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Preface

This book is intended as a text for a ®rst-year physical-chemistry or chemical-

physics graduate course in quantum mechanics. Emphasis is placed on a

rigorous mathematical presentation of the principles of quantum mechanics

with applications serving as illustrations of the basic theory. The material is

normally covered in the ®rst semester of a two-term sequence and is based on

the graduate course that I have taught from time to time at the University of

Pennsylvania. The book may also be used for independent study and as a

reference throughout and beyond the student's academic program.

The ®rst two chapters serve as an introduction to quantum theory. It is

assumed that the student has already been exposed to elementary quantum

mechanics and to the historical events that led to its development in an

undergraduate physical chemistry course or in a course on atomic physics.

Accordingly, the historical development of quantum theory is not covered. To

serve as a rationale for the postulates of quantum theory, Chapter 1 discusses

wave motion and wave packets and then relates particle motion to wave motion.

In Chapter 2 the time-dependent and time-independent SchroÈdinger equations

are introduced along with a discussion of wave functions for particles in a

potential ®eld. Some instructors may wish to omit the ®rst or both of these

chapters or to present abbreviated versions.

Chapter 3 is the heart of the book. It presents the postulates of quantum

mechanics and the mathematics required for understanding and applying the

postulates. This chapter stands on its own and does not require the student to

have read Chapters 1 and 2, although some previous knowledge of quantum

mechanics from an undergraduate course is highly desirable.

Chapters 4, 5, and 6 discuss basic applications of importance to chemists. In

all cases the eigenfunctions and eigenvalues are obtained by means of raising

and lowering operators. There are several advantages to using this ladder

operator technique over the older procedure of solving a second-order differ-
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ential equation by the series solution method. Ladder operators provide practice

for the student in operations that are used in more advanced quantum theory

and in advanced statistical mechanics. Moreover, they yield the eigenvalues

and eigenfunctions more simply and more directly without the need to

introduce generating functions and recursion relations and to consider asymp-

totic behavior and convergence. Although there is no need to invoke Hermite,

Legendre, and Laguerre polynomials when using ladder operators, these func-

tions are nevertheless introduced in the body of the chapters and their proper-

ties are discussed in the appendices. For traditionalists, the series-solution

method is presented in an appendix.

Chapters 7 and 8 discuss spin and identical particles, respectively, and each

chapter introduces an additional postulate. The treatment in Chapter 7 is

limited to spin one-half particles, since these are the particles of interest to

chemists. Chapter 8 provides the link between quantum mechanics and

statistical mechanics. To emphasize that link, the free-electron gas and Bose±

Einstein condensation are discussed. Chapter 9 presents two approximation

procedures, the variation method and perturbation theory, while Chapter 10

treats molecular structure and nuclear motion.

The ®rst-year graduate course in quantum mechanics is used in many

chemistry graduate programs as a vehicle for teaching mathematical analysis.

For this reason, this book treats mathematical topics in considerable detail,

both in the main text and especially in the appendices. The appendices on

Fourier series and the Fourier integral, the Dirac delta function, and matrices

discuss these topics independently of their application to quantum mechanics.

Moreover, the discussions of Hermite, Legendre, associated Legendre, La-

guerre, and associated Laguerre polynomials in Appendices D, E, and F are

more comprehensive than the minimum needed for understanding the main

text. The intent is to make the book useful as a reference as well as a text.

I should like to thank Corpus Christi College, Cambridge for a Visiting

Fellowship, during which part of this book was written. I also thank Simon

Capelin, Jo Clegg, Miranda Fyfe, and Peter Waterhouse of the Cambridge

University Press for their efforts in producing this book.

Donald D. Fitts

Preface ix



1

The wave function

Quantum mechanics is a theory to explain and predict the behavior of particles

such as electrons, protons, neutrons, atomic nuclei, atoms, and molecules, as

well as the photon±the particle associated with electromagnetic radiation or

light. From quantum theory we obtain the laws of chemistry as well as

explanations for the properties of materials, such as crystals, semiconductors,

superconductors, and super¯uids. Applications of quantum behavior give us

transistors, computer chips, lasers, and masers. The relatively new ®eld of

molecular biology, which leads to our better understanding of biological

structures and life processes, derives from quantum considerations. Thus,

quantum behavior encompasses a large fraction of modern science and tech-

nology.

Quantum theory was developed during the ®rst half of the twentieth century

through the efforts of many scientists. In 1926, E. SchroÈdinger interjected wave

mechanics into the array of ideas, equations, explanations, and theories that

were prevalent at the time to explain the growing accumulation of observations

of quantum phenomena. His theory introduced the wave function and the

differential wave equation that it obeys. SchroÈdinger's wave mechanics is now

the backbone of our current conceptional understanding and our mathematical

procedures for the study of quantum phenomena.

Our presentation of the basic principles of quantum mechanics is contained

in the ®rst three chapters. Chapter 1 begins with a treatment of plane waves

and wave packets, which serves as background material for the subsequent

discussion of the wave function for a free particle. Several experiments, which

lead to a physical interpretation of the wave function, are also described. In

Chapter 2, the SchroÈdinger differential wave equation is introduced and the

wave function concept is extended to include particles in an external potential

®eld. The formal mathematical postulates of quantum theory are presented in

Chapter 3.
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1.1 Wave motion

Plane wave

A simple stationary harmonic wave can be represented by the equation

ø(x) � cos
2ðx

ë

and is illustrated by the solid curve in Figure 1.1. The distance ë between peaks

(or between troughs) is called the wavelength of the harmonic wave. The value

of ø(x) for any given value of x is called the amplitude of the wave at that

point. In this case the amplitude ranges from �1 to ÿ1. If the harmonic wave is

A cos(2ðx=ë), where A is a constant, then the amplitude ranges from �A to

ÿA. The values of x where the wave crosses the x-axis, i.e., where ø(x) equals

zero, are the nodes of ø(x).

If the wave moves without distortion in the positive x-direction by an amount

x0, it becomes the dashed curve in Figure 1.1. Since the value of ø(x) at any

point x on the new (dashed) curve corresponds to the value of ø(x) at point

xÿ x0 on the original (solid) curve, the equation for the new curve is

ø(x) � cos
2ð

ë
(xÿ x0)

If the harmonic wave moves in time at a constant velocity v, then we have the

relation x0 � vt, where t is the elapsed time (in seconds), and ø(x) becomes

ø(x, t) � cos
2ð

ë
(xÿ vt)

Suppose that in one second, í cycles of the harmonic wave pass a ®xed point

on the x-axis. The quantity í is called the frequency of the wave. The velocity

ψ(x) x0
λ

λλ/2 3λ/2 λ2
x

Figure 1.1 A stationary harmonic wave. The dashed curve shows the displacement of
the harmonic wave by x0.
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v of the wave is then the product of í cycles per second and ë, the length of

each cycle

v � íë

and ø(x, t) may be written as

ø(x, t) � cos 2ð
x

ë
ÿ ít

� �
It is convenient to introduce the wave number k, de®ned as

k � 2ð

ë
(1:1)

and the angular frequency ù, de®ned as

ù � 2ðí (1:2)

Thus, the velocity v becomes v � ù=k and the wave ø(x, t) takes the form

ø(x, t) � cos(kxÿ ùt)

The harmonic wave may also be described by the sine function

ø(x, t) � sin(kxÿ ùt)

The representation of ø(x, t) by the sine function is completely equivalent to

the cosine-function representation; the only difference is a shift by ë=4 in the

value of x when t � 0. Moreover, any linear combination of sine and cosine

representations is also an equivalent description of the simple harmonic wave.

The most general representation of the harmonic wave is the complex function

ø(x, t) � cos(kxÿ ùt)� i sin(kxÿ ùt) � ei(kxÿù t) (1:3)

where i equals
�������ÿ1
p

and equation (A.31) from Appendix A has been intro-

duced. The real part, cos(kxÿ ùt), and the imaginary part, sin(kxÿ ùt), of the

complex wave, (1.3), may be readily obtained by the relations

Re [ei(kxÿù t)] � cos(kxÿ ùt) � 1

2
[ø(x, t)� ø�(x, t)]

Im [ei(kxÿù t)] � sin(kxÿ ùt) � 1

2i
[ø(x, t)ÿ ø�(x, t)]

where ø�(x, t) is the complex conjugate of ø(x, t)

ø�(x, t) � cos(kxÿ ùt)ÿ i sin(kxÿ ùt) � eÿi(kxÿù t)

The function ø�(x, t) also represents a harmonic wave moving in the positive

x-direction.

The functions exp[i(kx� ùt)] and exp[ÿi(kx� ùt)] represent harmonic

waves moving in the negative x-direction. The quantity (kx� ùt) is equal to

k(x� vt) or k(x� x0). After an elapsed time t, the value of the shifted

harmonic wave at any point x corresponds to the value at the point x� x0 at

time t � 0. Thus, the harmonic wave has moved in the negative x-direction.

1.1 Wave motion 3



The moving harmonic wave ø(x, t) in equation (1.3) is also known as a

plane wave. The quantity (kxÿ ùt) is called the phase. The velocity ù=k is

known as the phase velocity and henceforth is designated by vph, so that

vph � ù

k
(1:4)

Composite wave

A composite wave is obtained by the addition or superposition of any number

of plane waves

Ø(x, t) �
Xn

j�1

Aje
i(k j xÿù j t) (1:5)

where Aj are constants. Equation (1.5) is a Fourier series representation of

Ø(x, t). Fourier series are discussed in Appendix B. The composite wave

Ø(x, t) is not a moving harmonic wave, but rather a superposition of n plane

waves with different wavelengths and frequencies and with different ampli-

tudes Aj. Each plane wave travels with its own phase velocity vph, j, such that

vph, j � ù j

kj

As a consequence, the pro®le of this composite wave changes with time. The

wave numbers kj may be positive or negative, but we will restrict the angular

frequencies ù j to positive values. A plane wave with a negative value of k has

a negative value for its phase velocity and corresponds to a harmonic wave

moving in the negative x-direction. In general, the angular frequency ù
depends on the wave number k. The dependence of ù(k) is known as the law

of dispersion for the composite wave.

In the special case where the ratio ù(k)=k is the same for each of the

component plane waves, so that
ù1

k1

� ù2

k2

� � � � � ùn

k n

then each plane wave moves with the same velocity. Thus, the pro®le of the

composite wave does not change with time even though the angular frequencies

and the wave numbers differ. For this undispersed wave motion, the angular

frequency ù(k) is proportional to jkj
ù(k) � cjkj (1:6)

where c is a constant and, according to equation (1.4), is the phase velocity of

each plane wave in the composite wave. Examples of undispersed wave motion

are a beam of light of mixed frequencies traveling in a vacuum and the

undamped vibrations of a stretched string.
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For dispersive wave motion, the angular frequency ù(k) is not proportional

to |k|, so that the phase velocity vph varies from one component plane wave to

another. Since the phase velocity in this situation depends on k, the shape of

the composite wave changes with time. An example of dispersive wave motion

is a beam of light of mixed frequencies traveling in a dense medium such as

glass. Because the phase velocity of each monochromatic plane wave depends

on its wavelength, the beam of light is dispersed, or separated onto its

component waves, when passed through a glass prism. The wave on the surface

of water caused by dropping a stone into the water is another example of

dispersive wave motion.

Addition of two plane waves

As a speci®c and yet simple example of composite-wave construction and

behavior, we now consider in detail the properties of the composite wave

Ø(x, t) obtained by the addition or superposition of the two plane waves

exp[i(k1xÿ ù1 t)] and exp[i(k2xÿ ù2 t)]

Ø(x, t) � ei(k1 xÿù1 t) � ei(k2 xÿù2 t) (1:7)

We de®ne the average values k and ù and the differences Äk and Äù for the

two plane waves in equation (1.7) by the relations

k � k1 � k2

2
ù � ù1 � ù2

2
Äk � k1 ÿ k2 Äù � ù1 ÿ ù2

so that

k1 � k � Äk

2
, k2 � k ÿ Äk

2

ù1 � ù� Äù

2
, ù2 � ùÿ Äù

2

Using equation (A.32) from Appendix A, we may now write equation (1.7) in

the form

Ø(x, t) � ei(kxÿù t)[ei(ÄkxÿÄù t)=2 � eÿi(ÄkxÿÄù t)=2]

� 2 cos
Äkxÿ Äùt

2

� �
ei(kxÿù t) (1:8)

Equation (1.8) represents a plane wave exp[i(kxÿ ùt)] with wave number k,

angular frequency ù, and phase velocity ù=k, but with its amplitude modulated

by the function 2 cos[(Äkxÿ Äùt)=2]. The real part of the wave (1.8) at some

®xed time t0 is shown in Figure 1.2(a). The solid curve is the plane wave with

wavelength ë � 2ð=k and the dashed curve shows the pro®le of the amplitude

of the plane wave. The pro®le is also a harmonic wave with wavelength

1.1 Wave motion 5



4ð=Äk. At the points of maximum amplitude, the two original plane waves

interfere constructively. At the nodes in Figure 1.2(a), the two original plane

waves interfere destructively and cancel each other out.

As time increases, the plane wave exp[i(kxÿ ùt)] moves with velocity ù=k.

If we consider a ®xed point x1 and watch the plane wave as it passes that point,

we observe not only the periodic rise and fall of the amplitude of the

unmodi®ed plane wave exp[i(kxÿ ùt)], but also the overlapping rise and fall

of the amplitude due to the modulating function 2 cos[(Äkxÿ Äùt)=2]. With-

out the modulating function, the plane wave would reach the same maximum

2π
k

4π/∆k
Re Ψ(x, t)

(a)

x

Figure 1.2 (a) The real part of the superposition of two plane waves is shown by the
solid curve. The pro®le of the amplitude is shown by the dashed curve. (b) The
positions of the curves in Figure 1.2(a) after a short time interval.

Re Ψ(x, t)

x

(b)
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and the same minimum amplitude with the passage of each cycle. The

modulating function causes the maximum (or minimum) amplitude for each

cycle of the plane wave to oscillate with frequency Äù=2.

The pattern in Figure 1.2(a) propagates along the x-axis as time progresses.

After a short period of time Ät, the wave (1.8) moves to a position shown in

Figure 1.2(b). Thus, the position of maximum amplitude has moved in the

positive x-direction by an amount vgÄt, where vg is the group velocity of the

composite wave, and is given by

vg � Äù

Äk
(1:9)

The expression (1.9) for the group velocity of a composite of two plane waves

is exact.

In the special case when k2 equals ÿk1 and ù2 equals ù1 in equation (1.7),

the superposition of the two plane waves becomes

Ø(x, t) � ei(kxÿù t) � eÿi(kx�ù t) (1:10)

where

k � k1 � ÿk2

ù � ù1 � ù2

The two component plane waves in equation (1.10) travel with equal phase

velocities ù=k, but in opposite directions. Using equations (A.31) and (A.32),

we can express equation (1.10) in the form

Ø(x, t) � (eikx � eÿikx)eÿiù t

� 2 cos kx eÿiù t

� 2 cos kx (cosùt ÿ i sinùt)

We see that for this special case the composite wave is the product of two

functions: one only of the distance x and the other only of the time t. The

composite wave Ø(x, t) vanishes whenever cos kx is zero, i.e., when kx � ð=2,

3ð=2, 5ð=2, . . . , regardless of the value of t. Therefore, the nodes of Ø(x, t)

are independent of time. However, the amplitude or pro®le of the composite

wave changes with time. The real part of Ø(x, t) is shown in Figure 1.3. The

solid curve represents the wave when cosùt is a maximum, the dotted curve

when cosùt is a minimum, and the dashed curve when cosùt has an

intermediate value. Thus, the wave does not travel, but pulsates, increasing and

decreasing in amplitude with frequency ù. The imaginary part of Ø(x, t)

behaves in the same way. A composite wave with this behavior is known as a

standing wave.

1.1 Wave motion 7



1.2 Wave packet

We now consider the formation of a composite wave as the superposition of a

continuous spectrum of plane waves with wave numbers k con®ned to a narrow

band of values. Such a composite wave Ø(x, t) is known as a wave packet and

may be expressed as

Ø(x, t) � 1������
2ð
p

�1
ÿ1

A(k)ei(kxÿù t)dk (1:11)

The weighting factor A(k) for each plane wave of wave number k is negligible

except when k lies within a small interval Äk. For mathematical convenience

we have included a factor (2ð)ÿ1=2 on the right-hand side of equation (1.11).

This factor merely changes the value of A(k) and has no other effect.

We note that the wave packet Ø(x, t) is the inverse Fourier transform of

A(k). The mathematical development and properties of Fourier transforms are

presented in Appendix B. Equation (1.11) has the form of equation (B.19).

According to equation (B.20), the Fourier transform A(k) is related to Ø(x, t)

by

A(k) � 1������
2ð
p

�1
ÿ1

Ø(x, t)eÿi(kxÿù t) dx (1:12)

It is because of the Fourier relationships between Ø(x, t) and A(k) that the

factor (2ð)ÿ1=2 is included in equation (1.11). Although the time t appears in

the integral on the right-hand side of (1.12), the function A(k) does not depend

on t; the time dependence of Ø(x, t) cancels the factor eiù t. We consider below

Re Ψ(x, t)

x

Figure 1.3 A standing harmonic wave at various times.

8 The wave function



two speci®c examples for the functional form of A(k). However, in order to

evaluate the integral over k in equation (1.11), we also need to know the

dependence of the angular frequency ù on the wave number k.

In general, the angular frequency ù(k) is a function of k, so that the angular

frequencies in the composite wave Ø(x, t), as well as the wave numbers, vary

from one plane wave to another. If ù(k) is a slowly varying function of k and

the values of k are con®ned to a small range Äk, then ù(k) may be expanded

in a Taylor series in k about some point k0 within the interval Äk

ù(k) � ù0 � dù

dk

� �
0

(k ÿ k0)� 1

2

d2ù

dk2

� �
0
(k ÿ k0)2 � � � � (1:13)

where ù0 is the value of ù(k) at k0 and the derivatives are also evaluated at k0.

We may neglect the quadratic and higher-order terms in the Taylor expansion

(1.13) because the interval Äk and, consequently, k ÿ k0 are small. Substitu-

tion of equation (1.13) into the phase for each plane wave in (1.11) then gives

kxÿ ùt � (k ÿ k0 � k0)xÿ ù0 t ÿ dù

dk

� �
0

(k ÿ k0)t

� k0xÿ ù0 t � xÿ dù

dk

� �
0

t

" #
(k ÿ k0)

so that equation (1.11) becomes

Ø(x, t) � B(x, t)ei(k0 xÿù0 t) (1:14)

where

B(x, t) � 1������
2ð
p

�1
ÿ1

A(k)ei[xÿ(dù=dk)0 t](kÿk0) dk (1:15)

Thus, the wave packet Ø(x, t) represents a plane wave of wave number k0 and

angular frequency ù0 with its amplitude modulated by the factor B(x, t). This

modulating function B(x, t) depends on x and t through the relationship

[xÿ (dù=dk)0 t]. This situation is analogous to the case of two plane waves as

expressed in equations (1.7) and (1.8). The modulating function B(x, t) moves

in the positive x-direction with group velocity vg given by

vg � dù

dk

� �
0

(1:16)

In contrast to the group velocity for the two-wave case, as expressed in

equation (1.9), the group velocity in (1.16) for the wave packet is not uniquely

de®ned. The point k0 is chosen arbitrarily and, therefore, the value at k0 of the

derivative dù=dk varies according to that choice. However, the range of k is

1.2 Wave packet 9



narrow and ù(k) changes slowly with k, so that the variation in vg is small.

Combining equations (1.15) and (1.16), we have

B(x, t) � 1������
2ð
p

�1
ÿ1

A(k)ei(xÿvg t)(kÿk0) dk (1:17)

Since the function A(k) is the Fourier transform of Ø(x, t), the two functions

obey Parseval's theorem as given by equation (B.28) in Appendix B�1
ÿ1
jØ(x, t)j2dx �

�1
ÿ1
jB(x, t)j2 dx �

�1
ÿ1
jA(k)j2 dk (1:18)

Gaussian wave number distribution

In order to obtain a speci®c mathematical expression for the wave packet, we

need to select some form for the function A(k). In our ®rst example we choose

A(k) to be the gaussian function

A(k) � 1������
2ð
p

á
eÿ(kÿk0)2=2á2

(1:19)

This function A(k) is a maximum at wave number k0, which is also the average

value for k for this distribution of wave numbers. Substitution of equation

(1.19) into (1.17) gives

jØ(x, t)j � B(x, t) � 1������
2ð
p eÿá

2(xÿvg t)2=2 (1:20)

where equation (A.8) has been used. The resulting modulating factor B(x, t) is

also a gaussian function±following the general result that the Fourier transform

of a gaussian function is itself gaussian. We have also noted in equation (1.20)

that B(x, t) is always positive and is therefore equal to the absolute value

jØ(x, t)j of the wave packet. The functions A(k) and jØ(x, t)j are shown in

Figure 1.4.

Figure 1.4 (a) A gaussian wave number distribution. (b) The modulating function
corresponding to the wave number distribution in Figure 1.4(a).

A(k)
1/√2π α

1/√2π αe

k
k0k0 2 √2 α k0 1 √2 α(a)

1/√2π

1/√2π e

x

vg t 2(b)

|Ψ(x, t)|

√2
α

vg t vg t 1 √2
α
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Figure 1.5 shows the real part of the plane wave exp[i(k0xÿ ù0 t)] with its

amplitude modulated by B(x, t) of equation (1.20). The plane wave moves in

the positive x-direction with phase velocity vph equal to ù0=k0. The maximum

amplitude occurs at x � vg t and propagates in the positive x-direction with

group velocity vg equal to (dù=dk)0.

The value of the function A(k) falls from its maximum value of (
������
2ð
p

á)ÿ1 at

k0 to 1=e of its maximum value when jk ÿ k0j equals
���
2
p

á. Most of the area

under the curve (actually 84.3%) comes from the range

ÿ
���
2
p

á, (k ÿ k0) ,
���
2
p

á

Thus, the distance
���
2
p

á may be regarded as a measure of the width of the

distribution A(k) and is called the half width. The half width may be de®ned

using 1=2 or some other fraction instead of 1=e. The reason for using 1=e is

that the value of k at that point is easily obtained without consulting a table of

numerical values. These various possible de®nitions give different numerical

values for the half width, but all these values are of the same order of

magnitude. Since the value of jØ(x, t)j falls from its maximum value of

(2ð)ÿ1=2 to 1=e of that value when jxÿ vg tj equals
���
2
p

=á, the distance
���
2
p

=á
may be considered the half width of the wave packet.

When the parameter á is small, the maximum of the function A(k) is high

and the function drops off in value rapidly on each side of k0, giving a small

value for the half width. The half width of the wave packet, however, is large

because it is proportional to 1=á. On the other hand, when the parameter á is

large, the maximum of A(k) is low and the function drops off slowly, giving a

large half width. In this case, the half width of the wave packet becomes small.

If we regard the uncertainty Äk in the value of k as the half width of the

distribution A(k) and the uncertainty Äx in the position of the wave packet as

its half width, then the product of these two uncertainties is

ÄxÄk � 2

x

Figure 1.5 The real part of a wave packet for a gaussian wave number distribution.
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Thus, the product of these two uncertainties Äx and Äk is a constant of order

unity, independent of the parameter á.

Square pulse wave number distribution

As a second example, we choose A(k) to have a constant value of unity for k

between k1 and k2 and to vanish elsewhere, so that

A(k) � 1, k1 < k < k2

� 0, k , k1, k . k2

(1:21)

as illustrated in Figure 1.6(a). With this choice for A(k), the modulating

function B(x, t) in equation (1.17) becomes

B(x, t) � 1������
2ð
p

� k2

k1

ei(xÿvg t)(kÿk0) dk

� 1������
2ð
p

i(xÿ vg t)
[ei(xÿvg t)(k2ÿk0) ÿ ei(xÿvg t)(k1ÿk0)]

� 1������
2ð
p

i(xÿ vg t)
[ei(xÿvg t)Äk=2 ÿ eÿi(xÿvg t)Äk=2]

�
���
2

ð

r
sin[(xÿ vg t)Äk=2]

xÿ vg t
(1:22)

where k0 is chosen to be (k1 � k2)=2, Äk is de®ned as (k2 ÿ k1), and equation

(A.33) has been used. The function B(x, t) is shown in Figure 1.6(b).

The real part of the wave packet Ø(x, t) obtained from combining equations

(1.14) and (1.22) is shown in Figure 1.7. The amplitude of the plane wave

exp[i(k0xÿ ù0 t)] is modulated by the function B(x, t) of equation (1.22),

which has a maximum when (xÿ vg t) equals zero, i.e., when x � vg t. The

nodes of B(x, t) nearest to the maximum occur when (xÿ vg t)Äk=2 equals

�ð, i.e., when x is �(2ð=Äk) from the point of maximum amplitude. If we

consider the half width of the wave packet between these two nodes as a

measure of the uncertainty Äx in the location of the wave packet and the width

(k2 ÿ k1) of the square pulse A(k) as a measure of the uncertainty Äk in the

value of k, then the product of these two uncertainties is

ÄxÄk � 2ð

Uncertainty relation

We have shown in the two examples above that the uncertainty Äx in the

position of a wave packet is inversely related to the uncertainty Äk in the wave

numbers of the constituent plane waves. This relationship is generally valid and

12 The wave function



Figure 1.6 (a) A square pulse wave number distribution. (b) The modulating function
corresponding to the wave number distribution in Figure 1.6(a).

A(k)

1

0
k1 k2

k
(a)

B(x, t)

∆k/√2π

x 2 vg t

022π/∆k 2π/∆k(b)

Re Ψ(x, t)

x

Figure 1.7 The real part of a wave packet for a square pulse wave number distribution.
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is a property of Fourier transforms. In order to localize a wave packet so that

the uncertainty Äx is very small, it is necessary to employ a broad spectrum of

plane waves in equations (1.11) or (1.17). The function A(k) must have a wide

distribution of wave numbers, giving a large uncertainty Äk. If the distribution

A(k) is very narrow, so that the uncertainty Äk is small, then the wave packet

becomes broad and the uncertainty Äx is large.

Thus, for all wave packets the product of the two uncertainties has a lower

bound of order unity

ÄxÄk > 1 (1:23)

The lower bound applies when the narrowest possible range Äk of values for k

is used in the construction of the wave packet, so that the quadratic and higher-

order terms in equation (1.13) can be neglected. If a broader range of k is

allowed, then the product ÄxÄk can be made arbitrarily large, making the

right-hand side of equation (1.23) a lower bound. The actual value of the lower

bound depends on how the uncertainties are de®ned. Equation (1.23) is known

as the uncertainty relation.

A similar uncertainty relation applies to the variables t and ù. To show this

relation, we write the wave packet (1.11) in the form of equation (B.21)

Ø(x, t) � 1������
2ð
p

�1
ÿ1

G(ù)ei(kxÿù t) dù (1:24)

where the weighting factor G(ù) has the form of equation (B.22)

G(ù) � 1������
2ð
p

�1
ÿ1

Ø(x, t)eÿi(kxÿù t) dt

In the evaluation of the integral in equation (1.24), the wave number k is

regarded as a function of the angular frequency ù, so that in place of (1.13) we

have

k(ù) � k0 � dk

dù

� �
0

(ùÿ ù0) � � � �

If we neglect the quadratic and higher-order terms in this expansion, then

equation (1.24) becomes

Ø(x, t) � C(x, t)ei(k0 xÿù0 t)

where

C(x, t) � 1������
2ð
p

�1
ÿ1

A(ù)eÿi[ tÿ(dk=dù)0 x](ùÿù0) dù

As before, the wave packet is a plane wave of wave number k0 and angular

frequency ù0 with its amplitude modulated by a factor that moves in the

positive x-direction with group velocity vg, given by equation (1.16). Following
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the previous analysis, if we select a speci®c form for the modulating function

G(ù) such as a gaussian or a square pulse distribution, we can show that the

product of the uncertainty Ät in the time variable and the uncertainty Äù in

the angular frequency of the wave packet has a lower bound of order unity, i.e.

ÄtÄù > 1 (1:25)

This uncertainty relation is also a property of Fourier transforms and is valid

for all wave packets.

1.3 Dispersion of a wave packet

In this section we investigate the change in contour of a wave packet as it

propagates with time.

The general expression for a wave packet Ø(x, t) is given by equation

(1.11). The weighting factor A(k) in (1.11) is the inverse Fourier transform of

Ø(x, t) and is given by (1.12). Since the function A(k) is independent of time,

we may set t equal to any arbitrary value in the integral on the right-hand side

of equation (1.12). If we let t equal zero in (1.12), then that equation becomes

A(k) � 1������
2ð
p

�1
ÿ1

Ø(î, 0)eÿikî dî (1:26)

where we have also replaced the dummy variable of integration by î. Substitu-

tion of equation (1.26) into (1.11) yields

Ø(x, t) � 1

2ð

��1
ÿ1

Ø(î, 0)ei[k(xÿî)ÿù t] dk dî (1:27)

Since the limits of integration do not depend on the variables î and k, the order

of integration over these variables may be interchanged.

Equation (1.27) relates the wave packet Ø(x, t) at time t to the wave packet

Ø(x, 0) at time t � 0. However, the angular frequency ù(k) is dependent on k

and the functional form must be known before we can evaluate the integral

over k.

If ù(k) is proportional to jkj as expressed in equation (1.6), then (1.27) gives

Ø(x, t) � 1

2ð

��1
ÿ1

Ø(î, 0)eik(xÿctÿî) dk dî

The integral over k may be expressed in terms of the Dirac delta function

through equation (C.6) in Appendix C, so that we have
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Ø(x, t) �
�1
ÿ1

Ø(î, 0)ä(xÿ ct ÿ î) dî � Ø(xÿ ct, 0)

Thus, the wave packet Ø(x, t) has the same value at point x and time t that it

had at point xÿ ct at time t � 0. The wave packet has traveled with velocity c

without a change in its contour, i.e., it has traveled without dispersion. Since

the phase velocity vph is given by ù0=k0 � c and the group velocity vg is given

by (dù=dk)0 � c, the two velocities are the same for an undispersed wave

packet.

We next consider the more general situation where the angular frequency

ù(k) is not proportional to jkj, but is instead expanded in the Taylor series

(1.13) about (k ÿ k0). Now, however, we retain the quadratic term, but still

neglect the terms higher than quadratic, so that

ù(k) � ù0 � vg(k ÿ k0)� ã(k ÿ k0)2

where equation (1.16) has been substituted for the ®rst-order derivative and ã
is an abbreviation for the second-order derivative

ã � 1

2

d2ù

dk2

� �
0

The phase in equation (1.27) then becomes

k(xÿ î)ÿ ùt � (k ÿ k0)(xÿ î)� k0(xÿ î)ÿ ù0 t

ÿ vg t(k ÿ k0)ÿ ãt(k ÿ k0)2

� k0xÿ ù0 t ÿ k0î� (xÿ vg t ÿ î)(k ÿ k0)ÿ ãt(k ÿ k0)2

so that the wave packet (1.27) takes the form

Øã(x, t) � ei(k0 xÿù0 t)

2ð

��1
ÿ1

Ø(î, 0)eÿik0îei(xÿvg tÿî)(kÿk0)ÿiã t(kÿk0)2

dk dî

The subscript ã has been included in the notation Øã(x, t) in order to

distinguish that wave packet from the one in equations (1.14) and (1.15), where

the quadratic term in ù(k) is omitted. The integral over k may be evaluated

using equation (A.8), giving the result

Øã(x, t) � ei(k0 xÿù0 t)

2
���������
iðãt
p

��1
ÿ1

Ø(î, 0)eÿik0îeÿ(xÿvg tÿî)2=4iã t dî (1:28)

Equation (1.28) relates the wave packet at time t to the wave packet at time

t � 0 if the k-dependence of the angular frequency includes terms up to k2.

The pro®le of the wave packet Øã(x, t) changes as time progresses because of
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the factor tÿ1=2 before the integral and the t in the exponent within the integral.

If we select a speci®c form for the wave packet at time t � 0, the nature of this

time dependence becomes more evident.

Gaussian wave packet

Let us suppose that Ø(x, 0) has the gaussian distribution (1.20) as its pro®le, so

that equation (1.14) at time t � 0 is

Ø(î, 0) � eik0îB(î, 0) � 1������
2ð
p eik0îeÿá

2î2=2 (1:29)

Substitution of equation (1.29) into (1.28) gives

Øã(x, t) � ei(k0 xÿù0 t)

2ð
���������
2iãt
p

�1
ÿ1

eÿá
2î2=2eÿ(xÿvg tÿî)2=4iã t dî

The integral may be evaluated using equation (A.8) accompanied with some

tedious, but straightforward algebraic manipulations, yielding

Øã(x, t) � ei(k0 xÿù0 t)������������������������������
2ð(1� 2iá2ãt)

p eÿá
2(xÿvg t)2=2(1�2iá2ã t) (1:30)

The wave packet, then, consists of the plane wave exp i[k0xÿ ù0 t] with its

amplitude modulated by

1������������������������������
2ð(1� 2iá2ãt)

p eÿá
2(xÿvg t)2=2(1�2iá2ã t)

which is a complex function that depends on the time t. When ã equals zero so

that the quadratic term in ù(k) is neglected, this complex modulating function

reduces to B(x, t) in equation (1.20). The absolute value jØã(x, t)j of the wave

packet (1.30) is given by

jØã(x, t)j � 1

(2ð)1=2(1� 4á4ã2 t2)1=4
eÿá

2(xÿvg t)2=2(1�4á4ã2 t2) (1:31)

We now contrast the behavior of the wave packet in equation (1.31) with that

of the wave packet in (1.20). At any time t, the maximum amplitudes of both

occur at x � vg t and travel in the positive x-direction with the same group

velocity vg. However, at that time t, the value of jØã(x, t)j is 1=e of its

maximum value when the exponent in equation (1.31) is unity, so that the half

width or uncertainty Äx for jØã(x, t)j is given by

Äx � jxÿ vg tj �
���
2
p

á

������������������������
1� 4á4ã2 t2

p
Moreover, the maximum amplitude for jØã(x, t)j at time t is given by

(2ð)ÿ1=2(1� 4á4ã2 t2)ÿ1=4
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As time increases from ÿ1 to 0, the half width of the wave packet jØã(x, t)j
continuously decreases and the maximum amplitude continuously increases. At

t � 0 the half width attains its lowest value of
���
2
p

=á and the maximum

amplitude attains its highest value of 1=
������
2ð
p

, and both values are in agreement

with the wave packet in equation (1.20). As time increases from 0 to 1, the

half width continuously increases and the maximum amplitude continuously

decreases. Thus, as t2 increases, the wave packet jØã(x, t)j remains gaussian

in shape, but broadens and ¯attens out in such a way that the area under the

square jØã(x, t)j2 of the wave packet remains constant over time at a value of

(2
���
ð
p

á)ÿ1, in agreement with Parseval's theorem (1.18).

The product ÄxÄk for this spreading wave packet Øã(x, t) is

ÄxÄk � 2
������������������������
1� 4á4ã2 t2

p
and increases as jtj increases. Thus, the value of the right-hand side when t � 0

is the lower bound for the product ÄxÄk and is in agreement with the

uncertainty relation (1.23).

1.4 Particles and waves

To explain the photoelectric effect, Einstein (1905) postulated that light, or

electromagnetic radiation, consists of a beam of particles, each of which travels

at the same velocity c (the speed of light), where c has the value

c � 2:997 92 3 108 m sÿ1

Each particle, later named a photon, has a characteristic frequency í and an

energy hí, where h is Planck's constant with the value

h � 6:626 08 3 10ÿ34 J s

The constant h and the hypothesis that energy is quantized in integral multiples

of hí had previously been introduced by M. Planck (1900) in his study of

blackbody radiation.1 In terms of the angular frequency ù de®ned in equation

(1.2), the energy E of a photon is

E � "ù (1:32)

where " is de®ned by

" � h

2ð
� 1:054 57 3 10ÿ34 J s

Because the photon travels with velocity c, its motion is governed by relativity

1 The history of the development of quantum concepts to explain observed physical phenomena, which
occurred mainly in the ®rst three decades of the twentieth century, is discussed in introductory texts on
physical chemistry and on atomic physics. A much more detailed account is given in M. Jammer (1966)
The Conceptual Development of Quantum Mechanics (McGraw-Hill, New York).
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theory, which requires that its rest mass be zero. The magnitude of the

momentum p for a particle with zero rest mass is related to the relativistic

energy E by p � E=c, so that

p � E

c
� hí

c
� "ù

c

Since the velocity c equals ù=k, the momentum is related to the wave number

k for a photon by

p � "k (1:33)

Einstein's postulate was later con®rmed experimentally by A. Compton (1924).

Noting that it had been fruitful to regard light as having a corpuscular nature,

L. de Broglie (1924) suggested that it might be useful to associate wave-like

behavior with the motion of a particle. He postulated that a particle with linear

momentum p be associated with a wave whose wavelength ë is given by

ë � 2ð

k
� h

p
(1:34)

and that expressions (1.32) and (1.33) also apply to particles. The hypothesis of

wave properties for particles and the de Broglie relation (equation (1.34)) have

been con®rmed experimentally for electrons by G. P. Thomson (1927) and by

Davisson and Germer (1927), for neutrons by E. Fermi and L. Marshall (1947),

and by W. H. Zinn (1947), and for helium atoms and hydrogen molecules by I.

Estermann, R. Frisch, and O. Stern (1931).

The classical, non-relativistic energy E for a free particle, i.e., a particle in

the absence of an external force, is expressed as the sum of the kinetic and

potential energies and is given by

E � 1

2
mv2 � V � p2

2m
� V (1:35)

where m is the mass and v the velocity of the particle, the linear momentum p

is

p � mv

and V is a constant potential energy. The force F acting on the particle is given

by

F � ÿ dV

dx
� 0

and vanishes because V is constant. In classical mechanics the choice of the

zero-level of the potential energy is arbitrary. Since the potential energy for the

free particle is a constant, we may, without loss of generality, take that constant

value to be zero, so that equation (1.35) becomes
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E � p2

2m
(1:36)

Following the theoretical scheme of SchroÈdinger, we associate a wave packet

Ø(x, t) with the motion in the x-direction of this free particle. This wave

packet is readily constructed from equation (1.11) by substituting (1.32) and

(1.33) for ù and k, respectively

Ø(x, t) � 1���������
2ð"
p

�1
ÿ1

A( p)ei( pxÿEt)=" d p (1:37)

where, for the sake of symmetry between Ø(x, t) and A( p), a factor "ÿ1=2 has

been absorbed into A( p). The function A(k) in equation (1.12) is now

"1=2 A( p), so that

A( p) � 1���������
2ð"
p

�1
ÿ1

Ø(x, t)eÿi( pxÿEt)=" dx (1:38)

The law of dispersion for this wave packet may be obtained by combining

equations (1.32), (1.33), and (1.36) to give

ù(k) � E

"
� p2

2m"
� "k2

2m
(1:39)

This dispersion law with ù proportional to k2 is different from that for

undispersed light waves, where ù is proportional to k.

If ù(k) in equation (1.39) is expressed as a power series in k ÿ k0, we obtain

ù(k) � "k2
0

2m
� "k0

m
(k ÿ k0)� "

2m
(k ÿ k0)2 (1:40)

This expansion is exact; there are no terms of higher order than quadratic.

From equation (1.40) we see that the phase velocity vph of the wave packet is

given by

vph � ù0

k0

� "k0

2m
(1:41)

and the group velocity vg is

vg � dù

dk

� �
0

� "k0

m
(1:42)

while the parameter ã of equations (1.28), (1.30), and (1.31) is

ã � 1

2

d2ù

dk2

� �
0
� "

2m
(1:43)

If we take the derivative of ù(k) in equation (1.39) with respect to k and use

equation (1.33), we obtain

dù

dk
� "k

m
� p

m
� v
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Thus, the velocity v of the particle is associated with the group velocity vg of

the wave packet

v � vg

If the constant potential energy V in equation (1.35) is set at some arbitrary

value other then zero, then equation (1.39) takes the form

ù(k) � "k2

2m
� V

"

and the phase velocity vph becomes

vph � "k0

2m
� V

"k0

Thus, both the angular frequency ù(k) and the phase velocity vph are

dependent on the choice of the zero-level of the potential energy and are

therefore arbitrary; neither has a physical meaning for a wave packet represent-

ing a particle.

Since the parameter ã is non-vanishing, the wave packet will disperse with

time as indicated by equation (1.28). For a gaussian pro®le, the absolute value

of the wave packet is given by equation (1.31) with ã given by (1.43). We note

that ã is proportional to mÿ1, so that as m becomes larger, ã becomes smaller.

Thus, for heavy particles the wave packet spreads slowly with time.

As an example, the value of ã for an electron, which has a mass of

9:11 3 10ÿ31 kg, is 5:78 3 10ÿ5 m2 sÿ1. For a macroscopic particle whose

mass is approximately a microgram, say 9:11 3 10ÿ10 kg in order to make the

calculation easier, the value of ã is 5:78 3 10ÿ26 m2 sÿ1. The ratio of the

macroscopic particle to the electron is 1021. The time dependence in the

dispersion terms in equations (1.31) occurs as the product ãt. Thus, for the

same extent of spreading, the macroscopic particle requires a factor of 1021

longer than the electron.

1.5 Heisenberg uncertainty principle

Since a free particle is represented by the wave packet Ø(x, t), we may regard

the uncertainty Äx in the position of the wave packet as the uncertainty in the

position of the particle. Likewise, the uncertainty Äk in the wave number is

related to the uncertainty Äp in the momentum of the particle by Äk � Äp=".

The uncertainty relation (1.23) for the particle is, then

ÄxÄp > " (1:44)

This relationship is known as the Heisenberg uncertainty principle.

The consequence of this principle is that at any instant of time the position
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of the particle is de®ned only as a range Äx and the momentum of the particle

is de®ned only as a range Äp. The product of these two ranges or `uncertain-

ties' is of order " or larger. The exact value of the lower bound is dependent on

how the uncertainties are de®ned. A precise de®nition of the uncertainties in

position and momentum is given in Sections 2.3 and 3.10.

The Heisenberg uncertainty principle is a consequence of the stipulation that

a quantum particle is a wave packet. The mathematical construction of a wave

packet from plane waves of varying wave numbers dictates the relation (1.44).

It is not the situation that while the position and the momentum of the particle

are well-de®ned, they cannot be measured simultaneously to any desired degree

of accuracy. The position and momentum are, in fact, not simultaneously

precisely de®ned. The more precisely one is de®ned, the less precisely is the

other, in accordance with equation (1.44). This situation is in contrast to

classical-mechanical behavior, where both the position and the momentum can,

in principle, be speci®ed simultaneously as precisely as one wishes.

In quantum mechanics, if the momentum of a particle is precisely speci®ed

so that p � p0 and Äp � 0, then the function A( p) is

A( p) � ä( pÿ p0)

The wave packet (1.37) then becomes

Ø(x, t) � 1���������
2ð"
p

�1
ÿ1

ä( pÿ p0)ei( pxÿEt)=" d p � 1���������
2ð"
p ei( p0 xÿEt)="

which is a plane wave with wave number p0=" and angular frequency E=".

Such a plane wave has an in®nite value for the uncertainty Äx. Likewise, if the

position of a particle is precisely speci®ed, the uncertainty in its momentum is

in®nite.

Another Heisenberg uncertainty relation exists for the energy E of a particle

and the time t at which the particle has that value for the energy. The

uncertainty Äù in the angular frequency of the wave packet is related to the

uncertainty ÄE in the energy of the particle by Äù � ÄE=", so that the

relation (1.25) when applied to a free particle becomes

ÄEÄt > " (1:45)

Again, this relation arises from the representation of a particle by a wave

packet and is a property of Fourier transforms.

The relation (1.45) may also be obtained from (1.44) as follows. The

uncertainty ÄE is the spread of the kinetic energies in a wave packet. If Äp is

small, then ÄE is related to Äp by

ÄE � Ä
p2

2m

� �
� p

m
Äp (1:46)
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The time Ät for a wave packet to pass a given point equals the uncertainty in

its position x divided by the group velocity vg

Ät � Äx

vg

� Äx

v
� m

p
Äx (1:47)

Combining equations (1.46) and (1.47), we see that ÄEÄt � ÄxÄp. Thus, the

relation (1.45) follows from (1.44). The Heisenberg uncertainty relation (1.45)

is treated more thoroughly in Section 3.10.

1.6 Young's double-slit experiment

The essential features of the particle±wave duality are clearly illustrated by

Young's double-slit experiment. In order to explain all of the observations of

this experiment, light must be regarded as having both wave-like and particle-

like properties. Similar experiments on electrons indicate that they too possess

both particle-like and wave-like characteristics. The consideration of the

experimental results leads directly to a physical interpretation of SchroÈdinger's

wave function, which is presented in Section 1.8.

The experimental apparatus is illustrated schematically in Figure 1.8. Mono-

chromatic light emitted from the point source S is focused by a lens L onto a

detection or observation screen D. Between L and D is an opaque screen with

two closely spaced slits A and B, each of which may be independently opened

or closed.

A monochromatic light beam from S passing through the opaque screen with

slit A open and slit B closed gives a diffraction pattern on D with an intensity

distribution IA as shown in Figure 1.9(a). In that ®gure the points A and B are

directly in line with slits A and B, respectively. If slit A is closed and slit B

open, the intensity distribution of the diffraction pattern is given by the curve

labeled IB in Figure 1.9(a). For an experiment in which slit A is open and slit

B is closed half of the time, while slit A is closed and slit B is open the other

half of the time, the resulting intensity distribution is the sum of IA and IB, as

shown in Figure 1.9(b). However, when both slits are open throughout an

S
B

AL
D

Figure 1.8 Diagram of Young's double-slit experiment.
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experiment, an interference pattern as shown in Figure 1.9(c) is observed. The

intensity pattern in this case is not the sum IA � IB, but rather an alternating

series of bright and dark interference fringes with a bright maximum midway

between points A and B. The spacing of the fringes depends on the distance

between the two slits.

The wave theory for light provides a satisfactory explanation for these

observations. It was, indeed, this very experiment conducted by T. Young

(1802) that, in the nineteenth century, led to the replacement of Newton's

particle theory of light by a wave theory.

The wave interpretation of the interference pattern observed in Young's

experiment is inconsistent with the particle or photon concept of light as

required by Einstein's explanation of the photoelectric effect. If the monochro-

matic beam of light consists of a stream of individual photons, then each

photon presumably must pass through either slit A or slit B. To test this

assertion, detectors are placed directly behind slits A and B and both slits are

opened. The light beam used is of such low intensity that only one photon at a

time is emitted by S. In this situation each photon is recorded by either one

detector or the other, never by both at once. Half of the photons are observed to

pass through slit A, half through slit B in random order. This result is consistent

with particle behavior.

How then is a photon passing through only one slit in¯uenced by the other

slit to produce an interference pattern? A possible explanation is that somehow

photons passing through slit A interact with other photons passing through slit

A

B

A

B

A

B

IA IA 1 IB

IB

(a) (b) (c)

Figure 1.9 (a) Intensity distributions IA from slit A alone and IB from slit B alone. (b)
The sum of the intensity distributions IA and IB. (c) The intensity interference pattern
when slits A and B are open simultaneously.

24 The wave function



B and vice versa. To answer this question, Young's experiment is repeated with

both slits open and with only one photon at a time emitted by S. The elapsed

time between each emission is long enough to rule out any interactions among

the photons. While it might be expected that, under these circumstances, the

pattern in Figure 1.9(b) would be obtained, in fact the interference fringes of

Figure 1.9(c) are observed. Thus, the same result is obtained regardless of the

intensity of the light beam, even in the limit of diminishing intensity.

If the detection screen D is constructed so that the locations of individual

photon impacts can be observed (with an array of scintillation counters, for

example), then two features become apparent. The ®rst is that only whole

photons are detected; each photon strikes the screen D at only one location.

The second is that the interference pattern is slowly built up as the cumulative

effect of very many individual photon impacts. The behavior of any particular

photon is unpredictable; it strikes the screen at a random location. The density

of the impacts at each point on the screen D gives the interference fringes.

Looking at it the other way around, the interference pattern is the probability

distribution of the location of the photon impacts.

If only slit A is open half of the time and only slit B the other half of the

time, then the interference fringes are not observed and the diffraction pattern

of Figure 1.9(b) is obtained. The photons passing through slit A one at a time

form in a statistical manner the pattern labeled IA in Figure 1.9(a), while those

passing through slit B yield the pattern IB. If both slits A and B are left open,

but a detector is placed at slit A so that we know for certain whether each given

photon passes through slit A or through slit B, then the interference pattern is

again not observed; only the pattern of Figure 1.9(b) is obtained. The act of

ascertaining through which slit the photon passes has the same effect as closing

the other slit.

The several variations on Young's experiment cannot be explained exclu-

sively by a wave concept of light nor by a particle concept. Both wave and

particle behavior are needed for a complete description. When the photon is

allowed to pass undetected through the slits, it displays wave behavior and an

interference pattern is observed. Typical of particle behavior, each photon

strikes the detection screen D at a speci®c location. However, the location is

different for each photon and the resulting pattern for many photons is in

accord with a probability distribution. When the photon is observed or

constrained to pass through a speci®c slit, whether the other slit is open or

closed, the behavior is more like that of a particle and the interference fringes

are not observed. It should be noted, however, that the curve IA in Figure

1.9(a) is the diffraction pattern for a wave passing through a slit of width

comparable to the wavelength of the wave. Thus, even with only one slit open
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and with the photons passing through the slit one at a time, wave behavior is

observed.

Analogous experiments using electrons instead of photons have been carried

out with the same results. Electrons passing through a system with double slits

produce an interference pattern. If a detector determines through which slit

each electron passes, then the interference pattern is not observed. As with the

photon, the electron exhibits both wave-like and particle-like behavior and its

location on a detection screen is randomly determined by a probability

distribution.

1.7 Stern±Gerlach experiment

Another experiment that relates to the physical interpretation of the wave

function was performed by O. Stern and W. Gerlach (1922). Their experiment

is a dramatic illustration of a quantum-mechanical effect which is in direct

con¯ict with the concepts of classical theory. It was the ®rst experiment of a

non-optical nature to show quantum behavior directly.

In the Stern±Gerlach experiment, a beam of silver atoms is produced by

evaporating silver in a high-temperature oven and allowing the atoms to escape

through a small hole. The beam is further collimated by passage through a

series of slits. As shown in Figure 1.10, the beam of silver atoms then passes

through a highly inhomogeneous magnetic ®eld and condenses on a detection

plate. The cross-section of the magnet is shown in Figure 1.11. One pole has a

very sharp edge in order to produce a large gradient in the magnetic ®eld. The

atomic beam is directed along this edge (the z-axis) so that the silver atoms

experience a gradient in magnetic ®eld in the vertical or x-direction, but not in

the horizontal or y-direction.

Silver atoms, being paramagnetic, have a magnetic moment M. In a

magnetic ®eld B, the potential energy V of each atom is

V � ÿM . B

Between the poles of the magnet, the magnetic ®eld B varies rapidly in the x-

Oven Collimating
slits

Magnet

y

x

z

Detection
plate

Figure 1.10 Diagram of the Stern±Gerlach experiment.
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direction, resulting in a force Fx in the x-direction acting on each silver atom.

This force is given by

Fx � ÿ @V

@x
� M cosè

@B

@x

where M and B are the magnitudes of the vectors M and B and è is the angle

between the direction of the magnetic moment and the positive x-axis. Thus,

the inhomogeneous magnetic ®eld de¯ects the path of a silver atom by an

amount dependent on the orientation angle è of its magnetic moment. If the

angle è is between 08 and 908, then the force is positive and the atom moves in

the positive x-direction. For an angle è between 908 and 1808, the force is

negative and the atom moves in the negative x-direction.

As the silver atoms escape from the oven, their magnetic moments are

randomly oriented so that all possible values of the angle è occur. According to

classical mechanics, we should expect the beam of silver atoms to form, on the

detection plate, a continuous vertical line, corresponding to a gaussian distribu-

tion of impacts with a maximum intensity at the center (x � 0). The outer

limits of this line would correspond to the magnetic moment of a silver atom

parallel (è � 08) and antiparallel (è � 1808) to the magnetic ®eld gradient

(@B=@x). What is actually observed on the detection plate are two spots,

located at each of the outer limits predicted by the classical theory. Thus, the

beam of silver atoms splits into two distinct components, one corresponding to

è � 08, the other to è � 1808. There are no trajectories corresponding to

intermediate values of è. There is nothing unique or special about the vertical

direction. If the magnet is rotated so that the magnetic ®eld gradient is along

the y-axis, then again only two spots are observed on the detection plate, but

are now located on the horizontal axis.

The Stern±Gerlach experiment shows that the magnetic moment of each

x
z

y

Magnet

Figure 1.11 A cross-section of the magnet in Figure 1.10.

1.7 Stern±Gerlach experiment 27



silver atom is found only in one of two orientations, either parallel or

antiparallel to the magnetic ®eld gradient, even though the magnetic moments

of the atoms are randomly oriented when they emerge from the oven. Thus, the

possible orientations of the atomic magnetic moment are quantized, i.e., only

certain discrete values are observed. Since the direction of the quantization is

determined by the direction of the magnetic ®eld gradient, the experimental

process itself in¯uences the result of the measurement. This feature occurs in

other experiments as well and is characteristic of quantum behavior.

If the beam of silver atoms is allowed to pass sequentially between the poles

of two or three magnets, additional interesting phenomena are observed. We

describe here three such related experimental arrangements. In the ®rst

arrangement the collimated beam passes through a magnetic ®eld gradient

pointing in the positive x-direction. One of the two exiting beams is blocked

(say the one with antiparallel orientation), while the other (with parallel

orientation) passes through a second magnetic ®eld gradient which is parallel

to the ®rst. The atoms exiting the second magnet are deposited on a detection

plate. In this case only one spot is observed, because the magnetic moments of

the atoms entering the second magnetic ®eld are all oriented parallel to the

gradient and remain parallel until they strike the detection plate.

The second arrangement is the same as the ®rst except that the gradient of

the second magnetic ®eld is along the positive y-axis, i.e., it is perpendicular to

the gradient of the ®rst magnetic ®eld. For this arrangement, two spots of silver

atoms appear on the detection plate, one to the left and one to the right of the

vertical x-axis. The beam leaving the ®rst magnet with all the atomic magnetic

moments oriented in the positive x-direction is now split into two equal beams

with the magnetic moments oriented parallel and antiparallel to the second

magnetic ®eld gradient.

The third arrangement adds yet another vertical inhomogeneous magnetic

®eld to the setup of the second arrangement. In this new arrangement the

collimated beam of silver atoms coming from the oven ®rst encounters a

magnetic ®eld gradient in the positive x-direction, which splits the beam

vertically into two parts. The lower beam is blocked and the upper beam passes

through a magnetic ®eld gradient in the positive y-direction. This beam is split

horizontally into two parts. The left beam is blocked and the right beam is now

directed through a magnetic ®eld gradient parallel to the ®rst one, i.e., oriented

in the positive x-direction. The resulting pattern on the detection plate might be

expected to be a single spot, corresponding to the magnetic moments of all

atoms being aligned in the positive x-direction. What is observed in this case,

however, are two spots situated on a vertical axis and corresponding to atomic

magnetic moments aligned in equal numbers in both the positive and negative
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x-directions. The passage of the atoms through the second magnet apparently

realigned their magnetic moments parallel and antiparallel to the positive y-

axis and thereby destroyed the previous information regarding their alignment

by the ®rst magnet.

The original Stern±Gerlach experiment has also been carried out with the

same results using sodium, potassium, copper, gold, thallium, and hydrogen

atoms in place of silver atoms. Each of these atoms, including silver, has a

single unpaired electron among the valence electrons surrounding its nucleus

and core electrons. In hydrogen, of course, there is only one electron about the

nucleus. The magnetic moment of such an atom is due to the intrinsic angular

momentum, called spin, of this odd electron. The quantization of the magnetic

moment by the inhomogeneous magnetic ®eld is then the quantization of this

electron spin angular momentum. The spin of the electron and of other

particles is discussed in Chapter 7.

Since the splitting of the atomic beam in the Stern±Gerlach experiment is

due to the spin of an unpaired electron, one might wonder why a beam of

electrons is not used directly rather than having the electrons attached to atoms.

In order for a particle to pass between the poles of a magnet and be de¯ected

by a distance proportional to the force acting on it, the trajectory of the particle

must be essentially a classical path. As discussed in Section 1.4, such a particle

is described by a wave packet and wave packets disperse with time±the lighter

the particle, the faster the dispersion and the greater the uncertainty in the

position of the particle. The application of Heisenberg's uncertainty principle

to an electron beam shows that, because of the small mass of the electron, it is

meaningless to assign a magnetic moment to a free electron. As a result, the

pattern on the detection plate from an electron beam would be suf®ciently

diffuse from interference effects that no conclusions could be drawn.2 How-

ever, when the electron is bound unpaired in an atom, then the atom, having a

suf®ciently larger mass, has a magnetic moment and an essentially classical

path through the Stern±Gerlach apparatus.

1.8 Physical interpretation of the wave function

Young's double-slit experiment and the Stern±Gerlach experiment, as de-

scribed in the two previous sections, lead to a physical interpretation of the

wave function associated with the motion of a particle. Basic to the concept of

the wave function is the postulate that the wave function contains all the

2 This point is discussed in more detail in N. F. Mott and H. S. W. Massey (1965) The Theory of Atomic
Collisions, 3rd edition, p. 215±16, (Oxford University Press, Oxford).
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information that can be known about the particle that it represents. The wave

function is a complete description of the quantum behavior of the particle. For

this reason, the wave function is often also called the state of the system.

In the double-slit experiment, the patterns observed on the detection screen

are slowly built up from many individual particle impacts, whether these

particles are photons or electrons. The position of the impact of any single

particle cannot be predicted; only the cumulative effect of many impacts is

predetermined. Accordingly, a theoretical interpretation of the experiment must

involve probability distributions rather than speci®c particle trajectories. The

probability that a particle will strike the detection screen between some point x

and a neighboring point x� dx is P(x) dx and is proportional to the range dx.

The larger the range dx, the greater the probability for a given particle to strike

the detection screen in that range. The proportionality factor P(x) is called the

probability density and is a function of the position x. For example, the

probability density P(x) for the curve IA in Figure 1.9(a) has a maximum at

the point A and decreases symmetrically on each side of A.

If the motion of a particle in the double-slit experiment is to be represented

by a wave function, then that wave function must determine the probability

density P(x). For mechanical waves in matter and for electromagnetic waves,

the intensity of a wave is proportional to the square of its amplitude. By

analogy, the probability density P(x) is postulated to be the square of the

absolute value of the wave function Ø(x)

P(x) � jØ(x)j2 � Ø�(x)Ø(x)

On the basis of this postulate, the interference pattern observed in the double-

slit experiment can be explained in terms of quantum particle behavior.

A particle, photon or electron, passing through slit A and striking the

detection screen at point x has wave function ØA(x), while a similar particle

passing through slit B has wave function ØB(x). Since a particle is observed to

retain its identity and not divide into smaller units, its wave function Ø(x) is

postulated to be the sum of the two possibilities

Ø(x) � ØA(x)�ØB(x) (1:48)

When only slit A is open, the particle emitted by the source S passes through

slit A, thereby causing the wave function Ø(x) in equation (1.48) to change or

collapse suddenly to ØA(x). The probability density PA(x) that the particle

strikes point x on the detection screen is, then

PA(x) � jØA(x)j2

and the intensity distribution IA in Figure 1.9(a) is obtained. When only slit B
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is open, the particle passes through slit B and the wave function Ø(x) collapses

to ØB(x). The probability density PB(x) is then given by

PB(x) � jØB(x)j2

and curve IB in Figure 1.9(a) is observed. If slit A is open and slit B closed

half of the time, and slit A is closed and slit B open the other half of the time,

then the resulting probability density on the detection screen is just

PA(x)� PB(x) � jØA(x)j2 � jØB(x)j2

giving the curve in Figure 1.9(b).

When both slits A and B are open at the same time, the interpretation

changes. In this case, the probability density PAB(x) is

PAB(x) � jØA(x)�ØB(x)j2
� jØA(x)j2 � jØB(x)j2 �Ø�A(x)ØB(x)�Ø�B(x)ØA(x)

� PA(x)� PB(x)� I AB(x) (1:49)

where

I AB(x) � Ø�A(x)ØB(x)�Ø�B(x)ØA(x)

The probability density PAB(x) has an interference term I AB(x) in addition to

the terms PA(x) and PB(x). This interference term is real and is positive for

some values of x, but negative for others. Thus, the term I AB(x) modi®es the

sum PA(x)� PB(x) to give an intensity distribution with interference fringes as

shown in Figure 1.9(c).

For the experiment with both slits open and a detector placed at slit A, the

interaction between the wave function and the detector must be taken into

account. Any interaction between a particle and observing apparatus modi®es

the wave function of the particle. In this case, the wave function has the form

of a wave packet which, according to equation (1.37), oscillates with time as

eÿiEt=". During the time period Ät that the particle and the detector are

interacting, the energy of the interacting system is uncertain by an amount ÄE,

which, according to the Heisenberg energy±time uncertainty principle, equa-

tion (1.45), is related to Ät by ÄE > "=Ät. Thus, there is an uncertainty in the

phase Et=" of the wave function and ØA(x) is replaced by eijØA(x), where j
is real. The value of j varies with each particle±detector interaction and is

totally unpredictable. Therefore, the wave function Ø(x) for a particle in this

experiment is

Ø(x) � eijØA(x)�ØB(x) (1:50)

and the resulting probability density Pj(x) is
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Pj(x) � jØA(x)j2 � jØB(x)j2 � eÿijØ�A(x)ØB(x)� eijØ�B(x)ØA(x)

� PA(x)� PB(x)� I j(x) (1:51)

where I j(x) is de®ned by

I j(x) � eÿijØ�A(x)ØB(x)� eijØ�B(x)ØA(x)

The interaction with the detector at slit A has changed the interference term

from I AB(x) to I j(x).

For any particular particle leaving the source S and ultimately striking the

detection screen D, the value of j is determined by the interaction with the

detector at slit A. However, this value is not known and cannot be controlled;

for all practical purposes it is a randomly determined and unveri®able number.

The value of j does, however, in¯uence the point x where the particle strikes

the detection screen. The pattern observed on the screen is the result of a large

number of impacts of particles, each with wave function Ø(x) in equation

(1.50), but with random values for j. In establishing this pattern, the term

I j(x) in equation (1.51) averages to zero. Thus, in this experiment the

probability density Pj(x) is just the sum of PA(x) and PB(x), giving the

intensity distribution shown in Figure 1.9(b).

In comparing the two experiments with both slits open, we see that interact-

ing with the system by placing a detector at slit A changes the wave function of

the system and the experimental outcome. This feature is an essential char-

acteristic of quantum theory. We also note that without a detector at slit A,

there are two indistinguishable ways for the particle to reach the detection

screen D and the two wave functions ØA(x) and ØB(x) are added together.

With a detector at slit A, the two paths are distinguishable and it is the

probability densities PA(x) and PB(x) that are added.

An analysis of the Stern±Gerlach experiment also contributes to the

interpretation of the wave function. When an atom escapes from the high-

temperature oven, its magnetic moment is randomly oriented. Before this atom

interacts with the magnetic ®eld, its wave function Ø is the weighted sum of

two possible states á and â

Ø � cáá� cââ (1:52)

where cá and câ are constants and are related by

jcáj2 � jcâj2 � 1

In the presence of the inhomogeneous magnetic ®eld, the wave function Ø
collapses to either á or â with probabilities jcáj2 and jcâj2, respectively. The

state á corresponds to the atomic magnetic moment being parallel to the

magnetic ®eld gradient, the state â being antiparallel. Regardless of the
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orientation of the magnetic ®eld gradient, vertical (up or down), horizontal (left

or right), or any angle in between, the wave function of the atom is always

given by equation (1.52) with á parallel and â antiparallel to the magnetic ®eld

gradient. Since the atomic magnetic moments are initially randomly oriented,

half of the wave functions collapse to á and half to â.

In the Stern±Gerlach experiment with two magnets having parallel magnetic

®eld gradients±the `®rst arrangement' described in Section 1.7±all the atoms

entering the second magnet are in state á and therefore are all de¯ected in the

same direction by the second magnetic ®eld gradient. Thus, it is clear that the

wave function Ø before any interaction is permanently changed by the inter-

action with the ®rst magnet.

In the `second arrangement' of the Stern±Gerlach experiment, the atoms

emerging from the ®rst magnet and entering the second magnet are all in the

same state, say á. (Recall that the other beam of atoms in state â is blocked.)

The wave function á may be regarded as the weighted sum of two states á9

and â9

á � c9áá9� c9ââ9

where á9 and â9 refer to states with atomic magnetic moments parallel and

antiparallel, respectively, to the second magnetic ®eld gradient and where c9á
and c9â are constants related by

jc9áj2 � jc9âj2 � 1

In the `second arrangement', the second magnetic ®eld gradient is perpendicu-

lar to the ®rst, so that

jc9áj2 � jc9âj2 � 1
2

and

á � 1���
2
p (á9� â9)

The interaction of the atoms in state á with the second magnet collapses the

wave function á to either á9 or â9 with equal probabilities.

In the `third arrangement', the right beam of atoms emerging from the

second magnet (all atoms being in state á9), passes through a third magnetic

®eld gradient parallel to the ®rst. In this case, the wave function á9 may be

expressed as the sum of states á and â

á9 � 1���
2
p (á� â)

The interaction between the third magnetic ®eld gradient and each atom

collapses the wave function á9 to either á or â with equal probabilities.

The interpretation of the various arrangements in the Stern±Gerlach experi-
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ment reinforces the postulate that the wave function for a particle is the sum of

indistinguishable paths and is modi®ed when the paths become distinguishable

by means of a measurement. The nature of the modi®cation is the collapse of

the wave function to one of its components in the sum. Moreover, this new

collapsed wave function may be expressed as the sum of subsequent indis-

tinguishable paths, but remains unchanged if no further interactions with

measuring devices occur.

This statistical interpretation of the signi®cance of the wave function was

postulated by M. Born (1926), although his ideas were based on some

experiments other than the double-slit and Stern±Gerlach experiments. The

concepts that the wave function contains all the information known about the

system it represents and that it collapses to a different state in an experimental

observation were originated by W. Heisenberg (1927). These postulates regard-

ing the meaning of the wave function are part of what has become known as

the Copenhagen interpretation of quantum mechanics. While the Copenhagen

interpretation is disputed by some scientists and philosophers, it is accepted by

the majority of scientists and it provides a consistent theory which agrees with

all experimental observations to date. We adopt the Copenhagen interpretation

of quantum mechanics in this book.3

Problems

1.1 The law of dispersion for surface waves on a sheet of water of uniform depth d is4

ù(k) � (gk tanh dk)1=2

where g is the acceleration due to gravity. What is the group velocity of the

resultant composite wave? What is the limit for deep water (dk > 4)?

1.2 The phase velocity for a particular wave is vph � A=ë, where A is a constant. What

is the dispersion relation? What is the group velocity?

1.3 Show that �1
ÿ1

A(k) dk � 1

for the gaussian function A(k) in equation (1.19).

3 The historical and philosophical aspects of the Copenhagen interpretation are more extensively discussed
in J. Baggott (1992) The Meaning of Quantum Theory (Oxford University Press, Oxford).

4 For a derivation, see H. Lamb (1932) Hydrodynamics, pp. 363±81 (Cambridge University Press, Cam-
bridge).
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1.4 Show that the average value of k is k0 for the gaussian function A(k) in equation

(1.19).

1.5 Show that the gaussian functions A(k) and Ø(x, t) obey Parseval's theorem (1.18).

1.6 Show that the square pulse A(k) in equation (1.21) and the corresponding function

Ø(x, t) obey Parseval's theorem.
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2

SchroÈdinger wave mechanics

2.1 The SchroÈdinger equation

In the previous chapter we introduced the wave function to represent the

motion of a particle moving in the absence of an external force. In this chapter

we extend the concept of a wave function to make it apply to a particle acted

upon by a non-vanishing force, i.e., a particle moving under the in¯uence of a

potential which depends on position. The force F acting on the particle is

related to the potential or potential energy V (x) by

F � ÿ dV

dx
(2:1)

As in Chapter 1, we initially consider only motion in the x-direction. In Section

2.7, however, we extend the formalism to include three-dimensional motion.

In Chapter 1 we associated the wave packet

Ø(x, t) � 1���������
2ð"
p

�1
ÿ1

A( p)ei( pxÿEt)=" d p (2:2)

with the motion in the x-direction of a free particle, where the weighting factor

A( p) is given by

A( p) � 1���������
2ð"
p

�1
ÿ1

Ø(x, t)eÿi( pxÿEt)=" dx (2:3)

This wave packet satis®es a partial differential equation, which will be used as

the basis for the further development of a quantum theory. To ®nd this

differential equation, we ®rst differentiate equation (2.2) twice with respect to

the distance variable x to obtain

@2Ø

@x2
� ÿ1����������

2ð"5
p

�1
ÿ1

p2 A( p)ei( pxÿEt)=" d p (2:4)

Differentiation of (2.2) with respect to the time t gives
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@Ø

@ t
� ÿi����������

2ð"3
p

�1
ÿ1

EA( p)ei( pxÿEt)=" d p (2:5)

The total energy E for a free particle (i.e., for a particle moving in a region of

constant potential energy V ) is given by

E � p2

2m
� V

which may be combined with equations (2.4) and (2.5) to give

i"
@Ø

@ t
� ÿ "2

2m

@2Ø

@x2
� VØ

SchroÈdinger (1926) postulated that this differential equation is also valid

when the potential energy is not constant, but is a function of position. In that

case the partial differential equation becomes

i"
@Ø(x, t)

@ t
� ÿ "2

2m

@2Ø(x, t)

@x2
� V (x)Ø(x, t) (2:6)

which is known as the time-dependent SchroÈdinger equation. The solutions

Ø(x, t) of equation (2.6) are the time-dependent wave functions. An important

goal in wave mechanics is solving equation (2.6) for Ø(x, t) using various

expressions for V (x) that relate to speci®c physical systems.

When V (x) is not constant, the solutions Ø(x, t) to equation (2.6) may still

be expanded in the form of a wave packet,

Ø(x, t) � 1���������
2ð"
p

�1
ÿ1

A( p, t)ei( pxÿEt)=" d p (2:7)

The Fourier transform A( p, t) is then, in general, a function of both p and time

t, and is given by

A( p, t) � 1���������
2ð"
p

�1
ÿ1

Ø(x, t)eÿi( pxÿEt)=" dx (2:8)

By way of contrast, recall that in treating the free particle as a wave packet in

Chapter 1, we required that the weighting factor A( p) be independent of time

and we needed to specify a functional form for A( p) in order to study some of

the properties of the wave packet.

2.2 The wave function

Interpretation

Before discussing the methods for solving the SchroÈdinger equation for speci®c

choices of V (x), we consider the meaning of the wave function. Since the wave

function Ø(x, t) is identi®ed with a particle, we need to establish the connec-

tion between Ø(x, t) and the observable properties of the particle. As in the
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case of the free particle discussed in Chapter 1, we follow the formulation of

Born (1926).

The fundamental postulate relating the wave function Ø(x, t) to the proper-

ties of the associated particle is that the quantity jØ(x, t)j2 � Ø�(x, t)Ø(x, t)

gives the probability density for ®nding the particle at point x at time t. Thus,

the probability of ®nding the particle between x and x� dx at time t is

jØ(x, t)j2 dx. The location of a particle, at least within an arbitrarily small

interval, can be determined through a physical measurement. If a series of

measurements are made on a number of particles, each of which has the exact

same wave function, then these particles will be found in many different

locations. Thus, the wave function does not indicate the actual location at

which the particle will be found, but rather provides the probability for ®nding

the particle in any given interval. More generally, quantum theory provides the

probabilities for the various possible results of an observation rather than a

precise prediction of the result. This feature of quantum theory is in sharp

contrast to the predictive character of classical mechanics.

According to Born's statistical interpretation, the wave function completely

describes the physical system it represents. There is no information about the

system that is not contained in Ø(x, t). Thus, the state of the system is

determined by its wave function. For this reason the wave function is also

called the state function and is sometimes referred to as the state Ø(x, t).

The product of a function and its complex conjugate is always real and is

positive everywhere. Accordingly, the wave function itself may be a real or a

complex function. At any point x or at any time t, the wave function may be

positive or negative. In order that jØ(x, t)j2 represents a unique probability

density for every point in space and at all times, the wave function must be

continuous, single-valued, and ®nite. Since Ø(x, t) satis®es a differential

equation that is second-order in x, its ®rst derivative is also continuous. The

wave function may be multiplied by a phase factor eiá, where á is real, without

changing its physical signi®cance since

[eiáØ(x, t)]�[eiáØ(x, t)] � Ø�(x, t)Ø(x, t) � jØ(x, t)j2

Normalization

The particle that is represented by the wave function must be found with

probability equal to unity somewhere in the range ÿ1 < x <1, so that

Ø(x, t) must obey the relation�1
ÿ1
jØ(x, t)j2 dx � 1 (2:9)
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A function that obeys this equation is said to be normalized. If a function

Ö(x, t) is not normalized, but satis®es the relation�1
ÿ1

Ö�(x, t)Ö(x, t) dx � N

then the function Ø(x, t) de®ned by

Ø(x, t) � 1�����
N
p Ö(x, t)

is normalized.

In order for Ø(x, t) to satisfy equation (2.9), the wave function must be

square-integrable (also called quadratically integrable). Therefore, Ø(x, t)

must go to zero faster than 1=
������jxjp

as x approaches (�) in®nity. Likewise, the

derivative @Ø=@x must also go to zero as x approaches (�) in®nity.

Once a wave function Ø(x, t) has been normalized, it remains normalized as

time progresses. To prove this assertion, we consider the integral

N �
�1
ÿ1

Ø�Ø dx

and show that N is independent of time for every function Ø that obeys the

SchroÈdinger equation (2.6). The time derivative of N is

dN

dt
�
�1
ÿ1

@

@ t
jØ(x, t)j2 dx (2:10)

where the order of differentiation and integration has been interchanged on the

right-hand side. The derivative of the probability density may be expanded as

follows

@

@ t
jØ(x, t)j2 � @

@ t
(Ø�Ø) � Ø� @Ø

@ t
�Ø

@Ø�
@ t

Equation (2.6) and its complex conjugate may be written in the form

@Ø

@ t
� i"

2m

@2Ø

@x2
ÿ i

"
VØ

@Ø�
@ t
� ÿ i"

2m

@2Ø�
@x2

� i

"
VØ�

(2:11)

so that @jØ(x, t)j2=@ t becomes

@

@ t
jØ(x, t)j2 � i"

2m
Ø� @

2Ø

@x2
ÿØ

@2Ø�
@x2

� �
where the terms containing V cancel. We next note that

@

@x
Ø� @Ø

@x
ÿØ

@Ø�
@x

� �
� Ø� @

2Ø

@x2
ÿØ

@2Ø�
@x2
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so that

@

@ t
jØ(x, t)j2 � i"

2m

@

@x
Ø� @Ø

@x
ÿØ

@Ø�
@x

� �
(2:12)

Substitution of equation (2.12) into (2.10) and evaluation of the integral give

dN

dt
� i"

2m

�1
ÿ1

@

@x
Ø� @Ø

@x
ÿØ

@Ø�
@x

� �
dx � i"

2m
Ø� @Ø

@x
ÿØ

@Ø�
@x

� �1
ÿ1

Since Ø(x, t) goes to zero as x goes to (�) in®nity, the right-most term

vanishes and we have

dN

dt
� 0

Thus, the integral N is time-independent and the normalization of Ø(x, t) does

not change with time.

Not all wave functions can be normalized. In such cases the quantity

jØ(x, t)j2 may be regarded as the relative probability density, so that the ratio�a2

a1

jØ(x, t)j2 dx�b2

b1

jØ(x, t)j2 dx

represents the probability that the particle will be found between a1 and a2

relative to the probability that it will be found between b1 and b2. As an

example, the plane wave

Ø(x, t) � ei( pxÿEt)="

does not approach zero as x approaches (�) in®nity and consequently cannot

be normalized. The probability density jØ(x, t)j2 is unity everywhere, so that

the particle is equally likely to be found in any region of a speci®ed width.

Momentum-space wave function

The wave function Ø(x, t) may be represented as a Fourier integral, as shown

in equation (2.7), with its Fourier transform A( p, t) given by equation (2.8).

The transform A( p, t) is uniquely determined by Ø(x, t) and the wave function

Ø(x, t) is uniquely determined by A( p, t). Thus, knowledge of one of these

functions is equivalent to knowledge of the other. Since the wave function

Ø(x, t) completely describes the physical system that it represents, its Fourier

transform A( p, t) also possesses that property. Either function may serve as a

complete description of the state of the system. As a consequence, we may

interpret the quantity jA( p, t)j2 as the probability density for the momentum at
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time t. By Parseval's theorem (equation (B.28)), if Ø(x, t) is normalized, then

its Fourier transform A( p, t) is normalized,�1
ÿ1
jØ(x, t)j2 dx �

�1
ÿ1
jA( p, t)j2 d p � 1

The transform A( p, t) is called the momentum-space wave function, while

Ø(x, t) is more accurately known as the coordinate-space wave function.

When there is no confusion, however, Ø(x, t) is usually simply referred to as

the wave function.

2.3 Expectation values of dynamical quantities

Suppose we wish to measure the position of a particle whose wave function is

Ø(x, t). The Born interpretation of jØ(x, t)j2 as the probability density for

®nding the associated particle at position x at time t implies that such a

measurement will not yield a unique result. If we have a large number of

particles, each of which is in state Ø(x, t) and we measure the position of each

of these particles in separate experiments all at some time t, then we will obtain

a multitude of different results. We may then calculate the average or mean

value hxi of these measurements. In quantum mechanics, average values of

dynamical quantities are called expectation values. This name is somewhat

misleading, because in an experimental measurement one does not expect to

obtain the expectation value.

By de®nition, the average or expectation value of x is just the sum over all

possible values of x of the product of x and the probability of obtaining that

value. Since x is a continuous variable, we replace the probability by the

probability density and the sum by an integral to obtain

hxi �
�1
ÿ1

xjØ(x, t)j2 dx (2:13)

More generally, the expectation value h f (x)i of any function f (x) of the

variable x is given by

h f (x)i �
�1
ÿ1

f (x)jØ(x, t)j2 dx (2:14)

Since Ø(x, t) depends on the time t, the expectation values hxi and h f (x)i in

equations (2.13) and (2.14) are functions of t.

The expectation value hpi of the momentum p may be obtained using the

momentum-space wave function A( p, t) in the same way that hxi was obtained

from Ø(x, t). The appropriate expression is
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hpi �
�1
ÿ1

pjA( p, t)j2 d p �
�1
ÿ1

pA�( p, t)A( p, t) d p (2:15)

The expectation value h f ( p)i of any function f ( p) of p is given by an

expression analogous to equation (2.14)

h f ( p)i �
�1
ÿ1

f ( p)jA( p, t)j2 d p (2:16)

In general, A( p, t) depends on the time, so that the expectation values hpi and

h f ( p)i are also functions of time.

Both Ø(x, t) and A( p, t) contain the same information about the system,

making it possible to ®nd hpi using the coordinate-space wave function

Ø(x, t) in place of A( p, t). The result of establishing such a procedure will

prove useful when determining expectation values for functions of both

position and momentum. We begin by taking the complex conjugate of A( p, t)

in equation (2.8)

A�( p, t) � 1���������
2ð"
p

�1
ÿ1

Ø�(x, t)ei( pxÿEt)=" dx

Substitution of A�( p, t) into the integral on the right-hand side of equation

(2.15) gives

hpi � 1���������
2ð"
p

��1
ÿ1

Ø�(x, t) pA( p, t)ei( pxÿEt)=" dx d p

�
�1
ÿ1

Ø�(x, t)
1���������
2ð"
p

�1
ÿ1

pA( p, t)ei( pxÿEt)=" d p

� �
dx (2:17)

In order to evaluate the integral over p, we observe that the derivative of

Ø(x, t) in equation (2.7), with respect to the position variable x, is

@Ø(x, t)

@x
� 1���������

2ð"
p

�1
ÿ1

i

"
pA( p, t)ei( pxÿEt)=" d p

Substitution of this observation into equation (2.21) gives the ®nal result

hpi �
�1
ÿ1

Ø�(x, t)
"

i

@

@x

� �
Ø(x, t) dx (2:18)

Thus, the expectation value of the momentum can be obtained by an integration

in coordinate space.

The expectation value of p2 is given by equation (2.16) with f ( p) � p2. The

expression analogous to (2.17) is

hp2i �
�1
ÿ1

Ø�(x, t)
1���������
2ð"
p

�1
ÿ1

p2 A( p, t) ei( pxÿEt)=" d p

� �
dx

From equation (2.7) it can be seen that the quantity in square brackets equals
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"

i

� �2
@2Ø(x, t)

@x2

so that

hp2i �
�1
ÿ1

Ø�(x, t)
"

i

� �2
@2

@x2
Ø(x, t) dx (2:19)

Similarly, the expectation value of pn is given by

hpni �
�1
ÿ1

Ø�(x, t)
"

i

@

@x

� �n

Ø(x, t) dx (2:20)

Each of the integrands in equations (2.18), (2.19), and (2.20) is the complex

conjugate of the wave function multiplied by an operator acting on the wave

function. Thus, in the coordinate-space calculation of the expectation value of

the momentum p or the nth power of the momentum, we associate with p the

operator ("=i)(@=@x). We generalize this association to apply to the expectation

value of any function f ( p) of the momentum, so that

h f ( p)i �
�1
ÿ1

Ø�(x, t) f
"

i

@

@x

� �
Ø(x, t) dx (2:21)

Equation (2.21) is equivalent to the momentum-space equation (2.16).

We may combine equations (2.14) and (2.21) to ®nd the expectation value of

a function f (x, p) of the position and momentum

h f (x, p)i �
�1
ÿ1

Ø�(x, t) f x,
"

i

@

@x

� �
Ø(x, t) dx (2:22)

Ehrenfest's theorems

According to the correspondence principle as stated by N. Bohr (1928), the

average behavior of a well-de®ned wave packet should agree with the classical-

mechanical laws of motion for the particle that it represents. Thus, the

expectation values of dynamical variables such as position, velocity, momen-

tum, kinetic energy, potential energy, and force as calculated in quantum

mechanics should obey the same relationships that the dynamical variables

obey in classical theory. This feature of wave mechanics is illustrated by the

derivation of two relationships known as Ehrenfest's theorems.

The ®rst relationship is obtained by considering the time dependence of the

expectation value of the position coordinate x. The time derivative of hxi in

equation (2.13) is
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dhxi
dt
� d

dt

�1
ÿ1

xjØ(x, t)j2 dx �
�1
ÿ1

x
@

@ t
jØ(x, t)j2 dx

� i"

2m

�1
ÿ1

x
@

@x
Ø� @Ø

@x
ÿØ

@Ø�
@x

� �
dx

where equation (2.12) has been used. Integration by parts of the last integral

gives

dhxi
dt
� i"

2m
x Ø� @Ø

@x
ÿØ

@Ø�
@x

� �1
ÿ1
ÿ i"

2m

�1
ÿ1

Ø� @Ø
@x
ÿØ

@Ø�
@x

� �
dx

The integrated part vanishes because Ø(x, t) goes to zero as x approaches (�)

in®nity. Another integration by parts of the last term on the right-hand side

yields

dhxi
dt
� 1

m

�1
ÿ1

Ø� "

i

@

@x

� �
Ø dx

According to equation (2.18), the integral on the right-hand side of this

equation is the expectation value of the momentum, so that we have

hpi � m
dhxi
dt

(2:23)

Equation (2.23) is the quantum-mechanical analog of the classical de®nition of

momentum, p � mv � m(dx=dt). This derivation also shows that the associa-

tion in quantum mechanics of the operator ("=i)(@=@x) with the momentum is

consistent with the correspondence principle.

The second relationship is obtained from the time derivative of the expecta-

tion value of the momentum hpi in equation (2.18),

dhpi
dt
� d

dt

�1
ÿ1

Ø� "

i

@Ø

@x
dx � "

i

�1
ÿ1

@Ø�
@ t

@Ø

@x
�Ø� @

@x

@Ø

@ t

� �
dx

We next substitute equations (2.11) for the time derivatives of Ø and Ø� and

obtain

dhpi
dt
�
�1
ÿ1

ÿ"2

2m

@2Ø�
@x2

� VØ�
� �

@Ø

@x
�Ø� @

@x

"2

2m

@2Ø

@x2
ÿ VØ

� �" #
dx

� ÿ"2

2m

�1
ÿ1

@2Ø�
@x2

@Ø

@x
dx� "2

2m

�1
ÿ1

Ø� @
3Ø

@x3
dxÿ

�1
ÿ1

Ø�Ø dV

dx
dx

(2:24)

where the terms in V cancel. The ®rst integral on the right-hand side of

equation (2.24) may be integrated by parts twice to give
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�1
ÿ1

@2Ø�
@x2

@Ø

@x
dx � @Ø�

@x

@Ø

@x

� �1
ÿ1
ÿ
�1
ÿ1

@Ø�
@x

@2Ø

@x2
dx

� @Ø�
@x

@Ø

@x
ÿØ� @

2Ø

@x2

� �1
ÿ1
�
�1
ÿ1

Ø� @
3Ø

@x3
dx

The integrated part vanishes because Ø and @Ø=@x vanish at (�) in®nity. The

remaining integral cancels the second integral on the right-hand side of

equation (2.24), leaving the ®nal result

dhpi
dt
� ÿ

�
dV

dx

�
� hFi (2:25)

where equation (2.1) has been used. Equation (2.25) is the quantum analog of

Newton's second law of motion, F � ma, and is in agreement with the

correspondence principle.

Heisenberg uncertainty principle

Using expectation values, we can derive the Heisenberg uncertainty principle

introduced in Section 1.5. If we de®ne the uncertainties Äx and Äp as the

standard deviations of x and p, as used in statistics, then we have

Äx � h(xÿ hxi)2i1=2

Äp � h( pÿ hpi)2i1=2

The expectation values of x and of p at a time t are given by equations (2.13)

and (2.18), respectively. For the sake of simplicity in this derivation, we select

the origins of the position and momentum coordinates at time t to be the

centers of the wave packet and its Fourier transform, so that hxi � 0 and

hpi � 0. The squares of the uncertainties Äx and Äp are then given by

(Äx)2 �
�1
ÿ1

x2Ø�Ø dx

(Äp)2 � "

i

� �2�1
ÿ1

Ø� @
2Ø

@x2
dx � "

i

� �2

Ø� @Ø
@x

" #1
ÿ1
ÿ "

i

� �2�1
ÿ1

@Ø�
@x

@Ø

@x
dx

�
�1
ÿ1

ÿ"

i

@Ø�
@x

� �
"

i

@Ø

@x

� �
dx

where the integrated term for (Äp)2 vanishes because Ø goes to zero as x

approaches (�) in®nity.

The product (ÄxÄp)2 is
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(ÄxÄp)2 �
�1
ÿ1

(xØ�)(xØ) dx

�1
ÿ1

ÿ"

i

@Ø�
@x

� �
"

i

@Ø

@x

� �
dx

Applying Schwarz's inequality (A.56), we obtain

(ÄxÄp)2 >
1

4

���� "i
�1
ÿ1

xØ� @Ø
@x
� xØ

@Ø�
@x

� �
dx

����2 � "2

4

�����1ÿ1x
@

@x
(Ø�Ø) dx

����2
� "2

4

�����xØ�Ø
�1
ÿ1
ÿ
�1
ÿ1

Ø�Ø dx

����2
The integrated part vanishes because Ø goes to zero faster than 1=

�����jxjp
, as x

approaches (�) in®nity and the remaining integral is unity by equation (2.9).

Taking the square root, we obtain an explicit form of the Heisenberg uncer-

tainty principle

ÄxÄp >
"

2
(2:26)

This expression is consistent with the earlier form, equation (1.44), but relation

(2.26) is based on a precise de®nition of the uncertainties, whereas relation

(1.44) is not.

2.4 Time-independent SchroÈdinger equation

The ®rst step in the solution of the partial differential equation (2.6) is to

express the wave function Ø(x, t) as the product of two functions

Ø(x, t) � ø(x)÷(t) (2:27)

where ø(x) is a function of only the distance x and ÷(t) is a function of only

the time t. Substitution of equation (2.27) into (2.6) and division by the product

ø(x)÷(t) give

i"
1

÷(t)

d÷(t)

dt
� ÿ "2

2m

1

ø(x)

d2ø(x)

dx2
� V (x) (2:28)

The left-hand side of equation (2.28) is a function only of t, while the right-

hand side is a function only of x. Since x and t are independent variables, each

side of equation (2.28) must equal a constant. If this were not true, then the

left-hand side could be changed by varying t while the right-hand side

remained ®xed and so the equality would no longer apply. For reasons that will

soon be apparent, we designate this separation constant by E and assume that

it is a real number.

Equation (2.28) is now separable into two independent differential equations,

one for each of the two independent variables x and t. The time-dependent

equation is
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i"
d÷(t)

dt
� E÷(t)

which has the solution

÷(t) � eÿiEt=" (2:29)

The integration constant in equation (2.29) has arbitrarily been set equal to

unity. The spatial-dependent equation is

ÿ "2

2m

d2ø(x)

dx2
� V (x)ø(x) � Eø(x) (2:30)

and is called the time-independent SchroÈdinger equation. The solution of this

differential equation depends on the speci®cation of the potential energy V (x).

Note that the separation of equation (2.6) into spatial and temporal parts is

contingent on the potential V (x) being time-independent.

The wave function Ø(x, t) is then

Ø(x, t) � ø(x)eÿiEt=" (2:31)

and the probability density jØ(x, t)j2 is now given by

jØ(x, t)j2 � Ø�(x, t)Ø(x, t) � ø�(x)eiEt="ø(x)eÿiEt=" � jø(x)j2
Thus, the probability density depends only on the position variable x and does

not change with time. For this reason the wave function Ø(x, t) in equation

(2.31) is called a stationary state. If Ø(x, t) is normalized, then ø(x) is also

normalized �1
ÿ1
jø(x)j2 dx � 1 (2:32)

which is the reason why we set the integration constant in equation (2.29) equal

to unity.

The total energy, when expressed in terms of position and momentum, is

called the Hamiltonian, H, and is given by

H(x, p) � p2

2m
� V (x)

The expectation value hHi of the Hamiltonian may be obtained by applying

equation (2.22)

hHi �
�1
ÿ1

Ø�(x, t) ÿ "2

2m

@2

@x2
� V (x)

� �
Ø(x, t) dx

For the stationary state (2.31), this expression becomes

hHi �
�1
ÿ1

ø�(x) ÿ "2

2m

@2

@x2
� V (x)

� �
ø(x) dx

If we substitute equation (2.30) into the integrand, we obtain
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hHi � E

�1
ÿ1

ø�(x)ø(x) dx � E

where we have also applied equation (2.32). We have just shown that the

separation constant E is the expectation value of the Hamiltonian, or the total

energy for the stationary state, so that `E' is a desirable designation. Since the

energy is a real physical quantity, the assumption that E is real is justi®ed.

In the application of SchroÈdinger's equation (2.30) to speci®c physical

examples, the requirements that ø(x) be continuous, single-valued, and square-

integrable restrict the acceptable solutions to an in®nite set of speci®c functions

øn(x), n � 1, 2, 3, . . . , each with a corresponding energy value En. Thus, the

energy is quantized, being restricted to certain values. This feature is illustrated

in Section 2.5 with the example of a particle in a one-dimensional box.

Since the partial differential equation (2.6) is linear, any linear superposition

of solutions is also a solution. Therefore, the most general solution of equation

(2.6) for a time-independent potential energy V (x) is

Ø(x, t) �
X

n

cnøn(x)eÿiEn t=" (2:33)

where the coef®cients cn are arbitrary complex constants. The wave function

Ø(x, t) in equation (2.33) is not a stationary state, but rather a sum of

stationary states, each with a different energy En.

2.5 Particle in a one-dimensional box

As an illustration of the application of the time-independent SchroÈdinger

equation to a system with a speci®c form for V (x), we consider a particle

con®ned to a box with in®nitely high sides. The potential energy for such a

particle is given by

V (x) � 0, 0 < x < a

� 1, x , 0, x . a

and is illustrated in Figure 2.1.

Outside the potential well, the SchroÈdinger equation (2.30) is given by

ÿ "2

2m

d2ø

dx2
�1ø � Eø

for which the solution is simply ø(x) � 0; the probability is zero for ®nding

the particle outside the box where the potential is in®nite. Inside the box, the

SchroÈdinger equation is

ÿ "2

2m

d2ø

dx2
� Eø
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or

d2ø

dx2
� ÿ 4ð2

ë2
ø (2:34)

where ë is the de Broglie wavelength,

ë � 2ð"����������
2mE
p � h

p
(2:35)

We have implicitly assumed here that E is not negative. If E were negative,

then the wave function ø and its second derivative would have the same sign.

As jxj increases, the wave function ø(x) and its curvature d2ø=dx2 would

become larger and larger in magnitude and ø(x) would approach (�) in®nity

as x!1.

The solutions to equation (2.34) are functions that are proportional to their

second derivatives, namely sin(2ðx=ë) and cos(2ðx=ë). The functions

exp[2ðix=ë] and exp[ÿ2ðix=ë], which as equation (A.31) shows are equivalent

to the trigonometric functions, are also solutions, but are more dif®cult to use

for this system. Thus, the general solution to equation (2.34) is

ø(x) � A sin
2ðx

ë
� B cos

2ðx

ë
(2:36)

where A and B are arbitrary constants of integration.

The constants A and B are determined by the boundary conditions placed on

the solution ø(x). Since ø(x) must be continuous, the boundary conditions

require that ø(x) vanish at each end of the box so as to match the value of ø(x)

outside the box, i.e., ø(0) � ø(a) � 0. At x � 0, the function ø(0) from (2.36)

is

ø(0) � A sin 0� B cos 0 � B

so that B � 0 and ø(x) is now

ø(x) � A sin
2ðx

ë
(2:37)

At x � a, ø(a) is

V(x)

x
0 a

Figure 2.1 The potential energy V (x) for a particle in a one-dimensional box of length a.
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ø(a) � A sin
2ða

ë
� 0

The constant A cannot be zero, for then ø(x) would vanish everywhere and

there would be no particle. Consequently, we have sin(2ða=ë) � 0 or

2ða

ë
� nð, n � 1, 2, 3, . . .

where n is any positive integer greater than zero. The solution n � 0 would

cause ø(x) to vanish everywhere and is therefore not acceptable. Negative

values of n give redundant solutions because sin(ÿè) equals ÿsinè.

We have found that only distinct values for the de Broglie wavelength satisfy

the requirement that the wave function represents the motion of the particle.

These distinct values are denoted as ën and are given by

ën � 2a

n
, n � 1, 2, 3, . . . (2:38)

Consequently, from equation (2.35) only distinct values En of the energy are

allowed

En � n2ð2"2

2ma2
� n2 h2

8ma2
, n � 1, 2, 3, . . . (2:39)

so that the energy for a particle in a box is quantized.

The lowest allowed energy level is called the zero-point energy and is given

by E1 � h2=8ma2. This zero-point energy is always greater than the zero value

of the constant potential energy of the system and increases as the length a of

the box decreases. The non-zero value for the lowest energy level is related to

the Heisenberg uncertainty principle. For the particle in a box, the uncertainty

Äx in position is equal to the length a since the particle is somewhere within

the box. The uncertainty Äp in momentum is equal to 2jpj since the

momentum ranges from ÿjpj to jpj. The momentum and energy are related by

jpj �
����������
2mE
p

� nh

2a

so that

ÄxÄp � nh

is in agreement with the Heisenberg uncertainty principle (2.26). If the lowest

allowed energy level were zero, then the Heisenberg uncertainty principle

would be violated.

The allowed wave functions øn(x) for the particle in a box are obtained by

substituting equation (2.38) into (2.37),

øn(x) � A sin
nðx

a
, 0 < x < a
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The remaining constant of integration A is determined by the normalization

condition (2.32),�1
ÿ1
jøn(x)j2 dx � jAj2

�a

0

sin2 nðx

a
dx � jAj2 a

ð

�ð
0

sin2nè dè � jAj2 a

2
� 1

where equation (A.15) was used. Therefore, we have

jAj2 � 2

a

or

A � eiá

���
2

a

r
Setting the phase á equal to zero since it has no physical signi®cance, we

obtain for the normalized wave functions

øn(x) �
���
2

a

r
sin

nðx

a
, 0 < x < a

� 0, x , 0, x . a

(2:40)

The time-dependent SchroÈdinger equation (2.30) for the particle in a box has

an in®nite set of solutions øn(x) given by equation (2.40). The ®rst four wave

functions øn(x) for n � 1, 2, 3, and 4 and their corresponding probability

densities jøn(x)j2 are shown in Figure 2.2. The wave function ø1(x) corre-

sponding to the lowest energy level E1 is called the ground state. The other

wave functions are called excited states.

If we integrate the product of two different wave functions ø l(x) and øn(x),

we ®nd that�a

0

ø l(x)øn(x) dx � 2

a

�a

0

sin
lðx

a

� �
sin

nðx

a

� �
dx � 2

ð

�ð
0

sin lè sin nè dè � 0

(2:41)

where equation (A.15) has been introduced. This result may be combined with

the normalization relation to give�a

0

ø l(x)øn(x) dx � ä ln (2:42)

where ä ln is the Kronecker delta,

ä ln � 1, l � n

� 0, l 6� n
(2:43)

Functions that obey equation (2.41) are called orthogonal functions. If the

orthogonal functions are also normalized, as in equation (2.42), then they are
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said to be orthonormal. The orthogonal property of wave functions in quantum

mechanics is discussed in a more general context in Section 3.3.

The stationary states Ø(x, t) for the particle in a one-dimensional box are

given by substitution of equations (2.39) and (2.40) into (2.31),

Ø(x, t) �
���
2

a

r
sin

nðx

a

� �
eÿi(n2ð2"=2ma2) t (2:44)

The most general solution (2.33) is, then,

Ø(x, t) �
���
2

a

r X
n

cn sin
nðx

a

� �
eÿi(n2ð2"=2ma2) t (2:45)

Figure 2.2 Wave functions øi and probability densities jøij2 for a particle in a one-
dimensional box of length a.
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2.6 Tunneling

As a second example of the application of the SchroÈdinger equation, we

consider the behavior of a particle in the presence of a potential barrier. The

speci®c form that we choose for the potential energy V (x) is given by

V (x) � V0, 0 < x < a

� 0, x , 0, x . a

and is shown in Figure 2.3. The region where x , 0 is labeled I, where

0 < x < a is labeled II, and where x . a is labeled III.

Suppose a particle of mass m and energy E coming from the left approaches

the potential barrier. According to classical mechanics, if E is less than the

barrier height V0, the particle will be re¯ected by the barrier; it cannot pass

through the barrier and appear in region III. In quantum theory, as we shall see,

the particle can penetrate the barrier and appear on the other side. This effect is

called tunneling.

In regions I and III, where V (x) is zero, the SchroÈdinger equation (2.30) is

d2ø(x)

dx2
� ÿ 2mE

"2
ø(x) (2:46)

The general solutions to equation (2.46) for these regions are

øI � Aeiáx � Beÿiáx (2:47 a)

øIII � Feiáx � Geÿiáx (2:47 b)

where A, B, F, and G are arbitrary constants of integration and á is the

abbreviation

á �
����������
2mE
p

"
(2:48)

In region II, where V (x) � V0 . E, the SchroÈdinger equation (2.30) becomes

V(x)

x
0 a

V0

I II III

Figure 2.3 Potential energy barrier of height V0 and width a.
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d2ø(x)

dx2
� 2m

"2
(V0 ÿ E)ø(x) (2:49)

for which the general solution is

øII � Ceâx � Deÿâx (2:50)

where C and D are integration constants and â is the abbreviation

â �
������������������������
2m(V0 ÿ E)

p
"

(2:51)

The term exp[iáx] in equations (2.47) indicates travel in the positive x-

direction, while exp[ÿiáx] refers to travel in the opposite direction. The

coef®cient A is, then, the amplitude of the incident wave, B is the amplitude of

the re¯ected wave, and F is the amplitude of the transmitted wave. In region

III, the particle moves in the positive x-direction, so that G is zero. The relative

probability of tunneling is given by the transmission coef®cient T

T � jFj
2

jAj2 (2:52)

and the relative probability of re¯ection is given by the re¯ection coef®cient R

R � jBj
2

jAj2 (2:53)

The wave function for the particle is obtained by joining the three parts øI,

øII, and øIII such that the resulting wave function ø(x) and its ®rst derivative

ø9(x) are continuous. Thus, the following boundary conditions apply

øI(0) � øII(0), ø9I(0) � ø9II(0) (2:54)

øII(a) � øIII(a), ø9II(a) � ø9III(a) (2:55)

These four relations are suf®cient to determine any four of the constants A, B,

C, D, F in terms of the ®fth. If the particle were con®ned to a ®nite region of

space, then its wave function could be normalized, thereby determining the ®fth

and ®nal constant. However, in this example, the position of the particle may

range from ÿ1 to 1. Accordingly, the wave function cannot be normalized,

the remaining constant cannot be evaluated, and only relative probabilities such

as the transmission and re¯ection coef®cients can be determined.

We ®rst evaluate the transmission coef®cient T in equation (2.52). Applying

equations (2.55) to (2.47 b) and (2.50), we obtain

Ceâa � Deÿâa � Feiáa

â(Ceâa ÿ Deÿâa) � iáFeiáa

from which it follows that
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C � F
â� iá

2â

� �
e(iáÿâ)a

D � F
âÿ iá

2â

� �
e(iá�â)a

(2:56)

Application of equation (2.54) to (2.47 a) and (2.50) gives

A� B � C � D

iá(Aÿ B) � â(C ÿ D)
(2:57)

Elimination of B from the pair of equations (2.57) and substitution of equations

(2.56) for C and for D yield

A � 1

2iá
[(â� iá)C ÿ (âÿ iá)D]

� F
eiáa

4iáâ
[(â� iá)2eÿâa ÿ (âÿ iá)2eâa]

At this point it is easier to form jAj2 before any further algebraic simpli®ca-

tions

jAj2 � A�A

� jFj2 1

16á2â2
[(â2 � á2)2eÿ2âa � (â2 � á2)2e2âa ÿ (âÿ iá)4 ÿ (â� iá)4]

� jFj2 1

16á2â2
[(á2 � â2)2(eâa ÿ eÿâa)2 � 16á2â2]

� jFj2 1� (á2 � â2)2

4á2â2
sinh2 âa

" #
where equation (A.46) has been used. Combining this result with equations

(2.48), (2.51), and (2.52), we obtain

T � 1� V 2
0

4E(V0 ÿ E)
sinh2(

������������������������
2m(V0 ÿ E)

p
a=")

" #ÿ1

(2:58)

To ®nd the re¯ection coef®cient R, we eliminate A from the pair of

equations (2.57) and substitute equations (2.56) for C and for D to obtain

B � 1

2iá
[ÿ(âÿ iá)C � (â� iá)D] � F

eiáa

4iáâ
[(á2 � â2)eâa ÿ (á2 � â2)eÿâa]

� F
eiáa

2iáâ
(á2 � â2)sinh âa
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where again equation (A.46) has been used. Combining this result with

equations (2.52) and (2.53), we ®nd that

R � T
jBj2
jFj2 � T

(á2 � â2)2

4á2â2
sinh2 âa

Substitution of equations (2.48), (2.51), and (2.58) yields

R �
V 2

0

4E(V0 ÿ E)
sinh2(

������������������������
2m(V0 ÿ E)

p
a=")

1� V 2
0

4E(V0 ÿ E)
sinh2(

������������������������
2m(V0 ÿ E)

p
a=")

(2:59)

The transmission coef®cient T in equation (2.58) is the relative probability

that a particle impinging on the potential barrier tunnels through the barrier.

The re¯ection coef®cient R in equation (2.59) is the relative probability that

the particle bounces off the barrier and moves in the negative x-direction. Since

the particle must do one or the other of these two possibilities, the sum of T

and R should equal unity

T � R � 1

which we observe from equations (2.58) and (2.59) to be the case.

We also note that the (relative) probability for the particle being in the region

0 < x < a is not zero. In this region, the potential energy is greater than the

total particle energy, making the kinetic energy of the particle negative. This

concept is contrary to classical theory and does not have a physical signi®-

cance. For this reason we cannot observe the particle experimentally within the

potential barrier. Further, we note that because the particle is not con®ned to a

®nite region, the boundary conditions on the wave function have not imposed

any restrictions on the energy E. Thus, the energy in this example is not

quantized.

In this analysis we considered the relative probabilities for tunneling and

re¯ection for a single particle. The conclusions apply equally well to a beam of

particles, each of mass m and total energy E, traveling initially in the positive

x-direction. In that case, the transmission coef®cient T in equation (2.58) gives

the fraction of incoming particles that tunnel through the barrier, and the

re¯ection coef®cient R in equation (2.59) gives the fraction that are re¯ected

by the barrier.

If the potential barrier is thick (a is large), the potential barrier is high

compared with the particle energy E (V0 � E), the mass m of the particle is

large, or any combination of these characteristics, then we have

sinh âa � 1

2
(eâa ÿ eÿâa) � eâa

2
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so that T and R become

T � 16E(V0 ÿ E)

V 2
0

eÿ2a
����������������
2m(V0ÿE)
p

="

R � 1ÿ 16E(V0 ÿ E)

V 2
0

eÿ2a
����������������
2m(V0ÿE)
p

="

In the limit as a!1, as V0 !1, as m!1, or any combination, the

transmission coef®cient T approaches zero and the re¯ection coef®cient R

approaches unity, which are the classical-mechanical values. We also note that

in the limit "! 0, the classical values for T and R are obtained.

Examples of tunneling in physical phenomena occur in the spontaneous

emission of an alpha particle by a nucleus, oxidation±reduction reactions,

electrode reactions, and the umbrella inversion of the ammonia molecule. For

these cases, the potential is not as simple as the one used here, but must be

selected to approximate as closely as possible the actual potential. However,

the basic qualitative results of the treatment here serve to explain the general

concept of tunneling.

2.7 Particles in three dimensions

Up to this point we have considered particle motion only in the x-direction.

The generalization of SchroÈdinger wave mechanics to three dimensions is

straightforward. In this section we summarize the basic ideas and equations of

wave mechanics as expressed in their three-dimensional form.

The position of any point in three-dimensional cartesian space is denoted by

the vector r with components x, y, z, so that

r � ix� jy� kz (2:60)

where i, j, k are, respectively, the unit vectors along the x, y, z cartesian

coordinate axes. The linear momentum p of a particle of mass m is given by

p � m
dr

dt
� m i

dx

dt
� j

dy

dt
� k

dz

dt

� �
� i px � j py � k pz (2:61)

The x-component, px, of the momentum now needs to carry a subscript,

whereas before it was denoted simply as p. The scalar or dot product of r and

p is

r . p � p . r � xpx � ypy � zpz

and the magnitude p of the vector p is

p � (p . p)1=2 � ( p2
x � p2

y � p2
z)1=2

The classical Hamiltonian H(p, r) takes the form
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H(p, r) � p2

2m
� V (r) � 1

2m
( p2

x � p2
y � p2

z)� V (r) (2:62)

When expressed in three dimensions, the de Broglie relation is

p � "k (2:63)

where k is the vector wave number with components kx, ky, kz. The de Broglie

wavelength ë is still given by

ë � 2ð

k
� h

p

where now k and p are the magnitudes of the corresponding vectors. The wave

packet representing a particle in three dimensions is

Ø(r, t) � 1

(2ð")3=2

�
A(p, t)ei(p.rÿEt)=" dp (2:64)

As shown by equations (B.19), (B.20), and (B.27), the momentum-space wave

function A(p, t) is a generalized Fourier transform of Ø(r, t),

A(p, t) � 1

(2ð")3=2

�
Ø(r, t)eÿi(p.rÿEt)=" dr (2:65)

The volume elements dr and dp are de®ned as

dr � dx dy dz

dp � d px d py d pz

and the integrations extend over the complete range of each variable.

For a particle moving in three-dimensional space, the quantity

Ø�(r, t)Ø(r, t) dr � Ø�(x, y, z, t)Ø(x, y, z, t) dx dy dz

is the probability at time t of ®nding the particle with its x-coordinate between

x and x� dx, its y-coordinate between y and y� dy, and its z-coordinate

between z and z� dz. The product Ø�(r, t)Ø(r, t) is, then, the probability

density at the point r at time t. If the particle is under the in¯uence of an

external potential ®eld V (r), the wave function Ø(r, t) may be normalized�
Ø�(r, t)Ø(r, t) dr � 1 (2:66)

The quantum-mechanical operators corresponding to the components of p

are

p̂x � "

i

@

@x
, p̂y � "

i

@

@ y
, p̂z � "

i

@

@z

or, in vector notation

p̂ � "

i
= (2:67)
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where the gradient operator = is de®ned as

= � i
@

@x
� j

@

@ y
� k

@

@z

Using these relations, we may express the Hamiltonian operator in three

dimensions as

Ĥ � ÿ"2

2m
=2 � V (r)

where the laplacian operator =2 is de®ned by

=2 � = . = � @2

@x2
� @2

@ y2
� @2

@z2

The time-dependent SchroÈdinger equation is

i"
@Ø(r, t)

@ t
� ĤØ(r, t)

� ÿ"2

2m
=2Ø(r, t)� V (r)Ø(r, t) (2:68)

The stationary-state solutions to this differential equation are

Øn(r, t) � øn(r)eÿiEn t=" (2:69)

where the spatial functions øn(r) are solutions of the time-independent

SchroÈdinger equation

ÿ"2

2m
=2øn(r)� V (r)øn(r) � Enøn(r) (2:70)

The most general solution to equation (2.68) is

Ø(r, t) �
X

n

cnøn(r)eÿiEn t=" (2:71)

where cn are arbitrary complex constants.

The expectation value of a function f (r, p) of position and momentum is

given by

h f (r, p)i �
�
Ø�(r, t) f r,

"

i
=

� �
Ø(r, t) dr (2:72)

Equivalently, expectation values of three-dimensional dynamical quantities

may be evaluated for each dimension and then combined, if appropriate, into

vector notation. For example, the two Ehrenfest theorems in three dimensions

are
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hpi � m
dhri
dt

dhpi
dt
� ÿh=Vi � hFi

where F is the vector force acting on the particle. The Heisenberg uncertainty

principle becomes

ÄxÄpx >
"

2
, ÄyÄpy >

"

2
, ÄzÄpz >

"

2

Multi-particle system

For a system of N distinguishable particles in three-dimensional space, the

classical Hamiltonian is

H(p1, p2, . . . , pN , r1, r2, . . . , rN ) � p2
1

2m1

� p2
2

2m2

� � � � � p2
N

2mN

� V (r1, r2, . . . , rN )

where rk and pk are the position and momentum vectors of particle k. Thus,

the quantum-mechanical Hamiltonian operator is

Ĥ � ÿ"2

2

1

m1

=2
1 �

1

m2

=2
2� � � � �

1

mN

=2
N

� �
� V (r1, r2, . . . , rN ) (2:73)

where =2
k is the laplacian with respect to the position of particle k.

The wave function for this system is a function of the N position vectors:

Ø(r1, r2, . . . , rN , t). Thus, although the N particles are moving in three-

dimensional space, the wave function is 3N-dimensional. The physical inter-

pretation of the wave function is analogous to that for the three-dimensional

case. The quantity

Ø�(r1, r2, . . . , rN , t)Ø(r1, r2, . . . , rN , t) dr1 dr2 . . . drN

� Ø�(x1, y1, z1, x2, . . . , zN )Ø(x1, y1, z1, x2, . . . , zN ) dx1 dy1 dz1 dx2 . . . dzN

is the probability at time t that, simultaneously, particle 1 is between x1, y1, z1

and x1 � dx1, y1 � dy1, z1 � dz1, particle 2 is between x2, y2, z2 and x2 � dx2,

y2 � dy2, z2 � dz2, . . . , and particle N is between xN , yN , zN and xN � dxN,

yN � dyN , zN � dzN . The normalization condition is�
Ø�(r1, r2, . . . , rN , t)Ø(r1, r2, . . . , rN , t) dr1 dr2 . . . drN � 1 (2:74)

This discussion applies only to systems with distinguishable particles; for

example, systems where each particle has a different mass. The treatment of

wave functions for systems with indistinguishable particles is more compli-
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cated and is discussed in Chapter 8. Such systems include atoms or molecules

with more than one electron, and molecules with two or more identical nuclei.

2.8 Particle in a three-dimensional box

A simple example of a three-dimensional system is a particle con®ned to a

rectangular container with sides of lengths a, b, and c. Within the box there is

no force acting on the particle, so that the potential V (r) is given by

V (r) � 0, 0 < x < a, 0 < y < b, 0 < z < c

� 1, x , 0, x . a; y , 0, y . b; z , 0, z . c

The wave function ø(r) outside the box vanishes because the potential is

in®nite there. Inside the box, the wave function obeys the SchroÈdinger equation

(2.70) with the potential energy set equal to zero

ÿ"2

2m

@2ø(r)

@x2
� @

2ø(r)

@ y2
� @

2ø(r)

@z2

 !
� Eø(r) (2:75)

The standard procedure for solving a partial differential equation of this type is

to assume that the function ø(r) may be written as the product of three

functions, one for each of the three variables

ø(r) � ø(x, y, z) � X (x)Y (y)Z(z) (2:76)

Thus, X (x) is a function only of the variable x, Y (y) only of y, and Z(z) only of

z. Substitution of equation (2.76) into (2.75) and division by the product XYZ

give

ÿ"2

2mX

d2 X

dx2
� ÿ"2

2mY

d2Y

dy2
� ÿ"2

2mZ

d2 Z

dz2
� E (2:77)

The ®rst term on the left-hand side of equation (2.77) depends only on the

variable x, the second only on y, and the third only on z. No matter what the

values of x, or y, or z, the sum of these three terms is always equal to the same

constant E. The only way that this condition can be met is for each of the three

terms to equal some constant, say Ex, Ey, and Ez, respectively. The partial

differential equation (2.77) can then be separated into three equations, one for

each variable

d2 X

dx2
� 2m

"2
ExX � 0,

d2Y

dy2
� 2m

"2
EyY � 0,

d2 Z

dz2
� 2m

"2
EzZ � 0

(2:78)

where

Ex � Ey � Ez � E (2:79)

2.8 Particle in a three-dimensional box 61



Thus, the three-dimensional problem has been reduced to three one-dimen-

sional problems.

The differential equations (2.78) are identical in form to equation (2.34) and

the boundary conditions are the same as before. Consequently, the solutions

inside the box are given by equation (2.40) as

X (x) �
���
2

a

r
sin

nxðx

a
, nx � 1, 2, 3, . . .

Y (y) �
���
2

b

r
sin

n yðy

b
, ny � 1, 2, 3, . . . (2:80)

Z(z) �
���
2

c

r
sin

nzðz

c
, nz � 1, 2, 3, . . .

and the constants Ex, Ey, Ez are given by equation (2.39)

Ex � n2
x h2

8ma2
, nx � 1, 2, 3, . . .

Ey �
n2

y h2

8mb2
, ny � 1, 2, 3, . . . (2:81)

Ez � n2
z h2

8mc2
, nz � 1, 2, 3, . . .

The quantum numbers nx, ny, nz take on positive integer values independently

of each other. Combining equations (2.76) and (2.80) gives the wave functions

inside the three-dimensional box

ønx,n y,nz
(r) �

���
8

v

r
sin

nxðx

a
sin

nyðy

b
sin

nzðz

c
(2:82)

where v � abc is the volume of the box. The energy levels for the particle are

obtained by substitution of equations (2.81) into (2.79)

Enx,ny,nz
� h2

8m

n2
x

a2
� n2

y

b2
� n2

z

c2

� �
(2:83)

Degeneracy of energy levels

If the box is cubic, we have a � b � c and the energy levels become

Enx,ny,nz
� h2

8ma2
(n2

x � n2
y � n2

z) (2:84)

The lowest or zero-point energy is E1,1,1 � 3h2=8ma2, which is three times the

zero-point energy for a particle in a one-dimensional box of the same length.

The second or next-highest value for the energy is obtained by setting one of
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the integers nx, ny, nz equal to 2 and the remaining ones equal to unity. Thus,

there are three ways of obtaining the value 6h2=8ma2, namely, E2,1,1, E1,2,1,

and E1,1,2. Each of these three possibilities corresponds to a different wave

function, respectively, ø2,1,1(r), ø1,2,1(r), and ø1,1,2(r). An energy level that

corresponds to more than one wave function is said to be degenerate. The

second energy level in this case is threefold or triply degenerate. The zero-

point energy level is non-degenerate. The energies and degeneracies for the

®rst six energy levels are listed in Table 2.1.

The degeneracies of the energy levels in this example are the result of

symmetry in the lengths of the sides of the box. If, instead of the box being

cubic, the lengths of b and c in terms of a were b � a=2, c � a=3, then the

values of the energy levels and their degeneracies are different, as shown in

Table 2.2 for the lowest eight levels.

Degeneracy is discussed in more detail in Chapter 3.

Table 2.1. Energy levels for a particle in a three-

dimensional box with a � b � c

Energy Degeneracy Values of nx, ny, nz

3(h2/8ma2) 1 1,1,1
6(h2/8ma2) 3 2,1,1 1,2,1 1,1,2
9(h2/8ma2) 3 2,2,1 2,1,2 1,2,2

11(h2/8ma2) 3 3,1,1 1,3,1 1,1,3
12(h2/8ma2) 1 2,2,2
14(h2/8ma2) 6 3,2,1 3,1,2 2,3,1 2,1,3 1,3,2 1,2,3

Table 2.2. Energy levels for a particle in a three-

dimensional box with b � a=2, c � a=3

Energy Degeneracy Values of nx, ny, nz

14(h2/8ma2) 1 1,1,1
17(h2/8ma2) 1 2,1,1
22(h2/8ma2) 1 3,1,1
26(h2/8ma2) 1 1,2,1
29(h2/8ma2) 2 2,2,1 4,1,1
34(h2/8ma2) 1 3,2,1
38(h2/8ma2) 1 5,1,1
41(h2/8ma2) 2 1,1,2 4,2,1
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Problems

2.1 Consider a particle in a one-dimensional box of length a and in quantum state n.

What is the probability that the particle is in the left quarter of the box

(0 < x < a=4)? For which state n is the probability a maximum? What is the

probability that the particle is in the left half of the box (0 < x < a=2)?

2.2 Consider a particle of mass m in a one-dimensional potential such that

V (x) � 0, ÿa=2 < x < a=2

� 1, x ,ÿa=2, x . a=2

Solve the time-independent SchroÈdinger equation for this particle to obtain the

energy levels and the normalized wave functions. (Note that the boundary

conditions are different from those in Section 2.5.)

2.3 Consider a particle of mass m con®ned to move on a circle of radius a. Express

the Hamiltonian operator in plane polar coordinates and then determine the energy

levels and wave functions.

2.4 Consider a particle of mass m and energy E approaching from the left a potential

barrier of height V0, as shown in Figure 2.3 and discussed in Section 2.6. However,

suppose now that E is greater than V0 (E . V0). Obtain expressions for the

re¯ection and transmission coef®cients for this case. Show that T equals unity

when E ÿ V0 � n2ð2"2=2ma2 for n � 1, 2, . . . Show that between these periodic

maxima T has minima which lie progressively closer to unity as E increases.

2.5 Find the expression for the transmission coef®cient T for Problem 2.4 when the

energy E of the particle is equal to the potential barrier height V0.
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3

General principles of quantum theory

3.1 Linear operators

The wave mechanics discussed in Chapter 2 is a linear theory. In order to

develop the theory in a more formal manner, we need to discuss the properties

of linear operators. An operator Â is a mathematical entity that transforms a

function ø into another function ö

ö � Âø (3:1)

Throughout this book a circum¯ex is used to denote operators. For example,

multiplying the function ø(x) by the variable x to give a new function ö(x)

may be regarded as operating on the function ø(x) with the operator x̂, where x̂

means multiply by x: ö(x) � x̂ø(x) � xø(x). Generally, when the operation is

simple multiplication, the circum¯ex on the operator is omitted. The operator

D̂x, de®ned as d=dx, acting on ø(x) gives the ®rst derivative of ø(x) with

respect to x, so that in this case

ö � D̂xø � dø

dx

The operator Â may involve a more complex procedure, such as taking the

integral of ø with respect to x either implicitly or between a pair of limits.

The operator Â is linear if it satis®es two criteria

Â(ø1 � ø2) � Âø1 � Âø2 (3:2a)

Â(cø) � cÂø (3:2b)

where c is any complex constant. In the three examples given above, the

operators are linear. Some nonlinear operators are `exp' (take the exponential

of) and [ ]2 (take the square of), since
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ex� y � exe y 6� ex � e y

e cx 6� cex

[x� y]2 � x2 � 2xy� y2 6� x2 � y2

[c(x� y)]2 6� c[x� y]2

The operator Ĉ is the sum of the operators Â and B̂ if

Ĉø � (Â� B̂)ø � Âø� B̂ø

The operator Ĉ is the product of the operators Â and B̂ if

Ĉø � ÂB̂ø � Â(B̂ø)

where ®rst B̂ operates on ø and then Â operates on the resulting function.

Operators obey the associative law of multiplication, namely

Â(B̂Ĉ) � (ÂB̂)Ĉ

Operators may be combined. Thus, the square Â2 of an operator Â is just the

product ÂÂ

Â2ø � ÂÂø � Â(Âø)

Similar de®nitions apply to higher powers of Â. As another example, the

differential equation

d2 y

dx2
� k2 y � 0

may be written as (D̂2
x � k2)y � 0, where the operator (D̂2

x � k2) is the sum of

the two product operators D̂2
x and k2.

In multiplication, the order of Â and B̂ is important because ÂB̂ø is not

necessarily equal to B̂Âø. For example, if Â � x and B̂ � D̂x, then we have

ÂB̂ø � xD̂xø � x(dø=dx) while, on the other hand, B̂Âø � D̂x(xø) �
ø� x(dø=dx). The commutator of Â and B̂, written as [Â, B̂], is an operator

de®ned as

[Â, B̂] � ÂB̂ÿ B̂Â (3:3)

from which it follows that [Â, B̂] � ÿ[B̂, Â]. If ÂB̂ø � B̂Âø, then we have

ÂB̂ � B̂Â and [Â, B̂] � 0; in this case we say that Â and B̂ commute. By

expansion of each side of the following expressions, we can readily prove the

relationships

[Â, B̂Ĉ] � [Â, B̂]Ĉ � B̂[Â, Ĉ] (3:4a)

[ÂB̂, Ĉ] � [Â, Ĉ]B̂� Â[B̂, Ĉ] (3:4b)

The operator Â is the reciprocal of B̂ if ÂB̂ � B̂Â � 1, where 1 may be

regarded as the unit operator, i.e., `multiply by unity'. We may write Â � B̂ÿ1
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and B̂ � Âÿ1. If the operator Â possesses a reciprocal, it is non-singular, in

which case the expression ö � Âø may be solved for ø, giving ø � Âÿ1ö. If

Â possesses no reciprocal, it is singular and the expression ö � Âø may not be

inverted.

3.2 Eigenfunctions and eigenvalues

Consider a ®nite set of functions f i and the relationship

c1 f1 � c2 f 2 � � � � � cn f n � 0

where c1, c2, . . . are complex constants. If an equation of this form exists, then

the functions are linearly dependent. However, if no such relationship exists,

except for the trivial one with c1 � c2 � � � � � cn � 0, then the functions are

linearly independent. This de®nition can be extended to include an in®nite set

of functions.

In general, the function ö obtained by the application of the operator Â on

an arbitrary function ø, as expressed in equation (3.1), is linearly independent

of ø. However, for some particular function ø1, it is possible that

Âø1 � á1ø1

where á1 is a complex number. In such a case ø1 is said to be an eigenfunction

of Â and á1 is the corresponding eigenvalue. For a given operator Â, many

eigenfunctions may exist, so that

Âøi � áiøi (3:5)

where øi are the eigenfunctions, which may even be in®nite in number, and ái

are the corresponding eigenvalues. Each eigenfunction of Â is unique, that is to

say, is linearly independent of the other eigenfunctions.

Sometimes two or more eigenfunctions have the same eigenvalue. In that

situation the eigenvalue is said to be degenerate. When two, three, . . . , n

eigenfunctions have the same eigenvalue, the eigenvalue is doubly, triply, . . . ,

n-fold degenerate. When an eigenvalue corresponds only to a single eigenfunc-

tion, the eigenvalue is non-degenerate.

A simple example of an eigenvalue equation involves the operator D̂x

mentioned in Section 3.1. When D̂x operates on ekx, the result is

D̂xekx � d

dx
ekx � kekx

Thus, the exponentials ekx are eigenfunctions of D̂x with corresponding

eigenvalues k. Since both the real part and the imaginary part of k can have

any values from ÿ1 to �1, there are an in®nite number of eigenfunctions

and these eigenfunctions form a continuum of functions.
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Another example is the operator D̂2
x acting on either sin nx or cos nx, where

n is a positive integer (n > 1), for which we obtain

D̂2
x sin nx � ÿn2 sin nx

D̂2
x cos nx � ÿn2 cos nx

The functions sin nx and cos nx are eigenfunctions of D̂2
x with eigenvalues

ÿn2. Although there are an in®nite number of eigenfunctions in this example,

these eigenfunctions form a discrete, rather than a continuous, set.

In order that the eigenfunctions øi have physical signi®cance in their

application to quantum theory, they are chosen from a special class of func-

tions, namely, those which are continuous, have continuous derivatives, are

single-valued, and are square integrable. We refer to functions with these

properties as well-behaved functions. Throughout this book we implicitly

assume that all functions are well-behaved.

Scalar product and orthogonality

The scalar product of two functions ø(x) and ö(x) is de®ned as�1
ÿ1

ö�(x)ø(x) dx

For functions of the three cartesian coordinates x, y, z, the scalar product of

ø(x, y, z) and ö(x, y, z) is�1
ÿ1

ö�(x, y, z)ø(x, y, z) dx dy dz

For the functions ø(r, è, j) and ö(r, è, j) of the spherical coordinates r, è,

j, the scalar product is�2ð

0

�ð
0

�1
0

ö�(r, è, j)ø(r, è, j)r2 sin è dr dè dj

In order to express equations in general terms, we adopt the notation
�

dô to

indicate integration over the full range of all the coordinates of the system

being considered and write the scalar product in the form�
ö�ø dô

For further convenience we also introduce a notation devised by Dirac and

write the scalar product of ø and ö as hö jøi, so that

hö jøi �
�
ö�ø dô

The signi®cance of this notation is discussed in Section 3.6. From the de®nition

of the scalar product and of the notation hö jøi, we note that
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hö jøi� � hø jöi
hö j cøi � chö jøi
hcö jøi � c�hö jøi

where c is an arbitrary complex constant. Since the integral hø jøi� equals

hø jøi, the scalar product hø jøi is real.

If the scalar product of ø and ö vanishes, i.e., if hö jøi � 0, then ø and ö
are said to be orthogonal. If the eigenfunctions øi of an operator Â obey the

expressions

hø j jøii � 0 all i, j with i 6� j

the functions øi form an orthogonal set. Furthermore, if the scalar product of

øi with itself is unity, the function øi is said to be normalized. A set of

functions which are both orthogonal to one another and normalized are said to

be orthonormal

hø j jøii � äij (3:6)

where äij is the Kronecker delta function,

äij � 1, i � j

� 0, i 6� j
(3:7)

3.3 Hermitian operators

The linear operator Â is hermitian with respect to the set of functions øi of the

variables q1, q2, . . . if it possesses the property that�
ø�j Âøi dô �

�
øi(Âø j)

� dô (3:8)

The integration is over the entire range of all the variables. The differential dô
has the form

dô � w(q1, q2, . . .) dq1 dq2 . . .

where w(q1, q2, . . .) is a weighting function that depends on the choice of the

coordinates q1, q2, . . . For cartesian coordinates the weighting function

w(x, y, z) equals unity; for spherical coordinates, w(r, è, j) equals r2 sinè.

Special variables introduced to simplify speci®c problems have their own

weighting functions, which may differ from unity (see for example Section

6.3). Equation (3.8) may also be expressed in Dirac notation

hø j j Âøii � hÂø j jøii (3:9)

in which the brackets indicate integration over all the variables using their

weighting function.
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For illustration, we consider some examples involving only one variable,

namely, the cartesian coordinate x, for which w(x) � 1. An operator that results

in multiplying by a real function f (x) is hermitian, since in this case

f (x)� � f (x) and equation (3.8) is an identity. Likewise, the momentum

operator p̂ � ("=i)(d=dx), which was introduced in Section 2.3, is hermitian

since�1
ÿ1

ø�j p̂øi dx �
�1
ÿ1

ø�j
"

i

døi

dx
dx � "

i
ø�j øi

����1
ÿ1
ÿ "

i

�1
ÿ1

øi

dø�j
dx

dx

The integrated part is zero if the functions øi vanish at in®nity, which they

must in order to be well-behaved. The remaining integral is
�
øi p̂�ø�j dx, so

that we have �1
ÿ1

ø�j p̂øi dx �
�1
ÿ1

øi( p̂ø j)
� dx

The imaginary unit i contained in the operator p̂ is essential for the

hermitian character of that operator. The operator D̂x � d=dx is not hermitian

because �1
ÿ1

ø�j
døi

dx
dx � ÿ

�1
ÿ1

øi

dø�j
dx

dx (3:10)

where again the integrated part vanishes. The negative sign on the right-hand

side of equation (3.10) indicates that the operator is not hermitian. The operator

D̂2
x, however, is hermitian.

The hermitian character of an operator depends not only on the operator

itself, but also on the functions on which it acts and on the range of integration.

An operator may be hermitian with respect to one set of functions, but not with

respect to another set. It may be hermitian with respect to a set of functions

de®ned over one range of variables, but not with respect to the same set over a

different range. For example, the hermiticity of the momentum operator p̂ is

dependent on the vanishing of the functions øi at in®nity.

The product of two hermitian operators may or may not be hermitian.

Consider the product ÂB̂ where Â and B̂ are separately hermitian with respect

to a set of functions øi, so that

hø j j ÂB̂øii � hÂø j j B̂øii � hB̂Âø j jøii (3:11)

where we have assumed that the functions Âøi and B̂øi also lie in the hermitian

domain of Â and B̂. The product ÂB̂ is hermitian if, and only if, Â and B̂

commute. Using the same procedure, one can easily demonstrate that if Â and

B̂ do not commute, then the operators (ÂB̂� B̂Â) and i[Â, B̂] are hermitian.

By setting B̂ equal to Â in the product ÂB̂ in equation (3.11), we see that the

square of a hermitian operator is hermitian. This result can be generalized to
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any integral power of Â. Since jÂøj2 is always positive, the integral hÂø j Âøi
is positive and consequently

hø j Â2øi > 0 (3:12)

Eigenvalues

The eigenvalues of a hermitian operator are real. To prove this statement, we

consider the eigenvalue equation

Âø � áø (3:13)

where Â is hermitian, ø is an eigenfunction of Â, and á is the corresponding

eigenvalue. Multiplying by ø� and integrating give

hø j Âøi � áhø jøi (3:14)

Multiplication of the complex conjugate of equation (3.13) by ø and integrat-

ing give

hÂø jøi � á�hø jøi (3:15)

Because Â is hermitian, the left-hand sides of equations (3.14) and (3.15) are

equal, so that

(áÿ á�)hø jøi � 0 (3:16)

Since the integral in equation (3.16) is not equal to zero, we conclude that

á � á� and thus á is real.

Orthogonality theorem

If ø1 and ø2 are eigenfunctions of a hermitian operator Â with different

eigenvalues á1 and á2, then ø1 and ø2 are orthogonal. To prove this theorem,

we begin with the integral

hø2 j Âø1i � á1hø2 jø1i (3:17)

Since Â is hermitian and á2 is real, the left-hand side may be written as

hø2 j Âø1i � hÂø2 jø1i � á2hø2 jø1i
Thus, equation (3.17) becomes

(á2 ÿ á1)hø2 jø1i � 0

Since á1 6� á2, the functions ø1 and ø2 are orthogonal.

Since the Dirac notation suppresses the variables involved in the integration,

we re-express the orthogonality relation in integral notation�
ø�2 (q1, q2, . . .)ø1(q1, q2, . . .)w(q1, q2, . . .) dq1 dq2 . . . � 0

This expression serves as a reminder that, in general, the eigenfunctions of a
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hermitian operator involve several variables and that the weighting function

must be used. The functions are, therefore, orthogonal with respect to the

weighting function w(q1, q2, . . .).
If the weighting function is real and positive, then we can de®ne ö1 and ö2

as

ö1 �
����
w
p

ø1, ö2 �
����
w
p

ø2

The functions ö1 and ö2 are then mutually orthogonal with respect to a

weighting function of unity. Moreover, if the operator Â is hermitian with

respect to ø1 and ø2 with a weighting function w, then Â is hermitian with

respect to ö1 and ö2 with a weighting function equal to unity.

If two or more linearly independent eigenfunctions have the same eigen-

value, so that the eigenvalue is degenerate, the orthogonality theorem does not

apply. However, it is possible to construct eigenfunctions that are mutually

orthogonal. Suppose there are two independent eigenfunctions ø1 and ø2 of

the operator Â with the same eigenvalue á. Any linear combination

c1ø1 � c2ø2, where c1 and c2 are any pair of complex numbers, is also an

eigenfunction of Â with the same eigenvalue, so that

Â(c1ø1 � c2ø2) � c1Âø1 � c2Âø2 � á(c1ø1 � c2ø2)

From any pair ø1, ø2 which initially are not orthogonal, we can construct by

selecting appropriate values for c1 and c2 a new pair which are orthogonal. By

selecting different sets of values for c1, c2, we may obtain in®nitely many new

pairs of eigenfunctions which are mutually orthogonal.

As an illustration, suppose the members of a set of functions ø1, ø2, . . . , øn

are not orthogonal. We de®ne a new set of functions ö1, ö2, . . . , ön by the

relations

ö1 � ø1

ö2 � aö1 � ø2

ö3 � b1ö1 � b2ö2 � ø3

..

.

If we require that ö2 be orthogonal to ö1 by setting hö1 jö2i � 0, then the

constant a is given by

a � ÿhø1 jø2i=hø1 jø1i � ÿhö1 jø2i=hö1 jö1i
and ö2 is determined. We next require ö3 to be orthogonal to ö1 and to ö2,

which gives
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b1 � ÿhö1 jø3i=hö1 jö1i
b2 � ÿhö2 jø3i=hö2 jö2i

In general, we have

ös � øs �
Xsÿ1

i�1

ksiöi

ksi � ÿhöi jøsi=höi jöii
This construction is known as the Schmidt orthogonalization procedure. Since

the initial selection for ö1 can be any of the original functions øi or any linear

combination of them, an in®nite number of orthogonal sets öi can be obtained

by the Schmidt procedure.

We conclude that all eigenfunctions of a hermitian operator are either

mutually orthogonal or, if belonging to a degenerate eigenvalue, can be chosen

to be mutually orthogonal. Throughout the remainder of this book, we treat all

the eigenfunctions of a hermitian operator as an orthogonal set.

Extended orthogonality theorem

The orthogonality theorem can also be extended to cover a somewhat more

general form of the eigenvalue equation. For the sake of convenience, we

present in detail the case of a single variable, although the treatment can be

generalized to any number of variables. Suppose that instead of the eigenvalue

equation (3.5), we have for a hermitian operator Â of one variable

Âøi(x) � áiw(x)øi(x) (3:18)

where the function w(x) is real, positive, and the same for all values of i.

Therefore, equation (3.18) can also be written as

Â�ø�j (x) � á�j w(x)ø�j (x) (3:19)

Multiplication of equation (3.18) by ø�j (x) and integration over x give�
ø�j (x)Âøi(x) dx � ái

�
ø�j (x)øi(x)w(x) dx (3:20)

Now, the operator Â is hermitian with respect to the functions øi with a

weighting function equaling unity, so that the integral on the left-hand side of

equation (3.20) becomes�
ø�j (x)Âøi(x) dx �

�
øi(x)Â�ø�j (x) dx � á�j

�
ø�j (x)øi(x)w(x) dx

where equation (3.19) has been used as well. Accordingly, equation (3.20)

becomes
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(ái ÿ á�j )

�
ø�j (x)øi(x)w(x) dx � 0 (3:21)

When j � i, the integral in equation (3.21) cannot vanish because the

product ø�i øi and the function w(x) are always positive. Therefore, we have

ái � á�i and the eigenvalues ái are real. For the situation where i 6� j and

ái 6� á�j , the integral in equation (3.21) must vanish,�
ø�j (x)øi(x)w(x) dx � 0 (3:22)

Thus, the set of functions øi(x) for non-degenerate eigenvalues are mutually

orthogonal when integrated with a weighting function w(x). Eigenfunctions

corresponding to degenerate eigenvalues can be made orthogonal as discussed

earlier.

The discussion above may be generalized to more than one variable. In the

general case, equation (3.18) is replaced by

Âøi(q1, q2, . . .) � áiw(q1, q2, . . .)øi(q1, q2, . . .) (3:23)

and equation (3.22) by�
ø�j (q1, q2, . . .)øi(q1, q2, . . .)w(q1, q2, . . .) dq1 dq2 . . . � 0 (3:24)

Equation (3.18) can also be transformed into the more usual form, equation

(3.5). We ®rst de®ne a set of functions öi(x) as

öi(x) � [w(x)]1=2øi(x) � øi(x)=u(x) (3:25)

where

u(x) � [w(x)]ÿ1=2 (3:26)

The function u(x) is real because w(x) is always positive and u(x) is positive

because we take the positive square root. If w(x) approaches in®nity at any

point within the range of hermiticity of Â (as x approaches in®nity, for

example), then øi(x) must approach zero such that the ratio öi(x) approaches

zero. Equation (3.18) is now multiplied by u(x) and øi(x) is replaced by

u(x)öi(x)

u(x)Âu(x)öi(x) � áiw(x)[u(x)]2öi(x)

If we de®ne an operator B̂ by the relation B̂ � u(x)Âu(x) and apply equation

(3.26), we obtain

B̂öi(x) � áiöi(x)

which has the form of equation (3.5). We observe that
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�
ø�j Âøi dx �

�
ö�j uÂuöi dx �

�
ö�j B̂öi dx�

(Âø j)
�øi dx �

�
(Âuö j)

�uöi dx �
�

(B̂ö j)
�öi dx

Since Â is hermitian with respect to the øis, the two integrals on the left of

each equation equal each other, from which it follows that�
ö�j B̂öi dx �

�
(B̂ö j)

�öi dx

and B̂ is therefore hermitian with respect to the öis.

3.4 Eigenfunction expansions

Consider a set of orthonormal eigenfunctions øi of a hermitian operator. Any

arbitrary function f of the same variables as øi de®ned over the same range of

these variables may be expanded in terms of the members of set øi

f �
X

i

aiøi (3:27)

where the ais are constants. The summation in equation (3.27) converges to the

function f if the set of eigenfunctions is complete. By complete we mean that

no other function g exists with the property that hg jøii � 0 for any value of i,

where g and øi are functions of the same variables and are de®ned over the

same variable range. As a general rule, the eigenfunctions of a hermitian

operator are not only orthogonal, but are also complete. A mathematical

criterion for completeness is presented at the end of this section.

The coef®cients ai are evaluated by multiplying (3.27) by the complex

conjugate ø�j of one of the eigenfunctions, integrating over the range of the

variables, and noting that the øis are orthonormal

hø j j f i � ø j

����X
i

aiøi

* +
�
X

i

aihø j jøii � a j

Replacing the dummy index j by i, we have

ai � høi j f i (3:28)

Substitution of equation (3.28) back into (3.27) gives

f �
X

i

høi j f iøi (3:29)
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Completeness

We now evaluate h f j f i in which f and f � are expanded as in equation (3.27),

with the two independent summations given different dummy indices

h f j f i �
X

j

a jø j

����X
i

aiøi

* +
�
X

j

X
i

a�j a jhø j jøii �
X

i

jaij2

Without loss of generality we may assume that the function f is normalized, so

that h f j f i � 1 and X
i

jaij2 � 1 (3:30)

Equation (3.30) may be used as a criterion for completeness. If an eigenfunc-

tion øn with a non-vanishing coef®cient an were missing from the summation

in equation (3.27), then the series would still converge, but it would be

incomplete and would therefore not converge to f . The corresponding coef®-

cient an would be missing from the left-hand side of equation (3.30). Since

each term in the summation in equation (3.30) is positive, the sum without an

would be less than unity. Only if the expansion set øi in equation (3.27) is

complete will (3.30) be satis®ed.

The completeness criterion can also be expressed in another form. For this

purpose we need to introduce the variables explicitly. For simplicity we assume

®rst that f is a function of only one variable x. In this case, equation (3.29) is

f (x) �
X

i

�
ø�i (x9) f (x9) dx9

� �
øi(x)

where x9 is the dummy variable of integration. Interchanging the order of

summation and integration gives

f (x) �
� X

i

ø�i (x9)øi(x)

" #
f (x9) dx9

Thus, the summation is equal to the Dirac delta function (see Appendix C)X
i

ø�i (x9)øi(x) � ä(xÿ x9) (3:31)

This expression, known as the completeness relation and sometimes as the

closure relation, is valid only if the set of eigenfunctions is complete, and may

be used as a mathematical test for completeness. Notice that the completeness

relation (3.31) is not related to the choice of the arbitrary function f , whereas

the criterion (3.30) is related.

The completeness relation for the multi-variable case is slightly more

complex. When expressed explicitly in terms of its variables, equation (3.29) is
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f (q1, q2, . . .) �
X

i

�
ø�i (q91, q92, . . .) f (q91, q92, . . .)w(q91, q92, . . .) dq91, dq92, . . .

� �
3 øi(q1, q2, . . .)

Interchanging the order of summation and integration gives

f (q1, q2, . . .) �
� X

i

ø�i (q91, q92, . . .)øi(q1, q2, . . .)

" #
3 f (q91, q92, . . .)w(q91, q92, . . .) dq1 dq2 . . .

so that the completeness relation takes the form

w(q91, q92, . . .)
X

i

ø�i (q91, q92, . . .)øi(q1, q2, . . .) � ä(q1 ÿ q91)ä(q2 ÿ q92) . . .

(3:32)

3.5 Simultaneous eigenfunctions

Suppose the members of a complete set of functions øi are simultaneously

eigenfunctions of two hermitian operators Â and B̂ with eigenvalues ái and âi,

respectively

Âøi � áiøi

B̂øi � âiøi

If we operate on the ®rst eigenvalue equation with B̂ and on the second with Â,

we obtain

B̂Âøi � áiB̂øi � áiâiøi

ÂB̂øi � âiÂøi � áiâiøi

from which it follows that

(ÂB̂ÿ B̂Â)øi � [A, B]øi � 0

Thus, the functions øi are eigenfunctions of the commutator [Â, B̂] with

eigenvalues equal to zero. An operator that gives zero when applied to any

member of a complete set of functions is itself zero, so that Â and B̂ commute.

We have just shown that if the operators Â and B̂ have a complete set of

simultaneous eigenfunctions, then Â and B̂ commute.

We now prove the converse, namely, that eigenfunctions of commuting

operators can always be constructed to be simultaneous eigenfunctions.

Suppose that Âøi � áiøi and that [Â, B̂] � 0. Since Â and B̂ commute, we

have
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ÂB̂øi � B̂Âøi � B̂(áiøi) � áiB̂øi

Therefore, the function B̂øi is an eigenfunction of Â with eigenvalue ái.

There are now two possibilities; the eigenvalue ái of Â is either non-

degenerate or degenerate. If ái is non-degenerate, then it corresponds to only

one independent eigenfunction øi, so that the function B̂øi is proportional to

øi

B̂øi � âiøi

where âi is the proportionality constant and therefore the eigenvalue of B̂

corresponding to øi. Thus, the function øi is a simultaneous eigenfunction of

both Â and B̂.

On the other hand, suppose the eigenvalue ái is degenerate. For simplicity,

we consider the case of a doubly degenerate eigenvalue ái; the extension to n-

fold degeneracy is straightforward. The function øi is then any linear combina-

tion of two linearly independent, orthonormal eigenfunctions øi1 and øi2 of Â

corresponding to the eigenvalue ái

øi � c1øi1 � c2øi2

We need to determine the coef®cients c1, c2 such that B̂øi � âiøi, that is

c1B̂øi1 � c2B̂øi2 � âi(c1øi1 � c2øi2)

If we take the scalar product of this equation ®rst with øi1 and then with øi2,

we obtain

c1(B11 ÿ âi)� c2 B12 � 0

c1 B21 � c2(B22 ÿ âi) � 0

where we have introduced the simpli®ed notation

Bjk � høij j B̂øiki
These simultaneous linear homogeneous equations determine c1 and c2 and

have a non-trivial solution if the determinant of the coef®cients of c1, c2

vanishes

B11 ÿ âi B12

B21 B22 ÿ âi

���� ���� � 0

or

â2
i ÿ (B11 � B22)âi � B11 B22 ÿ B12 B21 � 0

This quadratic equation has two roots â(1)
i and â(2)

i , which lead to two

corresponding sets of constants c
(1)
1 , c

(1)
2 and c

(2)
1 , c

(2)
2 . Thus, there are two

distinct functions ø(1)
i and ø(2)

i
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ø(1)
i � c

(1)
1 øi1 � c

(1)
2 øi2

ø(2)
i � c

(2)
1 øi1 � c

(2)
2 øi2

which satisfy the relations

B̂ø(1)
i � â(1)

i ø(1)
i

B̂ø(2)
i � â(2)

i ø(2)
i

and are, therefore, simultaneous eigenfunctions of the commuting operators Â

and B̂.

This analysis can be extended to three or more operators. If three operators

Â, B̂, and Ĉ have a complete set of simultaneous eigenfunctions, then the

argument above shows that Â and B̂ commute, B̂ and Ĉ commute, and Â and Ĉ

commute. Furthermore, the converse is also true. If Â commutes with both B̂

and Ĉ, and B̂ commutes with Ĉ, then the three operators possess simultaneous

eigenfunctions. To show this, suppose that the three operators commute with

one another. We know that since Â and B̂ commute, they possess simultaneous

eigenfunctions øi such that

Âøi � áiøi

B̂øi � âiøi

We next operate on each of these expressions with Ĉ, giving

ĈÂøi � Â(Ĉøi) � Ĉ(áiøi) � ái(Ĉøi)

ĈB̂øi � B̂(Ĉøi) � Ĉ(âiøi) � âi(Ĉøi)

Thus, the function Ĉøi is an eigenfunction of both Â and B̂ with eigenvalues ái

and âi, respectively. If ái and âi are non-degenerate, then there is only one

eigenfunction øi corresponding to them and the function Ĉøi is proportional

to øi

Ĉøi � ãiøi

and, consequently, Â, B̂, and Ĉ possess simultaneous eigenfunctions. For

degenerate eigenvalues ái and/or âi, simultaneous eigenfunctions may be

constructed using a procedure parallel to the one described above for the

doubly degenerate two-operator case.

We note here that if Â commutes with B̂ and B̂ commutes with Ĉ, but Â does

not commute with Ĉ, then Â and B̂ possess simultaneous eigenfunctions, B̂ and

Ĉ possess simultaneous eigenfunctions, but Â and Ĉ do not. The set of

simultaneous eigenfunctions of Â and B̂ will differ from the set for B̂ and Ĉ.

An example of this situation is discussed in Chapter 5.
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In some of the derivations presented in this section, operators need not be

hermitian. However, we are only interested in the properties of hermitian

operators because quantum mechanics requires them. Therefore, we have

implicitly assumed that all the operators are hermitian and we have not

bothered to comment on the parts where hermiticity is not required.

3.6 Hilbert space and Dirac notation

This section introduces the basic mathematics of linear vector spaces as an

alternative conceptual scheme for quantum-mechanical wave functions. The

concept of vector spaces was developed before quantum mechanics, but Dirac

applied it to wave functions and introduced a particularly useful and widely

accepted notation. Much of the literature on quantum mechanics uses Dirac's

ideas and notation.

A set of complete orthonormal functions øi(x) of a single variable x may be

regarded as the basis vectors of a linear vector space of either ®nite or in®nite

dimensions, depending on whether the complete set contains a ®nite or in®nite

number of members. The situation is analogous to three-dimensional cartesian

space formed by three orthogonal unit vectors. In quantum mechanics we

usually (see Section 7.2 for an exception) encounter complete sets with an

in®nite number of members and, therefore, are usually concerned with linear

vector spaces of in®nite dimensionality. Such a linear vector space is called a

Hilbert space. The functions øi(x) used as the basis vectors may constitute a

discrete set or a continuous set. While a vector space composed of a discrete

set of basis vectors is easier to visualize (even if the space is of in®nite

dimensionality) than one composed of a continuous set, there is no mathema-

tical reason to exclude continuous basis vectors from the concept of Hilbert

space. In Dirac notation, the basis vectors in Hilbert space are called ket

vectors or just kets and are represented by the symbol jøii or sometimes

simply by jii. These ket vectors determine a ket space.

When a ket jøii is multiplied by a constant c, the result c jøii � jcøii is a

ket in the same direction as jøii; only the magnitude of the ket vector is

changed. However, when an operator Â acts on a ket jøii, the result is another

ket jöii
jöii � Âjøii � jÂøii

In general, the ket jöii is not in the same direction as jøii nor in the same

direction as any other ket jø ji, but rather has projections along several or all

basis kets. If an operator Â acts on all kets jøii of the basis set, and the

resulting set of kets jöii � jÂøii are orthonormal, then the net result of the
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operation is a rotation of the basis set jøii about the origin to a new basis set

jöii. In the situation where Â acting on jøii gives a constant times jøii (cf.

equation (3.5))

Âjøii � jÂøii � áijøii
the ket jÂøii is along the direction of jøii and the kets jøii are said to be

eigenkets of the operator Â.

Although the expressions Âjøii and jÂøii are completely equivalent, there

is a subtle distinction between them. The ®rst, Âjøii, indicates the operator Â

being applied to the ket jøii. The quantity jÂøii is the ket which results from

that application.

Bra vectors

The functions øi(x) are, in general, complex functions. As a consequence, ket

space is a complex vector space, making it mathematically necessary to

introduce a corresponding set of vectors which are the adjoints of the ket

vectors. The adjoint (sometimes also called the complex conjugate transpose)

of a complex vector is the generalization of the complex conjugate of a

complex number. In Dirac notation these adjoint vectors are called bra vectors

or bras and are denoted by høij or hij. Thus, the bra høij is the adjoint jøiiy of

the ket jøii and, conversely, the ket jøii is the adjoint høijy of the bra høij
jøiiy � høij
høijy � jøii

These bra vectors determine a bra space, just as the kets determine ket space.

The scalar product or inner product of a bra höj and a ket jøi is written in

Dirac notation as höjøi and is de®ned as

höjøi �
�
ö�(x)ø(x) dx

The bracket (bra-c-ket) in höjøi provides the names for the component

vectors. This notation was introduced in Section 3.2 as a shorthand for the

scalar product integral. The scalar product of a ket jøi with its corresponding

bra høj gives a real, positive number and is the analog of multiplying a

complex number by its complex conjugate. The scalar product of a bra hø jj
and the ket jÂøii is expressed in Dirac notation as hø jjÂjøii or as h jjÂjii.
These scalar products are also known as the matrix elements of Â and are

sometimes denoted by Aij.

To every ket in ket space, there corresponds a bra in bra space. For the ket
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cjøii, the corresponding bra is c�høij. We can also write cjøii as jcøii, in

which case the corresponding bra is hcøij, so that

hcøij � c�høij
For every linear operator Â that transforms jøii in ket space into jöii � jÂøii,
there is a corresponding linear operator Ây in bra space which transforms høij
into höij � hÂøij. This operator Ây is called the adjoint of Â. In bra space the

transformation is expressed as

hÂøij � høijÂy
Thus, for bras the operator acts on the vector to its left, whereas for kets the

operator acts on the vector to its right.

To ®nd the relationship between Â and its adjoint Ây, we take the scalar

product of hÂø jj and jøii
hÂø jjøii � hø jjÂyjøii (3:33a)

or in integral notation �
(Âø j)

�øi dx �
�
ø�j Âyøi dx (3:33b)

A comparison with equation (3.8) shows that if Â is hermitian, then we have

Ây � Â and Â is said to be self-adjoint. The two terms, hermitian and self-

adjoint, are synonymous. To ®nd the adjoint of a non-hermitian operator, we

apply equations (3.33). For example, we see from equation (3.10) that the

adjoint of the operator d=dx is ÿd=dx.

Since the scalar product højöi is equal to höjøi�, we see that

hÂø jjøii � høijÂjø ji� (3:34)

Combining equations (3.33a) and (3.34) gives

hø jjÂyjøii � høijÂjø ji� (3:35)

If we replace Â in equation (3.35) by the operator Ây, we obtain

hø jj(Ây)yjøii � høijÂyjø ji� (3:36)

where (Ây)y is the adjoint of the operator Ây. Equation (3.35) may be rewritten

as

høijÂyjø ji� � hø jjÂjøii
and when compared with (3.36), we see that

hø jj(Ây)yjøii � hø jjÂjøii
We conclude that

(Ây)y � Â (3:37)

From equation (3.35) we can also show that
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(cÂ)y � c�Ây (3:38)

where c is any complex constant, and that

(Â� B̂)y � Ây � B̂y (3:39)

To obtain the adjoint of the product ÂB̂ of two operators, we apply equation

(3.33a), ®rst to ÂB̂, then to Â, and ®nally to B̂

hø jj(ÂB̂)yjøii � hÂB̂ø jjøii � hB̂ø jjÂyjøii � hø jjB̂yÂyjøii
Thus, we have the relation

(ÂB̂)y � B̂yÂy (3:40)

If Â and B̂ are hermitian (self-adjoint), then we have (ÂB̂)y � B̂Â and further, if

Â and B̂ commute, then the product ÂB̂ is hermitian or self-adjoint.

The outer product of a bra höj and a ket jøi is jøihöj and behaves as an

operator. If we let this outer product operate on another ket j÷i, we obtain the

expression jøihöj÷i, which can be regarded in two ways. The scalar product

höj÷i is a complex number multiplying the ket jøi, so that the complete

expression is a ket parallel to jøi. Alternatively, the operator jøihöj acts on the

ket j÷i and transfroms j÷i into a ket proportional to jøi.
To ®nd the adjoint of the outer product j÷ihöj of the ket j÷i and the bra höj,

we let Â in equation (3.35) be equal to j÷ihöj and obtain

hø jj(j÷ihöj)yjøii � høij(j÷ihöj)jø ji� � høij÷i�höjø ji�

� h÷jøiihø jjöi � hø jjöih÷jøii � hø jj(jöih÷j)jøii
Setting equal the operators in the left-most and right-most integrals, we ®nd

that

(j÷ihöj)y � jöih÷j (3:41)

Projection operator

We de®ne the operator P̂i as the outer product of jøii and its corresponding bra

P̂i � jøiihøij � jiihij (3:42)

and apply P̂i to an arbitrary ket jöi
P̂ijöi � jiihijöi

Thus, the result of P̂i acting on jöi is a ket proportional to jii, the proportion-

ality constant being the scalar product høijöi. The operator P̂i, then, projects

jöi onto jøii and for that reason is known as the projection operator. The

operator P̂2
i is given by

P̂2
i � P̂i P̂i � jiihijiihij � jiihij � P̂i

where we have noted that the kets jii are normalized. Likewise, the operator P̂n
i
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for n . 2 also equals P̂i. This property is consistent with the interpretation of

P̂i as a projection operator since the result of projecting jöi onto jii should be

the same whether the projection is carried out once, twice, or multiple times.

The operator P̂i is hermitian, so that the projection of jöi on jøii is equal to

the projection of jøii on jöi. To show that P̂i is hermitian, we let j÷i �
jöi � jii in equation (3.41) and obtain P̂

y
i � P̂i.

The expansion of a function f (x) in terms of the orthonormal set øi(x), as

shown in equation (3.27), may be expressed in terms of kets as

j f i �
X

i

aijøii �
X

i

aijii

where j f i is regarded as a vector in ket space. The constants ai are the

projections of j f i on the `unit ket vectors' jii and are given by equation (3.28)

ai � hij f i
Combining these two equations gives equation (3.29), which when expressed

in Dirac notation is

j f i �
X

i

jiihij f i

Since f (x) is an arbitrary function of x, the operator
P

ijiihij must equal the

identity operator, so that X
i

jiihij � 1 (3:43)

From the de®nition of P̂i in equation (3.42), we see thatX
i

P̂i � 1

Since the operator
P

ijiihij equals unity, it may be inserted at any point in an

equation. Accordingly, we insert it between the bra and the ket in the scalar

product of j f i with itself

h f j f i � f

���� X
i

jiihij
 !���� f* +

� 1

where we have assumed j f i is normalized. This expression may be written as

h f j f i �
X

i

h f jiihij f i �
X

i

jhij f ij2 �
X

i

jaij2 � 1

Thus, the expression (3.43) is related to the completeness criterion (3.30) and

is called, therefore, the completeness relation.
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3.7 Postulates of quantum mechanics

In this section we state the postulates of quantum mechanics in terms of the

properties of linear operators. By way of an introduction to quantum theory, the

basic principles have already been presented in Chapters 1 and 2. The purpose

of that introduction is to provide a rationale for the quantum concepts by

showing how the particle±wave duality leads to the postulate of a wave

function based on the properties of a wave packet. Although this approach,

based in part on historical development, helps to explain why certain quantum

concepts were proposed, the basic principles of quantum mechanics cannot be

obtained by any process of deduction. They must be stated as postulates to be

accepted because the conclusions drawn from them agree with experiment

without exception.

We ®rst state the postulates succinctly and then elaborate on each of them

with particular regard to the mathematical properties of linear operators. The

postulates are as follows.

1. The state of a physical system is de®ned by a normalized function Ø of the spatial

coordinates and the time. This function contains all the information that exists on

the state of the system.

2. Every physical observable A is represented by a linear hermitian operator Â.

3. Every individual measurement of a physical observable A yields an eigenvalue of

the corresponding operator Â. The average value or expectation value hAi from a

series of measurements of A for systems, each of which is in the exact same state

Ø, is given by hAi � hØjAjØi.
4. If a measurement of a physical observable A for a system in state Ø gives the

eigenvalue ën of Â, then the state of the system immediately after the measurement

is the eigenfunction (if ën is non-degenerate) or a linear combination of eigenfunc-

tions (if ën is degenerate) corresponding to ën.

5. The time dependence of the state function Ø is determined by the time-dependent

SchroÈdinger differential equation

i"
@Ø

@ t
� ĤØ

where Ĥ is the Hamiltonian operator for the system.

This list of postulates is not complete in that two quantum concepts are not

covered, spin and identical particles. In Section 1.7 we mentioned in passing

that an electron has an intrinsic angular momentum called spin. Other particles

also possess spin. The quantum-mechanical treatment of spin is postponed until

Chapter 7. Moreover, the state function for a system of two or more identical

and therefore indistinguishable particles requires special consideration and is

discussed in Chapter 8.
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State function

According to the ®rst postulate, the state of a physical system is completely

described by a state function Ø(q, t) or ket jØi, which depends on spatial

coordinates q and the time t. This function is sometimes also called a state

vector or a wave function. The coordinate vector q has components q1, q2, . . . ,

so that the state function may also be written as Ø(q1, q2, . . . , t). For a particle

or system that moves in only one dimension (say along the x-axis), the vector q

has only one component and the state vector Ø is a function of x and

t: Ø(x, t). For a particle or system in three dimensions, the components of q

are x, y, z and Ø is a function of the position vector r and t: Ø(r, t). The state

function is single-valued, a continuous function of each of its variables, and

square or quadratically integrable.

For a one-dimensional system, the quantity Ø�(x, t)Ø(x, t) is the probabil-

ity density for ®nding the system at position x at time t. In three dimensions,

the quantity Ø�(r, t)Ø(r, t) is the probability density for ®nding the system at

point r at time t. For a multi-variable system, the product Ø�(q1, q2,

. . . , t)Ø(q1, q2, . . . , t) is the probability density that the system has coordi-

nates q1, q2, . . . at time t. We show below that this interpretation of Ø�Ø
follows from postulate 3. We usually assume that the state function is normal-

ized �
Ø�(q1, q2, . . . , t)Ø(q1, q2, . . . , t)w(q1, q2, . . .) dq1 dq2 . . . � 1

or in Dirac notation

hØjØi � 1

where the limits of integration are over all allowed values of q1, q2, . . .

Physical quantities or observables

The second postulate states that a physical quantity or observable is represented

in quantum mechanics by a hermitian operator. To every classically de®ned

function A(r, p) of position and momentum there corresponds a quantum-

mechanical linear hermitian operator Â(r, ("=i)=). Thus, to obtain the quan-

tum-mechanical operator, the momentum p in the classical function is replaced

by the operator p̂

p̂ � "

i
= (3:44)

or, in terms of components

p̂x � "

i

@

@x
, p̂y � "

i

@

@ y
, p̂z � "

i

@

@z
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For multi-particle systems with cartesian coordinates r1, r2, . . . , the classical

function A(r1, r2, . . . , p1, p2, . . .) possesses the corresponding operator

Â(r1, r2, . . . , ("=i)=1, ("=i)=2, . . .) where =k is the gradient with respect to

rk . For non-cartesian coordinates, the construction of the quantum-mechanical

operator Â is more complex and is not presented here.

The classical function A is an observable, meaning that it is a physically

measurable property of the system. For example, for a one-particle system the

Hamiltonian operator Ĥ corresponding to the classical Hamiltonian function

H(r, p) � p2

2m
� V (r)

where p2 � p : p � p2
x � p2

y � p2
z , is

Ĥ � ÿ "2

2m
=2 � V (r)

The linear operator Ĥ is easily shown to be hermitian.

Measurement of observable properties

The third postulate relates to the measurement of observable properties. Every

individual measurement of a physical observable A yields an eigenvalue ëi of

the operator Â. The eigenvalues are given by

Âjii � ëijii (3:45)

where jii are the orthonormal eigenkets of Â. Since Â is hermitian, the

eigenvalues are all real. It is essential for the theory that Â is hermitian because

any measured quantity must, of course, be a real number. If the spectrum of Â

is discrete, then the eigenvalues ëi are discrete and the measurements of A are

quantized. If, on the other hand, the eigenfunctions jii form a continuous,

in®nite set, then the eigenvalues ëi are continuous and the measured values of

A are not quantized. The set of eigenkets jii of the dynamical operator Â are

assumed to be complete. In some cases it is possible to show explicitly that jii
forms a complete set, but in other cases we must assume that property.

The expectation value or mean value hAi of the physical observable A at

time t for a system in a normalized state Ø is given by

hAi � hØjÂjØi (3:46)

If Ø is not normalized, then the appropriate expression is

hAi � hØjÂjØihØjØi
Some examples of expectation values are as follows

3.7 Postulates of quantum mechanics 87



hxi � hØjxjØi

hpxi � Ø

���� "i @@x

����Ø
* +

hri � hØjrjØi

hpi � Ø

���� "i =

����Ø
* +

E � hHi � Ø

����ÿ "2

2m
=2 � V (r)

����Ø
* +

The expectation value hAi is not the result of a single measurement of the

property A, but rather the average of a large number (in the limit, an in®nite

number) of measurements of A on systems, each of which is in the same state

Ø. Each individual measurement yields one of the eigenvalues ëi, and hAi is

then the average of the observed array of eigenvalues. For example, if the

eigenvalue ë1 is observed four times, the eigenvalue ë2 three times, the

eigenvalue ë3 once, and no other eigenvalues are observed, then the expectation

value hAi is given by

hAi � 4ë1 � 3ë2 � ë3

8

In practice, many more than eight observations would be required to obtain a

reliable value for hAi.
In general, the expectation value hAi of the observable A may be written for

a discrete set of eigenfunctions as

hAi �
X

i

Piëi (3:47)

where Pi is the probability of obtaining the value ëi. If the state function Ø for

a system happens to coincide with one of the eigenstates jii, then only the

eigenvalue ëi would be observed each time a measurement of A is made and

therefore the expectation value hAi would equal ëi

hAi � hijÂjii � hijëijii � ëi

It is important not to confuse the expectation value hAi with the time average

of A for a single system.

For an arbitrary state Ø at a ®xed time t, the ket jØi may be expanded in

terms of the complete set of eigenkets of Â. In order to make the following

discussion clearer, we now introduce a slightly more complicated notation.

Each eigenvalue ëi will now be distinct, so that ëi 6� ë j for i 6� j. We let gi be
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the degeneracy of the eigenvalue ëi and let jiái, á � 1, 2, . . . , gi, be the

orthonormal eigenkets of Â. We assume that the subset of kets corresponding

to each eigenvalue ëi has been made orthogonal by the Schmidt procedure

outlined in Section 3.3.

If the eigenkets jiái constitute a discrete set, we may expand the state vector

jØi as

jØi �
X

i

Xgi

á�1

ciájiái (3:48)

where the expansion coef®cients ciá are

ciá � hiájØi (3:49)

The expansion of the bra vector hØj is, therefore, given by

hØj �
X

j

Xg j

â�1

c�jâh jâj (3:50)

where the dummy indices i and á have been replaced by j and â.

The expectation value of Â is obtained by substituting equations (3.48) and

(3.50) into (3.46)

hAi �
X

j

Xg j

â�1

X
i

Xgi

á�1

c�jâciáh jâjÂjiái �
X

j

Xg j

â�1

X
i

Xgi

á�1

c�jâciáëih jâjiái

�
X

i

Xgi

á�1

jciáj2ëi (3:51)

where we have noted that the kets jiái are orthonormal, so that

h jâjiái � äijäáâ

A comparison of equations (3.47) and (3.51) relates the probability Pi to the

expansion coef®cients ciá

Pi �
Xgi

á�1

jciáj2 �
Xgi

á�1

jhiájØij2 (3:52)

where equation (3.49) has also been introduced. For the case where ëi is non-

degenerate, the index á is not needed and equation (3.52) reduces to

Pi � jcij2 � jhijØij2
For a continuous spectrum of eigenkets with non-degenerate eigenvalues, it

is more convenient to write the eigenvalue equation (3.45) in the form

Âjëi � ëjëi
where ë is now a continuous variable and jëi is the eigenfunction whose

eigenvalue is ë. The expansion of the state vector Ø becomes
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jØi �
�

c(ë)jëi dë

where

c(ë) � hëjØi
and the expectation value of A takes the form

hAi �
�
jc(ë)j2 ë dë (3:53)

If dPë is the probability of obtaining a value of A between ë and ë� dë, then

equation (3.47) is replaced by

hAi �
�
ë dPë

and we see that

dPë � jc(ë)j2 dë � jhëjØij2 dë

The probability dPë is often written in the form

dPë � r(ë) dë

where r(ë) is the probability density of obtaining the result ë and is given by

r(ë) � jc(ë)j2 � jhëjØij2
In terms of the probability density, equation (3.53) becomes

hAi �
�
ër(ë) dë (3:54)

In some applications to physical systems, the eigenkets of Â possess a

partially discrete and a partially continuous spectrum, in which case equations

(3.51) and (3.53) must be combined.

The scalar product hØjØi may be evaluated from equations (3.48) and

(3.50) as

hØjØi �
X

j

Xg j

â�1

X
i

Xgi

á�1

c�jâciáh jâjiái �
X

i

Xgi

á�1

jciáj2

�
X

i

Xgi

á�1

jhiájØij2 �
X

i

Pi

Since the state vector Ø is normalized, this expression givesX
i

Pi � 1

Thus, the sum of the probabilities Pi equals unity as it must from the de®nition

of probability. For a continuous set of eigenkets, this relationship is replaced by
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�
dPë �

�
r(ë) dë � 1

As an example, we consider a particle in a one-dimensional box as discussed

in Section 2.5. Suppose that the state function Ø(x) for this particle is time-

independent and is given by

Ø(x) � C sin5 ðx

a

� �
, 0 < x < a

where C is a constant which normalizes Ø(x). The eigenfunctions jni and

eigenvalues En of the Hamiltonian operator Ĥ are

jni �
���
2

a

r
sin

nðx

a

� �
, En � n2 h2

8ma2
, n � 1, 2, . . .

Obviously, the state function Ø(x) is not an eigenfunction of Ĥ . Following the

general procedure described above, we expand Ø(x) in terms of the eigenfunc-

tions jni. This expansion is the same as an expansion in a Fourier series, as

described in Appendix B. As a shortcut we may use equations (A.39) and

(A.40) to obtain the identity

sin5è � 1

16
(10 sin èÿ 5 sin 3è� sin 5è)

so that the expansion of Ø(x) is

Ø(x) � C

16
10 sin

ðx

a

� �
ÿ 5 sin

3ðx

a

� �
� sin

5ðx

a

� �" #

� C

16

���
a

2

r
(10j1i ÿ 5j3i � j5i)

A measurement of the energy of a particle in state Ø(x) yields one of three

values and no other value. The values and their probabilities are

E1 � h2

8ma2
, P1 � 102

102 � 52 � 12
� 100

126
� 0:794

E3 � 9h2

8ma2
, P3 � 52

126
� 0:198

E5 � 25h2

8ma2
, P5 � 12

126
� 0:008

The sum of the probabilities is unity,

P1 � P3 � P5 � 0:794� 0:198� 0:008 � 1

The interpretation that the quantity Ø�(q1, q2, . . . , t)Ø(q1, q2, . . . , t) is

the probability density that the coordinates of the system at time t are
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q1, q2, . . . may be shown by comparing equations (3.46) and (3.54) for A equal

to the coordinate vector q

hqi � hØjqjØi �
�
Ø�(q)Ø(q)q dô

hqi �
�
r(q)q dô

For these two expressions to be mutually consistent, we must have

r(q) � Ø�(q)Ø(q)

Thus, this interpretation of Ø�Ø follows from postulate 3 and for this reason

is not included in the statement of postulate 1.

Collapse of the state function

The measurement of a physical observable A gives one of the eigenvalues ën of

the operator Â. As stated by the fourth postulate, a consequence of this

measurement is the sudden change in the state function of the system from its

original form Ø to an eigenfunction or linear combination of eigenfunctions of

Â corresponding to ën.

At a ®xed time t just before the measurement takes place, the ket jØi may

be expanded in terms of the eigenkets jiái of Â, as shown in equation (3.48). If

the measurement gives a non-degenerate eigenvalue ën, then immediately after

the measurement the system is in state jni. The state function Ø is said to

collapse to the function jni. A second measurement of A on this same system,

if taken immediately after the ®rst, always yields the same result ën. If the

eigenvalue ën is degenerate, then right after the measurement the state function

is some linear combination of the eigenkets jnái, á � 1, 2, . . . , gn. A second,

immediate measurement of A still yields ën as the result.

From postulates 4 and 5, we see that the state function Ø can change with

time for two different reasons. A discontinuous change in Ø occurs when some

property of the system is measured. The state of the system changes suddenly

from Ø to an eigenfunction or linear combination of eigenfunctions associated

with the observed eigenvalue. An isolated system, on the other hand, undergoes

a continuous change with time in accordance with the time-dependent SchroÈ-

dinger equation.

Time evolution of the state function

The ®fth postulate stipulates that the time evolution of the state function Ø is

determined by the time-dependent SchroÈdinger equation
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i"
@Ø

@ t
� ĤØ (3:55)

where Ĥ is the Hamiltonian operator of the system and, in general, changes

with time. However, in this book we only consider systems for which the

Hamiltonian operator is time-independent. To solve the time-dependent SchroÈ-

dinger equation, we express the state function Ø(q, t) as the product of two

functions

Ø(q, t) � ø(q)÷(t) (3:56)

where ø(q) depends only on the spatial variables and ÷(t) depends only on the

time. In Section 2.4 we discuss the procedure for separating the partial

differential equation (3.55) into two differential equations, one involving only

the spatial variables and the other only the time. The state function Ø(q, t) is

then shown to be

Ø(q, t) � ø(q)eÿiEt=" (3:57)

where E is the separation constant. Since it follows from equation (3.57) that

jØ(q, t)j2 � jø(q)j2
the probability density is independent of the time t and Ø(q, t) is a stationary

state.

The spatial differential equation, known as the time-independent SchroÈdin-

ger equation, is

Ĥø(q) � Eø(q)

Thus, the spatial function ø(q) is actually a set of eigenfunctions øn(q) of the

Hamiltonian operator Ĥ with eigenvalues En. The time-independent SchroÈdin-

ger equation takes the form

Ĥøn(q) � Enøn(q) (3:58)

and the general solution of the time-dependent SchroÈdinger equation is

Ø(q, t) �
X

n

cnøn(q)eÿiEn t=" (3:59)

where cn are arbitrary complex constants.

The appearance of the Hamiltonian operator in equation (3.55) as stipulated

by postulate 5 gives that operator a special status in quantum mechanics.

Knowledge of the eigenfunctions and eigenvalues of the Hamiltonian operator

for a given system is suf®cient to determine the stationary states of the system

and the expectation values of any other dynamical variables.

We next address the question as to whether equation (3.59) is actually the

most general solution of the time-dependent SchroÈdinger equation. Are there

other solutions that are not expressible in the form of equation (3.59)? To
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answer that question, we assume that Ø(q, t) is any arbitrary solution of the

parital differential equation (3.55). We suppose further that the set of functions

øn(q) which satisfy the eigenvalue equation (3.58) is complete. Then we can,

in general, expand Ø(q, t) in terms of the complete set øn(q) and obtain

Ø(q, t) �
X

n

an(t)øn(q) (3:60)

The coef®cients an(t) in the expansion are given by

an(t) � høn(q)jØ(q, t)i (3:61)

and are functions of the time t, but not of the coordinates q. We substitute the

expansion (3.60) into the differential equation (3.55) to obtainX
n

"

i

@an(t)

@ t
� an(t) Ĥ

� �
øn(q) �

X
n

"

i

@an(t)

@ t
� Enan(t)

� �
øn(q) � 0 (3:62)

where we have also noted that the functions øn(q) are eigenfunctions of Ĥ in

accordance with equation (3.58). We next multiply equation (3.62) by ø�k (q),

the complex conjugate of one of the eigenfunctions of the orthogonal set, and

integrate over the spatial variablesX
n

"

i

@an(t)

@ t
� Enan(t)

� �
høk(q)jøn(q)i

�
X

n

"

i

@an(t)

@ t
� Enan(t)

� �
äkn � "

i

@ak(t)

@ t
� Ek ak(t) � 0

Replacing the dummy index k by n, we obtain the result

an(t) � cneÿiEn t=" (3:63)

where cn is a constant independent of both q and t. Substitution of equation

(3.63) into (3.60) gives equation (3.59), showing that equation (3.59) is indeed

the most general form for a solution of the time-dependent SchroÈdinger

equation. All solutions may be expressed as the sum over stationary states.

3.8 Parity operator

The parity operator Ð̂ is de®ned by the relation

Ð̂ø(q) � ø(ÿq) (3:64)

Thus, the parity operator reverses the sign of each cartesian coordinate. This

operator is equivalent to an inversion of the coordinate system through the

origin. In one and three dimensions, equation (3.64) takes the form

Ð̂ø(x) � ø(ÿx), Ð̂ø(r) � Ð̂ø(x, y, z) � Ð̂ø(ÿx, ÿy, ÿz) � ø(ÿr)

The operator Ð̂2 is equal to unity since
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Ð̂2ø(q) � Ð̂(Ð̂ø(q)) � Ð̂ø(ÿq) � ø(q)

Further, we see that

Ð̂nø(q) � ø(q), n even

� ø(ÿq), n odd

or

Ð̂n � 1, n even

� Ð̂, n odd

The operator Ð̂ is linear and hermitian. In the one-dimensional case, the

hermiticity of Ð̂ is demonstrated as follows

höjÐ̂jøi �
�1
ÿ1

ö�(x)ø(ÿx) dx � ÿ
�ÿ1
1

ö�(ÿx9)ø(x9) dx9

�
�1
ÿ1

ø(x9)Ð̂ö�(x9) dx9 � hÐ̂öjøi
where x in the second integral is replaced by x9 � ÿx to obtain the third

integral. By applying the same procedure to each coordinate, we can show that

Ð̂ is hermitian with respect to multi-dimensional functions.

The eigenvalues ë of the parity operator Ð̂ are given by

Ð̂øë(q) � ëøë(q) (3:65)

where øë(q) are the corresponding eigenfunctions. If we apply Ð̂ to both sides

of equation (3.65), we obtain

Ð̂2øë(q) � ëÐ̂øë(q) � ë2øë(q)

Since Ð̂2 � 1, we see that ë2 � 1 and that the eigenvalues ë, which must be

real because Ð̂ is hermitian, are equal to either �1 or ÿ1. To ®nd the

eigenfunctions øë(q), we note that equation (3.65) now becomes

øë(ÿq) � �øë(q)

For ë � 1, the eigenfunctions of Ð̂ are even functions of q, while for ë � ÿ1,

they are odd functions of q. An even function of q is said to be of even parity,

while odd parity refers to an odd function of q. Thus, the eigenfunctions of Ð̂
are any well-behaved functions that are either of even or odd parity in their

cartesian variables.

We show next that the parity operator Ð̂ commutes with the Hamiltonian

operator Ĥ if the potential energy V (q) is an even function of q. The kinetic

energy term in the Hamiltonian operator is given by

ÿ "2

2m
=2 � ÿ "2

2m

@2

@q2
1

� @2

@q2
2

� � � �
 !
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and is an even function of each qk . If the potential energy V (q) is also an even

function of each qk , then we have Ĥ(q) � Ĥ(ÿq) and

[ Ĥ , Ð̂] f (q) � Ĥ(q)Ð̂ f (q)ÿ Ð̂ Ĥ(q) f (q) � Ĥ(q) f (ÿq)ÿ Ĥ(ÿq) f (ÿq) � 0

Since the function f (q) is arbitrary, the commutator of Ĥ and Ð̂ vanishes.

Thus, these operators have simultaneous eigenfunctions for systems with

V (q) � V (ÿq).

If the potential energy of a system is an even function of the coordinates and

if ø(q) is a solution of the time-independent SchroÈdinger equation, then the

function ø(ÿq) is also a solution. When the eigenvalues of the Hamiltonian

operator are non-degenerate, these two solutions are not independent of each

other, but are proportional

ø(ÿq) � cø(q)

These eigenfunctions are also eigenfunctions of the parity operator, leading to

the conclusion that c � �1. Consequently, some eigenfunctions will be of even

parity while all the others will be of odd parity.

For a degenerate energy eigenvalue, the several corresponding eigenfunc-

tions of Ĥ may not initially have a de®nite parity. However, each eigenfunction

may be written as the sum of an even part øe(q) and an odd part øo(q)

ø(q) � øe(q)� øo(q)

where

øe(q) � 1
2
[ø(q)� ø(ÿq)] � øe(ÿq)

øo(q) � 1
2
[ø(q)ÿ ø(ÿq)] � ÿøo(ÿq)

Since any linear combination of ø(q) and ø(ÿq) satis®es SchroÈdinger's equa-

tion, the functions øe(q) and øo(q) are eigenfunctions of Ĥ . Furthermore, the

functions øe(q) and øo(q) are also eigenfunctions of the parity operator Ð̂, the

®rst with eigenvalue �1 and the second with eigenvalue ÿ1.

3.9 Hellmann±Feynman theorem

A useful expression for evaluating expectation values is known as the Hell-

mann±Feynman theorem. This theorem is based on the observation that the

Hamiltonian operator for a system depends on at least one parameter ë, which

can be considered for mathematical purposes to be a continuous variable. For

example, depending on the particular system, this parameter ë may be the mass

of an electron or a nucleus, the electronic charge, the nuclear charge parameter

Z, a constant in the potential energy, a quantum number, or even Planck's

constant. The eigenfunctions and eigenvalues of Ĥ(ë) also depend on this
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parameter, so that the time-independent SchroÈdinger equation (3.58) may be

written as

Ĥ(ë)øn(ë) � En(ë)øn(ë) (3:66)

The expectation value of Ĥ(ë) is, then

En(ë) � høn(ë)j Ĥ(ë)jøn(ë)i (3:67)

where we assume that øn(ë) is normalized

høn(ë)jøn(ë)i � 1 (3:68)

To obtain the Hellmann±Feynman theorem, we differentiate equation (3.67)

with respect to ë

d

dë
En(ë) � øn(ë)

���� d

dë
Ĥ(ë)

����øn(ë)

* +

� d

dë
øn(ë)

���� Ĥ(ë)

����øn(ë)

* +
� øn(ë)

���� Ĥ(ë)

���� d

dë
øn(ë)

* +
(3:69)

Applying the hermitian property of Ĥ(ë) to the third integral on the right-hand

side of equation (3.69) and then applying (3.66) to the second and third terms,

we obtain

d

dë
En(ë) � øn(ë)

���� d

dë
Ĥ(ë)

����øn(ë)

* +

� En(ë)
d

dë
øn(ë)

����øn(ë)

* +
� øn(ë)

���� d

dë
øn(ë)

* +" #
(3:70)

The derivative of equation (3.68) with respect to ë is

d

dë
øn(ë)

����øn(ë)

* +
� øn(ë)

���� d

dë
øn(ë)

* +
� 0

showing that the last term on the right-hand side of (3.70) vanishes. We thereby

obtain the Hellmann±Feynman theorem

d

dë
En(ë) � øn(ë)

���� d

dë
Ĥ(ë)

����øn(ë)

* +
(3:71)

3.10 Time dependence of the expectation value

The expectation value hAi of the dynamical quantity or observable A is, in

general, a function of the time t. To determine how hAi changes with time, we

take the time derivative of equation (3.46)
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dhAi
dt
� d

dt
hØjÂjØi � @Ø

@ t

���� Â ����Ø
* +

� Ø

����Â ���� @Ø@ t

* +
� Ø

���� @Â

@ t

����Ø
* +

Equation (3.55) may be substituted for the time derivatives of the wave function

to give

dhAi
dt
� i

"
h ĤØjÂjØi ÿ i

"
hØjÂ Ĥ jØi �

*
Ø

���� @Â

@ t

����Ø
+

� i

"
hØj ĤÂjØi ÿ i

"
hØjÂ Ĥ jØi � Ø

���� @Â

@ t

����Ø
* +

� i

"
hØj[ Ĥ , Â]jØi � Ø

���� @Â

@ t

����Ø
* +

� i

"
h[ Ĥ , Â]i � @Â

@ t

� �
where the hermiticity of Ĥ and the de®nition (equation (3.3)) of the commu-

tator have been used. If the operator Â is not an explicit function of time, then

the last term on the right-hand side vanishes and we have

dhAi
dt
� i

"
h[ Ĥ , Â]i (3:72)

If we set Â equal to unity, then the commutator [ Ĥ , Â] vanishes and equation

(3.72) becomes

dhAi
dt
� 0

or

d

dt
hØjÂjØi � d

dt
hØjØi � 0

We thereby obtain the result in Section 2.2 that if Ø is normalized, it remains

normalized as time progresses.

If the operator Â in equation (3.72) is set equal to Ĥ , then again the

commutator vanishes and we have

dhAi
dt
� dhHi

dt
� dE

dt
� 0

Thus, the energy E of the system, which is equal to the expectation value of the

Hamiltonian, is conserved if the Hamiltonian does not depend explicitly on

time.

By setting the operator Â in equation (3.72) equal ®rst to the position

variable x, then the variable y, and ®nally the variable z, we can show that
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m
dhxi
dt
� hpxi, m

dhyi
dt
� hpyi, m

dhzi
dt
� hpzi

or, in vector notation

m
dhri
dt
� hpi

which is one of the Ehrenfest theorems discussed in Section 2.3. The other

Ehrenfest theorem,

dhpi
dt
� ÿh=V (r)i

may be obtained from equation (3.72) by setting Â successively equal to p̂x,

p̂y, and p̂z.

3.11 Heisenberg uncertainty principle

We have shown in Section 3.5 that commuting hermitian operators have

simultaneous eigenfunctions and, therefore, that the physical quantities asso-

ciated with those operators can be observed simultaneously. On the other hand,

if the hermitian operators Â and B̂ do not commute, then the physical

observables A and B cannot both be precisely determined at the same time. We

begin by demonstrating this conclusion.

Suppose that Â and B̂ do not commute. Let ái and âi be the eigenvalues of Â

and B̂, respectively, with corresponding eigenstates jáii and jâii
Âjáii � áijáii (3:73a)

B̂jâii � âijâii (3:73b)

Some or all of the eigenvalues may be degenerate, but each eigenfunction has a

unique index i. Suppose further that the system is in state já ji, one of the

eigenstates of Â. If we measure the physical observable A, we obtain the result

á j. What happens if we simultaneously measure the physical observable B? To

answer this question we need to calculate the expectation value hBi for this

system

hBi � há jjB̂já ji (3:74)

If we expand the state function já ji in terms of the complete, orthonormal set

jâii
já ji �

X
i

cij âii

where ci are the expansion coef®cients, and substitute the expansion into

equation (3.74), we obtain

3.11 Heisenberg uncertainty principle 99



hBi �
X

i

X
k

c�k cihâkjB̂jâii �
X

i

X
k

c�k ciâiäki �
X

i

jcij2 âi

where (3.73b) has been used. Thus, a measurement of B yields one of the many

values âi with a probability jcij2. There is no way to predict which of the values

âi will be obtained and, therefore, the observables A and B cannot both be

determined concurrently.

For a system in an arbitrary state Ø, neither of the physical observables A

and B can be precisely determined simultaneously if Â and B̂ do not commute.

Let ÄA and ÄB represent the width of the spread of values for A and B,

respectively. We de®ne the variance (ÄA)2 by the relation

(ÄA)2 � h(Âÿ hAi)2i (3:75)

that is, as the expectation value of the square of the deviation of A from its

mean value. The positive square root ÄA is the standard deviation and is called

the uncertainty in A. Noting that hAi is a real number, we can obtain an

alternative expression for (ÄA)2 as follows:

(ÄA)2 � h(Âÿ hAi)2i � hÂ2 ÿ 2hAiÂ� hAi2i
� hÂ2i ÿ 2hAihAi � hAi2 � hÂ2i ÿ hAi2 (3:76)

Expressions analogous to equations (3.75) and (3.76) apply for (ÄB)2.

Since Â and B̂ do not commute, we de®ne the operator Ĉ by the relation

[Â, B̂] � ÂB̂ÿ B̂Â � iĈ (3:77)

The operator Ĉ is hermitian as discussed in Section 3.3, so that its expectation

value hCi is real. The commutator of Âÿ hAi and B̂ÿ hBi may be expanded

as follows

[Âÿ hAi, B̂ÿ hBi] � (Âÿ hAi)(B̂ÿ hBi)ÿ (B̂ÿ hBi)(Âÿ hAi)
� ÂB̂ÿ B̂Â � iĈ (3:78)

where the cross terms cancel since hAi and hBi are numbers and commute with

the operators Â and B̂. We use equation (3.78) later in this section.

We now introduce the operator

Âÿ hAi � ië(B̂ÿ hBi)
where ë is a real constant, and let this operator act on the state function Ø

[Âÿ hAi � ië(B̂ÿ hBi)]Ø
The scalar product of the resulting function with itself is, of course, always

positive, so that

h[Âÿ hAi � ië(B̂ÿ hBi)]Øj[Âÿ hAi � ië(B̂ÿ hBi)]Øi > 0 (3:79)

Expansion of this expression gives
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h(Âÿ hAi)Øj(Âÿ hAi)Øi � ë2h(B̂ÿ hBi)Øj(B̂ÿ hBi)Øi
� iëh(Âÿ hAi)Øj(B̂ÿ hBi)Øi ÿ iëh(B̂ÿ hBi)Øj(Âÿ hAi)Øi > 0

or, since Â and B̂ are hermitian

hØj(Âÿ hAi)2jØi � ë2hØj(B̂ÿ hBi)2jØi
� iëhØj[Âÿ hAi, B̂ÿ hBi]jØi > 0

Applying equations (3.75) and (3.78), we have

(ÄA)2 � ë2(ÄB)2 ÿ ëhCi > 0

If we complete the square of the terms involving ë, we obtain

(ÄA)2 � (ÄB)2 ëÿ hCi
2(ÄB)2

� �2

ÿ hCi
2

4(ÄB)2
> 0

Since ë is arbitrary, we select its value so as to eliminate the second term

ë � hCi
2(ÄB)2

(3:80)

thereby giving

(ÄA)2(ÄB)2 > 1
4
hCi2

or, upon taking the positive square root,

ÄAÄB > 1
2
jhCij

Substituting equation (3.77) into this result yields

ÄAÄB > 1
2
jh[Â, B̂]ij (3:81)

This general expression relates the uncertainties in the simultaneous measure-

ments of A and B to the commutator of the corresponding operators Â and B̂

and is a general statement of the Heisenberg uncertainty principle.

Position±momentum uncertainty principle

We now consider the special case for which A is the variable x (Â � x) and B

is the momentum px (B̂ � ÿi" d=dx). The commutator [Â, B̂] may be evaluated

by letting it operate on Ø

[Â, B̂]Ø � ÿi" x
dØ

dx
ÿ dxØ

dx

� �
� i"Ø

so that jh[Â, B̂]ij � " and equation (3.81) gives

ÄxÄpx >
"

2
(3:82)

The Heisenberg position±momentum uncertainty principle (3.82) agrees

with equation (2.26), which was derived by a different, but mathematically
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equivalent procedure. The relation (3.82) is consistent with (1.44), which is

based on the Fourier transform properties of wave packets. The difference

between the right-hand sides of (1.44) and (3.82) is due to the precise de®nition

(3.75) of the uncertainties in equation (3.82).

Similar applications of equation (3.81) using the position±momentum pairs

y, p̂y and z, p̂z yield

ÄyÄpy >
"

2
, ÄzÄpz >

"

2

Since x commutes with the operators p̂y and p̂z, y commutes with p̂x and p̂z,

and z commutes with p̂x and p̂y, the relation (3.81) gives

ÄqiÄpj � 0, i 6� j

where q1 � x, q2 � y, q3 � z, p1 � px, p2 � py, p3 � pz. Thus, the position

coordinate qi and the momentum component pj for i 6� j may be precisely

determined simultaneously.

Minimum uncertainty wave packet

The minimum value of the product ÄAÄB occurs for a particular state Ø for

which the relation (3.81) becomes an equality, i.e., when

ÄAÄB � 1
2
jh[Â, B̂]ij (3:83)

According to equation (3.79), this equality applies when

[Âÿ hAi � ië(B̂ÿ hBi)]Ø � 0 (3:84)

where ë is given by (3.80). For the position±momentum example where Â � x

and B̂ � ÿi" d=dx, equation (3.84) takes the form

ÿi"
d

dx
ÿ hpxi

� �
Ø � i

ë
(xÿ hxi)Ø

for which the solution is

Ø � ceÿ(xÿhxi)2=2ë"eih pxix=" (3:85)

where c is a constant of integration and may be used to normalize Ø. The real

constant ë may be shown from equation (3.80) to be

ë � "

2(Äpx)2
� 2(Äx)2

"

where the relation ÄxÄpx � "=2 has been used, and is observed to be positive.

Thus, the state function Ø in equation (3.85) for a particle with minimum

position±momentum uncertainty is a wave packet in the form of a plane wave

exp[ihpxix="] with wave number k0 � hpxi=" multiplied by a gaussian

modulating function centered at hxi. Wave packets are discussed in Section
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1.2. Only the spatial dependence of Ø has been derived in equation (3.85). The

state function Ø may also depend on the time through the possible time

dependence of the parameters c, ë, hxi, and hpxi.

Energy±time uncertainty principle

We now wish to derive the energy±time uncertainty principle, which is

discussed in Section 1.5 and expressed in equation (1.45). We show in Section

1.5 that for a wave packet associated with a free particle moving in the x-

direction the product ÄEÄt is equal to the product ÄxÄpx if ÄE and Ät are

de®ned appropriately. However, this derivation does not apply to a particle in a

potential ®eld.

The position, momentum, and energy are all dynamical quantities and

consequently possess quantum-mechanical operators from which expectation

values at any given time may be determined. Time, on the other hand, has a

unique role in non-relativistic quantum theory as an independent variable;

dynamical quantities are functions of time. Thus, the `uncertainty' in time

cannot be related to a range of expectation values.

To obtain the energy-time uncertainty principle for a particle in a time-

independent potential ®eld, we set Â equal to Ĥ in equation (3.81)

(ÄE)(ÄB) > 1
2
jh[ Ĥ , B̂]ij

where ÄE is the uncertainty in the energy as de®ned by (3.75) with Â � Ĥ .

Substitution of equation (3.72) into this expression gives

(ÄE)(ÄB) >
"

2

���� dhBi
dt

���� (3:86)

In a short period of time Ät, the change in the expectation value of B is given

by

ÄB � dhBi
dt

Ät

When this expression is combined with equation (3.86), we obtain the desired

result

(ÄE)(Ät) >
"

2
(3:87)

We see that the energy and time obey an uncertainty relation when Ät is

de®ned as the period of time required for the expectation value of B to change

by one standard deviation. This de®nition depends on the choice of the

dynamical variable B so that Ät is relatively larger or smaller depending on

that choice. If dhBi=dt is small so that B changes slowly with time, then the

period Ät will be long and the uncertainty in the energy will be small.
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Conversely, if B changes rapidly with time, then the period Ät for B to change

by one standard deviation will be short and the uncertainty in the energy of the

system will be large.

Problems

3.1 Which of the following operators are linear?

(a)
p

(b) sin (c) xD̂x (d) D̂xx

3.2 Demonstrate the validity of the relationships (3.4a) and (3.4b).

3.3 Show that

[Â, [B̂, Ĉ]]� [B̂, [Ĉ, Â]]� [Ĉ, [Â, B̂]] � 0

where Â, B̂, and Ĉ are arbitrary linear operators.

3.4 Show that (D̂x � x)(D̂x ÿ x) � D̂2
x ÿ x2 ÿ 1.

3.5 Show that xeÿx2

is an eigenfunction of the linear operator (D̂2
x ÿ 4x2). What is

the eigenvalue?

3.6 Show that the operator D̂2
x is hermitian. Is the operator iD̂2

x hermitian?

3.7 Show that if the linear operators Â and B̂ do not commute, the operators

(ÂB̂� B̂Â) and i[Â, B̂] are hermitian.

3.8 If the real normalized functions f (r) and g(r) are not orthogonal, show that their

sum f (r)� g(r) and their difference f (r)ÿ g(r) are orthogonal.

3.9 Consider the set of functions ø1 � eÿx=2, ø2 � xeÿx=2, ø3 � x2eÿx=2, ø4 �
x3eÿx=2, de®ned over the range 0 < x <1. Use the Schmidt orthogonalization

procedure to construct from the set øi an orthogonal set of functions with

w(x) � 1.

3.10 Evaluate the following commutators:

(a) [x, p̂x] (b) [x, p̂2
x] (c) [x, Ĥ] (d) [ p̂x, Ĥ]

3.11 Evaluate [x, p̂3
x] and [x2, p̂2

x] using equations (3.4).

3.12 Using equation (3.4b), show by iteration that

[x n, p̂x] � i"nx nÿ1

where n is a positive integer greater than zero.

3.13 Show that

[ f (x), p̂x] � i"
d f (x)

dx

3.14 Calculate the expectation values of x, x2, p̂, and p̂2 for a particle in a one-

dimensional box in state øn (see Section 2.5).

3.15 Calculate the expectation value of p̂4 for a particle in a one-dimensional box in

state øn.

3.16 A hermitian operator Â has only three normalized eigenfunctions ø1, ø2, ø3,

with corresponding eigenvalues a1 � 1, a2 � 2, a3 � 3, respectively. For a

particular state ö of the system, there is a 50% chance that a measure of A

produces a1 and equal chances for either a2 or a3.
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(a) Calculate hAi.
(b) Express the normalized wave function ö of the system in terms of the

eigenfunctions of Â.

3.17 The wave function Ø(x) for a particle in a one-dimensional box of length a is

Ø(x) � C sin7 ðx

a

� �
; 0 < x < a

where C is a constant. What are the possible observed values for the energy and

their respective probabilities?

3.18 If jøi is an eigenfunction of Ĥ with eigenvalue E, show that for any operator Â

the expectation value of [ Ĥ , Â] vanishes, i.e.,

høj[ Ĥ , Â]jøi � 0

3.19 Derive both of the Ehrenfest theorems using equation (3.72).

3.20 Show that

ÄHÄx >
"

2m
h p̂xi
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4

Harmonic oscillator

In this chapter we treat in detail the quantum behavior of the harmonic

oscillator. This physical system serves as an excellent example for illustrating

the basic principles of quantum mechanics that are presented in Chapter 3. The

SchroÈdinger equation for the harmonic oscillator can be solved rigorously and

exactly for the energy eigenvalues and eigenstates. The mathematical process

for the solution is neither trivial, as is the case for the particle in a box, nor

excessively complicated. Moreover, we have the opportunity to introduce the

ladder operator technique for solving the eigenvalue problem.

The harmonic oscillator is an important system in the study of physical

phenomena in both classical and quantum mechanics. Classically, the harmonic

oscillator describes the mechanical behavior of a spring and, by analogy, other

phenomena such as the oscillations of charge ¯ow in an electric circuit, the

vibrations of sound-wave and light-wave generators, and oscillatory chemical

reactions. The quantum-mechanical treatment of the harmonic oscillator may

be applied to the vibrations of molecular bonds and has many other applica-

tions in quantum physics and ®eld theory.

4.1 Classical treatment

The harmonic oscillator is an idealized one-dimensional physical system in

which a single particle of mass m is attracted to the origin by a force F

proportional to the displacement of the particle from the origin

F � ÿkx (4:1)

The proportionality constant k is known as the force constant. The minus sign

in equation (4.1) indicates that the force is in the opposite direction to the

direction of the displacement. The typical experimental representation of the

oscillator consists of a spring with one end stationary and with a mass m
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attached to the other end. The spring is assumed to obey Hooke's law, that is to

say, equation (4.1). The constant k is then often called the spring constant.

In classical mechanics the particle obeys Newton's second law of motion

F � ma � m
d2x

dt2
(4:2)

where a is the acceleration of the particle and t is the time. The combination of

equations (4.1) and (4.2) gives the differential equation

d2x

dt2
� ÿ k

m
x

for which the solution is

x � A sin(2ðít � b) � A sin(ùt � b) (4:3)

where the amplitude A of the vibration and the phase b are the two constants

of integration and where the frequency í and the angular frequency ù of

vibration are related to k and m by

ù � 2ðí �
����
k

m

r
(4:4)

According to equation (4.3), the particle oscillates sinusoidally about the origin

with frequency í and maximum displacement �A.

The potential energy V of a particle is related to the force F acting on it by

the expression

F � ÿ dV

dx

Thus, from equations (4.1) and (4.4), we see that for a harmonic oscillator the

potential energy is given by

V � 1
2
kx2 � 1

2
mù2x2 (4:5)

The total energy E of the particle undergoing harmonic motion is given by

E � 1
2
mv2 � V � 1

2
mv2 � 1

2
mù2x2 (4:6)

where v is the instantaneous velocity. If the oscillator is undisturbed by outside

forces, the energy E remains ®xed at a constant value. When the particle is at

maximum displacement from the origin so that x � �A, the velocity v is zero

and the potential energy is a maximum. As jxj decreases, the potential

decreases and the velocity increases keeping E constant. As the particle crosses

the origin (x � 0), the velocity attains its maximum value v � �������������
2E=m

p
.

To relate the maximum displacement A to the constant energy E, we note

that when x � �A, equation (4.6) becomes

E � 1
2
mù2 A2

so that
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A � 1

ù

������
2E

m

r
Thus, equation (4.3) takes the form

x � 1

ù

������
2E

m

r
sin(ùt � b) (4:7)

By de®ning a reduced distance y as

y � ù

������
m

2E

r
x (4:8)

so that the particle oscillates between y � ÿ1 and y � 1, we may express the

equation of motion (4.7) in a universal form that is independent of the total

energy E

y(t) � sin(ùt � b) (4:9)

As the particle oscillates back and forth between y � ÿ1 and y � 1, the

probability that it will be observed between some value y and y� dy is

P(y) dy, where P(y) is the probability density. Since the probability of ®nding

the particle within the range ÿ1 < y < 1 is unity (the particle must be some-

where in that range), the probability density is normalized�1

ÿ1

P(y) dy � 1

The probability of ®nding the particle within the interval dy at a given distance

y is proportional to the time dt spent in that interval

P(y) dy � c dt � c
dt

dy
dy

so that

P(y) � c
dt

dy

where c is the proportionality constant. To ®nd P(y), we solve equation (4.9)

for t

t(y) � 1

ù
[sinÿ1(y)ÿ b]

and then take the derivative to give

P(y) � c

ù
(1ÿ y2)ÿ1=2 � 1

ð
(1ÿ y2)ÿ1=2 (4:10)

where c was determined by the normalization requirement. The probability

density P(y) for the oscillating particle is shown in Figure 4.1.
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4.2 Quantum treatment

The classical Hamiltonian H(x, p) for the harmonic oscillator is

H(x, p) � p2

2m
� V (x) � p2

2m
� 1

2
mù2x2 (4:11)

The Hamiltonian operator Ĥ(x, p̂) is obtained by replacing the momentum p

in equation (4.11) with the momentum operator p̂ � ÿi" d=dx

Ĥ � p̂2

2m
� 1

2
mù2x2 � ÿ "2

2m

d2

dx2
� 1

2
mù2x2 (4:12)

The SchroÈdinger equation is, then

ÿ "2

2m

d2ø(x)

dx2
� 1

2
mù2x2ø(x) � Eø(x) (4:13)

It is convenient to introduce the dimensionless variable î by the de®nition

î � mù

"

� �1=2

x (4:14)

so that the Hamiltonian operator becomes

Ĥ � "ù

2
î2 ÿ d2

dî2

� �
(4:15)

Since the Hamiltonian operator is written in terms of the variable î rather than

x, we should express the eigenstates in terms of î as well. Accordingly, we

de®ne the functions ö(î) by the relation

ö(î) � "

mù

� �1=4

ø(x) (4:16)

If the functions ø(x) are normalized with respect to integration over x

P(y)

21 1y

Figure 4.1 Classical probability density for an oscillating particle.

4.2 Quantum treatment 109



�1
ÿ1
jø(x)j2 dx � 1

then from equations (4.14) and (4.16) we see that the functions ö(î) are

normalized with respect to integration over î�1
ÿ1
jö(î)j2 dî � 1

The SchroÈdinger equation (4.13) then takes the form

ÿ d2ö(î)

dî2
� î2ö(î) � 2E

"ù
ö(î) (4:17)

Since the Hamiltonian operator is hermitian, the energy eigenvalues E are real.

There are two procedures available for solving this differential equation. The

older procedure is the Frobenius or series solution method. The solution of

equation (4.17) by this method is presented in Appendix G. In this chapter we

use the more modern ladder operator procedure. Both methods give exactly the

same results.

Ladder operators

We now solve the SchroÈdinger eigenvalue equation for the harmonic oscillator

by the so-called factoring method using ladder operators. We introduce the

two ladder operators â and ây by the de®nitions

â � mù

2"

� �1=2

x� i p̂

mù

� �
� 1���

2
p î� d

dî

� �
(4:18a)

ây � mù

2"

� �1=2

xÿ i p̂

mù

� �
� 1���

2
p îÿ d

dî

� �
(4:18b)

Application of equation (3.33) reveals that the operator ây is the adjoint of â,

which explains the notation. Since the operator â is not equal to its adjoint ây,
neither â nor ây is hermitian. (We follow here the common practice of using a

lower case letter for the harmonic-oscillator ladder operators rather than our

usual convention of using capital letters for operators.) We readily observe that

âây � 1

2
î2 ÿ d2

dî2
� 1

� �
� Ĥ

"ù
� 1

2
(4:19a)

ây â � 1

2
î2 ÿ d2

dî2
ÿ 1

� �
� Ĥ

"ù
ÿ 1

2
(4:19b)

from which it follows that the commutator of â and ây is unity

[â, ây] � âây ÿ ây â � 1 (4:20)

We next de®ne the number operator N̂ as the product ây â
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N̂ � ây â (4:21)

The adjoint of N̂ may be obtained as follows

N̂ y � (ây â)y � ây(ây)y � ây â � N̂

where the relations (3.40) and (3.37) have been used. We note that N̂ is self-

adjoint, making it hermitian and therefore having real eigenvalues. Equation

(4.19b) may now be written in the form

Ĥ � "ù(N̂ � 1
2
) (4:22)

Since Ĥ and N̂ differ only by the factor "ù and an additive constant, they

commute and, therefore, have the same eigenfunctions.

If the eigenvalues of N̂ are represented by the parameter ë and the

corresponding orthonormal eigenfunctions by öëi(î) or, using Dirac notation,

by jëii, then we have

N̂ jëii � ëjëii (4:23)

and

Ĥ jëii � "ù(N̂ � 1
2
)jëii � "ù(ë� 1

2
)jëii � Eëjëii (4:24)

Thus, the energy eigenvalues Eë are related to the eigenvalues of N̂ by

Eë � (ë� 1
2
)"ù (4:25)

The index i in jëii takes on integer values from 1 to gë, where gë is the

degeneracy of the eigenvalue ë. We shall ®nd shortly that each eigenvalue of N̂

is non-degenerate, but in arriving at a general solution of the eigenvalue

equation, we must initially allow for degeneracy.

From equations (4.20) and (4.21), we note that the product of N̂ and either â

or ây may be expressed as follows

N̂ â � ây ââ � (âây ÿ 1)â � â(ây âÿ 1) � â(N̂ ÿ 1) (4:26a)

N̂ ây � ây âây � ây(ây â� 1) � ây(N̂ � 1) (4:26b)

These identities are useful in the following discussion.

If we let the operator N̂ act on the function âjëii, we obtain

N̂ âjëii � â(N̂ ÿ 1)jëii � â(ëÿ 1)jëii � (ëÿ 1)âjëii (4:27)

where equations (4.23) and (4.26a) have been introduced. Thus, we see that

âjëii is an eigenfunction of N̂ with eigenvalue ëÿ 1. The operator â alters the

eigenstate jëii to an eigenstate of N̂ corresponding to a lower value for the

eigenvalue, namely ëÿ 1. The energy of the oscillator is thereby reduced,

according to (4.25), by "ù. As a consequence, the operator â is called a

lowering operator or a destruction operator.

Letting N̂ operate on the function âyjëii gives
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N̂ âyjëii � ây(N̂ � 1)jëii � ây(ë� 1)jëii � (ë� 1)âyjëii (4:28)

where equations (4.23) and (4.26b) have been used. In this case we see that

âyjëii is an eigenfunction of N̂ with eigenvalue ë� 1. The operator ây changes

the eigenstate jëii to an eigenstate of N̂ with a higher value, ë� 1, of the

eigenvalue. The energy of the oscillator is increased by "ù. Thus, the operator

ây is called a raising operator or a creation operator.

Quantization of the energy

In the determination of the energy eigenvalues, we ®rst show that the

eigenvalues ë of N̂ are positive (ë > 0). Since the expectation value of the

operator N̂ for an oscillator in state jëii is ë, we have

hëijN̂ jëii � ëhëijëii � ë

The integral hëijN̂ jëii may also be transformed in the following manner

hëijN̂ jëii � hëijây âjëii �
�

(âö�ëi)(âöëi) dô �
�
jâöëij2 dô

The integral on the right must be positive, so that ë is positive and the

eigenvalues of N̂ and Ĥ cannot be negative.

For the condition ë � 0, we have�
jâöëij2 dô � 0

which requires that

âj(ë � 0)ii � 0 (4:29)

For eigenvalues ë greater than zero, the quantity âjëii is non-vanishing.

To ®nd further restrictions on the values of ë, we select a suitably large, but

otherwise arbitrary value of ë, say ç, and continually apply the lowering

operator â to the eigenstate jçii, thereby forming a succession of eigenvectors

âjçii, â2jçii, â3jçii, . . .

with respective eigenvalues çÿ 1, çÿ 2, çÿ 3, . . . We have already shown

that if jçii is an eigenfunction of N̂ , then âjçii is also an eigenfunction. By

iteration, if âjçii is an eigenfunction of N̂ , then â2jçii is an eigenfunction, and

so forth, so that the members of the sequence are all eigenfunctions. Eventually

this procedure gives an eigenfunction âkjçii with eigenvalue (çÿ k), k being a

positive integer, such that 0 < (çÿ k) , 1. The next step in the sequence

would yield the eigenfunction âk�1jçii with eigenvalue ë � (çÿ k ÿ 1) , 0,

which is not allowed. Thus, the sequence must terminate by the condition

âk�1jçii � â[âkjçii] � 0
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The only circumstance in which â operating on an eigenvector yields the

value zero is when the eigenvector corresponds to the eigenvalue ë � 0, as

shown in equation (4.29). Since the eigenvalue of âkjçii is çÿ k and this

eigenvalue equals zero, we have çÿ k � 0 and ç must be an integer. The

minimum value of ë � çÿ k is, then, zero.

Beginning with ë � 0, we can apply the operator ây successively to j0ii to

form a series of eigenvectors

âyj0ii, ây2j0ii, ây3j0ii, . . .

with respective eigenvalues 0, 1, 2, . . . Thus, the eigenvalues of the operator N̂

are the set of positive integers, so that ë � 0, 1, 2, . . . Since the value ç was

chosen arbitrarily and was shown to be an integer, this sequence generates all

the eigenfunctions of N̂ . There are no eigenfunctions corresponding to non-

integral values of ë. Since ë is now known to be an integer n, we replace ë by n

in the remainder of this discussion of the harmonic oscillator.

The energy eigenvalues as related to ë in equation (4.25) are now expressed

in terms of n by

En � (n� 1
2
)"ù, n � 0, 1, 2, . . . (4:30)

so that the energy is quantized in units of "ù. The lowest value of the energy or

zero-point energy is "ù=2. Classically, the lowest energy for an oscillator is

zero.

Non-degeneracy of the energy levels

To determine the degeneracy of the energy levels or, equivalently, of the

eigenvalues of the number operator N̂, we must ®rst obtain the eigenvectors

j0ii for the ground state. These eigenvectors are determined by equation (4.29).

When equation (4.18a) is substituted for â, equation (4.29) takes the form

d

dî
� î

� �
j0ii � d

dî
� î

� �
ö0i(î) � 0

or

dö0i

ö0i

� ÿî dî

This differential equation may be integrated to give

ö0i(î) � ceÿî
2=2 � eiáðÿ1=4eÿî

2=2

where the constant of integration c is determined by the requirement that the

functions öni(î) be normalized and eiá is a phase factor. We have used the

standard integral (A.5) to evaluate c. We observe that all the solutions for the

ground-state eigenfunction are proportional to one another. Thus, there exists
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only one independent solution and the ground state is non-degenerate. If we

arbitrarily set á equal to zero so that ö0(î) is real, then the ground-state

eigenvector is

j0i � ðÿ1=4eÿî
2=2 (4:31)

We next show that if the eigenvalue n of the number operator N̂ is non-

degenerate, then the eigenvalue n� 1 is also non-degenerate. We begin with

the assumption that there is only one eigenvector with the property that

N̂ jni � njni
and consider the eigenvector j(n� 1)ii, which satis®es

N̂ j(n� 1)ii � (n� 1)j(n� 1)ii
If we operate on j(n� 1)ii with the lowering operator â, we obtain to within a

multiplicative constant c the unique eigenfunction jni,
âj(n� 1)ii � cjni

We next operate on this expression with the adjoint of â to give

ây âj(n� 1)ii � N̂ j(n� 1)ii � (n� 1)j(n� 1)ii � câyjni
from which it follows that

j(n� 1)ii � c

n� 1
âyjni

Thus, all the eigenvectors j(n� 1)ii corresponding to the eigenvalue n� 1 are

proportional to âyjni and are, therefore, not independent since they are

proportional to each other. We conclude then that if the eigenvalue n is non-

degenerate, then the eigenvalue n� 1 is non-degenerate.

Since we have shown that the ground state is non-degenerate, we see that the

next higher eigenvalue n � 1 is also non-degenerate. But if the eigenvalue n � 1

is non-degenerate, then the eigenvalue n � 2 is non-degenerate. By iteration, all

of the eigenvalues n of N̂ are non-degenerate. From equation (4.30) we observe

that all the energy levels En of the harmonic oscillator are non-degenerate.

4.3 Eigenfunctions

Lowering and raising operations

From equations (4.27) and (4.28) and the conclusions that the eigenvalues of N̂

are non-degenerate and are positive integers, we see that âjni and âyjni are

eigenfunctions of N̂ with eigenvalues nÿ 1 and n� 1, respectively. Accor-

dingly, we may write

âjni � cnjnÿ 1i (4:32a)
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and

âyjni � c9njn� 1i (4:32b)

where cn and c9n are proportionality constants, dependent on the value of n, and

to be determined by the requirement that jnÿ 1i, jni, and jn� 1i are normal-

ized. To evaluate the numerical constants cn and c9n, we square both sides of

equations (4.32a) and (4.32b) and integrate with respect to î to obtain�1
ÿ1
jâönj2 dî � jcnj2

�1
ÿ1

ö�nÿ1önÿ1 dî (4:33a)

and �1
ÿ1
jâyönj2 dî � jc9nj2

�1
ÿ1

ö�n�1ön�1 dî (4:33b)

The integral on the left-hand side of equation (4.33a) may be evaluated as

follows�1
ÿ1
jâönj2 dî �

�1
ÿ1

(âö�n )(âön) dî � hnjây âjni � hnjN̂ jni � n

Similarly, the integral on the left-hand side of equation (4.33b) becomes�1
ÿ1
jâyönj2 dî �

�1
ÿ1

(âyö�n )(âyön) dî � hnjââyjni � hnjN̂ � 1jni � n� 1

Since the eigenfunctions are normalized, we obtain

jcnj2 � n, jc9nj2 � n� 1

Without loss of generality, we may let cn and c9n be real and positive, so that

equations (4.32a) and (4.32b) become

âjni � ���
n
p jnÿ 1i (4:34a)

âyjni � �����������
n� 1
p jn� 1i (4:34b)

If the normalized eigenvector jni is known, these relations may be used to

obtain the eigenvectors jnÿ 1i and jn� 1i, both of which will be normalized.

Excited-state eigenfunctions

We are now ready to obtain the set of simultaneous eigenfunctions for the

commuting operators N̂ and Ĥ . The ground-state eigenfunction j0i has already

been determined and is given by equation (4.31). The series of eigenfunctions

j1i, j2i, . . . are obtained from equations (4.34b) and (4.18b), which give

jn� 1i � [2(n� 1)]ÿ1=2 îÿ d

dî

� �
jni (4:35)

Thus, the eigenvector j1i is obtained from j0i
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j1i � 2ÿ1=2 îÿ d

dî

� �
(ðÿ1=4eÿî

2=2) � 21=2ðÿ1=4îeÿî
2=2

the eigenvector j2i from j1i

j2i � 1
2

îÿ d

dî

� �
(21=2ðÿ1=4îeÿî

2=2) � 2ÿ1=2ðÿ1=4(2î2 ÿ 1)eÿî
2=2

the eigenvector j3i from j2i

j3i � 6ÿ1=2 îÿ d

dî

� �
(2ÿ1=2ðÿ1=4(2î2 ÿ 1)eÿî

2=2)

� 3ÿ1=2ðÿ1=4(2î3 ÿ 3î)eÿî
2=2

and so forth, inde®nitely. Each of the eigenfunctions obtained by this procedure

is normalized.

When equation (4.18a) is combined with (4.34a), we have

jnÿ 1i � (2n)ÿ1=2 î� d

dî

� �
jni (4:36)

Just as equation (4.35) allows one to go `up the ladder' to obtain jn� 1i from

jni, equation (4.36) allows one to go `down the ladder' to obtain jnÿ 1i from

jni. This lowering procedure maintains the normalization of each of the

eigenvectors.

Another, but completely equivalent, way of determining the series of eigen-

functions may be obtained by ®rst noting that equation (4.34b) may be written

for the series n � 0, 1, 2, . . . as follows

j1i � âyj0i
j2i � 2ÿ1=2 âyj1i � 2ÿ1=2(ây)2j0i
j3i � 3ÿ1=2 âyj2i � (3!)ÿ1=2(ây)3j0i
..
.

Obviously, the expression for jni is

jni � (n!)ÿ1=2(ây)nj0i
Substitution of equation (4.18b) for ây and (4.31) for the ground-state eigen-

vector j0i gives

jni � (2n n!)ÿ1=2ðÿ1=4 îÿ d

dî

� �n

eÿî
2=2 (4:37)

This equation may be somewhat simpli®ed if we note that

116 Harmonic oscillator



îÿ d

dî

� �
eÿî

2=2 � îÿ d

dî

� �
eî

2=2eÿî
2 � îeÿî

2=2 ÿ îeî
2=2eÿî

2 ÿ eî
2=2 d

dî
eÿî

2

� ÿeî
2=2 d

dî
eÿî

2

so that

îÿ d

dî

� �n

eÿî
2=2 � (ÿ1)neî

2=2 dn

dî n
eÿî

2

(4:38)

Substitution of equation (4.38) into (4.37) gives

jni � (ÿ1)n(2n n!)ÿ1=2ðÿ1=4eî
2=2 dn

dî n
eÿî

2

(4:39)

which may be used to obtain the entire set of eigenfunctions of N̂ and Ĥ .

Eigenfunctions in terms of Hermite polynomials

It is customary to express the eigenfunctions for the stationary states of the

harmonic oscillator in terms of the Hermite polynomials. The in®nite set of

Hermite polynomials Hn(î) is de®ned in Appendix D, which also derives many

of the properties of those polynomials. In particular, equation (D.3) relates the

Hermite polynomial of order n to the nth-order derivative which appears in

equation (4.39)

H n(î) � (ÿ1)neî
2 dn

dî n
eÿî

2

Therefore, we may express the eigenvector jni in terms of the Hermite

polynomial Hn(î) by the relation

jni � ön(î) � (2n n!)ÿ1=2ðÿ1=4 Hn(î)eÿî
2=2 (4:40)

The eigenstates øn(x) are related to the functions ön(î) by equation (4.16),

so that we have

øn(x) � (2n n!)ÿ1=2 mù

ð"

� �1=4

Hn(î)eÿî
2=2

î � mù

"

� �1=2

x

(4:41)

For reference, the Hermite polynomials for n � 0 to n � 10 are listed in Table

4.1. When needed, higher-order Hermite polynomials are most easily obtained

from the recurrence relation (D.5). If only a single Hermite polynomial is

wanted and the neighboring polynomials are not available, then equation (D.4)

may be used.
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The functions ön(î) in equation (4.40) are identical to those de®ned by

equation (D.15) and, therefore, form a complete set as shown in equation

(D.19). Substituting equation (4.16) into (D.19) and applying the relation

(C.5b), we see that the functions øn(x) in equation (4.41) form a complete set,

so that X1
n�0

øn(x)øn(x9) � ä(xÿ x9) (4:42)

Physical interpretation

The ®rst four eigenfunctions øn(x) for n � 0, 1, 2, 3 are plotted in Figure 4.2

and the corresponding functions [øn(x)]2 in Figure 4.3. These ®gures also

show the outline of the potential energy V (x) from equation (4.5) and the four

corresponding energy levels from equation (4.30). The function [øn(x)]2 is the

probability density as a function of x for the particle in the nth quantum state.

The quantity [øn(x)]2 dx at any point x gives the probability for ®nding the

particle between x and x� dx.

We wish to compare the quantum probability distributions with those

obtained from the classical treatment of the harmonic oscillator at the same

energies. The classical probability density P(y) as a function of the reduced

distance y (ÿ1 < y < 1) is given by equation (4.10) and is shown in Figure

4.1. When equations (4.8), (4.14), and (4.30) are combined, we see that the

maximum displacement in terms of î for a classical oscillator with energy

(n� 1
2
)"ù is

��������������
2n� 1
p

. For î,ÿ ��������������
2n� 1
p

and î.
��������������
2n� 1
p

, the classical

Table 4.1. Hermite polynomials

n Hn(î)

0 1
1 2î
2 4î2 ÿ 2
3 8î3 ÿ 12î
4 16î4 ÿ 48î2 � 12
5 32î5 ÿ 160î3 � 120î
6 64î6 ÿ 480î4 � 720î2 ÿ 120
7 128î7 ÿ 1344î5 � 3360î3 ÿ 1680î
8 256î8 ÿ 3584î6 � 13440î4 ÿ 13440î2 � 1680
9 512î9 ÿ 9216î7 � 48384î5 ÿ 80640î3 � 30240î

10 1024î10 ÿ 23040î8 � 161280î6 ÿ 403200î4 � 302400î2 ÿ 30240
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probability for ®nding the particle is equal to zero. These regions are shaded in

Figures 4.2 and 4.3.

Each of the quantum probability distributions differs from the corresponding

classical distribution in one very signi®cant respect. In the quantum solution

there is a non-vanishing probability of ®nding the particle outside the classi-

cally allowed region, i.e., in a region where the total energy is less than the

potential energy. Since the Hermite polynomial Hn(î) is of degree n, the wave

function øn(x) has n nodes, a node being a point where a function touches or

crosses the x-axis. The quantum probability density [øn(x)]2 is zero at a node.

Within the classically allowed region, the wave function and the probability

density oscillate with n nodes; outside that region the wave function and

probability density rapidly approach zero with no nodes.
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Figure 4.2 Wave functions and energy levels for a particle in a harmonic potential well.
The outline of the potential energy is indicated by shading.
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While the classical particle is most likely to be found near its maximum

displacement, the probability density for the quantum particle in the ground

state is largest at the origin. However, as the value of n increases, the quantum

probability distribution begins to look more and more like the classical

probability distribution. In Figure 4.4 the function [ø30(x)]2 is plotted along

with the classical result for an energy 30:5 "ù. The average behavior of the

rapidly oscillating quantum curve agrees well with the classical curve. This

observation is an example of the Bohr correspondence principle, mentioned in

Section 2.3. According to the correspondence principle, classical mechanics

and quantum theory must give the same results in the limit of large quantum

numbers.
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Figure 4.3 Probability densities and energy levels for a particle in a harmonic potential
well. The outline of the potential energy is indicated by shading.
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4.4 Matrix elements

In the application to an oscillator of some quantum-mechanical procedures, the

matrix elements of xn and p̂n for a harmonic oscillator are needed. In this

section we derive the matrix elements hn9jxjni, hn9jx2jni, hn9j p̂jni, and

hn9j p̂2jni, and show how other matrix elements may be determined.

The ladder operators â and ây de®ned in equation (4.18) may be solved for x

and for p̂ to give

x � "

2mù

� �1=2

(ây � â) (4:43a)

p̂ � i
m"ù

2

� �1=2

(ây ÿ â) (4:43b)

From equations (4.34) and the orthonormality of the harmonic oscillator

eigenfunctions jni, we ®nd that the matrix elements of â and ây are

hn9jâjni � ���
n
p hn9jnÿ 1i � ���

n
p

än9,nÿ1 (4:44a)

hn9jâyjni � �����������
n� 1
p hn9jn� 1i � �����������

n� 1
p

än9,n�1 (4:44b)

The set of equations (4.43) and (4.44) may be used to evaluate the matrix

elements of any integral power of x and p̂.

To ®nd the matrix element hn9jxjni, we apply equations (4.43a) and (4.44) to

obtain

x
0

|ψ30(x)|2

Figure 4.4 The probability density jø30(x)j2 for an oscillating particle in state n � 30.
The dotted curve is the classical probability density for a particle with the same
energy.
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hn9jxjni � "

2mù

� �1=2

(hn9jâyjni � hn9jâjni)

� "

2mù

� �1=2

(
�����������
n� 1
p

än9,n�1 �
���
n
p

än9,nÿ1)

so that

hn� 1jxjni �
�����������������
(n� 1)"

2mù

r
(4:45a)

hnÿ 1jxjni �
����������

n"

2mù

r
(4:45b)

hn9jxjni � 0 for n9 6� n� 1, nÿ 1 (4:45c)

If we replace n by nÿ 1 in equation (4.45a), we obtain

hnjxjnÿ 1i �
����������

n"

2mù

r
From equation (4.45b) we see that

hnÿ 1jxjni � hnjxjnÿ 1i
Likewise, we can show that

hn� 1jxjni � hnjxjn� 1i
In general, then, we have

hn9jxjni � hnjxjn9i
To ®nd the matrix element hn9j p̂jni, we use equations (4.43b) and (4.44) to

give

hn9j p̂jni � i
m"ù

2

� �1=2

hn9jây ÿ âjni

� i
m"ù

2

� �1=2

(
�����������
n� 1
p

än9,n�1 ÿ
���
n
p

än9,nÿ1)

so that

hn� 1j p̂jni � i

�������������������������
(n� 1)m"ù

2

r
(4:46a)

hnÿ 1j p̂jni � ÿi

�������������
nm"ù

2

r
(4:46b)

hn9j p̂jni � 0 for n9 6� n� 1, nÿ 1 (4:46c)

We can easily show that
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hn9j p̂jni � ÿhnj p̂jn9i
The matrix element hn9jx2jni is

hn9jx2jni � "

2mù
hn9j(ây � â)2jni � "

2mù
hn9j(ây)2 � ây â� âây � â2jni

From equation (4.34) we have

(ây)2jni � �����������
n� 1
p

âyjn� 1i �
�����������������������������
(n� 1)(n� 2)

p
jn� 2i

ây âjni � ���
n
p

âyjnÿ 1i � njni
ââyjni � �����������

n� 1
p

âjn� 1i � (n� 1)jni
â2jni � ���

n
p

âjnÿ 1i �
�����������������
n(nÿ 1)

p
jnÿ 2i

(4:47)

so that

hn9jx2jni � "

2mù
[
�����������������������������
(n� 1)(n� 2)

p
än9,n�2 � (2n� 1)än9n

�
�����������������
n(nÿ 1)

p
än9,nÿ2]

We conclude that

hn� 2jx2jni � hnjx2jn� 2i � "

2mù

�����������������������������
(n� 1)(n� 2)

p
(4:48a)

hnjx2jni � "

mù
(n� 1

2
) (4:48b)

hnÿ 2jx2jni � hnjx2jnÿ 2i � "

2mù

�����������������
n(nÿ 1)

p
(4:48c)

hn9jx2jni � 0, n9 6� n� 2, n, nÿ 2 (4:48d)

The matrix element hn9j p̂2jni is obtained from equations (4.43b) and (4.47)

hn9j p̂2jni � ÿ m"ù

2

� �
hn9j(ây ÿ â)2jni � ÿ m"ù

2

� �
hn9j(ây)2 ÿ ây â

ÿ âây � â2jni

� ÿ m"ù

2

� �
[
�����������������������������
(n� 1)(n� 2)

p
än9,n�2 ÿ (2n� 1)än9n

�
�����������������
n(nÿ 1)

p
än9,nÿ2]

so that
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hn� 2j p̂2jni � hnj p̂2jn� 2i � ÿ m"ù

2

� � �����������������������������
(n� 1)(n� 2)

p
(4:49a)

hnj p̂2jni � m"ù(n� 1
2
) (4:49b)

hnÿ 2j p̂2jni � hnj p̂2jnÿ 2i � ÿ m"ù

2

� � �����������������
n(nÿ 1)

p
(4:49c)

hn9j p̂2jni � 0, n9 6� n� 2, n, nÿ 2 (4:49d)

Following this same procedure using the operators (ây � â)k , we can ®nd the

matrix elements of xk and of p̂k for any positive integral power k. In Chapters

9 and 10, we need the matrix elements of x3 and x4. The matrix elements

hn9jx3jni are as follows:

hn� 3jx3jni � hnjx3jn� 3i � "

2mù

� �3=2 �������������������������������������������
(n� 1)(n� 2)(n� 3)

p
(4:50a)

hn� 1jx3jni � hnjx3jn� 1i � 3
(n� 1)"

2mù

� �3=2

(4:50b)

hnÿ 1jx3jni � hnjx3jnÿ 1i � 3
n"

2mù

� �3=2

(4:50c)

hnÿ 3jx3jni � hnjx3jnÿ 3i � "

2mù

� �3=2 ��������������������������������
n(nÿ 1)(nÿ 2)

p
(4:50d)

hn9jx3jni � 0, n9 6� n� 1, n� 3 (4:50e)

The matrix elements hn9jx4jni are as follows

hn� 4jx4jni � hnjx4jn� 4i � "

2mù

� �2 ���������������������������������������������������������
(n� 1)(n� 2)(n� 3)(n� 4)

p
(4:51a)

hn� 2jx4jni � hnjx4jn� 2i � 1

2

"

mù

� �2

(2n� 3)
�����������������������������
(n� 1)(n� 2)

p
(4:51b)

hnjx4jni � 3

2

"

mù

� �2

n2 � n� 1
2

� �
(4:51c)

hnÿ 2jx4jni � hnjx4jnÿ 2i � 1

2

"

mù

� �2

(2nÿ 1)
�����������������
n(nÿ 1)

p
(4:51d)

hnÿ 4jx4jni � hnjx4jnÿ 4i � "

2mù

� �2 ����������������������������������������������
n(nÿ 1)(nÿ 2)(nÿ 3)

p
(4:51e)

hn9jx4jni � 0, n9 6� n, n� 2, n� 4 (4:51f)
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4.5 Heisenberg uncertainty relation

Using the results of Section 4.4, we may easily verify for the harmonic

oscillator the Heisenberg uncertainty relation as discussed in Section 3.11.

Speci®cally, we wish to show for the harmonic oscillator that

ÄxÄp > 1
2
"

where

(Äx)2 � h(xÿ hxi)2i
(Äp)2 � h( p̂ÿ hpi)2i

The expectation values of x and of p̂ for a harmonic oscillator in eigenstate

jni are just the matrix elements hnjxjni and hnj p̂jni, respectively. These matrix

elements are given in equations (4.45c) and (4.46c). We see that both vanish,

so that (Äx)2 reduces to the expectation value of x2 or hnjx2jni and (Äp)2

reduces to the expectation value of p̂2 or hnj p̂2jni. These matrix elements are

given in equations (4.48b) and (4.49b). Therefore, we have

Äx � "

mù

� �1=2

(n� 1
2
)1=2

Äp � (m"ù)1=2(n� 1
2
)1=2

and the product ÄxÄp is

ÄxÄp � (n� 1
2
)"

For the ground state (n � 0), we see that the product ÄxÄp equals the

minimum allowed value "=2. This result is consistent with the form (equation

(3.85)) of the state function for minimum uncertainty. When the ground-state

harmonic-oscillator values of kxl, k pl, and ë are substituted into equation

(3.85), the ground-state eigenvector j0i in equation (4.31) is obtained. For

excited states of the harmonic oscillator, the product ÄxÄp is greater than the

minimum allowed value.

4.6 Three-dimensional harmonic oscillator

The harmonic oscillator may be generalized to three dimensions, in which case

the particle is displaced from the origin in a general direction in cartesian

space. The force constant is not necessarily the same in each of the three

dimensions, so that the potential energy is

V � 1
2
kxx2 � 1

2
kyy2 � 1

2
kzz

2 � 1
2
m(ù2

xx2 � ù2
y y2 � ù2

z z2)
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where kx, ky, kz are the respective force constants and ùx, ù y, ùz are the

respective classical angular frequencies of vibration.

The SchroÈdinger equation for this three-dimensional harmonic oscillator is

ÿ "2

2m

@2ø

@x2
� @

2ø

@ y2
� @

2ø

@z2

 !
� 1

2
m(ù2

xx2 � ù2
y y2 � ù2

z z2)ø � Eø

where ø(x, y, z) is the wave function. To solve this partial differential equation

of three variables, we separate variables by making the substitution

ø(x, y, z) � X (x)Y (y)Z(z) (4:52)

where X (x) is a function only of the variable x, Y (y) only of y, and Z(z) only

of z. After division by ÿø(x, y, z), the SchroÈdinger equation takes the form

"2

2mX

d2 X

dx2
ÿ 1

2
mù2

xx2

� �
� "2

2mY

d2Y

dy2
ÿ 1

2
mù2

y y2

 !

� "2

2mZ

d2 Z

dz2
ÿ 1

2
mù2

z z2

� �
� E

The ®rst term on the left-hand side is a function only of the variable x and

remains constant when y and z change but x does not. Similarly, the second

term is a function only of y and does not change in value when x and z change

but y does not. The third term depends only on z and keeps a constant value

when only x and y change. However, the sum of these three terms is always

equal to the constant energy E for all choices of x, y, z. Thus, each of the three

independent terms must be equal to a constant

"2

2mX

d2 X

dx2
ÿ 1

2
mù2

xx2 � Ex

"2

2mY

d2Y

dy2
ÿ 1

2
mù2

y y2 � Ey

"2

2mZ

d2 Z

dz2
ÿ 1

2
mù2

z z2 � Ez

where the three separation constants Ex, Ey, Ez satisfy the relation

Ex � Ey � Ez � E (4:53)

The differential equation for X (x) is exactly of the form given by (4.13) for a

one-dimensional harmonic oscillator. Thus, the eigenvalues Ex are given by

equation (4.30)

Enx
� (nx � 1

2
)"ùx, nx � 0, 1, 2, . . .

and the eigenfunctions are given by (4.41)
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Xnx
(x) � (2nx nx!)

ÿ1=2 mùx

ð"

� �1=4

Hnx
(î)eÿî

2=2

î � mùx

"

� �1=2

x

Similarly, the eigenvalues for the differential equations for Y (y) and Z(z) are,

respectively

Eny
� (ny � 1

2
)"ù y, ny � 0, 1, 2, . . .

Enz
� (nz � 1

2
)"ùz, nz � 0, 1, 2, . . .

and the corresponding eigenfunctions are

Yny
(y) � (2ny ny!)

ÿ1=2 mù y

ð"

� �1=4

Hny
(ç)eÿç

2=2

ç � mù y

"

� �1=2

y

Znz
(z) � (2nz nz!)

ÿ1=2 mùz

ð"

� �1=4

Hnz
(æ)eÿæ

2=2

æ � mùz

"

� �1=2

z

The energy levels for the three-dimensional harmonic oscillator are, then,

given by the sum (equation (4.53))

Enx,n y,nz
� (nx � 1

2
)"ùx � (n y � 1

2
)"ù y � (nz � 1

2
)"ùz (4:54)

The total wave functions are given by equation (4.52)

ønx,n y,nz
(x, y, z) � (2nx�n y�nz nx!ny!nz!)

ÿ1=2 m

ð"

� �3=4

(ùxù yùz)
1=4

3 Hnx
(î)Hny

(ç)Hnz
(æ)eÿ(î2�ç2�æ2)=2 (4:55)

An isotropic oscillator is one for which the restoring force is independent of

the direction of the displacement and depends only on its magnitude. For such

an oscillator, the directional force constants are equal to one another

kx � k y � kz � k

and, as a result, the angular frequencies are all the same

ùx � ù y � ùz � ù

In this case, the total energies are
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Enx,n y,nz
� (nx � n y � nz � 3

2
)"ù � (n� 3

2
)"ù (4:56)

where n is called the total quantum number. All the energy levels for the

isotropic three-dimensional harmonic oscillator, except for the lowest level, are

degenerate. The degeneracy of the energy level En is (n� 1)(n� 2)=2.

Problems

4.1 Consider a classical particle of mass m in a parabolic potential well. At time t the

displacement x of the particle from the origin is given by

x � a sin(ùt � b)

where a is a constant and ù is the angular frequency of the vibration. From this

expression ®nd the kinetic and potential energies as functions of time and show

that the total energy remains constant throughout the motion.

4.2 Evaluate the constant c in equation (4.10). (To evaluate the integral, let y �
cos è.)

4.3 Show that â and ây in equations (4.18) are not hermitian and that ây is the adjoint

of â.

4.4 The operator N̂ � ây â is hermitian. Is the operator âây hermitian?

4.5 Evaluate the commutators [ Ĥ , â] and [ Ĥ , ây].
4.6 Calculate the expectation value of x6 for the harmonic oscillator in the n � 1

state.

4.7 Consider a particle of mass m in a parabolic potential well. Calculate the

probability of ®nding the particle in the classically allowed region when the

particle is in its ground state.

4.8 Consider a particle of mass m in a one-dimensional potential well such that

V (x) � 1
2
mù2x2, x > 0

� 1, x , 0

What are the eigenfunctions and eigenvalues?

4.9 What is the probability density as a function of the momentum p of an oscillating

particle in its ground state in a parabolic potential well? (First ®nd the

momentum-space wave function.)

4.10 Show that the wave functions An(ã) in momentum space corresponding to

ön(î) in equation (4.40) for a linear harmonic oscillator are

An(ã) � (2ð)ÿ1=2

�1
ÿ1

ön(î)eÿi ãî dî

� iÿn(2n n!ð1=2)ÿ1=2eÿ ã2=2 Hn(ã)

where î � (mù=")1=2x and ã � (m"ù)ÿ1=2 p. (Use the generating function (D.1)

to evaluate the Fourier integral.)
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4.11 Using only equation (4.43b) and the fact that ây is the adjoint of â, prove that

hn9j p̂jni � ÿhnj p̂jn9i
4.12 Derive the relations (4.50) for the matrix elements hn9jx3jni.
4.13 Derive the relations (4.51) for the matrix elements hn9jx4jni.
4.14 Derive the result that the degeneracy of the energy level En for an isotropic

three-dimensional harmonic oscillator is (n� 1)(n� 2)=2.
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5

Angular momentum

Angular momentum plays an important role in both classical and quantum

mechanics. In isolated classical systems the total angular momentum is a

constant of motion. In quantum systems the angular momentum is important in

studies of atomic, molecular, and nuclear structure and spectra and in studies

of spin in elementary particles and in magnetism.

5.1 Orbital angular momentum

We ®rst consider a particle of mass m moving according to the laws of classical

mechanics. The angular momentum L of the particle with respect to the origin

of the coordinate system is de®ned by the relation

L � r 3 p (5:1)

where r is the position vector given by equation (2.60) and p is the linear

momentum given by equation (2.61). When expressed as a determinant, the

angular momentum L is

L �
i j k

x y z

px py pz

������
������

The components Lx, Ly, Lz of the vector L are

Lx � ypz ÿ zpy

Ly � zpx ÿ xpz (5:2)

Lz � xpy ÿ ypx

The square of the magnitude of the vector L is given in terms of these

components by

L2 � L :L � L2
x � L2

y � L2
z (5:3)
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If a force F acts on the particle, then the torque T on the particle is de®ned as

T � r 3 F � r 3
dp

dt
(5:4)

where Newton's second law that the force equals the rate of change of linear

momentum, F � dp=dt, has been introduced. If we take the time derivative of

equation (5.1), we obtain

dL

dt
� dr

dt
3 p

� �
� r 3

dp

dt

� �
� r 3

dp

dt
(5:5)

since

dr

dt
3 p � dr

dt
3 m

dr

dt
� 0

Combining equations (5.4) and (5.5), we ®nd that

T � dL

dt
(5:6)

If there is no force acting on the particle, the torque is zero. Consequently, the

rate of change of the angular momentum is zero and the angular momentum is

conserved.

The quantum-mechanical operators for the components of the orbital angular

momentum are obtained by replacing px, py, pz in the classical expressions

(5.2) by their corresponding quantum operators,

L̂x � y p̂z ÿ z p̂y � "

i
y
@

@z
ÿ z

@

@ y

� �
(5:7a)

L̂y � z p̂x ÿ x p̂z � "

i
z
@

@x
ÿ x

@

@z

� �
(5:7b)

L̂z � x p̂y ÿ y p̂x � "

i
x
@

@ y
ÿ y

@

@x

� �
(5:7c)

Since y commutes with p̂z and z commutes with p̂y, there is no ambiguity

regarding the order of y and p̂z and of z and p̂y in constructing L̂x. Similar

remarks apply to L̂ y and L̂z. The quantum-mechanical operator for L is

L̂ � iL̂x � jL̂ y � k L̂z (5:8)

and for L2 is

L̂2 � L̂ : L̂ � L̂2
x � L̂2

y � L̂2
z (5:9)

The operators L̂x, L̂ y, L̂z can easily be shown to be hermitian with respect to a

set of functions of x, y, z that vanish at �1. As a consequence, L̂ and L̂2 are

also hermitian.
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Commutation relations

The commutator [L̂x, L̂ y] may be evaluated as follows

[L̂x, L̂ y] � [y p̂z ÿ z p̂y, z p̂x ÿ x p̂z]

� [y p̂z, z p̂x]� [z p̂y, x p̂z]ÿ [y p̂z, x p̂z]ÿ [z p̂y, z p̂x]

The last two terms vanish because y p̂z commutes with x p̂z and because z p̂y

commutes with z p̂x. If we expand the remaining terms, we obtain

[L̂x, L̂ y] � y p̂x p̂zzÿ y p̂xz p̂z � x p̂yz p̂z ÿ x p̂y p̂zz � (x p̂y ÿ y p̂x)[z, p̂z]

Introducing equations (3.44) and (5.7c), we have

[L̂x, L̂ y] � i"L̂z (5:10a)

By a cyclic permutation of x, y, and z in equation (5.10a), we obtain the

commutation relations for the other two pairs of operators

[L̂ y, L̂z] � i"L̂x (5:10b)

[L̂z, L̂x] � i"L̂ y (5:10c)

Equations (5.10) may be written in an equivalent form as

L̂ 3 L̂ � i"L̂ (5:11)

which may be demonstrated by expansion of the left-hand side.

5.2 Generalized angular momentum

In quantum mechanics we need to consider not only orbital angular momen-

tum, but spin angular momentum as well. Whereas orbital angular momentum

is expressed in terms of the x, y, z coordinates and their conjugate angular

momenta, spin angular momentum is intrinsic to the particle and is not

expressible in terms of a coordinate system. However, in quantum mechanics

both types of angular momenta have common mathematical properties that are

not dependent on a coordinate representation. For this reason we introduce

generalized angular momentum and develop its mathematical properties

according to the procedures of quantum theory.

Based on an analogy with orbital angular momentum, we de®ne a general-

ized angular-momentum operator Ĵ with components Ĵ x, Ĵ y, Ĵ z

Ĵ � iĴ x � jĴ y � k Ĵ z

The operator Ĵ is any hermitian operator which obeys the relation

Ĵ 3 Ĵ � i"Ĵ (5:12)

or equivalently
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[Ĵ x, Ĵ y] � i"Ĵ z (5:13a)

[Ĵ y, Ĵ z] � i"Ĵ x (5:13b)

[Ĵ z, Ĵ x] � i"Ĵ y (5:13c)

The square of the angular-momentum operator is de®ned by

Ĵ 2 � Ĵ : Ĵ � Ĵ 2
x � Ĵ 2

y � Ĵ 2
z (5:14)

and is hermitian since Ĵ x, Ĵ y, and Ĵ z are hermitian. The operator Ĵ 2 commutes

with each of the three operators Ĵ x, Ĵ y, Ĵ z. We ®rst evaluate the commutator

[Ĵ 2, Ĵ z]

[Ĵ 2, Ĵ z] � [Ĵ 2
x, Ĵ z]� [Ĵ 2

y, Ĵ z]� [Ĵ 2
z , Ĵ z]

� Ĵ x[Ĵ x, Ĵ z]� [Ĵ x, Ĵ z]Ĵ x � Ĵ y[Ĵ y, Ĵ z]� [Ĵ y, Ĵ z]Ĵ y

� ÿi"Ĵ x Ĵ y ÿ i"Ĵ y Ĵ x � i"Ĵ y Ĵ x � i"Ĵ x Ĵ y

� 0 (5:15a)

where the fact that Ĵ z commutes with itself and equations (3.4b) and (5.13)

have been used. By similar expansions, we may also show that

[Ĵ 2, Ĵ x] � 0 (5:15b)

[Ĵ 2, Ĵ y] � 0 (5:15c)

Since the operator Ĵ 2 commutes with each of the components Ĵ x, Ĵ y, Ĵ z of

Ĵ, but the three components do not commute with each other, we can obtain

simultaneous eigenfunctions of Ĵ 2 and one, but only one, of the three compo-

nents of Ĵ. Following the usual convention, we arbitrarily select Ĵ z and seek the

simultaneous eigenfunctions of Ĵ 2 and Ĵ z. Since angular momentum has the

same dimensions as ", we represent the eigenvalues of Ĵ 2 by ë"2 and the

eigenvalues of Ĵ z by m", where ë and m are dimensionless and are real

because Ĵ 2 and Ĵ z are hermitian. If the corresponding orthonormal eigenfunc-

tions are denoted in Dirac notation by jëmi, then we have

Ĵ 2jëmi � ë"2jëmi (5:16a)

Ĵ zjëmi � m"2jëmi (5:16b)

We implicitly assume that these eigenfunctions are uniquely determined by

only the two parameters ë and m.

The expectation values of Ĵ 2 and Ĵ 2
z are, according to (3.46), and (5.16)

hĴ 2i � hëmjĴ 2jëmi � ë"2

hĴ 2
zi � hëmjĴ 2

z jëmi � m2"2
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since the eigenfunctions jëmi are normalized. Using equation (5.14) we may

also write

hĴ 2i � hĴ 2
xi � hĴ 2

yi � hĴ 2
zi

Since Ĵ x and Ĵ y are hermitian, the expectation values of Ĵ 2
x and Ĵ 2

y are real

and positive, so that

hĴ 2i > hĴ 2
zi

from which it follows that

ë > m2 > 0 (5:17)

Ladder operators

We have already introduced the use of ladder operators in Chapter 4 to ®nd the

eigenvalues for the harmonic oscillator. We employ the same technique here to

obtain the eigenvalues of Ĵ 2 and Ĵ z. The requisite ladder operators Ĵ� and Ĵÿ
are de®ned by the relations

Ĵ� � Ĵ x � iĴ y (5:18a)

Ĵÿ � Ĵ x ÿ iĴ y (5:18b)

Neither Ĵ� nor Ĵÿ is hermitian. Application of equation (3.33) shows that they

are adjoints of each other. Using the de®nitions (5.18) and (5.14) and the

commutation relations (5.13) and (5.15), we can readily prove the following

relationships

[Ĵ z, Ĵ�] � "Ĵ� (5:19a)

[Ĵ z, Ĵÿ] � ÿ"Ĵÿ (5:19b)

[Ĵ 2, Ĵ�] � 0 (5:19c)

[Ĵ 2, Ĵÿ] � 0 (5:19d)

[Ĵ�, Ĵÿ] � 2"Ĵ z (5:19e)

Ĵ� Ĵÿ � Ĵ 2 ÿ Ĵ 2
z � "Ĵ z (5:19f)

Ĵÿ Ĵ� � Ĵ 2 ÿ Ĵ 2
z ÿ "Ĵ z (5:19g)

If we let the operator Ĵ 2 act on the function Ĵ�jëmi and observe that,

according to equation (5.19c), Ĵ 2 and Ĵ� commute, we obtain

Ĵ 2 Ĵ�jëmi � Ĵ� Ĵ 2jëmi � ë"2 Ĵ�jëmi
where (5.16a) was also used. We note that Ĵ�jëmi is an eigenfunction of Ĵ 2

with eigenvalue ë"2. Thus, the operator Ĵ� has no effect on the eigenvalues of

134 Angular momentum



Ĵ 2 because Ĵ 2 and Ĵ� commute. However, if the operator Ĵ z acts on the

function Ĵ�jëmi, we have

Ĵ z Ĵ�jëmi � Ĵ� Ĵ zjëmi � "Ĵ�jëmi � m"Ĵ�jëmi � "Ĵ�jëmi
� (m� 1)"Ĵ�jëmi (5:20)

where equations (5.19a) and (5.16b) were used. Thus, the function Ĵ�jëmi is

an eigenfunction of Ĵ z with eigenvalue (m� 1)". Writing equation (5.16b) as

Ĵ zjë, m� 1i � (m� 1)"jë, m� 1i
we see from equation (5.20) that Ĵ�jëmi is proportional to jë, m� 1i

Ĵ�jëmi � c�jë, m� 1i (5:21)

where c� is the proportionality constant. The operator Ĵ� is, therefore, a

raising operator, which alters the eigenfunction jëmi for the eigenvalue m" to

the eigenfunction for (m� 1)".

The proportionality constant c� in equation (5.21) may be evaluated by

squaring both sides of equation (5.21) to give

hëmjĴÿ Ĵ�jëmi � jc�j2hë, m� 1jë, m� 1i
since the bra hëmjĴÿ is the adjoint of the ket Ĵ�jëmi. Using equations (5.16)

and (5.19g) and the normality of the eigenfunctions, we have

jc�j2 � hëmjĴ 2 ÿ Ĵ 2
z ÿ "Ĵ zjëmi � (ëÿ m2 ÿ m)"2

and equation (5.21) becomes

Ĵ�jëmi �
����������������������������
ëÿ m(m� 1)

p
"jë, m� 1i (5:22)

In equation (5.22) we have arbitrarily taken c� to be real and positive.

We next let the operators Ĵ 2 and Ĵ z act on the function Ĵÿjëmi to give

Ĵ 2 Ĵÿjëmi � Ĵÿ Ĵ 2jëmi � ë"2 Ĵÿjëmi
Ĵ z Ĵÿjëmi � Ĵÿ Ĵ zjëmi ÿ "Ĵÿjëmi � (mÿ 1)"Ĵÿjëmi

where we have used equations (5.16), (5.19b), and (5.19d). The function

Ĵÿjëmi is a simultaneous eigenfunction of Ĵ 2 and Ĵ z with eigenvalues ë"2 and

(mÿ 1)", respectively. Accordingly, the function Ĵÿjëmi is proportional to

jë, mÿ 1i
Ĵÿjëmi � cÿjë, mÿ 1i (5:23)

where cÿ is the proportionality constant. The operator Ĵÿ changes the eigen-

function jëmi to the eigenfunction jë, mÿ 1i for a lower value of the eigen-

value of Ĵ z and is, therefore, a lowering operator.

To evaluate the proportionality constant cÿ in equation (5.23), we square

both sides of (5.23) and note that the bra hëmjĴ� is the adjoint of the ket

Ĵÿjëmi, giving
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jcÿj2 � hëmjĴ� Ĵÿjëmi � hëmjĴ 2 ÿ Ĵ 2
z � "Ĵ zjëmi � (ëÿ m2 � m)"2

where equation (5.19f) was also used. Equation (5.23) then becomes

Ĵÿjëmi �
����������������������������
ëÿ m(mÿ 1)

p
"jë, mÿ 1i (5:24)

where we have taken cÿ to be real and positive. This choice is consistent with

the selection above of c� as real and positive.

Determination of the eigenvalues

We now apply the raising and lowering operators to ®nd the eigenvalues of Ĵ 2

and Ĵ z. Equation (5.17) tells us that for a given value of ë, the parameter m has

a maximum and a minimum value, the maximum value being positive and the

minimum value being negative. For the special case in which ë equals zero, the

parameter m must, of course, be zero as well.

We select arbitrary values for ë, say î, and for m, say ç, where 0 < ç2 < î
so that (5.17) is satis®ed. Application of the raising operator Ĵ� to the

corresponding ket jîçi gives the ket jî, ç� 1i. Successive applications of Ĵ�
give jî, ç� 2i, jî, ç� 3i, etc. After k such applications, we obtain the ket

jî ji, where j � ç� k and j2 < î. The value of j is such that an additional

application of Ĵ� produces the ket jî, j� 1i with ( j� 1)2 . î (that is to say, it

produces a ket jëmi with m2 . ë), which is not possible. Accordingly, the

sequence must terminate by the condition Ĵ�jî ji � 0. From equation (5.22),

this condition is given by

Ĵ�jî ji �
������������������������
îÿ j( j� 1)

p
"jî, j� 1i � 0

which is valid only if the coef®cient of jî, j� 1i vanishes, so that we have

î � j( j� 1).

We now apply the lowering operator Ĵÿ to the ket jî ji successively to

construct the series of kets jî, jÿ 1i, jî, jÿ 2i, etc. After a total of n

applications of Ĵÿ, we obtain the ket jî j9i, where j9 � jÿ n is the minimum

value of m allowed by equation (5.17). Therefore, this lowering sequence must

terminate by the condition

Ĵÿjî j9i �
���������������������������
îÿ j9( j9ÿ 1)

p
"jî, j9ÿ 1i � 0

where equation (5.24) has been introduced. This condition is valid only if the

coef®cient of jî, j9ÿ 1i vanishes, giving î � j9( j9ÿ 1).

The parameter î has two conditions imposed upon it

î � j( j� 1)

î � j9( j9ÿ 1)

giving the relation
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j( j� 1) � j9( j9ÿ 1)

The solution to this quadratic equation gives j9 � ÿ j. The other solution,

j9 � j� 1, is not physically meaningful because j9 must be less than j. We

have shown, therefore, that the parameter m ranges from ÿ j to j

ÿ j < m < j

If we combine the conclusion that j9 � ÿ j with the relation j9 � jÿ n, we see

that j � n=2, where n � 0, 1, 2, . . . Thus, the allowed values of j are the

integers 0, 1, 2, . . . (if n is even) and the half-integers 1
2
, 3

2
, 5

2
, . . . (if n is odd)

and the allowed values of m are ÿ j, ÿ j� 1, . . . , jÿ 1, j.

We began this analysis with an arbitrary value for ë, namely ë � î, and an

arbitrary value for m, namely m � ç. We showed that, in order to satisfy

requirement (5.17), the parameter î must satisfy î � j( j� 1), where j is

restricted to integral or half-integral values. Since the value î was chosen

arbitrarily, we conclude that the only allowed values for ë are

ë � j( j� 1) (5:25)

The parameter ç is related to j by j � ç� k, where k is the number of

successive applications of Ĵ� until jîçi is transformed into jî ji. Since k must

be a positive integer, the parameter ç must be restricted to integral or half-

integral values. However, the value ç was chosen arbitrarily, leading to the

conclusion that the only allowed values of m are m � ÿ j, ÿ j� 1, . . . , jÿ 1,

j. Thus, we have found all of the allowed values for ë and for m and, therefore,

all of the eigenvalues of Ĵ 2 and Ĵ z.

In view of equation (5.25), we now denote the eigenkets jëmi by j jmi.
Equations (5.16) may now be written as

Ĵ 2j jmi � j( j� 1)"2j jmi, j � 0, 1
2
, 1, 3

2
, 2, . . . (5:26a)

Ĵ zj jmi � m"j jmi, m � ÿ j, ÿ j� 1, . . . , jÿ 1, j (5:26b)

Each eigenvalue of Ĵ 2 is (2 j� 1)-fold degenerate, because there are (2 j� 1)

values of m for a given value of j. Equations (5.22) and (5.24) become

Ĵ�j jmi �
�����������������������������������������
j( j� 1)ÿ m(m� 1)

p
"j j, m� 1i

�
��������������������������������������
( jÿ m)( j� m� 1)

p
"j j, m� 1i (5:27a)

Ĵÿj jmi �
�����������������������������������������
j( j� 1)ÿ m(mÿ 1)

p
"j j, mÿ 1i

�
��������������������������������������
( j� m)( jÿ m� 1)

p
"j j, mÿ 1i (5:27b)
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5.3 Application to orbital angular momentum

We now apply the results of the quantum-mechanical treatment of generalized

angular momentum to the case of orbital angular momentum. The orbital

angular momentum operator L̂, de®ned in Section 5.1, is identi®ed with the

operator Ĵ of Section 5.2. Likewise, the operators L̂2, L̂x, L̂ y, and L̂z are

identi®ed with Ĵ 2, Ĵ x, Ĵ y, and Ĵ z, respectively. The parameter j of Section 5.2

is denoted by l when applied to orbital angular momentum. The simultaneous

eigenfunctions of L̂2 and L̂z are denoted by jlmi, so that we have

L̂2jlmi � l(l � 1)"2jlmi (5:28a)

L̂zjlmi � m"jlmi, m � ÿl, ÿl � 1, . . . , l ÿ 1, l (5:28b)

Our next objective is to ®nd the analytical forms for these simultaneous

eigenfunctions. For that purpose, it is more convenient to express the operators

L̂x, L̂ y, L̂z, and L̂2 in spherical polar coordinates r, è, j rather than in cartesian

coordinates x, y, z. The relationships between r, è, j and x, y, z are shown in

Figure 5.1. The transformation equations are

x � r sinè cosj (5:29a)

y � r sinè sinj (5:29b)

z � r cosè (5:29c)

r � (x2 � y2 � z2)1=2 (5:29d)

è � cosÿ1(z=(x2 � y2 � z2)1=2) (5:29e)

j � tanÿ1(y=x) (5:29f)

z

x

y

r

θ

ϕ

Figure 5.1 Spherical polar coordinate system.
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These coordinates are de®ned over the following intervals

ÿ1 < x, y, z <1, 0 < r <1, 0 < è < ð, 0 < j < 2ð

The volume element dô � dx dy dz becomes dô � r2 sin è dr dè dj in spheri-

cal polar coordinates.

To transform the partial derivatives @=@x, @=@ y, @=@z, which appear in the

operators L̂x, L̂ y, L̂z of equations (5.7), we use the expressions

@

@x
� @ r

@x

� �
y,z

@

@ r
� @è

@x

� �
y,z

@

@è
� @j

@x

� �
y,z

@

@j

� sin è cosj
@

@ r
� cosè cosj

r

@

@è
ÿ sinj

r sin è

@

@j
(5:30a)

@

@ y
� @ r

@ y

� �
x,z

@

@ r
� @è

@ y

� �
x,z

@

@è
� @j

@ y

� �
x,z

@

@j

� sin è sinj
@

@ r
� cosè sinj

r

@

@è
� cosj

r sin è

@

@j
(5:30b)

@

@z
� @ r

@z

� �
x, y

@

@ r
� @è

@z

� �
x, y

@

@è
� @j

@z

� �
x, y

@

@j

� cos è
@

@ r
ÿ sinè

r

@

@è
(5:30c)

Substitution of these three expressions into equations (5.7) gives

L̂x � "

i
ÿsinj

@

@è
ÿ cot è cosj

@

@j

� �
(5:31a)

L̂ y � "

i
cosj

@

@è
ÿ cot è sinj

@

@j

� �
(5:31b)

L̂z � "

i

@

@j
(5:31c)

By squaring each of the operators L̂x, L̂ y, L̂z and adding, we ®nd that L̂2 is

given in spherical polar coordinates by

L̂2 � ÿ"2 1

sinè

@

@è
sinè

@

@è

� �
� 1

sin2 è

@2

@j2

" #
(5:32)

Since the variable r does not appear in any of these operators, their eigen-

functions are independent of r and are functions only of the variables è and j.

The simultaneous eigenfunctions jlmi of L̂2 and L̂z will now be denoted by the

function Ylm(è, j) so as to acknowledge explicitly their dependence on the

angles è and j.

5.3 Application to orbital angular momentum 139



The eigenvalue equation for L̂z is

L̂zYlm(è, j) � "

i

@

@j
Ylm(è, j) � m"Ylm(è, j) (5:33)

where equations (5.28b) and (5.31c) have been combined. Equation (5.33) may

be written in the form

dYlm(è, j)

Ylm(è, j)
� im dj (è held constant)

the solution of which is

Ylm(è, j) � È lm(è)eimj (5:34)

where È lm(è) is the `constant of integration' and is a function only of the

variable è. Thus, we have shown that Ylm(è, j) is the product of two functions,

one a function only of è, the other a function only of j
Ylm(è, j) � È lm(è)Öm(j) (5:35)

We have also shown that the function Öm(j) involves only the parameter m

and not the parameter l.

The function Öm(j) must be single-valued and continuous at all points in

space in order for Ylm(è, j) to be an eigenfunction of L̂2 and L̂z. If Öm(j) and

hence Ylm(è, j) are not single-valued and continuous at some point j0, then

the derivative of Ylm(è, j) with respect to j would produce a delta function at

the point j0 and equation (5.33) would not be satis®ed. Accordingly, we

require that
Öm(j) � Öm(j� 2ð)

or

eimj � eim(j�2ð)

so that

e2imð � 1

This equation is valid only if m is an integer, positive or negative

m � 0, �1, �2, . . .

We showed in Section 5.2 that the parameter m for generalized angular

momentum can equal either an integer or a half-integer. However, in the case

of orbital angular momentum, the parameter m can only be an integer; the half-

integer values for m are not allowed. Since the permitted values of m are ÿl,

ÿl � 1, . . . , l ÿ 1, l, the parameter l can have only integer values in the case

of orbital angular momentum; half-integer values for l are also not allowed.

Ladder operators

The ladder operators for orbital angular momentum are

140 Angular momentum



L̂� � L̂x � iL̂y

L̂ÿ � L̂x ÿ iL̂y

(5:36)

and are identi®ed with the ladder operators Ĵ� and Ĵÿ of Section 5.2. Substi-

tution of (5.31a) and (5.31b) into (5.36) yields

L̂� � "eij @

@è
� i cot è

@

@j

� �
(5:37a)

L̂ÿ � "eÿij ÿ @

@è
� i cot è

@

@j

� �
(5:37b)

where equation (A.31) has been used. When applied to orbital angular

momentum, equations (5.27) take the form

L̂�Ylm(è, j) �
��������������������������������������
(l ÿ m)(l � m� 1)

p
"Yl,m�1(è, j) (5:38a)

L̂ÿYlm(è, j) �
��������������������������������������
(l � m)(l ÿ m� 1)

p
"Yl,mÿ1(è, j) (5:38b)

For the case where m is equal to its minimum value, m � ÿl, equation

(5.38b) becomes

L̂ÿYl,ÿ l(è, j) � 0

or

ÿ @

@è
� i cot è

@

@j

� �
Yl,ÿ l(è, j) � 0

when equation (5.37b) is introduced. Substitution of Yl,ÿ l(è, j) from equation

(5.34) gives

ÿ @

@è
� i cot è

@

@j

� �
È l,ÿ l(è)eÿi lj � ÿ @

@è
� l cot è

� �
È l,ÿ l(è)eÿi lj � 0

Dividing by eÿi lj, we obtain the differential equation

d lnÈ l,ÿ l(è) � l cot è dè � l cosè

sin è
dè � l

sinè
d sinè � l d ln sinè

which has the solution

È l,ÿ l(è) � Al sin l è (5:39)

where Al is the constant of integration.

Normalization of Yl,ÿ l(è, j)

Following the usual custom, we require that the eigenfunctions Ylm(è, j) be

normalized, so that
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�2ð

0

�ð
0

Y�lm(è, j)Ylm(è, ö) sinè dè dj

�
�ð

0

È�lm(è)È lm(è) sin è dè

�2ð

0

Ö�m(j)Öm(j) dj � 1

where the è- and j-dependent parts of the volume element dô are included in

the integration. For convenience, we require that each of the two factors È lm(è)

and Öm(j) be normalized. Writing Öm(j) as

Öm(j) � Aeimj

we ®nd that �2ð

0

(Aeimj)�(Aeimj) dj � jAj2
�2ð

0

dj � 1

A � eiá=
������
2ð
p

giving

Öm(j) � 1������
2ð
p eimj (5:40)

where we have arbitrarily set á equal to zero in the phase factor eiá associated

with the normalization constant.

The function È l,ÿ l(è) is given by equation (5.39) and the value of the

constant of integration Al is determined by the normalization condition�ð
0

[È l,ÿ l(è)]�È l,ÿ l(è) sinè dè � jAlj2
�ð

0

sin2 l�1è dè � 1 (5:41)

We need to evaluate the integral Il

I l �
�ð

0

sin2 l�1è dè � ÿ
�ÿ1

1

(1ÿ ì2) l dì �
�1

ÿ1

(1ÿ ì2) l dì

where we have de®ned the variable ì by the relation

ì � cosè (5:42)

so that

1ÿ ì2 � sin2è, dì � ÿsin è dè

The integral Il may be transformed as follows

Il �
�1

ÿ1

(1ÿ ì2) lÿ1 dìÿ
�1

ÿ1

(1ÿ ì2) lÿ1ì2 dì � I lÿ1 �
�1

ÿ1

ì

2l
d(1ÿ ì2) l

� I lÿ1 ÿ
�1

ÿ1

(1ÿ ì2) l

2l
dì � I lÿ1 ÿ 1

2l
Il

where we have integrated by parts and noted that the integrated term vanishes.

Solving for Il, we obtain a recurrence relation for the integral
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Il � 2l

2l � 1
I lÿ1 (5:43)

Since I0 is given by

I0 �
�1

ÿ1

dì � 2

we can obtain Il by repeated application of equation (5.43) starting with I0

Il � (2l)(2l ÿ 2)(2l ÿ 4) . . . 2

(2l � 1)(2l ÿ 1)(2l ÿ 3) . . . 3
I0 � 22 l�1(l!)2

(2l � 1)!

where we have noted that

(2l)(2l ÿ 2) . . . 2 � 2ll!

(2l � 1)(2l ÿ 1)(2l ÿ 3) . . . 3

� (2l � 1)(2l)(2l ÿ 1)(2l ÿ 2)(2l ÿ 3) . . . 3 3 2 3 1

(2l)(2l ÿ 2) . . . 2
� (2l � 1)!

2 l l!

Substituting this result into equation (5.41), we ®nd that

jAlj � 1

2 l l!

�����������������
(2l � 1)!

2

r
It is customary to let á equal zero in the phase factor eiá for È l,ÿ l(è), so that

È l,ÿ l(è) � 1

2 l l!

�����������������
(2l � 1)!

2

r
sin l è (5:44)

Combining equations (5.35), (5.40) and (5.44), we obtain the normalized

eigenfunction

Yl,ÿ l(è, j) � 1

2 l l!

�����������������
(2l � 1)!

4ð

r
sin l è eÿi lj (5:45)

Spherical harmonics

The functions Ylm(è, j) are known as spherical harmonics and may be

obtained from Yl,ÿ l(è, j) by repeated application of the raising operator L̂�
according to (5.38a). By this procedure, the spherical harmonics Yl,ÿ l�1(è, j),

Yl,ÿ l�2(è, j), . . . , Yl,ÿ1(è, j), Yl0(è, j), Yl1(è, j), . . . , Yll(è, j) may be

determined. Since the starting function Yl,ÿ l(è, j) is normalized, each of the

spherical harmonics generated from equation (5.38a) will also be normalized.

We may readily derive a general expression for the spherical harmonic

Ylm(è, j) which results from the repeated application of L̂� to Yl,ÿ l(è, j). We

begin with equation (5.38a) with m set equal to ÿl

Yl,ÿ l�1 � 1�����
2l
p

"
L̂�Yl,ÿ l (5:46)
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For m equal to ÿl � 1, equation (5.38a) gives

Yl,ÿ l�2 � 1�������������������
2(2l ÿ 1)

p
"

L̂�Yl,ÿ l�1 � 1��������������������������
2(2l)(2l ÿ 1)

p
"2

L̂2
�Yl,ÿ l

where equation (5.46) has been introduced in the last term. If we continue in

the same pattern, we ®nd

Yl,ÿ l�3 � 1�������������������
3(2l ÿ 2)

p
"

L̂�Yl,ÿ l�2 � 1�����������������������������������������������
2 : 3(2l)(2l ÿ 1)(2l ÿ 2)

p
"3

L̂3
�Yl,ÿ l

..

.

Yl,ÿ l�k �
������������������
(2l ÿ k)!

k!(2l)!

s
1

"k
L̂k
�Yl,ÿ l

where k is the number of steps in this sequence. We now set k � l � m in the

last expression to obtain

Ylm �
�������������������������

(l ÿ m)!

(l � m)!(2l)!

s
1

" l�m
L̂l�m
� Yl,ÿ l (5:47)

If the number of steps k is less than the value of l, then the integer m is

negative; if k equals l, then m is zero; if k is greater than l, then m is positive;

and ®nally if k equals 2l, then m equals its largest value of l.

The next step in this derivation is the evaluation of L̂ l�m
� Yl,ÿ l using equation

(5.37a). If the operator L̂� in (5.37a) acts on Yl,ÿ l(è, j) as given in (5.45), we

have

L̂�Yl,ÿ l � cl"eij @

@è
� i cot è

@

@ö

� �
sin lè eÿi lj

� cl"eÿi( lÿ1)j d

dè
� l cot è

� �
sin lè

� cl"eÿi( lÿ1)j d

dè
� l cot è

� �
sin 2 lè

sin lè

� cl"eÿi( lÿ1)j 1

sin lè

d

dè
sin2 lèÿ l sin lÿ1è cosè� l sin lÿ1 è cos è

� �
� ÿcl"eÿi( lÿ1)j 1

sin lÿ1è

d

d(cosè)
sin2 lè

where for brevity we have de®ned cl as

cl � 1

2 l l!

�����������������
(2l � 1)!

4ð

r
(5:48)
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We then operate on this result with L̂� to obtain

L̂2
�Yl,ÿ l � ÿcl"

2eij @

@è
� i cotè

@

@j

� �
eÿi( lÿ1)j

sin lÿ1è

d

d(cos è)
sin2 lè

 !

� ÿcl"
2eÿi( lÿ2)j) d

dè
� (l ÿ 1) cot è

� �
1

sin lÿ1è

d

d(cos è)
sin 2 lè

� �
� cl"

2eÿi( lÿ2)j 1

sin lÿ2è

d2

d(cosè)2
sin 2 lè

After k such applications of L̂� to the function Yl,ÿ l(è, j), we have

L̂k
�Yl,ÿ l � (ÿ")k cle

ÿi( lÿk)j 1

sin lÿkè

dk

d(cos è)k
sin2 lè

If we set k � l � m in this expression, we obtain the desired result

L̂ l�m
� Yl,ÿ l � (ÿ") l�mcle

imj sinmè
d l�m

d(cos è) l�m
sin2 lè (5:49)

The general expression for Ylm(è, j) is obtained by substituting equation

(5.49) into (5.47) with cl given by equation (5.48)

Ylm(è, j) � (ÿ1) l�m

2 l l!

���������������������������������
(2l � 1)

4ð

(l ÿ m)!

(l � m)!

s
eimj sinmè

d l�m

d(cos è) l�m
sin2 lè

(5:50)

When Ylm(è, j) is decomposed into its two normalized factors according to

equations (5.35) and (5.40), we have

È lm(è) � (ÿ1) l�m

2 l l!

���������������������������������
(2l � 1)

2

(l ÿ m)!

(l � m)!

s
sinmè

d l�m

d(cos è ) l�m
sin2 lè (5:51)

Öm(j) � 1������
2ð
p eimj (5:52)

The spherical harmonics for l � 0, 1, 2, 3 are listed in Table 5.1. We note

that the function È l,ÿm(è) is related to È lm(è) by

È l,ÿm(è) � (ÿ1)mÈ lm(è) (5:53)

and that the complex conjugate Y�lm(è, j) is related to Ylm(è, j) by

Y�lm(è, j) � (ÿ1)mYl,ÿm (5:54)

Because both L̂2 and L̂z are hermitian, the spherical harmonics Ylm(è, j)

form an orthogonal set, so that�2ð

0

�ð
0

Y�l9m9(è, j)Ylm(è, j) sin è dè dj � ä ll9ämm9 (5:55)
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If we introduce equation (5.35) into (5.55), we have�ð
0

È�l9m9(è)È lm(è) sin è dè

�2ð

0

Ö�m9(j)Öm(j) dj � ä ll9ämm9

The integral over the angle j is�2ð

0

Ö�m9(j)Öm(j) dj � 1

2ð

�2ð

0

eÿim9jeimj dj � 1

2ð

�2ð

0

ei(mÿm9)j dj

where equation (5.52) has been introduced. Since m and m9 are integers, this

integral vanishes unless m � m9, so that�2ð

0

Ö�m9(j)Öm(j) dj � ämm9 (5:56)

from which it follows that�ð
0

È�l9m(è)È lm(è) sinè dè � ä ll9 (5:57)

Note that in equation (5.57) the same value for m appears in both È�l9m(è) and

È lm(è). Thus, the functions È lm(è) and È l9m(è) for l 6� l9 are orthogonal, but

the functions È lm(è) and È l9m9(è) are not orthogonal. However, for m 6� m9,

the spherical harmonics Ylm(è, j) and Yl9m9(è, j) are orthogonal because of

equation (5.56).

Table 5.1. Spherical harmonics Ylm(è, j) for l � 0, 1, 2, 3

Y00 � 1

4ð

� �1=2

Y30 � 7

16ð

� �1=2

(5 cos3èÿ 3 cos è)

Y10 � 3

4ð

� �1=2

cos è Y3,�1 � � 21

64ð

� �1=2

sinè(5 cos2 èÿ 1)e�ij

Y1,�1 � � 3

8ð

� �1=2

sinè e�ij Y3,�2 � 105

32ð

� �1=2

sin2è cos è e�2ij

Y20 � 5

16ð

� �1=2

(3 cos2 èÿ 1) Y3,�3 � � 35

64ð

� �1=2

sin3è e�3ij

Y2,�1 � � 15

8ð

� �1=2

sinè cos è e�ij

Y2,�2 � 15

32ð

� �1=2

sin2 è e�2ij
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Relationship of spherical harmonics to associated Legendre polynomials

The functions È lm(è) and consequently the spherical harmonics Ylm(è, j) are

related to the associated Legendre polynomials, whose de®nition and properties

are presented in Appendix E. To show this relationship, we make the substitu-

tion of equation (5.42) for cos è in equation (5.51) and obtain

Èlm � (ÿ1)m

2 l l!

���������������������������������
(2l � 1)

2

(l ÿ m)!

(l � m)!

s
(1ÿ ì2)m=2 d l�m

dì l�m
(ì2 ÿ 1) l (5:58)

Equation (E.13) relates the associated Legendre polynomial Pm
l (ì) to the

(l � m)th-order derivative in equation (5.58)

Pm
l (ì) � 1

2 l l!
(1ÿ ì2)m=2 d l�m

dì l�m
(ì2 ÿ 1) l

where l and m are positive integers (l, m > 0) such that m < l. Thus, for

positive m we have the relation

È lm(è) � (ÿ1)m

����������������������������������
(2l � 1)

2

(l ÿ m)!

(l � m)!

s
Pm

l (cosè), m > 0

For negative m, we may write m � ÿjmj and note that equation (5.53) states

È l,ÿjmj(è) � (ÿ1)mÈ l,jmj(è)

so that we have

È l,ÿjmj(è) �
�����������������������������������
(2l � 1)

2

(l ÿ jmj)!
(l � jmj)!

s
P
jmj
l (cosè)

These two results may be combined as

È lm(è) � å

�����������������������������������
(2l � 1)

2

(l ÿ jmj)!
(l � jmj)!

s
P
jmj
l (cos è)

where å � (ÿ1)m for m . 0 and å � 1 for m < 0. Accordingly, the spherical

harmonics Ylm(è, j) are related to the associated Legendre polynomials by

Ylm(è, j) � å

�����������������������������������
(2l � 1)

4ð

(l ÿ jmj)!
(l � jmj)!

s
P
jmj
l (cos è)eimj

å � (ÿ1)m, m . 0 (5:59)

� 1, m < 0

The eigenvalues and eigenfunctions of the orbital angular momentum

operator L̂2 may also be obtained by solving the differential equation

L̂2ø � ë"2ø using the Frobenius or series solution method. The application of

this method is presented in Appendix G and, of course, gives the same results
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as the procedure using ladder operators. However, the Frobenius method may

not be used to obtain the eigenvalues and eigenfunctions of the generalized

angular momentum operators Ĵ2 and Ĵ z because their eigenfunctions do not

have a spatial representation.

5.4 The rigid rotor

The motion of a rigid diatomic molecule serves as an application of the

quantum-mechanical treatment of angular momentum to a chemical system. A

rigid diatomic molecule consists of two particles of masses m1 and m2 which

rotate about their center of mass while keeping the distance between them ®xed

at a value R. Although a diatomic molecule also undergoes vibrational motion

in which the interparticle distance oscillates about some equilibrium value, that

type of motion is neglected in the model being considered here; the interparti-

cle distance is frozen at its equilibrium value R. Such a rotating system is

called a rigid rotor.

We begin with a consideration of a classical particle i with mass mi rotating

in a plane at a constant distance ri from a ®xed center as shown in Figure 5.2.

The time ô for the particle to make a complete revolution on its circular path is

equal to the distance traveled divided by its linear velocity vi

ô � 2ðri

vi

(5:60)

The reciprocal of ô gives the number of cycles per unit time, which is the

frequency í of the rotation. The velocity vi may then be expressed as

vi � 2ðri

ô
� 2ðíri � ùri (5:61)

where ù � 2ðí is the angular velocity. According to equation (5.1), the

angular momentum Li of particle i is

Li � ri 3 pi � mi(ri 3 vi) (5:62)

Since the linear velocity vector vi is perpendicular to the radius vector ri, the

magnitude Li of the angular momentum is

vi

mi

ri

Figure 5.2 Motion of a rotating particle.
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Li � mirivi sin (ð=2) � mirivi � ùmir
2
i (5:63)

where equation (5.61) has been introduced.

We next apply these classical relationships to the rigid diatomic molecule.

Since the molecule is rotating freely about its center of mass, the potential

energy is zero and the classical-mechanical Hamiltonian function H is just the

kinetic energy of the two particles,

H � p2
1

2m1

� p2
2

2m2

� 1
2
m1v

2
1 � 1

2
m2v2

2 (5:64)

If we substitute equation (5.61) for each particle into (5.64) while noting that

the angular velocity ù must be the same for both particles, we obtain

H � 1
2
ù2(m1 r2

1 � m2 r2
2) � 1

2
Iù2 (5:65)

where we have de®ned the moment of inertia I by

I � m1 r2
1 � m2 r2

2 (5:66)

In general, moments of inertia are determined relative to an axis of rotation.

In this case the axis is perpendicular to the interparticle distance R and passes

through the center of mass. Thus, we have

r1 � r2 � R

and

m1 r1 � m2 r2

or, upon inversion

r1 � m2

m1 � m2

R

(5:67)

r2 � m1

m1 � m2

R

Substitution of equations (5.67) into (5.66) gives

I � ìR2 (5:68)

where the reduced mass ì is de®ned by

ì � m1 m2

m1 � m2

(5:69)

The total angular momentum L for the two-particle system is given by

L � L1 � L2 � ù(m1 r2
1 � m2 r2

2) � Iù (5:70)

where equations (5.63) and (5.66) are used. A comparison of equations (5.65)

and (5.70) shows that

H � L2

2I
(5:71)
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Accordingly, the quantum-mechanical Hamiltonian operator Ĥ for this system

is proportional to the square of the angular momentum operator L̂2

Ĥ � 1

2I
L̂2 (5:72)

Thus, the operators Ĥ and L̂2 have the same eigenfunctions, namely, the

spherical harmonics YJm(è, j) as given in equation (5.50). It is customary in

discussions of the rigid rotor to replace the quantum number l by the index J in

the eigenfunctions and eigenvalues.

The eigenvalues of Ĥ are obtained by noting that

Ĥ YJm(è, j) � 1

2I
L̂2YJm(è, j) � J (J � 1)"2

2I
YJm(è, j) (5:73)

where l is replaced by J in equation (5.28a). Thus, the energy levels EJ for the

rigid rotor are given by

EJ � J (J � 1)
"2

2I
� J (J � 1)B, J � 0, 1, 2, . . . (5:74)

where B � "2=2I is the rotational constant for the diatomic molecule. The

energy levels EJ are shown in Figure 5.3. We observe that as J increases, the

difference between successive levels also increases.

0

2B

6B

12B

20B

Energy

J 5 4,  g4 5 9

J 5 3,  g3 5 7

J 5 2,  g2 5 5

J 5 1,  g1 5 3

J 5 0,  g0 5 1

Figure 5.3 Energy levels of a rigid rotor.
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To ®nd the degeneracy of the eigenvalue EJ , we note that for a given value

of J, the quantum number m has values m � 0, �1, �2, . . . , �J . Accordingly,

there are (2J � 1) spherical harmonics for each value of J and the energy level

EJ is (2J � 1)-fold degenerate. The ground-state energy level E0 is non-

degenerate.

5.5 Magnetic moment

Atoms are observed to have magnetic moments. To understand how an electron

circulating about a nuclear core can give rise to a magnetic moment, we may

apply classical theory. We consider an electron of mass me and charge ÿe

bound to a ®xed nucleus of charge Ze by a central coulombic force F(r) with

potential V (r)

F(r) � ÿ dV (r)

dr
� ÿZe2

4ðå0 r2
(5:75)

V (r) � ÿZe2

4ðå0 r
(5:76)

Equation (5.75) is Coulomb's law for the force between two charged particles

separated by a distance r. In SI units, the charge e is expressed in coulombs

(C), while å0 is the permittivity of free space with the value

å0 � 8:854 19 3 10ÿ12 Jÿ1 C2 mÿ1

According to classical mechanics, a stable circular orbit of radius r and angular

velocity ù is established for the electron if the centrifugal force me rù2

balances the attractive coulombic force

me rù2 � Ze2

4ðå0 r2

This assumption is the basis of the Bohr model for the hydrogen-like atom.

When solved for ù, this balancing equation is

ù � Ze2

4ðå0 me r3

� �1=2

(5:77)

An electron in a circular orbit with an angular velocity ù passes each point

in the orbit ù=2ð times per second. This electronic motion constitutes an

electric current I, de®ned as the amount of charge passing a given point per

second, so that

I � eù

2ð
(5:78)

From the de®nition of the magnetic moment in electrodynamics, a circulat-
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ing current I enclosing a small area A gives rise to a magnetic moment M of

magnitude M given by

M � IA (5:79)

The area A enclosed by the circular electronic orbit of radius r is ðr2. From

equation (5.63) we have the relation L � meùr2. Thus, the magnitude of the

magnetic moment is related to the magnitude L of the angular momentum by

M � eL

2me

(5:80)

The direction of the vector L is determined by equation (5.62). By convention,

the direction of the current I is opposite to the direction of rotation of the

negatively charged electron, i.e., opposite to the direction of the vector v.

Consequently, the vector M points in the opposite direction from L (see Figure

5.4) and equation (5.80) in vector form is

M � ÿe

2me

L � ÿìB

"
L (5:81)

Since the units of L are those of ", we have de®ned in equation (5.81) the Bohr

magneton ìB as

ìB � e"

2me

� 9:274 02 3 10ÿ24 JTÿ1 (5:82)

The relationship (equation (5.81)) between M and L depends only on

fundamental constants, the electronic mass and charge, and does not depend on

any of the variables used in the derivation. Although this equation was obtained

by applying classical theory to a circular orbit, it is more generally valid. It

applies to elliptical orbits as well as to classical motion with attractive forces

other than rÿ2 dependence. For any orbit in any central force ®eld, the angular

A

L

I

r

M

v

Figure 5.4 The magnetic moment M and the orbital angular momentum L of an
electron in a circular orbit.
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momentum is conserved and, since equation (5.81) applies, the magnetic

moment is constant in both magnitude and direction. Moreover, equation (5.81)

is also valid for orbital motion in quantum mechanics.

Interaction with a magnetic ®eld

The potential energy V of an atom with a magnetic moment M in a magnetic

®eld B is

V � ÿM :B � ÿMB cos è (5:83)

where è is the angle between M and B. The force F acting on the atom due to

the magnetic ®eld is

F � ÿ=V

or

Fx � ÿM : @B

@x
� ÿM cosè

@B

@x

Fy � ÿM : @B

@ y
� ÿM cosè

@B

@ y
(5:84)

Fz � ÿM : @B

@z
� ÿM cos è

@B

@z

If the magnetic ®eld is uniform, then the partial derivatives of B vanish and the

force on the atom is zero.

According to electrodynamics, the force F for a non-uniform magnetic ®eld

produces on the atom a torque T given by

T �M 3 B � ÿ ìB

"
L 3 B (5:85)

where equation (5.81) has been introduced as well. From the relation T �
dL=dt in equation (5.6), we have

dL

dt
� ÿ ìB

"
L 3 B (5:86)

Thus, the torque changes the direction of the angular momentum vector L and

the vector dL=dt is perpendicular to both L and B, as shown in Figure 5.5. As

a result of this torque, the vector L precesses around the direction of the

magnetic ®eld B with a constant angular velocity ùL. This motion is known as

Larmor precession and the angular velocity ùL is called the Larmor frequency.

Since the magnetic moment M is antiparallel to the angular moment L, it also

precesses about the magnetic ®eld vector B.

From equation (5.61), the Larmor angular frequency or velocity ùL is equal

to the velocity of the end of the vector L divided by the radius of the circular

path shown in Figure 5.5
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ùL � jdL=dtj
L sinè

The magnitude of the vector dL=dt is obtained from equation (5.86) as���� dL

dt

���� � ìB

"
LB sin è

so that

ùL � ìB B

"
(5:87)

If we take the z-axis of the coordinate system parallel to the magnetic ®eld

vector B, then the projection of L on B is Lz and cosè in equation (5.83) is

cos è � Lz

L

In quantum mechanics, the only allowed values of L are
����������������
l(l � 1)

p
" with

l � 0, 1, . . . and the only allowed values of Lz are m" with m � 0, �1, . . . ,

�l. Accordingly, the angle è is quantized, being restricted to values for which

cos è � m����������������
l(l � 1)

p , l � 0, 1, 2, . . . , m � 0, �1, . . . , �l (5:88)

The possible orientations of L with respect to B for the case l � 3 are

illustrated in Figure 5.6. Classically, all values between 0 and ð are allowed for

the angle è. When equations (5.81) and (5.88) are substituted into (5.83), we

®nd that the potential energy V is also quantized

V � mìB B, m � 0, �1, . . . , �l (5:89)

B

L

Lsinθ

θ

r

I
M

v

dL

dt

Figure 5.5 The motion in a magnetic ®eld B of the orbital angular momentum vector L.
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Problems

5.1 Show that each of the operators L̂x, L̂ y, L̂z is hermitian.

5.2 Evaluate the following commutators:

(a) [L̂x, x] (b) [L̂x, p̂x] (c) [L̂x, y] (d) [L̂x, p̂y]

5.3 Using the commutation relation (5.10b), ®nd the expectation value of L̂x for a

system in state jlmi.
5.4 Apply the uncertainty principle to the operators L̂x and L̂ y to obtain an expres-

sion for ÄL̂xÄL̂ y. Evaluate the expression for a system in state jlmi.
5.5 Show that the operator Ĵ 2 commutes with Ĵ x and with Ĵ y.

5.6 Show that Ĵ� and Ĵÿ as de®ned by equations (5.18) are adjoints of each other.

5.7 Prove the relationships (5.19a)±(5.19g).

5.8 Show that the choice for cÿ in equation (5.24) is consistent with c� in equation

(5.22).

5.9 Using the raising and lowering operators Ĵ� and Ĵÿ, show that

h jmjĴ xj jmi � h jmjĴ yj jmi � 0

5.10 Show that

h jmjĴ 2
xj jmi � h jmjĴ 2

yj jmi � 1
2
[ j( j� 1)ÿ m2]"2

5.11 Show that j j, mi are eigenfunctions of [Ĵ x, Ĵ�] and of [Ĵ y, Ĵ�]. Find the

eigenvalues of each of these commutators.

B

m 5 3

m 5 2

m 5 1

m 5 0

m 5 21

m 5 22

m 5 23

Figure 5.6 Possible orientations in a magnetic ®eld B of the orbital angular momentum
vector L for the case l � 3

Problems 155



6

The hydrogen atom

A theoretical understanding of the structure and behavior of the hydrogen atom

is essential to the ®elds of physics and chemistry. As the simplest atomic

system, hydrogen must be understood before one can proceed to the treatment

of more complex atoms, molecules, and atomic and molecular aggregates. The

hydrogen atom is one of the few examples for which the SchroÈdinger equation

can be solved exactly to obtain its wave functions and energy levels. The

resulting agreement between theoretically derived and experimental quantities

serves as con®rmation of the applicability of quantum mechanics to a real

chemical system. Further, the results of the quantum-mechanical treatment of

atomic hydrogen are often used as the basis for approximate treatments of more

complex atoms and molecules, for which the SchroÈdinger equation cannot be

solved.

The study of the hydrogen atom also played an important role in the

development of quantum theory. The Lyman, Balmer, and Paschen series of

spectral lines observed in incandescent atomic hydrogen were found to obey

the empirical equation

í � Rc
1

n2
1

ÿ 1

n2
2

� �
, n2 . n1

where í is the frequency of a spectral line, c is the speed of light, n1 � 1, 2, 3

for the Lyman, Balmer, and Paschen series, respectively, n2 is an integer

determining the various lines in a given series, and R is the so-called Rydberg

constant, which has the same value for each of the series. Neither the existence

of these spectral lines nor the formula which describes them could be explained

by classical theory. In 1913, N. Bohr postulated that the electron in a hydrogen

atom revolves about the nucleus in a circular orbit with an angular momentum

that is quantized. He then applied Newtonian mechanics to the electronic

motion and obtained quantized energy levels and quantized orbital radii. From
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the Planck relation ÄE � En1
ÿ En2

� hí, Bohr was able to reproduce the

experimental spectral lines and obtain a theoretical value for the Rydberg

constant that agrees exactly with the experimentally determined value. Further

investigations, however, showed that the Bohr model is not an accurate

representation of the hydrogen-atom structure, even though it gives the correct

formula for the energy levels, and led eventually to SchroÈdinger's wave mech-

anics. SchroÈdinger also used the hydrogen atom to illustrate his new theory.

6.1 Two-particle problem

In order to apply quantum-mechanical theory to the hydrogen atom, we ®rst

need to ®nd the appropriate Hamiltonian operator and SchroÈdinger equation.

As preparation for establishing the Hamiltonian operator, we consider a

classical system of two interacting point particles with masses m1 and m2 and

instantaneous positions r1 and r2 as shown in Figure 6.1. In terms of their

cartesian components, these position vectors are

r1 � ix1 � jy1 � kz1

r2 � ix2 � jy2 � kz2

The vector distance between the particles is designated by r

r � r2 ÿ r1 � ix� jy� kz (6:1)

where

x � x2 ÿ x1, y � y2 ÿ y1, z � z2 ÿ z1

The center of mass of the two-particle system is located by the vector R with

cartesian components, X, Y, Z

R

r2

r1

CM

2

1

y

x

z

Figure 6.1 The center of mass (CM) of a two-particle system.
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R � iX � jY � k Z

By de®nition, the center of mass is related to r1 and r2 by

R � m1r1 � m2r2

M
(6:2)

where M � m1 � m2 is the total mass of the system. We may express r1 and r2

in terms of R and r using equations (6.1) and (6.2)

r1 � R ÿ m2

M
r

r2 � R � m1

M
r

(6:3)

If we restrict our interest to systems for which the potential energy V is a

function only of the relative position vector r, then the classical Hamiltonian

function H is given by

H � jp1j2
2m1

� jp2j2
2m2

� V (r) (6:4)

where the momenta p1 and p2 for the two particles are

p1 � m1

dr1

dt
, p2 � m2

dr2

dt

These momenta may be expressed in terms of the time derivatives of R and r

by substitution of equation (6.3)

p1 � m1

dR

dt
ÿ m2

M

dr

dt

� �
p2 � m2

dR

dt
� m1

M

dr

dt

� � (6:5)

Substitution of equation (6.5) into (6.4) yields

H � 1
2
M

���� dR

dt

����2 � 1
2
ì

���� dr

dt

����2 � V (r) (6:6)

where the cross terms have canceled out and we have de®ned the reduced mass

ì by

ì � m1 m2

m1 � m2

� m1 m2

M
(6:7)

The momenta pR and pr, corresponding to the center of mass position R and

the relative position variable r, respectively, may be de®ned as

pR � M
dR

dt
, pr � ì

dr

dt

In terms of these momenta, the classical Hamiltonian becomes
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H � jpRj2
2M
� jprj2

2ì
� V (r) (6:8)

We see that the kinetic energy contribution to the Hamiltonian is the sum of

two parts, the kinetic energy due to the translational motion of the center of

mass of the system as a whole and the kinetic energy due to the relative motion

of the two particles. Since the potential energy V (r) is assumed to be a function

only of the relative position coordinate r, the motion of the center of mass of

the system is unaffected by the potential energy.

The quantum-mechanical Hamiltonian operator Ĥ is obtained by replacing

jpRj2 and jprj2 in equation (6.8) by the operators ÿ"2=2
R and ÿ"2=2

r, respec-

tively, where

=2
R �

@2

@X 2
� @2

@Y 2
� @2

@Z2
(6:9a)

=2
r �

@2

@x2
� @2

@ y2
� @2

@z2
(6:9b)

The resulting SchroÈdinger equation is, then,

ÿ "2

2M
=2

R ÿ
"2

2ì
=2

r � V (r)

" #
Ø(R, r) � EØ(R, r) (6:10)

This partial differential equation may be readily separated by writing the

wave function Ø(R, r) as the product of two functions, one a function only of

the center of mass variables X, Y, Z and the other a function only of the relative

coordinates x, y, z

Ø(R, r) � ÷(X , Y , Z)ø(x, y, z) � ÷(R)ø(r)

With this substitution, equation (6.10) separates into two independent partial

differential equations

ÿ "2

2M
=2

R÷(R) � ER÷(R) (6:11)

ÿ "2

2ì
=2

rø(r)� V (r)ø(r) � Erø(r) (6:12)

where

E � ER � Er

Equation (6.11) is the SchroÈdinger equation for the translational motion of a

free particle of mass M, while equation (6.12) is the SchroÈdinger equation for a

hypothetical particle of mass ì moving in a potential ®eld V (r). Since the

energy ER of the translational motion is a positive constant (ER > 0), the

solutions of equation (6.11) are not relevant to the structure of the two-particle

system and we do not consider this equation any further.

6.1 Two-particle problem 159



6.2 The hydrogen-like atom

The SchroÈdinger equation (6.12) for the relative motion of a two-particle

system is applicable to the hydrogen-like atom, which consists of a nucleus of

charge �Ze and an electron of charge ÿe. The differential equation applies to

H for Z � 1, He� for Z � 2, Li2� for Z � 3, and so forth. The potential energy

V (r) of the interaction between the nucleus and the electron is a function of

their separation distance r � jrj � (x2 � y2 � z2)1=2 and is given by Coulomb's

law (equation (5.76)), which in SI units is

V (r) � ÿ Ze2

4ðå0 r

where meter is the unit of length, joule is the unit of energy, coulomb is the

unit of charge, and å0 is the permittivity of free space. Another system of units,

used often in the older literature and occasionally in recent literature, is the

CGS gaussian system, in which Coulomb's law is written as

V (r) � ÿ Ze2

r

In this system, centimeter is the unit of length, erg is the unit of energy, and

statcoulomb (also called the electrostatic unit or esu) is the unit of charge. In

this book we accommodate both systems of units and write Coulomb's law in

the form

V (r) � ÿ Ze92

r
(6:13)

where e9 � e for CGS units or e9 � e=(4ðå0)1=2 for SI units.

Equation (6.12) cannot be solved analytically when expressed in the

cartesian coordinates x, y, z, but can be solved when expressed in spherical

polar coordinates r, è, j, by means of the transformation equations (5.29). The

laplacian operator =2
r in spherical polar coordinates is given by equation (A.61)

and may be obtained by substituting equations (5.30) into (6.9b) to yield

=2
r �

1

r2

@

@ r
r2 @

@ r

� �
� 1

r2

1

sin è

@

@è
sin è

@

@è

� �
� 1

sin2 è

@2

@j2

" #
If this expression is compared with equation (5.32), we see that

=2
r �

1

r2

@

@ r
r2 @

@ r

� �
ÿ 1

"2 r2
L̂2

where L̂2 is the square of the orbital angular momentum operator. With the

laplacian operator =2
r expressed in spherical polar coordinates, the SchroÈdinger

equation (6.12) becomes
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Ĥø(r, è, j) � Eø(r, è, j)

with

Ĥ � ÿ "2

2ìr2

@

@ r
r2 @

@ r

� �
� 1

2ìr2
L̂2 � V (r) (6:14)

The operator L̂2 in equation (5.32) commutes with the Hamiltonian operator

Ĥ in (6.14) because L̂2 commutes with itself and does not involve the variable

r. Likewise, the operator L̂z in equation (5.31c) commutes with Ĥ because it

commutes with L̂2 as shown in (5.15a) and also does not involve the variable r.

Thus, we have

[ Ĥ , L̂2] � 0, [ Ĥ , L̂z] � 0, [L̂2, L̂z] � 0

and the operators Ĥ , L̂2, and L̂z have simultaneous eigenfunctions,

Ĥø(r, è, j) � Eø(r, è, j) (6:15a)

L̂2ø(r, è, j) � l(l � 1)"2ø(r, è, j), l � 0, 1, 2, . . . (6:15b)

L̂zø(r, è, j) � m"ø(r, è, j), m � ÿl, ÿl � 1, . . . , l ÿ 1, l (6:15c)

The simultaneous eigenfunctions of L̂2 and L̂z are the spherical harmonics

Ylm(è, j) given by equations (5.50) and (5.59). Since neither L̂2 nor L̂z involve

the variable r, any speci®c spherical harmonic may be multiplied by an

arbitrary function of r and the result is still an eigenfunction. Thus, we may

write ø(r, è, j) as

ø(r, è, j) � R(r)Ylm(è, j) (6:16)

Substitution of equations (6.13), (6.14), (6.15b), and (6.16) into (6.15a) gives

Ĥ l R(r) � ER(r) (6:17)

where

Ĥ l � ÿ "2

2ìr2

d

dr
r2 d

dr

� �
ÿ l(l � 1)

� �
ÿ Ze92

r
(6:18)

and where the common factor Ylm(è, j) has been divided out.

6.3 The radial equation

Our next task is to solve the radial equation (6.17) to obtain the radial function

R(r) and the energy E. The many solutions of the differential equation (6.17)

depend not only on the value of l, but also on the value of E. Therefore, the

solutions are designated as REl(r). Since the potential energy ÿZe92=r is

always negative, we are interested in solutions with negative total energy, i.e.,

where E < 0. It is customary to require that the functions REl(r) be normal-
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ized. Since the radial part of the volume element in spherical coordinates is

r2 dr, the normalization criterion is�1
0

[REl(r)]2 r2 dr � 1 (6:19)

Through an explicit integration by parts, we can show that�1
0

REl(r)[ Ĥ l RE9 l(r)]r2 dr �
�1

0

RE9 l(r)[ Ĥ l REl(r)]r2 dr

Thus, the operator Ĥ l is hermitian and the radial functions REl(r) constitute an

orthonormal set with a weighting function w(r) equal to r2�1
0

REl(r)RE9 l(r)r2 dr � äEE9 (6:20)

where äEE9 is the Kronecker delta and equation (6.19) has been included.

We next make the following conventional change of variables

ë � ìZe92

"(ÿ2ìE)1=2
(6:21)

r � 2(ÿ2ìE)1=2 r

"
� 2ìZe92 r

ë"2
� 2Zr

ëaì
(6:22)

where aì � "2=ìe92. We also make the substitution

REl(r) � 2Z

ëaì

� �3=2

Së l(r) (6:23)

Equations (6.17) and (6.18) now take the form

r2 d2

dr2
� 2r

d

dr
� ërÿ r2

4

 !
Së l � l(l � 1)Së l (6:24)

where the ®rst term has been expanded and the entire expression has been

multiplied by r2.

To be a suitable wave function, Së l(r) must be well-behaved, i.e., it must be

continuous, single-valued, and quadratically integrable. Thus, rSë l vanishes

when r!1 because Së l must vanish suf®ciently fast. Since Së l is ®nite

everywhere, rSë l also vanishes at r � 0. Substitution of equations (6.22) and

(6.23) into (6.19) shows that Së l(r) is normalized with a weighting function

w(r) equal to r2 �1
0

[Së l(r)]2r2 dr � 1 (6:25)

Equation (6.24) may be solved by the Frobenius or series solution method as

presented in Appendix G. However, in this chapter we employ the newer

procedure using ladder operators.
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Ladder operators

We now solve equation (6.24) by means of ladder operators, analogous to the

method used in Chapter 4 for the harmonic oscillator and in Chapter 5 for the

angular momentum.1 We de®ne the operators Âë and B̂ë as

Âë � ÿr d

dr
ÿ r

2
� ëÿ 1 (6:26a)

B̂ë � r
d

dr
ÿ r

2
� ë (6:26b)

We now show that the operator Âë is the adjoint of B̂ë and vice versa. Thus,

neither Âë nor B̂ë is hermitian. For any arbitrary well-behaved functions f (r)

and g(r), we consider the integral�1
0

f (r)[Âë g(r)] dr � ÿ
�1

0

f r
dg

dr
dr�

�1
0

f ÿ r
2
� ëÿ 1

� �
g dr

where (6.26a) has been used. Integration by parts of the ®rst term on the right-

hand side with the realization that the integrated part vanishes yields�1
0

f Âë g dr �
�1

0

g
d

dr
(r f ) dr�

�1
0

f ÿ r
2
� ëÿ 1

� �
g dr

�
�1

0

g r
d

dr
ÿ r

2
� ë

� �
f dr

Substitution of (6.26b) gives�1
0

f (r)[Âë g(r)] dr �
�1

0

g(r)[B̂ë f (r)] dr (6:27)

showing that, according to equation (3.33)

Â
y
ë � B̂ë, B̂

y
ë � Âë

We readily observe from (6.26a) and (6.26b) that

B̂ëÂë � ÿr2 d2

dr2
ÿ 2r

d

dr
ÿ ër� r2

4
� ë(ëÿ 1) (6:28a)

Âë B̂ë � ÿr2 d2

dr2
ÿ 2r

d

dr
ÿ (ëÿ 1)r� r2

4
� ë(ëÿ 1) (6:28b)

Equation (6.24) can then be written in the form

B̂ëÂëSë l � [ë(ëÿ 1)ÿ l(l � 1)]Së l (6:29)

showing that the functions Së l(r) are also eigenfunctions of B̂ëÂë. From

equation (6.28b) we obtain

1 We follow here the treatment by D. D. Fitts (1995) J. Chem. Educ. 72, 1066. However, the de®nitions of the
lowering operator and the constants aël and bël have been changed.
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Âë B̂ëSëÿ1, l � [ë(ëÿ 1)ÿ l(l � 1)]Sëÿ1, l (6:30)

when ë is replaced by ëÿ 1 in equation (6.24).

If we operate on both sides of equation (6.29) with the operator Âë, we

obtain

Âë B̂ëÂëSë l � [ë(ëÿ 1)ÿ l(l � 1)]ÂëSë l (6:31)

Comparison of this result with equation (6.30) leads to the conclusion that

ÂëSë l and Sëÿ1, l are, except for a multiplicative constant, the same function.

We implicitly assume here that Së l is uniquely determined by only two

parameters, ë and l. Accordingly, we may write

ÂëSë l � aë lSëÿ1, l (6:32)

where aë l is a numerical constant, dependent in general on the values of ë and

l, to be determined by the requirement that Së l and Sëÿ1, l be normalized.

Without loss of generality, we can take aë l to be real. The function ÂëSë l is an

eigenfunction of the operator in equation (6.24) with eigenvalue decreased by

one. Thus, the operator Âë transforms the eigenfunction Së l determined by ë, l

into the eigenfunction Sëÿ1, l determined by ëÿ 1, l. For this reason the

operator Âë is a lowering ladder operator.

Following an analogous procedure, we now operate on both sides of equation

(6.30) with the operator B̂ë to obtain

B̂ëÂë B̂ëSëÿ1, l � [ë(ëÿ 1)ÿ l(l � 1)]B̂ëSëÿ1, l (6:33)

Comparing equations (6.29) and (6.33) shows that B̂ëSëÿ1, l and Së l are

proportional to each other

B̂ëSëÿ1, l � bë lSë l (6:34)

where bë l is the proportionality constant, assumed real, to be determined by the

requirement that Sëÿ1, l and Së l be normalized. The operator B̂ë transforms the

eigenfunction Sëÿ1, l into the eigenfunction Së l with eigenvalue ë increased by

one. Accordingly, the operator B̂ë is a raising ladder operator.

The next step is to evaluate the numerical constants aë l and bë l. In order to

accomplish these evaluations, we must ®rst investigate some mathematical

properties of the eigenfunctions Së l(r).

Orthonormal properties of Së l(r)

Although the functions Rnl(r) according to equation (6.20) form an orthogonal

set with w(r) � r2, the orthogonal relationships do not apply to the set of

functions Së l(r) with w(r) � r2. Since the variable r introduced in equation

(6.22) depends not only on r, but also on the eigenvalue E, or equivalently on

ë, the situation is more complex. To determine the proper orthogonal relation-

ships for Së l(r), we express equation (6.24) in the form
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Ĥ9lSë l � ÿëSë l (6:35)

where Ĥ9l is de®ned by

Ĥ9l � r
d2

dr2
� 2

d

dr
ÿ r

4
ÿ l(l � 1)

r
(6:36)

By means of integration by parts, we can readily show that this operator Ĥ9l is

hermitian for a weighting function w(r) equal to r, thereby implying the

orthogonal relationships�1
0

Së l(r)Së9 l(r)r dr � 0 for ë 6� ë9 (6:37)

In order to complete the characterization of integrals of Së l(r), we need to

consider the case where ë � ë9 for w(r) � r. Recall that the functions Së l(r)

are normalized for w(r) � r2 as expressed in equation (6.25). The same result

does not apply for w(r) � r. We begin by expressing the desired integral in a

slightly different form�1
0

[Së l(r)]2r dr � 1
2

�1
0

[Së l(r)]2 d(r2)

Integration of the right-hand side by parts gives�1
0

[Së l(r)]2r dr � 1
2

�
r2[Së l(r)]2

�1
0

ÿ
�1

0

r2Së l

d

dr
Së l

� �
dr

If Së l(r) is well-behaved, the integrated term vanishes. From equation (6.26a)

we may write

r
d

dr
� ÿÂë ÿ r

2
� ëÿ 1

so that

r
d

dr
Së l � ÿÂëSë l ÿ 1

2
rSë l � (ëÿ 1)Së l

� ÿaë lSëÿ1, l ÿ 1
2
rSë l � (ëÿ 1)Së l

where equation (6.32) has been introduced. The integral then takes the form�1
0

[Së l(r)]2r dr � aë l

�1
0

Së lSëÿ1, lr dr� 1
2

�1
0

[Së l]
2r2 dr

ÿ (ëÿ 1)

�1
0

[Së l]
2r dr

Since the ®rst integral on the right-hand side vanishes according to equation

(6.37) and the second integral equals unity according to (6.25), the result is
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�1
0

[Së l(r)]2r dr � 1

2ë
(6:38)

Combining equation (6.38) with (6.37), we obtain�1
0

Së l(r)Së9 l(r)r dr � 1

2ë
äëë9 (6:39)

Evaluation of the constants aë l and bë l

To evaluate the numerical constant aë l, which is de®ned in equation (6.32), we

square both sides of (6.32), multiply through by r, and integrate with respect to

r to obtain �1
0

r(ÂëSë l)(ÂëSë l) dr � a2
ë l

�1
0

(Sëÿ1, l)
2r dr (6:40)

Application of equation (6.27) with f � rÂëSë l and g � Së l to the left-hand

side and substitution of equation (6.38) on the right-hand side give�1
0

Së l B̂ë(rÂëSë l) dr � a2
ë l=2(ëÿ 1) (6:41)

The expression B̂ë(rÂëSë l) may be simpli®ed as follows

B̂ë(rÂëSë l) � r
d

dr
(rÂëSë l)� ÿ r

2
� ë

� �
rÂëSë l

� rÂëSë l � r2 d

dr
(ÂëSë l)� r ÿ r

2
� ë

� �
ÂëSë l

� rÂëSë l � rB̂ëÂëSë l

� raë lSëÿ1, l � [ë(ëÿ 1)ÿ l(l � 1)]rSë l

where equations (6.26b), (6.32), and (6.29) have been used. When this result is

substituted back into (6.41), we have

aë l

�1
0

Së lSëÿ1, lr dr� [ë(ëÿ 1)ÿ l(l � 1)]

�1
0

S2
ë lr dr � a2

ë l=2(ëÿ 1) (6:42)

According to equation (6.39), the ®rst integral vanishes and the second integral

equals (2ë)ÿ1, giving the result

a2
ë l �

ëÿ 1

ë

� �
[ë(ëÿ 1)ÿ l(l � 1)]

� ëÿ 1

ë

� �
(ë� l)(ëÿ l ÿ 1) (6:43)

Substitution into (6.32) gives
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ÂëSë l � ëÿ 1

ë

� �
(ë� l)(ëÿ l ÿ 1)

� �1=2

Sëÿ1, l (6:44)

where we have arbitrarily taken the positive square root.

The numerical constant bë l, de®ned in equation (6.34), may be determined

by an analogous procedure, beginning with the square of both sides of equation

(6.34) and using equations (6.27), (6.26a), (6.34), (6.30), and (6.39). We obtain

b2
ë l �

ë

ëÿ 1

� �
[ë(ëÿ 1)ÿ l(l � 1)] � ë

ëÿ 1

� �
(ë� l)(ëÿ l ÿ 1) (6:45)

so that equation (6.34) becomes

B̂ëSëÿ1, l � ë

ëÿ 1

� �
(ë� l)(ëÿ l ÿ 1)

� �1=2

Së, l (6:46)

Taking the positive square root here will turn out to be consistent with the

choice in equation (6.44).

Quantization of the energy

The parameter ë is positive, since otherwise the radial variable r, which is

inversely proportional to ë, would be negative. Furthermore, the parameter ë
cannot be zero if the transformations in equations (6.21), (6.22), and (6.23) are

to remain valid. To ®nd further restrictions on ë we must consider separately

the cases where l � 0 and where l > 1.

For l � 0, equation (6.44) takes the form

ÂëSë0 � (ëÿ 1)Sëÿ1,0 (6:47)

Suppose we begin with a suitably large value of ë, say î, and continually apply

the lowering operator to both sides of equation (6.47) with ë � î

Âîÿ1ÂîSî0 � (îÿ 1)(îÿ 2)Sîÿ2,0

Âîÿ2Âîÿ1ÂîSî0 � (îÿ 1)(îÿ 2)(îÿ 3)Sîÿ3,0

..

.

Eventually this procedure produces an eigenfunction Sîÿk,0, k being a positive

integer, such that 0 ,(îÿ k) < 1. The next step in the sequence would give a

function Sîÿkÿ1,0 or Së0 with ë � (îÿ k ÿ 1) < 0, which is not allowed. Thus,

the sequence must terminate with the condition

Âîÿk Sîÿk,0 � (îÿ k ÿ 1)Sîÿkÿ1,0 � 0

which can only occur if (îÿ k) � 1. Thus, î must be an integer and the

minimum value of ë for l � 0 is ë � 1.

For the situations in which l > 1, we note that the quantities a2
ë l in equation
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(6.43) and b2
ë l in equation (6.45), being squares of real numbers, must be

positive. Consequently, the factor (ëÿ l ÿ 1) must be positive, so that

ë > (l � 1).

We now select some appropriately large value î of the parameter ë in

equation (6.44) and continually apply the lowering operator to both sides of the

equation in the same manner as in the l � 0 case. Eventually we obtain Sîÿk, l

such that (l � 1) < (îÿ k) , (l � 2). The next step in the sequence would

give Sîÿkÿ1, l or Së l with ë � (îÿ k ÿ 1) , (l � 1), which is not allowed, so

that the sequence must be terminated according to

Âîÿk Sîÿk, l � aîÿk, lSîÿkÿ1, l

� îÿ k ÿ 1

îÿ k

� �
(îÿ k � l)(îÿ k ÿ l ÿ 1)

� �1=2

Sîÿkÿ1, l

� 0

for some value of k. Thus, î must be an integer for aîÿk, l to vanish. As k

increases during the sequence, the constant aîÿk, l vanishes when

k � (îÿ l ÿ 1) or (îÿ k) � (l � 1). The minimum value of ë is then l � 1.

Combining the conclusions of both cases, we see that the minimum value of

ë is l � 1 for l � 0, 1, 2, . . . Beginning with the value ë � l � 1, we can apply

equation (6.46) to yield an in®nite progression of eigenfunctions Snl(r) for each

value of l (l � 0, 1, 2, . . .), where ë can take on only integral values,

ë � n � l � 1, l � 2, l � 3, . . . Since î in both cases was chosen arbitrarily

and was shown to be an integer, equation (6.46) generates all of the eigenfunc-

tions Së l(r) for each value of l. There are no eigenfunctions corresponding to

non-integral values of ë. Since ë is now shown to be an integer n, in the

remainder of this presentation we replace ë by n.

Solving equation (6.21) for the energy E and replacing ë by n, we obtain the

quantized energy levels for the hydrogen-like atom

En � ÿ ìZ2e94

2"2 n2
� ÿ Z2e92

2aìn2
, n � 1, 2, 3, . . . (6:48)

These energy levels agree with the values obtained in the earlier Bohr theory.

Electronic energies are often expressed in the unit electron volt (eV). An

electron volt is de®ned as the kinetic energy of an electron accelerated through

a potential difference of 1 volt. Thus, we have

1 eV � (1:602 177 3 10ÿ19 C) 3 (1:000 000 V) � 1:602 177 3 10ÿ19 J

The ground-state energy E1 of a hydrogen atom (Z � 1) as given by equation

(6.48) is

E1 � ÿ2:178 68 3 10ÿ18 J � ÿ13:598 eV
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This is the energy required to remove the electron from the ground state of a

hydrogen atom to a state of zero kinetic energy at in®nity and is also known as

the ionization potential of the hydrogen atom.

Determination of the eigenfunctions

Equation (6.47) may be used to obtain the ground state (n � 1, l � 0) eigen-

function S10(r). Introducing the de®nition of Ân in equation (6.26a), we have

Â1S10 � ÿ r
d

dr
� r

2

� �
S10 � 0

or

dS10

dr
� ÿ S10

2

from which it follows that

S10 � ceÿr=2 � 2ÿ1=2eÿr=2

where the constant c of integration was evaluated by applying equations (6.25),

(A.26), and (A.28).

The series of eigenfunctions S20, S30, . . . are readily obtained from equations

(6.46) and (6.26b) with ë � n, l � 0

B̂nSnÿ1,0 � r
d

dr
ÿ r

2
� n

� �
Snÿ1,0 � nSn0

Thus, S20 is

S20 � 1

2
r

d

dr
ÿ r

2
� 2

� �
2ÿ1=2eÿr=2

� 1

2
���
2
p (2ÿ r)eÿr=2

and S30 is

S30 � 1

3
r

d

dr
ÿ r

2
� 3

� �
1

2
���
2
p (2ÿ r)eÿr=2

� 1

6
���
2
p (6ÿ 6r� r2)eÿr=2

and so forth ad in®nitum. Each eigenfunction is normalized.

The eigenfunctions for l . 0 are determined in a similar manner. A general

formula for the eigenfunction Sl�1, l, which is the starting function for evaluat-

ing the series Snl with ®xed l, is obtained from equations (6.44) and (6.26a)

with l � n � l � 1
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Âl�1Sl�1, l � ÿ r
d

dr
� r

2
� l

� �
Sl�1, l � 0

or

r
dSl�1, l

dr
� l ÿ r

2

� �
Sl�1, l

Integration gives

Sl�1, l � [(2l � 2)!]ÿ1=2r leÿr=2 (6:49)

where the integration constant was evaluated using equations (6.25), (A.26),

and (A.28).

The eigenfunction S21 from equation (6.49) is

S21 � 1

2
���
6
p reÿr=2

and equations (6.46) and (6.26b) for l � 1 give

S31 � 1���
6
p r

d

dr
ÿ r

2
� 3

� �
1

2
���
6
p reÿr=2

� 1

12
(4ÿ r)reÿr=2

S41 �
�����
3

40

r
r

d

dr
ÿ r

2
� 4

� �
1

12
(4ÿ r)reÿr=2

� 1

8
�����
30
p (20ÿ 10r� r2)reÿr=2

..

.

The functions S31, S41, . . . are automatically normalized as speci®ed by

equation (6.25). The normalized eigenfunctions Snl(r) for l � 2, 3, 4, . . . with

n > (l � 1) are obtained by the same procedure.

A general formula for Snl involves the repeated application of B̂k for

k � l � 2, l � 3, . . . , nÿ 1, n to Sl�1, l in equation (6.49). The raising operator

must be applied (nÿ l ÿ 1) times. The result is

Snl � (bnl)
ÿ1(bnÿ1, l)

ÿ1 . . . (bl�2, l)
ÿ1 B̂n B̂nÿ1 . . . B̂l�2Sl�1, l

� (l � 1)(2l � 1)!

n(n� l)!(nÿ l ÿ 1)!(2l � 2)!

� �1=2

r
d

dr
ÿ r

2
� n

� �
3 r

d

dr
ÿ r

2
� nÿ 1

� �
� � � r

d

dr
ÿ r

2
� l � 2

� �
r leÿr=2 (6:50)

Just as equation (6.46) can be used to go `up the ladder' to obtain Sn, l from
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Snÿ1, l, equation (6.44) allows one to go `down the ladder' and obtain Snÿ1, l

from Snl. Taking the positive square root in going from equation (6.43) to

(6.44) is consistent with taking the positive square root in going from equation

(6.45) to (6.46); the signs of the functions Snl are maintained in the raising and

lowering operations. In all cases the ladder operators yield normalized eigen-

functions if the starting eigenfunction is normalized.

The radial factors of the hydrogen-like atom total wave functions ø(r, è, j)

are related to the functions Snl(r) by equation (6.23). Thus, we have

R10 � 2
Z

aì

� �3=2

eÿr=2

R20 � 1

2
���
2
p Z

aì

� �3=2

(2ÿ r)eÿr=2

R30 � 1

9
���
3
p Z

aì

� �3=2

(6ÿ 6r� r2)eÿr=2

..

.

R21 � 1

2
���
6
p Z

aì

� �3=2

reÿr=2

R31 � 1

9
���
6
p Z

aì

� �3=2

(4ÿ r)reÿr=2

R41 � 1

32
�����
15
p Z

aì

� �3=2

(20ÿ 10r� r2)reÿr=2

..

.

and so forth.

A more extensive listing appears in Table 6.1.

Radial functions in terms of associated Laguerre polynomials

The radial functions Snl(r) and Rnl(r) may be expressed in terms of the

associated Laguerre polynomials L
j
k(r), whose de®nition and mathematical

properties are discussed in Appendix F. One method for establishing the

relationship between Snl(r) and L
j
k(r) is to relate Snl(r) in equation (6.50) to

the polynomial L
j
k(r) in equation (F.15). That process, however, is long and

tedious. Instead, we show that both quantities are solutions of the same

differential equation.
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Table 6.1. Radial functions Rnl for the hydrogen-like atom for

n � 1 to 6. The variable r is given by r � 2Zr=naì

R10 � 2(Z=aì)3=2eÿr=2

R20 � (Z=aì)3=2

2
���
2
p (2ÿ r)eÿr=2

R21 � (Z=aì)3=2

2
���
6
p reÿr=2

R30 � (Z=aì)3=2

9
���
3
p (6ÿ 6r� r2)eÿr=2

R31 � (Z=aì)3=2

9
���
6
p (4ÿ r)r eÿr=2

R32 � (Z=aì)3=2

9
�����
30
p r2 eÿr=2

R40 � (Z=aì)3=2

96
(24ÿ 36r� 12r2 ÿ r3)eÿr=2

R41 � (Z=aì)3=2

32
�����
15
p (20ÿ 10r� r2)r eÿr=2

R42 � (Z=aì)3=2

96
���
5
p (6ÿ r)r2 eÿr=2

R43 � (Z=aì)3=2

96
�����
35
p r3 eÿr=2

R50 � (Z=aì)3=2

300
���
5
p (120ÿ 240r� 120r2 ÿ 20r3 � r4)eÿr=2

R51 � (Z=aì)3=2

150
�����
30
p (120ÿ 90r� 18r2 ÿ r3)r eÿr=2

R52 � (Z=aì)3=2

150
�����
70
p (42ÿ 14r� r2)r2 eÿr=2

R53 � (Z=aì)3=2

300
�����
70
p (8ÿ r)r3 eÿr=2

R54 � (Z=aì)3=2

900
�����
70
p r4 eÿr=2

R60 � (Z=aì)3=2

2160
���
6
p (720ÿ 1800r� 1200r2 ÿ 300r3 � 30r4 ÿ r5)eÿr=2
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We observe that the solutions Snl(r) of the differential equation (6.24)

contain the factor r leÿr=2. Therefore, we de®ne the function Fnl(r) by

Snl(r) � Fnl(r)r leÿr=2

and substitute this expression into equation (6.24) with ë � n to obtain

r
d2 Fnl

dr2
� (2l � 2ÿ r)

dFnl

dr
� (nÿ l ÿ 1)Fnl � 0 (6:51)

where we have also divided the equation by the common factor r.

The differential equation satis®ed by the associated Laguerre polynomials is

given by equation (F.16) as

r
d2 L

j
k

dr2
� ( j� 1ÿ r)

dL
j
k

dr
� (k ÿ j)L

j
k � 0

If we let k � n� l and j � 2l � 1, then this equation takes the form

r
d2 L2 l�1

n� l

dr2
� (2l � 2ÿ r)

dL2 l�1
n� l

dr
� (nÿ l ÿ 1)L2 l�1

n� l � 0 (6:52)

We have already found that the set of functions Snl(r) contains all the

solutions to (6.24). Therefore, a comparison of equations (6.51) and (6.52)

shows that Fnl is proportional to L2 l�1
n�1 . Thus, the function Snl(r) is related to

the polynomial L2 l�1
n� l (r) by

Snl(r) � cnlr leÿr=2 L2 l�1
n� l (r) (6:53)

The proportionality constants cnl in equation (6.53) are determined by the

normalization condition (6.25). When equation (6.53) is substituted into (6.25),

we have

Table 6.1. (cont.)

R61 � (Z=aì)3=2

432
��������
210
p (840ÿ 840r� 252r2 ÿ 28r3 � r4)r eÿr=2

R62 � (Z=aì)3=2

864
��������
105
p (336ÿ 168r� 24r2 ÿ r3)r2 eÿr=2

R63 � (Z=aì)3=2

2592
�����
35
p (72ÿ 18r� r2)r3 eÿr=2

R64 � (Z=aì)3=2

12 960
���
7
p (10ÿ r)r4 eÿr=2

R65 � (Z=aì)3=2

12 960
�����
77
p r5 eÿr=2
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c2
nl

�1
0

r2 l�1eÿr[L2 l�1
n� l (r)]2 dr � 1

The value of the integral is given by equation (F.25) with á � n� l and

j � 2l � 1, so that

c2
nl

2n[(n� l)!]3

(nÿ l ÿ 1)!
� 1

and Snl(r) in equation (6.53) becomes

Snl(r) � ÿ (nÿ l ÿ 1)!

2n[(n� l)!]3

� �1=2

r leÿr=2 L2 l�1
n� l (r) (6:54)

Taking the negative square root maintains the sign of Snl(r).

Equations (6.39) and (F.22), with Snl(r) and L
j
k(r) related by (6.54), are

identical. From equations (F.23) and (F.24), we ®nd�1
0

Snl(r)Sn�1, l(r)r2 dr � ÿ1
2

������������������������������������
(nÿ l)(n� l � 1)

n(n� 1)

s
�1

0

Snl(r)Sn9, l(r)r2 dr � 0, n9 6� n, n� 1

The normalized radial functions Rnl(r) may be expressed in terms of the

associated Laguerre polynomials by combining equations (6.22), (6.23), and

(6.54)

Rnl(r) � ÿ
��������������������������������
4(nÿ l ÿ 1)!Z3

n4[(n� l)!]3a3
ì

s
2Zr

naì

� � l

eÿZr=na0 L2 l�1
n� l (2Zr=naì) (6:55)

Solution for positive energies

There are also solutions to the radial differential equation (6.17) for positive

values of the energy E, which correspond to the ionization of the hydrogen-like

atom. In the limit r!1, equations (6.17) and (6.18) for positive E become

d2 R(r)

dr2
� 2ìE

"2
R(r) � 0

for which the solution is

R(r) � ce�i(2ìE)1=2 r="

where c is a constant of integration. This solution has oscillatory behavior at

in®nity and leads to an acceptable, well-behaved eigenfunction of equation

(6.17) for all positive eigenvalues E. Thus, the radial equation (6.17) has a

continuous range of positive eigenvalues as well as the discrete set (equation

(6.48)) of negative eigenvalues. The corresponding eigenfunctions represent
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unbound or scattering states and are useful in the study of electron±ion

collisions and scattering phenomena. In view of the complexity of the analysis

for obtaining the eigenfunctions and eigenvalues of equation (6.17) for positive

E and the unimportance of these quantities in most problems of chemical

interest, we do not consider this case any further.

In®nite nuclear mass

The energy levels En and the radial functions Rnl(r) depend on the reduced

mass ì of the two-particle system

ì � mN me

mN � me

� me

1� me

mN

where mN is the nuclear mass and me is the electronic mass. The value of me is

9:109 39 3 10ÿ31 kg. For hydrogen, the nuclear mass is the protonic mass,

1:672 62 3 10ÿ27 kg, so that ì is 9:1044 3 10ÿ31 kg. For heavier hydrogen-like

atoms, the nuclear mass is, of course, greater than the protonic mass. In the

limit mN !1, the reduced mass and the electronic mass are the same. In the

classical two-particle problem of Section 6.1, this limit corresponds to the

nucleus remaining at a ®xed point in space.

In most applications, the reduced mass is suf®ciently close in value to the

electronic mass me that it is customary to replace ì in the expressions for the

energy levels and wave functions by me. The parameter aì � "2=ìe92 is

thereby replaced by a0 � "2=mee92. The quantity a0 is, according to the earlier

Bohr theory, the radius of the circular orbit of the electron in the ground state

of the hydrogen atom (Z � 1) with a stationary nucleus. Except in Section 6.5,

where this substitution is not appropriate, we replace ì by me and aì by a0 in

the remainder of this book.

6.4 Atomic orbitals

We have shown that the simultaneous eigenfunctions ø(r, è, j) of the opera-

tors Ĥ , L̂2, and L̂z have the form

ønlm(r, è, j) � jnlmi � Rnl(r)Ylm(è, j) (6:56)

where for convenience we have introduced the Dirac notation. The radial

functions Rnl(r) and the spherical harmonics Ylm(è, j) are listed in Tables 6.1

and 5.1, respectively. These eigenfunctions depend on the three quantum

numbers n, l, and m. The integer n is called the principal or total quantum

number and determines the energy of the atom. The azimuthal quantum

number l determines the total angular momentum of the electron, while the
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magnetic quantum number m determines the z-component of the angular

momentum. We have found that the allowed values of n, l, and m are

m � 0, �1, �2, . . .

l � jmj, jmj � 1, jmj � 2, . . .

n � l � 1, l � 2, l � 3, . . .

This set of relationships may be inverted to give

n � 1, 2, 3, . . .

l � 0, 1, 2, . . . , nÿ 1

m � ÿl, ÿl � 1, . . . , ÿ1, 0, 1, . . . , l ÿ 1, l

These eigenfunctions form an orthonormal set, so that

hn9l9m9jnlmi � änn9ä ll9ämm9

The energy levels of the hydrogen-like atom depend only on the principal

quantum number n and are given by equation (6.48), with aì replaced by a0, as

En � ÿ Z2e92

2a0 n2
, n � 1, 2, 3, . . . (6:57)

To ®nd the degeneracy gn of En, we note that for a speci®c value of n there are

n different values of l. For each value of l, there are (2l � 1) different values of

m, giving (2l � 1) eigenfunctions. Thus, the number of wave functions corre-

sponding to n is given by

gn �
Xnÿ1

l�0

(2l � 1) � 2
Xnÿ1

l�0

l �
Xnÿ1

l�0

1

The ®rst summation on the right-hand side is the sum of integers from 0 to

(nÿ 1) and is equal to n(nÿ 1)=2 (n terms multiplied by the average value of

each term). The second summation on the right-hand side has n terms, each

equal to unity. Thus, we obtain

gn � n(nÿ 1)� n � n2

showing that each energy level is n2-fold degenerate. The ground-state energy

level E1 is non-degenerate.

The wave functions jnlmi for the hydrogen-like atom are often called atomic

orbitals. It is customary to indicate the values 0, 1, 2, 3, 4, 5, 6, 7, . . . of the

azimuthal quantum number l by the letters s, p, d, f, g, h, i, k, . . . , respectively.

Thus, the ground-state wave function j100i is called the 1s atomic orbital,

j200i is called the 2s orbital, j210i, j211i, and |21 ÿ1l are called 2p orbitals,

and so forth. The ®rst four letters, standing for sharp, principal, diffuse, and
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fundamental, originate from an outdated description of spectral lines. The

letters which follow are in alphabetical order with j omitted.

s orbitals

The 1s atomic orbital j1si is

j1si � j100i � R10(r)Y00(è, j) � 1

ð1=2

Z

a0

� �3=2

eÿZr=a0 (6:58)

where R10(r) and Y00(0, j) are obtained from Tables 6.1 and 5.1. Likewise, the

orbital j2si is

j2si � j200i � (Z=a0)3=2

4
������
2ð
p 2ÿ Zr

a0

� �
eÿZr=2a0 (6:59)

and so forth for higher values of the quantum number n. The expressions for

jnsi for n � 1, 2, and 3 are listed in Table 6.2.

All the s orbitals have the spherical harmonic Y00(è, j) as a factor. This

spherical harmonic is independent of the angles è and j, having a value

(2
���
ð
p

)ÿ1. Thus, the s orbitals depend only on the radial variable r and are

spherically symmetric about the origin. Likewise, the electronic probability

density jøj2 is spherically symmetric for s orbitals.

p orbitals

The wave functions for n � 2, l � 1 obtained from equation (6.56) are as

follows:

j2p0i � j210i � (Z=a0)5=2

4
������
2ð
p reÿZr=2a0 cos è (6:60a)

j2p1i � j211i � 1

8ð1=2

Z

a0

� �5=2

reÿZr=2a0 sinè eij (6:60b)

j2pÿ1i � j21ÿ1i � 1

8ð1=2

Z

a0

� �5=2

reÿZr=2a0 sin è eÿij (6:60c)

The 2s and 2p0 orbitals are real, but the 2p1 and 2pÿ1 orbitals are complex.

Since the four orbitals have the same eigenvalue E2, any linear combination of

them also satis®es the SchroÈdinger equation (6.12) with eigenvalue E2. Thus,

we may replace the two complex orbitals by the following linear combinations

to obtain two new real orbitals
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Table 6.2. Real wave functions for the hydrogen-like atom. The parameter aì

has been replaced by a0

State Wave function

Spherical coordinates Cartesian coordinates

1s
(Z=a0)3=2���

ð
p eÿZr=a0

2s
(Z=a0)3=2

4
������
2ð
p 2ÿ Zr

a0

� �
eÿZr=2a0

2pz

(Z=a0)5=2

4
������
2ð
p reÿZr=2a0 cos è

(Z=a0)5=2

4
������
2ð
p zeÿZr=2a0

2px

(Z=a0)5=2

4
������
2ð
p reÿZr=2a0 sin è cosj

(Z=a0)5=2

4
������
2ð
p xeÿZr=2a0

2p y

(Z=a0)5=2

4
������
2ð
p reÿZr=2a0 sin è sinj

(Z=a0)5=2

4
������
2ð
p yeÿZr=2a0

3s
(Z=a0)3=2

81
������
3ð
p 27ÿ 18

Zr

a0

� 2
Z2 r2

a2
0

 !
eÿZr=3a0

3pz

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
reÿZr=3a0 cos è

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
zeÿZr=3a0

3px

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
reÿZr=3a0 sin è cosj

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
xeÿZr=3a0

3p y

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
reÿZr=3a0 sin è sinj

2(Z=a0)5=2

81
������
2ð
p 6ÿ Zr

a0

� �
yeÿZr=3a0

3dz2

(Z=a0)7=2

81
������
6ð
p r2eÿZr=3a0 (3 cos2èÿ 1)

(Z=a0)7=2

81
������
6ð
p (3z2 ÿ r2)eÿZr=3a0

3dxz

2(Z=a0)7=2

81
������
2ð
p r2eÿZr=3a0 sin è cos è cosj

2(Z=a0)7=2

81
������
2ð
p xzeÿZr=3a0

3d yz

2(Z=a0)7=2

81
������
2ð
p r2eÿZr=3a0 sin è cos è sinj

2(Z=a0)7=2

81
������
2ð
p yzeÿZr=3a0

3dx2ÿ y2

(Z=a0)7=2

81
������
2ð
p r2eÿZr=3a0 sin2è cos 2j

(Z=a0)7=2

81
������
2ð
p (x2 ÿ y2)eÿZr=3a0

3dxy

(Z=a0)7=2

81
������
2ð
p r2eÿZr=3a0 sin2è sin 2j

2(Z=a0)7=2

81
������
2ð
p xyeÿZr=3a0
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j2pxi � 2ÿ1=2(j2p1i � j2pÿ1i) � 1

4(2ð)1=2

Z

a0

� �5=2

reÿZr=2a0 sinè cosj (6:61a)

j2p yi � ÿi2ÿ1=2(j2 p1i ÿ j2pÿ1i) � 1

4(2ð)1=2

Z

a0

� �5=2

reÿZr=2a0 sin è sinj

(6:61b)

where equations (A.32) and (A.33) have been used. These new orbitals j2pxi
and j2p yi are orthogonal to each other and to all the other eigenfunctions

jnlmi. The factor 2ÿ1=2 ensures that they are normalized as well. Although

these new orbitals are simultaneous eigenfunctions of the Hamiltonian operator

Ĥ and of the operator L̂2, they are not eigenfunctions of the operator L̂z.

If we now substitute equations (5.29a), (5.29b), and (5.29c) into (6.61a),

(6.61b), and (6.60a), respectively, we obtain for the set of three real 2p orbitals

j2pxi � 1

4(2ð)1=2

Z

a0

� �5=2

xeÿZr=2a0 (6:62a)

j2p yi � 1

4(2ð)1=2

Z

a0

� �5=2

yeÿZr=2a0 (6:62b)

j2pzi � 1

ð1=2

Z

2a0

� �5=2

zeÿZr=2a0 (6:62c)

The subscript x, y, or z on a 2p orbital indicates that the angular part of the

orbital has its maximum value along that axis. Graphs of the square of the

angular part of these three functions are presented in Figure 6.2. The mathema-

tical expressions for the real 2p and 3p atomic orbitals are given in Table 6.2.

d orbitals

The ®ve wave functions for n � 3, l � 2 are

j3d0i � j320i � 1

81
������
6ð
p Z

a0

� �7=2

r2eÿ( Zr=3a0)(3 cos2 èÿ 1) (6:63a)

j3d�1i � j32� 1i � 1

81
���
ð
p Z

a0

� �7=2

r2eÿ( Zr=3a0) sin è cosè e�ij (6:63b)

j3d�2i � j32� 2i � 1

162
���
ð
p Z

a0

� �7=2

r2eÿ( Zr=3a0) sin2è e�i2j (6:63c)

The orbital j3d0i is real. Substitution of equation (5.29c) into (6.63a) and a

change in notation for the subscript give
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j3dz2i � 1

81
������
6ð
p Z

a0

� �7=2

(3z2 ÿ r2)eÿ( Zr=3a0) (6:64a)

From the four complex orbitals j3d1i, j3dÿ1i, j3d2i, and j3dÿ2i, we construct

four equivalent real orbitals by the relations

j3dxzi � 2ÿ1=2(j3d1i � j3dÿ1i) � 21=2

81ð1=2

Z

a0

� �7=2

xzeÿ( Zr=3a0) (6:64b)

j3d yzi � ÿi2ÿ1=2(j3d1i ÿ j3dÿ1i) � 21=2

81ð1=2

Z

a0

� �7=2

yzeÿ( Zr=3a0) (6:64c)
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Figure 6.2 Polar graphs of the hydrogen 2p atomic orbitals. Regions of positive and
negative values of the orbitals are indicated by � and ÿ signs, respectively. The
distance of the curve from the origin is proportional to the square of the angular part
of the atomic orbital.
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j3dx2ÿ y2i � 2ÿ1=2(j3d2i � j3dÿ2i) � 1

81(2ð)1=2

Z

a0

� �7=2

(x2 ÿ y2)eÿ( Zr=3a0)

(6:64d)

j3dxyi � ÿi2ÿ1=2(j3d2i ÿ j3dÿ2i) � 21=2

81ð1=2

Z

a0

� �7=2

xyeÿ( Zr=3a0) (6:64e)

In forming j3dx2ÿ y2i and j3dxyi, equations (A.37) and (A.38) were used. Graphs

of the square of the angular part of these ®ve real functions are shown in Figure

6.3 and the mathematical expressions are listed in Table 6.2.

Radial functions and expectation values

The radial functions Rnl(r) for the 1s, 2s, 2p, 3s, 3p, and 3d atomic orbitals are

shown in Figure 6.4. For states with l 6� 0, the radial functions vanish at the

origin. For states with no angular momentum (l � 0), however, the radial

function Rn0(r) has a non-zero value at the origin. The function Rnl(r) has

(nÿ l ÿ 1) nodes between 0 and 1, i.e., the function crosses the r-axis

(nÿ l ÿ 1) times, not counting the origin.

The probability of ®nding the electron in the hydrogen-like atom, with the

distance r from the nucleus between r and r � dr, with angle è between è and

è� dè, and with the angle j between j and j� dj is

jønlmj2 dô � [Rnl(r)]2jYlm(è, j)j2 r2 sinè dr dè dj

To ®nd the probability Dnl(r) dr that the electron is between r and r � dr

regardless of the direction, we integrate over the angles è and j to obtain

Dnl(r) dr � r2[Rnl(r)]2 dr

�ð
0

�2ð

0

jYlm(è, j)j2 sinè dè dj � r2[Rnl(r)]2 dr

(6:65)

Since the spherical harmonics are normalized, the value of the double integral

is unity.

The radial distribution function Dnl(r) is the probability density for the

electron being in a spherical shell with inner radius r and outer radius r � dr.

For the 1s, 2s, and 2p states, these functions are
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Figure 6.3 Polar graphs of the hydrogen 3d atomic orbitals. Regions of positive and
negative values of the orbitals are indicated by � and ÿ signs, respectively. The
distance of the curve from the origin is proportional to the square of the angular part
of the atomic orbital.
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Figure 6.4 The radial functions Rnl(r) for the hydrogen-like atom.
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D10(r) � 4
Z

a0

� �3

r2eÿ2 Zr=a0

D20(r) � 1

8

Z

a0

� �3

r2 2ÿ Zr

a0

� �2

eÿZr=a0 (6:66)

D21(r) � 1

24

Z

a0

� �5

r4eÿZr=a0

Higher-order functions are readily determined from Table 6.1. The radial

distribution functions for the 1s, 2s, 2p, 3s, 3p, and 3d states are shown in

Figure 6.5.

The most probable value rmp of r for the 1s state is found by setting the

derivative of D10(r) equal to zero

dD10(r)

dr
� 8

Z

a0

� �3

r 1ÿ Zr

a0

� �
eÿ2 Zr=a0 � 0

which gives

rmp � a0=Z (6:67)

Thus, for the hydrogen atom (Z � 1) the most probable distance of the electron

from the nucleus is equal to the radius of the ®rst Bohr orbit.

The radial distribution functions may be used to calculate expectation values

of functions of the radial variable r. For example, the average distance of the

electron from the nucleus for the 1s state is given by

hri1s �
�1

0

rD10(r) dr � 4
Z

a0

� �3�1
0

r3eÿ2 Zr=a0 dr � 3a0

2Z
(6:68)

where equations (A.26) and (A.28) were used to evaluate the integral. By the

same method, we ®nd

hri2s � 6a0

Z
, hri2p � 5a0

Z

The expectation values of powers and inverse powers of r for any arbitrary

state of the hydrogen-like atom are de®ned by

hrkinl �
�1

0

rkDnl(r) dr �
�1

0

rk[Rnl(r)]2 r2 dr (6:69)

In Appendix H we show that these expectation values obey the recurrence

relation

k � 1

n2
hrkinl ÿ (2k � 1)

a0

Z
hr kÿ1inl � k l(l � 1)� 1ÿ k2

4

� �
a2

0

Z2
hr kÿ2inl � 0

(6:70)
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Figure 6.5 The radial distribution functions Dnl(r) for the hydrogen-like atom.
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For k � 0, equation (6.70) gives

hrÿ1inl � Z

n2a0

(6:71)

For k � 1, equation (6.70) gives

2

n2
hrinl ÿ 3a0

Z
� l(l � 1)

a2
0

Z2
hrÿ1inl � 0

or

hrinl � a0

2Z
[3n2 ÿ l(l � 1)] (6:72)

For k � 2, equation (6.70) gives

3

n2
hr2inl ÿ 5a0

Z
hrinl � 2[l(l � 1)ÿ 3

4
]

a2
0

Z2
� 0

or

hr2inl � n2a2
0

2Z2
[5n2 ÿ 3l(l � 1)� 1] (6:73)

For higher values of k, equation (6.70) leads to hr3inl, hr4inl, . . .
For k � ÿ1, equation (6.70) relates hrÿ3inl to hrÿ2inl

hrÿ3inl � Z

l(l � 1)a0

hrÿ2inl (6:74)

For k � ÿ2, ÿ3, . . . , equation (6.70) gives successively hrÿ4inl, hrÿ5inl, . . .
expressed in terms of hrÿ2inl.

Although the expectation value hrÿ2inl cannot be obtained from equation

(6.70), it can be evaluated by regarding the azimuthal quantum number l as the

parameter in the Hellmann±Feynman theorem (equation (3.71)). Thus, we

have

@En

@ l
� @ Ĥ l

@ l

� �
(6:75)

where the Hamiltonian operator Ĥ l is given by equation (6.18) and the energy

levels En by equation (6.57). The derivative @ Ĥ l=@ l is just

@ Ĥ l

@ l
� "2

2ìr2
(2l � 1) (6:76)

In the derivation of (6.57), the quantum number n is shown to be the value of l

plus a positive integer. Accordingly, we have @n=@ l � 1 and

@En

@ l
� ÿ Z2e92

2a0

@

@ l
nÿ2 � ÿ Z2e92

2a0

@n

@ l

@

@n
nÿ2 � Z2"2

ìa2
0

nÿ3 (6:77)

where aì � "2=ìe92 has been replaced by a0 � "2=mee92. Substitution of

equations (6.76) and (6.77) into (6.75) gives the desired result

186 The hydrogen atom



hrÿ2inl � Z2

n3(l � 1
2
)a2

0

(6:78)

Expression (6.71) for the expectation value of rÿ1 may be used to calculate

the average potential energy of the electron in the state jnlmi. The potential

energy V (r) is given by equation (6.13). Its expectation value is

hV inl � ÿZe92hrÿ1inl � ÿ Z2e92

a0 n2
(6:79)

The result depends only on the principal quantum number n, so we may drop

the subscript l. A comparison with equation (6.57) shows that the total energy

is equal to one-half of the average potential energy

En � 1
2
hVin (6:80)

Since the total energy is the sum of the kinetic energy T and the potential

energy V, we also have the expression

Tn � ÿEn � Z2e92

2a0 n2
(6:81)

The relationship En � ÿTn � (Vn=2) is an example of the quantum-mechani-

cal virial theorem.

6.5 Spectra

The theoretical results for the hydrogen-like atom may be related to experimen-

tally measured spectra. Observed spectral lines arise from transitions of the

atom from one electronic energy level to another. The frequency í of any given

spectral line is given by the Planck relation

í � (E2 ÿ E1)=h

where E1 is the lower energy level and E2 the higher one. In an absorption

spectrum, the atom absorbs a photon of frequency í and undergoes a transition

from a lower to a higher energy level (E1 ! E2). In an emission spectrum, the

process is reversed; the transition is from a higher to a lower energy level

(E2 ! E1) and a photon is emitted. A spectral line is usually expressed as a

wave number ~í, de®ned as the reciprocal of the wavelength ë

~í � 1

ë
� í

c
� jE2 ÿ E1j

hc
(6:82)

The hydrogen-like atomic energy levels are given in equation (6.48). If n1 and

n2 are the principal quantum numbers of the energy levels E1 and E2,

respectively, then the wave number of the spectral line is
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~í � RZ2 1

n2
1

ÿ 1

n2
2

� �
, n2 . n1 (6:83)

where the Rydberg constant R is given by

R � ìe94

4ð"3c
(6:84)

The value of the Rydberg constant varies from one hydrogen-like atom to

another because the reduced mass ì is a factor. It is not appropriate here to

replace the reduced mass ì by the electronic mass me because the errors

caused by this substitution are larger than the uncertainties in the experimental

data. The measured values of the Rydberg constants for the atoms 1H, 4He�,
7Li2�, and 9 Be3� are listed in Table 6.3. Following the custom of the ®eld of

spectroscopy, we express the wave numbers in the unit cmÿ1 rather than the SI

unit mÿ1. Also listed in Table 6.3 is the extrapolated value of R for in®nite

nuclear mass. The calculated values from equation (6.84) are in agreement

with the experimental values within the known number of signi®cant ®gures

for the fundamental constants me, e9, and " and the nuclear masses mN . The

measured values of R have more signi®cant ®gures than any of the quantities

in equation (6.84) except the speed of light c.

The spectrum of hydrogen (Z � 1) is divided into a number of series of

spectral lines, each series having a particular value for n1. As many as six

different series have been observed:

n1 � 1, Lyman series ultraviolet

n1 � 2, Balmer series visible

n1 � 3, Paschen series infrared

n1 � 4, Brackett series infrared

n1 � 5, Pfund series far infrared

n1 � 6, Humphreys series very far infrared

Table 6.3. Rydberg constant for

hydrogen-like atoms

Atom R (cmÿ1)

1H 109 677.58
2H (D) 109 707.42
4He� 109 722.26
7Li2� 109 728.72
9Be3� 109 730.62
1 109 737.31
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Thus, transitions from the lowest energy level n1 � 1 to the higher energy

levels n2 � 2, 3, 4, . . . give the Lyman series, transitions from n1 � 2 to

n2 � 3, 4, 5, . . . give the Balmer series, and so forth. An energy level diagram

for the hydrogen atom is shown in Figure 6.6. The transitions corresponding to

the spectral lines in the various series are shown as vertical lines between the

energy levels.
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Figure 6.6 Energy levels for the hydrogen atom.
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A typical series of spectral lines is shown schematically in Figure 6.7. The

line at the lowest value of the wave number ~í corresponds to the transition

n1 ! (n2 � n1 � 1), the next line to n1 ! (n2 � n1 � 2), and so forth. These

spectral lines are situated closer and closer together as n2 increases and

converge to the series limit, corresponding to n2 � 1. According to equation

(6.83), the series limit is given by

~í � R=n2
1 (6:85)

Beyond the series limit is a continuous spectrum corresponding to transitions

from the energy level n1 to the continuous range of positive energies for the

atom.

The reduced mass of the hydrogen isotope 2H, known as deuterium, slightly

differs from that of ordinary hydrogen 1H. Accordingly, the Rydberg constants

for hydrogen and for deuterium differ slightly as well. Since naturally occurring

hydrogen contains about 0.02% deuterium, each observed spectral line in

hydrogen is actually a doublet of closely spaced lines, the one for deuterium

much weaker in intensity than the other. This effect of nuclear mass on spectral

lines was used by Urey (1932) to prove the existence of deuterium.

Pseudo-Zeeman effect

The in¯uence of an external magnetic ®eld on the spectrum of an atom is

known as the Zeeman effect. The magnetic ®eld interacts with the magnetic

moments within the atom and causes the atomic spectral lines to split into a

number of closely spaced lines. In addition to a magnetic moment due to its

orbital motion, an electron also possesses a magnetic moment due to an

intrinsic angular momentum called spin. The concept of spin is discussed in

Chapter 7. In the discussion here, we consider only the interaction of the

external magnetic ®eld with the magnetic moment due to the electronic orbital

motion and neglect the effects of electron spin. Thus, the following analysis

∞ν~

Figure 6.7 A typical series of spectral lines for a hydrogen-like atom shown in terms of
the wave number ~í.

190 The hydrogen atom



does not give results that correspond to actual observations. For this reason, we

refer to this treatment as the pseudo-Zeeman effect.

When a magnetic ®eld B is applied to a hydrogen-like atom with magnetic

moment M, the resulting potential energy V is given by the classical expression

V � ÿM : B � ìB

"
L : B (6:86)

where equation (5.81) has been introduced. If the z-axis is selected to be

parallel to the vector B, then we have

V � ìB BLz=" (6:87)

If we replace the z-component of the classical angular momentum in equation

(6.87) by its quantum-mechanical operator, then the Hamiltonian operator ĤB

for the hydrogen-like atom in a magnetic ®eld B becomes

Ĥ B � Ĥ � ìB B

"
L̂z (6:88)

where Ĥ is the Hamiltonian operator (6.14) for the atom in the absence of the

magnetic ®eld. Since the atomic orbitals ønlm in equation (6.56) are simultan-

eous eigenfunctions of Ĥ , L̂2, and L̂z, they are also eigenfunctions of the

operator Ĥ B. Accordingly, we have

Ĥ Bønlm � Ĥ � ìB B

"
L̂z

� �
ønlm � (En � mìB B)ønlm (6:89)

where En is given by (6.48) and equation (6.15c) has been used. Thus, the

energy levels of a hydrogen-like atom in an external magnetic ®eld depend on

the quantum numbers n and m and are given by

Enm � ÿ Z2e92

2aìn2
� mìB B, n � 1, 2, . . . ; m � 0, �1, . . . , �(nÿ 1)

(6:90)

This dependence on m is the reason why m is called the magnetic quantum

number.

The degenerate energy levels for the hydrogen atom in the absence of an

external magnetic ®eld are split by the magnetic ®eld into a series of closely

spaced levels, some of which are non-degenerate while others are still

degenerate. For example, the energy level E3 for n � 3 is nine-fold degenerate

in the absence of a magnetic ®eld. In the magnetic ®eld, this energy level is

split into ®ve levels: E3 (triply degenerate), E3 � ìB B (doubly degenerate),

E3 ÿ ìB B (doubly degenerate), E3 � 2ìB B (non-degenerate), and E3 ÿ 2ìB B

(non-degenerate). Energy levels for s orbitals (l � 0) are not affected by the

application of the magnetic ®eld. Energies for p orbitals (l � 1) are split by the
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magnetic ®eld into three levels. For d orbitals (l � 2), the energies are split into

®ve levels.

This splitting of the energy levels by the magnetic ®eld leads to the splitting

of the lines in the atomic spectrum. The wave number ~í of the spectral line

corresponding to a transition between the state jn1 l1 m1i and the state jn2 l2 m2i
is

~í � jÄEj
hc
� RZ2 1

n2
1

ÿ 1

n2
2

� �
� ìB B

hc
(m2 ÿ m1), n2 . n1 (6:91)

Transitions between states are subject to certain restrictions called selection

rules. The conservation of angular momentum and the parity of the spherical

harmonics limit transitions for hydrogen-like atoms to those for which

Äl � �1 and for which Äm � 0, �1. Thus, an observed spectral line ~í0 in the

absence of the magnetic ®eld, given by equation (6.83), is split into three lines

with wave numbers ~í0 � (ìB B=hc), ~í0, and ~í0 ÿ (ìB B=hc).

Problems

6.1 Obtain equations (6.28) from equations (6.26).

6.2 Evaluate the commutator [Âë, B̂ë] where the operators Âë and B̂ë are those in

equations (6.26).

6.3 Show explicitly by means of integration by parts that the operator Ĥ l in equation

(6.18) is hermitian for a weighting function equal to r2.

6.4 Demonstrate by means of integration by parts that the operator Ĥ9l in equation

(6.36) is hermitian for a weighting function w(r) � r.

6.5 Show that (Âë � 1)Së�1, l � aë�1, lSë l and that (B̂ë � 1)Së l � bë�1, lSë�1, l.

6.6 Derive equation (6.45) from equation (6.34).

6.7 Derive the relationship

anl

�1
0

SnlSnÿ1, lr2 drÿ bn�1, l

�1
0

SnlSn�1, lr2 dr � 1

6.8 Evaluate hrÿ1inl for the hydrogen-like atom using the properties of associated

Laguerre polynomials. First substitute equations (6.22) and (6.55) into (6.69) for

k � ÿ1. Then apply equations (F.22) to obtain (6.71).

6.9 From equation (F.19) with í � 2, show that�1
0

r2 l�3eÿr[L2 l�1
n� l (r)]2 dr � 2[3n2 ÿ l(l � 1)][(n� l)!]3

(nÿ l ÿ 1)!

Then show that hrinl is given by equation (6.72).

6.10 Show that hri2s � 6a0=Z using the appropriate radial distribution function in

equations (6.66).

6.11 Set ë � e9 in the Hellmann±Feynman theorem (3.71) to obtain hrÿ1inl for the

hydrogen-like atom. Note that a0 depends on e9.
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6.12 Show explicitly for a hydrogen atom in the 1s state that the total energy E1 is

equal to one-half the expectation value of the potential energy of interaction

between the electron and the nucleus. This result is an example of the quantum-

mechanical virial theorem.

6.13 Calculate the frequency, wavelength, and wave number for the series limit of the

Balmer series of the hydrogen-atom spectral lines.

6.14 The atomic spectrum of singly ionized helium He� with n1 � 4, n2 � 5, 6, . . . is

known as the Pickering series. Calculate the energy differences, wave numbers,

and wavelengths for the ®rst three lines in this spectrum and for the series limit.

6.15 Calculate the frequency, wavelength, and wave number of the radiation emitted

from an electronic transition from the third to the ®rst electronic level of Li2�.

Calculate the ionization potential of Li2� in electron volts.

6.16 Derive an expression in terms of R1 for the difference in wavelength,

Äë � ëH ÿ ëD, between the ®rst line of the Balmer series (n1 � 2) for a

hydrogen atom and the corresponding line for a deuterium atom? Assume that

the masses of the proton and the neutron are the same.
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7

Spin

7.1 Electron spin

In our development of quantum mechanics to this point, the behavior of a

particle, usually an electron, is governed by a wave function that is dependent

only on the cartesian coordinates x, y, z or, equivalently, on the spherical

coordinates r, è, j. There are, however, experimental observations that cannot

be explained by a wave function which depends on cartesian coordinates alone.

In a quantum-mechanical treatment of an alkali metal atom, the lone valence

electron may be considered as moving in the combined ®eld of the nucleus and

the core electrons. In contrast to the hydrogen-like atom, the energy levels of

this valence electron are found to depend on both the principal and the

azimuthal quantum numbers. The experimental spectral line pattern corre-

sponding to transitions between these energy levels, although more complex

than the pattern for the hydrogen-like atom, is readily explained. However, in a

highly resolved spectrum, an additional complexity is observed; most of the

spectral lines are actually composed of two lines with nearly identical wave

numbers. In an alkaline-earth metal atom, which has two valence electrons,

many of the lines in a highly resolved spectrum are split into three closely

spaced lines. The spectral lines for the hydrogen atom, as discussed in Section

6.5, are again observed to be composed of several very closely spaced lines,

with equation (6.83) giving the average wave number of each grouping. The

splitting of the spectral lines in the alkali and alkaline-earth metal atoms and in

hydrogen cannot be explained in terms of the quantum-mechanical postulates

that are presented in Section 3.7, i.e., they cannot be explained in terms of a

wave function that is dependent only on cartesian coordinates.

G. E. Uhlenbeck and S. Goudsmit (1925) explained the splitting of atomic

spectral lines by postulating that the electron possesses an intrinsic angular

momentum, which is called spin. The component of the spin angular momen-
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tum in any direction has only the value "=2 or ÿ"=2. This spin angular

momentum is in addition to the orbital angular momentum of the electronic

motion about the nucleus. They further assumed that the spin imparts to the

electron a magnetic moment of magnitude e"=2me, where ÿe and me are the

electronic charge and mass. The interaction of an electron's magnetic moment

with its orbital motion accounts for the splitting of the spectral lines in the

alkali and alkaline-earth metal atoms. A combination of spin and relativistic

effects is needed to explain the ®ne structure of the hydrogen-atom spectrum.

The concept of spin as introduced by Uhlenbeck and Goudsmit may also be

applied to the Stern±Gerlach experiment, which is described in detail in

Section 1.7. The explanation for the splitting of the beam of silver atoms into

two separate beams by the external inhomogeneous magnetic ®eld requires the

introduction of an additional parameter to describe the behavior of the odd

electron. Thus, the magnetic moment of the silver atom is attributed to the odd

electron possessing an intrinsic angular momentum which can have one of only

two distinct values.

Following the hypothesis of electron spin by Uhlenbeck and Goudsmit, P. A.

M. Dirac (1928) developed a quantum mechanics based on the theory of

relativity rather than on Newtonian mechanics and applied it to the electron.

He found that the spin angular momentum and the spin magnetic moment of

the electron are obtained automatically from the solution of his relativistic

wave equation without any further postulates. Thus, spin angular momentum is

an intrinsic property of an electron (and of other elementary particles as well)

just as are the charge and rest mass.

In classical mechanics, a sphere moving under the in¯uence of a central

force has two types of angular momentum, orbital and spin. Orbital angular

momentum is associated with the motion of the center of mass of the sphere

about the origin of the central force. Spin angular momentum refers to the

motion of the sphere about an axis through its center of mass. It is tempting to

apply the same interpretation to the motion of an electron and regard the spin

as the angular momentum associated with the electron revolving on its axis.

However, as Dirac's relativistic quantum theory shows, the spin angular

momentum is an intrinsic property of the electron, not a property arising from

any kind of motion. The electron is a structureless point particle, incapable of

`spinning' on an axis. In this regard, the term `spin' in quantum mechanics can

be misleading, but its use is well-established and universal.

Prior to Dirac's relativistic quantum theory, W. Pauli (1927) showed how spin

could be incorporated into non-relativistic quantum mechanics. Since the

subject of relativistic quantum mechanics is beyond the scope of this book, we

present in this chapter Pauli's modi®cation of the wave-function description so
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as to include spin. His treatment is equivalent to Dirac's relativistic theory in

the limit of small electron velocities (v=c! 0).

7.2 Spin angular momentum

The postulates of quantum mechanics discussed in Section 3.7 are incomplete.

In order to explain certain experimental observations, Uhlenbeck and Goudsmit

introduced the concept of spin angular momentum for the electron. This

concept is not contained in our previous set of postulates; an additional

postulate is needed. Further, there is no reason why the property of spin should

be con®ned to the electron. As it turns out, other particles possess an intrinsic

angular momentum as well. Accordingly, we now add a sixth postulate to the

previous list of quantum principles.

6. A particle possesses an intrinsic angular momentum S and an associated magnetic

moment Ms. This spin angular momentum is represented by a hermitian operator Ŝ

which obeys the relation Ŝ 3 Ŝ � i"Ŝ. Each type of particle has a ®xed spin

quantum number or spin s from the set of values s � 0, 1
2
, 1, 3

2
, 2, . . . The spin s for

the electron, the proton, or the neutron has a value 1
2
. The spin magnetic moment for

the electron is given by Ms � ÿeS=me.

As noted in the previous section, spin is a purely quantum-mechanical concept;

there is no classical-mechanical analog.

The spin magnetic moment Ms of an electron is proportional to the spin

angular momentum S,

Ms � ÿ gse

2me

S � ÿ gsìB

"
S (7:1)

where gs is the electron spin gyromagnetic ratio and the Bohr magneton ìB is

de®ned in equation (5.82). The experimental value of gs is 2.002 319 304 and

the value predicted by Dirac's relativistic quantum theory is exactly 2. The

discrepancy is removed when the theory of quantum electrodynamics is

applied. We adopt the value gs � 2 here. A comparison of equations (5.81) and

(7.1) shows that the proportionality constant between magnetic moment and

angular momentum is twice as large in the case of spin. Thus, the spin

gyromagnetic ratio for the electron is twice the orbital gyromagnetic ratio. The

spin gyromagnetic ratios for the proton and the neutron differ from that of the

electron.

The hermitian spin operator Ŝ associated with the spin angular momentum S

has components Ŝx, Ŝ y, Ŝz, so that
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Ŝ � iŜx � jŜ y � kŜz

Ŝ2 � Ŝ2
x � Ŝ2

y � Ŝ2
z

These components obey the commutation relations

[Ŝx, Ŝ y] � i"Ŝz, [Ŝ y, Ŝz] � i"Ŝx, [Ŝz, Ŝx] � i"Ŝ y (7:2)

or, equivalently

Ŝ 3 Ŝ � i"Ŝ (7:3)

Thus, the quantum-mechanical treatment of generalized angular momentum

presented in Section 5.2 may be applied to spin angular momentum. The spin

operator Ŝ is identi®ed with the operator Ĵ and its components Ŝx, Ŝ y, Ŝz with

Ĵx, Ĵ y, Ĵz. Equations (5.26) when applied to spin angular momentum are

Ŝ2jsmsi � s(s� 1)"2jsmsi, s � 0, 1
2
, 1, 3

2
, 2, . . . (7:4)

Ŝzjsmsi � ms"jsmsi, ms � ÿsÿ s� 1, . . . , sÿ 1, s (7:5)

where the quantum numbers j and m are now denoted by s and ms. The

simultaneous eigenfunctions jsmsi of the hermitian operators Ŝ2 and Ŝz are

orthonormal

hs9m9sjsmsi � äss9äms m9s
(7:6)

The raising and lowering operators for spin angular momentum as de®ned by

equations (5.18) are

Ŝ� � Ŝx � iŜ y (7:7a)

Ŝÿ � Ŝx ÿ iŜ y (7:7b)

and equations (5.27) take the form

Ŝ�jsmsi �
�����������������������������������������
(sÿ ms)(s� ms � 1)

p
"js, ms � 1i (7:8a)

Ŝÿjsmsi �
�����������������������������������������
(s� ms)(sÿ ms � 1)

p
"js, ms ÿ 1i (7:8b)

In general, the spin quantum numbers s and ms can have integer and half-

integer values. Although the corresponding orbital angular-momentum quan-

tum numbers l and m are restricted to integer values, there is no reason for

such a restriction on s and ms.

Every type of particle has a speci®c unique value of s, which is called the

spin of that particle. The particle may be elementary, such as an electron, or

composite but behaving as an elementary particle, such as an atomic nucleus.

All 4He nuclei, for example, have spin 0; all electrons, protons, and neutrons

have spin 1
2
; all photons and deuterons (2H nuclei) have spin 1; etc. Particles

with spins 0, 1, 2, . . . are called bosons and those with spins 1
2
, 3

2
, . . . are

fermions. A many particle system of bosons behaves differently from a many
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particle system of fermions. This quantum phenomenon is discussed in Chap-

ter 8.

The state of a particle with zero spin (s � 0) may be represented by a state

function Ø(r, t) of the spatial coordinates r and the time t. However, the state

of a particle having spin s (s 6� 0) must also depend on some spin variable. We

select for this spin variable the component of the spin angular momentum

along the z-axis and use the quantum number ms to designate the state. Thus,

for a particle in a speci®c spin state, the state function is denoted by

Ø(r, ms, t), where ms has only the (2s� 1) possible values ÿs", (ÿs� 1)",

. . . , (sÿ 1)", s". While the variables r and t have a continuous range of

values, the spin variable ms has a ®nite number of discrete values.

For a particle that is not in a speci®c spin state, we denote the spin variable

by ó. A general state function Ø(r, ó , t) for a particle with spin s may be

expanded in terms of the spin eigenfunctions jsmsi,

Ø(r, ó , t) �
Xs

ms�ÿs

Ø(r, ms, t)jsmsi (7:9)

If Ø(r, ó , t) is normalized, then we have

hØjØi �
Xs

ms�ÿs

�
jØ(r, ms, t)j2 dr � 1

where the orthonormal relations (7.6) have been used. The quantity

jØ(r, ms, t)j2 is the probability density for ®nding the particle at r at time t

with the z-component of its spin equal to ms". The integral
� jØ(r, ms, t)j2 dr

is the probability that at time t the particle has the value ms" for the z-

component of its spin angular momentum.

7.3 Spin one-half

Since electrons, protons, and neutrons are the fundamental constituents of

atoms and molecules and all three elementary particles have spin one-half, the

case s � 1
2

is the most important for studying chemical systems. For s � 1
2

there

are only two eigenfunctions, j1
2
, 1

2
i and j1

2
, ÿ1

2
i. For convenience, the state s � 1

2
,

ms � 1
2

is often called spin up and the ket j1
2
, 1

2
i is written as j"i or as jái.

Likewise, the state s � 1
2
, ms � ÿ1

2
is called spin down with the ket j1

2
, ÿ1

2
i

often expressed as j#i or jâi. Equation (7.6) gives

hájái � hâjâi � 1, hájâi � 0 (7:10)

The most general spin state j÷i for a particle with s � 1
2

is a linear com-

bination of jái and jâi
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j÷i � cájái � câjâi (7:11)

where cá and câ are complex constants. If the ket j÷i is normalized, then

equation (7.10) gives

jcáj2 � jcâj2 � 1

The ket j÷i may also be expressed as a column matrix, known as a spinor

j÷i � cá
câ

� �
� cá

1

0

� �
� câ

0

1

� �
(7:12)

where the eigenfunctions jái and jâi in spinor notation are

jái � 1

0

� �
, jâi � 0

1

� �
(7:13)

Equations (7.4), (7.5), and (7.8) for the s � 1
2

case are

Ŝ2jái � 3
4
"2jái, Ŝ2jâi � 3

4
"2jâi (7:14)

Ŝzjái � 1
2
"jái, Ŝzjâi � ÿ1

2
"jâi (7:15)

Ŝ�jái � 0, Ŝÿjâi � 0 (7:16a)

Ŝ�jâi � "jái, Ŝÿjái � "jâi (7:16b)

Equations (7.16) illustrate the behavior of Ŝ� and Ŝÿ as ladder operators. The

operator Ŝ� `raises' the state jâi to state jái, but cannot raise jái any further,

while Ŝÿ `lowers' jái to jâi, but cannot lower jâi. From equations (7.7) and

(7.16), we obtain the additional relations

Ŝxjái � 1
2
"jâi, Ŝxjâi � 1

2
"jái (7:17a)

Ŝ yjái � i
2
"jâi, Ŝ yjâi � ÿ i

2
"jái (7:17b)

We next introduce three operators ó x, ó y, ó z which satisfy the relations

Ŝx � 1
2
"ó x, Ŝ y � 1

2
"ó y, Ŝz � 1

2
"ó z (7:18)

From equations (7.15) and (7.17), we ®nd that the only eigenvalue for each of

the operators ó 2
x, ó 2

y, ó 2
z is 1. Thus, each squared operator is just the identity

operator

ó 2
x � ó 2

y � ó 2
z � 1 (7:19)

According to equations (7.2) and (7.18), the commutation rules for ó x, ó y, ó z

are

[ó x, ó y] � 2ió z, [ó y, ó z] � 2ió x, [ó z, ó x] � 2ió y (7:20)

The set of operators ó x, ó y, ó z anticommute, a property which we demon-

strate for the pair ó x, ó y as follows
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2i(ó xó y � ó yó x) � (2ió x)ó y � ó y(2ió x)

� (ó yó z ÿ ó zó y)ó y � ó y(ó yó z ÿ ó zó y)

� ÿó zó
2
y � ó 2

yó z

� 0

where the second of equations (7.20) and equation (7.19) have been used. The

same procedure may be applied to the pairs ó y, ó z and ó x, ó z, giving

(ó xó y � ó yó x) � (ó yó z � ó zó y) � (ó zó x � ó xó z) � 0 (7:21)

Combining equations (7.20) and (7.21), we also have

ó xó y � ió z, ó yó z � ió x, ó zó x � ió y (7:22)

Pauli spin matrices

An explicit set of operators ó x, ó y, ó z with the foregoing properties can be

formed using 2 3 2 matrices. The properties of matrices are discussed in

Appendix I. In matrix notation, equation (7.19) is

ó 2
x � ó 2

y � ó 2
z �

1 0

0 1

� �
(7:23)

We let ó z be represented by the simplest 2 3 2 matrix with eigenvalues 1 and

ÿ1

ó z � 1 0

0 ÿ1

� �
(7:24)

To ®nd ó x and ó y, we note that

a b

c d

� �
1 0

0 ÿ1

� �
� a ÿb

c ÿd

� �
and

1 0

0 ÿ1

� �
a b

c d

� �
� a b

ÿc ÿd

� �
Since ó x and ó y anticommute with ó z as represented in (7.24), we must have

a ÿb

c ÿd

� �
� ÿa ÿb

c d

� �
so that a � d � 0 and both ó x and ó y have the form

0 b

c 0

� �
Further, we have from (7.23)

ó 2
x � ó 2

y �
0 b

c 0

� �
0 b

c 0

� �
� bc 0

0 bc

� �
� 1 0

0 1

� �
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giving the relation bc � 1. If we select b � c � 1 for ó x, then we have

ó x � 0 1

1 0

� �
The third of equations (7.22) determines that ó y must be

ó y � 0 ÿi

i 0

� �
In summary, the three matrices are

ó x � 0 1

1 0

� �
, ó y � 0 ÿi

i 0

� �
, ó z � 1 0

0 ÿ1

� �
(7:25)

and are known as the Pauli spin matrices.

The traces of the Pauli spin matrices vanish

Tr ó x � Tr ó y � Tr ó z � 0

and their determinants equal ÿ1

det ó x � det ó y � det ó z � ÿ1

The unit matrix I

I � 1 0

0 1

� �
and the three Pauli spin matrices in equation (7.25) form a complete set of

2 3 2 matrices. Any arbitrary 2 3 2 matrix M can always be expressed as the

linear combination

M � c1I� c2ó x � c3ó y � c4ó z

where c1, c2, c3, c4 are complex constants.

7.4 Spin±orbit interaction

The spin magnetic moment Ms of an electron interacts with its orbital magnetic

moment to produce an additional term in the Hamiltonian operator and,

therefore, in the energy. In this section, we derive the mathematical expression

for this spin±orbit interaction and apply it to the hydrogen atom.

With respect to a coordinate system with the nucleus as the origin, the

electron revolves about the ®xed nucleus with angular momentum L. However,

with respect to a coordinate system with the electron as the origin, the nucleus

revolves around the ®xed electron. Since the revolving nucleus has an electric

charge, it produces at the position of the electron a magnetic ®eld B parallel to

L. The interaction of the spin magnetic moment Ms of the electron with this

magnetic ®eld B gives rise to the spin±orbit coupling with energy ÿMs
: B.
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According to the Biot and Savart law of electromagnetic theory,1 the

magnetic ®eld B at the `®xed' electron due to the revolving positively charged

nucleus is given in SI units to ®rst order in v=c by

B � 1

c2
(E 3 vn) (7:26)

where E is the electric ®eld due to the revolving nucleus, vn is the velocity of

the nucleus relative to the electron, and c is the speed of light. The electric

force F is related to E and the potential energy V(r) of interaction between the

nucleus and the electron by

F � ÿeE � ÿ=V

Thus, the electric ®eld at the electron is

E � rn

er

dV (r)

dr
(7:27)

where rn is the vector distance of the nucleus from the electron. The vector r

from nucleus to electron is ÿrn and the velocity v of the electron relative to the

nucleus is ÿvn. Accordingly, the angular momentum L of the electron is

L � r 3 p � me(r 3 v) � me(rn 3 vn) (7:28)

Combining equations (7.26), (7.27), and (7.28), we have

B � 1

emec2 r

dV (r)

dr
L (7:29)

The spin±orbit energy ÿMs
: B may be related to the spin and orbital

angular momenta through equations (7.1) and (7.29)

ÿMs
: B � 1

m2
e c2 r

dV (r)

dr
L : S

This expression is not quite correct, however, because of a relativistic effect in

changing from the perspective of the electron to the perspective of the nucleus.

The correction,2 known as the Thomas precession, introduces the factor 1
2

on

the right-hand side to give

ÿMs
: B � 1

2m2
e c2 r

dV (r)

dr
L : S

The corresponding spin±orbit Hamiltonian operator Ĥso is, then,

Ĥso � 1

2m2
e c2 r

dV (r)

dr
L̂ : Ŝ (7:30)

1 R. P. Feyman, R. B. Leighton, and M. Sands (1964) The Feynman Lectures on Physics, Vol. II (Addison-
Wesley, Reading, MA) section 14-7.

2 J. D. Jackson (1975) Classical Electrodynamics, 2nd edition (John Wiley & Sons, New York) pp. 541±2.
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For a hydrogen atom, the potential energy V (r) is given by equation (6.13)

with Z � 1 and Ĥso becomes

Ĥso � î(r)L̂ : Ŝ (7:31)

where

î(r) � e2

8ðå0 m2
e c2 r3

(7:32)

Thus, the total Hamiltonian operator Ĥ for a hydrogen atom including spin±

orbit coupling is

Ĥ � Ĥ0 � Ĥso � Ĥ0 � î(r)L̂ : Ŝ (7:33)

where Ĥ0 is the Hamiltonian operator for the hydrogen atom without the

inclusion of spin, as given in equation (6.14).

The effect of the spin±orbit interaction term on the total energy is easily

shown to be small. The angular momenta jLj and jSj are each on the order of "

and the distance r is of the order of the radius a0 of the ®rst Bohr orbit. If we

also neglect the small difference between the electronic mass me and the

reduced mass ì, the spin±orbit energy is of the order of

e2"2

8ðå0 m2
e c2a3

0

� á2jE1j

where jE1j is the ground-state energy for the hydrogen atom with Hamiltonian

operator Ĥ0 as given by equation (6.57) and á is the ®ne structure constant,

de®ned by

á � e2

4ðå0"c
� "

meca0

� 1

137:036

Thus, the spin±orbit interaction energy is about 5 3 10ÿ5 times smaller than

jE1j.
While the Hamiltonian operator Ĥ0 for the hydrogen atom in the absence of

the spin±orbit coupling term commutes with L̂ and with Ŝ, the total Hamilto-

nian operator Ĥ in equation (7.33) does not commute with either L̂ or Ŝ

because of the presence of the scalar product L̂ : Ŝ. To illustrate this feature,

we consider the commutators [L̂z, L̂ : Ŝ] and [Ŝz, L̂ : Ŝ],

[L̂z, L̂ : Ŝ] � [L̂z, (L̂xŜx � L̂ yŜ y � L̂z Ŝz)] � [L̂z, L̂x]Ŝx � [L̂z, L̂ y]Ŝ y � 0

� i"(L̂ yŜx ÿ L̂x Ŝ y) 6� 0 (7:34)

[Ŝz, L̂ : Ŝ] � [Ŝz, Ŝx]L̂x � [Ŝz, Ŝ y]L̂y � i"(L̂xŜ y ÿ L̂ yŜx) 6� 0 (7:35)

where equations (5.10) and (7.2) have been used. Similar expressions apply to

the other components of L̂ and Ŝ. Thus, the vectors L and S are no longer
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constants of motion. However, the operators L̂2 and Ŝ2 do commute with L̂ : Ŝ,

which follows from equations (5.15), so that the quantities L2 and S2 are still

constants of motion.

We now introduce the total angular momentum J, which is the sum of L

and S

J � L� S (7:36)

The operators Ĵ and Ĵ 2 commute with Ĥ0. The addition of equations (7.34)

and (7.35) gives

[Ĵz, L̂ : Ŝ] � [L̂z, L̂ : Ŝ]� [Ŝz, L̂ : Ŝ] � 0

The addition of similar relations for the x- and y-components of these angular

momentum vectors leads to the result that [Ĵ, L̂ : Ŝ] � 0, so that Ĵ and L̂ : Ŝ

commute. Furthermore, we may easily show that Ĵ 2 commutes with L̂ : Ŝ

because each term in Ĵ 2 � L̂2 � Ŝ2 � 2L̂ : Ŝ commutes with L̂ : Ŝ. Thus, Ĵ

and Ĵ 2 commute with Ĥ in equation (7.33) and J and J2 are constants of

motion.

That the quantities L2, S2, J 2, and J are constants of motion, but L and S are

not, is illustrated in Figure 7.1. The spin magnetic moment Ms, which is

antiparallel to S, exerts a torque on the orbital magnetic moment M, which is

antiparallel to L, and alters its direction, but not its magnitude. Thus, the orbital

angular momentum vector L precesses about J and L is not a constant of

motion. However, since the magnitude of L does not change, the quantity L2 is

a constant of motion. Likewise, the orbital magnetic moment M exerts a torque

on Ms, causing S to precess about J. The vector S is, then, not a constant of

S

J

L

Figure 7.1 Precession of the orbital angular momentum vector L and the spin angular
momentum vector S about their vector sum J.
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motion, but S2 is. Since J is ®xed in direction and magnitude, both J and J 2

are constants of motion.

If we form the cross product Ĵ 3 Ĵ and substitute equations (7.36), (5.11),

and (7.3), we obtain

Ĵ 3 Ĵ � (L̂� Ŝ) 3 (L̂� Ŝ) � (L̂ 3 L̂)� (Ŝ 3 Ŝ) � i"L̂� i"Ŝ � i"Ĵ

where the cross terms (L̂ 3 Ŝ) and (Ŝ 3 L̂) cancel each other. Thus, the

operator Ĵ obeys equation (5.12) and the quantum-mechanical treatment of

Section 5.2 applies to the total angular momentum. Since Ĵx, Ĵ y, and Ĵz each

commute with Ĵ 2 but do not commute with one another, we select Ĵz and seek

the simultaneous eigenfunctions jnlsjm ji of the set of mutually commuting

operators Ĥ , L2, S2, J2, and Ĵz

Ĥ jnlsjmji � Enjnlsjmji (7:37a)

L̂2jnlsjmji � l(l � 1)"2jnlsjmji (7:37b)

Ŝ2jnlsjmji � s(s� 1)"2jnlsjmji (7:37c)

Ĵ 2jnlsjmji � j( j� 1)"2jnlsjmji (7:37d)

Ĵzjnlsjmji � mj"jnlsjmji, mj � ÿ j, ÿ j� 1, . . . , jÿ 1, j (7:37e)

From the expression

Ĵzjnlsjmji � (L̂z � Ŝz)jnlsjmji � (m� ms)"jnlsjmji
obtained from (7.36), (5.28b), and (7.5), we see that

mj � m� ms (7:38)

The quantum number j takes on the values

l � s, l � sÿ 1, l � sÿ 2, . . . , jl ÿ sj
The argument leading to this conclusion is somewhat complicated and may be

found elsewhere.3 In the application being considered here, the spin s equals 1
2

and the quantum number j can have only two values

j � l � 1
2

(7:39)

The resulting vectors J are shown in Figure 7.2.

The scalar product L̂ : Ŝ in equation (7.33) may be expressed in terms of

operators that commute with Ĥ by

L̂ : Ŝ � 1
2
(L̂� Ŝ) : (L̂� Ŝ)ÿ 1

2
L̂ : L̂ÿ 1

2
Ŝ : Ŝ � 1

2
(Ĵ 2 ÿ L̂2 ÿ Ŝ2) (7:40)

3 B. H. Brandsen and C. J. Joachain (1989) Introduction to Quantum Mechanics (Addison Wesley Longman,
Harlow, Essex), pp. 299, 301; R. N. Zare (1988) Angular Momentum (John Wiley & Sons, New York), pp.
45±8.
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so that Ĥ becomes

Ĥ � Ĥ0 � 1
2
î(r)(Ĵ 2 ÿ L̂2 ÿ Ŝ2) (7:41)

Equation (7.37a) then takes the form

f Ĥ0 � 1
2
"2î(r)[ j( j� 1)ÿ l(l � 1)ÿ s(s� 1)]gjnlsjmji � Enjnlsjmji (7:42)

or

Ĥ0 � l"2

2
î(r)

� �
jn, l, 1

2
, l � 1

2
, mji � Enjn, l, 1

2
, l � 1

2
, mji if j � l � 1

2

(7:43a)

Ĥ0 ÿ (l � 1)"2

2
î(r)

� �
jn, l, ÿ1

2
, l ÿ 1

2
, mji � Enjn, l, ÿ1

2
, l ÿ 1

2
, mji

if j � l ÿ 1
2

(7:43b)

where equations (7.37b), (7.37c), (7.37d), and (7.39) have also been intro-

duced.

Since the spin±orbit interaction energy is small, the solution of equations

(7.43) to obtain En is most easily accomplished by means of perturbation

theory, a technique which is presented in Chapter 9. The evaluation of En is

left as a problem at the end of Chapter 9.

Problems

7.1 Determine the angle between the spin vector S and the z-axis for an electron in

spin state jái.
7.2 Prove equation (7.19) from equations (7.15) and (7.17).

S

L

J

S

L
J

j 5 l 1 j 5 l 2
1
2

1
2

Figure 7.2 The total angular momentum vectors J obtained from the sum of L and S
for s � 1

2
and s � ÿ1

2
.
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7.3 Show that the pair of operators ó y, ó z anticommute.

7.4 Using the Pauli spin matrices in equation (7.25) and the spinors in (7.13),

(a) construct the operators ó� and óÿ corresponding to Ŝ� and Ŝÿ
(b) operate on jái and on jâi with ó 2, ó z, ó�, óÿ, ó x, and ó y and compare the

results with equations (7.14), (7.15), (7.16), and (7.17).

7.5 Using the Pauli spin matrices in equation (7.25), verify the relationships in (7.19)

and (7.22).
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8

Systems of identical particles

The postulates 1 to 6 of quantum mechanics as stated in Sections 3.7 and 7.2

apply to multi-particle systems provided that each of the particles is distin-

guishable from the others. For example, the nucleus and the electron in a

hydrogen-like atom are readily distinguishable by their differing masses and

charges. When a system contains two or more identical particles, however,

postulates 1 to 6 are not suf®cient to predict the properties of the system. These

postulates must be augmented by an additional postulate. This chapter intro-

duces this new postulate and discusses its consequences.

8.1 Permutations of identical particles

Particles are identical if they cannot be distinguished one from another by any

intrinsic property, such as mass, charge, or spin. There does not exist, in fact

and in principle, any experimental procedure which can identify any one of the

particles. In classical mechanics, even though all particles in the system may

have the same intrinsic properties, each may be identi®ed, at least in principle,

by its precise trajectory as governed by Newton's laws of motion. This

identi®cation is not possible in quantum theory because each particle does not

possess a trajectory; instead, the wave function gives the probability density for

®nding the particle at each point in space. When a particle is found to be in

some small region, there is no way of determining either theoretically or

experimentally which particle it is. Thus, all electrons are identical and there-

fore indistinguishable, as are all protons, all neutrons, all hydrogen atoms with
1H nuclei, all hydrogen atoms with 2H nuclei, all helium atoms with 4He

nuclei, all helium atoms with 3He nuclei, etc.

Two-particle systems

For simplicity, we ®rst consider a system composed of two identical particles
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of mass m. If we label one of the particles as particle 1 and the other as particle

2, then the Hamiltonian operator Ĥ(1, 2) for the system is

Ĥ(1, 2) � p̂2
1

2m
� p̂2

2

2m
� V (q1, q2) (8:1)

where qi (i � 1, 2) represents the three-dimensional (continuous) spatial

coordinates ri and the (discrete) spin coordinate ó i of particle i. In order for

these two identical particles to be indistinguishable from each other, the

Hamiltonian operator must be symmetric with respect to particle interchange,

i.e., if the coordinates (both spatial and spin) of the particles are interchanged,

Ĥ(1, 2) must remain invariant

Ĥ(1, 2) � Ĥ(2, 1)

If Ĥ(1, 2) and Ĥ(2, 1) were to differ, then the corresponding SchroÈdinger

equations and their solutions would also differ and this difference could be

used to distinguish between the two particles.

The time-independent SchroÈdinger equation for the two-particle system is

Ĥ(1, 2)Øí(1, 2) � EíØí(1, 2) (8:2)

where í delineates the various states. The notation Øí(1, 2) indicates that the

®rst particle has coordinates q1 and the second particle has coordinates q2. If

we exchange the two particles so that particles 1 and 2 now have coordinates

q2 and q1, respectively, then the SchroÈdinger equation (8.2) becomes

Ĥ(2, 1)Øí(2, 1) � Ĥ(1, 2)Øí(2, 1) � EíØí(2, 1) (8:3)

where we have noted that Ĥ(1, 2) is symmetric. Equation (8.3) shows that

Øí(2, 1) is also an eigenfunction of Ĥ(1, 2) belonging to the same eigenvalue

Eí. Thus, any linear combination of Øí(1, 2) and Øí(2, 1) is also an eigen-

function of Ĥ(1, 2) with eigenvalue Eí. For simplicity of notation in the

following presentation, we omit the index í when it is clear that we are

referring to a single quantum state.

The eigenfunction Ø(1, 2) has the form of a wave in six-dimensional space.

The quantity Ø�(1, 2)Ø(1, 2) dr1 dr2 is the probability that particle 1 with

spin function ÷1 is in the volume element dr1 centered at r1 and simultaneously

particle 2 with spin function ÷2 is in the volume element dr2 at r2. The product

Ø�(1, 2)Ø(1, 2) is, then, the probability density. The eigenfunction Ø(2, 1)

also has the form of a six-dimensional wave. The quantity Ø�(2, 1)Ø(2, 1) is

the probability density for particle 2 being at r1 with spin function ÷1 and

simultaneously particle 1 being at r2 with spin function ÷2. In general, the two

eigenfunctions Ø(1, 2) and Ø(2, 1) are not identical. As an example, if

Ø(1, 2) is
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Ø(1, 2) � eÿar1eÿbr2(br2 ÿ 1)

where r1 � jr1j and r2 � jr2j, then Ø(2, 1) would be

Ø(2, 1) � eÿar2eÿbr1(br1 ÿ 1) 6� Ø(1, 2)

Thus, the probability density of the pair of particles depends on how we label

the two particles. Since the two particles are indistinguishable, we conclude

that neither Ø(1, 2) nor Ø(2, 1) are desirable wave functions. We seek a wave

function that does not make a distinction between the two particles and,

therefore, does not designate which particle is at r1 and which is at r2.

To that end, we now introduce the linear hermitian exchange operator P̂,

which has the property

P̂ f (1, 2) � f (2, 1) (8:4)

where f (1, 2) is an arbitrary function of q1 and q2. If P̂ operates on

Ĥ(1, 2)Ø(1, 2), we have

P̂[ Ĥ(1, 2)Ø(1, 2)] � Ĥ(2, 1)Ø(2, 1) � Ĥ(1, 2)Ø(2, 1) � Ĥ(1, 2)P̂Ø(1, 2)

(8:5)

where we have used the fact that Ĥ(1, 2) is symmetric. From equation (8.5) we

see that P̂ and Ĥ(1, 2) commute

[P̂, Ĥ(1, 2)] � 0, (8:6)

Consequently, the operators P̂ and Ĥ(1, 2) have simultaneous eigenfunctions.

If Ö(1, 2) is an eigenfunction of P̂, the corresponding eigenvalue ë is given

by

P̂Ö(1, 2) � ëÖ(1, 2) (8:7)

We then have

P̂2Ö(1, 2) � P̂[P̂Ö(1, 2)] � P̂[ëÖ(1, 2)] � ëP̂Ö(1, 2) � ë2Ö(1, 2) (8:8)

Moreover, operating on Ö(1, 2) twice in succession by P̂ returns the two

particles to their original order, so that

P̂2Ö(1, 2) � P̂Ö(2, 1) � Ö(1, 2) (8:9)

From equations (8.8) and (8.9), we see that P̂2 � 1 and that ë2 � 1. Since P̂ is

hermitian, the eigenvalue ë is real and we obtain ë � �1.

There are only two functions which are simultaneous eigenfunctions of

Ĥ(1, 2) and P̂ with respective eigenvalues E and �1. These functions are the

combinations

ØS � 2ÿ1=2[Ø(1, 2)�Ø(2, 1)] (8:10a)

ØA � 2ÿ1=2[Ø(1, 2)ÿØ(2, 1)] (8:10b)

which satisfy the relations
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P̂ØS � ØS (8:11a)

P̂ØA � ÿØA (8:11b)

The factor 2ÿ1=2 in equations (8.10) normalizes ØS and ØA if Ø(1, 2) is

normalized. The combination ØS is symmetric with respect to particle

interchange because it remains unchanged when the two particles are ex-

changed. The function ØA, on the other hand, is antisymmetric with respect to

particle interchange because it changes sign, but is otherwise unchanged, when

the particles are exchanged.

The functions ØA and ØS are orthogonal. To demonstrate this property, we

note that the integral over all space of a function of two or more variables must

be independent of the labeling of those variables�
� � �
�

f (x1, . . . , xN ) dx1 . . . dxN �
�
� � �
�

f (y1, . . . , yN ) dy1 . . . dyN (8:12)

In particular, we have��
f (1, 2) dq1 dq2 �

��
f (2, 1) dq1 dq2

or

hØ(1, 2)jØ(2, 1)i � hØ(2, 1)jØ(1, 2)i (8:13)

where f (1, 2) � Ø�(1, 2)Ø(2, 1). Application of equation (8.13) to hØS jØAi
gives

hØSjØAi � hP̂ØS jP̂ØAi (8:14)

Applying equations (8.11) to the right-hand side of (8.14), we obtain

hØSjØAi � ÿhØSjØAi
Thus, the scalar product hØSjØAi must vanish, showing that ØA and ØS are

orthogonal.

If the wave function for the system is initially symmetric (antisymmetric),

then it remains symmetric (antisymmetric) as time progresses. This property

follows from the time-dependent SchroÈdinger equation

i"
@Ø(1, 2)

@ t
� Ĥ(1, 2)Ø(1, 2) (8:15)

Since Ĥ(1, 2) is symmetric, the time derivative @Ø=@ t has the same symmetry

as Ø. During a small time interval Ät, therefore, the symmetry of Ø does not

change. By repetition of this argument, the symmetry remains the same over a

succession of small time intervals, and by extension over all time.

Since ØS does not change and only the sign of ØA changes if particles 1 and

2 are interchanged, the respective probability densities Ø�SØS and Ø�AØA are

independent of how the particles are labeled. Neither speci®es which particle
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has coordinates q1 and which q2. Thus, only the linear combinations ØS and

ØA are suitable wave functions for the two-identical-particle system. We note

in passing that the two probability densities are not equal, even though ØS and

ØA correspond to the same energy value E. We conclude that in order to

incorporate into quantum theory the indistinguishability of the two identical

particles, we must restrict the allowable wave functions to those that are

symmetric and antisymmetric, i.e., to those that are simultaneous eigenfunc-

tions of Ĥ(1, 2) and P̂.

Three-particle systems

The treatment of a three-particle system introduces a new feature not present in

a two-particle system. Whereas there are only two possible permutations and

therefore only one exchange or permutation operator for two particles, the

three-particle system requires several permutation operators.

We ®rst label the particle with coordinates q1 as particle 1, the one with

coordinates q2 as particle 2, and the one with coordinates q3 as particle 3. The

Hamiltonian operator Ĥ(1, 2, 3) is dependent on the positions, momentum

operators, and perhaps spin coordinates of each of the three particles. For

identical particles, this operator must be symmetric with respect to particle

interchange

Ĥ(1, 2, 3) � Ĥ(1, 3, 2) � Ĥ(2, 3, 1) � Ĥ(2, 1, 3) � Ĥ(3, 1, 2) � Ĥ(3, 2, 1)

If Ø(1, 2, 3) is a solution of the time-independent SchroÈdinger equation

Ĥ(1, 2, 3)Ø(1, 2, 3) � EØ(1, 2, 3) (8:16)

then Ø(1, 3, 2), Ø(2, 3, 1), etc., and any linear combinations of these wave

functions are also solutions with the same eigenvalue E. The notation

Ø(i, j, k) indicates that particle i has coordinates q1, particle j has coordinates

q2, and particle k has coordinates q3. As in the two-particle case, we seek

eigenfunctions of Ĥ(1, 2, 3) that do not specify which particle has coordinates

qi, i � 1, 2, 3.

We de®ne the six permutation operators P̂áâã for á 6� â 6� ã � 1, 2, 3 by the

relations

P̂123Ø(i, j, k) � Ø(i, j, k)

P̂132Ø(i, j, k) � Ø(i, k, j)

P̂231Ø(i, j, k) � Ø( j, k, i)

P̂213Ø(i, j, k) � Ø( j, i, k)

P̂312Ø(i, j, k) � Ø(k, i, j)

P̂321Ø(i, j, k) � Ø(k, j, i)

9>>>>>>=>>>>>>;
i 6� j 6� k � 1, 2, 3 (8:17)

The operator P̂áâã replaces the particle with coordinates q1 (the ®rst position)
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by the particle with coordinates qá, the particle with coordinates q2 (the second

position) by that with qâ, and the particle with coordinates q3 (the third

position) by that with qã. For example, we have

P̂213Ø(1, 2, 3) � Ø(2, 1, 3) (8:18a)

P̂213Ø(2, 1, 3) � Ø(1, 2, 3) (8:18b)

P̂213Ø(3, 2, 1) � Ø(2, 3, 1) (8:18c)

P̂231Ø(1, 2, 3) � Ø(2, 3, 1) (8:18d)

P̂231Ø(2, 3, 1) � Ø(3, 1, 2) (8:18e)

The permutation operator P̂123 is an identity operator because it leaves the

function Ø(i, j, k) unchanged. From (8.18a) and (8.18b), we obtain

P̂2
213Ø(1, 2, 3) � Ø(1, 2, 3)

so that P̂2
213 equals unity. The same relationship can be demonstrated to apply

to the operators P̂132 and P̂321, as well as to the identity operator P̂123, giving

P̂2
213 � P̂2

132 � P̂2
321 � P̂2

123 � P̂123 � 1 (8:19)

Any permutation corresponding to one of the operators P̂áâã other than P̂123

is equivalent to one or two pairwise exchanges. Accordingly, we introduce the

linear hermitian exchange operators P̂12, P̂23, and P̂31 with the properties

P̂12Ø(i, j, k) � Ø( j, i, k)

P̂23Ø(i, j, k) � Ø(i, k, j)

P̂31Ø(i, j, k) � Ø(k, j, i)

9=; i 6� j 6� k � 1, 2, 3 (8:20)

The exchange operator P̂áâ interchanges the particles with coordinates qá and

qâ. It is obvious that the order of the subscripts in P̂áâ is immaterial, so that

P̂áâ � P̂âá. The permutations from P̂213, P̂132, and P̂321 are the same as those

from P̂12, P̂23, and P̂31, respectively, giving

P̂213 � P̂12, P̂132 � P̂23, P̂321 � P̂31

The permutation from P̂231 may also be obtained by ®rst applying the exchange

operator P̂12 and then the operator P̂23. Alternatively, the same result may be

obtained by ®rst applying P̂23 followed by P̂31 or by ®rst applying P̂31 followed

by P̂12. This observation leads to the identities

P̂231 � P̂23 P̂12 � P̂31 P̂23 � P̂12 P̂31 (8:21)

A similar argument yields

P̂312 � P̂31 P̂12 � P̂23 P̂31 � P̂12 P̂23 (8:22)

These permutations of the three particles are expressed in terms of the

minimum number of pairwise exchange operators. Less ef®cient routes can

also be visualized. For example, the permutation operators P̂132 and P̂231 may

also be expressed as
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P̂132 � P̂31 P̂23 P̂12 � P̂12 P̂23 P̂31

P̂231 � P̂12 P̂23 P̂31 P̂12 � P̂31 P̂12 P̂31 P̂12

However, the number of pairwise exchanges for a given permutation is always

either odd or even, so that P̂123, P̂231, P̂312 are even permutations and P̂132,

P̂213, P̂321 are odd permutations.

Applying the same arguments regarding the exchange operator P̂ for the

two-particle system, we ®nd that

P̂2
12 � P̂2

23 � P̂2
31 � 1

giving real eigenvalues �1 for each operator. We also ®nd that each exchange

operator commutes with the Hamiltonian operator Ĥ

[P̂12, Ĥ] � [P̂23, Ĥ] � [P̂31, Ĥ] � 0 (8:23)

so that P̂12 and Ĥ possess simultaneous eigenfunctions, P̂23 and Ĥ possess

simultaneous eigenfunctions, and P̂31 and Ĥ possess simultaneous eigenfunc-

tions. However, the operators P̂12, P̂23, P̂31 do not commute with each other.

For example, if we operate on the wave function Ø(1, 2, 3) ®rst with the

product P̂31 P̂12 and then with the product P̂12 P̂31, we obtain

P̂31 P̂12Ø(1, 2, 3) � P̂31Ø(2, 1, 3) � Ø(3, 1, 2)

P̂12 P̂31Ø(1, 2, 3) � P̂12Ø(3, 2, 1) � Ø(2, 3, 1)

The wave function Ø(3, 1, 2) is not the same as Ø(2,3,1), leading to the

conclusion that

P̂31 P̂12 6� P̂12 P̂31

Thus, a set of simultaneous eigenfunctions of Ĥ(1, 2, 3) and P̂12 and a set of

simultaneous eigenfunctions of Ĥ(1, 2, 3) and P̂31 are not, in general, the same

set. Likewise, neither set are simultaneous eigenfunctions of Ĥ(1, 2, 3) and

P̂23.

There are, however, two eigenfunctions of Ĥ(1, 2, 3) which are also simul-

taneous eigenfunctions of all three pair exchange operators P̂12, P̂23, and P̂31.

These eigenfunctions are ØS and ØA, which have the property

P̂áâØS � ØS , á 6� â � 1, 2 (8:24a)

P̂áâØA � ÿØA, á 6� â � 1, 2 (8:24b)

To demonstrate this feature, we assume that Ø(1, 2, 3) is a simultaneous

eigenfunction not only of Ĥ(1, 2, 3), but also of P̂12, P̂23, and P̂31. Therefore,

we have

P̂12Ø(1, 2, 3) � ë1Ø(1, 2, 3)

P̂23Ø(1, 2, 3) � ë2Ø(1, 2, 3) (8:25)
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P̂31Ø(1, 2, 3) � ë3Ø(1, 2, 3)

where ë1 � �1, ë2 � �1, ë3 � �1 are the respective eigenvalues. From equa-

tions (8.21) and (8.25), we obtain

P̂231Ø(1, 2, 3) � P̂23 P̂12Ø(1, 2, 3) � P̂31 P̂23Ø(1, 2, 3) � P̂12 P̂31Ø(1, 2, 3)

� Ø(2, 3, 1)

or

ë2ë1Ø(1, 2, 3) � ë3ë2Ø(1, 2, 3) � ë1ë3Ø(1, 2, 3)

from which it follows that

ë1 � ë2 � ë3

Thus, the simultaneous eigenfunctions Ø(1, 2, 3) are either symmetric

(ë1 � ë2 � ë3 � 1) or antisymmetric (ë1 � ë2 � ë3 � ÿ1).

The symmetric ØS or antisymmetric ØA eigenfunctions may be constructed

from Ø(1, 2, 3) by the relations

ØS � 6ÿ1=2[Ø(1, 2, 3)�Ø(1, 3, 2)�Ø(2, 3, 1)�Ø(2, 1, 3)�Ø(3, 1, 2)

�Ø(3, 2, 1)] (8:26a)

ØA � 6ÿ1=2[Ø(1, 2, 3)ÿØ(1, 3, 2)�Ø(2, 3, 1)ÿØ(2, 1, 3)�Ø(3, 1, 2)

ÿØ(3, 2, 1)] (8:26b)

where the factor 6ÿ1=2 normalizes ØS and ØA if Ø(1, 2, 3) is normalized. As

in the two-particle case, the functions ØS and ØA are orthogonal. Moreover, a

wave function which is initially symmetric (antisymmetric) remains symmetric

(antisymmetric) over time. The probability densities Ø�SØS and Ø�AØA are

independent of how the three particles are labeled. The two functions ØS and

ØA are, therefore, the eigenfunctions of Ĥ(1, 2, 3) that we are seeking.

Equations (8.26) may be expressed in another, equivalent way. If we let P̂ be

any one of the permutation operators P̂áâã in equation (8.17), then we may

write

ØS,A � 6ÿ1=2
X

P

äP P̂Ø(1, 2, 3) (8:27)

where the summation is taken over the six different operators P̂áâã, and äP is

either �1 or ÿ1. For the symmetric wave function ØS , äP is always �1, but for

the antisymmetric wave function ØA, äP is �1 (ÿ1) if the permutation

operator P̂ involves the exchange of an even (odd) number of pairs of particles.

Thus, äP is ÿ1 for P̂132, P̂213 and P̂321.

N-particle systems

The treatment of a three-particle system may be generalized to an N-particle
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system. We begin by labeling the N particles, with each particle i having

coordinates qi. For identical particles, the Hamiltonian operator must be

symmetric with respect to particle permutations

Ĥ(1, 2, . . . , N ) � Ĥ(2, 1, . . . , N ) � Ĥ(N , 2, . . . , 1) � � � �
There are N! possible permutations of the N particles. If Ø(1, 2, . . . , N ) is a

solution of the time-independent SchroÈdinger equation

Ĥ(1, 2, . . . , N)Ø(1, 2, . . . , N ) � EØ(1, 2, . . . , N ) (8:28)

then Ø(2, 1, . . . , N ), Ø(N , 2, . . . , 1), etc., and any linear combination of

these wave functions are also solutions with eigenvalue E.

We next introduce the set of linear hermitian exchange operators P̂áâ

(á 6� â � 1, 2, . . . , N ). The exchange operator P̂áâ interchanges the pair of

particles in positions á (with coordinates qá) and â (with coordinates qâ)

P̂áâØ(i, . . . , j
á
, . . . , k

â
, . . . , l) � Ø(i, . . . , k

á
, . . . , j

â
, . . . , l) (8:29)

As in the three-particle case, the order of the subscripts on P̂áâ is immaterial.

Since there are N choices for the ®rst particle and (N ÿ 1) choices for the

second particle (á 6� â) and since each pair is to be counted only once

(P̂áâ � P̂âá), there are N (N ÿ 1)=2 members of the set P̂áâ.

Applying the same arguments regarding the exchange operator P̂ for the

two-particle system, we ®nd that P2
áâ � 1, giving real eigenvalues �1. We also

®nd that P̂áâ and Ĥ commute

[P̂áâ, Ĥ] � 0, á 6� â � 1, 2, . . . , N (8:30)

so that they possess simultaneous eigenfunctions. However, the members of the

set P̂áâ do not commute with each other. There are only two functions, ØS and

ØA, which are simultaneous eigenfunctions of Ĥ and all of the pairwise

exchange operators P̂áâ. These two functions have the property

P̂áâØS � ØS , á 6� â � 1, 2, . . . , N (8:31a)

P̂áâØA � ÿØA, á 6� â � 1, 2, . . . , N (8:31b)

and may be constructed from Ø(1, 2, . . . , N) by the relation

ØS,A � (N !)ÿ1=2
X

P

äP P̂Ø(1, 2, . . . , N ) (8:32)

In equation (8.32) the operator P̂ is any one of the N! operators, including the

identity operator, that permute a given order of particles to another order. The

summation is taken over all N! permutation operators. The quantity äP is

always �1 for the symmetric wave function ØS , but for the antisymmetric

wave function ØA, äP is �1 (ÿ1) if the permutation operator P̂ involves the
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exchange of an even (odd) number of particle pairs. The factor (N !)ÿ1=2

normalizes ØS and ØA if Ø(1, 2, . . . , N ) is normalized.

Using the same arguments as before, we can show that ØS and ØA in

equation (8.32) are orthogonal and that, over time, ØS remains symmetric and

ØA remains antisymmetric. Since the probability densities Ø�SØS and Ø�AØA

are independent of how the N particles are labeled, the two functions ØS and

ØA are the only suitable eigenfunctions of Ĥ(1, 2, . . . , N) to represent a

system of N indistinguishable particles.

8.2 Bosons and fermions

In quantum theory, identical particles must be indistinguishable in order for the

theory to predict results that agree with experimental observations. Conse-

quently, as shown in Section 8.1, the wave functions for a multi-particle system

must be symmetric or antisymmetric with respect to the interchange of any pair

of particles. If the wave functions are not either symmetric or antisymmetric,

then the probability densities for the distribution of the particles over space are

dependent on how the particles are labeled, a property that is inconsistent with

indistinguishability. It turns out that these wave functions must be further

restricted to be either symmetric or antisymmetric, but not both, depending on

the identity of the particles.

In order to accommodate this feature into quantum mechanics, we must add

a seventh postulate to the six postulates stated in Sections 3.7 and 7.2.

7. The wave function for a system of N identical particles is either symmetric or

antisymmetric with respect to the interchange of any pair of the N particles.

Elementary or composite particles with integral spins (s � 0, 1, 2, . . .) possess

symmetric wave functions, while those with half-integral spins (s � 1
2
, 3

2
, . . .)

possess antisymmetric wave functions.

The relationship between spin and the symmetry character of the wave function

can be established in relativistic quantum theory. In non-relativistic quantum

mechanics, however, this relationship must be regarded as a postulate.

As pointed out in Section 7.2, electrons, protons, and neutrons have spin 1
2
.

Therefore, a system of N electrons, or N protons, or N neutrons possesses an

antisymmetric wave function. A symmetric wave function is not allowed.

Nuclei of 4He and atoms of 4He have spin 0, while photons and 2H nuclei have

spin 1. Accordingly, these particles possess symmetric wave functions, never

antisymmetric wave functions. If a system is composed of several kinds of

particles, then its wave function must be separately symmetric or antisym-

metric with respect to each type of particle. For example, the wave function for
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the hydrogen molecule must be antisymmetric with respect to the interchange

of the two nuclei (protons) and also antisymmetric with respect to the

interchange of the two electrons. As another example, the wave function for the

oxygen molecule with 16O nuclei (each with spin 0) must be symmetric with

respect to the interchange of the two nuclei and antisymmetric with respect to

the interchange of any pair of the eight electrons.

The behavior of a multi-particle system with a symmetric wave function

differs markedly from the behavior of a system with an antisymmetric wave

function. Particles with integral spin and therefore symmetric wave functions

satisfy Bose±Einstein statistics and are called bosons, while particles with

antisymmetric wave functions satisfy Fermi±Dirac statistics and are called

fermions. Systems of 4He atoms (helium-4) and of 3He atoms (helium-3)

provide an excellent illustration. The 4He atom is a boson with spin 0 because

the spins of the two protons and the two neutrons in the nucleus and of the two

electrons are paired. The 3He atom is a fermion with spin 1
2

because the single

neutron in the nucleus is unpaired. Because these two atoms obey different

statistics, the thermodynamic and other macroscopic properties of liquid

helium-4 and liquid helium-3 are dramatically different.

8.3 Completeness relation

The completeness relation for a multi-dimensional wave function is given by

equation (3.32). However, this expression does not apply to the wave functions

ØíS,A for a system of identical particles because ØíS,A are either symmetric or

antisymmetric, whereas the right-hand side of equation (3.32) is neither.

Accordingly, we derive here1 the appropriate expression for the completeness

relation or, as it is often called, the closure property for ØíS,A.

For compactness of notation, we introduce the 4N-dimensional vector Q

with components qi for i � 1, 2, . . . , N. The permutation operators P̂ are

allowed to operate on Q directly rather than on the wave functions. Thus, the

expression P̂Ø(1, 2, . . . , N) is identical to Ø(P̂Q). In this notation, equation

(8.32) takes the form

ØíS,A � (N!)ÿ1=2
X

P

äPØí(P̂Q) (8:33)

We begin by considering an arbitrary function f (Q) of the 4N-dimensional

vector Q. Following equation (8.33), we can construct from f (Q) a function

F(Q) which is either symmetric or antisymmetric by the relation

1 We follow the derivation of D. D. Fitts (1968) Nuovo Cimento 55B, 557.
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F(Q) � (N !)ÿ1=2
X

P

äP f (P̂Q) (8:34)

Since F(Q) is symmetric (antisymmetric), it may be expanded in terms of a

complete set of symmetric (antisymmetric) wave functions Øí(Q) (we omit the

subscript S, A)

F(Q) �
X
í

cíØí(Q) (8:35)

The coef®cients cí are given by

cí �
�
Ø�í (Q9)F(Q9) dQ9 (8:36)

because the wave functions Øí(Q) are orthonormal. We use the integral

notation to include summation over the spin coordinates as well as integration

over the spatial coordinates. Substitution of equation (8.36) into (8.35) yields

F(Q) �
�

F(Q9)
X
í

Ø�í (Q9)Øí(Q)

" #
dQ9 (8:37)

where the order of summation and the integration over Q9 have been inter-

changed. We next substitute equation (8.34) for F(Q9) into (8.37) to obtain

F(Q) � (N !)ÿ1=2
X

P

äP

�
f (P̂Q9)

X
í

Ø�í (Q9)Øí(Q)

" #
dQ9 (8:38)

We now introduce the reciprocal or inverse operator P̂ÿ1 to the permutation

operator P̂ (see Section 3.1) such that

P̂ÿ1 P̂ � P̂P̂ÿ1 � 1

We observe that

Øí(P̂ÿ1Q) � äPÿ1Øí(Q) � äPØí(Q) (8:39)

The quantity äPÿ1 equals äP because both P̂ÿ1 and P̂ involve the interchange

of the same number of particle pairs. We also note thatX
P

ä2
P � N ! (8:40)

because there are N! terms in the summation and each term equals unity.

We next operate on each term on the right-hand side of equation (8.38) by

P̂ÿ1. Since P̂ in equation (8.38) operates only on the variable Q9 and since the

order of integration over Q9 is immaterial, we obtain

F(Q) � (N !)ÿ1=2
X

P

äP

�
f (Q9)

X
í

Ø�í (P̂ÿ1Q9)Øí(Q)

" #
dQ9 (8:41)
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Application of equations (8.39) and (8.40) to (8.41) gives

F(Q) � (N !)1=2

�
f (Q9)

X
í

Ø�í (Q9)Øí(Q)

" #
dQ9 (8:42)

Since f (Q9) is a completely arbitrary function of Q9, we may compare

equations (8.34) and (8.42) and obtainX
í

Ø�í (Q9)Øí(Q) � (N !)ÿ1
X

P

äPä(P̂QÿQ9) (8:43)

where ä(QÿQ9) is the Dirac delta function

ä(QÿQ9) �
YN
i�1

ä(ri ÿ r9i)äó ió 9i (8:44)

Equation (8.43) is the completeness relation for a complete set of symmetric

(antisymmetric) multi-particle wave functions.

8.4 Non-interacting particles

In this section we consider a many-particle system in which the particles act

independently of each other. For such a system of N identical particles, the

Hamiltonian operator Ĥ(1, 2, . . . , N ) may be written as the sum of one-

particle Hamiltonian operators Ĥ(i) for i � 1, 2, . . . , N

Ĥ(1, 2, . . . , N ) � Ĥ(1)� Ĥ(2) � � � � � Ĥ(N ) (8:45)

In this case, the operator Ĥ(1, 2, . . . , N ) is obviously symmetric with respect

to particle interchanges. For the N particles to be identical, the operators Ĥ(i)

must all have the same form, the same set of orthonormal eigenfunctions øn(i),

and the same set of eigenvalues En, where

Ĥ(i)øn(i) � Enøn(i); i � 1, 2, . . . , N (8:46)

As a consequence of equation (8.45), the eigenfunctions Øí(1, 2, . . . , N ) of

Ĥ(1, 2, . . . , N) are products of the one-particle eigenfunctions

Øí(1, 2, . . . , N ) � øa(1)øb(2) . . . ø p(N ) (8:47)

and the eigenvalues Eí of Ĥ(1, 2, . . . , N ) are sums of one-particle energies

Eí � Ea � Eb � � � � � Ep (8:48)

In equations (8.47) and (8.48), the index í represents the set of one-particle

states a, b, . . ., p and indicates the state of the N-particle system.

The N-particle eigenfunctions Øí(1, 2, . . . , N ) in equation (8.47) are not

properly symmetrized. For bosons, the wave function Øí(1, 2, . . . , N ) must be

symmetric with respect to particle interchange and for fermions it must be

antisymmetric. Properly symmetrized wave functions may be readily con-
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structed by applying equation (8.32). For example, for a system of two identical

particles, one particle in state øa, the other in state øb, the symmetrized two-

particle wave functions are

Øab,S(1, 2) � 2ÿ1=2[øa(1)øb(2)� øa(2)øb(1)] (8:49a)

Øab,A(1, 2) � 2ÿ1=2[øa(1)øb(2)ÿ øa(2)øb(1)] (8:49b)

The expression (8.49a) for two bosons is not quite right, however, if states øa

and øb are the same state (a � b), for then the normalization constant is 1
2

rather than 2ÿ1=2, so that

Øaa,S(1, 2) � øa(1)øa(2)

From equation (8.49b), we see that the wavefunction vanishes for two identical

fermions in the same single-particle state

Øaa,A(1, 2) � 0

In other words, two identical fermions cannot simultaneously be in the same

quantum state. This statement is known as the Pauli exclusion principle

because it was ®rst postulated by W. Pauli (1925) in order to explain the

periodic table of the elements.

For N identical non-interacting bosons, equation (8.32) needs to be modi®ed

in order for ØS to be normalized when some particles are in identical single-

particle states. The modi®ed expression is

ØS � Na!Nb! � � �
N !

� �1=2X
p

P̂øa(1)øb(2) . . . ø p(N ) (8:50)

where Nn indicates the number of times the state n occurs in the product of the

single-particle wave functions. Permutations which give the same product are

included only once in the summation on the right-hand side of equation (8.50).

For example, for three particles, with two in state a and one in state b, the

products øa(1)øa(2)øb(3) and øa(2)øa(1)øb(3) are identical and only one is

included in the summation.

For N identical non-interacting fermions, equation (8.32) may also be

expressed as a Slater determinant

ØA � (N !)ÿ1=2

øa(1) øa(2) � � � øa(N )

øb(1) øb(2) � � � øb(N )

� � � � � � � � � � � �
ø p(1) ø p(2) � � � ø p(N )

��������
�������� (8:51)

The expansion of this determinant is identical to equation (8.32) with

Ø(1, 2, . . . , N ) given by (8.47). The properties of determinants are discussed

in Appendix I. The wave function ØA in equation (8.51) is clearly antisym-

metric because interchanging any pair of particles is equivalent to interchan-
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ging two columns and hence changes the sign of the determinant. Moreover, if

any pair of particles are in the same single-particle state, then two rows of the

Slater determinant are identical and the determinant vanishes, in agreement

with the Pauli exclusion principle.

Although the concept of non-interacting particles is an idealization, the

model may be applied to real systems as an approximation when the inter-

actions between particles are small. Such an approximation is often useful as a

starting point for more extensive calculations, such as those discussed in

Chapter 9.

Probability densities

The difference in behavior between bosons and fermions is clearly demon-

strated by their probability densities jØS j2 and jØAj2. For a pair of non-

interacting bosons, we have from equation (8.49a)

jØSj2 � 1
2
jøa(1)j2jøb(2)j2 � 1

2
jøa(2)j2jøb(1)j2 � Re[ø�a (1)ø�b (2)øa(2)øb(1)]

(8:52)

For a pair of non-interacting fermions, equation (8.49b) gives

jØAj2 � 1
2
jøa(1)j2jøb(2)j2 � 1

2
jøa(2)j2jøb(1)j2 ÿ Re[ø�a (1)ø�b (2)øa(2)øb(1)]

(8:53)

The probability density for a pair of distinguishable particles with particle 1 in

state a and particle 2 in state b is jøa(1)j2jøb(2)j2. If the distinguishable

particles are interchanged, the probability density is jøa(2)j2jøb(1)j2. The

probability density for one distinguishable particle (either one) being in state a

and the other in state b is, then

1
2
jøa(1)j2jøb(2)j2 � 1

2
jøa(2)j2jøb(1)j2

which appears in both jØSj2 and jØAj2. The last term on the right-hand sides

of equations (8.52) and (8.53) arises because the particles are indistinguishable

and this term is known as the exchange density or overlap density. Since the

exchange density is added in jØS j2 and subtracted in jØAj2, it is responsible

for the different behavior of bosons and fermions.

The values of jØS j2 and jØAj2 when the two particles have the same

coordinate value, say q0, so that q1 � q2 � q0, are
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jØS j20 � 1
2
jøa(q0)j2jøb(q0)j2 � 1

2
jøa(q0)j2jøb(q0)j2

� Re[ø�a (q0)ø�b (q0)øa(q00øb(q0)]

� 2jøa(q0)j2jøb(q0)j2

jØAj20 � 1
2
jøa(q0)j2jøb(q0)j2 � 1

2
jøa(q0)j2jøb(q0)j2

ÿ Re[ø�a (q0)ø�b (q0)øa(q0)øb(q0)]

� 0

Thus, the two bosons have an increased probability density of being at the same

point in space, while the two fermions have a vanishing probability density of

being at the same point. This conclusion also applies to systems with N

identical particles. Identical bosons (fermions) behave as though they are under

the in¯uence of mutually attractive (repulsive) forces. These apparent forces

are called exchange forces, although they are not forces in the mechanical

sense, but rather statistical results.

The exchange density in equations (8.52) and (8.53) is important only when

the single-particle wave functions øa(q) and øb(q) overlap substantially.

Suppose that the probability density jøa(q)j2 is negligibly small except in a

region A and that jøb(q)j2 is negligibly small except in a region B, which does

not overlap with region A. The quantities ø�a (1)øb(1) and ø�b (2)øa(2) are then

negligibly small and the exchange density essentially vanishes. For q1 in region

A and q2 in region B, only the ®rst term jøa(1)j2jøb(2)j2 on the right-hand

sides of equations (8.52) and (8.53) is important. This expression is just the

probability density for particle 1 con®ned to region A and particle 2 con®ned

to region B. The two particles become distinguishable by means of their

locations and their joint wave function does not need to be made symmetric or

antisymmetric. Thus, only particles whose probability densities overlap to a

non-negligible extent need to be included in the symmetrization process. For

example, electrons in a non-bonded atom and electrons within a molecule

possess antisymmetric wave functions; electrons in neighboring atoms and

molecules are too remote to be included.

Electron spin and the helium atom

We may express the single-particle wave function øn(qi) as the product of a

spatial wave function ön(ri) and a spin function ÷(i). For a fermion with spin 1
2
,

such as an electron, there are just two spin states, which we designate by á(i)

for ms � 1
2

and â(i) for ms � ÿ1
2
. Therefore, for two particles there are three

symmetric spin wave functions
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á(1)á(2)

â(1)â(2)

2ÿ1=2[á(1)â(2)� á(2)â(1)]

and one antisymmetric spin wave function

2ÿ1=2[á(1)â(2)ÿ á(2)â(1)]

where the factors 2ÿ1=2 are normalization constants. When the spatial and spin

wave functions are combined, there are four antisymmetric combinations: a

singlet state (S � 0)

1
2
[öa(1)öb(2)� öa(2)öb(1)][á(1)â(2)ÿ á(2)â(1)]

and three triplet states (S � 1)

2ÿ1=2[öa(1)öb(2)ÿ öa(2)öb(1)]

á(1)á(2)

â(1)â(2)

2ÿ1=2[á(1)â(2)� á(2)â(1)]

8<:
These four antisymmetric wave functions are normalized if the single-particle

spatial wave functions ön(ri) are normalized. If the two fermions are in the

same state öa(ri), then only the singlet state occurs

2ÿ1=2öa(1)öa(2)[á(1)â(2)ÿ á(2)â(1)]

The helium atom serves as a simple example for the application of this

construction. If the nucleus (for which Z � 2) is considered to be ®xed in

space, the Hamiltonian operator Ĥ for the two electrons is

Ĥ � ÿ "2

2me

(=2
1 � =2

2)ÿ Ze92

r1

ÿ Ze92

r2

� e92

r12

(8:54)

where r1 and r2 are the distances of electrons 1 and 2 from the nucleus, r12 is

the distance between the two electrons, and e9 � e for CGS units or

e9 � e=(4ðå0)1=2 for SI units. Spin±orbit and spin±spin interactions of the

electrons are small and have been neglected. The electron±electron interaction

is relatively small in comparison with the interaction between an electron and a

nucleus, so that as a crude ®rst-order approximation the last term on the right-

hand side of equation (8.54) may be neglected. The operator Ĥ then becomes

the sum of two hydrogen-atom Hamiltonian operators with Z � 2. The

corresponding single-particle states are the hydrogen-like atomic orbitals ønlm

discussed in Section 6.4. The energy of the helium atom depends on the

principal quantum numbers n1 and n2 of the two electrons and is the sum of

two hydrogen-like atomic energies with Z � 2

En1,n2
� ÿ me Z2e94

2"2

1

n2
1

� 1

n2
2

� �
� ÿ54:4 eV

1

n2
1

� 1

n2
2

� �
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In the ground state of helium, according to this model, the two electrons are

in the 1s orbital with opposing spins. The ground-state wave function is

Ø0(1, 2) � 2ÿ1=21s(1)1s(2)[á(1)â(2)ÿ á(2)â(1)]

and the ground-state energy is ÿ108:8 eV. The energy of the ground state of

the helium ion He�, for which n1 � 1 and n2 � 1, is ÿ54.4 eV. In Section

9.6, we consider the contribution of the electron±electron repulsion term to the

ground-state energy of helium and obtain more realistic values.

Although the orbital energies for a hydrogen-like atom depend only on the

principal quantum number n, for a multi-electron atom these orbital energies

increase as the azimuthal quantum number l increases. The reason is that the

electron probability density near the nucleus decreases as l increases, as shown

in Figure 6.5. Therefore, on average, an electron with a larger l value is

screened from the attractive force of the nucleus by the inner electrons more

than an electron with a smaller l value, thereby increasing its energy. Thus, the

2s orbital has a lower energy than the 2p orbitals.

Following this argument, in the ®rst- and second-excited states, the electrons

are placed in the 1s and 2s orbitals. The antisymmetric spatial wave function

has the lower energy, so that the ®rst-excited state Ø1(1, 2) is a triplet state,

Ø1(1, 2) � 2ÿ1=2[1s(1)2s(2)ÿ 1s(2)2s(1)]

á(1)á(2)

â(1)â(2)

2ÿ1=2[á(1)â(2)� á(2)â(1)]

8<:
and the second-excited state Ø2(1, 2) is a singlet state

Ø2(1, 2) � 1
2
[1s(1)2s(2)� 1s(2)2s(1)][á(1)â(2)ÿ á(2)â(1)]

Similar constructions apply to higher excited states. The triplet states are called

orthohelium, while the singlet states are called parahelium. For a given pair of

atomic orbitals, the orthohelium has the lower energy. In constructing these

excited states, we place one of the electrons in the 1s atomic orbital and the

other in an excited atomic orbital. If both electrons were placed in excited

orbitals (n1 > 2, n2 > 2), the resulting energy would be equal to or greater

than ÿ27.2 eV, which is greater than the energy of He�, and the atom would

ionize.

This same procedure may be used to explain, in a qualitative way, the

chemical behavior of the elements in the periodic table. The application of the

Pauli exclusion principle to the ground states of multi-electron atoms is

discussed in great detail in most elementary textbooks on the principles of

chemistry and, therefore, is not repeated here.
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8.5 The free-electron gas

The concept of non-interacting fermions may be applied to electrons in a metal.

A metal consists of an ordered three-dimensional array of atoms in which some

of the valence electrons are so weakly bound to their parent atoms that they

form an `electron gas'. These mobile electrons then move in the Coulombic

®eld produced by the array of ionized atoms. In addition, the mobile electrons

repel each other according to Coulomb's law. For a given mobile electron, its

Coulombic interactions with the ions and the other mobile electrons are long-

ranged and are relatively constant over the range of the electron's position.

Consequently, as a ®rst-order approximation, the mobile electrons may be

treated as a gas of identical non-interacting fermions in a constant potential

energy ®eld.

The free-electron gas was ®rst applied to a metal by A. Sommerfeld (1928)

and this application is also known as the Sommerfeld model. Although the

model does not give results that are in quantitative agreement with experi-

ments, it does predict the qualitative behavior of the electronic contribution to

the heat capacity, electrical and thermal conductivity, and thermionic emission.

The reason for the success of this model is that the quantum effects due to the

antisymmetric character of the electronic wave function are very large and

dominate the effects of the Coulombic interactions.

Each of the electrons in the free-electron gas may be regarded as a particle

in a three-dimensional box, as discussed in Section 2.8. Energies may be

de®ned relative to the constant potential energy ®eld due to the electron±ion

and electron±electron interactions in the metallic crystal, so that we may

arbitrarily set this potential energy equal to zero without loss of generality.

Since the mobile electrons are not allowed to leave the metal, the potential

energy outside the metal is in®nite. For simplicity, we assume that the metallic

crystal is a cube of volume v with sides of length a, so that v � a3. As given

by equations (2.82) and (2.83), the single-particle wave functions and energy

levels are

ønx,n y,nz
�

���
8

v

r
sin

nxðx

a
sin

nyðy

a
sin

nzðz

a
(8:55)

Enx,n y,nz
� h2

8mea2
(n2

x � n2
y � n2

z) (8:56)

where me is the electronic mass and the quantum numbers nx, ny, nz have

values nx, ny, nz � 1, 2, 3, . . . :
We next consider a three-dimensional cartesian space with axes nx, ny, nz.

Each point in this n-space with positive (but non-zero) integer values of nx, ny,
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and nz corresponds to a single-particle state ønx,n y,nz
. These points all lie in the

positive octant of this space. If we divide the octant into unit cubic cells, every

point representing a single-particle state lies at the corner of one of these unit

cells. Accordingly, we may associate a volume of unit size with each single-

particle state. Equation (8.56) may be rewritten in the form

n2
x � n2

y � n2
z �

8mea2 E

h2

which we recognize as the equation in n-space of a sphere with radius R equal

to
�����������������������
8mea2 E=h2

p
. The number N (E) of single-particle states with energy less

than or equal to E is then the volume of the octant of a sphere of radius R

N (E) � 1

8

4ð

3
R3 � ð

6

8mea2 E

h2

� �3=2

� 4ðv

3h3
(2me E)3=2 (8:57)

The number of single-particle states with energies between E and E � dE is

ù(E) dE, where ù(E) is the density of single-particle states and is related to

N (E) by

ù(E) � dN (E)

dE
� 2ðv

h3
(2me)3=2 E1=2 (8:58)

According to the Pauli exclusion principle, no more than two electrons, one

spin up, the other spin down, can have the same set of quantum numbers nx, ny,

nz. At a temperature of absolute zero, two electrons can be in the ground state

with energy 3h2=8mea2, two in each of the three states with energy 6h2=8mea2,

two in each of the three states with energy 9h2=8mea2, etc. The states with the

lowest energies are ®lled, each with two electrons, until the spherical octant in

n-space is ®lled up to a value EF, which is called the Fermi energy. If there are

N electrons in the free-electron gas, then we have

N � 2N (EF) � 8ðv

3h3
(2me EF)3=2 (8:59)

or

EF � h2

8me

3N

ðv

� �2=3

(8:60)

where equation (8.57) has been used. The Fermi energy is dependent on the

density N=v of the free-electron gas, but not on the size of the metallic crystal.

The total energy Etot of the N particles is given by

Etot � 2

�EF

0

Eù(E) dE (8:61)

where the factor 2 in front of the integral arises because each single-particle

state is doubly occupied. Substitution of equation (8.58) into (8.61) gives
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Etot � 8ðv

5h3
(2me)3=2 EF

5=2

which may be simpli®ed to

Etot � 3

5
NEF (8:62)

The average energy E per electron is, then

E � Etot

N
� 3

5
EF (8:63)

Equations (8.57) and (8.58) are valid only for values of E suf®ciently large

and for energy levels suf®ciently close together that E can be treated as a

continuous variable. For a metallic crystal of volume 1 cm3, the lowest energy

level is about 10ÿ14 eV and the spacing between levels is likewise of the order

of 10ÿ14 eV. Since metals typically possess about 1022 to 1023 free electrons

per cm3, the Fermi energy EF is about 1.5 to 8 eV and the average energy E per

electron is about 1 to 5 eV. Thus, for all practical purposes, the energy of the

lowest level may be taken as zero and the energy values may be treated as

continuous.

The smooth surface of the spherical octant in n-space which de®nes the

Fermi energy cuts through some of the unit cubic cells that represent single-

particle states. The replacement of what should be a ragged surface by a

smooth surface results in a negligible difference because the density of single-

particle states near the Fermi energy EF is so large that E is essentially

continuous. At the Fermi energy EF, the density of single-particle states is

ù(EF) � 2ðvme

h2

3N

ðv

� �1=3

(8:64)

which typically is about 1022 to 1023 states per eV. Thus, near the Fermi energy

EF, a differential energy range dE of 10ÿ10 eV contains about 1011 to 1012

doubly occupied single-particle states.

Since the potential energy of the electrons in the free-electron gas is assumed

to be zero, all the energy of the mobile electrons is kinetic. The electron

velocity uF at the Fermi level EF is given by

1
2
meu2

F � EF (8:65)

and the average electron velocity u is given by

1
2
meu2 � E � 3

5
EF (8:66)

For electrons in a metal, these velocities are on the order of 108 cm sÿ1.

The Fermi temperature TF is de®ned by the relation

EF � kBTF (8:67)
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where kB is Boltzmann's constant, and typically ranges from 18 000 K to

90 000 K for metals. At temperatures up to the melting temperature, we have

the relationship

kBT � EF

Thus, even at temperatures well above absolute zero, the electrons are

essentially all in the lowest possible energy states. As a result, the electronic

heat capacity at constant volume, which equals dEtot=dT , is small at ordinary

temperatures and approaches zero at low temperatures.

The free-electron gas exerts a pressure on the walls of the in®nite potential

well in which it is contained. If the volume v of the gas is increased slightly by

an amount dv, then the energy levels Enx,n y,nz
in equation (8.56) decrease

slightly and consequently the Fermi energy EF in equation (8.60) and the total

energy Etot in (8.62) also decrease. The change in total energy of the gas is

equal to the work ÿP dv done on the gas by the surroundings, where P is the

pressure of the gas. Thus, we have

P � ÿ dEtot

dv
� ÿ 3N

5

dEF

dv
� 2NEF

5v
� 2Etot

3v
(8:68)

where equations (8.60) and (8.62) have been used. For a typical metal, the

pressure P is of the order of 106 atm.

8.6 Bose±Einstein condensation

The behavior of a system of identical bosons is in sharp contrast to that for

fermions. At low temperatures, non-interacting fermions of spin s ®ll the

single-particle states with the lowest energies, 2s� 1 particles in each state.

Non-interacting bosons, on the other hand, have no restrictions on the number

of particles that can occupy any given single-particle state. Therefore, at

extremely low temperatures, all of the bosons drop into the ground single-

particle state. This phenomenon is known as Bose±Einstein condensation.

Although A. Einstein predicted this type of behavior in 1924, only recently

has Bose±Einstein condensation for weakly interacting bosons been observed

experimentally. In one study,2 a cloud of rubidium-87 atoms was cooled to a

temperature of 170 3 10ÿ9 K (170 nK), at which some of the atoms began to

condense into the single-particle ground state. The condensation continued as

the temperature was lowered to 20 nK, ®nally giving about 2000 atoms in the

ground state. In other studies, small gaseous samples of sodium atoms3 and of

2 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell (1995) Science 269, 198.
3 K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle

(1995) Phys. Rev. Lett. 75, 3969.
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lithium-7 atoms4,5 have also been cooled suf®ciently to undergo Bose±Einstein

condensation.

Although we have explained Bose±Einstein condensation as a characteristic

of an ideal or nearly ideal gas, i.e., a system of non-interacting or weakly

interacting particles, systems of strongly interacting bosons also undergo

similar transitions. Liquid helium-4, as an example, has a phase transition at

2.18 K and below that temperature exhibits very unusual behavior. The proper-

ties of helium-4 at and near this phase transition correlate with those of an ideal

Bose±Einstein gas at and near its condensation temperature. Although the

actual behavior of helium-4 is due to a combination of the effects of quantum

statistics and interparticle forces, its qualitative behavior is related to Bose±

Einstein condensation.

Problems

8.1 Show that the exchange operators P̂ in equation (8.4) and P̂áâ in (8.20) are

hermitian.

8.2 Noting from equation (8.10) that

Ø(1, 2) � 2ÿ1=2(ØS �ØA)

Ø(2, 1) � 2ÿ1=2(ØS ÿØA)

show that Ø(1, 2) and Ø(2, 1) are orthogonal if ØS and ØA are normalized.

8.3 Verify the validity of the relationships in equation (8.19).

8.4 Verify the validity of the relationships in equation (8.22).

8.5 Apply equation (8.12) to show that ØS and ØA in (8.26) are normalized.

8.6 Consider two identical non-interacting particles, each of mass m, in a one-

dimensional box of length a. Suppose that they are in the same spin state so that

spin may be ignored.

(a) What are the four lowest energy levels, their degeneracies, and their corre-

sponding wave functions if the two particles are distinguishable?

(b) What are the four lowest energy levels, their degeneracies, and their corre-

sponding wave functions if the two particles are identical fermions?

(c) What are the four lowest energy levels, their degeneracies, and their corre-

sponding wave functions if the two particles are identical bosons?

8.7 Consider a crude approximation to the ground state of the lithium atom in which

the electron±electron repulsions are neglected. Construct the ground-state wave

function in terms of the hydrogen-like atomic orbitals.

4 C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet (1995) Phys. Rev. Lett. 75, 1687.
5 C. C. Bradley, C. A. Sackett, and R. G. Hulet (1997) Phys. Rev. Lett. 78, 985.
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8.8 The atomic weight of silver is 107.9 g molÿ1 and its density is 10.49 g cmÿ3.

Assuming that each silver atom has one conduction electron, calculate

(a) the Fermi energy and the average electronic energy (in joules and in eV),

(b) the average electronic velocity,

(c) the Fermi temperature,

(d) the pressure of the electron gas.

8.9 The bulk modulus or modulus of compression B is de®ned by

B � ÿv
@P

@v

� �
T

Show that B for a free-electron gas is given by B � 5P/3.
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9

Approximation methods

In the preceding chapters we solved the time-independent SchroÈdinger equation

for a few one-particle and pseudo-one-particle systems: the particle in a box,

the harmonic oscillator, the particle with orbital angular momentum, and the

hydrogen-like atom. There are other one-particle systems, however, for which

the SchroÈdinger equation cannot be solved exactly. Moreover, exact solutions

of the SchroÈdinger equation cannot be obtained for any system consisting of

two or more particles if there is a potential energy of interaction between the

particles. Such systems include all atoms except hydrogen, all molecules, non-

ideal gases, liquids, and solids. For this reason we need to develop approxima-

tion methods to solve the SchroÈdinger equation with suf®cient accuracy to

explain and predict the properties of these more complicated systems. Two of

these approximation methods are the variation method and perturbation

theory. These two methods are developed and illustrated in this chapter.

9.1 Variation method

Variation theorem

The variation method gives an approximation to the ground-state energy E0

(the lowest eigenvalue of the Hamiltonian operator Ĥ) for a system whose

time-independent SchroÈdinger equation is

Ĥøn � Enøn, n � 0, 1, 2, . . . (9:1)

In many applications of quantum mechanics to chemical systems, a knowledge

of the ground-state energy is suf®cient. The method is based on the variation

theorem: if ö is any normalized, well-behaved function of the same variables

as øn and satis®es the same boundary conditions as øn, then the quantity

E � höj Ĥ jöi is always greater than or equal to the ground-state energy E0

E � höjĤ jöi > E0 (9:2)
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Except for the restrictions stated above, the function ö, called the trial

function, is completely arbitrary. If ö is identical with the ground-state eigen-

function ø0, then of course the quantity E equals E0. If ö is one of the

excited-state eigenfunctions, then E is equal to the corresponding excited-state

energy and is obviously greater than E0. However, no matter what trial function

ö is selected, the quantity E is never less than E0.

To prove the variation theorem, we assume that the eigenfunctions øn form

a complete, orthonormal set and expand the trial function ö in terms of that set

ö �
X

n

anøn (9:3)

where, according to equation (3.28)

an � hønjöi (9:4)

Since the trial function ö is normalized, we have

höjöi �
X

k

akøk

����X
n

anøn

* +
�
X

k

X
n

a�k anhøkjøni

�
X

k

X
n

a�k anäkn �
X

n

janj2 � 1

We next substitute equation (9.3) into the integral for E in (9.2) and subtract

the ground-state energy E0, giving

E ÿ E0 � höj Ĥ ÿ E0jöi �
X

k

X
n

a�k anhøkj Ĥ ÿ E0jøni

�
X

k

X
n

a�k an(En ÿ E0)høkjøni �
X

n

janj2(En ÿ E0) (9:5)

where equation (9.1) has been used. Since En is greater than or equal to E0 and

janj2 is always positive or zero, we have E ÿ E0 > 0 and the theorem is

proved.

In the event that ö is not normalized, then ö in equation (9.2) is replaced by

Aö, where A is the normalization constant, and this equation becomes

E � jAj2höj Ĥ jöi > E0

The normalization relation is

hAöjAöi � jAj2höjöi � 1

giving

E � höjĤ jöihöjöi > E0 (9:6)

In practice, the trial function ö is chosen with a number of parameters ë1,
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ë2, . . . , which can be varied. The quantity E is then a function of these

parameters: E (ë1, ë2, . . .). For each set of parameter values, the corresponding

value of E (ë1, ë2, . . .) is always greater than or equal to the true ground-state

energy E0. The value of E (ë1, ë2, . . .) closest to E0 is obtained, therefore, by

minimizing E with respect to each of these parameters. Selecting a suf®ciently

large number of parameters in a well-chosen analytical form for the trial

function ö yields an approximation very close to E0.

Ground-state eigenfunction

If the quantity E is identical to the ground-state energy E0, which is usually

non-degenerate, then the trial function ö is identical to the ground-state

eigenfunction ø0. This identity follows from equation (9.5), which becomesX
n( 6�0)

janj2(En ÿ E0) � 0

where the term for n � 0 vanishes because En ÿ E0 vanishes. This relationship

is valid only if each coef®cient an equals zero for n 6� 0. From equation (9.3),

the normalized trial function ö is then equal to ø0. Should the ground-state

energy be degenerate, then the function ö is identical to one of the ground-state

eigenfunctions.

When the quantity E is not identical to E0, we assume that the trial function

ö which minimizes E is an approximation to the ground-state eigenfunction

ø0. However, in general, E is a closer approximation to E0 than ö is to ø0.

Example: particle in a box

As a simple application of the variation method to determine the ground-state

energy, we consider a particle in a one-dimensional box. The SchroÈdinger

equation for this system and its exact solution are presented in Section 2.5. The

ground-state eigenfunction is shown in Figure 2.2 and is observed to have no

nodes and to vanish at x � 0 and x � a. As a trial function ö we select

ö � x(aÿ x), 0 < x < a

� 0, x , 0, x . a

which has these same properties. Since we have

höjöi �
�a

0

x2(aÿ x)2 dx � a5

30

the normalized trial function is

ö �
�����
30
p

a5=2
x(aÿ x), 0 < x < a
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The quantity E is, then

E � höj Ĥ jöi � 30

a5

�a

0

(axÿ x2)
ÿ"2

2m

d2

dx2

� �
(axÿ x2) dx

� 30"2

ma5

�a

0

(axÿ x2) dx � 5"2

ma2

The exact ground-state energy E1 is shown in equation (2.39) to be

ð2"2=2ma2. Thus, we have

E � 10

ð2
E1 � 1:013E1 . E1

giving a 1.3% error.

Example: harmonic oscillator

We next consider an example with a variable parameter. For the harmonic

oscillator, discussed in Chapter 4, we select

ö � eÿcx2

as the trial function, where c is a parameter to be varied so as to minimize

E (c). This function has no nodes and approaches zero in the limits x! �1.

Since the integral höjöi is

höjöi �
�1
ÿ1

eÿ2cx2

dx � ð

2c

� �1=2

where equation (A.5) is used, the normalized trial function is

ö � 2c

ð

� �1=4

eÿcx2

The Hamiltonian operator Ĥ for the harmonic oscillator is given in equation

(4.12). The quantity E (c) is then determined as follows

E (c) � ÿ 2c

ð

� �1=2
"2

2m

�1
ÿ1

eÿcx2 d2

dx2
eÿcx2

dx� 2c

ð

� �1=2
mù2

2

�1
ÿ1

x2eÿ2cx2

dx

� 2c

ð

� �1=2
"2c

m

�1
ÿ1

(1ÿ 2cx2) eÿ2cx2

dx� c

2ð

� �1=2

mù2

�1
ÿ1

x2eÿ2cx2

dx

� 2c

ð

� �1=2
"2c

m

ð

2c

� �1=2

ÿ c
ð

8c3

� �1=2
" #

� c

2ð

� �1=2 mù2

2

ð

8c3

� �1=2

� "2c

2m
� mù2

8c
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where equations (A.5) and (A.7) have been used.

To ®nd the minimum value of E (c), we set the derivative dE =dc equal to

zero and obtain

dE
dc
� "2

2m
ÿ mù2

8c2
� 0

so that

c � mù

2"

We have taken the positive square root because the parameter c must be

positive for ö to be well-behaved. The best estimate of the ground-state energy

is then

E � "2

2m

mù

2"

� �
� mù2

8

2"

mù

� �
� "ù

2

which is the exact result.

The reason why we obtain the exact ground-state energy in this simple

example is that the trial function ö has the same mathematical form as the

exact ground-state eigenfunction, given by equation (4.39). When the para-

meter c is evaluated to give a minimum value for E , the function ö becomes

identical to the exact eigenfunction.

Excited-state energies

The variation theorem may be extended in some cases to estimate the energies

of excited states. Under special circumstances it may be possible to select a

trial function ö for which the ®rst few coef®cients in the expansion (9.3)

vanish: a0 � a1 � . . . � akÿ1 � 0, in which case we have

ö �
X
n(>k)

anøn

and X
n(>k)

janj2 � 1

We assume here that the eigenfunctions øn in equation (9.1) are labeled in

order of increasing energy, so that

E0 < E1 < E2 < � � �
Following the same procedure used to prove the variation theorem, we

obtain
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E ÿ Ek �
X
n(>k)

janj2(En ÿ Ek)

from which it follows that

E > Ek (9:7)

Thus, the quantity E is an upper bound to the energy Ek corresponding to the

state øk . For situations in which ö can be made orthogonal to each exact

eigenfunction ø0, ø1, . . . , økÿ1, the coef®cients a0, a1, . . . , akÿ1 vanish

according to equation (9.4) and the inequality (9.7) applies.

An example is a one-dimensional system for which the potential energy V(x)

is an even function of the position variable x. The eigenfunction ø0 with the

lowest eigenvalue E0 has no nodes and therefore must be an even function of x.

The eigenfunction ø1 has one node, located at the origin, and therefore must

be an odd function of x. If we select for ö any odd function of x, then ö is

orthogonal to any even function of x, including ø0, and the coef®cient a0

vanishes. Thus, the integral E � höjĤ jöi gives an upper bound to E1 even

though the ground-state eigenfunction ø0 may not be known.

When the exact eigenfunctions ø0, ø1, . . . , økÿ1 are not known, they may

be approximated by trial functions ö0, ö1, . . . , ökÿ1 which successively give

upper bounds for E0, E1, . . . , Ekÿ1, respectively. In this case, the function ö1

is constructed to be orthogonal to ö0, ö2 constructed orthogonal to both ö0 and

ö1, and so forth. In general, this method is dif®cult to apply and gives

increasingly less accurate results with increasing n.

9.2 Linear variation functions

A convenient and widely used form for the trial function ö is the linear

variation function

ö �
XN

i�1

ci÷i (9:8)

where ÷1, ÷2, . . . , ÷N are an incomplete set of linearly independent functions

which have the same variables and which satisfy the same boundary conditions

as the exact eigenfunctions øn of equation (9.1). The functions ÷i are selected

to be real and are not necessarily orthogonal to one another. Thus, the overlap

integral Sij, de®ned as

Sij � h÷ij÷ ji (9:9)

is not generally equal to äij. The coef®cients ci are also restricted to real values

and are variation parameters to be determined by the minimization of the

variation integral E .
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If we substitute equation (9.8) into (9.6) and de®ne Hij by

Hij � h÷ij Ĥ j÷ ji (9:10)

we obtain

E �

XN

i�1

XN

j�1

cicjHij

XN

i�1

XN

j�1

cicjSij

or

E
XN

i�1

XN

j�1

cicjSij �
XN

i�1

XN

j�1

cicjHij (9:11)

To ®nd the values of the parameters ci in equation (9.8) which minimize E ,

we differentiate equation (9.11) with respect to each coef®cient ck (k � 1, 2,

. . . , N)

@E
@ck

XN

i�1

XN

j�1

cicjSij � E
@

@ck

XN

i�1

XN

j�1

cicjSij

0@ 1A � @

@ck

XN

i�1

XN

j�1

cicjHij

0@ 1A
and set (@E =@ck) � 0 for each value of k. The ®rst term on the left-hand side

vanishes. The remaining two terms may be combined to give

@

@ck

XN

i�1

XN

j�1

cicj(Hij ÿ E Sij)

0@ 1A �XN

i�1

XN

j�1

@ci

@ck

cj � ci

@cj

@ck

� �
(Hij ÿ E Sij)

�
XN

i�1

XN

j�1

(äikcj � ciäjk)(Hij ÿ E Sij)

�
XN

j�1

cj(Hkj ÿ E Skj)�
XN

i�1

ci(Hik ÿ E Sik)

� 0

where we have noted that (@ci=@ck) � äik because the coef®cients ci in equa-

tion (9.8) are independent of each other. If we replace the dummy index j by i

and note that Hik � Hki and Sik � Ski because the functions ÷i are real, we

obtain a set of N linear homogeneous simultaneous equationsXN

i�1

ci(Hki ÿ E Ski) � 0, k � 1, 2, . . . , N (9:12)
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Equation (9.12) has the formXN

i�1

akixi � 0, k � 1, 2, . . . , N (9:13)

for which a trivial solution is xi � 0 for all i. A non-trivial solution exists if,

and only if, the determinant of the coef®cients aki vanishes

a11 a12 � � � a1N

a21 a22 � � � a2N

� � � � � � � � � � � �
aN1 aN2 � � � aNN

��������
�������� � 0

This determinant or its equivalent algebraic expansion is known as the secular

equation. In equation (9.12) the parameters ci correspond to the unknown

quantities xi in equation (9.13) and the terms (Hki ÿ E Ski) correspond to the

coef®cients aki. Thus, a non-trivial solution for the N parameters ci exists only

if the determinant with elements (Hki ÿ E Ski) vanishes

H11 ÿ E S11 H12 ÿ E S12 � � � H1N ÿ E S1N

H21 ÿ E S21 H22 ÿ E S22 � � � H2N ÿ E S2N

� � � � � � � � � � � �
H N1 ÿ E SN1 H N2 ÿ E SN2 � � � H NN ÿ E SNN

��������
�������� � 0 (9:14)

The secular equation (9.14) is satis®ed only for certain values of E . Since

this equation is of degree N in E , there are N real roots

E 0 < E 1 < E 2 < � � � < E Nÿ1

According to the variation theorem, the lowest root E 0 is an upper bound to the

ground-state energy E0: E0 < E 0. The other roots may be shown1 to be upper

bounds for the excited-state energy levels

E1 < E 1, E2 < E 2, . . . , ENÿ1 < E Nÿ1

9.3 Non-degenerate perturbation theory

Perturbation theory provides a procedure for ®nding approximate solutions to

the SchroÈdinger equation for a system which differs only slightly from a system

for which the solutions are known. The Hamiltonian operator Ĥ for the system

of interest is given by

Ĥ � ÿ "2

2

XN

i�1

1

mi

=2
i � V (r1, r2, . . . , rN )

1 J. K. L. MacDonald (1933) Phys. Rev. 43, 830.

9.3 Non-degenerate perturbation theory 239



where N is the number of particles in the system. We suppose that the

SchroÈdinger equation for this Hamiltonian operator

Ĥøn � Enøn (9:15)

cannot be solved exactly by known mathematical techniques.

In perturbation theory we assume that Ĥ may be expanded in terms of a

small parameter ë

Ĥ � Ĥ (0) � ë Ĥ (1) � ë2 Ĥ (2) � � � � � Ĥ (0) � Ĥ9 (9:16)

where

Ĥ9 � ë Ĥ (1) � ë2 Ĥ (2) � � � � (9:17)

The quantity Ĥ (0) is the unperturbed Hamiltonian operator whose orthonormal

eigenfunctions ø(0)
n and eigenvalues E(0)

n are known exactly, so that

Ĥ (0)ø(0)
n � E(0)

n ø(0)
n (9:18)

The operator Ĥ9 is called the perturbation and is small. Thus, the operator Ĥ

differs only slightly from Ĥ (0) and the eigenfunctions and eigenvalues of Ĥ do

not differ greatly from those of the unperturbed Hamiltonian operator Ĥ (0).

The parameter ë is introduced to facilitate the comparison of the orders of

magnitude of various terms. In the limit ë! 0, the perturbed system reduces

to the unperturbed system. For many systems there are no terms in the

perturbed Hamiltonian operator higher than Ĥ (1) and for convenience the

parameter ë in equations (9.16) and (9.17) may then be set equal to unity.

The mathematical procedure that we present here for solving equation (9.15)

is known as Rayleigh±SchroÈdinger perturbation theory. There are other

procedures, but they are seldom used. In the Rayleigh±SchroÈdinger method,

the eigenfunctions øn and the eigenvalues En are expanded as power series

in ë

øn � ø(0)
n � ëø(1)

n � ë2ø(2)
n � � � � (9:19)

En � E(0)
n � ëE(1)

n � ë2 E(2)
n � � � � (9:20)

The quantities ø(1)
n and E(1)

n are the ®rst-order corrections to øn and En, the

quantities ø(2)
n and E(2)

n are the second-order corrections, and so forth. If the

perturbation Ĥ9 is small, then equations (9.19) and (9.20) converge rapidly for

all values of ë where 0 < ë < 1.

We next substitute the expansions (9.16), (9.19), and (9.20) into equation

(9.15) and collect coef®cients of like powers of ë to obtain

Ĥ (0)ø(0)
n � ë( Ĥ (1)ø(0)

n � Ĥ (0)ø(1)
n )� ë2( Ĥ (2)ø(0)

n � Ĥ (1)ø(1)
n � Ĥ (0)ø(2)

n ) � � � �
� E(0)

n ø(0)
n � ë(E(1)

n ø(0)
n � E(0)

n ø(1)
n )� ë2(E(2)

n ø(0)
n � E(1)

n ø(1)
n � E(0)

n ø(2)
n ) � � � �

(9:21)
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This equation has the form

f (å) �
X

k

bkå
k � 0

where

bk � 1

k!

@ k f

@å k

� �
å�0

Since f (å) is identically zero, the coef®cients bk all vanish. Thus, the coef®-

cients of ëk on the left-hand side of equation (9.21) are equal to the coef®cients

of ëk on the right-hand side. The coef®cients of ë0 give equation (9.18) for the

unperturbed system. The coef®cients of ë yield

( Ĥ (0) ÿ E(0)
n )ø(1)

n � ÿ( Ĥ (1) ÿ E(1)
n )ø(0)

n (9:22)

while the coef®cients of ë2 give

( Ĥ (0) ÿ E(0)
n )ø(2)

n � ( Ĥ (1) ÿ E(1)
n )ø(1)

n � ÿ( Ĥ (2) ÿ E(2)
n )ø(0)

n (9:23)

and so forth.

First-order corrections

To ®nd the ®rst-order correction E(1)
n to the eigenvalue En, we multiply

equation (9.22) by the complex conjugate of ø(0)
n and integrate over all space to

obtain

hø(0)
n j Ĥ (0)jø(1)

n i ÿ E(0)
n hø(0)

n jø(1)
n i � ÿhø(0)

n jĤ (1)jø(0)
n i � E(1)

n

where we have noted that ø(0)
n is normalized. Since Ĥ (0) is hermitian, the ®rst

integral on the left-hand side takes the form

hø(0)
n j Ĥ (0)jø(1)

n i � h Ĥ (0)ø(0)
n jø(1)

n i � E(0)
n hø(0)

n jø(1)
n i

and therefore cancels the second integral on the left-hand side. The ®rst-order

correction E(1)
n is, then, the expectation value of the perturbation Ĥ (1) in the

unperturbed state

E(1)
n � hø(0)

n j Ĥ (1)jø(0)
n i � Ĥ (1)

nn (9:24)

The ®rst-order correction ø(1)
n to the eigenfunction is obtained by multi-

plying equation (9.22) by the complex conjugate of ø(0)
k for k 6� n and

integrating over all space to give

hø(0)
k jĤ (0)jø(1)

n i ÿ E(0)
n hø(0)

k jø(1)
n i � ÿhø(0)

k j Ĥ (1)jø(0)
n i � E(1)

n hø(0)
k jø(0)

n i
(9:25)

Noting that the unperturbed eigenfunctions are orthogonal

hø(0)
k jø(0)

n i � äkn (9:26)
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applying the hermitian property of Ĥ (0) to the ®rst term on the left-hand side,

and writing H
(1)
kn for hø(0)

k j Ĥ (1)jø(0)
n i, we may express equation (9.25) as

(E
(0)
k ÿ E(0)

n )hø(0)
k jø(1)

n i � ÿ Ĥ
(1)
kn (9:27)

The orthonormal eigenfunctions ø(0)
j for the unperturbed system are as-

sumed to form a complete set. Thus, the perturbation corrections ø(1)
n may be

expanded in terms of the set ø(0)
j

ø(1)
n �

X
j

anjø
(0)
j � annø

(0)
j �

X
j( 6�n)

anjø
(0)
j

where anj are complex constants given by

anj � hø(0)
j jø(1)

n i (9:28)

If the complete set of eigenfunctions for the unperturbed system includes a

continuous range of functions, then the expansion of ø(1)
n must include these

functions. The inclusion of this continuous range is implied in the summation

notation. The total eigenfunction øn for the perturbed system to ®rst order in ë
is, then

øn � (1� ëann)ø(0)
n � ë

X
j( 6�n)

anjø
(0)
j (9:29)

Since the function ø(0)
n is already included in zero order in the expansion of

øn, we may, without loss of generality, set ann equal to zero, so that

ø(1)
n �

X
j(6�n)

anjø
(0)
j (9:30)

This choice affects the normalization constant of øn, but has no other

consequence. Furthermore, equation (9.28) for j � n becomes

hø(0)
n jø(1)

n i � 0 (9:31)

showing that with ann � 0, the ®rst-order correction ø(1)
n is orthogonal to the

unperturbed eigenfunction ø(0)
n .

With the choice ann � 0, the total eigenfunction øn to ®rst order is normal-

ized. To show this, we form the scalar product hønjøni using equation (9.29)

and retain only zero-order and ®rst-order terms to obtain

hønjøni � hø(0)
n jø(0)

n i � ë
X
j(6�n)

(anjhø(0)
n jø(0)

j i � a�njhø(0)
j jø(0)

n i)

� 1� ë
X
j(6�n)

(anj � a�nj)änj � 1

where equation (9.26) has been used.

Substitution of equation (9.30) into (9.27) gives
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(E
(0)
k ÿ E(0)

n )
X
j( 6�n)

anjhø(0)
k jø(0)

j i � (E
(0)
k ÿ E(0)

n )ank � ÿ Ĥ
(1)
kn

where again equation (9.26) is utilized. If the eigenvalue E(0)
n is non-degen-

erate, then E
(0)
k cannot equal E(0)

n for all k and n and we can divide by

(E
(0)
k ÿ E(0)

n ) to solve for ank

ank � ÿ Ĥ
(1)
kn

E
(0)
k ÿ E(0)

n

(9:32)

The situation where E(0)
n is degenerate requires a more complex treatment,

which is presented in Section 9.5. The ®rst-order correction ø(1)
n is obtained by

combining equations (9.30) and (9.32)

ø(1)
n � ÿ

X
k(6�n)

Ĥ
(1)
kn

E
(0)
k ÿ E(0)

n

ø(0)
k (9:33)

Second-order corrections

The second-order correction E(2)
n to the eigenvalue En is obtained by multi-

plying equation (9.23) by ø(0)�
n and integrating over all space

hø(0)
n j Ĥ (0) ÿ E(0)

n jø(2)
n i � hø(0)

n j Ĥ (1)jø(1)
n i ÿ E(1)

n hø(0)
n jø(1)

n i
� ÿhø(0)

n j Ĥ (2)jø(0)
n i � E(2)

n

where the normalization of ø(0)
n has been noted. Application of the hermitian

property of Ĥ (0) cancels the ®rst term on the left-hand side. The third term on

the left-hand side vanishes according to equation (9.31). Writing Ĥ (2)
nn for

hø(0)
n j Ĥ (2)jø(0)

n i and substituting equation (9.33) then give

E(2)
n � Ĥ (2)

nn � hø(0)
n jĤ (1)jø(1)

n i

� Ĥ (2)
nn ÿ

X
k(6�n)

Ĥ
(1)
nk Ĥ

(1)
kn

E
(0)
k ÿ E(0)

n

� Ĥ (2)
nn ÿ

X
k(6�n)

j Ĥ (1)
kn j2

E
(0)
k ÿ E(0)

n

(9:34)

where we have also noted that Ĥ
(1)
nk equals Ĥ

(1)�
kn because Ĥ (1) is hermitian.

In many applications there is no second-order term in the perturbed

Hamiltonian operator so that Ĥ (2)
nn is zero. In such cases each unperturbed

eigenvalue E(0)
n is raised by the terms in the summation corresponding to

eigenvalues E
(0)
k less than E(0)

n and lowered by the terms with eigenvalues E
(0)
k

greater than E(0)
n . The eigenvalue E(0)

n is perturbed to the greatest extent by the

terms with eigenvalues E
(0)
k close to E(0)

n . The contribution to the second-order

correction E(2)
n of terms with eigenvalues far removed from E(0)

n is small. For

the lowest eigenvalue E
(0)
0 , all of the terms are negative so that E

(2)
0 is negative.
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We also see that, in these cases, the ®rst-order correction ø(1)
n to the eigenfunc-

tion determines the second-order correction E(2)
n to the eigenvalue.

To obtain the second-order perturbation correction ø(2)
n to the eigenfunction,

we multiply equation (9.23) by ø(0)�
kn for k 6� n and integrate over all space

hø(0)
k j Ĥ (0) ÿ E(0)

n jø(2)
n i � hø(0)

k j Ĥ (1)jø(1)
n i ÿ E(1)

n hø(0)
k jø(1)

n i
� ÿhø(0)

k j Ĥ (2)jø(0)
n i � E(2)

n hø(0)
k jø(0)

n i
As before, we apply the hermitian property of Ĥ (0), introduce the abbreviation

Ĥ
(2)
kn , and use the orthogonality relation (9.26) to obtain

(E
(0)
k ÿ E(0)

n )hø(0)
k jø(2)

n i � hø(0)
k j Ĥ (1)jø(1)

n i ÿ E(1)
n hø(0)

k jø(1)
n i � ÿ Ĥ

(2)
kn (9:35)

We next expand the function ø(2)
n in terms of the complete set of unperturbed

eigenfunctions ø(0)
j

ø(2)
n �

X
j(6�n)

bnjø
(0)
j (9:36)

where, without loss of generality, the term j � n may be omitted for the same

reason that ø(0)
n is omitted in equation (9.30). The coef®cients bnj are complex

constants given by

bnj � hø(0)
j jø(2)

n i (9:37)

Substitution of equations (9.24), (9.28), (9.30), and (9.37) into (9.35) gives

(E
(0)
k ÿ E(0)

n )bnk �
X
j( 6�n)

anj Ĥ
(1)
kj ÿ ank Ĥ (1)

nn � ÿ Ĥ
(2)
kn

or

bnk � ÿ
Ĥ

(2)
kn �

X
j(6�n)

anj Ĥ
(1)
kj ÿ ank Ĥ (1)

nn

(E
(0)
k ÿ E(0)

n )
(9:38)

Combining equations (9.32), (9.36), and (9.38), we obtain the ®nal result

ø(2)
n �

X
k(6�n)

ÿ Ĥ
(2)
kn

E
(0)
k ÿ E(0)

n

�
X
j(6�n)

Ĥ
(1)
kj Ĥ

(1)
jn

(E
(0)
k ÿ E(0)

n )(E
(0)
j ÿ E(0)

n )
ÿ Ĥ

(1)
kn Ĥ (1)

nn

(E
(0)
k ÿ E(0)

n )2

24 35ø(0)
k

(9:39)

Summary

The non-degenerate eigenvalue En for the perturbed system to second order is

obtained by substituting equations (9.24) and (9.34) into (9.20) to give
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En � E(0)
n � ë Ĥ (1)

nn � ë2 Ĥ (2)
nn ÿ

X
k(6�n)

jĤ (1)
kn j2

E
(0)
k ÿ E(0)

n

24 35 (9:40)

The corresponding eigenfunction øn to second order is obtained by combining

equations (9.19), (9.33), and (9.39)

øn � ø(0)
n ÿ ë

X
k(6�n)

Ĥ
(1)
kn

E
(0)
k ÿ E(0)

n

ø(0)
k

� ë2
X
k( 6�n)

ÿ Ĥ
(2)
kn

E
(0)
k ÿ E(0)

n

�
X
j(6�n)

Ĥ
(1)
kj Ĥ

(1)
jn

(E
(0)
k ÿ E(0)

n )(E
(0)
j ÿ E(0)

n )
ÿ Ĥ

(1)
kn Ĥ (1)

nn

(E
(0)
k ÿ E(0)

n )2

24 35ø(0)
k

(9:41)

While the eigenvalue E(0)
n for the unperturbed system must be non-degen-

erate for these expansions to be valid, some or all of the other eigenvalues E
(0)
k

for k 6� n may be degenerate. The summations in equations (9.40) and (9.41)

are to be taken over all states of the unperturbed system other than the state

ø(0)
n . If an eigenvalue E

(0)
i is gi-fold degenerate, then it is included gi times in

the summations. If the unperturbed eigenfunctions have a continuous range,

then the summations in equations (9.40) and (9.41) must include an integration

over those states as well.

Relation to variation method

If we use the wave function ø(0)
0 for the unperturbed ground state as a trial

function ö in the variation method of Section 9.1 and set Ĥ equal to

Ĥ (0) � ë Ĥ (1), then we have from equations (9.2), (9.18), and (9.24)

E � höj Ĥ jöi � hø(0)
0 j Ĥ (0) � ë Ĥ (1)jø(0)

0 i � E
(0)
0 � ëE

(1)
0

and E is equal to the ®rst-order energy as determined by perturbation theory. If

we instead use a trial function ö which contains some parameters and which

equals ø(0)
0 for some set of parameter values, then the corresponding energy E

from equation (9.2) is at least as good an approximation as E
(0)
0 � ëE

(1)
0 to the

true ground-state energy.

Moreover, if the wave function ø(0)
0 � ëø(1)

0 is used as a trial function ö, then

the quantity E from equation (9.2) is equal to the second-order energy

determined by perturbation theory. Any trial function ö with parameters which

reduces to ø(0)
0 � ëø(1)

0 for some set of parameter values yields an approximate

energy E from equation (9.2) which is no less accurate than the second-order

perturbation value.
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9.4 Perturbed harmonic oscillator

As illustrations of the application of perturbation theory we consider two

examples of a perturbed harmonic oscillator. In the ®rst example, we suppose

that the potential energy V of the oscillator is

V � 1
2
kx2 � cx4 � 1

2
mù2x2 � cx4

where c is a small quantity. The units of V are those of "ù (energy), while the

units of x are shown in equation (4.14) to be those of ("=mù)1=2. Accordingly,

the units of c are those of m2ù3=" and we may express c as

c � ë
m2ù3

"

where ë is dimensionless. The potential energy then takes the form

V � 1
2
mù2x2 � ë

m2ù3x4

"
(9:42)

The Hamiltonian operator Ĥ (0) for the unperturbed harmonic oscillator is

given by equation (4.12) and its eigenvalues E(0)
n and eigenfunctions ø(0)

n are

shown in equations (4.30) and (4.41). The perturbation Ĥ9 is

Ĥ9 � Ĥ (1) � ë
m2ù3x4

"
(9:43)

Higher-order terms Ĥ (2), Ĥ (3), . . . in the perturbed Hamiltonian operator do

not appear in this example.

To ®nd the perturbation corrections to the eigenvalues and eigenfunctions,

we require the matrix elements hn9jx4jni for the unperturbed harmonic

oscillator. These matrix elements are given by equations (4.51). The ®rst-order

correction E(1)
n to the eigenvalue En is evaluated using equations (9.24), (9.43),

and (4.51c)

E(1)
n � Ĥ (1)

nn �
ëm2ù3

"
hnjx4jni � 3

2
(n2 � n� 1

2
)ë"ù (9:44)

The second-order correction E(2)
n is obtained from equations (9.34), (9.43), and

(4.51) as follows
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E(2)
n

� ÿ j Ĥ
(1)
nÿ4,nj2

E
(0)
nÿ4 ÿ E(0)

n

ÿ j Ĥ (1)
nÿ2,nj2

E
(0)
nÿ2 ÿ E(0)

n

ÿ jĤ (1)
n�2,nj2

E
(0)
n�2 ÿ E(0)

n

ÿ jĤ (1)
n�4,nj2

E
(0)
n�4 ÿ E(0)

n

� ÿ ë2 m4ù6

"2

hnÿ 4jx4jni2
(ÿ4"ù)

� hnÿ 2jx4jni2
(ÿ2"ù)

� hn� 2jx4jni2
2"ù

� hn� 4jx4jni2
4"ù

" #
� ÿ1

8
(34n3 � 51n2 � 59n� 21)ë2"ù (9:45)

The perturbed energy En to second order is, then

En � E(0)
n � E(1)

n � E(2)
n

� (n� 1
2
)"ù� 3

2
(n2 � n� 1

2
)ë"ùÿ 1

8
(34n3 � 51n2 � 59n� 21)ë2"ù

(9:46)

In the expression (9.45) for the second-order correction E(2)
n , the summation

on the right-hand side includes all states k other than the state n, but only for

the states (nÿ 4), (nÿ 2), (n� 2), and (n� 4) are the contributions to the

summation non-vanishing. For the two lowest values of n, giving E
(2)
0 and E

(2)
1 ,

only the two terms k � (n� 2) and k � (n� 4) should be included in the

summation. However, the terms for the meaningless values k � (nÿ 2) and

k � (nÿ 4) vanish identically, so that their inclusion in equation (9.45) is

valid. A similar argument applies to E
(2)
2 and E

(2)
3 , wherein the term for the

meaningless value k � (nÿ 4) is identically zero. Thus, equation (9.46)

applies to all values of n and the perturbed ground-state energy E0, for

example, is

E0 � (1
2
� 3

4
ëÿ 21

8
ë2)"ù

The evaluation of the ®rst- and second-order corrections to the eigenfunc-

tions is straightforward, but tedious. Consequently, we evaluate here only the

®rst-order correction ø(1)
0 for the ground state. According to equations (9.33),

(9.43), and (4.51), this correction term is given by

ø(1)
0 � ÿ

Ĥ
(1)
20

E
(0)
2 ÿ E

(0)
0

ø(0)
2 ÿ

Ĥ
(1)
40

E
(0)
4 ÿ E

(0)
0

ø(0)
4

� ÿ ëm2ù3

"

h2jx4j0i
2"ù

ø(0)
2 �

h4jx4j0i
4"ù

ø(0)
4

� �
� ÿ ë

4
���
2
p [6ø(0)

2 �
���
3
p

ø(0)
4 ] (9:47)

If the unperturbed eigenfunctions ø(0)
2 and ø(0)

4 as given by equation (4.41) are
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explicitly introduced, then the perturbed ground-state eigenfunction ø0 to ®rst

order is

ø0 � ø(0)
0 � ø(1)

0 �
mù

ð"

� �1=4

1ÿ ë

16
(4î4 � 12î2 ÿ 9)

� �
eÿî

2=2 (9:48)

As a second example, we suppose that the potential energy V for the

perturbed harmonic oscillator is

V � 1
2
kx2 � cx3 � 1

2
mù2x2 � ë

m3ù5

"

� �1=2

x3 (9:49)

where c � ë(m3ù5=")1=2 is again a small quantity and ë is dimensionless. The

perturbation Ĥ9 for this example is

Ĥ9 � Ĥ (1) � ë
m3ù5

"

� �1=2

x3 (9:50)

The matrix elements hn9jx3jni for the unperturbed harmonic oscillator are

given by equations (4.50). The ®rst-order correction term E(1)
n is obtained by

substituting equations (9.50) and (4.50e) into (9.24), giving the result

E(1)
n � ë

m3ù5

"

� �1=2

hnjx3jni � 0 (9:51)

Thus, the ®rst-order perturbation to the eigenvalue is zero. The second-order

term E(2)
n is evaluated using equations (9.34), (9.50), and (4.50), giving the

result

En � E(2)
n

� ÿ j Ĥ
(1)
nÿ3,nj2

E
(0)
nÿ3 ÿ E(0)

n

ÿ jĤ (1)
nÿ1,nj2

E
(0)
nÿ1 ÿ E(0)

n

ÿ jĤ (1)
n�1,nj2

E
(0)
n�1 ÿ E(0)

n

ÿ j Ĥ (1)
n�3,nj2

E
(0)
n�3 ÿ E(0)

n

� ÿ ë2 m3ù5

"

hnÿ 3jx3jni2
(ÿ3"ù)

� hnÿ 1jx3jni2
(ÿ"ù)

� hn� 1jx3jni2
"ù

� hn� 3jx3jni2
3"ù

" #
� ÿ1

8
(30n2 � 30n� 11)ë2"ù (9:52)

9.5 Degenerate perturbation theory

The perturbation method presented in Section 9.3 applies only to non-degen-

erate eigenvalues E(0)
n of the unperturbed system. When E(0)

n is degenerate, the

denominators vanish for those terms in equations (9.40) and (9.41) in which

E
(0)
k is equal to E(0)

n , making the perturbations to En and øn indeterminate. In
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this section we modify the perturbation method to allow for degenerate

eigenvalues. In view of the complexity of this new procedure, we consider only

the ®rst-order perturbation corrections to the eigenvalues and eigenfunctions.

The eigenvalues and eigenfunctions for the unperturbed system are given by

equation (9.18), but now the eigenvalue E(0)
n is gn-fold degenerate. Accord-

ingly, there are gn eigenfunctions with the same eigenvalue E(0)
n . For greater

clarity, we change the notation here and denote the eigenfunctions correspond-

ing to E(0)
n as ø(0)

ná, á � 1, 2, . . . , gn. Equation (9.18) is then replaced by the

equivalent expression

H (0)ø(0)
ná � E(0)

n ø(0)
ná, á � 1, 2, . . . , gn (9:53)

Each of the eigenfunctions ø(0)
ná is orthogonal to all the other unperturbed

eigenfunctions ø(0)
ká for k 6� n, but is not necessarily orthogonal to the other

eigenfunctions for E(0)
n . Any linear combination öná of the members of the set

ø(0)
ná

öná �
Xgn

â�1

cáâø
(0)
nâ, á � 1, 2, . . . , gn (9:54)

is also a solution of equation (9.53) with the same eigenvalue E(0)
n . As

discussed in Section 3.3, the members of the set ø(0)
ná may be constructed to be

orthonormal and we assume that this construction has been carried out, so that

hø(0)
nâjø(0)

nái � äáâ, á, â � 1, 2, . . . , gn (9:55)

By suitable choices for the coef®cients cáâ in equation (9.54), the functions

öná may also be constructed as an orthonormal set

hönâjönái � äáâ, á, â � 1, 2, . . . , gn (9:56)

Substitution of equation (9.54) into (9.56) and application of (9.55) giveXgn

ã�1

c�âãcáã � äáâ, á, â � 1, 2, . . . , gn (9:57)

The SchroÈdinger equation for the perturbed system is

Ĥøná � Enáøná, á � 1, 2, . . . , gn (9:58)

where the Hamiltonian operator Ĥ is given by equation (9.16), Ená are the

eigenvalues for the perturbed system, and øná are the corresponding eigen-

functions. While the unperturbed eigenvalue E(0)
n is gn-fold degenerate, the

perturbation Ĥ9 in the Hamiltonian operator often splits the eigenvalue E(0)
n

into gn different values. For this reason, the perturbed eigenvalues Ená require

the additional index á. The perturbation expansions of Ená and øná in powers

of ë are
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Ená � E(0)
n � ëE(1)

ná � ë2 E(2)
ná � � � � , á � 1, 2, . . . , gn (9:59)

øná � ø(0)
ná � ëø(1)

ná � ë2ø(2)
ná � � � � , á � 1, 2, . . . , gn (9:60)

Note that in equation (9.59) the zero-order term is the same for all values of á.

In the limit ë! 0, the Hamiltonian operator Ĥ approaches the unperturbed

operator Ĥ (0) and the perturbed eigenvalue Ená approaches the degenerate

unperturbed eigenvalue E(0)
n . The perturbed eigenfunction øná approaches a

function which satis®es equation (9.53), but this limiting eigenfunction may

not be any one of the initial functions ø(0)
ná. In general, this limiting function is

some linear combination of the initial unperturbed eigenfunctions ø(0)
ná, as

expressed in equation (9.54). Thus, along with the determination of the ®rst-

order correction terms E(1)
ná and ø(1)

ná, we must ®nd the set of unperturbed

eigenfunctions ö(0)
ná to which the perturbed eigenfunctions reduce in the limit

ë! 0. In other words, we need to evaluate the coef®cients cáâ in the linear

combinations (9.54) which transform the initial set of unperturbed eigenfunc-

tions ø(0)
ná into the `correct' set ö(0)

ná. Equation (9.60) is then replaced by

øná � ö(0)
ná � ëø(1)

ná � ë2ø(2)
ná � � � � , á � 1, 2, . . . , gn (9:61)

The ®rst-order equations (9.22) and (9.24) apply here provided the additional

index á and the `correct' unperturbed eigenfunctions are used

( Ĥ (0) ÿ E(0)
n )ø(1)

ná � ÿ( Ĥ (1) ÿ E(1)
ná)ö(0)

ná (9:62)

E(1)
ná � hö(0)

náj Ĥ (1)jö(0)
nái (9:63)

However, equation (9.63) for the ®rst-order corrections to the eigenvalues

cannot be used directly at this point because the functions ö(0)
ná are not known.

To ®nd E(1)
ná we multiply equation (9.62) by ø(0)�

nâ , the complex conjugate of

one of the initial unperturbed eigenfunctions belonging to the degenerate

eigenvalue E(0)
n , and integrate over all space to obtain

hø(0)
nâj Ĥ (0) ÿ E(0)

n jø(1)
nái � ÿhø(0)

nâjĤ (1) ÿ E(1)
nájö(0)

nái
Applying the hermitian property of Ĥ (0), we see that the left-hand side

vanishes. Substitution of the expansion (9.54) for ö(0)
ná using ã as the dummy

expansion index givesXgn

ã�1

cáãhø(0)
nâj Ĥ (1) ÿ E(1)

nájø(0)
nãi � 0, á, â � 1, 2, . . . , gn

If we introduce the abbreviation

Ĥ
(1)
nâ,nã � hø(0)

nâj Ĥ (1)jø(0)
nãi, â, ã � 1, 2, . . . , gn

and apply the orthonormality condition (9.55), this equation takes the form
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Xgn

ã�1

cáã( Ĥ
(1)
nâ,nã ÿ E(1)

náäâã) � 0, á, â � 1, 2, . . . , gn (9:64)

Note that the integrals Ĥ (1)
ná,nã are evaluated with the known initial set of

unperturbed eigenfunctions, in contrast to the integrals in equation (9.63),

which require the unknown functions ö(0)
ná. For a given eigenvalue E(1)

ná, the

expression (9.64) is a set of gn linear homogeneous simultaneous equations,

one for each value of â (â � 1, 2, . . . , gn)

â � 1: cá1( Ĥ
(1)
n1,n1 ÿ E(1)

ná)� cá2 Ĥ
(1)
n1,n2 � cá3 Ĥ

(1)
n1,n3 � � � � � cá g n

Ĥ
(1)
n1,ng n

� 0

â � 2: cá1 Ĥ
(1)
n2,n1 � cá2( Ĥ

(1)
n2,n2 ÿ E(1)

ná)� cá3 Ĥ
(1)
n2,n3 � � � � � cá g n

Ĥ
(1)
n2,ng n

� 0

..

.

â � gn: cá1 Ĥ
(1)
ng n,n1 � cá2 Ĥ

(1)
ng n,n2 � cá3 Ĥ

(1)
ng n,n3 � � � � � cá g n

( Ĥ (1)
ng n,ng n

ÿ E(1)
ná)

� 0

Equation (9.64) has the form of (9.13) with the coef®cients cáã correspond-

ing to the unknown quantities xi and the terms ( Ĥ
(1)
nâ,nã ÿ E(1)

náäâã) correspond-

ing to the coef®cients aki. Thus, a non-trivial solution for the gn coef®cients

cáã (ã � 1, 2, . . . , gn) exists only if the determinant with elements ( Ĥ
(1)
nâ,nã ÿ

E(1)
náäâã) vanishes

H
(1)
n1,n1 ÿ E(1)

ná H
(1)
n1,n2 � � � H

(1)
n1,ng n

H
(1)
n2,n1 H

(1)
n2,n2 ÿ E(1)

ná � � � H
(1)
n2,ng n� � � � � � � � � � � �

H
(1)
ng n,n1 H

(1)
ng n,n2 � � � H (1)

ng n,ng n
ÿ E(1)

ná

���������

��������� � 0 (9:65)

Only for some values of the ®rst-order correction term E(1)
ná is the secular

equation (9.65) satis®ed. This secular equation is of degree gn in E(1)
ná, giving

gn roots

E
(1)
n1, E

(1)
n2, . . . , E(1)

ng n

all of which are real because Ĥ (1) is hermitian. The perturbed eigenvalues to

®rst order are, then

En1 � E(0)
n � ëE

(1)
n1

..

.

Eng n
� E(0)

n � ëE(1)
ng n

If the gn roots are all different, then in ®rst order the gn-fold degenerate

unperturbed eigenvalue E(0)
n is split into gn different perturbed eigenvalues. In

this case, the degeneracy is removed in ®rst order by the perturbation. We
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assume in the continuing presentation that all the roots are indeed different

from each other.

`Correct' zero-order eigenfunctions

The determination of the coef®cients cáã is not necessary for ®nding the ®rst-

order perturbation corrections to the eigenvalues, but is required to obtain the

`correct' zero-order eigenfunctions and their ®rst-order corrections. The coef®-

cients cáã for each value of á (á � 1, 2, . . . , gn) are obtained by substituting

the value found for E(1)
ná from the secular equation (9.65) into the set of

simultaneous equations (9.64) and solving for the coef®cients cá2, . . . , cá g n
in

terms of cá1. The normalization condition (9.57) is then used to determine cá1.

This procedure uniquely determines the complete set of coef®cients cáã (á,

ã � 1, 2, . . . , gn) because we have assumed that all the roots E(1)
ná are different.

If by accident or by clever choice, the initial set of unperturbed eigenfunc-

tions ø(0)
ná is actually the `correct' set, i.e., if in the limit ë! 0 the perturbed

eigenfunction øná reduces to ø(0)
ná for all values of á, then the coef®cients cáã

are given by cáã � äáã and the secular determinant is diagonal

H
(1)
n1,n1 ÿ E(1)

ná 0 � � � 0

0 H
(1)
n2,n2 ÿ E(1)

ná � � � 0

� � � � � � � � � � � �
0 0 � � � H (1)

ng n,ng n
ÿ E(1)

ná

���������

��������� � 0

The ®rst-order corrections to the eigenvalues are then given by

E(1)
ná � Ĥ (1)

ná,ná, á � 1, 2, . . . , gn (9:66)

It is obviously a great advantage to select the `correct' set of unperturbed

eigenfunctions as the initial set, so that the simpler equation (9.66) may be

used. A general procedure for achieving this goal is to ®nd a hermitian operator

Â that commutes with both Ĥ (0) and Ĥ (1) and has eigenfunctions ÷á with non-

degenerate eigenvalues ìá, so that

[Â, Ĥ (0)] � [Â, Ĥ (1)] � 0 (9:67)

and

Â÷á � ìá÷á

Since Â and Ĥ (0) commute, they have simultaneous eigenfunctions. Therefore,

we may select ÷1, ÷2, . . . , ÷ g n
as the initial set of unperturbed eigenfunctions

ø(0)
ná � ÷á, á � 1, 2, . . . , gn

We next form the integral h÷âj[Â, Ĥ (1)]j÷ái (â 6� á), which of course vanishes

according to equation (9.67),
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h÷âj[Â, Ĥ (1)]j÷ái � h÷âjÂ Ĥ (1)j÷ái ÿ h÷âj Ĥ (1) Âj÷ái
� hÂ÷âj Ĥ (1)j÷ái ÿ ìáh÷âjĤ (1)j÷ái
� (ìâ ÿ ìá)hø(0)

nâj Ĥ (1)jø(0)
nái

� (ìâ ÿ ìá) Ĥ
(1)
nâ,ná

� 0

Since ìâ 6� ìá, the off-diagonal elements Ĥ
(1)
nâ,ná equal zero and the set of

functions ø(0)
ná � ÷á is the `correct' set. The parity operator Ð̂ discussed in

Section 3.8 can often be used in this context for selecting `correct' unperturbed

eigenfunctions.

First-order corrections to the eigenfunctions

To obtain the ®rst-order corrections ø(1)
ná to the eigenfunctions øná, we multiply

equation (9.62) by ø(0)�
kâ for k 6� n and integrate over all space

hø(0)
kâjĤ (0) ÿ E(0)

n jø(1)
nái � ÿhø(0)

kâj Ĥ (1)jö(0)
nái � E(1)

náhø(0)
kâjö(0)

nái
Applying the hermitian property of Ĥ (0) and noting that ø(0)

kâ is orthogonal to

all eigenfunctions belonging to the eigenvalue E(0)
n , we have

(E
(0)
k ÿ E(0)

n )hø(0)
kâjø(1)

nái � ÿhø(0)
kâj Ĥ (1)jö(0)

nái (9:68)

We next expand the ®rst-order correction ø(1)
ná in terms of the complete set of

unperturbed eigenfunctions

ø(1)
ná �

X
j(6�n)

Xgj

ã�1

aná, jãø
(0)
jã (9:69)

where the terms with j � n are omitted for the same reason that they are

omitted in equation (9.30). Substitution of equations (9.54) and (9.69) into

(9.68) gives

(E
(0)
k ÿ E(0)

n )
X
j( 6�n)

Xgj

ã�1

aná, jãhø(0)
kâjø(0)

jã i � ÿ
Xgn

ã�1

cáã Ĥ
(1)
kâ,nã

In view of the orthonormality relations, the summation on the left-hand side

may be simpli®ed as followsX
j(6�n)

Xgj

ã�1

aná, jãhø(0)
kâjø(0)

jã i �
X
j( 6�n)

Xgj

ã�1

aná, jãäkjäâã � aná,kâ

Therefore, we have
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aná,kâ �
ÿ
Xgn

ã�1

cáã Ĥ
(1)
kâ,nã

(E
(0)
k ÿ E(0)

n )
(9:70)

The eigenfunctions øná for the perturbed system to ®rst order are obtained by

combining equations (9.61), (9.69), and (9.70)

øná � ö(0)
ná ÿ ë

X
k(6�n)

Xgk

â�1

Xgn

ã�1

cáã Ĥ
(1)
kâ,nã

(E
(0)
k ÿ E(0)

n )
ø(1)

kâ (9:71)

Example: hydrogen atom in an electric ®eld

As an illustration of the application of degenerate perturbation theory, we

consider the in¯uence, known as the Stark effect, of an externally applied

electric ®eld E on the energy levels of a hydrogen atom. The unperturbed

Hamiltonian operator Ĥ (0) for the hydrogen atom is given by equation (6.14),

and its eigenfunctions and eigenvalues are given by equations (6.56) and

(6.57), respectively. In this example, we label the eigenfunctions and eigenva-

lues of Ĥ (0) with an index starting at 1 rather than at 0 to correspond to the

principal quantum number n. The perturbation Ĥ9 is the potential energy for

the interaction between the atomic electron with charge ÿe and an electric ®eld

E directed along the positive z-axis

Ĥ9 � Ĥ (1) � eE z � eE r cos è (9:72)

If spin effects are neglected, the ground-state unperturbed energy level E
(0)
1

is non-degenerate and its ®rst-order perturbation correction E
(1)
1 is given by

equation (9.24) as

E
(1)
1 � eE h1sjzj1si � 0

This integral vanishes because the unperturbed ground state of the hydrogen

atom, the 1s state, has even parity and z has odd parity.

The next lowest unperturbed energy level E
(0)
2 , however, is four-fold degen-

erate and, consequently, degenerate perturbation theory must be used to

determine its perturbation corrections. For simplicity of notation, in the

quantities ø(0)
ná, ö(0)

ná, and Ĥ
(1)
ná,nâ we drop the index n, which has the value

n � 2 throughout. As the initial set of eigenfunctions for the unperturbed

system, we select the 2s, 2p0, 2p1, and 2pÿ1 atomic orbitals as given by

equations (6.59) and (6.60), so that
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ø(0)
1 � j2si, ø(0)

2 � j2p0i
ø(0)

3 � j2p1i, ø(0)
4 � j2 pÿ1i

(9:73)

The `correct' set of unperturbed eigenfunction ö(0)
á are, then

ö(0)
á �

X4

â�1

cáâø
(0)
â � cá1j2si � cá2j2p0i � cá3j2p1i � cá4j2pÿ1i,

á � 1, 2, 3, 4 (9:74)

The matrix elements Ĥ
(1)
áâ in this example are

Ĥ
(1)
áâ � eE hø(0)

á jzjø(0)
â i � eE hø(0)

á jr cosèjø(0)
â i

� eE
�2ð

0

�ð
0

�1
0

ø(0)�
á ø(0)

â r cos èr2 sin è dr dè dj (9:75)

These matrix elements vanish unless Äm � 0 and Äl � 1. Thus, only the

matrix element Ĥ
(1)
12 , which equals Ĥ

(1)
21 , is non-zero.

To evaluate the matrix element Ĥ
(1)
12 , we substitute the 2s wave function from

equation (6.59) and the 2p0 wave function from equation (6.60a) into (9.75)

Ĥ
(1)
12 � Ĥ

(1)
21 � eE [ð(2a0)4]ÿ1

�1
0

r4 1ÿ r

2a0

� �
eÿr=a0 dr

�ð
0

cos2è sinè dè

�2ð

0

dj

� ÿ3eE a0

where equations (A.26) and (A.28) are used.

The secular determinant (9.65) is

ÿE
(1)
2 ÿ3eE a0 0 0

ÿ3eE a0 ÿE
(1)
2 0 0

0 0 ÿE
(1)
2 0

0 0 0 ÿE
(1)
2

���������

��������� � 0

which expands to

[(E
(1)
2 )2 ÿ (3eE a0)2](E

(1)
2 )2 � 0

The four roots are E
(1)
2 � ÿ3eE a0, 3eE a0, 0, 0, so that to ®rst order the

perturbed energy levels are

E21 � ÿe92

8a0

ÿ 3eE a0, E23 � ÿe92

8a0

(9:76)

E22 � ÿe92

8a0

� 3eE a0, E24 � ÿe92

8a0

The four linear homogeneous simultaneous equations (9.64) are

9.5 Degenerate perturbation theory 255



ÿcá1 E(1)
á � cá2 Ĥ

(1)
12 � 0

cá1 Ĥ
(1)
12 ÿ cá2 E(1)

á � 0

ÿcá3 E(1)
á � 0

ÿcá4 E(1)
á � 0

(9:77)

To ®nd the `correct' set of unperturbed eigenfunctions ö(0)
á , we substitute ®rst

E
(1)
2 � ÿ3eE a0, then successively E

(1)
2 � 3eE a0, 0, 0 into the set of equations

(9.77). The results are as follows

for E
(1)
2 � Ĥ

(1)
12 � ÿ3eE a0: c1 � c2; c3 � c4 � 0

for E
(1)
2 � ÿ Ĥ

(1)
12 � 3eE a0: c1 � ÿc2; c3 � c4 � 0

for E
(1)
2 � 0: c1 � c2 � 0; c3 and c4 undetermined

Thus, the `correct' unperturbed eigenfunctions are

ö(0)
1 � 2ÿ1=2(j2si � j2p0i)

ö(0)
2 � 2ÿ1=2(j2si ÿ j2p0i)

ö(0)
3 � j2p1i

ö(0)
4 � j2pÿ1i

(9:78)

The factor 2ÿ1=2 is needed to normalize the `correct' eigenfunctions.

9.6 Ground state of the helium atom

In this section we examine the ground-state energy of the helium atom by

means of both perturbation theory and the variation method. We may then

compare the accuracy of the two procedures.

The potential energy V for a system consisting of two electrons, each with

mass me and charge ÿe, and a nucleus with atomic number Z and charge �Ze

is

V � ÿ Ze92

r1

ÿ Ze92

r2

� e92

r12

where r1 and r2 are the distances of electrons 1 and 2 from the nucleus, r12 is

the distance between the two electrons, and e9 � e for CGS units or

e9 � e=(4ðå0)1=2 for SI units. If we assume that the nucleus is ®xed in space,

then the Hamiltonian operator for the two electrons is

Ĥ � ÿ "2

2me

(=2
1 � =2

2)ÿ Ze92

r1

ÿ Ze92

r2

� e92

r12

(9:79)
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The operator Ĥ applies to He for Z � 2, Li� for Z � 3, Be2� for Z � 4, and

so forth.

Perturbation theory treatment

We regard the term e92=r12 in the Hamiltonian operator as a perturbation, so

that

Ĥ9 � Ĥ (1) � e92

r12

(9:80)

In reality, this term is not small in comparison with the other terms so we

should not expect the perturbation technique to give accurate results. With this

choice for the perturbation, the SchroÈdinger equation for the unperturbed

Hamiltonian operator may be solved exactly.

The unperturbed Hamiltonian operator is the sum of two hydrogen-like

Hamiltonian operators, one for each electron

Ĥ (0) � Ĥ
(0)
1 � Ĥ

(0)
2

where

Ĥ
(0)
1 � ÿ

"2

2me

=2
1 ÿ

Ze92

r1

Ĥ
(0)
2 � ÿ

"2

2me

=2
2 ÿ

Ze92

r2

If the unperturbed wave function ø(0) is written as the product

ø(0)(r1, r2) � ø(0)
1 (r1)ø(0)

2 (r2)

and the unperturbed energy E(0) is written as the sum

E(0) � E
(0)
1 � E

(0)
2

then the SchroÈdinger equation for the two-electron unperturbed system

Ĥ (0)ø(0)(r1, r2) � Eø(0)(r1, r2)

separates into two independent equations,

H
(0)
i ø(0)

i � E
(0)
i ø(0)

i , i � 1, 2

which are identical except that one refers to electron 1 and the other to electron

2. The solutions are those of the hydrogen-like atom, as discussed in Chapter 6.

The ground-state energy for the unperturbed two-electron system is, then, twice

the ground-state energy of a hydrogen-like atom

E(0) � ÿ2
Z2e92

2a0

� �
� ÿ Z2e92

a0

(9:81)

The ground-state wave function for the unperturbed two-electron system is the

product of two 1s hydrogen-like atomic orbitals
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ø(0)(r1, r2) � 1

ð

Z

a0

� �3

eÿZr1=a0eÿZr2=a0 � 1

ð

Z

a0

� �3

eÿ(r1�r2)=2 (9:82)

where we have de®ned

ri � 2Zri

a0

, i � 1, 2 (9:83)

The ®rst-order perturbation correction E(1) to the ground-state energy is

obtained by evaluating equation (9.24) with (9.80) as the perturbation and

(9.82) as the unperturbed eigenfunction

E(1) � ø(0)

���� e92

r12

����ø(0)

* +
� 2Z

a0

ø(0)

���� e92

r12

����ø(0)

* +
� Ze92

25ð2a0

I (9:84)

where r12 � jr2 ÿ r1j and where

I �
�
� � �
�

eÿ(r1�r2)

r12

r2
1r

2
2 sin è1 sin è2 dr1 dè1 dj1 dr2 dè2 dj2 (9:85)

This six-fold integral I is evaluated in Appendix J and is equal to 20ð2. Thus,

we have

E(1) � 5Ze92

8a0

� ÿ 5

8Z
E(0) (9:86)

The ground-state energy of the perturbed system to ®rst order is, then

E � E(0) � E(1) � ÿ Z2 ÿ 5Z

8

� �
e92

a0

(9:87)

Numerical values of E(0) and E(0) � E(1) for the helium atom (Z � 2) are

given in Table 9.1 along with the exact value. The unperturbed energy value

E(0) has a 37.7% error when compared with the exact value. This large

inaccuracy is expected because the perturbation Ĥ9 in equation (9.80) is not

small. When the ®rst-order perturbation correction is included, the calculated

energy has a 5.3% error, which is still large.

Table 9.1. Ground-state energy of the helium

atom

Method Energy (eV) % error

Exact ÿ79.0
Perturbation theory:

E(0) ÿ108.8 ÿ37.7
E(0) � E(1) ÿ74.8 �5.3

Variation theorem (E ) ÿ77.5 �1.9
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Variation method treatment

As a normalized trial function ö for the determination of the ground-state

energy by the variation method, we select the unperturbed eigenfunction

ø(0)(r1, r2) of the perturbation treatment, except that we replace the atomic

number Z by a parameter Z9

ö � ö1ö2

ö1 � 1

ð1=2

Z9

a0

� �3=2

eÿZ9r1=a0 (9:88)

ö2 � 1

ð1=2

Z9

a0

� �3=2

eÿZ9r2=a0

The parameter Z9 is an effective atomic number whose value is determined by

the minimization of E in equation (9.2). Since the hydrogen-like wave func-

tions ö1 and ö2 are normalized, we have

hö1jö1i � hö2jö2i � 1 (9:89)

The quantity E is obtained by combining equations (9.2), (9.79), (9.88), and

(9.89) to give

E � ö1

����ÿ "2

2me

=2
1 ÿ

Ze92

r1

����ö1

* +
� ö2

����ÿ "2

2me

=2
2 ÿ

Ze92

r2

����ö2

* +

� ö1ö2

���� e92

r12

����ö1ö2

* +
(9:90)

Note that while the trial function ö � ö1ö2 depends on the parameter Z9, the

Hamiltonian operator contains the true atomic number Z. Therefore, we rewrite

equation (9.90) in the form

E � ö1

����ÿ "2

2me

=2
1 ÿ

Z9e92

r1

����ö1

* +
� ö1

���� (Z9ÿ Z)e92

r1

����ö1

* +

� ö2

����ÿ "2

2me

=2
2 ÿ

Z9e92

r2

����ö2

* +
� ö2

���� (Z9ÿ Z)e92

r2

����ö2

* +

� ö1ö2

���� e92

r12

����ö1ö2

* +
(9:91)

The ®rst term on the right-hand side is just the energy of a hydrogen-like atom

with nuclear charge Z9, namely, ÿZ92e92=2a0. The third term has the same

value as the ®rst. The second term is evaluated as follows
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ö1

���� (Z9ÿ Z)e92

r1

����ö1

* +
� (Z9ÿ Z)e92 1

ð

Z9

a0

� �3�1
0

rÿ1
1 eÿ2 Z9r1=a04ðr2

1 dr1

� (Z9ÿ Z)e92 Z9

a0

where equations (A.26) and (A.28) have been used. The fourth term equals the

second. The ®fth term is identical to E(1) of the perturbation treatment given by

equation (9.86) except that Z is replaced by Z9 and therefore this term equals

5Z9e92=8a0. Thus, the quantity E in equation (9.91) is

E � 2 ÿ Z92e92

2a0

� �
� 2

Z9(Z9ÿ Z)e92

a0

� �
� 5Z9e92

8a0

� [Z92 ÿ 2(Z ÿ 5
16

)Z9]
e92

a0

(9:92)

We next minimize E with respect to the parameter Z9

dE
dZ9
� 2[Z9ÿ (Z ÿ 5

16
)]

e92

a0

� 0

so that

Z9 � Z ÿ 5
16

Substituting this result into equation (9.92) gives

E � ÿ(Z ÿ 5
16

)2 e92

a0

> E0 (9:93)

as an upper bound for the ground-state energy E0.

When applied to the helium atom (Z � 2), this upper bound is

E � ÿ 27

16

� �2
e92

a0

� ÿ2:85
e92

a0

(9:94)

The numerical value of E is listed in Table 9.1. The simple variation function

(9.88) gives an upper bound to the energy with a 1.9% error in comparison

with the exact value. Thus, the variation theorem leads to a more accurate

result than the perturbation treatment. Moreover, a more complex trial function

with more parameters should be expected to give an even more accurate

estimate.

Problems

9.1 The Hamiltonian operator for a hydrogen atom in a uniform external electric

®eld E along the z-coordinate axis is

Ĥ � ÿ"2

2ì
=2 ÿ e92

r
ÿ eEz
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Use the variation trial function ö � ø1s (1� ëz), where ë is the variation

parameter, to estimate the ground-state energy for this system.

9.2 Apply the gaussian function

ö � eÿër2=a2
0

where ë is a parameter, as the variation trial function to estimate the energy of

the ground state of the hydrogen atom. What is the percent error?

9.3 Apply the variation trial function ö(x) � x(aÿ x)(aÿ 2x) to estimate the energy

of a particle in a box with V (x) � 0 for 0 < x < a, V (x) � 1 for x , 0, x . a.

To which energy level does this estimate apply?

9.4 Consider a particle in a one-dimensional potential well such that

V (x) � (b"2=ma4)x(xÿ a), 0 < x < a

� 1, x , 0, x . a

where b is a dimensionless parameter. Using the particle in a box with V (x) � 0

for 0 < x < a, V (x) � 1 for x , 0, x . a as the unperturbed system, calculate

the ®rst-order perturbation correction to the energy levels. (See Appendix A for

the evaluation of the resulting integrals.)

9.5 Consider a particle in a one-dimensional potential well such that

V (x) � (b"2=ma3)x, 0 < x < a

� 1, x , 0, x . a

where b is a dimensionless parameter. Using the particle in a box with V (x) � 0

for 0 < x < a, V (x) � 1 for x , 0, x . a as the unperturbed system, calculate

the ®rst-order perturbation correction to the energy levels. (See Appendix A for

the evaluation of the resulting integral.)

9.6 Calculate the second-order perturbation correction to the ground-state energy for

the system in problem 9.5. (Use integration by parts and see Appendix A for the

evaluation of the resulting integral.)

9.7 Apply the linear variation function

ö � c1(2=a)1=2 sin(ðx=a)� c2(2=a)1=2 sin(2ðx=a)

for 0 < x < a to the system in problem 9.5. Set the parameter b in the potential

equal to ð2=8. Solve the secular equation to obtain estimates for the energies E1

and E2 of the ground state and ®rst-excited state. Compare this estimate for E1

with the ground-state energies obtained by ®rst-order and second-order perturba-

tion theory. Then determine the variation functions ö1 and ö2 that correspond to

E1 and E2.

9.8 Consider a particle in a one-dimensional champagne bottle2 for which

V (x) � (ð2"2=8ma2) sin(ðx=a), 0 < x < a

� 1, x , 0, x . a

2 G. R. Miller (1979) J. Chem. Educ. 56, 709.

Problems 261



Calculate the ®rst-order perturbation correction to the ground-state energy level

using the particle in a box with V (x) � 0 for 0 < x < a, V (x) � 1 for x , 0,

x . a as the unperturbed system. Then calculate the ®rst-order perturbation

correction to the ground-state wave function, terminating the expansion after the

term k � 5. (See Appendix A for trigonometric identities and integrals.)

9.9 Using ®rst-order perturbation theory, determine the ground-state energy of a

hydrogen atom in which the nucleus is not regarded as a point charge. Instead,

regard the nucleus as a sphere of radius b throughout which the charge �e is

evenly distributed. The potential of interaction between the nucleus and the

electron is

V (r) � ÿe92

2b
3ÿ r2

b2

� �
, 0 < r < b

� ÿe92

r
, r . b

The unperturbed system is, of course, the hydrogen atom with a point nucleus.

(Inside the nuclear sphere, the exponential

eÿ2r=a0 � 1ÿ (2r=a0)� (2r2=a2
0) ÿ � � �

may be approximated by unity because r is very small in that region.)

9.10 Using ®rst-order perturbation theory, show that the spin±orbit interaction energy

for a hydrogen atom is given by

1
2
á2jE(0)

n j
1

n(l � 1
2
)(l � 1)

for j � l � 1
2
, l 6� 0

ÿ1
2
á2jE(0)

n j
1

nl(l � 1
2
)

for j � l ÿ 1
2
, l 6� 0

The Hamiltonian operator is given in equation (7.33), where Ĥ0 represents the

unperturbed system and Ĥso is the perturbation. Use equations (6.74) and (6.78)

to evaluate the expectation value of î(r).
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10

Molecular structure

A molecule is composed of positively charged nuclei surrounded by electrons.

The stability of a molecule is due to a balance among the mutual repulsions of

nuclear pairs, attractions of nuclear±electron pairs, and repulsions of electron

pairs as modi®ed by the interactions of their spins. Both the nuclei and the

electrons are in constant motion relative to the center of mass of the molecule.

However, the nuclear masses are much greater than the electronic mass and, as

a result, the nuclei move much more slowly than the electrons. Thus, the basic

molecular structure is a stable framework of nuclei undergoing rotational and

vibrational motions surrounded by a cloud of electrons described by the

electronic probability density.

In this chapter we present in detail the separation of the nuclear and

electronic motions, the nuclear motion within a molecule, and the coupling

between nuclear and electronic motion.

10.1 Nuclear structure and motion

We consider a molecule with Ù nuclei, each with atomic number Zá and mass

Má (á � 1, 2, . . . , Ù), and N electrons, each of mass me. We denote by Q the

set of all nuclear coordinates and by r the set of all electronic coordinates. The

positions of the nuclei and electrons are speci®ed relative to an external set of

coordinate axes which are ®xed in space.

The Hamiltonian operator Ĥ for this system of Ù� N particles may be

written in the form

Ĥ � T̂Q � VQ � Ĥe (10:1)

where T̂Q is the kinetic energy operator for the nuclei
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T̂Q � ÿ"2
XÙ
á�1

=2
á

2Má
(10:2)

VQ is the potential energy of interaction between nuclear pairs

VQ �
XÙ

á, â�1

Zá Zâe92

ráâ
(10:3)

and Ĥe is the electronic Hamiltonian operator

Ĥe � ÿ "2

2me

XN

i�1

=2
i ÿ

XÙ
á�1

XN

i�1

Záe92

rái

�
XN

i , j�1

e92

rij

(10:4)

The symbols =2
á and =2

i are, respectively, the laplacian operators for a single

nucleus and a single electron. The variable ráâ is the distance between nuclei á
and â, rái the distance between nucleus á and electron i, and rij the distance

between electrons i and j. The summations are taken over each pair of

particles. The quantity e9 is equal to the magnitude of the electronic charge e in

CGS units and to e=(4ðå0)1=2 in SI units, where å0 is the permittivity of free

space.

The SchroÈdinger equation for the molecule is

ĤØ(r, Q) � EØ(r, Q) (10:5)

where Ø(r, Q) is an eigenfunction and E the corresponding eigenvalue. The

differential equation (10.5) cannot be solved as it stands because there are too

many variables. However, approximate, but very accurate, solutions may be

found if the equation is simpli®ed by recognizing that the nuclei and the

electrons differ greatly in mass and, as a result, differ greatly in their relative

speeds of motion.

Born±Oppenheimer approximation

The simplest approximate method for solving the SchroÈdinger equation (10.5)

uses the so-called Born±Oppenheimer approximation. This method is a two-

step process. The ®rst step is to recognize that the nuclei are much heavier than

an electron and, consequently, move very slowly in comparison with the

electronic motion. Thus, the electronic part of the SchroÈdinger equation may

be solved under the condition that the nuclei are motionless. The resulting

electronic energy may then be determined for many different ®xed nuclear

con®gurations. In the second step, the nuclear part of the SchroÈdinger equation

is solved by regarding the motion of the nuclei as taking place in the average

potential ®eld created by the fast-moving electrons.

In the ®rst step of the Born±Oppenheimer approximation, the nuclei are all

held at ®xed equilibrium positions. Thus, the coordinates Q do not change with
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time and the kinetic energy operator T̂Q in equation (10.2) vanishes. The

SchroÈdinger equation (10.5) under this condition becomes

( Ĥe � VQ)øk(r, Q) � åk(Q)øk(r, Q) (10:6)

where the coordinates Q are no longer variables, but rather are constant

parameters. For each electronic state k, the electronic energy åk(Q) of the

molecule and the eigenfunction øk(r, Q) depend parametrically on the ®xed

values of the coordinates Q. The nuclear±nuclear interaction potential VQ is

now a constant and its value is included in åk(Q).

We assume in this section and in Section 10.2 that equation (10.6) has been

solved and that the eigenfunctions øk(r, Q) and eigenvalues åk(Q) are known

for any arbitrary set of values for the parameters Q. Further, we assume that the

eigenfunctions form a complete orthonormal set, so that�
ø�k (r, Q)øë(r, Q) dr � äkë (10:7)

In the second step of the Born±Oppenheimer approximation, the energy

åk(Q) is used as a potential energy function to treat the nuclear motion. In this

case, equation (10.5) becomes

[T̂Q � åk(Q)]÷kí(Q) � Ekí÷kí(Q) (10:8)

where the nuclear wave function ÷kí(Q) depends on the nuclear coordinates Q

and on the electronic state k. Each electronic state k gives rise to a series of

nuclear states, indexed by í. Thus, for each electronic state k, the eigenfunc-

tions of [T̂Q � åk(Q)] are ÷kí(Q) with eigenvalues Ekí. In practice, the nuclear

states are differentiated by several quantum numbers; the index í represents,

then, a set of these quantum numbers. In the solution of the differential

equation (10.8), the nuclear coordinates Q in åk(Q) are treated as variables.

The nuclear energy Ekí, of course, does not depend on any parameters. Most

applications of equation (10.8) are to molecules in their electronic ground

states (k � 0).

In the original mathematical treatment1 of nuclear and electronic motion, M.

Born and J. R. Oppenheimer (1927) applied perturbation theory to equation

(10.5) using the kinetic energy operator T̂Q for the nuclei as the perturbation.

The proper choice for the expansion parameter is ë � (me=M)1=4, where M is

the mean nuclear mass

M � 1

Ù

XÙ
á�1

Má

When terms up to ë2 are retained, the exact total energy of the molecule is

1 M. Born and J. R. Oppenheimer (1927) Ann. Physik 84, 457.
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approximated by the energy Ekí of equation (10.8) and the eigenfunction

Ø(Q, r) is approximated by the product

Ø(Q, r) � ÷kí(Q)øk(Q, r) (10:9)

Perturbation terms in the Hamiltonian operator up to ë4 still lead to the

uncoupling of the nuclear and electronic motions, but change the form of the

electronic potential energy function in the equation for the nuclear motion.

Rather than present the details of the Born±Oppenheimer perturbation expan-

sion, we follow instead the equivalent, but more elegant procedure2 of M. Born

and K. Huang (1954).

Born±Huang treatment

Under the assumption that the SchroÈdinger equation (10.6) has been solved for

the complete set of orthonormal eigenfunctions øk(r, Q), we may expand the

eigenfunction Ø(r, Q) of equation (10.5) in terms of øk(r, Q)

Ø(r, Q) �
X
ë

÷ë(Q)øë(r, Q) (10:10)

where ÷ë(Q) are the expansion coef®cients. Substitution of equation (10.10)

into (10.5) using (10.1) givesX
ë

(T̂Q � VQ � Ĥe ÿ E)÷ë(Q)øë(r, Q) � 0 (10:11)

where the operators have been placed inside the summation. Since the operator

Ĥe commutes with the function ÷ë(Q), we may substitute equation (10.6) into

(10.11) to obtain X
ë

[T̂Q � åë(Q)ÿ E]÷ë(Q)øë(r, Q) � 0 (10:12)

We next multiply equation (10.12) by ø�k (r, Q) and integrate over the set of

electronic coordinates r, givingX
ë

�
ø�k (r, Q)T̂Q[÷ë(Q)øë(r, Q)] dr� [åk(Q)ÿ E]÷k(Q) � 0 (10:13)

where we have used the orthonormal property (equation (10.7)). The operator

T̂Q acts on both functions in the product ÷ë(Q)øë(r, Q) and involves the

second derivative with respect to the nuclear coordinates Q. To expand the

expression T̂Q[÷ë(Q)øë(r, Q)], we note that

2 M. Born and K. Huang (1954) Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford),
pp. 406±7.
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=á÷ø � ø=á÷� ÷=áø

=2
á÷ø � ø=2

á÷� ÷=2
áø� 2=á÷ :=áø

Therefore, we obtain

T̂Q[÷ë(Q)øë(r, Q)] � ÿ"2
XÙ
á�1

1

2Má
=2
á[÷ë(Q)øë(r, Q)]

� øë(r, Q)T̂Q÷ë(Q)� ÷ë(Q)T̂Qøë(r, Q)

ÿ "2
XÙ
á�1

1

Má
=á÷ë(Q) :=áøë(r, Q) (10:14)

Substitution of equation (10.14) into (10.13) yields

[T̂Q � åk(Q)ÿ E]÷k(Q)�
X
ë

(ckë � Ë̂kë)÷ë(Q) � 0 (10:15)

where the coef®cients ckë(Q) and the operators Ë̂kë are de®ned by

ckë(Q) �
�
ø�k (r, Q)T̂Qøë(r, Q) dr (10:16)

Ë̂kë � ÿ"2
XÙ
á�1

1

Má

�
ø�k (r, Q)=áøë(r, Q) dr :=á (10:17)

and equation (10.7) has been used. Since we have assumed that the electronic

eigenfunctions øk(r, Q) are known for all values of the parameters Q, the

coef®cients ckë(Q) and the operators Ë̂kë may be determined. The set of

coupled equations (10.15) for the functions ÷k(Q) is exact.

The integral I contained in the operator Ë̂kk is

I �
�
ø�k (r, Q)=áøk(r, Q) dr

For stationary states, the eigenfunctions øk(r, Q) may be chosen to be real

functions, so that this integral can also be written as

I � 1
2
=á

�
[øk(r, Q)]2 dr

According to equation (10.7), the integral I vanishes and, therefore, we have

Ë̂kk � 0.

We now write equation (10.15) as

[T̂Q � Uk(Q)ÿ E]÷k(Q)�
X
ë(6�k)

(ckë � Ë̂kë)÷ë(Q) � 0 (10:18)

where Uk(Q) is de®ned by
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Uk(Q) � åk(Q)� ckk(Q) (10:19)

The ®rst term on the left-hand side of equation (10.18) has the form of a

SchroÈdinger equation for nuclear motion, so that we may identify the expansion

coef®cient ÷k(Q) as a nuclear wave function for the electronic state k. The

second term couples the in¯uence of all the other electronic states to the

nuclear motion for a molecule in the electronic state k.

If the coef®cients ckk(Q) and ckë(Q) and the operators Ë̂kë are suf®ciently

small, the summation on the left-hand side of equation (10.18) and ckk(Q) in

(10.19) may be neglected, giving a zeroth-order equation for the nuclear

motion

[T̂Q � åk(Q)ÿ E(0)
kí ]÷(0)

kí (Q) � 0 (10:20)

where ÷(0)
kí (Q) and E(0)

kí are the zeroth-order approximations to the nuclear wave

functions and energy levels. The index í represents a set of quantum numbers

which determine the nuclear state. The neglect of these coef®cients and

operators is the Born±Oppenheimer approximation and equation (10.20) is

identical to (10.8). Furthermore, the molecular wave function Ø(r, Q) in

equation (10.10) reduces to the product of a nuclear and an electronic wave

function as shown in equation (10.9).

When the coupling coef®cients ckë for k 6� ë and the coupling operators Ë̂kë

are neglected, but the coef®cient ckk(Q) is retained, equation (10.18) becomes

[T̂Q � Uk(Q)ÿ E(1)
kí ]÷(1)

kí (Q) � 0 (10:21)

where ÷(1)
kí (Q) and E(1)

kí are the ®rst-order approximations to the nuclear wave

functions and energy levels. Since the term ckk(Q) is added to åk(Q) in this

approximation, equation (10.21) is different from (10.20) and, therefore,

÷(1)
kí (Q) and E(1)

kí differ from ÷(0)
kí (Q) and E(0)

kí . In this ®rst-order approximation,

the molecular wave function Ø(r, Q) in equation (10.10) also takes the form of

(10.9). The factor ÷(1)
kí (Q) describes the nuclear motion, which takes place in a

potential ®eld Uk(Q) determined by the electrons moving as though the nuclei

were ®xed in their instantaneous positions. Thus, the electronic state of the

molecule changes in a continuous manner as the nuclei move slowly in

comparison with the electronic motion. In this situation, the electrons are said

to follow the nuclei adiabatically and this ®rst-order approximation is known

as the adiabatic approximation. This adiabatic feature does not occur in

higher-order approximations, in which coupling terms appear.

An analysis using perturbation theory shows that the in¯uence of the

coupling terms with ckë(Q) and Ë̂kë is small when the electronic energy levels

åk(Q) and åë(Q) are not closely spaced. Since the ground-state electronic

energy of a molecule is usually widely separated from the ®rst-excited
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electronic energy level, the Born±Oppenheimer approximation and especially

the adiabatic approximation are quite accurate for the electronic ground state.

The in¯uence of the coupling terms for the ®rst few excited electronic energy

levels may then be calculated using perturbation theory.

10.2 Nuclear motion in diatomic molecules

The application of the Born±Oppenheimer and the adiabatic approximations to

separate nuclear and electronic motions is best illustrated by treating the

simplest example, a diatomic molecule in its electronic ground state. The

diatomic molecule is suf®ciently simple that we can also introduce center-of-

mass coordinates and show explicitly how the translational motion of the

molecule as a whole is separated from the internal motion of the nuclei and

electrons.

Center-of-mass coordinates

The total number of spatial coordinates for a molecule with Ù nuclei and N

electrons is 3(Ù� N ), because each particle requires three cartesian coordi-

nates to specify its location. However, if the motion of each particle is referred

to the center of mass of the molecule rather than to the external spaced-®xed

coordinate axes, then the three translational coordinates that specify the

location of the center of mass relative to the external axes may be separated out

and eliminated from consideration. For a diatomic molecule (Ù � 2) we are

left with only three relative nuclear coordinates and with 3N relative electronic

coordinates. For mathematical convenience, we select the center of mass of the

nuclei as the reference point rather than the center of mass of the nuclei and

electrons together. The difference is negligibly small. We designate the two

nuclei as A and B, and introduce a new set of nuclear coordinates de®ned by

X � MA

M
QA � MB

M
QB (10:22a)

R � QB ÿQA (10:22b)

where X locates the center of mass of the nuclei in the external coordinate

system, R is the vector distance between the two nuclei, and M is the sum of

the nuclear masses

M � MA � MB

The kinetic energy operator T̂Q for the two nuclei, as given by equation

(10.2), is
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T̂Q � ÿ"2

2

=2
A

MA

� =2
B

MB

 !
(10:23)

The laplacian operators in equation (10.23) refer to the spaced-®xed coordi-

nates Qá with components Qxá, Qyá, Qzá, so that

=2
á �

@2

@Q2
xá

� @2

@Q2
yá

� @2

@Q2
zá

, á � A, B

However, these operators change their form when the reference coordinate

system is transformed from space ®xed to center of mass.

To transform these laplacian operators to the coordinates X and R, with

components X x, Xy, Xz and Rx, Ry, Rz, respectively, we note that

@

@QxA

� @Xx

@QxA

@

@Xx

� @Rx

@QxA

@

@Rx

� MA

M

@

@Xx

ÿ @

@Rx

@

@QxB

� @Xx

@QxB

@

@Xx

� @Rx

@QxB

@

@Rx

� MB

M

@

@Xx

� @

@Rx

from which it follows that

@2

@Q2
xA

� MA

M

� �2
@2

@X 2
x

� @2

@R2
x

ÿ 2MA

M

@2

@Xx@Rx

@2

@Q2
xB

� MB

M

� �2
@2

@X 2
x

� @2

@R2
x

� 2MB

M

@2

@Xx@Rx

Analogous expressions apply for QyA, QyB, QzA, and QzB. Therefore, in terms of

the coordinates X and R, the operators =2
A and =2

B are

=2
A �

MA

M

� �2

=2
X � =2

R ÿ
2MA

M
=X

:=R (10:24a)

=2
B �

MB

M

� �2

=2
X � =2

R �
2MB

M
=X

:=R (10:24b)

where =2
X � =X

:=X and =2
R � =R

:=R are the laplacian operators for the

vectors X and R and where =X and =R are the gradient operators. When the

transformations (10.24) are substituted into (10.23), the operator T̂Q becomes

T̂Q � ÿ"2

2

1

M
=2

X �
1

ì
=2

R

� �
(10:25)

where ì is the reduced mass of the two nuclei

1

ì
� 1

MA

� 1

MB

or
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ì � MAMB

MA � MB

(10:26)

The cross terms in =X
:=R cancel each other.

For the diatomic molecule, equations (10.1), (10.3), (10.5), and (10.25)

combine to give

ÿ "2

2M
=2

X ÿ
"2

2ì
=2

R �
ZAZBe92

R
� Ĥe ÿ Etot

" #
Øtot � 0 (10:27)

where R � rAB is the magnitude of the vector R and where now the laplacian

operator =2
i in Ĥe of equation (10.4) refers to the position of electron i relative

to the center of mass. The interparticle distances rAB � R, rAi, rBi, and rij are

independent of the choice of reference coordinate system and do not change as

a result of the transformation from external to internal coordinates. If we write

Øtot as the product

Øtot � Ö(X)Ø(R, r)

and Etot as the sum

Etot � Ecm � E

then the differential equation (10.27) separates into two independent differen-

tial equations

ÿ "2

2M
=2

XÖ(X) � EcmÖ(X) (10:28a)

and

ÿ "2

2ì
=2

R �
ZAZBe92

R
� Ĥe ÿ E

" #
Ø(R, r) � 0 (10:28b)

Equation (10.28b) describes the internal motions of the two nuclei and the

electrons relative to the center of mass. Our next goal is to solve this equation

using the method described in Section 10.1. Equation (10.28a), on the other

hand, describes the translational motion of the center of mass of the molecule

and is not considered any further here.

Electronic motion and the nuclear potential function

The ®rst step in the solution of equation (10.28b) is to hold the two nuclei ®xed

in space, so that the operator =2
R drops out. Equation (10.28b) then takes the

form of (10.6). Since the diatomic molecule has axial symmetry, the eigenfunc-

tions and eigenvalues of Ĥe in equation (10.6) depend only on the ®xed value

R of the internuclear distance, so that we may write them as øk(r, R) and

åk(R). If equation (10.6) is solved repeatedly to obtain the ground-state energy

å0(R) for many values of the parameter R, then a curve of the general form
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shown in Figure 10.1 is obtained. The value of R for which å0(R) is a minimum

represents the equilibrium or most stable nuclear con®guration for the mole-

cule. As the parameter R increases or decreases, the molecular energy å0(R)

increases. As R becomes small, the nuclear repulsion term VQ becomes very

large and å0(R) rapidly approaches in®nity. As R becomes very large

(R!1), the molecule dissociates into its two constituent atoms. We assume

that equation (10.6) has been solved for the ground-state wave function

ø0(r, R) and ground-state energy å0(R) for all values of the parameter R from

zero to in®nity.

The potential energy function U0(R) for the ground electronic state is given

by equations (10.19) and (10.16) with T̂Q � (ÿ"2=2ì)=2
R as

U0(R) � å0(R)� c00(R) � å0(R)ÿ "2

2

�
ø�0 (r, R)=2

Rø0(r, R) dr

Within the adiabatic approximation, the term c00(R) evaluates the coupling

between the ground-state motion of the electrons and the motion of the nuclei.

The magnitude of this term at distances R near the minimum of å0(R) is not

negligible3 for the lightweight hydrogen molecule (all isotopes), the hydrogen-

molecule ion (all isotopes), and the system He2. However, the general shape of

the function U0(R) for these systems does not differ appreciably from the

schematic shape of å0(R) shown in Figure 10.1. For heavier nuclei, the term

c00(R) is small and may be neglected. For these molecules the Born±

3 See J. O. Hirschfelder and W. J. Meath (1967) Advances in Chemical Physics, Vol. XII (John Wiley and
Sons, New York), p. 23 and references cited therein.

Re R

ε0(R)

Figure 10.1 The internuclear potential energy for the ground state of a diatomic
molecule.
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Oppenheimer and the adiabatic approximations are essentially identical. Since

we are interested here in only the ground electronic state, we drop the subscript

on U0(R) from this point on for the sake of simplicity.

The functional form of U (R) differs from one diatomic molecule to another.

Accordingly, we wish to ®nd a general form which can be used for all

molecules. Under the assumption that the internuclear distance R does not

¯uctuate very much from its equilibrium value Re so that U (R) does not

deviate greatly from its minimum value, we may expand the potential U (R) in

a Taylor's series about the equilibrium distance Re

U � U (Re)� U (1)(Re)(Rÿ Re)� 1

2!
U (2)(Re)(Rÿ Re)2

� 1

3!
U (3)(Re)(Rÿ Re)3 � 1

4!
U (4)(Re)(Rÿ Re)4 � � � �

where

U ( l)(Re) � d lU (R)

dRl

����
R�Re

, l � 1, 2, . . .

The ®rst derivative U (1)(Re) vanishes because the potential U (R) is a minimum

at the distance Re. The second derivative U (2)(Re) is called the force constant

for the diatomic molecule (see Section 4.1) and is given the symbol k. We also

introduce the relative distance variable q, de®ned as

q � Rÿ Re (10:29)

With these substitutions, the potential takes the form

U (q) � U (0)� 1
2
kq2 � 1

6
U (3)(0)q3 � 1

24
U (4)(0)q4 � � � � (10:30)

Nuclear motion

The nuclear equation (10.21) when applied to the ground electronic state of a

diatomic molecule is

[T̂Q � U (R)]÷í(R) � Eí÷í(R) (10:31)

where the superscript and one subscript on ÷(1)
0í (R) and on E

(1)
0í are omitted for

simplicity. In solving this differential equation, the relative coordinate vector R

is best expressed in spherical polar coordinates R, è, j. The coordinate R is the

magnitude of the vector R and is the scalar distance between the two nuclei.

The angles è and j give the orientation of the internuclear axis relative to the

external coordinate axes. The laplacian operator =2
R is then given by (A.61) as
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1

R2

@

@R
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� �
� 1
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1
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@è
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@
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� �
� 1
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@2

@j2

" #

� 1

R2

@

@R
R2 @

@R

� �
ÿ 1

"2 R2
L̂2 (10:32)

where L̂2 is the square of the orbital angular momentum operator given by

equation (5.32). With =2
R expressed in spherical polar coordinates, equation

(10.31) becomes

ÿ "2

2ìR2

@

@R
R2 @

@R

� �
� 1

2ìR2
L̂2 � U (R)

" #
÷í(R, è, j) � Eí÷í(R, è, j)

(10:33)

The operator in square brackets on the left-hand side of equation (10.33)

commutes with the operator L̂2 and with the operator L̂z in (5.31c), because L̂2

commutes with itself as well as with L̂z and neither L̂2 nor L̂z contain the

variable R. Consequently, the three operators have simultaneous eigenfunc-

tions. From the argument presented in Section 6.2, the nuclear wave function

÷í(R, è, j) has the form

÷í(R, è, j) � F(R)YJm(è, j) (10:34)

where F(R) is a function of only the internuclear distance R, and YJm(è, j) are

the spherical harmonics, which satisfy the eigenvalue equation

L̂2YJm(è, j) � J (J � 1)"2YJm(è, j)

J � 0, 1, 2, . . . ; m � ÿJ , ÿJ � 1, . . . , 0, . . . , J ÿ 1, J

It is customary to use the index J for the rotational quantum number. Equation

(10.33) then becomes

ÿ "2

2ìR2

d

dR
R2 d

dR

� �
� J (J � 1)"2

2ìR2
� U (R)ÿ Eí

" #
F(R) � 0 (10:35)

where we have divided through by YJm(è, j).

We next replace the independent variable R in equation (10.35) by q as

de®ned in equation (10.29). Equation (10.35) has a more useful form if we also

make the substitution S(q) � RF(R). Since dq=dR � 1, we have

dF(R)

dR
� 1

R

dS(q)

dq
ÿ 1

R2
S(q),

d

dR
R2 dF(R)

dR

� �
� R

d2S(q)

dq2

and equation (10.35) becomes

ÿ "2

2ì

d2

dq2
� J (J � 1)"2

2ì(Re � q)2
� U (q)ÿ Eí

" #
S(q) � 0 (10:36)

274 Molecular structure



after multiplication by the variable R.

The potential function U (q) in equation (10.36) may be expanded according

to (10.30). The factor (Re � q)ÿ2 in the second term on the left-hand side may

also be expanded in terms of the variable q as follows

1

(Re � q)2
� 1

R2
e 1� q

Re

� �2
� 1

R2
e

1ÿ 2q

Re

� 3q2

R2
e

ÿ � � �
 !

(10:37)

where the expansion (A.3) is used. For small values of the ratio q=Re, equation

(10.37) gives the approximation R � Re.

If we retain only the ®rst two terms in the expansion (10.30) and let R be

approximated by Re, equation (10.36) becomes

ÿ"2

2ì

d2S(q)

dq2
� (1

2
kq2 ÿ W )S(q) � 0 (10:38)

where

W � Eí ÿ U (0)ÿ J (J � 1)Be (10:39)

Be � "2=2ìR2
e � "2=2I (10:40)

The quantity I (� ìR2
e) is the moment of inertia for the diatomic molecule

with the internuclear distance ®xed at Re and Be is known as the rotational

constant (see Section 5.4).

Equation (10.38) is recognized as the SchroÈdinger equation (4.13) for the

one-dimensional harmonic oscillator. In order for equation (10.38) to have the

same eigenfunctions and eigenvalues as equation (4.13), the function S(q) must

have the same asymptotic behavior as ø(x) in (4.13). As the internuclear

distance R approaches in®nity, the relative distance variable q also approaches

in®nity and the functions F(R) and S(q) � RF(R) must approach zero in order

for the nuclear wave functions to be well-behaved. As R! 0, which is

equivalent to q! ÿRe, the potential U (q) becomes in®nitely large, so that

F(R) and S(q) rapidly approach zero. Thus, the function S(q) approaches zero

as q! ÿRe and as R!1. The harmonic-oscillator eigenfunctions ø(x)

decrease rapidly in value as jxj increases from x � 0 and approach zero as

x! �1. They have essentially vanished at the value of x corresponding to

q � ÿRe. Consequently, the functions S(q) in equation (10.38) and ø(x) in

(4.13) have the same asymptotic behavior and the eigenfunctions and eigenva-

lues of (10.38) are those of the harmonic oscillator. The eigenfunctions Sn(q)

are the harmonic-oscillator eigenfunctions given by equation (4.41) with x

replaced by q and the mass m replaced by the reduced mass ì. The

eigenvalues, according to equation (4.30), are
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Wn � (n� 1
2
)"ù, n � 0, 1, 2, . . .

where

ù �
���������
k=ì

p
In this approximation, the nuclear energy levels are

EnJ � U (0)� (n� 1
2
)"ù� J (J � 1)Be (10:41)

and the nuclear wave functions are

÷nJm(R, è, j) � 1

R
Sn(Rÿ Re)YJm(è, j) (10:42)

Higher-order approximation for nuclear motion

The next higher-order approximation to the energy levels of the diatomic

molecule is obtained by retaining in equation (10.36) terms up to q4 in the

expansion (10.30) of U (q) and terms up to q2 in the expansion (10.37) of

(Re � q)ÿ2. Equation (10.36) then becomes

ÿ"2

2ì

d2S(q)

dq2
� [1

2
kq2 � Be J (J � 1)� V 9]S(q) � [Eí ÿ U (0)]S(q) (10:43)

where

V 9 � ÿ 2Be J (J � 1)

Re

q� 3Be J (J � 1)

R2
e

q2 � 1

6
U (3)(0)q3 � 1

24
U (4)(0)q4

� b1q� b2q2 � b3q3 � b4q4 (10:44)

For simplicity in subsequent evaluations, we have introduced in equation

(10.44) the following de®nitions

b1 � ÿ 2Be J (J � 1)

Re

(10:45a)

b2 � 3Be J (J � 1)

R2
e

(10:45b)

b3 � 1

6
U (3)(0) (10:45c)

b4 � 1

24
U (4)(0) (10:45d)

Since equation (10.43) with V 9 � 0 is already solved, we may treat V 9 as a

perturbation and solve equation (10.43) using perturbation theory. The unper-

turbed eigenfunctions S(0)
n (q) are the eigenkets jni for the harmonic oscillator.

The ®rst-order perturbation correction E
(1)
nJ to the energy EnJ as given by

equation (9.24) is
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E
(1)
nJ � hnjV 9jni � b1hnjqjni � b2hnjq2jni � b3hnjq3jni � b4hnjq4jni

(10:46)

The matrix elements hnjqkjni are evaluated in Section 4.4. According to

equations (4.45c) and (4.50e), the ®rst and third terms on the right-hand side of

(10.46) vanish. The matrix elements in the second and fourth terms are given

by equations (4.48b) and (4.51c), respectively. Thus, the ®rst-order correction

in equation (10.46) is

E
(1)
nJ � b2

"

ìù
n� 1

2

ÿ �� b4

3

2

"

ìù

� �2

n2 � n� 1
2

� �
� 6B2

e

"ù
n� 1

2

ÿ �
J (J � 1)� 1

16

"

ìù

� �2

U (4)(0) n� 1
2

ÿ �2� 1
4

h i
(10:47)

where equations (10.40), (10.45b), and (10.45d) have been substituted.

Since the perturbation corrections due to b1q and b3q3 vanish in ®rst order,

we must evaluate the second-order corrections E
(2)
nJ in order to ®nd the

in¯uence of these perturbation terms on the nuclear energy levels. According

to equation (9.34), this second-order correction is

E
(2)
nJ � ÿ

X
k(6�n)

hkjb1q� b3q3jni2
E

(0)
k ÿ E(0)

n

� ÿb2
1

X
k( 6�n)

hkjqjni2
(k ÿ n)"ù

ÿ 2b1b3

X
k(6�n)

hkjqjnihkjq3jni
(k ÿ n)"ù

ÿ b2
3

X
k( 6�n)

hkjq3jni2
(k ÿ n)"ù

(10:48)

where the unperturbed energy levels are given by equation (4.30). The matrix

elements in equation (10.48) are given by (4.45) and (4.50), so that E
(2)
nJ

becomes

E
(2)
nJ �ÿ

b2
1

"ù

(n� 1)"

2ìù
ÿ n"

2ìù

� �

ÿ 2b1b3

"ù

(n� 1)"

2ìù

� �1=2

3
(n� 1)"

2ìù

� �3=2

ÿ n"

2ìù

� �1=2

3
n"

2ìù

� �3=2
" #

ÿ b2
3

"ù

"

2ìù

� �3
(n� 1)(n� 2)(n� 3)

3
� 9(n� 1)3

�

ÿ9n3 ÿ n(nÿ 1)(nÿ 2)

3

�
This equation simpli®es to
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E
(2)
nJ � ÿ

b2
1

2ìù2
ÿ 3b1b3"

ì2ù3
n� 1

2

ÿ �ÿ b2
3"2

8ì3ù4
(30n2 � 30n� 11)

Substitution of equations (10.40), (10.45a), and (10.45c) leads to

E
(2)
nJ �ÿ

4B2
e

"2ù2
J2(J � 1)2 � 2B2

e ReU (3)(0)

ì"ù3
n� 1

2

ÿ �
J (J � 1)

ÿ "2[U (3)(0)]2

288ì3ù4
30 n� 1

2

ÿ �2 � 7
2

h i
(10:49)

The nuclear energy levels in this higher-order approximation are given to

second order in the perturbation by combining equations (10.41), (10.47), and

(10.49) to give

EnJ � E
(0)
nJ � E

(1)
nJ � E

(2)
nJ

�U(0)� "ù n� 1
2

ÿ �ÿ "ùxe n� 1
2

ÿ �2�Be J (J � 1)

ÿ DJ2(J � 1)2 ÿ áe n� 1
2

ÿ �
J (J � 1) (10:50)

where we have de®ned

xe � "

16ì2ù3

5[U (3)(0)]2

3ìù2
ÿ U (4)(0)

 !
(10:51a)

D � 4B2
e

"2ù2
(10:51b)

áe � ÿ6B2
e

"ù
1� ReU (3)(0)

3ìù2

 !
(10:51c)

U(0) � U (0)� 1

64

"

ìù

� �2

U (4)(0)ÿ 7[U (3)(0)]2

9ìù2

 !
(10:51d)

The approximate expression (10.50) for the nuclear energy levels EnJ is

observed to contain the initial terms of a power series expansion in (n� 1
2
) and

J (J � 1). Only terms up to (n� 1
2
)2 and [J (J � 1)]2 and the cross term in

(n� 1
2
)J (J � 1) are included. Higher-order terms in the expansion may be

found from higher-order perturbation corrections.

The second term on the right-hand side of equation (10.50) is the energy of a

harmonic oscillator. Since the factor xe in equation (10.51a) depends on the

third and fourth derivatives of the internuclear potential at Re, the third term in

equation (10.50) gives the change in energy due to the anharmonicity of that

potential. The fourth term is the energy of a rigid rotor with moment of inertia

I. The ®fth term is the correction to the energy due to centrifugal distortion in
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this non-rigid rotor. As the rotational energy increases, the internuclear

distance increases, resulting in an increased moment of inertia and conse-

quently a lower energy. Thus, this term is negative and increases as J increases.

The magnitude of the centrifugal distortion is in¯uenced by the value of the

force constant k as re¯ected by the factor ùÿ2 in D. The last term contains both

quantum numbers n and J and represents a direct coupling between the

vibrational and rotational motions. This term contains two contributions: a

change in vibrational energy due to the centrifugal stretching of the molecule

and a change in rotational energy due to changes in the internuclear distance

from anharmonic vibrations. The constant term U(0) merely shifts the zero-

point energy of the nuclear energy levels and is usually omitted completely.

The molecular constants ù, Be, xe, D, and áe for any diatomic molecule may

be determined with great accuracy from an analysis of the molecule's vibra-

tional and rotational spectra.4 Thus, it is not necessary in practice to solve the

electronic SchroÈdinger equation (10.28b) to obtain the ground-state energy

å0(R).

Problems

10.1 Derive equation (10.47) as outlined in the text.

10.2 Derive equation (10.49) as outlined in the text.

10.3 Derive equation (10.50) as outlined in the text.

10.4 An approximation to the potential U(R) for a diatomic molecule is the Morse

potential

U (R) � ÿDe(2eÿa(RÿRe) ÿ eÿ2a(RÿRe)) � ÿDe(2eÿaq ÿ eÿ2aq)

where a is a parameter characteristic of the molecule. The Morse potential has

the general form of Figure 10.2.

(a) Show that U (Re) � ÿDe, that U (1) � 0, and that U (0) is very large.

(b) If the Morse potential is expanded according to equation (10.30), relate the

parameter a to ì, ù, and De

(c) Relate the quantities xe, áe, and U (0) in equation (10.50) to ì, ù, and De

for the Morse potential.

10.5 Another approximate potential U(R) for a diatomic molecule is the Rydberg

potential

U (R) � ÿDe[1� b(Rÿ Re)]eÿb(RÿRe) � ÿDe(1� bq)eÿbq

where b is a parameter characteristic of the molecule.

(a) Show that U (Re) � ÿDe, that U (1) � 0, and that U(0) is very large.

4 Comprehensive tables of molecular constants for diatomic molecules may be found in K. P. Huber and G.
Herzberg (1979) Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van
Nostrand Reinhold, New York).
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(b) If the Rydberg potential is expanded according to equation (10.30), relate the

parameter b to ì, ù, and De.

(c) Relate the quantities xe, áe, and U (0) in equation (10.50) to ì, ù, and De

for the Rydberg potential.

10.6 Consider a diatomic molecule in its ground electronic and rotational states. Its

energy levels are given by equation (10.50) with J � 0. The value of U(R) at

R � Re is ÿDe.

(a) If the anharmonic factor xe is positive, show that the spacing of the energy

levels decreases as the vibrational quantum number n increases.

(b) When the vibrational quantum number n becomes suf®ciently large that the

difference in energies between adjacent levels becomes zero, the molecule

dissociates into its constituent atoms. By setting equal to zero the derivative

of En0 with respect to n, ®nd the value of n in terms of xe at which

dissociation takes place.

(c) Relate the well depth De to the anharmonic factor xe and compare with the

corresponding expressions in problems 10.4 and 10.5.

Re

2De

0

U (R)

R

Figure 10.2 The Morse potential for the ground state of a diatomic molecule.
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Appendix A

Mathematical formulas

Useful power series expansions

eaz �
X1
n�0

(az)n

n!
(A:1)

Binomial expansions

(u� v)n �
Xn

á�0

n!

á!(nÿ á)!
u nÿává (A:2)

(u� v)ÿn �
X1
á�0

(ÿ1)á(n� áÿ 1)!

á!(nÿ 1)!
uÿ(n�á)vá (A:3)

dnuv

dzn
�
Xn

á�0

n!

á!(nÿ á)!

dáu

dzá
dnÿáv

dz nÿá (A:4)

Useful integrals�1
ÿ1

eÿz2

dz � 2

�1
0

eÿz2

dz � ð1=2 (A:5)�1
0
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dz � 1
2

(A:6)�1
ÿ1

z2eÿz2

dz � 2

�1
0

z2 eÿz2

dz � 1
2
ð1=2 (A:7)�1

ÿ1
eÿa2 z2�bz dz � ð1=2

a
eb2=4a2

(A:8)�1
ÿ1

eÿaz2

ec(bÿz)2

dz �
�����������
ð

aÿ c

r
eacb2=(aÿc) (A:9)�1

ÿ1

sin2 z

z2
dz � ð (A:10)
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�1
ÿ1

eirs

(1� is)k�1
ds � 2ð

k!
rkeÿr (A:11)�ð

ÿð
cos nè dè � 2ð, n � 0

� 0, n � 1, 2, 3, . . . (A:12)�ð
ÿð
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ÿð

cos mè cos nè dè � 2

�ð
0

cos mè cos nè dè � ðämn (A:14)�ð
ÿð

sin mè sin nè dè � 2

�ð
0

sin mè sin nè dè � ðämn (A:15)�ð
ÿð
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4
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è2 sin2è dè � 1
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è3 ÿ 1
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)sin 2èÿ 1

4
è cos 2è (A:19)�

sin3è dè � 1
3

cos3èÿ cos è � ÿ3
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cos è� 1
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cos 3è (A:20)�
sin5è dè � ÿ5

8
cos è� 5
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cos 3èÿ 1
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cos 5è (A:21)�
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64

cos 3èÿ 7
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cos 5è� 1
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cos 7è (A:22)�
sin kè sin nè dè � sin(k ÿ n)è

2(k ÿ n)
ÿ sin(k � n)è

2(k � n)
, (k2 6� n2) (A:23)

Integration by parts�
u dv � uvÿ

�
v du (A:24)�

u(x)
dv(x)

dx
dx � u(x)v(x)ÿ

�
v(x)

du(x)

dx
dx (A:25)

Gamma function

Ã(n) �
�1

0

z nÿ1eÿz dz (A:26)

Ã(n� 1) � nÃ(n) (A:27)

Ã(n) � (nÿ 1)!, n � integer (A:28)
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Ã(1
2
) � ð1=2 (A:29)�1

ÿ1
x2neÿx2
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�1

0

z(2nÿ1)=2eÿz dz � Ã
2n� 1

2

� �
(A:30)

Trigonometric functions

eiè � cos è� i sin è (A:31)

cos è � 1
2
(eiè � eÿiè) (A:32)

sin è � 1
2i

(eiè ÿ eÿiè) (A:33)

sin2è� cos2è � 1 (A:34)

cos(è� j) � cos è cosjÿ sin è sinj (A:35)

sin(è� j) � sin è cosj� cos è sinj (A:36)

cos 2è � cos2èÿ sin2è (A:37)

sin 2è � 2sin è cos è (A:38)

sin 3è � 3sin èÿ 4 sin3è (A:39)

sin 5è � 5sin èÿ 20 sin3è� 16sin5è (A:40)

sin 7è � 7sin èÿ 56sin3è� 112sin5èÿ 64sin7è (A:41)

d

dè
cos è � ÿsin è (A:42)

d

dè
sin è � cos è (A:43)

d

dz
sinÿ1z � d

dz
arcsin z � (1ÿ z2)ÿ1=2 (A:44)

Hyperbolic functions

cosh è � 1
2
(eè � eÿè) (A:45)

sinh è � 1
2
(eè ÿ eÿè) (A:46)

cosh iè � cos è (A:47)

sinh iè � i sin è (A:48)

cosh2èÿ sinh2è � 1 (A:49)

tanhè � sinh è

cosh è
(A:50)

sinh 2è � 2sinh è cosh è (A:51)

d cosh è

dè
� sinh è (A:52)

d sinh è

dè
� cosh è (A:53)

d tanh è

dè
� 1

cosh2è
(A:54)
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Schwarz's inequality�
ja(x)j2 dx

�
jb(x)j2 dx >

�����a�(x)b(x) dx

����2 (A:55)

For z � x� iy, jzj2 > jIm zj2; since Im z � zÿ z�=2i, jzj2 > 1
4
jzÿ z�j2�

ja(x)j2 dx :
�
jb(x)j2 dx > 1

4

����� [a�(x)b(x)ÿ a(x)b�(x)] dx

����2 (A:56)

Vector relations

A :B � AB cos è (A:57)

jA 3 Bj � AB sin è (A:58)

è is the angle between A and B

Spherical coordinates (r, è, j)

x � r sin è cosj, y � r sin è sinj, z � r cos è (A:59)

dô � r2 sin è dr dè dj (A:60)

=2ø � 1

r2

@

@ r
r2 @ø

@ r

� �
� 1

r2 sin è

@

@è
sin è

@ø

@è

� �
� 1

r2 sin2è

@2ø

@j2
(A:61)

Plane polar coordinates (r, j)

x � r cosj, y � r sinj (A:62)

=2ø � 1

r

@

@ r
r
@ø

@ r

� �
� 1

r2

@2ø

@j2
(A:63)
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Appendix B

Fourier series and Fourier integral

Fourier series

An arbitrary function f (è) which satis®es the Dirichlet conditions can be expanded as

f (è) � a0

2
�
X1
n�1

(an cos nè� bn sin nè) (B:1)

where è is a real variable, n is a positive integer, and the coef®cients an and bn are
constants. The Dirichlet conditions specify that f (è) is single-valued, is continuous
except for a ®nite number of ®nite discontinuities, and has a ®nite number of maxima
and minima. The series expansion (B.1) of the function f (è) is known as a Fourier
series.

We note that

cos n(è� 2ð) � cos nè

sin n(è� 2ð) � sin nè

so that each term in equation (B.1) repeats itself in intervals of 2ð. Thus, the function
f (è) on the left-hand side of equation (B.1) has the property

f (è� 2ð) � f (è)

which is to say, f (è) is periodic with period 2ð. For convenience, we select the range
ÿð < è < ð for the period, although any other range of width 2ð is acceptable. If a
function F(j) has period p, then it may be converted into a function f (è) with period
2ð by introducing the new variable è de®ned by è � 2ðj=p, so that
f (è) � F(2ðj= p). If a non-periodic function F(è) is expanded in a Fourier series, the
function f (è) obtained from equation (B.1) is identical with F(è) over the range
ÿð < è < ð, but outside that range the two functions do not agree.

To ®nd the coef®cients an and bn in the Fourier series, we ®rst multiply both sides
of equation (B.1) by cos mè and integrate from ÿð to ð. The resulting integrals are
evaluated in equations (A.12), (A.14), and (A.16). For n � 0, all the integrals on the
right-hand side vanish except the ®rst, so that�ð

ÿð
f (è) dè � a0

2
3 2ð � ða0

For m . 0, all the integrals on the right-hand side vanish except for the one in which
n � m, giving
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�ð
ÿð

f (è)cos mè dè � ðam

If we multiply both sides of equation (B.1) by sin mè, integrate from ÿð to ð, and
apply equations (A.13), (A.15), and (A.16), we ®nd�ð

ÿð
f (è)sin mè dè � ðbm

Thus, the coef®cients in the Fourier series are given by

an � 1

ð

�ð
ÿð

f (è)cos nè dè, n � 0, 1, 2, . . . (B:2a)

bn � 1

ð

�ð
ÿð

f (è)sin nè dè, n � 1, 2, . . . (B:2b)

In deriving these expressions for an and bn, we assumed that f (è) is continuous. If
f (è) has a ®nite discontinuity at some angle è0 where ÿð, è0 ,ð, then the expres-
sion for an in equation (B.2a) becomes

an � 1

ð

�è0

ÿð
f (è)cos nè dè� 1

ð

�ð
è0

f (è)cos nè dè

A similar expression applies for bn. The generalization for a function f (è) with a ®nite
number of ®nite discontinuities is straightforward. At an angle è0 of discontinuity, the
Fourier series converges to a value of f (è) mid-way between the left and right values
of f (è) at è0; i.e., it converges to

lim
å!0

1

2
[ f (è0 ÿ å)� f (è0 � å)]

The Fourier expansion (B.1) may also be expressed as a cosine series or as a sine
series by the introduction of phase angles án

f (è) � a0

2
�
X1
n�1

cn cos(nè� án) (B:3a)

�
X1
n�0

c9n sin(nè� á9n) (B:3b)

where cn, c9n, án, á9n are constants. Using equation (A.35), we may write

cn cos(nè� án) � cn cos nè cosán ÿ cn sin nè sinán

If we let

an � cn cosán

bn � ÿcn sinán

then equations (B.1) and (B.3a) are seen to be equivalent. Using equation (A.36), we
have

c9n sin(nè� á9n) � c9n sin nè cosá9n � c9n cos nè siná9n
Letting

a0 � 2c90 siná90

an � c9n siná9n, n . 0

bn � c9n cosá9n, n . 0
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we see that equations (B.1) and (B.3b) are identical.

Other variables
The Fourier series (B.1) and (B.3) are expressed in terms of an angle è. However, in
many applications the variable may be a distance x or the time t. If the Fourier series is
to represent a function f (x) of the distance x in a range ÿl < x < l, we make the
substitution

è � ðx

l

in equation (B.1) to give

f (x) � a0

2
�
X1
n�1

an cos
nðx

l
� bn sin

nðx

l

� �
(B:4)

with an and bn given by

an � 1

l

� l

ÿ l

f (x)cos
nðx

l
dx, n � 0, 1, 2, . . . (B:5a)

bn � 1

l

� l

ÿ l

f (x)sin
nðx

l
dx, n � 1, 2, . . . (B:5b)

If time is the variable, then we may make either of the substitutions

è � 2ðt

p
� ùt

where p is the period of the function f (t) and ù is the angular frequency, so that
equation (B.1) becomes

f (t) � a0

2
�
X1
n�1

an cos
2ðnt

p
� bn sin

2ðnt

p

� �
� a0

2
�
X1
n�1

(an cos nùt � bn sin nùt)

(B:6)

The constants an and bn in equations (B.2) for the variable t are

an � 2

p

� p=2

ÿ p=2

f (t)cos
2ðnt

p
dt � ù

ð

�ð=ù
ÿð=ù

f (t)cos nùt dt (B:7a)

bn � 2

p

� p=2

ÿ p=2

f (t)sin
2ðnt

p
dt � ù

ð

�ð=ù
ÿð=ù

f (t)sin nùt dt (B:7b)

Complex form
The Fourier series (B.1) can also be written in complex form by the substitution of
equations (A.32) and (A.33) for cos nè and sin nè, respectively, to yield

f (è) �
X1

n�ÿ1
cneinè (B:8)

where
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cn � an ÿ ibn

2
, n . 0

cÿn � an � ibn

2
, n . 0 (B:9)

c0 � a0

2
The coef®cients cn in equation (B.8) may be obtained from (B.9) with an and bn given
by (B.2). The result is

cn � 1

2ð

�ð
ÿð

f (è)eÿinè dè (B:10)

which applies to all values of n, positive and negative, including n � 0. We note in
passing that cÿn is the complex conjugate c�n of cn.

In terms of the distance variable x, equations (B.8) and (B.10) become

f (x) �
X1

n�ÿ1
cneinðx= l (B:11)

cn � 1

2l

� l

ÿ l

f (x)eÿinðx= l dx (B:12)

while in terms of the time t, they take the form

f (t) �
X1

n�ÿ1
cneinù t (B:13)

cn � ù

2ð

�ð=ù
ÿð=ù

f (t)eÿinù t dt (B:14)

Parseval's theorem
We now investigate the relation between the average of the square of f (è) and the
coef®cients in the Fourier series for f (è). For this purpose we select the Fourier series
(B.8), although any of the other expansions would serve as well. In this case the
average of j f (è)j2 over the interval ÿð < è < ð is

1

2ð

�ð
ÿð
j f (è)j2 dè

The square of the absolute value of f (è) in equation (B.8) is

j f (è)j2 �
���� X1

n�ÿ1
cneinè

����2 � X1
m�ÿ1

X1
n�ÿ1

c�mcnei(nÿm)è (B:15)

where the two independent summations have been assigned different dummy indices.
Integration of both sides of equation (B.15) over è from ÿð to ð gives�ð

ÿð
j f (è)j2 dè �

X1
m�ÿ1

X1
n�ÿ1

c�mcn

�ð
ÿð

ei(nÿm)è dè

Since m and n are integers, the integral on the right-hand side vanishes except when
m � n, so that we have
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�ð
ÿð

ei(nÿm)è dè � 2ðämn

The ®nal result is

1

2ð

�ð
ÿð
j f (è)j2 dè �

X1
n�ÿ1

jcnj2 (B:16)

which is one form of Parseval's theorem. Other forms of Parseval's theorem are
obtained using the various alternative Fourier expansions.

Parseval's theorem is also known as the completeness relation and may be used to
verify that the set of functions einè for ÿ1 < n <1 are complete, as discussed in
Section 3.4. If some of the terms in the Fourier series are missing, so that the set of
basis functions in the expansion is incomplete, then the corresponding coef®cients on
the right-hand side of equation (B.16) will also be missing and the equality will not
hold.

Fourier integral

The Fourier series expansions of a function f (x) of the variable x over the range
ÿl < x < l may be generalized to the case where the range is in®nite, i.e., where
ÿ1 < x <1. By a suitable limiting process in which l!1, equations (B.11) and
(B.12) may be extended to the form

f (x) � 1������
2ð
p

�1
ÿ1

g(k)eikx dk (B:17)

g(k) � 1������
2ð
p

�1
ÿ1

f (x)eÿikx dx (B:18)

Equation (B.17) is the Fourier integral representation of f (x). The function g(k) is the
Fourier transform of f (x), which in turn is the inverse Fourier transform of g(k).
For any function f (x) which satis®es the Dirichlet conditions over the range
ÿ1 < x <1 and for which the integral�1

ÿ1
j f (x)j2 dx

converges, the Fourier integral in equation (B.17) converges to f (x) wherever f (x) is
continuous and to the mean value of f (x) at any point of discontinuity.

In some applications a function f (x, t), where x is a distance variable and t is the
time, is represented as a Fourier integral of the form

f (x, t) � 1������
2ð
p

�1
ÿ1

G(k)ei[kxÿù(k) t] dk (B:19)

where the frequency ù(k) depends on the variable k. In this case the Fourier transform
g(k) takes the form

g(k) � G(k)eÿiù(k) t

and equation (B.18) may be written as

G(k) � 1������
2ð
p

�1
ÿ1

f (x, t)eÿi[kxÿù(k) t] dx (B:20)

The functions f (x, t) and G(k) are, then, a generalized form of Fourier transforms.
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Another generalized form may be obtained by exchanging the roles of x and t in
equations (B.19) and (B.20), so that

f (x, t) � 1������
2ð
p

�1
ÿ1

G(ù)ei[k(ù)xÿù t] dù (B:21)

G(ù) � 1������
2ð
p

�1
ÿ1

f (x, t)eÿi[k(ù)xÿù t] dt (B:22)

Fourier integral in three dimensions
The Fourier integral may be readily extended to functions of more than one variable.
We now derive the result for a function f (x, y, z) of the three spatial variables x, y, z.
If we consider f (x, y, z) as a function only of x, with y and z as parameters, then we
have

f (x, y, z) � 1������
2ð
p

�1
ÿ1

g1(kx, y, z)eikx x dkx (B:23a)

g1(kx, y, z) � 1������
2ð
p

�1
ÿ1

f (x, y, z)eÿikx x dx (B:23b)

We next regard g1(kx, y, z) as a function only of y with kx and z as parameters and
express g1(kx, y, z) as a Fourier integral

g1(kx, y, z) � 1������
2ð
p

�1
ÿ1

g2(kx, ky, z)eik y y dky (B:24a)

g2(kx, ky, z) � 1������
2ð
p

�1
ÿ1

g1(kx, y, z)eÿik y y dy (B:24b)

Considering g2(kx, ky, z) as a function only of z, we have

g2(kx, ky, z) � 1������
2ð
p

�1
ÿ1

g(kx, ky, kz)e
ikz z dkz (B:25a)

g(kx, ky, kz) � 1������
2ð
p

�1
ÿ1

g2(kx, ky, z)eÿikz z dz (B:25b)

Combining equations (B.23a), (B.24a), and (B.25a), we obtain

f (x, y, z) � 1

(2ð)3=2

���1
ÿ1

g(kx, ky, kk)ei(kx x�k y y�kz z) dkx dky dkz (B:26a)

Combining equations (B.23b), (B.24b), and (B.25b), we have

g(kx, ky, k k) � 1

(2ð)3=2

���1
ÿ1

f (x, y, z)eÿi(kx x�k y y�kz z) dx dy dz (B:26b)

If we de®ne the vector r with components x, y, z and the vector k with components
kx, ky, kz and write the volume elements as

dr � dx dy dz

dk � dkx dky dkz

then equations (B.26) become
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f (r) � 1

(2ð)3=2

�
g(k)eik.r dk (B:27a)

g(k) � 1

(2ð)3=2

�
f (r)eÿik.r dr (B:27b)

Parseval's theorem
To obtain Parseval's theorem for the function f (x) in equation (B.17), we ®rst take the
complex conjugate of f (x)

f �(x) � 1������
2ð
p

�1
ÿ1

g�(k9)eÿik9x dk9

where we have used a different dummy variable of integration. The integral of the
square of the absolute value of f (x) is then given by�1

ÿ1
j f (x)j2 dx �

�1
ÿ1

f �(x) f (x) dx � 1

2ð

��1
ÿ1

g�(k9)g(k)ei(kÿk9)x dk dk9 dx

The order of integration on the right-hand side may be interchanged. If we integrate
over x while noting that according to equation (C.6)�1

ÿ1
ei(kÿk9)x dx � 2ðä(k ÿ k9)

we obtain �1
ÿ1
j f (x)j2 dx �

��1
ÿ1

g�(k9)g(k)ä(k ÿ k9) dk dk9

Finally, integration over the variable k9 yields Parseval's theorem for the Fourier
integral, �1

ÿ1
j f (x)j2 dx �

�1
ÿ1
jg(k)j2 dk (B:28)

Parseval's theorem for the functions f (r) and g(k) in equations (B.27) is�
j f (r)j2 dr �

�
jg(k)j2 dk (B:29)

This relation may be obtained by the same derivation as that leading to equation
(B.28), using the integral representation (C.7) for the three-dimensional Dirac delta
function.
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Appendix C

Dirac delta function

The Dirac delta function ä(x) is de®ned by the conditions

ä(x) � 0, for x 6� 0

� 1, for x � 0
(C:1)

such that �1
ÿ1

ä(x) dx � 1 (C:2)

As a consequence of this de®nition, if f (x) is an arbitrary function which is well-
de®ned at x � 0, then integration of f (x) with the delta function selects out the value
of f (x) at the origin �

f (x)ä(x) dx � f (0) (C:3)

The integration is taken over the range of x for which f (x) is de®ned, provided that the
range includes the origin. It also follows that�

f (x)ä(xÿ x0) dx � f (x0) (C:4)

since ä(xÿ x0) � 0 except when x � x0. The range of integration in equation (C.4)
must include the point x � x0.

The following properties of the Dirac delta function can be demonstrated by
multiplying both sides of each expression by f (x) and observing that, on integration,
each side gives the same result

ä(ÿx) � ä(x) (C:5a)

ä(cx) � 1

jcj ä(x), c real (C:5b)

xä(xÿ x0) � x0ä(xÿ x0) (C:5c)

xä(x) � 0 (C:5d)

f (x)ä(xÿ x0) � f (x0)ä(xÿ x0) (C:5e)

As de®ned above, the delta function by itself lacks mathematical rigor and has no
meaning. Only when it appears in an integral does it have an operational meaning.
That two integrals are equal does not imply that the integrands are equal. However, for
the sake of convenience we often write mathematical expressions involving ä(x) such
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as those in equations (C.5a±e). Thus, the expressions (C.5a±e) and similar ones
involving ä(x) are not to be taken as mathematical identities, but rather as operational
identities. One side can replace the other within an integral that includes the origin, for
ä(0), or the point x0 for ä(xÿ x0).

The concept of the Dirac delta function can be made more mathematically rigorous
by regarding ä(x) as the limit of a function which becomes successively more peaked
at the origin when a parameter approaches zero. One such function is

ä(x) � lim
å!0

1

ð1=2å
eÿx2=å2

since

1

ð1=2å

�1
ÿ1

eÿx2=å2

dx � 1

and

1

å
eÿx2=å2 !1 as x! 0, å! 0

! 0 as x! �1
Equation (C.3) then becomes

lim
å!0

1

ð1=2å

�1
ÿ1

f (x)eÿx2=å2

dx � f (0)

Other expressions which can be used to de®ne ä(x) include

lim
å!0

1

ð

å

x2 � å2

and

lim
å!0

1

2å
eÿjxj=å

The delta function is the derivative of the Heaviside unit step function H(x), de®ned
as the limit as å! 0 of H(x, å) (see Figure C.1)

H(x, å) � 0 for x ,
ÿå
2

� x

å
� 1

2
for

ÿå
2

< x <
å

2

� 1 for x .
å

2
Thus, in the limit we have

H(x) � 0 for x , 0

� 1
2

for x � 0

� 1 for x . 0

and dH=dx, which equals ä(x), satis®es equation (C.1). The differential dH(x, å)
equals dx=å for x between ÿå=2 and å=2 and is zero otherwise. If we take the integral
of ä(x) from ÿ1 to1, we have�1

ÿ1
ä(x) dx �

�1
ÿ1

dH � lim
å!0

�1
ÿ1

dH(x, å) �
�å=2

ÿå=2

1

å
dx � 1

å

å

2
� å

2

� �
� 1
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and condition (C.2) is satis®ed.
We next assume that the derivative ä9(x) of ä(x) with respect to x exists. If we

integrate the product f (x)ä9(x) by parts and note that the integrated part vanishes, we
obtain �1

ÿ1
f (x)ä9(x) dx � ÿ

�1
ÿ1

f 9(x)ä(x) dx � ÿ f 9(0)

where f 9(x) is the derivative of f (x). From equations (C.5a) and (C.5d), it follows that

ä9(ÿx) � ä9(x)

xä9(x) � ÿä(x)

We may also evaluate the Fourier transform ä(k) of the Dirac delta function
ä(xÿ x0)

ä(k) � 1������
2ð
p

�1
ÿ1

ä(xÿ x0)eÿikx dx � 1������
2ð
p eÿikx0

The inverse Fourier transform then gives an integral representation of the delta
function

ä(xÿ x0) � 1������
2ð
p

�1
ÿ1

ä(k) eikx dk � 1

2ð

�1
ÿ1

eik(xÿx0) dk (C:6)

The Dirac delta function may be readily generalized to three-dimensional space. If r
represents the position vector with components x, y, and z, then the three-dimensional
delta function is

ä(rÿ r0) � ä(xÿ x0)ä(yÿ y0)ä(zÿ z0)

and possesses the property that

0 x

1

H(x)

0 x

H(x, ε)

1

2ε/2 ε/2

1
2

Figure C.1 The Heaviside unit step function H(x), de®ned as the limit as å! 0 of
H(x, å).
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�
f (r)ä(rÿ r0) dr � f (r0)

or, equivalently� � �
f (x, y, z)ä(xÿ x0)ä(yÿ y0)ä(zÿ z0) dx dy dz � f (x0, y0, z0)

where the range of integration includes the points x0, y0, and z0. The integral
representation is

ä(rÿ r0) � 1

(2ð)3

�1
ÿ1

eik(rÿr0) dk (C:7)

where k is a vector with components kx, ky, and kz and where

dk � dkx dky dkz
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Appendix D

Hermite polynomials

The Hermite polynomials Hn(î) are de®ned by means of an in®nite series

expansion of the generating function g(î, s),

g(î, s) � e2îsÿs2 � eî
2ÿ(sÿî)2 �

X1
n�0

Hn(î)
sn

n!
(D:1)

where ÿ1 < î <1 and where jsj, 1 in order for the Taylor series expansion to
converge. The coef®cients Hn(î) of the Taylor expansion are given by

Hn(î) � @
n g(î, s)

@sn

����
s�0

� eî
2 @ n

@sn
(eÿ(sÿî)2

)

����
s�0

(D:2)

For a function f (x� y) of the sum of two variables x and y, we note that

@ f

@x

� �
y

� @ f

@ y

� �
x

Applying this property with x � s and y � ÿî to the nth-order partial derivative in
equation (D.2), we obtain

@ n

@sn
(eÿ(sÿî)2

)

����
s�0

� (ÿ1)n @
n

@î n
(eÿ(sÿî)2

)

����
s�0

� (ÿ1)n dn

dî n
eÿî

2

and equation (D.2) becomes

Hn(î) � (ÿ1)neî
2 dn

dî n
eÿî

2

(D:3)

Another expression for the Hermite polynomials may be obtained by expanding
g(î, s) using equation (A.1)

g(î, s) � es(2îÿs) �
X1
k�0

sk(2îÿ s)k

k!

Applying the binomial expansion (A.2) to the factor (2îÿ s)k, we obtain

(2îÿ s)k �
Xk

á�0

(ÿ1)ák!

á!(k ÿ á)!
(2î)kÿásá

and g(î, s) takes the form
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g(î, s) �
X1
k�0

Xk

á�0

(ÿ1)á2kÿáî kÿás k�á

á!(k ÿ á)!

We next collect all the coef®cients of sn for an arbitrary n, so that k � á � n, and
replace the summation over k by a summation over n. When k � n, the index á equals
zero; when k � nÿ 1, the index á equals one; when k � nÿ 2, the index á equals
two; and so on until we have k � nÿ M and á � M . Since the index á runs from 0 to
k so that á < k, this ®nal term gives M < nÿ M or M < n=2. Thus, for k � á � n,
the summation over á terminates at á � M with M � n=2 for n even and M �
(nÿ 1)=2 for n odd. The result of this resummation is

g(î, s) �
X1
n�0

XM

á�0

(ÿ1)á2nÿ2áî nÿ2á

á!(nÿ 2á)!
sn

Since the Hermite polynomial Hn(î) divided by n! is the coef®cient of sn in the
expansion (D.1) of g(î, s), we have

Hn(î) � 2n n!
XM

á�0

(ÿ1)á

22áá!(nÿ 2á)!
î nÿ2á (D:4)

We note that Hn(î) is an odd or even polynomial in î according to whether n is odd or
even and that the coef®cient of the highest power of î in Hn(î) is 2n.

Expression (D.4) is useful for obtaining the series of Hermite polynomials, the ®rst
few of which are

H0(î) � 1 H3(î) � 8î3 ÿ 12î

H1(î) � 2î H4(î) � 16î4 ÿ 48î2 � 12

H2(î) � 4î2 ÿ 2 H5(î) � 32î5 ÿ 160î3 � 120î

Recurrence relations
We next derive some recurrence relations for the Hermite polynomials. If we
differentiate equation (D.1) with respect to s, we obtain

2(îÿ s)e2îsÿs2 �
X1
n�1

Hn(î)
s nÿ1

(nÿ 1)!

The ®rst term (n � 0) in the summation on the right-hand side vanishes because it is
the derivative of a constant. The exponential on the left-hand side is the generating
function g(î, s), for which equation (D.1) may be used to give

2(îÿ s)
X1
n�0

Hn(î)
sn

n!
�
X1
n�1

Hn(î)
s nÿ1

(nÿ 1)!

Since this equation is valid for all values of s with jsj, 1, we may collect terms
corresponding to the same power of s, for example sn, and obtain

2îHn(î)

n!
ÿ 2H nÿ1(î)

(nÿ 1)!
� H n�1(î)

n!

or

H n�1(î)ÿ 2îHn(î)� 2nH nÿ1(î) � 0 (D:5)

This recurrence relation may be used to obtain a Hermite polynomial when the two
preceding polynomials are known.
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Another recurrence relation may be obtained by differentiating equation (D.1) with
respect to î to obtain

2se2îsÿs2 �
X1
n�0

dHn

dî

sn

n!

Replacing the exponential on the left-hand side using equation (D.1) gives

2s
X1
n�0

Hn(î)
sn

n!
�
X1
n�0

dHn

dî

sn

n!

If we then equate the coef®cients of sn, we obtain the desired result

dHn

dî
� 2nH nÿ1(î) (D:6)

The relations (D.5) and (D.6) may be combined to give a third recurrence relation.
Addition of the two equations gives

H n�1(î) � 2îÿ d

dî

� �
Hn(î) (D:7)

With this recurrence relation, a Hermite polynomial may be obtained from the
preceding polynomial. By applying the relation (D.7) to Hn(î) k times, we have

H n�k(î) � 2îÿ d

dî

� �k

Hn(î) (D:8)

Differential equation
To ®nd the differential equation that is satis®ed by the Hermite polynomials, we ®rst
differentiate the second recurrence relation (D.6) and then substitute (D.6) with n
replaced by nÿ 1 to eliminate the ®rst derivative of H nÿ1(î)

d2 Hn

dî2
� 2n

dH nÿ1

dî
� 4n(nÿ 1)H nÿ2(î) (D:9)

Replacing n by nÿ 1 in the ®rst recurrence relation (D.5), we have

Hn(î)ÿ 2îH nÿ1(î)� 2(nÿ 1)H nÿ2(î) � 0

which may be used to eliminate H nÿ2(î) in equation (D.9), giving

d2 Hn

dî2
� 2nHn(î)ÿ 4nîH nÿ1(î) � 0

Application of equation (D.6) again to eliminate H nÿ1(î) yields

d2 Hn

dî2
ÿ 2î

dHn

dî
� 2nHn(î) � 0 (D:10)

which is the Hermite differential equation.

Integral relations
To obtain the orthogonality and normalization relations for the Hermite polynomials,
we multiply together the generating functions g(î, s) and g(î, t), both obtained from
equation (D.1), and the factor eÿî

2

and then integrate over î

I �
�1
ÿ1

eÿî
2

g(î, s)g(î, t) dî �
X1
n�0

X1
m�0

sntm

n!m!

�1
ÿ1

eÿî
2

Hn(î)Hm(î) dî (D:11)
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For convenience, we have abbreviated the integral with the symbol I. To evaluate the
left integral, we substitute the analytical forms for the generating functions from
equation (D.1) to give

I �
�1
ÿ1

eÿî
2

e2îsÿs2

e2îtÿ t2

dî � e2st

�1
ÿ1

eÿ(îÿsÿ t)2

d(îÿ sÿ t) � ð1=2e2st

where equation (A.5) has been used. We next expand e2st in the power series (A.1) to
obtain

I � ð1=2
X1
n�0

2nsntn

n!

Substitution of this expression for I into equation (D.11) gives

ð1=2
X1
n�0

2n(st)n

n!
�
X1
n�0

X1
m�0

sntm

n!m!

�1
ÿ1

eÿî
2

Hn(î)Hm(î) dî (D:12)

On the left-hand side, we see that there are no terms for which the power of s is not
equal to the power of t. Therefore, terms on the right-hand side with n 6� m must
vanish, giving �1

ÿ1
eÿî

2

Hn(î)Hm(î) dî � 0, n 6� m (D:13)

The Hermite polynomials Hn(î) form an orthogonal set over the range ÿ1 < î <1
with a weighting factor eÿî

2

. If we equate coef®cients of (st)n on each side of equation
(D.12), we obtain �1

ÿ1
eÿî

2

[Hn(î)]2 dî � 2n n!ð1=2

which may be combined with equation (D.13) to give�1
ÿ1

eÿî
2

Hn(î)Hm(î) dî � 2n n!ð1=2änm (D:14)

Completeness
If we de®ne the set of functions ön(î) as

ön(î) � (2n n!)ÿ1=2ðÿ1=4eÿî
2=2 Hn(î) (D:15)

then equation (D.14) shows that the members of this set are orthonormal with
weighting factor unity. We can also demonstrate1 that this set is complete.

We begin with the integral formula (A.8) which, with suitable de®nitions for the
parameters, may be written as�1

ÿ1
eÿ(s2=4)�iîs ds � 2ð1=2eÿî

2

(D:16)

If we replace eÿî
2

in equation (D.3) by the integral in (D.16), we obtain for Hn(î)

Hn(î) � (ÿ1)n

2ð1=2
eî

2 @ n

@î n

�1
ÿ1

eÿ(s2=4)�iîs ds � (ÿ1)n

2ð1=2
eî

2

�1
ÿ1

eÿs2=4 @
n

@î n
eiîs ds

� (ÿi)n

2ð1=2
eî

2

�1
ÿ1

eÿ(s2=4)�iîssn ds

1 See D. Park (1992) Introduction to the Quantum Theory, 3rd edition (McGraw-Hill, New York), p. 565.
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The function ön(î) as de®ned by equation (D.15) then becomes

ön(î) � (ÿi)n

2(2nðn!)1=2ð1=4
eî

2=2

�1
ÿ1

eÿ(s2=4)�iîssn ds (D:17)

We now evaluate the summationX1
n�0

ön(î)ön(î9)

by substituting equation (D.17) twice, once with the dummy variable of integration s
and once with s replaced by t. Since the functions ön(î) are real, they equal their
complex conjugates. These substitutions giveX1

n�0

ön(î)ön(î9) � 1

4ð3=2
e(î2�î92)=2

�1
ÿ1

�1
ÿ1

eÿ[(s2� t2)=4]�i(îs�î9 t)
X1
n�0

(ÿ1)n

2n n!
(st)n ds dt

since (ÿi)2n � (ÿ1)n. The summation on the right-hand side is easily evaluated using
equation (A.1) X1

n�0

(ÿ1)n

n!

st

2

� �n

� eÿst=2

Noting that

s2 � t2

4
� st

2
� (s� t)2

4
we haveX1

n�0

ön(î)ön(î9) � 1

4ð3=2
e(î2�î92)=2

�1
ÿ1

�1
ÿ1

eÿ[(s� t)2=4]�i(îs�î9 t) ds dt (D:18)

The double integral may be evaluated by introducing the new variables u and v

u � s� t

2
, v � sÿ t

2
or s � u� v, t � uÿ v

ds dt � 2 du dv

The double integral is thereby factored into

2

�1
ÿ1

eÿu2�i(î�î9)u du

�1
ÿ1

ei(îÿî9)v dv � 2 3 ð1=2eÿ(î�î9)2=4 3 2ðä(îÿ î9)

where the ®rst integral is evaluated by equation (A.8) and the second by (C.6).
Equation (D.18) now becomesX1

n�0

ön(î)ön(î9) � e[(î2�î92)=2]ÿ[(î�î9)2=4]ä(îÿ î9) � e(îÿî9)2=4ä(îÿ î9)

Applying equation (C.5e), we obtain the completeness relation for the functions ön(î)X1
n�0

ön(î)ön(î9) � ä(îÿ î9) (D:19)

demonstrating, according to equation (3.31), that the set ön(î) is a complete set.
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Appendix E

Legendre and associated Legendre polynomials

Legendre polynomials

The Legendre polynomials Pl(ì) may be de®ned as the coef®cients of sl in an

in®nite series expansion of a generating function g(ì, s)

g(ì, s) � (1ÿ 2ìs� s2)ÿ1=2 �
X1
l�0

Pl(ì)sl (E:1)

where ÿ1 < ì < 1 and jsj, 1 in order for the in®nite series to converge.
We may also expand g(ì, s) by applying the standard formula

f (z) � (1ÿ z)ÿ1=2 �
X1
n�0

zn

n!

dn f

dzn

� �
z�0

�
X1
n�0

zn

n!

1 : 3 : 5 : � � � : (2nÿ 1)

2n

�
X1
n�0

(2n)!

22n(n!)2
zn

If we set z � s(2ìÿ s), then g(ì, s) becomes

g(ì, s) �
X1
n�0

(2n)!

22n(n!)2
sn(2ìÿ s)n

With the use of the binomial expansion (A.2), the factor (2ìÿ s)n can be further
expanded as

(2ìÿ s)n �
Xn

á�0

(ÿ1)án!

á!(nÿ á)!
(2ì)nÿásá

so that

g(ì, s) �
X1
n�0

Xn

á�0

(ÿ1)á(2n)!ìnÿá

2n�án!á!(nÿ á)!
s n�á

We next collect all the coef®cients of sl for some arbitrary l and replace the summation
over n with a summation over l. Since n� á � l, when n � l, we have á � 0; when
n � l ÿ 1, we have á � 1; and so on until n � l ÿ M , á � M , where M < l ÿ M or
M < l=2. The summation over á terminates at á � M , with M � l=2 for l even and
M � (l ÿ 1)=2 for l odd, because á cannot be greater than n. The result is
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g(ì, s) �
X1
l�0

XM

á�0

(ÿ1)á(2l ÿ 2á)!ì lÿ2á

2 lá!(l ÿ á)!(l ÿ 2á)!
sl

Since the Legendre polynomials are the coef®cients of sl in the expansion (E.1) of
g(ì, s), we have

Pl(ì) �
XM

á�0

(ÿ1)á(2l ÿ 2á)!

2 lá!(l ÿ á)!(l ÿ 2á)!
ì lÿ2á (E:2)

We see from equation (E.2) that Pl(ì) for even l is a polynomial with only even powers
of ì, while for odd l only odd powers of ì are present.

The ®rst few Legendre polynomials may be readily obtained from equation (E.2)
and are

P0(ì) � 1 P3(ì) � 1
2
(5ì3 ÿ 3ì)

P1(ì) � ì P4(ì) � 1
8
(35ì4 ÿ 30ì2 � 3)

P2(ì) � 1
2
(3ì2 ÿ 1) P5(ì) � 1

8
(63ì5 ÿ 70ì3 � 15ì)

We observe that Pl(1) � 1, which can be shown rigorously by setting ì � 1 in
equation (E.1) and noting that

g(1, s) � (1ÿ s)ÿ1 �
X1
l�0

sl �
X1
l�0

Pl(1)sl

Since Pl(ì) is either even or odd in ì, it follows that Pl(ÿ1) � (ÿ1) l and that
Pl(0) � 0 for l odd.

Recurrence relations
We next derive some recurrence relations for the Legendre polynomials. Differentia-
tion of the generating function g(ì, s) with respect to s gives

@ g

@s
� ìÿ s

(1ÿ 2ì� s2)3=2
� (ìÿ s)g

1ÿ 2ì� s2
�
X1
l�1

lPl(ì)s lÿ1 (E:3)

The term with l � 0 in the summation vanishes, so that the summation now begins
with the l � 1 term. We may write equation (E.3) as

(ìÿ s)
X1
l�0

Pl(ì)sl � (1ÿ 2ìs� s2)
X1
l�1

lPl(ì)s lÿ1

If we equate coef®cients of s lÿ1 on each side of the equation, we obtain

ìPlÿ1(ì)ÿ Plÿ2(ì) � lPl(ì)ÿ 2(l ÿ 1)ìPlÿ1(ì)� (l ÿ 2)Plÿ2(ì)

or

lPl(ì)ÿ (2l ÿ 1)ìPlÿ1(ì)� (l ÿ 1)Plÿ2(ì) � 0 (E:4)

The recurrence relation (E.4) is useful for evaluating Pl(ì) when the two preceding
polynomials are known.

Differentiation of the generating function g(ì, s) in equation (E.1) with respect to ì
yields

@ g

@ì
� sg

1ÿ 2ìs� s2

which may be combined with equation (E.3) to give
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s
@ g

@s
� (ìÿ s)

@ g

@ì
so that X1

l�1

lPl(ì)sl � (ìÿ s)
X1
l�0

dPl

dì
sl

Equating coef®cients of sl on each side of this equation yields a second recurrence
relation

ì
dPl

dì
ÿ dPlÿ1

dì
ÿ lPl(ì) � 0 (E:5)

A third recurrence relation may be obtained by differentiating equation (E.4) to give

l
dPl

dì
ÿ (2l ÿ 1)ì

dPlÿ1

dì
ÿ (2l ÿ 1)Plÿ1(ì)� (l ÿ 1)

dPlÿ2

dì
� 0

and then eliminating dPlÿ2=dì by the substitution of equation (E.5) with l replaced by
l ÿ 1. The result is

dPl

dì
ÿ ì

dPlÿ1

dì
ÿ lPlÿ1(ì) � 0 (E:6)

Differential equation
To ®nd the differential equation satis®ed by the polynomials Pl(ì), we ®rst multiply
equation (E.5) by ÿì and add the result to equation (E.6) to give

(1ÿ ì2)
dPl

dì
� lìPl(ì)ÿ lPlÿ1(ì) � 0

We then differentiate to obtain

(1ÿ ì2)
d2 Pl

dì2
ÿ 2ì

dPl

dì
� lì

dPl

dì
� lPl(ì)ÿ l

dPlÿ1

dì
� 0

The third and last terms on the left-hand side may be eliminated by means of equation
(E.5) to give Legendre's differential equation

(1ÿ ì2)
d2 Pl

dì2
ÿ 2ì

dPl

dì
� l(l � 1)Pl(ì) � 0 (E:7)

Rodrigues' formula
Rodrigues' formula for the Legendre polynomials may be derived as follows. Consider
the expression

v � (ì2 ÿ 1) l

The derivative of v is

dv

dì
� 2lì(ì2 ÿ 1) lÿ1 � 2lìv(ì2 ÿ 1)ÿ1

which is just the differential equation

(1ÿ ì2)
dv

dì
� 2lìv � 0

If we differentiate this equation, we obtain
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(1ÿ ì2)
d2v

dì2
� 2(l ÿ 1)ì

dv

dì
� 2lv � 0

We now differentiate r times more and obtain

(1ÿ ì2)
dr�2v

dìr�2
� 2(l ÿ r ÿ 1)ì

dr�1v

dìr�1
� (r � 1)(2l ÿ r)

drv

dìr
� 0 (E:8)

If we let r � l and de®ne w as

w � d lv

dì l
� d l

dì l
(ì2 ÿ 1) l

then equation (E.8) reduces to

(1ÿ ì2)
d2w

dì2
ÿ 2ì

dw

dì
� l(l � 1)w � 0

which is just Legendre's differential equation (E.7). Since the polynomials Pl(ì)
represent all of the solutions of equation (E.7), these polynomials must be multiples of
w, so that

Pl(ì) � cl

d l

dì l
(ì2 ÿ 1) l

The proportionality constants cl may be evaluated by setting the term in ì l, namely

cl

d l

dì l
ì2 l � cl

(2l)!

l!
ì l

equal to the term in ì l in equation (E.2), i.e.,

(2l)!

2 l(l!)2
ì l

Thus, we have

cl � 1

2 l l!
and

Pl(ì) � 1

2 l l!

d l

dì l
(ì2 ÿ 1) l (E:9)

This expression (equation (E.9)) is Rodrigues' formula.

Associated Legendre polynomials

The associated Legendre polynomials Pm
l (ì) are de®ned in terms of the Legendre

polynomials Pl(ì) by

Pm
l (ì) � (1ÿ ì2)m=2 dm Pl(ì)

dìm
(E:10)

where m is a positive integer, m � 0, 1, 2, . . . , l. If m � 0, then the corresponding
associated Legendre polynomial is just the Legendre polynomial of degree l. If m . l,
then the corresponding associated Legendre polynomial vanishes.

The generating functions g(m)(ì, s) for the associated Legendre polynomials may
be found from equation (E.1) by letting
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g(m)(ì, s) � (1ÿ ì2)m=2 dm g(ì, s)

dìm

Since

dm g(ì, s)

dìm
� 3 : 5 : � � � : (2mÿ 1)sm(1ÿ 2ìs� s2)ÿ(m�1

2
)

� (2m)!

2m m!
sm(1ÿ 2ìs� s2)ÿ(m�1

2
)

we have

g(m)(ì, s) �
X1
l�m

Pm
l (ì)sl � (2m)!(1ÿ ì2)m=2sm

2m m!(1ÿ 2ìs� s2)m�1
2

(E:11)

We can also write an explicit series for Pm
l (ì) by differentiating equation (E.2) m

times

Pm
l (ì) � (1ÿ ì2)m=2

XM9

á�0

(ÿ1)á(2l ÿ 2á)!ì lÿmÿ2á

2 lá!(l ÿ á)!(l ÿ mÿ 2á)!
(E:12)

where M9 � (l ÿ m)=2 or (l ÿ mÿ 1)=2, whichever is an integer. Furthermore,
combining equation (E.10) with Rodrigues' formula (E.9), we see that

Pm
l (ì) � 1

2 l l!
(1ÿ ì2)m=2 d l�m

dì l�m
(ì2 ÿ 1) l (E:13)

The ®rst few associated Legendre polynomials are

P0
0(ì) � P0(ì) � 1

P0
1(ì) � ì

P1
1(ì) � (1ÿ ì2)1=2

P0
2(ì) � P2(ì) � 1

2
(3ì2 ÿ 1)

P1
2(ì) � 3ì(1ÿ ì2)1=2

P2
2(ì) � 3(1ÿ ì2)

..

.

Differential equation
The differential equation satis®ed by the polynomials Pm

l (ì) may be obtained as
follows. Let r � l � m in equation (E.8) and de®ne wm as

wm � d l�m

dì l�m
(ì2 ÿ 1) l � 2 l l!

dm Pl

dìm
(E:14)

so that

wm � 2 l l!(1ÿ ì2)ÿm=2 Pm
l (ì) (E:15)

Equation (E.8) then becomes

(1ÿ ì2)
d2wm

dì2
ÿ 2(m� 1)ì

dwm

dì
� [l(l � 1)ÿ m(m� 1)]wm � 0 (E:16)
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We then substitute equation (E.15) for wm and take the ®rst and second derivatives as
indicated to obtain

(1ÿ ì2)
d2 Pm

l

dì2
ÿ 2ì

dPm
l

dì
� l(l � 1)ÿ m2

1ÿ ì2

" #
Pm

l (ì) � 0 (E:17)

Equation (E.17) is the associated Legendre differential equation.

Orthogonality
Equation (E.17) as satis®ed by Pm

l (ì) and by Pm
l9 (ì) may be written as

d

dì
(1ÿ ì2)

dPm
l

dì

� �
� l(l � 1)ÿ m2

1ÿ ì2

" #
Pm

l (ì) � 0

and

d

dì
(1ÿ ì2)

dPm
l9

dì

� �
� l9(l9� 1)ÿ m2

1ÿ ì2

" #
Pm

l9 (ì) � 0

If we multiply the ®rst by Pm
l9 (ì) and the second by Pm

l (ì) and then subtract, we have

Pm
l9

d

dì
(1ÿ ì2)

dPm
l

dì

� �
ÿ Pm

l

d

dì
(1ÿ ì2)

dPm
l9

dì

� �
� [l9(l9� 1)ÿ l(l � 1)]Pm

l Pm
l9

We then add to and subtract from the left-hand side the term

(1ÿ ì2)
dPm

l

dì

dPm
l9

dì
so as to obtain

d

dì
(1ÿ ì2) Pm

l9

dPm
l

dì
ÿ Pm

l

dPm
l9

dì

� �� �
� [l9(l9� 1)ÿ l(l � 1)]Pm

l Pm
l9

We next integrate with respect to ì from ÿ1 to �1 and note that

(1ÿ ì2) Pm
l9

dPm
l

dì
ÿ Pm

l

dPm
l9

dì

� �� �1

ÿ1

� 0

giving

[l9(l9� 1)ÿ l(l � 1)]

�1

ÿ1

Pm
l Pm

l9 dì � 0

If l9 6� l, then the integral must vanish�1

ÿ1

Pm
l (ì)Pm

l9 (ì) dì � 0 (E:18)

so that the associated Legendre polynomials Pm
l (ì) with ®xed m form an orthogonal

set of functions. Since equation (E.18) is valid for m � 0, the Legendre polynomials
Pl(ì) are also an orthogonal set.

Normalization
We next wish to evaluate the integral Ilm

Ilm �
�1

ÿ1

[Pm
l (ì)]2 dì

As a ®rst step, we evaluate I l0
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I l0 �
�1

ÿ1

[Pl(ì)]2 dì

We solve the recurrence relation (E.4) for Pl(ì), multiply both sides by Pl(ì), integrate
with respect to ì from ÿ1 to �1, and note that one of the integrals vanishes according
to the orthogonality relation (E.18), so that�1

ÿ1

[Pl(ì)]2 dì � 2l ÿ 1

l

�1

ÿ1

ìPl(ì)Plÿ1(ì) dì

Replacing l by l � 1 in equation (E.4), we can substitute for ìPl(ì) on the right-hand
side. Again applying equation (E.18), we ®nd that�1

ÿ1

[Pl(ì)]2 dì � 2l ÿ 1

2l � 1

�1

ÿ1

[Plÿ1(ì)]2 dì

This relationship can then be applied successively to obtain�1

ÿ1

[Pl(ì)]2 dì � (2l ÿ 1)(2l ÿ 3)

(2l � 1)(2l ÿ 1)

�1

ÿ1

[Plÿ2(ì)]2 dì

..

.

� (2l ÿ 1)(2l ÿ 3) � � � 1
(2l � 1)(2l ÿ 1)(2l ÿ 3) � � � 3

�1

ÿ1

[P0(ì)]2 dì

� 1

2l � 1

�1

ÿ1

[P0(ì)]2 dì

Since P0(1) � 1, the desired result is�1

ÿ1

[Pl(ì)]2 dì � 1

2l � 1

�1

ÿ1

dì � 2

2l � 1
(E:19)

We are now ready to evaluate Ilm. From equation (E.10) we have

Ilm �
�1

ÿ1

(1ÿ ì2)m dm Pl

dìm

� �2

dì �
�1

ÿ1

(1ÿ ì2)m dm Pl

dìm

d

dì

dmÿ1 Pl

dìmÿ1

 !
dì

Integration by parts gives

Ilm � (1ÿ ì2)m dm Pl

dìm

dmÿ1 Pl

dìmÿ1

����1
ÿ1

ÿ
�1

ÿ1

dmÿ1 Pl

dìmÿ1

d

dì
(1ÿ ì2)m dm Pl

dìm

� �
dì (E:20)

The integrated part vanishes because (1ÿ ì2) � 0 at ì � �1.
To evaluate the integral on the right-hand side of equation (E.20), we replace m by

mÿ 1 in (E.16) and multiply by (1ÿ ì2)mÿ1 to obtain

(1ÿ ì2)m d2wmÿ1

dì2
ÿ 2mì(1ÿ ì2)mÿ1 dwmÿ1

dì

� [l(l � 1)ÿ m(mÿ 1)](1ÿ ì2)mÿ1wmÿ1 � 0

which can be rewritten as

d

dì
(1ÿ ì2)m dwmÿ1

dì

� �
� ÿ(l � m)(l ÿ m� 1)(1ÿ ì2)mÿ1wmÿ1 � 0

From equation (E.14) we see that
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wmÿ1 � 2 l l!
dmÿ1 Pl

dìmÿ1

and

dwmÿ1

dì
� wm � 2 l l!

dm Pl

dìm

so that

d

dì
(1ÿ ì2)m dm Pl

dìm

� �
� ÿ(l � m)(l ÿ m� 1)(1ÿ ì2)mÿ1 dmÿ1 Pl

dìmÿ1

Thus, equation (E.20) takes the form

Ilm � (l � m)(l ÿ m� 1)

�1

ÿ1

(1ÿ ì2)mÿ1 dmÿ1 Pl

dìmÿ1

" #2

dì

Using equation (E.10) to introduce Pmÿ1
l (ì), we have

Ilm � (l � m)(l ÿ m� 1)

�1

ÿ1

[Pmÿ1
l (ì)]2 dì

� (l � m)(l ÿ m� 1)I l,mÿ1

which relates Ilm to I l,mÿ1. This process can be repeated until I l0 is obtained

Ilm � [(l � m)(l � mÿ 1)][(l ÿ m� 1)(l ÿ m� 2)]I l,mÿ2

..

.

� [(l � m)(l � mÿ 1) � � � (l � 1)][(l ÿ m� 1)(l ÿ m� 2) � � � l]I l0

� (l � m)!

l!

l!

(l ÿ m)!
I l0

so that �1

ÿ1

[Pm
l (ì)]2 dì � 2(l � m)!

(2l � 1)(l ÿ m)!

Completeness
The set of associated Legendre polynomials Pm

l (ì) with m ®xed and l � m,
m� 1, . . . , form a complete orthogonal set1 in the range ÿ1 < ì < 1. Thus, an
arbitrary function f (ì) can be expanded in the series

f (ì) �
X1
l�m

almPm
l (ì)

with the expansion coef®cients given by

1 The proof of completeness may be found in W. Kaplan (1991) Advanced Calculus, 4th edition (Addison-
Wesley, Reading, MA) p. 537 and in G. Birkhoff and G.-C. Rota (1989) Ordinary Differential Equations,
4th edition (John Wiley & Sons, New York), pp. 350±4.
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alm � 2l � 1

2

(l ÿ m)!

(l � m)!

�1

ÿ1

Pm
l (ì) f (ì) dì

The completeness relation for the polynomials Pm
l (ì) isX1

l�m

2l � 1

2

(l ÿ m)!

(l � m)!
Pm

l (ì)Pm
l (ì9) � ä(ìÿ ì9)

Legendre and associated Legendre polynomials 309



Appendix F

Laguerre and associated Laguerre polynomials

Laguerre polynomials

The Laguerre polynomials Lk(r) are de®ned by means of the generating

function g(r, s)

g(r, s) � eÿrs=(1ÿs)

1ÿ s
�
X1
k�0

Lk(r)
sk

k!
(F:1)

where 0 < r <1 and where jsj, 1 in order to ensure convergence of the in®nite
series. Since the right-hand term is a Taylor series expansion of g(r, s), the Laguerre
polynomials are given by

Lk(r) � @
k g(r, s)

@sk

����
s�0

� @ k

@sk

eÿrs=(1ÿs)

1ÿ s

� �����
s�0

(F:2)

To evaluate Lk(r) from equation (F.2), we ®rst factor out er in the generating
function and expand the remaining exponential function in a Taylor series

g(r, s) � er

1ÿ s
eÿr=(1ÿs) � er

1ÿ s

X1
á�0

(ÿ1)á

á!

r
1ÿ s

� �á

� er
X1
á�0

(ÿ1)árá

á!
(1ÿ s)ÿ(á�1)

We then take k successive derivatives of g(r, s) with respect to s

@ g(r, s)

@s
� er

X1
á�0

(ÿ1)árá

á!
(á� 1)(1ÿ s)ÿ(á�2)

@2 g(r, s)

@s2
� er

X1
á�0

(ÿ1)árá

á!
(á� 1)(á� 2)(1ÿ s)ÿ(á�3)

..

.

@ k g(r, s)

@sk
� er

X1
á�0

(ÿ1)árá

á!

(á� k)!

á!
(1ÿ s)ÿ(á�k�1)

When the kth derivative is evaluated at s � 0, we have

Lk(r) � er
X1
á�0

(ÿ1)á(á� k)!

(á!)2
rá (F:3)
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Using equation (A.1) we note that

dk

drk
(rkeÿr) � dk

drk

X1
á�0

(ÿ1)á

á!
rá�k �

X1
á�0

(ÿ1)á(á� k)!

(á!)2
rá (F:4)

Combining equations (F.3) and (F.4), we obtain the formula for the Laguerre
polynomials

Lk(r) � er
dk

drk
(rkeÿr) (F:5)

Another relationship for the polynomials Lk(r) can be obtained by expanding the
generating function g(r, s) in equation (F.1) using (A.1)

g(r, s) � eÿrs=(1ÿs)

1ÿ s
�
X1
á�0

(ÿ1)árá

á!

sá

(1ÿ s)á�1

The factor (1ÿ s)ÿ(á�1) may be expanded in an in®nite series using equation (A.3) to
obtain

(1ÿ s)ÿ(á�1) �
X1
â�0

(á� â)!

á!â!
sâ

so that g(r, s) becomes

g(r, s) �
X1
á�0

X1
â�0

(ÿ1)á(á� â)!rá

(á!)2â!
sá�â

We next collect all the coef®cients of sk for an arbitrary k, so that á� â � k, and
replace the summation over á by a summation over k. When á � k, the index â equals
zero; when á � k ÿ 1, the index â equals one; and so on until we have á � 0 and
â � k. Thus, the result of the summation is

g(r, s) � k!
X1
k�0

Xk

â�0

(ÿ1)kÿârkÿâ

[(k ÿ â)!]2â!
sk

Since the Laguerre polynomial Lk(r) divided by k! is the coef®cient of sk in the
expansion (F.1) of the generating function, we have

Lk(r) � (k!)2
Xk

â�0

(ÿ1)kÿâ

[(k ÿ â)!]2â!
rkÿâ

If we let k ÿ â � ã and replace the summation over â by a summation over ã, we
obtain the desired result

Lk(r) � (k!)2
Xk

ã�0

(ÿ1)ã

(ã!)2(k ÿ ã)!
rã (F:6)

A third relationship for the polynomials Lk(r) can be obtained by expanding the
derivative in equation (F.5), using (A.4), to give

Lk(r) � er
Xk

á�0

k!

á!(k ÿ á)!

dárk

drá
dkÿáeÿr

drkÿá �
Xk

á�0

(ÿ1)kÿák!

á!(k ÿ á)!

dárk

drá

We now observe that the operator [(d=dr)ÿ 1]k may be expanded according to the
binomial theorem (A.2) as
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[(d=dr)ÿ 1]k � (ÿ1)k[1ÿ (d=dr)]k � (ÿ1)k
Xk

á�0

(ÿ1)ák!

á!(k ÿ á)!

dá

drá

so that

Lk(r) � [(d=dr)ÿ 1]krk (F:7)

where we have noted that (ÿ1)á � (ÿ1)ÿá.
From equation (F.2), (F.5), (F.6), or (F.7), we observe that the polynomial Lk(r) is of

degree k and we may readily obtain the ®rst few polynomials of the set

L0(r) � 1

L1(r) � 1ÿ r

L2(r) � 2ÿ 4r� r2

L3(r) � 6ÿ 18r� 9r2 ÿ r3

We also note that Lk(0) � k!.

Differential equation
Equation (F.5) can be used to ®nd the differential equation satis®ed by the polynomials
Lk(r). We note that the function f (r) de®ned as

f (r) � rkeÿr

satis®es the relation

r
d f

dr
� (rÿ k) f � 0

If we differentiate this expression k � 1 times, we obtain

r
d2 f (k)

dr2
� (1� r)

d f (k)

dr
� (k � 1) f (k) � 0

where f (k) is the kth derivative of f (r). Since from equation (F.5) we have

f (k) � eÿrLk(r)

the Laguerre polynomials Lk(r) satisfy the differential equation

r
d2 Lk

dr2
� (1ÿ r)

dLk

dr
� kLk(r) � 0 (F:8)

Associated Laguerre polynomials

The associated Laguerre polynomials L
j
k(r) are de®ned in terms of the Laguerre

polynomials by

L
j
k(r) � d j

dr j
Lk(r) (F:9)

Since Lk(r) is a polynomial of degree k, Lk
k(r) is a constant and L

j
k(r) � 0 for j . k.

The generating function g(r, s; j) for the associated Laguerre polynomials with ®xed
j is readily obtained by differentiation of equation (F.1)
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g(r, s; j) � d j

dr j

eÿrs=(1ÿs)

1ÿ s

� �
� (ÿ1) jsj

(1ÿ s) j�1
eÿrs=(1ÿs) �

X1
k� j

L
j
k(r)

sk

k!
(F:10)

The summation in the right-hand term begins with k � j, since j cannot exceed k.
We can write an explicit series for L

j
k(r) by substituting equation (F.6) into (F.9)

L
j
k(r) � (k!)2

Xk

ã�0

(ÿ1)ã

(ã!)2(k ÿ ã)!

d j

dr j
rã � (k!)2

Xk

ã� j

(ÿ1)ã

ã!(k ÿ ã)!(ãÿ j)!
rãÿ j

The summation over ã now begins with the term ã � j because the earlier terms
vanish in the differentiation. If we let ãÿ j � á and replace the summation over ã by
a summation over á, we have

L
j
k(r) � (k!)2

Xkÿ j

á�0

(ÿ1) j�árá

á!(k ÿ jÿ á)!( j� á)!
(F:11)

For the purpose of deriving some useful relationships involving the polynomials
L

j
k(r), we de®ne the polynomial Ë j

i (r) as

Ë j
i (r) � i!

(i� j)!
L

j
i� j(r) (F:12)

If we replace the dummy index of summation k in equation (F.10) by i, where
i � k ÿ j, then (F.10) takes the form

g(r, s; j) �
X1
i�0

L
j
i� j(r)

(i� j)!
si� j � s j

X1
i�0

Ë j
i (r)

i!
si

Thus, Ë j
i (r) are just the coef®cients in a Taylor series expansion of the function

sÿ j g(r, s; j) and are, therefore, given by

Ë j
i (r) � @ i

@si
sÿ j g(r, s; j)

����
s�0

Substituting for g(r, s; j) using equation (F.10), we obtain

Ë j
i (r) � (ÿ1) j @

i

@si

eÿrs=(1ÿs)

(1ÿ s) j�1

" #����
s�0

� (ÿ1) j @
i

@si

ereÿr=(1ÿs)

(1ÿ s) j�1

" #����
s�0

� (ÿ1) j @
i

@si
er
X1
á�0

(ÿr)á

á!(1ÿ s)á� j�1

" #����
s�0

� (ÿ1) jer
X1
á�0

(ÿr)á

á!

(á� j� i)!

(á� j)!
(1ÿ s)ÿ(á� j�i�1)

����
s�0

� (ÿ1) jer
X1
á�0

(á� j� i)!

á!(á� j)!
(ÿr)á (F:13)

We next note that
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di

dri
(ri� jeÿr) � di

dri

X1
á�0

(ÿ1)á

á!
rá� j�i �

X1
á�0

(ÿ1)á

á!

(á� j� i)!

(á� j)!
rá� j

� r j
X1
á�0

(á� j� i)!

á!(á� j)!
(ÿr)á (F:14)

Comparison of equations (F.13) and (F.14) yields the result that

Ë j
i (r) � (ÿ1) jrÿ jer

di

dri
(ri� jeÿr)

From equation (F.12) we obtain

L
j
i� j(r) � (ÿ1) j (i� j)!

i!
rÿ jer

di

dri
(ri� jeÿr)

Finally, replacing i by the original index k (� i� j), we have

L
j
k(r) � (ÿ1) j k!

(k ÿ j)!
rÿ jer

dkÿ j

drkÿ j
(rkeÿr) (F:15)

Equation (F.15) for the associated Laguerre polynomials is the analog of (F.5) for the
Laguerre polynomials and, in fact, when j � 0, equation (F.15) reduces to (F.5).

Differential equation
The differential equation satis®ed by the associated Laguerre polynomials may be
obtained by repeatedly differentiating equations (F.8) j times

r
d3 Lk

dr3
� (2ÿ r)

d2 Lk

dr2
� (k ÿ 1)

dLk

dr
� 0

r
d4 Lk

dr4
� (3ÿ r)

d3 Lk

dr3
� (k ÿ 2)

d2 Lk

dr2
� 0

..

.

r
d j�2 Lk

dr j�2
� ( j� 1ÿ r)

d j�1 Lk

dr j�1
� (k ÿ j)

d j Lk

dr j
� 0

When the polynomials L
j
k(r) are introduced with equation (F.9), the differential

equation is

r
d2 L

j
k

dr2
� ( j� 1ÿ r)

dL
j
k

dr
� (k ÿ j)L

j
k(r) � 0 (F:16)

Integral relations
In order to obtain the orthogonality and normalization relations of the associate
Laguerre polynomials, we make use of the generating function (F.10). We multiply
together g(r, s; j), g(r, t; j), and the factor r j�íeÿr and then integrate over r to give
an integral that we abbreviate with the symbol I

I �
�1

0

r j�íeÿr g(r, s; j)g(r, t; j) dr �
X1
á� j

X1
â� j

sá tâ

á!â!

�1
0

r j�íeÿrL j
á(r)L

j

â(r) dr

(F:17)
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To evaluate the left-hand integral, we substitute the analytical forms of the generating
functions from equation (F.10) to give

I � (st) j

(1ÿ s) j�1(1ÿ t) j�1

�1
0

r j�íeÿar dr (F:18)

where

a � 1� s

1ÿ s
� t

1ÿ t
� 1ÿ st

(1ÿ s)(1ÿ t)

The integral in equation (F.18) is just the gamma function (A.26), so that�1
0

r j�íeÿar dr � Ã( j� í� 1)

a j�í�1
� ( j� í)!

a j�í�1
, j� í. 0

where we have restricted í to integer values. Thus, I in equation (F.18) is

I � ( j� í)!(st) j(1ÿ s)í(1ÿ t)í

(1ÿ st) j�í�1

Applying the expansion formula (A.3), we have

(1ÿ st)ÿ( j�í�1) �
X1
i�0

( j� í� i)!

( j� í)!i!
(st)i

If we replace the dummy index i by á, where á � i� j, then this expression becomes

(1ÿ st)ÿ( j�í�1) �
X1
á� j

(á� í)!

( j� í)!(áÿ j)!
(st)áÿ j

and I takes the form

I � (1ÿ s)í(1ÿ t)í
X1
á� j

(á� í)!

(áÿ j)!
(st)á

Combining this result with equation (F.17), we haveX1
á� j

X1
â� j

sá tâ

á!â!

�1
0

r j�íeÿrL j
á(r)L

j

â(r) dr � (1ÿ s)í(1ÿ t)í
X1
á� j

(á� í)!

(áÿ j)!
(st)á (F:19)

We now equate coef®cients of like powers of s and t on each side of this equation.
Since the integer í appears as an exponent of both s and t on the right-hand side, the
effect of equating coef®cients depends on the value of í. Accordingly, we shall ®rst
have to select a value for í.

For í � 0, equation (F.19) becomesX1
á� j

X1
â� j

sá tâ

á!â!

�1
0

r jeÿrL j
á(r)L

j

â(r) dr �
X1
á� j

á!

(áÿ j)!
(st)á

Since the exponent of s on the right-hand side is always the same as the exponent of t,
the coef®cients of sá tâ for á 6� â on the left-hand side must vanish, i.e.�1

0

r jeÿrL j
á(r)L

j

â(r) dr � 0; á 6� â (F:20)

Thus, the associated Laguerre polynomials form an orthogonal set over the range
0 < r <1 with a weighting factor r jeÿr. For the case where s and t on the left-hand
side have the same exponent, we pick out the term â � á in the summation over â,
giving
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X1
á� j

(st)á

(á!)2

�1
0

r jeÿr[L j
á(r)]2 dr �

X1
á� j

á!

(áÿ j)!
(st)á

Equating coef®cients of (st)á on each side yields�1
0

r jeÿr[L j
á(r)]2 dr � (á!)3

(áÿ j)!
(F:21)

Equations (F.20) and (F.21) may be combined into a single expression�1
0

r jeÿrL j
á(r)L

j

â(r) dr � (á!)3

(áÿ j)!
äáâ (F:22)

For í � 1, equation (F.19) becomesX1
á� j

X1
â� j

sá tâ

á!â!

�1
0

r j�1eÿrL j
á(r)L

j

â(r) dr

�
X1
á� j

(á� 1)!

(áÿ j)!
[(st)á � (st)á�1 ÿ sá�1 tá ÿ sá tá�1]

Equating coef®cients of like powers of s and t on both sides of this equation, we see
that �1

0

r j�1eÿrL j
á(r)L

j

â(r) dr � 0; â 6� á, á� 1 (F:23)

and that �1
0

r j�1eÿrL j
á(r)L

j
á�1(r) dr � ÿá![(á� 1)!]2

(áÿ j)!
(F:24)�1

0

r j�1eÿr[L j
á(r)]2 dr � (á!)2 (á� 1)!

(áÿ j)!
� á!

(áÿ 1ÿ j)!

� �
� (2áÿ j� 1)(á!)3

(áÿ j)!
(F:25)

The term in which â � áÿ 1 is equivalent to the term in which â � á� 1 after the
dummy indices á and â are interchanged. Equations (F.23), (F.24), and (F.25) are
pertinent to the wave functions for the hydrogen atom.

Completeness
We de®ne the set of functions ÷kj(r) by the relation

÷kj(r) � (k ÿ j)!

(k!)3
r jeÿr

� �1=2

L
j
k(r) (F:26)

According to equation (F.22), the functions ÷kj(r) constitute an orthonormal set. We
now show1 that this set is complete.

Substitution of equation (F.15) into (F.26) gives

÷kj(r) � (ÿ1) j rÿ jer

k!(k ÿ j)!

� �1=2
dkÿ j

drkÿ j
(rkeÿr) (F:27)

If we apply equation (A.11), we may express the derivative in (F.27) as

1 D. Park, personal communication. This method parallels the procedure used to demonstrate the complete-
ness of the set of functions in equation (D.15).
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dkÿ j

drkÿ j
(rkeÿr) � k!

2ð

dkÿ j

drkÿ j

�1
ÿ1

eirs

(1� is)k�1
ds � ikÿ j k!

2ð

�1
ÿ1

eirs

(1� is)k�1
skÿ j ds

so that ÷kj(r) in integral form is

÷kj(r) � (ÿ1) jikÿ j

2ð

k!rÿ jer

(k ÿ j)!

� �1=2�1
ÿ1

eirs

(1� is)k�1
s kÿ j ds (F:28)

To demonstrate that the set ÷kj(r) is complete, we need to evaluate the sumX1
k� j

÷kj(r)÷kj(r9)

Expressing (F.28) in terms of the dummy variable of integration s for r and in terms of
t for r9, we obtain for the summationX1
k� j

÷kj(r)÷kj(r9)

� 1

4ð2
(rr9)ÿ j=2e(r�r9)=2

�1
ÿ1

�1
ÿ1

ei(rs�r9 t)
X1
k� j

(ÿ1)kÿ j k!

(k ÿ j)!

(st)kÿ j

[1� i(s� t)ÿ st]k�1

" #
ds dt

By letting á � k ÿ j, we may express the sum on the right-hand side asX1
á�0

(ÿ1)á(á� j)!

á!
[1� i(s� t)ÿ st]ÿ(á� j�1)(st)á � j![1� i(s� t)]ÿ( j�1)

where we have applied equation (A.3) to evaluate the sum over á. We now haveX1
k� j

÷kj(r)÷kj(r9) � j!

4ð2
(rr9)ÿ j=2e(r�r9)=2

�1
ÿ1

�1
ÿ1

ei(rs�r9 t)

[1� i(s� t)] j�1
ds dt (F:29)

To evaluate the double integral, we introduce the variables u and v

u � s� t

2
, v � sÿ t

2
or s � u� v, t � uÿ v

ds dt � 2 du dv

The double integral then factors into

2

�1
ÿ1

ei(r�r9)u

(1� 2iu) j�1
du

�1
ÿ1

ei(rÿr9)v dv � 2ð

j!

r� r9

2

� � j

eÿ(r�r9)=2[2ðä(rÿ r9)]

where the ®rst integral is evaluated by equation (A.11) and the second by (C.6).
Equation (F.29) becomesX1

k� j

÷kj(r)÷kj(r9) � r� r9

2(rr9)1=2

� � j

ä(rÿ r9)

By applying equation (C.5e), we obtain the completeness relationX1
k� j

÷kj(r)÷kj(r9) � ä(rÿ r9) (F:30)

demonstrating according to equation (3.31) that the set ÷kj(r) is complete.
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Appendix G

Series solutions of differential equations

General procedure

The application of the time-independent SchroÈdinger equation to a system of chemical
interest requires the solution of a linear second-order homogeneous differential equa-
tion of the general form

p(x)
d2u(x)

dx2
� q(x)

du(x)

dx
� r(x)u(x) � 0 (G:1)

where p(x), q(x), and r(x) are polynomials in x and where p(x) does not vanish in
some interval which contains the point x � 0. Equation (G.1) is linear because each
term contains u or a derivative of u to the ®rst power only. The order of the highest
derivative determines that equation (G.1) is second-order. In a homogeneous differ-
ential equation, every term contains u or one of its derivatives.

The Frobenius or series solution method for solving equation (G.1) assumes that the
solution may be expressed as a power series in x

u �
X1
k�0

akx k�s � a0xs � a1xs�1 � � � � (G:2)

where ak (k � 0, 1, 2, . . .) and s are constants to be determined. The constant s is
chosen such that a0 is not equal to zero. The ®rst and second derivatives of u are then
given by

du

dx
� u9 �

X1
k�0

ak(k � s)x k�sÿ1 � a0sxsÿ1 � a1(s� 1)xs � � � � (G:3)

d2u

dx2
� u 0 �

X1
k�0

ak(k � s)(k � sÿ 1)x k�sÿ2 � a0s(sÿ 1)xsÿ2 � a1(s� 1)sxsÿ1 � � � �

(G:4)

A second-order differential equation has two solutions of the form of equation (G.2),
each with a different set of values for the constant s and the coef®cients ak .

Not all differential equations of the general form (G.1) possess solutions which can
be expressed as a power series (equation (G.2)).1 However, the differential equations
encountered in quantum mechanics can be treated in this manner. Moreover, the power

1 For a thorough treatment see F. B. Hildebrand (1949) Advanced Calculus for Engineers (Prentice-Hall,
New York).
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series expansion of u is valid for many differential equations in which p(x), q(x), and/
or r(x) are functions other than polynomials,2 but such differential equations do not
occur in quantum-mechanical applications.

The Frobenius procedure consists of the following steps.

1. Equations (G.2), (G.3), and (G.4) are substituted into the differential equation (G.1)

to obtain a series of the formX1
k�0

ak[(k � s)(k � sÿ 1) p(x)x k�sÿ2 � (k � s)q(x)x k�sÿ1 � r(x)x k�s] � 0

2. The terms are arranged in order of ascending powers of x to obtainX1
k�á

ckx k�sÿ2 � 0 (G:5)

where the coef®cients ck are combinations of the constant s, the coef®cients ak , and

the coef®cients in the polynomials p(x), q(x), and r(x). The lower limit á of the

summation is selected such that the coef®cients ck for k ,á are identically zero,

but cá is not.

3. Since the right-hand side of equation (G.5) is zero, the left-hand side must also

equal zero for all values of x in an interval that includes x � 0. The only way to

meet this condition is to set each of the coef®cients ck equal to zero, i.e., ck � 0 for

k � á, á� 1, . . .

4. The coef®cient cá of the lowest power of x in equation (G.5) always has the form

cá � a0 f (s), where f (s) is quadratic in s because the differential equation is

second-order. The expression cá � a0 f (s) � 0 is called the indicial equation and

has two roots, s1 and s2, assuming that a0 6� 0.

5. For each of the two values of s, the remaining expressions ck � 0 for k � á� 1,

á� 2, . . . determine successively a1, a2, . . . in terms of a0. Each value of s yields

a different set of values for ak ; one set is denoted here as ak , the other as a9k .

6. The two mathematical solutions of the differential equation are u1 and u2

u1 � a0xs1 [1� (a1=a0)x� (a2=a0)x2 � � � �]
u2 � a90xs2 [1� (a91=a90)x� (a92=a90)x2 � � � �]

where a0 and a90 are arbitrary constants. Physical solutions are obtained by applying

boundary and normalization conditions to u1 and u2.

7. For some differential equations, the two roots s1 and s2 of the indicial equation

differ by an integer. Under this circumstance, there are two possible outcomes: (a)

steps 1 to 6 lead to two independent solutions, or (b) for the larger root s1, steps 1

to 6 give a solution u1, but for the root s2 the recursion relation gives in®nite values

for the coef®cients ak beyond some speci®c value of k and therefore these steps fail

to provide a second solution. For some other differential equations, the two roots of

2 See for example E. T. Whittaker and G. N. Watson (1927) A Course of Modern Analysis, 4th edition
(Cambridge University Press, Cambridge), pp. 194±8; see also the reference in footnote 1 of this
Appendix.
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the indicial equation are the same (s1 � s2) and therefore only one solution u1 is

obtained. In those cases where steps 1 to 6 give only one solution u1, a second

solution u2 may be obtained3 by a slightly more complex procedure. This second

solution has the form

u2 � cu1 ln x� c
X1
k�0

bkx k�s2

where c is an arbitrary constant and the coef®cients bk are related to the coef®cients

ak . However, a solution containing ln x is not well-behaved and the arbitrary

constant c is set equal to zero in quantum-mechanical applications.

8. The interval of convergence for each of the series solutions u1 and u2 may be

determined by applying the ratio test. For convergence, the condition

lim
k!1

���� ak�1

ak

����jxj, 1

must be satis®ed. Thus, a series converges for values of x in the range

ÿ 1

R
, x ,

1

R

where R is de®ned by

R � lim
k!1

���� ak�1

ak

����
For R equal to zero, the corresponding series converges for ÿ1, x ,1. If R

equals unity, the corresponding series converges for ÿ1 , x , 1.

Applications

In Chapters 4, 5, and 6 the SchroÈdinger equation is applied to three systems: the
harmonic oscillator, the orbital angular momentum, and the hydrogen atom, respec-
tively. The ladder operator technique is used in each case to solve the resulting
differential equation. We present here the solutions of these differential equations
using the Frobenius method.

Harmonic oscillator
The SchroÈdinger equation for the linear harmonic oscillator leads to the differential
equation (4.17)

ÿ d2ö(î)

dî2
� î2ö(î) � 2E

"ù
ö(î) (G:6)

If we de®ne ë by the relation

2ë� 1 � 2E

"ù
(G:7)

and introduce this expression into equation (G.6), we obtain

ö 0� (2ë� 1ÿ î2)ö � 0 (G:8)

3 See footnote 1 of this Appendix.
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We ®rst investigate the asymptotic behavior of ö(î). For large values of î, the
constant 2ë� 1 may be neglected in comparison with î2 and equation (G.8) becomes

ö 0 � î2ö
The approximate solutions of this differential equation are

ö � ce�î
2=2

because we have
ö 0 � (î2 � 1)ö � î2ö for large î

The function eî
2=2 is not a satisfactory solution because it becomes in®nite as

î! �1, but the function eÿî
2=2 is well-behaved. This asymptotic behavior of ö(î)

suggests that a satisfactory solution of equation (G.8) has the form

ö(î) � u(î)eÿî
2=2 (G:9)

where u(î) is a function to be determined.
Substitution of equation (G.9) into (G.8) gives

u 0ÿ 2îu9� 2ëu � 0 (G:10)

We solve this differential equation by the series solution method. Applying equations
(G.2), (G.3), and (G.4), we obtainX1

k�0

ak(k � s)(k � sÿ 1)î k�sÿ2 �
X1
k�0

ak[ÿ2(k � s)� 2ë]î k�s � 0 (G:11)

The coef®cient of î sÿ2 gives the indicial equation

a0s(sÿ 1) � 0 (G:12)

with two solutions, s � 0 and s � 1. The coef®cient of î sÿ1 gives

a1(s� 1)s � 0 (G:13)

For the case s � 0, the coef®cient a1 has an arbitrary value; for s � 1, we have a1 � 0.
If we omit the ®rst two terms (they vanish according to equations (G.12) and

(G.13)) in the ®rst summation on the left-hand side of (G.11) and replace the dummy
index k by k � 2 in that summation, we obtainX1

k�0

fak�2(k � s� 2)(k � s� 1)� ak[ÿ2(k � s)� 2ë]gî k�s � 0 (G:14)

Setting the coef®cient of each power of î equal to zero gives the recursion formula

ak�2 � 2(k � sÿ ë)

(k � s� 2)(k � s� 1)
ak (G:15)

For the case s � 0, the constants a0 and a1 are arbitrary and we have the following
two sets of expansion constants
a0 a1

a2 � ÿëa0 a3 � 2(1ÿ ë)

3!
a1

a4 � 2(2ÿ ë)

4 . 3
a2 � ÿ22ë(2ÿ ë)

4!
a0 a5 � 2(3ÿ ë)

5 . 4
a3 � 22(1ÿ ë)(3ÿ ë)

5!
a1

a6 � 2(4ÿ ë)

6 . 5
a4 � ÿ23ë(2ÿ ë)(4ÿ ë)

6!
a0 a7 � 2(5ÿ ë)

7 . 6
a5 � 23(1ÿ ë)(3ÿ ë)(5ÿ ë)

7!
a1

..

. ..
.

Thus, the two solutions of the second-order differential equation (G.10) are
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u1 � a0 1ÿ ëî2 ÿ 22ë(2ÿ ë)

4!
î4 ÿ 23ë(2ÿ ë)(4ÿ ë)

6!
î6ÿ � � �

� �
(G:16a)

u2 � a1 î� 2(1ÿ ë)

3!
î3 � 22(1ÿ ë)(3ÿ ë)

5!
î5 � 23(1ÿ ë)(3ÿ ë)(5ÿ ë)

7!
î7 � � � �

� �
(G:16b)

The solution u1 is an even function of the variable î and u2 is an odd function of î.
Accordingly, u1 and u2 are independent solutions. For the case s � 1, we again obtain
the solution u2.

The ratio of consecutive terms in either series solution u1 or u2 is given by the
recursion formula with s � 0 as

ak�2î k�2

akî k
� 2(k ÿ ë)

(k � 2)(k � 1)
î2

In the limit as k !1, this ratio approaches zero

lim
k!1

ak�2î k�2

akî k
! lim

k!1
2

k
î2 ! 0

so that the series u1 and u2 converge for all ®nite values of î. To see what happens to
u1 and u2 as î! �1, we consider the Taylor series expansion of eî

2

eî
2 �

X1
n�0

î2n

n!
� 1� î2 � î4

2!
� î6

3!
� � � �

The coef®cient an is given by an � 1=(n=2)! for n even and an � 0 for n odd, so that

an�2î n�2

anî n
�

n

2

� �
!

n� 2

2

� �
!

î2 � 1

n

2
� 1

� � î2 � 2î2

n
as n!1

Thus, u1 and u2 behave like eî
2

as î! �1. For large jîj, the function ö(î) behaves
like

ö(î) � u(î)eÿî
2=2 � eî

2

eÿî
2=2 � eî

2=2 !1 as î! �1
which is not satisfactory behavior for a wave function.

In order to obtain well-behaved solutions for the differential equation (G.8), we need
to terminate the in®nite power series u1 and u2 in (G.16) to a ®nite polynomial. If we
let ë equal an integer n (n � 0, 1, 2, 3, . . .), then we obtain well-behaved solutions
ö(î)

n � 0, ö0 � a0eÿî
2=2, a1 � 0

n � 1, ö1 � a1îeÿî
2=2, a0 � 0

n � 2, ö2 � a0(1ÿ 2î2)eÿî
2=2, a1 � 0

n � 3, ö3 � a1î(1ÿ 2
3
î2)eÿî

2=2, a0 � 0

n � 4, ö4 � a0(1ÿ 4î2 � 4
3
î4)eÿî

2=2, a1 � 0

n � 5, ö5 � a1î(1ÿ 4
3
î2 � 4

15
î4)eÿî

2=2, a0 � 0

..

. ..
.
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Since the parameter ë is equal to a positive integer n, the energy E of the harmonic
oscillator in equation (G.7) is

En � (n� 1
2
)"ù, n � 0, 1, 2, . . .

in agreement with equation (4.30). Setting ë in equation (G.10) equal to the integer n
gives

u 0ÿ 2îu9� 2nu � 0 (G:17)

A comparison of equation (G.17) with (D.10) shows that the solutions u(î) are the
Hermite polynomials, whose properties are discussed in Appendix D. Thus, the
functions ön(î) for the harmonic oscillator are

ön(î) � anHn(î)eÿî
2=2

where an are the constants which normalize ön(î). Application of equation (D.14)
yields the ®nal result

ön(î) � (2n n!)ÿ1=2ðÿ1=4 Hn(î)eÿî
2=2

which agrees with equation (4.40).

Orbital angular momentum
We wish to solve the differential equation

L̂2ø(è, j) � ë"2ø(è, j) (G:18)

where L̂2 is given by equation (5.32) as

L̂2 � ÿ"2 1

sinè

@

@è
sin è

@

@è

� �
� 1

sin2è

@2

@j2

" #
(G:19)

We write the function ø(è, j) as the product of two functions, one depending only on
the angle è, the other only on j

ø(è, j) � È(è)Ö(j) (G:20)

When equations (G.19) and (G.20) are substituted into (G.18), we obtain after a little
rearrangement

sinè

È

d

dè
sin è

dÈ

dè

� �
� ë sin2è � ÿ 1

Ö

d2Ö

dj2
(G:21)

The left-hand side of equation (G.21) depends only on the variable è, while the right-
hand side depends only on j. Following the same argument used in the solution of
equation (2.28), each side of equation (G.21) must be equal to a constant, which we
write as m2. Thus, equation (G.21) separates into two differential equations

sin è

È

d

dè
sin è

dÈ

dè

� �
� ë sin2è � m2 (G:22)

and

d2Ö

dj2
� ÿm2Ö (G:23)

The solution of equation (G.23) is

Ö � Aeimj (G:24)

where A is an arbitrary constant. In order for Ö to be single-valued, we require that

Ö(j) � Ö(j� 2ð)

or

Series solutions of differential equations 323



e2ðim � 1

so that m is an integer, m � 0, �1, �2, . . .
To solve the differential equation (G.22), we introduce a change of variable

ì � cos è (G:25)

The function È(è) then becomes a new function F(ì) of the variable ì, È(è) � F(ì),
so that

dÈ

dè
� dF

dì

dì

dè
� ÿsin è

dF

dì
� ÿ(1ÿ ì2)1=2 dF

dì
(G:26)

Substitution of equations (G.25) and (G.26) into (G.22) gives

d

dì
(1ÿ ì2)

dF

dì

� �
� ëÿ m2

1ÿ ì2

 !
F � 0

or

(1ÿ ì2)F 0ÿ 2ìF9� ëÿ m2

1ÿ ì2

 !
F � 0 (G:27)

A power series solution of equation (G.27) yields a recursion formula relating ak�4,
ak�2, and ak, which is too complicated to be practical. Accordingly, we make the
further de®nition

F(ì) � (1ÿ ì2)jmj=2G(ì) (G:28)

from which it follows that

F9 � (1ÿ ì2)jmj=2[G9ÿ jmjì(1ÿ ì2)ÿ1G] (G:29)

F 0 � (1ÿ ì2)jmj=2[G 0ÿ 2jmjì(1ÿ ì2)ÿ1G9ÿ jmj(1ÿ ì2)ÿ1G

� jmj(jmj ÿ 2)ì2(1ÿ ì2)ÿ2G] (G:30)

Substitution of (G.28), (G.29), and (G.30) into (G.27) with division by (1ÿ ì2)jmj=2

gives

(1ÿ ì2)G 0ÿ 2(jmj � 1)ìG9� [ëÿ jmj(jmj � 1)]G � 0 (G:31)

To solve this differential equation, we substitute equations (G.2), (G.3), and (G.4)
for G, G9, and G0 to obtainX1
k�0

ak(k � s)(k � sÿ 1)ìk�sÿ2 �
X1
k�0

ak[ëÿ (k � s� jmj)(k � s� jmj � 1)]î k�s

� 0 (G:32)

Equating the coef®cient of ìsÿ2 to zero, we obtain the indicial equation

a0s(sÿ 1) � 0 (G:33)

with solutions s � 0 and s � 1. Equating the coef®cient of ìsÿ1 to zero gives

a1s(s� 1) � 0 (G:34)

For the case s � 0, the coef®cient a1 has an arbitrary value, while for s � 1, the
coef®cient a1 must vanish.

If we replace the dummy index k by k � 2 in the ®rst summation on the left-hand
side of equation (G.32), that equation becomes
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X1
k�0

fak�2(k � s� 2)(k � s� 1)� ak[ëÿ (k � s� jmj)(k � s� jmj � 1)]gìk�s � 0

(G:35)

The recursion formula is obtained by setting the coef®cient of each power of ì equal
to zero

ak�2 � (k � s� jmj)(k � s� jmj � 1)ÿ ë

(k � s� 2)(k � s� 1)
ak (G:36)

Thus, we obtain a result analogous to the harmonic oscillator solution. The two
independent solutions are in®nite series, one in odd powers of ì and the other in even
powers of ì. The case s � 0 gives both solutions, while the case s � 1 merely
reproduces the odd series. These solutions are

G1 � a0 1� jmj(jmj � 1)ÿ ë

2!
ì2 � [(jmj � 2)(jmj � 3)ÿ ë][jmj(jmj � 1)ÿ ë]

4!
ì4

�
� � � �g (G:37a)

G2 � a1 ì� (jmj � 1)(jmj � 2)ÿ ë

3!
ì3

�
� [(jmj � 3)(jmj � 4)ÿ ë][(jmj � 1)(jmj � 2)ÿ ë]

5!
ì5� � � �

�
(G:37b)

The ratio of consecutive terms in G1 and in G2 is given by equation (G.36) as

ak�2ìk�2

akìk
� (k � jmj)(k � jmj � 1)ÿ ë

(k � 1)(k � 2)
ì2

In the limit as k !1, this ratio becomes

lim
k!1

ak�2ìk�2

akìk
! k2 ÿ ë

k2
ì2 ! ì2

As long as jìj, 1, this ratio is less than unity and the series G1 and G2 converge.
However, for ì � 1 and ì � ÿ1, this ratio equals unity and neither of the in®nite
power series converges. For the solutions to equation (G.31) to be well-behaved, we
must terminate the series G1 and G2 to polynomials by setting

ë � (k � jmj)(k � jmj � 1) � l(l � 1) (G:38)

where l is an integer de®ned as l � jmj � k, so that l � jmj, jmj � 1, jmj � 2, . . . We
observe that jmj < l, so that m takes on the values ÿl, ÿl � 1, . . . , ÿ1, 0, 1, . . . ,
l ÿ 1, l.

Substitution of equation (G.38) into the differential equation (G.27) gives

(1ÿ ì2)F 0ÿ 2ìF9� l(l � 1)ÿ m2

1ÿ ì2

 !
F � 0 (G:39)

which is identical to the associated Legendre differential equation (E.17). Thus, the
well-behaved solutions to (G.27) are proportional to the associated Legendre poly-
nomials P

jmj
l (ì) introduced in Appendix E

F(ì) � cP
jmj
l (ì)

Since we have È(è) � F(ì), where ì � cos è, the functions È(è) are

È lm(è) � cP
jmj
l (cos è)

and the eigenfunctions ø(è, j) of L̂2 are
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ø lm(è, j) � clm P
jmj
l (cos è) eimj (G:40)

where clm are the normalization constants. A comparison of equation (G.40) with
(5.59) shows that the functions ø lm(è, j) are the spherical harmonics Ylm(è, j).

Radial equation for the hydrogen-like atom
The radial differential equation for the hydrogen-like atom is given by equation (6.24)
as

d2S

dr2
� 2

r
dS

dr
� ÿ 1

4
� ë

r
ÿ l(l � 1)

r2

� �
S � 0 (G:41)

where l is a positive integer. If a power series solution is applied directly to equation
(G.41), the resulting recursion relation involves ak�2, ak�1, and ak . Since such a three-
term recursion relation is dif®cult to handle, we ®rst examine the asymptotic behavior
of S(r). For large values of r, the terms in rÿ1 and rÿ2 become negligible and
equation (G.41) reduces to

d2S

dr2
� S

4

or

S � ce�r=2

where c is the integration constant. Since r, as de®ned in equation (6.22), is always
real and positive for E < 0, the function er=2 is not well-behaved, but eÿr=2 is.
Therefore, we let S(r) take the form

S(r) � F(r)eÿr=2 (G:42)

Substitution of equation (G.42) into (G.41) yields

r2 F 0� r(2ÿ r)F9� [(ëÿ 1)rÿ l(l � 1)]F � 0 (G:43)

where we have multiplied through by r2er=2. To solve this differential equation by the
series solution method, we substitute equations (G.2), (G.3), and (G.4) for F, F9, and
F 0 to obtainX1

k�0

ak[(k � s)(k � s� 1)ÿ l(l � 1)]rk�s �
X1
k�0

ak(ëÿ 1ÿ k ÿ s)rk�s�1 � 0

(G:44)

The indicial equation is given by the coef®cient of rs as

a0[s(s� 1)ÿ l(l � 1)] � 0 (G:45)

with solutions s � l and s � ÿ(l � 1). For the case s � ÿ(l � 1), we have

F(r) � a0rÿ( l�1) � a1rÿ l � a2rÿ l�1 � � � � (G:46)

which diverges at the origin.4 Thus, the case s � l is the only acceptable solution.
Omitting the vanishing ®rst term in the ®rst summation on the left-hand side of

(G.44) and replacing k by k � 1 in that summation, we have

4 The reason for rejecting the solution s � ÿ(l � 1) is actually more complicated for states with l � 0.
I. N. Levine (1991) Quantum Chemistry, 4th edition (Prentice-Hall, Englewood Cliffs, NJ), p. 124,
summarizes the arguments with references to more detailed discussions. The complications here strengthen
the reasons for preferring the ladder operator technique used in the main text.
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X1
k�0

fak�1[(k � 1)(k � 2l � 2)]� ak(ëÿ l ÿ 1ÿ k)grk�s�1 � 0 (G:47)

Since the coef®cient of each power of r must vanish, we have for the recursion
formula

ak�1 � k � l � 1ÿ ë

(k � 1)(k � 2l � 2)
ak (G:48)

Thus, we obtain the following set of expansion constants

a0

a1 � l � 1ÿ ë

2l � 2
a0

a2 � l � 2ÿ ë

2(2l � 3)
a1 � (l � 2ÿ ë)(l � 1ÿ ë)

2(2l � 3)(2l � 2)
a0

a3 � l � 3ÿ ë

3(2l � 4)
a2 � (l � 3ÿ ë)(l � 2ÿ ë)(l � 1ÿ ë)

3!(2l � 4)(2l � 3)(2l � 2)
a0

..

.

so that the solution of (G.43) is

F � a0r l 1�
X1
k�1

(l � k ÿ ë)(l � k ÿ 1ÿ ë) � � � (l � 1ÿ ë)

k!(2l � k � 1)(2l � k) � � � (2l � 2)
rk

 !
(G:49)

We have already discarded the second solution, equation (G.46).
The ratio of consecutive terms in the power series expansion F is given by equation

(G.48) as

ak�1rk� l�1

akrk� l
� k � l � 1ÿ ë

(k � 1)(k � 2l � 2)
r

In the limit as k !1, this ratio becomes r=k, which approaches zero for ®nite r.
Thus, the series converges for all ®nite values of r. To test the behavior of the power
series as r!1, we consider the Taylor series expansion of er

er �
X1
k�0

rk

k!

and note that the ratio of consecutive terms is also r=k. Since the behavior of F as
r!1 is determined by the expansion terms with large values of k (k !1), we see
that F behaves like er as r!1. This behavior is not acceptable because S(r) in
equation (G.42) would take the form

S(r)! r lereÿr=2 � r ler=2 !1 as r!1
and could not be normalized.

The only way to avoid this convergence problem is to terminate the in®nite series
(equation (G.49)) after a ®nite number of terms. If we let ë take on the successive
values l � 1, l � 2, . . . , then we obtain a series of acceptable solutions of the
differential equation (G.43)
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l � 1, F0 � a0r l

l � 2, F1 � a0r l (1ÿ 1

2l � 2
r

� �
l � 3, F2 � a0r l 1ÿ 1

l � 1
r� 1

(2l � 3)(2l � 2)
r2

� �
..
. ..

.

Since l is an integer with values 0, 1, 2, . . . , the parameter ë takes on integer values n,
n � 1, 2, 3, . . . , so that n � l � 1, l � 2, . . . When the quantum number n equals 1,
the value of l is 1; when n � 2, we have l � 0, 1; when n � 3, we have l � 0, 1, 2;
etc.

The energy E of the hydrogen-like atom is related to ë by equation (6.21). If we
solve this equation for E and set ë equal to n, we obtain

En � ÿ ìZ2e94

2"2 n2
, n � 1, 2, 3, . . .

in agreement with equation (6.48).
To identify the polynomial solutions for F(r), we make the substitution

F(r) � r lu(r) (G:50)

in the differential equation (G.43) and set ë equal to n to obtain

ru 0� [2(l � 1)ÿ r]u9� (nÿ l ÿ 1)u � 0 (G:51)

Since n and l are integers, equation (G.51) is identical to the associated Laguerre
differential equation (F.16) with k � n� l and j � 2l � 1. Thus, the solutions u(r)
are proportional to the associated Laguerre polynomials L2 l�1

n� l (r), whose properties are
discussed in Appendix F

u(r) � cL2 l�1
n� l (r) (G:52)

Combining equations (G.42), (G.50), and (G.52), we obtain

Snl(r) � cnlr leÿr=2 L2 l�1
n� l (r) (G:53)

where cnl are the normalizing constants. Equation (G.53) agrees with equation (6.53).
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Appendix H

Recurrence relation for hydrogen-atom expectation

values

The expectation values hrkinl of various powers of the radial variable r for a hydrogen-
like atom with quantum numbers n and l are given by equation (6.69)

hrkinl �
�1

0

rk[Rnl(r)]2 r2 dr (H:1)

where Rnl(r) are the solutions of the radial differential equation (6.17). In this
appendix, we show that these expectation values are related by the recurrence relation

k � 1

n2
hrkinl ÿ (2k � 1)

a0

Z
hr kÿ1inl � k l(l � 1)� 1ÿ k2

4

� �
a2

0

Z2
hr kÿ2inl � 0 (H:2)

To simplify the notation, we de®ne the real function u(r) by u � rRnl(r) and denote
the ®rst and second derivatives of u(r) by u9 and u 0. Equation (H.1) then takes the
form

hrkinl �
�1

0

rku2 dr (H:3)

Since we have

dR(r)

dr
� u9

r
ÿ u

r2
,

d

dr
r2 dR(r)

dr

� �
� ru 0

equation (6.17) becomes

u 0 � l(l � 1)

r2
ÿ 2Z

a0 r
� Z2

n2a2
0

" #
u (H:4)

where equation (6.57) for the energy En has also been introduced.
Before beginning the direct derivation of equation (H.2), we ®rst derive a useful

relationship. Consider the integral �1
0

ríuu9 dr

and integrate by parts �1
0

ríuu9 dr � ríu2

����1
0

ÿ
�1

0

u
d

dr
(ríu) dr

The integrated part vanishes because R(r)! 0 exponentially as r!1 and u(r)! 0
as r ! 0. Expanding the derivative within the integral on the right-hand side, we have
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�1
0

ríuu9 dr � ÿí
�1

0

ríÿ1u2 dr ÿ
�1

0

ríuu9 dr

Combining the integral on the left-hand side with the last one on the right-hand side,
we obtain the desired result �1

0

ríuu9 dr � ÿ í

2
hríÿ1inl (H:5)

To obtain the recurrence relation (H.2), we multiply equation (H.4) by r k�1u9 and
integrate over r�1

0

r k�1u9u 0 dr � l(l � 1)

�1
0

r kÿ1uu9 dr ÿ 2Z

a0

�1
0

rkuu9 dr � Z2

n2a2
0

�1
0

r k�1uu9 dr

� ÿ l(l � 1)(k ÿ 1)

2
hr kÿ2inl � kZ

a0

hr kÿ1inl ÿ (k � 1)Z2

2n2a2
0

hrkinl (H:6)

where equation (H.5) was applied to the right-hand side. The integral on the left-hand
side of (H.6) may be integrated by parts twice to give�1

0

r k�1u9u 0 dr � ÿ
�1

0

u9
d

dr
(r k�1u9) dr

� ÿ(k � 1)

�1
0

rku9u9 dr ÿ
�1

0

r k�1u9u 0 dr

� (k � 1)

�1
0

u
d

dr
(rku9) dr ÿ

�1
0

r k�1u9u 0 dr

� k(k � 1)

�1
0

r kÿ1uu9 dr � (k � 1)

�1
0

rkuu 0 dr ÿ
�1

0

r k�1u9u 0 dr

The integral on the left-hand side and the last integral on the right-hand side may be
combined to give�1

0

r k�1u9u 0 dr � ÿ (k ÿ 1)k(k � 1)

4
hr kÿ2inl � (k � 1)

2

�1
0

rkuu 0 dr (H:7)

where equation (H.5) has been used for the ®rst integral on the right-hand side.
Substitution of equation (H.4) for u0 in the last integral on the right-hand side of (H.7)
yields�1

0

r k�1u9u 0 dr �ÿ (k ÿ 1)k(k � 1)

4
hr kÿ2inl � (k � 1)l(l � 1)

2
hr kÿ2inl

ÿ (k � 1)Z

a0

hr kÿ1inl � (k � 1)Z2

2n2a2
0

hrkinl (H:8)

Combining equations (H.6) and (H.8), we obtain the recurrence relation (H.2).
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Appendix I

Matrices

An m 3 n matrix A is an ordered set of mn elements aij (i � 1, 2, . . . , m; j � 1, 2,
. . . , n) arranged in a rectangular array of m rows and n columns,

A �
a11 a12 � � � a1n

a21 a22 � � � a2n

� � � � � � � � � � � �
am1 am2 � � � amn

0BB@
1CCA (I:1)

If m equals n, the array is a square matrix of order n. If we have m � 1, then the
matrix has only one row and is known as a row matrix. On the other hand, if we have
n � 1, then the matrix consists of one column and is called a column matrix.

Matrix algebra
Two m 3 n matrices A and B are equal if and only if their corresponding elements are
equal, i.e., aij � bij for all values of i and j. Some of the rules of matrix algebra are
de®ned by the following relations

A� B � B� A � C; cij � aij � bij

Aÿ B � C; cij � aij ÿ bij (I:2)

kA � C; cij � kaij

where k is a constant. Clearly, the matrices A, B, and C in equations (I.2) must have
the same dimensions m 3 n.

Multiplication of an m 3 n matrix A and an n 3 p matrix B is de®ned by

AB � C; cik �
Xn

j�1

aijbjk (I:3)

The matrix C has dimensions m 3 p. Two matrices may be multiplied only if they are
conformable, i.e., only if the number of columns of the ®rst equals the number of rows
of the second. As an example, suppose A and B are

A �
a11 a12 a13

a21 a22 a23

a31 a32 a33

0@ 1A; B �
b11 b12

b21 b22

b31 b32

0@ 1A
Then the product AB is
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AB �
a11b11 � a12b21 � a13b31 a11b12 � a12b22 � a13b32

a21b11 � a22b21 � a23b31 a21b12 � a22b22 � a23b32

a31b11 � a32b21 � a33b31 a31b12 � a32b22 � a33b32

0@ 1A
Continued products, such as ABC, may be de®ned and evaluated if the matrices are
conformable. In such cases, multiplication is associative, for example

ABC � A(BC) � (AB)C � D; dil �
X

j

X
k

aijbjkckl (I:4)

For the null matrix 0, all the matrix elements are zero

0 �
0 0 � � � 0

0 0 � � � 0

� � � � � � � � � � � �
0 0 � � � 0

0BB@
1CCA (I:5)

and we have

0� A � A� 0 � A (I:6)

The product of an arbitrary m 3 n matrix A with a conformable n 3 p null matrix is
the m 3 p null matrix

A0 � 0 (I:7)

In matrix algebra it is possible for the product of two conformable matrices, neither of
which is a null matrix, to be a null matrix. For example, if A and B are

A �
1 1 0

ÿ2 ÿ2 2

3 3 1

0@ 1A; B �
1 ÿ1

ÿ1 1

0 0

0@ 1A
then the product AB is the 3 3 2 null matrix.

The transpose matrix AT of a matrix A is obtained by interchanging the rows and
columns of A. If the matrix A is given by equation (I.1), then its transpose is

AT �
a11 a21 � � � am1

a12 a22 � � � am2

� � � � � � � � � � � �
a1n a2n � � � amn

0BB@
1CCA (I:8)

Thus, the elements aT
ij of AT are given by aT

ij � aji.
Let the matrix C be the product of matrices A and B as in equation (I.3). The

elements cT
ik of the transpose of C are then given by

cT
ik �

Xn

j�1

akjbji �
Xn

j�1

aT
jk bT

ij �
Xn

j�1

bT
ija

T
jk (I:9)

where we have noted that aT
áâ � aâá and bT

áâ � bâá. Thus, we see that

CT � BTAT

or

(AB)T � BTAT (I:10)

This result may be generalized to give

(AB � � � Q)T � QT � � � BTAT (I:11)

as long as the matrices are conformable.
If each element aij in a matrix A is replaced by its complex conjugate a�ij , then the

resulting matrix A� is called the conjugate of A. The transposed conjugate of A is
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called the adjoint1 of A and is denoted by Ay. The elements a
y
ij of Ay are obviously

given by a
y
ij � a�ji.

Square matrices
Square matrices are of particular interest because they apply to many physical
situations.

A square matrix of order n is symmetric if aij � aji, (i, j � 1, 2, . . . , n), so that
A � AT, and is antisymmetric if aij � ÿaji, (i, j � 1, 2, . . . , n), so that A � ÿAT.
The diagonal elements of an antisymmetric matrix must all be zero. Any arbitrary
square matrix A may be written as the sum of a symmetric matrix A(s) and an
antisymmetric matrix A(a)

A � A(s) � A(a) (I:12)

where

a
(s)
ij � 1

2
(aij � aji); a

(a)
ij � 1

2
(aij ÿ aji) (I:13)

A square matrix A is diagonal if aij � 0 for i 6� j. Thus, a diagonal matrix has the
form

A �
a1 0 � � � 0

0 a2 � � � 0

� � � � � � � � � � � �
0 0 � � � an

0BB@
1CCA (I:14)

A diagonal matrix is scalar if all the diagonal elements are equal, a1 � a2 � � � � �
an � a, so that

A �
a 0 � � � 0

0 a � � � 0

� � � � � � � � � � � �
0 0 � � � a

0BB@
1CCA (I:15)

A special case of a scalar matrix is the unit matrix I, for which a equals unity

I �
1 0 � � � 0

0 1 � � � 0

� � � � � � � � � � � �
0 0 � � � 1

0BB@
1CCA (I:16)

The elements of the unit matrix are äij, the Kronecker delta function.
For square matrices in general, the product AB is not equal to the product BA. For

example, if

A � 0 1

1 0

� �
; B � 2 0

0 3

� �
then we have

AB � 0 3

2 0

� �
; BA � 0 2

3 0

� �
6� AB

If the product AB equals the product BA, then A and B commute. Any square matrix
A commutes with the unit matrix of the same order

1 Mathematics texts use the term transpose conjugate for this matrix and apply the term adjoint to the
adjugate matrix de®ned in equation (I.28).
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AI � IA (I:17)

Moreover, two diagonal matrices of the same order commute

AB �
a1 0 � � � 0

0 a2 � � � 0

� � � � � � � � � � � �
0 0 � � � an

0BB@
1CCA

b1 0 � � � 0

0 b2 � � � 0

� � � � � � � � � � � �
0 0 � � � bn

0BB@
1CCA �

a1b1 0 � � � 0

0 a2b2 � � � 0

� � � � � � � � � � � �
0 0 � � � anbn

0BB@
1CCA

� BA (I:18)

Determinants
For a square matrix A, there exists a number called the determinant of the matrix. This
determinant is denoted by

jAj �
a11 a12 � � � a1n

a21 a22 � � � a2n

� � � � � � � � � � � �
an1 an2 � � � ann

��������
�������� (I:19)

and is de®ned as the summation

jAj �
X

P

äPa1ia2 j � � � anq (I:20)

where äP � �1. The summation is taken over all possible permutations i, j, . . . , q of
the sequence 1, 2, . . . , n. The value of äP is �1 (ÿ1) if the order i, j, . . . , q is
obtained by an even (odd) number of pair interchanges from the order 1, 2, . . . , n.
There are n! terms in the summation, half with äP � 1 and half with äP � ÿ1. Thus,
for a second-order determinant, we have

jAj � a11 a12

a21 a22

���� ���� � a11a22 ÿ a12a21 (I:21)

and for a third-order determinant, we have

jAj �
a11 a12 a13

a21 a22 a23

a31 a32 a33

��������
��������

� a11a22a33 � a12a23a31 � a13a21a32 ÿ (a11a23a32 � a12a21a33 � a13a22a31) (I:22)

If the determinant jAj of the matrix A vanishes, then the matrix A is said to be
singular. Otherwise, the matrix A is non-singular.

The determinant jAj has the following properties, which are easily derived from the
de®nition (I.20).

1. The interchange of any two rows or any two columns changes the sign of the
determinant.

2. Multiplication of all the elements in any row or in any column by a constant k gives
a new determinant of value kjAj. (Note that if B � kA, then jBj � knjAj.)

3. The value of the determinant is zero if any two rows or any two columns are
identical, or if each element in any row or in any column is zero. As a special case
of properties 2 and 3, a determinant vanishes if any two rows or any two columns
are proportional.
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4. The value of a determinant is unchanged if the rows are written as columns. Thus,
the determinants of a matrix A and its transpose matrix AT are equal.

5. The value of a determinant is unchanged if, to each element of one row (column) is
added a constant k times the corresponding element of another row (column). Thus,
we have, for example

a11 a12 a13

a21 a22 a23

a31 a32 a33

������
������ �

a11 � ka12 a12 a13

a21 � ka22 a22 a23

a31 � ka32 a32 a33

������
������ �

a11 � ka31 a12 � ka32 a13 � ka33

a21 a22 a23

a31 a32 a33

������
������

Each element aij of the determinant jAj in equation (I.19) has a cofactor Cij, which
is an (nÿ 1)-order determinant. This cofactor Cij is constructed by deleting the ith
row and the jth column of jAj and then multiplying by (ÿ1)i� j. For example, the
cofactor of the element a12 in equation (I.22) is

C12 � ÿ a21 a23

a31 a33

���� ���� � a23a31 ÿ a21a33

The summation on the right-hand side of equation (I.20) may be expressed in terms
of the cofactors of the ®rst row of jAj, so that (I.20) becomes

jAj � a11C11 � a12C12 � � � � � a1nC1n �
Xn

k�1

a1k C1k (I:23)

Alternatively, the expression of jAj in equation (I.20) may be expanded in terms of any
row i

jAj �
Xn

k�1

aikCik , i � 1, 2, . . . , n (I:24)

or in terms of any column j

jAj �
Xn

k�1

akjCkj, j � 1, 2, . . . , n (I:25)

Equations (I.20), (I.24), and (I.25) are identical; they are just expressed in different
notations.

Now suppose that row 1 and row i of the determinant jAj are identical. Equation
(I.23) then becomes

jAj � ai1C11 � ai2C12 � � � � � ainC1n �
Xn

k�1

aikC1k � 0

where the determinant jAj vanishes according to property 3. This argument applies to
any identical pair of rows or any identical pair of columns, so that equations (I.24) and
(I.25) may be generalizedXn

k�1

aikCjk �
Xn

k�1

akiCkj � jAjäij, i, j � 1, 2, . . . , n (I:26)

It can be shown2 that the determinant of the product of two square matrices of the
same order is equal to the product of the two determinants, i.e., if C � AB, then

jCj � jAj : jBj (I:27)

2 See G. D. Arfken and H. J. Weber (1995) Mathematical Methods for Physicists, 4th edition (Academic
Press, San Diego), p. 169.

Matrices 335



It follows from equation (I.27) that the product of two non-singular matrices is also
non-singular.

Special square matrices
The adjugate matrix Â of the square matrix A is de®ned as

Â �
C11 C21 � � � Cn1

C12 C22 � � � Cn2

� � � � � � � � � � � �
C1n C2n � � � Cnn

0BB@
1CCA (I:28)

where Cij are the cofactors of the elements aij of the determinant jAj of A. Note that
the element âkl of Â is the cofactor Clk. The matrix product AÂ is a matrix B whose
elements bij are given by

bij �
Xn

k�1

aik âkj �
Xn

k�1

aikCjk � jAjäij (I:29)

where equation (I.26) was introduced. Thus, we have

AÂ � B � jAjI � ÂA (I:30)

where I is the unit matrix in equation (I.16), and we see that the matrices A and Â
commute.

Any non-singular square matrix A possesses an inverse matrix Aÿ1 de®ned as

Aÿ1 � Â=jAj (I:31)

From equation (I.30) we observe that

AAÿ1 � Aÿ1A � I (I:32)

Consider three square matrices A, B, C such that AB � C. Then we have

Aÿ1AB � Aÿ1C

or

B � Aÿ1C (I:33)

Thus, the inverse matrix plays the role of division in matrix algebra. Multiplication of
equation (I.33) from the left by Bÿ1 and from the right by Cÿ1 yields

Cÿ1 � Bÿ1Aÿ1

or

(AB)ÿ1 � Bÿ1Aÿ1 (I:34)

This result may easily be generalized to show that

(AB � � � Q)ÿ1 � Qÿ1 � � � Bÿ1Aÿ1 (I:35)

A square matrix A is hermitian or self-adjoint if it is equal to its adjoint, i.e., if
A � Ay or aij � a�ji. Thus, the diagonal elements of a hermitian matrix are real.

A square matrix A is orthogonal if it satis®es the relation

AAT � ATA � I

If we multiply AAT � I from the left by Aÿ1, then we have the equivalent de®nition

AT � Aÿ1

Since the determinants jAj and jATj are equal, we have from equation (I.27)

jAj2 � 1 or jAj � �1
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The product of two orthogonal matrices is an orthogonal matrix as shown by the
following sequence

(AB)T � BTAT � Bÿ1Aÿ1 � (AB)ÿ1

where equations (I.10) and (I.34) were used. The inverse of an orthogonal matrix is
also an orthogonal matrix as shown by taking the transpose of Aÿ1 and noting that the
order of transposition and inversion may be reversed

(Aÿ1)T � (AT)ÿ1 � (Aÿ1)ÿ1

A square matrix A is unitary if its inverse is equal to its adjoint, i.e., if Aÿ1 � Ay or
if AAy � AyA � I. For a real matrix, with all elements real so that aij � a�ij , there is
no distinction between an orthogonal and a unitary matrix. In that case, we have
Ay � AT � Aÿ1.

Linear vector space
A vector x in three-dimensional cartesian space may be represented as a column
matrix

x �
x1

x2

x3

0@ 1A (I:36)

where x1, x2, x3 are the components of x. The adjoint of the column matrix x is a row
matrix

xy � (x�1 x�2 x�3 ) (I:37)

The scalar product of the vectors x and y when expressed in matrix notation is

xyy � (x�1 x�2 x�3 )

y1

y2

y3

0@ 1A � x�1 y1 � x�2 y2 � x�2 y2 (I:38)

Consequently, the magnitude of the vector x is

(xyx)1=2 � (jx1j2 � jx2j2 � jx3j2)1=2 (I:39)

If the vectors x and y are orthogonal, then we have xyy � 0. The unit vectors i, j, k in
matrix notation are

i �
1

0

0

0@ 1A; j �
0

1

0

0@ 1A; k �
0

0

1

0@ 1A (I:40)

A linear operator Â in three-dimensional cartesian space may be represented as a
3 3 3 matrix A with elements aij. The expression y � Âx in matrix notation becomes

y �
y1

y2

y3

0@ 1A � Ax �
a11 a12 a13

a21 a22 a23

a31 a32 a33

0@ 1A x1

x2

x3

0@ 1A � a11x1 � a12x2 � a13x3

a21x1 � a22x2 � a23x3

a31x1 � a32x2 � a33x3

0@ 1A
(I:41)

If A is non-singular, then in matrix notation the vector x is related to the vector y by

x � Aÿ1y (I:42)

The vector concept may be extended to n-dimensional cartesian space, where we
have n mutually orthogonal axes. Each vector x then has n components (x1, x2, . . . ,
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xn) and may be represented as a column matrix x with n rows. The scalar product of
the n-dimensional vectors x and y in matrix notation is

xyy � x�1 y1 � x�2 y2 � � � � � x�n yn (I:43)

and the magnitude of x is

(xyx)1=2 � (jx1j2 � jx2j2 � � � � � jxnj2)1=2 (I:44)

If we have xyy � 0, then the vectors x and y are orthogonal. The unit vectors iá
(á � 1, 2, . . . , n) when expressed in matrix notation are

i1 �
1

0

..

.

0

0BB@
1CCA; i2 �

0

1

..

.

0

0BB@
1CCA; � � � ; in �

0

0

..

.

1

0BB@
1CCA (I:45)

If a vector y is related to a vector x by the relation y � Ax and if the magnitude of
y is to remain the same as the magnitude of x, then we have

xyx � yyy � (Ax)yAx � xyAyAx (I:46)

where equation (I.10) was used. It follows from equation (I.46) that AyA � I so that A
must be unitary.

Eigenvalues
The eigenvalues ë of a square matrix A with elements aij are de®ned by the equation

Ax � ëx � ëIx (I:47)

where the eigenvector x is the column matrix corresponding to an n-dimensional
vector and ë is a scalar quantity. Equation (I.47) may also be written as

(Aÿ ëI)x � 0 (I:48)

If the matrix (Aÿ ëI) were to possess an inverse, we could multiply both sides of
equation (I.48) by (Aÿ ëI)ÿ1 and obtain x � 0. Since x is not a null matrix, the matrix
(Aÿ ëI) is singular and its determinant vanishes

a11 ÿ ë a12 � � � a1n

a21 a22 ÿ ë � � � a2n

� � � � � � � � � � � �
an1 an2 � � � ann ÿ ë

��������
�������� � 0 (I:49)

The expansion of this determinant is a polynomial of degree n in ë, giving the
characteristic or secular equation

ën � cnÿ1ë
nÿ1 � � � � � c1ë� c0 � 0 (I:50)

where ci (i � 0, 1, . . . , nÿ 1) are constants. Equation (I.50) has n roots or eigenvalues
ëá (á � 1, 2, . . . , n). It is possible that some of these eigenvalues are degenerate.

The eigenvalues of a hermitian matrix are real. To prove this statement, we take the
adjoint of each side of equation (I.47), apply equation (I.10), and note that A � Ay

(Ax)y � xyAy � xyA � ë�xy (I:51)

Multiplying equation (I.47) from the left by xy and equation (I.51) from the right by x,
we have

xyAx � ëxyx
xyAx � ë�xyx

Since the magnitude of the vector x is not zero, we see that ë � ë� and ë is real.
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The eigenvectors of a hermitian matrix with different eigenvalues are orthogonal. To
prove this statement, we consider two distinct eigenvalues ë1 and ë2 and their
corresponding eigenvectors x(1) and x(2), so that

Ax(1) � ë1x(1) (I:52a)

Ax(2) � ë2x(2) (I:52b)

If we multiply equation (I.52a) from the left by x(2)y and the adjoint of (I.52b) from the
right by x(1), we obtain

x(2)yAx(1) � ë1x(2)yx(1) (I:53a)

(Ax(2))yx(1) � x(2)yAyx(1) � x(2)yAx(1) � ë2x(2)yx(1) (I:53b)

where we have used equation (I.10) and noted that ë2 is real. Subtracting equation
(I.53b) from (I.53a), we ®nd

(ë1 ÿ ë2)x(2)yx(1) � 0

Since ë1 is not equal to ë2, we see that x(1) and x(2) are orthogonal.
The eigenvector x(á) corresponding to the eigenvalue ëá may be determined by

substituting the value for ëá into equation (I.47) and then solving the resulting
simultaneous equations for the components x

(á)
2 , x

(á)
3 , . . . , x(á)

n of x(á) in terms of the
®rst component x

(á)
1 . The value of the ®rst component is arbitrary, but it may be

speci®ed by requiring that the vector x(á) be normalized, i.e.,

x(á)yx(á) � jx(á)
1 j2 � jx(á)

2 j2 � � � � � jx(á)
n j2 � 1 (I:54)

The determination of the eigenvectors for degenerate eigenvalues is somewhat more
complicated and is not discussed here.

We may construct an n 3 n matrix X using the n orthogonal eigenvectors x(á) as
columns

X �
x

(1)
1 x

(2)
1 � � � x

(n)
1

x
(1)
2 x

(2)
2 � � � x

(n)
2

� � � � � � � � � � � �
x(1)

n x(2)
n � � � x(n)

n

0BB@
1CCA (I:55)

and a diagonal matrix Ë using the n eigenvalues

Ë �
ë1 0 � � � 0

0 ë2 � � � 0

� � � � � � � � � � � �
0 0 � � � ën

0BB@
1CCA (I:56)

Equation (I.47) may then be written in the form

AX � XË (I:57)

The matrix X is easily seen to be unitary. Since the n eigenvectors are linearly
independent, the matrix X is non-singular and its inverse Xÿ1 exists. If we multiply
equation (I.57) from the left by Xÿ1, we obtain

Xÿ1AX � Ë (I:58)

This transformation of the matrix A to a diagonal matrix is an example of a similarity
transform.
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Trace
The trace Tr A of a square matrix A is de®ned as the sum of the diagonal elements

Tr A � a11 � a22 � � � � � ann (I:59)

The operator Tr is a linear operator because

Tr(A� B) � (a11 � b11)� (a22 � b22) � � � � � (ann � bnn) � Tr A� Tr B (I:60)

and

Tr(cA) � ca11 � ca22 � � � � � cann � c Tr A (I:61)

The trace of a product of two matrices, which may or may not commute, is
independent of the order of multiplication

Tr(AB) �
Xn

i�1

Xn

j�1

aijbji �
Xn

j�1

Xn

i�1

bjiaij � Tr(BA) (I:62)

Thus, the trace of the commutator [A, B] � ABÿ BA is equal to zero. Furthermore,
the trace of a continued product of matrices is invariant under a cyclic permutation of
the matrices

Tr(ABC � � � Q) � Tr(BC � � � QA) � Tr(C � � � QAB) � � � � (I:63)

For a hermitian matrix, the trace is the sum of its eigenvalues

Tr A �
Xn

á�1

ëá (I:64)

To demonstrate the validity of equation (I.64), we ®rst take the trace of (I.58) to obtain

Tr(Xÿ1AX) � TrË �
Xn

á�1

ëá (I:65)

We then note that

Tr(Xÿ1AX) �
Xn

á�1

(Xÿ1AX)áá �
Xn

á�1

Xn

i�1

Xn

j�1

Xÿ1
ái aijX já

�
Xn

i�1

Xn

j�1

aij

Xn

á�1

X jáXÿ1
ái �

Xn

i�1

Xn

j�1

aijäij �
Xn

i�1

aii � Tr A (I:66)

where Xjá (� x
(á)
j ) are the elements of X. Combining equations (I.65) and (I.66), we

obtain equation (I.64).
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Appendix J

Evaluation of the two-electron interaction integral

In the application of quantum mechanics to the helium atom, the following integral I
arises and needs to be evaluated

I �
� �

eÿ(r1�r2)

r12

drr1 drr2

�
�
� � �
�

eÿ(r1�r2)

r12

r2
1r

2
2 sin è1 sin è2 dr1 dè1 dj1 dr2 dè2 dj2 (J:1)

where the position vectors rri (i � 1, 2) have components ri, èi, ji in spherical polar
coordinates and where

r12 � jrr2 ÿ rr1j
The distance r12 is related to r1 and r2 by the law of cosines

r2
12 � r2

1 � r2
2 ÿ 2r1r2 cos ã (J:2)

where ã is the angle between rr1 and rr2 as shown in Figure J.1. The integration is
taken over all space for each position vector.

The integral I may be evaluated more easily if we orient the coordinate axes so that
the vector rr1 lies along the positive z-axis as shown in Figure J.2. In that case, the
angle ã between rr1 and rr2 is equal to the angle è2. If we de®ne r. as the larger and
r, as the smaller of r1 and r2 and de®ne s by the ratio

s � r,

r.

so that s < 1, then equation (J.2) may be expressed in the form

1

r12

� 1

r.
(1� s2 ÿ 2s cos è2)ÿ1=2 (J:3)

At this point, we may proceed in one of two ways, which are mathematically
equivalent. In the ®rst procedure, we note that from the generating function (E.1) for
Legendre polynomials Pl, equation (J.3) may be written as

1

r12

� 1

r.

X1
l�0

Pl(cos è2)sl

The integral I in equation (J.1) then becomes
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I �
X1
l�0

� �
eÿ(r1�r2)

r.
slr2

1r
2
2 dr1 dr2

�ð
0

Pl(cos è2) sin è2 dè2

�ð
0

sin è1 dè1

�2ð

0

dj1

�2ð

0

dj2

The integrals over è1, j1, and j2 are readily evaluated. Since P0(ì) � 1, we may write
the integral over è2 as

1

2

z

x

y

γ

ρ1 ρ2

ρ12

Figure J.1 Distance between two particles 1 and 2 and their respective distances from
the origin.

1

2

z

x

y

ρ1

ρ2

ρ12

θ2

  2ϕ

Figure J.2 Rotation of the coordinate axes in Figure J.1 so that the z-axis lies along r1.
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�ð
0

Pl(cos è2) sin è2 dè2 �
�1

ÿ1

Pl(ì)P0(ì) dì � 2ä l0

where equations (E.18) and (E.19) have been introduced. Thus, only the term with
l � 0 in the summation does not vanish and we have

I � 16ð2

� �
eÿ(r1�r2)

r.
r2

1r
2
2 dr1 dr2 (J:4)

In the second procedure, we substitute equation (J.3) directly into (J.1) and evaluate
the integral over è2�ð

0

sin è2

(1� s2 ÿ 2s cos è2)1=2
dè2 � 1

s
(1� s2 ÿ 2s cos è2)1=2

����ð
0

� 1

s
[(1� s2 � 2s)1=2 ÿ (1� s2 ÿ 2s)1=2]

� 1

s
[(1� s)ÿ (1ÿ s)] � 2

The integrals over è1, j1, and j2 are the same as before and equation (J.4) is obtained.
Since r. is the larger of r1 and r2, the integral I in equation (J.4) may be written in

the form

I � 16ð2

�1
0

eÿr1r2
1

1

r1

�r1

0

eÿr2r2
2 dr2 �

�1
r1

eÿr2r2 dr2

" #
dr1

� 16ð2

�1
0

eÿr1r1f[2ÿ (r2
1 � 2r1 � 2)eÿr1 ]� r1(r1 � 1)eÿr1g dr1 � 16ð2(5

8
� 5

8
)

Accordingly, the ®nal result is

I �
� �

eÿ(r1�r2)

r12

drr1 drr2 � 20ð2 (J:5)
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for harmonic oscillator 113±14, 127±9, 323
for hydrogen-like atom 168, 175±6, 191±2,

254±6, 261±2, 328
for particle in a box 50, 62±3
for rigid rotor 150
see also perturbation theory, variation method

Estermann, I. 19
exchange forces 223
exchange operators 210±11, 213±16, 230
exclusion principle, see Pauli exclusion principle
expectation values 41±5, 47±8, 59, 85, 87±91,

104±5
for harmonic oscillator 128
for hydrogen-like atom 181, 184, 186±7, 192±3,

329±30
for particle in a box 104
time dependence 97±8

Fermi, E. 19
Fermi energy in free-electron model 227±9
fermion 197±8, 217±18, 221±9, 231
®ne structure constant 203
force constant for vibration 106, 273
Fourier series 4, 285±9
Fourier transform 8, 10, 14±15, 22, 37, 40, 42, 58,

102, 289±91, 294
free-electron gas 226±9, 231
frequency

angular, de®ned 3
of vibration, de®ned 107
of a wave, de®ned 2
see also harmonic oscillator, wave motion

Frisch, R. 19
Frobenius method, see series solution method

gaussian distribution 10±11, 15, 17±18, 21, 34±5,
102

Gerlach, W. 26
see also Stern±Gerlach experiment

Goudsmit, S. 194±6
group velocity, see wave packet
gyromagnetic ratio 196

Hamiltonian operator 85, 87, 93, 95±6
de®ned 47
for harmonic oscillator 109
for helium atom 224, 256
for hydrogen-like atom 159, 161, 191, 260
for a molecule 263±4
for multi-particle system 60
for non-interacting particles 220
perturbed 240, 246, 248
for rigid rotor 150
for spin±orbit coupling 202±3, 206
symmetry of 209, 212, 216
three-dimensional 59

harmonic oscillator 106±29
classical 106±9, 128
energy levels 113±14, 127±9, 323
Hamiltonian operator 109
isotropic 127±9
ladder operators 110, 128
linear 109±21
matrix elements 121±5, 129
applied to nuclear motion 275±6
perturbed 246±8
SchroÈdinger equation 109, 126
three-dimensional 125±9
and variation method 235±6
wave functions 114±21, 127, 320±3
zero-point energy 113
see also anharmonic oscillator

Heisenberg, W. 34
Heisenberg uncertainty principle 21±3, 29, 45±6,

99±105, 155
for harmonic oscillator 125
for time and energy 22, 31, 103±4
and zero-point energy 50
see also wave packet ± uncertainty relation

helium
atom 217±18, 223±5, 256±60
ion 193
liquid 218, 230

Hellmann±Feynman theorem 96±7, 186, 192
Hermite polynomials 117±18, 296±300, 323
hermitian operator, see operator
Hilbert space 80
Hooke's law 107
Humphreys series 188±9
hydrogen-like atom 156±7, 160±93

atomic orbitals 175±82, 254±6
Bohr model 156±7, 168, 175
Bohr radius 175, 184
in electric ®eld 254±6, 260±1
energy continuum 174±5
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energy levels 168, 175±6, 191±2, 254±6, 261±2,
328

expectation values 181, 184, 186±7, 192±3,
329±30

Hamiltonian operator 159, 161, 191, 260
ionization potential 169
ladder operators 163
in a magnetic ®eld 190±2
perturbed 206, 254±6, 262
quantum numbers 175±6
radial distribution function 181, 184±6, 192
radial functions 161±75, 181, 183, 185, 326±8
Rydberg constant 156±7, 188, 190, 193
SchroÈdinger equation 159±61
spectra 156±7, 187±90, 192±3
spin±orbit coupling 201±6, 262
wave functions 161, 175

identical particles 85, 208±17, 221
de®nition 208
non-interacting 220±3, 226±30
and symmetry of wave functions 209±11, 230
see also boson, exchange operators, fermion,

permutation operators
ionization potential

for hydrogen 169
for lithium ion 193

ket vector, de®ned 80
see also eigenfunctions

ladder operators 106
for generalized angular momentum 134±7, 155
for harmonic oscillator 110, 128
for hydrogen-like atom 163
for orbital angular momentum 140±1
for spin angular momentum 197, 199

Laguerre polynomials 310±12
associated 171±4, 192, 312±17, 328

Larmor frequency 153±4
Legendre polynomials 301±4

associated 147, 304±9, 325±6
linear variation function 237±9, 261
linear vector space 337±9
lithium

atom 230
ion 193

lowering operators, see ladder operators
Lyman series 156, 188±9

magnetic moment
of electron spin 26±9, 32±3, 190, 196, 201±2,

204
of hydrogen atom 190±2
orbital 151±5, 190, 201
of particles with spin 196

magnetic interactions
with atoms 153±5, 190±2
within an atom 201±2
see also Stern±Gerlach experiment

magnetic quantum number, de®ned 176, 191

magneton, Bohr, de®ned 152
Marshall, L. 19
matrices

properties of 331±40
spin 200±1, 207

matrix elements 81
of harmonic oscillator 121±5, 129

metallic crystal 226, 228±9, 231
molecular spectra 279
molecular structure 263±80

adiabatic approximation 268±9, 272±3
Born±Huang treatment 266±9
Born±Oppenheimer approximation 264±6,

268±9, 273
diatomic molecule 269±80
nuclear wave function 265±8, 273±4, 276

moment of inertia 149, 278
momentum operator 43±4, 58, 70, 86
momentum space wave function, see wave function

± in momentum space
Morse potential 279±80

normalized functions 38±41, 47, 51, 58, 69, 86, 98
nuclear motion, see molecular structure

operator
adjoint 82±3, 163
exchange 210±11, 213±16, 230
for generalized angular momentum 132±4, 155
hermitian 69±75, 77±87, 104
linear 65±8, 85, 104
for momentum 43±4, 58, 70, 86
for orbital angular momentum 131±2, 139,

149±50, 155, 160±1, 202±6
parity 94±6, 253
permutation 212±16, 219±21
projection 83±4
self-adjoint, see operator ± hermitian
for spin angular momentum 196±7, 199, 202±6
see also Hamiltonian operator, ladder operators

Oppenheimer, J. R. 265
orbital angular momentum 130±2, 138±46, 155

classical 130±1
eigenvalues 138, 140
ladder operators 140±1
and magnetic moment 151±5, 190, 201
operators 131±2, 139, 149±50, 155, 160±1,

202±6
operators in spherical polar coordinates 138±40
spin±orbit coupling 201±6, 262
wave functions 138±47, 323±6

orbitals, atomic, see atomic orbitals
orthogonal functions 51, 69, 71±4, 80, 211, 215,

217
expansions in terms of 75±7, 84, 88±91, 94, 198

orthonormal functions, de®ned 51±2, 69
oscillator, see harmonic oscillator
overlap integral 237

parity 95, 192
operator 94±6, 253

Index 349



Parseval's theorem 10, 18, 35, 41, 288±9, 291
particle in a box 48±52, 64, 91, 104±5, 230

energy levels 50, 62±3
perturbed 261±2
three-dimensional 61±3, 226
and variation method 234±5
wave functions 50±2, 62

Paschen series 156, 188±9
Pauli, W. 195±6, 221
Pauli exclusion principle 221±2, 225, 227
Pauli spin matrices 200±1, 207
permutation operators 212±16, 219±21
perturbation theory 239±58, 261±2

degenerate 248±56
®rst-order 240±3, 245, 250±4, 257±8, 261
applied to harmonic oscillator 246±8
applied to helium atom 257±8
applied to hydrogen atom 262
applied to hydrogen atom in electric ®eld 254±6
applied to a molecule 265±6, 276±9
non-degenerate 239±45
related to variation method 245
second-order 240, 243±5, 261
applied to spin±orbit coupling 262

Pfund series 188±9
phase velocity, see wave packet
photon 1, 18±19, 24±6, 30±2, 187

spin of 217
Planck, M. 18
Planck relation 18, 157, 187
plane wave 2±9, 11, 22, 40
postulates of quantum mechanics 85±94, 196, 217
principle quantum number, de®ned 175
probability density, see wave function ± and

probabilities

radial distribution function 181, 184±6, 192
radiation, absorption and emission of 187
raising operators, see ladder operators
Rayleigh±SchroÈdinger perturbation theory, see

perturbation theory
reduced mass 149, 158, 175, 188, 270±1
re¯ection coef®cient, see tunneling
rigid rotor 148±51, 274±6, 278
rotational constant 150, 275
Rydberg constant 156±7, 188, 190, 193
Rydberg potential 279±80

Schmidt orthogonalization 72±3, 104
SchroÈdinger, E. 1, 20, 37
SchroÈdinger equation

for harmonic oscillator 109, 126
for hydrogen-like atom 159±61
for a molecule 264±5
for particle in a box 48, 61
time-dependent 37, 59, 85, 92±4
time-independent 47, 59, 93, 96±7

Schwarz's inequality 46, 284
secular determinant 78, 239, 251±2, 255
selection rules 192
series solution method 318±20

for harmonic oscillator 110, 147±8, 162, 320±3
for orbital angular momentum 323±6
for radial equation 326±8

Slater determinant 221±2
Sommerfeld, A. 226
spherical harmonics 139±47, 161, 175, 177, 192,

274
spin angular momentum 85, 194±207

of bosons 197±8, 217±18, 221±3, 229±30
discovery of 194±6
eigenfunctions 197±9
eigenvalues 197, 199
of electron 29, 32±4, 85, 190, 194±6, 201±6,

223±4
of fermions 197±8, 217±18, 221±9, 231
gyromagnetic ratio 196
ladder operators 197, 199
operators 196±7, 199, 202±6
singlet and triplet states 224
spin one-half 198±201
see also Pauli spin matrices

spinor 199
spin±orbit coupling 201±6, 262
spring constant 107
square pulse distribution 12±13, 15, 35
Stark effect in atomic hydrogen 254±6, 260±1
state function 30, 38, 40, 85±6

see also wave function
stationary state 47±8, 52, 59, 93±4
Stern, O. 19, 26
Stern±Gerlach experiment 26±9, 32±4, 195
symmetric wave function, see wave function

Thomas precession 202
Thomson, G. P. 19
transmission coef®cient, see tunneling
tunneling 53±7, 64

Uhlenbeck, G. E. 194±6
uncertainty principle, see Heisenberg uncertainty

principle
uncertainty relation, see wave packet ± uncertainty

relation
Urey, H. 190

variation method 232±9, 260±1
excited state energies 236±7
ground state eigenfunctions 234
ground state energy 232±4
applied to harmonic oscillator 235±6
applied to helium atom 259±60
applied to hydrogen atom in electric ®eld 260±1
linear variation function 237±9, 261
applied to particle in a box 234±5
related to perturbation theory 245

variation theorem 232±3, 236
vibration

of molecular bonds 106
see also harmonic oscillator

virial theorem 187, 192
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wave
frequency of, de®ned 2±3
nodes of 2
see also plane wave, wave motion, wave packet

wave equation, see SchroÈdinger equation
wave function

collapse of 30±4, 85, 92
for free particle 20±3, 29±34
for harmonic oscillator 114±21, 127, 320±3
for hydrogen-like atoms 161, 175
interpretation of 29±34, 86
many-particle 60±1, 209±25
in momentum space 40±1, 58, 128±9
normalization 38±41, 47, 51, 58, 69, 86, 98
nuclear 265±8, 273±4, 276
for orbital angular momentum 138±47, 323±6
for particle in a box 50±2, 62
and probabilities 30, 38±41, 47, 58, 60, 86, 91±

2, 118±21, 198, 209, 222±3
properties of 29±34, 48±9
for rigid rotor 150
symmetry of 209±11, 214±21, 223±4, 230
time-dependent 37
time-independent 47
well-behaved, de®ned 68, 162
see also eigenfunctions, state function, stationary

state

wave motion 2±18
composite wave 4±9
standing wave 7
see also plane wave, wave packet

wave number
of plane wave, de®ned 3
of spectral line 187±8, 190

wave packet 8±18, 20±2, 29, 34, 36±7, 85
dispersion of 4±5, 15±18, 20±1, 29, 34
group velocity of 7, 20±1, 23, 34
of minimum uncertainty 102±3
phase velocity of 4±5, 20±1, 34
uncertainty relation 12, 14±15, 18
see also gaussian distribution, square pulse

distribution
wavelength

de Broglie 19, 49±50, 58
of a wave, de®ned 2
see also wave motion

weighting function 69, 72, 74, 77, 162, 164±5

Young, T. 24
Young's double-slit experiment 23±6, 29±32

Zeeman effect 190±2
Zinn, W. H. 19
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Physical constants

Speed of light c 2:997 924 58 3 108 msÿ1

(exact value by de®nition)

Elementary charge e 1:602 177 3 10ÿ19C

Planck's constant h 6:626 08 3 10ÿ34 J s

" 1:054 57 3 10ÿ34 J s

Boltzmann's constant kB 1:380 66 3 10ÿ23 J Kÿ1

Avogadro's number NA 6:022 14 3 1023 molÿ1

Mass of electron me 9:109 39 3 10ÿ31 kg

Mass of proton mp 1:672 62 3 10ÿ27 kg

Mass of neutron mn 1:674 93 3 10ÿ27 kg

Permittivity of vacuum å0 8:854 19 3 10ÿ12 Jÿ1C2mÿ1

4ðå0 1:112 65 3 10ÿ10 Jÿ1C2mÿ1

Electron spin gyromagnetic ratio gs 2.002 319 304

Bohr magneton ìB � e"=2me 9:274 02 3 10ÿ24 JTÿ1

Fine structure constant á � e2=4ðå0"c
1

137:035 99
� 7:297 35 3 10ÿ3

Hydrogen atom
Bohr radius á0 � 4ðå0"2=mee2 5:291 77 3 10ÿ11 m

Rydberg constant RH 109 677:32 cmÿ1

R1 � mee4=8å0
2 h3c 109 737:31 cmÿ1

Ground state energy ÿ13.598 eV
ÿ2:178 64 3 10ÿ18 J

Energy conversion

1 eV � 1:602 177 3 10ÿ19 J � 8065:54 cmÿ1

1 J � 6:241 506 3 1018 eV � 5:034 11 3 1022 cmÿ1

1 cmÿ1 � 1:239 842 3 10ÿ4 eV � 1:986 447 3 10ÿ23 J


