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Preface

It needs must be that what can be spoken and thought is; for it is possible for it to be, and
it is not possible for what is nothing to be. This is what I bid thee ponder. I hold thee back
from this first way of inquiry, and from this other also, upon which mortals knowing naught
wander two-faced; for helplessness guides the wandering thought in their breasts, so that
they are borne along stupefied like men deaf and blind. Undiscerning crowds, who hold
that it is and is not the same, and all things travel in opposite directions! For this shall never
be proved, that the things that are not are; and do thou restrain thy thought from this way of
inquiry.

Parmenides of Elea, The Poem, The Way of Truth1

This is not another textbook for a course on quantum mechanics since there are
plenty of those. This is a book about the foundations of quantum mechanics that can
be read as a companion or supplement to a lecture course or self-study.

The desire, slumbering in us humans, to gain insight into the laws of the cosmos
has moved us to write this book. When one decides to study physics as a young
person, the decision often comes from this yearning curiosity to understand “was
die Welt im Innersten zusammenhält”.2 (Yes, that is quoted from Goethe’s Faust,
who had similar desires.)

But quantum mechanics occupies a special position among all physical theories.
There is a plethora of so-called interpretations of its mathematical formalism, which
in courses are either barely dealt with or dealt with as briefly as possible in order to
get to the heart of the matter quickly: doing calculations like there is no tomorrow.
The important and legitimate questions that students are struggling with are rarely
addressed at all. Here are some of them:

• What exactly is the role of the wave function in the theory? Is the wave function
as real as physical fields are considered to be, for instance, is it as real as the
electromagnetic field? Or is it just a mathematical expression of our inability to
say what is really going on in nature because our access to the microscopic world
(and thus, come to think of it, to the macroscopic world as well) is inherently
limited?

1In: J. Burnet, Early Greek Philosophy, Chap. IV, A. and C. Black, London and Edinburgh, 1930.
2Translation by authors: “what holds the world together at its core”.
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• What exactly is the import of Born’s rule (also known as Born’s statistical
interpretation of the wave function) and where does this rule come from?
Obviously, it has something to do with probabilities in measurement experiments
that can be carried out in a laboratory. But what really happens, physically,
in such a measurement process? How does an electron “produce” a particular
measurement result? What laws govern the pointers of a measurement device,
and what are these pointers actually made of—all wave function, or what?

• How should we understand the statement that observable quantities in quantum
mechanics are described by abstract operators, so-called observable operators?
And what about all the sweeping claims that any “realistic” or “deterministic” or
somehow more “intuitive” description of quantum phenomena has been proven
to be impossible?

• What exactly is the revolution brought about by quantum mechanics? And what
about Schrödinger’s cat? Is it a manifestation of nature’s craziness or is it just a
little prank pulled by a brilliant physicist on his confused contemporaries?

Such questions must have clear answers and we have to know those answers if we
are to achieve a firm understanding of quantum mechanics.

Sometimes quantum mechanics is still taught in the spirit of the old Copenhagen
interpretation that divides the world into two parts: the macroscopic world is
classical, the microcosmos is quantum mechanical. The macroscopic world is
understandable; the quantum world is not—at least according to the dogma. The
two worlds are basically separated by a cut, often called the “Heisenberg cut”.
There are countless papers on where exactly the cut is to be located, i.e., where
exactly the dividing line runs between the microscopic (quantum mechanical) and
the macroscopic (classical) world. It is for this reason that the Heisenberg cut is
sometimes referred to as the “shifty split”.

In this twilight zone, even the wave function itself—the central mathematical
object of the theory—becomes obscure. On the one hand, it is supposed to describe
a state that somehow brings about measurement results, although these results
are random. On the other hand, the “observer”3—a subject living in the classical
world—uses this object to calculate probabilities of the outcomes of measurements.

We will not say much about the Copenhagen interpretation in this book. Why?
Because it just does not make sense. How to see that? The fact that every object
in the world consists of atoms (and even smaller units), and atoms are described
quantum mechanically. So there can be no such division in principle into classical
and quantum mechanical worlds. There is only one world in quantum mechanics,
although it can often (usually) be described classically. We shall explain how that is
possible.

3“What exactly is an observer?” is a question that has been discussed way too much. Can a cat be
an observer? Or a fly? Or a bachelor student? In his article “Fixing the shifty split” [Physics Today
65 (7), 8 (2012)], Mermin insists that it certainly could not be a mouse.
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We can also put it succinctly like this: the Copenhagen interpretation of
quantum mechanics is not physics, but a mixture of a mathematical formalism that
successfully describes measurement statistics, and psychological warfare against a
better understanding.4

The following quote regarding the early years of quantum theory takes a hard
line on the orthodoxy:

In the new, post-1925 quantum theory the ‘anarchist’ position became dominant and modern
quantum physics, in its ‘Copenhagen interpretation’, became one of the main standard
bearers of philosophical obscurantism. In the new theory Bohr’s notorious ‘complemen-
tarity principle’ enthroned [weak] inconsistency as a basic ultimate feature of nature,
and merged subjectivist positivism and antilogical dialectic and even ordinary language
philosophy into one unholy alliance. After 1925 Bohr and his associates introduced a new
and unprecedented lowering of critical standards for scientific theories. This led to a defeat
of reason within modern physics and to an anarchist cult of incomprehensible chaos. (Imre
Lakatos in: I. Lakatos and A.E. Musgrave (Hg.), Criticism and the Growth of Knowledge.
Cambridge University Press, 1970, p. 145.)

Somewhat friendlier was the following remark by Erwin Schrödinger (1887–
1961), a few months before his death, in a letter to his friend Max Born, serving as a
reminder not to blind ourselves to conformity in the name of an alleged orthodoxy:

You know, Max, I love you and nothing can change that. But I do need for once to wash
your head thoroughly. So stand still. The impudence with which you insist time and time
again that the Copenhagen interpretation is practically universally accepted, asserting this
without reservation, even before an audience of laity – who are completely at your mercy –
is almost unforgivable. You know that Einstein was unsatisfied (“I really never understood
what complementarity means” he once said) – as was Louis de Broglie, and I, too, not to
mention our poor Max von Laue. Since when, by the way, is a scientific thesis going to be
decided by majority vote? (You could certainly reply: at least since Newton.) And excuse
me for saying this, but it sometimes seems to me as if you people need repeated emphatic
statements to strengthen your own confidence, à la: Sieg-Heil-Sieg-Heil-Sieg . . . Are you
not afraid of the verdict of history? Are you so convinced that the human race will succumb
before long to their own folly? (Erwin Schrödinger, letter to Max Born on 10 October 1960.
Translated by the authors.)

Nowadays, the Copenhagen school with all its philosophical ballast is only
explicitly represented by a few physicists. What has remained is the tendency
to raise the incomprehensibility of quantum physics to the level of a principle.
Many introductions to the theory are simply content to emphasise how bizarre
and counterintuitive quantum mechanics is, which suggests to learners that they
should just study the mathematical formalism and refrain from any more searching
questions. It is still sometimes claimed that a rational understanding of the world, in
objective terms, has been proven to be simply impossible in quantum physics.

4For an excellent critical examination of the history and the so-called interpretations of quantum
mechanics, see J. Bricmont, Making Sense of Quantum Mechanics. Springer, 2016.
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The premise of this book is exactly the opposite of this postulate of incom-
prehensibility, taken as a basic feature of quantum physics: there is no reason
to apply a lower standard of clarity, precision, and objectivity to the quantum
mechanical description of nature than to the so-called classical theories. A rational
understanding of quantum mechanics is possible if we are prepared to throw
aside old prejudices and romanticisms and start talking about more than just
measurement results. A number of great books have been published in recent
years by kindred spirits, making us optimistic that the culture of obscurantism
in quantum foundations is slowly but surely coming to an end. We mention
in particular Jean Bricmont’s Making Sense of Quantum Mechanics (Springer,
2016), Travis Norsen’s Foundations of Quantum Mechanics: An Exploration of
the Physical Meaning of Quantum Theory (Springer, 2017), and Tim Maudlin’s
Philosophy of Physics: Quantum Theory (Princeton University Press, 2019). While
the “reBELLious” quantum theories presented there are also the ones we discuss,
we put a stronger focus on a genetic approach to the mathematical concepts used in
quantum mechanics, which in physics courses is often left aside in favour of pure
abstraction—and mastering pure abstraction is what keeps many curious minds from
asking intimidating questions. Substantial parts of our book are therefore concerned
with building bridges from the physics to the mathematics and vice versa.

There are essentially three possible approaches to quantum mechanics that
embed the well-known and empirically successful measurement formalism in a
precise, fundamental theory. John Stewart Bell (1928–1990) called them “quantum
theories without observers”, not so much because observers do not occur in them,
but because these theories develop an objective description of nature in which
“measurements” are subject to the same laws of nature as all other physical
processes.

These include Bohmian mechanics, named after David Bohm (1917–1992),
in which the statistical predictions of quantum mechanics are derived from the
microscopic law of motion for point particles. Another is the GRW collapse theory
(named after Ghirardi, Rimini, and Weber), in which the Schrödinger equation
is supplemented by a stochastic collapse term. And finally, there is the Many
Worlds theory which goes back to Hugh Everett (1930–1982) and which aims at
an objective description of nature based solely on the Schrödinger equation.

It is common practice to speak about these as three possible “interpretations”
of quantum mechanics. But the term “interpretation” is inappropriate. A poem
is interpreted if you want to elicit some deeper meaning from the allegorical
language. However, physical theories are not formulated in allegories, but with
precise mathematical laws, and these are not interpreted, but analysed. So the goal
of physics must be to formulate theories that are so clear and precise that any form
of interpretation—what was the author trying to say there?—is superfluous.

Not all the important messages in this book can be expressed in words alone. At
the end of the day, a precise formulation of quantum mechanics also requires precise
mathematics. However, our goal is not to work through the well-known formalism in
all its facets or make it even more abstract. Rather, we shall try to reclassify it where
possible, expanding it if necessary and explaining how the statistical predictions
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of quantum mechanics arise from a fundamental microscopic description of nature
which can also be fully deterministic (i.e., without invoking the intervention of
random events). But we would also like to encourage you: once the physics is
clear, i.e., once it is clear how the theory describes our universe, the mathematics is
straightforward, and many apparent contradictions are easily dissolved.
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1SomeMathematical Foundations
of QuantumMechanics

Philosophy is written in that great book that always lies before our eyes – I mean the
universe. But one cannot understand it if one does not first learn the language and know
the signs in which it is written. This language is mathematics, and the signs are triangles,
circles, and other geometric figures, without which it is impossible for man to understand a
single word of it; without these one is just wandering around in a dark labyrinth.

Galileo Galilei, Il Saggiatore1

Here we recall some mathematical basics of quantum mechanics about which
there is no dispute. These fundamentals are equally relevant for all quantum
mechanical theories (which are unfortunately—or rather, mistakenly—often
referred to as interpretations). Our selection is also determined by our needs in
later chapters.

The understanding of a physical theory can take place on different levels. The
physical worldview must first be communicable to anyone with an honest interest
in the subject, i.e., technical details must not be relevant at this level. This means
that one should not hide one’s own lack of clarity about the worldview behind
statements like: “The theory can only be understood by people who have studied
physics for at least 4 years”. But on a deeper level, the expert level, theoretical
(and experimental) background knowledge is necessary for anyone who wishes to
have a solid foundation on the basis of which they can explore the intricacies of the
description of nature more deeply. The first chapter of this book is meant to provide
some key features of that foundation and should be read exactly in this spirit. From
a technical point of view, it may be the most challenging chapter, but every physics
student should work through the following results carefully at least once in her life.
For some, this may mean skipping the more difficult derivations on a first reading
and returning to them at a later point in their studies. In any case, the reader should
not feel intimidated by the mathematics, as we will try to provide enough context
and explanation alongside the technical details.

1G. Galilei, Il Saggiatore, Capitolo VI. 1623. [Translation by authors.]
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2 1 SomeMathematical Foundations of QuantumMechanics

There are three mathematical pillars upon which quantum mechanics is
based, but which have at the same time given rise to the century long debate
about the meaning of quantum mechanics. They are succinctly summarised in
Remarks 1.1, 1.2, and 1.4. But before presenting these, we begin by briefly
discussing a non-mathematical term, whose omission is in fact the true source
for much of the debate about quantum mechanics.

1.1 Ontology

There are a cornucopia of books about the meaning of quantum mechanics. In most
of them notions such as mystical, incomprehensible, quantum logical, information,
collapse, and observer pop up almost continually. One particular term, however,
hardly ever occurs: ontology. The ontology2 of a physical theory specifies what the
theory is about. Since in so-called classical physics it is clear at the outset what
the physical theory is about—e.g., Newtonian mechanics is about the motions of
point particles—there was no need for an extra Greek word to philosophize about
the obvious. But if we wish to understand the confusion about quantum theory,
we cannot avoid the term. The reason is simply that, in typical presentations, it is
unclear what quantum theory is about. And indeed, each so-called interpretation of
quantum mechanics tries to develop its own idea.

John Stewart Bell, who will be mentioned on several occasions throughout this
book, invented the term beables—a neologism derived from “to be” and “able”.
Beables are to be contrasted with “observables”, or observable quantities. To appre-
ciate the difference, note that observation or measurement is actually a complex
physical process. Our measuring devices and sensory organs are complex physical
systems that are subject to physical laws and which interact with the measured
or observed objects. It is therefore nonsense to think of observed quantities as
fundamental in the formulation of a physical theory.3 With the term beables, Bell
wanted to stress the fact that a precise physical theory should deal with what there is
in the world, i.e., it should deal with the subject of our observations or what causes
them. In the mathematical formalism of a physical theory there must therefore be
some variables that refer to physical entities out there in the world. These can be
particles, fields, strings, or GRW flashes (which we shall discuss later)—whatever
it is that the theory posits as the elementary building blocks of matter. These
elementary objects are the beables, as postulated in the ontology of the theory. If
the ontology is unclear, then it can never be clear what the theory has to say about
the world.

We see a table over there. Why? Because there is a table over there. But physical
theories are not about tables as elementary objects. Instead we have an atomistic
theory of matter and the table is therefore considered to consist of atoms. We

2From ancient Greek, meaning the study of “that which is”.
3Compare with the quote from Einstein at the beginning of Chap. 8.
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can conceive of a theory of atoms in which atoms are the fundamental ontology,
or beables. The theory then provides a way to understand the physical properties
of the table from the behaviour of its constituent atoms (possibly through their
interactions with fields): its shape, its weight, its temperature, its solidity, its
electrical conductivity, etc., can all be explained in terms of atoms. Of course, it has
long been known that what we call atoms are not elementary at all. They themselves
consist of smaller building blocks, and in such a “finer” theory, these even more
elementary building blocks would form the ontology. Ontology also stands for what
we consider as being physically “real” in our world, and it is indeed a painful process
to learn that what we take to be real can change as theory progresses.

We shall use the term ontology from time to time. We need it to understand
quantum theory, because the quandary of orthodox quantum theory is caused by
a simple dogma: quantum theory must not be about ontology. But then what is it
about? That is what the cornucopia of books take it upon themselves to discuss.
In the chapters to come we shall show that the quandary evaporates once quantum
mechanics is based on a clear ontology. In a famous German poem by Christian
Morgenstern, Palmström concluded razor-sharply that what must not be cannot be.
And in fact there were and still are many attempts to turn “shan’t” into “can’t”. We
shall talk about that, too.

1.2 TheWave Function and Born’s Statistical Hypothesis

A central element of quantum mechanics is the wave function of an N-particle
system in three-dimensional space, i.e., in R

3 (this is the generally accepted way
of speaking even in quantum theories in which particles do not occur as entities at
all):

ψ : R3N × R→ C , ψ(q1, . . . , qN, t) . (1.1)

Here C is the set of complex numbers, that is, ψ is a complex-valued function which
takes as input a time t and N points in R

3, describing a possible configuration of
N particles in three-dimensional space. The time evolution of the wave function
with potential V obeys the Schrödinger equation, which we write in terms of the
configuration variable q = (q1, . . . , qN) ∈ R

3N :

ih̄
∂

∂t
ψ(q, t) = −

N∑

n=1

h̄2

2m
Δnψ(q, t) + V (q)ψ(q, t) , (1.2)

with the Laplace operator Δn = ∂2/∂q2
n.

There is a disagreement about whether wave functions actually exist for systems
of very “large” size, e.g., a measuring apparatus in a laboratory, or the laboratory
itself, or even the whole universe. This disagreement will be discussed in Chap. 2
on the measurement problem. However, we mention the origin of the disagreement
here because it runs through the whole of quantum mechanics.
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Remark 1.1 (Superposition Principle) The Schrödinger equation is a linear (partial
differential) equation. This means that the sum of constant multiples of solutions of
the equation is also a solution of the equation. In the usual jargon, we say that
solutions can be superposed.

In addition to the Schrödinger equation, there is a second important equation which
led Max Born (1882–1970) to the accepted interpretation of the wave function
as a probability amplitude, although only after a correction by Schrödinger.4 In
common parlance, Born’s statistical interpretation, which is often referred to as
Born’s statistical hypothesis or Born’s rule, can be stated as follows:

Remark 1.2 (Born’s Statistical Hypothesis) If a system has wave function ψ , the
measured positions of the particles are distributed according to ρ = ψ∗ψ = |ψ|2.
Here ψ∗ is the complex function conjugate to ψ .

This means that, if A ⊂ R
3N is a (measurable5) subset of the configuration space,

then the probability of finding the system configuration Q in A is given by

P
ψ(Q ∈ A) =

∫

A

|ψ|2(q1, . . . , qN) d3q1 . . . d3qN . (1.3)

We note that Born’s interpretation gives rise to probabilities in quantum mechanics
which then appear in quite different forms. The second equation mentioned above,
which is central to this statistical interpretation, is usually derived in textbooks by
computing ∂|ψ|2/∂t using Schrödinger’s equation. The reader is encouraged to
carry out this derivation using:

1. the product rule for calculating the derivative of a product,
2. the fact that ψ∗ solves the complex conjugated form of the Schrödinger

equation (1.2), and
3. the fact that the potential V takes real values, so it drops out in the end.

This leads to a continuity equation, the so-called quantum flux equation:

∂|ψ|2
∂t

= −∇ · jψ , (1.4)

where ∇ = (∇1, . . . ,∇N), ∇k = ∂/∂qk , and the quantum flux jψ = (jψ1 , . . . , jψN)

is given by

jψn =
h̄

2im
(ψ∗∇nψ − ψ∇nψ

∗) = h̄

m
Im ψ∗∇nψ . (1.5)

4Born had first thought of |ψ | as a candidate for a probability density.
5In the sense of mathematical measure theory.
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Here Im denotes the imaginary part. The usual argument for ρ = |ψ|2 then
proceeds as follows. Integrate (1.4) over the entire configuration space Γ = R

3N ,
then transform the volume integral into a surface integral on the right-hand side
by application of Gauss’ theorem, so that the quantum flux gets integrated over a
surface ∂Γ at infinity, where the flux is zero:

d

dt

∫

Γ

ρ d3Nq =
∫

Γ

∂tρ d3Nq = −
∫

Γ

∇ · jψ d3Nq =
∫

∂Γ

jψ · dσ = 0 . (1.6)

This shows that the integral |ψ|2 over the whole space is preserved in time and |ψ|2
can indeed be taken as a probability density, because clearly, the total probability,
the probability of the sure event, cannot change in time. Normalised to unity, it
remains forever at unity. Of course, the invariance of the measure is only a necessary
condition, not a sufficient condition, to be able to consider ρ = |ψ|2 as a meaningful
probability distribution. In textbook quantum mechanics, the Born rule therefore has
the status of a postulate whose setting is ultimately only justified by experiment.
However, a theoretical justification of Born’s rule is possible, and we shall discuss
this in Chap. 4.

1.3 The Spreading of theWave Packet

An important phenomenon associated with the Schrödinger evolution is the spread-
ing of a wave packet. With some basic mathematical knowledge, it is easily
explained. The wave function (in the form of a wave packet) of a particle of
mass m can (and should) be thought of as a superposition of plane waves, i.e., in
mathematical terms, we should consider its Fourier decomposition. A plane wave
with wavelength λ and wave number k = 2π/λ evolves according to

ei(k·x−h̄k2t/2m) ,

as can be checked immediately using the “free” Schrödinger equation (1.2) for one
particle and for potential V = 0. Here k is the wave vector with length |k| = k. The
superposition of the plane waves with weights ψ̂0(k), i.e., the Fourier transform of
ψ(x, 0), yields

ψ(x, t) =
∫

ψ̂0(k)ei(k·x−h̄k2t/2m)d3k , (1.7)

whence we may assign a group velocity v to the wave group around a certain value
of k :

v = h̄k
m

. (1.8)
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To obtain this, we differentiate the dispersion relation ω := h̄k2/2m with respect to
k and evaluate at that k-value around which the wave group is centered.

The formula (1.8) was found long before the Schrödinger equation by Louis
de Broglie (1892–1987) as a generalisation to “matter waves” of Einstein’s T-shirt
formula for photons E = hν. Indeed, p = h̄k is de Broglie’s relationship between
the wave number and momentum of the particle. The shorter the wavelength, the
faster the wave moves. That’s one thing to keep in mind. On the other hand, it
is known from lectures on analysis, and in particular, the Fourier transform, that
the more concentrated a function is in space, the more plane waves with higher k-
values occur in the Fourier decomposition of the function. So if we consider the
wave function of a particle that is highly localised around a position, then we know
very exactly the location of the particle due to Born’s interpretation. And the more
closely we need to know the particle’s position, the more localised the wave function
must be. However, the more localised the wave function, the more plane waves with
ever higher k-values will be needed to compose that wave function. And then, since
the plane waves all have different speeds, the original wave will break up in the
course of time into the plane wave parts running at different speeds, at least when
the free Schrödinger equation with V = 0 governs the motion. The location of the
particle at time T will thus be widely scattered, because the individual waves have
travelled different distances, and all the more so as the spread in k-values increases.

Every student of physics should carry out the mathematical examination of this
spreading effect at least once. It is as fundamental as the derivation of the quantum
flux, and that is why we discuss it here. To do so, we first read the integral in (1.7) as
an inverse Fourier transform of the product of the functions e−ih̄k2t/2m and ψ̂0(k).
Next we recall from the study of analysis that the product of two functions becomes
a convolution under Fourier transform:

f̂ · g(k) = f̂ ∗ ĝ(k) := 1

(2π)3/2

∫
f̂ (k− k′)ĝ(k′) d3k′ .

The same also applies to the inverse transform. Our first mathematical task will
thus be to determine this convolution. We compute the Fourier transform of the first
function which looks like a Gaussian up to the factor i, noting that the presence of
this factor does not change the result that the Fourier transform of a Gaussian is
again a Gaussian.

The rigorous calculation is more involved and uses complex analysis. The result
is

ψ(x, t) =
∫

1
(

2π i h̄
m

t
)3/2

exp

[
i
(x− y)2

2 h̄
m

t

]
ψ0(y)d3y , (1.9)
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which is an important representation of the evolution of the wave function for the
initial wave function ψ0. Evaluating the square in the Gaussian, we obtain

ψ(x, t) = 1
(

it h̄
m

)3/2
exp

(
i

x2

2 h̄
m

t

)∫
1

(2π)3/2
exp

(
−i

x · y
h̄
m

t

)
exp

(
i

y2

2 h̄
m

t

)
ψ0(y) d3y

= 1
(

it h̄
m

)3/2 exp

(
i

x2

2 h̄
m

t

)
ψ̂0

(
xm

th̄

)
(1.10)

+ 1
(

it h̄
m

)3/2

∫
1

(2π)3/2

[
exp

(
i

y2

2 h̄
m

t

)
− 1

]
exp

(
−i

x · y
h̄
m

t

)
ψ0(y) d3y .

Note that the second summand in (1.10) goes to zero6 when t →∞, because

lim
t→∞

[
exp

(
i

y2

2 h̄
m

t

)
− 1

]
= 0 .

This means that for large times the wave function is given by the first summand
in (1.10), viz.,

ψ(x, t) ≈ 1
(

it h̄
m

)3/2 exp

(
i

x2

2 h̄
m

t

)
ψ̂0

(
xm

th̄

)
. (1.11)

This can be interpreted as follows. For large times t the wave function will have
moved to places x for which k = xm/th̄ ∈ supp ψ̂0, that is, places which are
reached by wave groups centered around those wave vector values. Here supp ψ̂0 is
the set of values for which ψ̂0 
= 0, where supp is an abbreviation for “support”.
Hence, in a sense, supp ψ̂0 specifies which plane waves are contained in ψ0, and
these then diverge from each other at different speeds according to the de Broglie
relation mv = h̄k for the momentum.

We also find that the momentum h̄k is distributed according to the probability

density
∣∣∣ψ̂0 (k)

∣∣∣
2
. This can be seen as follows. Suppose ψ0(x) is concentrated

around x = 0. The particles that have reached the position X(t) at time t � 0
have therefore moved approximately with the average momentum h̄k = m

t
X(t).

6Strictly speaking, we should use Lebesgue’s theorem of dominated convergence here, because we
exchange integration with taking a limit, but rigor does not bring new insights, so let’s ignore that
here.
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Hence, for any (measurable) subset A ⊆ R
3, the momentum distribution reads

P
ψ
(
h̄k ∈ h̄A

) ≈ P
ψ

(
X(t) ∈ th̄

m
A

)

≈
(m

h̄t

)3
∫

th̄
m

A

∣∣∣∣ψ̂0

(
xm

th̄

)∣∣∣∣
2

d3x =
∫

A

|ψ̂0 (k)|2d3k , (1.12)

where we have substituted k := xm/th̄ in the last step. Note that everything
follows from Born’s rule for the position distribution. And in particular note that
we consider here an average momentum, i.e., we know that the particle is at time
t = 0 here and at a much later time there. Then we take the distance between
the positions and divide by the time difference. It is this quantity that is measured
during a “momentum measurement”. The expected value of the momentum P = h̄k
is according to its definition

E
ψ(P) =

∫

R3
h̄k

∣∣∣ψ̂0(k)

∣∣∣
2

d3k . (1.13)

This can be rewritten as

E
ψ(P) =

∫

R3
ψ̂∗0 (k) h̄k ψ̂0(k) d3k . (1.14)

In lectures on quantum mechanics we are told that the momentum observable in the
position representation is given by h̄

i ∇, and we can now easily understand what this
means from (1.14):

h̄k ψ̂0(k) = h̄k
∫

ψ0(x)e−ik·xd3x

= h̄

∫
ψ0(x) i∇ e−ik·xd3x

= h̄

∫ [− i∇ψ0(x)
]
e−ik·xd3x (using integration by parts)

=
̂

(
h̄

i
∇ψ0(x)

)
(by Fourier transform) .

By virtue of the Plancherel identity we then get for (1.14)

E
ψ(P) =

∫

R3
ψ∗0 (x)

h̄

i
∇ψ0(x) d3x .



1.4 No Mystery: The Double-Slit Experiment 9

This leads to the introduction of the momentum operator P̂ = h̄
i ∇. In “position

space” it is a gradient and in “momentum space” a multiplication operator,
multiplying the Fourier transform of the wave function by h̄k.

Remark 1.3 (Perspectives on Heisenberg’s Uncertainty Relation) We have seen
that the spreading of the wave function is a wave phenomenon which, in com-
bination with Born’s statistical hypothesis, leads to an empirical truth which can
justifiably be regarded as one of the most significant innovations of quantum
mechanics: the more spatially concentrated a wave function, the more quickly it
spreads in time. According to Born, the initial high spatial concentration allows a
rather exact knowledge of the position, while the spreading leads to a whole range of
possible end positions, whose distribution we have associated with the momentum.
The relationship between the exactness of position and momentum measurements
is described by Heisenberg’s uncertainty relation.

Unfortunately, this is often interpreted as meaning that the uncertainty relation
implies the impossibility of simultaneous, arbitrarily accurate measurements of
momentum and position, but also that it proves that there can be no particles
moving on trajectories in quantum mechanics. Such an assertion is of course
unwarranted, but as the derivation of the uncertainty relation is usually presented
in a highly abstract manner, its true meaning often remains foggy. For example,
the mathematically rigorous derivation of the uncertainty relation is based on the
commutator of the “position and momentum observables”. It is then claimed that
the commutator lies at the heart of the uncertainty relation. But before buying that,
we need to be clear about the role the “observables” actually play in the theory. We
shall clarify this role in Chap. 7.

However, we can already understand from what has been said so far that what is
really responsible for the uncertainty relation is the time evolution of Schrödinger’s
wave function paired with Born’s interpretation. And this leads to a different
question: how can we justify Born’s interpretation? To come to grips with that,
we need to understand the so-called quantum theories without observers, such as
Bohmian mechanics. In such theories we will explain and justify Born’s statistical
rule. Finally, we shall understand why the uncertainty relation has nothing to do
with the existence or non-existence of particle paths. And the best way to see this is
to derive it from a theory in which particles move on trajectories, as we shall do in
Sect. 4.3.

1.4 NoMystery: The Double-Slit Experiment

Richard P. Feynman (1918–1988), one of the great physicists of the last century,
began his lecture on the double-slit experiment as follows:

In this chapter we shall tackle immediately the basic element of the mysterious behavior in
its most strange form. We choose to examine a phenomenon which is impossible, absolutely
impossible, to explain in any classical way, and which has in it the heart of quantum
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mechanics. In reality, it contains the only mystery. We cannot make the mystery go away by
“explaining” how it works. We will just tell you how it works. In telling you how it works we
will have told you about the basic peculiarities of all quantum mechanics. (R.P. Feynman,
R.B. Leighton and M. Sands. Feynman Lectures on Physics, Volume 3, pp. 17–18, http://
www.feynmanlectures.caltech.edu.)

Now we could say that if even Feynman felt that the double-slit experiment was a
mystery, then we shouldn’t be ashamed if we feel the same way. That’s one possible
angle. However, another point of view is this: if after almost a century standard
quantum mechanics is still unable to explain—in the true sense of “explain”—
such a fundamental phenomenon, then there may be something wrong with the
theory. The quantum theories we will discuss in this book will clarify the double-slit
experiment and other quantum phenomena, in the sense that they not only “describe”
the phenomena correctly, but provide a complete picture of how the phenomena
come about.

But let’s stick to the Feynman quote for now. Feynman says that it is absolutely
impossible to explain the double-slit experiment “in a classical way”. This is intu-
itively correct if “classical” refers to the laws of Newtonian mechanics. However,
in addition to Heisenberg’s uncertainty relation, the double-slit experiment is often
quoted as proof that “classical logic” has lost its validity in quantum mechanics.
Or that the experiment shows that particle trajectories are simply impossible. Both
views are wrong. The possible particle trajectories are shown in Chap. 8, but to come
to grips with the discussion at hand the reader is advised to look at Fig. 8.2 and focus
for the time being only on the end points of the trajectories. They represent the
typical blackening on the screen, which results in the famous “interference pattern”.

So what is all this talk about the failure of “classical logic”? Actually, it is rather
strange that such concepts as “quantum logic” and “classical logic” ever entered
scientific discussions at all, in particular since the double-slit experiment has nothing
to do with all this. The double slit experiment can be described as follows. Two
(nearby) slits are imaged by a particle beam on a photo screen and the blackening
of the screen shows an interference pattern. More precisely, at very low beam
intensities, i.e., only one particle is on the way7 at any given time, or put another
way, we send only one-particle waves through the slits, the interference pattern,
made up of completely localized, randomly distributed black dots, develops slowly
over time.8 This is perhaps the most important message of all: the interference
pattern emerges gradually, wave by wave (or particle by particle), and is nothing
more than an accumulation of impact points. Once this has been understood, it opens
up a whole catalogue of questions, from which we would like to draw attention to
two in particular:

7In an ideal situation, we might imagine sending only one particle through the slits each day . . .
8. . . and that could take years.

http://www.feynmanlectures.caltech.edu
http://www.feynmanlectures.caltech.edu
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1. Why does a pointlike spot appear when it is actually a wave that impinges on
the screen? The answer closely concerns the measurement problem of quantum
mechanics, which we discuss in Chap. 2 .

2. What is the time distribution of the dots? Suppose the one-particle waves are
prepared and sent at fixed times, let’s say every full hour. Does every dot appear
on the screen after the same amount of time? The answer is no. The times are
random, with statistics determined by the quantum flux (1.5). This is usually
ignored in textbook presentations and there are various ways to justify that. The
main reason why this can be ignored from a practical point of view relates to
the asymptotic shape of the wave function (1.11), which ensures that the flow
lines eventually become straight. When calculating the distribution of dots on the
screen, we can in fact replace the real wave pattern behind the slit by a stationary
(i.e., temporally unchanging) wave pattern and apply Born’s interpretation to
this. The exact analysis is mathematically rather involved, however. It can be
found in the chapter on scattering theory in Bohmian Mechanics, The Physics
and Mathematics of Quantum Theory.9

We turn now to the issue of logic. First let slit 1 be closed, then the particle can only
go through slit 2 and we can make the following statements about this experiment:

The particle goes through slit 2 and hits the screen at x . (1.15a)

The corresponding probability is |ψ2|2(x). (1.15b)

Here ψ2 is the wave function that emerges from slit 2 as a spherical wave. Here
we repeat our previous warning: recalling the answer to question (2) above, the true
probability for dots appearing on the screen is determined by the quantum flux, but
the probability can effectively be computed from the |ψ2|2 distribution at a fixed
(large) time. The same applies to the case when we close slit 2 and open slit 1. In
this experiment, we can make the statements:

The particle passes through slit 1 and hits the screen at x . (1.16a)

The corresponding probability is |ψ1|2(x). (1.16b)

The experiment in which both slits are open can then be described as follows:

The particle passes through either slit 1 or slit 2 and hits the
screen at x . (1.17a)

The corresponding probability is

|ψ1(x)+ ψ2(x)|2 = |ψ1|2(x)+ |ψ2|2(x)+ 2Re ψ∗1 (x)ψ2(x), (1.17b)

9D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and Mathematics of Quantum Theory.
Springer, 2009.
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where Re is the real part and we observe that this is not equal to |ψ1|2(x) +
|ψ2|2(x). The difference with (1.17b) is due to the interference between the wave
function parts ψ1 and ψ2 which emerge from slits 1 and 2. This is a typical wave
phenomenon. A water wave that passes through a double slit develops the spherical
Huygens waves behind the slits, named after Christiaan Huygens (1629–1695), and
these then produce the same interference pattern. In the present case the interference
term is given by 2Reψ∗1 (x)ψ2(x). And this is the bad news, because (1.15a)
and (1.16a) are the alternatives in (1.17a), so logically the corresponding proba-
bilities should add up. But they don’t!

So we conclude that classical logic fails. Either that or the particle interpretation
is nonsense. Or better still, both. It would only be if

Re ψ∗1 ψ2 = 0 , (1.18)

that is, if the interference vanishes, that the probabilities (1.15b) and (1.16b) would
sum and ordinary logic would be redeemed.

But the truth is, this is all a lot of fuss over a red herring. All we need to do is to
take physics seriously and describe the two situations correctly:

Slit 1 (2) is closed and the particle goes through slit 2 (1) and hits
the screen at x.

These two statements correspond to the physical situations in the first two experi-
ments, but they are not the alternatives in (1.17a). This is obvious, because in the
latter case both slits are open. This difference in the physical settings should be
noted first. Then we may go on and realize that the assertion that the probabilities
associated with the first two experiments should “logically” sum up is based on
the assumption that the behaviour of the particles passing through slit 1 does not
depend on whether slit 2 is open or closed (and vice versa). The first point is
that this assumption is not justified, and the second is that it is clearly wrong in
quantum mechanics: if both slits are open, then the wave passing through both
slits interferes with itself. The resulting waveform is certainly responsible for the
shape of the accumulation of the black dots. The only question that remains is:
Where do the black dots come from? This is indeed a rather disturbing and yet
crucial question because, as already stressed, it is intimately connected with the
measurement problem, to be dealt with in Chap. 2.

1.5 The Importance of Configuration Space

After linearity (Remark 1.1) and Born’s statistical law (Remark 1.2), we come now
to the third pillar of quantum mechanics. For this, we go back to the beginning,
namely to the wave function of an N-particle system [see (1.1)]. No matter
how abstract or mind-boggling it may sometimes seem to be, the wave function
ψ(q1, . . . , qN) is first and foremost simply a function on the configuration space of
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the N particles. Those who believe that the concept of “particle” is physically ill-
founded can take this sentence and the word “particle” as a “manner of speaking”.
A configuration is the collection of N position variables qi ∈ R

3, i.e., q =
(q1, q2, . . . , qN) and the set of all possible configurations is called the configuration
space, denoted R

3N .

Remark 1.4 (Configuration Space and Entanglement) The wave function of an N-
particle system is defined on the configuration space R

3N . This means that all
N particles share a common wave function. Only in the special case when the
wave function is a product ψ(q1, q2, . . . , qN) = ϕ1(q1)ϕ2(q2) · · ·ϕN(qN) can we
say that the wave function of the whole system is given by N independent wave
functions, one for each particle. In quantum mechanics, such a state is said to be
“separable”. In general, however, ψ(q1, . . . , qN) is not a product, in which case we
speak of quantum entanglement or we say the “state is entangled”.

The main difficulty with thinking in terms of configuration space is that it has
very high dimensions, e.g., for a gas of particles, the dimension is of the order of
Avogadro’s number (∼ 1024). It is therefore hard to picture.10 On the other hand,
we really must think in terms of configuration space in order to understand quantum
mechanics! In later chapters we shall return often to this point, but for the time being
we wish to emphasize the meaning of configuration space and to put forward some
ideas that can help us to reason in configurational terms.

Our world of experience is spatially located in a three-dimensional space,11

i.e., bodies like measurement instruments and their pointers occupy regions of
space. But the bodies themselves consist of atoms (which themselves consist of
smaller objects, but that doesn’t matter now) and it is their spatial arrangement,
namely their configuration that gives the body its shape. This means that the
region in configuration space determines the body, its shape, its position, and its
orientation in space. What must be understood is that different spatial positions
of a body are described by disjoint regions in configuration space. If we are
concerned with macroscopic bodies (where the number of atoms is of the order
of Avogadro’s constant), for instance the pointer of a piece of measuring apparatus,
then macroscopically different situations (pointer points to the left or to the right)
are given by macroscopically disjoint subsets of configuration space (see Fig. 1.1).

10The rather beautiful German word “unanschaulich” is often used to describe configuration space,
but it has also been abused in the context of quantum mechanics to suggest that one cannot develop
any coherent picture of what is going on in the microcosm.
11It is often stated in quantum theory that it is of great philosophical importance that in Hilbert
space, the space of wave functions, one can select an arbitrary basis in which to express the
wave function in coordinates. So there is a position basis, a momentum basis, an energy basis,
and whatever we want, and none of those bases is preferred. This is true mathematically. But
every human being, even someone working in the field of quantum physics, lives and dies in
position space, at least physically. So it is natural enough to find wave functions in the position
representation particularly informative.
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Fig. 1.1 Different macroscopic objects, here two physical pointers consisting of N atoms, where
N has the order of magnitude of Avogadro’s number, are represented by disjoint regions in
the configuration space R

3N (left). The wave function of each pointer is concentrated in the
corresponding area because of Born’s interpretation of the wave function (right)

Those configurations that describe a pointer pointing to the left lie in a completely
different region of configuration space than those that describe a pointer pointing to
the right. And the two regions do not only differ by a few coordinates (or degrees
of freedom), but by a huge number of them (order of magnitude 1024)—hence the
term “macroscopically disjoint”.

The wave functions of (macroscopic) bodies are functions on configuration
space, and according to Born’s rule—because we can see pointers or other macro-
scopic objects quite sharply—their wave functions are essentially only concentrated
in the regions of configuration space which define the shapes, locations, and
orientations of the bodies. Above we introduced the notion of support for the set of
points where a function is not equal to zero. Thus, the wave functions that describe
different pointer positions12 will essentially have macroscopically disjoint supports
(see Fig. 1.1). The configuration space of a single particle is the physical space R

3.
That is sufficient to understand the double-slit experiment, as discussed. But often
in this context the question arises: If we do not close the slits but attach a measuring
device designed to determine which slit the particle goes through, what happens

12Mathematically trained students will soon realise that if an initial wave function has compact
support the time evolved wave function (solving Schrödinger’s equation) will immediately have
support equal to the whole of configuration space. But the function will be almost zero in most of
configuration space. Hence all the following statements about disjoint supports and the associated
picture can be taken with a grain of salt, i.e., they should be taken in the sense of physics and not
pedantic mathematics.
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Fig. 1.2 Left: Superposition of two initially spatially separated wave functions of a system (x)
which spread in time and whose supports overlap at time T . In the overlap region interference
occurs. Right: In the configuration space of the apparatus (y) and the system, the coupling of a
piece of apparatus with pointer wave functions Φ0 (pointer null setting) and Φ1,2 (displays). The
macroscopic wave functions have disjoint supports, which remain disjoint throughout the time
evolution. The spreading of the system wave function parts does not lead to any overlap of the
supports. Interference is not possible

then? The answer is that decoherence takes place and the interference pattern
disappears. Simply put, the wave function of the particle becomes entangled with
the wave function of the measurement device, and this entangled, high-dimensional
wave function no longer interferes. Related to this is the phenomenon that the
interference pattern becomes weaker or even disappears completely when very large
molecules (say 1010 particles, sometimes referred to as Schrödinger cat states) are
sent through the double slit.

The disappearance of interference can be explained by Fig. 1.2, which we will
now discuss only briefly, because we will repeatedly take up the same reasoning in
detail in the following chapters. A measuring device (symbolized by a pointer) is a
macroscopic system and a measurement experiment involves an interaction between
the system to be measured (e.g., the particle in the double-slit experiment) and the
apparatus. The wave function of the total system (particle plus apparatus) evolves
according to the Schrödinger equation (1.2) for the total system.

In the following, the reader will have to make some effort to make the connection
between the abstract representation and the actual double-slit experiment. We
consider a system (coordinates x, dimension m), whose wave function consists
of a superposition of two wave functions ψ1(x) and ψ2(x) (think of the wave
components, which start in each slit as Huygens’ spherical waves), coupled to a
piece of apparatus (coordinates y, dimension n), represented by the pointer null
state Φ0(y) and the two possible pointer positions Φ1(y) and Φ2(y). The coupling is
expressed by an interaction potential occurring in the Schrödinger equation and it is
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assumed that the corresponding Schrödinger evolution13 of the total wave function
yields

ψiΦ0
t−→T−→ ψiΦi , i = 1, 2 , (1.19)

where T represents the duration of the measurement. This means that the pointer
positions correlate with the wave functions ψ1 and ψ2, respectively, the pointers
“indicate either ψ1 or ψ2”, e.g., whether the particle was registered at the upper or
at the lower slit. If now the system has initially the wave function ψ = ψ1 + ψ2
(we ignore normalization constants), then due to linearity (see Remark 1.1) and
using (1.19), we obtain

ψΦ0
t−→T−→ ψ1Φ1 + ψ2Φ2 . (1.20)

Look at the corresponding Fig. 1.2 of the supports of the wave functions in
configuration space! Actually, this contains everything we need to understand the
phenomenon, but to really grasp that, we do need to think deeply about what
the figure shows, because thinking in terms of configuration space is not easy.
In any case, the conclusion is that the (apparatus + system) wave function parts
have disjoint supports after the measurement and therefore pass each other in
configuration space without overlapping. Therefore the interference terms (1.18)
disappear and we have what is called a decoherent superposition. This does not
explain why we always see only one of the two pointer positions (this is the
measurement problem), but it does explain the disappearance of the interference
pattern on the screen.14

Why does something similar happen, namely the suppression of interference,
when large molecules are used in the double-slit experiment? Because a large
molecule interacts more easily with its surroundings (air, electromagnetic waves,
etc.) than a photon or an electron does. Loosely speaking, the environment
“measures” the position of the molecule more effectively (like a piece of apparatus)
than it does for a photon, for example. That means that interaction is ubiquitous,
sometimes very invasive, sometimes less invasive. For macroscopic objects like
pointers or cats, the interaction with the environment is very invasive, so interference
of superpositions of macroscopic wave functions is practically impossible, because

13Starting with a “product wave function” Ψ (q) = Ψ (x, y) = ψi(x)Φ0(y) expresses the idea of the
physical independence of system and apparatus before they interact. In the case of no interaction
V (x, y) ≈ 0, the Schrödinger equation (1.2) “factorises” into two independent equations, one
for each factor of the product wave function. In that situation, the system and apparatus remain
“physically independent”. However, it is important to note that V (x, y) ≈ 0 by itself does not
imply physical independence because the wave function need not have product structure.
14Note that a superposition of wave functions does not necessarily mean that interference takes
place. By the same token, if a superposition does not lead to interference, i.e., decoherence takes
place, that does not mean that there is no superposition.
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the wave parts entangle continuously with the wave function of the environment.
Thus the effect of decoherence grows. We may now understand why we do not find
such quantum interference effects in our macroscopic world of experiences, i.e., in
classical physics, which naturally arose first as a description of nature. That is, we
understand why we never have the experience of our interlocutor melting away like
a character in an Edgar Allan Poe story.

Macroscopically separated wave components of a superposition run past each
other (in configuration space). And the higher the dimensionality of the configu-
ration space, the harder it is for them to “meet”. If an experimenter were to set
out to perform a truly macroscopic interference experiment (interference of the
wave parts in Schrödinger’s cat experiment), her task would be as complex as the
following: simultaneously reverse the velocity of every gas molecule in a room.
This analogy is apt, because it is about the precise control of roughly 1024 degrees
of freedom. In the quantum mechanics of large systems, these are the phases in
the macroscopic wave, in classical mechanics, the velocities of the particles. It can
also be said that decoherence is an irreversible process in the thermodynamic sense.
Since macroscopic wave function parts can no longer interfere and we always “see”
only one of the macroscopic parts, one can introduce the famous collapse of the
wave function, i.e., pretend that the branch of the wave function that we no longer
see simply disappears, which sounds a bit like “putting one’s head in the sand”.
We’ll discuss this in more detail in Chap. 2.

1.6 The Classical Limit

This term so often used and heard doesn’t actually make much sense. Limits are
taken in mathematics for proving theorems and thus do not belong in the world of
physics. What exactly does the “classical limit” mean then? The term is used as a
shorthand description for physical situations that are more conveniently described
by classical mechanics than by quantum mechanics. A bit more needs to be said
because we seem to do immensely well with classical physics and it’s usually
much more difficult to see quantum mechanical effects. Nevertheless, it is generally
accepted that quantum mechanics is more fundamental than classical mechanics,
i.e., the latter should be included in the new theory as a kind of “limiting case”.

It is sometimes said that the classical limit comes about by letting Planck’s
quantum of action h̄ goes to zero. For example, in the limit h̄ → 0, the commutator
of the position and momentum operators becomes the Poisson bracket of position
and momentum in classical mechanics. Why is that statement meaningless? Because
Planck’s constant is fixed at the value 2πh̄ = 6.626 070 15× 10−34 J s no matter
what, so it cannot tend anywhere at all. So what is actually intended? There is indeed
a lot to be said about a statement like this. For example, it may mean that in certain
physical situations, where the evolution of the system is determined by a physical
quantity with the dimension of an action (J s) and where the ratio of h̄ to the value of
this action is very small, the evolution of the system can be considered classically.
And how small is small? So small that the wavy nature which in general determines
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the evolution of quantum objects can be ignored. That is the case when interference
effects are suppressed.

Let us make a second comment. Classical physics deals with objects located in
physical space, such as point particles in Newtonian physics. They move according
to Newton’s laws. That’s classical physics. However, according to the doctrines
of quantum theory (the Copenhagen interpretation, for example) localized objects
(such as particles) do not exist. But if quantum theory is seen as fundamental
(incorporating classical physics), how can such localised objects ever arise? That
is mysterious. How much clearer the situation would be if there were already such
localized objects in the more fundamental theory, whose motion in certain physical
situations looked like the classical orbits of matter, e.g., in situations which could
be characterized by the ratio of an action pertaining to the system and h̄. And so we
come back to the all-importance of ontology.

Unfortunately, one often hears or reads that the introduction of localized objects
into quantum mechanics, such as the flashes of the GRW theory or the particles of
Bohmian mechanics, would amount to a (stubborn) return to classical physics. So
classical physics is taken as being synonymous with a physics of localized objects.
This is unjustified, as the theories described in the following chapters will show.

1.6.1 Motion of ConcentratedWave Packets

A fundamental condition for the retrieval of classical mechanics in quantum
mechanics is, according to Born’s statistical hypothesis, to have a well localized
wave function (a wave packet), because classical objects always seem to be well
localized: a table may wobble because the floor is uneven, but it is never blurred
or even in a superposition of table here and table there. If we move it, it moves
along a Newtonian trajectory. Therefore, no matter which theory we prefer, we must
eventually understand how well-localized wave functions move. When we discuss
collapse models and Bohmian mechanics in the later chapters, by virtue of Born’s
statistical hypothesis the localized fundamental quantities such as the GRW flashes
or particle positions in Bohmian mechanics will typically follow the center of the
“well concentrated” wave packet.

But there are wave functions (actually most of them), which are not at all
localised and therefore oppose classical physics in every respect, as for exam-
ple (1.20). We discuss these in detail in Chap. 2. In order to cope with such wave
functions, we must take the solutions to the measurement problem seriously, and
if we do so, the remaining problems simply evaporate. This also includes what we
have just shown in Sect. 1.3, namely that every wave packet spreads over time. How
fast it spreads depends on parameters such as the mass, i.e., there are time scales
(depending on the mass) over which the initially localized wave packet will remain
well localized.

But spreading takes place as long as the wave packet evolves (more or less) freely,
i.e., when the system can be considered as isolated. So does that mean that a classical
description will not be possible after all? Well, wave packets are never completely
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isolated from the rest of the world. There are interactions with the surrounding
air or with light and, as we said in the previous section, interactions can function
like measurements. Here, once again, is the importance of the configuration space!
That is, the environment “constantly checks where the particle is,” and it always
“collapses” to that part of the wave function in which the particle is located.

But isn’t this all just idle talk? What exactly does it mean to say that the wave
function collapses? And if the environment “measures” where the particle is, what
or who “measures” the environment? So we end up once again with the situation of
Chap. 2 and we must understand the possible solutions of the measurement problem.
There is simply no way around that.

But for now we do not care how long an initially concentrated wave function
remains concentrated, we just follow it as long as it stays concentrated enough,
where “enough” can be quantified to some extent by the following. We model the
evolution of the wave function in an external potential V , i.e., the wave function
ψ(x) evolves according to the Schrödinger equation (1.2):

ih̄
∂ψ

∂t
(x, t) = − h̄2

2m
Δψ(x, t)+ V (x)ψ(x, t) =: Hψ , (1.21)

where the symbol H denotes what is called the Hamiltonian. Born’s statistical
hypothesis states that the expected value of the position evolves according to15

〈X〉(t) :=
∫

x|ψ(x, t)|2 d3x . (1.22)

Taking the derivative with respect to time and using (1.4), we get

d

dt
〈X〉(t) =

∫
x

∂

∂t
|ψ(x, t)|2 d3x

= −
∫

x∇ · j(x, t)d3x

=
∫

j(x, t) d3x , (1.23)

after integrating by parts and setting the boundary terms to zero. In classical physics,
i.e., Newtonian physics, acceleration plays the key role in the law of motion.
Therefore we are interested in d2〈X〉/dt2, i.e.,

d2

dt2 〈X〉(t) =
∫

∂

∂t
j(x, t) d3x .

15The symbol 〈 · 〉 is a common way to denote a mean or average.
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Recalling the quantum flux equation (1.5), we have

∂

∂t
j = − ih̄

2m

∂

∂t

(
ψ∗∇ψ − ψ∇ψ∗

)
.

Observing that ψ∗ satisfies the complex-conjugated Schrödinger equation [take the
conjugate complex of (1.21)], we obtain

∂

∂t
j = 1

2m

[
(Hψ∗)∇ψ − ψ∗∇(Hψ)+ (Hψ)∇ψ∗ − ψ∇(Hψ∗)

]
.

Observing further that, for any ψ , ϕ and using partial integration and the self-
adjointness of H ,

∫
ψ∗Hϕ d3x =

∫
(Hψ∗)ϕ d3x ,

we get

d2

dt2 〈X〉(t) = 1

2m

∫ [
ψ∗H∇ψ − ψ∗∇(Hψ)+ ψH∇ψ∗ − ψ∇(Hψ∗)

]
d3x

(1.21)= 1

2m

∫ [
ψ∗V∇ψ − ψ∗∇(V ψ)+ ψV∇ψ∗ − ψ∇(V ψ∗)

]
d3x

= 1

2m

∫ [− (∇V )ψ∗ψ − (∇V )ψψ∗
]

d3x

= 1

m

〈−∇V (X)
〉
(t) .

Amazing, isn’t it? We get the Newtonian equations “on average”. This is a version
of the famous Ehrenfest theorem:

m ¨〈X〉(t) = 〈−∇V (X)
〉
(t) . (1.24)

We would get the classical limit and with it the identification of the parameter m as
the Newtonian mass if we also had

〈−∇V (X)
〉
(t) ≈ −∇V

(〈
X
〉
(t)

)
, (1.25)

because then we would get the Newtonian equation of motion for 〈X〉. This is where
ψ(x, t) being “concentrated enough” comes into play: recalling the definition (1.22)
of the expected value, we see that the fluctuation around the average value is small,
so the expected value of the function of the random variable is given approximately
by the function of the expected value.
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As a final remark, or better, as a warning, we said earlier that the spreading of the
wave function is countered by the interaction with the environment, which ensures
that the wave packet remains well localized.16 But why, we may wonder, is the
Schrödinger equation still applicable, as we have assumed in the above argument? In
fact in such situations, where it is the environment which produces the wave packet,
it is no longer valid for the wave packet because it is not a closed system. This means
that we still need to justify its approximate validity if we are to ensure that the above
computation is well founded. We shall not do that here. We refer instead to Bohmian
Mechanics. The Physics and Mathematics of Quantum Theory.17

1.7 Spin and the Stern–Gerlach Experiment

Another innovation of quantum mechanics is “spin”. It is tempting, given the name,
to think of a continuously rotating object, but that is not appropriate. Nevertheless,
it is easy to say what spin is mathematically. What is not as easy is to explain why,
for example, an electron “must have” spin. The “nonclassical bivalence” [as named
by Wolfgang Pauli (1900–1958)] of the spin−1/2 electron is something really new,
something fundamentally quantum mechanical. In the Stern–Gerlach experiment, a
silver atom18 passing through a Stern–Gerlach magnet (which produces a strongly
inhomogeneous magnetic field) is deflected like a magnetic dipole which adjusts
itself to lie parallel (spin +1/2) or antiparallel (spin−1/2) to the field gradient (see
Fig. 10.1 for an experiment with the Stern–Gerlach setup). A Stern–Gerlach system
which is set up “in the z-direction” prepares “spin +1/2 particles” or “spin −1/2
particles” in the z-direction. Now send a z-spin +1/2 particle through a Stern–
Gerlach apparatus which is oriented both (1) orthogonal to the z-direction and (2)
orthogonal to the flight direction of the particle. Let us say that it is oriented in the
y-direction. Then with probability 1/2 the particle will end up as a y-spin +1/2 or
a y-spin −1/2 particle. If we choose any other direction, only the probabilities for
the splits are influenced, but the bivalence remains. This is an experimental fact.

16A warning within a warning: the interaction with the environment actually produces a
measurement-like situation, as discussed in Chap. 2, i.e., we end up with a superposition of wave
packets which are more or less spatially separated. So Chap. 2 is relevant for this too.
17D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and Mathematics of Quantum Theory.
Springer, 2009.
18Actually one would like to do the experiment with electrons, but silver atoms have the advantage
of being electrically neutral while possessing a net magnetic moment, due to a single outer electron.
Therefore, it is as good as an electron as far as spin is concerned. The fact that it is electrically
neutral is also good, since the Lorentz force on charged particles does not then contribute.
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The wave function of the particle must therefore observe this splitting and the
simplest way to achieve this is to assign two degrees of freedom to the ψ-function
itself. ψ thus becomes a spinor wave function:

ψ : R3 → C
2 , ψ(x) =

(
ψ1(x)

ψ2(x)

)
, (1.26)

with normalisation

∫
(ψ, ψ) (x) d3x =

∫ (
ψ∗1 (x)

ψ∗2 (x)

)
·
(

ψ1(x)

ψ2(x)

)
d3x =

∫ (|ψ1(x)|2+|ψ2(x)|2) d3x = 1 .

A spinor need not be two-dimensional like here. Other dimensions are possible,
for example four, for the relativistic Dirac equation [Paul Dirac (1902–1984), see
Sect. 11.1.2] for an electron.

The spin degrees of freedom couple to the magnetic field, as the Stern–Gerlach
experiment suggests. This is how. The Schrödinger equation for the wave function
will be replaced by the so-called Pauli equation, where the “potential” V becomes
a Hermitian matrix, and such a matrix can always be written in the form

V (x)E2 + B(x) · σσσ , V (x) ∈ R , B(x) ∈ R
3 , σσσ = (σx, σy, σz) ,

where we define the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.27)

The Pauli equation reads

ih̄∂tψ =
[

1

2m

(− ih̄∇ − eA
)2 + eV

]
ψ − μσσσ · Bψ , (1.28)

where we use the following notation:

• ψ(x) =
(

ψ1(x)

ψ2(x)

)
is the spinor wave function.

• e a parameter to be identified with the charge of the particle.
• μ is a “coupling constant”, called the gyromagnetic factor, which acts like the

strength of the magnetic moment.
• A is the vector potential.
• V is the electrostatic potential.
• B = ∇ × A is the magnetic field.
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In the normalisation of the spinor wave function [below (1.26)], we have used the
scalar product in spin space:

(ψ,ψ)(x) := (
ψ∗1 (x), ψ∗2 (x)

) (ψ1(x)

ψ2(x)

)
=

∑

i=1,2

ψ∗i (x)ψi(x) . (1.29)

This enters Born’s statistical distribution for the position of the particle which, for
the Pauli equation, becomes �ψ = (ψ,ψ). To see this we show that �ψ = (ψ,ψ)

satisfies the continuity equation (1.4) with

jψ = h̄

2im

[
(ψ,∇ψ) − (∇ψ,ψ)

] = h̄

m
Im (ψ,∇ψ) . (1.30)

The required computation is very much analogous to the one leading to (1.4),
but replacing the real function V by a Hermitian one, which does not affect the
argument.

Remark 1.5 (The Pauli Flux) What we just said is only for starters and we need to
add the caveat that there is a debate about what should be considered the right flux,
or what should be the physical flux for the Pauli equation. The general idea is that
it is not given by (1.30). There is nothing wrong with the computation suggested
above, but we must note that the continuity equation contains the divergence of jψ ,
with the consequence that the flux vector is not uniquely fixed by the continuity
equation. Any divergence-free vector field can be added to the flux vector, for
example, the curl of a vector field a(x), i.e.,∇×a(x), since by simple vector analysis
∇ · ∇ × a(x) = ∇ × ∇ · a(x) = 0. Is that a disaster? No, not really. We can just note
this and stay cool. If we wish to mess around with the Schrödinger flux then there
are the physical spacetime symmetries which must be respected by additional terms,
and this renders the Schrödinger flux pretty much unique.

But in the Pauli situation there does exist a natural additional flux term which is
well behaved in all respects and which is sometimes referred to as the Gordon term
[Walter Gordon (1883–1939), known from the Klein–Gordon equation] or the spin
flux. For a one-particle Pauli equation, this reads

h̄

2m
∇ × (ψ,σσσψ) .

When added to the so-called convective flux (1.30), the total flux is

Jψ
Pauli = h̄

m

[
Im(ψ,∇ψ) + 1

2
∇×(ψ,σσσψ)

]
. (1.31)

There are many arguments in the physics literature to justify taking this as the
correct Pauli flux. A straightforward and simple one comes with the derivation of the
Pauli equation from the relativistic Dirac equation. In particular, the Pauli equation
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results from the relativistic Dirac equation in a “non-relativistic limit”.19 The Dirac
equation is the relativistic wave equation for an electron, and when Dirac invented it,
the Schrödinger wave was replaced by a spinor wave function which naturally had
four components, and not two as in the Pauli equation. The Pauli equation arises
in this view as a “non-relativistic limit” of the Dirac equation, and when we take
the steps required to extract the Pauli equation and consider how this affects the
Dirac flux (11.5), which itself satisfies the continuity equation (11.6) for the Dirac
equation, the Pauli flux Jψ

Pauli emerges as the “non-relativistic limit” of the Dirac
flux.20

We mentioned in Sect. 1.4 that the quantum flux provides the statistics of arrival
times. In this respect it is interesting to ask whether the arrival times of spin-1/2
particles are determined by the correct Pauli flux. Quantum measurements of first
arrival times would provide helpful information, but they are still lacking.21

1.7.1 The Pauli Equation and the Stern–Gerlach Experiment

The reasoning behind the appearance of a two-component spinor was based on the
experimental fact that the wave function splits in a Stern–Gerlach experiment. This
fact will be used in Chap. 10 in the presentation of the famous EPRB argument
by Einstein, Podolsky, and Rosen, but in the spin version proposed by Bohm.
Therefore we wish to understand at least heuristically how the splitting comes about
by examining the Pauli equation.

As noted above, the Stern–Gerlach experiment is done with neutral atoms.
Therefore in what follows we shall consider a neutral particle and set e = 0 in (1.28).
We consider a Stern–Gerlach setup in which the particle crosses the magnetic
field in the y-direction, while the magnetic poles are directed in z-direction. We
idealize the experiment as taking place in the (y, z)-plane. The magnetic field is then
B = (0, By(y, z), Bz(y, z)) with div B = 0. Since the field is inhomogeneous in the
z-direction, this implies that there is also an inhomogeneous field in the y-direction,
but we shall ignore this effect. Furthermore, we shall see that the deflection which
we wish to argue for depends on the derivative ∂Bz/∂z. So to a first approximation,
we can look at the first order term in the Taylor expansion of Bz(y, z) around the
median value of z (midway between the two poles), which we can set equal to zero.
For simplicity, we can also set Bz(y, 0) = 0. So we end up with the approximation

B ≈ (
0, By(y), b(y)z

)
,

19We need to spell out carefully what is meant by this, but superficially we may consider that in a
particular physical situation the speed of the electron is much less than the speed of light.
20See, e.g., M. Nowakowski, The quantum mechanical current of the Pauli equation. Am. J. Phys.
67, 916–919 (1999), and for an overview, W.B. Hodge, S.V. Migirditch, W.C. Kerr, Electron spin
and probability current density in quantum mechanics. Am. J. Phys. 82, 681–690 (2014).
21For more on this, see S. Das and D. Dürr, Arrival time distributions of spin-1/2 particles. Sci.
Rep. 9, 2242 (2019), and arXiv:1802.07141.
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where we think of b(y) as an indicator function which has a constant value b in the
region of the magnetic field and vanishes outside.

Bearing in mind that we are considering a planar situation, let the initial wave
function of the spin particle be

Φ0(x) = ϕ0(z)ψ0(y)

[
α

(
1

0

)
+ β

(
0

1

)]
, (1.32)

where
(1

0

)
and

(0
1

)
are eigenvectors of σz with eigenvalues22 1 and −1, respectively.

(For ease of notation, we have assumed the same position dependence in the wave
function for both spinors. The following argument does not hinge on this.)

In the approximation of the magnetic field above, the y-motion of the wave
packet essentially decouples from the z-motion inside the region where the magnetic
field acts, so we obtain two Pauli equations, one depending only on the y-variable
and one depending only on the z-variable, with the latter containing the interaction
term μσzbz. Moreover, we assume that the wave packet moves fast in the y-direction
and is centred around the median. It will spend a short time τ in the magnetic field.
That is all we use from the y part of the problem. We focus now only on the z-motion
of the wave packet in the magnetic field. In doing so we also ignore the spreading
of the wave due to the Laplace term in the Pauli equation (1.28). Since the equation
is linear we need only consider Φ(1)(z) = ϕ(z)

(1
0

)
and Φ(2)(z) = ϕ(z)

(0
1

)
. We

represent the initial wave packet in its Fourier modes

ϕ0(z) =
∫

eikzf (k)dk , f (k) concentrated around k0 = 0 , (1.33)

which means in particular that there is no initial momentum in the z-direction.
Thus the problem is reduced to the solutions of the approximate Pauli equation,
viz., (1.28) without the Laplace term, e = 0 and with μσσσ · B replaced by μbzσz:

ih̄
∂Φ

∂t
(z, t) ≈ −μbzσzΦ(z, t) . (1.34)

This means the spinor parts satisfy

ih̄
∂Φ(n)

∂t
(z, t) = (−1)nμbz Φ(n)(z, t) , n = 1, 2 . (1.35)

After a time of flight t > τ , that is, after the wave packet has left the magnetic field,
we have

Φ(n)(z, t) = e−i(−1)n
μbτ
h̄ z

Φ
(n)
0 (z) . (1.36)

22We talked above about spin-1/2. For our purposes, this particular value is merely an unimportant
convention and has been absorbed in the gyromagnetic factor μ.
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The z-wave packets (1.33) now evolve freely again with wave numbers

k̃ = k − (−1)n
μbτ

h̄
,

and since they are solutions of the free wave equations, the frequencies are given by
the free dispersion relation ω(k̃) = h̄2k̃2/2m. Noting that k0 = 0, the group velocity
is

∂ω(k̃)

∂k̃

∣∣∣∣∣
k0=0

= −(−1)n
h̄μbτ

m
.

Therefore, the wave packet Φ(1) moves along the positive z-direction, i.e., in the
direction of the gradient of B (by convention we call this spin up) and Φ(2) moves
along the negative z-direction (by convention we call this spin down).

We find the spatial separation of the initial wave packet (1.32) into two parts
along the z-axis, whence the initial wave packet evolves into a superposition of
two separating wave packets, where the separation continues until new interactions
occur. That is, ignoring the y degrees of freedom,

Φ(z) = αϕ(1)(z)

(
1

0

)
+ βϕ(2)(z)

(
0

1

)
, (1.37)

where ϕ(1) is concentrated above and ϕ(2) is concentrated below the initial flight
axis. According to Born’s rule (1.2), and taking ϕ(1) and ϕ(2) to be normalised, we
conclude that with probability |α|2 the particle will be above, i.e., in the support of
ϕ(1)—then we say that the particle has spin up—and with probability |β|2 it will be
below, i.e., in the support of ϕ(2)—then we say that the particle has spin down.

For a general normalized spinor wave function

(
ψ1(x)

ψ2(x)

)
,

we obtain analogously z-spin up with probability

∫ ∣∣∣∣
(

ψ1(x)

ψ2(x)

)
·
(

1

0

)∣∣∣∣
2

d3x =
∫
|ψ1|2(x) d3x ,

and z-spin down with probability

∫ ∣∣∣∣

(
ψ1(x)

ψ2(x)

)
·
(

0

1

)∣∣∣∣
2

d3x =
∫
|ψ2|2(x) d3x .
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This notation, where on the left we recognize the projections onto the eigenvectors
of σz, can be straightforwardly generalized to arbitrary orientations of the Stern–
Gerlach magnets.

If the Stern–Gerlach magnet is oriented along a then the eigenvectors of σz will
be replaced by the eigenvectors of a · σσσ , usually denoted by |↑a〉 and |↓a〉. The
probabilities of a-spin up and a-spin down will then be computed by projections
onto the corresponding spin components, which we shall denote by |〈↑a |ψ〉|2 and
|〈↓a |ψ〉|2, respectively.

1.8 Why “Spinors”?

Why is the wave function (1.26) said to be spinor-valued and not simply C
2-valued?

Because it is not just two-valuedness which plays a role, but also the transforma-
tion property under symmetry transformations. The Schrödinger and Pauli wave
equations must respect the symmetries of Galilean spacetime. Among these are
spatial rotations, and we need to specify how wave functions transform under spatial
rotations, so that the equations for them remain invariant. But before we come to
that, let us clarify what is actually meant when we speak of the symmetries of
Galilean spacetime. For example, speaking about rotations in a pictorial manner,
we can say that our physical space has no preferred direction, so that the physical
law for the motion of “stuff” must not prefer one spatial direction over another. But
how are rotations described mathematically, since mathematics is the language in
which the book of nature is written? For that we need to recall some linear algebra.

Three-dimensional physical space is usually represented by the vector space R3.
And when we think of rotations, we naturally think of rotating the direction of a
vector through an angle. However, the ingenious discovery of Hermann Grassmann
(1809–1877), the father of modern linear algebra, was that the fundamental meaning
of a vector must be understood without any reference to angles. The latter are
brought in by introducing an extra structure, which one imposes on the vector
space. That extra structure is called a scalar product. The scalar product gives
meaning to angles and rotations. In short, in Grassmann’s abstract theory, rotations
are linear transformations on the vector space which leave the Euclidean scalar
product invariant. These linear transformations are represented by matrices in R

3,3,
which are orthogonal and special in the sense of having determinant 1. They form a
group called SO(3).

Next recall the notion of a vector field F : R3 → R
3, as used in classical physics.

At each point x ∈ R
3 there sits a vector

F(x) =
⎛

⎝
F1(x)

F2(x)

F3(x)

⎞

⎠
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which carries a geometrical meaning, namely a direction and a length. This
geometrical meaning manifests itself by the transformation property of the vector
field. In short, rotating the coordinate system, the coordinate vectors at every point
must rotate as well. Consider for example the Newtonian equations of motion of a
particle in a force field F :

mẍ = F(x) .

If it is to be taken as fundamental, this equation should be invariant under rotations.
Hence, if x(t), t ∈ R is a solution of Newton’s equation, then x̃(t) := Rx(t)

must be as well, where R ∈ SO(3) is a three-dimensional rotation matrix. We
can understand this in the sense of a passive transformation, in which case x̃(t)

is physically the same solution trajectory, only represented in a coordinate system
which has been rotated by R. The Newtonian equation of motion becomes

m
d2

dt2 x̃(t) = mRẍ = RF(x) = RF(R−1x̃)
!= F̃(x̃) . (1.38)

Hence, if the spatial coordinates are transformed by the rotation matrix R, i.e.,
x → x̃ = Rx, then F(x) must also be transformed by R at each point, i.e., as
F(·) → F̃(·) = RF(R−1·). Such a field F is called a vector field.

The rotation matrices R are representations of the rotation group on the vector
space R

3. To make the connection with C
2-valued spinors, we first build a small

bridge. We recall that the plane R
2 is isomorphic to the vector space C. A rotation

in the plane through an angle α is represented by a special (i.e., determinant 1)
orthogonal 2 × 2 matrix, which means to say that it is in ∈ SO(2), while in C

the same rotation will be represented by multiplication by eiα. We thus make the
following observation: instead of a two-dimensional representation of the rotations
in the plane, we may as well choose a one-dimensional representation in C given
by eiα, α ∈ [0, 2π). This representation is called the unitary one-dimensional group
U(1).

Spinors do something similar, but we need to dig a bit deeper to find a connection
betweenR3 and C

2. This connection is closely related to the field of quaternions and
its isomorphism with R

4, but it is not absolutely necessary to know about that if we
use a bit of imagination. It is easy to see that vectors in R

3 can be represented in the
following way by Hermitian 2× 2 matrices: x = (x, y, z) ∈ R

3 can be represented
by

x ∼= xσ1 + yσ2 + zσ3 =
(

z x − iy
x + iy −z

)
,
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where we have used the Pauli matrices σ1, σ2, σ3 as a basis. The representation is
obviously one to one. Now the question is: How can we represent rotations in this
case? Let us look at a rotation of the vectors through an angle α about the z-axis:

⎛

⎝
x ′
y ′
z′

⎞

⎠ =
⎛

⎝
cos α − sin α 0
sin α cos α 0

0 0 1

⎞

⎠

⎛

⎝
x

y

z

⎞

⎠ .

To have that rotation act on the matrix representation of the vector x, we recall that
transformations of matrices always act in a two-sided way, with one transformation
matrix multiplying from the left and the transpose or Hermitian conjugate of
the transformation matrix multiplying from the right, in the case of orthogonal
or unitary transformations, respectively. Since the transformation of the vector
representation must preserve the Hermitian character, it must be a unitary 2 × 2
matrix U depending on α which effects the transformation. Unitary means that
U+ = U−1, whence the determinant is ±1. With the choice det U = 1, the set of
such matrices forms a special group under multiplication and is denoted by SU(2).
Later we shall say more about the connection between SO(3) and SU(2). Note as
an aside that the Euclidean length of a vector is not changed under rotation. Here
the length squared of x is given by

‖x‖2 = ∣∣ det

(
z x − iy

x + iy −z

) ∣∣ = x2 + y2 + z2 ,

so it is immediate from the rules about determinants that the matrix transformation
does not change the length.

Following the above argument the x-matrix will be multiplied by U from the left
and by U+ from the right, so that in each of the matrices only half of the angle
must appear. It is easy to guess how the rotation by α around the z-axis should be
represented, viz.,

U(α) =
(

eiα/2 0
0 e−iα/2

)
, (1.39)

and we do indeed obtain the transformed vector (1.8)

(
z′ x ′ − iy ′

x ′ + iy ′ −z′
)
=

(
e−iα/2 0

0 eiα/2

)(
z x − iy

x + iy −z

)(
eiα/2 0

0 e−iα/2

)
.

(1.40)

The reader is invited to check the details of the calculation.
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Remark 1.6 (Two Possibilities) Note that (1.40) shows that−U does the very same
job, i.e., both ±U represent the same rotation. This double representation will be
discussed again later.

But our aim is to get the transformation behaviour of the spinor! To do this we
invoke a helpful mnemonic, namely that a spinor is something like a square root of
a vector, in the sense that the “product” of two spinors yields a vector. A nice way to
understand this is by rewriting the 2×2 Hermitian matrix representing our vector in
terms of dyadic products of its eigenvectors. Recall that a Hermitian matrix has real
eigenvalues, say λ1 and λ2, and two corresponding orthogonal eigenvectors, say s1

and s2. We normalize these. For s =
(

a

b

)
∈ C

2, let s+ := (a∗ b∗) be the transposed

complex conjugated vector. Then,

(
z x − iy

x + iy −z

)
= λ1s1s

+
1 + λ2s2s

+
2 , (1.41)

as can be seen by working out the eigenvalues and eigenvectors and checking that
everything comes out just right. Here is an example (where the eigenvalues have
been absorbed into the eigenvectors):

(
0 −iy
iy 0

)
=

(−i
√

y/2√
y/2

)(
i
√

y/2 ,
√

y/2
)
−

(
i
√

y/2√
y/2

)(
−i

√
y/2 ,

√
y/2

)
.

The matrix product of a vector s =
(

a

b

)
∈ C

2 and the dual vector t+ of another

vector t =
(

c

d

)
∈ C

2, viz.,

st+ =
(

a

b

) (
c∗ d∗

) =
(

ac∗ ad∗
bc∗ bd∗

)
,

is called the dyadic product. So we see that a three-dimensional Euclidean vector can
be represented as a Hermitian matrix, and the Hermitian matrix can be decomposed
into dyadic products of two-dimensional complex vectors s1 and s2. Now, s1 and s2
are spinors!

From this representation we also see why left–right multiplication by the rotation
matrix in (1.40) makes sense. In particular, the spinor s transforms only by
multiplying by U from the left. Then s+ automatically transforms by multiplying
by U+ from the right.

We now apply these insights to the spinor wave function to formulate the
transformation law. At each point x, the wave function ψ(x) has a geometrical
meaning, a “direction” as it were, and we need to say how ψ(x) transforms when we
rotate the coordinate system. The argument goes like this. Let R(α, n) be the three-
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dimensional rotation matrix for the rotation through the angle α about the rotation
axis n ∈ R

3, where ‖n‖ = 1. The reader should check that the corresponding
complex rotation matrix generalising (1.39) which acts on the spinor reads

U(α, n) := exp
(
−i

α

2
n · σσσ

)
, (1.42)

where n · σσσ = n1σ1 + n2σ2 + n3σ3. For a coordinate transformation

x → x̃ = R(α, n)x ,

the spinor wave function transforms according to [compare with (1.38)]

ψ(x) → ψ̃(x̃) = exp
(
−i

α

2
n · σσσ

)
ψ(R−1 x̃) . (1.43)

Such a ψ is called a spinor field, or a spinor wave function in the present case. Note
that the C

1-valued wave function (1.1) allows only a trivial representation of the
rotations in R

3, which means that it transforms as a scalar: ψ̃(x̃) = ψ(R−1x̃) =
ψ(x).

Note that, in the Pauli flux vector Jψ
Pauli(x) given in (1.31), the spinor wave

function also enters in a bilinear way, so once again it arises as something like
a square root of a vector, but not quite in the way we discussed above. It is an
enlightening exercise to actually show how the transformation property (1.43) of
the spinor gives rise to the correct rotation of the Pauli flux vector Jψ

Pauli(x).
It is worth saying more about all this. An interesting property of the spinor

representation (1.42) is that a rotation through the angle 2π about any axis amounts
simply to multiplication by −1. The simplest way to check this is to look at the
rotation about the z-axis for our choice of the Pauli matrices. Since

σz =
(

1 0
0 −1

)

is diagonal, we have

exp

(
−i

2π

2
σz

)
=

(
e−iπ 0

0 eiπ

)
=

(−1 0
0 −1

)
.

This means that, under a full rotation through 360◦, the spinor wave function
changes sign. This has no empirical consequences because the absolute square does
not change. Only after two full rotations does the symmetry transformation (1.42)
once again represent the identity. But isn’t it strange if, after a full rotation, an object
does not return to its initial state? Not so strange, if one remembers the mnemonic
that a spinor is a bit like the square root of a vector.

A deeper reason why spinors only do half of what one thought everything in the
world should do, and at the same time a deeper answer to the question “Why spinors
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at all?”, is the connection between SU(2) and SO(3), which we shall discuss now.
As already remarked, both the three-dimensional rotation matrices SO(3) and the
complex rotation matrices SU(2) [see (1.42)] are groups. To get to the bottom of
the connection, we note that the rotation group SO(3) is also a continuum, called a
manifold in mathematics, and that makes it into what is called a Lie group.

The continuum character is easily seen as follows. Each rotation is entirely
specified by a rotation axis in space and a rotation angle about that axis. One possible
way to capture this mathematically, i.e., to provide a representation of this, can be
given by considering the ball B0(π) ⊂ R

3 centred at 0 and with radius π . We choose
a radial direction or ray, starting from 0 and intersecting the upper half of the ball,
and mark on that ray the length α ≤ π . The ray defines the axis of rotation and α the
rotation angle. The mirror image of this ray is interpreted as rotation through angle
−α around that same axis. In this way any rotation in R

3 would be represented in
a unique manner, if it weren’t for the pairs constituted by any pole and its antipode,
corresponding to π and −π . What should we do about them?

Clearly, rotating a vector through π or −π around a chosen axis yields the same
result. This means that we must identify the antipodes, i.e., we must view them
as being the same point. Mathematically, that is easily done, but it is not easy to
picture. The message which comes with identifications is in general that they create
topological complications. Take, for example, a path from one pole of the sphere to
its antipode. That path is a closed path under the above identification. Such a path
cannot be deformed to a point without being broken somewhere. In mathematical
terminology, it cannot be continuously deformed to a point (try it and see!). Put
another way, the path is not null homotopic (it could be useful here to review the
notion of homotopy from the vector analysis class). If we now adjoin a second path
from antipode to pole, which is then also closed, we obtain a doubly closed path. We
can now deform the adjoined path continuously so that it coincides geometrically
with the first one, but running backwards through it, and hence undoing all rotations
which define the first path and resulting in a zero net rotation. So the doubly closed
path is a null homotopic path.

A manifold containing paths that are not null homotopic is said to be multiply
connected or not simply connected. The plane R

2 is simply connected, while the
torus (the surface of a donut) is not. We shall return to this idea in Sect. 4.4 and
Fig. 4.3 in the context of identical particles. Hence the manifold SO(3) is not simply
connected.

Now, a simply connected manifold which can be projected onto a not simply
connected manifold is called a (universal) covering. The message is here is that life
is easy on the covering and not so easy on the not simply connected manifold below
it. So we aim to do our physics as much as possible on the covering. The universal
covering of SO(3) is in fact the Lie group SU(2) with elements

U =
(

a b

−b∗ a∗
)

, a = α1 + iα2 , b = β1 + iβ2 , α2
1 + α2

2 + β2
1 + β2

2 = 1 .
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The rightmost equality is the determinant condition, which means that the four real
numbers specifying the matrix also determine the three-dimensional unit sphere S3

centred at 0. Being a spherical surface, it is a manifold, and what’s more, it is simply
connected.

Therefore, SU(2) turns out to be topologically equivalent (or diffeomorphic) to
a three-dimensional sphere S3 and is thus simply connected. SU(2) is a double
covering of SO(3): the SU(2) matrices U and −U yield the same rotation in R

3

(see Remark 1.6) and the identification of a pole and its antipode on the SO(3)

manifold is thus resolved into two corresponding SU(2) elements with opposite
sign. For those who find this too mathematical, (1.40) and Remark 1.6 should be
good enough.

The topological property of not being simply connected motivates the search for
a universal covering which is mathematically simpler than the underlying multiply
connected manifold and—perhaps with some surprise—we eventually find that the
universal covering plays a fundamental role in physics. That by itself should of
course convince nobody that spinors must appear in the description of quantum
phenomena. The fact that they do was established by Dirac. More will be said about
this in Chap. 11.

In any case, we can understand why the name “spin” is not completely off target.
Spinors allow a representation of SU(2), which is the universal covering group
of SO(3), the three-dimensional rotation group. We can also refer to the famous
Noether theorem. Corresponding to the rotational invariance of the wave equation
for a closed system (e.g., the Pauli equation), this implies the conservation of the
total spin of that system. But it would nevertheless be incorrect to think of a spinor
as an object which rotates.

1.9 Hilbert Space and Observables

Wave functions to which Born’s statistical interpretation applies must be square
integrable:

∫

R3N

|ψ|2(q) d3Nq < ∞ .

The integral here is the Lebesgue integral (Henri Lebesgue 1875–1941). The
advantage of Lebesgue integration is that, under mild conditions, limits of Lebesgue
integrable functions are again Lebesgue integrable. The Lebesgue integral can be
used to define a norm and the vector space of Lebesgue integrable functions turns
out to be a Banach space, i.e., a normed space which is complete in the sense that
every Cauchy sequence of elements in the space has a limit in the space.
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One consequence is that the vector space of wave functions which are square
integrable is a Hilbert space23:

L2(Rn, dnq) :=
{
ψ : Rn → C

∣∣∣〈ψ|ψ〉 :=
∫
|ψ(q)|2 dnq < ∞

}
.

A Hilbert space is a Banach space, with the norm induced by a scalar product. In
our case, the scalar product is given by

〈ϕ|ψ〉 :=
∫

Rn

ϕ∗(q)ψ(q) dnq

and the induced L2-norm is ‖ψ‖ =
√∫ |ψ(q)|2dnq. All this is based on the

construction of the Lebesgue measure and the Lebesgue integral and is part of any
decent education in analysis.

L2 has a countably infinite basis, where the notion of basis is different from that
usually considered in courses on linear algebra. The difference is that, in an infinite-
dimensional Hilbert space, although we can once again represent any vector in an
orthonormal basis, this will in general require infinitely many coordinates. Letting
φk , k ∈ N, be an orthonormal basis, so that 〈φk|φl〉 = δk,l , then any vector is
represented by an infinite sequence that is convergent in the L2-sense:

ϕ =
∑

k

〈φk |ϕ〉φk . (1.44)

The coordinates

ck = 〈φk|ϕ〉

are square summable, i.e.,

∑

k

|ck|2 < ∞ .

The convergence of (1.44) is shown using the Cauchy property and completeness.
Given an orthonormal basis, the set of the coordinate vectors with countably

infinitely many components is also a Hilbert space, denoted by l2. It was the space
of square summable vectors which David Hilbert (1862–1943) first introduced and
which was then extended to the general Hilbert space. Those who don’t like to
think in abstract mathematical terms or who are not particularly trained to do so
can think of vectors in a coordinate representation. For example when asked “What
is a vector?”, we may give the answer (x1, . . . , xn). And likewise in answer to the

23We shall often simply write L2 for L2(Rn, dnq).
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question “What is a wave function?”, we might reply (c1, . . . , cn, . . .). But, and this
is one of the take-home lessons from a course in linear algebra, we must always
specify the orthonormal basis for which these are the coordinates.

When Werner Heisenberg (1901–1976) invented his matrix mechanics as a
description of quantum phenomena, he actually had his matrices act on l2. Of
course, the matrices had then to have infinitely many rows and columns, and these
are, by the way, mathematically well defined objects, namely linear operators.
The Hilbert space formalism explains why Heisenberg’s matrix mechanics (l2) and
Schrödinger’s wave mechanics (L2) are equivalent descriptions.

As in matrix mechanics, we consider linear operators on the Hilbert space L2,
and in particular self-adjoint operators, which can be considered as generalisations
of symmetric matrices, some of which represent so-called observables in quantum
mechanics. An observable is an object which is associated with a measurement
experiment. An example is the momentum observable (or momentum operator)
which we already derived below Eq. (1.13). We also introduce the position operator
X̂ of a particle, although the definition may look somewhat simple-minded:

X̂ψ(x) := xψ(x) . (1.45)

For the position operator, quite analogously to what happens for the momentum
operator [see (1.13) and below], the expected value in a “measurement of the
position operator” for a given wave function can be computed by

〈ψ|X̂ψ〉 =
∫

R3
x ψ∗(x)ψ(x) d3x .

Similarly,

〈ψ|X̂2
ψ〉 =

∫

R3
x2ψ∗(x)ψ(x) d3x .

Now that we have introduced these objects we may as well rephrase (1.24) in
terms of operators. To do this we introduce a time-dependent operator, the so-called
Heisenberg operator. Recall the Schrödinger equation (1.21). As physicists we have
no problem writing the solution as

ψ(x, t) = exp

(
−i

t

h̄
H

)
ψ(x) =: U(t)ψ(x) ,

and because H is Hermitian (which means the same as self-adjoint), it is clear that
U(t)+U(t) = 1, i.e., it is unitary. We now define

〈ψ|X̂(t)ψ〉 := 〈ψ(x, t)|X̂ψ(x, t)〉 = 〈ψ|U+(t)X̂U(t)ψ〉 ,
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or simply X̂(t) := U+(t)X̂U(t). Then, omitting the scalar product, (1.24) yields

m
d2X̂
dt2

= −∇V (X̂) . (1.46)

This implies that the Heisenberg position operator satisfies the classical equation
of motion, something that is actually true for other Heisenberg operators, e.g.,
momentum. This is quite nice, but deceptively so, since operators are not physical
entities moving in space. So we have to keep in mind all the cautionary remarks that
were made in the section about the classical limit (Sect. 1.6).

We shall elaborate on the meaning of operators in Chap. 7. It is often the case
that physics students with high concern for mathematics think that the “problems
of quantum mechanics” can simply be solved by good clean mathematics! For
example, the position and momentum operator are unbounded linear operators. That
means that their domain of definition is not the whole of L2. We need only glance
at (1.45) to see that there exist wave functions for which the right-hand side of (1.45)
is not square integrable (find some!). So some students may develop the idea that,
if all this were cleanly stated and observed, then quantum physics would be just
fine. But it is not. The famous debate about quantum physics has nothing to do with
messy mathematics.
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It is difficult to believe that this description is complete. It seems to make the world quite
nebulous unless somebody, like a mouse, is looking at it.

Albert Einstein, from his last lecture at Princeton on 14 April 1954

We have to talk about Schrödinger’s cat. Not just because Erwin Schrödinger
found such a memorable way to illustrate his paradox. More importantly, his
criticism hits the nail right on the head. Schrödinger formulates the so-called
measurement problem of quantum mechanics, and this measurement problem
shows why the naive understanding of quantum theory is not just unsatisfactory
but completely untenable. Every precise formulation of quantum mechanics must
therefore be judged by whether and how it resolves the cat paradox. We quote
the famous section from Schrödinger’s article The present situation in quantum
mechanics1:

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along
with the following device (which must be secured against direct interference by the cat):
in a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps in
the course of the hour one of the atoms decays, but also, with equal probability, perhaps
none; if it happens, the counter tube discharges and through a relay releases a hammer
which shatters a small flask of hydrocyanic acid. If one has left this entire system to itself
for an hour, one would say that the cat still lives if meanwhile no atom has decayed. The
psi-function of the entire system would express this by having in it the living and dead cat
(pardon the expression) mixed or smeared out in equal parts.

It is typical of these cases that an indeterminacy originally restricted to the atomic
domain becomes transformed into macroscopic indeterminacy, which can then be resolved
by direct observation. That prevents us from so naively accepting as valid a “blurred model”
[as an image of] reality. In itself it would not embody anything unclear or contradictory.
There is a difference between a shaky or out-of-focus photograph and a snapshot of clouds
and fog banks.

1Die Naturwissenschaften 23 (48), 807–812 (1935). Translation by John D. Trimmer, originally
published in Proceedings of the American Philosophical Society 124, 323–38 (1980).
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A first reading of these lines may leave the reader somewhat confused. What
Schrödinger says is exactly right and exactly what has to be said, but he has not been
too considerate with the reader. He doesn’t really help us get the point, especially
if we are used to skimming over written text to extract information quickly. But
Schrödinger was famous and he could afford to say things as they are and wait to
be understood. Unfortunately, though, things went wrong in this case. The cat story
has become folklore, but absurd discussions have distorted the content and also the
genesis of the problem beyond recognition. Schrödinger presented his argument as
a reductio ad absurdum of the assertion that standard quantum mechanics provides
a complete description of nature: “That prevents us from so naively accepting as
valid a ‘blurred model’ as an image of reality.” Nowadays, the poor cat, equal
parts dead and alive, is often cited as an example of how bizarre nature really is
according to quantum mechanics, and some physicists even seem to take pride in
being able to deal with such a crazy description of reality. Somewhere along the
way, the seriousness with which physics had once been practised has clearly been
lost.

So let’s slow down and start over. The problem with quantum mechanics is the
following: there is only one equation and one quantity specifying the contents of the
theory, viz., the Schrödinger equation and the associated wave function, and they do
not describe phenomena as we perceive them. This can be seen in different ways,
for instance as follows. Suppose a system is described by a linear combination of
wave functions ϕ1 and ϕ2 and a piece of apparatus can display either “ϕ1” or “ϕ2”
by interacting with the system. This, in brief, is what we call a “measurement”. In
principle, this apparatus must also have a quantum mechanical description. After all,
we conceive of the measuring apparatus as consisting of atoms and molecules, and
if all these atoms and molecules are described by a wave function, then this wave
function must also provide a quantum mechanical description of the apparatus as a
whole. This means that the apparatus has states Ψ1 and Ψ2 corresponding to pointer
positions which we call “1” and “2”, i.e., these are wave functions that have disjoint
support (no overlap) in configuration space (see Figs. 1.1 and 1.2), and it also has a
prepared state Ψ0 such that

ϕiΨ0
Schrödinger evolution−→ ϕiΨi . (2.1)

The Schrödinger time evolution (2.1), however, is linear. Therefore, a system wave
function

ϕ = c1ϕ1 + c2ϕ2 , c1, c2 ∈ C , |c1|2 + |c2|2 = 1 ,

leads to

ϕΨ0 = (c1ϕ1 + c2ϕ2)Ψ0
Schrödinger evolution−→ c1ϕ1Ψ1 + c2ϕ2Ψ2 . (2.2)
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This is an absurd result. The superposition

c1ϕ1Ψ1 + c2ϕ2Ψ2 (2.3)

describes an entangled state between system and apparatus, in which the pointer
position seems to indicate both “1” and “2” at the same time. In Schrödinger’s cat
experiment, ϕ1 would describe the already decayed atom and ϕ2 the not yet decayed
atom. But this would mean that (2.3) describes a state with a dead cat and a live cat.

Thus, if we insist that the result of the measurement is either “1” or “2” but not
both at the same time, we have the following situation. Either the wave function of
the system after measurement is not (2.3), in which case the Schrödinger equation is
not correct, or at least not always; or the wave function of the system is indeed (2.3),
but this wave function does not provide a complete description of the physical
situation. In this case, we are missing precisely those variables that make the
difference between a pointer pointing to the left and a pointer pointing to the right—
the difference between a dead cat and a live cat.

It is sometimes explained that the wave function should not be taken seriously
in this sense, and that only the statistical interpretation according to Born’s rule
is significant. Then, according to Born’s rule, the result of the measurement is
“1” with probability |c1|2 or “2” with probability |c2|2. It is this statistical law
that is confirmed experimentally to great accuracy. Fair enough. But pointing to
Born’s rule does not avoid the measurement problem. The Schrödinger equation is
a deterministic equation, and according to this equation, the wave function at the
end of the experiment is always (2.3). If this wave function provides a complete
description of system and apparatus, the outcome of the measurement is always the
same. In other words, if the wave function (2.3) provides a complete description of
system and apparatus, it cannot on some occasions describe a measurement device
whose pointer points to the left and on other occasions a measurement device whose
pointer points to the right.

So how is the statistical interpretation to be understood? There are two possibil-
ities. If we mean that |ci |2 is the probability that the wave function of the system
+ apparatus after the measurement is ϕiΨi , then the Schrödinger equation cannot
always be valid since, according to the Schrödinger equation, the wave function
will be (2.3). But if we mean that the wave function of the system is (2.3) and this
wave function only gives us the probability distribution for the actual state of the
system, then it is clear that the actual state of the system is not described by the
wave function alone, and we are missing precisely those physical variables whose
probability distribution the wave function is supposed to provide. The dilemma is
thus the same as before.
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2.1 The Orthodox Answer

In order to maintain the completeness of the quantum mechanical description no
matter what, Werner Heisenberg, John von Neumann (1903–1957), and others
introduced an additional postulate into the theory. In the process of “measurement”
or “observation”, they postulated, the Schrödinger time development is suspended
and replaced by a random dynamic which reduces the superposition (2.3) with
probability |ci |2 to the wave function ϕiΨi . However, in contrast to the Schrödinger
evolution, this new dynamic, the collapse of the wave function, was not supposed to
be described by a precise mathematical law. It was introduced ad hoc, as a property
of “the observer”.

Indeed, it is precisely for this reason that the observer assumes a central role
in the theory, as the subject whose act of measurement or observation brings
about the physical facts. Wolfgang Pauli described this as an “act of creation lying
outside the laws of nature”. However, it is not even these esoteric traits of the
Copenhagen school that prevent us from accepting the collapse postulate as part of a
precise physical theory, but simply what John Bell described as its “unprofessional
vagueness”. We now have two contradictory dynamics for the wave function—when
exactly does one or the other apply? When exactly is a physical process considered
to be a “measurement”? And what distinguishes an “observer” from a molecule, or
a cat, or the pointer of a piece of apparatus? Here is Bell once again, in his article
Against the measurement:

It would seem that the theory is exclusively concerned about ‘results of measurement’, and
has nothing to say about anything else. What exactly qualifies some physical systems to
play the role of ‘measurer’? Was the wavefunction of the world waiting to jump [collapse]
for thousands of millions of years until a single-celled living creature appeared? Or did it
have to wait a little longer, for some better qualified system . . . with a Ph.D.? If the theory
is to apply to anything but highly idealised laboratory operations, are we not obliged to
admit that more or less ‘measurement-like’ processes are going on more or less all the time,
more or less everywhere? Do we not have jumping then all the time? (J.S. Bell, “Against
the measurement”. In: Speakable and Unspeakable in Quantum Mechanics, Cambridge
University Press, 2nd edn. 2004, p. 216.)

Ironically, discussions about whether the cat has enough consciousness to trigger
the collapse of the wave function (or whether it requires a human observer to seal
its fate) have been going on for decades. Some people are still discussing this today.
The reason why hardly anyone is still defending the Copenhagen interpretation
is that at some point, physicists wanted to take quantum theory seriously as an
objective description of nature. In particular, when cosmology was established as an
important discipline in physics, quantum theory was supposed to tell us something
about the creation of matter in the early universe, possibly even about the evolution
of the universe itself. And shortly after the Big Bang, more than 13 billion years ago,
there was certainly nothing and no-one around that would qualify as an observer.
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2.2 Solutions to theMeasurement Problem

The old Copenhagen quantum mechanics did not provide a serious solution to the
measurement problem. Now let’s see what the serious solutions are. Following Tim
Maudlin,2 a precise and general formulation of the measurement problem can be
given as follows. There are three principles or propositions that a naive reading
of the theory seems to assume, and these three principles together are logically
inconsistent, i.e., they cannot all be true:

1. The wave function of a system provides a complete description of its physical
state.

2. The time evolution of this wave function always follows a linear (Schrödinger)
equation.

3. Measurements (usually) have unique outcomes.

The contradiction following from these three assumptions was derived above:
it is precisely Schrödinger’s cat paradox. If the wave function obeys a linear
Schrödinger equation, the measurement procedure (2.2) results in a macroscopic
superposition (2.3). If (2.3) provides a complete description of the physical state of
the measurement device, the outcome of the measurement cannot be unique. Thus,
(1) ∧ (2) ⇒ ¬(3). In other words, (1), (2), and (3) are logically incompatible. Any
consistent formulation of quantum mechanics must negate at least one of them.

2.2.1 The Negation of (1) Leads to BohmianMechanics

If we deny that the wave function provides a complete description of the physical
state of a system, we have to name the missing pieces that turn an incomplete
description into a complete one. As we will later see, the quantum phenomena
thereby commit us to a radical minimalism. It is neither possible nor desirable to
assume that all quantities (“observables”) that quantum mechanics usually speaks
about have definite values that are part of the state description. We have to pose the
question differently: If quantum mechanics is not about the wave function, what is
it about? Or if it is not only about the wave function, what else is it about?

David Bohm’s response was straightforward: Bohmian mechanics is a theory
about the motions of point particles. The “quantum observables” and their statistics
follow from a statistical analysis of these particle motions. The complete description
of the physical state of a system is thus given by its wave function and the positions
of the particles constituting the system. For an N-particle system, this is a pair
(ψ,Q), where Q ∈ R

3N describes the actual particle configuration in three-
dimensional space. The role of the wave function ψ is first and foremost to guide
the motion of the particles. This is expressed by a precise mathematical law which

2T. Maudlin, Three Measurement Problems. Topoi 14, 7–15 (1995).
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involves the wave function. The measurement problem is solved because every
system has a well-defined configuration at all times, given by the positions of its
particles. The wave function of a measurement device (for example) may be in
a superposition (2.3), but the actual configuration Q describes a pointer pointing
either to the left or to the right.

2.2.2 The Negation of (2) Leads to Collapse Theories Such As GRW

If we insist on (1) and (3), then the measurement problem is a result of the linearity
of the Schrödinger equation. The superposition principle is, however, crucial to the
explanation of quantum phenomena—just think about the double slit experiment.
So, how can we save the superposition principle for microscopic systems—for
which these phenomena are observed—but avoid macroscopic superpositions such
as “dead cat” + “live cat” which lead to the measurement problem? The relevant
concepts are already there in standard quantum mechanics. We have the linear
Schrödinger equation and the collapse of the wave function. The problem is that
this collapse is not a precise physical law, but an ad hoc postulate relying on vague
and ambiguous notions such as “measurements” and “observations”.

In a precise quantum theory, the collapse of the wave function should also be
described by a precise mathematical law. Ghirardi, Rimini and Weber were the first
to propose such a law. In their GRW theory, the Schrödinger equation is replaced
by a non-linear, stochastic equation that already contains the possibility of collapse.
This law is such that each “particle” has a certain collapse probability which is so
low that superpositions for small systems, with only a few particles, persist for a
very long time. However, in a macroscopic system, consisting of billions of billions
of particles, a collapse will almost certainly be triggered in a tiny fraction of a
second. In this sense, a “measurement”—that is, the coupling of a macroscopic
piece of apparatus to a microscopic system—can indeed cause the collapse of
the wave function, but this collapse is now part of a precise fundamental law.
The measurement problem is solved because the nonlinear time evolution destroys
macroscopic superpositions such as that of “dead cat” and “live cat” on empirically
relevant time scales.

2.2.3 The Negation of (3) Leads to theManyWorlds Theory

If we insist on (1) and (2), we have no other choice but to accept macroscopic
superpositions such as those of “dead cat” and “live cat” as a consequence of
quantum mechanics. One radical conclusion, generally attributed to Hugh Everett
III, is that both parts of this wave function describe a real physical state. But
then, wouldn’t we observe two cats rather than one? Or maybe a cat in an absurd
hybrid state of “dead” and “alive”? The answer is that we would not, because the
superposition of the wave function doesn’t stop with the cat. The superposition
would come to include the experimenter herself, the laboratory, indeed the whole
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of the rest of the universe, and consequently everything would get caught up in the
splitting described by (2.3).

When all is said and done, this description of nature thus comprises two “worlds”,
corresponding to the branches of the wave function: in one world, the radioactive
atom has decayed, the cat is dead, and the experimenter is sad; in the other, the atom
hasn’t decayed, the cat is alive and well, and the experimenter takes the animal back
home. Because of the linearity of the Schrödinger equation, the two “copies” of the
experimenter can never interact, and decoherence makes it practically impossible to
bring the dead cat and the living cat into interference. Thus, both worlds can exist
in parallel, without observers in one world ever (directly) perceiving the other.

The measurement problem is solved by accepting its consequences and trying to
reconcile them with our experience: measurements do not have unique outcomes.
Instead, all possible outcomes are realized in different worlds corresponding to
different branches of the wave function. However, since everything and everybody
is involved in this branching, this does not in itself contradict empirical evidence.

2.3 Other Alternatives?

In the following, large parts of this book will be devoted to working out these
three quantum theories in more detail and showing that they can indeed provide a
deeper and clearer understanding of quantum mechanics. A final assessment will be
given in the epilogue. Physical theories are never without alternatives. Yet, we have
seen that an analysis of the measurement problem leads quite naturally to Bohmian
mechanics, GRW, and Many Worlds as possible solutions.

Without doubt, it would be conceivable to add other ontological variables to the
wave function than particle positions, but Bohmian mechanics is by far the simplest
and most successful quantum theory following this approach. Similarly, there are
other ways to modify the Schrödinger equation than the original proposal by
Ghirardi, Rimini, and Weber, though all options that have been seriously considered
(and, in fact, all options that are mathematically possible under certain assumptions)
are generalizations or variations of the GRW theory. Finally, although a Many
Worlds picture is essentially unavoidable if we insist on the completeness of the
wave function as a state description and the linearity of its time evolution, there do
exist different proposals on how to spell out the details of a Many Worlds theory.

There are, of course, countless other “interpretations” of quantum mechanics
floating around in the literature. Some of them develop a distinct formalism, but
many are mere attempts to discuss the measurement problem away. Addressing
all of these proposals in detail would go beyond the scope of this book. But more
importantly, it could suggest a false equivalence between theories at very different
levels of soundness, maturity, and productivity.

Instead, the above formulation of the measurement problem should provide a
useful scheme that the reader can employ to make her own judgements. For instance,
some people may claim that their version of quantum mechanics violates none of
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the assumptions (1), (2), and (3). Then, we may readily infer that their version of
quantum mechanics is not a sound physical theory. Others may effectively deny
assumption (1), e.g., by saying “the wave function does not describe the actual state
of the system but only my (incomplete) information about it.” We should press these
people to detail the quantities and laws describing the actual state of the system, i.e.,
the physical facts that they claim to have information about. In general, one will not
receive a clear answer.

Of course, there will always be voices (even from otherwise reasonable people)
insisting that it’s simply not the role and purpose of physics to provide a coherent
and objective description of nature. Since this is not a scientific position but a
philosophical one, it can never be conclusively disproven. What can be conclusively
disproven is the claim that quantum phenomena preclude any coherent, objective
description of nature. The three “quantum theories without observers” presented in
this book are a proof to the contrary.

2.4 TheMeasurement Problem and Born’s Statistical
Hypothesis

We carry out a simple computation demonstrating the application of Born’s statisti-
cal hypothesis in Bohmian mechanics and GRW. The justification of this statistical
hypothesis—a truly important and subtle issue—will be addressed later. Our focus
here is on something else. We have seen above that the measurement problem of
quantum mechanics is also manifested in an ambiguity about the meaning of Born’s
rule: the |ψ|2 distribution gives a probability, but the probability of what? We need
to convince ourselves that a precise formulation of quantum mechanics provides a
precise answer to this question—although the answer may be different depending
on the theory.

Our computation follows our discussion of the measurement process. Let the
configuration space of the complete system be described by coordinates q = (x, y),
where x ∈ R

m are the coordinates of the measured system and y ∈ R
n those of the

measurement apparatus. According to Born’s rule, we have

P(pointing to 1) =
∫

supp�1

|c1ϕ1Ψ1 + c2ϕ2Ψ2|2 dmx dny (2.4)

= |c1|2
∫

supp �1

|ϕ1Ψ1|2dmx dny

+|c2|2
∫

supp �1

|ϕ2Ψ2|2dmx dny

+2Re

[
c1c2

∫

supp �1

(ϕ1Ψ1)
∗ϕ2Ψ2dmx dny

]
(2.5)

≈ |c1|2
∫
|ϕ1Ψ1|2dmx dny = |c1|2 . (2.6)
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Note here that, since the supports of the two pointer wave functions are disjoint (or
nearly so), the term (2.5) is zero. The probability of the outcome “1” is thus |c1|2
and the probability of the outcome “2” is |c2|2, just as the rules of textbook quantum
mechanics would suggest. What exactly have we calculated, though?

The answer given by Bohmian mechanics corresponds to our usual way of
speaking: Born’s rule provides the probability distribution for the particle positions.
|c1|2 is thus the probability that, at the end of the measurement process, the
pointer—consisting of a great number of particles—actually points left, to the result
“1”.

In the GRW theory, the same computation is interpreted differently. Here, Born’s
rule provides first and foremost a probability distribution for the center of the
collapse. More simply put, |c1|2 is first and foremost the probability that (2.3)
collapses onto a wave function that is localized in the support of Ψ1, i.e., on
configurations corresponding to a pointer pointing left, to the result “1”.

The interpretation of Born’s rule in the Many Worlds theory is difficult. Here, it
doesn’t really make sense to say that |c1|2 is the probability that the measurement
outcome “1” occurs, because all possible outcomes occur with certainty, but in
different worlds. In Chap. 6, we will address this problem in greater detail. For now,
a common, though somewhat evasive response is that the Born probabilities have
to be interpreted as subjective probabilities. That is, after the measurement (and the
splitting of the world) has occurred, but before we know the result in our world, we
should have a credence of |c1|2 that we will find ourselves in a world in which the
pointer points to the left.

Finally, we may ask about the meaning of Born’s rule in the orthodox (Copen-
hagen) quantum theory. We might perhaps say that the above computation describes
a “position measurement” of the pointer. Then, |c1|2 is the probability that the
pointer points left, to “1”, if we look at it, but decidedly not the probability that
the pointer points left in the case when nobody looks. Alternatively, we could
forbid the computation altogether and insist that the probabilities must come from
an observable operator (for instance a “cat-aliveness operator”). Finally, the most
orthodox answer of all is that the computation is forbidden, because a measurement
device is too big to have a wave function. If all this doesn’t sound too serious, that’s
because it isn’t. On the other hand, it is the kind of talk that has surrounded quantum
mechanics for decades.

In any case, a basic idea still found in textbook quantum mechanics is that
observables (self-adjoint operators) relate the quantum state (wave function) directly
to the measurement statistics of observable quantities. We have already hinted at
why this is a bad idea. A measurement is itself a complex physical process, and
only an analysis of the theory can tell us what the observable quantities are and how
they can be measured in experiment. Taking observations as fundamental and trying
to build a theory on that basis will never work. Indeed, it leads to disaster, more
precisely, to the various “quantum paradoxes” that are still the subject of endless
unnecessary debates. In Chap. 7, we will discuss what the role of the observable
operators really is. They arise quite naturally from a precise formulation of quantum
mechanics, but they are not, of course, fundamental.
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2.5 Decoherence

In the present section it will be helpful to keep Figs. 1.1 and 1.2 in mind. Our
discussion of the measurement process has naturally involved an important concept
that was already mentioned in Chap. 1: decoherence. Decoherence means that
different parts of the wave function lose their ability to interfere, often due to entan-
glement with a macroscopic environment. With regard to Eq. (2.2), this should be
understood in the sense that Ψ1 and Ψ2 are concentrated on well-separated regions
of configuration space and that the many degrees of freedom of a macroscopic wave
function make it practically impossible to bring them into overlap. Put another
way, in three-dimensional space, there are very few ways to pass by each other,
viz., left/right, above/below, in front/behind, while the configuration space of a
macroscopic system has roughly 1024 dimensions, meaning countless possibilities
for the peaks of the wave packets to miss each other.

Decoherence is actually happening everywhere and all the time, unless one
takes special precautions to isolate a system from the environment. A common
measurement, however, must basically decohere the measured system by definition
if the measurement is supposed to be informative. A measurement device is a
macroscopic system which interacts with a microscopic system in such a way that
it will end up in one of several, macroscopically discernible configurations that
indicate a particular measurement result. And “macroscopically discernible” means
precisely that the different “pointer states” must be concentrated in well-separated
regions of configuration space.

It is sometimes claimed that decoherence alone provides the solution to the
measurement problem. This is simply wrong. The measurement problem is thereby
misunderstood as the problem of showing that the wave functions in (2.3) do indeed
have more or less disjoint supports, i.e., that the step from (2.4) to (2.6) is justified.

But the fact that decoherence doesn’t solve the measurement problem should
already be evident from the fact that coherence—the ability of the superposed wave
packets to interfere—plays no role in its formulation. The point of Schrödinger’s cat
argument is that the wave functions of a dead cat and a living cat are there at the
same time, and that they are equally “real”, not that they overlap in configuration
space and produce interference. This is something that Schrödinger understood very
well. As long as we insist that the wave function provides a complete description of
the physical state, the result of the measurement is still “dead cat AND live cat”, not
“dead cat OR live cat”.

When interference phenomena (or the lack thereof) are discussed in the literature,
we usually consider not the wave function itself but the so-called statistical operator
or density matrix, since this formalism allows us to represent both the mixture

�M = |c1|2 |ϕ1〉|Ψ1〉〈Ψ1|〈ϕ1| + |c2|2 |ϕ2〉|Ψ2〉〈Ψ2|〈ϕ2| (2.7)
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and the pure state

� = |c1ϕ1Ψ1 + c2ϕ2Ψ2〉〈c1ψ1ϕ1 + c2Ψ2ϕ2| . (2.8)

This provides a new way of speaking but no new insights. Decoherence in the
sense of separation on configuration space is now manifested in the way that the
off-diagonal elements c1c2|ϕ1Ψ1〉〈Ψ2ϕ2| and c1c2|ϕ2Ψ2〉〈Ψ1ϕ1| are almost zero in
the pure state (2.8), which corresponds to the superpositions (2.3). The convergence
� → �M can then be proven in the thermodynamic limit by averaging over (referred
to as tracing out) the degrees of freedom of the environment3.

The punchline is now that a density matrix of the form (2.7) is also what an
experimenter would use to describe a series of measurements for which the state of
the system cannot be reliably prepared. The prepared system has the wave function
ϕ1 with probability p1 or the wave function ϕ2 with probability p2, but she doesn’t
know exactly which in each individual case. The statistics of the experiment can
then be described by the “statistical mixture” �M = p1|ϕ1〉〈ϕ1| + p2|ϕ2〉〈ϕ2|.

This pseudo-solution of the measurement problem now claims that the limit � →
�M justifies the same ignorance interpretation for the decohered state (2.8). But
this is just a sleight of logic, because a thermodynamic limit cannot turn an AND
into an OR. After all, the linearity of the Schrödinger evolution is never suspended,
so the wave functions of “dead cat” and “live cat” are still both there in the final
state, no matter how big the environment is and how well the two wave packets
are separated. This is exactly what Schrödinger meant when he wrote: “There is a
difference between a shaky or out-of-focus photograph and a snapshot of clouds and
fog banks.”

2.6 The Ontology of QuantumMechanics

We have formulated the measurement problem as a trilemma—three logically
incompatible assumptions, at least one of which must go. This has led us to Bohmian
mechanics, GRW, and the Many Worlds theory as consistent solutions. At the end
of the day, however, we want more than a consistent mathematical formalism. We
want a coherent description of nature. What is matter—a cat, or a table, or a piece
of measurement apparatus—actually made of? What is it that actually goes through
the slits in the double-slit experiment and hits the screen to create an interference
pattern? Those are questions about the ontology of quantum mechanics that we
have briefly addressed in Chap. 1. In fact, the lack of a clear ontology in orthodox
quantum mechanics is the real root of the measurement problem (and many other
problems). If the ontology is clear—if it is clear what the fundamental entities in
nature are that the theory seeks to describe—there can’t be any paradoxes.

3See, e.g., E. Joos, H.D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and I.-O. Stamatescu, Decoherence
and the Appearance of a Classical World in Quantum Theory. Springer, 2003.
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This realization leads to a dilemma that cuts across the trilemma of the measure-
ment problem: can the ontology of quantum mechanics consist of the wave function
and the wave function alone, or do we have to add additional ontological variables
in order to describe nature? The Many Worlds theory takes the first route and tries
to develop a description of physical reality in terms of the wave function alone. The
task is then to explain the connection between the wave function—a complex “field”
on the high-dimensional configuration space—and stuff in three-dimensional space.
Certainly, wave functions cannot make up cats, and tables, and measurement devices
in the same way particles could. We will address this challenge in detail in Chap. 6.

In contrast, Bohmian mechanics postulates point particles as the ontology of
quantum mechanics. By describing how particles move—and how they come
together to form tables, and cats, and measurement devices—the theory describes
what’s going on in the physical world. The wave function, for its part, is understood
primarily through its role in the dynamics of the particles—and features also in their
statistical description, for reasons we will explain in Chap. 4.

Finally, in the GRW theory, both routes are actively pursued in the literature.
GRW can be understood as a theory about the wave function. The spontaneous
collapse then avoids having to postulate many worlds, but we encounter the same
difficulty regarding the connection with our everyday experience as in the Many
Worlds theory. There is still a difference between a table in three-dimensional space
and a wave function concentrated on table configurations in the high-dimensional
configuration space. However, it is also possible to conceive of GRW with an
ontology of localized entities in three-dimensional physical space. These entities are
not particles moving on continuous trajectories but either “matter flashes” associated
with the collapse events or continuous “mass densities” defined in terms of the wave
function. We will discuss this in more detail in Chap. 5.4

What is important to appreciate here is that the question What is the theory
about? is absolutely fundamental in order to understand a theory and what it tells us
about nature. And it is a physical question that the theory itself must answer, not a
philosophical question that can be left open to “interpretation”.

4Theoretically, it is also possible to do Many Worlds with a local ontology or Bohmian mechanics
on configuration space, but in contrast to the different versions of GRW, those are rather exotic and
largely academic proposals that tend to undermine the appeal of the original theories.
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Assuming the success of efforts to accomplish a complete physical description, the
statistical quantum theory would, within the framework of future physics, take an
approximately analogous position to the statistical mechanics within the framework of
classical mechanics. I am rather firmly convinced that the development of theoretical
physics will be of this type; but the path will be lengthy and difficult.

Albert Einstein1

All quantum theories have one thing in common: they agree that chance (or
randomness) should feel at home in the theory. It is sometimes claimed that quantum
randomness, or equivalently quantum probability, is irreducible, by which it is meant
that there is just no way out of it. Quantum mechanical probability is expressed in
Born’s statistical interpretation of the wave function and this is frequently taken as
an axiom. Then nothing more can be said, unless one feels unhappy about the axiom.
And indeed, there are reasons for not being happy about it.

For one thing, axioms usually carry an air of obvious truth about them. But
probability is in itself a problematic notion (what exactly is probability?), suggesting
that an axiom based on this notion will likewise be problematic. Moreover, apart
from the so-called collapse theory, which does indeed involve an irreducible
notion of chance, the Many Worlds theory or Bohmian mechanics are obviously
deterministic, since the Schrödinger equation contains no random elements, and
neither does the law of motion for the particles in Bohmian mechanics. Where then
does randomness come from in such theories? What does a statistical hypothesis
like Born’s actually mean? To which systems does it apply? And what is the often
used phrase “distributed like . . . ” supposed to mean?

1From: “Remarks concerning the essays brought together in this co-operative volume”. In P.A.
Schilpp (Ed.), Albert Einstein Philosopher–Scientist. MJF books, New York, 1949, p. 672.

© Springer Nature Switzerland AG 2020
D. Dürr, D. Lazarovici, Understanding Quantum Mechanics,
https://doi.org/10.1007/978-3-030-40068-2_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40068-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-40068-2_3


50 3 Chance in Physics

It is noteworthy that these questions were (naturally) already raised in classical
physics, and since they have been answered within that realm, we shall begin by
re-examining classical physics to understand how Ludwig Boltzmann (1844–1906)
dealt with them. We shall then see, and show in later chapters, that the very same
reasoning can be carried over to quantum theory. In classical physics, the world
only appears to be random, and the same is true in quantum theory, apart from
the above-mentioned collapse theory. The basic insight is that the nebulous notion
of probability needs to be replaced by the intuitive and easily accessible notion of
typicality. Once this has been understood, everything becomes clear.

3.1 Typicality

When we toss a “fair” coin, why is the probability 1/2 for both heads and tails?
There are many possible correct answers. In particular, Laplace’s [Pierre-Simon
Laplace (1749–1827)] principle of insufficient reason will often be given: there
are only two sides of the coin and both have equal rights to appear, whence the
Laplace probability is set to 1/2 for heads and 1/2 for tails. In other words there
is no sufficient reason to prefer one side over the other. But there is also a more
profound idea which at first looks unrelated to the Laplace position.

We all agree that if we toss a coin many times the relative frequency of heads and
tails will be close to the value 1/2. But why is that so? Why is there this law-like
behaviour in an otherwise random sequence of heads and tails? The new kind of
law is called the law of large numbers. This law always felt rather strange, because
chance behaviour seems to be the complete opposite of law-like behaviour. But
the new law is not of the usual kind. It differs from let’s say a law of physics.
It is a new law which does not always hold, but only typically. This means that
it is not necessarily true. The coin-tossing sequence could turn out differently, for
example only 1/4 heads and 3/4 tails. But typicality wins out through overwhelming
numbers. What we mean by that is shown in the following example.

Consider a coin-tossing sequence of length 1000, i.e., we toss a coin 1000 times,
this representing the “large number” in the law of large numbers. The sequence can
be viewed as a sequence of 0’s and 1’s of length 1000, where 0 stands for heads and
1 one for tails. The reader should check the answers to the following questions:

1. What is the total number of possible sequences of 0’s and 1’s of length 1000? It’s
simply 21000.

2. What is the number of possible sequences of length n = 1000 that contain
exactly k heads? That is not so easy to find. But with some knowledge of high
school mathematics and some reflection, we find that it is given by the binomial
coefficient

(
n
k

)
with n = 1000, that is

(1000
k

)
.

3. What is the total number of possible sequences of length n = 1000 when k ≈ 500
(equal distribution) and when k is very different from 500 (unequal distribution)?
The answer can be read from Table 3.1.
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Table 3.1 Absolute and relative numbers of sequences of 0’s and 1’s of length n = 1000 with
exactly k heads

k 100 200 300 400 450 480 500
(1000

k

)
10139 10215 10263 10290 10297 10299 10299

(1000
k

)
/21000 1

10161
1

1085
1

1037
1

1011
1

104
1

100
1

40

Note that
(
n
k

)
is symmetric about n/2. The given values are approximate

Remarkably,
(1000

300

)
differs from

(1000
500

)
by a factor of 1036, which means that there

are vastly more sequences close to the equal distribution. Compare this with the
estimated age of the universe, which is 4 × 1017 s. This means that, even if you
were able to produce a coin-tossing sequence of length 1000 every second, you
would only produce ∼ 1017 sequences! The take-home lesson is this: the number
of sequences of 0’s and 1’s of length 1000 which have roughly the same number of
0’s and 1’s is overwhelmingly greater than the number of sequences with notable
differences in the numbers of 0’s and 1’s. What “notably different” means can also
be seen from the table. Look at the bottom line of the table, showing the relative
numbers: sequences with fewer than 450 1’s (or 0’s) contribute almost nothing to
the total number of sequences. In general (and this is another take-home lesson), the
sequences for which the difference in the number of 0’s and 1’s is at most of the
order

√
n (for sequences of length n) constitute almost all possible sequences, i.e.,

they are typical. This is called the
√

n law.
The law of large numbers, which can be proven mathematically, says the obvious

thing for the coin-tossing experiment, namely that there is typically an equal
distribution of heads and tails. Recall that the large number is n = 1000 here, which
is not in fact very large. It is easy to imagine n = 106 or even n = 1024 (see below),
which is the approximate number of molecules in a mole. The table above would
“explode” for such high numbers.

If we now ask why we never get, let’s say, fewer than hundred heads in a coin-
tossing experiment of 1000 tosses, then we find the simple answer just by looking
at the table: because such a sequence would be atypical, because the overwhelming
majority of sequences show heads and tails in almost equal numbers. Perhaps we
need a little time to get used to this insight, which comes solely from consideration
of large numbers, but getting used to it pays off, because it comes very close to the
statistical reasoning of Ludwig Boltzmann.

Here is an example. Consider a lecture hall which is very well insulated when
the doors are closed, and suppose the air, consisting of a huge number of molecules
(let’s say for simplicity 1024), has uniform density in that hall. We now divide the
lecture hall mentally into two parts of equal size and ask ourselves: Why does it
never happen in practice that all the air molecules occupy the left half of the room?
That would be clearly possible, given Newton’s laws of motion. To see the answer,
think of the following way of encoding this: if the k th molecule is on the left,
label it 1, and if it is on the right, label it 0. In this way the configuration of all
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molecules at a given time is a sequence of ones and zeros, but the length of the
sequence is 1024 � 1000. Now we are dealing with such enormously large numbers
that the above fluctuation from the equilibrium distribution of the molecules is
out of the question. Only fluctuations up to about 1012 more 0’s than 1’s (or vice
versa), meaning a fraction of about 1012/1024 = 10−12, have any notable chance of
appearing.

3.2 Small Causes, Large Effects

Straightforward counting of the kind we just did for coin tossing to justify our
everyday experience of randomness actually contains more than meets the eye.
The typical sequences also show another important characteristic of chance: the
unpredictability of the outcome in each individual coin toss. In other words, in each
sequence, the 0’s and 1’s appear in an irregular manner, but such that the relative
frequencies of 0 or 1 will be regular, namely, near 1/2. So what is the source of this
irregular behaviour?

We feel we know the answer intuitively: the coin must be sent spinning and
whirling enough to make the result unpredictable, because the smallest change in
the initial (angular) momentum imparted to the coin by the throwing hand can
lead to a different outcome, from heads to tails or vice versa. The motion of the
coin becomes chaotic, in the sense that small causes can have large effects. This is
very important for the appearance of random behaviour. In fact, it is crucial for the
law-like behaviour in random sequences of coin tossings, for instance. The more
chaotic the motion, the more stable the regularities in the relative frequencies, and
the clearer becomes the law of large numbers. This phenomenon is captured in
probability theory by the notion of statistical independence.

But how does this all fit in with the physics, at least when we make a serious
attempt to understand it? Naturally, our hand can throw the coin in many different
ways, but why does it happen in such a way that independence arises? This question
leads to another. The initial conditions for the coin are the initial positions and
angular momenta, which are continuous variables, so we can no longer actually
count the possibilities. But what can tell us now what is small and what is
overwhelmingly large if there is an infinity of possibilities either way? The answer
is a measure on the continuum, a typicality measure.

3.3 Coarse Graining and Typicality Measures

It is helpful for the discussion of chance to omit human involvement altogether
and to think of the coin being tossed, not by a human hand, but by a coin-tossing
machine, i.e., a mechanical device, a robot, which takes a coin, tosses it, registers
heads or tails, takes the coin again, tosses it again, and so on. This way we know for
sure that the situation is pure physics, that is, we have a process that is analogous
to the inner workings of a clock. In particular, we now may better appreciate the
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problem that, with such a machine, there is obviously no place for randomness to
begin with.

The situation is not at all an easy one and the aim of this chapter is to help the
reader to think this through. The machine must take the coin again and again, let’s
say for definiteness always with heads up, but must also toss each time with ever so
slightly changed initial conditions, in such a way that, with the help of the chaotic
motion of the coin in the air, the law of large numbers somehow emerges. The
first question we would now like to address is this: How can we capture stochastic
independence mathematically for a physical system like our coin-tossing machine?

Let Ω be the physical state space of the machine and coin together. For
each ω ∈ Ω , the machine produces a coin-tossing sequence, which is completely
determined by ω. The result of each coin toss is specified by functions on Ω called
coarse-graining functions, which map each ω ∈ Ω to the values 0 or 1 (heads or
tails). To keep things simple mathematically, we choose as an example Ω = [0, 1)

and ω = x ∈ [0, 1), so we are looking for functions which map the interval [0, 1)

to the set of values {0, 1} and which nevertheless exhibit the characteristic features
of the coin toss. One such feature is stochastic independence. The coarse graining
must produce this independence in relation with a “natural measure”.

The big question when the first rigorous mathematical probability theory was
being worked out was: Do such coarse-graining functions exist naturally, i.e., do
they arise as natural mathematical objects or must we rely on pathological ad hoc
constructions? And what should be used as the measure? The answer is at the same
time simple and subtle, and it requires a generous helping of modern mathematics.

We represent the initial condition x ∈ [0, 1) in binary form, i.e., we represent the
number in base 2:

x = 0. x1x2x3 . . . , xk ∈ {0, 1} , x =
∑

k=1

xk2−k ,

so that xk ∈ {0, 1} is the k th binary value of x. Now consider the function rk which
maps x to its k th binary value (see Fig. 3.1 for the graphs for different values of k):

rk : [0, 1)−→{0, 1}

rk(x) = xk .

The functions are called the Rademacher functions in honour of Hans Rademacher
(1892–1969), who first introduced them. They map each value of [0, 1) to either
0 or 1 and are thus coarse-graining functions. The set r−1

k (δ) is the pre-image of
δ ∈ {0, 1}, i.e., the set of x ∈ [0, 1), which are mapped to δ.

We can use the Rademacher functions to model coin tossing. We think of x as
representing the physical initial condition and rk(x) as the final position of the coin
in the k th toss, so that rk is thought of as being given by the solution of the law
of motion. The role of the deterministic physical law is thus played by the binary
expansion of the numbers.
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Fig. 3.1 Graphs of the Rademacher functions rk for k = 1, 2, 3. Note that the pre-images are half
open intervals

Remark 3.1 In the mathematical literature, coarse-graining functions are called ran-
dom variables. This notion is somewhat unfortunate, however and was described as
“a horrible and misleading terminology” by Kac.2 This is because the qualification
“random” suggests that there is something intrinsically chance-like about them, but
there isn’t. They are functions, nothing more and nothing less.

Given a value of rk , what do we learn about x? If r1(x) = 1 then x ∈ [1/2, 1) and if
r2(x) = 0, then x ∈ [0, 1/4) ∪ [1/2, 3/4), etc., but that’s all. Suppose we are given
the first n values (x1, . . . , xn), then we have more accurate knowledge about x, but
we have absolutely no clue about the values xl for l > n. Hence the modelling of
the k th toss by rk seems very fitting: if x is the initial condition and r1(x) the result
of the first toss, r2(x) that of the second, and so on up to k, then nothing can be
concluded for the tosses after k from the first k results.

It gets even better! To see why, it is useful to have some insight into the way
the pre-images of the Rademacher functions overlap. For example, the set of initial
conditions which lead to the event

in the 1st toss “heads”, in the 2nd toss “tails”, and in the 4th toss “tails”

is the intersection of the relevant pre-images, i.e.,

r−1
1 (1) ∩ r−1

2 (0) ∩ r−1
4 (0) = [1/2, 9/16)∪ [10/16, 11/16) .

2M. Kac, Statistical Independence in Probability, Analysis and Number Theory. The Carus
Mathematical Monographs, 1959, S. 22.
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The set of initial conditions leading to

in the 1st toss “heads” or in the 2nd toss “tails”

is

r−1
1 (1) ∪ r−1

2 (0) = [1/2, 3/4) .

Now we ask whether the Rademacher functions correspond to our idea of statisti-
cally independent outcomes in a coin-tossing sequence.

As the name suggests, coarse-graining functions are not one-to-one: many x

values are mapped by rk to one value. As mentioned above, which x values those
are is given by the pre-image r−1

k (δ), δ ∈ {0, 1}, e.g.,

r−1
1 (0) := {

x ∈ [0, 1) : r1(x) = 0
} = [0, 1/2) .

Coarse-graining functions partition their domain of definition into cells—a char-
acterising feature of such functions. It is exactly this insight which leads us to
the weights Laplace attributed to the image values, as discussed at the beginning
of Sect. 3.1. The weight 1/2 attributed to each of the values 0 and 1 is just the
content, in some sense, of the cells constituting the pre-images. But what is meant by
content? We have a natural intuition about that, namely, the content of the interval
[a, b) is its length3 λ([a, b)) := b − a, just as the content of a rectangle is its
area, and then content is synonymous with volume in higher-dimensional spaces.
In probability theory, the notion of volume has been generalised to that of measure,
but for intuitive purposes it is always helpful to keep in mind that the mother of all
measures is content in the sense just described.

We see from Fig. 3.1, and reflecting for a moment on the graphs for general k,
that the content of each pre-image of a value of the Rademacher functions is

λ
(
r−1
k (δ)

)
= λ

({x : rk(x) = δ}) = 1

2
, δ ∈ {0, 1} .

This is the value of the probability P on the image space, i.e., the value of the
probability that we would attribute intuitively. For δ ∈ {0, 1},

P(δ in the k th toss) := λ
(
r−1
k (δ)

)
. (3.1)

Coarse-graining functions carry the content from the domain of definition to the
image space. With this in hand, we now turn to the independence property of
Rademacher functions, which corresponds to a key feature of coin tossing.

3λ is a standard notation for Lebesgue measure, but we do not need the full story here.
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For simplicity, we start with the coarse grainings r1 and r2. The content has the
following product structure:

P(δ1 in the 1st toss and δ2 in the 2nd toss) = λ
(
r−1

1 (δ1) ∩ r−1
2 (δ2)

)

= λ
({x : r1(x) = δ1 ∩ r2(x) = δ2}

)

= 1/4 = (1/2)2

= λ
(
r−1

1 (δ1)
)

λ
(
r−1

2 (δ2)
)

. (3.2)

This product structure is taken to define statistical independence, i.e., the
Rademacher functions r1 and r2 are indeed statistically independent.

Actually, this shouldn’t come as too much of a surprise. It was to be expected
because the Rademacher functions map to values in the binary expansion and, as we
noted earlier, the first binary digit has no implications for the second binary digit,
which is indeed the naive notion of independence. On the other hand, if the above
result about the product structure seems too trivial to be of any great importance,
then think again! There is a crucial point to be grasped here.

Remark 3.2 We could have used the word probability and we could have said that
the probability that r1 takes the value δ1 and r2 takes the value δ2 equals the product
of the individual probabilities. But what would that have done for us? The product
structure for the content of special sets is a mathematical fact, while probability
always carries a subjective undertone, which we have no use for here.

For a general collection of Rademacher functions, letting nk ∈ N, k = 1, 2, . . . , n,
δnk ∈ {0, 1}, we have

λ

(
n⋂

k=1

r−1
nk

(δnk )

)
= λ

(
n⋂

k=1

{
x : rnk (x) = δnk

}
)

= (1/2)n =
n∏

k=1

λ
(
r−1
nk

(δnk )
)
. (3.3)

That gives us the necessary trust that statistical independence is not just a notion
invented by humans to satisfy their intuition about the way a coin-tossing experi-
ment should be described, but rather it can be a natural mathematical property of the
contents of the cells in the partition induced by coarse-graining functions. Therefore
the product structure can be accepted as a good mathematical definition of statistical
independence. What we have done so far then is to see a way to grasp randomness
in physics without introducing any kind of random elements.

The independence of the Rademacher functions can be seen “directly”. The
coarse graining yields a very distinct partition. Consider again Fig. 3.1 and recall
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how the pre-images of rk for large k partition the interval [0, 1) further. In particular,
note how the pre-images of different coarse grainings mix in a precisely coordinated
way, as expressed in (3.3). That mixing is the way independence should be thought
of—at least in principle: the very orderly way in which the pre-images of the
Rademacher functions intertwine is the ideal case, while in realistic physical models
the mixing will be much less perfect and orderly, and harder to picture.

The fact that realistic mixing may look very different is also due to another factor.
Indeed, the mixing is not only perfect because the Rademacher functions partition
the interval the way they do, but also because we measure the content of the cells by
the length of the interval (the Lebesgue measure). This is the most natural measure
(since it is unbiased), but it is nevertheless particular among all possible measures.
The abstract notion of measure generalizing our a priori intuition of the content
(volume) of a set—which arises in physics as well and which we shall also use
later—may weight the cells of a partition in what we would intuitively call a non-
uniform way. At the end of the day, it is the physical law which decides the measure.

To sum up, what we should bear in mind here is that the degree of statistical
independence is determined by two things: (1) the kind of coarse-graining function
which maps the fundamental set to the set of relevant events or outcomes we are
focusing on and (2) the measure which determines the “size” of the pre-image cells.

Here is an example of another possible (actually arbitrarily chosen) measure.
Instead of λ, take μ = 4λ/3 on [0, 3/4) and μ = 0 on [3/4, 1). Then μ([0, 3/4)) =
1 and

μ([1/2, 1)) = 4

3
λ([1/2, 3/4)) = 4

3

(
3

4
− 1

2

)
= 1

3
.

If we use this measure to determine the size of the cells in the partition effected by
the Rademacher functions, we find

μ
(
r−1

1 (0) ∩ r−1
2 (1)

)
= μ

({x : r1(x) = 0} ∩ {x : r2(x) = 1})

= μ([1/4, 1/2)) = 4

3
λ((1/4, 1/2]) = 4

3
× 1

4
= 1

3


= μ
(
r−1

1 (0)
)

μ
(
r−1

2 (1)
)

= 4

3
λ([0, 1/2))

4

3
λ([1/4, 1/2)) = 2

9
.

The product structure has gone, and hence also the independence.
The notion of independence of random variables or random events is defined in

every textbook on probability without much ado. We have performed a song and
dance about it here to stress the fact that the mathematical foundation is based on
the particular way in which the pre-images of the coarse-graining functions mix
and also on the measure used to determine the size of the cells. We did this to
get a deeper understanding of what is going on. The Rademacher functions are the
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archetypal independent random variable and it was only after their discovery that
probability theory was developed into a serious mathematical discipline.

3.4 The Law of Large Numbers

Table 3.1 tells us that the relative frequency of heads and tails is typically around
1/2. The law of large numbers can thus be read directly off the table. So where is
the chaos? Where is the independence? The answer is that it is in the counting of
sequences! This is something we need to think hard about! How do we get to the
typicality statement from the fundamental level, for example, by modelling coin
tossing using the Rademacher functions? We can no longer count discrete entities
on that fundamental level, since it is a continuum. The measure λ now takes over
the role of counting. Instead of talking about the overwhelming majority in terms of
counting, we must now define the overwhelming majority in terms of our measure.
To come to grips with that, we have to ask how we can formulate the relative
frequency of 0’s and 1’s (heads and tails), which is the thing we are interested in. In
fact, this is done using something called the empirical distribution. Introducing the
indicator function 1A(x) of a set A, which is 1 if x ∈ A and 0 otherwise, we have
the following definition:

Definition 3.1 The function

ρn
emp({δ}, x) := 1

n

n∑

k=1

1{δ} (rk(x)) , δ ∈ {0, 1} , x ∈ [0, 1) ,

is called the empirical distribution of the Rademacher functions.

It is a coarse-graining function (a random variable), coarse graining [0, 1), and it
determines the relative frequency of the appearance of the digit δ in the first n binary
digits of x.

Remark 3.3 The word “empirical” could be confusing because, on the one hand,
there is the empirical distribution which is given by the relative frequencies
determined in an experiment, and on the other, there is the theoretical entity above
for which the physical theory will produce the prediction for the experimental
outcome. But “theoretical empirical distribution” is a bit too long and uses adjectives
which seem even to contradict each other. In short, ρn

emp({δ}, x) captures the
empirical distribution of the coin-tossing results within our theory for the initial
condition x. We shall soon get serious about this, in fact in Theorem 3.3.

We shall now show that typically, for large n, the relative frequency for δ = 1 is
about 1/2, and likewise for δ = 0. This means that the coarse-graining function
ρn

emp({δ}, x) partitions the interval [0, 1) into cells of different sizes, where the cell
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which is mapped to values near 1/2 has almost size 1. There are many smaller cells
on which the function takes values away from 1/2, i.e., other values are possible but
don’t have enough weight to be taken seriously when judged by the content or size
of the cells.

We wish to establish this mathematically. To do so, consider the deviation

∣∣∣∣ρ
n
emp({δ}, x)− 1

2

∣∣∣∣ > ε ,

for some ε > 0 (thinking of ε as a small number), and compute the corresponding
cell size. This will lead us to the law of large numbers which is also often called the
law of the mean. Hence we estimate the content of the set

{
x ∈ [0, 1) :

∣∣∣∣ρ
n
emp({δ}, x)− 1

2

∣∣∣∣ > ε

}
, ε > 0 .

To do this, we write the content of a set in terms of an integral, using the indicator
function of the set. In general terms,

λ
({x : |f (x)| > ε}) =

∫ 1

0
1{x:|f (x)|>ε}(x)dx . (3.4)

Next observe that, if |f (x)| > ε, then (|f (x)|/ε)n > 1, for all n ∈ N. We then have
the following very effective inequality (although simple, it deserves a moment’s
reflection):

1{x:|f (x)|>ε}(x) ≤
( |f (x)|

ε

)n

, ∀ n ∈ N .

Putting this into (3.4), we get

λ ({x : |f (x)| > ε}) =
∫ 1

0
1{z:|f (z)|>ε}(x) dx ≤

∫ 1

0

( |f (x)|
ε

)n

dx . (3.5)

For n = 2, this is known as the Chebyshev inequality. For general n, it is called the
Markov inequality. We shall use it now for f (x) = ρn

emp({δ}, x)−1/2. To save work,
we note that, in the context of the Rademacher functions, 1{1} (rk(x)) = rk(x), so
the notation simplifies in the case δ = 1, yielding

ρn
emp({1}, x)− 1

2
= 1

n

n∑

k=1

[
rk(x)− 1

2

]
.
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Thus,

λ

({
x :

∣∣∣∣ρ
n
emp({1}, x)− 1

2

∣∣∣∣ > ε

})
≤ 1

ε2

∫ 1

0

(
ρn

emp({1}, x)− 1

2

)2

dx

= 1

n2ε2

∫ 1

0

[
n∑

k=1

(
rk(x)− 1

2

)]2

dx .

Expanding the square yields a diagonal sum over n terms and an off-diagonal sum
with n(n− 1) ≈ n2 terms. Setting ak = rk − 1/2, we obtain

( n∑

k=1

ak

)2

=
n∑

k=1

a2
k +

n∑

k 
=l=1

akal .

This is where we can use independence. To integrate the off-diagonal terms, we use
the fact that, for independent coarse-graining functions, the integral of a product
equals the product of the integrals:

∫ 1

0

[
rk(x)− 1

2

] [
rl (x)− 1

2

]
dx =

∫ 1

0

[
rk(x)− 1

2

]
dx

∫ 1

0

[
rl(x)− 1

2

]
dx = 0 .

(3.6)

To see the last equality, recall the graphs in Fig. 3.1 and note that each integral is in
fact zero. We are then left with the diagonal terms, but there is nothing to compute
here either, because (rk − 1/2)2 = 1/4 for all k, so

n∑

k=1

∫ 1

0

(
rk(x)− 1

2

)2

dx = n

4
.

We have thus proved the following theorem:

Theorem 3.1 (Law of Large Numbers for Rademacher Functions) For all
ε > 0,

λ

({
x ∈ [0, 1) :

∣∣∣∣ρ
n
emp({δ}, x)− 1

2

∣∣∣∣ > ε

})
≤ 1

4nε2 , δ ∈ {0, 1} . (3.7)

Note as an aside that the “expected value” of ρn
emp is

∫ 1

0
ρn

emp({δ}, x)dx = 1

2
.
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We emphasize that the right-hand side gets arbitrarily small with increasing n,
hence the reference to large numbers. The theorem can be restated in different but
equivalent ways:

• The set of x ∈ [0, 1) for which the relative frequency of 1’s and 0’s in the binary
expansion is not close to 1/2 has negligible content.

• For the overwhelming majority of x ∈ [0, 1), the relative frequencies of the
binary digits are close to 1/2.

• It is typical that the relative frequencies of 1’s and 0’s are approximately 1/2.
• Using the Rademacher functions as a model for physical coin-tossing experi-

ments, heads and tails typically appear more or less equally often. We thus make
the following prediction: a coin-tossing experiment will reveal heads and tails
more or less equally often.

• We may call the typical value 1/2 of ρn
emp (its expected value) the probability for

heads or tails, which is the Laplace probability for coin tossing.

We thus learn that the Laplace probability, which is essentially based on counting,
can be explained by a coarse-graining function on a continuum, which is closer to
the physics of the coin-tossing process. We shall focus more closely on this in the
next section.

3.5 Typicality in the Continuum

We first talked about typicality in terms of counting. That is, we counted those
sequences with a relevant feature (relative frequencies of “heads” and “tails”
approximately equal to 1/2) and found that they made up the overwhelming majority
of possible sequences. But the molecules in the example of the lecture hall are
moving around and their motion is determined by specifying the position and
velocity of all the molecules in the hall. Likewise with coin tossing, the conditions
which determine the motion are to be drawn from a continuum. This remains hidden
when we do the counting. In other words, the counting is applied on a coarse-grained
level of description. The question is thus: How can we extend the idea of typicality
to the continuum?

We already opened the way in the last section. The counting is to be replaced by a
measure, and in particular, by a measure of typicality. The measure assigns weights
to subsets of the physically relevant space, i.e., to subsets of the phase space, as
Boltzmann called it. The important question is this: What or who determines the
typicality measure? Since the typicality measure determines what is typical and
what is not, or in other words what it is that we actually experience (because
we experience what is typical) among all possibilities, the typicality measure
should have a clearly objective character. Put another way, it is simply a physical
fact (independent of what we humans think or know) that the lecture hall is
homogeneously filled with air molecules, so that no student in the right half of the
lecture hall will suddenly suffocate.
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Therefore we investigate the question in the context of the most famous
deterministic physical theory, namely Newtonian mechanics, and explain how that
theory itself determines the typicality measure. But what we shall say applies (in an
appropriate form) to all physical theories. Any physical theory will in some way or
other be given by a dynamical system (Ω,P, Tt ). The first ingredient is a phase space
Ω , for example, the set of all possible positions and velocities of all gas molecules
in the lecture hall. In addition, there is a time evolution Tt : Ω �→ Ω , where t ∈ R

stands for time, for example, the time evolution of the positions and velocities of all
relevant particles. Finally, there is a measure P which remains unchanged under the
time evolution. This means that P is stationary with respect to Tt .

To grasp the meaning of stationarity, we must first consider how a general
measure P changes with the time evolution Tt on Ω . In fact, for all (measurable)
subsets A ⊂ Ω ,

Pt (A) := P(T −1
t (A)) .

This just states the obvious: the measure at time t of a set A is nothing but the
measure of that set which evolved over time t into A, viz.,

T −1
t (A) = {ω|Ttω ∈ A} .

Now we can ask whether there exists a distinguished measure which does not
change, i.e., a stationary measure with the property Pt (A) = P(A). This would
be so if and only if P(A) = P(T −1

t (A)) for all subsets A. If taken as the typicality
measure, the stationary measure yields the nice property that typicality is timeless.
That in turn means that statistical reasoning based on typicality is possible at any
time! To stress its importance we repeat here: the measure P is stationary with
respect to the time evolution Tt if, for all A and t ,

Pt (A) := P(T −1
t (A)) = P(A) . (3.8)

The next question is a practical one: How can we determine the stationary measure
for a given physical theory, such as Newtonian mechanics?

3.5.1 NewtonianMechanics in Hamiltonian Form

The time evolution Tt in Newtonian mechanics describes the time evolution of point
particles. The Newtonian theory is of second order which means that the dynamical
law is given by a second order differential equation for the positions of the particles
qi ∈ R

3, viz.,

mi
d2qi

dt2 = Ki (q1, . . . , qN) , i = 1, . . . , N , (3.9)
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where the mi are parameters, called masses, and K is a force field, e.g., the
gravitational force given by

Ki (q1, . . . , qN) =
∑

j 
=i

Gmimj

qj − qi

|qj − qi |3 ,

with G the gravitational constant.
The phase space of Newtonian mechanics for an N-particle system is R

6N ,
because the elements needed to specify the time evolution Tt of the system are
all the positions and velocities of all the particles (i.e., three position coordinates
and three velocity components per particle). This is because the Newtonian law is
a second order differential equation. A more prosaic representation of the law is
achieved by reduction of the second order differential equation to a first order one,
directly defined on phase space R6N . For notational convenience, we introduce

(q, p) := (q1, . . . , qN, p1, . . . , pN) , with momentum pi = mi q̇i := mi
dqi

dt
,

and call Ω = R
3N ×R

3N the phase space4 of elements ω = (q, p). Equation (3.9)
becomes

q̇ = m−1p ,

ṗ = K(q) = (
K1(q1, . . . , qN), . . . , KN(q1, . . . , qN)

)
,

(3.10)

where m is the mass matrix, a diagonal matrix with mi as entries.
In the case of gravitation, and in many other cases as well, it turns out that K is

a gradient of a potential, i.e., K = −∇V . Using this, we can write (3.10) as

q̇ = ∂H

∂p
(q, p) ,

ṗ = −∂H

∂q
(q, p) ,

(3.11)

where the so-called Hamiltonian function5 is given by

H(q, p) = 1

2
〈p,m−1p〉 + V (q) := 1

2

N∑

i=1

p2
i

mi

+ V (q1, . . . , qN) . (3.12)

4In classical physics, the symbol Γ is used for phase space, following Boltzmann. In the
mathematical foundations of probability theory, Andrey Nikolaevich Kolmogorov (1903–1987)
introduced instead the symbol Ω , which may be more suggestive of the “fundamental set”.
5Introduced by William Rowan Hamilton (1805–1865) and denoted by H in honour of Christiaan
Huygens (1629–1695).
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It is helpful to think of Hamiltonian mechanics, as given by (3.11) and (3.12), as an
independent physical theory, although in the case considered here it is equivalent to
Newtonian mechanics.

Hamiltonian mechanics is in a certain sense unromantic, in contrast to the more
intuitive Newtonian mechanics (see below). If one considers the Hamilton function
as representative of the fundamental law of motion, the mechanics goes like this.
The Hamilton function of an N-particle system H(q, p) generates the following
vector field on phase space Ω :

vH (q, p) =

⎛

⎜⎜⎝

∂H

∂p
(q, p)

−∂H

∂q
(q, p)

⎞

⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H

∂p1
(q, p)

...
∂H

∂pN

(q, p)

− ∂H

∂q1
(q, p)

...

− ∂H

∂qN

(q, p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here ∂H/∂qk and ∂H/∂pk are the gradients with respect to the vectors qk and pk ,
that is, differentiating with respect to each of the three coordinates in each case.
Equations (3.11) tell us that the integral curves along the vector field (i.e., such that
the vector field is tangent everywhere to these integral curves) are the curves giving
the temporal evolution of the possible states

(Q(t), P (t)) = (Q1(t), . . . , QN(t), P1(t), . . . , PN(t)) , t ∈ R ,

of the system, where the tuple (Qk(t), Pk(t)) indicates the position and the velocity
(or rather, the momentum) of the kth particle at time t . This yields a picture made
up of curves, namely the curves showing the evolution of the system as time goes
by, in a high-dimensional space. The picture is actually rather hard to depict! Recall
our discussion of the configuration space and note that phase space is configuration
space times “momentum space”. Applying this picture to the gas molecules in the
lecture hall, the dimension is about 1024.

So why did we say the picture was unromantic? Newtonian mechanics talks about
masses which attract each other or masses acting upon each other via forces—an
almost human behaviour. That all disappears in the Hamiltonian picture. There is
only a mathematical function, the Hamilton function, which generates a vector field
on phase space. The integral curves of the vector field define a flow, the Hamiltonian
flow

(
T H

t

)
t∈R on Ω which maps the “initial” values (q, p) to the time-evolved

values at time t along the trajectories:

T H
t : Ω → Ω, (q, p) �→

(
q
(
t, (q, p)

)
, p

(
t, (q, p)

))
, t ∈ R ,
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where q
(
0, (q, p)

) = q , p
(
0, (q, p)

) = p and

dT H
t (ω)

dt
= vH

(
T H

t (ω)
)

, ω = (q, p) . (3.13)

To turn Hamiltonian mechanics into a dynamical system, we need a stationary
measure P. Our next task will be to find that.

3.5.2 Continuity Equation and Typicality Measure

For notational simplicity we suppress the index H on Tt and consider (3.8) in the
slightly more general form

∫
f (Tt (ω)) dP(ω) =

∫
f (ω)dP(ω) . (3.14)

For f = 1A, we get back

Pt (A) := P (T−t (A)) = P(A) .

Note in passing that the Hamiltonian flow is invertible:

T−t Tt = id .

The problem now is to use (3.14) to actually find such a P. The trick is to turn (3.14)
into a differential equation. For that we need to assume that P has a density, i.e.,
P(dω) = ρ(ω)dω. That is plausible since Ω is a continuum. So we rewrite (3.14) in
the form

∫
f (ω)ρ(ω, t)dω :=

∫
f (Tt (ω)) ρ(ω)dω =

∫
f (ω)ρ(ω)dω , (3.15)

where we now think of f as being a test function, i.e., differentiable and zero at
infinity. Note that on the left we have defined the time dependent density ρ(ω, t). It
is the density of Pt , the measure transported by Tt . If we wish to picture that, we
recall that each flow line of the Hamiltonian flow on Ω represents a trajectory of
the system, i.e., the temporal evolution of the entire N-particle system. We view the
measure as assigning continuous weights to the system trajectories and, due to the
way the trajectories evolve, separating from each other or getting closer in time,6

the distribution of weights changes with time. This is expressed by ρ(ω, t).

6Flow lines (integral curves) can never cross each other since they are defined by a vector field.
If they did, then at a crossing point, there would be two tangential “velocity” vectors, which is
impossible for a vector field unless the vector field is zero at that point.
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The density ρ(ω, t) obeys a differential equation, in fact a transport equation
called the continuity equation. To see that, we differentiate the left-hand side and
the middle of (3.15) with respect to t . Using the chain rule, this yields

∫
f (ω)

∂ρ(ω, t)

∂t
dω =

∫
dTt (ω)

dt
· ∇f (Tt (ω)) ρ(ω)dω , (3.16)

where the dot signifies the scalar product in R
6N . Since by (3.13)

dTt (ω)

dt
= v (Tt (ω)) ,

the right-hand side of (3.16) becomes

∫
ρ(ω)v (Tt (ω)) · ∇f (Tt (ω)) dω .

By the definition (3.15) of ρ(ω, t), this is equal to

∫
ρ(ω, t)v(ω) · ∇f (ω) dω .

Assuming that f decays quickly to zero towards infinity, partial integration then
turns this into

−
∫

f (ω)div(v(ω)ρ(ω, t)) dω .

Thus (3.16) becomes

∫
f (ω)

∂ρ(ω, t)

∂t
dω = −

∫
f (ω)div(v(ω)ρ(ω, t))dω .

Since f is arbitrary, we can read off the continuity equation:

∂ρ(ω, t)

∂t
= −div

(
v(ω)ρ(ω, t)

)
. (3.17)

Remark 3.4 The equation means that there is no loss of “mass” (in the sense of
weight). Integrating (3.17) over a volume V ⊂ Ω and using Gauss’ theorem yields

∂

∂t

∫

V

ρ(ω, t)dω = −
∫

∂V

ρ(ω, t)v(ω) · dσ ,
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where the surface integral of the flux through the surface appears on the right-hand
side. Any change of “mass” in the phase volume V can only occur by mass flowing
out or coming in through the boundary ∂V of V . Equation (3.17) can be written
more economically in the form

∂ρ

∂t
+ divJ = 0 ,

where J := ρv is the “flux” in phase space.

Now let us return to the question of stationarity as expressed in (3.15). We look
for a stationary (time independent) solution ρ(ω, t) = ρ(ω) of the continuity
equation (3.17) for the Hamiltonian vector field vH . Using the product rule, we
get

∂ρ(ω, t)

∂t
= −div(vH (ω)ρ(ω, t)) = −ρ(ω, t)div(vH (ω))− grad ρ(ω, t)vH (ω) ,

where div
(
vH (ω)

)
drops out because

div vH =
(

∂

∂q
,

∂

∂p

)
vH =

⎛

⎜⎝

∂

∂q
∂

∂p

⎞

⎟⎠ ·
⎛

⎜⎝

∂H

∂p

−∂H

∂q

⎞

⎟⎠ = ∂2H

∂q∂p
− ∂2H

∂p∂q
= 0 . (3.18)

This last result is known as Liouville’s theorem.

Theorem 3.2 (Liouville’s Theorem)

div vH = 0 .

We immediately obtain a stationary solution of the continuity equation for the
Hamiltonian flow, i.e., with ∂ρ(ω, t)/∂t = 0, because the equation which remains
when Theorem 3.2 is taken into account is

0 = −grad ρ(ω, t) vH (ω) = −∇ρ(ω, t) · vH (ω) . (3.19)

That means that the Lebesgue measure dω = d3Nq d3Np on the N-particle phase
space is a stationary measure. Isn’t that amazing! The first physical theory of
interacting particles, i.e., Newtonian mechanics, yields the most natural measure—
the volume—as stationary measure. A common way of saying this is that the
Hamiltonian flow is volume preserving.
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Before we discuss this further we ask whether there are other stationary
measures. Indeed, there are, as we shall show now. On the right-hand side of (3.19),
we have

vH · ∇ρ =
(

∂H

∂p
· ∂

∂q
− ∂H

∂q
· ∂

∂p

)
ρ

=
(

q̇ · ∂

∂q
+ ṗ · ∂

∂p

)
ρ(q, p)

= d

dt
ρ
(
q(t), p(t)

)
.

The last expression is the change in the function ρ along the system trajectories. A
stationary measure is then one whose density is constant along the trajectories. It
is straightforward to show that one such function is H(q, p), a property usually
referred to as conservation of energy. Hence every function f (H(q, p)) stays
constant along trajectories.

One choice often used in statistical physics is the canonical distribution, a density
which, by integration with respect to d3Nq d3Np, gives rise to the canonical measure
or canonical ensemble

ρβ = f (H) = e−βH

Z(β)
, (3.20)

where β is interpreted thermodynamically as β = 1/kBT , with kB the Boltzmann
constant and T the temperature. Z(β) is a normalisation factor.

Going back to the volume measure, energy conservation partitions the phase
space Ω into shells of constant energy ΩE :

ΩE =
{
(q, p) : H(q, p) = E

}
, Ω =

⋃

E

ΩE .

Therefore if we think of an isolated system, i.e., one which has no exchange of any
kind with its environment, then the system will remain on one of the shells ΩE

during its time evolution. Hence, the density

ρE = 1

Z
δ
(
H(q, p)− E

)
(3.21)

is also stationary (Z is the normalisation constant). When multiplied by the volume
element d3Nqd3Np, this becomes the “content” measure PE on the energy shell
ΩE . It is variously referred to as the microcanonical measure, the microcanonical
ensemble, or the microcanonical distribution. It is more fundamental than the
canonical measure, because the latter can be obtained as the typical distribution
of a subsystem of a large system with the microcanonical measure as typicality
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measure. What we mean by “typical distribution” and “is distributed according to”
will be explained next.

3.5.3 Typicality and the Statistical Hypothesis

In statistical physics, we use statements like “the system is canonically distributed”,
or again “PE is the probability measure on the system’s energy surface ΩE”. What
we are talking about here is a statistical description of ensembles of “identical”
subsystems of our universe. This could be an ensemble of spatially separated but
otherwise identical subsystems (many different people each toss a coin) or an
ensemble which refers to the same subsystem but at different times (one coin
is tossed many times). When we talk about a distribution, we are referring to a
statistical hypothesis about the relative frequencies of particular variables of the
system across the ensemble (like the relative frequencies of heads or tails). What
justifies the statistical hypothesis? The careful reader will note that we have already
asked this question, and indeed all the foregoing has revolved around it.

This question is related to another, which concerns the applicability of the notion
of probability to larger and larger systems, eventually to the largest conceivable
system, namely, the universe itself. To see this, note first that any system is in general
a subsystem of a larger system with which it may interact, or not, if the subsystem
is sufficiently isolated from its environment. But independently of the size of the
system, i.e., the number of particles it comprises, it is always the same physical
law which applies, namely Hamiltonian mechanics with an appropriate Hamiltonian
function. The Hamiltonian formulation of mechanics does not involve any limit on
the number of particles, nor on the spatial size of the system. This is true for all
fundamental theories. They are not stamped with an expiry date, or any indication
of size which must not be exceeded for the theory to remain valid.7 In fact, the
fundamental theory is always a theory about the biggest conceivable system, viz.,
the universe.

Does it make sense to formulate a statistical hypothesis for the universe in
order to understand the measure P = PHU which is stationary with respect to the
Hamiltonian flow generated by HU, the Hamiltonian function of the universe? In
fact, it does not. What could we do with an empirical distribution across an ensemble
of universes? We live in and have access to only one universe—our own. So does
that mean that a measure like P = PHU on the phase space of the universe has no
meaning at all? In fact, it does have a meaning, and it is absolutely necessary. It is
a typicality measure, but should be strictly distinguished from any vague notion of
probability, with its various interpretations, such as relative frequencies or degree of

7That does not mean that a theory which is considered fundamental at the present time cannot be
superseded by another one. For example, classical physics gets incorporated into quantum physics,
and the realm of validity of the old theory is understood in the context of the new fundamental
theory (see Sect. 1.6).
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belief. The latter is harmless when applied to subsystems and the former is needed
to justify the application. In short, a probability measure describes typical empirical
distributions of an ensemble of subsystems. The typicality measure on the larger
encompassing system (like the universe) defines what typical means.

Two questions remain open. First, how can we guess a sensible statistical
hypothesis for let’s say the N-particle system—as a subsystem of the universe—
with Hamiltonian function H ? A natural choice (for an equilibrium situation)
is one which is given by a stationary measure. Various possibilities recommend
themselves depending on the physical situation. If the system is sufficiently isolated,
the so-called microcanonical ensemble (3.21) might be appropriate. The statistical
hypothesis can then be expressed as follows:

Statistical Hypothesis In an ensemble of similar isolated subsystems which
all have energy E, the empirical distribution of the coordinates (q, p) is
typically given by PE .

The subsystem may not be completely isolated but engage in some (weak) interac-
tion with its (large) environment by exchanging energy (heat). Suppose that for the
large environment the microcanonical measure is applicable as typicality measure.
Then we find that the canonical ensemble (3.20) is a suitable statistical hypothesis
for the subsystem. A simple special case is an ideal gas, with energy E, particle
number N , and temperature

T = 2

3

E

NkB
.

We can consider each individual particle as a subsystem with Hamiltonian function

H = 1

2

p2

m
,

whereupon (3.20) is then the Maxwellian velocity distribution. We may then make
the assertion:

For typical configurations of the ideal gas with temperature T , i.e., in ther-
mal equilibrium, the momenta of the particles are approximately distributed
like

ρMax(p) = Z−1e−p2/2mkBT .

In this case, the large system is the gas system as a whole, with typicality measure
PE , and the ensemble consists of the 1 � M � N particles whose statistics we are
attempting to describe.
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The subsystem may also exchange particles with the environment so that the
number of particles in the subsystem fluctuates, but with an average constant
density λ of particles. The corresponding distribution is called the grand canonical
ensemble. For the ideal gas, it is a Poisson distribution on the phase space of the
ideal gas with density ρMax(p)λ.

The statistical hypothesis seems like a more or less natural ansatz for making
statistical propositions in physics. But a hypothesis is a hypothesis no matter
what, and therefore it must be justified, or even better, it must be proven. And
that brings us to the second question: How can we prove a statistical hypothesis?
The answer is that we must establish the law of large numbers for empirical
distributions. This in turn means that we must show that, in a typical universe,
i.e., in the overwhelming majority of possible universes, the (theoretical) empirical
distribution of the coordinates (q, p) in an ensemble of (small) subsystems is given
approximately by the distribution corresponding to the statistical hypothesis. This
leads us to another question: typical with respect to which measure?

A natural idea, due to Boltzmann, is that the physical law itself should suggest the
typicality measure. How? By requiring the measure to be stationary.8 Stationarity
thus appears in a new light. The flow on phase space is an expression of the physical
law and the stationarity requirement yields a distinguished measure. If we wished,
we could add to the dynamical law the law that the statistical analysis must be
carried out using the distinguished measure.

To justify the statistical hypothesis we need to take the notion of subsystem, or
rather the notion of an ensemble of subsystems, a little more seriously. We thus note
that, if ω represents the phase space point of the actual universe, then it contains all
the phase space coordinates of the subsystems which form the ensemble, i.e., we can
write ω = (ωE,ωR), where ωE contains the phase space points of all subsystems of
the ensemble and ωR contains the phase space coordinates of the environment of the
ensemble, i.e., of all the “rest”. The N-particle system, i.e., each of the M similar
members of the ensemble, has the phase space coordinates ωSi , i = 1, . . . ,M ,
contained in ωE . Each subsystem in the ensemble is described by the Hamiltonian
function HS . Let f M

emp(ω) be the empirical mean of a variable f of the subsystem,
i.e.,

f M
emp(ω) = 1

M

M∑

i=1

f (ωSi ) .

8We know that the stationarity requirement need not yield a unique measure. This should not be
viewed as a failure of the typicality idea per se. In more technical terms, a typicality measure is
really a representative of an equivalence class of measures, which are absolutely continuous with
respect to each other. For stationary measures which are not absolutely continuous with respect to
each other (like the microcanonical and canonical measures), we need to apply further insights,
for example, that the universe is a “closed” system which does not exchange energy with some
“outside” system, so that the total energy of the universe is fixed. In quantum mechanics, by the
way, we shall have uniqueness of the typicality measure.
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For example, the variable could be the kinetic energy of system i, viz.,

f (ωSi ) =
N∑

k=1

p2
Si,k

2mk

.

Alternatively, it could be the characteristic function of a set, viz., f (x) = 1A(x), in
which case we consider the empirical distribution proper (see Definition 3.1 for an
example). The justification of the statistical hypothesis, e.g., for the microcanonical
ensemble, where we fix HS = E, will then be formulated in terms of the law of
large numbers, whence we return to Theorem 3.1:

Theorem 3.3 (Justification of the Statistical Hypothesis) For all ε > 0 and δ >

0, there exists a number M such that, for all n ≥M ,

PHU

(
{
ω : ∣∣f n

emp(ω)−
∫

ΩS
E

f (ωS) dPE(ωS)
∣∣ > ε

}
)

< δ .

This is the precise mathematical formulation of the statistical hypothesis stated
above.

Remark 3.5 (On Explanations in Terms of Typicality) In Sect. 3.1, we already
discussed the particularity of typicality assertions and we wish to elaborate a little
on that. It is understandable to doubt at first whether a result like Theorem 3.3
qualifies as a proof of anything. In our usual understanding, a proof carves in stone
the necessity of an assertion, it doesn’t just say that something is typical, without
even specifying where the borderline for typicality is fixed. But here, that just isn’t
on the cards. No law of nature prevents the coin from always landing on heads or
forbids all the gas molecules in the lecture hall from moving simultaneously to the
right half of the hall.

Those things are not impossible, but they are atypical. We might perhaps come
up with the idea of showing that the statistical hypothesis holds true for the exact
initial conditions of our universe, but clearly, we do not have access to those initial
conditions. And even if we could specify at least one initial condition of the universe
for which the statistical hypothesis were true, why should that be the one we live in?
Why would that yield an explanation for our experiences?

The explanatory value arises only if we can show that the statistical regularities
expressed by the statistical hypothesis do not just hold for some special initial
conditions, but for the overwhelming majority of initial conditions, i.e., if we can
show that it is typical. This reasoning may take some getting used to, but it is well
worthwhile, since almost all macroscopic law-like behaviour is typical in this very
sense.

Remark 3.6 (A More Relevant Formulation) Although it may be confusing at this
point, we should point out that the formulation of the statement of the above
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theorem is still not quite on target. This formulation tacitly assumes that typical
universes allow for subsystems of the kind we are discussing, in particular for
ensembles of similar subsystems on which measurements of relative frequencies can
be performed. But that may be an unwarranted assumption. In fact, the Boltzmann
analysis suggests that typical universes are utterly boring, like a dilute homogeneous
gas. In this case, universes containing subsystems of the kind we are interested
in—like subsystems containing coins and people throwing them—would form a
set of very small typicality measure. Therefore we should revise the theorem by
considering the conditional measure, restricted to the set of universes containing
subsystems and ensembles of the kind we are interested in. Only the conditional
typicality measure can yield a relevant assertion. In fact, in the next chapter, in
Theorem 4.1, we discuss the analogous theorem in Bohmian mechanics, but giving
the relevant conditional form.

It is worth remarking that this type of theorem is not discussed in physics textbooks.
Recall, however, our short remark on the ideal gas and the Maxwellian velocity
distribution after the statement of the statistical hypothesis. The result described
there can be formulated in connection with Theorem 3.3, where the precise result
would involve a thermodynamic limit of infinitely many particles and hence needs
to be taken with a grain of salt.9 On the other hand, it is clear that it will in general
be extremely difficult to design a proof for a universe which is much more complex
than the ideal gas.

However, this is not the main reason why the theorem does not appear in
such books. The main reason is that it does not seem to fit our experiences. In
various situations, the statistical hypothesis, i.e., that we should find an equilibrium
distribution, is indeed fulfilled, as in coin-tossing experiments, or the air filling
a lecture hall, but we nevertheless experience plenty of everyday violations of
equilibrium behaviour. We boil water for coffee, we cool water to make ice, we
fill flasks with gas under high pressure, and in fact we ourselves in our human
form constitute an assembly of molecules which seems altogether atypical. In fact,
almost everything around us seems atypical. So atypical that we could easily have
the impression that our whole universe is atypical. This is related to the notion of
entropy and to the justification of the thermodynamic arrow.10

Quantum mechanics is special in the sense that Theorem 3.3 can be shown
quite generally in a suitably adjusted manner, where the theoretical prediction
for empirical frequencies of particle positions is given by the Born distribution
considered earlier. This miraculous discovery will be discussed next.

9Compare the instructive computation in D. Dürr and S. Teufel, Bohmian Mechanics. The Physics
and Mathematics of Quantum Theory. Springer, 2009.
10See, for instance, D. Lazarovici and P. Reichert, Arrow(s) of Time without a Past Hypothesis, in:
V. Allori (ed.), Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and
Laws of Nature, World Scientific, 2020 and S. Carroll: From Eternity to Here, Dutton, New York,
2010.
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But in 1952 I saw the impossible done. It was in papers by David Bohm. Bohm showed
explicitly how parameters could indeed be introduced, into non-relativistic wave mechanics,
with the help of which the indeterministic description could be transformed into a
deterministic one. More importantly, in my opinion, the subjectivity of the orthodox
version, the necessary reference to the “observer,” could be eliminated. Moreover, the
essential idea was one that had been advanced already by de Broglie in 1927, in his “pilot
wave” picture. But why then had Born not told me of this “pilot wave”? If only to point
out what was wrong with it? Why did von Neumann not consider it? More extraordinarily,
why did people go on producing “impossibility” proofs, after 1952, and as recently as
1978? When even Pauli, Rosenfeld, and Heisenberg could produce no more devastating
criticism of Bohm’s version than to brand it as “metaphysical” and “ideological”? Why is
the pilot wave picture ignored in textbooks? Should it not be taught, not as the only way,
but as an antidote to the prevailing complacency? To show us that vagueness, subjectivity,
and indeterminism are not forced on us by experimental facts, but by deliberate theoretical
choice?

John S. Bell, On the impossible pilot wave1

As mentioned in Chap. 2, different quantum theories without observers have been
suggested and we shall present one now which is particularly well worked out:
Bohmian mechanics—a quantum theory of particles in motion.

To be clear from the very beginning, the empirical predictions of Bohmian
mechanics are consistent with Born’s statistical hypothesis, which is the basis for
the empirical statements in standard quantum mechanics. So, wherever standard
quantum mechanics makes unambiguous predictions, those agree with Bohmian
predictions. In standard quantum mechanics, Born’s statistical hypothesis is laid
down as one of the axioms in the abstract quantum formalism, while the empirical
import of Bohmian mechanics comes from a Boltzmannian typicality analysis which
allows us to justify Born’s statistical hypothesis. This can be seen as an example par

1Foundations of Physics 12, 989 (1982). Reprinted in Bell, J. S. Speakable and Unspeakable in
Quantum Mechanics, Cambridge University Press, Cambridge, 2004.
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excellence of Boltzmann’s idea of the statistical analysis of a deterministic theory,
which we spelt out in the last chapter. Events will appear as if they are random, but
in truth they are not.

Bohmian mechanics is not simply the “good old” quantum mechanics with point
particles included in an ad hoc manner, or with particle trajectories included as
supplementary variables. It is rather a proposal for a fundamental microscopic
theory from which the quantum formalism can be derived as an effective statistical
description, rather analogous to the way thermodynamics in the sense of statistical
mechanics is derived from the classical mechanics of point particles. In the old
Copenhagen interpretation, Bohr insisted that macroscopic objects such as the
pointers of measurement devices need definite positions to record the outcome
of measurements. The most straightforward way to achieve this consistently is to
describe them as being made out of microscopic objects—particles—that always
have definite positions. In Bohmian mechanics, there is thus no “shifty split”
between a classical world of localized objects and a non-understandable quantum
world. The Bohmian theory goes all the way: particles exist and move—also in the
quantum world. Not a big deal, as it turns out.

The basic idea of this theory was already presented by Louis de Broglie at the
famous 1927 Solvay conference, where some of the most distinguished physicists
had gathered for a discussion about the contemporary understanding of nature. But
his idea received a cool rejection.

De Broglie suggested that the wave function, which was at that time connected
to matter in some “unspecified” way, could be thought of as a pilot wave for point
particles which choreographed the motion of the particles. Only a few physicists,
like for example Hendrik Lorentz (1853–1928), showed much sympathy for de
Broglie’s attempt to develop a theory of particle trajectories. In fact, in the general
discussion session during that conference, Lorentz said:

For me, an electron is a corpuscle that, at a given instant, is present at a definite point in
space, and if I had the idea that at a following moment the corpuscle is present somewhere
else, I must think of its trajectory, which is a line in space. [. . . ] I imagine that, in the new
theory, one still has electrons. It is of course possible that in the new theory, once it is well
developed, one will have to suppose that the electrons undergo transformations. I happily
concede that the electron may dissolve into a cloud. But then I would try to discover on
which occasion this transformation occurs. [. . . ] I am ready to accept other theories, on
condition that one is able to re-express them in terms of clear and distinct images.2

This reflects Lorentz’ wish to acquire a clear picture, just like de Broglie, but it
also questions Bohr’s school of thought regarding the wave–particle duality which
was crystallising during that period. Bohr insisted that a quantum object could
change its appearance like a chameleon—sometimes it would look like a wave and
sometimes it would look like particle. But Lorentz was asking: What is the physical

2Quoted from G. Bacciagaluppi and A. Valentini, Quantum Theory at the Crossroads: Reconsid-
ering the 1927 Solvay Conference, Cambridge University Press, Cambridge, 2009, p. 433.
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process behind this change? In de Broglie’s ansatz, on the contrary, there was always
both a particle and a wave.

Neither Albert Einstein (1879–1955) nor Erwin Schrödinger showed any sym-
pathy for de Broglie’s project, which is quite remarkable because both opposed the
central role of the observer in the Copenhagen interpretation of quantum mechanics.
We shall explore the reason for Einstein’s stance in Chap. 10. The situation changed
from around 1950 onwards, with the work of David Bohm and John Bell. David
Bohm, being ignorant of de Broglie’s early attempts, came to the same idea quite
independently, and almost completely developed the theory.

A crisp motto encapsulating the essence of Bohmian mechanics is this: When
we say “particle”, we actually mean “particle”. In quantum mechanics, there is
endless talk about particles—for example electrons which are sent through a slit
and subsequently strike a detector screen, as is clearly visible when a black spot
appears on the photo screen. But as soon as we inquire about the use of the word
“particle”, we are told insistently that this is just a manner of speaking and should
not be taken seriously. Perhaps the reader has learned that in quantum mechanics
a particle cannot have a sharp position as long as it is not measured. Or that the
uncertainty relation renders the existence of particle trajectories impossible. Or that
an electron is sometimes a particle and sometimes a wave. All these statements are
unjustified in the sense that they do not follow from the phenomena, as the mere
existence of Bohmian mechanics clearly demonstrates.

If we acknowledge that quantum mechanics ought to be about physical entities
in the world and if we take the notion of point particle seriously, it is easy to find a
law of motion for the particles which is not only able to reproduce the phenomena
of quantum physics, but which explains them and makes them understandable.
That such a theory is not plagued by the measurement problem has already been
understood in Chap. 2. According to Bohmian mechanics, at any given instant of
time, every physical system has a well defined configuration of matter, given by
the positions of the particles in three-dimensional space. After a measurement the
pointer of a piece of measurement apparatus—consisting of Bohmian particles—
points either to the right or to the left, while the wave function of the apparatus
represents a superposition of both possibilities. All that remains for us to do is to
understand the law of motion of the particles and see how the statistical predictions
of quantum mechanics can be derived from that.

Bohmian mechanics is, like Hamiltonian mechanics, a theory of point particles
in motion, but in contrast to Hamiltonian mechanics, it is not a Newtonian theory. In
Bohmian mechanics the law governing the motion of N particles is not represented
by a vector field on the 6N-dimensional phase space but by a vector field on the
3N-dimensional configuration space of the N particles, viz.,

R
3N = {

q | q = (q1, . . . , qN) , qk ∈ R
3} ,
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where the actual configuration is denoted by

Q := (Q1, . . . , QN) , Qk ∈ R
3 .

In Hamiltonian mechanics, it is the Hamilton function on phase space which
generates the vector field, while in Bohmian mechanics, it is Schrödinger’s wave
function ψ , which is defined not on phase space but on configuration space. In
classical physics, we rarely consider cases where the Hamilton function is time-
dependent, although those situations would be precisely the ones that would be
important for technical applications like increasing the pressure in a gas by means
of a piston. In quantum mechanics, we often consider wave functions which are
time-dependent. Hence it seems reasonable to adjoin the wave function ψ to the
state description of a Bohmian system. The state of a Bohmian system is thus given
by a pair (ψ,Q) where ψ is the wave function and Q the particle configuration of
the system.

Bohmian mechanics is thus defined by the evolution equation for the wave
function and by the evolution equation of the particle configuration. The wave
function

ψ : R3N × R→ C , ψ(q, t) ,

is taken to be a solution of the Schrödinger equation

ih̄
∂

∂t
ψ(q, t) = −

N∑

k=1

h̄2

2m
Δkψ(q, t) + V (q)ψ(q, t) . (4.1)

The role of the wave function ψ is to generate a vector field vψ on R
3N . To see this,

we write

ψ(q, t) = R(q, t)e
i
h̄
S(q,t)

, (4.2)

where R and S are real-valued functions. Taking the 3N-dimensional gradient ∇,
the vector field is

vψ(q, t) := 1

m
∇S(q, t) . (4.3)

The configuration trajectories are then integral curves along the vector field, which
means that, for the evolution of the particles with positions (Q1, . . . , QN) = Q ∈
R

3N , we have

d

dt
Q(t) = vψ

(
Q(t), t

)
. (4.4)
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Equivalently, we can express (4.3) in the form

vψ(q, t) = h̄

m
Im∇ ln

(
ψ (q, t)

)

= h̄

m
Im
∇ψ (q, t)

ψ (q, t)
= h̄

m
Im

ψ∗ (q, t)∇ψ (q, t)

ψ∗ (q, t) ψ (q, t)
, (4.5)

where ψ∗ is the complex conjugate of ψ . For the position of the k th particle, we get

d

dt
Qk(t) = h̄

m
Im
∇kψ (q, t)

ψ (q, t)

∣∣∣∣
q=(Q1(t),...,QN (t))

, (4.6)

where ∇k = ∂/∂qk . Bohmian mechanics is thus defined by two equations: the
Schrödinger equation for the wave function and the guiding equation for the
evolution of the positions of the particles, in which the wave function defines the
velocity vector field. Written compactly in configuration space notation, we have

ih̄
∂

∂t
ψ(q, t) = − h̄2

2m
Δψ(q, t)+ V (q)ψ(q, t) (Schrödinger equation) ,

d

dt
Q(t) = h̄

m
Im
∇ψ (q, t)

ψ (q, t)

∣∣∣∣
q=Q(t)

(guiding equation) .

Here is another way to arrive at (or express) the velocity in the guiding law. The
numerator of the rightmost term in (4.5) is

h̄

m
Im

(
ψ∗ (q, t)∇kψ (q, t)

) = 1

2i

[
ψ∗(q, t)∇kψ(q, t)−ψ(q, t)∇kψ

∗(q, t)
] = jψ(q, t) ,

the quantum flux (1.5)! Hence, (4.5) reads

vψ(q, t) = jψ(q, t)

|ψ(q, t)|2 , (4.8)

and we see that the Bohmian trajectories turn out to be the flux lines of the quantum
flux. We shall return to this in Sect. 4.2, which discusses typicality.

Remark 4.1 (“Particles with Spin”) If the wave function is a spinor wave function
[see (1.26)] of the form

ψ =
(

ψ1

ψ2

)
,
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we now read ψ∗ as ψ+ = (ψ∗1 , ψ∗2 ), where ψ∗k is the complex conjugated spinor
component. Hence,

ψ∗ψ := ψ+ψ = ψ∗1 ψ1 + ψ∗2 ψ2

can be interpreted as a scalar product in spinor space. Expressions like this appear
in (4.5) and can be interpreted in this way for spinor wave functions. We then
immediately obtain the extension of the guiding law for particles guided by a spinor
wave function. These are the ones that are usually described as “particles with spin”.
But in view of Remark 1.5, this yields only part of the extension! Recall that spin-
1/2 particles like electrons are guided by spinor wave functions which obey the Pauli
equation (1.28). The correct extension is therefore given by the replacement of the
quantum flux in (4.8) by the Pauli flux Jψ

Pauli [see (1.31)].

Remark 4.2 (Parameters in the Theory) At the outset, the quantities h̄ and m are
just dimensional quantities whose meaning only becomes clear a posteriori when
we analyse the theory. In the definition of the velocity field and in the Schrödinger
equation, we only need a parameter of dimension [length]2[time]−1, which takes
care of the naturally existing dimensions of space and time. The fact that the
parameter can then be usefully expressed as h̄/m, with m as the Newtonian mass,
is seen by looking at the way Newtonian mechanics is embedded in Bohmian
mechanics. In this way the dimensional constant h̄ acquires its meaning as a
mediator between the new Bohmian mechanics and the old Newtonian mechanics
which comes out as a limiting case of the former.3

Remark 4.3 (The Strange Transformation Property of the Wave Function) Noting
that the wave function is complex-valued, the reader may wonder why complex
numbers appear at such a fundamental level in quantum mechanics. Before the
advent of quantum mechanics, complex numbers were abstract mathematical
objects deprived of any physical relevance. But now they are needed to secure
time reversal invariance. Time reversal t �→ −t goes hand in hand with complex
conjugation ψ �→ ψ∗: if the time changes sign in (4.6), a minus sign appears on the
left, and it also does so on the right if ψ is replaced by ψ∗.

Should we be worried that ψ behaves in such a strange manner? No, because if
we understand the role the wave function plays in the theory, then the transformation
property becomes natural. In Bohmian mechanics, the role of the wave function
is to determine the trajectories of the particles, and these must not change under
time reversal. As a geometric curve, the trajectory remains the same, and it is
only the way the curve is traversed that changes. This dictates how the wave
function must behave under time reversal. An analogous situation exists in classical

3For more details see, e.g., D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and
Mathematics of Quantum Theory. Springer, 2009.
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electromagnetism: the magnetic field B changes under time reversal to −B, for the
very same reason!

Remark 4.4 (Quantum Potential and Classical Limit) In general, the wave function
which appears here as generator of the Bohmian velocity vector field obeys the time-
dependent Schrödinger equation (1.2). The wave function thus generally depends
on time. In contrast, we are not used to thinking of the Hamiltonian function in
classical physics as the solution of a differential equation. But even in Hamilton’s
day, attempts were made to define mechanics on configuration space, in what has
become known as Hamilton–Jacobi theory. In this approach, the so-called action
function S, defined on configuration space, generates a vector field in exactly the
same way as (4.3):

v = 1

m
∇S .

The action function S satisfies a partial differential equation which—and one should
not be too surprised about this—is closely related to the Schrödinger equation. We
elaborate on this because it leads straightforwardly to the embedding of classical
mechanics in Bohmian mechanics as a limiting case. Using the polar form (4.2) in
the Schrödinger equation (4.1) yields

i
∂R

∂t
− 1

h̄
R

∂S

∂t
= − h̄

2m

[
ΔR + 2

1

h̄
i∇R · ∇S − R

(
1

h̄
∇S

)2

+ iR
1

h̄
ΔS

]
+ R

h̄
V ,

where we omit the arguments for ease of notation. Sorting into real and imaginary
parts, we obtain for the imaginary part

∂R

∂t
= − h̄

2m

(
2

1

h̄
∇R · ∇S + R

1

h̄
ΔS

)
,

or again

∂R2

∂t
= − 1

m
∇ ·

(
R2∇S

)
(4.3)= −∇ ·

(
vψR2

)
. (4.9)

Since R2 = |ψ|2 this is again the quantum flux equation (1.4). Meanwhile, the real
part reads

∂S

∂t
− h̄2

2m

ΔR

R
+ 1

2m
(∇S)2 + V = 0 . (4.10)
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The latter would be precisely the Hamilton–Jacobi equation for the action S if it
weren’t for the extra term

− h̄2

2m

ΔR

R
,

which Bohm called the quantum potential. If we think of the classical Hamilton–
Jacobi equation, i.e., when the quantum potential is zero, as synonymous with
classical mechanics, we can say that we get classical mechanics in the “classical
limit”, i.e., in situations where the quantum potential is negligible.

4.1 From the Universe to Subsystems

The quantum theories discussed in this book are non-relativistic theories and
therefore describe our universe only incompletely and approximately. Nevertheless,
when we wish to understand and analyse theories, we must take them as serious
candidates for a fundamental description of nature. In this sense Bohmian mechanics
is a serious theory, and as with any such theory, its defining law does not contain
a limited region of validity in terms of, e.g., particle numbers or system size. The
defining equations (4.1) and (4.6) are valid for arbitrarily big systems and hence
also for the universe as a whole. Therefore, on the fundamental level, there exists
in Bohmian mechanics—as in any other precise quantum theory—only one wave
function, namely the wave function of the universe, which, in the case of Bohmian
mechanics, guides all particles.

But the universe is too big for practical physics. If we couldn’t describe an
atom in our laboratory without taking into account the particles in the Andromeda
nebula (or the particles of a nearby experimenter for that matter), the theory would
indeed be useless. We must therefore ask how subsystems of a large system can be
described “autonomously”. The answer in quantum mechanics is different from the
one given in Hamiltonian mechanics. This is due to the entanglement of the wave
function on configuration space, which complicates the description of subsystems.
In Hamiltonian mechanics, we can argue that interactions become small over
large distances or that the force which acts on a subsystem from a more or less
homogeneous distribution of distant matter is approximately zero. We may also find
an effective Hamiltonian description of a subsystem using an “external” potential.
Such arguments are not sufficient to achieve autonomous descriptions of subsystems
in Bohmian mechanics, or in other quantum theories for that matter.

In view of (4.6), we conclude that, if the wave function of the total system
(subsystem plus environment) is a product Ψ (x, y) = ϕ(x)Φ(y), and if this product
structure remains intact for some time, then the system with wave function ϕ(x) and
the environment with wave function Φ(y) will evolve independently of each other;
and hence the particles of the system with wave function ϕ(x) and the particles in
the environment with wave function φ(y) will move independently of each other.
Alternatively, we may think of (4.2) and (4.3) and recall that the phases of the wave
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functions add if they form a product. But the assumption of a product form of the
wave function is not generally justifiable. Interactions, no matter how small, will
produce entanglement, and this will not decay over large distances. How then is it
possible to achieve an autonomous description of subsystems?

In Bohmian mechanics, there is a quite natural answer because there are particles
which define the subsystem! Suppose that the large system consists of N particles
(Q1, . . . , QN) and consider a subsystem of N1 particles with positions X =
(Q1, . . . , QN1), so that the environment consists of the rest of the particles with
positions Y = (QN1+1, . . . , QN). The coordinates q in R

3N will therefore naturally
split into

q = (x, y) , x ∈ R
3N1 , y ∈ R

3(N−N1) .

The question is now whether the x-system obeys its own Bohmian law. Will it have
a wave function on its own? In principle, it is the large system which is guided by

Ψ (q, t) = Ψ (x, y, t) . (4.11)

On the fundamental level where the large system is the whole universe, that wave
function is called the universal wave function. From that we obtain a function on
the configuration space R

3N1 of the subsystem directly by setting

ϕY (x, t) := Ψ
(
x, Y (t), t

)
, (4.12)

that is to say, by plugging in the actual coordinates Y (t) of the particles making up
the environment. The function (4.12) is called the conditional wave function, a term
which will become clearer later on.

The conditional wave function is indeed the wave function of the x-system
because, in view of (4.6), the reader may check that

Ẋ(t) = vΨ
x (X(t), Y (t)) = h̄

m
Im
∇xΨ (x, Y (t), t)

Ψ (x, Y (t), t)

∣∣∣∣
x=X(t)

= h̄

m
Im
∇xϕY (x, t)

ϕY (x, t)

∣∣∣∣
x=X(t)

.

If the conditional wave function is required to be normalized, we take

‖Ψ (·, Y )‖ =
(∫

|Ψ (x, Y )|2d3N1x

)1/2

= 1 .

The wave function of a subsystem is thus the conditional wave function. This
conditional wave function behaves just like the wave function in standard quantum
mechanics is supposed to. If the subsystem is sufficiently isolated, the conditional
wave function obeys its own Schrödinger equation, while in a measurement
experiment it “collapses” automatically, without interference from the “observer”.
Let us now see why this is.
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Fig. 4.1 Splitting of the wave function in configuration space in a “measurement process”. The
dot signifies a possible configuration of the Bohmian particles

Recalling our discussion of the measurement process in Chap. 2,

ϕψ0 = (c1ϕ1 + c2ϕ2)ψ0
Schrödinger evolution−→ c1ϕ1ψ1 + c2ϕ2ψ2 , (4.13)

where ϕ(x) = c1ϕ1(x) + c2ϕ2(x) is the wave function of the measured system,
i.e., the x-system is in a superposition of two normalized wave functions which
would lead in the measurement to results 1 and 2, respectively, and ψ(y) is the
wave function of the measurement apparatus, i.e., the y-system constitutes the
“environment”. ψ0 is the ready state and ψi , i = 1, 2, are the wave functions
corresponding to the two possible measurement results, i.e., pointer left corresponds
to 1 and pointer right to 2. ψ1 and ψ2 represent macroscopically distinct states so
they have macroscopically disjoint supports in configuration space (see Fig. 4.1).4

Suppose now that the Bohmian configuration Y of the measurement apparatus
after completion of the measurement is in the support of ψ1 (pointer left). By
definition, the conditional wave function of the x-system is then

ϕY (x) := c1ϕ1(x)ψ1(Y )+ c2ϕ2(x)ψ2(Y ) ≈ c1ϕ1(x)ψ1(Y ) , (4.14)

4We must take the notion of macroscopic disjointness with a grain of salt, since it will only be true
in an approximate sense (although to an excellent approximation), e.g., in the sense of L2, which
means that wave functions are close if their |Ψ |2-measures are close. In view of Born’s law (see
Sect. 4.2), this sense of closeness is the empirically relevant one. In short,

Ψ ≈ Ψ̃ ⇐⇒ P Ψ ≈ P Ψ̃ .
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since ψ2(Y ) ≡ 0, at least to a good approximation and for long times. When
normalized, this is

ϕY(x) = ϕ1(x) , (4.15)

where the equality is meant projectively, i.e., it holds up to a phase factor.
So the conditional wave function of a subsystem, which leads to an effective

description of the subsystem, can collapse in the sense described here, but the
universal wave function, or the wave function of the larger isolated system of
which the subsystem is a part, does not collapse! It is important to keep this in
mind, as it makes all the difference in the collapse models discussed in Chap. 5.
In Bohmian mechanics, macroscopic interference is in principle possible, while in
collapse models it is not.

If we plug the total wave function of the right-hand side of (4.13) into the guiding
equation (4.5) and assume that ψ2(Y ) ≡ 0, we see that the velocity vector field
of the x-system is determined solely by ϕ1. The “empty” part of the total wave
function ∝ ϕ2(x)ψ2(y) does not guide the system, and since both parts decohere,
we may forget that part for all practical purposes. The remaining dependence on the
environmental coordinates Y (via ψ1) cancels out. Note that the argument does not
require the total wave function to be a superposition of product wave functions as in
(4.14). The following much weaker but still special condition suffices:

Ψ (x, y) = ϕ(x)Φ(y)+ Ψ⊥(x, y) , (4.16)

where Φ and Ψ⊥ have macroscopically disjoint y-supports5 and

Y ∈ supp Φ . (4.17)

In this case we still call ϕ(x) the effective wave function of the subsystem. If the
interaction term V (x, y)ϕ(x)Φ(y) can be neglected in the Schrödinger equation, at
least for some time [use (4.1) with (4.11) and (4.16)], then the x-system and the
environment are dynamically decoupled. The effective wave function subsequently
obeys its own Schrödinger equation and the x-system behaves as an “isolated
Bohmian system”.

Once again, to get these ideas clear, the conditional wave function is precisely
defined by (4.12) at all times, but it generally depends on the configuration of
the environment. In fact, the conditional wave function generally evolves in a
very complicated stochastic kind of way. In particular circumstances, however, the
conditional wave function can become an effective wave function which allows
an autonomous description of a Bohmian subsystem. Such special circumstances

5Although macroscopic disjointness is clearly a vague notion, it is nevertheless sufficiently
intuitive to be practical. To understand macroscopically disjoint y-supports, a configuration space
picture might be helpful.
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are usually encountered in laboratories where isolated systems are “prepared” or
“measured”, but also in the “classical limit” when certain macroscopic systems can
be treated as independent—for all practical purposes.

And to bring the message home, we stress once again that the conditional wave
function (or the effective one) is precisely the representative of the “collapsed”
wave function that is usually used in standard textbook quantum mechanics, and
in particular in the description of measurements.

Remark 4.5 (Reduced Density Matrix) In the statistical description of a subsystem
in standard quantum mechanics, we often consider the so-called reduced density
matrix. To do this, we write the right-hand side of the total wave function (4.13) as
the density matrix

ρtotal = |c1|2|ϕ1〉|ψ1〉〈ϕ1|〈ψ1| + |c2|2|ϕ2〉|ψ2〉〈ϕ2|〈ψ2| (4.18)

+c1c
∗
2|ϕ1〉|ψ1〉〈ϕ2|〈ψ2| + c∗1c2|ϕ2〉|ψ2〉〈ϕ1|〈ψ1| .

We then take the partial trace over the environmental degrees of freedom, whence
they disappear from further considerations. Supposing that ψ1 and ψ2 are orthogo-
nal vectors in the Hilbert space, which is the case if they have disjoint supports, we
obtain the reduced density matrix of the x-system in the form

ρx = |c1|2|ϕ1〉〈ϕ1| + |c2|2|ϕ2〉〈ϕ2| . (4.19)

The reader is encouraged to do this as an exercise. The disappearance of the
non-diagonal elements in (4.18) is one way of making decoherence manifest (see
Sect. 2.5). The reduced density matrix yields the correct statistical description for
an ensemble of subsystems, as will be justified shortly, but it does not generally
describe the actual state of a single subsystem. This is clear because, if we see for
example the pointer pointing left and we can say with certainty that a repetition of
the measurement yields the same result, then we know what the wave function is!
In such situations standard quantum mechanics must invoke the collapse postulate
to collapse the wave function to either ϕ1 or ϕ2. This may sound a bit awkward,
but that’s because the old quantum theory lacks precisely those elements which
determine the actual state of the system.

4.2 Typicality Analysis and Born’s Statistical Interpretation

In this section we draw heavily on the insights we gained from Sect. 3.5. We
repeat here the analysis of that section for the new physical theory Bohmian
mechanics. The reader is thus advised to revisit that section for the basic ideas
behind Boltzmann’s typicality analysis. We begin by asking: What is the meaning
of (4.9), which we derived from Schrödinger’s equation? This equation is in fact the
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continuity equation [see (3.17)] for the Bohmian flow T
ψ
t , as we shall now explain.

T
ψ
t is generated by the solutions of (4.4)

T
ψ
t : Q −→ Q , Q = R

3N . (4.20)

The flow transports initial values Q(0) = (Q1(0), . . . , QN(0)) to values

Q(t) = (
Q1(t;Q(0)), . . . , QN(t;Q(0))

)

along Bohmian trajectories.
In many applications of classical mechanics, the trajectories are computed for

initial values of interest, and it is tempting to do the same thing now for Bohmian
trajectories. For example, in classical physics, by fixing the initial position and
velocity, it is easy to compute the trajectory of a harmonic pendulum. It may be
surprising to learn that our feeling that we can determine initial conditions with
arbitrary precision is due to the global non-equilibrium of our universe, which we
discussed in our investigation of chance in physics in Chap. 3. One new feature
introduced in Bohmian mechanics is that the positions of Bohmian particles cannot
be controlled with arbitrary precision, and this as a matter of principle: the particle
positions are in quantum equilibrium with the wave function. This means that, given
the wave function, we need only focus on typical initial values when using the theory
to explain phenomena. Our aim is now to clarify these claims.

Recalling (4.8), we have

jψ(q, t) = vψ(q, t)|ψ(q, t)|2 , (4.21)

so the quantum flux equation (1.4) can be written in the form

∂|ψ|2
∂t

= −∇ · vψ |ψ|2 . (4.22)

This then shows that the quantum flux equation is the continuity equation for the
Bohmian flow, where in the present setting the special density |ψ|2 is transported
along the velocity vector field (4.3). To be sure, the continuity equation for the
Bohmian flow for an arbitrary density ρ is

∂ρ

∂t
= −∇ · vψρ .

Equation (4.22) is the Bohmian counterpart of Liouville’s Theorem 3.2 in Hamilto-
nian mechanics. We recognize ρ = |ψ|2 to be a special density, namely one that
does not change its form in ψ as time goes on. This is a natural generalisation
of stationarity, called equivariance (see below). As in (3.20), for example, as a
function of H , the density e−βH does not change with time and the same holds
here. But the expression |ψ|2 is so much simpler as a function of ψ!
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The situation is actually more gratifying than in classical mechanics because this
stationarity, or more precisely, this equivariance, determines ρ = |ψ|2 uniquely as
a stationary density. Every other density ρ = f (ψ) with positive f would change
in some way with the Bohmian flow, but never in such a way that ρ(t) = f (ψ(t))

holds, except for f (x) = x2. In a nutshell, ρ = |ψ|2 is unique.6

Remark 4.6 (Revisiting History) Equations (4.2)–(4.6) constitute a mathematical
representation of de Broglie’s idea back in 1927, viz., there are particles and they
move along trajectories determined by the wave function. These trajectories are
such that the theory seems—at least superficially—to agree with Born’s statistical
interpretation of the wave function. Why then was it so harshly rejected?

Here is a first criticism which at that time seemed very convincing, but which
completely ignored Boltzmann’s insights: |ψ|2 is a probability density and proba-
bility is subjective degree of belief, i.e., ψ is merely an expression of our ignorance
or degree of belief. It makes no sense to say that such a subjective quantity could
actually move particles! Recalling Boltzmann’s statistical analysis, however, this
critique is well off target.

But there was another more striking criticism. ψ is a function on the configu-
ration space of let’s say N particles. The Schrödinger equation does not evolve a
general ψ into one which has product structure, which would allow each particle to
have its own guiding wave function, even when the particles move far away from
each other. But this means that in general all particles will be guided by a common
wave function—an entangled wave function. In view of this, Bohmian mechanics
(or de Broglie’s suggestion) is very far from classical physics, and in particular
from relativistic physics. There is a kind of holism or non-separability taking place
in physics, where all particles are interconnected by being guided by a common
wave function. Einstein found this to be unacceptable and referred to such a ψ as a
“Geisterfeld” (ghost field).

Einstein’s criticism of this kind of holism, in which the wave function acts in
an “eerie” manner, needs to be taken seriously. John Stewart Bell showed just how
serious: Einstein put his finger on the key innovation of quantum mechanics. The
wave function does act in precisely this holistic way. It acts this way because Nature
is nonlocal! We shall discuss this in detail in Chap. 10. Put another way, Bohmian
mechanics is nonlocal, just as Nature requires it to be.

Let us now proceed with the typicality analysis in Bohmian mechanics. We consider
a very large Bohmian system (a universe) as the dynamical system, taking N as the
dimension of configuration space and Ψ as the wave function generating the flow
(4.20). We thus begin with the triple

(Q, T Ψ
t ,PΨ ) ,

6See S. Goldstein und W. Struyve, On the uniqueness of quantum equilibrium in Bohmian
mechanics. Journal of Statistical Physics 128 (5), 1197–1209 (2007).
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where PΨ is the measure of typicality, assumed to have the property of equivariance
which generalizes the notion of stationarity for time-dependent vector fields. We
express the property of equivariance once more in terms of the time translated
measure to bring out the full analogy with Boltzmann’s typicality analysis:

P
Ψ
t (A) := P

Ψ ◦ (T Ψ
t )−1(A) = P

Ψ
(
(T Ψ

t )−1(A)
) = P

Ψt (A) , (4.23)

or more generally, for arbitrary functions f ,

∫
f
(
Q(t)

)
dPΨ =

∫
f (Q)dPΨt .

Diagramatically, this can be represented by

Ψ

U(t)

P
Ψ

◦(T Ψ
t )−1

Ψt P
Ψt

Here, the downward arrow on the left-hand side indicates the unitary Schrödinger
time evolution U(t) of the wave function, while the downward arrow on the right-
hand side represents PΨ �→ P

Ψ
t , i.e., the time evolution of the measures given by

transport along the Bohmian trajectories.
So which measures P

Ψ satisfy that? As we said above: the only solution is the
typicality measure

P
Ψ (A) =

∫

A

|Ψ (q)|2 d3Nq , (4.24)

with the normalisation
∫
|Ψ (q)|2 d3Nq = 1 , (4.25)

if normalisation is required. The typicality measure determines (in Boltzmann’s
view) the empirical distributions in the Bohmian universe. How do we get the
empirical distributions? For that we need an ensemble of identical (or very similar)
subsystems. We already know how to describe subsystems in Bohmian mechanics,
namely, using the conditional wave function. We split the configuration space as we
already did previously by dividing the coordinates into two sets:

q = (x, y) , x ∈ R
3N1 , y ∈ R

3(N−N1) ,



90 4 Bohmian Mechanics

where the x-degrees of freedom (dimension 3N1 =: m) describe the subsystem. The
conditional wave function is then

ϕY(x, t) := Ψ
(
x, Y (t), t

)
,

where Y (t) is the actual configuration of the environment, i.e., of the rest of the
universe. In view of (4.24), this leads us directly to the conditional typicality
measure:

P
Ψ
({Q = (X, Y ) : X ∈ dmx} | Y ) =: PΨ (X ∈ dmx | Y )

= |Ψ(x, Y )|2 dmx

= |ϕY (x)|2 dmx . (4.26)

Thus, by conditioning the typicality measure on the actual configuration of the
environment, we obtain once again a measure of the form P

Ψ , where we need only
replace the density by the one given by the conditional wave function.

Remark 4.7 This is all intuitively clear, but mathematics requires rigour, and alas,
we conditioned with y = Y , which is a set of measure zero. For mathematical rigour,
we would need to bring in derivatives of measures. We only mention this in passing.
For the present discussion, it would not be worth going any further into this matter.

Equation (4.26) does indeed incorporate the empirical import of Bohmian mechan-
ics, but a few more steps are needed. The specification of the actual coordinate
Y of the complete environment of the x-system is much too detailed, and this
would in fact be practically useless. Likewise, the formula itself may not look
particularly useful in this form. But the right-hand side of (4.26) depends solely on
the conditional wave function and that allows a coarse-graining of the environment:
we can coarse grain so long as we can guarantee that the given conditional wave
function is not affected. This means that we can coarse grain so much that we
condition finally only on the event that the conditional wave function ϕY equals
ϕ. So, let

Y ϕ := {
Q = (X, Y ) : ϕY = ϕ

}

be the set of Q for which the conditional wave function equals ϕ. Equation (4.26)
then implies the simpler, directly applicable formula

P
Ψ
({Q = (X, Y ) : X ∈ dmx} | Y ϕ

) = |ϕ|2 dmx . (4.27)
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Equation (4.27) follows from (4.26) by a simple property of conditional measures:
for B =⋃

Bi a pairwise disjoint family with P(A|Bi) = a for all Bi , we have

P(B)a =
∑

i

P(A|Bi)P(Bi) =
∑

i

P(A ∩ Bi) = P(A ∩ B) ,

and thus P(A|B) = P(A ∩ B)/P(B) = a.
We now consider empirical distributions and the law of large numbers. Here, we

shall obtain a proof of Born’s statistical interpretation, and we shall also show what it
actually means! We consider an ensemble X = (X1, . . . , XM) of similar subsystems
X1, . . . , XM, which evolve independently of each other. Do such subsystems exist?
The answer is that they obviously do exist, at least in our universe! This is exactly
the way experiments are performed! Hence the conditional wave function of the
ensemble must be a product of the wave functions ϕi of each subsystem. Otherwise
the subsystems would not be independent of each other.7 So, we have

ϕY (x1, x2, . . . , xM) =
M∏

i=1

ϕi(xi) ,

and therefore the measure of typicality conditioned on the event of the ensemble
being described by the above turns out to be8

P
Ψ
({

Q = (X, Y ) : X1(Q) ∈ dmx1, . . . , XM(Q) ∈ dmxM

} | Y ϕ
)
=

M∏

i=1

|ϕ(xi)|2dmxi .

(4.28)

Note that we are now looking at a product measure, a measure under which the law
of large numbers becomes a triviality, as can be seen from the proof of Theorem 3.1
in the more general setting.

Suppose for concreteness that we are interested in the typical value of the
empirical distribution for the position of a particle having conditional wave function
ϕ. Hence, the ensemble X = (X1, . . . , XM) consists of M similar particles,
each with wave function ϕ. The empirical distribution of the particle positions

7Actually, it suffices to require that every member of the ensemble have effective wave function ϕi ,
from which the product structure of the ensemble wave function then follows. See, for example,
D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and Mathematics of Quantum Theory.
Springer, 2009.
8Note that the subsystem coordinates X1, . . . , XM are coarse-graining functions of the universal
coordinates Q, where the universal configuration space is the fundamental Ω space in the sense of
probability theory.
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X1, . . . , XM in the ensemble is then (see footnote 8)

ρM
emp(A,Q) := 1

M

M∑

k

1A

(
Xk(Q)

)
. (4.29)

More generally, instead of 1A, we may consider a general function f , as we did in
Theorem 3.3. Then, using (4.28) and the law of large numbers, we immediately
obtain the justification of what is accordingly called the quantum equilibrium
hypothesis:

Theorem 4.1 (Quantum Equilibrium Distribution)

P
Ψ

({
Q :

∣∣∣∣∣
1

M

M∑

i=1

f (Xi)−
∫

f (x)|ϕ(x)|2dx

∣∣∣∣∣ < ε

} ∣∣∣ Y ϕ

)
= 1− δ(ε, f,M) ,

(4.30)

where δ(ε, f,M) gets arbitrarily small with increasing M .

Here f can be any coarse-graining function of the particle coordinates. In particular,
for f = 1A with A ⊂ R

3, the theorem predicts the typical value for the empirical
distribution (4.29), i.e., the relative frequency of positions, viz.,

ρM
emp(A,Q) ≈

∫

A

|ϕ(x)|2dx .

In words, the quantum equilibrium hypothesis can be stated as follows:

If a system has wave function ϕ, then the coordinates of the
particles of the system are |ϕ|2 distributed ,

(4.31)

where “distributed” refers to the empirical distribution. This is in fact what is meant
by Born’s statistical interpretation of the wave function.

It is a speciality of quantum mechanics that the typicality measure and the typical
empirical distributions always have the form of a “wave-function-squared measure”,
i.e., where the density has the form |Φ|2, the former with respect to the universal
wave function, the latter with respect to the conditional wave function. This is
mathematically nice and helpful, but didactically somewhat unfortunate. Indeed,
without having digested Boltzmann’s argumentation, we may have the impression
that we have presented a “garbage-in garbage-out argument”, in the sense that we
stick in Born’s statistical distribution and we get out Born’s statistical distribution,
i.e., |Φ|2 in, |Φ|2 out! How can that have any explanatory or predictive power?

We thus repeat: P
Ψ , i.e., Φ = Ψ , is the typicality measure whose role is

to define typical initial conditions for the Bohmian universe. That measure is
distinguished from all other measures by stationarity (or equivariance). For typical
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initial conditions, i.e., typical universes, the empirical distribution ρemp is given by
Born’s statistical distribution |ϕ|2, i.e., Φ = ϕ, and applies to subsystems. This
implies the well known empirical predictions of quantum mechanics. Note also that
Born’s statistical rule in the form of, let’s say, (4.31), which gives ρemp in terms of
the conditional or effective wave function (in terms of the “collapsed” wave function
as it is called in orthodox quantum mechanics) is neither postulated nor used as
“input”—it is proven.

The Bohmian Theorem 4.1 is the prototype of a Boltzmannian typicality
statement, but note that we always need to quantify the function δ, otherwise the
theorem has no practical use. In view of Remark 3.6, we can say that we have
now formulated Theorem 4.1 in the proper and relevant way, viz., the conditional
typicality measure P

Ψ ({. . .}|Y ϕ) of the configurations for which Born’s law does
not hold is small. We repeat the point made in the remark. If it was only the P

Ψ -
measure for the deviation that was small, that would not mean much because the
configurations to which our relevant environment Y belongs may already have
small measure. It is important that the predictions are made for all the relevant
environments in which there exist experiments of the kind we are interested in with
appropriately prepared wave functions. This is achieved by conditioning.

The quantum equilibrium hypothesis (4.31) is a precise version of Born’s
statistical interpretation of the wave function (1.2), which is taken as an axiom in the
quantum mechanics of the old school. By its justification in Bohmian mechanics, the
role played by probability in quantum mechanics is now clear and beyond doubt: it
is the same role as in classical mechanics.

In Bohmian mechanics, Theorem 4.1 is a consequence of typicality which has
become known as quantum equilibrium.9 The primary role of the wave function
in Bohmian mechanics is not to compute probabilities but to guide particles. And
because typicality should be determined by the physical law itself, it is the wave
function which determines the typicality measure. Experimentally, no violation of
the quantum equilibrium hypothesis has ever been found. We can safely assume that
quantum equilibrium holds without exceptions, i.e., that our universe is a typical
Bohmian universe.

Remark 4.8 (Absolute Uncertainty) This also means that we have a principled
ignorance of the position of a particle. If its (conditional) wave function is ϕ, we
cannot know or control the position of the particle better than is allowed by the
|ϕ|2-distribution. We can also understand this as follows. All the information we
have about particle positions must be stored or recorded in the configuration Y of
the rest of the universe, either written on paper or on the hard disk of a computer or
in our brain. This information has already been taken care of when we construct the
conditional measure (4.26). If a system with conditional wave function ϕ has been
prepared, then we cannot know more about its particle configuration than is given

9D. Dürr, S. Goldstein, and N. Zanghì, Quantum equilibrium and the origin of absolute uncertainty.
In: Quantum Physics Without Quantum Philosophy, Springer, 2013.



94 4 Bohmian Mechanics

by the |ϕ|2-distribution. This principled ignorance—called absolute uncertainty—
should not be confused with the notion of intrinsic randomness. At each instant of
time, the law of motion governs the particle positions deterministically. Absolute
uncertainty is merely a consequence of typicality.

4.3 Heisenberg’s Uncertainty

Each and every student of physics has heard about Heisenberg’s uncertainty relation.
It says that we cannot measure with arbitrary precision the velocity and the position
of a particle at the same time. That by itself would be rather harmless, but it is
also often said that this has a drastic consequence, namely that it makes no sense
to even talk about the position and velocity of a particle, i.e., it makes no sense to
even talk about a particle trajectory. But Bohmian mechanics is about exactly that:
particle trajectories. How can that situation live alongside Heisenberg’s uncertainty
relation? Since this question may be justified from a historical perspective, we shall
elaborate on it here.

The uncertainty relation is a direct consequence of Born’s statistical interpreta-
tion of the wave function (1.2) and the spreading of the wave function (see Sect. 1.3),
and of course of the Bohmian trajectories which describe the facts of the matter. We
shall repeat that at the end of this section, but first we shall explain why it is so. To
do this, we connect the long time asymptotic of the wave function with the Bohmian
trajectories.

First of all, we recall what is involved in a momentum (or velocity) measurement
in quantum mechanics (see Sect. 1.3). The simplest way is this. We measure the
particle’s position at time t = 0, let’s say, and then let the wave function evolve
freely, recording where the particle has got to at some later time t . We then divide
the distance travelled by the time t . That ratio times the mass is the measured
momentum value.

Here we do the computation in Bohmian mechanics. Let X0 be the particle’s
position at t = 0, and X(t, X0) its position at time t , where

(
X(t, X0)

)
t≥0 denotes

the trajectory starting at X = X0. Then for large t ,

X(t, X0)− X0

t
≈ V∞

yields the asymptotic velocity V∞, and mV∞ would be the classical momentum.
Let us now compute how V∞ is distributed.

If the wave function at t = 0 is ψ0 (located around let’s say 0), then X(0) is |ψ0|2
distributed. Next we need the distribution of

1

t

[
X(t, X0)− X0

] ≈ 1

t
X(t, X0) ,
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where the approximation holds for large t . Hence we must calculate

P
ψ

(
X(t, X0)

t
∈ A

)

for large t . However, that expression has already been computed in Sect. 1.3 using
(1.11), and is given by (1.12). Hence, by defining the product of the mass and the
asymptotic Bohmian velocity as the momentum, we get

lim
t→∞P

ψ

(
m

X(t, X0)

t
∈ A

)
=

∫
1A (h̄k)

∣∣∣ψ̂0(k)

∣∣∣
2

d3k , (4.32)

where the right-hand side was already interpreted as the quantum mechanical
momentum distribution in Sect. 1.3.

But let us get back to the uncertainty relation. If the particle has the wave function
ψ , then the variance in its position is

Var(X) = E
ψ(X2)− [

E
ψ(X)

]2
.

As we have just seen, the momentum inherits from ψ the variance

Var(P) = E
ψ(P2)− [

E
ψ(P)

]2

=
∫

(h̄k)2
∣∣∣ψ̂(k)

∣∣∣
2

d3k −
(∫

h̄k
∣∣∣ψ̂(k)

∣∣∣
2

d3k

)2

.

We consider a Gaussian wave function, centred around zero for simplicity. Then
|ψ|2 is a Gaussian distribution with, let’s say, width σ . As a consequence, ψ̂ will
be Gaussian and so also will be |ψ̂|2, but with width 1/4σ (a good exercise for
the reader). Not forgetting the factor h̄, we thus get the uncertainty relation for
Gaussians in the form

[
Var(X)

]1/2[
Var(P)

]1/2 = h̄

2
. (4.33)

For general wave functions, a bit more analysis is needed to obtain the general form
of Heisenberg’s uncertainty relation in which the equals sign in (4.33) is replaced by
≥. At risk of repeating ourselves, we stress once again what is really going on here.
The fact is that, the better one localises the particle at time t = 0, the more sharply
the wave function is peaked (Born’s rule) and the more (and higher) Fourier modes
are needed to represent that wave function. The Fourier modes are plane waves (it
is better to think of packets) which travel with speeds given by their wave numbers,
so the more sharply peaked the initial wave function, the more widely the Fourier
modes will separate. That’s all there is to it.
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The moral is that the uncertainty relation is a rather simple consequence of
Bohmian mechanics and quantum equilibrium. Two insights should be taken home.
First, the observable momentum does not generally correspond to the instantaneous
velocity of the Bohmian particle as given by (4.4). Secondly, there is a difference
between empirical quantities and ontology, that is, a difference between what can
be measured and what exists according to the physical theory (see also Sect. 7.3).

4.4 Identical Particles and Topology

Identical particles, sometimes also referred to as indistinguishable particles, often
lead to confusion. It is often said that identical particles in quantum physics are
categorically different from identical classical particles in that they cannot even
exist as discrete entities. Indistinguishability suggests such a view because a particle
has a position (at least if one is reasonable enough to admit that), so particles are
distinguished by their different positions. In Bohmian mechanics, particles exist,
so does this contradict quantum mechanics? In fact, it does not. We only need
to be clear about what is meant by indistinguishable particles. Furthermore, the
quantum mechanical description of identical particles is a consequence of Bohmian
mechanics!

So what is meant by identical particles? Really nothing else than that the
comfortable (alas, we humans like comfort) enumeration of particles like Qi ,
i = 1, . . . , N, plays no physical role. In other words, the physical law governing
the motion of identical particles is ignorant of any labelling. Numbering is alright
if it goes along with different properties of the particles, like the different masses in
Newtonian physics which enter the law of motion as parameters. We nevertheless
often use labelling because it allows a simpler way of speaking and sometimes
also simpler mathematics. But if this is a no-go for identical particles, how can
we actually handle them?

A very simple and often used argument for handling identical particles in
quantum mechanics is the following. When particles are identical, Born’s statistical
interpretation of the wave function must respect that. This means that, if we
exchange particle labels, the probability for finding one particle here and one there
must not change, i.e., for two particles, this is expressed by requiring

|ψ(q1, q2)|2 = |ψ(q2, q1)|2 . (4.34)

Hence the wave function ψ can only change by a phase factor under particle
exchange, since that drops out when taking the absolute square. However, this
argument does not apply to spinor wave functions, where a little more work is
required to come to the same conclusion. But here we shall stick to complex-valued
wave functions for simplicity.
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Can more be said about the phase factor? Is it arbitrary? No, it is in fact either
+1 or −1, whence

ψ(q1, q2) = ±ψ(q2, q1) . (4.35)

This means that only symmetric or antisymmetric wave functions can occur.
Particles with symmetric wave functions are known as bosons, while those with
antisymmetric wave functions are called fermions. We shall show (4.35) later and
discuss first why the argument leading to (4.34) begs the following question: Isn’t
it strange to handle identical particles by first labelling them with numbers to
eventually add that the numbering was nonsense to begin with, and hence kick them
out again?

Why not work with identical particles at the outset? This insight came relatively
late (in the 1970s) because it referred to the configuration space of identical
particles, and in quantum physics with its denial of the existence of particles,
this was not on the cards to begin with.10 Of course, in Bohmian mechanics,
configuration space is there in a quite natural way, but what exactly it looks like
for identical particles needs to be spelt out. Because the proper handling of identical
particles is a rather deep issue, we shall take the trouble to present it in some detail.

In order to render the numbering unimportant at the outset, we need to replace our
beloved configuration space R

3N , which represents the set of N-tuples of particle
positions, by something rather different. Tuples are by definition ordered, i.e., their
entries are distinguished by their order of appearance, and hence automatically
numbered. To replace this kind of object, consider the following. We have N

particles in R
3, so we have N points in R

3, which means that they form a subset
of R3 with N elements. Now, sets are not ordered. A set is by definition a collection
of different objects which can be distinguished by indices, but the sequence in which
we count the elements plays no role, i.e., any other numbering will yield the same
set. Therefore the configuration space for N identical particles can be expressed as

Q = {
q ⊂ R

3 : |q| = N , where q = {q1, . . . , qN } , qi ∈ R
3} ,

where |q| is the cardinality of the set q . This set of subsets of a given finite
cardinality—actually a manifold—looks fairly simple at first sight, but with some
scrutiny, we find that the manifold is in fact rather complicated from a topological
point of view. The first thing to note, however, is that a wave function defined on this

10Concerning its role at the beginning of quantum physics, de Broglie said in the Solvay conference
Électrons et Photons, Paris 1928, p. 111: Il semble un peu paradoxal de construire un espace de
configuration avec des coordonnées de points qui n’existent pas. (We leave the translation to the
reader.) It should be noted that the configuration space of identical particles is an old concept,
sitting right at the heart of Boltzmann’s statistical mechanics. But in classical physics the topology
of the configuration space plays little role, contrary to the situation in quantum physics, as we shall
see. In fact, it is the entanglement of the wave function that changes the picture.



98 4 Bohmian Mechanics

manifold is in a sense intrinsically symmetric. The argument of the wave function
is a set, which does not change when we permute particle coordinates.

We can express the wave function ψ(q) as a function of the tuples qi , i =
1, . . . , N, of the elements of q ∈ Q by introducing them as coordinates of Q.
A change in the order of appearance in the tuple corresponds to a change of coordi-
nates, where the configuration point q remains the same. Hence, ψ(q1, . . . , qN) is
invariant under each permutation σ of the N indices:

ψ(qσ(1), . . . , qσ(N)) = ψ(q1, . . . , qN) .

Thus only symmetric wave functions are possible, i.e., the phase factor mentioned
above is always +1.

So what about Pauli’s exclusion principle for identical particles, which says that
a many-particle wave function cannot contain a product of two or more identical
one-particle wave functions. The symmetric wave functions violate this principle,
but it is fulfilled by antisymmetric wave functions

ψ(qσ(1), . . . , qσ(N)) = sign(σ )ψ(q1, . . . , qN) ,

where sign(σ ) is the sign of the permutation, i.e., −1 if σ is a product of an uneven
number of transpositions and+1 if their number is even. How can we obtain those?
By thinking about the topology!

What is the topological nature of Q? This is best understood by looking at the
following equivalent description of the configuration space of N identical particles:

Q = (R3N \Δ3N)/SN =: R3N
= /SN .

In this expression, 
= instructs us to remove the “diagonal”

Δ3N := {
(q1, . . . , qN) ∈ R

3N | qi = qj for at least one i 
= j
}
, (4.36)

from R
3N , yielding the set R3N
= := (R3N \Δ3N). We then consider all N-tuples in

R
3N
= which are permutations of each other as equivalent or identical:

(qσ(1), . . . , qσ(N)) ∼ (q1, . . . , qN) .

This construction of equivalence classes gives a so-called factorisation by the
permutation group SN of N objects, which is denoted by R

3N

= /SN .

We met a similar situation in Sect. 1.8 when we considered the Lie group SO(3)

as a manifold by identifying points and their antipodes on the surface of a solid
sphere. The moral is once again that, by identifications of this kind, closed paths may
no longer be null-homotopic and manifolds may no longer be simply connected.
Such manifolds are not so easy to handle mathematically. Indeed, they hide some
interesting possibilities which can be revealed by “unfolding” the identifications, by
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going to the universal covering, as discussed briefly at the end of Sect. 1.8 for the
example of the covering of SO(3) by SU(2).

A simple example is the circle Q constructed from the interval [0, 1] by
identifying 0 with 1, or from R by identifying all n ∈ Z ⊂ R with zero. The
latter gives R/ ∼, where x ∼ y iff x − y ∈ Z. R is topologically as simple
as one can get, but the circle is not. It contains closed paths which cannot be
shrunken to a single point homotopically, i.e., in a continuous manner or, loosely
speaking, without breaking the path. Indeed, any path going right around the circle
at least once cannot be so transformed. The set of closed paths on the circle can be
divided into equivalence classes which can be indexed by the number of windings
(positive or negative). A closed path going around the circle, let’s say, three times
positively and once negatively is equivalent to the closed path which goes around
twice positively.

We can define a “product” of closed paths by joining them together. For example,
adjoining any path to the same path but in the opposite direction, we obtain the null
path, the path which stays put. In this manner, we can consider the closed paths as
elements of a group. The group is called the fundamental group Π of the manifold.
For the circle, viewed as a manifold, this group is Π ∼= Z. If the fundamental group
is not trivial, i.e., if it is not isomorphic to a group with only one element e such that
e× e = e, where× denotes the group operation, the manifold is said to be multiply
connected rather than simply connected.

The identification may be undone, by unwinding the simply connected manifold
Q̂ = R in a spiral above the circle Q, observing that successive elements of length
2π are mapped bijectively onto the circle (see Fig. 4.2). Such a construction is called
a covering, and when the covering space is simply connected, as it is in our example,
it is called the universal covering. This is mathematically much simpler to work
with.

Analogously, Q = R
3N
= /SN is multiply connected, and in this case SN is

isomorphic to the fundamental group. To see why, take two particles in R
3 and

the point (q1, q2) in configuration space (as depicted in Fig. 4.3). This has to be
identified with (q2, q1), i.e., those two points are one and the same point in R

6
=/S2.

Fig. 4.2 The circle Q is
covered by Q̂ = R. The fibre
is the set of all points
q ∼= r̂ ∼= ŝ ∼= · · · ∈ Q̂ which
are to be identified with the
point q ∈ Q. The elements of
the covering group
Cov(Q̂,Q) (see text) map
points to each other within
one fibre. It is isomorphic to
the fundamental group Π of
Q, which is isomorphic to Z

in the case of the circle

Q̂ = R

r̂

ŝ

fiber

Q
q

ˆ ∼ PCov(Q,Q)=
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(q1,q2)

(q2,q1)

q2

q1

1

2

R
6

D 6 = {(q1,q2)|q1 = q2}

q1

q2

R
3

Fig. 4.3 Left: Two identical particles in R
3. Right: Sketch of the configuration space of the two

particles in R
6, where the diagonal Δ6 has been removed. The points above the diagonal are to

be identified (using the notation ∼) with the mirror image points lying below the diagonal. Since
(q1, q2) ∼ (q2, q1), both paths 1 and 2 are simply closed. Neither path 1 nor path 2 can be
continuously deformed to the null path, because the removed diagonal constitutes a topological
barrier (see text). In contrast, the doubly closed path 1 ◦ 2 is null-homotopic as explained in the
text

Hence the path going from (q1, q2) to (q2, q1) in R
6 without crossing the diagonal

Δ6 [see (4.36)] is a closed path in R
6
=/S2. Suppose we try to shrink this closed

path homotopically to a point. This means continuously deforming the path without
breaking it. We may imagine moving the “endpoint” (q2, q1) towards (q1, q2), but
in R

6
=/S2 the two points are the same, so that does not work without breaking the
path! We thus see that such a closed path is not null-homotopic.

But now adjoin a closed path from (q2, q1) to (q1, q2) to the closed path from
(q1, q2) to (q2, q1). This yields a doubly closed path which in contrast can be
continuously deformed, because there is now only one “endpoint”. For example,
we can now shift (q2, q1) towards a point (q′2, q′1) which lies closer to (q1, q2),
a procedure which would have torn the previous closed path apart, the added path
keeps the whole path intact and the whole path is still closed, although (q1, q2) �

(q′2, q′1). But we still need to make sure that the diagonal Δ6 presents no hindrance
to shrinking the path to a null path.

To understand why it does not, the following analogy is helpful. How much of the
configuration space is taken away by the removal of the diagonal? The diagonal is
three-dimensional and the configuration space is six-dimensional, i.e., one still has
three dimensions outside the diagonal. An analogous situation is encountered in R

3\
{0}, i.e., the three-dimensional space with the origin taken out. Consider in this case
a closed path “around the origin”, say a closed path in the (x, y)-plane, surrounding
the origin, one can simply continuously lift that path in the z-direction, whereupon
it can be shrunk to zero because the hole at the origin is no longer an obstacle. The
same holds for our two-particle example, where we have enough extra dimensions
into which the path can be “lifted” to avoid the obstacle constituted by the missing
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diagonal. In short, doubly closed paths are null-homotopic, while certain simply
closed paths are not. The fundamental group thus has only two elements, the null
path and the simply closed path we discussed. This corresponds to the permutation
group with two elements, say {1, 2}, i.e., S2.

To make sure that the picture is properly understood, it is a useful exercise
to carry out the same reasoning for two particles in R

2 and the corresponding
configuration space R

4
=/S2. We now observe, again by the proper analogy, that the
“diagonal” presents a barrier. However, it now leads to a much more complicated
fundamental group than S2. The new group is the so-called braid group, which
enlarges the class of wave functions of fermions and bosons to what are called
anyons. However, since we live in a three-dimensional space, the latter do not play
such a fundamental role, and come into play only in approximations or effective
descriptions, e.g., in solid state physics. But this remark is somewhat premature
since we have not yet introduced the idea of bosonic and fermionic wave functions.

To get there, we start with the true configuration space of identical particles,
viz., Q = R

3N
= /SN , and as we did with the circle (Fig. 4.2), consider the simply-

connected covering Q̂ = R
3N

= . As for the circle, we think of it as a spiral staircase.

Moving from a point q̂ = (q1, . . . , qN) one flight up along a fibre, we arrive at the
point (qσ(1), . . . , qσ(N)) with permuted coordinates. One fibre contains all points
which are equivalent to q ∈ Q, i.e., they are permuted coordinate representations
that project to the same point in the “true” configuration space. We thus understand
that we have N ! floors in this case, because there are N ! permutations. The floors
on this stairway provide local coordinates for the basis manifold Q.

There is now a second group, the so-called covering group Cov(Q̂,Q). An
element of that group maps Q̂ to Q̂, keeping the fibres invariant (see Fig. 4.2). In
other words, the element maps one point on a fibre to another point on that fibre.
Equivalently, for any two points ŝ and r̂ in the same fibre, which are thus projected
along the fibre to the same point in Q, there is always one element Σ ∈ Cov(Q̂,Q),
such that ŝ = Σr̂ . Since in our case the fibre consists of permuted N-tuples it is
clear that Cov(Q̂,Q) is isomorphic to the permutation group SN and hence to the
fundamental group of Q.

We now have the topological structure of the true configuration space Q in our
hands and we can turn back to the physics. We would like to define the Bohmian
velocity field on Q. For this purpose, we consider wave functions ψ̂ on Q̂, but

noting that they must respect the fibre symmetry so that the vector field v̂ψ̂ generated
by ψ̂ can also be viewed as a vector field on the basis manifold Q. The technical
way of putting this is that the vector field must be projectable to Q. This means that
the wave functions must satisfy a periodicity condition. It is intuitively clear what
this condition must be if we recall the form of the vector field (4.5): for points r̂ and
ŝ on a fibre with Σr̂ = ŝ, where Σ ∈ Cov(Q̂,Q), we must have

ψ̂(Σq̂) = γΣψ̂(q̂) , (4.37)
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that is, the wave function can only change by a factor γΣ ∈ C \ {0} . The constant
factor by which ψ̂ changes must be consistent with the group operation in the
covering group, i.e.,

ψ̂(Σ2 ◦Σ1q̂) = γΣ2γΣ1ψ̂(q̂) .

If we now also require that |γΣ |2 = 1, i.e., |γΣ | = 1, we can project the equivariant
evolution of the Bohmian trajectories in the covering space to the evolution in the
true configuration space, so that the probability density

|ψ̂(Σq̂)|2 = |γΣ |2|ψ̂(q̂)|2 = |ψ̂(q̂)|2

is projected to |ψ(q)|2 defined on Q.
In this way, we obtain a unitary representation of the group, which is also called

a character representation. Translated into coordinates, this becomes

ψ̂(Σq̂) = ψ̂(qσ(1), . . . , qσ(N)) = γΣψ̂(q1, . . . , qN) , (4.38)

where we have expressed an element of the covering group by a permutation. We
have now arrived at the point where the usual textbook presentations begin, e.g.,
starting with (4.34), so we can quicken the pace and reach a conclusion.

Consider (4.38) when σ is a transposition τ , exchanging exactly two indices.
Since τ ◦ τ = id and hence γ 2

τ = 1, it follows that γτ = ±1. There are thus two
character representations of the permutation group: one with γτ = 1, the bosonic
wave functions, and one with γτ = −1, the fermionic wave functions.11

Remark 4.9 (Spinors and the Spin–Statistics Theorem) We close with some com-
ments on spinor wave functions. Here, too, we have the boson–fermion alternative,
but in order to show that, we need not only topology, but also dynamics, e.g., the
Pauli equation with magnetic fields.12

We should also mention the Pauli principle which in modern form is known as the
spin–statistics theorem. This states that particles with half integer spin are fermions,
while those with integer spin are bosons. This theorem contains the boson–fermion
alternative, but the coupling to half integer or integer spin has a dynamical origin.
This can be seen by looking at the Dirac equation, the relativistic generalisation of
the Pauli equation. It turns out that the “energy spectrum” of the Dirac equation,
which governs the wave functions of electrons, is not bounded from below. This

11To be precise, we still need to prove that in a representation either γτ = 1, ∀τ , or γτ = −1,
∀τ . This is true because the permutation group can in fact be generated by elements of the form
τ ◦ τ0 ◦ τ for a fixed τ0.
12For further details we refer to D. Dürr, S. Goldstein, J. Taylor, R. Tumulka, and N. Zanghì,
Topological factors derived from Bohmian mechanics, Ann. H. Poincaré 7, 791–807 (2006),
reprinted in D. Dürr, S. Goldstein, and N. Zanghì, Quantum Physics Without Quantum Philosophy,
Springer, 2013.
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is annoying because electrons can in principle lose energy endlessly by radiating
it away in the form of electromagnetic radiation. This scenario is known as the
radiation catastrophe. If we now consider a universe with “infinitely many” fermions
of negative energy, we can arrange them in such a way that no other electron can
achieve negative energy, using the fact that two fermions, because of antisymmetry,
cannot have the same wave function. We shall discuss this idea, due to Paul Dirac
(1902–1984), in more detail in Chap. 11.

In the spin–statistics theorem, which is proven using quantum field theory, the
infinitely many fermions do not occur explicitly. They are concealed in language like
“vacuum”, “particle”, and “antiparticle”. However, the assumptions made to prove
the theorem always aim in some way or other to prevent the radiation catastrophe.

Concluding this chapter, Bohmian mechanics would be an almost trivial solution
of the measurement problem, were it not for the indispensable configuration space
which is not so easy to grasp in a pictorial manner.13 All that Bohmian mechanics
does is to take the word “particle” seriously. By doing so, all the mysteries of
quantum orthodoxy not only evaporate, but we can also justify Born’s rule, explain
the role of operator observables (see Chap. 7 on the measurement process and
observables14), and explain the fermion/boson alternative, and all this in the context
of a theory that is manifestly nonlocal, as any theory of nature must be (see Chap. 10
on nonlocality).

A question often raised is why we cannot access the position of a Bohmian
particle with arbitrary precision when its wave function is some arbitrary ϕ. To
appreciate the answer we urge the reader to assimilate Remark 4.8 on absolute
uncertainty.

13The German word often used here is “unanschaulich”.
14For more on this, see D. Dürr and S. Teufel, Bohmian Mechanics. The Physics and Mathematics
of Quantum Theory. Springer, 2009.
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He [Schrödinger] would have liked, I think, that the theory is completely determined by the
equations, which do not have to be talked away from time to time. He would have liked the
complete absence of particles from the theory, and yet the emergence of ‘particle tracks’,
and more generally of the ‘particularity’ of the world, on the macroscopic level. He might
not have liked the GRW jumps, but he would have disliked them less than the old quantum
jumps of his time. And he would not have been at all disturbed by their indeterminism.

John S. Bell, Are there quantum jumps?

The term “collapse theory” refers to an entire class of quantum theories that
replace the Schrödinger equation by a non-linear time evolution for the wave
function so that the superposition principle, which leads to the measurement
problem, is no longer valid. For small systems, like single atoms, the violation of
the superposition principle is barely noticeable. On the other hand, superpositions
of macroscopic wave functions, such as for Schrödinger’s cat, become practically
impossible, or, more precisely, collapse so quickly that they can never be observed.
Simply put, the wave function thereby collapses automatically with the right (that is,
quantum mechanical) probabilities onto one of the localized wave packets associ-
ated with a well-defined macroscopic state. This process is also called spontaneous
localization. It is helpful to recall our discussion of the measurement problem and
Eqs. (2.4) to (2.6) in Sect. 2.4, where we already mentioned the possibility of such a
theory solving the measurement problem.

What is crucial in all of these theories is that the process of wave function
collapse is described by a precise mathematical law that holds always and for all
systems. It is not introduced as a special power or property of the “observer” or
“measurement process” as in orthodox quantum mechanics.

We say there is an “entire class” of such theories because, when it comes down
to the details, there are many possibilities to modify the Schrödinger equation to
include a collapse law. In the following, we will present the first and simplest type,
which was introduced by Ghirardi, Rimini, and Weber (GRW theory) in the 1980s
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and which John Bell also discussed. It was Bell who proposed the flash ontology for
the GRW dynamics.1

The GRW theory describes the collapse dynamics as a discrete stochastic process
(a so-called Poisson process). This means that the collapse occurs randomly, and the
center of localization is (essentially) distributed according to the quantum mechan-
ical probabilities, i.e., the |ψ|2-density. We will make this more precise below.
Nowadays, people usually study continuous spontaneous localization theories
(CSL),2 but their formulation requires mathematical tools (stochastic differential
equations) that go beyond the scope of this book. There are even ideas to relate the
collapse process to the influence of gravity, so that the collapse probability increases
with the strength of the gravitational field, but these are somewhat speculative.3

Since collapse theories renounce the superposition principle, they make pre-
dictions that differ, in principle, from those of other quantum theories. These
differences are very difficult to discern experimentally, but there is currently great
interest in the kind of tests that might eventually confirm or falsify spontaneous
collapse.4 To this end, we can, for instance, do interferometer experiments with
ever bigger molecules—essentially sending them through a sort of double-slit—
since the violation of the superposition principle would become significant only for
large systems. If collapse theories are correct, interference patterns should not occur
above a certain object size, as spontaneous localization ensures that only one part of
the superposition survives. (We will explain how it does that in a moment.) In this
context, it is also easy to understand why experimental tests of spontaneous collapse
are so challenging. Just recall our discussion of the influence of measurements (and
the environment) in Sect. 1.4. The bigger the system, the harder it is to prevent
decoherence due to interactions with the environment. This makes it very difficult to
decide what is ultimately responsible for the disappearance of interference patterns:
the theoretical collapse mechanism or environmental decoherence.

Spontaneous collapse could, however, reveal itself through certain side-effects.
Collapse theories predict, for instance, that spontaneous localization leads to a
random (Brownian) motion of the “particles”, causing spontaneous heating and
emission of radiation which astrophysicists can look out for. These effects are very
weak and thus also difficult to detect, but there is hope that they will prove to be
more accessible than direct violations of the superposition principle. In any case,
the experimental data we have so far is insufficient to decide between spontaneous
collapse and a linear Schrödinger evolution as presupposed by Bohmian mechanics
or the Many Worlds theory. Of course, this may change in the foreseeable future.

1The term “flash” first appeared in a paper by Roderich Tumulka [A relativistic version of the
Ghirardi–Rimini–Weber model. Journal of Statistical Physics 135 (4), 821–840 (2006)]. According
to Tumulka, it was originally proposed by Nino Zanghì.
2See A. Bassi and G.C. Ghirardi, Dynamical reduction models. Physics Report 379, 257 (2003).
3See, e.g., L. Diósi, Models for universal reduction of macroscopic quantum fluctuations. Physical
Review A 40, 1165 (1989), and R. Penrose, On the Gravitization of Quantum Mechanics 1:
Quantum State Reduction. Foundations of Physics 44 (5), 557–575 (2014).
4See S.L. Adler and A. Bassi, Is Quantum Theory Exact?, Science 325 (5938), 275–276 (2009).
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5.1 GRW Theory

Let’s now take a closer look at the GRW theory and see how the collapse mechanism
is put to work. First, a preliminary warning: it is common to talk about “particles”
in the presentation of the theory, but this is just a way of speaking that cannot be
taken too seriously. It merely refers to the fact that the wave function of a system
is defined on R

3N , N ∈ N, which is isomorphic to the configuration space of N

particles. “Particle k” thus refers first and foremost to the degree of freedom qk in
the wave function. In collapse theories, this choice of domain is ad hoc, although
justified by its success in describing phenomena.

The GRW theory is now defined as follows:

1. As in standard quantum mechanics, the state of an N “particle” system is
described by a wave function ψ = ψ(q1, . . . , qN, t). Between two collapse
events, this wave function evolves according to the usual Schrödinger equation.
The wave function changes instantaneously, however, whenever a collapse
occurs.

2. For each particle qk , k ∈ {1, . . . , N}, there is an independent probability for the
occurrence of a collapse event. We denote such an event by (T ,X)k , where T

is the random time and X ∈ R
3 the random location of the center of collapse.

Following Bell, we call the collapse events flashes.

We now have to specify how the collapse acts, when it occurs, and where it occurs:

3. With the occurrence of a flash (T , X)k , the wave function collapses in such a
way that the parts far away from X are suppressed. More precisely, the collapse
changes the wave function according to

ψ −→ ψk
X

‖ψk
X‖

, ψk
X := Lk

Xψ . (5.1)

Here,

Lk
X :=

(
1

πa2

)3/4

exp

[
− (qk −X)2

2a2

]
(5.2)

is the localization operator acting by multiplication by a Gaussian function
centered around X. The width a of the Gaussian appears as a new constant of
nature (like c or h̄) called the localization width. As far as we know today, it’s
order of magnitude is around a = 10−7 m. Finally, the collapsed wave function
is normalized according to

‖ψk
X‖2 =

∫

R3N

d3q1 · · · d3qN

∣∣Lk
Xψ(q1, . . . , qN, t)

∣∣2 . (5.3)
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The example below will illustrate why multiplication by a Gaussian amounts to
a collapse or localization of the wave function.

4. The time between two collapse event is random and described by the “waiting
time distribution”

P(T ∈ dt) = λe−λt dt (5.4)

for each particle independently of all the others. That is to say, the probability for
any given particle to trigger a collapse in the time interval �t is

∫ �t

0
λe−λtdt = 1− e−λ�t .

The collapse rate λ is another new constant of nature, whose order of magnitude
is assumed to be roughly 10−15 s−1. For a single particle, the average time
between two collapse events is thus≈ 1015 sec, meaning that an isolated electron
basically never flashes at all (the estimated age of the universe is roughly 1017 s).
For a system with N particles, however, the collapse rate is N/1015 s−1, and
when the scale of N is macroscopic, let’s say N ∼ 1024, a number of flashes will
occur within nanoseconds and destroy macroscopic superpositions before they
can be perceived.

5. The probability of a flash (i.e., the center of collapse) of particle k occurring
within the volume element d3x is given by ρk(x) d3x with the density

ρk(x) :=
∫

R3N

d3q1 · · · d3qN

∣∣Lk
xψ(q1, . . . , qN, t)

∣∣2 . (5.5)

Note that the center x of the Gaussian Lk
x is the free variable. In total, the

probability distribution of a (T , X)k-flash is thus

P

({
T ∈ (t, t + dt);X ∈ d3x

}) = λe−λtρk(x) d3x dt .

5.2 Spontaneous Localization

We will now provide some examples to illustrate how the collapse acts and
affects the wave function. For simplicity, we first consider a single particle in one
dimension. Suppose that initially the wave function is widely spread, let’s say

ψ(x) = 1
4
√

πσ 2
e−

(x−x0)2

2σ2 , (5.6)
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Fig. 5.1 Spontaneous localization of a wide wave packet

where σ � a, and that the collapse hits roughly at the center of the wave packet,
i.e., X ≈ x0. Then, the wave function will change to

ψX = 1

N
exp

[
− (x − x0)

2

2a2

]
exp

[
− (x − x0)

2

2σ 2

]

≈ 1

N
exp

[
− (x − x0)

2

2(a2 + σ 2)

]
≈ 1

4
√

πa
exp

[
− (x − x0)

2

2a2

]
,

where N denotes the normalization factor. A spatially extended ψ thus becomes a
collapsed wave function which is pretty well localized (with width a) around the
center of collapse x0 (see Fig. 5.1).

Now consider a superposition of two Gaussian wave packets centered around
±x0, x0 > 0 with width σ :

ψ(x) = 1

N

{
exp

[
− 1

2σ 2 (x + x0)
2
]
+ exp

[
− 1

2σ 2 (x − x0)
2
]}

, (5.7)

where N is once again the normalization. We assume that σ � a � x0, that is,
the localization width a is much greater than the width of the Gaussians but smaller
than the distance between their centers, i.e., the separation of the superposed wave
packets. Suppose now that a collapse occurs at time t = 0. We want to compute the
probability that the flash hits near x0, let’s say in the interval (x0 − 3σ, x0 + 3σ).
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According to (5.5) and (5.3), this probability is given by

∫

(x0−3σ, x0+3σ)

ρ(x) dx =
∫

(x0−3σ, x0+3σ)

∫

R

∣∣Lxψ(y)
∣∣2dy dx . (5.8)

The y-integral on the right-hand side is a convolution of two Gaussian functions
and thus easy to compute, and indeed we already did this in (1.9). The result is
again a Gaussian whose mean and variance are the sum of those of the convoluted
functions. We can make our lives even simpler, though. As our collapse operator Lx ,
respectively, L2

x is a very narrow Gaussian, convolution with Lx acts more or less
like convolution with a delta function. We can thus approximate5:

∫
L2

x

∣∣ψ(y)
∣∣2dy =

∫
e−(x−y)2/a2

√
πa2

|ψ(y)|2dy ≈
∫

δ(x − y)
∣∣ψ(y)

∣∣2dy = ∣∣ψ(x)
∣∣2 ,

(5.9)

whence the spatial distribution of the flashes is described by the Born rule. Inserted
in (5.8), this yields

∫

(x0−3σ, x0+3σ)

ρ(x) dx ≈
∫

(x0−3σ, x0+3σ)

∣∣ψ(x)
∣∣2dx ≈ 1/2 ,

since the left-hand wave packet (the one centered around −x0) contributes almost
nothing to the integral.

In conclusion, the flash has a chance of (roughly) 1/2 to hit near x0, the center
of the right-hand wave peak, and analogously, a chance of (roughly) 1/2 to hit near
−x0, the center of the left-hand peak. The flash may of course hit somewhere in-
between, but the probability is almost zero.

So let’s say the flash occurs at X ≈ x0. Then, the wave function changes as
follows:

ψ(x) −→ ψX(x)

= 1

NX

e
− 1

2a2 (x −X)2
⎡

⎣e
− 1

2σ 2 (x + x0)
2

+ e
− 1

2σ 2 (x − x0)
2
⎤

⎦

X≈x0≈ 1

Nx0

⎡

⎢⎣e
− (2x0)

2

2a2 e
− 1

2σ 2 (x + x0)
2

+ e
−

(
1

2σ 2 +
1

2a2

)
(x − x0)

2
⎤

⎥⎦

σ�a≈ 1

Nx0

⎡

⎢⎣e
− (2x0)

2

2a2 e
− 1

2σ 2 (x + x0)
2

+ e
− 1

2σ 2 (x − x0)
2

⎤

⎥⎦ ,

5This approximation is exact in the limit a → 0.
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with the normalization factor NX := ‖ψk
X‖. We see that the part of the wave function

centered around −x0 is suppressed by the exponential factor e−(2x0)
2/2a2

(note that
x0 � a), while the part centered around x0 is amplified accordingly. And since the
probability distribution for the localisation of the next flash is now determined by
the collapsed wave function, it is very likely that it will further amplify the large
branch and suppress the other (and so on).

Since the probabilities for the reduction of the wave packets correspond to a
good approximation to those given by Born’s rule, the statistical predictions of
the GRW theory will be very close to those of standard quantum mechanics. To
emphasize this point, we can read the above example as referring to a macroscopic
wave function, describing, let’s say, the state of a measurement device at the end
of an experiment. It is then clear that, due to the very high collapse rate (many
particles!), the wave function will collapse almost instantaneously into one of the
possible pointer states with the right quantum mechanical probabilities. However, in
contrast to the one-dimensional example, we now have to imagine the wave packets
on the high-dimensional configuration space, as illustrated in Fig. 5.2.

From the previous calculation, we can also easily read off the case a � x0, when
the distance between the two wave packets is smaller than the localization width.
In this case, the factor e−(2x0)

2/2a2
is roughly 1, meaning that the collapse barely

changes the wave function at all (see Fig. 5.3). The upshot is that the spontaneous
collapse affects superpositions only on scales above the localization width a, while
“small” superpositions remain intact.

Fig. 5.2 Spontaneous collapse of a spatially separated superposition
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Fig. 5.3 “Small” superpositions are not destroyed by spontaneous collapse

For the next example, we consider two entangled particles in one dimension
(generalization to N particles is then pretty straightforward):

ψ(x, y) = 1

N

{
exp

[
− (x + x0)

2

2σ 2

]
exp

[
− (y + y0)

2

2σ 2

]

+ exp

[
− (x − x0)

2

2σ 2

]
exp

[
− (y − y0)

2

2σ 2

]}
. (5.10)

Suppose the first collapse is triggered by particle 2, i.e.; in the y degrees of freedom,
with center of collapse Y ≈ y0. An analogous computation to the one above then
yields

ψ2
Y ≈

1

N

{
exp

[
− (2y0)

2

2a2

]
exp

[
− (x + x0)

2

2σ 2

]
exp

[
− (y + y0)

2

2σ 2

]

+ exp

[
− (x − x0)

2

2σ 2

]
exp

[
− (y − y0)

2

2σ 2

]}
. (5.11)

Note that the exponential factor e−(2y0)
2/2a2

comes from the flash of particle 2 but
suppresses the left-hand wave packet of both entangled particles. On configuration
space, we can visualize the collapse as shown in Fig. 5.4.

We can read this once again as a model for “large” systems, for instance,
a microscopic system coupled to a macroscopic measurement device. Since the
measurement device has many more degrees of freedom, it is very likely to trigger
the collapse events, but these collapses will then also suppress superpositions of
the microscopic system with which it is entangled at the end of the measurement
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x

y

x

y

Fig. 5.4 Spontaneous collapse for an entangled system

process. In this way, the GRW theory justifies the folkloristic assumption that a
measurement collapses the wave function of the measured system, although notably
without attributing a special status to the measurement process or, worse, the
“observer”.

Finally, it is important to note that, if two particles (or systems) are in a product
state, e.g.,

ψ(x, y) = ϕ1(x)ϕ2(y) = 1

N

{
exp

[
− (x + x0)

2

2σ 2

]
+ exp

[
− (x − x0)

2

2σ 2

]}

×
{

exp

[
− (y + y0)

2

2σ 2

]
+ exp

[
− (y − y0)

2

2σ 2

]}
,

the collapse of particle 2 will not affect the state of particle 1:

ψ2
Y ≈

1

N

{
exp

[
− (x + x0)

2

2σ 2

]
+ exp

[
− (x − x0)

2

2σ 2

]}

×
{

exp

[
− (2y0)

2

2a2

]
exp

[
− (y + y0)

2

2σ 2

]
+ exp

[
− (y − y0)

2

2σ 2

]}

≈ 1

N

{
exp

[
− (x + x0)

2

2σ 2

]
+ exp

[
− (x − x0)

2

2σ 2

]}
exp

[
− (y − y0)

2

2σ 2

]
.

We can, for instance, think of the x-system as a subsystem and the y-system as its
environment. We then see that, as long as we can consider the subsystem as isolated,
that is, as long as we can assume that it’s wave function factorizes, it will not be
affected by collapse events in the environment. Moreover, the above computation is
relevant to understanding why the quantum properties of quantum gases or Bose–
Einstein condensates, in which the particles can be considered as independent, are
not affected by spontaneous collapse.
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Let’s summarize. Spontaneous collapse is negligible for small (microscopic)
systems—nuclear physicists can do business as usual—but wave functions describ-
ing a macroscopic superposition such as Schrödinger’s cat are practically impos-
sible. The surviving branches survive (to a very good approximation) with the
quantum mechanical probabilities. The statistical analysis of measurement experi-
ments and the appearance of “observable operators” in it then proceeds analogously
to Bohmian mechanics or Many Worlds. This will be explained in detail in Chap. 7.
Essentially, as long as the measurement problem is solved and pointer configurations
follow Born statistics, the measurement formalism comes out the same in all
quantum theories.

5.3 Remarks About Collapse Theories

A question that arises for collapse theories is this: what is the theory actually about,
i.e., what is the ontology of the theory, and what exactly is the role of the wave
function in it? The version of GRW presented here is really a theory about the flashes
conceived as matter flashes. That is, a macroscopic object, like a chair, is “a galaxy”
of such discrete events rather than a collection of persistent particles that move on
continuous trajectories, and the role of the wave function is not to represent matter
but to determine the probability of the random appearances of flashes. GRW with
this flash ontology is called GRWf.

There are other ways to underpin collapse models with an ontology. In particular,
we can use the wave function to define a mass density

m(x, t) =
N∑

i=1

∫
d3q1 · · · d3qN δ(x− qi )

∣∣ψ(q1, . . . , qN, t)
∣∣2 (5.12)

that will behave reasonably in many situations (in particular, semi-classical ones)
thanks to the collapse dynamics. This version of the theory is denoted by GRMm.
Notably, the mass density exists in three-dimensional physical space, unlike the
wave function, which is defined on the high-dimensional configuration space.
GRWm thus postulates that material objects—in particular macro-objects like
tables, chairs, cats, trees—correspond to configurations in a continuous matter field.

Many presentations of collapse theories do not involve any local ontology,
however, but try to establish a connection with the physical world using the wave
function alone. This is difficult to do, as we will discuss in more detail in Chap. 6
on Many Worlds. There is still a difference between a chair in physical space
and the wave function of a chair—even a collapsed one—on the 3N-dimensional
configuration space.

Just like Bohmian mechanics (see Remark 4.6), collapse theories are nonlocal
and therefore in accordance with Bell’s theorem, as we shall discuss in Chap. 10. A
collapse can instantaneously change the wave function and thus the distribution of
flashes or mass densities throughout space. Another forward looking remark is that,
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although there exists a certain tension between nonlocality and Einsteinian relativity,
collapse models—in particular with the flash ontology—can be generalized to
relativistic spacetime without violating any principles of relativity. For Bohmian
mechanics, this is not so simple. We will discuss all this in more detail in later
chapters.

Finally, a basic difference between collapse theories on the one hand and
Bohmian mechanics or Many Worlds on the other concerns the status of randomness
and probabilities. In collapse theories, probabilities are part of the law and cannot
be further derived or explained. In Bohmian mechanics (and arguably also Many
Worlds), they are but typical appearances in a fundamentally deterministic theory.
This does not amount to a difference in the phenomena, but very much in terms of
what the laws of nature are fundamentally like.
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Why doesn’t our observer see a smeared out needle? The answer is quite simple. He
behaves just as the apparatus did. When he looks at the needle (interacts), he himself
becomes smeared out, but at the same time correlated to the apparatus, and hence to the
system. [. . . ] In other words, the observer himself has split into a number of observers, each
of which sees a definite result of the measurement.

Hugh Everett, Probability in Wave Mechanics (unpublished)

Hugh Everett III is credited as the father of the Many Worlds theory, although
the name was only later introduced by Brice DeWitt, and it is disputed historically
whether Everett really believed in the reality of many worlds. What is not disputed
is Everett’s insistence that we must take quantum mechanics seriously on all
scales. He thus introduced the concept of the universal wave function, which has
already played a crucial role in earlier chapters. Everett recognized that the shifty
split, which the Copenhagen interpretation had introduced between the microscopic
quantum regime and the macroscopic classical regime, couldn’t be maintained if
quantum mechanics was to provide a fundamental description of nature.

In contrast to David Bohm, however, Everett refused to introduce additional
variables into the theory. He wanted to have a “pure wave mechanics”, defined
only in terms of the (universal) wave function and the linear Schrödinger equation.
Today, it is generally accepted that such a theory results in a Many Worlds picture,
in which various decoherent branches of the wave function describe equally real
states. We, as observers, do not perceive such macroscopic superpositions because
we take part in the branching ourselves. At the end of a spin measurement, let’s
say, there exists an electron with spin UP, a detector indicating spin UP, and an
experimenter who sees a detector that indicates spin UP. And at the same time,
there exists an electron with spin DOWN, a detector indicating spin DOWN, and an
experimenter who sees a detector that indicates spin DOWN. Due to the linearity of
the Schrödinger evolution, these two experimenters—or should we say, two copies
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of the same experimenter?—cannot interact and directly perceive one another. They
exist, as the story goes, in different worlds.

While the gist of Many Worlds comes out clearly in such scenarios, we shouldn’t
rely too much on the vague notion of “measurement” if we want to understand
the theory as a fundamental description of nature. More generally, Everettian
quantum mechanics, in its modern form, can be characterized by the following three
principles:

1. At the fundamental level, the physical state of the universe is completely
described by the universal wave function, whose evolution obeys the linear
Schrödinger equation.

2. Under this time evolution, the universal wave function continuously splits into
disjoint (decoherent) branches. This branching process is (for all practical
purposes) irreversible, so that different branches will never overlap again in the
relevant future.

3. Each branch of the universal wave function describes a macroscopically well-
defined history in three-dimensional space, which we call a “world”.

This gives rise to a physical description in which the universe—we stick to speaking
about a single universe that comprises all of physical existence—exists in states
in which we can identify a multitude of “worlds” or “histories” that are all
simultaneously and equally real. In one such history, the cat is alive, jumps out of the
box, and receives a bowl of milk. In another, the cat is dead, receives a funeral, and
the experimenter gets sued by an animal rights group. Different such histories may
have a common past but are causally disjoint with respect to their future evolution.
The linearity of the Schrödinger equation ensures that different branches can never
interact. And decoherence makes it practically impossible to bring macroscopic
subsystems—such as the dead cat and the alive cat—into interference.

This is to say, in particular, that we have no direct empirical access to worlds
other than our own. The reason for believing in their existence is simply that our best
theory of nature predicts them—provided we accept the Many Worlds interpretation
of quantum mechanics as our best theory of nature.

When we say that a world “splits” or “‘branches” (for instance, in the course of
a measurement experiment), we are actually talking about a gradual process. Think
of a wave packet on an extremely high-dimensional configuration space fanning out
into two or more parts that become more and more separated in that space. Don’t
try to think of an exact moment in which it goes “bing” and the world suddenly
multiplies. The concept of a “world” has a certain vagueness—it’s not possible, in
general, to say exactly how many worlds exist or at what moment in time a new
splitting has occurred. However, contrary to what the name might suggest, “worlds”
are not fundamental in the Many Worlds theory. The fundamental description is
always given by the wave function of the universe as a whole.

The idea of innumerable parallel worlds—many of which contain almost iden-
tical copies of ourself—is nonetheless bizarre. John Bell was more cautious
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and called it “extravagant”, in particular “extravagantly vague”.1 In response,
proponents of the Many Worlds theory like to point out that new physical theories
have often led to radical changes in our understanding of nature, and forced us to
accept that reality comprises much more than we could have guessed from everyday
experience. The radical innovation of quantum mechanics, they say, is that the
history of the universe is not a linear but a branching one.

6.1 Finding theWorld(s) in the Wave Function

On closer examination, the actual problem with the Many Worlds theory is not the
many worlds, but the question of how to locate any world at all in the universal wave
function. How can we relate the wave function of the universe on the extremely
high-dimensional configuration space with the physical world that we experience in
three-dimensional space? In other words, how do we find tables and chairs and cats
and measurement devices with pointer positions in the universal wave function?

A first approximation to a solution goes as follows. Any point in 3N-dimensional
configuration space describes the positions of N particles in three-dimensional
space, and this configuration can be such that it forms a table, or a cat, or
a measurement device whose pointer points to the left. And other points in
configuration space that lie nearby will describe particle configurations that deviate
only slightly and will thus look macroscopically the same. In this way, we can
identify entire regions of configuration space with certain macroscopic “images”
that are coarse-grained from particle configurations. Thus, if a certain part of the
wave function is (suitably well) localized in a region of configuration space that
coarse-grains to a cat, we can say that we have located a cat in the wave function.
And if another part of the wave function is (suitably well) localized in a region of
configuration space that coarse-grains to a dead cat, we can say that we have located
a dead cat in the wave function.

The problem with this explanation doesn’t even lie in the term “suitably well”
that the reader may find justifiably suspicious. The problem with this explanation is
that we have been cheating all along. For what justifies the identification of points in
3N-dimensional configuration space with configurations of N hypothetical particles
in 3-dimensional space? What even justifies the name “configuration space” for the
high-dimensional space on which the universal wave function lives? Configuration
of what? If the ontology of quantum mechanics is supposed to be the wave function
and the wave function alone, we cannot just pretend that its degrees of freedom
refer, somehow, to particle positions.

In the modern literature, one thus finds another strategy that falls under the
philosophical concept of “functionalism”. The basic idea is the following. To be
a cat is not to be a cat-shaped configuration of matter. To be a cat is to act like a

1J.S. Bell, Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, 2nd
edn. 2004, p. 194.
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cat: to chase after a mouse when it passes by, to purr when being caressed, to land
on your feet when jumping out the window, etc. To locate a cat or a table or a chair
in the universal wave function is thus not to find something that comprises a cat or
a table or a chair (as Bohmian particles do), but to identify certain patterns in the
wave function that, in their interplay, satisfy the causal and functional role of a cat
or table or chair. Since the dynamics of quantum mechanics is in any case given by
the wave function, we may expect (or hope) that the wave function will show the
right dynamical behaviour to represent our world (and many others like it) in this
way.

To make this more plausible, we recall our discussion of the classical limit, where
we argued that the interactions of a system with its environment tend to create well-
localized wave packets (“the environment constantly measures where the particles
are”) which propagate more or less like classical (Newtonian) bodies. Such wave
packets thus form patterns in the universal wave functions that behave more or less
like the macroscopic objects that we perceive in the world.2

If we think this through to the end, we’ll see that this semi-classical behaviour
is due to the Schrödinger equation that contains a second derivative with respect
to “position” coordinates, and an interaction potential that is also given in terms of
spatial coordinates, as if it described interactions in three-dimensional space. Many
proponents of the Many Worlds theory would say that this form of the law is merely
accidental, but given this law, we can run our functionalist analysis.

6.1.1 Everett Versus Bohm

It’s questionable whether anyone could actually analyze a physical theory like
that. However, if we grant that the Many Worlds theory can, at least in principle,
represent our world (and many other worlds) in this way, we can also understand
the main Everettian criticism of Bohmian mechanics. Recall Schrödinger’s cat
experiment. According to the Schrödinger equation, the wave function at the end
of the experiment will always be a superposition of “dead cat” and “alive cat”.
In Bohmian mechanics, however, only one of these branches will guide the actual
configuration of the system, corresponding to a dead cat or a living cat. The other
wave packet—let’s say of a dead cat, since the cat has actually survived—will be
empty, and thanks to decoherence and the effective collapse, we can forget about it
for all practical purposes. Of course, this doesn’t mean that the empty wave packet
has simply disappeared. It will continue to evolve according to the Schrödinger
equation, and interact with the wave function of the experimenter and the laboratory
and the rest of the universe, just as it would if it represented the actual state of the
system. For an Everettian, however, the wave function of a dead cat is sufficient to
say that there actually is a dead cat. She will thus insist that the other world with

2For a detailed discussion, see D. Wallace, The Emergent Multiverse: Quantum Theory According
to the Everett Interpretation. Oxford University Press, 2012.
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the dead cat (and the experimenter seeing a dead cat, and so on) exists even in the
Bohmian theory. David Deutsch, one of the most vocal proponents of Many Worlds,
thus proclaimed that Bohmian mechanics is nothing but a Many Worlds theory “in
a state of chronic denial”.

The Bohmian, of course, cannot accept this argument. For her, it is decidedly
the particle configuration in three-dimensional space and not the wave function
on the abstract configuration space that constitutes a world (or rather, the world).
Instead, she will accuse the Everettian of not having local beables (in Bell’s sense)
in her theory, that is, the ontological variables that refer to localized entities in three-
dimensional space or four-dimensional spacetime. The many worlds of her theory
thus merely appear as a grotesque consequence of this omission.

The upshot is that we see a clash between two fundamentally different ways
of describing nature: atomism versus monism, physical objects being composed of
microscopic entities versus being functionally enacted by degrees of freedom in
the wave function or quantum state. Many Worlds, however, is clearly the more
radical and revisionist position, and we have to ask ourselves if there are sufficiently
compelling arguments to take such a radical step. We will do that in Sect. 6.3. But
first, we have to understand in what sense the Many Worlds theory even matches the
phenomena.

6.2 Probabilities in theManyWorlds Theory

The Many Worlds theory has trouble reproducing the statistical predictions of quan-
tum mechanics, i.e., Born’s rule. The problem is not that the theory is deterministic
(there is only one equation, the Schrödinger equation, which is deterministic). Since
Boltzmann, it has been well understood how deterministic theories can ground
statistical predictions. We have discussed this in detail in Chap. 3 and then applied
Boltzmannian arguments to derive the Born rule in Bohmian mechanics. When it
comes to probabilities in the Many Worlds theory, the critical question is rather:
probabilities of what? The theory says, after all, that all possible results in a quantum
experiment actually occur. There are thus no interesting probabilities in the sense of
relative frequencies about which we could formulate a statistical hypothesis. All
possible outcomes occur with probability 1.

If we return to our standard example of the spin-measurement on a spin-1/2
particle, it doesn’t make sense to ask for the probability of measuring spin UP or
spin DOWN: in one world, the upper detector clicks and we measure spin UP, in
another world, the lower detector clicks and we measure spin DOWN (assuming, of
course, that the particle was not in an eigenstate).

Naively, we may think that quantum statistics refer to the relative frequency of
worlds. One outcome being “more likely” than another would then simply mean
that it will be realized in a greater number of worlds. However, if this were true,
the Many Worlds theory would actually make incorrect predictions. Suppose our
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“particle” is in the spin-state

ψ1 = 1√
2
|↑z〉 + 1√

2
|↓z〉

and we measure its spin in the z-direction. At the end of the experiment, our world
will have split into two new branches: one in which we have measured spin UP,
and one in which we have measured spin DOWN. Each possible outcome thus
occurs in an equal number of worlds, in accordance with the quantum mechanical
probabilities.

But now suppose the particle is instead in the spin-state

ψ2 = 1√
3
|↑z〉 +

√
2

3
|↓z〉 .

According to Born’s rule, the probabilities are now 1/3 for spin UP and 2/3 for spin
DOWN. According to the Many Worlds theory, however, the outcome is the same
as before: we end up with two worlds, one in which the result of the measurement is
spin UP and one in which it is spin DOWN, respectively. Hence, “counting worlds”
(to the extent that this even makes sense) does not yield statistics that are consistent
with the quantum mechanical predictions. And the “weights” of the world-branches,
that is, the pre-factors c1 = 1/

√
3 and c2 = √

2/3, don’t have any immediate
physical significance in the Many Worlds theory. It’s not as though one world is
“more real” or “exists with greater intensity” than the other. The functional and
dynamical relations within a branch are all that matters.

Since it’s difficult to find interesting statistical distributions in a Many Worlds
universe, most authors try to locate probabilities in their heads, that is, they try to
interpret them as subjective probabilities. For instance, after you perform a spin
measurement—but before you look at the detector to see the result—you do not
know whether you find yourself in a world in which the detector has registered
“spin UP” or a world in which it has registered “spin DOWN”. What should be your
“degree of belief” in one or the other? If someone offers you a 2:1 bet on “spin
UP”, should you take it? The “chances” in this case arise from your “self-locating
uncertainty”—you do not know which branch of the Many Worlds universe your
present self inhabits—and the goal of any theoretical analysis would be to show that
it’s rational to assign your degrees of belief according to the quantum mechanical
probabilities.

However, regardless of how convincing or unconvincing the proposed arguments
may be, there is something unsatisfactory about retreating to purely subjective
probabilities. After all, in our laboratories, we do not take bets or poll scientists on
their personal expectations. We observe concrete statistical regularities in the world
that can be reproduced in many independent experiments and are very well predicted
by Born’s rule. A quantum theory should be able to explain these empirical facts.
Otherwise, the theory is no good.
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6.2.1 Everett’s Typicality Argument

Hugh Everett’s own explanation of the Born rule (which, oddly, is endorsed only
by a minority of modern Everettians) was based on a typicality argument—and
thus on objective probability assignments—similar to the one we have discussed
in Bohmian mechanics. Therein, the |Ψ |2-measure defined by the universal wave
function—or rather the absolute squares of the prefactors of the various branches
of the universal wave function—define a typicality measure that is distinguished by
the fact that it is stationary under the Schrödinger evolution. In the context of Many
Worlds, this stationarity can be understood as follows: the “weight” associated with
any branch at any time equals the sum of weights associated with all of its sub-
branches at later times.

Consider for instance a sequence of z-spin measurements performed on identi-
cally prepared electrons in the state

α|↑z〉 + β|↓z〉 , |α|2 + |β|2 = 1 .

We denote by |⇑〉 (respectively |⇓〉) the state of the measurement device (and in
the last instance the rest of the world) that has registered spin UP (respectively Spin
DOWN). After the first measurement, our world splits according to

α|⇑〉|↑z〉1 + β|⇓〉|↓z〉1 , (6.1)

where the index 1 indicates the first measurement. With the second measurement,
each world splits anew, namely according to the decoherent wave branches:

α2|⇑⇑〉|↑z〉2|↑z〉1+ βα|⇓⇑〉|↓z〉2|↑z〉1+ αβ|⇑⇓〉|↑z〉2|↓z〉1+ β2|⇓⇓〉|↓z〉2|↓z〉1 .

The first three steps of the branching are shown in Fig. 6.1. Conservation of the
measure in each branch is now readily verified. For instance, in the left branch, after

Fig. 6.1 Branching Many Worlds histories after three spin measurements. Graphic adapted from
J.A. Barrett, Typicality in pure wave mechanics. Fluctuation and Noise Letters 15 (03), 1640009
(2016)
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Fig. 6.2 Delayed measurements, all branches weighted equally. The measure is not conserved

the second measurement,3 we have

|α|4 + |α|2|β|2 = |α|2(|α|2 + |β|2) = |α|2 .

This conservation of the typicality measure wouldn’t hold if we weighted each
branch equally, i.e., if we simply counted the branches. This is easy to see if we
assume that, in our example, the second measurements in the already separated
worlds occur at different times. If the second measurement occurs earlier in the
left branch than in the right branch, the total number of worlds increases from 2 to
3, and the measure of the right branch suddenly drops from 1/2 to 1/3. That is, until
the second measurement occurs in the right branch as well, resulting in a total of
four different worlds (Fig. 6.2).

Following the principle of stationarity, we thus arrive at the |Ψ |2-measure as the
typicality measure by which we weight branches of the wave function corresponding
to Everettian worlds. And according to this measure, a typical branch will be one in
which Born’s rule—and thus quantum statistics—holds. We can check this for our
example of consecutive spin measurements. After n measurements, the measure of
worlds in which the outcome spin UP has occurred exactly k-times is

(
n

k

)
|α|2k|β|2(n−k) .

Writing |α|2 =: p and |β|2 = 1 − p, we see that this is a Bernoulli process with
n trials and “probability of success” p. According to the law of large numbers, the
typical relative frequencies for spin UP are thus k/n ≈ p = |α|2, exactly matching
the predictions of quantum mechanics.

In conclusion, Everett’s analysis establishes that the Born statistics hold in typical
histories of the constantly branching Many Worlds universe. We would now like to
conclude the analysis with a solid probabilistic prediction and say something like:

3Spontaneous decoherence may cause the sub-branches to branch even further, but the total weight
of branches registering a particular sequence of measurement results doesn’t change.
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“So, I should expect to experience a typical history in which the Born statistics
hold.” However, to whom this I actually refers in a Many Worlds universe is a
difficult and maybe in the end philosophical question.

6.3 ManyWorlds: A Brief Assessment

The Many Worlds theory is, all in all, a consistent way of thinking about quantum
mechanics that is more serious than it may appear at first glance. So far, we have
always avoided the term “interpretation”, though in the context of the Many Worlds
interpretation, it is perhaps appropriate. If quantum mechanics is supposed to be
defined by the Schrödinger equation alone, then Many Worlds is not merely a
possible interpretation, but the only honest one.

The key question, in the end, is whether there are good scientific reasons to accept
such an extravagant and counterintuitive description of nature, if Bohmian mechan-
ics and collapse theories (with caveats) offer empirically equivalent alternatives that
are more down-to-earth, to say the least.

Many advocates of the Many Worlds theory take the economy of its mathematical
formalism to be the decisive argument. The Many Worlds theory is defined by a
single, relatively simple mathematical equation, the Schrödinger equation. Bohmian
mechanics postulates, in addition, the guiding equation for the particle positions.
Collapse theories can make do with a single equation, as well, but include additional
parameters and stochastic terms that make the wave equation more cumbersome
and less elegant than the linear Schrödinger equation. The conclusion that the Many
Worlds theory offers the simplest explanation for quantum phenomena is, however,
questionable, since Bohmian particles or the GRW flashes have an immediate
connection with physical phenomena, while the Everettian has to tell some story
about how patterns in the high-dimensional wave function relate to objects in the
three-dimensional world that we experience. And this story is anything but simple—
if it succeeds at all.

Another common argument is that the Many Worlds interpretation avoids the
nonlocality of Bohmian mechanics or GRW that we have already mentioned.
This claim is also questionable, though the issue is indeed more subtle than in
other quantum theories where the nonlocality is evident. In Chap. 10, we will
discuss Bell’s theorem, which proves that certain statistical correlations predicted
by quantum mechanics and observed in experiments cannot be explained by any
local theory. According to the Many Worlds theory, however, these correlations
occur only within individual branches, and a single branch does not comprise all
of physical reality. Simply put, if measurements have no definite outcome, there is
no worry about measurement outcomes being nonlocally influenced. On the other
hand, it is still not possible, in general, to describe a localized system independently
of other, arbitrarily remote systems. They only have a common state, given by
the entangled wave function (which ensures that the right correlations manifest
themselves in typical worlds). A compromise is often reached, according to which
the Many Worlds theory has nonlocal states but no nonlocal interactions.
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One possible point of view is that the fundamental stage for the Many Worlds the-
ory is not three-dimensional space or four-dimensional spacetime, but the extremely
high-dimensional configuration space (which is not actually a configuration space)
in which the universal wave function lives as some kind of physical field. On
this space, the theory is certainly local, but this has little to do with the sort of
spatio-temporal locality that Einstein so deeply cared about. If the nonlocality
of quantum mechanics appears bizarre or undesirable, it does so against the
backdrop of certain intuitions about physical interactions between localized objects
in three-dimensional space. It is not clear why a local description on a super-high-
dimensional space, which is completely detached from our intuitions, should be less
bizarre or undesirable.

More generally, we can conclude that Bohmian mechanics and GRW are theories
about localized objects (particles or flashes, respectively), obeying a nonlocal law
defined in terms of the wave function. In the Everettian theory, on the other hand,
there is nothing but the wave function (on the fundamental level), which is itself a
highly nonlocal object in a spatio-temporal sense.

One final (and related) argument is that Many Worlds is more compatible
with relativity. In some sense, this is correct, since a relativistic generalization
of the Many Worlds theory requires only a relativistic wave equation, while
Bohmian mechanics or GRW require also a relativistic law for the particle motion,
respectively the collapse dynamics. However, we don’t even know yet how to
formulate a consistent, relativistic, interacting theory on the level of the wave
function (quantum field theory is mainly concerned with describing asymptotic
scattering states). Therefore, a consistent, relativistic version of the Many Worlds
theory does not yet exist. We will return to this difficult subject in Chap. 11.
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Here are some words which, however legitimate and necessary in application, have no place
in a formulation with any pretension to physical precision: system, apparatus, environment,
microscopic, macroscopic, reversible, irreversible, observable, information, measurement.
[. . . ] On this list of bad words from good books, the worst of all is ‘measurement’.

John S. Bell, Against Measurement1

When we look in textbooks on quantum theory to find the heart of the theory,
one notion in particular stands out: the observable. In older representations,
observables are self-adjoint operators on the Hilbert space of a system and they
are supposed to describe the properties of a system which can be observed. In
more modern texts (actually already since the 1950s), the notion of observables has
been extended to positive operator-valued measures (POVMs). This extension was
already in-between the lines in von Neumann’s book Mathematische Grundlagen
der Quantenmechanik,2 because von Neumann viewed observables as emerging
from their spectral decompositions, which are projector-valued measures (PVMs).
All these seemingly abstract things will now be explained, and we shall see why
they arose in the first place. We shall find that their role in quantum theory is that of
bookkeepers for the statistics produced by measurement experiments. Once that is
clear, we shall be immune to the philosophical encumbrances that come to light in
Chap. 9 on hidden variables.

1In: J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (2nd edn). Cambridge Univer-
sity Press, 2004, p. 214.
2J. von Neumann, Mathematische Grundlagen der Quantenmechanik. Springer, 1932.
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7.1 Ideal Measurements: PVMs

The following mathematical analysis3 is actually independent of the particular quan-
tum theory one favours. However, considering ontological theories like Bohmian
mechanics makes life considerably simpler because there is no need to introduce
vague notions and concepts like “observer” or “collapse of the wave function”. The
mathematical analysis is essentially based on Born’s statistical interpretation4 (see
Remark 1.2):

If the wave function of a system is ψ , the particle positions of the system are |ψ |2-
distributed.

The various theories we have discussed may disagree about the meanings of
terms like “particle positions” and “are distributed”, but all theories will nevertheless
agree in some way or other with Born’s interpretation. In particular, there is
agreement that Born’s interpretation for the configurations of positions encompasses
the empirical content of quantum mechanics. That may sound surprising, because
“position” is in many textbooks merely introduced as one of many possible
observables. But it should be remembered that the results of a measurement
experiment are always associated with “pointer positions”. The latter stand here
as placeholders for the readouts of measurement results, which can be realised by a
display or by a printout on a piece of paper or by a pointer pointing to a number on
a scale. Whichever way they work, readouts are always expressed by configurations
of matter in space. In this sense every experiment is at the end of the day a
“measurement of positions”. The statistics of measurement results corresponds to
the statistics of pointer positions, that is, to configurations in space. Nothing more
will be used in what follows.

Recall also the notation and the descriptions in Chap. 2, much of which we shall
use here. As in the other chapters, we shall also make free use of the words “particle
position” and “pointer position” as they are used in quantum mechanics. When we
talk below about a “piece of apparatus”, we take that term to mean possible pointer
positions.

We consider, as we have already many times, an experiment E , in which a
system x (m-dimensional, represented by a wave function ϕ) is coupled to a
piece of apparatus y (n-dimensional, represented by a wave function Φ—the ready
state). The apparatus has discrete pointer positions corresponding to wave functions
Φk, k = 1, . . . , N , which can display the values {α1, . . . , αN } =: A . These
correspond to the possible measurement results, and the associated wave functions

3D. Dürr, S. Goldstein and N. Zanghì, Quantum equilibrium and the role of operators as
observables in quantum theory. In: Quantum Physics Without Quantum Philosophy, Springer,
2013.
4We use the following terminologies interchangeably: Born’s statistical interpretation, Born’s
statistical law, Born’s statistical rule. They all mean the same thing, although they sometimes
emphasise different views.
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are localized in configuration space, on the respective pointer positions indicating
the result.

The Schrödinger evolution of the total wave function of the system and apparatus
combined yields correlations between the pointer wave functions and a certain wave
function of the system ϕk , because that is how the apparatus is intended to function:

ϕk(x)Φ(y)
Schrödinger-evolution−→ ϕk(x)Φk(y) . (7.1)

Assuming that the wave functions are normalized, we obtain for the superposition

ϕ =
∑

k

ckϕk ,
∑

k

|ck|2 = 1 , (7.2)

ϕ(x)Φ(y)
Schrödinger-evolution−→

∑

k

ckϕk(x)Φk(y) , (7.3)

which means that the initial wave function ϕ =∑
ckϕk of the system becomes the

new wave function ϕk with probability |ck|2.
Why is that? We already computed that in (2.4)–(2.6), but for a better apprecia-

tion, let us do it once again here, but rather briefly. According to Born’s statistical
law, the different pointer wave functions Φj must have disjoint supports, so the
probability that the pointer position Y ∈ supp Φj is given by

∫

{x,y|y∈suppΦj }

∣∣∣
∑

k

ckϕk(x)Φk(y)

∣∣∣
2
dmx dny (7.4)

supp Φk∩supp Φj≈∅= |cj |2
∫
|ϕj |2(x)dmx

∫
|Φj |2(y)dny = |cj |2 ,

where dmx and dny are the corresponding higher-dimensional integration elements.
If now Y ∈ supp Φj , that is, if the pointer points let’s say towards αj ∈
{α1, . . . , αN }, then in each and every quantum theory it is the case that ϕj is the
new (collapsed) wave function of the system. The other wave parts Φk , k 
= j ,
can for all practical purposes be ignored, either because of decoherence (loss of
the ability to interfere) or because the collapse happened as a matter of fact (as in
collapse theories, in which case they are gone forever). The right-hand side of (7.3)
collapses to the product wave function ϕjΦj , and as we discussed in Chap. 4 on
Bohmian mechanics, we can regard ϕj as the new wave function of the system.

In short, the experiment E described by (7.1) provides us with a random linear
map

ϕ −→ ϕj ,
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where ϕj occurs with probability |cj |2. We should be able to handle both the
probabilities and the collapsed wave functions with ease, and one comfortable way
of doing so is by observing the following simple consequence of (7.3). We recall
that the Schrödinger evolution preserves the |ψ|2-density. That is, in the language
of Hilbert spaces the L2-norm ‖ · ‖ is preserved, so

‖ϕΦ‖2 :=
∫
|ϕ(x)Φ(y)|2dmxdny

∗=
∫ ∣∣∣

∑

k

ckϕk(x)Φ(y)

∣∣∣
2
dmxdny

Schrödinger evolution=
∫ ∣∣∣

∑

k

ckϕk(x)Φk(y)

∣∣∣
2
dmxdny

(7.4)=
∑

k

|ck|2
∫
|ϕk|2(x)

∫
|Φk|2(y) dmxdny

=
∑

k

|ck|2 . (7.5)

By expanding and integrating the right-hand side of the equality ∗, we get

∑

k 
=k′
c∗kck′

∫
ϕ∗k (x)ϕk′(x)dmx = 0 . (7.6)

Because that holds for arbitrary coefficients ck, ck′ , each individual summand must
be zero, that is,5

∫
ϕ∗k (x)ϕk′(x) dmx = 0 , for k 
= k′ . (7.7)

This means that, for the measurement process (7.1) to happen, the system wave
functions ϕk must form an orthonormal system with respect to the L2-scalar product:

〈ϕ|ψ〉 :=
∫

ϕ∗(x)ψ(x) dmx . (7.8)

5For a quick proof, read (7.6) as a quadratic form (c, Ac) = 0 with vector c = (c1, . . . , cn) ∈ C
n

and the Hermitian matrix A with entries

Ak,k′ :=
∫

ϕ∗k (x)ϕk′ (x)dmx = A+
k′,k .

Then, choosing the vectors c as eigenvectors, we see that all the matrix elements must vanish.
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This should not come as a big surprise. The wave functions of the apparatus Φk

and Φk′ represent macroscopically different pointer positions, and hence they have
disjoint supports in configuration space so they are already orthogonal. The ϕk

inherit from that their own orthogonality, and of course the preservation of the L2-
norm by the Schrödinger evolution plays an essential role.

Hence, we can now look upon the representation (7.2) as a decomposition into
an orthonormal system, and we can compute the coordinates ck as usual by

ck = 〈ϕk |ϕ〉 =
∫

ϕ∗k (x)ϕ(x) dmx . (7.9)

We also get the probability |ck|2 for the result αk as

P
ϕ(αk) = |ck|2 = |〈ϕk|ϕ〉|2 . (7.10)

This leads to the introduction of orthogonal projectors

Pϕk := ϕk〈ϕk | , (7.11)

with the agreement that the factor 〈ϕk|—a dual vector in the sense of linear algebra,
which Paul Dirac called a bra-vector (see below)—acts upon wave functions ψ

according to 〈ϕk|ψ〉. Using this we can write (7.2) in the form

ϕ =
∑

k

ϕk〈ϕk|ϕ〉 =
∑

k

Pϕk ϕ . (7.12)

The following properties of orthogonal projectors are easy to check:

P 2
ϕk
= PϕkPϕk = Pϕk (projector property) , (7.13a)

〈Pϕk ϕ|ψ〉 = 〈ϕ|Pϕk ψ〉 , i.e., P+ϕk
= Pϕk (self-adjointness) . (7.13b)

The probability (7.10) of getting the value αk can now be written as

P
ϕ(αk) = ‖Pϕk ϕ‖2 = 〈Pϕk ϕ|Pϕkϕ〉 = 〈ϕ|Pϕkϕ〉 = |〈ϕk|ϕ〉|2 . (7.14)

Remark 7.1 In Dirac’s bra-ket notation, as it is known from standard quantum
mechanics courses, we may write the projectors in the form Pϕk = |ϕk〉〈ϕk|, a
powerful symbolism to which we shall return in Remark 7.4.

The moral is that some of the essential data of the experiment (7.1) are captured
by the orthogonal projectors (Pϕk )k . What about the measurement values? The set
A of values should be captured as well, because statistical data like the mean or the
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variance of the α-values are of interest. This can be done compactly. The “operator”

Â =
∑

k

αkPϕk (7.15)

contains all we need. The probability of the value αk is already given in (7.14). And
when we compute the mean of the α-values, which we do in the usual probabilistic
way by computing expected values, a nice expression turns up, namely,

E
ϕ(α) =

∑

k

αkP
ϕ(αk) =

∑

k

αk‖Pϕkϕ‖2

=
∑

k

αk〈ϕ|Pϕk ϕ〉 = 〈ϕ|
∑

k

αkPϕkϕ〉 = 〈ϕ|Âϕ〉 . (7.16)

Likewise for the “variance” of the α-values (a pleasant exercise for the reader!):

E
ϕ(α2) =

∑

k

α2
kP

ϕ(αk) = 〈ϕ|
∑

k

α2
kPϕkϕ〉 = 〈ϕ|Â2ϕ〉 , (7.17)

where we have used

Pϕk Pϕk′ = 0 , for k 
= k′ ,

which follows because (ϕk)k is an orthonormal system. So the operator Â turns out
to contain all the relevant statistical information and, in their elegance, the right-
hand sides seem to have a significance all of their own.

The operator Â in (7.15) is associated with the experiment (7.1) by virtue of the
corresponding family of orthogonal projectors and the measurement values (the real
numbers on the display), and it is by construction a self-adjoint operator.6 For a self-
adjoint operator the family (Pϕk )k is uniquely defined (recall the diagonalisation
procedure for Hermitian matrices in linear algebra courses) and it is called the
spectral decomposition of the operator. In short, we go from experiment to the
displayed values and projectors to the bookkeeping device, i.e., the operator:

E �−→ (αk, Pϕk )k �−→ Â . (7.18)

In other words, the experiment defines the possible measurement values and the
corresponding channeling into wave functions, which we read for convenience as
eigenvalues and eigenvectors of a useful mathematical tool, the self-adjoint operator.
The system’s wave function which is fed into the experiment is not part of the

6A joker could also write imaginary numbers on the display of the apparatus. Then the bookkeeping
device Â with αk imaginary would no longer be self-adjoint. One should reflect upon that.
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bookkeeping device, since that can change, with the experimental setup itself held
fixed.

What does this now have to do with projector-valued measures—the PVMs?
This is simple! We just ask for the probability that a measured value lies in a
subset A ⊂ A . This is given in a purely logical way by adding up the individual
probabilities, i.e., by virtue of (7.14), we have

P
ϕ(A) =

∑

k:αk∈A

P
ϕ(αk) =

∑

k:αk∈A

〈ϕ|Pϕkϕ〉 = 〈ϕ|
∑

k:αk∈A

Pϕkϕ〉 , (7.19)

where

PA :=
∑

k:αk∈A

Pϕk

is again an orthogonal projector (the reader should check that). For obvious reasons,
this map from sets of values A to orthogonal projectors PA is called a projector-
valued measure (PVM), because a measure is nothing but an additive set function,
and it takes values in the space of projectors. Moreover, if we require the total
probability to be equal to one, then with the identity operator Id, we must have

∑

k:αk∈A
Pϕk = Id .

We admit that the notion of measure seems a bit pretentious, because we are only
dealing with discrete sets and counting is enough in this case. But later on we
shall extend our description to the continuum, where the notion of measure is more
appropriate.

In conclusion, we have here a measure (a PVM) on discrete subsets of values in
A . The PVM defines a self-adjoint operator—the bookkeeper Â—as in (7.18). That
is how observables were introduced by von Neumann (see footnote 2).

Remark 7.2 (Example of Spin Measurement) An important example is the measure-
ment of spin, which we already discussed in Chap. 1.7. We recall that, sending a
wave function

ψ0 = φ0(x)

(
α

β

)
, |α|2 + |β|2 = 1 ,

with respect to the σz eigenbasis, through a Stern–Gerlach magnet oriented in the
z-direction, the wave function splits into spatially separating parts

ψt = φ+(x, t)

(
α

0

)
+ φ−(x, t)

(
0

β

)
,
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where φ+ and φ− are normed to 1. The experiment is set up so that after a sufficient
amount of time the wave parts will no longer overlap. The probabilities of spin UP
and spin DOWN are now simply the probabilities that the particle will be found in
φ+ and φ−, respectively. According to Born’s statistical law, we compute

P(spin UP) = P(X ∈ supp φ+) = |α|2
∫
|φ+(x, t)|2d3x = |α|2 ,

P(spin DOWN) = P(X ∈ supp φ−) = |β|2
∫
|φ−(x, t)|2d3x = |β|2 .

These probabilities can be read off easily from the projections onto the spin
components

(1
0

)
and

(0
1

)
, respectively. Written in the form of matrices, we have

P+ =
(

1 0
0 0

)
, P− =

(
0 0
0 1

)
,

and we obtain immediately

〈ψ|P+ψ〉 = |α|2 , 〈ψ|P−ψ〉 = |β|2 . (7.20)

Omitting h̄, the expected value is accordingly

1

2
P(spin UP)− 1

2
P(spin DOWN) = 1

2
〈ψ|P+ψ〉 − 1

2
〈ψ|P−|ψ〉

= 〈ψ|1
2
(P+ − P−)ψ〉 = 〈ψ|1

2
σzψ〉 .

Here the Pauli matrix σz/2 [see (1.27)] turns out to be the bookkeeping operator
associated with the experiment. Generalising to an arbitrary spin measurement,
say in the direction a, we obtain Â = a · σ/2 as the associated operator, whose
eigenvectors determine the PVM. In accordance with the usual bra-ket notation, we
denote the latter by |↑a〉 and |↓a〉.

This particular example contains an interesting feature. We did not have to say
anything about any measurement apparatus to get the orthogonality of the possible
wave functions. That is already taken care of by the Schrödinger (actually Pauli)
evolution of the system alone. At the end of the day we need only detect the
wave part the particle is located in, and the wave function then collapses to the
part corresponding to the observed outcome. This may lead to a deplorable way of
speaking, referring to the matrix

1

2
a · σσσ

as “the a-spin observable”, which can be “measured” by orienting a Stern–Gerlach
magnet in the direction a. Talking this way, we may fool ourselves into thinking that
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the spin observable represents a physical variable, and that we have really measured
a predetermined value of a property of the system. This is not the case. Chapter 9
is about precisely this problem—the problem of hidden variables, which is really a
“non problem”, and so much so that the term “hidden variables” should be banned
from the language of physics.

The situation is less simple for position or momentum (see Sect. 1.3), because
in these cases there is no longer a discrete decomposition of the wave function
corresponding to the possible measurement results. On the other hand the notion
of measure becomes clearer. We shall come to this in a moment.

In general, the Hilbert space H of wave functions we need to consider will
be infinite-dimensional, while the set of the αk , the “measurement values”, will be
finite—in realistic experiments. Therefore, instead of one-dimensional orthogonal
projectors, we shall generally have orthogonal projectors Pk onto the higher-
dimensional subspaces Hαk containing those wave functions that correspond to the
given pointer position pointing to αk . Hence, in general,

Â =
∑

k

αkPk ,
∑

k

Pk = Id . (7.21)

Nothing much has changed. As above, we get bookkeeping operators from the
projectors.

Now let us connect this to the relevant results from linear algebra. One topic
of such a course is diagonalisation of Hermitian matrices, or more generally,
self-adjoint operators. The spaces Hαk are the eigenspaces corresponding to the
eigenvalues αk ∈ R of the self-adjoint operator Â. If the dimension of the
eigenspace Hαk is greater than one, the eigenvalue αk is said to be degenerate.
The diagonalisation of a self-adjoint operator is achieved by the spectral theorem
which is proven in a general setting in any course on functional analysis. We defined
the operators via PVMs and the spectral theorem yields the converse, i.e., given a
self-adjoint operator there corresponds a unique PVM, generally called the spectral
decomposition in mathematics.

The spectral theorem is the reason for a certain independent standing acquired
by observable operators in quantum mechanics (and it is the basis for the hidden
variables question discussed in Chap. 9). It says that

Â =
∑

k

αkPαk , i.e., Â �→ (αk, Pαk ) , (7.22)

where it should be observed that, for the complete converse (including the physical
meaning) of (7.18), the arrow to the experiment is missing. After all, would it make
sense to write down an abstract (self-adjoint) operator and ask the experimenter to
measure that?

Actually, it would be easy to forget where Â came from in the first place, so the
operator observables start having a life of their own, generating lots of confusion,
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because we are led to think that observables come first, and from them we get
measurement values and eigenstates. So let us make an interim statement:

Remark 7.3 (Measurements of Observables) What does the utterance “measure an
observable” actually mean? The observable is an abstract operator on a Hilbert
space, i.e., it generalises the notion of matrix to infinitely many dimensions. For
example, we consider the Laplace operator (multiplied by some dimensional factors)
as the energy observable. So what does it mean to measure the Laplace operator?
Well, its symbol is a triangle and someone with no further information might
perhaps think they were supposed to measure its area, its perimeter, or some angles
perhaps.

But what we actually mean is this: a measurement experiment E which is
suitable for “measuring the observable Â” is one that produces a channeling as in
(7.3), i.e., a splitting of the wave function into what can be read as the different
eigenspaces of Â, and where the pointer points to one of the values α1, . . . , αn, and
the system wave function is collapsed (by whichever mechanism, see Chap. 2) onto
the corresponding channel (eigenspace) with a probability to be computed from the
corresponding projector by a formula like (7.14). That is what is expressed in (7.18).

Our discussion of measurement leading to the bookkeeping observables is highly
idealized, and a whole hierarchy of generalisations of the notion of measurement
exists. The type of experiment like (7.1) is also referred to as a “reproducible
measurement”. This means that, if in one run of the experiment, ϕj appears and the
experiment is repeated with the initial wave function ϕj then the value αj and the
wave function ϕj will be obtained again with certainty. Note also that a measurement
is said to be ideal if there is a unique wave function ϕj corresponding to the value αj .

But there exist many non-reproducible measurements, for example those in
which a detector absorbs the particle. Quite generally, in contrast with the ideal
measurement, we may speak of a “formal measurement” of an observable, by which
we mean every experiment which yields the eigenvalues with the corresponding
quantum mechanical probabilities. The moral to be drawn is that the terminology
“measurement of an observable” is tricky and necessarily so, until a clear relation
is established with the physical process. It is very important to keep one thing in
mind: a measurement is a process which in general changes the state of a quantum
mechanical system. Many so-called quantum paradoxes are already resolved by
taking that into account. An ideal measurement tells us more about the system
after the measurement than about its state before the measurement, because we can
conclude from the indicated value αj that the system after the measurement (but not
before) has wave function ϕj .

We may also consider types of measurements which essentially do not disturb
the system. These will be considered in Chap. 8.
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7.2 PVMs and POVMs in General

Here we say a little more about Born’s statistical law ρϕ = |ϕ|2 and consider
the abstract mathematical description of measurement experiments in general. This
generality will include situations where the apparatus plays only a side role in the
experiment, for example, when the apparatus is there simply to detect the part of
the wave function in which the particle is evolving—as in a spin measurement. We
associate a measurement experiment with a coarse-graining function

F : Q �→ A , (7.23)

which is a random variable on the configuration space Q of all the particles involved
in the experiment, and which focuses on the relevant measurement values A . These
can be values of the system coordinates x or values derived from the coordinates,
like the configurations y which correspond to pointer positions.

Hence F maps the possible configurations q to the corresponding “measurement
result” F(q). In general, many (possibly infinitely many) configurations will
correspond to the same measurement result. This is clear if we think of the
measurement apparatus, where very many micro-configurations represent the same
pointer position. This is why F is a coarse-graining variable.

Once again, we split the general configuration q ∈ Q into q = (x, y). The most
general structure we can deduce from the |ϕ|2-statistic results from the following
sequence:

ϕ(x)
system couples (possibly)

to apparatus
−→

Ψ (x, y) = ϕ(x)Φ(y)

Schrödinger evolution
of system and apparatus

−→
ΨT (x, y)

Born’s statistical law)⇒ ρΨT = |ΨT |2(x, y) (7.24)

we are only interested in−→ P
ϕ(dα) = P

ΨT (F−1(dα)
)
. (7.25)

The single arrows represent linear maps. The first signifies multiplication by the
wave function of the apparatus and the second the linear evolution according to
the Schrödinger equation. The “possible coupling” above the first arrow indicates
that we also wish to consider situations in which the apparatus does not play any
significant role and in which we only wish to study the statistics of the system
coordinates. T is in general a long time, the time at which the experiment ends.
The third arrow now signifies7 Born’s statistical law, while the last arrow indicates

7Actually a sesquilinear form, linear in the first argument and antilinear in the second.
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that we compute the relevant probabilities with the quadratic form: Pϕ(dα) is then
Born’s probability that the displayed value α lies in the (infinitesimal) value set
dα ⊂ A . The right-hand side of (7.25) is nothing but

∫

F−1(dα)

|ΨT (x, y)|2 dmx dny ,

where the pre-image set F−1(dα) contains exactly those configurations which are
coarse-grained to the value range dα.

The total wave function ΨT thus depends linearly on the system wave function
ϕ, and the probabilities (7.25) depend sesquilinearly (like a unitary scalar product)
on ΨT . Altogether the sequence represents a sesquilinear map of the system wave
function ϕ to the probabilities, i.e., a map of the form

ϕ �→ P
ϕ(dα) =: 〈ϕ,O(dα)ϕ〉 ≥ 0 , (7.26)

where the right-hand expression is nothing but a sesquilinear form on ϕ. It is a
general theorem of functional analysis that a positive-definite sesquilinear form can
be expressed as a scalar product with a positive operator, just as the right-hand side
of (7.26) already shows. In the present case, the positive operators are indexed by
sets, for example, by the “infinitesimal set” dα. Hence, for a general set A ⊂ A , we
have

O(A) =
∫

A

O(dα) , P
ϕ(A) = 〈ϕ,O(A)ϕ〉 =

∫

A

〈ϕ,O(dα)ϕ〉 .

The family of operators constructed in this way thus yields a positive operator-
valued measure, or POVM. In particular, the following properties are naturally
fulfilled:

O(A ) =
∫

A
O(dα) = P

ΨT
(
F−1(A )

) = P
ΨT (Q) = 1 (7.27)

and

O(A ∪ B) = O(A)+O(B) , for A,B ⊂ A disjoint. (7.28)

These are consequences of Born’s statistical law, which we accept without ifs and
buts. Therefore, the following theorem holds8:

Theorem 7.1 (Justification of the Operator Formalism) The statistics of mea-
sured values (or displays of pointers) are in principle given by POVMs.

8See, however, Remark 7.5.
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Let us now discuss some examples.
First we consider the imbedding of the already discussed PVMs, since they are

special cases of POVMs in which the positive operators are orthogonal projectors.
In (7.19), we have a discrete measure on the value set A (more precisely, on its
power set). In accordance with (7.25), this is now represented by

P
ϕ({αk1, . . . , αkn }) = P

ΨT
(
F−1({αk1 , . . . , αkn })

)

= P
ΨT

({
(x, y)|F(x, y) ∈ {αk1 , . . . , αkn }

})

=
∑

i

‖Pϕki
ϕ‖2 =

∑

i

〈ϕ|Pϕki
ϕ〉 =

∑

i

〈ϕ|ϕki 〉〈ϕki |ϕ〉

= 〈ϕ|
∑

i

Pϕki
ϕ〉 . (7.29)

In the case of Stern–Gerlach spin experiments (see Remark 7.2), no coupling to
apparatus is required. It suffices to send the wave function through the Stern–
Gerlach magnet. T is the time at which the wave function has left the magnet.
The coarse-graining variable is then F(x, y) = F(x) ∈ {−1/2, 1/2}, while the
probability is

P
ϕ

({
F−1

(
±1

2

)})
=

∥∥∥∥P±
(

ψ1

ψ2

)∥∥∥∥
2

.

This yields a PVM as well.
An example of a continuous value set—but also without coupling to apparatus—

is provided by the statistics of the position x ∈ R
3 of a particle. The map F is now

simply the identity, that is, the measured values are α = F(x) = x, while A is the
configuration space of the system and ΨT = ϕ. What remains is the quadratic form

ϕ(x) )⇒ ρϕ(x)

and the probability P
ϕ(d3x) = ρϕ(x)d3x. Hence, we obtain

P
ϕ(A) =

∫
1A|ϕ|2 d3x =

∫

A

〈ϕ|1{d3x}|ϕ〉 = 〈ϕ|1A|ϕ〉 , (7.30)

where 1A is the characteristic function of the set A. Here, O(dx3) := 1{d3x} acts
like Pϕk , that is, like a projector, but now, taking the element d3x seriously, it is not
a projector onto wave functions but rather a projector-valued measure.
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Once again, in the same way that the (Pϕk )k form a family of orthogonal
projectors indexed by the values k (as placeholders for αk), we now see that
(O(A))A⊂R is a family of orthogonal projectors. Because of the continuous set of
values, it is indexed by (measurable9) subsets of the set of all values. The projectors
are thus defined by

O(A) : ϕ �−→ 1Aϕ(x) =
{

ϕ(x) , x ∈ A ,

0 , otherwise .
(7.31)

This now makes the notion of operator-valued measure very clear: the measure
evaluates subsets of the set of values relevant to us—the image set of F . But in
contrast to the measures used in analysis courses, like the Lebesgue measure, this
measure takes values in the set of operators acting on wave functions.

The examples given so far are PVMs. The projector property has been shown in
the discrete setting. For the position PVM, we can quickly show the properties as
well (good exercise):

O(A)2 = O(A) , O(A)O(B) = O(A ∩ B) ,

so that, for A∩B = ∅, the orthogonality is obvious, with the agreement that O(∅) =
0. As in the discrete case, the PVM can be associated with a self-adjoint operator as
bookkeeper. Here, it is the position observable

X̂ :=
∫

R3
x1{d3x} .

Recalling (4.32), we also have an example of a nontrivial F mapping to a continuous
set of values. For the statistics of the momenta (actually, the asymptotic velocities),
we would choose

F(x) = X(x, T )− x
T

,

for large T . Recalling also (1.11), for large times, the wave function is channeled
into a continuum of plane waves ϕk ∼ eik·x. The corresponding PVM is perhaps a
bit clumsy to write down. It looks much more elegant in the Dirac notation.

Remark 7.4 (On the Dirac Notation) We recall the right-hand side of (7.14). This
is analogous to the right-hand side of (7.30) which describes the distribution for
position measurements. In the Dirac formalism (see Remark 7.1) the right-hand

9In the sense of measure theory.
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side of (7.30) is written as

P
ϕ(A) =

∫

A

〈ϕ|1{d3x}|ϕ〉 =
∫

A

〈ϕ|x〉〈x|ϕ〉d3x ,

so the analogy between (7.29) and (7.30) becomes even clearer. Note that |x〉 is not
a wave function, but it is conventional to express 〈x|ϕ〉 := ϕ(x). In analogy with
(7.21), it is usual to write |x〉〈x| d3x for 1{d3x}, whence the position observable can
be written as

X̂ =
∫

R3
x|x〉〈x| d3x .

It serves little purpose to understand |x〉 in some abstract mathematical sense as a
wave function. But morally, we can do so if we imagine that the particle is with
certainty at the position x. In fact, the product 〈x|x′〉 = δ(x − x′) yields the δ-
function. The Dirac formalism is a powerful symbolism which gets its mathematical
basis from PVMs. However, it does not mean any more than what is expressed in
(7.29) and (7.30).

By analogy, we can now reexpress the momentum observable which we derived in
Sect. 1.3. The PVM is in this case |k〉〈k| d3k, where the action of the PVM |k〉〈k| d3k

on a wave function ψ is defined by

〈x|k〉〈k|ψ〉d3k = 1
√

2π
3 eik·xψ̂(k) d3k .

The momentum observable is thus

P̂ =
∫

R3
k|k〉〈k| d3k .

As we have already said, the relevant structure that emerges from the sequence
(7.24) is more general. Instead of projector-valued measures (PVMs), we have in
general genuine positive operator-valued measures (POVMs), which are not to be
put in correspondence with self-adjoint operators as observables. A nice example,
thanks to its particular relevance, is this. We transform our position PVM into a true
POVM by thinking of a detector which is characterized by an intrinsic measurement
error. This means that the measurement results are contaminated by an error which
arises from the apparatus itself. To do this, let p(x) be a probability density on
R

3, modelling the uncertainty due to the apparatus. The measured position value X̃
can thus be expressed in the form X + Y, the |ϕ|2-distributed position X plus the
p-distributed measurement error Y. In general, we may assume that X and Y are
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independent, i.e., the distribution of X̃ is given by the convolution10

ρ̃(x) =
∫

p(x− y)|ϕ|2(y)d3y .

Hence, the probability is

P
ϕ(X̃ ∈ A) =

∫

A

ρ̃(x)d3x =
∫

A

∫
p(x − y)|ϕ|2(y)dny dnx

=
∫ [∫

1A(x)p(x− y)d3x

]
|ϕ|2(y)d3y

=: 〈ϕ|Õ(A)ϕ〉 . (7.32)

This is straightforward probability calculus. The multiplication operator

Õ(A) =
∫

p(x− y)1A(y)d3y ,

that is,

Õ(A) : ϕ �−→
∫

A

p(x − y)d3yϕ(x) , (7.33)

now defines a true POVM (the reader should check this)

Õ(A)2 
= Õ(A) ,

where the equality holds only for p(x) = δ(x), in which case the POVM becomes
the position PVM (7.31). If we are interested in the variance of the variable X̃, we
calculate that as usual, considering x ∈ R for simplicity:

E(X̃2) =
∫

x2ρ̃(x) dx =
∫

x2〈ϕ|Õ({dx})ϕ〉

=
∫

x2p(x − y)|ϕ|2(y) dy dx. (7.34)

Not much more needs to be said, except that this should be compared with (7.17): it
simply makes no sense to associate a bookkeeping observable Â with an experiment

10Consider the Fourier transform

ˆ̃ρ = E(eiα·X̃) = E(eiα·(X+Y)) = E(eiα·X)E(eiα·Y) = |̂ϕ|2 · p̂ ,

and note that the Fourier transform of a product is a convolution, as is easily checked.
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which is described by a true POVM, because that does not bring any computational
advantage of the kind in (7.17). It is really the POVM which encodes all the relevant
details. A further POVM will be discussed in Remark 9.1.

Remark 7.5 (On the Importance of Being a POVM) POVMs describe the statistics
of measurement experiments, yielding answers for arbitrary wave functions ϕ. That
is, POVMs are abstract operators on the entire Hilbert space of the system. But in
real experiments, we cannot prepare arbitrary wave functions and we have at best
access to only a few special wave functions. An example of this are experiments
to make time measurements in quantum mechanics, such as tunnelling times or
the arrival times of particles.11 In this sense the discussed abstract structures are
mathematical superstructures which do not really contribute to everyday physics.
At the end of the day, all that counts is Born’s ρ = |ψ|2.

7.3 It Is Theory that DecidesWhat Is Observable

What we say in the following has to do with the notion of “physical reality”.12 It
shouldn’t be necessary to waste too many words on it (at least not in a book that is
primarily about physics), but some, at least, may be helpful.

Through our senses, we experience first and foremost a reality that is, so to speak,
inside us—in our mind or consciousness. But physics is not about this internal
experience—for whose experience should that be? Physics is necessarily about the
external world which is common to all (or at least conceived as such). It is, for
instance, about the moon we perceive, not about our perceptions of the moon. This
insight goes back a long way. In his essay Nature and the Greeks, Erwin Schrödinger
identifies the great pre-Socratic philosopher Heraclitus (circa 500 BC) as one of the
first to separate private experience from the lawful cosmos that is the same for all of
us:

The waking have one common world, but the sleeping turn aside each into a world of their
own.

Heraclitus, Fragment DK B 8913

There must then be an obvious connection between the world we perceive and
the world described by the physical theory. This is clearly the case for theories

11For a recent such proposal, see Siddhant Das and Detlef Dürr, Arrival time distributions of spin-
1/2 particles, Scientific Reports 9, 1–8 (2019).
12The section title here is taken from a remark made by Einstein to Heisenberg, quoted from
Physics and Beyond: Encounters and Conversations. A.J. Pomerans, trans. (Harper and Row, New
York, 1971), Chap. 5.
13Translated by the authors from Bruno Snell (Hg.), Fragmente: Griechisch - Deutsch (Sammlung
Tusculum). Artemis & Winkler, 2007, p. 29.
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like Bohmian mechanics or GRW that postulate an ontology of localized objects in
three-dimensional space—particles or flashes that can make up a table or a moon or
the pointer of a measurement device—but less clear for theories like Many Worlds
that describe first and foremost a wave function or “quantum state”. In any case, a
theory must make predictions that are accordance with our experience. It must be
empirically adequate, or else the theory is no good. The following point, however, is
often ignored: we can only talk about physical reality in terms of a physical theory.

This leads to a question about the “observability” of structures and variables
that enter the formulation of a theory. The Copenhagen approach to quantum
mechanics gave rise to a rather pernicious form of the question: Are all the variables
which enter your theory observable?—the implication being that a physical theory
should only contain observable quantities, like for example the operator observables,
which can be “measured”. (But beware! Read Remark 7.3.) Perhaps it is somewhat
amusing to remark in this context that the wave function is not measurable in the
sense of the quantum mechanical measurement process discussed in this chapter.
This is a direct consequence of the superposition principle [see (2.3)]. For think of
a piece of apparatus that has wave functions on its display, i.e., instead of digits
1 and 2, or “cat alive” and “cat dead”, we see the display ϕ1, . . . , ϕn. Then (2.3)
shows after just a little thought that no such apparatus could actually exist. In the
Copenhagen interpretation, this is necessarily ignored.

In any case, the precise quantum theories “without observers” which we present
in this book do not satisfy the requirement of only dealing with “measurable”
quantities. (And why should they? Some variables play a role in describing or
predicting measurements—and, more generally, in describing or predicting what
the world is like—without being “measurable” themselves.) In the Many Worlds
theory, this is obvious, not only because we have no empirical access to the other
“worlds” but also because of the previous remark that the wave function itself is not
measurable.

Perhaps surprisingly, the question is asked most insistently in the context of
Bohmian mechanics: Can we measure the Bohmian trajectories or the Bohmian
velocity of a particle? This is supposed to mean: Can we design a piece of apparatus
which measures and displays the trajectory taken by the Bohmian particle or which
measures and displays the velocity?

On the one hand it is clear that some Bohmian trajectories can be measured: the
trajectory of a particle in a cloud chamber is a Bohmian trajectory, and so is the path
on which the pointer of a measurement device moves. But these are situations that
involve many particles and that can be described in more or less Newtonian terms.
It is not what people have in mind they ask the question. What they would actually
like to measure are the microscopic trajectory of a particle which is guided by its
wave function.

For instance, in the double slit experiment, can we see the particle moving on
its trajectory through one of the slits and still obtain the interference pattern? The
answer is clear: according to Born’s statistical law, a position measurement changes
the wave function and hence also the Bohmian trajectories. More precisely, if we
observe the particle, its wave function entangles with the observing system and the
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relevant wave function is then one which lives on the configuration space of all the
particles which are involved, including those making up the apparatus. This will
in general destroy the interference, since decoherence takes over. We have already
talked about that, so there’s nothing new here really. We can observe the particle’s
motion either at the slit or at the screen, but we cannot observe the trajectories
responsible for the interference pattern.

What should we conclude from that? Some would say that if we cannot observe
the particle trajectories, then they do not exist! Such a conclusion is obviously
nonsense: the Bohmian theory describes a world of particle trajectories and this
world could in fact be ours, because the observable phenomena that the theory
predicts are in accordance with the phenomena that we do in fact experience.

Others would say that if we cannot observe the particle trajectories, then we may
just as well omit them from the theory. That is nonsense as well, because there must
be something that is actually “recorded” by the black spots on the screen and, more
basically, something that the screen, and the laboratory, and the experimenter are
made of in the first place. In Bohmian mechanics, that something is a configuration
of particles which do have positions and thus a trajectory. In other theories, that
might perhaps be flashes or matter fields, but certainly not observable operators and
most certainly not “nothing”. More generally, a theory without a clear ontology is
no theory at all.

Alright, so what about the idea that there are particles and positions of particles,
but only when we observe them? That is the worst nonsense of all, and all that needs
to be said about that was said in Chap. 2.

Macroscopic objects do have a well defined position (at least that is how we
experience them) and the simplest way to explain that is that they consist of
microscopic objects which themselves have definite positions at all times. It is true
that the trajectories of macroscopic objects can in general be measured without
disturbing them too much, but not so for microscopic objects. We should be able to
explain that, and Bohmian mechanics does so. In the GRW theory, for example, the
microscopic objects do not move on continuous paths. Here we need to explain why
it appears to be the case that macroscopic objects move on continuous trajectories,
and the GRW theory does so.

So what is really out there in the universe? Are there particles, flashes, strings, or
something else entirely? That is indeed a good and difficult question, which cannot
be decided solely on empirical grounds. This is why we engage categories like
“beauty” or “simplicity” which may help us to decide. It’s okay to follow the feeling
that we live in a beautiful rational cosmos, and that is how we should perceive the
theory: simple, beautiful, comprehensible—so it feels just right.

But leaving aside the question of the “true” description of Nature, the message
is that a physical theory is our way to explain the world, to speak about and make
sense of the physical universe. In other words, there is without question a world out
there, but the way we conceive of it, nay, what the world is like, that is given to us
by the theory. And that is why it is the theory that tells us what a measurement is and
what it is that can be measured! Without Maxwell’s theory of electromagnetism, we
would never measure electromagnetic fields. Of course, we would see “light”—for
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example, when the Sun lights up the day—and we may perhaps try despairingly
to find an explanation for a sunburn, but that would not count as an observation of
electromagnetic fields.

We shall end now with the precise answer to the question as to whether we can
measure Bohmian velocities. The answer is not by a measurement in the sense of
the sequence (7.24). That sequence has the consequence that the displayed values
are distributed according to [see, for example, (7.29)]

P
ψ(A) = Bilinear form[ψ](A)

on the subsets A of the value set when the initial wave function is ψ . The relevant
observation is that this is a bilinear form. Like binomial formulas, this always
satisfies

P
ψ1+ψ2(A) ≤ 2Pψ1(A)+ 2Pψ2(A) , (7.35)

and we shall put this to good use. Consider the velocity

vψ = h̄

m
Im
∇ψ (Q, t)

ψ (Q, t)

of the Bohmian particle. A complex superposition of two real wave functions
yields a complex-valued wave function and this generates in general a nonzero
velocity vector field. But the vector field generated by real wave functions is zero
everywhere, and this contradicts the relation (7.35) if A is a subset which does not
contain zero. Therefore we cannot measure the velocity.

There is nevertheless a way to know the wave function and to measure the
trajectories in a certain sense, by drawing more heavily on theoretical inferences.
For example, take the ground state wave function of the electron in a hydrogen
atom. That wave function is real and the Bohmian velocity is thus zero. If the atom
is prepared at time T1 and we measure the position of the electron (possible at least
in principle) at time T2, we know that the trajectory was at that position for the entire
time interval [T1, T2].

In the double slit experiment, in a similar manner, we can infer from the theory
the slit the particle went through, at least in idealized situations. Assuming a
symmetric setup, we know that if the particle hits the screen above the symmetry
axis, it moved through the upper slit, and if it hits the screen below the axis, it moved
through the lower slit. This is because, for each trajectory crossing the symmetry line
from above, there would be one which crosses from below. But different Bohmian
trajectories cannot intersect, being the unique solutions of a first order differential
equation.

It is thus important to be clear about what we mean by “measurements” and
why we care about them in the first place. At the end of the day, the notion of
measurement is not such a simple one. As scientists, we want to find out things about
the world, if necessary by measuring and quantifying them. But we don’t construct
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theories to predict experiments. We perform experiments to test and inform theories,
which are our means of understanding the world. At the same time, the theory plays
a crucial role in devising and interpreting experiments. That is why we said above
that Bohmian velocities cannot be measured by a measurement in the sense of the
sequence (7.24).

In fact, in recent years, an extended notion of measurement has been receiving
more and more attention, and it has become possible to use a series of such
measurements to reconstruct the Bohmian trajectories after they have passed the
double slit. These are the so-called weak measurements, which we shall discuss
next.
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However, as a matter of principle, it is quite wrong to want to base a theory only on
observable quantities. Because in reality it is the other way around. It is theory that decides
what is observable.

Albert Einstein, as quoted by Werner Heisenberg1

We showed in the previous chapter that the Bohmian velocity of a particle
cannot be measured according to (7.24). But by now there are many measurement
experiments which report on successful measurements of Bohmian velocities. So
what is going on? The answer is that these measurements are not of the form
so far discussed. The new way of measuring is called weak measurement. It is
a measurement in which the wave function of the measured particle (system) is
only weakly disturbed. The theory of weak measurements has been developed
quite generally for all observables, but for didactic reasons, we shall stick to
weak measurements of position, which are relevant for experiments to measure
trajectories. And since the measured trajectories are Bohmian, we shall remain for
the moment in the realm of Bohmian mechanics.

We return to (7.32), but model the apparatus now by a pointer wave function
Φ = Φ(y), while ϕ(x) stands for the initial wave function of the particle. For the
sake of simplicity we consider only a one-dimensional situation and describe the
pointer by a single degree of freedom. That is, Y ∈ R is the position of the pointer
and X(t) ∈ R is the position of the particle at time t . For concreteness, we may
think of

Φ(y) ∼ e−y2/4σ 2
, (8.1)

1W. Heisenberg, Der Teil und das Ganze: Gespräche im Umkreis der Atomphysik. Piper, 1996,
S. 80. Translation by the authors.
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so that
∫

y |Φ(y)|2 dy = 0 . (8.2)

The pointer wave function is thus centred around the ready state 0 and has “width”
σ . We now consider an unsharp position measurement procedure with probabilities
given by (7.24). Concretely (but not very realistically), we can think of the so-called
von Neumann measurement with the temporal evolution given by

U(�t) = exp

(
−i

�t

h̄
X̂P̂y

)
,

where X̂ denotes the position operator of the particle and P̂y denotes the momentum
operator of the pointer. �t is the duration of the interaction between particle and
apparatus. The initial wave function ϕ(x)Φ(y) then evolves in time according to

U(�t)ϕ(x)Φ(y) = exp

(
−i

�t

h̄
X̂P̂y

)
ϕ(x)Φ(y)

= exp

(
−�tx

∂

∂y

)
ϕ(x)Φ(y) = ϕ(x)Φ(y −�tx) .

The last equality comes from the Taylor expansion

Φ(y −�tx) = Φ(y)−�tx
∂

∂y
Φ(y)+ 1

2

(
−�tx

∂

∂y

)2

Φ(y)+ · · · .

We set t = −1 as the initial time and t = 0 for the end of the interaction, i.e.,
�t = 1, and hence, at the end of the measurement process, we obtain

ϕ(x)Φ(y)
U(1)−→ ϕ(x)Φ(y − x) . (8.3)

The pointer position Y is distributed according to Born’s statistical law

ρY (y) =
∫
|ϕ(x)|2|Φ(y − x)|2dx , (8.4)

and with this probability, for pointer position Y , the wave function collapses to

ϕ0+(x) = ϕY (x) := ϕ(x)Φ(Y − x) . (8.5)
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Note here that we usually think of a position measurement as being made by
apparatus which displays the position with high precision. This would be the case
for very small σ in (8.1). Since Φ(Y−x) ≈ 0 for |Y−x| � σ , for small σ , the wave
function (8.5) would be an approximate eigenfunction of X̂, rather sharply peaked
around x = Y .

But in a weak measurement the pointer wave function is very broad, i.e., σ is
much greater than the width of ϕ, which we can think of as being close to zero in
comparison with σ . In that sense, Φ(Y − x) does not change significantly on the
scale on which the x-values vary in (8.5). Hence, to a good approximation, we can
set

ϕY (x) ≈ Φ(Y )ϕ(x) . (8.6)

Normalizing, we get the effective wave function

ϕ0+(x) ≈ ϕ(x) , (8.7)

where the error is of the order of 1/σ . The moral is that the wave function of the
particle is only barely changed by the measurement process.

We can look upon the “weakness” of the measurement in another way. In
typical measurements, we assume that the pointer wave functions corresponding to
different measurement results have macroscopically disjoint supports, which yields
decoherence for the system wave functions. Because of the spread of the pointer
wave function considered here, even for significantly different positions Y1 
= Y2,
the wave functions Φ(Y1 − x) and Φ(Y2 − x) will have a considerable overlap (in
x), and the system wave function will not “collapse”.

What is there to gain? In a single measurement, nothing. Some pointer position
comes out which is very weakly correlated with the actual position of the particle.
But under a great many repetitions of the measurement experiment, we do at least
get the empirical mean of the pointer positions by virtue of (8.4) and a simple
computation using (8.2):

E(Y ) ≡
∫

yρY (y)dy =
∫

xρX(x)dx ≡ E(X) ,

where ρX(x) = |ϕ(x)|2. That is already more than nothing, although not much
more. But now comes the trick which turns weak measurements into a powerful
tool.

First observe that, if a “strong measurement” of the position is performed
immediately after each weak measurement, and if we now consider probabilities
only for sub-ensembles, let’s say one in which the strong measurement result is X̃,
then we may argue in the following way. Considering the conditional probability
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density for Y given X = X̃, i.e.,

ρY (y |X = X̃) = ρX,Y (X̃, y)

ρX(X̃)
= |ϕ(X̃)|2|Φ(y − X̃)|2

|ϕ(X̃)|2 = |Φ(y − X̃)|2 , (8.8)

and taking into account (8.1) and (8.2), we get the theoretical expected value

E(Y |X = X̃) ≡
∫

yρY (y |X = X̃) dy = X̃ , (8.9)

for the empirical mean of this sub-ensemble. In other words, if we consider all those
events in which the particle has been detected at the position X̃ (which in Bohmian
mechanics means all the events in which the particle was in fact at the position X̃),
then that position is reliably registered by a sequence of weak measurements. That
is still not so very exciting. But now let some small time τ elapse between the weak
and the strong measurement. Then the empirical mean of the weak measurements
is the approximate position, say before the duration τ , at time t = 0, and after τ

the position is known “exactly”. We consider a sub-ensemble as before, but we now
condition under X(τ) = X̃ and consider the velocity formula

lim
τ→0

1

τ
E
(
X̃ − Y |X(τ) = X̃

) = lim
τ→0

1

τ

[
X̃ − E

(
Y |X(τ) = X̃

)]
, (8.10)

where the expected value is taken at the initial time 0. We can compute that! We use
the Bohmian velocity vϕ [see, e.g., (4.6)] and, for X(0) = X, we get approximately

X(τ) ≈ X + vϕτ
(
X(τ)

)
τ . (8.11)

Now when τ tends to 0 and the weak measurement is made at time 0, we can use
(8.7) to get

vϕτ ≈ vϕ0+ ≈ vϕ , (8.12)

where ϕ is the initial wave function of the particle before the measurement, and
hence,2

X(τ) ≈ X + vϕ
(
X(τ)

)
τ . (8.13)

2Note that the replacement [see (8.7)] comes with an error 1/σ and the reader might wonder
whether a more careful argument on the order of τ is needed. Indeed it is, but for ease of
presentation we leave it as is and refer to D. Dürr, S. Goldstein, and N. Zanghì, On the
Weak Measurement of Velocity in Bohmian Mechanics. In: Quantum Physics Without Quantum
Philosophy, Springer, 2013, Sect. 7.3, for a more detailed analysis.
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The event X(τ) = X̃ can be identified with the event X = X̃ − vϕ(X̃)τ in this
approximation, so using (8.9), we get

E
(
Y |X(τ) = X̃

) ≈ E
(
Y |X = X̃ − vϕ(X̃)τ

) = X̃ − vϕ(X̃)τ . (8.14)

Plugging this into (8.10), we find that the sequence of measurements does in fact
yield information about the Bohmian velocity, namely,

lim
τ→0

1

τ

[
x − E

(
Y |X(τ) = x

)] = vϕ(x) , (8.15)

where x is now arbitrary.
Weak measurements of the velocity have been carried out experimentally.3 In this

way, we can reconstruct trajectories which are of particular interest for the double
slit experiment. This should be contrasted with the still often expressed view that
the interference pattern on the screen behind the double slit proves that trajectories
cannot exist.

Look now at the two pictures of trajectories in Figs. 8.1 and 8.2, where the first
is taken from the experiment mentioned above (see the reference in footnote 3). To
understand the reconstruction of the curves, we should think of the space behind the
double slit as being foliated into planes, in each of which the velocities are measured
in the prescribed way at sufficiently many points x. After many repetitions, we
obtain velocity vectors in each plane filling out the space behind the slits. We can
then construct the velocity vector field and plot its integral curves.

The second figure shows the theoretically computed trajectories in Bohmian
mechanics, where the wave function parts in the slits are modelled by Gaussian
wave packets. The strangely curving trajectories shortly after the slits result from
the interference of the wave packets at the upper and lower slits. The straight lines
later on emerge from the transition of the wave function into plane wave packets, as
discussed in Sect. 1.3.

Note that, in both pictures, trajectories which go through the upper slit never
cross the symmetry axis. They stay above it. Likewise for the trajectories which
go through the lower slit. This is inevitable for Bohmian trajectories, as they are
determined by a vector field and are hence solutions of a first order differential
equation [see (4.6)]. Trajectories inherit the mirror symmetry of the experiment: if
one trajectory crossed the symmetry axis, there would be a mirrored trajectory, and
at their point of crossing there would be two velocity vectors. This would violate
the property of a velocity vector field according to which there is a unique vector at
every point in space. In short, different trajectories cannot cross.

3S. Kocsis, B. Braverman, S. Ravets, M.J. Stevens, R.P. Mirin, L.K. Shalm, and A.M. Steinberg,
Observing the average trajectories of single photons in a two-slit interferometer. Science 332,
1170–1173 (2011).
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Fig. 8.1 Reconstruction of the photon trajectories in a double-slit experiment by weak measure-
ment of the velocities. The vertical axis, which is also the alignment of the double slit, is measured
in millimeters. The horizontal axis represents the distance from the double slit, also in millimeters.
From Kocsis et al.

Fig. 8.2 Numerical simulation of Bohmian trajectories in a double-slit experiment. Graphic by
Leopold Kellers
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8.1 On the (Im)-Possibility of Measuring the Velocity

We have made two seemingly contradictory statements. In Remark 7.3, we showed
that the velocity of Bohmian particles cannot be measured, and in this chapter we
claim the opposite. How can this be? Underlying this is the ambiguity in the notion
of measurement, which we already alluded to in Remark 7.3. The negative statement
concerned measurement experiments like the one in (7.24). The weak measurement
with its subsequent strong measurement and the conditioning on a sub-ensemble
which selects suitable measurement results a posteriori is of a different kind. If
we extend the notion of measurement accordingly, then it is indeed justified to
say that, from the viewpoint of Bohmian mechanics, we can measure the Bohmian
velocities—and hence also the particle trajectories.

Here it is worth recalling Einstein’s wise warning that it is theory that decides
what is measurable. However, the data obtained in the weak position measurement
are at the end of the day due to macroscopic pointer positions. And since other
quantum theories (like GRW theory or Many Worlds theory if the latter obeys Born’s
statistical law) describe the statistics of pointer positions correctly, they will also
predict the results of the weak measurement experiments correctly, i.e., they will
predict that the measurement results will produce the Bohmian velocity vector field.
But in the framework of such theories, one must of course deny that the trajectories
reconstructed from the results of the measurement experiments (as presented in
Fig. 8.1) correspond to trajectories of real particles.

Having said that, we note that (8.15) can also be derived from the operator
formalism without appeal to Bohmian mechanics.4 In Dirac notation, it takes the
form

E
(
Y |X(τ) = x

) = Re
〈x(τ)|X̂|ϕ〉
〈x(τ) | ϕ〉 = Re

〈x|U(τ)X̂|ϕ〉
〈x|U(τ)|ϕ〉 . (8.16)

Here U(t) is the free evolution

U(t) = e−
i
h̄ tH

, where Ĥ = p̂2

2m
= − h̄2

2m
Δx .

From that, we readily compute (good exercise)

lim
τ→0

1

τ

[
x − E

(
Y |X(τ) = x

)] = Re
〈x| i

h̄
[Ĥ , X̂]|ϕ〉
〈x | ϕ〉 = Im

h̄

m

∇xϕ(x)

ϕ(x)
= vϕ(x) .

(8.17)

4H.M. Wiseman: Grounding Bohmian mechanics in weak values and Bayesianism. New Journal
of Physics 9, 165 (2007). The experiment referred to in footnote 3 is actually based on Wiseman’s
suggestion.
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In this operational view, it is agreed that the left-hand side of (8.17) is a “velocity”,
but we cannot ask “velocity of what?”

Bohmian mechanics yields the most natural explanation of the described exper-
iment: the measured velocities are actually the particle velocities according to
Bohmian mechanics, and the reconstructed trajectories correspond likewise to the
trajectories of a Bohmian particle ensemble. However, the weak measurements of
the Bohmian velocities cannot falsify other quantum theories, because other theories
(GRW and Many Worlds) make the same predictions for the pointer statistics as in
(8.17).

8.2 Surrealistic Trajectories?

We consider the Mach–Zehnder interferometer shown in Fig. 8.3. Photons are sent
through a beam splitter which transmits half of the beam and deflects the other half
orthogonally downwards. In both interferometer arms, the photons eventually reach
a mirror which deflects them in the direction of one detector. At the end of the
experiment we register which of the detectors D1 and D2 has clicked.

The Schrödinger evolution of the wave function5 is easily followed in this case.
The initial wave function splits into two parts at the beam splitter—let us call them
φ1 and φ2. These propagate along the upper and lower arms of the interferometer,
respectively, and entangle with the detector wave functions. At the point where they
cross one another, the wave functions superpose for a short time and a second beam
splitter could be placed there to erase one of the two phases through interference—
in the following, however, we consider only the situation without the second beam
splitter.

The different quantum theories yield different descriptions of what is going on in
this experiment. According to the Many Worlds theory, there are only the two wave
packets moving in the interferometer. If we call those wave packets “particles”, the
particle propagates through both arms simultaneously. At the end of the experiment,
both detectors click, but within any given world, the experimenter there sees only
one of the detectors click. So we end up with two worlds, and in one world D1 clicks
and in the other D2.

According to GRW theory, the photon wave function collapses with almost
complete certainty when the wave packets entangle with the detector wave function,
and as a matter of fact, only one of the detectors clicks. What happens inside the
interferometer depends now on the choice of the ontology of the GRW theory. If the
ontology is mass density, then one half of the density moves through the upper arm
and one half through the lower arm, and at the moment of collapse the mass density
contracts to the place of the detector which clicks. This is a radically nonlocal
effect: the mass density which was moving towards the other detector spontaneously

5Unfortunately, there is no agreement about what the wave function of a photon is. We ignore here
this “little” detail for the sake of argument.
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D2

D1

Fig. 8.3 Mach–Zehnder interferometer. The photon or particle source (upper left) sends one
photon (one wave) through a beam splitter. The separated wave parts will cross by the action
of mirrors (lower left and upper right) and the wave parts will be detected by the detectors (lower
right)

delocalises, so that shortly after the click the whole mass density is at the place of
the detector which clicked. In GRWf theory, the arms of the interferometer would
with high probability be empty—i.e., strictly speaking there is nothing propagating
between source and detector. The subsequent collapse produces a flash event inside
the detector, making it click. This would be described in words by saying that a
“photon arrived in that detector”.

According to Bohmian mechanics, a point particle moves on a well defined
trajectory through the interferometer, either in the upper arm or in the lower arm,
and it arrives at one detector which then clicks. Once again, only one of the detectors
actually clicks. In Bohmian mechanics (and only in this theory), it makes sense to
ask which trajectory the particle takes through the interferometer to arrive at detector
D1 or D2.

Intuitively (or better, naively), one would think that particles which arrive at D1
went through the upper arm of the interferometer and that particles which arrive
at D2 went through the lower arm. But Bohmian particles behave differently. Just
recall that different Bohmian trajectories cannot cross each other (see Fig. 8.2 and
its explanation). The only possibility is therefore that the particles move on the
trajectories depicted in Fig. 8.5.

That is what the theory says and that is what is happening if the theory is
correct. There is nothing to wonder or ponder about. It is simply the case that the
trajectories depicted in Fig. 8.4 are based on a classical (Newtonian) intuition which
is inappropriate when it comes to the quantum regime. To get a better appreciation
of this, let us elaborate on the Bohmian evolution. After the particle has passed
the beam splitter, it travels with either the upper or the lower wave packet (φ1 or
φ2). At the crossing point where the two wave packets are superposed, the particle
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Fig. 8.4 “Naive” (classical) trajectories in the Mach–Zehnder interferometer

changes its guiding wave packet. This is because, due to the symmetry of the set
up, there must be trajectories that end up at each detector, and as in the double slit
situation, the two possible trajectories can’t cross. Hence, after the crossing point,
particles which first moved with the upper wave packet φ1 will be guided by φ2
and arrive at D2. Vice versa for the particles which were initially guided by φ2. The
relative frequencies are those predicted by Born’s rule and they are corroborated in
experiments. So far, so good.

It is, of course, possible to mistrust all theoretical descriptions and instead try
to make an operational reconstruction of the photon trajectory by placing a mea-
surement device in the arms of the interferometer. A normal strong measurement
of position is out of the question, because that would result in a collapse of the
wave function and would change the entire set up. So it is better to try with
weak measurements as discussed above. Thus we do weak position measurements
in both arms, followed by strong measurements at the detectors which finally
absorb the particle. A single photon will not leave a recognizable trace in the weak
measurement. But after repeating the experiment a great many times, we consider
the statistics of the weak measurement outcomes, once for the sub-ensemble of
particles which have arrived at detector D1 and once for the sub-ensemble which
have arrived at D2. We then ask in which arm of the interferometer the particles
which arrived at D1 left a weak trace, and likewise for D2. This is called a which-
way detection.

Doing the experiment, it is found that, in the sub-ensemble where detector D1
clicks, there is a weak trace in the upper arm, while in the other sub-ensemble,
the opposite happens. In other words, the “which-way detection” agrees with
the “naive” trajectories of Fig. 8.4 and disagrees with the Bohmian trajectories
of Fig. 8.5. More complicated setups can be invented and the weakly measured
paths sometimes agree with the Bohmian ones, sometimes with the “naive” ones,
and sometimes with neither.6 In fact, the right correlation between the weak
measurements and the final detection is found by following the propagation of the
wave packets which couple to the wave function of the clicking detector.

6See, for instance, L. Vaidmann, Past of a quantum particle. Physical Review A 87, 052104 (2013).
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Fig. 8.5 Bohmian trajectories in the Mach–Zehnder interferometer

The take-home message here is that the notion of “which-way detection” is
misleading. Giving it this name makes it sound as though there is a path taken by a
particle, but for that, the theory must contain particles in the first place, otherwise
what would we actually be talking about? For example, in the Copenhagen
interpretation of quantum mechanics, there are no variables representing particle
positions or trajectories, so it doesn’t make sense to ask which way the particle
went.

Should anyone insist on an operational notion of “paths”, drawing on intuitions
that are not grounded in any precise theory, they can of course create conflicts
with theories that do actually describe particle trajectories. An example can be
found in the paper Surrealistic Bohm trajectories,7 where the disagreement between
weakly registered paths and the theoretical Bohmian paths led the authors to call
the Bohmian trajectories “surrealistic”, while it would have been more appropriate
to call the which-way detections surrealistic, since they do not in general detect the
way followed by anything. Bohmian mechanics correctly predicts the phenomena of
the weak measurements, where the value displayed by the weak detector is caused
by the wave function, which is also part of Bohmian mechanics. But in contrast to
the situation described in the previous section, the theory no longer predicts that a
series of weak measurements will accurately register the position of the particles as
they are passing through the interferometer.

Succinctly put, real particles need not behave like dogs, leaving a trace at every
tree they pass. In particular, it should be realized that the intuitions which nourish
naive which-way detection operationalism are based on the principle of locality,
which happens to be falsified by quantum phenomena. In the end, the take-home
message is once again Einstein’s insight: it is theory that decides what is measurable
and how it can be measured.

7B.-G. Englert, M.O. Scully, G. Süssmann, and H. Walther, Surrealistic Bohm trajectories.
Zeitschrift für Naturforschung 47a, 1175 (1992).
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8.3 Wheeler’s Delayed-Choice Experiment

The interferometer setup can be used to depict quite a lot of interesting and less
interesting quantum phenomena. We wish to end this chapter with one often debated
but nevertheless quite nonsensical setup, in which a second beam splitter is set up
on the crossing point of the Mach–Zehnder interferometer and adjusted in such a
way that interference allows only one beam to remain, let’s say in the direction of
detector D2.

In the outdated way of speaking of “wave–particle dualism”, it is sometimes said
that, if no second beam splitter is inserted, then the particle takes only one of the
possible paths through the interferometer (because at the end, only one detector
clicks), but if the second beam splitter is inserted, then the particle must go through
both arms of the interferometer, because it interferes destructively “with itself”
at the second beam splitter. This confused description can now be capped by the
following “clever” observation. If we act fast enough (and the interferometer is big
enough), we can wait until the particle has passed the first beam splitter and only
then decide whether or not to insert the second beam splitter. This setup is called
a “delayed choice” experiment, following John Archibald Wheeler (1911–2008).
What does this delayed choice achieve? It allegedly causes retroaction, influencing
the past of the particle, i.e., it changes the past! Because when the second beam
splitter is inserted and destructive interference takes place, the particle must have
gone through both arms. But it was already on its way through one of the arms after
passing through the first beam splitter and before the second beam splitter was put
in place.

It is absurd that this is still considered a mystery, even after decades, during which
hundreds of publications have been written. But this is what happens when no clear
and precise formulation of quantum mechanics is adopted.
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A final moral concerns terminology. Why did such serious people take so seriously axioms
which now seem so arbitrary? I suspect that they were misled by the pernicious misuse
of the word “measurement” in contemporary theory. This word very strongly suggests the
ascertaining of some preexisting property of some thing, any instrument involved playing
a purely passive role. Quantum experiments are just not like that, as we learned especially
from Bohr. The results have to be regarded as the joint product of “system” and “apparatus”,
the complete experimental setup. But the misuse of the word “measurement” makes it easy
to forget this and then to expect that the “results of measurements” should obey some
simple logic in which the apparatus is not mentioned. The resulting difficulties soon show
that any such logic is not ordinary logic. It is my impression that the whole vast subject of
“Quantum Logic” has arisen in this way from the misuse of a word. I am convinced that the
word “measurement” has now been so abused that the field would be significantly advanced
by banning its use altogether, in favour for example of the word “experiment”.

John S. Bell1

Every course on quantum mechanics will at some point engage with the notion
of “hidden variables”. The terminology is connected with the infamous no hidden
variables theorems of von Neumann, Gleason, Kochen and Specker, and Bell, which
assert that quantum mechanics does not allow for hidden variables.

Before we go into that, we first wish to say something about the terminology
itself. It originates in von Neumann’s famous book Mathematische Grundlagen
der Quantenmechanik.2 As discussed in the previous chapters, orthodox quantum
mechanics focus on the wave function and the operator observables. We have
already understood that the role of the operator observables is to act as bookkeepers
for the statistics of measurement experiments. That is what von Neumann developed
in his book attributing importance, in particular, to projector-valued measures
(PVMs). But having elements in our most fundamental description of Nature that

1J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd edn, Cambridge University
Press, Cambridge, 2004, p. 166.
2Springer, 1932.
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are merely bookkeepers of statistics seems perhaps a bit defeatist. The idea of
“measuring observables” in an experiment subsequently became part of quantum
folklore.

For example, it is common practice to say that a Stern–Gerlach magnet measures
the spin observable—in short, that we measure the spin of an electron. This way of
speaking can seduce practitioners into a naive realism about operators in which it
is believed that, when we measure an observable, we do in fact measure something
that is already “there”, i.e., a property that the system possesses independently of
the measurement experiment performed on it. In other words, the idea would be that
the measurement simply reveals the value of a variable which is already present.
Just as when we measure our collar size, its size is already there, it’s just that we
don’t know its exact value until it is revealed by the measurement.

Hence, when the observable Â is measured and the measurement value is αk (an
eigenvalue of the observable), i.e., when the apparatus displays the value αk , we
consider that a function (in general, a coarse-graining function)

ZA : Ω �→ {eigenvalues of Â}

exists on a state space Ω such that ZA(ω) = αk was the preexisting value before the
measurement (for example, the factual size of someone’s neck), which is determined
by the state space variable ω. Coarse-graining functions are referred to, as we know,
as random variables.

Example Consider an electron in the spin state α|↑z〉 + β|↓z〉, which is sent
through a Stern–Gerlach magnet oriented in the z-direction. The measurement
yields z-spin +1/2 with probability |α|2 and z-spin −1/2 with probability |β|2.
The wave function “collapses” to the corresponding eigenvector, let’s say |↑z〉.
Then we say that the particle “has z-spin +1/2”. Furthermore, this can be checked
by a subsequent “z-spin measurement”. Speaking that way, we may be tricked
into thinking that the particle had z-spin +1/2 all along, even before the first
measurement, and that we merely learned this by doing the measurement. In this
way of thinking, the wave function α|↑z〉 + β|↓z〉 would then merely represent
our ignorance: the electron has z-spin +1/2 with probability |α|2 and z-spin
−1/2 with probability |β|2, and it’s just that we don’t know which of the two.
Mathematically, this would be expressed by attributing a random variable Zσz whose
values Zσz(ω) ∈ {±1/2} correspond to the possible measurement values. ω ∈ Ω

would represent a “hidden” state variable which determines the measured spin value.
“Randomness” would then come from not knowing the value of ω, and hence
Zσz(ω), before the measurement, while the distribution ρ(ω) had to be such that,
in a typical measurement sequence, the quantum mechanical probabilities would
arise, i.e., P(Zσz = +1/2) = ∫

1{Zσz=+1/2}ρ(ω) dω = |α|2.

Such a detailed description in terms of variables Z(ω), ω ∈ Ω [like phase space
coordinates ω = (q, p), for example, in classical physics] is not part of orthodox
or Copenhagen quantum mechanics, so von Neumann referred to them as “hidden”
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variables. Whether we call Z or ω the hidden variable does not really matter because
Z and ω come as a package, and there is no harm calling them both hidden variables:
they are variables that may still remain to be found in the description of Nature and
would be responsible for the outcomes of measurements.

Von Neumann asked himself: Is it possible for such hidden variables Z(ω) to
exist or would their existence be in contradiction with quantum mechanics? For
Werner Heisenberg and Niels Bohr, the answer was clearly: existence is a no-go.
Von Neumann, a mathematician, wanted to secure the negative answer and designed
and proved a theorem—the first of its kind. It was a no hidden variables theorem.
After that came many more. We shall discuss von Neumann’s theorem and one more
recent version of a no hidden variables theorem at the end of the chapter. Another
version will be proven in Chap. 10 on Bell’s inequality, although there, the question
is a completely different one. Moreover, the latter is the only theorem of its kind
that is truly relevant and we shall explain why.

We need only start by succinctly and very generally formulating the prototype of
a no hidden variables theorem:

Theorem 9.1 (Prototype of a No Hidden Variables Theorem) There does not
exist a “good map”

Â �→ ZA (9.1)

from the self-adjoint operators on a Hilbert space H to random variables on an
ordinary probability space Ω , where ZA = ZA(ω) is to be taken as a possible
measurement value, i.e., as an eigenvalue of Â.

We admit that the expression “good map” is not overly precise, but it is nevertheless
adequate here, because there are various requirements that could be imposed on the
mapping and each set of assumptions yields another no hidden variables theorem.
Later, we shall give some examples of what might be considered as “good”. On the
other hand, all concepts agree that the quantum mechanical probabilities for mea-
surement values of an observable, say Â, should equal the probability distribution
of ZA. However, that is not so important right now. To see its irrelevance, it suffices
to recall the role of the observable Â = ∑

αkPk as bookkeeper of the statistics of
measured values αk . Let E be a measurement experiment in which the apparatus
displays the values αk and in which the statistics of the values is encoded in the
spectral resolution Pk , as discussed in Chap. 7. In short, we have the map [compare
with (7.22)]

E �→ Â ,

which is defined by the values and their statistics. But that implies that the map is
not injective: many experiments with completely different setups will yield the same
values and their statistics, which are encoded in the same Â. To make a caricature
of this, if we take a computer which prints the values αk with relative frequencies
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which agree with the probabilities computed from the spectral resolution and the
wave function as in (7.14), then that is an experiment which “measures” Â.

From this it becomes intuitively clear that the encoding of the statistics by
an observable is too abstract and too coarse to describe the physical situation in
a measurement experiment, let alone stand for a fundamental physical property
with which the observable may be associated. In other words, the non-existence
of the function (9.1) originates from the fact that there are in general many random
variables—depending on the details of the measurement experiment at hand—to
which the observable would have to be mapped. So, loosely speaking, what we have
is rather like a one-to-many map, except that it is not a map, since the functional
prescription is ill-defined. Actually, not much more needs to be said as the status of
relevance of the theorem is now clear and a formal proof becomes unnecessary. But
we shall do it anyway.

In particular, the case of Bohmian mechanics shows that it is possible to measure
a preexisting value, for example, in a position measurement, which measures the
actual position of the Bohmian particle. Besides position, Bohmian mechanics
contains no other random variables which exist independently of the measure-
ment experiment—as shown by the “measurement” of the momentum observable
(see Chap. 4). Moreover, not every measurement experiment whose statistics are
described by the position operator measures the actual position of the Bohmian
particle. We discussed that in Chap. 8 when we looked at “surrealistic trajectories”.

9.1 Joint Measurements of Observables

As it happens, the formal proofs of the variants of Theorem 9.1 do not refer to the
non-uniqueness. It is something that only surfaces indirectly, as we shall explain
now. This will also allow us to point out some further peculiarities in the handling
of operator observables. To do this, we need to talk about joint probabilities, which
arise in sequential “measurements of observables”. We use the notation of Chap. 7.

We “measure” one observable after the other. That is, we have two pieces of
measurement apparatus Φk and Ψl and we “measure” first with the Φk-apparatus
(measurement A) and then with the Ψl-apparatus (measurement B). To get the
probabilities for the displays, we need only recall that it is the Schrödinger evolution
of the total system, two pieces of apparatus and the measured system, that we have
to consider. Thus (7.3) is relevant once again, except that the wave function at the
end is now

∑

k,l

ϕk,lΦkΨl , (9.2)
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and for simplicity we have kept the new effective wave functions ϕk,l := PB
l PA

k ϕ

non-normalized, which is why the ck,l don’t show up. The computation (7.4) can be
repeated to show that the pair of values αk, βl has probability

P
ϕ(αk, βl) = ‖PB

l PA
k ϕ‖2 , (9.3)

with orthogonal projectors as in Chap. 7.
We start with an experiment E , associated with the spectral resolution Pk, k ∈ I ,

where I is an index set. We can have many different pieces of apparatus with
different sets of values on their displays. For example, we can have A = {αk} and
B = {βk}. This means that we can simultaneously perform two “measurements”
associated with two bookkeepers Â = ∑

k∈I αkPk and B̂ = ∑
k∈I βkPk . Then,

with (9.3), we have

P
ϕ(αk, βl) = ‖PlPkϕ‖2

= 〈PlPkϕ, PlPkϕ〉
= 〈ϕ, PlPkϕ〉 , (9.4)

where the last equality is due to the properties of orthogonal projectors, i.e.,
P 2 = P , and self-adjointness P+ = P , and also commutativity [Pk, Pl ] =:
PkPl − PlPk = 0 (which is automatically satisfied for a family of orthogonal
projectors). We do the calculation

〈PlPkϕ, PlPkϕ〉 = 〈ϕ, (PlPk)
+PlPkϕ〉

= 〈ϕ, Pk
+Pl

+PlPkϕ〉
= 〈ϕ, PkPlPlPkϕ〉
= 〈ϕ, PkPlPkϕ〉
= 〈ϕ, PlPkPkϕ〉 = 〈ϕ, PlPkϕ〉 .

Of course, the value set B can also be coarser than A . It could, for example, be
a subset of the latter. In any case, the values β are then “degenerate eigenvalues”,
i.e., we have a coarse-grained subset (P ′l )l∈I ′ of the spectral family (Pk)k∈I , with
projections onto subspaces of higher dimensions. Here I ′ ⊂ I is the index set for
B and (P ′l )l∈I ′ is now the corresponding spectral family, i.e., B̂ = ∑

l∈I ′ βlP
′
l .

More generally, the α values and β values could both be degenerate with different
index sets I and I ′, but as long as the corresponding families (Pk)k∈I and
(P ′l )l∈I ′ commute, there are essentially no changes.3 All we need for simultaneous

3For instance, if Â = Ĥ—the “energy operator”—and B̂ = L̂—the “angular momentum
operator”—we have, in general, different energy levels for every value of L̂ (and vice versa). A
joint measurement then leads to channelling into common eigenspaces.
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“measurability” is commutativity of the families, i.e.,

[Pk, P
′
l ] = 0 , for all k, l ,

This is easily seen. The family Pk,l := PkP
′
l is itself a spectral resolution and

moreover [Â, B̂] = 0, i.e., the observables commute. Conversely, it is a standard
result of linear algebra that commuting self-adjoint operators Â, B̂ have a common
spectral resolution, that is, they can be diagonalized in the same basis. Furthermore,

∑

k∈I

Pk,l = P ′l ,
∑

l

Pk,l = Pk ,
∑

k∈I,l∈I ′
Pk,l = 1 . (9.5)

Plugging this into (9.4) and using linearity of the scalar product, we obtain

∑

αk∈A
P

ϕ(αk, βl) = P
ϕ(βl) , (9.6)

∑

βl∈B
P

ϕ(αk, βl) = P
ϕ(αk) , (9.7)

∑

αk∈A ,βl∈B
P

ϕ(αk, βl) = 1 . (9.8)

This says that we have a consistent (i.e., just a normal) family of joint probabilities.
This consideration extends without further ado to N commuting observables. The
moral which every student of quantum mechanics learns is thus that only commuting
observables are simultaneously “measurable”.

To make this a little less abstract, we may think this way. The spectral resolution
of the observable corresponds in an experiment to the splitting of the wave function
into channels on the configuration space of the system and apparatus. Only if
the observables Â and B̂ commute and hence have a common spectral resolution
does there exist a consistent channeling corresponding to the possible measurement
values of Â and B̂ which is independent of the order in which the measurements
were made.

Let us consider now the general situation, where the bookkeepers are non-
commuting observables Â, B̂ . We first “measure” Â = ∑

k αkP
A
k and then B̂ =∑

l βlP
B
l . Once again, we have the probabilities (9.3), but now

P(αk, βl) = ‖PB
l PA

k ϕ‖2 
= 〈ϕ, PB
l PA

k ϕ〉 , (9.9)

because the families PA
k and PB

l fail to commute. For this reason, (9.6) does not
hold. Equations (9.7) and (9.8) do hold, but the order of the measurements is
important.
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Remark 9.1 (Another Example of a POVM) The sequence of measurements just
discussed cannot be associated with a spectral resolution, so it cannot be associated
with an observable. But it is a measurement nevertheless, at least in the sense that
some values are pointed out at the end of the day. Thus if we were to insist that
only self-adjoint operator observables are “measurable”, we would be missing out
on some possibly important situations. Anyway, we already know what to say. This
measurement experiment can still be associated with a POVM, so nothing really
new is going on, except that we have another very natural example of a POVM.

As a consequence, we find that no consistent family of joint probabilities exists: the
marginal distributions do not result as in (9.6) from summation over the values we
wish to ignore, because (9.6) just does not hold. Is that exciting? We sum over all
possible values of the first measurement, that is we ignore the outcomes, and we do
not get the probabilities for the single “measurement” of B̂. So we must accept (and
that should by now be easy enough) that by simply ignoring the first measurement
experiment we cannot undo what the first measurement experiment did to the wave
function when “measuring” Â.

The formula (9.9) is sometimes referred to as the Wigner formula,4 but it
was found independently by many others.5 The take-home message is that joint
probabilities exist for commuting observables, but there is no consistent family of
joint probabilities for non-commuting observables. This is more or less the only
content of the infamous no hidden variables theorems.

Take for example three observables Â, B̂, Ĉ, where Â commutes with B̂ and
Ĉ, but B̂ does not commute with Ĉ. Then there exist joint probabilities for Â and
B̂ as well as for Â and Ĉ, while no joint probabilities exist for B̂ and Ĉ. On the
other hand, random variables ZA, ZB, ZC always have joint probabilities. If we
now require the map from observables to random variables to be “good” (and that
needs to be made precise, but we may already guess one way to do that), we can
imagine that something must go wrong.

Our first intuition about what is going on in Theorem 9.1 was that it had
something to do with non-uniqueness, i.e., the fact that many different experiments
yield the same statistics. Where does this non-uniqueness hide in the present
discussion? It is just the possibility of “measuring” the observable Â in different
ways which are incompatible with each other: for example, once simultaneously
with B̂ and once simultaneously with Ĉ.

In the next section, we shall prove two such no hidden variables theorems, von
Neumann’s and another due to Kochen and Specker, where we present the much
simplified proof by Mermin. We note for later reference that, in the proof of Bell’s
inequality (Chap. 10), we cannot assign random variables to the six spin observables
which enter the proof. This is indeed another no hidden variables result, but one

4Eugene Wigner (1902–1995).
5The formula also served as the starting point for the so-called decoherent (or consistent) history
approaches to quantum physics.
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which uses a very particular quantum state—a singlet wave function—while the
former results do not hinge on any particular choice of wave function.

9.2 Two Assertions About Hidden Variables

9.2.1 Von Neumann’s Theorem

The theorem requires the map (9.1) to be linear and concludes that hidden variables
don’t exist. If Ĉ = Â + B̂, then we know that the quantum mechanical mean
values satisfy 〈Ĉ〉 = 〈Â〉 + 〈B̂〉. Von Neumann, succumbing to standard quantum
mechanical usage, called the hidden variables ω “dispersion free states”. Their
existence would then imply that, instead of the linearity of the quantum mechanical
mean values, we should have ZA+B = ZA + ZB for the random variables. The
condition for a “good” map (9.1) is thus

Ĉ = Â+ B̂ )⇒ ZC(ω) = ZA(ω)+ ZB(ω) for almost all ω ∈ Ω . (9.10)

If the Hilbert space H has at least dimension two, then there can be no such map
on the set of self-adjoint operators on H .

Proof The values of ZA,B,C must be eigenvalues of Â, B̂, Ĉ. But the eigenvalues of
Â+ B̂ are in general not the sum of the eigenvalues of Â and B̂. A simple example
of two non-commuting 2×2 matrices is sufficient to see that—a simple exercise for
the reader.

The proof is correct, so the theorem is true. And now what? What does this have
to do with physics, and in particular with quantum physics? Why is the requirement
of linearity reasonable? Think for example of the position observable X̂ and the
momentum observable P̂ . What would a “measurement” of X̂ + P̂ actually mean?
Because of its stark physical irrelevance, the von Neumann theorem is sometimes
described as naive or silly in more recent literature.

9.2.2 The Kochen–Specker Theorem

This theorem requires something less naive for the map Â �→ ZA than the linearity
imposed by von Neumann, viz.,

Definition 9.1 The map (9.1) can be described as “good”, or in the usual jargon,
non-contextual, if the following is satisfied: whenever quantum mechanical joint
probabilities for a set of self-adjoint operators (Â1, . . . , Âm) exist, i.e., whenever
they form a commuting family, they agree with the joint probabilities of the
corresponding random variables (ZA1, . . . , ZAm).
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As a consequence, all algebraic identities which hold between the commuting
observables must also hold for the random variables. For example, if Â, B̂, and
Ĉ is a commuting family and Ĉ = ÂB̂, then also ZC = ZAZB , because the joint
probability of ZA, ZB , and ZC must be 0 for the set of values {(α, β, γ ) ∈ R

3|γ 
=
αβ}.

As in von Neumann’s requirement, we would like the relations which hold for
operators to hold also for the hypothetical hidden random variables, the difference
being that the requirement is now restricted to families of observables which can be
jointly measured. Once again, we can find an example which shows that such a map
from observables to random variables does not exist.

Proof We consider a four-dimensional Hilbert space6 and take as observables the
Pauli matrices for two independent spin-1/2 particles σ 1

a and σ 2
b . The algebra of

observables is in this case characterized as follows:

• For all directions a and for k = 1, 2, we have (σ k
a )2 = 1, i.e., the eigenvalues are

±1.
• For all directions a, b, we have σ 1

a σ 2
b − σ 2

a σ 1
b = 0.

• If a, b are orthogonal directions, then σk
a σ k

b + σk
a σ k

b = 0 for k = 1, 2.
• For a = x, b = y, we have σk

x σ k
y = iσk

z for k = 1, 2.

Consider now the following scheme of observables:

σ 1
x σ 2

x σ 1
x σ 2

x

σ 2
y σ 1

y σ 1
y σ 2

y

σ 1
x σ 2

y σ 1
y σ 2

x σ 1
z σ 2

z

Using the algebraic relations, it is straightforward to check that:

a) The observables along each column and each row commute.
b) The product along each row is 1.
c) The product along the first column and along the second column is 1, while that

along the third column is −1.

As a consequence of Definition (9.1), all relations between commuting observables
must be reproduced by the values of the map (9.1). This means that, for each ω, we
must be able to attribute the values +1 or −1 to the nine observables in such a way

6The four-dimensional Hilbert space is the tensor product of two two-dimensional ones, one per
particle. Then to be mathematically rigorous, σ 1

a should be thought of as, e.g., σ 1
a ⊗ 1, and σ 2

b

would then be 1⊗ σ 2
b , where 1 is the two-by-two unit matrix.
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that b) and c) are jointly satisfied. But that is impossible, because multiplying first
all the rows, the product of the nine values would have to be +1, while multiplying
all the columns, the product of the nine values would have to be −1. This proves
Theorem 9.1 for Kochen–Specker goodness.

9.3 Contextuality

The Kochen–Specker theorem is often interpreted as proving the impossibility
of introducing non-contextual hidden variables into quantum mechanics without
coming into conflict with the empirical predictions. What is the meaning of this
term? The question of hidden variables is often associated with the measurement
problem of quantum mechanics, which we discussed in detail in Chap. 2, and
consequently with the question of the completion of orthodox quantum theory. To
describe these completing variables—which we called beables or the ontology—as
hidden is rather odd, however. In order to solve the measurement problem, these
variables must not be hidden at all. They must rather be the variables that are
responsible for the readily perceivable difference between a pointer pointing to the
left and a pointer pointing to the right.

Nevertheless, since the early quantum theory did not contain such variables,
there was a strong tendency to describe these possibly missing pieces as hidden.
Even David Bohm, in his famous paper of 1952 which led eventually to Bohmian
mechanics,7 used the terminology of hidden variables for particle positions—
unfortunately, one must say, because of the misunderstanding that the suggested
theory presented a refutation of von Neumann’s theorem. In reality, Bohmian
mechanics only shows that the theorem is physically irrelevant.

Notwithstanding, the no-go theorems à la von Neumann and Kochen–Specker
are still discussed with the intention of proving that a completion of orthodox
quantum mechanics is impossible or would be accompanied by all sorts of absurd
consequences. The theorems are supposed to stipulate, as it were, that the quantum
mechanical measurement formalism tells us everything there is to say about Nature
and that any search for a completion of the theory would be in vain. But isn’t it
rather absurd to insist that quantum mechanics is only about measurable quantities,
while at the same time we must add that there is nothing objective at all that is
actually being measured? In any case, such a dogmatic reading of the mathematical
results is simply not justified. Bohmian mechanics and the GRW theory prove
that it is perfectly possible and meaningful to supplement the wave function by
ontological quantities which describe the real state of the system, i.e., the actual
matter configuration. But note that these beables do not need to have any other
properties besides positions. To ask for more than that endangers naive realism about

7D. Bohm, A suggested interpretation of the quantum theory in terms of ‘hidden’ variables I and
II. Physical Review 85, 166, 180 (1952).
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observables! One should always bear in mind Bohr’s dictum that it is the experiment
which creates the measured values—position measurements being the exception.

Think, for example, of the Bohmian description of spin measurements. It would
be wrong to say that the measured spin corresponds to an intrinsic property of the
particle which it has in addition to its position. It is the Stern–Gerlach magnet we set
up which makes the wave function split into the corresponding spinor components
that subsequently separate spatially, in such a way that the particle follows one of
the two wave components. The situation is similar in GRW and the Many Worlds
theory. After the splitting, it is the interaction with the measurement apparatus
that ensures that the spin components decohere and entangle with macroscopically
distinguishable pointer positions. In collapse theory, the entanglement also ensures
that the common wave function of the particle and apparatus collapses and thus
“selects” one of the possible measurement results.

So what is the purpose of the discussion on contextuality? Instead of throwing
up another philosophical molehill and calling non-existent properties “contextual”,
the best thing is to agree with Niels Bohr: observables do not generally correspond
to properties with pre-determined values which are revealed in a measurement. If,
however, we insist on associating observables with physical properties of a system,
then these properties necessarily depend on the context in which we intend to
measure it. This is the ambiguity that comes to bear in the proof of the no-go
theorem. As above, Â can be measured with B̂ and also with Ĉ, but not with B̂ and
Ĉ together. The hypothetical property at hand which is supposed to be associated
with the observable Â would then be a different one when Â is measured with B̂

than when it is measured with Ĉ. Should that shock us? Not really, because the
measurement of Â with B̂ generally requires a completely different experiment
than the measurement of Â with Ĉ. The observable is always just a shorthand in
which the complete measurement experiment, including the measurement setup, no
matter how complex, simply disappears. And all the mysteries, from contextuality
to quantum logic, only arise if we try to think of this shorthand as being something
fundamental, pretending that there is no physics left in the measuring process itself.

The final irony of this whole contextuality story is that contextuality has
a negative connotation for everybody. That is, basically everybody agrees that
contextuality is elevated nonsense. So why is it still being spread around? Mainly to
suppress any attempt to complete quantum theory by, e.g., Bohmian mechanics—
no matter what. The argument being that such completions contain contextual
properties and therefore are in some way sinful.
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I cannot believe in it [quantum mechanics], because the theory is incompatible with the
principle that physics is supposed to represent a reality in space and time, without spooky
action at a distance.

Albert Einstein, Letter to Max Born on March 3, 1947. Translation by the authors.

What has been said so far is all well and good, but the implications of the quan-
tum phenomena and the measurement problem of orthodox quantum mechanics are
far from conclusive. We appear to be left with many options: determinism (Bohm,
Everett) or indeterminism (GRW), many worlds or a single one, particles or flashes
or the wave function alone—all these possibilities could, in principle, fit physical
reality as we know it. And now we turn to something new, something fundamental,
in fact, an eternal truth: the nonlocality of Nature. We will make the concept more
precise as we go along, but in a nutshell, nonlocality means that the fundamental
laws of Nature must involve some sort of action at a distance, i.e., distant events
sometimes influencing each other instantaneously.1

Newtonian mechanics is an action-at-a-distance theory: it involves absolute
simultaneity, which allows for instantaneous interactions. The nonlocality of Newto-
nian mechanics is, however, rather mild, because the strength of interactions decays
quickly with increasing distance.

Bohmian mechanics, on the other hand, is strikingly nonlocal: the dynamics
are formulated on configuration space, where all particles are guided together
and simultaneously by a common wave function. In a two-particle system with
coordinates X1(t) and X2(t), we have

Ẋ1(t) = − h̄

m1
∇xIm ln ψ

(
x, X2(t)

)∣∣
x=X1(t)

,

1“Instantaneous” provides the right intuitive understanding, but we should note that it is no longer
well defined when we come to relativistic physics. “Superluminal” would be a more precise way
of speaking, but it actually fails to express just how radical this new feature is (see footnote 10).
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whence the velocity of X1 at time t depends on the position of X2 at the same time,
and vice versa, as long as the wave function ψ(x, y) is entangled, i.e., as long as it
doesn’t factorize into a product.

The GRW theory is also manifestly nonlocal. Acting on one part of an entangled
system can affect the collapse rate and thus lead to an instantaneous change in the
density of matter (flashes) in an arbitrarily distant location. (For Everett, the issue is
more subtle, as discussed in Sect. 6.3.)

The critical question is now the following: Is this nonlocality necessary or is
it merely a peculiarity of these particular theories, i.e., would it be possible in
principle to provide a local description of Nature if we had some other theory?
More succinctly, is Nature itself local or nonlocal? A bold question, indeed, but
John Stewart Bell had the audacity to address it, and propose an experimental test
that could establish the nonlocality of Nature once and for all! It is important to
appreciate the depth and scope of this achievement: an experiment that tells us
how Nature has to be described, no matter what. A truth that stands above any
theory. Quite rightly, the nonlocality of Nature has been called “the most profound
discovery in science”.2 When all is said and done, it is the key innovation of
quantum physics, and it is absolutely impossible to understand quantum mechanics
without understanding nonlocality.

10.1 The EPR Argument

Einstein was probably the first to realize that the entanglement of the wave function
in quantum mechanics leads to a nonlocal description of Nature. The violation of the
locality principle was, in fact, at the center of his rejection of quantum mechanics—
not the apparent violation of determinism, as is often claimed with reference to his
famous quote that “God doesn’t play dice”.3

Since for Einstein, the principle of locality was non-negotiable, he concluded that
quantum theory could not be a complete description of Nature. This is the point of
the famous article by Einstein, Podolsky, and Rosen (EPR), which shows that the
assumption of locality implies the incompleteness of quantum mechanics.4 We shall
consider Bohm’s version of the EPR experiment (also called the EPRB experiment),
which Bell discussed as well and which is essentially what is realized in actual
experiments. We recall Sect. 1.7 in which we discussed the propagation of a spinor
wave function in a Stern–Gerlach magnet. For the EPRB experiment, a special pair

2H.P. Stapp, Bell’s theorem and world process. Nuovo Cimento B 29, issue 2, 270–276 1975.
3A more complete quote can be found in Einstein’s letter to Cornelius Lanczos: “It seems hard to
sneak a look at God’s cards. But that he plays dice and uses ‘telepathic’ methods (as the present
quantum theory requires of him) is something that I cannot believe for a moment.” The “ telepathic
methods” are a reference to the action at a distance that Einstein identified in quantum mechanics.
4A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality
be considered complete? Physical Review 47, 777 (1935).
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Fig. 10.1 The EPRB experiment. Two particles in the singlet state (10.1) fly off in opposite
directions through rotatable Stern–Gerlach devices SGM 1 and SGM 2. The particles are thereby
deflected towards either the flat or the pointy pole piece. Rotation of the magnets happens while
the particles are in flight, and so quickly that no light signal could “communicate” the orientation
of the magnet to the particle at the other side of the experiment

of spin-1/2 particles, called an EPR pair, is prepared in the so-called singlet state.
This is an entangled state with total spin zero. The spin part of the antisymmetric
wave function has the form

ψs = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2
)
, (10.1)

where | ↑〉i and | ↓〉i are the spin eigenstates of the i th particle, and we can neglect
the direction because the state is rotationally symmetric.

The crucial point as that this two-particle state has the following property: if we
measure the spin of one of the particles in any direction a, we get “a-spin UP” or “a-
spin DOWN” each with probability 1/2, but if we measure the spin of both particles
in the same direction, we always obtain opposite results, i.e., if the a-spin of particle
1 is UP, then the a-spin of particle 2 is always DOWN, and vice versa. We have
already talked about the meaning of the expression “having spin UP or DOWN”.
It refers only to the phenomenon that the particle is deflected either towards the
sharp pole of the magnet or the flat one as it passes through the inhomogeneous
magnetic field inside the Stern–Gerlach apparatus before it hits a detector screen
(see Fig. 10.1).5

Put simply, if the two particles move apart through Stern–Gerlach magnets with
the same orientation, they are always deflected in opposite directions. This is a
simple physical fact that doesn’t seem too suspicious. But now we can move the
two Stern–Gerlach magnets SGM 1 and SGM 2 as far apart as we like (at least
in principle, since decoherence always threatens to spoil the experiment), so far

5When Stern first proposed these experiments, he suggested using a magnet which was oriented
from the floor to the ceiling of the lab. This may be responsible for the terminology “up” and
“down”.
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that no influence propagating at most with the speed of light could act between the
measurement on particle 1 and the measurement on particle 2 (the two measurement
events are “spacelike separated”, to use the relativistic terminology). Still, if we
observe that particle 1 has “a-spin UP” (let’s say), we can immediately infer that
particle 2 has “a-spin DOWN”, i.e., that a subsequent measurement of the a-spin on
particle 2 must yield the outcome “spin DOWN”.

The innocent reader who has not yet had much opportunity to study quantum
mechanics and still has plenty of common sense won’t find this particularly
suspicious, either. The particles “just have opposite spins”, she will say, “so, if I
observe that particle 1 has a-spin UP, I can conclude that particle 2 will have a-
spin DOWN.” Indeed, the whole phenomenon would be utterly trivial if we could
suppose that the particles had their spin values all along, and that these values were
then simply revealed by the measurements.

The problem emphasized by EPR arises, however, because quantum mechanics
insists that the spin values of the particles are not determined in advance, but
come about through the process of measurement (and the collapse of the wave
function). This would mean that the a-spin of particle 2 is physically determined
by the measurement on particle 1 (supposing that the measurement on particle 1
occurs first), and that measuring “a-spin UP” for particle 1 affects the physical
state in such a way that a corresponding measurement on particle 2 must yield
“a-spin DOWN”, even though any non-superluminal influence between the two
measurements is excluded.

In other words, the EPR dilemma is the following. The first possibility is
that particle 2 had “a-spin DOWN” all along, independently of the measurement
performed on particle 1, in which case the quantum mechanical description is
incomplete and there must exist additional variables determining the outcomes of
the spin measurements. The second possibility is that the a-spin of particle 2 does
depend on the measurement process carried out on particle 1. In that case, the
measurement of “a-spin UP” for particle 1 is what causes a subsequent measurement
on particle 2 to yield “a-spin DOWN”, whence there must be some form of action
at a distance, i.e., nonlocality.

It’s very important to think this EPR argument through, since there is so much
unnecessary controversy and confusion about it. In particular, it’s important to note
that (leaving a many-worlds scenario aside), there is really no third option available.
The EPR correlations require either “instantaneous” influences over arbitrary
distances, or additional variables absent in the quantum mechanical description.
That’s what Einstein, Podolsky, and Rosen had already proven before Bell came
on the scene.

10.2 Bell Inequality

So let’s suppose that Nature is local. Then, the spins of the two EPR particles
must have been determined prior to the measurements. And since we can choose
the orientations of the two Stern–Gerlach magnets at the very last moment—so
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that these choices cannot have any local influence on the opposite side of the
experiment—this must be true for the spins in any direction.

Formally, this means that there exists a family of random variables (“hidden
variables” in the sense of Chap. 9)

Z(1)
a1

, Z(2)
a2
∈ {−1, 1} , such that a1 = a2 )⇒ Z(1)

a1
= −Z(2)

a2
(10.2)

whose values determine the results of the spin measurements on particles 1 and 2 in
arbitrary directions a1 and a2, and which are correlated in such a way as to produce
the right empirical frequencies.

The mathematical term “random variable” is somewhat misleading. Note that
we (or better, Mark Kac) already complained about that notion. A random variable
is a function, usually a coarse-graining function. The functions Z

(1)
a1 , Z

(2)
a2 ∈

{−1, 1} may represent an intrinsically probabilistic law but could also depend
deterministically on other physical quantities. It really doesn’t matter what the
theory that is supposed to explain the spin correlations actually looks like. It can
be deterministic or indeterministic, nice or ugly, simple or hopelessly complex.
The only assumption is that it reproduces the statistics of the EPR experiment in
a local manner, and the variables Z

(1)
a1 , Z

(2)
a2 merely describe the predictions of this

hypothetical theory for the outcomes of the spin measurements. Notably, under the
assumption of locality, Z(1)

a1 cannot depend on a2 and vice versa, since these choices
can also be made at “spacelike separation”, while the particles are already in flight.
Therefore, Z(1)

a1 and Z
(2)
a2 are also referred to as local hidden variables.

We now choose three arbitrary directions a, b, c and consider the values

(Z(1)
a , Z

(1)
b , Z(1)

c ) = (−Z(2)
a ,−Z

(2)
b ,−Z(2)

c ) . (10.3)

We consider the probabilities of the anti-coincidences Z
(1)
a = −Z

(2)
b , Z(1)

b = −Z
(2)
c ,

and Z
(1)
a = −Z

(2)
c , and sum them up. Thus, we obtain

P(Z(1)
a = −Z

(2)
b )+ P(Z

(1)
b = −Z(2)

c )+ P(Z(1)
c = −Z(2)

a )

(10.3)= P(Z(1)
a = Z

(1)
b )+ P(Z

(1)
b = Z(1)

c )+ P(Z(1)
c = Z(1)

a )

≥ P
(
Z(1)

a = Z
(1)
b or Z

(1)
b = Z(1)

c or Z(1)
c = Z(1)

a
)

= P(“certain event”)

= 1 ,

since Z
(i)
a,b,c can only take the values +1 and −1, and this means that one of the

cases Z
(1)
a = Z

(1)
b or Z

(1)
b = Z

(1)
c or Z

(1)
c = Z

(1)
a must always hold true. This is one

version of the famous Bell inequality:

P(Z(1)
a = −Z

(2)
b )+ P(Z

(1)
b = −Z(2)

c )+ P(Z(1)
c = −Z(2)

a ) ≥ 1 . (10.4)



178 10 Nonlocality

It is obviously a rather trivial consequence of the existence of the random variables,
i.e., a direct implication of the locality assumption.

The only thing left to do is to carry out the experiment. This seems almost like
a pointless enterprise. The statement looks so trivial that it can only be confirmed.
And yet, all the precise quantum theories that we have encountered so far were
nonlocal. And if the principle of locality is put into question, then so is the existence
of the random variables Z

(1)
a and Z

(2)
a , and the relative frequencies could add up

to something less than 1. Indeed, how the experiment pays off! For the sum of
the relative frequencies—corresponding to the left-hand-side of (10.4)—we obtain
a value significantly smaller than 1 (we will discuss recent experimental results
below). As a consequence, the Bell inequality is violated and experiment excludes
any conceivable theory which tries to explain the spin (anti-)correlations without
nonlocal influences. In other words, experiment rules in favor of nonlocality!

At the same time, the experiments carried out so far all confirm the quantum
mechanical predictions, which are the following. As mentioned before, the spin-
singlet wave function is

ψs = 1√
2

(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2
)
,

ignoring the spatial part ψ(x1, x2) = ψ(x2, x1) which is simply multiplied by ψs.
Now we compute the expected value of the coincidences, viz.,

Ea,b = 1

4
〈ψs|a · σ (1) ⊗ b · σ (2)|ψs〉 .

This expression is bilinear in a, b and rotationally invariant, hence a multiple of a·b.
That is, Ea,b := μa · b, for some μ, and we can read off the proportionality factor
μ from the simple case a = b, where Ea,b = −1/4. Hence

Ea,b = −1

4
a · b . (10.5)

On the other hand, writing Pa,b for the probability of the anti-coincidences (the
probability that the a-spin of particle 1 is opposite to the b-spin of particle 2, i.e.,
the probability that the product of their spin values is −1/4), we have

Ea,b = −1

4
Pa,b + 1

4
(1− Pa,b) = −1

2
Pa,b + 1

4
,

and therefore,

Pa,b = 1

2
+ 1

2
a · b . (10.6)
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Choosing a, b, c with intermediate angles of 120◦, we find

Pa,b = 1

2
− 1

4
= 1

4
, Pa,c = 1

4
, Pb,c = 1

4
.

Hence, for the left-hand-side of (10.4), we obtain the number 3/4 and thus a clear
violation of the Bell inequality.

10.3 Implications andMisunderstandings

Einstein was of course right in his conviction that the quantum theory of his time was
incomplete. The measurement problem discussed in Chap. 2 makes this abundantly
clear. The only thing was that it had nothing to do with nonlocality. Bohm, GRW,
and Everett offer different ways to “complete” standard quantum mechanics but
none of them would have been (or were) to Einstein’s liking as they violate the
principle of locality.

John Bell thus wanted to know if it was possible, at least in principle, to provide
a local description of quantum phenomena. The answer he found was negative.
The fact that the predictions of quantum mechanics violate the Bell inequality
means that these predictions cannot be reproduced by any local theory. And the
fact that experiments confirm these predictions—in particular, the violation of the
Bell inequality—means that no local theory can correctly describe our world. The
nonlocality of Nature has thus been established once and for all.

Notably, as we will discuss in detail below, this nonlocality does not imply
the possibility of faster-than-light signaling—which would strongly clash with
Einstein’s theory of relativity. Nor does it imply a return to Newtonian physics,
with forces acting instantaneously throughout all of space. It does, however, imply
that certain statistical correlations observed in Nature cannot be explained without
admitting that distant events can directly influence each other—even if these events
occur at such long spatial and short temporal separations that any non-superluminal
interactions between them are excluded.

Bohmian mechanics explains nonlocal correlations by entanglement of the
wave function and a nonlocal law of motion for particles. GRW explains them
by entanglement of the wave function and a nonlocal (stochastic) law for the
localization of matter. The Many Worlds theory explains them (or, some would say,
explains them away) by the entanglement of the wave function and a branching
history of the universe. Other descriptions are conceivable, but Einstein’s principle
of locality has been shattered once and for all.

Bell’s argument is so clear and precise that we may well wonder how it could
have given rise to so many debates and misunderstandings. That a great number
of physicists fail to understand “the most profound discovery” of their discipline is
tragic, but it is a fact that we still have to contend with today. The most common
mistake is to read Bell’s theorem as just another “no-hidden-variables” result along
the lines of those discussed in Chap. 9. It is then often said that the violation of Bell’s
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theorem implies that we have to give up either locality or “realism”. (The latter is a
grossly inadequate term and the reader should ask how such a philosophical concept
could be of any relevance here.)

As a matter of fact, if we ask whether we should be “naive realists” about the
spin observables, meaning that the particles could have “hidden spin values” Z

(1)
a1

and Z
(2)
a1 that are revealed in experiments, the answer provided by Bell’s theorem

is clearly negative: random variables Z
(1)
a1 and Z

(2)
a2 reproducing the quantum

correlations (10.5) are mathematically impossible. However, to regard this as the
main message of Bell’s theorem is to miss the point entirely, because it forgets
about the EPR argument which was the very basis of Bell’s investigation. By the
EPR argument, the existence of the random variables Z

(1)
a1 and Z

(2)
a2 was inferred

from the assumption of locality. The impossibility of such variables thus implies
that the assumption of locality must be violated. We are left with only one of the
alternatives of the EPR dilemma, namely nonlocality.

Let us emphasize this again. If we measure “a-spin UP” for particle 1 and can
infer that a corresponding measurement on particle 2 must yield “a-spin DOWN”,
we have indeed not merely learned about a pre-existing property that particle 2 had
independently of our interaction with particle 1. But this means precisely that the
measurement on particle 1 must be, in some sense, responsible for the fact that a
subsequent measurement on particle 2 will yield “a-spin DOWN”, no matter how
far away it occurs. What’s more, the situation is symmetric between particles 1 and
2, and we can already see the difficulties arising in the relativistic context when it
no longer makes sense to ask which of the two measurements occurred first.

Bell himself repeatedly protested against the widespread misunderstanding of his
argument. In footnote 10 of his famous article Bertlmann’s socks and the nature of
reality, he writes6:

My own first paper on this subject [Physics 1, 195 (1965)] starts with a summary of the
EPR argument from locality to deterministic hidden variables. But the commentators have
almost universally reported that it begins with deterministic hidden variables. (p. 157)

And in the article itself:

It is important to note that to the limited degree to which determinism plays a role in the
EPR argument, it is not assumed but inferred. What is held sacred is the principle of ‘local
causality’—or ‘no action at a distance’. [. . . ] It is remarkably difficult to get this point
across, that determinism is not a presupposition of the analysis. (p. 143)

Here, “determinism” refers to the existence of local hidden variables determining
the outcomes of the spin measurements, i.e., what many authors mean by “realism”
(if they mean anything precise at all).

6Reprinted in: J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd edn, Cambridge
University Press, 2004, Chap. 16.
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Schematically, the logical structure of Bell’s argument is as follows:

EPR locality )⇒ local hidden variables

Bell local hidden variables )⇒ Bell inequality

Experiment ¬Bell inequality )⇒ ¬local hidden variables )⇒ ¬locality

Starting with the EPR argument, the only physical assumption underlying the
derivation of Bell’s inequality is locality. The violation of Bell’s inequality observed
in various experiments thus means that the principle of locality is falsified.

10.4 CHSH Inequality and the Generalized Bell Theorem

At the beginning of this chapter, we promised an insight that stands “above any
theory”. Our discussion so far, important as it may be, does not quite live up to this
promise, since the derivation of the Bell inequality (10.4) assumed perfect spin anti-
correlations (10.3). Quantum mechanics predicts these perfect anti-correlations for
an EPR pair in the singlet-state, but quantum mechanics could be wrong, putting
the inference from the violation of Bell’s inequality to nonlocality into question.
Actual experiments are consistent with the predictions of quantum mechanics but
will never be able to show that (10.3) is true with absolute certainty.

For this reason, we will now discuss a more general version of Bell’s theorem that
does not require the assumption of perfect anti-correlations. This is based on the so-
called CHSH inequality, due to Clauser, Horne, Shimony, and Holt. It is the violation
of this CHSH inequality that is actually reported in the relevant experiments. In
the course of this discussion, we will also provide more rigorous definitions of the
relevant concepts—in particular “locality”.

The starting point of Bell’s analysis is the prediction, and subsequent experi-
mental observation, of statistical correlations between spacelike separated events A

and B. “Spacelike separated” means that no signal, propagating at most with the
speed of light, could be sent from one event to the other. The existence of statistical
correlations means that the joint probability of P(A,B) does not factorize:

P(A,B) 
= P(A) · P(B) . (10.7)

Alternatively, we may consider the conditional probability P(A | B) :=
P(A,B)/P(B). Equation (10.7) is then equivalent to

P(A | B) 
= P(A) (10.8)

and

P(B | A) 
= P(B) . (10.9)
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In other words, conditioning on B increases or decreases the probability for the
occurrence of A and vice versa—the two events are statistically dependent.

In the EPRB experiment, we have the following situation. Let (A | a) ∈ {±1}
denote the outcome of the spin measurement on particle 1 in the direction a (“spin
UP” or “spin DOWN”), and (B | b) ∈ {±1} the result of the spin measurement on
particle 2 in the direction b.7 In the spin singlet state, we have: P(A = +1 | a) =
P(B = +1 | b) = 1/2, but with (10.6)

P(A = +1, B = +1 | a, b) = 1

4
(1− a · b) . (10.10)

Unless a and b are orthogonal directions, i.e., a · b 
= 0, we thus have

P(A = +1, B = +1 | a, b) 
= P(A = +1 | a) · P(B = +1 | b) , (10.11)

so that the outcomes of the distant spin measurements are (anti-)correlated.
In themselves, such correlations between distant events are very common and

do not indicate any particular causal relation. In particular, we wouldn’t generally
be surprised to find correlations between jointly prepared systems no matter how
far they have subsequently been separated. In a local theory, however, a complete
description of the physical state in the past will contain all the relevant information
for the prediction of A and B, whence conditioning also on the occurrence of B

would become redundant for prediction of A, and vice versa.
We can consider rather banal cases: the number of car accidents that occur on a

given day in New York is statistically correlated with the number of car accidents
that occur on the same day in Seattle. Evidently, this does not mean that a car crash
in New York can “cause” an accident on the West Coast, or vice versa. Instead,
weather conditions are often comparable in the two places, people all over the
country tend to consume more alcohol on Saturdays than during the week, etc. Once
we condition on all factors that could serve as a local explanation or common cause
for an increased number of car crashes, we will find that the accident statistics for
New York become independent of simultaneous events in Seattle, and vice versa.

Remark 10.1 (On Statistical Independence) In Chap. 3 on chance in physics, we
repeatedly emphasized that the statistical independence of relevant coarse-grainings
(“random variables”) is a very tricky issue. For statistical independence to hold, the
pre-images of the coarse-graining functions have to mix and intertwine perfectly
(recall Fig. 3.1.) The Rademacher functions rk , k = 1, 2, . . . on the interval
[0, 1), equipped with the Lebesgue measure were our prototypes of coarse-graining

7The parameters a, b, etc., still represent the orientations a, b, etc., of the spin measurements, as
in the previous section. However, we shall drop the vectorial notion from now on, since it is usual
to think of the relevant parameters as angles in the plane of rotation of the Stern–Gerlach magnets
(orthogonal to the flight trajectory of the particles).
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variables. We can use combinations of these functions to see how conditioning can
restrict pre-image sets to create statistical independence.

Let X := r1 + r2 and Y := r1r3. These are coarse-graining functions on [0, 1)

with values in {0, 1, 2} and {0, 1}, respectively. It is straightforward to check that
they are not statistically independent (preferably by sketching their graphs and the
relevant pre-images). For instance, we have

λ({x : X(x) = 0, Y (x) = 0}) = 1

4

= λ({x : X(x) = 0})λ({x : Y(x) = 0}) = 1

4
· 6

8
.

Here, λ is used as in Chap. 3 to denote the Lebesgue measure on [0, 1]. It is easy to
identify r1 as the “common cause” or “local explanation” for the correlation between
X and Y . We can conditionalize on a value of r1, let’s say r1 = 0. This restricts the
pre-image set {x : X(x) = 0, Y (x) = 0} to [0, 1/2). And indeed, on this set, we
now obtain statistical independence. More precisely, we have

λc(X = 0) := λ(X = 0|r1 = 0) = λ({x : X(x) = 0} ∩ {x : r1(x) = 0})
λ({x : r1(x) = 0})

= λ([0, 1/4))

λ([0, 1/2))
= 1

4
· 2

1
= 1

2
,

λc(Y = 0) := λ(Y = 0|r1 = 0) = λ({x : Y (x) = 0} ∩ {x : r1(x) = 0})
λ({x : r1(x) = 0})

= λ([0, 1/2))

λ([0, 1/2))
= 1 ,

and for the joint conditional distribution

λc(X = 0, Y = 0) = λ({x : X(x) = 0, Y (x) = 0} ∩ {x : r1(x) = 0})
λ({x : r1(x) = 0})

= λ([0, 1/4))

λ([0, 1/2))
= 1

2

= 1

2
· 1 = λc(X = 0)λc(Y = 0) .

To prove the statistical independence of X and Y under the conditional measure λc,
we must, of course, check that the measure factorizes for all possible combinations
of values, but this is done analogously and can be carried out as an exercise.

With these examples in mind, we return to the actual issue at hand, namely the
correlations observed in the EPRB experiment. Here, the physical theory has to
tell us what the relevant variables are that could feature in a local explanation of
the correlations (10.11). The correlations will be called locally explainable (by the
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proposed candidate theory) if

P(A,B | a, b, λ) = P(A | a, λ) · P(B | b, λ) , (10.12)

where λ now encodes all physical quantities and events which, according to our
theory, could be relevant to the measurement statistics. These variables could
describe particles, or fields, or strings, or wave functions; they could include
conserved quantities or random variables—whatever the theory has to offer.8

Naturally, we have to recover the original probabilities—matching the observed
frequencies—when averaging over λ, i.e.,

∫

Λ

P(A,B | a, b, λ) dP(λ) = P(A,B | a, b) , (10.13)

where the integral goes over the entire range Λ of the variables λ. In other words,
the values of λ can vary in each run of the experiment, but the distribution P(λ) must
be such as to produce the correct outcome statistics over multiple runs.

We thus arrive at the following precise definition of locality/nonlocality:

Definition 10.1 A theory is said to be nonlocal (in the sense of Bell and EPR),
if it predicts correlations between spacelike separated events which are not locally
explainable within the theory, in the sense of Eq. (10.12).

We can see that (10.12) captures the physical concept of locality as a necessary
criterion as follows (consider also Fig. 10.2). From the definition of conditional
probabilities, we get

P(A,B | a, b, λ) = P(A | B, a, b, λ)P(B | a, b, λ) . (10.14)

Recall that λ is supposed to encode a complete description of the physical state in
the past, including in particular all possible “common causes” for the outcomes A

and B. In a local theory, therefore, the additional specification of the outcome B and
the control parameter b must be redundant for the predictions A. This is expressed
by P(A | B, a, b, λ) = P(A | a, λ). Analogously, the probability of B, conditioned
on λ, must no longer depend on the choice of a. Thus P(B | a, b, λ) = P(B | b, λ).
In a local description, the mathematical identity (10.14) must therefore reduce to
(10.12).

Remark 10.2 (On the Notion of “Action at a Distance”) Previously, we described
nonlocality in terms of “action at a distance”. The term “action at a distance” is in
the right spirit, but somewhat problematic. On the one hand, because it is tainted by

8Note that the probabilities in (10.12) could all be 1 or 0, which would be the case for deterministic
theories in which a complete state description λ uniquely determines the measurement outcomes.
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Fig. 10.2 Spacetime diagram of the EPRB experiment. Diagonal lines indicate the past light
cones and the measurement events occur in spacelike separated regions. λ encodes all relevant
factors in the past of the measurement events that could serve to “screen off” the correlations.
Source: J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, 2nd edn, Cambridge
University Press, 2004

Einstein’s polemics (“ghost fields”, “spooky action at a distance”), and on the other
because it may invoke causal intuitions that could turn out to be inappropriate. It is
best to leave all further intuitions and questions about “cause” and “effect” aside,
and understand nonlocality first and foremost in the sense of the above definition
(given by John Bell), that is, in terms of locally inexplicable correlations between
distant events.

We now obtain the first important conclusion simply by applying the above
definition to standard quantum mechanics. In this case, λ will include the wave
function ψ—which is supposed to provide the complete microscopic description
of the EPR pair—and possibly also “classical” macroscopic variables X1, . . . , Xn

describing the particle source, the null state of the detectors, etc. However, λQM =
(ψ,X1, . . . , Xn) is not sufficient to “screen off” the correlations between the
measured particle spins of the EPR pair. The predictions of the theory are still
(10.10), so

P(A,B | a, b, λQM) 
= P(A | a, λQM) · P(B | b, λQM) .

In other words, standard quantum mechanics predicts the EPR correlations between
distant measurement events without providing sufficient resources for a local
explanation. The theory is therefore nonlocal. There is nothing to debate here. We
merely have to check the definition.

We thus arrive once again at the EPR dilemma. Standard quantum mechanics is
either incomplete or nonlocal. And the question is once again whether it is possible
to complete quantum mechanics—or even replace it with an entirely new theory—in
order to provide a local explanation of the EPR correlations.

The only additional requirement we shall impose on such a candidate local
theory is that the relevant physical variables encoded in λ are independent of the
control parameters a and b. Put simply, this is the assumption that the orientations
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of the Stern–Gerlach magnets can be freely (or randomly) chosen in the experiment.
Formally,

P(λ | a, b) = P(λ) . (10.15)

A local explanation violating this assumption is said to be conspiratorial. Why
conspiratorial? Well, there are basically two reasons why (10.15) could be violated.
We either have a form of retro-causation in the sense that the parameter choices a

and b in the future influence the physical state λ in the past, or we have a form of
superdeterminism in which, whatever determines the outcomes of the measurements
also determines what measurements will be performed in the first place. Such a
theory would threaten to render absurd the entire scientific enterprise, which is
based on the belief—be it only a stubborn illusion—that we can freely decide what
to probe in experiments, i.e., that Nature is not like a dictatorial regime guiding
investigators through controlled tours that present a distorted view of reality.

That said, we don’t have to go into the difficult subject of “free will” to see why
superdeterminism is absurd. In practice, the parameter choices a and b are usually
made by some sort of (quantum) random number generator. In one experiment by
Shalm et al., the choices were made to depend, in addition, on bitmaps generated
from various sources including the 1985 movie Back to the Future. In principle,
they could also be made by fluctuations in the stock market or radio signals from
distant galaxies. The idea that none of these physical processes could be treated as
independent from the initial state of the EPR particles is much more mind-boggling
and spooky than any action at a distance. Such conspiracies are therefore excluded
in the following.

From these two assumptions, the locality assumption (10.12) and the no conspir-
acy assumption (10.15), we can derive the so-called CHSH inequality:

Theorem 10.1 (CHSH Inequality) For fixed orientations a, b, we consider the
expected value of the product A · B, that is

E(a, b) := E(A · B | a, b) , (10.16)

where

E(A · B | a, b) = P(A = +1, B = +1 | a, b)+ P(A = −1, B = −1 | a, b) (10.17)

−P(A = +1, B = −1 | a, b)− P(A = −1, B = +1 | a, b) .

Under the assumptions (10.12) (locality) and (10.15) (no conspiracy) the CHSH
inequality

S := |E(a, b)− E(a, b′)| + |E(a′, b)+ E(a′, b′)| ≤ 2 (10.18)

then holds for any four parameter values a, a′, b, b′ and any distribution of λ.
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The proof is quite simple and will be given in Sect. 10.4.1. Using (10.6) or (10.10) in
(10.17), the quantum mechanical predictions then yield E(a, b) = − cos(�(a, b)).
The maximal violation of the CSHS inequality occurs for a = 90◦, a′ = 0◦, b =
45◦, b′ = −45◦, when we obtain

S = 2
√

2 , (10.19)

which is clearly greater than 2.
Various experiments confirm the violation of the CHSH inequality (10.18)

and thus the impossibility of a local (non-conspiratorial) account of the EPR
correlations. Recent measurements of electron spins on EPR pairs over a distance
of 1.3 km obtained a value of S = 2.42 ± 0.20 and thus a significant violation of
the CHSH inequality, consistent with the predictions of quantum mechanics.9 This
experiment by Hensen et al. is considered to be the first “loophole free” test of the
CHSH inequality (others have already followed since). This means, in particular,
that all non-superluminal influences between the measurements events (including
the random choices of the control parameters) have been excluded, and that the
detector efficiency was high enough to rule out the possibility that the statistics
could be skewed by those particles that have never been registered. All in all, the
experimental evidence is considered to be conclusive, and all the evidence comes
down on the side of nonlocality.10

Let us sum up one last time. The only assumptions underlying the derivation
of (10.18) are the locality assumption (10.12) and the no-conspiracy assumption
(10.15). The relevant experiments observe a significant violation of this CHSH
inequality, thus excluding all local, non-conspiratorial explanations of the EPR
correlations. Hence, Nature is indeed “conspiring” against us, or—and this is really
the only serious option—Nature is nonlocal.

10.4.1 Derivation of the CHSH Inequality

We consider the expected value (10.17):

E(a, b) = P(A = +1, B = +1 | a, b)+ P(A = −1, B = −1 | a, b) (10.20)

−P(A = +1, B = −1 | a, b)− P(A = −1, B = +1 | a, b) .

9B. Hensen et al., Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres. Nature 526, 682–686 (2015).
10Since the relevant experiments exclude only influences that propagate at most with the speed of
light, we could ask, at least as long as we think non-relativistically, whether nonlocal influences
have to be truly instantaneous or whether they could act with a finite (though superluminal)
velocity. The answer is that they could not, at least not if superluminal communication is excluded;
see N. Gisin, Quantum correlations in Newtonian space and time. In: D. Struppa and J. Tollaksen
(Eds.), Quantum Theory: A Two-Time Success Story, Springer, 2014.
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With assumptions (10.12) and (10.15), we can write this as

E(a, b) =
∫

Λ

[
P(A = +1 | a, λ)− P(A = −1 | a, λ)

]

×
[
P(B = +1 | b, λ)− P(B = −1 | b, λ)

]
dP(λ) .

Here, we have used the fact that, according to (10.12), the joint probabilities
factorize after conditionalizing on λ. Expanding the brackets and averaging over
λ, we thus get back (10.17). The expressions inside the brackets are nothing else
than the expectations of A and B conditionalized on λ. With the abbreviations

A(a, λ) := P(A = +1 | a, λ)− P(A = −1 | a, λ) ,

B(a, λ) := P(B = +1 | b, λ)− P(B = −1 | b, λ) ,

we thus get

E(a, b) =
∫

Λ

A(a, λ)B(b, λ) dP(λ) ,

where

|A(a, λ)| ≤ 1 , |B(b, λ)| ≤ 1 . (10.21)

Now we add/subtract the correlations for the different orientations a, a′, b, b′. To
begin with, we have

E(a, b)− E(a, b′) =
∫

Λ

A(a, λ)
[
B(b, λ)− B(b′, λ)

]
dP(λ) , (10.22)

whence (10.21) implies

|E(a, b)− E(a, b′)| ≤
∫

Λ

∣∣∣B(b, λ)− B(b′, λ)

∣∣∣dP(λ) . (10.23)

Then, analogously,

E(a′, b)+ E(a′, b′) =
∫

Λ

A(a′, λ)
[
B(b, λ)+ B(b′, λ)

]
dP(λ) , (10.24)
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and (10.21) implies

|E(a′, b)+ E(a′, b′)| ≤
∫

Λ

∣∣∣B(b, λ)+ B(b′, λ)

∣∣∣dP(λ) . (10.25)

Adding (10.23) and (10.25) thus yields

|E(a, b)− E(a, b′)| + |E(a′, b)+ E(a′, b′)| (10.26)

≤
∫

Λ

∣∣B(b, λ)− B(b′, λ)
∣∣+ ∣∣B(b, λ)+ B(b′, λ)

∣∣ dP(λ) .

Now we use the following simple inequality: if |x|, |y| ≤ 1, then |x−y|+|x+y| ≤ 2.
This is easy to see by squaring the last expression. We get

(|x − y| + |x + y|)2 = 2x2 + 2y2 + 2|x2 − y2| ,

which is equal to 4x2 (if x2 ≥ y2) or 4y2 (if x2 < y2 ), so it is in every case less
than or equal to 4. Hence, we have

|B(b, λ)− B(b′, λ)| + |B(b, λ)+ B(b′, λ)| ≤ 2 ,

and together with (10.26), we obtain the CHSH inequality

|E(a, b)− E(a, b′)| + |E(a′, b)+ E(a′, b′)| ≤ 2 .

10.5 Nonlocality and Faster-than-Light Signaling

A plausible concern is that the nonlocality of quantum mechanics might be incom-
patible with Einsteinian relativity. So far, we have only considered non-relativistic
quantum theories, but the existence of nonlocal correlations is an empirical fact, and
if that fact made any relativistic account impossible, one of the pillars of modern
physics would be shattered.

There is indeed a certain tension between nonlocality and relativity, but it is
not a straight-up contradiction. This tension and possible ways to resolve it will be
discussed in more detail in Chap. 11. There is one major concern, though, that we
shall address right away: it would be natural to think that the nonlocal correlations
of quantum mechanics could be exploited for superluminal signaling, i.e., faster-
than-light communication. Fortunately, this turns out to be impossible.

Why are superluminal signals so problematic? Common wisdom is that they are
explicitly excluded by special relativity, though this statement is oversimplified and
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requires further elaboration, if only because the notion of “signal” is not so very
precise. The fundamental observation is that, in relativistic spacetime, there is no
absolute temporal order between spacelike separated events. If A and B are two
events such that B lies outside the light cone of A and vice versa, then there are
some coordinate frames in which A occurs before B and some in which B occurs
before A (and indeed some in which the two events occur at the same time). The
worry is now that superluminal signaling could lead to causal paradoxes.

Consider the following hypothetical scenario. Candidate A is competing in a
game show and must chose between three doors, one of which contains the jackpot.
She chooses door number 1 which turns out to be a loser. However, sneaky as she
is, she has devised a plan. She has prepared an entangled quantum system to send
a superluminal signal to her accomplice B with the information that the prize is not
behind door number 1. In the reference frame of A, the signal arrives more or less
instantaneously, that is, the delay can be made arbitrarily small.

Meanwhile, B is in a spaceship moving at a constant speed close to the speed of
light. Relative to her rest frame, the message from A comes from the future! Now, by
sending a superluminal signal back to A, she can warn her not to pick door number
1 before A makes her choice in the game show. So this time, A, having received the
tip “from the future”, chooses door number 3 and takes home the jackpot.

But wait a minute. This is not just cheating. The described series of events is
logically inconsistent. If A picks door number 3 because B told her to, she never
opened door number 1, never had to signal to her accomplice, and never received
the tip in the first place. So we had better make sure that our physical theory does
not allow such signaling schemes.

Consider the EPRB experiment from the point of view of Bohmian mechanics.
Let us assume that the first experimenter A could know the exact positions of the
entangled particles at time t = 0, when the system is prepared, and thus predict
the exact measurement outcomes from the deterministic Bohmian laws. She could
thus agree with her colleague B on the following communication protocol. The
Stern–Gerlach apparatus of B always remains oriented in the z-direction. Thus, if
A measures the spin of her particle in the x-direction, B will register “spin UP” or
“spin DOWN” with equal probability 1/2. To send a signal, however, A can decide
to measure the z-spin of her particle if and only if she knows that the outcome
will be “spin UP” (otherwise, she keeps measuring the x-spin). This increases the
probability of B measuring “spin DOWN” from 1/2 to 3/4. Hence, with a sufficient
number of measurements, B can determine with great confidence whether A is
signaling or not. And with a binary code of “signal” or “no signal” (1 or 0), the
two could exchange arbitrarily complex messages faster than the speed of light.

The impossibility if this superluminal communication follows from the theorem
of absolute uncertainty, proved in Sect. 4.2 as a consequence of quantum equilib-
rium. Experimenter A cannot know the particle positions and thus the outcome of
the spin measurements with greater accuracy than corresponding to the Born rule.
In the present case, with an EPR pair prepared in the spin singlet state, this means
that A cannot predict more about the spin measurements than that they will yield
“spin UP” and “spin DOWN” with probability 1/2.
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In general, absolute uncertainty implies that the experimenter cannot reliably
choose her parameter settings in any way that leads to different outcome statistics
than those predicted by quantum mechanics. In this sense, i.e., in the sense of Born’s
rule, the outcomes of the spin measurements are random. And by averaging over the
possible outcomes of A’s measurement (here, A = +1 and A = −1), we obtain for
the marginal distribution of the distant measurement event B

∑

A=±1

P(B | A, a, b)P(A | a) = P(B | b) , (10.27)

which is independent of the parameter a. This means that A cannot influence the
measurement statistics of B, and, of course, vice versa. Equation (10.27) is therefore
also known as the no signaling condition. For quantum mechanical correlations, this
condition is always satisfied, even for entangled systems that violate the locality
assumption (10.12), like those used to derive the Bell or the CHSH inequality
(10.18).

In the context of the GRW theory the status of (10.27) is even more evident. Here,
the measurement outcomes A and B are intrinsically random (and only determined
through the random collapse process), so there’s nothing the experimenters could
know even in principle that would allow them to predict these outcomes with higher
accuracy. In the Many Worlds theory, (10.27) holds within individual branches to the
extent that Born’s rule does. From the more holistic point of view, it is impossible to
influence measurement outcomes anyway. Whatever the experimenter may do, the
outcome of the spin measurements will always be “spin UP” and “spin DOWN”.

In conclusion, quantum nonlocality should be first and foremost understood
according to Definition 10.1, that is, in terms of locally inexplicable correlations
(see also the subsequent Remark 10.2). “Signaling”, however, requires a sufficient
degree of (agential) control over such correlations—and all quantum theories agree
that this is impossible.

Superluminal communication is often made out as the bogeyman when dis-
cussing alleged unphysical consequences of nonlocal interactions. These concerns,
however, are based on certain intuitions about free will and human intervention that
would result in causal paradoxes in hypothetical situations. It is also conceivable—
though maybe not very plausible—that nature allows for violations of relativistic
causality while some cosmic principle (maybe by enforcing particular boundary
conditions) excludes paradoxical solutions. In terms of our previous example, this
could mean that the laws of nature only allow for solutions in which candidate A
picks the right door from the very beginning, e.g., because her accomplice B told
her in advance that the prize was behind door number 3, which B knew because A
signalled it after opening door number 3. This sequence of events also describes a
causal loop, but in this case it is logically consistent.

In the relativistic context, there is, however, another (better) reason to insist on
the no signaling condition (10.27). We recall that, in relativistic spacetime, there
is no absolute temporal order between two spacelike separated events A and B. In
some reference frames, A occurs before B, and in other reference frames B occurs
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before A (and in some particular frames, the two events are simultaneous). In order
for the measurement statistics to be consistent with a relativistic (Lorentz covariant)
description, they cannot therefore depend on any order in which spacelike separated
measurements are performed. We already know what this means formally from
Chap. 7: the operators associated with such measurements (and hence their spectral
decompositions) must commute. Then and only then will we find, for arbitrary wave
function ψ and measurement outcomes A, B, that

P(A,B) = 〈ψ | PAPB | ψ〉 = 〈ψ | PBPA | ψ〉 , (10.28)

independently of the order of measurement. From the commutator relations

[PA,PB ] = 0 (10.29)

of the associated projections, the no signaling condition (10.27) can be readily
derived. For two commuting spectral decompositions (P a

A)A and (P b
B)B (here

indexed by the control parameters a and b), we have

∑

A

P(B | A, a, b)P(A | a) =
∑

A

〈ψ | P b
BP a

A | ψ〉
〈ψ | P a

A | ψ〉
〈ψ | P a

A | ψ〉 =
∑

A

〈ψ | P b
BP a

A | ψ〉

=
∑

A

〈ψ | P a
AP b

B | ψ〉 = 〈ψ | (
∑

A

P a
A

)
P a

BP b
B | ψ〉

= 〈ψ | P b
B | ψ〉 = P(B | b) ,

where we have used the fact that
(∑

A Pa
A

)
is the identity operator.

In the context of the EPRB experiment, it is easy to check that the spin
observables commute since the operators act on only one tensor component of the
entangled wave function. That is,

(
σ (1)

a ⊗ 1
)(

1⊗ σ
(2)
b

) = σ (1)
a ⊗ σ

(2)
b = (

1⊗ σ
(2)
b

)(
σ (1)

a ⊗ 1
)
.

A final warning, however. For the reasons just explained, relativistic quantum (field)
theories generally postulate the commutator relation (10.29) for observables or field
operators associated with spacelike separated regions of spacetime. In the literature,
this often goes by the misleading name “locality condition”, since it is a condition
on local operators. However, as we just saw, (10.29) has little to do with locality in
the sense of Bell—which is also violated in relativistic quantum theories, and if it
wasn’t, these theories would be wrong—although it does guarantee the relativistic
consistency of measurement statistics and, as proven above, the impossibility of
faster-than-light signaling.
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I don’t think we have a completely satisfactory relativistic quantum-mechanical model,
even one that doesn’t agree with nature, but, at least, agrees with the logic that the sum
of probability of all alternatives has to be 100%. Therefore, I think that the renormalization
theory is simply a way to sweep the difficulties of the divergences of electrodynamics under
the rug. I am, of course, not sure of that.

Richard P. Feynman, Nobel Lecture 19651

This will be a very hard chapter. Not because of abstract and technically advanced
mathematics, which can easily be learned as soon as the underlying physics is clear,
that is, as soon as the need for abstraction is evident. It will be hard for two reasons.
First, there does not exist a fundamental, mathematically coherent and consistent
formulation of a relativistic quantum theory with interaction that could extend the
analysis of the foregoing chapters to relativistic physics. We shall say more about
that in a moment.

The second reason is the tension between the nonlocality of Nature, which we
have talked about, and relativity. It is general folklore that, according to relativistic
physics, signals cannot be sent faster than the speed of light. This is too easily
misread as: interactions can at best happen with the speed of light so we’re in for
trouble, given the nonlocality of Nature. But how, then, can these two features be
rendered compatible?

As already discussed in Sect. 10.5, quantum mechanical nonlocality cannot be
used for superluminal communication. In fact, interactions are fundamental, while
transmissions of signals in the sense of relativity theory belong to another category,
viz., a thermodynamic one. Nevertheless it seems that the nonlocal correlations in
the sense of Bell need some kind of synchronisation or absolute simultaneity which
would go against the fundamental principles of relativity. Hence there does exist a

1Online version: http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lectu
re.html
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tension between relativity and nonlocality.2 The aim of this and the next chapter will
be to understand this better.

But first we wish to explain our claim that a good fundamental relativistic
quantum theory is still lacking, where “good” means a formulation which is as
mathematically clean and consistent as Schrödinger’s equation is for non-relativistic
physics. That claim may look at first sight as though it goes too far, since courses
on quantum field theory are standard courses in the physics curriculum and usually
taken as synonymous with relativistic quantum physics. Moreover and in particular,
the so-called Standard Model of particle physics is a quantum field theory which is
empirically enormously successful. So what exactly do we have in mind?

11.1 Difficulties of “First” and “Second” Class

In 1963, the journal Scientific American published a famous and since then often
cited essay by Paul A.M. Dirac with the title The evolution of the physicist’s picture
of nature. In this, he described the actual state of quantum theory and in particular of
relativistic quantum theory, pointing out the most important open problems. These
he separated into “class one difficulties” and “class two difficulties”, later referred
to by Bell as “first class” and “second class”. The first class difficulties are largely
those we have discussed so far in this book: the measurement problem or the missing
ontology in quantum mechanics. About those, Dirac says that their solutions will
have to wait until the second class difficulties have been solved.

11.1.1 InfiniteMass

The second class difficulties are first of all technical and refer to the formulations
of relativistic field theories, which contain in general infinite terms, something like
a division by zero which we know is mathematically problematic. The first such
difficulty is a well known nuisance which already appears in the first relativistic
theory, namely, Maxwell–Lorentz electromagnetism. It is called ultraviolet diver-
gence, because it has to do with ultra high energies (and hence short length scales)
and because high energy radiation begins in the ultraviolet spectrum. In order
to comfort us, it is often said that this divergence shouldn’t come as a surprise,
because the Maxwell–Lorentz theory is only a low energy approximation to a
fundamental theory (still to be found), in the sense that situations corresponding
to low energies can be dealt with using Maxwell–Lorentz theory. These can be
situations in which the fundamental nature of the elementary charges plays no role,
as when electromagnetism is used in engineering practice.

2See T. Maudlin, Quantum Non-Locality and Relativity, 3rd edn, Wiley-Blackwell, 2011.
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Be that as it may, Dirac’s hope for a mathematically consistent theory has still
not been fulfilled and we still have to deal with ultraviolet divergencies—also in
quantum field theory. We wish to discuss briefly the simplest example. It has to do
with the Coulomb field of an electrical point charge, for example, an electron.3 The
Coulomb field energy, which runs along with the electron with charge e, diverges
at the position of the electron, let’s say at r = 0, where it goes as F ∼ e2/r .
According to the relativistic mass–energy equivalence E = mFc2, the field itself
adds the divergent contribution

mF ∼ lim
r→0

e2

rc2 = ∞

to the mass of the electron. This is also referred to as the electromagnetic mass of
the electron arising from the “self-energy”. Hence the electron, which is inseparably
connected to its own Coulomb field, would have an infinite mass, which contradicts
our experience. One idea here is to say that the mass m of the electron has two parts,
the “bare” mass m0 and added to that the field mass mF, whence m = m0 + mF.
Since the measured mass m of the electron is finite and mF = +∞, we must have
m0 = −∞+m, i.e., the bare mass is negatively infinite in exactly such a way that
the sum yields the measured mass.

But we know that energy can be gauged so that we can simply subtract a (possibly
infinite) constant and consider the difference as the physical energy. In this sense
we can arrive at the idea of just gauging the self-energy of the electron away,
which is more or less the same as saying that the electron does not interact with
its own field. Unfortunately, that does not work very well, because the field energy
shows up anyway as inertial mass in the dynamics of the electron: when an electron
accelerates, it radiates away, i.e., loses, electromagnetic energy. That loss appears
as a drag on the motion of the charge. If we compute this drag, which is due to the
action of the radiation on the electron itself (referred to as a self-interaction), we
find the self-energy reappearing in a contribution to the inertial mass.

In quantum theory, this friction effect is still present. It is manifested as a
broadening of the spectral lines in the so-called Lamb shift, whose computation
uses the trick of writing m0 = −∞ + m. This way of handling the divergence is
an example of what is known as renormalization, a way of getting from infinite
terms to finite ones which can then be gauged by the measured values (like the
measured electron mass). Renormalization allows very precise predictions and has
made quantum physics an empirically well-confirmed theory in recent decades.
Indeed, when we talk about quantum field theories these days, we really mean the
theory including these adjustments which allow us to get rid of the infinities in a
very clever way and which thus lead to predictions for experiments.

3We do not wish to further scrutinize the assumption of a point particle. It is sufficient here to
understand that a point has a relativistically invariant form. There are other relativistically invariant
forms, but so far considerations along such lines have not led to empirically adequate formulations.
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11.1.2 Infinite Pair Creation

There is another infinity which may occur, namely an infinity of particles. This
is also associated with Dirac, who had been looking for a relativistic Schrödinger
equation that would induce a timelike four-current jμ,μ = 0, 1, 2, 3, i.e., the
generalisation of the quantum flux (1.5), which when viewed as a four-current
j = (j0, j) has the zero-component j0 = ρ = |ψ|2. Before formulating his
famous Schrödinger equation, which lives in a Galilean spacetime, Schrödinger had
written down a relativistic equation which later became known as the Klein–Gordon
equation. This is a second order wave equation in the space and time variables and
it has the disadvantage that it does not in general allow for a current which is future-
oriented, i.e., it sometimes points towards the past.

In any case, Dirac managed to write down a relativistic wave equation which
allows a timelike current. It is known as the Dirac equation for the electron. In a
form which is not manifestly relativistic, and with an external electromagnetic field,
the Dirac equation reads

i
h̄

mc2

∂ψ(t, x)

∂t
= −

3∑

k=1

αk

[
i

h̄

mc
∂k + e

mc
Ak(t, x)

]
ψ(t, x) +

( e

mc2 A0E+ β
)

ψ(t, x)

≡ [
D0 + Ã(t, x)

]
ψ(t, x) . (11.1)

Let us just explain the notation. To begin with, t and x = (x1, x2, x3) denote the time
and space coordinates in a given reference frame, and ∂k = ∂/∂xk is shorthand for
the partial derivatives. m and e are the (measured) mass and charge of the electron
and c is the speed of light. αk are 4× 4-matrices built using the Pauli matrices, E is
the 4× 4 unit matrix, and

β =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ .

Finally, A = (A0, A1, A2, A3) = (A0, A) is the four-potential, known from
electrodynamics, whose derivatives yield the electric and magnetic fields. For
example, the magnetic field is given by B = ∇×A. In the second line of (11.1), D0

stands for the free Dirac operator without external field. ψ is no longer a complex-
valued function but a spinor, although it differs from the spinors appearing in the
Pauli equation (1.28), because it now has four components. Roughly speaking, we
may think of the Dirac spinor as built from two Pauli spinors.

The advantage of the above (non-manifestly relativistic) way of writing the Dirac
equation is that, by analogy with the Schrödinger case, we can now read the operator
on the right-hand side of (11.1) as the energy operator. The exact values of the matrix
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components are not important for our purpose. All we shall need for later is that they
satisfy the commutation relations

αjβ = −βαj . (11.2)

The conserved four-current has the form

jμ = (
(ψ,ψ), (ψ, α1ψ), (ψ, α2ψ), (ψ, α3ψ)

)
,

where (·, ·) denotes the spinor scalar product, as in (1.29), and the positivity of the
zero component (ψ,ψ) shows that the current is timelike.

Much more could be said about the Dirac equation, for example, that it can be
viewed as a kind of “square root” of the Klein–Gordon equation, or that we can
understand the four-potential A geometrically as arising from a “covariant deriva-
tive”, or again that the Dirac spinors can be viewed as carrying a representation of
the Lorentz group. However, we won’t need any of that for our present purposes,
and moreover these things can be found in many good textbooks.

Remark 11.1 (Dirac Equation in Relativistic Notation) To prepare for later discus-
sions, we write the Dirac equation in manifest Lorentz invariant notation. To do so,
we first define the Dirac matrices γ 0 := β, γ k := βαk , k = 1, 2, 3, which are
built from the matrices α and β mentioned above. By virtue of (11.2), we have the
following commutation relations:

{γ μ, γ ν} = γ μγ ν + γ νγ μ = 2ημν , (11.3)

where ημν = diag(1,−1,−1,−1) denotes the Minkowski metric. With these new
matrices we can bring the Dirac equation into the simple form

[
γ μ(i∂μ − eAμ)−m

]
ψ = 0 , (11.4)

where we sum over repeated indices (here μ = 0, 1, 2, 3) and where the units are
now chosen such that the speed of light and Planck’s constant are equal to 1. The
four-current can be written compactly as

jμ = ψγ μψ , (11.5)

with ψ := ψ+γ 0, and where ψ+ is the transposed complex conjugate of ψ . The
Dirac equation implies that the current is conserved, i.e., its four-divergence is zero,
viz.,

∂μjμ = 0 . (11.6)
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If we write the four current with respect to a special frame of reference as jμ =
(ρ, j), we recognize the generalization of the quantum flux equation ∂tρ+div j = 0.

Let us now turn to the energy spectrum and note that, in the rest frame of the
electron, i.e., when its momentum is zero, and if we assume that the field A is also
zero, we can drop the terms in α in the Dirac equation. The eigenvalue equation for
the rest energy is then

Eψ = mc2βψ ,

where β has eigenvalues 1, 1,−1,−1 with canonical eigenvectors en, n = 1, 2, 3, 4.
If we change to a moving frame of reference, all values in (−∞,−mc2) ∪
(mc2,+∞) can become energy values.4

This is good and at the same time bad. It is bad, because an energy spectrum
which is unbounded from below will allow the electron to radiate an unlimited
amount of energy. That would clearly solve all energy problems in the world, but it
is of course unphysical. The above result is good, because reflection on this problem
led Paul Dirac to describe a phenomenon which would forever change our view of
the world. That phenomenon was pair creation and pair annihilation. Dirac’s idea
was that, by Pauli’s exclusion principle, an electron would not be able to fall to
arbitrarily low energy values if the negative energy states were already occupied,
i.e., an electron can only sink into the negative energy spectrum if one of the states
is empty.5 The electrons occupying the negative energy spectrum are “invisible” to
us, but they can be lifted to positive energies and thus become detectable.

The way the negative energy states of the Dirac equation are filled up is somewhat
analogous to the way in which electrons occupy the possible stationary states around
an atomic nucleus, except that the charge of the nucleus determines the number of
electrons, which then organize themselves according to the Pauli principle, from
lower to subsequent higher energy levels. This structure underlies, in particular, the
periodic table of elements. Here, we can take an infinite basis, e.g., ϕ1, ϕ2, . . . , of
the negative energy subspace of the Dirac Hamiltonian and say, in analogy with the
atom, that each negative energy state is occupied by one electron (see Sect. 11.3.1
for a more precise explanation). This construction is called the Dirac sea. Of
course, in contrast to the atom, the Dirac sea contains infinitely many particles and
no positively charged nucleus around which the electrons assemble. The negative
energy states come from the dynamics of the Dirac equation alone.

4If the field A is not zero, then there is in general no longer a spectral gap in (−mc2,mc2).
5One may turn the argument around and take the avoidance of the radiation catastrophe as
justification for the Pauli exclusion principle. In fact, along these lines, a generalization of the
Pauli exclusion principle was later established, known as the spin–statistics theorem, which states
that many-particle half integer spin wave functions must be antisymmetric, i.e., fermionic wave
functions (see Remark 4.9).
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The Dirac sea is mathematically equivalent to the so-called vacuum of the
quantum field theory built on the basis of the Dirac equation, i.e., quantum
electrodynamics (QED). It is important to emphasize this mathematical equivalence
because it is often claimed that the Dirac sea is an “old and outdated” picture
which in the modern literature has been made precise by the notion of the vacuum,
suggesting that the sea picture is kind of problematical while the vacuum is
unproblematical because it is precise. So let us repeat that, mathematically, the two
approaches are equivalent, so if a mathematical problem occurs in one, then it also
occurs in the other.6

Let us now consider this sea with infinitely many electrons. By the antisymmetry
of the wave function, or equivalently, by the Pauli principle, electrons cannot sink
into the sea (by analogy with the electrons in an atom), thereby radiating energy.
But one big question remains: Why doesn’t the sea create problems because of its
infinite negative charge and mass? Why don’t we feel that? Dirac’s opinion, which
is the generally accepted one, was that the distribution of the particles in the sea
would fill the universe so homogeneously that all possible influences would average
out to zero. However, once in a while, in “certain physical situations”, we should
notice some effects of the Dirac sea, in particular, whenever a particle is lifted from
it to a positive energy state (≥ mc2). Then an electron (as we know it) will suddenly
appear, along with an unoccupied state or “hole” in the sea. The latter will behave
like an electron with positive charge. If we call this hole a positron, then we have the
phenomenon of pair creation. From the hidden sea, there thus appears an electron
and a positron. If on the other hand there is a hole in the sea, then an electron can
fall into that hole and we have pair annihilation—the electron and the hole both
disappear. All particles are nevertheless governed by the Dirac equation.

In this construction, however, we have not taken into account the fact that charges
interact with each other by sending and receiving electromagnetic radiation. The
reason for this omission is that an external electromagnetic field (the field A in the
Dirac equation) already creates a problem of infinity. Indeed, the weakest field A
will suffice to lift infinitely many particles from the sea! How can we see that? By
considering the conditions under which an electron can be lifted. We do that by
revisiting our simple insight regarding an electron at rest. Here, the negative energy
eigenvectors e3, e4 will develop positive energy components under the influence of
the A-field in the Dirac equation. The latter field appears in combination with the
α-matrices according to

e

mc
α · A := e

mc

3∑

k=1

αkAk(t, x) .

6See, e.g., D.-A. Deckert, D. Dürr, F. Merkl, M. Schottenloher, Time-evolution of the external field
problem in quantum electrodynamics. J. Math. Phys. 51 (12), 122301 (2010); arXiv:0906.0046,
for more details.
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Recalling the commutation relation (11.2), we see that βαj e3 = −αjβe3 = αj e3,
which means that αj e3 becomes an eigenvector of positive energy. In short, A 
= 0
“rotates” negative energy eigenvectors onto positive ones, and the magnitude |A| of
the field doesn’t matter. As long as it is not equal to zero, the rotation will occur.7

And this in turn means that infinitely many pairs will appear. Such a situation can no
longer be handled in the formalism of Hilbert spaces (actually Fock spaces, which
are Hilbert spaces allowing variable particle numbers) and unitary time evolutions
thereon8 (see Sect. 11.3.2 and the references in footnote 7 for a more detailed
discussion of the connection between the Dirac sea and Fock spaces).

However, this infinity of pair creations can be renormalized to get predictions for
experiments. For example, measurements are usually made in scattering situations,
i.e., situations where the field A in the Dirac equation is zero at very early and very
late times. We can consider a scattering experiment where particles collide and the
interaction happens only for a short period of time. This can then be understood as
follows: the infinitely many pairs are only present for a short period of time when the
interaction is present, and after that everything disappears more or less, back into the
Dirac sea, i.e., apart possibly from finitely many created pairs. For this reason, the
terminology of virtual particles is often used for the infinitely many pairs, because
they are only there for a short time to create a bit of mathematical trouble, but they
no longer appear in the products of the reaction process.

But mathematics and physics are different facets of the same thing, and if a
mathematical description slips out of our hands, we have a problem with our
physical picture of the world as well. Moreover, an ontologically complete theory
which is supposed to describe the world at every hour of the day and night cannot
restrict itself to describing scattering situations alone.

We conclude that the great innovation of relativistic quantum theory is first of all
that particles can be created and annihilated—at least, that’s the way things appear
to us. The Dirac sea picture explains this phenomenon by assuming that all particles
have always been and will always be there, but that we observe only those particles
which set themselves apart from the homogeneous equilibrium-like distribution—
the Dirac sea. The mathematical description, however, is problematic because even
weak interactions can lead to an infinite rate of pair creations.

7For a mathematically precise formulation, see D.-A. Deckert, D. Dürr, F. Merkl, M. Schottenloher,
Time-evolution of the external field problem in quantum electrodynamics. J. Math. Phys. 51 (12),
122301 (2010), arXiv:0906.0046; D. Lazarovici, Time evolution in the external field problem of
quantum electrodynamics. Thesis, LMU Munich, 2011, online version arXiv:1310.1778; D.-A.
Deckert and F. Merkl, External field QED on Cauchy surfaces for varying electromagnetic fields,
Commun. Math. Phys. 345 (3), 973–1017 (2016); arXiv:1505.06039.
8A general result like this is known in quantum field theory as Haag’s theorem. It can be
formulated, for example, by stating that free and interacting field operators lead to representations
of the canonical commutation relations which are not unitarily equivalent. In the Dirac sea picture,
this abstract result can be vividly and physically interpreted in terms of the creation of infinitely
many pairs.
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Another possibility, suggested by the terminology “quantum field theory”, is to
replace the particle ontology by a field ontology, where the notion of particle (when
we talk, for example, of an electron) merely refers to a particular field configuration.

11.2 Field Ontology: What Exactly Is It?

It is unlikely to be immediately clear what is meant by “field ontology” in the
connection with quantum fields. Here we shall allow ourselves to go beyond the
scope of this book and talk about something that lies near to hand physically, but
which is nevertheless mathematically rather demanding. In this section, the reader
will be asked to endure a little mathematical abstraction.

By analogy with quantum mechanics, we can approach the question of the field
ontology in the following way. In an N-particle system we have a wave function
ψ(q1, . . . , qN, t) on the configuration space of the N particles. If we now want
to talk instead about field configurations, we can replace the point (q1, . . . , qN) in
configuration space by a field configuration. What this means is the following. A
physical field is first and foremost a function f : R3 → R

n, where n = 1, 2, . . ..
For n = 1, this is called a scalar field. In contrast, the electric field is a vector-
valued field, since it takes values in R

3. In this context, physical fields are thus
functions on physical space. They can have other mathematical features as well,
such as being differentiable, but for the time being we shall ignore such details. The
set of all functions (for a given n) will be denoted by D . This set replaces the N-
particle configuration space R

3N , i.e., an element f ∈ D is a field configuration!
The wave function now becomes a “super wave function” Ψ : D → C

k , where k

captures the spinor nature of the wave function. Instead of ψ(q1, . . . , qN, t), with
(q1, . . . , qN) ∈ R

3N , we now have Ψ (f, t) with f ∈ D .
Let’s pursue this analogy a little further. In the mathematics of quantum

mechanics, the generic position of a particle gets associated with a position operator
simply by defining

X̂ψ(x) := xψ(x) ,

which means that X̂ is nothing but a multiplication operator. Accordingly, we now
associate with fields f operator-valued fields, i.e., quantum fields F̂ (x):

F̂ (x)Ψ (f (x)) := f (x)Ψ (f (x)) .

We also know [see (1.46)] that the operators satisfy the classical equations of
motion. In this sense, the quantum field satisfies the classical field equation—
for example the Maxwell equations—after “quantisation”. Ignoring the technical
details, we can then think about a quantum version of the electromagnetic field.

In Sect. 11.3, we shall talk in more detail about the Fock space associated with
the Dirac theory of electrons, which also goes under the name of quantum field
theory. However, this immediately raises the question of what field configurations
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should look like in this case. For example, one might think that a field configuration
would represent a particle configuration in some way, e.g., by distinguished “bump
configurations” in the field. But that does not work out, because a Dirac super
wave function on fields in the above sense does not exist. The description of
electrons within Fock space (see Sect. 11.3) is probably the only reasonable one.
The reason is that electrons are fermions, i.e., the many-particle wave function
must be antisymmetric (see Sect. 4.4), and this antisymmetry conflicts with the
representation by super wave functions as described above. Fermions are not
conducive to a naive field ontology, while bosons are. One could say that fermions
are in fact particles, while “bosons” are merely a manner of speaking.

Nevertheless, bosons are commonly viewed as particles. For example, think of
photons, the quanta of electromagnetic fields. A first thought might once again be
that we should “see” the bosons in the field configuration as “bumps” in the field.
But that is also more or less impossible, as we shall explain later on. For now, let us
continue with the field ontology.

A Bohmian field ontology could, for example, be handled in a rather analogous
way to a particle ontology. Instead of a vector field on the configuration space, which
determines the trajectories of the particles, we now have a vector field on the infinite-
dimensional function space D . Instead of the partial derivatives, we now have a
functional derivative9 δ/δf , whence the analogy goes as follows. As in (4.2), we
write Ψ in polar form

Ψ (f, t) = R(f, t)eiS(f,t) ,

then use the phase S to define the evolution of the actual field configuration, i.e.,
plug the actual field configuration F(x, t) into the guiding equation

∂F (x, t)

∂t
= δS(f, t)

δf

∣∣∣∣
f=F(x,t )

,

where the super wave function Ψ satisfies a functional Schrödinger equation,
which is an infinite-dimensional partial differential equation. The “second class”
difficulties would in this case relate to the question of whether expressions like the
infinite-dimensional partial differential equation are mathematically well defined in

9This is a natural generalisation of the directional derivative of functions of many variables, in
which the derivative is a linear map of directional vectors to real values (viewed geometrically as
the value of a slope on a surface). In short, 〈∇F(x), h〉 is the derivative of F in the direction h at
the point x. In the present case, we have an uncountable set of variables and the directional vector
becomes a function, while the scalar product sum is replaced by an integral. The definition is thus,
for “test functions” h,

∫
δH(f )

δf

∣∣∣∣
f=F (x)

h(x) dnx = lim
ε→0

H
(
F(x)+ εh(x)

) −H
(
F(x)

)

ε
.



11.2 Field Ontology: What Exactly Is It? 203

physically relevant situations. This would be more or less equivalent to the problem
of whether the super wave functions, which should be elements of an appropriate
Hilbert space, have a well defined unitary evolution.

This requires more elaboration. A Hilbert space of super wave functions would
need a scalar product, which would be a generalisation of the known scalar product
of the N-particle Hilbert space, viz.,

〈ψ|ϕ〉 =
∫

R3N

ψ∗(q1, . . . , qN)ϕ(q1, . . . , qN) d3Nq ,

to infinite dimensions. Recall that the meaning of |ψ(q1, . . . , qN)|2 d3Nq is the
probability distribution of the positions of the N particles. What expression could
serve to generalise that in the infinite-dimensional space of field configurations? In
the theory of measures and integration, we learn about the volume measure known
as Lebesgue measure, but we should not be too surprised to find that no such infinite-
dimensional Lebesgue measure exists. How could it? If we think about the volume
of a cuboid as length times width times height and try to generalise that to infinitely
many coordinate axes, we could only get zero, one, or infinity. In short, no such
(translation and rotation invariant) volume measure exists on the function space D .

But measure and integration theory can nevertheless be adapted to function
spaces. It may surprise the reader to learn that the theory was also founded by
Albert Einstein, through his work on Brownian motion, which eventually led to
the acceptance of atomism in modern physics. We can’t go into much detail here,
but recall that a Brownian particle follows an erratic path—in the mathematical
description, it is actually continuous, but nowhere differentiable. On such erratic
trajectories, we can indeed construct a measure, which is in fact an infinite-
dimensional Gaussian measure on the continuous functions on R. This is called the
Wiener measure μW, named after Norbert Wiener (1894–1964), who did pioneering
work on this problem.

To flesh out these remarks a little, let us write down as an example the Wiener
measure μW on a so-called cylinder set. This is a set of paths specified by finitely
many time points t1, . . . , tn at which the paths B : R → R take values within
specified sets, for example, within the infinitesimal intervals dx1, . . . , dxn:

μW
( {B(t1) ∈ dx1, B(t2) ∈ dx2, . . . , B(tn) ∈ dxn}

)

=
exp

(
− x2

1

2Dt1

)

√
2πDt1

exp

[
− (x2 − x1)

2

2D(t2 − t1)

]

√
2πD(t2 − t1)

. . .

exp

[
− (xn − xn−1)

2

2D(tn − tn−1)

]

√
2πD(tn − tn−1)

dx1 . . . dxn .

This is an n-dimensional Gaussian measure (actually the probability for paths being
in that cylinder set) with “diffusion constant” D > 0. If we decrease the distances
between the base points ti to zero, while increasing their number accordingly to
approximate the continuum, we can consider “tubes” of possible paths in function
space, and the Wiener measure determines the “content” or “volume” of these tubes.
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With a little practice on Gaussian integrations, it is straightforward to compute
the expected value:

E

[(
B(t) − B(s)

)2
]
=

∫

R

(x2 − x1)
2

exp

[
− (x2 − x1)

2

2D(t2 − t1)

]

√
2πD(t2 − t1)

dx2 = D · (t − s) .

Heuristically, this suggests that B(t)−B(s) behaves as
√

t − s, which then implies
that

B(t) − B(s)

t − s
∼ 1√

t − s
,

and hence that the quotient goes to infinity when t → s. However, that just
means that the Brownian paths are nowhere differentiable, as already pointed out.10

Denoting the set of continuous functions by C , we can use the Wiener measure to
define the Hilbert space L2(C , dμW) of square-integrable super wave functions on
“Brownian paths”, i.e., on fields on R.

By analogy, we can attempt first to construct a Gaussian measure on the physical
field configurations, so that we can then define the absolute square of the super
wave function as the probability density of the field configurations. The aim is to
get a Hilbert space of super wave functions that are square integrable with respect
to the Gaussian measure μ (which needs to be constructed) on the field space D . In
short, we try to construct the Hilbert space L2(D, dμ).

One insight which grew out of this program is that the typical field configurations
of fields on R

3 are not functions but rather distributions. This means that the relevant
field space D which we introduced so nonchalantly above is rather “ugly” and
mathematically abstract. This should not be too surprising when we recall the non-
differentiability of Brownian paths, which can be seen as fields on R. If we recall the
construction of the Lebesgue measure, we may also recall that the “nice” points on
the real axis, namely the rational numbers, form a null set of the Lebesgue measure.
The “support” of the measure consists of the irrational numbers, and in fact only the
transcendental numbers among those.

What do we learn from that? The typical field configurations are really very wild
objects and the hope of seeing particles as “bumps” within such wild fields becomes
rather vain.

Thus the question remains: How can we get to the famous photons, or light
particles, in such quantum theories of fields? That comes about because, at least
in “simple” models, the Hilbert space L2(D, dμ) description in terms of field
configurations can be mapped to a description involving particle numbers, i.e.,
a Fock space description. In the next section, we shall study in more detail the
fermionic Fock space, which is a direct sum of antisymmetric (fermionic) wave

10In fact, the trajectories are Hölder-continuous with exponent 1/2, i.e., |B(t)−B(s)| ∼ |t − s|1/2.
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functions. In contrast, the Fock space which describes bosons consists of a direct
sum of symmetric wave functions. Each summand represents a certain particle
number. The map is defined on basis elements of the Hilbert space L2(D, dμ).
These can be expressed in terms of Hermite polynomials (indexed by multi indices)
which, in the simplest one-dimensional version, are the eigenfunctions of the
harmonic oscillator studied in elementary courses on quantum mechanics. The multi
indices (n1, . . . , nk), k ∈ N, can be ordered by their sum N = ∑k

i=1 ni , and the
Hermite polynomials with multi-index sum N are mapped to the basis elements of
the N-particle sector of Fock space. The reason why the multi-indexed Hermite
polynomials form a basis in the infinite-dimensional Hilbert space lies with the
structure of the functional Schrödinger equation for super wave functions, which
is a linear (albeit infinite-dimensional) wave equation and which, under Fourier
transform, can be viewed as an equation for infinitely many harmonic oscillators.

We must leave things like this, firstly because a proper mathematical formulation
would vastly increase the length of this book and secondly because such a formu-
lation would still only be an unfinished programme. The latter goes by the name of
“constructive field theory” and falls within Dirac’s second class of difficulties.

Different approaches or ansatzes can thus be adopted to formulate quantum field
theory, but the infinities which are so bothersome and which we would like to
sweep under the carpet will always resurface in one way or another—at least they
have done up until now. At the end of the day we must realize that the problem is
not just a quest for the right mathematical language, but that relativistic quantum
theory will require new physical insights. The infinities which appear abundantly
in the programme are not merely mathematical problems that we can try to solve
by new techniques. They are clear signs of fundamental physical problems which
will lead to a distortion of the notion of physical theory if we keep trying to
push them to one side: non-convergent perturbation expansions and unspeakable
limits of renormalization procedures become the substitute for perhaps two or three
fundamental equations which would take up three lines on a piece of paper, as
for example in Newtonian mechanics. To get from such fundamental equations to
observable phenomena, experience teaches us to expect hard, perhaps extremely
hard, analysis to be involved, but as physicists, we would have no reason to shy
away from such efforts if the physical theory lay clearly before our eyes.

11.3 Fermionic Fock Space

This is a further mathematical insertion which will not really help us come to grips
with the decisive questions. It is done for two purposes. First, we wish to understand
some of the common notions of relativistic quantum physics—Fock space, second
quantisation, and creation and annihilation operators—at least well enough to
demystify them. Second, we would like to make it clear that the description of pair
creation and annihilation in terms of the Dirac sea is indeed equivalent to the more
common language of particles and antiparticles.
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In relativistic physics, particles can be “created” and “annihilated”. To describe
this mathematically, we use a Hilbert space with variable particle number. This is
called a Fock space. Such a description is often referred to as second quantisation, a
foolish terminology that does not really mean more than what we just said: particles
can be created and annihilated.

When we construct the Fock space, we wish to take into account at the outset the
fact that the particles, electrons, are fermions, which are described by antisymmetric
wave functions (see Sect. 4.4). To do so we first introduce the antisymmetric product
of wave functions. Let H = L2(R3,Ck) denote the one-particle Hilbert space. For
two vectors ϕ1, ϕ2 ∈H , the antisymmetric product is defined as

ϕ1 ∧ ϕ2 := 1√
2

(ϕ1 ⊗ ϕ2 − ϕ2 ⊗ ϕ1) .

On the right-hand side, we have the tensor product of the two vectors (the spin
degrees of freedom are multiplied). If we focus on the position degrees of freedom,
we can read this as a pointwise product, that is,

ϕ1 ∧ ϕ2(x, y) = 1√
2

[
ϕ1(x)ϕ2(y)− ϕ2(x)ϕ1(y)

]
.

For N particles, the general expression is

ϕ1 ∧ ϕ2 ∧ . . .∧ ϕN = 1√
N !

∑

σ∈SN

(−1)σϕσ(1) ⊗ ϕσ(2) ⊗ . . .⊗ ϕσ(N) . (11.7)

Here, we sum over all possible permutations where (−1)σ is positive or negative
depending on whether the permutation consists of even or odd number of transpo-
sitions (commutation of two indices). This may be familiar from the definition of
the determinant. However, it is sufficient to remember that commuting two indices
yields a minus sign:

ϕ1 ∧ . . . ∧ ϕi ∧ . . . ∧ ϕj ∧ . . .∧ ϕN = −ϕ1 ∧ . . . ∧ ϕj ∧ . . . ∧ ϕi ∧ . . .∧ ϕN ,

and if two vectors are equal (or more generally if ϕ1, . . . , ϕN are linearly depen-
dent), the antisymmetric product is zero. If {ϕ1, ϕ2, ϕ3, . . .} is an arbitrary basis of
the one-particle Hilbert space H , then the N-particle Hilbert space for fermions is
spanned by the N-fold antisymmetric products:

N∧
H := span

{
ϕi1 ∧ ϕi2 ∧ . . .∧ ϕiN | i1 < i2 < . . . < iN

}
. (11.8)

But we should always bear in mind that a typical N-particle state is not a product
state but a linear combination (a superposition) of product states.
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We now define the fermionic Fock space by forming the direct sum over all
N-particle Hilbert spaces with 0 ≤ N <∞:

F :=
∞⊕

N=0

N∧
H . (11.9)

To understand this construction, the reader is advised to think about a typical
element of this space. In position space and at a given time t , the wave function
is defined on the disjoint union of configuration spaces

⊔∞
N=0 R

3N , i.e.,

Ψ (x1
1 ; x2

1 , x2
2 ; x3

1 , x3
2 , x3

3; . . . , t) = (c, φ1(x
1
1 , t), φ2(x

2
1 , x2

2 , t), φ3(x
3
1 , x3

2 , x3
3 , t), . . .) .

It is a superposition of states with different numbers of particles. The “zero particle
Hilbert space” is isomorphic to the field of complex numbers C, in which 1 is
called the vacuum state. This should simply be accepted as a useful mathematical
convention.

Remark 11.2 Note that the Fock space states are defined at a common time since the
notion of configuration space R

3N presupposes an absolute simultaneity (otherwise
we would need to introduce configurations of spacetime, something we shall address
briefly in Sect. 11.4). Therefore the construction is manifestly non-relativistic. In
scattering theory, however, where we compute transition probabilities between t =
−∞ and t = +∞, this is unimportant because they involve only asymptotically
freely evolving states which lead easily to relativistically invariant expressions.

Since the Fock space contains states with different numbers of particles, it is helpful
in describing the effects of particle creation and annihilation in an effective way. To
this end, it is useful to introduce maps which transform an N-particle state into a
state with N+1 or N−1 particles. These are the so-called creation and annihilation
operators. For χ ∈H , we define

a∗(χ)ϕi1 ∧ . . . ∧ ϕiN := χ ∧ ϕi1 . . . ∧ ϕiN , (11.10)

a(χ)ϕi1 ∧ . . . ∧ ϕiN :=
N∑

k=1

(−1)k+1〈χ, ϕik 〉ϕi1 ∧ . . . ∧��ϕik ∧ . . . ∧ ϕiN .

(11.11)

For practice, the reader should check the anticommutation relation

{a(χ), a∗(φ)} = 〈χ, φ〉 .
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The common manner of speaking is to say that the operator a∗(χ) “creates” a
particle in state χ and the operator a(χ) annihilates the indicated particle. Of course,
it is easy to understand why we might put things this way, but this manner of
speaking should be taken with a grain of salt. Clearly, an operator does not create a
particle; it is a mathematical notation.

With the help of creation and annihilation operators, we can lift linear maps from
H to Fock space. For example, the operator Â =∑

i,j αij |ϕj 〉〈ϕi | on H becomes

the operator ˆ̂A =∑
i,j αij a∗(ϕj )a(ϕi) on F . This is what is referred to as “second

quantisation” of the operator, presumably because we put a second hat on A. This
may seem at first sight a bit out of proportion, but it is at the end of the day a useful
mathematical formalism. There is no reason to feel intimidated by it.

11.3.1 Particles and Antiparticles

We now wish to discuss a complication when using the Fock space description of
the Dirac theory, i.e., quantum electrodynamics (QED). We have already seen that
the Dirac Hamiltonian (11.1) has a negative energy spectrum which is not bounded
from below. Coupling the Dirac equation to an electromagnetic field would lead
to the radiation catastrophe, because a single electron could radiate an unlimited
amount of energy by sinking into ever more negative energies. We talked about that
in connection with the Dirac sea picture. We shall pick up on that discussion in
connection with the Fock space construction.

The standard ad hoc solution within the Fock space construction consists in
transforming the negative energy states into positive energy states with opposite
charge. These antiparticles are called the positrons. This is done by introducing
what is called charge conjugation, i.e., an anti-unitary map C for which the
following holds: if ψ is a solution of the Dirac equation with negative energy then
Cψ is a solution of the Dirac equation with positive charge and positive energy. We
decompose the one-particle Hilbert space into subspaces of positive and negative
energy with respect to the free Dirac hamiltonian D0:

H =H+ ⊕H− . (11.12)

In the particle/antiparticle picture, we then have the electron states in H+ and the
positron states in CH−. The Fock space of the particle part of QED is now defined
as

F =
⊕

m+n=N, N=0,...,∞

m∧
H+ ⊗

n∧
CH− . (11.13)

The vacuum is the “zero-particle” state Ω := 1⊗ 1 ∈ C⊗ C (for m = n = 0).
Let {e1, e2, e3, . . .} be a basis of H+ and {e0, e−1, e−2, e−3, . . .} a basis of

H−. Think, for example, of energy eigenfunctions, ordered according to their
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eigenvalues. A typical Fock space state is now a linear combination of product wave
functions of the form

ei1 ∧ ei2 ∧ . . .∧ eim ∧ C ej1 ∧ C ej2 ∧ . . . ∧ C ejn , (11.14)

where 0 < i1 < i2 < . . . < im and 0 ≥ j1 > j2 > . . . > jn. Here, the number of
particles N = m+ n is variable (but the charge c = n −m is a conserved quantity
and hence constant). In terms of the creation operators,

a∗(ek) ei1 ∧ ei2 ∧ . . . ∧ eim := ek ∧ ei1 ∧ ei2 ∧ . . . ∧ eim ,

b∗(e−k)C ej1 ∧ C ej2 ∧ . . . ∧ C ejn := (−1)m C e−k ∧ C ej1 ∧ . . . ∧ C ejn ,

where k > 0 and m denotes the number of electrons, we can write (11.14) in the
form

a∗(ei1) · · · a∗(eim)b∗(ej1) · · · b∗(ejn) Ω . (11.15)

In the manner of speaking introduced above, a∗(·) generates an electron state and
b∗(·) a positron state, and we obtain the basis vectors of the fermionic Fock space
by successively applying these creation operators to the vacuum state Ω .

11.3.2 Fock Space as the Dirac Sea

Finally, we return once again to the Dirac sea in its mathematically rigorous form
to construct the Fock space from it. The physical picture is now different from the
one above. Instead of a variable number of electrons and positrons, we now have
an infinite number of electrons which occupy all negative states apart from a finite
number. It may be of some comfort to note that, in this approach, particles do not get
created from nothing and do not vanish into nothing. In this theory, these particles
are always there, albeit not visible to us.11 Moreover, this approach yields a clearer
understanding of the “second class” difficulty in constructing QED on a Fock space.
We shall say a bit more about that at the end of this section.

We write the ground state of the Dirac sea—the state in which all negative states
are occupied and no electrons are visible—as an infinite antisymmetric product:

Ω̃ = e0 ∧ e−1 ∧ e−2 ∧ e−3 ∧ . . . . (11.16)

Anyone with mathematical sensibilities will be concerned as to whether such an
infinite expression is well defined. However, this is not problematic because the

11D.-A. Deckert, M. Esfeld, and A. Oldofredi, A persistent particle ontology for QFT in
terms of the Dirac sea. In the British Journal for the Philosophy of Science, online version:
arXiv:1608.06141, 2016.
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antisymmetric product of countably many vectors can be identified (up to a constant,
which means projectively) with the subspace spanned by these vectors. In this sense,
the infinite product corresponds to the subspace H− of the negative energy states
and, up to a constant, (11.16) is independent of the choice of basis.12

Furthermore, creation and annihilation operators can be introduced for the Dirac
sea. For ek ∈H+, let ã∗(ek) add an electron with positive energy state ek to the sea,
i.e.,

ã∗(ek) e0 ∧ e−1 ∧ e−2 ∧ . . . := ek ∧ e0 ∧ e−1 ∧ e−2 ∧ . . . .

For e−k ∈H−, let b̃(e−k) erase the particle in the negative energy state e−k , i.e.,

b̃(e−k) e0∧e−1∧e−2∧. . . := (−1)ke0∧e−1∧. . .∧��e−k∧e−(k+1)∧. . . , (11.17)

where the expression is set to zero if the left-hand side does not contain the state
e−k . The possible states of the Dirac sea are now linear combinations of states of
the form

ã∗(ei1) · · · ã∗(eim)b̃(ej1) · · · b̃(ejn) Ω̃ , (11.18)

where 0 < i1 < . . . < im and 0 ≥ j1 > . . . > jn. This should be compared
with (11.15). Such a state contains m electrons of positive energy and n “holes”,
which are unoccupied states of negative energy. The number of visible particles
(including the holes) is thus N = m + n and the net charge relative to the ground
state Ω̃ is c = n−m.

By defining the linear map

F : ã∗(ei1) · · · ã∗(eim)b̃(ej1) · · · b̃(ejn) Ω̃

�−→ a∗(ei1) · · · a∗(eim)b∗(ej1) · · · b∗(ejn)Ω ,
(11.19)

we see at once that the Hilbert space of the Dirac sea states is isomorphic to
the fermionic Fock space. Specifically, the ground state Ω̃ corresponds to the
vacuum Ω . The occupied states of positive energy correspond to electrons and
the holes in the Dirac sea become positrons with positive energy and charge in the
particle/antiparticle language.

We note also that, in this isomorphism, the annihilation operator b̃(·) becomes a
positron creation operator b∗(·). The physical intuition behind this is now clear.
From a mathematical point of view, however, a consistency check is important,
for the following reason. A creation operator is normally linear in its argument,
which means, for example, that a∗(λϕ + ψ) = λa∗(ϕ)+ a∗(ψ) holds for arbitrary
λ ∈ C, and analogously for ã∗. An annihilation operator is normally anti-linear in

12D. Lazarovici, Time evolution in the external field problem of quantum electrodynamics. Thesis,
LMU München, 2011. Online version: arXiv:1310.1778.
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its argument, i.e., b̃(λϕ + ψ) = λ∗b̃(ϕ) + b̃(ψ), where λ∗ denotes the complex
conjugate. The positron creation operator b∗(·) is also anti-linear, however, because
it involves the anti-linear charge conjugation C [see (11.17)]. What does this tell
us? Perhaps just that the “creation” of a positron really is the creation of a hole left
when an electron has been lifted from the Dirac sea.

Remark 11.3 (Renormalization of Infinite Pair Creation) As already mentioned, a
magnetic field typically lifts infinitely many particles from the Dirac sea, i.e., the
Dirac sea comes with infinite pair creation, since charged particles like electrons
interact via electromagnetic radiation and hence magnetic fields are always present.
In the Fock space description which is commonly used nowadays, there is only
the vacuum from which particles are created, and it would be easy to think that
such Dirac sea infinities have been overcome. That is why this section is of special
importance: since the two descriptions are mathematically equivalent, it is clear
that some infinities must appear in the Fock space description as well. In the latter,
this is hidden in the assertion that the quantum mechanical evolution of interacting
fermions cannot be constructed on one and the same Fock space

The remedy for this can be understood very simply in the Dirac sea picture. As we
saw above, a magnetic field “rotates” the negative energy states to positive energy
states, so infinitely many particles with positive energy appear. But then why not
just take the “rotated” Dirac sea as the new Dirac sea, so that at best finitely many
particles are “above the sea”? In Fock space language, that would mean that the
vacuum has to be readjusted or redefined. Roughly speaking, the vacuum and with it
the whole Fock space changes with the changing magnetic field (for a mathematical
formulation see, for example, the references in footnote 7).

11.4 Multi-TimeWave Function

We shall come back to the question of first class difficulties in the context of
relativistic quantum mechanics in Chap. 12, but for the moment there is one more
technical question we would like to discuss. We saw in the earlier chapters that the
revolution in quantum mechanics lies in the wave function leading to entanglement
and nonlocality. In non-relativistic physics, the wave function is defined on the
configuration space of an N-particle system. But this configuration space is a
blatantly non-relativistic construct because it contains all possible configurations
of the system at a common time and hence presupposes an absolute simultaneity
which is not part of relativistic physics. The question which we wish to approach
now no longer concerns the creation or annihilation of particles, but rather how we
can come to a serious relativistic description of the wave function for a given particle
number N .

We can approach the problem in more general terms. A relativistic theory (we
shall always have in mind special relativity here) must be invariant under Lorentz
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transformations x = (t, x) �→ Λx, which describe a change of reference frame
in the four-dimensional Minkowski spacetime. Then a one-particle wave function
ϕ(t, x) = ϕ(x) in relativistic spacetime transforms under Lorentz transformation
according to

ϕ(x)
Λ−→ S[Λ]ϕ(Λ−1x) , (11.20)

where Λ−1 acts as a 4×4 matrix and S[Λ] denotes the representation of the Lorentz
transformation acting on the spinor components.

For an N-particle system, we can express the wave function at a given time t as

ψ(t, x1, x2, . . . , xN) = ψ(t, x1, t, x2, . . . , t, xN) . (11.21)

Then note that the N particle coordinates transform under Lorentz transformation
according to

(t, x1, . . . , t, xN)
Λ−→

(
Λ−1(t, x1), . . . ,Λ

−1(t, xN)
)
= (t̃1, x̃1, . . . , t̃N , x̃N) ,

(11.22)

where the times t̃1, . . . , t̃N are now generally different (if x1, . . . , xN are different).
In the new Minkowski coordinates, the N-particle wave function ψ would have to
assume the form

ψ(t, x1, t, x2, . . . , t, xN)
Λ−→ S[Λ] ⊗ . . .⊗ S[Λ]︸ ︷︷ ︸

N times

ψ
(
Λ−1(t, x1), . . . ,Λ

−1(t, xN)
)

= S[Λ] ⊗ . . .⊗ S[Λ]ψ (
t̃1, x̃1, . . . , t̃N , x̃N

)
, (11.23)

which is no longer an N-particle wave function at a common time. The obvious
solution, which also goes back to Dirac, is now simply to consider the wave
function (11.21) as a special case of the more general multi-time wave function

ψ : Γ ⊆ R
4 × . . .× R

4
︸ ︷︷ ︸

N−times

→ C
4 ⊗ . . .⊗C

4
︸ ︷︷ ︸

N−times

, (x1, . . . , xN) �→ ψ(x1, . . . , xN) ,

in which each position coordinate is supplemented with its own time coordinate

ψ(x1, . . . , xN) = ψ(t1, x1, . . . , tN , xN) .

In view of the single-time version (11.21), the natural domain of definition is not
the whole of R4N , but the subset of spacelike configurations

Γ :=
{
(x1, . . . , xN) ∈ R

4N | ∀i 
= j : (xi − xj )
2 < 0

}
, (11.24)
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where (xi−xj )
2 = (ti− tj )

2− (xi−xj )
2 denotes the scalar product with respect to

the Minkowski metric. Every (x1, . . . , xN) ∈ Γ lies in general in a curved spacelike
hypersurface Σ ⊂M , where M is Minkowski spacetime.

On the other hand, we can start with (x1, . . . , xN) ∈ ΣN and introduce the
multi-time wave function as ψΣ(x1, . . . , xN) by thinking in the following way. The
non-relativistic wave function is indexed by the time parameter t—corresponding to
a foliation of Newtonian spacetime into absolute simultaneity surfaces—while the
relativistic multi-time wave function is defined on general spacelike hypersurfaces.

To define appropriate Hilbert spaces, we introduce first the N-particle “tensor
current”

j
μ1...μN

ψ (x1, . . . , xN) := ψ(x1, . . . , xN)γ
μ1
1 · · · γ μN

N ψ(x1, . . . , xN) , (11.25)

with ψ = ψ∗γ 0
1 . . . γ 0, where the matrices γ

μi

i act on the spinor component of the
i th particle. We can integrate the current through a hypersurface Σ as follows:

∫

Σ

dσ1(x1) . . .

∫

Σ

dσN(xN) nμ1(x1) . . . nμN (xN)j
μ1...μN

ψ (x1, . . . , xN) ,

(11.26)

where dσ denotes the surface element and nμ is the vector field normal to Σ , which
is future directed and orthogonal to the hypersurface at every point. Thus, for every
configuration (x1, . . . , xN) ∈ ΣN , the contraction

ρΣ(x1, . . . , xN) := nμ1(x1) . . . nμN (xN)j
μ1...μN

ψ (x1, . . . , xN) (11.27)

defines a crossing density, integrated over the hypersurface in (11.26) (see Fig. 11.1).
It should now be checked that, if Σ is a hypersurface with constant t coordinates

in a given frame of reference, i.e., Σ = {(t, x) : x ∈ R
3}, then (11.26) yields the

standard |ψ|2 norm

∫
d3x1 . . .

∫
d3xN ψ∗(x1, . . . , xN)ψ(x1, . . . , xN) . (11.28)

This can be taken as the motivation for normalizing the wave function in the general
case by setting the quantity in (11.26) equal to 1 and interpreting the quantity
in (11.27) as a probability density, by analogy with Born’s rule, although this
interpretation is not unproblematic, as we shall see later (Remark 12.1).

Moreover, by analogy with (11.28), we would like to read (11.26) as a scalar
product. To do so, as a generalisation of (11.25), we introduce the tensor density

jμ1...μN [φ,ψ](x1, . . . , xN) := φ(x1, . . . , xN)γ
μ1
1 · · · γ μN

N ψ(x1, . . . , xN) .

(11.29)
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Fig. 11.1 The tensor current defines a crossing density which gets integrated over the hypersur-
face. Three flux lines are drawn as an example

This is a quadratic form in the two wave functions φ,ψ , such that

j
μ1...μN

ψ = jμ1...μN [ψ,ψ] .

This allows us to define the Hilbert spaces

HΣ := L2(ΣN, 〈·, ·〉Σ
)
, (11.30)

with the Lorentz invariant scalar product

〈φ, ψ〉Σ :=
∫

Σ

dσ1(x1) . . .

∫

Σ

dσN(xN ) nμ1(x1) . . . nμN (xN )jμ1 ...μN [φ,ψ](x1, . . . , xN ) .

Hence the wave functions are normalized according to

‖ψ‖Σ := √〈ψ,ψ〉Σ = 1 .

11.4.1 Time Evolution

It is appropriate now to talk about the dynamics of the multi-time wave function.
We would like to have a relativistic wave equation which defines a unitary evolution
between spacelike hypersurfaces, i.e., a family of unitary operators U(Σ,Σ ′) :
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HΣ ′ →HΣ such that, for arbitrarily chosen spacelike hypersurfaces Σ,Σ ′,Σ ′′ ⊂
M , we have:

i) U(Σ,Σ) = 1 ,

ii) U(Σ,Σ ′)U(Σ ′,Σ ′′) = U(Σ,Σ ′′) ,

iii) ‖U(Σ,Σ ′)ψ‖Σ= ‖ψ‖Σ ′ .

Here, unitarity is tantamount to conservation of the N-particle current (11.25). In
relativistic notation, we should thus obtain N continuity equations

∂μkj
μ1...μk...μN = 0 , k = 1, . . . , N , (11.31)

from which we must be able to derive the conservation of the total measure (11.26).
However, we are forced to admit that we do not know what the appropriate law

is—an empirically adequate and mathematically consistent equation for a many-
particle wave function has not yet been found. What we can do at least is to write
down the free evolution, i.e., without interaction. It is given by a system of N Dirac
equations, one for each time coordinate:

i
h̄

c

∂

∂t1
ψ = H1ψ ,

i
h̄

c

∂

∂t2
ψ = H2ψ ,

...

i
h̄

c

∂

∂tN
ψ = HN ψ ,

(11.32)

where

Hk = D0 = −
3∑

l=1

αk
l ih̄

∂

∂k,l

+mcβ (11.33)

is the free Dirac Hamiltonian (without fields) [see (11.1)] acting on the coordinates
of the k’th particle. In the free theory, we can easily check all desired properties—for
example, the invariance of the measure—but this is at best of academic interest since
we obviously live in a world with interactions, e.g., electromagnetic interactions.

The question is thus once again: How can we describe interactions in a consistent
manner in the relativistic spacetime? There have been attempts to answer this
question, but we cannot discuss them in detail here. In any case, a satisfactory
answer is still lacking. The canonical ansatz of quantum field theory consists in
coupling the Dirac Hamiltonian to an electromagnetic field and second quantising
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that field to get photons which are created and annihilated, thereby providing
an interaction between the electrons. Although the theory is not well defined,
as it contains the ultraviolet divergencies we talked about earlier, these can be
circumvented by renormalization tricks. We shall leave things like this and simply
admit that we do not know what the correct theory is.
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[The usual quantum] paradoxes are simply disposed of by the 1952 theory of Bohm, leaving
as the question, the question of Lorentz invariance. So one of my missions in life is to get
people to see that if they want to talk about the problems of quantum mechanics – the real
problems of quantum mechanics – they must be talking about Lorentz invariance.

John S. Bell, Interview with Renée Weber1

We have omitted a lot in our reconstruction of the current state of relativistic
quantum theory. For instance, the path integral formalism that is often hailed as a
manifestly relativistic version of quantum field theory while, in fact, it is merely
a technical reformulation that has just as many problems. Neither did we speak
about string theory and other approaches to a quantum theory of gravity that are
beyond the scope of this book. On the other hand, our critical assessment of quantum
field theory may have created the impression that we are insisting on pointless
mathematical rigor in the formulation of physical theories. We are not. Throughout
this book, we have deliberately stayed well clear of purely academic questions
like, for instance, the domain of self-adjointness of observable operators. Whoever
sees in those a key to understanding quantum mechanics is certainly wrong. What
we insist on are physical laws that make sense. Laws that do not merely describe
asymptotic scattering states (after enough massaging) but tell us how the universe
might actually work.

Here is Dirac once again, in the Scientific American article mentioned earlier:

It seems to be quite impossible to put this theory on a mathematically sound basis. At
one time physical theory was all built on mathematics that was inherently sound. I do not
say that physicists always use sound mathematics; they often use unsound steps in their
calculations. But previously when they did so it was simply because of, one might say,
laziness. They wanted to get results as quickly as possible without doing unnecessary work.
It was always possible for the pure mathematician to come along and make the theory

1Quoted from: M. Bell and S. Gao (Eds.), Quantum Nonlocality and Reality: 50 Years of Bell’s
Theorem. Cambridge University Press, 2016, p. 369.
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sound by bringing in further steps, and perhaps by introducing quite a lot of cumbersome
notation and other things that are desirable from a mathematical point of view in order to
get everything expressed rigorously but do not contribute to the physical ideas. The earlier
mathematics could always be made sound in that way, but in the renormalization theory
we have a theory that has defied all the attempts of the mathematician to make it sound. I
am inclined to suspect that the renormalization theory is something that will not survive in
the future, and that the remarkable agreement between its results and experiment should be
looked on as a fluke.

The last few decades, which Dirac has not been able to witness, have provided
continuous confirmation for both the remarkable empirical success of renormalized
quantum field theory and Dirac’s assessment that the theory evades a mathematically
consistent formulation. The undeniable accomplishments of the Standard Model of
particle physics, in particular, tell us that it must get a lot right and deserves to be
studied in much more detail than would be possible in this book. The ultimate goal
of physics, however, must be to embed the successful formalism into a fundamental
theory that is mathematically sound and conceptually clear.

So let’s assume that at some point in the near future, a new Einstein or Dirac
comes along and finds the right equation for the relativistic multi-time wave func-
tion; an equation that describes interactions in relativistic spacetime while avoiding
the problems of self-interactions and infinite pair creation. We still wouldn’t be
quite done, since we would still have to address the “first class problems”, i.e.,
avoid the measurement problem and underpin relativistic wave mechanics with a
clear ontology. In other words, we must understand how the three precise quantum
theories described in this book (or at least one of them) can be generalized to the
relativistic domain.

In this final chapter, we shall present possible approaches that are still incomplete
but can provide readers with a more comprehensive perspective on the subject. As
tentative or speculative as they may be, these approaches already show that we don’t
have to give up on a clear ontology and an objective description of nature, even when
it comes to relativistic quantum physics. They also show, however, that there is still
a lot of work to be done in order to arrive at theories that are as satisfying and well
understood as those discussed in the case of non-relativistic quantum mechanics.

12.1 ManyWorlds Interpretation of Relativistic Quantum
Mechanics

Everettians like to say that the Many Worlds theory is the only version of quantum
mechanics that also exists relativistically. That this cannot be true should be evident
from the fact that the Many Worlds theory is defined in terms of the universal wave
function and its unitary time evolution. Since we have no idea what relativistic
law determines this time evolution, and hence the wave function “at finite times”,
there is, as of today, no relativistic Many Worlds theory. More to the point is the
following statement: if we had a consistent, interacting, Lorentz invariant law for
the relativistic wave function—analogous to Schrödinger’s wave mechanics—we
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could apply a Many Worlds interpretation to it. Analysis of the relativistic wave
equation should yield a similar picture to the one in the non-relativistic case: a
branching (through decoherence) wave function of the universe in which we can
try to describe a multitude of semi-classical worlds.

At this point, we should say, however, that there are different opinions about how
exactly this splitting into worlds or histories should be understood. It is somewhat
frustrating that the Many Worlds theory does not yield an unambiguous answer,
but allows a variety of different interpretations, so to speak. Of these, we shall
highlight two, as applied schematically to a simple example. We consider two distant
systems, let’s say a measurement setup (“the Φ-apparatus”) with ready state Φ0,
and a second, spacelike separated system (the ψ-system) with wave function ψ0.
Suppose the measurement device carries out a “measurement” (on a third system,
ignored in the following), thus evolving into a decoherent superposition of the
possible measurement states Φ1 and Φ2. Before the Φ-apparatus and the distant
ψ-system get to interact with each other, their common wave function (omitting the
rest of the universe as well as normalization constants) evolves into

Φ0ψ0 −→ (Φ1 +Φ2)ψ0 = Φ1ψ0 +Φ2ψ0 . (12.1)

The question is now: Does the ψ-system exist once or twice?
From the 3N-dimensional perspective, we would say that the right-hand side

of (12.1) contains two decoherent branches of the wave function (Φ1 and Φ2 have
macroscopically disjoint supports) which should correspond to two separate worlds.
We thus have two copies of the ψ-system, one that exists in a world together with
the Φ-apparatus pointing to “1”, and one that exists in a world together with the
Φ-apparatus pointing to “2”. In this sense, the splitting into “worlds” would be a
global process, affecting the entire universe at once. This view is hard to reconcile
with relativity, though, for whether the measurement with the Φ-apparatus has
already occurred or not will depend on the reference frame or, more generally, the
hypersurface in which we look at the universal wave function.

We shall thus emphasize a different criterion and say this: in (12.1), the
measurement apparatus has already split, but at this point, the distant system in
the state ψ0 can still interact with both branches Φ1 and Φ2. The ψ-system has thus
not yet taken part in the branching, and it makes no sense to ask whether it exists in
the Φ1-world or in the Φ2-world.2

This corresponds, at least roughly, to the view advocated in particular by
David Wallace.3 This view tries to conceive the Many Worlds theory in a more
four-dimensional, i.e., spatiotemporal sense. In the spacetime region in which the
measurement has occurred, there is the Φ-apparatus pointing to “1” and the Φ-

2More formally, we may say that the property of coexisting in a world is not transitive: Φ1 and ψ0
exist in the same world, Φ2 and ψ0 exist in the same world, yet Φ1 and Φ2 do not.
3See D. Wallace, The Emergent Multiverse: Quantum Theory According to the Everett Interpreta-
tion. Oxford University Press, 2012.
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apparatus pointing to “2”. In the spacelike separated region of the ψ-system,
however, no branching has yet occurred, and the system (be it a second measurement
device, a human “observer”, or whatever) exists only once, in the state ψ0. The
branches of the apparatus wave function, however, will continue to interact with the
environment, whether it be only air molecules or the photon field (the environment
“measures” the pointer position, so to speak). Decoherence spreads, and after some
time, it will come to affect the ψ-system. The total wave function is then something
like Φ1ψ1 + Φ2ψ2, where ψ1 and ψ2 are entangled with different pointer states
of the apparatus. According to Wallace, it is only now that we should say that the
ψ-system has taken part in the branching, existing once in the state ψ1 in a world
together with Φ1, and once in the state ψ2 in a world with Φ2.

The advantage of this view is that, with a relativistic wave equation, decoherence
can spread at most with the speed of light, so that the branching of worlds,
originating in local events, could spread at most with the speed of light. More
basically, only to the extent that we can think about the Many Worlds theory in
spatiotemporal terms does it make sense to speak of a seriously relativistic theory
(otherwise it means nothing more than that the wave equation happens to have a
Lorentz symmetry).

And yet, however we want to think about it, the notion of a “world” will always
have a strikingly nonlocal character. Consider the EPR experiment with the two
spin measurements occurring in spacelike separated regions A and B. We write the
post-measurement wave function as

|Ψ 〉 = | ⇑〉A| ⇓〉B + | ⇓〉A| ⇑〉B , (12.2)

where | ⇑〉A, | ⇓〉B , etc., denote the macroscopic measurement devices in the
corresponding spacetime regions that have registered “Spin UP” or “Spin DOWN”.
Now, we would have to say that the | ⇑〉A apparatus in region A and the | ⇓〉B
apparatus in region B belong to one world, while the | ⇓〉A apparatus in A and | ⇑〉B
in B belong to another. And this is a manifestly nonlocal effect. It has not originated
from local interactions between the two devices, and nor can it be described as a
local feature of spacetime regions A and B individually.

We conclude this difficult (and not completely settled) discussion with the
following observation. To the extent that Many Worlds makes sense in the non-
relativistic case, it could, in principle, be generalized to a relativistic quantum
theory. The status of relativistic spacetime and localized objects in it remains
somewhat obscure, or at least disputed. But from a purely technical point of view, a
relativistic generalization is more straightforwardly obtained for Many Worlds than
for Bohmian mechanics or GRW, since we need only a unitary evolution of the wave
function and don’t have to worry about the Lorentz invariant formulations of things
like the Bohmian guiding equation or the GRW collapse law. Many Worlds could
then be thought of as the price we have to pay for reconciling relativity and quantum
physics.
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Is this our only option? In fact, it is not. As we shall discuss in the following,
relativistic generalizations of Bohmian mechanics and the GRW theory are possible,
as well—but they too come with a price tag.

12.2 Relativistic Bohm–Dirac Theory

If we think back to Bohmian mechanics and GRW, the role of the wave function in
these theories was first and foremost to determine and “synchronize” the motion and
the appearance, respectively, of the ontological entities, i.e., the particles in Bohmian
mechanics and the flashes in the GRWf theory. This synchronization, provided
by the entangled wave function, was crucial to understanding the nonlocality that
we discussed in detail in Chap. 10. At the same time, it makes the relativistic
generalization of these theories highly non-trivial, since in relativistic spacetime,
we no longer have hyperplanes of absolute simultaneity in which the motion of the
Bohmian particles or the localization of the GRW flashes can be synchronized.

Consider first the Bohmian theory. In non-relativistic Bohmian mechanics, the
particle configuration evolves along a vector field which is proportional to the
quantum flux jψ = (j1, . . . , jN) determined by the wave function ψ . We can write
this flux in a more relativistic notation as j

μ1...μN

ψ := j
μ1
1 ⊗ . . . ⊗ j

μN

N , μk ∈
0, 1, 2, 3, by setting the zero-component of the four-vectors to j0

k = ρ = |ψ|2.
The symbol ⊗ denotes the tensor product, but it can be thought of here as a simple
multiplication of the coordinates for our present purposes. The Bohmian guiding
equation (4.6) can now be written as:

Q̇
μk

k (t) = j
0...μk ...0
ψ

j0...0...0
ψ

(q1, . . . , qN)

∣∣∣∣
qi=Qi(t)

, (12.3)

with Q0
k(t) ≡ t . The relativistic multi-time wave function still defines a conserved

quantum flux in the form of the four-tensor (11.25). The classical velocity field,
however, is evaluated at the positions of N particles at the same time t , and in
relativistic spacetime, evaluation “at the same time t” makes no sense, since there
is no absolute simultaneity. Therefore, in order to formulate a Bohmian theory, we
need a distinguished family of hypersurfaces, i.e., a foliation of the four-dimensional
Minkowski spacetime into three-dimensional spacelike submanifolds:

F := (Σt)t∈R ,
⋃

t∈R
Σt
∼=M . (12.4)

Given a spacelike hypersurface Σ ∈ F and the worldline of the k th particle
Xk = X

μk

k , we denote by Xk(Σ) the spacetime point at which it intersects the
hypersurface Σ . The natural “relativistic generalization” of the Bohmian guiding
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equation thus takes the form

d

dτk

X
μk

k (τk) ∝ j
μ1..μk ..μN

ψ (x1, . . . , xN)
∏

j 
=k

nμj (xj )

∣∣∣∣
xj=Xj (Σ)

. (12.5)

Here, τk denotes the proper time of particle k, and the proportionality factor on the
right-hand side is chosen such that the four-velocity is normalized to unit Minkowski
length.4 Finally, nμ(x) denotes the normal vector field to the hypersurface Σ , which
is always timelike and future-directed [see (11.26)].

If we consider the equation in a special coordinate system in which Σ corre-
sponds to a surface of constant time coordinate, Σ = {(s, x) : s = t}, we have
nμ ≡ (1, 0, 0, 0) and recover the familiar |ψ|2 density for the zero components
of the vector field as in the non-relativistic equation (12.3). Equation (12.5) is also
called the hypersurface Bohm–Dirac equation.

Why did we put “relativistic generalization” above in quotes? Because such
a construction, with the new geometric structure of a preferred foliation, would
seem to violate, if not the letter, then at least the spirit of relativity, as it basically
reintroduces an absolute simultaneity through the backdoor. To appreciate this
criticism, note that choosing a different foliation F yields a different Bohmian
theory, i.e., different trajectories! This is what people usually have in mind when
they say that Bohmian mechanics cannot be made relativistic.

The latter conclusion is, however, premature. For one, such a dynamically
preferred foliation of spacetime would not lead to empirical violations of the
relativity principle. The velocity field itself cannot be measured (see Sect. 7.3),
while the statistical predictions, computed from the Lorentz covariant probability
measure (11.27), come out the same in every reference frame. Therefore, the
hypersurfaces of “simultaneity” (if we want to call them that) cannot be empirically
detected.

Secondly, the preferred foliation doesn’t have to come out of nowhere. It could
be determined by a Lorentz invariant law, or even generated by the wave function.5

After all, the role of the wave function is in any case to guide the particles, i.e.,
determine their trajectories in spacetime. If this requires an additional structure
which comes from the wave function itself, there is little to complain about. In some
sense, the foliation is there anyway, within the wave function which is part of every
quantum theory. The wave function determines, for instance, a Lorentz covariant
energy–momentum tensor (most easily in the second-quantized formalism), which
in turn distinguishes a foliation of vanishing total momentum—something like the
center-of-mass frame of the universe. This may be a little (though only a little)

4This is just a convenient choice. The worldline can be parametrized arbitrarily, with the
proportionality factor changing accordingly. The four-velocity only has to be parallel to the vector
field on the right-hand side of the equation.
5For more details, see D. Dürr, S. Goldstein, T. Norsen, W. Struyve, and N. Zanghì, Can Bohmian
mechanics be made relativistic? Proceedings of the Royal Society A 470, 20130699 (2013).
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reminiscent of general relativity, where the energy–momentum tensor determines
the spacetime geometry via the metric; here, we get an additional geometric
structure in the form of a preferred foliation.

The corresponding hypersurface Bohm–Dirac theory is Lorentz invariant. It is
relativistic in the sense that massive particles move at speeds below c, and in the
sense that superluminal signalling is excluded in quantum equilibrium. Finally, it
is relativistic in the sense that all reference frames are equivalent for extracting
empirical (statistical) predictions, so the theory can ground the measurement
formalism postulated in standard relativistic quantum theories.

Remark 12.1 (Statistical Analysis of the Hypersurface Bohm–Dirac Theory)
Above, we introduced the densities ρΣ(x1, . . . , xN) = nμ1(x1) . . . nμN (xN)j

μ1...μN

ψ

(x1, . . . , xN) as the relativistic generalization of the |ψ|2 density. The next step
would be to give a statistical interpretation of the corresponding measure, such that

P
(
Xi(Σ) ∈ dσ(xi) , 1 ≤ i ≤ N

) = ρΣ(x1, . . . , xN) dσ(x1) . . . dσ(xN) (12.6)

yields the probability that the N particle worldlines cross the hypersurface Σ (with
normal vector field nμ) in the volume elements dσ(x1), . . . , dσ(xN). However, we
must remember the derivation of the Born rule in Bohmian mechanics: in order to
interpret ρΣ as the equilibrium distribution of Bohmian particles, the measure must
be equivariant, that is, transported with the particle dynamics.

In the relativistic formulation, this means that, if T Σ ′
Σ : ΣN → Σ ′N denotes

the evolution of the particle trajectories between the hypersurfaces Σ and Σ ′ (the
relativistic flux), such that T Σ ′

Σ

(
X1(Σ), . . . , XN(Σ)

) = (
X1(Σ

′), . . . , XN (Σ ′)
)
,

the density would have to transform according to ρΣ ′ = ρΣ ◦ T Σ
Σ ′ . This is, in

fact, equivalent to the existence of a continuity equation. But now we discover that,
apart from the special case in which the wave function factorizes into a product,
equivariance cannot hold in arbitrary hypersurfaces. In general, it will hold only
in the preferred foliation on which the hypersurface Bohm–Dirac equation (12.5)
is defined. In other words, the typical crossing probabilities for an ensemble of
relativistic Bohm–Dirac particles will only correspond to ρΣ if the hypersurface
Σ is a leaf of the preferred foliation F.

Why did we say then that the preferred foliation cannot be empirically detected?
In other words, why does the foliation-dependence of the equivariant distribution not
lead to contradictions with Lorentz invariant quantum predictions? In fact, insofar
as results of measurements are concerned, the predictions of the hypersurface model
are the same as those derived from the standard quantum formalism, for positions or
any other quantum observables, regardless of whether or not they refer to a common
hypersurface Σ belonging to F.6 This is because measurement outcomes can
ultimately be reduced to the orientations of instrument pointers, counter readings,

6For a detailed discussion of why that is so, we refer to K. Berndl, D. Dürr, S. Goldstein, N. Zanghì,
Hypersurface Bohm–Dirac models, Phys. Rev. A 60, 2729–2736 (1999), arXiv:quant-ph/9801070;
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the ink distribution on computer printouts, and so on, i.e., records in the form of
(macroscopic) particle configurations that we may as well consider in a common
hypersurface Σ belonging to the preferred foliation. Since the statistics of these are
correctly described by the ρΣ measure, and the measure transforms covariantly, they
will be consistent with the predictions computed in any frame.

In all this, the non-passive character of measurements in quantum mechanics
must be taken into consideration (as discussed in more detail in the second
reference of footnote 6). In particular, a measurement can affect even distant particle
trajectories, so that the resulting positions—and hence their subsequently measured
values—are different from what they would have been if no measurement had
occurred.

12.3 Nonlocality Through Retrocausality

We would like to take a step back and consider the tension between relativity and
nonlocality from a more general point of view. We consider once again the scenario
of the EPR experiment with correlated measurement events A and B in spacelike
separated regions of spacetime (so that no signal travelling at most with the speed of
light could be sent between them). In relativistic spacetime this means, in particular,
that there is no objective temporal order between those events. In some reference
frames, A occurs before B, in other reference frames, B occurs before A (see
Fig. 12.1). How can we nonetheless account for the fact that the two events can
influence each other?

Building on a simple argument due to Gisin,7 we can identify two assumptions
that together lead to a contradiction with Bell’s theorem and the empirically
confirmed violations of Bell’s inequality:

I. All relativistic reference frames are equivalent for the prediction of (probabilities
of) measurement outcomes.

II. In every reference frame, the predictions are independent of future events.

How can we see that these assumptions lead to a violation of Bell’s theorem?
Suppose both I and II are satisfied. As in Chap. 10, we denote the results of spin
measurements in freely chosen directions a and b by A,B ∈ {±1}, respectively.
Our measurement events are thus A = (A, a) and B = (B, b). First, we describe
the experiment in a reference frame in which measurement A occurs before B.
Then, by assumption II, the outcome probabilities predicted for A are independent

EPR-Bell nonlocality, Lorentz invariance, and Bohmian quantum theory, Phys. Rev. A 53, 2062–
2073 (1996), arXiv:quant-ph/9510027.
7N. Gisin, Impossibility of covariant deterministic nonlocal hidden-variable extensions of quantum
theory. Physical Review A 83, 020102 (2011).
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Fig. 12.1 Spacetime diagram of the EPR experiment in two different Minkowski frames. In the
first frame (left), A = (A, a) occurs before B = (B, b), and in the second (right) (B, b) occurs
before (A, a)

of (B, b), since the result B and the choice of b occur at later times. We denote the
prediction of our candidate theory by

P1(A | B, b, a, λ1) = P1(A | a, λ1) ,

where, following the notation from Chap. 10 , λ1 encodes all variables that could
be relevant for the prediction, but are statistically independent of a and b. Notably,
the argument also applies to deterministic theories à la Bohm, in which case the
predicted outcome “probabilities” would always be 1 or 0 (assuming that λ1 is a
complete description of the initial state).

According to assumption I, however, we can equally well describe the experiment
in a different reference frame in which B occurs prior to A . Then, according to II,
the predictions for B will be independent of (A, a), that is,

P2(B | A, a, b, λ2) = P2(B | b, λ2) .

But put together with λ = λ1 ∪ λ2, this defines a local model [see (10.12)], and we
know that this cannot make the correct statistical predictions, i.e., it cannot violate
the Bell/CHSH inequality, after averaging over λ.

The hypersurface Bohm–Dirac theory explicitly negates assumption I by assum-
ing a preferred foliation of spacetime along which the guiding equation has to
be evaluated. In other words, it accounts for nonlocal influences by denying the
fundamental equivalence of all Lorentz frames.

We should be aware of another logical possibility, namely giving up assumption
II and admitting that the theoretical predictions for certain events might indeed
depend on what happens in their future. In a relativistic theory, such retrocausal
influences could be realized by advanced interactions. These are interactions along
past light cones, as opposed to retarded interactions, which “propagate”, so to
speak, at light speed into the future. The appeal of such retrocausal models is that,
in contrast to a preferred foliation into simultaneity hypersurfaces, the light cone
structure is a genuine part of relativistic spacetime geometry. In fact, if it is assumed
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that the fundamental laws are time-symmetric, making no a priori distinction
between past and future, it is only natural to expect advanced and retarded effects
in relativistic theories. Just think of classical electrodynamics, where Maxwell’s
equations have both advanced and retarded solutions. There, the advanced solutions
are usually dismissed out of hand as “unphysical”, but it is actually a very important
and difficult problem to explain why we don’t observe advanced radiation. This
issue is intimately linked with the emergence of irreversible behavior and the second
law of thermodynamics, which we mentioned very briefly in Sect. 3.5.3.

In any case, one possible idea is that retrocausal effects come into play in
relativistic quantum mechanics to account for nonlocal correlations. (Of course, we
would then have to explain why we don’t experience retrocausality on macroscopic
scales.) There are some speculative models working on this ansatz, including one
by Goldstein and Tumulka8 that evaluates the Bohmian velocity field along future
light cones. Other models postulate two types of wave function: retarded waves
propagating from past to future, and advanced waves propagating from future to
past.9 The biggest problem with retrocausal theories is, in general, their statistical
analysis. It is not clear how to find an equivariant measure for an advanced guiding
law, or how to formulate a statistical hypothesis about wave functions “from the
future”. For this reason, there is no fully-developed retrocausal theory that could
make serious claims to grounding a relativistic quantum formalism. But as we said,
it is one possible avenue to pursue.

We should note that denying assumption II does not necessarily imply explicit
retrocausation in the sense of advanced interactions. Strictly speaking, our argument
referred only to “future events” relative to a given time coordinate, not the
causal (light cone) structure of relativistic spacetime. Moreover, if we consider
fundamentally stochastic theories, the status of assumption II is already less clear.
Should we be asking whether conditioning on future events affects the probability
of earlier ones? Or is it more like saying something like: “The fact that the street is
wet tomorrow morning increases the probability that it will rain tonight”?

In any case, we will soon discuss the relativistic generalization of the stochastic
GRW theory, and it is interesting to reflect on the causal structure of this theory—or
rather, the lack thereof. Technically, the theory violates assumption II by allowing
the probabilities of the measurement outcomes A and B to depend nonlocally on
distant collapse events (flashes). Hence, relative to one frame, the wave function
may have already collapsed, while relative to another, it has not yet collapsed, but
nonetheless, no serious worries arise about the future influencing the past. In fact, it
doesn’t make sense to ask whether A has caused the spacelike separated event B or

8S. Goldstein and R. Tumulka, Opposite arrows of time can reconcile relativity and nonlocality.
Classical and Quantum Gravity 20 (3), 557–564 (2003).
9See, e.g., R.I. Sutherland, Causally symmetric Bohm model, Studies in History and Philosophy of
Modern Physics 39 (4), 782–805 (2008). See also B. Reznik and A. Aharonov, On a time symmetric
formulation of quantum mechanics, Physical Review A 52, 2538–2550 (1995).
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vice versa; all that the theory describes is a consistent Lorentz invariant probability
law for the appearance of flashes.

12.4 Bohmian “Big Bang”Model

As something of a side note, we will now present a Bohmian toy model which is
sometimes referred to as the Bohmian “big bang” model. We call it a toy model
because it is not a serious candidate for a fundamental theory of Nature. The model
is nonetheless interesting and instructive. For one, it shows that there is indeed
no fundamental contradiction between relativity and nonlocality—not even in a
deterministic theory of particles. On the other hand, it is a good preparation for
our examination of the relativistic GRW theory, which picks up a crucial “trick”
from this model.

To define it, we assume a distinguished point O in Minkowski spacetime from
which all particle trajectories originate. This means, in particular, that all particle
trajectories lie in the forward light cone of O , that is, in the region

M0 =
{
xν | xμxμ > 0 , x0 > 0

}
,

if we choose O as the origin of our coordinate system. We can thus think of M0
as all there is, i.e., the entire spacetime manifold (a geometry also know as the
Milne model). For obvious reasons, the event O is referred to as the “big bang”, but
our toy model should not be confused with the actual Big Bang cosmology since
it is empirically inadequate in many ways. In particular, our actual universe is not
confined to a single light cone or event horizon.

In any case, the point of this model is that our truncated spacetime M0 allows for
a natural Lorentz invariant foliation defined solely in terms of the spacetime metric,
viz.,

M0 = (Σs)s>0 , Σs :=
{
x ∈ R

4 : |x| = √
xμxμ = s , x0 > 0

}
. (12.7)

The leaves Σs of the foliation are thus hyperboloids with constant Minkowski
distance s from the origin, as shown in Fig. 12.2.

More technically speaking, these hyperboloids are equipotential surfaces (sur-
faces of constant value) for the function ϕ(x) = √

xμxμ. The corresponding normal
vector field is parallel to the gradient of ϕ(x), that is,

nμ(x) = ∂μϕ(x) = xμ/|x| .

It is easy to check that this normal vector field is timelike and future-directed,
which means that the hypersurfaces Σs are indeed spacelike. To make things
simple, we can use the same parameter s ∈ R

+ to parametrize both the leaves
of the foliation and the worldlines of the particles, writing X

μ
k (s) := X

μ
k (Σs).
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Fig. 12.2 Bohmian “big bang” model. Dotted lines indicate the future light cone of the “big bang”
O . The guiding equation is defined along the Lorentz invariant hyperboloids Σt

Analogously to (12.5), we can now define the guiding equation:

d

ds
X

μk

k (s) ∝ j
μ1...μk ...μN

ψ (x1, . . . , xN)
∏

j 
=k

xj,μj

|xj |
∣∣∣
xj=Xj (s)

. (12.8)

This equation is fully relativistic in that it uses only the spacetime metric to define
the leaves of the foliation on which the right-hand side is evaluated. Note that, not
unlike the real Big Bang, we have a singularity at O .

12.5 Relativistic GRW Theory

Finally, we will briefly introduce a relativistic generalization of the GRW theory that
goes back to the work of Roderich Tumulka.10 We cannot go into all the technical
details, but just highlight the main ideas. In the non-relativistic GRW theory, the
wave function collapses instantaneously whenever a flash (X, T ) occurs, that is (in
a spatio-temporal sense) along the equal-time hyperplane t = T . More concretely,
the wave function is multiplied at time T by a Gaussian form factor centered around
X (this is the “spontaneous localization”), while evolving according to the linear
Schrödinger equation in-between two collapse events.

In the generalization to relativistic spacetime, the wave function is a multi-
time wave function which evolves freely (the model presented by Tumulka is
without interactions) outside flash events. The equal-time hyperplanes are replaced
by Lorentz invariant hyperboloids as just discussed in the Bohmian big bang model.
In that model, however, we had to introduce in an ad hoc manner a distinguished
event in spacetime that would specify the locus of a universal light cone in which

10R. Tumulka, A relativistic version of the Ghirardi–Rimini–Weber model, Journal of Statistical
Physics 125 (4), 821–840 (2006).



12.5 Relativistic GRW Theory 229

Space

T
im

e

X , X̃

X̃

X

Colla
pse

 su
rfa

ce

Fig. 12.3 Collapse in rGRWf. The wave function collapses along the Lorentz invariant hyper-
boloid of constant Minkowski distance between successive collapse events (flashes)

“time unfolds” along the hyperboloids Σt . In the GRW theory, we already have the
flashes, i.e., the collapse events, as distinguished events in spacetime! That is, each
flash defines the locus of a light cone whose interior can be foliated by Lorentz
invariant hyperboloids; and of these hyperboloids, one will be chosen at random
(essentially by an exponential waiting time) for the occurrence of the next flash, and
as the hyperplane along which the wave function will be localized by multiplication
with a Gaussian form factor.

Omitting further technical details, the relativistic GRW theory with flash ontol-
ogy (rGRWf) can thus be described as follows (see Fig. 12.3):

1. Start with the wave function on an arbitrary spacelike hypersurface Σ0, and a set
of initial “seed flashes” X1,X2, . . . , XN ∈ M , with one flash for each particle
degree of freedom.

2. Between two flashes, the (multi-time) wave function evolves according to the
(free) unitary time evolution. The wave function also defines a probability
distribution on spacetime for the occurrence of subsequent flashes. For each
“particle”, a new flash X is always timelike separated from the preceding one
X̃.

3. If such a flash event occurs, let’s say for the i th particle at spacetime point X̃i ,
the wave function collapses along the Lorentz invariant hyperboloid

Σ(Xi, X̃i ) =
{
y ∈M : |y −Xi | = |X̃i −Xi | , (y −Xi)

0 > 0
}

.

4. We thus obtain a new generation of flashes X̃1, X̃2, . . . , X̃N ∈ M , and a new
collapsed wave function. With these, we can repeat the procedure to obtain the
next generation of flashes, and so on.
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By construction, this iterated process yields a Lorentz invariant probability distribu-
tion for the flashes (which can also be shown to be independent of the separation of
flashes into “generations”). We must therefore take the rGRWf theory seriously as
a theory about the flashes—conceived, ontologically, as discrete matter points—
in which the role of the wave function is to define the stochastic law for their
appearance.
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Thus shall thou learn all things: the unshaken heart of the well-rounded truth, as well as the
apparent truth conceived by mortals which is without faith and without truth. But yet thou
shalt learn also how the apparent truth should receive validity and penetrate the world view
completely.

Parmenides, On Nature1

In this book, we have discussed three quantum theories that solve the measure-
ment problem and ground the statistical predictions of quantum mechanics in an
objective and coherent description of Nature. Now it’s only natural to ask which of
these theories is actually true. Why did our quest for an understanding of quantum
mechanics lead us to three competing formulations rather than just one “final”
version?

We chose the measurement problem as the starting point of our investigation,
and this led to three possible solutions that are realized in Bohmian mechanics,
GRW, and the Many Worlds theory, respectively. Of course, this does not necessarily
mean that all three solutions are equally compelling. We don’t want to hide the fact
(and careful readers have probably already noticed) that we have a preference for
Bohmian mechanics. For us, quantum mechanics is Bohmian mechanics. The goal
of this book, however, was not to convince readers of this view but to provide the
necessary foundation that allows them to make their own judgement.

In science, we are always in the situation that observable phenomena can merely
constrain but not conclusively determine the “correct” theory. When it comes to
quantum physics, this is aggravated by the fact that our epistemic access to the
microscopic state of affairs is limited, in principle, and we have striking illustrations
of the fact that different theories can provide radically different descriptions of
the world even when they are empirically equivalent. This is why we have to
resort to criteria such as beauty, simplicity, and explanatory power, criteria that

1Authors’ translation.
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have a subjective quality and need not lead to a consensus. Occam’s razor—the
philosophical principle that “entities should not be multiplied without necessity” or,
more generally, that one should always prefer the most parsimonious of all possible
explanations—can be turned just as well against the Bohmian trajectories as against
the additional parameters of GRW, or the Many Worlds of the Everett interpretation.
Thus, in the end, the razor remains rather blunt.

In a spirit of reconciliation, it should be noted, however, that Bohm, GRW, and
Everett do, in fact, agree on many important points. And appreciating their common
message goes a long way towards a coherent understanding of quantum mechanics.

All three theories are “quantum theories without the observer”, which is to
say that they develop an objective description of Nature in which “observers” or
“measurements” have no a priori distinguished status (Chap. 2).

All three theories involve some form of nonlocality, which we know they
have to—as we learned from Bell’s theorem—in order to account for observed
phenomena (Chap. 10).

All three theories agree on the fact that observable operators are not fundamental,
but rather convenient mathematical tools for statistical bookkeeping (Chap. 7). They
also explain why “observable values” do not generally reflect pre-existing properties
of the measured system, but are rather “produced” as a result of the measurement
process (Chap. 9).

All three theories compel us to take the wave function on configuration space
seriously (Chap. 1). This means, on the one hand, that the “position representation”
of the wave function is distinguished, which should not be surprising given that, at
the end of the day, we always have to relate it in one way or another to physical
objects located in three-dimensional space. And it means, in particular, that the
wave function is not just “information” or statistical bookkeeping, but real physical
degrees of freedom that feature in the objective state description of physical systems.
The wave function is affected by measurement or “preparation” processes. The wave
function establishes a real physical connection between entangled systems. And
the wave function produces the measurement outcomes, so to speak, rather than
just describing their statistics or our incomplete knowledge of pre-existing values.
There is a big philosophical debate about the exact metaphysical status of the wave
function,2 but it is absolutely impossible to understand quantum mechanics without
acknowledging its active physical role.3

A notable point of disagreement between the three quantum theories concerns
the status of randomness and probabilities (Chap. 3). It is particularly significant
because of the common wisdom that regards randomness or indeterminism as the
key innovation of quantum mechanics. In fact, both Bohmian mechanics and the

2See, e.g., A. Ney and D.Z. Albert (eds.), The Wave Function: Essays on the Metaphysics of
Quantum Mechanics. Oxford University Press, 2013.
3A much discussed attempt to substantiate the “reality” of the wave function with a rigorous
mathematical proof is the PBR theorem: M.F. Pusey, J. Barrett, and T. Rudolph, On the reality
of the quantum state. Nature Physics 8, 475–478 (2012).
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Many Worlds theory are deterministic. Bohmian mechanics involves “randomness”
in the sense of in-principle unpredictability, but not in the sense of fundamental
indeterminism. Collapse theories such as GRW are indeed indeterministic, i.e.,
involve real irreducible randomness. Somewhat ironically, this is also the class
of theories whose predictions deviate from those of standard quantum mechanics.
Hence, one could say that, if quantum mechanics is really indeterministic, it is not
exact. And if quantum mechanics is exact, it is not indeterministic.

In a nutshell, the current state of quantum foundations is the following. After
clearing away the rubble of the past century, one is basically left with three
serious candidates for a precise formulation of non-relativistic quantum mechanics.
Experiments distinguishing between theories with and without spontaneous collapse
are possible in principle, and it seems to be only a matter of time until they will be
carried out in practice. If we found empirical evidence for spontaneous collapse,
then GRW, or other continuous collapse theories into which the GRW ansatz has
been developed, would win the day. At the same time, it would certainly increase
interest in the question as to whether the stochastic collapse mechanics is indeed a
fundamental law of Nature or rather an effective description of a more fundamental
theory yet to be discovered.

If the superposition principle for the wave function is universally valid, Bohmian
mechanics and Many Worlds are the best available alternatives. Bohmian mechanics
can be understood to the point that no serious foundational issues remain open in
the context of non-relativistic quantum mechanics. It may be possible to arrive at an
equally deep understanding of the Many Worlds theory, but the authors have not yet
been able to do so. The discussion provided in this book reflects our best efforts and
this may help some readers to progress further.

To end with, we would advise physics students against spending the next hundred
years on foundational debates about non-relativistic quantum mechanics. Today, the
most important open problems concern relativistic quantum physics. And one of the
great achievements of all the precise non-relativistic theories is to point us to the
right questions and possible paths for future progress.
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