
http://www.cambridge.org/9780521877602


This page intentionally left blank



Quantum Mechanics with Basic Field Theory

Students and instructors alike will find this organized and detailed approach to quantum

mechanics ideal for a two-semester graduate course on the subject.

This textbook covers, step-by-step, important topics in quantum mechanics, from tra-

ditional subjects like bound states, perturbation theory and scattering, to more current

topics such as coherent states, quantum Hall effect, spontaneous symmetry breaking, super-

conductivity, and basic quantum electrodynamics with radiative corrections. The large

number of diverse topics are covered in concise, highly focused chapters, and are explained

in simple but mathematically rigorous ways. Derivations of results and formulas are carried

out from beginning to end, without leaving students to complete them.

With over 200 exercises to aid understanding of the subject, this textbook provides a

thorough grounding for students planning to enter research in physics. Several exercises

are solved in the text, and password-protected solutions for remaining exercises are available

to instructors at www.cambridge.org/9780521877602.

Bipin R. Desai is a Professor of Physics at the University of California, Riverside, where he

does research in elementary particle theory. He obtained his Ph.D. in Physics from the

University of California, Berkeley. He was a visiting Fellow at Clare Hall, Cambridge

University, UK, and has held research positions at CERN, Geneva, Switzerland, and CEN

Saclay, France. He is a Fellow of the American Physical Society.

http://www.cambridge.org/9780521877602




Quantum Mechanics with
Basic Field Theory

Bipin R. Desai
University of California at Riverside



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-87760-2

ISBN-13 978-0-511-69134-8

© B. Desai 2010

2009

Information on this title: www.cambridge.org/9780521877602

This publication is in copyright. Subject to statutory exception and to the 

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy 

of urls for external or third-party internet websites referred to in this publication, 

and does not guarantee that any content on such websites is, or will remain, 

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521877602


To Ba, Bapuji, and Blaire





Contents

Preface page xvii

Physical constants xx

1 Basic formalism 1

1.1 State vectors 1

1.2 Operators and physical observables 3

1.3 Eigenstates 4

1.4 Hermitian conjugation and Hermitian operators 5

1.5 Hermitian operators: their eigenstates and eigenvalues 6

1.6 Superposition principle 7

1.7 Completeness relation 8

1.8 Unitary operators 9

1.9 Unitary operators as transformation operators 10

1.10 Matrix formalism 12

1.11 Eigenstates and diagonalization of matrices 16

1.12 Density operator 18

1.13 Measurement 20

1.14 Problems 21

2 Fundamental commutator and time evolution of state vectors

and operators 24

2.1 Continuous variables: X and P operators 24

2.2 Canonical commutator [X , P] 26

2.3 P as a derivative operator: another way 29

2.4 X and P as Hermitian operators 30

2.5 Uncertainty principle 32

2.6 Some interesting applications of uncertainty relations 35

2.7 Space displacement operator 36

2.8 Time evolution operator 41

2.9 Appendix to Chapter 2 44

2.10 Problems 52

3 Dynamical equations 55

3.1 Schrödinger picture 55

3.2 Heisenberg picture 57



viii Contents

3.3 Interaction picture 59

3.4 Superposition of time-dependent states and energy–time

uncertainty relation 63

3.5 Time dependence of the density operator 66

3.6 Probability conservation 67

3.7 Ehrenfest’s theorem 68

3.8 Problems 70

4 Free particles 73

4.1 Free particle in one dimension 73

4.2 Normalization 75

4.3 Momentum eigenfunctions and Fourier transforms 78

4.4 Minimum uncertainty wave packet 79

4.5 Group velocity of a superposition of plane waves 83

4.6 Three dimensions – Cartesian coordinates 84

4.7 Three dimensions – spherical coordinates 87

4.8 The radial wave equation 91

4.9 Properties of Ylm(θ ,φ) 92

4.10 Angular momentum 94

4.11 Determining L2 from the angular variables 97

4.12 Commutator
[
Li, Lj

]
and

[
L2, Lj

]
98

4.13 Ladder operators 100

4.14 Problems 102

5 Particles with spin ½ 103

5.1 Spin ½ system 103

5.2 Pauli matrices 104

5.3 The spin ½ eigenstates 105

5.4 Matrix representation of σ x and σ y 106

5.5 Eigenstates of σ x and σ y 108

5.6 Eigenstates of spin in an arbitrary direction 109

5.7 Some important relations for σ i 110

5.8 Arbitrary 2× 2 matrices in terms of Pauli matrices 111

5.9 Projection operator for spin ½ systems 112

5.10 Density matrix for spin ½ states and the ensemble average 114

5.11 Complete wavefunction 116

5.12 Pauli exclusion principle and Fermi energy 116

5.13 Problems 118

6 Gauge invariance, angular momentum, and spin 120

6.1 Gauge invariance 120

6.2 Quantum mechanics 121

6.3 Canonical and kinematic momenta 123

6.4 Probability conservation 124



ix Contents

6.5 Interaction with the orbital angular momentum 125

6.6 Interaction with spin: intrinsic magnetic moment 126

6.7 Spin–orbit interaction 128

6.8 Aharonov–Bohm effect 129

6.9 Problems 131

7 Stern–Gerlach experiments 133

7.1 Experimental set-up and electron’s magnetic moment 133

7.2 Discussion of the results 134

7.3 Problems 136

8 Some exactly solvable bound-state problems 137

8.1 Simple one-dimensional systems 137

8.2 Delta-function potential 145

8.3 Properties of a symmetric potential 147

8.4 The ammonia molecule 148

8.5 Periodic potentials 151

8.6 Problems in three dimensions 156

8.7 Simple systems 160

8.8 Hydrogen-like atom 164

8.9 Problems 170

9 Harmonic oscillator 174

9.1 Harmonic oscillator in one dimension 174

9.2 Problems 184

10 Coherent states 187

10.1 Eigenstates of the lowering operator 187

10.2 Coherent states and semiclassical description 192

10.3 Interaction of a harmonic oscillator with an electric field 194

10.4 Appendix to Chapter 10 199

10.5 Problems 200

11 Two-dimensional isotropic harmonic oscillator 203

11.1 The two-dimensional Hamiltonian 203

11.2 Problems 207

12 Landau levels and quantum Hall effect 208

12.1 Landau levels in symmetric gauge 208

12.2 Wavefunctions for the LLL 212

12.3 Landau levels in Landau gauge 214

12.4 Quantum Hall effect 216

12.5 Wavefunction for filled LLLs in a Fermi system 220

12.6 Problems 221



x Contents

13 Two-level problems 223

13.1 Time-independent problems 223

13.2 Time-dependent problems 234

13.3 Problems 246

14 Spin ½ systems in the presence of magnetic fields 251

14.1 Constant magnetic field 251

14.2 Spin precession 254

14.3 Time-dependent magnetic field: spin magnetic resonance 255

14.4 Problems 258

15 Oscillation and regeneration in neutrinos and neutral K-mesons

as two-level systems 260

15.1 Neutrinos 260

15.2 The solar neutrino puzzle 260

15.3 Neutrino oscillations 263

15.4 Decay and regeneration 265

15.5 Oscillation and regeneration of stable and unstable systems 269

15.6 Neutral K-mesons 273

15.7 Problems 276

16 Time-independent perturbation for bound states 277

16.1 Basic formalism 277

16.2 Harmonic oscillator: perturbative vs. exact results 281

16.3 Second-order Stark effect 284

16.4 Degenerate states 287

16.5 Linear Stark effect 289

16.6 Problems 290

17 Time-dependent perturbation 293

17.1 Basic formalism 293

17.2 Harmonic perturbation and Fermi’s golden rule 296

17.3 Transitions into a group of states and scattering cross-section 299

17.4 Resonance and decay 303

17.5 Appendix to Chapter 17 310

17.6 Problems 315

18 Interaction of charged particles and radiation in perturbation theory 318

18.1 Electron in an electromagnetic field: the absorption cross-section 318

18.2 Photoelectric effect 323

18.3 Coulomb excitations of an atom 325

18.4 Ionization 328

18.5 Thomson, Rayleigh, and Raman scattering in second-order

perturbation 331

18.6 Problems 339



xi Contents

19 Scattering in one dimension 342

19.1 Reflection and transmission coefficients 342

19.2 Infinite barrier 344

19.3 Finite barrier with infinite range 345

19.4 Rigid wall preceded by a potential well 348

19.5 Square-well potential and resonances 351

19.6 Tunneling 354

19.7 Problems 356

20 Scattering in three dimensions – a formal theory 358

20.1 Formal solutions in terms of Green’s function 358

20.2 Lippmann–Schwinger equation 360

20.3 Born approximation 363

20.4 Scattering from a Yukawa potential 364

20.5 Rutherford scattering 365

20.6 Charge distribution 366

20.7 Probability conservation and the optical theorem 367

20.8 Absorption 370

20.9 Relation between the T -matrix and the scattering amplitude 372

20.10 The S-matrix 374

20.11 Unitarity of the S-matrix and the relation between S and T 378

20.12 Properties of the T -matrix and the optical theorem (again) 382

20.13 Appendix to Chapter 20 383

20.14 Problems 384

21 Partial wave amplitudes and phase shifts 386

21.1 Scattering amplitude in terms of phase shifts 386

21.2 χ l , Kl , and Tl 392

21.3 Integral relations for χ l , Kl , and Tl 393

21.4 Wronskian 395

21.5 Calculation of phase shifts: some examples 400

21.6 Problems 405

22 Analytic structure of the S-matrix 407

22.1 S-matrix poles 407

22.2 Jost function formalism 413

22.3 Levinson’s theorem 420

22.4 Explicit calculation of the Jost function for l = 0 421

22.5 Integral representation of F0(k) 424

22.6 Problems 426

23 Poles of the Green’s function and composite systems 427

23.1 Relation between the time-evolution operator and the

Green’s function 427

23.2 Stable and unstable states 429



xii Contents

23.3 Scattering amplitude and resonance 430

23.4 Complex poles 431

23.5 Two types of resonances 431

23.6 The reaction matrix 432

23.7 Composite systems 442

23.8 Appendix to Chapter 23 447

24 Approximation methods for bound states and scattering 450

24.1 WKB approximation 450

24.2 Variational method 458

24.3 Eikonal approximation 461

24.4 Problems 466

25 Lagrangian method and Feynman path integrals 469

25.1 Euler–Lagrange equations 469

25.2 N oscillators and the continuum limit 471

25.3 Feynman path integrals 473

25.4 Problems 478

26 Rotations and angular momentum 479

26.1 Rotation of coordinate axes 479

26.2 Scalar functions and orbital angular momentum 483

26.3 State vectors 485

26.4 Transformation of matrix elements and representations of the

rotation operator 487

26.5 Generators of infinitesimal rotations: their eigenstates

and eigenvalues 489

26.6 Representations of J 2 and Ji for j = 1

2
and j = 1 494

26.7 Spherical harmonics 495

26.8 Problems 501

27 Symmetry in quantum mechanics and symmetry groups 502

27.1 Rotational symmetry 502

27.2 Parity transformation 505

27.3 Time reversal 507

27.4 Symmetry groups 511

27.5 Dj(R) for j = 1
2

and j = 1: examples of SO(3) and SU (2) groups 514

27.6 Problems 516

28 Addition of angular momenta 518

28.1 Combining eigenstates: simple examples 518

28.2 Clebsch–Gordan coefficients and their recursion relations 522

28.3 Combining spin ½ and orbital angular momentum l 524

28.4 Appendix to Chapter 28 527

28.5 Problems 528



xiii Contents

29 Irreducible tensors and Wigner–Eckart theorem 529

29.1 Irreducible spherical tensors and their properties 529

29.2 The irreducible tensors: Ylm(θ ,φ) and Dj(χ) 533

29.3 Wigner–Eckart theorem 536

29.4 Applications of the Wigner–Eckart theorem 538

29.5 Appendix to Chapter 29: SO(3), SU (2) groups and Young’s tableau 541

29.6 Problems 548

30 Entangled states 549

30.1 Definition of an entangled state 549

30.2 The singlet state 551

30.3 Differentiating the two approaches 552

30.4 Bell’s inequality 553

30.5 Problems 555

31 Special theory of relativity: Klein–Gordon and Maxwell’s equations 556

31.1 Lorentz transformation 556

31.2 Contravariant and covariant vectors 557

31.3 An example of a covariant vector 560

31.4 Generalization to arbitrary tensors 561

31.5 Relativistically invariant equations 563

31.6 Appendix to Chapter 31 569

31.7 Problems 572

32 Klein–Gordon and Maxwell’s equations 575

32.1 Covariant equations in quantum mechanics 575

32.2 Klein–Gordon equations: free particles 576

32.3 Normalization of matrix elements 578

32.4 Maxwell’s equations 579

32.5 Propagators 581

32.6 Virtual particles 586

32.7 Static approximation 586

32.8 Interaction potential in nonrelativistic processes 587

32.9 Scattering interpreted as an exchange of virtual particles 589

32.10 Appendix to Chapter 32 593

33 The Dirac equation 597

33.1 Basic formalism 597

33.2 Standard representation and spinor solutions 600

33.3 Large and small components of u(p) 601

33.4 Probability conservation 605

33.5 Spin ½ for the Dirac particle 607

34 Dirac equation in the presence of spherically symmetric potentials 611

34.1 Spin–orbit coupling 611



xiv Contents

34.2 K-operator for the spherically symmetric potentials 613

34.3 Hydrogen atom 616

34.4 Radial Dirac equation 618

34.5 Hydrogen atom states 623

34.6 Hydrogen atom wavefunction 624

34.7 Appendix to Chapter 34 626

35 Dirac equation in a relativistically invariant form 631

35.1 Covariant Dirac equation 631

35.2 Properties of the γ -matrices 632

35.3 Charge–current conservation in a covariant form 633

35.4 Spinor solutions: ur(p) and vr(p) 635

35.5 Normalization and completeness condition for ur(p) and vr(p) 636

35.6 Gordon decomposition 640

35.7 Lorentz transformation of the Dirac equation 642

35.8 Appendix to Chapter 35 644

36 Interaction of a Dirac particle with an electromagnetic field 647

36.1 Charged particle Hamiltonian 647

36.2 Deriving the equation another way 650

36.3 Gordon decomposition and electromagnetic current 651

36.4 Dirac equation with EM field and comparison with the

Klein–Gordon equation 653

36.5 Propagators: the Dirac propagator 655

36.6 Scattering 657

36.7 Appendix to Chapter 36 661

37 Multiparticle systems and second quantization 663

37.1 Wavefunctions for identical particles 663

37.2 Occupation number space and ladder operators 664

37.3 Creation and destruction operators 666

37.4 Writing single-particle relations in multiparticle language: the

operators, N , H , and P 670

37.5 Matrix elements of a potential 671

37.6 Free fields and continuous variables 672

37.7 Klein–Gordon/scalar field 674

37.8 Complex scalar field 678

37.9 Dirac field 680

37.10 Maxwell field 683

37.11 Lorentz covariance for Maxwell field 687

37.12 Propagators and time-ordered products 688

37.13 Canonical quantization 690

37.14 Casimir effect 693

37.15 Problems 697



xv Contents

38 Interactions of electrons and phonons in condensed matter 699

38.1 Fermi energy 699

38.2 Interacting electron gas 704

38.3 Phonons 708

38.4 Electron–phonon interaction 713

39 Superconductivity 719

39.1 Many-body system of half-integer spins 719

39.2 Normal states (� = 0, G � =0) 724

39.3 BCS states (� � =0) 725

39.4 BCS condensate in Green’s function formalism 727

39.5 Meissner effect 732

39.6 Problems 735

40 Bose–Einstein condensation and superfluidity 736

40.1 Many-body system of integer spins 736

40.2 Superfluidity 740

40.3 Problems 742

41 Lagrangian formulation of classical fields 743

41.1 Basic structure 743

41.2 Noether’s theorem 744

41.3 Examples 746

41.4 Maxwell’s equations and consequences of gauge invariance 750

42 Spontaneous symmetry breaking 755

42.1 BCS mechanism 755

42.2 Ferromagnetism 756

42.3 SSB for discrete symmetry in classical field theory 758

42.4 SSB for continuous symmetry 760

42.5 Nambu–Goldstone bosons 762

42.6 Higgs mechanism 765

43 Basic quantum electrodynamics and Feynman diagrams 770

43.1 Perturbation theory 770

43.2 Feynman diagrams 773

43.3 T (HI (x1)HI (x2)) and Wick’s theorem 777

43.4 Feynman rules 783

43.5 Cross-section for 1+ 2→3+ 4 783

43.6 Basic two-body scattering in QED 786

43.7 QED vs. nonrelativistic limit: electron–electron system 786

43.8 QED vs. nonrelativistic limit: electron–photon system 789

44 Radiative corrections 793

44.1 Radiative corrections and renormalization 793



xvi Contents

44.2 Electron self-energy 794

44.3 Appendix to Chapter 44 799

45 Anomalous magnetic moment and Lamb shift 806

45.1 Calculating the divergent integrals 806

45.2 Vertex function and the magnetic moment 806

45.3 Calculation of the vertex function diagram 808

45.4 Divergent part of the vertex function 810

45.5 Radiative corrections to the photon propagator 811

45.6 Divergent part of the photon propagator 813

45.7 Modification of the photon propagator and photon wavefunction 814

45.8 Combination of all the divergent terms: basic renormalization 816

45.9 Convergent parts of the radiative corrections 817

45.10 Appendix to Chapter 45 821

Bibliography 825

Index 828



Preface

While writing this book I was reminded at times of what Professor Francis Low used to

say when I took his class on undergraduate electromagnetism at the University of Illinois,

Urbana-Champaign. “Be sure to understand the subject thoroughly,” he said, “otherwise,

your only other chance will be when you have to teach it.” Knowing now what I know by

having written this book, I would add that, if at that point one still does not understand the

subject, there will be yet another opportunity when writing a book on it. That was certainly

the case with me and this book.

For the last twenty years or so I have taught a one-year graduate course in quantum

mechanics at the University of California, Riverside. I have used several books, including

the text by Schiff which also happens to be the text I used when I was taking my graduate

courses at the University of California, Berkeley (along with my class notes from Professor

Eyvind Wichmann who taught the quantum electrodynamics course). However, it became

clear to me that I would need to expand the subject matter considerably if I wanted the book

not only to be as thorough and up-to-date as possible but also organized so that one subject

followed the other in a logical sequence. I hope I have succeeded.

Traditionally, books on graduate quantum mechanics go up to relativity and in some cases

even cover the Dirac equation. But relativistic equations lead to the troublesome negative-

energy solutions. It would be unsatisfactory then to just stop there and not go to second

quantization, to show how the negative-energy states are reinterpreted as positive-energy

states of antiparticles. It was, therefore, logical to cover elementary second quantization,

which in a sense is many-body quantum mechanics with quantization conditions. And once

this topic was addressed it would be unfair not to cover the great successes of many-body

systems in condensed matter, in particular, superconductivity and Bose–Einstein condensa-

tion. A logical concurrent step was to include also full relativistic quantum field theory, at

least basic quantum electrodynamics (QED) and then finish on a triumphant note describing

the stunning success of QED in explaining the anomalous magnetic moment and the Lamb

shift. With the vast acreage that I wanted to cover, it seemed only appropriate to include as

well the modern subject of spontaneous symmetry breaking, which has its applications both

in condensed matter physics and in particle physics. This then was the rationale behind this

book’s content and organization.

I have organized the book with small chapters in what I believe to be a logical order.

One can think of the layout of the chapters in terms of the following blocks, each with a

common thread, with chapters arranged in an increasing degree of complexity within each

block
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Chs. 1, 2, 3 Basic Formalism

Chs. 4, 5, 6, 7 Free Particles

Chs. 8, 9, 10, 11, 12 Exactly Solvable Bound State Problems

Chs. 13, 14, 15 Two-Level Problems

Chs. 16, 17, 18 Perturbation Theory

Ch. 24 New approximation methods

Ch. 25 Lagrangian and Feynman integral formalisms

Chs. 19, 20, 21, 22, 23 Scattering Theory

Chs. 26, 27, 28, 29, 30 Symmetry, Rotations, and Angular Momentum

Chs. 31, 32, 33, 34, 35, 36 Relativistic theory with Klein–Gordon, Dirac, and

Maxwell’s equations

Chs. 37, 38, 39, 40 Second Quantization, Condensed Matter Problems

Chs. 41, 42 Classical Fields and Spontaneous Symmetry Breaking

Chs. 43, 44, 45 Quantum Electrodynamics and Radiative Corrections

In the chapters on scattering theory, one may find an extra coverage in this book on

the properties of the S-matrix especially with reference to its analytical properties. This

is thanks to my thesis advisor at Berkeley, Professor Geoffrey Chew who emphasized the

importance of these properties to his students.

I believe it is feasible to complete the first 32 chapters in one year (two semesters or three

quarters). The remaining chapters beginning with the Dirac equation could well be taught

in the first semester or first quarter of an advanced quantum mechanics course. Since these

topics cover quantum field theory applied to both particle physics and condensed matter

physics, it could be taken by students specializing in either subject.

Except at the beginning of each chapter, this book does not have as much narrative

or as many long descriptive paragraphs as one normally finds in other textbooks. I have

instead spent extra space on deriving and solving the relevant equations. I feel that the extra

narrative can always be supplemented by the person teaching the course.

There are an adequate number of problems in this book. They are fairly straightforward. I

suppose I still have scars left from the days when I took graduate quantum mechanics from

Professor Edward Teller at Berkeley, who gave very inspiring lectures full of interesting

and topical episodes while on the blackboard he usually wrote down just the basic formulas.

But then he turned around and gave, as homework, a huge number of some of the toughest

problems this side of the Atlantic! Those assignments routinely took care of our entire

weekends.

I have many people to thank, beginning with Dustin Urbaniec and Omar Moreno who

did a good bit of the typing for me, and Barbara Simandl who did all the figures. I am also

grateful to a number of graduate students from my Quantum Mechanics course for pointing

out errors in my write-up; in particular, I am thankful to Eric Barbagiovanni, for suggesting

a number of improvements. I must also thank Dr. Steve Foulkes, a former graduate student

at UC Riverside, who read a number of chapters and, following my instructions not to show

any mercy in criticizing what he read, did exactly that! I also wish to thank my colleagues

who critically read parts of the manuscript: Professors Robert Clare (who also directed me

to Cambridge University Press), Leonid Pryadkov, G. Rajasekaran and Utpal Sarkar.
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At Cambridge University Press, my special thanks to Simon Mitton, with whom I cor-

responded in the early years, for his kind support and encouragement; to John Fowler and

Lindsay Barnes for their constant help and, more importantly, for their patience with this

long project.

There is one individual, Alex Vaucher, whom I must single out, without whose help this

book would neither have been started nor completed. After finishing my graduate course

on Quantum Mechanics at UC Riverside some years ago, he strongly encouraged me to

write this book. He supplied the necessary software and, knowing how computer-ignorant

I was, continued to provide me with technical instructions during all phases of this project.

Initially the two of us were planning to collaborate on this book but, because of his full

time position with the Physics and Astronomy department at the University of California,

Los Angeles, he was not able to participate. My deepest gratitude to him.
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Planck’s constant � 6.581× 10−16 eV s

Velocity of light in vacuum c 2.9979× 1010 cm/s

Fine structure constant α = e2/�c 1/137.04

Rest mass of the electron mc2 0.511 MeV

Mass of the proton Mc2 938.28 MeV

Bohr radius �
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1 Basic formalism

We summarize below some of the postulates and definitions basic to our formalism, and

present some important results based on these postulates. The formalism is purely mathe-

matical in nature with very little physics input, but it provides the structure within which

the physical concepts that will be discussed in the later chapters will be framed.

1.1 State vectors

It is important to realize that the Quantum Theory is a linear theory in which the physical

state of a system is described by a vector in a complex, linear vector space. This vector

may represent a free particle or a particle bound in an atom or a particle interacting with

other particles or with external fields. It is much like a vector in ordinary three-dimensional

space, following many of the same rules, except that it describes a very complicated physical

system. We will be elaborating further on this in the following.

The mathematical structure of a quantum mechanical system will be presented in terms

of the notations developed by Dirac.

A physical state in this notation is described by a “ket” vector, |〉, designated variously

as |α〉 or |ψ〉 or a ket with other appropriate symbols depending on the specific problem at

hand. The kets can be complex. Their complex conjugates, |〉∗, are designated by 〈| which

are called “bra” vectors. Thus, corresponding to every ket vector there is a bra vector.

These vectors are abstract quantities whose physical interpretation is derived through their

so-called “representatives” in the coordinate or momentum space or in a space appropriate

to the problem under consideration.

The dimensionality of the vector space is left open for the moment. It can be finite, as

will be the case when we encounter spin, which has a finite number of components along

a preferred direction, or it can be infinite, as is the case of the discrete bound states of the

hydrogen atom. Or, the dimensionality could be continuous (indenumerable) infinity, as for

a free particle with momentum that takes continuous values. A complex vector space with

these properties is called a Hilbert space.

The kets have the same properties as a vector in a linear vector space. Some of the most

important of these properties are given below:

(i) |α〉 and c |α〉, where c is a complex number, describe the same state.

(ii) The bra vector corresponding to c |α〉 will be c∗ 〈α|.
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(iii) The kets follow a linear superposition principle

a |α〉 + b |β〉 = c |γ 〉 (1.1)

where a, b, and c are complex numbers. That is, a linear combination of states in a

vector space is also a state in the same space.

(iv) The “scalar product” or “inner product” of two states |α〉 and |β〉 is defined as

〈β|α〉. (1.2)

It is a complex number and not a vector. Its complex conjugate is given by

〈β|α〉∗ = 〈α|β〉. (1.3)

Hence 〈α|α〉 is a real number.

(v) Two states |α〉 and |β〉 are orthogonal if

〈β|α〉 = 0. (1.4)

(vi) It is postulated that 〈α|α〉 ≥ 0. One calls
√〈α|α〉 the “norm” of the state |α〉 . If a

state vector is normalized to unity then

〈α|α〉 = 1. (1.5)

If the norm vanishes, then |α〉 = 0, in which case |α〉 is called a null vector.

(vii) The states |αn〉 with n = 1, 2, . . . , depending on the dimensionality, are called a set

of basis kets or basis states if they span the linear vector space. That is, any arbitrary

state in this space can be expressed as a linear combination (superposition) of them.

The basis states are often taken to be of unit norm and orthogonal, in which case they

are called orthonormal states. Hence an arbitrary state |φ〉 can be expressed in terms

of the basis states |αn〉 as

|φ〉 =
∑

n

an |αn〉 (1.6)

where, as stated earlier, the values taken by the index n depends on whether the space

is finite- or infinite-dimensional or continuous. In the latter case the summation is

replaced by an integral. If the |αn〉’s are orthonormal then an = 〈αn |φ〉. It is then

postulated that |an|2 is the probability that the state |φ〉 will be in state |αn〉.
(viii) A state vector may depend on time, in which case one writes it as |α(t)〉, |ψ(t)〉, etc.

In the following, except when necessary, we will suppress the possible dependence

on time.

(ix) The product |α〉 |β〉, has no meaning unless it refers to two different vector spaces,

e.g., one corresponding to spin, the other to momentum; or, if a state consists of two

particles described by |α〉 and |β〉 respectively.

(x) Since bra vectors are obtained through complex conjugation of the ket vectors, the

above properties can be easily carried over to the bra vectors.



3 1.2 Operators and physical observables

1.2 Operators and physical observables

A physical observable, like energy or momentum, is described by a linear operator that has

the following properties:

(i) If A is an operator and |α〉 is a ket vector then

A |α〉 = another ket vector. (1.7)

Similarly, for an operator B,

〈α|B = another bra vector (1.8)

where B operates to the left

(ii) An operator A is linear if, for example,

A [λ |α〉 + μ |β〉] = λA |α〉 + μA |β〉 (1.9)

where λ andμ are complex numbers. Typical examples of linear operators are deriva-

tives, matrices, etc. There is one exception to this rule, which we will come across in

Chapter 27 which involves the so called time reversal operator where the coefficients

on the right-hand side are replaced by their complex conjugates. In this case it is called

an antilinear operator.

If an operator acting on a function gives rise to the square of that function, for

example, then it is called a nonlinear operator. In this book we will be not be dealing

with such operators.

(iii) A is a called a unit operator if, for any |α〉,

A |α〉 = |α〉, (1.10)

in which case one writes

A = 1. (1.11)

(iv) A product of two operators is also an operator. In other words, if A and B are operators

then AB as well as BA are operators. However, they do not necessarily commute under

multiplication, that is,

AB � =BA (1.12)

in general. The operators commute under addition, i.e., if A and B are two

operators then

A+ B = B+ A. (1.13)
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They also exhibit associativity, i.e., if A, B, and C are three operators then

A+ (B+ C) = (A+ B)+ C. (1.14)

Similarly A (BC) = (AB)C.

(v) B is called an inverse of the operator A if

AB = BA = 1, (1.15)

in which case one writes

B = A−1. (1.16)

(vi) The quantity |α〉 〈β| is called the “outer product” between states |α〉 and |β〉. By

multiplying it with a state |γ 〉 one obtains

[|α〉 〈β|] γ 〉 = [〈β| γ 〉] |α〉 (1.17)

where on the right-hand side the order of the terms is reversed since 〈β| γ 〉 is a number.

The above relation implies that when |α〉 〈β| multiplies with a state vector it gives

another state vector. A similar result holds for the bra vectors:

〈γ [|α〉 〈β|] = [〈γ |α〉] 〈β| . (1.18)

Thus |α〉 〈β| acts as an operator.

(vii) The “expectation” value, 〈A〉 , of an operator A in the state |α〉 is defined as

〈A〉 = 〈α|A |α〉 . (1.19)

1.3 Eigenstates

(i) If the operation A |α〉 gives rise to the same state vector, i.e., if

A |α〉 = (constant)× |α〉 (1.20)

then we call |α〉 an “eigenstate” of the operator A, and the constant is called the “eigen-

value” of A. If |α〉’s are eigenstates of A with eigenvalues an, assumed for convenience to

be discrete, then these states are generally designated as |an〉. They satisfy the equation

A |an〉 = an |an〉 (1.21)

with n = 1, 2, . . . depending on the dimensionality of the system. In this case one may

also call A an eigenoperator.

(ii) If |αn〉 is an eigenstate of both operators A and B, such that

A |αn〉 = an |αn〉 , and B |αn〉 = bn |αn〉 (1.22)
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then we have the results

AB |αn〉 = bnA |αn〉 = bnan |αn〉 , (1.23)

BA |αn〉 = anB |αn〉 = anbn |αn〉 . (1.24)

If the above two relations hold for all values of n then

AB = BA. (1.25)

Thus under the special conditions just outlined the two operators will commute.

1.4 Hermitian conjugation and Hermitian operators

We now define the “Hermitian conjugate” A†, of an operator A and discuss a particular class

of operators called “Hermitian” operators which play a central role in quantum mechanics.

(i) In the same manner as we defined the complex conjugate operation for the state vectors,

we define A† through the following complex conjugation

[A |α〉]∗ = 〈α|A† (1.26)

and

〈β|A |α〉∗ = 〈α|A† |β〉 . (1.27)

If on the left-hand side of (1.26), |α〉 is replaced by c |α〉 where c is a complex

constant, then on the right-hand side one must include a factor c∗.
(ii) From (1.26) and (1.27) it follows that if

A = |α〉 〈β| (1.28)

then

A† = |β〉 〈α| . (1.29)

At this stage it is important to emphasize that |α〉, 〈β|α〉, |α〉 〈β|, and |α〉 |β〉 are

four totally different mathematical quantities which should not be mixed up: the first

is a state vector, the second is an ordinary number, the third is an operator, and the

fourth describes a product of two states.

(iii) The Hermitian conjugate of the product operator AB is found to be

(AB)† = B†A†. (1.30)

This can be proved by first noting from (1.27) that for an arbitrary state |α〉

[(AB) |α〉]∗ = 〈α| (AB)† . (1.31)



6 Basic formalism

If we take

B |α〉 = |β〉 (1.32)

where |β〉 is another state vector, then the left-hand side of (1.31) can be written as

[(AB) |α〉]∗ = [A |β〉]∗ . (1.33)

From the definition given in (1.26) we obtain

[A |β〉]∗ = 〈β|A† =
[
〈α|B†

]
A† = 〈α|B†A† (1.34)

where we have used the fact that 〈β| = [B |α〉]∗ = 〈α|B†. Since |α〉 is an arbitrary

vector, comparing (1.31) and (1.34), we obtain (1.30).

(iv) Finally, if

A = A† (1.35)

then the operator A is called “Hermitian.”

1.5 Hermitian operators: their eigenstates and
eigenvalues

Hermitian operators play a central role in quantum mechanics. We show below that the

eigenstates of Hermitian operators are orthogonal and have real eigenvalues.

Consider the eigenstates |an〉 of an operator A,

A |an〉 = an |an〉 (1.36)

where |an〉’s have a unit norm. By multiplying both sides of (1.36) by 〈an| we obtain

an = 〈an|A |an〉 . (1.37)

Taking the complex conjugate of both sides we find

a∗n = 〈an|A |an〉∗ = 〈an|A† |an〉 = 〈an|A |an〉 . (1.38)

The last equality follows from the fact that A is Hermitian (A† = A). Equating (1.37) and

(1.38) we conclude that a∗n = an. Therefore, the eigenvalues of a Hermitian operator must

be real.

An important postulate based on this result says that since physically observable quantities

are expected to be real, the operators representing these observables must be Hermitian.
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We now show that the eigenstates are orthogonal. We consider two eigenstates |an〉 and

|am〉 of A,

A |an〉 = an |an〉 , (1.39)

A |am〉 = am |am〉 . (1.40)

Taking the complex conjugate of the second equation we have

〈am|A = am 〈am| (1.41)

where we have used the Hermitian property of A, and the fact that the eigenvalue am is real.

Multiplying (1.39) on the left by 〈am| and (1.41) on the right by |an〉 and subtracting, we

obtain

(am − an) 〈am| an〉 = 0. (1.42)

Thus, if the eigenvalues αm and αn are different we have

〈am| an〉 = 0, (1.43)

which shows that the two eigenstates are orthogonal. Using the fact that the ket vectors are

normalized, we can write the general orthonormality relation between them as

〈am| an〉 = δmn (1.44)

where δmn is called the Kronecker delta, which has the property

δmn = 1 for m = n (1.45)

= 0 for m � =n.

For those cases where there is a degeneracy in the eigenvalues, i.e., if two different states

have the same eigenvalue, the treatment is slightly different and will be deferred until later

chapters.

We note that the operators need not be Hermitian in order to have eigenvalues. However,

in these cases none of the above results will hold. For example, the eigenvalues will not

necessarily be real. Unless otherwise stated, we will assume the eigenvalues to be real.

1.6 Superposition principle

A basic theorem in quantum mechanics based on linear vector algebra is that an arbitrary

vector in a given vector space can be expressed as a linear combination – a superposition –

of a complete set of eigenstates of any operator in that space. A complete set is defined to
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be the set of all possible eigenstates of an operator. Expressing this result for an arbitrary

state vector |φ〉 in terms of the eigenstates |an〉 of the operator A, we have

|φ〉 =
∑

n

cn |an〉 (1.46)

where the summation index n goes over all the eigenstates with n = 1, 2, . . . . If we multiply

(1.46) by 〈am| then the orthonormality relation (1.44) between the |an〉’s yields

cm = 〈am|φ〉. (1.47)

It is then postulated that |cm|2 is the probability that |φ〉 contains |am〉. That is, |cm|2 is the

probability that |φ〉 has the eigenvalue am. If |φ〉 is normalized to unity, 〈φ|φ〉 = 1, then

∑

n

|cn|2 = 1. (1.48)

That is, the probability of finding |φ〉 in state |an〉, summed over all possible values of n,

is one.

Since (1.46) is true for any arbitrary state we can express another state |ψ〉 as

|ψ〉 =
∑

n

c′n |an〉 . (1.49)

The scalar product 〈ψ |φ〉 can then be written, using the orthonormality property of the

eigenstates, as

〈ψ |φ〉 =
∑

m

c′∗mcm (1.50)

with c′m = 〈am|ψ〉 and cm = 〈am|φ〉.
The above relations express the fact that the state vectors can be expanded in terms of

the eigenstates of an operator A. The eigenstates |an〉 are then natural candidates to form a

set of basis states.

1.7 Completeness relation

We consider now the operators |an〉 〈an| , where the |an〉’s are the eigenstates of an operator

A, with eigenvalues an. A very important result in quantum mechanics involving the sum

of the operators |an〉 〈an| over the possibly infinite number of eigenvalues states that

∑

n

|an〉 〈an| = 1 (1.51)

where the 1 on the right-hand side is a unit operator. This is the so called “completeness

relation”.
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To prove this relation we first multiply the sum on the left hand of the above equality by

an arbitrary eigenvector |am〉 to obtain

[∑

n

|an〉 〈an|
]
|am〉 =

∑

n

|an〉 〈an| am〉 =
∑

n

|an〉 δnm = |am〉 (1.52)

where we have used the orthonormality of the eigenvectors. Since this relation holds for

any arbitrary state |am〉, the operator in the square bracket on the left-hand side acts as a

unit operator, thus reproducing the completeness relation.

If we designate

Pn = |an〉 〈an| (1.53)

then

Pn |am〉 = δnm |am〉 . (1.54)

Thus Pn projects out the state |an〉whenever it operates on an arbitrary state. For this reason

Pn is called the projection operator, in terms of which one can write the completeness

relation as

∑

n

Pn = 1. (1.55)

One can utilize the completeness relation to simplify the scalar product 〈ψ |φ〉, where

|φ〉 and |ψ〉 are given above, if we write, using (1.51)

〈ψ |φ〉 = 〈ψ | 1 |φ〉 = 〈ψ |
[∑

n

|an〉 〈an|
]
|φ〉 =

∑

n

〈ψ | an〉 〈an|φ〉 =
∑

n

c′∗n cn. (1.56)

This is the same result as the one we derived previously as (1.50).

1.8 Unitary operators

If two state vectors |α〉 and
∣∣α′

〉
have the same norm then

〈α|α〉 =
〈
α′
∣∣α′〉. (1.57)

Expressing each of these states in terms of a complete set of eigenstates |an〉 we obtain

|α〉 =
∑

n

cn |an〉 and
∣∣α′

〉
=
∑

n

c′n |an〉 . (1.58)

The equality in (1.57) leads to the relation

∑

n

|cn|2 =
∑

n

∣∣c′n
∣∣2 , (1.59)
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which signifies that, even though cn may be different from c′n, the total sum of the

probabilities remains the same.

Consider now an operator A such that

A |α〉 =
∣∣α′

〉
. (1.60)

If |α〉 and
∣∣α′

〉
have the same norm, then

〈α|α〉 =
〈
α′
∣∣α′〉 = 〈α|A†A |α〉 . (1.61)

This implies that

A†A = 1. (1.62)

The operator A is then said to be “unitary.” From relation (1.60) it is clear that A can change

the basis from one set to another. Unitary operators play a fundamental role in quantum

mechanics.

1.9 Unitary operators as transformation operators

Let us define the following operator in term of the eigenstates |an〉 of operator A and

eigenstates |bn〉 of operator B,

U =
∑

n

|bn〉 〈an| . (1.63)

This is a classic example of a unitary operator as we show below. We first obtain the

Hermitian conjugate of U ,

U † =
∑

n

|an〉 〈bn| . (1.64)

Therefore,

UU † =
[∑

n

|bn〉 〈an|
]∑

m

|am〉 〈bm| =
∑∑

|bn〉 〈an| am〉 〈bm| =
∑
|bn〉 〈bn| = 1

(1.65)

where we have used the orthonormality relation 〈an| am〉 = δnm and the completeness

relation for the state vectors |bn〉 discussed in the previous section. Hence U is unitary.

We note in passing that

∑

n

|an〉 〈an| (1.66)

is a unit operator which is a special case of a unitary operator when 〈bn| = 〈an|.
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We also note that

U |am〉 =
∑

n

|bn〉 〈an| am〉 =
∑

n

|bn〉 δnm = |bm〉 . (1.67)

Hence U transforms the eigenstate |am〉 into |bm〉. In other words, if we use |an〉’s as the

basis for the expansion of a state vector then U will convert this basis set to a new basis

formed by the |bn〉’s. Thus U allows one to transform from the “old basis” given by |an〉’s
to the “new basis” given by the |bn〉’s. One can do the conversion in the reverse order by

multiplying both sides of (1.67) by U † on the left:

U †U |am〉 = U † |bm〉 . (1.68)

Hence, from the unitary property of U , we find

U † |bm〉 = |am〉 . (1.69)

Furthermore, the matrix element of an operator, A, in the old basis set can be related to

its matrix elements in the new basis as follows

〈bn|A |bm〉 = 〈bn|UU †AUU † |bm〉 = 〈an|U †AU |am〉 (1.70)

where we have used the property U †U = 1 and the relations (1.69). This relation will be

true for all possible values of |an〉’s and |bn〉’s. Therefore, it can be expressed as an operator

relation in terms of the “transformed” operator AT . We then write

AT = U †AU . (1.71)

Finally, if |an〉’s are the eigenstates of the operator A,

A |an〉 = an |an〉 (1.72)

and relation (1.67) connecting |an〉 and |bn〉 holds, where |bn〉’s are the eigenstates of an

operator B, then we can multiply (1.72) by U on both sides to obtain

UA |an〉 = anU |an〉 (1.73)

and write

UAU † [U |an〉] = an [U |an〉] . (1.74)

Hence

UAU † |bn〉 = an |bn〉 . (1.75)

Thus |bn〉 is the eigenstate of UAU † with the same eigenvalues as the eigenvalues of A.

However, since |bn〉’s are eigenstates of the operator B we find that UAU † and B are in

some sense equivalent.
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1.10 Matrix formalism

We define the “matrix element” of an operator A between states |α〉 and |β〉 as

〈β |A|α〉 , (1.76)

which is a complex number. To understand the meaning of this matrix element we note that

when A operates on |α〉 it gives another ket vector. This state when multiplied on the left by

〈β| gives a number. When there are many such |α〉’s and 〈β|’s then we have a whole array

of numbers that can be put into the form of a matrix. Specifically, the matrix formed by the

matrix elements of A between the basis states |bn〉 , with n = 1, 2, . . . , N depending on the

dimensionality of the space, is then a square matrix 〈bm |A| bn〉 written as follows:

{A} =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 . A1N

A21 A22 A23 . .

A31 A32 A33 . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

(1.77)

where

Amn = 〈bm |A| bn〉 . (1.78)

The matrix (1.77) is then called the matrix representation of A in terms of the states |bn〉. It

gives, in a sense, a profile of the operator A and describes what is an abstract object in terms

of a matrix of complex numbers. The matrix representation will look different if basis sets

formed by eigenstates of some other operator are used.

The matrices follow the normal rules of matrix algebra. Some of the important properties

are given below, particularly as they relate to the Hermitian and unitary operators.

(i) The relation between the matrix elements of A† and A is given by

〈α|A† |β〉 = 〈β|A |α〉∗ . (1.79)

Thus the matrix representation of A† can be written as

{A†} =

⎡
⎢⎢⎢⎢⎢⎣

A∗11 A∗21 A∗31 . A∗N1

A∗12 A∗22 A∗23 . .

A∗13 A∗23 A∗33 . .

. . . . .

A∗1N . . . A∗NN

⎤
⎥⎥⎥⎥⎥⎦

(1.80)

where A is represented by the matrix (1.77).

(ii) If the operator A is Hermitian then

〈β|A |α〉 = 〈β|A† |α〉 . (1.81)
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Using the property (1.79) we find

〈β|A |α〉 = 〈α|A |β〉∗ . (1.82)

In particular, the matrix elements with respect to the eigenstates |bn〉 satisfy

〈bm |A| bn〉 = 〈bn |A| bm〉∗ . (1.83)

A Hermitian operator will, therefore, have the following matrix representation:

{A} =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 . A1N

A∗12 A22 A23 . .

A∗13 A∗23 A33 . .

. . . . .

A∗1N . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

. (1.84)

We note that the same result is obtained by equating the matrices A and A† given by

(1.77) and (1.80) respectively. We also note that the diagonal elements A11, A22, . . . of

a Hermitian operator are real since the matrix elements satisfy the relation A∗mn = Anm.

(iii) The matrix representation of an operator A in terms of its eigenstates is a diagonal

matrix because of the orthonormality property (1.44). It can, therefore, be written as

{A} =

⎡
⎢⎢⎢⎢⎢⎣

A11 0 0 . 0

0 A22 0 . .

0 0 A33 . .

. . . . .

0 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

(1.85)

where Amm = am where am’s are the eigenvalues of A. The matrix representation of A

in terms of eigenstates |bn〉 of an operator B that is different from A and that does not

share the same eigenstates is then written as

{A} =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 . A1N

A21 A22 A23 . .

A31 A32 A33 . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

(1.86)

where Amn = 〈bm |A| bn〉. If the operator B has the same eigenstates as A then the

above matrix will, once again, be diagonal.

(iv) We now illustrate the usefulness of the completeness relation by considering several

operator relations. First let us consider the matrix representation of the product of two

operators {AB} by writing

〈bm |AB| bn〉 = 〈bm |A1B| bn〉 =
∑

p

〈bm

∣∣A
[∣∣bp

〉 〈
bp

∣∣]B
∣∣ bn〉. (1.87)
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In the second equality we have inserted a unit operator between the operators A and

B and then replaced it by the sum of the complete set of states. Hence the matrix

representation of AB is simply the product of two matrices:

{AB} =

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 . . A1N

A21 A22 . . .

. . . . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

B11 B12 . . B1N

B21 B22 . . .

. . . . .

. . . . .

BN1 . . . BNN

⎤
⎥⎥⎥⎥⎥⎦

. (1.88)

Next we consider the operator relation

A |α〉 = |β〉 . (1.89)

It can be written as a matrix relation if we multiply both sides of the equation by the

eigenstates 〈bm| of an operator B and then insert a complete set of states
∣∣bp

〉
with

p = 1, 2, . . . :

〈bm|A

⎡
⎣∑

p

∣∣bp

〉
〈bp

⎤
⎦ |α〉 =

∑

p

〈bm|A
∣∣bp

〉
〈bp |α〉 = 〈bm |β〉 . (1.90)

This is a matrix equation in which A is represented by the matrix in (1.86), and |α〉 and

|β〉 are represented by the column matrices

⎡
⎢⎢⎣

〈b1 |α〉
〈b2 |α〉

.

〈bN |α〉

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

〈b1 |β〉
〈b2 |β〉

.

〈bN |β〉

⎤
⎥⎥⎦ (1.91)

respectively, and hence the above relation can be written in terms of matrices as

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 . . A1N

A21 A22 . . .

. . . . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

〈b1 |α〉
〈b2 |α〉

.

.

〈bN |α〉

⎞
⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎝

〈b1 |β〉
〈b2 |β〉

.

.

〈bN |β〉

⎞
⎟⎟⎟⎟⎟⎠

. (1.92)

We can now follow the rules of matrix multiplications and write down N simultaneous

equations.

(v) A matrix element such as 〈ψ |A |φ〉 can itself be expressed in terms of a matrix relation

by using the completeness relation

〈ψ |A |φ〉 = 〈ψ |
[∑

m

|bm〉 〈bm|
]

A

[∑

n

|bn〉 〈bn|
]
|φ〉 (1.93)

=
∑

m

∑

n

〈ψ |bm〉 〈bm|A |bn〉 〈bn|φ〉.
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The right-hand side in the matrix form is then

(
〈ψ |b1〉 〈ψ |b2〉 . . . 〈ψ |bN 〉

)

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 . . A1N

A21 A22 . . .

. . A33 . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

〈b1 |φ〉
〈b2 |φ〉

.

.

〈bN |φ〉

⎞
⎟⎟⎟⎟⎟⎠

,

(1.94)

which after a long multiplication reduces to a single number which is, of course, the

single matrix element 〈ψ |A |φ〉 .
Often it is more convenient to write the above product by utilizing the relation

〈ψ |bm〉 = 〈bm |ψ〉∗,

(
〈b1 |ψ〉∗ 〈b2 |ψ〉∗ . . . 〈bN |ψ〉∗

)

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 A13 . A1N

A21 A22 A23 . .

A31 A32 A33 . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

〈b1 |φ〉
〈b2 |φ〉

.

.

〈bN |φ〉

⎞
⎟⎟⎟⎟⎟⎠

.

(1.95)

(vi) The trace of a matrix A is defined as a sum of its diagonal elements,

Tr(A) =
∑

n

〈an|A |an〉 =
∑

n

Ann, (1.96)

where |an〉’s form an orthonormal basis set. An important property of a trace is

Tr(AB) = Tr(BA) (1.97)

This can be proved by noting that

Tr(AB) =
∑

n

〈an|AB |an〉 =
∑

n

∑

m

〈an|A |am〉 〈am|B |an〉 (1.98)

where we have used the completeness relation for the basis sets |am〉. Since the matrix

elements are numbers and no longer operators, they can be switched. Hence using

completeness for the |am〉’s we have

Tr(AB) =
∑

m

∑

n

〈am|B |an〉 〈an|A |am〉 =
∑

m

〈am|BA |am〉 = Tr(BA), (1.99)

which is the desired result. This leads to the generalization involving a product of an

arbitrary number of operators that

Tr(ABC . . . ) = invariant (1.100)

under a cyclic permutation of the product ABC . . . .
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1.11 Eigenstates and diagonalization of matrices

Consider the case where we know the matrix elements of A with respect to the basis given

by |an〉. That is, we know 〈am|A |an〉 where |an〉’s are not necessarily the eigenstates of A.

We call |an〉’s the old basis. We now wish to obtain the eigenstates and eigenvalues of A.

Let |bn〉’s be the eigenstates of A, we will call them the new basis, which satisfy

A |bn〉 = bn |bn〉 . (1.101)

We proceed in a manner very similar to the previous problem. We multiply both sides of

(1.101) by 〈am| and insert a complete set of states
∣∣ap

〉
,

∑

p

〈am|A
∣∣ap

〉 〈
ap

∣∣ bn〉 = bn 〈am| bn〉. (1.102)

The above relation can be written as a matrix relation by taking m = 1, 2, . . . , N for a fixed

value of n

⎡
⎢⎢⎢⎢⎢⎣

A11 A12 . . A1N

A21 A22 . . .

. . . . .

. . . . .

AN1 . . . ANN

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

〈a1 |bn〉
〈a2 |bn〉

.

.

〈aN |bn〉

⎞
⎟⎟⎟⎟⎟⎠
= bn

⎛
⎜⎜⎜⎜⎜⎝

〈a1 |bn〉
〈a2 |bn〉

.

.

〈aN |bn〉

⎞
⎟⎟⎟⎟⎟⎠

(1.103)

where, as stated earlier, the matrix elements Amp = 〈am|A
∣∣ap

〉
are known. The relation

(1.103) can be written as

⎡
⎢⎢⎢⎢⎢⎣

A11 − bn A12 . . A1N

A21 A22 − bn . . .

. . . . .

. . . . .

AN1 . . . ANN − bn

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

〈a1 |bn〉
〈a2 |bn〉

.

.

〈aN |bn〉

⎞
⎟⎟⎟⎟⎟⎠
= 0, (1.104)

which is valid for each value of n. Thus, effectively, the above relation corresponds to

“diagonalization” of the matrix formed by the Amn.

A solution of equation (1.104) is possible only if the determinant of the N × N matrix

vanishes for each value of n. Hence the eigenvalues bn are the roots of the determinant

equation

det [A− λI ] = 0 (1.105)
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where I is a unit matrix. The different values of λ correspond to the different eigenvalues

bn. The corresponding elements 〈am |bn〉 can then be determined by solving N simultaneous

equations in (1.104).

1.11.1 Diagonalization through unitary operators

Let us bring in the unitary operators, which will shed further light on determining eigenstates

and eigenvalues of A. Let U be the unitary operator that transforms the old basis to the new

basis,

|bn〉 = U |an〉 . (1.106)

This transformation preserves the norms of the two basis sets since U is unitary. Equation

(1.101) can be expressed as

AU |an〉 = bnU |an〉 . (1.107)

We now multiply both sides on the left by U †; then

U † AU |an〉 = bnU † U |an〉 = bn |an〉 (1.108)

where we have used the unitary property U † U = 1. Once again we multiply on the left,

this time by 〈am| . We find

〈am|U † AU |an〉 = bn〈am |an〉 = bnδmn. (1.109)

The right-hand side corresponds to a diagonal matrix. Thus the operator U must be such

that U † AU is a diagonal matrix and we write

AD = U † AU . (1.110)

Once we find U then we can immediately obtain the eigenstates |bn〉 from (1.106) and

eigenvalues bn from (1.109).

Taking the trace of both sides of (1.10) we obtain

Tr(AD) = Tr(U † AU ). (1.111)

Since AD is a diagonal operator with matrix elements given by the eigenvalues of A, the trace

on the left of the above equation is simply the sum of the eigenvalues. For the right-hand

side we note, using the invariance of a trace under cyclic permutation, that

Tr(U † AU ) = Tr(AUU † ) = Tr(A). (1.112)
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Thus

Tr(A) = sum of the eigenvalues of the operator A. (1.113)

This result holds even though A itself is not diagonal in the basis set |an〉.
In a two-channel system, i.e., in a system that consists of only two eigenstates, U is

relatively easy to express. One writes

U =
[

cos θ sin θ

− sin θ cos θ

]
, (1.114)

which is manifestly unitary. One then imposes the condition

U † AU = diagonal matrix. (1.115)

This is accomplished by taking the off-diagonal elements to be zero. From this relation

one can determine the angle θ and, therefore, the matrix U . The diagonal elements of the

matrix (1.116) give the eigenvalues, while the eigenstates |bn〉 are obtained in terms of U

and |an〉 through (1.107). We will return to this formalism in Chapter 13 when we focus on

two-channel phenomena.

1.12 Density operator

The expectation value 〈α |A|α〉, taken with respect to a state |α〉, of an operator A was

defined earlier. It was defined with respect to a single state, often referred to as a pure

quantum state. Instead of a pure quantum state one may, however, have a collection of

states, called an ensemble of states. If each state in this ensemble is described by the same

ket |α〉 then one refers to it as a pure ensemble.

When all the states in an ensemble are not the same then it is called a mixed ensemble.

If one is considering a mixed ensemble where wα describes the probability that a state |α〉
is present in the ensemble, wβ describes the probability that a state |β〉 is present, and so

on, then, instead of the expectation value, 〈α |A|α〉 , the relevant quantity is the ensemble

average, which is defined as

〈A〉av =
∑

α

wα 〈α |A|α〉 (1.116)

where the sum runs over all the states in the ensemble. Naturally, if wα = 1, with all other

wi’s zero, then only the state |α〉 contributes in the sum, in which case we have a pure

ensemble and the ensemble average is then the same as the expectation value. We note that

a mixed ensemble is also referred to as a statistical mixture.

Below we outline some important properties of 〈α |A|α〉 and 〈A〉av .
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Inserting a complete set of states |bn〉 with n = 1, 2, . . . in the expression for the

expectation value 〈α |A|α〉 we can write

〈α |A|α〉 =
∑

n

∑

m

〈α|bn〉 〈bn |A| bm〉 〈bm|α〉 (1.117)

=
∑

n

∑

m

〈bn |A| bm〉 〈bm|α〉 〈α|bn〉 (1.118)

where we have made an interchange of some of the matrix elements, which is allowed

because they are numbers and no longer operators.We now introduce a “projection operator”

defined by

Pα = |α〉〈α|. (1.119)

It has the property

Pα|β〉 = |α〉〈α|β〉 = δαβ |α〉 (1.120)

where we have taken the states |α〉, |β〉 . . . as orthonormal. Thus Pα projects out the state

|α〉 when operating on any state. Furthermore,

P2
α = |α〉 〈α|α〉 〈α| = |α〉〈α| = Pα , (1.121)

P†
α = (〈α|) (|α〉) = |α〉〈α| = Pα . (1.122)

The completeness theorem gives

∑

α

Pα =
∑

α

|α〉〈α| = 1. (1.123)

From (1.119) and (1.120) we can write 〈α |A|α〉 in terms of Pα by noting that

〈bm|α〉 〈α|bn〉 = 〈bm |Pα| bn〉 (1.124)

where |bn〉’s are eigenstates of an operator. Therefore,

〈α |A|α〉 =
∑

n

∑

m

〈bn |A| bm〉 〈bm |Pα| bn〉 (1.125)

=
∑

n

〈bn|APα |bn〉 (1.126)

where we have used the completeness relation
∑
m
|bm〉〈bm| = 1 for the eigenstates |bm〉.

Thus,

〈α |A|α〉 = Tr (APα) (1.127)

where “Tr” indicates trace. If we take

A = 1 (1.128)
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then

Tr (Pα) = 1. (1.129)

We consider now a mixed ensemble that contains the states |α〉, |β〉, . . . etc. with

probabilities wα , wβ . . . , respectively. We define a density operator ρ as

ρ =
∑

α

wαPα =
∑

α

wα|α〉〈α|. (1.130)

Since wα , being the probability, is real and Pα is Hermitian, ρ is, therefore, Hermitian,

ρ† = ρ. (1.131)

From (1.117) and (1.128) the ensemble average is

〈A〉av =
∑

α

wαTr (APα) . (1.132)

We note that since wα is a number and not a matrix, and, at the same time, since the

operator A is independent of α, and thus does not participate in the summation over α, we

can reshuffle the terms in (1.133) to obtain

〈A〉av = Tr

(
A
∑

α

wαPα

)
= Tr (Aρ) = Tr (ρA) . (1.133)

The last equality follows from the property that the trace of a product of two matrices is

invariant under interchange of the matrices.

From (1.117) we find, by taking A = 1, that

〈1〉av =
∑

α

ωα 〈α |1|α〉 =
∑

α

ωα = 1. (1.134)

Therefore, from (1.134), we get

〈1〉av = Tr (ρ) . (1.135)

Finally, (1.135) and (1.136) imply

Tr (ρ) = 1. (1.136)

We will discuss the properties of ρ in Chapter 14 for the specific case of the spin ½ particles,

and again in the chapter on two-level problems.

1.13 Measurement

When a measurement of a dynamical variable is made on a system and a specific, real,

value for a physical observable is found, then that value is an eigenvalue of the operator
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representing the observable. In other words, irrespective of the state, the act of measurement

itself kicks the state into an eigenstate of the operator in question.

From the superposition principle, the state of a system, say |φ〉, can always be expressed

as a superposition of basis states, which we take to be normalized kets. One can choose these

states to be the eigenstates of the operator, e.g., |an〉. Thus one can write the superposition as

|φ〉 =
∑

n

cn |an〉 . (1.137)

When a single measurement is made, one of the eigenstates of this operator in this

superposition will be observed and the corresponding eigenvalue will be measured. In

other words, the state |φ〉 will “collapse” to a state |an〉. The probability that a particular

eigenvalue, e.g., an will be measured in a single measurement is given by |cn|2. But a second

measurement of an identical system may yield another eigenstate with a different eigenvalue

and a different probability. Repeated measurements on identically prepared systems, will

then give the probability distribution of the eigenvalues and yield information on the nature

of the system. In practice, one prefers to make measurements on a large number of identical

systems, which gives the same probability distribution.

Similar arguments follow if a measurement is made to determine whether the system

is in state |ψ〉. In this case the original state |φ〉 will “jump” into the state |ψ〉 with the

probability |〈ψ |φ〉|2.

The concept of measurement and the probability interpretation in quantum mechanics is

a complex issue that we will come back to when we discuss Stern–Gerlach experiments in

Chapter 7 and entangled states in Chapter 30.

1.14 Problems

1. Define the following two state vectors as column matrices:

|α1〉 =
[
1

0

]
and |α2〉 =

[
0

1

]

with their Hermitian conjugates given by

〈α1| =
[
1 0

]
and 〈α2| =

[
0 1

]

respectively. Show the following for i, j = 1, 2:

(i) The |αi〉’s are orthonormal.

(ii) Any column matrix

[
a

b

]

can be written as a linear combination of the |αi〉’s.
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(iii) The outer products |αi〉 〈αj| form 2× 2 matrices which can serve as operators.

(iv) The |αi〉’s satisfy completeness relation

∑

i

|αi〉 〈αi| = 1

where 1 represents a unit 2× 2 matrix.

(v) Write

A =
[
a b

c d

]

as a linear combination of the four matrices formed by |αi〉 〈αj|.
(vi) Determine the matrix elements of A such that |α1〉 and |α2〉 are simultaneously the

eigenstates of A satisfying the relations

A |α1〉 = + |α1〉 and A |α2〉 = − |α2〉 .

(The above properties signify that the |αi〉’s span a Hilbert space. These abstract

representations of the state vectors actually have a profound significance. They

represent the states of particles with spin ½. We will discuss this in detail in

Chapter 5.)

2. Show that if an operator A is a function of λ then

dA−1

dλ
= −A−1 dA

dλ
A−1.

3. Show that a unitary operator U can be written as

U = 1+ iK

1− iK

where K is a Hermitian operator. Show that one can also write

U = eiC

where C is a Hermitian operator. If

U = A+ iB.

Show that A and B commute. Express these matrices in terms of C. You can assume that

eM = 1+M + M 2

2! + · · ·

where M is an arbitrary matrix.

4. Show that

det
(
eA
)
= eTr(A).
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5. For two arbitrary state vectors |α〉 and |β〉 show that

Tr [|α〉 〈β|] = 〈β|α〉.

6. Consider a two-dimensional space spanned by two orthonormal state vectors |α〉 and

|β〉. An operator is expressed in terms of these vectors as

A = |α〉 〈α| + λ |β〉 〈α| + λ∗ |α〉 〈β| + μ |β〉 〈β| .

Determine the eigenstates of A for the case where (i) λ = 1,μ = ±1, (ii) λ = i,μ = ±1.

Do this problem also by expressing A as a 2× 2 matrix with eigenstates as the column

matrices.



2
Fundamental commutator and time

evolution of state vectors and operators

In the previous chapter we outlined the basic mathematical structure essential for our studies.

We are now ready to make contact with physics. This means introducing the fundamental

constant �, the Planck constant, which controls the quantum phenomena. Our first step

will be to discuss the so-called fundamental commutator, also known as the canonical

commutator, which is proportional to � and which essentially dictates how the quantum

processes are described. We then examine how time enters the formalism and thus set the

stage for writing equations of motion for a physical system.

2.1 Continuous variables: X and P operators

Eigenvalues need not always be discrete as we stated earlier. For example, consider a one-

dimensional, continuous (indenumerable) infinite-dimensional position space, the x-space.

One could have an eigenstate
∣∣x′
〉
of a continuous operator X ,

X
∣∣x′
〉
= x′

∣∣x′
〉

(2.1)

where x′corresponds to the value of the x-variable.

The ket
∣∣x′
〉

has all the properties of the kets |α〉 and of the eigenstates |an〉 that were

outlined in the previous chapter. The exceptions are those cases where the fact that x is a

continuous variable makes an essential difference.

δ-function δ(x − x′), which has the following properties:

δ(x − x′) = 0 for x � =x′, (2.2)

∞∫

−∞
dx δ(x − x′) = 1. (2.3)

From these two definitions it follows that

∞∫

−∞
dx f (x) δ(x − x′) = f (x′). (2.4)

The properties of the delta function are discussed in considerable detail in Appendix 2.9.



25 2.1 Continuous variables: X and P operators

The orthogonality condition involving the Kronecker δ-function that we used for the

discrete variables is now replaced by

〈x| x′〉 = δ(x − x′) (2.5)

The completeness relation is then expressed as

∞∫

−∞
dx |x〉 〈x| = 1 (2.6)

where the summation in the discrete case is replaced by an integral. Just as in the discrete

case one can prove this relation quite simply by multiplying the two sides of (2.6) by the

ket
∣∣x′
〉
. We obtain

⎡
⎣
∞∫

−∞
dx |x〉 〈x|

⎤
⎦ ∣∣x′

〉
=

∞∫

−∞
dx |x〉 〈x| x′〉 =

∣∣x′
〉
. (2.7)

Thus the left-hand side of (2.6), indeed, acts as a unit operator.

We also note that

〈
x |X | x′

〉
= x δ(x − x′). (2.8)

It does not matter if we have the factor x or x′ on the right-hand side multiplying the δ-

function since the δ-function vanishes unless x = x′. The matrix element
〈
x |X | x′

〉
, in this

continuous space, is called the “representative” of the operator X in the x-space.

A “wavefunction” in the x-space, φ(x), corresponding to a state vector |φ〉 is defined as

φ(x) = 〈x|φ〉 (2.9)

and from the properties of the bra and ket vectors outlined earlier,

φ∗(x) = 〈φ| x〉. (2.10)

The function φ(x) is then a manifestation of an abstract vector |φ〉 in the x-space which we

also call the “representative” of |φ〉 in the x-space. The linear superposition principle stated

in (1.1) can be written in the following form by taking the representatives in the x-space,

aα(x)+ bβ(x) = cγ (x) (2.11)

where α(x) = 〈x|α〉 etc.

The product 〈ψ |φ〉 can be expressed in the x-space by inserting a complete set of

intermediate states:

〈ψ |φ〉 = 〈ψ | 1 |φ〉 =
∞∫

−∞
dx 〈ψ | x〉 〈x|φ〉 =

∞∫

−∞
dxψ∗(x)φ(x) (2.12)
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In particular, if the states |φ〉 are normalized, 〈φ|φ〉 = 1, then replacing 〈ψ | by

〈φ| in the above relation we obtain the normalization condition in the x-space for the

wavefunction φ(x),

∞∫

−∞
dx φ∗(x)φ(x) = 1. (2.13)

For the integrals to be finite, it is important to note that φ(x) and ψ(x) must vanish as

x →±∞.

As with the x-variables, one can also consider the momentum variable, p, in one dimen-

sion (p-space) which can be continuous. If P is the momentum operator with eigenstates∣∣p′
〉
then

P|p′〉 = p′|p′〉 (2.14)

with

〈p|p′〉 = δ(p− p′) (2.15)

and

〈p|P|p′〉 = pδ(p− p′). (2.16)

A wavefunction in the p-space, f (p), for an abstract vector |f 〉 is defined as

f (p) = 〈p|f 〉 (2.17)

with the normalization condition

∞∫

−∞
dp f ∗(p)f (p) = 1. (2.18)

If the state vectors depend on time then the above conditions can be expressed in terms of

φ(x, t) and f (p, t).

2.2 Canonical commutator [X,P]

The commutator between two operators B and C is defined as

[B, C] = BC − CB (2.19)

It is itself an operator. As we saw earlier, it will vanish if B and C have a common eigenstate.
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The commutator between the canonical variables X and P plays a fundamental role in

quantum mechanics, which in the one-dimensional case is given by

[X , P] = i�1 (2.20)

where the right-hand side has the Planck constant, �, multiplied by a unit operator. The

appearance of � signals that we are now in the regime of quantum mechanics.

The relation (2.20) shows that [X , P] does not vanish, and, therefore, X and P cannot

have a common eigenstate, i.e., they cannot be measured simultaneously. The commutator,

however, allows us to connect two basic measurements: one involving the x-variable and

the other involving the p-variable. If the right-hand side were zero then it would correspond

to classical physics, where the two measurements can be carried out simultaneously

To obtain the representatives of the momentum operator in the x-space, we proceed by

taking the matrix elements of both sides of (2.20),

〈x|(XP − PX )|x′〉 = i�δ(x − x′). (2.21)

The left-hand side is simplified by inserting a complete set of intermediate states,

〈x|(XP − PX )|x′〉 =
∞∫

−∞
dx′′ 〈x|X |x′′〉〈x′′|P|x′〉 −

∞∫

−∞
dx′′ 〈x|P|x′′〉〈x′′|X |x′〉. (2.22)

For the right-hand side of the above equation we use the relation (2.8) and replace the

matrix elements of X by Dirac δ-functions. The integrals are further simplified by using

(2.4) and (2.8). We thus obtain

x〈x|P|x′〉 − 〈x|P|x′〉x′ = i�δ(x − x′). (2.23)

We notice that when x � =x′ the right-hand side of the above equation vanishes. The

left-hand side, however, does not vanish when x � =x′ unless 〈x|P
∣∣x′
〉
itself has a δ-function

in it. Writing it as

〈x|P|x′〉 = δ(x − x′)P(x) (2.24)

where P(x) is an operator expressed in terms of the x-variable, we obtain the following

from (2.23), and (2.24) after cancelling the δ-function from both sides,

xP(x)− P(x)x = i�. (2.25)

This is an operator relation in which the operators are expressed as functions of x. This

relation becomes meaningful only upon operating it on a wavefunction. Multiplying both

sides by a wavefunction φ(x) on the right, we obtain

[xP(x)− P(x)x]φ(x) = i�φ(x), (2.26)



28 Fundamental commutator and time evolution of state vectors and operators

which we can write as

xP(x) [φ(x)]− P(x) [xφ(x)] = i�φ(x). (2.27)

Considering the left-hand side in (2.26), we note that since P(x) is assumed to be a linear

operator that operates on the quantities to the right of it, we will have two types of terms

P(x) [φ(x)] and P(x) [xφ(x)]. Furthermore, relation (2.27) suggests that P(x) will be a

derivative operator, in which case one can simplify the second term involving the product

[xφ(x)] by using the product rule for first order derivatives and writing

P(x) [xφ(x)] = [P(x)x]φ(x)+ x [P(x)φ(x)] (2.28)

where the square bracket in [P(x)x]φ(x) implies that P(x) operates only on x and not on

φ(x). Thus the left-hand side of (2.27) can be written as

x [P(x)φ(x)]− [P(x)x]φ(x)− x [P(x)φ(x)] = − [P(x)x]φ(x). (2.29)

The equation (2.27) now reads

− [P(x)x]φ(x) = i�φ(x). (2.30)

Since on the left-hand side of (2.30), P(x) operates only on x and does not operate on φ(x),

we can remove φ(x) from both sides and obtain the relation

− [P(x)x] = i�. (2.31)

It is easy to confirm that the following linear differential operator for P(x) satisfies the

above relation:

P(x) = −i�
d

dx
. (2.32)

This is then the representation of the operator P in the x-space. In terms of matrix elements

in the x-space we can write this relation as

〈x′|P|x〉 = δ(x − x′)
(
−i�

d

dx

)
. (2.33)

A matrix element that one often comes across is 〈x′|P|φ〉 which can be expressed, by

inserting a complete set of states, as

〈x′|P|φ〉 =
∞∫

−∞
dx′′ 〈x′|P|x′′〉〈x′′|φ〉. (2.34)

Using (2.33) we obtain

〈x′|P|φ〉 = −i�
d

dx′
φ(x′). (2.35)
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2.3 P as a derivative operator: another way

We describe another way in which the relation (2.35) can be established. Let us start with

the fundamental commutator written as

[P, X ] = −i�. (2.36)

Consider

[P, X 2] = PX 2 − X 2P. (2.37)

This relation can be rewritten as

[P, X 2] = [P, X ] X + X [P, X ] = −2i�X (2.38)

where we have used the relation (2.36). Expressing the right-hand side as a derivative we

obtain

[P, X 2] = −i�
d

dX
(X 2). (2.39)

Proceeding in a similar manner one can show that

[P, X n] = −ni�X n−1 = −i�
d

dX
(X n). (2.40)

Consider now the commutator [P, f (X )] where f (X ) is a regular function which can be

expanded in a Taylor series around X = 0,

f (X ) = a0 + a1X + · · · + anX n + · · · . (2.41)

Using the result (2.40) we conclude that

[P, f (X )] = −i�
df (X )

dX
. (2.42)

We operate the two sides on a state vector |φ〉,

[P, f (X )]|φ〉 = −i�
df (X )

dX
|φ〉. (2.43)

The left-hand side is

(Pf − fP) |φ〉 = [(Pf ) |φ〉 + fP|φ〉]− f (P|φ〉) = (Pf ) |φ〉. (2.44)

In the above relation (Pf ) means P operates on f alone. Since |φ〉 is any arbitrary state

vector one can remove the factor |φ〉. Hence

(Pf ) = −i�
df (X )

dX
. (2.45)
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Thus

P = −i�
d

dX
. (2.46)

Taking the matrix element of the above, we find

〈x′|P|φ〉 = −i�
d

dx′
φ(x′), (2.47)

confirming our result (2.35).

2.4 X and P as Hermitian operators

Let us now show that X and P are Hermitian, as they should be since they correspond to

physically measurable quantities.

For X it is quite trivial as we demonstrate below. From the definition of Hermitian

conjugate we notice that the matrix element of X † is given by

〈x′|X †|x〉 = 〈x|X |x′〉∗ = xδ(x − x′). (2.48)

where we have taken account of the fact that x′ and δ(x − x′) are real. The matrix element

of X is given by

〈x′|X |x〉 = xδ(x − x′). (2.49)

Therefore,

X = X †. (2.50)

The Hermitian conjugate of P can be obtained by first taking the matrix element of P

between two arbitrary states |ψ〉 and |φ〉 and then evaluating it by inserting a complete set

of states. We obtain

〈ψ |P|φ〉 =
∞∫

−∞
dx′

∞∫

−∞
dx′′ 〈ψ |x′〉〈x′|P|x′′〉〈x′′|φ〉 (2.51)

=
∞∫

−∞
dx′

∞∫

−∞
dx′′ ψ∗(x′)δ(x′ − x′′)

(
−i�

∂

∂x′′

)
φ(x′′), (2.52)

remembering that P operates on the functions to the right. Therefore,

〈ψ |P|φ〉 = (−i�)

∞∫

−∞
dx′ ψ∗(x′)

∂φ(x′)
∂x′

. (2.53)
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Interchanging ψ and φ, we obtain

〈φ|P|ψ〉 = (−i�)

∞∫

−∞
dx′ φ∗(x′)

∂ψ(x′)
∂x′

. (2.54)

Integrating the right-hand side above by parts, and also, to ensure the convergence of the

integrals, assuming ψ(x′)→ 0,φ(x′)→ 0 as x′→±∞, we obtain

〈φ|P|ψ〉 = (i�)
∞∫

−∞
dx′
∂φ∗(x′)
∂x′

ψ(x′). (2.55)

Next we consider the matrix element of P†, and use its Hermitian conjugation properties,

〈φ|P†|ψ〉 = 〈ψ |P|φ〉∗ = (i�)
∞∫

−∞
dx′ ψ(x′)

∂φ∗(x′)
∂x′

(2.56)

where we have used (2.53). Comparing this result with that of 〈φ|P|ψ〉 in (2.55) we conclude

that, since ψ(x′) and φ(x′) are arbitrary functions, we must have

P† = P (2.57)

and thus P is Hermitian.

We can extend the above relations to three dimensions with the commutation relations

given by

[
Xi, Pj

]
= i�δij1, (2.58)

[
Xi, Xj

]
= 0, (2.59)

[
Pi, Pj

]
= 0 (2.60)

where i, j = 1, 2, 3 correspond to the three dimensions. Thus X1, X2, X3 correspond to

the operators X , Y , Z respectively, while P1, P2, P3 correspond to operators Px, Py, Pz

respectively.

Beginning with the relation

[X , Px] = i�1 (2.61)

we conclude, following the same steps as before, that the representation of Px in the x-space

will be given by

Px = −i�
∂

∂x
. (2.62)

Note that we now have a partial derivative rather than the total derivative that we had earlier

for the one-dimensional case. The above operator satisfies the relation

[Y , Px] = 0 = [Z , Px] . (2.63)
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Since Px commutes with Y and Z , it cannot involve any derivative operators involving the

y- and z-coordinates. Therefore, the relation (2.61) remains a correct representation of Px.

Similarly, we have

Py = −i�
∂

∂y
, Pz = −i�

∂

∂z
. (2.64)

Finally, we note that the operators Px, Py, and Pz as written above also satisfy the relations

(2.60). All the remaining results we derived for the one-dimensional case stay the same for

the three-dimensional operators.

2.5 Uncertainty principle

As we discussed earlier, when two operators commute, i.e., when the commutator between

two operators vanishes, then these operators can share the same eigenstates. This implies

that the observables associated with these operators can be measured simultaneously. A

commutator, therefore, quantifies in some sense the degree to which two observables can

be measured at the same time.

In quantum mechanics, Planck’s constant, �, provides a measure of the commutator

between the canonical operators X and P through the fundamental commutator (2.20).

The uncertainty relation, one of the most famous results in quantum mechanics, relates the

accuracies of two measurements when they are made simultaneously.

The uncertainty of an operator A is defined as the positive square root

√〈
(�A)2

〉
where

�A = A− 〈A〉 1 (2.65)

and 〈A〉 is given by

〈A〉 = 〈φ|A|φ〉, (2.66)

which is the expectation value of A with respect to an arbitrary state |φ〉. We note that

〈�A〉 = 〈A− 〈A〉 1〉 = 〈A〉 − 〈A〉 = 0 (2.67)

and

〈
(�A)2

〉
=
〈
A2 − 2A 〈A〉 + 〈A〉2 1

〉
=
〈
A2
〉
− 〈A〉2 . (2.68)

To derive the uncertainty relation let us consider three Hermitian operators C, D, F that

satisfy the commutation relation

[C, D] = iF . (2.69)
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We consider the following relation involving the state vector |φ〉,

(C + iλD) |φ〉 = C|φ〉 + iλD|φ〉 (2.70)

where λ is real. We note that

|C|φ〉 + iλD|φ〉|2 ≥ 0 (2.71)

for all values of λ. The left-hand side can be written as

(
〈φ|C† − iλ〈φ|D†

)
(C|φ〉 + iλD|φ〉) (2.72)

= 〈φ|C†C|φ〉 + iλ〈φ|C†D|φ〉 − iλ〈φ|D†C|φ〉 + λ2〈φ|D†D|φ〉 (2.73)

= 〈φ|C†C|φ〉 + iλ〈φ| [C, D] |φ〉 + λ2〈φ|D†D|φ〉 (2.74)

= |C|φ〉|2 − λ〈φ|F |φ〉 + λ2|D|φ〉|2 (2.75)

where we have used the Hermitian property of the operators and the commutation

relation (2.69).

The relation (2.71) can then be written as

|C|φ〉|2 − λ〈φ|F |φ〉 + λ2|D|φ〉|2 ≥ 0 (2.76)

for all values of λ. Let us write

x2 = |D|φ〉|2, y = 〈φ|F |φ〉 and z2 = |C|φ〉|2. (2.77)

The relation (2.76) can be written as a quadratic in λ,

λ2x2 − λy + z2 ≥ 0 for all values of λ. (2.78)

First we confirm that this relation is correct for λ → ∞. To determine the sign of the

left-hand side of (2.78) for finite values of λ, let us express the relation in terms of its

roots in λ:

λ2x2 − λy + z2 = x2 (λ− λ1) (λ− λ2) (2.79)

where λ1 and λ2 are the roots, which we write as

λ1 = a0 −� and λ2 = a0 +� (2.80)

where

a0 =
y

2x2
and � =

√
y2 − 4x2z2

2x2
. (2.81)
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Since x2 defined by (2.77) is positive definite, the relation (2.78) implies that

(λ− λ1) (λ− λ2) ≥ 0. (2.82)

However, the left-hand side is negative for

λ1 < λ < λ2. (2.83)

To solve this apparent contradiction we substitute (2.80) for λ1 and λ2 in the product

(λ− λ1) (λ− λ2) = (λ− a0 −�) (λ− a0 +�) = (λ− a0)
2 −�2. (2.84)

In order to satisfy (2.82), the right-hand side above must be positive, which implies that

�2 < 0, i.e., � is pure imaginary,

� = i|�|. (2.85)

Hence,

(λ− λ1) (λ− λ2) = (λ− a0)
2 + |�|2 (2.86)

This is a positive definite quantity. We note that since F is Hermitian, a0 defined by (2.81)

is real. For � to be pure imaginary we must have, from (2.81) and (2.85),

4x2z2 ≥ y2. (2.87)

In terms of the operators C, D, and F this implies

[
|C|φ〉|2

] [
|D|φ〉|2

]
≥ 1

4
|〈φ|F |φ〉|2. (2.88)

To derive the uncertainty relation we consider two Hermitian operators A and B, and

relate them to the operators C and D as follows:

C = �A, D = �B. (2.89)

Then from the relations (2.65), (2.69), we have

[C, D] = [�A,�B] = [A, B] (2.90)

and

iF = [A, B] . (2.91)

We, therefore, conclude from (2.88) that

〈
(�A)2

〉 〈
(�B)2

〉
≥ 1

4
|〈[A, B]〉|2 . (2.92)
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This is true for any set of Hermitian operators. We choose A = X , and B = P. Since

[X , P] = i�1 we obtain from (2.92)

〈
(�X )2

〉 〈
(�P)2

〉
≥ �

2

4
=⇒ �x�p ≥ �

2
(2.93)

where we have taken �x and �p as the uncertainties defined by

√〈
(�X )2

〉
and

√〈
(�P)2

〉

respectively. These are the uncertainties in the measurements of the x and p variables. One

often writes the relation (2.93) more simply as

�x�p � �. (2.94)

This is the statement of the uncertainty relation in a quantum-mechanical system where

the commutation relations between the canonical variables are governed by the Planck

constant, �.

2.6 Some interesting applications of uncertainty relations

2.6.1 Size of a particle

By “size” we mean �x in the sense of the uncertainty relations according to which

�x ∼ �

�p
. (2.95)

A typical value of�p is given by the momentum mv of the particle. The maximum possible

value of the velocity according to the theory of relativity is the velocity of light, c. The

minimum value of �x is then

(�x)min =
�

mc
. (2.96)

Quantum-mechanically therefore, one does not think of a particle of mass m as a point

particle but rather as an object with a finite size, �/mc. This is also called the Compton

wavelength characteristic of that particle and it enters into calculations whenever a length

scale for the particle appears.

2.6.2 Bohr radius and ground-state energy of the hydrogen atom

Classically, an electron of charge−e orbiting around a proton of charge e would lose energy

due to radiation and eventually fall into the proton. This is, of course, in contradiction

to the observed fact that the electron executes stable orbits. This is explained quantum-

mechanically in the simplest terms through the uncertainty principle.



36 Fundamental commutator and time evolution of state vectors and operators

The total energy E of the electron is a sum of the kinetic energy
(

1
2

)
mv

2 and the potential

energy, which in the case of hydrogen is just the Coulomb potential. Thus, writing the

kinetic energy in terms of p = mv, the momentum, we have

E = p2

2m
− e2

r
(2.97)

where r is the distance between the proton and electron. Taking �p ∼ p and �r ∼ r, the

uncertainty relation says that

pr ∼ �. (2.98)

Thus, as r for the electron gets small due to the Coulomb attraction, p becomes large due

to the uncertainty principle. In other words, as the attractive Coulomb potential moves the

electron toward the proton, the increasing kinetic energy pushes the electron away from the

system. The electron will then settle down at a minimum of the total energy. We can obtain

this minimum by writing

E = �
2

2mr2
− e2

r
(2.99)

and then taking

∂E

∂r
= 0. (2.100)

This gives

− �
2

mr3
+ e2

r2
= 0. (2.101)

We find

rmin =
�

2

me2
. (2.102)

This is, indeed, the Bohr radius of the hydrogen atom, which is designated as a0. Substituting

this in the expression (2.99) we obtain the minimum value of E given by

Emin = −
e2

2a0
(2.103)

which is precisely the ground-state energy of the hydrogen atom.

Thus we find that even a simple application of the uncertainty relations can often give

meaningful results.

2.7 Space displacement operator

We consider two unitary operators that are of fundamental importance: space displace-

ment, also called translation, and time evolution. The displacement operator, D(x), involves
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translation of the space coordinates and, in one dimension, it has the property

D(�x′)|x′〉 = |x′ +�x′〉. (2.104)

Hence

〈x′|D†(�x′) = 〈x′ +�x′| (2.105)

where �x′ is the displacement. The displacement operator for �x′ = 0 corresponds to an

operator that causes no displacement, hence,

D(0) = 1. (2.106)

Furthermore, by repeated translations one finds

D(�x′′)D(�x′) = D
(
�x′′ +�x′

)
= D(�x′)D(�x′′). (2.107)

This follows from the fact that when all three of the operators that appear in the above

equality operate on
∣∣x′
〉
, they give the same state,

∣∣x′ +�x′ +�x′′
〉
. In particular, taking

�x′′ = −�x′, we find, since D(0) = 1,

D(�x′)D(−�x′) = 1. (2.108)

Hence

D(−�x′) = D−1(�x′) (2.109)

which implies that the inverse of a displacement operator is the same as displacement in

the opposite direction.

The set of operators D(�x′) for different�x’s form what is called a “group.” The precise

definition of a group and its detailed properties will be discussed in some of the later

chapters, but for now it is important to note that the operator D(�x′) varies continuously

Since D(�x′) merely translates the coordinates of a state vector, we assume the norm of∣∣x′
〉
to remain unchanged. Therefore,

〈x′|x′〉 = 〈x′ +�x′|x′ +�x′〉 =⇒ 〈x′|x′〉 = 〈x′|D†(�x′)D(�x′)|x′〉, (2.110)

i.e.,

D†(�x′)D(�x′) = 1. (2.111)

Hence D is a unitary operator.

If �x′ is infinitesimally small then, since D(�x′) is a continuous function of �x′, one

can expand it in a power series as follows, keeping only the leading term in �x′,

D(�x′) = 1− iK�x′. (2.112)
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The operator K is called the “generator” of an infinitesimal space displacement transfor-

mation. Inserting the above expression in (2.111), we have

1+ i
(
K† − K

)
�x′ + O(�x′)2 = 1 (2.113)

where O
(
�x′

)2
means of the order of

(
�x′

)2
. This term can be neglected since �x′ is

infinitesimal and because we want to keep only the leading terms in �x′. The above result

then implies that

K† = K . (2.114)

The operator K must, therefore, be Hermitian.

We will not prove it here but the fact that the generators of infinitesimal unitary

transformations are Hermitian is actually a very general property.

To obtain further insight into K , consider the commutator
[
X , D(�x′)

]
. When the

commutator operates on a state vector
∣∣x′
〉
we obtain

[
X , D(�x′)

]
|x′〉 = XD(�x′)|x′〉 − D(�x′)X |x′〉 (2.115)

=
(
x′ +�x′

)
|x′ +�x′〉 − x′|x′ +�x′〉 (2.116)

= �x′|x′ +�x′〉. (2.117)

Since �x′ is infinitesimal, we can make the expansion

|x′ +�x′〉 = |x′〉 + O
(
�x′

)
. (2.118)

Substituting (2.118) in (2.117) and neglecting terms of order
(
�x′

)2
, we have from (2.114)

[
X , D(�x′)

]
= �x′1 (2.119)

where we retain the unit operator on the right to preserve the fact that both sides of (2.119)

are operators. Substituting the expression for D in terms of its generator K in (2.119) we

obtain

[
X ,

(
1− iK�x′

)]
= �x′1. (2.120)

The commutator [X , 1] vanishes, so we have, after canceling �x′ from both sides,

[X , K] = i. (2.121)

Comparing this commutator with the canonical commutator relation [X , P] = i�1, we

obtain the important relation

K = P

�
, (2.122)
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which leads to the observation that the generator for infinitesimal space displacement trans-

formations of a state vector is proportional to the momentum operator. Thus the space

displacement operator can be written as

D(�x′) = 1− i
P

�
�x′. (2.123)

To confirm that K has the same form as P we proceed by considering the quantity

D(�x)|φ〉. Inserting a complete set of states we have

D(�x)|φ〉 =
∞∫

−∞
dx D(�x)|x〉〈x|φ〉 =

∞∫

−∞
dx |x +�x〉〈x|φ〉. (2.124)

We change variables by taking (x +�x) = x′′, and notice that the limits ±∞ will remain

unchanged. Thus, on the right-hand side above, 〈x|φ〉 will be replaced by 〈(x′′ − �x)|φ〉,
which can be expanded in a Taylor series in terms of �x to give

D(�x)|φ〉 =
∞∫

−∞
dx′′ |x′′〉〈x′′ −�x|φ〉 =

∞∫

−∞
dx′′|x′′〉

[
φ(x′′)−�x

d

dx′′
φ(x′′)

]
(2.125)

where we have taken 〈x′′|φ〉 = φ(x′′). Multiplying the two sides above by 〈x′|, we have

〈x′|D(�x)|φ〉 =
∞∫

−∞
dx′′ 〈x′|x′′〉

[
φ(x′′)−�x

d

dx′′
φ(x′′)

]
. (2.126)

Since 〈x′|x′′〉 = δ(x′ − x′′), we obtain

〈x′|D(�x)|φ〉 = φ(x′)−�x
d

dx′
φ(x′). (2.127)

Inserting D(�x) = 1− iK�x, we find

〈x′|K |φ〉 = −i
d

dx′
φ(x′). (2.128)

Hence K has the same form as P, given by

〈x′|P|φ〉 = −i�
d

dx′
φ(x′), (2.129)

confirming (2.122).

Finally, we can convert D defined in terms of an infinitesimal transformation, to finite

transformations. For example, space displacement by a finite amount, x, can be obtained if
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we divide x, into N equal parts�x = x/N and then take the products of D(�x) N times in

the limit N →∞,

D(x) = lim
N→∞

D
( x

N

)
D
( x

N

)
D
( x

N

)
· · · = lim

N→∞

[
D
( x

N

)]N
(2.130)

= lim
N→∞

[
1− i

1

N

Px

�

]N

. (2.131)

To determine the right-hand side we note that one can write

lim
N→∞

[
1+ a

x

N

]N
= lim

N→∞
exp

[
N ln

(
1+ a

x

N

)]
. (2.132)

If we expand the exponent containing the logarithmic function, we obtain

N ln
(
1+ a

x

N

)
= N

[
a
( x

N

)
− 1

2
a2

( x

N

)2
+ · · ·

]
= ax − 1

2
(ax)2

1

N
+ · · · . (2.133)

In the limit N →∞, the right-hand side is simply ax. Hence

lim
N→∞

[
1+ a

x

N

]N
= eax. (2.134)

Thus D(x) in (2.131) can be written as

D(x) = exp

(
−i

P

�
x

)
(2.135)

where the exponential of the operators are understood in terms of the power series

expansion as

eA = 1+ A+ A2

2! + · · · . (2.136)

We can derive the relation (2.133) analytically also by using the definition of the derivative

dD(x)

dx
= lim
�x→0

D (x +�x)− D (x)

�x
. (2.137)

Let us then write

D (x +�x) = D (x)D (�x) = D (x)

(
1− i

P

�
�x

)
. (2.138)

Inserting this in (2.137) we obtain

dD(x)

dx
= lim
�x→0

D (x)

(
1− i

P

�
�x

)
− D (x)

�x
= −i

P

�
D (x) . (2.139)
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The solution of this is an exponential given by

D(x) = exp

(
−i

P

�
x

)
, (2.140)

confirming our earlier result.

We can extend the above results to three dimensions quite simply through the following

steps for the infinitesimal translation of the state |x, y, z〉 in three mutually independent

directions:

∣∣x′ +�x′, y′ +�y′, z′ +�z′
〉

(2.141)

= D(�x′)
∣∣x′, y′ +�y′, z′ +�z′

〉
(2.142)

=
[
D(�x′)

] [
D(�y′)

]
|x′, y′, z′ +�z′〉 (2.143)

=
[
D(�x′)

] [
D(�y′)

] [
D(�z′)

]
|x′, y′, z′〉. (2.144)

We then obtain the relation

D(�x′i) =
(

1− i
Pi

�
�x′i

)
(2.145)

where i = 1, 2, 3 correspond to the x, y, z components. For finite transformation one follows

the procedure of N infinitesimal transformations in each direction in the limit N →∞. We

can then write

D(x, y, z) = D(x)D(y)D(z) = exp

(
−i

Pxx + Pyy + Pzz

�

)
. (2.146)

In vector notation the transformation can be written compactly as

D(r) = exp

(
−i

P · r
�

)
(2.147)

where r = (x, y, z) and P =
(
Px, Py, Pz

)
.

2.8 Time evolution operator

Following the same procedure that we followed for the space displacement operator, we

define another unitary operator, the time evolution operator, U (t, t0), which shifts the time

parameter of a state from t0 to t,

|α(t)〉 = U (t, t0) |α(t0)〉. (2.148)

We note that

U (t0, t0) = 1. (2.149)



42 Fundamental commutator and time evolution of state vectors and operators

Furthermore, we can write (2.148) in two steps, e.g., we first write it as

|α(t)〉 = U (t, t1) |α(t1)〉 (2.150)

and then write

|α(t1)〉 = U (t1, t0) |α(t0)〉. (2.151)

From (2.148), (2.150), and (2.151) we find, just as with the D-operator,

U (t, t0) = U (t, t1)U (t1, t0) . (2.152)

If the norms of |α(t0)〉 and |α(t)〉 are the same then we have

〈α(t0)|α(t0)〉 = 〈α(t)|α(t)〉 = 〈α(t0)|U † (t, t0)U (t, t0) |α(t0)〉, (2.153)

which implies that U is unitary,

U † (t, t0)U (t, t0) = 1. (2.154)

Consider an infinitesimal transformation from t0 to t0 + �t. As we did for the space

displacement operator, D, the operator U (t0 +�t, t0) can be expanded in terms of its

generator �, as follows:

U (t0 +�t, t0) = 1− i��t. (2.155)

From the unitary property of U (t0 +�t, t0) we have

U † (t0 +�t, t0)U (t0 +�t, t0) = 1. (2.156)

Substituting (2.155) we find, following the same arguments as for the generator K of D,

that � is Hermitian,

�† = �. (2.157)

As in classical mechanics we identify time evolution with the Hamiltonian, H , of the

system and write the following relation that includes the Planck constant �:

� = H

�
. (2.158)

An equivalent quantum-mechanical description for the time evolution of a state vector is

then given by

U (t0 +�t, t0) = 1− i
H

�
�t. (2.159)

Thus we can write

|α(t +�t)〉 = U (t +�t, t) |α(t)〉 =
(

1− i
H

�
�t

)
|α(t)〉. (2.160)
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We expand |α(t +�t)〉 for an infinitesimal�t in a Taylor series in terms�t, keeping only

the first two terms,

|α(t +�t)〉 = |α(t)〉 +�t
∂

∂t
|α(t)〉. (2.161)

Comparing this equation with the one above, we obtain the result

i�
∂

∂t
|α(t)〉 = H |α(t)〉, (2.162)

which is the equation for the time evolution of a state vector in terms of the Hamiltonian H .

As we will discuss further in the next section, this is the time-dependent Schrödinger

equation. In comparing space and time transformations, we note that, unlike X which is an

operator, t is simply a parameter and not an operator and, therefore, has no commutation

properties with H . This is not unexpected since x and t are not on an equal footing in

nonrelativistic problems. In the relativistic case, where they are on an equal footing, one

finds that instead of elevating t to an operator, x is in fact demoted to being a parameter in

the quantum-mechanical treatments, keeping the status of x and t the same.

Let us now obtain an explicit expression for U (t, t0) . We can do this by following the

same procedure as we followed for D(x) which is to take the product of N infinitesimal

transformations in the limit N →∞, or to do it analytically. We will follow the analytical

path. We first obtain the differential equation for U , by using the definition for the partial

derivative

∂U (t, t0)

∂t
= lim
�t→0

U (t +�t, t0)− U (t, t0)

�t
. (2.163)

From (2.152) we write U (t +�t, t0) = U (t +�t, t)U (t, t0) and from (2.159), replacing

t0 by t we write U (t +�t, t) = 1− iH/��t. The above relation then reads

∂U (t, t0)

∂t
= lim
�t→0

(
1− i�t

H

�

)
U (t, t0)− U (t, t0)

�t
, (2.164)

which leads to

i�
∂U (t, t0)

∂t
= HU (t, t0) . (2.165)

In other words, as we will elaborate in the next section, U itself satisfies the same time-

dependent equation that the ket vector |α(t)〉 satisfies. We can now integrate the above

equation with the condition U (t0, t0) = 1 and obtain

U (t, t0) = exp

[
−i

H

�
(t − t0)

]
(2.166)

where we have assumed that H , is independent of time.
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We can also obtain the equation for U † by taking the Hermitian conjugate of the equation

(2.165)

−i�
∂U †

∂t
= U †H (2.167)

where we have made use of the fact that H is Hermitian. The solution of this equation, as

expected, directly from (2.167) is

U † (t, t0) = exp

[
i
H

�
(t − t0)

]
. (2.168)

2.9 Appendix to Chapter 2

2.9.1 Dirac delta function

The Dirac delta function, δ(x), in one dimension, is defined by the following two relations:

δ(x) = 0 for x � =0, (2.169)

∞∫

−∞
dx δ(x) = 1. (2.170)

The above two relations then also imply that the limits of integration can be different from

±∞, as long as they include the point x = 0. Indeed, one can write

c∫

b

dx δ(x) = 1 for b < 0 < c. (2.171)

One can extend the definition to include a point that is not the origin:

δ(x − a) = 0 for x � =a, (2.172)

∞∫

−∞
dx δ(x − a) =

c∫

b

dx δ(x − a) = 1 for b < a < c (2.173)

where a is a real number.

Properties of the δ-function

Following are some of the interesting properties satisfied by the δ-function.

Property (a)

δ(−x) = δ(x). (2.174)
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This can be proved by noting that δ(−x) satisfies the same properties as δ(x) given in (2.169)

and (2.170), namely, it vanishes for x �= 0, and, through change of variables, x → −x, its

integral over (−∞,∞) is found to be the same as that of δ(x). This establishes the fact that

δ(x) is an even function of x.

Property (b)

∞∫

−∞
dx f (x)δ(x − a) = f (a) (2.175)

where f (x) is assumed to be regular, without any singularity, along the interval of integration.

The proof is quite simple if we write

∞∫

−∞
dx f (x)δ(x − a) =

a+ǫ∫

a−ǫ
dx f (x)δ(x − a) = f (a)

a+ǫ∫

a−ǫ
dx δ(x − a) = f (a) (2.176)

where ǫ is a small positive quantity.

Property (c)

δ(ax) = 1

|a|δ(x). (2.177)

This relation can be derived by changing variables, ax = y, and taking account of the even

nature of the δ-function.

Property (d)

δ
(
x2 − a2

)
= δ (x − a)+ δ (x + a)

2|a| . (2.178)

To prove this we first note that both sides vanish for x � =a. Furthermore, we can write the

integral on the left-hand side in the following manner:

+∞∫

−∞
δ
(
x2 − a2

)
=
+∞∫

−∞
δ [(x − a) (x + a)] =

−a+ǫ∫

−a−ǫ
δ [(−2a(x + a))]+

a+η∫

a−η
δ [(2a(x − a))]

(2.179)

where ǫ and η are small positive quantities. From (2.177) we recover the right-hand side of

(2.178).

Property (e)

δ (f (x)) =
∑

n

δ (x − xn)∣∣∣∣
df

dx

∣∣∣∣
x=xn

(2.180)
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where f (x) is a regular function, and xn are the (real) zeros of f (x). This is a generalization

of the case (d) where there were only two zeros, x = ±a. To prove this one expands f (x)

around each of its zeros, e.g., around x = xn:

f (x) = f (xn)+ (x − xn)

(
df

dx

)

x=xn

+ · · · = (x − xn)

(
df

dx

)

x=xn

(2.181)

where in the last equality we have used the fact that f (xn) = 0, and have kept only the

leading term in (x − xn). Therefore,

δ (f (x)) = δ
[
(x − xn) (df /dx)x=xn

]
. (2.182)

Using (2.177) we obtain (2.180).

As a strict mathematical function, the relation (2.169) for δ(x) will imply that the right-

hand side of (2.170) must also be zero, because a function that is everywhere zero except at

one point (or at a finite number of points) gives an integral that will also be zero. However,

it can be represented in terms of limiting functions.

Representations of the δ-function

We consider the following four well-known limiting functions and discuss their role in

mathematical problems, particularly in quantum mechanics

(i)The most common example of a δ-function behavior in quantum-mechanical problems,

or in Fourier transforms, is the following limiting function:

lim
L→∞

1

π

sin Lx

x
. (2.183)

This function oscillates along the ± x-axis with zeros at x = ±π/L, ±2π/L, . . . ,

±nπ/L, . . . where n is an integer. The spacing between two consecutive zeros is given

by π/L. Therefore, as L →∞, this spacing becomes increasingly narrower with the zeros

almost overlapping with each other, while at the same time the function sin (Lx/x) itself

goes to zero as x → ±∞. Thus, for all practical purposes this function vanishes along the

± x-axis. That is,

lim
L→∞

1

π

sin Lx

x
→ 0 for x � =0. (2.184)

The only exceptional point is the origin itself, x = 0. At this point sin Lx = Lx and

sin (Lx/πx) = L/π which grows as L → ∞. Thus the function goes to infinity at one

point, while vanishing everywhere else, which is a classic situation for a δ-function. As far

as its integral is considered, one can show, using standard techniques – through the complex

variables method – that

1

π

∞∫

−∞
dx

sin Lx

x
= 1, (2.185)

independent of L.



47 2.9 Appendix to Chapter 2

Thus as a limiting function one can express the δ-function as

δ(x) = lim
L→∞

1

π

sin Lx

x
. (2.186)

The following equivalent integral form,

1

2

L∫

−L

dk eikx = sin Lx

x
(2.187)

enables us, through the relation (2.186), to write

δ(x) = 1

2π

∞∫

−∞
dk eikx (2.188)

where it is understood that

1

2π

∞∫

−∞
dk eikx = lim

L→∞
1

2π

L∫

−L

dk eikx. (2.189)

More generally, one can write

δ(x − a) = 1

2π

∞∫

−∞
dk eik(x−a). (2.190)

(ii) The following Gaussian also mimics a δ-function behavior:

lim
β→∞

√
β

π
exp(−βx2). (2.191)

We note that for x � =0 the right-hand side vanishes in the limit β →∞, but at x = 0, in the

same limit, it goes to infinity like
√
β/π . This is once again a typical δ-function behavior.

From the well-known Gaussian integral

∞∫

−∞
dy exp(−y2) = √π (2.192)

we deduce, by a change of variables
√
βx = y, that

√
β

π

∞∫

−∞
dx exp(−βx2) = 1. (2.193)
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Thus, one can write

δ(x) = lim
β→∞

√
β

π
exp(−βx2). (2.194)

Another way of writing the above result is by taking β = 1/
[
α
(
t − t′

)]
, and writing a

very general condition, replacing x by
(
x − x′

)
,

δ(x − x′) = lim
t→t′

√
1

α (t − t′) π
exp

[
−
(
x − x′

)2

α (t − t′)

]
. (2.195)

(iii) Here is another δ-function type behavior:

lim
ǫ→0

1

π

ǫ

x2 + ǫ2
. (2.196)

We find that for x � =0, this function vanishes in the limit ǫ → 0. However, if x = 0,

the function behaves like 1/πǫ and goes to infinity in the same limit (the limit has to be

taken after the value of x is chosen). Furthermore, one can easily show through standard

integration techniques that

1

π

∞∫

−∞
dx

ǫ

x2 + ǫ2
= 1. (2.197)

Once again we can identify

δ(x) = lim
ǫ→0

1

π

ǫ

x2 + ǫ2
. (2.198)

This form often occurs in the so-called dispersion relations and in Green’s function

problems, e.g.,

lim
ǫ→0

1

π

∞∫

0

dx′
f (x′)

x′ − x − iǫ
(2.199)

where one writes

lim
ǫ→0

[
1

x′ − x − iǫ

]
= lim
ǫ→0

[ (
x′ − x

)

(x′ − x)2 + ǫ2

]
+ lim
ǫ→0

[
iǫ

(x′ − x)2 + ǫ2

]

= lim
ǫ→0

[ (
x′ − x

)

(x′ − x)2 + ǫ2

]
+ iπδ(x′ − x). (2.200)
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This relation is often written as

1

x′ − x − iǫ
= P

(
1

x′ − x

)
+ iπδ(x′ − x) (2.201)

where P in the first term on the right stands for what is called the “principal part.” It vanishes

at the point x′ = x and hence excludes that point when integrated over it. The contribution

of the singularity at x′ = x is now contained in the second term. Thus,

lim
ǫ→0

1

π

∞∫

0

dx′
f (x′)

x′ − x − iǫ
= 1

π
P

∞∫

0

dx′
f (x′)
x′ − x

+ if (x). (2.202)

(iv) Finally, an interesting representation is given by the function,

d

dx
θ(x) (2.203)

where θ(x) is called the step-function,

θ(x) = 0 for x ≤ 0, (2.204)

and θ(x) = 1 for x > 0. (2.205)

Notice that the derivative on either side of x = 0 vanishes, but at the point x = 0 it becomes

infinite. The integral can be carried out and is given by

∞∫

−∞
dx

d

dx
θ(x) = θ (∞)− θ (−∞) = 1. (2.206)

We also note that the above result holds if we take the integration limits to be (−L,+L).

Thus, one can write

δ(x) = d

dx
θ(x). (2.207)

This θ-function representation appears in Green’s function calculations, often for finite-

dimensional problems.

In summary, we note that for the above representations of δ(x), as long as x � =0, each of

the functions on the right-hand side vanishes. But when they are integrated over an interval

that includes the point x = 0, the result is 1, keeping in mind that the limits are to be taken

after the integration is carried out. Thus the limiting process is nonuniform.

Three dimensions

We define the δ-function in the Cartesian system as a product of three one-dimensional

δ-functions as follows:

δ(3)(r − r′) = δ(x − x′)δ(y − y′)δ(z − z′). (2.208)
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Therefore, it satisfies

δ(3)(r − r′) = 0 if x � =x′ or y � =y′ or z � =z′ (2.209)

and

∫

(∞)

d3r δ(3)(r − r′) = 1, (2.210)

which implies, as in the one-dimensional case, that

∫

(∞)

d3r f (r)δ(3)(r − r′) = f (r′). (2.211)

Since

δ(x − x′) = 1

2π

∞∫

−∞
dk eik(x−x′), (2.212)

we can express the three-dimensional δ-function as the product

δ(3)(r − r′) =

⎡
⎣ 1

2π

∞∫

−∞
dkx eikx(x−x′)

⎤
⎦
⎡
⎣ 1

2π

∞∫

−∞
dky eiky(y−y′)

⎤
⎦
⎡
⎣ 1

2π

∞∫

−∞
dkz eikz(z−z′)

⎤
⎦ ,

(2.213)

which can be written in a compact form as

δ(3)(r − r′) = 1

(2π)3

∫
d3keik.(r−r) (2.214)

where d3k is the three-dimensional volume element in the k-space given by

d3k = dkx dky dkz. (2.215)

We have defined the vector k as a three-dimensional vector with components (kx, ky, kz)

so that

k.(r − r′) = kx(x − x′)+ ky(y − y′)+ kz(z − z′). (2.216)

In spherical coordinates, (r, θ ,φ), the δ-function is easily defined, once again, in terms

of products of three one-dimensional δ-functions:

δ(3)(r − r′) = A(r, θ ,φ)δ(r − r′)δ(θ − θ ′)δ(φ − φ′) (2.217)
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where the relation between the Cartesian and spherical coordinates is given by

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ . (2.218)

The parameter A in (2.217) can be determined from the definition (2.214):

1 =
∫

(∞)

d3r δ(3)(r − r′) =
∞∫

0

dr

π∫

0

dθ

2π∫

0

dφ J A(r, θ ,φ)δ(r − r′)δ(θ − θ ′)δ(φ − φ′)

(2.219)

where on the right-hand side we have converted d3r from Cartesian to spherical coordinates

through the relation

d3r = dx dy dz = J dr dθ dφ (2.220)

with J as the Jacobian,
∂(x, y, z)

∂ (r, θ ,φ)
, defined as

J = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂r

∂x

∂θ

∂x

∂φ

∂y

∂r

∂y

∂θ

∂y

∂φ

∂z

∂r

∂z

∂θ

∂z

∂φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.221)

We find

J = r2 sin θ . (2.222)

Substituting this in the above relation, we obtain

d3r = r2 sin θ dr dθ dφ. (2.223)

Relation (2.219) gives

∞∫

0

dr

π∫

0

dθ

2π∫

0

dφ
(
r2 sin θ

)
A(r, θ ,φ)δ(r − r′)δ(θ − θ ′)δ(φ − φ′) = 1. (2.224)

Hence,

A(r, θ ,φ) = 1

r2 sin θ
(2.225)

and

δ(3)(r − r′) = 1

r2 sin θ
δ(r − r′)δ(θ − θ ′)δ(φ − φ′). (2.226)
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It is often more convenient to use cos θ as a variable rather than θ so that we can write

the integrals more simply

∞∫

0

dr

π∫

0

dθ

2π∫

0

dφ r2 sin θ →
∞∫

0

dr r2

1∫

−1

d cos θ

2π∫

0

dφ, (2.227)

in which case we obtain the relation

δ(3)(r − r′) = 1

r2
δ(r − r′)δ(cos θ − cos θ ′)δ(φ − φ′). (2.228)

This expression is consistent with the relation (2.180) for converting δ(θ − θ ′) to δ(cos θ −
cos θ ′).

2.10 Problems

1. The state vectors |γ 〉 , |α〉 and |β〉 are related as

|γ 〉 = |α〉 + λ|β〉

where λ is an arbitrary complex constant. By choosing an appropriate λ and the fact

that 〈γ |γ 〉 ≥ 0, derive the Schwarz inequality relation

〈α|α〉〈β|β〉 ≥ |〈α|β〉|2.

2. For the above problem consider a state |φ〉 such that

�A|φ〉 = |α〉,�B|φ〉 = |β〉

where A and B are Hermitian operators and �A and �B are the corresponding

uncertainties. Expressing the product �A�B as a sum of a commutator and an

anticommutator,

�A�B = 1

2
[�A,�B]+ 1

2
{�A,�B} ,

and using the Schwarz inequality relation derived above, show that

|�A�B|2 ≥ 1

4
|[A, B]|2.

From this result show that the uncertainty relation follows

�x�p ≥ �

2
.
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3. Put B = H in the above relation and show that

�A�H ≥ 1

2
�

∣∣∣∣
d

dt
〈A〉 (t)

∣∣∣∣ .

Defining the time uncertainty �t as

1

�t
= 1

�A

∣∣∣∣
d

dt
〈A〉 (t)

∣∣∣∣ ,

show that one obtains

�E�t ≥ 1

2
�,

which is often called the energy–time uncertainty relation.

4. Use uncertainty relations to estimate the bound-state energies corresponding to

(i) the linear potential

V (r) = Kr;

(ii) the Coulomb potential (hydrogen atom)

V (r) = −Ze2

r
.

5. Show that the operator in spherical coordinates given by −i�∂/∂r is not Hermitian.

Consider then the operator

−i�

(
∂

∂r
+ a

r

)
.

Determine a so that it is Hermitian.

6. Show that the operator

D = p.
(r

r

)
+
(r

r

)
.p

is Hermitian. Obtain its explicit form in spherical coordinates. Compare your result

with that of problem 5.

7. For the operator D defined above, obtain

(i) [D, xi] , (ii) [D, pi] , and (iii) [D, Li]

where L (= r × p) is the angular momentum operator. Also show that

eiαD/�xie
−iαD/� = eαxi.

8. Using the fundamental commutator relation, determine
[
x, p2

]
,
[
x2, p

]
and

[
x2, p2

]
.
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9. Consider the operator which corresponds to finite displacement

F(d) = e−ipd/�.

Show that

[x, F(d)] = dF(d).

If for a state |α〉we define |αd〉 = F(d) |α〉, then show that the expectation values with

respect to the two states satisfy

〈x〉d = 〈x〉 + d.

10. For a Hamiltonian given by

H = p2

2m
+ V (x),

evaluate the commutator [H , x] and the double commutator [[H , x] , x]. From these

derive the following identity involving the energy eigenstates and eigenvalues:

∑

k

(Ek − En)|〈k|x|n〉|2 =
�

2

2m
.

11. For a Hamiltonian given by

H = p2

2m
+ V (r),

use the properties of the double commutator
[[

H , eik·r] , e−ik·r] to obtain

∑

n

(En − Es) |〈n|eik.r|s〉|2.



3 Dynamical equations

We are now ready to derive the equation of motion of the state vectors and operators

that determine the dynamics of a physical system. These equations are considered within

the framework of three commonly used pictures: the Schrödinger, the Heisenberg and the

interaction pictures.

3.1 Schrödinger picture

Here the motion of the system is expressed in terms of time- and space-variation of the

wavefunctions. Consequently the operators in the coordinate representation are expressed

in terms of time and space derivatives. The Hamiltonian operator, as we discussed in the

preceding section, is expressed as

H → i�
∂

∂t
. (3.1)

The Hamiltonian operator corresponds to the energy of the particle. In other words, if a

state |an(t)〉 is an eigenstate of energy, En, then it satisfies the eigenvalue equation

H |an(t)〉 = En |an(t)〉 (3.2)

where the time dependence of the state vector has been made explicit. Therefore,

H |an(t)〉 = i�
∂

∂t
|an(t)〉 = En |an(t)〉 . (3.3)

The solution of this equation is quite simple, given by,

|an(t)〉 = |an(0)〉 exp

(
− iEn

�
t

)
(3.4)

where we have normalized the eigenvector to its t = 0 value.

Confining to one dimension, the eigenfunction in the x-space is given by

φn(x, t) = 〈x| an(t)〉. (3.5)

Equation (3.4) then reads

φn(x, t) = φn(x, 0) exp

(
− iEn

�
t

)
. (3.6)
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We now discuss the properties of the Hamiltonian. In a dynamical system, the motion of

a particle is described in terms of the Hamiltonian, H , which is written as

H = T + V (3.7)

where T is the kinetic energy and V the potential energy. Thus, for a state vector |φ〉 one

can write

H |φ〉 = T |φ〉 + V |φ〉 . (3.8)

In terms of operators X and P, H is given by

H = P2

2m
+ V (X ) (3.9)

where V is assumed to be a function of x only, thus V (X ) |x〉 = V (x) |x〉. Implicit in this

statement is the assumption that the interaction is local, i.e.,
〈
x′
∣∣V (X ) |x〉 = V (x)δ(x′− x).

Furthermore, we assume V to be real.

In the coordinate-space the momentum operator, P, is given by

P →−i�
∂

∂x
. (3.10)

Writing

〈x |φ(t)〉 = φ(x, t) (3.11)

and

〈x |V (X )|φ(t)〉 = V (x)φ(x, t), (3.12)

the equation of motion in the Schrödinger picture is then described by the following

differential equation for the wavefunction φ(x, t):

i�
∂φ(x, t)

∂t
= − �

2

2m

∂2φ(x, t)

∂x2
+ V (x)φ(x, t). (3.13)

This is the classic Schrödinger equation.

If φ(x, t) is an eigenstate of energy En, which we previously designated as φn(x, t), then

it satisfies the equation

− �
2

2m

∂2φn(x, t)

∂x2
+ V (x)φn(x, t) = Enφn(x, t). (3.14)

The t-dependence of the energy eigenfunctions is already known from our previous results as

φn(x, t) = un(x) exp

(
− iEn

�
t

)
(3.15)
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where

un(x) = φn(x, 0). (3.16)

The equation for un(x) will now be in terms of the total derivative, given by

− �
2

2m

d2un(x)

dx2
+ V (x)un(x) = Enun(x). (3.17)

This equation can easily be extended to three dimensions by writing

− �
2

2m
∇2un(r)+ V (r)un(r) = Enun(r) (3.18)

where

∇2 = ∂

∂x2
+ ∂

∂y2
+ ∂

∂z2
(3.19)

and

un(r) = un(x, y, z), V (r) = V (x, y, z). (3.20)

Solving the above equations for different potentials and boundary conditions will be our

task in the coming chapters.

3.2 Heisenberg picture

In the Schrödinger picture the state vectors evolve with time, while the operators are inde-

pendent of time. In the Heisenberg picture, which we will describe below, the state vectors

are fixed in time while the operators evolve as a function of time. The quantities in the two

pictures are related to each other, however, due to the fact that the results of any experiment

should be the same when described in either of the two pictures.

The Schrödinger picture deals with the equations for the wavefunctions. It is more often

used because its framework allows for easier calculations, while the Heisenberg picture

effectively involves equations between operators.

We designate the states and the operators in the Schrödinger picture with subscript S, i.e.,

as |αS(t)〉 and AS respectively. As we have already stated, in this picture the states depend

on time, while the operators do not (except for special cases which we ignore). Consider

now the matrix element

〈
αS(t) |AS |βS(t)

〉
. (3.21)
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From our earlier discussions we can connect |αS(t)〉 to |αS(0)〉 through the unitary operator

U (t, 0) = U (t) ,

|αS(t)〉 = U (t) |αS(0)〉 (3.22)

where, as we found in the previous section,

U (t) = e−iHt/� (3.23)

where H is the Hamiltonian, assumed to be independent of time. The matrix element (3.21)

can be written as

〈
αS(t) |AS |βS(t)

〉
=
〈
αS(0)

∣∣∣U †(t)ASU (t)

∣∣∣βS(0)
〉
. (3.24)

Let |αH 〉 be the state vector in the Heisenberg picture. It is independent of time and we

define it to be the same as the state vector in the Schrödinger picture at t = 0 . That is,

|αH 〉 = |αS(0)〉 . (3.25)

As we stated earlier, the measurement of an observable is reflected in the value of the

matrix element of the corresponding operator. The matrix elements of an operator in the

Schrödinger and Heisenberg pictures must, therefore, be the same, as the result of any

measurement must be independent of the type of picture which one uses to describe it. If

AH is the operator in the Heisenberg picture then we must have

〈
αS(t) |AS |βS(t)

〉
=
〈
αH |AH |βH

〉
. (3.26)

From (3.22) and (3.23) we conclude that

AH = U †(t)ASU (t) = eiHt/�ASe−iHt/�. (3.27)

In the Heisenberg picture, therefore, it is the operators that change as a function of time.

Taking the time-derivatives on both sides of the equation (3.27) above, we obtain

dAH

dt
= (iH/�)

(
eiHt/�ASe−iHt/�

)
+
(
eiHt/�ASe−iHt/�

)
(−iH/�) (3.28)

where we have assumed that AH does not have any explicit dependence on time. From

(3.27) and (3.28) we obtain

i�
dAH

dt
= [AH , H ] . (3.29)

Thus, in the Heisenberg representation the time dependence is governed by the commutator

of the operator with the Hamiltonian.
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In the following we will confine our attention entirely to the Heisenberg picture and

suppress the index H . The space and momentum operators, X and P respectively, will then

satisfy

i�
dX

dt
= [X , H ] , (3.30)

i�
dP

dt
= [P, H ] . (3.31)

We see, at once, that if an operator commutes with H , i.e.,

[A, H ] = 0 (3.32)

then A is an “invariant.” It stays constant as a function of time and is called the constant of

the motion. Since H is given by

H = P2

2m
+ V (X ), (3.33)

the evaluation of the right-hand side above proceeds by the application of the fundamental

commutator [X , P] (2.20).

The Heisenberg picture plays an important role in many problems, including the harmonic

oscillator problem (Chapter 9) among other topics, and in quantum field theory (Chapter 43).

3.3 Interaction picture

The interaction picture accommodates certain aspects of both the Schrödinger and

Heisenberg representations and is used most often when the interaction Hamiltonian,

representing the potential, depends on time. Consider the following Hamiltonian:

H = H0 + HI (t) (3.34)

where H0(= p2/2m) represents the kinetic energy and is independent of time, while HI

corresponds to the interaction potential, which now depends on time. We have thus replaced

V (X ) which we used in the previous two pictures by HI (t) .

The time evolution operator U (t, t0) satisfies the equation

∂U (t, t0)

∂t
= −i

H

�
U (t, t0) = −i

H0

�
U (t, t0)− i

HI

�
U (t, t0) . (3.35)

We introduce an operator UI (t, t0), which is defined as

UI (t, t0) = eiH0/�(t−t0)U (t, t0) . (3.36)



60 Dynamical equations

Since it is a product of two unitary operators, UI (t, t0) is also a unitary operator. Taking the

time derivative of both sides we obtain

∂UI (t, t0)

∂t
= eiH0/�(t−t0)

(
i
H0

�

)
U (t, t0)+ e

i
H0

�
(t−t0) ∂U (t, t0)

∂t
. (3.37)

Using (3.35) and (3.36) we obtain

∂UI (t, t0)

∂t
= − i

�
e

i
H0(t−t0)

� HI (t) e
−i

H0(t−t0)
� UI (t, t0) . (3.38)

We now define

H ′
I (t) = e

i
H0(t−t0)

� HI (t) e
−i

H0(t−t0)
� . (3.39)

The equation for UI now reads

∂UI (t, t0)

∂t
= − iH ′

I (t)

�
UI (t, t0) . (3.40)

We note from (3.36) that, since U (t0, t0) = 1, we must have UI (t0, t0) = 1. Integrating

both sides of (3.40) we obtain

UI (t, t0) = 1− i

�

∫ t

t0

dt′ H ′
I

(
t′
)

UI

(
t′, t0

)
. (3.41)

Through recursion of (3.41) we obtain the following series expansion.

UI (t, t0) = 1− i

�

∫ t

t0

dt′ H ′
I

(
t′
)
+
(
− i

�

)2 ∫ t

t0

dt′ HI

(
t′
) ∫ t′

t0

dt′′ HI

(
t′′
)
+ · · · . (3.42)

Since the order of integration is unimportant, we can write

∫ t

t0

dt′
∫ t′

t0

dt′′H ′
I

(
t′
)

H ′
I

(
t′′
)
=
∫ t

t0

dt′′
∫ t′′

t0

dt′ H ′
I

(
t′′
)

H ′
I

(
t′
)

. (3.43)

Hence

∫ t

t0

dt′
∫ t′

t0

dt′′H ′
I

(
t′
)

H ′
I

(
t′′
)

= 1

2

[∫ t

t0

dt′
∫ t′

t0

dt′′H ′
I

(
t′
)

H ′
I

(
t′′
)
+
∫ t

t0

dt′′
∫ t′′

t0

dt′ H ′
I

(
t′′
)

H ′
I

(
t′
)
]

. (3.44)

To obtain a simple expression for UI , let us define the “time-ordered product” of two

operators A(t′) and B(t′′) as

T
[
A(t′)B(t′′)

]
= θ

(
t′ − t′′

)
A(t′)B(t′′)+ θ

(
t′′ − t′

)
B(t′′)A(t′) (3.45)
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where the θ -function is defined by

θ (t1 − t2) = 0, t1 < t2 (3.46)

= 1, t1 > t2. (3.47)

This function is also called a “step-function.” The relation (3.43) can then be written as

∫ t

t0

dt′
∫ t′

t0

dt′′H ′
I

(
t′
)

H ′
I

(
t′′
)
= 1

2

∫ t

t0

dt′
∫ t

t0

dt′′ T
(
H ′

I

(
t′
)

H ′
I

(
t′′
))

(3.48)

where, following the definition (3.45),

T
(
H ′

I

(
t′
)

H ′
I

(
t′′
))
= θ

(
t′ − t′′

)
H ′

I

(
t′
)

H ′
I

(
t′′
)
+ θ

(
t′′ − t′

)
H ′

I

(
t′′
)

H ′
I

(
t′
)

. (3.49)

We note that the upper limits in the double integral are now the same, which will make it

very convenient to write the series.

Even though it is somewhat complicated, one can define the time-ordered product when

a product of more than two HI ’s is involved. We will not pursue this matter further. For

now we note that (3.42) leads to

UI (t, t0) = 1+
∞∑

n=1

(−i

�

)n
1

n!

∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtn T
(
H ′

I (t1)H
′
I (t2) ...H

′
I (tn)

)
.

(3.50)

One can write this more compactly as

UI (t, t0) = T

(
exp

[
−i

∫ t

t0

dt H ′
I

(
t′
)])

(3.51)

since the series in (3.50) is the same as the exponential series. In contrast, in the Schrödinger

picture where the Hamiltonian H is independent of time, the time evolution operator is

U (t, t0) = e
−i

H
�
(t−t0). (3.52)

We write |αI (t)〉 as a state vector in the interaction picture, which we normalize by

assuming the following relation at t = 0 involving the state vectors in the Schrödinger and

Heisenberg pictures,

|αI (0)〉 = |αH 〉 = |αS (0)〉 . (3.53)

To obtain the time dependence of |αI (t)〉we employ the unitary operator UI (t, t0) . We take

t0 = 0 to conform to the initial conditions, and define U (t, 0) = U (t) and UI (t, 0) = UI (t).

From (3.36), and (3.53) we obtain

|αS (t)〉 = U (t) |αS (0)〉 = e
−i

H0t
� UI (t) |αS (0)〉 = e

−i
H0t
� UI (t) |αI (0)〉 . (3.54)
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Since the matrix elements of an operator in different pictures must be the same, we have

〈
αS (t) |AS |βS (t)

〉
=
〈
αI (t) |AI (t)|βI (t)

〉
. (3.55)

Using (3.54) we obtain

〈
αS (t) |AS |βS (t)

〉
= 〈αI (0)|U †

I e
i
H0t
� ASe

−i
H0t
� UI

∣∣βI (0)
〉
. (3.56)

The definitions of |αI (t)〉 and AI (t) follow quite simply as

|αI (t)〉 = UI (t) |αI (0)〉 (3.57)

and

AI (t) = U
†
I e

i
H0t
� ASe

−i
H0t
� UI . (3.58)

The relations (3.58) when substituted in (3.56) reproduce (3.55).

To obtain the time dependence of |αI (t)〉 we note from the relation of |αS (t)〉 given by

(3.54) that

|αS (0)〉 = U
†
I e

i
H0t
� |αS (t)〉 . (3.59)

Substituting this in (3.53) we obtain

|αI (t)〉 = e
i
H0t
� |αS (t)〉 . (3.60)

Taking the derivatives of both sides of (3.60) we obtain

i�
∂ |αI (t)〉
∂t

= −e
i
H0t
� H0 |αS (t)〉 + e

i
H0t
� i�

∂

∂t
|αS (t)〉

= −e
i
H0t
� H0 |αS (t)〉 + e

i
H0t
� (H0 + HI (t)) |αS (t)〉

= eiH0t/�HI (t) |αS (t)〉
= eiH0t/�HI (t) e

−iH0t/�eiH0t/� |αS (t)〉 . (3.61)

Hence

i�
∂ |αI (t)〉
∂t

= H ′
I (t) |αI (t)〉 . (3.62)

We note that HI (t) and H ′
I (t) are operators in the Schrödinger representation:

HI (t) = (HI (t))S and H ′
I (t) = (HI (t))S . (3.63)

The time derivative of AI can be calculated from (3.58). After certain mathematical steps

similar to the case of AH it is found to be

i�
dAI (t)

dt
= [AI , H0] . (3.64)



63 3.4 Superposition of time-dependent states

Thus relations (3.62) and (3.64) show that, in the interaction picture, the time dependence

of the state vectors is governed by the interaction Hamiltonian, while the time evolution of

the operators is determined by the free Hamiltonian.

3.4 Superposition of time-dependent states and energy–time
uncertainty relation

Let us assume that an arbitrary state |ψ(t)〉 can be expanded as a sum of an infinite number

of energy eigenstates |an(t)〉. At t = 0 we write

|ψ(0)〉 =
∑

n

cn |an(0)〉 (3.65)

where

∑

n

|cn|2 = 1. (3.66)

The eigenstates |an(t)〉 are expressed in terms of their eigenvalues En as

|an(t)〉 = |an(0)〉 exp(−iEnt/�). (3.67)

Hence

|ψ(t)〉 =
∑

n

cn |an(0)〉 exp(−iEnt/�). (3.68)

Let us now consider the product 〈ψ(0) |ψ(t)〉 to determine the evolution of |ψ(t)〉 with

respect to |ψ(0)〉. We find

〈ψ(0) |ψ(t)〉 =
∑

n

|cn|2 exp(−iEnt/�). (3.69)

We consider this sum for the case of continuous or near continuous values of the energy

eigenstates. We note that since �n = 1 we can convert the above sum as follows:

∑

n

→
∑

n

�n =
∑

n

�n

�E
�E →

∫
dE ρ(E) (3.70)

where ρ(E) (= dn/dE) is the density of states. We obtain

〈ψ(0) |ψ(t)〉 =
∫

dEρ(E) |c(E)|2 exp(−iEt/�) =
∫

dE g(E) exp(−iEt/�) (3.71)

where c(E) replaces cn in the continuum limit and

g(E) = ρ(E) |c(E)|2 , (3.72)
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which is normalized as

∫
dE g(E) = 1. (3.73)

For the purposes of illustration and to simplify our discussion, we assume g(E) to be

peaked at E = E0 and write

g(E) = g0 exp
[
− (E − E0)

2 /4 (�E)2
]

(3.74)

where �E corresponds to the width of the peak. We then write

〈ψ(0) |ψ(t)〉 = exp(−iE0t/�)g0

∫
dE exp

[
− (E − E0)

2 /4 (�E)2
]

exp(−i (E − E0) t/�).

(3.75)

To carry out the integration we make the change of variables

(E − E0) = y (3.76)

and take

A = 1

4 (�E)2
and B = −i

t

2�
. (3.77)

Therefore, the term in the exponent is given by

− (E − E0)
2

4 (�E)2
− i
(E − E0) t

�
= −Ay2 + 2By (3.78)

and the integral can be written as

∫
dy exp

[
−Ay2 + 2By

]
= exp

[
B2/A

] ∫
du exp[−Au2] (3.79)

where

u = y − B

A
. (3.80)

The integral can be obtained quite simply. It is given by

∞∫

−∞
du exp[−Au2] =

√
π

A
. (3.81)

Hence, using the normalization condition (3.75) we find

〈ψ(0) |ψ(t)〉 = exp(−iE0t/�)e−(�E)2t2/�2

. (3.82)
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This expression equals 1 at t = 0, but for t � �/�E it will start differing appreciably

from 1. Thus the state |ψ(t)〉 will retain its original form only for relatively short times of

order

�t ∼ �/�E, (3.83)

beyond which it will deteriorate and eventually go to zero.

The two extremes of this result are interesting to consider. One extreme is when the state

is an energy eigenstate,

|ψ(t)〉 = |ψ(0)〉 e−iE0t/�. (3.84)

This corresponds to taking the limit �E = 0 in g(E) in (3.74), which leads to

lim
�E→0

e
[
−(E−E0)

2/4(�E)2
]
∼ δ(E − E0) (3.85)

and, therefore, only one term, E = E0, will contribute in the integral. The state vector

|ψ(t)〉 will retain its original form indefinitely (i.e., �t = ∞). The other extreme is when

g(E) ≈ 1, which corresponds to �E = ∞. Here all the states contribute equally to the

integral. From (3.74) it implies that the state |ψ(t)〉 will disappear immediately after t = 0

(i.e., �t = 0).

The above results correspond to the time–energy uncertainty relation

�t�E ∼ �. (3.86)

We point out that the origin of this result is very different from the uncertainty relation

�x�p ∼ �, which follows from the fundamental commutator [X , P] = i�. No such

commutator exists involving time and the Hamiltonian.

3.4.1 Virtual particles

The energy–time relation (3.86) tells us that energy conservation can be violated by an

amount �E if such a violation occurs over a time

�t ∼ �

�E
. (3.87)

Particle A can, therefore, emit a particle B even though the energy–momentum of the initial

state (particle A) and the final state (particles A and B) are not the same. Particle B will not

act as a free particle but what one calls a “virtual” particle, which appears and disappears

within a short time (e.g., A emits B and then re-absorbs it: A → A+ B → A).

This remarkable result led Yukawa to propose that in neutron (n)–proton (p) interactions,

called “strong” interactions, the forces between the two particles are due to the exchange

of virtual particles. If r0 is the range of interactions, then assuming the particle travels with

the speed of light, c, one estimates �t ∼ r0 /c and, therefore, from (3.87),

�E ∼ �c/r0 . (3.88)
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The experimental value of r0 is found to be 10−13cm. Putting this value in (3.88) and

equating�E to the mass of the exchanged particle (using the relativistic formula E = mc2),

one finds that the mass of this particle must be 140 MeV. It was called the π-meson and

was subsequently discovered. Such exchange processes are nicely described by diagrams

called Feynman diagrams. We will return to this subject in Chapter 43 involving relativistic

quantum mechanics, where we discuss the particle interpretation of Yukawa and Coulomb

potentials in scattering processes.

3.5 Time dependence of the density operator

Having considered the time dependence of the state vectors, let us obtain the time depen-

dence of the density operator. We will confine ourselves to just two states |α〉 and |β〉 with

the corresponding projection operators given by

Pα = |α〉〈α| and Pβ = |β〉〈β|. (3.89)

The density operator is then

ρ = wαPα + wβPβ . (3.90)

For a Hamiltonian H the time evolution equation for the state vectors is given by

i�
d|α〉
dt

= H |α〉 and i�
d|β〉
dt

= H |β〉. (3.91)

Thus,

i�
dPα

dt
= i�

[(
d|α〉
dt

)
〈α| −

(
d〈α|
dt

)
|α〉

]
= [H , Pα] (3.92)

where we have used the Hermitian conjugate relation

−i�

(
d〈α|
dt

)
= H 〈α|. (3.93)

Similarly,

i�
dPβ

dt
=
[
H , Pβ

]
. (3.94)

Hence,

i�
dρ

dt
= [H , ρ] = − [ρ, H ] . (3.95)

This relation, we note, has exactly the opposite sign to the Heisenberg relation obtained

in this chapter. There is actually no contradiction because ρ is not an operator since it is

made up of states that evolve in time according to the Schrödinger picture.
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3.6 Probability conservation

Consider the three-dimensional Schrödinger equation for φ (r, t), which we express as

i�
∂φ

∂t
+ �

2

2m
∇2φ − Vφ = 0. (3.96)

Taking the complex conjugate of the above equation we obtain

−i�
∂φ∗

∂t
+ �

2

2m
∇2φ∗ − Vφ∗ = 0, (3.97)

where as stated before, V is only a function of the magnitude r = |r| and is real. Multiply

(3.96) by φ∗ on the right and (3.97) by φ on the left and subtract:

i�

[
φ∗

(
∂φ

∂t

)
+
(
∂φ∗

∂t

)
φ

]
+ �

2

2m

[
φ∗

(
∇2φ

)
−
(
∇2φ∗

)
φ
]
= 0. (3.98)

If we define

ρ (r,t) = φ∗φ and j (r,t) = �

2im

[
φ∗ (∇φ)−

(
∇φ∗

)
φ
]

(3.99)

where ρ is called the probability density and j the probability current density, then the first

term in (3.98) is proportional to ∂ρ/∂t. The square bracket in the second term in (3.98) can

be written as

φ∗
(
∇2φ

)
−
(
∇2φ∗

)
φ = ∇·

[
φ∗ (∇φ)−

(
∇φ∗

)
φ
]

(3.100)

where we note that the cross terms ∇φ ·∇φ∗ in (3.100) cancel. The term on the right-hand

side in (3.100) is proportional to ∇. j. The relation (3.98) can then be expressed as

∂ρ

∂t
+∇ · j = 0. (3.101)

This is the classic probability conservation relation. We elaborate on this below.

Let the total probability in a volume V be written as

Q(t) =
∫

V

d3 rρ (r,t) (3.102)

where the integral is over a volume V . Taking the time derivative of both sides we get

dQ

dt
= −

∫

V

d3 r∇ · j (3.103)

where we have used (3.101). Using Gauss’s theorem to convert the volume integral to a

surface integral, we obtain the following from (3.103):

dQ

dt
= −

∮
j · dS (3.104)
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where dS is an element of the boundary surface enclosing the volume V and the integral is

around the closed surface. Using the language of electromagnetism, with ρ as the charge

density and j the current density, the above relation is simply a statement of an obvious

fact: the current leaving the volume by crossing its surface must result in the decrease of

the total charge inside the volume. In other words, (3.104) reflects the fact that everything

is accounted for, nothing simply disappears. In the context of quantum mechanics, one can

substitute the current density by probability current density and charge density by probability

density. In spite of the fact that this relation looks obvious, it has profound consequences,

among them the so called unitarity of the S-matrix in scattering theory among many other

things.

Let us consider a situation in which φn is an eigenstate of energy given by

φn (r,t) = un (r) e
−i

Ent
� . (3.105)

This relation implies that ρ(= φ∗nφn) is independent of time. The relation (3.101) then

says that

∇ · j = 0, i.e. j = continuous. (3.106)

Hence in solving eigenvalue problems the continuity of j must be an essential input. For

example, considering one dimension for the moment, if the potential V (x) changes from

one region in the x-space to another, then across the boundary of the two regions j must be

continuous. This can be accomplished by having dφn/dx continuous, or φn = 0 on both

sides of the boundary. In addition, of course, φn must be continuous since probability can

not be different on two sides of the boundary. Boundary value problems such as these will

be discussed in the following chapters.

3.7 Ehrenfest’s theorem

At this stage it is of interest to ask whether there are circumstances in which one can recover

the classical equations of motion from quantum-mechanical equations. For this purpose let

us look at the behavior of the expectation values of the operators.

Consider the following expectation value of the X -operator written with respect to a

wavefunction φ(r),

〈x〉 =
∫

d3r φ∗xφ. (3.107)

Taking the time-derivative we obtain

d

dt
〈x〉 =

∫
d3r

(
∂φ∗

∂t

)
xφ +

∫
d3r φ∗x

(
∂φ

∂t

)
. (3.108)
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From the Schrödinger equation we have

i�
∂φ

∂t
= − �

2

2m
∇2φ + Vφ (3.109)

and its complex conjugate

−i�
∂φ∗

∂t
= − �

2

2m
∇2φ∗ + Vφ∗. (3.110)

Substituting these in (3.108) we obtain

d

dt
〈x〉 = i�

2m

∫
d3r

[
φ∗x

(
∇2φ

)
−
(
∇2φ∗

)
xφ

]
. (3.111)

By partial integration one can show that

∫
d3r

(
∇2φ∗

)
xφ =

∫
d3r φ∗

(
∇2xφ

)
(3.112)

where we assume that the wavefunction vanishes at infinity. Hence the right-hand side of

(3.111) can be written as

∫
d3r

[
φ∗x

(
∇2φ

)
−
(
∇2φ∗

)
xφ

]
=
∫

d3r
[
φ∗x

(
∇2φ

)
− φ∗

(
∇2xφ

)]
. (3.113)

To simplify the right-hand side of the above equation, we note that

∇2 (xφ) = 2
∂φ

∂x
+ x∇2φ. (3.114)

Hence, the right-hand side of (3.113) is simply

−2

∫
d3r φ∗

(
∂φ

∂x

)
. (3.115)

Combining the results from (3.112), through (3.115) we obtain

d

dt
〈x〉 = 1

m

∫
d3r φ∗

(
−i�

∂

∂x

)
φ = 1

m
〈px〉 (3.116)

where for the last equality in (3.116) we have used

−i�
∂

∂x
= px. (3.117)

Hence we find

d

dt
〈x〉 = 1

m
〈px〉 , (3.118)
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which is the x-component of the classical equation of motion

dr

dt
= p

m
(3.119)

where the x-components of r and p stand for the expectation values, 〈x〉 and 〈px〉 respectively.

Similarly, we can derive the classical equations for 〈y〉 and 〈z〉.
We now consider the time derivative of the expectation value 〈px〉

d

dt
〈px〉 =

d

dt

∫
d3rφ∗

(
−i�

∂

∂x

)
φ

= −i�

∫
d3r

[
∂φ∗

∂t

∂φ

∂x
+ φ∗ ∂

∂x

(
∂φ

∂t

)]
. (3.120)

Using the Schrödinger equations (3.109) and (3.110) and the relation

∫
d3r

[
φ∗
∂

∂x

(
∇2φ

)]
=
∫

d3r
(
∇2φ∗

) ∂φ
∂x

, (3.121)

which is obtained through integration by parts, we obtain

d

dt
〈px〉 = −

∫
d3r φ∗

[
∂

∂x
(Vφ)− V

∂φ

∂x

]
. (3.122)

Hence

d

dt
〈px〉 =

∫
d3r φ∗

(
−∂V
∂x

)
φ =

〈
−∂V
∂x

〉
, (3.123)

which is the x-component of the classical equation

dp

dt
= F =−∇V (3.124)

where the x-components of p and ∇V stand for 〈px〉 and −〈∂V /∂x〉 respectively. Similar

results are found for
〈
py

〉
and 〈pz〉.

We conclude then that even though we are in the quantum domain, the expectation values

will still follow classical dynamics.

3.8 Problems

1. Consider the Hamiltonian as a sum of kinetic energy (T ) and potential energy (V )

H = p2

2m
+ V (r) = T + V .
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Assuming 〈r · p〉 to be time-independent show that

2 〈T 〉 = 〈r ·∇V 〉 .

This is the quantum-mechanical version of the virial theorem.

2. From the virial theorem determine the average kinetic energy of a particle moving in a

potential given by

V (r) = λ ln(r/a).

3. Express x in the Schrödinger representation as an operator xH in the Heisenberg

representation for the case of a free particle with the Hamiltonian

H = p2

2m
.

Carry out the expansion of the exponentials in terms of the corresponding Hamiltonian.

Consider also the case where the potential has the form V (x) = λxn, where n is an

integer.

4. If |ψ(λ)〉 is a normalized eigenstate of Hamiltonian H (λ) with eigenvalue E(λ) where

λ is a continuous parameter, then show that

∂E

∂λ
=
〈
ψ(λ)

∣∣∣∣
∂H

∂λ

∣∣∣∣ψ(λ)
〉

.

This is called the Feynman–Hellman relation.

5. Let
∣∣φ1

〉
and

∣∣φ2

〉
be the eigenstates of the Hamiltonian H with eigenvalues E1 and E2

respectively. And let
∣∣χ1

〉
and

∣∣χ2

〉
be the eigenstates of an operator A, which does not

commute with H , with eigenvalues a1 and a2. The two sets of eigenstates are related

to each other as follows:

∣∣χ1

〉
= 1√

2
(
∣∣φ1

〉
+
∣∣φ2

〉
),

∣∣χ2

〉
= 1√

2
(
∣∣φ1

〉
−
∣∣φ2

〉
).

If at time t the system is described by a state |ψ(t)〉 such that

|ψ(0)〉 =
∣∣χ1

〉

then determine |ψ(t)〉 at arbitrary times in terms of the eigenstates
∣∣φ1

〉
and

∣∣φ2

〉
.

6. Consider the Schrödinger equation for a particle of mass m with a Coulomb-like

potential −λ/r and with angular momentum l = 0. If the eigenfunction is given by

u(r) = u0e−βr

where u0 and β are constants, then determine u0, β and the energy eigenvalue E in

terms of λ and m.
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7. A particle of charge e is subjected to a uniform electric field E0. Show that the

expectation value of the position operator 〈r〉 satisfies

m
d2 〈r〉
dt2

= eE0.

8. Let |En〉 s denote the eigenstates of the Hamiltonian, H . If C = AB and A = [B, H ],

then obtain the matrix element, 〈Em|C |En〉, in terms of the matrix elements of A.

9. The states |ai〉 are eigenstates of an operator A and U is a unitary operator that changes

the basis from |ai〉 to |bi〉. Determine, in terms of U and A, the operator for which |bi〉
are the eigenstates. Also determine the eigenvalues.

10. Show that

∑

n� =0

〈0 |A| n〉 〈n |A| 0〉
(En − E0)

= 〈0 |AF | 0〉

where H |n〉 = En |n〉 for n = 0, 1, 2, . . . and where A = [H , F] and 〈0 |F | 0〉 = 0.

11. Show that if L is the angular momentum operator then [L, H ] = 0 where H =
p2/2m+ V (r).
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After discussing the basic definitions and formalism in quantum mechanics, it is now time

for dynamical calculations. We will do perhaps the easiest and yet very informative case of

free particles. What we learned in the previous chapters will now be put into play. We will

obtain the free particle wavefunction in one dimension and in three dimensions. For the

latter case we will consider both the Cartesian and spherical coordinate systems and finally,

in the spherical system, we will introduce the angular momentum operator and spherical

harmonics.

4.1 Free particle in one dimension

In the absence of any forces, that is, with the potential V = 0, the Hamiltonian for a particle

of mass m is given entirely by the kinetic energy

H = P2

2m
(4.1)

where P is the momentum operator. In this section we will be discussing the motion of the

free particle only in one dimension, the x-direction. Thus P is just the x-component, Px,

given by the operator relation

Px = −i�
∂

∂x
. (4.2)

Let up(x) be the momentum eigenfunction in the x-space (= 〈x| p〉). We note that momen-

tum is a vector and, therefore, has direction. The momentum eigenfunction for a particle

moving along the positive x-direction with eigenvalue p satisfies the equation

−i�
∂up(x)

∂x
= pup(x). (4.3)

The solution of this equation is given by

up(x) = C1 exp

(
ip

�
x

)
. (4.4)
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The eigenfunction for a particle moving along the negative direction with momentum p

satisfies the equation

−i�
∂up(x)

∂x
= (−p) up(x), (4.5)

whose solution is

up(x) = C2 exp

(
− ip

�
x

)
. (4.6)

The constants C1 and C2 will be determined once we decide how we will normalize the

eigenfunctions.

The eigenstates of the Hamiltonian operator are the energy eigenfunctions with

eigenvalues, E, that are simply related, through (4.1), to the momentum eigenvalues, p, by

E = p2

2m
. (4.7)

We note that the energy is positive (E ≥ 0) since we are considering free particles.

The wavefunction φE(x, t) corresponding to the eigenstate of H satisfies the Schrödinger

equation

HφE(x, t) = i�
∂

∂t
φE(x, t) = EφE(x, t). (4.8)

Following the derivations in the Schrödinger picture, the wavefunction can be written as

φE(x, t) = uE(x) exp

(−iEt)

�

)
(4.9)

where, from (4.1), uE(x) satisfies the equation

− �
2

2m

d2uE(x)

dx2
= EuE(x) =

p2

2m
uE(x) (4.10)

and where we have used (4.7) to express E in terms of p. The solution of this equation is

given by

uE(x) = A exp

(
ip

�
x

)
+ B exp

(
− ip

�
x

)
(4.11)

where p =
√

2mE. Thus the energy eigenfunction uE(x) given by (4.11) is a linear com-

bination of two momentum eigenfunctions. The (+) sign in the exponent of the first term

in (4.11) corresponds to the momentum eigenfunction for a particle moving in the positive

x-direction, while the (−) sign signifies that the particle is moving in the opposite direction,

in each case with the magnitude of the momentum given by p =
√

2mE. In the following
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we will, for simplicity, remove the ± sign in the exponent in (4.11) and write uE(x) as a

single exponent

uE(x) = C exp

(
ip

�
x

)
(4.12)

allowing p, however, to take positive and negative values, ±
√

2mE. This is the so-called

“plane wave” solution for one-dimensional motion.

In the following we will not make any distinction between the energy and momentum

eigenfunctions and will use the momentum eigenfunctions throughout.

4.2 Normalization

First, to facilitate the derivations we will write

p = �k , (4.13)

so that

exp

(
ip

�
x

)
= exp(ikx). (4.14)

There are two standard prescriptions for normalization. The first corresponds to a finite

space. Here one divides up the space into units of L, with −L/2 < x < L/2, in which the

wavefunction is taken to be periodic,

u(x + L) = u(x), (4.15)

which implies that

exp[ik (x + L)] = exp(ikx). (4.16)

The eigenvalues of k are then discrete, satisfying the relation Lkn = 2nπ , where n is an

integer. Thus we have

kn =
2nπ

L
, En =

2n2π2
ℏ

2

mL2
, n = 0,±1,±2, . . . . (4.17)

The momentum eigenfunction is

un(x) = C exp(iknx), − L

2
< x <

L

2
(4.18)

which is normalized in the traditional manner as follows:

L
2∫

− L
2

dx u∗m(x)un(x) = δmn. (4.19)
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The normalization constant is found to be C = 1/
√

L, and, hence,

un(x) =
1√
L

exp(iknx), −L

2
< x <

L

2
. (4.20)

The energy eigenfunction as a function of space and time is then given by

φn(x, t) = un(x) exp

(−iEnt)

�

)
, − L

2
< x <

L

2
(4.21)

where En is given in (4.17) and un(x) is given in (4.20). When we go to three dimensions

this type of normalization will be extended to the space divided up into units of cubes. This

is then called “box normalization.” We will use this term even when normalizing in one or

two dimensions. In Chapter 1 it was shown that the eigenstates satisfy the completeness

relation. The eigenstates un above must, therefore, also do the same. Hence,

∑

n

un(x)u
∗
n(x

′) = δ(x − x′). (4.22)

The second method of normalization involves the entire infinite space (−∞,∞) by

taking L →∞. In order to do this we first start with the completeness relation (4.22) and

insert expression (4.20) for un(x). The left-hand side of (4.22) is then

1

L

∑

n

exp
[
ikn

(
x − x′

)]
. (4.23)

First we note that, since n runs over integers, the separation, �n, between two adjacent

values of n, is simply given by �n = 1. Hence,

1

L

∑

n

exp
[
ikn

(
x − x′

)]
= 1

L

∑
(�n) exp

[
ikn

(
x − x′

)]
(4.24)

= 1

L

∑ L (�kn)

2π
exp

[
kn(x − x′)

]
(4.25)

= 1

2π

∑
(�kn) exp

[
kn(x − x′)

]
. (4.26)

With kn given by (4.17), we find, therefore, that in the limit when L becomes large, the

interval extends to (−∞,∞) and�kn becomes infinitesimal. Therefore, kn can be replaced

by a continuous variable, which we designate as k in the interval (−∞,∞). Expression

(4.23), in the limit, L →∞, can then be written as

1

2π

∞∫

−∞
dkeik(x−x′) (4.27)

where we have replaced �kn by dk and the sum over n by an integral. From the properties

of the Dirac δ-function, the integral above, indeed, reproduces δ(x−x′). Thus our results are



77 4.2 Normalization

consistent with the completeness relation (4.22). We will, therefore, write the wavefunction

in (−∞,∞) as

uk(x) =
1√
2π

eikx with p = �k . (4.28)

The completeness condition now reads

∞∫

−∞
dk uk(x)u

∗
k(x

′) = δ(x − x′). (4.29)

Thus the unit operator that appeared for the discrete case is replaced by a δ-function. The

functions uk(x) also satisfy the orthogonality condition

∞∫

−∞
dx u∗k ′(x)uk(x) =

1

2π

∞∫

−∞
dx ei(k−k ′)x = δ(k − k ′) (4.30)

where instead of the Kronecker delta, which appeared for finite dimensions, we have Dirac’s

δ-function on the right-hand side.

Expression (4.28) for the momentum eigenfunction corresponds to the second way of

normalization, which here is referred to as δ-function normalization. We need to point out

that in contrast to the finite-dimensional case the wavefunctions here cannot be normalized

to unity since for k = k ′, the right-hand side of (4.30) becomes infinite. This is the price

one has to pay by going from finite dimensions to infinite space.

We note also that the two relations (4.29) and (4.30) are, respectively, restatements of the

relations we discussed in Chapter 1,

〈x| x′〉 = δ(x − x′), (4.31)

〈k| k ′〉 = δ(k − k ′). (4.32)

Since the momentum eigenfunction in the bra-ket notation is

〈x| k〉 = uk(x) =
1√
2π

eikx, (4.33)

the relation (4.29) is derived from (4.31) by inserting a complete set of states |k〉 , while

(4.30) is derived from (4.32) by inserting a complete set of states |x〉.
In summary, a particle normalized with the Dirac δ-function normalization is described

by the wavefunction

φk(x, t) = uk(x) exp

(−iEk t

�

)
, −∞ < x <∞ (4.34)

where uk(x) is given by (4.33) and Ek = �
2k2/2m.
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4.3 Momentum eigenfunctions and Fourier transforms

If |φ〉 corresponds to an arbitrary state vector with its x-representation given by φ(x) =
〈x|φ〉, then we can write, using completeness,

φ(x) =
∞∫

−∞
dk 〈x| k〉 〈k|φ〉 =

∞∫

−∞
dk

1√
2π

eikx 〈k|φ〉 = 1√
2π

∞∫

−∞
dk f (k)eikx (4.35)

where 〈k|φ〉 = f (k). This is just the Fourier transform expression with f (k) being the

transform of φ(x). It tells us that an arbitrary wavefunction can be expanded in terms of the

continuous momentum eigenfunctions as the basis. Therefore, the probability of finding a

particle, described by φ(x), with momentum k is |f (k)|2 .

One can obtain f (k) through the inverse relation by multiplying both sides of (4.35) by

e−ik ′x and integrating over x:

∞∫

−∞
dxe−ik ′xφ(x) = 1√

2π

∞∫

−∞
dxe−ik ′x

∞∫

−∞
dkf (k)eikx

= 1√
2π

∞∫

−∞
dk f (k)

∞∫

−∞
dx ei(k−k ′)x

= 1√
2π

∞∫

−∞
dk f (k)2πδ(k − k ′) =

√
2π f (k ′) (4.36)

which leads to the well-known inverse Fourier transform result

f (k) = 1√
2π

∞∫

−∞
dxφ(x)e−ikx.

Finally, if φ(x) is normalized,

∞∫

−∞
dxφ∗(x)φ(x) = 1, (4.37)
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then we can obtain a relation for f (k) through (4.35). The left-hand side of (4.37) can be

written as

1

2π

∞∫

−∞
dx

∞∫

−∞
dkf ∗(k)e−ikx

∞∫

−∞
dk ′f (k ′)eik ′x = 1

2π

∞∫

−∞
dk

∞∫

−∞
dk ′f ∗(k)f (k ′)

∞∫

−∞
dx ei(k ′−k)x

=
∞∫

−∞
dk

∞∫

−∞
dk ′f ∗(k)f (k ′)δ

(
k ′ − k

)

=
∞∫

−∞
dk |f (k)|2 . (4.38)

Hence, from (4.37),

∞∫

−∞
dk |f (k)|2 = 1. (4.39)

Thus, as expected, the probabilities add up to unity. Once again, we could derive this result

quite simply by expressing the normalization condition (4.39) as 〈φ|φ〉 = 1, and writing

1 = 〈φ|φ〉 =
∞∫

−∞
dk 〈φ| k〉 〈k|φ〉. (4.40)

Since 〈k|φ〉 = f (k), we obtain (4.39).

4.4 Minimum uncertainty wave packet

A free particle traveling along the positive x-axis with momentum p0 (= �k0) is described

by a wavefunction, ψ(x, t), which at t = 0 is given by

ψ(x, 0) = φ(x) = 1√
2π

eik0x. (4.41)

The probability of finding this particle at a point x is

|φ(x)|2 = constant (4.42)

for all values of x. This is, of course, a reflection of the uncertainty principle,�x�p ≥ �/2,

with p = p0, and�p = 0, which says that if one tries to localize the momentum of a particle

then its position cannot be localized and vice versa.
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It is then interesting to examine a physical situation in which neither the momentum nor

the position of a particle is localized very sharply but both vary within a region consistent

with the uncertainty principle. A wavefunction describing such a situation, called a wave

packet, will be closer to reality. Below we will consider some of the properties of such a

wave packet consistent with the minimum uncertainty, �x�p = �/2.

Let us now consider φ(x), which is not a momentum eigenfunction but rather a

superposition of momentum eigenfunctions written as

φ(x) = 1√
2π

∫ ∞

−∞
dk eikxf (k) . (4.43)

Instead of f (k) = δ(k − k0), which corresponds to φ(x) having a definite momentum �k0,

we consider another function which, however, is still centered at k = k0 but not as sharply

described as a δ-function. A natural choice is a Gaussian function of the form

f (k) = Ne−α(k−k0)
2

. (4.44)

We show below that this profile of f (k) corresponds to a wave packet that is consistent with

the minimum uncertainty product

(�x) (�k) = 1

2
. (4.45)

First we note that the probability interpretation for φ(x) implies that

∫ ∞

−∞
dk |φ(x)|2 = 1. (4.46)

As we have already verified, this leads to

∫ ∞

−∞
dk |f (k)|2 = 1. (4.47)

In order to do the integrals involved in carrying out our calculations, the following two

results will be useful:

∫ ∞

−∞
dy e−αy2 =

√
π

α
(4.48)

and,

∫ ∞

−∞
dy y2e−αy2 = 1

2

√
π

α3/2
. (4.49)

Relation (4.49) is obtained by taking the derivative of (4.48) with respect to α.

Substituting (4.44) in (4.47) and using (4.48) we find

N =
(

2α

π

)1/4

. (4.50)
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Thus, we have

f (k) =
(

2α

π

)1/4

e−α(k−k0)
2

. (4.51)

In the following we will continue using the functional form (4.44) for f (k) without

substituting the value of N given by (4.50).

The expectation value 〈k〉 is given by

〈k〉 =
∫ ∞

−∞
dk k |f (k)|2 = N 2

∫ ∞

−∞
dk ke−2k(k−k0)

2

. (4.52)

The integration can easily be performed by changing variables, k − k0 = q. We find

〈k〉 = k0. (4.53)

Furthermore, by definition,

(�k)2 =
〈
(k − 〈k〉)2

〉
=
〈
k2
〉
− k2

0 (4.54)

where

〈
k2
〉
= N 2

∫ ∞

−∞
dk k2e−2α(k−k0)

2

. (4.55)

Carrying out the integration one finds

(�k)2 = 1

4α
. (4.56)

Thus,

α = 1

4 (�k)2
. (4.57)

Substituting this in (4.44) and (4.51) we obtain

f (k) = N exp

[
− (k − k0)

2

4 (�k)2

]
. (4.58)

To simplify things we take k0 = 0 in (4.44) leaving N and α in place without substituting

their values,

f (k) = Ne−αk2

. (4.59)

Therefore,

φ (x) = N√
2π

∫ ∞

−∞
dk eikxe−αk2

. (4.60)
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It is then easy to show that

φ (x) = N√
2α

exp

[
− x2

4α

]
. (4.61)

In the same manner as we determined (�k)2 in (4.56), one can determine (�x)2, which

is found to be

(�x)2 = α. (4.62)

Using the expression for α from (4.57) we have

(�x)2 = α = 1

4 (�k)2
. (4.63)

Therefore,

(�x) (�k) = 1

2
. (4.64)

This is the minimum uncertainty relation. Hence the Gaussian form (4.44) we chose is

called the minimum uncertainty wave packet.

Including now the time dependence, the wavefunction ψ (x, t) can be written as

ψ (x, t) =
∫ ∞

−∞
dk eikxe−i

Ek
�

t f (k) (4.65)

where Ek = �
2k2/2m. Substituting f (k) from (4.59),

α′ = α + i�

2m
t, (4.66)

we obtain

ψ (x, t) = N√
2α′

exp−

⎡
⎢⎢⎣

x2

4

(
α + i�

2m
t

)

⎤
⎥⎥⎦ (4.67)

where

α′ = α + i�

2m
t. (4.68)

Using (4.63) for α, the exponent can be written in terms of �x2 as

x2

4 (�x)2 + 2i�

m
t

. (4.69)
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To obtain |ψ (x, t)|2 we note that

∣∣∣∣exp

[
−
(

1

a+ ib

)]∣∣∣∣ = exp

[
− a

a2 + b2

]
. (4.70)

Hence,

|ψ (x, t)|2 ∼ exp

[
− x2

(�x (t))2

]
(4.71)

where we define (�x (t))2 as

(�x (t))2 = (�x)2 + �
2t2

4m2 (�x)2
= (�x)2 + �

2 (�k)2
t2

m2
. (4.72)

On the right-hand side of (4.72) we have incorporated the result

�x�k = 1

2
(4.73)

which was derived in (4.64).

Thus, we conclude that the center of the peak remains at x = 0 but its width given by

(4.72) spreads with the speed (�p) /m where �p = ��k . It travels a distance (�p) t/m in

time t. This is the same behavior as that exhibited by a classical particle.

4.5 Group velocity of a superposition of plane waves

Let us consider the following wavefunction expressed as a superposition of energy–

momentum eigenfunctions:

ψ (x, t) =
∫ ∞

−∞
dk eikxe−iωt f (k). (4.74)

This is the time-dependent representation of a wave packet, where the individual waves

travel with velocity.

vp =
ω

k
, (4.75)

which is called the phase velocity.

If f (k), however, has a peak at k = k0, and ω is a function of k , then we can make the

expansion of ω around the point k = k0:

ω = ω(k) = ω0 +
(

dω

dk

)

ω=ω0

(k − k0) = ω0 + vg (k − k0) (4.76)
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t > 0
x

|   (x,t )|2Ψ

t = 0

Fig. 4.1

where

vg =
(

dω

dk

)

ω=ω0

. (4.77)

Since dominant contributions to the integral (4.74) come from the region around k = k0,

we have kept the expansion in (4.76) only to first order in (k − k0). We can then write

kx − ωt = kx −
[
ω0 + vg (k − k0)

]
t. (4.78)

Thus

ψ (x, t) = ei(k0vg−ω0)t
∫ ∞

−∞
dk eik(x−vg t)f (k), (4.79)

which we can write as

ψ (x, t) = ei(k0vg−ω0)tψ
(
x − vg t, 0

)
. (4.80)

We note that the packet as a whole travels with a unique velocity, vg , maintaining the

same probability density (see Fig. 4.1)

|ψ (x, t)|2 =
∣∣ψ

(
x − vg t, 0

)∣∣2 . (4.81)

Hence vg is called the group velocity.

vg = group velocity. (4.82)

4.6 Three dimensions – Cartesian coordinates

Let us now return to the plane wave solutions and consider their properties in three dimen-

sions. We will write the momentum eigenfunction as up(r) where r represents the three

Cartesian coordinates (x, y, z). Hence up(r) = up(x, y, z). In the following we will suppress

the index p in up(r), and write the eigenfunction simply as u(r). As in the case of the
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one-dimensional problems, we will not make any distinction between the momentum and

energy eigenfunctions as far as the dependence on the coordinates is concerned.

The Schrödinger equation for u(r) for free particles is then given by

− �
2

2m
∇2u(r) = Eu(r) (4.83)

where

E = p2

2m
(4.84)

and p is the momentum in three dimensions with components
(
px, py.pz

)
. We express

equation (4.83) in Cartesian coordinates as

− �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
u(x, y, z) = Eu(x, y, z). (4.85)

The standard method to solve this equation is to use the so-called separation of variables

technique, in which we write u(x, y, z) as a product of three functions each depending on

only one of the variables, that is,

u(x, y, z) = X (x)Y (y)Z(z). (4.86)

Substituting this expression in (4.85), we can write the equation in terms of total derivatives

of the individual functions:

− �
2

2m

[
YZ

d2X

dx2
+ ZX

d2Y

dy2
+ XY

d2Z

dz2

]
= EXYZ . (4.87)

Dividing both sides of the above equation by XYZ , we have

− �
2

2m

[
1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2

]
= E. (4.88)

We note that each of the three terms on the left depends on only one variable. Since these

variables are independent of one another, the only way in which they can add up to a

constant, E, the eigenvalue, is if each term itself is a constant. We then write

− �
2

2m

1

X

d2X

dx2
= E1, (4.89)

− �
2

2m

1

Y

d2Y

dy2
= E2, (4.90)

− �
2

2m

1

Z

d2Z

dz2
= E3, (4.91)
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with

E1 + E2 + E3 = E. (4.92)

The above three equations are individually one-dimensional equations of the type we have

already considered. For example, for the function X (x) the equation is

− �
2

2m

d2X

dx2
= E1X . (4.93)

The solution of this equation was obtained previously as

X (x) = C1 exp

(
± ip1

�
x

)
with E1 =

p2
1

2m
. (4.94)

Similarly, we can obtain the solutions for Y (y) and Z(z). As in the one-dimensional case

we will write

pi = �ki, i = 1, 2, 3. (4.95)

Once again we have two types of normalizations. We will first consider periodic boundary

conditions within a cube of dimensions

−L1

2
< x <

L1

2
; −L2

2
< y <

L2

2
; −L3

2
< z <

L3

2
. (4.96)

The product solution can now be written down inside the above cube of volume V

(= L1L2L3) as

unlm(x, y, z) = 1√
V

exp i(k1nx + k2ly + k3mz) (4.97)

where

k1n =
2nπ

L1
, k2l =

2lπ

L2
, k3m =

2mπ

L3
with n, l, m = 0,±1,±2 . . . . (4.98)

The complete wavefunction including the time dependence is

φnlm(x, y, z, t) = unlm(x, y, z) exp

(−iEnlmt)

�

)
, (4.99)

with

Enlm =
�

2
(
k2

1n + k2
2l
+ k2

3m

)

2m
(4.100)

and with the normalization relation given by

L1
2∫

− L1
2

dx

L2
2∫

− L2
2

dy

L3
2∫

− L3
2

dz un′l′m′(x, y, z)unlm(x, y, z) = δn′nδl′lδm′m. (4.101)
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For the normalization in the infinite space we follow the same procedure as in the one-

dimensional case to write the solution as the product X (x)Y (y)Z(z) to obtain the following

wavefunction:

uk(r) =
1

(√
2π

)3
exp(ik.r), with k.r = k1x + k2y + k3z, (4.102)

with the normalization given by

∫
d3 ru∗k(r)uk ′(�r) = δ(3)(k − k′) (4.103)

where the three-dimensional δ-function has already been defined in the Appendix of

Chapter 2 as

δ(3)(k − k′) = δ
(
k1 − k ′1

)
δ
(
k2 − k ′2

)
δ
(
k3 − k ′3

)
. (4.104)

The completeness relation is then

∫
d3k uk(r)u

∗
k(r

′) = δ(3)(r − r′). (4.105)

The free particle energy eigenfunction, φk(r), in the infinite three-dimensional space, is

then given by

φk(r) = uk(r) exp

(−iEk t)

�

)
(4.106)

with

Ek =
�

2
(
k2

1 + k2
2 + k2

3

)

2m
. (4.107)

4.7 Three dimensions – spherical coordinates

Once again we start with the Schrödinger equation for the free particle,

− �
2

2m
∇2u(r) = Eu(r), (4.108)

and express it in spherical coordinates by making the following transformation:

x = r sin θ cosφ, (4.109)

y = r sin θ sin φ, (4.110)

z = r cos θ (4.111)
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where r is the magnitude of the coordinate vector r, θ is the polar angle and φ is the

azimuthal angle. The ∇2 operator given by (4.85) is then found in the spherical coordinates

to give

∇2u = 1

r

∂2 (ru)

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

r2 sin2 θ

∂2u

∂φ2
. (4.112)

The Schrödinger equation is then given by

− �
2

2m

[
1

r

∂2 (ru)

∂r2
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

r2 sin2 θ

∂2u

∂φ2

]
= Eu. (4.113)

We, once again, use the separation of variables technique to solve this equation:

u(r) = R(r)Y (θ ,φ). (4.114)

Substituting this expression in (4.113) and multiplying both sides of the equation by r2/RY ,

we obtain

− �
2

2m

[
r

R

d2 (rR)

dr2
+ 1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

]
− r2E = 0. (4.115)

The above equation is thus split into terms that depend only on r and terms that depend

only on the combination (θ ,φ). We can rewrite it as follows:

r

R

d2 (rR)

dr2
+ 2mr2E

�2
= −

[
1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

]
. (4.116)

Following the arguments presented in the case of Cartesian coordinates, we take each

side of the above equation to be a constant. If we designate this constant as λ, then we are

led to the following two equations:

r

R

d2 (rR)

dr2
+ 2mr2E

�2
= λ, (4.117)

1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2
= −λ. (4.118)

The equation for Y can be written as

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+ ∂

2Y

∂φ2
+ λ sin2 θY = 0. (4.119)

This equation can also be solved by the separation of variables technique:

Y (θ ,φ) = P(θ)Q(φ). (4.120)
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Substituting this expression in the equation (4.119) for Y we obtain

Q sin θ
d

dθ

(
sin θ

dP

dθ

)
+ P

d2Q

dφ2
+ λPQ sin2 θ = 0. (4.121)

Dividing the above equation by PQ we obtain equations that individually depend only

on a single variable,

d2Q

dφ2
= −μQ (4.122)

and

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+
(
λ− μ

sin2 θ

)
P = 0 (4.123)

where μ is a constant.

The Q-equation (4.122) has a simple solution,

Q(φ) = Ce±
√
μφ , (4.124)

where C is a constant. Since u(r), which corresponds to the probability amplitude, must

be single-valued, the value of Q at φ and at physically the same point, φ + 2π , must be

the same,

Q(φ + 2π) = Q(φ), (4.125)

which implies

√
μ = im (4.126)

where m is an integer. Normalizing Q over the φ-interval (0, 2π), we have

2π∫

0

dφQ∗(φ)Q(φ) = 1 (4.127)

and we obtain the normalization constant C = 1/
√

2π . Hence,

Q(φ) = 1√
2π

eimφ with m = 0,±1,±2, . . . . (4.128)

The equation for P now becomes

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
+
(
λ− m2

sin2 θ

)
P = 0. (4.129)

By making the transformation, w = cos θ , one can express the above equation in terms of w:

d

dw

[(
1− w

2
) dP

dw

]
+
(
λ− m2

1− w
2

)
P = 0. (4.130)
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This is an eigenvalue equation that is a second order differential equation and, therefore,

has two solutions. The solutions are obtained in standard mathematical text books on special

functions. One finds that for the solution that is regular in θ in the interval (0,π), i.e., cos θ

in the interval (−1, 1), the eigenvalues are given by

λ = l(l + 1), (4.131)

−l ≤ m ≤ l (4.132)

where l is a positive integer. In the next section we will show that the quantum number l is

linked to the orbital angular momentum, while m is given by the z-component of the orbital

angular momentum. In what follows we will use the terms orbital angular momentum,

orbital momentum, and just angular momentum interchangeably.

The function P is well known and is called the associated Legendre function, designated

as Pm
l
(cos θ). The product Y = PQ is now of the form

Ylm(θ ,φ) =
√

2l + 1

4π

(l − |m|)!
(l + |m|)! (−1)meimφPm

l (cos θ) (4.133)

for m ≥ 0. For m < 0, the same expression holds but without the factor (−1)m. This

function is called a spherical harmonic function or simply a spherical harmonic, which we

will discuss at considerable length in Section 4.9 in this chapter and also in the chapter on

rotations and angular momentum. Substituting the value of λ given by (4.131) in (4.117),

we obtain the equation for R, which now depends on l,

R = Rl(r). (4.134)

The wavefunction u(r) is now written in the product form,

u(r) = Rl(r)Ylm(θ ,φ). (4.135)

The equation for Rl(r), after regrouping some terms in (4.117) and dividing by r2, is of

the form

− �
2

2m

1

r

d2 (rRl)

dr2
+ �

2l(l + 1)

2mr2
Rl = ERl . (4.136)

This is called the radial wave equation for a free particle. The equation for Ylm(θ ,φ) is given

by (4.119)

1

sin θ

∂

∂θ

(
sin θ

∂Ylm

∂θ

)
+ 1

sin2 θ

∂2Ylm

∂φ2
= −l(l + 1)Ylm. (4.137)

In the following sections we individually discuss the radial wavefunctions and the spherical

harmonics.
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4.8 The radial wave equation

In order to simplify the radial equation we make the following change of variables,

ρ = kr and k =
√

2mE

�2
, (4.138)

and write the equation as

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0. (4.139)

The general solutions of the above equation are well known; they are called spherical Bessel

and Neumann functions designated by jl(ρ) and nl(ρ) respectively with l = 0, 1, 2 . . . .

The following list contains some interesting and useful information about jl(ρ):

j0(ρ) =
sin ρ

ρ
, (4.140)

j1(ρ) =
sin ρ

ρ2
− cos ρ

ρ
, (4.141)

jl(ρ)→
ρl

(2l + 1)!! , as ρ → 0 (4.142)

where (2l + 1)!! = 1 · 3 · 5 · . . . (2l + 1),

jl(ρ)→
1

ρ
cos

[
ρ − (l + 1)

π

2

]
as ρ →∞. (4.143)

And the following is a similar list for nl(ρ):

n0(ρ) = −
cos ρ

ρ
, (4.144)

n1(ρ) = −
cos ρ

ρ2
− sin ρ

ρ
, (4.145)

nl(ρ)→− (2l − 1)!!
ρl+1

, as ρ → 0. (4.146)

nl(ρ)→
1

ρ
sin

[
ρ − (l + 1)

π

2

]
, as ρ →∞. (4.147)

Linear combinations of jl(ρ) and nl(ρ), called Hankel functions of the first and second

kind, designated by h
(1)
l
(ρ) and h

(2)
l
(ρ), will also be useful in our calculations. Some of the

interesting properties of these functions are listed below:

h
(1)
l
(ρ) = jl(ρ)+ inl(ρ)→

1

ρ
ei[ρ−(l+1) π2 ], as ρ →∞, (4.148)

h
(2)
l
(ρ) = jl(ρ)− inl(ρ)→

1

ρ
e−i[ρ−(l+1) π2 ], as ρ →∞. (4.149)

Both functions are infinite as ρ → 0 because of the presence of nl(ρ).
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Returning to the free particle radial wavefunction Rl , the only solution compatible with

the probabilistic interpretation of the wavefunction is jl(ρ) since it is finite at r = 0, while

the other solution, nl(ρ), is infinite at that point. Hence we write

Rl = Al jl(ρ) = Al jl(kr). (4.150)

4.9 Properties of Ylm(θ , φ)

In order to determine the properties of the spherical harmonics, Ylm (θ ,φ), let us first consider

Pm
l
(cos θ). We note that for m = 0, Pm

l
(cos θ) becomes a simple polynomial called the

Legendre polynomial, written as Pl(cos θ). We summarize the properties of Pl(cos θ) first,

and then those of Pm
l
(cos θ) before discussing Ylm (θ ,φ) .

To simplify writing we take

x = cos θ . (4.151)

One then finds that Pl(x) can be expressed as

Pl(x) = (−1)l
1

2l l!
d l

dxl

(
1− x2

)l
(4.152)

and Pm
l
(x) can then be expressed in terms of Pl(x) as follows:

Pm
l (x) =

(
1− x2

) |m|
2 d |m|

dx
|m| Pl(x). (4.153)

We note that for m = 0, Pm
l
(x) is identical to Pl(x).

Some of the individual functions can be written as

P0(x) = 1, (4.154)

P1(x) = x, (4.155)

P2(x) =
1

2
(3x2 − 1). (4.156)

We also note that

Pl(−x) = (−1)lPl(x). (4.157)

and

Pl(0) = 1. (4.158)

The normalization relation for the Legendre functions is found to be

∫ 1

−1

dx Pl(x)Pl′(x) =
2

2l + 1
δll′ . (4.159)
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We also note that Pl′(x) appears as a coefficient of expansion for the following function,

1√
(1− 2xs+ s2)

=
∞∑

l=0

Pl(x)s
l . (4.160)

Many important properties of Pl(x) can be derived from this relation.

For the associated Legendre functions, Pm
l
(x), we have correspondingly the following:

P1
1(x) =

√
1− x2, (4.161)

P1
2(x) = 3x

√
1− x2, (4.162)

P2
2(x) = 3(1− x2) (4.163)

with the normalization condition

∫ +1

−1

dx Pm
l (x)P

m
l′ (x) =

2

2l + 1

(l + m)!
(l − m)!δll′ . (4.164)

The spherical harmonic function Ylm(θ ,φ) is already defined in (4.133). Some typical

values of Ylm are given by

Y00 =
1√
4π

, (4.165)

Y10 =
√

3

4π
cos θ , (4.166)

Y1±1 = ∓
√

3

8π
e±iφ sin θ , (4.167)

Y20 =
√

5

16π
(3 cos2 θ − 1). (4.168)

And the normalization relation is found to be

∫ 2π

0

∫ π

0

dθ dφ Ylm(θ ,φ)Ylm′(θ ,φ) sin θ = δll′δmm′. (4.169)

Finally, let us determine the relation between the free particle wavefunctions in the

Cartesian and spherical coordinates. For a free particle traveling in the z-direction, the

wavefunction in Cartesian coordinates is given by exp(ikz), while in spherical coordinates,

as we have found, the wavefunction is proportional to the product

jl(kr)Pm
l (cos θ)eimφ . (4.170)

Since the z-axis is the axis of reference with z = r cos θ , there will be no dependence on φ

in the wavefunction and hence one must take m = 0. From the superposition principle, one
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can write the wavefunction in the Cartesian system in terms of a sum over the eigenstates

in the spherical system. The exact relation for this case is found to be

eikz =
∞∑

l=0

(2l + 1)il jl(kr)Pl(cos θ). (4.171)

4.10 Angular momentum

We will show below that the quantum number l discussed in the previous section is actually

related to the angular momentum of the particle through the eigenvalue equation

L2Ylm = l (l + 1) �2Ylm (4.172)

where the angular momentum operator L is defined by

L = r × p. (4.173)

From the above relation the ith component of L is given by

Li =
∑

jk

ǫijkrjpk (4.174)

where ri and pi are the Cartesian components of the operators r and p, and ǫijk is a totally

antisymmetric tensor that satisfies the following properties with respect to the indices i, j, k:

ǫ123 = 1, (4.175)

ǫijk = 1 for even permutations of (123) (4.176)

= −1 for odd permutations of (123) (4.177)

= 0 otherwise. (4.178)

The ǫijk ’s also satisfy the property

∑

i

ǫijkǫiab = δjaδkb − δjbδka. (4.179)

We can now compute L2:

L2 =
∑

i

LiLi =
∑

i

∑

jk

∑

ab

(
ǫijkrjpk

)
(ǫiabrapb) . (4.180)

Using the relation (4.179) we obtain

L2 =
∑

ja

(
rjpkrjpk − rjpkrkpj

)
(4.181)
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where the order of the operators r and p is maintained since they do not necessarily commute.

We now implement the canonical quantization relation

[
rα , pβ

]
= i�δαβ (4.182)

to simplify (4.181). Considering each term in (4.181) individually we find, for the first term,

∑

jk

rjpkrjpk =
∑

jk

rj

[
rjpk − i�δjk

]
pk (4.183)

= r2p2 − i�r · p (4.184)

where r2 = ∑
j rjrj and p2 = ∑

k pkpk and where we have used the relation (4.182). For

the second term in (4.181) we obtain

∑

jk

rjpkrkpj =
∑

jk

[
pkrj + i�δkj

]
rkpj (4.185)

=
∑

jk

pkrjrkpj + i�r · p (4.186)

=
∑

jk

pkrkrjpj + i�r · p (4.187)

where we have taken into account the fact that rj and rk commute. To simplify this further,

we make use of the canonical commutator (4.182), in which, if we take β = α and then

sum over α, we find

∑

α

(rαpα − pαrα) = i�
∑

α

δαα = 3i�. (4.188)

Hence the first term in (4.187) gives

∑

jk

pkrkrjpj =
∑

k

rkpk

∑

j

rjpj − 3i�
∑

j

rjpj (4.189)

= (r · p)2 − 3i�r · p. (4.190)

From (4.181), (4.184), (4.187) and (4.190) we obtain

L2 = r2p2 − (r · p)2 + i�r · p, (4.191)

which after rearranging the terms and dividing both sides by 2mr2 gives

p2

2m
= (r · p)

2

2mr2
− i�

r · p
2mr2

+ L2

2mr2
. (4.192)

Since p = −i�∇, we can write

r · p = −i�r
∂

∂r
(4.193)
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and

(r · p)2 = �
2

(
r
∂

∂r

)(
r
∂

∂r

)
= �

2

[
r
∂

∂r
+ r2 ∂

2

∂r2

]
. (4.194)

Thus operating on the wavefunction u(r), we have

p2

2m
u = − �

2

2m
· 1

r

∂2

∂r2
(ru)+ L2

2mr2
u, (4.195)

which relates the kinetic energy term on the left to angular momentum, which is the second

term on the right.

Substituting p = −i�∇ on the left-hand side of (4.195) we obtain

− �
2

2m
∇2u = − �

2

2m
· 1

r

∂2

∂r2
(ru)+ L2

2mr2
u. (4.196)

Comparing (4.196) with (4.112) we find that

L2u

2mr2
= − �

2

2mr2

[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

sin2 θ

∂2u

∂φ2

]
. (4.197)

Replacing u by Rl(r)Ylm (θ ,φ) and taking into account equation (4.137) in Section 4.7, we

observe that the right-hand side of (4.197) is

�
2

2mr2
l (l + 1) YlmRl . (4.198)

Hence factoring out Rl(r) we have

L2Ylm = �
2l (l + 1) Ylm. (4.199)

Therefore, the quantum number l is related to the angular momentum operator L, and Ylm

is an eigenstate of L2.

4.10.1 Angular momentum in classical physics

The Hamiltonian for a particle is given by

H = T + V (4.200)

where T is the kinetic energy and V the potential energy. For a particle carrying out a radial

motion,

T = 1

2
mṙ2+1

2
mr2θ̇

2
. (4.201)
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The angular momentum is given by

L = mr2θ̇ . (4.202)

The expression for T then becomes

T = 1

2
mṙ2 + L2

2mr2
. (4.203)

Thus, in classical mechanics, just as we found in quantum mechanics, there is a presence of

the angular momentum term in the Hamiltonian. But while classically L is continuous, we

find that in quantum mechanics, where angular momentum is an operator, L is quantized.

4.11 Determining L2 from the angular variables

Let us now reconfirm directly from the definition of L in (4.173) that the right-hand side

in the square bracket of (4.197) is, indeed, related to L2, that is,

L2u = −�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

sin2 θ

∂2u

∂φ2

]
. (4.204)

From (4.173) we write

L = −i�r ×∇. (4.205)

The operator ∇ is found in terms of the spherical coordinates to be

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ

1

r sin θ

∂

∂φ
(4.206)

where r̂, θ̂ and φ̂ are unit orthogonal vectors in the respective directions. They can be

expressed in terms of the unit Cartesian coordinates ı̂, ĵ and k̂ in the x-, y-, and z-directions

respectively as follows:

r̂ = sin θ cosφı̂ + sin θ sin φĵ + cos θ k̂, (4.207)

θ̂ = cos θ cosφı̂ + cos θ sin φĵ − sin θ k̂, (4.208)

φ̂ = − sin φı̂ + cosφĵ . (4.209)

It is then straightforward to show that

L = r × p =− i�rr̂ ×∇ = −i�

(
φ̂
∂

∂θ
− θ̂

1

sin θ

∂

∂φ

)
, (4.210)
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which leads to

Lx = −i�

(
− sin φ

∂

∂θ
− cosφ cot θ

∂

∂φ

)
, (4.211)

Ly = −i�

(
− cosφ

∂

∂θ
− sin φ cot θ

∂

∂φ

)
, (4.212)

Lz = −i�
∂

∂φ
, (4.213)

and hence we obtain, after a somewhat lengthy calculation,

L2 = L2
x + L2

y + L2
z = −�

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
, (4.214)

which reproduces (4.204).

We also note, since Ylm given by (4.133) contains a factor eimφ , that

Lzu = −i�Rl

[
∂

∂φ
Ylm

]
= m�u. (4.215)

Thus the eigenvalue m corresponds to the z-component of L.

We need to point out that, apart from mentioning mathematical textbooks as references

and providing, indirect, derivations, we have not established directly that the eigenvalues of

L2 and Lz are l (l + 1) �2 and m� respectively. For that we will have to wait until Chapter 26.

4.12 Commutator
[
Li, Lj

]
and

[
L2, Lj

]

It is interesting to consider the commutators of the angular momentum operators based on

the fundamental commutation relation given in (4.182). Specifically, we consider

[
Lx, Ly

]
= LxLy − LyLx (4.216)

where we note that L = r × p. We obtain

Lx = ypz − zpy = −i�

(
y
∂

∂z
− z

∂

∂y

)
(4.217)

etc.

From (4.174) and the relation p = −i�∇ we find

LxLy = −�
2

(
y
∂

∂z
− z

∂

∂y

)(
z
∂

∂x
− x

∂

∂z

)

= −�
2

(
y
∂

∂x
+ yz

∂2

∂z∂x
− yx

∂2

∂z2
− z2 ∂

2

∂y∂x
+ zx

∂2

∂y∂z

)
. (4.218)
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Similarly,

LyLx = −�
2

(
zy
∂2

∂x∂y
− z2 ∂

2

∂x∂y
− xy

∂2

∂z2
+ x

∂

∂y
+ xz

∂2

∂z∂y

)
. (4.219)

Subtracting (4.219) from (4.218) we obtain

LxLy − LyLx = +�
2

(
x
∂

∂y
− y

∂

∂x

)
= i�Lz (4.220)

where Lz is determined by (4.205).

Thus, in summary,

[
Lx, Ly

]
= i�Lz, (4.221)

[
Ly,Lz

]
= i�Lx, (4.222)

[Lz , Lx] = i�Ly. (4.223)

We can write the above relations compactly as

[
Li, Lj

]
= i�

∑

k

ǫijkLk . (4.224)

To determine
[
L2, Li

]
, let us consider the specific case of

[
L2, Lx

]
. We can write it as

[
L2, Lx

]
=
[
L2

x , Lx

]
+
[
L2

y , Lx

]
+
[
L2

z , Lx

]
=
[
L2

y , Lx

]
+
[
L2

z , Lx

]
(4.225)

where we have taken into account the fact that L2
x and Lx commute. The two terms on the

right together can be written as

[
L2

y , Lx

]
+
[
L2

z , Lx

]
= Ly

[
Ly, Lx

]
+
[
Ly, Lx

]
Ly + Lz [Lz , Lx]+ [Lz, Lx] Lz

= Ly (−i�) Lz + (−i�) LzLy + Lz (i�) Ly + (i�) LyLz

= 0 (4.226)

where we have used the commutation relations (4.224). Therefore, we can write the

following general result:

[
L2, Li

]
= 0. (4.227)

We also note that Li will be Hermitian since ri and pi are Hermitian and ri and pj commute

for i � =j. That is,

L
†
i = Li (4.228)

where i = 1, 2, 3.

Another way, perhaps a more elegant one, of deriving the commutation relations is

described in Problem 3.
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4.13 Ladder operators

Instead of considering Lx and Ly individually, it is often more instructive to work with the

so-called ladder operators, L±, defined by

L± = Lx ± iLy. (4.229)

One finds, using (4.211) and (4.212),

L± = �e±iφ

(
± ∂
∂θ
+ i cot θ

∂

∂φ

)
. (4.230)

The L2 operator can be written in terms of L± as

L2 = L+L− + L2
z − �Lz. (4.231)

Furthermore, from (4.221), (4.222), and (4.223) one can show that

[Lz , L+] = �L+, (4.232)

[Lz , L−] = −�L−. (4.233)

Using relation (4.231) for L2 we can also show that

[
L2, Lz

]
= 0 =

[
L2, L+

]
=
[
L2, L−

]
. (4.234)

Let us consider the state (L−Ylm). From (4.233) we find that

Lz (L−Ylm) = (L−Lz − �L−) Ylm. (4.235)

Since LzYlm = m�Ylm, therefore,

Lz (L−Ylm) = (m− 1) � (L−Ylm) . (4.236)

Thus (L−Ylm) is an eigenstate of Lz with eigenvalue (m− 1) �. Furthermore, one finds that

L2 commutes with L−:

L2 (L−Ylm) = L−L2Ylm = l (l + 1) �2 (L−Ylm) . (4.237)

Hence one can write

(L−Ylm) = CYlm−1, (4.238)

which implies that L− acts as a “lowering” operator by lowering the eigenvalue m to m−1.
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Since the spherical harmonic functions are normalized, we use the normalization

condition

∫ 2π

0

∫ π

0

dθ dφ (L−Ylm)
† (L−Ylm) sin θ

= |C|2
∫ 2π

0

∫ π

0

dθ dφ Y ∗lm−1(θ ,φ)Ylm−1(θ ,φ) sin θ

= |C|2 . (4.239)

The left-hand side corresponds to

∫ 2π

0

∫ π

0

dθ dφ L
†
−L−Y ∗lmYlm sin θ . (4.240)

The product L
†
−L− can be simplified to

L
†
−L− = L+L− = L2 − L2

z + �Lz (4.241)

where we have used the relation L
†
− = L+ and the relation (4.223). Since Ylm are eigen-

states of L2 and Lz with eigenvalues l (l + 1) �2 and m� respectively, and since Ylm’s are

normalized, the left-hand side of (4.239) simply gives

[
l(l + 1)− m2 + m

]
�

2 = (l + m) (l − m+ 1)�2. (4.242)

The right-hand side is simply |C|2 since Ylm+1’s are also normalized. Thus we find from

(4.240) that

C =
√
(l + m) (l − m+ 1)�. (4.243)

Hence,

L−Ylm =
√
(l + m) (l − m+ 1)�Ylm−1. (4.244)

Similarly,

L+Ylm =
√
(l − m) (l + m+ 1)�Ylm−1. (4.245)

Hence, L+ acts as a “raising” operator. It is because of these properties that L+ and L− are

called “ladder” operators. The role of the ladder operators will become clearer when we

discuss the general properties of angular momentum in Chapter 26.
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Finally, we note that we can express the state vectors corresponding to the angular

wavefunctions simply as |lm〉, so that

L2 |lm〉 = l(l + 1)�2 |lm〉 , (4.246)

Lz |lm〉 = m� |lm〉 , (4.247)

L− |lm〉 =
√
(l + m) (l − m+ 1)� |lm− 1〉 , (4.248)

L+ |lm〉 =
√
(l − m) (l + m+ 1)� |lm+ 1〉 , (4.249)

and the spherical harmonics Ylm(θ ,φ) as the wavefunction

〈θ ,φ |lm〉 = Ylm(θ ,φ). (4.250)

4.14 Problems

1. Write down the free-particle Schrödinger equation for two dimensions in (i) Cartesian

and (ii) polar coordinates. Obtain the corresponding wavefunction.

2. Use the orthogonality property (4.159) of Pl(cos θ) and confirm that at least the first two

terms on the right-hand side of (4.171) are correct.

3. Obtain the commutation relations
[
Li, Lj

]
by calculating the vector L × L using the

definition L = r × p directly instead of introducing a differential operator.

4. Consider a finite set of operators Bi. Let H be a Hamiltonian which commutes with the

Bi’s, i.e., [Bi, H ] = 0. If |an〉’s are eigenstates of H satisfying

H |an〉 = an |an〉 ,

then show that Bi |an〉 are proportional to |an〉 . That is, one can write

Bi |an〉 = bi |an〉 .

Show that this result implies
[
Bi, Bj

]
= 0. How does this reconcile with the fact that

[Li, H ] = 0 but
[
Li, Lj

]
� =0 for the angular momentum operators Li?

5. A free particle is moving along a path of radius R. Express the Hamiltonian in terms of

the derivatives involving the polar angle of the particle and write down the Schrödinger

equation. Determine the wavefunction and the energy eigenvalues of the particle.

6. Determine [Li, r] and [Li, r].

7. Show that

e−iπLx/� |l, m〉 = |l,−m〉 .



5 Particles with spin ½

We previously considered angular momentum, which has a classical counterpart. We will

continue with the free particle system but this time confine ourselves to a uniquely quantum-

mechanical concept of particles of spin ½. A large number of particles in nature have spin

½, such as electrons, protons, neutrons, leptons, and quarks. To understand its mathematical

origin one must go to relativistic quantum mechanics as outlined by Dirac’s theory. This

is discussed in Chapter 33 on the Dirac equation but, in the meantime, in this chapter, we

consider the nonrelativistic, phenomenological aspect of this concept. We will also consider

the Pauli exclusion principle for spin ½ particles and conclude with a description of Fermi

levels which one observes in condensed matter systems.

5.1 Spin ½ system

Let us consider a collection of operators Sx, Sy, Sz which satisfy the same commutation

relations as the ones satisfied by Lx, Ly, and Lz,

[
Sx, Sy

]
= i�Sz, (5.1)

[
Sy, Sz

]
= i�Sx, (5.2)

[Sz, Sx] = i�Sy (5.3)

with

S2 = s(s+ 1)�21 (5.4)

where

S2 = S2
x + S2

y + S2
z (5.5)

and

S
†
i = Si. (5.6)

Following the arguments that were used in the case of the orbital angular momentum

operators Li, one can show that S2 commutes with each of the components of S, and that
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one can write the following compact relations,

[
Si, Sj

]
= i�

∑

k

ǫijkSk and
[
S2, Si

]
= 0 (5.7)

where i, j, k (= 1, 2, 3) stand for x-, y-, and z-components. We call Si, the “spin angular

momentum” or simply “spin.”

Unlike the quantum number, l, for the orbital angular momentum, which has values 0,

1, 2, . . . with z-components m = −l, . . . ,+l, the quantum number s of the spin is assumed

to have a unique value s = 1/2 with z-components ms = −1/2, 1/2. The eigenstates are

referred to as “spin ½” states. They are characterized by the eigenvalues of two commuting

operators, S2 and any one of the three S ′is, and designated by the kets |1/2, ms〉 .
A general eigenstate in this system is taken to be a column matrix of the type

(
�

�

)
. (5.8)

The operators Si will then be 2× 2 matrices,

(
� �

� �

)
. (5.9)

5.2 Pauli matrices

We define

Si =
�

2
σ i (5.10)

where σ i are called the Pauli matrices (i = 1, 2, 3). As we will see in the following, our

formalism will be simplified considerably by the introduction of these matrices. Using (5.3),

(5.7), and (5.10) the commutation relations satisfied by the σ i’s can be expressed as

[
σ i, σ j

]
= 2i

∑

k

ǫijkσ k and
[
σ 2, σ i

]
= 0 (5.11)

where σ
†
i = σ i and

σ 2 = σ 2
x + σ 2

y + σ 2
z = 3

[
1 0

0 1

]
, (5.12)

which is a multiple of a 2× 2 unit operator.
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5.3 The spin ½ eigenstates

We will obtain the common eigenstates of the two commuting operators, σ 2 and σ z. The

eigenvalues of σ z are ± 1, and, therefore, the matrix representing σ z will be a diagonal

matrix with +1 and −1 along the diagonal.

σ z =
[
1 0

0 −1

]
. (5.13)

The matrix representation of σ 2 is given above.

The eigenstates of the operator σ z given by (5.13) can be expressed as

[
1

0

]
and

[
0

1

]
. (5.14)

They have the properties

σ z

[
1

0

]
= (+1)

[
1

0

]
, (5.15)

σ z

[
0

1

]
= (−1)

[
0

1

]
, (5.16)

corresponding to eigenvalues +1 and −1 respectively. The two column matrices are

variously designated as

∣∣∣∣
1

2
,
1

2

〉
= ↑ = |z+〉 =

[
1

0

]
= “spin-up” (5.17)

∣∣∣∣
1

2
,−1

2

〉
= ↓ = |z−〉 =

[
0

1

]
= “spin-down.” (5.18)

We note that these eigenstates are orthonormal:

〈z + |z+〉 = 〈z − |z−〉 = 1 and 〈z + |z−〉 = 0. (5.19)

They also satisfy the completeness relation

|z+〉 〈z+| + |z−〉 〈z−| =
[
1

0

] [
1 0

]
+
[
0

1

] [
0 1

]
=
[
1 0

0 1

]
. (5.20)
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5.4 Matrix representation of σ x and σ y

The matrix representation of σ x and σ y for the case where σ 2 and σ z are diagonal are

derived below. Taking the trace of the first of the two relations in (5.11) we obtain

Tr
[
σ i, σ j

]
= 2i

∑

k

ǫijkTr(σ k). (5.21)

However, since the trace of a product of matrices is invariant under cyclic permutations,

e.g., Tr(AB) = Tr(BA),

Tr
[
σ i, σ j

]
= Tr(σ iσ j)− Tr(σ jσ i) = Tr(σ iσ j)− Tr(σ iσ j) = 0. (5.22)

Thus the right-hand side of (5.21) must also be zero. Since the matrices σ i in the sum in

(5.21) are independent of each other, each term on the right-hand side of (5.21) will vanish.

Hence

Tr(σ k) = 0 (5.23)

for all values of k(= 1, 2, 3). The matrix, σ z, of course, satisfies this relation.

Let us define the following operators:

σ+ = σ x + iσ y, (5.24)

σ− = σ x − iσ y. (5.25)

These are the counterparts of the ladder operators L± we considered earlier. We note that

σ− = σ †
+. One can derive the following commutation relations from (5.11):

[σ z, σ+] = 2σ+, (5.26)

[σ z, σ−] = −2σ−, (5.27)

[σ+, σ−] = 4σ z . (5.28)

Let us write σ+ in the most general form,

σ+ =
[
a b

c d

]
. (5.29)

We will now try to determine a, b, c, and d from the above commutation relations. We

note that

[σ z, σ+] = σ zσ+ − σ+σ z =
[

0 2b

−2c 0

]
. (5.30)

From (5.26) and (5.29) we then conclude that

a = 0 = c = d. (5.31)
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Hence

σ+ =
(

0 b

0 0

)
. (5.32)

where we take b to be real and positive. We find

σ− = σ †
+ =

(
0 0

b 0

)
. (5.33)

The left-hand side of the commutation relation (5.28) is now found to be

σ+σ− − σ−σ+ =
(

b2 0

0 −b2

)
. (5.34)

From (5.13), and the right-hand side of (5.28) we must have b2 = 4. Therefore, b = 2.

Hence

σ+ = 2

(
0 1

0 0

)
and σ− = 2

(
0 0

1 0

)
. (5.35)

We can now determine σ x and σ y from σ+ and σ− as follows:

σ x =
σ+ + σ−

2
=
(

0 1

1 0

)
, (5.36)

σ y =
σ+ − σ−

2i
=
(

0 −i

i 0

)
. (5.37)

We note that these operators are Hermitian since they satisfy σ
†
i = σ i, where i = x, y, z.

Thus we have the representation of all the Pauli matrices for the case when σ z is diagonal.

We note from (5.13), (5.36), and (5.37) that

σ 2
x = σ 2

y = σ 2
z =

(
1 0

0 1

)
(5.38)

and hence σ 2 is given by

σ 2 = σ 2
x + σ 2

y + σ 2
z = 3

(
1 0

0 1

)
, (5.39)

which reproduces (5.12).
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5.5 Eigenstates of σ x and σ y

As for the matrices σ+ and σ−, defined in (5.32) and (5.33), we find

σ+

(
1

0

)
= 0 and σ+

(
0

1

)
= 2

(
1

0

)
. (5.40)

Similarly

σ−

(
1

0

)
= 2

(
0

1

)
and σ−

(
0

1

)
= 0. (5.41)

Thus σ+ acts like a “raising” operator changing the spin-down state to spin-up state, while

σ− acts in exactly the opposite direction, as a “lowering” operator. The operators σ±, like

L±, act as ladder operators.

We have thus far considered eigenstates of σ z. Let us obtain, as a simple exercise, the

eigenstates of the other Pauli matrices. If we designate |x±〉 as the spin-up and spin-down

states in the x-direction, then

σ x |x+〉 = |x+〉 and σ x |x−〉 = − |x−〉 . (5.42)

Let us obtain |x+〉 by writing it as a superposition of the eigenstates of σ z ,

|x+〉 = c1

(
1

0

)
+ c2

(
0

1

)
(5.43)

with

|c1|2 + |c2|2 = 1. (5.44)

The matrix σ x is given by (5.36) and, from (5.42), the eigenstate |x+〉 satisfies the relation

(
0 1

1 0

)[
c1

(
1

0

)
+ c2

(
0

1

)]
=
[
c1

(
1

0

)
+ c2

(
0

1

)]
, (5.45)

which gives, together with (5.44), the result

c1 = c2 =
1√
2

(5.46)

where we have taken the positive square roots. Thus,

|x+〉 = 1√
2

[(
1

0

)
+
(

0

1

)]
= 1√

2
[|z+〉 + |z−〉] = 1√

2

(
1

1

)
. (5.47)

Similarly one can obtain the eigenstates of σ y.
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5.6 Eigenstates of spin in an arbitrary direction

Let us now obtain eigenstates of σ pointing in an arbitrary direction. We designate a state

corresponding to spin pointing in the direction of a unit vector n as

∣∣χn+
〉
. (5.48)

This state is then an eigenstate of the projection of the spin operator σ in the n direction

with eigenvalue +1, that is,

σ · n
∣∣χn+

〉
=
∣∣χn+

〉
. (5.49)

If the polar angle of n is α and the azimuthal angle is β, then in terms of its coordinates in

the Cartesian system one can write

n = (sin α cosβ, sin α sin β, cosα) ; (5.50)

then

σ · n = σ x sin α cosβ + σ y sin α sin β + σ z cosα (5.51)

=
[
0 1

1 0

]
sin α cosβ +

[
0 −i

i 0

]
sin α sin β +

[
1 0

0 −1

]
cosα (5.52)

=
[

cosα sin αe−iβ

sin αeiβ − cosα

]
. (5.53)

Let

∣∣χn+
〉
=
[
a

b

]
(5.54)

with |a|2 + |b|2 = 1, then according to (5.49) we have

[
cosα sin αe−iβ

sin αeiβ − cosα

] [
a

b

]
=
[
a

b

]
, (5.55)

which gives rise to the following two equations

a cosα + b sin αe−iβ = a, (5.56)

a sin αeiβ − cosα = b. (5.57)

The first equation gives

a(1− cosα) = b sin αe−iβ . (5.58)
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Since (1 − cosα) = 2 sin2(α/2) and sin α = 2 sin(α/2) cos (α/2), we find a normalized

solution as

a = cos
(α

2

)
and b = sin

(α
2

)
eiβ . (5.59)

Hence

∣∣χn+
〉
= cos

(α
2

) [
1

0

]
+ sin

(α
2

)
eiβ

[
0

1

]
=

⎡
⎢⎣

cos
(α

2

)

sin
(α

2

)
eiβ

⎤
⎥⎦ . (5.60)

By taking appropriate values of α and β we can obtain |x±〉 and |y±〉. For example, if

we take α = π/2 and β = 0, we obtain |y−〉:

|y−〉 = 1√
2

[(
1

0

)
− i

(
0

1

)]
= 1√

2
[|z+〉 − i |z−〉] = 1√

2

(
1

−i

)
. (5.61)

5.7 Some important relations for σ i

The properties of the Pauli matrices that we have derived above can all be described by the

following very useful and compact relation:

σ iσ j = δij + i
∑

k

ǫijkσ k . (5.62)

In particular, we note that

σ iσ j + σ jσ i = 2δij (5.63)

which states that the Pauli matrices anticommute for i � =j.

A term one often comes across in the calculations involving Pauli matrices is the product

σ · Aσ · B. We can simplify this by writing it in the component form as follows:

σ · Aσ · B =
∑

i

∑

j

(σ iAi)
(
σ jBj

)
=
∑

i

∑

j

(
σ iσ j

)
AiBj. (5.64)

From (5.62) we write

∑

i

∑

j

(
σ iσ j

)
AiBj =

∑

i

∑

j

(δij + i
∑

k

ǫijkσ k)AiBj

=
∑

i

∑

j

δijAiBj + i
∑
σ k

k

∑

i

∑

j

ǫkijAiBj. (5.65)

In the second term we have made an even number (two) of permutations to go from ǫijk to

ǫkij , which involves no sign change. Furthermore,

∑

i

∑

j

δijAiBj = A.B (5.66)
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and

∑

i

∑

j

ǫkijAiBj = (A × B)k . (5.67)

Hence

σ · Aσ · B = A · B+ iσ · (A × B) . (5.68)

In particular,

σ · Aσ · A = A2. (5.69)

5.8 Arbitrary 2×2 matrices in terms of Pauli matrices

We show below that any 2× 2 matrix can be expressed in terms of four matrices: the unit

matrix and the three Pauli matrices σ i.

A general 2 × 2 matrix has four complex matrix elements. Let M be such a matrix. We

write it as

M = a1+ b.σ (5.70)

where 1 and σ are 2 × 2 matrices and a and bj (j = 1, . . . , 3) are complex numbers. We

will show below that these four numbers can be uniquely determined in terms of the matrix

elements of M .

Since

Tr(σ i) = 0 (5.71)

and Tr(1) = 2, taking the trace of M we find

Tr(M ) = 2a. (5.72)

Similarly, since

Tr(σ iσ j) = 2δij, (5.73)

we have,

Tr(σ jM ) = bjTr(σ 2
j ) = 2bj. (5.74)

Thus

a = 1

2
Tr(M ) and bj =

1

2
Tr(σ jM ). (5.75)
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From the above relations one can determine the four (complex) coefficients on the right-

hand side of (5.70) in terms of the four (complex) matrix elements of M . If M happens to

be Hermitian then, since 1 and σ i are Hermitian, we must have

a∗ = a and b∗j = bj . (5.76)

5.9 Projection operator for spin ½ systems

Let us consider the properties of the projection operator and the density matrix that we

introduced in Chapter 1 as they relate to the spin ½ systems. We start with an arbitrary ket

vector in the spin-space as

|χ〉 =
(

c1

c2

)
(5.77)

with |c1|2 + |c2|2 = 1. The bra vector, 〈χ |, is a row matrix given by

〈χ | =
(
c∗1 , c∗2

)
. (5.78)

The projection operator Pχ that we defined in Chapter 1 is given, for this system, by

Pχ = |χ〉〈χ | =
(|c1|2 c1c∗2

c2c∗1 |c2|2
)

. (5.79)

It is easy to show that

P2
χ = Pχ , P†

χ = Pχ and Tr(Pχ ) = 1, (5.80)

which confirms our derivation in Chapter 1.

Let us consider some examples of the projection operator. We consider the following

cases.

(i) The spin-up state |z+〉. The projection operator for this state is

Pz+ = |z+〉〈z + | = (1, 0)

(
1

0

)
=
(

1 0

0 0

)
. (5.81)

(ii) The spin-down state |z−〉. The projection operator for this state is

Pz− = |z−〉〈z − | = (0, 1)

(
0

1

)
=
(

0 0

0 1

)
. (5.82)

We now determine some further properties of the projection operator. From the above

results we find that Pχ is a 2× 2 Hermitian matrix. We showed in the previous section that
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any 2× 2 Hermitian matrix can be expressed as a linear combination of the unit matrix and

the three Pauli matrices σ i with i = 1, 2, 3. Thus Pχ can be represented as

Pχ = a01+ a · σ . (5.83)

Since Tr(σ i) = 0 and Tr(1) = 2, Tr(Pχ ) = 1, we have

a0 =
1

2
. (5.84)

Hence,

Pχ =
1

2
1+ a · σ (5.85)

and

P2
χ =

1

4
1+ a · σ + (a · σ)2 . (5.86)

From the relation (5.38) for the Pauli matrices we obtain

(a · σ )2 = a2. (5.87)

Hence,

P2
χ =

1

4
1+ a · σ + a2 (5.88)

where we note that

a2 =
(
a2

x + a2
y + a2

z

)(
1 0

0 1

)
= a21. (5.89)

Taking the trace of both sides of (5.88) we find, since Tr(σ i) = 0,

Tr(P2
χ ) =

1

4
Tr(1)+a2Tr(1). (5.90)

Using Tr(1) = 2, and Tr(P2
χ ) = 1, we find

a2 = 1

4
. (5.91)

For the purposes of simplification let us write

a =1

2
p (5.92)

where the vector p (which should not be confused as the momentum vector) has components

px, py, pz and

p2 = 1. (5.93)
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Thus,

Pχ =
1

2
(1+ p · σ ) . (5.94)

We write Pχ in terms of the components of σ and p as

Pχ =
1

2

(
1+ pz px − ipy

px + ipy 1− pz

)
(5.95)

where we have substituted the matrix representations of σ x, σ y, and σ z obtained in (5.13),

(5.36), and (5.37).

Let us discuss the significance of the vector p. Based on our results in Chapter 1 we note

that the expectation value of an operator A is related to the projection operator as follows:

〈χ |A|χ〉 = Tr
(
APχ

)
. (5.96)

The expectation value of the Pauli matrices with respect to the state |χ〉 is given by

〈χ |σ |χ〉 = Tr
(
σPχ

)
= 1

2
Tr (σ + σ (p · σ )) = 1

2
Tr (σ (p · σ )) . (5.97)

To determine the right-hand side in (5.97), let us first consider just the contribution of the

x-component σ :

Tr (σ x (p · σ )) = Tr
(
σ x

(
pxσ x + pyσ y + pzσ z

))
= pxTr

(
σ 2

x

)
= 2px. (5.98)

Therefore, in general,

Tr (σ (p · σ )) = 2p (5.99)

and, hence,

〈χ |σ |χ〉 = p. (5.100)

The vector p is thus the expectation value of the spin operator σ . For this reason it is often

called the polarization vector.

5.10 Density matrix for spin ½ states and the ensemble average

Following our discussion in Chapter 1, the density operator for spin ½ states in a mixed

ensemble is written as

ρ = wαPα + wβPβ (5.101)
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where wα and wβ are the probabilities that the states |α〉 and |β〉 are present in the mixed

ensemble. The projection operators Pα and Pβ are given by

Pα = |α〉〈α|, Pβ = |β〉〈β|. (5.102)

If the states |α〉 and |β〉 are orthonormal, then they will satisfy the completeness relation,

Pα + Pβ = 1. (5.103)

Consider, for example, the case where the mixed ensemble contains the spin-up and

spin-down states

|α〉 =
(

1

0

)
, |β〉 =

(
0

1

)
. (5.104)

Then the projection operators are found to be

Pα =
(

1 0

0 0

)
, Pβ =

(
0 0

0 1

)
, (5.105)

which satisfy the completeness relation (5.103).

In terms of the polarization vector defined this time as P =〈α|σ |α〉, we find using (5.104)

and (5.105) that

Pα =
1

2
[1+ P · σ ] , (5.106)

Pβ = 1− Pα =
1

2
[1− P · σ ] . (5.107)

Hence the density operator is given by

ρ = wαPa + wβPβ (5.108)

= 1

2

[
1+

(
wα − wβ

)
P · σ

]
(5.109)

where we have taken into account the fact that the sum of the probabilities must be 1, i.e.,

wα + wβ = 1.

The ensemble average of the Pauli matrix can now be obtained as

〈σ 〉av = Tr (σρ) (5.110)

= Tr

[
σ

1

2

(
1+

(
wα − wβ

)
P · σ

)]
. (5.111)

Hence,

〈σ 〉av =
1

2
Tr (σ )+ 1

2

(
wα − wβ

)
Tr [σ (P · σ )] . (5.112)

Since Tr(σ ) = 0, we obtain, using (5.99), the following result:

〈σ 〉av =
(
wα − wβ

)
P. (5.113)
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5.11 Complete wavefunction

Finally, in our discussions above we have been concerned only with the spin part of the

wavefunction. The total wavefunction for a free particle with spin ½, described by a plane

wave, can be written as the product wavefunction

u(r) = eik.r

(√
2π

)3
|χ〉 (5.114)

where |χ〉 is the column matrix

|χ〉 = c1

(
1

0

)
+ c2

(
0

1

)
=
(

c1

c2

)
, (5.115)

which signifies that the particle has a probability |c1|2 that it is in a spin-up state, i.e., it has

its spin pointing in the positive z-direction, and the probability |c2|2 that it is in a spin-down

state with spin pointing in the opposite direction.

5.12 Pauli exclusion principle and Fermi energy

Let us consider the ground state consisting of N noninteracting electrons confined in one

dimension of length L. Each electron will be described by a free wavefunction

u(x) = 1√
L

eikxχλ (5.116)

where the χλ’s designate the spin-up and spin-down states

χ+ =
[
1

0

]
, χ− =

[
0

1

]
, (5.117)

which are normalized according to

χ
†
λ1
χλ2

= δλ1λ2 . (5.118)

We assume, as we have done before, that the wavefunction satisfies the periodic boundary

condition

u(x + L) = u(x), (5.119)

which implies that the momentum vector can take only discrete values given by

knL = 2nπ . (5.120)



117 5.12 Pauli exclusion principle and Fermi energy

EF

Fig. 5.1

The energy eigenvalues will then be

En =
�

2k2
n

2m
= 2n2π2

�
2

mL2
. (5.121)

Since the electrons are noninteracting, the ground state of the N -electron system can

be built up by putting electrons into different levels. Because of the exclusion principle,

however, at most one electron can be placed in each level with a given value of kn. Since an

electron has spin that can take on two values, spin up and spin down, we are allowed to put

no more than two electrons in a given level as long as their spins are in opposite directions.

Thus N electrons will fill up levels with n = 1, 2, . . . , N/2 (see Fig. 5.1). The last level

will consist of either one or two electrons depending on whether N is even or odd. The

energy of the highest level can then be obtained by substituting n = N/2 in (5.121), which

gives

EF =
N 2π2

�
2

2mL2
. (5.122)

This is the so called “Fermi energy” for the one-dimensional case. Fermi energy is a very

important concept in condensed matter systems.

The total energy for the N -electron system is then

Etot = 2

N/2∑

n=1

2n2π2
�

2

mL2
(5.123)

where the factor 2 corresponds to the two spin states. Since N is assumed to be very large,

the above sum can be converted to an integral:

N/2∑

n=1

n2 ≈
∫ N/2

1

dn n2 ≃ N 3

24
. (5.124)

Thus the total energy of the electrons is

Etot =
N 3π2

�
2

6mL2
. (5.125)
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The energy per electron is

Ee =
Etot

N
= N 2π2

�
2

6mL2
, (5.126)

which implies that the energy of an individual electron increases as N 2.

Let us compare this result with a system consisting of N bosons, which are particles with

integral spin. Since there is no exclusion principle preventing the bosons from occupying

the same state, their ground state will consist of all N particles occupying the same state,

n = 1. Thus the total energy of this system will be N times the ground-state energy. Hence,

Etot = N
2π2

�
2

mL2
(5.127)

and the energy of a single boson is

Eb =
Etot

N
= π

2
�

2

2mL2
(5.128)

which remains a constant. This result is in sharp contrast to the case of electrons.

We have confined the above to just the one-dimensional case. We will discuss the three-

dimensional case in Chapter 38.

5.13 Problems

1. Determine the matrices Sx, Sy, Sz for spin 1 in the representation in which Sz and S2 are

diagonal.

2. Obtain the eigenvalues and eigenstates of the operator A = aσ y + bσ z . Call the two

eigenstates |1〉 and |2〉 and determine the probabilities that they will correspond to

σ x = +1.

3. Obtain the expectation values of Sx, Sy, and Sz for the case of a spin ½ particle with the

spin pointed in the direction of a vector with azimuthal angle β and polar angle α.

4. Take the azimuthal angle, β = 0, so that the spin is in the x− z plane at an angle α with

respect to the z-axis, and the unit vector is n = (sin α, 0, cosα). Write

∣∣χn+
〉
= |+α〉

for this case. Show that the probability that it is in the spin-up state in the direction θ

with respect to the z-axis is

|< + θ |+α〉|2 = cos2 (α − θ)
2

.

Also obtain the expectation value of σ · n with respect to the state |+θ〉.
5. Consider an arbitrary density matrix,ρ, for a spin ½ system. Express each matrix element

in terms of the ensemble averages [Si] where i = x, y, z.
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6. If a Hamiltonian is given by σ .n where n = (sin α cosβ, sin α sin β, cosα), determine

the time evolution operator as a 2× 2 matrix. If a state at t = 0 is given by

|φ(0)〉 =
[
a

b

]
,

then obtain |φ(t)〉 .
7. Consider a system of spin ½ particles in a mixed ensemble containing a mixture of 25%

with spin given by |z+〉 and 75% with spin given by |x−〉 . Determine the density matrix

ρ and ensemble averages 〈σ i〉 for i = x, y, z.

8. Show that the quantity, σ ·pV (r) σ ·p, when simplified, has a term proportional to L ·σ .

9. Consider the following Hamiltonian for two spin ½ particles:

H = λσ 1·σ 2.

Designating the states as the product |1/2, m1〉 |1/2, m2〉 , and expressing H in terms of

the raising and lowering operators for the individual spins, show that the eigenstates of

H must have m1 = m2 = 1/2 or m1 = m2 = −1/2. Writing H as a matrix with respect

to these two states, obtain the eigenvalues of the system.



6
Gauge invariance, angular momentum,

and spin

Gauge invariance is a very important concept for electromagnetic interactions. It gives

rise to some far-reaching conclusions when applied to quantum-mechanical problems of

systems with angular momentum, particularly spin ½ systems. It also plays a fundamental

role in the standard model of particle physics. Even though in doing this we will be departing

from the subject of free particles, this is an important enough concept to be treated at this

stage since it does not involve complicated details about the interactions.

6.1 Gauge invariance

The electric field, E, and magnetic field, B, are described in terms of the scalar potential,

φ, and the vector potential, A, respectively as

E = −∇φ−1

c

∂A

∂t
(6.1)

and

B = ∇ × A. (6.2)

We note that there is a certain arbitrariness in these definitions since the expressions for E

and B remain unchanged under the transformations

A → A +∇� (6.3)

and

φ→ φ − 1

c

∂�

∂t
. (6.4)

These are called gauge transformations. The electromagnetic field is then said to be invariant

under gauge transformation. Gauge invariance is one of the most important subjects that

we will discuss in greater detail in the later chapters. We will be concerned here only with

a few of the special aspects of it.
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6.2 Quantum mechanics

We now discuss the presence of electromagnetic interactions in quantum-mechanical prob-

lems and the consequences of imposing gauge invariance. We will consider only the

time-independent case. The gauge transformation then corresponds to

A → A +∇� (6.5)

and

φ→ φ. (6.6)

In classical mechanics the electromagnetic interactions are taken into account by the

following replacements in the momentum p and energy E,

p → p− e

c
A, (6.7)

E → E − eφ. (6.8)

which imply the following replacement in the Hamiltonian, H ,

H = p2

2m
→ H =

(
p− e

c
A
)2

2m
+ eφ. (6.9)

The Hamiltonian in quantum mechanics is also assumed to be

H =

(
p− e

c
A
)2

2m
(6.10)

where we have taken φ = 0, confining just to the magnetic fields. We note that p and r are

operators, and A is a functions of r only. We show below that the Hamiltonian as written

in (6.10) is gauge invariant.

Let AG represent A under gauge transformation

AG = A +∇� (6.11)

where � = �(r) is an arbitrary quantity which is a function of r only. We take |α〉 to be a

state vector, which, under gauge transformations, is given by

|α〉 → |αG〉 . (6.12)
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We assume that under gauge transformations the norm of the state vectors and the

expectation values of the operators remain unchanged:

〈αG |αG〉 = 〈α |α〉 , (6.13)

〈αG| r |αG〉 = 〈α| r |α〉 , (6.14)

〈αG|
(
p− e

c
AG

)
|αG〉 = 〈α|

(
p− e

c
A
)
|α〉 . (6.15)

To satisfy relation (6.13) we write

|αG〉 = ei� |α〉 . (6.15a)

If � is assumed to be a (real) constant then the relations (6.13), (6.14), and (6.15a) are

trivially satisfied. This type of invariance is called “global” gauge invariance.

Let us, however, consider � to be a (real) function of r, in which case the invariance

is called “local” gauge invariance. The relations (6.13) and (6.14) are then automatically

satisfied. However, we immediately note that

〈αG| p |αG〉 � =〈α| p |α〉 , (6.16)

〈αG|AG |αG〉 � =〈α|
e

c
A |α〉 , (6.17)

because p (= −i�∇) while the relation (6.15a) between |αG〉 and |α〉 involves a function

of r; and AG given by (6.11) is different from A. The combination (p− e/cAG), on the

other hand, can be gauge invariant, as we will demonstrate below.

Writing the operator relation p = −i�∇, we find

e−i�pei� |α〉 = e−i� (−i�)∇
(
ei� |α〉

)
= [� (∇�)+ p] |α〉 . (6.18)

Therefore,

〈αG|
(
p− e

c
AG

)
|αG〉 = 〈α|

[
�∇�+ p− e

c
A − e

c
∇�

]
|α〉 . (6.19)

To satisfy the above relation we must then have

�∇� = e

c
∇�. (6.20)

Hence, apart from an arbitrary constant, which we will neglect, our solution for � will be

� = e�

�c
. (6.21)

The relation between the two state vectors is then given by

|αG〉 = ei e�
�c |α〉 . (6.21a)
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Having shown that

e−i e�
�c

(
p− e

c
AG

)
ei e�

�c = p− e

c
A, (6.22)

one can also show that

e−i e�
�c

(
p− e

c
AG

)2
ei e�

�c =
(
p− e

c
A
)2

. (6.23)

From this relation one finds that

〈αG|HG |αG〉 = 〈α|H |α〉 . (6.24)

Thus the Hamiltonian (6.10) is gauge invariant.

The physics will, therefore, be gauge invariant, so that the observable quantities such

as energy levels will not depend on any specific gauge. However, for the purposes of

calculations one may want to use the most convenient gauge available. The most commonly

employed gauge is the transverse gauge,

∇ · A = 0. (6.25)

Within this transverse gauge one also uses the so called Landau gauge and symmetric gauge.

We will consider both types when we discuss the topic of Landau levels.

6.3 Canonical and kinematic momenta

If we denote the ith components of r and p by xi and pi, respectively, then the following

Heisenberg relation can be written:

dxi

dt
= [xi, H ] . (6.26)

From the fundamental commutator
[
xi, pj

]
= i�δij, one can easily show that

[
xi, p

2
]
= 2i�pi. (6.27)

Since
[
xi, Aj

]
= 0 for arbitrary i and j, from the Hamiltonian (6.10) we obtain

dxi

dt
= 1

m

[
pi −

e

c
Ai

]
. (6.28)

We define

m
dxi

dt
= mechanical momentum = Pi = pi −

e

c
Ai, (6.29)

pi = canonical momentum, (6.30)
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and note that for the canonical momentum we have

[
xi, pj

]
= i�δij and

[
pi, pj

]
= 0. (6.31)

But for Pi, while
[
xi, Pj

]
= i�δij, we have,

[
Pi, Pj

]
=
[(

pi −
e

c
Ai

)
,
(
pj −

e

c
Aj

)]
(6.32)

=
(
−e

c

) {[
pi, Aj

]
+
[
Ai, pj

]}
(6.33)

where

[
pi, Aj

]
= piAj − Ajpi. (6.34)

We need to keep in mind that the terms on each side of the above equation operate on

a wavefunction on the right-hand side; therefore, we will need to use the operator relation

p = −i�∇. Thus, the product piAj gives the following result with φ (= 〈x |α〉) as the

wavefunction:

[
pi, Aj

]
φ =

(
piAj − Ajpi

)
φ = −i�

∂

∂xi

(
Ajφ

)
+ i�Aj

(
∂φ

∂xi

)
= −i�

(
∂Aj

∂xi

)
φ. (6.35)

Hence, after removing the arbitrary φ, we have

[
Pi, Pj

]
=
(

ie�

c

)(
∂Aj

∂xi
− ∂Ai

∂xj

)
=
(

ie�

c

)
ǫijk (∇ × A)k =

(
ie�

c

)
ǫijkBk (6.36)

where we have used the relation (6.2). Thus, we obtain the commutator of the canonical

momenta

[
Pi, Pj

]
=
(

ie�

c

)
ǫijkBk . (6.37)

6.4 Probability conservation

We consider probability conservation in the presence of the magnetic field. Let us take A

to be real and assume the transverse gauge ∇ · A = 0. The time-dependent Schrödinger

equation

i�
∂ψ

∂t
= Hψ (6.38)

can be written down from (6.10), after substituting p = −i�∇, as

− �
2

2m
∇2ψ + ie�

mc
A ·∇ψ + e2

2mc
A2ψ = i�

∂ψ

∂t
. (6.39)
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Let us now take the complex conjugate of this equation,

− �
2

2m
∇2ψ∗ − ie�

mc
A ·∇ψ∗+ e2

2mc
A2ψ∗ = −i�

∂ψ∗

∂t
. (6.40)

We now multiply both sides of (6.39) and (6.40), respectively, by ψ∗ and ψ and make a

subtraction. We obtain

− �
2

2m

[
ψ∗∇2ψ − ψ∇2ψ∗

]
+ ie�

mc

[
ψ∗A ·∇ψ + ψA ·∇ψ∗

]
= i�

[
ψ∗
∂ψ

∂t
+ ψ ∂ψ

∗

∂t

]
.

(6.41)

We can write this relation as the conservation relation

∇ · j+ ∂ρ
∂t
= 0 (6.42)

where the probability density is the same as previously defined:

ρ = |ψ |2 . (6.43)

However, the probability current density is then

j = �

2im

[
ψ∗∇ψ − ψ∇ψ∗

]
− e

mc
A |ψ |2 . (6.44)

In comparing this with the expression we derived in Chapter 3, we note the additional term

on the right-hand side. We will discuss this further when we come to the Meissner effect in

Chapter 39.

6.5 Interaction with the orbital angular momentum

Let us express the Hamiltonian in the presence of a magnetic field as

H =

(
p− e

c
A
)2

2m
= p2

2m
− e

2mc
(p · A + A · p)+ e2

2mc2
A2. (6.45)

The second term on the right-hand side gives, after substituting p = −i�∇ and introducing

the wavefunction φ,

(p · A + A · p) φ = −i� [∇· (Aφ)+ A· (∇φ)]
= −i� [(∇ · A) φ + 2A· (∇φ)] . (6.46)

We choose the transverse gauge so that the condition

∇ · A = 0 (6.47)
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is satisfied. We then obtain

(p · A + A · p) = 2A · p. (6.48)

Let us now take

A = 1

2
(B× r) (6.49)

where r is the radius vector. This expression satisfies the above gauge condition for A and

reproduces ∇ × A = B, where B is the magnetic field. Hence

(p · A + A · p) = (B× r) · p (6.50)

Using the vector identity (A × B) · C = A · (B× C) we obtain

(B× r) · p = B · (r × p) = B.L (6.51)

where L = r × p is the orbital angular momentum. Thus we have

(
p− e

c
A
)2

2m
= p2

2m
− e

2mc
B.L+ e2

2mc2
A2. (6.52)

Therefore, inherent in the Hamiltonian is a term that corresponds to the interaction of the

magnetic field with the orbital angular momentum. The second term signifies an interaction

of the type −μ · B, which corresponds to the interaction of the magnetic field with the

magnetic moment due to the current generated through the particle’s orbital motion, given by

μ = e

2mc
L. (6.53)

6.6 Interaction with spin: intrinsic magnetic moment

In the Dirac theory of electrons for a free Dirac particle, the kinetic energy term in the

Hamiltonian in the nonrelativistic approximation is found to be of the form

H = σ · pσ · p
2m

. (6.54)

If one uses the relation

σ iσ j = δij + i
∑

k

ǫijkσ k (6.55)

then the Hamiltonian reduces to

H = p2

2m
, (6.56)

recovering the result from nonrelativistic mechanics.
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The innocuous looking expression (6.54), however, has profound implications for the case

when the electron, which is a spin ½ particle, is subjected to a magnetic field, B = ∇ × A,

where A is the vector potential. As we discussed earlier, one can incorporate the magnetic

interactions by the replacement

p → p− e

c
A, (6.57)

which corresponds to the replacement

p2

2m
→

(
p− e

c
A
)2

2m
. (6.58)

However, if before going to (6.58) from (6.56) we incorporate the transformation (6.57) in

the nonrelativistic Dirac term (6.54), we will have

σ .
(
p− e

c
A
)

σ .
(
p− e

c
A
)

2m
. (6.59)

This does not reduce simply to (6.59).

There are actually additional terms which we now discuss:

σ ·
(
p− e

c
A
)

σ ·
(
p− e

c
A
)
=
(
p− e

c
A
)2
+ iσ ·

(
p− e

c
A
)
×
(
p− e

c
A
)

=
(
p− e

c
A
)2
− i

e

c
σ · (p× A + A × p) (6.60)

The second term on the right-hand side can be simplified as follows:

(p× A + A × p) ψ = −i� [∇ × (Aψ)+ (A ×∇ψ)]

= −i� [(∇ × A) ψ + (∇ψ × A)+ (A ×∇ψ)]

= −i� (∇ × A) ψ . (6.61)

Since ∇ × A = B, where B is the magnetic field, we obtain

σ ·
(
p− e

c
A
)

σ ·
(
p− e

c
A
)
=
(
p− e

c
A
)2
− e�

c
σ · B. (6.62)

Therefore, substituting σ = (1/2) S, we find for the Hamiltonian

H =
σ .
(
p− e

c
A
)

σ .
(
p− e

c
A
)

2m
= 1

2m

(
p− e

c
A
)2
− e�

mc
S · B. (6.63)

The first term was expected, but we now have a term of the form μe·B with μe as the

magnetic moment,

μe =
e�

mc
S. (6.64)

This is called the intrinsic magnetic moment of the electron.
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In the case of orbital angular momentum discussed in the previous section, a similar

term, B.L, was present, which has a simple physical interpretation: the orbital motion of an

electron creates a current loop which is responsible for generating a magnetic moment. The

spin of the electron, on the other hand, is an abstract quantity as presented here since the

electron is assumed to be a point particle. The fact that it generates a magnetic moment that

can have physical effects, as we will see in the next chapter on Stern–Gerlach experiments,

is a profound result and a confirmation of Dirac’s theory. A fully relativistic Dirac theory,

of which (6.56) is an approximation, will be considered in Chapter 33.

Combining the orbital and intrinsic terms, we can write

H = p2

2m
− e

2mc
μ · L+ e2

2mc2
A2 (6.65)

where the magnetic moment can be expressed as a sum

μ = gLL+ gSS. (6.66)

The gi’s are called gyromagnetic ratios with

gL = 1 and gS = 2. (6.67)

6.7 Spin–orbit interaction

In previous sections we took the electrostatic potential φ = 0. Let us now include its

contribution to the Hamiltonian. The presence of an electron spin creates a new term, which

is called the spin–orbit term. Taking φ to be a central potential, e.g., Coulomb potential,

between electron and proton in the hydrogen atom, we write

φ = Vc(r). (6.68)

The electric field due to Vc is

E = −∇Vc = −
r

r

dVc

dr
. (6.69)

Since in the hydrogen atom the electron moves in an orbit around the proton, it will feel a

magnetic field given by

B = −v

c
× E (6.70)

where v is the velocity of the electron. This magnetic field will interact with the electron’s

intrinsic magnetic moment. The interaction will be given by

H ′ = −μ · B. (6.71)
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Writing this in terms of S as given by (6.64) we obtain

H ′ = e

mc
S·
[v

c
× E

]
. (6.72)

Inserting the nonrelativistic expression v = p/m, we find

H ′ = e

mc
S.

[
p

mc
×
(

r

r

dVc

dr

)]
(6.73)

= e

m2c2

1

r

dVc

dr
(L · S) (6.74)

where L is the angular momentum, L = r × p. This is the spin–orbit term, which must be

included in the interaction Hamiltonian. We will formally derive this term when we consider

the Dirac equation.

Thus the presence of both electric and magnetic fields will give rise to the following total

Hamiltonian:

H = p2

2m
− e

2mc
μ · L+ e

m2c2

1

r

dVc

dr
(L · S)+ e2

2mc2
A2. (6.75)

6.8 Aharonov–Bohm effect

The Hamiltonian in the presence of a vector potential A is given by

H =

(
p− e

c
A
)2

2m
. (6.76)

We assume A to be time independent, so that A = A(r). The time-dependent Schrödinger

equation is then

i�
∂ψ(r, t)

∂t
= − �

2

2m

(
∇− ie

c�
A(r)

)2

ψ(r, t). (6.77)

Consider this equation in a region where the magnetic field vanishes. That is, where

∇ × A = 0. (6.78)

One can write the solution of the equation (6.77) as

ψ(r, t) = χ(r, t)eiγ (r) (6.79)

where

γ (r) =
∫

0

e

�
A(r′) · dr′, (6.80)

which is a function of r only.
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Source

Solenoid

Interference

0

Fig. 6.1

To obtain the equation for χ(r, t) we note from (6.79) and (6.80) that

∇ψ = (∇χ) eiγ + iχ
( e

�
A
)

eiγ . (6.81)

Hence,

[
∇ − ie

c�
A(r)

]
ψ = (∇χ) eiγ . (6.82)

Substituting this in equation (6.77) we obtain

i�
∂χ

∂t
= − �

2

2m
∇2χ . (6.83)

Thus we have nicely separated out the function χ , which satisfies the Schrödinger equation

without the presence of any interaction.

Consider a situation in which a solenoid carries a magnetic field B0 along its axis. The

magnetic field is assumed to be uniform inside the solenoid but it vanishes outside. If the

solenoid has a radius R, then the magnetic flux through it is given by

� = πR2B0 (6.84)

and the vector potential at a point r > R from the axis of the solenoid is given by

A = �

2πr
φ (r > R) (6.85)

where φ is a unit vector in the direction of the azimuthal angle φ. Note that the magnetic

field vanishes in this region.

If a charge passes by the solenoid (see Fig. 6.1), then from the relation (6.80) the phase

is given by

γ = e�

2π�

∫
φ

r
· r dφ = ± e�

2π�
φ. (6.86)
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The ± sign depends on whether the electrons are traveling in the same direction as the

current in the solenoid (which is the same direction as A) or the opposite.

Suppose a beam of electrons directed at the solenoid splits in two and goes around

either side of the solenoid. The phase difference between the two parts of the beam when

they recombine on the other side causes interference between them. The azimuthal angle

φ covered by the beam in the direction of the current (which is in the same direction

as A) will be π , and for the beam in the opposite direction will be −π . The differ-

ence between these two values is 2π . Taking the positive sign for the difference we

obtain

total phase difference = e�

�
. (6.87)

This is the essence of the Aharonov–Bohm effect.

6.9 Problems

1. From the Hamiltonian given in terms of the mechanical momentum P , the commutation

relations satisfied by the components Pi, and the relation

m
dr

dt
= P,

show that one recovers the Lorentz force relation given by

dP

dt
= e

[
E + 1

2c

(
dr

dt
× B− B× dr

dt

)]
.

Assume P to be a Heisenberg operator.

2. Starting with the Bohr–Sommerfeld condition for the mechanical momentum

∮
P.dr =

(
n+ 1

2

)
h,

for an electron subjected to a constant magnetic field B show that the magnetic flux

φ =
∮ �B ·d�S satisfies the relation

φ =
(

n+ 1

2

)
hc

e

where you may use the classical equation of motion satisfied by the charged particle in

the presence of a magnetic field.

3. An electron of intrinsic magnetic moment e�/2mc pointing in an arbitrary direction is

subjected to constant magnetic field which is in the x-direction. Use the Heisenberg

equation of motion to determine dμ/dt.
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4. For a charged particle moving along a ring of radius R, what are the energy eigenvalues

and eigenfunctions if a long solenoid passes through the center of the ring with the

magnetic flux given by �?

5. A particle is constrained to move along a circle of radius R. A constant magnetic

field B perpendicular to the orbit is applied. Determine the energy eigenvalues and

eigenfunctions.

6. Obtain the commutator [vi, Lz].



7 Stern–Gerlach experiments

This short chapter is devoted to the basic results of a very important experiment that firmly

established the existence of spin one-half for the electron. It also provides an interesting

insight into the concept of measurement in quantum mechanics.

7.1 Experimental set-up and electron’s
magnetic moment

Consider a beam of electrons traveling in the x-direction subjected to an inhomogeneous

magnetic field, Bz, in the z-direction, and received on a detector on the opposite side. If the

electron has a magnetic moment, μ, then its interaction energy will be −μ · B. The force

on the electron due to the magnetic field will be given by

Fz =
∂

∂z
(μ · B) = μz

∂Bz

∂z
(7.1)

where μz is the projection of μ in the z-direction. We assume the maximum value of μz to

be μ0.

The electron will then be deflected from its original path. If the electrons are randomly

oriented as they enter the apparatus, and are treated as classical particles, then on the

receiving screen one would expect to see a continuous band since, classically,μz is expected

to take on continuous values, from+μ0 (upward deflection) to−μ0 (downward deflection)

and all the values in between. Instead what one finds are only two distinct spots at +μ0

and −μ0.

This is one of the basic observations of the Stern–Gerlach (SG) experiment. In this

experiment, carried out in 1921 by Stern and Gerlach, silver atoms heated in an oven were

allowed to escape through a hole. The atomic beam went through a collimator and was

then subjected to an inhomogeneous magnetic field. A silver atom consists of a nucleus

| c2 |2

SGZ

| c1 |2 ½| c1|2 ¼| c1 |2

SGX SGZ
. . .

Fig. 7.1
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and 47 electrons, 46 of which form a spherically symmetric system with no net angular

momentum. Therefore, the spin of the leftover electron represents the angular momentum

of the whole atom (ignoring the nuclear spin). Thus the magnetic moment of the atom is

proportional to that of the electron.

The SG discovery was quite extraordinary in the early days of quantum mechanics. It

showed that the electron has a magnetic moment and that its magnetic moment is quantized.

The results were found not to depend on whether the SG apparatus was oriented in the z

direction or any other direction, the quantization properties depended strictly on the direction

of the magnetic field.

7.2 Discussion of the results

Quantum mechanically we have found that for an electron

μ =μBS (7.2)

where μB = e�/mc and S is the spin vector whose z-components are Sz+ = �/2 and

Sz− = −�/2. The SG discovery thus confirmed that the spin is quantized.

More remarkably, what was found through a series of experiments was the following. In

the experiment described above which we call the SGZ experiment, corresponding to the

magnetic field oriented in the z-direction, the outgoing electrons with−z (negative z) com-

ponents of the spin were blocked and only+z (positive z) were allowed. When the leftover

particles passed again through an SGZ, one observed only electrons in the +z direction.

However, when they passed through SGX, that is, were subjected to an inhomogeneous

magnetic field in the x-direction, one found that 50% of the electrons were deflected along

+x-direction and 50% along −x-direction. Naively, one would think that the electrons in

the ±x directions would both have a memory of Sz+, and each would deflect accordingly.

But that was found not to be so.

Now, to make things more interesting, suppose one puts a third apparatus, this time an

SGZ again, in front of the electrons deflected in the+x-direction while blocking those that

went in the −x-direction. One would, once again, naively, think that all of the electrons

having the memory of their previous Sz+ values will be deflected upward. However, that is

not what is observed. One finds that the beam splits equally between+z and−z-directions.

The −z component which was thought to have been blocked off, permanently, reappears.

It is as if things started totally fresh, with all previous memory wiped out.

Let us discuss how the phenomenon is explained in quantum-mechanical terms. First

let us designate the eigenstates with spin in ±z and ±x as |z±〉 and |x±〉 respectively. As

previously discussed, they are written with respect to the z-axis as the quantization axis,

|z+〉 =
[
1

0

]
, |z−〉 =

[
0

1

]
, (7.3)

|x+〉 = 1√
2

[
1

1

]
, |x−〉 = 1√

2

[
1

−1

]
. (7.4)
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We also note that any one of the states |z±〉 can be represented in terms of |x±〉 and vice

versa. For example,

|z+〉 = 1√
2

[|x+〉 + |x−〉] (7.5)

and

|x+〉 = 1√
2

[|z+〉 + |z−〉] . (7.6)

In the SG experiment, one electron per atom participates in the interaction. The beam

consists of randomly distributed magnetic moments as it enters the SGZ apparatus. The

magnetic field in the z-direction provides the quantization axis, and those electrons with

spin up are deflected upward, while those with spin down are deflected downward. Let us

assume that |c1|2 corresponds to the fraction that goes upward, represented by the state

|z+〉, and |c2|2 to those that go downward, represented by the state |z−〉, with

|c1|2 + |c2|2 = 1. (7.7)

As they enter the apparatus, the individual wavefunctions, including spatial dependence,

are of the type

[c1 |z+〉 + c2 |z−〉]φ(r). (7.8)

After their interaction with the magnetic field they emerge as two separate wavefunctions

|z+〉φ+(r) and |z−〉φ−(r). (7.9)

Suppose that after the beam comes out of SGZ one blocks off the downward component

allowing only the fraction |c1|2 to proceed. If one puts in another SGZ apparatus, then all

the leftover electrons are once again deflected upward, and there is no splitting. If, however,

an SGX instead of SGZ is put in place, then the x-axis becomes the quantization axis, and

one must express |z+〉 in terms of |x±〉 through the relation (7.5). Hence the state splits

equally between +x and −x directions. The situation with each fraction is as follows:

1

2
|c1|2 goes upward in the + x-direction, (7.10)

1

2
|c1|2 goes downward in the − x-direction. (7.11)

Now suppose that the downward electrons are blocked and the leftover electrons, now

described by |x+〉 alone are subjected to an SGZ apparatus. The quantization axis is now

given by the z-axis and we must express |x+〉 in terms of |z±〉 given by (7.6). One then

finds that the beam splits equally into ±z-directions. That is,

1

2
.
1

2
|c1|2 =

1

4
|c1|2 goes upward in + z direction, (7.12)

1

2
.
1

2
|c1|2 =

1

4
|c1|2 goes downward in − z direction. (7.13)

The state |z−〉 has now reappeared. This phenomenon is described in Fig. 7.1.
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We reach the following conclusions:

(i) The act of measurement changes the original system in a drastic way. When a mea-

surement of an observable is made, the system is forced to be in an eigenstate of that

observable.

(ii) In the SG experiment we found that the measurement of the observable Sx destroys

the information of the previously made observation of the observable Sz . These two

measurements are, therefore, incompatible. In mathematical terms, one says that Sx

does not commute with Sz . This fact is reflected in quantum mechanical terms by the

fact that Sx does not commute with Sz, i.e., [Sx, Sz] � =0.

In 1925 Uhlenbeck and Goudsmit postulated the existence of the electron spin to explain

the results coming out of the SG experiments as well as other experiments. Stern–Gerlach

experiments occupy a central role in quantum phenomena since their results signify pure

quantum-mechanical effects that are completely different from classical predictions. Since

it involves only two states, it is one of the simplest types of experiments to carry out and

with which to discuss, conceptually, the fundamentals of quantum mechanics.

7.3 Problems

1. In the Stern–Gerlach setup assume the silver atoms to be traveling in the x-direction and

subjected to a nonuniform magnetic field directed in the z-direction. If the y−z plane is

assumed to be the symmetry plane, then show that both classical and quantum (using

Ehrenfest’s theorem) calculations give the same result for the separation between the

spin-up and spin-down states at any arbitrary time t.

2. A beam of atoms with spin ½ passes through an SG apparatus with the magnet oriented

in the direction n at an angle β with the z-axis. After emerging, the beam enters another

apparatus, where this time the magnets are oriented in the z-direction. Determine the

fraction of the atoms that come out with spin in the+z-direction and in the−z-direction.

3. In the Stern–Gerlach experiment where the particles pass between the magnets once,

assume the magnetic field to be linear, B = B0 + zB1. Express the Hamiltonian as a

2 × 2 matrix and obtain the equations for the wavefunctions of the emerging particles

as they travel with spin orientations in ±z directions.
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Some exactly solvable
bound-state problems

Having considered free systems, we now go to the more complicated problems involving

interaction potentials. Specifically, we consider bound states, which are defined as states

with energy eigenvalues less than the potential so that the particle’s wavefunction vanishes

at infinity. Those cases where the energy is greater than the potential come under the

category of scattering, which will be considered in later chapters. We confine ourselves

entirely to those cases that are exactly solvable. We will first examine some simple one-

dimensional systems leading up to periodic potentials that are central to lattice problems

and condensed matter physics. These topics provide excellent illustrations of boundary

value problems, as well as of matrix methods, that prepare us to tackle potentials that

are much more complicated. Finally, we will consider three-dimensional problems in both

Cartesian and spherical coordinate systems. In the Cartesian system for potentials that are

separable, one basically repeats the results from one dimension. The spherical system with

spherically symmetric potentials brings in interesting and original problems, particularly

the hydrogen-like atoms. These are solved in terms of the angular momentum eigenstates

and radial wavefunctions.

8.1 Simple one-dimensional systems

8.1.1 Infinite potential barrier

We consider the problem where a free particle is confined between two infinite barriers that

are separated by a finite distance. This situation is illustrated in Fig. 8.1 and is described by

the following potential,

V (x) = 0, −a < x < a, (8.1)

V (x) = ∞, x = ±a. (8.2)

Thus, within the barriers at x = ±a, the wavefunction, u(x), for the particle with mass m

and energy E, satisfies the equation

− �
2

2m

d2u

dx2
= Eu, |x| ≤ a. (8.3)
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V 0 = ∞  V 0 = ∞  

– a a0

Fig. 8.1

Outside the barriers, u(x) must vanish because, otherwise, the term V (x) u(x) in the

Schrödinger equation will become infinite. Hence we have

u ≡ 0, |x| ≥ a. (8.4)

The differential equation is

d2u

dx2
= −α2u; α =

√
2mE

�2
, (8.5)

with boundary conditions

u(−a) = 0 = u(a). (8.6)

The general solution is given by

u(x) = A sin αx + B cosαx. (8.7)

The boundary conditions give

A sin αa+ B cosαa = 0, (8.8)

−A sin αa+ B cosαa = 0. (8.9)

By adding and subtracting the above two equations we obtain the following simplified

relations:

A sin αa = 0, (8.10)

B cosαa = 0. (8.11)

We can divide these solutions into two categories, which lead to u(x) being an even or

odd function of x.
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Type I

A = 0; cos αa = 0, (8.12)

with solutions

αa = nπ

2
, n = odd number. (8.13)

The solution can then be written as

un(x) = Bn cos
nπx

2a
, n = 1, 3, . . . . (8.14)

The constant Bn is obtained through the normalization condition

a∫

−a

dx u2
n(x) = 1, (8.15)

which is found to be

Bn =
1√
a

. (8.16)

Type II

B = 0; sin αa = 0, (8.17)

with solutions

αa = nπ

2
, n = even number. (8.18)

The solution can be written as

un(x) = An sin
nπx

2a
, n = 2, 4, . . . . (8.19)

The normalization constant is then

An =
1√
a

. (8.20)

It is easy to check, after inserting the normalization constants, that the wavefunctions satisfy

the orthonormality condition as expected:

a∫

−a

dx um(x)un(x) = δmn. (8.21)

For both types of solutions the energy eigenvalues are given by

En =
n2π2

�
2

8ma2
. (8.22)
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The fact that we have purely even and purely odd functions of x as our solutions is related

to the symmetric (even) character of the potential, V (x). We will discuss this in one of the

later chapters on symmetries.

Matrix methods

We can also solve this problem through simple matrix methods if we express the two

conditions in (8.8) and (8.9) in the following matrix form:

(− sin αa cosαa

sin αa cosαa

)(
A

B

)
= 0. (8.23)

The determinant of the matrix must then vanish:

det

(− sin αa cosαa

sin αa cosαa

)
= 0, (8.24)

which gives sin 2αa = 0.

Therefore, we must have

2αa = nπ or α = nπ

2a
. (8.25)

Considering, separately, the n = odd and n = even cases, we find that for n = odd, we

have cos (nπ/2) = 0 and thus from (8.10) we deduce that A = 0. For n = even, we have

sin (nπ/2) = 0 and from (8.11) we deduce B = 0. We then obtain the same results that

were derived earlier.

8.1.2 Finite potential barrier

We now consider the case where the height of the barrier is brought down to a finite value,

with the potential given by

V (x) = 0, − a < x < a, (8.26)

V (x) = V0, x < −a, x > a (8.27)

where V0 > 0. This potential is illustrated in Fig. 8.2. Since we are considering bound-state

problems, the energy eigenvalues satisfy E < V0. The Schrödinger equations in the two

regions are

− �
2

2m

d2u

dx2
= Eu, |x| ≤ a (8.28)

− �
2

2m

d2u

dx2
+ V0u = Eu, |x| ≥ a. (8.29)

We solve the problem in the two regions separately and connect the solutions at the

boundaries using the continuity conditions for the wavefunction and its derivative.
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V = V 0

– a a0

x

V = 0

Fig. 8.2

(i) For |x| ≤ a, we have, once again, the equation

d2u

dx2
= −α2u (8.30)

with

α =
√

2mE

�2
, (8.31)

which has the solution

u(x) = A sin αx + B cosαx. (8.32)

(ii) For |x| ≥ a, we write the equation as

d2u

dx2
= β2u. (8.33)

where

β =
√

2m (V0 − E)

�2
. (8.34)

Writing the solutions in the two regions separately, we have

u(x) = C2e−βx + D2eβx for x ≤ −a (region 2), (8.35)

u(x) = C3e−βx + D3eβx for x ≥ a (region 3). (8.36)

We note that in order for the wavefunction to have a finite normalization as x →±∞, the

term with e−βx should be absent in the region x < −a, and similarly eβx should be absent

for x > a. Hence we have

u(x) = D2eβx for x ≤ −a (region 2), (8.37)

u(x) = C3e−βx for x ≥ a (region 3). (8.38)



142 Some exactly solvable bound-state problems

The boundary conditions corresponding to the continuity conditions for u and du/dx at

x = −a, and at x = a, give:

At x = −a,

−A sin αa+ B cosαa = D2e−βa, (8.39)

Aα cosαa+ Bα sin αa = D2βe−βa. (8.40)

At x = a,

A sin αa+ B cosαa = C3e−βa, (8.41)

Aα cosαa− Bα sin αa = −C3βe−βa. (8.42)

Adding (8.39) and (8.41), and subtracting (8.42) from (8.40), one obtains, respectively,

2B cosαa = (C3 + D2) e
−βa, (8.43)

2Bα sin αa = (C3 + D2) βe−βa. (8.44)

Dividing (8.44) by (8.43), the following result is obtained:

α tan αa = β Type I. (8.45)

Similarly, one obtains

2A sin αa = (C3 − D2) e
−βa, (8.46)

2Aα cosαa = − (C3 − D2) βe−βa. (8.47)

Dividing (8.47) by (8.46), the following result is obtained:

α cot αa = −β Type II. (8.48)

Equations (8.45) and (8.48) cannot both be satisfied simultaneously. One can demonstrate

this by multiplying the left-hand sides of (8.45) and (8.48) and equating the product to the

product of the right-hand sides of these equations. We obtain α2 = −β2, i.e., V0 = 0 which

is not what we have assumed for the potential. By dividing, we obtain tan2 αa = −1 (which

is untenable). Hence only one or the other type of solution is allowed, and, therefore, as in

the case of the infinite barriers, we have two types of solutions that separate the even and

odd wavefunctions. Again, this is due to the even character of the potential. We summarize

the results for the wavefunctions as follows.

Type I

C3 = D2, A = 0, (8.49)

B = C3
βe−βa

α sin αa
, (8.50)
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and even wavefunctions

u(x) = C3eβx, x < −a, (8.51)

u(x) = B cosαx, − a < x < a, (8.52)

u(x) = C3e−βx, x > a. (8.53)

Type II

C3 = −D2, B = 0, (8.54)

A = −C3
βe−βa

α cosαa
, (8.55)

and odd wavefunctions

u(x) = −C3eβx, x < −a, (8.56)

u(x) = A sin αx, −a < x < a, (8.57)

u(x) = C3eβx, x > a. (8.58)

Analytical solutions for α and β are almost impossible to achieve, but one can obtain the

energy eigenvalues by graphical methods. To that end we define

ξ = αa, η = βa (8.59)

and take note of the fact that

(
α2 + β2

)
a2 = 2mV0a2

�2
. (8.60)

Thus, we have

ξ tan ξ = η Type I (8.61)

and

ξ cot ξ = −η Type II. (8.62)

Both satisfy

ξ2 + η2 = 2mV0a2

�2
. (8.63)

We note from the graphs in Fig. 8.3a and Fig. 8.3b that there will be a finite number of

intersections between the graph for (8.63) and either of the graphs for the other two, (8.61)

and (8.62). Furthermore, we make note of the following:

(i) There will always be a solution for Type I, no matter how small the value of V0 is, as

long as it is positive.
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η = –ξ cot ξ

η = ξ tan ξ

η

η

Fig. 8.3

(ii) The solution of Type II appears as soon as ξ = π/2 and η = 0.

(iii) In general we will have the following conditions on the potentials:

0 < V0a2 <
π2

�
2

8m
one solution of Type I, (8.64)

π2
�

2

8m
< V0a2 <

π2
�

2

2m
one solution each of Type I and Type II. (8.65)

and so on.

Matrix methods

This problem can be solved also by matrix methods. The conditions (8.39) and (8.40) at

x = −a, after inverting them, give

[
A

B

]
= M

[
0

D2

]
, (8.66)

where

M =

⎡
⎢⎢⎢⎣

0

(
− sin αa+ β

α
cosαa

)
e−βa

0

(
cosαa+ β

α
sin αa

)
e−βa

⎤
⎥⎥⎥⎦ . (8.67)
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The boundary conditions (8.41) and (8.42) at x = a, after inverting them, give

[
A

B

]
= N

[
C3

0

]
(8.68)

where

N =

⎡
⎢⎢⎢⎣

(
sin αa+ β

α
cosαa

)
eβa 0

(
cosαa− β

α
sin αa

)
eβa 0

⎤
⎥⎥⎥⎦ . (8.69)

Thus, by equating the right-hand sides of (8.66) and (8.68), we find

M

[
0

D2

]
= N

[
C3

0

]
. (8.70)

This gives us two simultaneous equations

(
− sin αa+ β

α
cosαa

)
e−βaD2 =

(
sin αa− β

α
cosαa

)
e−βaC3, (8.71)

(
cosαa+ β

α
sin αa

)
e−βaD2 =

(
cosαa+ β

α
sin αa

)
e−βaC3. (8.72)

We then have two possible solutions:

I. D2 = C3, − sin αa+ β
α

cosαa = 0, i.e., α tan αa = β, (8.73)

II. D2 = −C3, sin αa+ β
α

cosαa = 0, i.e., α cot αa = −β. (8.74)

These are precisely the Type I and Type II solutions.

8.2 Delta-function potential

Let us consider an idealized but very instructive potential described by an attractive δ-

function (Fig. 8.4 gives a sketch of how this unconventional mathematical function would

look)

V (x) = −gδ(x). (8.75)

The corresponding Schrödinger equation is given by

− �
2

2m

d2u

dx2
− gδ(x)u = Eu. (8.76)
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δ

Fig. 8.4

We will consider the problem of bound states. Therefore,

E = −EB, β =
√

2mEB

�2
. (8.77)

The equation (8.76) now reads

d2u

dx2
+ 2mg

�2
δ(x)u = β2u. (8.78)

For x < 0 and x > 0 where δ(x) vanishes, the solution of (8.78) is given by

u(x) = Ae−βx, x > 0 (8.79)

= Aeβx, x < 0 (8.80)

where we have imposed the condition that the wavefunction is continuous at x = 0. Next

we integrate the differential equation over the interval (−ǫ, ǫ) to include the contribution

of the δ-function,

ǫ∫

−ǫ
dx

d2u

dx2
+

ǫ∫

−ǫ
dx

2mg

�2
δ(x)u = β2

ǫ∫

−ǫ
dx u, (8.81)

which gives

[
u′(ǫ)− u′(−ǫ)

]
+ 2mg

�2
u(0) = 0. (8.82)

Substituting (8.79) and (8.80) we obtain

−2Aβ + 2mg

�2
A = 0. (8.83)

Hence,

β = mg

�2
. (8.84)
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Since the wavefunction is normalized we obtain

A2

∞∫

−∞
dx e−2β|x| = 1. (8.85)

Therefore,

A =
√
β. (8.86)

Hence,

u(x) =
√
βe−β|x|, −∞ < x <∞ (8.87)

and the binding energy from (8.77) and (8.84) is given by

EB =
mg2

�2
. (8.88)

8.3 Properties of a symmetric potential

In the previous sections we have considered several cases that are consequences of the

symmetry

V (x) = V (−x). (8.89)

Let us now elaborate on it. Consider the Schrödinger equation

− �
2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) = i�

∂ψ(x, t)

∂t
. (8.90)

Taking x →−x and using the relation (8.89), we can write another equation,

− �
2

2m

∂2ψ(−x, t)

∂x2
+ V (x)ψ(−x, t) = i�

∂ψ(−x, t)

∂t
. (8.91)

Let us write the equations obtained by adding and subtracting the relations (8.90) and (8.91).

We obtain

− �
2

2m

∂2ψe(x, t)

∂x2
+ V (x)ψe(x, t) = i�

∂ψe(x, t)

∂t
, (8.92)

− �
2

2m

∂2ψ0(x, t)

∂x2
+ V (x)ψ0(x, t) = i�

∂ψ0(x, t)

∂t
(8.93)

where

ψe(x, t) = ψ(x, t)+ ψ(−x, t), (8.94)

ψ0(x, t) = ψ(x, t)− ψ(−x, t). (8.95)
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Each combination has a definite “parity,” that is, they are either even or odd under reflection

x →−x, and each satisfies the Schrödinger equation.

Thus if the potential is invariant under parity transformation then the original Schrödinger

equation gives rise to solutions that are either odd or even under parity. This is exactly what

we discovered in the previous cases. We will return to the subject of symmetry in greater

detail in Chapter 26.

8.4 The ammonia molecule

The ammonia molecule, NH3, consists of three hydrogen atoms that are found to be in a

plane forming an equilateral triangle. The nitrogen atom, N, is located at a point away from

the plane. If we consider the three hydrogen atoms in the plane as a single entity of mass

3mH and designate the distance of N from the plane as x, then to a good approximation the

potential looks like Fig. 8.5.

The potential V (x) is symmetric. It has two parts to it. At the outside edges it becomes

infinite. In the inside, it vanishes except in a small region. We assume that the height of the

potential in this region is V0. If we designate the wavefunction as u(x) then it must vanish at

the outside edges. We consider energies E < V0. We then have the even and odd solutions

as follows, where the three distances a, b, and � are related by

� = 2b− a. (8.96)

Even solution

u(x) = A sin k
(
b+ a

2
+ x

)
, − b− a

2
< x < −�

2
(8.97)

a

∆

bb

x

V 0

Fig. 8.5
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= B cosh Kx, − �
2
< x <

�

2
(8.98)

= A sin k
(
b+ a

2
− x

)
,

�

2
< x < b+ a

2
. (8.99)

Odd solution

u(x) = −A′ sin k
(
b+ a

2
+ x

)
, −b− a

2
< x < −�

2
(8.100)

= B′ sinh Kx, − �
2
< x <

�

2
(8.101)

= A′ sin k
(
b+ a

2
− x

)
,

�

2
< x < b+ a

2
(8.102)

where

k =
√

2mE

�2
, K =

√
2m(V0 − E)

�2
. (8.103)

First we consider the even solutions. The continuity of u(x) and its derivative at x = �/2
give the following conditions

A sin ka = B cosh
K�

2
, (8.104)

Ak cos ka = −BK sinh
K�

2
(8.105)

where we have used the relation (8.96). Dividing the two relations, we obtain

tan ka = − k

K
coth

K�

2
. (8.106)

Similarly, the odd solutions will give

tan ka = − k

K
tanh

K�

2
. (8.107)

Let us solve the equation (8.106) under the following simplifying assumptions,

E ≪ V0, (8.108)

and therefore,

K ≈
√

2mV0

�2
≫ k . (8.109)

We also assume that

K�≫ 1. (8.110)
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We then find that for the even solutions,

coth
K�

2
= e

K�
2 + e−

K�
2

e
K�
2 − e−

K�
2

≃
(
1+ 2e−K�

)
; (8.111)

while for the odd solutions,

tanh
K�

2
≃
(
1− 2e−K�

)
. (8.112)

Hence the two equations (8.106) and (8.107) are given by

tan ka = − k

K

(
1± 2e−K�

)
. (8.113)

In view of the assumptions (8.109) and (8.110) we find that tan ka must be very small

and negative. Hence,

ka ∼ π . (8.114)

For a better determination of k we write

ka = π − πǫ (8.115)

where ǫ ≪ 1. Taking tan πǫ = πǫ, we obtain from (8.113)

ǫ = 1

Ka

(
1± 2e−K�

)
. (8.116)

From now on, instead of calling the solutions even and odd we will use the conventional

terms “symmetric” and “antisymmetric” respectively, i.e., ǫS and ǫA. Thus,

ǫS =
1

Ka

(
1+ 2e−K�

)
, (8.117)

ǫA =
1

Ka

(
1− 2e−K�

)
. (8.118)

We note that

ǫA < ǫS . (8.119)

The two bound state energies are given by

ES =
h2k2

S

2m
= π

2h2

2ma2
(1− 2ǫS ), (8.120)

EA =
h2k2

A

2m
= π

2h2

2ma2
(1− 2ǫA ) (8.121)

where we have used (8.115). Thus we find from (8.117) and (8.118) that ES < EA. Their

difference is given by

EA − ES =
4π2h2

ma2

(
e−K�

Ka

)
≪ 1. (8.122)
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8.5 Periodic potentials

The problem of periodic potentials is of great practical importance in condensed matter

physics as it relates to the conduction of electrons. The periodic potential is created by the

lattice that is formed by the atoms in a crystal. As a useful approximation to this potential

one can imagine a succession of square barriers of the type we considered earlier and placed

in a periodic manner, continuing indefinitely in both directions.

We will consider the following periodic potential:

V (x + d) = V (x), −∞ < x <∞. (8.123)

Here the states will be designated by the ket vectors |x〉 or |φ〉 depending on the problem

at hand. In order to discuss the consequences of the periodic symmetry, let us consider an

operator F(d) such that

F(d) |x〉 = |x + d〉 . (8.124)

This operator is not constructed out of infinitesimal displacements, but it corresponds to a

single step in which there is translation by a discrete amount d. It is, however, unitary, since

the norms of the states |x〉 and |x + d〉 are assumed to be the same. Therefore,

F†(d)F(d) = 1. (8.125)

Multiplying (8.124) on the left by F†(d), one can then deduce that

F†(d) |x + d〉 = |x〉 . (8.126)

Let us now consider the product F†(d)XF(d), where X |x〉 = x |x〉 . This product when

operating on |x〉 gives rise to the following result:

F†(d)XF(d) |x〉 = F†(d)X |x + d〉 = (x + d)F†(d) |x + d〉 = (x + d) |x〉 . (8.127)

We can write the last relation as (X + d1) |x〉. Hence we have the following operator relation:

F†(d)XF(d) = X + d1. (8.128)

The periodic property of V (x) given by (8.123) can then be described as follows

F†(d)V (X )F(d) = V (X + d1) = V (X ). (8.129)

Thus

[F(d) , V (X )] = 0. (8.130)
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Since F(d) corresponds to displacement by a constant amount, d, it does not depend on

X , and hence it will commute with the momentum operator P, as well as the Hamiltonian,

H = P2/2m+ V (X ):

[F(d), H ] = 0. (8.131)

Thus the eigenstates of H will also be the eigenstates of F(d).

If |φ〉 is an eigenstate of H and F(d) then we can write

F(d) |φ〉 = λ |φ〉 . (8.132)

Since F(d) is not necessarily Hermitian, we need not have λ real. Multiplying (8.132) with

its Hermitian conjugate and using (8.125) we obtain

|λ|2 = 1. (8.133)

Since λ has unit magnitude, we write it in the exponential form

λ = e−iKd (8.134)

where K is a real constant. Thus

〈x|F(d) |φ〉 = e−iKd〈x |φ〉 , (8.135)

and, therefore, from (8.124),

φ(x − d) = e−iKdφ(x) (8.136)

where 〈x |φ〉 = φ (x) is the wavefunction of the particle. Let us now define a function

uK (x) = e−iKxφ(x). (8.137)

We note that

uK (x − d) = e−iK(x−d)φ(x − d) = e−iKxeiKdφ(x − d) = e−iKxφ(x) = uK (x) (8.138)

where we have used the relation (8.136). Thus uK (x) is a periodic function, known as the

Bloch wavefunction.

Consider now a specific type of periodic potential, of period d, defined as follows (see

Fig. 8.6):

V (x) = 0, 0 < x < a, (8.139)

V (x) = V0, a < x < d, (8.140)

V (x + d) = V (x). (8.141)

The treatment for the region 0 < x < d is similar to the finite barrier problem we considered

earlier with E > 0. Since we are considering bound states, we must also have E < V0. We

then obtain the following in the different regions:
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x
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Fig. 8.6

0 < x < a

Here we have

φ(x) = A cosαx + B sin αx, (8.142)

dφ(x)

dx
= −Aα sin αx + Bα cosαx (8.143)

where α =
√

2mE/�2. From these equations we can write down the following results for

the Bloch wavefunctions in 0 < x < a defined in (8.137):

uK (x) = (A cosαx + B sin αx) e−iKx, (8.144)

duK (x)

dx
= (−Aα sin αx + Bα cosαx) e−iKx − iKuK (x). (8.145)

a < x < d

Here we find E < V0 and, therefore, the wavefunction will have an exponential

dependence,

φ(x) = Ce−βx + Deβx, (8.146)

dφ(x)

dx
= −Cβe−βx + Dβeβx (8.147)

where β =
√

2m(V0 − E)/�2. The corresponding Bloch functions satisfy

uK (x) =
(
Ce−βx + Deβx

)
e−iKx, (8.148)

duK (x)

dx
=
(
−Cβe−βx + Dβeβx

)
e−iKx − iKuK (x). (8.149)

We impose the periodic property of the Bloch wavefunctions at the end points of the

period at x = 0 and x = d, and the continuity relation satisfied by the wavefunction φ(x)

at the finite barrier at x = a.

Boundary conditions

(1) From the periodic property of uK , uK (0) = uK (d) at the points x = 0 and x = d,

A =
(
Ce−βd + Deβd

)
e−iKd , (8.150)

B = 1

α

(
−Cβe−βd + Dβeβd

)
e−iKd . (8.151)
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(2) From the continuity property of φ(x) and ∂φ/∂x at x = a,

A cosαa+ B sin αa = Ce−βa + Deβa, (8.152)

−Aα sin αa+ Bα cosαa = −Cβe−βa + Dβeβa. (8.153)

Matrix relations

Rewriting the above relations in the matrix form we obtain, with appropriate inversions,

(1)

(8.154)

(
A

B

)
=

⎛
⎝

e−βd eβd

−β
α

e−βd β

α
eβd

⎞
⎠ e−iKd

(
C

D

)
,

which we write as
(

A

B

)
= M

(
C

D

)
, (8.155)

M =

⎛
⎝

e−βde−iKd e−βde−iKd

− 1

α
βe−βde−iKd 1

α
βe−βde−iKd

⎞
⎠ . (8.156)

(2)

(8.157)

(
cosαa sin αa

− sin αa cosαa

)(
A

B

)
=

⎛
⎝

e−βa eβa

β

α
e−βa β

α
eβa

⎞
⎠
(

C

D

)
.

Therefore, inverting the matrix on the left-hand side, we obtain

(
A

B

)
=
(

cosαa − sin αa

sin αa cosαa

)⎛
⎝

e−βa eβa

β

α
e−βa β

α
eβa

⎞
⎠
(

C

D

)
. (8.158)

We write this relation as
(

A

B

)
= N

(
C

D

)
(8.159)

where

N =

⎛
⎜⎝
(cos aα) e−aβ − 1

α
β (sin aα) e−aβ (cos aα) eaβ − 1

α
β (sin aα) eaβ

(sin aα) e−aβ + 1

α
β (cos aα) e−aβ (sin aα) eaβ + 1

α
β (cos aα) eaβ

⎞
⎟⎠ . (8.160)

Thus subtracting (8.159) from (8.155) we obtain

(M − N )

(
C

D

)
= 0. (8.161)

This implies that

det(M − N ) = 0. (8.162)
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In order to calculate this determinant we make note of the following relation:

det (M − N ) = det M + det N −M11N22 +M12N21 +M21N12 −M22N11 (8.163)

where Mij and Nij are the matrix elements of M and N .

It is quite straightforward to obtain the two determinants, det M and det N . Their sum is

found to be

det M + det N = 2

α
β (2 cos Kd) e−iKd . (8.164)

After a lengthy calculation, and some cancellations and rearrangement of terms, we find

−M11N22 +M12N21 +M21N12 −M22N11 (8.165)

=
[(

1− β
2

α2

)
(2 sinh βb) (sin αa)−

(
2β

α

)
(2 cosh βb) (cosαa)

]
e−iKd (8.166)

where b = d − a.

According to (8.162) and (8.163), the sum of the two terms given by (8.164) and (8.166)

must vanish. Hence

cos Kd = (cosh βb) (cosαa)+
(
β2 − α2

2αβ

)
(sinh βb) (sin αa) . (8.167)

Because −1 ≤ cos Kd ≤ 1, the left-hand side is constrained to remain within −1 and +1.

The right-hand side, however, has no such constraints. In fact, it can go outside these limits

as cosh βb ≥ 1 and sinh βb ≥ 0. Since β and α are related to the energy, E, the magnitude

of the right-hand side depends crucially on the magnitude of E. Hence, only for those values

of E for which the right-hand side stays within the limits can there be bound states. This

band structure is shown in Fig. 8.7.

The energy levels can then be determined in terms of the parameters of the model, e.g.,

V0, a, and d. Since this involves a range of continuous values of E, they form what are

known as the “allowed bands” in the energy spectrum. For those continuous values of E

for which the right-hand side goes outside the limits, there will be no bound states. For

example, bound states will be absent when αa = Nπ and cosh βb > 1. One expects that

there will be a narrow but continuous range of E in the proximity of these discrete points

where there will also be no bound states. These are called the “forbidden bands.”

This band structure with alternately arranged allowed and forbidden zones is a striking

characteristic of periodic potentials. It allows one to understand the basic properties of

materials, e.g., electric conduction in metals. The band structure was based on the motion of

a single particle (an electron), but in a more realistic case one must consider a many-electron

system in which the Pauli exclusion principle plays an essential role. When supplemented

with the exclusion principle, the results we have obtained allow one to predict whether the

material would be a conductor, a semiconductor, or an insulator, as well as to understand

the presence of any defects in the periodic structure. The agreement between experiment

and theory that one finds here constitutes a great triumph of quantum theory.
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RHS

+1

–1

Forbidden Allowed Forbidden Allowed

Fig. 8.7

8.6 Problems in three dimensions

8.6.1 Separable potentials in Cartesian coordinates

The Schrödinger equation for the wavefunction u(r) with the eigenvalue E is given by

− �
2

2m
∇2u(r)+ V (r) u(r) = Eu(r), (8.168)

which in Cartesian coordinates is written as

− �
2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
u(x, y, z)+ V (x, y, z)u(x, y, z) = Eu(x, y, z). (8.169)

This equation can be solved for the so-called separable potentials, which have the property

that they can be written as a sum of three potentials, with each potential being a function

of only one variable, i.e., one can write

V (x, y, z) = V1(x)+ V2(y)+ V3(z). (8.170)

We can now solve this in the same manner as the free particle equation in Chapter 2 by

writing

u(x, y, z) = X (x)Y (y)Z(z), (8.171)

so that we have

− �
2

2m

[
YZ

d2X

dx2
+ ZX

d2Y

dy2
+ XY

d2Z

dz2

]
+ [V1(x)+ V2(y)+ V3(z)] XYZ = EXYZ .

(8.172)
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This equation can be reduced further by dividing it by XYZ to obtain

− �
2

2m

[
1

X

d2X

dx2
+ 1

Y

d2Y

dy2
+ 1

Z

d2Z

dz2

]
+ [V1(x)+ V2(y)+ V3(z)] = E. (8.173)

Now combining the terms with individual variables we find

[
− �

2

2m

1

X

d2X

dx2
+ V1(x)

]
+
[
− �

2

2m

1

Y

d2Y

dy2
+ V2(y)

]
+
[
− �

2

2m

1

Z

d2Z

dz2
+ V3(z)

]
= E.

(8.174)

This can be written as three one-dimensional equations,

− �
2

2m

d2X

dx2
+ V1(x)X = E1X , (8.175)

− �
2

2m

d2Y

dy2
+ V2(y)Y = E2Y , (8.176)

− �
2

2m

d2Z

dz2
+ V3(z)Z = E3Z , (8.177)

with

E1 + E2 + E3 = E. (8.178)

Since we now have three one-dimensional equations, we can solve each of them separately

following the procedure outlined for the free particle case in Chapter 2. If Xn(x), Ym(y) and

Zp(z) are the solutions with eigenvalues E1n, E2m, and E3p, respectively then a solution for

the three-dimensional system is

unmp(x, y, z) = Xn(x)Ym(y)Zp(z) (8.179)

with energy eigenvalues,

Enmp = E1n + E2m + E3p. (8.180)

A number of interesting problems exist, namely, a three-dimensional cubic well or

three-dimensional harmonic oscillators. We will not consider these since they are mostly

extensions of the one-dimensional problems that we have already discussed.

8.6.2 Potentials depending on relative distance
between particles

We have thus far been considering problems involving the motion of a single particle in an

external potential. Consider now the case where we have two particles of masses m1 and m2



158 Some exactly solvable bound-state problems

located respectively at distances r1(= x1, y1, z1) and r2(= x2, y2, z2) from the origin with a

potential that depends on their relative separation.

The time-dependent Schrödinger equation is now

i�
∂

∂t
ψ(r1, r2; t) =

[
−
(

�
2

2m1
∇2

1 +
�

2

2m2
∇2

2

)
+ V (r1 − r2)

]
ψ(r1, r2; t) (8.181)

where

∇2
i =

(
∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

)
for i = 1, 2. (8.182)

We now make the following changes of variables,

r = r1 − r2 (8.183)

and

R = m1r1 + m2r2

M
(8.184)

where

M = m1 + m2 = total mass. (8.185)

We identify

R = (X , Y , Z) = center of mass coordinates, (8.186)

r = (x, y, z) = relative coordinates. (8.187)

We also introduce the quantity

m = m1m2

m1 + m2
= reduced mass. (8.188)

It is now straightforward to show that

�
2

2m1
∇2

1 +
�

2

2m2
∇2

2 =
�

2

2M
∇2

R +
�

2

2m
∇2 (8.189)

where ∇2
R and ∇2 have the same expression as ∇2 except that in the former case we replace

(x, y, z) by (X , Y , Z)while in the latter case (x, y, z) refer to the relative coordinates (8.187).

The equation now reads

i�
∂

∂t
ψ(r, R; t) =

[
−
(

�
2

2M
∇2

R +
�

2

2m
∇2

)
+ V (r)

]
ψ(r, R; t). (8.190)

To solve the energy eigenvalue problem we use the separation of variables method and

write, replacing the energy term by (EM + E),

ψ(r, R; t) = u(r)U (R)e−i(EM+E)t/� (8.191)
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where the individual wavefunctions satisfy

− �
2

2M
∇2

RU (R) = EM U (R). (8.192)

Thus, the center of mass wavefunction U (R) satisfies a free particle equation. We will

ignore the motion of the center of mass in any future problems since it is irrelevant as far

as the effects of the potential are concerned and concentrate only on the wavefunction u(r),

which now satisfies the equation

[
− �

2

2m
∇2 + V (r)

]
u(r) = Eu(r), (8.193)

which is of the usual form except that the coordinates refer to the relative distances between

the interacting particles and m is the reduced mass.

8.6.3 Formalism for spherically symmetric potentials

In Chapter 2 we considered the radial differential equation for a free particle through the

separation of variables technique in which we expressed the wavefunction u(r) as

u(r) = u(r, θ ,φ) = R(r)Y (θ ,φ) (8.194)

and found that the individual functions had the forms

R(r) = Rl(r) (8.195)

and

Y (θ ,φ) = Ylm(θ ,φ) (8.196)

where Ylm are the spherical harmonics. The quantum numbers l and m correspond to the

angular momentum operator and take on values l = 0, 1, 2, . . . with m = −l, . . . , l. In the

case of the Schrödinger equation with a potential, V (r), which we will be considering below,

since V (r) is spherically symmetric, i.e., since it depends only on the radial coordinate, r,

the dependence on θ and φ of the wavefunction u(r) will still be given by Ylm(θ ,φ). Hence

we will be considering only the radial equation.

The radial wavefunction, Rl , for a spherically symmetric potential, V (r), is given by

− �
2

2m

1

r

d2(rRl)

dr2
+
[
V (r)+ �

2l(l + 1)

2mr2

]
Rl = ERl . (8.197)

Since the radial equation for the problems to be discussed below can be cast into a form

similar to the free particle radial equation that we considered in Chapter 2, we summarize
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below the essential properties of the free particle solutions. As discussed in Chapter 2, this

equation is of the form

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0 (8.198)

where

ρ = kr, and k =
√

2mE/�. (8.199)

There are two solutions to equation (8.198): the spherical Bessel function, jl(ρ), and spher-

ical Neumann function, nl(ρ). One can also construct two linear combinations of these, the

spherical Hankel functions of the first and second kinds, h
(1)
l
(ρ) and h

(2)
l
(ρ) respectively.

The properties of these special functions have already been discussed in Chapter 2.

The free particle wavefunction that we discussed in Chapter 2 can only involve jl(ρ),

which is well behaved at ρ = 0, while nl(ρ) is excluded because it becomes infinite at

ρ = 0. Hence the free particle radial wavefunction is

Rl = Al jl(ρ). (8.200)

8.7 Simple systems

8.7.1 Spherical wall

Consider a potential which is very much like the infinite barrier in one-dimension which we

discussed earlier in Section 8.3, except this time it involves the r-variable.This configuration

is often called a spherical wall inside which the particle is trapped, and it is given by

V (r) = 0, r < a (8.201)

= ∞, r ≥ a, (8.202)

as illustrated in Fig. 8.8. Thus the wavefunction Rl vanishes at r = a.

V 0 = ∞ 

0 a r

Fig. 8.8
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The radial equation for 0 < r < a is

− �
2

2m

1

r

d2(rRl)

dr2
+ �

2l(l + 1)

2mr2
Rl = ERl . (8.203)

As in the one-dimensional case, we take

ρ = αr and α =
√

2mE

�2
(8.204)

and express the equation in terms of ρ, and write

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0. (8.205)

The solutions to this equation, as we mentioned earlier, are jl(ρ) and nl(ρ). However, since

nl(ρ) diverges as ρ → 0, the only possible solutions we can have are given by

Rl = Al jl(ρ) = Al jl(αr), r < a, (8.206)

Rl = 0, r > a (8.207)

where the constant Al can be obtained if we normalize the wavefunction inside the wall.

Therefore,

Al =
1∫ a

0 dr r2
j2l (αr). (8.208)

The boundary condition at r = a implies that jl must vanish there. As we already know,

jl has an infinite number of zeros. The energy eigenvalues are then given by

jl(αnla) = 0 for n = 1, 2, . . . . (8.209)

Therefore, for each l there are an infinite number of discrete eigenvalues given by the zeros

of jl . For l = 0, these are given quite simply by the zeros of the sine function, sin(αnla),

i.e., at αnla = π , 2π , . . . ; for l = 1, the zeros, numerically, are at αnla = 0, 4.5, 7.7, . . . ;

and so on for other l-values.

8.7.2 Finite barrier

For the case of a finite barrier we have (see Fig. 8.9)

V (r) = 0, r < a (8.210)

= V0, r > a. (8.211)

The radial equation for r < a will be the same as that of a free particle in the same region,

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0, (8.212)
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V 0

0 a r

Fig. 8.9

where

ρ = αr and α =
√

2mE

�2
, (8.213)

and will have the same solution,

Rl = Al jl(αr) r < a. (8.214)

However, for r > a, the radial equation is

− �
2

2m

1

r

d2(rRl)

dr2
+
[
V0 +

�
2l(l + 1)

2mr2

]
Rl = ERl . (8.215)

Since we are considering bound states, we must have E < V0. Let us define the following

quantities:

β =
√

2m(V0 − E)

�2
and ρ = iβr. (8.216)

The above equation is then of the form

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0, r > a. (8.217)

The solution of this equation is

Rl(r) = Blh
(1)
l
(iβr). (8.218)

Since h
(1)
l
(iβr) → 1

βr
e−βr as r → ∞ this solution gives a convergent solution that

vanishes at infinity.

The boundary conditions at r = a give

Al jl(αa) = Blh
(1)
l
(iβa), (8.219)

Al

djl(αa)

dr
= Bl

dh
(1)
l
(iβa)

dr
(8.220)
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where it is understood that one puts r = a, after the derivative is taken. The solutions of these

equations can be obtained graphically, as we did in the one-dimensional case, though now,

except for l = 0, it is quite complicated. Since it does not add any interesting information,

we do not pursue it any further.

8.7.3 Square-well potential

Here what we mean by a square well is actually a spherical well since we are considering

the problem in radial coordinates. The potential is given by

V (r) = −V0, r < a (8.221)

= 0, r > a. (8.222)

Since we are considering bound states we take E = −EB, with EB > 0. For r < a, the

radial equation is

− �
2

2m

1

r

d2(rRl)

dr2
+
[
−V0 +

�
2l(l + 1)

2mr2

]
Rl + EBRl = 0, (8.223)

which can be reduced to the known form

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0 (8.224)

by taking

ρ = αr where α =
√

2m(V0 − EB)

�2
. (8.225)

The solution, as in previous cases, is

Rl(r) = Al jl(αr), r < a. (8.226)

The radial equation for r > a is

− �
2

2m

1

r

d2(rRl)

dr2
+ �

2l(l + 1)

2mr2
Rl + EBRl = 0, (8.227)

which can be cast into the familiar form

d2Rl

dρ2
+ 2

ρ

dRl

dρ
− l(l + 1)Rl

ρ2
+ Rl = 0 (8.228)

by taking

ρ = iβr where β =
√

2mEB

�2
. (8.229)
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The solution here will once again be the Hankel function h
(1)
l
(iβr)which vanishes at infinity,

Rl(r) = Blh
(1)
l
(iβr). (8.230)

The boundary conditions at r = a are

Al jl(αr) = Blh
(1)
l
(iβr) (8.231)

Al

djl(αr)

dr
= Bl

dh
(1)
l
(iβr)

dr
. (8.232)

These conditions are similar to the finite-barrier case, except that the definitions of α and

β are different. The equations can be solved by the same type of graphical methods.

8.8 Hydrogen-like atom

Let us now consider hydrogen-like atoms where a bound state is formed because of the

attractive Coulomb potential between the nucleus of charge Ze, consisting of Z protons of

charge +e, and an electron of charge −e. The corresponding potential is given by

V (r) = −Ze2

r
, (8.233)

which is represented in Fig. 8.10. Since the proton mass is much greater than the mass of

the electron, the reduced mass that enters the Schrödinger equation will be approximately

the same as that of the electron, which we take to be m. The radial Schrödinger equation

will be given by

− �
2

2m

1

r

d2(rRl)

dr2
+
[
−Ze2

r
+ �

2l(l + 1)

2mr2

]
Rl + EBRl = 0, (8.234)

0

n = 2

n = 1

–Ze 2

r

r

Fig. 8.10
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where Rl is the radial wavefunction. For the energy eigenvalue we have written E = −EB,

where EB, binding energy, is positive since we are considering bound states.

To simplify the equation we write ρ = αr, where α is chosen such that the equation can

be written in the form

d2Rl

dρ2
+ 2

ρ

dRl

dρ
+
[
λ

ρ
− l(l + 1)Rl

ρ2
− 1

4

]
Rl = 0 (8.235)

where we define the constants λ and α by

λ = 2mZe2

�2α
and

2mEB

�2α2
= 1

4
. (8.236)

We will determine these constants so that we have a bound state with binding energy EB.

Let us examine the behavior of (8.235) as ρ →∞. Keeping only the leading terms, the

radial equation (8.235) reduces to

d2Rl

dρ2
− 1

4
Rl = 0, (8.237)

whose solution is Rl = e±
1
2ρ . The negative sign in the exponent is the correct choice as it

allows the probability to be finite. We note that

Rl → ρne−
1
2ρ (8.238)

as ρ →∞ is also a solution, where n is a finite integer, since the behavior of the exponential

dominates over that of any power of ρ. This implies that a finite sum of powers of ρ, i.e., a

polynomial in ρ, can be multiplied to the above exponential function and Rl will still remain

a solution in the limit ρ →∞. Let F(ρ) be such a polynomial so that we can write

Rl = F(ρ)e−
1
2ρ . (8.239)

If ρs is the leading power in F(ρ) then we take it out as a common factor to simplify the

problem and write

F(ρ) = ρsL(ρ) (8.240)

where L(ρ) will be a polynomial of the type

L(ρ) = a0 + a1ρ + · · · + aνρ
ν + · · · (8.241)

and thus Rl can be expressed as

Rl = ρsL(ρ)e−
1
2ρ . (8.242)

In order for Rl to be finite at ρ = 0 (so that the probability remains finite) we must have

s as a positive quantity. We substitute the above expression into the radial equation (8.235)
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for Rl and consider the limit ρ → 0. In this limit the term ρs is the leading contributor since

it is the smallest power. It is easy to check that the terms
(
d2Rl/dρ

2
)

and
[
l(l + 1)Rl/ρ

2
]

in (8.235) give the leading terms. Their combined contribution is

[s (s+ 1)− l (l + 1)] ρs−2. (8.243)

Since the radial equation is valid for continuous values of ρ, the coefficient of ρs−2 must

vanish. Therefore,

s (s+ 1)− l (l + 1) = 0, (8.244)

leading to the solutions

s = l or − (l + 1) . (8.245)

Clearly the first solution for positive s (= l) is the correct one for the probability to remain

finite. Hence we write

F(ρ) = ρlL(ρ). (8.246)

and, therefore, we can write

Rl = ρlL(ρ)e−
1
2ρ . (8.247)

Substituting Rl from (8.247) into equation (8.235), we obtain the following equation

for L(ρ):

ρL
′′ + [2(l + 1)− ρ] L

′ + (λ− l − 1) L = 0. (8.248)

After substituting the series (8.241) for L(ρ) into (8.248) we combine the coefficients of

equal powers of ρ. This series will look like

A0 + A1ρ + · · ·Aνρν + · · · = 0. (8.249)

Since the equation is valid for continuous values of ρ, each of the coefficients must

vanish, i.e.,

A0 = A1 = · · ·Aν = · · · = 0. (8.250)

The vanishing of Aν leads to

aν+1 [(ν + 1)(ν + 2l + 2)]− aν [ν − λ+ l + 1] = 0. (8.251)

Taking the ratio of the consecutive terms, and examining the behavior for large ν, we find

aν+1

aν
= [ν − λ+ l + 1]

[(ν + 1)(ν + 2l + 2)]
→ 1

ν
as ν →∞. (8.252)
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This ratio turns out to be the same as of the ratio of the consecutive terms for the exponential

function

eρ = 1+ ρ + ρ
2

2! + · · · +
ρν

υ! +
ρν+1

(υ + 1)! + · · · (8.253)

which is

ν!
(ν + 1)! =

1

ν + 1
→ 1

ν
as ν →∞. (8.254)

Thus L(ρ) will mimic the behavior of eρ as ρ becomes large, because when ρ is large the

higher-order terms with large values ν become significant. For L(ρ)→ eρ , we find

Rl → ρleρe−
1
2ρ = ρle+

1
2ρ , (8.255)

which is untenable as it makes Rl diverge as ρ →∞. Therefore, the only alternative is that

the series (8.241) for L(ρ) terminates at some value of ν.

If the series (8.241) terminates at the power ρν , it implies that aν+1 must vanish. From

the recursion relation (8.251) we note that the terms aν+2, aν+3 . . . that follow will then

also vanish and we will be left with a finite polynomial, which is what we require. If, for

example, the series terminates at ν = n′(=integer), then, an′ is nonzero while an+1′ must

vanish, which, from the second term in the recursion relation (8.251) or from the numerator

on the right-hand side of (8.252), implies that

n′ − λ+ l + 1 = 0. (8.256)

Therefore, λ must be an integer (= n),

λ = n′ + l + 1 = n. (8.257)

The function L will then be a finite polynomial of the form

L = a0 + a1ρ + · · · + an′ρ
n′ (8.258)

where one calls

n′ = radial quantum number = 0, 1, 2, · · · . (8.259)

Substituting λ = n in the relation (8.236) between λ and α, we obtain

n = 2mZe2

�2α
, (8.260)

which allows us to obtain α and, therefore, from the relation (8.236) between α and EB, we

obtain the binding energy

EB =
mZ2e4

2�2n2
. (8.261)
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To make this relation more transparent we introduce a quantity that has the dimensions of

radius, called the Bohr radius, a0, given by

a0 =
�

2

me2
. (8.262)

We can write down the energy eigenvalues in terms of the Bohr radius as

En = −
Z2e2

2a0

1

n2
(8.263)

where we call

n = principal quantum number. (8.264)

Since n′ takes on values 0, 1, 2, . . . , the values of n and l will be given by

n = 1, 2, 3, . . . , (8.265)

l ≤ n− 1. (8.266)

Therefore, for each n, we will have

l = 0, 1, . . . , n− 1. (8.267)

And, for each l we will have

m = −l,−l + 1, · · · , l − 1, l i.e., (2l + 1) different states. (8.268)

Since En depends only on n, we have a degeneracy in the energy eigenstates given by

n−1∑

l=0

(2l + 1) = n2. (8.269)

The polynomial L(ρ) is a well-known mathematical function called the Laguerre

polynomial, written as

L(ρ) = L2l+1
n+l
(ρ), (8.270)

which satisfies the normalization condition

∞∫

0

dρ ρ2l+2e−ρ
[
L2l+1

n+l
(ρ)

]2
= 2n [(n+ l)!]3
(n− l − 1)! . (8.271)

Consequently, the radial wavefunction, which now depends on n as well as l, is

written as

Rnl(r) =
[(

2Z

na0

)3
(n− l − 1)!
2n [(n+ l)!]3

]
ρlL2l+1

n+l
(ρ)e−

1
2ρ (8.272)
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where

ρ = αr with α = 2Z

na0
(8.273)

with normalization

∞∫

0

dr r2R2
nl(r) = 1. (8.274)

.

The complete three-dimensional wavefunction unlm (r) can now be written down as

unlm (r) = Rnl(r)Ylm(θ ,φ). (8.275)

Below we summarize our major results for a small set of wavefunctions and energy

eigenvalues, where a state is designated by n and l, with the spectroscopic terminology of

calling a state with l = 0 an S-state; l = 1 a P-state; l = 2 a D-state, and so on. Thus,

writing in a tabulated form, we have for the lowest two values, n = 1 and n = 2, the

following.

(1) The energy eigenvalues, En

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n En

1 −Z2e2

2a0

2 −Z2e2

2a0
· 1

4
· ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8.276)

(2) Radial wavefunctions, Rnl(r)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

l n = 1 n = 2

0

(
Z

a0

)3/2

2e−Zr/a0 (1S state)

(
Z

2a0

)3/2 (
2− Zr

a0

)
e−Zr/2a0 (2S state)

1 ·
(

Z

2a0

)3/2
Zr

a0

√
3

e−Zr/2a0 (2P state)

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.277)

(3) Spherical harmonics, Ylm(θ ,φ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m l = 0 (S state) l = 1 (P state)

0 1√
4π

√
3

4π
cos θ

1 · −
√

3

8π
sin θeiφ

−1 ·
√

3

8π
sin θe−iφ

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.278)
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8.9 Problems

1. Consider the energy eigenvalue equation for an l = 0 radial wavefunction χ0(r)

with a spherically symmetric potential V (r). Multiplying this equation by dχ0/dr and

rearranging the terms, and then integrating the resulting equation from 0 to∞, show that

|R0(0)|2 =
2m

�2

〈
dV

dr

〉

where Rl = χ l/r. Generalize this result for the case when l � =0.

2. For one-dimensional problems, show that the spectrum for bound-state energies is

always nondegenerate.

3. For one-dimensional bound-state problems, show that if the energy eigenvalues are

placed in the order E1 < E2 < · · · then the corresponding eigenfunctions will have

increasing number of zeros so that the nth eigenfunction will have n− 1 zeros.

4. Consider a series of δ-functions given by

V (x) = λ�
2

2m

n=+∞∑

n=−∞
δ(x − nd)

as an approximation to the periodic potential considered in this chapter. Determine the

forbidden energy bands at low energies for this configuration.

5. Consider a rigid rotator consisting of two spherical balls attached by a rigid rod whose

center is at the origin in a three-dimensional space. Express the classical Hamiltonian

in terms of the moment of inertia, I , of the system. Write the quantum-mechanical

Hamiltonian by expressing I in terms of the angular momentum l of the system. Obtain

the energy eigenvalues and eigenfunction for this problem.

6. Consider the radial Schrödinger equation for l = 0, with a potential which, as r →∞,

has the form

V (r) = λ

rs

with s ≥ 1. Show that for bound states the asymptotic expression for the radial

wavefunction, Rl , can be written as

Rl ∼ e−βrF(r)

where β =
√

2mEB/�2. Determine the functional form of F(r) for arbitrary values of

s. Show that, for the Coulomb potential, Rl does not have a purely exponential form.

7. A particle is trapped between two infinite walls at x = −a and x = a respectively.

Determine the bound-state energies and wavefunctions for the particle if an additional

potential λδ(x) is present.
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8. Determine the bound-state energies and wavefunctions for a particle subjected to the

potential

V (r) = −λδ(r − a).

Obtain the minimum value of λ for which there is a bound state.

9. For a potential given by a symmetric pair of δ-functions,

V (x) = −g [δ(x − a)+ δ(x + a)] ,

determine the energy eigenvalues. It may be easier to solve this problem by treating

even and odd parity states separately.

10. Consider the problem of periodic potentials relevant to lattice sites of dimension d

where the potentials correspond to the infinite wall configuration. If there are n sites

and |0n〉 corresponds to the ground states for individual sites with energy E0, then the

translation operator satisfies F(d) |0n〉 = |0n+1〉. Consider now the state

|α〉 =
∞∑

−∞
einα |0n〉

where α is a real number. Show that |α〉 is an eigenstate of H and

F(d) |α〉 = e−iα |α〉 .

Also show that

〈x |F(d)|α〉 = 〈x − d |α〉 = e−iα〈x |α〉 .

11. In problem 10 assume that the walls are high but not infinite, so that tunneling from

the state |0n〉 to its nearest neighbors |0n±1〉 is possible. If 〈0n±1 |H | 0n〉 = −�, then

show that

H |α〉 = (E0 − 2� cosα) |α〉 .

12. A particle moving in one dimension is subjected to a potential given by

V (x) = −λ
x

, x > 0

= ∞, x ≤ 0.

Show that the Schrödinger equation for this system is mathematically equivalent to that

of a hydrogen atom in an l = 0 state. Using this result, obtain its energy eigenvalue

and the corresponding eigenfunction.

13. Consider the orbital motion of an electron classically with the power, P, emitted by

the electron, given by P = (2/3)e2/c3a2, where a is the acceleration. Use the classical
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formula ma = e2/a2
0 where a0 is the Bohr radius. How much time will it take for the

electron to lose the energy given by the difference between the n = 2 and n = 1 levels?

14. Consider the following infinite barrier problem:

V (x) = 0, 0 < x < a

= ∞, x < 0

= ∞, x > a.

Obtain the energy eigenvalues and eigenfunctions. Also obtain the expectation value

of the momentum operator for the ground-state wavefunction.

15. For the following square-well potential,

V (x) = −V0, |x| ≤ a

V (x) = 0, |x| ≥ a

show that a bound state will exist for arbitrarily small V0. Obtain an analytical solution

that relates the binding energy, EB, and V0 for the case when 2mV0a2/�2 = ǫ ≪ 1.

16. There are two degenerate states with wavefunctions u1 (r) and u2 (r) , with a common

eigenvalue E0, given by

u1 (r) = f1(r), and u2 (r) = f2(r) cos θ .

A perturbation H ′ is applied of the form

H ′ = V (r)
(
1+ cos θ + cos2 θ

)
.

Obtain the perturbed energies to first order. Assume
∞∫
0

dr r2f ∗i (r)V (r)fj(r) = gij.

17. A wavefunction in a one-dimensional bound state problem with energy variable λ is

given by

u(x) =
(
a0 + a1x + · · · + aυxυ + · · ·

)
e−x 0 < x <∞

where the coefficients satisfy the recursion relation

aυ+1

aυ
= 2υ − λ
(υ + 1) (υ + 2)

.

Determine the behavior of this series as υ → ∞. From this information obtain the

eigenvalues of λ.

18. Consider the radial equation

d2R

dr2
+ 2

r

dR

dr
+
[
λ

r
− 1

]
R = 0,
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which corresponds to a bound-state problem. Determine f (r), the asymptotic form

of R(r). Select the correct f (r) that is appropriate to this problem and write R(r) =
f (r)h(r). Obtain the equation for h(r). Write

h(r) = rs(a0 + a1r + · · · + aνr
ν + · · · )

and obtain the value of s. Also obtain the recursion relation for the coefficients above

and, from it, the eigenvalues of λ.



9 Harmonic oscillator

The simple harmonic oscillator plays a key role in classical as well as quantum systems. It

is found that complicated physical systems can often be approximated in ways that allows

one to cast them as harmonic oscillators. The framework we develop here, involving raising

and lowering operators in the Heisenberg picture, is of fundamental importance in many

branches of physics including condensed matter physics and quantum field theory.

9.1 Harmonic oscillator in one dimension

9.1.1 Formalism in the Heisenberg representation

The harmonic oscillator potential is described (see Fig. 9.1) by

V (x) = 1

2
Kx2, −∞ < x <∞. (9.1)

The corresponding Hamiltonian is given by

H = P2

2m
+ 1

2
KX 2 = P2

2m
+ 1

2
mω2X 2 (9.2)

where we have taken K = mω2, where ω is called the classical frequency, sometimes

designated as ωc. The X and P operators will satisfy the fundamental commutation relation

[X , P] = i�1. (9.3)

We will work within the framework of the Heisenberg representation in which case these

operators will then depend on time.

In order to simplify the structure of the Hamiltonian we define the following operators:

a =
√

mω

2�

(
X + i

P

mω

)
, a† =

√
mω

2�

(
X − i

P

mω

)
(9.4)

where we have used the fact that X and P are Hermitian. Inverting these relations we find

X =
√

�

2mω

(
a+ a†

)
, P = −i

√
�

2mω

(
a− a†

)
. (9.5)
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V = 

x

1 
2

K x 2

Fig. 9.1

Taking the products between a and a†, we obtain

aa† = mω

2�

(
X 2 + P2

m2ω2
+ �

mω
1

)
, (9.6)

a†a = mω

2�

(
X 2 + P2

m2ω2
− �

mω
1

)
(9.7)

where we have made use of the relation (9.2).

Subtracting and adding the above two equations we obtain, respectively,

aa† − a†a = 1 (9.8)

and

aa† + a†a = 2H

�ω
. (9.9)

These two expressions can be rewritten as

[
a, a†

]
= 1 (9.10)

and

H =
(

a†a+ 1

2
1

)
�ω. (9.11)

The harmonic oscillator problem has thus been simplified by introducing the operators a

and a†.

a† and a as raising and lowering operators

Let us consider the eigenstates of H , designated by an orthonormal set of states |n〉, with

energy eigenvalues En. The relevant equation is then

H |n〉 = En |n〉 . (9.12)

In view of the expression (9.11) relating H to a†a, we can simplify (9.12) by writing

a†a |n〉 = λn |n〉 (9.13)
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where λn will be related to En by the relation

En =
(
λn +

1

2

)
�ω. (9.14)

We now obtain the properties of the state vector, a† |n〉 . For that purpose we note the

following:

a†a
(
a† |n〉

)
= a†

(
aa† |n〉

)
= a†

(
1+ a†a

)
|n〉

= a† (1+ λn) |n〉 = (λn + 1)
(
a† |n〉

)
(9.15)

where we have used the commutation relation
[
a, a†

]
= 1. The relations (9.13) and (9.15)

tell us that when a†a operates on |n〉 its eigenvalue is λn but when it operates on the state

a† |n〉 its eigenvalue is (λn + 1). The operator a†, therefore, has the property that when it

operates on the state |n〉 it increases its energy eigenvalue from λn to (λn + 1). For this

reason, one calls a† the “raising” operator. Similarly, we obtain

a†a (a |n〉) = (λn − 1) (a |n〉) . (9.16)

Hence, a acts as a “lowering” operator.

Below we summarize the connection between the various eigenstates and eigenvalues:

|n〉 → λn, (9.17)

a† |n〉 → λn + 1, (9.18)

a |n〉 → λn − 1. (9.19)

Determination of the energy eigenvalue, En

The above simplifications will now enable us to obtain En. We expect the lowest energy

eigenvalue to be finite since the potential is bounded from below. In other words, since

the minimum of the harmonic potential, V (x) = (1/2)Kx2, is V = 0, one cannot have an

energy level below this value. On the other hand, there is no restriction on how high the

energy levels can go since V (x)→∞ as x →∞.

Thus there must be a lowest state in this problem. If we designate this state by |0〉 then

applying the lowering operator, a, to this state we will have

a |0〉 = 0, (9.20)

which implies, by operating on the left by a†, that

a†a |0〉 = 0. (9.21)

Hence, from (9.13),

λ0 = 0. (9.22)
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Since a† |n〉 corresponds to eigenvalue λn + 1 of the operator a†a, then for the next step

up from |0〉 , i.e., for a† |0〉, the eigenvalue will be

λ1 = 1. (9.23)

The corresponding eigenstate of a†a can be designated as |1〉 with an appropriate

normalization constant. Continuing this process, we conclude that for
(
a†
)n |0〉we will have

λn = n, (9.24)

corresponding to an eigenstate proportional to |n〉. Hence, from (9.14) the energy

eigenvalues are simply given by

En =
(

n+ 1

2

)
�ω. (9.25)

Thus, the harmonic oscillator will have an infinite number of discrete levels given by

n = 0, 1, 2 . . . . We note, in particular, that for n = 0, we have E0 = 1
2
�ω. This is the

so-called “zero point energy.”

From (9.13) and (9.24) we conclude that

a†a |n〉 = λn |n〉 = n |n〉 . (9.26)

Hence, a†a is called the “number” operator:

N = a†a. (9.27)

We can write the Hamiltonian in terms of it as

H =
(

N + 1

2

)
�ω (9.28)

with eigenstates |n〉 which satisfy the orthonormality condition 〈m |n〉 = δmn.

a and a†, again

From the properties of a and a† that we have already discussed, one can write

a |n〉 = Cn |n− 1〉 . (9.29)

Multiplying the above expression on both sides with the respective complex conjugates,

and using the orthonormality properties for the eigenstates, we find

〈n| a†a |n〉 = |Cn|2 . (9.30)

However, since the eigenvalue of a†a is n we obtain, assuming Cn to be real,

Cn =
√

n, (9.31)
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so that

a |n〉 = √n |n− 1〉 . (9.32)

Similarly,

a† |n〉 =
√

n+ 1 |n+ 1〉 . (9.33)

From (9.33), a general state |n〉 can be constructed from |0〉 by repeated applications of

a† as follows:

|n〉 = a†

√
n
|n− 1〉 =

(
a†

√
n

)(
a†

√
n− 1

)
|n− 2〉 = · · · =

(
a†
)n

√
(n) . (n− 1) . . . 2.1

|0〉 .
(9.34)

Thus,

|n〉 =
(
a†
)n

√
n!
|0〉 , (9.35)

which implies that one can generate an arbitrary state |n〉 by an appropriate number of

applications of the operator a† on the lowest energy state, |0〉.

Matrix representation

Since n runs from 0 to∞, the matrix representation of |n〉will be an infinite column matrix

and a, a† and N will be square matrices of infinite dimensions:

|n〉 =

⎡
⎢⎢⎢⎢⎢⎣

|0〉
|1〉
|2〉
·
·

⎤
⎥⎥⎥⎥⎥⎦

, (9.36)

a =

⎡
⎢⎢⎢⎢⎢⎣

0
√

1 0 0 ·
0 0

√
2 0 ·

0 0 0 · ·
0 0 0 0 ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎦

, a† =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 ·√
1 0 0 0 ·

0
√

2 0 0 ·
0 0 · 0 ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 ·
0 1 0 0 ·
0 0 2 0 ·
0 0 0 · ·
· · · · ·

⎤
⎥⎥⎥⎥⎥⎦

.

(9.37)

Time dependence

The time dependence of the operators is given by the Heisenberg relation

i�
da

dt
= [a, H ] . (9.38)
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Inserting expression (9.11) for H and using the commutation relation (9.10) between a and

a† we obtain

i�
da

dt
= �ωa, (9.39)

which then gives as a solution

a(t) = a(0)e−iωt (9.40)

and similarly,

a†(t) = a†(0)eiωt . (9.41)

The operators N and H remain independent of time since they involve the product a†(t)a(t)

which, from (9.40) and (9.41), is the same as a†(0)a(0).

The wavefunctions

The energy eigenfunction, un (x), for a particle undergoing harmonic oscillations is given by

un(x) = 〈x| n〉. (9.42)

We first calculate the ground-state wavefunction, u0(x), by noting from (9.20) that

a |0〉 = 0, (9.43)

which, from relation (9.20) for a, gives

(
X + i

P

mω

)
|0〉 = 0. (9.44)

Expressing P in the form of the derivative operator in the x-space, and multiplying the

above relation by 〈x| , we have the following equation:

(
x + �

mω

d

dx

)
〈x |0〉 = 0, (9.45)

which leads to the differential equation

du0 (x)

dx
= −mωx

�
u0 (x) . (9.46)

The solution is easily obtained as

u0(x) = A0 exp

(
−mωx2

2�

)
. (9.47)
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The constant A0 can be obtained from the normalization condition

∞∫

−∞
dx u2

0 (x) = 1. (9.48)

Therefore,

A2
0

∞∫

−∞
dx exp

(
−mωx2

�

)
= 1. (9.49)

The integration over the Gaussian can be easily carried out. We find

A0 =
(mω

π�

) 1
4

. (9.50)

Therefore,

u0 (x) =
(mω

π�

) 1
4

exp

(
−mωx2

2�

)
. (9.51)

From the expression for u0 (x) one can obtain a general form for un (x) by first obtaining

u1(x), where

u1 (x) = 〈x| 1〉 = 〈x| a† |0〉 =
√

mω

�
〈x|

(
X − i

P

mω

)
|0〉

=
√

mω

2�

(
x − �

mω

d

dx

)
u0(x) . (9.52)

We can simplify this to

u1 (x) = −
√

�

2mω
exp

(
mωx2

2�

)
d

dx

[
exp

(
−mωx2

2�

)
u0(x)

]
. (9.53)

Substituting the functional form of u0(x), we obtain

u1 (x) =
√

2mω

�
xu0 (x) . (9.54)

We rewrite the above relations in terms of the dimensionless variable

ξ = αx (9.55)

where

α =
√

mω

�
. (9.56)



181 9.1 Harmonic oscillator in one dimension

n = 0 n = 1 n = 2

Fig. 9.2

The expression (9.53) after substituting the expression for u0(x), is then of the form

u1(x) = (−1)

(
α√
π

) 1
2

exp

(
ξ2

2

)
d

dξ

[
exp (−ξ2)

]
. (9.57)

Wavefunctions for n = 0, n = 1, and n = 2 are illustrated in Fig. 9.2.

By recursion, the expression for un (x) can be generalized to

un (x) = (−1)n
(

α√
π2nn!

) 1
2

exp

(
ξ2

2

)
dn

dξn

[
exp(−ξ2)

]
. (9.58)

9.1.2 Formalism in the Schrödinger picture

The Schrödinger equation with a harmonic potential is given by

− �
2

2m

d2u

dx2
+ 1

2
mω2x2u = Eu, −∞ < x <∞. (9.59)

This equation can be simplified by making the substitution

ξ = αx (9.60)

where α is given by (9.56), so that the new equation reads

d2u

dξ2
+
(
λ− ξ2

)
u = 0, −∞ < ξ <∞ (9.61)

with

λ = 2E

�ω
. (9.62)

To obtain the complete solution of (9.61), we first determine the behavior of u at infinity.

We note that the equation (9.61) and the equation

(
d

dξ
− ξ

)(
d

dξ
+ ξ

)
u = 0 (9.63)

have the same form as ξ →∞, namely,

d2u

dξ2
− ξ2u = 0 (9.64)
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and, therefore, will have the same solution at infinity. Hence the equation

(
d

dξ
+ ξ

)
u = 0, (9.65)

solves (9.63) and will also describe the solution of (9.61) at infinity. The above equation

yields

u = C exp

(
−1

2
ξ2

)
as ξ →∞. (9.66)

Indeed, if H (ξ) is a polynomial, then

u = NH (ξ) exp

(
−1

2
ξ2

)
(9.67)

is also a solution as ξ →∞, where N is the overall normalization. Substituting the above

in (9.61) we obtain

d2H (ξ)

dξ2
− 2ξ

dH (ξ)

dξ
+ (λ− 1)H (ξ) = 0. (9.68)

Our task now is to determine H in order that we obtain the complete solution of (9.61).

We first note that if H (ξ) satisfies the above equation then so does H (−ξ) .We can thus

conveniently divide the solutions into two types: even and odd given by (H (ξ)+ H (−ξ)),
and (H (ξ)− H (−ξ)), respectively.

From now on, H in equation (9.68) will signify an even or odd combination. Since it is

a polynomial, we can obtain H by expanding it in the neighborhood of ξ = 0. The series

will be given as

H = ξ s
(
a0 + a2ξ

2 + · · · + aνξ
ν + · · ·

)
with a0 � =0 (9.69)

where ν is an even integer.

Substituting (9.69) into (9.68) and collecting terms with the same powers in ξ , we obtain

s(s− 1)ξ s−2a0 + · · · + [(s+ ν + 2)(s+ ν + 1)aν+2

− (2s+ 2ν − λ+ 1)aν)] ξ
s+ν + · · · = 0. (9.70)

Since ξ is a continuous variable the only way in which the above equation can be valid is

if the coefficient of each power of ξ vanishes. From the first term, since a0 � =0, we obtain

two possible values for s

s = 0 or s = 1 (9.71)

which implies, as expected, that we have either an even series or odd series for H in (9.69).

From the vanishing of the coefficient for ξ s+ν we find

aν+2

aν
= (2s+ 2ν − λ+ 1)

(s+ ν + 2)(s+ ν + 1)
. (9.72)
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This ratio will allow us to determine whether the series for H converges or not. To

determine the convergence we note that

aν+2

aν
→ 2

ν
as ν →∞. (9.73)

We can compare this ratio to the corresponding ratio in the well-known series for exp
(
ξ2
)
,

which we write as

exp
(
ξ2
)
= b0 + b2ξ

2 + · · · + bνξ
ν + bν+2ξ

ν+2 + · · · . (9.74)

Since the terms in this series are known, the ratio of the coefficients of the consecutive

terms are also known and are given by

bν+2

bν
= (ν/2)!
((ν/2)+ 1)! →

2

ν
as ν →∞. (9.75)

This ratio is identical to the ratio in (9.73) as ν becomes large.

Thus the series for H (ξ) given in (9.69) will behave as exp
(
ξ2
)
, which means that the

wavefunction u (ξ) in (9.67) will behave like exp
(

1
2
ξ2
)
. This expression, however, diverges

as ξ →∞ and, is therefore, untenable since u (ξ) is expected to be finite in that limit. The

only remedy then is to demand that the series for H (ξ) terminates at some point so that it

remains a finite polynomial. For this to happen, one of the coefficients in the series must

vanish, as then all the subsequent terms will vanish also through (9.72).

If the series for H (ξ) in (9.69) terminates at the term with ξ ν (i.e., aν+2 = 0 with aν � =0),

then one must have

(2s+ 2ν − λ+ 1) = 0 (9.76)

which then determines the value of λ,

λn = 2 (s+ ν)+ 1 = 2n+ 1. (9.77)

Hence the energy eigenvalues are given by

En =
(

n+ 1

2

)
�ω. (9.78)

To determine the wavefunction, we note that since ν is an even integer, n takes the values

n = even integer, for s = 0, (9.79)

n = odd integer, for s = 1. (9.80)

Substituting the value of λn in the equation for H in (9.68) we obtain

d2Hn (ξ)

dξ2
− 2ξ

dHn (ξ)

dξ
+ 2nHn (ξ) = 0. (9.81)
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The solution Hn(ξ) is then a finite polynomial,

Hn (ξ) = ξ s
(
a0 + a2ξ

2 + · · · + anξ
n
)

(9.82)

where all the coefficients are determined in terms of a0 through the relation (9.72). The

wavefunction is then given by

un = NnHn (ξ) exp

(
−1

2
ξ2

)
(9.83)

where Hn (ξ) is called the Hankel function.

Some typical values of Hn (ξ) are given by

H0 (ξ) = 1, (9.84)

H1 (ξ) = 2ξ , (9.85)

H2 (ξ) = 4ξ2 − 2. (9.86)

The general form for Hn (ξ) is given by

Hn (ξ) = (−1)neξ
2 dn

dξn (e
−ξ2

). (9.87)

The normalization constant Nn can be found from the relation

∞∫

−∞
dξ H 2

n (ξ) e
−ξ2 = √π2nn!. (9.88)

Hence

Nn =
(

α√
π2nn!

) 1
2

. (9.89)

The wavefunction un is then

un(x) = (−1)n
(

α√
π2nn!

) 1
2

e
1
2 ξ

2 dn

dξn (e
−ξ2

). (9.90)

Thus we obtain the same results as we did previously through the Heisenberg picture. The

wavefunctions un(x) are plotted in Fig. 9.2 for n = 0, 1, 2.

9.2 Problems

1. Assume x(t) and p(t) to be Heisenberg operators with x(0) = x0 and p(0) = p0. For a

Hamiltonian corresponding to the harmonic oscillator show that

x(t) = x0 cosωt + p0

mω
sinωt
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and

p0(t) = p0 cosωt − mωx0 sinωt.

2. On the basis of the results already derived for the harmonic oscillator, determine the

energy eigenvalues and the ground-state wavefunction for the truncated oscillator

V (x) = 1

2
Kx2, 0 ≤ x ≤ ∞

=∞, x < 0.

3. Show that for a harmonic oscillator in the state |n〉, the following uncertainty product

holds:

�x�p =
(

n+ 1

2

)
�.

4. Consider the following two-dimensional harmonic oscillator problem:

− �
2

2m

∂2u

∂x2
− �

2

2m

∂2u

∂y2
+ 1

2
K1x2u+ 1

2
K2y2u = Eu

where (x, y) are the coordinates of the particle. Use the separation of variables technique

to obtain the energy eigenvalues. Discuss the degeneracy in the eigenvalues if K1 = K2.

5. Consider now a variation on Problem 4 in which we have a coupled oscillator with the

potential given by

V (x, y) = 1

2
K
(
x2 + y2 + 2λxy

)
.

Obtain the energy eigenvalues by changing the variables (x, y) to (x′, y′) such that the

new potential is quadratic in (x′, y′), without the coupling term.

6. Solve the above problem by matrix methods by writing

V (x, y) = X̃ MX

and obtaining the eigenvalues, where

X =
[
x

y

]
, M = symmetric 2× 2 matrix, X̃ =

[
x y

]
.

7. Consider two coupled harmonic oscillators in one dimension of natural length a and

spring constant K connecting three particles located at x1, x2, and x3. The corresponding

Schrödinger equation is given as

− �
2

2m

∂2u

∂x2
1

− �
2

2m

∂2u

∂x2
2

− �
2

2m

∂2u

∂x2
3

+ K

2

[
(x2 − x1 − a)2 + (x3 − x2 − a)2

]
u = Eu.

Obtain the energy eigenvalues using the matrix method.
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8. As a variation on Problem 7 assume that the middle particle at x2 has a different mass,

M . Reduce this problem to the form of Problem 7 by a scale change in x2 and then use

the matrix method to obtain the energy eigenvalues.

9. By expanding the exponential exp(ikx) in powers of x determine the ground-state expec-

tation value 〈0 |exp(ikx)| 0〉 , and the transition probability amplitude 〈n |exp(ikx)| 0〉 .
10. Determine a(t) for a charged particle harmonic oscillator subjected to an electric field

E(t) given by

E(t) = 0, t < 0

= E0e−t/τ , t > 0.

Use the Green’s function technique and impose causality.

11. Show that

[
a, F(a†)

]
= ∂F

∂a†
,

[
a†, F(a)

]
= −∂F

∂a

by first proving it for F(b) = bn, where b = a, a†, and then generalizing.

12. A pendulum formed by a particle of mass m attached to a rod is executing small oscil-

lations. The rod is massless of length l. Let θ be the angle, assumed to be small.

Considering this to be a quantum-mechanical system, write down the canonical vari-

ables corresponding to x and p and their commutator. Express the Hamiltonian in terms

of these two variables. Comparing this expression with that in the harmonic oscillator

problem, obtain the energy eigenvalues and the ground-state wavefunction.
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A coherent state is a quantum state of a harmonic oscillator whose properties closely resem-

ble those of a classical harmonic oscillator. It is an eigenstate of the destruction operator in

a harmonic oscillator system with the remarkable property that it behaves as a semiclassical

state. We explain this in detail below. Coherent states arise in many physical systems. In

particular, they play an important role in the quantum theory of light; for example, a laser

wave can be represented as a coherent state of the electromagnetic field.

10.1 Eigenstates of the lowering operator

The eigenstates of the lowering operator, a, have some remarkable properties as we will dis-

cover below. The basic properties of this operator for the harmonic oscillator Hamiltonian,

H , are given by

a |n〉 = √n |n− 1〉 ,
[
a, a+

]
= 1, with H =

(
a+a+ 1

2

)
�ω. (10.1)

We designate an eigenstate of a as |α〉 ,

a |α〉 = α |α〉 . (10.2)

In Chapter 1 we showed that when an operator is Hermitian its eigenvalues will be real

and the corresponding eigenstates will be orthogonal. However, since a† � =a, a is not

Hermitian. Hence the eigenvalues α will not necessarily be real; they can be complex, and

the eigenstates |α〉 need not be orthogonal.

In order to relate the states |α〉 to the eigenstates |n〉 of the Hamiltonian, we use the

completeness theorem, and expand |α〉 in terms of |n〉 as follows:

|α〉 =
∞∑

n=0

cn |n〉 . (10.3)

We operate the state |α〉 by a, and write the following sequence of results:

a |α〉 =
∞∑

n=0

cna |n〉 =
∞∑

n=1

cn

√
n |n− 1〉 =

∞∑

n=0

cn+1

√
n+ 1 |n〉 (10.4)
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where in the first equality we have used (10.1). The second equality starts with n = 1, since,

in the previous sum, a |0〉 = 0. In the third equality we shift the lower limit back to n = 0

with the necessary changes in the other terms. From (10.2) and (10.3) we write

a |α〉 = α |α〉 = α
∞∑

n=0

cn |n〉 . (10.5)

Equating the right-hand sides of (10.4) and (10.5), we obtain

cn+1

√
n+ 1 = αcn or cn+1 =

α√
n+ 1

cn. (10.6)

Writing cn+1 in a recursive series of products, we find

cn+1 =
(

α√
n+ 1

)(
α√
n

)
· · ·

(
α√
1

)
c0 =

αn+1

√
(n+ 1)!c0. (10.7)

Substituting this result in (10.3) we obtain

|α〉 = c0

∑

n

αn

√
n!
|n〉 . (10.8)

If |α〉’s are normalized, i.e., if 〈α|α〉 = 1, then, since |n〉’s are orthonormal, we obtain

c2
0

∞∑

n=0

|α|2n

n! = 1 (10.9)

where c0 is assumed to be real. The above infinite sum is a well-known series for the

exponential e|α|
2
. Therefore,

c2
0e|α|

2 = 1 or c0 = e−
1
2
|α|2 . (10.10)

Hence, from (10.7), we obtain

cn =
αn

√
n!

e−
1
2
|α|2 . (10.11)

Consequently, (10.8) can be written as

|α〉 = e−
1
2
|α|2∑

n

αn

√
n!
|n〉 . (10.12)

We note from our earlier result for the harmonic oscillator that

|n〉 =
(
a†
)n

√
n!
|0〉 . (10.13)
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Substituting this expression in (10.12), we obtain

|α〉 = e−
1
2
|α|2

[∑

n

(
αa†

)n

n!

]
|0〉. (10.14)

The infinite series once again sums to an exponential, this time to exp
(
αa†

)
, so that

|α〉 = e−
1
2
|α|2eαa† |0〉 . (10.15)

Thus, the operator exp
(
− 1

2
|α|2 + αa†

)
transforms the ground state |0〉 to the state |α〉.

However, this operator is not unitary, since the product

(e−
1
2
|α|2eαa†

)(e−
1
2
|α|2eαa†

)† = (e− 1
2
|α|2eαa†

)(eα
∗ae−

1
2
|α|2) = e−|α|

2

eαa†

eα
∗a (10.16)

is not the unit operator, where we have noted that |α|2 is a number.

In order to preserve the norm of the states under the transformation (10.15) we need

to construct an operator that is unitary but, at the same time, we need to ensure that this

new operator leaves the relation (10.15) intact. We can accomplish this by multiplying

the operator on the right by a factor like eβa and taking advantage of the fact that, since

a |0〉 = 0,

eβa |0〉 =
(

1+ βa+ (βa)2

2! + · · ·
)
|0〉 = |0〉 . (10.17)

Designating this unitary operator by D(α), we write

D(α) = e−
1
2
|α|2eαa†

eβa. (10.18)

To be unitary D(α) must satisfy

D(α)D†(α) = D†(α)D(α) = 1. (10.19)

This relation will allow us to determine β. We take α and β to be infinitesimal, and expand

the exponential in (10.18), keeping only the linear terms. The relation (10.19) then yields

(
1+ αa† + βa+ α∗a+ β∗a†

)
= 1, (10.20)

which implies that β = −α∗. Including higher orders in the expansion will not change this

result. Hence, we obtain

D(α) = e−
1
2
|α|2eαa†

e−α
∗a. (10.21)

From the identity

eA+B = eAeBe−
1
2
[A,B] (10.22)
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we find, by taking A = αa†, B = −α∗a, and using the relation
[
a, a†

]
= 1, that [A, B] =

1
2
|α|2 . Hence,

D(α) = eαa†−α∗a. (10.23)

The operator D(α) is now unitary and does the requisite task of converting the ground

state, |0〉 , to |α〉 .The relation (10.15) can be replaced by

|α〉 = D(α) |0〉 . (10.24)

Thus, in some sense the eigenstate of the operator a is related to the ground state of the

harmonic oscillator. We explore this connection below.

Let us now obtain the transformation of the operators a and a† due to the operator D(α)

as it will be required in the discussions to follow. The product D†(α)aD(α) can be written

for infinitesimal α (keeping terms up to α) as

(
1+ α∗a− αa†

)
a
(
1+ αa† − α∗a

)
= a+ α

[
a, a†

]
= a+ α. (10.25)

From this result we deduce that

D†(α)aD(α) = a+ α, (10.26)

as the higher order terms in α will not change the result in (10.25). Taking the Hermitian

conjugate of (10.26) we get

D†(α)a†D(α) = a† + α∗. (10.27)

Furthermore, from (10.26) and (10.27), we obtain

D†(α)a†aD(α) =
[
D†(α)a†D(α)

] [
D†(α)aD(α)

]
= a†a+ α∗a+ αa† + |α|2 (10.28)

where we have used the fact that D is unitary.

Let us now evaluate the transformation of the X and P operators under D(α). As we

know from the discussions of the harmonic oscillator, these operators can be expressed in

terms of a and a† through the relations

X =
√

�

2mω

(
a+ a†

)
(10.29)

and

P = −i

√
�mω

2

(
a− a†

)
. (10.30)
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We then find from the transformations of a and a† in (10.26) and (10.27) respectively

that

D†(α)XD(α) = X +
√

�

2mω

(
α + α∗

)
, (10.31)

D†(α)PD(α) = P − i

√
�mω

2

(
α − α∗

)
. (10.32)

Thus, D(α) acts as a displacement operator for both space and momentum operators. For this

reason one often calls D(α) a phase space displacement operator. It is then natural to define

the constants α and α∗ in terms of the corresponding displacements. We can accomplish

this by writing

√
�

2mω

(
α + α∗

)
= x0, (10.33)

−i

√
�mω

2

(
α − α∗

)
= p0. (10.34)

The exponent (αa†−α∗a) that appears in (10.22) for the operator D(α) can be simplified

accordingly,

αa† − α∗a = α
√

mω

2�

(
X − i

P

mω

)
− α∗

√
mω

2�

(
X + i

P

mω

)
= i

�
(p0X − x0P) ,

(10.35)

which leads to

D(α) = e
i
�
(p0X−x0P). (10.36)

This result confirms the results we derived earlier for the transformations of X and P

operators, namely,

D†(α)XD(α) = X + x0 (10.37)

D†(α)PD(α) = P + p0. (10.38)

Generalizing the above results, if f (X , P) is a function of the operators X and P, then

D†(α)f (X , P)D(α) = f (X + x0, P + p0). (10.39)

Taking the expectation value of each of the above terms with respect to the ground state

|0〉, we find, since 〈0|X |0〉 = 0 = 〈0|P |0〉 ,

〈0|D†(α)XD(α) |0〉 = 〈α|X |α〉 = x0, (10.40)

〈0|D†(α)PD(α) |0〉 = 〈α|P |α〉 = p0. (10.41)
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On the left hand side of the equality sign we have used the relation D(α) |0〉 = |α〉. The

quantities 〈α|X |α〉 and 〈α|P |α〉 correspond to the expectation values of the space and

momentum operators. The above relations show that |α〉 corresponds to a state whose space

and momentum eigenvalues are displaced to x0 and p0 compared with the ground-state

values, which are both zero.

We note that while the states are normalized, i.e., 〈α|α〉 = 1, any two different states |α〉
and

∣∣α′
〉

are not necessarily orthogonal. This is not surprising, as we stated earlier, since

the orthogonality results derived in Chapter 1 apply only to eigenstates of a Hermitian

operator, which the operator a is not. We can determine the product
〈
α|α′

〉
from the state

vectors determined in (10.12), where

|α〉 = e−
1
2
|α|2∑

n

αn

√
n!
|n〉 and

∣∣α′
〉
= e−

1
2 |α′|2

∑

n

α′n√
n!
|n〉 (10.42)

which gives, from the orthonormality of |n〉,

〈
α|α′

〉
= e−

1
2
|α|2e−

1
2 |α′|2

∑

n

(
αα∗′

)n

n! = e−
1
2
|α|2e−

1
2 |α′|2eαα

∗′
(10.43)

The last equality follows from the fact that the infinite series sums to an exponential eαα
∗′

.

Therefore,

∣∣〈α|α′
〉∣∣2 = e−|α|

2

e−|α′|
2

e2αα∗′ (10.44)

where we note that α and α′ are numbers, not operators. The exponent can, therefore, be

simplified by using the relation

− |α|2 −
∣∣α′

∣∣2 + 2αα∗′ = −
∣∣α − α′

∣∣2 (10.45)

to give

∣∣〈α|α′
〉∣∣2 = e−|α−α′|

2

. (10.46)

This result shows that the states |α〉 and
∣∣α′

〉
are not orthogonal although their inner-product

does becomes exponentially small as the eigenvalue α′ moves farther away from α.

10.2 Coherent states and semiclassical description

From expansion (10.12) for |α〉 one can write the time-dependent state |α(t)〉 quite simply as

|α(t)〉 = e−
1
2
|α|2∑

n

αn

√
n!
|n〉 e− iEnt

� (10.47)
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where En is the eigenvalue of |n〉, which for the harmonic oscillator is given by En =(
n+ 1

2

)
�ω. Substituting this in (10.47) we find

|α(t)〉 = e−
1
2
|α|2e−

iωt
2

∑

n

αn

√
n!
|n〉 e−inωt = e−

1
2
|α|2e−

iωt
2

∑(
αe−iωt

)n

√
n!

|n〉 . (10.48)

Hence, apart from a constant multiplicative term, |α(t)〉 is obtained from |α〉 by replacing

α by α exp(−iωt), i.e.,

|α(t)〉 = e−
iωt
2

∣∣αe−iωt
〉
. (10.49)

Let us express this relation by invoking the product D
(
αe−iωt

)
|0〉. Instead of using the

relation (10.23) for D, it is simpler to use the equivalent expression (10.21) since it involves

the factor e−α
∗a which does not affect |0〉. Thus, replacing α by αe−iωt in (10.21) we write

(10.49) as

|α(t)〉 = e−
iωt
2 D

(
αe−iωt

)
|0〉 = e−

iωt
2 e−

1
2
|α|2 exp

[
αa†e−iωt

]
|0〉 . (10.50)

Let us return to expression (10.36) for D(α) in terms of X and P and consider the

wavefunctionψα(x, t) at t = 0, corresponding to the state |α〉. Ifψ0(x, t) is the ground-state

wavefunction, then

ψα(x, 0) = 〈x |α〉 = 〈x|D(α) |0〉 = 〈x| e i
�
(p0X−x0P) |0〉 = e

i
�

p0xψ0(x − x0, 0) (10.51)

where we have made use of the fact that the operator e−
i
�

x0P displaces the x-coordinate by

x0, and correspondingly, ψ0(x − x0, 0) is the ground-state wavefunction of the harmonic

oscillator centered at x = x0. The time dependence of this wavefunction is then given by

ψα(x, t) = 〈x |α(t)〉 = 〈x
∣∣αe−iωt

〉
. (10.52)

As α→ αe−iωt , we can determine x0(t) and p0(t) from our earlier relations as follows:

x0 =
√

�

2mω

(
α + α∗

)
→ x0(t) =

√
�

2mω

(
αe−iωt + α∗eiωt

)

= x0 cosωt +
( p0

mω

)
sinωt (10.53)

and

p0 = −i

√
�mω

2

(
α − α∗

)
→ p0(t) = −i

√
�mω

2

(
αe−iωt − α∗eiωt

)

= p0 cosωt − mωx0 sinωt (10.54)

where we have used the relations (10.33) and (10.34) connecting x0, p0 to α,α∗.
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|   a|2Ψ

Fig. 10.1

With the above values of x0(t) and p0(t) we have

〈x| e i
�
(p0(t)X−x0(t)P) |0〉 = e

i
�

p0(t)xψ0

[
x −

(
x0 cosωt +

( p0

mω

)
sinωt

)
, 0
]

. (10.55)

Thus,

ψα(x, t) = e
i
�

p0(t)xψ0

[
x −

(
x0 cosωt +

( p0

mω

)
sinωt

)
, 0
]

. (10.56)

The ground-state wavefunction is now centered at the point where, classically, the particle

undergoing harmonic oscillations will find itself at time, t, as we show below.

The classical equation of motion for a harmonic oscillator with spring constant K =
mω2 is

..
x = −ω2x, (10.57)

whose solution is

x = A cosωt + B sinωt. (10.58)

If the values of the position (= x) and momentum (= m dx/dt) of the particle at t = 0 are

x0, and p0, respectively, then the constants A and B can be determined, and we obtain

x0(t) = x0 cosωt +
( p0

mω

)
sinωt, (10.59)

p0(t) = p0 cosωt − mωx0 sinωt. (10.60)

Thus the time dependence of the eigenstate ψα(x, t) is given by that of an undistorted

ground-state wavefunction centered at x0(t) moving as if it described a classical particle,

as depicted in Fig. 10.1. This is quite a remarkable result. The state |α〉 is often called a

coherent state or a semiclassical state.

10.3 Interaction of a harmonic oscillator with an electric field

We will now consider the problem of the interaction of an electric field with a charged

particle undergoing simple harmonic motion. This problem will highlight the crucial role

of the operator D(α) that we discussed in the previous section.
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Let H0 be the (unperturbed) Hamiltonian corresponding to the harmonic oscillator in one

dimension,

H0 =
P2

2m
+ 1

2
mω2

0X 2 =
(

a†a+ 1

2

)
�ω0. (10.61)

The eigenstates of H0 will be designated by |n〉, so that H0 |n〉 = En |n〉 where En =
(n+ 1

2
)�ω0. We will be concerned only with the ground state |0〉 with E0 = 1

2
�ω0.

First let us consider the simple example of a time-independent electric field, Ẽ. Its

contribution to the Hamiltonian will be given by

−eẼX (10.62)

where X is the operator for the space coordinate of the particle and e is its charge. We write

X in terms of a and a†:

X =
√

�

2mω0

(
a+ a†

)
. (10.63)

The total Hamiltonian including the perturbation due to the interaction of the electric field

can be written as

H = H0 − eẼX = H0 + λ
(
a+ a†

)
�ω0 (10.64)

where

λ = − eẼ

�ω0

√
�

2mω0
. (10.65)

From equation (10.28) we know that

D†(α)a†aD(α) = a†a+ α∗a+ αa† + |α|2 (10.66)

where D(α) is the operator we discussed in the previous section, given by

D(α) = eαa†−α∗a. (10.67)

From (10.66) we obtain

D†(α)H0D(α) = H0 +
[
α∗a+ αa† + |α|2

]
�ω0. (10.68)

In order to compare this Hamiltonian with the Hamiltonian H given in (10.64) we take

α = λ (10.69)

which is assumed to be real. Thus, from (10.67),

D(α) = eλ
(
a†−a

)
. (10.70)



196 Coherent states

From (10.64), (10.68), and (10.69) we obtain

D†(α)
[
H0 − λ2

�ω0

]
D(α) = H0 + λ

(
a+ a†

)
�ω0 = H . (10.71)

Thus, effectively, D(α) transforms H0 to H . We take |0〉′ as the eigenstate of H with

eigenvalue E′0, and, as stated earlier, |0〉 as the eigenstate of H0 with eigenvalue E0. From

our earlier discussions it is clear that D(α) will satisfy the relation

|0〉′ = D†(α) |0〉 . (10.72)

Sandwiching both sides of the equation (10.71) between the eigenstates |0〉′ then gives

E′0 = E0 − λ2
�ω0 =

1

2
�ω0 − λ2

�ω0 =
1

2
�ω0 −

e2Ẽ2

2mω2
0

. (10.73)

Substituting (10.70) for D(α),we write,

|0〉′ = e−λ(a
†−a) |0〉 . (10.74)

From our earlier results for the ground state we can write down the wavefunction

ψ ′0(x, 0) = 〈x |0〉′ = 〈x| e−λ(a†−a) |0〉 = ψ0(x − x0, 0). (10.75)

Substituting for λ, given by (10.65), we have

x0 =
√

�

2mω0
2λ = − eẼ

mω2
0

. (10.76)

We point out the same results as above were obtained in Chapter 9 simply by chang-

ing variables and writing the term ( 1
2
)mω2

0x2 − eẼx, in the Hamiltonian, H , in terms of

( 1
2
)mω2

0x′2.

Let us consider the more complicated case of an electric field, Ẽ(t), which is time-

dependent. Here the advantage of the above approach involving the operator D(α) will

become evident since the change of variables technique will no longer work. We assume

that initially, at t = 0, the oscillator is in its ground state when the electric field is applied,

and we assume further that the field is applied only for a short duration.

The total Hamiltonian is then

H = H0 − eẼ(t)X = H0 + λ(t)
(
a+ a†

)
�ω0 (10.77)

with

λ(t) = −eẼ(t)

�ω0

√
�

2mω0
. (10.78)
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In the Heisenberg representation, as discussed in Chapter 3, the time dependence of a, in

the absence of perturbation, is given by

i�
da

dt
= [a, H0] = a�ω0, (10.79)

which gives rise to the solution

a(t) = a(0)e−iω0t . (10.80)

In the presence of perturbation with the Hamiltonian given by (10.64), the equation

becomes

i�
da

dt
= [a, H ] = a�ω0 + λ(t)�ω0. (10.81)

The equation of motion for a is then

da

dt
+ iω0a = −iω0λ(t). (10.82)

This equation can be solved using the Green’s function technique (see Appendix 20.13 for

details) to give

a(t) = a(0)e−iω0t − iω0

∞∫

−∞
dt′g(t − t′)λ(t′), (10.83)

where the first term is the homogeneous solution, i.e., the solution in the absence of

perturbation, and g(t − t′) is the Green’s function that satisfies the equation

dg(t − t′)
dt

+ iω0g(t − t′) = δ
(
t − t′

)
. (10.84)

Even though in the integral in (10.83) we have kept the lower limit at t′ = −∞, and upper

limit at t′ = +∞, it is understood that the electric field included in the factor λ(t) appears

for only a short duration.

We write g(t − t′) and the Dirac δ-function, δ
(
t − t′

)
, in the form of a Fourier integral

g(t − t′) = 1√
2π

∞∫

−∞
dω e−iω(t−t′)g(ω) (10.85)

and, as we have discussed in Chapter 1, the δ-function is given by

δ(t − t′) = 1

2π

∞∫

−∞
dω e−iω(t−t′). (10.86)
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Substituting (10.85) and (10.86) in equation (10.84) we obtain

g(ω) = i√
2π

(
1

ω − ω0

)
. (10.87)

Hence

g(t − t′) = i

2π

∞∫

−∞
dω

e−iω(t−t′)

ω − ω0
. (10.88)

To calculate this integral we impose causality. That is, we impose the condition that the

cause as signified by the presence of the electric field, Ẽ(t′), at time t′ (therefore, λ(t′) in

(10.83) at t′) will have its effect only at a time t > t′. Thus we demand that g(t− t′) = 0 for

t < t′. The above integral must then vanish for t < t′. This implies that the pole at ω = ω0

be shifted down to ω0 − iǫ, i.e.,

1

ω − ω0
→ 1

ω − ω0 + iǫ
. (10.89)

One can then use Cauchy’s residue theorem and carry out the integration in the complex

plane to obtain

g(t − t′) = e−iω0(t−t′), for t > t′ (10.90)

= 0, for t < t′. (10.91)

The solution for a(t) now reads

a(t) = a(0)e−iω0t − iω0

t∫

−∞
dt′ e−iω0(t−t′)λ(t′). (10.92)

As we stated earlier, we assume that the electric field Ẽ(t) and, therefore λ(t), appears only

for a short duration, in which case we can safely extend the upper limit along a region in

which λ(t′) is zero, all the way to t′ = ∞. Thus, we write

a(t) = a(0)e−iω0t − iω0e−iω0t

∞∫

−∞
dt′ eiω0t′λ(t′). (10.93)

However, the integral on the right is simply the (inverse) Fourier transform of λ(t) which

we write as λ(ω0). Thus,

a(t) =
[
a(0)− i

√
2πω0λ(ω0)

]
e−iω0t . (10.94)

Comparing this with the time dependence of the unperturbed a(t) given in (10.80) we find

that there is a shift in the unperturbed value a(0) to
[
a(0)− i

√
2πω0λ(ω0)

]
due to the

interaction with the electric field.
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This shift can be accomplished through the operator D(α) since it satisfies the property

D†(α)a(0)D(α) = a(0)+ α (10.95)

if we choose

α = −i
√

2πω0λ(ω0). (10.96)

Thus, an oscillator initially in a ground state |0〉when subjected to a time-dependent electric

field over a finite duration is found, at large values of time t after the interaction is turned

off, to be in the state

|α(t)〉 = e−
iω0t

2 D
(
αe−iω0t

)
|0〉 = e−

iω0t

2 e−
1
2
|α|2 exp

[
αa†e−iω0t

]
|0〉 , (10.97)

which is a coherent state.

10.4 Appendix to Chapter 10

10.4.1 Some important identities involving exponentials of operators

First we note that the exponential of an operator is given by the infinite series

eA = 1+ A

1! +
A2

2! + · · · . (10.98)

Let us now prove the following identities

1. eABe−A = B+ [A, B]+ 1

2! [A, [A, B]]+ 1

3! [A, [A [A, B]]]+ · · · . (10.99)

2. eAeB = eA+B+(1/2)[A,B] (10.100)

where in (2) we assume that both A and B commute with the commutator [A, B].

The proofs are as follows.

1. Let us define a function F(x) in terms of the operators A and B given by

F(x) = exABe−xA (10.101)

where x is a variable, not an operator. We expand it in a Taylor series

F(x) = F(0)+ x

1!F
′(0)+ x2

2!F
′′(0)+ · · · . (10.102)

We note from (10.101) that

F(0) = B (10.103)
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and

F ′(x) = A
[
exABe−xA

]
−
[
exABAe−xA

]
= [A, F(x)] (10.104)

where we have used the fact that A and exp(−xA) commute. Hence,

F ′(0) = [A, B] . (10.105)

From (10.104) we find

F ′′(x) =
[
A, F ′(x)

]
. (10.106)

Hence,

F ′′(0) =
[
A, F ′(0)

]
= [A, [A, B]] . (10.107)

Similarly, continuing with the higher derivatives we obtain the general result

F(x) = B+ x

1! [A, B]+ x2

2! [A, [A, B]]+ · · · . (10.108)

Putting x = 1 we obtain the result (10.99)

2. Consider the function

G(x) = exAexB. (10.109)

Then

G′(x) = AexAexB + AexABexB =
[
A+ exABe−xA

]
G(x). (10.110)

From the expansion (10.99) for the exponential and the assumption that both A and B

commute with [A, B] we can simplify the second term above and write

G′(x) = [A+ B+ x [A, B]] G(x). (10.111)

This differential equation can be solved. We obtain, since G(0) = 1,

G(x) = e[A+B]xe(1/2)[A,B]x2

. (10.112)

Putting x = 1 we obtain (10.100).

10.5 Problems

1. Show that for coherent states

�x�p = �

2

where the expectation values are taken with respect to the coherent state |α〉.
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2. Prove the following result:

D(α1)D(α2) = D (α1 + α2) e
i Im(α1α

∗
2).

3. Consider an arbitrary state |φ〉 as a linear superposition of the harmonic oscillator

states |n〉,

|φ〉 =
∑

n

cn |n〉 .

Express the superposition for |φ〉 in terms of the coherent states |α〉. Since α is

continuous, write

|φ〉 =
∫

dα f (α) |α〉 .

Obtain f (α).

4. For a coherent state |α〉 show that if n = 〈α |N |α〉 where N = a†a then

n = |α|2 .

Also obtain �n defined by

�n =
√〈

N 2
〉
− 〈N 〉2

where the expectation values are taken with respect to the state |α〉.
5. If θ is the phase of the complex quantity α,

α = |α| eiθ

then show that

−i
∂

∂θ
|α〉 = N |α〉 .

6. If operators A, B, and C are related as

[A, B] = iC and [C, A] = iB

then show that

eiAtBe−iAt = B cos t − C sin t.

7. For a coherent state show that the probability of finding a particle in the state |n〉 is

given by the Poisson distribution

P(n) = e−〈n〉
〈n〉n
n! .



202 Coherent states

8. Show that the following completeness relation is satisfied by the coherent states

∫
(d Reα) (d Im α) |α〉 〈α| = 1

π
.

(Hint: substitute the expression for |α〉 in terms of |n〉; use polar coordinates for

integration and completeness condition for |n〉.)
9. Obtain the eigenfunction uα(x) = 〈x |α〉 from the equation

a |α〉 = α |α〉

by writing a in terms of x and p and solving the corresponding first-order differential

equation. Compare your result with the result obtained in the text through the relation

〈x |α〉 = 〈x |D(α)| 0〉.
10. Show through the superposition relation in terms of the states |n〉 that one cannot

construct an eigenstate of the raising operator a†.

11. Determine the propagator function between two coherent states given by
〈
α
∣∣eiH0t/�

∣∣α′
〉
.

12. Take α = |α| eiθ and obtain uα(x, t) = 〈x|αe−iωt〉. Show that it is a Gaussian centered

at
√

2� |α| /mω cos (θ − ωt).

13. Show that

[
eix0p/�, a

]
= x0

√
mω/2�eix0p/�.

From this obtain
〈
n
∣∣eix0p/�

∣∣ 0
〉
.

14. Let

a = beiφ

where b andφ are Hermitian operators. Show that (i)
[
eiφ , b2

]
= eiφ and (ii) b2 = N+1.

15. A harmonic oscillator in its ground state acquires a momentum p0. What is the

probability that it will remain in the ground state?

16. Show that [a, D(α)] = αD(α).



11
Two-dimensional isotropic
harmonic oscillator

This is a simple extension of the one-dimensional harmonic oscillator problem. It will play

an essential role when we consider the famous Landau levels.

11.1 The two-dimensional Hamiltonian

Let us consider a harmonic oscillator in a two-dimensional x–y plane where the spring

constant K
(
= mω2

)
is the same in both directions. The Hamiltonian is then given by

H = p2
x

2m
+

p2
y

2m
+ 1

2
mω2

(
x2 + y2

)
. (11.1)

The operators satisfy the commutation relations

[x, px] = i�1,
[
y, py

]
= i�1, all other commutators = 0. (11.2)

Using the separation of variables technique we can reduce this problem to that of two

one-dimensional harmonic oscillators.As with the one-dimensional problems, we introduce

the lowering and raising operators ax, ay and a
†
x , a

†
y respectively. Specifically, we write

ax =
√

mω

2�

(
x + i

px

mω

)
, (11.3)

ay =
√

mω

2�

(
y + i

py

mω

)
. (11.4)

11.1.1Eigenstates |nx, ny〉 of H

From the above commutation relations for x, y, px, and py we obtain

[
ax, a†

x

]
= 1 =

[
ay, a†

y

]
, all other commutators = 0. (11.5)
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Using the same techniques that we employed in the one-dimensional case, we write the

following sequence of relations and definitions:

H =
(

a†
xax +

1

2

)
�ω +

(
a†

yay +
1

2

)
�ω, (11.6)

Nx = a†
xax, Ny = a†

yay, (11.7)

H =
(

Nx +
1

2

)
�ω +

(
Ny +

1

2

)
�ω. (11.8)

If we designate the eigenstates of H as
∣∣nx, ny

〉
then, based on the discussions on the one-

dimensional systems, we have the following results:

a†
x

∣∣nx, ny

〉
=
√
(nx + 1)

∣∣nx + 1, ny

〉
, a†

y

∣∣nx, ny

〉
=
√
(ny + 1)

∣∣nx, ny + 1
〉
, (11.9)

Nx

∣∣nx, ny

〉
= nx

∣∣nx, ny

〉
, Ny

∣∣nx, ny

〉
= ny

∣∣nx, ny

〉
, (11.10)

H
∣∣nx, ny

〉
=
(
nx + ny + 1

)
�ω

∣∣nx, ny

〉
= (n+ 1) �ω

∣∣nx, ny

〉
, (11.11)

where we have written, nx + ny = n. The last relation implies that the energy eigenvalues

are given by

En = (n+ 1) �ω. (11.12)

We note that different values of nx and ny may add up to the same value of n. That is,

the state |1, 0〉 , for example, corresponding to nx = 1 and ny = 0, will have the same value

(n = 1), as |0, 1〉, which has nx = 0 and ny = 1. Thus we have a 2-fold degeneracy where

two different states will have the same energy eigenvalue.

The fact that
∣∣nx, ny

〉
correspond to two unrelated eigenvalues nx and ny leads one to

suspect that there may be a second operator that commutes with the Hamiltonian. We will

go to the next section to address this question.

11.1.2Eigenstates |n+, n−〉 of H and Lz

Let us consider the operator Lz corresponding to the angular momentum around the z-axis:

Lz = xpy − ypx. (11.13)

Substituting the relations

x =
√

�

2mω

(
ax + a†

x

)
, px = −i

√
m�ω

2

(
ax − a†

x

)
, (11.14)

y =
√

�

2mω

(
ay + a†

y

)
, py = −i

√
m�ω

2

(
ay − a†

y

)
, (11.15)
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and after taking into account the commutation relations between the operators ax, ay, a
†
x ,

and a
†
y , we obtain

Lz = i
(
axa†

y − a†
xay

)
�. (11.16)

It is easy to check that Lz is Hermitian, i.e., L
†
z = Lz .

To determine the commutation relations between Lz and H , we find after some lengthy

calculations that

[(
axa†

y − a†
xay

)
, a†

xax

]
= axa†

y + a†
xay (11.17)

and

[(
axa†

y − a†
xay

)
, a†

yay

]
= −

(
axa†

y + a†
xay

)
. (11.18)

Adding the above two relations we find from (11.6) and (11.16), that Lz and H commute,

[Lz, H ] = 0. (11.19)

Hence Lz and H will have common eigenstates. It can be shown that
∣∣nx, ny

〉
are not the

eigenstates of Lz .

To obtain the relevant eigenstates we define a new set of raising and lowering operators:

a+ =
1√
2

(
ax + iay

)
= 1

2

√
mω

�

[
(x + iy)+ i

(
px + ipy

mω

)]
, (11.20)

a− =
1√
2

(
ax − iay

)
= 1

2

√
mω

�

[
(x − iy)+ i

(
px − ipy

mω

)]
. (11.21)

From the commutation relations of ax and ay one can verify that

[
a+, a

†
+
]
= 1 =

[
a−, a

†
−
]

, all other commutators = 0. (11.22)

To obtain H , we note that

a†
xax + a†

yay =
1

2

(
a

†
+ + a

†
−
)
(a+ + a−)+

1

2

(
a

†
+ − a

†
−
)
(a+ − a−) (11.23)

= a
†
+a+ + a

†
−a−. (11.24)

Substituting this into (11.6), we obtain

H =
(
a

†
+a+ + a

†
−a− + 1

)
�ω = (N+ + N− + 1) �ω (11.25)

where

N+ = a
†
+a+ and N− = a

†
−a−. (11.26)
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Similarly, to obtain Lz , we write

axa†
y − a†

xay = a†
yax − a†

xay (11.27)

since ax, a
†
y commute. Thus

a†
yax − a†

xay =
i

2

(
a

†
+ − a

†
−
)
(a+ + a−)+

i

2

(
a

†
+ + a

†
−
)
(a+ − a−) (11.28)

= i
(
a

†
+a+ − a

†
−a−

)
. (11.29)

Putting this relation into (11.16) gives

Lz = −
(
a

†
+a+ − a

†
−a−

)
� = (N− − N+) �. (11.30)

Let |n+, n−〉 be eigenstates of the mutually commuting operators N+ and N−:

N+ |n+, n−〉 = n+ |n+, n−〉 and N− |n+, n−〉 = n− |n+, n−〉 . (11.31)

Based on the arguments for the one-dimensional case, one can easily show that

a
†
+ |n+, n−〉 =

√
(n+ + 1) |n+ + 1, n−〉 , a

†
− |n+, n−〉 =

√
(n− + 1) |n+, n− + 1〉 .

(11.32)

One also finds

H |n+, n−〉 = (n+ + n− + 1) �ω |n+, n−〉 (11.33)

and

Lz |n+, n−〉 = (n− − n+) � |n+, n−〉 . (11.34)

If, instead of n+, and n− we select the quantum numbers

n = n+ + n− and m = n− − n+ (11.35)

that correspond to the eigenvalues for H and Lz, respectively, then we can designate a new

eigenstate as |n, m〉, where

H |n, m〉 = (n+ 1) �ω |n, m〉 , (11.36)

Lz |n, m〉 = m� |n, m〉 . (11.37)

Since n+ and n− are positive integers and n+ + n− = n, when n takes on values

n = 0, 1, 2, . . . (11.38)
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then n+ and n− go over the values

n+ = 0, 1, . . . and n− = n, n− 1, . . . (11.39)

Hence for each n, the quantum number m will vary as given by (11.35), which gives rise to

the same energy eigenvalues. Hence the degeneracy in the energy levels is n+ 1. Thus, the

degeneracy for the two-dimensional oscillator can be understood in terms of the eigenvalues

of Lz .

We will not proceed further to determine the eigenfunctions. However, we will revisit

this problem when we discuss the so-called Landau levels in Chapter 12.

Finally, two-dimensional oscillators are of great interest in the case where conduction

electrons in a solid are confined within nanometric dimensions. These configurations are

referred to as quantum dots.

11.2 Problems

1. Show that

[ab, cd] = a [b, c] d + ac [b, d]+ [a, c] db+ c [a, d] b.

2. Consider two independent harmonic oscillators for which the raising and lowering

operators are a
†
+ and a+ and a

†
− and a− respectively. Let

A+ = a
†
+a−, A− = a

†
−a+, Az =

(
a

†
+a+ − a

†
−a−

)
.

Using the results from the previous problem show that

[A±, Az] = ±A±.

If one defines Ax and Ay in the same manner as in the case of the angular momentum

operators, then show that

[
A2, Az

]
= 0

where A2 = A2
x +A2

y +A2
z (which can be written in terms of A± and Az). If N+ = a

†
+a+

and N− = a
†
−a− and N = N+ + N− then show that

A2 = N

2

(
N

2
+ 1

)
1.
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In this chapter we consider the motion of a charged particle in a magnetic field. This is

intrinsically a three-dimensional problem but for a charged particle in a uniform magnetic

field it can be recast as a two-dimensional problem since the particle acts as a free particle

in the direction of the magnetic field, while in the plane perpendicular to the magnetic field

the particle’s motion can be described in terms of an equivalent two-dimensional harmonic

oscillator. It is found that when charged particles are subjected to a magnetic field their

orbital motion is quantized. Thus the particles can only occupy orbits with discrete energy

eigenvalues called Landau levels named after the physicist Lev Landau. A characteristic

property of these levels is that they are highly degenerate. We will also briefly discuss the

fascinating subject of the quantum Hall effect.

12.1 Landau levels in symmetric gauge

12.1.1 Basic equations

The Hamiltonian for a free particle is given by

H = p2

2m
. (12.1)

As we discussed in Chapter 2, to include the magnetic interaction we will replace p by

(p−e/cA) in the above Hamiltonian, where A is the vector potential, related to the magnetic

field, B, by

∇ × A = B. (12.2)

Thus the Hamiltonian for a charged particle in the presence of a magnetic field is given by

H = 1

2m

(
p− e

c
A
)2

. (12.3)

We will discuss our results in terms of the velocity, v, given by

v = 1

m

(
p−e

c
A
)

(12.4)
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and consider a uniform magnetic field B in the z-direction,

B = B0k. (12.5)

At the moment we will not commit to a specific gauge for A.

We note that the motion in the z-direction (i.e., parallel to the magnetic field) is unaffected

by the magnetic field and hence the corresponding Hamiltonian H‖ is simply that of a free

particle. In the following discussion we will ignore this motion and consider only H⊥.

Thus, the motion in a plane perpendicular to B, i.e., in the x–y plane is described by

H⊥ =

(
px −

e

c
Ax

)2

2m
+

(
py −

e

c
Ay

)2

2m
= m

2

(
v

2
x + v

2
y

)
. (12.6)

In Chapter 6 we considered this Hamiltonian and showed that

[
vx, vy

]
= i

e�

m2c
B0 = i

�ωc

m
(12.7)

where ωc is the cyclotron frequency

ωc =
eB0

mc
. (12.8)

Since the right-hand side in (12.7) acts like a unit operator times a number, we find that

vx and vy satisfy quantum conditions of the type

[x, p] = i�. (12.9)

Expression (12.6) is reminiscent of the harmonic oscillator Hamiltonian. Let us, therefore,

define the following operators similar to the raising and lowering operators for a harmonic

oscillator:

b =
√

m

2�ωc

(
vx + ivy

)
, b† =

√
m

2�ωc

(
vx − ivy

)
. (12.10)

We then obtain

b†b =
(

m

2�ωc

)[
v

2
x + v

2
y + i

(
vxvy − vyvx

)]
(12.11)

=
(

m

2�ωc

)(
v

2
x + v

2
y

)
− 1

2
(12.12)

where we have used (12.7). Hence the Hamiltonian, H⊥, is simply given by

H⊥ =
(

b†b+ 1

2

)
�ωc. (12.13)

This is now a familiar expression from the harmonic oscillator calculations and the

consequences of using b† and b as raising and lowering operators follow immediately.
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The eigenvalues of H⊥ are then given by

En =
(

n+ 1

2

)
�ωc, n = 0, 1, 2 . . . . (12.14)

These are the familiar Landau levels. However, since this is a two-dimensional system,

we need to examine this problem in the context of a two-dimensional configuration. As

expected, the energy eigenstates are highly degenerate as we will elaborate below.

12.1.2 Symmetric gauge

Consider the following gauge, called the symmetric gauge,

A = 1

2
(B× r) . (12.15)

For B = B0k, we obtain

Ax = −
1

2
B0y, Ay =

1

2
B0x, Az = 0. (12.16)

The velocities are then given by

vx =
1

m

(
px −

e

c
Ax

)
= px

m
+ ωc

2
y, (12.17)

vy =
1

m

(
py −

e

c
Ay

)
= py

m
− ωc

2
x. (12.18)

The corresponding Hamiltonian (12.6) now reads

H = p2
x

2m
+

p2
y

2m
+ 1

8
mω2

c(x
2 + y2)− ωc

2

(
xpy − ypx

)
(12.19)

where the last term is proportional to the angular momentum, which we write as

(Lz)2 =
(
xpy − ypx

)
. (12.20)

We compare H with the two-dimensional isotropic Hamiltonian, which we designate

as H2, considered in the previous chapter. This will allow us to discuss the degeneracies

observed in Landau levels more clearly.

12.1.3 Comparison with the two-dimensional oscillator
and the degeneracy question

The Hamiltonian, H2, is given by (replacing ω by ωc/2),

H2 =
p2

x

2m
+

p2
y

2m
+ 1

8
mω2

c(x
2 + y2).
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Hence,

H = H2 −
ωc

2
Lz. (12.21)

Let us express the operators H , H2, and (Lz)2 in terms of the number operators N+ and

N− defined in the previous chapter. From the previous chapter we have

H2 = (N+ + N− + 1)
�ωc

2
(12.22)

and

(Lz)2 = (N− − N+) �. (12.23)

To obtain H , which is given in (12.3) in terms of b and b†, we note that

v = 1

m

(
p−e

c
A
)

. (12.24)

Therefore, from (12.17) and (12.18) we have the following relation:

b =
√

m

2�ωc

(
vx + ivy

)
= − i

2

√
mωc

2�

[
(x + iy)+ 2i

mωc

(
px + ipy

)]
. (12.25)

Comparing this with a+ and a− of the two-dimensional harmonic oscillator considered in

Chapter 11, we identify

b = −ia+ (12.26)

where we have replaced ω of Chapter 11 by ωc/2. If we define

N+ = a
†
+a+, (12.27)

then our H is of the form

H =
(

N+ +
1

2

)
�ωc. (12.28)

If n+ and n− are the quantum numbers corresponding to the operators N+ and N−,

respectively, then for the two-dimensional oscillator the quantum numbers corresponding

to H2, and (Lz)2 are

n = n+ + n− and m = n− − n+, (12.29)

respectively, where n takes the values

n = 0, 1, 2, . . . . (12.30)
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Fig. 12.1

For a given n, the quantum numbers n+ and n− will vary as

0 ≤ n+ ≤ n and 0 ≤ n− ≤ n with n+ + n− = n. (12.31)

Therefore, m will vary within the limits given by

m = −n, . . . , n. (12.32)

In the Hamiltonian H which involves only the operator N+, for a given eigenvalue

n+ = n, the missing quantum number m is now given by

m = n− − n. (12.33)

There are no restrictions now on n− as it does not contribute to H , except that it be an

integer, i.e, n− = 0, 1, . . . . Therefore,

m = −n,−n+ 1, . . . (12.34)

with no upper limit, indicating an infinite degeneracy. This is the most striking feature of

Landau levels. For example, for the ground state, n = 0

m = 0, 1, . . .

indefinitely. These ground state levels are called the lowest Landau levels (LLLs). Fig. 12.1

describes the Landau levels.

12.2 Wavefunctions for the LLL

We continue with the symmetric gauge, which enables one to write the wavefunction in

a more elegant and transparent way. The lowering operator b defined in (12.10) can be
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written as

b =
√

1

2�mωc

[(
px + ipy

)
− i

mωc

2
(x + iy)

]
. (12.35)

The ground state for the Landau levels |0〉 satisfies the relation

b |0〉 = 0. (12.36)

In the two-dimensional x–y space the ground-state wavefunction u0(x, y) is given by

〈x, y |0〉 = u0(x, y), (12.37)

and b is given by

b =
√

�

2mωc

[(
∂

∂x
+ i
∂

∂y

)
+ mωc

2
(x + iy)

]
. (12.38)

The equation satisfied by u0(x, y) is then

√
�

2mωc

[(
∂

∂x
+ i
∂

∂y

)
+ mωc

2
(x + iy)

]
u0(x, y) = 0. (12.39)

There is a very elegant way of obtaining u0 if we change variables as follows:

z = x + iy, (12.40)

z∗ = x − iy. (12.41)

Then it is straightforward to show that

∂

∂x
+ i
∂

∂y
= ∂

∂z∗
, (12.42)

b =
√

�

2mωc

[
∂

∂z∗
+ mωc

2
z

]
, (12.43)

and

u0(x, y)→ u0(z, z∗). (12.44)

Hence the equation for u0, now written as u0(z, z∗), becomes

[
∂

∂z∗
+ mωc

2
z

]
u0(z, z∗) = 0. (12.45)

The solution for u0(z, z∗) is more easily obtained if we write it as

u0(z, z∗) = f0
(
z, z∗

)
exp

(
−mωc

2�
zz∗

)
. (12.46)
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Substituting this in (12.45) gives

∂

∂z∗
f0
(
z, z∗

)
= 0, (12.47)

which implies that f0 must be a constant as a function of z∗. If we assume that f0 is analytic

as a function of z, then any polynomial in z will satisfy the above equation. Typically,

therefore,

f0
(
z, z∗

)
∼ zq (12.48)

where q is an integer. Thus,

u0(z, z∗) = Czq exp
(
−mωc

2�
|z|2

)
(12.49)

describes the degenerate lowest LLLs for q = 0, 1, 2, . . . .

12.3 Landau levels in Landau gauge

We once again consider a uniform magnetic field B applied in the z-direction:

B = B0k. (12.50)

For simplicity we take the Landau gauge for A given by

A = (0, B0x, 0) . (12.51)

It is easily verified that the relation, B = ∇ × A, is satisfied. Writing the Hamiltonian in

the component form, we have

H = p2
x

2m
+

(
py −

e

c
B0x

)2

2m
+ p2

z

2m
. (12.52)

The eigenvalue equation

Hψ = Eψ (12.53)

can be solved by writing the wavefunction in the separation of variables form discussed in

Chapter 2 as φ(x, y)Z(z). It can be easily shown that Z(z) will correspond to a free particle

wavefunction

Z(z) = N1eikzz (12.54)

with energy eigenvalue �
2k2

z /2m, where N1 is the normalization constant. Thus, the motion

of the particle in the z-direction is decoupled from the influence of the magnetic field. We
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will, therefore, focus entirely on the two-dimensional x–y plane, and confine the particle

within a rectangle of lengths Lx and Ly respectively.

The Schrödinger equation for φ is given by

Hφ =
[
− �

2

2m

∂2φ

∂x2
+ 1

2m

(
−i�

∂

∂y
− eB0

c
x

)2

φ

]
= Eφ. (12.55)

Since this is a differential equation in the x-variable, the solution in the y-variable can be

taken to be that of a free particle. We write

φ(x, y) = u(x)eikyy. (12.56)

Hence u(x) satisfies the equation

⎡
⎢⎢⎢⎣−

�
2

2m

d2u

dx2
+

(
�ky −

eB0

c
x

)2

u

2m

⎤
⎥⎥⎥⎦ = Eu. (12.57)

We take

ωc =
eB0

mc
and x0 =

c�ky

eB0
(12.58)

where ωc is the cyclotron frequency. Thus, the equation is further simplified to

− �
2

2m

d2u

dx2
+ 1

2
mω2

c (x − x0)
2 u = Eu. (12.59)

This is the familiar one-dimensional equation for the harmonic oscillator centered at x = x0,

for which the energy eigenvalues are given by

En =
(

n+ 1

2

)
�ωc, n = 0, 1, 2, . . . . (12.60)

These are the Landau levels. The lowest Landau level corresponding to n = 0 is generally

designated as LLL. The wavefunction for the LLL is of the form

u0(x) = C0e−α(x−x0)
2

(12.61)

where C0 and α are parameters that have already been obtained in Chapter 9 but whose

specific values do not concern us.

We note that the energy eigenvalues are independent of x0; therefore, they will not depend

on ky. There is, therefore, an enormous degeneracy in the energy eigenvalues due to the

spread in the allowed values of ky. This is a striking characteristic of Landau levels as we

already know. This degeneracy can be determined as follows.

Let us now consider the practical consequences of our results by taking the finite extension

of our system into account. We assume our two-dimensional system to be confined in a

rectangle of sides Lx and Ly. We will, therefore, have

0 < x0 < Lx. (12.62)
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Thus,

(x0)max = Lx. (12.63)

Hence,

c�(ky)max

eB0
= Lx. (12.64)

The plane waves in the y-direction satisfy the periodic boundary conditions

kyLy = 2nyπ . (12.65)

Let

N = (ny)max. (12.66)

Then N will determine the amount of degeneracy since it corresponds to the number of

allowed states for which the energy En is the same, given by (12.37). From (12.65) we find

N = (ky)maxLy

2π
=
(

eB0Lx

c�

)
Ly

2π
=
(

eB0

2πc�

)
LxLy. (12.67)

If we write

LxLy = A (12.68)

then A is the area within which the particle is confined. Thus, the maximum allowed number

of degenerate states is, writing 2π� = h,

N = A(
ch

eB0

) . (12.69)

12.4 Quantum Hall effect

It is found in some materials described by a system of electrons in two dimensions, e.g., in

the x–y plane, that if an electric field is applied along the x-direction and a magnetic field

is applied along the z-direction then a current appears in the y-direction. This is the essence

of the Hall effect, which was named after Edwin Hall who discovered it in 1879. The effect

is described in terms of electrical conductivity which, as we will discuss below, is a tensor

σ ij represented by an off-diagonal 2× 2 matrix.

In the integer quantum Hall effect the conductivity is found to be quantized. Its value

is determined entirely by fundamental constants: the Planck constant h and the elementary

charge e. It is found, remarkably, not to depend on the properties of the substance containing
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the electrons, e.g., the dielectric constant, the magnetic permeability, or even the size of the

system.

To discuss this problem let us now return to the Landau gauge, which we considered

earlier.

A = (0, B0x, 0). (12.70)

Since A is entirely in the y-direction, the velocity vy is given by

vy =
(
py −

e

c
Ay

)
. (12.71)

and the Hamiltonian is

H = p2
x

2m
+

(
py −

e

c
B0x

)2

2m
. (12.72)

We found earlier that the energy eigenvalues are given by

En =
(

n+ 1

2

)
�ωc (12.73)

with the ground state (n = 0) wavefunction, corresponding to the lowest Landau level

(LLL), given by

u0(x, y) = u0(x)
eikyy

√
Ly

(12.74)

where we have once again assumed the system to be confined within a rectangle of

dimensions Lx, Ly. The wavefunction u0(x) corresponding to the ground state is given by

u0(x) = C0e−α(x−x0)
2

(12.75)

with

ωc =
eB0

mc
, py = �ky, and x0 =

c�ky

eB0
(12.76)

and 0 < x0 < Lx.

The electromagnetic current of the particle is of the form

jy ∼ evy =
e�

m

(
ky −

eB0

c�
x

)
. (12.77)

It is instructive to derive this form of the current directly from the time-dependent

Schrödinger equation given by

− �
2

2m

∂2ψ

∂x2
+ 1

2m

[
−i�

∂

∂y
− eB0x

c

]2

ψ = i�
∂ψ

∂t
, (12.78)
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i.e.,

− �
2

2m

∂2ψ

∂x2
− �

2

2m

∂2ψ

∂y2
+ i

e�

mc
B0x
∂ψ

∂y
+ e2B2

0x2

2mc2
ψ = i�

∂ψ

∂t
. (12.79)

The complex conjugate of (12.79) is

− �
2

2m

∂2ψ∗

∂x2
− �

2

2m

∂2ψ∗

∂y2
− i

e�

mc
B0x
∂ψ∗

∂y
+ e2B2

0x2

2mc2
ψ∗ = −i�

∂ψ∗

∂t
. (12.80)

We multiply (12.79) by ψ∗ and subtract from it (12.80) multiplied by ψ ,

− �
2

2m

∂

∂x

[
ψ∗
∂ψ

∂x
− ψ ∂u

∗

∂x

]
− �

2

2m

∂

∂y

[
ψ∗
∂ψ

∂y
− ψ ∂ψ

∗

∂y

]

+ ie�

mc
B0x

[
ψ∗
∂ψ

∂y
+ ψ ∂ψ

∗

∂y

]
= i�

∂

∂t

(
ψ∗ψ

)
. (12.81)

If ψ is an eigenstate of energy for LLL (i.e., n = 0) then

ψ = u0(x, y)e−iEt/� (12.82)

where u0(x, y) has been given in (12.74) and (12.75),

u0 (x, y) = C0√
Ly

e−α(x−x0)
2

eikyy, (12.83)

and the right-hand side of (12.81) vanishes. We write equation (12.81) in the form

∇ · j = 0 (12.84)

where j is the current density vector. In terms of the components of j it can be written as

∂jx

∂x
+ ∂jy
∂y
= 0 (12.85)

where

jx =
�

2im

[
u∗0
∂u0

∂x
− u0

∂u∗0
∂x

]
. (12.86)

Since u0 is a real function (it is a bound state wavefunction), the right-hand side is zero.

Thus the current density along the x-direction vanishes. To obtain jy we can write the second

and third terms in (12.81) as

∂jy

∂y
= − �

2

2m

∂

∂y

[(
u∗0
∂u0

∂y
− u0

∂u∗0
∂y

)
− i2eB0x

�c
u∗0u0

]
. (12.87)

Therefore, jy is given by

jy =
e�

2im

{[
u∗0
∂u0

∂y
− u0

∂u∗0
∂y

]
− i2eB0x

�c
u∗0u0

}
, (12.88)
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which from (12.83) gives

jy =
e�

2im

[
2iky −

i2eB0x

c�

]
u∗0u0 (12.89)

= e�

m

[
ky −

eB0x

c�

] |C0|2
Ly

e−2α(x−x0)
2

. (12.90)

We can then write jy as

jy =
e2B0

mc
[x0 − x]

|C0|2
Ly

e−2α(x−x0)
2

, (12.91)

where x0 has been defined in (12.76).

The total current in the x-direction is an integral of jy along the x-direction. However,

since jy is an odd function of x centered at x = x0 , the integral will vanish.

Let us now subject the charged particle to an electric field E0 in the x-direction. The new

Hamiltonian is

H = p2
x

2m
+ 1

2m

[
py −

eB0x

c

]2

− eE0x. (12.92)

We change variables so that the new equation is

− �
2

2m

d2u

dx2
+ 1

2
mω2

c [x − x0]2 u = E′u (12.93)

where

x0 = x0 +
eE0

mω2
c

(12.94)

= c�ky

eB0
+ mc2E0

eB2
0

. (12.95)

The current density is then of the form

jy =
e2B0

mc
[x0 − x] e−2α(x−x̄0)

2 |C|2
Ly

. (12.96)

The integration along the x-direction can now be carried out to give the current

Ix =
eE0

B0Ly
. (12.97)

Since, as we found in (12.67), the number of states in the LLL is

N =
(

eB0

2πc�

)
LxLy, (12.98)
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the corresponding total current is given by (Ix)LLL = NIx. Hence,

(Ix)LLL =
e2E0

2πc�
Lx =

e2

ch
VH (12.99)

where h = 2π�, and where VH (= E0Lx) is the potential difference across the surface.

The above result is independent of the Landau level quantum number, n. This is so because

the wavefunction un for the nth level is normalized and remains a function of (x−x0), hence

the corresponding term (x−x0)u
∗
nun in the expression for jy is an odd function that vanishes

upon integration over x.

Hence, for the case where ν Landau levels below the Fermi energy are filled we have

Itot =
νe2

ch
VH . (12.100)

Thus Itot is quantized. This is the essence of the quantum Hall effect.

We note that while the electric field is in the x-direction, the current is in the y-direction,

the relation between the current and electric field is, therefore, tensorial in character,

jy = σ yxEx (12.101)

where σ yx is a tensor corresponding to electrical conductivity. Expression (12.100) is simply

the integral of (12.96) along the x-axis since the integral of jy along the x-axis gives Itot and

the integral of E0 also along the x-axis gives VH . Hence we conclude that

σ yx =
νe2

ch
, ν = 1, 2, . . . . (12.102)

This is the off-diagonal element of the Hall conductivity, which is quantized. The diagonal

element σ xx vanishes since there is no current in the direction of the applied field. The

experimental determination of this conductivity, and the evidence of quantization, has been

astonishingly precise, almost one part in 109. This effect also provides an incredibly precise

measurement of the fine structure constant, e2/�c. There exists also a fractional quantum

Hall effect in which one finds ν = 2/7, 1/3, 2/5 . . . .

12.5 Wavefunction for filled LLLs in a Fermi system

Suppose now that all the energy levels corresponding to LLLs are filled up to an energy

that is less than or equal to the Fermi energy. The wavefunction is then the product of each

of the wavefunctions. Since, according to the Pauli principle, no two states can occupy the

same level, there can be only one electron per level. There is then only one way to construct

a product of wavefunctions: the wavefunction for each level must pick a different value

of q. Hence the wavefunction uLLL for N filled levels will be

[
z0
1z1

2 . . . z
N−1
N

]
exp

(
−mωc

2�

N−1∑

i=1

ziz
∗
i

)
(12.103)
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where zi’s are the z-values of the individual levels. Since the total wavefunction must be an

antisymmetric function, we need to obtain the Slater determinant

det

∣∣∣∣∣∣∣∣∣∣∣

1 z1 . . zN−1
1

1 z2 . . zN−1
2

. . . . .

. . . . .

1 zN . . zN−1
N

∣∣∣∣∣∣∣∣∣∣∣

. (12.104)

Since the above determinant vanishes for zi = zj , it must involve products of the form

(zi − zj). Thus, the determinant will be the following for different values of N :

N = 2 : (z2 − z1), (12.105)

N = 3 : (z2 − z1)(z3 − z2)(z1 − z3), (12.106)

and so on. One finds then that uLLL will be given by

uLLL =
N∏

i<j

(
zi − zj

)
exp

(
−mωc

2�

N∑

k=1

|zk |2
)

. (12.107)

The phenomenon described above corresponds to what is called the integer quantum Hall

effect in which we have considered the case where all N levels are filled.

However, one may have a situation where not all levels are filled in which case the

wavefunction cannot be represented by a unique single product but will be represented as

a superposition of different states. An interesting phenomenon occurs if only

N

2p+ 1
(12.108)

states are occupied, where p = 1, 2, . . . (p = 0 corresponds to fully filled levels). This

gives rise to the so called fractional quantum Hall effect where 1/ (2p+ 1) is called the

filling factor. The wavefunction for this system is conjectured by Laughlin to be

N∏
i<j

(
zi − zj

)(2p+1)
, (12.109)

which is found in many cases to be a good approximation to the actual ground-state

wavefunction.

12.6 Problems

1. From expression (6.37) for the commutator
[
Pi, Pj

]
converted to

[
vi, vj

]
through the

relation v = P/m, and the Hamiltonian given by H = (1/2)mv2, use the Heisenberg
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equation of motion to show that if the magnetic field B is a constant then

dv

dt
= e

mc
(v × B) .

Take B =B0k and derive the equations for vx, vy, vz. Show that vx and vy satisfy the

harmonic oscillator equations, while vz satisfies the free particle equation.

2. Show that if B is not a constant then

[
Bi, vj

]
=
(

i�

m

)
∂Bi

∂xj
.

From the Heisenberg equation of motion and the above relation show that

dv

dt
= e

mc
(v × B)+ i

e�

2m2c
∇ × B.

3. If B =B0k then for the gauge A = (−B0y, 0, 0) derive the formula for the Landau levels.
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Having obtained exact solutions for the one-level problems, we turn now to exact solutions

in two-channel problems. Many problems, particularly those involving particles with spin

½, which we will discuss in the next chapter are, indeed, two-level systems. In fact, as we

will see in this chapter and in Chapters 14 and 15 to follow, that two-channel problems

combine to form perhaps the richest manifestation of the success of quantum mechanics in

providing explanations of some far-reaching and puzzling problems.

13.1 Time-independent problems

13.1.1 Basic formalism

We assume that in a system of two levels, described in Fig. 13.1, the Hamiltonian, H0, has

eigenstates
∣∣ψ0

i

〉
with eigenvalues E0

i ,

H0

∣∣∣ψ0
i

〉
= E0

i

∣∣∣ψ0
i

〉
, with i = 1, 2 (13.1)

with 〈ψ0
i |ψ0

j 〉 = δij , where the scalar product includes possible integrations over the space

variables. Let us assume that the eigenstates and eigenvalues of H0, the “unperturbed”

Hamiltonian, are known. From the knowledge of these facts we need to determine the

eigenvalues and eigenvectors of a more complicated Hamiltonian that has an additional,

“perturbative,” term, H ′, that does not depend on time:

H = H0 + H ′ (13.2)

|   1
0〉ΨE 1

0 , 

|   2
0〉ΨE 2

0 , 

Fig. 13.1
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where H0 and H ′ are Hermitian. If |ψ〉 is an eigenstate of H then it will satisfy

H |ψ〉 = E |ψ〉 . (13.3)

Our aim is to determine |ψ〉 and E. From our discussions in Chapter 1 it is clear that we will

need to make a unitary transformation to change basis from
∣∣ψ0

i

〉
to
∣∣ψ i

〉
. First we consider

the problem more simply by using the superposition principle.

Since
∣∣ψ0

i

〉
, with i = 1, 2, form a complete orthonormal set then, from the superposition

principle, one can write

|ψ〉 = c1

∣∣∣ψ0
1

〉
+ c2

∣∣∣ψ0
2

〉
(13.4)

where, the probability amplitudes, c1 and c2 are constants satisfying the relation

|c1|2 + |c2|2 = 1. (13.4a)

To obtain |ψ〉 we need to obtain c1 and c2.

Substituting (13.4) and (13.2) in (13.3) we find

(
H0 + H ′) (c1

∣∣∣ψ0
1

〉
+ c2

∣∣∣ψ0
2

〉)
= E

(
c1

∣∣∣ψ0
1

〉
+ c2

∣∣∣ψ0
2

〉)
. (13.5)

We define the matrix elements of H ′ as

〈
ψ0

i

∣∣∣H ′
∣∣∣ψ0

j

〉
= H ′

ij (13.6)

and note from the Hermiticity condition of H ′ (i.e., H ′† = H ′) that

H ′
ji =

〈
ψ0

j

∣∣∣H ′
∣∣∣ψ0

i

〉
=
〈
ψ0

j

∣∣∣H ′†
∣∣∣ψ0

i

〉
=
〈
ψ0

i

∣∣∣H ′
∣∣∣ψ0

j

〉∗
= H ′∗

ij . (13.7)

Since H0, H ′, and
∣∣ψ0

i

〉
are presumed to be known, these matrix elements are calculable.

After multiplying both sides of (13.5) by
〈
ψ0

1

∣∣ and by
〈
ψ0

2

∣∣ and using the orthonormality

of the two states, we obtain two simultaneous equations for the coefficients c1 and c2:

c1(E
0
1 − E + H ′

11)+ c2H ′
12 = 0, (13.8)

c1H ′
21 + c2(E

0
2 − E + H ′

22) = 0. (13.9)

The determinant formed by the coefficients of c1 and c2 must, therefore, vanish,

∥∥∥∥
[(

E0
1 − E + H ′

11

)
H ′

12

H ′
21 (E0

2 − E + H ′
22)

]∥∥∥∥ = 0 (13.10)

which leads to the following quadratic equation in E:

(
E0

1 − E + H ′
11

) (
E0

2 − E + H ′
22

)
−
∣∣H ′

12

∣∣2 = 0 (13.11)
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where we have used the property (13.7). In the following, for the purposes of simplification,

we consider H ′
12 to be real, and designate

A = E0
1 + H ′

11, B = E0
2 + H ′

22, D = H ′
12 and � = A− B. (13.12)

Equation (13.11) is then found to be

E2 − (A+ B)E + AB− D2 = 0. (13.13)

The solutions of this equation are given by

E+ =
A+ B+

√
�2 + 4D2

2
, (13.14)

E− =
A+ B−

√
�2 + 4D2

2
. (13.15)

Since, by definition, the square-roots are positive, i.e.,
√
α2 = + |α|, we have

E+ > E−. (13.16)

For each solution of E we obtain the corresponding values of c1 and c2 from either of the

equations (13.8) or (13.9) supplemented by the normalization condition (13.4a). We will

then have two orthonormal solutions,
∣∣ψ+

〉
and

∣∣ψ−
〉
given by

H
∣∣ψ+

〉
= E+

∣∣ψ+
〉
, (13.17)

H
∣∣ψ−

〉
= E−

∣∣ψ−
〉
. (13.18)

13.1.2 Simple example

For the purposes of illustration we consider a particularly simple example where

H ′
11 = 0 = H ′

22 and E0
1 = 0 = E0

2 , (13.19)

which imply A = 0, B = 0, and � = 0. The equations (13.8) and (13.9) now become

−c1E + c2H ′
12 = 0, (13.20)

c1H ′
21 − c2E = 0. (13.21)

And the quadratic equation (13.11) is found to be

E2 −
∣∣H ′

12

∣∣2 = 0. (13.22)

This gives two simple eigenvalues:

E+ = +
∣∣H ′

12

∣∣ and E− = −
∣∣H ′

12

∣∣ . (13.23)
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From (13.20) we note that for the eigenvalue E+ we have c1/c2 = 1, while for E− we

have c1/c2 = −1 (note that because of the determinant condition (13.22), the equation

(13.21) will give the same answers). Incorporating the normalization condition (13.4a) we

find c1 = c2 = 1/
√

2 and

∣∣ψ+
〉
=

∣∣ψ0
1

〉
+
∣∣ψ0

2

〉
√

2
with eigenvalue E+ = +

∣∣H ′
12

∣∣ . (13.24)

For the second solution, we take, c1 = −c2 = −1/
√

2 and

∣∣ψ−
〉
= −

∣∣ψ0
1

〉
+
∣∣ψ0

2

〉
√

2
with eigenvalue E− = −

∣∣H ′
12

∣∣ . (13.25)

As expected,
∣∣ψ+

〉
and

∣∣ψ−
〉
satisfy the orthonormality condition.

13.1.3 Formalism in terms of mixing angles

Returning to a general two-level problem, we could simplify the equations by expressing c1

and c2 in a particularly convenient form, in terms of cosine and sine functions, which makes

the orthonormality of the state vectors manifest. We express (13.4) for the two eigenstates as

∣∣ψ1

〉
= cos θ

∣∣∣ψ0
1

〉
+ sin θ

∣∣∣ψ0
2

〉
and

∣∣ψ2

〉
= − sin θ

∣∣∣ψ0
1

〉
+ cos θ

∣∣∣ψ0
2

〉
(13.26)

where we have assumed that for θ = 0 there is no interaction and
∣∣ψ i

〉
coincide with

∣∣ψ0
i

〉
.

This equation can be written in a compact matrix form as

[∣∣ψ1

〉
∣∣ψ2

〉
]
=
[

cos θ sin θ

− sin θ cos θ

][∣∣ψ0
1

〉
∣∣ψ0

2

〉
]

. (13.27)

The above matrix equation can be expressed as

|ψ〉 = R (θ)

∣∣∣ψ0
〉

(13.28)

where |ψ〉 and
∣∣ψ0

〉
are column matrices appearing in (13.27) and the rotation matrix R (θ)

is given by

R (θ) =
[

cos θ sin θ

− sin θ cos θ

]
. (13.29)

This implies that we are rotating the basis from the unperturbed states to the perturbed states

in order to solve our eigenvalue problem. Since R†R = 1, the rotation preserves the norms

of the state vectors, 〈ψ |ψ〉 = 〈ψ0
∣∣ψ0

〉
. This is an example of the unitary transformation

that was discussed in Chapter 1.
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The eigenvalue equation (13.3) can be written as H
∣∣ψ j

〉
= Ej

∣∣ψ j

〉
and, therefore, we

can write the following relation for the matrix elements of H using orthonormality of the

eigenstates,

〈
ψ i

∣∣H
∣∣ψ j

〉
= Ejδij. (13.30)

This implies that H is diagonal in the
∣∣ψ i

〉
basis and its diagonal values are Ei. Since the

matrix elements
〈
ψ0

i

∣∣H

∣∣∣ψ0
j

〉
are calculable we need to express the left-hand side of the

above equation in terms of it. This can be accomplished using completeness.

We first introduce a complete set of states in (13.30),

∑

l,m

〈
ψ i

∣∣ψ0
l 〉
〈
ψ0

l

∣∣∣H

∣∣∣ψ0
m

〉 〈
ψ0

m

∣∣∣ψ j

〉
= Eiδij (13.31)

where
〈
ψ0

l

∣∣H
∣∣ψ0

m

〉
corresponds to the matrix elements of H with respect to

∣∣ψ0
i

〉
as the

basis. We can write this matrix as

{〈
ψ0

l

∣∣∣H

∣∣∣ψ0
m

〉}
=
[
E0

1 + H ′
11 H ′

12

H ′
21 E0

2 + H ′
22

]
. (13.32)

Using the notations A, B, and D defined in (13.12), and also assuming D (i.e., H ′
12) to be

real, the above matrix can be expressed as

{〈
ψ0

l

∣∣∣H

∣∣∣ψ0
m

〉}
=
[

A D

D B

]
. (13.33)

The matrix relation (13.31) can then be written as

[
cos θ sin θ

− sin θ cos θ

] [
A D

D B

] [
cos θ − sin θ

sin θ cos θ

]
=
[
E1 0

0 E2

]
. (13.34)

The product of the matrices on the left-hand side above can be carried out to obtain

[
A cos2 θ + 2D sin θ cos θ + B sin2 θ −

(
A− B) sin θ cos θ + D(cos2 θ − sin2 θ

)

−
(
A− B) sin θ cos θ + D(cos2 θ − sin2 θ

)
A sin2 θ − 2D sin θ cos θ + B cos2 θ

]
.

(13.35)

Since the right-hand side of (13.35) is diagonal, on the left-hand side we must have

−(A− B) sin θ cos θ + D(cos2 θ − sin2 θ) = 0, (13.36)

which will give us a relation for the rotation angle, θ . This relation, in terms of tan 2θ , is

given by

tan 2θ = 2D

A− B
= 2D

�
(13.37)
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where � = A− B, as defined in (13.12). One can also determine tan θ from (13.37),

tan θ = −�+
√
�2 + 4D2

2D
(13.38)

where the “+” sign is chosen so that for� > 0, and D > 0 we will have θ = 0 in the limit

when D → 0. This can be shown by expanding
√
�2 + 4D2, which for small values of D

gives

tan θ → D

�
→ 0. (13.39)

Once the mixing angle θ is calculated, one can express
∣∣ψ1

〉
and

∣∣ψ2

〉
in terms of

∣∣ψ0
1

〉

and
∣∣ψ0

2

〉
, given by

∣∣ψ1

〉
= cos θ

∣∣∣ψ0
1

〉
+ sin θ

∣∣∣ψ0
2

〉
, (13.40)

∣∣ψ2

〉
= − sin θ

∣∣∣ψ0
1

〉
+ cos θ

∣∣∣ψ0
2

〉
. (13.41)

We can also now obtain the energy eigenvalues,

E1 = A cos2 θ + 2D sin θ cos θ + B sin2 θ , (13.42)

E2 = A sin2 θ − 2D sin θ cos θ + B cos2 θ

and determine E+ and E−.

We note that if E1 > E2 then (E+, E−) = (E1, E2) and
(∣∣ψ+

〉
,
∣∣ψ−

〉)
=

(∣∣ψ1

〉
,
∣∣ψ2

〉)
,

while if E1 < E2 then relations are changed accordingly. This connection will be discussed

further in Section 13.1.5.

For the example considered earlier, H ′
11 = 0 = H ′

22, and E0
1 = 0 = E0

2 , assuming H ′
12 to

be real, we have

A = 0 = B = � and D =
∣∣H ′

12

∣∣ . (13.43)

Thus, from (13.37) and (13.38) we obtain

tan 2θ = +∞ and tan θ = +1.

Hence the rotation angle is found to be

θ = π
4

. (13.44)

The eigenvalues and eigenfunctions are then given by

E+ = E1 =
∣∣H ′

12

∣∣ , (13.45)

E− = E2 = −
∣∣H ′

12

∣∣ (13.46)
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and

∣∣ψ+
〉
=

∣∣ψ0
1

〉
+
∣∣ψ0

2

〉
√

2
, (13.47)

∣∣ψ−
〉
= −

∣∣ψ0
1

〉
+
∣∣ψ0

2

〉
√

2
. (13.48)

Below we consider some further examples using (13.37) and (13.38).

13.1.4 More examples

Example 1

{〈
ψ0

i

∣∣∣H

∣∣∣ψ0
j

〉}
=
[

A D

D A

]
. (13.49)

This is the degenerate case with A = B and, therefore,� = 0. The eigenvalues are given by

E+ = A+ |D| , (13.50)

E− = A− |D| (13.51)

where we have written
√
�2 = |D| . The mixing angle is obtained as

tan 2θ = ∞, (13.52)

tan θ = |D|
D

. (13.53)

(i) For D > 0

tan θ = +1 and θ = π
4

, (13.54)

∣∣ψ+
〉
= 1√

2

[∣∣∣ψ0
1

〉
+
∣∣∣ψ0

2

〉]
and

∣∣ψ−
〉
= 1√

2

[
−
∣∣∣ψ0

1

〉
+
∣∣∣ψ0

2

〉]
. (13.55)

(ii) For D < 0, i.e., D = − |D|

tan θ = −1 and θ = 3π

4
, (13.56)

∣∣ψ+
〉
= 1√

2

[
−
∣∣∣ψ0

1

〉
+
∣∣∣ψ0

2

〉]
and

∣∣ψ−
〉
= − 1√

2

[∣∣∣ψ0
1

〉
+
∣∣∣ψ0

2

〉]
. (13.57)

But the energy eigenvalues remain unchanged:

E+ = A+ |D| , (13.58)

E− = A− |D| . (13.59)
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Example 2

{〈
ψ0

i

∣∣∣H

∣∣∣ψ0
j

〉}
=
[

0 D

D B

]
(13.60)

with D ≪ B. We note that � = −B and

E+ =
B+

√
B2 + 4D2

2
≈ B+ B+ 2D2

B

2
≈ B, (13.61)

E− = −
D2

B
(13.62)

where we have expanded the square root in (13.61) since D ≪ B. The mixing angle is

given by

tan 2θ = −2D

B
, (13.63)

tan θ = B+
√

B2 + 4D2

2D
≈ B

D
≫ 1. (13.64)

Here we have a case where tan 2θ is small and negative while tan θ is large and positive.

Thus θ must be close to but slightly less than π/2. The state vectors are then

∣∣ψ+
〉
≃
∣∣∣ψ0

2

〉
and

∣∣ψ−
〉
≃ −

∣∣∣ψ0
1

〉
. (13.65)

An interesting outcome of the condition D ≪ B is that the mixing angle can be simply

related to the eigenvalues; for example, if we write

θ = π/2− ǫ (13.66)

then the relation for tan 2θ yields tan 2ǫ = 2D/B. However, ǫ is very small since D ≪ B,

so that one can write tan 2ǫ ≈ 2ǫ. We then obtain

ǫ = D

B
=
√
|E−|
E+

. (13.67)

This result has some interesting implications in quark physics and for the neutrinos. In

the relativistic context the energy E of a particle is proportional to mc2, where m is the mass

of the particle. If we relate the smaller of the two energy values, E−, to the particle with a

smaller mass, m1, and the larger, E+, to m2, then

ǫ =
√

m1

m2
(13.68)

This is a very well-known result in neutrino physics, where it goes under the name “see-saw

mechanism.”

Further examples are considered in the Problems in Section 13.3.
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13.1.5 Level crossing and switching of eigenstates

Let us consider the energy levels E± and their trajectories for arbitrary values of A and B

in the limit �→±∞, as illustrated in Fig. 13.2. The expressions for E± are given by

E+ =
A+ B+

√
�2 + 4D2

2
, (13.69)

E− =
A+ B−

√
�2 + 4D2

2
(13.70)

where � = A− B. Consider first the case when D = 0, and

E+ =
A+ B+ |�|

2
, (13.71)

E− =
A+ B− |�|

2
. (13.72)

In this case there is no coupling between the two levels since the matrix element D (= H ′
12)

that connects the two channels is zero. The trajectories for E± as �→ ±∞ are given by

the dotted lines in Fig. 13.2. These are straight lines which intersect at a point where� = 0

(i.e., A = B), where E+ = E−
However when D � =0 these levels “repel” each other. We find that at the point of closest

separation, when � = 0, we have E+ − E− = 2 |D|.

|   〉1
0Ψ

|   〉1
0

|   〉2
0Ψ

|   〉– ,E–Ψ

Ψ

Ψ

|   〉+,E+Ψ 

|   〉2
0

A

B

0 ∆

Fig. 13.2



232 Two-level problems

For a fixed value of D, we now examine the behavior of E± and
∣∣ψ±

〉
as � → +∞,

and as � → −∞. The trajectories are given by the solid lines in Fig.13.2. We note the

following:

(i) In the limit �→ +∞, since � = A− B, we must have A > B and, since D is finite

and much less than �, |�| = A− B, and

E+ =
A+ B+ |�|

2
= A, (13.73)

E− =
A+ B− |�|

2
= B. (13.74)

The mixing angle then has the behavior

tan θ = − |�| +
√
�2 + 4D2

2D
≈ |D|
|�| → 0 (13.75)

since |D| ≪ |�|. Therefore, in this limit, θ → 0 and the wavefunctions have the behavior

∣∣ψ+
〉
→

∣∣∣ψ0
1

〉
and

∣∣ψ−
〉
→

∣∣∣ψ0
2

〉
. (13.76)

(ii) In the limit �→−∞, we must have A < B and thus |�| = B− A, and

E+ =
A+ B+ |�|

2
= B, (13.77)

E− =
A+ B− |�|

2
= A. (13.78)

The mixing angle then has the behavior

tan θ = |�| +
√
�2 + 4D2

2D
≈ |�|

D
→∞. (13.79)

Therefore, θ → π/2, with the wavefunctions given by

∣∣ψ+
〉
→

∣∣∣ψ0
2

〉
and

∣∣ψ−
〉
→−

∣∣∣ψ0
1

〉
. (13.80)

Thus, we have a rather remarkable situation that as � varies from +∞ to −∞, the

eigenstates “switch” sides:

∣∣ψ+
〉
→

∣∣∣ψ0
1

〉
as �→+∞ (13.81)

→
∣∣∣ψ0

2

〉
as �→−∞ (13.82)

and

∣∣ψ−
〉
→

∣∣∣ψ0
2

〉
as �→+∞ (13.83)

→−
∣∣∣ψ0

1

〉
as �→−∞. (13.84)
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These results have some very interesting implications in important physical phenomena

such as the solar neutrino puzzle, which will be discussed in Chapter 15.

13.1.6 Relation between energy eigenstates and eigenvalues in two
different frameworks

As we mentioned earlier, for E+ > E− one must identify E+ with the larger of the two

eigenvalues E1, E2, and E− with the smaller. We will make this connection a bit more formal

in the following way.

We start with the following product involving the energy eigenstates
∣∣ψ i

〉
of the total

Hamiltonian H , with the eigenvalues E1 and E2,

[〈
ψ1

∣∣ 〈
ψ2

∣∣]
[
E1 0

0 E2

] [∣∣ψ1

〉
∣∣ψ2

〉
]

. (13.85)

Let us now express
∣∣ψ i

〉
’s in terms of

∣∣ψ0
i

〉
’s using (13.27). The above product is then

given by

[〈
ψ0

1

∣∣ 〈
ψ0

2

∣∣]
[
cos θ − sin θ

sin θ cos θ

] [
E1 0

0 E2

] [
cos θ sin θ

− sin θ cos θ

][∣∣ψ0
1

〉
∣∣ψ0

2

〉
]

. (13.86)

The product of the middle three matrices can be expressed as

1

2

[
E1 + E2 − δ cos 2θ −δ sin 2θ

−δ sin 2θ E1 + E2 + δ cos 2θ

]
(13.87)

where δ = E2 − E1.

The eigenvalues of the above are what we have defined as E+ and E−. Even though all

this looks like a roundabout way of getting the same results that we started with, it provides

an important comparison between E± and E1,2. The eigenvalues then are

E± =
1

2

(
E1 + E2 ±

√
δ2 cos2 2θ + δ2 sin2 2θ

)
= 1

2
(E1 + E2 ± |δ|) (13.88)

where we have written
√
δ2 cos2 2θ + δ2 sin2 2θ = |δ|.

Let us now consider two cases.

(i) E1 > E2, in which case |δ| = E1 − E2. We then have

E+ = E1, E− = E2, (13.89)

∣∣ψ+
〉
=
∣∣ψ1

〉
,
∣∣ψ_

〉
=
∣∣ψ2

〉
, (13.90)

and

[〈
ψ1

∣∣ 〈
ψ2

∣∣]
[
E1 0

0 E2

][∣∣ψ1

〉
∣∣ψ2

〉
]
=
[〈
ψ+

∣∣ 〈
ψ_

∣∣]
[
E+ 0

0 E−

][∣∣ψ+
〉

∣∣ψ−
〉
]

. (13.91)
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(ii) E2 > E1, in which case |δ| = E2 − E1. We then have

E+ = E2, E− = E1, (13.92)

∣∣ψ+
〉
=
∣∣ψ2

〉
,
∣∣ψ_

〉
=
∣∣ψ1

〉
, (13.93)

and

[〈
ψ1

∣∣ 〈
ψ2

∣∣]
[
E1 0

0 E2

] [∣∣ψ1

〉
∣∣ψ2

〉
]
=
[〈
ψ_

∣∣ 〈
ψ+

∣∣]
[
E_ 0

0 E+

] [∣∣ψ−
〉

∣∣ψ+
〉
]

. (13.94)

These results provide important information on the relation between the two basis sets

and their eigenvalues. They will be useful when we discuss the solar neutrino puzzle in

Chapter 15.

13.2 Time-dependent problems

13.2.1 Basic formalism

Once again, we start with an unperturbed Hamiltonian, H0, for which the eigenstates and

eigenvalues are known with a perturbing Hamiltonian, H ′(t), which is now time-dependent.

The total Hamiltonian is then given by

H = H0 + H ′(t) (13.95)

with the state vectors |φ (t)〉, which are time-dependent. The time-evolution equation of

|φ (t)〉 is given by

i�
∂

∂t
|φ (t)〉 = H |φ (t)〉 . (13.96)

From the superposition principle we know that if
∣∣φ1 (t)

〉
and

∣∣φ2 (t)
〉
are two orthonormal

state vectors in the two-level Hilbert space, then another state vector |φ (t)〉 can be expressed

in terms of these as

|φ (t)〉 = c1

∣∣φ1 (t)
〉
+ c2

∣∣φ2 (t)
〉
. (13.97)

The coefficients, c1 and c2, will be functions of time depending on the time-evolution

equations that the three state vectors satisfy. If all three satisfy the same equation, then it

can easily be shown that c1 and c2 will be independent of time. On the other hand, if, for

example,
∣∣φ1 (t)

〉
and

∣∣φ2 (t)
〉
satisfy the time-evolution equation with H0 as the Hamiltonian,

while |φ (t)〉 satisfies the equation with H as the Hamiltonian, then c1 and c2 will depend

on time.

We will elaborate on the above comments by considering the following problem.
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Let
∣∣ψ0

i (t)
〉
with i = 1, 2 be the eigenstates with eigenvalues E0

i . They will satisfy the

time-dependent relation

i�
∂

∂t

∣∣∣ψ0
i

〉
= H0

∣∣∣ψ0
i

〉
= E0

i

∣∣∣ψ0
i

〉
. (13.98)

The solution is given by

∣∣∣ψ0
i (t)

〉
=
∣∣∣ψ0

i (0)
〉
e
− iE0

i t

� . (13.99)

We note that
∣∣ψ0

i (t)
〉
are orthonormal, if, as we will assume in the following,

∣∣ψ0
i (0)

〉
are

also orthonormal.

The equation satisfied by a general state vector |ψ (t)〉 is then

i�
∂

∂t
|ψ (t)〉 = H |ψ(t)〉 =

(
H0 + H ′(t)

)
|ψ(t)〉 . (13.100)

The matrix representation of the Hamiltonian with
∣∣ψ0

1 (t)
〉
and

∣∣ψ0
2 (t)

〉
as the basis will be

〈
ψ0

i (t)

∣∣∣H

∣∣∣ψ0
j (t)

〉
=
[
E0

1 + H ′
11(t) H ′

12(t)

H ′
21(t) E0

2 + H ′
22(t)

]
. (13.101)

We express |ψ (t)〉 as a superposition of
∣∣ψ0

i (t)
〉
,

|ψ (t)〉 = c1(t)

∣∣∣ψ0
1 (t)

〉
+ c2(t)

∣∣∣ψ0
2 (t)

〉
(13.102)

where

|c1(t)|2 + |c2(t)|2 = 1. (13.103)

We point out that
∣∣ψ0

1 (t)
〉
and

∣∣ψ0
2 (t)

〉
satisfy the equation (13.98), which is different from

the equation (13.100) for |ψ (t)〉, and thus c1 and c2 will be functions of t. Substituting this

expression into (13.100) we obtain

i�
∂

∂t

(
c1(t)

∣∣∣ψ0
1 (t)

〉
+ c2(t)

∣∣∣ψ0
2 (t)

〉)
=
(
H0 + H ′(t)

) (
c1(t)

∣∣∣ψ0
1 (t)

〉
+ c2(t)

∣∣∣ψ0
2 (t)

〉)
.

(13.104)

Using (13.98) for
∣∣ψ0

i (t)
〉

on the left-hand side we note that the derivative terms(
∂
∣∣ψ0

i (t)
〉
/∂t

)
cancel the contribution of H0 on the right-hand side. Equating the leftover

terms we obtain

i�
(
ċ1

∣∣∣ψ0
1 (t)

〉
+ ċ2

∣∣∣ψ0
2 (t)

〉)
= c1(t)H

′(t)
∣∣∣ψ0

1 (t)
〉
+ c2(t)H

′(t)
∣∣∣ψ0

2 (t)
〉

(13.105)

where

ċi =
dci

dt
. (13.106)
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Multiplying both sides of (13.105), consecutively by
〈
ψ0

1 (t)
∣∣ and

〈
ψ0

2 (t)
∣∣, respectively, we

obtain two equations,

i�ċ1 = c1H ′
11(t)+ c2H ′

12(t) exp(iω12t), (13.107)

i�ċ2 = c1H ′
21(t) exp(−iω12t)+ c2H ′

22(t), (13.108)

where we have defined

H ′
ij(t) =

〈
ψ0

i (0)

∣∣∣H ′(t)
∣∣∣ψ0

j (0)
〉

and ω12 =
(
E0

1 − E0
2

)

�
. (13.109)

In the following sections we will discuss the solutions of (13.107) and (13.108) for different

types of H ′
ij(t).

13.2.2 Constant perturbation

Let us consider the above equations for the case where the perturbation H ′(t) is applied at

t = 0 and is a constant for t ≥ 0, as in Fig. 13.3. In particular, we take

H ′
12(t) = H ′

21(t) = constant = �γ for t ≥ 0, (13.110)

H ′
12(t) = H ′

21(t) = 0 for t < 0. (13.111)

We first consider an example where

H ′
11 = H ′

22 = 0, E0
2 = E0

1 = E0. (13.112)

The matrix representation of H will be

〈
ψ0

i (t)

∣∣∣H

∣∣∣ψ0
j (t)

〉
=
[

E0 �γ

�γ E0

]
. (13.113)

Here we find that ω12 = 0. From (13.107) and (13.108) we obtain the following coupled

equations:

iċ1 = γ c2, (13.114)

iċ2 = γ c1. (13.115)

0 t > 0 t

H '(t )

Fig. 13.3
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Taking derivatives on both sides of (13.114) we obtain, using (13.115),

c̈1 = −γ 2c1, (13.116)

whose solution is

c1 = A cos γ t + B sin γ t. (13.117)

Similarly, we obtain

c̈2 = −γ 2c2 (13.118)

with solution

c2 = C cos γ t + D sin γ t. (13.119)

We assume the following conditions at t = 0,

c1(0) = 1 and c2(0) = 0. (13.120)

With this initial condition, it is easy to show that we must have

c1 = cos γ t and c2 = −i sin γ t. (13.121)

We obtain

|ψ (t)〉 = cos γ t

∣∣∣ψ0
1 (t)

〉
− i sin γ t

∣∣∣ψ0
2 (t)

〉
. (13.122)

We thus see that |ψ (t)〉, which at t = 0 is given entirely by
∣∣ψ0

1 (t)
〉
, will oscillate between

the two states for t > 0 and, in fact, for times t such that γ t is an odd integral multiple of

π/2 it will be given entirely by
∣∣ψ0

2 (t)
〉
.

The probability of finding the state |ψ (t)〉 to be in
∣∣ψ0

i (0)
〉

is then given by∣∣〈ψ0
i (0) |ψ (t)〉

∣∣2 = |ci|2. From the relation (13.121) we find

∣∣∣〈ψ0
1 (0) |ψ (t)〉

∣∣∣
2
= cos2 γ t,

∣∣∣〈ψ0
2 (0) |ψ (t)〉

∣∣∣
2
= sin2 γ t. (13.123)

As expected, the probability that |ψ (t)〉 will be either in
∣∣ψ0

1 (0)
〉
or in

∣∣ψ0
2 (0)

〉
, given by

the sum of the above two terms, is unity.

13.2.3 Mixing angles and Rabi’s formula

We continue to consider a perturbation H ′ that is a constant for t ≥ 0 while vanishing for

t < 0. This time we will involve the mixing angles that we defined earlier.
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We concentrate specifically on the state vectors at t = 0. As in the time-independent

case, the matrix elements of the total Hamiltonian with respect to the unperturbed states{∣∣ψ0
1 (0)

〉
,
∣∣ψ0

2 (0)
〉}

as the basis can be written as

{〈
ψ0

i

∣∣∣H

∣∣∣ψ0
j

〉}
=
[

A D

D B

]
(13.124)

where A = E0
1 + H ′

11, B = E0
2 + H ′

22, � = A − B, and D = H ′
12 (assumed real), with the

assumption

H ′
ij(t) = constant for t ≥ 0, (13.125)

H ′
ij(t) = 0 for t < 0. (13.126)

Since the perturbation H ′ is a constant for t ≥ 0 we can use the time-independent methods

considered earlier and obtain the eigenstates
∣∣ψ± (t)

〉
of H for t ≥ 0 with the eigenvalues

E± given by

E+ =
A+ B+

√
�2 + 4D2

2
, (13.127)

E− =
A+ B−

√
�2 + 4D2

2
. (13.128)

The time-evolution equations for these states are

i�
∂

∂t

∣∣ψ+ (t)
〉
= H

∣∣ψ+ (t)
〉
= E+

∣∣ψ+ (t)
〉

and

i�
∂

∂t

∣∣ψ− (t)
〉
= H

∣∣ψ− (t)
〉
= E−

∣∣ψ− (t)
〉
. (13.129)

Their time dependence is given by

∣∣ψ+ (t)
〉
=
∣∣ψ+ (0)

〉
e
− iE+t

� , (13.130)

∣∣ψ− (t)
〉
=
∣∣ψ− (0)

〉
e
− iE−t

� . (13.131)

Let |ψ (t)〉 be a general solution of the time-dependent equation given by

i�
∂

∂t
|ψ (t)〉 =

(
H0 + H ′(t)

)
|ψ(t)〉 . (13.132)

Expressing |ψ (t)〉 as a superposition of
∣∣ψ+ (t)

〉
and

∣∣ψ− (t)
〉
, we have

|ψ (t)〉 = c+
∣∣ψ+ (t)

〉
+ c−

∣∣ψ− (t)
〉
. (13.133)

Since all three state vectors in the above relation satisfy the same time-evolution equation,

the coefficients c+ and c− will be independent of time.
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Let us now consider the unperturbed states
∣∣ψ0

i (0)
〉
. Since they are presumed to be known,

we can, as we did for the time-independent case, obtain
∣∣ψ± (0)

〉
in terms of

∣∣ψ0
i (0)

〉
through

the mixing angles, e.g.,

∣∣ψ+ (0)
〉
= cos θ

∣∣∣ψ0
1 (0)

〉
+ sin θ

∣∣∣ψ0
2 (0)

〉
, (13.134)

∣∣ψ− (0)
〉
= − sin θ

∣∣∣ψ0
1 (0)

〉
+ cos θ

∣∣∣ψ0
2 (0)

〉
. (13.135)

We invert this relation and write

∣∣∣ψ0
1 (0)

〉
= cos θ

∣∣ψ+ (0)
〉
− sin θ

∣∣ψ− (0)
〉
, (13.136)

∣∣∣ψ0
2 (0)

〉
= sin θ

∣∣ψ+ (0)
〉
+ cos θ

∣∣ψ− (0)
〉
. (13.137)

We assume that at t = 0, |ψ (t)〉, the solution of the equation (13.132), is given by

|ψ (0)〉 =
∣∣∣ψ0

1 (0)
〉
. (13.138)

From this initial condition and the relations (13.136) we have

|ψ (0)〉 =
∣∣∣ψ0

1 (0)
〉
= cos θ

∣∣ψ+ (0)
〉
− sin θ

∣∣ψ− (0)
〉
. (13.139)

Since
∣∣ψ±

〉
are eigenstates of H with eigenvalues E±, the t-dependence of |ψ〉 can be

written down in terms of the t-dependence of
∣∣ψ±

〉
as

|ψ (t)〉 = cos θ
∣∣ψ+ (t)

〉
− sin θ

∣∣ψ− (t)
〉

(13.140)

= cos θ
∣∣ψ+ (0)

〉
e
− iE+t

� − sin θ
∣∣ψ− (0)

〉
e
− iE−t

� (13.141)

where we have used (13.130) and (13.131). This implies that |ψ (t)〉 will oscillate as a

function of time. In this formalism the oscillation will be between the eigenstates |ψ±〉 of

the total Hamiltonian, H , and not the eigenstates |ψ0
1,2〉 of the unperturbed Hamiltonian,

H0. This is possible only because the perturbing Hamiltonian is constant in time.

The probability amplitude that the state |ψ (t)〉 at some time t > 0 will once again be in

the state
∣∣ψ0

1 (0)
〉
is then

〈ψ0
1 (0) |ψ (t)〉 = cos θ〈ψ0

1 (0)
∣∣ψ+ (0)

〉
e
− iE+t

� − sin θ〈ψ0
1 (0)

∣∣ψ− (0)
〉
e
− iE−t

� .

(13.142)

From the relation (13.134) we obtain

〈ψ0
1 (0)

∣∣ψ+ (0)
〉
= cos θ , (13.143)

〈ψ0
1 (0)

∣∣ψ− (0)
〉
= − sin θ . (13.144)
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Thus the above probability amplitude is

〈ψ0
1 (0) |ψ (t)〉 = cos2 θe

− iE+t
� + sin2 θe

− iE−t
� . (13.145)

By taking the absolute square of this result we obtain the probability

∣∣∣〈ψ0
1 (0) |ψ (t)〉

∣∣∣
2
= cos4 θ + sin4 θ + 2 sin2 θ cos2 θ cos

[
(E+ − E−) t

�

]
, (13.146)

which can be simplified to

∣∣∣〈ψ0
1 (0) |ψ (t)〉

∣∣∣
2
= 1− sin2 2θ sin2

[
(E+ − E−) t

2�

]
. (13.147)

The probability amplitude 〈ψ0
2 (0) |ψ (t)〉 can also be calculated and is found to be

〈ψ0
2 (0) |ψ (t)〉 = sin θ cos θ

[
e
− iE+t

� − e
− iE−t

�

]
. (13.148)

After some simplifications we find

∣∣∣〈ψ0
2 (0) |ψ (t)〉

∣∣∣
2
= sin2 2θ sin2

[
(E+ − E−) t

2�

]
. (13.149)

As expected, the two probabilities (13.147) and (13.149) add to 1.

We can simplify things further by utilizing the formula for the mixing angle:

tan 2θ = 2D

�
. (13.150)

From this we obtain

sin2 2θ = 4D2

�2 + 4D2
. (13.151)

Furthermore, from the expressions for E+ and E− we have

(E+ − E−) =
√
�2 + 4D2. (13.152)

Thus,

∣∣∣〈ψ0
2 (0) |ψ (t)〉

∣∣∣
2
= 4D2

�2 + 4D2
sin2

[√
�2 + 4D2

2�
t

]
. (13.153)

Notice that we recover our results as (13.123) by taking � = 0 and D = �γ . The above

expression is called the Rabi formula, which we will discuss further in the sections below

when we consider harmonic time dependence for H ′.
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13.2.4 Harmonic time dependence

Let us now consider a somewhat more general case where H ′(t) is no longer a constant

as a function of time but has a harmonic dependence for t > 0 while vanishing for t < 0.

Specifically, we assume the following behavior for the matrix elements for t ≥ 0:

H ′
12 = H ′∗

21 = �γ eiωt , (13.154)

H ′
11 = H ′

22 = 0. (13.155)

The Hamiltonian now is

{〈
ψ0

i

∣∣∣H

∣∣∣ψ0
j

〉}
=
[

E0
1 �γ eiωt

�γ e−iωt E0
2

]
. (13.156)

Because of this explicit time dependence in the perturbing Hamiltonian H ′ we cannot

use the results from the previous sections involving the mixing angles. So we go back to

the time-dependent equations for c1 and c2 derived earlier. One finds the following:

i
·

c1 = c2γ eiδt , (13.157)

i
·

c2 = c1γ e−iδt (13.158)

where δ = ω − ω21 and ω21 =
(
E0

2 − E0
1

)
/�. We wish to obtain c1(t) and c2(t) for t > 0.

For the initial condition we take

c1(0) = 1, c2(0) = 0. (13.159)

From these two coupled equations we first derive the equation for c2 through the following

steps:

ic̈2 = ċ1γ e−iδt + c1γ (−iδ) e−iδt . (13.160)

Substituting for c1 and ċ1 from the above equations we obtain

ic̈2 =
(

c2γ eiδt

i

)
γ e−i�t +

(
iċ2eiδt

γ

)
γ (−iδ) e−iδt . (13.161)

Therefore,

c̈2 + iċ2δ + c2γ
2 = 0. (13.162)

To solve this equation we substitute c2 = eiαt , and obtain the following quadratic equation

for the exponent:

α2 + αδ − γ 2 = 0 (13.163)
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with solutions

α = −δ ±
√
δ2 + 4γ 2

2
, (13.164)

which gives

c2 (t) = Ae
i
[
−δ+

√
δ2+4γ 2

]
t

2 + Be
i
[
−�−

√
δ2+4γ 2

]
t

2 . (13.165)

The condition c2 (0) = 0 implies B = −A in the above expression and, hence,

c2 (t) = Ae−
i�t
2

[
e

i
√
δ2+4γ 2t

2 − e
−i
√
δ2+4γ 2t

2

]
, (13.166)

which simplifies to

c2 (t) = 2iAe−
iδt
2 sin

(√
δ2 + 4γ 2

2
t

)
. (13.167)

To determine A, we consider the equations for c1 and c2 at t = 0 to give

iċ2 (0) = γ (13.168)

where we have used the relation c1(0) = 1. From the equation for c2 (t) above we have

ċ2 (0) = 2iA

√
δ2 + 4γ 2

2
. (13.169)

Equating the two expressions for ċ2 (0) we find

A = − γ√
δ2 + 4γ 2

. (13.170)

If we take

� =
√
δ2 + 4γ 2

2
(13.171)

then c2 (t) and c1 (t) will be given respectively by

c2 (t) = −
iγ

�
sin (�t) e−

iδt
2 , (13.172)

c1 (t) =
[−iδ

2�
sin (�t)+ cos (�t)

]
e

iδt
2 . (13.173)

Writing it more explicitly, the probability |c2 (t)|2 is given by

|c2 (t)|2 =
4γ 2

(ω − ω21)
2 + 4γ 2

sin2

(√
(ω − ω21)

2 + 4γ 2

2
t

)
. (13.174)
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The expression for |c2 (t)|2 is in the form of the Rabi formula. The quantity

4γ 2

(ω − ω21)
2 + 4γ 2

(13.175)

is the amplitude for the oscillation of |c2 (t)|2. For ω that satisfies the relation

ω = ω21 =
E0

2 − E0
1

�
(13.176)

there is a peak in the amplitude where it reaches the maximum allowed value of 1. At this

point one says that there is a “resonance” (see Fig. 13.4). At a resonance then, we have

|c2 (t)|2 = sin2 (γ t) (13.177)

|c1 (t)|2 = cos2 (γ t) . (13.178)

The oscillatory behaviors of |c1 (t)|2 and |c2 (t)|2 at a resonance are depicted in Fig. 13.4.

Starting with c1 = 1 and c2 = 0 at t = 0, we find the following.

(i) During the interval between t = 0 and t = π/2γ , c1(t) becomes smaller and the state∣∣ψ0
1

〉
gets depleted as the system absorbs energy from the external interaction. The system

achieves full absorption at t = π/2γ , as the higher energy level
∣∣ψ0

2

〉
gets fully populated

and c1 (t) = 0, c2 (t) = 1. This interval corresponds to the so called “absorption cycle.”

(ii) From t = π/2γ to t = π/γ , the cycle reverses, c2 (t) becomes smaller as the system

gives up excess energy from the upper level to the external potential while it descends down

to the lower level
∣∣ψ0

1

〉
. At t = π/γ we have, once again, c1 (t) = 1, c2 (t) = 0. This is

called the “emission cycle.”

(iii) This absorption–emission cycle continues indefinitely.

(iv) The maximum value (= 1) of the above amplitude is achieved at ω = ω21, while at

ω = ω21 ± 2γ the amplitude reaches half the maximum value. The quantity 4γ is called

the full width at half-maximum (see Fig. 13.5). The absorption–emission cycle exists away

from the resonance but one never achieves full absorption (c2(t) = 1) or full emission

(c1(t) = 1).
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13.2.5 Ammonia maser

In Chapter 8 we considered the energy eigenstates of the ammonia molecule NH3 treated

as a one-dimensional bound-state problem with a symmetric potential, V (x). We found

that there are two lowest eigenstates, a symmetric state
∣∣ψS

〉
with eigenvalue ES and an

antisymmetric state
∣∣ψA

〉
, with eigenvalue EA such that EA > ES , with their difference

given by

EA − ES = 2δ (13.179)

where δ is a very small quantity for normal configurations of the potentials. We will write

EA = E0 + δ, (13.180)

ES = E0 − δ (13.181)

where E0 is the average value of EA and ES .

If we subject the molecule to an electric field E then a dipole is generated as the electrons

and the nucleus are stretched apart under the influence of the field. The interaction between

the dipole and the electric field is given

H ′ = −d.E (13.182)

where d is the dipole moment of the molecule. In this one-dimensional approximation, d

will be in the x-direction and hence

H ′ ∼ x. (13.183)

Therefore, from symmetry considerations we have

〈
ψS

∣∣H ′ ∣∣ψS

〉
= 0 =

〈
ψA

∣∣H ′ ∣∣ψA

〉
, (13.184)

while

〈
ψS

∣∣H ′ ∣∣ψA

〉
� =0. (13.185)

Thus only the off-diagonal element of H ′ will be nonzero.
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We assume the electric field to have a harmonic time dependence,

E = E0eiωt , (13.186)

and take

ηE = d.E0. (13.187)

Then the matrix representation of H (= H0+H ′) with respect to
∣∣ψS

〉
and

∣∣ψA

〉
is given by

H =
[

E0 − δ −ηEeiωt

−ηEeiωt E0 + δ

]
. (13.188)

This is similar to the problem we have encountered in the previous section.

If we take the initial condition for the probability amplitudes as cA(0) = 1, cS(0) = 0,

then the transition probability for A → S can be written down from the previous section as

PA→S = |cS(t)|2 =
4η2

E

(ω − ω21)
2 + 4η2

E

sin2

⎛
⎜⎝

√
(ω − ω21)

2 + 4η2
E

2
t

⎞
⎟⎠ (13.189)

where

ω21 = EA − ES = 2δ. (13.190)

Thus at

ω = ω21 = 2δ (13.191)

we have a resonance and the accompanying emission and absorption cycles described

previously.

Consider the case when the ammonia molecules in the state
∣∣ψA

〉
enter an apparatus

subjected to a harmonically varying electric field during the emission cycle. If the frequency

ω of the oscillating electric field is tuned to the level difference, 2δ, of the molecule then∣∣ψA

〉
will give up energy to the radiation field and convert to

∣∣ψS

〉
. We note that the transition∣∣ψA

〉
→

∣∣ψS

〉
will also happen naturally through the tunneling of the middle barrier; that is,

a spontaneous emission that has a rate which is much smaller than the “stimulated” emission

we are considering here.

In practice the ammonia beam will contain an equal mixture of
∣∣ψA

〉
and

∣∣ψS

〉
. But prior

to entering the apparatus and being subjected to the oscillating electric field, it is made to

pass through a nonhomogeneous time-independent electric field in order that
∣∣ψA

〉
and

∣∣ψS

〉

are separated. This separation comes about as follows.

Since the interaction is time-independent in this region, we can calculate the energy

eigenvalues of the total Hamiltonian,

H =
[
E0 − δ −ηE

−ηE E0 + δ

]
, (13.192)
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which are

E+ = E0 +
√
δ2 + η2

E , (13.193)

E− = E0 −
√
δ2 + η2

E . (13.194)

If the electric field is very weak such that ηE , which is proportional to |E|, is≪ δ, then

E+ = E0 + δ +
η2

E

2δ
, (13.195)

E− = E0 − δ −
η2

E

2δ
. (13.196)

We note by taking the limit ηE → 0 that E+ should be identified as the energy of
∣∣ψA

〉

and E− that of
∣∣ψS

〉
. The additional term η2

E/2δ can be identified as the potential energy

contributed by the electric field. If the electric field is nonhomogeneous then the molecules

will be subjected to a force

±∇(η2
E/2δ). (13.197)

Since the sign of the force is different between the states
∣∣ψA

〉
and

∣∣ψS

〉
, these two types of

particles will be deflected differently, much the same way as in the Stern–Gerlach experi-

ment for spin-up and spin-down particles. This is then the basic mechanism of separating

the two states.

In practice, then, after the separation has been achieved, the pure
∣∣ψA

〉
beam enters a

microwave cavity that has the dimensions adjusted so that the beam spends exactly the

same time as the emission cycle (t = π�/2ηE). The microwave is tuned to the energy

difference, EA − ES , in order that the entering state
∣∣ψA

〉
gives out all the energy to the

radiation energy, which then gains in strength.

This mechanism is the essence of the maser, which is the acronym for microwave

amplification by simulated emission of radiation.

13.3 Problems

1. In the problem of the ammonia molecule let
∣∣ψL

〉
and

∣∣ψR

〉
be the state vectors that

indicate that the N atom is predominantly on the left side and right side, respectively.

Show from parity invariance that the expectation values of the Hamiltonian satisfy

〈
ψL |H |ψL

〉
=
〈
ψR |H |ψR

〉
.

Let E0 be the common expectation value and assume that there is tunneling between

the two sides such that

〈
ψL |H |ψR

〉
=
〈
ψR |H |ψL

〉
= A.
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Show that this interaction will induce the switch
∣∣ψL

〉
⇄

∣∣ψR

〉
. Determine the eigen-

values of H and show that the two eigenstates can be written as their symmetric and

antisymmetric combinations
∣∣ψS

〉
and

∣∣ψA

〉
, respectively. If at t = 0, the state vector

|ψ(t)〉 of N is given by

|ψ(0)〉 =
∣∣ψL

〉

then determine |ψ(t)〉 for arbitrary times (i) in terms of
∣∣ψS,A

〉
and (ii) in terms of∣∣ψL,R

〉
.

2. In the above problem, express all your answers for the state vectors in terms of column

matrices by taking

∣∣ψL

〉
=
[
1

0

]
,
∣∣ψR

〉
=
[
0

1

]
.

3. Consider the 2S and 2P levels (with m = 0) for the hydrogen atom as a two-level

system. At t = 0 the atom is subjected to a constant electric field, E0, in the z-direction

that lasts only for a finite time t0. If the atom starts out in the 2S state, determine the

probabilities that for t > 0 it is in the 2S and 2P states.

4. Do the same problem as problem 3 except that now the electric field has a time

dependence given by E0 sinωt.

5. Consider the harmonic oscillator as a three-level system made up of n = 0, 1, 2 states.

If a perturbing potential

V ′(x) = g1x + g2x2

is applied, obtain the energy eigenvalues.

6. For a two-level time-dependent problem the total Hamiltonian is given by

H = �ω0σ z, for t ≥ 0

= 0, for t < 0.

If a state |ψ(t)〉 at t = 0 is in the “spin down” state in the x-direction,
∣∣ψx−(0)

〉
,

determine the probability that at times t > 0 it is in a state ψy+(0).
7. For a two-level time-dependent problem assume that the total Hamiltonian is given by

H = �ω0σ x, for t ≥ 0

= 0, for t < 0.

If a state |ψ(t)〉 at t = 0 has spin in the positive z-direction, determine the probability

that at times t > 0 it is in the direction of a unit vector n whose x, y, z components are

(sin α cosβ, sin α sin β, cosα).



248 Two-level problems

8. Consider the following Hamiltonian

H = �ω0σ x, for 0 < t < t0

= 0, for t0 < t < 2t0

= �ω0σ x, for 2t0 < t < 3t0

with H = 0 for t > 3t0. If a state |ψ(t)〉 at t = 0 is in the “spin up” state in the

z-direction,
∣∣ψ z+(0)

〉
, determine the state vector for t > 3t0.

9. Consider the Hamiltonian matrix

{〈
ψ0

i

∣∣∣H

∣∣∣ψ0
j

〉}
=
[

A D

D 0

]

where A and D are> 0. Obtain tan 2θ and tan θ in the two limits (i) A ≪ D, (ii) D ≪ A

(wherever necessary be sure to expand the square roots that appear in your solution).

10. For a two-level time-dependent problem the total Hamiltonian is given by

H = �ω0σ z, for t ≥ 0

= 0, for t < 0.

If a state |ψ(t)〉 at t = 0 is in the “spin down” state in the x-direction,
∣∣ψx−(0)

〉
,

determine the probability that at times t > 0 it is in a state
∣∣ψy+(0)

〉
.

11. For the Hamiltonian

H =
[

0 iδ

−iδ 0

]

where δ is real, obtain the energy eigenvalues. If

i�
d

dt

[
c1

c2

]
= H

[
c1

c2

]
,

determine c1(t) and c2(t) given that c1(0) = 1 and |c1(t)|2+ |c2(t)|2 = 1.

12. The Hamiltonian

H =
[

0 δ

−δ 0

]

where δ is real is not Hermitian. Obtain the eigenvalues. If

i�
d

dt

[
c1

c2

]
= H

[
c1

c2

]
,

determine c1(t) and c2(t) given that c1(t), c2(t)→ 0 as t →∞.

13. Consider the problem of two infinite barriers, located respectively at x = −a and x = a,

as a two-level problem in which only the ground state and the first excited states given
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by u1(x) and u2(x), with energies E0
1 and E0

2 , respectively, are considered and the rest

are ignored. The following perturbative potential is applied,

V ′(x) = c1 + c2x, for |x| ≤ a

= 0, for |x| ≥ a.

If

H =
[

A D

D B

]
,

obtain A, B, D for this problem. Obtain the energy eigenvalues E± and the correspond-

ing eigenfunctions u±(x). Express these eigenfunctions in terms of u1,2(x).

14. Consider now the time dependence for the above problem and replace the u’s by ψ’s.

What is the energy dependence of ψ±(x, t)? Express an arbitrary state of the system,

ψ(x, t), as a linear combination ofψ±(x, t). If at t = 0,ψ(x, 0) = u1(x), obtainψ(x, t)

for arbitrary t.

15. For the problem of a two-level system with regard to a particle confined inside two

infinite walls (at ±a) (see the above problem), consider instead the following two

interactions separately (b < a):

(i) V ′(x) = g [δ(x + b)− δ(x − b)] ,

(ii) V ′(x) = gδ(x).

For each case obtain (i) A, B, D, (ii) the mixing angles, (iii) the energy eigenvalues E±,

and (iv) the corresponding eigenfunctions u±(x). Express these eigenfunctions in terms

of u1,2(x). If the perturbation is turned on at t = 0, what is the energy dependence of

ψ±(x, t)? Express an arbitrary state of the system, ψ(x, t), as a linear combination of

ψ±(x, t). If at t = 0, ψ(x, 0) = u1(x), obtain ψ(x, t) for arbitrary t.

16. Consider a spin ½ system, with

H0 = g3�σ 3

and

H ′ = g1�σ 1 + g2�σ 2

where the gi’s are constants and σ i’s are the Pauli matrices. (The above expressions

allow us to write the total Hamiltonian as H = �g · σ .) Take the unperturbed states

as the spin-up and spin-down states. Obtain (i) the energy eigenvalues and (ii) the

eigenfunctions in terms of the unperturbed states. Show that the coefficients are complex

(i.e., they have a phase) (take g =
√

g2
1 + g2

2 + g3
3). Also show that the mixing angles,

which are real by definition, cannot be defined as in the text, even though H is Hermitian

(see below).
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17. Consider the Hamiltonian matrix

[
A D

D∗ B

]

where A and B are real but D is complex. Show that this matrix is Hermitian.Also show

that the above matrix cannot be diagonalized by

[
cos θ sin θ

− sin θ cos θ

]
.

Determine whether both of the following are unitary and whether they will diagonalize

the above matrix:

(a)

[
eiδ cos θ sin θ

− sin θ e−iδ cos θ

]

or

(b)

[
cos θ eiδ sin θ

−e−iδ sin θ cos θ

]

where

D = |D| eiδ .

For the case where diagonalization is possible, obtain the formula for tan 2θ . Which of

the two rotation matrices is physically relevant?
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Spin ½ systems in the presence of magnetic fields

Spin ½ systems are intrinsically two-level systems. They provide a very fertile field in which

we can obtain exact solutions to some very interesting problems involving the interactions

with a magnetic field.

14.1 Constant magnetic field

As we mentioned earlier, the spin ½ systems lend themselves easily to be a part of the

two-level problems since the system has, in the spin-space, just two states: spin-up and

spin-down.

Consider now the Hamiltonian, H = H0 + H ′(t), corresponding to a charged, spin ½,

particle at rest, subjected to a constant magnetic field B for t ≥ 0. Since the particle is at

rest we have

H0 = 0. (14.1)

Because of its spin properties, a charged particle with spin ½, as we discussed in Chapter 5,

will possess a magnetic moment, μ, that is related to the spin S by

μ = e

mc
S (14.2)

where e is the charge and m the mass of the particle. This magnetic moment will interact

with the magnetic field B. If this interaction is turned on at t = 0, then the perturbed

Hamiltonian will be given by

H ′(t) = −μ · B, for t > 0 (14.3)

= 0, for t ≤ 0. (14.4)

Let us consider the case where the magnetic field is directed along the z-direction, B =
B0k, and where B0 is a constant. We then have

μ · B = e

mc
S · B = eB0

mc
Sz. (14.5)

From Chapter 2 we note that S is related to the Pauli matrices, σ , by

S = �

2
σ . (14.6)
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Writing in terms of σ we note that, since H0 = 0, the total Hamiltonian is given by

H (t) = H ′(t) = 1

2
�ω0σ z, for t ≥ 0 (14.7)

= 0, for t < 0 (14.8)

where from (14.3),

�ω0 = −
eB0

mc
(14.9)

and σ z is given by

σ z =
(

1 0

0 −1

)
. (14.10)

The Hamiltonian for t ≥ 0 is then given by

H =

⎛
⎜⎝

�ω0

2
0

0 −�ω0

2

⎞
⎟⎠ . (14.11)

Below we will obtain the eigenstates of H for various simple examples.

14.1.1 Initial spin in the z-direction

The eigenstates at t = 0 corresponding to “spin-up” and “spin-down” in the z-direction,

respectively, are given by

|z + (0)〉 =
(

1

0

)
= |+〉 , (14.12)

|z − (0)〉 =
(

0

1

)
= |−〉 (14.13)

where

σ z |+〉 = |+〉 , (14.14)

σ z |−〉 = − |−〉 . (14.15)

The time evolution equations for t > 0 for |z + (t)〉 and |z − (t)〉 are, respectively,

i�
∂

∂t
|z + (t)〉 = H (t) |z + (t)〉 = 1

2
�ω0 |z + (t)〉 , (14.16)

i�
∂

∂t
|z − (t)〉 = H (t) |z − (t)〉 = −1

2
�ω0 |z − (t)〉 , (14.17)
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with the solutions

|z + (t)〉 = e−i 1
2ω0t |+〉 , (14.18)

|z − (t)〉 = ei 1
2ω0t |−〉 . (14.19)

Therefore, if the particle at t = 0 has spin-up (spin-down) in the z-direction, then under the

interaction (14.7) it continues to have spin-up (spin-down) for t > 0. This is as expected.

14.1.2 Initial spin in the x-direction

Consider now a problem where at t = 0, the particle has “spin-up” in the x-direction. We

wish to consider its time-development under the influence of the interaction given by (14.7).

We first construct the spin-up and spin-down eigenstates along the x-axis, |x± (0)〉 in

terms of |z± (0)〉, where

σ x =
(

0 1

1 0

)
(14.20)

and

σ x |x + (0)〉 = |x + (0)〉 , (14.21)

σ x |x − (0)〉 = − |x − (0)〉 . (14.22)

Writing |x + (0)〉 and |x − (0)〉 as a superposition of the states |+〉 and |−〉, we obtain

|x + (0)〉 = 1√
2
|+〉 + 1√

2
|−〉 , (14.23)

|x − (0)〉 = 1√
2
|+〉 − 1√

2
|−〉 . (14.24)

The state |x + (t)〉 is then given by

|x + (t)〉 = 1√
2
|z + (t)〉 + 1√

2
|z − (t)〉 . (14.25)

Since the perturbation is independent of time and both sides satisfy the same equation, we

find, from (14.18) and (14.19),

|x + (t)〉 = e−i 1
2ω0t

√
2

|+〉 + e
1
2 iω0t

√
2
|−〉 .

The probability amplitude that the state |x± (t)〉 at arbitrary time t is in the spin-up state

|x + (0)〉 is given by

|〈x + (0) |x + (t)〉|2=
∣∣∣∣∣

[
1√
2
〈+| + 1√

2
〈−|

][
e−i 1

2ω0t

√
2

|+〉 + ei 1
2ω0t

√
2
|−〉

]∣∣∣∣∣

2

= cos2 1

2
ω0t.

(14.26)
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Similarly, the probability for the state |x + (t)〉 to be the spin-down
∣∣ψ z− (0)

〉
state at time

t is given by

|〈x − (0) |x + (t)〉|2 = sin2 1

2
ω0t. (14.27)

We see that at t = 0 the state has “spin-up” in the x-direction, as it should be since that

is the initial condition. At a later time it can change to “spin-down” due to the presence of

the magnetic field in the z-direction. Since both the positive and negative x-directions are

perpendicular to the z-direction, the state |x + (t)〉 is said to “precess” in the x–y plane as

a function of time with a period 4π/ω0 about the direction of the magnetic field, which in

our case is the z-direction. This is called the Larmor precession and ω0 is called the Larmor

frequency. Note that the frequency dependence is given by (ω0/2), which is, of course,

directly related to the relation S = (1/2) σ .

14.1.3 Initial spin with polar angle α

Let us consider the case in which, at t = 0, the state vector |ψ (t)〉 corresponds to spin

pointing in a direction with polar angle α and azimuthal angle = 0. We have already

constructed such a state in Chapter 5. It is given by

|ψ (0)〉 = cos
(α

2

)
|+〉 + sin

(α
2

)
|−〉 (14.28)

where |ψ (0)〉 is the state vector |ψ (t)〉 at t = 0. The angle α then corresponds to the

direction of the spin with respect to the positive z-axis, which is the direction of |+〉 (angle

π − α then corresponds to the angle with respect to the negative z-direction given by |−〉).
For t ≥ 0, from our previous arguments, this state can be expressed as

|ψ (t)〉 = cos
(α

2

)
e−i 1

2ω0t |+〉 + sin
(α

2

)
ei 1

2ω0t |−〉 . (14.29)

This implies that |ψ (t)〉 continues to subtend the angle α along the positive z-axis but,

because of the oscillating time-dependence, it precesses around the z-axis with period

4π/ω0.

14.2 Spin precession

We now discuss the time dependence of the expectation values of σ x, σ y, and σ z for the

problem we have discussed above. The expectation value of σ z for an arbitrary state |ψ (t)〉,
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z
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Fig. 14.1

as expressed above, is found to be

〈ψ (t) |σ z|ψ (t)〉 =
[
cos

(α
2

)
e+i 1

2ω0t 〈+| + sin
(α

2

)
e−i 1

2ω0t 〈−|
] [

cos
(α

2

)
e−i 1

2ω0t |+〉

− sin
(α

2

)
ei 1

2ω0t |−〉
]

(14.30)

= cos2
(α

2

)
− sin2

(α
2

)
(14.31)

= cosα, (14.32)

which is independent of time, as expected.

One can similarly obtain the expectation values of σ x and σ y for arbitrary t, which are

found to be

〈ψ (t) |σ x|ψ (t)〉 = sin α cosω0t (14.33)

and

〈
ψ (t)

∣∣σ y

∣∣ψ (t)
〉
= sin α sinω0t. (14.34)

Thus the spin itself precesses about the z-axis, but with a period 2π/ω0 that is half the

period with which the state |ψ (t)〉 precesses (see Fig. 14.1).

14.3 Time-dependent magnetic field: spin
magnetic resonance

A problem of considerable importance is that of a charged particle with spin ½ which is

subjected to a time-dependent rotating magnetic field. This problem differs from the earlier

ones in which the magnetic field was assumed to be independent of time.
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14.3.1 Initial spin in the z-direction

Assuming that the particle is at rest (i.e., H0 = 0), the total Hamiltonian for this process is

given by

H = −μ · B, for t ≥ 0 (14.35)

= 0, for t < 0 (14.36)

where B is the magnetic field, and μ is the magnetic moment. As we have derived before,

μ = e

mc
S = e�

2mc
σ . (14.37)

We consider a magnetic field whose components in the x- and y-directions are functions

of time that correspond to a rotating field in the x–y plane with frequency ω, while along

the z-direction the field is a constant. Thus we write

B = B0k + B1 (i cosωt + j sinωt) (14.38)

where, i, j, and k are unit vectors in the x-, y- and z-directions, respectively, and B0 and B1

are constants. The Hamiltonian for t ≥ 0 can then be written as

H = 1

2
�ω0σ z +

1

2
�ω1

(
σ x cosωt + σ y sinωt

)
(14.39)

where

ω0 = −
eB0

mc
, ω1 = −

eB1

mc
. (14.40)

We write the Hamiltonian as

H =
(

�ω0 �ω1e−iωt

�ω1eiωt −�ω0

)
(14.41)

where

ω0 =
1

2
ω0 and ω1 =

1

2
ω1. (14.42)

We can directly obtain the corresponding probability amplitudes c1 and c2, with

c1(0) = 1, and c2(0) = 0, from Chapter 13 by making the following substitutions
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in (13.172):

ω→−ω, (14.43)

δ→ 2ω0 − ω = ω0 − ω, (14.44)

γ → ω1 =
1

2
ω1, (14.45)

�→

√
4ω2

1 + δ2

2
=

√
ω2

1 + (ω0 − ω)2

2
. (14.46)

The probability |c2(t)|2 is then

|c2(t)|2 =
ω2

1

(ω − ω0)
2 + ω2

1

sin2

⎛
⎜⎝

√
(ω − ω0)

2 + ω2
1

2
t

⎞
⎟⎠ . (14.47)

We have then a resonance at ω = ω0.

The results we have derived are of fundamental importance in molecular beam exper-

iments where, by varying the magnetic field, one can make an accurate determination of

the magnetic moment. We note that ω0, which is proportional to the magnetic moment, is

just the precession frequency of the rotating field. Thus when the applied frequency equals

the precession frequency, a resonance occurs since, in a sense, the spin now sees a con-

stant magnetic field and thus the system oscillates between the up and down states with a

frequency (1/2) ω1.

14.3.2 Spin aligned with the magnetic field

Let us consider the case where the spin is oriented in the same direction as the magnetic

field. To facilitate the calculation we will make the following changes in the Hamiltonian

given by (14.41):

�ω0 → �ω0 cos θ , �ω1 → �ω1 sin θ . (14.48)

This establishes the magnetic field as pointing along a direction with polar angle θ and

azimuthal angle ωt. The Hamiltonian is then

H = �ω1

(
cos θ sin θe−iωt

sin θeiωt − cos θ

)
. (14.49)

We note that the energy eigenvalues at t = 0 are given by

E± = ±�ω1 = ±�
ω1

2
. (14.50)
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We will take the spin to be in the same direction as the magnetic field; thus the

corresponding spin-up and spin-down wavefunctions are

χ+(t) =
[

cos(θ/2)

eiωt sin(θ/2)

]
(14.51)

and

χ−(t) =
[

sin(θ/2)

−eiωt cos(θ/2)

]
. (14.52)

We write a general solution as

χ(t) = c+(t)χ+(t)+ c−(t)χ−(t). (14.53)

If c+(0) = 1 and c−(0) = 0 then one can show that for t > 0

c+(t) =
[
cos(�t)+ i

(
ω1 + ω cos θ

2�

)
sin(�t)

]
e−iωt/2, (14.54)

c−(t) =
[

iω

2�
sin θ sin(�t)

]
e−iωt/2, (14.55)

where

� =

√
ω2 + ω2

1 + 2ωω1 cos θ

2
. (14.56)

From these results one can obtain the respective probability amplitudes |c+(t)|2 and |c−(t)|2.

14.4 Problems

1. An electron has its spin directed along a vector with azimuthal angle α and polar angle

β. It is subjected to a constant, time-independent magnetic field B0 in the positive z-

direction. Obtain the probability, as a function of time, that it is a state with sy = +�/2.

Also obtain the expectation values of the operators Sx, Sy, and Sz.

2. A spin ½ particle at rest is subjected to a constant magnetic field B0 in the z-direction.

Determine the time dependence of the expectation value of the magnetic moment μ

assuming it to be an operator in the Heisenberg representation. Show that the same

result is obtained by directly calculating the expectation value.

3. Consider an electron traveling with velocity v = (vx, vy, 0). A constant magnetic field

is applied in the z-direction. Determine the time dependence of the expectation values

〈σ .v〉 and 〈(σ × v)z〉.
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4. The Hamiltonian for a spin ½ system subjected to a magnetic field B is given by

H = μσ · B.

Show that

dσ (t)

dt
= B× σ (t).

For a uniform magnetic field B = B0, solve for σ (t) by expressing it as a linear

combination of three orthogonal vectors: B0, B0×σ (0), B0 × (B0×σ (0)).



15
Oscillation and regeneration in neutrinos
and neutral K-mesons as two-level systems

Here we consider three fascinating problems in particle physics that can be approximated as

two-level systems with a somewhat phenomenological Hamiltonian. Two of them involve

neutrinos and one involves neutral K-mesons. Together they provide a remarkable success

story of the applications of simple quantum-mechanical principles.

15.1 Neutrinos

Neutrinos are spin ½ particles with no charge and a minuscule mass. They interact with

other elementary particles only through the so-called weak interaction. Neutrinos come

in three different species (called flavors): electron-neutrino (νe), muon-neutrino (νμ),

and tau-neutrino (ντ ) and form a part of the so-called lepton family. They are neutral

accompaniments to the charged leptons: electrons (e), muons (μ), and tau leptons (τ ).

In the following two sections we will ignore ντ and discuss the solutions of some rather

fundamental problems in neutrino physics within the framework of two-level systems.

15.2 The solar neutrino puzzle

To understand the solar neutrino puzzle we need first to note that the energy that is radi-

ated from the solar surface comes from intense nuclear reactions that produce fusion of

different nuclei in the interior of the sun. Among the by-products of these reactions are

photons, electrons, and neutrinos. In the interior it is mostly electron-neutrinos, νe’s, that

are produced. The shell of the sun is extraordinarily dense, so that the electrons and photons

are absorbed. However, because neutrinos undergo only weak interactions they are able to

escape from the solar surface and reach the earth. The rate at which the νe’s are expected

to reach earth can be calculated from the standard solar model. However, only one-third of

what is expected from this calculation is actually observed. This is the essence of the solar

neutrino puzzle.

Apossible solution to this problem was proposed by Mikheyev, Smirnov, and Wolfenstein

(called the MSW effect). We discuss below the outline of this solution, elaborated by Bethe,

who considered this as a two-level problem involving the interaction between νe and νμ, in

the presence of solar matter, in their passage from the interior of the sun to the solar surface.
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In this problem the counterparts of
∣∣ψ0

1

〉
and

∣∣ψ0
2

〉
discussed in Chapter 13 are |νe〉 and∣∣νμ

〉
respectively. These are the so-called “flavor eigenstates.”

The neutrinos are found to have extremely small mass, as stated earlier. Since in the

relativistic case the energy is related to mass, one speaks of “mass eigenstates” instead

of energy eigenstates. The counterparts of the eigenstates of E1and E2 in the neutrino

interaction are the mass eigenstates |ν1〉 and |ν2〉 with eigenvalues m1 and m2. Thus, the

interaction between flavor eigenstates generates the mass eigenstates.

The connection between the two types of states can be written following our earlier

discussions:

|ν1〉 = cos θ |νe〉 + sin θ
∣∣νμ

〉
and |ν2〉 = − sin θ |νe〉 + cos θ

∣∣νμ
〉
. (15.1)

(This convention, which is generally used in quantum mechanics texts, is opposite to the

convention used in particle physics obtained by changing θ →−θ .)
In the interior of the sun, the electrons and electron-neutrinos are produced in great abun-

dance. The νe’s interact with each other through the so-called current–current interaction,

which is a part of the basic weak interaction, whose value can be calculated. The matrix

element for the interaction Hamiltonian H ′ is given by

〈νe|H ′ |νe〉 = δe (15.2)

where δe is positive, of dimension (mass)2, and approximately a constant, proportional to

the density of the electrons and the weak-interaction coupling constant (Fermi constant).

It becomes smaller and ultimately vanishes as one goes from the interior of the sun to the

solar surface where the electron density goes to zero. All other matrix elements of H ′ are

negligibly small.

The matrix representation of the total Hamiltonian for the neutrinos is given by

[
〈ν1| 〈ν2|

] [m2
1 0

0 m2
2

] [|ν1〉
|ν2〉

]
+ 〈νe|H ′ |νe〉 (15.3)

where the first term is expressed in terms of the mass eigenstates, while the second, corre-

sponding to the interaction Hamiltonian, is expressed in terms of the flavor eigenstates. We

note that the second term above appears as a consequence of the solar matter with which

νe interacts. In the absence of any matter, the first term alone will describe the total Hamil-

tonian. We take m2 = mνμ, the mass of νμ and m1 = mνe, the mass of νe, and note that

m2 ≫ m1. Our purpose here is not to determine the masses, which remains a fundamental

unexplained question, but to discuss the eigenstates and their behavior in the presence of

solar matter.

We combine both the matrices above in terms of the same basis formed by |νe〉 and
∣∣νμ

〉
:

[
〈νe|

〈
νμ

∣∣]
{

R† (θ)

[
m2

1 0

0 m2
2

]
R(θ)+

[
δe 0

0 0

]}[|νe〉∣∣νμ
〉
]

(15.4)
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where R(θ) is the rotation matrix connecting the two bases as discussed in the preceding

chapter. As in the previous discussion, we express the sum of the matrix elements as

1

2

[(
m2

1 + m2
2 + δe

)
+ (δe − δ cos 2θ) −δ sin 2θ

−δ sin 2θ
(
m2

1 + m2
2 + δe

)
− (δe − δ cos 2θ)

]
(15.5)

where δ = m2
2−m2

1 > 0. Note that in the 2, 2 matrix element above even though δe actually

cancels out, it is left there for reasons which will be evident below.

The new mass eigenvalues are

m2
ν± =

1

2

[(
m2

1 + m2
2 + δe

)
±
√
(δe − δ cos 2θ)2 + δ2 sin2 2θ

]
(15.6)

with the corresponding eigenstates designated as |ν±〉. We consider the variation of these

eigenvalues, adiabatically, as δe varies very slowly from a very large value at the interior,

where the electron density is extremely high, to zero at the surface of the sun. For simplicity

we also take the mixing angle θ to be small.

In the absence of solar matter, when δe = 0, the second term in (15.4) is absent, and

m2
ν+ = m2

2 and m2
ν− = m2

1.

In the interior of the sun, it is found that δe ≫ δ, because of the large electron density;

therefore,

m2
ν+ ≃

1

2

[(
m2

1 + m2
2 + δe

)
+ (δe − δ)

]
= m2

1 + δe, (15.7)

m2
ν− ≃

1

2

[(
m2

1 + m2
2 + δe

)
− (δe − δ)

]
= m2

2, (15.8)

with δe > 0. Thus m2
ν+ and, therefore, |ν+〉 represent the electron-neutrino whose mass is

sufficiently enhanced by the attractive interaction in the interior of the sun so that m2
ν+ >

m2
ν− where m2

ν− and therefore |ν−〉 represent the muon neutrino.

At the surface of the sun, however, δe = 0 and we obtain

m2
ν+ =

1

2

[(
m2

1 + m2
2

)
+ |δ|

]
= m2

2, (15.9)

m2
ν− =

1

2

[(
m2

1 + m2
2

)
− |δ|

]
= m2

1. (15.10)

Thus, remarkably, the electron-neutrinos produced in the sun’s interior and identified as

|ν+〉 appear at the solar surface as muon-neutrinos, while the muon-neutrinos, which are

much less abundant in sun’s interior, and identified as |ν−〉, come out at the solar surface

as electron-neutrinos.

The point is simply this: if there were no solar matter to influence the events, the electron

would have taken the lower curve and muon the upper curve with each curve as straight

lines. See Fig. 13.2 for comparison. In the presence of a large δe, however, the electron is

boosted to the upper curve and the muon is demoted to the lower one. Once there, both are

stuck on their respective curves, which are not allowed to cross. Since on earth the particle

identification is made based on the mass values, the electron-neutrino coming out with
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higher mass and bigger abundance is taken to be a muon-neutrino and the muon-neutrino

coming out with lower mass and lower abundance is classified as an electron-neutrino.

This represents the basis of a possible solution, though not necessarily a complete one,

to the solar neutrino puzzle. The solution as presented here is clearly oversimplified since,

among other things, the mixing angle is not negligible. What is interesting, however, is that

it involves simple two-channel concepts.

15.3 Neutrino oscillations

The above explanation of the solar neutrino puzzle involves switching of the eigenstates

during the passage of νe from the sun’s interior to the surface. This switching is sometimes

called “matter oscillation.” Oscillations will also occur in vacuum between |νe〉 and
∣∣νμ

〉

as νe’s are streaming down through the atmosphere from the sun. These are the “vacuum”

oscillations. This could also be the solution or part of the solution of the solar neutrino

puzzle. We note that oscillations will also occur between neutrinos that are by-products of

weak interaction decays.

We develop the formalism for these oscillations in the mixing angle framework by writing

the following superposition at t = 0:

|ν1(0)〉 = cos θ |νe(0)〉 + sin θ
∣∣νμ(0

〉
, (15.11)

|ν2(0)〉 = − sin θ |νe(0)〉 + cos θ
∣∣νμ(0)

〉
, (15.12)

which can be inverted to give

|νe(0)〉 = cos θ |ν1(0)〉 − sin θ |ν2(0)〉 , (15.13)
∣∣νμ(0)

〉
= sin θ |ν2(0)〉 + cos θ |ν1(0)〉 , (15.14)

where |ν1(0)〉 and |ν2(0)〉 are mass eigenstates at t = 0.

Consider the situation where at t = 0 the state |ν(t)〉 representing a neutrino coincides

with |νe(0)〉. The time evolution of |ν(t)〉 is then written as

|ν(t)〉 = cos θ |ν1(0)〉 e−
iE1t
� − sin θ |ν2(0)〉 e−

iE2t
� . (15.15)

From the earlier discussions, we can write the probabilities that |ν(t)〉 will reappear as

|νe(0)〉 or that it will appear as
∣∣νμ(0)

〉
as, respectively,

Pνe→νe = |〈νe(0) |ν(t)〉|2 = 1− sin2 2θ sin2

[
(E1 − E2) t

2�

]
, (15.16)

Pνe→νμ =
∣∣〈νμ(0) |ν(t)〉

∣∣2 = sin2 2θ sin2

[
(E1 − E2) t

2�

]
. (15.17)
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Since neutrinos are relativistic particles they satisfy the following energy–momentum

relation

E =
√

c2p2 + m2c4 (15.18)

where p and m are the momentum and mass of the particle. Since the masses are extremely

small compared with the momenta in the situations we are considering, we can make an

expansion as follows

E ≃ cp

[
1+ m2c2

2p2

]
= cp+ m2c3

2p
. (15.19)

Hence,

E1 − E2 =
(
m2

1 − m2
2

)
c3

2p
(15.20)

where we have assumed the momenta of the two neutrinos to be the same as they belong

to the same beam with a fixed momentum.

Since it is easier and more instructive to measure the oscillation in terms of the distance

traveled by the neutrino from the point of origin, rather than the time elapsed, one introduces

an “oscillation length,” l12, given by

l12 =
2π�c

|E1 − E2|
. (15.21)

Because the sine functions in (15.16) appear quadratically, we can replace (E1 − E2) by

|E1 − E2|. Thus,

|E1 − E2| t
2�

=
(
π

l12

)
c

t
. (15.22)

Since the speed of a neutrino will be essentially the same as the speed of light, c, the ratio

(c/t) is just the distance the neutrino will travel from the point of origin. We denote this

distance by x.

Therefore,

Pνe→νe = 1− sin2 2θ sin2

(
πx

l12

)
, (15.23)

Pνe→νμ = sin2 2θ sin2

(
πx

l12

)
. (15.24)

If neutrinos have traveled a long distance then it is more instructive to consider the average

value of the probabilities. For that purpose we write

sin2

(
πx

l12

)
= 1

2

[
1− cos

(
2πx

l12

)]
. (15.25)
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Since the oscillating cosine function will average to zero, we have

〈
sin2

(
πx

l12

)〉
= 1

2
. (15.26)

Hence,

〈
Pνe→νe

〉
= 1− 1

2
sin2 2θ , (15.27)

〈
Pνe→νμ

〉
= 1

2
sin2 2θ . (15.28)

Thus, the probability of finding the different flavor eigenstates is given by the mixing angles.

As a final note, we emphasize that the neutrinos undergo oscillations only if they have

mass. It is the observation of such oscillations that led to the discovery that neutrinos that

were thought to be massless in fact have mass, although quite minuscule. As we stated

earlier, we have ignored the tau-neutrino. In a complete calculation they must, of course,

be included. Not all the answers are in yet with regard to the masses and mixing angles of

the neutrinos. This continues to remain a rich and exciting subject.

15.4 Decay and regeneration

Decays occur often in the regime of particle physics. Neutrons decay into protons, π0-

mesons decay into photons and, as we will consider below, K-mesons decay in a variety

of different forms. And that is just a small set of examples. A particle left alone, or better

still in the presence of other particles that can provide extra energy, can disappear. Even

the proton may not be absolutely stable; its lifetime as currently measured is of the order of

at least 1025 years, which is a huge number but still finite. Let us then pursue a very small

portion of this subject further.

15.4.1 Basic formalism

If a particle at time t is described by an energy eigenstate |ψ(t)〉 = |ψ(0)〉 exp (−iEnt/�),

corresponding to an energy En, then the probability of finding it, |〈ψ(t) |ψ(t)〉|2, is the same

for all values of time. Consider now a situation where

|〈ψ(t) |ψ(t)〉|2 = 1 at t = 0 but |〈ψ(t) |ψ(t)〉|2 < 1 for t > 0. (15.29)

We then say that the particle described by the state |ψ(t)〉 undergoes “decay” for t > 0. Such

decays as we mentioned above are a common phenomenon in processes such as α-decay,

β-decay, photon emission in atomic transitions, as well as in decays of π- and K-mesons.

In a decay process A → B+C, one has a situation in which the particle A disappears and in

its place particles B and C are created. One then requires that in any probability conservation
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relation we include
∣∣ψA

〉
,
∣∣ψB

〉
, and

∣∣ψC

〉
as well as the quantum of the field that triggers

the decay. We therefore need a formalism that allows for the creation and destruction of

particles, which happens to be the subject of quantum field theory that includes strong and

weak interactions. Except for basic quantum electrodynamics discussed in Chapters 41–43,

this is beyond the scope of this book. For our purposes, we will, therefore, follow a more

phenomenological path.

If we write

|ψ(t)〉 = |ψ(0)〉 e−iαt/� (15.30)

with the normalization

|〈ψ(0) |ψ(0)〉|2 = 1, (15.31)

then to satisfy the condition that the particle decays for t > 0, we must have α complex. If

we write

α = a+ ib (15.32)

where a and b are real, then

|ψ(t)〉 = |ψ(0)〉 e−iat/�e−bt/� (15.33)

and

|〈ψ(t) |ψ(t)〉|2 = e2bt/�. (15.34)

In order for the decay to occur we must have b < 0. If we relate a to the energy eigenvalue,

E, then we can write

α = E − i
Ŵ

2
with Ŵ > 0. (15.35)

We note that Ŵ like E has the dimensions of energy. The state vector is then given by

|ψ(t)〉 = |ψ(0)〉 exp

(
−i

Et

�
− Ŵt

2�

)
, (15.36)

with the probability expressed as

|〈ψ(t) |ψ(t)〉|2 = exp

(
−Ŵt

�

)
. (15.37)

One calls �/Ŵ the “lifetime” of the particle and Ŵ the “decay width.”

Let the total Hamiltonian responsible for the decay process be written as H = H0 +H ′;
then the Schrödinger equation has the form

i�
∂

∂t
|ψ(t)〉 =

(
H0 + H ′) |ψ(t)〉 . (15.38)
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Taking the derivative of |ψ(t)〉 given in (15.36) we find

i�
∂

∂t
|ψ(t)〉 =

(
E − i

Ŵ

2

)
|ψ(t)〉 . (15.39)

While H0 is Hermitian, we will, in this phenomenological approach, express H ′ in terms

of real and imaginary parts and write H ′ = H ′
R + iH ′

I . If, furthermore, H ′
I is a constant as a

function of time, then it can be identified as simply (−iŴ/2), so H is given by

H = H0 + H ′
R − i

Ŵ

2
(15.40)

with

(
H0 + H ′

R

)
|ψ(t)〉 = E |ψ(t)〉 . (15.41)

By making the choice (15.40) for the Hamiltonian we have given up the requirement that H

be Hermitian. But as we explained before, we are following a phenomenological approach

to tackle this problem.

15.4.2 Current conservation with complex potentials

Let us go back to the beginning when we considered the Schrödinger equation with a

potential V (r) and obtained the following current conservation relation:

∇ · j = −∂ρ
∂t

. (15.42)

As we mentioned at the time, the left-hand side is related to the flow of current crossing

a closed surface around a volume and the right-hand side with a negative sign indicates a

decrease in charge. In other words, the equation tells us that the current leaving a surface

amounts to a decrease in the overall charge. Basically, in terms of number of particles, if

there are 5 particles at rest inside a volume then, since they have zero velocity, there will

be no current crossing the surface surrounding the volume. Thus the left-hand side will be

zero. Then, according to the equation, the right-hand side will also be zero, confirming that

there is no change in the number of particles from the initial number 5. However if, say,

3 of 5 particles inside the volume decay into products that are also essentially stationary,

the left-hand is again zero. The right-hand side, on the other hand, will continue to indicate

that the number of particles has not changed from the initial count of 5. Thus the relation

(15.42) cannot be correct if the particles undergo decay. If we examine the above relation

closely, we note that the assumption that the potential, V (r), is real played a crucial part in

the derivation of this equation.

Let us, therefore, take another look at our derivation of current conservation. The

Schrödinger equation is given by

− �
2

2m
∇2ψ + V (r) ψ = i�

∂ψ

∂t
. (15.43)
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Taking the complex conjugate, we find

− �
2

2m
∇2ψ∗ + V ∗ (r) ψ∗ = −i�

∂ψ∗

∂t
. (15.44)

Multiplying (15.43) by ψ∗ and (15.44) by ψ and subtracting, we obtain

− �
2

2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
+
(
V − V ∗

)
ψψ∗ = i�

(
ψ∗
∂ψ

∂t
+ ψ ∂ψ

∗

∂t

)
. (15.45)

From our discussion in Chapter 1, the probability density and probability current density

are given by

ρ = ψ∗ψ , (15.46)

j = �

2im

(
ψ∗∇ψ − ψ∇ψ∗

)
, (15.47)

respectively. If we take the potential to be complex,

V (r) = VR + iVI , (15.48)

then the differential equation (15.45) can be expressed as

∇ · j+ ∂ρ
∂t
= 2VI

�
ρ. (15.49)

For a situation where the particle is at rest, i.e., in the static case, we have j ≈ 0; then

equation (15.49) becomes

∂ρ

∂t
= 2VI

�
ρ, (15.50)

which gives rise to the solution

ρ = ρ0 exp

(
2VI

�
t

)
(15.51)

where we assume VI to be a constant independent of r and t. To prevent ρ from increasing

indefinitely with time, we must have VI < 0, i.e., VI = − |VI |. The probability density

is then

ρ = ρ0 exp

(
−2 |VI |

�
t

)
. (15.52)

This result then corresponds to the “decay” of the system. If, as in the previous case, we

identify |VI | = Ŵ/2, then we can write

ρ = ρ0 exp

(
−Ŵ

�
t

)
. (15.53)
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The wavefunction is now of the form

ψ(r) = ψ0(r) exp

(
−i

Et

�
− Ŵt

2�

)
, (15.54)

with the potential given by

V (r) = VR (r)− i
Ŵ

2
. (15.55)

15.5 Oscillation and regeneration of stable and unstable systems

In the previous section, we described how a decay process can be incorporated into the

formalism phenomenologically. In the following we begin with the problem at t = 0

so that we can apply the results that were obtained from our earlier time-independent

considerations.

We will frame this as a two-level problem. We will assume, as we did in our previous

problems, that the Hamiltonian is a 2× 2 matrix, which now has complex matrix elements

and will not necessarily be Hermitian.

Consider the states |ψ(t)〉 and
∣∣ψ(t)

〉
as representing a two-level system and, further-

more, assume that at t = 0 these states are related to each other by a discrete, unitary,

transformation U , with U 2 = 1:

U |ψ(0)〉 =
∣∣ψ(0)

〉
, (15.56)

U
∣∣ψ(0)

〉
= |ψ(0)〉 . (15.57)

If U commutes with the Hamiltonian, i.e., [U , H ] = UH − HU = 0, then we write the

following relations involving the diagonal and off-diagonal elements of the matrix, H ,

expressed as a complex quantity of the type E − i1/2Ŵ. That is, we take

〈ψ(0)|H |ψ(0)〉 = E0 − i
1

2
Ŵ0, (15.58)

〈ψ(0)|H
∣∣ψ(0)

〉
= E′0 − i

1

2
Ŵ′0. (15.59)

Using the property UH − HU = 0, we obtain

〈
ψ(0)

∣∣H
∣∣ψ(0)

〉
=
〈
ψ(0)

∣∣U−1HU
∣∣ψ(0)

〉
= 〈ψ(0)|H |ψ(0)〉 = E0 − i

1

2
Ŵ0, (15.60)

〈
ψ(0)

∣∣H |ψ(0)〉 =
〈
ψ(0)

∣∣U−1HU |ψ(0)〉 = 〈ψ(0)|H
∣∣ψ(0)

〉
= E′0 − i

1

2
Ŵ′0. (15.61)

The relation (15.60) is equivalent to H11 = H22 for a description in terms of a 2× 2 matrix

and the relation (15.61) is equivalent to H12 = H21(but not H ∗
21).
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To obtain the eigenvalues of H in this two-level system consisting of |ψ(0)〉 , and
∣∣ψ(0)

〉
,

we need to diagonalize the following Hamiltonian matrix, H , in the
{
|ψ(0)〉 ,

∣∣ψ(0)
〉}

basis,

written in the familiar form

[
A D

D A

]
(15.62)

where A and D are the complex quantities

A = E0 − i
1

2
Ŵ0, (15.63)

D = E′0 − i
1

2
Ŵ′0. (15.64)

We will assume that the diagonalization process we pursued previously is valid even though

the Hamiltonian is complex and non-Hermitian.

The eigenvalues of the matrix (15.62) are

E+ = A+ D = E0 + E′0 − i
1

2
(Ŵ0 + Ŵ′0), (15.65)

E− = A− D = E0 − E′0 − i
1

2
(Ŵ0 − Ŵ′0). (15.66)

We assume the imaginary parts to be small. The mixing angle from our previous (time-

independent) considerations is found to be θ = π/2, neglecting the contribution of the

imaginary parts. Thus, the eigenstates of H are

∣∣ψ+(0)
〉
= |ψ(0)〉 +

∣∣ψ(0)
〉

√
2

, (15.67)

∣∣ψ−(0)
〉
= |ψ(0)〉 −

∣∣ψ(0)
〉

√
2

. (15.68)

We note from (15.56) and (15.57) that

U
∣∣ψ+(0)

〉
=
∣∣ψ+(0)

〉
, (15.69)

U
∣∣ψ−(0)

〉
= −

∣∣ψ−(0)
〉
. (15.70)

We then say that
∣∣ψ+(0)

〉
has a positive U -parity and

∣∣ψ−(0)
〉
has a negative U -parity.

Consider the following specific example where

Ŵ′0 � Ŵ0, (15.71)

which corresponds to the well-known problem of K0 − K
0

mixing in particle physics.

Thus,
∣∣ψ+(0)

〉
will correspond to a state with a large decay width (Ŵ0+Ŵ′0), which we will

designate as
∣∣ψS(0)

〉
andŴS , respectively, signifying a “short-lived” state, and write the real

part of the energy eigenvalue, (E0 + E′0), as ES . Similarly
∣∣ψ−(0)

〉
will be a “long-lived”
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state, designated by
∣∣ψL(0)

〉
, with real and imaginary parts of the eigenvalues,

(
E0 − E′0

)

and (Ŵ0 − Ŵ′0), written as EL and ŴL, respectively. To summarize then, we have

ŴL < ŴS (15.72)

and

∣∣ψS(0)
〉
= |ψ(0)〉 +

∣∣ψ(0)
〉

√
2

, (15.73)

∣∣ψL(0)
〉
= |ψ(0)〉 −

∣∣ψ(0)
〉

√
2

. (15.74)

The time dependence of these state vectors is given by

∣∣ψS(t)
〉
=
∣∣ψS(0)

〉
e−

i
�
(ES−i 1

2ŴS )t , (15.75)

∣∣ψL(t)
〉
=
∣∣ψL(0)

〉
e−

i
�
(EL−i 1

2ŴL )t . (15.76)

Conversely,

|ψ(0)〉 =
∣∣ψS(0)

〉
+
∣∣ψL(0)

〉
√

2
, (15.77)

∣∣ψ(0)
〉
=

∣∣ψS(0)
〉
−
∣∣ψL(0)

〉
√

2
, (15.78)

with their time dependence given by

|ψ(t)〉 =
∣∣ψS(t)

〉
+
∣∣ψL(t)

〉
√

2
, (15.79)

∣∣ψ(t)
〉
=

∣∣ψS(t)
〉
−
∣∣ψL(t)

〉
√

2
, (15.80)

where the time dependences of
∣∣ψS(t)

〉
and

∣∣ψL(t)
〉
are already given in (15.75) and (15.76).

(i) Stable case

We first consider the case where
∣∣ψS (t)

〉
and

∣∣ψL (t)
〉
are stable, that is, ŴS = ŴL = 0:

∣∣ψS(t)
〉
=
∣∣ψS(0)

〉
e−

i
�

ES t , (15.81)

∣∣ψL(t)
〉
=
∣∣ψL(0)

〉
e−

i
�

ELt .

We will then have

|ψ (t)〉 =
∣∣ψS(0)

〉
e−

i
�

ES t +
∣∣ψL(0)

〉
e−

i
�

ELt

√
2

. (15.82)



272 Oscillation and regeneration in neutrinos and neutral K-mesons

To understand further the time development of |ψ (t)〉 we write

|ψ (t)〉 = e−
i
�

ES t

[∣∣ψS(0)
〉
+
∣∣ψL(0)

〉
e−

i
�
(EL−ES )t

]

√
2

, (15.83)

where we assume EL > ES . Note that at t = π�/ (EL − ES) we have

|ψ (t)〉 ∼
[∣∣ψS(0)

〉
−
∣∣ψL(0)

〉]
√

2
=
∣∣ψ(0

〉
. (15.84)

Thus we have a conversion

|ψ〉 →
∣∣ψ

〉
. (15.85)

Consequently, there will be an oscillation of |ψ〉 ⇄
∣∣ψ

〉
as time progresses, a process we

are already familiar with from a number of examples considered earlier, including neutrino

oscillations. This particular case corresponds to the well-known
∣∣K0

〉
⇄

∣∣∣K0
〉

oscillation.

(ii) Unstable case

If
∣∣ψS

〉
and

∣∣ψL

〉
are unstable then for |ψ (t)〉 we obtain

|ψ (t)〉 =
∣∣ψS(0)

〉
e−iES t/�e−ŴS t/2� +

∣∣ψL(0)
〉
e−iEL t/�e−ŴL t/2�

√
2

. (15.86)

The probability of finding a particle in a state |ψ (t)〉 is given by

N = |〈ψ (t) |ψ (t)〉|2 (15.87)

and the corresponding probability for
∣∣ψ (t)

〉
is

N =
∣∣〈ψ (t) |ψ (t)

〉∣∣2 . (15.88)

Since |ψ (t)〉 and
∣∣ψ(t)

〉
correspond to unstable states, neither N nor N is expected to be 1.

We obtain the following:

N = 1

4

{
e−

ŴS
�

t + e−
ŴL
�

t + 2e−
(ŴS+ŴL)

2�
t cos

[
(ES − EL)

�
t

]}
, (15.89)

N = 1

4

{
e−

ŴS
�

t + e−
ŴL
�

t − 2e−
(ŴS+ŴL)

2�
t cos

[
(ES − EL)

�
t

]}
. (15.90)

We thus see that there is an oscillation between N and N while, at the same time, each

decreases in time.

We now consider the time-development of |ψ (t)〉. Since ŴL < ŴS , then for �/ŴS <

t < �/ŴL, we have

|ψ (t)〉 ≈
∣∣ψL(0)

〉
e−

i
�
(EL−i 1

2ŴL )t . (15.91)
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Thus after a sufficient lapse of time we have only the
∣∣ψL

〉
state left since it is relatively a

long-lived state. We express it in terms of |ψ (0)〉 and
∣∣ψ (0)

〉
as

∣∣ψL (0)
〉
= |ψ (0)〉 −

∣∣ψ (0)
〉

√
2

. (15.92)

Let us assume that since the particle represented by
∣∣ψL

〉
is traveling through matter,

|ψ〉 and
∣∣ψ

〉
undergo “scattering,” that is, the interaction in matter forces a change in their

motion that depends on whether it is |ψ (0)〉 or
∣∣ψ (0)

〉
. Hence, this interaction will lead to

|ψ (0)〉 → f |ψ (0)〉 and
∣∣ψ (0)

〉
→ f

∣∣ψ (0)
〉
. We then have

∣∣ψL (0)
〉
→ f |ψ (0)〉 − f

∣∣ψ (0)
〉

√
2

, (15.93)

where f and f̄ are the so-called scattering amplitudes.

Writing |ψ〉 and
∣∣ψ

〉
back in terms of

∣∣ψS

〉
and

∣∣ψL

〉
, we find that

∣∣ψL (0)
〉
→ 1

2

[(
f − f

) ∣∣ψS (0)
〉
+
(
f + f

) ∣∣ψL (0)
〉]

. (15.94)

If f � =f̄ then
∣∣ψS

〉
, which had decayed and was assumed long gone, is now “regenerated.”

The quantity

f − f = f21 (15.95)

is called the regeneration amplitude. Clearly this is possible only if particles represented by

|ψ〉 and
∣∣ψ

〉
scatter differently.

The results we obtained in this section are confirmed in the
∣∣K0

〉
−
∣∣∣K0

〉
system in particle

physics. We elaborate on this below.

15.6 Neutral K-mesons

All particles have corresponding antiparticles with the same mass, lifetime, spin, and a few

other characteristics but with one or two other quantum numbers that have opposite signs.

Thus, electrons and protons have positrons and antiprotons that are identical in every way

except for electric charge in both cases and, in the case of protons, opposite so-called baryon

number. Neutrons have no charge, but the antineutrons have opposite baryon number. The

truly neutral particles such as photons and π0-mesons are identical to their antiparticles.

The neutral K-mesons belong to a special class of elementary particles.
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15.6.1The K0 , K
0
, KS , and KL mesons

K0and K
0

are spin 0 particles that form a particle–antiparticle pair that is degenerate in

mass and have many other properties that are identical, except for the quantum number

called “strangeness.” K0 has positive strangeness while K
0

has negative strangeness. These

mesons undergo both strong and weak interactions. While strong interactions, which include

nuclear interactions, conserve strangeness, weak interactions do not. As a consequence,

while strong interactions allow K0 and K
0

to maintain their individual identity, the presence

of weak interactions can trigger transitions between K0 and K
0
. It is found that K0 and K

0

can be related to each other by a transformation that is a product of the transformations

called charge conjugation, (C) and parity (P):

CP

∣∣∣K0
〉
=
∣∣∣K0

〉
. (15.96)

Thus CP acts as the U operator discussed earlier. The weak interaction is assumed to

preserve the CP quantum number, but not strangeness. The strong interaction, on the other

hand, preserves C and P (therefore, also the product CP), as well as strangeness. One

therefore forms linear combinations according to a specific CP quantum number (also

called CP “parity”). Hence, one forms

|KS 〉 =
∣∣K0

〉
+
∣∣∣K0

〉

√
2

with CP |KS 〉 = (+) |KS 〉 , (15.97)

which has a positive CP parity, and

|KL 〉 =
∣∣K0

〉
−
∣∣∣K0

〉

√
2

with CP |KL 〉 = (−) |KL 〉 , (15.98)

which has a negative CP parity. Thus |KS 〉 and |KL 〉 eigenstates are relevant in a

Hamiltonian that contains terms corresponding to weak interactions.

Comparing the K-meson formalism with the formalism in the previous section, we make

the following identifications:

|ψ〉 →
∣∣∣K0

〉
,

∣∣ψ
〉
→

∣∣∣K0
〉
,

∣∣ψL

〉
→ |KL〉 ,

∣∣ψS

〉
→ |KS〉 (15.99)

and

U = CP. (15.100)

The state |KS 〉 is short-lived with a predominant decay, KS → 2π , and a lifetime of

τ S = .89 × 10−10 s, while the long-lived, |KL 〉 decays as KL → 3π with a lifetime

τL = 5.17× 10−8 s. Their mass difference is found to be �m = 3.49× 10−12 MeV.
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If, again, we consider the particles at rest, and take the relativistic result E = mc2 then

the expectation value of the Hamiltonian H gives the masses of KS and KL :

mS = 〈KS |H |KS 〉 =
1

2

〈(
K + K

)
|H |

(
K + K

)〉
(15.101)

and

mL = 〈KL |H |KL 〉 =
1

2

〈(
K − K

)
|H |

(
K − K

)〉
. (15.102)

Hence the mass difference is given by

�m = mS − mL =
〈
K |H |K

〉
+
〈
K |H |K

〉
. (15.103)

Thus, the mass difference is given by the matrix element responsible for the K0 ⇄ K
0

oscillations.

If we consider the particles at rest, we can replace ES , EL by the masses mS , mL

respectively. The decay probabilities are then given by

N (K) = 1

4

{
e−

ŴS
�

t + e−
ŴL
�

t + 2e−
(ŴS+ŴL)

2�
t cos�mt

}
, (15.104)

N (K) = 1

4

{
e−

ŴS
�

t + e−
ŴL
�

t − 2e−
(ŴS+ŴL)

2�
t cos�mt

}
. (15.105)

15.6.2Regeneration of K-mesons

In a typical example of the regeneration process, one starts with a beam of K0-mesons,

which is an equal mixture of KS and KL. After 10−8s but before 10−10s, all KS disappear

leaving behind essentially a pure beam of KL, which is an equal mixture of K0and K
0
. If

now a nuclear material is interposed then, because of the very different interactions of K0

and K
0

with matter, it turns out that K
0

is almost entirely absorbed and one is left with a

K0, and contained in it the KS , providing a startling case of regeneration! (See Fig. 15.1.)

This “schizophrenic” property of neutral K-mesons is a quintessentially quantum-

mechanical phenomenon. The K0- or K
0
-meson is a superposition of KL and KS , which

in turn, are superpositions of K0 and K
0

and so on. What gets measured depends on the

type of the measuring device and what it is supposed to measure. If it is a nuclear (strong)

x
K 0 K 0 Ks  KS   KL

(disappears)

x x

(appears)

Fig. 15.1
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interaction or an interaction that distinguishes particles from antiparticles and conserves

strangeness, then it involves K0 or K
0
. If the interaction allows decays into channels with

definite CP parity, but not necessarily strangeness, like decays into 2π’s or 3π’s, then it

involves KS and KL.

15.7 Problems

1. Consider the following Hamiltonian for a system of three neutrinos
(
νe, νμ, ντ

)
.Assume

the particles to be at rest, with the Hamiltonian (also called the mass matrix) given by

the 3× 3 matrix

�ω0

⎡
⎣

1 λ λ

λ 1 λ

λ λ 1

⎤
⎦

and the unperturbed state vectors as

⎡
⎣
|νe〉∣∣νμ

〉

|ντ 〉

⎤
⎦ .

Determine the eigenvalues and eigenfunctions for this system.

2. Assume in Problem 1 that at t = 0 only |νe(t)〉 is present. Determine the time dependence

of |νe(t)〉,
∣∣νμ(t)

〉
, |ντ (t)〉 and the probability that one will find νμ and ντ for t > 0.



16
Time-independent perturbation for

bound states

Here we tackle problems that cannot be solved exactly, which means that one must resort to

approximations.Among the methods available for this purpose, perturbation methods are the

most commonly used provided certain conditions are met. One starts with the unperturbed

system that is solvable and closest to the problem at hand. The interaction Hamiltonian is

expressed as a sum of the unperturbed, solvable, part and the new interaction term. The

problem is solved essentially as a power series in the strength of this interaction term. In

this chapter we consider those cases that do not depend on time.

16.1 Basic formalism

In Chapter 8 we considered bound-state problems that were solvable exactly. With the

Hamiltonian that was provided we were able to obtain exact results for the eigenvalues

and eigenstates. In many practical situations, however, this is not feasible because the

Hamiltonian is often too complicated to render an exact solution. The perturbation method

we will outline below allows one to obtain reliable approximate solutions provided the

new Hamiltonian, which we call the “perturbed” Hamiltonian, is not too different from the

original Hamiltonian, which we call the “unperturbed” Hamiltonian. Here again we will

confine ourselves to bound states.

Let H0 be the unperturbed and H the perturbed Hamiltonians such that

H = H0 + λH ′ (16.1)

where H ′ is the “perturbation” which, in some sense, is assumed to be small. H0 and H

satisfy the eigenvalue equations

H0

∣∣∣ψ (0)s

〉
= E(0)s

∣∣∣ψ (0)s

〉
, (16.2)

H
∣∣ψ s

〉
= Es

∣∣ψ s

〉
, (16.3)

with
∣∣ψ0

s

〉
and

∣∣ψ s

〉
as the eigenstates and E0

s and Es as the eigenvalues of H0 and H ,

respectively. We have put a multiplicative factor λ in (16.1) primarily for bookkeeping

purposes, so that

∣∣ψ s

〉
→

∣∣∣ψ (0)s

〉
and Es → E(0)s as λ→ 0 (16.4)
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when the contribution of H ′ vanishes. Using perturbation theory, therefore, makes good

sense if the problem at hand is sufficiently similar to the original problem whose solutions

are known exactly.

The perturbation method relies on obtaining the solutions as a power series in λ. The

central assumption is that such a power series converges and that the solutions are smooth

and continuous functions of λ, so that one can obtain the required solution at λ = 1. The

energy eigenvalue Es is therefore expressed as an infinite series (a “perturbative” series) inλ,

Es = E(0)s + λE(1)s + λ2E(2)s + · · · . (16.5)

Consequently, since
∣∣ψ0

n

〉
form a complete set, the perturbed states

∣∣ψn

〉
can be expressed

as follows

∣∣ψ s

〉
=
∑

n

cns

∣∣∣ψ (0)n

〉
(16.6)

where the coefficients cns are also expanded in a perturbative series,

cns = c(0)ns + λc(1)ns + λ2c(2)ns + · · · . (16.7)

From (16.4) we obtain

c(0)ns = δns. (16.8)

We then have

∣∣ψ s

〉
=
∣∣∣ψ (0)s

〉
+ λ

∑

n

c(1)ns

∣∣∣ψ (0)n

〉
+ λ2

∑

n

c(2)ns

∣∣∣ψ (0)n

〉
+ · · · . (16.9)

Pulling out the term with
∣∣ψ0

s

〉
from each of the above sums we have

∣∣ψ s

〉
=
(
1+ λc(1)ss + · · ·

) ∣∣∣ψ (0)s

〉
+ λ

∑

n� =s

c(1)ns

∣∣∣ψ (0)n

〉
+ · · · . (16.10)

The first term contains an infinite series which we will normalize to unity. Thus one can

write

1+ λc(1)ss + · · · = eiλξ . (16.11)

The first term will then acquire a phase. In the discussion to follow we will take ξ = 0.

Hence we write

∣∣ψ s

〉
=
∣∣∣ψ (0)s

〉
+ λ

∑

n� =s

c(1)ns

∣∣∣ψ (0)n

〉
+ · · · . (16.12)

Since

∣∣∣ψ (0)i

〉
are assumed to be normalized to unity, it is clear that

∣∣ψ s

〉
cannot be so

normalized. Let us write

∣∣ψ s

〉
= Z−1/2

s

∣∣ψ s

〉
R

(16.13)
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where we take
∣∣ψ s

〉
R

to be normalized to unity. Thus from (16.12) using the orthonormality

property of

∣∣∣ψ (0)n

〉
we obtain

Z−1
s = 1+ λ2

∑

n� =s

∣∣∣c(1)ns

∣∣∣
2
+ · · · . (16.14)

Zs is called the renormalization constant for the state vector
∣∣ψ s

〉
, and

∣∣ψ s

〉
R

is called the

renormalized state.

Inverting this relation (assuming λ to be small) we find

Zs = 1− λ2
∑

n� =s

∣∣∣c(1)ns

∣∣∣
2
. . . . (16.15)

Thus Zs is less than 1. The amount by which it is reduced from 1 is related to the probability

of transitions from the initial unperturbed state

∣∣∣ψ (0)s

〉
to other unperturbed states.

Also, from (16.13), since 〈ψ (0)s

∣∣ψ s

〉
= 1, therefore,

Z1/2
s = 〈ψ (0)s

∣∣ψ s

〉
R

. (16.16)

Thus one can interpret Zs as the probability of finding the (renormalized) perturbed state in

the original unperturbed state.

In the following we will write the series (16.12) as

∣∣ψ s

〉
=
∣∣∣ψ (0)s

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · · (16.17)

where

∣∣∣ψ (1)s

〉
=
∑

n� =s

c(1)ns

∣∣∣ψ (0)n

〉
,

∣∣∣ψ (2)s

〉
=
∑

n� =s

c(2)ns

∣∣∣ψ (0)n

〉
, . . . (16.18)

Equation (16.3) can be written in a fully expanded series as follows:

(
H0 + λH ′) {∣∣∣ψ (0)s

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · ·

}

=
(
E(0)s + λE(1)s + λ2E(2)s + · · ·

) {∣∣∣ψ (0)s

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · ·

}
. (16.19)

The above series, after we move all the terms to the left, will be of the form

A+ Bλ+ Cλ2 + · · · = 0. (16.20)

Our basic assumption is that the above equation is valid for continuous values of λ in which

case the only possible solution is

A = 0 = B = C = · · · . (16.21)
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This result implies that we equate the coefficients of equal powers of λ on the two sides of

the equation (16.19). Hence,

(
H0 − E(0)s

) ∣∣∣ψ (0)s

〉
= 0, (16.22)

(
H0 − E(0)s

) ∣∣∣ψ (1)s

〉
=
(
E(1)s − H ′

) ∣∣∣ψ (0)s

〉
, (16.23)

(
H0 − E(0)s

) ∣∣∣ψ (2)s

〉
=
(
E(1)s − H ′

) ∣∣∣ψ (1)s

〉
+ E(2)s

∣∣∣ψ (0)s

〉
, (16.24)

and so on.

Equation (16.22) is trivial since it reproduces the known result (16.2). In the remaining

equations, we use the orthogonality property

〈
ψ (0)s

∣∣ψ (j)s

〉
= 0 for j � =0 (16.25)

to determine the constants, c
(i)
ms (i = 1, 2, . . .). Multiplying both sides of (16.23) by

〈
ψ
(0)
s

∣∣∣
we obtain

E(1)s =
〈
ψ (0)s

∣∣∣H ′
∣∣∣ψ (0)s

〉
= H ′

ss. (16.26)

Thus the first-order correction to the energy eigenvalues is simply given by the expectation

value of H ′.
Multiplying equation (16.23) by

〈
ψ
(0)
m

∣∣∣ with m � =s, we obtain the coefficient

c(1)ms =
H ′

ms(
E
(0)
s − E

(0)
m

) . (16.27)

Similarly, by multiplying (16.24) by
〈
ψ
(0)
s

∣∣∣ we get

E(2)s =
∑

n� =s

∣∣H ′
ns

∣∣2
(
E
(0)
s − E

(0)
n

) (16.28)

where we have used the fact that H ′ is Hermitian, H ′† = H ′.
We notice that in E

(2)
s , if the levels E0

n and E0
m are adjacent then the lower of the two

becomes even lower and the higher of the two becomes higher. There is, thus, no crossing

of the levels due to perturbation.

One can now continue in a systematic way to obtain the eigenstates and eigenvalues to

all orders in λ.
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Summarizing, then, we have the following results for Es to second order in λ, and
∣∣ψ s

〉

to first order:

Es = E(0)s + λH ′
ss + λ2

∑

n� =s

∣∣H ′
ns

∣∣2
(
E
(0)
s − E

(0)
n

) + · · · , (16.29)

∣∣ψ s

〉
=
∣∣∣ψ (0)s

〉
+ λ

∑

n� =s

H ′
ns(

E
(0)
s − E

(0)
n

)
∣∣∣ψ (0)n

〉
+ · · · . (16.30)

We can put λ = 1 assuming that the infinite series converges.

Let us consider some examples.

16.2 Harmonic oscillator: perturbative vs. exact results

16.2.1 Energy levels

The Schrödinger equation for the harmonic oscillator is

− �
2

2m

d2u

dx2
+ 1

2
mω2x2u = Eu. (16.31)

Consider a linear perturbation

H ′ = x.

Here x is to be considered as an operator even though we have not written it in capital letters.

This problem can be solved quite simply in terms of the raising and lowering operators a†

and a, respectively, which we have already discussed in Chapter 9. We write x in terms of

them:

x =
√

�

2mω

(
a+ a†

)
. (16.32)

A typical matrix element of H ′ is then

H ′
ns = 〈n|H ′ |s〉 =

√
�

2mω
[〈n| a |s〉 + 〈n| a† |s〉] (16.33)

=
√

�

2mω

[√
sδn,s−1 +

√
s+ 1δn,s+1

]
(16.34)

where we have used the properties of a† and a.

We now wish to calculate the energy eigenvalues and the ground-state energy eigenfunc-

tion in perturbative expansion. As it turns out, this problem can also be solved exactly. This
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will enable us to compare the exact results when expanded in powers of λ with the results

obtained from perturbative expansion in terms of λ.

First we consider the perturbative terms. The unperturbed energy eigenvalue is

E(0)s =
(

s+ 1

2

)
�ω. (16.35)

From (16.26) and (16.34) it is clear that the first-order correction vanishes:

E(1)s = H ′
ss = 0. (16.36)

The second-order term is given by

E(2)s =
∑

n� =s

∣∣H ′
ns

∣∣2
(
E
(0)
s − E

(0)
n

) . (16.37)

From (16.34) we can write

E(2)s =

∣∣∣H ′
s+1,s

∣∣∣
2

(
E
(0)
s − E

(0)
s+1

) +

∣∣∣H ′
s−1,s

∣∣∣
2

(
E
(0)
s − E

(0)
s−1

) , (16.38)

which gives

E(2)s = − 1

2mω2
. (16.39)

Thus, to second order in λ,

Es =
(

s+ 1

2

)
�ω − λ2

2mω2
. (16.40)

Let us treat this problem exactly. The Schrödinger equation with H ′ is given by

− �
2

2m

d2u

dx2
+ 1

2
mω2x2u+ λxu = Eu. (16.41)

We can write this equation as follows:

− �
2

2m

d2u

dx2
+ 1

2
mω2

(
x + λ

mω2

)2

u− λ2

2mω2
u = Eu. (16.42)

We now change variables and write

y = x + λ

mω2
. (16.43)

The new Schrödinger equation is

− �
2

2m

d2u

dy2
+ 1

2
mω2y2u = E′u (16.44)
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where

E′ = E + λ2

2mω2
. (16.45)

Equation (16.44) is of the same form as the Schrödinger equation without any perturbative

terms. The energy eigenvalues for this problem are given by

E′s =
(

s+ 1

2

)
�ω. (16.46)

Therefore,

Es =
(

s+ 1

2

)
�ω − λ2

2mω2
. (16.47)

Interestingly, the energy eigenvalues to second order are the same as the exact result. The

reason is simply that all higher-order corrections vanish. This can be understood by noting,

for example, that for the third order we need to obtain a matrix element of the type

H ′
snH ′

nmH ′
ms (16.48)

with m �= n �= s. From (16.34) it is evident that to obtain nonvanishing matrix elements the

level differences must be 1. Thus |n− s| = 1 = |m− n|, which implies that m and s must

differ by either 0 or 2; in either case the corresponding matrix element will vanish. This

argument can be repeated for all higher-order corrections. Thus the perturbative results to

second order provide the complete answer.

16.2.2 Wavefunctions

From perturbation theory results we obtain the first-order correction to the wavefunction as

∣∣ψ s

〉
=
∣∣∣ψ (0)s

〉
+ λ

∑

n� =s

H ′
ns(

E
(0)
s − E

(0)
n

)
∣∣∣ψ (0)n

〉
. (16.49)

Inserting the results for H ′
ns for the ground state (s = 0) and rewriting the above in terms of

the wavefunctions u
(0)
n (x), we obtain for the ground state wavefunction to first order in λ

u0(x) = u
(0)
0 (x)−

λ

�ω

√
�

2mω
u
(0)
1 (x). (16.50)

Substituting u
(0)
1 (x) in terms of u

(0)
0 (x) obtained in Chapter 9,

u
(0)
1 (x) =

√
2mω

�
xu
(0)
0 (x), (16.51)
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we obtain

u0(x) =
(

1− λx
�ω

)
u
(0)
0 (x). (16.52)

The exact ground state eigenfunction in terms of the variable y is given by

u0(y) =
(mω

π�

) 1
4

exp

(
−mωy2

2�

)
. (16.53)

Expressing y in terms of x we find

u0(y) =
(mω

π�

) 1
4

exp

[
−mω

2�

(
x + λ

mω2

)2
]

. (16.54)

Expanding this to order λ we find:

u0(x) =
(

1− λx
�ω

)
u
(0)
0 (x). (16.55)

We find that the perturbative result is the same as the exact result to order λ. Here one

finds that the perturbative series will not terminate at a specific power of λ. This is consistent

with the exact result, which involves an infinite expansion of an exponential in terms of λ.

One finds that the two series, perturbative and exact, agree term by term.

This result, therefore, gives credence to the basic assumption of perturbation theory in

relying on perturbation expansions.

16.3 Second-order Stark effect

Let us consider another example, this time of second-order perturbation that arises when

an hydrogen atom is subjected to an electric field. The total Hamiltonian for this case is

H = H0 + H ′ (16.56)

where H0 is the unperturbed Hamiltonian responsible for the formation of the hydrogen

atom, and H ′ is given by

H ′ = −eE0 · r (16.57)

where E0 is the electric field, and r corresponds to coordinates of the electron in the hydrogen

atom. This is the so-called Stark effect. We do not put the multiplicative factor λ in (16.56)

because the charge, e, in H ′ serves as an expansion parameter intrinsic to the interaction.

Taking the direction of E0 to be in the z-direction, and, therefore, H ′ = −eE0z, the

first-order shift in the energy is given by

E(1)s = H ′
ss = −e |E0|

〈
ψ (0)s |z|ψ (0)s

〉
= −e |E0| zss (16.58)
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where

∣∣∣ψ (0)s

〉
corresponds to the hydrogen atom wavefunction and

zss =
∫

d3r z

∣∣∣ψ0
s (r)

∣∣∣
2

. (16.59)

This integral vanishes because it is not invariant under (parity) transformation, r →−r, as

we show below.

The hydrogen atom wavefunction is of the form, as derived in Chapter 8,

ulmn = Rl(r)Ylm(θ ,φ) (16.60)

where Rl(r) is the radial wavefunction and Ylm(θ ,φ) is the spherical harmonic function.

Under parity transformation, the radial coordinates transform as r → r, θ → π − θ and

φ→ π + φ. Thus Rl(r) remains the same but

Ylm → (−1)lYlm (16.61)

where l is an integer. Hence

∣∣∣ψ (0)s (r)

∣∣∣
2
→ (−1)2l

∣∣∣ψ (0)s (r)

∣∣∣
2
=
∣∣∣ψ (0)s (r)

∣∣∣
2

. (16.62)

The integral (16.59) under r →−r gives

zss →−zss. (16.63)

Hence zss = 0. Thus there is no first-order Stark effect. The situation is different if the states

are degenerate, as we will discuss in the next section.

Let us then consider the second-order correction,

E(2)s =
∑

n� =s

∣∣H ′
ns

∣∣2
(
E
(0)
s − E

(0)
n

) = e2 |E0|2
∑

n� =s

|zns|2(
E
(0)
s − E

(0)
n

) . (16.64)

This infinite sum can be evaluated by an ingenious method due to Dalgarno and Lewis

(D-L) in which the energy to second order, given by

E
(2)
0 =

∑

n� =0

∣∣H ′
n0

∣∣2
(
E0

0 − E0
n

) , (16.65)

is expressed in terms of an operator F that satisfies the relation

H ′ = [F , H0] . (16.66)

Thus,

H ′
n0 =

〈
n
∣∣H ′∣∣ 0

〉
= 〈n |[F , H0]| 0〉 =

(
E0

0 − E0
n

)
〈n |F | 0〉 (16.67)
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and

E
(2)
0 =

∑

n� =0

〈
0
∣∣H ′∣∣ n

〉
〈n |F | 0〉 . (16.68)

Assuming further that

〈0 |F | 0〉 = 0, (16.69)

one can write

E
(2)
0 =

∑

n=0

〈
0
∣∣H ′∣∣ n

〉
〈n |F | 0〉 =

〈
0
∣∣H ′F

∣∣ 0
〉

(16.70)

where the term with n = 0 is included in the summation. The last equality follows from the

completeness relation. Thus the D-L method reduces an infinite sum to a single expectation

value.

For our problem, we have

E
(2)
0 = e2 |E0|2 〈0 |zF | 0〉 . (16.71)

An F that satisfies (16.66) and (16.69) is found by D-L to be

F = −ma0

�2

( r

2
+ a0

)
z. (16.72)

Hence,

〈0 |zF | 0〉 = −ma0

�2

〈
0

∣∣∣
( r

2
+ a

)
z2
∣∣∣ 0
〉
. (16.73)

The ground state of the hydrogen atom is a 1S state with principal quantum number

n = 1, l = 0, and m = 0. The wavefunction is, therefore, symmetric and, as a result, one

finds the following simplifications:

〈0|z2|0〉 = 1

3
〈0|r2|0〉, (16.74)

while

〈0|rz2|0〉 = 1

3
〈0|r3|0〉. (16.75)

These integrals are the expectation values with respect to the ground states, which can be

evaluated leading to the result

E
(2)
0 = −9

4
a3

0 |E0|2 . (16.76)

This is then the second-order correction to the energy eigenvalue of the ground state.
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The first-order correction to the wavefunction can also be evaluated quite simply using

the D-L method. The wavefunction is given by

|ψ (1)s 〉 =
∑

n� =s

H ′
ns(

E0
s − E0

n

) |ψ0
n〉. (16.77)

For the ground state we substitute s = 0 in (16.77) and obtain

∑

n� =0

〈n
∣∣H ′∣∣ 0〉

E0 − En
|n〉 =

∑

n� =0

〈n |F | 0〉|n〉 (16.78)

where we have written |ψ0
n〉 = |n〉. Since 〈0 |F | 0〉 = 0 we can write the right-hand side of

(16.78) as

∑

n

〈n |F | 0〉|n〉 =
∑

n

|n〉〈n |F | 0〉 = F |0〉 (16.79)

where we have used the completeness relation. From the F given in (16.22) we find

|ψ (1)0 〉 = −
(ma0

�2

) ( r

2
+ a0

)
|ψ (0)0 〉. (16.80)

This is then the first-order correction to the ground-state wavefunction obtained in a closed

form. We finally note that this problem can also be solved using parabolic coordinates.

16.4 Degenerate states

If the unperturbed states are degenerate, we must proceed somewhat differently. The classic

case of degenerate states is provided by the hydrogen atom levels with principal quantum

number n ≥ 2.

Suppose we have two unperturbed states

∣∣∣ψ (0)s1

〉
and

∣∣∣ψ (0)s2

〉
with the same energy

eigenvalue (two-fold degeneracy), with
〈
ψ
(0)
s1

∣∣∣ψ (0)s2

〉
= 0, then

H0

∣∣∣ψ (0)s1

〉
= E0

s

∣∣∣ψ (0)s1

〉
, (16.81)

H0

∣∣∣ψ (0)s2

〉
= E0

s

∣∣∣ψ (0)s2

〉
. (16.82)

As before, we have a perturbation due to H ′ so that

H = H0 + λH ′ (16.83)

with

H
∣∣ψ s

〉
= Es

∣∣ψ s

〉
(16.84)
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where
∣∣ψ s

〉
and Es are the eigenstate and eigenvalue of the perturbed Hamiltonian H . We

expand Es as we did before,

Es = E(0)s + λE(1)s + λ2E(2)s + · · · . (16.85)

With regard to
∣∣ψ s

〉
, we have to take into account the fact that, in the limit λ→ 0, one

may recover either of the two unperturbed states. Since the unperturbed states are indis-

tinguishable as far as their energy eigenvalues are concerned, there is no way of knowing

a priori where the perturbed states will end up in the limit λ → 0. Thus, instead of a

single unperturbed state as a leading term in the perturbation expansion we take a linear

combination of the two:

∣∣ψ s

〉
= as1

∣∣∣ψ (0)s1

〉
+ as2

∣∣∣ψ (0)s2

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · · . (16.86)

We have assumed that the degeneracy is removed to first order in λ. We then have from

(16.84), (16.85), and (16.86),

(
H0 + λH ′) {as1

∣∣∣ψ (0)s1

〉
+ as2

∣∣∣ψ (0)s2

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · ·

}

=
(
E(0)s + λE(1)s + λ2E(2)s + · · ·

)

×
{
as1

∣∣∣ψ (0)s1

〉
+ as2

∣∣∣ψ (0)s2

〉
+ λ

∣∣∣ψ (1)s

〉
+ λ2

∣∣∣ψ (2)s

〉
+ · · ·

}
. (16.87)

Multiplying the above by
〈
ψ
(0)
s1

∣∣∣ and
〈
ψ
(0)
s2

∣∣∣ in succession and using the orthonormality

relations, we obtain the following, after equating the coefficients of λ on both sides of

(16.87),

as1

(
H ′

11 − E(1)s

)
+ as2H ′

12 = 0, (16.88)

as1H ′
21 + as2

(
H ′

22 − E(1)s

)
= 0. (16.89)

We have a situation similar to the two-channel problems discussed in Chapter 13.

Evaluating the following determinant will then give the energy eigenvalues E
(1)
s :

∥∥∥∥∥∥

⎡
⎣
(
H ′

11 − E
(1)
s

)
H ′

12

H ′
21

(
H ′

22 − E
(1)
s

)
⎤
⎦
∥∥∥∥∥∥
= 0. (16.90)

For each value of E
(1)
s one obtains the coefficients as1 and as2 through (16.88) and (16.89)

and, hence, the linear combination of unperturbed states we need to zeroth order.
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If there is an n-fold degeneracy then we have the following n× n determinant to solve:

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
H ′

11 − E
(1)
s

)
H ′

12 H ′
13 . H ′

1n

H ′
21

(
H ′

22 − E
(1)
s

)
. . .

H ′
31 .

(
H ′

33 − E
(1)
s

)
. .

. . . . .

H ′
n1 . . .

(
H ′

nn − E
(1)
s

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= 0. (16.91)

In degenerate perturbation theory, generally, one is not interested in the higher-order terms

in the wavefunctions.

16.5 Linear Stark effect

We return to the subject of a hydrogen atom subjected to a uniform electric field E0. The

interaction Hamiltonian is given by

H ′ = −eE0 · r (16.92)

= −eE0r cos θ (16.93)

where we take the z-axis to be along the direction of E0, and θ the angle between r and E0.

As we discussed earlier, the first-order correction vanishes:

E(1)s = H ′
ss = −e |E0|

〈
ψ (0)s |z|ψ (0)s

〉
= −e |E0| zss = 0. (16.94)

In the Stark effect problem for the hydrogen atom with n ≥ 2, the situation is different

as we will discuss below, since we will need matrix elements between two states that are

degenerate but which are not necessarily identical. In this case we apply the degenerate

perturbation theory discussed in the previous section.

The wavefunctions for the hydrogen atom have already been obtained in Chapter 8. They

are of the form

unlm(r) = Rnl(r)Ylm(θ ,φ) (16.95)

where n is the principal quantum number, l the angular momentum, and m the projection of

the angular momentum in the z-direction. The only nonzero matrix elements of H ′ are those

where the difference between the m-values of the two states vanishes and the difference

between the l-values is ±1. That is,

�m = 0, �l = ±1. (16.96)

For n = 1 there is only one state, the 1S state. There are four degenerate states for n = 2,

two of which satisfy the above criteria: 2S and the 2P state with m = 0.As explained above,
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the diagonal matrix elements of H ′ with respect to these states vanish. The off-diagonal

matrix element is given by

〈2S |(−eE0r cos θ)| 2P(m = 0)〉 = −eE0

∫
d3r u210(r) (r cos θ) u100(r) (16.97)

= −3eE0a0 (16.98)

where a0 is the Bohr radius and the two wavefunctions are given in Chapter 8.

The matrix {H ′
ij} between the two states is then

⎡
⎢⎢⎢⎢⎢⎣

2S 2P(m = 0) 2P(m = 0) 2P(m = 0) 2P(m = 0)

2P(m = 0) 0 −3eE0a0 0 0

2P(m = 0) −3eE0a0 0 0 0

2P(m = 0) 0 0 0 0

2P(m = 0) 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(16.99)

where we have substituted

H ′
11 = 0 = H ′

22; H ′
12 = H ′

12 = −3eE0a0; remaining H ′
ij = 0. (16.100)

Hence the linear energy correction E
(1)
s is found from the condition

det

[
E
(1)
s 3eE0a0

3eE0a0 E
(1)
s

]
= 0. (16.101)

This gives

E
(1)
s± = ±3eE0a0. (16.102)

The remaining two roots are zero and, therefore, the states 2P(m = 1) and 2P(m = −1)

remain degenerate.

The wavefunctions corresponding to each energy eigenvalue can be easily determined.

We find

u+(r) =
1√
2
(u210(r)+ u100(r)) for E

(1)
s+ = 3eE0a0, (16.103)

u−(r) =
1√
2
(u210(r)− u100(r)) for E

(1)
s− = −3eE0a0. (16.104)

16.6 Problems

1. Consider a particle trapped within two infinite barriers at x = −a and x = a

respectively. A perturbing potential of the type

V ′(x) = x
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is applied. Obtain the energy eigenvalues to first and second orders and the eigenfunc-

tion to first order. Do the same if x is replaced by |x|. Explain the difference between

the two results based on the symmetry of the potential.

2. Designate the state vector for the ground state in a given problem as |0〉. Show that

the second-order correction term for the energy satisfies the relation E
(2)
0 < 0. If,

furthermore, the expectation value 〈0|H ′ |0〉 = 0 then show that

E
(2)
0 >

〈0|H ′2 |0〉
E
(0)
0 − E

(0)
1

where E
(0)
1 is the energy of the first excited state.

3. Two atoms, which are hydrogen-like, are placed with their protons a distance R apart.

Assume the unperturbed eigenfunction for the system as the product of ground-state

functions for the two atoms. Approximating each atom as an electric dipole, show that

the interaction energy between the two atoms to first order vanishes. Without explicitly

calculating the matrix elements, show that in second order the interaction between the

two atoms is attractive and goes as (1/R6) as R →∞.

4. Consider a hydrogen atom subjected to a magnetic field in the z-direction, B = B0z.

We have shown that it interacts with the magnetic moment generated by the orbital

motion of the electron with an interaction Hamiltonian

H ′ = − e

mc
L · B

where L is the orbital angular momentum operator. Use degenerate perturbation theory

to determine the energy eigenvalues of the n = 2 state.

5. Consider the Hamiltonian given as a 3× 3 matrix,

H =

⎡
⎣

0 0 a

0 0 a

a a b

⎤
⎦ .

where a represents perturbation. Obtain the energy eigenvalues and eigenfunctions (1)

in the lowest order perturbation (with a ≪ b) and (2) exactly. Compare these two

results for a ≪ b.

6. Acharged particle trapped between two infinite walls located at x = ±a in a ground state

is subjected to an electric field E0 in the positive x-direction. Determine the probability

that it will be in the first excited state.

7. A particle between two infinite walls located at x = ±a is subjected to a perturbation

in the form of a finite repulsive barrier V = V0 between −b and +b, where b < a.

What is the first-order correction to the ground-state energy?

8. A harmonic oscillator with spring constant K is subjected to a perturbation of the form(
λ1x + λ2x2 + λ3x3

)
. Determine the perturbed energies E

(1)
0 and E

(2)
0 for the ground

state.
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9. A free particle satisfying periodic boundary conditions with period L is subjected to a

perturbation

V ′ = λ cos

(
2πxN

L

)

where N is an integer assumed to be large. Expressing the even and odd parity free

particle states as u+(x) and u−(x) respectively, obtain the energy levels of each state

to first- and second-order perturbation.

10. A hydrogen atom is subjected to the potential

V (r) = V0δ
(3)(r).

Determine the energy corrections to first order for 1S and 2P states (this potential is

typical of the interaction that gives rise to the so-called Lamb shift).

11. Consider an electron in a hydrogen atom where the Coulomb potential is given by

V (r) = −Ze2

r
, R < r <∞

= −Ze2

R
, 0 < r < R

where R is the radius of the nucleus. Determine the energy eigenvalues of 1S, 2S and

2P states.

12. In problem 11 consider the nucleus to be a uniform sphere of charge Ze and radius

R. Using Gauss’s theorem determine the corresponding electrostatic field and from it

the potential due to the finite size of the nucleus. Obtain the correction to the energy

eigenvalue of the 1S state and the shift in the energy levels between 2S and 2P states.

13. A hydrogen atom is subjected to a uniform magnetic field. Use first-order perturbation

theory to obtain the correction to the ground-state energy. Take the vector potential to

be given by A = (1/2)B× r and keep the A2 term in the Hamiltonian.

14. Aparticle is trapped between two infinite walls located at x = 0 and x = a, respectively.

While the particle is in the ground state at t = 0, the walls are suddenly moved so the

spacing between them is doubled. What is the probability that the particle is now in the

ground state of the new system? Consider both cases where the uncertainty in time when

the expansion occurs satisfies �E�t ≫ � and �E�t ≪ �. Determine the probability

distribution (in terms of the momentum) if the walls disappear altogether.

15. Solve a two-level problem in perturbation theory by writing H = H0 + λH ′, so that

one writes

H =
[

A D

D B

]

where A = E0
1 + λH ′

11, B = E0
2 + λH ′

22, D = λH ′
12, and � = A − B. Write down

the expressions for the energy eigenstates E± derived in Chapter 13. Expand these

expressions in powers of λ up to λ2. Compare these results to the perturbative results

to order λ2.
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In this chapter we consider the more complicated time-dependent perturbation case. We

are now going to look at the problems that are closer to the practical level, concentrating

on sudden perturbation and harmonic time dependence. We will consider, in particular, the

effect of the onset of interactions, scattering, and decays of composite systems

17.1 Basic formalism

As in the case of the time-independent problems, we will obtain the solutions through

perturbation methods, where the perturbing potential H ′(t) is time-dependent. Once again

we write

H = H0 + λH ′(t) (17.1)

where H0 is the unperturbed Hamiltonian and λ the parameter in terms of which we will

carry out the perturbation expansion.

We assume that at t = −∞ the system is given by the unperturbed Hamiltonian. The

perturbation may be applied gently (adiabatically) when, as we will see below, the situation

is close to time-independent perturbation. Or it could be turned on suddenly, a subject we will

discuss at length. Our basic interest is then to determine the behavior of the wavefunction

for finite times and as t →∞.

The perturbed state
∣∣ψ s (t)

〉
will satisfy the time evolution equation

i�
∂

∂t

∣∣ψ s (t)
〉
=
(
H0 + λH ′(t)

) ∣∣ψ s(t)
〉

(17.2)

with

H ′(t)→ 0 as t →−∞ (17.3)

so that at t = −∞ we recover the unperturbed solution.

Therefore,

∣∣ψ s (t)
〉
→

∣∣∣ψ (0)s (t)
〉

as t →−∞ (17.4)
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where

∣∣∣ψ (0)s (t)
〉

is an eigenstate of H0 with eigenvalue E
(0)
s and satisfies the equation

i�
∂

∣∣∣ψ (0)s (t)
〉

∂t
= H0

∣∣∣ψ (0)s (t)
〉
= E(0)s

∣∣∣ψ (0)s (t)
〉

(17.5)

with the orthogonality condition

〈ψ (0)m (t)

∣∣∣ψ (0)s (t)
〉
= δms. (17.6)

The solution of the equation (17.5) is given by

∣∣∣ψ (0)s (t)
〉
=
∣∣∣ψ (0)s (0)

〉
e−

iE
(0)
s
�

t . (17.7)

We also assume the following condition in the limit when the perturbation is turned off,

∣∣ψ s (t)
〉
→

∣∣∣ψ (0)s (t)
〉

as λ→ 0 (17.8)

which means that in the absence of perturbation one returns to the unperturbed state.

Thus the system is a function of both t and λ with each playing an essential role.

We write
∣∣ψ s (t)

〉
in terms of a complete set of eigenstates

∣∣ψ0
n (t)

〉
as follows:

∣∣ψ s (t)
〉
=
∑

n

cns(t)

∣∣∣ψ (0)n (t)
〉

(17.9)

where cns(t) will depend on time. Substituting this in (17.2) we obtain

i�
∂

∂t

(∑

n

cns(t)

∣∣∣ψ (0)n (t)
〉)
=
(
H0 + λH ′(t)

)
(∑

n

cns(t)

∣∣∣ψ (0)n (t)
〉)

. (17.10)

We note that the following two terms,

i�
∂

∣∣∣ψ (0)n (t)
〉

∂t
and H0

∣∣∣ψ (0)n (t)
〉

(17.11)

one on each side of (17.10) cancel each other since both give E
(0)
n .

Inserting the result (17.7) for

∣∣∣ψ (0)n (t)
〉
in (17.10) and multiplying both sides of the above

equation by
〈
ψ0

m (t)
∣∣ and using orthonormality, we obtain

i�
•
cms = λ

∑

n

cnsH
′
mn(t) exp(iωmnt) (17.12)

where ωmn = (E(0)m − E
(0)
s )/�, and

•
cms is the time derivitive of cms.

We will now expand the coefficient cps in a perturbation series in λ,

cps(t) = c(0)ps (t)+ λc(1)ps (t)+ λ2c(2)ps (t)+ · · · . (17.13)
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From the condition (17.4) for the limit t →−∞, it is clear that

c(0)ms (−∞) = δms, (17.14)

c(1)ms (−∞) = c(2)ms (−∞) = · · · = 0. (17.15)

Substituting the series (17.13) in (17.10) and equating the coefficients of the equal powers

of λ on both sides of the equation, we obtain, for c
(0)
ms , c

(1)
ms , c

(2)
ms , . . . ,

·
c
(0)

ms (t) = 0, (17.16)

i�
·
c
(1)

ms (t) =
∑

n

c(0)ns (t)H
′
mn(t) exp(iωmnt), (17.17)

i�
·
c
(2)

ms (t) =
∑

n

c(1)ns (t)H
′
mn(t) exp(iωmnt), (17.18)

and so on. From (17.16) we conclude that c
(0)
ms (t) = constant for all values of t and (17.4)

tells us that this constant must be δms. Thus

c(0)ms (t) = δms for all values of t. (17.19)

Hence

i�
·
c
(1)

ms = H ′
ms(t) exp(iωmst). (17.20)

Therefore,

c(1)ms (t) = −
i

�

t∫

−∞
dt′H ′

ms(t
′) exp(iωmst

′). (17.21)

This is one of the basic relations of time-dependent perturbation theory. Since one is

often interested in first-order transitions only, the relation (17.21) allows one to calculate

the transition probability amplitude in terms of H ′
ms. We call c

(1)
ms (t) the transition probability

amplitude to first order for transitions from the initial state s to an arbitrary state m.

We then have the following result for the state vector to first order in λ:

∣∣ψ s (t)
〉
=
∣∣∣ψ0

s (t)
〉
+ λ

∑

n

c(1)ns (t)

∣∣∣ψ0
n (t)

〉
(17.22)

where c
(1)
ns (t) is determined through the integral (17.21), and

∣∣∣c(1)ns (t)

∣∣∣
2
= probability of transitions s → n to first order. (17.23)

Let us try to clarify the difference between the approaches involved in time-dependent

and time-independent formalisms. In the latter case the problem was basically mathematical
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in nature. There the perturbing Hamiltonian H ′ was supposed to have existed at all times

rather than being switched on and off at different times. The mathematical form of the total

Hamiltonian H , however, was such that it was not possible to obtain exact solutions, and

so we had to resort to approximate solutions through perturbation methods.

For a time-dependent H ′ there are definite times when it is turned on and off. Can one

then relate the two approaches in some limiting sense? The answer is, yes, provided the

time-dependent perturbation starts at t = −∞, and is switched on sufficiently “gently” or,

using the proper mathematical term, “adiabatically.” We discuss in the Appendix how this

can be done.

The case where H ′ is turned on at t = 0, remaining constant thereafter, is one of the

examples of a sudden onset of perturbation; it is given by

H ′
ms(t) = H ′

ms(0)θ(t). (17.24)

Taking the derivative of the above expression we obtain

dH ′

dt′
∼ δ(t). (17.25)

The difference between a δ-function above and a more gentle behavior, e.g., a Gaussian,

for the derivative of H ′ reflects, in essence, the difference between the formalisms for

time-dependent and time-independent perturbations.

17.2 Harmonic perturbation and Fermi’s golden rule

Let us consider a specific type of perturbing potential called “harmonic perturbation” that

is turned on at t = 0 and oscillates with a definite frequency thereafter. One expresses it as

follows, with the time dependence factored out,

H ′
ms(t) =

[
Ae−iωt + A†eiωt

]
θ(t) (17.26)

where A is independent of time. The Hamiltonian as written is Hermitian. We will consider

a more specific example,

H ′
ms(t) = 2H ′

ms(0) sinωt (17.27)

= iH ′
ms(0)

[
e−iωt − eiωt

]
, t > 0, (17.28)

H ′
ms(t) = 0, t ≤ 0. (17.29)

We assume H ′
ms(0) is Hermitian, and, therefore, from (17.27) and (17.28) so is H ′

ms(t). We

note that H ′
ms(0) is independent of time, but it still involves integration over space variables

that enter into the calculation of the matrix element 〈ψ (0)m

∣∣H ′(0)
∣∣ψ (0)s 〉.
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Substituting (17.26) in (17.21) yields

c(1)ms (t) =
H ′

ms(0)

�

t∫

0

dt′
[
exp(i (ωms − ω) t′)− exp(i (ωms + ω) t′)

]
(17.30)

= H ′
ms(0)

�

⎧
⎪⎪⎨
⎪⎪⎩

[exp i (ωms − ω) t − 1]

i(ωms − ω)

− [exp i (ωms + ω) t − 1]

i(ωms + ω)
.

⎫
⎪⎪⎬
⎪⎪⎭

(17.31)

At this stage it is conventional to take the index s to signify the “initial” state and m to

signify the “final” state. Thus, taking m = f and s = i, we write expression (17.31) as

c
(1)
fi
(t) = Afi(ω, t)− Afi(−ω, t) (17.32)

where

Afi(ω, t) =
H ′

fi
(0)

�

[
exp i

(
ωfi − ω

)
t − 1

]

i(ωfi − ω)
. (17.33)

The probability of transition from i to f is then given by

∣∣∣c(1)fi
(t)

∣∣∣
2
=
∣∣Afi(ω, t)

∣∣2 +
∣∣Afi(−ω, t)

∣∣2 − 2 Re
[
A∗fi(ω, t)Afi(−ω, t)

]
. (17.34)

One can simplify the expression for Afi(ω, t) as

Afi(ω, t) =
2H ′

fi
(0)

�

sin

[(
ωfi − ω

) t

2

]

(ωfi − ω)

[
exp i

(
ωfi − ω

) t

2

]
(17.35)

and obtain

∣∣Afi(ω, t)
∣∣2 =

4

∣∣∣H ′
fi
(0)

∣∣∣
2

�2

sin2
[(
ωfi − ω

)
t/2

]

(ωfi − ω)2
. (17.36)

Often a more interesting quantity is transition “rate,” i.e., transitions per unit time.Assum-

ing the system to be continuous in time, the rate is simply given by the time derivative. That

is, by

d

dt

∣∣∣c(1)fi
(t)

∣∣∣
2
= d

dt

∣∣Afi(ω, t)
∣∣2 + d

dt

∣∣Afi(−ω, t)
∣∣2 − 2

d

dt
Re

[
A∗fi(ω, t)Afi(−ω, t)

]
.

(17.37)

Consider the time derivative of the first term above. We obtain from (17.36)

d

dt

∣∣Afi(ω, t)
∣∣2 =

2

∣∣∣H ′
fi
(0)

∣∣∣
2

�2

sin
[(
ωfi − ω

)
t
]

(ωfi − ω)
(17.38)
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where we have used the identity 2 sin α cosα = sin 2α. A quantity of great physical interest

is the rate when t is very large, when the system is supposed to have settled down. Denoting

this quantity as λfi, we have

λfi = lim
t→∞

d

dt

∣∣∣c(1)fi
(t)

∣∣∣
2

. (17.39)

Considering first the contribution coming from Afi(ω, t)we note that, in this limit, the sine-

function that appears on the right-hand side of (17.38) can be expressed as a δ-function,

from the well-known relation

lim
L→∞

1

π

sin Lx

x
= δ(x), (17.40)

which we discuss in the Appendix.

We thus obtain the result

lim
t→∞

d

dt

∣∣Afi(ω, t)
∣∣2 =

2π

∣∣∣H ′
fi
(0)

∣∣∣
2

�2
δ(ωfi − ω). (17.41)

This can be further simplified by using the property δ(ax) = (1/ |a|) δ(x). We then obtain

lim
t→∞

d

dt

∣∣Afi(ω, t)
∣∣2 = 2π

�

∣∣∣H ′
fi(0)

∣∣∣
2
δ
[
E0

f −
(
E0

i + �ω
)]

. (17.42)

Similarly,

lim
t→∞

d

dt

∣∣Afi(−ω, t)
∣∣2 = 2π

�

∣∣∣H ′
fi(0)

∣∣∣
2
δ
[
E0

f −
(
E0

i − �ω
)]

. (17.43)

It is easy to show that

d

dt
Re

[
A∗fi(ω, t)Afi(−ω, t)

]
=

∣∣∣H ′
fi
(0)

∣∣∣
2

�2

[
2ω sinωt

(ω2
fi
− ω2)

+ sin
(
ω − ωfi

)
t

(ωfi + ω)
+ sin

(
ω + ωfi

)
t

(ωfi − ω)

]
.

(17.44)

In taking the limit t →∞ we come across the following type of behavior in each term on

the right-hand side:

lim
L→∞

sin Lx. (17.45)

However, this term vanishes because the consecutive zeros of sin Lx separated by a distance

π/L get crammed in closer and closer as L → ∞. When integrating over (−L, L), the

function sin Lx will not make any contribution. Another way to understand this result is to

write

lim
L→∞

sin Lx = πx lim
L→∞

1

π

sin Lx

x
= πxδ(x) = 0, (17.46)
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which follows from the properties of δ(x). The difference between the behavior of sin Lx

and sin Lx/x in the limit L → ∞ is principally due to the fact that sin Lx/x at x = 0 is

proportional to L, and becomes very large as L → ∞, resulting in a δ-function behavior,

the function sin Lx, on the other hand vanishes at that point for any fixed value of L.

Hence (17.44) vanishes in the limit t → ∞, leaving us, after combining (17.42) and

(17.43), with the following result:

λfi =
2π

∣∣∣H ′
fi
(0)

∣∣∣
2

�

{
δ
[
E0

f −
(
E0

i + �ω
)]
+ δ

[
E0

f −
(
E0

i − �ω
)]}

. (17.47)

This is then the general expression for the transition rate for harmonic potentials in the limit

t →∞.

The first δ-function in (17.47) corresponds to the transition from an initial state to an

excited state by absorption of a quantum of energy �ω (for example, a single photon). This

process is called absorption. Here the external interaction supplies the energy. The second

δ-function in (17.47) corresponds to the transition from an excited state down to a lower

state by emitting a quantum of energy �ω (again, for example, a single photon). This is

called stimulated emission. Here the excited state gives up the energy. The probability for

the two is the same, which reflects the symmetry between absorption and emission called

“detailed balancing.” There is a third process in which an excited state makes a transition to

a lower state without the influence of an external perturbation as in the stimulated case. This

is called spontaneous emission and is peculiar to quantum field theory, in which a particle

is constantly emitting and reabsorbing quanta that are associated with the so-called “zero

point” energy.

17.3 Transitions into a group of states and scattering cross-section

17.3.1 Harmonic perturbation

We continue with the harmonic perturbation and consider the case where �ω ≈ E
(0)
f
−E

(0)
i .

Thus only the first term in (17.47) will contribute. That is, we will be considering only the

interaction of the type

H ′
fi(t) = H ′

fi(0)e
−iωt (17.48)

where H ′
fi
(0) is Hermitian.

In this process the perturbation raises the initial state to a higher energy level by supplying

an energy �ω. The transition rate λfi is then given by

λfi =
2π

�

∣∣∣H ′
fi(0)

∣∣∣
2
δ
[
Ef − (Ei + �ω)

]
(17.49)

where we have removed the superscript “0” in Ef and Ei.
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We specifically discuss the case where the final state corresponds to a free particle. We

now introduce the quantity wfi, which determines the transition rate into a group of final

free particle states in the limit t →∞. It is given by

wfi =
2π

�

∑

f � =i

∣∣∣H ′
fi(0)

∣∣∣
2
δ
[
Ef − (Ei + �ω)

]
(17.50)

where the summation is carried out over all final states, except the initial state, consistent

with the constraints due to the δ-function. We express the summation over the final states as

wfi =
∫

dNf λfi (17.51)

where dNf designates the number of free particle states.

For a box normalization, the free particle wavefunction is given by

u(r) = 1√
V

eik.r. (17.52)

In terms of a cube of length, L, we can write this wavefunction as

u(x, y, z) = 1√
L3

ei(kxx+kyy+kzz) (17.53)

where the periodic boundary condition

kiL = 2πni, i = x, y, z (17.54)

inherent in the box normalization is implied. The total number of states is then given by

dN = dnx dny dnz =
d3kL3

(2π)3
= d3kV

(2π)3
(17.55)

where d3k = dkx dky dkz . If � is the solid angle into which the particles scatter, then one

can write in spherical coordinates, d3k = k2dk d�, where k is the magnitude of the center

of mass momentum |k|.
We define the density of states ρ (E) as

ρ (E) = dN

dE
. (17.56)

The transition probability into a group of final states can be expressed from (17.51) as

wfi =
∫

dNf λfi =
∫

dE λfiρ (E) . (17.57)

Substituting λfi from (17.49) and using the property of δ-function we obtain

wfi =
2π

�

∣∣∣H ′
fi(0)

∣∣∣
2
ρ
(
Ef

)
with Ef = Ei + �ω. (17.58)



301 17.3 Transitions into a group of states and scattering cross-section

The above expression, called “Fermi’s Golden Rule,” gives the transition rate, as t →∞,

from an initial state |i〉 into a group of free-particle final states, |f 〉, under the influence of

the interaction given by (17.28) and (17.29).

For the case of free particles the density of states obtained from (17.55) and (17.56) is

ρ(E) = d3k

dE

V

(2π)3
= mkV

�2 (2π)3
d� (17.59)

where we have taken the free particle value for the energy E to be

E = p2

2m
= �

2k2

2m
. (17.60)

In principle one should write dρ(E) for the left-hand side in (17.59) since the right-hand

side involves the differential element d�. However, we will follow convention and write

it simply as ρ(E).

The cross-section dσ , for scattering into a solid angle d�, for this process is then

defined as

dσ =
(

wfi

Ji

)
(17.61)

where Ji is the incident flux determined by the states that are incident per unit area per unit

time. From (17.58), (17.59), and (17.61) we obtain

dσ fi

d�
= 1

Ji

mkf V

4π2�3

∣∣∣H ′
fi(0)

∣∣∣
2

. (17.61a)

We will determine the flux Ji for each scattering problem separately. The case where the

initial state corresponds to free particles is discussed below.

17.3.2 Free particle scattering

We now consider the case where we have scattering of a free incoming particle into a free

outgoing particle in the presence of a radial potential. There is no harmonic time dependence

or any type of explicit time dependence in this case as the potential is only a function of

the distance between the particles. The time dependence enters implicitly. The interaction

is turned on, or is felt, when the particle is close to the center of the potential. This is then

simple elastic scattering with

E0
f = E0

i (17.62)

couched in the language of time dependent perturbation.

We therefore take ω = 0 in (17.26) and write

H ′
fi(t) = H ′

fi(0) for t > 0 (17.63)

= 0, for t < 0. (17.64)
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If the particles interact via a potential V (r), then

H ′(0) = V (r). (17.65)

The total Hamiltonian is then given by

H = H0 + V (r) (17.66)

where, as before, H0 is the unperturbed Hamiltonian:

H0 =
p2

2m
= �

2k2

2m
. (17.67)

The free particle wavefunctions for the initial and final states are given respectively by

ui(r) =
1√
V

eiki .r and uf (r) =
1√
V

eikf .r (17.68)

where V is the volume in which the wavefunction is normalized, which should not be

confused with the potential V (r).

The matrix element H ′
fi
(0) is then given by

H ′
fi(0) =

∫
d3r

(
1√
V

e−ikf .r

)
V (r)

(
1√
V

eiki .r

)
= 1

V

∫
d3re−iq.rV (r) (17.69)

where q
(
=
(
kf − ki

))
is the momentum-transfer vector.

Since we have the process, free particle → free particle, in the presence of a (heavy)

scattering center, e.g., a heavy atom, which acts as the source of the potential, the energies

will be conserved, Ef = Ei, where we have removed the superscript (0). In this process only

the direction of the momentum will be changed in going from, ki to kf (with |ki| =
∣∣kf

∣∣).
To obtain the cross-section we must evaluate the incident flux Ji given by

Ji = no. of particles incident per unit area per unit time.

We assume that the incident particles are traveling in the z-direction, covering a distance

�z in time �t, and crossing an area A. The corresponding flux Ji can be written as

Ji =
(

A�z

V

)(
1

A

)(
1

�t

)
= �z

�t

1

V
= v

V
. (17.70)

We now explain each of the above factors. First, using (17.58) we have assumed the

free particle wavefunctions to be normalized to one particle in volume V . Since the term

A�z corresponds to the volume covered by the incident particle, the first factor in (17.70)

corresponds to the fraction of the incident particles. The other two factors correspond to

the fraction being evaluated per unit area and per unit time. Finally, the factor �z/�t

corresponds to the velocity, v, with which the particle is traveling. The product of the

middle three factors, therefore, reproduces the right-hand side.
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Substituting the above expression in (17.61a), and inserting wfi from (17.50) (with

ω = 0), we obtain

dσ

d�
= m2

4π2�4

∣∣∣∣
∫

d3r e−iq. rV (r)

∣∣∣∣
2

. (17.71)

The above expression is derived in the first-order approximation, that is, in the approx-

imation in which we consider only the first-order term, c
(1)
ms (t). This is commonly called

the “Born approximation.” The differential cross-section, given in (17.71), is generally

expressed in terms of the scattering amplitude f (θ), as

dσ

d�
= |f (θ)|2 (17.72)

and

fB(θ) = −
m

2π�2

∫
d3r e−iq. rV (r) (17.73)

where, f B(θ) is the scattering amplitude in the Born approximation. The negative sign will

be discussed in Chapter 21 when it will be shown that an attractive potential (which has an

overall negative sign) will give a positive sign for the scattering amplitude. The scattering

cross-section is then written as

σB =
∫

d�

∣∣∣f B(θ)

∣∣∣
2

(17.74)

where d� = d cos θ dφ. The angle θ is the angle between kf and ki, and it enters in f B(θ)

through the momentum transfer q in (17.69). Typically, we have

|q| =
∣∣(kf − ki

)∣∣ =
√∣∣kf

∣∣2 + |ki|2 − 2
∣∣kf

∣∣ |ki| cos θ =
√

2k2 (1− cos θ) (17.75)

where, as stated earlier, because of energy conservation, we take
∣∣kf

∣∣ = |ki| = k .

17.4 Resonance and decay

17.4.1 Basic formalism

In the previous sections we considered transitions from the initial state, |i〉, to a final state

|f 〉 � =|i〉. Now let us find out what happens to the initial state itself. Clearly, as transitions

out of the initial state occur, the initial state will begin to show signs of depletion.

We revisit Section 17.1 on the basic formalism for time-dependent perturbation, but this

time with an approximation that does not resort to an expansion in λ. Let us consider the

state vector
∣∣ψ s (t)

〉
, which satisfies the equation

i�
∂
∣∣ψ s (t)

〉

∂t
=
(
H0 + H ′) ∣∣ψ s (t)

〉
(17.76)



304 Time-dependent perturbation

where H0 is the unperturbed Hamiltonian and H ′ is the time-dependent perturbation applied

at t = 0. We express
∣∣ψ s (t)

〉
in terms of the eigenstates

∣∣ψ0
n (t)

〉
of H0 as we did before,

∣∣ψ s (t)
〉
=
∑

n

cns(t)

∣∣∣ψ0
n (t)

〉
(17.77)

where
∣∣ψ0

n (t)
〉
are normalized as

∣∣∣ψ0
n (t)

〉
=
∣∣∣ψ0

n (0)
〉
e−i

E0
n

�
t . (17.78)

Substituting (17.77) in (17.76) we obtain

i�
∂

∂t

(∑

n

cns(t)

∣∣∣ψ0
n (t)

〉)
=
(
H0 + H ′)

(∑

n

cns(t)

∣∣∣ψ0
n (t)

〉)
. (17.79)

Multiplying both sides of the above equation by
〈
ψ0

m (t)
∣∣ we obtain

i�ċms =
∑

n

cnsH
′
mn(t) exp(iωmnt) (17.80)

where ωmn =
(
E0

m − E0
n

)
/�. Thus far we have obtained the same equation as in (17.10) but

without the expansion parameter λ.

We consider the case where

H ′
mn(t) = H ′

mn(0) = constant, t ≥ 0 (17.81)

= 0, t < 0. (17.82)

Thus we will be studying the problem of sudden perturbation.

We treat this problem effectively as a two-level problem with two coupled equations. The

first equation will correspond to taking m �= s on the left-hand side of (17.80), in which we

include only the contribution of n = s on the right-hand side. In other words, we consider

the “feedback” coming only from the initial state, which will be the dominant state at least

for small values of t. We then write

i�ċms = css (t)H
′
mse

iωmst for m � =s. (17.83)

For the second equation we take m = s in (17.80) and consider the feedback from both

n = s and n � =s:

i�ċss = cssH
′
ss +

∑

n� =s

cnsH
′
sneiωsnt . (17.84)

We assume the following initial conditions:

css (0) = 1, (17.85)

cms (0) = 0, for m � =s (17.86)

cms (t) = 0, for t < 0 for all m. (17.87)
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These conditions are consistent with a sudden onset of perturbation, which we have assumed

here, but with only css (0) = 1. Integrating (17.83) we obtain

cms = −
i

�

t∫

0

dt′css

(
t′
)

H ′
mse

iωmst
′
, m � =s. (17.88)

Substituting this expression, after replacing m by n, in the right-hand side of (17.84) we

obtain the relation

i�ċss = cssH
′
ss +

∑

n� =s

⎡
⎣− i

�

t∫

0

dt′css

(
t′
)

H ′
nse

iωnst
′

⎤
⎦H ′

sneiωsnt . (17.89)

Therefore,

i�ċss = cssH
′
ss −

i

�

∑

n� =s

∣∣H ′
ns

∣∣2
t∫

0

dt′css

(
t′
)

eiωns(t′−t). (17.90)

Thus, we have reduced the problem to solving a single-channel equation for css.

To simplify notations we write

css = ci, (17.91)

cns = cf , for n � =s (17.92)

and use the index f instead of n in equation (17.90) with an explicit connotation that

i = initial, and f = final. (17.93)

Equation (17.90) now reads

i�ċi = ciH
′
ii −

i

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

t∫

0

dt′ci

(
t′
)

eiωfi(t′−t). (17.94)

We once again note that

ci (0) = 1 and ci (t) = 0 for t < 0. (17.95)

To obtain the solution for ci we write it in the form of a Fourier transform,

ci (t) =
1√
2π

∞∫

−∞
dω ci (ω) e

iωt (17.96)

and evaluate ci (ω) .
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In view of condition (17.95), the inverse Fourier transform will involve only the limits 0

to∞ for the integration over t:

ci (ω) =
1√
2π

∞∫

0

dt ci (t) e
−iωt . (17.97)

We next write ċi in the form of a Fourier transform. Because of the vanishing of ci for t < 0

as given by (17.95), we cannot simply take the derivative of (17.96) to determine ċi. Instead

we write it in a new Fourier transform relation:

ċi =
1√
2π

∞∫

−∞
dωDi (ω) e

iωt . (17.98)

We now evaluate Di (ω) . We note that ċi will vanish for t < 0 since ci vanishes identically

in this region. The inverse Fourier transform is then given by

Di (ω) =
1√
2π

∞∫

0

dt ċi(t)e
−iωt . (17.99)

Let us integrate the above by parts. We will assume that ci vanishes as t →∞; therefore,

we have

Di (ω) =
1√
2π

⎡
⎣−ci (0)+ iω

∞∫

0

dt ci (t) e
−iωt

⎤
⎦ = − 1√

2π

[
1− iω

√
2πci (ω)

]

(17.100)

and hence substituting Di (ω) in (17.98) we obtain

ċi = −
1

2π

∞∫

−∞
dω

[
1− iω

√
2πci (ω)

]
eiωt . (17.101)

We now compare the Fourier transforms of both sides of (17.94). The right-hand side of

(17.94) is given by

H ′
ii

1√
2π

∞∫

−∞
dω ci (ω) e

iωt − i

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

⎡
⎣

t∫

0

dt′
1√
2π

∞∫

−∞
dω ci (ω) e

iωt′eiωfi(t′−t)

⎤
⎦ .

(17.102)

After the integration over t′ is carried out in the second term, we obtain

H ′
ii

1√
2π

∞∫

−∞
dω ci (ω) e

iωt − i

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2 1√

2π

∞∫

−∞
dω ci (ω)

[
eiωt − e−iωfi t

i
(
ω + ωfi

)
]

.

(17.103)
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Comparing this term to the right-hand side of (17.101) by equating the coefficients of eiωt

on both sides of the equations, we obtain

−i�
1

2π

[
1− i

√
2πωci (ω)

]
= 1√

2π

⎡
⎢⎣H ′

ii −
∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

�
(
ω + ωfi

)

⎤
⎥⎦ ci (ω) , (17.104)

which gives

− i

2π
= 1√

2π

⎡
⎢⎣ω +

H ′
ii

�
− 1

�2

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

ω + ωfi

⎤
⎥⎦ ici (ω) . (17.105)

Thus,

√
2πci (ω) =

−i

ω + H ′ii
�
− 1

�2

∑
f � =i

∣∣∣H ′fi
∣∣∣
2

ω+ωfi

. (17.106)

From (17.96) we then obtain

ci (t) =
i

2π

∞∫

−∞
dω

eiωt

ω + H ′ii
�
− 1

�2

∑
f � =i

∣∣∣H ′fi
∣∣∣
2

ω+ωfi

. (17.107)

Since ci (t) = 0 for t < 0, the presence of eiωt in the integrand implies that we must move

the pole in ω, which is on the real axis, to the upper half-plane to obtain a convergent result.

To accomplish this, we change the position of the pole, ω → ω − iε. We also make the

change

1

ω + ωfi

→ 1

ω − iε + ωfi

. (17.108)

The roots of the denominator above in the complex ω-plane are very complicated, but

since we are interested in ci (t) as t → ∞, only small values of ω will contribute to the

integral. Hence we write

1

ω + ωfi

→ 1

ωfi − iε
= P

(
1

ωfi

)
+ iπδ

(
ωfi

)
. (17.109)

Thus,

ci (t) =
i

2π

∞∫

−∞
dω

eiωt

ω − iǫ + H ′ii
�
− 1

�2

[
∑
f � =i

∣∣∣H ′fi
∣∣∣
2

ωfi
+ iπ

∑
f � =i

∣∣∣H ′
fi

∣∣∣
2
δ
(
ωfi

)
] (17.110)
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where we have replaced P
(
1/ωfi

)
by

(
1/ωfi

)
since the summation does not include f = i.

The denominator above can be written (reverting back to writing the energies Ei and Ef as

E
(0)
i and E

(0)
f

respectively) as

ω − iǫ + H ′
ii

�
+ 1

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

E
(0)
i − E

(0)
f

− iπ

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2
δ
(
E
(0)
i − E

(0)
f

)
. (17.111)

We note from time-independent perturbation theory that the perturbed energies to first

and second order are given respectively by

E
(1)
i = H ′

ii and E
(2)
i =

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

E
(0)
i − E

(0)
f

. (17.112)

We write the combined perturbed energy as E′i ,

E′i = H ′
ii +

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

E
(0)
i − E

(0)
f

. (17.113)

If E
(0)
i is the unperturbed energy, then the total energy, Ei, is given by

Ei = E
(0)
i + H ′

ii +
∑

f � =i

∣∣∣H ′
fi

∣∣∣
2

E
(0)
i − E

(0)
f

. (17.114)

To determine the last term in (17.111) we note that the probability for the transition i → f

per unit time as t →∞ is given by

λfi =
2π

�

∣∣∣H ′
fi

∣∣∣
2
δ
(
E
(0)
i − E

(0)
f

)
. (17.115)

For transitions to a group of states we sum over the final states, and define the result as

Ŵ = 2π

�

∑

f � =i

∣∣∣H ′
fi

∣∣∣
2
δ
(
E
(0)
i − E

(0)
f

)
. (17.116)

For the case when the final states are free particles we have designated the above quantity

as wfi.

Since λfi equals
∑(

d
∣∣cf

∣∣2 /dt
)

for f � =i, one obtains an approximate relation

∑

f � =i

∣∣cf

∣∣2 ≈ Ŵt. (17.117)
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Inserting the above results in the denominator of (17.110) we can write ci (t) as follows,

ignoring ǫ compared to Ŵ,

ci (t) =
−i

2π

∞∫

−∞
dω

eiωt

ω + E′i t
�
− i
Ŵ

2

. (17.118)

After carrying out the Cauchy integration in the complex ω-plane we obtain

ci (t) = e−i
E′i t
� e−

Ŵ
2 t for t ≥ 0. (17.119)

We need to point out here that the wavefunction is given by the product ci (t)

∣∣∣ψ (0)i (t)
〉
,

which can be written as

ci (t)

∣∣∣ψ (0)i (t)
〉
= e−i

E′i t
� e−

Ŵ
2 t e−i

E
(0)
i t

�

∣∣∣ψ (0)i (0)
〉

= e−i
Eit
� e−

Ŵ
2 t

∣∣∣ψ (0)i (0)
〉

where Ei is the total energy defined in (17.114).

The probability is found to be

|ci (t)|2 = e−Ŵt . (17.120)

This is the famous “exponential law” that one refers to in radioactive and other decay

processes. Hence the initial state is depleted with a lifetime, τ i, given by

τ i =
1

Ŵ
. (17.121)

We note that for small values of t,

|ci (t)|2 = 1− Ŵt. (17.122)

From (17.117), we conclude that

|ci|2 +
∑

f � =i

∣∣cf

∣∣2 = 1, (17.123)

as one expects.

In summary, the eigenstate of the unperturbed Hamiltonian, H0, under the influence of

perturbation, H ′, applied at t = 0, is depleted as the particle makes transitions to other

states in the system. Thus the initial state undergoes “decay.” The rate of decay depends on

the rate of transitions to the other states.

We can also obtain cf (t) by substituting ci (t) in the equation

cf (t) = −
i

�

t∫

0

dt′ci

(
t′
)

H ′
fie

iωfi t
′

(17.124)
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where

ωfi =
E
(0)
f
− E

(0)
i

�
. (17.125)

We will replace E
(0)
f

by Ef but keep E
(0)
i . We find, after taking the limit t →∞ and doing

the integration, that

cf (∞) =
H ′

fi
(0)

Ef − Ei − iŴ/2
(17.126)

where Ei is now the total energy given by (17.114). The transition probability is then

∣∣cf (∞)
∣∣2 =

∣∣∣H ′
fi
(0)

∣∣∣
2

(
Ef − Ei

)2 + Ŵ2/4
. (17.127)

The above results were derived for constant perturbations; however, they can be

generalized to harmonic perturbations of the type

H ′
fi(t) = H ′

fi(0)e
−iωt , t ≥ 0 (17.128)

= 0, t < 0. (17.129)

The corresponding transition probability is given by

∣∣cf (∞)
∣∣2 =

∣∣∣H ′
fi
(0)

∣∣∣
2

(
Ef − Ei − �ω

)2 + Ŵ2/4
. (17.130)

Clearly then, if the energy �ω supplied by the perturbation is equal to the energy difference

between the initial state and one of the higher states in the system, the transition probability

is very large and we have a classic example of what is called a “resonance.” We will be

discussing this phenomenon further in the later chapters.

17.5 Appendix to Chapter 17

17.5.1 Adiabatic perturbation

Let us assume that the matrix elements of H ′ have the behavior

H ′
ms(t)→ 0 as t →−∞,

H ′
ms(t)→ const. as t →+∞.

(17.131)
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In other words, H ′
ms starts at zero and gradually reaches a constant. We further assume that

it varies very slowly with time once it achieves its maximum level, i.e.,

(
1/H ′

ms

)
dH ′

ms(t)/dt ≈ 0 (17.132)

at large t. The first-order transition probability amplitude for m = s is found to be

c(1)ss =
(−i

�

) t∫

−∞
dt′ H ′

ss(t
′). (17.133)

Integrating by parts, we obtain

c(1)ss =
(−i

�

)⎡
⎣H ′

sst −
t∫

−∞
dt′ t′H ′

ss(t
′)

⎤
⎦ . (17.134)

For m � =s the probability amplitude is given by

c(1)ms =
(−i

�

) t∫

−∞
dt′ H ′

ms(t
′) eiωmst

′
, (17.135)

which is found, after integrating by parts, to be

c(1)ms =
H ′

ms(t) eiωmst
′

E
(0)
m − E

(0)
s

+ 1

E
(0)
m − E

(0)
s

t∫

−∞
dt′

d

dt′
H ′

ms(t
′) eiωmst

′
. (17.136)

Because of the relation (17.131) for large values of t, we can extend the upper integration

limit from t to ∞ for both types of probability amplitudes. We consider for illustration

purposes the following Gaussian behavior,

dH ′

dt′
= dH ′(0)

dt′
e
− t2

2�t2 , (17.137)

which is consistent with the criteria (17.131) and (17.132). We can identify �t as the time

period over which H ′ achieves its maximum value. The integral on the right-hand side of

the expression for c
(1)
ss is then

∞∫

−∞
dt′ t′H ′

ss(t
′) = dH ′(0)

dt′

∞∫

−∞
dt′ t′e−

t2

2�t2 = 0, (17.138)

since the integrand is a product of odd and even functions.

Hence we can write

c(1)ss =
(−i

�

)
H ′

sst. (17.139)
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For m � =s we find

∞∫

−∞
dt′

d

dt′
H ′

ms(t
′) eiωmst

′ = Fourier transform of
dH ′

dt′
, (17.140)

∞∫

−∞
dt′

dH ′
ms(t

′)
dt′

eiωmst
′ = dH ′

ms(0)

dt
e−

�t2ω2
ms

2 . (17.141)

We note that if �t ≫ 1/ωms then the above integral vanishes. This implies that if the

perturbation is turned on very slowly, with �t much greater than the period of oscillation

between the states (1/ωms), then for m � =s,

c(1)ms = −
H ′

ms(t) eiωmst

E
(0)
m − E

(0)
s

(17.142)

and

∣∣ψ s

〉
=
(

1− λH
′
ss

�

) ∣∣∣ψ0
s

〉
e−iE0

s t/� − λ
∑

n� =s

H ′
ns(t) eiωnst

E
(0)
n − E

(0)
s

∣∣∣ψ0
n

〉
e−iE0

n t/�. (17.143)

Since we are interested in the results only up to the first power in λ, the above relation is

the same as the following to order λ,

∣∣ψ s

〉
=

⎡
⎢⎢⎣
∣∣∣ψ0

s

〉
+ λ

∑

n� =s

H ′
ns(t)

E
(0)
n − E

(0)
s

∣∣∣ψ0
n

〉
⎤
⎥⎥⎦ e−i(E0

s+λH ′ss)t/�. (17.144)

This is the same result as in the time-independent case, as it reproduces the perturbed

eigenstate and eigenvalue to first order. Thus if the perturbation takes effect gently and

over a sufficiently long period of time, we will have the same result as for the case of

time-independent perturbation. In other words, specifically, an energy eigenstate remains

essentially an energy eigenstate if the perturbation varies with time in an adiabatic manner.

If the perturbation is small, then the energy eigenvalue remains essentially unchanged.

17.5.2 Berry’s phase

Let us begin with the time-dependent Schrödinger equation in which the state
∣∣ψn

〉
is an

eigenstate of the Hamiltonian with eigenvalue En,

i�
∂
∣∣ψn

〉

∂t
= H

∣∣ψn

〉
= En

∣∣ψn

〉
. (17.145)

Here H and En are independent of time. The solution is simply given by

∣∣ψn(t)
〉
=
∣∣ψn(0)

〉
e−iEnt/�. (17.146)
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Now consider the case where the Hamiltonian varies slowly with time. If this variation is

adiabatic then we expect En to also vary with time but still remain an energy eigenstate.

Hence we write

i�
∂
∣∣ψn(t)

〉

∂t
= H (t)

∣∣ψn(t)
〉
= En(t)

∣∣ψn(t)
〉
. (17.147)

The solution of this equation can be written in the most general form as

∣∣ψn(t)
〉
=
∣∣φn(t)

〉
e−iαn(t)eiγ n(t) (17.148)

where we have introduced an additional phase γ n(t) to allow for adiabatic time variation,

since such a possibility cannot be ruled out.

The two phases have a distinct origin and are designated as follows:

αn(t) =
t∫

0

dt′En(t
′) = dynamical phase (17.149)

and

γ n(t) = geometrical phase. (17.150)

If we substitute (17.148) in equation (17.147) we obtain the equation

∂
∣∣φn(t)

〉

∂t
+ i

∣∣φn(t)
〉 dγ n(t)

dt
= 0. (17.151)

The solution of this can readily be obtained in terms of the integral

γ n(t) =
t∫

0

dt′i〈φn

∣∣∣∣∣
∂
∣∣φn

〉

∂t

〉
. (17.152)

Often the variation in time is dictated by a parameter or a set of parameters. If λ is such a

parameter, then

∂φn

∂t
= ∂φn

∂λ

dλ

dt
. (17.153)

Hence one can write

γ n(t) =
λf∫

λi

〈φn

∣∣∣∣∣
∂
∣∣φn

〉

∂λ

〉
dλ. (17.154)
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Example: Spin aligned with the magnetic field

A simple illustration of Berry’s phase is provided by the example we considered in Chapter

14 of a particle whose spin is aligned in the direction of the applied magnetic field which

precesses about the z-axis with frequency ω. The magnetic field is taken to be

B = �ω1

2
[i sin θ cosωt + j sin θ sinωt + k cos θ] (17.155)

where θ denotes the polar angle for the magnetic field. The Hamiltonian for this process is

then

H = �ω1

2

(
cos θ sin θe−iωt

sin θeiωt − cos θ

)
. (17.156)

The energy eigenvalues at any fixed t are

E± = ±
�ω1

2
. (17.157)

The spin wavefunctions are given by

χ+(t) =
[

cos(θ/2)

eiωt sin(θ/2)

]
and χ−(t) =

[
sin(θ/2)

−eiωt cos(θ/2)

]
. (17.158)

If the particle starts out at t = 0 in the spin-up position (in the direction of the magnetic

field) then the probability amplitude of finding it in the spin-up and -down positions at t > 0

is given, respectively, by

c+(t) =
[
cos(�t)+ i

(
ω1 + ω cos θ

2�

)
sin(�t)

]
e−iωt/2 (17.159)

and

c−(t) =
[

iω

2�
sin θ sin(�t)

]
e−iωt/2 (17.160)

where

� =

√
ω2 + ω2

1 + 2ωω1 cos θ

2
. (17.161)

The adiabatic condition we outlined above is met if we take

ω ≈ 0, (17.162)

in which case c− can be ignored and the spin maintains its direction aligned with the

magnetic field. In this limit,

� ≈ ω1 + ω cos θ

2
(17.163)
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and

c+(t) ≈ e�te−iωt/2 = e
iω1t

2 eiω(cos θ−1)t/2. (17.164)

The first factor corresponds to the dynamical phase since, from (17.157), �ω1/2 is the

energy of the particle. The second term corresponds to the geometric phase

γ (t) = ω(cos θ − 1)
t

2
. (17.165)

For a complete cycle, t = 2π/ω, Berry’s phase will then be

γ (2π/ω) = π(cos θ − 1). (17.166)

17.6 Problems

1. Consider a one-dimensional harmonic oscillator that is in its ground state (n = 0). A

time-dependent perturbation

H ′ = λxe−αt

is applied at t = 0. Obtain the probability and λfi for the cases that it makes transitions

to n = 1 and n = 2 states. What is λfi if the exponential factor is replaced by the

harmonic function e−iωt? For the harmonic case determine λfi if the final state is a free

particle state given by
(
1/
√

2π
)

exp ikx.

2. A spin ½ system is subjected to a perturbation at t = 0,

H ′(t) =
[

0 ge−iωt

geiωt 0

]
.

If the unperturbed energies are E0
1 and E0

2 and the initial state corresponds to “spin-up”,

then use time-dependent perturbation theory to obtain the probability that for t > 0 the

system is in “spin-down” state. Complete this problem exactly.

3. A particle of charge e is carrying out linear harmonic oscillation. It is subjected to a

uniform time-dependent electric field, E, with a Gaussian time-dependence of the form

E(t) = E0e−αt2 , −∞ < t <∞.

If the field is applied at t = −∞, determine the probability that it makes a transition

from the ground state to the first excited state at t = ∞.

4. Consider the same time-dependent electric field as in Problem 3 applied to an electron

in the hydrogen atom. Determine the transition probability that it is goes from 1S state

at t = −∞ to 2P state at t = ∞.
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5. A particle of charge e carrying out linear harmonic oscillation is subjected to a constant

electric field E0 at t = 0. Solve the problem exactly. If the particle is in the ground

state at t = 0, determine the probability that it is in the first excited state for t > 0.

6. The charge of the nucleus in the hydrogen atom is changed from Z at t = 0 to (Z + 1)

for t > 0. Determine the probability that the electron makes a transition from the 1S

to the 2S state.

7. A particle between two infinite walls located at x = ±a is subjected to a perturbation

at t = 0 in the form of a finite repulsive barrier V = V0 between −b and +b, which

is removed at t = t0. If the particle is in the ground state, n = 1, at t ≤ t0 what is the

probability that it will be in the first excited state n = 2 for t > t0?

8. A hydrogen atom is subjected to a constant electric field E0 that lasts for a time 0 <

t < τ . If at t = 0 the atom is in the 2S state, determine the time dependence of the

system in the interval 0 < t < τ . What is the probability that it will be in the 2P state

for t > 0.

9. For the above problem assume that the time dependence of E0 is given by

E = E0e−Ŵt for t ≥ 0

= 0 for t < 0.

Determine the probability in the limit t →∞ that the atom will make a transition from

a 1S state to a 2P state. Determine λfi.

10. A harmonic oscillator is subjected to an electromagnetic field (laser) such that the

interaction Hamiltonian is given by

H ′(t) = eE0

2

[ p

mω
sinωt − x cosωt

]

for 0 < t < ∞. Determine the probability at time t that the oscillator will make a

transition from the ground state, |0〉, to the state |1〉. Also obtain λfi.

11. Based on first-order time-dependent perturbation theory, show that the probability of

transition from a state |i〉 to a state |j〉 is the same as the probability of transition from

|j〉 to |i〉 (this is the first-order version of the principle of detailed balancing).

12. An electron passing by a hydrogen atom in the ground state excites it to the level 2S .

Determine the differential cross-section for this process.

13. For a time-dependent problem we have

H ′(t) = 0, −∞ < t < T0

= V (r) T0 < t < T1

= 0, T1 < t <∞.

Obtain cfi(t) and λfi. Assume 〈f |V (r) |i〉 = μ.
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14. A particle confined within two infinite walls experiences a time-dependent perturbing

potential of the form

V ′ (x) = 0, t < 0

= λ (1+ x) exp(−iω0t), t ≥ 0.

Obtain the transition probability and λfi for transitions from the ground state to the first

excited state.

15. For a harmonic oscillator defined in terms of the operators a and a†,

H =
(

a†a+ 1

2

)
�ω,

use time-dependent perturbation theory to obtain the transition probability amplitude

for transitions from the ground state to a state |n〉, under the perturbing potential given

(with b > 0) by

H ′(t) = 0 for t < 0

= gx2 exp(−(b+ iα)t) for t > 0.



18
Interaction of charged particles and
radiation in perturbation theory

We consider here some specific and well-known cases involving the interactions of charged

particles and electromagnetic field which are solved using time-dependent perturbation

theory. These include Coulomb excitation of atoms, photoelectric effect, ionization of atoms

due to electromagnetic interaction, plus, in a first use of second-order time-dependent

perturbation, obtaining the cross-sections for Thomson scattering and the related Rayleigh

and Raman scattering.

18.1 Electron in an electromagnetic field: the absorption
cross-section

As discussed in Chapter 6, the Hamiltonian for an electron of charge e in an atom interacting

with an external electromagnetic field is given by

H = 1

2m

(
p− e

c
A
)2
+ eφ (r)+ V0(r) (18.1)

where A andφ are the vector and scalar potentials, respectively, for the electromagnetic field.

The potential representing the binding of the electron to the rest of the atom is represented

by V0(r). Keeping in mind that p and r are operators, we obtain

H = 1

2m

[
p2 − e

c
p · A − e

c
A · p+ e2

c2
A2

]
+ eφ (r)+ V0(r). (18.2)

We note that p = −i�∇ and H operate on a wavefunction on the right. If f (r) is the

wavefunction then the second term in the square bracket in (18.2) corresponds to

p · Af = −i�∇ · (Af ) = −i� (∇ · A) f + A · pf . (18.3)

Therefore,

H = 1

2m

[
p2 + i�e

c
∇ · A − 2e

c
A · p+ e2

c2
A2

]
+ eφ (r)+ V0(r). (18.4)

We take φ = 0 and choose the transverse gauge, ∇ · A = 0, for the vector potential, A.

To apply perturbation theory we take e, the charge of the particle, as a parameter that will

take the place of λ in the perturbation expansion. It is numerically a small quantity and,
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therefore, perturbation expansion is justified. To first order in e we will then neglect the

contribution of the A2 term and write

H = p2

2m
− e

mc
A · p+ V0(r). (18.5)

This equation has the form H = H0 + H ′. The unperturbed Hamiltonian is given by

H0 =
p2

2m
+ V0(r), (18.6)

which includes the kinetic energy term as well as V0(r), which is responsible for atomic

binding. The perturbation due to the interaction of the electron with the electromagnetic

field is identified as

H ′(t) = − e

mc
A · p, (18.7)

which is time-dependent since we take the vector potential to be time-dependent given by

A (r, t) = A0[ei(k·r− ω t) + e−i(k·r− ω t)] (18.8)

where A0 is real. We also assume that this interaction is turned on at t = 0.

The first term in A (r, t) given by (18.8) with e−iω t corresponds to a process in which

the electron absorbs the energy �ω. It contributes a factor δ[En − (Ei + �ω)] to the tran-

sition probability as we discussed in the previous chapter. It is this term in which we are

interested. We classify this as a “radiation absorption” process. The second term propor-

tional to exp(iωt) is responsible for the so-called “stimulated emission” in which the atom

goes down to a lower level by emission of radiation. The wavevector k for electromagnetic

radiation is related to the frequency ω by k = ω/c, where c is the velocity of light. If n is

a unit vector in the direction of k, then k = (ω/c)n. The matrix element of H ′(t) at t = 0

connecting the initial state |i〉with energy Ei of the atomic electron to a higher atomic level

|n〉 with energy En is given by

H ′
ni(0) = −

e

mc
〈n| ei( ωc n·r) A0 · p |i〉 . (18.9)

The transition probability λni for transitions i → n per unit time as t →∞ is then given by

λni =
2π

�

∣∣H ′
ni(0)

∣∣2 δ(En − Ei − �ω). (18.10)

For transitions to occur, �ω must be of the order of En − Ei, which is of the order of

the atomic levels. In the hydrogen atom the levels are proportional to e2/a0, where a0 is

the Bohr radius. For an atom we replace a0 by the corresponding atomic radius, which we

denote R. Hence one expects transitions to occur for

�ω ∼ Ze2

R
. (18.11)
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This implies that the wavevector will be of the order

k = ω
c
∼ Ze2

�cR
=
(

Z

137

)
1

R
(18.12)

where in the last step we have substituted the numerical value 1/137 for the fine-structure

constant
(
e2/�c

)
.

The exponent in (18.9) is then estimated to be

∣∣∣ω
c

n · r
∣∣∣ ∼

(
Z

137

)
r

R
. (18.13)

Since r involved in the integrations in (18.9) is less than or of the order of R, |(ω/c)̂n · r| ≪ 1

for light atoms with small values of Z . Hence, we can approximate

ei ωc n·r ≃ 1. (18.14)

We take A0 to be in the x-direction, and write

〈n | A · p | i〉 = |A0| 〈n |px| i〉.

To evaluate the above matrix element we first calculate the commutator [x, H0] and note

that x will commute with V0 since it is a function of the coordinates. To obtain 〈n |px| i〉 we

use the result

[x, H0] = 1

2m

[
x, p2

]
= i�

px

m
. (18.15)

The last step follows from the commutation relations [x, px] = i� and
[
x, py

]
= 0 = [x, pz].

Thus we obtain

〈n | px | i〉 =
m

i�
〈n | [x, H0] | i〉 = m

i�
〈n| (xH0 − H0x) | i〉 = im ωni〈n | x | i〉 (18.16)

where

ωni =
En − Ei

�
(18.17)

We have made use of the fact that |i〉 and |n〉 are eigenstates of H0 with eigenvalues Ei and

En respectively. Substituting (18.16) into (18.9) gives

H ′
ni(0) = −

ie

c
|A0|ωni〈n | x | i〉.

Since 〈n | x | i〉 is proportional to the dipole moment of the atom, our approximation is

called the “electric dipole approximation.” The transition probability per unit time, λni,

corresponding to the absorption of radiation is then given by

λni =
2πe2 |A0|2

�c2
ω2

ni |〈n | x | i〉|2 δ(En − Ei − �ω). (18.18)
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Let us now calculate the absorption cross-section, σ abs, for the above process, which is

given by

σ abs =
λni

Ji
(18.19)

where Ji is the incident photon flux. We will use the language of second quantization in

which the radiation field is described in terms of discrete number of particles called photons

carrying energy �ω. The energy absorbed per unit time is then equal to λni�ω. If we define

the incident energy flux as the radiation energy incident per unit area per unit time, then

this flux is simply cU where c is the velocity of light, which corresponds to the velocity of

the incident radiation, and U is the energy density of incident radiation. Since the energy

of a single photon is �ω, the corresponding photon flux Ji is the ratio, (cU/�ω). Therefore,

the absorption cross-section is given by

σ abs =
�ωλni

cU
. (18.20)

The electromagnetic energy density from classical electrodynamics is found to be

U = 1

2π

ω2

c2
|A0|2 . (18.21)

Thus

σ abs = λni
2π�c

ωni |A0|2
(18.22)

where, because of the δ-function in (18.18), ω must satisfy

ω = ωni. (18.23)

Substituting the expression forλni in (18.22) we obtain, withα, the fine-structure constant,

being e2/�c,

σ abs = 4π2
�ωniα |〈f |x| i〉|2 δ (En − Ei − �ω) . (18.24)

The total absorption cross-section summed over all final states and integrated over ω is

given by

∫
dωσ abs =

4π2α

�

∑

f

(
Ef − Ei

)
|〈f |x| i〉|2 . (18.25)

We can perform the above summation through the following series of steps.

First, we consider the double commutator [[x, H0] , x], which is given by

[[x, H0] , x] = 2xH0x − H0x2 − x2H0. (18.26)
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Taking the diagonal elements of the above commutator we get

〈i |[[x, H0] , x]| i〉 = 2 〈i |xH0x| i〉 − 2Ei

〈
i

∣∣∣x2
∣∣∣ i
〉

(18.27)

where we have used the fact that x is Hermitian and H0 |i〉 = Ei |i〉. To determine the first

term on the right-hand side of (18.27), we insert a complete set of intermediate states |n〉,

〈i |xH0x| i〉 =
∑

n

〈i |x| n〉 〈n |H0x| i〉 (18.28)

=
∑

n

|〈n |x| i〉|2 En (18.29)

where we have used the relation 〈n|H0 = En 〈n|. To determine the second term on the

right-hand side of (18.27), we note that

〈
i

∣∣∣x2
∣∣∣ i
〉
=
∑

n

〈i |x| n〉 〈n |x| i〉 (18.30)

=
∑

n

|〈n |x| i〉|2 . (18.31)

Hence from (18.29) and (18.31) we obtain

〈i |[[x, H0] , x]| i〉 = 2
∑

n

(En − Ei) |〈n |x| i〉|2 . (18.32)

From (18.15) we know that

[x, H0] = i�
px

m
(18.33)

and therefore

〈i |[[x, H0] , x]| i〉 = i�

m
〈i |[px, x]| i〉 = �

2

m
(18.34)

where we have used the fundamental commutation relation

[px, x] = −i�. (18.35)

Thus from (18.32) we have

∑

n

(En − Ei) |〈n |x| i〉|2 =
�

2

2m
. (18.36)

This relation is called the Thomas–Reiche–Khun sum rule. Substituting it in (18.25) we

obtain the integrated absorption cross-section,

∫
dωσ abs =

2π2e2

mc
, (18.37)
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where we have substituted α = e2/�c. This result is remarkable in that it depends neither

on � nor on the details of the Hamiltonian. Actually, the same result is obtained in classical

electrodynamics.

18.2 Photoelectric effect

The situation here is similar to the radiation absorption phenomena we discussed in the

previous section except that this time the incident radiation is assumed to have sufficiently

high energy that the absorption leads to the ejection of the electron into a free particle state.

The form of the matrix element for the perturbing potential is, once again,

H ′
fi(0) = −

e

mc

〈
f

∣∣∣ei ωc n·rA0 · p
∣∣∣ i
〉

(18.38)

where |i〉 is the initial atomic state while |f 〉 is a free particle state, not one of the levels of

the atomic system. Thus the transitions in this case will be to a continuum of states rather

than discrete states. We can utilize the formulas developed previously for the cross-section

given by

dσ fi

d�
= 1

Ji

∣∣∣H ′
fi(0)

∣∣∣
2 mkf V

4π2�3
. (18.39)

Here Ji is the incident particle (photon) flux, which can be shown to be

Ji =
ω |A0|2
2π�c

(18.40)

and V is the volume of normalization. Writing A0 = A0ǫ in (18.38), we obtain

dσ fi

d�
= Vkf α

2πm�ω

∣∣∣
〈
f

∣∣∣ei ωc n·rǫ · p
∣∣∣ i
〉∣∣∣

2
. (18.41)

We consider a hydrogen atom in its ground state as the initial state and assume the

ejected electron to be a free particle described by a plane wave (see Fig. 18.1). Thus the

two wavefunctions are

ui(r) =
1√
π

(
Z

a0

)3/2

e
− Zr

a0 , uf (r) =
1√
V

eikf ·r. (18.42)

The matrix element is then

〈
f

∣∣∣ei ωc n·rǫ · p
∣∣∣ i
〉
= 1√

V

∫
d3r e−ikf ·rei ωc n·r [−i�ǫ ·∇ui(r)] (18.43)

where we have substituted p = −i�∇. The above integral can be obtained through inte-

gration by parts, utilizing the fact that ui → 0 as r →∞. The integral then becomes, after
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z

y

x

θ

E0

ϕ

kf

ε

n

Fig. 18.1

substituting the expression for ui,

i�√
V

∫
d3rǫ·

[
∇
(
e−iq·r)] 1

π

(
Z

a0

) 3
2

e
− Zr

a0 (18.44)

where q = kf − (ω/c)n. Furthermore,

ǫ ·∇
(
e−iq·r) = −iǫ · qe−iq·r. (18.45)

We assume the vector potential A to be transverse, ∇ ·A = 0, which implies that ǫ · n = 0

and hence ǫ · q = ǫ · kf .

Expression (18.44) is then simplified to

1√
π

(
Z

a0

) 3
2 �√

V
ǫ · kf

∫
d3r′ e−iqr′ cos θ ′e

− Zr′
a0 (18.46)

where d3r′ = r′2dr′d cos θ ′dφ′. The integral over φ′ gives 2π . We find after integrating

over cos θ ′ that we have an integral of the following form, which is calculated through

partial integration,

∫ ∞

0

dr re−αr = 1

α2
. (18.47)

Substituting these results in the expression for the differential cross-section given by

(18.41) we obtain

dσ fi

d�
= 32e2kf

(
ǫ · kf

)2

mcω

(
Z

a0

)5 (
Z2

a2
+ q2

)−4

. (18.48)
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If we take n in the z-direction, ǫ in the x-direction and kf as a vector with polar angle θ and

azimuthal angle φ, then in the differential cross-section one may substitute the following

expressions:

ǫ · kf = kf sin θ cosφ, (18.49)

q2 = k2
f − 2kf · n

ω

c
+ ω

2

c2
(18.50)

= k2
f − 2kf

ω

c
cos θ + ω

2

c2
, (18.51)

with d� = d cos θ dφ.

18.3 Coulomb excitations of an atom

Consider a particle of charge e passing by a stationary atom as shown in Fig. 18.2. The

interaction between the charged particle and an electron in the atom will be characterized

by the Coulomb force, which will be time-dependent because of the motion of the particle.

Instead of radiation as we have considered previously, this time we have a Coulomb field

that will cause excitations in the atom. As it imparts energy to the atom, the charged particle

will lose energy. This is the dominant process that describes the passage of a charged particle

through matter.

The motion of the charged particle, which we call the projectile, is treated classically.

We also assume that the distance between the projectile and the target, the atom, is large

compared with the dimensions of the atom.

We apply the techniques of time-dependent perturbation theory to determine the prob-

ability for the atom to make a transition from an initial state |i〉, which we assume to be

the ground state, to one of the excited states, which we designate as |f 〉. We are assuming

here that the time of passage by the projectile, that is, the collision time, is shorter than the

natural period of oscillation of the electron in the atom given by 1/ωfi, where �ωfi is the

z

x

θ

R(t )

Z1
•

•

Z2

Fig. 18.2
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energy difference between the states |i〉 and |f 〉 of the electron. Thus, we isolate a single

electron in an atom to study the effects of the projectile. In the process we also neglect, in

the first approximation, the energy loss of the projectile due to the Coulomb interaction.

Through energy conservation we then determine the energy loss in terms of the excitation

energies.

Here the interaction Hamiltonian is given by the Coulomb potential,

H ′ = e2

|R(t)− ri|
, (18.52)

where R(t) is the distance of the charged particle from the origin, which depends on time,

and ri is the position of the electron. The ratio |r/R| ≪ 1 since r is quite small, of atomic

dimensions. We can, therefore, make the following expansion

1

|R(t)− ri|
= 1

R
+ ri · R

R3
+ · · · . (18.53)

We keep only the first two terms. Since R is independent of the atomic variables, the

matrix element of the first term 〈f
∣∣e2/R

∣∣ i〉 vanishes unless |f 〉 = |i〉, which corresponds

to elastic scattering. This is the familiar Rutherford scattering, which we have considered

in Chapter 17. We are here concerned with “inelastic” scattering, where the final state can

be different from the initial state, which the second term in (18.53) allows as we will show

below.

The projectile starts on the left at infinity as shown in Fig. 18.2 and, because of a repulsive

Coulomb interaction with electrons in the atom, the projectile curves upward as shown. The

distance of shortest approach as indicated in the figure is called the impact parameter, which

we designate as b. We take the direction along the impact parameter as the fixed z-axis, with

the x-axis is as indicated. The plane of the orbit is taken as the x−z plane. With respect to

these coordinate axes we write R = (R, θ ,φ) and ri =
(
ri, θ

′′,φ′′
)

in spherical coordinates,

while we denote by θ ′ the angle between R and ri . The second term in (18.53) is now

ri · R
R3

= ri

R2
cos θ ′ = ri

R

[
cos θ cos θ ′′ + sin θ sin θ ′′ cos

(
φ − φ′′

)]
. (18.54)

This term corresponds to the interaction Hamiltonian H ′. The matrix element of (18.54) is

given by

〈
f

∣∣∣∣
ri · R

R3

∣∣∣∣ i

〉
= cos θ

R2

〈
f
∣∣ri cos θ ′′

∣∣ i
〉
+ sin θ

R2

〈
f
∣∣ri sin θ ′′ cos

(
φ − φ′′

)∣∣ i
〉

(18.55)

where we note that R is time-dependent. The individual matrix elements in (18.55) only

involve the internal coordinates of the atom. The integral involving cos
(
φ − φ′′

)
vanishes,

2π∫

0

dφ′′ cos
(
φ − φ′′

)
= 0. (18.56)

Hence only the first term in (18.55) will contribute.



327 18.3 Coulomb excitations of an atom

We write

ri cos θ ′′ = zi. (18.57)

Therefore,

〈
f

∣∣∣∣
ri · R

R3

∣∣∣∣ i

〉
= cos θ

R2
〈f |zi| i〉 . (18.58)

The matrix element of the interaction Hamiltonian is

H ′
fi =

e2 cos θ

R2
〈f |zi| i〉 . (18.59)

The transition probability amplitude is then given by

cfi (t) = −
i

�

t∫

−∞
dt′H ′

f ie
iωfi t

′ ≈ − ie2

�

t∫

−∞
dt′

cos θ
(
t′
)

R2 (t′)
〈f |zi| i〉 (18.60)

where we have made explicit the fact that θ depends on time and where, as mentioned

earlier, we have assumed t′ ≪ 1/ωfi, and have, therefore, neglected the contribution of the

exponential.

To obtain the integrals we first use classical angular momentum conservation, where the

angular momentum is defined as L = r × p. The conservation relation implies

(b) (mv) = (R)
(
mRθ̇

)
(18.61)

where v is the velocity with which the projectile is traveling. The left-hand side above

corresponds to the angular momentum for the charged particle at infinity, as indicated by

the figure, and the term on the right is the angular momentum at finite values of time.

Therefore,

dθ

dt′
= vb

R2 (t′)
. (18.62)

That is,

dt′

R2 (t′)
= dθ

vb
. (18.63)

Since 〈f |zi| i〉 involves the internal system of the atom, it does not depend on t′. Hence the

transition probability amplitude at t = ∞ is given by

cfi (t) = −
ie2

�vb
〈f |zi| i〉

θ(t)∫

θ(−∞)

dθ cos θ
(
t′
)

(18.64)
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where θ depends on t′. We note that θ = −π/2 at t′ = −∞; and θ = π/2 at t′ = +∞ for

the projectile’s trajectory. Hence, at t = ∞,

cfi (∞) = −
ie2 〈f |zi| i〉

�vb

π/2∫

−π/2

dθ cos θ = −2ie2

�vb
〈f |zi| i〉 . (18.65)

Until now we have taken the projectile to have a unit charge. If Z1 is the charge of the

projectile then we simply multiply the Coulomb term given by (18.52) by a factor of Z1,

which gives

cfi (∞) = −
2iZ1e2

�vb
〈f |zi| i〉 . (18.66)

The projectile will lose energy, giving up part of it to kick the electron to a higher level.

An interesting quantity to calculate is the energy loss of the projectile in its motion, which,

through energy conservation, is equal to the energy imparted to the atom

T = Energy loss =
∑

f

(
Ef − Ei

) ∣∣cfi (∞)
∣∣2 = 4Z2

1 e4

�2
v

2b2

∑

f

(
Ef − Ei

)
|〈f |zi| i〉|2 .

(18.67)

The Thomas–Reiche–Khun sum rule obtained earlier, after replacing x by z, is given by

2m

�2

∑

f

(
Ef − Ei

)
|〈f |z| i〉|2 = 1. (18.68)

If the atom has Z2 electrons then the above sum must include all the electrons, in which

case the right-hand side will be multiplied by Z2 and we have

2m

�2

∑

f

(
Ef − Ei

)
|〈f |z| i〉|2 = Z2. (18.69)

The energy loss for this case is then given by

T = 2Z2
1 Z2e4

mv
2b2

. (18.70)

This is then the energy that a fast-moving particle of charge Z1e will lose in its collisions

with an atom containing Z2 electrons. This expression is essentially the same as the classical

result.

18.4 Ionization

In the problems of absorption and photoelectric effect we investigated the interaction of

radiation with the electron in an atom. There the field depended on both space and time
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through the vector potential A0e±i(k·r− ω t). Let us consider now the case that does not

involve radiation; instead an atom is subjected to an electric field oscillating in time, E0e±iωt ,

with E0 as a constant vector. This would be the case when the atom is placed between the

plates of a capacitor to which alternating voltage is applied. The perturbed Hamiltonian is

then given by

H ′(t) = eE0 · re−iωt (18.71)

where we keep only the harmonic time dependence e−iωt since we will be considering a

situation in which the energy is absorbed by the atom. As we discussed earlier, this type

of potential will induce transitions to states with Ef = Ei +�ω. If �ω is sufficiently large

then the electron will become free (with Ef > 0), i.e., the atom will ionize. We will neglect

any residual Coulomb interaction between the ionized electron and the atom and take the

wavefunction of the electron in the final state as

eikf ·r
√

V
. (18.72)

The matrix element for this process is then given by

〈
f
∣∣H ′(0)

∣∣ i
〉
= e

∫
d3r

e−ikf ·r
√

V
E0 · rui(r) (18.73)

where ui(r) is the wavefunction of the bound electron in the initial state. If the electron is

in an n = 1 S-state, then ui(r) is given by

ui(r) =
1√
πa3

0

e−r/a0 . (18.74)

The ionization process is described in Fig. 18.3.

The differential cross-section for ionization refers to the direction kf of the ejected elec-

tron with respect to a fixed direction, which we take to be the direction of E0. We will

take the z-axis in the same direction as E0. There are three different angles involved in this

problem: θ ′ between r and kf ; θ ′′ between r and E0; θ between kf and E0. The integration

(18.73), however, involves angles between r and kf , and r and E0. Thus we have

〈
f
∣∣H ′(0)

∣∣ i
〉
= eE0√

πa3
0V

∫
d3r e−ikr cos θ ′ (r cos θ ′′

)
e−r/a0 . (18.75)

For integration purposes we take kf to be the polar axis, so that

d3r = r2dr d cos θ ′dφ′. (18.76)

To determine θ ′′ that enters in (18.75), we note that if θ and φ are the polar and azimuthal

angles of kf (with respect to E0) then one can relate θ ′′ to angles θ ′ and θ by the following

well-known formula:

cos θ ′′ = cos θ cos θ ′ − sin θ sin θ ′ cos(φ − φ′) (18.77)
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z
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θ θ́
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Fig. 18.3

where φ′ is the azimuthal angle of r (note: if kf , r and E0 were in the same plane then

θ ′′ = θ + θ ′). We substitute the expression for cos θ ′′ in (18.77).

The integration over φ′ can be carried out trivially since

∫ 2π

0

dφ′ cos
(
φ − φ′

)
= 0. (18.78)

Hence we obtain

〈
f
∣∣H ′(0)

∣∣ i
〉
= eE0√

πa3
0V

cos θ

∫ ∞

0

dr r3

∫ 1

−1

d cos θ ′ cos θ ′e−ikf r cos θ ′e−r/a0 . (18.79)

This complicated-looking integral can be calculated through the following steps. First

we do the integral

I1 =
∫ ∞

0

dr re−r/a0

∫ 1

−1

d cos θ ′e−ikf r cos θ ′ (18.80)

= 2(
1

a2
0

+ k2
f

) . (18.81)

We then take the derivative of I1, with respect to 1/a0, to obtain

I2 = −
dI1

d (1/a0)
=
∫ ∞

0

dr r2e−r/a0

∫ 1

−1

d cos θ ′ e−ikf r cos θ ′ (18.82)

= 4

a0

1
(

1

a2
0

+ k2
f

)2
. (18.83)
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We now take the derivative of I2 with respect to kf to find

I3 = −
dI2

dkf

= i

∫ ∞

0

dr r3e−r/a0

∫ 1

−1

d cos θ ′ cos θ ′e−ikf r cos θ ′ (18.84)

= 16kf

a0

1
(

1

a2
0

+ k2
f

)3
= 16kf a5

0(
1+ k2

f
a0

)3
. (18.85)

We note that (18.79) is related to (18.84). Hence,

〈
f
∣∣H ′(0)

∣∣ i
〉
= eE0√

πa3
0V

cos θ
16kf a5

0(
1+ k2

f
a2

0

)3
. (18.86)

The transition probability for ionization per unit solid angle is given by

dwfi

d�
= 2π

�

∣∣〈f
∣∣H ′(0)

∣∣ i
〉∣∣2 . (18.87)

From (18.79) we obtain

dwfi

d�
=

256me2k3
f
a7

0E2
0

π�3
(
1+ k2

f
a2

0

)6
cos2 θ (18.88)

where the solid angle d� = d cos θdφ. Integrating out the angles θ and φ we obtain a factor

of (4π/3) and, hence,

wfi =
1024mk3

f
a7

0E2
0

3�3
(
1+ k2

f
a2

0

)6
. (18.89)

This is the ionization probability.

18.5 Thomson, Rayleigh, and Raman scattering in second-order
perturbation

In this section we will consider three important and closely related scattering phenomena

involving the interaction of a radiation field with an atom. These are of the type

γ + A → γ + B (18.90)

where γ represents a photon (radiation field) and A and B are atomic states.
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The interaction Hamiltonian is the same as we have considered before,

H ′ = − e

2mc
[p · A + A · p]+ e2

2mc2
A · A, (18.91)

where we have left the two terms p · A and A · p in place without making further

simplifications.

We will try to solve the problem of scattering using perturbation theory, in which e will

once again play the role of the perturbation parameter. We have already considered the

consequences of this interaction in a variety of problems, but what sets this apart is that

the radiation field as described by the photon occurs twice, resulting in a scattering of the

type described by (18.91). One can imagine the terms in the square bracket as providing

a two-step process where first an absorption of a photon occurs, a phenomenon we have

already treated in the earlier sections, which one can represent by γ + A → A′ (excited

state), followed by an emission of a photon. The quadratic term, which we are considering

for the first time in this chapter provides a direct interaction.

Even though we have not yet discussed the formalism of second quantization, which

will be the subject of Chapter 37, we will use some of the simplified elements of it. In this

formalism a radiation field is described as a collection of a discrete number of photons. We

write A in the form of a Fourier transform as follows,

A =
∫

d3k
ǫ√

2ωV

[
akei(k·r−ωk t) + a

†

k
e−i(k·r−ωk t)

]
(18.92)

where ǫ is the polarization vector, which is assumed to be real, k is the momentum of the

photon, and ω = c |k|. The energy of each photon is �ω. The field is normalized inside a

volume V .

One calls the operators ak the destruction operators and a
†

k
the creation operators. They

have properties very similar to that of the raising and lowering operators for the harmonic

oscillator. For example, they satisfy the commutation relation

[
ak , a

†

k ′

]
= δkk ′ , [ak , ak ′] = 0,

[
a

†

k
, a

†

k ′

]
= 0. (18.93)

The difference here is that these operators are defined in the so-called multiparticle Hilbert

space. If we designate states with no photons and with one photon as |0〉 and |1〉, respectively,

which are part of the Hilbert space that represents multiparticle systems, then, for example,

a
†

k
|0〉 = |1〉 and ak |1〉 = |0〉 . (18.94)

The above two relations are all we will need in order to calculate the matrix elements for H ′.
We consider the approximation, called the long-wavelength approximation, in which the

wavelength of the radiation is much larger than the typical dimensions of the atom, kr ≪ 1.
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Hence we write

A =
∫

d3k
ǫ√

2ωkV

[
ake−iωk t + a

†

k
eiωk t

]
, (18.95)

p · A =
∫

d3k
p · ǫ√
2ωkV

[
ake−iωk t + a

†

k
eiωk t

]
, (18.96)

and write the matrix element of H ′ as

H ′
fi = −

e

2mc
〈f | (p · A + A · p) |i〉 + e2

2mc2
〈f |A · A |i〉 (18.97)

where for the photons we take kf and ǫ(f ) as the final momentum and polarization vectors,

respectively, with ωf = ckf , while the corresponding parameters for the initial state are ki

and ǫ(i) with ωi = cki. The internal variables for the atom are absorbed in the designations

i and f , respectively.

∣∣∣f , kf , ǫ(f )
〉
= |f 〉 and

∣∣∣i, ki, ǫ
(i)
〉
= |i〉 . (18.98)

At this stage it is much more convenient to look at the scattering process pictorially as

given by the three diagrams in Fig. 18.4a, b, c. The time is supposed to flow from bottom up.

These diagrams are all different but they describe the same process (18.90). The solid lines

correspond to the atom and the wavy lines to the photon. In Fig. 18.4a, the initial state |i〉
indicated by incoming arrows consists of the atom A and the photon of momentum ki and

21

A B

γ

γγ

γγ

γ

ki kf

(a)

BA

kf

1                 2

ki

(b)

(c)

A B

ki kf

?

Fig. 18.4
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polarization ǫ(i). Similarly, the final state |f 〉 indicated by the outgoing arrows consists of

the atom B and the photon with momentum kf and polarization vector ǫ(f ). In this figure an

incoming photon is destroyed at the vertex 1, corresponding to the term aki
|1〉 = |0〉 (i.e.,

absorbed by the atom A, which converts to an excited atomic state indicated by the middle

solid line). A photon is then created at the vertex 2 (i.e., the excited state emits a photon,

leaving a residual atomic state B, corresponding to a
†

kf
|0〉). Thus H ′

fi
for this process will

be proportional to

H ′
fi ∼

〈
1

∣∣∣a†

kf
aki

∣∣∣ 1
〉
. (18.99)

In Fig. 18.4b, a photon is created at vertex 1 and destroyed at vertex 2 corresponding to

H ′
fi ∼

〈
1

∣∣∣aki
a

†

kf

∣∣∣ 1
〉
. (18.100)

In Fig. 18.4c, these processes happen at the same vertex.

The transition probability must then include A twice. In the interaction Hamiltonian

(18.97) the terms in the bracket, which are linear in A and in e, will contribute to diagrams

18.4a and 18.4b. Therefore, we will need to solve this part of the problem using second-

order perturbation theory. On the other hand, the second term in H ′, which is quadratic in

A, will correspond to Fig. 18.4c. Since this term already contains e2, we only solve the

problem to first-order, not in e but in e2.

The first- and second-order transition probability amplitudes are given as

c
(1)
fi
=
(−i

�

) t∫

−∞
dt′ H ′

fi(t
′) eiωfi t

′
, (18.101)

c
(2)
fi (t) =

(
− i

�

)2 ∑

n

t∫

−∞
dt′′

⎡
⎢⎣

t′′∫

−∞
dt′H ′

ni(t
′) exp(iωnit

′)

⎤
⎥⎦H ′

fn(t
′′) exp(iωfnt′′). (18.102)

The matrix element of H ′ for the A.A term is given by

〈
f
∣∣H ′∣∣ i

〉
(18.103)

=
〈
f

∣∣∣∣
e2

2mc2
A · A

∣∣∣∣ i

〉
(18.104)

=
∫

d3ki

∫
d3kf

〈
f

∣∣∣∣∣
e2

2mc2

(
aki a

†
kf
+ a

†
kf

aki

) 1

2V
√
ωiωf

ǫ(i) · ǫ(f ) (18.105)

× exp
[
−i

(
ωi − ωf

)
t
]∣∣ i

〉

= e2

2mc2

1

2V
√
ωiωf

2ǫ(i) · ǫ(f ) exp
[
−i

(
ωi − ωf

)
t
]
〈f |i〉 . (18.106)
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This will enter into the first-order transition amplitude, which is then found to be

c
(1)
f i (t) =

(−i

�

)
e2

2mc2

1

2V
√
ωiωf

2δfiǫ
(i) · ǫ(f )

∫ t

0

exp
[
i
(
ωfi + ωf − ωi

)
t1
]

dt1

(18.107)

where we have taken 〈f |i〉 = δfi to account for the fact the states |i〉 and |f 〉 may not be the

same. Also, we have used the definition ωba = ωb − ωa.

The second-order transition amplitude, after completing the operation of a and a†, is

given by

c
(2)
fi (t) =

(−i

�

)2
1

2V
√
ωiωf

(
− e

mc

)2
∫ t

0

dt2

∫ t2

0

dt1 (18.108)

×
{∑

n

〈
f |p · ǫ(f )|n

〉
exp

[
i
(
ωfn + ωf

)
t2
]
×
〈
n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
exp [i (ωni − ωi) t1]

+
∑

n

〈
f

∣∣∣p · ǫ(i)
∣∣∣ n
〉
exp i

(
ωfn − ωi

)
t2 ×

〈
n

∣∣∣p · ǫ(f )
∣∣∣ i
〉
exp

[
i
(
ωni + ωf

)
t1
]
}

(18.109)

= − c2

i�2V
√
ωiωf

( e

mc

)2

×
∑

n

(〈
f
∣∣p · ǫ(f )

∣∣ n
〉 〈

n
∣∣p · ǫ(i)

∣∣ i
〉

ωni − ωi
+

〈
f
∣∣p · ǫ(i)

∣∣ n
〉 〈

n
∣∣p · ǫ(f )

∣∣ i
〉

ωni + ωf

)
(18.110)

×
∫ t

0

dt2 exp
[
i
(
ωfn + ωni + ωf − ωi

)
t2
]

(18.111)

where we have inserted a complete set of intermediate states |n〉 .
The transition probability is then given by

Transition probability =
∣∣∣c(1)fi

(t)+ c
(2)
fi
(t)

∣∣∣
2

and the transition rate is

λfi = lim
t→∞

d

dt

∣∣∣c(1)fi
(t)+ c

(2)
fi
(t)

∣∣∣
2

(18.112)

where terms of order e2 will be relevant to our problem.

To calculate λfi we note that the exponentials appearing in c
(1)
fi (t) and c

(2)
fi (t) are the same

since the two exponents satisfy

ωfn + ωni = ωf − ωi. (18.113)
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Thus the δ-function that normally results after the t-integrations in the transition amplitude

will be

δ
(
ωfi + ωf − ωi

)
. (18.114)

The formula for the Fermi rule gives

wfi =
2π

�

(
1

2V
√
ωiωf

)2 (
e2

mc2

)2
V

(2π)3

ω2
f

�c3
d� (18.115)

×
∣∣∣∣∣δfiǫ

(i) · ǫ(f )− 1

m�

∑

n

(〈
f
∣∣p · ǫ(f )

∣∣ n
〉 〈

n
∣∣p · ǫ(i)

∣∣ i
〉

ωni − ωi
+
〈
f
∣∣p · ǫ(i)

∣∣ n
〉 〈

n
∣∣p · ǫ(f )

∣∣ i
〉

ωni + ωf

)∣∣∣∣∣
(18.116)

The differential cross-section for an incident radiation flux corresponding to the incoming

photons has been calculated before. We obtain

dσ

d�
= r2

0

(
ωf

ωi

) ∣∣∣∣∣δfiǫ
(i) · ǫ(f ) − 1

m�

∑

n

(〈
f
∣∣p · ǫ(f )

∣∣ n
〉 〈

n
∣∣p · ǫ(i)

∣∣ i
〉

ωni − ωi

+
〈
f
∣∣p · ǫ(i)

∣∣ n
〉 〈

n
∣∣p · ǫ(f )

∣∣ i
〉

ωni + ωf

)∣∣∣∣∣

2

(18.117)

where

r0 =
e2

4πmc2
(18.118)

is called the classical radius of the electron. The above result is called the Kramers–

Heisenberg formula.

18.5.1 Thomson scattering

Consider the case of elastic scattering where

Ei = Ef , ωf = ωi = ω, and B = A. (18.119)

One finds

(
c
(1)
fi
+ c

(2)
fi

)
→

[
ǫ(i) · ǫ(f ) − 1

m�

∑

n

(〈
i
∣∣p · ǫ(f )

∣∣ n
〉 〈

n
∣∣p · ǫ(i)

∣∣ i
〉

ωni − ω

+
〈
i
∣∣p · ǫ(i)

∣∣ n
〉 〈

n
∣∣p · ǫ(f )

∣∣ i
〉

ωni + ω

)]
. (18.120)
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In the limit

ω ≫ ωni, (18.121)

that is, in the limit in which the energy of the incoming radiation is much larger than ωni

(= ωn−ωi), which is effectively the binding energy of the excited state, n, the terms inside

the summation above go to zero compared with the first term. Therefore,

(
c
(1)
fi
+ c

(2)
fi

)
→ ǫ(i) · ǫ(f ). (18.122)

The cross-section is then given by

dσ

d�
= r2

0

∣∣∣ǫ(i) · ǫ(f )
∣∣∣
2

. (18.123)

This is called Thomson scattering where r0 has already been defined.

18.5.2 Rayleigh scattering

In the opposite limit,

ω ≪ ωni, (18.124)

which corresponds to very low-frequency radiation, we expand the denominators in (18.120)

in powers of ω. Thus the second term in (18.120) is

∑

n

1

m�

(〈
i
∣∣p · ǫ(f )

∣∣ n
〉 〈

n
∣∣p · ǫ(i)

∣∣ i
〉

ωni − ω
+

〈
i
∣∣p · ǫ(i)

∣∣ n
〉 〈

n
∣∣p · ǫ(f )

∣∣ i
〉

ωni + ω

)

=
∑

n

1

m�

{
1

ωni

[
1+ ω

ωni
+
(
ω

ωni

)2
] 〈

i

∣∣∣p · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉

+ 1

ωni

[
1− ω

ωni
+
(
ω

ωni

)2
] 〈

i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(f )
∣∣∣ i
〉}

. (18.125)

We will now consider the coefficients of different powers of ω. The following relation was

derived in Section 18.1:

〈a |pi| b〉 = −
im (Eb − Ea)

�
〈a |xi| b〉 = −imωba 〈a |r| b〉 . (18.126)

Therefore, we will have

〈
i

∣∣∣p · ǫ(f )
∣∣∣ n
〉
= −imωni

〈
i

∣∣∣r · ǫ(f )
∣∣∣ n
〉

and
〈
n

∣∣∣p · ǫ(f )
∣∣∣ i
〉
= imωni

〈
n

∣∣∣r · ǫ(f )
∣∣∣ i
〉
.

(18.127)
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Let us first consider the term independent of ω,

∑

n

{
1

ωni

〈
i

∣∣∣p · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
+ 1

ωni

〈
i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(f )
∣∣∣ i
〉}

. (18.128)

From (18.126) it can be written as

∑

n

−im
{〈

i

∣∣∣r · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
+
〈
i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣r · ǫ(f )
∣∣∣ i
〉}

(18.129)

= −im
{
〈i| r · ǫ(f )p · ǫ(i) − p · ǫ(i)r · ǫ(f )

}
|i〉 (18.130)

where we have carried out the sum over intermediate states. Writing in component form we

find the above expression in braces to be

∑

i,j

−im(xipj − pjxi)ǫ
(f )
i ǫ

(i)
j . (18.131)

If we use the fundamental commutator

[
xi, pj

]
= i�δij, (18.132)

then for the second term in (18.120) we obtain

ǫ(f ) · ǫ(i), (18.133)

which cancels the first term in (18.120) exactly. Therefore, the term ǫ(f ) · ǫ(i) will no longer

be present in the expression for (c
(1)
fi
+ c

(2)
fi
).

Let us now consider the linear term in ω. We obtain

∑

n

{
ω

p · ǫ(i)
〈
i

∣∣∣p · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
− ω

ω2
ni

〈
i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(f )
∣∣∣ i
〉}

(18.134)

= ω
∑

n

1

ω2
ni

[〈
i

∣∣∣p · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
−
〈
i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(f )
∣∣∣ i
〉]

. (18.135)

Using the relation (18.126) we can replace each of the above factors by factors involving

r · ǫ(f ) and r · ǫ(i) but without the term ω2
ni in the denominator. After using the completeness

theorem and summing over the intermediate states, one finds that the two terms cancel each

other. So the linear term gives no contribution.

Let us now turn to the last term, quadratic in ω, which is given by

∑

n

{
ω2

ω3
ni

〈
i

∣∣∣p · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(i)
∣∣∣ i
〉
+ ω

2

ω3
ni

〈
i

∣∣∣p · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣p · ǫ(f )
∣∣∣ i
〉}

. (18.136)

After converting the above matrix elements to the matrix elements involving r · ǫ(f ) and

r · ǫ(i) through (18.126), we rewrite this term as

m2ω2
∑

n

1

ωni

{〈
i

∣∣∣r · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣r · ǫ(i)
∣∣∣ i
〉
+
〈
i

∣∣∣r · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣r · ǫ(f )
∣∣∣ i
〉}

. (18.137)
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Hence the differential cross-section for ω ≪ ωni is found to be

dσ

d�
= r2

0

(
mω2

�

)2
∣∣∣∣∣
∑

n

(
1

ωni

)[〈
i

∣∣∣r · ǫ(f )
∣∣∣ n
〉 〈

n

∣∣∣r · ǫ(i)
∣∣∣ i
〉
+
〈
i

∣∣∣r · ǫ(i)
∣∣∣ n
〉 〈

n

∣∣∣r · ǫ(f )
∣∣∣ i
〉]∣∣∣∣∣

2

.

(18.138)

This is the differential cross-section for the well-known Rayleigh scattering. As we note, it

varies as ω4.

18.5.3 Raman scattering

The above results were derived for the case of elastic scattering with ωf = ωi. For ωf � =ωi

the Kramers–Heisenberg formula was first verified in an atomic physics experiment by

Raman. This process, therefore, goes by the name of Raman scattering, or the Raman

effect.

Our discussions thus far have been largely concentrated on two extreme limits: ω ≫ ωni

or ω ≪ ωni. However, for the case where the energy of the incident photon is of the order

of one of the binding energies, ω ≈ ωni, then the terms in (18.120) become very large,

providing a classic case of what are called resonances. We mentioned this phenomenon in

Section 17.4. We will discuss it further in Chapter 22 and particularly in Chapter 23 when

we consider the scattering on composite objects.

Finally, if we allow the energies of the photons to reach extremely high limits then we have

to treat the entire problem relativistically and involve the complete machinery of second

quantization. The special case where photons scatter off the electrons is called Compton

scattering, which we will discuss in Chapter 43.

18.6 Problems

1. A hydrogen atom in its ground state is subjected to a time-dependent perturbation of

the type

H ′ = λf (z) e−iωt

where f (z) is a polynomial in z. Determine the transition probability for ionization in

terms of an appropriate integral over f (z).

2. In the problem of the Coulomb excitation of an atom, write R = ivt + kb, where i and

k are unit vectors in the x-direction and z-direction, respectively. Use the relation

K0(z) =
∞∫

0

dt
cos (zt)√

1+ t2
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and the limit K0(z)→ −z ln z for z ≪ 1 to show that the same relation for the energy

transfer is obtained as in the text.

3. Show that a charged harmonic oscillator can only absorb (or emit) radiation if the

radiation frequency is the same as the natural frequency of the oscillator.

4. To take into account spontaneous emission in radiative transitions in atoms one can resort

to quantum electrodynamics (QED) and start with designating the combined radiation

and atomic states as |nk ,α〉, where nk corresponds to the number of photons and the

subscript k stands for the quantum numbers (momentum, polarization, etc.) of the photon,

while α indicates the state of the atom. Let the vector potential be written as

A (r, t) = A0

∑

k

[
akei(k·r− ω t) + a

†

k
e−i(k·r− ω t)

]

where ak ’s are operators on the states |nk ,α〉 and satisfy the same commutation relations

as for the harmonic oscillator case such that a
†

k
ak = nk and ak |nk ,α〉 = √nk |nk − 1,α〉.

Insert the A (r, t) in the expression for the matrix element 〈f | A · p | i〉. Show that the

absorption term is proportional to nk while the emission term is proportional to (nk + 1).

Identify the part of the emission term that corresponds to stimulated emission and the

part that corresponds to spontaneous emission.

5. Consider a system consisting of radiation, in thermal equilibrium, and atoms in a cavity.

If Ne is the number of atoms undergoing emission and Na is the number undergoing

absorption, then show that, in equilibrium conditions, the number of photons in the

system can be written as

nk =
1

Na

Ne
− 1

.

If one assumes the Boltzmann distribution
(
∼ e−E/kT

)
for the atoms then, since Ee−Ea =

�ω,

nk =
1

e�ω/kT − 1
.

After converting nk to the density of radiation, show that one arrives at the famous Planck

black-body radiation formula.

6. A neutron, which is a spin-½ particle, is subjected to a constant magnetic field B0 in

the z-direction. It travels along the x-direction with velocity v starting at the origin. A

time-dependent perturbation is applied represented by the magnetic field B1 in the x−y

plane given by

B1x = |B1| exp(−x/a) cosωt,

B1y = |B1| exp(−x/a) sinωt.

The interaction Hamiltonian, as usual, is given by

H ′ = −μ.B
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with μ = γ (1/2)σ , γ |B0| = �ω0 and γ |B1| = �ω1. Represent the neutron state as a

superposition

|ψ(t)〉 = c1(t) |+〉 + c2(t) |−〉

where |+〉 and |−〉 are the time-independent “spin-up” and “spin-down” states, respec-

tively, along the z-direction. Use first order time-dependent perturbation to obtain c1(t)

assuming that at t = 0 the neutron is in the |−〉 state. Assume c1(0) = 0. You may take

the unperturbed value c2(t) = 1 to calculate the integral for c1(t). Obtain c1(∞)and

show that there is a resonance in ω. Determine its position.

7. Use Fermi’s golden rule to obtain, wfi, the transition probability per unit time as t →∞,

for transitions to a group of free particle states when an electron in the hydrogen atom

in the ground state (n = 1, l = 0) is ejected as a free particle by the potential

H ′(t) = 0, t < 0

= −g
1

r
e−μre−iωt t > 0.

Take the energy of the ejected electron as E0. What is the minimum value for ω such

that this process takes place?
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We now go into the full details of scattering problems, starting in this chapter with some

typical one-dimensional systems. We describe the scattering problem in terms of the

so-called reflection and transmission coefficients. We consider a number of interesting

problems ending with the typically quantum-mechanical question of tunneling through a

barrier.

19.1 Reflection and transmission coefficients

Let us discuss the effect of a potential of arbitrary shape but of finite range, a, as depicted

in Fig. 19.1:

V (x) � =0, 0 < x < a (19.1)

V (x) = 0, x < 0 and x > a. (19.2)

We consider now a particle that is traveling from left to right along the x-axis. The

wavefunctions in the regions where the potential vanishes are given by

u(x) = Aeikx + Be−ikx, x < 0 (19.3)

u(x) = Ceikx, x > a (19.4)

where

k =
√

2mE

�2
. (19.5)

We are at the moment not concerned with the region where the potential is nonzero. The

results we derive will not depend on whether the energy is less than or greater than the

maximum height of V (x).

It should be noted that for x < 0, the second term in (19.3) is included to take account of

possible reflections at the boundary. For x > a, on the other hand, no reflections will occur.

One often calls the wavefunction as written an “outgoing wave.”

The current is given by

j(x) = �

2im

(
u∗

du

dx
− u

du∗

dx

)
. (19.6)
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V(x )

0 a x

Fig. 19.1

Substituting the above wavefunctions in the two regions we find

j(x) = v

(
|A|2 − |B|2

)
, x < 0 (19.7)

j(x) = v |C|2 , x > a, (19.8)

where v is the velocity given by

v = �k

m
. (19.9)

Since the current is continuous, we must have

|A|2 − |B|2 = |C|2 . (19.10)

That is,

|B|2 + |C|2 = |A|2 . (19.11)

Let us define the following two quantities.

Reflection coefficient

R = |B|
2

|A|2
. (19.12)

Transmission coefficient

T = |C|
2

|A|2
. (19.13)

From (19.11) we have

R+ T = 1. (19.14)
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This is a mathematical statement of an obvious fact that everything is accounted for: either

particles that are coming in from the left are turned back (reflected) or they pass through

(transmitted). Nothing disappears into thin air. The disappearance of the particles, called

absorption, does happen in practical situations. The disappearing particle then appears in

the form of energy or as another particle or a collection of particles. This is a much more

complicated mechanism, which is often approximated by a complex potential. We will,

however, continue to concern ourselves only with real potentials.

We can also write the currents in terms of R and T as reflected current, jr(x), and

transmitted current, jt(x):

jr(x) = v |A|2 (1− R) , x < 0 (19.15)

jt(x) = v |A|2 T , x > a. (19.16)

If we normalize the incident wave to have unit probability, then we can write

u(x) = eikx + S11e−ikx, x < 0 (19.17)

u(x) = S12eikx, x > a (19.18)

where the letter S corresponds to the quantity called the S-matrix, the subscript 1 refers to

the incident channel, and as subscript 2 to the transmitted channel. The relation (19.4) is

then given by

|S11|2 + |S12|2 = 1. (19.19)

This relation reflects the unitary property of the S-matrix, a subject we will discuss at length

in the later sections. For the present we will express our results in terms of R and T .

Below we consider a series of examples.

19.2 Infinite barrier

Here the potential is given by (see Fig. 19.2)

V (x) = 0 x < 0 (19.20)

= ∞ x > 0. (19.21)

The corresponding wavefunctions are then

u(x) = Aeikx + Be−ikx, x < 0 (19.22)

u(x) = 0, x > 0. (19.23)

The boundary condition at x = 0 gives

A+ B = 0, (19.24)
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V(x )

0              a

∞

Fig. 19.2

and hence

R = 1, (19.25)

T = 0, (19.26)

which indicates that the entire incident wave is reflected. The wavefunctions are then

given by

u(x) = A(eikx − e−ikx), x < 0 (19.27)

u(x) = 0, x > 0. (19.28)

19.3 Finite barrier with infinite range

There are two cases we need to consider for the incident energy since the barrier is finite:

E < V0 and E > V0.

For E < V0 (see Fig. 19.3) the wavefunctions are

u(x) = Aeikx + Be−ikx, x < 0 (19.29)

u(x) = Fe−βx, x > 0 (19.30)

where

k =
√

2mE

�2
, β =

√
2m (V0 − E)

�2
. (19.31)

Boundary conditions at x = 0 give

A+ B = F , (19.32)

(A− B)ik = −βF . (19.33)
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V0

x

0

V (x )

Fig. 19.3

Thus,

A = 1

2

(
1+ iβ

k

)
F , B = 1

2

(
1− iβ

k

)
F . (19.34)

Hence,

|A|2 = |B|2 = 1

4

(
1+ β

2

k2

)
|F |2 . (19.35)

Therefore, the magnitudes of A and B are the same though there may be a phase difference

between them. Hence we write

B = Ae2iδ (19.36)

where

e2iδ =

(
1− iβ

k

)

(
1+ iβ

k

) . (19.37)

The wavefunctions are

u(x) = A
[
eikx + e2iδ e−ikx

]
, x < 0 (19.38)

u(x) = Fe−βx, x > 0. (19.39)

We note that the reflected wave acquires a phase but the amplitude still remains the same

as that of the incident wave,

R =
∣∣∣Ae2iδ

∣∣∣
2
= |A|2 . (19.40)

The reflected current is, therefore,

jr(x) = v |A|2 (1− R) = 0, x < 0. (19.41)
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Since the barrier is of infinite range, the particle will not appear as a free, transmitted,

particle in any region in x > 0. This is reflected in the fact that u(x) is real in this region

and, hence, jt(x) = 0.

For the case E > V0:

u(x) = Aeikx + Be−ikx, x < 0 (19.42)

u(x) = Feiαx, x > 0 (19.43)

where

k =
√

2mE

�2
, α =

√
2m (E − V0)

�2
. (19.44)

The boundary conditions at x = 0 give

A+ B = F , (19.45)

(A− B)ik = iαF . (19.46)

Thus

A = 1

2

(
1+ α

k

)
F , B = 1

2

(
1− α

k

)
F . (19.47)

Here we have both the reflected and transmitted waves with nonzero currents in both

regions, and

R =

∣∣∣∣∣∣∣

1− α
k

1+ α
k

∣∣∣∣∣∣∣

2

, (19.48)

T =

∣∣∣∣∣∣∣

2

1+ α
k

∣∣∣∣∣∣∣

2

. (19.49)

The wavefunctions in the two regions can be written as

u(x) = A

⎡
⎢⎣eikx +

⎡
⎢⎣

1− α
k

1+ α
k

⎤
⎥⎦ , e−ikx

⎤
⎥⎦ , x < 0 (19.50)

u(x) =

⎛
⎜⎝

2

1+ α
k

⎞
⎟⎠ eiαx, x > 0. (19.51)
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19.4 Rigid wall preceded by a potential well

The potential is described as follows (see Fig. 19.4):

V (x) = 0 for x < −a (19.52)

= −V0 for − a < x < 0 (19.53)

= ∞ for x > 0. (19.54)

The corresponding wavefunctions are

u(x) = Aeikx + Be−ikx, x < −a (19.55)

u(x) = Feiαx + Ge−iαx, −a < x < 0 (19.56)

u(x) = 0, x > 0. (19.57)

Since it leads to considerable simplifications, we apply boundary conditions at x = 0

first. We find

F + G = 0. (19.58)

Therefore, for −a < x < 0,

u(x) = F
(
eiαx − e−iαx

)
= 2iF sin(αx) = F ′ sin(αx) (19.59)

where F ′ = 2iF .

At x = −a the boundary conditions give

Ae−ika + Beika = −F ′ sin(αa), (19.60)

(Ae−ika − Beika)ik = F ′α cos(αa). (19.61)

–a

–V0

x0

∞

Fig. 19.4
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Let

Ae−ika = A′, (19.62)

Beika = B′. (19.63)

Then

A′ + B′ = −F ′ sin(αa), (19.64)

A′ − B′ = −i
αF ′

k
cos(αa). (19.65)

Hence,

A′ = −
(
sin(αa)+ i

α

k
cos(αa)

)
F ′, (19.66)

B′ = −
(
sin(αa)− i

α

k
cos(αa)

)
F ′, (19.67)

which leads to

B′ =
sin(αa)− i

α

k
cos(αa)

sin(αa)+ i
α

k
cos(αa)

A′. (19.68)

We note that

∣∣∣∣∣∣∣

sin(αa)− i
α

k
cos(αa)

sin(αa)+ i
α

k
cos(αa)

∣∣∣∣∣∣∣
= 1 (19.69)

and will therefore write

−
sin(αa)− i

α

k
cos(αa)

sin(αa)+ i
α

k
cos(αa)

= e2iδ′ . (19.70)

The reasons behind the negative sign will be clear later. The coefficients A′ and B′ have the

same magnitude but differ in phase. Hence from (19.68),

B′ = −e2iδ′A′. (19.71)

The above equality can be written as

cos(αa)+ i
k

α
sin(αa)

cos(αa)− i
k

α
sin(αa)

= cos δ′ + i sin δ′

cos δ′ − i sin δ′
. (19.72)
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Hence

tan(δ′) = k

a
tan(αa). (19.73)

We also find

B = −e2iδ′ e−2ikaA = −e2iδA, where δ = δ′ − ka. (19.74)

Thus,

R = |B|
2

|A|2
= 1, (19.75)

as expected.

In the limit that V0 → 0 , α→ k ,

e2i δ′ →− sin(ka)− i cos(ka)

sin(ka)+ i cos(ka)
= e2ika. (19.76)

The negative sign has been compensated and we obtain the expected result:

V0 → 0, δ′→ ka, δ→ 0. (19.77)

Let us define the scattering coefficient,

∣∣∣∣
e2iδ − 1

2ik

∣∣∣∣
2

= scattering coefficient, (19.78)

which is the same as the probability of reflection due to V0. We note that for V0 = 0 the

phase vanishes and so does the scattering coefficient.

In general, one can write

∣∣∣∣
e2iδ − 1

2ik

∣∣∣∣
2

= sin2 δ

k2
= 1

k2(1+ cot2 δ)
. (19.79)

The scattering coefficient will then have peaks when

δ = nπ

2
, with n = 1, 3, . . . . (19.80)

These are the counterparts of the resonances we discussed earlier.

The phase δ′ is then found to be

δ′ − ka = nπ

2
. (19.81)

For n = 1, since

tan(δ′) = − cot(ka), (19.82)
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we find

k

α
tan(αa) = − cot(ka). (19.83)

We can write this relation as

α cot(αa) = −k cot(ka). (19.84)

This transcendental equation provides a relation between k and V0. The solution represents

the energies at which the resonances occur.

19.5 Square-well potential and resonances

Consider a square-well potential of finite range (see Fig. 19.5):

V = −V0, for 0 ≤ x ≤ a (19.85)

V = 0, for x < 0, x > a. (19.86)

The incident wave is given by

u(x) = Aeikx + Be−ikx, for x < 0. (19.87)

In the region of the potential well the wavefunction has the form

u(x) = Feiαx + Ge−iαx, for 0 ≤ x ≤ a (19.88)

where

k =
√

2mE

�2
and α =

√
2m(E + V0)

�2
, (19.89)

V(x )

0                a

–V0

x

Fig. 19.5
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while the outgoing wave is given by

uk(x) = Ceikx, for x > a. (19.90)

The boundary conditions at x = 0 lead to

A+ B = F + G, (19.91)

(A− B)k = α (F − G) . (19.92)

Writing this in the matrix form we have

[
1 1

k −k

] [
A

B

]
=
[

1 1

α −α

] [
F

G

]
. (19.93)

The boundary conditions at x = a give, in the matrix form,

[
eiαa e−iαa

iαeiαa −iαe−iαa

] [
F

G

]
=
[

1

ik

]
eikaC. (19.94)

From this relation we can obtain F and G, by inverting the matrix on the left-hand side;

substitution in (19.93) gives

A

C
= ei(k+α)a [(k + α)2e−2iαa − (k − α)2

]

4kα
, (19.95)

B

C
= ei(k−α)a [(k2 − α2)(1− e2iαa)

]

4kα
. (19.96)

Hence the reflection and transmission coefficients are given by

R =
∣∣∣∣
B

A

∣∣∣∣
2

=
∣∣∣∣∣

[
(k2 − α2)(1− e2iαa)

]
[
(k + α)2 − (k − α)2e2iαa

]
∣∣∣∣∣

2

(19.97)

and

T =
∣∣∣∣
C

A

∣∣∣∣
2

=
∣∣∣∣∣

4kα[
(k + α)2 − (k − α)2e2iαa

]
∣∣∣∣∣

2

. (19.98)

Let us now consider the transmission coefficient in some detail. We can rewrite (19.98) as

T = 1

1+ V 2
0 sin2(αa)

4E(E + V0)

. (19.99)

We note that

T = 1 for αa = nπ where n = 1, 2, . . . . (19.100)
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In other words, there is, remarkably, perfect transmission for specific values of the energy.

The reflection coefficient, which can be written as

R = 1

1+ 4E(E + V0)

V 2
0 sin2(αa)

, (19.101)

vanishes, as expected, at the same values of αa(= nπ). This type of effect is seen in the

transmission of light through refracting layers and is related to the so called Ramseur–

Townsend effect for the scattering of electrons through noble gases. We will return to this

subject when we discuss three-dimensional scattering. Physically one understands it as

the interference of waves reflected at x = 0 and x = a. This phenomena is also called

transmission resonance.

Let us obtain the expression for T for energies in close proximity to αa = nπ . These

give us what we will call the resonance energies. At one of these energies, E = E0, we will

make an expansion of αa, using the Taylor expansion technique,

f (E) = f (E0)+ (E − E0)
df

dE
. (19.102)

In the low energy limit, E ≪ V0 when the potential is strong, i.e.,

g =
√

2mV0a2

�2
≫ 1, (19.103)

we find

sin(αa) = (−1)n sin

(
g

E − E0

V0

)
= (−1)n

g

2V0
(E − E0). (19.104)

The transmission coefficient is given by

T = 1

1+ g2(E − E0)
2

16E0V0

. (19.105)

We write this as

T =
1
4
Ŵ2

(E − E0)2 + 1
4
Ŵ2

, (19.106)

which is in the so-called resonance form with E0 the resonance energy as already stated,

where T = 1, and

Ŵ = 8
√

E0V0

g
(19.107)

as the width.
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19.6 Tunneling

We will continue with the same problem as the previous one except that instead of an

attractive potential, we will now consider a potential barrier (see Fig. 19.6). This implies

that we change the sign V0 → −V0. At the same time we will consider energies that are

smaller than the potential, E < V0. This will lead us to the problem of “tunneling,” which

is a purely quantum-mechanical phenomenon. Effectively then, the above changes imply

that we make the change

α→ iβ (19.108)

in the above formulas, where

β =
√

2m(V0 − E)

�2
. (19.109)

Hence the transmission coefficient will be given by

T = 1

1+ V 2
0 sinh2(βa)

4E(V0 − E)

(19.110)

which is nonzero in contrast to the classical case where there will be no transmission for

E < V0.

Let us now consider the limit

V0 ≫ E, i.e., βa ≫ 1. (19.111)

We find

T ≃ 16E(V0 − E)

V 2
0

e−2βa. (19.112)

Thus, the transmission through a barrier decreases exponentially. The behavior of T as a

function of E/V0 is given in Fig. 19.7.

V (x )

0              a

V0

Fig. 19.6
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The above result for T is of the form that can be extended to the case where the potential

is of arbitrary shape described by V (x), which is assumed to be a smoothly varying function

of x. This is possible if V (x) can be described in terms of a series of potentials each of a

rectangular shape with infinitesimal range, where by rectangular shape we mean that the

potential is of the form of a finite barrier which we have considered earlier.

First we take the logarithm of T ,

log T ≃ log

[
16E(V0 − E)

V 2
0

]
− 2βa. (19.113)

The second term will dominate unless E = V0, which is called the classical turning point.

For E ≪ V0 then

log T ≈ −2βa. (19.114)

Since the potential can be described in terms of rectangular potentials each of infinites-

imal range, the transmission coefficient for a particle tunneling through such a barrier is

effectively a product of the transmission coefficients through each barrier. We can then write

T ≈ T1T2 · · · . (19.115)

Taking the logarithms of both sides we obtain

log T ≈ log T1 + log T2 + · · · (19.116)

where Ti corresponds to the transmission coefficient through the ith barrier. Substituting

expression (19.114) for each rectangular barrier, we obtain

log T ≈ −2β1�x − 2β2�x · · · = −2

x2∫

x1

√
2m(V (x)− E)

�2
dx (19.117)
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where β i’s are the values of β given in (19.109) for each interval and �x is the barrier

width, while x1 and x2 are the classical turning points at the two ends. We have replaced

the infinite sum by an integral. Thus the transmission coefficient for tunneling through a

barrier is given by

T ≈ exp

⎡
⎣−2

x2∫

x1

√
2m(V (x)− E)

�2
dx

⎤
⎦ . (19.118)

We will return to this formula when we consider the WKB approximation, where proper

modifications are made to the above result to take account of the problem with regard to

the turning points.

19.7 Problems

1. Consider a one-dimensional problem with the following potential:

V (x) = −V0 for x < 0

= 0 for x > 0.

If the particle is moving from left to right, obtain the wavefunctions in the two regions

as well as R and T for (i) E > 0, (ii) −V0 < E < 0.

2. Determine the transmission coefficient for the potential

V (x) = λ
(
a2 − x2

)
, for x < a

= 0, for x > a.

3. Solve the Schrödinger equation in one dimension given by

d2u

dx2
+ k2u(x) = 2m

�2
V (x)u(x)

using the Green’s function formalism by writing

u(x) = u0(x)+
2m

�2

∫
dx′ G0(x − x′)V (x′)u(x′).

Show that for the outgoing wave boundary condition G0 is given by

G0(x − x′) = i

2k
eik(x−x′), for x > x′

= i

2k
e−ik(x−x′), for x < x′.
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4. Using the Green’s function obtained in problem 3, determine the wavefunction, u(x),

for x > 0 and x < 0, for an attractive delta function potential given by

2m

�2
V (x) = −λδ(x).

Also obtain the reflection and transmission coefficients R and T , respectively.

5. Consider the double-delta potential

V (x) = −g [δ(x − a)+ δ(x + a)]

and obtain the corresponding scattering solutions (as in the case of the bound states, it

may be easier to treat the even and odd parities separately). Determine the reflection and

transmission coefficients. Determine the location of resonances.



20
Scattering in three dimensions – a

formal theory

In this chapter we go to three dimensions and formalize the scattering theory without going

through time-dependent perturbation theory. We solve our problems through the function

that plays a pivotal role in physics, the Green’s function. We define the S-matrix, the

T -matrix, and their connection to the scattering amplitude.

20.1 Formal solutions in terms of Green’s function

We will present here a formal way, invoking the Green’s function technique, to obtain the

scattering solutions in terms of abstract state vectors and operators. This will also allow us

to define two very important quantities in scattering theory, the T - and S-matrices.

We start with the energy eigenvalue equation for the abstract state vector |φ〉

H |φ〉 = E |φ〉 (20.1)

where H is the total Hamiltonian given by

H = H0 + V (20.2)

with H0 the unperturbed Hamiltonian and V the potential.

Equation (20.1) is then of the form

(E − H0) |φ〉 = V |φ〉 . (20.3)

A formal solution of this can be written as

|φ〉 =
∣∣φ0

〉
+ 1

(E − H0)
V |φ〉 , (20.4)

where
∣∣φ0

〉
is the homogeneous solution that satisfies the equation

(E − H0)
∣∣φ0

〉
= 0. (20.5)

One can easily verify by multiplying (20.4) on both sides by (E − H0) that equation (20.1)

is recovered.

Let us write

G0 =
1

E − H0
. (20.6)



359 20.1 Formal solutions in terms of Green’s function

+
V

G0

f

i V

f

i

V

+ . . .

Fig. 20.1

This is the so called “free particle” Green’s function in terms of which one can write equation

(20.4) as

|φ〉 =
∣∣φ0

〉
+ G0V |φ〉 . (20.7)

To obtain |φ〉 one can resort to perturbation expansion in terms of V and write the following

series through iteration:

|φ〉 =
∣∣φ0

〉
+ G0V

∣∣φ0

〉
+ G0VG0V

∣∣φ0

〉
+ · · · . (20.8)

This expansion is described pictorially in Fig. 20.1.

We now define the “total” Green’s function

G = 1

E − H
(20.9)

where H is given by (20.2). Hence

G = 1

E − H0 − V
. (20.10)

It can easily be shown that |φ〉 satisfies the equation

|φ〉 =
∣∣φ0

〉
+ GV

∣∣φ0

〉
. (20.11)

To express G in terms of G0 and V we can compare (20.11) and (20.8) and obtain

G = G0 + G0VG0 + · · · . (20.12)

This result can also be obtained by the expansion

G = 1

(E − H0)− V
= 1

(E − H0)
+ 1

(E − H0)
V

1

(E − H0)
+ · · · (20.13)

= G0 + G0VG0 + · · · . (20.14)

The infinite expansion (20.12) and (20.14) can be written compactly as

G = G0 + G0VG. (20.15)

Another possible way to describe |φ〉 is to write it as

|φ〉 =
∣∣φ0

〉
+ G0T

∣∣φ0

〉
(20.16)
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where T is called the “scattering matrix”. Comparing (20.16) and (20.7), we obtain

T
∣∣φ0

〉
= V |φ〉 . (20.17)

If we express |φ〉 as an expansion given in (20.11) and insert it in (20.17), one finds

T = V + VG0V + · · · . (20.18)

The series on the right-hand side is described pictorially in Fig. 20.1.

Expression (20.18) can be written compactly in terms of G as

T = V + VGV . (20.19)

We note that (20.7), (20.11), and (20.16) are all equivalent ways to write |φ〉.

20.2 Lippmann–Schwinger equation

We are familiar with G0 from our previous calculations. We will elaborate on its role

through formal steps to obtain the scattering amplitude. We start with equation (20.4) and

define an “outgoing” state
∣∣φ(+)

〉
by adding an iǫ term in the denominator of G0 as follows:

∣∣∣φ(+)
〉
=
∣∣φ0

〉
+ 1

E − H0 + iǫ
V

∣∣∣φ(+)
〉

(20.20)

=
∣∣φ0

〉
+ G0(E + iǫ)V

∣∣∣φ(+)
〉
. (20.21)

This is called the Lippmann–Schwinger equation. The presence of iǫ will ensure that we

have an outgoing solution.

We can write (20.20) in coordinate representation by multiplying it on the left by the bra

vector 〈r| and inserting a complete set of states in appropriate places. Thus,

〈r
∣∣∣φ(+)

〉
= 〈r

∣∣φ0

〉
+
∫

d3r′
∫

d3r′′〈r |G0(E + iǫ)| r′〉〈r′ |V | r′′〉
〈
r′′
∣∣φ+〉. (20.22)

Since V is a local operator, as the interactions occur at a single unique point, we write

〈r′ |V | r′′〉 = V (r′′)δ(3)(r′ − r′′). (20.23)

If, furthermore, we write

〈r
∣∣∣φ(+)

〉
= φ(+)(r), 〈r

∣∣φ0

〉
= φ0(r) and

〈
r |G0(E + iǫ)| r′

〉
= G

(+)
0 (r, r′)

(20.24)

then we have

φ(+)(r) = φ0(r)+
∫

d3r′ G(+)0 (r, r′)V (r′)φ(+)(r′) (20.25)
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which is the same relation as (20.7) in coordinate representation except that here we have

introduced the outgoing boundary condition explicitly from the beginning.

Let us now evaluate the corresponding Green’s function G
(+)
0 (r, r′), given by

G
(+)
0 (r, r′) =< r

∣∣∣∣
1

E − H0 + iǫ

∣∣∣∣ r′ >=< r

∣∣∣∣∣∣∣∣

1

�
2k2

2m
− H0 + iǫ

∣∣∣∣∣∣∣∣
r′ > (20.26)

where we have taken the energy, E = �
2k2/2m. To make the dependence on the momentum

vector k more explicit, we write

∣∣φ0

〉
=
∣∣φ0(k)

〉
. (20.27)

Therefore,

H0

∣∣φ0(k)
〉
= �

2k2

2m

∣∣φ0(k)
〉

(20.28)

and

〈r
∣∣φ0(k)

〉
= eik·r

(√
2π

)3
. (20.29)

We then obtain, after inserting complete sets of states,

G
(+)
0 (r, r′) =

∫
d3k ′

∫
d3k ′′〈r

∣∣φ0(k
′)
〉
〈φ0(k

′)

∣∣∣∣∣∣∣∣

1

�
2k2

2m
− H0 + iǫ

∣∣∣∣∣∣∣∣
φ0(k

′′)〉〈φ0(k
′′ ∣∣r′′

〉

=
∫

d3k ′
∫

d3k ′′
eik′′·r

(
√

2π)3

⎡
⎢⎢⎣

δ(3)
(
k′ − k′′

)

�
2k2

2m
− �

2k ′′2

2m
+ iǫ

⎤
⎥⎥⎦

e−ik′′·r′

(
√

2π)3
(20.30)

where we have used the relation 〈φ0(k
′)
∣∣φ0(k

′′)
〉
= δ(3)

(
k′ − k′′

)
.

Thus,

G
(+)
0 (r, r′) = 1

(2π)3

∫
d3k ′

eik′·(r−r′)

�
2

2m

(
k2 − k ′2

)
+ iǫ

= − 2m

(2π)3 �2

∫
d3k ′

eik′·(r−r′)

k ′2 − k2 − iǫ′
. (20.31)

Using the integration technique outlined in the Appendix for an outgoing wave we obtain

G
(+)
0 (r, r′) = − m

2π�2

eik ′|r−r′|
|r − r′| . (20.32)
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In our earlier discussions of the three-dimensional Schrödinger equation we have used

the notation u (r) for the wavefunction. If we replace φ(+)(r) by u (r) and φ0(r) by ui (r),

to indicate an “incoming wave”, we obtain

u (r) = ui (r)−
( m

2π�2

) ∫
d3r′

eik ′|r−r′|
|r − r′| V

(
r′
)

u
(
r′
)

. (20.33)

Let us consider this result in the limit r →∞, which is relevant to scattering. We find

in this limit that, since r ≫ r′,

∣∣r − r′
∣∣ =

√
r2 + r′2 − 2rr′ cos θ ′ = r

√

1+
(

r′

r

)2

− 2

(
r′

r

)
cos θ ′→ r − r′ cos θ ′

(20.34)

where we have kept only the first two leading terms. Notice that the angle between r and r′

is the same as the angle between the scattered momentum kf and r′ with
∣∣kf

∣∣ = |k| = k .

We can then write

k
(
r − r′ cos θ ′

)
= kr − kr′ cos θ ′ = kr − kf .r′ (20.35)

and

eik|r−r′|
|r − r′| →

eikr

r
e−ikf .r′ . (20.36)

If we take the incident (incoming) wave to be traveling in the z-direction, we obtain the

following asymptotic behavior:

u(r)→ 1

(
√

2π)3

[
eikz −

(
m
√

2π

�2

)
eikr

r

∫
d3r′e−ikf .r′V

(
r′
)

u(r′)

]
. (20.37)

We define the scattering amplitude, f (θ), through the relation

u(r)→ 1

(
√

2π)3

[
eikz + f (θ)

eikr

r

]
. (20.38)

From (20.37) we obtain the following expression for f (θ):

f (θ) = −
(

m
√

2π

�2

)∫
d3r′e−ikf .r′V

(
r′
)

u(r′). (20.39)

Thus, f (θ) measures the effect of the potential in causing the particle to undergo scat-

tering. We note that f (θ) = 0 when V = 0. In other words, no scattering takes place in the

absence of potential, as it should be.

We obtain the cross-section using the same derivation that we used in time-dependent

perturbation. We now return to box normalization inside a volume V, since it is more
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convenient to define the cross-section in terms of it. Of course, the expression for the cross-

section will not depend explicitly on V . We therefore write the asymptotic behavior for the

wavefunction as

u(r)→ 1√
V

[
eikz + f (θ)

eikr

r

]
. (20.40)

The scattering cross-section into an area r2 d� is given by

dσ = scattered flux into area r2d�

incident flux
=

[
1

V
|f (θ)|2 1

r2

]
r2d�

1/V
. (20.41)

Thus, the differential cross-section is given by

dσ

d�
= |f (θ)|2 (20.42)

and the total cross-section by

σ =
∫
|f (θ)|2 d�. (20.43)

20.3 Born approximation

An approximate solution to the scattering problem can be achieved if the potential is weak.

As we saw in Chapter 17 on time-dependent perturbation theory, one can make an expansion

in terms of V(r). The first-order term then corresponds to the Born approximation, which

we discussed in that chapter. We can obtain the first-order term by replacing u(r′) inside

the integral on the right-hand side of (20.39) by ui(r
′) (= eikz′). We write

1

(
√

2π)3
eikz′ = 1

(
√

2π)3
eik.r′ (20.44)

where ki = ke3, with e3 being a unit vector in the z-direction. Thus we obtain the following

Born approximation result

fB (θ) = −
m

2π�2

∫
d3r′e−iq.r′V

(
r′
)

(20.45)

where q = kf − ki is the momentum transfer. This is the same result as the one derived

previously from time-dependent perturbation theory.

Below we obtain the scattering amplitude in the Born approximation for two very

important potentials that we have already considered previously: Yukawa and Coulomb

potentials.
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20.4 Scattering from a Yukawa potential

A Yukawa potential is given by

V (r) = −g
e−μr

r
. (20.46)

Inserting this in (20.45), we obtain

fB (θ) =
mg

2π�2

∫
d3r

e−μr

r
e−iq·r. (20.47)

Let us write

q · r = |q| r cos θ ′, d3r = r2drd cos θ ′dφ′. (20.48)

We can carry out the integration over φ′ and obtain

fB (θ) =
mg

�2

∫ ∞

0

dr re−μr

∫ 1

−1

d cos θ ′e−iqr cos θ ′ (20.49)

where q = |q|. The integration over cos θ ′ gives

fB (θ) =
img

�2q

∫ ∞

0

dr
[
e−(μ+iq)r − e−(μ−iq)r

]
(20.50)

= 2mg

�2

(
1

μ2 + q2

)
(20.51)

where

q2 =
∣∣kf

∣∣2 + |ki|2 − 2kf · ki cos θ . (20.52)

For the elastic scattering that we are considering,

∣∣kf

∣∣ = |ki| = k . (20.53)

Therefore,

q2 = 2k2 (1− cos θ) . (20.54)

Hence,

fB (θ) =
2mg

�2

1

μ2 + 2k2 (1− cos θ)
. (20.55)

The differential cross-section is given by

dσ

d�
= |fB (θ)|2 =

4m2g2

�4

1
[
μ2 + 2k2 (1− cos θ)

]2 . (20.56)
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The cross-section can be obtained by writing d� = d cos θdφ. Hence, integrating out φ,

we obtain

σ = 8πm2g2

�4

∫ 1

−1

d cos θ
[
μ2 + 2k2 (1− cos θ)

]2 . (20.57)

The integral over cos θ can be carried out to give

σ = 16πm2g2

�4

1

μ2
(
μ2 + 4k2

) . (20.58)

20.5 Rutherford scattering

Rutherford scattering corresponds to the scattering of an electron off a nucleus of charge

Ze, say. The potential, V (r), then is the familiar Coulomb potential:

V (r) = −Ze2

r
. (20.59)

We can obtain fB (θ) and dσ/d� directly from the previous Yukawa result by taking

μ = 0, g = Ze2. (20.60)

From the previous section we find

fB (θ) =
2mZe2

2�2k2

1

1− cos θ
. (20.61)

Writing 1− cos θ = 2 sin2 θ/2 we obtain

fB (θ) =
mZe2

2�2k2

1

sin2 (θ/2)
(20.62)

and

dσ

d�
=
(

mZe2

2�2k2

)2
1

sin4 (θ/2)
. (20.63)

We have thus reproduced the formula derived in the chapter on time-dependent perturbation

theory for the Rutherford scattering.
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20.6 Charge distribution

If instead of a point charge, the Coulomb potential corresponds to a charge distribution, e.g.,

V (r) = −e2

∫
d3r′ρ

(
r′
)

|r − r′| (20.64)

where eρ (r) is the charge density of the source with total charge Ze, then the scattering

amplitude is given by

fB (θ) =
me2

2π�2

∫
d3r

∫
d3r′ρ

(
r′
)

|r − r′| e−iq·r. (20.65)

We can change variables by letting

r′′ = r − r′ (20.66)

while keeping r′ = r′. Hence,

fB (θ) =
me2

2π�2

∫
d3r′′

r′′
e−iq·r′′

∫
d3r′ρ

(
r′
)

e−iq·r′ . (20.67)

We write

F
(
q2
)
=
∫

d3r′ρ
(
r′
)

e−iq·r′ , (20.68)

which is the Fourier transform of the charge density, called the charge form factor,

normalized as

F (0) =
∫

d3r′ρ
(
r′
)
= Z (20.69)

if Z is the total charge. Therefore,

fB (θ) =
me2

2π�2
F
(
q2
) ∫ d3r′′e−iq·r′′

r′′
. (20.70)

The integral has already been evaluated earlier and we obtain

fB (θ) =
me2

2�2k2

F
(
q2
)

sin2 (θ/2)
. (20.71)



367 20.7 Probability conservation and the optical theorem

20.7 Probability conservation and the optical theorem

The probability conservation relation gives

∂ρ

∂t
+∇ · j = 0 (20.72)

where ρ is the probability density and j is the probability current density. Since the particles

undergoing scattering are energy eigenstates, the probability density, ρ, is a constant and

its time derivative vanishes. Hence,

∇ · j = 0. (20.73)

The integral of ∇ · j, therefore, also vanishes:

∫

V

d3r (∇ · j) = 0 (20.74)

where V is the volume over which the integration takes place. Using Gauss’s theorem we

can express the above relation as

∮
dS · j = 0 (20.75)

where the integration is carried out over the surface covering the volume V .

The current is given in terms of the wavefunction u(r) as

j = �

2im

(
u∗∇u− u∇u∗

)
= �

m
Im

(
u∗∇u

)
(20.76)

where “Im” means imaginary part. Relation (20.75) then implies

Im

∮
dS ·

(
u∗∇u

)
= 0. (20.77)

We show below that this relation leads to the optical theorem.

If we consider V to be a sphere of radius r, then the relation (20.77) becomes

Im

∮ (
u∗
∂u

∂r

)
r2d � = 0 (20.78)

where d� is the solid angle element. We will now use the expression (20.38) for u (r).

The free particle wavefunction corresponding to the incident wave traveling in the z-

direction is

ufr (r) =
1

(
√

2π)3
eikz (20.79)
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and the outgoing spherical wave is

uout (r) =
1

(
√

2π)3
f (θ)

eikr

r
. (20.80)

The asymptotic expression (20.38) for u is then of the form

u = ufr + uout . (20.81)

A wavefunction in the absence of potentials will also satisfy (20.78). Therefore, ufr

satisfies

Im

∮
d�

(
u∗fr
∂ufr

∂r

)
r2 = 0. (20.82)

Subtracting (20.82) from (20.78), we obtain, using expression (20.81) for u,

Im

∮
r2d�

(
u∗fr
∂uout

∂r
+ u∗out

∂ufr

∂r
+ u∗out

∂uout

∂r

)
= 0. (20.83)

To leading order in 1/r,

u∗out

∂uout

∂r
= ik

|f (θ)|2
r2

. (20.84)

The coefficient (1/2π)3 is omitted since it can be factored out of the equation. Therefore,

Im

∮
r2d�

(
u∗out

∂uout

∂r

)
= k

∮
d� |f (θ)|2 . (20.85)

The integral on the right-hand side, however, is just the cross-section, σ , hence

Im

∮
r2d�

(
u∗out

∂uout

∂r

)
= kσ . (20.86)

Thus (20.83) can be written as

Im

∮
r2d�

(
u∗fr
∂uout

∂r
+ u∗out

∂ufr

∂r

)
= −kσ . (20.87)

Let us first consider the integral on the left-hand side without explicitly writing “Im”. It can

be written as
∮

r2d�

(
u∗fr
∂uout

∂r
+ u∗out

∂ufr

∂r

)
=
∮

dS ·
(
u∗fr∇uout + u∗out∇ufr

)
. (20.88)

We now use the property Im (A∗B) = −Im (AB∗) for the second term on the right and then

convert the surface integral to a volume integral through Gauss’s theorem.
∮

dS ·
(
u∗fr∇uout + u∗out∇ufr

)
=
∮

dS ·
(
u∗fr∇uout − uout∇u∗fr

)

=
∫

V

d3r
(
u∗fr∇

2uout − uout∇
2u∗fr

)
. (20.89)
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We now write from (20.81)

uout = u− ufr , (20.90)

and use the result for the free particle wavefunction:

∇2ufr = −k2ufr . (20.91)

The integral on the right-hand side of (20.89) then becomes

∫

V

d3ru∗fr
[
∇2u+ k2u

]
= 2m

�2

∫

V

d3r u∗frV (r)u (20.92)

where we have used the fact that u satisfies the Schrödinger equation with V (r) as the

potential:

∇2u− 2m

�2
V (r)u+ k2u = 0. (20.93)

We note that the scattering amplitude is defined by

f (θ) = − m

2π�2

∫

V

d3r e−ikf ·rV (r)u(r) (20.94)

where θ is the angle between the initial and final momenta ki and kf , while ufr refers to the

incident free particle wavefunction, which can be written as

ufr = eiki ·r. (20.95)

Hence the right-hand side of (20.87) will be proportional to f (θ) with kf replaced by ki,

which will correspond to θ = 0. Thus,

2m

�2

∫

V

d3r u∗frV (r)u = −4π f (0) . (20.96)

Relation (20.87) then gives

Im f (0) = k

4π
σ , (20.97)

which is the optical theorem. It is a consequence of probability conservation.

Physically, one can interpret the above relation as being due to the destructive interfer-

ence between the incident wave and the scattered wave in the probability calculation. This

interference term, which is proportional to

eikr .e−ikz = eikr(1−cos θ), (20.98)

oscillates very rapidly as r → ∞ and does not contribute to the solid angle integration at

infinity, except at θ = 0. This is the “shadow” region, behind the target. What one finds

after imposing probability conservation is that the scattered wave removes from the incident

wave an amount proportional to σ , leading to (20.97).
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20.8 Absorption

In our previous discussions we found that

∮
dS · j = 0. (20.99)

This corresponds to the fact that the total flux of the particle vanishes, where total flux is

defined by

flux = 1

V

∮
dS · j. (20.100)

If we take the surface to infinity in the above integral then, physically, this relation

corresponds to the observation that there is no net loss of particles. Indeed, that is what

was expected since this relation was derived from the probability conservation relation.

However, if one found that the above relation was not satisfied and, in fact, one found

∮
dS · j = negative, (20.101)

then it would imply that there was a net loss of particles. This means that the particles are

taken away or absorbed from the incident beam. This is the phenomenon of absorption.

As an example, consider the case where we have two particles A and B and, say, B is very

heavy, which we will call the target. A typical scattering process then corresponds to

A+ B → A+ B. (20.102)

If this is all that happens when A scatters off B, then we have a purely elastic scattering. On

the other hand, if in addition to (20.102) we also have, for example, the process

A+ B → C + B (20.103)

then the incident beam represented by A disappears, and in the final state another particle,

C, appears. This is the classic case of absorption in a scattering experiment.

A negative flux is generated if the potential is complex,

V (r) = VR(r)− iVI (r), (20.104)

with VI > 0. The conservation equation changes to

∂ρ

∂t
+∇ · j = −2VI

�
ρ. (20.105)

Since ρ is a constant, we have

∇ · j = −2VI

�
ρ. (20.106)
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We then find
∮

dS · j = −2

�

∫

V

d3r VIρ, (20.107)

which is negative. If we take the volume V to be infinite, then the integral on the left will be

over a surface at infinity. We thus see that there is a net loss of particles due to the presence

of (positively signed) VI .

The flux of the absorbed particles is

− 1

V

∮
dS · j (20.108)

where V is, once again, the volume. The incident flux is v/V , where v is the velocity of the

incident particle. Therefore, the absorption cross-section can be defined as their ratio,

σ abs = −
∮

dS · j/V
v/V

= −1

v

∮
dS · j. (20.109)

Substituting j given by

j = �

m
Im

(
u∗∇u

)
(20.110)

in (20.109), we obtain

�

m
Im

∮
dS ·

(
u∗∇u

)
= −vσ abs. (20.111)

Or, since mv = �k , we have

Im

∮
dS ·

(
u∗∇u

)
= −kσ abs. (20.112)

From our previous discussion we then have

4π Im f (0)− kσ = kσ abs. (20.113)

The cross-section σ should now be identified as the elastic cross-section, σ el , and f (θ) as

the elastic scattering amplitude. In the discussions above we have used the term absorption

cross-section, but we could also use the more general term inelastic cross-section, σ inel =
σ abs.

Therefore, if we define the total cross-section, σ T , as

σ T = σ el + σ inel (20.114)

then we have

Im f (0) = k

4π
σ T . (20.115)

This is called the generalized optical theorem.
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20.9 Relation between the T-matrix and the scattering amplitude

The T -operator was defined earlier as

T
∣∣φ0

〉
= V |φ〉 . (20.116)

We once again substitute
∣∣φ0

〉
=
∣∣φ0(k)

〉
. Then T

∣∣φ0(k)
〉
= V |φ〉, and

〈
φ0(k

′)
∣∣ T

∣∣φ0(k)
〉
=
〈
φ0(k

′) |V |φ
〉
=
∫

d3r 〈φ0(k
′) |r〉V (r) 〈r|φ〉

=
∫

d3r
e−ik′·r

(2π)3/2
V (r) φ (r) . (20.117)

The above integral is related to the scattering amplitude, f (θ), given by (20.39). Therefore,

〈
φ0(k

′)
∣∣ T |k〉 = − 1

(2π)3

(
2π�

2

m

)
f (θ) (20.118)

where θ is now the angle describing the direction of the vector k′.

20.9.1 The optical theorem

We once again derive the optical theorem, this time using the T -matrix formalism without

introducing a potential. We begin with the relation (20.21) for
∣∣φ(+)

〉
. We have, writing

once again
∣∣φ0

〉
=
∣∣φ0(k)

〉
,

∣∣φ0(k)
〉
=
∣∣∣φ(+)

〉
− G0V

∣∣∣φ(+)
〉

(20.119)

where

G0 = G0(E + iǫ). (20.120)

Taking the complex conjugate of (20.119) we have

〈
φ0(k)

∣∣ =
〈
φ(+)

∣∣∣−
〈
φ(+)

∣∣∣VG
†
0 . (20.120a)

Let us now consider scattering in the forward direction, for which k′ = k. Since

T
∣∣φ0(k)

〉
= V

∣∣∣φ(+)
〉
, (20.121)

the matrix element of T in the forward direction is

〈
φ0(k)

∣∣ T
∣∣φ0(k)

〉
=
〈
φ0(k) |V |φ(+)

〉

=
〈
φ(+) |V |φ(+)

〉
−
〈
φ(+)

∣∣∣VG
†
0V

∣∣∣φ(+)
〉

(20.122)
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where we have used (20.120a). To obtain the optical theorem, we need to obtain the

imaginary part of
〈
φ0(k)

∣∣T
∣∣φ0(k)

〉
. We note that since V is Hermitian,

〈
φ(+) |V |φ(+)

〉†
=
〈
φ(+) |V |φ(+)

〉
. (20.123)

Hence
〈
φ(+) |V |φ(+)

〉
is real. The second term in (20.122), however, can be complex. We

write

〈
φ(+)

∣∣∣VG
†
0V

∣∣∣φ(+)
〉
=
〈
φ(+)

∣∣∣∣V
(

1

E − H0 + iǫ

)
V

∣∣∣∣φ
(+)

〉
. (20.124)

But

1

E − H0 + iǫ
=
[
P

(
1

E − H0

)
− iπδ (E − H0)

]
. (20.125)

We take the imaginary part of both sides of (20.122) and note that since the first term is the

principal part and hence real, only the second term will contribute:

Im
〈
φ0(k)

∣∣ T
∣∣φ0(k)

〉
= −π

〈
φ(+) |V δ (H0 − E)V |φ(+)

〉

= −π
〈
φ0(k)

∣∣ T †δ (H0 − E) T
∣∣φ0(k)

〉
. (20.126)

One can write, after inserting complete sets of sets,

〈
φ0(k)

∣∣ T †δ (H0 − E) T
∣∣φ0(k)

〉

=
∫

d3k ′
∫

d3k ′′
〈
φ0(k)

∣∣ T †
∣∣φ0(k

′)
〉 〈
φ0(k

′)
∣∣ δ (H0 − E)

∣∣φ0(k
′′)
〉 〈
φ0(k

′)
∣∣ T

∣∣φ0(k)
〉
.

(20.127)

Now,

〈
φ0(k

′)
∣∣ δ (H0 − E)

∣∣φ0(k
′′)
〉
= 〈φ0(k

′)
∣∣φ0(k

′′)
〉
δ

(
�

2k ′2

2m
− �

2k2

2m

)

= δ(3)
(
k′ − k′′

) (2m

�2

)
δ
(
k ′2 − k2

)
. (20.128)

Therefore, from (20.126) the imaginary part is given by

Im
〈
φ0(k)

∣∣ T
∣∣φ0(k)

〉
= −2πm

�2

∫
d3k ′

〈
φ0(k)

∣∣ T+
∣∣φ0(k

′)
〉 〈
φ0(k

′)
∣∣T

∣∣φ0(k)
〉
δ(k ′2 − k2).

(20.129)

We note that
∫

d3k ′ =
∞∫
0

k ′2dk ′
∫

d�′ and

δ
(
k ′2 − k2

)
= δ

(
k ′ − k

)
+ δ

(
k ′ + k

)

2k
(20.130)
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where, by definition, k and k ′ are positive. Therefore, the second delta-function will not

contribute to the integral. We then have

Im
〈
φ0(k)

∣∣ T
∣∣φ0(k)

〉
= −

(
πmk

�2

)∫
d�′

∣∣〈φ0(k) |T |φ0(k
′)
〉∣∣2 . (20.131)

Using the relation between f (θ) and T , and the expression for the total cross-section σ ,

σ =
∫

d� |f (θ)|2 , (20.132)

we conclude that

Im f (0) = k

4π
σ . (20.133)

This is the famous optical theorem. This time it is derived by using the Green’s function

formalism.

20.10 The S-matrix

20.10.1 Basic Formalism

We now consider the time-dependent Schrödinger equation. Letψ(r, t)be the wavefunction.

It will satisfy the equation

i�
∂ψ(r, t)

∂t
= Hψ(r, t) (20.134)

where

H = H0 + V and H0 =
p2

2m
(20.135)

where p is the momentum operator, H0 is the free particle Hamiltonian, and V is the potential,

which we assume to be a function of r = |r| only.

We write the solution for ψ(r, t) in the Green’s function formalism,

ψ(r, t) = ψ0(r, t)+
∫

d3r′
∫

dt′G0(r, t; r′, t′)V (r′)ψ(r′, t′), (20.136)

where G0 is the Green’s function, which now involves time, and ψ0 is the homogeneous

solution which satisfies the time-dependent equation

i�
∂ψ0(r, t)

∂t
= H0ψ0(r, t). (20.137)
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We assume that V (r) vanishes for large values of r. Inserting (20.136) into (20.134) and

using (20.135) and (20.137), we find that G0 must satisfy the equation

(
i�
∂

∂t
− H0

)
G0(r, t; r′, t′) = δ(3)(r − r′)δ(t − t′). (20.138)

As in the previous problems, we note that G0 will depend only on the differences of the

coordinates,

G0(r, t; r′, t′) = G0(r − r′, t − t′). (20.139)

To simplify the equations we take r′ = 0 and t′ = 0 and write

G0 = G0(r, t). (20.140)

At the end of the calculation we will replace r by r − r′ and t by t− t′. Thus (20.138) gives

(
i�
∂

∂t
− H0

)
G0(r, t) = δ(3)(r)δ(t). (20.141)

Writing G0 in the form of a Fourier transform, we have

G0(r, t) = 1

(
√

2π)4

∫
d3k

∫
dω ei(k·r−ωt)g0(k,ω). (20.142)

We are already familiar with the expression for the δ-function in the form of a Fourier

transform. The product of the δ-functions on the right-hand side of (20.141) is then

δ(3)(r)δ(t) =
[

1

(2π)3

∫
d3k eik·r

] [
1

2π

∫
dω e−iωt

]

= 1

(2π)4

∫
d3k

∫
dω ei(k·r−ωt). (20.143)

Substituting the two Fourier transform equations (20.142) and (20.143) in (20.141), we find

1

(
√

2π)4

∫
d3k

∫
dω

[
�ω − �

2k2

2m

]
ei(k·r−ωt)g0(k,ω) = 1

(2π)4

∫
d3k

∫
dω ei(k·r−ωt).

(20.144)

Thus,

g0(k ,ω) = 1

(
√

2π)4

⎛
⎜⎜⎝

1

�ω − �
2k2

2m

⎞
⎟⎟⎠ (20.145)

and G0(r, t) is given by

G0(r, t) = 1

(2π)4

∫
d3k eik·r

∫ ∞

−∞
dω

e−iωt

(
�ω − �

2k2

2m

) . (20.146)
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Equation (20.136) implies that the Green’s function G0(r, t; r′, t′) connects or transfers

information from the space-time points (r′, t′) to the point (r, t). If we identify the events

occurring at t′ as “cause,” then these must precede the “effect” occurring at t as described

by the wavefunction ψ(r, t). Thus, we impose the condition that G0(r, t; r′, t′)must vanish

unless t < t′. This is the statement of causality. For G0(r, t) it implies that

G0(r, t) = 0 and t < 0. (20.147)

The integral over ω in (20.146) for G0(r, t) can be obtained through Cauchy’s residue

theorem. To implement the causality condition, which involves t < 0, we must choose the

upper half of the complex ω-plane to do the integration since the integrand vanishes along

the infinite semi-circle in the upper half-plane when t < 0. Since G0 = 0 for t < 0, the

pole in (20.146) which is on the real axis must be moved to the lower half-plane. It will

then not contribute to the Cauchy’s integral, which is along the closed contour formed by

the real axis and the infinite semi-circle. To accomplish all this we write

G0(r, t) = 1

(2π)4

∫
d3k eik·r

∫ ∞

−∞
dω

e−iωt

(�ω − �ωk + iǫ)
(20.148)

where, to simplify the calculations, we have defined �ωk = �
2k2/2m. Cauchy’s theorem

then gives

∫ ∞

−∞
dω

e−iωt

�ω − �ωk + iǫ
= 0, if t < 0 (20.149)

= −2π i

�
e−iωk t , if t > 0. (20.150)

The expression for G0(r, t) will then be

G0(r, t) = −iθ(t)

(2π)3�

∫
d3k ei(k·r−ωk t) (20.151)

where θ(t) = 1 for t > 0, and θ(t) = 0 for t < 0.

Returning to G0(r, t; r′, t′) by making the replacements r → r − r′ and t → t − t′, we

obtain

G0(r, t; r′, t′) = −iθ(t − t′)
(2π)3�

∫
d3k eik·(r−r′)e−iωk (t−t′). (20.152)

The free particle wavefunction with momentum �k, and energy �ωk(= �
2k2/2m) is

given by

ψ0k(r, t) = 1
(√

2π
)3

�

ei(k·r−ωk t). (20.153)

Thus G0 can be written as

G0(r, t; r′, t′) = −i
θ(t − t′)

�

∫
d3kψ∗0k(r

′, t′)ψ0k(r, t). (20.154)
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This G0 is the same as the Feynman propagator defined in Chapter 1. For our purposes, it

can be left in the integral form.

20.10.2 The S-matrix

Consider a situation in which the particle at t → −∞ is given by a free wavefunction of

momentum ki. Let us denote this wavefunction ψoi(r, t) and the complete wavefunction as

ψ i(r, t). Then

ψ i(r, t)→ ψoi(r, t) = 1

(
√

2π)3
ei(ki ·r−ωik t) as t →−∞. (20.155)

Let us rewrite the integral equation (20.136) by replacing ψ(r, t) by ψ i(r, t) and ψ0(r, t)

by ψoi(r, t)

ψ i(r, t) = ψoi(r, t)+
∫

d3r′
∫

dt′G0(r, t; r′, t′)V (r′)ψ i(r
′, t). (20.156)

The above equation with subscript i in place describes the following physical situation: an

incident particle starts out at t = −∞ as a free particle given by (20.155), since G0 = 0 at

that point. As it moves forward in time t, it begins to undergo interaction. Its wavefunction

at every stage will be given by the above integral equation. After undergoing interaction,

this particle, at t → +∞, will emerge, once again, as a free particle (note that we have

assumed V to vanish at r′ = ∞), which can be expressed as

ψof (r, t) = 1

(
√

2π)3
ei(kf ·r−ωf t) (20.157)

with the subscript f signifying a final free particle but with kf not necessarily in the same

direction as ki.

The probability thatψ i(r, t)will emerge at t →+∞ as a free particle with wavefunction

ψof (r, t) is given by the so-called S-matrix, defined as

Sfi = lim
t→+∞

∫
d3r ψ∗of (r, t)ψ i(r, t). (20.158)

We note that as t →+∞, the θ-function in the expression for G0 in (20.154) will be unity

and hence in that limit

ψ i(r, t) = ψoi(r, t)+ 1

�

∫
d3r′

∫
dt′

[
(−i)

∫
d3kψ∗ok(r

′, t′)ψok(r, t)

]
V (r′)ψ i(r

′, t′).

(20.159)
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The S-matrix then reads

Sfi =
∫

d3r ψ∗of (r, t)ψoi(r, t) (20.160)

+ 1

�

∫
d3r

∫
d3r′

∫
dt′

∫
d3k ψ∗of (r, t)ψ∗ok(r

′, t′)ψok(r, t)V (r′)ψ i(r
′, t′).

(20.161)

We note that

∫
d3r ψ∗of (r, t)ψoi(r, t) = δ(3)(kf − ki), (20.162)

which simplifies the first term in Sfi. For the second term we use the relations

∫
d3r ψ∗of (r, t)ψok(r, t) = δ(3)(kf − k), (20.163)

∫
d3k ψ∗ok(r

′, t′)δ(3)(kf − k) = ψ∗of (r
′, t′). (20.164)

Hence,

Sfi = δ(3)(kf − ki)−
i

�

∫
d3r′

∫
dt′ψ∗of (r

′, t′)V (r′)ψ i(r
′, t′). (20.165)

This is then the expression for the S-matrix for the scattering of a free particle under the

influence of the potential V (r′).

20.11 Unitarity of the S-matrix and the relation between S and T

Once again we will make explicit the fact that we are concerned only with the outgoing

waves by introducing the superscript (+). Thus,

ψ (+)(r, t)→ eik.re−iωt (20.166)

as r(= |r|) and t both go to∞. The S-matrix written in (20.165) can be defined in terms of

this wavefunction by replacing ψ i(r
′, t′) by ψ

(+)
i (r′, t′). We will then have

Sf i = δ(3)(kf − ki)−
i

�

∫
d3r′

∫
dt′ ψ∗of (r

′, t′)V (r′)ψ (+)i (r′, t′). (20.167)
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It will be more convenient at this stage to invoke the abstract state vectors. Let us define,

for the purposes of clarity, the initial and final free particle states respectively, as follows:

|i(t)〉 = |i〉e−iEi t/�, |f (t)〉 = |f 〉e−iEf t/� (20.168)

where |i〉 and |f 〉 represent the t = 0 values of the state vectors.

Therefore,

ψoi(r, t) = 〈r|i(t)〉 and ψof (r, t) = 〈r|f (t)〉. (20.169)

We will define the state vector corresponding to ψ (+)(r, t) as |ψ (+)(t)〉. Hence,

ψ
(+)
i (r, t) = 〈r|ψ (+)i (t)〉 and ψ

(+)
f
(r, t) = 〈r|ψ (+)

f
(t)〉. (20.170)

In terms of the total Green’s function G
(+)
i we write

|ψ (+)i 〉 = |i〉 + G
(+)
i V |i〉, (20.171)

|ψ (+)
f
〉 = |f 〉 + G

(+)
f

V |f 〉, (20.172)

with

G(+) = 1

E − H + iǫ
(20.173)

where H is the total Hamiltonian H = H0 + V . One can put the appropriate subscripts for

G(+) and E corresponding to whether we have the initial (i) or final (f ) states.

We write the S-matrix in the following abbreviated form

Sfi = δfi −
i

�

∫ ∞

−∞
dt′〈f (t′) |V |ψ (+)i (t′)〉. (20.174)

One can also write it in terms of the T -matrix, defined in (20.116), as

Sfi = δfi −
i

�

∫ ∞

−∞
dt′〈f (t′) |T | i(t′)〉. (20.175)

Using the relation (20.168) and the integral

∫ ∞

−∞
dt′ei(Ef −Ei)t

′/� = 2π(Ef − Ei), (20.176)

the equation (20.175) for the S-matrix can be written as

Sfi = δfi − i2πδ(Ef − Ei)Tfi (20.177)

where

Tfi = 〈f |T | i〉. (20.178)
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Let us write

Sfi = 〈f |S| i〉. (20.179)

We show below that the S-matrix is unitary, i.e.,

SS† = 1. (20.180)

This equation will also lead to some important relations involving the T -matrix.

Taking the matrix element of SS† and expressing it in terms of a complete set of states,

we write

〈f
∣∣∣SS†

∣∣∣ i〉 =
∑

n

〈f |S| n〉〈n
∣∣∣S†

∣∣∣ i〉

=
∑

n

SfnS∗in

=
∑

n

{[
δfn − 2π iδ(Ef − En)Tfn

]
(20.181)

×
[
δin + 2π iδ(Ei − En)T

∗
in

]}
(20.182)

where we have inserted the expression (20.177) for the S-matrix. We note that

∑

n

δfnδin = δfi.

Hence we obtain

〈f
∣∣∣SS†

∣∣∣ i〉 = δfi − 2π iδ(Ef − Ei)
[
Tfi − T ∗if

]
(20.183)

−
∑

n

[
2π iδ(Ef − En)Tfn

] [
2π iδ(Ei − En)T

∗
in

]
. (20.184)

The third term (including the minus sign) on the right-hand side of the above equation

sums to

4π2δ(Ef − Ei)
∑

n

δ(Ef − En)TfnT ∗in. (20.185)

Let us now calculate the second term in the square bracket in (20.183). We note that

Tfi = 〈f |V |ψ (+)i 〉 and T ∗if = 〈i |V |ψ
(+)
f
〉∗ = 〈ψ (+)

f
|V | i〉. (20.186)

In the last relation we have made use of the fact that the operator corresponding to V is

Hermitian, V † = V . Hence,

Tfi − T ∗if = 〈f |V |ψ
(+)
i 〉 − 〈ψ (+)

f
|V | i〉 = 〈f

∣∣∣VG
(+)
i V

∣∣∣ i〉 − 〈f
∣∣∣VG

(+)†
f

V

∣∣∣ i〉 (20.187)
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where we have used the relations (20.171) and (20.172) for

∣∣∣ψ (+)i

〉
and

〈
ψ
(+)
f

∣∣∣. Thus we

have, after inserting the expression (20.173) for G, the following:

Tfi − T ∗if =
〈
f

∣∣∣∣V
1

Ei − H + iǫ
V

∣∣∣∣ i

〉
−
〈
f

∣∣∣∣V
1

Ef − H − iǫ
V

∣∣∣∣ i

〉

=
〈
f

∣∣∣∣V
[

1

Ei − H + iǫ
− 1

Ef − H − iǫ

]∣∣∣∣ i

〉
. (20.188)

We note that there is a factor δ(Ef −Ei)multiplying (Tfi − T ∗
if
) in the second term of the

relation (20.183) for 〈f
∣∣SS†

∣∣ i〉. Thus we must put Ei = Ef in (20.188). We write

1

Ei − H ± iǫ
= P

(
1

Ei − H

)
∓ iπ .δ(Ei − H ). (20.189)

The contributions from the principal parts vanish in the difference, but the imaginary

parts add.

Thus we have

Tfi − T ∗if = −2iπ {〈f |V δ(Ei − H )V | i〉}

= −2iπ

{∑

n

〈f |V |ψ (+)n 〉〈ψ (+)n |V | i〉δ(Ei − En)

}
(20.190)

where we have made note of the fact that

H |ψ (+)n 〉 = En|ψ (+)n 〉. (20.191)

The right-hand side of (20.190) is then equal to

−2iπ
∑

n

δ(Ei − En)TfnT ∗in. (20.192)

However, this term exactly cancels the term in the square bracket in the expression (20.184)

for 〈f
∣∣SS†

∣∣ i〉. From this we obtain

〈f
∣∣∣SS†

∣∣∣ i〉 = δfi (20.193)

and hence the S-matrix satisfies the unitarity condition

SS† = I, (20.194)

while the T -matrix satisfies

Tif − T ∗if = −2iπ
∑

n

δ(Ei − En)TfnT ∗in. (20.195)
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20.12 Properties of the T-matrix and the optical theorem (again)

In the relation (20.195) for the T -matrix we note that Ef = Ei. For the case of forward

scattering, f = i, the relation (20.195) gives

Im Tii = −π
∑

n

δ(Ei − En) |Tin|2 . (20.196)

From the results given by (20.118) we also know that

Tfi = −
�

2

4π2m
f (θ) (20.197)

where θ is the angle between ki and kf . Thus,

Tii = −
�

2

4π2m
f (0) (20.198)

where f (0) corresponds to the forward scattering amplitude. The above relation gives

− �
2

4π2m
Im f (0) = −π

(
�

2

4π2m

)2 ∫
d3kn δ

(
�

2k2

2m
− �

2k2
n

2m

) ∣∣f (θ ′)
∣∣2

= −
(

1

4π

)∫
kn

2
dk2

n d�′δ(k2 − k2
n )

(
�

2

4π2m

) ∣∣f (θ ′)
∣∣2 (20.199)

which gives

Im f (0) =
(

1

4π

)∫
kn dk2

n d�′δ(k2 − k2
n )
∣∣f (θ ′)

∣∣2 (20.200)

where θ ′ = polar angle of kn and d3kn = k2
n dkn d�′. From this relation we can once again

derive the famous optical theorem

Im f (0) = k

4π
σ (20.201)

where σ is the total cross-section given by

σ =
∫

d�′
∣∣f (θ ′)

∣∣2 . (20.202)
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20.13 Appendix to Chapter 20

20.13.1Integrals involved in Green’s function calculations

Consider the following integral, where α is a real quantity,

I =
∞∫

−∞
dx f (x)eiαx. (20.203)

For α > 0, one can express this integral in the complex z-plane as

I =
∫

C1

dz f (z)eiαz (20.204)

where C1 is a contour taken in a counter-clockwise direction consisting of the real axis

(−∞,∞) and the upper-half infinite semi-circle.

For α < 0, we will have

I =
∫

C2

dz f (z)eiαz (20.205)

where C2 is a contour consisting of the real axis (−∞,∞) and the lower-half infinite

semi-circle, in a clockwise direction.

The proof is actually quite straightforward. First let us consider, α > 0. One can then

write for the right-hand side of (20.204),

I =
∫

C1

dz f (z)eiαz =
∞∫

−∞
dx f (x)eiαx +

∫

Ŵ

dz f (z)eiαz (20.206)

where Ŵ is an infinite semi-circle in the upper half-plane and where one can write

z = ρeiθ = ρ (cos θ + i sin θ) . (20.207)

We have

∫

Ŵ

dz f (z)eiαz = lim
ρ→∞

iρ

π∫

0

dθ eiθ f (ρeiθ )eiαρ cos θe−αρ sin θ . (20.208)

For α > 0, the second exponential factor in the integral above vanishes in the limit ρ →∞
as long as f (ρeiθ ) is a well-behaved function. Thus the integral over Ŵ vanishes and

∞∫

−∞
dx f (x)eiαx =

∫

C1

dz f (z)eiαz . (20.209)
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We can prove (20.205) in a similar manner, for α < 0, by taking the lower half-plane.

We note that we can not take the contour C1 because then exp(iαz) will blow up at infinity

along the upper-half contourŴ. Thus, once we know the sign of α, we have only one choice.

Consider now the following integral that occurs typically in Green’s function calculations,

lim
ǫ→0

∞∫

−∞
dx

eiαx

x − (x0 + iǫ)
(20.210)

where x0 is a real quantity and ǫ is an infinitesimally small, positive, quantity. To evaluate

the integral we use Cauchy’s residue theorem

∫

C

dz
φ(z)

z − z0
= 2π iφ(z0) (20.211)

where z0 lies inside the contour C.

If α > 0 then from (20.204) we can write, with the same definition for C1,

lim
ǫ→0

∞∫

−∞
dx

eiαx

x − (x0 + iǫ)
= lim

ǫ→0

∫

C1

dz
eiαz

z − (x0 + iǫ)
= 2π ieiαx0 (20.212)

where we have used the Cauchy theorem (20.211) with z0 = x0 + iǫ.

For α < 0, we must use the contour C2 (and not C1). We then find

lim
ǫ→0

∞∫

−∞
dx

eiαx

x − (x0 + iǫ)
= lim
ǫ→0

∫

C2

dz
eiαz

z − (x0 + iǫ)
= 0. (20.213)

The integral now vanishes because the pole, z0 = x0 + iǫ, lies outside the contour C2.

The conclusions will be exactly the opposite, apart from overall sign, for z0 = x0 − iǫ.

20.14 Problems

1. Obtain the low-energy cross-section for the potential given by

V (r) = −V0, for r < a

= 0, for r > a

2. Obtain the scattering amplitude and cross-section in the Born approximation for the

potential given by V (r) = gδ(3)(r).

3. Answer the same question as above for V (r) = gδ(r − a).
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4. Obtain the scattering amplitude and cross-section in the Born approximation for the

potential

V (r) = ge−r2/a2

.

5. Consider a scattering of two identical particles of spin ½ through the Yukawa potential

given by

V (r) = g
e−μr

r
.

Obtain the cross-sections in the Born approximation when the particles are in spin-

symmetric and in spin-antisymmetric states, respectively.

6. A spin ½ particle scatters off a heavy spin ½ target particle through the potential

V (r) = gσ 1 · σ 2
e−μr

r

where σ 1 and σ 2 are the Pauli matrices representing the spins of the particles. Determine

the scattering amplitude for the case when the two particles have total spin S = 0 and S =
1, respectively. Designate the corresponding scattering amplitudes by f0(θ) and f1(θ),

respectively, and obtain the differential cross-sections in terms of these amplitudes for

different spin orientation of individual particles.Also obtain the differential cross-section

after summing over final and averaging over the initial spin states.

7. Consider the scattering of a particle by a bound system described by the wavefunction

φ(r) = a exp(−r2/β2). If the interaction potential between the two is given by

V (r) = λδ(3)(r),

obtain the differential scattering cross-section in the Born approximation.

8. For the potential

V = −V0, r < a

= 0, r > a

obtain the scattering amplitude, fB(θ), for θ = 0 and θ = π .
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This chapter is devoted to the consequences of scattering due to the presence of a potential

that is spherically symmetric. This leads to solving radial equations in terms of angular

momentum and the partial waves. We find that the scattering problem can be described one

partial wave at a time in terms of the newly defined quantity, the phase shift.

21.1 Scattering amplitude in terms of phase shifts

We consider the Schrödinger equation in three dimensions in the presence of a spherically

symmetric potential, V (r):

− �
2

2m
∇2u(r)+ V (r) u(r) = Eu(r). (21.1)

We found in the previous chapter that for V (r) going to zero faster than 1/r2, one can write

the asymptotic behavior of u(r) in terms of the scattering amplitude f (θ) as follows:

u(r)→ 1

(
√

2π)3

[
eikz + f (θ)

eikr

r

]
(21.2)

where the incoming particle is traveling along the z-direction. This is described pictorially

in Fig. 21.1.

In the following we will consider the same problem in spherical coordinates. First we

express exp(ikz) as

eikz =
∞∑

l=0

(2l + 1)il jl(kr)Pl (cos θ) (21.3)

and, similarly,

u(r) = 1

(
√

2π)3

∞∑

l=0

(2l + 1)ilRl (r)Pl (cos θ) (21.4)

where Rl is the radial wavefunction.

We will consider the asymptotic behavior of Rl(r) and define the corresponding par-

tial wave scattering amplitude, which in practical situations is often more useful than the

amplitude f (θ).
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r

z
θ

Target

dΩ

Fig. 21.1

We start with the radial Schrödinger equation,

− �
2

2m

1

r

d2 (rRl)

dr2
+
[
V (r)+ �

2l(l + 1)

2mr2

]
Rl = ERl . (21.5)

Let us first consider the case where V (r) = 0 everywhere in 0 ≤ r ≤ ∞. The equation is

then given by the free particle equation

− �
2

2m

1

r

d2 (rRl)

dr2
+ �

2l(l + 1)

2mr2
Rl = ERl . (21.6)

As discussed in Chapter 4 on free particles, there are two possible solutions to this equation:

the spherical Bessel function, jl(kr), and spherical Neumann function, nl(kr). However,

only jl(kr) is allowed among the two since it is the only function that is finite at r = 0.

Hence we write

Rl(r) = jl(kr). (21.7)

From the asymptotic behavior of jl(r) discussed in Chapter 4 we find

Rl(r)→
1

kr
sin

[
kr − lπ

2

]
as r →∞, for V (r) = 0. (21.8)

For the case where V (r) � =0 but still V (r) → 0 faster than 1/r2 as r → ∞, one

can neglect the potential in comparison with the angular momentum term. The equation

satisfied by Rl in that limit is

− �
2

2m

1

r

d2 (rRl)

dr2
+ �

2l(l + 1)

2mr2
Rl = ERl for r →∞, (21.9)

which is, once again, an equation for a free particle. Since we are considering this equation

for large values of r, the finiteness constraints at r = 0 no longer apply and, therefore, we
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are not restricted to having just jl but must include nl also. Hence, for large values of r

we have

Rl(r) = Al jl(kr)+ Blnl(kr). (21.10)

From the asymptotic behavior of jl and nl discussed in Chapter 4 we obtain, for r →∞,

Rl(r)→ Al

1

kr
sin

[
kr − lπ

2

]
− Bl

1

kr
cos

[
kr − lπ

2

]
. (21.11)

If we write

Al = Dl cos δl and Bl = −Dl sin δl (21.12)

then

Rl(r)→ Dl [jl(kr) cos δl − nl(kr) sin δl ] . (21.13)

Therefore

Rl(r)→ Dl

1

kr
sin

[
kr − lπ

2
+ δl

]
as r →∞. (21.14)

Note, once again, that the asymptotic behaviors of the two solutions (21.8) and (21.14) are

different because the solution (21.8) corresponds to V (r) = 0 everywhere in 0 ≤ r ≤ ∞,

while for (21.14), V (r) �= 0, except that V (r)→ 0 as r →∞, faster than 1/r2. Comparing

the two solutions we conclude that the presence of a potential creates a “phase-shift” of δl
in the asymptotic forms of the two radial wavefunctions.

From the asymptotic expressions above for u(r) and exp(ikz) we will now relate the

scattering amplitude, f (θ), to the phase-shift δl , assuming that the particle is traveling

along the z-direction (i.e., with azimuthal angle, φ = 0). We express u(r) as

u(r) = 1

(
√

2π)3

∞∑

l=0

ClRl (r)Pl (cos θ) . (21.15)

This is the partial wave expansion of the total wavefunction, where Cl is a constant,

Cl = (2l + 1)il . (21.16)

In the limit r →∞ we have, using (21.14) for Rl(r),

u(r)→ 1

(
√

2π)3

∞∑

l=0

C ′l
1

kr
sin

[
kr − lπ

2
+ δl

]
Pl (cos θ) (21.17)

where C ′
l

is a constant.

C ′l = ClDl . (21.18)
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Let us now look at the right-hand side of (21.2). We first write exp(ikz) in spherical

coordinates as given in Chapter 4,

eikz =
∞∑

l=0

(2l + 1)il jl(kr)Pl (cos θ) . (21.19)

From the knowledge of the asymptotic behavior of jl(kr), we find that

eikz →
∞∑

l=0

(2l + 1)il
1

kr
sin

[
kr − lπ

2

]
Pl (cos θ) . (21.20)

We substitute the asymptotic form (21.17) on the left-hand side of (21.2) while in the

right-hand side we now include (21.20). Thus we obtain

1

(
√

2π)3

∑
C ′l

1

kr
sin

[
kr − lπ

2
+ δl

]
Pl (cos θ)

= 1

(
√

2π)3

∑
(2l + 1)il

1

kr
sin

[
kr − lπ

2

]
Pl (cos θ)+ 1

(
√

2π)3
f (θ)

eikr

r
. (21.21)

Expressing the sine functions in the exponential form we obtain, after canceling the factor

(1/(
√

2π)3),

∑
C ′l

exp

[
i

(
kr − lπ

2
+ δl

)]
− exp

[
−i

(
kr − lπ

2
+ δl

)]

2ikr
Pl (cos θ)

=
∑
(2l + 1)il

exp

[
i

(
kr − lπ

2

)]
− exp

[
−i

(
kr − lπ

2

)]

2ikr
Pl (cos θ)+ f (θ)

eikr

r
.

(21.22)

First we note that

exp

(
±i

lπ

2

)
= i±l . (21.23)

Then, comparing the coefficients of exp (−ikr) on both sides of the above equation, we find

∑
C ′l

(
−ile−iδl

2ikr

)
Pl (cos θ) =

∑
(2l + 1)il

(
−il

2ikr

)
Pl (cos θ) . (21.24)

Therefore,

C ′l = (2l + 1)ileiδl . (21.25)

From the expression for Cl given in (21.16), we obtain

Dl = eiδl . (21.26)
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Hence the asymptotic form for Rl is

Rl(r)→
eiδl

kr
sin

[
kr − lπ

2
+ δl

]
as r →∞. (21.27)

Comparing now the coefficients of exp(ikr) we obtain

∑
C ′l

(
i−leiδl

2ikr

)
Pl (cos θ)

=
∑
(2l + 1)il

(
i−l

2ikr

)
Pl (cos θ)+ f (θ)

1

r
. (21.28)

Substituting the value of C ′
l

already derived in (21.25), we obtain the scattering amplitude

f (θ) =
∞∑

l=0

(2l + 1)

(
e2iδl − 1

2ik

)
Pl (cos θ) . (21.29)

We define the “partial wave scattering amplitude,” fl (k) by

fl (k) =
e2iδl − 1

2ik
= eiδl sin δl

k
. (21.30)

The scattering amplitude in terms of fl(k) can be written as

f (θ) =
∞∑

l=0

(2l + 1)fl (k)Pl (cos θ) . (21.31)

This is then the partial wave expansion of f (θ).

The differential cross-section is given by

dσ

d�
= |f (θ)|2 =

[ ∞∑

l=0

(2l + 1)f ∗l (k)Pl (cos θ)

][ ∞∑

l′=0

(2l′ + 1)fl′ (k)Pl′ (cos θ)

]
.

(21.32)

We note that there are interference terms between different partial waves. The cross-section

is then

σ =
∫

d� |f (θ)|2 = 2π

1∫

−1

d cos θ

∞∑

l,l′=0

(2l + 1) (2l′ + 1)f ∗l (k) fl′ (k)

× Pl (cos θ)Pl′ (cos θ) . (21.33)

Since the Legendre polynomials satisfy the orthogonality property

+1∫

−1

d cos θ Pl (cos θ)Pl′ (cos θ) = 2

2l + 1
δll′ , (21.34)



391 21.1 Scattering amplitude in terms of phase shifts

the interference terms vanish and we obtain

σ = 4π
∑
(2l + 1) |fl (k)|2 = 4π

∑
(2l + 1)

(
sin2 δl

k2

)
. (21.35)

We define a partial wave cross-section, σ l as

σ l = (2l + 1)
4π sin2 δl

k2
. (21.36)

Then the total cross-section is expressed in terms of it as

σ =
∑
σ l . (21.37)

21.1.1 Comparing Rl for V = 0 and V = V(r) � =0

We note that for V = 0, Rl is simply the spherical Bessel function jl(kr) whose asymptotic

behavior is given by

Rl(r)→
1

kr
sin

[
kr − lπ

2

]
, (21.38)

which we can write as

Rl(r)→
ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr
. (21.39)

This is a combination of an incoming spherical wave given by the exp(−ikr) term and the

outgoing spherical wave given by the exp(ikr) term. The absolute value of the coefficient

of each is the same, which simply reflects the fact that the incoming flux is the same as the

outgoing flux, which in turn is a consequence of probability conservation.

In the presence of the potential we found from (21.27) that

Rl(r)→
eiδl

kr
sin

[
kr − lπ

2
+ δl

]
, (21.40)

which we can write as

Rl(r)→
e2iδl ei(kr−lπ/2) − e−i(kr−lπ/2)

2ikr
. (21.41)

We find that while we have the same incoming wave, the outgoing part acquires a phase

given by exp(2iδl) due to the presence of the scatterer. The absolute values of the two

coefficients are still the same, however, since the probabilities are still conserved. This

phase term is just the (partial wave) S-matrix, which we denote Sl ,

Sl = e2iδl . (21.42)
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Probability conservation tells us that

|Sl | = 1, (21.43)

which implies that the S-matrix is unitary.

21.2 χ l, Kl, and Tl

The radial wave equation is given by

− �
2

2m

1

r

d2 (rRl)

dr2
+
[
V (r)+ �

2l(l + 1)

2mr2

]
Rl = ERl . (21.44)

As we discussed in Chapter 4, it is often more convenient to work with the wavefunction

χ l defined as

(kr)Rl = χ l . (21.45)

If we let

k2 = 2mE

�2
, U = 2mV

�2
(21.46)

and multiply (21.44) by
(
−2m/�2

)
, we obtain the following equation for χ l :

[
d2

dr2
− l(l + 1)

r2
− U (r)+ k2

]
χ l = 0. (21.47)

We divide the above equation by k2 and define

ρ = kr. (21.48)

A much simpler equation is then found:

[
d2

dρ2
− l(l + 1)

ρ2
− U (r)

k2
+ 1

]
χ l = 0. (21.49)

The threshold behavior of χ l(ρ) is given by

χ l(ρ) ∼ ρl+1 as ρ → 0. (21.50)

Therefore,

χ l(0) = 0. (21.51)
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At this stage it is convenient to introduce the functions sl and cl given by

sl(ρ) = ρjl(ρ) (21.52)

and

cl(ρ) = −ρnl(ρ). (21.53)

These functions are close to sine and cosine functions, respectively.

From (21.13), (21.26) and (21.45) the asymptotic form of χ l(ρ) is found to be

χ l(ρ)→ eiδl [sl cos δl + cl sin δl] as ρ →∞. (21.54)

By rearranging the terms we can express the asymptotic expression (20.54) in different

forms:

χ l(ρ)→ A′l [sl + Klcl] (21.55)

where

Kl = tan δl , (21.56)

or as

χ l(ρ) = χ (+)l
(ρ)→ B′l

[
sl + Tle

(+)
l

]
(21.57)

where

e
(+)
l
= cl + isl

and

Tl = eiδl sin δl , (21.58)

where A′
l

and B′
l

are constants. The Kl and Tl functions introduced above play a very

important role in the theory of partial wave scattering, some examples of which will be

discussed below.

21.3 Integral relations for χ l, Kl, and Tl

Below we present a series of integral relations.

Following the same procedure as the one we followed for the three-dimensional wave

functions, we can express χ l(r) in the Green’s function formalism,

χ l(r) = sl(kr)+
∫ ∞

0

dr′ gl(r, r′)U (r′)χ l(r
′), (21.59)



394 Partial wave amplitudes and phase shifts

where gl(r, r′) is the radial Green’s function which satisfies the equation

(
d2

dr2
− l (l + 1)

r2
+ k2

)
gl(r, r′) = δ(r − r′). (21.60)

This equation can be solved by considering the regions r > r′ and r < r′ separately.

There are several different forms in which the solutions can be written depending on the

asymptotic form one chooses for χ l .

(i) One of the forms is

gl(r, r′) = −1

k
sl(kr<)cl(kr>) (21.61)

where r< means the smaller of the two variables r and r′, while r> implies the larger of the

two. If we put this in the relation (21.59) and let r →∞, then we find from the asymptotic

form for cl(kr>),

χ l(r)→ sl(kr)− 1

k

[∫ ∞

0

dr′ sl(kr′)U (r′)χ l(r
′)
]

cl(kr) (21.62)

where since r →∞ we have taken r> = r and r< = r′.
From the asymptotic behavior given by

χ l(ρ)→ sl + Klcl (21.63)

we obtain

Kl = tan δl = −
1

k

∫ ∞

0

dr′ sl(kr′)U (r′)χ l(r
′). (21.64)

This is an important relation that relates the phase shifts to the potential and to the wave-

functions.

(ii) Another form for the Green’s function is

g
(+)
l
(r, r′) = −1

k
sl(kr<) e

(+)
l
(kr>). (21.65)

As r →∞ one now finds

χ
(+)
l
(r)→ sl(kr)− 1

k

[∫ ∞

0

dr′ sl(kr′)U (r′)χ (+)
l
(r′)

]
e
(+)
l
(kr). (21.66)

We use the asymptotic form

χ
(+)
l
(ρ)→ sl + Tle

(+)
l

, (21.67)

which allows one to obtain the integral relation for the partial wave T -matrix

Tl = −
1

k

∫ ∞

0

dr′ sl(kr′)U (r′)χ (+)
l
(r′). (21.68)
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21.4 Wronskian

Let us now construct what is called a Wronskian between two wavefunctions, which plays

an important role in solving differential equations.

21.4.1Same potentials

We write the differential equations for two possible wavefunctions χ
(1)
l
(r) and χ

(2)
l
(r)with

the same potentials as

(
d2

dρ2
− l(l + 1)

ρ2
− U (r)

k2
+ 1

)
χ
(1)
l
(r) = 0, (21.69)

(
d2

dρ2
− l(l + 1)

ρ2
− U (r)

k2
+ 1

)
χ
(2)
l
(r) = 0. (21.70)

Multiplying (21.69) by χ
(2)
l
(r) and (21.70) by χ

(1)
l
(r) and subtracting the first term from

the second, we find

χ
(1)
l

d2χ
(2)
l

dρ2
− χ (2)

l

d2χ
(1)
l

dρ2
= 0. (21.71)

This expression is a perfect differential of the form

d

dρ

[
χ
(1)
l

dχ
(2)
l

dρ
− χ (2)

l

dχ
(1)
l

dρ

]
= 0. (21.72)

Let us now define a Wronskian, W (ρ), between χ
(1)
l

and χ
(2)
l

as

W (ρ) =
[
χ
(1)
l

dχ
(2)
l

dρ
− χ (2)

l

dχ
(1)
l

dρ

]
. (21.73)

From (21.72) we find that

W (ρ) = constant. (21.74)

This result is useful for many derivations. For example, one can rederive the result (21.64),

tan δl = −
1

k

∫ ∞

0

dr slU (r)χ l . (21.75)
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21.4.2Different potentials

Let us consider the case where the potentials are different corresponding to two different

wavefunctions χ
(1)
l

and χ
(2)
l

,

(
d2

dρ2
− l(l + 1)

ρ2
− U1

k2
+ 1

)
χ
(1)
l
(ρ) = 0, (21.76)

(
d2

dρ2
− l(l + 1)

ρ2
− U2

k2
+ 1

)
χ
(2)
l
(ρ) = 0. (21.77)

We now find that

χ
(1)
l

d2χ
(2)
l

dρ2
− χ (2)

l

d2χ
(1)
l

dρ2
= [U2(ρ)− U2(ρ)]χ (1)l

χ
(2)
l

. (21.78)

Integrating both sides in the interval (0, ρ), we obtain the following relation with W (0) = 0:

W (ρ) = 1

k2

∫ ρ

0

dρ′ [U2(ρ
′)− U1(ρ

′)]χ (1)
l
χ
(2)
l

. (21.79)

By taking ρ →∞, we obtain

tan δ
(2)
l
− tan δ

(1)
l
= 1

k

∫ ∞

0

dr [U1(r)− U2(r)]χ (1)l
χ
(2)
l

. (21.80)

21.4.3 Properties of δl

We summarize below some of the important properties of δl .

Sign of δl

From (21.40) and (21.45), the asymptotic behavior of χ l in the presence of a potential is

given by

χ l → eiδl sin

[
kr − lπ

2
+ δl

]
. (21.81)

In the absence of the potential the behavior is

χ
(0)
l
→ sin

[
kr − lπ

2

]
. (21.82)

Comparing the two wavefunctions, for the case of a finite range potential, it is clear that

the wavefunction χ l outside the range is “pulled in” if δl > 0. A wavefunction that has

this property would normally indicate a potential that is attractive (see Fig. 21.2). Hence
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χ

χ  
(0)

δ   > 0

Fig. 21.2

χ χ  
(0)

δ   < 0

Fig. 21.3

an attractive potential will correspond to a positive phase shift. Similarly δl < 0 will

correspond to the outside wavefunction being “pushed out” and, therefore, will reflect the

presence of a repulsive potential (see Fig. 21.3).

These results can be understood from the expression (21.75), which shows that for an

attractive potential, U (r) < 0, we have δl > 0, with the opposite result for a repulsive

potential. In fact, when looking at the difference (tan δ
(1)
l
− tan δ

(2)
l
) involving two different

potentials, U1 and U2, if we take U1≈U2 so thatχ
(1)
l
≈ χ (2)

l
but with an overall contribution

of the difference (U1 − U2) < 0 then we obtain tan δ
(1)
l
> tan δ

(2)
l

, implying δ
(1)
l
> δ

(2)
l

,

while for (U1 − U2) > 0, we have δ
(1)
l
< δ

(2)
l

.

Ramsauer–Townsend effect

As we have found, the wavefunction is pulled in when the potential is attractive correspond-

ing to a positive phase shift. As the strength of the potential increases and becomes large

enough, one encounters a situation in which the sinusoidal wavefunction goes through a

complete half-cycle. As a result, the outside wavefunction is 180◦ out of phase with the

unperturbed wavefunction. This corresponds to δ0 = π and sin2 δ0 = 0. Thus, the cross-

section vanishes and there is perfect transmission (if one ignores the small effects due to

higher partial waves). This is called the Ramsauer–Townsend effect and has been observed

experimentally.
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Dependence of δl on l

As ρ → 0, where ρ = kr, the functions sl and χ l have the behavior

sl →
ρl

(2l + 1)!! and χ l → Alρ
l (21.83)

where Al depends on the details of the potential. As l increases, this behavior will diminish

the contribution of V (r) to the integral (21.75) for small values of r. Since V (r) is expected

to be of finite range, this integral and therefore δl , will decrease as we increase l. Physically

one can interpret this as due to the repulsive centrifugal barrier

�
2l(l + 1)

2mr2
, (21.84)

which increasingly dilutes the effect of the potential as l increases.

The largest maximum of sl(ρ) occurs for ρ ∼ l, that is, at

r ∼ l

k
. (21.85)

If R is the range of the potential then only partial waves with l � kR will give significant

values of δl . Thus only a finite number of partial waves need be considered in the partial

wave expansion, from l = 0 to kR. The partial wave analysis and the phase shift treatment

will, therefore, be most useful at low energies, since then only a small number of partial

waves will come into play. The maximum value of the total cross-section obtained by taking

sin2 δl = 1 is

σ = 4π

k2

kR∑

0

(2l + 1) ≃ 4πR2. (21.86)

Thus, the cross-section is given by the range of interaction, R, with a maximum value that

is four times the classical value of πR2, corresponding to a disk of radius R representing

the effective scattering area.

Low-energy behavior of δl

The behavior as k → 0 can be easily obtained from (21.75). Since tan δl ∼ δl for small

values of δl , we obtain

δl → k2l+1. (21.87)

Since k = 0 is the threshold for the scattering to take place, this relation is called the

threshold behavior for the phase shift. Again, one interprets this as due to the dominant

centrifugal effect.
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High-energy behavior of δl

The right-hand side of the integral relation (21.75) for tan δl vanishes as k →∞ due to the

term (1/k) in front of the integral. In this limit χ l ∼ sl , therefore, the factor multiplying

V (r) in the integrand will be ∼ s2
l

which is � 1. Hence,

δl → 0 as k →∞.

This is not surprising because in the high-energy limit the kinetic energy term in the Hamil-

tonian is much larger than the potential. Therefore, in this limit the particle acts like a free

particle, which by definition has δl = 0. The precise functional form for δl for l = 0 in this

limit will be determined in Chapter 22.

Born approximation

The Born approximation corresponds to keeping only the first-order contribution to the

wavefunction. Therefore, we take

χB
l (r) = sl(kr). (21.88)

It is a valid approximation if the potentials are weak, in which case we expect the integral

(21.75) to be small. For small values of tan δB
l

one can use the approximation

tan δBl ≈ δBl . (21.89)

Therefore,

δBl = −
1

k

∫ ∞

0

dr U (r)s2
l (kr). (21.90)

For k → 0, we can obtain δB
l

explicitly from the behavior of sl(ρ) if the potential is of finite

range,

δBl ≃ −
k2l+1

[(2l + 1)!!]2
∫ R

0

dr r2l+1U (r) (21.91)

where R is the range of the potential. For infinite-range potentials like the Yukawa potential,

ge−μr/r, one can take R = ∞ for the upper limit since the integral will still be convergent.

The k-dependence is consistent with what we obtained in (21.87).At high energies δB
l
→ 0.

Finally, we note that the Born approximation is not valid if the potential is strong enough

to form bound states. In the case of bound states one can not use perturbation theory. The

Born approximation is quite meaningful if the strength of the potential is weak or if the

energies are high.



400 Partial wave amplitudes and phase shifts

21.5 Calculation of phase shifts: some examples

21.5.1Square well

Below we determine the phase shift δl for l = 0 for the case of a square well potential

V = −V0, r ≤ a (21.92)

= 0, r > a. (21.93)

Earlier we considered bound states for which the energy E < 0. We are interested in the

scattering states corresponding to positive energies, E > 0. The radial wavefunction χ0(r)

for this problem can be calculated in the same manner as for the bound states,

χ0 (r) = A sin αr, r < a (21.94)

where A is an arbitrary constant and

α =
√

2m

�2
(E + V0). (21.95)

Since for r > a, V (r) = 0, the wavefunction in this region discussed earlier can be written

down in terms of the phase shift, δ0, as

χ0 (r) = B sin (kr + δ0) , r > a (21.96)

where B is an arbitrary constant and k =
√

2mE/�2.

The boundary conditions imply that the two wavefunctions and their derivatives must be

equal at r = a. Therefore,

A sin αa = B sin (ka+ δ0) (21.97)

and

Aα cosαa = Bk cos (ka+ δ0) . (21.98)

By dividing (21.98) by (21.97) we eliminate A and B and obtain

α cot αa = k cot (ka+ δ0) . (21.99)

One can then easily show that

tan δ0 =
k − α cot (αa) tan (ka)

α cot (αa)+ k tan (ka)
. (21.100)
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Approximate properties of δ0

(i) Behavior as k → 0.

We find from (21.99) leading order in k ,

tan δ0 →
ka (1− ᾱa cot ᾱa)

ᾱa cot ᾱa
= kaγ (21.101)

where

γ = 1− ᾱa cot (ᾱa)

ᾱa cot ᾱa
= tan ᾱa

ᾱa
− 1 (21.102)

and

ᾱ =
√

2m

�2
V0. (21.103)

Since tan δ0 is found to be proportional to k and, therefore, small, it can be approximated

by δ0. Thus

δ0 → kaγ as k → 0. (21.104)

The partial wave cross-section is then

σ 0 =
4π sin2 δ0

k2
→ 4πa2

[
tan ᾱa

ᾱa
− 1

]2

. (21.105)

(ii) Dependence on the strength of the potential.

We will continue to assume that k is small. If the potential is weak (but attractive), then

ᾱa < 1 and therefore we can expand tan ᾱa in this limit,

tan ᾱa = ᾱa+ 1

3
(ᾱa)3 + · · · . (21.106)

Hence,

γ ≈ 1

3
(ᾱa)2 + · · · . (21.107)

Therefore, γ and the phase shift δ0 are positive.

If the potential is very strong (attractive) then tan ᾱa > ᾱa, and the phase shift δ0 is large

and positive, until it reaches the value π/2. If

ᾱa >
π

2
(21.108)

then tan ᾱa < 0 and γ is negative. But ᾱa > π/2 corresponds to

V0 >
π2

�
2

8ma2
. (21.109)
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Our results in Chapter 8 indicate that this is just the condition that there be a bound state.

More appropriately, the condition

π2
�

2

8ma2
< V0 <

π2
�

2

2ma2
(21.110)

corresponds to one bound state. Since γ < 0, for the above potential

tan δ0 →−|γ | ka as k → 0. (21.111)

Therefore,

at k = 0, δ0 = π .

This is as predicted by Levinson’s theorem, which we will discuss in the next chapter, which

states that δ0 → nπ , as k → 0 if there are n bound states. Thus, for n = 1 we have δ0 = π .

21.5.2Rigid sphere

A rigid sphere potential is given by

V (r) = 0, r ≤ a (21.112)

V (r) = ∞, r > a. (21.113)

Once again we consider the S waves. We note that because it is an infinitely repulsive

potential the particle will be entirely outside the sphere with the wavefunction given by

χ (r) = A sin(kr + δ0), r > a (21.114)

where δ0 is the S-wave phase shift. The boundary condition implies that the wavefunction

must vanish at r = a. Hence, χ (a) = 0 and therefore

ka+ δ0 = 0, i.e., δ0 = −ka. (21.115)

Thus the phase shift is negative and stays negative throughout the scattering region, with

δ0 → −∞ as k →∞. In Fig. 21.4 we have plotted a typical behavior of δ0 as a function

of ka and, for comparison, we also have δ0 for the purely attractive case.

The S-wave cross-section is then given by

σ 0 =
4π sin2(ka)

k2
, (21.116)

which in the limit k → 0, gives

σ 0 = 4πa2. (21.117)



403 21.5 Calculation of phase shifts: some examples

δ  0

0 ka

Rigid sphere

Attractive potential

Fig. 21.4

This value for the cross-section is of the right order of magnitude since it corresponds to

an area presented by a disk of radius a. The factor of 4 is a consequence of low-energy

behavior.

For l � =0, the phase shift can be determined from the relation

χ l (r) = Dl [sl cos δl + cl sin δl] . (21.118)

The condition χ l (a) = 0 implies that

tan δl = −
sl (ka)

cl (ka)
. (21.119)

From the properties of sl and cl we find the following behavior near k = 0 and at k = ∞:

δl →−k2l+1 as k → 0 (21.120)

and

δl →−ka+ lπ

a
as k →∞. (21.121)

Thus, once again, as with the S waves, the phase shift stays negative and δl → −∞ as

k →∞.

For finite repulsive potentials one can show that the phase shift is negative near k = 0.

But as k →∞, δ0 → 0.

21.5.3Absorption and inelastic amplitudes

We have found that the partial wave scattering amplitude is given by

fl =
e2iδℓ − 1

2ik
. (21.122)
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As we saw in our earlier discussions, absorptive or inelastic processes can be incorporated

by introducing a complex potential, V = VR− iVI with VI > 0. If we include an imaginary

part, VI , in the relation between the phase shift and the potential derived in this chapter, one

can easily show that the phase shift itself can be expressed as a sum of real and imaginary

parts,

δl = δl(R) + iδl(I) (21.123)

where VI < 0 will correspond to δl(I) > 0.

If we set

e−2δI = ηl , (21.124)

then the partial wave amplitude will be modified to

fl =
ηle

2iδl − 1

2ik
(21.125)

and the amplitude f (θ) to

f (θ) =
∞∑

l=0

(2l + 1)

(
ηle

2iδl − 1

2ik

)
Pl(cos θ). (21.126)

The elastic scattering cross-section is then given by

σ el =
∫

d� |f (θ)|2 = 4π

∞∑

l=0

(2l + 1)

∣∣∣∣
ηle

2iδl − 1

2ik

∣∣∣∣
2

, (21.127)

which gives

σ el =
π

k2

∞∑

l=0

(η2
l + 1− 2ηl cos 2δl). (21.128)

The total cross-section is obtained from the generalized optical theorem,

σ T =
4π

k
Im f (0) = 2π

k2

∞∑

l=0

(−ηl cos δl + 1). (21.129)

Therefore, the inelastic cross-section is

σ inel = σ T − σ el =
π

k2

∞∑

l=0

(1− η2
l ). (21.130)
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21.6 Problems

1. Determine the l = 0 and l = 1 partial wave phase shifts in the low-energy limit for the

potential

V (r) = V0, for r ≤ R

= 0, for r > 0.

In terms of these two phase shifts, determine the scattering amplitude, f (θ), and the total

cross-section, σ .

2. For a potential represented by a spherical shell

V (r) = λδ(r − R),

determine the phase shift δl for l = 0. Also obtain the cross-section in the limit k → 0.

Consider both signs for λ.

3. In the probability current conservation relation for the time-independent case, express

the current in terms of the radial wavefunctions. Show that the outgoing flux must be

the same as the incoming flux. From this result show that the partial wave S-matrix, Sl ,

is unitary.

4. Consider a square-well potential

V (r) = −V0, r ≤ a

= 0 r > a.

Show that S-wave partial wave amplitude can be expressed as

f0 =
e−2ika

α cot αa− ik
− e−ika sin ka

k

where

α =
√

2m(E + V0)

�2

and the second term in the expression for f0 is characteristic of the scattering amplitude

for a hard sphere.

5. Obtain the upper and lower limits of the ratio of the partial wave cross-sections

(σ inel/σ tot) in terms of ηl .

6. Consider the following potential:

V = ∞, r < a

= −V0, a < r < b

= 0, r > b.

Obtain the S-wave phase shift δ0.
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7. For a potential given by

V (r) = +V0, 0 < r < a

= 0, r > a

obtain the phase-shift δl if the energy of the particle satisfies 0 < E < V0.



22 Analytic structure of the S-matrix

We discuss the properties of the partial wave S-matrix in the complex momentum and

complex energy plane. We establish that bound states appear as poles in these planes. The

relation between resonances and bound states are also discussed.

22.1 S-matrix poles

22.1.1 Bound states

In this section we discuss how the bound state energies in a given angular momentum state

are related to the poles in the complex energy plane of the scattering amplitude in that state.

As an illustration we consider a square well potential given by

V = −V0, r ≤ a (22.1)

= 0, r > a (22.2)

and consider specifically an S-wave (l = 0) bound state. Here we have E < 0, so we define

E = −EB with EB > 0 (22.3)

as the binding energy. For the S-states it is much simpler to consider the function χ0(r). It

is given by

χ0(r) = A sin αr, r ≤ a (22.4)

= Be−βr , r > a (22.5)

where

α =
√

2m(V0 − EB)

�2
and β =

√
2mEB

�2
. (22.6)

The boundary conditions at r = a give

A sin αa = Be−βa, (22.7)

Aα cosαa = −Bβe−βa. (22.8)
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Dividing (22.8) by (22.7) we obtain the relation

β = −α cot αa. (22.9)

Since we will be examining the relation between the bound state and the scattering

amplitude in the low energy limit, we take EB to be small EB ≪ V0 and, in that limit, write

the relation (22.9) as

β = −α0 cot α0a (22.10)

where

α0 =
√

2mV0

�2
. (22.11)

We note that since β > 0, a solution of (22.10) will exist if cot α0a is negative, which

occurs when π/2 < α0a < π , i.e., when

π2
�

2

8ma2
< V0 <

π2
�

2

2ma2
. (22.12)

This is, of course, confirmed by the results obtained in Chapter 8.

Now let us consider the scattering state. Here E > 0, and the wavefunctions are given by

χ0(r) = C sin κr, r ≤ a (22.13)

= D sin (kr + δ0) , r > a (22.14)

where δ0 is the S-wave phase shift with

κ =
√

2m(V0 + E)

�2
and k =

√
2mE

�2
. (22.15)

From the boundary conditions at r = a, we have

C sin κa = D sin (ka+ δ0) , (22.16)

Cκ cos κa = Dk cos (ka+ δ0) , (22.17)

which leads to the following relation, by eliminating C and D,

κ cot κa = k cot (ka+ δ0) . (22.18)

In the low-energy limit, i.e., k → 0 and E ≪ V0, relation (22.18) becomes

κ0 cot κ0a = k cot δ0 (22.19)

where

κ0 =
√

2mV0

�2
. (22.20)
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The S-wave scattering amplitude is given by

f0 =
eiδ0 sin δ0

k
= 1

k cot δ0 − ik
. (22.21)

A pole occurs in the complex k-plane when the denominator of (22.21) vanishes, i.e., when

k cot δ0 = ik . (22.22)

It is clear that the position of the pole in the k-plane does not correspond to physical values

of k , i.e., to real and positive values of k . If it did, then the scattering amplitude would

become infinite, which is not allowed.

Replacing k cot δ0 on the right-hand side of (22.19) by ik we find

k = −iκ0 cot κ0a. (22.23)

We also note from relations (22.11) and (22.20) that

κ0 = α0. (22.24)

Therefore, the pole in the scattering amplitude is located at

k = −iα0 cot α0a, (22.25)

which is along the imaginary k-axis. An imaginary k from (22.15) corresponds to E < 0.

If we take E = −EB in (22.15) then we find that

k = iβ (22.26)

where β is given by (22.6). Hence relation (22.25) gives

β = −α0 cot α0a, (22.27)

which is precisely the relation (22.10) for the bound-state energy. Therefore, the pole in

the scattering amplitude occurs at the position of the bound state. Since β is positive, from

(22.26) we find that the pole occurs along the positive imaginary axis of the k-plane.

We conclude, based on this example, that a bound state corresponds to a pole in the

scattering amplitude at negative values of E when the energy values of the position of the

pole are continued to E = −EB. We have shown this only under special conditions, e.g., at

low energies and for S-waves, but it can be shown to be generally true. We will return to

this subject when we discuss, albeit very briefly, the so-called Jost functions.

22.1.2 Resonances

In an interaction through a potential V (r), a resonance in a partial wave l is said to occur

when the scattering phase shift, δl , passes though π/2 or any odd multiple of it. At that
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point sin δl = 1 and the partial wave cross-section is given by

σ l =
4π

k2
, (22.28)

which is the maximum possible value that σ l can reach for a given value of k . This is also

called the unitarity limit.

We will show, particularly for l � =0, that if the potential is attractive and sufficiently

strong to create a bound state at low energies (i.e., E small and negative), then the scattering

amplitude will exhibit a resonance behavior at low energies (i.e., E small and positive)

for the same partial wave. We will show this, once again, under the simple situation of a

square-well potential.

Bound states for l � =0
We will consider the same square-well potential that we considered in the previous section,

V = −V0, r ≤ a (22.29)

= 0, r > a, (22.30)

with the same parameters,

E = −EB with α =
√

2m(V0 − EB)

�2
and β =

√
2mEB

�2
, (22.31)

but we revert back to considering the radial wavefunction Rl instead of χ l . The wave-

functions in the two regions are

Rl(r) = Al jl(αr), r ≤ a (22.32)

= Blh
(1)
l
(iβr), r > a. (22.33)

The boundary conditions at r = a give

αj′
l
(αa)

jl(αa)
= iβh

′(1)
l
(iβa)

h
(1)
l
(iβa)

. (22.34)

We will examine the above relation for the case of low energies and strong potentials.

These conditions can be incorporated by taking (with α0 defined in (22.11))

βa ≪ l and α0a ≫ l (22.35)

which facilitates using the well-known behaviors of jl(α0a) and h
(1)
l
(iβa) under those

limits. We have

jl(ρ)→
sin(ρ − lπ/2)

ρ
for ρ ≫ l, (22.36)



411 22.1 S-matrix poles

while we have

h
(1)
l
(ρ)→−i(2l − 1)!!ρ−l−1 for |ρ| ≪ l (22.37)

where (2l − 1)!! = 1.3 · · · (2l − 1). Inserting (22.36) and (22.37) in (22.34) with the

conditions given by (22.35), we obtain the following simple relation that must be satisfied

for a bound state to occur:

α0a cot

(
α0a− lπ

2

)
= −l. (22.38)

Dividing both sides of the above equation by α0a, and remembering that α0a is very large,

we find cot(αa− lπ/2) ≈ 0, which implies that

α0a− lπ

2
=
(

n+ 1

2

)
π (22.39)

where n is an integer.

Let us consider the scattering state. We once again use the symbols

κ =
√

2m(V0 + E)

�2
and k =

√
2mE

�2
(22.40)

with E > 0, and use the general expression for the phase shift, δl , derived earlier for square

well potentials,

cot δl =
kn′

l
(ka)jl(κ0a)− κ0nl(ka)j′

l
(κ0a)

kj′
l
(ka)jl(κ0a)− κ0jl(ka)j′

l
(κ0a)

(22.41)

where κ0 has already been defined in (22.20). At a resonance we have δl = π/2 and,

therefore, cot δl = 0. The above relation then implies that

kn′l(ka)jl(κ0a)− κ0nl(ka)j′l(κ0a) = 0. (22.42)

In the above relation we use, once again,

jl(ρ)→
sin(ρ − lπ/2)

ρ
for ρ ≫ l (22.43)

where ρ = κ0a and also

nl(ρ
′)→−(2l − 1)!!ρ′−l−1 for ρ′ ≪ l (22.44)

where ρ′ = ka. Note that we have taken the behavior of nl to be the same as that of h
(1)
l

given in Chapter 4 since in this region the contribution of jl to h
(1)
l

is negligible. The relation

(22.42) under these limits reads

−(l + 2) sin

[
κ0a− lπ

2

]
+ κ0a cos

[
κ0a− lπ

2

]
= 0. (22.45)
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Dividing both sides of the above equation by κ0a we obtain

cos

[
κ0a− lπ

2

]
= −

(
l + 2

κ0a

)
sin

[
κ0a− lπ

2

]
. (22.46)

In the limit when κ0a is very large, the right-hand side vanishes and, therefore,

cos [κ0a− lπ/2] = 0, which implies

κ0a− lπ

2
=
(

n+ 1

2

)
π . (22.47)

This is the same result as (22.39), since κ0 = α0.

We thus conclude that the resonance condition is equivalent to the bound-state condition.

If the potential is attractive enough to form a bound state, then there is a strong possibility

that there will also be resonances. One can, in fact, have a bound state for a given partial

wave and find that there is a resonance in the next higher partial wave; it depends on how

strong the potential is.

22.1.3 Resonance as complex poles of the partial wave
S-matrix

For the partial wave amplitude

fl =
1

k cot δl − ik
(22.48)

we consider the neighborhood of the point where δl = π/2. As previously discussed, at

k = 0 the phase shift δl vanishes. As k goes toward the resonance position, δl will increase

for attractive potentials, through positive values, toward π/2. From our earlier discussions

we found that δl is an odd function of k; therefore, k cot δl is an even function. If a resonance

occurs at k = kR, i.e., cot δl = 0 at k = kR, then we can expand k cot δl near that point and

write

k cot δl =
k2

R − k2

γ
. (22.49)

The partial wave amplitude can now be expressed as

fl =
γ

k2
R − k2 − iγ k

. (22.50)

The poles of fl are complex, given by the solution of

k2 + iγ k − k2
R = 0. (22.51)

The roots are given by (−iγ ±
√
−γ 2 + 4k2

R)/2. In the limit γ ≪ kR, the locations of the

poles are

kR − i
γ

2
, −kR − i

γ

2
. (22.52)
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Thus, a resonance corresponds to complex poles in the lower half of the complex k-plane,

which are symmetric with respect to the imaginary axis.

The term

∣∣∣∣∣
1

k2
R − k2 − iγ k

∣∣∣∣∣

2

= 1
(
k2

R − k2
)2 + γ 2k2

(22.53)

corresponding to the modulus squared of the scattering amplitude will have a peak at the

position of the resonance, k2 = k2
R. How sharp the peak is depends on the value of γ , which

is related to the width of the resonance. A smaller γ will produce a sharper peak.

The term “resonance” makes sense only if the peak is relatively sharp. A broad peak

provides no special distinction to the scattering amplitude since it will blend in with the

background. Thus, how close the complex poles are to the real axis is very important. The

poles cannot lie on the real axis because that would make the scattering amplitude infinite.

But the closer they are to the real axis the more they act as the real-axis poles, which instead

of giving an infinite contribution give a very sharp peak consistent with the unitarity limit

|fl |2 =
∣∣∣∣
eiδl sin δl

k

∣∣∣∣
2

≤ 1

k2
. (22.54)

Let us consider the analytic structure in the complex E-plane, where

E = �
2k2

2m
. (22.55)

We note that the upper half of the k-plane will project onto the top sheet (first sheet) of

the complex E-plane, which we call the “physical sheet.” In terms of k , Im k > 0, i.e., the

upper half of the complex k-plane corresponds to the physical sheet. The lower half of

the k-plane will project on to the second Riemann sheet of the complex E-plane, which we

call the “unphysical sheet.” In the complex E-plane the bound state poles appear along the

negative real axis as we already found in the previous section. The pair of resonance poles,

on the other hand, appear on the second Riemann sheet (the unphysical sheet), underneath

the first sheet, one above the real axis and the other just below the real axis. Sitting there,

these two poles control the shape of the peak.

22.2 Jost function formalism

We will confine ourselves to the S-waves. The wavefunction χ0(r), which we discussed

previously, is a well-behaved function as r → 0. As r → ∞ it is described by a linear

combination of eikr and e−ikr for the scattering states, and a decaying behavior, e−βr , for

the bound states. For the purposes of constructing the Jost function, which we designate as

F(k), we define a “regular wavefunction” φ0(k , r) that is proportional to χ0(r) but has the
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following behavior as r → 0,

φ0(k , 0) = 0, (22.56)

φ′0(k , 0) = 1. (22.57)

Since the boundary conditions are independent of k , on the basis of the analysis by

Poincaré it can be shown that φ0(k , r) is an even function of k . As a function of complex

k , it can also be shown that φ0(k , r) is an entire function of k , i.e., it has no singularities in

the complex k-plane.

We now define the so-called “irregular wavefunction,” f0(k , r), which satisfies the

boundary condition

f0(k , r)→ e−ikr as r →∞. (22.58)

Based on this boundary condition, once again, one can conclude that f0(k , r) is regular in

the lower half of the complex k-plane (with Im k < 0) where it is well-defined, as the

substitution, k = Re k + i Im k , in the above boundary condition shows. Moreover, based

on the same boundary condition, we conclude that

f ∗0 (k , r) = f0(−k∗, r) (22.59)

for complex values of k . We note that f0(−k , r) which goes like eikr as r → ∞, is also a

solution of the Schrödinger equation. Moreover, because f0(k , r) is regular in the upper half

of the complex k-plane plane, f0(−k , r) will be regular in the lower half.

Both φ0 and f0 satisfy the radial Schrödinger equation, with l = 0,

− �
2

2m

d2ψ

dr2
+ V (r)ψ = Eψ , (22.60)

which we rewrite as

d2ψ

dr2
− U (r)ψ + k2ψ = 0 (22.61)

where

U = 2mV

�2
and k2 = 2mE

�2
. (22.62)

.

If ψ1 and ψ2 are two solutions of (22.61) then following the discussion in the previous

chapter we define the Wronskian W
[
ψ1 ,ψ2

]
between them as follows:

W
[
ψ1 ,ψ2

]
= ψ1

dψ2

dr
− ψ2

dψ1

dr
. (22.63)

As we have shown in the previous chapter,

W
[
ψ1 ,ψ2

]
= constant independent of r. (22.64)
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Since the functions φ0(k , r) and f0(±k , r) are three independent solutions of a second-

order differential equation, any one of them can be expressed in terms of the other two. We

will write φ0(k , r) in terms of f0(±k , r). Taking account of the fact that φ0(k , r) is an even

function of k , we write

φ0(k , r) = A(k)f0(k , r)+ A(−k)f0(−k , r). (22.65)

We now obtain the Wronskian W
[
f0(−k , r),φ0(k , r)

]
, which from (22.65) gives

W
[
f0(−k , r),φ0(k , r)

]
= A(k)W [f0(−k , r), f0(k , r)] . (22.66)

Since the Wronskian is independent of r, we evaluate the left-hand side at r = 0, which

gives

W
[
f0(−k , r),φ0(k , r)

]
r=0

= f0(−k , 0) (22.67)

where we have utilized the boundary conditions (22.57). Using the boundary condition

(22.58) we now evaluate the right-hand side of (22.65) at r = ∞, which gives

W [f0(−k , r), f0(k , r)]r=∞ = 2ik . (22.68)

From (22.66), (22.67), and (22.68) we obtain

A(k) = f0(−k , 0)

2ik
. (22.69)

We now define the Jost function F0(k) as

F0(k) = f0(k , 0). (22.70)

Hence from (22.69), φ0(k , r) given by (22.65) can be written as

φ0(k , r) = 1

2ik
[F0(−k)f0(k , r)− F0(k)f0(−k , r)] . (22.71)

In particular, as r →∞,

φ0(k , r)→ 1

2ik

[
F0(−k)e−ikr − F0(k)e

ikr
]

. (22.72)

Since this corresponds to a scattered state we compare it with χ0(r), which has the behavior

χ0(r)→
S0(k)e

ikr − e−ikr

2i
(22.73)

where S0(k) is the S-matrix for l = 0. Thus we obtain the following two equalities:

χ0(r) = −
k

F0(−k)
φ0(k , r) (22.74)

and

S0(k) =
F0(k)

F0(−k)
. (22.75)
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22.2.1 Zeros of F(k)

Consider now the situation when φ0(k , r) represents a bound state. The wavefunction χ0(r)

has the asymptotic behavior

χ0(r)→ Be−βr (22.76)

where B is the normalization constant,

β =
√

2mEB

�2
(22.77)

and EB is the binding energy, EB = − |E|.
Comparing the behavior given by (22.76) with that of φ0(k , r), given by (22.72), we

conclude that

F0(−k) = 0 at k = iβ (22.78)

and from (22.75) we find that

S0(k) has a pole at k = iβ. (22.79)

Thus the bound states correspond to poles of the S-matrix, S0(k), on the positive imaginary

axis, the location being determined by the binding energy.

One can come to the same conclusion more directly by observing that the Jost function,

F0(k), is itself a Wronskian of φ0(k , r) and f0(k , r)

F0(k) = W
[
f0(k , r),φ0(k , r)

]
. (22.80)

If F0(k) = 0 at k = k0 then the Wronskian will vanish at that value and hence φ0(k0, r)

will be a multiple of f0(k0, r). Thus at

F0(k0) = 0 (22.81)

we have

φ0(k0, r) = Cf0(k0, r). (22.82)

We know that φ0 is well behaved at r = 0. If we take

k0 = −iβ (22.83)

with β > 0, then from the asymptotic behavior of f0(k , r) we find that φ0 will vanish

exponentially at infinity. Thus φ0(k0, r) is regular both at r = 0 and at r = ∞. This implies

that φ0 is square integrable, which is a classic definition of a bound-state wavefunction.

Thus, a bound state corresponds to a zero at k0 = −iβ in F0(k) or, equivalently, to a zero

at k0 = iβ in F0(−k), given by

F0(−iβ) = 0. (22.84)
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22.2.2 Representation of F0(k) and S0(k) in terms of zeros and poles

The functions F0(k) and F0(−k) inherit the properties of f0(k , r) and f0(−k , r) in the

complex k-plane. Thus, for example, from (22.59) we conclude that

F∗0 (k) = F0(−k∗). (22.85)

Similarly, like f0(k , r), F0(k) will be analytic in the lower half-plane while F0(−k) will be

analytic in the upper half.

In order to express the S-matrix in terms of its poles it is important to keep in mind that

S0(k) given by

S0(k) =
F0(k)

F0(−k)
(22.86)

is unitary along the positive real axis and in the upper half-plane (physical sheet) with

Im k > 0. From the relation (22.85) one can extend the unitarity relation to complex k ′’s
by writing

S∗0 (k)S0(k
∗) = 1. (22.87)

We will now concentrate only on the bound states and resonances.

(i) Bound states

The energy E is related to k by

E = �
2k2

2m
. (22.88)

As we discussed previously, the bound state poles in the complex E-plane will appear

along the negative real axis. We have found that the bound state poles of the S-matrix

are located at

k = iβ (β > 0) (22.89)

where β is a real number. Thus we can write, consistently with (22.85), for the case of a

bound state

F0(k) =
k + iβ

k − iα
(22.90)

where α is a real number with α > 0.

Since we are only interested in the bound state singularity we will write

S0(k) =
k + iβ

k − iβ
, (22.91)

which satisfies the unitarity property.
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(ii) Resonances

For the complex poles corresponding to the resonances we will write

S0(k) =
F0(k)

F0(−k)
= (k − α − iβ) (k + α − iβ)

(k + α + iβ) (k − α + iβ)
. (22.92)

This matrix is unitary on the physical sheet, and also satisfies the extended unitarity

condition. It has poles on the unphysical sheet with Im k < 0 (note β > 0).

To compare with section (22.1.3) we make the substitution

α = kR (22.93)

with γ and k0 positive, and obtain

S0(k) =
(k − kR − iβ) (k + kR − iβ)

(k + kR + iβ) (k − kR + iβ)
. (22.94)

The T -matrix is obtained from this through the relation

T0(k) =
S0(k)− 1

2ik
. (22.95)

Substituting (22.94) in (22.95), one finds

T0(k) =
−2β

(k + kR + iβ) (k − kR + iγ )
= 2β

k2
R − k2 − 2ikβ

(22.96)

where we have ignored the γ 2 term, assumed small, in the denominator of the middle term.

This is a classic form for a resonance as we have already discussed. Thus, we reconfirm that

a resonance corresponds to complex poles symmetric with respect to the imaginary axis

and in the second sheet of the complex E-plane. Figs. 22.1 and 22.2 describe the structure

of the S-matrix poles in the complex k-plane and complex E-plane, respectively.

22.2.3 Residue of the pole

The determination of the residue of the bound-state S-matrix pole is rather involved, though

the final result is quite simple. We will derive the result by making the simplifying approx-

imation of assuming that the bound-state wavefunction χ0(r) is described entirely by the

wavefunction for r > a (the “outside” wavefunction), which is of the form exp(−βr). We

then write for all values of r,

χ0(r) = Be−βr . (22.97)

The normalization constant B is obtained from the relation

∞∫

0

dr χ2
0(r) = 1. (22.98)
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Substituting (22.97) in the above integral we obtain

B2 = 2β. (22.99)

The residue of the S-matrix pole can be determined from the simple formula in the

previous section given by

S0(k) =
k + iβ

k − iβ
. (22.100)

The residue of the pole at k = iβ is found to be

Res S0(k = iβ) = 2iβ. (22.101)

Hence, comparing with (22.99), we conclude that

Res S0(k = iβ) = iB2. (22.102)

Therefore, the residue of the bound-state pole is given by the normalization of the

wavefunction for the bound-state pole. This result turns out to be valid quite generally.

22.2.4 Phase shift δ0(k)

The Jost function formalism allows us to determine some important properties of the phase

shift, δ0(k).

We note that, for real values of k ,

F∗0 (k) = F0(−k). (22.103)

The S-matrix, which is written as

S0(k) =
F0(k)

F0(−k)
, (22.104)

is, therefore, unitary for real values of k:

|S0(k)| = 1. (22.105)

In view of this unitary nature of the S-matrix, one writes

S0(k) = e2iδ0(k) (22.106)

where δ0(k) is the phase shift. From (22.103), (22.104), and (22.106) we have the following

two results. First, from (22.104) we find

S0(k) =
1

S0(−k)
. (22.107)
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Therefore, from (22.106) and (22.107),

δ0(−k) = −δ0(k). (22.108)

That is, the phase shift δ0(k) is an odd function of k . Secondly, one can write the Jost

function in terms of phase shifts as

F0(k) = |F0(k)| eiδ0(k). (22.109)

22.3 Levinson’s theorem

This is a very interesting theorem that relates the number of bound states in a system to the

phase shift δ0(k) at k = 0. It is assumed that δ0(k)→ 0 as k →∞, and that F0(0) � =0.

Consider the contour integral

1

2π i

∮

C

dk
F ′0(−k)

F0(−k)
(22.110)

where C is a closed contour that consists of the entire real axis and a semi-circle at infinity

in the upper half of the k-plane, as indicated in Fig. 22.3.

The integrand in (22.110) has poles at the zeros of F0(−k)which, as we know, correspond

to bound states. Since one can write F0(−k) = (k − k0)F
′
0(−k) near a zero at k = k0, the

residue of the pole is unity. Using Cauchy’s residue theorem we conclude that the above

integral is, therefore, simply equal to the number of bound states, nB. Thus,

nB =
1

2π i

∮

C

dk
F ′0(−k)

F0(−k)
. (22.111)

The integrand in (22.110) can also be written as

− 1

2π i

∮

C

dk
d

dk
|ln F0(−k)| . (22.112)

Hence it is a perfect differential. Since

F0(−k) = |F0(−k)| eiδ0(−k) = |F0(−k)| e−iδ0(k), (22.113)

we have

ln F0(−k) = ln |F0(−k)| − iδ0(k). (22.114)

The integral, therefore, gives

lim
ǫ→0
R→∞

1

2π
[δ0(ǫ)− δ0(R)+ δ0(−R)− δ0(−ǫ)] =

1

π
[δ0(ǫ)− δ0(R)] (22.115)
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where ǫ is an infinitesimally small quantity and where we have used the fact that δ0(−k) =
−δ0(k). Since we have assumed that δ0 goes to zero at infinity, the above integral is

1

π
δ0(0). (22.116)

Thus,

δ0(0) = nBπ . (22.117)

22.4 Explicit calculation of the Jost function for l = 0

Once again we consider the square-well potential

U (r) = −U0, r < a (22.118)

U (r) = 0, r > a (22.119)

where, as defined earlier, U (r) = 2mV (r)/�2. We will work entirely with the irregular

wavefunction f0(k , r) since the Jost function is given in terms of it by the relation

F0(k) = f0(k , 0).

Since the potential vanishes for r > a, f0(k , r) will be the same as its asymptotic form,

f0(k , r) = e−ikr , r > a. (22.120)

For r < a, it can be written as a linear combination of the two solutions, exp(±iκr),

f0(k , r) = c1(k) eiκr + c2(k) e−iκr , r < a (22.121)

where

κ =
√

U0 + k2. (22.122)

The boundary conditions at r = a give

c1eiκa + c2e−iκa = e−ika, (22.123)

iκc1eiκa − iκc2 e−iκa = −ik e−ika. (22.124)

Therefore, we obtain

c1 =
κ − k

2κ
e−i(κ+k), c2 =

κ + k

2κ
e−i(κ−k) (22.125)
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and

F0(k) = f0(k , 0) = c1 + c2. (22.126)

Hence, substituting the values of c1 and c2 we find the expression for the Jost function

to be

F0(k) = e−ika

[
cos κa+ i

k

κ
sin κa

]
. (22.127)

Let us consider the zeros of F0(−k), which correspond to the bound states. The relation

F0(−k) = 0 corresponds to

κ cot κa− ik = 0. (22.128)

If we consider the low-energy limit k2 ≪ U0, the above relation becomes

ka = −iκ0a cot κ0a (22.129)

where κ0a =
√

U0a2. This is the same relation as (22.23).

For

0 < κ0a <
π

2
(22.130)

the zero lies along the negative imaginary axis of the complex k-plane. That is, the pole

of the S-matrix lies along the negative imaginary axis, and will not correspond to a bound

state. This zero moves up toward the origin as κ0a increases toward π/2 (see Fig. 22.4). If

we write

κ0a = π
2
+ ǫ (22.131)

for infinitesimally small ǫ, then the solution of (22.129) is given by

ka = i
π

2
ǫ. (22.132)
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Thus for ǫ > 0 we have a zero in the upper half of the imaginary axis, which will correspond

to a bound state, confirming our earlier results. For ǫ < 0 we do not have any bound states

since the zero is along the negative imaginary axis, though if ǫ is very small that zero

corresponds to a “virtual state” since its contribution to the S-matrix is very large.
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As the potential is increased, more zeros of F0(−k)move up along the imaginary axis and

cross the origin to become bound-state zeros (poles of the S-matrix).According to the theory

of analytic functions, the zeros cannot be created or destroyed, they pre-exist. For certain

types of potentials they are all along the negative imaginary axis with an accumulation

at Im k = −∞. As the strength of the potential increases, these zeros move up along the

imaginary axis, one by one, and become bound-state zeros. One may also have pairs of

zeros, α− iβ, −α− iβ. As the strength of the potential increases, both zeros move toward

the negative imaginary axis and meet. One of them will continue to move up along the

imaginary axis, with the other following it, and so on. Thus, as the potential gets stronger

one will have an increasing number of bound states.

22.5 Integral representation of F0(k)

Let us return to the irregular function f0(k , r) and consider the function

g(k , r) = eikr f0(k , r), (22.133)

which will satisfy the equation

[
d2

dr2
− 2ik

d

dr

]
g(k , r) = U (r)g(k , r). (22.134)

We can solve this equation using the Green’s function technique. From the asymptotic

property of f0(k , r) discussed earlier we find

lim
r −→ ∞

g(k , r) = 1. (22.135)

One can write

g(k , r) = 1+
∞∫

0

dr′ D(k , r′ − r)U (r′
′
)g(k , r′) (22.136)

where D(k , r′ − r) is the Green’s function. One finds that

D(k , r′) = 1− e−2ikr′

2ik
for r′ ≥ 0 (22.137)

= 0 for r′ < 0. (22.138)

Hence,

g(k , r) = 1+
∞∫

r

dr′ D(k , r′ − r)U (r′
′
)g(k , r′). (22.139)
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From the relation

g(k , 0) = f0(k , 0) = F0(k) (22.140)

we can, therefore, write down an integral relation for F0(k):

F0(k) = 1+
∞∫

0

dr′ D(k , r′)U (r′
′
)g(k , r′). (22.141)

From this relation one can derive several important properties of the Jost function, includ-

ing its analytic structure and asymptotic behavior. We will derive an interesting result about

the asymptotic behavior of the phase shift in the Born approximation.

The first Born approximation corresponds to replacing g(k , r′) in integral (22.141) by its

zeroth value, which is 1. Substituting the expression (22.137) and (22.138) for D(k , r′) in

(22.141), we obtain

FB
0 (k) = 1+ 2m

�2

∞∫

0

dr′
[

1− e−2ikr′

2ik

]
V (r′

′
), (22.142)

where we have substituted the value of U (r′
′
) in terms of V (r′

′
). In the limit k → ∞ the

exponential in (22.142), because of its rapidly oscillating behavior, will not contribute to

the integral. Hence

FB
0 (k)→ 1− i

m

k�2

∞∫

0

dr′ V (r′
′
). (22.143)

Since the second term above is small, one can write the expression for F0(k) in the

approximate form

F0(k) = eiδ0(k) ≈ 1+ iδ0(k). (22.144)

Thus,

δB0 (k)→− m

k�2

∞∫

0

dr′ V (r′
′
) as k →∞, (22.145)

which implies that δ0(k)→ 0 as k → ∞. This is expected since in the high-energy limit

the contribution from kinetic energy to the Hamiltonian is much larger than the potential

energy and the centrifugal term becomes less important. Therefore, the particle will act like

a free particle, which implies δl → 0 as k →∞.
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22.6 Problems

1. Consider the bound-state problem where the wavefunction satisfies the equation

d2u

dx2
− β2u(x) = 2m

�2
V (x)u(x).

Express the bound-state wavefunction in terms of the Green’s function formalism. Obtain

the corresponding Green’s function.

2. For the above problem consider an attractive delta function potential

2m

�2
V (x) = −λδ(x).

From the consistency of the wavefunction at x = 0 show that one must have β = λ/2.

Show that this is precisely the point where the scattering solution has a pole in the

complex k-plane. Compare your results with those obtained in Chapter 8.

3. Show that the radial wavefunction Rl(k , r) can be expressed, in the Green’s function

formalism, as

Rl(k , r) = jl(kr)+
∞∫

0

dr′r′2G0l(k; r, r′)U (r′)Rl(k , r′)

where U (r) = 2m
�2 V (r) and

G0l(k; r, r′) = −ikjl(kr<)h
(1)
l (kr>) .

If there is a bound state at k = iα then express the wavefunction RB
l
(k , iα) in terms of

an appropriate integral representation. Show that

lim
k→iα

(k − iα)Rl(k , r) = RB
l (k , iα).

Hence, show that Rl(k , r) has a pole at k = iα.

4. Consider an attractive potential

V (r) = −λδ(r − a).

Show that the radial wavefunction and the partial wave scattering amplitudes have a pole

in the complex k-plane. Determine the location of the pole and compare your results

with the bound-state solutions in Chapter 8.
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Poles of the Green’s function and

composite systems

Here we dig deeper into the properties of the Green’s function and find an incredible

amount of rich information. We also discover the elegant R-matrix formalism which, at

least formally, allows one to describe the Green’s function to all orders in perturbation

theory. We describe through the R-matrix the resonance scattering involving composite

systems.

23.1 Relation between the time-evolution operator
and the Green’s function

As we discussed in Chapter 2, the time evolution operator U (t, t′) is given by

U (t, t′) = e−iH (t−t′)/� (23.1)

where H is the Hamiltonian. We define an operator

U (t) = U (t, 0) (23.2)

and take � = c = 1. Thus

U (t) = e−iHt . (23.3)

The time evolution of a state vector |ψ(t)〉 is given by

|ψ(t)〉 = U (t)|ψ(0)〉, t > 0. (23.4)

Hence we have, in terms of H ,

|ψ(t)〉 = e−iHt |ψ(0)〉, t > 0. (23.5)

From the properties of the δ-function, we can write

e−iHt =
∫ ∞

−∞
dx e−ixtδ(x − H ). (23.6)
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From the relations discussed in Chapter 2 we have

1

x − H − iǫ
= P

(
1

x − H

)
+ iπδ(x − H ), (23.7)

1

x − H + iǫ
= P

(
1

x − H

)
− iπδ(x − H ), (23.8)

where P stands for the principal part. By subtracting (23.8) from (23.7), we have

δ(x − H ) = 1

2π i

[
1

x − H + iǫ
− 1

x − H − iǫ

]
. (23.9)

Therefore, (23.6) can be written as

e−iHt = 1

2π i

∫ ∞

−∞
dx e−ixt

[
1

x − H − iǫ
− 1

x − H + iǫ

]
. (23.10)

The integrand has complex poles. Since H is Hermitian, its eigenvalues are real. Hence

the real parts of the two poles are given by the eigenvalues of H . The imaginary parts are

±iǫ. Thus the poles are off the real axis, while the integration in (23.10) is along the real

axis. To evaluate the integral, therefore, one can, through complex integration techniques,

utilize Cauchy’s theorem. One then needs to add a semi-circle at infinity, either along the

upper half of the complex z-plane (z = x + iy) or the lower half-plane to construct a closed

contour. Since we are interested only in t > 0, the presence of the factor e−izt in the complex

plane demands that we choose the lower half-plane. Hence only the second term in (23.10)

will be relevant since it has poles below the real axis. Discarding the first term in (23.10),

which does not contribute to the integral, we write, for t > 0

e−iHt = − 1

2π i

∫ ∞

−∞
dx

e−ixt

x − H + iǫ
. (23.11)

We can rewrite the integral in (23.11) by changing x to E and shifting the line of integration

to the line above the real axis. Thus we write

e−iHt = 1

2π i

∫

C

dE e−iEt

E − H
, t > 0 (23.12)

where the contour C is a line that runs from∞+ iy0 to −∞+ iy0 (thereby removing the

negative sign in front of the integral), where y0 is a positive constant.

However, the total Green’s function, G(E), is given by

G(E) = 1

E − H
. (23.13)

Therefore, (23.12) can be re-written as

U (t) = e−iHt = 1

2π i

∫

C

dE e−iEtG(E), t > 0 (23.14)
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and

|ψ(t)〉 =
[

1

2π i

∫

C

dE e−iEtG(E)

]
|ψ(0)〉, t > 0. (23.15)

Hence the time evolution operator U (t) is intimately connected to the Green’s function

G(E). The poles and other singularities of G(E) in the complex E-plane then largely

determine U (t), and thereby the state vector |ψ(t)〉.

23.2 Stable and unstable states

We discuss two important examples of G(E). First we consider

G(E) = 1

E − E0
(23.16)

where E0 is real. From (23.15) we obtain after contour integration

|ψ(t)〉 = e−iE0t |ψ(0)〉, t > 0, (23.17)

which corresponds to an energy eigenstate with eigenvalue E0. In other words, it will

represent a stable particle, e.g., a free particle or a bound state. This result is not surprising

since expression (23.16) from the definition (23.10) implies that E0 is the eigenvalue of H .

As a consequence, we find that the state vector (23.17) represents a stable state, e.g., a free

particle or a bound state of energy E0.

As a second example we consider

G(E) = 1

E − E0 + i
Ŵ

2

(23.18)

where E0 is real and Ŵ is real and positive. This expression appears to imply that the

eigenvalue of H is complex and not real as it should be since H is Hermitian. We will return

to this apparent contradiction in Section 23.4.

Substituting (23.18) in (23.15) we find

|ψ(t)〉 = e−iE0te−
Ŵ
2 t |ψ(0)〉, t > 0, (23.19)

which corresponds to a state that “decays” and eventually disappears. If Ŵ is large then the

state |ψ(t)〉 decays quickly; if it is small then it “lives” for a long time. One calls 1/Ŵ the

“lifetime” of the state. Thus |ψ(t)〉 given by (23.19) describes an unstable or a metastable

state.
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23.3 Scattering amplitude and resonance

The Green’s function also appears in scattering problems through the T -matrix as we

discussed earlier. The relation between T and G is given by

T = V + VGV (23.20)

where V is the interaction potential. For illustration purposes let us consider the scattering

of two particles A and B,

A+ B → A+ B. (23.21)

For simplicity we assume B to be much heavier than A. If k represents the momentum of A

in the center-of-mass system then the kinetic energy of A is given by

E = k2

2m
. (23.22)

The reaction (23.21) occurs for k ≥ 0 (i.e., E ≥ 0). Hence the point k = E = 0 is called

the “threshold” for the reaction A+ B → A+ B.

Below we discuss the properties of the T -matrix for the two examples of the Green’s

function, (23.16) and (23.18).

Consider first the Green’s function given by (23.16). Taking the matrix element of T

between the initial and final states, |i〉 and |f 〉 respectively, and inserting (23.16) for G, we

obtain

〈f | T |i〉 = 〈f |V |i〉 + 〈f |V
[

1

E − E0

]
V |i〉 . (23.23)

This matrix then describes the scattering A + B → A + B above the threshold E = 0. If

E0 > 0 then the T -matrix becomes infinite at E = E0 and hence so does the S-matrix.

This is untenable since the S-matrix is supposed to be unitary for E > 0. Thus E0 must be

negative and outside the scattering region. This result is not surprising because the region

E < 0 where the infinity in the Green’s function occurs is precisely the region where a

bound state between the particles A and B will occur.

Consider now the Green’s function given by (23.18) and insert it in expression (23.10)

for the T -matrix. We obtain

〈f | T |i〉 = 〈f |V |i〉 + 〈f |V
[

1

E − E0 + iŴ
2

]
V |i〉 . (23.24)

If E0 > 0 (i.e., above the threshold) and Ŵ is small, then the T -matrix near E = E0 can be

approximated as

〈f | T |i〉 ≃ 〈f |V
[

1

E − E0 + iŴ
2

]
V |i〉 . (23.25)
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The differential cross-section is then proportional to

∣∣∣∣∣〈f |V
[

1

E − E0 + iŴ
2

]
V |i〉

∣∣∣∣∣

2

. (23.26)

The contribution of the middle square bracket is given by

1

(E − E0)
2 + Ŵ2

4

. (23.27)

The scattering cross-section will, therefore, have a peak at E = E0, which will become

very sharp as Ŵ becomes small. This phenomenon is called “resonance” and E0 and Ŵ are

called the position and the width of the resonance, respectively. The existence of such a

peak indicates that the system has almost a bound state, a metastable state, at the position

of the peak.

23.4 Complex poles

We note that E0 is a real quantity both for bound states, where it is negative, and for

resonance, where it is positive. Earlier we stated that the poles of the Green’s function must

be real since the eigenvalues of the Hamiltonian, H , which is a Hermitian operator, must

be real. The result for the bound states where G has a pole at E = E0 is consistent with this

observation. However, for the resonance the appearance of a complex pole at E = E0−iŴ/2

appears to contradict this assertion. The answer to this apparent contradiction lies not in the

complex E-plane, which we have been considering thus far, but in the complex k-plane as

we have already discussed in Chapter 22.

The point is that the poles that give rise to the resonances are actually in the second

sheet, the so-called unphysical sheet, with Im k > 0, in the complex k-plane and not on

the physical sheet. Their presence gives rise to peaks in the S-matrix and similarly in the

Green’s function, not infinities, and the expression (23.18) then remains compatible with

the unitarity of the S-matrix.

23.5 Two types of resonances

Typically, there are two types of resonances. One of them was discussed in Chapter 22 that

had as its origin a combination of centrifugal barrier and a strong attractive potential that

created a “temporary” (metastable) state. One can write this process as

A+ B → B∗→ A+ B (23.28)

where B∗ is called a metastable state.
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One can view this phenomenon by considering the combination of the potential and the

centrifugal:

V (r)+ �
2l(l + 1)

2mr2
. (23.29)

This is called the effective potential, Veff . Suppose V (r) is of the form

V (r) = −g
e−μr

r
(23.30)

so that it is attractive and of finite range. If it is sufficiently attractive, that is, if g is

sufficiently large, then we have a situation which for l � =0 looks very much like a potential

well that would trap a particle giving rise to bound states. However, here E > 0, with a

barrier height that is finite, which will allow the particle to tunnel through. Therefore, we

will “almost” have a bound state, which is sometimes called a “metastable” state.

There is also another possibility where B is a composite state, e.g., an atom in its ground

state, where A provides enough energy to B to raise it to an excited state B∗ that eventually

decays back to the ground state consisting of A and B.

In our discussion on time-dependent perturbation theory in Chapter 18 we considered the

case of the interaction between a photon and an atom in its ground state, where the atom

“absorbed” the photon, resulting in the atom being kicked to an excited state. This process

will describe the reaction A + B → B∗, in other words, “half” the process described by

(23.28), where A is the incident photon, B the atom in its ground state, and B∗ the atom in its

excited state. We obtained the transition probability per unit time for this process, which will

clearly be related to the lifetime of B∗. If we designate this probability as w, then we find

Ŵ ∼ w (23.31)

where Ŵ−1, defined in (23.19), is the lifetime of B∗.
Our calculations in the earlier chapters on bound states, transition probabilities and res-

onances were confined to the lowest order in perturbation. In the next section we describe

a formalism involving composite systems that provides an exact expression for the diago-

nal element for the Green’s function, G(E), and from it the T -matrix under quite general

conditions. In the end, in all cases, we express G in a form similar to expression (23.18), in

terms of E0 and Ŵ.

23.6 The reaction matrix

Even though the formalism of the reaction matrix (R), which we will describe below, has

been widely used in nuclear physics, it also has great usefulness in discussing bound states,

resonances, and unstable states. We define R as follows:

R = V + VP

(
1

E − H0

)
R (23.32)
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where H0 is the unperturbed Hamiltonian, and the symbol P stands for principal part that

appears in the relation

1

E − H0 + iǫ
= P

(
1

E − H0

)
− iπδ (E − H0) . (23.33)

The term corresponding to the principal part is real, while the term with the δ-function is

imaginary.

Moving the second term on the right-hand side of (23.32) that involves R and combining

it with R on the left and dividing both sides by the factor multiplying R we obtain

R = 1

1− VP

(
1

E − H0

)V . (23.34)

Expanding the denominator we then have

R = V + VP

(
1

E − H0

)
V + VP

(
1

E − H0

)
VP

(
1

E − H0

)
V + · · · . (23.35)

Returning to the definition given in (23.32) we note that the principal parts normally

enter in integrals of the type

∫ ∞

−∞
dx

f (x)

x − x0 + iǫ
(23.36)

where one writes

1

x − x0 + iǫ
= x − x0

(x − x0)2 + ǫ2
− i

ǫ

(x − x0)2 + ǫ2
. (23.37)

As we have discussed earlier, in the limit ǫ → 0 one has

lim
ǫ→0

1

x − x0 + iǫ
= P

(
1

x − x0

)
− iπδ(x − x0) (23.38)

where

P

(
1

x − x0

)
= lim
ǫ→0

x − x0

(x − x0)2 + ǫ2
. (23.39)

This expression vanishes at x = x0 for a fixed ǫ and hence one writes the principal part in

(23.36) as

P

∫ ∞

−∞
dx

f (x)

x − x0
=
∫ x0−δ

−∞
dx

f (x)

x − x0
+
∫ ∞

x0+δ
dx

f (x)

x − x0
(23.40)

where δ is a positive, infinitesimal quantity. The principal part integral, therefore, excludes

the point x = x0.
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The above definitions involve continuous variables but we can extend them to the discrete

case. Consider, specifically, the following diagonal matrix element with respect to the

eigenstate |s〉 of H0:

〈s|VP(
1

E − H0
)V |s〉, (23.41)

which we encountered in the expansion for R in (23.35). By inserting a complete set of

orthonormal eigenstates |s′〉 and |s′′〉 we obtain

〈
s

∣∣∣∣VP

(
1

E − H0

)
V

∣∣∣∣ s

〉
=
∑

s′

∑

s′′

〈
s|V |s′

〉 〈
s′
∣∣∣∣P

(
1

E − H0

)∣∣∣∣ s′′
〉 〈

s′′|V |s
〉
. (23.42)

First of all we note that E in the denominator in (23.42) multiplies a unit operator, while

H0 is diagonal: H0|s〉 = Es|s〉, where Es is the unperturbed energy. Thus 1/(E − H0), and

therefore, P(1/(E − H0)) are diagonal. Furthermore, since the principal part implies that

the state |s〉 should be excluded in the sum, we obtain

〈
s

∣∣∣∣VP

(
1

E − H0

)
V

∣∣∣∣ s

〉
=
∑

s′ � =s

〈s|V |s′〉 1

E − Es′
〈s′|V |s〉. (23.43)

We discuss below an alternative method to accomplish the above result more simply by

defining a projection operator, �s, which projects out the state |s〉,

�s|s′〉 = |s〉δss′ . (23.44)

One can also write �s = |s〉〈s|. It follows that (1 − �s) projects out all the states except

the state |s〉, i.e.,

(1−�s)|s〉 = 0. (23.45)

Hence we will write

P

(
1

E − H0

)
= 1−�s

E − H0
(23.46)

whenever the principal part term occurs in a diagonal matrix with respect to the state |s〉.
Inserting (23.46) in the left-hand side of (23.42) we recover (23.43).

Thus the diagonal matrix element of R defined as a series expansion in (23.35) can be

written as

〈s |R| s〉 =
〈
s

∣∣∣∣V + V
1−�s

E − H0
V + V

1−�s

E − H0
V

1−�s

E − H0
V + · · ·

∣∣∣∣ s

〉
. (23.47)
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Therefore,

〈s|R|s〉 = 〈s|V |s〉 +
∑

s′ � =s

〈s|V |s′〉〈s′|V |s〉
E − Ese

(23.48)

+
∑

s′ � =s

∑

s′′ � =s

〈s|V |s′〉〈s′|V |s′′〉〈s′′|V |s〉
(E − Es′)(E − Es′′)

+ · · · . (23.49)

Using (23.46), expression (23.34) can be written as

〈s|R|s〉 =
〈
s

∣∣∣∣∣∣∣∣

1

1− V
1−�s

E − H0

V

∣∣∣∣∣∣∣∣
s

〉
. (23.50)

By expanding the denominator it is straightforward to show that one can also write

〈s|R|s〉 =
〈
s

∣∣∣∣∣∣∣∣
V

1

1− 1−�s

E − H0
V

∣∣∣∣∣∣∣∣
s

〉
. (23.51)

23.6.1 Relation between R- and T-matrices

We now turn our attention to obtaining the T -matrix in terms of R by writing it in the form

we considered earlier,

T = V + V
1

E − H0 + iǫ
T . (23.52)

From (23.33) applied to the middle factor in the second term on the right-hand side, we

obtain

T = V + VP

(
1

E − H0

)
T − iπV δ(E − H0)T . (23.53)

In order to relate T and R we now write

T = R(1+�) (23.54)

and determine � in a self-consistent manner by inserting (23.54) in the second term of the

right-hand side of expression (23.53):

T = V + VP

(
1

E − H0

)
R+ VP

(
1

E − H0

)
R�− iπV δ(E − H0)T . (23.55)
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Using the definition of R in (23.32) we replace the first two terms in (23.55) by R and

rewrite the third as (R− V )� using (23.54). Thus we have

T = R+ (R− V )�− iπV δ(E − H0)T , (23.56)

= R+ R�− V�− iπV δ(E − H0)T . (23.57)

Let us take

� = −iπδ(E − H0)T . (23.58)

Then from (23.57) we obtain

T = R+ R�. (23.59)

Hence, we recover (23.54) with the value of � now determined through (23.58). Inserting

� in (23.59) we obtain the relation between T and R:

T = R− iπRδ(E − H0)T . (23.60)

23.6.2 Relation between R and G

The Green’s function, G, is given by

G(E) = 1

E − H0 − V
(23.61)

where the total Hamiltonian is H = H0+V . The denominator is kept real by removing the

iǫ term which can easily be restored by considering the function G(E + iǫ). From (23.61)

we obtain

(E − H0 − V )G = 1. (23.62)

Taking the diagonal elements, we have

〈s|(E − H0 − V )G|s〉 = 1. (23.63)

Since E and H0 are diagonal operators and H0|s〉 = Es|s〉, we obtain

(E − Es)〈s|G|s〉 − 〈s|VG|s〉 = 1. (23.64)

We determine 〈s|VG|s〉 by first writing

G = 1

E − H0 −�sV − (1−�s)V
(23.65)
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where we have added and subtracted the �sV term, where �s is the projection operator

(= |s〉〈s|) defined earlier for the state |s〉. Consider now the product

[
1− (1−�s)V

E − H0

]
[E − H0 −�sV ] (23.66)

= E − H0 −�sV − (1−�s)V +
(1−�s)�sV

2

(E − H0)
(23.67)

= E − H0 −�sV − (1−�s)V , (23.68)

where we have used the relation

�s(1−�s) = 0 (23.69)

as it corresponds to the product of a term that allows only the state |s〉 and, simultaneously,

a term that excludes state |s〉 .
The right-hand side of (23.68) is the denominator of G in (23.65). Thus we obtain from

(23.65) and (23.68) the following result for G:

G = 1[
1− (1−�s)V

E − H0

]
[E − H0 −�sV ]

. (23.70)

Inserting this expression for G in the matrix element 〈s |VG| s〉 in (23.64), we obtain

〈s |VG| s〉 =
〈
s

∣∣∣∣∣∣∣∣
V

1[
1− (1−�s)V

E − H0

]
[E − H0 −�sV ]

∣∣∣∣∣∣∣∣
s

〉
(23.71)

=
∑

s′

〈
s

∣∣∣∣∣∣∣∣
V

1[
1− (1−�s)V

E − H0

]

∣∣∣∣∣∣∣∣
s′
〉 〈

s′
∣∣∣∣

1

[E − H0 −�sV ]

∣∣∣∣ s

〉
(23.72)

where we have introduced a complete set of states
∣∣s′
〉
.

We note that

1

E − H0 −�sV
(23.73)

is a diagonal operator because of the presence of�s and the fact that E and H0 are diagonal.

Therefore, only s′ = s contribute in (23.72). The diagonal matrix element of (23.73) is

identical to the diagonal matrix element of G, since the diagonal element of (1 − �s)

vanishes in (23.65). Thus,

〈
s

∣∣∣∣
1

E − H0 −�sV

∣∣∣∣ s

〉
= 〈s |G| s〉 . (23.74)
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Hence (23.72) can be written as

〈s |VG| s〉 =
〈
s

∣∣∣∣∣∣
V

1[
1− (1−�s)V

E−H0

]

∣∣∣∣∣∣
s

〉
〈s |G| s〉 . (23.75)

The first factor on the right-hand side is identical to 〈s|R|s〉 given in (23.51). If we write

〈s |G| s〉 = Gss and 〈s|R|s〉 = Rss then the relation (23.75) can be written as

〈s |VG| s〉 = RssGss. (23.76)

Inserting (23.76) in (23.64) we obtain a remarkably simple result for the diagonal matrix

element of the Green’s function, Gss, as

Gss (E) =
1

E − Es − Rss (E)
(23.77)

where we have made the dependence on E explicit.

From (23.49) we have

Rss (E) = 〈s|V |s〉 +
∑

s′ � =s

〈s|V |s′〉〈s′|V |s〉
E − Es′

+
∑

s′ � =s

∑

s′′ � =s

〈s|V |s′〉〈s′|V |s′′〉〈s′′|V |s〉
(E − Es′)(E − Es′′)

+ · · · .

(23.78)

Inserting this in (23.77) we find that we have reproduced the results of time-independent

perturbation theory from a different perspective. We elaborate on this comment: if we

designate the energy of a bound state as Ebound , which is a pole of Gss (E), and note that

Es, Es′ , . . . are the energies of the unperturbed states, which can be rewritten as E0
s , E0

s′ , . . .

to conform to the notations used in the perturbation treatment of Chapter 16 then

Ebound = E0
s + Rss

(
E0

s

)
, (23.79)

which is precisely what we derived in Chapter 16. If one isolates the pole then

Gss (E) ∼
1

E − Ebound

.

We have already noted that the poles corresponding to the bound states occurring below

the threshold will be real. Therefore, Rss will be real for those cases. For the poles occurring

above the threshold, Rss will be complex, which is one of the properties we will discuss

below.
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23.6.3 Properties of Rss(E)

Let us consider R(E) for all values of E including complex values. To simplify things we

write

P

(
1

E − H0

)
= P(E, H0), (23.80)

where the principal part, P, can be written as

P(E, H0) =
1

2

[
1

E − H0 + iǫ
+ 1

E − H0 − iǫ

]
(1−�s). (23.81)

The factor (1−�s) ensures that the diagonal elements of P with respect to |s〉 will vanish,

a property we have already discussed.

From (23.34) we have

R(E + iσ) = 1

1− VP(E + iσ , H0)
V (23.82)

where σ is an infinitesimal quantity different from ǫ in (23.81). This result leads to the

following:

R(E + iσ)− R(E − iσ) =
[

1

1− VP(E + iσ , H0)
− 1

1− VP(E − iσ , H0)

]
V (23.83)

= −V
[P(E − iσ , H0)− P(E + iσ , H0)]

[1− VP(E + iσ , H0)] [1− VP(E − iσ , H0)]
V . (23.84)

To obtain P(E + iσ)− P(E − iσ) let us consider the following difference:

1

E + iσ − H0 ± iǫ
− 1

E − iσ − H0 ± iǫ
= −2iσ

(E − H0 ± iǫ)2 + σ 2
. (23.85)

We now take ǫ → 0 first, keeping σ fixed, and obtain from (23.81)

P(E − iσ , H0)− P(E + iσ , H0) =
[ −2iσ

(E − H0)2 + σ 2

]
(1−�s). (23.86)

If we now take σ → 0, then the square bracket on the right-hand side is −2π iδ(E −
H0)(1−�s).

Expression (23.84) in the limit σ → 0 will then be of the form

R(E + iσ)− R(E − iσ) = 2π iV
δ(E − H0)(1−�s)V

[1− VP(E + iσ , H0)] [1− VP(E − iσ , H0)]
(23.87)

= 2π iR(E + iσ)δ(E − H0)(1−�s)R (E − iσ) . (23.88)

We use the property of the functions of complex variables that states that if a function

f (z) of z(= x + iy) is analytic in a region of the complex z-plane and is real along the real
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axis, then by analytic continuation the value of the function at z∗ is given by f (z∗) = f ∗(z).
We assume that R(E) satisfies this analyticity property and, since it is real for negative

values of E, which is the region of the bound states, one can write

R(E − iσ) = R†(E + iσ). (23.89)

Hence from (23.88) we have in the limit σ → 0,

R(E + iσ)− R†(E + iσ) = 2π iR(E + iσ)δ(E − H0)(1−�s)R
†(E + iσ). (23.90)

We now consider the region above the threshold where R can be complex. The left-hand side

above is 2i Im R(E+ iσ). Thus, by taking the diagonal component of (23.90) and inserting

a complete set of states on the right-hand side we obtain the following:

lim
σ→0

〈s| Im R(E + iσ)|s〉 = π
∑

s′ � =s

〈s|R(Es′ + iσ)|s′〉〈s′|R†(Es′ + iσ)|s〉δ(Es − Es′).

(23.91)

Therefore,

Im〈s|R(E + iσ)|s〉 = π
∑

s′ � =s

∣∣〈s′|R(Es′ + iσ)|s〉
∣∣2 δ(Es − Es′). (23.92)

We simplify some of the notations and define

R(E + iσ) = R(+)(E), (23.93)

〈s|R(E + iσ)|s〉 = R(+)ss (E), (23.94)

〈s|R(E + iσ)|s′〉 = R
(+)
ss′ (E), (23.95)

and

〈s|V |s′〉 = Vss′ . (23.96)

For the superscript (−) on the right one must change the sign of σ on the left.

Let us write

R(+)ss (E) = Ds(E)− iIs(E) (23.97)

where the real part of Rs(E) will be identical to Rs(E) determined earlier in (23.78) when

σ = 0. Thus,

Ds(E) = Vss +
∑

s′ � =s

Vss′Vs′s

E − Es′
+ · · · . (23.98)
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The imaginary part is given in (23.91),

Is(E) = π
∑

s′ � =s

∣∣∣R(+)ss′ (Es)

∣∣∣
2
δ(Es − Es′) (23.99)

= 1

2
ws (23.100)

where ws is the transition probability for transition from a state |s〉 to a group of final states

|s′〉, with Es = Es′ . The first-order perturbation version of ws has already been derived in

the chapter on time-dependent perturbation theory, where

ws =
2π

�

∑

s′ � =s

|Vss′(Es)|2 δ(Es − Es′) (23.101)

except that we have taken � = c = 1 in our discussions here and have written Vss′ instead

of H ′
ss′ . We emphasize that the quantity ws expressed in (23.100) is given to all orders in

perturbation, while (23.101) was only to first order. The diagonal Green’s function is then

given by

Gss (E) =
1

E − Es − Ds(E)+ i
2
ws

, (23.102)

which is of the resonance form with the decay rate given by

Ŵs = ws. (23.103)

The position of the resonance is given by

Eresonance = E0
s + Ds(E

0
s ) (23.104)

where as before we have replaced Es by E0
s , as both correspond to unperturbed values of

the energy eigenstate. It can be shown that R
(+)
s (E) can be written in the form of dispersion

relations (see Appendix),

R(+)ss (E) = Vss −
1

π

∫ ∞

E0

dE′
Is(E

′)
E′ − (E + iσ)

(23.105)

where Is is given in (23.100). Hence,

Gss =
1

E − Es − Vss + 1
π

∫∞
ǫ0

dE ′
Is(E

′)
E′ − (E + iσ)

. (23.106)

Since G is related to the T -matrix and, therefore, to the scattering amplitude, the reaction

matrix formalism outlined above is very powerful in establishing a relation that connects the

scattering amplitude for a given process to the bound states and resonances in that process

to all orders in perturbation.
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23.7 Composite systems

Below we consider two important scattering processes in which a particle, A, of sufficiently

high energy, such as a photon or an electron, scatters off a composite object, B, such as an

atom in its ground state, producing an excited state B∗. That is,

A+ B → B∗. (23.107)

The state B∗ then goes back to A + B or, for the case of the electron, to A + B + photon.

These two problems provide an interesting application of the R-matrix approach.

We begin in each case by writing

T = V + VGV . (23.108)

To apply the R-matrix formalism we need to keep in mind that we are dealing here with

a complex system of particles and interactions. However, one finds that for the above

processes, under reasonable approximations, one can express T in terms of the diagonal

matrix elements of G, which can then be written as

Gss (E) =
1

E − Es − Rss (E)
. (23.109)

We write Rss in the form

Rss = Ds(E)−
i

2
ws. (23.110)

As we saw earlier for a weak potential, Ds(E) ∼ Vss which to a good approximation will

allow the T -matrix to be written in the form typical of a resonant state:

Tfi ≃
1

E − Es + i
2
ws

. (23.111)

23.7.1 Resonant photon–atom scattering

Let us consider the case in which a photon scatters off an atom (as depicted in Fig. 23.1). The

photon here represents an electromagnetic wave of frequency ω described in field-theoretic

Atom
Photon

kf

ki

Photon

Fig. 23.1



443 23.7 Composite systems

language as a particle with definite energy �ω. The Hamiltonian for this process is given

by

H = p2

2m
+ �ω + V0(r)+ Vr (23.112)

where Vr is the interaction of radiation (photon) with an electron in the atom.As we discussed

earlier, Vr is given by

Vr = −
e

mc
A · p (23.113)

where A is the vector potential describing the photon and p is the momentum of the electron

in the atom. The potential V0(r), which is Coulomb-like, is responsible for the formation

of the atomic bound state; p2/2m is the kinetic energy of the atom, which is assumed to

be heavy; and �ω represents the energy of the photon. We combine the first three terms in

(23.112) and designate the sum as H0. Thus,

H = H0 + Vr . (23.114)

The potential Vr is responsible for transitions between the atomic levels. The T -matrix

for the scattering of the photon is then given by

T = Vr + Vr
1

E − H + iǫ
Vr . (23.115)

Let us calculate the matrix element of T ,

〈f |T |i〉 = 〈f |Vr|i〉 +
〈
f |Vr

1

E − H + iǫ
Vr|i

〉
(23.116)

where |i〉 and |f 〉 represent the initial and final states, respectively,

|i〉 = |ki, Ei〉 (23.117)

where ki is the momentum vector of the photon with energy �ωi (c|ki| = cki = ωi), and

Ei is the energy of the atom. We are ignoring the polarization components of the photons

and the spin of the electrons. The final state is designated by

|f 〉 = |kf , Ef 〉 (23.118)

with the respective notations.

In Chapter 18 in our calculations involving photon–atom interactions in second-order

time-dependent perturbation theory, it was pointed out that

〈f |Vr|i〉 = 0. (23.119)

This result is derived from quantum electrodynamics (QED). It signifies the fact that two

photons do not interact via electromagnetic potentials or the potential Vr . Recapitulating
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our discussion in that chapter, we note that if we write the states in terms of photons, that is,

for example, designate |0〉, |1〉, |2〉 to correspond to states with 0, 1, 2 photons respectively,

then QED tells us that

〈0|A|0〉 = 0 = 〈1|A|1〉 (23.120)

while

〈1|A|0〉 � =0 �= 〈1|A|2〉. (23.121)

The point is that in QED A is expressed as a sum of two operators, one of which when

operating on a state defined in a multiparticle system destroys (removes) a photon from this

state and the other of which creates a new photon in the state. Since |0〉, |1〉, and |2〉 are

orthonormal, this explains results (23.120) and (23.121). It also explains that 〈f |Vr|i〉 will

vanish since it is related to 〈1|A|1〉.
The matrix element of T is then given by the second term in (23.116). Thus,

〈f |T |i〉 =
∑

mn

〈f |Vr|n〉
〈
n

∣∣∣∣
1

E − H + iǫ

∣∣∣∣m

〉
〈m|Vr|i〉 (23.122)

where we have inserted a complete sets of states |n〉 and |m〉 that designate states with

different energy levels of the atom. These states are assumed not to have any photons.

If we expand the denominator in (23.122) in powers of Vr , we can easily show, based

on QED, that since neither |n〉 nor |m〉 have photons in them, only even powers of Vr will

contribute, in which case only the diagonal elements will be nonzero. Thus the middle

matrix in (23.122) will be diagonal, given simply by the diagonal matrix of the Green’s

function, Gnn. One can therefore write

〈f |T |i〉 =
∑

n

〈f |Vr|n〉Gnn〈n|Vr|i〉. (23.123)

We note the since |i〉 and |f 〉 each contain a single photon, and |n〉 does not contain any

photons, the above matrix elements of Vr will be nonzero.

We can now use the R-matrix formalism and write

Gnn (E) =
1

E − En − Rnn (E + iǫ)
. (23.124)

Since

Rnn = Dn(E)−
i

2
wn ≈ −

i

2
wn (23.125)

where Dn(E) and wn have already been defined, we obtain

〈f |T |i〉 ≃
∑

n

〈f |Vr|n〉〈n|Vr|i〉
1

E − En + i
2
wn

. (23.126)

This is then in the resonance form.
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23.7.2 Resonant electron–atom scattering

Consider an electron scattering off a very heavy atom of energy Ei in its ground state (see

Fig. 23.2). If the electron can impart sufficient energy to the atom to raise it to an excited

state with energy En > Ei then the scattering amplitude can exhibit a resonance. Let us

consider such a case. We also assume that the atom after reaching the excited state drops

down to a lower level by the emission of a photon. We will derive a formal expression for

the T -matrix for this process.

The Hamiltonian for this system can be written as

H = H0 + V . (23.127)

The Hamiltonian H0 includes the energy of the atom, the kinetic energy of the electron, and

other interactions that do not come into play in this problem. The interaction between the

electron and the atom is represented by V . We divide V into two parts, Vr and Vc:

V = Vr + Vc. (23.128)

Here Vr is the interaction between the radiation field, represented by the vector potential

A, and an electron, of momentum p, in the atom, given by

Vr = −
e

2mc
A · p. (23.129)

This interaction is responsible for transitions from one atomic level to another as well as

for possible emission of a photon, while Vc is the typical Coulomb interaction between the

electron and the atom which, by itself, would give rise to Rutherford-type scattering. The

T -matrix expressed as T = V + VGV will be of the form

T = V + V
1

E − H + iǫ
V . (23.130)

Since we are only interested in the possible presence of a resonance, we ignore the first

term in (23.130). We then write

1

E − H + iǫ
= 1

(E − H0 − Vr + iǫ)

[
E − H + Vc + iǫ

E − H + iǫ

]
(23.131)

Atom
Electron

ki

Electron

kf

Photon

Fig. 23.2
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where the first denominator on the right exactly cancels the numerator. After rearranging

the terms in the square bracket above we obtain

1

E − H + iǫ
= 1

(E − H0 − Vr + iǫ)

[
1+ Vc

1

E − H + iǫ

]
. (23.132)

Hence,

T = V
1

E − H0 − Vr + iǫ

[
V + Vc

1

E − H + iǫ
V

]
. (23.133)

For the terms inside the square bracket, if we ignore the weak Vr term in relation to Vc

and replace V by Vc, then the expression will be simply the T -matrix for the electron–atom

scattering in the absence of a radiation field. We write this term as Te, given by

Te =
[
Vc + Vc

1

E − H0 − Vc + iǫ
Vc

]
. (23.134)

The complete T -matrix is then

T = V
1

E − H0 − Vr + iǫ
Te. (23.135)

If we designate |i〉 and |f 〉 as initial and final states, respectively, and insert complete sets

of intermediate states |m〉 and |n〉, then the matrix element of T is given by

〈f |T |i〉 =
∑

m,n

〈f |V | n〉
〈
n

∣∣∣∣
1

E − H0 − Vr + iǫ

∣∣∣∣m

〉
〈m |Te| i〉. (23.136)

We assume that the states |m〉 and |n〉 correspond to different atomic states, ignoring the

presence of any photons, whose contribution is expected to be small. Following the argu-

ments in the previous section, 〈n |Vr|m〉 will vanish and the middle matrix in (23.136) will

be diagonal. It will be given by the diagonal element, Gnn, of the total Green’s function.

Hence,

〈f |T |i〉 =
∑

n

〈f |V | n〉Gnn〈n |Te| i〉. (23.137)

One can then invoke the R-matrix formalism and write

Gnn (E) =
1

E − En − Rnn (E + iǫ)
≃ 1

E − En + i
2
wn

. (23.138)

Since we are considering the emission of a photon in the final state and since the state

|n〉 does not contain a photon,

〈f |V | n〉 = 〈f |Vr| n〉. (23.139)
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However, the external electron will not participate in this process, rather it will contribute

to 〈n |Te| i〉. If we designate Ei, En, and Ef as the initial, intermediate, and final ener-

gies of the atom, ei and ef as the initial and final momenta of the external electron, and

kf as the momentum of the emitted photon in the final state, then the T -matrix will be

given by

〈f |T |i〉 =
∑

n

〈kf |Vr|En〉〈Enef |Te|Eiei〉
E − En + i

2
wn

. (23.140)

This is in the resonance form as expected.

In our derivation of 〈f |T |i〉 for the photon–atom and electron–atom interactions the matrix

elements found in the numerators are by no means trivial to calculate. Our purpose here

was not to do detailed calculations for these processes but rather to express the T -matrix in

the R-matrix formalisms and show that this formalism is very useful if there are resonances

in the interacting system (see also Goldberger and Watson (1964) for a detailed discussion

on this subject).

23.8 Appendix to Chapter 23

23.8.1 Dispersion relations

Consider a function f (z) in the complex z-plane that is analytic in the upper half-plane. We

assume further that f (z) has a branch point at z = 0 (see Fig. 23.3). If f (z) is real along the

negative real axis, then along this axis it satisfies the relation

f
(
z∗
)
= f ∗(z). (23.141)

However, z∗ corresponds to a point in the lower half-plane if z lies in the upper half-plane

where f (z) is defined. Therefore, according to the theorem on analytic functions, f ∗(z) is

an analytic continuation of f (z) in the lower half-plane.

z0

0 x

C

•

Fig. 23.3
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With z = 0 being a branch point, it follows from the above-mentioned properties of

f (z) that we place the branch cut along the positive real axis. The discontinuity across this

branch cut is then defined as

disc f (z) = f (z)− f (z∗)
zi

. (23.142)

We now use the relation (23.141) for f (z∗). Since the discontinuity across the branch cut

along the real axis will correspond to the difference in f (z) just above and below the real

axis, we write z = x + iǫ, where ǫ is an infinitesimal quantity. Thus from (23.142) and

(23.141) we write

disc f (x) = lim
ǫ→0

f (x + iǫ)− f (x − iǫ)

2i
(23.143)

= lim
ǫ→0

f (x + iǫ)− f ∗(x + iǫ)

2i
(23.144)

= Im f (x). (23.145)

For a point z in the upper half-plane where f (z) is analytic, we utilize Cauchy’s theorem

to write

f (z) = 1

2π i

∮

C

dz′f
(
z′
)

z′ − z
(23.146)

where C is a contour inside which f (z) is analytic and z lies inside C. In the above relation

one can always include any contributions from isolated poles of f (z).

For our problem we will take C to cover the entire z-plane inside which f (z) is analytic

which would, therefore, exclude the positive real axis along which there is a branch cut. The

contour is described in Fig. 23.3. We also assume that f (z) vanishes at infinity to ensure

that the integral converges. We will now take

z = x + iǫ. (23.147)

Since f (z) vanishes at infinity, the contribution to the integral will come only from f
(
z′
)

above and below the real axis. The contribution will be in the form of the discontinuity

function, which we found to be

disc f (x) = Im f (x). (23.148)

Hence,

f (x + iǫ) = 1

π

∞∫

0

dx′ Im f (x′)
x′ − (x + iǫ)

. (23.149)
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The above relation is assumed to be in the limit ǫ → 0. This is the basic dispersion relation.

One can write it slightly differently by using the well-known results

1

x′ − x − iǫ
= P

(
1

x′ − x

)
+ iπδ(x′ − x) (23.150)

and

f (x + iǫ) = Re f (x)+ i Im f (x), (23.151)

again in the limit ǫ → 0, where the two terms correspond to real and imaginary parts.

Hence we write (23.149) as

Re f (x) = P

π

∞∫

0

dx′ Im f (x′)
x′ − x

. (23.152)

The usefulness of this relation lies in the fact that often one has some information about

the imaginary part of f (x) from which one determines the real part. For example, if f (x)

represents the scattering amplitude in the forward direction, with x as the energy, then from

the optical theorem one relates the imaginary part of f (x) to the total cross-section, which in

turn may be obtained from experiments. The crucial remaining question then is to determine

whether the integral in (23.152) converges, which is not always simple.

This method has been applied with considerable success in low-energy nuclear physics

and in optics, where the term “dispersion relation” arises. In optics it is called the

Kramers–Kronig relation.



24
Approximation methods for bound

states and scattering

Having looked at solutions that are obtained exactly or through perturbation theory, we

now consider cases where we have to resort to some unique approximation schemes, both

for scattering and for bound states. In relation to the bound states we introduce the WKB

approximation, and the variational method. For scattering at high energies we introduce the

eikonal approximation, which is closely allied to the WKB method.

24.1 WKB approximation

24.1.1 Introduction

We begin with the Schrödinger equation in one dimension,

− �
2

2m

d2u

dx2
+ V (x)u = Eu, (24.1)

which we write as

d2u

dx2
+ 2m

�2
(E − V (x)) = 0. (24.2)

If V (x) is a constant, equal to V0, then in that region one can write the solutions as

u = e±ikx for E > V0 with k2 = 2m

�2
(E − V0), (24.3)

u = e±κx for E < V0 with κ2 = 2m

�2
(V0 − E). (24.4)

Suppose now that V is not exactly a constant but varies very slowly as a function of x.

To be specific, let us first consider E > V (x) and write

k2(x) = 2m

�2
(E − V (x)), with E > V (x). (24.5)

The Schrödinger equation is then given by

d2u

dx2
+ k2(x) = 0. (24.6)
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We define λ(x) = 2π/k(x) to be the wavelength at a point x. We will obtain approximate

solutions for those cases where
∣∣∣∣
dλ

dx

∣∣∣∣≪ 1, i.e.,

∣∣∣∣
k ′(x)
k2(x)

∣∣∣∣≪ 1. (24.7)

This is basis of the WKB approximation, named after Wentzel, Kramers, and Brillouin who

formulated it. There are two situations in which this approximation applies: (i) small E with

V (x) varying very slowly, (ii) very large E.

Let us write the solution of (24.6) as

u(x) = Aeiφ(x). (24.8)

Substituting this in equation (24.6), we obtain

−φ′2 + iφ′′ + k2(x) = 0, (24.9)

which can be written as

φ′2 = k2(x)+ iφ
′′
. (24.10)

This equation can be solved iteratively by assuming φ′′ ≪ 1, which corresponds to the

approximation (24.7). In the first iteration, obtained by taking φ′′ = 0, we find

φ′ ≈ ±k(x). (24.11)

Thus,

φ′′ ≈ ±k ′(x). (24.12)

Substituting (24.11) into (24.9) gives

φ′ ≈ ±
√

k2(x)± ik ′(x) = ±k(x)

[
1± ik ′(x)

2k2(x)

]
, (24.13)

using the approximation (24.7). Therefore,

φ′ = ±k(x)+ ik ′(x)
2k(x)

(24.14)

and

φ(x) = ±
∫

dx k(x)+ i

2

∫
dx

k ′(x)
k(x)

+ const. (24.15)

= ±
∫

dx k(x)+ i

2
log(k(x)). (24.16)

Therefore, the solution becomes

u(x) = ei
[
±
∫

dx k(x)+ i
2 log(k(x))

]
(24.17)
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or, now including also the case E < V (x),

u(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1√
k(x)

e± i
∫

dx k(x) , k(x) =
√

2m
�2 (E − V (x)), for E > V (x)

1√
k(x)

e±
∫

dxκ(x) , κ(x) =
√

2m
�2 (V (x)− E), for E < V (x)

⎫
⎪⎪⎬
⎪⎪⎭

. (24.18)

In the region where E ≈ V (x) we find that k(x) ≈ 0 and the condition (24.7) for the

applicability of the approximation is violated. The point where

E = V (x) (24.19)

is called the classical turning point.

Consider the configuration of the potential as given by Fig. 24.1, with the dotted line

corresponding to the energy of the particle. We note that to the left of the classical turning

point is a region where E < V (x), which is classically forbidden. We call this region 2. A

particle in region 1 going to the left will be turned back in classical mechanics, before it

enters region 2.

One therefore needs to treat the region near the turning point separately. One can actually

obtain the exact solution if the behavior of k(x) is already known or if one can make a

reasonably good approximation to it near the turning point, x = 0. If we assume

k2(x) = cxn, (24.20)

then one finds the solution in region 1 to be

u1(x) = A ξ
1
2

1 k
1
2 J± m(ξ1), m = 1

n+ 2
(24.21)

where J is the cylindrical Bessel function, and

ξ1 =
x∫

0

dx k(x). (24.22)

0Region 2

E

x

V (x )

Region 1

Fig. 24.1
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As a simple example, let us take n = 1 so that

k2(x) = cx (24.23)

near x = 0. Then the solutions in the two regions are given by

u±1 (x) = A± ξ
1
2

1 k−
1
2 J± 1

3
(ξ1), (24.24)

u±2 (x) = B± ξ
1
2

2 κ
− 1

2 I± 1
3
(ξ2), (24.25)

where I is a Bessel function with imaginary argument, and

ξ2 =
0∫

x

dx κ(x). (24.26)

One can determine the coefficients A± and B± by substituting (24.23) into the solutions

(24.24) and (24.25) and equating the two functions at the boundary.

The behavior near the boundary x = 0 of the Bessel functions is

J± 1
3
(ξ1) −→

x→0

(
1
2
ξ1

)± 1
2

Ŵ
(
1± 1

3

) , (24.27)

I± 1
2
(ξ2) −→

x→0

(
1
2
ξ2

)± 1
2

Ŵ
(
1± 1

3

) . (24.28)

Inserting these expressions and equating the wavefunctions at the boundary, one finds

u+1 = u+2 ⇒ A+ = −B+, (24.29)

u−1 = u−2 ⇒ A− = B−. (24.30)

We will construct proper linear combinations of the wavefunctions in each region so

that they are consistent with the boundary conditions and at the same time have the correct

asymptotic behavior. We need to ensure that the wavefunction vanishes in the limit x →
−∞ in region 2. The asymptotic behavior of the Bessel functions is given by

J± 1
3
(ξ1) −→

x→∞

(π
2
ξ1

)− 1
2

cos
(
ξ1 ∓

π

6
− π

4

)
, (24.31)

I± 1
3
(ξ2) −→

x→− ∞
(2π ξ2)

− 1
2

[
eξ2 + e−ξ2e−i( 1

2± 1
3 )π

]
. (24.32)

For the wavefunctions u±2 (x) in region 2 this implies

u+2 (x) −→x→− ∞
− (2πκ)− 1

2

[
eξ2 + e−ξ2e−(

5iπ
6 )
]

, (24.33)

u−2 (x) −→x→− ∞
(2πκ)−

1
2

[
eξ2 + e−ξ2e−(

iπ
6 )
]

, (24.34)
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where we have ignored A± after incorporating the relative magnitudes and signs between

the coefficients A± and B±. We find that the sum of the two wavefunctions u+2 (x) and

u−2 (x) will vanish as x → −∞. One must then also take a sum u+1 (x)+ u−1 (x) to describe

the region to the right. We then have the following “connection formula” connecting the

asymptotic forms of the left and the right hand sides:

1

2
κ−

1
2 e−ξ2 ⇔ k−

1
2 cos

(
ξ1 −

π

4

)
. (24.35)

One needs to keep in mind that the functional form on the left has been determined first so

that it vanishes strictly as exp(−ξ2), since otherwise any fluctuations in the function on the

right can introduce the unwanted term exp(ξ2) on the left.

24.1.2 Energy levels of a particle trapped inside a potential

Consider a particle trapped inside a one-dimensional potential of the type given by Fig.

24.2. The precise functional dependence of V (x) is left unknown and could be complicated.

We show below how WKB approximation allows one to determine the energy eigenvalues,

E, of the particle.

From Fig. 24.2 we note that we have two separate regions outside where E < V (x).

These are of the type of region 2 discussed in Section 24.1.1 earlier. If x1 and x2 are the

two turning points then we can determine the wavefunctions in the inside region (region 1)

through the connection formula. Thus we find

u(x) = cos

⎛
⎝

x∫

x1

dx k(x)− π
4

⎞
⎠ x > x1, (24.36)

u(x) = cos

⎛
⎝

x2∫

x

dx k(x)− π
4

⎞
⎠ x < x2, (24.37)

where x is any point in the inside region. The multiplicative factors will be the same for the

two functions but one can adjust the relative signs. Since the two cosines must be equal at

Region 2

E

x

V (x)

Region 2

x1 x2

Region 1

Fig. 24.2
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the common point x, arguments of the cosines must be the same apart from the sign and up

to a multiple of π . Thus we have

x∫

x1

k(x) dx − π
4
= ±

⎡
⎣

x2∫

x

dx k(x)− π
4

⎤
⎦+ nπ . (24.38)

To be valid for all values of x in the inside region, the sign in front of the square bracket

must be negative. Therefore, moving the integral term on the right to the left-hand side and

collecting all the factors of π on the right we obtain

x2∫

x1

dx k(x) = π
2
+ nπ =

(
n+ 1

2

)
π . (24.39)

Hence,

x2∫

x1

dx [2m(E − V (x))]
1
2 =

(
n+ 1

2

)
π . (24.40)

This condition, remarkably, is the same as the old Bohr–Sommerfeld quantization condition.

Once V (x) is known, the above formula will yield the eigenvalues, E.

24.1.3 Tunneling through a barrier

One encounters this type of phenomenon in nuclear physics, for example, in α-particle

decay. Consider a heavy nucleus of charge Z that contains a bound α-particle of charge

Zα = 2. The α-decay corresponds to this particle fragmenting off the heavy nucleus. The

particle inside the nucleus is subjected to a very strong and attractive interaction due to the

nuclear potential, which is typically given by

−ge−r/R

r
. (24.41)

These are short-range forces of radius R. Outside r = R, there are two forces that are very

effective since they are of longer range. One is the repulsive Coulomb potential

ZαZ ′

r
(24.42)

where Z ′ is the residual nuclear charge, and the other is the centrifugal (repulsive) barrier

�
2l(l + 1)

2mr2
(24.43)

where l is the angular momentum of the particle. These two together constitute a barrier

preventing the escape of the α-particle. The configuration of the potentials is described
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Region 2Region 1

r

E

0

Region 1

r 1 r2

Veff 

Fig. 24.3

pictorially in Fig. 24.3. The occurrence of α-decay implies that the α-particle has a finite

probability of penetrating through this barrier.

The WKB approximation has an interesting application to this problem in determining

the barrier penetration factor and, therefore, the decay rate. Our earlier formulation for

one dimension can easily be extended to the case of a three-dimensional potential that is a

function of a single variable, r. This is in a sense a one-dimensional problem in which one

includes the centrifugal barrier by defining an effective potential, Veff , given by

Veff = V (r)+ �
2l(l + 1)

2mr2
. (24.44)

From Fig. 24.3 we note that the middle region will correspond to our region 2 discussed

in Section 24.1.2 where we write

κ(r) =
[

2m

�2

(
Veff − E

)] 1
2

. (24.45)

If a and b are the turning points and u(r) is the radial wavefunction, then the probability of

tunneling through the barrier is the same as the transmission coefficient given by

T =
∣∣∣∣
u(b)

u(a)

∣∣∣∣
2

. (24.46)

From our WKB analysis of Section 24.1.2 this is simply proportional to

e
−2

b∫
a

drκ(r)

= e
−2

b∫
a

dr
√

2m

�2 (Veff −E)
. (24.47)

Considering the case l = 0, the effective potential is

Veff (r) =
ZαZ ′e2

r
(24.48)

where Z ′ is the number of left-over protons in the nucleus. Since the nuclear potential is

very strong and of short range, we can take the end point to be simply given by a = R, the
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range of nuclear interaction. The other turning point, b, is given by the value of r when

E = ZαZ ′e2

r
. (24.49)

Thus,

∫
dr k(r) =

√
2m

�2

Z Z ′e2

E∫

R

dr

√
Z Z ′e2

r
− E (24.50)

=
√

2mE

�2

Z Z ′e2

E∫

R

dr

√
Z Z ′e2

E

1

r
− 1. (24.51)

Let

Z Z ′e2

E

1

r
= 1

ρ
and

Z Z ′e2

E

1

R
= 1

ρ0

. (24.52)

Hence,

k(r) =
√

2mE

�2

Z Z ′e2

E

1∫

ρ0

dρ

√
1

ρ
− 1. (24.53)

If the energies are low, E ∼ 0, then ρ0 ≪ 1. We can then replace the lower limit of the

integral above by zero and write

k(r) = 2Z Z ′e2

�v

1∫

0

dρ

√
1

ρ
− 1 (24.54)

where we have taken the nonrelativistic approximation E = 1
2
mv

2 with v as the velocity.

To evaluate the integral we set

ρ = cos2 θ . (24.55)

Then

dρ = −2 cos θ sin θ dθ . (24.56)

and

1∫

0

dρ

√
1

ρ
− 1 =

π∫

0

2 sin2 θ dθ = π . (24.57)
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Hence,

∫
dr k(r) = 2πZ Z ′e2

�v

. (24.58)

The transmission coefficient for nuclear α decay is then equal to

e
−2

b∫
a

drk(r)

= e−
4πZ Z ′e2

�v . (24.59)

This is known as the Gamow factor for nuclear alpha decay. The results we derived here

are consistent with experiments.

From our derivations above we find that the connection formulas play a secondary role in

the WKB approximation, as long as we have a good knowledge of what the wavefunctions

should be in the internal regions.

24.2 Variational method

The variational method is most useful in estimating the ground-state energy of a bound

system for which the eigenfunctions are not known.

Let un(r) be the eigenfunctions of energy with eigenvalues En that satisfy the equation

Hun = Enun (24.60)

where H is the Hamiltonian for the system. Consider now an arbitrary function φ(r). This

function can be expanded in terms of the complete set of eigenstates un,

φ =
∑

n

anun. (24.61)

If un’s, and, therefore, φ, are normalized then

∫
d3r φ∗φ =

∑

n

|an|2 = 1. (24.62)

Now let us take the expectation value of H with respect to φ:

〈H 〉 =
∫

d3r φ∗Hφ =
∑

n

En |an|2 . (24.63)

If E0 is the ground-state energy, then

〈H 〉 ≥
∑

n

E0 |an|2 = E0

∑

n

|an|2 . (24.64)
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This implies that

E0 ≤ 〈H 〉 =
∫

d3r φ∗Hφ. (24.65)

If un’s are not normalized then one writes

E0 ≤
∫

d3r φ∗Hφ∫
d3r |φ|2

. (24.66)

The variational method consists in choosing a trial function φ with respect to which one

obtains 〈H 〉. This trial function will depend on one or more parameters with respect to which

〈H 〉 is minimized to obtain the best upper bound on E0. Let us now turn to an interesting

application of this method.

24.2.1 Helium atom

Helium consists of two electrons in a nucleus of positive charge with Z = 2. The total

Hamiltonian is given by

H = − �
2

2m

(
∇2

1 + ∇2
2

)
− 2e2

(
1

r1
+ 1

r2

)
+ e2

|r1 − r2|
. (24.67)

The nucleus is assumed to be infinitely heavy. The two electrons are designated by the

subscripts 1 and 2. The first term above corresponds to their kinetic energy, the second one

to the Coulomb attraction between the nucleus and the individual electrons and the last term

to the mutual Coulomb repulsion between the electrons. Were it not for this repulsion the

wavefunction for the electrons would be simply a product of their individual hydrogen-like

wavefunctions. This product, however, will be an ideal candidate for us to use as a trial

function. It is given by

φtrial = φ (r1, r2) =
Z3

πa3
0

e−(Z/a0)(r1+r2) (24.68)

where Z is now taken as a parameter with respect to which the Hamiltonian will be

minimized.

The expectation values of the first two terms with respect to the trial wavefunction can

easily be calculated and are given by

〈
− �

2

2m

(
∇2

1 + ∇2
2

)〉
= e2Z2

a0
, (24.69)

〈
2e2

(
1

r1
+ 1

r2

)〉
= 4e2Z

a0
. (24.70)
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The expectation value of the third term is

〈
e2

|r1 − r2|

〉
=
∫ ∫

d3r1 d3r2 φ
∗ (r1, r2)

e2

|r1 − r2|
ψ (r1, r2) (24.71)

=
(

Z3

πa3
0

)2

e2

∫ ∫
d3r1 d3r2

1

|r1 − r2|
e−(2Z/a0)(r1+r2). (24.72)

To determine this integral we use the result

1

r
= 1

2π2

∫
d3keik·r

k2
. (24.73)

This integral is actually a familiar one. It is related to the scattering amplitude in the Born

approximation for the Coulomb interaction, which is effectively a Fourier transform of

(1/r). The integral above is just an inverse transform of it. We replace r on the left by

|r1 − r2| and r in the exponent on the right by (r1 − r). The integral then becomes a

product of two identical integrals. This result when used in (24.72) gives

〈
e2

|r1 − r2|

〉
=
(

Z3

πa3
0

)2

e2

(
1

2π2

)∫
d3k

k2

[∫
d3r e−(2Z/a0)reik·r

]2

. (24.74)

We use the integrals

∫
d3r e−(2Z/a0)reik·r = 16πZa3

0(
k2a2

0 + 4Z2
)2

, (24.75)

∞∫

0

dκ

(κ + 1)4
= 5π

32
, (24.76)

to obtain

〈
e2

|r1 − r2|

〉
= 5e2Z

8a0
. (24.77)

Thus combining (24.69), (24.70), and (24.77) we find

〈H 〉 = e2Z2

a0
− 4e2Z

a0
+ 5e2Z

8a0
= e2

a0

(
Z2 − 27

8
Z

)
. (24.78)

We minimize 〈H 〉 with respect to the parameter Z ,

∂ 〈H 〉
∂Z

= 0. (24.79)

The solution is found to be

Z = 27

16
. (24.80)
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Hence the ground-state energy of the helium atom is estimated to be

E0 = −
(

27

16

)2
e2

a0
= −2.85

e2

a0
. (24.81)

The experimental value is found to be close to−2.90(e2/a0). Hence the variational method

provides an excellent approximation to the actual value.

The value (24.80) obtained for Z can be called the effective charge, which can be

understood physically if we write

Z = 27

16
= 2− 5

16
. (24.82)

The reduction in the original value Z = 2 for the nucleus can be interpreted by saying that

each electron screens the nucleus and hence reduces its charge by 5/16, giving us a smaller

effective charge of 27/16.

24.3 Eikonal approximation

TheWKB method has been useful for low-energy problems. Let us now turn to the scattering

problems in which the particle energies are very high. We will discuss here a closely related

approach to WKB called the eikonal approximation.

Consider once again a one-dimensional Schrödinger equation for a scattering problem,

where E > V (x),

− �
2

2m

d2u

dx2
+ V (x)u = Eu. (24.83)

We can write it as

d2u

dx2
+ k2(x)u = 0 (24.84)

where

k2(x) = 2m

�2
(E − V (x)). (24.85)

The solution of this equation, as we discussed for the WKB problems, can be written as

u(x) = Aei
x∫
dx′ k(x′). (24.86)

Let us consider the case where

E ≫ V . (24.87)
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This is the high-energy approximation. One can then make the expansion

k(x) =
√

2mE

�2

(
1− 1

2

V (x)

E

)
, (24.88)

which can be written as

k(x) = k − 1

�v

V (x) (24.89)

where

k =
√

2mE

�2
, (24.90)

which is a constant and

v = velocity of the particle, E = 1

2
mv

2 and �k = mv. (24.91)

Therefore,

u(x) = eikx e
−i
�v

x∫
dx′ V (x′). (24.92)

We extend this to three dimensions by writing the Schrödinger equation in Cartesian

coordinates as

d2u

dx2
+ d2u

dy2
+ d2u

dz2
+ 2m

�2
(E − V (x, y, z))u = 0. (24.93)

We assume that the particle is traveling in the z-direction at sufficiently high energies that

the effect of the interaction will be to deflect the particle by only small angles. This process

can be described more simply by using cylindrical coordinates with the axis of a cylinder

being the z-axis. Let us denote the radial vector in the x− y plane by b, which is also called

the impact parameter, and the angle by φ. The relation between the coordinate systems is

given by

x = b cosφ, y = b sin φ, z = z. (24.94)

Thus,

d3r = b db dφ dz. (24.95)

The potential can be written as

V (x, y, z) = V (b, z) (24.96)

assuming symmetry about the z-axis. This process is described in Fig. 24.4.
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•

z

Fig. 24.4

The wavefunction in three dimensions is then given by the extension of the one-

dimensional result,

ui(r) = eiki ·re
−i
�v

z∫
−∞

dz′ V (b,z′)
(24.97)

where ki = ke3, corresponding to the motion of the particle in the z-direction. Since this

represents the initial or incoming wave, we have introduced the subscript i.

From our results in scattering theory we have found that the scattering amplitude, f (θ),

is given by

f (θ) = − m

2π�2

∫
d3r e−ikf ·rV (r)ui(r) (24.98)

where kf is the momentum of the particle after scattering, the final momentum. Substituting

(24.97) we obtain

f (θ) = − m

2π�2

∫
d3r V (b, z)e−iq·re

−i
�v

z∫
−∞

dz′ V (b,z′)
(24.99)

where q is the momentum transfer

q = kf − ki. (24.100)

For small deflections from the direction of motion, the z-axis, we have qz ≈ 0, and,

therefore, q will be entirely in the x−y plane. Thus,

q · r = q · b = qb cosφ (24.101)

and

f (θ) = − m

2π�2

∞∫

0

b db

2π∫

0

dφ

∞∫

−∞
dz V (b, z)eiqb cosφ e

−i
�v

z∫
−∞

dz′ V (b,z′)
. (24.102)

To evaluate the integral over z, we note that since V (b, z) also appears in the exponent,

the integrand, as a function of z, corresponds to a perfect differential. We can then make

use of the relation
∫

dz
df (z)

dz
e f (z) = e f (z). (24.103)



464 Approximation methods for bound states and scattering

Thus,

∞∫

−∞
dz V (b, z)e

−i
�v

z∫
−∞

dz′ V (b,z′)
=

⎡
⎣i�ve

−i
�v

z∫
−∞

dz′ V (b,z′)
⎤
⎦

z=∞

z=−∞

(24.104)

= i�v

⎡
⎣e

−i
�v

z∫
−∞

dz′ V (b,z′)
− 1

⎤
⎦ . (24.105)

The scattering amplitude is then found to be

f (θ) = ik

2π

∞∫

0

db b

2π∫

0

dφ eiqb cosφ

⎡
⎣1− e

−i
�v

∞∫
−∞

dz′ V (b,z′)
⎤
⎦ . (24.106)

The integral over φ is a well-known identity involving the Bessel function J0(qb),

2π∫

0

dφ eiqb cosφ = 2π J0(qb). (24.107)

Thus the scattering amplitude is found to be

f (θ) = ik

∞∫

0

db b J0(qb)

⎡
⎣1− e

−i
�v

∞∫
−∞

dz′ V (b,z′)
⎤
⎦ . (24.108)

We note that the angular momentum l is related to the impact parameter by

l = kb. (24.109)

Therefore, the above relation for f (θ) is related to the partial wave expansion we considered

in Chapter 20. Here, since b = l/k , the sum over l at high energies is replaced by an integral

over the impact parameter b.

24.3.1 Absorption

As we have already discussed in earlier chapters, to account for absorption, albeit phe-

nomenologically, we can replace V by a complex V given by (VR − iVI ), with positive VI ,

and substitute it in (24.108). We obtain

f (θ) = ik

∞∫

0

db b J0(qb)

⎡
⎣1− e

−i
�v

∞∫
−∞

dz′ VR(b,z′)
e
− −1

�v

∞∫
−∞

dz′ VI (b,z′)
⎤
⎦ . (24.110)
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We will now call this f (θ) the elastic scattering amplitude, which will describe elastic

process of the type A+ B → A+ B. The elastic cross-section is then

σ el =
∫

d� |f (θ)|2 . (24.111)

The total cross-section is obtained from the optical theorem:

σ total =
k

4π
Im f (0). (24.112)

The absorption cross-section is then the difference

σ abs = σ total − σ el . (24.113)

24.3.2 Perfect absorption

Of great interest in high-energy scattering processes is the case when there is perfect absorp-

tion. The scattering process for this case is also called pure diffraction. It will correspond

to having VI infinite in the region of interaction. Therefore, if the range of interaction is R,

perfect absorption will correspond to

V = 0, b > R, (24.114)

VI = ∞, b < R. (24.115)

This is referred to as representing a “black” disk. The scattering amplitude is then given by

f (θ) = ik

R∫

0

db bJ0(kbθ). (24.116)

Using a well-known relation involving the Bessel functions, this integral can be calculated

exactly and one finds

f (θ) = i
RJ1(kRθ)

θ
(24.117)

where J1(kRθ) is the cylindrical Bessel function of the first order. It has the property

J1(x)→
x

2
as x → 0. (24.118)

The quantity |f (θ)|2 has a sharp peak at θ = 0 with height (1/4) k2R4. The differential

cross-section is then given by

dσ

d�
= R2

[
J1(kRθ)

θ

]2

. (24.119)
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This result is well-known in optics and corresponds to Fraunhofer diffraction by a black

sphere.

The elastic cross-section can be calculated. One can write it approximately as

σ el =
∫
|f (θ)|2 d� ≈ πR2. (24.120)

From the generalized optical theorem the total cross-section is found to be

σ T =
4π

k
Im f (0) =

(
4π

k

)(
kR2

2

)
= 2πR2. (24.121)

The inelastic cross-section due to a perfect absorber is then

σ inel = πR2. (24.122)

This is once again a consequence of the “shadow” effect, where the black disk takes away

from the incident wave an amount equal to the area of the disk.

24.4 Problems

1. Use the WKB approximation to obtain the energy levels of a harmonic oscillator.

2. Consider the following potential,

V (x) = λ |x| for −∞ < x < +∞

with λ > 0. Use the WKB approximation to obtain the energy eigenvalues.

3. For a one-dimensional harmonic oscillator use the variational method with the trial

wavefunction exp(−β |x|) to estimate the ground-state energy.

4. Consider the infinite barrier problem where the potential is given by

V (x) = 0, |x| < a

= ∞, |x| > a.

Use the variational method with the following trial wavefunction:

u(x) = A(a2 − x2), |x| < a

= 0, |x| > a

where A is the normalization constant, to estimate the ground-state energy. Compare

your result with the exact result.

5. Consider a three-dimensional isotropic harmonic oscillator for which the Hamiltonian

is given by

H = p2

2m
+ 1

2
mω2r2.
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Use the variational method with the trial function

u(r) = 1
(
πa2

)3/4
exp(−r2/2a2)

and obtain E. Minimizing E with respect to a2, show that the upper bound for the

ground-state energy reproduces the exact result for the energy given by

a =
√

�

mω
and Ea =

3

2
�ω.

Substitute the above value of a in the trial function and show that it also reproduces the

exact ground-state wavefunction.

6. Consider the Hamiltonian for the hydrogen atom:

H = p2

2m
− e2

r
.

Assume Ne−αr as a trial wavefunction where N is the normalization constant (to be

determined in terms of α). Use α as the variational parameter to estimate the energy

for the ground state, which is an S-state.

7. Use

Rl = e−βr

as the trial wavefunction to obtain the l = 0 ground-state energy for the potentials

(i) V (r) = −λe−μr ,

(ii) V (r) = −λrn, with n ≥ −1.

Compare the results of (ii) with those for Coulomb and for harmonic oscillator

potentials.

8. In an equivalent description of the eikonal approximation, express the wavefunction

for a particle moving in the z-direction as

u(r) = 1
(√

2π
)3

eikz
w(r).

Show that in the approximation in which ∇2
w(r) can be neglected, the Schrödinger

equation gives

[
d

dz
+ im

k
V (r)

]
w(r) = 0

with the solution

w(b,z) = exp

⎛
⎝− i

v

z∫

−∞
dz′ V (b, z′)

⎞
⎠

where b =
√

x2 + y2 is the impact parameter, v = k/m is the velocity.
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9. In the previous problem, assuming the scattering to be essentially in the forward

direction, use the Born approximation to show that the scattering amplitude is given by

f (θ) = k

2π i

∫
db

[
e2i�(b) − 1

]

where

�(b) = − 1

2v

∞∫

−∞
dz′V (b, z′).

Assume θ ≈ 0, and take the magnitude of the momentum transfer |q| ≈ kθ .

10. Determine the ground-state energy of the helium atom using perturbation theory with

the Coulomb potential between the two electrons as the perturbing potential. Assume

the unperturbed wavefunction to be given by the product of two hydrogen atom wave

functions. Compare your result with the variational result.

11. Obtain the ground-state energy using the variational principle with the trial function

exp(−αr) for (i) V (r) = λ/r and (ii) V (r) = λr.



25
Lagrangian method and Feynman

path integrals

The Lagrangian formulation, in essence, describes the dynamics of a particle starting with

the action principle. Through the so-called Euler–Lagrange equations it allows one to deter-

mine the particle’s equations of motion. One of the properties of a Lagrangian is that the

conservation laws can be incorporated through it quite simply. It is important to note that

the action principle also plays a role in quantum mechanics through Feynman path integral

techniques.

In the path integral technique in quantum mechanics, the concept of a unique path for a

classical particle is replaced, starting from the superposition principle, by a sum of infinitely

many possible paths that a particle can take between any two points. In this formulation

the probability amplitude for a given process is calculated and found to be proportional to

exp [iS/�], where S is the action. It is then summed over all paths. The interference between

the terms in the summation then determines the motion of the particles. We will discuss all

of this in the following.

25.1 Euler–Lagrange equations

In classical mechanics the motion of a point particle is described by a Lagrangian, L (qi, q̇i),

where qi (t) (i = 1, 2, 3) are the three space coordinates and q̇i = dqi/dt. The Lagrangian

is defined as

L = T − V (25.1)

where T is the kinetic energy and V the potential energy given, respectively, by

T = 1

2
mq̇2

i , V = V (q) (25.2)

where V (q) depends only on the magnitude of q. We are using the summation convention

whenever the index i is repeated.

The momentum pi is defined as

pi =
∂L

∂ q̇i
(25.3)

and the Hamiltonian is then

H = piq̇i − L. (25.4)
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Thus from (25.1) and (25.2), we find

pi = mq̇i (25.5)

and

H = 1

2
mq̇2

i + V (q) = T + V (25.6)

as expected.

The basic hypothesis of the Lagrangian formulation is that the motion of a particle is

obtained by minimizing the action, S, which is defined as

S =
∫ t2

t1

dt L (qi, q̇i) . (25.7)

The minimization then corresponds to

δS = 0 (25.8)

where δS is the variation of S with respect to an arbitrary path with the end points at t1 and t2

fixed. The relation (25.8) implies that the path taken by a classical particle will correspond

to a minimum of S.

We can calculate δS as follows:

δS =
∫ t2

t1

dt

[
∂L

∂qi
δqi +

∂L

∂ q̇i
δq̇i

]
(25.9)

where a summation of qi and q̇i for i = 1, 2, 3 is implied. Integrating the second term by

parts we get

∫ t2

t1

dt
∂L

∂ q̇i
δq̇i = −

∫ t2

t1

dt δqi
d

dt

(
∂L

∂ q̇i

)
. (25.10)

Since the end points are fixed we have taken δqi(t1) = 0 = δqi(t2) in doing the partial

integration. The relation (25.9) is now given by

δS =
∫ t2

t1

dt δqi

[
∂L

∂qi
− d

dt

(
∂L

∂ q̇i

)]
. (25.11)

Since this relation holds for any arbitrary path between t1 and t2, the minimization condition

(25.8) implies that the integrand in (25.11) must vanish. Hence,

∂L

∂qi
− d

dt

(
∂L

∂ q̇i

)
= 0. (25.12)

These are called Euler–Lagrange equations, which constitute the basic equations of motion

in classical mechanics.
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If we insert the relations (25.2) in (25.1) and substitute L in (25.12), we reproduce the

well-known classical equations of motion,

mq̈i = −
∂V

∂qi
. (25.13)

A one-dimensional harmonic oscillator provides a simple example for an application of the

Lagrangian formulation. Replacing qi by x and q̇i by ẋ, the Lagrangian for this problem is

given by

L = 1

2
mẋ2 − 1

2
Kx2 (25.14)

where K is the spring constant. From (25.13) we obtain

mẍ = −Kx, (25.15)

which is the classical equation of motion for a one-dimensional harmonic oscillator.

25.2N oscillators and the continuum limit

Consider N particles connected along a single dimension by identical springs with the same

spring constant, K (see Fig. 25.1). If yi is the displacement of the ith particle from its

equilibrium position, then the Lagrangian will be given by

L =
N∑

i=1

1

2

[
mẏ2

i − K (yi+1 − yi)
2
]

. (25.16)

We assume that the equilibrium positions of two neighboring particles are separated by a

distance, a, and define the Lagrangian density per unit length as L so that

L =
N∑

i=1

aLi (25.17)

where

L = 1

2

[(m

a

)
ẏ2 − Ka

(
yi+1 − yi

a

)2
]

. (25.18)

Fig. 25.1
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Let us now go to the continuum limit with infinite degrees of freedom, N → ∞, by

taking

m

a
= μ = mass per unit length, (25.19)

Y = Ka = Young’s modulus, (25.20)

and change

N∑

i=1

aL→
∫

dx L (25.21)

where we have replaced a by dx while the summation over i is replaced by an integral. The

Lagrangian density, L, is now given by

L = 1

2

[
μφ̇

2 − Y

(
∂φ

∂x

)2
]

. (25.22)

We have also made the following replacements of discrete quantities by their continuous

counterparts in writing the above result:

yi → φ(x, t), (25.23)

yi+1 − yi

a
→ ∂φ

∂x
. (25.24)

The Lagrangian density, L, is now a function of φ, ∂φ/∂x, φ̇.

The Lagrangian, L, is written as

L =
∫

dx L

(
φ, φ̇,

∂φ

∂x

)
(25.25)

and the action S as

S =
∫

dt

∫
dx L

(
φ, φ̇,

∂φ

∂x

)
. (25.26)

The minimization δS = 0 gives the Euler–Lagrange equations

∂L

∂φ
− ∂

∂x

∂L

∂
(
∂φ
∂x

) − ∂

∂t

∂L

∂
(
φ̇
) = 0 (25.27)

where as before we have assumed δφ to vanish at the end points of x and t. From L given

by (25.22) we obtain

μ
∂2φ

∂t2
− Y

∂2φ

∂x2
= 0, (25.28)
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which corresponds to the known wave equation in one dimension for a wave amplitude φ

traveling with velocity
√

Y/μ.

In summary, in the discrete case we discussed earlier, we found that once the Lagrangian

was known, as it was for the case of the harmonic oscillator given by (25.14), the Lagrangian

formulation enabled us to obtain the equation of motion for the displacement variable. In

the continuum limit it was shown through the example of a set of harmonic oscillators that

the equation of motion for the displacement variable is replaced by a wave equation for φ

representing the displacement in the continuum limit.

25.3 Feynman path integrals

25.3.1 Time evolution operator and Green’s function

Consider a matrix element of the time-evolution operator

U (t2, t1) = exp

[
−i

H (t2 − t1)

�

]
. (25.29)

Confining to one space dimension, we define the matrix element

K(x2, t2; x1, t1) = 〈x2| exp

[
−i

H (t2 − t1)

�

]
|x1〉 (25.30)

where H is the Hamiltonian

H = p2

2m
+ V (x). (25.31)

We can write K as

K(x2, t2; x1, t1) = 〈x2(t2)| x1(t1)〉. (25.32)

In a sense K propagates the information between the two points, (x2, t2) and (x1, t1); hence

it is called a “propagator” or simply a Green’s function. One also refers to it as a “transition

amplitude” to go from the state |x2(t2)〉 to the state |x1(t1)〉. We have come across many

types of propagators before that generally depend on momentum variables. This depends

on space-time. We will write it as

K(x2, t2; x1, t1) = 〈x2, t2| x1, t1〉. (25.33)

It satisfies the properties

K(x2, t2; x1, t1) = 0, for t2 < t1, (25.34)

lim
t2→t1

K(x2, t2; x1, t1) = δ(x2 − x1). (25.35)
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We note that for fixed values of x1 and t1, K satisfies the time-dependent Schrödinger

equation, as is evident from the presence of the time-evolution operator U (t2, t1).

Let us assume the two space-time points (x2, t2) and (x1, t1) to be only infinitesimally

apart,

x2 = x1 +�x, t2 = t1 + ǫ (25.36)

where �x and ǫ are infinitesimal quantities. We then make a linear expansion of the

exponential in (25.30) in terms of ǫ, and obtain,

K(x2, t2; x1, t1) = 〈x2|
[
1− iǫ

�

(
p2

2m
+ V (x)

)]
|x1〉 . (25.37)

At this stage p and x are operators. However, one can make the following simplification,

〈x2|
[
1− iǫ

�
V (x)

]
|x1〉 =

[
1− iǫ

�
V (x1)

]
δ(x2 − x1) (25.38)

where V (x1) is now a function that corresponds to the potential at the point x1, and no longer

an operator. Let us now express δ(x2 − x1) in the following familiar form:

δ(x2 − x1) =
1

2π

∫
dp1 eip1(x2−x1). (25.39)

Expression (25.38) is then given by

1

2π

∫
dp1

[
1− iǫ

�
V (x1)

]
eip1(x2−x1). (25.40)

To obtain the matrix element of p2 in (25.37), we insert a complete set of states |p1〉 and

|p2〉; therefore,

〈x2| p2 |x1〉 =
∫

dp1

∫
dp2 〈x2| p2〉 〈p2| p2 |p1〉 〈p1| x1〉. (25.41)

Since p2 is a diagonal operator, for (25.41) we obtain

1

2π

∫
dp1 p2

1 eip1(x2−x1) (25.42)

where we have written the momentum eigenfunction 〈x| p〉 as

〈x| p〉 = 1√
2π

eipx. (25.43)

After combining (25.40) and (25.42), the expression (25.37) can be written as

1

2π

∫
dp1

[
1− iǫ

�

[
p2

1

2m
+ V (x1)

]]
eip1(x2−x1). (25.44)
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The Hamiltonian is now to be evaluated at specific values x1 and p1. To order ǫ, we can

revert to writing the term in the square bracket as an exponential and write (25.44) as

1

2π

∫
dp1eip1(x2−x1)e

−−iǫ
�

[
p2
1

2m+V (x1)

]

. (25.45)

Let us write

(x2 − x1) = �x = ẋ1ǫ. (25.46)

Therefore, (25.45) becomes

1

2π

∫
dp1e

i

[
p1ẋ1−

p2
1

2m−V (x1)

]
−ǫ
�

. (25.47)

Hence

〈x2, t2| x1, t1〉 =
1

2π

∫
dp1 exp

[−iǫ

�
[p1ẋ1 − H (x1, p1)]

]
. (25.48)

We note that the above simplification was achieved only because we made a linear

approximation for the exponential on the grounds that the space-time points for the matrix

element are separated by an infinitesimal amount. This allowed us to avoid going to higher

powers in (t2 − t1), which would have involved the products of x and p, and, therefore,

would have brought in the commutator [x, p] (= i�).

The integral (25.47) can be simplified further by writing

p1ẋ1 −
p2

1

2m
= − 1

2m
(p1 − mẋ1)

2 + mẋ2
1

2
. (25.49)

The integral over the p1-term in (25.47) is

∫
dp1 exp

−iǫ

2m�

[
(p1 − mẋ1)

2
]
=
√

2mπ�

iǫ
. (25.50)

Thus,

〈x2, t2| x1, t1〉 =
√

m�

2π iǫ
exp ǫ

[
mẋ2

1

2
− V (x1)

]
. (25.51)

The right-hand side can be expressed as

1

w(ǫ)
exp

[
−i

L

�
�t21

]
(25.52)

where

w(ǫ) =
√

2π iǫ

m�
and �t21 = (t2 − t1) (25.53)



476 Lagrangian method and Feynman path integrals

and L is the Lagrangian

L = L(x1, ẋ1) =
mẋ2

1

2
− V (x1) . (25.54)

Thus,

〈x2, t2| x1, t1〉 =
1

w(ǫ)
exp

(
−i

[
L

�
�t21

])
. (25.55)

25.3.2 N-intervals

In the following we will continue to make the assumption that the separation between all the

adjacent space-time points is infinitesimal. In going from a point (x1, t1) a finite distance

to (xN , tN ) we will divide the interval into (N − 1) equal parts and take

�ti+1,i = ǫ = lim
N→∞

ti+1−ti

N
. (25.56)

Introducing a complete set of states, the matrix element 〈xN , tN | x1, t1〉 can be written as

〈xN , tN | x1, t1〉

=
∫

dxN−1

∫
dxN−2 · · ·

∫
dx2 〈xN , tN | xN−1, tN−1〉

〈
xN−1, tN−1

∣∣ xN−2, tN−2〉 · · · 〈x2, t2| x1, t1〉.
(25.57)

Pictorially this is expressed in the space-time plot in Fig. 25.2. We note that the end points

(x1, t1), and (xN , tN ) are fixed, while the transition amplitudes are integrated out over all

values of the intermediate space points x2 · · · xN−1 at each value of time. This implies that

we must sum over all possible paths in the space-time plane with fixed end points. This

is the essence of the Feynman path integration technique for transition amplitudes. The

formalism shows that if we are given the transition amplitude over an infinitesimal interval

then through this technique, one can generate, the amplitude for finite distances.

t

x

(xN, tN 
)

tN– 1

t1

t2

(x1, t1)

Fig. 25.2
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Using (25.48) the above relation can be expressed as

〈xN , tN | x1, t1〉 = lim
N→∞

∫ N−1∏

i=2

dxi

N−1∏

i=1

dpi

2π
exp

[
iǫ

�
[pi ẋ1 − H (xi, pi)]

]
. (25.58)

We can also write it, using (25.52), as

〈xN , tN | x1, t1〉 = lim
N→∞

1

w(ǫ)N

∫
dx2

∫
dx3 · · ·

∫
dxN−1 exp

⎡
⎣− i

�

⎡
⎣

tN∫

t1

L dt

⎤
⎦
⎤
⎦ (25.59)

where we have expressed

L1�t21 + L2�t32 + · · · + LN�tNN−1 =
tN∫

t1

L dt (25.60)

where Li is the Lagrangian

Li =
mẋ2

i

2
− V (xi) . (25.61)

The integral over the Lagrangian is just the action S defined earlier. We write it as

S(n, n− 1) =
tn∫

tn−1

L dt. (25.62)

Hence, one can write

〈xN , tN | x1, t1〉 =
1

w(ǫ)N

∫
D(x) exp

[
−S(N , 1)

�

]
(25.63)

where D(x) symbolically represents the product of the integrals

∫
D(x) =

∫
dx2

∫
dx3 · · ·

∫
dxN−1. (25.64)

This expression is known as the Feynman path integral (see Fig. 25.3), and it represents the

sum over all possible paths,
∑

paths.

We find from the above formalism that in quantum mechanics all possible paths must

play a role. In the classical limit, � → 0, we note from (25.63) that the phases will fluctuate

wildly as one goes from one path to another, leading to cancelations between the terms.

The exception will occur when the variation in the numerator of the exponent is minimal,

leading to the condition

δ

tn∫

tn−1

L dt = 0 (25.65)
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x1, t1

xN, tN

Fig. 25.3

for fixed end points. This will then correspond to the classical path. The above condition

is, indeed, the basis for the Lagrangian formulation of classical mechanics.

It is often found that one has to go through very difficult calculations to solve a relatively

simple problem when one utilizes the Feynman path techniques. The advantage of this

technique is that only functions of variables are involved and not the operators and hence

the problems of commutation relations are not encountered. Also, symmetries are easier to

incorporate into the theory. One finds that Feynman techniques provide a powerful tool in

treating problems in quantum field theory.

25.4 Problems

1. Show that one can write

〈xN , tN |x1, t1〉 =
∫

dxN−1 F (xN , xN−1; tN , tN−1) exp

[
−i

V�t

�

]
〈xN−1, tN−1 |x1, t1〉

where F = K for V = 0. Take xN = x, xN−1 = x−�x, tN = t+�t, and tN−1 = t and

expand the matrix elements on both sides of the equation, as well as the exponential on

the right-hand side, in terms of�x and�t, keeping only the lowest-order nonvanishing

terms. Compare the coefficients of �t on both sides and show that 〈x, t |x1, t1〉 satisfies

the time-dependent Schrödinger equation.

2. A particle is in a ground state at t = 0 bound through a harmonic oscillator potential to a

force center. For t > 0 the force center is suddenly removed. Determine the wavefunction

for t > 0.

3. A particle trapped within two infinite walls is described at t = 0 by

ψ(x, 0) = aδ(x).

The walls are removed for t > 0. Determine ψ(x, t).



26 Rotations and angular momentum

We will, temporarily, abandon calculations of dynamical quantities and concentrate on the

symmetry properties of physical systems beginning with rotations. We demonstrate the

direct connection between rotation and angular momentum. This time we also include spin.

Based on rotation of the coordinate systems, we establish the rotation properties of state

vectors and operators.

26.1 Rotation of coordinate axes

Consider a point P with coordinates (x, y, z) in a three-dimensional space. If O is the

origin then we will call OP the coordinate vector. Let the z axis be the axis of rotation,

ρ the magnitude of the projection of OP on the x−y plane, and α the angle made by this

projection with the x-axis; then

x = ρ cosα, (26.1)

y = ρ sin α. (26.2)

We note that a counter-clockwise rotation of the axes keeping the coordinate vector fixed is

equivalent to a clockwise rotation of the coordinate vector keeping the axes fixed. Specif-

ically, for a counter-clockwise rotation of the axes by an angle φ about the z-axis, which

we will consider below, the new coordinates (x′, y′, z′) and the old coordinates (x, y, z) are

related as follows (see Fig. 26.1):

x′ = ρ cos (φ + α) , (26.3)

y′ = ρ sin (φ + α) , (26.4)

z′ = z. (26.5)

Expanding the trigonometric functions in (26.3) and (26.4) and substituting the relations

involving x and y in (26.1) and (26.2), we obtain

x′ = x cosφ − y sin φ, (26.6)

y′ = x sin φ + y cosφ, (26.7)

z′ = z. (26.8)
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z

r (x', y', z' )

y
0

x

ρ

α

Fig. 26.1

Writing this relation in a matrix form we have

⎛
⎝

x′

y′

z′

⎞
⎠ =

⎛
⎝

cosφ − sin φ 0

sin φ cosφ 0

0 0 1

⎞
⎠
⎛
⎝

x

y

z

⎞
⎠ . (26.9)

The matrix

Rz(φ) =

⎛
⎝

cosφ − sin φ 0

sin φ cosφ 0

0 0 1

⎞
⎠ (26.10)

is called the rotation matrix or rotation operator for rotations around the z-axis. The above

expression represents the relation between the original coordinate vector r = (x, y, z) and

the rotated vector r′ =
(
x′, y′, z′

)
.

We can write the relation (26.9) as

⎛
⎝

x′

y′

z′

⎞
⎠ = Rz(φ)

⎛
⎝

x

y

z

⎞
⎠ . (26.11)

Since the distance OP remains unchanged whether we use the original coordinate system

or the rotated one, the following relation is satisfied:

x′2 + y′2 + z′2 = x2 + y2 + z2. (26.12)

In terms of (26.11) the left-hand side of (26.12) gives

(
x′ y′ z′

)
⎛
⎝

x′

y′

z′

⎞
⎠ = R̃z(φ)Rz(φ)

(
x y z

)
⎛
⎝

x

y

z

⎞
⎠ . (26.13)
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The relation (26.13) implies that

R̃z(φ)Rz(φ) = I (26.14)

where I is a unit matrix. This relation is, of course, satisfied by the explicit expression for

Rz(φ) we obtained in (26.10). Furthermore, we also find from (26.10) that

det Rz(φ) = 1. (26.15)

The significance of the relations (26.14) and (26.15) will be elaborated upon in some of the

later sections.

The transformation of a general vector V =
(
Vx, Vy, Vz

)
can be written in a similar

manner as (26.9). We obtain

⎛
⎝

Vx′

Vy′

Vz′

⎞
⎠ =

⎛
⎝

cosφ − sin φ 0

sin φ cosφ 0

0 0 1

⎞
⎠
⎛
⎝

Vx

Vy

Vz

⎞
⎠ . (26.16)

26.1.1 Infinitesimal transformations

Under the transformations with φ = ǫ, where ǫ is an infinitesimal quantity, we have

cosφ ≃ 1 and sin φ ≃ ǫ. The rotation matrix is then

Rz(ǫ) =

⎛
⎝

1 −ǫ 0

ǫ 1 0

0 0 1

⎞
⎠ . (26.17)

The relation (26.16) reads

⎛
⎝

V ′x
V ′y
V ′z

⎞
⎠ =

⎛
⎝

1 −ǫ 0

ǫ 1 0

0 0 1

⎞
⎠
⎛
⎝

Vx

Vy

Vz

⎞
⎠ =

⎡
⎣
⎛
⎝

1 0 0

0 1 0

0 0 1

⎞
⎠+ ǫ

⎛
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎠
⎤
⎦
⎛
⎝

Vx

Vy

Vz

⎞
⎠ . (26.18)

In order to apply this result to quantum-mechanical problems, we divide and multiply the

second term by �, and write this relation as

⎛
⎝

V ′x
V ′y
V ′z

⎞
⎠ =

(
1− i

ǫ

�
Sz

)
⎛
⎝

Vx

Vy

Vz

⎞
⎠ (26.19)

where Sz is given by

Sz = i�

⎛
⎝

0 −1 0

1 0 0

0 0 0

⎞
⎠ . (26.20)
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The operator Sz is called the generator of Rz(ǫ), i.e., the generator of infinitesimal rotations

about the z-axis.

Rotation by a finite angle φ about the z-axis is accomplished by substituting ǫ = φ/N
in the factor (1 − iǫSz/�) in (26.19), and taking the product of (1 − iφSz/N�) repeatedly

N times with N →∞. We then use the well-known identity

lim
N→∞

(
1+ α

N

)N
= eα (26.21)

with α = −iφSz/� and obtain the following result for finite transformations:

⎛
⎝

V ′x
V ′y
V ′z

⎞
⎠ = e−iφSz/�

⎛
⎝

Vx

Vy

Vz

⎞
⎠ . (26.22)

We have thus written the rotation operator in terms of its generator.

Following a similar procedure, generators for counter-clockwise rotations along the

x- and y-axes can be obtained and are given by

Sx = i�

⎛
⎝

0 0 0

0 0 −1

0 1 0

⎞
⎠ , Sy = i�

⎛
⎝

0 0 1

0 0 0

−1 0 0

⎞
⎠ . (26.23)

It is easy to verify that the matrices Sx, Sy, Sz , satisfy the relation

(Si)jk = −i�εijk , (26.24)

where i, j, k can be taken interchangeably as 1, 2, 3 or x, y, z. They also satisfy the

commutation relations

[
Si, Sj

]
= i�

∑

k

εijkSk = (i�) εijkSk (26.25)

where εijk is the totally antisymmetric tensor. On the right-hand side above we have removed

the summation sign,
∑

, in order to follow the summation convention in which any repeated

index is automatically summed. We will follow this convention throughout the rest of this

book, except where it is essential to use the explicit form.

To generalize the above results to rotations about an arbitrary axis we note that, as we

stated earlier, rotating coordinate axes counter-clockwise while keeping the vector V fixed

is equivalent to rotating the vector V clockwise, to V′ while keeping the coordinate axes

fixed. For infinitesimal clockwise rotations, the relation between V and V′ is particularly

simple. It is given by

V′ = V + ǫn× V (26.26)
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where n is a unit vector in the direction of the rotation axis. The ith component of V′ is then

given by

V ′i = Vi + ǫ (n× V )i = Vi + ǫ
[
εijknjVk

]
= Vi −

iǫ

�

[
nj

(
Sj

)
ik

Vk

]

= Vi −
iǫ

�
[(n · S)ik Vk ] =

[
δik −

iǫ

�
(n · S)ik

]
Vk . (26.27)

Following the procedure outlined above, the rotation of a vector V by a finite angle χ

along a direction n can be obtained. We find

⎛
⎝

V ′x
V ′y
V ′z

⎞
⎠ = e−iχn·S/�

⎛
⎝

Vx

Vy

Vz

⎞
⎠ . (26.28)

We will be using the following convention for the angle of rotation: whenever we have

a rotation about the z-axis we will denote the angle of rotation by φ, which is an obvious

choice since we generally denote an azimuthal angle by φ. On the other hand, if the rotation

is about an arbitrary direction n then the angle of rotation about n will be denoted by χ , as

we have done above.

26.2 Scalar functions and orbital angular momentum

Let us consider the transformation properties of a function g(x, y, z). Under infinitesimal

counter-clockwise rotations of the coordinates about the z-axis we have from (26.6), (26.7),

and (26.8),

x′ = x − ǫy, (26.29)

y′ = ǫx + y, (26.30)

z′ = z. (26.31)

The function g(x, y, z) transforms as

g(x, y, z)→ g(x′, y′, z′) = g (x − ǫy, y + ǫx, z) . (26.32)

We expand the right-hand side in a Taylor expansion to obtain

g (x − ǫy, y + ǫx, z) = g (x, y, z)− ǫy ∂g (x, y, z)

∂x
+ ǫx ∂g (x, y, z)

∂y
+ · · · (26.33)

=
[
1− ǫ

(
y
∂

∂x
− x

∂

∂y

)
+ · · ·

]
g(x, y, z). (26.34)
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We recall the relation p = −i�∇ between the momentum and the space coordinates,

which is given by

px = −i�
∂

∂x
, py = −i�

∂

∂y
, pz = −i�

∂

∂z
. (26.35)

Thus,

y
∂

∂x
− x

∂

∂y
= i

�

(
ypx − xpy

)
= − iLz

�
(26.36)

where on the right-hand side we have used the relation for the angular momentum L = r×p,

so that

Lz =
(
xpy − ypx

)
= −i�

(
x
∂

∂y
− y

∂

∂x

)
. (26.37)

Hence, under infinitesimal rotations, we have to order ǫ,

g (x − ǫy, y + ǫx, z) =
(

1+ iǫLz

�

)
g(x, y, z). (26.38)

The rotation by a finite angleφ about the z-axis can be obtained, once again, through (26.21),

g(x′, y′, z′) = eiφLz/�g(x, y, z). (26.39)

One can, in a similar manner, express rotations about the x-axis and y-axis through the

angular momentum operators Lx and Ly given by

Lx = −i�

(
y
∂

∂z
− z

∂

∂y

)
, Ly = −i�

(
z
∂

∂x
− x

∂

∂z

)
. (26.40)

It is easy to check that the operators Lx, Ly, and Lz satisfy the following commutators:

[
Lx, Ly

]
= i�Lz,

[
Ly, Lz

]
= i�Lx, [Lz , Lx] = i�Ly. (26.41)

We can combine these three relations into a single relation and write

[
Li, Lj

]
= i�εijkLk , i, j, k = 1, 2, 3 (26.42)

where we have followed the summation convention.

We can generalize to rotations about arbitrary axes by noting, once again, from (26.26),

r′ = r + ǫn× r (26.43)
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where r (= (x, y, z)) and r′(= (x′, y′, z′)) are the coordinate vectors. Hence, through Taylor

expansion, we obtain to order ǫ,

g(r′) = g(r + ǫn× r) = g(r)+ ǫ (n× r) ·∇g(r). (26.44)

Using the vector identity (n× r) · ∇ = n · (r ×∇), we can write, taking p = −i�∇ and

L = r × p, the relation

g(r′) =
(

1+ iǫ
n · L

�

)
g(r). (26.45)

For finite transformations we obtain, as before,

g(r′) = eiχn·L/�g(r) (26.46)

for rotations by an angle χ about the direction n.

In the above discussions we have written the angular momentum operators in Cartesian

coordinates. However, one can also express them in spherical coordinates by writing (x, y, z)

in terms of (r, θ ,φ) as follows:

x = r sin θ cosφ, (26.47)

y = r sin θ sin φ, (26.48)

z = r cos θ , (26.49)

to give

Lx = i�

(
sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (26.50)

Ly = i�

(
− cosφ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)
, (26.51)

Lz = −i�
∂

∂φ
, (26.52)

L2 = L2
x + L2

y + L2
z = −�

2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (26.53)

26.3 State vectors

We now consider the rotation of the state vectors |x, y, z〉. Under rotation by infinitesimal

angle φ = ǫ about the z-axis, the state |x, y, z〉 behaves as

|x, y, z〉 →
∣∣x′, y′, z′

〉
= |x − ǫy, y + ǫx, z〉 (26.54)
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where we have used (26.29), (26.30), and (26.31). One can, once again, express the right-

hand side in a Taylor expansion and write, to order ǫ,

|x − ǫy, y + ǫx, z〉 =
[
|x, y, z〉 − ǫ

(
y
∂

∂x
− x

∂

∂y

)]
|x, y, z〉 =

(
1+ iǫLz

�

)
|x, y, z〉 .

(26.55)

For finite rotations we obtain as before

∣∣x′, y′, z′
〉
= eiφLz/� |x, y, z〉 . (26.56)

If |ψ〉 describes the state of a particle then its wavefunctions in the
(
x′, y′, z′

)
system and

in the (x, y, z) system can easily be related:

ψ ′ (x, y, z) =
〈
x′, y′, z′|ψ

〉
= e−iφLz/� 〈x, y, z|ψ〉 = e−iφLz/�ψ (x, y, z) . (26.57)

Writing in terms of vectors r and r′, the above relation becomes

ψ ′ (r) =
〈
r′|ψ

〉
= e−iφLz/�ψ (r) . (26.58)

In terms of the ket vectors we write this in a short-hand form:

|ψ〉′ =
∣∣ψ ′

〉
= e−iφLz/� |ψ〉 . (26.59)

For rotations about an axis in the direction n, we obtain the following transformation of

the ket vector
∣∣r′
〉
to order ǫ,

∣∣r′
〉
= |r + ǫn× r〉 (26.60)

= |r〉 + ǫn× r ·∇ |r〉

=
(

1+ iǫ
n · L

�

)
|r〉 . (26.61)

A finite transformation by an angle χ then gives

∣∣r′
〉
= eiχn·L/� |r〉 (26.62)

and hence

〈
r′|ψ

〉
= e−iχn·L/� 〈r|ψ〉 (26.63)

where the components of L =
(
Lx, Ly, Lz

)
are already given above. In terms of ket vectors

we write this as

|ψ〉′ =
∣∣ψ ′

〉
= e−iχn·L/� |ψ〉 . (26.64)

Finally, to obtain the transformation of a vector wavefunction ψ i(r) with i = 1, 2, 3,

we follow a two-step process: transform the column matrix formed by ψ i(r), through the
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rotation matrix S, in the same manner as we transformed the column matrix Vi in Section

26.1.1; then make a transformation involving L of the coordinate vectors r in ψ i(r) as we

did in this section. We obtain the following result for a rotation by an angle χ along the

direction n:

⎛
⎝
ψ ′1 (r)
ψ ′2 (r)
ψ ′3 (r)

⎞
⎠ = e−iχ n·L

� e−iχ n·S
�

⎛
⎝
ψ1 (r)

ψ2 (r)

ψ3 (r)

⎞
⎠ = e−iχ n·J

�

⎛
⎝
ψ1 (r)

ψ2 (r)

ψ3 (r)

⎞
⎠ (26.65)

where J = L + S. The last step follows from the fact that L and S commute as they are

in different spaces, L is a differential operator that operates on the coordinates, and S is a

matrix operator.

While S is referred to as “spin angular momentum” or simply “spin” and L as “orbital

angular momentum,” the operator J is then the so-called “total angular momentum” operator.

26.4 Transformation of matrix elements and representations of
the rotation operator

As we saw previously in Section 26.1.1 for a rotation operator R characterized by a 3× 3

matrix, one can associate an operator D (R) in the ket space by writing

|ψ〉′ = |ψ〉R = D (R) |ψ〉 . (26.66)

For example, the operator for rotations about the z-axis is given by

Rz (φ) =

⎛
⎝

cosφ − sin φ 0

sin φ cosφ 0

0 0 0

⎞
⎠ , (26.67)

for which we have

D (R) = D(φ) = e−iφLz/� (26.68)

as the corresponding operator on the ket vectors.

Let us consider now the commutators of the operators x, y, z with the operators Lx, Ly,

Lz . In particular, we consider [x, Lz]:

[x, Lz] |ψ〉 = −
{[

x (i�)

(
x
∂

∂y
− y

∂

∂x

)]
−
[
(i�)

(
x
∂

∂y
− y

∂

∂x

)
x

]}
|ψ〉

= −i�y |ψ〉 (26.69)

where we note that

∂

∂xi
xj |ψ〉 =

(
δij + xj

∂

∂xi

)
|ψ〉 . (26.70)
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The above commutation relation can be generalized to

[
xi, Lj

]
= i�εijkxk (26.71)

where we have used the summation convention. Thus xi satisfies the same commutation

relations as we obtained for Li given by

[
Li, Lj

]
= i�εijkLk . (26.72)

Consider now the following matrix element under rotations about the z-axis:

〈ψ |x|ψ〉′ =
〈
ψ ′ |x|ψ ′

〉
=
〈
ψ

∣∣∣eiφLz/�xe−iφLz/�
∣∣∣ψ

〉
. (26.73)

For infinitesimal transformations we take φ = ε,

〈ψ |x|ψ〉′ =
〈
ψ

∣∣∣∣x +
iε

�
[Lz, x]

∣∣∣∣ψ
〉

(26.74)

= 〈ψ |x − εy|ψ〉 (26.75)

= 〈ψ |x|ψ〉 − ε 〈ψ |y|ψ〉 (26.76)

where we have made use of the relation (26.69). Thus we obtain precisely the same relations

as we did for the coordinates in (26.29). If we write a general rotation

x′i = Rijxj (26.77)

for the coordinate vectors then the corresponding matrix elements will have the same

behavior:

〈ψ |xi|ψ〉′ = Rij

〈
ψ
∣∣xj

∣∣ψ
〉
. (26.78)

From the relation (26.64) we can write this equation in the operator form:

eiχn·L/�xie
−iχn·L/� = Rijxj . (26.79)

This relation is then of the form

D†(R)xiD(R) = Rijxj (26.80)

where

D(R) = D(χ) = e−iχn·L/�. (26.81)

For a vector Vi we can similarly write

D†(R)ViD(R) = RijVj (26.82)

where we replace L by S in D(R) since the transformation here involves only the components

of the vectors V not the coordinate vectors.
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26.5 Generators of infinitesimal rotations: their eigenstates and
eigenvalues

If we designate R to represent any one of the rotation matrices we came across earlier, e.g.,

exp(−iχn · S/�), exp(−iχn · L/�), or exp(−iχn · J/�), we notice that they all satisfy the

relation

R†R = 1, (26.83)

which implies that they are all unitary operators. If the matrix elements of R are real then we

replace the Hermitian conjugate R† by the transpose R̃. For rotations about the imaginary

axis one can write

R = e−iθ iJi/� (26.84)

where Ji is a generic notation for Si or Li or their sum, Ji. We are not using the summation

convention here since we are considering a specific direction. Below we discuss some of

the important properties of the generator Ji and obtain its eigenvectors and eigenvalues.

For infinitesimal angles (θ i = ǫ), we have, upon expanding the exponential in (26.84),

R = 1− iǫ
Ji

�
, R† = 1+ iǫ

J
†
i

�
. (26.85)

Hence

R†R = 1 ⇒
(

1+ iǫ
J

†
i

�

)(
1− iǫ

Ji

�

)
= 1. (26.86)

Keeping just the leading terms in ǫ on the left hand side, we obtain

1+i
ǫ

�

(
J

†
i − Ji

)
= 1. (26.87)

Therefore,

J
†
i = Ji. (26.88)

Hence the generators are Hermitian. We also note from (26.15) that

det (R) = 1. (26.89)

Going to infinitesimal angles we obtain

det

(
1− iǫ

Ji

�

)
= 1. (26.90)
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Keeping only the leading term in ǫ in the calculation for the determinant we obtain

1− i
ǫ

�
Tr (Ji) = 1. (26.91)

where “Tr” means trace of the matrix Ji. Therefore,

Tr (Ji) = 0. (26.92)

Hence the matrix representation of the generator must be traceless.

From the properties of Si and Li that we previously deduced, one can write

[
Ji, Jj

]
= (i�)εijk Jk (26.93)

where the summation convention is used. Writing explicitly in terms of the generators Jx,

Jy, Jz , we obtain

[
Jx, Jy

]
= i�Jz ,

[
Jy, Jz

]
= i�Jx, [Jz , Jx] = i�Jy. (26.94)

Let us define the total angular momentum operator J as

J2 = J 2
x + J 2

y + J 2
z (26.95)

and determine
[
J2, Jx

]
. Since

[
J 2

x , Jx

]
= 0, we can write

[
J2, Jx

]
=
[
J 2

x + J 2
y + J 2

z , Jx

]
=
[
J 2

y , Jx

]
+
[
J 2

z , Jx

]
. (26.96)

Utilizing the commutator relations (26.94) we find the terms on the right-hand side above

to be

[
J 2

y , Jx

]
= Jy

[
Jy, Jx

]
+
[
Jy, Jx

]
Jy = −i�

(
JyJz + JzJy

)
, (26.97)

[
J 2

z , Jx

]
= Jz [Jz, Jx]+ [Jz, Jx] Jz = i�

(
JzJy + JyJz

)
. (26.98)

Hence
[
J2, Jx

]
= 0. A similar relation will hold for Jy and Jz . Therefore, we obtain the

following general result:

[
J2, Ji

]
= 0. (26.99)

Thus, an eigenstate of Ji will also be an eigenstate of J2.

Since Ji’s do not commute among themselves they cannot have a common eigenstate.

We specifically pick Jz among them even though the other two are equally eligible; then Jz

and J2 will have a common eigenstate which we designate as |j, m〉 with the properties

Jz |j, m〉 = m� |j, m〉 (26.100)
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and

J2 |j, m〉 = nj�
2 |j, m〉 (26.101)

where the states |j, m〉 satisfy the orthogonality property

〈j′, m′ |j, m〉 = δjj′δmm′ . (26.102)

The quantum numbers m and nj are still to be determined. For that purpose we consider

the expectation value

〈j, m
∣∣∣
(
J2 − J 2

z

)∣∣∣ j, m〉 =
(
nj − m2

)
�

2. (26.103)

One can write

J2 − J 2
z = J 2

x + J 2
y =

1

2

[(
Jx + iJy

) (
Jx − iJy

)
+
(
Jx − iJy

) (
Jx + iJy

)]
. (26.104)

We note that the two products on the right-hand side above are each of the form AA† and

hence each is positive definite. Therefore, from (26.100) and (26.101), we can write

(
nj − m2

)
�

2 ≥ 0. (26.105)

Hence,

−√nj ≤ m ≤ √nj . (26.106)

Therefore, the eigenvalue m is bounded from above and below.

Let us define new operators

J+ = Jx + iJy, J− = Jx − iJy (26.107)

and consider J+ |j, m〉. Since from (26.99)

[
J2, J+

]
= 0, (26.108)

we find that J+ |j, m〉 is also an eigenstate of J2, i.e.,

J2 (J+ |j, m〉) = J+
(
J2 |j, m〉

)
= nj�

2 (J+ |j, m〉) . (26.109)

Furthermore,

JzJ+ = Jz

(
Jx + iJy

)
=
[(

JxJz + i�Jy

)
+ i

(
JyJz − i�Jx

)]
(26.110)

where we have used the commutation relations involving Jz with Jx and Jy. Combining the

appropriate terms we obtain

JzJ+ =
(
Jx + iJy

)
(Jz + �) = J+ (Jz + �) . (26.111)
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Hence,

Jz (J+ |j, m〉) = J+ (Jz + �) |j, m〉 = (m+ 1) � (J+ |j, m〉) . (26.112)

Thus J+ |j, m〉 corresponds to a state with eigenvalue (m+ 1) � for the operator Jz and

eigenvalue nj�
2 for the operator J2. Hence it is proportional to |j, m+ 1〉, i.e.,

J+ |j, m〉 = aj� |j, m+ 1〉 (26.113)

where aj is a constant yet to be determined. The above results show that J+ acts as a “raising”

operator. It increases the eigenvalue of Jz by one unit. In other words, the values of m change

by one unit as one goes from one state to the next higher state. The m-values are, therefore,

separated by integers, i.e., the difference�m between the m-quantum numbers satisfies the

relation

�m = integer . (26.114)

Multiplying (26.113) by its Hermitian conjugate, we get

(
〈j, m| J †

+
)
(J+ |j, m〉) =

∣∣aj

∣∣2 �
2〈j, m+ 1 |j, m+ 1〉 =

∣∣aj

∣∣2 �
2. (26.115)

Therefore,

〈j, m| J †
+J+ |j, m〉 =

∣∣aj

∣∣2 �
2. (26.116)

Since J
†
+ = J− =

(
Jx − iJy

)
, we can write the operator term on the left-hand side as

J
†
+J+ =

(
Jx − iJy

) (
Jx + iJy

)
= J 2

x + J 2
y + i

[
Jx, Jy

]
. (26.117)

Using the fact that J 2
x + J 2

y = J2 − J 2
z , and

[
Jx, Jy

]
= i�Jz , we obtain

J
†
+J+ = J2 − J 2

z − �Jz. (26.118)

Thus relation (26.116) can be written as

〈j, m|
(
J 2 − J 2

z − �Jz

)
|j, m〉 =

∣∣aj

∣∣2 �
2. (26.119)

Therefore,

∣∣aj

∣∣2 =
(
nj − m2 − m

)
. (26.120)

Since m is bounded from above, we take m2 to be the highest value of m, then

J+ |j, m2〉 = 0. (26.121)

Hence aj = 0 for this state and, as a result, from (26.120) we obtain

nj = m2(m2 + 1). (26.122)



493 26.5 Generators of infinitesimal rotations: their eigenstates and eigenvalues

Similarly, for the state J− |j, m〉 we can write

J− |j, m〉 = bj� |j, m− 1〉 (26.123)

and obtain

∣∣bj

∣∣2 = nj − m(m− 1). (26.124)

If m1 is the lowest value of m then we have

J− |j, m1〉 = 0, (26.125)

and hence bj = 0 for this state, which leads to

nj = m1(m1 − 1). (26.126)

Therefore, since both (26.122) and (26.126) equal the same quantity, nj, we have

m2(m2 + 1) = m1(m1 − 1). (26.127)

This equation has two solutions:

m1 = −m2 and m1 = m2 + 1. (26.128)

The second solution is not allowed since, by definition, m1 < m2. Hence,

m1 = −m2. (26.129)

Since the values of m are separated by integers, as stated in (26.114) we also have the

relation

m2 − m1 = integer. (26.130)

From (26.129) we then have

2m2 = integer. (26.131)

If we write

m2 = j (26.132)

then we have

2j = integer. (26.133)

Also, since m1 < m < m2, we have

−j ≤ m ≤ j. (26.134)
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The possible values of j are therefore

j = integer or half-integer. (26.135)

Furthermore, from (26.122) and (26.132) we obtain

nj = j(j + 1). (26.136)

Thus,

∣∣aj

∣∣2 = j(j + 1)− m(m+ 1) = (j − m)(j + m+ 1), (26.137)

∣∣bj

∣∣2 = j(j + 1)− m(m− 1) = (j + m)(j − m+ 1). (26.138)

Summarizing the above results, we have

Jz |j, m〉 = m� |j, m〉 , with − j ≤ m ≤ j, (26.139)

J2 |j, m〉 = j(j + 1)�2 |j, m〉 with j = 1
2
, 1, 3

2
, . . . , (26.140)

J+ |j, m〉 =
√
(j − m)(j + m+ 1)� |j, m+ 1〉 , (26.141)

J− |j, m〉 =
√
(j + m)(j − m+ 1)� |j, m− 1〉 . (26.142)

The operators J+ and J− are often called “ladder” operators.

26.6 Representations of J2 and Ji for j = 1
2 and j = 1

We start with j = 1
2
, for which m takes the values 1

2
and− 1

2
. We write the eigenstates |j, m〉

as column matrices,

{∣∣ 1
2
, m

〉}
=
( ∣∣ 1

2
, 1

2

〉
∣∣ 1

2
,− 1

2

〉
)

. (26.143)

The operators Ji will then be 2× 2 matrices. From the relations given in (26.139) through

(26. 142) we obtain

Jz =
(

1
2

0

0 − 1
2

)
�, J+ =

(
0 1

0 0

)
�, J− =

(
0 0

1 0

)
�, (26.144)

from which we find

Jx =
1

2

(
0 1

1 0

)
�, Jy =

1

2

(
0 −i

i 0

)
�. (26.145)
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If we define

J = �

2
σ , (26.146)

then we have

σ x =
(

0 1

1 0

)
, σ y =

(
0 −i

i 0

)
, σ z =

(
1 0

0 −1

)
. (26.147)

These are just the Pauli matrices we discussed in Chapter 2.

Next we consider j = 1, for which m = 1, 0,−1. The eigenstates |j, m〉 are then given by

{|1, m〉} =

⎛
⎝
|1, 1〉
|1, 0〉
|1,−1〉

⎞
⎠ . (26.148)

We then obtain

Jz =

⎛
⎝

1 0 0

0 0 0

0 0 −1

⎞
⎠, J+ =

⎛
⎝

0
√

2 0

0 0
√

2

0 0 0

⎞
⎠, J− =

⎛
⎝

0 0 0√
2 0 0

0
√

2 0

⎞
⎠ , (26.149)

and hence

Jx =
1√
2

⎛
⎝

0 1 0

1 0 1

0 1 0

⎞
⎠ and Jy = −

i√
2

⎛
⎝

0 −1 0

1 0 −1

0 1 0

⎞
⎠ . (26.150)

Clearly, one can go on to higher representations by following the same procedure we

have outlined above.

26.7 Spherical harmonics

26.7.1 Ladder operators and eigenfunctions

Let us consider the eigenstates |jm〉 discussed in Section 26.5 that are relevant to orbital

angular momentum. We designate these states as |lm〉 where l and m correspond to the

orbital angular momentum quantum numbers. Their representatives in the coordinate space

with state vectors |θφ〉, where θ and φ are the angular coordinates of a point (r, θ ,φ), are

written as

〈θφ|lm〉 = Ylm(θ ,φ) (26.151)

where Ylm(θ ,φ) are called spherical harmonics. The normalization condition

〈l′m′|lm〉 = δll′δmm′ (26.152)
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gives, after putting a complete set of intermediate states |θφ〉,
∫ 2π

0

∫ π

0

d� 〈l′m′|θφ〉〈θφ|lm〉 = δll′δmm′. (26.153)

Since d� = sin θ dθ dφ, we obtain the following normalization condition for the spherical

harmonics:

∫ 2π

0

∫ π

0

Y ∗l′m′Yl′m(θ ,φ)Ylm(θ ,φ) sin θ dθ dφ = δll′δmm′. (26.154)

The state |lm〉 will satisfy the same properties as did |jm〉, where we replace Ji by the

orbital angular momentum operators Li and in place of the equations (26.139)–(26.142),

write the following:

L2|lm〉 = l(l + 1)�2|lm〉,

Lz|lm〉 = m�|lm〉, (26.155)

L+Ylm(θ ,φ) =
√
(l − m)(l + m+ 1)�Ylm+1(θ ,φ),

L−Ylm(θ ,φ) =
√
(l + m)(l − m+ 1)�Ylm−1(θ ,φ). (26.156)

Multiplying equation (26.155) by 〈θφ| we obtain

L2Ylm(θ ,φ) = l(l + 1)�2Ylm(θ ,φ),

LzYlm(θ ,φ) = m�Ylm(θ ,φ) with − l < m < l. (26.157)

The operators Lx, Ly, Lz , and L2 were defined previously and are given by

Lx = i�

(
sin φ

∂

∂θ
+ cot θ cosφ

∂

∂φ

)
, (26.158)

Ly = i�

(
− cosφ

∂

∂θ
+ cot θ sin φ

∂

∂φ

)
, (26.159)

Lz = −i�
∂

∂φ
, (26.160)

L2 = −�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (26.161)

From these we can determine the ladder operators

L+ = Lx + iLy = �eiφ

[
∂

∂θ
+ i cot θ

∂

∂φ

]
, (26.162)

L− = Lx − iLy = −�e−iφ

[
∂

∂θ
− i cot θ

∂

∂φ

]
. (26.163)
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26.7.2 Explicit expression for Ylm(θ, φ)

We now wish to obtain an explicit expression for Ylm(θ ,φ). To that end, let us consider the

equation for the operator Lz.

−i�
∂

∂φ
Ylm(θ ,φ) = m�Ylm(θ ,φ). (26.164)

Based on the separation of variables technique we can write

Ylm(θ ,φ) = eimφTlm(θ) (26.165)

where Tlm(θ) will depend on θ alone. Let us operate L+ on Ylm for m = l. Since m = l

corresponds to the highest state, we have

L+Yll(θ ,φ) = L+(eilφTll(θ)) = 0. (26.166)

One can write L+(eilφTll(θ)) as

L+(eilφTll(θ)) = (L+eilφ)Tll(θ)+ eilφL+Tll(θ). (26.167)

To evaluate (26.167) we use relation (26.162)

L+eilφ =
(
−l� cot θeiφ

)
eilφ (26.168)

and

L+Tll(θ) = �eiφ

(
∂

∂θ
Tll(θ)

)
. (26.169)

Taking account of the relations (26.168) and (26.169) we find that (26.166) gives

−l� cot θeiφeilφTll + eilφ
�eiφ ∂

∂θ
Tll = 0. (26.170)

Thus,

dTll

dθ
= l cot θTll (26.171)

where we have replaced the partial derivative by the total derivative in θ because Tll depends

on θ alone. This equation can be written as

dTll

Tll

= l
d sin θ

sin θ
. (26.172)

Hence,

Tll = cl(sin θ)
l (26.173)
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where cl is a constant. Substituting this result in (26.165) we obtain

Yll(θ ,φ) = cle
ilφ(sin θ)l . (26.174)

Let us now operate L− on Ylm(θ ,φ). From (26.163) we obtain

L−
[
eimφTlm(θ)

]
= −�eiφ

[
∂

∂θ
− i cot θ

∂

∂φ

]
eimφTlm(θ)

= −�e−iφeimφ

[
d

dθ
+ m cot θ

]
Tlm(θ). (26.175)

In order to calculate the right-hand side above we note that for a function f (θ),

d

d cos θ

[
(sin θ)mf (θ)

]
= −(sin θ)m−1

[
m cot θ f + df

dθ

]
(26.176)

where we have used the relation d cos θ = − sin θ dθ . Hence,

[
d

dθ
+ m cot θ

]
f = −(sin θ)1−m d

d cos θ

[
(sin θ)mf (θ)

]
. (26.177)

Substituting the above relation in (26.175) we obtain

L−
[
eimφTlm(θ)

]
= �ei(m−1)φ(sin θ)1−m d

d cos θ

[
(sin θ)mTlm(θ)

]

= ei(m−1)φT ′lm(θ) (26.178)

where

T ′lm(θ) = (sin θ)1−m d

d cos θ

[
(sin θ)mTlm(θ)

]
. (26.179)

Through repeated application of L− we find

(L−)N
[
eimφTlm(θ)

]
= ei(m−N )φ(sin θ)N−m

(
d

d cos θ

)N

[(sin θ)mTlm(θ)]. (26.180)

Taking m = l we obtain

(L−)N
[
eilφTll(θ)

]
= ei(l−N )φ(sin θ)N−l

(
d

d cos θ

)N

[(sin θ)lTll(θ)]. (26.181)

From (26.165) and (26.173) we find

(L−)N [Yll(θ ,φ)] = cle
i(l−N )φ(sin θ)N−l

(
d

d cos θ

)N

[(sin θ)2l]. (26.182)
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However, since L− is a lowering operator, lowering Yll(θ ,φ)N times corresponds to writing

the above relation as

Yl,l−N (θ ,φ) = c′′l ei(l−N )φ(sin θ)N−l

(
d

d cos θ

)N [
(sin θ)2l

]
(26.183)

where c′′
l

is a constant.

To obtain Ylm(θ ,φ) we now simply take l − N = m. Hence,

Ylm(θ ,φ) = c′′l eimφ(sin θ)−m

(
d

d cos θ

)l−m [
(sin θ)2l

]
. (26.184)

From the normalization condition (26.154) we can obtain c′′
l
. One finds

Ylm(θ ,φ) =
(−1)l

2l l!

√
(2l + 1)

4π

(l + m)!
(l − m)!e

imφ(sin θ)−m

(
d

d cos θ

)l−m [
(sin θ)2l

]
.

(26.185)

26.7.3 Properties of Ylm(θ, φ)

Having determined the functional form of Ylm(θ ,φ), let us examine its properties under

rotations. Continuing with the discussions in Section 26.4 we note that under rotations

eiχ
n·j
� xie

−iχ
n·j
� =

∑

j

Rijxi (26.186)

where i, j = 1, 2, 3. We can construct linear combinations of xi, e.g., (x+ iy), (x− iy), and

z and find that under rotations about the z-axis

ei
φ
�

Jz (x + iy)e−i
φ
�

Jz = eiφ(x + iy), (26.187)

ei
φ
�

Jz (x − iy)e−i
φ
�

Jz = e−iφ(x + iy), (26.188)

ei
φ
�

Jz ze−i
φ
�

Jz = z. (26.189)

From the functional form of Y1m(θ ,φ) given in the previous section for l = 1 and

m = ±1, 0, we find that the above three relations imply

ei
φ
�

Jz Y1m(θ ,φ)e
−i
φ
�

Jz = eimφY1m(θ ,φ).

This implies that for a general rotation

eiχ
n·j
� Y1m(θ ,φ)e

−iχ
n·j
� =

∑

m′
D1

mm′(χ)Y1m′(θ ,φ). (26.190)
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We note that for rotations about the z-axis by angle φ,

D1
mm′(φ) = eimφδmm′ . (26.191)

Thus, under rotations Y1m transform among themselves with l = 1 fixed and m = 0,±1.

This property is preserved for any l. In general one can write the following relation for a

general spherical harmonic Ylm(θ ,φ):

eiχ
n·j
R Ylm(θ ,φ)e

−iχ
n·j
R =

∑

m′
Dl

mm′(χ)Ylm′(θ ,φ), (26.192)

i.e.,

D†(χ)Ylm(θ ,φ)D(χ) =
∑

m′
Dl

mm′(χ)Ylm′(θ ,φ). (26.193)

We can also discuss the properties of Ylm(θ ,φ) from a different perspective. Based on

our earlier results we write

|jm〉′ = e−iχ n·J
� |jm〉 =

∑

m′
cjm′ |jm′〉. (26.194)

This relation follows from the fact that when one expands exp(−iχn · J/�) = 1 −
iχn · J/� + · · · the operators Ji contained in each term do not change the eigenvalue j

when operating on |jm〉 but may change the eigenvalues of m. Therefore, the right-hand side

above will involve a summation only over m′. We can evaluate cjm′ by using orthogonality

of the eigenstates |jm′〉 to obtain

cjm′ = 〈jm′|e−iχ n·J
� |jm〉 = D

j

m′m(χ). (26.195)

Hence,

|jm〉′ =
∑

m′
D

j

m′m(χ)|jm′〉. (26.196)

For j = l we consider its representative in the (θ ,φ) space and obtain

〈θφ|lm〉′ =
∑

m′
Dl

m′m(χ)〈θφ|lm′〉. (26.197)

Hence,

Ylm

(
θ ′,φ′

)
=
∑

m′
Dl

m′m (χ) Ylm′ (θ ,φ) (26.198)

where θ ′ and φ′are the angles in the rotated system. We note that l in (26.197) and (26.198)

remains the same on both sides of the equation.
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We can carry through with the same arguments as above by replacing xi, which are the

components of a vector r, with the components Vi of a vector V. That is,

Ylm(θ ,φ)→ Ylm(V). (26.199)

In that case one would be dealing with the so called spherical tensors T (k , q), with k

replacing l and q replacing m.

We will follow up on this when we consider irreducible tensors.

26.8 Problems

1. Consider a state that has angular momentum quantum numbers l = 1 and m = 0. If this

state is rotated by an angle θ , determine the probability that the new state has m = 1.

Answer the same question if the state had l = 2 and m = 0.

2. If a system is in an eigenstate of Jz , show that 〈Jx〉 = 0 = 〈Jy〉.
3. For an eigenstate of Jz given by |jm〉 show that for another operator Jz′ where z′ is

pointing in the direction making an angle θ with respect to z, the expectation value is

〈jm |Jz′ | jm〉 = m cos θ .

4. Obtain the unitary matrix that relates the generators Sx, Sy, Sz of rotations of Cartesian

coordinates, the generators of the corresponding spherical harmonics with l = 1.

5. Anormalized wavefunction is given by u(r) = A(x+y+z)f (r), where f (r) is a function

only of the radial coordinate r. (i) Determine the following for this case: 〈Lx〉, 〈Ly〉, 〈Lz〉,
and 〈L2〉. (ii) What is the probability that u(r) corresponds to Lx = +�?



27
Symmetry in quantum mechanics and

symmetry groups

From rotations we now go to the general symmetry properties of physical systems, including

parity and time reversal invariance. In some of the previous chapters we have considered

the consequences of symmetries without saying so explicitly. In Chapter 8 we discussed

one-dimensional potentials which were symmetric about the origin and concluded that

there are two types of solutions depending on their properties under reflection. That was

an example of the consequences of symmetry under parity transformations. In the previous

chapter as well as in Chapter 4 on angular momentum we described eigenfunctions in terms

of the quantum numbers l and m. That was an example of invariance under rotations. We

discuss these questions within the framework of general group theory. We also consider the

properties of linear algebra and the groups O(2), O(3), and SU (2).

We need now to introduce the Hamiltonian and discuss its properties under various

transformations. Let us start with rotations.

27.1 Rotational symmetry

The rotation operator, as we discussed in the previous chapter, is unitary. A Hamiltonian in

three dimensions that includes a spherically symmetric potential is given by

H = p2

2m
+ V (r). (27.1)

Since p2 = p2
x + p2

y + p2
z and r =

√
x2 + y2 + z2, which are both invariant under rotations,

H will also be invariant. Thus, if R is the rotation operator then

R†HR = H (27.2)

and hence

HR = RH . (27.3)

27.1.1 Consequences of rotational symmetry

1. If |αn〉 is an eigenstate of H with eigenvalue αn then we have

H |αn〉 = αn |αn〉 . (27.4)
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We also write

R |αn〉 =
∣∣∣αR

n

〉
. (27.5)

Multiplying each side of the equality (27.3) on the right by |αn〉 we have

H (R |αn〉) = R (H |αn〉) . (27.6)

Therefore, from (27.4) and (27.5) we obtain the relation

H

∣∣∣αR
n

〉
= αn

∣∣∣αR
n

〉
. (27.7)

Hence,
∣∣αR

n

〉
is also an eigenstate of H with the same eigenvalue αn. States obtained through

rotation are degenerate if the Hamiltonian is invariant under the transformation. Degeneracy

of energy levels is an essential outcome of symmetry principles.

2. We found in the previous chapter that we can write the expression for the rotation

operator around a unit vector n as

R(θ ,φ) = e−in·Lχ/� (27.8)

where L is called the generator, which is Hermitian and, as we found, is identical to the

angular momentum operator. For infinitesimal transformations one writes

R = 1− i
ǫ

�
n · L. (27.9)

From the unitary property of R it follows that

[L, H ] = 0. (27.10)

From the Heisenberg relation the above result implies that

dL

dt
= 0. (27.11)

Thus L is a constant of the motion. One can also show that L2 is also a constant of the

motion.

3. Furthermore, we found in the last chapter that

[
L2, Li

]
= 0 (27.12)

but

[
Li, Lj

]
� =0. (27.13)

Taking L2 and Lz as the commuting operators,

[
L2, Lz

]
= 0, (27.14)
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we can designate the eigenstates as |l, m〉 such that

L2 |l, m〉 = l(l + 1)�2 |l, m〉 (27.15)

and

Lz |l, m〉 = m� |l, m〉 . (27.16)

Let us assume that the above relation is valid at t = 0 and substitute |l, m(0)〉 for |l, m〉.
The time evolution of |l, m〉 is then given by

|l, m(t)〉 = e−iHt/� |l, m(0)〉 . (27.17)

Since Lz commutes with H ,

Lz |l, m(t)〉 = e−iHt/�Lz |l, m(0)〉 = m� |l, m(t)〉 . (27.18)

Thus the eigenvalues remain unchanged as a function of time. A similar result will hold for

the quantum number l of the operator L2.

Let us now designate the eigenstates of H as |n; l, m〉 satisfying the relation

H |n; l.m〉 = En |n; l, m〉 . (27.19)

The following relation will hold for the matrix elements of H between degenerate states,

assuming En � =0,

〈n; l, m| [Lz,H ]
∣∣n; l, m′

〉
= (m− m′) 〈n; l, m| n; l, m′〉 = 0. (27.20)

Therefore,

either m = m′ (27.21)

or

if m � =m′ then 〈n; l, m| n; l, m′〉 = 0. (27.22)

Similar results will be obtained for the states with the same En and different values of l. Thus,

for example, the degeneracy in the hydrogen atom levels with the same principal quantum

number, n, and different values of m and l is a simple consequence of the invariance of the

Hamiltonian under rotations.

Finally, since

〈θ ,φ |l, m〉 = Ylm(θ ,φ). (27.23)

The orthogonality of the Ylm(θ ,φ) is a natural outcome of rotational symmetry.
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27.2 Parity transformation

Parity transformation, P, is the same as reflection defined by

P
∣∣r′
〉
=
∣∣−r′

〉
. (27.24)

Multiplying by P one more time we find

P2 = 1. (27.25)

Thus, P is unitary with eigenvalues±1. It is a discrete transformation for which only finite

values are possible, unlike rotations where the angle of rotation can take continuous values.

Let us define

P |α〉 =
∣∣∣αP

〉
. (27.26)

If a state has a definite parity then we will write

P |α〉 =
∣∣∣αP

〉
= πα |α〉 (27.27)

where πα is +1 or −1.

27.2.1 Consequences of parity transformation

1. The transformation of the operator r will be defined as

〈
αP

∣∣∣ r

∣∣∣αP
〉
= −〈α| r |α〉 , (27.28)

which implies

PrP−1 = −r. (27.29)

If an operator A has a definite parity then its matrix element is given by

〈
αP

∣∣∣A

∣∣∣αP
〉
= πA 〈α|A |α〉 . (27.30)

That is,

PAP−1 = πAA. (27.31)

The matrix element between states |α〉 and |β〉with parities πα and πβ respectively will

be given by

〈
αP

∣∣∣A

∣∣∣βP
〉
= πα πβ 〈α|A |β〉 . (27.32)
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However, we also have the following:

〈
αP

∣∣∣A

∣∣∣βP
〉
= πA 〈α|A |β〉 . (27.33)

Hence πα πβ = πA. Or since π2
A = 1, we have

πAπα πβ = 1. (27.34)

If A is invariant under parity transformation then

πα πβ = πA = 1. (27.35)

The conditions outlined above correspond to “selection rules” that allow only certain types

of processes to occur.

2. Let us consider the eigenstates of H ,

H |n〉 = En |n〉 . (27.36)

If H is invariant under parity then [P, H ] = 0. Taking the matrix element of this between

two different eigenstates |n;α〉 and |n;β〉 we obtain

〈n;β |[P, H ]| n;α〉 = 0, (27.37)

which gives

En

(
πα − πβ

)
= 0. (27.38)

Discarding En = 0 as the possibility we conclude that the two states must have the same

parity.

3. We can construct the following parity eigenstates of H :

|n+〉 =
1

2
(1+ π) |n〉 , (27.39)

|n−〉 =
1

2
(1− π) |n〉 . (27.40)

These are positive and negative parity eigenstates respectively since

P |n+〉 = + |n+〉 , (27.41)

P |n−〉 = − |n−〉 . (27.42)

From these two equations we get

〈n−|P2 |n+〉 = − 〈n−| n+〉. (27.43)

However, since P2 = 1 the above relation leads to

〈n−| n+〉 = − 〈n−| n+〉, (27.44)

which implies 〈n−| n+〉 = 0. Hence |n+〉 and |n−〉 are orthogonal states.
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27.3 Time reversal

Invariance under time reversal, more correctly referred to as reversal of the direction of

motion, is not as straightforward as the previous two invariances we have considered. Let

us start with the time-dependent Schrödinger equation with real, and time-independent,

potential,

i�
∂ψ(r,t)

∂t
=
(
− �

2

2m
∇2 + V

)
ψ(r,t). (27.45)

Under time reversal given by

t →−t (27.46)

the equation becomes

−i�
∂ψ(r,− t)

∂t
=
(
− �

2

2m
∇2 + V

)
ψ(r,− t). (27.47)

The new wavefunction does not satisfy the original equation (27.45). Let us, however, take

the complex conjugate of (27.45),

−i�
∂ψ∗(r,t)

∂t
=
(
− �

2

2m
∇2 + V

)
ψ∗(r,t). (27.48)

This equation looks similar to (27.47) and so one is inclined to propose that the wavefunction

must transform as

ψ(r,t)→ ψ∗(r,t). (27.49)

Thus the time reversal operator cannot be a linear operator. However, this is not the complete

story, as we demonstrate below.

Let T designate the time reversal operator. Since r does not change sign under T ,

T [r |α〉] = r [T |α〉] . (27.50)

Therefore,

TrT−1 [T |α〉] = r [T |α〉] . (27.51)

Since |α〉 is any arbitrary state, we have

TrT−1 = r. (27.52)

The velocity v(= dr/dt) reverses sign under time reversal; therefore, the momentum

(p = mv) satisfies the relation

TpT−1 = −p. (27.53)
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Consider now the fundamental commutator,

[
xi, pj

]
|α〉 = i�δij |α〉 . (27.54)

Applying the time reversal operator we have

[
xi,−pj

]
T |α〉 = i�δijT |α〉 . (27.55)

Therefore,

[
xi, pj

]
T |α〉 =

(
−i�δij

)
T |α〉 . (27.56)

The time-reversed states do not satisfy the correct commutation relation. It is clear that T

must include an operator that changes i →−i.

27.3.1 Correct form of T

Let us write

T |α〉 = |αT 〉 (27.57)

and require that

T (a|α〉 + b|β〉) = a∗|αT 〉 + b∗|αT 〉. (27.58)

This establishes the fact that T is antilinear. Let us then write

T = UK (27.59)

where U is a unitary operator of the type we have used earlier, and K has the following

property:

Ka|α〉 = a∗K |α〉. (27.60)

We emphasize that K changes a complex coefficient to its complex conjugate. If |α〉 is a

base ket then K does not affect it. We elaborate on this by expressing |α〉 in terms of a

complete set of states

|α〉 =
∑

n

|an〉〈an|α〉. (27.61)

We apply the time-reversal operator:

|αT 〉 = UK |α〉 =
∑

n

〈an|α〉∗UK |an〉 =
∑

n

〈an|α〉∗U |an〉. (27.62)
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We note that when K operates on 〈an|α〉 it changes it to its complex conjugate but does not

affect the basis kets |an〉. We simplify the above and write

|αT 〉 =
∑

n

〈α|an〉U |an〉. (27.63)

Similarly, if we write

|β〉 =
∑

n

|an〉〈an|β〉, (27.64)

then

|βT 〉 =
∑

m

〈am|β〉∗U |am〉. (27.65)

Taking the complex conjugate,

〈βT | =
∑

m

〈am|β〉〈am|U †. (27.66)

Taking the scalar product we find

〈βT |αT 〉 =
∑

m

∑

n

〈α|an〉〈am|β〉〈am|U †U |an〉. (27.67)

Since

U †U = 1, 〈am|an〉 = δmn (27.68)

we have

〈βT |αT 〉 =
∑

n

〈α|an〉〈an|β〉 = 〈α|β〉 = 〈β|α〉∗. (27.69)

This result implies that instead of imposing the equality of the scalar products we require

that their absolute values be the same. This requirement still preserves the invariance

condition of the probability:

∣∣∣〈βT |αT 〉
∣∣∣
2
= |〈β|α〉|2 . (27.70)

Let us return to our earlier results and confirm that the difficulties we found in defining

time reversal have been resolved. First, as for the properties of the wavefunction as a function

of r, we find

|αT 〉 = T |α〉 =
∫

d3r′ U |r′〉K〈r′|α〉 =
∫

d3r′ |r′〉〈r′|α〉∗. (27.71)
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Its representative in the r-space is given by

〈r|αT 〉 =
∫

d3r′ 〈r|r′〉〈r′|α〉∗ =
∫

d3r′ δ(3)
(
r − r′

)
〈r′|α〉∗ = 〈r|α〉∗. (27.72)

Thus we reproduce the required wavefunction given by (27.49).

Next we consider the fundamental commutator

[
xi, pj

]
|α〉 = i�δij|α〉. (27.73)

In terms of the time-reversed state we can write this as

T
[
xi, pj

]
T−1|αT 〉 = T

(
i�δij

)
T−1|αT 〉, (27.74)

[
xi, UpjU

−1
]
|αT 〉 = K

(
i�δij

)
K−1|αT 〉. (27.75)

K will now change i to−i and U will change pj to−pj , and we recover the same commutator

condition

[
xi, pj

]
= i�δij. (27.76)

27.3.2 Consequences of time reversal

Orbital angular momentum

The orbital angular momentum is defined as L = r × p. Thus we require that

T−1LT = −L. (27.77)

Accordingly, the direction of L must change sign. The angular momentum state |l.m〉 must

then change to |l.− m〉. Thus, the spherical harmonics defined by

Ylm(θ ,φ) = 〈θ ,φ |l, m〉 (27.78)

must transform as

Ylm(θ ,φ)→ Yl−m(θ ,φ). (27.79)

Spin 12

A state with spin directed along a unit vector n with polar angle α and azimuthal angle β is

given in terms of the spin-up state | + z〉 by

|n̂;+〉 = e−iσ zα/2�e−iσ yβ/2�| + z〉, (27.80)
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while

|n̂;−〉 = e−iσ zα/2�e−iσ y(β+π)/2�| + z〉. (27.81)

Under time reversal we expect

T |n̂;+〉 =
∣∣n̂;−

〉
. (27.82)

The relation (27.59) is then given by

T = e−iπσ y/2�K . (27.83)

From this result we find that the T -operator when acting on the basis states |+〉 and |−〉
gives

T |+〉 = +|−〉, T |−〉 = −|+〉. (27.84)

Thus, when acting on a linear combination we have

T (a|+〉 + b|−〉) = a∗|−〉 − b∗|+〉, (27.85)

which implies that

T 2(a|+〉 + b|−〉) = −(a|+〉 + b|−〉). (27.86)

Hence for spin 1
2

states we have the most usual property

T 2 = −1. (27.87)

It can be shown generally that for total angular momentum states J = L+ S,

T 2 = −1 for j = 1/2, 3/2, . . . , (27.88)

T 2 = +1 for j = 1, 2, . . . . (27.89)

27.4 Symmetry groups

27.4.1 Definition of a group

A group is a collection of elements such that the product of any two of its elements is also

a member of the group. Here “product” is an abstract concept. It is defined in the context

of the type of group one is considering, which does not necessarily imply ordinary multi-

plication. For example, all integers, including zero, form a group “under addition” since a

sum of any two integers is also an integer. Here the abstract word “product” actually means

ordinary sum.
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The basic definition of a group as follows:

(i) If a and b are any two elements of a group and

ab = c (27.90)

then c is also a member of the group.

(ii) There is an identity element, e, such that for any element a,

ae = a. (27.91)

(iii) For every element a there is an inverse, a−1, such that

aa−1 = a−1a = e. (27.92)

(iv) The elements of the group obey the associative law such that for any three elements

a, b, c,

a (bc) = (ab) c. (27.93)

A group for which the elements satisfy the relation ab = ba is called an Abelian group.

Thus, in our example of the integers, which form a group under addition, the identity

element is 0, and the inverse of an integer is the negative of that integer. It is also an Abelian

group.

If there are only a finite number of elements in the group then it is called a finite or

a discrete group. Parity transformation and time reversal are examples of finite, Abelian

groups.

A group can also be formed if an element is a function of a continuous variable. For

example, g(α) as a function of a continuous variable α can form a group where

g(α1)g (α2) = g(α1 + α2), (27.94)

g(0) = identity, (27.95)

g(−α) = inverse of g(α). (27.96)

These are called Lie groups. The above is an example of a function of a single variable, α.

It is called a one-dimensional group. But g can also be a function of more than one variable,

g (α,β, . . .). If there are n such variables then it is called a Lie group of n dimensions.

Some important examples

1. Rotation in three dimensions is a classic example of a three-dimensional Lie group.

2. A set of n× n matrices, U , that are unitary,

U †U = 1, (27.97)
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form a unitary group called U (n). A group formed by phase transformations exp(iθ)

where θ is a continuous variable form the group U (1).

3. If the n × n unitary matrices also have a unit determinant then it is called the SU (n)

group where S stands for “special.”

4. If a set of n× n matrices, A, are orthogonal,

ÃA = 1, (27.98)

then they form the group SO(n) where SO stands for “special orthogonal.”

5. A mapping of the elements of an abstract group to a set of matrices gives rise to their

matrix representation. Thus,

a → D(a) (27.99)

with

ab = c → D(a)D(b) = D(c) (27.100)

where D’s are the matrix representations.

Lie algebra

Transformations in quantum mechanics corresponding to continuous unitary operators

form Lie groups. For infinitesimal transformations they can be written in the form

a(α) = 1− i
ǫ · X

�
(27.101)

where α =(α,β, . . .) depending on the number of dimensions and similarly

ǫ =
(
ǫα , ǫβ , . . .

)
. The operators X =

(
Xα , Xβ , . . .

)
are called the generators of the group.

Since a(α)’s are unitary, they satisfy the relation

[
Xα , Xβ

]
= i�CαβγXγ (27.102)

where we have used the summation convention. The quantities Cαβγ are called the structure

constants. For rotations, we have found that they are simply the totally antisymmetric tensor

ǫijk . The generators are then said to satisfy the Lie algebra.

For finite values of α one then writes

a(α) = exp

[
−i α · X

�

]
. (27.103)

The matrix representation of the group can be written as

D [a(α)] = exp

[
−i α · T

�

]
(27.104)
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where T ’s will satisfy the same relations as the X ’s,

[
Tα , Tβ

]
= i�Cαβγ Tγ . (27.105)

Below we consider two well-known examples of groups in quantum mechanics.

27.5 Dj(R) for j = 1
2 and j = 1 : examples of SO(3) and SU(2) groups

Let us consider the representation of the rotation operator D(R) discussed in Section 26.4,

Dj(R) = e
−iχ

n.J
� (27.106)

for specific values of j where, as discussed earlier, n is a unit operator in the direction of

the axis of rotation, χ is the rotation angle around the axis n, and Ji’s are the generators

already defined.

27.5.1Spin j = 1
2

Consider now the case of spin 1
2

rotations where

J = �

2
σ (27.107)

where σ i’s are the Pauli matrices:

σ x =
(

0 1

1 0

)
, σ y =

(
0 −i

i 0

)
, σ z =

(
1 0

0 −1

)
. (27.108)

The representation of the rotation matrix can be written as

D
1
2 (R) = e

−iχ
n·σ
2 . (27.109)

D
1
2 (R) depends on three parameters: the angle χ and two out of the three components of

the vector n, the third component being determined by the fact that n is a unit vector, and,

therefore, satisfies,

n2
x + n2

y + n2
z = 1. (27.110)

For an infinitesimal χ (= ǫ) one obtains

D
1
2 (R) = 1− i

n · σ
2
ǫ. (27.111)
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Inserting the Pauli matrices and expressing the unit vector n in terms of its components

(nx, ny, nz), we find

D
1
2 (R) =

⎡
⎢⎣

1− i
nzǫ

2
−i

(
nx − iny

)
ǫ

2

−i

(
nx + iny

)
ǫ

2
1+ i

nzǫ

2

⎤
⎥⎦ . (27.112)

D
1
2 (R) is, therefore, a 2 × 2 matrix with matrix elements that are complex. Furthermore,

det D
1
2 (R) and the magnitude of

[
D

1
2 (R)

]†
D

1
2 (R) have the form 1+o(ǫ2). If higher powers

are kept, then all the terms involving ǫ will cancel, giving us

[
D

1
2 (R)

]†
D

1
2 (R) = 1, (27.113)

det D
1
2 (R) = 1. (27.114)

Matrix D
1
2 (R) belongs to an SU (2) group, where the lowest dimension of the matrix is

2 and where, as we stated earlier, S stands for “special” group, signifying that it has a

unit determinant as written in (27.114). The letter U implies that the matrix is unitary as

indicated by (27.113).

Actually one can write D
1
2 (R) in a closed form,

D
1
2 (R) = 1 cos

(χ
2

)
− i

n · σ
2

sin
(χ

2

)
(27.115)

which gives

D
1
2 (R) =

⎡
⎢⎣

cos
(χ

2

)
− inz sin

(χ
2

)
−i

(
nx − iny

)
sin

(χ
2

)

−i
(
nx + iny

)
sin

(χ
2

)
cos

(χ
2

)
+ inz sin

(χ
2

)

⎤
⎥⎦ . (27.116)

27.5.2Spin j = 1

Let us consider the case with j = 1, where the Ji’s, obtained in Chapter 26 are given as

follows:

Jx =
1√
2

⎛
⎝

0 1 0

1 0 1

0 1 0

⎞
⎠ , Jy = −

i√
2

⎛
⎝

0 −1 0

1 0 −1

0 1 0

⎞
⎠ , Jz =

⎛
⎝

1 0 0

0 0 0

0 0 −1

⎞
⎠ .

(27.117)

We note that the Ji’s defined above and the Si’s obtained in Section 26.1.1 correspond to

the same three-dimensional rotation, except that the matrices above were obtained for the

case when Jz is diagonal. The representation matrix Dj(R) for j = 1 is given by

D1(R) = e
−iχ

n·J
� . (27.118)
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For small angles, χ = ǫ, the matrix D1(R) can be written as

D1(R) = 1− i
n · J

�
ǫ. (27.119)

Substituting (27.117), we obtain for infinitesimal ǫ,

D1(R) =

⎡
⎣

1 −nzǫ nyǫ

nzǫ 1 −nxǫ

−nyǫ nxǫ 1

⎤
⎦ . (27.120)

The matrix elements here are real. If D̃1(R) denotes the transpose of D1(R) then it is easy

to verify that det D1(R) and the magnitude of D̃1(R)D1(R) are of the form 1+ o(ǫ2). If one

keeps all the higher powers of ǫ then one finds that

D̃1(R)D1(R) = 1, (27.121)

det D1(R) = 1. (27.122)

We note that D1(R), and therefore R, which are the same for j = 1, are 3 × 3 matrices

that depend on three parameters: the angle χ and two out of the three components of the

vector n, the third component being determined by the fact that n is a unit vector. They

represent the so-called SO(3) group, where the O in SO(3), as indicated earlier, stands for

the fact that D1(R) and R are orthogonal satisfying the property (27.121) and S stands for

“special” transformation, corresponding to det R = 1.

A major difference between SO(3) and SU (2) is that D1(R)→ D1(R) as χ → χ + 2π ,

while for D
1
2 (R) one needs to go through twice the amount to return to the same form, i.e.,

D
1
2 (R)→ D

1
2 (R) as χ → χ + 4π . Keeping this difference in mind, we say that SO(3) and

SU (2) are “isomorphic” to each other.

Finally, the rotations that we have considered are called “proper” rotations, which implies

that the transformations are achieved by continuous rotations. If we had included reflection,

for example, that is, if the transformation for the three-dimensional case were of the product

form

⎡
⎣
−1 0 0

0 −1 0

0 0 −1

⎤
⎦D1(R), (27.123)

for which the determinant is−1, then it would not be a proper transformation. It then carries

the designation O(3).

27.6 Problems

1. Consider the Hamiltonian for the hydrogen atom,

H = p2

2m
− Ze2

r
.
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Show that the operator

A = �

2
[L× p− p× L]+ Ze2m

r

r

commutes with H , where A is called the Runge–Lenz vector. Furthermore, show that

[
Li, Lj

]
= iǫijkLk ,

[
Li, Mj

]
= iǫijkMk and

[
Mi, Mj

]
= iǫijkLk

where

M = 1√
−2mE/�2

A

where E is the energy eigenvalue. Construct the following linear combinations:

J =L+M

2
, K =L−M

2

and show that

[
Ji, Jj

]
= iǫijkJk ,

[
Ki, Kj

]
= iǫijkKk , and

[
Ji, Kj

]
= 0.

Thus we have two mutually commuting operators both of which have the same properties

as the angular momentum and both of which also commute with the Hamiltonian. Thus

one can designate the common eigenstate as
∣∣j, mj; k , mk ; E

〉
.

One can now show that

J2 = K2,

whose common value can be written as j(j + 1). Finally, returning to L and M, show

that

L2 +M2 + 1 = −mZ2e2

2E�2
.

From this and the above relations involving the operators J and K, show that the energy

eigenvalues are given by

E = −Z2α2mc2

2n2

where

n = j + 1

2
.
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In the chapter on rotation we discussed methods for obtaining the eigenvalues and eigen-

states of the operator related to angular momentum. These obviously refer to single-particle

states. However, often one has a more complex system containing two or more particles, as

happens for two-electron systems, the electron–proton state of the atom, or many-nucleon

systems in nuclei. In this chapter we tackle some of these problems involving addition of

angular momenta.

28.1 Combining eigenstates: simple examples

Let us consider the problem of expressing the product of two states |j1, m1〉, |j2, m2〉 in terms

of a state that is an eigenstate of J2 and Jz , where

J = J1 + J2 and Jz = J1z + J2z . (28.1)

The operators J1 and J2 commute since they operate on different sets of eigenstates. If we

write this product state simply as |j1, m1〉 |j2, m2〉, and keep in mind that J2
i and Jiz operate

only on states |ji, mi〉 for i = 1, 2, then we obtain the following

Jz |j1, m1〉 |j2, m2〉 = (J1z + J2z) |j1, m1〉 |j2, m2〉 (28.2)

= (J1z |j1, m1〉) |j2, m2〉 + |j1, m1〉 (J2z |j2, m2〉) (28.3)

= (m1 + m2) |j1, m1〉 |j2, m2〉 . (28.4)

Therefore |j1, m1〉 |j2, m2〉 is an eigenstate of Jz with eigenvalues m = m1 + m2.

However, such a product state need not be an eigenstate of J2 because, from (28.1),

J2 = (J1 + J2)
2 = J2

1 + J2
2 + 2J1 · J2 = J2

1 + J2
2 (28.5)

+ J1+ J2− + J1− J2+ + 2J1zJ2z (28.6)

where the operators Ji± for i = 1, 2 are the ladder operators defined before as

Ji± = Jix ± iJiy. (28.7)

The presence of these operators will not allow the product state |j1, m1〉 |j2, m2〉 to be an

eigenstate of J2 as these operators change the mi values by ±1 (for i = 1, 2). The only

exceptions will be when the ladder operators give vanishing contributions.
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Asimple procedure to construct the eigenstates of J2 and Jz will be illustrated below with

a specific example where j1 = 1
2

and j2 = 1
2
.

28.1.1 j1 = 1
2 , j2 = 1

2

We start with the product of the two “highest” states, with m1 = 1
2
= m2,

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
. (28.8)

From (28.4) we deduce that

Jz

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
= 1

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
. (28.9)

From (28.6) we find

J2
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
=
(
J2

1 + J2
2 + J1+ J2− + J1− J2+ + 2J1zJ2z

) ∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
. (28.10)

Taking note of the relations involving raising and lowering operators we obtain

J2
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
=
[

3

4
+ 3

4
+ (0)(1)+ (1)(0)+ 2

(
1

2

)(
1

2

)]∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
= 2

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
.

(28.11)

Thus
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
is, indeed, an eigenstate of Jz and J2. Since the eigenvalues of these

operators for a state |j, m〉 are m and j(j + 1) respectively, we conclude that this product

state has j = 1 and m = 1. Therefore, we can write

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
= a |1, 1〉 . (28.12)

The right-hand side corresponds to the eigenstate |j, m〉 for j = 1 and m = 1. Since both

sides are normalized, we have a = 1 and, therefore,

|1, 1〉 =
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
. (28.13)

From the above, we can construct other states through the operation of the lowering

operator J− (= J1− + J2−) on both sides of the equation (28.13):

J−
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
= J− |1, 1〉 . (28.14)

Using the relation J− |j, m〉 =
√
(j + m)(j − m+ 1) |j, m− 1〉 in (28.14) we have for the

left-hand side of (28.14),

J−
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
= (J1− + J2−)

∣∣ 1
2
, 1

2

〉 ∣∣ 1
2
, 1

2

〉
=
∣∣ 1

2
,− 1

2

〉 ∣∣ 1
2
, 1

2

〉
+
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
,− 1

2

〉
. (28.15)
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For the right-hand side of (28.14) we obtain

J− |1, 1〉 =
√

2 |1, 0〉 . (28.16)

Equating (28.15) and (28.16) we get

|1, 0〉 = 1√
2

(∣∣ 1
2
,− 1

2

〉 ∣∣ 1
2
, 1

2

〉
+
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
,− 1

2

〉)
. (28.17)

By applying J− again, we get

|1,−1〉 =
∣∣ 1

2
,− 1

2

〉 ∣∣ 1
2
,− 1

2

〉
. (28.18)

This is clearly the lowest state and there will be no more states possible.

Thus (28.13), (28.17), and (28.18) constitute a triplet of states for the total angular momen-

tum j = 1 and m = 1, 0,−1 made up from the product of states with j1 = 1
2
, m1 = ± 1

2

and j2 = 1
2
, m2 = ± 1

2
.

There is one more state that is orthogonal to the state |1, 0〉 given in (28.17), and that is

|0, 0〉 = 1√
2

(∣∣ 1
2
,− 1

2

〉 ∣∣ 1
2
, 1

2

〉
−
∣∣ 1

2
, 1

2

〉 ∣∣ 1
2
,− 1

2

〉)
. (28.19)

By operating with J2 and Jz it is easy to check that the state given above has j = 0 and

m = 0.

In summary, if we symbolically designate

∣∣ 1
2
, 1

2

〉
=↑,

∣∣ 1
2
,− 1

2

〉
=↓ (28.20)

then we have the following categories of product states:

Triplet states

|1, 1〉 =↑↑, |1, 0〉 = 1√
2
(↑↓ + ↓↑) , |1,−1〉 =↓↓ . (28.21)

Singlet state

|0, 0〉 = 1√
2
(↑↓ − ↓↑) . (28.22)

These constitute four mutually orthogonal states.

One can symbolically also write the four states contained in (28.21) and (28.22) as

(
j1 = 1

2

)
×
(
j2 = 1

2

)
= (j = 1)+ (j = 0) (28.23)

where the left-hand side corresponds to the product states |j1, m1〉 |j2, m2〉 with j1 = 1
2

and

j2 = 1
2
, while the right-hand side corresponds to three types of states in (28.21) with j = 1

and one state in (28.22) with j = 0.
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In terms of the number of orthogonal states we can write, symbolically once again,

2× 2 = 3+ 1 (28.24)

where the left-hand side refers to the product states |1/2, m1〉 |1/2, m2〉where 2 corresponds

to the doublet, |1/2, 1/2〉 and |1/2,−1/2〉, formed by each individual state, |1/2, mi〉. On

the right-hand side, 3 and 1 correspond respectively to the triplet states with j = 1 and the

singlet state with j = 0 as we have already discussed in (28.21) and (28.22). One can also

express (28.23) as

(doublet)× (doublet) = (triplet)+ (singlet) . (28.25)

We make the following remarks regarding these results.

(1) The Pauli principle, which we discussed in Chapter 2, says that the electrons, or any

fermions with spin 1
2
, must be in a state that is antisymmetric. It refers to the combined

wavefunction that includes the spatial dependence and spin dependence. We will assume

the spatial part to be symmetric and thus concentrate entirely on the spin part.

Thus two electrons designated by subscripts “1” and “2” and described by the states∣∣ 1
2
, m1

〉
1

and
∣∣ 1

2
, m2

〉
2

respectively cannot be in any of the product states |1, 1〉, |1, 0〉, or

|1,−1〉 since these are symmetric under particle exchange (1 ⇆ 2). Hence the two electrons

can only be in the state

|0, 0〉 = 1√
2

(∣∣ 1
2
, 1

2

〉
1

∣∣ 1
2
,− 1

2

〉
2
−
∣∣ 1

2
,− 1

2

〉
1

∣∣ 1
2
, 1

2

〉
2

)
(28.26)

which is antisymmetric since under the particle interchange 1 → 2 one finds |0, 0〉 →
− |0, 0〉.

(2) A complete wavefunction for a particle of “spin j1” and projection m1 is

|j1, m1〉φ (r) (28.27)

where |j1, m1〉 is the spin-wave part (= column matrix), and φ (r) is the space-dependent

part. For example, as we discussed in Chapter 2, a free-electron wavefunction with spin up is

Spin-up wavefunction =
(

1

0

)
eik·r (28.28)

and

Spin-down wavefunction =
(

0

1

)
eik·r. (28.29)

One can similarly obtain products of different spin combinations. A very helpful tool

to accomplish all of that, however, is through the so called Clebsch–Gordan coefficients,

which we will discuss below.
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28.2 Clebsch–Gordan coefficients and their recursion relations

In the previous section, in discussing the product states, we considered a simple case with

j1 = 1
2

and j2 = 1
2
. Let us now tackle the problem involving arbitrary j1 and j2. We start

with the product states defined as follows:

|j1m1〉|j2m2〉 = |j1j2m1m2〉. (28.30)

In terms of these states we now form a state that we denote as |j1j2jm〉, with a definite total

angular momentum, j, and the z-component m by using completeness:

|j1j2jm〉 =
∑

m′1m′2

〈j1j2m′1m′2|j1j2, jm〉||j1j2m′1m′2〉 (28.31)

where m′1 goes from −j1 to j1 and m′2 varies from −j2 to j2. Since j1 and j2 are fixed

quantities throughout our calculations, we can simplify things by removing them from the

notations. Thus, we write

|j1j2jm〉 = |jm〉, |j1j2m1m2〉 = |m1m2〉 and 〈j1j2m′1m′2|j1j2, jm〉| = 〈m′1m′2|jm〉.
(28.32)

Equation (28.31) then reads

|jm〉 =
∑

m′1m′2

〈m′1m′2|jm〉|m′1m′2〉. (28.33)

The coefficients 〈m′1m′2|jm〉 are called the Clebsch–Gordan coefficients.

First of all, since Jz = J1z + J2z , by operating Jz on the left-hand side of (28.33) and

(J1z + J2z) on the right-hand side we find that the following relation must be satisfied:

m = m′1 + m′2. (28.34)

Let us now operate J+ on equation (28.33). Since J+ = J1+ + J2+ we obtain

√
(j − m)(j + m+ 1)|j, m+ 1〉

=
∑

m′1m′2

〈m′1m′2|jm〉
[√
(j1 − m′1)(j1 + m′1 + 1)|m′1 + 1, m′2〉

+
√
(j2 − m′2)(j2 + m′2 + 1)|m′1, m′2 + 1〉

]
(28.35)
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where J+ is applied to the left-hand side of (28.33) and J1+ and J2+ are applied to the

appropriate terms on the right. Let us now multiply the above equation by 〈m1m2| to obtain

√
(j − m)(j + m+ 1)〈m1m2|j, m+ 1〉

=
√
(j1 − m1 + 1)(j1 + m1)〈m1 − 1, m2|jm〉

+
√
(j2 − m2 + 1)(j2 + m2)〈m1, m2 − 1|jm〉 (28.36)

where we have considered the fact that because of orthonormality of the ket vectors, we

have m1 = m′1+1 (i.e., m′1 = m1−1), and m2 = m′2 in the first term on the right-hand side

of (28.35), while in the second term we have m1 = m′1 and m2 = m′2+1 (i.e., m′2 = m2−1).

The above matrix elements are nonzero only when m1 + m2 = m+ 1.

Similarly, if we operate the equation (28.33) with J− and then multiply the resulting

equation by 〈m1m2| we obtain

√
(j + m)(j − m+ 1)〈m1, m2|jm− 1〉

=
√
(j1 − m1)(j1 + m1 + 1)〈m1 + 1, m2|jm〉

+
√
(j2 − m2)(j2 + m2 + 1)〈m1, m2 + 1|jm〉. (28.37)

The above matrix elements are nonzero only when m1 + m2 = m− 1.

Let us take m = j − 1 and m1 = j1 in (28.36), then m2 = j − j1. We obtain

√
2j〈j1, j − j1|jj〉 =

√
2j1〈j1 − 1, j − j1|j, j − 1〉

+
√
(j2 + j − j1)(j2 − j + j1 + 1)〈j1, j − j1 − 1|j, j − 1〉 (28.38)

and take m = j and m1 = j1 in (28.37), then m2 = j − j1 − 1. We obtain

√
2j〈j1, j − j1 − 1|j, j − 1〉 =

√
(j2 − j + j1 + 1)(j2 + j − j1)〈j1, j − j1|j, j〉. (28.39)

We now see the beginnings of a recursion relation: if 〈j1, j − j1|jj〉 is known then

〈j1, j − j1 − 1|j, j − 1〉 can be determined from (28.39). This in turn allows us to obtain

〈j1 − 1, j − j1|j, j − 1〉 from the previous equation (28.38). Thus all the Clebsch–Gordan

coefficients can be determined in terms of a single quantity

〈j1, j − j1|jj〉. (28.40)

The above matrix element refers to 〈m1m2|jj〉 and, therefore, corresponds to m2 = j− j1.

However, since m2 lies between −j2 and j2, we have

−j2 ≤ j − j1 ≤ j2. (28.41)

Therefore,

j1 − j2 ≤ j ≤ j1 + j2. (28.42)
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If we had started the process with m2 = j2, instead of m1 = j1, then through the recursion

relations we would have determined all the Clebsch–Gordan coefficients in terms of

〈j − j2, j2|jj〉. (28.43)

This would imply that

−j1 ≤ j − j2 ≤ j1. (28.44)

Hence

j2 − j1 ≤ j ≤ j1 + j2. (28.45)

This result combined with (28.45) leads to the triangle condition

|j1 − j2| ≤ j ≤ j1 + j2. (28.46)

28.3 Combining spin ½ and orbital angular momentum l

Generally, obtaining Clebsch–Gordan coefficients can be quite cumbersome, and there may

be no alternative but to refer to the tables that are provided in various specialized books.

However, in certain specific cases one can resort to simpler methods. One such case involves

combining spin and orbital angular momentum when the spin is 1
2
. Here

j1 = l, and j2 =
1

2
. (28.47)

Because we have j2 = 1
2

there are only two possible values for m2, + 1
2

or − 1
2

and hence

there can be only two product states |m1, m2〉, where m1 is the z-component of the orbital

angular momentum. Thus if the total angular momentum is j and its z-component is m, one

can write

|jm〉 = a1

∣∣m1, 1
2

〉
+ a2

∣∣m1 + 1,− 1
2

〉
. (28.48)

From the first term on the right-hand side of the above equation we have m = m1 + 1
2

with m2 = 1
2
. In the second term, since m2 = − 1

2
, the z-component of the orbital angular

momentum must be m1 + 1 in order to satisfy the relation m = m1 + 1
2
. From the previous

section, we note that there are two possibilities for j: j = l + 1
2

and j = l − 1
2
.

Let us consider the case where j = l + 1
2
. The constants a1 and a2 correspond to the

Clebsch–Gordan coefficients and, since |jm〉 is normalized, we have

|a1|2 + |a2|2 = 1. (28.49)
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All we now need is another relation between a1 and a2 so that we can determine their

magnitudes (though not necessarily the phase). We note that the state (28.48) as written is

automatically an eigenstate of

Jz = Lz + Sz . (28.50)

However, it is not automatically an eigenstate of J2, a condition that needs to be imposed,

providing us with the second relation involving a1 and a2. Since

J = L+ S, (28.51)

we have

J2 = L2 + S2 + 2L · S. (28.52)

The states on the right-hand side of (28.48) are eigenstates of L2 and S2 with eigenvalues

l(l+ 1) and s(s+ 1)(= 3
4
) with s = 1

2
, respectively, while the state on the left is, of course,

an eigenstate of J2 with eigenvalue j(j + 1). The operators in (28.52) upon operating on

|jm〉 and regrouping the terms give

[
j(j + 1)− l (l + 1)− 3

4

]
|jm〉 = 2L · S|jm〉. (28.53)

For j = l + 1
2
, the factor on the left-hand side of the above equation is simply l. Hence

we have

l|jm〉 = 2L · S|jm〉. (28.54)

Using the ladder operators L± and S± one can show that

2L · S = (L+S− + L−S+ + 2LzSz) . (28.55)

Hence, from (28.55) we have

2L · S|jm〉 = (L+S− + L−S+ + 2LzSz)
[
a1

∣∣m1, 1
2

〉
+ a2

∣∣m1 + 1,− 1
2

〉]
. (28.56)

Using the familiar relations

L±|m1, m2〉 =
√
(l ∓ m1) (l ± m1 + 1)|m1 ± 1, m2〉, (28.57)

S±|m1, m2〉 =
√(

1

2
∓ m2

)(
1

2
± m2 + 1

) ∣∣m1, m2 ± 1
2

〉
, (28.58)

and

LzSz|m1, m2〉 = m1m2|m1m2〉, (28.59)
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the right-hand side of (28.56) is found to be

[
a1m1 + a2

√
(l + m1 + 1) (l − m1)

] ∣∣m1, 1
2

〉

+
[
− (m1 + 1) a2 + a1

√
(l − m1) (l + m1 + 1)

] ∣∣m1 + 1,− 1
2

〉
. (28.60)

Hence, combining all of the above relations, we obtain

[
(l − m1)a1 −

√
(l + m1 + 1)a2

] ∣∣m1, 1
2

〉

+
[
(l + m1 + 1) a2 −

√
(l − m1) (l + m1 + 1)a1

] ∣∣m1 + 1,− 1
2

〉
= 0. (28.61)

Since
∣∣m1, 1

2

〉
and

∣∣m1 + 1,− 1
2

〉
are orthonormal, the terms inside each square bracket vanish

giving, in each case, the result

a1

a2
=
√

l + m1 + 1

l − m1
. (28.62)

Since m1 = m− 1
2
, we obtain the following using the normalized result:

a1 =

√
l + m+ 1

2

2l + 1
, a2 =

√
l − m+ 1

2

2l + 1
. (28.63)

Hence

|jm〉 =

√
l + m+ 1

2

2l + 1

∣∣m− 1
2
, 1

2

〉
+

√
l − m+ 1

2

2l + 1

∣∣m+ 1
2
,− 1

2

〉
(28.64)

where j = l + 1
2
. Taking the representatives of these states in the (θ ,φ) system and taking

into account the fact that the state |m1m2〉 is a product state |lm1〉| 12m2〉, we have

〈θ ,φ|m1m2〉 = 〈θ ,φ|l, m1〉
∣∣ 1

2
, m2

〉
= Ylm1

(θ ,φ)
∣∣ 1

2
, m2

〉
(28.65)

where Ylm1
(θ ,φ) is the spherical harmonic function. Hence (28.64) gives

Yl+ 1
2 ,m(θ ,φ) =

√
l + m+ 1

2

2l + 1
Yl,m− 1

2
(θ ,φ)χ+ +

√
l − m+ 1

2

2l + 1
Yl,m+ 1

2
(θ ,φ)χ− (28.66)

where we denote

〈θφ|jm〉 =
〈
θφ|l + 1

2
, m

〉
= Yl+ 1

2 ,m (θ ,φ) , (28.67)

∣∣ 1
2
, 1

2

〉
= χ+, (28.68)

∣∣ 1
2
,− 1

2

〉
= χ−. (28.69)
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Following the same procedure we obtain, for j = l − 1
2
,

Yl− 1
2 ,m(θ ,φ) = −

√
l − m+ 1

2

2l + 1
Yl,m− 1

2
(θ ,φ)χ+ +

√
l + m+ 1

2

2l + 1
Yl,m+ 1

2
(θ ,φ)χ−. (28.70)

This example illustrates that one need not always go through the recursion relations to

obtain the Clebsch–Gordan coefficients. If the circumstances are right, as they were in

this example, where there were only two possible spin states, one can follow the type of

procedure just outlined.

28.4 Appendix to Chapter 28

28.4.1Table of Clebsch–Gordan coefficients

J1 =
1

2
, J2 =

1

2

1 0 0 1

1 0 0 −1

1

2

1

2
1

2
−1

2

−1

2

1

2

−1

2
−1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
√

1

2

√
1

2√
1

2
−
√

1

2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

J1 = 1, J2 = 1

3
2

3
2

1
2

3
2

1
2

3
2

3
2

1
2

1
2

− 1
2

− 1
2

− 1
2

1
1

2

1 −1

2

0
1

2

0 −1

2

−1
1

2

1 −1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√

1

3

√
2

3√
2

3
−
√

1

3 √
2

3

√
1

3√
1

3
−
√

2

3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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J1 = 1, J2 = 1

2 2 1 2 1 0 2 1 2

2 1 1 0 0 0 −1 −1 −2

1 1

1 0

0 1

1 −1

0 0

−1 1

0 −1

−1 0

−1 −1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
√

1

2

√
1

2√
1

2
−
√

1

2 √
1

6

√
1

2

√
1

3√
2

3
0 −

√
1

3√
1

6
−
√

1

2

√
1

3 √
1

2

√
1

2√
1

2
−
√

1

2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

28.5 Problems

1. Consider the spin triplet and singlet states χ1 and χ0, respectively, which are constructed

out of two spin 1
2

particles. If σ 1 and σ 2 correspond to Pauli operators for the particles,

then show that

(σ 1 · σ 2) χ1 = +χ1

and

(σ 1 · σ 2) χ0 = −3χ0.

Obtain the eigenvalues of (σ 1 · σ 2)
n.

2. If σ = σ 1 + σ 2, then show that

(σ · r)2 = 2[(σ 1·r) (σ 2·r)+ 1].

3. A system consisting of two spin 1
2

particles is subjected to a time-dependent perturbation

H ′ = λσ 1·σ 2, t ≥ 0

= 0, t < 0.

The initial state |ψ(t = 0)〉 of the system is given by |−+〉. Express H ′ in terms of

the total spin in triplet and singlet states through the Pauli operator with the total spin

σ (= σ 1+σ 2). Obtain |ψ(t)〉 for t > 0 and determine the probability that it is in

|++〉 , |−−〉, and |++〉 states.



29
Irreducible tensors and
Wigner–Eckart theorem

Irreducible spherical tensors are like spherical harmonics that under rotations transform

into one another. A typical irreducible spherical tensor depends on two quantities, usually

designated as k and q, which play a role parallel to j and m of the angular momentum. The

matrix elements of these tensors between different angular momentum states j′, m′ and j, m

are often quite complicated but they can be simplified considerably due to a theorem by

Wigner and Eckart. This allows one to separate the matrix element into two factors: one

which is just the Clebsch–Gordan coefficient involved in combining k with j to give j′. This

is called the geometrical factor and the other is a single term that is characteristic of the

spherical tensor and is independent of m, m′, and q. All this will be explored in this chapter.

29.1 Irreducible spherical tensors and their properties

Consider the following property of the spherical harmonics Ylm (θ ,φ):

Jz [Ylm (θ ,φ) f (θ ,φ)] = f (θ ,φ) JzYlm + YlmJz f (θ ,φ)

= m� f (θ ,φ) Ylm + YlmJz f (θ ,φ) (29.1)

where f (θ ,φ) is an arbitrary function of θ and φ. We have used Jz in a generic sense, since

in this case Jz = Lz = −i�∂/∂φ. Since Ylm is an eigenstate of Jz we have used the property

JzYlm = m�Ylm (29.2)

in obtaining the relation (29.1). Thus (29.1) gives

[Jz, Ylm] f = m� f Ylm. (29.3)

Therefore, since f is arbitrary, we have

[Jz, Ylm] = m� Ylm. (29.4)

By following similar steps we can also obtain the following commutator relations for the

ladder operators:

[J+, Ylm] =
√
(l − m) (l + m+ 1)�Yl,m+1, (29.5)

[J−, Ylm] =
√
(l + m) (l − m+ 1)�Yl,m−1. (29.6)
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We can generalize the above example of the spherical harmonics to define spherical tensors,

T (k , q), where

k = 0,
1

2
, 1,

3

2
, . . . and q = −k ,−k + 1, . . . , 0, . . . , k . (29.7)

Thus k replaces l in Ylm and q replaces m and has 2k + 1 values. We note that k and,

therefore, q can take integral as well as half-integral values.

The spherical tensors are simple generalizations of spherical harmonics in that, while the

angles θ and φ in Ylm (θ ,φ) refer to the coordinate vector r, in spherical tensors they refer

to a general vector V of which r is a special case. Furthermore, no reference is made to

angles in writing down T (k , q). For example, corresponding to

Y11 (θ ,φ) = −
√

3

8π
sin θeiφ = −

√
3

8π

(x + iy)

r
, (29.8)

Y10 (θ ,φ) =
√

3

4π
cos θ =

√
3

4π

z

r
, (29.9)

Y1−1 (θ ,φ) =
√

3

8π
sin θe−iφ =

√
3

8π

(x − iy)

r
, (29.10)

we define the spherical tensors for an arbitrary vector, V, as

T (1, 1) = −
(
Vx + iVy

)
√

2
= V+1, (29.11)

T (1, 0) = Vz = V0, (29.12)

T (1,−1) =
(
Vx − iVy

)
√

2
= V−1, (29.13)

where, the terms V±1, V0 are alternative ways of describing the tensors.

We define a set of irreducible tensors T (k , q), which include spherical harmonics Ylm

with the range of values of k and q defined above, as tensors that satisfy the same type of

relations as satisfied by Ylm:

[Jz , T (k , q)] = q� T (k , q), (29.14)

[J+, T (k , q)] =
√
(k − q) (k + q+ 1)�T (k , q+ 1), (29.15)

[J−, T (k , q)] =
√
(k + q) (k − q+ 1)�T (k , q− 1). (29.16)

The fact that these relations are similar to the relations satisfied by the eigenstates |j, m〉
when operated by Jz and J± leads one to ask whether the T ’s also follow the Clebsch–Gordan
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combination law we discussed in Chapter 28, where we wrote down the combination

|j1m1〉|j2m2〉 in terms of |jm〉 as

|jm〉 =
j1∑

m′1=−j1

j2∑

m′2=−j2

〈m′1m′2|jm〉 |j1m′1〉|j2m′2〉, (29.17)

|j1m1〉|j2m2〉 =
j1+j2∑

j=|j1−j2|

j∑

m′=−j

〈jm′|m1m2〉|jm′〉, (29.18)

where in (29.17) m′1 +m′2 = m while in (29.18) m1 +m2 = m′. In other words, we need to

investigate whether we can make the following replacements in (29.17):

|jm〉 → T (k , q), (29.19)

|j1m1〉 → T1(k1, q1), (29.20)

|j2m2〉 → T2(k2, q2), (29.21)

and obtain

T (k , q) =
∑

q1q2

〈q1q2|kq〉T1(k1, q1)T2(k2, q2) (29.22)

where 〈q1q2|kq〉 is the appropriate Clebsch–Gordan coefficient, and q1 and q2 sum from

−k1 to k1, and −k2 to k2, respectively.

Using (29.22) we will show that if T1 and T2 are irreducible spherical tensors then so is T .

In other words, if T1(k1, q1) and T2(k2, q2) satisfy the relations (29.14), (29.15), and (29.16)

with the operators J1 and J2, then T (k , q) will have the same properties with J = J1 + J2.

We demonstrate this first for the Jz(= J1z + J2z) operator.

[Jz, T (k , q)] =
∑

q1q2

〈q1q2|kq〉{[J1z, T1(k1, q1)]T2(k2, q2)+ T1(k1, q1)[J2z , T2(k2, q2)] }

=
∑

q1q2

〈q1q2|kq〉 (q1+q2) T1(k1, q1)T2(k2, q2)

= qT (k , q) (29.23)

where in (29.23) we have used the relation (29.14) for T1 and T2, and we have used the fact

that 〈q1q2|kq〉 = 0 unless q1 + q2 = q. Thus, T (k , q) satisfies (29.14).

Let us now consider the raising operator by taking the commutator of (29.22) with

J+ (= J1+ + J2+),

[J+, T (k , q)] =
∑

q1q2

〈q1q2|kq〉 {[J1+, T1(k1, q1)]T2(k2, q2)+ T1(k1, q1)[J2+, T2(k2, q2)]} .

(29.24)
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Using (29.15), the right-hand side in (29.24) is given by

∑

q1q2

〈q1q2|kq〉
{√
(k1 − q1)(k1 + q1 + 1)T1(k1, q1 + 1)T2(k2, q2)

+
√
(k2 − q2)(k2 + q2 + 1)T1(k1, q1)T2(k2, q2 + 1)

}
. (29.25)

In the above expression, taking q1 = q′1− 1 in the first term and q2 = q′2− 1 in the second

term, we obtain from (29.24)

[J+, T (k , q)] =
∑

q1q2

〈q′1 − 1, q2|kq〉
{√
(k1 − q′1 + 1)(k1 + q′1)T1(k1, q′1)T2(k2, q2)

+〈q1, q′2 − 1|kq〉
√
(k2 − q′2 + 1)(k2 + q′2)T1(k1, q1)T2(k2, q′2)

}
.

(29.26)

Relabeling q′1 and q′2 in the two terms of (29.25) as q1and q2, respectively, we obtain

[J+, T (k , q)] =
∑

q1q2

√
(k1 − q1 + 1)(k1 + q1)〈q1 − 1, q2|kq〉

+
√
(k2 − q2 + 1)(k2 + q2)}〈q1, q2 − 1|kq〉T1(k1, q1)T2(k2, q2).

(29.27)

However, from the previous chapter we found that

√
(k1 − q1 + 1)(k1 + q1)〈q1 − 1, q2|kq〉 +

√
(k2 − q2 + 1)(k2 + q2)〈q1, q2 − 1|kq〉

=
√
(k − q)(k + q+ 1)〈q1, q2|k , q+ 1〉. (29.28)

Hence,

[J+, T (k , q)] =
√
(k − q)(k + q+ 1)

∑

q1q2

〈q1, q2|kq+ 1〉T1(k1, q1)T2(k2, q2), (29.29)

which from (29.22) can be written as

[J+, T (k , q)] =
√
(k − q)(k + q+ 1)T (k , q+ 1). (29.30)

Similarly, one can show that

[J−, T (k , q)] =
√
(k + q)(k − q+ 1)T (k , q− 1). (29.31)

Thus from (29.14), (29.15), and (29.16) we conclude that T (k , q) satisfies the properties of

an irreducible tensor if T1(k1, q1) and T2(k2, q2) do.
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Just as (29.18) is obtained by inverting (29.17), we can write the following by inverting

(29.22),

T1(k1, q1)T2(k2, q2) =
∑

k

∑

q′
〈kq′|q1q2〉T (k , q′) (29.32)

where k runs from |k1 − k2| to (k1 + k2) and q′ runs from −k to +k .

This shows that the product of two irreducible spherical tensors is a linear combination

of irreducible tensors.

29.2 The irreducible tensors: Ylm(θ , φ) and Dj(χ)

In the context of irreducible tensors let us discuss certain important properties of the spher-

ical harmonics Ylm(θ ,φ) and the matrix element of the rotation operator, Dj(χ). We note

from our previous calculations that

|jm〉′ = e−iχn·J/�|jm〉 =
∑

m′
c

j

m′m|jm′〉. (29.33)

By taking an infinitesimal value χ = ǫ and expanding e−iχn·J/� we note that we will

have terms of the type Ji|jm〉 in the above equation, which will result in eigenstates with

different m-values but the value of j will not change. Hence the right-hand side of (29.33)

will contain only a sum over m′. If we define

D
j

m′m(χ) = 〈jm′|e−iχn·J/�|jm〉, (29.34)

then using the orthogonality of |jm〉 we find

c
j

m′m = 〈jm′|e−iχn·J/�|jm〉 = D
j

m′m(χ) (29.35)

and write (29.33) as

|jm〉′ =
∑

m′
D

j

m′m(χ)|jm′〉. (29.36)

We take j = l, the orbital angular momentum, in (29.36) and in the θ ,φ space write

〈θφ|lm〉′ =
∑

m′
Dl

m′m(χ)〈θφ|lm′〉. (29.37)

Hence,

Ylm

(
θ ′,φ′

)
=
∑

m′
Dl

m′m (χ) Ylm′ (θ ,φ) (29.38)

where θ ′,φ′ are the rotated angles.
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Let us now demonstrate the orthogonality property of D
j

m′m (χ) by starting with the

identity

eiχn·J/�e−iχn·J/� = 1. (29.39)

Sandwiching the above operator between states |jm〉 and |jm′′〉 and inserting a complete set

of states we find

∑

m′
〈jm′′|eiχn·J/�|jm′〉〈jm′|e−iχn·J/�|jm〉 = δm′′m. (29.40)

Thus, from (29.34) we have

∑

m′
D
∗j
m′′m(χ)D

j

m′m (χ) = δm′′m, (29.41)

which establishes the orthogonality. Multiplying both sides of (29.38) by D∗l
mm′ and using

this orthogonality property of Dj we can invert relation (29.38) to obtain

Ylm (θ ,φ) =
∑

m

D∗lmm′ (χ) Ylm′
(
θ ′,φ′

)
. (29.42)

If we let θ ′ = 0 and note that

Ylm′
(
0,φ′

)
=
√

2l + 1

4π
δm′0 (29.43)

then relation (29.40) yields

Ylm (θ ,φ) = D∗lm0 (χ)

√
2l + 1

4π
. (29.44)

This is an important relation connecting Ylm (θ ,φ) and D∗lm0 (χ).

Consider now a combination of momentum operators J1 and J2,

J = J1 + J2, (29.45)

and write

e−iχn·J/� = e−iχn·J1/�e−iχn·J2/�. (29.46)

We take the matrix elements of both sides of the above with respect to

|j1j2jm〉 = |jm〉. (29.47)

The left-hand side of (29.46) will then give

D
j

m′m (χ) = 〈jm′|e−iχn·J/�|jm〉. (29.48)
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On the right-hand side we use the result

|jm〉 =
∑

m1m2

〈m1m2|jm〉|m1m2〉, (29.49)

|jm′〉 =
∑

m′1m′2

〈m′1m′2|jm′〉|m′1m′2〉, (29.50)

to obtain

∑

m′1m′2

∑

m1m2

〈jm′|m′1m′2〉〈m′1m′2|e−iχn·J1/�e−iχn·J2/�|m1m2〉〈m1m2|jm〉

=
∑

m′1m′2

∑

m1m2

〈jm′|m′1m′2〉〈j1m′1|e−iχn·J1/�|j1m1〉〈j2m′2|e−iχn·J2/�|j2m2〉〈m1m2|jm〉

(29.51)

where in the last step we have used the relations

|m1m2〉 = |j1m1〉|j2m2〉, (29.52)

|m′1m′2〉 = |j1m′1〉|j2m′2〉. (29.53)

We thus obtain from (29.48)

D
j

m′m (χ) =
∑

m′1m′2

∑

m1m2

〈jm′|m′1m′2〉D
j1
m′1m1

(χ)D
j2
m′2m2

(χ) 〈m1m2|jm〉, (29.54)

which is the counterpart of a similar relation for the spherical tensors T (k , q) discussed in

the previous section.

Similarly, one can write

〈m′1m′2|e−iχn·J1/�e−iχn·J2/� |m1m2〉

= 〈m′1m′2|e−iχn·J/�|m1m2〉

=
∑

jmm′
〈m′1m′2|jm′〉〈jm′|e−iχn·J/�|jm〉〈jm|m1m2〉. (29.55)

Hence,

D
j1
m′1m1

(χ)D
j2
m′2m2

(χ) =
∑

jmm′
〈m′1m′2|jm′〉D

j

m′m(χ) 〈jm|m1m2〉 (29.56)

which is a counterpart of the relation for the spherical tensors T (k , q).

To obtain a relation between the spherical harmonics that are also irreducible tensors, we

take account of the relation (29.44) and put m1 = 0 and m2 = 0 in (29.56) and find, after
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replacing j1, j2 and j by l1l2 and l,

D
l1
m′10
(χ)D

l2
m′20
(χ) =

∑

lmm′
〈m′1m′2|lm′〉Dl

m′ (χ) 〈lm|00〉. (29.57)

Changing m′1, m′2 → m1, m2 and m′→ m = m1 + m2, we obtain from (29.57)

Yl1m1
(θ ,φ) Yl2m2

(θ ,φ)

=
∑

l

√
(2l1 + 1) (2l2 + 1)

4π(2l + 1)
〈m1m2|l,m1 + m2〉Yl,m1+m2

(θ ,φ) 〈lm|00〉. (29.58)

29.3 Wigner–Eckart theorem

Let us consider the matrix element of expression (29.30),

〈
j′m′

∣∣ [J+, T (k , q)] |jm〉 =
√
(k − q)(k + q+ 1)

〈
j′m′

∣∣ T (k , q+ 1) |jm〉 . (29.59)

To determine the left-hand side we note that

J+ |jm〉 =
√
(j − m) (j + m+ 1) |jm+ 1〉 (29.60)

and

[〈
j′m′

∣∣ J+
]
=
[
J−

∣∣j′m′
〉]† =

√
(j′ + m′) (j′ − m′ + 1)

〈
j′m′ − 1

∣∣ . (29.61)

Thus, after bringing all the terms to the left, (29.59) can be written as

√
(j′ + m′)(j′ − m′ + 1)

〈
j′, m′ − 1

∣∣ T (k , q) |jm〉

−
√
(j − m)(j + m+ 1)

〈
j′m′

∣∣ T (k , q) |j, m+ 1〉

−
√
(k − q)(k + q+ 1)

〈
j′m′

∣∣ T (k , q+ 1) |jm〉 = 0. (29.62)

Consider now the recursion relation for the Clebsch–Gordan coefficients given by

(28.37), which we write as follows, after taking the complex conjugate,

√
(j + m)(j − m+ 1)〈jm− 1|m1, m2〉 −

√
(j1 − m1)(j1 + m1 + 1)〈jm|m1 + 1, m2〉

−
√
(j2 − m2)(j2 + m2 + 1)〈jm|m1, m2 + 1〉 = 0. (29.63)

We make the following replacements in (29.63) in order to compare with (29.62).

j → j′, m → m′, m1 → m, j1 → j, m2 → q, j2 → k . (29.64)
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The relation (29.63) then becomes

√
(j′ + m′)(j′ − m′ + 1)〈j′m′ − 1|m, q〉 −

√
(j − m)(j + m+ 1)〈j′m′|m+ 1, q〉

−
√
(k − q)(k + q+ 1)〈j′m′|m, q+ 1〉 = 0. (29.65)

If we now compare (29.62) and (29.65), we note that they are both homogeneous equations

of the form

A1x + A2y + A3z = 0, (29.66)

B1x + B2y + B3z = 0. (29.67)

We take

Bi = λAi for i = 1, 2, 3 (29.68)

where λ is a constant independent of i. Substituting Bi in (29.67) we obtain the equation

(29.66). Hence (29.68) provides a possible solution to both equations.

Applying this result to (29.62) and (29.65), where the Ai and Bi terms differ in their

dependence on m′, q, and m, we obtain

〈
j′m′ − 1

∣∣ T (k , q) |jm〉 = λ〈j′m′ − 1|m, q〉, (29.69)

〈
j′m′

∣∣ T (k , q) |jm+ 1〉 = λ〈j′m′|m+ 1, q〉, (29.70)

〈
j′m′

∣∣ T (k , q+ 1) |jm〉 = λ〈j′m′|m, q+ 1〉, (29.71)

where λ does not depend on m′, q, or m.

We can summarize the above results by writing

〈
j′m′

∣∣ T (k , q) |jm〉 = λ〈j′m′|mq〉 (29.72)

where m′, q, or m take different values as indicated by equations (29.69), (29.70), and

(29.71). One generally writes

λ =
〈
j′‖T (k)‖j

〉
(29.73)

where
〈
j′‖T (k))‖j

〉
is called the reduced matrix element of the spherical tensor T (k , q),

which is independent of m′, q, or m. Hence,

〈
j′m′

∣∣ T (k , q) |jm〉 =
〈
j′‖T (k)‖j

〉
〈j′m′|mq〉. (29.74)

This is the statement of the Wigner–Eckart theorem, according to which the matrix ele-

ment
〈
j′m′

∣∣ T (k , q) |jm〉 is expressed as a product of two terms, the reduced matrix element

that depends only on j′ and j and therefore describes the overall physical properties of

the spherical tensor, and (the already known) Clebsch–Gordan coefficient 〈j′m′|mq〉 that
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describes the geometrical content of the matrix element since it depends on the quantum

numbers m′, q, and m that determine the orientation of the operators.

Equation (29.74) tells us, therefore, that, for a given j′, j, and k , if we know the matrix

element
〈
j′m′

∣∣ T (k , q) |jm〉 for one specific combination of m′, m, and q then the rest of the

matrix elements are determined by the Clebsch–Gordan coefficients 〈j′m′|mq〉. It allows

considerable simplifications in calculating the matrix elements and leads to many interesting

selection rules.

29.4 Applications of the Wigner–Eckart theorem

Below we consider some simple applications of the Wigner–Eckart theorem.

(i) Because the Clebsch–Gordan coefficients 〈j′m′|mq〉 vanish unless J′ = J+ k and

m′ = m+ q, we have

〈
j′m′

∣∣ T (k , q) |jm〉 = 0 (29.75)

unless

∣∣j′ − j
∣∣ ≤ k ≤ j′ + j and q = m′ − m. (29.76)

(ii) Specifically, for a scalar operator T (0, 0) = S with k = 0 and q = 0,

〈
j′m′

∣∣ S |jm〉 = 0 (29.77)

unless

∇j = j′ − j = 0 and ∇m = m′ − m = 0. (29.78)

(iii) For a vector operator T (1, q) = Vq with k = 1 and q = 0,±1,

〈
j′m′

∣∣Vq |jm〉 = 0 (29.79)

unless

∇j = j′ − j = 0,±1 and ∇m = m′ − m = 0,±1. (29.80)

For the case j′ = j = 0, however,
〈
j′m′

∣∣Vq |jm〉 vanishes identically because the relation

J′ = J+ k is not satisfied as |k| = 1.

(iv) If Ykq(θ ,φ) is a spherical harmonic then

〈
j′m′

∣∣ Ykq(θ ,φ) |jm〉 = 0 (29.81)

unless

∣∣j′ − j
∣∣ ≤ k ≤ j′ + j and

∣∣m′ − m
∣∣ ≤ q ≤ m′ + m. (29.82)
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A state with total angular moment j that has a 2k -electric or magnetic moment gives rise to

the matrix element

〈jm| Ykq(θ ,φ) |jm〉 . (29.83)

The above result then shows that one must have k ≤ 2j. Thus, a scalar particle, with j = 0,

and therefore k = 0, cannot have a magnetic dipole moment.

We consider some examples that involve the matrix elements of J.

(i) In particular we evaluate 〈j‖J‖j〉. According to the Wigner–Eckart theorem,

〈
jm′

∣∣ J0 |jm〉 = 〈j‖J‖j〉 〈jm′|m0〉 (29.84)

where J0 is the spherical component that equals Jz. Let us take m′ = m = j, then

〈jj| J0 |jj〉 = 〈j‖J‖j〉 〈jj|j0〉. (29.85)

The Clebsch–Gordan term is given by

〈jj|j0〉 =
√

j

j + 1
. (29.86)

Also,

J0 |jj〉 = Jz |jj〉 = j |jj〉 . (29.87)

Hence,

〈j‖J‖j〉 =
√

j (j + 1). (29.88)

The reduced matrix element of the angular momentum operator is thus determined.

(ii) Let us now consider a general vector operator V. Since both V and J are vectors, they

will have the same factor for the Clebsch–Gordan coefficient when their matrix elements

are expressed in the form dictated by the Wigner–Eckart theorem. Hence

〈
jm′

∣∣Vq |jm〉
〈jm′| Jq |jm〉

= 〈j‖V‖j〉〈j‖J‖j〉 =
〈j‖V‖j〉√
j (j + 1)

. (29.89)

In the last step we have utilized the result in (29.88).

Next let us consider the matrix element
〈
jm′

∣∣ J.V |jm〉 written in terms of spherical

components,

〈
jm′

∣∣ J.V |jm〉 =
〈
jm′

∣∣ (J0V0 − J+1V−1 − J−1V+1) |jm〉 . (29.90)

Since we already know how to evaluate
〈
jm′

∣∣ Jq, the above matrix element will be a linear

combination of
〈
jm′

∣∣Vq |jm〉 with q = 0,±1, and where, according to the Wigner–Eckart

theorem,

〈
jm′

∣∣Vq |jm〉 = 〈j‖V‖j〉 〈jm′|mq〉. (29.91)
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Hence in (29.90), 〈j‖V‖j〉will be a common term and can be factored out. We note, however,

that J.V is a scalar operator and as such its matrix element will not depend on the nature of

V. Thus, the term that will multiply 〈j‖V‖j〉 in (29.90) must be independent of m′, m, and

q, leading to the relation

〈
jm′

∣∣ J.V |jm〉 = cj 〈j‖V‖j〉 . (29.92)

To evaluate cj we take V = J in (29.92) and obtain

〈
jm′

∣∣ J2 |jm〉 = cj 〈j‖J‖j〉 . (29.93)

Since J2 |jm〉 = j (j + 1) |jm〉, and since 〈j‖J‖j〉 has already been found in (29.88) to

be
√

j (j + 1), we obtain

cj =
√

j (j + 1). (29.94)

The relation (29.92) can then be written as

〈
jm′

∣∣ J.V |jm〉 =
√

j (j + 1) 〈j‖V‖j〉 . (29.95)

Expression (29.89), after substituting for 〈j‖V‖j〉 from (29.95), can be written as

〈
jm′

∣∣Vq |jm〉 =
〈
jm′

∣∣ J.V |jm〉
j(j + 1)

〈
jm′

∣∣ Jq |jm〉 . (29.96)

This is called the projection theorem, which has applications in spectroscopy.

(ii) We consider, as an example, a magnetic moment operator

μ =g1J1 + g2J2 where J = J1 + J2. (29.97)

Let us calculate the diagonal matrix element 〈jj|μq |jj〉. Specifically, we take q = 0. We

then have, from the projection theorem,

〈jj|μ0 |jj〉 =
〈jj| J.μ |jj〉

j(j + 1)
〈jj| J0 |jj〉 =

〈jj| g1J.J1 + g2J.J2 |jj〉
j(j + 1)

〈jj| J0 |jj〉 . (29.98)

From the relation J = J1 + J2, we obtain

J.J1 =
1

2

(
J2 + J2

1 − J2
2

)
, J.J2 =

1

2

(
J2 − J2

1 + J2
2

)
. (29.99)

If |jj〉 are eigenstates of J2
1 and J2

2 in addition to J2, then substituting (29.95) in (29.98) and

using the fact that 〈jj| J0 |jj〉 = j, we obtain

〈jj|μ0 |jj〉 =
j(j + 1) (g1+g2)+ j1(j1 + 1) (g1−g2)+ j2(j2 + 1) (g2−g1)

2(j + 1)
. (29.100)
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29.5 Appendix to Chapter 29: SO(3), SU(2) groups and Young’s
tableau

29.5.1 Constructing irreducible tensors

In Chapter 27 we discussed the groups SO(3) and SU (2) in connection with the repre-

sentation of the rotation operators. We return to these two groups and their relation to the

irreducible tensors, which we will define below.

Tensors belong to a set of elements that transform in a specific way. The vectors Vi

(i = 1, 2, 3) are a special case of tensors. They are often referred to as first-rank tensors.

Higher-rank tensors are written as Tij, Tijk . . ., with i, j, k = 1, 2, 3.

SO(3)

The rotation matrix Rz(φ) that we described in Section 5.1 belongs to a class of transfor-

mations that have certain unique properties. We discuss these below in the context of the

abstract group theory.

Let us consider a 3 × 3 transformation matrix, denoted by {α}, that has real matrix

elements and satisfies the properties

αα̃ = 1, (29.101)

det α = 1. (29.102)

We note that the rotation matrices described in Chapter 26 exhibit the same properties. The

transformation of a vector with components Ai (i = 1, 2, 3) will then be written as

A′i = αijAj, i, j = 1, 2, 3 (29.103)

where Ai’s are assumed to be real numbers and where we use the convention that repeated

indices imply summation. Thus, a summation over j is implied in (29.103). A product of

two vectors AiBj transforms as

A′iB
′
j = αikAkαjlBl = αikαjlAkBl . (29.104)

Defining a second-rank tensor Tij = AiBj as a product of two vectors, the above relation

becomes

T ′ij = αikαjlTkl . (29.105)

One can form higher-dimensional tensors by constructing products of vectors, e.g., Tijk... =
AiBjCk . . . and their transformation is given by

T ′ijk... = αiaαjbαkc . . .Tabc.... (29.106)
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In a second-rank tensor, Tij, a total of nine elements are involved since i and j take on

values 1, 2, 3. However, we will show that certain linear combinations of these elements

transform among themselves. These combinations are the irreducible tensors.

To obtain these linear combinations we first consider some special tensors that we have

defined in the previous chapters: δij, the Kronecker delta, and ǫijk , the totally antisymmetric

tensor. Their transformations are given from (29.103) as follows:

δ′ij = αikαjlδkl = αikαjk = (αα̃)ij . (29.107)

However, since αij satisfies orthonormality, (αα̃)ij = δij, we have

δ′ij = δij . (29.108)

Thus δij is “form invariant,” i.e., its matrix elements remain unchanged after the

transformation.

As for ǫijk , the transformation is given by

ǫ′ijk = αilαjmαknǫlmn. (29.109)

From a rather simple but slightly laborious calculation, it is possible to show that the

right-hand side in (29.109) is (det α) ǫijk . From (29.102), since det α = 1, we find that

ǫ′ijk = ǫijk . (29.110)

Thus ǫijk is also “form invariant.”

We can now use δij and ǫijk to form special linear combinations that have unique

transformation properties.

If we now consider the tensor AiBj and multiply the product by δij and sum over the

indices i and j, we obtain

S = δijAiBj (29.111)

where the summation convention is used so that both i and j are summed over. This sum,

denoted by S, transforms back to itself as we show below,

S ′ = δ′ijA′iB′j = δijA′iB′j = A′iB
′
i = (α̃α)kj AkBj (29.112)

where we have used the transformation property (29.103). Since (α̃α)kj = δkj , we obtain

S ′ = A′iB
′
i = AjBj = S. (29.113)

Hence the linear combination δijAiBj transforms back to itself, i.e.,

A′1B′1 + A′2B′2 + A′3B′3 = A1B1 + A2B2 + A3B3. (29.114)

The linear combination, S, is thus said to form a scalar under the group transformation

(29.112). Similarly, one can show that Vi = ǫijkAjBk transforms as a vector with the
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transformation property given by (29.103). In the context of ordinary three-dimensional

vectors, S corresponds to the dot product A · B and Vi corresponds to the ith component of

the cross-product A × B.

Thus δij and ǫijk act as “reducing agents” for this group by reducing the original dimen-

sionality to a lower one, so that out of the nine elements of the tensor Tij one linear

combination transforms as a scalar and three linear combinations transform as the three

components of a vector. The remaining terms of the tensor AiBj must be such that they

cannot be reduced further by δij or ǫijk . That is, for these terms δijAiBj and ǫijkAjBk must

vanish:

δijAiBj = 0 and ǫijkAjBk = 0. (29.115)

Hence the matrix formed by the remaining terms of Tij must be traceless and symmetric,

which accounts for the five terms.

Thus the nine elements of AiBj in SO(3) can be expressed in terms of tensors that cannot be

reduced further, called “irreducible tensors,” made up of a scalar, a vector, and a symmetric

traceless matrix with the number of components (i.e., the number of linear combinations)

1, 3, and 5 respectively. This result is written symbolically as

3⊗ 3 = 1⊕ 3⊕ 5. (29.116)

The irreducible tensors we have determined are called “spherical tensors” since they corre-

spond to spherical harmonics with l = 0, 1, 2, where for each l there are (2l+1) independent

terms.

If we had started with SO(2) with a simpler 2× 2 transformation matrix with vectors Ai

(i = 1, 2), the only reducing agent available would be δij since ǫijk would have required a

minimum of three dimensions. In this case it is easy to check that

2⊗ 2 = 1⊕ 3. (29.117)

These would correspond to l = 0, 1 of the spherical harmonics.

SU (2)

Here our basic transformation matrix {α} is a unitary 2 × 2 matrix with complex matrix

elements,

αα† = 1. (29.118)

The transformation of a vector is given by

A′i = αijAj, i, j = 1, 2. (29.119)

We take the complex conjugates of both sides and write

A∗′i = α∗ijA∗j . (29.120)
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However, because of their unitary nature, the α’s satisfy

α∗ij =
(
α−1

)
ji

. (29.121)

To simplify notations, let us write complex conjugates of the vectors as

A∗i = Ai. (29.122)

Thus the transformation (29.120) can be written as

A′i =
(
α−1

)
ji

Aj = Aj
(
α−1

)
ji

. (29.123)

The last step above facilitates writing the product as a matrix multiplication.

Let us now consider the tensor

T i
j = AiBj. (29.124)

We will call it a mixed tensor because it has one superscript and one subscript. It will

transform as

T ′ij =
(
α−1

)
ki
αjlT

k
l . (29.125)

To obtain irreducible combinations let us consider, once again, the Kronecker delta, δij ,

which is constructed as a mixed tensor and transforms as

δ
′i
j =

(
α−1

)
ki
αjlδ

k
l . (29.126)

The right-hand side above simply becomes
(
α−1

)
ki
αjk = αjk

(
α−1

)
ki
=

(
αα−1

)
ji

and,

since αα−1 = 1, it behaves like a Kronecker delta. Hence,

δ
′i
j = δij. (29.127)

Thus, δij is form invariant. As with SO(3), one can then show that δ
j
iA

iBj transforms as a

scalar. There is no counterpart of ǫijk in the 2× 2 system because i, j, and k can only take

on the values 1 or 2 so at least two of the three indices of ǫijk will be the same, in which

case ǫijk vanishes identically.

Thus the irreducible elements of AiBj are obtained by taking a linear combination that

is a scalar with the remaining elements that satisfy δ
j
iA

iBj = 0 and which are, therefore,

matrix elements of a traceless matrix. Here for SU (2) with complex elements one writes

symbolically

2× 2∗= 1+ 3. (29.128)

For SU (3) with complex elements AiBj (i, j = 1, 2, 3) the only reducing agent available

is δ
j
i . One cannot construct a tensor of the type ǫijk that could act as a reducing agent. Hence

one finds

3× 3∗= 1+ 8. (29.129)
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29.5.2 Young’s tableau

This method provides a simple pictorial way to construct irreducible combinations. We

apply it to SU (2) systems. Since SO(3), the group that concerns us, is isomorphic to

SU (2), we can use the results we outline below (without proof) for SO(3) as well.

The lowest-dimensional matrices, the “building blocks” of SU (2), are 2 × 2 matrices,

one of the representations of which is D
1
2 (R), which we have already discussed for spin 1

2

particles. Let us symbolize a spin 1
2

system as simple squares:

.

This is then a doublet. It consist of spin-up and spin-down states. Below we describe the

process by which higher symmetries are built.

29.5.3 Two spin ½ particles

We start by making the designations

1 = spin-up 2 = spin-down

and consider a system with two boxes. The combinations are made up of spin-up

and spin-down states. Specifically, they are made up of the following combinations:

1 1

1 2

2 2 .

The combination 1 2 is assumed to be symmetric. Thus 2 1 is considered

redundant. This leads to one of the rules of the Young’s tableau.

Rule 1: The numbers from left to right cannot decrease.

We therefore have three possibilities as indicated above. All three possibilities are

indicated by a single pair of boxes

without any numbers inserted. This is then a triplet with j = 1. Another combination of

boxes gives, according to the rules,

1

2 .

This is an antisymmetric state. The rule here is that
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Rule 2: Numbers must increase in group from the top to the bottom. Since there is only

one possibility, this is a singlet state with j = 0.

To obtain the combination of two boxes, which we write as ⊗ , one can move

boxes around and make newer systems as long as they are consistent with the rules indicated

above. We then find

⊗ =
(29.130)

⊕

(29.131)

which is of the form

(
j = 1

2
, doublet

)
⊗
(

j = 1

2
, doublet

)
= (j = 1, triplet)⊕ (j = 0, singlet),

or

2⊗ 2 = 3⊕ 1.

We note that for the addition of two doublets in SU (2), which we are considering here,

there are only two rows possible, since

will imply antisymmetrization between three spin 1
2

states, which is impossible. For exam-

ple, in terms of 1 and 2 we note that the only way to have the blocks in a vertical

array is to have terms like

1

2

2

which is zero since antisymmetrization between 2 and 2 is impossible.

Thus there are the following additional rules.

Rule 3: The number of blocks as one goes down the rows cannot be larger than the number

of blocks in the row immediately above.

Rule 4: The dimensionality of any diagram is

D(λ) = 1+ λ (29.132)
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where λ is the number of blocks in the top row minus the number of blocks in the bottom

row. Since the dimensionality of the system is also 2j + 1, we have

D(λ) = 2j + 1. (29.133)

The rule about the dimensionality, once again, is applicable only to SU (2). For higher

systems such as SU (3), . . . , SU (n) this particular rule becomes more involved. Thus,

D(λ) = 3, j = 1

D(λ) = 1, j = 0

.

29.5.4 Higher systems

Let us consider the addition of j1 = 1 and j2 = 1, each being denoted by . In

forming the product states, we note that the individual blocks, , in the combination can

be moved around, consistent with the above rules. That is, even though we have

⊗

the individual single blocks can be moved around. We then get the following:

(i) All four blocks in the same row;

.

This is a completely symmetric state, it has λ = 4 and hence D(λ) = 5. Therefore,

2j + 1 = 5 and j = 2.

(ii) Take one of the blocks and move it down just below the first block:

.

For this system, λ = 3− 1 = 2 and hence D(λ) = 3. That is, 2j + 1 = 3 and j = 1.

(iii) Take the last block in the top row of (ii) and move it down just below the second

block:

.
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Here λ = 2− 2 = 0 and hence D(λ) = 1. This corresponds to j = 0, a singlet. Thus we

have

⊗ =

⊕

⊕

which expresses the decomposition

(j = 1, triplet)⊗ (j = 1, triplet) = (j = 2, quintuplet)⊕ (j = 1, triplet)⊕ (j = 0, singlet),

or

3⊗ 3 = 5⊕ 3⊕ 1.

What we have described above are independent irreducible tensors. We find that the

number of irreducible tensors is equal to the number of independent tableaus. One can now

proceed with other spin combinations by following the above rules.

29.6 Problems

1. Express xy, yz, and xz as components of an irreducible tensor of rank 2.

2. Consider three vector operators A, r, and p, where A satisfies the commutation relations

[
Ai, Aj

]
= iǫijkAk ,

[
Ai, rj

]
= iǫijkrk , and

[
Ai, pj

]
= iǫijkpk .

Express the three operators as spherical tensors.

3. Consider two operators, A and L (the angular momentum operator), which satisfy the

commutation relation

[
Li, Aj

]
= iǫijkAk .

Determine the matrix elements of Ai in the representation in which L2 and Lz are diagonal.

Use the Wigner–Eckart theorem.
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Entanglement is a remarkable quantum phenomenon in which a system of two or more

particles are linked closely together so that the description of one of the objects determines

the state of the others. As we know, for a spin 1
2

particle the spin will be found to be either

up or down. If a sufficient number of spin measurements are made, one will find 50% of the

time the spin is up and 50% of the time the spin is down. If we have two spin 1
2

particles,

one would generally find that each particle independently of the other will have the same

probability profile as the single particle – except when these two particles are entangled.

In that case, if one of the particles is found to have the spin in a certain direction then the

spin orientation of the other is predicted even when the physical separation between the

two particles is very large. We discuss all this below.

30.1 Definition of an entangled state

Consider the following two spin 1
2

states
∣∣χ1

〉
and

∣∣χ2

〉
representing two different particles:

∣∣χ1

〉
= a1 |+〉 + b1 |−〉 , (30.1)

∣∣χ2

〉
= a2 |+〉 + b2 |−〉 , (30.2)

where |ai|2 + |bi|2 = 1 for i = 1, 2, and where |±〉 designate states with the quantization

axes ±z. A state describing both particles combined will be given by

∣∣χ1

〉
·
∣∣χ2

〉
=
∣∣χ1 ⊗ χ2

〉
=a1a2 |+ ⊗ +〉 + a1b2 |+ ⊗ −〉 + b1a2 |− ⊗ +〉 + b1b2 |− ⊗ −〉

(30.3)

where we have used the symbol⊗ for a product state. If we write the above product state as

|ψ〉 = α |+ ⊗ +〉 + β |+ ⊗ −〉 + γ |− ⊗ +〉 + δ |− ⊗ −〉 (30.4)

then, comparing the coefficients of (30.3) and (30.4), we find that they satisfy

αδ = βγ . (30.5)
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We define an entangled state describing two particles as a state which, when written as

(30.4), satisfies the property

αδ � =βγ . (30.6)

A state with this property is thus not a simple product of two separate states, but is

“entangled.” In contrast, the states that satisfy (30.5) are separable.

The state

|φ〉 = |+ ⊗−〉 − |− ⊗+〉√
2

(30.7)

is a classic example of an entangled state. We show below that |φ〉 is invariant under

rotations.

Let |±n〉 correspond to the rotated axes in the direction ±n with polar angle θ (and

azimuthal angle φ = 0), then as we showed in Chapter 5 we obtain

|+n〉 = cos

(
θ

2

)
|+z〉 + sin

(
θ

2

)
|−z〉 , (30.8)

|−n〉 = − sin

(
θ

2

)
|+z〉 + cos

(
θ

2

)
|−z〉 . (30.9)

Therefore,

|+n⊗−n〉 = − cos

(
θ

2

)
sin

(
θ

2

)
|+ ⊗ +〉 + cos2

(
θ

2

)
|+ ⊗ −〉

− sin2

(
θ

2

)
|− ⊗ +〉 + sin

(
θ

2

)
cos

(
θ

2

)
|− ⊗ −〉 . (30.10)

Similarly,

|−n⊗+n〉 = − sin

(
θ

2

)
cos

(
θ

2

)
|+ ⊗ +〉 − sin2

(
θ

2

)
|+ ⊗ −〉

+ cos2

(
θ

2

)
|− ⊗ +〉 + cos

(
θ

2

)
sin

(
θ

2

)
|− ⊗ −〉 . (30.11)

Taking the difference, we find

|+n⊗−n〉 − |−n⊗+n〉√
2

= |+ ⊗−〉 − |− ⊗+〉√
2

. (30.12)

Therefore, |φ〉 is invariant under rotations.
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30.2 The singlet state

Let us consider a state consisting of two identical particles of spin 1
2

that are traveling in

opposite directions with equal momenta. An example of such a situation is the decay of a

neutral meson into an electron and a positron, i.e., the rare process

π0 → e+ + e−. (30.13)

Suppose that there are two observers A and B positioned to measure the spin components

of each particle when the particles are far apart and unable to interact with each other, as

described in Fig. 30.1. Let us call the particle moving to the left particle 1 and the particle

moving to the right particle 2. The observer A using a Stern–Gerlach device measures the

component along an arbitrary direction, we call it the a direction, of the spin of particle 1,

and B similarly measures the component of the spin in another direction, the b direction of

particle 2.

First let us assume that the two axes a and b are the same, both coinciding with the z-axis.

Consider the two-electron system to be in a spin singlet state and hence with a total spin of

zero. The state of the system is described by the state vector (30.7),

|φ〉 = |+ ⊗−〉 − |− ⊗+〉√
2

. (30.14)

When A measures the spin component of particle 1 and finds it to be+�/2, B will find the

spin component of particle 2 to be−�/2, and vice versa. The point to note is the following:

once A makes the measurement, B will automatically find that the spin component of particle

2 is exactly opposite to that measurement. The results for each pair of measurements are

perfectly anticorrelated.

What is remarkable is that they need not have both chosen the z-axis; the same result

would occur if they had chosen the x-axis since the singlet state is invariant under rotation

as expression (30.12) makes clear. Going a step further, we note that if A measures the spin

component along the z-axis and B along the x-axis, then if A finds the spin component to

be +�/2 along the z-axis, B – who in the previous experiment found the spin to be in the

−z direction – will now find the spin component along the x-axis to be+�/2 or−�/2 with

equal probability since |z−〉 =
(
1/
√

2
)

[|x+〉 + |x−〉].
The fact is that this kind of anticorrelation persists even when the particles are far apart

and no longer interacting and with the observers A and B who are long way apart with no

A B

b

a

Fig. 30.1
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possibility of communication. The observer B may decide how to orient the Stern–Gerlach

device long after the two particles have separated, but the outcome is already known. There

is, therefore, a certain degree of certainty what B will measure without disturbing particle 2.

Einstein, Podolsky, and Rosen stated with reference to these types of measurements that

if the value of a physical property can be predicted with certainty without disturbing the

system in any way then there is an element of reality associated with this property.

Aquestion then arises whether there is a “super theory” beyond quantum mechanics which

is deterministic and in which there are “hidden variables” describing the system of π0, e+,

e− in the reaction (30.13). Thus, e+ and e− inside π0 may already have spin correlations

that persist as they leave and fly apart. What one observes then is just a statistical outcome.

The hidden variables here are the initial spin, velocity, etc. of e+ and e−.

This situation would be akin to the case in which one tosses coins into the air a large

number of times and, as the coins fall on the ground, discover that they fall 50% of the time

heads and 50% tails. This is a statistical outcome, but the system is actually deterministic.

If, for example, one knew the specific details about the process, e.g., the exact velocity of

the coin upon release, the wind velocity, etc. one could predict how the coin would fall.

However, the process is normally sufficiently complex that one is satisfied with the statistical

outcome.The variables in this illustration are, of course, classical and known and not hidden.

30.3 Differentiating the two approaches

Consider two measurement axes a and b to lie in the x−z plane perpendicular to the direction

of propagation, which we take to be the y-axis. We shall use A(a) and B(b) as the results of

measurements of the projections σ · a and σ · b of particles 1 and 2 with possible values

A(a) = ǫa = ±1, B(b) = ǫb = ±1. (30.15)

Let E(a, b) be the expectation value that determines the correlation between the spin

measurements of the observers A and B, who use axes a and b, respectively. We can write

it as

E(a, b) = lim
N→∞

1

N

∑
An(a)Bn(b), (30.16)

which corresponds to N different measurements of the pairs An(a), Bn(b). A typical term

in the product is

ǫaǫb = ±1. (30.17)

Hence,

|E(a, b)| ≤ 1. (30.18)
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Quantum-mechanically, the expectation value will be

E(a, b) =
〈
φ

∣∣∣σ (1) · aσ (2) · b
∣∣∣φ

〉
, (30.19)

where |φ〉 is the entangled state representing the singlet spin state, and σ (1) and σ (2) are the

Pauli spin operators corresponding to the particles 1 and 2. To evaluate the matrix element

we first consider

〈
φ

∣∣∣σ (1)+σ (2)
∣∣∣φ

〉
. (30.20)

Since |φ〉 is invariant under rotations and
(
σ (1)+σ (2)

)
is a vector, this matrix element

vanishes. Hence,

σ (1) |φ〉 = −σ (2) |φ〉 . (30.21)

We first multiply both the terms by b and then by σ (1) · a. We obtain

σ (1) · aσ (1) · b |φ〉 = −σ (1) · aσ (2) · b |φ〉 . (30.22)

The two σ (1)’s on the left-hand side are in the same space, so that we can utilize the relation

σ (1) · aσ (1) · b = a · b+ iσ (1) · (a× b) . (30.23)

The expectation value with respect to |φ〉 of the second term on the right-hand side above

can be shown to vanish. From (30.22) and (30.23) we therefore obtain

〈
φ

∣∣∣σ (1) · aσ (2) · b
∣∣∣φ

〉
= −a · b =− cos θ (30.24)

where θ is the angle between the axes a and b. Thus, quantum-mechanically we find

|E(a, b)| ≤ 1, (30.25)

which gives the same conclusion as the classical or the hidden theory.

In the absence of any quantitative resolution of the differences, the debates between the

proponents of quantum theory and hidden-variables theory remained essentially philosoph-

ical in nature. Things changed in 1964, however, when J. S. Bell proposed a quantitative

way in which one could determine the difference.

30.4 Bell’s inequality

Consider the following situation: observers A and B use a pair of axes a and a′ and a pair

of axes b and b′, respectively for their spin measurements. We construct the following

combination using the notations we have already defined in the previous section:

Xn = An(a)Bn(b)+ An(a)B
′
n(b

′)+ A′n(a
′)B′n(b

′)− A′n(a
′)Bn(b). (30.26)
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A typical result of the measurement for Xn will be

ǫaǫb + ǫaǫ
′
b + ǫ′aǫ′b − ǫ′aǫb. (30.27)

We can write this as

ǫa(ǫb + ǫ′b)+ ǫ′a(ǫ′b − ǫb). (30.28)

Since the values of the ǫ’s are ±1, we have then two possibilities.

(i) ǫb = ǫ′b. In this case we have

Xn = 2ǫaǫb = ±2. (30.29)

(ii) ǫb = −ǫ′b. In this case we have

Xn = 2ǫ′aǫ
′
b = ±2. (30.30)

Hence we have

|E(a, b)| =
∣∣∣∣ lim
N→∞

1

N

∑
Xn

∣∣∣∣ ≤ 2. (30.31)

Quantum-mechanically, we have

E(a, b) =− a · b− a · b′ − a′·b′ + a′·b. (30.32)

Let us now consider the specific case as given by the Fig. 30.2 with the angles between

a, b, a′, and b′ as prescribed. We find

E(a, b) =− cos
(π

4

)
− cos

(π
4

)
− cos

(π
4

)
+ cos

(
3π

4

)
. (30.33)

Since cos(π/4) = 1/
√

2, and cos(3π/4) = −1/
√

2, we obtain

E(a, b) =− 2
√

2. (30.34)

�

π/4 π/4

π/4

�

0

Fig. 30.2
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We thus see that there is a clear difference between the classical and quantum-mechanical

results for the correlation.

Experimental evidence points squarely in the direction of quantum mechanics.

Entanglement has a number of applications, e.g., in quantum computing, quantum

communications, quantum state teleportation, and many aspects of information theory.

Evidently, this is an exciting, modern subject. What we have done in this chapter is just to

scratch the surface.

30.5 Problems

1. Consider a spin singlet state made up of two spin 1
2

states. The two particles – we call

them particle 1 and particle 2 – are traveling in opposite directions. An observer, A,

measures the spin of particle 1 and another observer, B, measures the spin of particle 2.

What is the probability that A finds the spin of particle 1 to be pointing in the positive

z-direction when B makes no measurement? What if B made a measurement and found

the spin of particle 2 to be in the positive x-direction?



31
Special theory of relativity: Klein–Gordon

and Maxwell’s equations

We now enter the domain of relativity. First we modify and extend the nonrelativistic

theories to be compatible with the postulates of the special theory of relativity. We express

the previously defined physical quantities in a four-dimensional language and introduce the

concept of covariance so that the equations look the same in any inertial frame. Then we

introduce the Klein–Gordon equation, which is a relativistic extension of the Schrödinger

equation. We discover that the solutions of this equation can have negative energies and the

probability density is not necessarily positive definite. We also consider Maxwell’s equation

and discuss the consequences of gauge invariance.

31.1 Lorentz transformation

The postulates of the special theory of relativity state in the simplest terms that:

(i) If a system of coordinates exists so that, in relation to it, physical laws hold in their

simplest form, the same laws hold good in relation to any other system of coordinates

moving uniformly with respect to it. These are the inertial frames.

(ii) The velocity of light is the same in all inertial frames.

Consider two inertial frames with origins at O and O′, respectively, moving with respect to

each other with a uniform velocity. We designate the frames by their origins as the O-frame

and the O′-frame. If a point in the O-frame is described by four coordinates (x, y, z, ct),

where c is the velocity of light, then the coordinates of the corresponding point in the

O′-frame will be denoted by (x′, y′, z′, ct′).
We assume that the two frames coincide at time t = 0, in which case we must have

x′ = x, y′ = y, z′ = z, at t′ = t = 0. According to the postulates of the special theory of

relativity, the speed of light remains the same when measured in any two inertial frames.

This implies that the trajectory of light emitted at t′ = t = 0 from the common origin of

the two frames must satisfy the following relation

c2t′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2. (31.1)

Consider now the motion of a particle along the x-direction. One can write the following

relations between the two coordinate-systems:

x′ = a1x + a2t, (31.2)

t′ = b1x + b2t, (31.3)
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y′ = y, (31.4)

z′ = z. (31.5)

We assume that the O′-frame is moving with uniform velocity v in the x-direction with

respect to the O-frame. Thus the point O′ will travel, in time t, a distance vt along the x-

direction with respect to O. Hence x′ = 0 will correspond to x = vt since they represent the

coordinates of the same point, O′, in the two frames. With the initial conditions as outlined,

we now substitute (31.2)–(31.5) in (31.1). The following result is obtained:

x′ = γ (x − vt) , (31.6)

t′ = γ
(
t − vx

c2

)
, (31.7)

y′ = y, (31.8)

z′ = z, (31.9)

where

γ = 1√
1− (v/c)2

. (31.9a)

The above relations correspond to Lorentz transformation along the x-axis. In the dis-

cussions to follow we will confine ourselves entirely to the transformation along the

x-axis.

31.2 Contravariant and covariant vectors

We now define the following four-component vector, called a contravariant vector:

xμ = (x, y, z, ct) . (31.10)

The Lorentz transformation relations (31.6)–(31.9) can be written in terms of these four-

vectors as

x′1 = γ
(
x1 − βx4

)
, (31.11)

x′4 = γ
(
x4 − βx1

)
, (31.12)

x′2 = x2, (31.13)

x′3 = x3, (31.14)

where γ is defined in (31.9a) and

β = v

c
. (31.15)
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A covariant vector, xμ, is defined as

xμ = (−x,−y,−z, ct) . (31.16)

The invariance condition (31.1) can be written as

x′μx′μ = xρxρ (31.17)

where we adopt the convention that whenever the same index appears in opposite locations

then that index is to be summed over, from 1 to 4. This will remain our summation con-

vention. The important thing to note is that the indices must be in opposite locations for the

summation convention to apply.

We note further that in (31.17) there is no free index left after the summation, signifying

that it is an invariant quantity that will remain unchanged under the Lorentz transformation.

Thus, terms with no free indices will be the invariants, also called scalars, while those with

one index free will be four-vectors, either contravariant or covariant. The objects with two

or more indices will be called tensors, following the convention in three-dimensional vector

algebra.

One can relate xμ and xμ through the tensor relations

xμ = gμνx
ν (31.18)

as well as by

xμ = gμνxν (31.19)

where gμν and gμν are each called the metric tensor. Their matrix representations are

given by

{gμν} = {gμν} =

⎡
⎢⎢⎣

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎤
⎥⎥⎦ . (31.20)

We note, that after the summation, the right-hand sides of (31.18) and (31.19) have one

free index remaining, which is at the same location as the one on the left-hand side. The

metric tensor thus acts like a raising or a lowering operator in changing a contravariant

vector to a covariant vector or vice versa. It is also called a “reducing agent.”

The invariance relation (31.1) can be expressed as

gμνx
′μx′ν = gρσ xρxσ = invariant. (31.21)

We now write the Lorentz transformation in a matrix form as

x′μ = Lμ.νx
ν (31.22)
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where

{Lμ.ν} =

⎡
⎢⎢⎣

γ 0 0 −γ β
0 1 0 0

0 0 1 0

−γ β 0 0 γ

⎤
⎥⎥⎦ . (31.23)

By writing the matrix as L
μ
.ν we follow the rules of matrix multiplication in that the first

index, μ, is the row index and the second index, ν, is the column index. The dot separates

the two indices.

To obtain the Lorentz transformation for a covariant vector, x′ρ , we multiply (31.22) on

both sides on the left by gρμ and then sum over μ,

x′ρ = gρμx′μ = gρμLμ.νx
ν = gρμLμ.νg

νσ xσ = M .σ
ρ xσ (31.24)

where M .σ
ρ is a matrix related to L

μ
.υ :

M .σ
ρ = gρμLμ.νg

νσ . (31.25)

For the specific case of Lorentz transformations along the x-axis for which L
μ
.ν is given by

(31.23), M .σ
ρ is given by

{M .σ
ρ } =

⎡
⎢⎢⎣

γ 0 0 γ β

0 1 0 0

0 0 1 0

γ β 0 0 γ

⎤
⎥⎥⎦ . (31.26)

Here, again, the first index in M .σ
ρ is ρ, which is the row index, and the second index, σ ,

is the column index. Thus we can write the relation (31.25) in a compact matrix form as

follows:

M = gLg. (31.27)

Below we will obtain a simpler relation between M and L.

The relation (31.21) can be written as

gμυx′μx′ν = gμυ
(
Lμ.ρxρ

) (
Lν.σ xσ

)
= gμυLμ.ρLν.σ xρxσ . (31.28)

Equating this to the equation on the right-hand side of (31.21) we obtain

gμνL
μ
.ρLν.σ = gρσ . (31.29)
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The above relation can also be written as

(̃
L
).μ

ρ
gμνL

ν
.σ = gρσ , (31.30)

i.e.,

L̃gL = g (31.31)

where L̃ corresponds to the transpose of the matrix L. From (31.29) and (31.21) we find

L̃M = L̃gLg = g2 = 1 (31.32)

where 1 is a unit matrix. Hence from (31.27), (31.31), and (31.32) we find

M =
(̃
L
)−1

. (31.33)

Thus, M is not an independent matrix but is related to L.

By starting with the product of covariant vectors, gμυx′μx′ν , we can follow the same steps

that led to (31.31), and obtain

M̃gM = g. (31.34)

From (31.33), one can write the above relation as

L−1g
(̃
L
)−1 = g. (31.35)

Multiplying both sides of (31.35) on the left by L and on the right by L̃ , we obtain

LgL̃ = g. (31.36)

31.3 An example of a covariant vector

A familiar example of a covariant vector is the derivative operator ∂/∂xμ. Consider a

function f (x, y, z, ct) that is invariant under Lorentz transformation (e.g., expression (31.1)

is such a function). As we stated earlier, this type of function is called a scalar function. Let

us expand it in a Taylor series around the origin.

f (x, y, z, ct) = f (0, 0, 0, 0)+
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ (ct)

∂

∂ (ct)

)
f (0, 0, 0, 0)+ · · · .

(31.37)

Since the left-hand side is a scalar function, each term on the right side must also be a scalar

(i.e., invariant). Therefore, since f (0, 0, 0, 0) is a scalar we conclude

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ (ct)

∂

∂ (ct)

)
= invariant. (31.38)



561 31.4 Generalization to arbitrary tensors

Since (x, y, z, ct) are components of a contravariant vector xμ, the derivatives must be part

of a covariant vector so that the product is of the form AρBρ (e.g., expression (31.17)).

To make this explicit we define

∂μ =
∂

∂xμ
=
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4

)
=
(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

c∂t

)
, (31.39)

∂μ = ∂

∂xμ
=
(
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂x4

)
=
(
− ∂
∂x

,− ∂
∂y

,− ∂
∂z

,
∂

c∂t

)
. (31.40)

We can express (31.38) as

xμ∂μ = xμ∂
μ = invariant. (31.41)

31.4 Generalization to arbitrary tensors

We can now generalize the results obtained above from the coordinate vectors to arbitrary

vectors and tensors. A contravariant vector Aμ and a covariant vector Aμ are defined as

Aμ =
(
Ax, Ay, Az, A

4
)

, (31.42)

Aμ =
(
−Ax,−Ay,−Az, A4

)
, (31.43)

where Ax, Ay, Az are the ordinary space components and A4 is the fourth (time) component

with A4 = A4. The corresponding Lorentz transformation properties are

A′μ = Lμ.νA
ν , (31.44)

A′μ = M .ν
μ Aν . (31.45)

One can show that

AμBμ (31.46)

is an invariant through the following steps.

A′μB′μ =
(
Lμ.νA

ν
) (

M .ρ
μ Bρ

)
= Aν

(̃
LM

).ρ

ν
Bρ = Aν(1)·ρν Bρ = AνBν . (31.47)

One often writes the above product as a dot-product

AμBμ = A · B. (31.48)

A (totally) contravariant tensor, Tμν..., can be thought of as having the same transforma-

tion property as the product AμBν . . .. Thus,

T ′μν... = Lμ.ρLν.σ · · ·Tρσ .... (31.49)
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In a similar fashion the mixed tensor T
μν...
........ρσ , and totally covariant tensor Tμν.... will

transform as

T ′μν..........ρσ = Lμ.aLν.bM .c
ρ M .d

σ · · ·T ab...
.......cd (31.50)

and

T ′μν..... = M .ρ
μ M .σ

ν ...Tρσ . (31.51)

We note that, according to our summation convention, a product

Tμν..ρσBσCν (31.52)

transforms as a mixed tensor S
μ
.ρ . This follows from the fact that the repeated indices ν and

σ are situated in opposite locations and, are, therefore, summed over. However, in products

like

AμBμ, (31.53)

since the indexμ is not situated in opposite locations in the two terms, there is no summation

involved.The above term designates theμμ diagonal component of the tensor Tμν = AμBν .

For second-rank tensors the transformations can be written quite simply in terms of 4×4

matrices. Using the usual interpretation of the row index and column index in matrices one

follows the matrix multiplication rules. So, for example, one can write

T ′μν = Lμ.ρLν.σTρσ = Lμ.ρTρσ L̃.ν
σ (31.54)

as

T ′ = LTL̃ (contravariant). (31.55)

Similarly,

T ′ = LTM̃ (mixed), (31.56)

T ′ = MTM̃ (covariant). (31.57)

One can easily verify that the metric tensor is “form-invariant,” i.e.,

g′μν = gμν . (31.58)

This follows after using the transformation (31.36). We can also write

g′ = LgL̃ = g. (31.59)
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Furthermore, if one assumes the identity matrix as a mixed tensor then it is also a form-

invariant matrix. This can be shown if we write

{δμ.ν} =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ . (31.60)

The transformed matrix, δ
′μ
.ν , because of its mixed character, can be written as

δ′μ.ν =
(
L1M̃

)μ
.ν
= δμ.ν . (31.61)

The last equality follows from (31.32).

Finally, we emphasize that writing a matrix without specifying its transformation prop-

erties is meaningless because the same matrix will transform differently depending on the

type of tensor it represents. For example if we took the matrix (31.60) as a contravariant

tensor,

{Tμν} =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎦ (31.62)

then from (31.54)

T ′μν =

⎡
⎢⎢⎣

γ 2(1+ β2) 0 0 −2βγ 2

0 1 0 0

0 0 1 0

−2βγ 2 0 0 γ 2(1+ β2)

⎤
⎥⎥⎦ . (31.63)

This is a totally different result compared to (31.62).

Finally, just as we did for rotations, it is important to discuss infinitesimal Lorentz

transformations. This we have done in the Appendix at the end of this chapter.

31.5 Relativistically invariant equations

According to the special theory of relativity, the laws of physics must remain the same in

any two inertial frames. This statement implies that both sides of an equation describing

a physical phenomenon must transform the same way under Lorentz transformations. For

example, an equation of the type

Aμ = Bμ (31.64)
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where both sides transform as contravariant vectors will lead to an equation that looks

exactly the same in another inertial frame.This can be shown by taking the Lorentz transform

of the left-hand side of (31.64),

A′μ = Lμ.νA
ν = Lμ.νB

ν = B′μ. (31.65)

Thus the same equation holds in the primed-frame. These types of equations are called

covariant equations.

Our task in the topics to follow is to cast different physical equations into a covariant

form.

31.5.1 Electromagnetism

First let us consider charge and current densities in classical electromagnetism, ρ and j.

They satisfy the charge conservation relation

∂ρ

∂t
+∇ · j = 0. (31.66)

We can cast this equation into a covariant form by defining a “four-vector current”

jμ = (j, cρ) . (31.67)

The charge conservation relation can now be expressed as

∂μjμ = 0. (31.68)

The left-hand side of this equation is invariant under Lorentz transformations, as is the

right-hand side. This is then a covariant equation that will be valid in any inertial frame.

We have thus established j and ρ, which were originally thought of as separate entities,

as being parts of the same four-current jμ which, therefore, transform into each other under

Lorentz transformations. Below we will find similar results for other physical quantities.

Let us consider the scalar and vector potentials φ and A, which satisfy equations

∇2φ − ∂2

c2∂t2
φ = −4πρ, (31.69)

∇2A − ∂2

c2∂t2
A = −4π

c
j. (31.70)

A covariant equation can be achieved by taking

Aμ = (A,φ) . (31.71)

Using the fact that

∂μ∂
μ = −∇2 + ∂2

c2∂t2
, (31.72)
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the two equations (31.69) and (31.70) can now be written in a covariant form as

(
∂μ∂

μ
)

Aν = 4π

c
jν . (31.73)

In electromagnetic theory the electric and magnetic fields are expressed in terms of the

vector and scalar potentials, A and φ, respectively, as follows:

E = −∇φ − ∂A
c∂t

and B = ∇ × A. (31.74)

Taking the x-components of these fields we note that

Ex = −
∂φ

∂x
− ∂Ax

c∂t
= ∂1A4 − ∂4A1. (31.75)

Similarly,

Bx =
∂Az

∂y
− ∂Ay

∂z
= −∂2A3 + ∂3A2. (31.76)

One can easily generalize these results by writing a second rank tensor

Fμν = ∂μAν − ∂νAμ. (31.77)

This is an antisymmetric tensor, called the Maxwell tensor, whose matrix elements are

related to the components of the E and B fields. For example, from the relations (31.75)

and (31.76) we find

F14 = Ex, F23 = −Bx. (31.78)

The Maxwell tensor in a matrix form is then

{Fμν} =

⎡
⎢⎢⎣

0 −Bz By Ex

Bz 0 −Bx Ey

−By Bx 0 Ez

−Ex −Ey −Ez 0

⎤
⎥⎥⎦ . (31.79)

Finally, if we consider

∂μFμν = ∂μ
(
∂μAν − ∂νAμ

)
= ∂μ∂μAν − ∂μ∂νAμ, (31.80)

then using (31.73) we obtain

∂μFμν = 4π

c
jν (31.81)

provided the following condition holds:

∂μAμ = 0. (31.82)
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This is, of course, the famous Lorentz condition

∇ · A + ∂φ
c∂t

= 0. (31.83)

Taking ν = 1, 2, 3 in (31.81) we obtain

∇ × B = 1

c

∂E

∂t
+ 4π

c
j, ∇ · E = 4πρ. (31.84)

These are two of the four Maxwell’s equations that involve the source terms.

The remaining two of Maxwell’s equations are homogeneous. These are obtained by

noting that because the Maxwell tensor (31.77) is antisymmetric it satisfies

∂μFρσ + ∂ρFσμ + ∂σFμρ = 0 (31.85)

where μ, ρ, and σ appear in cyclic order. Relation (31.85) can be proved very simply by

substituting the relation (31.77) for the Maxwell tensor for the three terms above. Taking

μ = 1, ρ = 2, and σ = 3 in (31.85) we obtain

∇ · B = 0. (31.86)

Similarly, if we take μ = 1, ρ = 2, and σ = 4 we obtain

∂Ey

∂x
− ∂Ex

∂y
= −1

c

∂Bz

∂t
. (31.87)

Similar equations result by taking different values of μ and ρ with σ = 4. These equations

are found to be different components of the last of the four Maxwell’s equations:

∇ × E = −1

c

∂B

∂t
. (31.88)

Thus, we have successfully converted Maxwell’s equations to a covariant form through

the equations (31.81) and (31.85). We conclude that E and B are not two separate entities

but are part of the same tensor, the Maxwell tensor Fμν .

31.5.2 Classical mechanics

In classical mechanics, momentum and kinetic energy are given by

p = mv (31.89)

and

E = 1

2
mv

2, (31.90)
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respectively, where the velocity vector is

v = dr

dt
. (31.91)

We wish to generalize these definitions to the relativistic case by expressing them in a

four-vector language. The relation

v
μ = dxμ

dt
(31.92)

looks like an obvious candidate for the velocity four-vector. However, it will not work

since, in the relativistic context, t is a fourth component which makes the term on the right-

hand side behave as a tensor. We need to investigate the possibility of replacing dt with an

equivalent quantity which transforms as a scalar. This is, indeed, possible from the invariant

condition

c2 dt′2 − dx′2 − dy′2 − dz′2 = c2dt2 − dx2 − dy2 − dz2 = invariant. (31.93)

Let the O′-frame be a frame in which the particle is at rest. This type of frame is called

the “rest frame” or “proper frame” for the particle, in which

dx′ = dy′ = dz′ = 0. (31.94)

One often designates dt′ in the proper frame as dτ . Thus from (31.93) and (31.94) we obtain

c2 dτ 2 = c2dt2 − dx2 − dy2 − dz2 = invariant. (31.95)

By replacing dt in (31.92) by dτ we write.

v
μ = dxμ

dτ
. (31.96)

Since dτ is a scalar, this is a covariant relation in which both sides transform as a four-vector.

We can write this relation in terms of the time, t, as measured in the O-frame in which all

the quantities like v
μ are measured. We note that since the O′-frame is the proper frame

with respect to which the particle is at rest, the particle velocity in the O-frame is the same

as the velocity, v, of the O′-frame. Therefore,

√
dx2 + dy2 + dz2 = v dt. (31.97)

From relation (31.95) we obtain the following

dτ =
√

1− β2 dt (31.98)

where, as defined earlier, β = v/c.
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We can then write (31.96) in the form

v
μ = dxμ√

1− β2dt
= γ dxμ

dt
(31.99)

where, as defined earlier, γ = 1/
√

1− β2. In the nonrelativistic limit, β ≪ 1, we recover

(31.91) as we should. The momentum vector is

pμ = m0v
μ = γm0

dxμ

dt
(31.100)

where we take the mass term m0 to be a scalar to maintain the four-vector character of pμ.

The space components of pμ are simply related to the classical momentum vector mv by

p = γm0v. (31.101)

In the limit β ≪ 1 we recover the nonrelativistic result

p ≈ m0v. (31.102)

Let us consider the fourth component of pμ, in particular cp4,

cp4 = γm0c
dx4

dt
= γm0c2 = m0c2

√
1− β2

. (31.103)

In the nonrelativistic limit,

m0c2

√
1− β2

= m0c2(1− β2)−
1
2 ≈ m0c2 + 1

2
mv

2. (31.104)

Because of the presence of 1
2
mv

2, which is the kinetic energy in classical mechanics, one

should identify cp4 with energy, E, in relativistic mechanics. We then note that we have an

extra term, m0c2, whose presence is entirely a consequence of relativity. This quantity is

called “rest energy” or “rest mass” since it exists even when the particle is at rest, that is

when v = 0. The concept of rest mass is a fundamental consequence of the special theory

of relativity whose manifestation we are already familiar with in radioactivity and nuclear

fission and, of course, in particle physics. Thus we write

E = cp4. (31.105)

If we define

m = γm0 =
m0√

1− β2
(31.106)

we obtain the well-known mass–energy equivalence relation

E = mc2. (31.107)
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In summary, we can write

pμ =
(

p,
E

c

)
, (31.108)

with

p = γm0v, (31.109)

E = γm0c2. (31.110)

Furthermore, one can construct the following invariant quantity after substituting the value

of γ :

pμpμ = −p2 + E2

c2
= −γ 2m2

0v
2 + γ 2m2

0c2 = m2
0c2. (31.111)

This gives us the result

E2 = c2p2 + m2
0c4. (31.112)

There are two solutions to the above equation for E,+
√

c2p2 + m2
0c4, and−

√
c2p2 + m2

0c4.

The positive solution corresponds to the physical case in (relativistic) mechanics. The

question of negative energies will not be resolved until we get to quantum field theory

in Chapter 37, where these particles will be identified as antiparticles with positive energy.

31.6 Appendix to Chapter 31

31.6.1 Infinitesimal Lorentz transformations: rotations and “pure” Lorentz
transformations

We write the Lorentz transformation operator L
μ
.ν under infinitesimal transformations as

Lμ.ν = δμ.ν + ǫeμ.ν (31.113)

where ǫ is an infinitesimal quantity. We will determine e
μ
.υ from the relation

L̃gL = g, (31.114)

which can be written as

L̃μ.νg
ναL.β

α = gμβ . (31.115)
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Substituting (31.113) in the relation above we obtain

eβμ + eμβ = 0 (31.116)

where

eμβ = eμ.υgνβ . (31.117)

Let us now look at the Lorentz transformation

x′μ = Lμ.υxν . (31.118)

The transformation along the x-axis, which we will be considering below, affects only the

x and t coordinates, therefore, instead of writing a 4× 4 matrix transformation matrix we

will just use the relevant 2× 2 matrix:

[
x′1

x′4

]
=
[
γ −γ β
−γ β γ

] [
x1

x4

]
. (31.119)

An infinitesimal transformation will correspond to β being small therefore, γ ≈ 1. Let us

take

β = ǫ. (31.120)

The above transformation will correspond to

[
x′1

x′4

]
=
[

1 −ǫ
−ǫ 1

] [
x1

x4

]
. (31.121)

We write it in the form

x′μ = Lμ.υxν (31.122)

for a submatrix formed with μ = 4 and μ = 1,

[
x′1

x′4

]
=
[
L1

.1 L1
.4

L4
.1 L4

.4

] [
x1

x4

]
, (31.123)

which under infinitesimal transformation will correspond to

[
x′1

x′4

]
=
[

1 ǫe1
.4

ǫe4
.1 1

] [
x1

x4

]
. (31.124)

For the off-diagonal terms, keeping only the nonzero terms we have

e1
.4 = e1αgα4 = e14g44 = e14 (31.125)

and

e4
.1 = e4βgβ1 = e41g11 = −e41. (31.126)
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If we take e41 = 1, then from the antisymmetry property we have e14 = −e41. Therefore,

the transformation relation (31.124) will be of the form

[
x′1

x′4

]
=
[

1 −ǫ
−ǫ 1

] [
x1

x4

]
, (31.127)

which reproduces (31.121).

We refer to the Lorentz transformation matrix Li
.ν with i = 1, 2, 3 and ν = 4 as a “pure”

Lorentz transformation in which only the space coordinates get a “boost.” The results we

have derived above for infinitesimal transformations can be shown to be valid for pure

Lorentz transformations:

[
x′i

x′4

]
=
[
Li

.i Li
.4

L4
.i L4

.4

] [
xi

x4

]
(31.128)

with i = 1, 2, 3.

We should note that Lorentz transformations contain rotations if L
μ
.υ corresponds to

μ, ν = 1, 2, 3. For rotations we already know, for example, that a rotation about the z-axis

by an angle θ corresponds to

x′ = x cos θ + y sin θ , (31.129)

y′ = −x sin θ + y cos θ , (31.130)

with z′ = z. An infinitesimal rotation will correspond to

θ = ǫ (31.131)

and, therefore,

x′ = x + ǫy, (31.132)

y′ = −ǫx + y, (31.133)

which we can write in terms of the relevant 2× 2 matrix as

[
x′

y′

]
=
[

1 ǫ

−ǫ 1

] [
x

y

]
. (31.134)

In terms of L
μ
.υ the rotation is given by

[
x′1

x′2

]
=
[
L1

.1 L1
.2

L2
.1 L2

.2

] [
x1

x2

]
, (31.135)

which under infinitesimal transformation (31.113) is

[
x′1

x′2

]
=
[

1 ǫe1
.2

ǫe2
.1 1

] [
x1

x2

]
. (31.136)
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Now,

e1
.2 = e1αgα2 = e12g22 = −e12 (31.137)

and

e2
.1 = e2αgα1 = e21g11 = −e21. (31.138)

If we take e12 = −1, then from the antisymmetric property we have e21 = 1. Therefore,

[
x′1

x′2

]
=
[

1 ǫ

−ǫ 1

] [
x1

x2

]
, (31.139)

which confirms the relation (31.134). Hence the relation derived checks out both types of

transformations.

The infinitesimal transformation as given by (31.113), is, therefore, a correct expression

for Lorentz transformation including rotations.

Finite, pure, Lorentz transformation can easily be derived through a series expansion,

and instead of the sine and cosine functions we have hyperbolic sines and cosines. Thus

one finds

[
x′1

x′4

]
=
[

cosh χ − sinh χ

− sinh χ cosh χ

] [
x1

x4

]
(31.140)

where

tanh χ = β. (31.141)

Writing it out explicitly in terms of β, we obtain

[
x′1

x′4

]
=
[
γ −γ β
−γ β γ

] [
x1

x4

]
(31.142)

where γ = 1/
√

1− β2. This is, of course, the matrix (31.119) we started with.

31.7 Problems

1. For the following 4 × 4 matrices, condensed into a 2 × 2 form, consider a Lorentz

transformation along the x-axis.

(a) If

Tμ.ν =
[
a 0

0 b

]
,

obtain a and b so that T
′μ
.ν = T

μ
.ν .



573 31.7 Problems

(b) If

Tμ.ν =
[−1 0

0 1

]
,

obtain T
′μ
.ν .

(c) Answer the same questions as (a) and (b) above if in each of the relations the tensor

on the left-hand side, T
μ
.ν , is replaced by Tμν .

2. Which of the following are covariant equations (give brief explanations)?

(a)
∂φ

∂xμ
= Aμ

(b)
∂φ

∂xμ
= a

(
c2t2 − r2

)

(c) TμνAν = Bμ

(d) Aμ = BμνCμ

(e) ∂μAμ = Cμ

(f) ∂μTρσν = 1.

3. Indicate whether the following quantities transform as scalar, vector or a specific type

of a tensor under Lorentz transformations.

(a) AμBυ

(b) AμBμν

(c) ∂Aν/ ∂xμ

(d) TμυTνμρ

(e) Aμ∂μBν

(f) AμTρσνCσ .

4. Show that d4x is invariant under Lorentz transformations.

5. Consider a stick at rest in the O′-system (proper frame) placed along the x′-axis. The

two end points are x′1 and x′2. The same stick is measured in another inertial system,

the O-system, by recording x1 and x2 of the two end points at the same time t1 = t2. If

L and L′ are the lengths in the two systems, obtain the relation between them. Which

is longer?

6. Consider a clock at rest in the O′-system placed on the x′-axis. The time recorded by

this clock is also measured in another inertial system, the O-system. If �t and �t′ are

the times recorded in each system, obtain the relation between then. Which clock is

slower?

7. Determine how the velocities transform under Lorentz transformation. That is, if

(ux, uy, uz) corresponds to the velocity of a particle in the O-frame, then in terms of it

obtain the velocity, (u′x, u′y, u′z), in the O′-frame.

8. From Problem 7 show that the velocity of light remains unchanged under Lorentz

transformation.

9. If E = (Ex, Ey, 0) and B =(0, By, Bz), obtain E′ and B′.
10. Light coming vertically down from a distant star is registered on earth. Assume the star

to be stationary and representing the O-frame. Assume the earth to be moving in the

x-direction and representing the O′-frame. Taking the velocity of light to have only the
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y-component in the O-frame, determine the components of the velocity and the total

velocity of light in the O′-frame.

11. A particle is traveling with a velocity u in the y-direction in a given frame (O-frame).

What is its velocity (i.e., u′x, u′y, u′z) in a frame (O′-frame) that is moving with respect

to the O-frame with a uniform velocity, v, in the x-direction? If u = c (the velocity of

light), determine u′.
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32.1 Covariant equations in quantum mechanics

Let us now continue our task of obtaining relativistically covariant equations, this time

concentrating on quantum mechanics.

The quantum-mechanical operators for energy and momentum are given by

E → i�
∂

∂t
, (32.1)

p →−i�∇. (32.2)

These are reproduced by the covariant relation

pμ→ i�∂μ. (32.3)

The wavefunction, φ(xμ), now is a function of four variables, xμ = (x, y, z, ct). We will

write it simply asφ(x). The equation satisfied byφ(x) describing a free particle with definite

energy, E and momentum p is

i�∂μφ = pμφ, (32.4)

i.e.,

i�
∂φ

∂xμ
= pμφ, (32.5)

whose solution is

φ (x) = C exp

(
− i

�
p · x

)
= Cei

p·r
� e−i Et

� (32.6)

where we have written the four-vector product p ·x in the component form (Et−p.r). Thus,

the expression for the free particle wavefunction is unchanged from the nonrelativistic case.

What is different now is the relation between the energy and momentum.

We will return in Section 32.4 to the question of the normalization constant C, since we

are now in the relativistic regime.



576 Klein–Gordon and Maxwell’s equations

32.2 Klein–Gordon equations: free particles

The relativistic energy–momentum relation is given by

pμpμ = m2
0c2, (32.7)

which can be converted into a quantum-mechanical equation through (32.3). We find,

−�
2∂μ∂

μφ = m2
0c2φ. (32.8)

In terms of space and time variables it can be written as

∇2φ − 1

c2

∂2φ

∂t2
= m2

0c2

�2
φ. (32.9)

This is the so-called Klein–Gordon equation, also called the relativistic Schrödinger

equation. The solution φ(x) has already been obtained. This solution will correspond to

a free particle with a definite energy E and momentum p.

32.2.1 Current conservation and negative energies

To construct the probability density and probability current density for the Klein–Gordon

case, let us first recall the results in Chapter 1 where we considered the nonrelativistic

Schrödinger equation,

i�
∂ψ

∂t
+ �

2

2m
∇2ψ = 0. (32.10)

Taking the complex conjugate we find

−i�
∂ψ∗

∂t
+ �

2

2m
∇2ψ∗ = 0. (32.11)

We multiply (32.10) on the left by ψ∗and (32.11) on the right by ψ and make the following

subtraction,

i�

(
ψ∗
∂ψ

∂t
+ ∂ψ

∗

∂t
ψ

)
+ �

2

2m

(
ψ∗

(
∇2ψ

)
−
(
∇2ψ∗

)
ψ
)
= 0 (32.12)

which is expressed as

i�
∂

∂t

(
ψ∗ψ

)
+ �

2

2m
∇·

[
ψ∗ (∇ψ)−

(
∇ψ∗

)
ψ
]
= 0 (32.13)

and written in the form

∂ρ

∂t
+∇.j = 0. (32.14)



577 32.2 Klein–Gordon equations: free particles

This is the nonrelativistic version of the charge–current conservation relation where ρ, the

probability density, and j, the probability current density are given by

ρ = ψ∗ψ , (32.15)

j = �

2im

[
ψ∗ (∇ψ)−

(
∇ψ∗

)
ψ
]

. (32.16)

If we substitute the free particle solution (32.6), which is also a solution of the Schrödinger

equation, we get

ρ = |C|2 and j = p

m
|C|2 . (32.17)

Let us now return to the Klein–Gordon equation and write it in the following form:

1

c2

∂2φ

∂t2
−∇2φ = −m2

0c2

�2
φ. (32.18)

We now determine the corresponding charge and current densities. Repeating the same

process of subtraction as in the Schrödinger case we obtain

1

c2

∂

∂t

[
φ∗
∂φ

∂t
− ∂φ

∗

∂t
φ

]
−∇ ·

[
φ∗ (∇φ)−

(
∇φ∗

)
φ
]
= 0. (32.19)

The second term on the left-hand side is the same type of term as the second term of (32.13)

for the Schrödinger equation if we multiply the equation by (−�/2im),

− �

2im

∂

c2∂t

[
φ∗
∂φ

∂t
− ∂φ

∗

∂t
φ

]
+ �

2im
∇ ·

[
φ∗ (∇φ)−

(
∇φ∗

)
φ
]
= 0. (32.20)

We write this equation as

∂

∂t
ρ +∇ · j = 0. (32.21)

Hence for the Klein–Gordon equation we have

ρ = − �

2imc2

[
φ∗
∂φ

∂t
− ∂φ

∗

∂t
φ

]
, (32.22)

j = �

2im
∇ ·

[
φ∗ (∇φ)−

(
∇φ∗

)
φ
]

. (32.23)

The current density j is described by the same expression as in the Schrödinger case, but ρ

is quite different. Indeed, if we substitute the free particle wavefunction we obtain

ρ = E

mc2
|C|2 , (32.24)

which is a different expression from (32.17), while j remains the same,

j = p

m
|C|2 . (32.25)
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The presence of E in ρ is not surprising since ρ is the fourth component of the current

four-vector, jμ = (j, cρ), just as E is the fourth component of the momentum four-vector,

pμ = (p,E/c). Indeed, one can write

jμ = pμ

m
|C|2 . (32.26)

However, because in the relativistic case we have both positive- and negative-energy

solutions,

E = ±
√

c2p2 + m2
0c4, (32.27)

the probability density ρ is no longer positive definite. The problem of negative energies

persists.

32.3 Normalization of matrix elements

In the nonrelativistic case the scalar product
〈
φ1|φ2

〉
of two state vectors is given by

〈
φ1|φ2

〉
=
∫

d3r φ∗1 (x) φ2 (x) (32.28)

where φ’s are normalized wavefunctions, and the probability is written as

P =
∫

d3r ρ(x) (32.29)

where ρ is the probability density

ρ = φ∗(x)φ (x) . (32.30)

In the relativistic case the situation is different, as we learned from the previous section.

From our discussion on current conservation for the Klein–Gordon equation we found that

the probability density is not given by (32.30) but is instead given by

φ∗
(
∂φ

∂t

)
−
(
∂φ∗

∂t

)
φ. (32.31)

In fact, unlike ρ in the nonrelativistic case, which is a scalar, in this case it was found that it

is proportional to energy and hence proportional to the fourth component of a four-vector.

In order to write (32.31) more compactly we introduce the symbol ∂(t) defined by

φ∗1∂(t)φ2 = φ∗1
(
∂φ2

∂t

)
−
(
∂φ∗1
∂t

)
φ2. (32.32)
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To maintain the fact that the matrix elements follow the same transformation properties as the

probability density defined above, the product
〈
φ1|φ2

〉
for the Klein–Gordon wavefunctions

will not be defined by (32.28) but by

〈
φ1|φ2

〉
= i

∫
d3r φ∗1 (x) ∂(t)φ2 (x) . (32.33)

This definition can be carried over to matrix elements of operators. For example, if A is an

operator then

〈
φ1 |A|φ2

〉
= i

∫
d3r φ∗1∂(t)

(
Aφ2

)
. (32.34)

If we write the wavefunction φ (x) in the same manner as we did for the nonrelativistic

case, then the expression for φ (x) will be

φ (x) = 1
(√

2π
)3

eik·x (32.35)

where kμ = (ωk/c, k), with ωk as the energy of the particle (=
√

c2k2 + m2
0c4). The

product
〈
φ1|φ2

〉
from (32.33) is then given by

〈
φ1|φ2

〉
= 2ωkδ

(3) (k1 − k2) . (32.36)

On the other hand, a wavefunction normalized to a δ-function will have the form

φ (x) = 1√
2ωk

1
(√

2π
)3

e−ik·x (32.37)

which gives

〈
φ1|φ2

〉
= δ(3) (k1 − k2) . (32.38)

The standard convention for normalization is (32.37), containing the factor
(
1/
√

2ωk

)
,

which we will use in what follows.

In theAppendix at the end of this chapter we consider the problem of energy levels for the

hydrogen atom for a relativistic electron, which now follows the Klein–Gordon equation.

The electron will not be a spin ½ particle in this calculation but effectively a spin 0 particle.

32.4 Maxwell’s equations

32.4.1 Gauge invariance and zero mass

In view of our discussion on the Klein–Gordon equation it is interesting to return to

Maxwell’s equation. We start with the definition of the Maxwell tensor, Fμν , in terms
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of the potential, Aμ,

Fμν = ∂μAν − ∂νAμ. (32.39)

As we have pointed out in the earlier chapters, there is a certain arbitrariness in the definition

involving Aμ because, for example, one could change

Aμ→ A′μ = Aμ − g∂μχ(x) (32.40)

while Fμν remains the same. The transformation (32.40) is called a gauge transformation

under which Fμν is invariant. Since χ depends on the space-time point x, this is called a

“local” gauge transformation.

Maxwell’s equation in the absence of sources is given by

∂μFμν = 0. (32.41)

This equation is also gauge invariant since Fμν is invariant.

The equation for Aμ obtained from (32.41) through the definition (31.77) is given by

�Aμ + ∂μ(∂νAν) = 0 (32.42)

where, as before,

� = ∂ν∂ν . (32.43)

We can take advantage of the arbitrariness given by (32.40) and eliminate the second term

in (32.42) by imposing the condition

∂νA
ν = 0. (32.44)

Under gauge transformation (32.40) we find

∂νA
ν → ∂νA

′ν = ∂νAν − ∂ν∂νχ . (32.45)

To keep the condition (32.44) invariant under this transformation we choose χ such that

�χ = 0. (32.46)

The particular choice (32.44) and (32.46) corresponds to what is called the Lorentz gauge.

Thus Aμ satisfies the equation

�Aμ = 0 (32.47)

provided the relations (32.44) and (32.46) are imposed.

Equation (32.47) is now the wave equation for the electromagnetic field. There are

actually four equations since Aμ is a four-vector. The solution of (32.47), following the

result for the Klein–Gordon equation, is simply

Aμ(x) = a
μ
0√

2ωk

1
(√

2π
)3

e−ik·x (32.48)
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where a
μ
0 is a constant four-vector, and kμ (= (k, ωk/c)) satisfies the equation

kμkμ = 0 = k2 − ω2
k

c2
.

Therefore, ωk = c |k|.
Let us compare the above equation for Aμ with the Klein–Gordon equation,

�φ = −m2
0c2

�2
φ. (32.49)

We note that (32.47) corresponds to the Klein–Gordon equation for each of the four

components of Aμ but with zero mass. As we will observe in our discussions on sec-

ond quantization, Maxwell’s equation for the electromagnetic field can be interpreted as an

equation for a particle of zero mass, the photon.

If a mass term is added to (32.47) in the same manner as it appears in the Klein–Gordon

equation, then the equation, for Aμ becomes

�Aμ + m2Aμ = 0. (32.50)

We note that (32.50) is no longer invariant under gauge transformations. The presence of

a mass term destroys the gauge invariance. We can restate this situation slightly differently

and say that because of gauge invariance the photon is massless, as given by (32.47). We

will return to this subject in some of the later chapters.

32.5 Propagators

32.5.1 Maxwell’s equation

Consider Maxwell’s equation in the presence of a source term given by an external current

Jμ(x),

�Aμ(x) = Jμ(x) (32.51)

with

� = 1

c2

∂2

∂t2
−∇2. (32.52)

We can write the solution of this equation using the Green’s function technique,

Aμ(x) = A
μ
0 (x)+

∫
d4x′DF (x − x′)Jμ(x′) (32.53)

where A
μ
0 (x) is a solution of the homogeneous equation

�A
μ
0 (x) = 0 (32.54)
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and DF (x − x′) is the Green’s function, which from (32.51), (32.53), and (32.54) satisfies

the equation

�DF

(
x − x′

)
= δ(4)

(
x − x′

)
(32.55)

where δ(4)
(
x − x′

)
is a four-dimensional δ-function. The subscript “F” in DF refers to a

specific type of Green’s function which we will discuss below. Since the right-hand side of

(32.55) is a function of
(
x − x′

)
, DF will also be a function of

(
x − x′

)
. In order to simplify

our task, therefore, we will first take x′ = 0.After completing the calculation we will replace

x by
(
x − x′

)
to obtain the final solution. Thus we consider the equation

�DF (x) = δ(4) (x) . (32.56)

We will solve equation (32.56) by writing DF (x) as a Fourier integral,

DF (x) = −
∫

d4p DF (p) e
−ip·x (32.57)

where the differential element is

d4p = dp1dp2dp3dp4 = 1

c
d3p dE. (32.58)

The Dirac δ-function in four-dimensions is also written as a Fourier integral

δ(4) (x) = 1

(2π)4

∫
d4p e−ip·x. (32.59)

The left-hand side of equation (32.56) in terms of the Fourier integral is given by

�DF (x) =
∫

d4p p2DF (p) e
−ip·x (32.60)

where p2 =
(
p4
)2 − p2. The right-hand side of (32.56) is given by (32.59). Equating the

two, we find that the functional form of DF (p) will be

1

p2
. (32.61)

If we substitute this in (32.57), we notice that the integral will diverge because (32.61) has

a pole at p2 = 0. To obtain a finite result, however, we shift the pole off the real axis and

define

DF (p) = lim
ǫ→0

1

p2 + iǫ
. (32.62)

The subscript “F” refers to this specific prescription for the pole. We then obtain

DF (x) = −
1

(2π)4
lim
ǫ→0

∫
d4p

e−ip·x

p2 + iǫ
. (32.63)



583 32.5 Propagators

Replacing x by (x − x′), we have

DF

(
x − x′

)
= − 1

(2π)4
lim
ǫ→0

∫
d4p

e−ip·(x−x′)

p2 + iǫ
. (32.64)

Before we calculate this function, let us go to the next section on the Klein–Gordon

equation and determine the propagator there as well.

32.5.2 Klein–Gordon equation

Let us consider the Klein–Gordon equation in the presence of a source term, f (x),

(
�+ m2

)
φ (x) = f (x) . (32.65)

The solution for φ (x) in terms of the Green’s function, �F

(
x − x′

)
, is given by

φ (x) = φ0 (x)+
∫

d4x′�F

(
x − x′

)
f
(
x′
)
φ
(
x′
)

(32.66)

where φ0 (x) and �F

(
x − x′

)
satisfy the equations

(
�+ m2

)
φ0 (x) = 0 (32.67)

and

(
�+ m2

)
�F

(
x − x′

)
= δ(4)

(
x − x′

)
. (32.68)

Taking x′ = 0 again, as we did for the Maxwell case, the above equation reads

(
�+ m2

)
�F (x) = δ(4) (x) . (32.69)

Writing �F (x) in terms of a Fourier integral

�F (x) =
∫

d4p�F (p) e
−ip·x (32.70)

and following the same steps as in the Maxwell case, we obtain

�F (p) = − lim
ǫ→0

1

(2π)4
1

p2 − m2 + iǫ
(32.71)

where we have used the same “+iǫ” as we did for DF (x). Hence,

�F (x) = −
1

(2π)4
lim
ǫ→0

∫
d4p

e−ip·x

p2 − m2 + iǫ
(32.72)
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and

�F

(
x − x′

)
= − 1

(2π)4
lim
ǫ→0

∫
d4p

e−ip·(x−x′)

p2 − m2 + iǫ
. (32.73)

Let us consider the integral in (32.72) in some detail. We first write d4p = d3p dp4 and

consider the poles in the complex p4-plane. They are given by

p4 = ±
√

p2 + m2 + iǫ = ±
(
ωp + iǫ′

)
(32.74)

where ωp =
√

p2 + m2 with ǫ′ = ǫ/2ωp, which is an infinitesimal quantity. We then write

1

p2 − m2 + iǫ
= 1

(p4 − ωp − iǫ′)(p4 + ωp + iǫ′)
(32.75)

= 1

2ωp

[
1

(p4 − ωp − iǫ′)
− 1

(p4 + ωp + iǫ′)

]
. (32.76)

Thus,

∫
d4p

e−ip·x

p2 − m2 + iǫ
=
∫

d3p
eip·r

2ωp

⎡
⎣

∞∫

−∞
dp4

e−ip4t

p4 − ωp + iǫ′
−

∞∫

−∞
dp4

e−ip4t

p4 + ωp − iǫ′

⎤
⎦ .

(32.77)

The second term in (32.77) corresponds to a negative-energy pole: p4 = −ωp. The space-

time dependence of this term is obtained upon integration over p4 for t > 0 and is found to

be eip·reiωpt . It represents a plane wave that travels backward in time; that is, as we change

t → t + �t one must have r → r−�r for the motion of the wavefront. To integrate the

second term and keep the motion in the forward direction, we make the change in variables

p →−p and p4 →−p4, and obtain, after changing the limits,

∫
d4p

e−ip·x

p2 − m2 + iǫ
=
∫

d3p
eip·r

2ωp

∞∫

−∞
dp4

e−ip4t

p4 − ωp + iǫ′

+
∫

d3p
e−ip·r

2ωp

∞∫

−∞
dp4

eip4t

p4 − ωp + iǫ′

= (−2π i)

[
θ (t)

∫
d3p

e−ip·x

2ωp
+ θ (−t)

∫
d3p

eip·x

2ωp

]

with

p · x = ωpt − p · r (32.78)
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where we have made note of the fact that, because the poles corresponding to p4 = ωp− iǫ′

are in the lower half-plane, we have

∞∫

−∞
dp4

e−ip4t

p4 − ωp + iǫ′
= (−2π i) e−iωptθ (t) , (32.79)

∞∫

−∞
dp4

eip4t

p4 − ωp + iǫ′
= (−2π i) eiωptθ (−t) . (32.80)

Hence �F

(
x − x′

)
reads

�F

(
x − x′

)
= i

(2π)3

[
θ
(
t − t′

) ∫
d3p

e−ip·(x−x′)

2ωp
+ θ

(
−t + t′

) ∫
d3p

eip·(x−x′)

2ωp

]
.

(32.81)

Let us now define the wavefunction of a free particle state with momentum pn and energy

ωpn =
√

p2
n + m2 as

φ
(−)
n0 (x) =

1
(√

2π
)3

1

2ωpn

e−ipn.x. (32.82)

The negative sign for the superscript is conventional and indicates a negative sign of the

exponent. Note that this state actually corresponds to a positive-energy state, the first term

in (32.76) and (32.77). We also define for the positive sign of the exponent

φ
(+)
n0 (x) =

1
(√

2π
)3

1

2ωpn

eipn.x. (32.83)

We note that this wavefunction corresponds to a negative-energy state, the second term in

(32.76) and (32.77).

Let us rewrite (32.81) as a summation rather than an integral, so that the expression looks

like a completeness sum:

�F

(
x − x′

)
= i

[
θ
(
t − t′

)∑

n

ψ
(−)
0n (x) ψ

∗(−)
0n

(
x′
)
+ θ

(
t′ − t

)∑

n

ψ
(+)
0n (x) ψ

∗(+)
0n

(
x′
)
]

.

(32.84)

This is a time-ordered product, which indicates that the positive-energy terms contribute

when t > t′, while the negative-energy terms contribute when t < t′.
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32.6 Virtual particles

In the integral equation (32.66) for φ(x) in terms of the source, f (x′) at x′, we note that

the link between the two points is provided by �F (x− x′). In a sense, this function carries

the “cause” originating at the source of interaction at x′ to the point x where the “effect” of

the interaction is felt. Hence the name “propagator” is attached to �F (x − x′).
To give a particle interpretation to this process, we note that its Fourier transform,�F (p),

is proportional to 1/(p2−m2+ iǫ), where m is the mass of the Klein–Gordon particle. One

could say, therefore, from this expression that a “virtual” particle of mass m propagates to

provide the link between the two points. It cannot be a real particle for which p2 = m2,

though at this point�F (p) is very large, but not infinite due to the presence of iǫ. Similarly,

one could interpret DF (p) as representing the propagation of a zero-mass “virtual” particle,

a photon.

32.7 Static approximation

We have so far presented our results in a fully four-dimensional space, but often situations

arise (e.g., in nonrelativistic calculations), where the time dependence can be ignored. This

is what is called the “static approximation.” We examine the two equations we have studied,

the Klein–Gordon and Maxwell’s equations, in the static approximation.

32.7.1 Klein–Gordon equation

Let φ(r) represent the scalar wavefunction, which now depends only on r. If f (r) is the

source then the equation reads (with m replaced by μ)

(
∇2 − μ2

)
φ(r) = f (r). (32.85)

The solution is then given by

φ(r) = φ0(r)+
∫

d3r′ G(r − r′)f (r′) (32.86)

where φ0(r) is the homogeneous solution, and G is the Green’s function that satisfies the

equation

(
∇2 − μ2

)
G(r − r′) = δ(3)(r − r′). (32.87)

One can write G in the form of a Fourier transform,

G
(
r − r′

)
= 1

(
√

2π)3

∫
d3k G(k)eik.(r−r′). (32.88)
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From (32.88) G(k) is found to be

G(k) = 1

k2 + μ2
. (32.89)

Reiterating the arguments made earlier, one could consider G(k) to represent the

propagation of a particle of virtual mass μ.

32.7.2 Maxwell’s equation

Here by static approximation we also mean that we will ignore the vector field, A.What is left

then is just the electrostatic field, which we designate as φe(r). It satisfies the electrostatic

equation

∇2φe(r) = 4πeρel(r), (32.90)

whose solution is

φe(r) = φ0(r)+ 4πe
∫

d3r′ D
(
r − r′

)
ρel(r

′) (32.91)

where φ0(r) is the homogeneous solution and D is the Green’s function that satisfies the

equation

∇2D
(
r − r′

)
= δ(3)

(
r − r′

)
. (32.92)

We write D
(
r − r′

)
in the form of a Fourier transform,

D
(
r − r′

)
= 1

(
√

2π)3

∫
d3k D(k)eik.(r−r′) (32.93)

where

D(k) = 1

k2
. (32.94)

D(k) then corresponds to the propagation of a zero-mass particle, the photon.

32.8 Interaction potential in nonrelativistic processes

32.8.1 Coulomb potential

In a typical interaction in electrostatics of an electron of charge−e and a nucleus of charge

Ze, the Coulomb potential, V (r), felt by the electron is defined as

V (r) = −eφe(r) (32.95)
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where φe(r) is the electrostatic field whose source is Ze. It satisfies the equation

∇2φe(r) = 4πZeδ(3) (r) . (32.96)

The solution is obtained by first integrating both sides over a spherical volume of radius r.

We find

∫
d3r ∇2φe(r) = 4πZe. (32.97)

We write

∇2φe(r) = (∇ ·∇) φe(r). (32.98)

Using the divergence theorem to convert the volume integral to a surface integral, we obtain

4πr2 dφe(r)

dr
= 4πZe. (32.99)

Hence, with boundary condition φe(∞) = 0, we find

φe(r) =
Ze

r
, (32.100)

which gives

V (r) = −Ze2

r
. (32.101)

This is indeed the well-known Coulomb potential between two point charges.

Thus the interaction potential and the electrostatic field of the source are intimately

connected.

32.8.2 Yukawa potential

Following essentially the same steps as in the Coulomb case we consider a (static) nuclear

field φY (r) and define the interaction potential between two nuclear charges −g and g as

V (r) = −gφY (r) (32.102)

where φY (r) is the nuclear field, whose source is the nuclear charge g, which has the same

properties as the (scalar) Klein–Gordon wavefunction corresponding to a mass μ. For a

point source with charge density gδ(3)(r), φY (r) then satisfies the equation

(
∇2 − μ2

)
φY (r) = 4πgδ(3) (r) . (32.103)

The solution is obtained by first making the transformation

φY = φ′Y e−μr (32.104)
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in order that the equation (32.103) is exactly like in the Coulomb case (note:

exp(μr)δ(3)(r) = δ(3)(r)),

∇2φ′Y = 4πgδ(3)(r) (32.105)

with the solution

φY (r) = g
e−μr

r
. (32.106)

The potential V (r) is then

V (r) = −g2 e−μr

r
,

which is the famous (attractive) Yukawa potential. Once again we confirm an intimate

connection between the potential and the field.

32.9 Scattering interpreted as an exchange of
virtual particles

We found in the nonrelativistic processes that for a particle scattering off a heavy force

center located at the origin, the scattering amplitude is given by

f (θ) = −
(

m
√

2π

�2

)∫
d3r′ e−ikf .r′V (r′)u(r′), (32.107)

which in the Born approximation, i.e., in lowest-order perturbation theory, is given by

fB (θ) = −
m

2π�2

∫
d3r′ e−iq.r′V

(
r′
)

(32.108)

where

q = kf − ki (32.109)

is the momentum transfer with kf and ki as the final and initial momenta of the particle.

In the discussion below we will concentrate only on the Born approximation for two

typical potentials, the Yukawa and Coulomb potentials, where

q2 = |q|2 =
∣∣kf

∣∣2 + |ki|2 − 2kf · ki cos θ (32.110)

with θ the scattering angle. For elastic scattering, which we are considering,

∣∣kf

∣∣ = |ki| = k . (32.111)
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Therefore,

q2 = 2k2 (1− cos θ) . (32.112)

We note that q2 is positive definite.

32.9.1 Rutherford scattering

Rutherford scattering due to the Coulomb potential corresponds to the scattering of an

electron off a heavy charge. If this charge, say Ze, is located at the origin, then V (r) is the

familiar Coulomb potential

V (r) = −Ze2

r
. (32.113)

The scattering amplitude in the Born approximation is then found to be

fB (θ) =
(

2mZe2

�2

)
1

q2
(32.114)

where, repeating the results from the previous section, once again, q is the momentum

transfer and

|q|2 =
∣∣kf

∣∣2 + |ki|2 − 2kf · ki cos θ (32.115)

with θ the scattering angle. For elastic scattering, which we are considering,

∣∣kf

∣∣ = |ki| = k (32.116)

therefore,

q2 = 2k2 (1− cos θ) . (32.117)

We note that the scattering amplitude has the term (1/q2), which is reminiscent of the

Green’s function, in the momentum representation, in Maxwell’s equation. Below we will

make this apparent connection more concrete.

32.9.2 Rutherford scattering as due to the exchange of a zero-mass particle
(photon)

Let us go back to the relation between V (r) and the electrostatic field φe,

V (r) = −eφe(r) (32.118)

and hence

fB (θ) =
em

2π�2

∫
d3r′ e−iq.r′φe(r

′).
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The field φe(r) satisfies the equation

∇2φe(r) = 4πρel(r) (32.119)

with ρel(r) is the charge density of the source. The solution for φe(r) can be written in the

Green’s function formalism as

φe(r) = φ0(r)+ 4π

∫
d3r′D

(
r − r′

)
ρel(r

′) (32.120)

where φ0(r) is the homogeneous solution and D is the Green’s function.

Since φe involved in our calculation for the scattering process is due to the source ρel

and is not a free field, we will be interested only in the second term of (32.120). Therefore,

we have

φe(r) = 4π
∫

d3r′ D
(
r − r′

)
ρel(r

′). (32.121)

For a point charge Ze as the source,

ρel(r
′) = Zeδ(3)(r′), (32.122)

which gives

φe(r) = ZeD (r) . (32.123)

Substituting this in the expression for fB (θ) we obtain

fB (θ) =
Ze2m

2π�2

∫
d3r′ e−iq.r′D (r) . (32.124)

The integral above is simply the Fourier transform D(q), of D(r). Therefore,

fB (θ) =
Ze2m

2π�2
D (q) . (32.125)

Substituting the D(q) we have already obtained in (32.94),

D (q) = 1

q2
, (32.126)

we recover the result (32.114) for fB (θ). Hence we find that the denominator term (1/q2)

that appears in fB (θ) in (32.114) is actually the Green’s function involved in the solution

to the electrostatic problem.

We recall from our discussions in the previous chapter that G corresponds to the propa-

gation of a “virtual” photon. Thus in the Coulomb amplitude what appeared to be simply

an outcome of a mathematical integration has a deeper physical meaning. In fact, it implies

that Rutherford scattering can be interpreted as the process in which an electron scatters off

a heavy charge through the exchange of a virtual photon.
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32.9.3 Yukawa scattering as due to the exchange
of a massive particle

For a Yukawa potential given by

V (r) = −g
e−μr

r
(32.127)

the scattering amplitude is found to be

fB (θ) =
2mg

�2

(
1

μ2 + q2

)
. (32.128)

One can follow the same steps as for the Coulomb case, but instead of the electric charge

we have a nuclear charge g. We then obtain

fB (θ) =
2mg2

�2
G (p) (32.129)

where G (p) is the appropriate Green’s function given by

G (p) = 1

p2 + μ2
. (32.130)

Substituting this in (32.129) we find that the fB(θ) we obtained above is the same as we

obtained directly from the Yukawa potential.

We conclude then that the Yukawa scattering can be viewed as the process in which a

particle with nuclear charge scatters off another nuclear particle by the exchange of a virtual

(Yukawa) particle of mass μ.

Rutherford and Yukawa scattering are interpreted pictorially as particle exchange pro-

cesses in Fig. 32.1, where the wavy line corresponds to the virtual particle that is exchanged.

The solid lines correspond to the particles that undergo scattering. We might add that higher-

order perturbation terms correspond to multiple exchanges of virtual particles. The particle

interpretation and the general connection between particles and fields will be firmed up

when we go to the quantum field theory.

Virtual 
particle

Fig. 32.1
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32.10 Appendix to Chapter 32

32.10.1 Hydrogen atom

As we discussed previously, one can easily take into account the presence of electromagnetic

interactions by the following transformations of the energy E and momentum p:

E → E − eφ and p → p−e

c
A (32.131)

where A is the vector potential and φ is the scalar potential. Therefore, the energy–

momentum relation for a free particle given by

E2 = c2p2 + m2c4 (32.131a)

now becomes

(E − eφ)2 = (cp− eA)2 + m2c4 (32.131b)

We keep in mind the operator relations

E → i�
∂

∂t
and p →− i�∇, (32.132)

so that (32.131b) implies an operator relation on the wavefunction ψ(r, t).

Since we are considering the hydrogen atom problem, we need only be concerned with

the electrostatic Coulomb interaction. Therefore,

A = 0, φ = −Ze

r
. (32.133)

Using the separation of variables technique we write

ψ (r, t) = u (r) e−iEt/�. (32.133a)

The Klein–Gordon equation corresponding to (32.131b) can, therefore, be written as

[E − eφ(r)]2 u (r) =
(
−�

2c2∇2 + m2c4
)

u(r) (32.133b)

where E is now the energy eigenvalue. We rewrite (32.133b) as

∇2u = [E − eφ(r)]2 − m2c4

�2c2
u. (32.134)

Following the same procedure that was used for the nonrelativistic hydrogen atom, we

do a further separation of variables into radial coordinates and the spherical harmonics

expressed in terms of the angular momentum quantum numbers, l and m,

u(r, θ ,φ) = Rl(r)Ylm(θ ,φ). (32.135)
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The ∇2 operator can, once again, be expressed in terms of angular momentum so, in a

manner very similar to the previous hydrogen atom problem, we will obtain the following

radial equation:

[
− 1

r2

d

dr

(
r2 d

dr

)
+ l(l + 1)

r2

]
Rl =

[
(E − eφ)2 − m2c4

�2c2

]
Rl . (32.136)

Using (32.133), the right-hand side of the above equation can be written as

RHS = 1

�2c2

[
E2 − m2c4 + 2e2ZE

r
+ Z2e4

r2

]
. (32.137)

To simplify the equations let us introduce the following notations:

γ = Ze2

�c
, α2 = 4

(
m2c4 − E2

)

�2c2
, λ = 2Eγ

�cα
, ρ = αr. (32.138)

From these relations we can easily derive the following expression for E,

E = mc2

(
1+ γ

2

λ2

)− 1
2

. (32.139)

The radial equation now reads

1

ρ2

d

dρ

(
ρ2 dR

dρ

)
+
[
λ

ρ
− 1

4
− l(l + 1)− γ 2

ρ2

]
R = 0. (32.140)

The eigenvalue equation for the nonrelativistic hydrogen atom that we discussed in

Chapter 8 is given by

d2Rl

dρ2
+ 2

ρ

dRl

dρ
+
[
λ

ρ
− 1

4
− l(l + 1)

ρ2

]
Rl = 0 (32.141)

where

λ = 2mZe2

�2α
and

2mEB

�2α2
= 1

4
. (32.142)

We found the bound-state energy eigenvalues to be

EB =
mZ2e4

2�2λ2
. (32.143)

Apart from the presence of γ 2 in the numerator of the third term in the square bracket in

(32.140), the two equations are the same. One can write

Rl = ρsL (ρ) e−
1
2ρ (32.144)
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where L is expressed as a power series,

L = a0 + a1ρ + · · · + an′ρ
n′ . (32.145)

Substituting (32.145) and (32.144) in (32.110) it is found that

s (s+ 1) = l (l + 1)− γ 2. (32.146)

Proceeding as we did in the nonrelativistic case, one finds

λ = n′ + s+ 1 = n (32.147)

where n is the principal quantum number, and n′ is the radial quantum number as in the

nonrelativistic case. The solution of (32.146) is given by

s = −1

2
± 1

2

[
(2l + 1)2 − 4γ 2

] 1
2

. (32.148)

Substituting (32.148) in (32.147) we obtain

λ = n′ + 1

2
+
[(

l + 1

2

)2

− γ 2

] 1
2

. (32.149)

Substituting λ given above in the expression for E in (32.139) we obtain

E = mc2

⎡
⎢⎢⎢⎢⎢⎣

1+ γ 2

n′+
1

2
+

√√√√√

⎡
⎣
(

l+
1

2

)2

−γ 2

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎦

1
2

. (32.150)

One can express the above result as a power series in γ which is proportional to e2. We

find, up to power γ 4,

E = mc2

[
1− γ 2

2n2
− γ 4

2n4

(
n

l + 1
2

− 3

4

)]
. (32.151)
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The first term corresponds to the rest energy, mc2, of the electron. The second term is

given by

−mc2γ 2

2n2
= −mZ2e4

2�2n2
(32.152)

which is the same as in the nonrelativistic hydrogen atom.

The third term, proportional to γ 4, is the new term which is a consequence of relativity.

It removes the degeneracy between different values of l. This is the “fine” structure that

separates the nonrelativistic from the relativistic hydrogen atom. However, this contribution

is found to be inconsistent with the experimental results. As we will see when we come

to the Dirac equation, an electron considered as a Dirac particle with spin ½ gives correct

results.



33 The Dirac equation

Below we outline the formulation of the Dirac equation incorporating momentum and

energy as linear terms in the Hamiltonian. We find that it leads to the prediction of particles

with spin ½.

33.1 Basic formalism

We found in our discussion on the subject of relativistic quantum mechanics in Chapter 31

that, as a consequence of the quadratic nature of the energy–momentum relation, negative

energy solutions must exist and that the probability density is not positive definite. To solve

these problems, Dirac set out to write a quantum-mechanical equation that was linear in

energy and momentum based on the following Hamiltonian for a free particle,

H = cα · p+ βm0c2, (33.1)

with m0 the rest mass, p the momentum of the particle and the unknown α and β to be

determined from relativistic considerations. We have temporarily reinstated � and c. Below

we discuss the consequences of Dirac’s postulate.

In the four-dimensional x-space the free-particle Hamiltonian has the form

H = −i�cα ·∇ + βm0c2 (33.2)

where we have replaced p by the operator−i�∇. The eigenvalue equations for momentum

and energy are given by the usual relations

−i�∇ψ(x) = pψ(x) (33.3)

and

i�
∂ψ(x)

∂t
= Hψ(x) = Eψ(x) (33.4)

where ψ(x) is the eigenfunction. The solution for a free particle with energy, E, and

momentum, p, is obtained in the same manner as in Chapter 12. It is of the form

ψ (x) = u (p) e
− ip·x

� (33.5)
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where we have replaced the normalization constant, C, by u(p), which is independent of x

but depends on p. We will discuss the functional form and the normalization of u(p) in

Chapter 35.

In the following we will take � = c = 1, and m0 = m in order to simplify the calculations.

The Dirac equation is then given by

(E − α · p− βm) u(p) = 0. (33.6)

We note that E in the above equation multiplies a unit operator. The energy–momentum

relation for a particle is given by the quadratic formula E2 − p2 − m2 = 0. Therefore,

besides (33.6), u(p) must also satisfy the equation

(
E2 − p2 − m2

)
u = 0. (33.7)

In order to relate (33.6) and (33.7) we multiply (33.6) on the left by (E + α · p+ βm)

and obtain a quadratic relation between E and p, which we compare with (33.7). We need,

therefore, to satisfy the relation

(E + α · p+ βm) (E − α · p− βm) =
(
E2 − p2 − m2

)
, (33.8)

which implies that

E2 −
∑

i

(αi pi)(
∑

j

αj pj)−
∑

i

(αiβ + βαi) pi − β2m2 = E2 − p2 − m2 (33.9)

where we have kept the order of multiplication intact and where we write the dot product α·p
in the expanded form

∑
i αipi, with i taking on the values 1, 2, 3. We take p =

(
p1, p2, p3

)

with p2 = p2
1 + p2

2 +p2
3.

Comparing both sides in (33.9), we have the following relations for αi and β with

i, j = 1, 2, 3:

α2
i = 1 = β2, (33.10)

αiβ + βαi = 0, (33.11)

αiαj + αjαi = 0 (i � =j). (33.12)

First of all, it is clear that the above relations are incompatible if β and the αi’s are

numbers, otherwise we would have to conclude from (33.10) that αi = ±1 and β = ±1,

a result that is inconsistent with (33.11) and (33.12). Thus they must be matrices and as

such they will not necessarily commute. The following properties then hold for αi and β.

(A) Square matrices

Since the Hamiltonian must be Hermitian,

H † = H . (33.13)
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Therefore, since p is Hermitian, we must have

α
†
i = αi (33.14)

and

β† = β. (33.15)

Considering β for example, if βkl is a (kl) matrix element, then (33.15) implies that there

must be an (lk) element, which then satisfies the relation β lk = β∗kl
. Hence β must be a

square matrix. Similar arguments apply to the αi’s. Therefore, αi and β must be square

matrices. They will be matrices of dimensions 2× 2, 3× 3, 4× 4, . . . .

(B) Traceless

From (33.11) we obtain

αi = −βαiβ
−1. (33.16)

Taking the trace of both sides, and using the cyclic property of the trace of a product of

matrices we get

Tr(αi) = −Tr
(
βαiβ

−1
)
= −Tr

(
β−1βαi

)
= −Tr (αi) . (33.17)

Hence Tr(αi) must vanish. A similar result will hold for Tr(β). Thus,

Tr(αi) = 0 = Tr(β). (33.18)

(C) Even rank

We have the freedom to choose one of the four matrices, αi and β, to be diagonal. Let us

take β to be diagonal. From (33.10) we note that the eigenvalues (i.e., the diagonal values)

of β must be ±1. We can arrange them in a block form such that all the +1’s are separated

from the−1’s. However, because of the tracelessness condition (33.18), one must have the

same number of+1’s as−1’s. Hence β must be even-dimensional. The same argument can

be applied to the αi’s. Thus αi and β must be 2× 2, 4× 4, . . . .

(D) At least 4× 4

The two-dimensional matrices that satisfy anticommutation relations of the type (33.11)

are the Pauli matrices σ i (i = 1, 2, 3), which we have discussed in Chapter 2 and have the

property

σ iσ j + σ jσ i = 0 (i � =j) , (33.19)

σ
†
i = σ i, (33.20)

σ 2
i = 1. (33.21)
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They have the representation

σ 1 =
(

0 1

1 0

)
, σ 2 =

(
0 −i

i 0

)
, σ 3 =

(
1 0

0 −1

)
. (33.22)

As we discussed in Chapter 2, there are only four independent 2× 2 matrices. These can

be taken as the three σ i’s and a unit matrix. Among them, only three, the σ i’s, anticommute.

In the case of the Dirac equation, however, we have four matrices all of which anticommute.

Hence these matrices cannot be 2× 2. A simple way to confirm this is to take αi = σ i and

β =
(

a b

c d

)
. (33.23)

Imposing condition (33.11) leads to a = 0 = b = c = d, i.e, β = 0, which is untenable.

Thus the minimal dimensionality of the matrices αi and β must be 4× 4.

33.2 Standard representation and spinor solutions

From Section 33.1 we found that the matrices αi and β have the properties that they are:

(i) Hermitian, (ii) traceless, and (iii) even-dimensional with a minimum dimensionality of

4× 4.

Let us consider a 4× 4 representation. Following the above discussions we will take β

as a diagonal matrix and write it as

β =

⎡
⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎤
⎥⎥⎦ . (33.24)

We will write this matrix in a condensed 2× 2 block form where the individual entries are

themselves 2× 2 matrices,

β =
[
1 0

0 −1

]
(33.25)

where by 1 we mean a two-dimensional unit matrix. To determine the matrix representation

of αi we write it in the form

αi =
[
ai bi

ci di

]
(33.26)

where the individual matrix elements are 2× 2 matrices. Substituting this into (33.11) with

the matrix representation β given in (33.25) we find

[
2ai 0

0 −2di

]
= 0. (33.27)
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Thus,

ai = 0 = di. (33.28)

From (33.12) we obtain

bicj+bjci = 0. (33.29)

Moreover, since α
†
i = αi, and α2

i = 1 we have b
†
i = ci and b2

i = 1 = c2
i . We note, from the

relations (33.10), (33.11), and (33.12) that the matrices satisfying the above requirements

are the Pauli matrices, σ i, themselves. Hence, we take

bi = σ i = ci. (33.30)

In summary, then, we have the following representation:

β =
[
1 0

0 −1

]
, (33.31)

αi =
[

0 σ i

σ i 0

]
. (33.32)

This is called the “standard representation” for the matrices αi and β.

Since αi and β are 4× 4 matrices, the function u will be a column matrix,

u(p) =

⎡
⎢⎢⎣

�

�

�

�

⎤
⎥⎥⎦ . (33.33)

Following the prescriptions for αi and β, we also write u(p) with two entries,

u(p) =
[
u1

u2

]
(33.34)

where u1 and u2 are two-dimensional column matrices. In the next section we obtain some

of the important properties of u(p).

33.3 Large and small components of u(p)

We determine u(p) by first writing the Dirac equation in (33.6) in a 2× 2 form,

(
E

[
1 0

0 1

]
−
[

0 σ .p

σ .p 0

]
−
[
1 0

0 −1

]
m

)[
u1

u2

]
= 0, (33.35)
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which simplifies to

[
E − m −σ ·p
−σ ·p E + m

] [
u1

u2

]
= 0. (33.36)

We then have two coupled equations:

(E − m) u1 − σ ·pu2 = 0, (33.37)

−σ ·pu1 + (E + m) u2 = 0. (33.38)

A solution to the coupled equations exist provided the determinant of the 2 × 2 matrix

formed by the coefficients of the matrix in (33.36) vanish, i.e., if

E2 − p2 − m2 = 0 (33.39)

where we have used the relationσ ·pσ ·p = p2. Equation (33.39) is the same as the relativistic

energy–momentum relation with positive- and negative-energy solutions E = ±
√

p2 + m2.

33.3.1 Positive-energy solution

First let us consider the positive-energy solution

E = +
√

p2 + m2 = |E| . (33.40)

We note that in the nonrelativistic limit, |p| ≪ m, we have |E| ≈ m. Therefore, in equation

(33.38), in the nonrelativistic limit, the coefficient of u2 is much larger than the coefficient

of u1. This equation can be satisfied only if

u2 ≪ u1. (33.41)

We thus designate u2 as the “small component,” and u1as the “large component,” and write

them as

u1 = uL, (33.42)

u2 = uS . (33.43)

Hence,

u =
[
uL

uS

]
. (33.44)

Equations (33.37) and (33.38) then correspond to

(|E| − m) uL − σ ·puS = 0, (33.45)

−σ ·puL + (|E| + m) uS = 0, (33.46)
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where we have written E = |E| =
√

p2 + m2 for reasons that will be clear later when we

consider negative-energy solutions.

From (33.46) we obtain

uS =
σ ·p

(|E| + m)
uL. (33.47)

Substituting this result in (33.45) gives

[
(|E| − m)− σ ·p σ ·p

(|E| + m)

]
uL = 0. (33.48)

Since

(σ ·p) (σ ·p) = p2 (33.49)

and since in the nonrelativistic limit, |E| ≈ m, we can replace the denominator in the second

term on the left by 2m, we can write (33.48) as

(
p2

2m
+ m

)
uL = EuL. (33.50)

We can write this equation as HuL = EuL, where H is a 2 × 2 matrix and uL is a column

matrix with two entries. This is just the restatement of the fact that the total energy in the

nonrelativistic limit is the sum of the kinetic energy and the rest mass.

We note that σ 3(= σ z) commutes with this H corresponding to (33.50). Hence we take

uL to be also an eigenstate of σ 3. We can then express uL’s as “spin-up” and “spin-down”

matrices given by

u+L =
[
1

0

]
and u−L =

[
0

1

]
. (33.51)

Correspondingly, expressing the Pauli matrices σ i’s in the 2×2 form, we have from (33.47)

u+S =
σ ·p

(|E| + m)
u+L =

1

(|E| + m)

[
pz px − ipy

px + ipy −pz

] [
1

0

]
(33.52)

= 1

(|E| + m)

[
pz

px + ipy

]
. (33.53)

Similarly, we have

u−S =
σ ·p

(|E| + m)
u−L =

1

(|E| + m)

[
pz px − ipy

px + ipy −pz

] [
0

1

]
(33.54)

= 1

(|E| + m)

[
px − ipy

−pz

]
. (33.55)
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In summary, the positive-energy solutions are

u+(p) = C

⎡
⎣

u+L
σ ·p

(|E| + m)
u+L

⎤
⎦ = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

0
pz

(|E| + m)(
px + ipy

)

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (33.56)

u−(p) = C

⎡
⎣

u−L
σ ·p

(|E| + m)
u−L

⎤
⎦ = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

1(
px − ipy

)

(|E| + m)

− pz

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (33.57)

where C is a constant to be determined from the normalization condition of the u’s.

33.3.2 Negative-energy solutions

For negative energies, E = − |E| , examining (33.37) and (33.38) it is clear that the roles

of the small and large components are reversed. Hence we have

u1 = uS , (33.58)

u2 = uL, (33.59)

and

u =
[
uS

uL

]
, (33.60)

with equations

(− |E| − m) uS − σ ·puL = 0, (33.61)

−σ ·puS + (− |E| + m) uL = 0. (33.62)

From (33.61) we obtain

uS = −
σ ·p

(|E| + m)
uL. (33.63)
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Following arguments similar to the positive-energy case, we obtain

u+(p) = C

⎡
⎣−

σ ·p
(|E| + m)

u+L

u+L

⎤
⎦ = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− pz

(|E| + m)

−
(
px + ipy

)

(|E| + m)

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (33.64)

u−(p) = C

⎡
⎣−

σ ·p
(|E| + m)

u−L

u−L

⎤
⎦ = C

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−
(
px − ipy

)

(|E| + m)
pz

(|E| + m)
0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (33.65)

We will defer the discussion on the normalization constant to Chapter 35.

33.4 Probability conservation

Let us consider the time-dependent equation

i
∂ψ

∂t
= Hψ = −iα ·∇ψ + βmψ (33.66)

where ψ is a column matrix. The Hermitian conjugate of this equation is given by

−i
∂ψ†

∂t
= i

(
∇ψ†

)
· α + βmψ†. (33.67)

where we have made use of the fact that α† = α, β† = β. We multiply (33.66) on the

left by ψ† and subtract from the product the product obtained by multiplying expression

(33.67) on the right by ψ . We obtain the following:

∂(ψ†ψ)

∂t
= −∇ ·

(
ψ†αψ

)
. (33.68)

This relation can be expressed as

∂ρ

∂t
+∇ · j = 0 (33.69)

where we define

ρ = ψ†ψ and j = ψ†αψ . (33.70)
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This is then the probability conservation relation, where ρ is the probability density and, as

we will confirm below by going to the nonrelativistic limit, j has the properties of a current

density.

We arrive at a very important result that in contrast to the Klein–Gordon case, ρ for the

Dirac equation is positive definite. The vector j will be identified as the current density by

first writing it in terms of large and small components for positive-energy solutions. From

(33.70) and from the relations for u given in (33.60) along with the definition of α given in

(33.32), we obtain

j =
[
u

†
L σuS + u

†
SσuL

]
. (33.71)

To determine (33.71) let us consider a positive-energy particle with spin up traveling in the

z-direction, which in the nonrelativistic approximation, with |E| ≃ m, gives

uL = C

(
1

0

)
, uS =

Cpz

2m

(
1

0

)
. (33.72)

Substituting these in the expression for j in (33.71), we find that the only nonzero component

of j is the z-component, given by

jz =
pz

m
|C|2 . (33.73)

Since pz/m is the velocity, the current is proportional to the velocity as expected.

We will come to the same conclusion, without going into the nonrelativistic approxima-

tion, if we consider the Heisenberg equation

i�
dz

dt
= [z, H ] . (33.74)

Only the term α · p in H will contribute to this commutator, so that

[z, H ] = [z, α · p] = [z, pz]αz = i�αz (33.75)

where we have taken into account the fact that z commutes with px and py, and have taken

α3 = αz. Equation (33.74), therefore, implies

dz

dt
= αz. (33.76)

Hence, jz = u†αzu is proportional to the velocity vz = dz/dt and therefore j, defined

by (33.70), has the properties of a current. Thus, equation (33.69) correctly signifies the

probability conservation relation.

The result that the probability density,ρ, is positive definite is a fundamental breakthrough

achieved by Dirac.

We now go to the next section in which we discover another extraordinary property of

this equation – that the Dirac particle has an intrinsic angular momentum, the “spin”, of ½.
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33.5 Spin ½ for the Dirac particle

The time derivative of the angular momentum operator, L, in the Heisenberg representation

is given by

i�
dLi

dt
= [Li, H ] , i = 1, 2, 3. (33.77)

Writing the relation L = r × p in the component form we obtain

Li = ǫijkrjpk (33.78)

where ǫijk is the totally antisymmetric tensor and where we adopt the convention that a

repeated index implies summation over that index. The fundamental commutator relation

between r and p can be written as

[
rj, pk

]
= i�δjk . (33.79)

First let us consider a nonrelativistic Hamiltonian with a spherically symmetric potential,

V (r).

H = p2

2m
+ V (r). (33.80)

In terms of components pl one can write

p2 = plpl (33.81)

where, again, a summation over l is implied. To simplify writing, however, we write p2
l

in

place of plpl . Thus the commutator in (33.77) is given by

[Li, H ] =
[

Li,
p2

l

2m

]
+ [Li, V (r)] . (33.82)

We have shown previously that this commutator vanishes, but we will rederive it, never-

theless, since it is relevant to the steps that follow pertaining to the Dirac equation. Let us

consider each term separately. Using (33.78) for Li we have

[
Li,

p2
l

2m

]
= ǫijk

1

2m
[
(
rjpk

)
p2

l − p2
l

(
rjpk

)
] = ǫijk

1

2m

[
rj, p

2
l

]
pk (33.83)

where we have taken out pk as a common factor on the right since it commutes with pl . The

commutator on the right can be simplified by making use of (33.79). We obtain

[
rj , p

2
l

]
= 2i�δjlpl . (33.84)
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Inserting this on the right-hand side of (33.83) we have

[
Li,

p2
l

2m

]
= iǫijk

�

m
pjpk . (33.85)

Since ǫijk is an antisymmetric term in j and k while pjpk is symmetric, we conclude that

[
Li,

p2
l

2m

]
= 0. (33.86)

Hence, the angular momentum operator commutes with the kinetic energy term, a result

we are familiar with.

Let us now consider the second term in (33.82),

[Li, V (r)] = ǫijk

(
rjpkV (r)− V (r)rjpk

)
. (33.87)

We employ the definition of pk as a derivative operator,

pk = −i�∂k , (33.88)

and note that when operating on a function like V (r), which depends on r = |r| , we have

∂kV (r) = rk

r

(
∂V (r)

∂r

)
. (33.89)

Keeping in mind that (33.87) involves operators that operate on a wavefunction ψ(r), we

find the following for the right-hand side of (33.87)

ǫijk

(
rjpkV (r)− V (r)rjpk

)
ψ = −i�ǫijk(rj∂kV (r)ψ − V (r)rj∂kψ) (33.90)

where we have used (33.88). Since

∂k (V (r)ψ) = (∂kV (r)) ψ + V (r) (∂kψ) =
rk

r

(
∂V (r)

∂r

)
ψ(r)+ V (r) (∂kψ) , (33.91)

we find the right-hand side of (33.87) to be simply

−i�ǫijkrj
rk

r

(
∂V (r)

∂r

)
(33.92)

after removing ψ . Once again we have a product of an antisymmetric term ǫijk in j and k ,

and a symmetric term rjrk . Thus,

[Li, V (r)] = 0. (33.93)

Hence,

[Li, H ] = 0. (33.94)
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That is, angular momentum is conserved for the nonrelativistic Hamiltonian. As stated

before, this is a well-known result.

We turn now to the Dirac equation, with the Hamiltonian that includes the potential V (r),

H = α · p+βm+ V (r). (33.95)

Let us consider the commutator, [Li, H ], which is given by

[Li, H ] = [Li, α · p]+ [Li,βm]+ [Li, V (r)] . (33.96)

Since β is a matrix that does not involve the coordinate variables, the second term above

vanishes and, from (33.93), the third term above also vanishes, leaving just the first term

for us to consider. Using the summation convention, we write

[Li, α · p] = αl [Li, pl] . (33.97)

Using the relation Li = ǫijkrjpk , we find

[Li, pl] = ǫijk

(
rjpkpl − plrjpk

)
. (33.98)

Since pk and pl commute we can take pk out as a common factor and write

[Li, pl] = ǫijk

(
rjpl − plrj

)
pk = ǫijk

(
i�δjl

)
pk (33.99)

where in the last equality we have used the commutator relation (33.79). Therefore, for

(33.96) we have

[Li, H ] = ǫijkαl

(
i�δjl

)
pk = i�ǫijkαjpk . (33.100)

In the vector notation one can write

[L, H ] = i� (α × p) . (33.101)

Therefore, L does not commute with H for the Dirac particle.

To proceed further let us now define a new 4× 4 matrix written in the 2× 2 form as

σ ′ =
[
σ 0

0 σ

]
. (33.102)

We evaluate its commutator with H :

[
σ ′i, H

]
=
[
σ ′i, α · p

]
+
[
σ ′i,βm

]
+
[
σ ′i, V (r)

]
. (33.103)

The second term above vanishes since β is diagonal in our representation. The third term

also vanishes since the quantities involved in the commutator are in different spaces. Thus,

[
σ ′i, H

]
=
[
σ ′i, α · p

]
=
[
σ ′i,αlpl

]
= (σ ′iαl − αlσ

′
i)pl . (33.104)
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Writing this result in an explicit matrix form we obtain

[
σ ′i, H

]
=
[

0 σ iσ l − σ lσ i

σ iσ l − σ lσ i 0

]
pl (33.105)

where we have used the standard representation for αl . We now use the identity mentioned

in Chapter 5,

σ iσ l = δil + iǫilkσ k , (33.106)

and obtain

[
σ ′i, H

]
= 2iǫilk

[
0 σ k

σ k 0

]
pl = 2iǫilkαkpl (33.107)

using the standard representation for αk . The above relation can be written in the vector

form as

[
σ ′, H

]
= 2i (p× α) . (33.108)

Combining (33.101) and (33.108), we derive the following result:

[(
L+ 1

2
�σ ′

)
, H

]
= 0. (33.109)

Thus, it is not L but the combination
(
L+ 1

2
�σ ′

)
that commutes with H . This implies

that the Dirac equation has an additional degree of freedom in the category of angular

momentum, which one calls the “spin angular momentum,” S, defined as

S = 1

2
�σ ′. (33.110)

This result tells us that a Dirac particle has spin ½. It is then the “total angular momentum”

J given by

J = L+ S (33.111)

that commutes with H :

[J, H ] = 0. (33.112)

Thus J is a constant of the motion in Dirac theory.



34
Dirac equation in the presence of
spherically symmetric potentials

We introduce interaction into the Dirac framework by considering a spherically symmetric

potential. Consequences that result in obtaining the spin–orbit contribution and energy

levels of the hydrogen atom are then discussed and compared with their nonrelativistic

counterparts. It is found that the predictions of the Dirac equation are much closer to the

experimental results.

34.1 Spin–orbit coupling

The Dirac equation for a particle with energy eigenvalue E in the presence of a radial

potential V (r) is given by

[E − α · p− βm− V (r)]φ(r) = 0 (34.1)

where we have taken ψ(x) = φ(r) exp(−iEt). It is understood that p is represented by the

operator −i∇. We express (34.1) in a 2× 2 compact matrix form where E and V multiply

unit matrices, while α and β are given by the standard representation, and φ(r) is a column

matrix represented by φL, the large component, and φS , the small component. Equation

(34.1) reads

(
E − m− V − σ · p
−σ · p E + m− V

)(
φL

φS

)
= 0. (34.2)

Therefore,

(E − m− V ) φL − σ · pφS = 0, (34.3)

−σ · pφL + (E + m− V ) φS = 0. (34.4)

We assume |V | ≪ m and consider the nonrelativistic approximation, E ≈ m, with

E − m = ET (34.5)

where ET is the kinetic energy. From (34.3) we obtain

(ET − V )φL = σ · pφS . (34.6)
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Since both ET and V ≪ m, equation (34.4) gives

(2m+ ET − V )φS = σ · pφL. (34.7)

We can write this relation as

φS =
1

(2m+ ET − V )
σ · pφL (34.8)

≃ 1

2m

[
1−

(
ET − V

2m

)]
σ · pφL (34.9)

≃
[
σ · p
2m

−
(

ET − V

4m2

)
σ · p

]
φL. (34.10)

We need to point out that, φS is ∼ (v/c)φL, given by the first term on the right in (34.10);

the next order term is∼ (v/c)2φL is given by the second term. It is, therefore, essential that

all the calculations are carried out to this order. This has been done in the Appendix.

It is shown in the Appendix that if we define a new wavefunction ψ such that

φL =
(

1− p2

8m2

)
ψ , (34.11)

then ψ satisfies the eigenvalue equation

Hψ = ETψ (34.12)

where the Hamiltonian H is given by

H = p2

2m
− p4

8m3
+ V − 1

8m2

(
V p2 + p2V

)
+ σ · p V σ · p

4m2
. (34.13)

We can simplify this expression by noting that

σ · p V σ · p = −iσ · (∇V )σ · p+ V p2. (34.14)

Hence,

H = p2

2m
− p4

8m3
+ V − 1

8m2

(
p2V − V p2

)
− iσ · (∇V )σ · p

4m2
. (34.15)

Since H operates on the wavefunction ψ , we have, for example,

p2Vψ = ∇2(Vψ) = −
[
(∇2V )ψ + 2∇V · (∇ψ)+ V (∇2ψ)

]
. (34.16)

Thus,

p2V − V p2 = −(∇2V )ψ − 2∇V · (∇ψ) = −(∇2V )ψ + i2∇V · (pψ). (34.17)
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Also,

σ · (∇V )σ · p = ∇V · p+ iσ · (∇V × p). (34.18)

Putting together the relations (34.13)–(34.18) we find

H = p2

2m
− p4

8m3
+ V + 1

8m2
∇2V + σ · (∇V × p)

4m2
. (34.19)

The fourth term on the right-hand side of (34.19) is designated as

1

8m2
∇2V = Darwin term. (34.20)

If V corresponds to the Coulomb potential due to a unit point charge then

∇2V = 4πδ3(r). (34.21)

With regard to the fifth term on the right, since V = V (r) is spherically symmetric, we can

write

∇V = r
1

r

dV

dr
. (34.22)

Therefore,

σ · (∇V × p) = 1

r

dV

dr
σ · (r × p) = 1

r

dV

dr
σ · L (34.23)

where L is the angular momentum operator.

In summary, the Hamiltonian is expressed as

H ′ = p2

2m
− p4

8m3
+ V + 1

8m2
∇2V + 1

2m2r

dV

dr
L · S (34.24)

where S is the spin-operator (= (1/2)σ ). The last term corresponds to “spin–orbit coupling”

which is a well-known term observed for spherically symmetric potentials. See also our

discussion in Chapter 6.

34.2 K-operator for the spherically symmetric potentials

We consider the Hamiltonian with a spherically symmetric potential, V (r),

H = α · p+ βm+ V (r). (34.25)

We have found previously that for spherically symmetric potentials the total angular

momentum J commutes with the Hamiltonian. There is another operator that also commutes
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with H and that allows one to distinguish the direction of the 4 × 4 spin operator σ ′ with

respect to L. It is defined as

K = β(1+ σ ′ · L) = β
(

σ ′ · J − 1

2

)
(34.26)

where J = L+ 1
2
σ ′, and

(
σ ′
)2 = 3.

In the Appendix we show that K commutes with H , that is,

[K , H ] = 0. (34.27)

We note that J2 and Jz besides K commute with H , but L2, Lz, and Sz do not. If |φ〉 is an

eigenstate of H then it will also be an eigenstate of these three operators. In particular, for

the operator K we write

K |φ〉 = −κ |φ〉. (34.28)

Let us now determine the eigenvalue κ . From the definition (34.26) of K , we find

K2 = β
(
1+ σ ′·L

)
β
(
1+ σ ′·L

)
= 1+ 2σ ′·L+

(
σ ′·L

)2
. (34.29)

The last term above can be simplified through the following steps:

σ ′·Lσ ′·L = σ ′iσ ′jLiLj =
[
δij + iǫijkσ

′
k

] [
LiLj

]
= L2 + iσ ′ · (L× L) = L2 − σ ′·L

(34.30)

where in the last step we have used the relation

L× L = iL. (34.31)

Therefore,

K2 = 1+ σ ′·L+ L2 =
(

L+ 1

2
σ ′
)2

+ 1

4
(34.32)

since σ ′2 = 3. And so

K2 = J2 + 1

4
, (34.33)

or, in terms of eigenvalues,

κ2 = j (j + 1)+ 1

4
=
(

j + 1

2

)2

. (34.34)

Hence,

j + 1

2
= |κ| . (34.35)
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Since on the right-hand side of (34.35) we have a positive definite quantity and since

j ≥ 1/2, κ cannot be zero, and its minimum value will be |κ| = 1.

34.2.1 Nonrelativistic limit

Let us determine the properties of K in the nonrelativistic limit. Since in this limit β → 1,

we have

K = β
(
1+ σ ′ · L

)
→ (1+ σ · L) . (34.36)

Hence,

K = (1+ σ · L) = (1+ 2L · S) =
(
1+ J2 − L2 − S2

)
(34.37)

where we have used the relation

J2 = (L+ S)2 = L2 + S2 + 2L · S. (34.38)

Therefore, in terms of eigenvalues, the relation (34.37) gives

−κ =
[
1+ j (j + 1)− l (l + 1)− 3

4

]
. (34.39)

In the nonrelativistic approximation, J2, L2 , S2, Jz as well as K commute with each

other and with the Hamiltonian containing the spin–orbit coupling,

H = V + 1

2m2

1

r

dV

dr
L · S. (34.40)

However, Lz and Sz do not commute with H . Now from (34.35) we have

j + 1

2
= |κ| (34.41)

and from (34.39)

−κ =
[

1

4
+ j (j + 1)− l (l + 1)

]
. (34.42)

Let us consider both positive and negative κ . If κ < 0 or κ = − |κ|, then from (34.42),

|κ| = 1

4
+ j (j + 1)− l (l + 1) . (34.43)

Hence,

j + 1

2
= 1

4
+ j2 + j − l (l + 1) , (34.44)
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which gives the result

l = j − 1

2
. (34.45)

If κ > 0 or κ = |κ|, then

−
(

j + 1

2

)
= 1

4
+ j2 + j − l (l + 1) (34.46)

and

l = j + 1

2
. (34.47)

The tabulation (34.48) below shows the relationship between various eigenvalues in the

nonrelativistic approximation along with the spectral designation Lj for a state with the

orbital angular momentum L and total angular momentum j:

k j l State

−1 1
2

0 S 1
2

+1 1
2

1 P 1
2

−2 3
2

1 P 3
2

+2 3
2

2 D 3
2

(34.48)

One can obtain the wavefunction using the separation of variables technique as follows:

ψ (r) = ψ (r, k) χ (k , M , θ ,φ) (34.49)

where

χ =
∑

m

C

(
l,

1

2
, j; M , M − m

)
Ylm(θ ,φ)χ 1

2 M−m (34.50)

and where Ylm is a spherical harmonic function, χ is the spin wavefunction, and C is the

Clebsch–Gordan coefficient.

34.3 Hydrogen atom

We have already studied the hydrogen atom nonrelativistically and have obtained energy

levels and bound-state wavefunctions for the electron. We found that the binding energies

closely reproduced the experimental values. Assuming the electron to be a spin 0 particle,

we also considered the relativistic Klein–Gordon equation but found that the fine structure
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due to relativistic corrections was inconsistent with experiments. We now know that the

electron is actually a spin ½ particle and, therefore, we expect that the Dirac equation will

correctly describe the energy spectrum. This is, indeed, what we will find below.

Since the Coulomb potential given by

V (r) = −Ze2

r
(34.51)

is spherically symmetric, then, as we discussed earlier, k and M are good quantum numbers.

The Dirac equation (with units � = c = 1) is given by

[E − α · p− βm− V ]ψ = 0. (34.52)

Replacing p by the operator −i∇, we write

[E + iα ·∇ − βm− V ]ψ = 0. (34.53)

In order to make the above equation more transparent we consider the following trick in

which we use a well-known identity for a triple cross-product involving an operator A:

r × (r × A) = r (r · A)− r2A. (34.54)

Therefore,

A = 1

r2
[r (r · A)− r × (r × A)] . (34.55)

Replacing A by ∇ we obtain

∇ = 1

r2
[r (r ·∇)− r × (r × ∇)] (34.56)

= 1

r2

[
rr
∂

∂r
− ir × L

]
(34.57)

= 1

r

[
r
∂

∂r
− i

r × L

r

]
(34.58)

where we have used the relations

r ·∇ = r
∂

∂r
and L = r × p = −ir ×∇. (34.59)

Let us now consider the term α · ∇ in the Dirac equation (34.53) and carry out the

following simplifications:

α ·∇ = 1

r

[
α · r ∂

∂r
− i

r
α · (r × L)

]
. (34.60)

Furthermore, from our earlier calculations we have the relation

α · Aα · B = A · B+ iσ ′ · (A × B) . (34.61)
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Previously, we introduced the off-diagonal matrix γ 5 given by

γ 5 =
[
0 1

1 0

]
. (34.62)

Multiplying (34.61) by γ 5 on the right and noting that αγ 5 = σ ′ and σ ′γ 5 = α, we obtain

α · Aσ ′ · B = A · Bγ 5 + iα (A × B) . (34.63)

For A = r, and B = L , the above relation gives

α · rσ ′ · L = iα · (r × L) (34.64)

where we have used the result r·L = 0.

On the basis of the results obtained above, we carry out the following steps:

α ·∇ = 1

r

[
α · r ∂

∂r
− α · r

r
σ ′ · L

]
(34.65)

= α · r
r

[
∂

∂r
− 1

r
σ ′ · L

]
= αr

[
∂

∂r
− 1

r
σ ′ · L

]
(34.66)

= αr

[
∂

∂r
+ 1

r
− 1

r

(
1+ σ ′ · L

)]
= αr

[(
∂

∂r
+ 1

r

)
− βK

r

]
(34.67)

where the operator K has already been defined in (34.26) and

αr = α · r. (34.68)

We point out that by expressing the results directly in terms of the angular momentum

operator, L, we have basically sidestepped the question of that part of the wavefunction that

depends on the angles, as the differential equation for these functions are related to L. We

will discuss these functions which involve the spherical harmonics later in this section but,

for the moment, we discuss only the radial part of the equation.

34.4 Radial Dirac equation

The equation in radial coordinates is now

Hφ(r) = Eφ(r) (34.69)

with H given by

H = αrpr + i
αrβ

r
K + βm+ V (34.70)
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where the operator K has already been defined and

pr = −i

(
∂

∂r
+ 1

r

)
. (34.71)

One can easily show that pr is a Hermitian operator. From the properties of α and β one

can also show that

α2
r = β2 = 1 and αrβ + βαr = 0. (34.72)

Since we now only have two operators, αr and β, and not four, we can start afresh and

take the following 2× 2 representation for β and αr :

β =
(

1 0

0 −1

)
, αr =

(
0 −i

i 0

)
. (34.73)

This representation satisfies (34.72). We can now write (34.70) as

[
E − αrpr + i

αrβ

r
κ − βm− V

]
ψ = 0 (34.74)

where −κ is the eigenvalue of K .

Let us express ψ as a column matrix given by

ψ =

⎛
⎜⎝

1

r
F

1

r
G

⎞
⎟⎠ . (34.75)

Furthermore, the following results will be useful:

pr

(
1

r
f

)
= −i

1

r

df

dr
, (34.76)

αrpr

(
1

r
f

)
=
(

0 −i

i 0

)(
−i

1

r

df

dr

)
=
(

0 −1

1 0

)
1

r

df

dr
, (34.77)

iαrβκ

(
1

r
f

)
=
(

0 −1

−1 0

)(κ
r

f
)

. (34.78)

Equation (37.74), with the help of (34.73) and (34.75), is found to be

(E − m− V )F + dG

dr
− κ

r
G = 0,

(E + m− V )G − dF

dr
− κ

r
F = 0.

⎫
⎪⎪⎬
⎪⎪⎭

(34.79)
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We define the following constants:

α1 = m+ E, α2 = m− E

α = √α1α2 =
√

m2 − E2, ρ = αr
(34.80)

and write

γ = Ze2, V = −αγ
ρ

. (34.81)

Then the equations (34.79) are of the form

(
d

dρ
− κ
ρ

)
G −

(
α2

α
− γ
ρ

)
F = 0, (34.82)

(
d

dρ
+ κ
ρ

)
F −

(
α1

α
+ γ
ρ

)
G = 0. (34.83)

First we determine the asymptotic behaviors of F and G. Equations (34.82) and (34.83)

in the limit ρ →∞ are

dG

dρ
− α2

α
F = 0, (34.84)

dF

dρ
− α1

α
G = 0. (34.85)

Taking the derivative with respect to ρ of equation (34.84) and substituting in it the

expression for dF/dρ in (34.85), we obtain

d2G

dρ2
− G = 0. (34.86)

Asolution for G that is convergent at infinity is found to be e−ρ , the same result holds for F .

Let us write

F = f (ρ) e−ρ and G = g (ρ) e−ρ . (34.87)

Then,

d

dρ

(
G

F

)
=

⎛
⎜⎜⎝

dg

dρ
− g

df

dρ
− f

⎞
⎟⎟⎠ e−ρ . (34.88)

Thus, equations (34.84) and (34.85) are of the form

g′ − g − κ
ρ

g −
(
α2

α
− γ
ρ

)
f = 0, (34.89)

f ′ − f + κ
ρ

f −
(
α1

α
+ γ
ρ

)
g = 0. (34.90)
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Let us now write a power series expansion for g and f as follows:

g = ρs
(
a0 + a1ρ + · · · + aνρ

ν
)

, (34.91)

f = ρs
(
b0 + b1ρ + · · · + bνρ

ν
)

. (34.92)

Substituting these expansions in (34.89) and (34.90) and comparing the coefficients of

ρs+ν−1, we obtain

(s+ ν) aν − aν−1 − κaν −
(α2

α
bν−1 − γ bν

)
= 0, (34.93)

(s+ ν) bν − bν−1 + κbν −
(α1

α
aν−1 + γ aν

)
= 0. (34.94)

Consider first ν = 0 in the above two equations; then since aν−1 and bν−1 do not exist

for this value of ν, we obtain

(s− κ) a0 + γ b0 = 0, (34.95)

(s+ κ) b0 − γ a0 = 0. (34.96)

Combining the two we find

s2 − κ2 = −γ 2. (34.97)

Therefore,

s = ±
√
κ2 − γ 2. (34.98)

We take the + sign, s =
√
κ2 − γ 2, in order to keep the wavefunction finite at ρ = 0.

Following the same arguments as for the nonrelativistic case, we conclude that the series

for f and g must terminate in order to keep the wavefunction finite at infinity. We assume

that the series terminates at ν = n′, i.e.,

an′+1 = 0 = bn′+1. (34.99)

To determine the consequences of this, we write down the following relation obtained by

multiplying (34.94) by α and subtracting from it (34.93) multiplied by α1:

bν [α (s+ ν + κ)− α1γ ] = aν [α1 (s+ ν − κ)+ γα] . (34.100)

Let us take ν = n′ + 1 in relation (34.94) then we find

bn′ = −
α1

α
an′ , n′ = 0, 1, 2, . . . . (34.101)

Also, by taking ν = n′ in (34.100) we obtain

bn′
[
α
(
s+ n′ + κ

)
− α1γ

]
= an′

[
α1

(
s+ n′ − κ

)
+ γα

]
. (34.102)
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Substituting bn′ from the relation in the above equation we find

−
[
α
(
s+ n′ + κ

)
− α1γ

]
=
[
α
(
s+ n′ − κ

)
+ α2γ

]
, (34.103)

which gives

2α
(
s+ n′

)
= γ (α1 − α2) = 2Eγ . (34.104)

We therefore obtain the following result for E:

E2 = m2

[
1+ γ 2

(s+ n′)2

]−1

. (34.105)

Thus, the energy levels are given by

E = m

[
1+ γ 2

(s+ n′)2

]− 1
2

. (34.106)

In terms of κ it has the form

E = m

⎡
⎢⎣1+ γ 2

(√
κ2 − γ 2 + n′

)2

⎤
⎥⎦

− 1
2

,
n′ = 0, 1, . . . ,

k = ∓1,∓2, . . . ,
(34.107)

while in terms of j it can be written as

E = m

⎡
⎢⎢⎢⎣1+ γ 2

(√(
j + 1

2

)2 − γ 2 + n′
)2

⎤
⎥⎥⎥⎦

− 1
2

,
n′ = 0, 1, . . . ,

j = 1

2
,
3

2
, . . . .

(34.108)

Thus E depends on n′ and j. If n′ = 0, then k � =1. Let us now expand the above result in

powers of γ , which is proportional to the Coulomb interaction strength Ze2. The parameter

s can be written as

s = |κ|
(

1− γ
2

κ2

) 1
2

≃ |κ|
(

1− 1

2

γ 2

κ2

)
. (34.109)

To write the expansion for E we note that

s+ n′ ≃ n′ + |κ| − 1

2

γ 2

|κ| = n− 1

2

γ 2

|κ| (34.110)

where we have defined

n′ + |κ| = n. (34.111)



623 34.5 Hydrogen atom states

As we will find below, n is the same as the principal quantum number we defined for the

hydrogen atom. Thus,

E ≃ m

⎡
⎢⎢⎢⎣1+ γ 2

(
n− 1

2

γ 2

|κ|

)2

⎤
⎥⎥⎥⎦

− 1
2

. (34.112)

Expanding this expression up to the power γ 4, we obtain

E ≃ m

[
1− γ 2

2n2
− γ 4

2n4

(
n

|κ| −
3

4

)]
. (34.113)

In terms of j, this result can be written as

E ≃ m

[
1− γ 2

2n2
− γ 4

2n4

(
n(

j + 1
2

) − 3

4

)]
. (34.114)

We notice that here, once again, as in the Klein–Gordon case, we find a fine structure

in the energy levels given by the third term in (34.114). The denominator of this term is

(j + 1/2) in contrast to the K-G equation where it was (l + 1). The results found for the

Dirac case are consistent with experiments. We note that the states with the same n and j are

still degenerate. This will be removed by the so-called Lamb shift, which we will discuss

in Chapter 45.

34.5 Hydrogen atom states

Below we tabulate the states denoted in spectroscopic notation. In doing so we note

that, in the nonrelativistic limit, the large components (i.e., the upper components) of the

wavefunction φ(r) are dominant and satisfy the relations

l =

⎧
⎪⎨
⎪⎩

= −κ − 1= j − 1

2
for κ < 0,

= κ = j + 1

2
for κ > 0.

(34.115)

It is in terms of these angular momenta that the states are designated in spectroscopic

notations. Also, we have already shown that one cannot have κ = 0. As for the states with

n′ = 0, we find that

(s+ κ) = γ a0

b0
= −γ α

α1
(34.116)

where we have used the relation (34.102). The right-hand side above is negative, which

implies that κ cannot be a positive integer otherwise the wavefunction would be infinite
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at ρ = 0. With these observations we present the following tabulation (34.117).

(
nLj

)
State n′ κ n = n′ + |κ| j l

1S 1
2

0 −1 1 1
2

0

2S 1
2

1 −1 2 1
2

0

2P 1
2

1 1 2 1
2

1

2P 3
2

0 −2 2 3
2

1

(34.117)

We note that the 2S 1
2

and 2P 1
2

are degenerate but not 2S 1
2

and 2P 3
2
. Thus, the degeneracy

between states with the same values of n and l is partially removed.

34.6 Hydrogen atom wavefunction

The angular dependence of a wavefunction is given by the spherical harmonics, Ylm(θ ,φ),

which we designate as Y m
l

to simplify writing. We already know the orbital angular momen-

tum, l, of the upper component in terms of the total angular momentum, j. To get the relation

for the lower two components, we note that the operator K = β(1 + σ ′ · L) will have a

contribution from the lower two diagonal components of β. Therefore,

K →−(1+ σ ′ · L). (34.118)

We have already shown that in the nonrelativistic limit we have the relation

l = j + 1

2
. (34.119)

Let us write the wavefunction in the full four-component form as

ψ =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ (34.120)

where the following relations are satisfied:

Jzψ = Mψ , (34.121)

J = L+ 1

2
σ ′, (34.122)
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M = m+ 1

2
σ ′z , (34.123)

σ ′z

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ψ1

−ψ2

ψ3

−ψ4

⎞
⎟⎟⎠ , (34.124)

and, therefore,

ψ1 =
1

r
F (r) λ1Y

M− 1
2

j− 1
2

, (34.125)

ψ2 =
1

r
F (r) λ2Y

M+ 1
2

j− 1
2

, (34.126)

ψ3 =
1

r
G (r) λ3Y

M− 1
2

j+ 1
2

, (34.127)

ψ4 =
1

r
G (r) λ4Y

M+ 1
2

j+ 1
2

. (34.128)

For ease of writing, as we mentioned earlier we have changed the notation for the spherical

harmonics from

Ylm to Y m
l

.

The upper two components of (34.120) can be written as

(
ψ1

ψ2

)
= ψ1

(
1

0

)
+ ψ2

(
0

1

)
(34.129)

= 1

r
F (r)

[
λ1Y

M− 1
2

j− 1
2

(
1

0

)
+ λ2Y

M+ 1
2

j− 1
2

(
0

1

)]
(34.130)

where the λi’s can be written as the Clebsch–Gordan coefficients

λ1 = C

(
j, l,

1

2
; M − 1

2
m

1

2

)
=
√

j +M

2j
, (34.131)

λ2 = C

(
j, l,

1

2
; M + 1

2
m

1

2

)
=
√

j −M

2j
. (34.132)

Similarly,

(
ψ3

ψ4

)
= ψ3

(
1

0

)
+ ψ4

(
0

1

)
(34.133)

= 1

r
g (r)

[
λ3Y

M− 1
2

j+ 1
2

(
1

0

)
+ λ4Y

M+ 1
2

j+ 1
2

(
0

1

)]
(34.134)
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with

λ3 = C

(
j, l,

1

2
; M − 1

2
m,

1

2

)
=
√

j −M + 1

2j + 2
, (34.135)

λ4 = C

(
j, l,

1

2
; M + 1

2
m,

1

2

)
= −

√
j +M + 1

2j + 2
. (34.136)

One can then write the compact relation

ψ(r) =

⎡
⎣

1
r
F (r)YM

j,j− 1
2

1
r
G (r)YM

j,j+ 1
2

⎤
⎦ (34.137)

where

YM

j,j− 1
2

=
[√

j +M

2j
Y

M− 1
2

j− 1
2

(
1

0

)
+
√

j −M

2j
Y

M+ 1
2

j− 1
2

(
0

1

)]
, (34.138)

YM

j,j+ 1
2

=
[√

j −M + 1

2j + 2
Y

M− 1
2

j+ 1
2

(
1

0

)
−
√

j +M + 1

2j + 2
Y

M+ 1
2

j+ 1
2

(
0

1

)]
. (34.139)

The radial wavefunction can be obtained as in the Schrödinger case, keeping in mind that

for the r = 0 behavior, given by rs, the exponent s will no longer be an integer. We will not

pursue this calculation further.

34.7 Appendix to Chapter 34

34.7.1 The commutator [K,H]

From the definition

K = β(1+ σ ′ · L) = β
(

σ ′ · J − 1

2

)
(34.140)

and

H = α · p+ βm+ V (r), (34.141)

we note that

[K , H ] =
[
βσ ′ · J, H

]
− 1

2
[β, H ] . (34.142)
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First we write below two of the results we have already derived:

[
σ ′, H

]
= 2i�p× α, [L,H ] = i�α × p. (34.143)

These relations were derived in Section 33.5 and led to the result [J, H ] = 0. To obtain

the commutator [K , H ], let us first consider [β, H ], where H is given by (34.141). Since β

commutes with the second and third terms, we need only consider the first term of H ,

[β, H ] = [β, α · p] = [β,αi] pi = −2αiβpi = −2α · pβ (34.144)

where we have used the anticommutation relation {β,αi} = 0.

In order to evaluate the commutator involving βσ ′ · J, we note that the commutator

[A1A2, B], where A1, A2, and B are operators, can be written as

[A1A2, B] = A1 [A2, B]+ [A1, B] A2. (34.145)

Hence,

[
βσ ′ · J, H

]
= β

[
σ ′ · J, H

]
+ [β, H ] σ ′ · J (34.146)

= β
[
σ ′ · J, H

]
− 2α · pβσ ′ · J (34.147)

where we have used the result (34.144) for the second term above. We can simplify the first

term in (34.147) further by using (34.145) once again:

β
[
σ ′ · J, H

]
= β

{
σ ′ · [J, H ]+

[
σ ′, H

]
· J
}

. (34.148)

The first term vanishes because J commutes with H , and for the second term we use

(34.143). Thus,

β
[
σ ′ · J, H

]
= 2iβ (p×α) · J. (34.149)

From this result we obtain

[
βσ ′ · J, H

]
= 2β

{
i (p× α) · J + α · pσ ′ · J

}
. (34.150)

In order to obtain the second term in (34.150) we multiply the well-known relation

σ ′ · Aσ ′ · B = A · B+ iσ ′ · (A × B) (34.151)

on both sides by the γ 5 matrix, which we have already introduced and which in the standard

representation can be written in a 2× 2 form as

γ 5 =
(

0 1

1 0

)
. (34.152)

We obtain

α · Aσ ′ · B = γ 5A · B+ iα · (A × B) . (34.153)
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Using this result we find

α · pσ ′ · J = γ 5p · J + iα · (p× J) (34.154)

= 1

2
p · α + iα · (p× J) (34.155)

= 1

2
p · α + i (α × p) ·J (34.156)

where we have taken J = L+ 1
2
σ ′, with p·L = 0, and the identity A·(B× C) = (A×B) · C.

Thus (34.150) gives

[
βσ ′ · J, H

]
= βα · p. (34.157)

Combining (34.142), (34.144), and (34.157) we obtain

[K , H ] = βα · p+ α · pβ = 0 (34.158)

because β and α anticommute. Thus we complete the proof that K commutes with the

Hamiltonian.

34.7.2 Derivation of the spin–orbit term

We start by substituting φS on the right-hand side of (34.6) and obtain

(ET − V )φL =
1

2m
σ · p

[
1−

(
ET − V

2m

)]
σ · pφL (34.159)

=
{

σ · pσ · p
2m

− σ · p ET σ · p
4m2

+ σ · p V σ · p
4m2

}
φL. (34.160)

Therefore,

(ET − V )φL =
{

p2

2m
− p2

4m2
ET +

σ · p V σ · p
4m2

}
φL (34.161)

where we have used the result

σ · p σ · p = p2. (34.162)

We note that equation (34.161) cannot be cast as an eigenvalue equation of the type

HφL = ETφL because the right-hand side of (34.161) itself contains ET . Also, since the

second term in (34.161) is of the order of (v/c)2 we need to make sure that the approximate

wavefunctions we are using are also normalized to that order. The normalization condition,

however, reads

∫
d3r φ†(r)φ(r) =

∫
d3r

[∣∣φL

∣∣2 +
∣∣φS

∣∣2
]
= 1 (34.163)
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which contains φS . Keeping the leading term proportional to v/c in the first term in (34.10)

relating φS to φL we find

∫
d3r

[∣∣φL

∣∣2 + p2

4m2

∣∣φL

∣∣2
]
= 1 to order

v
2

c2
. (34.164)

Hence,

∫
d3r

[
1+ p2

4m2

] ∣∣φL

∣∣2 = 1. (34.165)

Let us define a new wavefunction

ψ =
√

1+ p2

4m2
φL, (34.166)

which has the normalization

∫
d3r |ψ |2 = 1. (34.167)

Expanding ψ and keeping the leading term, we write

ψ =
(

1+ p2

8m2

)
φL. (34.168)

In (34.161), after bringing the ET term from the right to the left, we rewrite it as

ET

(
1+ p2

4m2

)
φL =

{
p2

2m
+ V + σ · p V σ · p

4m2

}
φL. (34.169)

Our aim is to write the eigenvalue relation in terms of ψ . From (34.168) we write φL in

terms of ψ to leading order in (v/c)2 ,

φL =
(

1− p2

8m2

)
ψ . (34.170)

Substituting this in (34.169) we obtain, to leading order in (v/c)2,

ET

(
1+ p2

4m2

)(
1− p2

8m2

)
ψ = ET

(
1+ p2

8m2

)
ψ (34.171)

=
{

p2

2m
+ V + σ · p V σ · p

4m2

}(
1− p2

8m2

)
ψ . (34.172)
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Multiplying (34.172) on the left by
(
1− p2/8m2

)
and neglecting terms of order (v/c)4,

we have

ETψ =
(

1− p2

8m2

){
p2

2m
+ V + σ · p V σ · p

4m2

}(
1− p2

8m2

)
ψ . (34.173)

We write the above equation in terms of ψ as follows:

ETψ = Hψ . (34.174)

To order (v/c)2 the Hamiltonian H is found to be

H = p2

2m
− p4

8m3
+ V − 1

8m2

(
V p2 + p2V

)
+ σ · p V σ · p

4m2
. (34.175)



35
Dirac equation in a relativistically

invariant form

The Dirac equation is re-expressed in a covariant form so that the equation is manifestly

invariant under Lorentz transformations. The matrices α and β are replaced by the γ μmatri-

ces and the spinor wavefunctions are appropriately defined. The Lorentz transformation of

spinors and their bilinear products are obtained. We also derive the Gordon decomposition

rule.

35.1 Covariant Dirac equation

Let us express the Dirac equation in a fully relativistic form. We start with the equation in

the momentum space,

(E1− α · p− βm) u = 0, (35.1)

and multiply it on the left by β. Since β2 = 1, we have

(βE − βα · p− m) u = 0. (35.2)

We introduce the matrices

γ μ =
(
γ i, γ 4

)
, i = 1, 2, 3, (35.3)

which we define in terms β and αi as follows:

γ i = βαi, γ 4 = β. (35.4)

The first two terms of (35.2) can be expressed as γ 4E − γ · p. Hence the complete Dirac

equation in the four-vector form is then

(
γ μpμ − m

)
u = 0, (35.5)

which we can write as

(γ · p− m) u = 0. (35.6)

Replacing pμ→ i∂μ, we can express the Dirac equation in the x-space as

(
iγ μ∂μ − m

)
u = 0 (35.7)
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or

(iγ · ∂ − m) u = 0. (35.8)

Equations (35.5)–(35.8) express the Dirac equation in a covariant form.

35.2 Properties of the γ -matrices

To determine the properties of the γ -matrices we recapitulate below the properties of the α

and β matrices (with i, j = 1, 2, 3):

α2 = 1 = β2, (35.9)

αiβ + βαi = 0, (35.10)

αiαj + αjαi = 0, i � =j. (35.11)

Therefore, for the corresponding γ -matrices, we have

(
γ 4

)2
= (β)2 = 1. (35.12)

Similarly,

(
γ i
)2 = βαiβαi = β (−βαi) αi = −β2α2

i = −1. (35.13)

If we multiply (35.10) on the left by β we obtain

(β) (βαi)+ (β) (αiβ) = (β) (βαi)+ (βαi) (β) = 0. (35.14)

Using the relation (35.4) this equation can be written as

γ 4γ i + γ i γ 4 = 0. (35.15)

We then consider the relation (35.11) and multiply it on the left and on the right by β to

obtain

βαiαjβ + βαjαiβ = − (βαi)
(
βαj

)
−
(
βαj

)
(βαi) = 0, for i � =j, (35.16)

which can be reduced to

γ iγ j + γ j γ i = 0, for i � =j. (35.17)

We can write the relations (35.12), (35.13), (35.15), and (35.17) in a compact form as a

single relation,

{γ μ, γ ν} = 2gμν , (35.18)
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with μ, ν = 1, 2, 3, 4, where gμν is the metric tensor defined earlier, and {γ μ, γ ν} is the

anticommutator (γ μγ ν + γ νγ μ). The anticommutation relation (35.18) is now expressed

in a covariant form.

The standard representation we had defined for α and β can now be written for the

γ -matrices as follows:

γ 4 =
[
1 0

0 −1

]
, (35.19)

γ i =
[

0 σ i

−σ i 0

]
. (35.20)

35.2.1Hermitian conjugate of γ μ

We first note the following relations regarding Hermitian conjugates of the γ -matrices.

From the definitions γ i = βαi and γ 4 = β, we obtain, since β is Hermitian,

(
γ 4

)†
= β† = β = γ 4, (35.21)

(
γ i
)† = (βαi)

† = αiβ = −βαi = −γ i, (35.22)

where we have used the anticommutation properties of αi and β. Furthermore, we note that

γ 4
(
γ i
)†
γ 4 = −γ 4γ iγ 4 = γ i

(
γ 4

)2
= γ i (35.23)

where we have used (35.22) and the anticommutation relation between γ i and γ 4. Also,

trivially,

γ 4
(
γ 4

)†
γ 4 = γ 4. (35.24)

Hence we can write

γ 4
(
γ μ

)†
γ 4 = γ μ (35.25)

or

(
γ μ

)† = γ 4γ μγ 4. (35.26)

This is an important relation involving the Hermitian conjugate of γ μ.

35.3 Charge–current conservation in a covariant form

Previously we obtained the probability current conservation relation

∂ρ

∂t
+∇ · j = 0 (35.27)
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where

ρ = ψ†ψ , j = ψ†αψ . (35.28)

Using these relations we can express ρ and j in terms of the γ -matrices as follows:

ji = ψ†αiψ = ψ†βγ iψ = ψ†γ 4γ iψ . (35.29)

We define a new quantity ψ̄ given by

ψ̄ = ψ†γ 4 (35.30)

and obtain

ji = ψ̄γ iψ . (35.31)

Similarly, since
(
γ 4

)2 = 1,

ρ = ψ†
(
γ 4

)2
ψ =

(
ψ†γ 4

)
γ 4ψ = ψ̄γ 4ψ . (35.32)

The four-vector current jμ is then

jμ =
(
jα , j4

)
(35.33)

where α = 1, 2, 3

jα = ψ̄γ αψ , j4 = ψ̄γ 4ψ . (35.34)

Hence

jμ = ψ̄γ μψ . (35.35)

Condition (35.27) can then be rewritten as

∂μjμ = 0. (35.36)

The probability current conservation relation is now expressed as a covariant equation.

35.3.1 Derivation directly from the Dirac equation

Let us derive (35.36) directly from the Dirac equation rather than through (35.27). The

equation is given by

iγ μ
(
∂μψ

)
− mψ = 0. (35.37)
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We take the Hermitian conjugate of (35.37),

−i
(
∂μψ

†
) (
γ μ

)† − mψ† = 0. (35.38)

Let us now multiply (35.38) on the right by γ 4 and insert
(
γ 4

)2
in the first term of (35.38):

−i
(
∂μψ

†
)
γ 4

(
γ 4

(
γ μ

)†
γ 4

)
− mψ†γ 4 = 0. (35.39)

From the definition (35.30) and the result (35.24) we have

−i
(
∂μψ̄

)
γ μ − mψ̄ = 0. (35.40)

We now multiply (35.37) on the left by ψ̄ and (35.40) on the right by ψ , and make a

subtraction as follows:

ψ̄γ μ
(
∂μψ

)
+
(
∂μψ̄

)
γ μψ = 0. (35.41)

This leads to

∂μjμ = 0 (35.42)

where

jμ = ψ̄γ μψ . (35.43)

The two results (35.42) and (35.43) are the same as (35.36) and (35.35) derived earlier.

35.4 Spinor solutions: ur(p) and vr(p)

Let Wr (p, E) be the solution of the Dirac equation

(γ · p− m)Wr (p, E) =
(
γ 4E − γ · p− m

)
Wr (p, E) = 0 (35.44)

where E can be positive or negative and for each sign of E we have r = 1, 2 depending

on whether we have a spin-up or spin-down state. The W ’s are related to the solutions we

obtained previously.

For positive energies, E = Ep =
√

p2 +m2 we write

Wr

(
p, Ep

)
= ur (p) . (35.45)

From (35.44) we then have

(γ · p− m) ur (p) = 0; pμ =
(
p, Ep

)
. (35.46)
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For negative energies E = −Ep = −
√

p2 +m2, the equation satisfied by Wr is

(
−γ 4Ep − γ · p− m

)
Wr

(
p,−Ep

)
= 0. (35.47)

We now reverse the sign of p in (35.47) to obtain

(
−γ 4Ep + γ · p− m

)
Wr

(
−p,−Ep

)
= 0 (35.48)

and identify

Wr

(
−p,−Ep

)
= vr(p), r = 1, 2. (35.49)

Factoring out the minus sign in (35.48) we obtain

(γ · p+ m) vr(p) = 0; pμ =
(
p, Ep

)
. (35.50)

Thus we have separated the positive and negative solutions into two types of spinors, ur(p)

and vr(p) each with spin-up (r = 1) and spin-down (r = 2) states.

35.5 Normalization and completeness condition
for ur(p) and vr(p)

We discuss now the question of normalization of ur(p) andvr(p). From our earlier discussion

of the spinors we write below the positive-energy solution for spin-up (r = 1),

r = 1 : Wr (p, E) = ur(p) = C

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
pz

(|E| + m)(
px + ipy

)

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (35.51)

The Hermitian conjugate ūr(p) is then

ūr(p) = u†
r (p)γ

4 = C∗
(

1, 0,
pz

(|E| + m)
,

(
px − ipy

)

(|E| + m)

)
⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠

= C∗
(

1, 0,− pz

Ep + m
,−

(
px − ipy

)
(
Ep + m

)
)

. (35.52)
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We will demonstrate in the later sections that ūr(p)ur(p) transforms as a scalar. Hence we

use the normalization ūr(p)ur(p) = 1 and find

1 = |C|2
(

1, 0,− pz

Ep + m
,−

(
px − ipy

)
(
Ep + m

)
)

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
pz

(|E| + m)(
px + ipy

)

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎦

= |C|2
∣∣∣∣∣1−

p2
z + p2

x + p2
y(

Ep + m
)2

∣∣∣∣∣ = |C|
2

⎡
⎣1−

(
E2

p − m2
)

(
Ep + m

)2

⎤
⎦

= |C|2 2m

Ep + m
. (35.53)

The normalization constant is, therefore,

C =
√

Ep + m

2m
. (35.54)

Thus, we have

ur(p) =
√

Ep + m

2m

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0
pz

(|E| + m)(
px + ipy

)

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎦

, for r = 1. (35.55)

We find the value of C for r = 2 to be the same as above.

ur(p) =
√

Ep + m

2m

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1(
px − ipy

)

(|E| + m)

− pz

(|E| + m)

⎤
⎥⎥⎥⎥⎥⎥⎦

, for r = 2. (35.56)

Keeping the same normalization constant, we write for the negative energies,

Wr

(
−p,−Ep

)
= vr(p) =

√
Ep + m

2m

⎡
⎢⎢⎢⎢⎢⎢⎣

pz(
Ep + m

)
(
px + ipy

)
(
Ep + m

)

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, for r = 1. (35.57)
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Similarly,

vr(p) =
√

Ep + m

2m
C

⎡
⎢⎢⎢⎢⎢⎢⎣

(
px − ipy

)

(|E| + m)

− pz

(|E| + m)
0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, for r = 2. (35.58)

We now obtain v̄r(p) for r = 1, where

v̄r(p) = v
†
r (p)γ

4,

v̄r(p) =
√

Ep + m

2m

(
pz

Ep + m
,

(
px − ipy

)

Ep + m
, 1, 0

)
⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎠

=
√

Ep + m

2m

(
pz

Ep + m
,

(
px − ipy

)

Ep + m
,−1, 0

)
, for r = 1. (35.59)

Thus, the normalization of vr(p) is given by

v̄r(p)vr(p) =
Ep + m

2m

(
pz

Ep + m
,

(
px − ipy

)

Ep + m
,−1, 0

)

⎡
⎢⎢⎢⎢⎢⎢⎣

pz(
Ep + m

)
(
px + ipy

)
(
Ep + m

)

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

= Ep + m

2m

(
p2

z + p2
x + p2

y(
Ep + m

)2
− 1

)
= −1, for r = 1. (35.60)

One can similarly calculate the product v̄r(p)vr(p) for r = 2, as well as other bilinear

products.

We summarize all the results compactly as follows:

ūr(p)us(p) = δrs, v̄r(p)vs(p) = −δrs, r, s = 1, 2, (35.61)

ūr(p)vs(p) = 0 = v̄r(p)us(p), r, s = 1, 2. (35.62)

The completeness relation is found to be of the form

2∑

r=1

[ur (p) ūr (p)− vr (p) v̄r (p)] = 1 (35.63)

where each term on the left-hand side is a matrix while the right-hand side is a unit matrix.
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35.5.1 Projection operators

Let us define what are known as projection operators, �± (p), as follows:

�+ (p) =
2∑

r=1

ur (p) ūr (p) , �− (p) = −
2∑

r=1

vr (p) v̄r (p) . (35.64)

The completeness relation (35.63) gives

�+ +�− = 1. (35.65)

Furthermore, we find

�+us = us, �+vs = 0 (35.66)

and

�−vs = vs, �−us = 0. (35.67)

Thus �+ projects out positive-energy solutions, us, while �− projects out the negative-

energy solutions vs. Moreover, using the orthogonality properties of us (p) we find

�2
+ =

[
2∑

r=1

ur (p) ūr (p)

][
2∑

s=1

us (p) ūs (p)

]
(35.68)

=
2∑

r=1

2∑

s=1

ur (p) δrsūs (p) (35.69)

=
2∑

r=1

ur (p) ūr (p) = �+. (35.70)

We also obtain the following:

�2
− = �−, �+�− = 0. (35.71)

Thus we have demonstrated from the above results that the operators �± act as projection

operators.

We now determine the specific forms of the operators �±. Since �+vr (p) = 0, then

from the equation (35.50) satisfied by vr (p) we can write

�+ = λ (m+ γ · p) (35.72)

where λ is a constant. Operating on ur (p) we find, using (35.46),

�+ur = λ2mur . (35.73)
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Since �+ur = ur , we obtain

λ = 1

2m
. (35.74)

Hence,

�+ =
m+ γ · p

2m
. (35.75)

From (35.65) we have

�− = 1−�+ =
m− γ · p

2m
. (35.76)

The two relations (35.75) and (35.76) satisfy the conditions (35.66)–(35.71). Thus, in

summary,

2∑

r=1

ur (p) ūr (p) = �+ (p) =
m+ γ · p

2m
(35.77)

and

−
2∑

r=1

vr (p) v̄r (p) = �− (p) =
m− γ · p

2m
. (35.78)

35.6 Gordon decomposition

We will derive below a very important relation called the Gordon decomposition. We start

with the equation

(γ · p1 − m)u(p1) = 0 (35.79)

where we have suppressed the index r in ur . Taking the Hermitian conjugate, we obtain

ū(p1) (γ · p1 − m) = 0. (35.80)

We multiply the right-hand side of (35.80) first by γ · A followed by u(p2), where A is an

arbitrary four-vector

ū(p1)(γ · p1 − m)γ · Au(p2) = 0. (35.81)

We then consider the same equation as (35.79) but replace p1 by p2,

(γ · p2 − m)u(p2) = 0, (35.82)
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and multiply (35.82) on the left first by γ · A followed by ū(p1)

ū(p1)γ · A(γ · p2 − m)u(p2) = 0. (35.83)

Adding (35.81) and (35.83) we obtain

ū(p1) [γ · p1γ · A+ γ · Aγ · p2 − 2mγ · A] u(p2) = 0. (35.84)

We can write (35.84) as

ū(p1)
[
γ μγ νp1μ + γ νγ μp2μ − 2mγ ν

]
Aνu(p2) = 0 (35.85)

where we have factored out Aν . Since Aν is arbitrary, we can remove it to obtain the following

relation

ū(p1)
[
γ μγ νp1μ + γ νγ μp2μ − 2mγ ν

]
u(p2) = 0. (35.86)

One can write

γ μγ ν = γ
μγ ν + γ νγ μ

2
+ γ

μγ ν − γ νγ μ
2

. (35.87)

The first term above can be simplified because of the relation

γ μγ ν + γ νγ μ = 2gμν . (35.88)

We define

σμν = γ
μγ ν − γ νγ μ

2i
. (35.89)

Hence (35.87) can be re-expressed as

γ μγ ν = gμν + iσμν . (35.90)

Concentrating only on the square bracket in (35.86), after inserting (35.90) we obtain

gμν(p1μ + p2μ)+ iσμνp1μ + iσ νμp2μ − 2mγ ν = 0. (35.91)

Since σμν = −σ νμ, we have

(pν1 + pν2)+ iσμν(p1μ − p2μ)− 2mγ ν = 0. (35.92)

That is,

γ ν = 1

2m
(pν1 + pν2)+ iσμν

1

2m
(p1μ − p2μ). (35.93)

This is the Gordon decomposition, where it is understood that this relation is sandwiched

between ū(p1) and u(p2).
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35.7 Lorentz transformation of the Dirac equation

Let us consider the properties of the Dirac wavefunction under Lorentz transformations.

The equation is given by

(
iγ μ∂

μ − m
)
ψ(x) = 0. (35.94)

In another Lorentz frame, which we will designate as the primed frame with coordinates

x′μ, the equation will be of the form

(
iγ μ∂

′μ − m
)
ψ ′(x′) = 0 (35.95)

where the Lorentz transformation relates the two coordinate systems by

x′μ = Lμ.νx
ν . (35.96)

Let

ψ ′(x′) = Sψ(x). (35.97)

Then, since ∂ ′μ = L
μ
.ν∂
ν , we write equation (35.95) as

(
iγ μLμ.ν∂

ν − m
)

Sψ (x) = 0. (35.98)

Multiplying the above equation on the left by S−1 and comparing it with equation (35.94),

we find that the following relation must be satisfied:

S−1γ μLμ.νS = γ ν . (35.99)

We rewrite this relation as

γ μLμ.ν = Sγ νS
−1. (35.100)

We now consider infinitesimal transformations of both S and L
μ
.ν . First we write

S = 1+ ε� (35.101)

where ε is an infinitesimal quantity. The infinitesimal transformation of L
μ
.ν has already

been considered in Chapter 31, where it was found that one can write

Lμ.ν = δμ.ν + εeμ.ν (35.102)

where, if we define

eμ.ν = eμαgαν , (35.103)
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then eμα is an antisymmetric tensor:

eμα = −eαμ. (35.104)

To obtain � we substitute (35.102) into (35.100) and obtain

γ μ
(
δνμ + εeνμ

)
= (1+ ε�) γ ν (1− ε�) . (35.105)

Therefore, to first order in ε,

γ ν + εeνμγ μ = γ ν + ε
[
�, γ ν

]
, (35.106)

which leads to the relation

[
�, γ ν

]
= eνμγ

μ. (35.107)

The solution of this is given by

� = 1

4
γ αγ βeαβ . (35.108)

Once again through the process of infinitesimal transformations one can show that

S−1 = γ 4S†γ 4. (35.109)

35.7.1 Bilinear covariant terms

Starting with

ψ ′(x′) = Sψ(x) (35.110)

we obtain the following relations for ψ̄
′
(x′):

ψ̄
′ (

x′
)
= ψ ′†γ 4 = ψ†S†γ 4 = ψ†γ 4

(
γ 4S†γ 4

)
. (35.111)

Substituting (35.109) we find

ψ̄
′
(x′) = ψ̄(x)S−1. (35.112)

Let us consider the following bilinear products:

(i) ψ̄ (x) ψ (x) (35.113)

Under Lorentz transformations

ψ̄ (x) ψ (x)→ ψ̄
′ (

x′
)
ψ
(
x′
)
= ψ̄ (x) S−1Sψ (x) = ψ̄ (x) ψ (x) . (35.114)
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Hence ψ̄(x)ψ(x) is invariant, i.e., it transforms as a scalar.

(ii) ψ̄ (x) γ μψ (x) . (35.115)

ψ̄
′ (

x′
)
γ μψ ′

(
x′
)
= ψ̄ (x) S−1γ μSψ (x) . (35.116)

However,

S−1γ μS = Lμ ·ρ γ ρ . (35.117)

Thus,

ψ̄
(
x′
)
γ μψ ′

(
x′
)
= Lμ ·ρ ψ̄ (x) γ ρψ (x) . (35.118)

Hence, ψ̄ (x) γ μψ (x) transforms as a four-vector.

Similarly, one can derive properties of other bilinear products of the form ψ̄(x)Ŵψ(x)

where Ŵ is a product of γ -matrices.

35.8 Appendix to Chapter 35

35.8.1 Further properties of γ -matrices

Below we consider some important properties involving the traces of γ -matrices.

Product of even number of γ -matrices

(i) Tr (γ μγ ν)

To evaluate this we use the relation

γ μγ ν + γ νγ μ = 2gμν · 1. (35.119)

Taking the trace of both sides and using the cyclic property of the traces,

Tr (abc · · · z) = Tr (bc · · · za) , (35.120)

we find

Tr
(
γ μγ ν

)
= gμνTr (1) = 4gμν (35.121)

where we have used the fact that Tr(1) = 4.

(ii) Tr (γ μγ νγ ργ σ )

Here we use, as in (i), the relation (35.119) at each stage as we move γ μ from the

left all the way to the right, and, once it reaches the extreme right, we use the cyclic
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property (35.120),

Tr
(
γ μγ νγ ργ σ

)
= Tr

[(
2gμν − γ νγ μ

)
γ ργ σ

]
(35.122)

= 2gμνTr
(
γ ργ σ

)
− Tr

(
γ νγ μγ ργ σ

)
(35.123)

=
(
2gμν

) (
gρσ

)
· 4− Tr

(
γ νγ μγ ργ σ

)
. (35.124)

Now continuing moving γ μ we find for the second term above,

Tr
(
γ νγ μγ ργ σ

)
= Tr

[
γ ν

(
2gμρ − γ ργ μ

)
γ σ

]
(35.125)

= 2gμρTr
(
γ νγ σ

)
− Tr

(
γ νγ ργ μγ σ

)
(35.126)

= 2gμρ
(
gνσ

)
· 4− Tr

(
γ νγ ργ μγ σ

)
, (35.127)

and continuing further for the second term,

Tr
(
γ νγ ργ μγ σ

)
= Tr

[
γ νγ ρ

(
2gμσ − γ σγ μ

)]
(35.128)

= 2gμσ
(
gνρ

)
· 4− Tr

(
γ νγ ργ σγ μ

)
(35.129)

= 2gμσ
(
gνρ

)
· 4− Tr

(
γ μγ νγ ργ σ

)
. (35.130)

In the last step we have used the cyclic property (35.120), so that the second term on the

right of (35.130) is the same as the term on the left side of (35.124).

Hence we obtain

Tr
(
γ μγ νγ ργ σ

)
= 4

(
gμνgρσ − gμρgνσ + gμσgνρ

)
. (35.131)

One can similarly work out the traces of six or higher numbers of even products.

Product of odd number of γ -matrices

The trace of a product of an odd-number of γ -matrices can be obtained by using the γ 5-trick

which we explain below.

(i) Tr (γ μ)

From the definition of γ μ we know that

Tr
(
γ μ

)
= 0. (35.132)

(ii) Tr (γ μγ νγ ρ)

Let us use the trick of using the γ 5-matrix which in the standard representation is given by

γ 5 =
(

0 1

1 0

)
; γ 2

5 =
(

1 0

0 1

)
= 1. (35.133)

One can also write

γ 5 = iγ 1γ 2γ 3γ 4. (35.134)
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It can easily be shown that γ 5 anticommutes with γ μ,

{
γ 5, γ μ

}
= 0. (35.135)

We will use the properties (35.133) and (35.135) to determine Tr(γ μγ νγ ρ), which can

be written as

Tr
(
γ μγ νγ ρ

)
= Tr

(
γ 5γ 5γ

μγ νγ ρ
)

(35.136)

= −Tr
(
γ 5γ

μγ νγ ργ 5

)
(35.137)

where we have moved one of the γ 5’s from the left to the right, at each stage using the

property (35.135). If we use the cyclic property of the traces then

Tr
(
γ 5γ

μγ νγ ργ 5

)
= Tr

(
γ μγ νγ ργ 5γ 5

)
= Tr

(
γ μγ νγ ρ

)
. (35.138)

Hence, from (35.137) and (35.138),

Tr
(
γ μγ νγ ρ

)
= 0. (35.139)

Similarly, we can show that

Tr
(
γ μγ ν · · · odd number

)
= 0. (35.140)

35.8.2 Trace of products of the form (γ · a1γ · a2 · · · )

We summarize the following properties involving the traces derived from the results of the

previous section:

Tr (γ · a1) = 0, (35.141)

Tr (γ · a1γ · a2) = 4 (a1a2) = 4a1 · a2, (35.142)

Tr (γ · a1γ · a2 · · · γ · an) = 4[(a1 · a2) (a3 · · · an)− (a1 · a3) (a2 · · · an)+ · · ·
+ (a1 · an) (a2 · · · an−1)] (35.143)

Tr(γ · a1γ · a2 · · · γ · an) = 0, for any odd n. (35.144)



36
Interaction of a Dirac particle with an

electromagnetic field

We introduce an electromagnetic field into the Dirac equation in a fully relativistic form and

examine the consequences by comparing, for example, the Dirac electromagnetic current

with the current in the Klein–Gordon equation. We calculate the propagator for the Dirac

particle and obtain the S-matrix involved in electromagnetic scattering. Specifically, we

calculate the Rutherford scattering amplitude and compare it with the nonrelativistic result.

36.1 Charged particle Hamiltonian

As we have already discussed, electromagnetic interaction can easily be incorporated into

the Hamiltonian by making the substitutions

p → p− eA, (36.1)

E → E − eφ (36.2)

where φ and A are scalar and vector potentials.

The nonrelativistic energy momentum relation in the presence of electromagnetic

interaction will then be of the form

(E − eφ)− (p− eA)2

2m
= 0, (36.3)

while the relativistic form given by the Klein–Gordon equation will be

(E − eφ)2 − (p− eA)2 − m2 = 0. (36.4)

The Dirac equation in the presence of electromagnetic interactions can, therefore, be

written as

[E − eφ − α · (p− eA)− βm] u = 0. (36.5)

In order that this equation be consistent with the relativistic relation (36.4) we multiply the

above equation by

E − eφ + α · (p− eA)+ βm (36.6)

and obtain

[(E − eφ)2 − α · (p− eA)α · (p− eA)− m2

+ (E − eφ)α· (p− eA)− α · (p− eA) (E − eφ)]u = 0. (36.7)
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This equation can be simplified by using the standard representation for α. We find

α · B · α · C =
[

0 σ · B
σ · B 0

] [
0 σ · C

σ · C 0

]
=
[
σ · Bσ · C 0

0 σ · Bσ · C

]
. (36.8)

We have already derived the following property of the 2× 2 Pauli matrices,

σ · Bσ · C = B · C+ iσ · (B× C) , (36.9)

and from it we have obtained the relation

α · Bα · C = B · C+ iσ ′ · (B× C) (36.10)

where the 4× 4 matrix, σ ′, has been defined earlier. Thus,

α · (p− eA) α · (p− eA) = (p− eA)2 + iσ ′ · (p− eA)× (p− eA) (36.11)

= (p− eA)2 + ieσ ′ · (p× A + A × p) (36.12)

where we have taken into account the fact that p is an operator that operates on the wave-

functionψ(x) = u(p) exp(−ip ·x). Specifically, writing p = −i∇, we have, after including

the wavefunction ψ ,

(p× A + A × p) ψ = −i [∇ × (Aψ)+ (A ×∇ψ)] (36.13)

= −i [(∇ × A) ψ + (∇ψ × A)+ (A ×∇ψ)] (36.14)

= −i (∇ × A) ψ . (36.15)

Since ∇ × A = H, where H is the magnetic field, we obtain

α (p− eA) α · (p− eA) = (p− eA)2 − e�σ ′ · (∇ × A) (36.16)

= (p− eA)2 − e�σ ′ ·H. (36.17)

Similarly the following two terms can be simplified by writing E and p in the operator

forms E = i∂/∂t and p = −i∇, respectively:

[(E − eφ)α · (p− eA)− α · (p− eA) (E − eφ)]ψ (36.18)

= [−eα · (EA − AE)− e α · (φp− pφ)]ψ (36.19)

= −ieα ·
(
∂

∂t
(Aψ)− A

∂ψ

∂t

)
+ ieα · φ∇ψ − ∇(φψ). (36.20)

The last term above can be rewritten as

ieα ·
(
−∂A
∂t
−∇φ

)
= ieα · E (36.21)
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where we have used the relation E = (−∂A/∂t −∇φ) for the electric field E. Hence,

relation (36.7) is found to be

[
(E − eφ)2 − (p− eA)2 − m2 + eσ ′ ·H+ ieα · E

]
u = 0 (36.22)

where we have returned to writing the equation in terms of u(p). This equation is reminiscent

of the equation in the nonrelativistic case with a magnetic field, except that we have a 4×4

theory and have the additional α · E term.

In order to discuss the nonrelativistic limit we write

E = ET + m (36.23)

where, in the nonrelativistic limit, ET can be considered as the kinetic energy with ET ≪ m.

We also replace u by uL.

We then express

(E − eφ)2 − m2 = (E − eφ − m) (E − eφ + m) ≈ (ET − eφ) 2m (36.24)

where in the last step we have also assumed eφ ≪ m. Thus the nonrelativistic form of the

the Dirac equation is given by

(
ET − eφ − 1

2m
(p− eA)2 + e

2m
σ ′ ·H+ ie

2m
α · E

)
u = 0. (36.25)

The fourth term in the above equation is of the form μ ·H, which is the interaction energy

due to a magnetic dipole moment in an electromagnetic field. The Dirac particle, therefore,

acts as if it has a magnetic dipole moment given by

μ = e�

2mc
σ ′ (36.26)

where we have temporarily re-instated � and c. The quantity e�/2m is called the Bohr

magneton. We have already discussed all of this in Chapter 6.

The last term in the equation (36.25) can be estimated by comparing it with eφ,

∣∣∣∣
(e�/2mc)α · E

eφ

∣∣∣∣ ≈
v

2

c2
(36.27)

where we have made the following assumptions. (i) Since the electric field E is related to

the potential φ by E = −∇φ, we have |∂φ/∂r| = |E|, and hence |φ| ≈ |E| a, where a is a

characteristic length. (ii) The uncertainty relation gives pa ∼ �, where in the nonrelativistic

limit we write the momentum, p, in terms of velocity, v, as p = mv. (iii) The relation

〈α〉 ∼ v/c. Combining all these factors leads to (36.27). Hence α · E in (36.25) can be

neglected. We then have in place of (36.25) the following

(
ET − eφ − 1

2m
(p− eA)2 + e�

2m
σ ·H

)
uL = 0. (36.28)
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We can write the above equation in the x-space as

i�
∂ψL

∂t
=
[

1

2m
(ih∇ + eA)2 − e�

2m
σ ·H+eφ

]
ψL (36.29)

where ψL(x) = uL(p) exp(−ip · x), where in p · x we have taken pμ = (p, ET ) and uL(p)

corresponds to the large component, which is a column matrix with just two entries.

36.2 Deriving the equation another way

We can derive (36.29) by going directly to the large component as follows. We write the

Dirac equation (36.5) as

(
E − eφ − m −σ · (p− eA)

−σ · (p− eA) E − eφ + m

)(
uL

uS

)
= 0, (36.30)

which gives

(E − eφ − m) uL − σ · (p− eA) uS = 0, (36.31)

(E − eφ + m) uS − σ · (p− eA) uL = 0. (36.32)

From (36.32) in the nonrelativistic approximation eφ ≪ m and E ≈ m, we obtain

uS =
σ · (p− eA)

E − eφ + m
uL ≈

σ · (p− eA)

2m
uL. (36.33)

Putting this into (36.32) we get

(E − eφ − m) uL −
σ · (p− eA) σ · (p− eA)

2m
uL = 0. (36.34)

As discussed above,

σ · (p− eA) σ · (p− eA) = (p− eA)2 − e
σ ·H
2m

. (36.35)

Once again writing E = ET + m, we get from (36.34)

(
ET − eφ − 1

2m
(p− eA)2 + e�

2m
σ ·H

)
uL = 0 (36.36)

which is the same equation as (36.28).
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36.3 Gordon decomposition and electromagnetic
current

The interaction of a Dirac particle with an electromagnetic field is given by the Hamiltonian

H ′ = ejμAμ (36.37)

where, as we derived earlier, the current, jμ is given by

jμ = ψ̄ (x) γ μψ (x) (36.38)

and Aμ is the vector potential. Let us relate this to the expressions we obtained for the

current in the Klein–Gordon case and in the Schrödinger case.

We will construct an electromagnetic current ψ̄∂μψ of the Klein–Gordon type and write

it in a form involving two spinors ψ1and ψ2. We denote it

jμ(1) = i
1

2m

[
ψ̄1(x)

(
∂μψ2(x)

)
−
(
∂μψ̄1(x)

)
ψ2(x)

]

= 1

2m

[
ū (p1)

[
p
μ
2 + p

μ
1

]
u (p2) e

i(p1−p2)·x
]

(36.39)

where we have taken

ψ i(x) = u (pi) e
−ipi .x. (36.40)

Let us define another current, jμ(2), as

jμ(2) = 1

2m

∂

∂xν

(
ψ̄1σ

μνψ2

)
= 1

2m
i (p1 − p2)ν

[
ū (p1) σ

μνu (p2)
]

ei(p1−p2)·x. (36.41)

Combining (36.39) and (36.41) we obtain

jμ(1) + jμ(2) = ū (p1)

[
p
μ
1 + p

μ
2

2m
+ i
σμν

2m
(p1 − p2)ν

]
u (p2) e

i(p1−p2)·x. (36.42)

From Gordon decomposition applied to the right-hand side we find

jμ(1) + jμ(2) = ū (p1) γ
μu (p2) e

i(p1−p2)·x, (36.43)

which is the same as the Dirac current jμ defined previously, which we now write as

jμ = jμ(1) + jμ(2). (36.44)

Hence,

H ′ = ejμ(1)Aμ + jμ(2)Aμ. (36.45)

Thus the total Dirac current, jμ, is divided into two parts, one of which, jμ(1), is the

normal current, devoid of any γ -matrices, which one finds in the Klein–Gordon equation
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or (in the nonrelativistic limit) in the Schrödinger equation. The current jμ(2), however,

which depends on γ -matrices, is related to the spin of the electron as we show below.

We consider the following relation involving the vector potential, Aμ:

∂

∂xν

[
ψ̄1σ

μνψ2Aμ
]
= ∂

∂xν

[
ψ̄1σ

μνψ2

]
Aμ + ψ̄1σ

μνψ2

∂Aμ

∂xν
. (36.46)

We note that the first term on the right-hand side is of the form jμ(2)Aμ. As for the left-hand

side, we note that if we integrate the equation over a large volume then, since the left hand

is a perfect differential, one can use the divergence theorem to show that it vanishes if the

fields themselves go to zero at infinity. Hence we will ignore the left-hand side and write

relation (36.46) as

jμ(2)Aμ = −ψ̄1σ
μνψ2

∂Aμ

∂xν
. (36.47)

We consider the following relation, which will simplify the right-hand side above,

σμν
∂Aμ

∂xν
= 1

2

[
σμν

∂Aμ

∂xν
+ σ νμ ∂Aν

∂xμ

]
. (36.48)

If we use the antisymmetry property, σ νμ = −σμν , we find

σμν
∂Aμ

∂xν
= 1

2
σμν

[
∂νAμ − ∂μAν

]
= 1

2
σμνFνμ (36.49)

where we have used the relation Fνμ = ∂νAμ− ∂μAν , which connects the Maxwell tensor,

Fνμ, to the vector potential, Aμ. Thus,

jμ(2)Aμ = −
1

2
σμνFνμ. (36.50)

To simplify the right-hand side of the above equation, we write the following relation in

terms of the individual components:

σμνFνμ = σ i4Fi4 + σ 4iFi4 + σ jiFij, i, j = 1, 2, 3 (36.51)

where we have taken into account the fact that, because of their antisymmetry properties,

σαβ = 0 = Fαβ if α = β. Therefore, from (36.51),

σμνFνμ = 2σ i4F4i + σ jiFij. (36.52)

From the relations discussed in Chapter 31 connecting the Maxwell field, Fμν , to the electric

field, E, and magnetic field, B, we have

F4i = −F4i = Ei (36.53)

and

Fji = −ǫjikBk . (36.54)
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Thus we can write (36.52) as

σμνFνμ = 2σ i4Ei − ǫjikσ
jiBk . (36.55)

From the properties of σμν we find

σ i4 = i

2

[
γ iγ 4 − γ 4γ i

]
= iγ iγ 4 = i(βαi)(−β) = iαi (36.56)

where we have used the relations connecting the α and β matrices to the γ -matrices.

Furthermore,

σ ji = i

2

[
γ jγ i − γ iγ j

]
= −i

(
σ jσ i 0

0 σ jσ i

)
(36.57)

in the standard representation. Since

σ jσ i = iǫjikσ k , (36.58)

we have

σ ji = ǫjikσ k . (36.59)

Hence, we obtain

σμνFνμ = 2 [iα · E+ σ · B] . (36.60)

Therefore,

jμ(2)Aμ = − [iα · E+ σ · B] . (36.61)

The complete Hamiltonian is then

H ′ = jμ(1)Aμ + jμ(2)Aμ. (36.62)

The first term corresponds to the Klein–Gordon type interaction and the second is pure

Dirac type.

36.4 Dirac equation with electromagnetic field and comparison
with the Klein–Gordon equation

As we have discussed previously, electromagnetic interactions can be included in the Dirac

equation quite simply by the substitution

pμ→ pμ − ieAμ. (36.63)

If we define

Dμ = pμ − ieAμ, (36.64)

then the Dirac equation in the presence of an electromagnetic field reads

(
iγ μDμ − m

)
ψ = 0. (36.65)
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To express this equation in a quadratic form as we did earlier for the free Dirac equation,

we multiply (36.65) by (iγ νDν + m) on the left,

(
iγ νDν + m

) (
iγ μDμ − m

)
ψ = 0, (36.66)

which gives (
γ μγ νDμDν + m2

)
ψ = 0. (36.67)

From (35.90) we can write

γ μγ ν = gμν + iσμν . (36.68)

Substituting this in (36.67) we obtain

(
gμνDμDν + iσμνDμDν + m2

)
ψ = 0. (36.69)

We can write

σμνDμDν =
1

2

[
σμνDμDν + σ νμDνDμ

]

= 1

2
σμν

[
Dμ, Dν

]
(36.70)

where we have used the relation, σ νμ = −σμν . Let us now evaluate
[
Dμ, Dν

]
. We find

[
Dμ, Dν

]
=
[(
∂μ + ieAμ

)
, (∂ν + ieAν)

]
(36.71)

= ie
[
∂μ, Aν

]
+ ie

[
Aμ, ∂ν

]
. (36.72)

Since these are operators that operate on a wavefunction, we explicitly include the

wavefunction, ψ . We find

[
∂μ, Aν

]
ψ = ∂μ(Aνψ)− Aν

(
∂μψ

)
(36.73)

= ∂μAνψ . (36.74)

Hence, [
∂μ, Aν

]
= ∂μAν . (36.75)

Similarly, [
Aμ, ∂ν

]
= −∂νAμ. (36.76)

Thus, [
Dμ, Dν

]
= ie(∂μAν − ∂νAμ) = ieFμv (36.77)

where Fμv is the Maxwell tensor. Equation (36.69) now reads

[
DμDμ − eσμνFμν + m2

]
ψ = 0. (36.78)
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The Klein–Gordon relation in the presence of electromagnetic interactions will be

[
DμDμ + m2

]
ψ = 0. (36.79)

The difference between the two equations comes about entirely due to the spin of the

electron.

36.5 Propagators: the Dirac propagator

We consider the Dirac equation with a specific source term that is due to electromagnetic

interactions. The Hamiltonian for this case, once again, can be written simply by changing

pμ→ pμ − eAμ, that is, changing

iγ · ∂ − m → iγ · (∂ − eA)− m. (36.80)

The Dirac equation now reads

(iγ · ∂ − m) ψ (x) = eγ · Aψ(x). (36.81)

The solution in terms of the Green’s function SF (x − x′) can be written as

ψ (x) = ψ0 (x)+ e

∫
d4x′0 SF

(
x − x′

)
γ · A

(
x′
)
ψ(x′) (36.82)

where as before ψ0(x) is the homogeneous solution

(iγ · ∂ − m) ψ0 (x) = 0, (36.83)

and taking x′ = 0, SF (x) satisfies the equation

(iγ · ∂ − m) SF (x) = δ(4)(x). (36.84)

We can obtain SF from �F if we consider the product (iγ · ∂ − m) (iγ · ∂ + m), which

can be expressed as

(iγ · ∂ − m) (iγ · ∂ + m) = −
(
γ μ∂μ

) (
γ ν∂ν

)
− m2. (36.85)

Since μ and ν are dummy variables, we can write

(
γ μ∂μ

) (
γ ν∂ν

)
=
(
γ ν∂ν

) (
γ μ∂μ

)
= 1

2

[
γ μγ ν + γ νγ μ

]
∂μ∂ν = gμν∂μ∂ν (36.86)

where in the last term we have used the anticommutation relation for the γ -matrices. We

write

gμν∂μ∂ν = −� (36.87)



656 Interaction of a Dirac particle with an electromagnetic field

and, therefore,

(iγ · ∂ − m) (iγ · ∂ + m) = −
(
�+ m2

)
. (36.88)

From (36.88), we find, after comparing (36.84) with the propagator equation involving�F

in Chapter 32, that one can write

SF (x) = − [iγ · ∂ + m]�F (x) . (36.89)

Therefore, from the properties of �F ,

SF (x) = lim
ǫ→0

1

(2π)4

∫
d4p

γ · p+ m

p2 − m2 + iǫ
e−ip·x. (36.90)

To obtain the integral in (36.90) we write

I =
∫

d4p
γ · p+ m

p2 − m2 + iǫ
e−ip·x (36.91)

=
∫

d3p eip·r
∫

dp4

(
γ 4p4 − γ · p+ m

)
e−ip4t

[
p4 −

√
p2 + m2 + iǫ

] [
p4 +

√
p2 + m2 − iǫ

] . (36.92)

If we let Ep =
√

p2 + m2, then I becomes, following the same steps as in the Klein–Gordon

case,

I =
∫

d3peip·r

⎡
⎣

∞∫

−∞
dp4

(
γ 4p4 − γ · p+ m

)

p4 − Ep + iǫ
e−ip4t −

∞∫

−∞
dp4

(
γ 4p4 − γ · p+ m

)

p4 + Ep − iǫ
e−ip4t

⎤
⎦

(36.93)

=
∫

d3p
eip·r

2Ep

∞∫

−∞
dp4

(
γ 4p4 − γ · p+ m

)

p4 − Ep + iǫ
e−ip4t

+
∫

d3p
e−ip·r

2Ep

∞∫

−∞
dp4

(
−γ 4p4 + γ · p+ m

)

p4 + Ep − iǫ
e−ip4t (36.94)

=
∫

d3p
eip·r

2Ep
(γ · p+ m) e−ip4t (−2π i) θ (t)

+
∫

d3p
e−ip·r

2Ep
(−γ · p+ m) eip4t (−2π i) θ (−t) . (36.95)

We defined the following operators earlier:

�+ (p) =
1

2m
(m+ γ · p) (36.96)

�− (p) =
1

2m
(m− γ · p) . (36.97)
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As we showed in Chapter 35, �+(p) and �−(p) are projection operators for the positive-

and negative-energy states, which can be written as

�+(p) =
2∑

r=1

wr(p)wr(p) (36.98)

�−(p) =
4∑

r=3

wr(−p)wr(−p) (36.99)

where the w’s are the spinors and r = 1, 2 correspond to the spin-up and spin-down states for

the positive-energy states, while r = 3, 4 are the corresponding states for negative energy.

One can then write

SF

(
x − x′

)
= −i

∑

n

θ
(
t − t′

)
(

2∑

r=1

ψ
(−)r
0n (x) ψ̄

(−)r
0n

(
x′
)
)

+ i
∑

n

θ
(
t′ − t

)
(

4∑

r=3

ψ
(+)r
0n (x) ψ̄

(+)r
0n

(
x′
)
)

(36.100)

where

ψ
(−)
n0 (x) =

1
(√

2π
)3

√
m

Ep
wr (p) e−ipn.x, (36.101)

ψ
(+)
n0 (x) =

1
(√

2π
)3

√
m

Ep
wr (−p) eipn.x. (36.102)

36.6 Scattering

36.6.1 Rutherford scattering

We return now to Rutherford scattering, which we considered earlier, but this time consid-

ering the electron as a Dirac particle. The propagator corresponding to the electron, which

is a positive-energy particle traveling forward in time, is

SF

(
x − x′, m

)
→−i

∑

n

∑

r

ψ
(−)r
0n (x)ψ̄

(−)r
0n (x′) = −i

∫
d3p

2∑

r=1

ψ
(−)r
0p (x)ψ̄

(−)r
0p (x′)

(36.103)

where we have kept only the terms with (−) in the superscript, corresponding to positive-

energy particles.

The wavefunction as t →∞ is given by

lim
t→∞

ψ i(x) = ψ0i(x)− ie

∫
d4x′

∫
d3p

∑

r

ψ
(−)r
0p (x)ψ̄

(−)r
0p (x′)γ · A(x′)ψ i(x

′). (36.104)
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Substituting this in the S-matrix gives

Sfi = lim
t→∞

∫
d3r

∗
ψ0f (x)ψ i(x) (36.105)

= δfi − ie

∫
d4x ψ̄0f (x)γ · A(x)ψ i(x). (36.106)

For the scattering process to first order perturbation in e we obtain

Sfi = −ie

∫
d4 xψ̄0f (x) γ · A (x) ψ0i(x), for f � =i. (36.107)

Normalizing in a box, we will take the initial and final free particle wavefunctions as

ψ0i (x) =
1√
V

√
m

Ei
uSi (pi)e

−ipi ·x (36.108)

and

ψ0f (x) =
1√
V

√
m

Ef

uSf
(pf )e

−ipf ·x. (36.109)

We will consider a nonrelativistic approximation for the vector potential, so only the

Coulomb potential is involved:

A4 (x) = −
Ze

4πr
, A (x) = 0. (36.110)

Substituting this in Sfi we obtain

Sfi =
1

V

iZe2

4π

√
m2

Ef Ei
ū(pf )γ 4uSi (pi)

∫
d4x

r
ei(pf −pi)·x. (36.111)

The above integration can be carried out to give

∫
d4x

r
ei(pf −pi)·x =

∫
dtei(Ef −Ei)t

∫
d3r

r
e−i(pf −pi)·r (36.112)

= 2πδ
(
Ef − Ei

) ∫ d3r

r
e−i(pf −pi)·r (36.113)

= 2πδ
(
Ef − Ei

) 4π
∣∣pf − pi

∣∣2 . (36.114)

We have already assumed that the scattering center is very heavy (e.g., a heavy nucleus) so

that the electron is deflected in its motion without changing its energy (i.e., Ef = Ei). We

note in passing that the propagator term can also be written as

1
∣∣pf − pi

∣∣2 = −
1

(
Ef − Ei

)2 −
(
pf − pi

)2
, for Ef = Ei (36.115)

= − 1
(
pf − pi

)2
, (36.116)
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which is just the propagator for the photon of four-momentum
(
pf − pi

)
.

The S-matrix is given by

Sfi = iZe2 1

V

√
m2

Ef Ei

ūSf

(
pf

)
γ 4uSi (pi)

|q|2
2πδ

(
Ef − Ei

)
(36.117)

where q = pf − pi is the momentum transfer.

The scattering of an electron off a heavy nucleus is written in terms of the number of

final free particle states given by

dn = V d3pf

(2π)3
. (36.118)

The transition probability is then

∣∣Sfi

∣∣2 V

(2π)3
d3pf =

1

V

(
Ze2

)2 m2

Ef Ei

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2

|q|4
d3pf

(2π)3

[
2πδ

(
Ef − Ei

)]2
.

(36.119)

We can express the last factor as follows:

[
2πδ

(
Ef − Ei

)]2 = 2πδ
(
Ef − Ei

)
T/2∫

−T/2

dt ei(Ef −Ei) = 2πδ
(
Ef − Ei

)
T (36.120)

where we have replaced the second factor of 2πδ
(
Ef − Ei

)
by its integral representation

with the assumption that T is very large.

The transition probability per unit time, λfi, is obtained by dividing (36.119) by T . Thus

we have

λfi =
1

V

(
Ze2

)2 m2

Ef Ei

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2

|q|4
d3pf

(2π)3
2πδ

(
Ef − Ei

)
. (36.121)

We note that the definition of a cross-section is

Cross-section = transition probability per unit time/flux. (36.122)

The flux for the incident particles has already been calculated and is given by

Flux =
no. of particles

per unit area× time
= vi

V
. (36.123)

Therefore, the cross-section is found to be

dσ =
∫

1

vi

(
Ze2

)2 m2

Ef Ei

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2

|q|4
d3pf

(2π)3
2πδ

(
Ef − Ei

)
. (36.124)
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We write

d3pf = p2
f dpf d�, (36.125)

pf dpf = Ef dEf , (36.126)

where we have used the relativistic relation E2 − p2 = m2 for the electron. Since Ef = Ei

we have

vi =
|pi|
Ei
=

∣∣pf

∣∣
Ef

. (36.127)

The differential cross-section is given by

dσ

d�
= 4

(
Ze2

4π

)2

m2

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2

|q|4
. (36.128)

A sum over the final spins and averaging over initial spins gives

4 (Zα)2 m2

|q|2
1

2

∑

Sf ,Si

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2

. (36.129)

We make use of the trace relation derived in Chapters 35 and 36,

∑

s

∑

s′

∣∣ūs ( p)Qus′
(
p′
)∣∣2 = Tr

[
�+ (p)Q�+

(
p′
)
γ 4Q†γ 4

]
(36.130)

where for our case Q = γ 4, p = pf , p′ = pi. We then obtain

∑

Sf ,Si

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2
= Tr

[
�+

(
pf

)
γ 4�+ (pi) γ 4γ

†
4γ 4

]
(36.131)

= 1

4m2

{
Tr

[
γ · pf γ 4γ · piγ 4

]
+ m2Tr

[
γ 2

4

]}
(36.132)

where we have used the relation

�+(p) =
γ · p+ m

2m
. (36.133)

From the trace relations, we have

∑

Sf ,Si

∣∣∣ūSf

(
pf

)
γ 4uSi (pi)

∣∣∣
2
= 2

[
2EiEf − pi · pf + m2

]

m2
, (36.134)

which can be simplified by writing

pi · pf = EiEf − pi · pf = E2 − |p|2 cos θ (36.135)
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where Ei = Ef = E, |pi| =
∣∣pf

∣∣ = |p|, with θ being the angle (the scattering angle)

between pi and pf . Putting everything together we find

2E2
[
2EiEf − pi · pf + m2

]

m2
= 2E2

[
1− β2 sin2

(
θ
2

)]

m2
(36.136)

where we have used the relation cos θ = 1 − 2 sin2 (θ/2). In the nonrelativistic limit we

approximate E ≈ m and obtain for the differential cross-section

dσ

d�
= Z2α2

4 |p|2 sin4 (θ/2)

[
1− β2 sin2

(
θ

2

)]
. (36.137)

This is the same expression as the one we obtained in the nonrelativistic calculation except

now we have a correction term of order β2, which is due to the relativistic effects.

36.7 Appendix to Chapter 36

36.7.1 Trace properties of matrix elements and summation over spins

In calculating the cross-section one needs to sum over final spin states and average over

initial spin states. As we will see below, this involves calculating the trace of a product of

γ -matrices.

The trace of a matrix is given by the sum of the diagonal elements,

Tr(A) =
4∑

i=1

Aii (36.138)

where to avoid confusion in the future discussions we have written the summation index

explicitly. The trace of a product is similarly given by

Tr(AB) =
4∑

i=1

4∑

k=1

AikBki. (36.139)

Let us consider the matrix element, ūs(pf )Qus′(pi), where Q is a matrix consisting of

γ -matrices. In particular we consider the following sum over the spin indices s and s′.

2∑

s=1

2∑

s′=1

∣∣ūs (p)Qus′
(
p′
)∣∣2

=
∑

s

∑

s′

[
ūs (p)Qus′

(
p′
)] [

ūs (p)Qus′
(
p′
)]†

. (36.140)
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We now use the relations ū = u
†
′ γ 4, γ

†
4 = γ 4, and γ 2

4 = γ 4, to write the above sum

∑

s

∑

s′

[
ūs (p)Qus′

(
p′
)] [

u
†

s′
(
p′
)

Q†γ 4us (p)
]

=
∑

s

∑

s′

[
ūs (p)Qus′

(
p′
)] [

u
†

s′
(
p′
)

Q†γ 4us (p)
]

.

Writing in terms of the individual matrix elements we obtain

=
∑

αβab

∑

s

∑

s′

[
(ūs)α (Q)αβ (us′)β

] [
(ūs′)a

(
γ 4Q†γ 4

)
ab
(us)b

]

=
∑

αβab

[∑

s′
(us′)β (ūs′)a

](
γ 4Q†γ 4

)
ab

[∑

s

(us)b (ūs)α

]
(Q)αβ

=
∑

αβab

(�+)βa

(
γ 4Q†γ 4

)
ab
(�+)bα (Q)αβ

= Tr
[
�+(p)γ 4Q†γ 4�+Q(p′)

]
(36.141)

where we have used the definition for the projection operator, �+(p) =
∑2

r=1 ur ūr .

Therefore,

2∑

s=1

2∑

s′=1

∣∣ūs (p)Qus′
(
p′
)∣∣2 = Tr

[
�+(p)γ 4Q†γ 4�+(p

′)Q
]

. (36.142)

Similarly, one can show that

∑

s

∑

s′

∣∣ūs (p)Qus′
(
p′
)∣∣2 = Tr

[
�+ (p)Q�+

(
p′
)
γ 4Q†γ 4

]
, (36.143)

∑

s

∑

s′

∣∣
v̄s (p)Qvs′

(
p′
)∣∣2 = Tr

[
�− (p)Q�−

(
p′
)
γ 4Q†γ 4

]
, (36.144)

∑

s

∑

s′

∣∣ūs (p)Qvs′
(
p′
)∣∣2 = Tr

[
�+ (p)Q�−

(
p′
)
γ 4Q†γ 4

]
. (36.145)

The following relations are useful when they appear in Q:

γ 4γ
†
μγ 4 = γ μ and γ 4γ

†
5γ 4 = −γ 5. (36.146)



37
Multiparticle systems and
second quantization

The quantum mechanics of single particles is extended to multiparticle systems and single-

particle operators are defined in terms of this multiparticle space. Creation and destruction

operators are incorporated with commutation relations that correspond to whether the parti-

cles are fermions or bosons.These operators are much like the raising and lowering operators

for the harmonic oscillator which allow one to add or subtract the number of particles in a

multiparticle state. We use this path to introduce second quantization. We then write Klein–

Gordon, Dirac, and Maxwell fields in second quantization and define the negative-energy

solutions as corresponding to positive-energy antiparticles. The photon as a quantum of

electromagnetic radiation naturally emerges from this formalism. The question of vacuum

fluctuations, a characteristic aspect of second quantization, is also explored in the context

of the Casimir effect.

37.1 Wavefunctions for identical particles

Consider two noninteracting particles with momenta pα and pβ , respectively, that are

described by the wavefunctions uα(r) and uβ(r), respectively. A wavefunction describ-

ing both the particles, one at the point r1 and the other at r2 is then given by the product

φ(r1, r2) = uα(r1)uβ(r2). (37.1)

If the particles are identical, however, then the wavefunction

φ(r2, r1) = uα(r2)uβ(r1) (37.2)

will also describe the same system. From these two wavefunctions we can form the fol-

lowing symmetric and antisymmetric (normalized) combinations respectively, under the

interchange r1 ↔ r2

φs(r1, r2) =
φ(r1, r2)+ φ(r2, r1)√

2
(37.3)

and

φa(r1, r2) =
φ(r1, r2)− φ(r2, r1)√

2
(37.4)

In the symmetric case it is possible to have more than two particles in the same state, e.g.,

α = β. In the antisymmetric case, however, this is impossible since the wavefunction,
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φa(r1, r2), vanishes. The number of particles in an antisymmetric state, therefore, can only

be either 1 or 0.

Let us now generalize the above discussion to a multiparticle system. Consider n identical

particles out of which n1 particles are in state λ1, n2 particles in state λ2, and so on. The

symmetric wavefunction for this system will be

φs(r1, r2, ...) = 1√
n!

1√
n1!

1√
n2!
· · ·

∑

P

φ(r1, r2,...) (37.5)

where
∑

P denotes all possible permutations among the ri’s, while φ(r1, r2, ...) denotes a

simple product of one particle wavefunctions of the type considered in (37.1), and n is the

total number of particles, n = n1 + n2 + · · · .

For the antisymmetric case, as we noted earlier, the only possibilities are ni = 0, 1. One

can express the wavefunction for the antisymmetric state as

φa(r1, r2, ...) = 1√
n!
∑

P

δPφ(r1, r2, ...) (37.6)

where δP is + for even permutations among the ri’s and − for odd permutations. This

wavefunction can also be written in the form of a determinant, called the Slater determinant:

φa(r1, r2, ...) = 1√
n!

det

∣∣∣∣∣∣∣∣

uλ1(r1) uλ2(r1) . .

uλ1(r2) uλ2(r2) . .

. . . .

. . . .

∣∣∣∣∣∣∣∣
. (37.7)

We note that φa(r1, r2, ...) = 0 if λi = λj or if ri = rj .

One can write a symmetric state given by (37.5) in a form similar to (37.7) except in this

case the determinant, which we will write as (det)+, will have each term with positive sign:

φs(r1, r2, ...) = 1√
n!

1√
n1!

1√
n2!
· · · (det)+

∣∣∣∣∣∣∣∣

uλ1(r1) uλ2(r1) . .

uλ1(r2) uλ2(r2) . .

. . . .

. . . .

∣∣∣∣∣∣∣∣
. (37.8)

Unlike (37.7) we now have the terms
√

ni! in the denominator (i = 1, 2, ...). We note that

for the antisymmetric case
√

ni! = 1, since ni = 0 or 1.

37.2 Occupation number space and ladder operators

We now define the following ket vector,

|n1, n2, ... nk , ...〉 , (37.9)
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as representing a multiparticle state with n1 particles in state λ1 (e.g., momentum p1), n2

particles in state λ2 (e.g., momentum p2), and so on. In other words, the ni’s represent the

number of particles that “occupy” a state λi (i = 1, 2, . . .). This representation is, therefore,

called the “occupation number representation.” As a natural generalization of one-particle

quantum mechanics these states satisfy orthonormality

〈n′1, n′2, ...n′k , ... |...nk , ...n2, n1〉 = δn1n′1
δn2n′2

· · · δnk n′
k
· · · (37.10)

and completeness

∞∑

n1=0

...

∞∑

nk=0

... |n1, n2, ...nk , ...〉 〈...nk ...n2, n1| = 1. (37.11)

A multiparticle state which has no particles in it is called a “vacuum” state, designated

as |0〉,
|0〉 = |0, 0, ... 0, ...〉 . (37.12)

We define a number operator Nk for a state k which has the property

Nk |n1, n2, ... nk , ...〉 = nk |n1, n2, ... nk , ...〉 . (37.13)

Thus Nk ’s are operators whose eigenvalues are the numbers nk in states k . One can express

them as

Nk = nk |n1, n2, ... nk , ...〉 〈...nk ...n2, n1| . (37.14)

A (total) number operator N will be defined as

N =
∑

(n)

Nk =
∑

(n)

nk |n1, n2, ...nk , ...〉 〈...nk ...n2, n1| (37.15)

where
∑

(n)

=
∞∑

n1=0

.

∞
..
∑

nk=0

... for the symmetric case, (37.16)

∑

(n)

=
1∑

n1=0

...

1∑

nk=0

... for the antisymmetric case. (37.17)

From now on, we will use the short-hand notation |...nk ...〉 for a general state vector that

has ni particles in state i with i = 1, 2, . . . , k . . . , and write all our relations accordingly.

For example the number operators will be written as

Nk = nk |...nk ...〉 〈...nk ...| , (37.18)

N =
∑

(n)

nk |...nk ...〉 〈...nk ...| . (37.19)

We now consider the symmetric and antisymmetric cases separately.
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37.3 Creation and destruction operators

37.3.1 Symmetric case

Let us define the following operator,

ak = ck(n) |...nk − 1...〉 〈...nk ...| , (37.20)

which, when it operates on |...nk ...〉 , gives a state vector in which one particle is removed

from the state k . Hence it is called a “destruction operator.” The Hermitian conjugate of

this operator is given by

a
†

k
= c∗k (n) |...nk ...〉 〈...nk − 1...| , (37.21)

which adds a particle to the state k . It is called a “creation operator.” Taking the product of

ak and a
†

k
we obtain

a
†

k
ak = |ck(n)|2 |...nk ...〉 〈...nk ...| . (37.22)

This has the same form as the number operator Nk . Equating this expression to (37.18) for

Nk we obtain |ck(n)|2 = nk and

a
†

k
ak = nk |...nk ...〉 〈...nk ...| = Nk (37.23)

where we have assumed ck(n) to be real. Thus,

ak =
√

nk |...nk − 1...〉 〈...nk ...| (37.24)

and

a
†

k
= √nk |...nk ...〉 〈...nk − 1...| , (37.25)

which we can rewrite as

a
†

k
=
√

nk + 1 |...nk + 1...〉 〈...nk ...| . (37.26)

Thus, from (37.24),

ak |...nk ...〉 = √nk |...nk − 1...〉 . (37.27)

and from (37.26)

a
†

k
|...nk ...〉 =

√
nk + 1 |...nk + 1...〉 . (37.28)

The product aka
†

k
is given by

aka
†

k
= nk |...nk − 1...〉 〈...nk − 1...| = (nk + 1) |...nk ...〉 〈...nk ...| . (37.29)

Comparing with (37.18) we can express the above relation as

aka
†

k
= Nk + 1. (37.30)
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Subtracting (37.23) from (37.30), we obtain the following commutation relation between

ak and a
†

k
: [

ak , a
†

k

]
= 1. (37.31)

One can easily show, using the definitions (37.27) and (37.28), that

[
ak , a

†

l

]
= δkl , [ak , al] = 0,

[
a

†

k
, a

†

l

]
= 0. (37.32)

One can also show that

[
Nk , a

†

k

]
= a

†

k
, (37.33)

[Nk , ak ] = −ak . (37.34)

We note that a multiparticle state that represents a single-particle state k can be obtained

from the vacuum by applying a
†

k
,

a
†

k
|0〉 = |0, 0, ..., (1)k , 0, ...〉 . (37.35)

It can be easily shown that a state |0, 0, ..., nk , 0, ...〉 is generated by repeated applications of

a
†

k
on the vacuum state. From (37.28) one finds

|0, 0, ..., nk , 0, ...〉 = (a
†

k
)nk

√
nk !

|0〉 . (37.36)

Finally, we note from (37.32) that

a
†

k
a

†

l
|0〉 = a

†

l
a

†

k
|0〉 . (37.37)

Thus, the corresponding wavefunctions are symmetric. Particles with symmetric wavefunc-

tions follow what is known as Bose–Einstein statistics.

37.3.2 Antisymmetric case

Particles with antisymmetric wavefunctions follow what is known as Fermi–Dirac statistics.

Here the eigenvalues of Nk are 0, 1. The previous definitions of Nk , ak , and a
†

k
remain

the same, and

Nk = a
†

k
ak . (37.38)

However, we now impose the condition that ak and a
†

k
satisfy anticommutation relations:

{
ak , a

†

l

}
= δkl , (37.39)

{
a

†

k
, a

†

l

}
= 0 ={ak , al} , (37.40)
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where the anticommutator { } is defined as

{A, B} = AB+ BA. (37.41)

We note, for example, that if we take l = k then (37.40) implies

a
†

k
a

†

k
= 0, (37.42)

which is simply the statement that one can not have two identical particles in the same state.

The following properties of Nk are obtained:

N 2
k =

(
a

†

k
ak

) (
a

†

k
ak

)
= a

†

k

(
aka

†

k

)
ak = a

†

k
(1−a

†

k
ak)ak = a

†

k
ak − a

†

k
a

†

k
akak . (37.43)

But a
†

k
a

†

k
= 0 as we have just shown. Thus,

N 2
k = Nk , (37.44)

i.e.,

Nk (Nk − 1) = 0. (37.45)

Hence the eigenvalues of Nk are nk = 0, 1, confirming once again that no more than one

particle can occupy a given state.

We define ak and a
†

k
for the antisymmetric case differently from the symmetric case. We

write

ak = nk(−1)�k |...1− nk ...〉 〈...nk ...| , (37.46)

a
†

k
= (1− nk)(−1)�k |...1− nk ...〉 〈...nk ...| , (37.47)

where the exponent is given by

�k =
k∑

i=1

ni. (37.48)

By taking the Hermitian conjugates of (37.46) and (37.47) we can also write

a
†

k
= nk(−1)�k |...nk ...〉 〈...1− nk ...| , (37.49)

ak = (1− nk)(−1)�k |...nk ...〉 〈...1− nk ...| . (37.50)

We have replaced the number (nk − 1), which was present in the symmetric case,

by 1− nk , which automatically restricts the occupation number for the state k to be either

0 or 1.

Let us elaborate on this choice. From (37.46) we can write

ak |...nk ...〉 = nk(−1)�k |...1− nk ...〉 . (37.51)

Also, from (37.50),

ak |...1− nk ...〉 = (1− nk)(−1)�k |...nk ...〉 . (37.52)
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Similarly, from (37.47) we can write

a
†

k
|...nk ...〉 = (1− nk) (−1)�k |...1− nk ...〉 (37.53)

and

a
†

k
|...1− nk ...〉 = nk(−1)�k |...nk ...〉 . (37.54)

From (37.51) and (37.54) we obtain

a
†

k
ak |...nk ...〉 =

[
nk(−1)�k

]
a

†

k
|...nk − 1...〉 =

[
nk(−1)�k

] [
nk(−1)�k

]
|...nk ...〉 (37.55)

= n2
k |...nk ...〉 . (37.56)

Since n2
k
= nk , we write

a
†

k
ak |...nk ...〉 = nk |...nk ...〉 . (37.57)

Similarly, we find

aka
†

k
|...nk ...〉 = (1− nk) |...nk ...〉 . (37.58)

Thus,

a
†

k
ak + aka

†

k
= 1. (37.59)

One also finds

akak |...nk ...〉 = nk(1− nk) |...nk ...〉 = 0 (37.60)

because nk can only be 0 or 1. In the same manner one can show that

a
†

k
a

†

k
|...nk ...〉 = nk(1− nk) |...nk ...〉 = 0. (37.61)

We have thus proved the relation (37.39) and (37.40) for k = l.

To consider the relation for k � =l, we follow the same procedure as outlined above and

find for k > l

alak |...nk , ..., nl ...〉 = nknl(−1)�k+�l |...1− nl , ..., 1− nk ...〉 , (37.62)

while

akal |...nk , ..., nl ...〉 = −nknl(−1)�k+�l |...1− nl , ..., 1− nk ...〉 , (37.63)

which leads to

(alak + akal) = 0. (37.64)

The same relation will be obtained if one takes k < l. The rest of the relations in (37.39)

and (37.40) follow in a similar fashion.

For the case of a two-particle antisymmetric state one can define the Fermi statistics quite

simply in terms of the following 2× 2 matrices for the operators and the states:

ak =
[
0 1

0 0

]
, a

†

k
=
[
0 0

1 0

]
, Nk =

[
0 0

0 1

]
(37.65)
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with the vacuum and one-particle states described by the column matrices

|0〉 =
[
1

0

]
, |1〉 =

[
0

1

]
. (37.66)

The commutation relations we have defined for ak and a
†

k
will lead to what is called

second quantization, the first quantization being
[
xi, pj

]
= i�δij. We will discuss this more

fully in the following sections.

Finally, following our terminology for the harmonic oscillators, we call ak , a
†

k
the “ladder”

operators.

37.4 Writing single-particle relations in multiparticle language:
the operators, N, H, and P

The superposition principle implies that a single-particle wavefunction can be expressed in

terms of a complete set of (orthonormal) eigenstates uk(r) as follows:

ψ(r) =
∑

k

ckuk(r). (37.67)

If the wavefunction is normalized then

∫
d3rψ∗(r)ψ(r) =

∑

k

|ck |2 = 1. (37.68)

In the multiparticle language, ψ(r) and ck are replaced by operators ψ(r) and ak in the

multiparticle occupation number space,

ψ(r)→ ψ(r) and ck → ak (37.69)

where ak is the destruction operator we have already defined in the previous section. The

relation corresponding to (37.67) is then written as

ψ(r) =
∑

k

akuk(r) (37.70)

where we use bold letters to signify operators in the multiparticle Hilbert space. The

normalization condition now reads

∫
d3r ψ†(r)ψ(r) =

∑

k

a
†

k
ak =

∑

k

Nk = N. (37.71)

Thus the operator ψ(r) which we call the field operator or simply the “field” is normalized

to the number operator Nk of particles in state k summed over all k . The sum corresponds

to the total number operator, N.
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The Hamiltonian operator H is defined in terms of the single-particle operator H as

H =
∫

d3rψ†(r)H (r)ψ(r). (37.72)

Substituting (37.70) and noting that ak ’s are independent of the coordinate variables, we

can write

H =
∑

k

∑

l

a
†

k
al 〈k |H | l〉 (37.73)

where 〈k |H | l〉 is a matrix element in the single-particle space given by

〈k |H | l〉 =
∫

d3r u∗k(r)H (r)ul(r) (37.74)

where |k〉, and |l〉 are single-particle states. If H is diagonal in the single-particle space then

〈k |H | l〉 = Elδkl (37.75)

where El is the eigenvalue of H given by H |l〉 = El |l〉. The Hamiltonian operator in the

occupation number space is then given by

H =
∑

k

a
†

k
akEk =

∑

k

NkEk . (37.76)

Similar expressions can be written for other operators in terms of the number operator Nk .

For example, if P is defined as the momentum operator in the occupation space then

P =
∑

k

Nkpk (37.77)

where pk is the momentum of the kth state (not the kth component of the vector p).

The above results hold irrespective of whether the particles satisfy Bose or Fermi statistics.

In the latter case, of course, the quantum numbers of Nk are 0, 1.

37.5 Matrix elements of a potential

If one is considering a bilinear matrix involving two particle states, e.g., the operator cor-

responding to the potential energy in a two-particle scattering, then following (37.71) and

(37.76) the matrix element will involve the product of two number operators, NkNl . How-

ever, in order not to double count, this term must be divided by a factor of 2. Furthermore,

one must also include the term in which k and l are the same. This contribution must be of

the form Nk (Nk − 1) .

Combining the two types of terms we obtain

1

2

∑

k � =l

NkNl +
1

2
Nk (Nk − 1) . (37.78)
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The above sum can simply be written as

1

2

∑

k

∑

l

a
†

k
a

†

l
alak . (37.79)

To prove this, let us consider the term a
†

k
a

†

l
alak . We note that for k � =l one can write

a
†

k
a

†

l
alak = a

†

k
aka

†

l
al . (37.80)

This is accomplished by making two interchanges on the left-hand side of (37.80) to bring

ak from the fourth place to the second place. Since two interchanges are involved, the result

is the same whether one is using Bose or Fermi statistics. Thus we recover the first term in

(37.78).

When k = l we need to consider only the second term in (37.78). This term vanishes

for the Fermi statistics since, for this case, N 2
k
= Nk . For Bose statistics a typical term in

(37.79) is of the form a
†

k
a

†

k
akak which can be written, using the commutation relations, as

a
†

k
a

†

k
akak = a

†

k

[
−1+ aka

†

k

]
ak = Nk (Nk − 1) , (37.81)

recovering the second term in (37.78). Thus (37.78) and (37.79) are equivalent.

We can now express an operator V for the two-particle potential energy as

V=1

2

∫
d3r1

∫
d3r2ψ

†(r1)ψ
†(r2)V (r1, r2)ψ(r1)ψ(r2) (37.82)

= 1

2

∑

k

∑

l

a
†

k
a†

malan

∫
d3r1

∫
d3r2u∗k(r1)u

∗
m(r2)V (r1, r2)ul(r1)un(r2). (37.83)

In general, one writes

V =1

2

∑

k

∑

l

a
†

k
a†

manal 〈km |V | ln〉 (37.84)

where

〈km |V | ln〉 =
∫

d3r1

∫
d3r2 u∗k(r1)u

∗
m(r2)V (r1, r2)ul(r1)un(r2) (37.85)

is the matrix element that involves wavefunctions in the single-particle space.

In the problems we will consider in some of the subsequent chapters, V (r1, r2) will be

assumed to depend only on the magnitude of the distance between the particles, V (|r1 − r2|).

37.6 Free fields and continuous variables

In this section we consider fields that correspond to free particles. Since we will be concerned

with continuous variables we will rewrite the commutation relations as follows.
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Bose statistics

[
a(p), a†(q)

]
= δ(3)(p− q); [a(p), a(q)] = 0;

[
a†(p), a†(q)

]
= 0. (37.86)

Fermi statistics

{a(p), a†(q)} = δ(3)(p− q); {a(p), a(q)} = 0; {a†(p), a†(q)} = 0. (37.87)

For both cases,

a†(p)a(p) = N (p). (37.88)

Nonrelativistic case

Even though we are considering the nonrelativistic case we will express our results in

terms of the four-vector xμ = (r, t) ; pμ = (p, E) with � = c = 1. A single-particle energy

eigenfunction can be expressed as a superposition of free particle wavefunctions written in

the form of a Fourier transform,

ψ(x) = 1
(√

2π
)3

∫
d4p δ(E − Ep)g(p)e

−ip·x (37.89)

where g(p) = g(p,E), p · x = Et − p · r and d4p = dE d3p. We have inserted the term

δ(E − Ep), where

Ep =
p2

2m
, (37.90)

to ensure that ψ(x) is an energy eigenfunction with eigenvalue Ep and satisfies the free

particle equation

i
∂ψ

∂t
= Epψ . (37.91)

Integrating out dE in the above integral, we obtain

ψ(x) = 1
(√

2π
)3

∫
d3p g(p)e−ip·x. (37.92)

We note that because of the δ-function E is now replaced by Ep; thus,

p · x = Ept − p · r and g(p) = g(p, Ep). (37.93)

Since Ep is function of p and no longer an independent variable, g(p) is a function of p.

To express the above relation in a multiparticle language, we follow the same procedure

as in the discrete case and make the substitutions

g(p)→ a(p) (37.94)

and

ψ(x)→ ψ(x) (37.95)
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where a(p) is the destruction operator defined earlier, satisfying Bose statistics, and ψ(x)

is an operator in the multiparticle space,

ψ(x) = 1
(√

2π
)3

∫
d3p a(p)e−ip·x. (37.96)

With these definitions we obtain

∫
d3rψ†(x)ψ(x) = 1

(2π)3

∫
d3r

∫
d3p a†(p)eip·x

∫
d3q a(q)e−iq·x. (37.97)

However,

1

(2π)3

∫
d3r ei(p−q)·x = 1

(2π)3

∫
d3r e−i(p−q)·rei(Ep−Eq)t = δ(3) (p− q) ei(Ep−Eq)t

= δ(3) (p− q) . (37.98)

The last step follows since p = q, as dictated by the δ-function, which implies that Ep = Eq.

Thus, ∫
d3r ψ†(x)ψ(x) =

∫
d3p a†(p)a(p) =

∫
d3p N (p). (37.99)

Thus, as expected, the fields are normalized to the number of particles.

Similarly, the Hamiltonian is given by

H =
∫

d3r ψ†(x)

(
i
∂

∂t

)
ψ(x), (37.100)

which we write as

H = 1

(2π)3

∫
d3r

∫
d3p a†(p)eip·x

(
i
∂

∂t

)∫
d3q a(q)e−iq·x =

∫
d3p Epa†(p)a(p),

(37.101)

which is, again, a result that was expected.

37.7 Klein–Gordon/scalar field

We write the single particle Klein–Gordon wavefunction as

φ(x) = 1

(
√

2π)3

∫
d4p δ

(
p2 − m2

)
g (p) e−ip·x. (37.102)

The δ-function is inserted in order that φ(x) satisfies the Klein–Gordon equation,

∇2φ − ∂
2φ

∂t2
= m2φ. (37.103)
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One can simplify the δ-function term by using the relation

δ(p2 − m2) =
δ
(
p4 −

√
p2 + m2

)
+ δ

(
p4 +

√
p2 + m2

)

2
√

p2 + m2
. (37.104)

Let ωp =
√

p2 + m2, which corresponds to the energy of the particle with momentum p.

Integrating out dp4 we find

φ(x) = 1

(
√

2π)3

∫
d3p

2ωp

[
g(p,ωp)e

−iωpteip·r + g(p,−ωp)e
iωpteip·r] . (37.105)

We note that the second term above comes from the second term in the expression (37.104)

for δ(p2 −m2). It corresponds to the negative-energy particle, traveling backward in time,

which we came across in our discussion of the Klein–Gordon equation. We will examine

below how the negative-energy problem is handled in field theory.

We change p →−p in the second term in (37.105) and obtain

φ(x) = 1

(
√

2π)3

∫
d3p

2ωp
[g(p,ωp)e

−ip·x + g(−p,−ωp)e
ip·x] (37.106)

= 1

(
√

2π)3

∫
d3p

2ωp
[g(p)e−ip·x + g(−p)eip·x] (37.107)

where pμ = (p,ωp), and p · x = ωpt − p · r.

37.7.1 Second quantization

In order to convert (37.107) to an expression that is appropriate for a field-theoretic

description, let
g(p)√
2ωp

= a(p),
g(−p)√

2ωp

= a′(p) (37.108)

where a(p) is a destruction operator. We will determine a′(p) based on the properties of

the Klein–Gordon field, �(x), which we write as

�(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[a(p)e−ip·x + a′(p)eip·x] (37.109)

and its Hermitian conjugate as

�†(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[a†(p)eip·x + a′†(p)e−ip·x]. (37.110)

Thus, we have moved from the classical field description for the Klein–Gordon wavefunc-

tion to the quantum field description of the Klein–Gordon field.
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If we assume that �(x) is Hermitian, �(x) = �†(x), then comparing the coefficients of

the exponentials, we find

a′(p) = a†(p). (37.111)

Therefore,

�(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[a(p)e−ip·x + a†(p)eip·x]. (37.112)

The second term above, which was originally a negative-energy term traveling backward

in time, now involves a creation operator for a positive-energy particle, which we will

designate as an antiparticle, which is now moving forward in time but with the frequency

appearing with an opposite sign.

We impose the following relations on the ladder operators a and a†:

[
a(p), a†(q)

]
= δ(3) (p− q) ; [a(p), a(q)] = 0;

[
a†(p), a†(q)

]
= 0, (37.113)

reflecting the fact that the Klein–Gordon field satisfies Bose statistics. This condition then

implements second quantization.

We now try to determine the operator for charge, which, as we saw in our discussion for

the Klein–Gordon wave equation, is obtained through the matrix element representing the

scalar product of the Klein–Gordon wavefunctions φ1 and φ2. It is defined as follows:

∫
d3r( φ∗1

←→
∂t φ2) = i

∫
d3r

[
φ∗1
∂φ2

∂t
− ∂φ

∗
1

∂t
φ2

]
. (37.114)

We abbreviate this matrix element as 〈φ1

∣∣φ2

〉
. Thus,

〈φ1

∣∣φ2

〉
= i

∫
d3r

[
φ∗1
∂φ2

∂t
− ∂φ

∗
1

∂t
φ2

]
. (37.115)

Similarly, for the matrix element of an operator A we have

〈
φ1|Aφ2

〉
= i

∫
d3r (φ∗1

←→
∂t Aφ2). (37.116)

To elaborate further, let us separate the field �(x) into two terms �(+)(x) and �(−)(x)
defined as

�(+)(x) = 1

(
√

2π)3

∫
d3p√
2ωp

a(p)e−ip·x and �(−)(x) = 1

(
√

2π)3

∫
d3p√
2ωp

a†(p)eip·x

(37.117)

where the positive (negative) sign for the superscript of � indicates positive (negative)

frequency and involves the destruction (creation) operator a(p)(a†(p)).

We define the charge operator as

Q=〈�(x) |�(x)〉

=〈�(+)(x)
∣∣∣�(+)(x)

〉
+ 〈�(+)(x)

∣∣∣�(−)(x)
〉
+ 〈�(−)(x)

∣∣∣�(+)(x)
〉
+ 〈�(−)(x)

∣∣∣�(−)(x)
〉
.

(37.118)
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We first obtain
〈
�(+)(x)|�(+)(x)

〉
,

〈
�(+)(x)|�(+)(x)

〉
= i

∫
d3r (�(+)†(x)

←→
∂t �

(+)(x))

= 1

(2π)3

∫
d3pd3q√

4ωpωq

a†(p)a(q)
[
eip·x←→∂t e−iq·x

]
. (37.119)

It is then easy to show after integration that

〈
�(+)(x)|�(+)(x)

〉
=
∫

d3p a†(p)a(p). (37.120)

Also, one finds 〈
�(+)(x)|�(−)(x)

〉
=
〈
�(−)(x)|�(+)(x)

〉
= 0. (37.121)

Similarly 〈
�(−)(x)|�(−)(x)

〉
= −

∫
d3p a(p) a†(p). (37.122)

This term, with the creation operator on the right, when it operates on the vacuum will

give an infinite contribution; that is, the charge of the vacuum will be infinite, a result that

does not have a physical significance. Since experimental measurements only determine

quantities as differences from their vacuum values, we prevent the infinity by defining

a so-called “normal product” so that the destruction operator is always to the right of

the creation operator. In the process of interchanging we follow Bose statistics for the

Klein–Gordon (K-G) field and assume that the sign does not change. A normal product

N [...] is, therefore, defined such that

N [a(p)a†(p)] = a†(p)a(p). (37.123)

Thus,

N [
〈
�(−)(x)|�(−)(x)

〉
] = −

∫
d3p a†(p)a(p). (37.124)

Therefore, the antiparticles contribute a negative sign to the charge eigenvalue.

We emphasize that this is a crucial result in quantum field theory. The probability density

we encountered earlier for the K-G wavefunctions in relativistic quantum mechanics, which

had a negative sign corresponding to negative energies, now contributes a negative sign to

the charge. The probability density in field theory given by the number remains positive,

however.

The plus and minus charges add up to zero. The total charge then vanishes.

Q = N [〈�(x) |�(x)〉] = 0. (37.125)

Hence the Hermitian field �†(x) = �(x) corresponds to a neutral particle. The field �(x)

then represents a neutral scalar particle.

The total energy given by the Hamiltonian operator is written as a normal product,

H = N [〈�(x)|H |�(x)〉] = N [
〈
�(+)(x)|H |�(+)(x)

〉
] + N [

〈
�(−)(x)|H |�(−)(x)

〉
]

(37.126)
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where the cross-terms once again vanish. One obtains

N [
〈
�(+)(x)|H |�(+)(x)

〉
] =

〈
�(+)(x)|H |�(+)(x)

〉

= 1

(2π)3

∫
d3p√
4ωpωq

a† (p) a(q)
[
eip·x←→∂t ωqe−iq·x

]

=
∫

d3pωpa† (p) a (p) (37.127)

where we have used (37.116). If we write a† (p) a (p) = N(p), the number operator, then

N [
〈
�(+)(x)|H |�(+)(x)

〉
] =

∫
d3pωpN(p), (37.128)

which corresponds to the energy eigenvalue of each state times the number of particles in

that state integrated over the momenta. Similarly,

N [
〈
�(−)(x)|H |�(−)(x)

〉
] =

∫
d3pωpN(p). (37.129)

Note that the sign is now positive. Thus the antiparticles contribute the same amount to the

energy as the particles. Hence, the total energy is twice this value:

H =2

∫
d3pωpN(p). (37.130)

We note that in the absence of any quantum numbers that differentiate the two particles, the

antiparticle is the same as the particle.

The difference between particles and antiparticles will become more clear when we go

to the complex scalar field, which gives rise to particles and antiparticles having opposite

charges.

37.8 Complex scalar field

Let us now consider a complex field �(x) defined as

�(x) = �1 + i�2, (37.131)

which is made up of two Hermitian fields:

�
†
1 = �1, �

†
2 = �2. (37.132)

In the same manner as for the Hermitian field we discussed previously we write

�1(x) =
1

(
√

2π)3

∫
d3p√
2ωp

[a1(p)e
−ip·x + a

†
1(p)e

ip·x], (37.133)
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�2(x) =
1

(
√

2π)3

∫
d3p√
2ωp

[a2(p)e
−ip·x + a

†
2(p)e

ip·x]. (37.134)

Thus,

�(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[(a1 + ia2)e
−ip·x + (a†

1 + ia
†
2)e

ip·x]. (37.135)

We define

a1 + ia2 = a, a1 − ia2 = b. (37.136)

Hence

�(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[a(p)e−ip·x + b†(p)eip·x]. (37.137)

The second term now corresponds to an antiparticle traveling forward in time replacing the

negative-energy solution.

We impose the following commutation relations on a and b:

[
a(p), a†(p)

]
= δ(3)(p− q);

[
b(p), b†(p)

]
= δ(3)(p− q). (37.138)

All other commutators between a, a†, b, and b† vanish.

Once again, as for the neutral scalar case, we separate �(x) into two parts:

�(+)(x) = 1

(
√

2π)3

∫
d3p√
2ωp

a(p)e−ip·x and �(−)(x) = 1

(
√

2π)3

∫
d3p√
2ωp

b†(p)eip·x.

(37.139)

The charge operator is defined by

Q=〈�(x) |�(x)〉

=〈�(+)(x)
∣∣∣�(+)(x)

〉
+ 〈�(+)(x)

∣∣∣�(−)(x)
〉
+ 〈�(−)(x)

∣∣∣�(+)(x)
〉
+ 〈�(−)(x)

∣∣∣�(−)(x)
〉
.

(37.140)

Carrying out the calculations in the same manner as for the Hermitian case, we obtain

〈
�(+)(x)|�(+)(x)

〉
=
∫

d3p a†(p)a(p), (37.141)

〈
�(+)(x)|�(−)(x)

〉
=
〈
�(−)(x)|�(+)(x)

〉
= 0, (37.142)

and 〈
�(−)(x)|�(−)(x)

〉
= −

∫
d3p b(p)b†(p). (37.143)

We define the normal products as

N [a(p)a†(p)] = a†(p)a(p), (37.144)

N [b(p)b†(p)] = b†(p)b(p). (37.145)
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Thus,

N [
〈
�(−)(x)|�(−)(x)

〉
] = −

∫
d3p b†(p)b(p). (37.146)

If we define

N+ =
∫

d3p N+(p) and N− =
∫

d3p N−(p), (37.147)

where

N+(p) = a†(p)a(p) and N−(p) = b†(p)b(p), (37.148)

then

Q = N [〈�(x) |�(x)〉] = N+ − N−. (37.149)

Thus, the antiparticle states have a negative charge while the particles have a positive charge.

Similarly, the total Hamiltonian is given by

H =
∫

d3p
[
N+(p) ωp + N−(p)ωp

]
. (37.150)

In recapitulating the above results we find that second quantization provides a solution

to the troublesome negative-energy particles by predicting a new set of particles that are

called antiparticles and have quantum numbers, such as charge, that have opposite sign to

those of the particles but have positive energy and have the same mass as the particles.

37.9 Dirac field

The Dirac wavefunction can be expressed in a similar fashion to the Klein–Gordon case,

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d4p δ

(
p2 − m2

)
ws(p, E)gs(p)e

−ip·x, (37.151)

whereψ(x) satisfies the free particle equation (iγ · ∂ − m) ψ(x) = 0 and, in the momentum

representation, ws(p, E) satisfies

(γ · p− m)ws(p, E) = 0. (37.152)

The index s corresponds to the spin of the particle. Simplifying the δ-function we write

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d4p

[
δ
(
p4 −

√
p2 + m2

)
+ δ

(
p4 +

√
p2 + m2

)]

2
√

p2 + m2

× ws(p, E)gs(p, E)e−ip·x. (37.153)

Using the properties of the δ-function we obtain

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

2Ep

[
ws(p, Ep)gs(p, Ep)e

−ip·x + ws(p,−Ep)gs(p,−Ep)e
ip·reiEpt

]

(37.154)
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where Ep =
√

p2 + m2. Changing p →−p in the second term we obtain

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

2Ep

[
ws(p, Ep)gs(p, Ep)e

−ip·x + ws(−p,−Ep)gs(−p,−Ep)e
ip·x] .

(37.155)

We define

ws(p, Ep) =
√

m

Ep
us(p) and ws(−p,−Ep) =

√
m

Ep
vs(p) (37.156)

where us(p) and vs(p) are the same spinors that were introduced in Chapter 35. They satisfy

the equations

(γ · p− m)us(p) = 0 with p4 = Ep = +
√

p2 + m2 (37.157)

and

(γ · p+ m) vs(p) = 0 with p4 = Ep = +
√

p2 + m2 (37.158)

where we use the same normalization as in Chapter 35,

u†
s us′ =

Ep

m
δss′ , v

†
s vs′ =

Ep

m
δss′ , u†

svs′ = v
†
s us′ = 0. (37.159)

.

Substituting the above results we obtain

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

2Ep

[√
m

Ep
us(p)gs(p)e

−ip·x +
√

m

Ep
vs(p)gs(−p)eip·x

]
.

(37.160)

To convert the above relation to the occupation number space, let us write, in a manner

similar to that for the complex Klein–Gordon fields,

gs(p)

2Ep
= as(p) and

gs(−p)

2Ep
= b†

s (p) (37.161)

where as(p) now becomes the destruction operator for the particle fields and b
†
s (p) the

creation operator for the antiparticles. We also replace ψ(x) by the field operator ψ(x).

Thus, we have

ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

√
m

Ep

[
us(p)as(p) e−ip·x + vs(p)b

†
s (p)e

ip·x
]

(37.162)

where, in order that the Dirac fields satisfy Fermi statistics, we assume the following

anticommutator relations

{
as(p), a

+
s′ (q)

}
= δss′δ(3)(p− q), (37.163)

{
bs(p), b

+
s′ (q)

}
= δss′δ(3)(p− q), (37.164)
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with all other anticommutation relations being zero.

The charge operator in Dirac theory is defined as

∫
d3r ψ†(x)ψ(x) = Q. (37.165)

As in previous discussions, to obtain Q let us write

ψ(x) = ψ (+)(x)+ ψ (−)(x) (37.166)

where

ψ (+)(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

√
m

Ep
us(p)as(p)e

−ip·x (37.167)

and

ψ (−)(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

√
m

Ep
vs(p)b

†(p)eip·x. (37.168)

Since

u†
s us′ =

Ep

m
δss′ , v

†
s vs′ =

Ep

m
δss′ , and u†

svs′ = v
†
s us′ = 0, (37.169)

it is easy to show that

∫
d3r ψ (+)†(x)ψ (−)(x) = 0 =

∫
d3r ψ (−)†(x)ψ (+)(x) (37.170)

and ∫
d3r ψ (+)†(x)ψ (+)(x) =

∫
d3p a†(p)a(p) (37.171)

and ∫
d3r ψ (−)†(x)ψ (−)(x) =

∫
d3p b(p)b†(p). (37.172)

In the second relation above, because we have a creation operator on the right we again

invoke the concept of the normal product but this time, in interchanging the operators to

bring the creation operator to the left, we use anticommutation relations since the Dirac

field obeys Fermi statistics. Thus,

N

[∫
d3r ψ (−)†(x)ψ (−)(x)

]
= −

∫
d3p b†(p)b(p). (37.173)

If we define the number operators as

N+ =
∫

d3pN+(p) and N− =
∫

d3pN−(p) (37.174)
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where

N+(p) = a†(p)a(p) and N−(p) = b†(p)b(p), (37.175)

then

Q = N+ − N−. (37.176)

Hence, the antiparticles have opposite charge to the particles. In our case, if we identify the

particle as an electron then the antiparticle is called the positron. One of the great successes

of quantum field theory is that the positrons have been discovered with the same mass as

an electron but with opposite charge.

Based on the single-particle results, the Hamiltonian in the Dirac field is given by

H =
∫

d3r ψ† (x) (iα ·∇ − βm)ψ (x). (37.177)

We rewrite this as

H =
∫

d3r ψ† (x) γ 4 (−iβα ·∇ + m)ψ (x) (37.178)

where

γ 4 = −β and β2 = 1. (37.179)

Since βα = γ , then, as in the single particle case, defining ψ†γ 4 = ψ(x),

H =
∫

d3r ψ(x) (−iγ ·∇ + m)ψ (x) . (37.180)

Inserting the free field relation (37.162) into the relation for the Hamiltonian, we find

H =
∫

d3p Ep

∑

s

[
a†

s (p) as (p)− bs (p) b
†
s (p)

]
. (37.181)

Using the normal product for the second term and the anticommutation relation in the

interchange of the ladder operators, we obtain

H =
∫

d3p Ep

∑

s

[
a†

s (p) as (p)+ b†
s (p) bs (p)

]
. (37.182)

Hence,

H =
∫

d3p
[
N+Ep + N−Ep

]
. (37.183)

Thus the antiparticles contribute with a positive sign to the energy.

37.10 Maxwell field

We will consider the Maxwell field, Aμ (x), in the same manner as the Klein–Gordon field,

φ (x), except that it is a four-vector. We will first look at the field in the transverse gauge
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given by

A4 (x) = 0, and ∇ · A (x) = 0. (37.184)

If we take the three-vector, A, to be of the form

ǫeik·re−iωt (37.185)

where ǫ is the polarization vector, then the transversality condition (37.184) implies

k · A (x) = 0. (37.186)

We will thus consider only the two components of A, and therefore of ǫ, that are

perpendicular to k.

We write

A (x) = 1
(√

2π
)3

2∑

α=1

∫
d4k δ

(
k2
)

ǫαgα (k) e
−ik·x (37.187)

where ǫα is the polarization vector with α = 1, 2. It is a real, unit vector and satisfies the

orthogonality condition

ǫα · ǫα′ = δαα′ . (37.188)

The term δ
(
k2
)

is inserted so that A satisfies Maxwell’s wave equation:

∇2A − 1

c2

∂2A

∂t2
= 0. (37.189)

We express δ
(
k2
)

as follows:

δ(k2) = δ
(
k2

4 − k2
)
= δ (k4 − |k|)+ δ (k4 + |k|)

2 |k| . (37.190)

If ωk is the frequency of the electromagnetic wave, then

|k| = ωk . (37.191)

In the following we will take A (x) to be real, so that

A† (x) = A (x) . (37.192)

Following the same steps as for the K-G field, we have

A (x) = 1
(√

2π
)3

2∑

α=1

∫
d3k√
2ωk

ǫα

[
aα (k) e

−ik·x + a†
α (k) e

ik·x
]

. (37.193)

The operators aα (k) and a
†
α (k) are the usual destruction and creation operators for

α = 1, 2 and satisfy the following commutation relations characteristic of the Bose–Einstein

statistics that Maxwell’s field satisfies:
[
aα (k) , a

†

α′
(
k′
)]
= δαα′δ(3)

(
k − k′

)
. (37.194)
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All other commutators vanish. This is then the second quantization condition.

Following the same procedure as for the K-G field, we find that the total Hamiltonian is

given by

H =
∑

k

Nk�ωk (37.195)

where

Nk =
2∑

α=1

a†
α (k) aα(k). (37.196)

Even though we have worked with the units � = c = 1, we have introduced � explicitly,

but only temporarily in (37.195), to signify a very important fact that we now have the

electromagnetic field quantized and represented by particles, the photons, each with an

energy �ωk .

Let us confirm that the same expression for energy is achieved for the classical elec-

tromagnetic Hamiltonian after the imposition of the second quantization condition. The

classical Hamiltonian is given by

H = 1

2

∫
d3r

(
|E|2 + |B|2

)
(37.197)

where E and B are electric and magnetic fields, respectively, which are given in terms of

A as

E = −∂A
∂t

, B = ∇ × A. (37.198)

To simplify our calculations we first change k →−k in the second term in the expression

for A (x) given by (37.193). We then have, after taking out the common factor exp(ik · r),

A (x) = 1
(√

2π
)3

2∑

α=1

∫
d3k√
2ωk

ǫαeik·r
[
aα (k) e

−iωk t + a†
α (−k) eiωk t

]
. (37.199)

Taking the time-derivative of A we obtain

−∂A
∂t
= 1

(√
2π

)3

2∑

α=1

∫
d3k√
2ωk

ǫαeik·r (iωk)

[
aα (k) e

−iωk t − a†
α (−k) eiωk t

]
.

(37.200)

We write relations (37.199) and (37.200) as follows:

A (x) = 1
(√

2π
)3

2∑

α=1

∫
d3k√
2ωk

ǫαeik·rG(+)α (k) (37.201)

and

∂A(x)

∂t
= − 1

(√
2π

)3

2∑

α=1

∫
d3k√
2ωk

ǫαeik·r (iωk)G
(−)
α (k) (37.202)
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where

G(+)α (k) = aα (k) e
−iωk t + a†

α (−k) eiωk t , (37.203)

G(−)α (k) = aα (k) e
−iωk t − a†

α (−k) eiωk t . (37.204)

To evaluate ∫
d3r |E|2 =

∫
d3r

(
∂A†

∂t
· ∂A
∂t

)
. (37.205)

we insert the relation (37.202) and, after several steps of integration, find

∫
d3r |E|2 = 1

2

2∑

α=1

∫
d3k ωkG(−)†α (k)G(−)α (k) . (37.206)

Similarly, we write

∫
d3r |B|2 =

∫
d3r

(
∇ × A†

)
· (∇ × A) . (37.207)

We insert the relation (37.201) for A and note that ∇ × A ∼ k × ǫα . Using the relation

(k × ǫα) ·
(
k′ × ǫα′

)
=
(
k · k′

)
(ǫα · ǫα′)−

(
k′ · ǫα′

) (
k′ · ǫα

)
(37.208)

we find that the second term in (37.208) will not contribute in view of the presence of

δ(3)
(
k − k′

)
that arises after the integration over d3r in (37.207), and the transversality

condition k · ǫα = 0. Hence, since |k|2 = ω2
k
, we have

∫
d3r |B|2 = 1

2

2∑

α=1

∫
d3k ωkG(+)†α (k)G(+)α (k) . (37.209)

When expressions (37.206) and (37.207) are inserted into the relation (37.197) for the

Hamiltonian, we find that it will involve the term

G(−)†α (k)G(−)α (k)+ G(+)†α (k)G(+)α (k) = 2
[
a†
α (k) aα (k)+ aα (−k) a†

α (−k)
]

.

(37.210)

Since k is integrated over all its values, the integral
∫

d3k of the second term in (37.210)

is the same as what one obtains by replacing −k by k. Hence,

H = 1

2

2∑

α=1

∫
d3k ωk

[
a†
α (k) aα (k)+ aα (k) a

†
α (k)

]
. (37.211)

We note that the vacuum energy is given by

〈0 |H | 0〉 = 1

2

∫
d3k �ωk . (37.212)

One refers to this as the zero-point energy or vacuum “fluctuations” of the electromagnetic

field which is, of course, infinite. We will return to this subject when we discuss the Casimir

effect at the end of this chapter.
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Introducing the normal product as we did for the K-G equation we obtain, once again

inserting the factor � explicitly,

H =
∫

d3k Nk�ωk (37.213)

where

Nk =
2∑

α=1

a
†

k (k) aα (k) . (37.214)

Thus the classical formula for the Hamiltonian will reproduce the same result after second

quantization as we obtained previously.

37.11 Lorentz covariance for Maxwell field

By going to the transverse gauge we simplified our calculations considerably for the

Maxwell field, but it was done at the expense of Lorentz covariance. For example, even

though condition ∂μAμ = 0 is a covariant relation, the conditions A4 = 0 and ∇ ·A = 0 we

used will not necessarily hold in other Lorentz frames. In particular, the relation (37.194)

[
aα (k) , a

†

α′(k
′)
]
= δαα′δ(3)

(
k − k′

)
, (37.215)

is clearly not a covariant relation since it involves only two components α, α′ = 1, 2 and

not all four. One could generalize this relation to

[
aμ (k) , a

†
ν

(
k′
)]
= −gμνδ

(3)
(
k − k′

)
(37.216)

to include all four components. This will reproduce (37.215) for space-like components,

but since g44 = 1 for μ = ν = 4 we will have a negative sign in (37.216), creating

the possibility that the state a
†
μ|0〉 can have a negative norm. These problems are solved

within the so-called Gupta–Bleuler formalism through appropriate subsidiary conditions

on the state vectors, e.g., kμaμ|ψ〉 = 0. This keeps the Lorentz covariance of (37.216)

intact while avoiding the states with negative norms appearing in the formalism. We will

not pursue this subject any further since it is beyond the scope of this book, but we will

start using (37.215) in the discussions to follow. Specifically, from now on, we will write

Aμ (x) =
1

(√
2π

)3

∫
d3k√
2ωk

[
aμ (k) e

−ik·x + a†
μ (k) e

ik·x
]

(37.217)

where it is understood that aμ(k) = ǫμa(k) .
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37.12 Propagators and time-ordered products

37.12.1 Scalar field

Consider a time-ordered product of two scalar fields, �(x) and �
(
x′
)
, defined as

T
(
�(x)�

(
x′
))
= θ

(
t − t′

) (
�(x)�

(
x′
))
+ θ

(
t′ − t

) (
�
(
x′
)
�(x)

)
. (37.218)

We show below that the vacuum expectation value of this time-ordered product given by

〈
0
∣∣T

(
�(x)�

(
x′
))∣∣ 0

〉
(37.219)

is directly related to the propagator function �F (x − x′) that we considered for the Klein–

Gordon equation.

The product �(x)�
(
x′
)

can be written as

�(x)�
(
x′
)
= 1

(2π)3

∫
d3p d3q√

4ωpωq

[
a (p) e−ip·x + a† (p) eip·x

] [
a (q) e−iq·x′ + a† (q) eiq·x

]
.

(37.220)

Among the four terms involved in the product above, only one term, the term with the

creation operator to the right, will survive when we take the vacuum expectation value

〈
0
∣∣�(x)�

(
x′
)∣∣ 0

〉
= 1

(2π)3

∫
d3p d3q√

4ωpωq

〈
0

∣∣∣a (p) a† (q)

∣∣∣ 0
〉
e−(ip−q)·x. (37.221)

We write

〈
0

∣∣∣a (p) a† (q)

∣∣∣ 0
〉
=
〈
0

∣∣∣
[
a (p) , a† (q)

]∣∣∣ 0
〉
+
〈
0

∣∣∣a† (q) a (p)

∣∣∣ 0
〉
. (37.222)

The second term on the right-hand side vanishes since a(p) |0〉 = 0. Using the commutator

relation [
a (p) , a† (q)

]
= δ(3)(p− q) (37.223)

in (37.221), after integrating d3q, we obtain

〈
0
∣∣�(x)�

(
x′
)∣∣ 0

〉
= 1

(2π)3

∫
d3p

2ωp
e−ip·(x−x′). (37.224)

By the interchange x ↔ x′ we obtain
〈
0
∣∣�

(
x′
)
�(x)

∣∣ 0
〉
from (37.221). Substituting our

results in (37.218), we find

〈
0
∣∣T

(
�(x)�

(
x′
))∣∣ 0

〉
= θ

(
t − t′

) 1

(2π)3

∫
d3p

2ωp
e−ip·(x−x′)

+ θ
(
t′ − t

) 1

(2π)3

∫
d3p

2ωp
eip·(x−x′). (37.225)
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The right-hand side is related to the expression for �F (x − x′) that we derived in Chapter

32. The relation we obtain is

〈
0
∣∣T

(
�(x)�

(
x′
))∣∣ 0

〉
= −i�F

(
x − x

′)
. (37.226)

Thus the time-ordered product of two scalar fields is related to the propagator.

37.12.2 Maxwell field

Here we proceed in the same manner as in the Klein–Gordon case to evaluate

〈
0
∣∣T

(
Aμ (x)Aν

(
x′
))∣∣ 0

〉
. (37.227)

In place of (37.222) in the previous section we have

[
aμ (p) , aν (q)

]
= −gμνδ

(3) (p− q) (37.228)

and obtain 〈
0
∣∣T

(
Aμ (x)Aν

(
x′
))∣∣ 0

〉
= −igμνDF

(
x − x′

)
(37.229)

where DF is the photon propagator.

37.12.3 Dirac field

The time-ordered product for fermions is defined as

T
(
ψ (x) ψ̄(x′)

)
= θ

(
t − t′

)
ψ (x) ψ̄

(
x′
)
− θ

(
t′ − t

)
ψ̄
(
x′
)
ψ (x) (37.230)

where we note that we have a negative sign between the two terms.

ψ (x) = 1
(√

2π
)3

2∑

s=1

∫
d3p

√
m

Ep

[
us (p) as (p) e

−ip·x + νs (p) b
†
s (p) e

ip·x
]

. (37.231)

ψ̄ (x) = 1
(√

2π
)3

2∑

s=1

∫
d3p

√
m

Ep

[
ūs (p) a

†
s (p) e

ip·x + ν̄s (p) bs (p) e
−ip·x

]
. (37.232)

In calculating the vacuum expectation value of the product ψ (x) ψ̄
(
x′
)
, the only term

that will survive is given by

〈
0
∣∣ψ (x) ψ̄

(
x′
)∣∣ 0

〉

= 1

(2π)3

2∑

s=1

2∑

s′=1

∫
d3p d3q

√
m2

EpEq
us (p) ūs (q)

〈
0

∣∣∣as (p) a
†

s′ (q)
∣∣∣ 0
〉
e−i(p·x−q·x′).

(37.233)
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Using the anticommutation relations we obtain

〈
0

∣∣∣as (p) a
†

s′ (q)
∣∣∣ 0
〉
=
〈
0

∣∣∣
{
as (p) a

†

s′ (q)
}∣∣∣ 0

〉
−
〈
0

∣∣∣a†

s′ (q) as (p)

∣∣∣ 0
〉

(37.234)

where only the first term will contribute, to give

〈
0
∣∣ψ (x) ψ̄

(
x′
)∣∣ 0

〉
= 1

(2π)3

2∑

s=1

∫
d3p

(
m

Ep

)
us (p) ūs (p) e

−ip·(x−x′). (37.235)

However, ∑

s

us (p) ūs (p) = �+ (p) =
m+ γ · p

2m
. (37.236)

Hence,

〈
0
∣∣ψ (x) ψ̄

(
x′
)∣∣ 0

〉
= 1

(2π)3

∫
d3p

(
m

Ep

)(
m+ γ · p

2m

)
e−ip·(x−x′). (37.237)

Similarly,

〈
0
∣∣ψ̄

(
x′
)
ψ (x)

∣∣ 0
〉
= 1

(2π)3

2∑

s=1

∫
d3p

(
m

Ep

)
νs (p) ν̄s (p) e

ip·(x−x′). (37.238)

However, ∑

s

νs (p) ν̄s (p) =
(m− γ · p)

2m
. (37.239)

Hence,

〈
0
∣∣ψ̄

(
x′
)
ψ (x)

∣∣ 0
〉
= 1

(2π)3

∫
d3p

(
m

Ep

)
�− (p) eip·(x−x′). (37.240)

Thus, the vacuum expectation of the time-ordered product is related to the fermion

propagator SF . The exact relationship is found to be

〈
0
∣∣T

(
ψ (x) ψ̄

(
x′
))∣∣ 0

〉
= −iSF

(
x − x′, m

)
. (37.241)

37.13 Canonical quantization

The commutation relations between the creation and destruction operators in the occupation

number space result in second quantization as we have already discussed. We note that the

first quantization was based on the commutation relations postulated between the canonical

variables Xi and Pj, e.g., [
Xi, Pj

]
= i�δij (37.242)

with all other commutators involving Xi and Pj vanishing.
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One can also couch the postulate of second quantization in terms of canonical quantities,

but this time it involves the commutation relation between the field operator and its canonical

conjugate. This is best done in the Lagrangian formulation, where the canonical conjugate

to a field � is defined by

 (r,t) = ∂L

∂̇(r, t)
, (37.243)

with ̇ = d/dt, where L is the Lagrangian density and where we have written the space

and time components separately. It is then postulated that  and  satisfy the following

equal time commutation relation

[(r,t), (r′,t)] =iδ(3)(r − r′). (37.244)

We note that in our units � = c = 1.

The Lagrangian density for the scalar (Klein–Gordon) particle is given by

L = 1

2
∂μ∂

μ− 1

2
m22. (37.245)

The canonical conjugate field is then found to be

 (r,t) = ̇(r,t). (37.246)

Hence the postulate for canonical quantization corresponds to

[(r,t), ̇(r′,t)] = iδ(3)(r − r′). (37.247)

We show below through a series of steps that this is, indeed, satisfied in our formulation

where  (r, t) is given by (37.112) and the commutation relations for a and a† are already

defined.

[(r,t), ̇(r′,t)]

=
∫

d3p√
(2π)3 2ωp

∫
iωp′d

3p′√
(2π)3 2ωp′

[
(a (p) e−ip·x + a† (p) eip·x), (−a

(
p′
)

e−ip′·x′ + a†
(
p′
)

eip′·x′)
]

=
∫

d3p√
(2π)3 2ωp

∫
iωp′d

3p′√
(2π)3 2ωp′δ

(3)
(
p− p′

) (
e−ip·x+ip′·x′ + eip·x−ip′·x′

)

= i

∫
d3p

2 (2π)3

(
eip·(r−r′) + e−ip·(r−r′)

)
. (37.248)

By changing variables from p →−p, we find the right-hand side to be

i

∫
d3p

(2π)3
eip·(r−r′). (37.249)



692 Multiparticle systems and second quantization

This is just the integral representation of iδ(3)(r − r′). Hence we obtain (37.246). Thus,

the commutation relation between the ladder operators leads to the canonical quantization

condition.

For the complex scalar field , the Lagrangian density is given by

L = −1

2
∂μ†∂μ−

μ2

2
(†). (37.250)

The canonical conjugate field from (37.243) is then found to be

 (r,t) = ∂L

∂
·
(r,t)

=
·

†(r,t), (37.251)

leading to the quantization rule

[(r,t), ̇
†
(r′,t)] =iδ(3)(r − r′). (37.252)

This can also be proved in a manner similar to that for the real scalar field we considered

earlier.

Similarly for the Dirac field, where the Lagrangian density is given by

L = i!γ μ∂μ! − m!!. (37.253)

The canonical field operator is

 (r,t) = ∂L

∂!̇(r,t)
= i!γ 4 = i�†, (37.254)

giving rise to the quantization rule which now, since we are dealing with the Dirac particle,

involves anticommutators,

{!i(r,t), j(r
′,t)} = iδijδ

(3)(r − r′) (37.255)

therefore,

{!i(r,t), �
†
j (r

′,t)} = δijδ
(3)(r − r′). (37.256)

Again, this result is reproduced through the anticommutation relations satisfied by the ladder

operators.

Finally, as we discussed in Section 37.11, for the Maxwell field, we have the complication

of satisfying Lorentz invariance and transversality conditions.As we pointed out these, then

follow the formalism of Gupta and Bleuler when writing the canonical quantization rule

[
Aμ(r,t), ν(r

′,t)
]
= −igμνδ

(3)(r − r′) (37.257)

where the Lagrangian density and ν are given by

L = −1

4
FμνF

μν (37.258)
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and

 ν = ∂L

∂Ȧν
= Ȧν . (37.259)

One can show from (37.193) that (37.257) is satisfied.

37.14 Casimir effect

As we learned from Section 37.10, the zero-point energy of the electromagnetic radiation

is infinite. We asserted, however, that this quantity is unobservable and that what matters

experimentally are the differences from this energy. The incredible successes of quantum

field theory based on this assumption provide some basis for this assertion. But we can

actually go closer to the core of the problem and do a quantitative calculation of such

a difference and put the result to experimental tests. This is what the Casimir effect is

concerned with. Here one measures the difference between the zero-point energy of the

electromagnetic radiation in free space and that between two parallel conductors. This

difference can be calculated, and it is found to be finite. It leads to a remarkable prediction,

which is experimentally verified, that there is an attractive force between the conductors

that is inversely proportional to the fourth power of the distance between them!

Let us start with the energy in free space, E0, which is simply given by

E0 =
∑

i

1

2
�ωi = c�

∞∫

0

dnx

∞∫

0

dny

∞∫

0

dnz

√
k2

x + k2
y + k2

z (37.260)

where we have taken account of the fact that there are two modes. We will take L as the

length of the sides in the x- and y-directions but will select the z-axis as the special direction

and take its dimension to be a, with a ≪ L (see Fig. 37.1). We will eventually take the limit

L →∞ with a finite. Using boundary conditions typical of electromagnetism we have the

relations

kxL = nxπ , kyL = nyπ , kza = nzπ . (37.261)

Therefore,

E0 = c�

(
L

2π

)2 ( a

2π

) ∞∫

−∞
dkx

∞∫

−∞
dky

∞∫

−∞
dkz

√
k2

x + k2
y + k2

z . (37.262)

We note that the integrals are divergent, which is what we expected.

Introducing spherical coordinates in the k-space with

√
k2

x + k2
y + k2

z = κ , (37.263)
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L

L

z

a

Fig. 37.1

E0 can be expressed as

E0 = c�

(
L

2π

)2 ( a

2π

)
4π

∞∫

0

dκκ3, (37.264)

which diverges at infinity as κ4. To achieve a convergent result we introduce a simple

exponential cut-off exp(−λκ) so that

∞∫

0

dκκ3 →
∞∫

0

dκκ3e−λκ = 1

λ4

∞∫

0

dy y3e−y = 6

λ4
. (37.265)

The vacuum energy is then

E0 =
3c�L2a

π2

1

λ4
. (37.266)

Thus, the quadratic divergence in κ at infinity is reflected in the quadratic divergence in the

limit λ→ 0. This is the vacuum energy inside the cube of dimensions L, L, and a.

Since we are treating the z-direction separately, we write

a

2π
dkx dky dkz = d2k dnz (37.267)

where k =
√

k2
x + k2

y , and E0 given by (37.262), without the cut-off, is written as

E0 = c�

(
L

2π

)2 ∫
d2k

∞∫

0

dnz

√
k2 + k2

z . (37.268)

Let us now consider the situation where two parallel perfect conductors of dimensions

L×L are inserted at a distance a apart in the z-direction, replacing the two walls. Boundary
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conditions due to Maxwell’s equation imply that only discrete numbers of states are allowed.

Hence, we make the replacement

∞∫

0

dnz →
∞∑

n=0

. (37.269)

It is found that only one mode is allowed for the ground-state energy with n = 0, but two for

n ≥ 1. We denote by E the energy of the electromagnetic radiation between the conducting

planes and write

E = c�

2

(
L

2π

)2 ∫
d2k

[
k + 2

∞∑

n=1

√
k2 +

(nπ

a

)2
]

.

Since,

d2k = 2πk dk , (37.270)

we have

E =
(

c�

2

)(
L2

2π

)⎡
⎣
∞∫

0

dk k2 + 2

∞∑

n=1

∞∫

0

dk k

√
k2 +

(nπ

a

)2

⎤
⎦ . (37.271)

We will be interested in obtaining the energy difference (E − E0) per unit area L2. First,

however, let us convince ourselves that the infinities in the two energies do, indeed, cancel.

This is to confirm that E has the same behavior as E0 as λ→ 0. The first integral in (37.121)

in terms of the cut-off is found to be

∞∫

0

dk k2 →
∞∫

0

dk k2e−λk = 1

λ3

∞∫

0

dy y2e−y = 2

λ3
, (37.272)

which goes like 1/λ3 rather than 1/λ4 of E0. Let us take a look at the second integral in the

presence of a cut-off. It is given by

∞∫

0

dk k

√
k2 +

(nπ

a

)2
→

∞∫

0

dk k

√
k2 +

(nπ

a

)2
e−λ
√

k2+(nπ/a)2 . (37.273)

We note that the cut-off functions for (37.264), (37.271), and (37.272) are the same if

different values of kz are taken into account. Making the change of variables

√
k2 +

(nπ

a

)2
= y, (37.274)
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we find

∞∫

0

dk k

√
k2 +

(nπ

a

)2
e
−λ

√
k2+( nπ

a )
2

=
∞∫

nπ/a

dy y2e−λy (37.275)

= d2

dλ2

∞∫

nπ/a

dy e−λy = d2

dλ2

[
1

λ
e−λnπ/a

]
. (37.276)

The second derivative in the final equality allows us to write the result more conveniently.

This term by itself diverges like 1/λ and will not cancel the E0 behavior. But we recall that

we have an infinite sum to consider. It is found to be a geometric series that can be summed

out quite simply to give

∞∑

n=1

e−λnπ/a = e−λπ/a
∞∑

n=1

e−λ(n−1)π/a = e−λπ/a
∞∑

m=0

e−λmπ/a (37.277)

= e−λπ/a

1− e−λπ/a
= 1

eλπ/a − 1
. (37.278)

Before embarking on taking the second derivative of this term as required by the relation

(37.276), let us examine the behavior of this term as λ → 0, since our purpose at the

moment is to see if it reproduces the 1/λ4 behavior. From (37.277) we find

∞∑

n=1

e−λnπ/a →
λ→0

a

πλ
. (37.279)

The second derivative in (37.276) is then

d2

dλ2

[
1

λ

a

πλ

]
= 6a

πλ4
. (37.280)

Hence the most divergent part of E is found to be

Edivergent =
3c�L2a

π2

1

λ4
. (37.281)

This, indeed, cancels E0 as advertised.

To get the full result without using the approximation λ→ 0, we make use of the identity

z

ez − 1
=

∞∑

n=0

Bn
zn

n! (37.282)

where Bn’s are called Bernoulli’s numbers. We can obtain these numbers if we multiply

both sides by (ez − 1), expand ez in an infinite power series, and compare the powers of z

on both sides. A few of the values are given below:

B0 = 1, B1 = −
1

2
, B2 =

1

6
, B4 = −

1

30
. (37.283)
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Using (37.282) in (37.283), one finds the following result for the first two leading terms:

E = 3c�L2a

π2

1

λ4
− 1

720

c�L2π3

a3
. (37.284)

As expected from our previous calculation, the divergent parts of E and E0 cancel. The next

leading term in E is actually convergent.

We define the difference
�E

L2
= E − E0

L2
. (37.285)

This is the only physically meaningful quantity that is independent of L2 and it corresponds

to the energy difference per unit surface area. We find

�E

L2
= − 1

720

c�π3

a3
. (37.286)

The force between the conductors is given by the change in energy per unit distance,

−∂E/∂a. The force per unit surface area, F , is, therefore

F = − c�π2

240a4
. (37.287)

Thus, because of the negative sign above, there is an attractive force between the con-

ducting planes. The value of F does not depend on the cut-off. This remarkable result is

in a nutshell the Casimir effect. It has been experimentally verified. Different geometrical

structures have been studied for the conductors and in each case experiment agrees with

theory.

One might wonder whether the results we have derived depend on the specific form

of the cut-off function we have chosen. This is found not to be so. If we take a general

function F(k) then as long as it is a smooth cut-off function it is found that the energy

difference (E − E0) is essentially the difference between an integral and its trapezoidal

approximation. This type of difference is treated through the so-called Euler–MacLaurin

formalism involving standard mathematical techniques. Once again one encounters the

Bernoulli numbers, leading to the same result we have just derived.

37.15 Problems

1. Two particles inside two infinite walls at x = −a and x = a interact with each other via

the potentials

(i) V (x1, x2) = λδ(x1 − x2),

(ii) V (x1, x2) = λx1x2.

Determine the energy to the lowest order in each case.
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2. Two identical spin 1
2

particles are inside two infinite walls. Construct the wavefunctions

for the two-particle system as a product of the space and spin wavefunctions. What is

the result if the particles have spin zero or are not identical?

3. If two identical spin 1
2

particles described in Problem 2 interact with each other through

the spin-dependent potential λσ 1·σ 2, obtain the energies of the two lowest states.

4. Consider two free particles that are identical, with common mass m.Assume that they are

represented by wavefunctions N exp
[
−α (x − a)2

]
and N exp

[
−α (x + a)2

]
, respec-

tively. Determine the expectation value of the total energy with respect to individual

wavefunctions. Call this energy E. Now construct normalized symmetric and unsym-

metric wavefunctions for the two particles. Determine again the energy expectation

values with respect to these new wavefunctions. Call them E+ and E−, respectively.

Determine the differences (E± − E) and compare their magnitudes and signs.

5. Consider a system of two identical particles each with spin s. Determine the ratio of

symmetric to antisymmetric spin states that one can form in this system. Show that these

states together form a complete basis set for the two-particle wavefunctions.



38
Interactions of electrons and phonons in

condensed matter

Acondensed matter system in its most basic form can be viewed in terms of two components.

One corresponds to electrons which, as discussed in Chapter 5, arrange themselves into

energy levels as a consequence of Fermi statistics, with each level containing no more than

two electrons with opposite spin orientations. These are the Fermi levels and the energy

of the electrons in the topmost level is called the Fermi energy. Thus, in metals, where

electrons can move about freely, even near absolute zero temperatures the electrons possess

kinetic energy.

The second component corresponds to ions, or atomic lattices, the vibrational modes

of which are described in terms of simple harmonic motion. The normal modes of these

oscillations, when quantized, have particle-like properties and are called phonons. Since

electrons contribute to the vibrations of the ions, the phonons interact with electrons, which

in turn leads to interaction between electrons themselves through phonon exchange.

We elaborate on all of this below.

38.1 Fermi energy

38.1.1 One dimension

We repeat here the discussion in Chapter 5. Let us consider the ground state consisting of

N noninteracting electrons confined in one dimension of length L. Each electron will be

described by a free wavefunction

u(x) = 1√
L

eikxχλ (38.1)

where the χλ’s designate the spin-up and spin-down states,

χ+ =
[

1

0

]
, χ− =

[
0

1

]
, (38.2)

which are normalized according to

χ
†
λ1
χλ2

= δλ1λ2 . (38.3)
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We assume, as we have done before, that the wavefunction satisfies the periodic boundary

condition

u(x + L) = u(x), (38.4)

which implies that the momentum vector can take only discrete values given by

knL = 2nπ . (38.5)

The energy eigenvalues will then be

En =
�

2k2
n

2m
= 2n2π2

�
2

mL2
. (38.6)

Since the electrons are noninteracting, the ground state of the N -electron system can

be built up by putting electrons into different levels. Because of the exclusion principle,

however, at most one electron can be placed in each level with a given value of kn. Since

an electron has spin which can take on two values, spin up and spin down, we are allowed

to put no more than two electrons in a given level as long as their spins are in opposite

directions.

Thus N electrons will fill up levels with n = 1, 2, . . . , N/2. The last level will consist

of either one or two electrons depending on whether N is odd or even. The energy of the

highest level can then be obtained by substituting n = N/2 in (38.6), which gives

EF =
N 2π2

�
2

2mL2
. (38.7)

This is the so called “Fermi energy” for the one-dimensional case. The Fermi energy is

a very important concept in condensed matter systems. In metals, for example, even near

absolute zero the electrons continue to have kinetic energy, with the highest value given

by the Fermi energy. The so-called chemical potential is the same as Fermi energy at zero

temperature.

The total energy for the N -electron system is then

Etot = 2

N/2∑

n=1

2n2π2
�

2

mL2
(38.8)

where the factor 2 corresponds to the two spin states. Since N is assumed to be very large,

the above sum can be converted to an integral:

N/2∑

n=1

n2 ≈
∫ N/2

1

dn n2 ≃ N 3

24
. (38.9)

Thus, the total energy of the electrons is

Etot =
N 3π2

�
2

6mL2
. (38.10)
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The energy per electron is

Ee =
Etot

N
= N 2π2

�
2

6mL2
, (38.11)

which implies that the energy of an individual electron increases as N 2.

Let us compare this result with a system consisting of N bosons. Since there is no

exclusion principle preventing the bosons from occupying the same state, their ground state

will consist of all N particles occupying the same state, n = 1. Thus the total energy of this

system will be N times the ground-state energy. Hence,

Etot = N
2π2

�
2

mL2
(38.12)

and the energy of a single boson is

Eb =
Etot

N
= π

2
�

2

2mL2
, (38.13)

which remains a constant. This result is in sharp contrast to the case of electrons.

38.1.2 Three dimensions

We now go to the more realistic case of three dimensions. We consider a cube of length L,

and volume, V = L3, inside which the wavefunction is given by

ψkλ(r) =
1√
V

eik·rχλ. (38.14)

It satisfies the periodic boundary conditions

kt =
2πni

L
, i = x, y, z, ni = ±1,±2, · · · (38.15)

inside the cube. The χλ’s, as before, designate the spin-up and spin down states.

We will discuss this problem in the language of second quantization that we plan to use

throughout the rest of this chapter. We write the total kinetic energy, which is the unperturbed

Hamiltonian, H0, as

H0 =
∑

kλ

�
2k2

2m
a

†
kλakλ (38.16)

where akλ and a
†
kλ are the usual creation and destruction operators for the electrons with

momentum k and spin λ. If nkλ is the number operator then

a
†
kλakλ = nkλ (38.17)

and

H0 =
∑

kλ

�
2k2

2m
nkλ, (38.18)
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which implies a sum of the kinetic energy of each mode, characterized by k andλ, multiplied

by the number of particles in that mode. If we denote by

|F〉 (38.19)

the multiparticle state corresponding to the ground state of the N electrons, then the energy

eigenvalue E0 is given by

E0 = 〈F |H0|F〉 = 2

∫
d3n

�
2k2

2m
(38.20)

where d3n is the number of states available and the factor 2 accounts for the two spin states

for each k. From (38.15) we obtain d3n as

d3n = dnx dny dnz =
V d3k

(2π)3
. (38.21)

Since

d3k = 4πk2 dk (38.22)

where 4π corresponds to the solid angle in the k-space, we can evaluate the integral in

(38.20) to obtain the total energy of the electron system. We find

E0 =
V�

2k5
F

10π2m
(38.23)

where the integration in k is carried out from 0 to kF , the Fermi momentum, which is the

maximum momentum value for the ground state.

We can write the above relation in terms of the total number of electrons, N . We note

that

N =
∫

d3n =
∫

V d3k

(2π)3
, (38.24)

which upon integration gives

N = Vk3
F

3π2
. (38.25)

Thus, E0 can be expressed as

E0 =
3

5

(
�

2k2
F

2m

)
N . (38.26)

The energy per electron is
E0

N
= 3

5
EF (38.27)

where EF is the Fermi energy, which is related to kF by

EF =
�

2k2
F

2m
. (38.28)
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Substituting the value of kF from relation (38.25), we obtain EF in terms of N with

V = L3:

EF =
π2

�
2

2mL2

(
3N

π

)2/3

. (38.29)

We can also write EF in terms of the particle density

n = N

V
(38.30)

as

EF =
�

2

2m

(
3π2n

)2/3
. (38.31)

In summary, we note that the ground state of the many-electron system at low temperatures

consists of completely filled energy levels up to E = EF , which is typically 5−10 eVat room

temperatures. Excitations of the levels are difficult to achieve at low temperatures except

near the Fermi surface: a particle inside the Fermi sea has nowhere to go since all available

states are already occupied. These observations play an essential role in determining the

properties of metals and other solids.

38.1.3 White dwarfs

White dwarfs are heavy stars having a mass comparable to the mass of the sun but with a

radius which is 1/100 that of the sun. Such high densities imply that we can consider the

white dwarfs as made of a degenerate electron gas. The particle density of electrons is of

the order of 1027electrons/cm3. Plugging this number into (38.31) gives

EF ≈ 3× 105eV. (38.32)

38.1.4 Heavy nucleus

The heavy nucleus is another candidate to which the approximation of the degenerate Fermi

gas can be applied. The radius of the nucleus is given by

R = 1.25× 10−12A1/3cm (38.33)

where A is the number of nucleons (neutrons and protons), while the particle density is

given by the usual relation

n = A

(4π/3)R3
. (38.34)

Substituting all the numbers, we obtain

EF ≈ 3× 107eV. (38.35)
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38.2 Interacting electron gas

In the previous section we were concerned with electrons that were noninteracting placed

in an environment that was devoid of any other types of particles. We will now consider a

somewhat more realistic situation of electrons in a metal. A metal in its simplest approxi-

mation is described as a system of free electrons in a background consisting of ions that are

distributed uniformly with a continuous positive charge density. The total system is assumed

to be neutral. The ions are assumed to be heavy and hence their motion is neglected. It is

understood that if N is the number of electrons and V is the volume in which the whole

system is confined, then our calculations will be meaningful in the so called thermodynamic

limit

N →∞, V →∞ with n = N

V
= constant. (38.36)

The Coulomb potential plays an essential role in that it provides the interaction between

electrons, between positive ions, and between electrons and the ions. Even though the

potential is of infinite range, one introduces a screening radius μ−1 that makes the range

finite and allows one to obtain convergent results. Thus, in our calculations we will make

the change

1

r
→ e−μr

r
(38.37)

for the Coulomb potential. At the end of the calculation, however, we let μ→ 0 consistent

with the limit (38.36). We find that finite results are obtained.

We begin with the whole system confined in a cube of length L and volume V = L3. The

wavefunction of an electron is then given by

ψkλ(r) =
1√
V

eik·rχλ, (38.38)

which is normalized such that it satisfies the periodic boundary conditions

kt =
2πni

L
, i = x, y, z, ni = 0,±1,±2, · · · (38.39)

inside the cube, while the χλ’s designate the normalized spin-up and spin down states.

The Hamiltonian for the system is written as

H = Hel + Hback + Hel−back (38.40)

where Hel corresponds to the electrons, interacting with each other through a screened

Coulomb potential

Hel =
N∑

i=1

p2
i

2m
+ 1

2
e2

N∑

i � =j

e−μ|ri−rj |

|ri − rj|
(38.41)
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where the summation is carried out over the N electron states. The Hamiltonian for the

background, Hback , corresponding to the ions is written as

Hback =
1

2
e2

∫ ∫
d3r d3r′

ρb(r)ρb(r
′)e−μ|r−r′|

|r − r′| (38.42)

where ρb is the density of the ions that are interacting with each other, also through the

(repulsive) screened Coulomb potential. The interaction between the N electrons and the

ions in the background is given by the attractive interaction

Hel−back = −e2
N∑

i=1

∫
d3r
ρb(r)e

−μ|r−ri|

|r − ri|
. (38.43)

We will make the approximation that the density of the ions is uniform and write

ρb(r) ≃
N

V
. (38.44)

We will make a further approximation of replacing, for the screened potential,

e−μ|ri−rj |

|r − r′| →
4π

μ2
δ(3)

(
r − r′

)
(38.45)

for the purposes of simplifying the integration. It is easy to show that the integrals on both

sides of (38.45) are the same. We will assume this to be generally true, as long as functions

multiplying these terms are slowly varying.

Hence Hback is found to be

Hback =
1

2
e2

(
N

V

)2
4π

μ2

∫
d3r. (38.46)

The integral over d3r simply gives the volume V . Thus,

Hback =
1

2
e2 N 2

V

4π

μ2
. (38.47)

For Hel−back we, once again, make the approximation (38.45) in the integral in (38.43) to

obtain

Hel−back = −e2
N∑

i=1

N

V

4π

μ2
. (38.48)

The summation over the index i gives a factor N . Thus,

Hel−back = −e2 N 2

V

4π

μ2
. (38.49)

The sum of the two Hamiltonians is then given by

Hback + Hel−back = −
1

2
e2 N 2

V

4π

μ2
. (38.50)
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We note that, in the language of second quantization, this is actually a c-number (i.e.,

proportional to a unit operator in the multiparticle Hilbert space) since N corresponds to

the eigenvalue of the number operator N.

38.2.1Calculating H el

Let us now obtain Hel from the formalism of second quantization. The first term of (38.41)

is the kinetic energy term, which we have already discussed in the previous section. As

before, we denote the unperturbed Hamiltonian corresponding to the total kinetic energy

by H0,

H0 =
∑

kλ

�
2k2

2m
a

†
kλakλ (38.51)

where akλ and a
†
kλ are destruction and creation operators for electrons in the k, λ mode.

Our aim now is to evaluate the second term in (38.41), which corresponds to the Coulomb

interaction between the electrons. We call this the perturbed Hamiltonian H′. Let us calcu-

late the matrix element of the screened potential. Since this is a two-body interaction, as

explained in Chapter 37, we need to consider the product of the wavefunctions of the two

particles designated by superscripts 1 and 2. Hence, the matrix element is given by

e2

V 2

∫ ∫
d3r1d3r2

[
e−ik1·r1χ

(1)†
λ1

] [
e−ik2·x2χ

(2)†
λ2

] e−μ|r1−r2|

|r1 − r2|
[
eik3·r1χ

(1)
λ3

] [
eik4·r2 χ

(2)
λ4

]
.

(38.52)

To simplify integration, we replace the variable r1 by writing

r1 − r2 = r (38.53)

but keep r2 = r2. Therefore,

d3r1d3 r2 = d3r d3r2. (38.54)

The integration can now be performed quite simply. We obtain

H′ = e2

V 2
δλ1λ3δλ2λ4

∫
d3r2 e−i(k1+k2−k3−k4)·r2

∫
d3r ei(k3−k1)·r e−μr

r

= e2

V
δλ1λ3δλ2λ4δk1+k2,k3+k4

4π

(k1 − k3)2 + μ2
. (38.55)

The Kronecker δ’s imply λ1 = λ3, λ2 = λ4 and momentum conservation:

k1 + k2 = k3 + k4. (38.56)

In deriving (38.55) we have used the following relations:

χ
(1)†
λ1
χ
(1)
λ3
= δλ1λ3 , χ

(2)†
λ2
χ
(2)
λ4
= δλ2λ4 , (38.57)
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1

V

∫
d3r2 e−i(k1+k2−k3−k4)·r2 = δk1+k2,k3+k4 , (38.58)

∫
d3r ei(k3−k1)·r e−μr

r
= 4π

(k1 − k3)2 + μ2
. (38.59)

The integral in (38.59) has a screened potential that is, however, multiplying a rapidly

oscillating function and does not satisfy the criterion for the approximation (38.45) (also,

fortunately, we can integrate it exactly!).

The perturbed Hamiltonian given by the second term in (38.41) in the second quantized

form is given by

H′ = e2

2V

∑

kiλi

δλ1λ3δλ2λ4δk1+k2,k3+k4

4π

(k1 − k3)2 + μ2
a

†
k1λ1

a
†
k2λ2

ak4λ4ak3λ3 (38.60)

where the index i in the summation goes over i = 1, 2, 3, 4. We change variables and write

k1 − k3 = k4 − k2 = q, k3 = k, k4 = p. (38.61)

We note that q corresponds to the momentum transfer. By summing over λ3 and λ4 and

making use of the Kronecker δ’s the interaction H’s can be simplified to

e2

2V

∑

kpq

∑

λ1λ2

4π

q2 + μ2
a

†
k+q,λ1

a
†
p−q,λ2

apλ2akλ1 . (38.62)

This can be further simplified by separating the q = 0 and q � =0 parts

e2

2V

∑

kpq

′∑

λ1λ2

4π

q2 + μ2
a

†
k+q,λ1

a
†
p−q,λ2

ap,λ2akλ1 (38.63)

+ e2

2V

∑

kp

∑

λ1λ2

4π

μ2
a

†
kλ1

a
†
pλ2

apλ2akλ1 . (38.64)

The prime in the summation sign in the first term implies that we exclude terms with q = 0.

The second term contains only the q = 0 terms. To simplify the second term we now use

the following anticommutator relations for the fermion operators,

{
apλ2 , akλ1

}
= 0 and

{
a

†
pλ2

, akλ1

}
= δkpδλ1λ2 , (38.65)

and obtain

a
†
kλ1

a
†
pλ2

apλ2akλ1 = −a
†
kλ1

a
†
pλ2

akλ1apλ2 (38.66)

a
†
pλ2

akλ1 = δkpδλ1λ2 − akλ1a
†
pλ2

. (38.67)

Substituting this in the second term in (38.64), we obtain

e2

2V

4π

μ2

∑

kλ1

∑

pλ2

a
†
kλ1

akλ1(a
†
pλ2

apλ2 − δkpδλ1λ2) =
e2

2V

4π

μ2
(N 2 − N ) (38.68)



708 Interactions of electrons and phonons in condensed matter

where we have used the relations

a
†
kλ1

akλ1 = nkλ1 ,
∑

kλ1

nkλ1 = N, (38.69)

a
†
pλ2

apλ2 = npλ2 ,
∑

pλ2

npλ2 = N, (38.70)

and have replaced N by its eigenvalue N .

The first term on the right-hand side of (38.68), exactly cancels (38.50), while the second

term corresponds to an energy, per particle, of

1

N

[
4πe2N

2Vμ2

]
= 4πe2

2Vμ2
. (38.71)

V = L3, so Vμ2 = L (Lμ)2 . We note that 1/μ is the range of the shielded Coulomb

interaction. Since we expect this range to be much smaller than L,

1

μ
≪ L, (38.72)

in the limit L →∞ the denominator of (38.71) goes to infinity and, therefore, the energy

goes to zero, the limit (38.72) is to be taken before the limit (38.36).

Hence we find that Hback and Hel−back are eliminated and the total Hamiltonian written

in the operator form is given by

H = H0 +H′

=
∑

kλ

�
2k2

2m
a

†
kλakλ +

e2

2V

∑

kpq

′∑

λ1λ2

4π

q2
a

†
k+q,λ1

a
†
p−q,λ2

apλ2akλ1 (38.73)

where the sum in the momentum goes up to the Fermi momentum kF .

The second term in the sum (38.73) for the total Hamiltonian can also be evaluated. This

is the energy due to the Coulomb interaction between the electrons. If we call this E1 then,

after some lengthy calculations, one obtains

E1 = −
3e2NkF

4π
. (38.74)

38.3 Phonons

We have considered the case of a solid that is assumed to consist of uniformly distributed

ions of positive charge. These form a background to the moving electrons in the solid. Let

us now consider the possibility that the ionic system undergoes small longitudinal vibra-

tions. The individual displacements can then be described in terms of harmonic oscillators.
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The collective vibrational motion involving many ions can be described in terms of nor-

mal modes, which are linear combinations of the displacements of the individual harmonic

oscillators. The quantized normal modes are called phonons. They satisfy canonical com-

mutation relations involving the field amplitudes, as we will discuss below. We note that

only the longitudinal modes of the vibrations of the ion charge density are responsible for

modifying the Coulomb interaction between the electrons and the background.

In Chapter 9 we studied the motion of a single harmonic oscillator based on the canonical

commutation relation

[x, p] = i� (38.75)

where the Hamiltonian for a particle of mass m is given by

H = p2

2m
+ 1

2
mω2x2, (38.76)

with ω as the natural frequency of the oscillation and x as the longitudinal displacement.

The following lowering and raising operators a and a† were introduced in Chapter 9 to

solve the harmonic oscillator problem:

a =
√

mω

2�

(
x + i

p

mω

)
, a† =

√
mω

2�

(
x − i

p

mω

)
. (38.77)

Based on the relation (38.75), these operators were found to satisfy the commutation relation

[
a, a†

]
= 1. (38.78)

From (38.76) and (38.77) we then obtained

H =
(

a†a+ 1

2
1

)
�ω. (38.79)

Designating |n〉 as the eigenstate of H with eigenvalues En,

H |n〉 = En |n〉 , (38.80)

we found

En =
(

n+ 1

2

)
�ω, for n = 0, 1, 2, . . . . (38.81)

These are the energy levels of the harmonic oscillator.

To describe the collective motion of N ions undergoing oscillations, let us start with a sim-

ple model of an infinite one-dimensional chain of identical harmonic oscillators. We assume

their equilibrium positions to be located equidistantly at la with l = 0, 1, 2, . . ., where a

is the unit distance. Let xl be the displacement of the lth oscillator from its equilibrium

position. The Hamiltonian for this system is then given by

H =
N∑

l=1

p2
l

2m
+ 1

2
mω2

N∑

l=1

(xl − xl+1)
2 (38.82)
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where we have neglected the end effects. After moving the terms x2
l

and x2
l+1

from the

second sum to the first sum, we rewrite the Hamiltonian as

H =
N∑

l=1

[
p2

l

2m
+ 1

2
mω2x2

l

]
− mω2

N∑

l=1

xlxl+1. (38.83)

The first term describes a set of N independent oscillators, while the second in a sense

corresponds to the interaction, or coupling, between an oscillator and its nearest neighbor.

In order to obtain the energy eigenvalues of this system we will need to diagonalize this

Hamiltonian and write it in terms of normal modes so that H can be expressed in terms of a

new set of independent oscillators. These oscillators will correspond to quasiparticle states

called phonons.

The classical equation of motion for the above Hamiltonian is given by the differential

equation

ẍl = −ω2(2xl − xl−1 − xl+1). (38.84)

The normal modes are obtained in the standard manner by writing

xl = x0eikale−iωk t (38.85)

where k is the wave vector and ωk the angular frequency. Expression (38.85) then corre-

sponds to the displacement of the oscillator l at time t. We interpret this as the longitudinal

vibration corresponding to sound waves of wave length 2π/k and frequency ωk . The

momentum pl will have a functional form similar to (38.85).

Substituting (38.85) in (38.84), we find after canceling the common factors,

ω2
k = ω2[2− e−ika − eika]. (38.86)

Hence the frequency, ωk , of the vibrational normal mode is given by

ωk = 2ω sin

(
ka

2

)
. (38.87)

This equation relates the phonon frequency ωk to the wavenumber k . It is referred to as a

dispersion relation. The speed of phonon propagation, which is given by the group velocity

∂ωk/∂k , is also the speed of sound in the lattice. At low energies (ka ≈ 0) it is simply equal

to ωa.

Let us now express the displacement, xl , at t = 0 in the form of a Fourier transform

xl =
1√
N

N∑

k=1

eikalXk , (38.88)

with periodic boundary conditions. Its inverse is given by

Xk =
1√
N

N∑

l=1

e−ikalxl (38.89)
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where we have used the orthogonality relation

1

N

N∑

l=1

eial(k ′−k) = δk ,k ′ . (38.90)

Let us now go to the quantum domain. Similar relations can be written for the momentum

variable, pl , and its Fourier transform Pk ,

pl =
1√
N

∑

k

e−ikalPk , Pk =
1√
N

∑

l

eikalpl . (38.91)

Since each combination of canonical variables satisfies the commutation relation

[xl , pl′] = i�δll′ (38.92)

we obtain

[Xk , Pk ′] =
1

N

∑

l,l′
e−ikaleik ′al′[xl , pl′] (38.93)

= i�

N

∑

i

e−ial(k−k ′) = i�δk ,k ′ . (38.94)

Thus the amplitudes Xk and Pk ′ themselves act as canonical operators.

To express (38.83) in terms of Xk and Pk , we note from relations (38.88) and (38.90) that

∑

l

xlxl+m =
1

N

∑

kk ′
XkXk ′

∑

l

eila(k+k ′)eimak ′ =
∑

k

XkX−ke−iak . (38.95)

Thus, the second term in (38.82) is found to be

1

2
mω2

N∑

l=1

(xl − xl+1)
2 = 1

2
mω2

∑

k

XkX−k(2− e−iak − eiak)

= 1

2
m
∑

k

ω2
kXkX−k . (38.96)

Similarly, ∑

l

p2
l =

∑

k

PkP−k . (38.97)

The Hamiltonian for a system of N harmonic oscillators is now an operator given by

H = 1

2m

∑

k

PkP−k +
m

2

∑

k

ω2
kXkX−k , (38.98)

which corresponds to the expansion of the Hamiltonian in terms of normal modes. From

(38.89) and (38.91) we note that X−k = X
†

k
and P−k = P

†

k
.
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We define the following destruction and creation operators:

bk =
√

mωk

2�

(
Xk +

i

mωk

P−k

)
, (38.99)

b
†

k
=
√

mωk

2�

(
X−k −

i

mωk

Pk

)
, (38.100)

which from (38.92) and (38.94) obey the commutation relations

[bk , b
†

k ′] = δ kk ′ , [bk , bk ′ ] = 0, [b†

k
, b

†

k ′ ] = 0. (38.101)

These are the same type of commutation relations that the a’s satisfy. The Hamiltonian is

then found to be

H =
N∑

k=1

�ωk

(
b

†

k
bk +

1

2

)
. (38.102)

Let

nk = b
†

k
bk . (38.103)

Then

H =
N∑

k=1

�ωk

(
nk +

1

2

)
. (38.104)

We write

H = E0 +
N∑

k=1

nk�ωk (38.105)

where

E0 =
1

2

N∑

k=1

�ωk (38.106)

is identified as the ground-state energy. The second term in (38.105) is identified as a sum

corresponding to nk elementary excitations, each with energy �ωk , which, as we stated

earlier, are called quasiparticles, or simply phonons.

What we have achieved by developing the above formalism is to express the total Hamil-

tonian in the language of second quantization, where nk corresponds to the number of

phonons of energy �ωk . We can now express a state corresponding to the oscillating ionic

system in a multiparticle Hilbert space by writing

|ψ〉 = |n1, n2, ...nk ...〉. (38.107)

The operators bk and b
†

k
then act on this state as destruction and creation operators of these

phonons. We note that (38.76) corresponds to the Hamiltonian in a single-particle Hilbert

space and the commutation relations (38.75) and (38.78) represent first quantization. The

expression (38.104) corresponds to the same Hamiltonian in a multiparticle Hilbert space,

while the commutation relations (38.94) and (38.101) give rise to second quantization.



713 38.4 Electron–phonon interaction

Just as the quantized electromagnetic field gives rise to photons that are the quanta

of radiation, the vibrational modes in a crystal when quantized give rise to phonons as

the quanta of sound waves. The photons are polarized in the transverse direction (in the

transverse gauge); the phonons, on the other hand, are polarized in the longitudinal direction.

38.4 Electron–phonon interaction

In this section we will consider the case where the phonons generated by the ions of density

ρb(r)undergoing longitudinal vibrations interact with the electrons.As stated in the previous

section, the Hamiltonian corresponding to the interaction of the ions and electrons is given

by

Hel−b = e2

∫
d3r′d3 r

ρel(r
′)ρb(r)e

−μ|r′j−r|

|r′ − r| (38.108)

where we have assumed the electrons to be continuously distributed and described by a

charge density ρel . The Coulomb interaction between the ions and the electrons is screened

by a parameter μ. This is not an arbitrary quantity but a physically well-defined parameter

that is inversely proportional to the lattice spacings of the ions. As we will discuss below,

this situation will be different from our previous considerations in that we will find the final

results to depend on this parameter.

Once again, we can replace

e−μ|r
′−r|

|r′ − r| →
4π

μ2
δ(3)

(
r′ − r

)
(38.109)

and obtain

Hel−b = λ
∫

d3rρel(r)ρb(r) (38.110)

where λ is related to e and μ.

To take account of the changes in the ion density due to vibrations we write the displaced

coordinates of an ion as

r′ = r + D (r) (38.111)

where D (r) corresponds to the displacement. Taking the x-component, we have

x′ = x + Dx(x, y, z). (38.112)

Therefore, the infinitesimal displacement along the x-axis is given by

dx′ = dx + ∂Dx

∂x
dx =

(
1+ ∂Dx

∂x

)
dx. (38.113)

Similar results will be obtained for the displacements along the y- and z-axes. The volume

element given by

d3r = dx dy dz (38.114)
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changes due to these displacements so that, to first order,

ρb(r) d
3r → ρb(r) d

3r = ρb(r) (1+∇ · D) d3r = [ρb(r)+ δρb(r)] d3r (38.115)

where in the last term we have written

ρb(r)∇ · D = δρb(r). (38.116)

This corresponds to the changes in the density due to the vibrational fluctuations. Separating

the contributions to Hel−b coming from the first and second terms on the right-hand side of

(38.110), we write.

Hel−b = H 0
el−b + λ

∫
d3 rρel(r)δρb(r) (38.117)

where H 0
el−b

contains the contribution ofρb(r). This contribution has already been discussed

previously and is considered as an unperturbed Hamiltonian in this problem. For the second

term we write

δρb(r) = φ(r). (38.118)

The electron density can be expressed in terms of the electron wavefunction ψ(r) by the

usual relation

ρel(r) = ψ†(r)ψ(r). (38.119)

We write

Hel−b = H 0
el−b + Hel−phonon. (38.120)

Then

Hel−phonon = λ
∫

d3 r ψ†(r)ψ(r)φ(r). (38.121)

This has the same form as the Hamiltonian for the fermion-scalar boson interaction.

At this stage, instead of invoking the full machinery of second quantization, we use

straightforward quantum mechanics to arrive at the results that will correspond to electron–

electron interaction through phonon exchange. In order to understand the consequences of

the phonon interactions, let us first consider a very similar problem of photon exchange,

that is, the Coulomb interaction, which we have already studied in Chapter 32.

38.4.1 Photon exchange

We consider the Coulomb problem involving the interaction between two electron charge

densities described by ρ
(1)
el
(r) and ρ

(2)
el
(r). The interaction Hamiltonian corresponding to

ρ
(1)
el
(r) can be written in the same form as (38.110),

Hel−photon = e

∫
d3rρ

(1)
el
(r)φe(r) (38.122)

where φe(r) is the electrostatic potential whose source is ρ
(2)
el
(r). Thus, φe(r) satisfies the

well-known equation

∇2φe(r) = −4πeρ
(2)
el
(r), (38.123)
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whose solution can be written in the Green’s function formalism as

φe(r) = φ0(r)− 4πe

∫
d3 r′G

(
r, r′

)
ρ
(2)
el
(r′) (38.124)

where φ0(r) is the homogeneous solution and G is the Green’s function that satisfies the

equation

∇2G
(
r, r′

)
= δ(3)

(
r − r′

)
. (38.125)

We are interested in the second term of (38.124), which corresponds to the Coulomb

interaction.

Equation (38.125) has been solved previously. We write it in the form of a Fourier

transform:

G
(
r, r′

)
= 1

(
√

2π)3

∫
d3k g(k)eik·(r−r′). (38.126)

We leave the Green’s function in this form and insert it on the right-hand side of (38.122)

∫
d3rρ

(1)
el
(r)φe(r) = −

4πe

(
√

2π)3

∫
d3k

[∫
d3 rρ

(1)
el
(r)eik·r

]
g(k)

[∫
d3r′ρ(2)

el
(r′)e−ik·r′

]
.

(38.127)

The terms in the square brackets are the form factors, which we discussed in Chapter 20.

Taking account of the fact that the charge density, ρ(r) (= ψ∗ψ), is positive definite, we can

designate the two form factors as F (1)(k) and F (2)∗(k), respectively. Thus, the interaction

Hamiltonian for Coulomb interaction can be written as

Hel−photon = −
4πe2

(
√

2π)3

∫
d3k F (1)(k)g(k)F (2)∗(k). (38.128)

We can now obtain g(k) from equations (38.125) and (38.126), taking note of the fact

that

δ(3)
(
r − r′

)
= 1

(2π)3

∫
d3k ei(k−k′)·r. (38.129)

We find

g(k) = − 1

(
√

2π)3

1

k2
. (38.130)

This is the Fourier transform of the Coulomb potential, which we have already considered

in this and in previous chapters. Since, as we stated earlier, the Coulomb interaction is

screened, we obtain, through our previous methods,

g(k) = − 1

(
√

2π)3

1

k2 + μ2
(38.131)

where μ is the screening parameter. Hence we obtain

Hel−photon =
4πe2

(2π)3

∫
d3k F (1)(k)

[
1

k2 + μ2

]
F (2)∗(k). (38.132)
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We identify the factor inside the square brackets as Vphoton(ee), which is in fact the Fourier

transform of the Coulomb potential,

Vphoton(ee) = 4πe2

k2 + μ2
. (38.133)

38.4.2 Phonon exchange

Let us now return to the electron–phonon interaction given by (38.121) which we write as

Hel−phonon = g

∫
d3r ρel(r)φph(r). (38.134)

Here we point out that the attractive Coulomb interaction between the electrons and the

positively charged ions generates the longitudinal vibrations in the ionic system, whose

collective modes appear as phonons. Also we note that φph(r) is the divergence of the

displacement of the charge density of the ions. The source of this displacement is ρel . The

time-dependent equation of motion of φph(r, t) is given by the wave equation

1

v
2
s

∂2φph(r, t)

∂t2
− ∇2φph(r, t) = −λρel(r, t) (38.135)

where vs is the velocity of sound, and λ is a parameter that is proportional to e. If we describe

the time dependence of the functions appearing in equation (38.135) by an oscillating

function exp(−iωt) then, after differentiating and factoring out this term, the equation

becomes
ω2

v
2
s

φph(r)+ ∇2φph(r) = λρel(r) (38.136)

where the functions now depend only on r. We can write this, once again as we did for

the photon exchange, in the Green’s function form to obtain, ignoring the homogeneous

solution,

φph(r) = λ
∫

d3r′ G
(
r, r′

)
ρel(r) (38.137)

where G
(
r, r′

)
now satisfies the equation

(
∇2 + ω

2

v
2
s

)
G
(
r, r′

)
= δ(3)

(
r − r′

)
. (38.138)

We write

G
(
r, r′

)
= 1

(
√

2π)3

∫
d3k g(k)eik·(r−r′). (38.139)

The interaction Hamiltonian becomes

Hel−phonon =
gλ

(
√

2π)3

∫
d3k F(k)g(k)F∗(k). (38.140)
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The Fourier transform g(k) can be easily obtained from (38.138) and (38.139). We find

g(k) = 1

(
√

2π)3

(
v

2
s

ω2 − v
2
s k2

)
. (38.141)

We write ωk = vsk and insert g(k) in (38.140). The Hamiltonian now reads

Hel−phonon =
gλv2

s

(2π)3

∫
d3k F(k)

(
1

ω2 − ω2
k

)
F∗(k). (38.142)

We identify the factor sandwiched between the two form factor terms in (38.142) as due to

phonon exchange between the two electrons,

gλv2
s

ω2 − ω2
k

θ (ωD − ωk) . (38.143)

We note that in (38.143) only the values ωk ≤ ωD, the Debye frequency (which is the

maximum frequency of vibration for the atoms that make up a crystal) appear since electrons

near the Fermi surface are the only ones that participate. To obtain the interaction potential

we go to the static limit, ω ≈ 0, as we did in the case of Coulomb and Yukawa interactions

in Chapter 32. Since the Debye frequency ωD is ≈ vskF , the presence of θ(ωD − ωk)

implies that the momentum transfers |k| have to be less than or of the order of the Fermi

momentum, kF . As long as we are in this region, then (38.143) is a negative constant. Thus,

in contrast to the Coulomb case the Fourier transform of the interaction potential between

the electrons through phonon–exchange is then of the form

Vphonon(ee) = −λeff θ(ωD − ωk) (38.144)

with λeff

(
= gλv2

s /ω
2
k

)
> 0. Therefore, the interaction between the electrons is attractive.

Qualitatively, this attraction arises because an electron in its motion pulls on a positively

charged ion leading to vibrations and hence to the phonons. In contrast to the electron’s

typical time period of passage, which is O(E−1
F ), the time period for the ion to go back to

its equilibrium position is O(ω−1
D ), which is generally much larger than E−1

F . Hence before

the ion goes back fully to its equilibrium position a second electron comes along and pulls

+ PhotonPhonon

Fig. 38.1
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on the ion creating, as a second-order effect, a net attraction between the first and the second

electrons.

Thus an electron pair in a Fermi sea undergoes two types of interactions, as depicted in

Fig. 38.1: (i) the normal Coulomb interaction, which is repulsive, and (ii) an interaction

through the phonon exchange, which is attractive but which is effective only near the Fermi

surface. This implies that we have

Vtotal(ee) = 4πe2

k2 + μ2
− λeff θ(ωD − ωk). (38.145)

It is found that in certain metals, near the Fermi surface, the sum of the above two terms

is negative, which creates a net attractive force between the electrons and results in the

phenomena of Cooper pairing and superconductivity.
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An electric current in a normal conductor can be thought of as a fluid made up of electrons

flowing across lattices made up of heavy ions and constantly colliding with them.The kinetic

energy of the electrons decreases with each collision, effectively being converted into the

vibrational energy of the ions. This dissipation of energy then corresponds to electrical

resistivity. It is found that the resistivity decreases as the temperature is decreased but it

never completely vanishes even at absolute zero.

In a conventional superconductor, however, the electrons occur in pairs, called Cooper

pairs, because of the attractive force generated by the exchange of phonons. If one looks

at the energy spectrum of these pairs, there is an energy gap that is the minimum of energy

needed to excite the pair. If the thermal energy (kT ) of the electrons is less than the gap

energy, then the Cooper pairs will act as individual entities and travel without undergoing

any scattering with the ions. Therefore, there will be no resistivity. Thus, in a superconduc-

tor the resistance drops abruptly to zero below a certain temperature, called the “critical

temperature.” An electric current flowing in a loop of wire consisting of a superconductor

then flows indefinitely with no resistance and without the help of any power source. Below,

we briefly describe the mechanism that gives rise to this superconductivity.

39.1 Many-body system of half-integer spins

We consider a many-body system consisting of identical fermions that group themselves

in pairs like quasiparticles where each pair consists of electrons that are degenerate in

energy but have opposite linear momenta, p and −p, as well as opposite spin directions.

For electrons in a solid, such pairs are observed and are called Cooper pairs. The interaction

between the two electrons in a pair is assumed to depend only on the distance between

them. A typical matrix element of the potential, V0, for this pairing interaction can then be

written as the Fourier transform,

1

2
a

†

l
a

†

−l
a−kak 〈l,−l |V0| k ,−k〉 (39.1)

where k and l each designate the combined quantum numbers for momentum and spin.

For example, by k we will mean momentum k and spin up, while −k will correspond to

the same quantum numbers but with opposite signs. In (39.1) momentum conservation is

explicitly taken into account.
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Here a
†
i and ai are the creation and destruction operators, respectively, for the electrons

and satisfy the commutation relations

{
ai, aj

}
=
{
a

†
i , a

†
j

}
= 0;

{
ai, a

†
j

}
= δij1. (39.2)

In the case of superconductivity there is an attractive interaction between the electrons

that form a pair (e.g., a Cooper pair) which is effective only near the surface of the Fermi

sphere in a small region δ in the k-space as indicated below. The effective Hamiltonian for

the system can be written as

H =
∑

k>0

ǫ(k)
(
a

†

k
ak + a

†

−k
a−k

)
−
∑

δ

Gkla
†

l
a

†

−l
a−kak . (39.3)

The first term corresponds to noninteracting fermions. Because of the degeneracy between

the states with k and−k we have taken out the energy term ǫ(k) as a common factor in the

first term in (39.3), which is then summed over k > 0. We note that the number operator, N ,

does not commute with H . To keep the number of particles stable we introduce the chemical

potential, μ, in the first term in H and define

ǫ(k) = ǫk − μ (39.4)

where ǫk = k2/2m is the unperturbed energy of an individual electron. The chemical

potential is then determined from the condition that the total number of particles is given

by N =
〈∑(

a
†

k
ak + a

†

−k
a−k

)〉
. In the absence of interactions, all states with ǫk < ǫF , the

Fermi energy, are occupied while the states with ǫk > ǫF are empty, so in that caseμ = ǫF .

The second term in (39.3) is the pairing interaction, which is effective only near the

Fermi surface and thus the sum runs only in the limited region designated by δ, where we

have assumed the potential to be a constant. The matrix element Gkl is proportional to the

matrix element of the potential in (39.1) and the sign of this term is chosen to be negative

to indicate attraction for positive values of Gkl .

We will obtain below the eigenstates and eigenvalues of H through nonperturbative

methods. These states are called BCS states and are fundamental to an understanding of

superconductivity observed in certain solids.

Anticipating that we will be considering the system in terms of quasiparticles formed

by pairs that are bound together, we make a simplifying assumption called the mean-field

approximation by which, at low energies, the fluctuations of the bilinear operators a−lal

from their expectation values
〈
a−lal

〉
in the quasiparticle ground state (to be defined later)

are minimal. This will allow us to reduce the problem from a four-body interaction to a two-

body interaction within each pair. We also neglect the interaction between quasiparticles.

We denote 〈
a−kak

〉
= Ck (39.5)

where we assume Ck to be real, and also equal to
〈
a

†

k
a

†

−k

〉
. We leave the precise definition

of the expectation values vague at the moment. Our approximation implies that

(
a

†

l
a

†

−l
− Cl

)
(a−kak − Ck) ≈ 0 (39.6)



721 39.1 Many-body system of half-integer spins

and, therefore,

a
†

l
a

†

−l
a−kak ≈ −ClCk + Cka

†

l
a

†

−l
+ Cla−kak . (39.7)

We also define the quantity �k as follows:

�k =
∑

l

GklCl . (39.8)

The Hamiltonian in (39.3) can be expressed in the following approximate form using

(39.6), (39.7), and (39.8):

H =
∑

k>0

ǫ(k)
(
a

†

k
ak + a

†

−k
a−k

)
+
∑

k∈δ
�kCk −

∑

k∈δ
�k

(
a−kak + a

†

k
a

†

−k

)
. (39.9)

To obtain the eigenvalues of H we make a canonical transformation, called the Bogoli-

ubov transformation, of the creation and destruction operators so that the new Hamiltonian

will correspond to a system of noninteracting particles or quasiparticles. In essence, we want

to “diagonalize” H in a manner similar to that in the two-level problems we considered

earlier. To that effect we introduce the operators αk and βk as follows:

αk = ukak − vka
†

−k
, (39.10)

βk = uka−k + vka
†

k
, (39.11)

where uk and vk are real quantities. We find that the operators αi and β i will satisfy the

usual anticommutation relations that ai’s satisfy in (39.2) provided

u2
k + v

2
k = 1. (39.12)

An important fact to keep in mind is that the operators αk and βk defined in (39.10) are

linear combinations of creation and destruction operators and, as a consequence, they do

not conserve particle number. They are more appropriate in connection with states with

quasiparticles. Let us invert the relations (39.10) and (39.11) to obtain the following, using

(39.12),

ak = ukαk + vkβ
†

k
, (39.13)

a−k = ukβk − vkα
†

k
. (39.14)

The vacuum state, |0〉 , for particles, is defined by

ai |0〉 = 0. (39.15)

We define the quasiparticle vacuum state, or quasiparticle ground state, by |0〉quasi such that

αi |0〉quasi = β i |0〉quasi = 0. (39.16)

Thus, one can consider αi and β i as quasiparticle destruction operators, while α
†
i and β

†
i

are the corresponding creation operators. The two vacuum states |0〉 and |0〉quasi and the
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relation between them, consistent with the conditions (39.13) and (39.14), are described in

(39.17):

|0〉quasi =
∏

k

(
uk + vka

†

k
a

†

−k

)
|0〉 , |0〉 =

∏

k

(
uk + vkβ

†

k
α

†

k

)
|0〉quasi . (39.17)

We note that the definition of |0〉quasi involves the product, a
†

k
a

†

−k
, corresponding to the

creation of a pair of particles with opposite quantum numbers.

We can now give a precise expression for Cl defined in (39.5) as follows:

Cl =
〈
a−lal

〉
quasi

=
∏

k ′

∏

k

〈0|
(
uk ′ + vk ′a−k ′ak ′

)
(a−lal)

(
uk + vka

†

k
a

†

−k

)
|0〉 = ulvl .

(39.18)

Hence, �k , defined in (39.8) will be given by

�k =
∑

l

Gklulvl . (39.19)

The first and the third terms in (39.9) for the Hamiltonian can be expressed in terms of

the new operators as follows:

a
†

k
ak+a

†

−k
a−k = 2v

2
k+

(
u2

k − v
2
k

) (
α

†

k
αk + β†

k
βk

)
+2ukvk

(
α

†

k
β

†

k
+ βkαk

)
, (39.20)

a−kak + a
†

k
a

†

−k
= 2ukvk − 2ukvk

(
α

†

k
αk + β†

k
βk

)
+
(
u2

k − v
2
k

) (
α

†

k
β

†

k
+ βkαk

)
.

(39.21)

Substituting (39.20) and (39.21) in (39.9), the Hamiltonian can be separated into three types

of terms as indicated below:

Unit operator (c number) → 2
∑

k

ǫ(k)v2
k −

∑

k∈δ
�kukvk .

(39.22)

Diagonal operator →
[∑

k

ǫ(k)
(
u2

k − v
2
k

)
+ 2

∑

k∈δ
�kukvk

](
α

†

k
αk + β†

k
βk

)
.

(39.23)

Nondiagonal operator →
[∑

k

2ǫ(k)ukvk −
∑

k∈δ
�k

(
u2

k − v
2
k

)](
α

†

k
β

†

k
+ βkαk

)
.

(39.24)

Expression (39.22) is a constant term that does not contain creation or destruction oper-

ators. These types of terms are often referred to as c-numbers. In this case they correspond

to the ground state of the new system, while (39.23) corresponds to the excited states of the

system. The third term, given by (39.24), is the nondiagonal part that we wish to remove.

To accomplish this we impose the condition

2ǫ(k)ukvk −�k

(
u2

k − v
2
k

)
= 0. (39.25)
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If we take

xk =
vk

uk

(39.26)

then (39.25) becomes a quadratic equation in xk . The positive solution of equation (39.25)

is given by

xk =
Ek − ǫ(k)
�k

(39.27)

where

Ek =
√
ǫ2(k)+�2

k
. (39.28)

Since �2
k
= E2

k
− ǫ2(k), we find

x2
k =

(Ek − ǫ(k))2
E2

k
− ǫ2(k)

= Ek − ǫ(k)
Ek + ǫ(k)

. (39.29)

Hence,

u2
k =

1

2

(
1+ ǫ(k)

Ek

)
= 1

2

⎛
⎜⎝1+ ǫ(k)√

ǫ2(k)+�2
k

⎞
⎟⎠ , (39.30)

v
2
k =

1

2

(
1− ǫ(k)

Ek

)
= 1

2

⎛
⎜⎝1− ǫ(k)√

ǫ2(k)+�2
k

⎞
⎟⎠ . (39.31)

From (39.28), (39.30), (39.31), and (39.19) we obtain the following expression for �k :

�k =
1

2

∑

l

Gkl�l√
ǫ2(l)+�2

l

. (39.32)

This is called the “gap equation” and�k is called the gap function. It is a nonlinear integral

equation (when the sum is converted to an integral).

Finally, after removing the off-diagonal term, the Hamiltonian can be expressed in the

following simple form:

H = 2
∑

k>0

ǫ(k)v2
k −

∑

k∈δ
�kukvk +

∑

k>0

Ek

(
α

†

k
αk + β†

k
βk

)
. (39.33)

The ground-state energy of the quasiparticle system is given by the first two terms. The

energy spectrum of the quasiparticle excited states is given by

Ek =
√
ǫ2(k)+�2

k
. (39.34)

If the pair interaction potential is further simplified to

Gkl = G (39.35)
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then �k is a constant (= �) given by

� = G
∑

k

ukvk . (39.36)

where the index of summation is changed from l, which was used in (39.8) and (39.19), to

k . The Hamiltonian can now be rewritten as

H = 2
∑

k>0

ǫ(k)v2
k −

�2

G
+
∑

k∈δ
Ek

(
α

†

k
αk + β†

k
βk

)
(39.37)

and the relation (39.32) simplifies to

1 = G

2

∑

k∈δ

1√
ǫ2(k)+�2

. (39.38)

Let us now consider two separate cases: (1) � = 0, and (2) � � =0.

39.2 Normal states (� = 0,G �= 0)

The relations (39.30) and (39.31) for � = 0 are given by

u2
k =

1

2

(
1+ ǫ(k)√

ǫ2(k)

)
, (39.39)

v
2
k =

1

2

(
1− ǫ(k)√

ǫ2(k)

)
. (39.40)

From (39.36) we note that since G �= 0 we have two possibilities: (i) uk = 0 or (ii) vk = 0.

Let us consider, specifically, the energies ǫk < μ, i.e.,
√
ǫ2(k) = −ǫ(k). Therefore, from

(39.39) and (39.40),

uk = 0 and vk = 1. (39.41)

For this case the quasiparticle ground state obtained by putting the above values in (39.17)

is given by

|0〉quasi =
∏

ǫk<μ

a
†

k
a

†

−k
|0〉 , (39.42)

which corresponds to energy levels being filled in pairs up to the Fermi level ǫk = μ. From

(39.37), the expectation value of the energy is then given by

〈0 |H | 0〉quasi = 2
∑

ǫk<μ

ǫ(k). (39.43)

To obtain excited states for � = 0 we operate on |0〉quasi with α
†

k
to obtain

α
†

k
|0〉quasi =

(
uka

†

k
− vka−k

)
|0〉quasi , (39.44)
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which corresponds to adding a particle of energy ǫ(k) if ǫk > μ, therefore, uk = 1, vk = 0;

or removing a particle (or creating a hole) if ǫk < μ , therefore, vk = 1, uk = 0. The result

is that we effectively add an amount |ǫ(k)| to the ground-state energy. For this reason, the

states with � = 0 are called normal states since they are consequences of perturbation on

noninteracting particles.

Let us now consider the states with � � =0.

39.3 BCS states (� �= 0)

These are the nontrivial solutions called superconducting or BCS solutions. We note from

the relation (39.37) involving� that, if the interaction is sufficiently attractive, that is, if G

is large enough so that
G

2ǫ(k)
> 1, (39.45)

then it will have a solution for nonzero values of�. The quasiparticle states for� � =0 are

the so-called BCS states.

39.3.1BCS ground state

The ground-state energy, which we call EBCS , is given by the first two terms of (39.33),

EBCS = 2
∑
ǫ(k)v2

k −
∑
�kukvk (39.46)

where uk and vk are given by (39.30) and (39.31), respectively. Substituting the expressions

for uk and vk and taking �2
k
= E2

k
− ǫ2(k), we obtain

EBCS = −
∑ (Ek − ǫ(k))2

2Ek

< 0. (39.47)

Let us examine the dependence of EBCS on uk and vk . We note that

〈0| a†

k
ak |0〉quasi = v

2
k . (39.48)

Therefore, v
2
k

is the distribution function for the quasiparticles. We find from (39.30) and

(39.31) that deep inside the Fermi sea, where ǫ(k) = − |ǫ(k)| and |ǫ(k)| ≫ �k , we have

|ǫ(k)| /Ek ∼ 1 and, therefore, v
2
k
∼ 1 (see Fig. 39.1). This implies that in this region

EBCS ∼ 2ǫ(k), which corresponds to a pair of particles occupying energy levels with

quantum numbers (k ,−k). In the transition interval � across the Fermi surface, v
2
k

begins

to drop and goes to zero while u2
k

approaches 1. The sharp Fermi surface that we saw for

� = 0 is now smeared over the range �.

We note that the condition

N =
∑

k

〈0| a†

k
ak + a

†

−k
a−k |0〉quasi = 2

∑

k

v
2
k (39.49)

will determineμ, the chemical potential. It can be readily shown that if� = 0 thenμ = ǫF .
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G = 0

vk
2  

1

µ ε(k )

G ≠ 0

Fig. 39.1

39.3.2Excited states and the gap function

The operators α
†

k
and β

†

k
create quasiparticle excited states. Their eigenstates are given by

α
†

k
|0〉quasi and β

†

k
|0〉quasi , (39.50)

respectively. The energy of these excited states is given by

Ek =
√
ǫ2(k)+�2

k
. (39.51)

Near the Fermi surface where ǫ(k) ≈ 0, the excitation energy is

Ek = �k . (39.52)

This is the famous “gap” between the ground state and the first excited state of

the quasiparticles that describes the BCS system. The existence of this gap leads to

superconductivity.

The magnitude of� can be estimated from relation (39.38) if we assume that the electron

states near the Fermi surface are densely packed so that the summation in (39.38) can be

replaced by an integral as follows:

∑

k∈δ

1√
(ǫk − μ)2 +�2

→
∫

dǫkρ (ǫk)√
(ǫk − μ)2 +�2

(39.53)

where ρ (ǫk) is the energy density of states near the Fermi surface. The pair interaction

operates only in the narrow region in the ǫk -space, which we assume to be symmetric

around μ, i.e., (reinstating � temporarily) in the region −�ω < (ǫk − μ) < �ω where ω is

typically the Debye frequency. Relation (39.38) can then be written as

1 = G

∫
�ω

0

dερ (ε + μ)√
ε2 +�2

≃ Gρ (μ)

∫
�ω

0

dε√
ε2 +�2

(39.54)

where we have assumed that the density is essentially a constant given by its central value

ρ (μ). Since ∫
�ω

0

dε√
ε2 +�2

= sinh−1

(
�ω

�

)
(39.55)
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we obtain
1

Gρ (μ)
= sinh−1

(
�ω

�

)
. (39.56)

Since it is found that Gρ (μ)≪ 1, we conclude that

� ≈ 2�ωe−1/ρ(μ)G . (39.57)

Thus the gap is very small, smaller than �ω. This gap that separates the BCS ground state

from the excited states is at the basis of the observed superconductivity.

It is important to point out that G = 0 corresponds to an essential singularity in the

solution given by (39.57). Thus, we could not have used perturbation theory, which is based

on the assumption that the coupling parameter G is small.

39.4 BCS condensate in Green’s function formalism

We describe below a rather elegant method to obtain the results we derived in the previous

section through the Green’s function technique. This formalism will also be helpful when

we discuss the mechanism of spontaneous symmetry breaking in Chapter 42.

We will follow basically the same dynamics as described in the previous section, except

that we will be working within the framework of (nonrelativistic) Lagrangian field theory.

The Lagrangian density for free electrons has already been obtained in Chapter 25. It is

given by (� = c = 1)

L0 = iψ†(x)
∂

∂t
ψ(x)+ ψ†(x)

∇2

2m
ψ(x) (39.58)

where x = (r, t), and ψ(x), written in the Heisenberg representation, is the electron field

in the nonrelativistic limit. The Lagrangian density relevant to the problem of the pair

interaction in superconductivity is

L = L0 +
g

2
ψ† (x) ψ

†
β (x) ψβ (x) ψ (x) (39.59)

where the index β corresponding to the spin is summed. The second term on the right

corresponds to the four-Fermi interaction. Including the chemical potential, μ, the total

Lagrangian is given by

L(ψ ,ψ†) = iψ† ∂

∂t
ψ + ψ†

(
∇2

2m
+ μ

)
ψ + g

2
ψ† (x) ψ

†
β (x) ψβ (x) ψ (x) . (39.60)

The four-Fermi term represents the interaction, which is assumed to be effective near the

Fermi surface. When the coupling, g, becomes large, this interaction leads to the formation

of a bound state between the electrons. That is, it leads to what is called a “condensate” in

the electron pair.
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The equation of motion for ψα is obtained from (39.60) through Euler–Lagrange

equations in the manner described in Chapter 25, and is given as follows

i
∂

∂t
ψα (x)+

(
∇2

2m
+ μ

)
ψα (x)+ gψ

†
β (x) ψβ (x) ψα (x) = 0. (39.61)

The BCS approximation of the previous section will correspond here to replacing the bilinear

operator ψβ(x)ψα(x) by its vacuum expectation value,

gψβ (x) ψα (x)→ g
〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉
= Mǫαβ (39.62)

where ǫαβ is an antisymmetric tensor to reflect the fact thatψα (x) andψβ (x) anticommute.

Since one can write ψ (x) = e−iP.xψ (0) eiP.x, using the translational operator P, and since

vacuum is invariant under translation, M is a constant. It is called the “order parameter,”

which plays a fundamental role in the formation of condensates. Equation (39.61) now

reads

i
∂

∂t
ψα (x)+

(
∇2

2m
+ μ

)
ψα (x)+Mǫαβψ

†
β (x) = 0. (39.63)

Equation (39.63) involves two fields, ψα(x) and ψ
†
β(x). We obtain a second equation

by taking the Hermitian conjugate of (39.63), interchanging α and β, and multiplying the

resulting equation by a minus sign:

i
∂

∂t
ψ

†
β (x)−

(
∇2

2m
+ μ

)
ψ

†
β (x)−M ∗ǫβαψα (x) = 0. (39.64)

Let us express ψα (x) and ψ
†
α (x) in terms of their Fourier components,

ψα (x) =
1

(
√

2π)4

∫
dω

∫
d3p ei(p·r−ωt)uα (ω, p) (39.65)

and its Hermitian conjugate

ψ†
α(x) =

1

(
√

2π)4

∫
dω

∫
d3pe−i(p·r−ωt)u†

α (ω, p) . (39.66)

We make the transformation, ω→−ω and p →−p in (39.66) and interchange the limits

of the integration to obtain

ψ†
α(x) =

1

(
√

2π)4

∫
dω

∫
d3p ei(p·r−ωt)u†

α (−ω,−p) . (39.67)

We now solve for the two fields in terms of the two-level matrix

!α =
(
ψα

ψ
†
α

)
, (39.68)
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which can be expressed in terms of the Fourier components (39.65) and (39.67) as

(
ψα

ψ
†
α

)
= 1

(
√

2π)4

∫
dω

∫
d3p ei(p·r−ωt)

(
uα (ω, p)

u
†
α (−ω,−p)

)
. (39.69)

Substituting (39.69) for the individual fields in the two coupled equations (39.63) and

(39.64), we obtain the following matrix relation for the Fourier components uα(ω, p) and

u
†
α(−ω,−p)

⎛
⎜⎝
ω +

(
μ− p2

2m

)
M

M ∗ ω −
(
μ− p2

2m

)

⎞
⎟⎠
(

uα (ω, p)

u
†
α (−ω,−p)

)
= 0. (39.70)

The determinant of the 2× 2 matrix above must vanish. Hence,

ω2 −
(
μ− p2

2m

)2

− |M |2 = 0. (39.71)

Taking the positive root we obtain the energy eigenvalue

ω =
√
ǫ2(p)+ |M |2 (39.72)

where

ǫ(p) =
(

p2

2m
− μ

)
. (39.73)

Thus we find that because of the presence of the order parameter, M , the system has a

bound state or a condensate at

√
ǫ2(p)+ |M |2. Hence, M plays the same role as the gap

parameter, �, which we discussed in the previous section.

Let us now obtain M through the Green’s function formalism for the equations (39.63)

and (39.64). Since both ψ(x) and ψ†(x) are involved in our equations, we express the

Green’s function in terms of the doublet as given by (39.70) and write

Gαβ(x) = −i
〈
0

∣∣∣T (!α(x)!†
β(0))

∣∣∣ 0
〉

(39.74)

where |0〉 stands for the quasiparticle vacuum. Thus Gαβ(x) has the following matrix form:

Gαβ (x) = −i

⎛
⎜⎝

∣∣∣∣∣∣∣

〈
0

∣∣∣T
(
ψα (x) ψ

†
β (0)

)∣∣∣ 0
〉 〈

0
∣∣T

(
ψα (x) ψβ (0)

)∣∣ 0
〉

〈
0

∣∣∣T
(
ψ

†
α (x) ψ

†
β (0)

)∣∣∣ 0
〉 〈

0

∣∣∣T
(
ψ

†
α (x) ψβ (0)

)∣∣∣ 0
〉

∣∣∣∣∣∣∣

⎞
⎟⎠ . (39.75)

We can write this in a slightly simpler form as

Gαβ (x) =
(

Aαβ (x) Bαβ (x)

B
†
αβ (x) A

†
αβ (x)

)
. (39.76)
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As usual it is best to work with the Fourier transform, which is given by

Gαβ (x) =
1

(2π)4

∫
dω

∫
d3p ei(p·r−ωt)Gαβ (ω, p) . (39.77)

Expressing the individual matrix elements on the right-hand side of (39.76) in a form similar

to (39.77), we have

Gαβ (ω, p) =

⎛
⎝

Aαβ (ω, p) Bαβ (ω, p)

B
†
αβ (−ω,−p) A

†
αβ (−ω,−p)

⎞
⎠ . (39.78)

For a single-channel problem where the equation for a function ψ is given by

Lψ = f , (39.79)

the Green’s function is expressed as L−1. If it is a coupled-channel problem, then the

equation for ψ is

Lijψ j = fi (39.80)

where i, j = 1, 2 and a summation over j is implied. Hence, if we write this in the matrix

form we have

Lψ = f (39.81)

where L is now a 2 × 2 matrix while ψ and f are column matrices. The Green’s function

then is a 2× 2 matrix that is the inverse of L, i.e.,

G = L−1. (39.82)

We can determine G given by (39.78) by identifying its matrix elements with the inverse

of the operator L, i.e., with the inverse of the matrix on the left side of (39.70),

⎛
⎝

Aαβ (ω, p) Bαβ (ω, p)

B
†
αβ (−ω,−p) A

†
αβ (−ω,−p)

⎞
⎠ =

(
[ω − ǫ(p)] δαβ Mǫαβ

M ∗ǫαβ [ω + ǫ(p)] δαβ

)−1

.

(39.83)

Thus

Aαβ (ω, p) = [ω + ǫ (p)] δαβ
ω2 − |M |2 − ǫ2 (p)+ iǫ

(39.84)

and

Bαβ (ω, p) = −Mǫαβ

ω2 − |M |2 − ǫ2 (p)+ iǫ
. (39.85)

In the definition

g
〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉
= Mǫαβ (39.86)

we can let x → 0 since M is independent of x and utilize the relations (39.75) and (39.76)

to obtain

Mǫαβ = g lim
x→0

〈
0
∣∣T (ψβ (x) ψα (x))

∣∣ 0
〉
= −igBαβ(0). (39.87)
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Since

Bαβ (x) =
1

(2π)4

∫
dω

∫
d3p ei(p·r−ωt)Bαβ (ω, p) , (39.88)

putting x = 0 in (39.88) and inserting the expression (39.85) for Bαβ (ω, p) on the right-hand

side we obtain

1 = ig

(2π)4

+∞∫

−∞
dω

∫
d3p

1

ω2 − |M |2 − ǫ2 (p)+ iǫ
. (39.89)

Using complex integration techniques we can evaluate the integral in ω by noting that the

integrand has poles at

√
ǫ2(p)+ |M |2− iǫ′ and−

√
ǫ2(p)+ |M |2+ iǫ′, where ǫ′ is related

to ǫ. One can use Cauchy’s residue theorem to evaluate this integral by completing the

contour that includes the real axis and a contour along either the upper or lower half-plane.

We obtain

1 = g

16π3

∫
d3p

1√
ǫ2(p)+ |M |2

(39.90)

where we note that ǫ(p) = p2/2m− μ. Henceforth we will write ǫ(p) = ǫ.
To carry out the above integration we first express d3p in terms of the energy density of

the Fermi levels, which is given by

ρ = dN

VdE
(39.91)

near the Fermi surface, where V is the volume and N is the number of states. Since

dN = 2
d3pV

(2π)3
(39.92)

we have

d3p = 4π3ρdǫ (39.93)

where we have substituted E = ǫ. Hence, (39.90) can be expressed as an integral over dǫ.

We note that the interaction responsible for the formation of the condensate (i.e., the bound

Cooper pair) is confined to a very small region near the Fermi surface,−�ω/2 < ǫ < �ω/2,

whereω is the Debye frequency. The relation (39.90) can be written, by shifting the integral,

as

1 = g

2
ρ

∫
�ω

0

dǫ
1√

ǫ2 +M 2
. (39.94)

If we identify (g/2) which appears in the Lagrangian (39.59) as G in Section 39.3, then we

recover the relation (39.54) with the result

M = 2�ωe
− 2

gρ . (39.95)



732 Superconductivity

39.5 Meissner effect

Let φs(x) be a scalar wavefunction describing a Cooper pair of charge 2e and mass 2m in

a superconductor. It is related to the order parameter

〈
0
∣∣ψα (x) ψβ (x)

∣∣ 0
〉
, (39.96)

which for certain interactions can be shown to be a function of x.

According to Landau theory of phase transitions, φs(x) vanishes for temperatures above

the critical temperature Tc and is nonzero below Tc, where we write it in a rather simplified

form as

φs(x) =
√

ns (39.97)

where ns= (
∣∣φs(x)

∣∣2) is the density of the Cooper pairs, assumed to be essentially a constant.

In general, φs(x) has a phase that we will assume to be zero.

As we have previously determined, for a particle of charge e and mass m, the

electromagnetic current, is given by

j = e

2m

[
φs
∗(x) (−i∇ − eA) φs + c.c.

]
(39.98)

where A is the vector potential. The supercurrent, js, corresponding to a Cooper pair of

charge 2e and mass 2m, is given by

js =
e

2m

[
φ∗s (x) (−i∇ − 2eA) φs + c.c.

]
. (39.99)

Since φs in (39.97) is assumed to be a constant, the ∇ operator in (39.99) will not contribute

and we obtain

js = −
2e2

m
nsA. (39.100)

If we take the curl of both sides and use the fact that the magnetic field B is given by

B = ∇ × A, we obtain

∇ × js = −
2e2

m
nsB. (39.101)

This is the well-known London equation in condensed matter physics.

We can now implement the relation

∇ × B = 4π

c
j (39.102)

from Maxwell’s equation and obtain, from (39.101),

∇ ×∇ × B = −k2B (39.103)

where

k2 = 8πe2ns

mc
. (39.104)
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From the relation ∇×∇× B = ∇(∇ · B)−∇2B we note that since ∇ · B = 0, according

to Maxwell’s equations, the left-hand side of (39.103) is (−∇2B). Therefore,

∇2B = k2B. (39.105)

This is the wave equation for B.

If B is a function of z alone, and the superconducting surface is parallel to the x−y plane,

then the above equation becomes

d2B

dz2
= k2B. (39.106)

Since ∇ · B = 0, the z-component, Bz , of B is a constant. Substituting Bz(= constant) in

(39.106), we find that the left-hand side will vanish and hence also the right-hand side, i.e.,

we have Bz = 0. The solution of (39.106) is then

B (z) = B0e−kz (39.107)

where B0 is a constant vector in the x−y plane. Thus, B decreases exponentially along the

z-direction, with a penetration depth of (1/k), implying that the magnetic field is expelled

in a superconductor.

This phenomenon is called the Meissner effect.

Elaborating on (39.106) and (39.107), we note that if we consider the Klein–Gordon

equation for a particle of mass m described by a field φ, then it satisfies the equation

−∂
2φ

∂t2
+ ∇2φ = μ2φ. (39.108)

If we take the static limit, ∂φ/∂t ≈ 0, and assume φ (= φ(z)) as a function of z alone, then

we obtain
d2φ

dz2
= μ2φ. (39.109)

The solution of (39.109), finite at z = ∞, is given by

φ = φ0e−μz. (39.110)

Thus, the Meissner effect corresponds to the Maxwell field becoming massive with a

mass k . As we will discuss in Chapter 42, this is the nonrelativistic analog of the Higgs

mechanism in which a zero-mass vector particle becomes massive.

39.5.1 Ginzburg–Landau equation

The Ginzburg–Landau equation is an equation for the wavefunction of the condensate, φs,

the order parameter, which describes the macroscopic properties of a superconductor. It

is based on the Landau theory of second phase transitions and minimization of the free

energy of a superconducting state. The G-L equation in the presence of a magnetic field,

B(= ∇ × A) is given by

1

2m
(−i∇ − 2eA)2 φs + aφs + b

∣∣φs

∣∣2 φs = 0. (39.111)
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This is actually a phenomenological equation with a and b as the (temperature-dependent)

parameters, but it can be related to the BCS theory. Clearly it is a nonlinear equation and

therefore the solutions are quite complicated.

In the absence of any magnetic field and for a homogeneous system, so that the ∇ operator

can be neglected, the equation is quite simple:

aφs + b
∣∣φs

∣∣2 φs = 0, (39.112)

which can be written as (
a+ b

∣∣φs

∣∣2
)
φs = 0. (39.113)

There is a trivial solution

φs = 0, (39.114)

which corresponds to a normal conductor. But there is another solution

∣∣φs

∣∣2 = −a

b
. (39.115)

If a < 0 with b positive then we have a nontrivial solution corresponding to a non-zero-order

parameter. This describes the superconductor state. One writes the temperature dependence

of a as

a(T ) = 0, T > Tc, (39.116)

= a0 (T − Tc) , T < Tc, (39.117)

with a0 as a positive constant. If we take b as a positive constant, then for T > Tc we have

a normal conductor while for T < Tc we have a superconductor. Thus, Tc is considered a

transition temperature for the superconducting phase.

Interestingly, if one considers the G-L equation in one dimension, then in the absence of

a magnetic field, but without assuming a homogeneous medium, one can obtain an exact

solution which is given by

φs(x) = φs(0) tanh
(

x√
2ξ

)
(39.118)

where

ξ =
(

1

2ma(T )

) 1
2

. (39.119)

This is called the G-L coherence length.

What we have discussed above are some of the elementary aspects of the G-L equation,

but it has many profound implications not only for superconductivity but for many areas in

physics.
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39.6 Problems

1. Start with the equation for the Cooper pair,

(H0 + V ) |ψ〉 = E |ψ〉

where |ψ〉 is the pair state vector in terms of free two-particle states
∣∣φk

〉
with energy

2ǫk ′(measured relative to ǫF ′)

|ψ〉 =
∑

k

ak

∣∣φk

〉
.

If 〈
φk ′

∣∣V
∣∣φk

〉
= λ = constant

show that

ak = −
λ
∑

k ′ ak ′

(2ǫk ′ − E)
.

Summing both sides over k , show that one obtains the relation

1 = −λ
∑

k ′

1

(E − 2ǫk ′)
.

Determine the sign of λ for which there will be a solution. Express the above sum as an

integral, and compare it with the result.

2. Show that the BCS Hamiltonian (39.9), apart from some c-number contributions, can

be written for a specific k-value as a two-level problem.

[
a

†

k
a−k

] [
ǫ(k) −�
−� −ǫ(k)

][
ak

a
†

−k

]

where � = �k . Diagonalize this matrix by writing

[
ak

a
†

−k

]
=
[

cos θ sin θ

− sin θ cos θ

][
αk

β
†

k

]

with eigenvalues E+, E−. Show that one obtains

cos θ = uk , sin θ = vk and E+ = Ek .

Determine E−.
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Bose–Einstein condensation

and superfluidity

When a collection of bosons (particles of integer spin) in a condensed matter system are

cooled to temperatures near absolute zero, then as a phenomenon driven largely by Bose

statistics of the particles and not by their interactions, one finds that a large fraction of

the particles collapse into the lowest state, the ground state of the system. At this stage

they form a single entity, a condensate, whose quantum properties can be apparent on

macroscopic scales. We determine the ground-state energy and also calculate the energy

of quasiparticles that arise from the multiparticle dynamics. We also briefly describe the

phenomenon of superfluidity.

40.1 Many-body system of integer spins

40.1.1 Ground state and quasiparticles

Consider a system of N bosons interacting through a potential given by V0

(∣∣ri − rj

∣∣) in

a coordinate representation that depends only on the magnitude of the relative separation

between the particles. We write the total Hamiltonian in the second quantized form as

H =
∑
ǫka

†

k
ak +

1

2

∑
a

†

k1
a

†

k2
ak ′2

ak ′1

〈
k1k2 |V0| k′2k′1

〉
(40.1)

where the first term corresponds to the unperturbed Hamiltonian, with ǫk the kinetic energy

given by

ǫk =
k2

2m
where k = |k| , (40.2)

and the second term is the interaction term.

The boson creation and destruction operators satisfy the usual commutation relations[
a

†
i , aj

]
= δij,

[
ai, aj

]
= 0 =

[
a

†
i , a

†
j

]
, where i and j go over positive and negative values.

We write H in the following simplified form:

H =
∑
ǫka

†

k
ak + λ0

′∑
a

†

k ′1
a

†

k ′2
ak2

ak1
, (40.3)

λ0 =
v0

2V
, (40.4)
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with v0 the Fourier transform of V0, assumed to be a constant, and V the volume of integra-

tion. The symbol
′∑

implies that the sum is to be carried out according to the conservation

relation k1 + k2 = k′1 + k′2.

The ground state of a collection of noninteracting, or weakly interacting, bosons is effec-

tively a condensate of all the particles occupying their lowest energy states with ki ≈ 0. This

corresponds to Bose–Einstein condensation. Thus, the condensed particles are in a single

quantum state, all with zero momentum, while the normal particles have nonzero momenta.

If the interaction between the bosons is repulsive, then one will detect the presence of

quasiparticles. We will discuss these properties below.

We are interested in the eigenvalues of H . We assume that the interaction is weak and the

number of particles, N0, in the condensate is close to the total number, N , of the particles.

Moreover, since we will be interested in low-energy eigenvalues, the contributions coming

from the terms with ki ≈ 0 will dominate the second term in (40.3). Hence the terms with

a0 and a
†
0 will be dominant. Their contributions to H , however, appear as a0/V and a

†
0/V .

We will consider this problem in the thermodynamic limit N → ∞ (and N0 → ∞) and

V →∞ with N/V = n, which is assumed to be finite. Since a
†
0a0 = N0, we can assume

that both a0 and a
†
0 are ∼ N 1/2 in this limit. We also note that

1

V

[
a0, a

†
0

]
= 1

V
→ 0 as V →∞. (40.5)

The leading contributions to the interaction term in (40.3) will then come from

(
a

†
0

)2
(a0)

2 +
(
a

†
0

)2
aka−k + a

†

k
a

†

−k (a0)
2 + a

†
0a

†

k
aka0 + a

†

k
a

†
0a0ak

+ a
†
0a

†

−k
a−ka0 + a

†

−k
a

†
0a0a−k . (40.6)

The second term in (40.3) can be written as

′∑
a

†

k ′1
a

†

k ′2
ak2

ak1
= N 2 + N

∑

k � =0

[
a

†

k
a

†

−k
+ aka−k + 2a

†

k
ak + 2a

†

−k
a−k

]
. (40.7)

The Hamiltonian, H , is now given by

H = N 2λ0 +
∑

k

(ǫk + 2Nλ0) [a†

k
ak + a

†

−k
a−k ] + Nλ0

∑

k � =0

[
a

†

k
a

†

−k
+ aka−k

]
. (40.8)

In order to obtain the energy eigenvalues we will diagonalize H , and for that purpose we

make the following transformation, known as the Bogoliubov canonical transformation:

ak = ukbk + vkb
†

−k
, a

†

k
= ukb

†

k
+ vkb−k (40.9)

where we take uk and vk to be real. If we assume that bi, b
†
i satisfy the same commutation

relations as ai, a
†
i , then the following relation holds:

u2
k − v

2
k = 1. (40.10)
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Substituting (40.9) for ak and a
†

k
in (40.8) and, setting the coefficient of the off-diagonal

element,
(
b

†

k
b

†

−k
+ bkb−k

)
, to zero, we obtain

(ǫk + 2Nλ0) ukvk + Nλ0

(
u2

k + v
2
k

)
= 0. (40.11)

We take xk = vk/uk , and note from (40.10) that |xk | < 1. The solution of equation (40.11)

is then

xk =
− (ǫk + 2Nλ0)+

√
ǫ2

k
+ 4ǫkNλ0

2Nλ0
. (40.12)

The relations (40.9) can now expressed in terms of xk as

ak =
bk + xkb

†

−k√
1− x2

k

, a
†

k
= b

†

k
+ xkb−k√
1− x2

k

. (40.13)

Changing k →−k in the second relation of (40.13) and solving for bk and b
†

−k
, one can

invert these relations to obtain

bk =
ak − xka

†

−k√
1− x2

k

, b
†

k
= a

†

k
− xka−k√
1− x2

k

(40.14)

where in the second relation of (40.13) we reverted−k → k . As we will see below, bk and

b
†

k
act like creation and destruction operators of the quasiparticles.

We note that since ǫk = 0 for k = 0, the first summation in H in (40.8) will correspond

to k � =0, as will the second summation:

H = N 2λ0 +
1

2

∑

k � =0

(ǫk + 2Nλ0)

(
a

†

k
ak + a

†

−k
a−k

)
+ Nλ0

∑

k � =0

[
a

†

k
a

†

−k
+ aka−k

]
.

(40.15)

Ignoring the off-diagonal terms of the type b
†

k
b

†

−k
, etc., which vanish, as already arranged,

we obtain from (40.13)

a
†

k
ak + a

†

−k
a−k =

(
1+ x2

k

1− x2
k

)(
b

†

k
bk + b

†

−k
b−k

)
+
(

2x2
k

1− x2
k

)
(40.16)

where we have used the relation
[
b

†

k
, bk

]
= 1,

[
b

†

−k
, b−k

]
= 1 with all other commutators

of b’s vanishing. Similarly, we obtain

a
†

k
a

†

−k
+ aka−k =

(
2xk

1− x2
k

)(
b

†

k
bk + b

†

−k
b−k

)
+
(

2xk

1− x2
k

)
(40.17)

where the quantities in the second term on the right-hand sides of (40.16) and (40.17) are

supposed to be multiplied by a unit operator. Substituting these in (40.15) and taking account
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of the relation for xk in (40.12), we find

H = E0 +
1

2

∑

k � =0

ǫ(k)
(
b

†

k
bk + b

†

−k
b−k

)
(40.18)

where E0 is the ground-state energy, and

ǫ(k) =
√
ǫ2

k
+ 4ǫkNλ0, (40.19)

which is then the energy of the excited state, a quasiparticle. As indicated earlier, bi and b
†
i

are the destruction and creation operators for these states. The ground state, E0, corresponds

to

E0 = N 2λ0 −
∑

k � =0

[(
x2

k

1− x2
k

)
ǫ(k)

]
. (40.20)

We can remove the factor 1/2 in the second term of (40.18) by writing

H = E0 +
∑

k � =0

ǫ(k) b
†

k
bk . (40.21)

Simplifying (40.20) further we obtain

E0 = N 2λ0 +
1

2

∑

k � =0

[ǫ(k)− (ǫk + 2Nλ0)] . (40.22)

Let us define the quasiparticle ground state, or quasiparticle vacuum |0〉quasi, as

bk |0〉quasi = 0. (40.23)

Then the ground-state energy is given by

〈0 |H | 0〉quasi = E0 = N 2λ0 +
1

2

∑

k � =0

[ǫ(k)− (ǫk + 2Nλ0)] . (40.24)

The quasiparticle number distribution in the ground state is given by

nk =
〈
0

∣∣∣ a
†

k
ak

∣∣∣ 0
〉
quasi

= v
2
k

〈
0

∣∣∣ bkb
†

k

∣∣∣ 0
〉
quasi

= v
2
k (40.25)

where we have used the canonical relation (40.9). From the relation (40.10) and (40.12) we

find that for k → 0,

v
2
k ≃

Nλ0√
4ǫkNλ0

∼ 1

k
, (40.26)

while as k →∞,

v
2
k ≃

ǫ2
k

N 2λ2
0

∼ 1

k4
. (40.27)
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Finally, we note that as for the BCS theory, in Bose–Einstein condensation we also have

an order parameter and a condensate wavefunction. This wavefunction is governed by a

nonlinear equation called the Gross–Pitaevskii equation, which is similar to the Ginzburg–

Landau equation we considered earlier.

40.2 Superfluidity

A classic example of a superfluid is the helium-4 atom 4H, which has spin zero and which

remains a liquid even at absolute zero.

Let us now consider ǫ(k), the energy of the quasiparticle. Since ǫk = k2/2m, the behavior

of ǫ(k) for small k is given by

ǫ(k) ≈
√

4ǫkNλ0 =
(√

2Nλ0

m

)
k . (40.28)

We note that λ0 must be positive for the quasiparticle energy to be real, which implies that

the interaction between the particles must be repulsive.

The linear behavior ǫ(k) ∼ k at low energies is a characteristic feature of the quasipar-

ticles, which is to be compared with the energy dependence of the free particles, ǫk ∼ k2.

This result is at the core of a remarkable phenomenon called superfluidity in which cer-

tain liquids, e.g., liquid helium at low temperatures, suffer no friction in going through

capillaries; that is, they exhibit no viscosity. We discuss this property below.

Let us define

min
ǫ(k)

k
= vc (40.29)

where vc is called the critical velocity. We find from (40.28) that the quasiparticle spectrum

satisfies the relation

vc > 0. (40.30)

Note that for a noninteracting system with

ǫ(k) = k2

2m
(40.31)

we have vc = 0 and hence no excitations occur.

To understand superfluidity we follow an argument due to Landau. Consider a liquid

moving through a capillary with a constant velocity v. In a frame moving with the fluid,

where the fluid is at rest, the capillary wall moves with velocity −v. The friction between

the wall of the tube and the fluid can cause excitations in terms of the quasiparticles in the

liquid by transforming the kinetic energy to internal energy. Let one of the quasiparticles

generated have a momentum k and energy ǫ(k). Transforming back to the laboratory frame

where the tube is now at rest, this fluid will have the energy

E′ = E + [ǫ(k)+ k · v] (40.32)
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vmin 

k

ε(k)

Fig. 40.1

where E′ and E are final and initial energies. If no excitation is present, the energy of

the fluid is E. The presence of excitations causes this energy to change by the amount

(ǫ(k) + k · v). Since the energy of the flowing liquid decreases due to friction, we must

have

ǫ(k)+ k · v < 0. (40.33)

We note that

ǫ(k)+ k · v ≥ ǫ(k)− kv. (40.34)

It follows, therefore, that if quasiparticles satisfy the property

v >
ǫ(k)

k
(40.35)

then friction will occur. However, the term on the right-hand side is the critical velocity

defined in (40.29). Therefore, friction will occur when v > vc.

If, however, 0 < v < vc then the velocity will be in the gap where it is positive and yet

below the threshold for creating quasiparticles. The fluid will then move through the tube

without dissipation. In other words, the liquid will exhibit superfluidity.

The curve for ǫ(k) for liquid helium is sketched in Fig. 40.1. There are two values of k

where ǫ/k is a minimum, at k = 0 and k = k1. The minimum at k = 0 corresponds to low

temperatures At such temperatures superfluidity occurs when

v < v0 =
dǫ(k)

dk
|k=0. (40.36)

For slightly larger temperatures there is a minimum at k1 and superfluidity occurs for

v < v1 =
dǫ(k)

dk
|k=k1

. (40.37)

The quasiparticle excitations at k1 are called rotons.

Finally, we note that for large values of k the quasiparticle energy given by (40.19) returns

to the normal behavior, ǫ (k) ∼ k2.
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40.3 Problems

1. Consider two identical bosons of mass m undergoing harmonic oscillator motion each

with spring constant K . Determine the energy eigenvalues of the system if the two

particles interact via the following potentials:

(i) V (x1, x2) = λx1x2.

(ii) V (x1, x2) = 1

2
K (x1 − x2)

2 .

2. Consider a system of N bosons each described by the wavefunction of the ground state

harmonic oscillator of frequency ω,

u(r) = 1
(
πa2

)3/4
exp(−r2/2a2).

Assume that the bosons interact pairwise via a δ-function interaction λδ(ri − rj) within

each pair. Determine the kinetic, potential, and interaction energies of this system. Also

obtain the total energy, E, and E divided by the total N -particle energy in the absence of

interaction.



41 Lagrangian formulation of classical fields

41.1 Basic structure

In Chapter 25 we discussed the Lagrangian method as it applied to nonrelativistic problems.

We extend it now to the relativistic domain in which the relativistic wavefunctions, called

classical fields, replace their nonrelativistic counterparts with the Lagrangian method

formulated in the four-dimensional language.

Let φ represent the classical field. We write the Lagrangian density L in terms φ and its

derivative ∂μφ, and express the Lagrangian as

L =
∫

d3x L
(
φ, ∂μφ

)
(41.1)

and the action as

S =
∫

d4x L
(
φ, ∂μφ

)
. (41.2)

The corresponding Euler–Lagrange equation can be written as

∂L

∂φ
− ∂μ

(
∂L

∂
(
∂μφ

)
)
= 0. (41.3)

The Klein–Gordon (K-G) wavefunction φ(x) provides a simple example of a classical

field. If we take

L =1

2

(
∂μφ∂

μφ − μ2φ2
)

(41.4)

then from (41.3) we obtain (with � = c = 1)

∂μφ∂
μφ + μ2φ = 0, (41.5)
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which is, indeed, the K-G equation discussed in Chapter 31. We note that this equation is

consistent with the basic quantum condition obeyed by the canonical variables xi and pi,

e.g.,

[
xi, pj

]
= i�δij;

[
xi, xj

]
= 0;

[
pi, pj

]
= 0. (41.6)

Asecond quantization occurs when the field φ itself is quantized. This has been discussed

in Chapters 37–40. In this chapter, we will discuss the classical field equations such as the

K-G and Dirac equations. We will also call Maxwell’s equations, which were discussed in

Chapter 31, classical field equation even though the quantum conditions (41.6) were not

imposed in deriving them.

41.2 Noether’s theorem

One of the advantages of the Lagrangian formulation is that one can establish a relationship

between symmetries of the theory and conservation laws. Consider, as an example, the

following infinitesimal transformation of the field φ (x) at each space-time point, x:

φ (x)→ φ′ (x) = φ (x)+ ǫ�φ (x) (41.7)

where�φ (x) is the change in the field and ǫ is an infinitesimal parameter. We will call the

theory invariant under this transformation if the action, S, and therefore, the equations of

motion are invariant under (41.7). The variation in the action is given by

δS =
∫

d4x

[
∂L

∂φ
δφ + ∂L

∂
(
∂μφ

)δ
(
∂μφ

)
]

. (41.8)

The invariance of S implies that

δS = 0. (41.9)

From the Euler–Lagrange equations satisfied by φ we can write (41.8) as

δS =
∫

d4x

[
∂μ

∂L

∂
(
∂μφ

)δφ + ∂L

∂
(
∂μφ

)δ
(
∂μφ

)
]

. (41.10)

Combining the two terms on the right we obtain

δS =
∫

d4x ∂μ

[
∂L

∂
(
∂μφ

)δφ
]

. (41.11)

From (41.7),

δφ = ǫ�φ. (41.12)
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Since ǫ is arbitrary, the invariance condition (41.9) implies that

∫
d4x ∂μ

[
∂L

∂
(
∂μφ

)�φ
]
= 0. (41.13)

If we define

Jμ = ∂L

∂
(
∂μφ

)�φ (41.14)

then from (41.13) we obtain

∂μJμ = 0. (41.15)

If we designate Jμ as the “current” then according to (41.15), this current is conserved. This

is the essence of Noether’s theorem. We point out that this current need not be the same as

the physical current we defined in other contexts.

Integrating (41.15) we obtain

∫
d3r ∂μJμ =

∫
d3r

[
∂J 4

∂t
+∇ · J

]
= 0 (41.16)

where the integral is over the infinite three-dimensional space. Therefore,

∫
d3r

∂J 4

∂t
= −

∫
d3r∇ · J. (41.17)

From the divergence theorem we can convert the volume integral to the surface integral at

infinity. If dS is the element of the surface at infinity, we find

∫
d3r ∇ · J =

∫
dS · J = 0 (41.18)

provided J vanishes sufficiently rapidly at infinity. If we define a “charge” as

Q (t) =
∫

d3r J 4 (r, t) (41.19)

then (41.17) and (41.18) give

dQ

dt
= 0. (41.20)

Thus the “charge” related to the fourth component of Jμ is conserved.
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41.3 Examples

Below we outline the Lagrangian structure of some of the classical fields.

41.3.1 Klein–Gordon field

Real φ

We have discussed this in the previous section. The appropriate Lagrangian is

L = 1

2
[
(
∂μφ

)2 − μ2φ2] (41.21)

where (∂μφ)2 = ∂μφ∂μφ. It gives rise to the Euler–Lagrange equation

(
∂μφ

)2 + μ2φ = 0. (41.22)

In particle physics it is customary to consider the μ2φ2 term in L to be a part of the

potential following the traditional definition L = T −V . For example, one writes the above

Lagrangian as

L = 1

2

(
∂μφ

)2 − V (φ) (41.23)

where

V (φ) = 1

2
μ2φ2. (41.24)

The above designation may seem like a bookkeeping arrangement and unnecessary. In

fact, the potential plays a fundamental role. For μ2 > 0 it corresponds to the mass of

the scalar particle as we already know. But if μ2 < 0 it leads to a phenomenon called

spontaneous symmetry breaking, which has profound consequences that are at the basis

of recent advances in particle physics. We will discuss this in Chapter 42 on spontaneous

symmetry breaking, where the potential is typically of the form

V (φ) = 1

2
μ2φ2 + λ

4
φ4. (41.25)

The Euler–Lagrange equation for this case is

(
∂μφ

)2 + μ2φ + λφ3 = 0. (41.26)

Complex φ

The simplest Lagrangian with a complex φ is of the form

L = 1

2
∂μφ∗∂μφ − V (φ,φ∗), (41.27)
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with

V (φ,φ∗) = 1

2
μ2φ∗φ. (41.28)

The Euler–Lagrange equations lead to

∂μ

(
∂L

∂
(
∂μφ

)
)
− ∂L
∂φ
= 0 =⇒ ∂μ∂

μφ∗ + μ2φ∗ = 0, (41.29)

∂μ

(
∂L

∂
(
∂μφ

∗)
)
− ∂L

∂φ∗
= 0 =⇒ ∂μ∂

μφ + μ2φ = 0. (41.30)

One normally defines

φ = σ + iπ√
2

and φ∗ = σ − iπ√
2

(41.31)

where σ and π are scalar (Hermitian) fields. Then from (49.29) and (49.30) we deduce

∂μ∂
μσ + μ2σ = 0, (41.32)

∂μ∂
μπ + μ2π = 0. (41.33)

Thus we have two degenerate scalar fields σ and π .

One could include possible additional interactions of the form given by

V (φ,φ∗) = 1

2
μ2φ∗φ + λ

4

(
φ∗φ

)2
, (41.34)

then the Lagrangian in terms of σ and π is

L = 1

2

(
∂μσ

)2 + 1

2

(
∂μπ

)2 − V
(
σ 2 + π2

)
(41.35)

where

V
(
σ 2 + π2

)
= μ

2

2

(
σ 2 + π2

)
+ λ

4

(
σ 2 + π2

)2
. (41.36)

The equations of motion are

∂μ∂
μσ + μ2σ + λσ

(
σ 2 + π2

)
= 0, (41.37)

∂μ∂
μπ + μ2π + λπ

(
σ 2 + π2

)
= 0. (41.38)
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Conserved current

Let us now consider the conserved current for the Lagrangian corresponding to complex

scalar fields and discuss the consequences of Noether’s theorem.

We return first to the Lagrangian (41.27),

L =1

2

[
∂μφ∂

μφ∗ − μ2φφ∗
]

. (41.39)

It is invariant under the transformation

φ→ φ′ = eiαφ (41.40)

which is a continuous transformation since α can take continuous values. For an

infinitesimal transformation, α = ǫ, we obtain

φ→ φ′ = eiǫφ = φ + iǫφ. (41.41)

Thus, from (41.21),

�φ = iφ and �φ∗ = −iφ∗. (41.42)

Hence, the current Jμ is given by

Jμ = ∂L

∂
(
∂μφ

)�φ + ∂L

∂
(
∂μφ

∗)�φ
∗, (41.43)

which is found to be

Jμ =
(
∂μφ∗

)
iφ +

(
∂μφ

) (
−iφ∗

)
(41.44)

= i
(
φ∂μφ∗ − φ∗∂μφ

)
. (41.45)

According to Noether’s theorem this current is conserved. That is,

∂μJμ = 0. (41.46)

This is the same result as we obtained for the complex scalar field discussed in Chapter 37.

In this case it is in fact the physical current.

In terms of σ and π , the current Jμ can be written as

Jμ = σ∂μπ − π∂μσ . (41.47)

The presence of the interaction terms does not affect the form of the current since these

terms do not involve derivatives. We note that σ andπ satisfy the equations given by (41.37)

and (41.38) of the previous section.
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41.3.2 Dirac field

The Lagrangian for the Dirac field can be written as

L =iψγ μ∂μψ − mψψ (41.48)

where ψ is the Dirac spinor with ψ and γ μ which have been previously defined. The

corresponding Euler–Lagrange equation is

∂μ

(
∂L

∂
(
∂μψ

)
)
− ∂L
∂ψ

= 0, (41.49)

which gives

−∂μiψγ μ + mψ = 0. (41.50)

After multiplying (41.50) on the right by γ 4 and using the relation ψγ 4 = ψ†, we take the

Hermitian conjugate of (41.50) and obtain

iγ μ∂μψ − mψ = 0. (41.51)

This is, of course, the Dirac equation. We will defer the discussion on the presence of

interactions to the next section when we discuss Maxwell’s equations.

Conserved current

The Lagrangian (41.48) is invariant under the transformation

ψ → ψ ′ = eiαψ →
α=ǫ

ψ + iǫψ . (41.52)

Hence

�ψ = iψ , and �ψ = −iψ . (41.53)

The current Jμ is then

Jμ = ∂L

∂
(
∂μψ

)�ψ + ∂L

∂
(
∂μψ

)�ψ , (41.54)

which reduces to

Jμ = ψγ μψ . (41.55)

This is the same expression for the current as we obtained in Chapter 33 on the Dirac

equation.
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41.4 Maxwell’s equations and consequences of gauge invariance

The Lagrangian for Maxwell’s equation is written as

L = −1

4
FμνFμν (41.56)

where Fμν , Maxwell’s tensor, is given in terms of the vector potential Aμ as follows:

Fμν = ∂μAν − ∂νAμ. (41.57)

The Euler–Lagrange equations are then given by

∂μ

(
∂L

∂
(
∂μAν

)
)
− ∂L

∂Aν
= 0. (41.58)

From (41.56) and (41.57) we find that

∂L

∂Aν
= 0 (41.59)

and
(

∂L

∂
(
∂μAν

)
)
=
(
−1

4

)
∂

∂
(
∂μAν

) [∂αAβ − ∂βAα
] [
∂αAβ − ∂βAα

]
= −Fμν . (41.60)

Hence (41.58) gives

∂μFμν = 0, (41.61)

which is Maxwell’s equation.

Below we reiterate what we stated in Chapter 32, but this time in the context of the

Lagrangian framework: the equation in terms of Aμ can be obtained through the definition

(41.56) to give

�Aμ + ∂μ(∂νAν) = 0 (41.62)

where � = ∂ν∂ν .
We noted earlier in Chapter 31 that Fμν and Maxwell’s equations are invariant under the

gauge transformation

Aμ→ A′μ = Aμ − g∂μχ(x). (41.63)

As we mentioned then, since χ depends on x, this transformation is called a “local” gauge

transformation. This allows us to take advantage of the arbitrariness given by (41.63) and

eliminate the second term in (41.62) by taking

∂νA
ν = 0. (41.64)
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This is the Lorentz condition. Under gauge transformation (41.63) we find

∂νA
ν → ∂νA

′ν = ∂νAν − g∂ν∂
νχ . (41.65)

To keep condition (41.64) invariant we choose χ such that

�χ = 0. (41.66)

Thus, from (41.62), Aμ satisfies the equation

�Aμ = 0 (41.67)

provided the relations (41.62), (41.64), and (41.66) are imposed. The condition (41.64) is

also called the transverse gauge, which we have considered in the past.

We note that (41.67) corresponds to the Klein–Gordon equation for each of the four

components of Aμ but with zero mass. A mass term added to (41.67) will give

�Aμ + m2Aμ = 0, (41.68)

which corresponds to the Lagrangian

L = −1

4
FμνF

μν + m2AμAμ. (41.69)

But this Lagrangian is no longer invariant under gauge transformations. The presence of a

mass term destroys gauge invariance. Invoking the concept of photons, we can restate this

situation slightly differently and say that the photon is massless as given by (41.67) because

of gauge invariance.

We will now go a step further and consider Maxwell’s field interacting with an external

current jν . The Lagrangian is then of the form

L = −1

4
FμνF

μν + 1

c
jμAμ. (41.70)

The corresponding Maxwell’s equation obtained from the Euler–Lagrange equations is

∂μFμν = 1

c
jν . (41.71)

Let jν be the current due to a Dirac particle. In our discussion of the conserved currents for

the Dirac field we found that

jν = eψ̄γ νψ (41.72)

where we have introduced the factor e since we want to consider the electromagnetic current.

Thus (41.71) can be written as

∂μFμν = e

c
ψ̄γ νψ . (41.73)
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Having discussed Maxwell’s equation in the presence of a Dirac current, we will now

consider the Dirac equation in the presence of an electromagnetic field, which we already

know to be of the form

γ μ(i∂μ − eAμ)ψ + mψ = 0. (41.74)

To determine the consequences of gauge transformation we must consider (41.73) and

(41.74) together and obtain the gauge transformation properties of ψ . We show below

that if

ψ(x)→ ψ ′(x) = eiχ(x)ψ(x) (41.75)

where χ(x) is the same function as χ(x) in (41.63), then both (41.73) and (41.74) will be

gauge-invariant equations. It is easy to confirm this for (41.73) since Fμν that appears on

the left is gauge invariant and, on the right, since both ψ and ψ̄ appear, the contribution of

eiχ(x) is canceled.

Equation (41.74) under gauge transformation is given by

ψ̄γ μ(i∂μ − eAμ)ψ → ψ̄
′
γ μ(i∂μ − eA′μ)ψ = e−iχ ψ̄γ μ

[
i∂μ − e(Aμ −

1

e
∂μχ)

]
eiχψ

(41.76)

where we have taken g = 1/e in (41.63). The right-hand side above simplifies to

= ψ̄[−∂μχ + i∂μ − eAμ + ∂μχ ]ψ (41.77)

= ψ̄[i∂μ − eAμ]ψ (41.78)

where we have canceled e−iχ with eiχ that remain after taking the derivatives. Thus both

(41.73) and (41.74) remain invariant under the gauge transformations of Aμ and ψ given,

respectively, by

Aμ→ A′μ = Aμ −
1

e
∂μχ , (41.79)

ψ → ψ ′ − eiχψ . (41.80)

To make gauge invariance manifest in the field equations, we incorporate the notation

Dμ, defined previously,

Dμ = ∂μ − ieAμ. (41.81)

We note that

Dμψ → D′μψ
′ = (∂μ − ieA′μ)(e

iχψ) = eiχ (∂μ − ieAμ)ψ = eiχDμψ . (41.82)

Finally, from the above results we conclude that a gauge-invariant Lagrangian for the

Dirac particle can be written as

L = ψ̄γ μDμψ + mψ̄ψ .
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41.4.1 Further consequences of imposing local
gauge invariance

Let us now summarize the above results by considering the consequences that would arise

if, starting from scratch, we asserted that our theory be locally gauge invariant. Starting

with the Dirac equation, we find that while ψ̄ψ is invariant under ψ(x)→ eiχ(x)ψ(x), the

first term in the equation gives

iψγ μ∂μψ → iψ
′
γ μ∂μψ

′ − ψ ′γ μ
(
∂μχ

)
ψ ′ (41.83)

where there is a left-over term involving ∂μχ . The only way to cancel this term is to add a

vector field, Aμ(x), which can be done by replacing ∂μ in the Dirac equation by Dμ defined

in (41.81). Furthermore, as we have already observed, this vector field must be massless.

From these results one can say that gauge symmetry “predicts” a massless vector particle,

which in QED is the photon.

A locally gauge invariant Lagrangian that combines both the Dirac and Maxwell’s

equations can be written as

L = ψ̄ iγ μDμψ + mψ̄ψ − 1

4
FμνFμν . (41.84)

We note that the Euler–Lagrange equation for theψ variable will give (41.74), while for the

Aμ variables it will give (41.73). There are two important things achieved by local gauge

invariance:

(i) massless vector fields;

(ii) minimal coupling eψ̄γ μψAμ, which is contained in the term ψ̄γ μDμψ . In other words,

the photon’s coupling to the electron, or any other matter field, is determined by its

transformation property. It is found that the above conclusions hold even under second

quantization.

In the case of a complex (charged) scalar boson interacting with the Maxwell field, the

Lagrangian is given by

L = −1

4

(
Fμν

)2 +
∣∣Dμφ

∣∣2 − V
(
φ,φ∗

)
, (41.85)

which is invariant under

φ (x)→ eiα(x)φ (x), Aμ (x)→ Aμ (x)−
1

e
∂μα (x) (41.86)

where V is the gauge-invariant potential.

41.4.2 Maxwell’s equations with Dirac and scalar particles

It can readily be checked that the Lagrangian that is locally gauge invariant and has a

Dirac particle, a charged scalar particle, and the zero-mass photon (Maxwell’s equation) is
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given by

L = ψ̄ iγ μDμψ +
∣∣Dμφ

∣∣2 − 1

4

(
Fμν

)2 + mψ̄ψ − V (φ) (41.87)

where

∣∣Dμφ
∣∣2 =

(
Dμφ

)∗ (
Dμφ

)
(41.88)

and

V (φ) = 1

2
μ2 |φ|2 . (41.89)

Gauge theory

In conclusion, what we have discussed above are called local symmetries since they depend

on space-time variables. We saw that such gauge symmetries generate dynamics called

gauge interactions by giving rise to interaction couplings that involve vector particles. The

theory underlying the above formalism is called gauge theory and one believes that all

basic interactions are described by some form of gauge theory consisting of only massless

particles, included among which are the vector bosons, which are often called the gauge

bosons. The acquisition of mass for these particles then results from spontaneous symmetry

breaking of gauge invariance, which we will discuss in the next chapter.
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42.1 BCS mechanism

We consider the Lagrangian defined in Chapter 39 for the Cooper pair interaction as the

BCS Lagrangian, which is given by (� = c = 1)

L(ψ ,ψ†) = iψ† ∂

∂t
ψ + ψ†

(
∇2

2m
+ μ

)
ψ + g

2
ψ† (x) ψ

†
β (x) ψβ (x) ψ (x) (42.1)

where ψ is the nonrelativistic electron field. The corresponding Euler–Lagrange equation

for the field ψα is

i
∂

∂t
ψα (x)+

(
∇2

2m
+ μ

)
ψα (x)+ gψ

†
β (x) ψβ (x) ψα (x) = 0. (42.2)

We note that the Lagrangian and the equation of motion are invariant under the

transformation

ψ → e−iθψ , ψ† → eiθ ψ† (42.3)

where θ is a real, continuous variable, independent of x. This type of transformation is

designated as U (1), and since θ does not depend on x, one calls it a “global” transformation.

If θ were dependent on x, then we would be dealing with the so-called “local” transformation.

Now let us consider the equation

i
∂

∂t
ψα (x)+

(
∇2

2m
+ μ

)
ψα (x)+Mǫαβψ

†
β (x) = 0, (42.4)

which was obtained from (42.2) after we made the substitution

gψβ (x) ψα (x)→ g
〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉
= Mǫαβ (42.5)

where the vacuum state |0〉 is the BCS vacuum |0〉BCS . Since M is just a number and not an

operator, it cannot be affected by the U (1) transformation, and therefore, equation (42.4) is

no longer invariant under the U (1) transformation (42.3). The culprit is clearly (42.5) where

we replaced a composite operator by its vacuum expectation value. If we examine (42.5),

we find that if the vacuum is assumed to be invariant under the U (1) transformation (42.3)

then we must have

〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉
= e−2iθ

〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉
. (42.6)
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Since θ is an arbitrary variable, this relation would imply that
〈
0
∣∣ψβ (x) ψα (x)

∣∣ 0
〉

must

vanish. The only alternative available to us is to assume that vacuum does not respect the

U (1) symmetry. Thus the vacuum must break the U (1) symmetry. This type of symmetry

breaking is called “spontaneous” symmetry breaking (SSB) where the Lagrangian satisfies

the symmetry but not the vacuum.

Let us consider the relation between the BCS vacuum and the ordinary vacuum,

|0〉 =
∏

k

(
uk + vka

†

k
a

†

−k

)
|0〉0 , (42.7)

where |0〉 on the left corresponds to the BCS vacuum and |0〉0 on the right corresponds

to the ordinary vacuum. By implementing the relation (42.3) for the creation operators we

find that

U (θ) |0〉 =
∏

k

(
uk + vke2iθa

†

k
a

†

−k

)
|0〉0 (42.8)

where U (θ) designates the U (1) transformation given by (42.3). Clearly the BCS vacuum

|0〉 is not invariant under U (θ). If we write

|θ〉 = U (θ) |0〉 (42.9)

then |θ〉 is a different vacuum state. Furthermore,

U (θ ′) |θ〉 =
∣∣θ + θ ′

〉
. (42.10)

Thus, since θ ′ is continuous, we have an infinite number of states that are all vacuum states

and they are degenerate.

We recall from our discussion on superconductivity that the presence of a nonzero vacuum

expectation value (VEV) led to the formation of condensates in the BCS system. Since we

have found that a nonzero VEV leads to spontaneous symmetry breaking (and vacuum

degeneracy), this example illustrates the fact that the presence of condensates leads to SSB,

and vice versa, i.e.,

Condensates ⇄ SSB (+Vacuum degeneracy) . (42.11)

Since SSB occurs due to the formation of condensates, which are dynamical entities, the

symmetry breaking such as that found in superconductivity is called “dynamical” symmetry

breaking.

42.2 Ferromagnetism

Let us consider the case of ferromagnetism near the Curie temperature. The free energy

density for small values of magnetization, M, is given by

u(M) = (∂iM)2 + V (M) (42.12)



757 42.2 Ferromagnetism

where i (= 1, 2, 3) corresponds to the space coordinates and V (M) is defined through

Ginzburg–Landau theory as

V (M) = a(T )(M ·M)+ b(M ·M)2 (42.13)

where b is a positive constant independent of temperature, T , while a is defined as

a = a0 (T − TC) with a0 > 0. (42.14)

Here TC is the Curie temperature, so that a is positive when T > TC but becomes negative

when T goes below TC . The symmetry here is rotational symmetry as u(M) is invariant

under rotations.

The ground-state magnetization (the “vacuum”) is obtained by taking a minimum of V ,

∂V /∂Mi = 0, (42.15)

to obtain

Mi(a+ 2bM ·M) = 0 (42.16)

for i = 1, 2, 3. For T > TC , where a is positive, the solution is

Mi = 0, (42.17)

which fixes both the magnitude (|M| = 0) and direction of M for the ground state. We

have a unique vacuum that is rotationally invariant.

However, for T < TC when a < 0, the minimum is given by

|M| = (−a/2b)1/2 . (42.18)

V (M) in this case is (a/2b) |M|2, which is negative, and therefore, lower than V (M) = 0.

The value M = 0 now corresponds to a local maximum.

Relation (42.18) fixes only the magnitude of the vacuum state but it says nothing about

the direction. It can have any direction among an infinite number of possibilities, thus the

vacuum state is infinitely degenerate. If we apply rotation to a vacuum state, we get another

vacuum state, not the same state, i.e.,

U |0〉 � =|0〉 (42.19)

where U is the rotation operator. Once the direction of M is chosen, we have a single

vacuum, with a specific direction, which breaks the rotational symmetry.

In summary, for T > TC all the magnetic dipoles are randomly oriented in the ground

state, which is rotationally invariant, but for T < TC they are all aligned in some arbitrary

direction, leading to spontaneous magnetization. This phenomenon provides an explanation

for the ferromagnetism observed in certain materials.

Next we consider the classical fields.
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42.3 SSB for discrete symmetry in classical
field theory

We will consider classical fields, though some of the results we obtain will be expressed

in the language of quantum field theory. For our first example we consider the Lagrangian

density for scalar particles given as

L = 1

2

(
∂μφ

)2 − V (φ) (42.20)

where, as we discussed in Chapter 41, the μ2φ2 term is contained in V (φ),

V (φ) = 1

2
μ2φ2 + λ

4
φ4 (42.21)

where λ > 0. V (φ) is called the “potential” to separate it from the kinetic energy term

given by the first term in (42.20). The Lagrangian (42.20) is symmetric under the discrete

transformation

φ→ φ′ = −φ. (42.22)

To find the lowest energy state we determine the minimum of the potential V (φ) through

the relation

∂V

∂φ
= 0, (42.23)

which gives

μ2φ + λφ3 = 0. (42.24)

The solutions are found to be

φmin = 0, ±
√
−μ2/λ. (42.25)

Let us consider two possibilities: (i) μ2 > 0 and (ii) μ2 < 0. The behavior of V (φ) for

both these cases is shown in Fig. 42.1.

(i) For μ2 > 0, the term 1
2
μ2φ2 in V (φ) signifies a mass term and corresponds to

the Klein–Gordon equation for a scalar particle with mass μ. The vacuum state is given

by φmin = 0, and it is the only allowed solution. For this solution, V (φmin) = 0. If |0〉
designates the vacuum state, then φmin = 0 corresponds to

〈0|φ |0〉 = 0; (42.26)

and if U designates the transformation (42.22), then since this is a unique vacuum, it does

not change under U , i.e.,

U |0〉 = |0〉 . (42.27)
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φ

V(φ)

2 > 0

V (φ)

φ

2 < 0µ µ

Fig. 42.1

(ii) For μ2 < 0, the term (1/2) μ2φ2 = − (1/2) |μ|2 φ2 in V (φ) will have no relation

to the mass of the Klein–Gordon particle. Thus in this case we must consider the scalar

particle represented by the Klein–Gordon equation to have zero mass. The vacuum state

will be determined by two other solutions in (42.25), φmin = ±
√
−μ2/λ, for which

V (φmin) = −
μ4

4λ
, (42.28)

which is lower than V (φmin) = 0, while φmin = 0 is now a local maximum. We have

now a choice of two minima,±
√
−μ2/λ. Either choice will break the reflection symmetry

(42.22).

If we designate the degenerate vacuum states as |01〉 for φmin = +
√
−μ2/λ and |02〉 for

φmin = −
√
−μ2/λ, then for both

〈0|φ |0〉 � =0. (42.29)

Under the transformation U given by (42.22), U |0i〉 � =|0i〉 for i = 1, 2, |01〉 and |02〉 are

interchanged, i.e.,

U |01〉 = |02〉 . (42.30)

If we now select a specific vacuum state, say |01〉, the potential can be expressed with

respect to it by writing

φ(x) = v + σ(x) (42.31)

with

v =
√

m2/λ, m2 = −μ2 > 0 (42.32)

and

〈0| σ |0〉 = 0 (42.33)

where v is called the vacuum expectation value of φ and written as

v = 〈0|φ |0〉 . (42.34)
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The Lagrangian given in (42.20) can be written in terms of σ as

L = 1

2

(
∂μσ

)2 − V (σ ) (42.35)

where V (σ ) is given by

V (σ ) = m2σ 2 + λvσ 3 + λ
4
σ 4. (42.36)

We note that the negative mass term for V (φ) in (42.21) has disappeared; instead we have

a term m2σ 2 in V (σ ), which is a positive term and, when written as 1
2
(2m2), corresponds

to a mass
√

2m.

Thus, for μ2 < 0, the symmetry φ → −φ is spontaneously broken for the massless

scalar theory, giving rise to a new state – a particle of mass
√

2m.

42.4 SSB for continuous symmetry

As our next example we consider a Lagrangian that exhibits continuous symmetry,

L = 1

2

(
∂μσ

)2 + 1

2

(
∂μπ

)2 − V (σ ,π), (42.37)

where

V (σ ,π) = μ
2

2

(
σ 2 + π2

)
+ λ

4

(
σ 2 + π2

)2
. (42.38)

We now have two scalar particles, σ and π , both with the same mass μ if μ2 > 0, or both

with zero mass if μ2 < 0.

The Lagrangian density L in (42.37) is invariant under the following continuous

transformation, designated as the O(2) transformation,

(
σ

π

)
→

(
σ ′

π ′

)
=
(

cosα sin α

− sin α cosα

)(
σ

π

)
(42.39)

since it leaves
(
σ 2 + π2

)
invariant. To obtain the ground state we minimize V in (42.38)

with respect to σ and π to obtain

∂V

∂σ
= σ

[
μ2 + λ

(
σ 2 + π2

)]
= 0, (42.40)

∂V

∂π
= π

[
μ2 + λ

(
σ 2 + π2

)]
= 0. (42.41)

For μ2 > 0, we have the trivial solution σmin = πmin = 0 for the minimum, which

corresponds to the normal vacuum Vmin = 0.
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For μ2 < 0, however, we have the solution

σ 2 + π2 = v
2 (42.42)

where

v =
√

m2

λ
, m2 = −μ2 > 0. (42.43)

Thus we have now an infinite number of vacua described by the points along the circle given

by (42.42) with a radius given in (42.43). We can select a point σmin = v and πmin = 0,

i.e.,

〈0 |σ | 0〉 = v, 〈0 |π | 0〉 = 0. (42.44)

By selecting a specific “direction,” however, we break the O(2) symmetry. If we expand V

around its minimum by writing

σ = σ ′ + v, (42.45)

π = π ′, (42.46)

we obtain

L = 1

2

[(
∂μσ

′)2 +
(
∂μπ

′)2
]
+ m2σ ′2 − λvσ ′

(
σ ′2 + π ′2

)
− λ

4

(
σ ′2 + π ′2

)2
, (42.47)

which corresponds to a σ ′ particle of mass
√

2m, but the mass of π ′ is zero.

Thus for μ2 < 0, we discover that in place of zero mass particles σ and π with which

we started out, we have, after SSB, a particle of mass
√

2m along with a massless particle.

Let us do this problem another way, by rewriting the above Lagrangian in terms of

complex scalar fields by defining

φ = 1√
2
(σ + iπ) . (42.48)

The Lagrangian density (42.37) can be re-expressed as

L = ∂μφ∗∂μφ − V (φ,φ∗) (42.49)

where

V = μ2φ∗φ + λ
(
φ∗φ

)2
. (42.50)

The symmetry here is the U (1) symmetry

φ→ φ′ = e−iαφ, (42.51)

φ∗→ φ∗′ = eiαφ∗. (42.52)
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For μ2 < 0, the minimum of the potential corresponds to

|φ|2 = v
2

2
(42.53)

where

v =
√

m2

λ
, m2 = −μ2 > 0, (42.54)

which we can write as

|〈0 |φ| 0〉| = v√
2

. (42.55)

Thus, we can only fix the magnitude of φ but not the phase. Since

φ = 1√
2
(σ + iπ) , (42.56)

we can select the phase by taking

〈0 |σ | 0〉 = v and 〈0 |π | 0〉 = 0, (42.57)

which breaks the U (1) symmetry.

If we take

σ ′ = σ − v and π ′ = π (42.58)

then the Lagrangian density in terms of σ ′ and π ′ is given by

L = 1

2

[(
∂μσ

′)2 +
(
∂μπ

′)2
]
+ m2σ ′2 − λvσ ′

(
σ ′2 + π ′2

)
− λ

4

(
σ ′2 + π ′2

)2
, (42.59)

recovering our previous result that the scalar particle σ ′ now has mass
√

2m while π ′ is

massless.

42.5 Nambu–Goldstone bosons

In the examples of continuous symmetry that we considered above, we noted that in each

case after SSB we were left with a massless scalar particle along with a massive one.

This result is a consequence of a very well-known theorem for processes that exhibit SSB

for continuous symmetry. These massless scalar particles are known as Nambu–Goldstone

bosons.
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The proof is actually quite straightforward once we take account of the fact that the mass

terms appear as a coefficient of the φ2 term in the potential V (φ). Thus,

∂2V

∂φ2
= μ2. (42.60)

If V (φ) is invariant under a continuous transformation of φ, then under an infinitesimal

transformation of φ,

φ→ φ +�φ, (42.61)

V (φ) will remain unchanged, i.e.,

V (φ) = V (φ +�φ). (42.62)

Since�φ is infinitesimal we can expand the right-hand side above and keep terms only up

to the linear term in �φ. Therefore,

V (φ) = V (φ)+�φ∂V
∂φ

. (42.63)

Hence, we must have

�φ
∂V

∂φ
= 0. (42.64)

Let us now take the derivative of equation (42.64) with respect to φ at φ = φ0 where V (φ)

has a minimum.

∂�φ

∂φ0

∂V

∂φ0

+�φ0

∂2V

∂φ2
0

= 0. (42.65)

Because V (φ) is minimum at φ = φ0, ∂V /∂φ0 must vanish. Therefore,

�φ0

∂2V

∂φ2
0

= 0. (42.66)

If φ0 corresponds to a point where SSB takes place, then the symmetry (42.62) does not

hold and �φ0 � =0. Hence, we must have

∂2V

∂φ2
0

= 0. (42.67)

However, when we expand V (φ) around φ = φ0 we obtain

V (φ) = V (φ0)+
1

2

(
φ − φ0

)2 ∂
2V

∂φ2
0

+ · · · (42.68)

where the ∂V /∂φ0 term is absent since φ0 is a minimum. The coefficient of φ2 in (42.68)

is ∂2V /∂φ2
0, which vanishes due to relation (42.67). Hence, from (42.60) φ corresponds to

a zero-mass particle. Thus, SSB for continuous symmetry leads to massless scalar particles,

which are the Nambu–Goldstone bosons.
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42.5.1 Examples

Let us elaborate on this result by returning to the Lagrangian given by (42.37) in the previous

section,

L = 1

2

(
∂μσ

)2 + 1

2

(
∂μπ

)2 − V (σ ,π) (42.69)

where

V (σ ,π) = μ
2

2

(
σ 2 + π2

)
+ λ

4

(
σ 2 + π2

)2
. (42.70)

As discussed previously, the Lagrangian is invariant under the continuous transformation

(42.39). For infinitesimal transformations,

V (σ +�σ ,π +�π) = V (σ ,π)+�σ ∂V
∂σ
+�π ∂V

∂π
(42.71)

where σ and π transform as

σ → σ ′ = σ cosα + π sin α = σ + απ , (42.72)

π → π ′ = −σ sin α + π cosα = π − ασ . (42.73)

Therefore,

�σ = απ and �π = −ασ . (42.74)

If V is invariant, then from (42.71) we have

�σ
∂V

∂σ
+�π ∂V

∂π
= 0, (42.75)

which implies, using (42.74), that

π
∂V

∂σ
− σ ∂V

∂π
= 0. (42.76)

We consider the case μ2 < 0 when SSB takes place and take the derivative of (42.75)

with respect to π and σ respectively at a point where V is a minimum, i.e., where

(
∂V

∂π

)

min

= 0 =
(
∂V

∂σ

)

min

. (42.77)

We have already determined that for this case

σmin � =0 and πmin = 0. (42.78)

.
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The derivative of (42.76) with respect to π at the minimum gives

(
∂V

∂σ
+ π ∂

2V

∂π∂σ
− σ ∂

2V

∂π2

)

min

= 0 (42.79)

where the term ∂σ/∂π does not appear since the two fields are independent. The first two

terms vanish due to (42.77) and (42.78), respectively; therefore, we have

σmin

(
∂2V

∂π2

)

min

= 0. (42.80)

Since σmin �= 0 from (42.78) we obtain

(
∂2V

∂π2

)

min

= 0. (42.81)

Thus from (42.60) we conclude that π is the massless Nambu–Goldstone boson.

The derivative of (42.76) with respect to σ at the minimum gives

(
π
∂2V

∂σ 2
− ∂V
∂π

− σ ∂
2V

∂σ∂π

)

min

= 0. (42.82)

The first two terms vanish due to the relations (42.77) and (42.78), respectively. Hence,

σmin

(
∂2V

∂σ∂π

)

min

= 0. (42.83)

Since σmin � =0, we have

(
∂2V

∂σ∂π

)

min

= 0. (42.84)

This does not give any new result since, from (42.70), we find

(
∂2V

∂σ∂π

)

min

= 2λσminπmin, (42.85)

which vanishes since πmin = 0.

42.6 Higgs mechanism

Let us nowbring in theMaxwell field and include its interactionwith a charged scalar particle

described by a complex scalar field. Following our earlier discussions, the Lagrangian for

a complex scalar field coupled to a Maxwell field is given by

L =
∣∣Dμφ

∣∣2 − V (φ)− 1

4

(
Fμν

)2
(42.86)
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where the Maxwell tensor is given by

Fμν = ∂μAν − ∂νAμ (42.87)

and

Dμ = ∂μ − ieAμ, (42.88)

V = μ2 |φ|2 + λ |φ|4 , (42.89)

where
∣∣Dμφ

∣∣2 =
(
Dμφ

)∗ (
Dμφ

)
, and

(
Fμν

)2 = FμνF
μν . We note that the Lagrangian

(42.86) is invariant under the local gauge transformation

φ (x)→ e−iα(x)φ (x) , Aμ (x)→ Aμ (x)−
1

e
∂μα (x) . (42.90)

For μ2 > 0, this Lagrangian corresponds to a scalar particle of mass μ, and a massless

photon represented by Aμ(x).

Let us digress a little and discuss what would happen if the photon had a mass. One would

then have to add a mass term in the Lagrangian

1

2
m2Aμ(x)A

μ (x) (42.91)

for the photon, which would not be invariant under gauge transformation (42.90). Thus,

invariance under gauge transformation plays an essential role in preventing the photon from

having a mass. We also note that because of gauge invariance the zero-mass photon will

have only two polarization components – the two transverse components, while if Aμ(x)

were to represent a massive vector boson then it would have three degrees of freedom,

including a longitudinal component.

Let us replace the photon field by a vector field, which we will describe by the same nota-

tion, Aμ(x), in a gauge-invariant Lagrangian (42.86). In writing the gauge transformation

relation, the electric charge e will be replaced by another coupling constant, which we will

designate as g. Thus, the new Lagrangian will look exactly like (42.86) but with an Aμ(x)

that no longer represents a photon but rather an arbitrary vector particle. This Lagrangian

will be invariant under the gauge transformation

φ (x)→ e−iα(x)φ (x) , Aμ (x)→ Aμ (x)−
1

g
∂μα (x) . (42.92)

We will show below that if we takeμ2 < 0 then a dramatic thing happens as a consequence

of SSB that occurs. One finds that, in addition to the appearance of a massive scalar particle,

which we have already discussed, Aμ(x) now acquires mass even though the Lagrangian

continues to remain gauge invariant.
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To elaborate on this phenomenon, let us first review the scalar sector. We write the

complex φ as

φ = 1√
2
(σ + iπ) (42.93)

where σ and π are real fields. We found in our earlier discussions that for μ2 < 0, there

was a minimum of the potential V (φ) at

∣∣φmin

∣∣2 = v
2

2
(42.94)

where

v =
√

m2

λ
, m2 = −μ2 > 0. (42.95)

Expanding the functions about the minimum

σ = σ ′ + vπ = π ′ with φ′ = 1√
2

(
σ ′ + iπ ′

)
(42.96)

one finds

V (φ)→ m2σ ′2 − λvσ ′
(
σ ′2 + π ′2

)
− λ

4

(
σ ′2 + π ′2

)2
(42.97)

which, as we discussed earlier, corresponds to a scalar particle σ ′of mass
√

2m along with

a massless Nambu–Goldstone boson, π ′. These conclusions are familiar to us.

Now let us consider
∣∣Dμφ

∣∣2. If we substitute (42.96) in (42.93) to obtain φ, we find

∣∣Dμφ
∣∣2 → 1

2

[(
∂μσ

′)2 +
(
∂μπ

′)2
]
+ 1

2
g2AμAμ

[
σ ′2 + π ′2

]
+ 1

2
g2

v
2AμAμ

+ gAμ
[(
∂μσ

′)π ′ −
(
∂μπ

′) σ ′
]
− gvAμ

[
∂μπ

′ − gAμσ
′] . (42.98)

We note that the third term in (42.98) is of the form (42.91) and corresponds to a vector

particle of mass gv . Even though the Lagrangian (42.86) that we started with is gauge

invariant, the field Aμ now has mass, thanks to SSB.

Let us now consider an important transformation in which the massless particle, π ′,
is completely eliminated from the Lagrangian. After SSB, instead of shifting the fields

according to (42.96), we do it in terms of polar coordinates:

φ (x) = 1√
2

[
σ ′ + v

]
exp

(
iπ ′/v

)
. (42.99)

This is effectively a shift in the modulus of φ(x) rather than in the real part. For small values

of π ′, we obtain, by expanding the exponential,

φ (x) = 1√
2

[
σ ′ + v + iπ ′ + · · ·

]
, (42.100)
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which is of the same form as (42.96). After this shift let us make a gauge transformation of

φ(x) of the type given by (42.92),

φ′ (x) = exp
(
−iπ ′/v

)
φ (x) = 1√

2

(
σ ′ + v

)
. (42.101)

We now have a single, purely real, field. The gauge transformation (42.101) for φ (x) is to be

accompanied by that of Aμ (x) given by (42.92), where we take α(x) = π ′(x). Hence Aμ (x)

is transformed as

A′μ (x) = Aμ (x)−
1

gv

∂μπ
′ (42.102)

and for Dμφ we write

Dμφ =
[
∂μ

(
eiπ ′/vφ′

)
− ig

(
A′μ +

1

gv

∂μπ
′
)(

eiπ ′/vφ′
)]

= eiπ ′/v [∂μσ ′ − igA′μ
(
σ ′ + v

)]
/
√

2. (42.103)

Hence,

∣∣Dμφ
∣∣2 = 1

2

∣∣∂μσ ′ − igA′μ
(
σ ′ + v

)∣∣2 . (42.104)

In the expression for the Maxwell tensor, Aμ is replaced by A′μ,

Fμν = ∂μA′ν − ∂νA′μ, (42.105)

and

V (φ) = μ
2

2

(
σ ′ + v

)2 − λ
4

(
σ ′ + v

)4
. (42.106)

The total Lagrangian is now

L = 1

2

(
∂μσ

′)2 + m2σ ′2 − 1

4

(
F ′μν

)2 + 1

2
g2

v
2A′μA′μ + 1

2
g2A′μA′μσ ′

(
σ ′ + 2v

)
− λv2 σ ′4.

(42.107)

In examining this Lagrangian we notice that we still have the massive scalar boson, σ ′,
and the massive vector boson (also called the gauge boson), A′μ, but the massless Goldstone

boson, π ′, has disappeared. It is still present, of course, in the definition of A′μ in (42.102).

As we mentioned earlier, unlike the massless photon, which has two components, both in the

transverse directions, the massive vector particle A′μ will have three. The third component

in essence will be provided by π ′ through the term ∂μπ
′ in (42.102). This is a mechanism

in which one says that the massless Goldstone boson is “gauged away” or simply “eaten

away.” The gauge transformation (42.101) and (42.102) that was used in order to arrive at

the above Lagrangian is referred to as the unitary gauge transformation.
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The mechanism presented above is at the basis of the Standard Model in particle physics.

The model successfully predicted, through SSB, the existence of the vector bosons W and

Z as particles that accompany the massless photons. The counterpart of the heavy scalar

boson is then the Higgs boson, which as yet has not been discovered experimentally. One

might find the mechanism of SSB through the changing of the sign of μ2 as somewhat

artificial. It might be interesting if the actual mechanism of SSB comes about through the

formation of condensates as we discussed earlier in connection with superconductivity, and

if, in that case, the Higgs particle itself is one of the condensates.



43
Basic quantum electrodynamics and

Feynman diagrams

In our discussion of the Lagrangian formulation we obtained the equations of motion involv-

ing the classical Dirac, Maxwell’s, and Klein–Gordon fields. We will continue with these

equations in this chapter, but with the fields now quantized. At the same time we will revert

to the Hamiltonian formalism with the fields now expressed in the Heisenberg represen-

tation. We will confine ourselves only to the interacting Dirac and Maxwell’s fields. This

will be the basis of what we will call basic quantum electrodynamics (QED).

43.1 Perturbation theory

Consider a field !(x) which is fully interacting and satisfies the Heisenberg equation

∂! (x)

∂t
= i [H ,! (x)] (43.1)

where

H = H (!) = H0 (!)+ HI (!) (43.2)

is the total Hamiltonian, which includes the free Hamiltonian H0 as a function of the fields!

and the interaction Hamiltonian HI, e.g.,!(x)γ ·A(x)!(x) for QED. Consider now another

field !in(x) that satisfies the free field equation

∂!in (x)

∂t
= i

[
H o

in,!in(x)
]

(43.3)

where

H o
in = H0 (!in) , (43.4)

which is the same as H0 in (43.2) except that!(x) is replaced by!in(x) . Here the subscript

“in” stands for incoming field, as will be clarified below.

We assume that!(x) and!in(x) are related to each other through a unitary time evolution

operator U (t) as

! (x) = U−1(t)!in (x)U (t) (43.4a)

such that

! (x)→ !in (x) as t →−∞. (43.5)

This condition in essence means that, as t→−∞, !(x) represents a free particle.

Furthermore, it implies that

U (−∞) = 1. (43.6)
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From (43.1), (43.3), and (43.4a) we also obtain

H = U−1(t)HinU (t) (43.7)

where

Hin = H0 (!in)+ HI (!in) . (43.8)

Thus, Hin is the same operator as the total Hamiltonian, H , given by (43.2) except that

the fields ! (x) are replaced by !in(x). Qualitatively, the point here is that ! is a fully

interacting field, while !in is a free field. However, since the Hamiltonian is expressed in

terms of fields, one must make the distinction about which fields appear in H .

We assume that as t → +∞,!(x) once again becomes a free particle, though, because

of the effect of interactions during the intervening time period, it may not necessarily have

the same quantum numbers, e.g., momentum, it started out with. It will satisfy the following

relation:

! (x)→ !out(x) as t →∞. (43.9)

From (43.4a) and (43.9) we obtain

!out(x) = U−1(∞)!in (x)U (∞) . (43.10)

Since U (−∞) = 1 from (43.6), we multiply (43.10) on the left and right by U (−∞) and

U−1(−∞), respectively, and obtain

!out (x) = [U (−∞)U−1(∞)]!in (x) [U (∞)U−1(−∞)]. (43.11)

Let us define a unitary operator U
(
t, t′

)
as

U
(
t, t′

)
= U (t)U−1

(
t′
)

, with U (t, t) = 1 (43.12)

and write (43.11) as

!out(x) = S−1!in(x) S (43.13)

where S is defined as the S-matrix given by

S = U (∞,−∞) . (43.14)

The S-matrix then converts a free in-field into a free out-field. Our task now is to calculate

S. We will accomplish this through perturbation expansion, which we outline below.

Since the presence of U (t′) for an arbitrary time t′ does not change any of the previous

equations which are all in terms of t, we will replace U (t) in the previous equations by

U (t, t′). We first consider equation (43.3) and write, using (43.4a),

∂!in

∂t
= ∂

∂t

(
U!U−1

)
. (43.15)

Therefore,
.

! in = U̇!U−1 + U
.

!U−1 + U!
(
U̇−1

)
(43.16)
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where the dot represents the time-derivative. We first obtain U̇−1 through the relation

UU−1 = 1, (43.17)

by taking the time-derivative

U̇U−1 + UU̇−1 = 0, (43.18)

which gives

(U̇−1) = −U−1U̇U−1. (43.19)

Inserting this expression into the third term in (43.16) we find, with some additional

modifications,

·
! in = (U̇U−1)

(
U!U−1

)
+
(
U

.

!U−1
)
−
(
U!U−1

)
U̇U−1. (43.20)

From (43.4a) we obtain

·
! in = (U̇U−1)!in +

(
U

.

!U−1
)
−!inU̇U−1. (43.21)

Therefore,
·
! in =

[
U̇U−1,!in

]
+ U

.

!U−1. (43.22)

To obtain the second term on the right-hand side of (43.22), we note from (43.1) that

U
.

!U−1 = iU [H ,!] U−1 = i
[
Hin,!in

]
. (43.23)

Hence (43.22) can be written as

·
! in =

[
U̇U−1 + iHin,!in

]
. (43.24)

From (43.3) and (43.24) we obtain

[(
U̇U−1 + i

[
Hin − H o

in

])
,!in

]
= 0. (43.25)

Since this is true for any !in, we must have

U̇U−1 + i
[
Hin − H o

in

]
= 0. (43.26)

However, from (43.8) and (43.4) we know that

Hin − H o
in = HI (!in) = H I

in. (43.27)

Hence,

U̇U−1 = −iH I
in (43.28)

apart from a possible c-number, which we can add on the right-hand side. This leads to the

equation

U̇
(
t, t′

)
= −iH I

inU
(
t, t′

)
, (43.29)
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which we can solve with the condition

U (t, t) = 1 (43.30)

to give

U
(
t, t′

)
= 1− i

∫ t

t′
dt1 H I

in (t1)U
(
t1, t′

)
. (43.31)

Using this as a recursion relation we generate the following perturbation series:

U
(
t, t′

)
= 1+ (−i)

∫ t

t′
dt1 H I

in (t1)+ (−i)2
∫ t

t′
dt1

∫ t1

t′
dt2 H I

in (t1)H
I
in (t2)

+ · · · + (−i)n
∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtn H I

in (t1) · · ·H I
in (tn)+ · · · . (43.32)

This series is reminiscent of the expression we came across in treating the perturbation

expansion in the interaction representation in Chapter 3. We can write this series in terms

of the time-ordered product T (H I
in (t1) · · ·H I

in (tn)) by observing the following for a typical

term in this expansion:

∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtn H I

in (t1) · · ·H I
in (tn)

= 1

n!

∫ t

t′
dt1

∫ t

t′
dt2 · · ·

∫ t

t′
dtnT

(
H I

in (t1) · · ·H I
in (tn)+ · · ·

)
. (43.33)

The S-matrix given by (43.14) can then be written as

S = 1+ (−i)

∫ ∞

−∞
dt1 T (H I

in (t1))+
(−i)2

2!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 T (H I

in (t1)H
I
in (t2))

+ · · · + (−i)n

n!

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 · · ·

∫ ∞

−∞
dtn T (H I

in (t1) · · ·H I
in (tn))+ · · · . (43.34)

43.2 Feynman diagrams

The T -matrix is given in terms of the S-matrix by the relation

S = 1+ i (2π)4 δ(pf − pi)T. (43.35)

This definition is an extension to four dimensions of the relation between S and T given

before which explicitly includes the fourth component (energy) of the momentum vector,

pμ. Since we will be considering only the transitions due to the interaction Hamiltonian

that conserve energy and momentum, the following results will apply to the T -matrix with

the free fields and their interaction given by

(Dirac) ψ(x) =
2∑

s=1

1

(
√

2π)3

∫
d3p

√
m

Ep

[
us(p)as(p) e−ip·x + vs(p)b

†
s (p)e

ip·x
]
, (43.36)
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(Maxwell) Aμ (x) =
1

(√
2π

)3

∫
d3k√
2ωk

[
aμ (k) e

−ik·x + a†
μ (k) e

ik·x
]
, (43.37)

(Interaction) HI (x) = ! (x) γ μ!β (x) Aμ (x). (43.38)

Going order by order we first consider:

T (HI )

Since only one space-time point is involved there is no time-ordering to be considered

and so we remove the symbol T and consider the product

HI (x) = !α(x)
(
γ μ

)
αβ
!β(x) Aμ(x), (43.39)

which corresponds to two fermion fields (electrons or positrons), !α(x) and !β(x) , and a

photon field, Aμ(x) , at a point x. We call this common point the “vertex.” Keeping only the

creation and destruction operators for each of the fields that appear in (43.39), and ignoring

the γ -matrices, we have the product

(
a†, b

) (
a, b†

) (
aγ , a†

γ

)
(43.40)

where we have ignored the dependence on spin and momentum. It is understood that these

terms appear in a matrix element sandwiched between the initial and final states in the

occupation number space, e.g., 〈f |...| i〉 . First we discuss just the fermions in the above

product. There are four possible terms

a†a, a†b†, ba, bb† (43.41)

where a and a† operators correspond to electrons, while b and b† correspond to positrons.

In order to draw diagrams that each of these terms can be associated with, we make the

convention that time increases from left to right. If we take a solid line as describing a

fermion (electron or positron), and a wavy line as a photon, then the lines coming from the

left and stopping at the vertex will be called the “incoming” particles.They will be associated

with the destruction operators, e.g., a, b (and aγ if the photons are also included). Lines

coming out of the vertex going to the right are the “outgoing” particles, and correspond to

a†, b† (and a
†
γ ).

The diagrams we discussed above and the ones to follow are due to Feynman, and

are called “Feynman diagrams.” One can show that there is a one-to-one correspondence

between the diagrams and the terms in the S-matrix expansion.

For electrons we attach an arrow to the solid line in the same direction as the direction

in which it is moving, as shown in Fig. 43.1(a).

For an incoming positron, since it is described as a particle moving backward in time, we

attach an arrow in the direction opposite to the direction of motion as shown in Fig. 43.1(b).

Note that even though it is coming from left to right (incoming), its arrow points in the

opposite direction. Similarly for the outgoing positron (Fig. 43.1(c)).

The diagrams corresponding to the individual products in (43.41) can then be drawn as

shown in Fig. 43.2. From these four diagrams we note that out of the two possible arrows
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Incoming electron
(a)

Outgoing electron

(b)
Incoming positron

(c)
Outgoing positron

Fig. 43.1

a†a

bb†

ba

a†b†

Fig. 43.2

e–

e–

e–

e–

γ

(a)

γ
(b)

a†aa†
γ

a†aa γ

Fig. 43.3

only one points toward the vertex, while the other points away from it. Thus, as we trace a

fermion line, the direction of the arrow remains continuous.

Let us now include the photons. In each of the four diagrams in Fig. 43.2 one can attach an

incoming or an outgoing photon. For example, in the diagrams for a†a given in Fig. 43.3(a)

and (b) we have two possibilities.
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If we designate the state vector in the occupation number space as

|electrons, positrons, photons〉 (43.42)

then the only nonzero matrix element that is relevant to a†aa
†
γ will correspond to

〈
1, 0, 1

∣∣∣a†aa†
γ

∣∣∣ 1, 0, 0
〉
. (43.43)

There will then be eight such possibilities corresponding to the expression (43.41).

Let us pursue our discussion on the product a†aa
†
γ given by Fig. 43.3(b), which is present

in the expression !α (x)
(
γ μ

)
αβ
!β (x) Aμ (x) and determine its contribution to the T -

matrix. If we designate the initial and final states in terms of momentum eigenvalues, then

the states corresponding to (43.42) that are relevant to (43.43) are

|initial state〉 = |i〉 = |p1, 0, 0〉 , (43.44)

|final state〉 = |f 〉 = |p2, 0, k〉 .

The operators !(x) ,! (x) and Aμ(x) discussed in Chapter 37,

!(x) = 1

(
√

2π)3

2∑

s=1

∫
d3p

√
m

Ep

[
us(p)as(p)e

−ip·x + vs(p)b
†
s (p)e

ip·x
]
, (43.45)

!(x) = 1

(
√

2π)3

2∑

s=1

∫
d3p

√
m

Ep

[
us(p)a

†
s (p)e

ip·x + vs(p)bs(p)e
−ip·x

]
, (43.46)

Aμ(x) = 1

(
√

2π)3

∫
d3p√

2ω

[
aμ (p) ǫμe−ip·x + aμ† (p) ǫ∗μeip·x

]
,

where ǫμ is the polarization vector. The matrix element of !α (x)
(
γ μ

)
αβ
!β (x) Aμ (x)

corresponding to the states described by (43.44) is obtained as

uα(p2)
(
γ μ

)
αβ

uβ(p1)ǫ
μe−i(p1−p2−k)·x (43.47)

and the corresponding T -matrix is then

∫
d4x HI (x) =

∫
d4x! (x) γ μ!β (x) Aμ (x) = u(p2)γ ·ǫu(p1)δ

(4)(p1−p2−k). (43.48)

This is then the contribution of the matrix element (43.43), expressed in momentum space

and represented by Fig. 43.3(a) and (b).
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43.3 T(HI (x1) HI (x2)) and Wick’s theorem

Before we embark on calculating T (HI (x1)HI (x2) ) and introduce Wick’s theorem let us

consider the time-ordered product of two scalar bosons,

T (�(x1)�(x2)) , (43.48a)

where �(xi) are the boson fields given by

�(x) = 1

(
√

2π)3

∫
d3p√
2ωp

[a(p)e−ip·x + a†(p)eip·x]

= b
(+)
i + b

(−)
i (43.49)

where

b
(+)
i = 1

(
√

2π)3

∫
d3p√
2ωp

a(p)e−ip·x and b
(−)
i = 1

(
√

2π)3

∫
d3p√
2ωp

a†(p)eip·x.

(43.50)

Note that the superscripts (+) and (−) refer to positive and negative frequencies and

correspond to destruction and creation operators (although counterintuitive, these are,

nevertheless, the conventional definitions).

The time-ordered product (43.48a) can be written as

T (b1b2) = θ (t1 − t2)
[(

b
(+)
1 + b

(−)
1

) (
b
(+)
2 + b

(−)
2

)]
+ t2 ← t1 (43.51)

where b1 and b2 refer to the two bosons. We express the product in square brackets in terms

of the normal products we considered earlier in which the destruction operators stand to the

right of all the creation operators,

N (b1b2) = b
(+)
1 b

(+)
2 + b

(−)
2 b

(+)
1 + b

(−)
1 b

(−)
2 + b

(−)
1 b

(+)
2 . (43.52)

We obtain, in terms of N and the commutators, the following:

T (b1b2) = θ (t1 − t2)
{
N (b1b2)+

[
b
(+)
1 , b

(−)
2

]}
+ θ (t1 − t2)

{
N (b1b2)+

[
b
(+)
2 , b

(−)
1

]}
.

(43.53)

We write this result as

T (b1b2) = N (b1b2)+ C (b1b2) (43.54)

where C is called the contraction term:

C(b1b2) = θ (t1 − t2)
[
b
(+)
1 , b

(−)
2

]
+ θ (t2 − t1)

[
b
(+)
2 , b

(−)
1

]
. (43.55)

This is the statement of Wick’s theorem applied to the product of two scalar bosons.

We note here that besides the creation and destruction operators, contained in the normal

product, which give rise to the type of diagrams we have already encountered, we now have
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x1

x2

Fig. 43.4

a new term, the contraction term C [�(x1)�(x2)] . It is the only term that includes both ver-

tices, x1 and x2. While other terms depend only on one or the other vertex, C [�(x1)�(x2)]

connects the two vertices. It can be written as the vacuum expectation value,

C (b1b2) = 〈0|T (b1b2) |0〉 , (43.56)

since

〈0 |N | 0〉 = 0. (43.57)

This is, indeed, the propagator we have considered earlier and, as the name suggests, it

propagates information from one vertex to another. It contains no operators (except for the

unit operator), and it is simply what one calls a c-number. The diagram representing it will

be a line between the two vertices, as given by Fig. 43.4, depending on where one decides to

place the vertices. These types of lines are called “internal” lines, while the lines associated

with creation and destruction of particles, indicating incoming and outgoing particles, are

called “external” lines.

Let us now obtain the time-ordered product of two fermions T (ψ(x1)ψ(x2)) which we

write as T (f1f2) given by

T (f1f2) = θ (t1 − t2) f1f2 − θ (t2 − t1) f2f1. (43.58)

After writing, as in the case of scalar boson,

fi = f
(+)

i + f
(−)

i , i = 1, 2 (43.59)

we obtain, this time in terms of the anticommutators, the products appearing on the right-

hand side of (43.58),

f1f2 = N (f1f2)+
{
f
(+)

1 , f
(−)

2

}
, (43.60)

f2f1 = N (f1f2)+
{
f
(+)

2 , f
(−)

1

}
, (43.61)

where

N (f1f2) = f
(+)

1 f
(+)

2 − f
(−)

2 f
(+)

1 + f
(−)

1 f
(+)

2 + f
(−)

1 f
(−)

2 . (43.62)

If we write

C (f1f2) = θ (t1 − t2)
{
f
(+)

1 , f
(−)

2

}
− θ (t2 − t1)

{
f
(+)

2 , f
(−)

1

}
, (43.63)

which is the contraction term for two fermions, then

T (f1f2) = N (f1f2)+ C (f1f2). (43.64)
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This is then the statement of Wick’s theorem for the product of two fermion fields. Here

once again we see the presence of the contraction term, which is the same as the propagator

discussed earlier and given by the vacuum expectation value

C (f1f2) = 〈0 |T (f1f2)| 0〉 . (43.65)

Let us now discuss how to evaluate the time-ordered product. We will remove the γ -

matrices, which can be inserted at the end of the calculation, and we also suppress the spin

indices. We then have to evaluate

T
(
ψ (x1)ψ (x1)ψ (x2)ψ (x2) Aμ (x1)A

μ (x2)

)
. (43.66)

There are four fermion fields for which the time-ordered product can be written down.

Instead of writing a general form that we will not need for our purposes, we can simplify

things by considering some typical terms as we did for the single vertex. For that purpose

let us keep only the creation and destruction operators that are involved at each vertex, and

write for (43.66) essentially a product of two terms like (43.40), one for each vertex:

[(
a†, b

) (
a, b†

) (
aγ , a†

γ

)]
1

[(
a†, b

) (
a, b†

) (
aγ , a†

γ

)]
2

. (43.67)

The subscripts for the square brackets above correspond to the two vertices.

As we will see below, once we know the initial and final states, assuming that they are

consistent with charge conservation and other symmetry considerations, one can draw all

the relevant diagrams (to second order).

Consider specifically the case where the initial state corresponds to two electrons,

|i〉 =
∣∣e−e−

〉
, (43.68)

which means that one can only have destruction operators (a)1 (a)2 to give a nonzero

result, one from each vertex. We will not specify the final state but we will consider as

many different creation operators as are allowed through (43.67). We can discard the two

disjointed terms [
a†aa†

γ

]
1

[
a†aa†

γ

]
2

(43.69)

since they are two independent diagrams irrelevant to scattering (see Fig. 43.5).

As in the case of two bosons, the only diagrams that will give a nonzero answer will be

those that have the contraction term that connects the two vertices. This would happen also

for the two-fermion case. Let us, therefore, consider

(
a†a

)
1

(
a†a

)
2

C
[
aγ aγ

]
. (43.70)

One could replace any one of the aγ ’s, or both, by a
†
γ . This then corresponds to two electrons

in the final state, with a photon propagator. The diagram is described by Fig. 43.6.

This is, indeed, the relativistic electron–electron scattering, e− + e−→ e− + e−, called

Møller scattering. There is another diagram obtained by the interchange of the final state
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Fig. 43.5

e– + e–       e– + e–.

γ

x1

x 2e–

e– e–

e–

Fig. 43.6

electrons that the full Wick’s expansion contains. There are no other diagrams (to second

order) when the initial state consists of two electrons.

From the above example we come to the important conclusion that to achieve a nonzero

T -matrix element it is necessary, but not sufficient, to have a contraction term in the time-

ordered product.

Based on this observation, let us consider the case where the initial state is an electron

and a photon, i.e., an e−γ state:

|i〉 =
∣∣e−γ

〉
. (43.71)

It is easy to see that there are only two nonzero terms. One of which corresponds to

(
aaγ

)
1

(
a†a†

γ

)
2

C
[
a†a

]
, (43.72)

which gives rise to the diagram in Fig. 43.7(a).This is Compton scattering, e−+γ → e−+γ .

The other corresponds to the term

(
aa†
γ

)
1

(
a†aγ

)
2

C
[
a†a

]
(43.73)

with the diagram in Fig. 43.7(b). This is also a part of the Compton scattering with the

photon lines interchanged.

Finally, let us consider the initial state that corresponds to an electron and a positron, i.e.,

an e−e+ state:

|i〉 =
∣∣e−e+

〉
. (43.74)
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x2x1

γγ

e– + γ        e– + γ.

e– e–

(a)

x2x1

γγ

e– + γ       e– + γ.

e– e–

(b)

Fig. 43.7

We now have three possibilities, the first being

(b†b)1(a
†a)2C

[
aγ aγ

]
(43.75)

with the diagram in Fig. 43.8(a). This is called Bhabha scattering, e− + e+ → e− + e+.

The second possibility is

(ab)1(a
†b†)2C

[
aγ aγ

]
(43.76)

with the diagram given in Fig. 43.8(b). This is also a part of the Bhabha scattering.

The third possibility is

(aa†
γ )1(ba†

γ )2C
[
aγ aγ

]
(43.77)

with the diagram in Fig. 43.9(a). This is called pair annihilation, e− + e+ → γ + γ . One

can also reverse the process, and write

(aa†
γ )1(ba†

γ )2C
[
aγ aγ

]
. (43.78)

Finally, we have two photons in the initial state:

|i〉 = |2γ 〉 . (43.79)

This is the reaction γ + γ → e− + e+, which is called pair production and is shown

diagrammatically in Fig. 43.9(b).
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_

γ

γ
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Fig. 43.9

We have now considered all possible second-order diagrams in QED.

Higher-order diagrams can similarly be constructed. For example, the process γ + γ →
γ + γ corresponds to a fourth-order diagram given in Fig. 43.10. We will not be giving

them here.
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γ γ

γγ

γ + γ        γ + γ

Fig. 43.10

43.4 Feynman rules

The contributions in the momentum space coming from each component of a typical

Feynman diagram to Mfi are listed in Fig. 43.11(a) to (f).

(i) Incoming electron and positron respectively (Fig. 43.11(a)).

(ii) Outgoing electron and positron respectively (Fig 43.11(b)).

(iii) Incoming and outgoing photon (Fig 43.11(c)).

(iv) Electron propagator (Fig. 43.11(d)).

(v) Photon propagator (Fig. 43.11(e)).

(vi) Electron–photon vertex (Fig. 43.11(f)).

In addition, one must impose momentum conservation at each vertex. In calculating any

loop diagrams (see Chapter 44), one must also integrate over each undetermined loop

momentum, given, for example, by the integral
∫

d4p/(2π)4 if p is the undetermined loop

momentum.

43.5 Cross-section for 1 + 2 → 3 + 4

We will consider the scattering of 2 particles → 2 particles with initial four-momenta p1

and p2 and final momenta p3 and p4. The cross sections and the related quantities follow

the same definitions given previously:

Cross-section = transition probability per unit time

incident flux

where

Incident flux = no. of particles incident per unit area per unit time

= (density of initial states)× (relative velocity of incident particle).

If J is the incident flux then

J = 1

V
|ν1 − ν2| (43.80)
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i(γ • p + m)
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_ igµν

q 2 + iε

(d)

(e)

(f) _ ie γµ

Fig. 43.11
Feynman rules.

where |ν1 − ν2| represents the relative velocity between the two incident particles with

velocities ν1 and ν2, respectively.

We now write the expression for an S-matrix element as

Sfi = δfi + i (2π)4 δ(4)
(
pf − pi

)
Tfi. (43.81)

The second term gives the probability amplitude for transitions to occur. Thus, the transition

probability per unit time is given by

λfi =
1

T

∣∣∣i (2π)4 δ(4)
(
pf − pi

)
Tfi

∣∣∣
2

= 1

T
(2π)8 δ(4)

(
pf − pi

)
δ(4) (0)

∣∣Tfi

∣∣2 (43.82)

where we have used the relation f (x) δ (x) = f (0) δ(x) with f (x) being δ(x) itself. Since

δ(4)(p) = 1

(2π)4

∫
d4x e−ip·x, (43.83)

then for the case of finite space and time

δ(4) (0) = 1

(2π)4
VT , (43.84)

which implies that

λfi = (2π)4 δ(4)
(
pf − pi

)
V
∣∣Tfi

∣∣2 . (43.85)
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The transition probability per unit time for transitions into a group of final states is given

by

wfi = (2π)4 δ(4)
(
pf − pi

)
V

4∏

j=3

d3pjV

(2π)3

∣∣Tfi

∣∣2 . (43.86)

The cross-section will be given by

dσ = wfi

J
= 1

|ν1 − ν2|
(2π)4 δ(4)

(
pf − pi

)
V 4

4∏

j=3

d3pj

(2π)3

∣∣Tfi

∣∣2 . (43.87)

There are four fields involved in 2 → 2 scattering, each normalized in a finite volume V,

and thus each contributing a factor 1/
√

V . We take the volume factor out and write for Tfi,

Tfi =
(

1√
V

)4

T ′fi. (43.88)

Hence,

dσ = 1

|ν1 − ν2|
(2π)4 δ(4)

(
pf − pi

) 4∏

j=3

d3pj

(2π)3

∣∣∣T ′fi
∣∣∣
2

. (43.89)

We make a further simplification and write

T ′fi = βMfi (43.90)

where the factor β is the coefficient multiplying the field operators, its form depending on

whether we have fermions or bosons (which include photons). In a 2 → 2 reaction we

have either all fermions or two fermions and two bosons, or all bosons. Thus we have the

following possibilities for β:

β =
√

m1m2m3m4

E1E2E3E4
all fermions (43.91)

=
√

m1m2

E1E22ω12ω2
two fermions and two bosons (43.92)

=
√

1

2ω12ω22ω32ω4
all bosons. (43.93)

The cross-section is then

dσ = 1

|ν1 − ν2|
(2π)4 δ(4)

(
pf − pi

)
|β|2

4∏

j=3

d3pj

(2π)3

∣∣Mfi

∣∣2 . (43.94)

We need also to multiply the expression above by a symmetry factor S,

S =∏ 1

si!
. (43.95)
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To obtain the velocity term in the denominator we note that

|ν1 − ν2| =
∣∣∣∣
p1

E1
− p2

E2

∣∣∣∣ =
|p1|
E1E2

(E1 + E2) (43.96)

where we have considered the center of mass system with p2 = −p1.

43.6 Basic two-body scattering in QED

The formalism we have developed will now enable us to calculate two-body scattering

cross-sections in QED. We will not be pursuing this in any great detail, however. First, the

calculations are highly labor-intensive. Second, except for the corrections that arise due to

the relativistic and field-theoretic aspects of the problems, nothing overly dramatic is found

at the end of the calculations.

The dramatic aspects of quantum field theory are discussed in the next chapter when we

take up the subject of anomalous magnetic moment and Lamb shift. These are part of the

so-called radiative corrections, which will be calculated with the help of the machinery that

is already in place.

There are four basic interactions in second order QED:

(i) e− + e−→ e− + e−

(ii) γ + e−→ γ + e−

(iii) e+ + e−→ γ + γ
(iv) e− + e+→ e− + e+

Two of these scattering processes, (i) and (ii), we have already discussed, nonrelativis-

tically. One is Rutherford scattering calculated in the Born approximation involving the

scattering of electrons off a heavy charged particle, e.g., a proton or a nucleus. A varia-

tion on this involving Dirac electrons, called Mott scattering, has also been considered.

The other is Thomson scattering involving electron–photon interaction obtained through

second-order time-dependent perturbation theory. We will compare the QED results with

these two. Finally, we will also mention briefly two processes that are entirely field-theoretic

in origin: electron–positron scattering and electron–positron annihilation (pair production).

43.7 QED vs. nonrelativistic limit:
electron–electron system

43.7.1 Rutherford scattering (nonrelativistic)

We have already discussed Rutherford scattering in Chapter 20 when we considered non-

relativistic scattering due to the Coulomb potential. We discussed it again in Chapter 36 for
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the case of the Dirac particles. The Coulomb potential corresponding to the scattering of an

electron off a nucleus, of charge Ze, say, is given by

V (r) = −Ze2

r
. (43.97)

Let us first consider the nonrelativistic case for the scattering of a particle of charge −e,

mass m, and momentum k off a heavy nucleus of charge Ze. The scattering amplitude in

the Born approximation is given by

fB (θ) =
Ze2m

�2k2

1

1− cos θ
= Ze2m

2�2k2

1

sin2 (θ/2)
(43.98)

and the cross-section is found to be

dσ

d�
= |fB (θ)|2 =

(
Ze2m

2�2k2

)2
1

sin4 (θ/2)
. (43.99)

If we write the nonrelativistic approximation

�k = mv (43.100)

where v is the velocity, then taking � = c = 1, we have

dσ

d�
= Z2e4

4m2
v

4

1

sin4 (θ/2)
. (43.101)

43.7.2 Mott scattering (Dirac)

We have already discussed Mott scattering in Chapter 36. Below we simply recapitulate

what we found. For the Dirac case we obtained the T -matrix,

Tfi =
iZe2

V

√
m2

Ef Ei

ū
(
pf , sf

)
γ 4u (pi, si)

|q|2
2πδ

(
Ef − Ei

)
(43.102)

for the scattering of a Dirac particle with initial four-momentum pi to final momentum pf .

The differential cross-section summed over final spins and averaged over initial spin states

is found to be

dσ

d�
= 4Z2α2m2

|q|4
∑

spins

1

2

∣∣ū
(
pf , sf

)
γ 4u (pi, si)

∣∣2

= 4Z2α2m2

|q|4
1

2
Tr

(
γ 4

γ · pi + m

2m
γ 4

γ · pf + m

2m

)
(43.103)

where

q = pf − pi (43.104)
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is the momentum transfer. Since energy is conserved, we take

∣∣pf

∣∣ = |pi| = k . (43.105)

Therefore, ∣∣∣q2
∣∣∣ =

∣∣pf

∣∣2 + |pi|2 − 2pf · pi = 2k2 (1− cos θ) (43.106)

where θ is the scattering angle. Using the trace properties we find the differential cross-

section to be given by

dσ

d�
= Z2α2m2

4k4 sin4 (θ/2)

[
1− β2 sin2

(
θ

2

)]
. (43.107)

Once again, writing �k = mv with � = c = 1, we obtain

dσ

d�
= Z2α2

4m2
v

4 sin4 (θ/2)

[
1− β2 sin2

(
θ

2

)]
. (43.108)

Thus, as we pointed out in Chapter 36, we find a correction to the Rutherford scattering

formula to order (v/c)2.

43.7.3 Møller scattering: e− + e− → e− + e−

This process corresponds to the scattering of two electrons in a fully field-theoretic

formalism. The matrix element Mfi for the scattering is

ū
(
p′
)
γ μu (p)

gμν

(q′ − q)2
ū
(
q′
)
γ νu (q)− ū

(
q′
)
γ μu (p)

gμν

(p′ − q)2
ū
(
p′
)
γ νu (q).

(43.109)

The two diagrams relevant for this process are contained in Fig. 43.6 with appropriate

momentum designations, e−(p)+ e−(q)→ e−(p′)+ e−(q′) and, with the particles inter-

changed, e−(q)+ e−(p)→ e−(p′)+ e−(q′). The diagrams are now to be considered in the

momentum space, which simply means that we remove the designations x1 and x2 from the

vertices. The negative sign between the two terms is due to the fact that electrons satisfy

Fermi statistics.

The differential cross-section for this process is given by

dσ

d�
= α

2
(
2E2 − m2

)2

4E2
(
E2 − m2

)2

[
4

sin4 θ
− 3

sin2 θ
+

(
E2 − m2

)2

(
2E2 − m2

)2

(
1+ 4

sin2 θ

)]
(43.110)

where E is the total center of mass energy of the two-electron system given by

4E2 = (p+ q)2 (43.111)

and θ is the scattering angle given by

p · p′ = |p|
∣∣p′

∣∣ cos θ . (43.112)
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In the extreme relativistic limit, E ≫ m, we obtain

dσ

d�
= α

2

E2

(
4

sin4 θ
− 2

sin2 θ
+ 1

4

)
. (43.113)

In the nonrelativistic limit, when E ≈ m, we obtain

dσ

d�
= α

2

m2

1

4v
2

(
4

sin4 θ
− 3

sin2 θ

)
(43.114)

where v is the velocity of the electron, which is given by

v
2 = (E

2 − m2)

E2
. (43.115)

If we write

sin θ = 2 sin
θ

2
cos
θ

2
(43.116)

for the two denominators in (43.114), and use the identity

1 =
(

sin2 θ

2
+ cos2 θ

2

)2

(43.117)

for the numerator of the first term, we obtain the relation

dσ

d�
= α

2

m2

1

16v
4

⎛
⎜⎝

1

sin4 θ

2

+ 1

cos4
θ

2

− 1

sin2 θ

2
cos2

θ

2

⎞
⎟⎠ (43.118)

which is manifestly symmetric. In the limit θ ≈ 0, the first term dominates and the formula

looks very much like the expression for Rutherford scattering. Here, however, m, is the

reduced mass, so one must substitute (m/2) for m in the above formula to obtain the

Rutherford scattering result that corresponds to the scattering of an electron off a heavy

nucleus.

43.8 QED vs. nonrelativistic limit:
electron–photon system

43.8.1 Thomson scattering

We have already treated this problem nonrelativistically in second-order time-dependent

perturbation. We found that the differential cross-section is given by

dσ

d�
= r2

0

∣∣∣ǫ(2) · ǫ(1)
∣∣∣
2

(43.119)
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where r0 is the so-called Thomson radius

r0 =
e2

4πmc2
. (43.120)

43.8.2 Compton scattering: γ + e− → γ + e−

In a fully field-theoretic treatment, the matrix element Mfi for this process is given as

ū
(
p′
)
[
γ · ǫ′ γ · (p+ q)+ m

(p+ q)2 − m2
γ · ǫ + γ · ǫ γ ·

(
p− q′

)
+ m

(p− q′)2 − m2
γ · ǫ′

]
u (p). (43.121)

The diagrams are given in Fig. 43.7 (a) and (b) (removing the designations x1 and x2 from

the vertices). We actually did consider both the diagrams when we derived the Thomson

formula. The momentum variables are indicated, which correspond to

γ (q)+ e−(p)→ γ (q′)+ e−(p′). (43.122)

We will consider the laboratory frame where the initial electron is at rest:

pμ = (m, 0) , qμ = (k , k), (43.123)

p′μ =
(
E′, p′

)
, q′μ =

(
k ′, k′

)
, (43.124)

where, because the photons have zero mass, k = |k| and k ′ =
∣∣k′

∣∣ .

The differential cross-section in the laboratory system is found to be

dσ

d�
= α2

4m2

(
k ′

k

)2 (
k ′

k
+ k

k ′
+ 4

(
ǫ′ · ǫ

)2 − 2

)
. (43.125)

This is called the Klein–Nishina formula.

To obtain the relation between k ′ and k , we start with the energy–momentum relation

pμ + qμ = p′μ + q′μ, i.e., q′μ − qμ = pμ − p′μ. (43.126)

Treating the energy and three-momenta separately, the following relations are satisfied:

k ′ − k = m− E′ (43.127)

and

k′ − k = −p′. (43.128)

We also note that (
q′ − q

)2 =
(
p− p′

)2
, (43.129)

which gives

−2q′ · q = 2m2 − 2E′. (43.130)
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Since

q′ · q = kk ′ − kk ′ cos θ (43.131)

where θ is the scattering angle, we obtain from (43.127), (43.130), and (43.131)

k ′ = k

1+ (k/m) (1− cos θ)
. (43.132)

Therefore, the frequency of the outgoing photon is less than that of the incoming one.

In the nonrelativistic limit, k → 0, and, therefore, from (43.132), one also finds that

k ′→ 0 with
k ′

k
→ 1. (43.133)

Upon substituting this relation we obtain the Thomson cross-section

dσ

d�
= α

2

m2

(
ǫ · ǫ′

)2
. (43.134)

43.8.3 Electron–positron annihilation, pair production: e− + e+ → γ + γ

The matrix element Mfi for this process is given below. The diagrams (removing the

designations x1 and x2 from the vertices) are given in Fig. 43.9(a) and (b).

v̄

(
p′
)
[
γ · ǫ′ γ · (p− q)+ m

(p− q)2 − m2
γ · ǫ + γ · ǫ γ ·

(
p− q′

)
+ m

(p− q′)2 − m2
γ · ǫ′

]
u (p). (43.135)

The momentum variables are given by

e−(p)+e+(p′)→ γ (q)+ γ (q′). (43.136)

The differential cross-section in the laboratory system is given by

dσ

d�
= α2

(
m+ E′

)

8 |p′| (m+ E′ − |p′| cos θ)2

(
k

k ′
+ k ′

k
− 4

(
ǫ · ǫ′

)2 + 2

)
(43.137)

where the variables are defined similarly to the Compton scattering case,

pμ = (m, 0), p′μ =
(
E′, p′

)
, (43.138)

qμ = (k , k), q′μ =
(
k ′, k′

)
, (43.139)

and θ is the scattering angle k′ · p′ = k ′
∣∣p′

∣∣ cos θ . As we did for the Compton case,

the relation between k ′ and k can be easily derived on the basis of energy momentum

conservation. It is found to be

k ′

k
= E′ −

∣∣p′
∣∣ cos θ

m
. (43.140)
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43.8.4 Electron–positron scattering, Bhabha scattering: e− + e+ → e− + e+

The matrix element T ′
fi

for this process is given below and the diagrams (removing the

designations x1 and x2 from the vertices) in Fig. 43.8(a) and (b).

v̄

(
p′
)
γ μv (p)

gμν

(q′ − q)2
ū
(
q′
)
γ νu (q)− v (p) γ μu (q)

gμν

(p+ q)2
ū
(
q′
)
γ νv

(
p′
)
. (43.141)

The differential cross-section is

dσ

d�
= α2

8E2

(
1+ cos4 θ/2

sin4 θ/2
+ 1

2

(
1+ cos2 θ

)
− 2

cos4 θ/2

sin4 θ/2

)
(43.142)

where, as in the case of Møller scattering, E is the center-of-mass energy.

The nonrelativistic approximation is given by

dσ

d�
= α

2

m2

1

16v
4 sin4 θ/2

. (43.143)

This process is closer to Rutherford scattering in that the two particles involved in scattering

are not identical as they are for the Møller case. However, here one must again replace m

by (m/2) to get the Rutherford result.
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44.1 Radiative corrections and renormalization

The second-order diagrams we considered previously are often called “tree” diagrams,

since they look like trees with branches. The next higher-order two-particle→ two particle

scattering processes in QED are given by diagrams shown in Fig. 44.1(a)–(d), which are

referred to as “radiative corrections.” As we will discuss below, they all involve loops

where, according to the Feynman rules, one must integrate over the internal momenta. The

common characteristic of these loops is that they are all divergent in the limit k → ∞,

called “ultraviolet” divergence, where k is an internal loop momentum.

There are also other divergent radiative corrections. These are the so-called “infrared”

divergences in the limit k → 0 that are present in the three diagrams Fig. 44.1(a)–(c).

We will not be considering this type of divergence except to mention that they are exactly

canceled by “bremsstrahlung” diagrams, Fig. 44.2(a) and (b), which involve the emission

of zero-energy photons in the final state.

The treatment of the infinities in the loop diagrams and the extracting of finite quantities

from them, which are then verified by experiments, form one of the remarkable success

stories of QED. The basic premise of the theory is that the free-particle Hamiltonian, H0, and

the interaction, HI , contain parameters such as charge and mass of the interacting particles

(a)                   (b)                  (c)               (d)

Fig. 44.1

(a)                           (b)

Fig. 44.2
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which should be designated as “bare” quantities.These parameters appear at the lowest order

of perturbation but they are not the quantities that are physically observed. Higher-order

perturbative terms produce corrections to these parameters and, experimentally, what we

are supposed to be observing are the final products that are “dressed-up” – “renormalized”,

as they are termed – through higher-order terms. These are the “physical” objects in contrast

to the bare quantities and, according to QED theory, it is these that should be finite. One

finds that in QED theory the various infinities can be absorbed in a consistent manner

into physically well-defined observable parameters such as charge and mass. The finite

quantities extracted by the theory are then subjected to experimental verification and the

agreement is found to be quite dramatic. This is the essence of the renormalization program

we will discuss below.

We isolate four types of loop diagrams (Fig. 44.1(a)–(d)) and consider them below.

(i) The electron self-energy diagram, due to the emission and reabsorption of a photon,

appears in Figs 44.1(a) and (c). These diagrams will be a part of any higher-order

diagram. The self-energy diagram contributes to the mass of the electron.

(ii) The vertex correction, also due to the emission and reabsorption of a photon, contributes

to the charge and magnetic moment of the electron. This correction corresponds to

Fig. 44.1(b).

(iii) The vacuum polarization diagram, Fig. 44.1(d), due to the presence of an electron

loop in a photon propagator. This diagram contributes to the charge. Here the photon

continues to remain massless because of gauge invariance.

To carry out the renormalization program we will make use of the Ward identity described

in the Appendix and proceed in three steps. In the first step we will separate the “divergent”

part from the “convergent” part when calculating the matrix elements of each of the above

diagrams. In the second step we will collect all the divergent parts and describe the renor-

malization process through which the infinite terms are combined into two finite, physically

observable, constants which by the redefinitions of these parameters will be called phys-

ical charge and mass. In the third step the left over convergent parts are discussed. These

convergent parts refer to

• the anomalous magnetic moment of the electron, and

• the Lamb shift in the hydrogen atom.

We will show that our calculated results agree with the experimental results to a

remarkable accuracy.

44.2 Electron self-energy

An electron propagator has been considered previously to the lowest order. Let us now

consider the diagram in Fig. 44.3. This is the same diagram that appears on the external

fermion legs in Fig. 44.1(a) and (c), but it is now isolated so that we can determine its

contribution. It describes an electron emitting a photon and then re-absorbing it. The
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contribution of this diagram is of the order of α, the fine structure constant (≃ 1/137). One

can write it as

u (p)� (γ · p) u (p) (44.1)

where u (p) is the free particle Dirac wavefunction, and � (γ · p) is given by the integral

� (γ · p) = −ie2
0

∫
d4k

(2π)4
γ μ

(
γ · p− γ · k + m0

[(p− k)2 − m2
0]k2

)
γ μ (44.2)

where e0 and m0 are the bare charge and mass of the electron. One often writes �2 for the

above integral to signify that it is a second-order calculation.

If we consider the unperturbed Lagrangian given by

∫
d4x ψ̄ (x) (iγ · ∂ − m0) ψ (x) (44.3)

then we note that the term contributing to mass in the momentum space is of the form

u (p)m0u (p) . (44.4)

Expression (44.1), therefore, adds to the bare mass term (44.2) so that the sum of the two

is u (p) [m0 +� (γ · p)] u(p).

To calculate � (γ · p) we use the Feynman integration technique described in the

Appendix and replace the product of the two denominators in the loop integral given by

(44.2) by a single denominator

1[
(p− k)2 − m2

0

]
k2
=
∫ 1

0

dx
1

D2
(44.5)

where D is given by

D =
[
(p− k)2 − m2

0

]
x + k2(1− x) (44.6)

= k2 − 2p · kx + xp2 − m2
0x. (44.7)

In expanding the quadratic term present in the first term of (44.6) we have used the free

particle relation p2 = m2
0. We next shift the variables by taking

κ = k − px (44.8)

so that

D = κ2 −� (44.9)

where

� = m2
0x − x (1− x) p2. (44.10)

We then write

� (γ · p) = −ie2
0

∫
d4κ

(2π)4

∫ 1

0

dx
N

[
κ2 −�

]2 (44.11)
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where the numerator, N , is given by

N = γ μγ · pγ μ(1− x)+ m0γ μγ
μ. (44.12)

This expression can be simplified further by utilizing the relations that were obtained in

Chapter 35 involving the product of the γ -matrices:

γ μγ · pγ μ = γ μγ νpνγ μ = −2γ νpν = −2γ · p (44.13)

and

γ μγ
μ = 4. (44.14)

We then obtain

N = −2γ · p(1− x) + 4m0. (44.15)

Therefore,

� (γ · p) = −ie2
0

∫ 1

0

dx [−2γ · p(1− x) + 4m0]

∫
d4κ

(2π)4
1

[
κ2 −�

]2 . (44.16)

The integral over d4κ is divergent since the integrand is of the form (dκ/κ), which is

logarithmically divergent: ∫ � dκ

κ
= ln� (44.17)

where the upper limit � is infinitely large.

In order to obtain meaningful results from the divergent integral (44.16) there are several

different integration schemes available that one can follow. The scheme we will follow is

called the dimensional regularization method, which is explained in detail in the Appendix.

It is a technique in which certain invariance properties such as gauge invariance and Ward

identity are more easily preserved. In this scheme one first carries out the integration over

an arbitrary space-time dimension d by assuming the Feynman integrals to be analytic

functions in the complex d-plane. The integrals are convergent for d less than 4. After

integrating and achieving a finite result one takes the limit d → 4. The infinity that was

noted earlier in the loop integral is then reflected as a singularity which, in the cases we

will discuss, is found to be a pole. We then separate this pole term from the left-over finite

terms.

Thus, following the discussion in the Appendix, we have, for the integral in (44.16) in d

dimensions ∫
d4κ

(2π)4
1

[
κ2 −�

]2 → i

∫
ddK

(2π)d

1
[
K2 +�

]2 . (44.18)

The integral on the right-hand side has been calculated in the Appendix. One finds

∫
d4κ

(2π)4
1

[
κ2 −�

]2 =
i

8π2ǫ
(44.19)

where

ǫ = 4− d. (44.20)
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p p

Fig. 44.3

=                  +                 +                            +   .  .  .       •

Fig. 44.4

Substituting (44.19) in (44.16) and integrating over x, we obtain

� (γ · p) = e2
0 [−γ · p + 4m0]

1

8π2ǫ
. (44.21)

Let us discuss the consequences of this relation to the electron self-energy question. The

electron propagator is given by
γ · p+ m0

p2 − m2
0

, (44.22)

which can be written as
1

γ · p− m0
. (44.23)

To prove this one simply needs to multiply and divide (44.22) by (γ · p+ m0) and use the

relation γ μγ ν + γ νγ μ = 2gμν .

Expression (44.22) is the lowest-order contribution to the electron propagator.The higher-

order corrections to the propagator can be viewed as the following series of diagrams. This

series can be written as shown in Fig. 44.4.

1

γ · p− m0
+ 1

γ · p− m0
� (γ · p) 1

γ · p− m0
+ · · · , (44.24)

which is a geometric series and sums to

SF (p) =
1

γ · p− m0 −� (γ · p)
(44.25)

where the expression for � (γ · p) has already been given in (44.21).

We now designate m as the renormalized mass and write the corresponding renormalized

propagator S ′F (p) as

S ′F (p) =
1

γ · p− m
. (44.26)

We relate S ′F to SF as follows:

Z2S ′F (p) = SF (p) (44.27)

where we have assumed S ′F to be finite, with Z2 to contain all the infinities.
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Taking the inverse of the relation (44.27) and inserting the relations (44.25) and (44.26)

we find

γ · p− m

Z2
= γ · p− m0 −� (γ · p) = γ · p− m0 − e2

0 [−γ · p + 4m0]
1

8π2ǫ
. (44.28)

By equating the coefficients of γ · p on both sides of (44.28), we obtain

1

Z2
= 1+ e2

0

8π2ǫ
. (44.29)

Inverting this relation by keeping ǫ fixed, and expanding
(
1+ e2

0/8π
2
)−1

by assuming e2
0

to be small, we obtain the relation

Z2 ≃ 1− e2
0

8π2ǫ
(44.30)

where we have kept only the first two terms in the expansion.

Equating the constant terms on both sides of (44.28) we find

m

Z2
=
[

1+ 4e2
0

8π2ǫ

]
m0. (44.31)

Multiplying both sides by Z2 and using (44.30) we find, to the leading order in e2
0,

m =
[

1+ 3e2
0

8π2ǫ

]
m0. (44.32)

Thus, if we define the relation between the renormalized mass and bare mass as

m = m0 +� (m) , (44.33)

then

� (m) = 3m0e2
0

8π2ǫ
. (44.34)

The basic assertion in the renormalization theory is that even though �(m) is diver-

gent, the sum of this term with the unknown and possibly infinite bare mass term, m0, is,

nevertheless, finite. This is what we have called the renormalized mass, m.

From the definition given in Chapter 37, the propagator SF (p) can be expressed as a

time-ordered product of fields ψ(x), i.e.,

SF (p) ∼
〈
O
∣∣T

(
ψ̄ (x) ψ(x)

)∣∣O
〉
. (44.35)

Similarly, we write

S ′F (p) ∼
〈
O

∣∣∣T
(
ψ̄
′
(x) ψ ′(x)

)∣∣∣O
〉

(44.36)
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where ψ ′(x) is interpreted as a renormalized field. Equation (44.27) then corresponds to

the following relation between the fields ψ(x) and ψ ′ (x):

ψ (x) =
√

Z2ψ
′ (x) , (44.37)

with Z2, given by (44.30), containing the divergent terms. We will complete the renormal-

ization program in the next chapter, and at the same time determine the convergent parts of

the radiative corrections.

44.3 Appendix to Chapter 44

44.3.1 Ward Identity

The matrix elements to second order in QED that involve fermions are often expressible

in the form of a four-vector, Mμ, or a second-rank tensor, Tμν associated with the external

lines.They involve fermion current, jμ (x) = ψ̄ ′(x)γ μψ(x), or products of fermion currents.

For example, in Moller scattering, which we considered in the previous chapter, a typical

term in the matrix element is

[
ūγ μu

]
[photon propagator]

[
ūγ μu

]
(44.38)

which is a product of two currents.

Writeψ ′(x) andψ(x) as u(p′) exp[i(p′ ·x)] and u(p) exp[i(p ·x)], respectively the current

conservation relation, ∂μjμ = 0, implies, in the momentum space, the relation

qμjμ = 0 (44.39)

where q = p′ − p. For the matrix element Mμ this means that

qμMμ = 0. (44.40)

This is basically the statement of the Ward identity.

In scattering processes involving photons, the photon polarization vector, ǫμ, enters in

the matrix element in the form

ǫμMμ. (44.41)

For example, in Compton scattering, a typical term leaving out external fields is

[
γ μǫ′μ

]
[electron propagator]

[
γ νǫν

]
, (44.42)

which is of the form (44.38). Hence the Ward identity (44.40) applies to this process by

replacing ǫ′μ or ǫν by an appropriate momentum vector.

In the next section we will discuss some important practical consequences of the Ward

identity for two entities: the vertex diagram and the photon propagator.



800 Radiative corrections

44.3.2 Ward identity, vertex function, and photon propagator

The vertex diagram is described by two external electron lines and an internal photon line

(propagator). The vertex term,�μ, is a four-vector. It can, therefore, be expressed as a linear

combination of the available independent four-vectors. These are: γ μ and the four-vectors

pμ and p′μ. We will write �μ as

�μ = aγ μ + b
(
pμ + p′μ

)
+ cqμ (44.43)

where qμ = p′μ − pμ. From (44.40) we must have

qμ�
μ = 0. (44.44)

Therefore, for a vertex term given by u
(
p′
)

qμ�
μu (p), we will have the relation

u
(
p′
)

qμ�
μu (p) = a

[
u
(
p′
)
γ · p′u (p)− u

(
p′
)
γ · pu (p)

]

+ b
[
u
(
p′
) (

p′2 − p2
)

u (p)
]
+ c

[
u(p′)q2u (p)

]
(44.45)

where, as we stated above, u (p) and u
(
p′
)

correspond to the external, free fermions, while

the photon line is internal. The first term in (44.45) will vanish because γ · p′ = γ · p = m;

the second term vanishes as well since p2 = p′2 = m2. The only term left is the third one

since q2, which corresponds to an internal photon, does not necessarily vanish. Following

relation (44.44), the left-hand side of (44.45) vanishes. Hence,

c = 0. (44.46)

The second example concerns the photon propagator involved in the Feynman diagram

in Fig. 44.1d. It is of the form

∏
μν =

∫
γ μ [electron propagator] γ ν [electron propagator] . (44.47)

A general expression for a second-rank tensor can be written in terms of the linear

combination ∏ μν = agμν + bqμqν . (44.48)

From (44.44) we have

qμ
∏ μν = 0. (44.49)

Hence,

aqν + bq2qν = 0, (44.50)

which gives

b = − a

q2
(44.51)

and
∏

μν = a

(
gμν − qμqν

q2

)
. (44.52)
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The above relation holds whether or not the photon is connected to external electrons. If

it is connected to an external fermion line, however, then its contribution to the S-matrix is

of the form

u
(
p′
)
γ μu (p)

∏ μν (44.53)

where u and u represent free, external fermions. The contribution of the second term in

(44.48) vanishes since

u
(
p′
)
γ μqμu (p) = u

(
p′
) (
γ · p′ − γ · p

)
u (p) = 0. (44.54)

Hence, we are left with only the term

∏
μν = agμν . (44.55)

Thanks to the Ward identity, the form of the photon propagator is, therefore, particularly

simple.

44.3.3 Feynman integration technique

The Feynman integration result states that

1

a1a2 · · · an
= (n− 1)!

∫
dx1 dx2 · · · dxnδ

[
1−∑n

i xi

]

[a1x1 + a2x2 + · · · anxn]n
(44.56)

where, in our problems a1a2...an are functions of momenta. Since we already know the

answer it will help us to devise a derivation that is simple and elegant!

First we note that we can write

1

a1
=
∞∫

0

dz1e−a1z1 . (44.57)

Taking a product of two such terms, we obtain

1

a1a2
=
∞∫

0

dz1e−a1z1

∞∫

0

dz2e−a2z2 . (44.58)

This is not in the form (44.56) which we want to derive. Therefore, let us take

z1 = tx1, and z2 = tx2 (44.59)

where t is an arbitrary constant at the moment. We obtain

1

a1a2
=
∞∫

0

dx1

∞∫

0

dx2t2e−t(a1x1+a2x2). (44.60)
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It is clear that we cannot leave the result in terms of an arbitrary parameter. What we need

to do is to integrate over t, in which case we get a term of the form

∫
dte−t(a1x1+a2x2). (44.61)

This will, indeed, give us a denominator of the form we have in (44.56). However, we

cannot simply integrate over t since it will bring in an extra integration that did not exist

before. Therefore, to keep the value intact, we need to put in a δ-function of t, which we

take to be δ [t − t(x1 + x2)]. Hence we write

1

a1a2
=
∞∫

0

dx1

∞∫

0

dx2

∞∫

0

dt t2e−t(a1x1+a2x2)δ [t − t(x1 + x2)] . (44.62)

Since

δ [t − t(x1 + x2)] =
1

t
δ [1− (x1 + x2)] , (44.63)

we find

1

a1a2
=
∞∫

0

dx1

∞∫

0

dx2

∞∫

0

dt te−t(a1x1+a2x2)δ [1− (x1 + x2)] . (44.64)

We can now integrate over t to obtain

1

a1a2
=
∞∫

0

dx1

∞∫

0

dx2
δ [1− (x1 + x2)]

(a1x1 + a2x2)
2

(44.65)

which is, indeed, of the form (44.56) for a product of two terms.

The procedure to generalize this to n terms is now straightforward. We write

1

a1a2 · · · an
=
∞∫

0

dz1e−a1z1

∞∫

0

dz2e−a2z2 · · ·
∞∫

0

dzne−anzn (44.66)

then make the transformation

zi = txi for i = 1 · · · n (44.67)

and then integrate over t after multiplying by δ [t − t(x1 + x2 + · · · + xn)].

44.3.4 Dimensional regularization

A typical integral that appears in the calculation of the Feynman diagrams is of the form

∫
d4κ

(2π)4
(κ2)m[

κ2 −�+ iǫ
]n . (44.68)
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We note that

κ2 = κ2
4 − κ2. (44.69)

The negative sign in this expression is due to the fact that we are working in the Minkowski

space. The integration, however, is facilitated considerably by making a counterclockwise

rotation by 90◦ in the κ4-space, called a Wick rotation,

κ4 → iK4, κ → K, and κ2 →−K2. (44.70)

This avoids any singularities in the path of integration and at the same time brings the

integration into the Euclidean space. We then have

∫
d4κ

(2π)4
(κ2)m[

κ2 −�+ iǫ
]n → i(−)n+m

∫
d4K

(2π)4
(K2)m[

K2 +�
]n (44.71)

where

K2 = K2
4 +K2 and d4K = dK K3d�4. (44.72)

On the right-hand side of the second relation, K is the magnitude in the four-dimensional

Euclidean space and d�4 is the four-dimensional solid angle. Below we consider first the

case m = 0: ∫
d4K

(2π)4
1[

K2 +�
]n . (44.73)

Integrations of this type are divergent if n ≤ 2 since the power of K involved in the numer-

ator is ∼ K4. As we stated earlier, to obtain meaningful results in which one can absorb

the divergences into physical parameters and, at the same time, preserve the properties

that are independent of space-time, one resorts to the so-called “dimensional regulariza-

tion” method. Here one integrates (44.73) in an arbitrary dimension d where the integral

is convergent and then, after the integration is performed, one analytically continues the

dimension from d to 4. In the process any singularities that occur are included in the result.

We explain this below.

The integral in (44.73) in terms of d dimensions is given by

lim
d→4

∫
ddK

(2π)d

1[
K2 +�

]n . (44.74)

For n ≤ 2 and d = 4 this integral is divergent.

To discuss dimensional regularization, let us consider first the case with n = 2, and write

ddK = dKKd−1d�d where d�d is the d-dimensional solid angle,

∫
ddK

(2π)d

1
[
K2 +�

]2 =
∫

dKKd−1

(2π)d

1
[
K2 +�

]2
∫

d�d . (44.75)

To calculate this integral, we change variables in the first integral on the right-hand side,

K2

�
= 1− x

x
, (44.76)
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and obtain

∫ ∞

0

dKKd−1

(2π)d

1
[
K2 +�

]2 =
(

1

2
�

d
2−2

)
1

(2π)d

∫ 1

0

dx x1− d
2 (1− x)

d
2−1. (44.77)

To calculate (44.77) we make use of the well-known relation for the beta-function, B (α,β),

∫ 1

0

dx xα−1 (1− x)β−1 = B (α,β) = Ŵ (α) Ŵ (β)
Ŵ (α + β) (44.78)

where Ŵ’s are the gamma functions. We then obtain the following by taking α = 2− d
2

and

β = d
2
,

∫ ∞

0

dK Kd−1

(2π)d

1
[
K2 +�

]2 =
(

1

2
�

d
2−2

)
1

(2π)d

Ŵ

(
2− d

2

)
Ŵ

(
d

2

)

Ŵ (2)
. (44.79)

Since we wish to take the limit d → 4, the argument of the first Ŵ-function in (44.79)

vanishes in that limit. However, we note the following properties of the Ŵ-function:

Ŵ(1+ α) = αŴ(α), (44.80)

Ŵ(1) = 1, (44.81)

and

Ŵ(α) →
α→0

1

α
− γ + O (α) , (44.82)

where γ is called the Euler–Mascheroni constant whose value is 0.5772. Thus Ŵ(α) has a

pole at α = 0 and, therefore, (44.79) has a pole at d = 4. The divergence we saw earlier

in the integral (44.73) for d = 4 and n = 2 shows up as a pole at d = 4 in the complex

d-plane.

The integral over the solid angle in (44.75) has no divergence. Hence in the limit d → 4

one needs to calculate only the integral over the four-dimensional solid angle d�4. We

show in the following chapter that

∫
d�4 = 2π2. (44.83)

Hence

∫
d4K

(2π)4
1

[
K2 +�

]2 =

⎡
⎢⎢⎣ lim

d→4

(
1

2
�

d
2−2

)
1

(2π)d

Ŵ

(
2− d

2

)
Ŵ

(
d

2

)

Ŵ (2)

⎤
⎥⎥⎦
(
2π2

)
. (44.84)

Substituting the results from (44.79)–(44.84), we obtain, to leading order in the singularity

at d = 4, ∫
d4K

(2π)4
1

[
K2 +�

]2 =
1

8π2ǫ
(44.85)
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where

ǫ = 4− d. (44.86)

The following integrals will also be useful in the calculation of the radiative corrections.

∫
ddK

(2π)d

K2

(
K2 +�

)3
= 1

(4π)d/2

d

2

Ŵ

(
2− d

2

)

Ŵ (3)

(
1

�

)2− d
2

, (44.87)

∫
ddK

(2π)d

K2

(
K2 +�

)2
= 1

(4π)d/2

d

2

Ŵ

(
1− d

2

)

Ŵ (2)

(
1

�

)1− d
2

. (44.88)

On the right-hand side in (44.87) and (44.88) we have replaced the integral over d�d by

the integral over d�4 since we will be considering these integrals only in the limit d → 4.



45
Anomalous magnetic moment and

Lamb shift

45.1 Calculating the divergent integrals

The procedure for calculating the integrals involved in radiative corrections is now fairly

clear. One needs to go through the following steps:

1. Use the Feynman integration technique to write the integral in terms of a single

denominator, D.

2. Introduce a new variable, the loop momentum, κ , so that D can be expressed in terms

of κ2, and the integration can be performed over d4κ .

3. Use a dimensional regularization scheme to do the divergent part of the integral in terms

of the dimension d. After integrating, let d → 4 and separate the singular (pole) term at

d = 4 from the finite terms.

We will follow this procedure in order to calculate the loop diagrams for the vertex

function and the photon propagator.

45.2 Vertex function and the magnetic moment

In the lowest order, the vertex diagram in Fig. 45.1 is written as

u
(
p′
)
γ μu (p). (45.1)

From the Gordon decomposition relation which we derived in Chapter 35, one can write

γ μ =
[

pμ + p′μ

2m
+ iσμνqν

2m

]
(45.2)

p

p'

q

Fig. 45.1
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p

p'

q

Fig. 45.2

+=

Fig. 45.3

where qμ = p′μ − pμ. The electromagnetic interaction term given by

ψ̄ (x) γ μψ (x)Aμ (x) (45.3)

contains a σμνqν term corresponding to the interaction μ ·B where B is the magnetic field

and μ is the magnetic moment, called the intrinsic magnetic moment of the electron. It is

given by

μ = e

mc
S (45.4)

where S is the electron spin, S = (1/2) σ . If one writes the above relation as

μ =
(g

2

) e

mc
S (45.5)

where g is called the Landé factor, then (45.4) implies that g = 2.

We will now consider radiative corrections to the vertex diagram described by Fig. 45.2

and contained in Fig. 44.1(b). The vertex function is given by

u
(
p′
)
�μu (p) (45.6)

where �μ is O (α) compared to the lowest-order term, γ μ. The total vertex function to

order α, which includes the tree diagram, can then be written (see Fig. 45.3) as

u
(
p′
)
Ŵμu (p) (45.7)

where

Ŵμ = γ μ +�μ. (45.8)

We note that Ŵμ will depend on both p′ and p, which we write as Ŵμ(p′, p). To take account

of the radiative corrections we write a general expression in terms of the available vectors

γ μ and σμνqν ,

Ŵμ(p′, p) = γ μF1

(
q2
)
+ i
σμνqν

2m
F2

(
q2
)

(45.9)
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where qμ = p′μ − pμ, while F1 and F2 are the form factors (see the discussion in

Section 20.6) which are in effect charge and magnetic moment distributions generated

through electron–photon interactions.

We note, once again, from relations (45.2) and (45.9) that γ μ and F1, with F1 (0) = 1 to

lowest order, already contain contributions from the term, σμνqν , which corresponds to the

intrinsic magnetic moment. The F2 term takes account of the possibility that there may be

additional contributions purely due to radiative corrections. These contributions will then

be of the order α.Anonzero value of F2 will, therefore, signal the presence of an anomalous

magnetic moment.

In the limit q2 → 0, the form factors F1 and F2, therefore, have the following values to

lowest order:

F1 (0) = 1, F2 (0) = 0. (45.10)

The total magnetic moment will then be

μ = [F1 (0)+ F2 (0)]
e

mc
S = [1+ F2 (0)]

e

mc
S. (45.11)

From (45.5) this implies that
g

2
= 1+ F2 (0). (45.12)

Thus,
g − 2

2
= F2 (0). (45.13)

Any departure from g = 2 will point to the existence of an anomalous term. As we will

show below an anomalous term arises from the vertex term described by Fig. 45.2.

45.3 Calculation of the vertex function diagram

If we write the vertex function as

ū
(
p′
)
�μ(p′, p)u (p), (45.14)

then the diagram of Fig. 45.2 gives

�μ
(
p′, p

)
=
∫

d4k

(2π)4
−igαβ

(k − p)2 + iǫ

(
−ieγ α

) i [γ · (k + q)+ m]

(k + q)2 − m2 + iǫ
γ μ

× i (γ · k + m)

k2 − m2 + iǫ

(
−ieγ β

)
(45.15)

The three factors of γ -matrices come from the three vertices in Fig. 45.2. The gαβ term is

due to the photon propagator, and the other two factors are from the electron propagators.

After simplifying the numerator we find

�μ
(
p′, p

)
= 2ie2

∫
d4k

(2π)4
Nμ

[(k − p)2 + iǫ][(k + q)2 − m2 + iǫ][k2 − m2 + iǫ]
(45.16)
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where

Nμ =
[
γ · kγ μγ · (k + q)+ m2γ μ − 2m

(
2kμ + qμ

)]
. (45.17)

In deriving (45.17) we have used the properties of the products of γ -matrices given in

Chapter 35, e.g., γ αγ μγ α = −2γ μ.

Following the procedure outlined earlier, as a first step, we evaluate the integral by writing

the product of the denominators in (45.16) as a single denominator using the Feynman

integration trick,

1

[(k − p)2 + iǫ][(k + q)2 − m2 + iǫ][k2 − m2 + iǫ]

=
∫ 1

0

dz1 dz2 dz3δ (z1 + z2 + z3 − 1)
2

D3
(45.18)

where

D = z1

(
k2 − m2

)
+ z2[(k + q)2 − m2] + z3 (k − p)2 + iǫ

= k2 + 2k · (z2q− z3p)+ z2q2 + z3p2 − (1− z3)m
2 + iǫ (45.19)

and where we have used the relation z1 + z2 + z3 = 1. To simplify D we write

κ ≡ k + z2q− z3p (45.20)

so that

D = κ2 −�+ iǫ (45.21)

where

� ≡ −z1z2q2 + (1− z3)
2 m2. (45.22)

We also note that ∫
d4κ

(2π)4
κμ

D3
= 0. (45.23)

This follows from the fact that κμ is an odd function while D is not. Also, as explained in

the Appendix,
∫

d4κ

(2π)4
κμκν

D3
=
∫

d4κ

(2π)4

1
4
gμνκ2

D3
. (45.24)

The numerator function for Nμ in (45.17), after using (45.22), and (45.23) can be written

as

Nμ = −1

2
γ μκ2 + (−z2γ · q+ z3γ · p) γ μ ((1− z2) γ · q+ z3γ · p)

+ m2γ μ − 2m
(
(1− 2z2) q

μ + 2z3pμ
)
. (45.25)
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We then obtain

�μ = 4ie2

∫
d4κ

(2π)4

∫ 1

0

dz1dz2dz3δ (z1 + z2 + z3 − 1)
1

D3

×
[
−1

2
γ μκ2 + (−z2γ · q+ z3γ · p) γ μ ((1− z2) γ · q+ z3γ · p)

+m2γ μ − 2m
(
(1− 2z2) q

μ + 2z3pμ
)]

. (45.26)

The first term in the numerator behaves like κ2, while d4κ goes like κ4 and D3 like

κ6. Therefore, the contribution coming from the first term is of the form dκ/κ , hence

it is logarithmically divergent. We separate the divergent term from the rest, which are

convergent, and write

�μ =
(
�μ

)
divergent

+
(
�μ

)
convergent

. (45.27)

45.4 Divergent part of the vertex function

The divergent part is identified as

(
�μ

)
divergent

= −2ie2γ μ
∫ 1

0

dz1dz2dz3δ (z1 + z2 + z3 − 1)

∫
d4κ

(2π)4
κ2

(
κ2 −�

)3
.

(45.28)

From expression (44.87) we have in d dimensions,

∫
d4κ

(2π)4
κ2

(
κ2 −�

)3
→ i

∫
ddK

(2π)d

K2

(
K2 +�

)3
= i

1

(4π)d/2

d

2

Ŵ

(
2− d

2

)

Ŵ (3)

(
1

�

)2− d
2

,

(45.29)

which for d = 4 gives ∫
d4κ

(2π)4
κ2

(
κ2 −�

)3
= i

8π2ǫ
. (45.30)

Hence,

(
�μ

)
divergent

= −2ie2γ μ
∫ 1

0

dz1 dz2 dz3 δ (z1 + z2 + z3 − 1)
i

8π2ǫ
. (45.31)

However,

∫ 1

0

dz1dz2dz3δ (z1 + z2 + z3 − 1) =
∫ 1

0

dz1

∫ 1−z1

0

dz2 =
1

2
. (45.32)

Therefore,
(
�μ

)
divergent

= e2

8π2ǫ
γ μ. (45.33)
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q q

Fig. 45.4

For renormalization purposes we express, using (45.8),

γ μ +
(
�μ

)
divergent

= γ
μ

Z1
(45.34)

where Z1 is the renormalization factor. Substituting the result from (45.33) in (45.34) we

find

1+ e2

8π2ǫ
= 1

Z1
. (45.35)

Once again, keeping ǫ fixed and expanding in powers of e2, we obtain to second order

Z1 ≃ 1− e2

8π2ǫ
. (45.36)

Thus Z1 contains the pole given by the second term. We will return to this result when we

discuss the renormalization constants in other loop terms.

The remaining contributions in (45.26) are given by

(
�μ

)
convergent

= 4ie2

∫
d4κ

(2π)4

∫ 1

0

dz1dz2dz3δ (z1 + z2 + z3 − 1)
1

D3

×
[
(−z2γ · q+ z3γ · p) γ μ ((1− z2) γ · q+ z3γ · p)

+m2γ μ − 2m
(
(1− 2z2) q

μ + 2z3pμ
)]

. (45.37)

We will return to this result in Section 45.9 along with the convergent contributions from

the other loop terms.

45.5 Radiative corrections to the photon propagator

The photon propagator to the lowest order has been considered earlier. The first-order radia-

tive correction will come from the electron loop as described by the diagram of Fig. 45.4.

We write it as (−igρμ

q2

)
i 
μν
2

(−igνσ

q2

)
(45.38)

where

i 
μν
2 = − (−ie)2

∫
d4k

(2π)4

[
γ μ

i (γ · k + m)

k2 − m2
γ ν

i (γ · k + γ · q+ m)

(k + q)2 − m2

]
. (45.39)
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The factors involving the γ -matrices are due to the two vertices, while the two propagators

correspond to the internal electrons in the loop. The product of the numerators inside the

square bracket can be simplified by using the properties of the γ -matrices outlined in

Chapter 35. We write (45.39) as

i 
μν
2 = −4e2

∫
d4k

(2π)4
Nμν

[k2 − m2][(k + q)2 − m2]
(45.40)

where

Nμν = kμ (k + q)ν + kν (k + q)μ − gμν
(
k · (k + q)− m2

)
. (45.41)

Following, once again, the Feynman integration technique, the product in the denominator

can be written as

1

[k2 − m2][(k + q)2 − m2]
=
∫ 1

0

dxdyδ(x + y − 1)
1

D2
(45.42)

where

D = x[(k + q)2 − m2] + (1− x)
(
k2 − m2

)
(45.43)

= k2 + 2xk · q+ xq2 − m2. (45.44)

We simplify D by writing

κ = k + xq. (45.45)

Hence,

D = κ2 −�+ iǫ (45.46)

where

� = m2 − x (1− x) q2. (45.47)

The numerator term, Nμν , is then given by

Nμν =
(
κμ − xqμ

) [
κν + (1− x) qν

]
+
(
κν − xqν

) [
κμ + (1− x) qμ

]

− gμν
[
(κ − xq) · [κ + (1− x) q]− m2

]
. (45.48)

The terms linear in κμ, as we discussed earlier, do not contribute and hence they can be

neglected. Thus, we find

Nμν = 2κμκν − gμνκ2 − 2x (1− x) qμqν + gμν[m2 + x (1− x) q2]. (45.49)

Hence,

i 
μν
2 = −4e2

∫ 1

0

dx

∫
d4κ

(2π)4

2κμκν − gμνκ2 − 2x (1− x) qμqν + gμν
(
m2 + x (1− x) q2

)
(
κ2 −�

)2
.

(45.50)
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45.6 Divergent part of the photon propagator

The first two terms in the numerator of (45.50) give divergent contributions. We, therefore,

use the dimensional regularization technique to carry out the above integration. Using the

relations

2κμκν → 2

d
gμνκ2 →− 2

d
gμνK2, (45.51)

gμνκ2 →−gμνK2,

we obtain, keeping intact the convergent terms in (45.50),

i 
μν
2 = −4ie2

∫ 1

0

dx

∫
ddK

(2π)d

(
− 2

d
+ 1

)
gμνK2−2x (1−x) qμqν+gμν

(
m2+x (1− x) q2

)

(
K2 +�

)2
.

(45.52)

This integration is carried out in the Appendix . One finds that the above relation can be

written as

i 
μν
2 (q) =

(
q2gμν − qμqν

)
· 2

(
q2
)

(45.53)

where

 2

(
q2
)
= −8e2

(4π)d/2

∫ 1

0

dx x (1− x)

Ŵ

(
2− d

2

)

�2−d/2
. (45.54)

In order to separate the infinite and finite parts while preserving gauge invariance (a point

which will be clear later in this section), let us write

 2

(
q2
)
=  2 (0)+  ̂2

(
q2
)
. (45.55)

What we have done here is to make a subtraction at q2 = 0, i.e., we have subtracted out the

q2 = 0 term, which, as we will see below, is divergent, leaving a convergent term,  ̂2

(
q2
)
.

From (45.55) we obtain, in the limit d → 4,

 2 (0) =
(
 2

(
q2
))

divergent
= −8e2

(4π)2
2

ǫ

∫ 1

0

dx x (1− x) (45.56)

= − e2

6π2ǫ
. (45.57)

The convergent part of the diagram is then

 ̂2

(
q2
)
=
(
 2

(
q2
))

convergent
. (45.58)

We will discuss the convergent part in Section 45.9.
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Fig. 45.5

45.7 Modification of the photon propagator
and photon wavefunction

The photon propagator to lowest order is given by

−igμν

q2
. (45.59)

The higher-order contributions to the propagator can be expressed diagrammatically as in

Fig. 45.5.

If we designate the total photon propagator represented by the above series as Dμν(q)

then

Dμν(q) =
−igμν

q2
+
(−igμρ

q2

)
i 
ρσ
2 (q)

(−igσν

q2

)
+ · · · . (45.60)

Substituting the expression for i 
ρσ
2 (q) given in (45.53) into (45.60) we obtain

Dμν(q) =
−igμν

q2
+
(−igμρ

q2

)[(
q2gρσ − qρqσ

)
· 2

(
q2
)](−igσν

q2

)
+ · · · . (45.61)

Since Dμν(q) enters into the calculation as a matrix element,

ū
(
p′
)
γ μDμν(q)u (p) or ū

(
p′
)
γ νDμν(q)u (p) (45.62)

where q = p′−p; therefore, because of the Ward identity (see the Appendix to Chapter 44),

terms proportional to qμ or qν in Dμν(q) will give vanishing contributions. Thus, only the

terms proportional to gμν need be included in the sum (45.60). Hence, we have

Dμν(q) =
−igμν

q2

[
1+ 2

(
q2
)
+
(
 2

(
q2
))2

+ · · ·
]
. (45.63)

The geometric series in (45.63) can be easily summed to give

Dμν(q) =
−igμν

q2[1− 2

(
q2
)
] . (45.64)

We reach a remarkable conclusion that the photon, which had zero mass, given by the

location of the pole, q2 = 0, remains at zero mass thanks to gauge invariance as reflected by
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the Ward identity. The residue of the pole in (45.64), however, is changed from the previous

value of −igμν . We define another renormalization constant Z3 given by

Z3 =
1

[1− 2 (0)]
. (45.65)

Thus we write

Dμν(q) = Z3
gμν

q2
(45.66)

near q2 = 0.

We now define the renormalized photon propagator as

D′μν(q) =
gμν

q2
(45.67)

and write

Dμν(q) = Z3D′μν(q). (45.68)

As in the case of fermion fields, if Aμ and A′μ are bare and renormalized photon fields

respectively, then the respective propagators are given by the vacuum expectation values

of the time-ordered products,

Dμν(q) ∼
〈
O
∣∣T

(
AμAν

)∣∣O
〉

(45.69)

and

D′μν(q) ∼
〈
O
∣∣T

(
A′μA′ν

)∣∣O
〉
. (45.70)

Hence, one can relate the bare and renormalized photon fields as

Aμ =
√

Z3A′μ. (45.71)

We have already calculated 2(0), which is found from (45.57) to be

 2 (0) = −
e2

6π2ǫ
. (45.72)

We can include higher-order terms of q2 in Dμν(q) by writing (45.65) as

Dμν(q) =
−igμν

q2
[
1− 2

(
q2
) ] ≃ −igμν

q2
[
1− 2 (0)][1−  ̂2

(
q2
) ] (45.73)

where we have approximated the denominator, using (45.55), as

[
1− 2

(
q2
)]
=
[
1− 2(0)−  ̂2

(
q2
)]
≃
[
1− 2(0)

] [
1−  ̂2

(
q2
)]

. (45.74)

This approximation is valid to order α since the product  2(0)  ̂2

(
q2
)
, which we

ignored above, is of the order α2. Using (45.74) the renormalized propagator can now be
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written as

D′μν(q) =
gμν

q2[1−  ̂2

(
q2
)
]

(45.75)

where we note that  ̂2

(
q2
)

is convergent.

45.8 Combination of all the divergent terms: basic renormalization

Consider now a typical coupling term in QED which involves the product of three fields

with a coupling constant e0. We write it as

e0ψ̄ψA → e0Z2

Z1

√
Z3ψ̄

′
ψ ′A′ = eRψ̄

′
ψ ′A′. (45.76)

The right-hand side contains only the renormalized fields; therefore, we define the

renormalized coupling constant, eR, in terms of the bare coupling constant, e0, as

eR =
e0Z2

Z1

√
Z3. (45.77)

Thus all the renormalization constants along with the bare coupling constant are absorbed

into a single constant eR. It is this coupling constant that is finite and experimentally

measured.

From our calculations we found that

Z1 = Z2. (45.78)

This is, actually, not an accident. One can show that this equality follows from gauge

invariance. Relation (45.78) is called the Ward–Takahashi identity.

Hence,

eR = e0

√
Z3. (45.79)

It has been shown that the perturbation series in terms of eR now converges, as all the

infinities are taken into account and absorbed into the physical quantities.

We have thus succeeded in absorbing the infinite quantities that appeared in pertur-

bation expansion into the bare mass and charge and redefined the resulting combination

as renormalized mass and charge. Let us now turn to the leftover quantities, which are

convergent.
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45.9 Convergent parts of the radiative corrections

45.9.1 Anomalous magnetic moment

Let us return to the convergent part of �μ, which we derived in Section 45.4:

(
�μ(p′, p)

)
convergent

= 4ie2

∫
d4κ

(2π)4

∫ 1

0

dz1 dz2 dz3δ (z1 + z2 + z3 − 1)

× 1

D3

[
(−z2γ · q+ z3γ · p) γ μ ((1− z2) γ · q+ z3γ · p)

+ m2γ μ − 2m
(
(1− 2z2) q

μ + 2z3pμ
) ]

(45.80)

where q = p′ − p. We will be interested in the vertex function at q2 = 0.

Since we are interested in the matrix element ū
(
p′
)
�μu (p), we note the following:

(i) γ · p′ on the left of any term inside the square bracket can be replaced by m since

ū
(
p′
)
γ · p′ = mū

(
p′
)
; similarly, γ · p on the right can be replaced by m.

(ii) In the absence of any factors of the γ matrices multiplying it, the term γ · q will not

contribute since γ · q = γ ·
(
p′ − p

)
vanishes when sandwiched between ū

(
p′
)

and u (p).

(iii) The terms with qμ standing alone will also not contribute because of the Ward identity

if no factors involving the γ matrices are multiplying it.

The following relations will also be very helpful in obtaining the numerator appearing in

(45.80):

γ · qγ μγ · q = 2qμγ · q− γ μq2 → 0, (45.81)

γ μγ · q → 2p′μ − 2mγ μ, (45.82)

where we have used qμ = p′μ − pμ. Utilizing the points (i)–(iii) outlined above, the

numerator function, Nμν , of (45.80) can then be written in a series of simplifying steps

as

Nμ =
[
(−z2γ · q+ z3γ · p) γ μ ((1− z2) γ · q+ z3γ · p)+ m2γ μ − 4mz3pμ

]

=
[
(− (z2 + z3) γ · q+ mz3)γ

μ ((1− z2) γ · q+ mz3)+ m2γ μ − 4mz3pμ
]

=
[
2mz3(z3 − 1)pμ + m2(1− 2z3 − z2

3)γ
μ
]

. (45.83)

From the Gordon decomposition relation we have

ū
(
p′
)
γ μu (p) = ū

(
p′
) [p′μ + pμ

2m
+ iσμνqν

2m

]
u (p). (45.84)

Since p′μ = pμ + qμ, using the points noted in (iii) above, one can replace
(
p′μ + pμ

)
by

2pμ in (45.84) and express pμ in terms of γ μ and σμνqν from the above decomposition

formula. Substituting this value of pμ in (45.83) we obtain

Nμ =
[
m2γ μ(1− 4z3 + z2

3)+
iσμνqν

2m

(
2m2z3(1− z3)

)]
. (45.85)
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The coefficient of iσμνqν/2m is related to F2

(
q2
)

through (45.9). Therefore,

F2

(
q2
)
= α

2π

∫ 1

0

dz1 dz2 dz3δ (z1 + z2 + z3 − 1)

[
2m2z3 (1− z3)

m2 (1− z3)
2 − q2z1z2

]
+ O

(
α2
)

(45.86)

where α is the fine structure constant (≃ 1/137). At q2 = 0 we find

F2

(
q2 = 0

)
= α

2π

∫ 1

0

dz1 dz2 dz3δ (z1 + z2 + z3 − 1)
2m2z3 (1− z3)

m2 (1− z3)
2

= α
π

∫ 1

0

dz3

∫ 1−z3

0

dz2
z3

1− z3
= α

2π
. (45.87)

Hence the anomalous magnetic moment, μa, is given by

μa = F2 (0) =
α

2π
≈ 0.0011614. (45.88)

This value is very close to the experimental value of

μexp = 0.001159652209. (45.89)

The value we obtained in (45.88) was the result of second-order calculation. Calculations

have been made up to sixth order. The new value is found to be

μth = 0.001159652411. (45.90)

The theoretical value thus agrees with experiments to one part in 108, which is a remarkable

confirmation of QED!

45.9.2 Lamb shift

As we found in our (nonrelativistic) treatment of the hydrogen atom with Coulomb potential,

the radial wavefunction depends on the principal quantum number, n, and the angular

momentum quantum number, l (with l ≤ (n − 1)). The energy levels, however, depend

only on n. The states with different angular momenta but same n are, therefore, degenerate.

Specifically, the two states n = 2, l = 0, the 2S state, and n = 2, l = 1 the 2P state have

the same binding energy.

In Dirac’s relativistic theory where the eigenvalue of the total angular momentum J

(= L+S) is a good quantum number, the two n = 2 states mentioned above split into three

states: 2S1/2 with j = 1
2

and l = j− 1
2
; 2P1/2 with j = 1

2
and l = j+ 1

2
; 2P3/2 with j = 3/2

and l = j − 1
2
. It was found that the energy levels of the hydrogen atom depended on j in

addition to n. This meant that 2S 1
2

and 2P 1
2

still remained degenerate.

Lamb and Retherford, in 1947, found that the 2S1/2 and 2P1/2 levels of the hydrogen

atom were actually split with the 2P1/2 level more than 1000 MHz below the 2S1/2 level, in

contrast to the predictions of the Dirac theory. This is called the Lamb shift. We will show
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below that it can be explained through the effect of radiative corrections that modify the

Coulomb potential. We find that this modified term is proportional to δ(3)(r), which will

affect only the S-state and hence cause the split between the energy levels of the 2S1/2 and

the 2P1/2 states.

The calculation of the corrections to the hydrogen levels due to QED is complicated

because one must include the radiative corrections coming from the vertex function, and

the anomalous magnetic moment, and the electron self-energy, in addition to the vac-

uum polarization. In other words, one must include contributions from all six diagrams

of Fig. 44.1(a)–(d). We will consider only the contribution due to the photon propagator in

Fig. 44.1 and Fig. 45.4 and calculate the energy shift using first-order perturbation theory.

It is convenient first to relate the photon propagator to the nonrelativistic potential, V (r).

As we discussed before, this potential is simply the Fourier transform of the propagator in

the static limit. For example, the Fourier transform of the photon propagator

e2

q2
(45.91)

in the static limit, q4 = 0, q2 = − |q|2, is given by

V (r) = −
∫

d3q

(2π)3
eiq·r e2

|q|2
= − e2

4πr
(45.92)

where the integral is obtained by first replacing |q|2 by
(
|q|2 + μ2

)
and, after integration,

letting μ→ 0. As expected, this potential is just the familiar Coulomb potential.

The convergent term,  ̂2

(
q2
)
, as we derived earlier is given by

(
 2

(
q2
))

convergent
=  ̂2

(
q2
)
= −8e2

(4π)d/2

∫ 1

0

dx x (1− x)

× Ŵ
(

2− d

2

)[(
1

�

)2−d/2

−
(

1

m

)2(2−d/2)
]

. (45.93)

The terms in the square brackets, in the limit d → 4, give

[(
1

�

)2−d/2

−
(

1

m

)2(2−d/2)
]
→

(
2− d

2

)
log

(
�

m2

)
. (45.94)

Therefore,

 ̂2

(
q2
)
=

d→4

−8e2

(4π)d/2

∫ 1

0

dx x (1− x) Ŵ

(
2− d

2

)(
2− d

2

)
log

(
�

m2

)
. (45.95)

Since, (
2− d

2

)
Ŵ

(
2− d

2

)
= Ŵ

(
3− d

2

)
(45.96)
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we find in the limit d → 4,

 ̂2

(
q2
)
= −8e2

(4π)2

∫ 1

0

dx x (1− x) log

[
1− x (1− x) q2

m2

]
(45.97)

where we have substituted the relation given by (45.47) for �. Since we will be interested

in effects due to small values of q2, we expand the logarithm in  ̂2

(
q2
)

for small q2 and

retain only the leading term, which is found to be

 ̂2

(
q2
)
= −e2

2π2

(
q2

m2

)∫ 1

0

dx x2 (1− x)2 . (45.98)

The integration then gives

 ̂2

(
q2
)
= − α

15πm2
q2 (45.99)

where α = e2/4π .

Thus, in summary, we write

 2

(
q2
)
=
(
 2

(
q2
))

divergent
+
(
 2

(
q2
))

convergent
(45.100)

where (
 2

(
q2
))

divergent
=  2 (0) = −

e2

6π2ǫ
(45.101)

and (
 2

(
q2
))

convergent
=  ̂2

(
q2
)
= − α

15πm2
q2. (45.102)

The photon propagator modified by vacuum polarization to O(α) is found from

Section 45.7 to be
e2

q2[1−  ̂2

(
q2
)
]
. (45.103)

The potential derived from it is given by

V (r) = −
∫

d3q

(2π)3
eiq·r e2

|q|2 [1−  ̂2

(
− |q|2

)
]
. (45.104)

After expanding the denominator for small |q|2, we write

V (r) = −
∫

d3q

(2π)3
eiq·r e2

|q|2
[
1+  ̂2

(
− |q|2

)]
(45.105)

where from (45.102) we have

 ̂2

(
− |q|2

)
= α

15πm2
|q|2 . (45.106)

Thus, we obtain

V (r) = −
∫

d3q

(2π)3
eiq·r e2

|q|2
− αe2

15πm2

∫
d3q

(2π)3
eiq·r. (45.107)
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The integral of the first term, as expected, is the usual Coulomb potential. The second term

is the familiar δ-function. Hence

V (r) = −α
r
− 4α2

15m2
δ(3) (r). (45.108)

The second term is the modification to the Coulomb potential due to vacuum polarization.

If we denote the modified potential V ′ (r) then

V ′ (r) = − 4α2

15m2
δ(3) (r). (45.109)

Using first order time-independent perturbation theory the energy shift is found to be

�E =
∫

d3r |ψ (r)|2 V ′ (r) = − 4α2

15m2
|ψ (0)|2 (45.110)

where ψ (r) is the wavefunction of the hydrogen atom. Only the S-state which has l = 0

will contribute, since the wavefunctions for angular momenta l > 0 vanish at r = 0.

Substituting the value of the n = 2 S-state wavefunction we find the energy shift due to

vacuum polarization to be

�E = −α
5m

30π
. (45.111)

This contribution is equivalent to a correction of −27.1 MHz to the energy level differ-

ence between 2S1/2 and 2P1/2. As for the contribution of the other radiative corrections,

the vertex correction contributes an amount of magnitude 1010 MHz, while the anoma-

lous magnetic moment term contributes 68 MHz. If one includes higher orders for which

calculations have been made one finds that the 2S1/2 level is above 2P1/2 by 1057.864

± 0.014 MHz. The experimental value is 1057.862 ± 0.020 MHz, which is a stunning

re-confirmation of the QED theory!

45.10 Appendix to Chapter 45

45.10.1 The photon propagator integral

To obtain the integral of the first term in (45.53) we note from the Appendix to Chapter 44

that

∫
ddK

(2π)d

K2

(
K2 +�

)2
= 1

(4π)d/2

d

2

Ŵ

(
1− d

2

)

Ŵ (2)

(
1

�

)1− d
2

. (45.112)
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The first term in the numerator in (45.52) is then

d

2

(
− 2

d
+ 1

)
Ŵ

(
1− d

2

)(
1

�

)1− d
2

= −
(

1− d

2

)
Ŵ

(
1− d

2

)(
1

�

)1− d
2

= −�Ŵ
(

2− d

2

)(
1

�

)2− d
2

. (45.113)

The remaining two terms in the numerator in (45.52) do not have any K2 dependence. For

these terms we use (44.84),

∫ ∞

0

ddK

(2π)d

1
[
K2 +�

]2 =
(

1

2
�

d
2−2

)
1

(2π)d

Ŵ

(
2− d

2

)
Ŵ

(
d

2

)

Ŵ (2)
. (45.114)

Combining the integral from the first term in (45.52) with those from the rest of the terms

we obtain, through (45.114) and (45.115),

i 
μν
2 (q) = −4ie2

∫ 1

0

dx
1

(4π)d/2

Ŵ

(
2− d

2

)

�2−d/2

[
−�gμν + gμν

× [m2 + x (1− x) q2] − 2x (1− x) qμqν
]

(45.115)

Substituting � and combining together the terms with coefficients gμν and qμqν , one

can write

i 
μν
2 (q) =

(
q2gμν − qμqν

)
· 2

(
q2
)
. (45.116)

where the function 2

(
q2
)

is given by

 2

(
q2
)
= −8e2

(4π)d/2

∫ 1

0

dx x (1− x)

Ŵ

(
2− d

2

)

�2−d/2
. (45.117)

45.10.2 Calculating
∫

d�4

First we consider the three-dimensional space and reproduce the results we are already

familiar with. To facilitate going to four dimensions, we employ different notations and

re-express the traditional Cartesian coordinates as well as the azimuthal and polar angles

as follows:

(x, y, z)→ (x1, x2, x3), (45.118)

(φ, θ)→ (θ1, θ2). (45.119)
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The relation between the Cartesian coordinates and spherical coordinates is then given by

x = x1 = r sin θ2 cos θ1, (45.120)

y = x2 = r sin θ2 sin θ1, (45.121)

z = x3 = r cos θ2. (45.122)

The three-dimensional volume element then transforms from the Cartesian system to the

spherical system as

dx1dx2dx3 = Jdrdθ1dθ2 (45.123)

where J is the Jacobian given by

J = det

(
∂ (x1, x2, x3)

∂ (r, θ1, θ2)

)
. (45.124)

From the relations (45.120)–(45.122) we obtain

J = r2
2∏

i=1

(sin θ1)
i−1 (45.125)

and hence (45.123) reads

dx1dx2dx3 = r2dr

[
2∏

i=1

(sin θ i)
i−1 dθ1dθ2

]
. (45.126)

The three-dimensional solid angle, which is the quantity in the square bracket, is then given

by

d�3 =
2∏

i=1

(sin θ i)
i−1 dθ1dθ2 = dθ1 sin θ2dθ2. (45.127)

The integral over d�3 is then found to be

∫
d�3 =

2π∫

0

dθ1

π∫

0

sin θ2dθ2 = 4π , (45.128)

which is, of course, a well-known result.

In a similar manner we write the transformation from Cartesian coordinates to spherical

coordinates in four dimensions as follows:

x1 = r sin θ3 sin θ2 cos θ1, (45.129)

x2 = r sin θ3 sin θ2 sin θ1, (45.130)

x3 = r sin θ3 cos θ2, (45.131)

x4 = r cos θ3. (45.132)
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The four-dimensional volume element is

dx1 dx2 dx3 dx4 = Jdr dθ1dθ2dθ3 (45.133)

where the Jacobian is given by

J = det

(
∂ (x1, x2, x3, x4)

∂ (r, θ1, θ2, θ3)

)
. (45.134)

Substituting (45.129)–(45.132) we find

J = r3
3∏

i=1

sini−1 θ i. (45.135)

Hence,

dx1 dx2 dx3 dx4 = r3dr

[
3∏

i=1

(sin θ i)
i−1 dθ1 dθ2 dθ3

]
(45.136)

and the four-dimensional solid angle is

d�4 =
3∏

i=1

(sin θ i)
i−1 dθ1dθ2dθ3. (45.137)

The integral over the solid angle is then

∫
d�4 =

∫ 2π

0

dθ1

∫ π

0

sin θ2dθ2

∫ π

0

sin2 θ3dθ3 = 2π2. (45.138)
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