would distinguish among dif
ferent directions of D, and treat magnetization in each direction as a 
distinct phase. Notice that the phase transition at T = 2 is connected with 
a change of the type of factor; if T < 2 the integral runs over factors of 
type III, while if T > 2, the factors are of type II l' 

Remarks (3.2.12) 

1. There are many different possible reasons for the existence of several 
KMS states. One is that the center of the algebra of observables.91 might 
be nontrivial. Unitary elements of the center generate transformations, 
which, like gauge transformations, leave each element of the algebra 
invariant. Therefore it is possible to combine the action of these trans
formations with that of time-evolution 't and study the KMS states with 
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respect to the resulting automorphisms. When restricted to "d, these 
automorphisms are identical to the time-evolution, so all such states are 
also T-KMS for d (cf. Problem 2). 

2. Many "degeneracies" of KMS states go away upon enlargement of the 
algebra of observables. If in Example 1 the particle number is also allowed 
to vary, for instance by a chemical reaction (1) ~ (2) + (2), then noneven 
elements like a!a2 a2 are introduced into the algebra of observables. 
They are not separately invariant under gauge transformations of the 
different types of particles, but are invariant only under certain combina
tions, e.g., if the generator of the transformation has the form 2N 1 + N 2 

in the Fock representation. Consequently, the KMS condition with the 
free time-evolution makes the chemical potentials satisfy a linear equation 
such as /11 - 2/12 = O. Similarly, if two condensed Bose systems as in 
Example (3.2.11; 2) are coupled, the relative phase <p becomes observable 
(the Josephson effect). 

3. It is possible that a symmetry is broken, which means that the extremal 
KMS states ware not invariant under some group (J of automorphisms 
that commute with T. This is illustrated in Example (3.2.11; 2) with the 
gauge transformations and in (3.2.11; 3) with the rotations. If the sym
metry is broken, then w 0 (Js is once again T-KMS; thus with continuous 
groups there are even infinitely many KMS states. 

4. The theoretical justification of Gibb's phase rule for continuous systems 
is still an open problem (cf. [20]). 

5. So far we have been considering [3 as fixed. KMS states with different 
[3's are disjoint, i.e., if w = (w P1 + wp,)/2, then TC w = TCPl EB TC p2 . In this 
case the temperature [3-1 becomes an observable belonging to the 
center of TCw(d). 

As discussed in §1.1, the ergodic property of a system has been an impor
tant ingredient of the justification of statistical mechanics throughout its 
history. Even though today ergodicity is no longer viewed as the central 
requirement, it can still be a noteworthy property of realistic systems, so it 
can still be valuable to have a formulation of ergodicity for infinite quantum 
systems. In a classical system, if there existed additional constants of the 
motion beyond H, it would be impossible for the trajectory of almost every 
point to wind densely throughout the energy shell. However, constants such 
as momentum or angular momentum are infinite for infinite systems, so 
ergodicity can not be defined as the absence of additional constants of the 
motion. But recall that classically constants of the motion also generate 
diffeomorphisms that commute with the flow of time (see I, §3.3). This pro
perty carries over to infinite systems, and even the notions of indecomposable 
time-invariant surfaces and of dense trajectories have analogies. 

In order to characterize ergodic systems, it is only necessary to generalize 
(3.2.5) to infinite systems. 
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Modular Automorphisms of a von Neumann Algebra (3.2.13) 

Let At be a von Neumann algebra of operators on a Hilbert space :Yf. For every 
vector I n) that is both cyclic and separating (i.e., At I n) = ~ and if a I n) = 0 
for any a E At, then a = 0), there exists a unique one-parameter group of 
automorphisms a --+ rla) and a conjugate-linear operator J such that 

(i) w(a) == <nlaln) is r-KMS (with fJ = 1); 
(ii) j2 = 1, JAtJ = At'; and 
(iii) U -i/2aln) = Ja*ln), where rt(a) = U -taUt. 

Remarks (3.2.14) 

1. The idea of the proof follows that of (3.2.3), but with additional technical 
complications, for which reason the reader is referred to [21]. 

2. Properties (3.2.6) of the correlation functions hold also in the general case. 
Specifically, (iii) means that din) c:: D(exp( -H/2», where Ut = 
exp( - iHt), from which it follows that din) c:: D(exp( - yH) for 0 ~ 
y ~ t, and w(a* exp( -H)a) = w(aJ2a*) ~ Ila11 2 • The proofs of the 
other properties can be repeated verbatim. 

3. It is clear that a further generalization to arbitrary C* algebras will not 
work. The state in Example (3.2.11; 3) is obviously faithful on the a's, 
so it is a candidate for w. However, we have found that the related auto
morphism under which w is a KMS state maps the C* algebra generated 
by the a's out of itself, leaving only the von Neumann algebra 1rw(d)" 
invariant. 

4. Suppose that w is a KMS state on the algebra d with respect to the time
evolution rt. By Property (3.2.9; 3) the vector I n) given in the GNS 
representation 1rw is cyclic and separates 1rw(d)", even if w fails to be 
faithful, and the representation of r t is identical to the modular auto
morphism. 

Ergodic Quantum Systems (3.2.15) 

Let T be the time-evolution under which the C* algebra d of observables is 
asymptotically Abelian, and let !I be the set of faithful states w with the pro
perty that the normal extension of w to 1rw(d)" is also faithful. Then the fol
lowing two properties are equivalent: 

(i) A state WE!I is ergodic if and only ifit is an extremal KMS state; and 
(ii) There is no WE !I such that its modular automorphism a differs from r, 
but [a, r] = O. 

If a system has these properties, we shall call it ergodic. 
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Proof that (i) ~ (ii) 

Not (ii) => not (i). Let w be the a-KMS state. Since a and r commute, 
p == ryt(w 0 r t) is also a-KMS, so our strategy will be to use it to construct a 
r-ergodic state. Think of p as decomposed in two separate ways, on the one 
hand into r-ergodic states and on the other into extremal a-KMS states. 
By Remark (3.2.10; 6) the latter decomposition is the same as the decom
position into factors, whereas according to Remark (3.1.21; 3) the r
ergodic decomposition is coarser than the factor decomposition. This 
means that the r-ergodic components of p are combinations of extremal 
a-KMS states, but not vice versa. Hence any such component is r-ergodic 
but not r-KMS, since it is not possible for it to be KMS with respect to a 
and r #- a at the same time. 

Not (i) => not (ii). Suppose that w(a) = <QlaIQ) is r-ergodic, and let a 
denote the modular automorphism of 1C w(.s;1)". Since w is invariant under r 
and a, both groups have unitary representations on 1Cw . Let exp(iHt) and 
exp(iGs) denote their representations. Since w is also a-KMS, given any a 

and bEd, 

<Qlrla)alb)IQ) = <Qlbrla)IQ) = <QILlb)aIQ) = <Qla-i(a)Llb)IQ), 

so 

<Qla exp( -iHt) exp( -G)bIQ) = <Qla exp( -G) exp( -iHt)bIQ). 

Since the vectors of the form alQ) are dense, it follows that [exp( -G), 
exp( -iHt)] = 0, so [r, a] = 0. However, ifw is not KMS with respect to r, 
then the groups of automorphisms must be different, since w is KMS with 
respect to a. D 

Remarks (3.2.16) 

1. Unfortunately, no examples of ergodic quantum systems are known. 
Although the grand canonical state (2.5.49) of free particles is mixing, 
there are ergodic states that fail to be KMS: The momentum distribution 
[exp(p( I k 12 - /1» ± lr 1 would just have to be replaced with some other 
positive, integrable function. The state would then be time invariant and, 
as a factor state, ergodic, but not KMS. The hope is that when interactions 
are switched on, states of this kind will turn into equilibrium states (see 
§3.3). 

2. Property (3.2.15(ii» forbids the existence of additional constants of the 
motion. In finite quantum systems, in addition to the Hamiltonian H 
there are also the constants of the form f(H). If His nondegenerate, then 
this accounts for all the constants, because {H}' is generated by f(H) 
and the unitary transformations of the degeneracy space. If the system is 
infinite, then H exists only in representations 1Cw of invariant states w, 
and does not belong to 1Cw(d). It can be shown [22] that only linear 
functions f(H) produce automorphisms of 1Cw(d). However, the function 
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H -+ cH does nothing more than change the scale of time, and we consider 
scaled time-evolutions as identical. 

3. If particle numbers are conserved, then gauge transformations a j -+ 

exp(ilX)aj, IX E Iffi, certainly commute with time-evolution, and the system 
is not ergodic as defined by (3.2.15). Yet the corresponding KMS states 
ware of the form (2.5.49) with infinite temperature but f3J1. = 1, 

( *) - f d3k j*(k)g(k) 
wajag - (21ll e + 1 . 

The particle density in this state is infinite, w(a(x)a*(x» = c5(O)j(l + e), 
however, so it is not of physical interest. This shows that in a nonergodic 
infinite system it may happen that the states that are ergodic but not 
KMS never actually occur, so the system behaves ergodically anyway. 
On the other hand, there is no similar objection to this state on a lattice 
system, for which k varies only over a compact region. 

4. If an infinite system is homogeneous and isotropic, then translations and 
rotations commute with t. The KMS states of these automorphisms have 
the same defect as that of Remark 3, that the local particle density is 
infinite. 

5. Since under the measurability assumptions of (3.1.22; 3) ergodic states 
are time-averages of a pure state, the same will be true of the extremal 
KMS states of ergodic systems. This is the fulfillment of the hope of 
classical ergodic theory that the equilibrium state can be obtained as the 
closure of a single trajectory. 

~ 
Finite, classical Finite, quantum- Infinite, quantum-

mechanical mechanical 
There are no There exists no KMS 

additional constants (J such that (J #- r, 
state of the motion H is nondegenerate [(J, rJ = 0 

Microcanonical Ergodic Ergodic 
Time-average of pure Time-average of pure 

states states 
Not faithful Not faithful 

Canonical Not ergodic Not ergodic 
Time-average of pure 

states 
Faithful Faithful 

Extremal Ergodic 
KMS Time-average of pure 

states 
Faithful 



190 3 Thermodynamics 

If we wish to conceive of ergodicity roughly as the absence of constants 
of motion other thanf(H), then it is useful to make a table of the implications 
of this for equilibrium states of systems of various types. As can be seen 
below, the KMS states of infinite quantum systems inherit the good pro
perties of the canonical and microcanonical states of finite systems. 

Problems (3.2.17) 

1. Consider a sequence of states WN on a C* algebra .~ converging to w (in the weak-* 
sense). Show that if the modular automorphism 'N. ,(a) is a norm-convergent 
sequence in d for all a E d and t E IR, then the TN" converge to the modular auto
morphism belonging to w. 

2. Find an example of an algebra .~ c a1( C4 ) such that some nontrivial automorphism 
has many KMS states. 

3, Construct the KMS states for translation and rotation of a system of free fermions. 

4. In both classical and quantum mechanics, study the automorphisms of the anisotropic 
oscillator H = t(pi + p~ + wiqi + w~qD, with WdW2 irrational, that commute 
with the time-evolution. Is the system ergodic? 

Solutions (3.2.18) 

1. Consider the limits of the correlation functions WN(TN,,(a(N,f»b), where 

a(N, f) == f dt'N. ,(a)f(t), 

and f is as in (3.2.6(v», and let T,(a) = lim TN, ,(a), The norm-limit of 'N, ,(a(N, f) 
is ,,(a(f» by the dominated convergence theorem, even for complex t, since 
J If(t + iY)ldt s reI' exp(lXlyl), The first term of [w(,,(a(f»b) - wN('t(a(f»b)] 
+ wN(,,(a(f» - 'N,,(a(N, f)b) goes to zero because of the weak-* convergence 
WN ~ w, and the second term goes to zero as a consequence of the norm-convergence 
of a(N, f) to zero. Therefore, for all a E d and t E C, 

WN('N,,(a(N,f»b) ~ w(Tt(a(f»b). 

These holomorphic functions converge pointwise and are uniformly bounded on 
every compact set in C, because they are s Iiall Ilhllnl' exp(1X Iy I); the limit is therefore 
holomorphic and identical to W(b't+i(a(f»). 

This means that the KMS condition holds for all a E d, and of course boundedness 
in the strip (3.2.6(ii» is preserved in limits. Passing by norm-limits an ~ a to general 
aEd, if -1 s 1m t S 0, then w('t(an)b) converges uniformly to w(,,(a)b), which is 
consequently continuous on the strip and holomorphic in its interior. 

It is trivial to see that the identity w(Tt(a)b) = W(b't+i(a» continues to hold for 
limits, as do the group property 't+s = 't 0 '5 and the invariance of w: w 0 't = w. 
The GNS construction can now be carried out, so that 't is represented unitarily 
on rew as U,. If re(an) converges weakly to bEre(d)", then U_tre(an)Ut converges 
weakly to U _tbU, == 't(b). Therefore 't maps re(d)" into itself, and is identical 
to the modular automorphism according to (3.2.9; 7) and (3.2.14; 4). 



3.3 Stability and Passivity 191 

2. Let .s1 be spanned by (l,t) ® (1, ()3), and let the time-evolution be y±(t) = 

exp(±iwt)t±(O), with "3 and ()3 constant. For a given f3 the density matrices of the 
form 

yield KMS states for all real Cl. 

3. They have the same structure as in (2.5.49), with 

f d3k j*(k)g(k) 
<lip, g) = (2n)3 1 + exp(k!) 

for translations in the I-direction, and 

foo r2 dr I Jim(r){J,m(r) 
o I,m I + exp m 

for rotations about the 3-axis, where j,m denote the expansion coefficients of I in 
spherical harmonics. 

4. Classically, Hi = t(pf + wfqf) are two independent constants of the motion, and 
generate flows that commute with time-evolution, The system is not ergodic in the sense 
of Table 1. Quantum mechanically, H has the eigenvalues (n! + t)w! + (n2 + t)W2 
and is thus nondegenerate, All constants are of the form I(H), and the system is 
ergodic in the sense of Table 1. 

3.3 Stability and Passivity 

The distinguishing feature of the equilibrium state is that it does not 
change abruptly when subjected to a local perturbation, The second 
law of thermodynamiCS can be proved in a version stating that a 
system prevents energy from being extracted by a cyclic perturbation 
only if it is in equilibrium. 

The final part of the general theory that will be investigated will be the 
influence of local perturbations on equilibrium, In the mathematical treat
ment local perturbations play the role of the speck of dust invoked in the 
traditional theory of statistical mechanics to convert stationary states, 
not yet in equilibrium, into equilibrium states. As a matter offact, what makes 
the KMS states special in the mathematical theory is that they have certain 
stability properties-they change continuously when the Hamiltonian is 
perturbed slightly. This is certainly not true of all stationary states, and can 
even be used to characterize the extremal KMS states of an infinite system; 
they are precisely the set of states that turn continuously into the unperturbed 
states as a certain family of perturbations tends to zero. Mixed KMS states 
represent quantum-mechanical mixtures of phases, and lead to a nontrivial 
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center of the algebra. If an observable from the center is added to H, the time
automorphism is unchanged, but the KMS states do change. Hence mixtures 
of KMS states exhibit a kind of instability in that they do not remain un
changed under the influence of a family of perturbations moving spatially 
off to infinity, and hence entering the center of the algebra. 

A second important characteristic of KMS states is their passivity, which 
is the requirement that the energy of the system at time t can only have 
increased if the Hamiltonian depends on time and has returned to its initial 
form at time t. This condition also fixes the sign of f3 and means that no energy 
can be removed from a KMS state having f3 > 0, just as a periodic process 
can extract no energy from the ground state. This property does not consti
tute a kind of stability, and sheds no light on why Nature chiefly produces 
KMS states. However, it does show the most important empirically familiar 
feature of equilibrium. 

As usual, the study of a finite system will provide us with a first exposure 
to the effects of perturbations. Its time-evolution will be caused by a self
adjoint operator, which also determines the equilibrium state w by at 
= exp(iHt)a exp( - iHt), w(a) = Tr exp( - f3H)ajTr exp( - f3H). If H is sub
jected to a bounded, self-adjoint perturbation h, the effects can be written 
down as norm-convergent series. A simple generalization of (III: 3.4.10; 3) 
shows that 

exp(i(H + h)t)a exp( - i(H + h)t) 

exp( -H - h) = Rh exp( -H), 

dtl dt2 ... dt"[h tl , [h t2 ,··· , [htn' at]" .]], 

(3.3.1) 

exp( -(H + h)j2) = Sh exp( -Hj2), 

(3.3.2) 

Remarks (3.3.3) 

1. Initially, his is well defined only if h is analytic in time (3.2.6(v», but since 
such operators are dense in .s1 in norm, the formulas it appears in extend 
to .s1 by continuity. 

2. Inequalities (2.1.8: 3) and (2.1.8; 7) yield the estimates 

ex (-llhll) < ex (- Tr exp( -H)h) < Tr exp( -H - h) 
p - p Tr exp( -H) - Tr exp( -H) 

= Tr Rh exp( -H) :s; min{IIRhll, Ilexp( -h)II}. 
Tr exp( -H) 
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Equation (3.3.1) can now be extended to cover infinite systems, for which 
H has continuous spectrum, as follows. 

Perturbation of the Time-Evolution and KMS State (3.3.4) 

Let a -+ at be an automorphism of a C* algebra d, and let J be the sub
algebra that is analytic in time and W be a KMS state. Assume f3 = 1. If 
hE d is self-adjoint, then a perturbed automorphism a -+ r~(a) and per
turbed state are defined by 

T~(a) = at + .~/ L",t,,,,,,,,n,,,t dt 1 dt2 ·•• dt.[h", [h'2"'" [h'n' a,]" .]], 

where Rh and Sh are defined as in (3.3.2). 

Remarks (3.3.5) 

1. The operator h exists as a local perturbation on a purely algebraic level, 
whereas H exists only in certain representations. For that reason it is 
not possible to define r~(a) simply as exp(i(H + h)t)a exp( - i(H + h)t). 
As in (3.3.2), for finite times the sums converge in norm. 

2. If the system is asymptotically Abelian sufficiently strongly, then the 
limits as t -+ ± 00 of r~" T~, exist. However, such a limit may fail to be 
an automorphism; like the M!ZSller transformations it might not be sur
jective. If it is surjective, its inverse transforms w into the perturbed state 

t-+±co 

3. See Problem 1 for the equivalence of the definitions of W h • 

4. (a/at)T~(a) = r~«a/as)asls=o) + ir~([h, a]). 
5. The function d -+ d: h -+ T~(a) is continuous for all t E IR and a E d, 

if d has either the strong or the norm topology. 
6. The state W h is KMS with respect to T~ for f3 = 1: As shown by (3.3.1), 

D(exp( -H - h» = D(exp( -H» in the representation using 1tw , and 
because exp(H) = exp(H + h)Rh' the domains of definition of exp(H + h) 
and exp(H) are also identical. Hence for all a and bEd, 

Wh(T~i(a)b) = w(R~ exp(H + h)a exp( -H - h)b) 
W(Rh) 

is well defined. From (3.3.1) and the KMS condition for w, 

( h .( )b) = W(L;{aRh)b) -_ (b) 
W h T_, a () W h a. 

W Rh 
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7. There is an analogue of the variational principle for the free energy, 
which generalizes (2.1.8; 3) for infinite systems. It is a consequence of the 
convexity of the function h -+ In w(Rh), which can be proved as follows: 
From Duhamel's formula (cf. the proof of (III: 3.3.15», 

d 
dA exp( -(H + Aa» 

= - f ds exp( -s(H + Aa»a exp( -(1 - s)(H + Aa», 

it can be calculated that 

The second part of the equality makes use of the in variance of Wh under 
r\ which follows from the KMS condition shown above. Likewise, 

and 

= f dswh«a - wh(a»r~(a - wh(a»). 

In (3.2.6(ii» it was seen that the integrands are positive. As in (3.3.3; 2) 
this fact can be used to show that W(Rh) ~ exp( -w(h» ~ exp( -llhll). 

If there is a bounded sequence of perturbations h(n) all the commutators 
of which with .s;I tend to zero as n -+ 00, then the automorphism r~(n) 
converges to the unperturbed automorphism because 

This state of affairs can arise, "for instance, if the algebra is asymptotically 
Abelian with respect to spatial translations. If An denotes the region A 
translated by na, a E ~3, and h(n) E.s;I An is the corresponding translate of the 
operator h, then II ChIn), a] II -+ 0, and consequently r~(a) -+ at. The question 
of whether the associated KMS states Wh(y) likewise converge to the un
perturbed w depends on whether the KMS states are extremal. This is 
illustrated even in the finite-dimensional case by 
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Example (3.3.6) 

With the notation of (1.1.1), let d be generated by {t'0"1,O"f'0"2}' and 
suppose that these observables evolve in time into {t, 0"1' exp(=F 2it)O"f, (T2}' 
This time-evolution has a unitary representation as Ut = exp(it(O"l + C0"2» 

for all c E ~, so there is a one-parameter family of KMS states with density 
matrix p = exp( - P(O"l + J1.0"2»' which is not extremal, because 

exp(-pJ1.0"2) = exp(-pJ1.)l ® I~ ~I + exp(pJ1.)l ® I~ ~I, 
and exp( - PO"l) ® (A g) provides a KMS state. 

Although adding hln) = (l/n)O"l + C'0"2 to the Hamiltonian leads to 
the same time-evolution as n ..... 00, the KMS state is different. Only the 
extremal KMS states provide two-dimensional representations, for which 
this can not happen. 

Infinite systems generically have the property known as 

Spatially Asymptotic Dynamical Stability (3.3.7) 

Let .91 be a quasilocal algebra and w be a locally normal KMS state on d. 
The state w is an extremal KMS state iff for each sequence h(n) of perturbations 
such that II h(n) II and II h!n) II are bounded in nand rh(n)(a) ..... at for all a E .91, the 
sequence wIn) == Wh(n) ..... W converges in the weak-* sense to w. 

Remarks (3.3.8) 

1. The assumption that .91 is quasilocal (1.3.3; 8) serves to guarantee the 
existence of suitable sequences h(n). 

2. If .91 is also asymptotically Abelian in time, then the following propositions 
are equivalent for KMS states (recall Figure 27): 

(a) w is an extremal KMS state; 
(b) 1tw is a factor; 
(c) limt .... oo w(abt) = w(a)w(b); 
(d) Wh(n) ..... w for all h(n) as described in (3.3.7). 

Proof 

1. If w is extremal, then w(n) ..... w: By assumption Ilh!n)11 are bounded uni
formly in n, so the same is true of the norms of Rh(n). Since, moreover, 
w(Rh(n» ~ exp( -llh(")II), 
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is a bounded sequence of operators. Bounded sequences of operators are 
weakly relatively compact ([33], VI; 9.6), and the set of states is weak-* 
compact (III: 2.1.23; 2), so there is a subsequence h(k), k E 0 eN, such 
that w = lim W(k) and p = lim Pk exist, and w(a) = w(ap). 
The automorphisms converge by assumption, and by Problem (3.2.17; 1) 
w is ,-KMS. But this means that p belongs not only to nwCsd)" (by 
construction), but also to nJd), and thus belongs to the center: 

w(apb) = w(b_iap) = w(b_ia) = w(ab) = w(abp) 

and 

w(apbc) = w(abpc). 

However, nw is a factor, so p = 1, and since w = w is the only point of 
accumulation it is the limit of wIn). 

2. Suppose now that w is not extremal. There is a nontrivial invariant element 
z = z* in the center of nw(d)". By Kaplansky's theorem [4] the unit 
ball of d is strongly dense in the unit ball of d", so z belongs to the closure 
of a bounded set of self-adjoint operators h of d. Because of the locality 
assumption the closure of d A I n) is a separable subspace of 

so :Yf is also separable. As a consequence the strong topology on bounded 
sets of operators is metrizable, so z is actually the limit of some sequence 
h(n) in Un d . According to (3.3.4) ,:' converges to 'f = ,~. As in (3.2.6(v» 
Pn can be constructed with the h(n)(f), as they converge to Zt = z(f) = z, 
just like hln)(f) and h~~)(f). By the dominated convergence theorem it 
follows that 

and therefore 

lim Rh(n)(f) = R z = exp( - z), 
n~oo 

. w(exp(-z)a) 
lIm Wh(n)(J)(a) = -(--( » 

w exp -z 

is a KMS state different from w. o 
The next topic is that of stability properties that can distinguish the 

extremal KMS states from other stationary states giving rise to factors. As 
shown by (3.3.4), if there is an extremal KMS state, then for all hE d there 
exists a state that is stationary under the time-evolution including h as a 
perturbation, and which transforms continuously into the unperturbed state 
as h --. O. It is not obvious that such a "linear-response theory" is possible. 
In fact, we learned (I, §3.3) that even in classical physics there are constants of 
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motion that are not continuous in a parameter of the Hamiltonian. A 
density in phase space that is a function of such a constant will be unstable 
when perturbed, no matter by how little. This phenomenon is illustrated 
in quantum mechanics by the trivial 

Example (3.3.9) 

;Yf = C2, H = 0 E .9l(C2 ). Every density matrix p corresponds to a stationary 
state, but with the perturbation h = o· G the only stationary density matrices 
are p = 1/2 + AO' G, A < 101/2. This shows that only the density matrix 
p = 1/2 goes continuously into a density matrix that is stationary under all 
possible perturbed time-evolutions. 

The example illustrates that only density matrices of the form f(H), 
which are proportional to the identity in each degeneracy space of H, adapt 
themselves well to arbitrary perturbations. Despite the possibility of 
diagonalizing any stationary density matrix simultaneously with H, there is 
no telling from stationariness alone how it might vary within a degeneracy 
space. A requirement that two independent systems be stable would impose 
an additional restriction on the function f such that w = f(H). The existence 
of two subsystems shows up mathematically as a tensor product, so if 
H = Hi ® 1 + 1 ® H 2 , then we would require that f(H 1 ® 1 + 1 ® H2 ) 

= f(H 1) ® f(H 2)' Since Hi and H 2 commute, both Hi may be regarded as 
ordinary numbers in their common spectral representation. Since the only 
reasonable functions satisfying f(x + y) = f(x)f(y) are of the form f(x) 
= exp( - /Jx), we are led to the canonical density matrix, if the Hi may have 
arbitrary real spectral values. Since our infinite systems are asymptotically 
Abelian with respect to translations, and thus come to resemble tensor 
products of independent systems, it is a reasonable expectation that the 
condition of stability for such systems characterizes the KMS states. It will 
now be seen that this is the case, given some assumptions. 

Local Dynamical Stability (3.3.10) 

Suppose that the algebra d is asymptotically Abelian with respect to rO, 
and let w be a stationary factor state, and hence mixing. The question is 
whether for any perturbed automorphism rh it is possible for there to be a 
unique state Wh that is invariant under rh and turns into w as h --+ O. The 
states 

w± = lim w a r~ 
t-±(X) 

are reasonable candidates for Wh' If the limits exist, they would be invariant 
under rh, and the uniqueness of W h means that the limits are equal. If rh is 
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expanded as in (3.3.4) and we use the invariance of w under to, we obtain 
the 

Stability Condition to First Order in h (3.3.11) 

If an invariant factor state w on an algebra d asymptotically Abelian in time 
is stable against arbitrary perturbations in the sense stated above, then for 
all h and a E d, 

Remarks (3.3.12) 

1. The assumption that hE d means that we consider only local perturba
tions. The requirement that d be asymptotically Abelian makes the 
commutator [h, at] vanish as t ~ ± CXJ. Condition (3.3.11) requires, 
roughly speaking, that w(i[h, at]) is equally often positive and negative. 

2. The physical significance of (3.3.11) is that to first order in h the scattering 
transformation is the identity in the representation 7rw • This can be 
interpreted as meaning that w is a locally perturbed equilibrium state 
with respect to the time-automorphism t h and should become the equi
librium state as t ~ ± 00, so there is no net change between t = - 00 

and t = + CXJ. In the kinetic theory of gases this is reflected in the argument 
that collisions do not alter the equilibrium distribution. 

Let us introduce the abbreviations 

and 

Gab(t) = w(atb) - w(a)w(b) 

in order to exploit (3.3.11) more fully. 

Consequences for the Correlation Functions 

Condition (3.3.11) makes 

f:oo dt(Fab(t) - Gab(t» = o. 

(3.3.13) 

Under the assumptions of (3.3.10) we know that F and G tend to zero as 
t ~ ± CXJ. In order to ensure that this integral and others to follow make sense, 
it will be assumed that the correlation functions F and G are integrable in 
time from - CXJ to + CXJ, at least for a dense setY' c d. Since they are bounded, 
they belong to all U(IR) for 1 :-:::; p :-:::; CXJ. The assumption holds, for example, 
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for free fermions. It will also be assumed that the higher correlation functions 
decrease rapidly enough for elements of Y that integrals and limits may be 
interchanged. 

If the state is a factor state, then as u ~ ± 00, w(abuct dt+u - Ct dt+uabu) 
tends to w(act)w(b dt) - w(cta)w(dtb). Therefore 

f:oo dt(Fca(t)F db(t) - Gca(t)Gdb(t» = 0 

for all a, b, c, and dEY. Similarly, from considering what happens to 
w([abucv, dteu+tfv+tJ) as u ~ 00 and as v ~ 00, 

f:oo dt(Fdit)Fcit)Fbe(t) - Gda(t)Gcit)Gbe(t» = 0 

for all a, b, c, d, e, and fEY. Because F and G belong to L l, their Fourier 
transforms F and G exist and are continuous. Then if a, b, c, d, e, and fEY, 
the last three equations imply that 

Fab(O) = Gab(O), 

f dEFab(E)Fcd( -E) = f dEGab(E)Gci -E), 

and 

f dEl dE2Fab(E)FciE' - E)Fei -E') 

= f dEl dE2Gab(E)GciE' - E)Gej(-E'). (3.3.14) 

We shall now see that these equations imply the KMS condition. 
In order to arrive at the KMS condition in Fourier-transformed space, 

F ab(E) = exp({3E)Gab(E), information about the supports of F and G is 
needed. It is at least clear that they are contained in the spectrum of H: Let 
at = Ut-iaU p Ut = exp( - iHt), writing H as in (1.3.5) in the representation 
determined by w. Then 

so if E # 0, then 

Fab(E) = Fb*a*(E)* = Gba( -E) = (b*OIJ(E - H)aO). (3.3.15) 

This expression is to be interpreted in the spectral representation of H, in 
which the functions depend continuously on E when a and bEY. 

In order to draw more far-reaching conclusions from these relationships, 
more information is needed about the energy spectrum. It would simply be 
additive if the Harmiltonian were the tensor product of Hamiltonians of 
independent systems: If HI and H2 have eigenvalues e~1) and e~2), then 
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H(1) ® 1 + 1 ® H(2) has eigenvalues e~1) + e~). This fact generalizes to an 
infinite system provided that the system is asymptotically Abelian with 
respect to an automorphism, such as the translations, that commutes with 
the time-evolution. 

The Additivity of the Spectrum of H (3.3.l6) 

Let H generate a time-evolution r on a factor state w, and suppose that the 
system is asymptotically Abelian with respect to an automorphism a such 
that [a, r] = ° and w 0 a = w. If H has the spectral values E1 and E2, then 
E1 + E2 also belongs to the spectrum of H. 

Proof 

Given any neighborhoods Vi of Ei, i = 1,2, by assumption there exist h 
such that 

afilQ) == 5:00 dtath(t)IQ) #- 0, 

where the Fourier transforms I have their supports in Vi' Since by Property 
(3.1.18;4) Ila.(af)afzIQ)112 approaches 

Ilafz IQ)11 2 1I aJ, IQ)11 2 #- ° 
as s ~ 00, there must be a sufficiently large s that this vector is nonzero. 
Since the vector is supported in E 1 + E 2 + V 1 + V 2 in the spectral rep
resentation of H for all s, there are spectral values in every neighborhood of 
E1 + E2· Since the spectrum is closed, E1 + E2 itself belongs to the spectrum. 

o 

Remark (3.3.17) 

If the system is asymptotically Abelian with respect to r, then of course it is 
possible to take r = a. Since w provides a factor, according to Table I in 
this case I Q) is the only eigenvector, and H has no eigenvalues other than 0. 
Since the spectrum is additive, it is either 0 u [± c, ± (0) for some c ~ 0, 
or else (- 00, (0). In the first case there is a ground state; we shall be con
cerned only with the second possibility. 

Derivation of the KMS Condition (3.3.18) 

Let Eo be in the spectrum of Hand f be a function of the kind described in 
(3.2.6(v)) withj(Eo) = 1, supp J c I ::::> Eo· Then V f == J dtf(t)V t #- 0, and 
there exists an a E Y such that V faQ = afQ #- O. The operator af belongs 
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to g whenever a does, and the functions F and G constructed with a fare 
also supported in I, because 

Fa b(E) = l(E)Fab(E), 

Gafb(E) = J(E)Gab(E). 

Let b = aJ and shrink I down to Eo; this makes F and G proportional to 
c5(E - Eo). If we normalize so that 

f:oo dEFa,aj(E) = w(aJaf ) - Iw(afW = 1, 

and if 

f:oo dEGa,aj(E) = w(afaJ) - Iw(afW ;;:: 0 

converges to some ct> E IR + (possibly after passage to some subsequence), then, 
because of the continuity of F and G, (3.3.14) yields 

FciEo) = ct>GciEo) for all c and dE g. 

This also proves that ct> may not be either 0 or 00. Since this is true for all 
Eo E Sp H = IR, there exists a universal function ct>(E) such that 

FciE) = ct>(E)GciE). 

It follows from (3.3.15) that 

ct>( - E) = ct>(E) - 1 = ct>*( - E), 

and the functional form then follows from the last equation of (3.3.14): 

f dE dE'(1 - ct>(E)ct>(E' - E)ct>( -E'»Gab(E)GciE' - E)Ge/ -E') = 0 

implies that 

ct>(E)ct>(E' - E)ct>( - E') = 1 for all E and E' E IR. 

Because of the equation derived above this, 

ct>(E)ct>( - E') = ct>(E - E'), 

and since ct> is continuous it therefore has the functional form 

ct>(E) = exp(f3E) for some f3 E IR. 

This shows the KMS condition for the dense set g. However, since it can 
be written with the aid of (3.3.15) in the form 

<b*!llf( -H)a!l) = <a*!llf(H) exp( -f3H)b!l) 

for any bounded, continuous f(H), it clearly suffices to derive it on a dense 
set. 
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In sum, the foregoing argument has shown the 

Equivalence of Dynamical Stability and the KMS Condition (3.3.19) 

Suppose that the algebra d is asymptotically Abelian with respect to the time
evolution and that w is a stationary state creating a factor representation. If 
for all hE d there exists a normal state W1 for 1tw(d)" to first order in h, 
such that wand w 1 are both stationary to first order under the perturbed time
evolution, and if w has an absolutely integrable correlation function, then 
either w is a KMS state, or else the spectrum of H is {OJ u [± c, ± IX), in 
which case w is the ground state. 

Remarks (3.3.20) 

1. It does not follow from this argument that p > o. This fact did not even 
emerge from our argument with the tensor product of finite systems. 

2. It is hard to tell how much the result suffers from the sharpening of the 
hypothesis of asymptotic commutativity. All the hypotheses are satisfied 
by a system offree fermions, but with a Coulomb interaction it is not even 
known if they hold in weakened forms. To a certain extent our assump
tions about decrease at infinity and the interchangeability of limits belong 
to the realm of unproven hopes. 

3. This shows that stability to first order in h implies KMS. Conversely, 
we have seen that KMS implies stability to every order in h, which means 
that the higher orders contribute no new information in this respect. 

Whereas all the perturbations considered until now have been indepen
dent of time, we shall now turn our attention to perturbations h(t) depending 
explicitly on time; they would be due to interference from outside the system. 
The time-evolution will not have the group property, but it will still be a 
one-parameter family of automorphisms. Let us, as usual, start by studying 
finite systems, for which the automorphisms are implemented by the unitary 
transformations 

Ut = Texp [ -i {dt'(H + h(t'»] (3.3.21) 

(cf. (III: 3.3.6». 
The most important quality of a passive state for our purposes will be 

that a system in a passive state will have gained energy when the perturbation 
has been switched off. 

The Passivity of a State (3.3.22) 

Let us suppose that a finite system evolves under the influence of H + h(t), 
where by definition h(O) = h(r) = O. The Hamiltonian generates a unitary 
time-evolution (3.3.21), so the change in energy from t = 0 to t = T in the 
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state w is given by Tr p(UtHU; I - H). A state is said to be passive if the 
change in energy is positive for all self-adjoint hE 8#(Jr), in which case 
Tr pUHU- 1 ~ Tr pH for all U = U*-l E 8I(Jr). 

Examples (3.3.23) 

1. The canonical density matrix. Let p = exp( - f3H)jTr exp( - f3H) and 
(J = U- l pU. From (2.2.22(ii» we know that 

o ~ Tr (J(ln (J -In p) = Tr(p - (J)ln p = -f3 Tr(p - U-1pU)H, 

so the system is passive. 
2. Negative temperatures. Let p be as above, but f3 < O. In order for 

Tr exp( - f3H) to be finite, H must be bounded from above; this would be 
realistic for a spin system. The inequality is then reversed, 
Tr(p - U - I P U)H > 0, so the system is not passive. 

Remarks (3.3.24) 

1. If it is desired to keep the energy E = F + TS from increasing, the best 
tactic is to keep S constant (when T > 0). Our unitary time-evolution 
manages this automatically, and so the change in the energy E equals the 
change in the free energy F. Since the free energy is minimized with the 
canonical density matrix p, in the state p the only possibility is for E to 
. .. 
lllcrease, so p IS passIve. 

2. Obviously, passivity requires the states oflower energy to be more densely 
occupied, so that the system is ready to gain energy. This is not the case 
when f3 < 0, in which circumstances the system would prefer to give 
energy away. 

The General Form of Passive Density Matrices for Finite Systems (3.3.25) 

A density matrix p on a finite system corresponds to a passive state if and 
only if 

(i) [p, H] = 0; and 
(ii) if Pi and ei designate respectively the ordered eigenvalues of p and H, then 

(e i - ek)(Pi - Pk) ~ o. 

Remarks (3.3.26) 

1. The condition on the eigenvalues means that if the kth eigenvalue of 
H is greater than the ith, then the kth eigenvalue of p must be less than 
or equal to the ith. However, it is not necessary for p to be simply a function 
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of H, since in a degeneracy space for which ei = ek it may happen that 

Pi # Pk' 
2. The physical implication of the monotony is that lower-lying states are 

more densely occupied. On the other hand it implies nothing for the 
values of P where H does not vary: 

H~C 0 J p~(" t J 
is passive. 

Proof 

(i) and (ii) => passive <=> Tr pH ~ Tr pUHU- 1. 

Let U be given in a matrix representation in the common eigenvectors of H 
and P as U ik . The matrix I U ik 12 is doubly stochastic and therefore a convex 
combination of permutation matrices or a limit of such matrices 
(cf. (2.1.11; 4». For any such matrix, 

Tr pUHU- 1 = ~>iPk II U ik l1 2 = L Cp L eiPp" 
i,k p i 

where Lp Cp = 1, Cp ;;:: 0, and {Pi} is a permutation of the i E 7l.+. If ei < ek 
implies that Pi ;;:: Pb then for any permutation, Li eiPp, ;;:: Li eiPi = Tr pH. 
Passive => (i) and (ii). Suppose that Tr pUHU- 1 has its minimum at 
U = 1,andwriteU = 1 + M1 + M2 + "',whereIlMkll < ekforsufficiently 
small e. Then Tr pUHU- 1 = Tr pH + Tr([H, p]M 1) + 0(e2 ). The operator 
M 1 only needs to satisfy the condition that Mi = - M 1, and since [p, H] 
is anti-Hermitian, it must equal zero, as otherwise the energy could be 
lowered. In order to prove (ii), choose U to have the form 

U = ( cos cp sin cp) 
-sm cp cos cp 

on the subspace spanned by Vi and Vb the eigenvectors with eigenvalues 
ei' Pi and ek' Pk' Then 

Tr pUHU- 1 - Tr pH = -(ei - ek)(Pi - Pk) sin2 cp, 

which is positive only if (ei - ek)(Pi - Pk) ~ o. o 
In order to progress beyond the monotonic property to the statement 

that the function is exponential we must investigate infinite systems. We 
may either construct the infinite system by taking tensor products of copies 
of finite systems or go directly to the analysis of some asymptotically Abelian 
system. As before, the limiting case f3 = 00, i.e., the ground state, would 
require a special treatment, which we shall not go into. Assuming therefore 
that f3 is finite, we can state the main proposition on the 
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Passivity of Infinite Systems (3.3.27) 

Within the set offaithfulfactor states w on a C* algebra with a time-automorph
ism r and another automorphism commuting with r and under which w is 
invariant and asymptotically Abelian, the passive states are precisely the KMS 
states,for any f3 ~ o. 

Remarks (3.3.28) 

1. Translations of a homogeneous infinite system commute with the time
evolution. Since the local field algebra is asymptotically Abelian with 
respect to translations, this theorem can be used even if it is not known 
whether the time-evolution is asymptotically Abelian. 

2. The sign of f3 is fixed by passivity, though of course its value is not. 
3. To ensure that H is well-defined, assume that the time-evolution can be 

represented unitarily; then passivity is equivalent to the property that 
w(U- 1 HU - H) ~ 0 for all unitary U E d. 

4. Since the condition for passivity is linear in w, the passive states form a 
convex set. Passivity does not single out the extremal KMS states. We 
shall consider only factor states, which can not be decomposed further, as 
shown in §3.1. 

Proof 

Passive ~ KMS. If the condition of passivity for an infinite system is written 
as w(UHU- 1) ~ w(H), and we choose U = exp(im) for a self-adjoint, then 
the first two terms of the expansion in powers of 6 lead to 

(i) w([a, H]) = 0 for all a E ,rd, and 
(ii) w([a, [H, a]]) ~ 0 for all a E d. 

Equation (i) means that (8j8t)w(a t) = 0, so w is stationary. In order to deduce 
the KMS condition from (ii) we employ the modular automorphism of 
w-call its generator H. The KMS condition with respect to H can be used to 
write (ii) as 

o ~ <nl2aHa - Ha 2 - a2Hln) 

= <nl2aHa - a exp( -R)Ha - aH exp( -H)aln) 
= 2<n I aH(l - exp( - H»a In). 

In the last step we used the fact that [H, H] = 0, in accordance with our 
assumption. Since the inequality holds for all a = a* E ,rd, it follows that 
H(l - exp( - H» ~ 0. This means that in the common spectral representa
tion of Hand H the spectrum is restricted to the hatched region of the 
(H, H)-plane shown in Figure 28. Now the existence of the commuting, 
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H 

Figure 28 Possible location of the spectra of Hand H. 

asymptotically Abelian automorphisms comes into play. According to 
(3.3.16), this implies that the spectrum is additive, i.e., if (hi, ~) and (h2' h2) 
are in the spectrum, then so is (hi + h2' hi + Ti;). As a consequence the 
spectrum can at most be on a line through (0, 0), so H = f3H for some f3 > O. 
KMS => passive. Since x ~ 1 - exp( -x), 

w(UHU- i ) ~ w(UU- i ) - w(U exp( - H)U- i ) 

= w(UU- i ) - w(U-iU) = O. 0 

Remarks (3.3.29) 

1. The last inequality proved above is only the first of a whole family of 
inequalities that the expectation values in KMS states satisfy, and which 
completely characterize the KMS states [24]. They generalize trace 
inequalities, which are not directly applicable to infinite systems, since 
exp( - f3H) is not trace-class. 

2. Example (3.3.23; 1) showed that for finite systems, passivity follows 
from thermodynamic stability, or, in other words, from the minimum 
property of the free energy. This fact generalizes to infinite systems, for 
many of which the implication goes both ways, KMS ¢> thermodynamic 
stability, for instance for lattice systems with finite-range interactions. 
For these systems KMS is equivalent to global thermodynamic stability, 
provided that only translation-invariant states are considered, and that 
the free energy is interpreted as the free-energy density. However, for 
systems with long-range forces there exist KMS states that do not mini
mize the free energy; they are instead metastable, minimizing the free 
energy only one some reduced set of comparison states. Since the free 
energy is a convex functional on the states, it can not have a relative 
minimum on the set of all states that fails to be absolute. 
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3. The state WPI <8> wp, of two independent systems at different temperatures 
Tl > T2 is KMS with respect to the automorphism generated by /31 H 1 
+ /32 H 2' A perturbation h(t) can cause the temperatures to equalize, 
and it may happen that the first system will have given up a positive 
amount of energy ilEI == E1(0) - Elr) > 0 by the end of the period. 
However, because the state is passive, /31ilEI + /32ilE2 ~ 0, and the 
change in the total energy ilE = ilEI + ilE2 is bounded by ilE/ilEI 
~ (Tl - T2)/T1• Since the total entropy remains constant under the 
unitary time-evolution, ilE is the amount of energy provided by the total 
system, and this inequality is Carnot's classical bound on the thermal 
efficiency. 

Another way to characterize the KMS states of an infinite system is known 
as reservoir stability, and it further justifies the physical interpretation of /3 
as the reciprocal of the temperature. In outline it means that the KMS 
states are precisely the states that are suitable for thermal reservoirs, allowing 
the temperature 1//3 to be defined. A more careful formulation states that if 
the reservoir is coupled to a finite system in the canonical state w, then in the 
weak-coupling limit W is invariant under the resulting semigroups (cf. 
(3.1.12» for a reasonable class of couplings iff the reservoir is in a KMS 
state [24]. 

Problems (3.3.30) 

1. Show that w(R:a) = w(aRh) = w(S:aSJ. 
2. Estimate the length of time for which the "linear-response theory" remains valid; 

i.e., estimate 

II r~(a) - at - i { dtt[ht" at] II 

3. Use the methods of §2.1 to conclude from ei > ej => Pi ~ Pj that 

L eiPi ~ L eiPp, 
i i 

for every permutation P. 

Solutions (3.3.31) 

1. Since H exists in the GNS representation with w, Equations (3.3.1) are applicable. 
The invariance of Q holds also for complex z, 

exp(zH)IQ) = IQ), RhIQ) = exp( -H - h)IQ). 

Now use the KMS condition for w in the form w(ab) = <Qlb exp( -H)aIQ): 

w(aR h) = <QIRh exp( -H)aIQ) = <QI exp( -H - h)aIQ) = w(R:a). 

It is also true in this representation that Sh exp( - H)S: = exp( - H - h), so 

w(R:a) = <QISh exp( -H)S:aIQ) = w(S:aSh). 
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2. Apply Taylor's formula Ilf(lX) - f(O) - 1Xj'(0)II ::;; Ilg dW - Of"(IXOa211 to f: 
[0, IJ --+ .@(J'f), IX --+ T~h(a). According to (3.3.4), 

This is also true when IX E [0, 1]; the only change when IX > 0 is that the time-evolution 
a, h --+ a" h, becomes a, h --+ T~\a), T~h(h), which does not affect the norms. Conse
quently the answer is that II·· ·11 ::;; (2tllhll)21IaII/2. Recall that if Ilhll is on the order of a 
Rydberg, then tllhll ~ 1 when t ~ 10- 15 sec. Therefore this a priori estimate 
guarantees only that the linear approximation remains valid for times on the atomic 
scale, and not for times measured in seconds. To go further would require knowing 
that the commutators go to zero for longer than macroscopic times. 

3. Order ei and Pi; then 

eJpJ + e2 Pz + e3P3 + ... = (e J - e2 )PJ + (e 2 - e3)(PJ + pz) 

+ (e3 - e4)(Pl + pz + P3) + .... 

All the summands are positive, and permuting the Pi can at most make the summands 
larger. 
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4.1 Thomas-Fermi Theory 

Among the best examples of large quantum systems are atoms and 
molecules with highly charged nuclei. Classical features arise in the 
limit Z --> 00, N --> 00, except that the Fermi statistics continue to 
have an important effect. 

Matter around us and within us consists of electrons and atomic nuclei, 
which are governed by the laws of quantum mechanics. Relativistic effects 
arise only in the fine details (cf. III, §1), so the forces of primary relevance are 
electrostatic and, for cosmic bodies, gravistatic (nonrelativistic). Moreover, 
the precise nature of the atomic nuclei is of little consequence on the macro
scopic scale, so they can be considered as point charges. In order to under
stand the gross features of matter we shall study a Hamiltonian 

H = ~ Ip;l2 ,,(eiej - Kmim) 
mat L.. 2 + L.. I I 

i = 1 mi i > j Xi - X j 
(4.1.1) 

for ordinary matter. The first important issue to confront is that of why 
macroscopic bodies behave classically; in what sense is the thermodynamic 
limit N --> 00 equivalent to the classical limit Ii --> O? There are a variety of 
ways to pass to the limit N --> 00. In this section we begin by letting the nuclear 
charge Z and the nuclear masses both tend to infinity, while continuing to 
neglect gravity. This will permit a rather explicit mathematical treatment, as 
the action is determined by an average field, and the single-particle model 
becomes exact. The same will be true in §4.2 when we deal with cosmic 
bodies, for which gravitation predominates. However, macroscopic bodies 
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on the scale of humans are far from these limits: nuclear charges are for the 
most part small, and yet gravitation is of little importance. In this intermedi
ate range of normal matter it would be too much to hope for an explicit 
solution. Section 4.3 will discuss this case, but the results will be confined to 
general existence theorems and rather crude bounds on the values of 
observables of physical interest. 

Let us consider now what happens to electrons in the field of fixed 
point charges. In order not to be distracted from the most important facts 
by physical constants, we shall use units in which Ii = 2m = e = k = 1, so 
that (4.1.1) becomes 

The Hamiltonian for Normal Matter (4.1.2) 

Remarks (4.1.3) 

1. The notation follows that of (III: 4.6.9), that is, Xi and Pi are the position 
and momentum of the ith electron, Xk and Zk are the position and charge 
of the kth fixed nucleus, N is the number of electrons, and M is the number 
of nuclei. 

2. The Hamiltonian H operates on an n-fold anti symmetrized tensor product 
of L 2(1R3) ® 1[2 = configuration space ® spin of a given electron. The 
nuclear coordinates Xi commute with everything, and are to be regarded as 
ordinary 3-vectors of numbers. 

3. It is usually most convenient to study the many-particle system in the 
framework of the field algebra (1.3.2). If aa(x), IX = 1,2, denote the 
annihilation operators of electrons with spin up (IX = 1) and spin down 
(IX = 2), then (4.1.2) reads 

H = ~ f d3X[ Va;(x)· Vaa(x) + (Jl Ii ~Z~kl + w(x))a;(X)lla(X)] 

'" 1 f d3 d3 , a;(x)a;(x')atlx')aa(x) '" Zk ZI + L.. - x X ,+ L.. . 
a. f3 2 I X - x I k> I I Xk - XII 

4. If the temperature is finite, then the attraction of the nuclei is not strong 
enough to prevent the electrons from escaping to infinity, and the system 
must be imagined confined to a box. The box can be represented by a 
potential W, adding a term La S d3xW(x)a;(x)aa(X) to H. The wall 
potential W will be chosen to be the VL of (2.5.23). 

Most interesting systems are approximately neutral, so N is assumed to be 
about L~= 1 Zk· The thermodynamic limit N -> 00 can consist either in 
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M -+ 00 or Zk -+ 00. For the moment consider the latter case; the limit 
M -+ 00 will be studied in §4.3. The first step is to bound the grand canonical 
partition function in terms of the grand canonical partition function of a 
theory with free electrons in an external field. This means that the bounds of 
(III, §4.5) for the energies have to be generalized for arbitrarily complex 
systems at nonzero temperatures. After that we shall show that the upper 
and lower bounds coalesce (when properly scaled) as Zk -+ 00, so the parti
tion function can be calculated exactly in the thermodynamic limit. Finally, 
the limit of the grand canonical state will be analyzed. 

Upper Bounds for the Partition Function (4.1.4) 

These correspond to lower bounds for the Hamiltonian like those derived in 
(III: 4.5.20). The inequality (III: 4.5.24), though, is not well suited to our 
current purposes, and must be replaced with a variant, which will appear as a 
by-product of Thomas-Fermi theory in (4.1.46; 2). In it the Coulomb 
repulsion of the electrons is replaced by their energy in an external field: 

;, I -1;' f d3xn(x) 1 f d3x d3x' ( ) (') 368 N L..., x· - x·1 > L..., - - n x n x - . y 
i > j = l' J - i = 1 I Xi - x I 2 I x - x' I 

- ~ f d3xn5/3(x) 
5y 

for all Xi E [R3, Y > 0, n E L 1([R3) (1 L S/3([R3). (4.1.5) 

This yields a bound on the expression in (4.1.3; 3), which is quartic in the 
a's, in terms of a quadratic expression, 

1 fd3xd3x' f .2 .~ I x _ xii a:(x)at(x')ap(x')a.(x) ~ ~ d3xa:(x)a.(x) 

[f 
d3xln(x') ] 1 f d3x d3x' 3 f 

x I x _ xii - 3.68y -.2 I x _ xii n(x')n(x) - 5y d3xn S/3(x). 

Consequently, H is bounded by a 

Hamiltonian with an Effective Field (4.1.6) 

where 

Hn == ~ f d3X{ Va:(x)· Va.(x) + a:(x)a.(x) 

[ Zk f d3xln(x') ]} 
x - ~ I x _ Xk I + I x _ xii + W(x) - J1 - 3.68y 

1 f d3x d3x' 
- .2 I x - xii n(x)n(x'), 
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and 

Remarks (4.1. 7) 

1. Although Inequality (4.1.5) holds for any n(x), the optimal choice identifies 
it with the electron density. Thus the effective potential in the square 
brackets [ ... J consists of the attraction to the nuclei, the repulsion from 
other electrons, and the chemical potential. However, this interpretation 
counts the electron repulsion twice, as in Li*k IXi - xkl- 1. The last 
term in Hn corrects this overcounting. 

2. The correlations among the electrons due to their Fermi statistics have 
the effect of reducing their repulsion. Also, Hn contains the self-energy of 
the individual electrons. The constant Cn and - 3.68y N serve to control 
any possible effect from these corrections. 

The monotonic property (2.1.7; 4) translates (4.1.6) into an inequality 
for the partition function. Then with the aid of the maximum principle of 
(2.5.16; 2) the inequality can be expressed as the supremum of an expression 
linear in n. 

The Partition Function with an Effective Field (4.1.8) 

( '\ Zk Z /) 3(H-f.1N)=TlnTrexp[-f3(H-f.1N)J~3 Hn-Cn+ L.IX -XI 
k>/ k I 

PI 

Remarks (4.1.9) 

1. The Hamiltonian hn of one particle in the effective field acts on the space 
£; = L 2([R3). Spin is accounted for by the factor 2, and tr denotes the 
trace on £;. 
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2. As in Remark (2.5.16; 2), SUPPI denotes the supremum over one-particle 
density matrices P1 such that 

o ::;; P1 ::;; 1,2 tr P1 = N == (~ f d3xa:(X)aa(x». 

3. There exist Ci ~ 0 such that hn ~ c11pl2 + W(x) - cj'This ensures 
that tr In(1 + exp( - f3hn)) < 00. 

The next task is to optimize the upper bound. The infimum over n of 
E( H n) is in fact achieved. This is a con seq uence of the 

Properties of the Functional E(Hn) (4.1.10) 

The mapping n -+ E(Hn) from .;V to IR+, where .;V is the real Hilbert space of 
measurable functions 1R3 -+ IR finite in the norm 

2 _ _ f d3x d3x'n(x)n(x') 
Ilnll e - <nln>e - Ix _ x'i 

is 

(i) weakly lower semicontinuous; 
(ii) strictly convex; and 

(iii) greater than !llnll;. 

Proof 

(i) In the second version E(Hn) depends on n through tr P1hn and Ilnll e • 

The norm is sUPn'e.K.lln'llc:S 1 <n'ln>c> and tr(p1 J n(x') d3x'/lx - x'l) is 
weakly continuous for 

{ f d3X1d3X2 +} 
P1 ECM== P1: IX1_x21<x1Ip1Ix1><x2Ip1Ix2><MEIR . 

The supremum is attained when P1 = (exp(f3hn) + 1)-1, which belongs 
to some CM' Hence SUPPI may be written as sUPMelR+ sUPPleCM' In this 
way E(Hn) is expressed as the supremum over continuous functions, 
which is always lower semicontinuous. 

(ii) This follows in the first version of E(Hn), when it is observed that 
h -+ tr In(1 + exp( - f3h» is convex, n -+ hn is linear, and n -+ Ilnll; is 
strictly convex. 

(iii) This follows in the first form of E(Hn), since tr In(1 + exp( - f3h» ~ o. 
D 

Corollaries (4.1.11) 

1. Because of Property (iii), the infimum over n lies in a compact region where 
Ilnll e < C. Property (i) means that it is attained at some no, which is 
unique because of (ii). 
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2. Because of the convexity, we know that the function IR --> IR+ : t --> 

3(Hno+tn) has a right derivative everywhere, and the minimum is attained 
at no if and only if 

lim t-l(3(Hno+tn) -3(Hno)) 2: 0 for all n 1 E JV: 
qo 

Although convexity does not imply the existence of a derivative, analyticity 
can be proved by a variant of Theorem (2.4.7). Granting that, the formal rules 
for differentiating tr In(1 + A) are justified: 

d J d3x'nl(x') f3 
-d trln(1 + exp(-f3hno+tn.))lt=o = -tr I 'I (f3h) l' t x - x exp no + 

Therefore the minimum at no is characterized by 

J
d3X'd3x , Jd3X'n1(x') 1 
Ix - x'i no(x)n1(x) = 2tr Ix - x'i exp(f3hno) + 1 for all n 1 E JV: 

If n1 is made to tend to ~b(x - xo), then there results an equation for no(xo). 
Since the integral kernel K(x, x') of (exp(f3hn) + 1) - 1 is analyticfor x, x' of- Xk 

even though ~b does not belong to .AI; we have the 

Existence of the Self-Consistent Field (4.1.12) 

The equation 

has a unique solution, which minimizes 3(H n). 

Remarks (4.1.13) 

1. Since 2<xl(exp(f3hno) + 1)-llx) equals La <a:(x)aa(x)no' it is the mean 
electron density in the state determined by the one-particle Hamiltonian 
hno ' 

2. The ease with which the existence of the solution of the generalized 
Hartree equation (4.1.12) was proved depended on the wall potential W. 
In an infinite space without W there fails to be a solution when N > Lk Zk, 
even at absolute zero temperature-the electrons escape to infinity, and 
the infimum is never attained. This is a reflection of the general mathe
matical fact that a strictly convex function need not achieve its infimum 
on a noncompact region; for example l/x never reaches the value 0 
on [1, 00). 

3. A convex function on a finite-dimensional space is continuous on the 
interior of its domain of definition. This is not always the case when the 
dimension ofthe space is infinite, and Ilnll; is in fact not weakly continuous: 
The norms II lie of the charge distributions nR(x) = R- S/2 8(R - Ixl) are 
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all equal, but S d3xnR(x) --+ 0 as R --+ O. Consequently <nRln)c --+ 0 for all 
n, if 

V.( ) = fd3xln(x') L OO (1R3 ) 
n x - I 'I E . x-x 

Since the n's such that v" E L 00 are dense in %, nR ~ 0, even though 
IlnRllc -fr O. There even exist convex functions that fail to be lower semi
continuous, for example the functional of (III: 2.1.15; 2). Of course the 
function n -+ Ilnll; is continuous in norm, but this finer norm topology 
can not be used, because we need the compactness of bounded sets. 

4. At the minimum (4.1.12), it is indeed true that n(x) > 0 and S d3xn(x) = N. 

Lower Bounds for '2(H) (4.1.14) 

In (III, §4.5) upper bounds on the energy were provided by the min-max 
principle, the generalization of which for nonzero temperatures is the 
Peierls-Bogoliubov inequality (2.1.8; 3) with '2 = - F. Because 

\ 
"ZkZI ) H - [iN - L.. - H no 
k > I I Xk - XII no 

1 f d3x d3x' 
= h"2 I x - xii «a:(x)a;(x')ap(x')a.(x»no - no(x)no(x'» 

1 f d3x d3x' 
= -.j"2 I x _ xii I <a:(x)ap(x')\o 12 == - A(nO) < 0, 

where [i = J.1 - 3.68y, it implies that 

ZZ 
'2(H - [iN) ~ '2(Hno) + A(no) - L I X ~ ~ I 

k>l k I 

When this is combined with (4.1.8), it yields 

Two-Sided Bounds for '2 (4.1.15) 

Remarks (4.1.16) 

1. This means that the true partition function exceeds the partition function 
with an effective field by more than A but less than C. 

2. In particular (4.1.15) states for the exchange energy that 0 ~ A ~ C. If 
Z is large, then no approaches the electron density in Thomas-Fermi 
Theory, and we shall discover that S n5/3 '" Z7I3. If y is chosen 
'" (Z7!3 / N)1/2, then C and the additional term 3.68y N in J.1 becomes 
",N1/ 2Z 7 /6 • Since H goes as Z7I3, if N '" Z, then the relative error is 
0(Z-2/3). 
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The Classical Limit (4.1.17) 

The next topic of study is the way in which :B(Hn) approaches the classical 
phase-space integral (2.5.17) as Z ~ 00. According to the general considera
tions of (1.2.4) the interesting limit would be expected to be that in which the 
system shrinks as Z- 1/3. Consider, therefore, a sequence of Hamiltonians 
Hz in which not only do the nuclear charges increase as Zk = ZZb 

Lk Zk = 1, Zk fixed, but also the nuclear coordinates are scaled by changing 
Xk into Z-1 /3 Xk and the wall potential varies at the same time: 

Hz == ~ f d3X[ Va:(x)· Vaa(x) 

+ a:(x)aa(x) ( -Zk~1 Ix _ ::Z 1/3 1 + Z4/3ft(Z1/3X))] 

1 f d3x d3x' Z Z + - L a:(x)a;(x)ap(x')aa(x') I + L k I Z7 /3, 
2o.p Ix-xl k>IIXk-X11 

Hz,n == ~ f d3x{va:(x). Vao(x) 

[ 
M Z f d3xlnZ(x') 

+ a:(x)a,(x) -Zk~1 Ix _ X:Z 1/3 1 + Ix - xii 

+ Z4/3(W(xZ 1/3 ) - p) - 3.68Y]} 

1 fd3Xd3X' -
- - nZ(x)nz(x'); 

2 Ix - xii 
nZ = Z2 n(Z1 /3x ). 

In order always to work in a fixed volume and see what happens in the 
limit Z ~ 00, use a canonical transformation to convert the electron 
coordinates x into Z- 1/3X and pinto Z1 /3p at the same time-this entails 
a(x) ~ Z- 1/2 a(Z-1 /3x )) as well. Since the number of electrons also grows 
as Z, the mean momentum of the electrons grows as Z2I3, and every kind of 
energy per particle, such as Tor p, will depend in the same way on Z. Thus 
if we calculate Tr exp[ - {3z(Hz - pzN)] with {3z = Z-4/3{3, and pz = Z 4/3 p, 
and scale n appropriately, we are led to tr In(l + exp( - {3hn)) with 

_ -2/3 2 "Zj fd3x'n(xl) 
hn - Z Ipl - 71x _ Xjl + Ix _ xii + W(x) - Py 

and 

Py = P + Z- 4 / 3 ·3.68y. 
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Observe that Z-1/3 occurs in the position of Ii, making the limit Z --+ 00 

equivalent to the classical limit Ii --+ O. Now use the bound (2.5.17) with 

1(3 
u2(x) = 8n exp( - I(r). 

The Fourier transform of this density is 

"'" 1(4 
u2(k) = (lkl2 + 1(2)2' 

Consequently J I Vu 12 d3x = 1(2, and if v = l/r, then 

v (q) == Jd 3x-1 lu(x - qW = ~ - exp(-I(q) - ~exp(-I(q) == ~ - v.(q). 
U Ixl q q 2 q 

The Classical Upper Bound (4.1.18) 

Since l/r can not be represented as a smeared potential, VU makes no sense. 
Thus it is first necessary to remove v., the short-range, singular part of l/r, 
and handle it separately. It can be neglected as I( --+ 00, and if the smeared 
remainder is unsmeared, we recover l/r: 

1 
- = Vu + vs ' 
r 

Let he be like the hn of (4.1.17), but with Vu in place of l/r. Then 

hn = he + v., 
_Jd3qd3PI >< 1(-2/3(122'" Zj he - (2n? q,p q,p Z pi -1()-7Iq- Xj l 

f d3xn(x) u ) 

+ I q - X I + W (q) - fly , 

V. = - ~ ZjV.(X - X) + f d3yn(y)vs(X - y). 

In the x-representation, Iq, p> is 

(;:r/2 exp(ip· x) exp( -l(lx - ql), 

and we let WU(x) be the unsmeared wall potential W of (2.5.23). Convexity 
can be appealed to to bound the influence of v.: 

trln(l + exp( - f3hn» :::; tr In(l + exp( - f3he» 
+ IX - 1 tr[ln(l + exp( - f3(he + IX V.))) 
- In(l + exp( - f3hJ)l for all ex ~ 1. 
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The number a will be picked so large that the addition to the first term on the 
right side goes away in the limit Z -> 00. By (2.5.17), the second term is 
bounded by 

trln(l + exp(-phc» ~ Jd:~n~:Pln(l + exp [ _p(Z-2/3(IPI2 - K2) 

Zj J d3xn(x) " )J) - ~ I q - X j I + I q - x I + W (q) - J1 y 

J d3q d3p ( [( 2 Zj 
= Z (2n)3 In 1 + exp -P Ipi - ~ Iq _ Xjl 

+ J d3xn(x) + W"(q) - J1 - Z-2/3K2)J). 
Iq - xl Y 

The additional part containing V. can be taken care of because even for a 
singular potential Vex) E L5/2(~3) there is a bound of this form weakened 
by a factor C ~ 7: 

tr In(l + exp[ - P( I P 12 + Vex»~]) 

J d3p d3q 
~ c (2n)3 In(1 + exp[ - P( I P 12 + V(q»]). (4.1.19) 

The derivation of this formula is left for Problems 1 and 2. In this case it 
leaves us with 

tr In(1 + exp[ - P(hc + a v.m 
Jd3q d3p ( [ ~ cZ (2n)3 In 1 + exp _P(lpI 2 + W"(q) 

- ~ Zj(lq ~ Xjl + (a - l)vsCq - X)) 

+ J d3yn(Y)(lq ~ yl + (a - l)vs(q - y») - J1 y - Z-2/3K2)J). 
It remains to be shown that a and K can be sent to infinity with Z in such a 
way that the additions to the classical one-particle potential in the effective 
field become negligible. To this end assume that W" tends to infinity outside 
some compact set K containing the Xi so rapidly that the contribution to the 
integral over the complement CK is insignificant, that is, IK d3q InC· .. ) 
> IeK d3q InC· .. ) for alIa> o. Then it suffices to estimate the integral over 
K, which can be done in terms of the U norms of the potential on K, i.e., 
1IVIlp = (IK d3qlV(q)IP)1 IP• If Ixl- == Ix10( -x), then 

In(1 + exp( -x» = Ixl- + In(1 + exp( -Ixl» ~ Ixl- + exp( -lxI), 
and if 

qEK_ == {qEKIV(q) < O}, 
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then with s = I V(q)I'1, 

I == 1'>0 dsJe In(1 + exp[ - f3(s + V(q»]) 

< {Xl d'1Jri(f3I'1 _ ll_lV(q)15/2 + lV(q) 13/2 exp[ -f3 lV(q) I 1'1 - 11]), 

and ifqEK+ == {qEKIV(q) > O}, then 

1< L'°d'1JriV(q)3/2exP[-f3V(q)('1 + 1)]. 

Because 1'1 - 11 :::; '1 + 1 for all '1 ~ 0 and 

{Xl dsJe In(1 + exp( - f3s» < f3- 3/2 fi12, 

if K' = K + U K _ , then 

L d3q f" dsJe In(1 + exp[ - f3(s + V(q»]) 

< ( d3q (00 d'1Jri(f3IV(q)I~21'1- 11_ JK , Jo 

+ lV(q) 13/2 exp[ -f3IV(q) I 1'1 - 11]) + f3- 3/ 2 f. 
The required bound now follows from 

Loo 
dsJeexp(-yls - 11):::; f dsJe + Loo 

ds(Je + l)exp(-ys) 

= ~ + y-l + fi y-3/2 
3 2' 

for 

LOO 

dsJe L d3q In(1 + exp[ - f3(s + V(q»]) 

:::; L d3q[~~ 1V1~2 + ~1V13/2 + P-11V11/2 + fif3- 3I2 ]. 

In the case at hand, since II V.II p - K 1 - 3/p and 

Jd3xIV + (a - l)V.I P :::; (11V11p + (a - 1)11V.llpY, 

or, respectively, 
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it follows that } + exp[ - f3(hc + rx v,)] remains bounded in the limit as 
rx and K ~ 00 when rx ~ K1/5. If K goes as Z 1/3-" 0 < e < t, then the cor
rection Z-2/3 K 2 to the kinetic energy tends to zero, and all corrections to the 
classical one-particle phase-space integral with the effective field are smaller 
than this quantity by a factor Z- 1/15 +</5. The quantity /1y is no trouble at all, 
since it approaches /1, provided that yZ-4/3 ~ O. Likewise, WU(q) and Wu(q) 
approach W(q) in the limit K ~ 00. 

The Classical Lower Bound (4.1.20) 

For the classical bound (2.5.17), the l/r occurring in the classical phase-space 
integral has to be replaced with Vu = l/r - Vs' As before, convexity is useful 
for estimating the influence of the vs ' except that this time the convexity of 
ffor rx > 0, 

f( -1) ~ f(O) + f(O) - f(rx) , 
rx 

is used for the other side of the equation. The result is 

tr In(} + exp( - f3h n)) 

~ Z fd;~~:Pln(1 + exp [ -f3{IPI 2 + Z-2/3 K2 - /1y + WuCq) 

- ~ZjCq ~ Xjl - vsCq - X)) 

+ fd3xn(x)Cq~XI-VsCq-X))}]) 

~ Z fd3qd:P [In(1 + eXP[-f3{IPI2 + Z- 2 /3K 2 _ L Zj 
(2n) j Iq - Xjl 

+ f ~:~(:~ + W(q) - /1y}]) (1 + ~) 

- ~ In(1 + exp [ -f3{IPI 2 + Z-2/3 K 2 

- Lz/lq - Xj l- 1 + rxvsCq - X)) 
j 

The integrals that show up are the same as for the upper bounds, so with 
rx = K 1/5 , K = Z1 /3-" 0 < e < t, the corrections to the classical expression 
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vanish as Z --+ 00. The n(x) considered earlier was constant, while that 
defined by (4.1.12) depends on Z. However, it is shown in Problem 4 that the 
minimum values also converge, so our bounds prove the 

Classical Limit of the Partition Function (4.1. 21 ) 

lim Z-1 In Tr exp[ _f3(Z-4/3 Hz - ,uN)] 
Z-oo 

According to Remark (2.5.18; 4), the optimal density for this formula satisfies 

(4.1.22) 

Remarks (4.1.23) 

1. The classical functional also has Properties (4.1.10), which ensure the 
existence and uniqueness of a solution of (4.1.22). 

2. As yet unproved conjectures [11] imply that Equation (4.1.19) holds even 
with c = 1. If that turns out to be true, then many of the proofs given 
here can be simplified. 

The Density in Phase Space (4.1.24) 

Now that :=: has been shown to converge, we can study the limiting behavior 
ofthe expectation values of a suitable subalgebra of observables. The densities 
on classical phase space would seem to be an appropriate sub algebra, since in 
the classical limit Z --+ 00 it ought to make sense to speak of position and 
momentum simultaneously. As mentioned above (cf. (1.2.4» position goes as 
Z- 1/ 3 while momentum goes as Z2 /3, so the product of their relative mean
square deviations would be expected to go as Z - 2f3, and as Z --+ 00 the 
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physics should become classical. This rather airy argument can be made 
mathematically substantial, and we shall discover that in convenient units, 
fermions distribute themselves in phase space according to 

[ { z· fd3xn(x) } J-1 
p(q, p) = exp f3 Ipl2 - ~ Iq _1 Xjl + Ix _ ql + W(q) - f..l + 1 . 

Particularly interesting is the observation that fermions behave more classi
cally than bosons. The latter have a -1 in the denominator, so p(q, p) 
becomes negative when q = Xj, and thus can not turn out to be a probability 
density on phase space. 

To make the connection with (2.2.10; 5) we define creation and annihila
tion operators at the point (q, p) in phase space, and choose u as a sufficiently 
smooth, decreasing function such that IIul1 2 = 1, like the function of (4.1.17): 

The Field Algebra on Phase Space (4.1.25) 

The operators 

aq,p;a = Z3,/2 f d3xaaCx) exp(iZ2/3p . x)u(Z'(x - Z-l/3p», 

t < e < 1, u* = u, 

satisfy the commutation relations 

[aq,p;a,a:"p';p]+ = bap f d3xexp(iZ2f3-,x·(p - p'»u(x - Z,-1/3q) 

X u(x - Z'- l/3q'). 

If q = q' and p = p', then the right side is bap , and otherwise it goes to zero as 
Z --> 00. Hence Pq,p = La a:,p;aaq,p;a are bounded above and below by 
0::;; Pq,p ::;; 2, and generate an algebra that is Abelian in the limit Z --> 00. 

Defining dO. == d3q d3p/(2n)\ we calculate 

f do.pq,pF(q) = Z-l~ f d3xa:(x)aaCx)Z3'lu(Z3(x - x')W 

x F(Zl/3 X') d3x', 

f do.pq,plpl2 = Z-7/3 ~ f d3x(Va:(x)· Vaa(x) 

+ a:(x)aix)Z2, f d3y I Vu(y) 12) 

f dO. dO.' ~q,p~q",j' = Z-7/3 L f d3x d3x'a:(x)at(x')ap(x')aaCx )vuu(x - x') 
q q a,p 

(4.1.26) 
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where F E L OO([R3) and 

o < v (x _ x') == f d3 d3 , I u(Z"(x - q)) 121 u(Z"(x' - q')W Z6"< 1 . 
- uu q q Iq-q'l Ix-x'i 

Remarks (4.1.27) 

1. As Z ---+ 00, Z3" I u(Z"(x - x')) 12 approaches b(x - x'). It is not hard to 
convince oneself that when the classical Hamiltonian with P or p. p is 
integrated, the result is H to order Z7!3. 

2. For neutral states, i.e., La <Na) = Z, it follows that <S dnpq,p) = 1. 

The convexity of the partition function (2.4.7) can be used to calculate 
an expectation value by allowing it to be written as the derivative of the 
partition function by a perturbation parameter. We shall show that the 
perturbed E still converges as Z ---+ 00, which will simultaneously prove that 
the foregoing results are stable against small variations in H. The limit will 
turn out to be likewise convex and differentiable in the perturbation param
eters, so by Problem (2.4.18; 3) the limit of the derivative is the derivative of 
the limit. Since our real aim is to prove that the expectation value of Pq , p 

approaches the Thomas-Fermi density and that the deviations of Pq,p 
vanish, we will perturb H both linearly and quadratically in p. To an accuracy 
of Z-2/3 we can by-pass the intermediate steps (4.1.15), so we shall not 
require the more refined inequality (4.1.5). Thus we get by with a somewhat 
simpler effective Hamiltonian. 

The Perturbed Hamiltonian (4.1.28) 

H;,.,n == f d3x ~ {va:(x). Vaix) + a:(x)aix) 

x [-Z f Zk 1/3 + Z4/3(W(Zl/3X) - /l)J} 
k=llx-Z Xkl 

7/3 f dn dn' 1 ) (' ') + Z Iq _ q'l (pq,p - z-n(q, p) n q, p 
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where A.iEIR and fEeD' We shall choose n(q,p) as <Pq,p) and let g == 
J dOn(q, p)f(q, p). With the idea of (4.1.24), because 0 :$; vuu(x) :$; 1/1 x I, 

1 f d3x d3x' 
= "2 I x - x'i a:(x)al(x')ap(x')a",(x) 

7/3 f dOdO' 1. ' , - z Iq _ q'l (pq,p - 2n(q, p»n(q, p) 

+ Z7f3 ? (f dOpq,pf(q, p) - g)2 

Z 7/ 3 f 
~ -2- dO dO'(Pq,p - n(q, p»(pq',p' - n(q', p'» 

x [Iq ~ q'l + A.2 f(q, p)f(q', P')] - ~ vuiO). 

Remarks (4.1.29) 

1. Since the Fourier transform in the q variables, J(k, p), decreases in k 
faster than any power, Ikl2 + A.2 J(k, p)J(k, p') is positive for sufficiently 
small I .12 1. The expression in square brackets [ ... J is then of positive type, 
and the inequality extends to the statement that 

4/3 7/3" ZkZm N 0 H;. - Z Jl.N - Z L.J - H;., n ~ - - Vuu( ). 
k>m IXk - Xml 2 

It is easy to calculate that vuu(O) '" Z', so the right side is dominated by 
Z7f3, and in the limit as Z -+ 00, 

Z- 13(Z-4/3H;. - Jl.N):$; Z- 13(Z-4/3H;.,n) - L IX Z~mx I' 
k>m k m 

2. According to (4.1.24), 

Z7f3 f dO dO' Pi;~~',P') = ~ f d3x d3x'a:(x)aix)vix - x')n(x'), 

where 

f d3p 
n(x) = (2n)3 n(x, p). 

Therefore the Coulomb repulsion of the electrons in the Hamiltonian 
H;. n of (4.1.28) is reduced by v. = l/r - VU' As in (4.1.14) the Hamiltonian 
H;., n with Vu in place of l/r furnishes a lower bound for 3. On the other 
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hand, it was shown in (4.1.18) and (4.1.20) that the effect of v. on S(H;. n) 
was negligible as Z --+ 00. Moreover, J dOpq,pf(q, p) is the seco~d 
quantization of the one-particle operator J dOlq, p)(q, plf(q, p), Iq, p) 
= exp(ip· x)u(x - q), the expectation value of which in the state Iq', pi) 
reduces to f(q', pi) in the limit Z --+ 00. The generalization of (4.1.21) is 
consequently 

lim Z-l In Tr exp[ _P(Z- 4 / 3H;. - ,uN)] 
Z-+oo 

(4.1.30) 

where 

A ] }-1 + W(q) + f(q, p)(Al + A2g;.) - ; g~ -,u + 1 , 

g;. = f dOn;.(q, p)f(q, p), 

and 1..121 is sufficiently small. 

Differentiation by ..11 and ..12 at ..11 = ..12 = 0 and an optimization of 
f E CW~6) reveal the 

Convergence ofthe Expectation Values (4.1.31) 

lim ( ) == lim Tr(pq,p exp[ -P(Z-4/3H z - ,uN)]) 
Z-+oo Pq,p Z Z-+oo Tr exp[Z 4 13Hz - ,uN] 

= 2{exp [p(IPI2 - t Iq ~k Xkl 

f d3qlno(q') )] }-1 + Iq _ q'l + W(q) - ,u + 1 = no(q, p), 

lim (pq,p, Pq',p.)Z = no(q, p)no(q', pi). 
Z-+C() 
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Remarks (4.1.32) 

1. Since f is not arbitrary, but assumed in q(~6), the limit converges only 
in the sense of distributions. The C* algebra d z generated by the 
"smeared" densities on phase space, pg == J dOg(q, p)pq,p, together with 
the identity becomes Abelian in the" weak" limit Z ~ 00. Hence, according 
to the Gel'fand isomorphism (III: 2.2.28), if Z = 00, then d z can be 
represented as the set of continuous functions on a compact Hausdorff 
space. The space of characters of an Abelian C* algebra d, i.e., *-homo
morphisms from d to C, is the same as the set tff of pure states and is a 
compact Hausdorff space in the (relative) weak-* topology. With the 
identification [a] (w) = w(a) E C for all a E d and WE tff, d is equivalent 
to the C* algebra of the continuous functions with the supremum norm 
on the set tff, given the weak-* topology. In our case, tff = {n E L 00(~6) I n 
~ 0 a.e., Ilnll oo ::; 2}, with the weak-* topology with respect to the linear 
functionals belonging to the predual L 1(~6). (Since C5(~6) is dense 
in L 1(~6) in norm, the corresponding weak-* topologies agree on L 00(~6).) 
Since tff is the intersection of the cone of the functions that are non
negative a.e., which is a weak-* closed set, with a multiple of the unit 
cube of L 00, it is weak-* comnact. The Gel'fand isomorphism correlates 
pg with the mapping [pg](n) = J ng dO, and since II[pg] - [pg,]lIoo 
::; 211 g - g'lll' the completion contains for instance all pg such that 
gEL 1(~6). The set of all states on the algebra is the weak-* closure of the 
convex combinations of characters and can be represented as a set of 
probability measures; pure states correspond to point measures. If the 
state is mixed, IX( )nl + (1 - IX)( )n2' then the two-point function 
can not be factorized: 

IX(Pz1Pz,)nl + (1 - 1X)(Pz1Pz,)n2 = IXn1(zl)n1(z2) + (1 - lX)n2(zl)niz2) 

= (IX(Pz)nl + (1 - IX) (Pz)n2)(IX(Pz,)nl 

+ (1 - 1X)(Pz,)n2) for all Zt> Z2 

=> n1(z) = n2(z) for all z = (q, p). 

Hence it follows from (4.1.31) that the limiting state is a character, and 
consequently pure. 

2. Although the system acts classically on a distance scale '" Z-1 /3, it 
would be expected to behave like a free Fermi gas on the scale Z- 2/3 '" the 
average distance between particles '" reciprocal of momentum. If the 
microscopic field operators 



4.1 Thomas-Fermi Theory 227 

are introduced, it can be seen from (4.1.31) that its expectation value 
for free Fermions is 

_ J 3 * (-~) (~) [- 1/3 2 _ Z-1/31~12JZl/2 - d zaq+x "2 aq+x 2 exp Z Ixl 4 n3/2 ' 

where the chemical potential is determined by the potential V(q) at the 
point q, and we set e = 1, U = n- 3/4 exp( -lxI 2/2), 

_ J 3 * (-~) (~) [_ 1/3 2 _ Z-1/31~12J Zl/2 
- d xaq+x 2 aq+ x 2 exp Z Ixl 4 n3/2' 

Therefore 

3. Results have also been obtained concerning the time-evolution in the 
limit Z --> 00 [26], but they have only been proved for regularized 
potentials Vu and not for 1/r, so they will not be presented here. At any 
rate the time-evolution of w(a t ), where the nonstationary state w has the 
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same scaling properties as the grand canonical state p, is the free time
evolution, as is that of p(atb), when only the microscopic observables 
(4.1.32; 2) are considered. The equation for the expectation values of the 
macroscopic observables Pq, p is known as the Vlasov equation; it describes 
a classical time-evolution according to 

dn on aVon 
-=p.--_.-
dt oq oq op' 

where the potential itself depends on the particle density, 

Zk J dV d3p' n(q', pi) 
V(q) = - L I + 3 I • 

k q-Xkl (2n) Iq-ql 

Thomas-Fermi theory thus reduces the quantum-mechanical many-body 
problem to the solution of the integral equation (4.1.22). Although (4.1.22) 
is much simpler than the original Schrodinger equation, it can still be solved 
with reasonable numerical effort and skill only in the radially symmetric 
case. Despite that, some valuable relationships and properties can be ob
tained just from the maximum property. 

The Relationships among the Contributions to S (4.1.33) 

Write 

= inf Jd3q d:p {2T[n(q, p) In n(q, p) + (1 _ n(q, P)) In(1 - n(q, P»)] 
O';;n,;;2 (2n) 2 2 2 2 

( 
2 ~ Zj 

+ n( q, p) - J1 + I p I - /;;'1 I q - X j I 

1 J d3q' d3p' n(q', pi) W )} 
+ 2 2(n)3 Iq - q'l + (q) 

= - TS - J1A + K - A + R + W, 

where 

K is the kinetic energy of the electrons, A is the potential attracting the electrons 
to the nuclei, and R is the interelectronic repulsion. Then for the values of J1 
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at which the infimum is attained as a minimum (at a given phase-space density 
no), 

(i) -3(TS + J,lA.) + 5K - 3A + 6R + 3W = 0; and 
(ii) if an atom is isolated and in the ground state, i.e., M = 1, X I = 0, W = 0, 

T = 0, then 

- 3J,lA. + 3K - 2A + 5R = 0. 

Proof 

(i) Take the infimum over n' of the form no(q, y-Ip). A change of the varia
bles of integration P -+ YIP converts (4.1.33) into 

-yi(TS + J,lA. + A - W) + yiK + y~R. 
This has its minimum at YI = 1 when condition (i) holds. 

(ii) Now dilate q so that n(q, p) = no(yilq, p), and proceed as before; then 

d 3 2 5 
-d [Y2(K - J,lA.) - Y2 A + Y2 RJln =1 = ° 

Y2 

yields Relationship (ii). 

Corollary (4.1.34) 

o 

In case (ii) with J,l = 0, the three contributions to the energy stand in the 
ratio 

K:A:R = 3:7: 1. 

Remarks (4.1.35) 

1. The dilatation required for (ii) affects the nuclear coordinates (other than 
Xl = 0) and the wall. The reason for setting T = ° was to avoid problems 
connected with the latter. 

2. Since A, K, and R are positive, the second derivatives at Y = 1 are auto
matically positive. 

3. If T = J,l = 0, then - S becomes the minimum of the energy without 
fixed particle number. We shall learn that the minimum is achieved by a 
neutral system in Thomas-Fermi theory, and that in case (ii) 

f d3q d3p 
(21lV no(q, p) = ZI' 

The comparison densities n(y-1q, p) and n(q, y-lp) correspond to 
different numbers of particles, and the mystical numbers in (4.1.34) 
reflect the stability of neutral atoms against spontaneous ionization. 
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In the limit T-+ 0, the quantity (exp[p(e - a)] + 1)-1 approaches 
0(a - e). In that case Wmay be chosen identically zero, and the integration 
over p becomes elementary. The computation yields 

The Electron Density in Configuration Space (4.1.36) 

- f d3p _ 1 3/2 
p(x) = (2n)3 no(x, p) - 3n21<l>(X) + Ill+ , Izl+ == IzI0(z), 

<l>(x) == L Zj _ fd3X' p(x'). 
j Ix-Xjl Ix-x'i 

The kinetic-energy density is 

f d3p 
(2n)3 I p 12no(x, p) = ~(3n2)2/3 p5/3(X). 

(Since the particles have spin 1/2, the factor (6n2)2/3 of (2.5.32) has become 
(3n2 )2/3.) 

This reveals 

The Range of Values of Il and <l>(x)(4.1.37) 

(i) Il takes on the values - 00 < Il ~ 0; and 
(ii) <l> takes on the values 0 ~ <l> < 00. 

Proof 

We shall only demonstrate the impossibility of Il > 0 and <l> < 0; Problem 3 
will assure us that a minimizing p exists for all f1. ~ 0, and it can be seen 
directly that <l>(x) ranges over [0, (0) as x ranges over ~3. 

(i) Since p(x) must be integrable, <l>(x) -+ 0 as I x I -+ 00. If Il > 0, then p(x) 
would have to approach f1.3/2/3n2 as I x I -+ 00, which would contradict 
integrability. 

(ii) The set A == {x E ~3: <l>(x) < O} is open and does not contain Xi' Because 
Il ~ 0, the density p vanishes identically on A, so d<l>(x) = 0 holds 
throughout A. Since <l> equals zero on the boundary of A and at infinity 
and is harmonic, it would have to equal zero on A, because its maximum 
would be attained either on 8A or at infinity. However, this contradicts 
the definition of A, so A must be empty. D 

The quantity A. == J d3xp(x) = limz-+oo N/Z, where N is the number 
of electrons and Z is the sum of the nuclear charges, is more intuitively 
understandable than Il. By expressing the energy as a function of A., we can 
find the limits of the observables studied in (III: §4.5). 
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Properties ofthe Thomas-Fermi Functional at T = 0 (4.1.38) 

Let 

and 

K(p) = ~(31t2)2/3 f d3Xp 5/3(X), 

A( ) = '\' . f d3xp(x) 
p 7 Zj lx-Xl 

1 f d3x d3x' 
R(p) = 2 I x _ x'i p(x)p(x'), 

E(p) == K(p) - A(p) + R(p), 

Then E[A] = infpes .. E(p) satisfies 

. (_ '\' Zk Z / ) 
E[A] = -mf '='oo(J1.,O) - J1.A + L.. IX _ X I ' 

/l k>/ k / 

(i) 

Z-+ 00 

(ii) OE/OA = J1. if A ::; 1, and = 0 if A > 1; 
(iii) E[A] is a nonpositive, convex, decreasing function of A; and 

231 

(iv) in the atomic case Z 1 = 1, all other Zi = 0, - A -1/6( - E[A])1/2 is a concave, 
increasing function of A 

Proof 

(i) Observe first that E[A] is convex, since the convexity of E(p) as a 
function of p means that E[IXAl + (1 - IX)A2] ::; E(IXPl + (1 - IX)P2) 
::; IXE[Al] + (1 - IX)E[A2], in which E[A;] = E(Pi), because IXPl + 
(1-IX)P2ESIXA1+(1-IX)A2' As remarked in (2.4.15;2(i», the Legendre 
transformation 

( 
, '\' ZkZm ) _ ., E(p) - J1.A + L.. 

-'='oo(J1.,O) = mf mf k>m IXk - Xml 
A peS .. 

can be inverted for the concave function - E[A], yielding (i). 
(ii) The formula dE/dA = J1. will follow from Property (i) once E[A] has been 

shown to be differentiable. Let PA denote the minimizing P (4.1.36). 
A calculation shows that 

o 
ot E(p;.(1 + t»lt=o = J1.A, 
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so E[(l + t)A] - E[A] ::::; tf1A + o(t) and E[(1 - t)A] - E[A] ::::; - tf1A 
+ o(t). In the limit t ~ 0, this becomes dE/dA = f.1. It remains to show 
that A < 1 ¢:> f1 < 0 and A = 1 ~ f1 = 0, which ~ A ~ 1. Note that <I> 
goes asymptotically as (l - A)/r. If f1 were 0, then 

P r--+oo __ (
1 - A)3/2 

'" , r 

which would not be integrable; thus f1 must be negative when A < 1. 
When A > 1, there is no minimum, since if there were, then <I> would be 
negative as r ~ 00, which is impossible because of (4. 1.37). However, the 
infimum has to be E(l), since for A > 1 and for any e > 0 a P can be 
constructed such that E(p) < E(1) + e; start with a PI with A = 1 
and compact support, and such that E(Pl) ::::; E(l) + e/2, and then let 

kE N, 

where the characteristic functions Xk satisfy XkPI == 0 and Ilxklll = 
k(A - 1) to ensure that PkES;.. Then Ilpl - Pkllp ~ 0 for all p> 1, 
and it is easy to verify that E(Pk) ~ E(p 1). This accords with the intuitive 
feeling that a thin electron cloud at a great distance affects the energy 
only slightly. It means that E[A] decreases while 0 < A < 1, and 
becomes constant thereafter. 

(iii) This follows from the proofs of (i) and (ii), since f1 ::::; O. 
(iv) Make both of the scaling transformations of (4.1.33) simultaneously 

and define 

inf(K(p) - ZA(p) + aR(p» = Z2 inf(K(p) - A(p) + i R(p» 
PES, PES, 

This is the infimum of a set of linear functions and consequently concave 
in (Z, a). The condition that 

8~2 ::2 ::::; (8~ar 
implies that 21" ::::; i'2/!, so -~ is concave. Becausei' = R(p) > 0, 
the function f is increasing. With still another scaling transformation, 
with p(x) = Ap(A 2i3x), 

f(A) = inf(K(p) - A(p) + AR(p» = r 1/ 3 inf (K(p) - A(p) + R(p» 
PES, PESA 

D 
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The at first sight contradictory properties (iii) and (iv) determine the 
form of E[A] rather narrowly for an atom, making it almost linear: 

Properties off(A) = A -1/3E(A) for an Atom (4.1.39) 

. f' 1 f' (1) 0 ~ ~ - 3A ' 

(oo) 2f 21' f" f,2 
Il 9A2 - 3A ~ ~ 2f' 

Proof 

(i) This follows from E' < 0 and I' = r 4 /3R(p;) = R(PI) > 0, where PA 
and PI are the minimizing densities of SA and SI' 

(ii) This follows from E" ~ 0 and the concavity of -~ . 0 

Consequence (4.1.40) 

1. With the aid of the virial theorem, 2K = A - R, which follows from 
(4.1.33) for any JI., Property (i) may be rewritten as 7R(PA) < A(PA)' 
o ~ A < 1. This generalizes Corollary (4.1.34), which held for A = 1 => 

JI. = 0, to the statement that 7 R = A, provided that 0 ~ A < 1. 
2. It is not hard to calculate analytically that f(O) = -0.572 and 1'(0) 

= 0.2424 (Problem 4); computer analysis of the Thomas-Fermi equation 
has shown that f(l) is -0.384, and by (4.l.38(ii» and (4.1.34), f'(l) = 
-f(1)/3. Integrating Property (ii) leads to the bounds 

max{ _r 1/6 If(1)1 1/2 , -Alf(1)1 1/2 - (l - A)lf(0)11/2} ::; -If(A)1 112 

~ min{-lf(0)1 1/2 (1 +~~~~:), -If(1)1 112 7 ~ A} 

(cf. (III: 4.3.21). The concave hull of the left side can be taken, in which 
case the greatest difference between the bounds is <2% (see Figure 29). 
Since this is already better accuracy than that of the Thomas-Fermi 
theory itself, there is no point in making fancy numerical calculations 
of E[A]. 

If from (4.1.36) we now deduce 

The Thomas-Fermi Equation (4.1.41) 

in the form 

4 
~<I>(x) = -41t<5 3(x) + 4np(x) = -4n(P(x) + 3n IJI. + <I>(X)I~2, 
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Figure 29 The bounds (4.1.40; 2) from the concavity of f().) = ). - 1/3 E()'). The hatched 
region is allowed. 

then it reduces to j(, X" = X3!20(X) for spherically symmetric densities, 
with the substitution I x I = r = ( 3n:/4)2!3, <I>(x) + fJ = x(O!r. The delta 
function is taken care of by the boundary condition X(O) = 1. The second 
boundary condition, required to make the solution unique, is x'( 00 ) = fJ, 
which follows from J p :s; 1 with Gauss's theorem. The function X is concave 
and decreasing, and has the limiting forms 

~1-1.59( 
X(O ~ 144/(3 

for fJ = O. This means that for neutral atoms p behaves like r- 3/ 2 at small r, 
and like r- 6 at large r. A numerical solution is shown in Figure 30. A compu-
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x 

x = r(3n2p)2/3 as a function of ( = r(4/3n)2/3 

oL-------======~======--
Figure 30 The Thomas-Fermi density of an atom. 

tation of the energy of the solution yields the value E(1) = -0.384, i.e., 
-0.77 atomic units, or -20.7 eV. 

The final proposition deduced from Thomas-Fermi theory will be that 
there is no chemical binding, which means that actual chemical binding 
energies must be smaller than the errors in the theory. In §4.3 it will be learned 
that this theory with some constants changed gives a lower bound for 
quantum-mechanical energies even for finite Z, and thereby leads to a simple 
proof of the stability of matter. Finally, we shall obtain the long-deferred 
proof of Inequality (4.1.5). 

Monotony of the Thomas-Fermi Potential with Respect to the Nuclear 
Charges (4.1.42) 

Let ~ 1.2 and P 1.2 be the solutions of the Thomas-Fermi equation with J1 = 0 
and nuclear charges Zk1 ,2). If 41) 2:: Zk2 ) for all k, then ~1 (x) 2:: ~2(X) and 
P1(X) 2:: P2(X) for all x. 

Remarks (4.1.43) 

1. The normalization Lk z~) = 1 has of course been dropped. 
2. The condition J1 = 0 means J d3xP1(x) = Lk zF) 2:: J d3xpz<x) = Lk 42 ). 

3. This can be interpreted as showing how increasing all the nuclear charges 
causes the configuration with lower energy to have a higher electron 
density. 

Proof 

As in the proof of (4.1.37(ii)), let A == {XE~3:~1(X) < ~2(X)}. Then A is 
open and contains none of the Xb and on it t/I(x) == ~1 (x) - ~2(X) is 
negative, continuous, and satisfies 

At/lIA = (~i/2 - ~~/2) IA < O. 
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Hence 1/1 approaches its infimum on A either on the boundary or at infinity. 
Since it then vanishes throughout A, the set A must be empty. 0 

The next fact to show is that molecular energies are always greater than 
those of the isolated atoms. This will require the 

Feynman-Hellmann Formula of Thomas-Fermi Theory (4.1.44) 

Let E(Z) = infp(K(p) - ZA(p) + R(p». Then oEloZ = -A(pz), where 
pz is the density that minimizes E(Z). 

Proof 

The function E(Z) is concave, and its right and left derivatives are 
lim. to (-A(pz±.», another consequence of the interplay between the 
concavity of E(Z) and the convexity of the functional in the variable p as in 
(4.1.38(ii». Since, as shown in Problem 3, for any Z there exists a unique 
minimizing pz on a certain compact set, the densities pz depend continuously 
on Z. In fact the individual contributions to E(Z) are continuous in Z as well 
as E(Z) itself. Therefore both the right and the left derivative coincide with 
-A(pz). 0 

Let us now start treating E as a function of each of the nuclear charges, so 

E( ) . f{3(3 2)2/3 f 5/3 ~ f p(x) Zl"'" ZM = In "5 n P - L... Zk I _ X I 
peS k; 1 X k 

and define 

E(Z) = E(ZZl' ZZ2"'" ZZM), 

E 1(Z) = E(ZZl"'" ZZj' 0, 0, ... ), 

E2(Z) = E(O, ... ,0, ZZj+ 1, ..• , ZZM)' 

Let p ~ P1,2 and <I> ~ <1>1,2 be the solutions of the appropriately subscripted 
Thomas-Fermi equations. Then 



4.1 Thomas-Fermi Theory 237 

and likewise for E 2' The difference between the energy of the total system and 
the sum of the energies of the subsystems is easily found to satisfy 

aE aEl aE2 j M 
- - - - - = L Zk(lI>(Xk) - lI>l (xk)) + L Zk(lI>(Xk) - lI>2(Xk)) ;::: 0. 
az az az k;l k;j+1 

Since E and E 1.2 become zero when Z = 0, this calculation proves the 

Instability of Molecules in Thomas-Fermi Theory (4.1.45) 

Remarks (4.1.46) 

1. In the absence of nuclear repulsion the inequality is reversed; in that case 

Although Thomas-Fermi theory predicts some attraction between the 
nuclei, it is weaker than their Coulomb repulsion. It can even be shown 
that if the nuclear coordinates are scaled by X k ~ RXb then E is a convex, 
decreasing function of R. Thus Thomas-Fermi theory predicts positive 
pressure and compressibility. However, the molecular energy is not a sum 
of pair potentials, but contains many-body potentials with alternating 
signs [34]. 

2. An alternative version of this theorem reads 

- ~ (3n2)2/3 J p5/3 + ~ E(Zk) 

for all X k E 1R3 and pES. If K(p) is replaced with (l/y)K(p), then, because 
of the way dilatations affect single atoms, E(Zk) becomes yE(Zk)' The 
computed value E(l) = -0.384 then leads to Equation (4.1.5), provided 
that Xk are interpreted as the coordinates of the electrons. 

3. The proof of (4.1.45) works the same way for a Yukawa potential 
exp( - w)/r in place of l/r. Because il exp( - w)/r + 4nJ 3(x) = 

p.2 exp( - w)/r > 0, the argument with subharmonicity likewise works: 
ill/! IA = lI>i/2 - lI>~/2 + p.2(lI>l - lI>2) < 0, which implies that A must be 
empty. 
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Problems (4.1.47) 

1. Let H = I p IZ + V (x) act on L z(1R 3 ), and assume that IV 1_ E L S/2(1R3) and let ej 

be the negative eigenvalues of H. Use the bound of Ghirardi and Rimini (III: 3.5.37; 2) 
to show that 

L: led s ~ f d3x I V(X)I5}2 
j 15n 

and derive Inequality (4.1.19) from this fact. 

2. Use Problem 1 to prove the inequality 

for spin - t fermions, where 

p(x l ) = N L: f d3x 2 ··· d3xNII/I(x l , X z,"" xN ; (X2"'" (XN)I Z, 
"i 

(X being the spin index. (Hint: use p2!3 as the potential in Problem 1.) 

3. Show that the sets S == {pELI n L 5/3: p;::o: 0, Ilplll s N, IIplls/3 S K} are compact 
in the weak L S/3 topology, and that the functional S -> IR: 

E(p) = !(3nZ)2/3 f d3Xp S/\X) - f d3xp(x) (L: Zk + 11) 
k Ix - Xkl 

Ifd3Xd3x, Zk Z , 

+ 2 Ix - x'i p(x)p(x') + k~j IXk _lXjl 

has Properties (4.1.1 0) if 11 sO: It is 

(i) weakly L S/3 lower semicontinuous; 
(ii) strictly convex; and 

(iii) ;::0: !(3nZ)ZI31Ipll~)~ - 3(~)S/6(8n)1/31Ipll~)~ + 111111plll' 

Conclude that the infimum is attained, and in fact precisely with the p of (4.1.36). 

4. Solve the Thomas-Fermi equation without Coulomb repulsion, compare with 
(III: 4.5.9), and conclude that the next correction is 0(N6/3). Use the solution to 
calculate f(O) and {'(O) of (4.1.40; 2). 

5. Minimize the functional 

and use the result for a new derivation of (III: 4.5.24): 

for all Xj E IR\ pEL I n L 2. 
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Solutions (4.1.48) 

1. Let N iV) denote the number of eigenvalues less than or equal to E. According to 
(III: 3.5.37; 2), for allrx > 0, 

~ ~ fd3XiV(X) + ~i2. 
411:y' 2rx 2 -

The last step used Young's inequality, Ilf· (v * g)111 ~ Ilvll l Ilf11211g112' Now simply 
think about what N iV) means (see Figure 31). 

~ leiV)1 = f' drxN_.(V) ~ ~ f d3x flV(X)'- ~ (V(X) + ~r 

= 1:11: f d3xI V(X)I~2. 
If I VI- E L 5 /2 , then the negative part of the spectrum of H is discrete, and we may 
also write 

The partition function can be bounded with the observation that 

In(1 + exp(-f3H)) = t"'", dEIH - EI-f3(1 + exp(f3E))-1 ~ 

f 
d3X d3p 

tr In(1 + exp[ -f3(lpI2 + Vex))]) ~ 411: (211:)3 In(1 + exp[ -f3(lpI2 + Vex))]). 

Figure 31 The dependence of the function N i V) on E. 
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2. Let 

P±(xl)=N L fd3X2···d3xNII/I(XI,X2, ... ,xN;±,:X2"",:XN)IZ 
:I2 ... ·,:1.N 

be the densities ofthe electrons with spin ± t and K = T(S p~ 3 + S P~ 3) - I. Because 
of Problem I and the min-max principle the lowest energy Eo of the Hamiltonian 

H = ~ (IPiI 2 _ 5: [ni.+p~3(x;) + ni._p~3(X;)]). 
where ni. + are the spin projections, satisfies the inequalities 

This implies that K 2': !(3n/2)2/3, and then the convexity of the function x ...... X Sd 

yields the inequality for p = p + + P _ . 

3. Since 

Ilp115!3 = sup l(p'lp)1 and Ilplll = sup l(p'lp)1 
lip' 115/2 =:: 1 p' ELSi2 n LCXJ 

lip' II f ~ I 

are suprema over weakly continuous functions, they are weakly lower semicon
tinuous, so S is weakly compact. 

(i) This proposition is equivalent to the statement that p" ~ p => lim I: (p,,) 2': s(p). 

First note that Ilplls/3 is weakly lower semicontinuous, i.e., limllp"lls3 2': Ilp115/3' 
Moreover, lim,,~oc. S p"O/lxl) = S p(I/lxl)· If the potential I/Ixl is broken up 
as I/Ixl = VI + V2 , where VI ELs/2, VzEU, 3 < p:::; c:IJ, then by assumption 
S p" VI converges to S p VI' Since sup" IIp"111 < 00 (by assumption {p"} is bounded 
in e), p" ...... p in the weak topologies of all Lq spaces with I < q :::; 1. This 
follows from the density of L S/2 (\ V in L' for s 2': 1, I/s + I/q = I, and 
sup" IIp"ll q < 00, because Ilpllq:::; Ilpll;llpll!-' for I/q = :x/p + (I - :x)/r. Hence 
also S p" V2 ...... S P V2 , proving the convergence of the nuclear attraction. Finally, 
for the repulsion of the electrons we can write 

II(p"* ,~,)pl = II(cp" - P)*~)(P" - p)lI, 

+ 211(p*!b)Pn ll l -11(p*!b)plll 

By Young's inequality, if V is broken up as above and pEL I, then p * VI E L 5/2, 
P * Vz E LP, 3 < p :::; 00, so the mixed term on the right converges to 
211(p * 1/ I x I )plll, while the first term is positive. Therefore 

(ii) p5/3 is strictly convex, S p(l/Ixl) is linear, and 

f d3Xp(X)p(y) = c f d3k I -(k) 12 
Ix - yl Ikl 2 p , 

c > 0, is strictly convex. 
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(iii) The proof of semiboundedness on S will require the following refinements of our 
earlier estimates. Let R > 0, 

I = f d3 p(x) +_ x, 
Ixl?;R Ixl 

It follows from 

and 

that 

fd3X d3y (p(x)0(lxl _ R) - f(x»(p(y)0(lyl - R) - f(y» ~ 0, 
Ix - yl 

i d3X d3y 
1+ = -I _ I f(x)p(y), 

Ilyll?;R X Y 

f d3X d3y f(x)f(y) = ~ 
Ix - yl R 

1 f d3x d3y 1 - --p(x)p(y) - 1+ ~ --, 
2 Ixl?;R Ix - yl 2R 

lyl?;R 

and by HOlder's inequality, 

11
0(R - Ix!)11 2 115 

ILl ~ Ixl 51211pl1513 = (641t R) Ilpll5(3' 

and the function ax2 - bx + c is bounded below on IR for non-negative a, b, 
and c. 

If J1 < 0, then because of (iii) the infimum is attained for a p in the interior of 
one of the compact sets S, and p must satisfy the Thomas-Fermi equation 
(4.1.36) by the same argument as in (4.1.12). If J1 = ° then there is also the 
possibility that the infimum is attained on the boundary Ilplll = N of every set 
S. In that event it would still satisfy the Thomas-Fermi equation with some J1 
as the Lagrange multiplier for the constraint Ilplll = N. However, if N > 
Li Zi ~ 1, then there is no such solution, as otherwise <I>(x) would be negative 
for large lxi, contradicting (4.1.37(ii». Therefore, if J1 = 0, then the infimum 
still lies in the interior of some set S. 

4. Use units such that e = h = 2m = 1, and suppose there is spin. Then 
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From the Thomas-Fermi equations, 

(3n 2p)2/3 - - + 11 = 0 => P = - - - - , 
Z Zm (1 1 )3/2 
r 3n2 r R 

11 = Z/R. 

N=~-4n r2 dr --- =~~_=>R=N-II3_4(~)213 
Z 3/2 fR (1 1 )3/2 (ZR)312 . N 

3n2 0 r R 12 Z 2 ' 

- V = Z512 - r dr - - -4n fR (1 1 )312 
3n2 0 r R 

T = !Z513 - r2 dr - - -4n fR (1 1 )512 
3n2 0 r R 

and 

V 

2 ' 

6NZ 

R' 

3NZ 
E = - T = ~- = - t(f)1/3Z 2N I13 (in units with 2m = 1; twice this if m = 1), 

R 

so 

f(O) = -t(W!3 = -0.572, 

1'(0) = ~ f d3x d3y p(x)p(y) = (~)2 fl ~ (1 - r)3/2 f' dr' )-;7(1 _ r')3/2 (ZR)3 
2 I x - y I 3n 0 vir 0 R 

= 0.24244, if Z = N = 1. 

If we read the exact ground-state energy off from (III: 4.5.15), then to O(N-II3), 

Thus the Thomas-Fermi energy is below the actual ground-state energy. 
5. The density that minimizes E is 

_ 112 exp( -Illx - Xjl} 
Po(x) - 4n~Zj Ix - Xjl ' 

with which 

Nil (1 ) Nil E(po) = - - + I ZiZj _ - 11 exp[ -IlI Xi - XjlJ > --
2 i>j IXi Xjl 2 

for all Xi E [R3. 

If Zi = 1, this reduces to (III: 4.5.24). In this variant of Thomas-Fermi theory the 
electron cloud creates an attractive potential - 11 exp( - w) between the nuclei, 
which is also weaker than their l/r Coulomb repulsion. 

4.2 Cosmic Bodies 

The Thomas-Fermi theory of stars is thermodynamically more 
interesting than that of atoms, since it predicts an unusual phase 
transition 
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In the year 1926 great discoveries about the laws of matter appeared in 
rapid succession. Shortly after E. Schrodinger published the equation named 
after him, E. Fermi discovered the distribution law (2.5.22; 1) governing 
particles that satisfy the exclusion principle. This inspired L. Thomas's 
ingenious idea that the electron cloud of a large atom should satisfy equation 
(4.1.36) at T = O. Then, still in the year 1926, R. Fowler realized that the 
stability of cosmic matter is ensured by the zero-point energy of the electrons, 
and that a cosmic body is closely analogous to a "gigantic molecule in the 
ground state." Yet it has taken considerably longer to found this vision in 
mathematics and derive everything from the Schrodinger equation. Today, 
however, the derivation goes through without gaps, and the Thomas-Fermi 
theory of atoms and stars is the only many-body problem with realistic 
forces to have succumbed, in the appropriate thermodynamic limit, to 
mankind's attempts at calculation. 

Yet the zero-point energy guarantees stability only in so far as the speeds 
of the electrons remain slow in comparison with light. If they enter the 
regime of relativistic kinematics, for which the kinetic energy ~ c I pi, then 
the zero-point energy goes as N(NjV)1/3, whereas the gravitational energy 
goes as _KN2jV1/3. If N > (Km;)-3/2 ~ 1057 , then the latter predominates, 
and as V becomes smaller and smaller, the total energy goes to - 00. We shall 
avoid this instability by remaining within the framework of nonrelativistic 
kinematics, considering only stars of masses somewhat smaller than that of 
the sun. Then, according to the estimates (1.2.23; 3), if N > 1054, the mini
mum energy occurs when V ~ N - 1. The situation is again like that of 
Thomas-Fermi theory, which leads to the hope that the many-body problem 
can be solved in the limit N -> 00 with the Hamiltonian 

H = £ IPil2 + L eiej - Kmimj. 
i ~ 1 2mi i > j I Xi - X j I 

(4.2.1) 

In this limit the system becomes a highly compressed plasma, so the average 
gravitational field would be expected to be so dominant that the Thomas
Fermi equation is valid. Of course, the total charge of the system must be 
zero, or, more exactly, the possible excess charge LlQ is bounded by 
(LlQ)2 :::; Km;N;, so for gravity to predominate, LlQ < 10 - 19 N p' Indeed, these 
conjectures can be derived mathematically for all three ensembles: 

The Asymptotic Forms of the State Functions (4.2.2) 

Let HN , v be the Hamiltonian (4.2.l)for N 1 positive and N 2 negative fermions 
of masses M 1,2' charges e1 and e2 = -e1, and spin t in a volume V. Let N 
denote the pair (N 1, N 2)' Then the limits 

E(N, S, V) = lim r 7/ 3 inf TrJl".<s H AN ,).-IV, 

),--+00 .Ye;.s 

F(N, {3, V) = - lim P- 1 A - 1 In Tr exp( - {3A - 4/3 H ANX IV)' (4.2.3) 
),-+ co 
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exist. The grand-canonical function 2: is not defined as in (4.1.8), as now the 
finiteness ofthe sum LN requires a factor N- 2/3 in the interaction and V", N 
[27] (see (4.2.10; 4». 

With the solution of the Thomas-Fermi equation 

f d3p [ ( (IPI2 ))J-1 Pa{x) = 2 (211:)3 1 + exp P 2Ma + l¥,,(x) - J.la ,(4.2.4) 

ex, P = 1,2, (4.2.5) 

(4.2.6) 

these quantities are found to be 

E(N, S, V) = ~ Iv d3X{tPa(X)l¥,,(X) 

2 f d3p IPI2/2Ma } 
+ (211:)31 + exp[p(lpI2/2Ma + Wa(x) - J.la)] , 

(4.2.7) 

(4.2.8) 

and 

2:(J.l1, J.l2' p, V) = ~ {Iv d3xtpix)l¥,,(x) + 2T Iv d3x f (~:~3 
x In(1 + exp [ -pG~a + l¥,,(x) - J.la)J)} (4.2.9) 

Gloss (4.2.10) 

1. For AS E In 7L+, Jlf;.s is an exp(AS)-dimensional subspace of Jft. 

2. The thermodynamic limit has been taken in the sense discussed in (1.2.19), 
i.e., E '" N7i3, V", N-l, S '" N, and T", E/S '" N4/3. The energies E 
and F are accordingly neither per particle nor per volume; these specific 
energies and energy densities do not have thermodynamic limits. 

3. The quantity S = P(E - F) is extensive for P '" N- 4 /3andE - F '" N7/3. 
4. If one insists on the usual relationships E '" N, V", N, S '" N, with T 

constant, then according to (1.2.19) the interaction has to be taken as 

N- 2/ 3 L eiej - "mimj. 

i>j IXi - Xjl 
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This means that the system is imagined as getting larger and larger with 
an ever weaker interaction; all such problems are mathematically 
equivalent because of the scaling law of(1.2.1). Physically relevant systems 
are large but finite and have weak, but still nonzero, gravitational inter
action. The question of how reasonable the thermodynamic limit is depends 
only on whether the physical object is sufficiently like the limiting system. 
If so, the convergence of the thermodynamic quantities (4.2.2) guarantees 
that the relevant observables of the finite system will have values fairly 
near those of the infinite idealization. 

5. Since p~ is a strictly monotonic function of J1~, the normalization (4.2.6) 
is an implicit equation for J1~. 

6. We shall soon discover that for certain values of p, N, and V there is 
more than one solution of the Thomas-Fermi equations. The question 
of which solutions are the correct limits (4.2.3) is decided by the minimum 
principles for the thermodynamic potentials (2.3.3; 4), (2.2.23; 1), and 
(2.5.3), which survive the limit A. - 00 in the following manner (cf. (4.1.21»: 
The functionals for energy, entropy, and the phase-space densities n~ are 

The correct Thomas-Fermi densities are those that minimize the energy 
for given N ~ and S. The variational derivative with T and J1~ as Lagrange 
multipliers leads to the Thomas-Fermi equations (4.2.4)-(4.2.7) again, 
with 

for the solution of 

However, this equation is also satisfied by merely local extrema and by 
saddle points. At the minimizing density, E(n) = E(Nl' N 2 , S, V). 

7. The ensembles are equivalent only in the region where the convex hull 
of the function E(S) is the same as E(S). 
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8. We have written E and F as functions of three variables, but it is clear 
from the definition that they depend on only two ratios. This is reflected 
in the Thomas-Fermi equation by its scaling behavior when x --> Ax. 

Proof 

If the only force is gravitation, as in a neutron star (e = 0), the methods of 
§4.1 are applicable; the lower bound for :=: is trivial, and Inequality (2.1.8; 3) 
can be used for the upper bound. However, since it requires knowledge of the 
expectation value of H, it is necessary to estimate the norm of the quantum 
fluctuations. If e and K differ from zero the estimate is much more difficult 
than that of §4.1, and can not be given in detail here. The strategy is as follows. 

1. Regularization of the potential 
Since one expects the motion of the particles to be determined by an 
average field, the singular part of the 1/r potential should first be cut off, 
so that the influence of a near-by particle will not be stronger than that of 
the average field. There are also good physical grounds to insist that the 
important part of the potential is its long range rather than the singularity, 
as in reality the singularity is smoothed out with some form factor. By 
"long range" is meant a length comparable to the diameter of the star, 
which shrinks to zero as A --> 00. Hence the cut-off length has to be reduced 
while A increases, or alternatively one can work in the scaled system 
(4.2.10; 4). It is thus useful to show that changing the potential by, say, 
1/r --> (1 - exp( - A1/3sr»/r makes little difference for large s in comparison 
with the main contribution to the energy, which is '" N7!3. This fact can 
be shown by an argument similar to the estimate (1.2.21) and making use 
of the bound (III: 4.5.15) on the number of bound states of a short-range 
potential. 

2. Replacing the potential with a step function 
Since Thomas-Fermi theory is oriented toward free particles in a box, 
it is useful to divide the volume V into cells inside of which the potential 
is made constant. The proof that changing the potential to a step function 
has only a slight effect is trivial, since the continuous function 
(1 - exp( - sr»/r can be approximated uniformly on any compact set 
by a step function. 

3. Insertion of walls 
In each of the cells of constant potential the Schrodinger equation reduces 
to the force-free equation, if they are separated by impenetrable walls. 
It is thus useful to show that inserting walls will not alter the result much. 
It is clear that the effect will be to raise all the energy levels. The min-max 
principle can be called upon to show that they do not rise by too much. The 
presence of the walls means that the wave-function vanishes at their 
positions, which costs kinetic energy. It is possible to patch together 
wave-functions for the system without walls so that they vanish at the 
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positions of the walls, and the expectation value of the kinetic energy in 
such a state is not increased by too much. It is important that the number 
of walls in this procedure remain constant in the limit N -+ 00 so that 
their effect can be neglected in comparison with N7f3. 

4. Filling the boxes 
The foregoing manipulations leave the particles in separated boxes 
moving in constant potentials, which, however, depend on the distribution 
of the particles. One now finds that the thermodynamic functions of C 4.2.2) 
are dominated by the contribution from a certain distribution of the 
particles among the boxes, which is determined by a self-consistent 
equation, namely the Thomas-Fermi equation for the step potential with 
walls. 

5. Continuity of the Thomas-Fermi equation 
Since we wish to end up with the Thomas-Fermi equation for a l/r 
potential, we still need to show that the approximations made above for 
the l/r potential do not change the energy ofthe solution much. Otherwise, 
if the solution depended discontinuously on the potential, it would be 
worthless; the Thomas-Fermi equations can not be solved analytically, 
and a numerical solution on a computer approximates the potential 
by a step function. It is thus indispensible, but fortunately also possible, to 
show that the Thomas-Fermi energy has the required continuity with 
respect to the potential. 0 

The structure of the Thomas-Fermi equation is different for stars than 
for atoms. The energy loses the properties of convexity and weak lower 
semicontinuity. Consequently the solution is not guaranteed to be unique 
and there is a possibility of a phase transition, which will be discussed at the 
conclusion of this section. Meanwhile, we prepare by proving a general 

Virial Theorem C 4.2.11) 

The pressure 

a 
p == - av FCN, /3, V), 

kinetic energy 

Ek = L2 r d3x fd 3p IpI2/2M" 
"Jv C21ll1 + exp[/3ClpI2/2M" + Wix) - ,u,,)] , 

and potential energy 

are connected by 
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Proof 

We start by convincing ourselves of the usual thermodynamic relationships 

of of 
oN ~ = f.1~ and 13 013 = E - F, (4.2.12) 

which follow directly from differentiating (4.2.8). For this purpose note that p 
depends on 13 and N, and thus implicitly so does W, but that this dependence 
does not show up when the Thomas-Fermi equations are satisfied. Next 
rewrite (4.2.8) by integrating by parts in the variable p. Then 

f OO foo dE; E;3/2 

df.0 In(1 + exp[ - f3(E; + c)]) = ~f3 1 [13(' )]' 
o 0 + exp L + c 

and we conclude that 

(4.2.13) 

Finally, the dilatation relationship mentioned earlier implies that F(N, 13, V) 
= A -7/3 F(AN, A -4/313, r 1 V) for all A E [R+. 

With reference to (4.2.12), the derivative by A produces 

0= -iF + L Naf.1~ -1(E - F) + PV, 

which concludes the proof of the theorem when combined with (4.2.13). 0 

The local densities in phase space, 

na(x, p) = 2[ exp(f3(li~2 + a:(x) - f.1a)) + 1 r 1, 

have the same significance as in §4.1. They are stationary solutions of the 
Vlasov equation (4.1.32; 3), 

~ 0 0 0 L -. - na(x, p) - - nix, p). - a:(x) = O. (4.2.14) 
j M, oXj OPj oXj 

In this equation quantum mechanics enters only through the initial condition 
I n~(x, p) I ~ 1. In fact, as a classical equation it is the basis of stellar dynamics 
[35]. When reduced to configuration space, the local densities describe the 
hydrostatic equilibrium between the pressure of the matter and of gravita
tion, in the spherically symmetric case. Since the fermions behave like free 
particles on the microscopic level, one would expect from (2.5.32) that 

_£ x =~~2Jd3p IpI2/2M~ 
P(x) - 3Ek( ) - 3"; (2n)31 + exp[f3(lpI2/2M~ + Wix) - f.1~)] 

(4.2.15) 
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functions as the pressure, and in fact if (4.2.14) is multiplied by Pi' integrated 
by d3p by parts, and one replaces Pi' Pj -+ (lpI 2 /3)t5 ij , then 

VP(x) = - L pix)VW-:(x), (4.2.16) 

which is the equilibrium condition mentioned above. If the geometry is 
spherically symmetric, i.e., V is a sphere of radius R and the local observables 
depend only on Ixl = r, then (4.2.16) can be written as the nonrelativistic 
Tolman-Oppenheimer equation 

(4.2.17) 

(cf. (II: 4.5.11». The electric and gravitational forces have been expressed in 
terms of the charges and masses within the sphere. 

The Connection between the Local and Global Pressures (4.2.18) 

By integrating (4.2.17) by (4n/3) S~ drr 3 one gets 

2 2 4n JR 3 d 2 
V"3Ek(R) - "3Ek = 3 0 drr dr "3Ek(r) 

e e - KM M JR fr E = L a pap drr4nPa(r) drlrI24npp(r') = 3P , 

a, p 3 0 0 

so with the virial theorem (4.2.11) the thermodynamic pressure becomes 
simply the local pressure at the boundary, 

P = P(R). 

We see that Thomas-Fermi theory, which begins with the Schr6dinger 
equation, leads eventually to the concepts of classical physics. 

A more accurate evaluation of the state functions (4.2.2) requires 
numerical solutions of Equations (4.2.4) through (4.2.6). In order to lend 
more physical plausibility to those numbers, let us extend the intuitive 
arguments of §1.2 to finite temperatures. Since the theory is only valid if 
gravity is the dominant force, let us simplify by considering only one type of 
neutral fermion such as neutrons (without nuclear forces). If there were 
protons and electrons, then the former would provide most of the gravita
tional force and the latter most of the pressure. This would increase all 
lengths compared with a system of neutrons by a factor of the ratio of the 
mass ofthe neutron to that of the electron, about 2000. Thus, if 1057 neutrons 
are found to have a radius of about 30 km, a similar system made of hydrogen 
would have a radius of about 6000 km, i.e., that of the earth or of a white 
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dwarf. We begin with the observation that at a nonzero temperature there is a 
thermal contribution 

3 (N)2/3 (2S ) N!T=N"2 V exp 3N- 1 

in addition to the zero-point energy N(N/V)2!3. At high temperatures this 
is exactly the classical expression. In order to interpolate to intermediate 
temperatures, we shall simply combine the zero-point energy with the 
classical expression. This turns out to approximate the energy offree fermions 
(2.5.32) to within about 20%. It remains to add in the gravitational energy. 
If the mass of the particles is !, then up to geometric factors we get 

E (N)2/3 ( 3 (2S)\ KN 
N = V 1 + 2e exp 3N ') - V1/3 

in natural units. In checking the properties (2.3.10) of the microcanonical 
energy density, it becomes readily apparent that, in agreement with (4.2.10; 4), 

p-1e = p2!3(1 + ;e eXP(20"/3P)) - KN2/3pl/3 

is independent of N only if K '" N - 2/3. Although e increases as a function of 
0", conditions (2.3.10(ii)) and (2.3.1O(iii)) are not always satisfied; our ansatz 
does not do justice to the subadditivity (2.3.5). The reason becomes apparent 
when it is observed that the pressure 

oE I 2 (N)5/3 ( 3 (2S)) KN2 E - Ep/2 
P = - oV S,N ="3 V 1 + 2e exp 3N - 3V4 /3 = 3V/2 ' 

KN 2 

Ep = - V 1/ 3' 

consists of three parts, from the zero-point, thermal, and gravitational 
energies. The first two are positive and the last one is negative, and may domi
nate in the intermediate regime of average densities. However, a negative 
pressure is physically impossible; the system does not adhere to the walls 
and pull them inward. What happens is that the system shrinks itself down 
to such a small radius, Vo = (KN2/ - 2E)3, that it reaches P = O. A better 
ansatz consists in replacing V with Vo in E when P < 0, 

E (N)2/3 ( 3 (2S) KN) K2 N 4
/
3 /2 

N = V 1 + 2e exp 3N - V 1/3 e+ - 2 + 3exp«2S/3N) _ 1) e_, 

e± = e( ±(2 + 3exp(:! - 1) - K(NV)1/3)). 

The function e ± is also equal to e( ± (E + KN2/2 Vl/3)), implying that if 
the total energy is sufficiently negative, then the system condenses into a 
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volume Yo' As in Example (2.3.32; 1) this brings about a phase transition 
with negative specific heat: The calculation 

3 oE I 3 (N)2/3 (2S) 
!T = "2 as V.N = 2e V exp 3N e+ 

3 ,,2N4 /3 exp(2S/3N) 
+ e 

2e (2 + 3 exp(2S/3N - 1»2 -

= (! -(~r/3 + ~~3 )e+ + [ - ! - (,,!~/3 rJe-
reveals that the classical linear dependence of T on E becomes parabolic in 
the condensation region (see Figure 32). The temperature begins to rise 
again as E decreases, and afterwards, when the zero-point energy gets 
larger than the gravitational energy, it falls to zero. It is in fact observed 
by astrophysicists that large gaseous masses contract under the influence 
of gravity, thereby heating up and radiating the gravitational energy that 
has been set free. This activity, which indicates a range of values for which 
S(E) is convex and hence microcanonically a negative specific heat, is a 
direct consequence of the virial theorem and the theorem of equipartition: 
energy = - kinetic energy = - (3N /2) temperature. Yet this is true only 
in the intermediate region, since it ignores the external virial (the pressure) 
and the equipartition theorem is not valid for degenerate gases. This also 
becomes visible in the computer solution of the Thomas-Fermi equation, 
as shown in Figures 33 and 34. At the smaller radius R = 30 km the zero
point energy predominates and the star acts normally, whereas an inter
mediate region of negative specific heat shows up at R = 100 km. 

This phenomenon can not arise in the canonical ensemble, so our next 
topic will be what the situation is like in that ensemble. In the transition 
region the Thomas-Fermi equation has many solutions for a given {3, and the 

T 

--L--------------+--~---------------------E 
-KN2 

2V I / 3 

Figure 32 The function T(E) for a conceptual model. 
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Figure 33 Phase transition in E(fJ). 

analysis leading to (4.2.2) shows that the right solution to choose is the one 
with the smallest value of F. The existence of many different values of F in 
this situation (for a fixed f3) follows from the change in the sign of P = 
- oF/o V (see Figure 35). The computed dependence of -F on f3 is shown 
in Figure 36. If R = 100 km, then F has a sharp bend at some transition 
temperature; in Figure 33 it shows up as the lines that divide the surface E({l) 
into two equal parts (Problem 1). At this transition temperature the system 
in the canonical ensemble rises from one branch of the curve to the other. 
The energy has a nonzero jump ( '" 30 Me V per particle) at the transition; 
in the canonical ensemble the region of negative specific heat is bridged 
over by a phase transition. 

Computers have also been used to solve for the local observable p(r), 
which is shown in Figure 37 at various temperatures and with R = 100 km. 
At the transition temperature 1/0.165 MeV an almost homogeneous density 
becomes strongly concentrated at the center. The picture that emerges 
is of a star with a rather definite surface and a central density about 106 
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Figure 35 Phase transition with negative pressure. 
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N = IOs7 neutrons 
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Figure 36 The negative free energy. 

times the density of the atmosphere. At still lower temperatures the atmos
phere also condenses, but it only increases the density of the star a tiny bit. 
The radius of a neutron star is only about 10 km at low temperature, which is 
why at first hardly any difference shows up in S in Figure 34 between the 
systems at R = 30 km and at R = 100 km. Only after the transition energy 
does the star spread out so as to make the entropy rise rapidly enough in a 
box with R = 100 km that S(E) becomes no longer concave. 

Another interesting local observable is the degree of degeneracy 

(4.2.19) 

For a classical gas ~ is 1, and for a completely degenerate Fermi gas it is o. 
Figure 38 shows ~(r) for R = 100 km and various temperatures. It reveals 
that the gas becomes degenerate after the phase transition. Only the zero
point energy of the fermions (~p - 5 /3 ) can withstand the gravitational 
pressure (~p - 4/3), while the classical pressure is weaker (~p - I). This 
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Figure 37 The change in the density at a phase transition. 

means that the interior of the star is degenerate, while the atmosphere remains 
a classical gas. 

Problem (4.2.20) 

Show that the reciprocal Pc of the transition temperature for the canonical ensemble 
is determined by 

JEt 

o = dE(P(E) - PJ, 
E, 

Solution (4.2.21) 

Since P = dSjdE, the condition implies 

At Pc the two branches of the curves F(E) cross, and the canonical ensemble always 
selects the lower branch. 
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Figure 38 The change in the degree of degeneracy ( at a phase transition. 

4.3 Normal Matter 

Although matter consisting of electrons and atomic nuclei exhibits 
extremely varied and complicated phenomena, some of its essential 
features can be deduced from the fundamental physical laws. 

With the results of §4.l we are now in a position to cope with a central 
problem, the stability of matter. As discussed in (1.2.17; 2), it is essential 
that the electrons follow Fermi statistics, though the statistics of the nuclei 
should not matter. Moreover, it is the mass of the electron rather than the 
nucleus that occurs in the basic Rydberg energy e4 m2/2. We shall therefore 
assume that the nuclei are infinitely massive and use the Hamiltonian HN 
of (4.1.2); at any rate it provides a lower bound to (4.1.1) with K = 1. The 
wall W can then also be dispensed with. The question to be confronted is 
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whether a bound HN > -AN can be found for fixed Zk but M and N --> 00. 

With this in mind, write (4.1.6) with J1 = W = 0 as 

( 4.3.1) 

The first step is to bound the kinetic energy by S p5/3 with the inequality of 
(4.1.47; 2) and set n = p. This is a bound for every expectation value with 
spin - t fermions, so, again with the aid of (4.1.46; 2), we obtain 

If this is optimized in }" it shows the 

Stability of Matter (4.3.3) 

[ ( 
M Z7 /3)1 /2J2 

HN ~ -2.08N 1 + k~l ~ • 

Remarks (4.3.4) 

1. If there were q kinds of electrons instead of the two spin orientations, 
then the right side would be multiplied by (q/2)2 /3. Thus there is a bound 
'" N 5 / 3 independently of the statistics of the electrons. 

2. The solution of the Thomas-Fermi equation describes a neutral system, 
and accordingly the bound is MZ7 / 3 if all Zk equal Z = N/M. The 
bound is certainly not optimal if N ~ MZ, for one would expect 
'" NZ2. However, (4.3.3) suffices for our purposes, as we are concerned 
only with the neutral case. 
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3. Inequality (4.1.47; 2) is presumably not optimal; on the right the constant 
should be increased by a factor (4n)23 to !(3n 2 f3. If this conjecture 
were proved, then (4.3.3) would be improved by the same factor, reading 

M 

H ::2: -0.385 L zZ!3(l + O(Z'; 716». 
k=1 

If Zk -+X this approaches the sum of the Thomas-Fermi energies of 
the atoms. Such an optimal inequality can in fact be proved, although 
only in the form 

At 

H ::2: -0.385 I ZZ3(l + 0(Zk- 233» 
k 1 

[28]. 
4. Inequality (4.3.3) holds a fortiori for a system in a finite volume. 
5. Since the kinetic energy of the nuclei was not used, they may follow either 

Bose or Fermi statistics. 
6. The important property of the Coulomb potential for stability is that l/r 

is a function of positive type, i.e., v ::2: 0. The Yukawa potential vCr) = 

exp( - w)/r similarly satisfies v > 0, and stability can be proved 
analogously. In contrast the potential vCr) = (a + br) exp( - w) with 
b > aJi > 0, Jl > 0, which is even finite and of short range, does not 
lead to stability for the Hamiltonian If=11Pi1 2 + Ii>jeiejv(xi - x), 
even for fermions: There is an 1"0 > ° such that v(ro) > v(O) (this would 
be impossible if v > 0), so let us confine N /2 positive and negative particles 
to separated balls of radius r0 8, /; ~ 1, arrayed at a distance ro from 
one another. Then the interaction between the balls, -e2 v(ro)N2/4, 
wins out over the respulsive energy of the like-charged particles within the 
balls, ~ e2 v(0)N(N - 2)/4, and also wins out over the kinetic energy 
~N5/3(r08)2 as N --> CIJ. Thus the total energy goes to -CIJ as _N2 

when N -+ CIJ. This shows that the problem of the stability of matter 
has nothing to do with the long range of the Coulomb potential. The 
proof with the Yukawa potential is not any simpler; in a way it is more 
difficult, since stability with a Yukawa potential immediately implies 
stability with a Coulomb potential -as remarked in (1.2.l7; 5) the dif
ference produces stability-but not vice versa. However, as we have just 
seen, the l/r singularity is not the only danger for stability; even regular 
potentials v with energies Li:O;j eiejv(xi - x) that take on both signs 
can lead to instability. This shows the superficiality of the common 
opinion that stability is not a real physical problem, since actual potentials 
do not become singular. 

The Extensivity of the Volume (4.3.5) 

If H > - cN and the expectation value of H in a state is nonpositive, <H) :::; 0, 
then no volume n :::; 8N contains more than NCZ30C)3/5(4£/3n)2/5 particles. 
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Proof 

Let H = T + V. Since the energy is proportional to the mass in a Coulomb 
system, !( T) ~ - (! T + V) ~ 2eN. Then it follows from 

(T) ~ ~ c:r/3 f p5/3 

that 

< (20 )3/5(48)2/5 
- N 3 e 3n . D 

Remarks (4.3.6) 

1. If n is a ball, then it is possible to derive bounds of the form (rV) ~ eNv/3, 
in analogy with (III: 4.5.28). 

2. The material up to this point does not allow upper bounds of the form 
r "'" N 1/ 3 to be proved. Neutrality does not enter in an important way, 
and with an excess of electrons the Coulomb potential would cause the 
system to swell out to infinity. In other words, it has been proved that 
matter is stable in the sense that it does not implode, but it might still 
explode. 

The Existence of the Thermodynamic Functions (4.3.7) 

We are now faced with the question of how to define the energy density 
when N --+ 00 [30]. It clearly follows from (4.3.3) that (l/V)E(VO", V, pV) > 
- p . constant for all V, and since it is easy to show that E/V remains bounded 
above, limv_ oo (l/V)E(VO", V, pV) could be regarded as 8(p, 0") (by definition, 
limn_ oo an = sUPn.infn>n' an). This cheap way out is physically unsatisfying, 
however; one would hope that the limit exists and that the energy density 
becomes independent of Vas the system is made infinitely large. This means 
that the sequence should be proved monotonic, as was done in (2.3.6). 
Unfortunately, the inductive procedure followed there, of imagining each 
cube to consist of smaller cubes, does not work in this case, since it is difficult to 
estimate the Coulomb interaction between cubes. Balls can be used instead 
of cubes, however, as their interactions are as if the charges were concentrated 
at their centers, according to a theorem dating from Newton. In particular, 
if they are overall neutral, then they do not interact with charges placed 
outside them. Of course, spheres do not fill space as densely as cubes, but 
by the use of spheres of different radii the unfilled volume can be made 
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arbitrarily small. The convergence proof consequently proceeds by three 
steps. 

(a) We must first show that the interaction between the spheres is not positive, 
in order to prove monotony. 

(b) It must be shown that the radii of the balls can be chosen so that the 
fraction of volume outside them goes to zero in the limit. 

( c) The distribution of particles in this procedure must lead to a homogeneous 
density in the limit. 

The Interaction between Balls (4.3.8) 

We consider 

(4.3.9) 

in a ball B, such that t/llaB = 0, and examine the neutral case with only one 
kind of nucleus: N = MZ, Nt = N(1 + l/Z) = the total number of particles. 
The eigenvalues elY, Nt), i = 1,2, ... , of H depend on the volume V of B 
and on Nt, and the microcanonical energy is given by 

exp(S) 

E(S, V, Nt) = exp( -S) L ei(V, Nt), 
i= 1 

where E and Em have been identified in accordance with (2.3.13; 2). Now 
put k disjoint balls Ba of volumes V, into B, 

k 

B:::J U B" 
,= 1 

and form a system of trial functions t/li by taking tensor products of the 
eigenfunctions of H a , defined as H for N, particles in B,: 

The trial functions then have to be anti symmetrized in the electron variables 
and either symmetrized or antisymmetrized in the nuclear coordinates, 
depending on the nuclear statistics. Yet since t/li, and t/lip have disjoint 
support, there are no cross terms in their interaction, and the expectation 
values are the same as those with the unsymmetrized t/li. (The subscript i 
is to be treated as a multi-index i l , ... , ik.) We always choose the first 
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exp(Sa) eigenfunctions of the operators Ha (and denote the eigenvalues ea,;), 
so 

exp(S) exp(S Il exp(S.) 

L = L ... I ' 
i= 1 

where S = I~= 1 Sa' N = L~= 1 Na, and Na/Z + 1 is an integer. Then each 
Ba can be filled with whole atoms, becoming neutral. As in (2.3.5), with the 
min-max principle (III: 3.5.21), 

exp(S) k exp(S.) 

E(S, V, N) ~ exp(S) I <t/J;lHt/J;) = L exp( -Sa) L ea.i.(Na, N,) + V 
i= 1 a=l ia.= 1 

k 

= L Ea(Sa, V" Na) + V, (4.3.10) 

but this time there is an energy of the interaction between the balls, 
exp(S.) exp(Sp) 

V = I exp( -Sa - Sp) L L V i•ip ' 
ex> P ia. = 1 ill = 1 

Because of the spherical symmetry of Ba and Ha, the functions t/Ji. can 
be ordered according to the eigenvalues La of the total angular momentum 
La about the center of Ba. The eigenvalues ea. i do not depend on the z
component of the angular momentum (which has quantum numbers rna' 
-La ~ rna ~ La), and 

Pa(x) = L f d3X2 ... d 3x N• I t/Ji (x, X2 , ..• , XN.W 

'. 
will be spherically symmetric if the sum runs over a full L-shell. If the limits 
of summation exp(Sa) corresponded exactly to full shells, then V would 
equal zero by Newton's theorem. It will now be shown that the partially 
filled shells can be chosen to make V negative. Let J-la, and Va be the indices 
nearest to exp(Sa) corresponding to filled shells, such that J-la ~ exp(Sa) ~ Va' 
Thus 

exp(S.) exp(S p) exp(S.) exp(Sp) 

'\' '\' V·· = i...J i..J lIXlp I L V ipi., 
i lX = 1 ip= 1 ia. = J..la. ip :;:;:Jlp 

and the interaction energy can be written as 
exp(S!l exp(S2) exp(S.) 

V = eLL ... L Vit •...• i.' C > 0, 
it =J..ll i2=J1.2 ik=llk 
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We know that 

Vi V2 Vk 

L L L Ui"",ik = 0, 
it =11-1 i2 =112 ik=llk 

and since the eigenvalues ei. are degenerate if J1.a. :$; ia. :$; Va., it is possible to 
select exp(S 1) - J1.1 indices i 1 such that 

'2 'k exp(S,) 

" "," "U· . < 0 L. L... ~ ll,···,lk -

without changing the first sum in (4,3.10). We now proceed inductively and 
choose exp(S2) - J1.2 indices i2 such that 

exp(S2) 

L "':$;O 
i2=/12 

and so forth, until finally U :$; O. This proves the 

Monotony of the Energy (4.3.11) 

If B::::l U:=1 Ba., Nt = L:=1 Na., and Na.IZ + 1 is integral, S = L:=1 Sa., 
and E is as defined in (4.3.8), then 

k 

E(S, V, Nt):$; L Ea.(Sa., Va., Na.). 
a.=1 

Remarks (4.3.12) 

1. The Ba. are required only to be disjoint; how well they fill B does not 
affect the validity of the equation. 

2. All but one of the Ba. have to be spherical and electrically neutral, but 
one of them need not be. 

3. The theorem holds regardless of the statistics of the particles, which can 
affect it only by ensuring the existence of a bound on EIN. 

The question of how completely B can be filled by the Ba. is a purely 
geometrical one. It is answered by the 

Swiss Cheese Theorem (4.3.13) 

Let Rj = (1 + p)jRo, p E 7l.+, 1 + P 2:: 27, be the radii of the balls of a given 
size indexed by j and let Bm be a ball of size m. Then for all m > 0, Bm contains 
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the union from j = 1 to m - 1 of v j disjoint balls of size j, where 

v·= -- elL. 
(1 + p)3(m- j ) ( p )m- j + 

J p 1 + P 

Remarks (4.3.14) 

1. This theorem makes more precise the fact, clear at the intuitive level, 
that a large ball can be filled extremely well by smaller ones if their radii 
are chosen suitably. The total volume of the small balls is 

mil RJVj = «1 + prRo)3(1 _ (_p_)m), 
j=O 1 + P 

so that the unfilled fraction is only (p/(l + p»m, which tends to zero as 
m -+ 00. 

2. Of course, the filling of a ball uses more small balls than large ones, 
but the fraction of volume filled by the balls of size j is (1/p)(P/(1 + p»m- j, 

as the larger balls are much more voluminous. 

Proof 

See Problem 1. D 

The Homogeneity of the Density (4.3.15) 

The next step in §2.3 was to consider a sequence of larger and larger cubes, 
all of which had the same entropy and particle density. Nothing like that is 
possible in this situation, since to compensate for the gaps some of the 
balls will have greater densities than the average density overall. Since the 
unfilled volume gets smaller and smaller, however, it suffices to impose 
relatively large densities on the balls of size 0 and assign equal densities to 
all the others. Let us thus choose N ~/V~ = p(p + 1) == Po for IX = 1,2, ... , Vo, 

so for the balls of size 0, N~/V~ = P for all IX > Vo' If Pj is the density in a 
ball of size j, and we let P1' ... , Pm = p, then the Pj satisfy a recursion 
formula 

P = L p·v· _J = - -- + - L -- = P 
m- 1 (R .)3 Po ( P )m P m-1 ( p )m- j 

m j=O J J Rm P P + 1 P j= 1 P + 1 

for all m ~ 1. 

In the same way the entropy is distributed so that the entropy density 
(1j in the balls of size j satisfies 

(10 = (1(p + 1), (11 = (12 = ... = (1m = (1 = - L (1j -- • 
1 m-1 ( p )m- j 

P j=O P + 1 
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If Vo = 4n:R6/3 and Ej is the energy and Cj the energy density of the balls of 
size j, then Proposition (4.3.11) specializes for this particular filling to 

k-l 

Ek(S, N) ::;; L E/S j , N)vj, 
j=O 

lk-1( P )k- j 

= - L -1 - c/a j , p). 
P j=O + P 

This is a modification of (2.3.6) and similarly allows the convergence of 
Ck == Ck(ak> Pk) to be demonstrated: There exist numbers Ck ::;; 0 such that 

Ck = Ck + - L -- Cj. 
lk-1( P )k- j 

P j=O 1 + P 

The recursion formula has the solution 

1 ( k- 1 ) 
ck = Ck + -1-- co + L Cj • 

+ P j=O 

(4.3.16) 

Since the sequence {sd is bounded from below, LjCj must converge, so 
limk~ 00 Ck = O. Since Ck - Ck decreases monotonically as a function of k 
by (4.3.16), Ck must tend to a limit. If k > 0, then all the densities had the 
same values (a, p), and we arrive at the 

Existence of the Thermodynamic Limit (4.3.17) 

For the H of (4.3.19), the limit c(a, p) == limv~oo (l/V)E(aV, p V) exists. 

Remarks (4.3.18) 

1. The theorem has been proved for spherical volumes, but it generalizes 
to other shapes with a reasonable relationship between volume and 
surface area. 

2. Although the theorem and proof are given here for strictly neutral 
systems, it is clear that a small excess charge .1Q can be allowed as long 
as its electrostatic energy '" (.1Q)2 /V 1/3 can be neglected in comparison 
with E. 

3. Although we have assumed there was only one kind of nucleus, the 
case of any number of kinds of nucleus can be covered simply by gen
eralizing the notation. 
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4. Since ek - ck is a monotonic sequence, Dini's theorem guarantees that 
ek converges uniformly on compact sets in (CT, p); to use this argument it 
is necessary to extend the definition of the function ev, which was initially 
defined for finite Von a discrete set, to make it continuous. The continuity 
of e will follow from the convexity to be proved below. 

5. The Hamiltonian (4.3.9) includes the kinetic energy of the nuclei. Strangely, 
the existence of the thermodynamic limit (4.3.17) has not been proved in 
the apparently simpler case where Mk = 00. 

The existence of the limit means that all systems characterized by N 
have the same dependence on the averaged quantity e provided that they are 
large enough. But does the theory predict a reasonable dependence? The 
temperature, pressure, specific heat, and compressibility should at least be 
positive in accordance with our experience. The positivity of the temperature 
and pressure are ensured by our definition of entropy and by the boundary 
conditions. With the aid of (2.3.29), the positivity of the other observables 
is a consequence of the convexity of the function (CT, p) --+ e(CT, p), which, 
however, does not follow directly from the definitions-recall that the 
preceding chapter illustrated this with a counter example. Yet it is possible 
to formulate a theorem on the 

Thermodynamic Stability of Coulomb Systems (4.3.19) 

The mapping IR x IR+ --+ IR: (CT, p) --+ e(CT, p) is 

(i) convex; 
(ii) nondecreasing in CT; 

(iii) bounded below by -cp for c E IR+; 
(iv) such that p-le(CTp, p) is an increasing function of p. 

Proof 

(i) Let p be an odd integer, so that Vj = (1 + p)2(k- j)pk- j-l is even for 
o ~ j ~ k - 1, and fill half of the balls of a given size with densities 
p, CT (or, respectively, Po = p(1 + p), CTo = CT(1 + p)) and the other half 
with p', CT' (or, respectively, p~ = p'(1 + p), p~ = CT'(l + p)). Then, 
since the energy is monotonic as in (4.3.11), 

1 k-l ( )k- j 
Uk = -2 L -1 P (CTj + CTj), 

p j=O + P 
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and 

1 k-l( P )k- j 

lh = :2.L y----+ (p j + pj), 
p}=o p 

which implies that 

s(!(a + a'), !(p + p'» :-:;; !(s(a, p) + s(a', p'» 

as k --> 00. Now note that s is monotonic in a and p - 1 s( a p, p) is mono
tonic in p, so according to (2.3.11; 1) s is convex not just with coefficient 
! but with all rx E [0, 1]. Hence it is continuous on the interior of IR + x IR + . 

(ii) See Remark (2.3.3; 3). 
(iii) This follows from the estimate (4.3.3) showing the stability of matter. 
(iv) From the monotonic property (2.3.4) of the energy, aE/avls,N=consl :-:;; 0. 

o 

Since s has the right sort of convexity, one of the assumptions needed to 
prove the existence of the thermodynamic limit of the canonical ensemble is 
satisfied. More information about the function sea, p) is needed to verify 
the other hypotheses made in Theorem (2.4.14). In particular it needs to be 
shown that s increases rapidly enough with a that the a 0 introduced in 
(2.3.11; 4) is finite, and lim,,--+CXl s/a = 00. This is shown by the 

Lower Bound for the Energy Density (4.3.20) 

If H = H, == K + rxLi>jeiejlxi - Xjl-1 and Sa are the corresponding 
energy densities, then 

cprx2 

s,(a,p) ~ Aso(a,p) - 1 _ A for all 0 :-:;; ..1.<1, 

where 

Proof 

According to (2.3.3; 4), s, is concave in rx, and Sa ~ ASo + (1 - A)s,/(1- Ie)' 

However, by (4.3.3), -cprx2 is a lower bound for all p and a. 0 

Corollaries (4.3.21) 

1. Since it was shown in (2.5.23) that in the case of one kind of particle, 
so(a, p) = C'p5/3 exp(2a/3p), c' > 0, is the limit as a --> 00, it follows that 
Iim,,--+CXlpfixeds(a, p)/a = 00. 



4.3 Normal Matter 267 

2. Even for a finite volume -cpa2 is a lower bound, which makes it easy 
to verify that there exists a function s(e, p) dominating (J for all volumes, 
and satisfying lim, .... 00 sjc = O. 

3. In (4.3.43; 2) we shall find an upper bound on the ground-state energy 
density, of the form C1P5/3 - ac2p4/3. When combined with (4.3.20) 
it yields an upper bound for the (J 0 of (2.3.11; 4) at which e«(J) starts to 
move up. 

This fact is not yet enough to ensure that thermodynamics works per
fectly. Let us write down a 

Thermodynamic Wish List (4.3.22) 

1. (Jo = O. 
2. oe/o(JIO'=O'o = O. 
3. limO' .... 00 (oe/o(J) = 00. 

4. The function e is continuously differentiable. 
5. The function e is strictly convex for large (J and is linear on certain intervals 

in (J when (J is small. 

Open Questions for the Wish List 

1. Statement 1 is a strong formulation of the third law of thermodynamics, 
and is unproved for Coulomb systems. Although there is an upper bound 
on (Jo in (4.3.21; 3), it is not sharp enough to show that (Jo = O. 

2. The second statement implies that the system does not fall into its ground 
state if the temperature is higher than absolute zero, and our bounds are 
likewise too crude to prove it. 

3. The third statement means that there is no maximum temperature, 
and is proved by (4.3.21; 1). 

4. Kinks in the graph of e would correspond to "anti-phase-transitions" 
at which either the temperature or the pressure shows a discontinuity 
while the energy remains continuous. The specific heat and the com
pressibility would be zero at such a point. Such things do not appear to 
happen in reality, though the arguments we have made do not exclude 
them. 

5. It is known empirically that there are no phase transitions at high temp
eratures, only at low temperatures. However, this fact has not been 
proved in the theory. 

The equivalence with the canonical ensemble requires only the positivity 
of the specific heat, which is guaranteed by (4.3.19). The assumptions of 
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Theorems (2.4.14) arefulfilled because of (4.3.18; 4), (4.3. 19(i», and (4.3.21; 2), 
so it leads to the 

Thermodynamic Limit of the Canonical Ensemble (4.3.23) 

The limit 

lim (- TIn Tr exp( -PH») = inf(e - T(J(e, p» = q>(T, p) 
v~oo V £ 

exists. 

Remarks (4.3.24) 

1. The properties of the free-energy density listed in (2.4.16) are also proved. 
2. It is possible to prove the existence of the limit as V ---> (fJ directly, but 

that is not enough to show the equivalence with the microcanonical e. 
In particular it does not show that e is convex in (J. 

Finally, consider the grand canonical ensemble, supposing there are N e 

electrons and Nk nuclei with chemical potentials Pe and Pk. The function to 
investigate is 

peT, Pe' Pk) == lim TIn Tr exp[ -f3(H - NePe - NkPk)]. (4.3.25) 
v~oo V 

One difficulty with (4.3.25) is that the trace contains the sum over all possible 
numbers of particles, and not only the neutral configuration for which 
Ne = ZNk. Fortunately, it turns out that the non-neutral contributions 
have such large Coulomb energies that they play no role. Stated without 
proof [30], here is the resulting proposition on the 

Thermodynamic Limit of the Grand Canonical Ensemble (4.3.26) 

The limit (4.3.25) exists, and 

peT, Pn Pk) = sup (PePe + PkPk - q>(T, p», 

Ne+Nk ( 1) 
P = V = 1 + Z Pe · 

Remarks (4.3.27) 

1. Although the supremum is a priori over all density configurations, it is 
attained in the neutral sector. 
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2. Roughly speaking, to generalize this to cover arbitrarily many components 
it is only necessary to treat J1. and p as "isovectors." 

Bounds for 8(CT, p) (4.3.28) 

The question that now arises is to what extent the qualitative propositions 
that have been derived about 8(CT, p) can be sharpened and made quantitative. 
For instance, it would be desirable to find an upper bound to complement the 
lower bound (4.3.20); upper bounds are always easy to discover, since with 
the min-max principle it is only necessary to devise some good trial functions. 
In the limit p -+ ° an obvious upper bound for the ground-state energy is the 
sum of the energies of the individual atoms. If the density is finite, then one 
would think of using the ground state of the kinetic energy K in the variational 
principle, and the result is the first-order perturbation-theoretic approxima
tion to H~ = K + IXV. 

Remarks (4.3.29) 

1. It is impossible for the expansion in powers of IX to converge in the thermo
dynamic limit; if IX < 0, then the electrons would attract one another, 
as would the nuclei, whereas the nuclei would repel the electrons. The 
ground-state energy of fermions with an attractive Ijr potential goes as 
-N7/3, and that of bosons goes as _N3 (see (1.2.22) and (1.2.23; 3)). 
If a trial function is constructed with all the electrons on one side of the 
container and all the nuclei on the other, then the expectation value of the 
energy is greater than _N7 /3 + N 2 jR -+ -N7/3, so EjN does not remain 
bounded from below. On the other hand, the convergence of a series 
in the limit N -+ 00 would imply that limN -+ oo EjN would be finite on 
the whole disc of convergence, which would include some negative 
values of IX. In fact the explicit calculation reveals that even the second
order contribution becomes infinite as N -+ 00. Even so, the first-order 
result is useful as an upper bound. 

2. According to (III: 3.5.21) the min-max principle applies to finite CT 

other than the ground state, but it is more difficult to calculate the micro
canonical expectation values than the grand canonical ones. Hence, 
for nonzero temperatures it is better to use (2.1.8; 3) to bound the grand 
canonical partition function with - P ~ ::;; - Po + Tr V PGC. 

The Ground State (4.3.30) 

The simplest case is T = 0, so let us see how far we can get with the easiest 
methods. Take the expectation value of (4.3.1) in the ground state of the 
electrons; if they are confined in a box A with periodic boundary conditions, 
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the ground state is a plane wave, producing a constant electron density Pe. 
lf the nuclear charges are all Z and the nuclear masses are all Jl, that leaves 

(H) = I IPkl2 + Z2 L IXk - Xjl-1 - Lf d3xPe Z 
k=1 2Jl k>j k "Ix - Xkl 

+ ~ f d3x d3yp; 
2 " Ix - yl 

I ) I 1 r d3x d3yp2 ) 
+ \f Ipd2 + \~IXi - xk l- 1 -"2 J" Ix _ yle 

+ L If d3xPe - L 1 ) 
k \ Ix - Xkl j IXj - Xkl . (4.3.31) 

The first line of this equation is the Hamiltonian HJ of jellium (1.2.6) in the 
nuclear variables. lf we therefore add the ground-state energy of jellium to 
the other expectation values, we get an upper bound on the ground-state 
energy of H, corresponding to a trial function consisting of the tensor 
product of the ground state of HJ with the electron wave-function. The 
zero-point energy of the electrons is the next term in (4.3.31), followed by 
what is referred to as the exchange energy, and the final expectation value is 
zero. By (2.5.32), if the spin is 1, the zero-point energy goes as 

I.I IPil2 ) = N~31t2Pe)2/3 = N 2.; , rs = (-43 )1/3, (4.3.32) \,=1 rs 1tPe 

as N --+ 00, and with only a little difficulty the exchange energy can be cal
culated as 

( 
-1 1 fd 3X d3X1p;) N L IXi - Xjl - - I = -0.458-

i>j 2 lx-xl rs 
(4.3.33) 

(Problem 3). It expresses the effect of the correlations among the electrons 
owing to their having to avoid each other to satisfy the exclusion principle. 
The result is to lower the Coulomb energy in comparison with that of a 
homogeneous charge distribution. 

The Ground State of Jellium (4.3.34) 

As for H;. an upper bound can be obtained by using plane waves as trial 
functions, for which .<HJ ) once again consists of zero-point energy and 
exchange energy. A lower bound comes from the sum of the zero-point 
energy and the minimum of the potential (1.2.10), and when combined they 
bound EJ according to 

2.2 0.9 EJ 2.2 0.458 
--2 --~-~--2 ---
2Jlrs rs N 2Jlrs rs (4.3.35) 
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if Z = 1 and the spin is t. If the density is large (r s --+ 0), then the bounds 
are close together, but they spread out ifthe density is small. At small densities 
it is better to array the nuclei on a lattice; give them wave-functions 
'" sin(nra)/r, where r is the distance from the lattice site if it is less than a and 
otherwise let the wave-function be 0, and take a small enough that the 
wave-functions will not overlap, and will thus be orthogonal. The most 
convenient configuration is a body-centered cubic lattice, which consists 
of two simple cubic lattices, one of which has been displaced along a diagonal 
so that its corners are at the centers of the other. If the density is 2, i.e., the 
lattice constant of the simple cubic lattice is 1, then a must be less than 
)3/4 in order that the balls of radius a do not intersect; in terms of r., the 
distance between nuclei, 

as e3nr/3 f rs· (4.3.36) 

If the nuclei were concentrated at the points of the lattice, then the Coulomb 
energy per particle would be - 0.896/rs according to (1.2.11; 2). Provided 
that they do not overlap, the repulsion between the nuclei will be the same 
even if they are somewhat spread out. On the other hand, their interaction 
(per particle) with the background would be affected by 

P fU 2' 2 rnllu 
• 2 rn P 2(1 1) - drr sm - dr sm - = - a - - -2 . 

2 0 a 0 a 2 3 2n 
(4.3.37) 

If this is added to the kinetic energy (n/a)2 (for mass t), then the minimum 

E = (~_ ~)1/2 -3/2 _ 0.896 = 11 -3/2 _ 0.896 
N 2 4 rs . 5rs 

n ~ ~ 

is attained when 

[ P (1 1 )] -1/4 [3 (1 1)] - 114 
a = 2n2 3 - 2n2 = r;/4 8n3 3 - 2n2 . 

Condition (4.3.36) means that 

83n4 ( 3 ) 1/3 
rs ~ 3(2n2 _ 3) 8n ~ 489. (4.3.38) 

If rs is smaller, then a must be taken as (8n/3)1/3()3/4)rs' which costs 
some kinetic energy, 12.75/r;, and raises the Coulomb interaction above 
that due to the background by 0.026/rs' The figures become more favorable, 
however, when it is recalled that wave-functions of nuclei with opposite 
spins do not need to be spatially orthogonal to avoid incurring exchange 
energy. Suppose that the nuclei have spin t, as with protons, and put nuclei 
with spin up on one of the simple cubic lattices and nuclei with spin down on 
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the other. Then the spheres are required only not to overlap with other 
spheres on the same simple cubic lattice. This weakens the bound (4.3.36) to 

< (8n)1/3 ~ 
a - 3 2' 

which weakens the lower bound on rs (4.3.38) by a factor t6' so 

rs 2:: 275, (4.3.39) 

and also diminishes the zero-point energy by -i to 9.54Ir; and increases the 
interaction with the background by the same factor. The Coulomb repulsion 
between neighboring nuclei decreases, but only by an insignificant amount 
10- 3 Irs The net effect is to produce 

Bounds on the Ground-State Energy of Spin-t Jellium (4.3.40) 

2.2 0.458 
~2---

rs rs 

2.2 0.9 E 9.58 0.85 
2--~-~-2 ---
rs rs N rs rs 

1.15 0.89 
< 3i2 - - ifrs > 275, 
- rs rs 

where e = 2Ji = 1. (See Figure 39). 

Remarks (4.3.41) 

(i) 

(ii) 

(iii) 

1. The distance between particles as measured in Bohr radii with the appro
priate mass is rs. If HJ is the Hamiltonian of the nuclei, and the pressure 
is not too huge, then rs is on the order of the ratio of the mass of the 
nucleus to that of the elctron, which is at least 2000. This means that 
(4.3.400» will be the best of the bounds. If jellium is taken as a model of 
electrons in a metal, then rs '" 1, and (4.3.40(i» is best. 

2. There are conjectures that the transition from homogeneity to a lattice 
structure as rs increases is accompanied by a phase transition. It is even 
believed that the exchange energy, which favors parallel spins, causes 
ferromagnetism. Despite the simple form of HJ it has not been possible 
to prove these speculations. 

If we focus attention again on real matter, we must add the contribution 
from the electrons to that of the protons. Observe first that for nuclei the 
parameter rs '" p - 1/3/Bohr radius is increased by a factor JiZ 2 , but at the same 
time the energies in (4.3.40) are multiplied by JiZ 2 • Since the zero-point 
energy obtains an extra factor 1/Ji, it can be neglected. For the densities of 
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interest, rs > 275/jlZ2, so (4.3.40(iii)) applies to nuclei. Of course, the trial 
function with a homogeneous electron distribution is poor when Z is large, and 
does not contribute the right dependence on Z. If Z = 1, our earlier results 
on the energy per electron are only 

Crude Bounds (4.3.42) 

E 2.2 1.34 
- 8.32 < - < 2 - - . 

- N - rs rs 

Refinements (4.3.43) 

1. The lower bound. The Birman-Schwinger bound (III: 3.5.36) can be 
improved with the methods of functional integration [31], sharpening 
Inequality (4.1.47; 2) by a factor of 1.5. Then with (4.3.20), ifthe density is 
finite, A. is chosen optimally, and So = 5.74p5/3 , or equivalently Eo/N = 
2.2/r;, there results 

2. The upper bound. The ground-state energy in a box of volume V is of the 
form 

E = V-2!3f(V I /3(J(). 

The facts that aE/aV ~ 0 and a2s/ap2 ~ 0 and the convexity in (J( are 
expressed by the inequalities 

x 
f(x) ~ 2" f'(x) and 6xf'(x) - 10f(x) ~ x 2f"(x) ~ O. 

Since aE/aV ~ 0, a linear bound f(x)/ f(O) ~ 1 - ')IX for x > 211' can 
be improved by a parabolic bound f(x)/ f(O) ~ _x2(')1/2)2. By (4.3.43; 1) 
')I-I = 2.2/1.34, so if rs > 2')1-1 = 3.28, then f is less than - f(0)x 2 • 

1.34/4(2.2)2. It follows that 

E {2.2/r; - 1.34/r., if rs < 3.28 
-< 
N - - 0.204, if r s ~ 3.28. 

These bounds are far from satisfactory. Not only do they fail to allow 
finer details to be discerned, but indeed they do not even prove that hydrogen 
holds together at T = 0 rather than breaking up into separated atoms. 
In these units the energy of a separated hydrogen atom is -t, i.e., less than 
the upper bound, which only shows how large a territory still remains open 
to exploration with exact methods in physics. 
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Problems (4.3.44) 

1. Prove the Swiss cheese theorem (4.3.13): For any region A c 1R3 and any real 
number h let Ah = {x E A: d(x, N) < h}, if h > 0 and Ah = {XE N: d(x, A) ::::; -h}, 
if h ::::; 0, and denote the volume of Ah by V(h, A). 
Then prove the following two lemmas: (i) Suppose A is covered by closed cubes of 
side I, the interiors of which do not intersect, and let v be the number of cubes entirely 
contained in A. Then the volume of A not covered by these v cubes is at most 
V(lj3, A). (ii) Let Be 1R3 be an open ball of radius Rand y a number satisfying the 

inequality R;:>: 2j3y;:>: O. Then V(2j3y, B)::::; V( -2j3y, B)::::; 56nR2y/Ji Finish 
the proof of the theorem by covering Bo with a cubic lattice of spacing 2R1, and in 
each cube of the lattice place a ball of radius R 1, then cover the balls with a cubic 
lattice of spacing R 2 , etc. Use the lemmas to estimate Vj and the fraction of volume 
taken up by the balls of size j. 

2. Use Inequalities (III: 4.5.24) and (4.1.5) to find a lower bound for the potential 
energy of jellium, 

and compare with (1.2.10). (Let p be constant in any ball.) 

3. Calculate 

if t/I is the ground state of a system of free electrons in a box of volume V. (The 
momentum states in both spin orientations are occupied up to a maximum momen
tum p such that p3/3n2 = N /V = 3/4nr;.) 

4. Verify that the concavity of E as a function of (l/m, ex) is no more severe a restriction 
than the concavity of fin (4.3.43; 2). 

Solutions (4.3.45) 

1. (i) If A is covered by cubes of length I, but all cubes intersecting N are removed, 
then the uncovered portion of A is contained in AIv'!. (Hence the number V21 of 
cubes of length 21 that can be packed entirely into A is at least (21)-3[V(A) 

- V(2j31, A)].) 
(ii) If 0 ::::; h ::::; R, then 

V(h, B) = 43n [R 3 - (R - W] ::::; V( -h, B) = ~ [(R + W - R 3 ]. 

The lemma is then a consequence of the convexity of the function f(e) == 
(1 + e)3 - 1, which implies that f(e)::::; f(O) + e[f(l) - f(O)] = e[23 - 1] 
= 76. 
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Proof of the packing estimates. For simplicity assume that Ro = 1, and let 
Vj = pi-I(1 + p)2j. If a unit ball is covered by cubes oflength 2RI = 2(1 + p)- \ 

then it contains VI cubes, as we shall show. If we then cover the unit ball with a 
lattice oflength 2R2 , then there are V2 cubes contained in the unit ball and not 
intersecting the first VI balls of size 1. The general fact will follow by induction. 
Therefore it needs to be shown that when the ball has been filled with smaller balls 
up to sizej, it is still possible to pack vj + I balls of radius R j + I into the remaining 
space B - U{= I (balls of size k) := Q j : 

4n 3 4n f p )j 
V(Q) = 3 (1 - L: VkRk) = 3 \P+i . 

V(2J3R j + I, Q j ) ~ M j , defined as the sum of V( -2j3Rj + I' B) for all balls of 

size ~j and V(2j3R j + I, B), where B is the unit ball. Because of (ii) and the 

inequality 2j3R j + 1 < R j , 

h 56n" 2 
V(2y 3R j + I, Q) ~ M j ~ j3 R j + 1[1 + L.. vkRk] 

. 1 ('+1) 56n -
= (pJ + p - 2)(P - 1)- (1 + p)- J j3 := M j . 

Therefore it suffices to show that 

i.e., 

n [ 1 + p - j(p - 2)] 
1 ~ (; p + 1 - 14j3 p _ 1 . 

Since p- j(p - 2) ~ (p - 2), this reduces to 

1 ~ ~ [p + 1 - 14j3], 

which is true when p + 1 ~ 27. The fraction of the volume taken up by the balls 
of radius R j is 

which shows that the packing fills the original ball exponentially fast. 

2. From (III; 4.5.24), 

and from (4.1.5), 

[ 3 f J1
/
2 

U ~ -2 3.68N"5 p5/3 = -1.84N/rs • 



4.3 Normal Matter 

3. As N and V -> 00, make the replacements 

to find that 

f d3k 4n f d3q L v(k - k') = -3 -2 -3 8(p -lql)8(P -Ik - ql) 
Ikl,;p (2n) I k I (2n) 
Ik'l,;p 

In order to justify this formal calculation, make a convolution so that 

4n 
v(k) = Tk"P" * F(k), 

where 

F(k) = ~ f. d3x d3x' exp[ik . (x - x')] 
V xeV,x'eV 

= _3(sin klL/2)2(sin k2L/2)2(sin k3L/2)2 
L L/2 L/2. L/2 
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is the Fourier transform of the characteristic function of the box, and use Lebesgue's 
dominated convergence theorem to show that the integrals have the limits given 
above. 

4. With l/m = v: E = vf(rx/v), 

1 
E.(%(% = ~f", 

rx 
E,va. = - 2/", 

v 

rx2 

E,\I\I =3f", 
v 

E .•• E, •• - (E, •• )2 = O. 
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